1 /* 2 * (C) Copyright Linus Torvalds 1999 3 * (C) Copyright Johannes Erdfelt 1999-2001 4 * (C) Copyright Andreas Gal 1999 5 * (C) Copyright Gregory P. Smith 1999 6 * (C) Copyright Deti Fliegl 1999 7 * (C) Copyright Randy Dunlap 2000 8 * (C) Copyright David Brownell 2000-2002 9 * 10 * This program is free software; you can redistribute it and/or modify it 11 * under the terms of the GNU General Public License as published by the 12 * Free Software Foundation; either version 2 of the License, or (at your 13 * option) any later version. 14 * 15 * This program is distributed in the hope that it will be useful, but 16 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 17 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 18 * for more details. 19 * 20 * You should have received a copy of the GNU General Public License 21 * along with this program; if not, write to the Free Software Foundation, 22 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 23 */ 24 25 #include <linux/bcd.h> 26 #include <linux/module.h> 27 #include <linux/version.h> 28 #include <linux/kernel.h> 29 #include <linux/slab.h> 30 #include <linux/completion.h> 31 #include <linux/utsname.h> 32 #include <linux/mm.h> 33 #include <asm/io.h> 34 #include <linux/device.h> 35 #include <linux/dma-mapping.h> 36 #include <linux/mutex.h> 37 #include <asm/irq.h> 38 #include <asm/byteorder.h> 39 #include <asm/unaligned.h> 40 #include <linux/platform_device.h> 41 #include <linux/workqueue.h> 42 #include <linux/pm_runtime.h> 43 #include <linux/types.h> 44 45 #include <linux/phy/phy.h> 46 #include <linux/usb.h> 47 #include <linux/usb/hcd.h> 48 #include <linux/usb/phy.h> 49 50 #include "usb.h" 51 52 53 /*-------------------------------------------------------------------------*/ 54 55 /* 56 * USB Host Controller Driver framework 57 * 58 * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing 59 * HCD-specific behaviors/bugs. 60 * 61 * This does error checks, tracks devices and urbs, and delegates to a 62 * "hc_driver" only for code (and data) that really needs to know about 63 * hardware differences. That includes root hub registers, i/o queues, 64 * and so on ... but as little else as possible. 65 * 66 * Shared code includes most of the "root hub" code (these are emulated, 67 * though each HC's hardware works differently) and PCI glue, plus request 68 * tracking overhead. The HCD code should only block on spinlocks or on 69 * hardware handshaking; blocking on software events (such as other kernel 70 * threads releasing resources, or completing actions) is all generic. 71 * 72 * Happens the USB 2.0 spec says this would be invisible inside the "USBD", 73 * and includes mostly a "HCDI" (HCD Interface) along with some APIs used 74 * only by the hub driver ... and that neither should be seen or used by 75 * usb client device drivers. 76 * 77 * Contributors of ideas or unattributed patches include: David Brownell, 78 * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ... 79 * 80 * HISTORY: 81 * 2002-02-21 Pull in most of the usb_bus support from usb.c; some 82 * associated cleanup. "usb_hcd" still != "usb_bus". 83 * 2001-12-12 Initial patch version for Linux 2.5.1 kernel. 84 */ 85 86 /*-------------------------------------------------------------------------*/ 87 88 /* Keep track of which host controller drivers are loaded */ 89 unsigned long usb_hcds_loaded; 90 EXPORT_SYMBOL_GPL(usb_hcds_loaded); 91 92 /* host controllers we manage */ 93 LIST_HEAD (usb_bus_list); 94 EXPORT_SYMBOL_GPL (usb_bus_list); 95 96 /* used when allocating bus numbers */ 97 #define USB_MAXBUS 64 98 static DECLARE_BITMAP(busmap, USB_MAXBUS); 99 100 /* used when updating list of hcds */ 101 DEFINE_MUTEX(usb_bus_list_lock); /* exported only for usbfs */ 102 EXPORT_SYMBOL_GPL (usb_bus_list_lock); 103 104 /* used for controlling access to virtual root hubs */ 105 static DEFINE_SPINLOCK(hcd_root_hub_lock); 106 107 /* used when updating an endpoint's URB list */ 108 static DEFINE_SPINLOCK(hcd_urb_list_lock); 109 110 /* used to protect against unlinking URBs after the device is gone */ 111 static DEFINE_SPINLOCK(hcd_urb_unlink_lock); 112 113 /* wait queue for synchronous unlinks */ 114 DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue); 115 116 static inline int is_root_hub(struct usb_device *udev) 117 { 118 return (udev->parent == NULL); 119 } 120 121 /*-------------------------------------------------------------------------*/ 122 123 /* 124 * Sharable chunks of root hub code. 125 */ 126 127 /*-------------------------------------------------------------------------*/ 128 #define KERNEL_REL bin2bcd(((LINUX_VERSION_CODE >> 16) & 0x0ff)) 129 #define KERNEL_VER bin2bcd(((LINUX_VERSION_CODE >> 8) & 0x0ff)) 130 131 /* usb 3.0 root hub device descriptor */ 132 static const u8 usb3_rh_dev_descriptor[18] = { 133 0x12, /* __u8 bLength; */ 134 0x01, /* __u8 bDescriptorType; Device */ 135 0x00, 0x03, /* __le16 bcdUSB; v3.0 */ 136 137 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */ 138 0x00, /* __u8 bDeviceSubClass; */ 139 0x03, /* __u8 bDeviceProtocol; USB 3.0 hub */ 140 0x09, /* __u8 bMaxPacketSize0; 2^9 = 512 Bytes */ 141 142 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */ 143 0x03, 0x00, /* __le16 idProduct; device 0x0003 */ 144 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */ 145 146 0x03, /* __u8 iManufacturer; */ 147 0x02, /* __u8 iProduct; */ 148 0x01, /* __u8 iSerialNumber; */ 149 0x01 /* __u8 bNumConfigurations; */ 150 }; 151 152 /* usb 2.5 (wireless USB 1.0) root hub device descriptor */ 153 static const u8 usb25_rh_dev_descriptor[18] = { 154 0x12, /* __u8 bLength; */ 155 0x01, /* __u8 bDescriptorType; Device */ 156 0x50, 0x02, /* __le16 bcdUSB; v2.5 */ 157 158 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */ 159 0x00, /* __u8 bDeviceSubClass; */ 160 0x00, /* __u8 bDeviceProtocol; [ usb 2.0 no TT ] */ 161 0xFF, /* __u8 bMaxPacketSize0; always 0xFF (WUSB Spec 7.4.1). */ 162 163 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */ 164 0x02, 0x00, /* __le16 idProduct; device 0x0002 */ 165 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */ 166 167 0x03, /* __u8 iManufacturer; */ 168 0x02, /* __u8 iProduct; */ 169 0x01, /* __u8 iSerialNumber; */ 170 0x01 /* __u8 bNumConfigurations; */ 171 }; 172 173 /* usb 2.0 root hub device descriptor */ 174 static const u8 usb2_rh_dev_descriptor[18] = { 175 0x12, /* __u8 bLength; */ 176 0x01, /* __u8 bDescriptorType; Device */ 177 0x00, 0x02, /* __le16 bcdUSB; v2.0 */ 178 179 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */ 180 0x00, /* __u8 bDeviceSubClass; */ 181 0x00, /* __u8 bDeviceProtocol; [ usb 2.0 no TT ] */ 182 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */ 183 184 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */ 185 0x02, 0x00, /* __le16 idProduct; device 0x0002 */ 186 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */ 187 188 0x03, /* __u8 iManufacturer; */ 189 0x02, /* __u8 iProduct; */ 190 0x01, /* __u8 iSerialNumber; */ 191 0x01 /* __u8 bNumConfigurations; */ 192 }; 193 194 /* no usb 2.0 root hub "device qualifier" descriptor: one speed only */ 195 196 /* usb 1.1 root hub device descriptor */ 197 static const u8 usb11_rh_dev_descriptor[18] = { 198 0x12, /* __u8 bLength; */ 199 0x01, /* __u8 bDescriptorType; Device */ 200 0x10, 0x01, /* __le16 bcdUSB; v1.1 */ 201 202 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */ 203 0x00, /* __u8 bDeviceSubClass; */ 204 0x00, /* __u8 bDeviceProtocol; [ low/full speeds only ] */ 205 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */ 206 207 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */ 208 0x01, 0x00, /* __le16 idProduct; device 0x0001 */ 209 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */ 210 211 0x03, /* __u8 iManufacturer; */ 212 0x02, /* __u8 iProduct; */ 213 0x01, /* __u8 iSerialNumber; */ 214 0x01 /* __u8 bNumConfigurations; */ 215 }; 216 217 218 /*-------------------------------------------------------------------------*/ 219 220 /* Configuration descriptors for our root hubs */ 221 222 static const u8 fs_rh_config_descriptor[] = { 223 224 /* one configuration */ 225 0x09, /* __u8 bLength; */ 226 0x02, /* __u8 bDescriptorType; Configuration */ 227 0x19, 0x00, /* __le16 wTotalLength; */ 228 0x01, /* __u8 bNumInterfaces; (1) */ 229 0x01, /* __u8 bConfigurationValue; */ 230 0x00, /* __u8 iConfiguration; */ 231 0xc0, /* __u8 bmAttributes; 232 Bit 7: must be set, 233 6: Self-powered, 234 5: Remote wakeup, 235 4..0: resvd */ 236 0x00, /* __u8 MaxPower; */ 237 238 /* USB 1.1: 239 * USB 2.0, single TT organization (mandatory): 240 * one interface, protocol 0 241 * 242 * USB 2.0, multiple TT organization (optional): 243 * two interfaces, protocols 1 (like single TT) 244 * and 2 (multiple TT mode) ... config is 245 * sometimes settable 246 * NOT IMPLEMENTED 247 */ 248 249 /* one interface */ 250 0x09, /* __u8 if_bLength; */ 251 0x04, /* __u8 if_bDescriptorType; Interface */ 252 0x00, /* __u8 if_bInterfaceNumber; */ 253 0x00, /* __u8 if_bAlternateSetting; */ 254 0x01, /* __u8 if_bNumEndpoints; */ 255 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */ 256 0x00, /* __u8 if_bInterfaceSubClass; */ 257 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */ 258 0x00, /* __u8 if_iInterface; */ 259 260 /* one endpoint (status change endpoint) */ 261 0x07, /* __u8 ep_bLength; */ 262 0x05, /* __u8 ep_bDescriptorType; Endpoint */ 263 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */ 264 0x03, /* __u8 ep_bmAttributes; Interrupt */ 265 0x02, 0x00, /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */ 266 0xff /* __u8 ep_bInterval; (255ms -- usb 2.0 spec) */ 267 }; 268 269 static const u8 hs_rh_config_descriptor[] = { 270 271 /* one configuration */ 272 0x09, /* __u8 bLength; */ 273 0x02, /* __u8 bDescriptorType; Configuration */ 274 0x19, 0x00, /* __le16 wTotalLength; */ 275 0x01, /* __u8 bNumInterfaces; (1) */ 276 0x01, /* __u8 bConfigurationValue; */ 277 0x00, /* __u8 iConfiguration; */ 278 0xc0, /* __u8 bmAttributes; 279 Bit 7: must be set, 280 6: Self-powered, 281 5: Remote wakeup, 282 4..0: resvd */ 283 0x00, /* __u8 MaxPower; */ 284 285 /* USB 1.1: 286 * USB 2.0, single TT organization (mandatory): 287 * one interface, protocol 0 288 * 289 * USB 2.0, multiple TT organization (optional): 290 * two interfaces, protocols 1 (like single TT) 291 * and 2 (multiple TT mode) ... config is 292 * sometimes settable 293 * NOT IMPLEMENTED 294 */ 295 296 /* one interface */ 297 0x09, /* __u8 if_bLength; */ 298 0x04, /* __u8 if_bDescriptorType; Interface */ 299 0x00, /* __u8 if_bInterfaceNumber; */ 300 0x00, /* __u8 if_bAlternateSetting; */ 301 0x01, /* __u8 if_bNumEndpoints; */ 302 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */ 303 0x00, /* __u8 if_bInterfaceSubClass; */ 304 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */ 305 0x00, /* __u8 if_iInterface; */ 306 307 /* one endpoint (status change endpoint) */ 308 0x07, /* __u8 ep_bLength; */ 309 0x05, /* __u8 ep_bDescriptorType; Endpoint */ 310 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */ 311 0x03, /* __u8 ep_bmAttributes; Interrupt */ 312 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) 313 * see hub.c:hub_configure() for details. */ 314 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00, 315 0x0c /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */ 316 }; 317 318 static const u8 ss_rh_config_descriptor[] = { 319 /* one configuration */ 320 0x09, /* __u8 bLength; */ 321 0x02, /* __u8 bDescriptorType; Configuration */ 322 0x1f, 0x00, /* __le16 wTotalLength; */ 323 0x01, /* __u8 bNumInterfaces; (1) */ 324 0x01, /* __u8 bConfigurationValue; */ 325 0x00, /* __u8 iConfiguration; */ 326 0xc0, /* __u8 bmAttributes; 327 Bit 7: must be set, 328 6: Self-powered, 329 5: Remote wakeup, 330 4..0: resvd */ 331 0x00, /* __u8 MaxPower; */ 332 333 /* one interface */ 334 0x09, /* __u8 if_bLength; */ 335 0x04, /* __u8 