1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * (C) Copyright Linus Torvalds 1999 4 * (C) Copyright Johannes Erdfelt 1999-2001 5 * (C) Copyright Andreas Gal 1999 6 * (C) Copyright Gregory P. Smith 1999 7 * (C) Copyright Deti Fliegl 1999 8 * (C) Copyright Randy Dunlap 2000 9 * (C) Copyright David Brownell 2000-2002 10 */ 11 12 #include <linux/bcd.h> 13 #include <linux/module.h> 14 #include <linux/version.h> 15 #include <linux/kernel.h> 16 #include <linux/sched/task_stack.h> 17 #include <linux/slab.h> 18 #include <linux/completion.h> 19 #include <linux/utsname.h> 20 #include <linux/mm.h> 21 #include <asm/io.h> 22 #include <linux/device.h> 23 #include <linux/dma-mapping.h> 24 #include <linux/mutex.h> 25 #include <asm/irq.h> 26 #include <asm/byteorder.h> 27 #include <asm/unaligned.h> 28 #include <linux/platform_device.h> 29 #include <linux/workqueue.h> 30 #include <linux/pm_runtime.h> 31 #include <linux/types.h> 32 #include <linux/genalloc.h> 33 #include <linux/io.h> 34 35 #include <linux/phy/phy.h> 36 #include <linux/usb.h> 37 #include <linux/usb/hcd.h> 38 #include <linux/usb/otg.h> 39 40 #include "usb.h" 41 #include "phy.h" 42 43 44 /*-------------------------------------------------------------------------*/ 45 46 /* 47 * USB Host Controller Driver framework 48 * 49 * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing 50 * HCD-specific behaviors/bugs. 51 * 52 * This does error checks, tracks devices and urbs, and delegates to a 53 * "hc_driver" only for code (and data) that really needs to know about 54 * hardware differences. That includes root hub registers, i/o queues, 55 * and so on ... but as little else as possible. 56 * 57 * Shared code includes most of the "root hub" code (these are emulated, 58 * though each HC's hardware works differently) and PCI glue, plus request 59 * tracking overhead. The HCD code should only block on spinlocks or on 60 * hardware handshaking; blocking on software events (such as other kernel 61 * threads releasing resources, or completing actions) is all generic. 62 * 63 * Happens the USB 2.0 spec says this would be invisible inside the "USBD", 64 * and includes mostly a "HCDI" (HCD Interface) along with some APIs used 65 * only by the hub driver ... and that neither should be seen or used by 66 * usb client device drivers. 67 * 68 * Contributors of ideas or unattributed patches include: David Brownell, 69 * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ... 70 * 71 * HISTORY: 72 * 2002-02-21 Pull in most of the usb_bus support from usb.c; some 73 * associated cleanup. "usb_hcd" still != "usb_bus". 74 * 2001-12-12 Initial patch version for Linux 2.5.1 kernel. 75 */ 76 77 /*-------------------------------------------------------------------------*/ 78 79 /* Keep track of which host controller drivers are loaded */ 80 unsigned long usb_hcds_loaded; 81 EXPORT_SYMBOL_GPL(usb_hcds_loaded); 82 83 /* host controllers we manage */ 84 DEFINE_IDR (usb_bus_idr); 85 EXPORT_SYMBOL_GPL (usb_bus_idr); 86 87 /* used when allocating bus numbers */ 88 #define USB_MAXBUS 64 89 90 /* used when updating list of hcds */ 91 DEFINE_MUTEX(usb_bus_idr_lock); /* exported only for usbfs */ 92 EXPORT_SYMBOL_GPL (usb_bus_idr_lock); 93 94 /* used for controlling access to virtual root hubs */ 95 static DEFINE_SPINLOCK(hcd_root_hub_lock); 96 97 /* used when updating an endpoint's URB list */ 98 static DEFINE_SPINLOCK(hcd_urb_list_lock); 99 100 /* used to protect against unlinking URBs after the device is gone */ 101 static DEFINE_SPINLOCK(hcd_urb_unlink_lock); 102 103 /* wait queue for synchronous unlinks */ 104 DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue); 105 106 static inline int is_root_hub(struct usb_device *udev) 107 { 108 return (udev->parent == NULL); 109 } 110 111 /*-------------------------------------------------------------------------*/ 112 113 /* 114 * Sharable chunks of root hub code. 115 */ 116 117 /*-------------------------------------------------------------------------*/ 118 #define KERNEL_REL bin2bcd(((LINUX_VERSION_CODE >> 16) & 0x0ff)) 119 #define KERNEL_VER bin2bcd(((LINUX_VERSION_CODE >> 8) & 0x0ff)) 120 121 /* usb 3.1 root hub device descriptor */ 122 static const u8 usb31_rh_dev_descriptor[18] = { 123 0x12, /* __u8 bLength; */ 124 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */ 125 0x10, 0x03, /* __le16 bcdUSB; v3.1 */ 126 127 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */ 128 0x00, /* __u8 bDeviceSubClass; */ 129 0x03, /* __u8 bDeviceProtocol; USB 3 hub */ 130 0x09, /* __u8 bMaxPacketSize0; 2^9 = 512 Bytes */ 131 132 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */ 133 0x03, 0x00, /* __le16 idProduct; device 0x0003 */ 134 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */ 135 136 0x03, /* __u8 iManufacturer; */ 137 0x02, /* __u8 iProduct; */ 138 0x01, /* __u8 iSerialNumber; */ 139 0x01 /* __u8 bNumConfigurations; */ 140 }; 141 142 /* usb 3.0 root hub device descriptor */ 143 static const u8 usb3_rh_dev_descriptor[18] = { 144 0x12, /* __u8 bLength; */ 145 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */ 146 0x00, 0x03, /* __le16 bcdUSB; v3.0 */ 147 148 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */ 149 0x00, /* __u8 bDeviceSubClass; */ 150 0x03, /* __u8 bDeviceProtocol; USB 3.0 hub */ 151 0x09, /* __u8 bMaxPacketSize0; 2^9 = 512 Bytes */ 152 153 