1 /* 2 * (C) Copyright Linus Torvalds 1999 3 * (C) Copyright Johannes Erdfelt 1999-2001 4 * (C) Copyright Andreas Gal 1999 5 * (C) Copyright Gregory P. Smith 1999 6 * (C) Copyright Deti Fliegl 1999 7 * (C) Copyright Randy Dunlap 2000 8 * (C) Copyright David Brownell 2000-2002 9 * 10 * This program is free software; you can redistribute it and/or modify it 11 * under the terms of the GNU General Public License as published by the 12 * Free Software Foundation; either version 2 of the License, or (at your 13 * option) any later version. 14 * 15 * This program is distributed in the hope that it will be useful, but 16 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 17 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 18 * for more details. 19 * 20 * You should have received a copy of the GNU General Public License 21 * along with this program; if not, write to the Free Software Foundation, 22 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 23 */ 24 25 #include <linux/module.h> 26 #include <linux/version.h> 27 #include <linux/kernel.h> 28 #include <linux/slab.h> 29 #include <linux/completion.h> 30 #include <linux/utsname.h> 31 #include <linux/mm.h> 32 #include <asm/io.h> 33 #include <linux/device.h> 34 #include <linux/dma-mapping.h> 35 #include <linux/mutex.h> 36 #include <asm/irq.h> 37 #include <asm/byteorder.h> 38 #include <asm/unaligned.h> 39 #include <linux/platform_device.h> 40 #include <linux/workqueue.h> 41 #include <linux/pm_runtime.h> 42 43 #include <linux/usb.h> 44 #include <linux/usb/hcd.h> 45 46 #include "usb.h" 47 48 49 /*-------------------------------------------------------------------------*/ 50 51 /* 52 * USB Host Controller Driver framework 53 * 54 * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing 55 * HCD-specific behaviors/bugs. 56 * 57 * This does error checks, tracks devices and urbs, and delegates to a 58 * "hc_driver" only for code (and data) that really needs to know about 59 * hardware differences. That includes root hub registers, i/o queues, 60 * and so on ... but as little else as possible. 61 * 62 * Shared code includes most of the "root hub" code (these are emulated, 63 * though each HC's hardware works differently) and PCI glue, plus request 64 * tracking overhead. The HCD code should only block on spinlocks or on 65 * hardware handshaking; blocking on software events (such as other kernel 66 * threads releasing resources, or completing actions) is all generic. 67 * 68 * Happens the USB 2.0 spec says this would be invisible inside the "USBD", 69 * and includes mostly a "HCDI" (HCD Interface) along with some APIs used 70 * only by the hub driver ... and that neither should be seen or used by 71 * usb client device drivers. 72 * 73 * Contributors of ideas or unattributed patches include: David Brownell, 74 * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ... 75 * 76 * HISTORY: 77 * 2002-02-21 Pull in most of the usb_bus support from usb.c; some 78 * associated cleanup. "usb_hcd" still != "usb_bus". 79 * 2001-12-12 Initial patch version for Linux 2.5.1 kernel. 80 */ 81 82 /*-------------------------------------------------------------------------*/ 83 84 /* Keep track of which host controller drivers are loaded */ 85 unsigned long usb_hcds_loaded; 86 EXPORT_SYMBOL_GPL(usb_hcds_loaded); 87 88 /* host controllers we manage */ 89 LIST_HEAD (usb_bus_list); 90 EXPORT_SYMBOL_GPL (usb_bus_list); 91 92 /* used when allocating bus numbers */ 93 #define USB_MAXBUS 64 94 struct usb_busmap { 95 unsigned long busmap [USB_MAXBUS / (8*sizeof (unsigned long))]; 96 }; 97 static struct usb_busmap busmap; 98 99 /* used when updating list of hcds */ 100 DEFINE_MUTEX(usb_bus_list_lock); /* exported only for usbfs */ 101 EXPORT_SYMBOL_GPL (usb_bus_list_lock); 102 103 /* used for controlling access to virtual root hubs */ 104 static DEFINE_SPINLOCK(hcd_root_hub_lock); 105 106 /* used when updating an endpoint's URB list */ 107 static DEFINE_SPINLOCK(hcd_urb_list_lock); 108 109 /* used to protect against unlinking URBs after the device is gone */ 110 static DEFINE_SPINLOCK(hcd_urb_unlink_lock); 111 112 /* wait queue for synchronous unlinks */ 113 DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue); 114 115 static inline int is_root_hub(struct usb_device *udev) 116 { 117 return (udev->parent == NULL); 118 } 119 120 /*-------------------------------------------------------------------------*/ 121 122 /* 123 * Sharable chunks of root hub code. 124 */ 125 126 /*-------------------------------------------------------------------------*/ 127 128 #define KERNEL_REL ((LINUX_VERSION_CODE >> 16) & 0x0ff) 129 #define KERNEL_VER ((LINUX_VERSION_CODE >> 8) & 0x0ff) 130 131 /* usb 3.0 root hub device descriptor */ 132 static const u8 usb3_rh_dev_descriptor[18] = { 133 0x12, /* __u8 bLength; */ 134 0x01, /* __u8 bDescriptorType; Device */ 135 0x00, 0x03, /* __le16 bcdUSB; v3.0 */ 136 137 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */ 138 0x00, /* __u8 bDeviceSubClass; */ 139 0x03, /* __u8 bDeviceProtocol; USB 3.0 hub */ 140 0x09, /* __u8 bMaxPacketSize0; 2^9 = 512 Bytes */ 141 142 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation */ 143 0x03, 0x00, /* __le16 idProduct; device 0x0003 */ 144 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */ 145 146 0x03, /* __u8 iManufacturer; */ 147 0x02, /* __u8 iProduct; */ 148 0x01, /* __u8 iSerialNumber; */ 149 0x01 /* __u8 bNumConfigurations; */ 150 }; 151 152 /* usb 2.0 root hub device descriptor */ 153 static const u8 usb2_rh_dev_descriptor [18] = { 154 0x12, /* __u8 bLength; */ 155 0x01, /* __u8 bDescriptorType; Device */ 156 0x00, 0x02, /* __le16 bcdUSB; v2.0 */ 157 158 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */ 159 0x00, /* __u8 bDeviceSubClass; */ 160 0x00, /* __u8 bDeviceProtocol; [ usb 2.0 no TT ] */ 161 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */ 162 163 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation */ 164 0x02, 0x00, /* __le16 idProduct; device 0x0002 */ 165 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */ 166 167 0x03, /* __u8 iManufacturer; */ 168 0x02, /* __u8 iProduct; */ 169 0x01, /* __u8 iSerialNumber; */ 170 0x01 /* __u8 bNumConfigurations; */ 171 }; 172 173 /* no usb 2.0 root hub "device qualifier" descriptor: one speed only */ 174 175 /* usb 1.1 root hub device descriptor */ 176 static const u8 usb11_rh_dev_descriptor [18] = { 177 0x12, /* __u8 bLength; */ 178 0x01, /* __u8 bDescriptorType; Device */ 179 0x10, 0x01, /* __le16 bcdUSB; v1.1 */ 180 181 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */ 182 0x00, /* __u8 bDeviceSubClass; */ 183 0x00, /* __u8 bDeviceProtocol; [ low/full speeds only ] */ 184 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */ 185 186 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation */ 187 0x01, 0x00, /* __le16 idProduct; device 0x0001 */ 188 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */ 189 190 0x03, /* __u8 iManufacturer; */ 191 0x02, /* __u8 iProduct; */ 192 0x01, /* __u8 iSerialNumber; */ 193 0x01 /* __u8 bNumConfigurations; */ 194 }; 195 196 197 /*-------------------------------------------------------------------------*/ 198 199 /* Configuration descriptors for our root hubs */ 200 201 static const u8 fs_rh_config_descriptor [] = { 202 203 /* one configuration */ 204 0x09, /* __u8 bLength; */ 205 0x02, /* __u8 bDescriptorType; Configuration */ 206 0x19, 0x00, /* __le16 wTotalLength; */ 207 0x01, /* __u8 bNumInterfaces; (1) */ 208 0x01, /* __u8 bConfigurationValue; */ 209 0x00, /* __u8 iConfiguration; */ 210 0xc0, /* __u8 bmAttributes; 211 Bit 7: must be set, 212 6: Self-powered, 213 5: Remote wakeup, 214 4..0: resvd */ 215 0x00, /* __u8 MaxPower; */ 216 217 /* USB 1.1: 218 * USB 2.0, single TT organization (mandatory): 219 * one interface, protocol 0 220 * 221 * USB 2.0, multiple TT organization (optional): 222 * two interfaces, protocols 1 (like single TT) 223 * and 2 (multiple TT mode) ... config is 224 * sometimes settable 225 * NOT IMPLEMENTED 226 */ 227 228 /* one interface */ 229 0x09, /* __u8 if_bLength; */ 230 0x04, /* __u8 if_bDescriptorType; Interface */ 231 0x00, /* __u8 if_bInterfaceNumber; */ 232 0x00, /* __u8 if_bAlternateSetting; */ 233 0x01, /* __u8 if_bNumEndpoints; */ 234 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */ 235 0x00, /* __u8 if_bInterfaceSubClass; */ 236 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */ 237 0x00, /* __u8 if_iInterface; */ 238 239 /* one endpoint (status change endpoint) */ 240 0x07, /* __u8 ep_bLength; */ 241 0x05, /* __u8 ep_bDescriptorType; Endpoint */ 242 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */ 243 0x03, /* __u8 ep_bmAttributes; Interrupt */ 244 0x02, 0x00, /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */ 245 0xff /* __u8 ep_bInterval; (255ms -- usb 2.0 spec) */ 246 }; 247 248 static const u8 hs_rh_config_descriptor [] = { 249 250 /* one configuration */ 251 0x09, /* __u8 bLength; */ 252 0x02, /* __u8 bDescriptorType; Configuration */ 253 0x19, 0x00, /* __le16 wTotalLength; */ 254 0x01, /* __u8 bNumInterfaces; (1) */ 255 0x01, /* __u8 bConfigurationValue; */ 256 0x00, /* __u8 iConfiguration; */ 257 0xc0, /* __u8 bmAttributes; 258 Bit 7: must be set, 259 6: Self-powered, 260 5: Remote wakeup, 261 4..0: resvd */ 262 0x00, /* __u8 MaxPower; */ 263 264 /* USB 1.1: 265 * USB 2.0, single TT organization (mandatory): 266 * one interface, protocol 0 267 * 268 * USB 2.0, multiple TT organization (optional): 269 * two interfaces, protocols 1 (like single TT) 270 * and 2 (multiple TT mode) ... config is 271 * sometimes settable 272 * NOT IMPLEMENTED 273 */ 274 275 /* one interface */ 276 0x09, /* __u8 if_bLength; */ 277 0x04, /* __u8 if_bDescriptorType; Interface */ 278 0x00, /* __u8 if_bInterfaceNumber; */ 279 0x00, /* __u8 if_bAlternateSetting; */ 280 0x01, /* __u8 if_bNumEndpoints; */ 281 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */ 282 