xref: /linux/drivers/usb/core/hcd.c (revision f3d9478b2ce468c3115b02ecae7e975990697f15)
1 /*
2  * (C) Copyright Linus Torvalds 1999
3  * (C) Copyright Johannes Erdfelt 1999-2001
4  * (C) Copyright Andreas Gal 1999
5  * (C) Copyright Gregory P. Smith 1999
6  * (C) Copyright Deti Fliegl 1999
7  * (C) Copyright Randy Dunlap 2000
8  * (C) Copyright David Brownell 2000-2002
9  *
10  * This program is free software; you can redistribute it and/or modify it
11  * under the terms of the GNU General Public License as published by the
12  * Free Software Foundation; either version 2 of the License, or (at your
13  * option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful, but
16  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
17  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
18  * for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software Foundation,
22  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23  */
24 
25 #include <linux/config.h>
26 #include <linux/module.h>
27 #include <linux/version.h>
28 #include <linux/kernel.h>
29 #include <linux/slab.h>
30 #include <linux/completion.h>
31 #include <linux/utsname.h>
32 #include <linux/mm.h>
33 #include <asm/io.h>
34 #include <asm/scatterlist.h>
35 #include <linux/device.h>
36 #include <linux/dma-mapping.h>
37 #include <linux/mutex.h>
38 #include <asm/irq.h>
39 #include <asm/byteorder.h>
40 
41 #include <linux/usb.h>
42 
43 #include "usb.h"
44 #include "hcd.h"
45 #include "hub.h"
46 
47 
48 // #define USB_BANDWIDTH_MESSAGES
49 
50 /*-------------------------------------------------------------------------*/
51 
52 /*
53  * USB Host Controller Driver framework
54  *
55  * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing
56  * HCD-specific behaviors/bugs.
57  *
58  * This does error checks, tracks devices and urbs, and delegates to a
59  * "hc_driver" only for code (and data) that really needs to know about
60  * hardware differences.  That includes root hub registers, i/o queues,
61  * and so on ... but as little else as possible.
62  *
63  * Shared code includes most of the "root hub" code (these are emulated,
64  * though each HC's hardware works differently) and PCI glue, plus request
65  * tracking overhead.  The HCD code should only block on spinlocks or on
66  * hardware handshaking; blocking on software events (such as other kernel
67  * threads releasing resources, or completing actions) is all generic.
68  *
69  * Happens the USB 2.0 spec says this would be invisible inside the "USBD",
70  * and includes mostly a "HCDI" (HCD Interface) along with some APIs used
71  * only by the hub driver ... and that neither should be seen or used by
72  * usb client device drivers.
73  *
74  * Contributors of ideas or unattributed patches include: David Brownell,
75  * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ...
76  *
77  * HISTORY:
78  * 2002-02-21	Pull in most of the usb_bus support from usb.c; some
79  *		associated cleanup.  "usb_hcd" still != "usb_bus".
80  * 2001-12-12	Initial patch version for Linux 2.5.1 kernel.
81  */
82 
83 /*-------------------------------------------------------------------------*/
84 
85 /* host controllers we manage */
86 LIST_HEAD (usb_bus_list);
87 EXPORT_SYMBOL_GPL (usb_bus_list);
88 
89 /* used when allocating bus numbers */
90 #define USB_MAXBUS		64
91 struct usb_busmap {
92 	unsigned long busmap [USB_MAXBUS / (8*sizeof (unsigned long))];
93 };
94 static struct usb_busmap busmap;
95 
96 /* used when updating list of hcds */
97 DEFINE_MUTEX(usb_bus_list_lock);	/* exported only for usbfs */
98 EXPORT_SYMBOL_GPL (usb_bus_list_lock);
99 
100 /* used for controlling access to virtual root hubs */
101 static DEFINE_SPINLOCK(hcd_root_hub_lock);
102 
103 /* used when updating hcd data */
104 static DEFINE_SPINLOCK(hcd_data_lock);
105 
106 /* wait queue for synchronous unlinks */
107 DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue);
108 
109 /*-------------------------------------------------------------------------*/
110 
111 /*
112  * Sharable chunks of root hub code.
113  */
114 
115 /*-------------------------------------------------------------------------*/
116 
117 #define KERNEL_REL	((LINUX_VERSION_CODE >> 16) & 0x0ff)
118 #define KERNEL_VER	((LINUX_VERSION_CODE >> 8) & 0x0ff)
119 
120 /* usb 2.0 root hub device descriptor */
121 static const u8 usb2_rh_dev_descriptor [18] = {
122 	0x12,       /*  __u8  bLength; */
123 	0x01,       /*  __u8  bDescriptorType; Device */
124 	0x00, 0x02, /*  __le16 bcdUSB; v2.0 */
125 
126 	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */
127 	0x00,	    /*  __u8  bDeviceSubClass; */
128 	0x01,       /*  __u8  bDeviceProtocol; [ usb 2.0 single TT ]*/
129 	0x40,       /*  __u8  bMaxPacketSize0; 64 Bytes */
130 
131 	0x00, 0x00, /*  __le16 idVendor; */
132  	0x00, 0x00, /*  __le16 idProduct; */
133 	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
134 
135 	0x03,       /*  __u8  iManufacturer; */
136 	0x02,       /*  __u8  iProduct; */
137 	0x01,       /*  __u8  iSerialNumber; */
138 	0x01        /*  __u8  bNumConfigurations; */
139 };
140 
141 /* no usb 2.0 root hub "device qualifier" descriptor: one speed only */
142 
143 /* usb 1.1 root hub device descriptor */
144 static const u8 usb11_rh_dev_descriptor [18] = {
145 	0x12,       /*  __u8  bLength; */
146 	0x01,       /*  __u8  bDescriptorType; Device */
147 	0x10, 0x01, /*  __le16 bcdUSB; v1.1 */
148 
149 	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */
150 	0x00,	    /*  __u8  bDeviceSubClass; */
151 	0x00,       /*  __u8  bDeviceProtocol; [ low/full speeds only ] */
152 	0x40,       /*  __u8  bMaxPacketSize0; 64 Bytes */
153 
154 	0x00, 0x00, /*  __le16 idVendor; */
155  	0x00, 0x00, /*  __le16 idProduct; */
156 	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
157 
158 	0x03,       /*  __u8  iManufacturer; */
159 	0x02,       /*  __u8  iProduct; */
160 	0x01,       /*  __u8  iSerialNumber; */
161 	0x01        /*  __u8  bNumConfigurations; */
162 };
163 
164 
165 /*-------------------------------------------------------------------------*/
166 
167 /* Configuration descriptors for our root hubs */
168 
169 static const u8 fs_rh_config_descriptor [] = {
170 
171 	/* one configuration */
172 	0x09,       /*  __u8  bLength; */
173 	0x02,       /*  __u8  bDescriptorType; Configuration */
174 	0x19, 0x00, /*  __le16 wTotalLength; */
175 	0x01,       /*  __u8  bNumInterfaces; (1) */
176 	0x01,       /*  __u8  bConfigurationValue; */
177 	0x00,       /*  __u8  iConfiguration; */
178 	0xc0,       /*  __u8  bmAttributes;
179 				 Bit 7: must be set,
180 				     6: Self-powered,
181 				     5: Remote wakeup,
182 				     4..0: resvd */
183 	0x00,       /*  __u8  MaxPower; */
184 
185 	/* USB 1.1:
186 	 * USB 2.0, single TT organization (mandatory):
187 	 *	one interface, protocol 0
188 	 *
189 	 * USB 2.0, multiple TT organization (optional):
190 	 *	two interfaces, protocols 1 (like single TT)
191 	 *	and 2 (multiple TT mode) ... config is
192 	 *	sometimes settable
193 	 *	NOT IMPLEMENTED
194 	 */
195 
196 	/* one interface */
197 	0x09,       /*  __u8  if_bLength; */
198 	0x04,       /*  __u8  if_bDescriptorType; Interface */
199 	0x00,       /*  __u8  if_bInterfaceNumber; */
200 	0x00,       /*  __u8  if_bAlternateSetting; */
201 	0x01,       /*  __u8  if_bNumEndpoints; */
202 	0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
203 	0x00,       /*  __u8  if_bInterfaceSubClass; */
204 	0x00,       /*  __u8  if_bInterfaceProtocol; [usb1.1 or single tt] */
205 	0x00,       /*  __u8  if_iInterface; */
206 
207 	/* one endpoint (status change endpoint) */
208 	0x07,       /*  __u8  ep_bLength; */
209 	0x05,       /*  __u8  ep_bDescriptorType; Endpoint */
210 	0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
211  	0x03,       /*  __u8  ep_bmAttributes; Interrupt */
212  	0x02, 0x00, /*  __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */
213 	0xff        /*  __u8  ep_bInterval; (255ms -- usb 2.0 spec) */
214 };
215 
216 static const u8 hs_rh_config_descriptor [] = {
217 
218 	/* one configuration */
219 	0x09,       /*  __u8  bLength; */
220 	0x02,       /*  __u8  bDescriptorType; Configuration */
221 	0x19, 0x00, /*  __le16 wTotalLength; */
222 	0x01,       /*  __u8  bNumInterfaces; (1) */
223 	0x01,       /*  __u8  bConfigurationValue; */
224 	0x00,       /*  __u8  iConfiguration; */
225 	0xc0,       /*  __u8  bmAttributes;
226 				 Bit 7: must be set,
227 				     6: Self-powered,
228 				     5: Remote wakeup,
229 				     4..0: resvd */
230 	0x00,       /*  __u8  MaxPower; */
231 
232 	/* USB 1.1:
233 	 * USB 2.0, single TT organization (mandatory):
234 	 *	one interface, protocol 0
235 	 *
236 	 * USB 2.0, multiple TT organization (optional):
237 	 *	two interfaces, protocols 1 (like single TT)
238 	 *	and 2 (multiple TT mode) ... config is
239 	 *	sometimes settable
240 	 *	NOT IMPLEMENTED
241 	 */
242 
243 	/* one interface */
244 	0x09,       /*  __u8  if_bLength; */
245 	0x04,       /*  __u8  if_bDescriptorType; Interface */
246 	0x00,       /*  __u8  if_bInterfaceNumber; */
247 	0x00,       /*  __u8  if_bAlternateSetting; */
248 	0x01,       /*  __u8  if_bNumEndpoints; */
249 	0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
250 	0x00,       /*  __u8  if_bInterfaceSubClass; */
251 	0x00,       /*  __u8  if_bInterfaceProtocol; [usb1.1 or single tt] */
252 	0x00,       /*  __u8  if_iInterface; */
253 
254 	/* one endpoint (status change endpoint) */
255 	0x07,       /*  __u8  ep_bLength; */
256 	0x05,       /*  __u8  ep_bDescriptorType; Endpoint */
257 	0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
258  	0x03,       /*  __u8  ep_bmAttributes; Interrupt */
259  	0x02, 0x00, /*  __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */
260 	0x0c        /*  __u8  ep_bInterval; (256ms -- usb 2.0 spec) */
261 };
262 
263 /*-------------------------------------------------------------------------*/
264 
265 /*
266  * helper routine for returning string descriptors in UTF-16LE
267  * input can actually be ISO-8859-1; ASCII is its 7-bit subset
268  */
269 static int ascii2utf (char *s, u8 *utf, int utfmax)
270 {
271 	int retval;
272 
273 	for (retval = 0; *s && utfmax > 1; utfmax -= 2, retval += 2) {
274 		*utf++ = *s++;
275 		*utf++ = 0;
276 	}
277 	if (utfmax > 0) {
278 		*utf = *s;
279 		++retval;
280 	}
281 	return retval;
282 }
283 
284 /*
285  * rh_string - provides manufacturer, product and serial strings for root hub
286  * @id: the string ID number (1: serial number, 2: product, 3: vendor)
287  * @hcd: the host controller for this root hub
288  * @type: string describing our driver
289  * @data: return packet in UTF-16 LE
290  * @len: length of the return packet
291  *
292  * Produces either a manufacturer, product or serial number string for the
293  * virtual root hub device.