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */ 154 0x03, 0x00, /* __le16 idProduct; device 0x0003 */ 155 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */ 156 157 0x03, /* __u8 iManufacturer; */ 158 0x02, /* __u8 iProduct; */ 159 0x01, /* __u8 iSerialNumber; */ 160 0x01 /* __u8 bNumConfigurations; */ 161 }; 162 163 /* usb 2.5 (wireless USB 1.0) root hub device descriptor */ 164 static const u8 usb25_rh_dev_descriptor[18] = { 165 0x12, /* __u8 bLength; */ 166 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */ 167 0x50, 0x02, /* __le16 bcdUSB; v2.5 */ 168 169 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */ 170 0x00, /* __u8 bDeviceSubClass; */ 171 0x00, /* __u8 bDeviceProtocol; [ usb 2.0 no TT ] */ 172 0xFF, /* __u8 bMaxPacketSize0; always 0xFF (WUSB Spec 7.4.1). */ 173 174 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */ 175 0x02, 0x00, /* __le16 idProduct; device 0x0002 */ 176 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */ 177 178 0x03, /* __u8 iManufacturer; */ 179 0x02, /* __u8 iProduct; */ 180 0x01, /* __u8 iSerialNumber; */ 181 0x01 /* __u8 bNumConfigurations; */ 182 }; 183 184 /* usb 2.0 root hub device descriptor */ 185 static const u8 usb2_rh_dev_descriptor[18] = { 186 0x12, /* __u8 bLength; */ 187 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */ 188 0x00, 0x02, /* __le16 bcdUSB; v2.0 */ 189 190 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */ 191 0x00, /* __u8 bDeviceSubClass; */ 192 0x00, /* __u8 bDeviceProtocol; [ usb 2.0 no TT ] */ 193 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */ 194 195 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */ 196 0x02, 0x00, /* __le16 idProduct; device 0x0002 */ 197 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */ 198 199 0x03, /* __u8 iManufacturer; */ 200 0x02, /* __u8 iProduct; */ 201 0x01, /* __u8 iSerialNumber; */ 202 0x01 /* __u8 bNumConfigurations; */ 203 }; 204 205 /* no usb 2.0 root hub "device qualifier" descriptor: one speed only */ 206 207 /* usb 1.1 root hub device descriptor */ 208 static const u8 usb11_rh_dev_descriptor[18] = { 209 0x12, /* __u8 bLength; */ 210 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */ 211 0x10, 0x01, /* __le16 bcdUSB; v1.1 */ 212 213 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */ 214 0x00, /* __u8 bDeviceSubClass; */ 215 0x00, /* __u8 bDeviceProtocol; [ low/full speeds only ] */ 216 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */ 217 218 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */ 219 0x01, 0x00, /* __le16 idProduct; device 0x0001 */ 220 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */ 221 222 0x03, /* __u8 iManufacturer; */ 223 0x02, /* __u8 iProduct; */ 224 0x01, /* __u8 iSerialNumber; */ 225 0x01 /* __u8 bNumConfigurations; */ 226 }; 227 228 229 /*-------------------------------------------------------------------------*/ 230 231 /* Configuration descriptors for our root hubs */ 232 233 static const u8 fs_rh_config_descriptor[] = { 234 235 /* one configuration */ 236 0x09, /* __u8 bLength; */ 237 USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */ 238 0x19, 0x00, /* __le16 wTotalLength; */ 239 0x01, /* __u8 bNumInterfaces; (1) */ 240 0x01, /* __u8 bConfigurationValue; */ 241 0x00, /* __u8 iConfiguration; */ 242 0xc0, /* __u8 bmAttributes; 243 Bit 7: must be set, 244 6: Self-powered, 245 5: Remote wakeup, 246 4..0: resvd */ 247 0x00, /* __u8 MaxPower; */ 248 249 /* USB 1.1: 250 * USB 2.0, single TT organization (mandatory): 251 * one interface, protocol 0 252 * 253 * USB 2.0, multiple TT organization (optional): 254 * two interfaces, protocols 1 (like single TT) 255 * and 2 (multiple TT mode) ... config is 256 * sometimes settable 257 * NOT IMPLEMENTED 258 */ 259 260 /* one interface */ 261 0x09, /* __u8 if_bLength; */ 262 USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */ 263 0x00, /* __u8 if_bInterfaceNumber; */ 264 0x00, /* __u8 if_bAlternateSetting; */ 265 0x01, /* __u8 if_bNumEndpoints; */ 266 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */ 267 0x00, /* __u8 if_bInterfaceSubClass; */ 268 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */ 269 0x00, /* __u8 if_iInterface; */ 270 271 /* one endpoint (status change endpoint) */ 272 0x07, /* __u8 ep_bLength; */ 273 USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */ 274 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */ 275 0x03, /* __u8 ep_bmAttributes; Interrupt */ 276 0x02, 0x00, /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */ 277 0xff /* __u8 ep_bInterval; (255ms -- usb 2.0 spec) */ 278 }; 279 280 static const u8 hs_rh_config_descriptor[] = { 281 282 /* one configuration */ 283 0x09, /* __u8 bLength; */ 284 USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */ 285 0x19, 0x00, /* __le16 wTotalLength; */ 286 0x01, /* __u8 bNumInterfaces; (1) */ 287 0x01, /* __u8 bConfigurationValue; */ 288 0x00, /* __u8 iConfiguration; */ 289 0xc0, /* __u8 bmAttributes; 290 Bit 7: must be set, 291 6: Self-powered, 292 5: Remote wakeup, 293 4..0: resvd */ 294 0x00, /* __u8 MaxPower; */ 295 296 /* USB 1.1: 297 * USB 2.0, single TT organization (mandatory): 298 * one interface, protocol 0 299 * 300 * USB 2.0, multiple TT organization (optional): 301 * two interfaces, protocols 1 (like single TT) 302 * and 2 (multiple TT mode) ... config is 303 * sometimes