0x00, /* __u8 if_bInterfaceSubClass; */ 283 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */ 284 0x00, /* __u8 if_iInterface; */ 285 286 /* one endpoint (status change endpoint) */ 287 0x07, /* __u8 ep_bLength; */ 288 0x05, /* __u8 ep_bDescriptorType; Endpoint */ 289 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */ 290 0x03, /* __u8 ep_bmAttributes; Interrupt */ 291 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) 292 * see hub.c:hub_configure() for details. */ 293 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00, 294 0x0c /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */ 295 }; 296 297 static const u8 ss_rh_config_descriptor[] = { 298 /* one configuration */ 299 0x09, /* __u8 bLength; */ 300 0x02, /* __u8 bDescriptorType; Configuration */ 301 0x19, 0x00, /* __le16 wTotalLength; FIXME */ 302 0x01, /* __u8 bNumInterfaces; (1) */ 303 0x01, /* __u8 bConfigurationValue; */ 304 0x00, /* __u8 iConfiguration; */ 305 0xc0, /* __u8 bmAttributes; 306 Bit 7: must be set, 307 6: Self-powered, 308 5: Remote wakeup, 309 4..0: resvd */ 310 0x00, /* __u8 MaxPower; */ 311 312 /* one interface */ 313 0x09, /* __u8 if_bLength; */ 314 0x04, /* __u8 if_bDescriptorType; Interface */ 315 0x00, /* __u8 if_bInterfaceNumber; */ 316 0x00, /* __u8 if_bAlternateSetting; */ 317 0x01, /* __u8 if_bNumEndpoints; */ 318 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */ 319 0x00, /* __u8 if_bInterfaceSubClass; */ 320 0x00, /* __u8 if_bInterfaceProtocol; */ 321 0x00, /* __u8 if_iInterface; */ 322 323 /* one endpoint (status change endpoint) */ 324 0x07, /* __u8 ep_bLength; */ 325 0x05, /* __u8 ep_bDescriptorType; Endpoint */ 326 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */ 327 0x03, /* __u8 ep_bmAttributes; Interrupt */ 328 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) 329 * see hub.c:hub_configure() for details. */ 330 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00, 331 0x0c /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */ 332 /* 333 * All 3.0 hubs should have an endpoint companion descriptor, 334 * but we're ignoring that for now. FIXME? 335 */ 336 }; 337 338 /*-------------------------------------------------------------------------*/ 339 340 /** 341 * ascii2desc() - Helper routine for producing UTF-16LE string descriptors 342 * @s: Null-terminated ASCII (actually ISO-8859-1) string 343 * @buf: Buffer for USB string descriptor (header + UTF-16LE) 344 * @len: Length (in bytes; may be odd) of descriptor buffer. 345 * 346 * The return value is the number of bytes filled in: 2 + 2*strlen(s) or 347 * buflen, whichever is less. 348 * 349 * USB String descriptors can contain at most 126 characters; input 350 * strings longer than that are truncated. 351 */ 352 static unsigned 353 ascii2desc(char const *s, u8 *buf, unsigned len) 354 { 355 unsigned n, t = 2 + 2*strlen(s); 356 357 if (t > 254) 358 t = 254; /* Longest possible UTF string descriptor */ 359 if (len > t) 360 len = t; 361 362 t += USB_DT_STRING << 8; /* Now t is first 16 bits to store */ 363 364 n = len; 365 while (n--) { 366 *buf++ = t; 367 if (!n--) 368 break; 369 *buf++ = t >> 8; 370 t = (unsigned char)*s++; 371 } 372 return len; 373 } 374 375 /** 376 * rh_string() - provides string descriptors for root hub 377 * @id: the string ID number (0: langids, 1: serial #, 2: product, 3: vendor) 378 * @hcd: the host controller for this root hub 379 * @data: buffer for output packet 380 * @len: length of the provided buffer 381 * 382 * Produces either a manufacturer, product or serial number string for the 383 * virtual root hub device. 384 * Returns the number of bytes filled in: the length of the descriptor or 385 * of the provided buffer, whichever is less. 386 */ 387 static unsigned 388 rh_string(int id, struct usb_hcd const *hcd, u8 *data, unsigned len) 389 { 390 char buf[100]; 391 char const *s; 392 static char const langids[4] = {4, USB_DT_STRING, 0x09, 0x04}; 393 394 // language ids 395 switch (id) { 396 case 0: 397 /* Array of LANGID codes (0x0409 is MSFT-speak for "en-us") */ 398 /* See http://www.usb.org/developers/docs/USB_LANGIDs.pdf */ 399 if (len > 4) 400 len = 4; 401 memcpy(data, langids, len); 402 return len; 403 case 1: 404 /* Serial number */ 405 s = hcd->self.bus_name; 406 break; 407 case 2: 408 /* Product name */ 409 s = hcd->product_desc; 410 break; 411 case 3: 412 /* Manufacturer */ 413 snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname, 414 init_utsname()->release, hcd->driver->description); 415 s = buf; 416 break; 417 default: 418 /* Can't happen; caller guarantees it */ 419 return 0; 420 } 421 422 return ascii2desc(s, data, len); 423 } 424 425 426 /* Root hub control transfers execute synchronously */ 427 static int rh_call_control (struct usb_hcd *hcd, struct urb *urb) 428 { 429 struct usb_ctrlrequest *cmd; 430 u16 typeReq, wValue, wIndex, wLength; 431 u8 *ubuf = urb->transfer_buffer; 432 u8 tbuf [sizeof (struct usb_hub_descriptor)] 433 __attribute__((aligned(4))); 434 const u8 *bufp = tbuf; 435 unsigned len = 0; 436 int status; 437 u8 patch_wakeup = 0; 438 u8 patch_protocol = 0; 439 440 might_sleep(); 441 442 spin_lock_irq(&hcd_root_hub_lock); 443 status = usb_hcd_link_urb_to_ep(hcd, urb); 444 spin_unlock_irq(&hcd_root_hub_lock); 445 if (status) 446 return status; 447 urb->hcpriv = hcd; /* Indicate it's queued */ 448 449 cmd = (struct usb_ctrlrequest *) urb->setup_packet; 450 typeReq = (cmd->bRequestType << 8) | cmd->bRequest; 451 wValue = le16_to_cpu (cmd->wValue); 452 wIndex = le16_to_cpu (cmd->wIndex); 453 wLength = le16_to_cpu (cmd->wLength); 454 455 if (wLength > urb->transfer_buffer_length) 456 goto error; 457 458 urb->actual_length = 0; 459 switch (typeReq) { 460 461 /* DEVICE REQUESTS */ 462 463 /* The root hub's remote wakeup enable bit is implemented using 464 * driver model wakeup flags. If this system supports wakeup 465 * through USB, userspace may change the default "allow wakeup" 466 * policy through sysfs or these calls. 467 * 468 * Most root hubs support wakeup from downstream devices, for 469 * runtime power management (disabling USB clocks and reducing 470 * VBUS power usage). However, not all of them do so; silicon, 471 * board, and BIOS bugs here are not uncommon, so these can't 472 * be treated quite like external hubs. 473 * 474 * Likewise, not all root hubs will pass wakeup events upstream, 475 * to wake up the whole system. So don't assume root hub and 476 * controller capabilities are identical. 477 */ 478 479 case DeviceRequest | USB_REQ_GET_STATUS: 480 tbuf [0] = (device_may_wakeup(&hcd->self.root_hub->dev) 481 << USB_DEVICE_REMOTE_WAKEUP) 482 | (1 << USB_DEVICE_SELF_POWERED); 483 tbuf [1] = 0; 484 len = 2; 485 break; 486 case DeviceOutRequest | USB_REQ_CLEAR_FEATURE: 487 if (wValue == USB_DEVICE_REMOTE_WAKEUP) 488 device_set_wakeup_enable(&hcd->self.root_hub->dev, 0); 489 else 490 goto error; 491 break; 492 case DeviceOutRequest | USB_REQ_SET_FEATURE: 493 if (device_can_wakeup(&hcd->self.root_hub->dev) 494 && wValue == USB_DEVICE_REMOTE_WAKEUP) 495 device_set_wakeup_enable(&hcd->self.root_hub->dev, 1); 496 else 497 goto error; 498 break; 499 case DeviceRequest | USB_REQ_GET_CONFIGURATION: 500 tbuf [0] = 1; 501 len = 1; 502 /* FALLTHROUGH */ 503 case DeviceOutRequest | USB_REQ_SET_CONFIGURATION: 504 break; 505 case DeviceRequest | USB_REQ_GET_DESCRIPTOR: 506 switch (wValue & 0xff00) { 507 case USB_DT_DEVICE << 8: 508 switch (hcd->driver->flags & HCD_MASK) { 509 case HCD_USB3: 510 bufp = usb3_rh_dev_descriptor; 511 break; 512 case HCD_USB2: 513 bufp = usb2_rh_dev_descriptor; 514 break; 515 case HCD_USB11: 516 bufp = usb11_rh_dev_descriptor; 517 break; 518 default: 519 goto error; 520 } 521 len = 18; 522 if (hcd->has_tt) 523 patch_protocol = 1; 524 break; 525 case USB_DT_CONFIG << 8: 526 switch (hcd->driver->flags & HCD_MASK) { 527 case HCD_USB3: 528 bufp = ss_rh_config_descriptor; 529 len = sizeof ss_rh_config_descriptor; 530 break; 531 case HCD_USB2: 532 bufp = hs_rh_config_descriptor; 533 len = sizeof hs_rh_config_descriptor; 534 break; 535 case HCD_USB11: 536 bufp = fs_rh_config_descriptor; 537 len = sizeof fs_rh_config_descriptor; 538 break; 539 default: 540 goto error; 541 } 542 if (device_can_wakeup(&hcd->self.root_hub->dev)) 543 patch_wakeup = 1; 544 break; 545 case USB_DT_STRING << 8: 546 if ((wValue & 0xff) < 4) 547 urb->actual_length = rh_string(wValue & 0xff, 548 hcd, ubuf, wLength); 549 else /* unsupported IDs --> "protocol stall" */ 550 goto error; 551 break; 552 default: 553 goto error; 554 } 555 break; 556 case DeviceRequest | USB_REQ_GET_INTERFACE: 557 tbuf [0] = 0; 558 len = 1; 559 /* FALLTHROUGH */ 560 case DeviceOutRequest | USB_REQ_SET_INTERFACE: 561 break; 562 case DeviceOutRequest | USB_REQ_SET_ADDRESS: 563 // wValue == urb->dev->devaddr 564 dev_dbg (hcd->self.controller, "root hub device address %d\n", 565 wValue); 566 break; 567 568 /* INTERFACE REQUESTS (no defined feature/status flags) */ 569 570 /* ENDPOINT REQUESTS */ 571 572 case EndpointRequest | USB_REQ_GET_STATUS: 573 // ENDPOINT_HALT flag 574 tbuf [0] = 0; 575 tbuf [1] = 0; 576 len = 2; 577 /* FALLTHROUGH */ 578 case EndpointOutRequest | USB_REQ_CLEAR_FEATURE: 579 case EndpointOutRequest | USB_REQ_SET_FEATURE: 580 dev_dbg (hcd->self.controller, "no endpoint features yet\n"); 581 break; 582 583 /* CLASS REQUESTS (and errors) */ 584 585 default: 586 /* non-generic request */ 587 switch (typeReq) { 588 case GetHubStatus: 589 case GetPortStatus: 590 len = 4; 591 break; 592 case GetHubDescriptor: 593 len = sizeof (struct usb_hub_descriptor); 594 break; 595 } 596 status = hcd->driver->hub_control (hcd, 597 typeReq, wValue, wIndex, 598 tbuf, wLength); 599 break; 600 error: 601 /* "protocol stall" on error */ 602 status = -EPIPE; 603 } 604 605 if (status) { 606 len = 0; 607 if (status != -EPIPE) { 608 dev_dbg (hcd->self.controller, 609 "CTRL: TypeReq=0x%x val=0x%x " 610 "idx=0x%x len=%d ==> %d\n", 611 typeReq, wValue, wIndex, 612 wLength, status); 613 } 614 } 615 if (len) { 616 if (urb->transfer_buffer_length < len) 617 len = urb->transfer_buffer_length; 618 urb->actual_length = len; 619 // always USB_DIR_IN, toward host 620 memcpy (ubuf, bufp, len); 621 622 /* report whether RH hardware supports remote wakeup */ 623 if (patch_wakeup && 624 len > offsetof (struct usb_config_descriptor, 625 bmAttributes)) 626 ((struct usb_config_descriptor *)ubuf)->bmAttributes 627 |= USB_CONFIG_ATT_WAKEUP; 628 629 /* report whether RH hardware has an integrated TT */ 630 if (patch_protocol && 631 len > offsetof(struct usb_device_descriptor, 632 bDeviceProtocol)) 633 ((struct usb_device_descriptor *) ubuf)-> 634 bDeviceProtocol = 1; 635 } 636 637 /* any errors get returned through the urb completion */ 638 spin_lock_irq(&hcd_root_hub_lock); 639 usb_hcd_unlink_urb_from_ep(hcd, urb); 640 641 /* This peculiar use of spinlocks echoes what real HC drivers do. 642 * Avoiding calls to local_irq_disable/enable makes the code 643 * RT-friendly. 