if_bDescriptorType; Interface */ 336 0x00, /* __u8 if_bInterfaceNumber; */ 337 0x00, /* __u8 if_bAlternateSetting; */ 338 0x01, /* __u8 if_bNumEndpoints; */ 339 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */ 340 0x00, /* __u8 if_bInterfaceSubClass; */ 341 0x00, /* __u8 if_bInterfaceProtocol; */ 342 0x00, /* __u8 if_iInterface; */ 343 344 /* one endpoint (status change endpoint) */ 345 0x07, /* __u8 ep_bLength; */ 346 0x05, /* __u8 ep_bDescriptorType; Endpoint */ 347 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */ 348 0x03, /* __u8 ep_bmAttributes; Interrupt */ 349 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) 350 * see hub.c:hub_configure() for details. */ 351 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00, 352 0x0c, /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */ 353 354 /* one SuperSpeed endpoint companion descriptor */ 355 0x06, /* __u8 ss_bLength */ 356 0x30, /* __u8 ss_bDescriptorType; SuperSpeed EP Companion */ 357 0x00, /* __u8 ss_bMaxBurst; allows 1 TX between ACKs */ 358 0x00, /* __u8 ss_bmAttributes; 1 packet per service interval */ 359 0x02, 0x00 /* __le16 ss_wBytesPerInterval; 15 bits for max 15 ports */ 360 }; 361 362 /* authorized_default behaviour: 363 * -1 is authorized for all devices except wireless (old behaviour) 364 * 0 is unauthorized for all devices 365 * 1 is authorized for all devices 366 */ 367 static int authorized_default = -1; 368 module_param(authorized_default, int, S_IRUGO|S_IWUSR); 369 MODULE_PARM_DESC(authorized_default, 370 "Default USB device authorization: 0 is not authorized, 1 is " 371 "authorized, -1 is authorized except for wireless USB (default, " 372 "old behaviour"); 373 /*-------------------------------------------------------------------------*/ 374 375 /** 376 * ascii2desc() - Helper routine for producing UTF-16LE string descriptors 377 * @s: Null-terminated ASCII (actually ISO-8859-1) string 378 * @buf: Buffer for USB string descriptor (header + UTF-16LE) 379 * @len: Length (in bytes; may be odd) of descriptor buffer. 380 * 381 * Return: The number of bytes filled in: 2 + 2*strlen(s) or @len, 382 * whichever is less. 383 * 384 * Note: 385 * USB String descriptors can contain at most 126 characters; input 386 * strings longer than that are truncated. 387 */ 388 static unsigned 389 ascii2desc(char const *s, u8 *buf, unsigned len) 390 { 391 unsigned n, t = 2 + 2*strlen(s); 392 393 if (t > 254) 394 t = 254; /* Longest possible UTF string descriptor */ 395 if (len > t) 396 len = t; 397 398 t += USB_DT_STRING << 8; /* Now t is first 16 bits to store */ 399 400 n = len; 401 while (n--) { 402 *buf++ = t; 403 if (!n--) 404 break; 405 *buf++ = t >> 8; 406 t = (unsigned char)*s++; 407 } 408 return len; 409 } 410 411 /** 412 * rh_string() - provides string descriptors for root hub 413 * @id: the string ID number (0: langids, 1: serial #, 2: product, 3: vendor) 414 * @hcd: the host controller for this root hub 415 * @data: buffer for output packet 416 * @len: length of the provided buffer 417 * 418 * Produces either a manufacturer, product or serial number string for the 419 * virtual root hub device. 420 * 421 * Return: The number of bytes filled in: the length of the descriptor or 422 * of the provided buffer, whichever is less. 423 */ 424 static unsigned 425 rh_string(int id, struct usb_hcd const *hcd, u8 *data, unsigned len) 426 { 427 char buf[100]; 428 char const *s; 429 static char const langids[4] = {4, USB_DT_STRING, 0x09, 0x04}; 430 431 /* language ids */ 432 switch (id) { 433 case 0: 434 /* Array of LANGID codes (0x0409 is MSFT-speak for "en-us") */ 435 /* See http://www.usb.org/developers/docs/USB_LANGIDs.pdf */ 436 if (len > 4) 437 len = 4; 438 memcpy(data, langids, len); 439 return len; 440 case 1: 441 /* Serial number */ 442 s = hcd->self.bus_name; 443 break; 444 case 2: 445 /* Product name */ 446 s = hcd->product_desc; 447 break; 448 case 3: 449 /* Manufacturer */ 450 snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname, 451 init_utsname()->release, hcd->driver->description); 452 s = buf; 453 break; 454 default: 455 /* Can't happen; caller guarantees it */ 456 return 0; 457 } 458 459 return ascii2desc(s, data, len); 460 } 461 462 463 /* Root hub control transfers execute synchronously */ 464 static int rh_call_control (struct usb_hcd *hcd, struct urb *urb) 465 { 466 struct usb_ctrlrequest *cmd; 467 u16 typeReq, wValue, wIndex, wLength; 468 u8 *ubuf = urb->transfer_buffer; 469 unsigned len = 0; 470 int status; 471 u8 patch_wakeup = 0; 472 u8 patch_protocol = 0; 473 u16 tbuf_size; 474 u8 *tbuf = NULL; 475 const u8 *bufp; 476 477 might_sleep(); 478 479 spin_lock_irq(&hcd_root_hub_lock); 480 status = usb_hcd_link_urb_to_ep(hcd, urb); 481 spin_unlock_irq(&hcd_root_hub_lock); 482 if (status) 483 return status; 484 urb->hcpriv = hcd; /* Indicate it's queued */ 485 486 cmd = (struct usb_ctrlrequest *) urb->setup_packet; 487 typeReq = (cmd->bRequestType << 8) | cmd->bRequest; 488 wValue = le16_to_cpu (cmd->wValue); 489 wIndex = le16_to_cpu (cmd->wIndex); 490 wLength = le16_to_cpu (cmd->wLength); 491 492 if (wLength > urb->transfer_buffer_length) 493 goto error; 494 495 /* 496 * tbuf should be at least as big as the 497 * USB hub descriptor. 498 */ 499 tbuf_size = max_t(u16, sizeof(struct usb_hub_descriptor), wLength); 500 tbuf = kzalloc(tbuf_size, GFP_KERNEL); 501 if (!tbuf) 502 return -ENOMEM; 503 504 bufp = tbuf; 505 506 507 urb->actual_length = 0; 508 switch (typeReq) { 509 510 /* DEVICE REQUESTS */ 511 512 /* The root hub's remote wakeup enable bit is implemented using 513 * driver model wakeup flags. If this system supports wakeup 514 * through USB, userspace may change the default "allow wakeup" 515 * policy through sysfs or these calls. 516 * 517 * Most root hubs support wakeup from downstream devices, for 518 * runtime power management (disabling USB clocks and reducing 519 * VBUS power usage). However, not all of them do so; silicon, 520 * board, and BIOS bugs here are not uncommon, so these can't 521 * be treated quite like external hubs. 522 * 523 * Likewise, not all root hubs will pass wakeup events upstream, 524 * to wake up the whole system. So don't assume root hub and 525 * controller capabilities are identical. 526 */ 527 528 case DeviceRequest | USB_REQ_GET_STATUS: 529 tbuf[0] = (device_may_wakeup(&hcd->self.root_hub->dev) 530 << USB_DEVICE_REMOTE_WAKEUP) 531 | (1 << USB_DEVICE_SELF_POWERED); 532 tbuf[1] = 0; 533 len = 2; 534 break; 535 case DeviceOutRequest | USB_REQ_CLEAR_FEATURE: 536 if (wValue == USB_DEVICE_REMOTE_WAKEUP) 537 device_set_wakeup_enable(&hcd->self.root_hub->dev, 0); 538 else 539 goto error; 540 break; 541 case DeviceOutRequest | USB_REQ_SET_FEATURE: 542 if (device_can_wakeup(&hcd->self.root_hub->dev) 543 && wValue == USB_DEVICE_REMOTE_WAKEUP) 544 device_set_wakeup_enable(&hcd->self.root_hub->dev, 1); 545 else 546 goto error; 547 break; 548 case DeviceRequest | USB_REQ_GET_CONFIGURATION: 549 tbuf[0] = 1; 550 len = 1; 551 /* FALLTHROUGH */ 552 case DeviceOutRequest | USB_REQ_SET_CONFIGURATION: 553 break; 554 case DeviceRequest | USB_REQ_GET_DESCRIPTOR: 555 switch (wValue & 0xff00) { 556 case USB_DT_DEVICE << 8: 557 switch (hcd->speed) { 558 case HCD_USB3: 559 bufp = usb3_rh_dev_descriptor; 560 break; 561 case HCD_USB25: 562 bufp = usb25_rh_dev_descriptor; 563 break; 564 case HCD_USB2: 565 bufp = usb2_rh_dev_descriptor; 566 break; 567 case HCD_USB11: 568 bufp = usb11_rh_dev_descriptor; 569 break; 570 default: 571 goto error; 572 } 573 len = 18; 574 if (hcd->has_tt) 575 patch_protocol = 1; 576 break; 577 case USB_DT_CONFIG << 8: 578 switch (hcd->speed) { 579 case HCD_USB3: 580 bufp = ss_rh_config_descriptor; 581 len = sizeof ss_rh_config_descriptor; 582 break; 583 case HCD_USB25: 584 case HCD_USB2: 585 bufp = hs_rh_config_descriptor; 586 len = sizeof hs_rh_config_descriptor; 587 break; 588 case HCD_USB11: 589 bufp = fs_rh_config_descriptor; 590 len = sizeof fs_rh_config_descriptor; 591 break; 592 default: 593 goto error; 594 } 595 if (device_can_wakeup(&hcd->self.root_hub->dev)) 596 patch_wakeup = 1; 597 break; 598 case USB_DT_STRING << 8: 599 if ((wValue & 0xff) < 4) 600 urb->actual_length = rh_string(wValue & 0xff, 601 hcd, ubuf, wLength); 602 else /* unsupported IDs --> "protocol stall" */ 603 goto error; 604 break; 605 case USB_DT_BOS << 8: 606 goto nongeneric; 607 default: 608 goto error; 609 } 610 break; 611 case DeviceRequest | USB_REQ_GET_INTERFACE: 612 tbuf[0] = 0; 613 len = 1; 614 /* FALLTHROUGH */ 615 case DeviceOutRequest | USB_REQ_SET_INTERFACE: 616 break; 617 case DeviceOutRequest | USB_REQ_SET_ADDRESS: 618 /* wValue == urb->dev->devaddr */ 619 dev_dbg (hcd->self.controller, "root hub device address %d\n", 620 wValue); 621 break; 622 623 /* INTERFACE REQUESTS (no defined feature/status flags) */ 624 625 /* ENDPOINT REQUESTS */ 626 627 case EndpointRequest | USB_REQ_GET_STATUS: 628 /* ENDPOINT_HALT flag */ 629 tbuf[0] = 0; 630 tbuf[1] = 0; 631 len = 2; 632 /* FALLTHROUGH */ 633 case EndpointOutRequest | USB_REQ_CLEAR_FEATURE: 634 case EndpointOutRequest | USB_REQ_SET_FEATURE: 635 dev_dbg (hcd->self.controller, "no endpoint features yet\n"); 636 break; 637 638 /* CLASS REQUESTS (and errors) */ 639 640 default: 641 nongeneric: 642 /* non-generic request */ 643 switch (typeReq) { 644 case GetHubStatus: 645 case GetPortStatus: 646 len = 4; 647 break; 648 case GetHubDescriptor: 649 len = sizeof (struct usb_hub_descriptor); 650 break; 651 case DeviceRequest | USB_REQ_GET_DESCRIPTOR: 652 /* len is returned by hub_control */ 653 break; 654 } 655 status = hcd->driver->hub_control (hcd, 656 typeReq, wValue, wIndex, 657 tbuf, wLength); 658 659 if (typeReq == GetHubDescriptor) 660 usb_hub_adjust_deviceremovable(hcd->self.root_hub, 661 (struct usb_hub_descriptor *)tbuf); 662 break; 663 error: 664 /* "protocol stall" on error */ 665 status = -EPIPE; 666 } 667 668 if (status < 0) { 669 len = 0; 670 if (status != -EPIPE) { 671 dev_dbg (hcd->self.controller, 672 "CTRL: TypeReq=0x%x val=0x%x " 673 "idx=0x%x len=%d ==> %d\n", 674 typeReq, wValue, wIndex, 675 wLength, status); 676 } 677 } else if (status > 0) { 678 /* hub_control may return the length of data copied. */ 679 len = status; 680 status = 0; 681 } 682 if (len) { 683 if (urb->transfer_buffer_length < len) 684 len = urb->transfer_buffer_length; 685 urb->actual_length = len; 686 /* always USB_DIR_IN, toward host */ 687 memcpy (ubuf, bufp, len); 688 689 /* report whether RH hardware supports remote wakeup */ 690 if (patch_wakeup && 691 len > offsetof (struct usb_config_descriptor, 692 bmAttributes)) 693 ((struct usb_config_descriptor *)ubuf)->bmAttributes 694 |= USB_CONFIG_ATT_WAKEUP; 695 696 /* report whether RH hardware has an integrated TT */ 697 if (patch_protocol && 698 len > offsetof(struct usb_device_descriptor, 699 bDeviceProtocol)) 700 ((struct usb_device_descriptor *) ubuf)-> 701 bDeviceProtocol = USB_HUB_PR_HS_SINGLE_TT; 702 } 703 704 kfree(tbuf); 705 706 /* any errors get returned through the urb completion */ 707 spin_lock_irq(&hcd_root_hub_lock); 708 usb_hcd_unlink_urb_from_ep(hcd, urb); 709 usb_hcd_giveback_urb(hcd, urb, status); 710 spin_unlock_irq(&hcd_root_hub_lock); 711 return 0; 712 } 713 714 /*-------------------------------------------------------------------------*/ 715 716 /* 717 * Root Hub interrupt transfers are polled using a timer if the 718 * driver requests it; otherwise the driver is responsible for 719 * calling usb_hcd_poll_rh_status() when an event occurs. 720 * 721 * Completions are called in_interrupt(), but they may or may not 722 * be in_irq(). 