settable 304 * NOT IMPLEMENTED 305 */ 306 307 /* one interface */ 308 0x09, /* __u8 if_bLength; */ 309 USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */ 310 0x00, /* __u8 if_bInterfaceNumber; */ 311 0x00, /* __u8 if_bAlternateSetting; */ 312 0x01, /* __u8 if_bNumEndpoints; */ 313 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */ 314 0x00, /* __u8 if_bInterfaceSubClass; */ 315 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */ 316 0x00, /* __u8 if_iInterface; */ 317 318 /* one endpoint (status change endpoint) */ 319 0x07, /* __u8 ep_bLength; */ 320 USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */ 321 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */ 322 0x03, /* __u8 ep_bmAttributes; Interrupt */ 323 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) 324 * see hub.c:hub_configure() for details. */ 325 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00, 326 0x0c /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */ 327 }; 328 329 static const u8 ss_rh_config_descriptor[] = { 330 /* one configuration */ 331 0x09, /* __u8 bLength; */ 332 USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */ 333 0x1f, 0x00, /* __le16 wTotalLength; */ 334 0x01, /* __u8 bNumInterfaces; (1) */ 335 0x01, /* __u8 bConfigurationValue; */ 336 0x00, /* __u8 iConfiguration; */ 337 0xc0, /* __u8 bmAttributes; 338 Bit 7: must be set, 339 6: Self-powered, 340 5: Remote wakeup, 341 4..0: resvd */ 342 0x00, /* __u8 MaxPower; */ 343 344 /* one interface */ 345 0x09, /* __u8 if_bLength; */ 346 USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */ 347 0x00, /* __u8 if_bInterfaceNumber; */ 348 0x00, /* __u8 if_bAlternateSetting; */ 349 0x01, /* __u8 if_bNumEndpoints; */ 350 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */ 351 0x00, /* __u8 if_bInterfaceSubClass; */ 352 0x00, /* __u8 if_bInterfaceProtocol; */ 353 0x00, /* __u8 if_iInterface; */ 354 355 /* one endpoint (status change endpoint) */ 356 0x07, /* __u8 ep_bLength; */ 357 USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */ 358 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */ 359 0x03, /* __u8 ep_bmAttributes; Interrupt */ 360 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) 361 * see hub.c:hub_configure() for details. */ 362 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00, 363 0x0c, /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */ 364 365 /* one SuperSpeed endpoint companion descriptor */ 366 0x06, /* __u8 ss_bLength */ 367 USB_DT_SS_ENDPOINT_COMP, /* __u8 ss_bDescriptorType; SuperSpeed EP */ 368 /* Companion */ 369 0x00, /* __u8 ss_bMaxBurst; allows 1 TX between ACKs */ 370 0x00, /* __u8 ss_bmAttributes; 1 packet per service interval */ 371 0x02, 0x00 /* __le16 ss_wBytesPerInterval; 15 bits for max 15 ports */ 372 }; 373 374 /* authorized_default behaviour: 375 * -1 is authorized for all devices except wireless (old behaviour) 376 * 0 is unauthorized for all devices 377 * 1 is authorized for all devices 378 * 2 is authorized for internal devices 379 */ 380 #define USB_AUTHORIZE_WIRED -1 381 #define USB_AUTHORIZE_NONE 0 382 #define USB_AUTHORIZE_ALL 1 383 #define USB_AUTHORIZE_INTERNAL 2 384 385 static int authorized_default = USB_AUTHORIZE_WIRED; 386 module_param(authorized_default, int, S_IRUGO|S_IWUSR); 387 MODULE_PARM_DESC(authorized_default, 388 "Default USB device authorization: 0 is not authorized, 1 is " 389 "authorized, 2 is authorized for internal devices, -1 is " 390 "authorized except for wireless USB (default, old behaviour)"); 391 /*-------------------------------------------------------------------------*/ 392 393 /** 394 * ascii2desc() - Helper routine for producing UTF-16LE string descriptors 395 * @s: Null-terminated ASCII (actually ISO-8859-1) string 396 * @buf: Buffer for USB string descriptor (header + UTF-16LE) 397 * @len: Length (in bytes; may be odd) of descriptor buffer. 398 * 399 * Return: The number of bytes filled in: 2 + 2*strlen(s) or @len, 400 * whichever is less. 401 * 402 * Note: 403 * USB String descriptors can contain at most 126 characters; input 404 * strings longer than that are truncated. 405 */ 406 static unsigned 407 ascii2desc(char const *s, u8 *buf, unsigned len) 408 { 409 unsigned n, t = 2 + 2*strlen(s); 410 411 if (t > 254) 412 t = 254; /* Longest possible UTF string descriptor */ 413 if (len > t) 414 len = t; 415 416 t += USB_DT_STRING << 8; /* Now t is first 16 bits to store */ 417 418 n = len; 419 while (n--) { 420 *buf++ = t; 421 if (!n--) 422 break; 423 *buf++ = t >> 8; 424 t = (unsigned char)*s++; 425 } 426 return len; 427 } 428 429 /** 430 * rh_string() - provides string descriptors for root hub 431 * @id: the string ID number (0: langids, 1: serial #, 2: product, 3: vendor) 432 * @hcd: the host controller for this root hub 433 * @data: buffer for output packet 434 * @len: length of the provided buffer 435 * 436 * Produces either a manufacturer, product or serial number string for the 437 * virtual root hub device. 