644 */ 645 spin_unlock(&hcd_root_hub_lock); 646 usb_hcd_giveback_urb(hcd, urb, status); 647 spin_lock(&hcd_root_hub_lock); 648 649 spin_unlock_irq(&hcd_root_hub_lock); 650 return 0; 651 } 652 653 /*-------------------------------------------------------------------------*/ 654 655 /* 656 * Root Hub interrupt transfers are polled using a timer if the 657 * driver requests it; otherwise the driver is responsible for 658 * calling usb_hcd_poll_rh_status() when an event occurs. 659 * 660 * Completions are called in_interrupt(), but they may or may not 661 * be in_irq(). 662 */ 663 void usb_hcd_poll_rh_status(struct usb_hcd *hcd) 664 { 665 struct urb *urb; 666 int length; 667 unsigned long flags; 668 char buffer[6]; /* Any root hubs with > 31 ports? */ 669 670 if (unlikely(!hcd->rh_pollable)) 671 return; 672 if (!hcd->uses_new_polling && !hcd->status_urb) 673 return; 674 675 length = hcd->driver->hub_status_data(hcd, buffer); 676 if (length > 0) { 677 678 /* try to complete the status urb */ 679 spin_lock_irqsave(&hcd_root_hub_lock, flags); 680 urb = hcd->status_urb; 681 if (urb) { 682 clear_bit(HCD_FLAG_POLL_PENDING, &hcd->flags); 683 hcd->status_urb = NULL; 684 urb->actual_length = length; 685 memcpy(urb->transfer_buffer, buffer, length); 686 687 usb_hcd_unlink_urb_from_ep(hcd, urb); 688 spin_unlock(&hcd_root_hub_lock); 689 usb_hcd_giveback_urb(hcd, urb, 0); 690 spin_lock(&hcd_root_hub_lock); 691 } else { 692 length = 0; 693 set_bit(HCD_FLAG_POLL_PENDING, &hcd->flags); 694 } 695 spin_unlock_irqrestore(&hcd_root_hub_lock, flags); 696 } 697 698 /* The USB 2.0 spec says 256 ms. This is close enough and won't 699 * exceed that limit if HZ is 100. The math is more clunky than 700 * maybe expected, this is to make sure that all timers for USB devices 701 * fire at the same time to give the CPU a break inbetween */ 702 if (hcd->uses_new_polling ? HCD_POLL_RH(hcd) : 703 (length == 0 && hcd->status_urb != NULL)) 704 mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4)); 705 } 706 EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status); 707 708 /* timer callback */ 709 static void rh_timer_func (unsigned long _hcd) 710 { 711 usb_hcd_poll_rh_status((struct usb_hcd *) _hcd); 712 } 713 714 /*-------------------------------------------------------------------------*/ 715 716 static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb) 717 { 718 int retval; 719 unsigned long flags; 720 unsigned len = 1 + (urb->dev->maxchild / 8); 721 722 spin_lock_irqsave (&hcd_root_hub_lock, flags); 723 if (hcd->status_urb || urb->transfer_buffer_length < len) { 724 dev_dbg (hcd->self.controller, "not queuing rh status urb\n"); 725 retval = -EINVAL; 726 goto done; 727 } 728 729 retval = usb_hcd_link_urb_to_ep(hcd, urb); 730 if (retval) 731 goto done; 732 733 hcd->status_urb = urb; 734 urb->hcpriv = hcd; /* indicate it's queued */ 735 if (!hcd->uses_new_polling) 736 mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4)); 737 738 /* If a status change has already occurred, report it ASAP */ 739 else if (HCD_POLL_PENDING(hcd)) 740 mod_timer(&hcd->rh_timer, jiffies); 741 retval = 0; 742 done: 743 spin_unlock_irqrestore (&hcd_root_hub_lock, flags); 744 return retval; 745 } 746 747 static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb) 748 { 749 if (usb_endpoint_xfer_int(&urb->ep->desc)) 750 return rh_queue_status (hcd, urb); 751 if (usb_endpoint_xfer_control(&urb->ep->desc)) 752 return rh_call_control (hcd, urb); 753 return -EINVAL; 754 } 755 756 /*-------------------------------------------------------------------------*/ 757 758 /* Unlinks of root-hub control URBs are legal, but they don't do anything 759 * since these URBs always execute synchronously. 760 */ 761 static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status) 762 { 763 unsigned long flags; 764 int rc; 765 766 spin_lock_irqsave(&hcd_root_hub_lock, flags); 767 rc = usb_hcd_check_unlink_urb(hcd, urb, status); 768 if (rc) 769 goto done; 770 771 if (usb_endpoint_num(&urb->ep->desc) == 0) { /* Control URB */ 772 ; /* Do nothing */ 773 774 } else { /* Status URB */ 775 if (!hcd->uses_new_polling) 776 del_timer (&hcd->rh_timer); 777 if (urb == hcd->status_urb) { 778 hcd->status_urb = NULL; 779 usb_hcd_unlink_urb_from_ep(hcd, urb); 780 781 spin_unlock(&hcd_root_hub_lock); 782 usb_hcd_giveback_urb(hcd, urb, status); 783 spin_lock(&hcd_root_hub_lock); 784 } 785 } 786 done: 787 spin_unlock_irqrestore(&hcd_root_hub_lock, flags); 788 return rc; 789 } 790 791 792 793 /* 794 * Show & store the current value of authorized_default 795 */ 796 static ssize_t usb_host_authorized_default_show(struct device *dev, 797 struct device_attribute *attr, 798 char *buf) 799 { 800 struct usb_device *rh_usb_dev = to_usb_device(dev); 801 struct usb_bus *usb_bus = rh_usb_dev->bus; 802 struct usb_hcd *usb_hcd; 803 804 if (usb_bus == NULL) /* FIXME: not sure if this case is possible */ 805 return -ENODEV; 806 usb_hcd = bus_to_hcd(usb_bus); 807 return snprintf(buf, PAGE_SIZE, "%u\n", usb_hcd->authorized_default); 808 } 809 810 static ssize_t usb_host_authorized_default_store(struct device *dev, 811 struct device_attribute *attr, 812 const char *buf, size_t size) 813 { 814 ssize_t result; 815 unsigned val; 816 struct usb_device *rh_usb_dev = to_usb_device(dev); 817 struct usb_bus *usb_bus = rh_usb_dev->bus; 818 struct usb_hcd *usb_hcd; 819 820 if (usb_bus == NULL) /* FIXME: not sure if this case is possible */ 821 return -ENODEV; 822 usb_hcd = bus_to_hcd(usb_bus); 823 result = sscanf(buf, "%u\n", &val); 824 if (result == 1) { 825 usb_hcd->authorized_default = val? 1 : 0; 826 result = size; 827 } 828 else 829 result = -EINVAL; 830 return result; 831 } 832 833 static DEVICE_ATTR(authorized_default, 0644, 834 usb_host_authorized_default_show, 835 usb_host_authorized_default_store); 836 837 838 /* Group all the USB bus attributes */ 839 static struct attribute *usb_bus_attrs[] = { 840 &dev_attr_authorized_default.attr, 841 NULL, 842 }; 843 844 static struct attribute_group usb_bus_attr_group = { 845 .name = NULL, /* we want them in the same directory */ 846 .attrs = usb_bus_attrs, 847 }; 848 849 850 851 /*-------------------------------------------------------------------------*/ 852 853 /** 854 * usb_bus_init - shared initialization code 855 * @bus: the bus structure being initialized 856 * 857 * This code is used to initialize a usb_bus structure, memory for which is 858 * separately managed. 859 */ 860 static void usb_bus_init (struct usb_bus *bus) 861 { 862 memset (&bus->devmap, 0, sizeof(struct usb_devmap)); 863 864 bus->devnum_next = 1; 865 866 bus->root_hub = NULL; 867 bus->busnum = -1; 868 bus->bandwidth_allocated = 0; 869 bus->bandwidth_int_reqs = 0; 870 bus->bandwidth_isoc_reqs = 0; 871 872 INIT_LIST_HEAD (&bus->bus_list); 873 } 874 875 /*-------------------------------------------------------------------------*/ 876 877 /** 878 * usb_register_bus - registers the USB host controller with the usb core 879 * @bus: pointer to the bus to register 880 * Context: !in_interrupt() 881 * 882 * Assigns a bus number, and links the controller into usbcore data 883 * structures so that it can be seen by scanning the bus list. 884 */ 885 static int usb_register_bus(struct usb_bus *bus) 886 { 887 int result = -E2BIG; 888 int busnum; 889 890 mutex_lock(&usb_bus_list_lock); 891 busnum = find_next_zero_bit (busmap.busmap, USB_MAXBUS, 1); 892 if (busnum >= USB_MAXBUS) { 893 printk (KERN_ERR "%s: too many buses\n", usbcore_name); 894 goto error_find_busnum; 895 } 896 set_bit (busnum, busmap.busmap); 897 bus->busnum = busnum; 898 899 /* Add it to the local list of buses */ 900 list_add (&bus->bus_list, &usb_bus_list); 901 mutex_unlock(&usb_bus_list_lock); 902 903 usb_notify_add_bus(bus); 904 905 dev_info (bus->controller, "new USB bus registered, assigned bus " 906 "number %d\n", bus->busnum); 907 return 0; 908 909 error_find_busnum: 910 mutex_unlock(&usb_bus_list_lock); 911 return result; 912 } 913 914 /** 915 * usb_deregister_bus - deregisters the USB host controller 916 * @bus: pointer to the bus to deregister 917 * Context: !in_interrupt() 918 * 919 * Recycles the bus number, and unlinks the controller from usbcore data 920 * structures so that it won't be seen by scanning the bus list. 921 */ 922 static void usb_deregister_bus (struct usb_bus *bus) 923 { 924 dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum); 925 926 /* 927 * NOTE: make sure that all the devices are removed by the 928 * controller code, as well as having it call this when cleaning 929 * itself up 930 */ 931 mutex_lock(&usb_bus_list_lock); 932 list_del (&bus->bus_list); 933 mutex_unlock(&usb_bus_list_lock); 934 935 usb_notify_remove_bus(bus); 936 937 clear_bit (bus->busnum, busmap.busmap); 938 } 939 940 /** 941 * register_root_hub - called by usb_add_hcd() to register a root hub 942 * @hcd: host controller for this root hub 943 * 944 * This function registers the root hub with the USB subsystem. It sets up 945 * the device properly in the device tree and then calls usb_new_device() 946 * to register the usb device. It also assigns the root hub's USB address 947 * (always 1). 