723 */ 724 void usb_hcd_poll_rh_status(struct usb_hcd *hcd) 725 { 726 struct urb *urb; 727 int length; 728 unsigned long flags; 729 char buffer[6]; /* Any root hubs with > 31 ports? */ 730 731 if (unlikely(!hcd->rh_pollable)) 732 return; 733 if (!hcd->uses_new_polling && !hcd->status_urb) 734 return; 735 736 length = hcd->driver->hub_status_data(hcd, buffer); 737 if (length > 0) { 738 739 /* try to complete the status urb */ 740 spin_lock_irqsave(&hcd_root_hub_lock, flags); 741 urb = hcd->status_urb; 742 if (urb) { 743 clear_bit(HCD_FLAG_POLL_PENDING, &hcd->flags); 744 hcd->status_urb = NULL; 745 urb->actual_length = length; 746 memcpy(urb->transfer_buffer, buffer, length); 747 748 usb_hcd_unlink_urb_from_ep(hcd, urb); 749 usb_hcd_giveback_urb(hcd, urb, 0); 750 } else { 751 length = 0; 752 set_bit(HCD_FLAG_POLL_PENDING, &hcd->flags); 753 } 754 spin_unlock_irqrestore(&hcd_root_hub_lock, flags); 755 } 756 757 /* The USB 2.0 spec says 256 ms. This is close enough and won't 758 * exceed that limit if HZ is 100. The math is more clunky than 759 * maybe expected, this is to make sure that all timers for USB devices 760 * fire at the same time to give the CPU a break in between */ 761 if (hcd->uses_new_polling ? HCD_POLL_RH(hcd) : 762 (length == 0 && hcd->status_urb != NULL)) 763 mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4)); 764 } 765 EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status); 766 767 /* timer callback */ 768 static void rh_timer_func (unsigned long _hcd) 769 { 770 usb_hcd_poll_rh_status((struct usb_hcd *) _hcd); 771 } 772 773 /*-------------------------------------------------------------------------*/ 774 775 static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb) 776 { 777 int retval; 778 unsigned long flags; 779 unsigned len = 1 + (urb->dev->maxchild / 8); 780 781 spin_lock_irqsave (&hcd_root_hub_lock, flags); 782 if (hcd->status_urb || urb->transfer_buffer_length < len) { 783 dev_dbg (hcd->self.controller, "not queuing rh status urb\n"); 784 retval = -EINVAL; 785 goto done; 786 } 787 788 retval = usb_hcd_link_urb_to_ep(hcd, urb); 789 if (retval) 790 goto done; 791 792 hcd->status_urb = urb; 793 urb->hcpriv = hcd; /* indicate it's queued */ 794 if (!hcd->uses_new_polling) 795 mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4)); 796 797 /* If a status change has already occurred, report it ASAP */ 798 else if (HCD_POLL_PENDING(hcd)) 799 mod_timer(&hcd->rh_timer, jiffies); 800 retval = 0; 801 done: 802 spin_unlock_irqrestore (&hcd_root_hub_lock, flags); 803 return retval; 804 } 805 806 static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb) 807 { 808 if (usb_endpoint_xfer_int(&urb->ep->desc)) 809 return rh_queue_status (hcd, urb); 810 if (usb_endpoint_xfer_control(&urb->ep->desc)) 811 return rh_call_control (hcd, urb); 812 return -EINVAL; 813 } 814 815 /*-------------------------------------------------------------------------*/ 816 817 /* Unlinks of root-hub control URBs are legal, but they don't do anything 818 * since these URBs always execute synchronously. 819 */ 820 static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status) 821 { 822 unsigned long flags; 823 int rc; 824 825 spin_lock_irqsave(&hcd_root_hub_lock, flags); 826 rc = usb_hcd_check_unlink_urb(hcd, urb, status); 827 if (rc) 828 goto done; 829 830 if (usb_endpoint_num(&urb->ep->desc) == 0) { /* Control URB */ 831 ; /* Do nothing */ 832 833 } else { /* Status URB */ 834 if (!hcd->uses_new_polling) 835 del_timer (&hcd->rh_timer); 836 if (urb == hcd->status_urb) { 837 hcd->status_urb = NULL; 838 usb_hcd_unlink_urb_from_ep(hcd, urb); 839 usb_hcd_giveback_urb(hcd, urb, status); 840 } 841 } 842 done: 843 spin_unlock_irqrestore(&hcd_root_hub_lock, flags); 844 return rc; 845 } 846 847 848 849 /* 850 * Show & store the current value of authorized_default 851 */ 852 static ssize_t authorized_default_show(struct device *dev, 853 struct device_attribute *attr, char *buf) 854 { 855 struct usb_device *rh_usb_dev = to_usb_device(dev); 856 struct usb_bus *usb_bus = rh_usb_dev->bus; 857 struct usb_hcd *usb_hcd; 858 859 usb_hcd = bus_to_hcd(usb_bus); 860 return snprintf(buf, PAGE_SIZE, "%u\n", usb_hcd->authorized_default); 861 } 862 863 static ssize_t authorized_default_store(struct device *dev, 864 struct device_attribute *attr, 865 const char *buf, size_t size) 866 { 867 ssize_t result; 868 unsigned val; 869 struct usb_device *rh_usb_dev = to_usb_device(dev); 870 struct usb_bus *usb_bus = rh_usb_dev->bus; 871 struct usb_hcd *usb_hcd; 872 873 usb_hcd = bus_to_hcd(usb_bus); 874 result = sscanf(buf, "%u\n", &val); 875 if (result == 1) { 876 usb_hcd->authorized_default = val ? 1 : 0; 877 result = size; 878 } else { 879 result = -EINVAL; 880 } 881 return result; 882 } 883 static DEVICE_ATTR_RW(authorized_default); 884 885 /* Group all the USB bus attributes */ 886 static struct attribute *usb_bus_attrs[] = { 887 &dev_attr_authorized_default.attr, 888 NULL, 889 }; 890 891 static struct attribute_group usb_bus_attr_group = { 892 .name = NULL, /* we want them in the same directory */ 893 .attrs = usb_bus_attrs, 894 }; 895 896 897 898 /*-------------------------------------------------------------------------*/ 899 900 /** 901 * usb_bus_init - shared initialization code 902 * @bus: the bus structure being initialized 903 * 904 * This code is used to initialize a usb_bus structure, memory for which is 905 * separately managed. 906 */ 907 static void usb_bus_init (struct usb_bus *bus) 908 { 909 memset (&bus->devmap, 0, sizeof(struct usb_devmap)); 910 911 bus->devnum_next = 1; 912 913 bus->root_hub = NULL; 914 bus->busnum = -1; 915 bus->bandwidth_allocated = 0; 916 bus->bandwidth_int_reqs = 0; 917 bus->bandwidth_isoc_reqs = 0; 918 mutex_init(&bus->usb_address0_mutex); 919 920 INIT_LIST_HEAD (&bus->bus_list); 921 } 922 923 /*-------------------------------------------------------------------------*/ 924 925 /** 926 * usb_register_bus - registers the USB host controller with the usb core 927 * @bus: pointer to the bus to register 928 * Context: !in_interrupt() 929 * 930 * Assigns a bus number, and links the controller into usbcore data 931 * structures so that it can be seen by scanning the bus list. 932 * 933 * Return: 0 if successful. A negative error code otherwise. 934 */ 935 static int usb_register_bus(struct usb_bus *bus) 936 { 937 int result = -E2BIG; 938 int busnum; 939 940 mutex_lock(&usb_bus_list_lock); 941 busnum = find_next_zero_bit(busmap, USB_MAXBUS, 1); 942 if (busnum >= USB_MAXBUS) { 943 printk (KERN_ERR "%s: too many buses\n", usbcore_name); 944 goto error_find_busnum; 945 } 946 set_bit(busnum, busmap); 947 bus->busnum = busnum; 948 949 /* Add it to the local list of buses */ 950 list_add (&bus->bus_list, &usb_bus_list); 951 mutex_unlock(&usb_bus_list_lock); 952 953 usb_notify_add_bus(bus); 954 955 dev_info (bus->controller, "new USB bus registered, assigned bus " 956 "number %d\n", bus->busnum); 957 return 0; 958 959 error_find_busnum: 960 mutex_unlock(&usb_bus_list_lock); 961 return result; 962 } 963 964 /** 965 * usb_deregister_bus - deregisters the USB host controller 966 * @bus: pointer to the bus to deregister 967 * Context: !in_interrupt() 968 * 969 * Recycles the bus number, and unlinks the controller from usbcore data 970 * structures so that it won't be seen by scanning the bus list. 971 */ 972 static void usb_deregister_bus (struct usb_bus *bus) 973 { 974 dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum); 975 976 /* 977 * NOTE: make sure that all the devices are removed by the 978 * controller code, as well as having it call this when cleaning 979 * itself up 980 */ 981 mutex_lock(&usb_bus_list_lock); 982 list_del (&bus->bus_list); 983 mutex_unlock(&usb_bus_list_lock); 984 985 usb_notify_remove_bus(bus); 986 987 clear_bit(bus->busnum, busmap); 988 } 989 990 /** 991 * register_root_hub - called by usb_add_hcd() to register a root hub 992 * @hcd: host controller for this root hub 993 * 994 * This function registers the root hub with the USB subsystem. It sets up 995 * the device properly in the device tree and then calls usb_new_device() 996 * to register the usb device. It also assigns the root hub's USB address 997 * (always 1). 998 * 999 * Return: 0 if successful. A negative error code otherwise. 1000 */ 1001 static int register_root_hub(struct usb_hcd *hcd) 1002 { 1003 struct device *parent_dev = hcd->self.controller; 1004 struct usb_device *usb_dev = hcd->self.root_hub; 1005 const int devnum = 1; 1006 int retval; 1007 1008 usb_dev->devnum = devnum; 1009 usb_dev->bus->devnum_next = devnum + 1; 1010 memset (&usb_dev->bus->devmap.devicemap, 0, 1011 sizeof usb_dev->bus->devmap.devicemap); 1012 set_bit (devnum, usb_dev->bus->devmap.devicemap); 1013 usb_set_device_state(usb_dev, USB_STATE_ADDRESS); 1014 1015 mutex_lock(&usb_bus_list_lock); 1016 1017 usb_dev->ep0.desc.wMaxPacketSize = cpu_to_le16(64); 1018 retval = usb_get_device_descriptor(usb_dev, USB_DT_DEVICE_SIZE); 1019 if (retval != sizeof usb_dev->descriptor) { 1020 mutex_unlock(&usb_bus_list_lock); 1021 dev_dbg (parent_dev, "can't read %s device descriptor %d\n", 1022 dev_name(&usb_dev->dev), retval); 1023 return (retval < 0) ? retval : -EMSGSIZE; 1024 } 1025 1026 if (le16_to_cpu(usb_dev->descriptor.bcdUSB) >= 0x0201) { 1027 retval = usb_get_bos_descriptor(usb_dev); 1028 if (!retval) { 1029 usb_dev->lpm_capable = usb_device_supports_lpm(usb_dev); 1030 } else if (usb_dev->speed == USB_SPEED_SUPER) { 1031 mutex_unlock(&usb_bus_list_lock); 1032 dev_dbg(parent_dev, "can't read %s bos descriptor %d\n", 1033 dev_name(&usb_dev->dev), retval); 1034 return retval; 1035 } 1036 } 1037 1038 retval = usb_new_device (usb_dev); 1039 if (retval) { 1040 dev_err (parent_dev, "can't register root hub for %s, %d\n", 1041 dev_name(&usb_dev->dev), retval); 1042 } else { 1043 spin_lock_irq (&hcd_root_hub_lock); 1044 hcd->rh_registered = 1; 1045 spin_unlock_irq (&hcd_root_hub_lock); 1046 1047 /* Did the HC die before the root hub was registered? */ 1048 if (HCD_DEAD(hcd)) 1049 usb_hc_died (hcd); /* This time clean up */ 1050 } 1051 mutex_unlock(&usb_bus_list_lock); 1052 1053 return retval; 1054 } 1055 1056 /* 1057 * usb_hcd_start_port_resume - a root-hub port is sending a resume signal 1058 * @bus: the bus which the root hub belongs to 1059 * @portnum: the port which is being resumed 1060 * 1061 * HCDs should call this function when they know that a resume signal is 1062 * being sent to a root-hub port. The root hub will be prevented from 1063 * going into autosuspend until usb_hcd_end_port_resume() is called. 1064 * 1065 * The bus's private lock must be held by the caller. 1066 */ 1067 void usb_hcd_start_port_resume(struct usb_bus *bus, int portnum) 1068 { 1069 unsigned bit = 1 << portnum; 1070 1071 if (!(bus->resuming_ports & bit)) { 1072 bus->resuming_ports |= bit; 1073 pm_runtime_get_noresume(&bus->root_hub->dev); 1074 } 1075 } 1076 EXPORT_SYMBOL_GPL(usb_hcd_start_port_resume); 1077 1078 /* 1079 * usb_hcd_end_port_resume - a root-hub port has stopped sending a resume signal 1080 * @bus: the bus which the root hub belongs to 1081 * @portnum: the port which is being resumed 1082 * 1083 * HCDs should call this function when they know that a resume signal has 1084 * stopped being sent to a root-hub port. The root hub will be allowed to 1085 * autosuspend again. 1086 * 1087 * The bus's private lock must be held by the caller. 1088 */ 1089 void usb_hcd_end_port_resume(struct usb_bus *bus, int portnum) 1090 { 1091 unsigned bit = 1 << portnum; 1092 1093 if (bus->resuming_ports & bit) { 1094 bus->resuming_ports &= ~bit; 1095 pm_runtime_put_noidle(&bus->root_hub->dev); 1096 } 1097 } 1098 EXPORT_SYMBOL_GPL(usb_hcd_end_port_resume); 1099 1100 /*-------------------------------------------------------------------------*/ 1101 1102 /** 1103 * usb_calc_bus_time - approximate periodic transaction time in nanoseconds 1104 * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH} 1105 * @is_input: true iff the transaction sends data to the host 1106 * @isoc: true for isochronous transactions, false for interrupt ones 1107 * @bytecount: how many bytes in the transaction. 1108 * 1109 * Return: Approximate bus time in nanoseconds for a periodic transaction. 