438 * 439 * Return: The number of bytes filled in: the length of the descriptor or 440 * of the provided buffer, whichever is less. 441 */ 442 static unsigned 443 rh_string(int id, struct usb_hcd const *hcd, u8 *data, unsigned len) 444 { 445 char buf[100]; 446 char const *s; 447 static char const langids[4] = {4, USB_DT_STRING, 0x09, 0x04}; 448 449 /* language ids */ 450 switch (id) { 451 case 0: 452 /* Array of LANGID codes (0x0409 is MSFT-speak for "en-us") */ 453 /* See http://www.usb.org/developers/docs/USB_LANGIDs.pdf */ 454 if (len > 4) 455 len = 4; 456 memcpy(data, langids, len); 457 return len; 458 case 1: 459 /* Serial number */ 460 s = hcd->self.bus_name; 461 break; 462 case 2: 463 /* Product name */ 464 s = hcd->product_desc; 465 break; 466 case 3: 467 /* Manufacturer */ 468 snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname, 469 init_utsname()->release, hcd->driver->description); 470 s = buf; 471 break; 472 default: 473 /* Can't happen; caller guarantees it */ 474 return 0; 475 } 476 477 return ascii2desc(s, data, len); 478 } 479 480 481 /* Root hub control transfers execute synchronously */ 482 static int rh_call_control (struct usb_hcd *hcd, struct urb *urb) 483 { 484 struct usb_ctrlrequest *cmd; 485 u16 typeReq, wValue, wIndex, wLength; 486 u8 *ubuf = urb->transfer_buffer; 487 unsigned len = 0; 488 int status; 489 u8 patch_wakeup = 0; 490 u8 patch_protocol = 0; 491 u16 tbuf_size; 492 u8 *tbuf = NULL; 493 const u8 *bufp; 494 495 might_sleep(); 496 497 spin_lock_irq(&hcd_root_hub_lock); 498 status = usb_hcd_link_urb_to_ep(hcd, urb); 499 spin_unlock_irq(&hcd_root_hub_lock); 500 if (status) 501 return status; 502 urb->hcpriv = hcd; /* Indicate it's queued */ 503 504 cmd = (struct usb_ctrlrequest *) urb->setup_packet; 505 typeReq = (cmd->bRequestType << 8) | cmd->bRequest; 506 wValue = le16_to_cpu (cmd->wValue); 507 wIndex = le16_to_cpu (cmd->wIndex); 508 wLength = le16_to_cpu (cmd->wLength); 509 510 if (wLength > urb->transfer_buffer_length) 511 goto error; 512 513 /* 514 * tbuf should be at least as big as the 515 * USB hub descriptor. 516 */ 517 tbuf_size = max_t(u16, sizeof(struct usb_hub_descriptor), wLength); 518 tbuf = kzalloc(tbuf_size, GFP_KERNEL); 519 if (!tbuf) { 520 status = -ENOMEM; 521 goto err_alloc; 522 } 523 524 bufp = tbuf; 525 526 527 urb->actual_length = 0; 528 switch (typeReq) { 529 530 /* DEVICE REQUESTS */ 531 532 /* The root hub's remote wakeup enable bit is implemented using 533 * driver model wakeup flags. If this system supports wakeup 534 * through USB, userspace may change the default "allow wakeup" 535 * policy through sysfs or these calls. 536 * 537 * Most root hubs support wakeup from downstream devices, for 538 * runtime power management (disabling USB clocks and reducing 539 * VBUS power usage). However, not all of them do so; silicon, 540 * board, and BIOS bugs here are not uncommon, so these can't 541 * be treated quite like external hubs. 542 * 543 * Likewise, not all root hubs will pass wakeup events upstream, 544 * to wake up the whole system. So don't assume root hub and 545 * controller capabilities are identical. 546 */ 547 548 case DeviceRequest | USB_REQ_GET_STATUS: 549 tbuf[0] = (device_may_wakeup(&hcd->self.root_hub->dev) 550 << USB_DEVICE_REMOTE_WAKEUP) 551 | (1 << USB_DEVICE_SELF_POWERED); 552 tbuf[1] = 0; 553 len = 2; 554 break; 555 case DeviceOutRequest | USB_REQ_CLEAR_FEATURE: 556 if (wValue == USB_DEVICE_REMOTE_WAKEUP) 557 device_set_wakeup_enable(&hcd->self.root_hub->dev, 0); 558 else 559 goto error; 560 break; 561 case DeviceOutRequest | USB_REQ_SET_FEATURE: 562 if (device_can_wakeup(&hcd->self.root_hub->dev) 563 && wValue == USB_DEVICE_REMOTE_WAKEUP) 564 device_set_wakeup_enable(&hcd->self.root_hub->dev, 1); 565 else 566 goto error; 567 break; 568 case DeviceRequest | USB_REQ_GET_CONFIGURATION: 569 tbuf[0] = 1; 570 len = 1; 571 /* FALLTHROUGH */ 572 case DeviceOutRequest | USB_REQ_SET_CONFIGURATION: 573 break; 574 case DeviceRequest | USB_REQ_GET_DESCRIPTOR: 575 switch (wValue & 0xff00) { 576 case USB_DT_DEVICE << 8: 577 switch (hcd->speed) { 578 case HCD_USB32: 579 case HCD_USB31: 580 bufp = usb31_rh_dev_descriptor; 581 break; 582 case HCD_USB3: 583 bufp = usb3_rh_dev_descriptor; 584 break; 585 case HCD_USB25: 586 bufp = usb25_rh_dev_descriptor; 587 break; 588 case HCD_USB2: 589 bufp = usb2_rh_dev_descriptor; 590 break; 591 case HCD_USB11: 592 bufp = usb11_rh_dev_descriptor; 593 break; 594 default: 595 goto error; 596 } 597 len = 18; 598 if (hcd->has_tt) 599 patch_protocol = 1; 600 break; 601 case USB_DT_CONFIG << 8: 602 switch (hcd->speed) { 603 case HCD_USB32: 604 case HCD_USB31: 605 case HCD_USB3: 606 bufp = ss_rh_config_descriptor; 607 len = sizeof ss_rh_config_descriptor; 608 break; 609 case HCD_USB25: 610 case HCD_USB2: 611 bufp = hs_rh_config_descriptor; 612 len = sizeof hs_rh_config_descriptor; 613 break; 614 case HCD_USB11: 615 bufp = fs_rh_config_descriptor; 616 len = sizeof fs_rh_config_descriptor; 617 break; 618 default: 619 goto error; 620 } 621 if (device_can_wakeup(&hcd->self.root_hub->dev)) 622 patch_wakeup = 1; 623 break; 624 case USB_DT_STRING << 8: 625 if ((wValue & 0xff) < 4) 626 urb->actual_length = rh_string(wValue & 0xff, 627 hcd, ubuf, wLength); 628 else /* unsupported IDs --> "protocol stall" */ 629 goto error; 630 break; 631 case USB_DT_BOS << 8: 632 goto nongeneric; 633 default: 634 goto error; 635 } 636 break; 637 case DeviceRequest | USB_REQ_GET_INTERFACE: 638 tbuf[0] = 0; 639 len = 1; 640 /* FALLTHROUGH */ 641 case DeviceOutRequest | USB_REQ_SET_INTERFACE: 642 break; 643 case DeviceOutRequest | USB_REQ_SET_ADDRESS: 644 /* wValue == urb->dev->devaddr */ 645 dev_dbg (hcd->self.controller, "root hub device address %d\n", 646 wValue); 647 break; 648 649 /* INTERFACE REQUESTS (no defined feature/status flags) */ 650 651 /* ENDPOINT REQUESTS */ 652 653 case EndpointRequest | USB_REQ_GET_STATUS: 654 /* ENDPOINT_HALT flag */ 655 tbuf[0] = 0; 656 tbuf[1] = 0; 657 len = 2; 658 /* FALLTHROUGH */ 659 case EndpointOutRequest | USB_REQ_CLEAR_FEATURE: 660 case EndpointOutRequest | USB_REQ_SET_FEATURE: 661 dev_dbg (hcd->self.controller, "no endpoint features yet\n"); 662 break; 663 664 /* CLASS REQUESTS (and errors) */ 665 666 default: 667 nongeneric: 668 /* non-generic request */ 669 switch (typeReq) { 670 case GetHubStatus: 671 len = 4; 672 break; 673 case GetPortStatus: 674 if (wValue == HUB_PORT_STATUS) 675 len = 4; 676 else 677 /* other port status types return 8 bytes */ 678 len = 8; 679 break; 680 case GetHubDescriptor: 681 len = sizeof (struct usb_hub_descriptor); 682 break; 683 case DeviceRequest | USB_REQ_GET_DESCRIPTOR: 684 /* len is returned by hub_control */ 685 break; 686 } 687 status = hcd->driver->hub_control (hcd, 688 typeReq, wValue, wIndex, 689 tbuf, wLength); 690 691 if (typeReq == GetHubDescriptor) 692 usb_hub_adjust_deviceremovable(hcd->self.root_hub, 693 (struct usb_hub_descriptor *)tbuf); 694 break; 695 error: 696 /* "protocol stall" on error */ 697 status = -EPIPE; 698 } 699 700 if (status < 0) { 701 len = 0; 702 if (status != -EPIPE) { 703 dev_dbg (hcd->self.controller, 704 "CTRL: TypeReq=0x%x val=0x%x " 705 "idx=0x%x len=%d ==> %d\n", 706 typeReq, wValue, wIndex, 707 wLength, status); 708 } 709 } else if (status > 0) { 710 /* hub_control may return the length of data copied. */ 711 len = status; 712 status = 0; 713 } 714 if (len) { 715 if (urb->transfer_buffer_length < len) 716 len = urb->transfer_buffer_length; 717 urb->actual_length = len; 718 /* always USB_DIR_IN, toward host */ 719 memcpy (ubuf, bufp, len); 720 721 /* report whether RH hardware supports remote wakeup */ 722 if (patch_wakeup && 723 len > offsetof (struct usb_config_descriptor, 724 bmAttributes)) 725 ((struct usb_config_descriptor *)ubuf)->bmAttributes 726 |= USB_CONFIG_ATT_WAKEUP; 727 728 /* report whether RH hardware has an integrated TT */ 729 if (patch_protocol && 730 len > offsetof(struct usb_device_descriptor, 731 bDeviceProtocol)) 732 ((struct usb_device_descriptor *) ubuf)-> 733 bDeviceProtocol = USB_HUB_PR_HS_SINGLE_TT; 734 } 735 736 kfree(tbuf); 737 err_alloc: 738 739 /* any errors get returned through the urb completion */ 740 spin_lock_irq(&hcd_root_hub_lock); 741 usb_hcd_unlink_urb_from_ep(hcd, urb); 742 usb_hcd_giveback_urb(hcd, urb, status); 743 spin_unlock_irq(&hcd_root_hub_lock); 744 return 0; 745 } 746 747 /*-------------------------------------------------------------------------*/ 748 749 /* 750 * Root Hub interrupt transfers are polled using a timer if the 751 * driver requests it; otherwise the driver is responsible for 752 * calling usb_hcd_poll_rh_status() when an event occurs. 753 * 754 * Completions are called in_interrupt(), but they may or may not 755 * be in_irq(). 756 */ 757 void usb_hcd_poll_rh_status(struct usb_hcd *hcd) 758 { 759 struct urb *urb; 760 int length; 761 unsigned long flags; 762 char buffer[6]; /* Any root hubs with > 31 ports? */ 763 764 if (unlikely(!hcd->rh_pollable)) 765 return; 766 if (!hcd->uses_new_polling && !hcd->status_urb) 767 return; 768 769 length = hcd->driver->hub_status_data(hcd, buffer); 770 if (length > 0) { 771 772 /* try to complete the status urb */ 773 spin_lock_irqsave(&hcd_root_hub_lock, flags); 774 urb = hcd->status_urb; 775 if (urb) { 776 clear_bit(HCD_FLAG_POLL_PENDING, &hcd->flags); 777 hcd->status_urb = NULL; 778 urb->actual_length = length; 779 memcpy(urb->transfer_buffer, buffer, length); 780 781 usb_hcd_unlink_urb_from_ep(hcd, urb); 782 usb_hcd_giveback_urb(hcd, urb, 0); 783 } else { 784 length = 0; 785 set_bit(HCD_FLAG_POLL_PENDING, &hcd->flags); 786 } 787 spin_unlock_irqrestore(&hcd_root_hub_lock, flags); 788 } 789 790 /* The USB 2.0 spec says 256 ms. This is close enough and won't 791 * exceed that limit if HZ is 100. The math is more clunky than 792 * maybe expected, this is to make sure that all timers for USB devices 793 * fire at the same time to give the CPU a break in between */ 794 if (hcd->uses_new_polling ? HCD_POLL_RH(hcd) : 795 (length == 0 && hcd->status_urb != NULL)) 796 mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4)); 797 } 798 EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status); 799 800 /* timer callback */ 801 static void rh_timer_func (struct timer_list *t) 802 { 803 struct usb_hcd *_hcd = from_timer(_hcd, t, rh_timer); 804 805 usb_hcd_poll_rh_status(_hcd); 806 } 807 808 /*-------------------------------------------------------------------------*/ 809 810 static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb) 811 { 812 int retval; 813 unsigned long flags; 814 unsigned len = 1 + (urb->dev->maxchild / 8); 815 816 spin_lock_irqsave (&hcd_root_hub_lock, flags); 817 if (hcd->status_urb || urb->transfer_buffer_length < len) { 818 dev_dbg (hcd->self.controller, "not queuing rh status urb\n"); 819 retval = -EINVAL; 820 goto done; 821 } 822 823 retval = usb_hcd_link_urb_to_ep(hcd, urb); 824 if (retval) 825 goto done; 826 827 hcd->status_urb = urb; 828 urb->hcpriv = hcd; /* indicate it's queued */ 829 if (!hcd->uses_new_polling) 830 mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4)); 831 832 /* If a status change has already occurred, report it ASAP */ 833 else if (HCD_POLL_PENDING(hcd)) 834 mod_timer(&hcd->rh_timer, jiffies); 835 retval = 0; 836 done: 837 spin_unlock_irqrestore (&hcd_root_hub_lock, flags); 838 return retval; 839 } 840 841 static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb) 842 { 843 if (usb_endpoint_xfer_int(&urb->ep->desc)) 844 return rh_queue_status (hcd, urb); 845 if (usb_endpoint_xfer_control(&urb->ep->desc)) 846 return rh_call_control (hcd, urb); 847 return -EINVAL; 848 } 849 850 /*-------------------------------------------------------------------------*/ 851 852 /* Unlinks of root-hub control URBs are legal, but they don't do anything 853 * since these URBs always execute synchronously. 