948 */ 949 static int register_root_hub(struct usb_hcd *hcd) 950 { 951 struct device *parent_dev = hcd->self.controller; 952 struct usb_device *usb_dev = hcd->self.root_hub; 953 const int devnum = 1; 954 int retval; 955 956 usb_dev->devnum = devnum; 957 usb_dev->bus->devnum_next = devnum + 1; 958 memset (&usb_dev->bus->devmap.devicemap, 0, 959 sizeof usb_dev->bus->devmap.devicemap); 960 set_bit (devnum, usb_dev->bus->devmap.devicemap); 961 usb_set_device_state(usb_dev, USB_STATE_ADDRESS); 962 963 mutex_lock(&usb_bus_list_lock); 964 965 usb_dev->ep0.desc.wMaxPacketSize = cpu_to_le16(64); 966 retval = usb_get_device_descriptor(usb_dev, USB_DT_DEVICE_SIZE); 967 if (retval != sizeof usb_dev->descriptor) { 968 mutex_unlock(&usb_bus_list_lock); 969 dev_dbg (parent_dev, "can't read %s device descriptor %d\n", 970 dev_name(&usb_dev->dev), retval); 971 return (retval < 0) ? retval : -EMSGSIZE; 972 } 973 974 retval = usb_new_device (usb_dev); 975 if (retval) { 976 dev_err (parent_dev, "can't register root hub for %s, %d\n", 977 dev_name(&usb_dev->dev), retval); 978 } 979 mutex_unlock(&usb_bus_list_lock); 980 981 if (retval == 0) { 982 spin_lock_irq (&hcd_root_hub_lock); 983 hcd->rh_registered = 1; 984 spin_unlock_irq (&hcd_root_hub_lock); 985 986 /* Did the HC die before the root hub was registered? */ 987 if (hcd->state == HC_STATE_HALT) 988 usb_hc_died (hcd); /* This time clean up */ 989 } 990 991 return retval; 992 } 993 994 995 /*-------------------------------------------------------------------------*/ 996 997 /** 998 * usb_calc_bus_time - approximate periodic transaction time in nanoseconds 999 * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH} 1000 * @is_input: true iff the transaction sends data to the host 1001 * @isoc: true for isochronous transactions, false for interrupt ones 1002 * @bytecount: how many bytes in the transaction. 1003 * 1004 * Returns approximate bus time in nanoseconds for a periodic transaction. 1005 * See USB 2.0 spec section 5.11.3; only periodic transfers need to be 1006 * scheduled in software, this function is only used for such scheduling. 1007 */ 1008 long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount) 1009 { 1010 unsigned long tmp; 1011 1012 switch (speed) { 1013 case USB_SPEED_LOW: /* INTR only */ 1014 if (is_input) { 1015 tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L; 1016 return (64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp); 1017 } else { 1018 tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L; 1019 return (64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp); 1020 } 1021 case USB_SPEED_FULL: /* ISOC or INTR */ 1022 if (isoc) { 1023 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L; 1024 return (((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp); 1025 } else { 1026 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L; 1027 return (9107L + BW_HOST_DELAY + tmp); 1028 } 1029 case USB_SPEED_HIGH: /* ISOC or INTR */ 1030 // FIXME adjust for input vs output 1031 if (isoc) 1032 tmp = HS_NSECS_ISO (bytecount); 1033 else 1034 tmp = HS_NSECS (bytecount); 1035 return tmp; 1036 default: 1037 pr_debug ("%s: bogus device speed!\n", usbcore_name); 1038 return -1; 1039 } 1040 } 1041 EXPORT_SYMBOL_GPL(usb_calc_bus_time); 1042 1043 1044 /*-------------------------------------------------------------------------*/ 1045 1046 /* 1047 * Generic HC operations. 1048 */ 1049 1050 /*-------------------------------------------------------------------------*/ 1051 1052 /** 1053 * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue 1054 * @hcd: host controller to which @urb was submitted 1055 * @urb: URB being submitted 1056 * 1057 * Host controller drivers should call this routine in their enqueue() 1058 * method. The HCD's private spinlock must be held and interrupts must 1059 * be disabled. The actions carried out here are required for URB 1060 * submission, as well as for endpoint shutdown and for usb_kill_urb. 1061 * 1062 * Returns 0 for no error, otherwise a negative error code (in which case 1063 * the enqueue() method must fail). If no error occurs but enqueue() fails 1064 * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing 1065 * the private spinlock and returning. 1066 */ 1067 int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb) 1068 { 1069 int rc = 0; 1070 1071 spin_lock(&hcd_urb_list_lock); 1072 1073 /* Check that the URB isn't being killed */ 1074 if (unlikely(atomic_read(&urb->reject))) { 1075 rc = -EPERM; 1076 goto done; 1077 } 1078 1079 if (unlikely(!urb->ep->enabled)) { 1080 rc = -ENOENT; 1081 goto done; 1082 } 1083 1084 if (unlikely(!urb->dev->can_submit)) { 1085 rc = -EHOSTUNREACH; 1086 goto done; 1087 } 1088 1089 /* 1090 * Check the host controller's state and add the URB to the 1091 * endpoint's queue. 1092 */ 1093 switch (hcd->state) { 1094 case HC_STATE_RUNNING: 1095 case HC_STATE_RESUMING: 1096 urb->unlinked = 0; 1097 list_add_tail(&urb->urb_list, &urb->ep->urb_list); 1098 break; 1099 default: 1100 rc = -ESHUTDOWN; 1101 goto done; 1102 } 1103 done: 1104 spin_unlock(&hcd_urb_list_lock); 1105 return rc; 1106 } 1107 EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep); 1108 1109 /** 1110 * usb_hcd_check_unlink_urb - check whether an URB may be unlinked 1111 * @hcd: host controller to which @urb was submitted 1112 * @urb: URB being checked for unlinkability 1113 * @status: error code to store in @urb if the unlink succeeds 1114 * 1115 * Host controller drivers should call this routine in their dequeue() 1116 * method. The HCD's private spinlock must be held and interrupts must 1117 * be disabled. The actions carried out here are required for making 1118 * sure than an unlink is valid. 1119 * 1120 * Returns 0 for no error, otherwise a negative error code (in which case 1121 * the dequeue() method must fail). The possible error codes are: 1122 * 1123 * -EIDRM: @urb was not submitted or has already completed. 1124 * The completion function may not have been called yet. 1125 * 1126 * -EBUSY: @urb has already been unlinked. 1127 */ 1128 int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb, 1129 int status) 1130 { 1131 struct list_head *tmp; 1132 1133 /* insist the urb is still queued */ 1134 list_for_each(tmp, &urb->ep->urb_list) { 1135 if (tmp == &urb->urb_list) 1136 break; 1137 } 1138 if (tmp != &urb->urb_list) 1139 return -EIDRM; 1140 1141 /* Any status except -EINPROGRESS means something already started to 1142 * unlink this URB from the hardware. So there's no more work to do. 1143 */ 1144 if (urb->unlinked) 1145 return -EBUSY; 1146 urb->unlinked = status; 1147 1148 /* IRQ setup can easily be broken so that USB controllers 1149 * never get completion IRQs ... maybe even the ones we need to 1150 * finish unlinking the initial failed usb_set_address() 1151 * or device descriptor fetch. 1152 */ 1153 if (!HCD_SAW_IRQ(hcd) && !is_root_hub(urb->dev)) { 1154 dev_warn(hcd->self.controller, "Unlink after no-IRQ? " 1155 "Controller is probably using the wrong IRQ.\n"); 1156 set_bit(HCD_FLAG_SAW_IRQ, &hcd->flags); 1157 } 1158 1159 return 0; 1160 } 1161 EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb); 1162 1163 /** 1164 * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue 1165 * @hcd: host controller to which @urb was submitted 1166 * @urb: URB being unlinked 1167 * 1168 * Host controller drivers should call this routine before calling 1169 * usb_hcd_giveback_urb(). The HCD's private spinlock must be held and 1170 * interrupts must be disabled. The actions carried out here are required 1171 * for URB completion. 1172 */ 1173 void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb) 1174 { 1175 /* clear all state linking urb to this dev (and hcd) */ 1176 spin_lock(&hcd_urb_list_lock); 1177 list_del_init(&urb->urb_list); 1178 spin_unlock(&hcd_urb_list_lock); 1179 } 1180 EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep); 1181 1182 /* 1183 * Some usb host controllers can only perform dma using a small SRAM area. 1184 * The usb core itself is however optimized for host controllers that can dma 1185 * using regular system memory - like pci devices doing bus mastering. 1186 * 1187 * To support host controllers with limited dma capabilites we provide dma 1188 * bounce buffers. This feature can be enabled using the HCD_LOCAL_MEM flag. 1189 * For this to work properly the host controller code must first use the 1190 * function dma_declare_coherent_memory() to point out which memory area 1191 * that should be used for dma allocations. 1192 * 1193 * The HCD_LOCAL_MEM flag then tells the usb code to allocate all data for 1194 * dma using dma_alloc_coherent() which in turn allocates from the memory 1195 * area pointed out with dma_declare_coherent_memory(). 1196 * 1197 * So, to summarize... 1198 * 1199 * - We need "local" memory, canonical example being 1200 * a small SRAM on a discrete controller being the 1201 * only memory that the controller can read ... 1202 * (a) "normal" kernel memory is no good, and 1203 * (b) there's not enough to share 1204 * 1205 * - The only *portable* hook for such stuff in the 1206 * DMA framework is dma_declare_coherent_memory() 1207 * 1208 * - So we use that, even though the primary requirement 1209 * is that the memory be "local" (hence addressible 1210 * by that device), not "coherent". 