294  */
295 static int rh_string (
296 	int		id,
297 	struct usb_hcd	*hcd,
298 	u8		*data,
299 	int		len
300 ) {
301 	char buf [100];
302 
303 	// language ids
304 	if (id == 0) {
305 		buf[0] = 4;    buf[1] = 3;	/* 4 bytes string data */
306 		buf[2] = 0x09; buf[3] = 0x04;	/* MSFT-speak for "en-us" */
307 		len = min (len, 4);
308 		memcpy (data, buf, len);
309 		return len;
310 
311 	// serial number
312 	} else if (id == 1) {
313 		strlcpy (buf, hcd->self.bus_name, sizeof buf);
314 
315 	// product description
316 	} else if (id == 2) {
317 		strlcpy (buf, hcd->product_desc, sizeof buf);
318 
319  	// id 3 == vendor description
320 	} else if (id == 3) {
321 		snprintf (buf, sizeof buf, "%s %s %s", system_utsname.sysname,
322 			system_utsname.release, hcd->driver->description);
323 
324 	// unsupported IDs --> "protocol stall"
325 	} else
326 		return -EPIPE;
327 
328 	switch (len) {		/* All cases fall through */
329 	default:
330 		len = 2 + ascii2utf (buf, data + 2, len - 2);
331 	case 2:
332 		data [1] = 3;	/* type == string */
333 	case 1:
334 		data [0] = 2 * (strlen (buf) + 1);
335 	case 0:
336 		;		/* Compiler wants a statement here */
337 	}
338 	return len;
339 }
340 
341 
342 /* Root hub control transfers execute synchronously */
343 static int rh_call_control (struct usb_hcd *hcd, struct urb *urb)
344 {
345 	struct usb_ctrlrequest *cmd;
346  	u16		typeReq, wValue, wIndex, wLength;
347 	u8		*ubuf = urb->transfer_buffer;
348 	u8		tbuf [sizeof (struct usb_hub_descriptor)];
349 	const u8	*bufp = tbuf;
350 	int		len = 0;
351 	int		patch_wakeup = 0;
352 	unsigned long	flags;
353 	int		status = 0;
354 	int		n;
355 
356 	cmd = (struct usb_ctrlrequest *) urb->setup_packet;
357 	typeReq  = (cmd->bRequestType << 8) | cmd->bRequest;
358 	wValue   = le16_to_cpu (cmd->wValue);
359 	wIndex   = le16_to_cpu (cmd->wIndex);
360 	wLength  = le16_to_cpu (cmd->wLength);
361 
362 	if (wLength > urb->transfer_buffer_length)
363 		goto error;
364 
365 	urb->actual_length = 0;
366 	switch (typeReq) {
367 
368 	/* DEVICE REQUESTS */
369 
370 	/* The root hub's remote wakeup enable bit is implemented using
371 	 * driver model wakeup flags.  If this system supports wakeup
372 	 * through USB, userspace may change the default "allow wakeup"
373 	 * policy through sysfs or these calls.
374 	 *
375 	 * Most root hubs support wakeup from downstream devices, for
376 	 * runtime power management (disabling USB clocks and reducing
377 	 * VBUS power usage).  However, not all of them do so; silicon,
378 	 * board, and BIOS bugs here are not uncommon, so these can't
379 	 * be treated quite like external hubs.
380 	 *
381 	 * Likewise, not all root hubs will pass wakeup events upstream,
382 	 * to wake up the whole system.  So don't assume root hub and
383 	 * controller capabilities are identical.
384 	 */
385 
386 	case DeviceRequest | USB_REQ_GET_STATUS:
387 		tbuf [0] = (device_may_wakeup(&hcd->self.root_hub->dev)
388 					<< USB_DEVICE_REMOTE_WAKEUP)
389 				| (1 << USB_DEVICE_SELF_POWERED);
390 		tbuf [1] = 0;
391 		len = 2;
392 		break;
393 	case DeviceOutRequest | USB_REQ_CLEAR_FEATURE:
394 		if (wValue == USB_DEVICE_REMOTE_WAKEUP)
395 			device_set_wakeup_enable(&hcd->self.root_hub->dev, 0);
396 		else
397 			goto error;
398 		break;
399 	case DeviceOutRequest | USB_REQ_SET_FEATURE:
400 		if (device_can_wakeup(&hcd->self.root_hub->dev)
401 				&& wValue == USB_DEVICE_REMOTE_WAKEUP)
402 			device_set_wakeup_enable(&hcd->self.root_hub->dev, 1);
403 		else
404 			goto error;
405 		break;
406 	case DeviceRequest | USB_REQ_GET_CONFIGURATION:
407 		tbuf [0] = 1;
408 		len = 1;
409 			/* FALLTHROUGH */
410 	case DeviceOutRequest | USB_REQ_SET_CONFIGURATION:
411 		break;
412 	case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
413 		switch (wValue & 0xff00) {
414 		case USB_DT_DEVICE << 8:
415 			if (hcd->driver->flags & HCD_USB2)
416 				bufp = usb2_rh_dev_descriptor;
417 			else if (hcd->driver->flags & HCD_USB11)
418 				bufp = usb11_rh_dev_descriptor;
419 			else
420 				goto error;
421 			len = 18;
422 			break;
423 		case USB_DT_CONFIG << 8:
424 			if (hcd->driver->flags & HCD_USB2) {
425 				bufp = hs_rh_config_descriptor;
426 				len = sizeof hs_rh_config_descriptor;
427 			} else {
428 				bufp = fs_rh_config_descriptor;
429 				len = sizeof fs_rh_config_descriptor;
430 			}
431 			if (device_can_wakeup(&hcd->self.root_hub->dev))
432 				patch_wakeup = 1;
433 			break;
434 		case USB_DT_STRING << 8:
435 			n = rh_string (wValue & 0xff, hcd, ubuf, wLength);
436 			if (n < 0)
437 				goto error;
438 			urb->actual_length = n;
439 			break;
440 		default:
441 			goto error;
442 		}
443 		break;
444 	case DeviceRequest | USB_REQ_GET_INTERFACE:
445 		tbuf [0] = 0;
446 		len = 1;
447 			/* FALLTHROUGH */
448 	case DeviceOutRequest | USB_REQ_SET_INTERFACE:
449 		break;
450 	case DeviceOutRequest | USB_REQ_SET_ADDRESS:
451 		// wValue == urb->dev->devaddr
452 		dev_dbg (hcd->self.controller, "root hub device address %d\n",
453 			wValue);
454 		break;
455 
456 	/* INTERFACE REQUESTS (no defined feature/status flags) */
457 
458 	/* ENDPOINT REQUESTS */
459 
460 	case EndpointRequest | USB_REQ_GET_STATUS:
461 		// ENDPOINT_HALT flag
462 		tbuf [0] = 0;
463 		tbuf [1] = 0;
464 		len = 2;
465 			/* FALLTHROUGH */
466 	case EndpointOutRequest | USB_REQ_CLEAR_FEATURE:
467 	case EndpointOutRequest | USB_REQ_SET_FEATURE:
468 		dev_dbg (hcd->self.controller, "no endpoint features yet\n");
469 		break;
470 
471 	/* CLASS REQUESTS (and errors) */
472 
473 	default:
474 		/* non-generic request */
475 		switch (typeReq) {
476 		case GetHubStatus:
477 		case GetPortStatus:
478 			len = 4;
479 			break;
480 		case GetHubDescriptor:
481 			len = sizeof (struct usb_hub_descriptor);
482 			break;
483 		}
484 		status = hcd->driver->hub_control (hcd,
485 			typeReq, wValue, wIndex,
486 			tbuf, wLength);
487 		break;
488 error:
489 		/* "protocol stall" on error */
490 		status = -EPIPE;
491 	}
492 
493 	if (status) {
494 		len = 0;
495 		if (status != -EPIPE) {
496 			dev_dbg (hcd->self.controller,
497 				"CTRL: TypeReq=0x%x val=0x%x "
498 				"idx=0x%x len=%d ==> %d\n",
499 				typeReq, wValue, wIndex,
500 				wLength, status);
501 		}
502 	}
503 	if (len) {
504 		if (urb->transfer_buffer_length < len)
505 			len = urb->transfer_buffer_length;
506 		urb->actual_length = len;
507 		// always USB_DIR_IN, toward host
508 		memcpy (ubuf, bufp, len);
509 
510 		/* report whether RH hardware supports remote wakeup */
511 		if (patch_wakeup &&
512 				len > offsetof (struct usb_config_descriptor,
513 						bmAttributes))
514 			((struct usb_config_descriptor *)ubuf)->bmAttributes
515 				|= USB_CONFIG_ATT_WAKEUP;
516 	}
517 
518 	/* any errors get returned through the urb completion */
519 	local_irq_save (flags);
520 	spin_lock (&urb->lock);
521 	if (urb->status == -EINPROGRESS)
522 		urb->status = status;
523 	spin_unlock (&urb->lock);
524 	usb_hcd_giveback_urb (hcd, urb, NULL);
525 	local_irq_restore (flags);
526 	return 0;
527 }
528 
529 /*-------------------------------------------------------------------------*/
530 
531 /*
532  * Root Hub interrupt transfers are polled using a timer if the
533  * driver requests it; otherwise the driver is responsible for
534  * calling usb_hcd_poll_rh_status() when an event occurs.