854 */ 855 static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status) 856 { 857 unsigned long flags; 858 int rc; 859 860 spin_lock_irqsave(&hcd_root_hub_lock, flags); 861 rc = usb_hcd_check_unlink_urb(hcd, urb, status); 862 if (rc) 863 goto done; 864 865 if (usb_endpoint_num(&urb->ep->desc) == 0) { /* Control URB */ 866 ; /* Do nothing */ 867 868 } else { /* Status URB */ 869 if (!hcd->uses_new_polling) 870 del_timer (&hcd->rh_timer); 871 if (urb == hcd->status_urb) { 872 hcd->status_urb = NULL; 873 usb_hcd_unlink_urb_from_ep(hcd, urb); 874 usb_hcd_giveback_urb(hcd, urb, status); 875 } 876 } 877 done: 878 spin_unlock_irqrestore(&hcd_root_hub_lock, flags); 879 return rc; 880 } 881 882 883 884 /* 885 * Show & store the current value of authorized_default 886 */ 887 static ssize_t authorized_default_show(struct device *dev, 888 struct device_attribute *attr, char *buf) 889 { 890 struct usb_device *rh_usb_dev = to_usb_device(dev); 891 struct usb_bus *usb_bus = rh_usb_dev->bus; 892 struct usb_hcd *hcd; 893 894 hcd = bus_to_hcd(usb_bus); 895 return snprintf(buf, PAGE_SIZE, "%u\n", hcd->dev_policy); 896 } 897 898 static ssize_t authorized_default_store(struct device *dev, 899 struct device_attribute *attr, 900 const char *buf, size_t size) 901 { 902 ssize_t result; 903 unsigned val; 904 struct usb_device *rh_usb_dev = to_usb_device(dev); 905 struct usb_bus *usb_bus = rh_usb_dev->bus; 906 struct usb_hcd *hcd; 907 908 hcd = bus_to_hcd(usb_bus); 909 result = sscanf(buf, "%u\n", &val); 910 if (result == 1) { 911 hcd->dev_policy = val <= USB_DEVICE_AUTHORIZE_INTERNAL ? 912 val : USB_DEVICE_AUTHORIZE_ALL; 913 result = size; 914 } else { 915 result = -EINVAL; 916 } 917 return result; 918 } 919 static DEVICE_ATTR_RW(authorized_default); 920 921 /* 922 * interface_authorized_default_show - show default authorization status 923 * for USB interfaces 924 * 925 * note: interface_authorized_default is the default value 926 * for initializing the authorized attribute of interfaces 927 */ 928 static ssize_t interface_authorized_default_show(struct device *dev, 929 struct device_attribute *attr, char *buf) 930 { 931 struct usb_device *usb_dev = to_usb_device(dev); 932 struct usb_hcd *hcd = bus_to_hcd(usb_dev->bus); 933 934 return sprintf(buf, "%u\n", !!HCD_INTF_AUTHORIZED(hcd)); 935 } 936 937 /* 938 * interface_authorized_default_store - store default authorization status 939 * for USB interfaces 940 * 941 * note: interface_authorized_default is the default value 942 * for initializing the authorized attribute of interfaces 943 */ 944 static ssize_t interface_authorized_default_store(struct device *dev, 945 struct device_attribute *attr, const char *buf, size_t count) 946 { 947 struct usb_device *usb_dev = to_usb_device(dev); 948 struct usb_hcd *hcd = bus_to_hcd(usb_dev->bus); 949 int rc = count; 950 bool val; 951 952 if (strtobool(buf, &val) != 0) 953 return -EINVAL; 954 955 if (val) 956 set_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags); 957 else 958 clear_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags); 959 960 return rc; 961 } 962 static DEVICE_ATTR_RW(interface_authorized_default); 963 964 /* Group all the USB bus attributes */ 965 static struct attribute *usb_bus_attrs[] = { 966 &dev_attr_authorized_default.attr, 967 &dev_attr_interface_authorized_default.attr, 968 NULL, 969 }; 970 971 static const struct attribute_group usb_bus_attr_group = { 972 .name = NULL, /* we want them in the same directory */ 973 .attrs = usb_bus_attrs, 974 }; 975 976 977 978 /*-------------------------------------------------------------------------*/ 979 980 /** 981 * usb_bus_init - shared initialization code 982 * @bus: the bus structure being initialized 983 * 984 * This code is used to initialize a usb_bus structure, memory for which is 985 * separately managed. 986 */ 987 static void usb_bus_init (struct usb_bus *bus) 988 { 989 memset (&bus->devmap, 0, sizeof(struct usb_devmap)); 990 991 bus->devnum_next = 1; 992 993 bus->root_hub = NULL; 994 bus->busnum = -1; 995 bus->bandwidth_allocated = 0; 996 bus->bandwidth_int_reqs = 0; 997 bus->bandwidth_isoc_reqs = 0; 998 mutex_init(&bus->devnum_next_mutex); 999 } 1000 1001 /*-------------------------------------------------------------------------*/ 1002 1003 /** 1004 * usb_register_bus - registers the USB host controller with the usb core 1005 * @bus: pointer to the bus to register 1006 * Context: !in_interrupt() 1007 * 1008 * Assigns a bus number, and links the controller into usbcore data 1009 * structures so that it can be seen by scanning the bus list. 1010 * 1011 * Return: 0 if successful. A negative error code otherwise. 