1110 * 1111 * Note: 1112 * See USB 2.0 spec section 5.11.3; only periodic transfers need to be 1113 * scheduled in software, this function is only used for such scheduling. 1114 */ 1115 long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount) 1116 { 1117 unsigned long tmp; 1118 1119 switch (speed) { 1120 case USB_SPEED_LOW: /* INTR only */ 1121 if (is_input) { 1122 tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L; 1123 return 64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp; 1124 } else { 1125 tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L; 1126 return 64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp; 1127 } 1128 case USB_SPEED_FULL: /* ISOC or INTR */ 1129 if (isoc) { 1130 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L; 1131 return ((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp; 1132 } else { 1133 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L; 1134 return 9107L + BW_HOST_DELAY + tmp; 1135 } 1136 case USB_SPEED_HIGH: /* ISOC or INTR */ 1137 /* FIXME adjust for input vs output */ 1138 if (isoc) 1139 tmp = HS_NSECS_ISO (bytecount); 1140 else 1141 tmp = HS_NSECS (bytecount); 1142 return tmp; 1143 default: 1144 pr_debug ("%s: bogus device speed!\n", usbcore_name); 1145 return -1; 1146 } 1147 } 1148 EXPORT_SYMBOL_GPL(usb_calc_bus_time); 1149 1150 1151 /*-------------------------------------------------------------------------*/ 1152 1153 /* 1154 * Generic HC operations. 1155 */ 1156 1157 /*-------------------------------------------------------------------------*/ 1158 1159 /** 1160 * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue 1161 * @hcd: host controller to which @urb was submitted 1162 * @urb: URB being submitted 1163 * 1164 * Host controller drivers should call this routine in their enqueue() 1165 * method. The HCD's private spinlock must be held and interrupts must 1166 * be disabled. The actions carried out here are required for URB 1167 * submission, as well as for endpoint shutdown and for usb_kill_urb. 1168 * 1169 * Return: 0 for no error, otherwise a negative error code (in which case 1170 * the enqueue() method must fail). If no error occurs but enqueue() fails 1171 * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing 1172 * the private spinlock and returning. 1173 */ 1174 int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb) 1175 { 1176 int rc = 0; 1177 1178 spin_lock(&hcd_urb_list_lock); 1179 1180 /* Check that the URB isn't being killed */ 1181 if (unlikely(atomic_read(&urb->reject))) { 1182 rc = -EPERM; 1183 goto done; 1184 } 1185 1186 if (unlikely(!urb->ep->enabled)) { 1187 rc = -ENOENT; 1188 goto done; 1189 } 1190 1191 if (unlikely(!urb->dev->can_submit)) { 1192 rc = -EHOSTUNREACH; 1193 goto done; 1194 } 1195 1196 /* 1197 * Check the host controller's state and add the URB to the 1198 * endpoint's queue. 1199 */ 1200 if (HCD_RH_RUNNING(hcd)) { 1201 urb->unlinked = 0; 1202 list_add_tail(&urb->urb_list, &urb->ep->urb_list); 1203 } else { 1204 rc = -ESHUTDOWN; 1205 goto done; 1206 } 1207 done: 1208 spin_unlock(&hcd_urb_list_lock); 1209 return rc; 1210 } 1211 EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep); 1212 1213 /** 1214 * usb_hcd_check_unlink_urb - check whether an URB may be unlinked 1215 * @hcd: host controller to which @urb was submitted 1216 * @urb: URB being checked for unlinkability 1217 * @status: error code to store in @urb if the unlink succeeds 1218 * 1219 * Host controller drivers should call this routine in their dequeue() 1220 * method. The HCD's private spinlock must be held and interrupts must 1221 * be disabled. The actions carried out here are required for making 1222 * sure than an unlink is valid. 1223 * 1224 * Return: 0 for no error, otherwise a negative error code (in which case 1225 * the dequeue() method must fail). The possible error codes are: 1226 * 1227 * -EIDRM: @urb was not submitted or has already completed. 1228 * The completion function may not have been called yet. 1229 * 1230 * -EBUSY: @urb has already been unlinked. 1231 */ 1232 int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb, 1233 int status) 1234 { 1235 struct list_head *tmp; 1236 1237 /* insist the urb is still queued */ 1238 list_for_each(tmp, &urb->ep->urb_list) { 1239 if (tmp == &urb->urb_list) 1240 break; 1241 } 1242 if (tmp != &urb->urb_list) 1243 return -EIDRM; 1244 1245 /* Any status except -EINPROGRESS means something already started to 1246 * unlink this URB from the hardware. So there's no more work to do. 1247 */ 1248 if (urb->unlinked) 1249 return -EBUSY; 1250 urb->unlinked = status; 1251 return 0; 1252 } 1253 EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb); 1254 1255 /** 1256 * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue 1257 * @hcd: host controller to which @urb was submitted 1258 * @urb: URB being unlinked 1259 * 1260 * Host controller drivers should call this routine before calling 1261 * usb_hcd_giveback_urb(). The HCD's private spinlock must be held and 1262 * interrupts must be disabled. The actions carried out here are required 1263 * for URB completion. 1264 */ 1265 void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb) 1266 { 1267 /* clear all state linking urb to this dev (and hcd) */ 1268 spin_lock(&hcd_urb_list_lock); 1269 list_del_init(&urb->urb_list); 1270 spin_unlock(&hcd_urb_list_lock); 1271 } 1272 EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep); 1273 1274 /* 1275 * Some usb host controllers can only perform dma using a small SRAM area. 1276 * The usb core itself is however optimized for host controllers that can dma 1277 * using regular system memory - like pci devices doing bus mastering. 1278 * 1279 * To support host controllers with limited dma capabilities we provide dma 1280 * bounce buffers. This feature can be enabled using the HCD_LOCAL_MEM flag. 1281 * For this to work properly the host controller code must first use the 1282 * function dma_declare_coherent_memory() to point out which memory area 1283 * that should be used for dma allocations. 1284 * 1285 * The HCD_LOCAL_MEM flag then tells the usb code to allocate all data for 1286 * dma using dma_alloc_coherent() which in turn allocates from the memory 1287 * area pointed out with dma_declare_coherent_memory(). 1288 * 1289 * So, to summarize... 1290 * 1291 * - We need "local" memory, canonical example being 1292 * a small SRAM on a discrete controller being the 1293 * only memory that the controller can read ... 1294 * (a) "normal" kernel memory is no good, and 1295 * (b) there's not enough to share 1296 * 1297 * - The only *portable* hook for such stuff in the 1298 * DMA framework is dma_declare_coherent_memory() 1299 * 1300 * - So we use that, even though the primary requirement 1301 * is that the memory be "local" (hence addressable 1302 * by that device), not "coherent". 1303 * 1304 */ 1305 1306 static int hcd_alloc_coherent(struct usb_bus *bus, 1307 gfp_t mem_flags, dma_addr_t *dma_handle, 1308 void **vaddr_handle, size_t size, 1309 enum dma_data_direction dir) 1310 { 1311 unsigned char *vaddr; 1312 1313 if (*vaddr_handle == NULL) { 1314 WARN_ON_ONCE(1); 1315 return -EFAULT; 1316 } 1317 1318 vaddr = hcd_buffer_alloc(bus, size + sizeof(vaddr), 1319 mem_flags, dma_handle); 1320 if (!vaddr) 1321 return -ENOMEM; 1322 1323 /* 1324 * Store the virtual address of the buffer at the end 1325 * of the allocated dma buffer. The size of the buffer 1326 * may be uneven so use unaligned functions instead 1327 * of just rounding up. It makes sense to optimize for 1328 * memory footprint over access speed since the amount 1329 * of memory available for dma may be limited. 1330 */ 1331 put_unaligned((unsigned long)*vaddr_handle, 1332 (unsigned long *)(vaddr + size)); 1333 1334 if (dir == DMA_TO_DEVICE) 1335 memcpy(vaddr, *vaddr_handle, size); 1336 1337 *vaddr_handle = vaddr; 1338 return 0; 1339 } 1340 1341 static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle, 1342 void **vaddr_handle, size_t size, 1343 enum dma_data_direction dir) 1344 { 1345 unsigned char *vaddr = *vaddr_handle; 1346 1347 vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size)); 1348 1349 if (dir == DMA_FROM_DEVICE) 1350 memcpy(vaddr, *vaddr_handle, size); 1351 1352 hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle); 1353 1354 *vaddr_handle = vaddr; 1355 *dma_handle = 0; 1356 } 1357 1358 void usb_hcd_unmap_urb_setup_for_dma(struct usb_hcd *hcd, struct urb *urb) 1359 { 1360 if (urb->transfer_flags & URB_SETUP_MAP_SINGLE) 1361 dma_unmap_single(hcd->self.controller, 1362 urb->setup_dma, 1363 sizeof(struct usb_ctrlrequest), 1364 DMA_TO_DEVICE); 1365 else if (urb->transfer_flags & URB_SETUP_MAP_LOCAL) 1366 hcd_free_coherent(urb->dev->bus, 1367 &urb->setup_dma, 1368 (void **) &urb->setup_packet, 1369 sizeof(struct usb_ctrlrequest), 1370 DMA_TO_DEVICE); 1371 1372 /* Make it safe to call this routine more than once */ 1373 urb->transfer_flags &= ~(URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL); 1374 } 1375 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_setup_for_dma); 1376 1377 static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb) 1378 { 1379 if (hcd->driver->unmap_urb_for_dma) 1380 hcd->driver->unmap_urb_for_dma(hcd, urb); 1381 else 1382 usb_hcd_unmap_urb_for_dma(hcd, urb); 1383 } 1384 1385 void usb_hcd_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb) 1386 { 1387 enum dma_data_direction dir; 1388 1389 usb_hcd_unmap_urb_setup_for_dma(hcd, urb); 1390 1391 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE; 1392 if (urb->transfer_flags & URB_DMA_MAP_SG) 1393 dma_unmap_sg(hcd->self.controller, 1394 urb->sg, 1395 urb->num_sgs, 1396 dir); 1397 else if (urb->transfer_flags & URB_DMA_MAP_PAGE) 1398 dma_unmap_page(hcd->self.controller, 1399 urb->transfer_dma, 1400 urb->transfer_buffer_length, 1401 dir); 1402 else if (urb->transfer_flags & URB_DMA_MAP_SINGLE) 1403 dma_unmap_single(hcd->self.controller, 1404 urb->transfer_dma, 1405 urb->transfer_buffer_length, 1406 dir); 1407 else if (urb->transfer_flags & URB_MAP_LOCAL) 1408 hcd_free_coherent(urb->dev->bus, 1409 &urb->transfer_dma, 1410 &urb->transfer_buffer, 1411 urb->transfer_buffer_length, 1412 dir); 1413 1414 /* Make it safe to call this routine more than once */ 1415 urb->transfer_flags &= ~(URB_DMA_MAP_SG | URB_DMA_MAP_PAGE | 1416 URB_DMA_MAP_SINGLE | URB_MAP_LOCAL); 1417 } 1418 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_for_dma); 1419 1420 static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb, 1421 gfp_t mem_flags) 1422 { 1423 if (hcd->driver->map_urb_for_dma) 1424 return hcd->driver->map_urb_for_dma(hcd, urb, mem_flags); 1425 else 1426 return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags); 1427 } 1428 1429 int usb_hcd_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb, 1430 gfp_t mem_flags) 1431 { 1432 enum dma_data_direction dir; 1433 int ret = 0; 1434 1435 /* Map the URB's buffers for DMA access. 