535  *
536  * Completions are called in_interrupt(), but they may or may not
537  * be in_irq().
538  */
539 void usb_hcd_poll_rh_status(struct usb_hcd *hcd)
540 {
541 	struct urb	*urb;
542 	int		length;
543 	unsigned long	flags;
544 	char		buffer[4];	/* Any root hubs with > 31 ports? */
545 
546 	if (!hcd->uses_new_polling && !hcd->status_urb)
547 		return;
548 
549 	length = hcd->driver->hub_status_data(hcd, buffer);
550 	if (length > 0) {
551 
552 		/* try to complete the status urb */
553 		local_irq_save (flags);
554 		spin_lock(&hcd_root_hub_lock);
555 		urb = hcd->status_urb;
556 		if (urb) {
557 			spin_lock(&urb->lock);
558 			if (urb->status == -EINPROGRESS) {
559 				hcd->poll_pending = 0;
560 				hcd->status_urb = NULL;
561 				urb->status = 0;
562 				urb->hcpriv = NULL;
563 				urb->actual_length = length;
564 				memcpy(urb->transfer_buffer, buffer, length);
565 			} else		/* urb has been unlinked */
566 				length = 0;
567 			spin_unlock(&urb->lock);
568 		} else
569 			length = 0;
570 		spin_unlock(&hcd_root_hub_lock);
571 
572 		/* local irqs are always blocked in completions */
573 		if (length > 0)
574 			usb_hcd_giveback_urb (hcd, urb, NULL);
575 		else
576 			hcd->poll_pending = 1;
577 		local_irq_restore (flags);
578 	}
579 
580 	/* The USB 2.0 spec says 256 ms.  This is close enough and won't
581 	 * exceed that limit if HZ is 100. */
582 	if (hcd->uses_new_polling ? hcd->poll_rh :
583 			(length == 0 && hcd->status_urb != NULL))
584 		mod_timer (&hcd->rh_timer, jiffies + msecs_to_jiffies(250));
585 }
586 EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status);
587 
588 /* timer callback */
589 static void rh_timer_func (unsigned long _hcd)
590 {
591 	usb_hcd_poll_rh_status((struct usb_hcd *) _hcd);
592 }
593 
594 /*-------------------------------------------------------------------------*/
595 
596 static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb)
597 {
598 	int		retval;
599 	unsigned long	flags;
600 	int		len = 1 + (urb->dev->maxchild / 8);
601 
602 	spin_lock_irqsave (&hcd_root_hub_lock, flags);
603 	if (urb->status != -EINPROGRESS)	/* already unlinked */
604 		retval = urb->status;
605 	else if (hcd->status_urb || urb->transfer_buffer_length < len) {
606 		dev_dbg (hcd->self.controller, "not queuing rh status urb\n");
607 		retval = -EINVAL;
608 	} else {
609 		hcd->status_urb = urb;
610 		urb->hcpriv = hcd;	/* indicate it's queued */
611 
612 		if (!hcd->uses_new_polling)
613 			mod_timer (&hcd->rh_timer, jiffies +
614 					msecs_to_jiffies(250));
615 
616 		/* If a status change has already occurred, report it ASAP */
617 		else if (hcd->poll_pending)
618 			mod_timer (&hcd->rh_timer, jiffies);
619 		retval = 0;
620 	}
621 	spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
622 	return retval;
623 }
624 
625 static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb)
626 {
627 	if (usb_pipeint (urb->pipe))
628 		return rh_queue_status (hcd, urb);
629 	if (usb_pipecontrol (urb->pipe))
630 		return rh_call_control (hcd, urb);
631 	return -EINVAL;
632 }
633 
634 /*-------------------------------------------------------------------------*/
635 
636 /* Asynchronous unlinks of root-hub control URBs are legal, but they
637  * don't do anything.  Status URB unlinks must be made in process context
638  * with interrupts enabled.
639  */
640 static int usb_rh_urb_dequeue (struct usb_hcd *hcd, struct urb *urb)
641 {
642 	if (usb_pipeendpoint(urb->pipe) == 0) {	/* Control URB */
643 		if (in_interrupt())
644 			return 0;		/* nothing to do */
645 
646 		spin_lock_irq(&urb->lock);	/* from usb_kill_urb */
647 		++urb->reject;
648 		spin_unlock_irq(&urb->lock);
649 
650 		wait_event(usb_kill_urb_queue,
651 				atomic_read(&urb->use_count) == 0);
652 
653 		spin_lock_irq(&urb->lock);
654 		--urb->reject;
655 		spin_unlock_irq(&urb->lock);
656 
657 	} else {				/* Status URB */
658 		if (!hcd->uses_new_polling)
659 			del_timer_sync (&hcd->rh_timer);
660 		local_irq_disable ();
661 		spin_lock (&hcd_root_hub_lock);
662 		if (urb == hcd->status_urb) {
663 			hcd->status_urb = NULL;
664 			urb->hcpriv = NULL;
665 		} else
666 			urb = NULL;		/* wasn't fully queued */
667 		spin_unlock (&hcd_root_hub_lock);
668 		if (urb)
669 			usb_hcd_giveback_urb (hcd, urb, NULL);
670 		local_irq_enable ();
671 	}
672 
673 	return 0;
674 }
675 
676 /*-------------------------------------------------------------------------*/
677 
678 /* exported only within usbcore */
679 struct usb_bus *usb_bus_get(struct usb_bus *bus)
680 {
681 	if (bus)
682 		kref_get(&bus->kref);
683 	return bus;
684 }
685 
686 static void usb_host_release(struct kref *kref)
687 {
688 	struct usb_bus *bus = container_of(kref, struct usb_bus, kref);
689 
690 	if (bus->release)
691 		bus->release(bus);
692 }
693 
694 /* exported only within usbcore */
695 void usb_bus_put(struct usb_bus *bus)
696 {
697 	if (bus)
698 		kref_put(&bus->kref, usb_host_release);
699 }
700 
701 /*-------------------------------------------------------------------------*/
702 
703 static struct class *usb_host_class;
704 
705 int usb_host_init(void)
706 {
707 	int retval = 0;
708 
709 	usb_host_class = class_create(THIS_MODULE, "usb_host");
710 	if (IS_ERR(usb_host_class))
711 		retval = PTR_ERR(usb_host_class);
712 	return retval;
713 }
714 
715 void usb_host_cleanup(void)
716 {
717 	class_destroy(usb_host_class);
718 }
719 
720 /**
721  * usb_bus_init - shared initialization code
722  * @bus: the bus structure being initialized
723  *
724  * This code is used to initialize a usb_bus structure, memory for which is
725  * separately managed.
726  */
727 static void usb_bus_init (struct usb_bus *bus)
728 {
729 	memset (&bus->devmap, 0, sizeof(struct usb_devmap));
730 
731 	bus->devnum_next = 1;
732 
733 	bus->root_hub = NULL;
734 	bus->hcpriv = NULL;
735 	bus->busnum = -1;
736 	bus->bandwidth_allocated = 0;
737 	bus->bandwidth_int_reqs  = 0;
738 	bus->bandwidth_isoc_reqs = 0;
739 
740 	INIT_LIST_HEAD (&bus->bus_list);
741 
742 	kref_init(&bus->kref);
743 }
744 
745 /**
746  * usb_alloc_bus - creates a new USB host controller structure
747  * @op: pointer to a struct usb_operations that this bus structure should use
748  * Context: !in_interrupt()
749  *
750  * Creates a USB host controller bus structure with the specified
751  * usb_operations and initializes all the necessary internal objects.
752  *
753  * If no memory is available, NULL is returned.
754  *
755  * The caller should call usb_put_bus() when it is finished with the structure.