1211 * 1212 */ 1213 1214 static int hcd_alloc_coherent(struct usb_bus *bus, 1215 gfp_t mem_flags, dma_addr_t *dma_handle, 1216 void **vaddr_handle, size_t size, 1217 enum dma_data_direction dir) 1218 { 1219 unsigned char *vaddr; 1220 1221 if (*vaddr_handle == NULL) { 1222 WARN_ON_ONCE(1); 1223 return -EFAULT; 1224 } 1225 1226 vaddr = hcd_buffer_alloc(bus, size + sizeof(vaddr), 1227 mem_flags, dma_handle); 1228 if (!vaddr) 1229 return -ENOMEM; 1230 1231 /* 1232 * Store the virtual address of the buffer at the end 1233 * of the allocated dma buffer. The size of the buffer 1234 * may be uneven so use unaligned functions instead 1235 * of just rounding up. It makes sense to optimize for 1236 * memory footprint over access speed since the amount 1237 * of memory available for dma may be limited. 1238 */ 1239 put_unaligned((unsigned long)*vaddr_handle, 1240 (unsigned long *)(vaddr + size)); 1241 1242 if (dir == DMA_TO_DEVICE) 1243 memcpy(vaddr, *vaddr_handle, size); 1244 1245 *vaddr_handle = vaddr; 1246 return 0; 1247 } 1248 1249 static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle, 1250 void **vaddr_handle, size_t size, 1251 enum dma_data_direction dir) 1252 { 1253 unsigned char *vaddr = *vaddr_handle; 1254 1255 vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size)); 1256 1257 if (dir == DMA_FROM_DEVICE) 1258 memcpy(vaddr, *vaddr_handle, size); 1259 1260 hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle); 1261 1262 *vaddr_handle = vaddr; 1263 *dma_handle = 0; 1264 } 1265 1266 static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb) 1267 { 1268 enum dma_data_direction dir; 1269 1270 if (urb->transfer_flags & URB_SETUP_MAP_SINGLE) 1271 dma_unmap_single(hcd->self.controller, 1272 urb->setup_dma, 1273 sizeof(struct usb_ctrlrequest), 1274 DMA_TO_DEVICE); 1275 else if (urb->transfer_flags & URB_SETUP_MAP_LOCAL) 1276 hcd_free_coherent(urb->dev->bus, 1277 &urb->setup_dma, 1278 (void **) &urb->setup_packet, 1279 sizeof(struct usb_ctrlrequest), 1280 DMA_TO_DEVICE); 1281 1282 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE; 1283 if (urb->transfer_flags & URB_DMA_MAP_SG) 1284 dma_unmap_sg(hcd->self.controller, 1285 urb->sg, 1286 urb->num_sgs, 1287 dir); 1288 else if (urb->transfer_flags & URB_DMA_MAP_PAGE) 1289 dma_unmap_page(hcd->self.controller, 1290 urb->transfer_dma, 1291 urb->transfer_buffer_length, 1292 dir); 1293 else if (urb->transfer_flags & URB_DMA_MAP_SINGLE) 1294 dma_unmap_single(hcd->self.controller, 1295 urb->transfer_dma, 1296 urb->transfer_buffer_length, 1297 dir); 1298 else if (urb->transfer_flags & URB_MAP_LOCAL) 1299 hcd_free_coherent(urb->dev->bus, 1300 &urb->transfer_dma, 1301 &urb->transfer_buffer, 1302 urb->transfer_buffer_length, 1303 dir); 1304 1305 /* Make it safe to call this routine more than once */ 1306 urb->transfer_flags &= ~(URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL | 1307 URB_DMA_MAP_SG | URB_DMA_MAP_PAGE | 1308 URB_DMA_MAP_SINGLE | URB_MAP_LOCAL); 1309 } 1310 1311 static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb, 1312 gfp_t mem_flags) 1313 { 1314 enum dma_data_direction dir; 1315 int ret = 0; 1316 1317 /* Map the URB's buffers for DMA access. 1318 * Lower level HCD code should use *_dma exclusively, 1319 * unless it uses pio or talks to another transport, 1320 * or uses the provided scatter gather list for bulk. 1321 */ 1322 1323 if (usb_endpoint_xfer_control(&urb->ep->desc)) { 1324 if (hcd->self.uses_dma) { 1325 urb->setup_dma = dma_map_single( 1326 hcd->self.controller, 1327 urb->setup_packet, 1328 sizeof(struct usb_ctrlrequest), 1329 DMA_TO_DEVICE); 1330 if (dma_mapping_error(hcd->self.controller, 1331 urb->setup_dma)) 1332 return -EAGAIN; 1333 urb->transfer_flags |= URB_SETUP_MAP_SINGLE; 1334 } else if (hcd->driver->flags & HCD_LOCAL_MEM) { 1335 ret = hcd_alloc_coherent( 1336 urb->dev->bus, mem_flags, 1337 &urb->setup_dma, 1338 (void **)&urb->setup_packet, 1339 sizeof(struct usb_ctrlrequest), 1340 DMA_TO_DEVICE); 1341 if (ret) 1342 return ret; 1343 urb->transfer_flags |= URB_SETUP_MAP_LOCAL; 1344 } 1345 } 1346 1347 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE; 1348 if (urb->transfer_buffer_length != 0 1349 && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) { 1350 if (hcd->self.uses_dma) { 1351 if (urb->num_sgs) { 1352 int n = dma_map_sg( 1353 hcd->self.controller, 1354 urb->sg, 1355 urb->num_sgs, 1356 dir); 1357 if (n <= 0) 1358 ret = -EAGAIN; 1359 else 1360 urb->transfer_flags |= URB_DMA_MAP_SG; 1361 if (n != urb->num_sgs) { 1362 urb->num_sgs = n; 1363 urb->transfer_flags |= 1364 URB_DMA_SG_COMBINED; 1365 } 1366 } else if (urb->sg) { 1367 struct scatterlist *sg = urb->sg; 1368 urb->transfer_dma = dma_map_page( 1369 hcd->self.controller, 1370 sg_page(sg), 1371 sg->offset, 1372 urb->transfer_buffer_length, 1373 dir); 1374 if (dma_mapping_error(hcd->self.controller, 1375 urb->transfer_dma)) 1376 ret = -EAGAIN; 1377 else 1378 urb->transfer_flags |= URB_DMA_MAP_PAGE; 1379 } else { 1380 urb->transfer_dma = dma_map_single( 1381 hcd->self.controller, 1382 urb->transfer_buffer, 1383 urb->transfer_buffer_length, 1384 dir); 1385 if (dma_mapping_error(hcd->self.controller, 1386 urb->transfer_dma)) 1387 ret = -EAGAIN; 1388 else 1389 urb->transfer_flags |= URB_DMA_MAP_SINGLE; 1390 } 1391 } else if (hcd->driver->flags & HCD_LOCAL_MEM) { 1392 ret = hcd_alloc_coherent( 1393 urb->dev->bus, mem_flags, 1394 &urb->transfer_dma, 1395 &urb->transfer_buffer, 1396 urb->transfer_buffer_length, 1397 dir); 1398 if (ret == 0) 1399 urb->transfer_flags |= URB_MAP_LOCAL; 1400 } 1401 if (ret && (urb->transfer_flags & (URB_SETUP_MAP_SINGLE | 1402 URB_SETUP_MAP_LOCAL))) 1403 unmap_urb_for_dma(hcd, urb); 1404 } 1405 return ret; 1406 } 1407 1408 /*-------------------------------------------------------------------------*/ 1409 1410 /* may be called in any context with a valid urb->dev usecount 1411 * caller surrenders "ownership" of urb 1412 * expects usb_submit_urb() to have sanity checked and conditioned all 1413 * inputs in the urb 1414 */ 1415 int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags) 1416 { 1417 int status; 1418 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus); 1419 1420 /* increment urb's reference count as part of giving it to the HCD 1421 * (which will control it). HCD guarantees that it either returns 1422 * an error or calls giveback(), but not both. 1423 */ 1424 usb_get_urb(urb); 1425 atomic_inc(&urb->use_count); 1426 atomic_inc(&urb->dev->urbnum); 1427 usbmon_urb_submit(&hcd->self, urb); 1428 1429 /* NOTE requirements on root-hub callers (usbfs and the hub 1430 * driver, for now): URBs' urb->transfer_buffer must be 1431 * valid and usb_buffer_{sync,unmap}() not be needed, since 1432 * they could clobber root hub response data. Also, control 1433 * URBs must be submitted in process context with interrupts 1434 * enabled. 1435 */ 1436 1437 if (is_root_hub(urb->dev)) { 1438 status = rh_urb_enqueue(hcd, urb); 1439 } else { 1440 status = map_urb_for_dma(hcd, urb, mem_flags); 1441 if (likely(status == 0)) { 1442 status = hcd->driver->urb_enqueue(hcd, urb, mem_flags); 1443 if (unlikely(status)) 1444 unmap_urb_for_dma(hcd, urb); 1445 } 1446 } 1447 1448 if (unlikely(status)) { 1449 usbmon_urb_submit_error(&hcd->self, urb, status); 1450 urb->hcpriv = NULL; 1451 INIT_LIST_HEAD(&urb->urb_list); 1452 atomic_dec(&urb->use_count); 1453 atomic_dec(&urb->dev->urbnum); 1454 if (atomic_read(&urb->reject)) 1455 wake_up(&usb_kill_urb_queue); 1456 usb_put_urb(urb); 1457 } 1458 return status; 1459 } 1460 1461 /*-------------------------------------------------------------------------*/ 1462 1463 /* this makes the hcd giveback() the urb more quickly, by kicking it 1464 * off hardware queues (which may take a while) and returning it as 1465 * soon as practical. we've already set up the urb's return status, 1466 * but we can't know if the callback completed already. 1467 */ 1468 static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status) 1469 { 1470 int value; 1471 1472 if (is_root_hub(urb->dev)) 1473 value = usb_rh_urb_dequeue(hcd, urb, status); 1474 else { 1475 1476 /* The only reason an HCD might fail this call is if 1477 * it has not yet fully queued the urb to begin with. 1478 * Such failures should be harmless. */ 1479 value = hcd->driver->urb_dequeue(hcd, urb, status); 1480 } 1481 return value; 1482 } 1483 1484 /* 1485 * called in any context 1486 * 1487 * caller guarantees urb won't be recycled till both unlink() 1488 * and the urb's completion function return 1489 */ 1490 int usb_hcd_unlink_urb (struct urb *urb, int status) 1491 { 1492 struct usb_hcd *hcd; 1493 int retval = -EIDRM; 1494 unsigned long flags; 1495 1496 /* Prevent the device and bus from going away while 1497 * the unlink is carried out. If they are already gone 1498 * then urb->use_count must be 0, since disconnected 1499 * devices can't have any active URBs. 1500 */ 1501 spin_lock_irqsave(&hcd_urb_unlink_lock, flags); 1502 if (atomic_read(&urb->use_count) > 0) { 1503 retval = 0; 1504 usb_get_dev(urb->dev); 1505 } 1506 spin_unlock_irqrestore(&hcd_urb_unlink_lock, flags); 1507 if (retval == 0) { 1508 hcd = bus_to_hcd(urb->dev->bus); 1509 retval = unlink1(hcd, urb, status); 1510 usb_put_dev(urb->dev); 1511 } 1512 1513 if (retval == 0) 1514 retval = -EINPROGRESS; 1515 else if (retval != -EIDRM && retval != -EBUSY) 1516 dev_dbg(&urb->dev->dev, "hcd_unlink_urb %p fail %d\n", 1517 urb, retval); 1518 return retval; 1519 } 1520 1521 /*-------------------------------------------------------------------------*/ 1522 1523 /** 1524 * usb_hcd_giveback_urb - return URB from HCD to device driver 1525 * @hcd: host controller returning the URB 1526 * @urb: urb being returned to the USB device driver. 