1436 * Lower level HCD code should use *_dma exclusively, 1437 * unless it uses pio or talks to another transport, 1438 * or uses the provided scatter gather list for bulk. 1439 */ 1440 1441 if (usb_endpoint_xfer_control(&urb->ep->desc)) { 1442 if (hcd->self.uses_pio_for_control) 1443 return ret; 1444 if (hcd->self.uses_dma) { 1445 urb->setup_dma = dma_map_single( 1446 hcd->self.controller, 1447 urb->setup_packet, 1448 sizeof(struct usb_ctrlrequest), 1449 DMA_TO_DEVICE); 1450 if (dma_mapping_error(hcd->self.controller, 1451 urb->setup_dma)) 1452 return -EAGAIN; 1453 urb->transfer_flags |= URB_SETUP_MAP_SINGLE; 1454 } else if (hcd->driver->flags & HCD_LOCAL_MEM) { 1455 ret = hcd_alloc_coherent( 1456 urb->dev->bus, mem_flags, 1457 &urb->setup_dma, 1458 (void **)&urb->setup_packet, 1459 sizeof(struct usb_ctrlrequest), 1460 DMA_TO_DEVICE); 1461 if (ret) 1462 return ret; 1463 urb->transfer_flags |= URB_SETUP_MAP_LOCAL; 1464 } 1465 } 1466 1467 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE; 1468 if (urb->transfer_buffer_length != 0 1469 && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) { 1470 if (hcd->self.uses_dma) { 1471 if (urb->num_sgs) { 1472 int n; 1473 1474 /* We don't support sg for isoc transfers ! */ 1475 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) { 1476 WARN_ON(1); 1477 return -EINVAL; 1478 } 1479 1480 n = dma_map_sg( 1481 hcd->self.controller, 1482 urb->sg, 1483 urb->num_sgs, 1484 dir); 1485 if (n <= 0) 1486 ret = -EAGAIN; 1487 else 1488 urb->transfer_flags |= URB_DMA_MAP_SG; 1489 urb->num_mapped_sgs = n; 1490 if (n != urb->num_sgs) 1491 urb->transfer_flags |= 1492 URB_DMA_SG_COMBINED; 1493 } else if (urb->sg) { 1494 struct scatterlist *sg = urb->sg; 1495 urb->transfer_dma = dma_map_page( 1496 hcd->self.controller, 1497 sg_page(sg), 1498 sg->offset, 1499 urb->transfer_buffer_length, 1500 dir); 1501 if (dma_mapping_error(hcd->self.controller, 1502 urb->transfer_dma)) 1503 ret = -EAGAIN; 1504 else 1505 urb->transfer_flags |= URB_DMA_MAP_PAGE; 1506 } else if (is_vmalloc_addr(urb->transfer_buffer)) { 1507 WARN_ONCE(1, "transfer buffer not dma capable\n"); 1508 ret = -EAGAIN; 1509 } else { 1510 urb->transfer_dma = dma_map_single( 1511 hcd->self.controller, 1512 urb->transfer_buffer, 1513 urb->transfer_buffer_length, 1514 dir); 1515 if (dma_mapping_error(hcd->self.controller, 1516 urb->transfer_dma)) 1517 ret = -EAGAIN; 1518 else 1519 urb->transfer_flags |= URB_DMA_MAP_SINGLE; 1520 } 1521 } else if (hcd->driver->flags & HCD_LOCAL_MEM) { 1522 ret = hcd_alloc_coherent( 1523 urb->dev->bus, mem_flags, 1524 &urb->transfer_dma, 1525 &urb->transfer_buffer, 1526 urb->transfer_buffer_length, 1527 dir); 1528 if (ret == 0) 1529 urb->transfer_flags |= URB_MAP_LOCAL; 1530 } 1531 if (ret && (urb->transfer_flags & (URB_SETUP_MAP_SINGLE | 1532 URB_SETUP_MAP_LOCAL))) 1533 usb_hcd_unmap_urb_for_dma(hcd, urb); 1534 } 1535 return ret; 1536 } 1537 EXPORT_SYMBOL_GPL(usb_hcd_map_urb_for_dma); 1538 1539 /*-------------------------------------------------------------------------*/ 1540 1541 /* may be called in any context with a valid urb->dev usecount 1542 * caller surrenders "ownership" of urb 1543 * expects usb_submit_urb() to have sanity checked and conditioned all 1544 * inputs in the urb 1545 */ 1546 int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags) 1547 { 1548 int status; 1549 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus); 1550 1551 /* increment urb's reference count as part of giving it to the HCD 1552 * (which will control it). HCD guarantees that it either returns 1553 * an error or calls giveback(), but not both. 1554 */ 1555 usb_get_urb(urb); 1556 atomic_inc(&urb->use_count); 1557 atomic_inc(&urb->dev->urbnum); 1558 usbmon_urb_submit(&hcd->self, urb); 1559 1560 /* NOTE requirements on root-hub callers (usbfs and the hub 1561 * driver, for now): URBs' urb->transfer_buffer must be 1562 * valid and usb_buffer_{sync,unmap}() not be needed, since 1563 * they could clobber root hub response data. Also, control 1564 * URBs must be submitted in process context with interrupts 1565 * enabled. 1566 */ 1567 1568 if (is_root_hub(urb->dev)) { 1569 status = rh_urb_enqueue(hcd, urb); 1570 } else { 1571 status = map_urb_for_dma(hcd, urb, mem_flags); 1572 if (likely(status == 0)) { 1573 status = hcd->driver->urb_enqueue(hcd, urb, mem_flags); 1574 if (unlikely(status)) 1575 unmap_urb_for_dma(hcd, urb); 1576 } 1577 } 1578 1579 if (unlikely(status)) { 1580 usbmon_urb_submit_error(&hcd->self, urb, status); 1581 urb->hcpriv = NULL; 1582 INIT_LIST_HEAD(&urb->urb_list); 1583 atomic_dec(&urb->use_count); 1584 atomic_dec(&urb->dev->urbnum); 1585 if (atomic_read(&urb->reject)) 1586 wake_up(&usb_kill_urb_queue); 1587 usb_put_urb(urb); 1588 } 1589 return status; 1590 } 1591 1592 /*-------------------------------------------------------------------------*/ 1593 1594 /* this makes the hcd giveback() the urb more quickly, by kicking it 1595 * off hardware queues (which may take a while) and returning it as 1596 * soon as practical. we've already set up the urb's return status, 1597 * but we can't know if the callback completed already. 1598 */ 1599 static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status) 1600 { 1601 int value; 1602 1603 if (is_root_hub(urb->dev)) 1604 value = usb_rh_urb_dequeue(hcd, urb, status); 1605 else { 1606 1607 /* The only reason an HCD might fail this call is if 1608 * it has not yet fully queued the urb to begin with. 1609 * Such failures should be harmless. */ 1610 value = hcd->driver->urb_dequeue(hcd, urb, status); 1611 } 1612 return value; 1613 } 1614 1615 /* 1616 * called in any context 1617 * 1618 * caller guarantees urb won't be recycled till both unlink() 1619 * and the urb's completion function return 1620 */ 1621 int usb_hcd_unlink_urb (struct urb *urb, int status) 1622 { 1623 struct usb_hcd *hcd; 1624 struct usb_device *udev = urb->dev; 1625 int retval = -EIDRM; 1626 unsigned long flags; 1627 1628 /* Prevent the device and bus from going away while 1629 * the unlink is carried out. If they are already gone 1630 * then urb->use_count must be 0, since disconnected 1631 * devices can't have any active URBs. 1632 */ 1633 spin_lock_irqsave(&hcd_urb_unlink_lock, flags); 1634 if (atomic_read(&urb->use_count) > 0) { 1635 retval = 0; 1636 usb_get_dev(udev); 1637 } 1638 spin_unlock_irqrestore(&hcd_urb_unlink_lock, flags); 1639 if (retval == 0) { 1640 hcd = bus_to_hcd(urb->dev->bus); 1641 retval = unlink1(hcd, urb, status); 1642 if (retval == 0) 1643 retval = -EINPROGRESS; 1644 else if (retval != -EIDRM && retval != -EBUSY) 1645 dev_dbg(&udev->dev, "hcd_unlink_urb %p fail %d\n", 1646 urb, retval); 1647 usb_put_dev(udev); 1648 } 1649 return retval; 1650 } 1651 1652 /*-------------------------------------------------------------------------*/ 1653 1654 static void __usb_hcd_giveback_urb(struct urb *urb) 1655 { 1656 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus); 1657 struct usb_anchor *anchor = urb->anchor; 1658 int status = urb->unlinked; 1659 unsigned long flags; 1660 1661 urb->hcpriv = NULL; 1662 if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) && 1663 urb->actual_length < urb->transfer_buffer_length && 1664 !status)) 1665 status = -EREMOTEIO; 1666 1667 unmap_urb_for_dma(hcd, urb); 1668 usbmon_urb_complete(&hcd->self, urb, status); 1669 usb_anchor_suspend_wakeups(anchor); 1670 usb_unanchor_urb(urb); 1671 if (likely(status == 0)) 1672 usb_led_activity(USB_LED_EVENT_HOST); 1673 1674 /* pass ownership to the completion handler */ 1675 urb->status = status; 1676 1677 /* 1678 * We disable local IRQs here avoid possible deadlock because 1679 * drivers may call spin_lock() to hold lock which might be 1680 * acquired in one hard interrupt handler. 1681 * 1682 * The local_irq_save()/local_irq_restore() around complete() 1683 * will be removed if current USB drivers have been cleaned up 1684 * and no one may trigger the above deadlock situation when 1685 * running complete() in tasklet. 1686 */ 1687 local_irq_save(flags); 1688 urb->complete(urb); 1689 local_irq_restore(flags); 1690 1691 usb_anchor_resume_wakeups(anchor); 1692 atomic_dec(&urb->use_count); 1693 if (unlikely(atomic_read(&urb->reject))) 1694 wake_up(&usb_kill_urb_queue); 1695 usb_put_urb(urb); 1696 } 1697 1698 static void usb_giveback_urb_bh(unsigned long param) 1699 { 1700 struct giveback_urb_bh *bh = (struct giveback_urb_bh *)param; 1701 struct list_head local_list; 1702 1703 spin_lock_irq(&bh->lock); 1704 bh->running = true; 1705 restart: 1706 list_replace_init(&bh->head, &local_list); 1707 spin_unlock_irq(&bh->lock); 1708 1709 while (!list_empty(&local_list)) { 1710 struct urb *urb; 1711 1712 urb = list_entry(local_list.next, struct urb, urb_list); 1713 list_del_init(&urb->urb_list); 1714 bh->completing_ep = urb->ep; 1715 __usb_hcd_giveback_urb(urb); 1716 bh->completing_ep = NULL; 1717 } 1718 1719 /* check if there are new URBs to giveback */ 1720 spin_lock_irq(&bh->lock); 1721 if (!list_empty(&bh->head)) 1722 goto restart; 1723 bh->running = false; 1724 spin_unlock_irq(&bh->lock); 1725 } 1726 1727 /** 1728 * usb_hcd_giveback_urb - return URB from HCD to device driver 1729 * @hcd: host controller returning the URB 1730 * @urb: urb being returned to the USB device driver. 1731 * @status: completion status code for the URB. 1732 * Context: in_interrupt() 1733 * 1734 * This hands the URB from HCD to its USB device driver, using its 1735 * completion function. The HCD has freed all per-urb resources 1736 * (and is done using urb->hcpriv). It also released all HCD locks; 1737 * the device driver won't cause problems if it frees, modifies, 1738 * or resubmits this URB. 1739 * 1740 * If @urb was unlinked, the value of @status will be overridden by 1741 * @urb->unlinked. Erroneous short transfers are detected in case 1742 * the HCD hasn't checked for them. 1743 */ 1744 void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status) 1745 { 1746 struct giveback_urb_bh *bh; 1747 bool running, high_prio_bh; 1748 1749 /* pass status to tasklet via unlinked */ 1750 if (likely(!urb->unlinked)) 1751 urb->unlinked = status; 1752 1753 if (!hcd_giveback_urb_in_bh(hcd) && !is_root_hub(urb->dev)) { 1754 __usb_hcd_giveback_urb(urb); 1755 return; 1756 } 1757 1758 if (usb_pipeisoc(urb->pipe) || usb_pipeint(urb->pipe)) { 1759 bh = &hcd->high_prio_bh; 1760 high_prio_bh = true; 1761 } else { 1762 bh = &hcd->low_prio_bh; 1763 high_prio_bh = false; 1764 } 1765 1766 spin_lock(&bh->lock); 1767 list_add_tail(&urb->urb_list, &bh->head); 1768 running = bh->running; 1769 spin_unlock(&bh->lock); 1770 1771 if (running) 1772 ; 1773 else if (high_prio_bh) 1774 tasklet_hi_schedule(&bh->bh); 1775 else 1776 tasklet_schedule(&bh->bh); 1777 } 1778 EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb); 1779 1780 /*-------------------------------------------------------------------------*/ 1781 1782 /* Cancel all URBs pending on this endpoint and wait for the endpoint's 1783 * queue to drain completely. The caller must first insure that no more 1784 * URBs can be submitted for this endpoint. 1785 */ 1786 void usb_hcd_flush_endpoint(struct usb_device *udev, 1787 struct usb_host_endpoint *ep) 1788 { 1789 struct usb_hcd *hcd; 1790 struct urb *urb; 1791 1792 if (!ep) 1793 return; 1794 might_sleep(); 1795 hcd = bus_to_hcd(udev->bus); 1796 1797 /* No more submits can occur */ 1798 spin_lock_irq(&hcd_urb_list_lock); 1799 rescan: 1800 list_for_each_entry (urb, &ep->urb_list, urb_list) { 1801 int is_in; 1802 1803 if (urb->unlinked) 1804 continue; 1805 usb_get_urb (urb); 1806 is_in = usb_urb_dir_in(urb); 1807 spin_unlock(&hcd_urb_list_lock); 1808 1809 /* kick hcd */ 1810 unlink1(hcd, urb, -ESHUTDOWN); 1811 dev_dbg (hcd->self.controller, 1812 "shutdown urb %p ep%d%s%s\n", 1813 urb, usb_endpoint_num(&ep->desc), 1814 is_in ? "in" : "out", 1815 ({ char *s; 1816 1817 switch (usb_endpoint_type(&ep->desc)) { 1818 case USB_ENDPOINT_XFER_CONTROL: 1819 s = ""; break; 1820 case USB_ENDPOINT_XFER_BULK: 1821 s = "-bulk"; break; 1822 case USB_ENDPOINT_XFER_INT: 1823 s = "-intr"; break; 1824 default: 1825 s = "-iso"; break; 1826 }; 1827 s; 1828 })); 1829 usb_put_urb (urb); 1830 1831 /* list contents may have changed */ 1832 spin_lock(&hcd_urb_list_lock); 1833 goto rescan; 1834 } 1835 spin_unlock_irq(&hcd_urb_list_lock); 1836 1837 /* Wait until the endpoint queue is completely empty */ 1838 while (!list_empty (&ep->urb_list)) { 1839 spin_lock_irq(&hcd_urb_list_lock); 1840 1841 /* The list may have changed while we acquired the spinlock */ 1842 urb = NULL; 1843 if (!list_empty (&ep->urb_list)) { 1844 urb = list_entry (ep->urb_list.prev, struct urb, 1845 urb_list); 1846 usb_get_urb (urb); 1847 } 1848 spin_unlock_irq(&hcd_urb_list_lock); 1849 1850 if (urb) { 1851 usb_kill_urb (urb); 1852 usb_put_urb (urb); 1853 } 1854 } 1855 } 1856 1857 /** 1858 * usb_hcd_alloc_bandwidth - check whether a new bandwidth setting exceeds 1859 * the bus bandwidth 1860 * @udev: target &usb_device 1861 * @new_config: new configuration to install 1862 * @cur_alt: the current alternate interface setting 1863 * @new_alt: alternate interface setting that is being installed 1864 * 1865 * To change configurations, pass in the new configuration in new_config, 1866 * and pass NULL for cur_alt and new_alt. 1867 * 1868 * To reset a device's configuration (put the device in the ADDRESSED state), 1869 * pass in NULL for new_config, cur_alt, and new_alt. 1870 * 1871 * To change alternate interface settings, pass in NULL for new_config, 1872 * pass in the current alternate interface setting in cur_alt, 1873 * and pass in the new alternate interface setting in new_alt. 1874 * 1875 * Return: An error if the requested bandwidth change exceeds the 1876 * bus bandwidth or host controller internal resources. 