756  */
757 struct usb_bus *usb_alloc_bus (struct usb_operations *op)
758 {
759 	struct usb_bus *bus;
760 
761 	bus = kzalloc (sizeof *bus, GFP_KERNEL);
762 	if (!bus)
763 		return NULL;
764 	usb_bus_init (bus);
765 	bus->op = op;
766 	return bus;
767 }
768 
769 /*-------------------------------------------------------------------------*/
770 
771 /**
772  * usb_register_bus - registers the USB host controller with the usb core
773  * @bus: pointer to the bus to register
774  * Context: !in_interrupt()
775  *
776  * Assigns a bus number, and links the controller into usbcore data
777  * structures so that it can be seen by scanning the bus list.
778  */
779 static int usb_register_bus(struct usb_bus *bus)
780 {
781 	int busnum;
782 
783 	mutex_lock(&usb_bus_list_lock);
784 	busnum = find_next_zero_bit (busmap.busmap, USB_MAXBUS, 1);
785 	if (busnum < USB_MAXBUS) {
786 		set_bit (busnum, busmap.busmap);
787 		bus->busnum = busnum;
788 	} else {
789 		printk (KERN_ERR "%s: too many buses\n", usbcore_name);
790 		mutex_unlock(&usb_bus_list_lock);
791 		return -E2BIG;
792 	}
793 
794 	bus->class_dev = class_device_create(usb_host_class, NULL, MKDEV(0,0),
795 					     bus->controller, "usb_host%d", busnum);
796 	if (IS_ERR(bus->class_dev)) {
797 		clear_bit(busnum, busmap.busmap);
798 		mutex_unlock(&usb_bus_list_lock);
799 		return PTR_ERR(bus->class_dev);
800 	}
801 
802 	class_set_devdata(bus->class_dev, bus);
803 
804 	/* Add it to the local list of buses */
805 	list_add (&bus->bus_list, &usb_bus_list);
806 	mutex_unlock(&usb_bus_list_lock);
807 
808 	usb_notify_add_bus(bus);
809 
810 	dev_info (bus->controller, "new USB bus registered, assigned bus number %d\n", bus->busnum);
811 	return 0;
812 }
813 
814 /**
815  * usb_deregister_bus - deregisters the USB host controller
816  * @bus: pointer to the bus to deregister
817  * Context: !in_interrupt()
818  *
819  * Recycles the bus number, and unlinks the controller from usbcore data
820  * structures so that it won't be seen by scanning the bus list.
821  */
822 static void usb_deregister_bus (struct usb_bus *bus)
823 {
824 	dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum);
825 
826 	/*
827 	 * NOTE: make sure that all the devices are removed by the
828 	 * controller code, as well as having it call this when cleaning
829 	 * itself up
830 	 */
831 	mutex_lock(&usb_bus_list_lock);
832 	list_del (&bus->bus_list);
833 	mutex_unlock(&usb_bus_list_lock);
834 
835 	usb_notify_remove_bus(bus);
836 
837 	clear_bit (bus->busnum, busmap.busmap);
838 
839 	class_device_unregister(bus->class_dev);
840 }
841 
842 /**
843  * register_root_hub - called by usb_add_hcd() to register a root hub
844  * @hcd: host controller for this root hub
845  *
846  * This function registers the root hub with the USB subsystem.  It sets up
847  * the device properly in the device tree and then calls usb_new_device()
848  * to register the usb device.  It also assigns the root hub's USB address
849  * (always 1).
850  */
851 static int register_root_hub(struct usb_hcd *hcd)
852 {
853 	struct device *parent_dev = hcd->self.controller;
854 	struct usb_device *usb_dev = hcd->self.root_hub;
855 	const int devnum = 1;
856 	int retval;
857 
858 	usb_dev->devnum = devnum;
859 	usb_dev->bus->devnum_next = devnum + 1;
860 	memset (&usb_dev->bus->devmap.devicemap, 0,
861 			sizeof usb_dev->bus->devmap.devicemap);
862 	set_bit (devnum, usb_dev->bus->devmap.devicemap);
863 	usb_set_device_state(usb_dev, USB_STATE_ADDRESS);
864 
865 	mutex_lock(&usb_bus_list_lock);
866 
867 	usb_dev->ep0.desc.wMaxPacketSize = __constant_cpu_to_le16(64);
868 	retval = usb_get_device_descriptor(usb_dev, USB_DT_DEVICE_SIZE);
869 	if (retval != sizeof usb_dev->descriptor) {
870 		mutex_unlock(&usb_bus_list_lock);
871 		dev_dbg (parent_dev, "can't read %s device descriptor %d\n",
872 				usb_dev->dev.bus_id, retval);
873 		return (retval < 0) ? retval : -EMSGSIZE;
874 	}
875 
876 	retval = usb_new_device (usb_dev);
877 	if (retval) {
878 		dev_err (parent_dev, "can't register root hub for %s, %d\n",
879 				usb_dev->dev.bus_id, retval);
880 	}
881 	mutex_unlock(&usb_bus_list_lock);
882 
883 	if (retval == 0) {
884 		spin_lock_irq (&hcd_root_hub_lock);
885 		hcd->rh_registered = 1;
886 		spin_unlock_irq (&hcd_root_hub_lock);
887 
888 		/* Did the HC die before the root hub was registered? */
889 		if (hcd->state == HC_STATE_HALT)
890 			usb_hc_died (hcd);	/* This time clean up */
891 	}
892 
893 	return retval;
894 }
895 
896 void usb_enable_root_hub_irq (struct usb_bus *bus)
897 {
898 	struct usb_hcd *hcd;
899 
900 	hcd = container_of (bus, struct usb_hcd, self);
901 	if (hcd->driver->hub_irq_enable && !hcd->poll_rh &&
902 			hcd->state != HC_STATE_HALT)
903 		hcd->driver->hub_irq_enable (hcd);
904 }
905 
906 
907 /*-------------------------------------------------------------------------*/
908 
909 /**
910  * usb_calc_bus_time - approximate periodic transaction time in nanoseconds
911  * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH}
912  * @is_input: true iff the transaction sends data to the host
913  * @isoc: true for isochronous transactions, false for interrupt ones
914  * @bytecount: how many bytes in the transaction.
915  *
916  * Returns approximate bus time in nanoseconds for a periodic transaction.
917  * See USB 2.0 spec section 5.11.3; only periodic transfers need to be
918  * scheduled in software, this function is only used for such scheduling.
919  */
920 long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount)
921 {
922 	unsigned long	tmp;
923 
924 	switch (speed) {
925 	case USB_SPEED_LOW: 	/* INTR only */
926 		if (is_input) {
927 			tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L;
928 			return (64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp);
929 		} else {
930 			tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L;
931 			return (64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp);
932 		}
933 	case USB_SPEED_FULL:	/* ISOC or INTR */
934 		if (isoc) {
935 			tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
936 			return (((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp);
937 		} else {
938 			tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
939 			return (9107L + BW_HOST_DELAY + tmp);
940 		}
941 	case USB_SPEED_HIGH:	/* ISOC or INTR */
942 		// FIXME adjust for input vs output
943 		if (isoc)
944 			tmp = HS_NSECS_ISO (bytecount);
945 		else
946 			tmp = HS_NSECS (bytecount);
947 		return tmp;
948 	default:
949 		pr_debug ("%s: bogus device speed!\n", usbcore_name);
950 		return -1;
951 	}
952 }
953 EXPORT_SYMBOL (usb_calc_bus_time);
954 
955 /*
956  * usb_check_bandwidth():
957  *
958  * old_alloc is from host_controller->bandwidth_allocated in microseconds;
959  * bustime is from calc_bus_time(), but converted to microseconds.
960  *
961  * returns <bustime in us> if successful,
962  * or -ENOSPC if bandwidth request fails.
963  *
964  * FIXME:
965  * This initial implementation does not use Endpoint.bInterval
966  * in managing bandwidth allocation.
967  * It probably needs to be expanded to use Endpoint.bInterval.
968  * This can be done as a later enhancement (correction).
969  *
970  * This will also probably require some kind of
971  * frame allocation tracking...meaning, for example,
972  * that if multiple drivers request interrupts every 10 USB frames,
973  * they don't all have to be allocated at
974  * frame numbers N, N+10, N+20, etc.  Some of them could be at
975  * N+11, N+21, N+31, etc., and others at
976  * N+12, N+22, N+32, etc.
977  *
978  * Similarly for isochronous transfers...
979  *
980  * Individual HCDs can schedule more directly ... this logic
981  * is not correct for high speed transfers.
982  */
983 int usb_check_bandwidth (struct usb_device *dev, struct urb *urb)
984 {
985 	unsigned int	pipe = urb->pipe;
986 	long		bustime;
987 	int		is_in = usb_pipein (pipe);
988 	int		is_iso = usb_pipeisoc (pipe);
989 	int		old_alloc = dev->bus->bandwidth_allocated;
990 	int		new_alloc;
991 
992 
993 	bustime = NS_TO_US (usb_calc_bus_time (dev->speed, is_in, is_iso,
994 			usb_maxpacket (dev, pipe, !is_in)));
995 	if (is_iso)
996 		bustime /= urb->number_of_packets;
997 
998 	new_alloc = old_alloc + (int) bustime;
999 	if (new_alloc > FRAME_TIME_MAX_USECS_ALLOC) {
1000 #ifdef	DEBUG
1001 		char	*mode =
1002 #ifdef CONFIG_USB_BANDWIDTH
1003 			"";
1004 #else
1005 			"would have ";
1006 #endif
1007 		dev_dbg (&dev->dev, "usb_check_bandwidth %sFAILED: %d + %ld = %d usec\n",
1008 			mode, old_alloc, bustime, new_alloc);
1009 #endif
1010 #ifdef CONFIG_USB_BANDWIDTH
1011 		bustime = -ENOSPC;	/* report error */
1012 #endif
1013 	}
1014 
1015 	return bustime;
1016 }
1017 EXPORT_SYMBOL (usb_check_bandwidth);
1018 
1019 
1020 /**
1021  * usb_claim_bandwidth - records bandwidth for a periodic transfer
1022  * @dev: source/target of request
1023  * @urb: request (urb->dev == dev)
1024  * @bustime: bandwidth consumed, in (average) microseconds per frame
1025  * @isoc: true iff the request is isochronous
1026  *
1027  * Bus bandwidth reservations are recorded purely for diagnostic purposes.