1527 * @status: completion status code for the URB. 1528 * Context: in_interrupt() 1529 * 1530 * This hands the URB from HCD to its USB device driver, using its 1531 * completion function. The HCD has freed all per-urb resources 1532 * (and is done using urb->hcpriv). It also released all HCD locks; 1533 * the device driver won't cause problems if it frees, modifies, 1534 * or resubmits this URB. 1535 * 1536 * If @urb was unlinked, the value of @status will be overridden by 1537 * @urb->unlinked. Erroneous short transfers are detected in case 1538 * the HCD hasn't checked for them. 1539 */ 1540 void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status) 1541 { 1542 urb->hcpriv = NULL; 1543 if (unlikely(urb->unlinked)) 1544 status = urb->unlinked; 1545 else if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) && 1546 urb->actual_length < urb->transfer_buffer_length && 1547 !status)) 1548 status = -EREMOTEIO; 1549 1550 unmap_urb_for_dma(hcd, urb); 1551 usbmon_urb_complete(&hcd->self, urb, status); 1552 usb_unanchor_urb(urb); 1553 1554 /* pass ownership to the completion handler */ 1555 urb->status = status; 1556 urb->complete (urb); 1557 atomic_dec (&urb->use_count); 1558 if (unlikely(atomic_read(&urb->reject))) 1559 wake_up (&usb_kill_urb_queue); 1560 usb_put_urb (urb); 1561 } 1562 EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb); 1563 1564 /*-------------------------------------------------------------------------*/ 1565 1566 /* Cancel all URBs pending on this endpoint and wait for the endpoint's 1567 * queue to drain completely. The caller must first insure that no more 1568 * URBs can be submitted for this endpoint. 1569 */ 1570 void usb_hcd_flush_endpoint(struct usb_device *udev, 1571 struct usb_host_endpoint *ep) 1572 { 1573 struct usb_hcd *hcd; 1574 struct urb *urb; 1575 1576 if (!ep) 1577 return; 1578 might_sleep(); 1579 hcd = bus_to_hcd(udev->bus); 1580 1581 /* No more submits can occur */ 1582 spin_lock_irq(&hcd_urb_list_lock); 1583 rescan: 1584 list_for_each_entry (urb, &ep->urb_list, urb_list) { 1585 int is_in; 1586 1587 if (urb->unlinked) 1588 continue; 1589 usb_get_urb (urb); 1590 is_in = usb_urb_dir_in(urb); 1591 spin_unlock(&hcd_urb_list_lock); 1592 1593 /* kick hcd */ 1594 unlink1(hcd, urb, -ESHUTDOWN); 1595 dev_dbg (hcd->self.controller, 1596 "shutdown urb %p ep%d%s%s\n", 1597 urb, usb_endpoint_num(&ep->desc), 1598 is_in ? "in" : "out", 1599 ({ char *s; 1600 1601 switch (usb_endpoint_type(&ep->desc)) { 1602 case USB_ENDPOINT_XFER_CONTROL: 1603 s = ""; break; 1604 case USB_ENDPOINT_XFER_BULK: 1605 s = "-bulk"; break; 1606 case USB_ENDPOINT_XFER_INT: 1607 s = "-intr"; break; 1608 default: 1609 s = "-iso"; break; 1610 }; 1611 s; 1612 })); 1613 usb_put_urb (urb); 1614 1615 /* list contents may have changed */ 1616 spin_lock(&hcd_urb_list_lock); 1617 goto rescan; 1618 } 1619 spin_unlock_irq(&hcd_urb_list_lock); 1620 1621 /* Wait until the endpoint queue is completely empty */ 1622 while (!list_empty (&ep->urb_list)) { 1623 spin_lock_irq(&hcd_urb_list_lock); 1624 1625 /* The list may have changed while we acquired the spinlock */ 1626 urb = NULL; 1627 if (!list_empty (&ep->urb_list)) { 1628 urb = list_entry (ep->urb_list.prev, struct urb, 1629 urb_list); 1630 usb_get_urb (urb); 1631 } 1632 spin_unlock_irq(&hcd_urb_list_lock); 1633 1634 if (urb) { 1635 usb_kill_urb (urb); 1636 usb_put_urb (urb); 1637 } 1638 } 1639 } 1640 1641 /** 1642 * usb_hcd_alloc_bandwidth - check whether a new bandwidth setting exceeds 1643 * the bus bandwidth 1644 * @udev: target &usb_device 1645 * @new_config: new configuration to install 1646 * @cur_alt: the current alternate interface setting 1647 * @new_alt: alternate interface setting that is being installed 1648 * 1649 * To change configurations, pass in the new configuration in new_config, 1650 * and pass NULL for cur_alt and new_alt. 1651 * 1652 * To reset a device's configuration (put the device in the ADDRESSED state), 1653 * pass in NULL for new_config, cur_alt, and new_alt. 1654 * 1655 * To change alternate interface settings, pass in NULL for new_config, 1656 * pass in the current alternate interface setting in cur_alt, 1657 * and pass in the new alternate interface setting in new_alt. 1658 * 1659 * Returns an error if the requested bandwidth change exceeds the 1660 * bus bandwidth or host controller internal resources. 1661 */ 1662 int usb_hcd_alloc_bandwidth(struct usb_device *udev, 1663 struct usb_host_config *new_config, 1664 struct usb_host_interface *cur_alt, 1665 struct usb_host_interface *new_alt) 1666 { 1667 int num_intfs, i, j; 1668 struct usb_host_interface *alt = NULL; 1669 int ret = 0; 1670 struct usb_hcd *hcd; 1671 struct usb_host_endpoint *ep; 1672 1673 hcd = bus_to_hcd(udev->bus); 1674 if (!hcd->driver->check_bandwidth) 1675 return 0; 1676 1677 /* Configuration is being removed - set configuration 0 */ 1678 if (!new_config && !cur_alt) { 1679 for (i = 1; i < 16; ++i) { 1680 ep = udev->ep_out[i]; 1681 if (ep) 1682 hcd->driver->drop_endpoint(hcd, udev, ep); 1683 ep = udev->ep_in[i]; 1684 if (ep) 1685 hcd->driver->drop_endpoint(hcd, udev, ep); 1686 } 1687 hcd->driver->check_bandwidth(hcd, udev); 1688 return 0; 1689 } 1690 /* Check if the HCD says there's enough bandwidth. Enable all endpoints 1691 * each interface's alt setting 0 and ask the HCD to check the bandwidth 1692 * of the bus. There will always be bandwidth for endpoint 0, so it's 1693 * ok to exclude it. 1694 */ 1695 if (new_config) { 1696 num_intfs = new_config->desc.bNumInterfaces; 1697 /* Remove endpoints (except endpoint 0, which is always on the 1698 * schedule) from the old config from the schedule 1699 */ 1700 for (i = 1; i < 16; ++i) { 1701 ep = udev->ep_out[i]; 1702 if (ep) { 1703 ret = hcd->driver->drop_endpoint(hcd, udev, ep); 1704 if (ret < 0) 1705 goto reset; 1706 } 1707 ep = udev->ep_in[i]; 1708 if (ep) { 1709 ret = hcd->driver->drop_endpoint(hcd, udev, ep); 1710 if (ret < 0) 1711 goto reset; 1712 } 1713 } 1714 for (i = 0; i < num_intfs; ++i) { 1715 struct usb_host_interface *first_alt; 1716 int iface_num; 1717 1718 first_alt = &new_config->intf_cache[i]->altsetting[0]; 1719 iface_num = first_alt->desc.bInterfaceNumber; 1720 /* Set up endpoints for alternate interface setting 0 */ 1721 alt = usb_find_alt_setting(new_config, iface_num, 0); 1722 if (!alt) 1723 /* No alt setting 0? Pick the first setting. */ 1724 alt = first_alt; 1725 1726 for (j = 0; j < alt->desc.bNumEndpoints; j++) { 1727 ret = hcd->driver->add_endpoint(hcd, udev, &alt->endpoint[j]); 1728 if (ret < 0) 1729 goto reset; 1730 } 1731 } 1732 } 1733 if (cur_alt && new_alt) { 1734 struct usb_interface *iface = usb_ifnum_to_if(udev, 1735 cur_alt->desc.bInterfaceNumber); 1736 1737 if (iface->resetting_device) { 1738 /* 1739 * The USB core just reset the device, so the xHCI host 1740 * and the device will think alt setting 0 is installed. 1741 * However, the USB core will pass in the alternate 1742 * setting installed before the reset as cur_alt. Dig 1743 * out the alternate setting 0 structure, or the first 1744 * alternate setting if a broken device doesn't have alt 1745 * setting 0. 1746 */ 1747 cur_alt = usb_altnum_to_altsetting(iface, 0); 1748 if (!cur_alt) 1749 cur_alt = &iface->altsetting[0]; 1750 } 1751 1752 /* Drop all the endpoints in the current alt setting */ 1753 for (i = 0; i < cur_alt->desc.bNumEndpoints; i++) { 1754 ret = hcd->driver->drop_endpoint(hcd, udev, 1755 &cur_alt->endpoint[i]); 1756 if (ret < 0) 1757 goto reset; 1758 } 1759 /* Add all the endpoints in the new alt setting */ 1760 for (i = 0; i < new_alt->desc.bNumEndpoints; i++) { 1761 ret = hcd->driver->add_endpoint(hcd, udev, 1762 &new_alt->endpoint[i]); 1763 if (ret < 0) 1764 goto reset; 1765 } 1766 } 1767 ret = hcd->driver->check_bandwidth(hcd, udev); 1768 reset: 1769 if (ret < 0) 1770 hcd->driver->reset_bandwidth(hcd, udev); 1771 return ret; 1772 } 1773 1774 /* Disables the endpoint: synchronizes with the hcd to make sure all 1775 * endpoint state is gone from hardware. usb_hcd_flush_endpoint() must 1776 * have been called previously. Use for set_configuration, set_interface, 1777 * driver removal, physical disconnect. 1778 * 1779 * example: a qh stored in ep->hcpriv, holding state related to endpoint 1780 * type, maxpacket size, toggle, halt status, and scheduling. 1781 */ 1782 void usb_hcd_disable_endpoint(struct usb_device *udev, 1783 struct usb_host_endpoint *ep) 1784 { 1785 struct usb_hcd *hcd; 1786 1787 might_sleep(); 1788 hcd = bus_to_hcd(udev->bus); 1789 if (hcd->driver->endpoint_disable) 1790 hcd->driver->endpoint_disable(hcd, ep); 1791 } 1792 1793 /** 1794 * usb_hcd_reset_endpoint - reset host endpoint state 1795 * @udev: USB device. 1796 * @ep: the endpoint to reset. 1797 * 1798 * Resets any host endpoint state such as the toggle bit, sequence 1799 * number and current window. 1800 */ 1801 void usb_hcd_reset_endpoint(struct usb_device *udev, 1802 struct usb_host_endpoint *ep) 1803 { 1804 struct usb_hcd *hcd = bus_to_hcd(udev->bus); 1805 1806 if (hcd->driver->endpoint_reset) 1807 hcd->driver->endpoint_reset(hcd, ep); 1808 else { 1809 int epnum = usb_endpoint_num(&ep->desc); 1810 int is_out = usb_endpoint_dir_out(&ep->desc); 1811 int is_control = usb_endpoint_xfer_control(&ep->desc); 1812 1813 usb_settoggle(udev, epnum, is_out, 0); 1814 if (is_control) 1815 usb_settoggle(udev, epnum, !is_out, 0); 1816 } 1817 } 1818 1819 /** 1820 * usb_alloc_streams - allocate bulk endpoint stream IDs. 1821 * @interface: alternate setting that includes all endpoints. 1822 * @eps: array of endpoints that need streams. 1823 * @num_eps: number of endpoints in the array. 1824 * @num_streams: number of streams to allocate. 1825 * @mem_flags: flags hcd should use to allocate memory. 1826 * 1827 * Sets up a group of bulk endpoints to have num_streams stream IDs available. 1828 * Drivers may queue multiple transfers to different stream IDs, which may 1829 * complete in a different order than they were queued. 1830 */ 1831 int usb_alloc_streams(struct usb_interface *interface, 1832 struct usb_host_endpoint **eps, unsigned int num_eps, 1833 unsigned int num_streams, gfp_t mem_flags) 1834 { 1835 struct usb_hcd *hcd; 1836 struct usb_device *dev; 1837 int i; 1838 1839 dev = interface_to_usbdev(interface); 1840 hcd = bus_to_hcd(dev->bus); 1841 if (!hcd->driver->alloc_streams || !hcd->driver->free_streams) 1842 return -EINVAL; 1843 if (dev->speed != USB_SPEED_SUPER) 1844 return -EINVAL; 1845 1846 /* Streams only apply to bulk endpoints. */ 1847 for (i = 0; i < num_eps; i++) 1848 if (!usb_endpoint_xfer_bulk(&eps[i]->desc)) 1849 return -EINVAL; 1850 1851 return hcd->driver->alloc_streams(hcd, dev, eps, num_eps, 1852 num_streams, mem_flags); 1853 } 1854 EXPORT_SYMBOL_GPL(usb_alloc_streams); 1855 1856 /** 1857 * usb_free_streams - free bulk endpoint stream IDs. 1858 * @interface: alternate setting that includes all endpoints. 