1877 */ 1878 int usb_hcd_alloc_bandwidth(struct usb_device *udev, 1879 struct usb_host_config *new_config, 1880 struct usb_host_interface *cur_alt, 1881 struct usb_host_interface *new_alt) 1882 { 1883 int num_intfs, i, j; 1884 struct usb_host_interface *alt = NULL; 1885 int ret = 0; 1886 struct usb_hcd *hcd; 1887 struct usb_host_endpoint *ep; 1888 1889 hcd = bus_to_hcd(udev->bus); 1890 if (!hcd->driver->check_bandwidth) 1891 return 0; 1892 1893 /* Configuration is being removed - set configuration 0 */ 1894 if (!new_config && !cur_alt) { 1895 for (i = 1; i < 16; ++i) { 1896 ep = udev->ep_out[i]; 1897 if (ep) 1898 hcd->driver->drop_endpoint(hcd, udev, ep); 1899 ep = udev->ep_in[i]; 1900 if (ep) 1901 hcd->driver->drop_endpoint(hcd, udev, ep); 1902 } 1903 hcd->driver->check_bandwidth(hcd, udev); 1904 return 0; 1905 } 1906 /* Check if the HCD says there's enough bandwidth. Enable all endpoints 1907 * each interface's alt setting 0 and ask the HCD to check the bandwidth 1908 * of the bus. There will always be bandwidth for endpoint 0, so it's 1909 * ok to exclude it. 1910 */ 1911 if (new_config) { 1912 num_intfs = new_config->desc.bNumInterfaces; 1913 /* Remove endpoints (except endpoint 0, which is always on the 1914 * schedule) from the old config from the schedule 1915 */ 1916 for (i = 1; i < 16; ++i) { 1917 ep = udev->ep_out[i]; 1918 if (ep) { 1919 ret = hcd->driver->drop_endpoint(hcd, udev, ep); 1920 if (ret < 0) 1921 goto reset; 1922 } 1923 ep = udev->ep_in[i]; 1924 if (ep) { 1925 ret = hcd->driver->drop_endpoint(hcd, udev, ep); 1926 if (ret < 0) 1927 goto reset; 1928 } 1929 } 1930 for (i = 0; i < num_intfs; ++i) { 1931 struct usb_host_interface *first_alt; 1932 int iface_num; 1933 1934 first_alt = &new_config->intf_cache[i]->altsetting[0]; 1935 iface_num = first_alt->desc.bInterfaceNumber; 1936 /* Set up endpoints for alternate interface setting 0 */ 1937 alt = usb_find_alt_setting(new_config, iface_num, 0); 1938 if (!alt) 1939 /* No alt setting 0? Pick the first setting. */ 1940 alt = first_alt; 1941 1942 for (j = 0; j < alt->desc.bNumEndpoints; j++) { 1943 ret = hcd->driver->add_endpoint(hcd, udev, &alt->endpoint[j]); 1944 if (ret < 0) 1945 goto reset; 1946 } 1947 } 1948 } 1949 if (cur_alt && new_alt) { 1950 struct usb_interface *iface = usb_ifnum_to_if(udev, 1951 cur_alt->desc.bInterfaceNumber); 1952 1953 if (!iface) 1954 return -EINVAL; 1955 if (iface->resetting_device) { 1956 /* 1957 * The USB core just reset the device, so the xHCI host 1958 * and the device will think alt setting 0 is installed. 1959 * However, the USB core will pass in the alternate 1960 * setting installed before the reset as cur_alt. Dig 1961 * out the alternate setting 0 structure, or the first 1962 * alternate setting if a broken device doesn't have alt 1963 * setting 0. 1964 */ 1965 cur_alt = usb_altnum_to_altsetting(iface, 0); 1966 if (!cur_alt) 1967 cur_alt = &iface->altsetting[0]; 1968 } 1969 1970 /* Drop all the endpoints in the current alt setting */ 1971 for (i = 0; i < cur_alt->desc.bNumEndpoints; i++) { 1972 ret = hcd->driver->drop_endpoint(hcd, udev, 1973 &cur_alt->endpoint[i]); 1974 if (ret < 0) 1975 goto reset; 1976 } 1977 /* Add all the endpoints in the new alt setting */ 1978 for (i = 0; i < new_alt->desc.bNumEndpoints; i++) { 1979 ret = hcd->driver->add_endpoint(hcd, udev, 1980 &new_alt->endpoint[i]); 1981 if (ret < 0) 1982 goto reset; 1983 } 1984 } 1985 ret = hcd->driver->check_bandwidth(hcd, udev); 1986 reset: 1987 if (ret < 0) 1988 hcd->driver->reset_bandwidth(hcd, udev); 1989 return ret; 1990 } 1991 1992 /* Disables the endpoint: synchronizes with the hcd to make sure all 1993 * endpoint state is gone from hardware. usb_hcd_flush_endpoint() must 1994 * have been called previously. Use for set_configuration, set_interface, 1995 * driver removal, physical disconnect. 1996 * 1997 * example: a qh stored in ep->hcpriv, holding state related to endpoint 1998 * type, maxpacket size, toggle, halt status, and scheduling. 1999 */ 2000 void usb_hcd_disable_endpoint(struct usb_device *udev, 2001 struct usb_host_endpoint *ep) 2002 { 2003 struct usb_hcd *hcd; 2004 2005 might_sleep(); 2006 hcd = bus_to_hcd(udev->bus); 2007 if (hcd->driver->endpoint_disable) 2008 hcd->driver->endpoint_disable(hcd, ep); 2009 } 2010 2011 /** 2012 * usb_hcd_reset_endpoint - reset host endpoint state 2013 * @udev: USB device. 2014 * @ep: the endpoint to reset. 2015 * 2016 * Resets any host endpoint state such as the toggle bit, sequence 2017 * number and current window. 2018 */ 2019 void usb_hcd_reset_endpoint(struct usb_device *udev, 2020 struct usb_host_endpoint *ep) 2021 { 2022 struct usb_hcd *hcd = bus_to_hcd(udev->bus); 2023 2024 if (hcd->driver->endpoint_reset) 2025 hcd->driver->endpoint_reset(hcd, ep); 2026 else { 2027 int epnum = usb_endpoint_num(&ep->desc); 2028 int is_out = usb_endpoint_dir_out(&ep->desc); 2029 int is_control = usb_endpoint_xfer_control(&ep->desc); 2030 2031 usb_settoggle(udev, epnum, is_out, 0); 2032 if (is_control) 2033 usb_settoggle(udev, epnum, !is_out, 0); 2034 } 2035 } 2036 2037 /** 2038 * usb_alloc_streams - allocate bulk endpoint stream IDs. 2039 * @interface: alternate setting that includes all endpoints. 2040 * @eps: array of endpoints that need streams. 2041 * @num_eps: number of endpoints in the array. 2042 * @num_streams: number of streams to allocate. 2043 * @mem_flags: flags hcd should use to allocate memory. 2044 * 2045 * Sets up a group of bulk endpoints to have @num_streams stream IDs available. 2046 * Drivers may queue multiple transfers to different stream IDs, which may 2047 * complete in a different order than they were queued. 2048 * 2049 * Return: On success, the number of allocated streams. On failure, a negative 2050 * error code. 2051 */ 2052 int usb_alloc_streams(struct usb_interface *interface, 2053 struct usb_host_endpoint **eps, unsigned int num_eps, 2054 unsigned int num_streams, gfp_t mem_flags) 2055 { 2056 struct usb_hcd *hcd; 2057 struct usb_device *dev; 2058 int i, ret; 2059 2060 dev = interface_to_usbdev(interface); 2061 hcd = bus_to_hcd(dev->bus); 2062 if (!hcd->driver->alloc_streams || !hcd->driver->free_streams) 2063 return -EINVAL; 2064 if (dev->speed != USB_SPEED_SUPER) 2065 return -EINVAL; 2066 if (dev->state < USB_STATE_CONFIGURED) 2067 return -ENODEV; 2068 2069 for (i = 0; i < num_eps; i++) { 2070 /* Streams only apply to bulk endpoints. */ 2071 if (!usb_endpoint_xfer_bulk(&eps[i]->desc)) 2072 return -EINVAL; 2073 /* Re-alloc is not allowed */ 2074 if (eps[i]->streams) 2075 return -EINVAL; 2076 } 2077 2078 ret = hcd->driver->alloc_streams(hcd, dev, eps, num_eps, 2079 num_streams, mem_flags); 2080 if (ret < 0) 2081 return ret; 2082 2083 for (i = 0; i < num_eps; i++) 2084 eps[i]->streams = ret; 2085 2086 return ret; 2087 } 2088 EXPORT_SYMBOL_GPL(usb_alloc_streams); 2089 2090 /** 2091 * usb_free_streams - free bulk endpoint stream IDs. 2092 * @interface: alternate setting that includes all endpoints. 2093 * @eps: array of endpoints to remove streams from. 2094 * @num_eps: number of endpoints in the array. 2095 * @mem_flags: flags hcd should use to allocate memory. 2096 * 2097 * Reverts a group of bulk endpoints back to not using stream IDs. 2098 * Can fail if we are given bad arguments, or HCD is broken. 2099 * 2100 * Return: 0 on success. On failure, a negative error code. 2101 */ 2102 int usb_free_streams(struct usb_interface *interface, 2103 struct usb_host_endpoint **eps, unsigned int num_eps, 2104 gfp_t mem_flags) 2105 { 2106 struct usb_hcd *hcd; 2107 struct usb_device *dev; 2108 int i, ret; 2109 2110 dev = interface_to_usbdev(interface); 2111 hcd = bus_to_hcd(dev->bus); 2112 if (dev->speed != USB_SPEED_SUPER) 2113 return -EINVAL; 2114 2115 /* Double-free is not allowed */ 2116 for (i = 0; i < num_eps; i++) 2117 if (!eps[i] || !eps[i]->streams) 2118 return -EINVAL; 2119 2120 ret = hcd->driver->free_streams(hcd, dev, eps, num_eps, mem_flags); 2121 if (ret < 0) 2122 return ret; 2123 2124 for (i = 0; i < num_eps; i++) 2125 eps[i]->streams = 0; 2126 2127 return ret; 2128 } 2129 EXPORT_SYMBOL_GPL(usb_free_streams); 2130 2131 /* Protect against drivers that try to unlink URBs after the device 2132 * is gone, by waiting until all unlinks for @udev are finished. 2133 * Since we don't currently track URBs by device, simply wait until 2134 * nothing is running in the locked region of usb_hcd_unlink_urb(). 2135 */ 2136 void usb_hcd_synchronize_unlinks(struct usb_device *udev) 2137 { 2138 spin_lock_irq(&hcd_urb_unlink_lock); 2139 spin_unlock_irq(&hcd_urb_unlink_lock); 2140 } 2141 2142 /*-------------------------------------------------------------------------*/ 2143 2144 /* called in any context */ 2145 int usb_hcd_get_frame_number (struct usb_device *udev) 2146 { 2147 struct usb_hcd *hcd = bus_to_hcd(udev->bus); 2148 2149 if (!HCD_RH_RUNNING(hcd)) 2150 return -ESHUTDOWN; 2151 return hcd->driver->get_frame_number (hcd); 2152 } 2153 2154 /*-------------------------------------------------------------------------*/ 2155 2156 #ifdef CONFIG_PM 2157 2158 int hcd_bus_suspend(struct usb_device *rhdev, pm_message_t msg) 2159 { 2160 struct usb_hcd *hcd = container_of(rhdev->bus, struct usb_hcd, self); 2161 int status; 2162 int old_state = hcd->state; 2163 2164 dev_dbg(&rhdev->dev, "bus %ssuspend, wakeup %d\n", 2165 (PMSG_IS_AUTO(msg) ? "auto-" : ""), 2166 rhdev->do_remote_wakeup); 2167 if (HCD_DEAD(hcd)) { 2168 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "suspend"); 2169 return 0; 2170 } 2171 2172 if (!hcd->driver->bus_suspend) { 2173 status = -ENOENT; 2174 } else { 2175 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2176 hcd->state = HC_STATE_QUIESCING; 2177 status = hcd->driver->bus_suspend(hcd); 2178 } 2179 if (status == 0) { 2180 usb_set_device_state(rhdev, USB_STATE_SUSPENDED); 2181 hcd->state = HC_STATE_SUSPENDED; 2182 2183 /* Did we race with a root-hub wakeup event? */ 2184 if (rhdev->do_remote_wakeup) { 2185 char buffer[6]; 2186 2187 status = hcd->driver->hub_status_data(hcd, buffer); 2188 if (status != 0) { 2189 dev_dbg(&rhdev->dev, "suspend raced with wakeup event\n"); 2190 hcd_bus_resume(rhdev, PMSG_AUTO_RESUME); 2191 status = -EBUSY; 2192 } 2193 } 2194 } else { 2195 spin_lock_irq(&hcd_root_hub_lock); 2196 if (!HCD_DEAD(hcd)) { 2197 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2198 hcd->state = old_state; 2199 } 2200 spin_unlock_irq(&hcd_root_hub_lock); 2201 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n", 2202 "suspend", status); 2203 } 2204 return status; 2205 } 2206 2207 int hcd_bus_resume(struct usb_device *rhdev, pm_message_t msg) 2208 { 2209 struct usb_hcd *hcd = container_of(rhdev->bus, struct usb_hcd, self); 2210 int status; 2211 int old_state = hcd->state; 2212 2213 dev_dbg(&rhdev->dev, "usb %sresume\n", 2214 (PMSG_IS_AUTO(msg) ? "auto-" : "")); 2215 if (HCD_DEAD(hcd)) { 2216 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "resume"); 2217 return 0; 2218 } 2219 if (!hcd->driver->bus_resume) 2220 return -ENOENT; 2221 if (HCD_RH_RUNNING(hcd)) 2222 return 0; 2223 2224 hcd->state = HC_STATE_RESUMING; 2225 status = hcd->driver->bus_resume(hcd); 2226 clear_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags); 2227 if (status == 0) { 2228 struct usb_device *udev; 2229 int port1; 2230 2231 spin_lock_irq(&hcd_root_hub_lock); 2232 if (!HCD_DEAD(hcd)) { 2233 usb_set_device_state(rhdev, rhdev->actconfig 2234 ? USB_STATE_CONFIGURED 2235 : USB_STATE_ADDRESS); 2236 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2237 hcd->state = HC_STATE_RUNNING; 2238 } 2239 spin_unlock_irq(&hcd_root_hub_lock); 2240 2241 /* 2242 * Check whether any of the enabled ports on the root hub are 2243 * unsuspended. If they are then a TRSMRCY delay is needed 2244 * (this is what the USB-2 spec calls a "global resume"). 