1028  * HCDs are expected not to overcommit periodic bandwidth, and to record such
1029  * reservations whenever endpoints are added to the periodic schedule.
1030  *
1031  * FIXME averaging per-frame is suboptimal.  Better to sum over the HCD's
1032  * entire periodic schedule ... 32 frames for OHCI, 1024 for UHCI, settable
1033  * for EHCI (256/512/1024 frames, default 1024) and have the bus expose how
1034  * large its periodic schedule is.
1035  */
1036 void usb_claim_bandwidth (struct usb_device *dev, struct urb *urb, int bustime, int isoc)
1037 {
1038 	dev->bus->bandwidth_allocated += bustime;
1039 	if (isoc)
1040 		dev->bus->bandwidth_isoc_reqs++;
1041 	else
1042 		dev->bus->bandwidth_int_reqs++;
1043 	urb->bandwidth = bustime;
1044 
1045 #ifdef USB_BANDWIDTH_MESSAGES
1046 	dev_dbg (&dev->dev, "bandwidth alloc increased by %d (%s) to %d for %d requesters\n",
1047 		bustime,
1048 		isoc ? "ISOC" : "INTR",
1049 		dev->bus->bandwidth_allocated,
1050 		dev->bus->bandwidth_int_reqs + dev->bus->bandwidth_isoc_reqs);
1051 #endif
1052 }
1053 EXPORT_SYMBOL (usb_claim_bandwidth);
1054 
1055 
1056 /**
1057  * usb_release_bandwidth - reverses effect of usb_claim_bandwidth()
1058  * @dev: source/target of request
1059  * @urb: request (urb->dev == dev)
1060  * @isoc: true iff the request is isochronous
1061  *
1062  * This records that previously allocated bandwidth has been released.
1063  * Bandwidth is released when endpoints are removed from the host controller's
1064  * periodic schedule.
1065  */
1066 void usb_release_bandwidth (struct usb_device *dev, struct urb *urb, int isoc)
1067 {
1068 	dev->bus->bandwidth_allocated -= urb->bandwidth;
1069 	if (isoc)
1070 		dev->bus->bandwidth_isoc_reqs--;
1071 	else
1072 		dev->bus->bandwidth_int_reqs--;
1073 
1074 #ifdef USB_BANDWIDTH_MESSAGES
1075 	dev_dbg (&dev->dev, "bandwidth alloc reduced by %d (%s) to %d for %d requesters\n",
1076 		urb->bandwidth,
1077 		isoc ? "ISOC" : "INTR",
1078 		dev->bus->bandwidth_allocated,
1079 		dev->bus->bandwidth_int_reqs + dev->bus->bandwidth_isoc_reqs);
1080 #endif
1081 	urb->bandwidth = 0;
1082 }
1083 EXPORT_SYMBOL (usb_release_bandwidth);
1084 
1085 
1086 /*-------------------------------------------------------------------------*/
1087 
1088 /*
1089  * Generic HC operations.
1090  */
1091 
1092 /*-------------------------------------------------------------------------*/
1093 
1094 static void urb_unlink (struct urb *urb)
1095 {
1096 	unsigned long		flags;
1097 
1098 	/* Release any periodic transfer bandwidth */
1099 	if (urb->bandwidth)
1100 		usb_release_bandwidth (urb->dev, urb,
1101 			usb_pipeisoc (urb->pipe));
1102 
1103 	/* clear all state linking urb to this dev (and hcd) */
1104 
1105 	spin_lock_irqsave (&hcd_data_lock, flags);
1106 	list_del_init (&urb->urb_list);
1107 	spin_unlock_irqrestore (&hcd_data_lock, flags);
1108 }
1109 
1110 
1111 /* may be called in any context with a valid urb->dev usecount
1112  * caller surrenders "ownership" of urb
1113  * expects usb_submit_urb() to have sanity checked and conditioned all
1114  * inputs in the urb
1115  */
1116 static int hcd_submit_urb (struct urb *urb, gfp_t mem_flags)
1117 {
1118 	int			status;
1119 	struct usb_hcd		*hcd = urb->dev->bus->hcpriv;
1120 	struct usb_host_endpoint *ep;
1121 	unsigned long		flags;
1122 
1123 	if (!hcd)
1124 		return -ENODEV;
1125 
1126 	usbmon_urb_submit(&hcd->self, urb);
1127 
1128 	/*
1129 	 * Atomically queue the urb,  first to our records, then to the HCD.
1130 	 * Access to urb->status is controlled by urb->lock ... changes on
1131 	 * i/o completion (normal or fault) or unlinking.
1132 	 */
1133 
1134 	// FIXME:  verify that quiescing hc works right (RH cleans up)
1135 
1136 	spin_lock_irqsave (&hcd_data_lock, flags);
1137 	ep = (usb_pipein(urb->pipe) ? urb->dev->ep_in : urb->dev->ep_out)
1138 			[usb_pipeendpoint(urb->pipe)];
1139 	if (unlikely (!ep))
1140 		status = -ENOENT;
1141 	else if (unlikely (urb->reject))
1142 		status = -EPERM;
1143 	else switch (hcd->state) {
1144 	case HC_STATE_RUNNING:
1145 	case HC_STATE_RESUMING:
1146 doit:
1147 		list_add_tail (&urb->urb_list, &ep->urb_list);
1148 		status = 0;
1149 		break;
1150 	case HC_STATE_SUSPENDED:
1151 		/* HC upstream links (register access, wakeup signaling) can work
1152 		 * even when the downstream links (and DMA etc) are quiesced; let
1153 		 * usbcore talk to the root hub.
1154 		 */
1155 		if (hcd->self.controller->power.power_state.event == PM_EVENT_ON
1156 				&& urb->dev->parent == NULL)
1157 			goto doit;
1158 		/* FALL THROUGH */
1159 	default:
1160 		status = -ESHUTDOWN;
1161 		break;
1162 	}
1163 	spin_unlock_irqrestore (&hcd_data_lock, flags);
1164 	if (status) {
1165 		INIT_LIST_HEAD (&urb->urb_list);
1166 		usbmon_urb_submit_error(&hcd->self, urb, status);
1167 		return status;
1168 	}
1169 
1170 	/* increment urb's reference count as part of giving it to the HCD
1171 	 * (which now controls it).  HCD guarantees that it either returns
1172 	 * an error or calls giveback(), but not both.
1173 	 */
1174 	urb = usb_get_urb (urb);
1175 	atomic_inc (&urb->use_count);
1176 
1177 	if (urb->dev == hcd->self.root_hub) {
1178 		/* NOTE:  requirement on hub callers (usbfs and the hub
1179 		 * driver, for now) that URBs' urb->transfer_buffer be
1180 		 * valid and usb_buffer_{sync,unmap}() not be needed, since
1181 		 * they could clobber root hub response data.
1182 		 */
1183 		status = rh_urb_enqueue (hcd, urb);
1184 		goto done;
1185 	}
1186 
1187 	/* lower level hcd code should use *_dma exclusively,
1188 	 * unless it uses pio or talks to another transport.
1189 	 */
1190 	if (hcd->self.controller->dma_mask) {
1191 		if (usb_pipecontrol (urb->pipe)
1192 			&& !(urb->transfer_flags & URB_NO_SETUP_DMA_MAP))
1193 			urb->setup_dma = dma_map_single (
1194 					hcd->self.controller,
1195 					urb->setup_packet,
1196 					sizeof (struct usb_ctrlrequest),
1197 					DMA_TO_DEVICE);
1198 		if (urb->transfer_buffer_length != 0
1199 			&& !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP))
1200 			urb->transfer_dma = dma_map_single (
1201 					hcd->self.controller,
1202 					urb->transfer_buffer,
1203 					urb->transfer_buffer_length,
1204 					usb_pipein (urb->pipe)
1205 					    ? DMA_FROM_DEVICE
1206 					    : DMA_TO_DEVICE);
1207 	}
1208 
1209 	status = hcd->driver->urb_enqueue (hcd, ep, urb, mem_flags);
1210 done:
1211 	if (unlikely (status)) {
1212 		urb_unlink (urb);
1213 		atomic_dec (&urb->use_count);
1214 		if (urb->reject)
1215 			wake_up (&usb_kill_urb_queue);
1216 		usb_put_urb (urb);
1217 		usbmon_urb_submit_error(&hcd->self, urb, status);
1218 	}
1219 	return status;
1220 }
1221 
1222 /*-------------------------------------------------------------------------*/
1223 
1224 /* called in any context */
1225 static int hcd_get_frame_number (struct usb_device *udev)
1226 {
1227 	struct usb_hcd	*hcd = (struct usb_hcd *)udev->bus->hcpriv;
1228 	if (!HC_IS_RUNNING (hcd->state))
1229 		return -ESHUTDOWN;
1230 	return hcd->driver->get_frame_number (hcd);
1231 }
1232 
1233 /*-------------------------------------------------------------------------*/
1234 
1235 /* this makes the hcd giveback() the urb more quickly, by kicking it
1236  * off hardware queues (which may take a while) and returning it as
1237  * soon as practical.  we've already set up the urb's return status,
1238  * but we can't know if the callback completed already.
1239  */
1240 static int
1241 unlink1 (struct usb_hcd *hcd, struct urb *urb)
1242 {
1243 	int		value;
1244 
1245 	if (urb->dev == hcd->self.root_hub)
1246 		value = usb_rh_urb_dequeue (hcd, urb);
1247 	else {
1248 
1249 		/* The only reason an HCD might fail this call is if
1250 		 * it has not yet fully queued the urb to begin with.