1859 * @eps: array of endpoints to remove streams from. 1860 * @num_eps: number of endpoints in the array. 1861 * @mem_flags: flags hcd should use to allocate memory. 1862 * 1863 * Reverts a group of bulk endpoints back to not using stream IDs. 1864 * Can fail if we are given bad arguments, or HCD is broken. 1865 */ 1866 void usb_free_streams(struct usb_interface *interface, 1867 struct usb_host_endpoint **eps, unsigned int num_eps, 1868 gfp_t mem_flags) 1869 { 1870 struct usb_hcd *hcd; 1871 struct usb_device *dev; 1872 int i; 1873 1874 dev = interface_to_usbdev(interface); 1875 hcd = bus_to_hcd(dev->bus); 1876 if (dev->speed != USB_SPEED_SUPER) 1877 return; 1878 1879 /* Streams only apply to bulk endpoints. */ 1880 for (i = 0; i < num_eps; i++) 1881 if (!usb_endpoint_xfer_bulk(&eps[i]->desc)) 1882 return; 1883 1884 hcd->driver->free_streams(hcd, dev, eps, num_eps, mem_flags); 1885 } 1886 EXPORT_SYMBOL_GPL(usb_free_streams); 1887 1888 /* Protect against drivers that try to unlink URBs after the device 1889 * is gone, by waiting until all unlinks for @udev are finished. 1890 * Since we don't currently track URBs by device, simply wait until 1891 * nothing is running in the locked region of usb_hcd_unlink_urb(). 1892 */ 1893 void usb_hcd_synchronize_unlinks(struct usb_device *udev) 1894 { 1895 spin_lock_irq(&hcd_urb_unlink_lock); 1896 spin_unlock_irq(&hcd_urb_unlink_lock); 1897 } 1898 1899 /*-------------------------------------------------------------------------*/ 1900 1901 /* called in any context */ 1902 int usb_hcd_get_frame_number (struct usb_device *udev) 1903 { 1904 struct usb_hcd *hcd = bus_to_hcd(udev->bus); 1905 1906 if (!HC_IS_RUNNING (hcd->state)) 1907 return -ESHUTDOWN; 1908 return hcd->driver->get_frame_number (hcd); 1909 } 1910 1911 /*-------------------------------------------------------------------------*/ 1912 1913 #ifdef CONFIG_PM 1914 1915 int hcd_bus_suspend(struct usb_device *rhdev, pm_message_t msg) 1916 { 1917 struct usb_hcd *hcd = container_of(rhdev->bus, struct usb_hcd, self); 1918 int status; 1919 int old_state = hcd->state; 1920 1921 dev_dbg(&rhdev->dev, "bus %s%s\n", 1922 (msg.event & PM_EVENT_AUTO ? "auto-" : ""), "suspend"); 1923 if (!hcd->driver->bus_suspend) { 1924 status = -ENOENT; 1925 } else { 1926 hcd->state = HC_STATE_QUIESCING; 1927 status = hcd->driver->bus_suspend(hcd); 1928 } 1929 if (status == 0) { 1930 usb_set_device_state(rhdev, USB_STATE_SUSPENDED); 1931 hcd->state = HC_STATE_SUSPENDED; 1932 } else { 1933 hcd->state = old_state; 1934 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n", 1935 "suspend", status); 1936 } 1937 return status; 1938 } 1939 1940 int hcd_bus_resume(struct usb_device *rhdev, pm_message_t msg) 1941 { 1942 struct usb_hcd *hcd = container_of(rhdev->bus, struct usb_hcd, self); 1943 int status; 1944 int old_state = hcd->state; 1945 1946 dev_dbg(&rhdev->dev, "usb %s%s\n", 1947 (msg.event & PM_EVENT_AUTO ? "auto-" : ""), "resume"); 1948 clear_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags); 1949 if (!hcd->driver->bus_resume) 1950 return -ENOENT; 1951 if (hcd->state == HC_STATE_RUNNING) 1952 return 0; 1953 1954 hcd->state = HC_STATE_RESUMING; 1955 status = hcd->driver->bus_resume(hcd); 1956 if (status == 0) { 1957 /* TRSMRCY = 10 msec */ 1958 msleep(10); 1959 usb_set_device_state(rhdev, rhdev->actconfig 1960 ? USB_STATE_CONFIGURED 1961 : USB_STATE_ADDRESS); 1962 hcd->state = HC_STATE_RUNNING; 1963 } else { 1964 hcd->state = old_state; 1965 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n", 1966 "resume", status); 1967 if (status != -ESHUTDOWN) 1968 usb_hc_died(hcd); 1969 } 1970 return status; 1971 } 1972 1973 #endif /* CONFIG_PM */ 1974 1975 #ifdef CONFIG_USB_SUSPEND 1976 1977 /* Workqueue routine for root-hub remote wakeup */ 1978 static void hcd_resume_work(struct work_struct *work) 1979 { 1980 struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work); 1981 struct usb_device *udev = hcd->self.root_hub; 1982 1983 usb_lock_device(udev); 1984 usb_remote_wakeup(udev); 1985 usb_unlock_device(udev); 1986 } 1987 1988 /** 1989 * usb_hcd_resume_root_hub - called by HCD to resume its root hub 1990 * @hcd: host controller for this root hub 1991 * 1992 * The USB host controller calls this function when its root hub is 1993 * suspended (with the remote wakeup feature enabled) and a remote 1994 * wakeup request is received. The routine submits a workqueue request 1995 * to resume the root hub (that is, manage its downstream ports again). 1996 */ 1997 void usb_hcd_resume_root_hub (struct usb_hcd *hcd) 1998 { 1999 unsigned long flags; 2000 2001 spin_lock_irqsave (&hcd_root_hub_lock, flags); 2002 if (hcd->rh_registered) { 2003 set_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags); 2004 queue_work(pm_wq, &hcd->wakeup_work); 2005 } 2006 spin_unlock_irqrestore (&hcd_root_hub_lock, flags); 2007 } 2008 EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub); 2009 2010 #endif /* CONFIG_USB_SUSPEND */ 2011 2012 /*-------------------------------------------------------------------------*/ 2013 2014 #ifdef CONFIG_USB_OTG 2015 2016 /** 2017 * usb_bus_start_enum - start immediate enumeration (for OTG) 2018 * @bus: the bus (must use hcd framework) 2019 * @port_num: 1-based number of port; usually bus->otg_port 2020 * Context: in_interrupt() 2021 * 2022 * Starts enumeration, with an immediate reset followed later by 2023 * khubd identifying and possibly configuring the device. 2024 * This is needed by OTG controller drivers, where it helps meet 2025 * HNP protocol timing requirements for starting a port reset. 2026 */ 2027 int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num) 2028 { 2029 struct usb_hcd *hcd; 2030 int status = -EOPNOTSUPP; 2031 2032 /* NOTE: since HNP can't start by grabbing the bus's address0_sem, 2033 * boards with root hubs hooked up to internal devices (instead of 2034 * just the OTG port) may need more attention to resetting... 2035 */ 2036 hcd = container_of (bus, struct usb_hcd, self); 2037 if (port_num && hcd->driver->start_port_reset) 2038 status = hcd->driver->start_port_reset(hcd, port_num); 2039 2040 /* run khubd shortly after (first) root port reset finishes; 2041 * it may issue others, until at least 50 msecs have passed. 2042 */ 2043 if (status == 0) 2044 mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10)); 2045 return status; 2046 } 2047 EXPORT_SYMBOL_GPL(usb_bus_start_enum); 2048 2049 #endif 2050 2051 /*-------------------------------------------------------------------------*/ 2052 2053 /** 2054 * usb_hcd_irq - hook IRQs to HCD framework (bus glue) 2055 * @irq: the IRQ being raised 2056 * @__hcd: pointer to the HCD whose IRQ is being signaled 2057 * 2058 * If the controller isn't HALTed, calls the driver's irq handler. 2059 * Checks whether the controller is now dead. 2060 */ 2061 irqreturn_t usb_hcd_irq (int irq, void *__hcd) 2062 { 2063 struct usb_hcd *hcd = __hcd; 2064 unsigned long flags; 2065 irqreturn_t rc; 2066 2067 /* IRQF_DISABLED doesn't work correctly with shared IRQs 2068 * when the first handler doesn't use it. So let's just 2069 * assume it's never used. 2070 */ 2071 local_irq_save(flags); 2072 2073 if (unlikely(hcd->state == HC_STATE_HALT || !HCD_HW_ACCESSIBLE(hcd))) { 2074 rc = IRQ_NONE; 2075 } else if (hcd->driver->irq(hcd) == IRQ_NONE) { 2076 rc = IRQ_NONE; 2077 } else { 2078 set_bit(HCD_FLAG_SAW_IRQ, &hcd->flags); 2079 2080 if (unlikely(hcd->state == HC_STATE_HALT)) 2081 usb_hc_died(hcd); 2082 rc = IRQ_HANDLED; 2083 } 2084 2085 local_irq_restore(flags); 2086 return rc; 2087 } 2088 EXPORT_SYMBOL_GPL(usb_hcd_irq); 2089 2090 /*-------------------------------------------------------------------------*/ 2091 2092 /** 2093 * usb_hc_died - report abnormal shutdown of a host controller (bus glue) 2094 * @hcd: pointer to the HCD representing the controller 2095 * 2096 * This is called by bus glue to report a USB host controller that died 2097 * while operations may still have been pending. It's called automatically 2098 * by the PCI glue, so only glue for non-PCI busses should need to call it. 2099 */ 2100 void usb_hc_died (struct usb_hcd *hcd) 2101 { 2102 unsigned long flags; 2103 2104 dev_err (hcd->self.controller, "HC died; cleaning up\n"); 2105 2106 spin_lock_irqsave (&hcd_root_hub_lock, flags); 2107 if (hcd->rh_registered) { 2108 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2109 2110 /* make khubd clean up old urbs and devices */ 2111 usb_set_device_state (hcd->self.root_hub, 2112 USB_STATE_NOTATTACHED); 2113 usb_kick_khubd (hcd->self.root_hub); 2114 } 2115 spin_unlock_irqrestore (&hcd_root_hub_lock, flags); 2116 } 2117 EXPORT_SYMBOL_GPL (usb_hc_died); 2118 2119 /*-------------------------------------------------------------------------*/ 2120 2121 /** 2122 * usb_create_hcd - create and initialize an HCD structure 2123 * @driver: HC driver that will use this hcd 2124 * @dev: device for this HC, stored in hcd->self.controller 2125 * @bus_name: value to store in hcd->self.bus_name 2126 * Context: !in_interrupt() 2127 * 2128 * Allocate a struct usb_hcd, with extra space at the end for the 2129 * HC driver's private data. Initialize the generic members of the 2130 * hcd structure. 