2245 * Otherwise we can skip the delay. 2246 */ 2247 usb_hub_for_each_child(rhdev, port1, udev) { 2248 if (udev->state != USB_STATE_NOTATTACHED && 2249 !udev->port_is_suspended) { 2250 usleep_range(10000, 11000); /* TRSMRCY */ 2251 break; 2252 } 2253 } 2254 } else { 2255 hcd->state = old_state; 2256 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n", 2257 "resume", status); 2258 if (status != -ESHUTDOWN) 2259 usb_hc_died(hcd); 2260 } 2261 return status; 2262 } 2263 2264 /* Workqueue routine for root-hub remote wakeup */ 2265 static void hcd_resume_work(struct work_struct *work) 2266 { 2267 struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work); 2268 struct usb_device *udev = hcd->self.root_hub; 2269 2270 usb_remote_wakeup(udev); 2271 } 2272 2273 /** 2274 * usb_hcd_resume_root_hub - called by HCD to resume its root hub 2275 * @hcd: host controller for this root hub 2276 * 2277 * The USB host controller calls this function when its root hub is 2278 * suspended (with the remote wakeup feature enabled) and a remote 2279 * wakeup request is received. The routine submits a workqueue request 2280 * to resume the root hub (that is, manage its downstream ports again). 2281 */ 2282 void usb_hcd_resume_root_hub (struct usb_hcd *hcd) 2283 { 2284 unsigned long flags; 2285 2286 spin_lock_irqsave (&hcd_root_hub_lock, flags); 2287 if (hcd->rh_registered) { 2288 set_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags); 2289 queue_work(pm_wq, &hcd->wakeup_work); 2290 } 2291 spin_unlock_irqrestore (&hcd_root_hub_lock, flags); 2292 } 2293 EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub); 2294 2295 #endif /* CONFIG_PM */ 2296 2297 /*-------------------------------------------------------------------------*/ 2298 2299 #ifdef CONFIG_USB_OTG 2300 2301 /** 2302 * usb_bus_start_enum - start immediate enumeration (for OTG) 2303 * @bus: the bus (must use hcd framework) 2304 * @port_num: 1-based number of port; usually bus->otg_port 2305 * Context: in_interrupt() 2306 * 2307 * Starts enumeration, with an immediate reset followed later by 2308 * hub_wq identifying and possibly configuring the device. 2309 * This is needed by OTG controller drivers, where it helps meet 2310 * HNP protocol timing requirements for starting a port reset. 2311 * 2312 * Return: 0 if successful. 2313 */ 2314 int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num) 2315 { 2316 struct usb_hcd *hcd; 2317 int status = -EOPNOTSUPP; 2318 2319 /* NOTE: since HNP can't start by grabbing the bus's address0_sem, 2320 * boards with root hubs hooked up to internal devices (instead of 2321 * just the OTG port) may need more attention to resetting... 2322 */ 2323 hcd = container_of (bus, struct usb_hcd, self); 2324 if (port_num && hcd->driver->start_port_reset) 2325 status = hcd->driver->start_port_reset(hcd, port_num); 2326 2327 /* allocate hub_wq shortly after (first) root port reset finishes; 2328 * it may issue others, until at least 50 msecs have passed. 2329 */ 2330 if (status == 0) 2331 mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10)); 2332 return status; 2333 } 2334 EXPORT_SYMBOL_GPL(usb_bus_start_enum); 2335 2336 #endif 2337 2338 /*-------------------------------------------------------------------------*/ 2339 2340 /** 2341 * usb_hcd_irq - hook IRQs to HCD framework (bus glue) 2342 * @irq: the IRQ being raised 2343 * @__hcd: pointer to the HCD whose IRQ is being signaled 2344 * 2345 * If the controller isn't HALTed, calls the driver's irq handler. 2346 * Checks whether the controller is now dead. 2347 * 2348 * Return: %IRQ_HANDLED if the IRQ was handled. %IRQ_NONE otherwise. 2349 */ 2350 irqreturn_t usb_hcd_irq (int irq, void *__hcd) 2351 { 2352 struct usb_hcd *hcd = __hcd; 2353 irqreturn_t rc; 2354 2355 if (unlikely(HCD_DEAD(hcd) || !HCD_HW_ACCESSIBLE(hcd))) 2356 rc = IRQ_NONE; 2357 else if (hcd->driver->irq(hcd) == IRQ_NONE) 2358 rc = IRQ_NONE; 2359 else 2360 rc = IRQ_HANDLED; 2361 2362 return rc; 2363 } 2364 EXPORT_SYMBOL_GPL(usb_hcd_irq); 2365 2366 /*-------------------------------------------------------------------------*/ 2367 2368 /** 2369 * usb_hc_died - report abnormal shutdown of a host controller (bus glue) 2370 * @hcd: pointer to the HCD representing the controller 2371 * 2372 * This is called by bus glue to report a USB host controller that died 2373 * while operations may still have been pending. It's called automatically 2374 * by the PCI glue, so only glue for non-PCI busses should need to call it. 2375 * 2376 * Only call this function with the primary HCD. 2377 */ 2378 void usb_hc_died (struct usb_hcd *hcd) 2379 { 2380 unsigned long flags; 2381 2382 dev_err (hcd->self.controller, "HC died; cleaning up\n"); 2383 2384 spin_lock_irqsave (&hcd_root_hub_lock, flags); 2385 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2386 set_bit(HCD_FLAG_DEAD, &hcd->flags); 2387 if (hcd->rh_registered) { 2388 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2389 2390 /* make hub_wq clean up old urbs and devices */ 2391 usb_set_device_state (hcd->self.root_hub, 2392 USB_STATE_NOTATTACHED); 2393 usb_kick_hub_wq(hcd->self.root_hub); 2394 } 2395 if (usb_hcd_is_primary_hcd(hcd) && hcd->shared_hcd) { 2396 hcd = hcd->shared_hcd; 2397 if (hcd->rh_registered) { 2398 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2399 2400 /* make hub_wq clean up old urbs and devices */ 2401 usb_set_device_state(hcd->self.root_hub, 2402 USB_STATE_NOTATTACHED); 2403 usb_kick_hub_wq(hcd->self.root_hub); 2404 } 2405 } 2406 spin_unlock_irqrestore (&hcd_root_hub_lock, flags); 2407 /* Make sure that the other roothub is also deallocated. */ 2408 } 2409 EXPORT_SYMBOL_GPL (usb_hc_died); 2410 2411 /*-------------------------------------------------------------------------*/ 2412 2413 static void init_giveback_urb_bh(struct giveback_urb_bh *bh) 2414 { 2415 2416 spin_lock_init(&bh->lock); 2417 INIT_LIST_HEAD(&bh->head); 2418 tasklet_init(&bh->bh, usb_giveback_urb_bh, (unsigned long)bh); 2419 } 2420 2421 /** 2422 * usb_create_shared_hcd - create and initialize an HCD structure 2423 * @driver: HC driver that will use this hcd 2424 * @dev: device for this HC, stored in hcd->self.controller 2425 * @bus_name: value to store in hcd->self.bus_name 2426 * @primary_hcd: a pointer to the usb_hcd structure that is sharing the 2427 * PCI device. Only allocate certain resources for the primary HCD 2428 * Context: !in_interrupt() 2429 * 2430 * Allocate a struct usb_hcd, with extra space at the end for the 2431 * HC driver's private data. Initialize the generic members of the 2432 * hcd structure. 2433 * 2434 * Return: On success, a pointer to the created and initialized HCD structure. 2435 * On failure (e.g. if memory is unavailable), %NULL. 2436 */ 2437 struct usb_hcd *usb_create_shared_hcd(const struct hc_driver *driver, 2438 struct device *dev, const char *bus_name, 2439 struct usb_hcd *primary_hcd) 2440 { 2441 struct usb_hcd *hcd; 2442 2443 hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL); 2444 if (!hcd) { 2445 dev_dbg (dev, "hcd alloc failed\n"); 2446 return NULL; 2447 } 2448 if (primary_hcd == NULL) { 2449 hcd->bandwidth_mutex = kmalloc(sizeof(*hcd->bandwidth_mutex), 2450 GFP_KERNEL); 2451 if (!hcd->bandwidth_mutex) { 2452 kfree(hcd); 2453 dev_dbg(dev, "hcd bandwidth mutex alloc failed\n"); 2454 return NULL; 2455 } 2456 mutex_init(hcd->bandwidth_mutex); 2457 dev_set_drvdata(dev, hcd); 2458 } else { 2459 mutex_lock(&usb_port_peer_mutex); 2460 hcd->bandwidth_mutex = primary_hcd->bandwidth_mutex; 2461 hcd->primary_hcd = primary_hcd; 2462 primary_hcd->primary_hcd = primary_hcd; 2463 hcd->shared_hcd = primary_hcd; 2464 primary_hcd->shared_hcd = hcd; 2465 mutex_unlock(&usb_port_peer_mutex); 2466 } 2467 2468 kref_init(&hcd->kref); 2469 2470 usb_bus_init(&hcd->self); 2471 hcd->self.controller = dev; 2472 hcd->self.bus_name = bus_name; 2473 hcd->self.uses_dma = (dev->dma_mask != NULL); 2474 2475 init_timer(&hcd->rh_timer); 2476 hcd->rh_timer.function = rh_timer_func; 2477 hcd->rh_timer.data = (unsigned long) hcd; 2478 #ifdef CONFIG_PM 2479 INIT_WORK(&hcd->wakeup_work, hcd_resume_work); 2480 #endif 2481 2482 hcd->driver = driver; 2483 hcd->speed = driver->flags & HCD_MASK; 2484 hcd->product_desc = (driver->product_desc) ? driver->product_desc : 2485 "USB Host Controller"; 2486 return hcd; 2487 } 2488 EXPORT_SYMBOL_GPL(usb_create_shared_hcd); 2489 2490 /** 2491 * usb_create_hcd - create and initialize an HCD structure 2492 * @driver: HC driver that will use this hcd 2493 * @dev: device for this HC, stored in hcd->self.controller 2494 * @bus_name: value to store in hcd->self.bus_name 2495 * Context: !in_interrupt() 2496 * 2497 * Allocate a struct usb_hcd, with extra space at the end for the 2498 * HC driver's private data. Initialize the generic members of the 2499 * hcd structure. 2500 * 2501 * Return: On success, a pointer to the created and initialized HCD 2502 * structure. On failure (e.g. if memory is unavailable), %NULL. 2503 */ 2504 struct usb_hcd *usb_create_hcd(const struct hc_driver *driver, 2505 struct device *dev, const char *bus_name) 2506 { 2507 return usb_create_shared_hcd(driver, dev, bus_name, NULL); 2508 } 2509 EXPORT_SYMBOL_GPL(usb_create_hcd); 2510 2511 /* 2512 * Roothubs that share one PCI device must also share the bandwidth mutex. 2513 * Don't deallocate the bandwidth_mutex until the last shared usb_hcd is 2514 * deallocated. 2515 * 2516 * Make sure to only deallocate the bandwidth_mutex when the primary HCD is 2517 * freed. When hcd_release() is called for either hcd in a peer set 2518 * invalidate the peer's ->shared_hcd and ->primary_hcd pointers to 2519 * block new peering attempts 2520 */ 2521 static void hcd_release(struct kref *kref) 2522 { 2523 struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref); 2524 2525 mutex_lock(&usb_port_peer_mutex); 2526 if (usb_hcd_is_primary_hcd(hcd)) 2527 kfree(hcd->bandwidth_mutex); 2528 if (hcd->shared_hcd) { 2529 struct usb_hcd *peer = hcd->shared_hcd; 2530 2531 peer->shared_hcd = NULL; 2532 if (peer->primary_hcd == hcd) 2533 peer->primary_hcd = NULL; 2534 } 2535 mutex_unlock(&usb_port_peer_mutex); 2536 kfree(hcd); 2537 } 2538 2539 struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd) 2540 { 2541 if (hcd) 2542 kref_get (&hcd->kref); 2543 return hcd; 2544 } 2545 EXPORT_SYMBOL_GPL(usb_get_hcd); 2546 2547 void usb_put_hcd (struct usb_hcd *hcd) 2548 { 2549 if (hcd) 2550 kref_put (&hcd->kref, hcd_release); 2551 } 2552 EXPORT_SYMBOL_GPL(usb_put_hcd); 2553 2554 int usb_hcd_is_primary_hcd(struct usb_hcd *hcd) 2555 { 2556 if (!hcd->primary_hcd) 2557 return 1; 2558 return hcd == hcd->primary_hcd; 2559 } 2560 EXPORT_SYMBOL_GPL(usb_hcd_is_primary_hcd); 2561 2562 int usb_hcd_find_raw_port_number(struct usb_hcd *hcd, int port1) 2563 { 2564 if (!hcd->driver->find_raw_port_number) 2565 return port1; 2566 2567 return hcd->driver->find_raw_port_number(hcd, port1); 2568 } 2569 2570 static int usb_hcd_request_irqs(struct usb_hcd *hcd, 2571 unsigned int irqnum, unsigned long irqflags) 2572 { 2573 int retval; 2574 2575 if (hcd->driver->irq) { 2576 2577 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d", 2578 hcd->driver->description, hcd->self.busnum); 2579 retval = request_irq(irqnum, &usb_hcd_irq, irqflags, 2580 hcd->irq_descr, hcd); 2581 if (retval != 0) { 2582 dev_err(hcd->self.controller, 2583 "request interrupt %d failed\n", 2584 irqnum); 2585 return retval; 2586 } 2587 hcd->irq = irqnum; 2588 dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum, 2589 (hcd->driver->flags & HCD_MEMORY) ? 