1251 		 * Such failures should be harmless. */
1252 		value = hcd->driver->urb_dequeue (hcd, urb);
1253 	}
1254 
1255 	if (value != 0)
1256 		dev_dbg (hcd->self.controller, "dequeue %p --> %d\n",
1257 				urb, value);
1258 	return value;
1259 }
1260 
1261 /*
1262  * called in any context
1263  *
1264  * caller guarantees urb won't be recycled till both unlink()
1265  * and the urb's completion function return
1266  */
1267 static int hcd_unlink_urb (struct urb *urb, int status)
1268 {
1269 	struct usb_host_endpoint	*ep;
1270 	struct usb_hcd			*hcd = NULL;
1271 	struct device			*sys = NULL;
1272 	unsigned long			flags;
1273 	struct list_head		*tmp;
1274 	int				retval;
1275 
1276 	if (!urb)
1277 		return -EINVAL;
1278 	if (!urb->dev || !urb->dev->bus)
1279 		return -ENODEV;
1280 	ep = (usb_pipein(urb->pipe) ? urb->dev->ep_in : urb->dev->ep_out)
1281 			[usb_pipeendpoint(urb->pipe)];
1282 	if (!ep)
1283 		return -ENODEV;
1284 
1285 	/*
1286 	 * we contend for urb->status with the hcd core,
1287 	 * which changes it while returning the urb.
1288 	 *
1289 	 * Caller guaranteed that the urb pointer hasn't been freed, and
1290 	 * that it was submitted.  But as a rule it can't know whether or
1291 	 * not it's already been unlinked ... so we respect the reversed
1292 	 * lock sequence needed for the usb_hcd_giveback_urb() code paths
1293 	 * (urb lock, then hcd_data_lock) in case some other CPU is now
1294 	 * unlinking it.
1295 	 */
1296 	spin_lock_irqsave (&urb->lock, flags);
1297 	spin_lock (&hcd_data_lock);
1298 
1299 	sys = &urb->dev->dev;
1300 	hcd = urb->dev->bus->hcpriv;
1301 	if (hcd == NULL) {
1302 		retval = -ENODEV;
1303 		goto done;
1304 	}
1305 
1306 	/* insist the urb is still queued */
1307 	list_for_each(tmp, &ep->urb_list) {
1308 		if (tmp == &urb->urb_list)
1309 			break;
1310 	}
1311 	if (tmp != &urb->urb_list) {
1312 		retval = -EIDRM;
1313 		goto done;
1314 	}
1315 
1316 	/* Any status except -EINPROGRESS means something already started to
1317 	 * unlink this URB from the hardware.  So there's no more work to do.
1318 	 */
1319 	if (urb->status != -EINPROGRESS) {
1320 		retval = -EBUSY;
1321 		goto done;
1322 	}
1323 
1324 	/* IRQ setup can easily be broken so that USB controllers
1325 	 * never get completion IRQs ... maybe even the ones we need to
1326 	 * finish unlinking the initial failed usb_set_address()
1327 	 * or device descriptor fetch.
1328 	 */
1329 	if (!test_bit(HCD_FLAG_SAW_IRQ, &hcd->flags)
1330 	    && hcd->self.root_hub != urb->dev) {
1331 		dev_warn (hcd->self.controller, "Unlink after no-IRQ?  "
1332 			"Controller is probably using the wrong IRQ."
1333 			"\n");
1334 		set_bit(HCD_FLAG_SAW_IRQ, &hcd->flags);
1335 	}
1336 
1337 	urb->status = status;
1338 
1339 	spin_unlock (&hcd_data_lock);
1340 	spin_unlock_irqrestore (&urb->lock, flags);
1341 
1342 	retval = unlink1 (hcd, urb);
1343 	if (retval == 0)
1344 		retval = -EINPROGRESS;
1345 	return retval;
1346 
1347 done:
1348 	spin_unlock (&hcd_data_lock);
1349 	spin_unlock_irqrestore (&urb->lock, flags);
1350 	if (retval != -EIDRM && sys && sys->driver)
1351 		dev_dbg (sys, "hcd_unlink_urb %p fail %d\n", urb, retval);
1352 	return retval;
1353 }
1354 
1355 /*-------------------------------------------------------------------------*/
1356 
1357 /* disables the endpoint: cancels any pending urbs, then synchronizes with
1358  * the hcd to make sure all endpoint state is gone from hardware. use for
1359  * set_configuration, set_interface, driver removal, physical disconnect.
1360  *
1361  * example:  a qh stored in ep->hcpriv, holding state related to endpoint
1362  * type, maxpacket size, toggle, halt status, and scheduling.
1363  */
1364 static void
1365 hcd_endpoint_disable (struct usb_device *udev, struct usb_host_endpoint *ep)
1366 {
1367 	struct usb_hcd		*hcd;
1368 	struct urb		*urb;
1369 
1370 	hcd = udev->bus->hcpriv;
1371 
1372 	WARN_ON (!HC_IS_RUNNING (hcd->state) && hcd->state != HC_STATE_HALT &&
1373 			udev->state != USB_STATE_NOTATTACHED);
1374 
1375 	local_irq_disable ();
1376 
1377 	/* FIXME move most of this into message.c as part of its
1378 	 * endpoint disable logic
1379 	 */
1380 
1381 	/* ep is already gone from udev->ep_{in,out}[]; no more submits */
1382 rescan:
1383 	spin_lock (&hcd_data_lock);
1384 	list_for_each_entry (urb, &ep->urb_list, urb_list) {
1385 		int	tmp;
1386 
1387 		/* another cpu may be in hcd, spinning on hcd_data_lock
1388 		 * to giveback() this urb.  the races here should be
1389 		 * small, but a full fix needs a new "can't submit"
1390 		 * urb state.
1391 		 * FIXME urb->reject should allow that...
1392 		 */
1393 		if (urb->status != -EINPROGRESS)
1394 			continue;
1395 		usb_get_urb (urb);
1396 		spin_unlock (&hcd_data_lock);
1397 
1398 		spin_lock (&urb->lock);
1399 		tmp = urb->status;
1400 		if (tmp == -EINPROGRESS)
1401 			urb->status = -ESHUTDOWN;
1402 		spin_unlock (&urb->lock);
1403 
1404 		/* kick hcd unless it's already returning this */
1405 		if (tmp == -EINPROGRESS) {
1406 			tmp = urb->pipe;
1407 			unlink1 (hcd, urb);
1408 			dev_dbg (hcd->self.controller,
1409 				"shutdown urb %p pipe %08x ep%d%s%s\n",
1410 				urb, tmp, usb_pipeendpoint (tmp),
1411 				(tmp & USB_DIR_IN) ? "in" : "out",
1412 				({ char *s; \
1413 				 switch (usb_pipetype (tmp)) { \
1414 				 case PIPE_CONTROL:	s = ""; break; \
1415 				 case PIPE_BULK:	s = "-bulk"; break; \
1416 				 case PIPE_INTERRUPT:	s = "-intr"; break; \
1417 				 default: 		s = "-iso"; break; \
1418 				}; s;}));
1419 		}
1420 		usb_put_urb (urb);
1421 
1422 		/* list contents may have changed */
1423 		goto rescan;
1424 	}
1425 	spin_unlock (&hcd_data_lock);
1426 	local_irq_enable ();
1427 
1428 	/* synchronize with the hardware, so old configuration state
1429 	 * clears out immediately (and will be freed).
1430 	 */
1431 	might_sleep ();
1432 	if (hcd->driver->endpoint_disable)
1433 		hcd->driver->endpoint_disable (hcd, ep);
1434 }
1435 
1436 /*-------------------------------------------------------------------------*/
1437 
1438 #ifdef	CONFIG_PM
1439 
1440 int hcd_bus_suspend (struct usb_bus *bus)
1441 {
1442 	struct usb_hcd		*hcd;
1443 	int			status;
1444 
1445 	hcd = container_of (bus, struct usb_hcd, self);
1446 	if (!hcd->driver->bus_suspend)
1447 		return -ENOENT;
1448 	hcd->state = HC_STATE_QUIESCING;
1449 	status = hcd->driver->bus_suspend (hcd);
1450 	if (status == 0)
1451 		hcd->state = HC_STATE_SUSPENDED;
1452 	else
1453 		dev_dbg(&bus->root_hub->dev, "%s fail, err %d\n",
1454 				"suspend", status);
1455 	return status;
1456 }
1457 
1458 int hcd_bus_resume (struct usb_bus *bus)
1459 {
1460 	struct usb_hcd		*hcd;
1461 	int			status;
1462 
1463 	hcd = container_of (bus, struct usb_hcd, self);
1464 	if (!hcd->driver->bus_resume)
1465 		return -ENOENT;
1466 	if (hcd->state == HC_STATE_RUNNING)
1467 		return 0;
1468 	hcd->state = HC_STATE_RESUMING;
1469 	status = hcd->driver->bus_resume (hcd);
1470 	if (status == 0)
1471 		hcd->state = HC_STATE_RUNNING;
1472 	else {
1473 		dev_dbg(&bus->root_hub->dev, "%s fail, err %d\n",
1474 				"resume", status);
1475 		usb_hc_died(hcd);
1476 	}
1477 	return status;
1478 }
1479 
1480 /*
1481  * usb_hcd_suspend_root_hub - HCD autosuspends downstream ports
1482  * @hcd: host controller for this root hub
1483  *
1484  * This call arranges that usb_hcd_resume_root_hub() is safe to call later;
1485  * that the HCD's root hub polling is deactivated; and that the root's hub
1486  * driver is suspended.  HCDs may call this to autosuspend when their root
1487  * hub's downstream ports are all inactive:  unpowered, disconnected,
1488  * disabled, or suspended.