2131 * 2132 * If memory is unavailable, returns NULL. 2133 */ 2134 struct usb_hcd *usb_create_hcd (const struct hc_driver *driver, 2135 struct device *dev, const char *bus_name) 2136 { 2137 struct usb_hcd *hcd; 2138 2139 hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL); 2140 if (!hcd) { 2141 dev_dbg (dev, "hcd alloc failed\n"); 2142 return NULL; 2143 } 2144 dev_set_drvdata(dev, hcd); 2145 kref_init(&hcd->kref); 2146 2147 usb_bus_init(&hcd->self); 2148 hcd->self.controller = dev; 2149 hcd->self.bus_name = bus_name; 2150 hcd->self.uses_dma = (dev->dma_mask != NULL); 2151 2152 init_timer(&hcd->rh_timer); 2153 hcd->rh_timer.function = rh_timer_func; 2154 hcd->rh_timer.data = (unsigned long) hcd; 2155 #ifdef CONFIG_USB_SUSPEND 2156 INIT_WORK(&hcd->wakeup_work, hcd_resume_work); 2157 #endif 2158 mutex_init(&hcd->bandwidth_mutex); 2159 2160 hcd->driver = driver; 2161 hcd->product_desc = (driver->product_desc) ? driver->product_desc : 2162 "USB Host Controller"; 2163 return hcd; 2164 } 2165 EXPORT_SYMBOL_GPL(usb_create_hcd); 2166 2167 static void hcd_release (struct kref *kref) 2168 { 2169 struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref); 2170 2171 kfree(hcd); 2172 } 2173 2174 struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd) 2175 { 2176 if (hcd) 2177 kref_get (&hcd->kref); 2178 return hcd; 2179 } 2180 EXPORT_SYMBOL_GPL(usb_get_hcd); 2181 2182 void usb_put_hcd (struct usb_hcd *hcd) 2183 { 2184 if (hcd) 2185 kref_put (&hcd->kref, hcd_release); 2186 } 2187 EXPORT_SYMBOL_GPL(usb_put_hcd); 2188 2189 /** 2190 * usb_add_hcd - finish generic HCD structure initialization and register 2191 * @hcd: the usb_hcd structure to initialize 2192 * @irqnum: Interrupt line to allocate 2193 * @irqflags: Interrupt type flags 2194 * 2195 * Finish the remaining parts of generic HCD initialization: allocate the 2196 * buffers of consistent memory, register the bus, request the IRQ line, 2197 * and call the driver's reset() and start() routines. 2198 */ 2199 int usb_add_hcd(struct usb_hcd *hcd, 2200 unsigned int irqnum, unsigned long irqflags) 2201 { 2202 int retval; 2203 struct usb_device *rhdev; 2204 2205 dev_info(hcd->self.controller, "%s\n", hcd->product_desc); 2206 2207 hcd->authorized_default = hcd->wireless? 0 : 1; 2208 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 2209 2210 /* HC is in reset state, but accessible. Now do the one-time init, 2211 * bottom up so that hcds can customize the root hubs before khubd 2212 * starts talking to them. (Note, bus id is assigned early too.) 2213 */ 2214 if ((retval = hcd_buffer_create(hcd)) != 0) { 2215 dev_dbg(hcd->self.controller, "pool alloc failed\n"); 2216 return retval; 2217 } 2218 2219 if ((retval = usb_register_bus(&hcd->self)) < 0) 2220 goto err_register_bus; 2221 2222 if ((rhdev = usb_alloc_dev(NULL, &hcd->self, 0)) == NULL) { 2223 dev_err(hcd->self.controller, "unable to allocate root hub\n"); 2224 retval = -ENOMEM; 2225 goto err_allocate_root_hub; 2226 } 2227 hcd->self.root_hub = rhdev; 2228 2229 switch (hcd->driver->flags & HCD_MASK) { 2230 case HCD_USB11: 2231 rhdev->speed = USB_SPEED_FULL; 2232 break; 2233 case HCD_USB2: 2234 rhdev->speed = USB_SPEED_HIGH; 2235 break; 2236 case HCD_USB3: 2237 rhdev->speed = USB_SPEED_SUPER; 2238 break; 2239 default: 2240 goto err_set_rh_speed; 2241 } 2242 2243 /* wakeup flag init defaults to "everything works" for root hubs, 2244 * but drivers can override it in reset() if needed, along with 2245 * recording the overall controller's system wakeup capability. 2246 */ 2247 device_init_wakeup(&rhdev->dev, 1); 2248 2249 /* "reset" is misnamed; its role is now one-time init. the controller 2250 * should already have been reset (and boot firmware kicked off etc). 2251 */ 2252 if (hcd->driver->reset && (retval = hcd->driver->reset(hcd)) < 0) { 2253 dev_err(hcd->self.controller, "can't setup\n"); 2254 goto err_hcd_driver_setup; 2255 } 2256 hcd->rh_pollable = 1; 2257 2258 /* NOTE: root hub and controller capabilities may not be the same */ 2259 if (device_can_wakeup(hcd->self.controller) 2260 && device_can_wakeup(&hcd->self.root_hub->dev)) 2261 dev_dbg(hcd->self.controller, "supports USB remote wakeup\n"); 2262 2263 /* enable irqs just before we start the controller */ 2264 if (hcd->driver->irq) { 2265 2266 /* IRQF_DISABLED doesn't work as advertised when used together 2267 * with IRQF_SHARED. As usb_hcd_irq() will always disable 2268 * interrupts we can remove it here. 2269 */ 2270 if (irqflags & IRQF_SHARED) 2271 irqflags &= ~IRQF_DISABLED; 2272 2273 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d", 2274 hcd->driver->description, hcd->self.busnum); 2275 if ((retval = request_irq(irqnum, &usb_hcd_irq, irqflags, 2276 hcd->irq_descr, hcd)) != 0) { 2277 dev_err(hcd->self.controller, 2278 "request interrupt %d failed\n", irqnum); 2279 goto err_request_irq; 2280 } 2281 hcd->irq = irqnum; 2282 dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum, 2283 (hcd->driver->flags & HCD_MEMORY) ? 2284 "io mem" : "io base", 2285 (unsigned long long)hcd->rsrc_start); 2286 } else { 2287 hcd->irq = -1; 2288 if (hcd->rsrc_start) 2289 dev_info(hcd->self.controller, "%s 0x%08llx\n", 2290 (hcd->driver->flags & HCD_MEMORY) ? 2291 "io mem" : "io base", 2292 (unsigned long long)hcd->rsrc_start); 2293 } 2294 2295 if ((retval = hcd->driver->start(hcd)) < 0) { 2296 dev_err(hcd->self.controller, "startup error %d\n", retval); 2297 goto err_hcd_driver_start; 2298 } 2299 2300 /* starting here, usbcore will pay attention to this root hub */ 2301 rhdev->bus_mA = min(500u, hcd->power_budget); 2302 if ((retval = register_root_hub(hcd)) != 0) 2303 goto err_register_root_hub; 2304 2305 retval = sysfs_create_group(&rhdev->dev.kobj, &usb_bus_attr_group); 2306 if (retval < 0) { 2307 printk(KERN_ERR "Cannot register USB bus sysfs attributes: %d\n", 2308 retval); 2309 goto error_create_attr_group; 2310 } 2311 if (hcd->uses_new_polling && HCD_POLL_RH(hcd)) 2312 usb_hcd_poll_rh_status(hcd); 2313 return retval; 2314 2315 error_create_attr_group: 2316 if (HC_IS_RUNNING(hcd->state)) 2317 hcd->state = HC_STATE_QUIESCING; 2318 spin_lock_irq(&hcd_root_hub_lock); 2319 hcd->rh_registered = 0; 2320 spin_unlock_irq(&hcd_root_hub_lock); 2321 2322 #ifdef CONFIG_USB_SUSPEND 2323 cancel_work_sync(&hcd->wakeup_work); 2324 #endif 2325 mutex_lock(&usb_bus_list_lock); 2326 usb_disconnect(&rhdev); /* Sets rhdev to NULL */ 2327 mutex_unlock(&usb_bus_list_lock); 2328 err_register_root_hub: 2329 hcd->rh_pollable = 0; 2330 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2331 del_timer_sync(&hcd->rh_timer); 2332 hcd->driver->stop(hcd); 2333 hcd->state = HC_STATE_HALT; 2334 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2335 del_timer_sync(&hcd->rh_timer); 2336 err_hcd_driver_start: 2337 if (hcd->irq >= 0) 2338 free_irq(irqnum, hcd); 2339 err_request_irq: 2340 err_hcd_driver_setup: 2341 err_set_rh_speed: 2342 usb_put_dev(hcd->self.root_hub); 2343 err_allocate_root_hub: 2344 usb_deregister_bus(&hcd->self); 2345 err_register_bus: 2346 hcd_buffer_destroy(hcd); 2347 return retval; 2348 } 2349 EXPORT_SYMBOL_GPL(usb_add_hcd); 2350 2351 /** 2352 * usb_remove_hcd - shutdown processing for generic HCDs 2353 * @hcd: the usb_hcd structure to remove 2354 * Context: !in_interrupt() 2355 * 2356 * Disconnects the root hub, then reverses the effects of usb_add_hcd(), 2357 * invoking the HCD's stop() method. 2358 */ 2359 void usb_remove_hcd(struct usb_hcd *hcd) 2360 { 2361 struct usb_device *rhdev = hcd->self.root_hub; 2362 2363 dev_info(hcd->self.controller, "remove, state %x\n", hcd->state); 2364 2365 usb_get_dev(rhdev); 2366 sysfs_remove_group(&rhdev->dev.kobj, &usb_bus_attr_group); 2367 2368 if (HC_IS_RUNNING (hcd->state)) 2369 hcd->state = HC_STATE_QUIESCING; 2370 2371 dev_dbg(hcd->self.controller, "roothub graceful disconnect\n"); 2372 spin_lock_irq (&hcd_root_hub_lock); 2373 hcd->rh_registered = 0; 2374 spin_unlock_irq (&hcd_root_hub_lock); 2375 2376 #ifdef CONFIG_USB_SUSPEND 2377 cancel_work_sync(&hcd->wakeup_work); 2378 #endif 2379 2380 mutex_lock(&usb_bus_list_lock); 2381 usb_disconnect(&rhdev); /* Sets rhdev to NULL */ 2382 mutex_unlock(&usb_bus_list_lock); 2383 2384 /* Prevent any more root-hub status calls from the timer. 2385 * The HCD might still restart the timer (if a port status change 2386 * interrupt occurs), but usb_hcd_poll_rh_status() won't invoke 2387 * the hub_status_data() callback. 2388 */ 2389 hcd->rh_pollable = 0; 2390 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2391 del_timer_sync(&hcd->rh_timer); 2392 2393 hcd->driver->stop(hcd); 2394 hcd->state = HC_STATE_HALT; 2395 2396 /* In case the HCD restarted the timer, stop it again. */ 2397 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2398 del_timer_sync(&hcd->rh_timer); 2399 2400 if (hcd->irq >= 0) 2401 free_irq(hcd->irq, hcd); 2402 2403 usb_put_dev(hcd->self.root_hub); 2404 usb_deregister_bus(&hcd->self); 2405 hcd_buffer_destroy(hcd); 2406 } 2407 EXPORT_SYMBOL_GPL(usb_remove_hcd); 2408 2409 void 2410 usb_hcd_platform_shutdown(struct platform_device* dev) 2411 { 2412 struct usb_hcd *hcd = platform_get_drvdata(dev); 2413 2414 if (hcd->driver->shutdown) 2415 hcd->driver->shutdown(hcd); 2416 } 2417 EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown); 2418 2419 /*-------------------------------------------------------------------------*/ 2420 2421 #if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE) 2422 2423 struct usb_mon_operations *mon_ops; 2424 2425 /* 2426 * The registration is unlocked. 2427 * We do it this way because we do not want to lock in hot paths. 2428 * 2429 * Notice that the code is minimally error-proof. Because usbmon needs 2430 * symbols from usbcore, usbcore gets referenced and cannot be unloaded first. 2431 */ 2432 2433 int usb_mon_register (struct usb_mon_operations *ops) 2434 { 2435 2436 if (mon_ops) 2437 return -EBUSY; 2438 2439 mon_ops = ops; 2440 mb(); 2441 return 0; 2442 } 2443 EXPORT_SYMBOL_GPL (usb_mon_register); 2444 2445 void usb_mon_deregister (void) 2446 { 2447 2448 if (mon_ops == NULL) { 2449 printk(KERN_ERR "USB: monitor was not registered\n"); 2450 return; 2451 } 2452 mon_ops = NULL; 2453 mb(); 2454 } 2455 EXPORT_SYMBOL_GPL (usb_mon_deregister); 2456 2457 #endif /* CONFIG_USB_MON || CONFIG_USB_MON_MODULE */ 2458