1012 */ 1013 static int usb_register_bus(struct usb_bus *bus) 1014 { 1015 int result = -E2BIG; 1016 int busnum; 1017 1018 mutex_lock(&usb_bus_idr_lock); 1019 busnum = idr_alloc(&usb_bus_idr, bus, 1, USB_MAXBUS, GFP_KERNEL); 1020 if (busnum < 0) { 1021 pr_err("%s: failed to get bus number\n", usbcore_name); 1022 goto error_find_busnum; 1023 } 1024 bus->busnum = busnum; 1025 mutex_unlock(&usb_bus_idr_lock); 1026 1027 usb_notify_add_bus(bus); 1028 1029 dev_info (bus->controller, "new USB bus registered, assigned bus " 1030 "number %d\n", bus->busnum); 1031 return 0; 1032 1033 error_find_busnum: 1034 mutex_unlock(&usb_bus_idr_lock); 1035 return result; 1036 } 1037 1038 /** 1039 * usb_deregister_bus - deregisters the USB host controller 1040 * @bus: pointer to the bus to deregister 1041 * Context: !in_interrupt() 1042 * 1043 * Recycles the bus number, and unlinks the controller from usbcore data 1044 * structures so that it won't be seen by scanning the bus list. 1045 */ 1046 static void usb_deregister_bus (struct usb_bus *bus) 1047 { 1048 dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum); 1049 1050 /* 1051 * NOTE: make sure that all the devices are removed by the 1052 * controller code, as well as having it call this when cleaning 1053 * itself up 1054 */ 1055 mutex_lock(&usb_bus_idr_lock); 1056 idr_remove(&usb_bus_idr, bus->busnum); 1057 mutex_unlock(&usb_bus_idr_lock); 1058 1059 usb_notify_remove_bus(bus); 1060 } 1061 1062 /** 1063 * register_root_hub - called by usb_add_hcd() to register a root hub 1064 * @hcd: host controller for this root hub 1065 * 1066 * This function registers the root hub with the USB subsystem. It sets up 1067 * the device properly in the device tree and then calls usb_new_device() 1068 * to register the usb device. It also assigns the root hub's USB address 1069 * (always 1). 1070 * 1071 * Return: 0 if successful. A negative error code otherwise. 1072 */ 1073 static int register_root_hub(struct usb_hcd *hcd) 1074 { 1075 struct device *parent_dev = hcd->self.controller; 1076 struct usb_device *usb_dev = hcd->self.root_hub; 1077 const int devnum = 1; 1078 int retval; 1079 1080 usb_dev->devnum = devnum; 1081 usb_dev->bus->devnum_next = devnum + 1; 1082 set_bit (devnum, usb_dev->bus->devmap.devicemap); 1083 usb_set_device_state(usb_dev, USB_STATE_ADDRESS); 1084 1085 mutex_lock(&usb_bus_idr_lock); 1086 1087 usb_dev->ep0.desc.wMaxPacketSize = cpu_to_le16(64); 1088 retval = usb_get_device_descriptor(usb_dev, USB_DT_DEVICE_SIZE); 1089 if (retval != sizeof usb_dev->descriptor) { 1090 mutex_unlock(&usb_bus_idr_lock); 1091 dev_dbg (parent_dev, "can't read %s device descriptor %d\n", 1092 dev_name(&usb_dev->dev), retval); 1093 return (retval < 0) ? retval : -EMSGSIZE; 1094 } 1095 1096 if (le16_to_cpu(usb_dev->descriptor.bcdUSB) >= 0x0201) { 1097 retval = usb_get_bos_descriptor(usb_dev); 1098 if (!retval) { 1099 usb_dev->lpm_capable = usb_device_supports_lpm(usb_dev); 1100 } else if (usb_dev->speed >= USB_SPEED_SUPER) { 1101 mutex_unlock(&usb_bus_idr_lock); 1102 dev_dbg(parent_dev, "can't read %s bos descriptor %d\n", 1103 dev_name(&usb_dev->dev), retval); 1104 return retval; 1105 } 1106 } 1107 1108 retval = usb_new_device (usb_dev); 1109 if (retval) { 1110 dev_err (parent_dev, "can't register root hub for %s, %d\n", 1111 dev_name(&usb_dev->dev), retval); 1112 } else { 1113 spin_lock_irq (&hcd_root_hub_lock); 1114 hcd->rh_registered = 1; 1115 spin_unlock_irq (&hcd_root_hub_lock); 1116 1117 /* Did the HC die before the root hub was registered? */ 1118 if (HCD_DEAD(hcd)) 1119 usb_hc_died (hcd); /* This time clean up */ 1120 } 1121 mutex_unlock(&usb_bus_idr_lock); 1122 1123 return retval; 1124 } 1125 1126 /* 1127 * usb_hcd_start_port_resume - a root-hub port is sending a resume signal 1128 * @bus: the bus which the root hub belongs to 1129 * @portnum: the port which is being resumed 1130 * 1131 * HCDs should call this function when they know that a resume signal is 1132 * being sent to a root-hub port. The root hub will be prevented from 1133 * going into autosuspend until usb_hcd_end_port_resume() is called. 1134 * 1135 * The bus's private lock must be held by the caller. 1136 */ 1137 void usb_hcd_start_port_resume(struct usb_bus *bus, int portnum) 1138 { 1139 unsigned bit = 1 << portnum; 1140 1141 if (!(bus->resuming_ports & bit)) { 1142 bus->resuming_ports |= bit; 1143 pm_runtime_get_noresume(&bus->root_hub->dev); 1144 } 1145 } 1146 EXPORT_SYMBOL_GPL(usb_hcd_start_port_resume); 1147 1148 /* 1149 * usb_hcd_end_port_resume - a root-hub port has stopped sending a resume signal 1150 * @bus: the bus which the root hub belongs to 1151 * @portnum: the port which is being resumed 1152 * 1153 * HCDs should call this function when they know that a resume signal has 1154 * stopped being sent to a root-hub port. The root hub will be allowed to 1155 * autosuspend again. 1156 * 1157 * The bus's private lock must be held by the caller. 