1489  *
1490  * The HCD will autoresume on device connect change detection (using SRP
1491  * or a D+/D- pullup).  The HCD also autoresumes on remote wakeup signaling
1492  * from any ports that are suspended (if that is enabled).  In most cases,
1493  * overcurrent signaling (on powered ports) will also start autoresume.
1494  *
1495  * Always called with IRQs blocked.
1496  */
1497 void usb_hcd_suspend_root_hub (struct usb_hcd *hcd)
1498 {
1499 	struct urb	*urb;
1500 
1501 	spin_lock (&hcd_root_hub_lock);
1502 	usb_suspend_root_hub (hcd->self.root_hub);
1503 
1504 	/* force status urb to complete/unlink while suspended */
1505 	if (hcd->status_urb) {
1506 		urb = hcd->status_urb;
1507 		urb->status = -ECONNRESET;
1508 		urb->hcpriv = NULL;
1509 		urb->actual_length = 0;
1510 
1511 		del_timer (&hcd->rh_timer);
1512 		hcd->poll_pending = 0;
1513 		hcd->status_urb = NULL;
1514 	} else
1515 		urb = NULL;
1516 	spin_unlock (&hcd_root_hub_lock);
1517 	hcd->state = HC_STATE_SUSPENDED;
1518 
1519 	if (urb)
1520 		usb_hcd_giveback_urb (hcd, urb, NULL);
1521 }
1522 EXPORT_SYMBOL_GPL(usb_hcd_suspend_root_hub);
1523 
1524 /**
1525  * usb_hcd_resume_root_hub - called by HCD to resume its root hub
1526  * @hcd: host controller for this root hub
1527  *
1528  * The USB host controller calls this function when its root hub is
1529  * suspended (with the remote wakeup feature enabled) and a remote
1530  * wakeup request is received.  It queues a request for khubd to
1531  * resume the root hub (that is, manage its downstream ports again).
1532  */
1533 void usb_hcd_resume_root_hub (struct usb_hcd *hcd)
1534 {
1535 	unsigned long flags;
1536 
1537 	spin_lock_irqsave (&hcd_root_hub_lock, flags);
1538 	if (hcd->rh_registered)
1539 		usb_resume_root_hub (hcd->self.root_hub);
1540 	spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
1541 }
1542 EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub);
1543 
1544 #endif
1545 
1546 /*-------------------------------------------------------------------------*/
1547 
1548 #ifdef	CONFIG_USB_OTG
1549 
1550 /**
1551  * usb_bus_start_enum - start immediate enumeration (for OTG)
1552  * @bus: the bus (must use hcd framework)
1553  * @port_num: 1-based number of port; usually bus->otg_port
1554  * Context: in_interrupt()
1555  *
1556  * Starts enumeration, with an immediate reset followed later by
1557  * khubd identifying and possibly configuring the device.
1558  * This is needed by OTG controller drivers, where it helps meet
1559  * HNP protocol timing requirements for starting a port reset.
1560  */
1561 int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num)
1562 {
1563 	struct usb_hcd		*hcd;
1564 	int			status = -EOPNOTSUPP;
1565 
1566 	/* NOTE: since HNP can't start by grabbing the bus's address0_sem,
1567 	 * boards with root hubs hooked up to internal devices (instead of
1568 	 * just the OTG port) may need more attention to resetting...
1569 	 */
1570 	hcd = container_of (bus, struct usb_hcd, self);
1571 	if (port_num && hcd->driver->start_port_reset)
1572 		status = hcd->driver->start_port_reset(hcd, port_num);
1573 
1574 	/* run khubd shortly after (first) root port reset finishes;
1575 	 * it may issue others, until at least 50 msecs have passed.
1576 	 */
1577 	if (status == 0)
1578 		mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10));
1579 	return status;
1580 }
1581 EXPORT_SYMBOL (usb_bus_start_enum);
1582 
1583 #endif
1584 
1585 /*-------------------------------------------------------------------------*/
1586 
1587 /*
1588  * usb_hcd_operations - adapts usb_bus framework to HCD framework (bus glue)
1589  */
1590 static struct usb_operations usb_hcd_operations = {
1591 	.get_frame_number =	hcd_get_frame_number,
1592 	.submit_urb =		hcd_submit_urb,
1593 	.unlink_urb =		hcd_unlink_urb,
1594 	.buffer_alloc =		hcd_buffer_alloc,
1595 	.buffer_free =		hcd_buffer_free,
1596 	.disable =		hcd_endpoint_disable,
1597 };
1598 
1599 /*-------------------------------------------------------------------------*/
1600 
1601 /**
1602  * usb_hcd_giveback_urb - return URB from HCD to device driver
1603  * @hcd: host controller returning the URB
1604  * @urb: urb being returned to the USB device driver.
1605  * @regs: pt_regs, passed down to the URB completion handler
1606  * Context: in_interrupt()
1607  *
1608  * This hands the URB from HCD to its USB device driver, using its
1609  * completion function.  The HCD has freed all per-urb resources
1610  * (and is done using urb->hcpriv).  It also released all HCD locks;
1611  * the device driver won't cause problems if it frees, modifies,
1612  * or resubmits this URB.
1613  */
1614 void usb_hcd_giveback_urb (struct usb_hcd *hcd, struct urb *urb, struct pt_regs *regs)
1615 {
1616 	int at_root_hub;
1617 
1618 	at_root_hub = (urb->dev == hcd->self.root_hub);
1619 	urb_unlink (urb);
1620 
1621 	/* lower level hcd code should use *_dma exclusively */
1622 	if (hcd->self.controller->dma_mask && !at_root_hub) {
1623 		if (usb_pipecontrol (urb->pipe)
1624 			&& !(urb->transfer_flags & URB_NO_SETUP_DMA_MAP))
1625 			dma_unmap_single (hcd->self.controller, urb->setup_dma,
1626 					sizeof (struct usb_ctrlrequest),
1627 					DMA_TO_DEVICE);
1628 		if (urb->transfer_buffer_length != 0
1629 			&& !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP))
1630 			dma_unmap_single (hcd->self.controller,
1631 					urb->transfer_dma,
1632 					urb->transfer_buffer_length,
1633 					usb_pipein (urb->pipe)
1634 					    ? DMA_FROM_DEVICE
1635 					    : DMA_TO_DEVICE);
1636 	}
1637 
1638 	usbmon_urb_complete (&hcd->self, urb);
1639 	/* pass ownership to the completion handler */
1640 	urb->complete (urb, regs);
1641 	atomic_dec (&urb->use_count);
1642 	if (unlikely (urb->reject))
1643 		wake_up (&usb_kill_urb_queue);
1644 	usb_put_urb (urb);
1645 }
1646 EXPORT_SYMBOL (usb_hcd_giveback_urb);
1647 
1648 /*-------------------------------------------------------------------------*/
1649 
1650 /**
1651  * usb_hcd_irq - hook IRQs to HCD framework (bus glue)
1652  * @irq: the IRQ being raised
1653  * @__hcd: pointer to the HCD whose IRQ is being signaled
1654  * @r: saved hardware registers
1655  *
1656  * If the controller isn't HALTed, calls the driver's irq handler.
1657  * Checks whether the controller is now dead.
1658  */
1659 irqreturn_t usb_hcd_irq (int irq, void *__hcd, struct pt_regs * r)
1660 {
1661 	struct usb_hcd		*hcd = __hcd;
1662 	int			start = hcd->state;
1663 
1664 	if (unlikely(start == HC_STATE_HALT ||
1665 	    !test_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags)))
1666 		return IRQ_NONE;
1667 	if (hcd->driver->irq (hcd, r) == IRQ_NONE)
1668 		return IRQ_NONE;
1669 
1670 	set_bit(HCD_FLAG_SAW_IRQ, &hcd->flags);
1671 
1672 	if (unlikely(hcd->state == HC_STATE_HALT))
1673 		usb_hc_died (hcd);
1674 	return IRQ_HANDLED;
1675 }
1676 
1677 /*-------------------------------------------------------------------------*/
1678 
1679 /**
1680  * usb_hc_died - report abnormal shutdown of a host controller (bus glue)
1681  * @hcd: pointer to the HCD representing the controller
1682  *
1683  * This is called by bus glue to report a USB host controller that died
1684  * while operations may still have been pending.  It's called automatically
1685  * by the PCI glue, so only glue for non-PCI busses should need to call it.
1686  */
1687 void usb_hc_died (struct usb_hcd *hcd)
1688 {
1689 	unsigned long flags;
1690 
1691 	dev_err (hcd->self.controller, "HC died; cleaning up\n");
1692 
1693 	spin_lock_irqsave (&hcd_root_hub_lock, flags);
1694 	if (hcd->rh_registered) {
1695 		hcd->poll_rh = 0;
1696 
1697 		/* make khubd clean up old urbs and devices */
1698 		usb_set_device_state (hcd->self.root_hub,
1699 				USB_STATE_NOTATTACHED);
1700 		usb_kick_khubd (hcd->self.root_hub);
1701 	}
1702 	spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
1703 }
1704 EXPORT_SYMBOL_GPL (usb_hc_died);
1705 
1706 /*-------------------------------------------------------------------------*/
1707 
1708 static void hcd_release (struct usb_bus *bus)
1709 {
1710 	struct usb_hcd *hcd;
1711 
1712 	hcd = container_of(bus, struct usb_hcd, self);
1713 	kfree(hcd);
1714 }
1715 
1716 /**
1717  * usb_create_hcd - create and initialize an HCD structure
1718  * @driver: HC driver that will use this hcd
1719  * @dev: device for this HC, stored in hcd->self.controller
1720  * @bus_name: value to store in hcd->self.bus_name
1721  * Context: !in_interrupt()
1722  *
1723  * Allocate a struct usb_hcd, with extra space at the end for the
1724  * HC driver's private data.  Initialize the generic members of the
1725  * hcd structure.