2590 "io mem" : "io base", 2591 (unsigned long long)hcd->rsrc_start); 2592 } else { 2593 hcd->irq = 0; 2594 if (hcd->rsrc_start) 2595 dev_info(hcd->self.controller, "%s 0x%08llx\n", 2596 (hcd->driver->flags & HCD_MEMORY) ? 2597 "io mem" : "io base", 2598 (unsigned long long)hcd->rsrc_start); 2599 } 2600 return 0; 2601 } 2602 2603 /* 2604 * Before we free this root hub, flush in-flight peering attempts 2605 * and disable peer lookups 2606 */ 2607 static void usb_put_invalidate_rhdev(struct usb_hcd *hcd) 2608 { 2609 struct usb_device *rhdev; 2610 2611 mutex_lock(&usb_port_peer_mutex); 2612 rhdev = hcd->self.root_hub; 2613 hcd->self.root_hub = NULL; 2614 mutex_unlock(&usb_port_peer_mutex); 2615 usb_put_dev(rhdev); 2616 } 2617 2618 /** 2619 * usb_add_hcd - finish generic HCD structure initialization and register 2620 * @hcd: the usb_hcd structure to initialize 2621 * @irqnum: Interrupt line to allocate 2622 * @irqflags: Interrupt type flags 2623 * 2624 * Finish the remaining parts of generic HCD initialization: allocate the 2625 * buffers of consistent memory, register the bus, request the IRQ line, 2626 * and call the driver's reset() and start() routines. 2627 */ 2628 int usb_add_hcd(struct usb_hcd *hcd, 2629 unsigned int irqnum, unsigned long irqflags) 2630 { 2631 int retval; 2632 struct usb_device *rhdev; 2633 2634 if (IS_ENABLED(CONFIG_USB_PHY) && !hcd->usb_phy) { 2635 struct usb_phy *phy = usb_get_phy_dev(hcd->self.controller, 0); 2636 2637 if (IS_ERR(phy)) { 2638 retval = PTR_ERR(phy); 2639 if (retval == -EPROBE_DEFER) 2640 return retval; 2641 } else { 2642 retval = usb_phy_init(phy); 2643 if (retval) { 2644 usb_put_phy(phy); 2645 return retval; 2646 } 2647 hcd->usb_phy = phy; 2648 hcd->remove_phy = 1; 2649 } 2650 } 2651 2652 if (IS_ENABLED(CONFIG_GENERIC_PHY) && !hcd->phy) { 2653 struct phy *phy = phy_get(hcd->self.controller, "usb"); 2654 2655 if (IS_ERR(phy)) { 2656 retval = PTR_ERR(phy); 2657 if (retval == -EPROBE_DEFER) 2658 goto err_phy; 2659 } else { 2660 retval = phy_init(phy); 2661 if (retval) { 2662 phy_put(phy); 2663 goto err_phy; 2664 } 2665 retval = phy_power_on(phy); 2666 if (retval) { 2667 phy_exit(phy); 2668 phy_put(phy); 2669 goto err_phy; 2670 } 2671 hcd->phy = phy; 2672 hcd->remove_phy = 1; 2673 } 2674 } 2675 2676 dev_info(hcd->self.controller, "%s\n", hcd->product_desc); 2677 2678 /* Keep old behaviour if authorized_default is not in [0, 1]. */ 2679 if (authorized_default < 0 || authorized_default > 1) 2680 hcd->authorized_default = hcd->wireless ? 0 : 1; 2681 else 2682 hcd->authorized_default = authorized_default; 2683 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 2684 2685 /* HC is in reset state, but accessible. Now do the one-time init, 2686 * bottom up so that hcds can customize the root hubs before hub_wq 2687 * starts talking to them. (Note, bus id is assigned early too.) 2688 */ 2689 retval = hcd_buffer_create(hcd); 2690 if (retval != 0) { 2691 dev_dbg(hcd->self.controller, "pool alloc failed\n"); 2692 goto err_create_buf; 2693 } 2694 2695 retval = usb_register_bus(&hcd->self); 2696 if (retval < 0) 2697 goto err_register_bus; 2698 2699 rhdev = usb_alloc_dev(NULL, &hcd->self, 0); 2700 if (rhdev == NULL) { 2701 dev_err(hcd->self.controller, "unable to allocate root hub\n"); 2702 retval = -ENOMEM; 2703 goto err_allocate_root_hub; 2704 } 2705 mutex_lock(&usb_port_peer_mutex); 2706 hcd->self.root_hub = rhdev; 2707 mutex_unlock(&usb_port_peer_mutex); 2708 2709 switch (hcd->speed) { 2710 case HCD_USB11: 2711 rhdev->speed = USB_SPEED_FULL; 2712 break; 2713 case HCD_USB2: 2714 rhdev->speed = USB_SPEED_HIGH; 2715 break; 2716 case HCD_USB25: 2717 rhdev->speed = USB_SPEED_WIRELESS; 2718 break; 2719 case HCD_USB3: 2720 rhdev->speed = USB_SPEED_SUPER; 2721 break; 2722 default: 2723 retval = -EINVAL; 2724 goto err_set_rh_speed; 2725 } 2726 2727 /* wakeup flag init defaults to "everything works" for root hubs, 2728 * but drivers can override it in reset() if needed, along with 2729 * recording the overall controller's system wakeup capability. 2730 */ 2731 device_set_wakeup_capable(&rhdev->dev, 1); 2732 2733 /* HCD_FLAG_RH_RUNNING doesn't matter until the root hub is 2734 * registered. But since the controller can die at any time, 2735 * let's initialize the flag before touching the hardware. 2736 */ 2737 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2738 2739 /* "reset" is misnamed; its role is now one-time init. the controller 2740 * should already have been reset (and boot firmware kicked off etc). 2741 */ 2742 if (hcd->driver->reset) { 2743 retval = hcd->driver->reset(hcd); 2744 if (retval < 0) { 2745 dev_err(hcd->self.controller, "can't setup: %d\n", 2746 retval); 2747 goto err_hcd_driver_setup; 2748 } 2749 } 2750 hcd->rh_pollable = 1; 2751 2752 /* NOTE: root hub and controller capabilities may not be the same */ 2753 if (device_can_wakeup(hcd->self.controller) 2754 && device_can_wakeup(&hcd->self.root_hub->dev)) 2755 dev_dbg(hcd->self.controller, "supports USB remote wakeup\n"); 2756 2757 /* initialize tasklets */ 2758 init_giveback_urb_bh(&hcd->high_prio_bh); 2759 init_giveback_urb_bh(&hcd->low_prio_bh); 2760 2761 /* enable irqs just before we start the controller, 2762 * if the BIOS provides legacy PCI irqs. 2763 */ 2764 if (usb_hcd_is_primary_hcd(hcd) && irqnum) { 2765 retval = usb_hcd_request_irqs(hcd, irqnum, irqflags); 2766 if (retval) 2767 goto err_request_irq; 2768 } 2769 2770 hcd->state = HC_STATE_RUNNING; 2771 retval = hcd->driver->start(hcd); 2772 if (retval < 0) { 2773 dev_err(hcd->self.controller, "startup error %d\n", retval); 2774 goto err_hcd_driver_start; 2775 } 2776 2777 /* starting here, usbcore will pay attention to this root hub */ 2778 retval = register_root_hub(hcd); 2779 if (retval != 0) 2780 goto err_register_root_hub; 2781 2782 retval = sysfs_create_group(&rhdev->dev.kobj, &usb_bus_attr_group); 2783 if (retval < 0) { 2784 printk(KERN_ERR "Cannot register USB bus sysfs attributes: %d\n", 2785 retval); 2786 goto error_create_attr_group; 2787 } 2788 if (hcd->uses_new_polling && HCD_POLL_RH(hcd)) 2789 usb_hcd_poll_rh_status(hcd); 2790 2791 return retval; 2792 2793 error_create_attr_group: 2794 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2795 if (HC_IS_RUNNING(hcd->state)) 2796 hcd->state = HC_STATE_QUIESCING; 2797 spin_lock_irq(&hcd_root_hub_lock); 2798 hcd->rh_registered = 0; 2799 spin_unlock_irq(&hcd_root_hub_lock); 2800 2801 #ifdef CONFIG_PM 2802 cancel_work_sync(&hcd->wakeup_work); 2803 #endif 2804 mutex_lock(&usb_bus_list_lock); 2805 usb_disconnect(&rhdev); /* Sets rhdev to NULL */ 2806 mutex_unlock(&usb_bus_list_lock); 2807 err_register_root_hub: 2808 hcd->rh_pollable = 0; 2809 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2810 del_timer_sync(&hcd->rh_timer); 2811 hcd->driver->stop(hcd); 2812 hcd->state = HC_STATE_HALT; 2813 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2814 del_timer_sync(&hcd->rh_timer); 2815 err_hcd_driver_start: 2816 if (usb_hcd_is_primary_hcd(hcd) && hcd->irq > 0) 2817 free_irq(irqnum, hcd); 2818 err_request_irq: 2819 err_hcd_driver_setup: 2820 err_set_rh_speed: 2821 usb_put_invalidate_rhdev(hcd); 2822 err_allocate_root_hub: 2823 usb_deregister_bus(&hcd->self); 2824 err_register_bus: 2825 hcd_buffer_destroy(hcd); 2826 err_create_buf: 2827 if (IS_ENABLED(CONFIG_GENERIC_PHY) && hcd->remove_phy && hcd->phy) { 2828 phy_power_off(hcd->phy); 2829 phy_exit(hcd->phy); 2830 phy_put(hcd->phy); 2831 hcd->phy = NULL; 2832 } 2833 err_phy: 2834 if (hcd->remove_phy && hcd->usb_phy) { 2835 usb_phy_shutdown(hcd->usb_phy); 2836 usb_put_phy(hcd->usb_phy); 2837 hcd->usb_phy = NULL; 2838 } 2839 return retval; 2840 } 2841 EXPORT_SYMBOL_GPL(usb_add_hcd); 2842 2843 /** 2844 * usb_remove_hcd - shutdown processing for generic HCDs 2845 * @hcd: the usb_hcd structure to remove 2846 * Context: !in_interrupt() 2847 * 2848 * Disconnects the root hub, then reverses the effects of usb_add_hcd(), 2849 * invoking the HCD's stop() method. 2850 */ 2851 void usb_remove_hcd(struct usb_hcd *hcd) 2852 { 2853 struct usb_device *rhdev = hcd->self.root_hub; 2854 2855 dev_info(hcd->self.controller, "remove, state %x\n", hcd->state); 2856 2857 usb_get_dev(rhdev); 2858 sysfs_remove_group(&rhdev->dev.kobj, &usb_bus_attr_group); 2859 2860 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2861 if (HC_IS_RUNNING (hcd->state)) 2862 hcd->state = HC_STATE_QUIESCING; 2863 2864 dev_dbg(hcd->self.controller, "roothub graceful disconnect\n"); 2865 spin_lock_irq (&hcd_root_hub_lock); 2866 hcd->rh_registered = 0; 2867 spin_unlock_irq (&hcd_root_hub_lock); 2868 2869 #ifdef CONFIG_PM 2870 cancel_work_sync(&hcd->wakeup_work); 2871 #endif 2872 2873 mutex_lock(&usb_bus_list_lock); 2874 usb_disconnect(&rhdev); /* Sets rhdev to NULL */ 2875 mutex_unlock(&usb_bus_list_lock); 2876 2877 /* 2878 * tasklet_kill() isn't needed here because: 2879 * - driver's disconnect() called from usb_disconnect() should 2880 * make sure its URBs are completed during the disconnect() 2881 * callback 2882 * 2883 * - it is too late to run complete() here since driver may have 2884 * been removed already now 2885 */ 2886 2887 /* Prevent any more root-hub status calls from the timer. 2888 * The HCD might still restart the timer (if a port status change 2889 * interrupt occurs), but usb_hcd_poll_rh_status() won't invoke 2890 * the hub_status_data() callback. 2891 */ 2892 hcd->rh_pollable = 0; 2893 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2894 del_timer_sync(&hcd->rh_timer); 2895 2896 hcd->driver->stop(hcd); 2897 hcd->state = HC_STATE_HALT; 2898 2899 /* In case the HCD restarted the timer, stop it again. */ 2900 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2901 del_timer_sync(&hcd->rh_timer); 2902 2903 if (usb_hcd_is_primary_hcd(hcd)) { 2904 if (hcd->irq > 0) 2905 free_irq(hcd->irq, hcd); 2906 } 2907 2908 usb_deregister_bus(&hcd->self); 2909 hcd_buffer_destroy(hcd); 2910 2911 if (IS_ENABLED(CONFIG_GENERIC_PHY) && hcd->remove_phy && hcd->phy) { 2912 phy_power_off(hcd->phy); 2913 phy_exit(hcd->phy); 2914 phy_put(hcd->phy); 2915 hcd->phy = NULL; 2916 } 2917 if (hcd->remove_phy && hcd->usb_phy) { 2918 usb_phy_shutdown(hcd->usb_phy); 2919 usb_put_phy(hcd->usb_phy); 2920 hcd->usb_phy = NULL; 2921 } 2922 2923 usb_put_invalidate_rhdev(hcd); 2924 } 2925 EXPORT_SYMBOL_GPL(usb_remove_hcd); 2926 2927 void 2928 usb_hcd_platform_shutdown(struct platform_device *dev) 2929 { 2930 struct usb_hcd *hcd = platform_get_drvdata(dev); 2931 2932 if (hcd->driver->shutdown) 2933 hcd->driver->shutdown(hcd); 2934 } 2935 EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown); 2936 2937 /*-------------------------------------------------------------------------*/ 2938 2939 #if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE) 2940 2941 struct usb_mon_operations *mon_ops; 2942 2943 /* 2944 * The registration is unlocked. 2945 * We do it this way because we do not want to lock in hot paths. 2946 * 2947 * Notice that the code is minimally error-proof. Because usbmon needs 2948 * symbols from usbcore, usbcore gets referenced and cannot be unloaded first. 2949 */ 2950 2951 int usb_mon_register (struct usb_mon_operations *ops) 2952 { 2953 2954 if (mon_ops) 2955 return -EBUSY; 2956 2957 mon_ops = ops; 2958 mb(); 2959 return 0; 2960 } 2961 EXPORT_SYMBOL_GPL (usb_mon_register); 2962 2963 void usb_mon_deregister (void) 2964 { 2965 2966 if (mon_ops == NULL) { 2967 printk(KERN_ERR "USB: monitor was not registered\n"); 2968 return; 2969 } 2970 mon_ops = NULL; 2971 mb(); 2972 } 2973 EXPORT_SYMBOL_GPL (usb_mon_deregister); 2974 2975 #endif /* CONFIG_USB_MON || CONFIG_USB_MON_MODULE */ 2976