1726  *
1727  * If memory is unavailable, returns NULL.
1728  */
1729 struct usb_hcd *usb_create_hcd (const struct hc_driver *driver,
1730 		struct device *dev, char *bus_name)
1731 {
1732 	struct usb_hcd *hcd;
1733 
1734 	hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL);
1735 	if (!hcd) {
1736 		dev_dbg (dev, "hcd alloc failed\n");
1737 		return NULL;
1738 	}
1739 	dev_set_drvdata(dev, hcd);
1740 
1741 	usb_bus_init(&hcd->self);
1742 	hcd->self.op = &usb_hcd_operations;
1743 	hcd->self.hcpriv = hcd;
1744 	hcd->self.release = &hcd_release;
1745 	hcd->self.controller = dev;
1746 	hcd->self.bus_name = bus_name;
1747 
1748 	init_timer(&hcd->rh_timer);
1749 	hcd->rh_timer.function = rh_timer_func;
1750 	hcd->rh_timer.data = (unsigned long) hcd;
1751 
1752 	hcd->driver = driver;
1753 	hcd->product_desc = (driver->product_desc) ? driver->product_desc :
1754 			"USB Host Controller";
1755 
1756 	return hcd;
1757 }
1758 EXPORT_SYMBOL (usb_create_hcd);
1759 
1760 void usb_put_hcd (struct usb_hcd *hcd)
1761 {
1762 	dev_set_drvdata(hcd->self.controller, NULL);
1763 	usb_bus_put(&hcd->self);
1764 }
1765 EXPORT_SYMBOL (usb_put_hcd);
1766 
1767 /**
1768  * usb_add_hcd - finish generic HCD structure initialization and register
1769  * @hcd: the usb_hcd structure to initialize
1770  * @irqnum: Interrupt line to allocate
1771  * @irqflags: Interrupt type flags
1772  *
1773  * Finish the remaining parts of generic HCD initialization: allocate the
1774  * buffers of consistent memory, register the bus, request the IRQ line,
1775  * and call the driver's reset() and start() routines.
1776  */
1777 int usb_add_hcd(struct usb_hcd *hcd,
1778 		unsigned int irqnum, unsigned long irqflags)
1779 {
1780 	int retval;
1781 	struct usb_device *rhdev;
1782 
1783 	dev_info(hcd->self.controller, "%s\n", hcd->product_desc);
1784 
1785 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1786 
1787 	/* HC is in reset state, but accessible.  Now do the one-time init,
1788 	 * bottom up so that hcds can customize the root hubs before khubd
1789 	 * starts talking to them.  (Note, bus id is assigned early too.)
1790 	 */
1791 	if ((retval = hcd_buffer_create(hcd)) != 0) {
1792 		dev_dbg(hcd->self.controller, "pool alloc failed\n");
1793 		return retval;
1794 	}
1795 
1796 	if ((retval = usb_register_bus(&hcd->self)) < 0)
1797 		goto err_register_bus;
1798 
1799 	if ((rhdev = usb_alloc_dev(NULL, &hcd->self, 0)) == NULL) {
1800 		dev_err(hcd->self.controller, "unable to allocate root hub\n");
1801 		retval = -ENOMEM;
1802 		goto err_allocate_root_hub;
1803 	}
1804 	rhdev->speed = (hcd->driver->flags & HCD_USB2) ? USB_SPEED_HIGH :
1805 			USB_SPEED_FULL;
1806 	hcd->self.root_hub = rhdev;
1807 
1808 	/* wakeup flag init defaults to "everything works" for root hubs,
1809 	 * but drivers can override it in reset() if needed, along with
1810 	 * recording the overall controller's system wakeup capability.
1811 	 */
1812 	device_init_wakeup(&rhdev->dev, 1);
1813 
1814 	/* "reset" is misnamed; its role is now one-time init. the controller
1815 	 * should already have been reset (and boot firmware kicked off etc).
1816 	 */
1817 	if (hcd->driver->reset && (retval = hcd->driver->reset(hcd)) < 0) {
1818 		dev_err(hcd->self.controller, "can't setup\n");
1819 		goto err_hcd_driver_setup;
1820 	}
1821 
1822 	/* NOTE: root hub and controller capabilities may not be the same */
1823 	if (device_can_wakeup(hcd->self.controller)
1824 			&& device_can_wakeup(&hcd->self.root_hub->dev))
1825 		dev_dbg(hcd->self.controller, "supports USB remote wakeup\n");
1826 
1827 	/* enable irqs just before we start the controller */
1828 	if (hcd->driver->irq) {
1829 		snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
1830 				hcd->driver->description, hcd->self.busnum);
1831 		if ((retval = request_irq(irqnum, &usb_hcd_irq, irqflags,
1832 				hcd->irq_descr, hcd)) != 0) {
1833 			dev_err(hcd->self.controller,
1834 					"request interrupt %d failed\n", irqnum);
1835 			goto err_request_irq;
1836 		}
1837 		hcd->irq = irqnum;
1838 		dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum,
1839 				(hcd->driver->flags & HCD_MEMORY) ?
1840 					"io mem" : "io base",
1841 					(unsigned long long)hcd->rsrc_start);
1842 	} else {
1843 		hcd->irq = -1;
1844 		if (hcd->rsrc_start)
1845 			dev_info(hcd->self.controller, "%s 0x%08llx\n",
1846 					(hcd->driver->flags & HCD_MEMORY) ?
1847 					"io mem" : "io base",
1848 					(unsigned long long)hcd->rsrc_start);
1849 	}
1850 
1851 	if ((retval = hcd->driver->start(hcd)) < 0) {
1852 		dev_err(hcd->self.controller, "startup error %d\n", retval);
1853 		goto err_hcd_driver_start;
1854 	}
1855 
1856 	/* starting here, usbcore will pay attention to this root hub */
1857 	rhdev->bus_mA = min(500u, hcd->power_budget);
1858 	if ((retval = register_root_hub(hcd)) != 0)
1859 		goto err_register_root_hub;
1860 
1861 	if (hcd->uses_new_polling && hcd->poll_rh)
1862 		usb_hcd_poll_rh_status(hcd);
1863 	return retval;
1864 
1865 err_register_root_hub:
1866 	hcd->driver->stop(hcd);
1867 err_hcd_driver_start:
1868 	if (hcd->irq >= 0)
1869 		free_irq(irqnum, hcd);
1870 err_request_irq:
1871 err_hcd_driver_setup:
1872 	hcd->self.root_hub = NULL;
1873 	usb_put_dev(rhdev);
1874 err_allocate_root_hub:
1875 	usb_deregister_bus(&hcd->self);
1876 err_register_bus:
1877 	hcd_buffer_destroy(hcd);
1878 	return retval;
1879 }
1880 EXPORT_SYMBOL (usb_add_hcd);
1881 
1882 /**
1883  * usb_remove_hcd - shutdown processing for generic HCDs
1884  * @hcd: the usb_hcd structure to remove
1885  * Context: !in_interrupt()
1886  *
1887  * Disconnects the root hub, then reverses the effects of usb_add_hcd(),
1888  * invoking the HCD's stop() method.
1889  */
1890 void usb_remove_hcd(struct usb_hcd *hcd)
1891 {
1892 	dev_info(hcd->self.controller, "remove, state %x\n", hcd->state);
1893 
1894 	if (HC_IS_RUNNING (hcd->state))
1895 		hcd->state = HC_STATE_QUIESCING;
1896 
1897 	dev_dbg(hcd->self.controller, "roothub graceful disconnect\n");
1898 	spin_lock_irq (&hcd_root_hub_lock);
1899 	hcd->rh_registered = 0;
1900 	spin_unlock_irq (&hcd_root_hub_lock);
1901 
1902 	mutex_lock(&usb_bus_list_lock);
1903 	usb_disconnect(&hcd->self.root_hub);
1904 	mutex_unlock(&usb_bus_list_lock);
1905 
1906 	hcd->poll_rh = 0;
1907 	del_timer_sync(&hcd->rh_timer);
1908 
1909 	hcd->driver->stop(hcd);
1910 	hcd->state = HC_STATE_HALT;
1911 
1912 	if (hcd->irq >= 0)
1913 		free_irq(hcd->irq, hcd);
1914 	usb_deregister_bus(&hcd->self);
1915 	hcd_buffer_destroy(hcd);
1916 }
1917 EXPORT_SYMBOL (usb_remove_hcd);
1918 
1919 /*-------------------------------------------------------------------------*/
1920 
1921 #if defined(CONFIG_USB_MON)
1922 
1923 struct usb_mon_operations *mon_ops;
1924 
1925 /*
1926  * The registration is unlocked.
1927  * We do it this way because we do not want to lock in hot paths.
1928  *
1929  * Notice that the code is minimally error-proof. Because usbmon needs
1930  * symbols from usbcore, usbcore gets referenced and cannot be unloaded first.
1931  */
1932 
1933 int usb_mon_register (struct usb_mon_operations *ops)
1934 {
1935 
1936 	if (mon_ops)
1937 		return -EBUSY;
1938 
1939 	mon_ops = ops;
1940 	mb();
1941 	return 0;
1942 }
1943 EXPORT_SYMBOL_GPL (usb_mon_register);
1944 
1945 void usb_mon_deregister (void)
1946 {
1947 
1948 	if (mon_ops == NULL) {
1949 		printk(KERN_ERR "USB: monitor was not registered\n");
1950 		return;
1951 	}
1952 	mon_ops = NULL;
1953 	mb();
1954 }
1955 EXPORT_SYMBOL_GPL (usb_mon_deregister);
1956 
1957 #endif /* CONFIG_USB_MON */
1958