1158 */ 1159 void usb_hcd_end_port_resume(struct usb_bus *bus, int portnum) 1160 { 1161 unsigned bit = 1 << portnum; 1162 1163 if (bus->resuming_ports & bit) { 1164 bus->resuming_ports &= ~bit; 1165 pm_runtime_put_noidle(&bus->root_hub->dev); 1166 } 1167 } 1168 EXPORT_SYMBOL_GPL(usb_hcd_end_port_resume); 1169 1170 /*-------------------------------------------------------------------------*/ 1171 1172 /** 1173 * usb_calc_bus_time - approximate periodic transaction time in nanoseconds 1174 * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH} 1175 * @is_input: true iff the transaction sends data to the host 1176 * @isoc: true for isochronous transactions, false for interrupt ones 1177 * @bytecount: how many bytes in the transaction. 1178 * 1179 * Return: Approximate bus time in nanoseconds for a periodic transaction. 1180 * 1181 * Note: 1182 * See USB 2.0 spec section 5.11.3; only periodic transfers need to be 1183 * scheduled in software, this function is only used for such scheduling. 1184 */ 1185 long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount) 1186 { 1187 unsigned long tmp; 1188 1189 switch (speed) { 1190 case USB_SPEED_LOW: /* INTR only */ 1191 if (is_input) { 1192 tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L; 1193 return 64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp; 1194 } else { 1195 tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L; 1196 return 64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp; 1197 } 1198 case USB_SPEED_FULL: /* ISOC or INTR */ 1199 if (isoc) { 1200 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L; 1201 return ((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp; 1202 } else { 1203 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L; 1204 return 9107L + BW_HOST_DELAY + tmp; 1205 } 1206 case USB_SPEED_HIGH: /* ISOC or INTR */ 1207 /* FIXME adjust for input vs output */ 1208 if (isoc) 1209 tmp = HS_NSECS_ISO (bytecount); 1210 else 1211 tmp = HS_NSECS (bytecount); 1212 return tmp; 1213 default: 1214 pr_debug ("%s: bogus device speed!\n", usbcore_name); 1215 return -1; 1216 } 1217 } 1218 EXPORT_SYMBOL_GPL(usb_calc_bus_time); 1219 1220 1221 /*-------------------------------------------------------------------------*/ 1222 1223 /* 1224 * Generic HC operations. 1225 */ 1226 1227 /*-------------------------------------------------------------------------*/ 1228 1229 /** 1230 * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue 1231 * @hcd: host controller to which @urb was submitted 1232 * @urb: URB being submitted 1233 * 1234 * Host controller drivers should call this routine in their enqueue() 1235 * method. The HCD's private spinlock must be held and interrupts must 1236 * be disabled. The actions carried out here are required for URB 1237 * submission, as well as for endpoint shutdown and for usb_kill_urb. 1238 * 1239 * Return: 0 for no error, otherwise a negative error code (in which case 1240 * the enqueue() method must fail). If no error occurs but enqueue() fails 1241 * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing 1242 * the private spinlock and returning. 1243 */ 1244 int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb) 1245 { 1246 int rc = 0; 1247 1248 spin_lock(&hcd_urb_list_lock); 1249 1250 /* Check that the URB isn't being killed */ 1251 if (unlikely(atomic_read(&urb->reject))) { 1252 rc = -EPERM; 1253 goto done; 1254 } 1255 1256 if (unlikely(!urb->ep->enabled)) { 1257 rc = -ENOENT; 1258 goto done; 1259 } 1260 1261 if (unlikely(!urb->dev->can_submit)) { 1262 rc = -EHOSTUNREACH; 1263 goto done; 1264 } 1265 1266 /* 1267 * Check the host controller's state and add the URB to the 1268 * endpoint's queue. 1269 */ 1270 if (HCD_RH_RUNNING(hcd)) { 1271 urb->unlinked = 0; 1272 list_add_tail(&urb->urb_list, &urb->ep->urb_list); 1273 } else { 1274 rc = -ESHUTDOWN; 1275 goto done; 1276 } 1277 done: 1278 spin_unlock(&hcd_urb_list_lock); 1279 return rc; 1280 } 1281 EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep); 1282 1283 /** 1284 * usb_hcd_check_unlink_urb - check whether an URB may be unlinked 1285 * @hcd: host controller to which @urb was submitted 1286 * @urb: URB being checked for unlinkability 1287 * @status: error code to store in @urb if the unlink succeeds 1288 * 1289 * Host controller drivers should call this routine in their dequeue() 1290 * method. The HCD's private spinlock must be held and interrupts must 1291 * be disabled. The actions carried out here are required for making 1292 * sure than an unlink is valid. 1293 * 1294 * Return: 0 for no error, otherwise a negative error code (in which case 1295 * the dequeue() method must fail). The possible error codes are: 1296 * 1297 * -EIDRM: @urb was not submitted or has already completed. 1298 * The completion function may not have been called yet. 1299 * 1300 * -EBUSY: @urb has already been unlinked. 1301 */ 1302 int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb, 1303 int status) 1304 { 1305 struct list_head *tmp; 1306 1307 /* insist the urb is still queued */ 1308 list_for_each(tmp, &urb->ep->urb_list) { 1309 if (tmp == &urb->urb_list) 1310 break; 1311 } 1312 if (tmp != &urb->urb_list) 1313 return -EIDRM; 1314 1315 /* Any status except -EINPROGRESS means something already started to 1316 * unlink this URB from the hardware. So there's no more work to do. 1317 */ 1318 if (urb->unlinked) 1319 return -EBUSY; 1320 urb->unlinked = status; 1321 return 0; 1322 } 1323 EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb); 1324 1325 /** 1326 * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue 1327 * @hcd: host controller to which @urb was submitted 1328 * @urb: URB being unlinked 1329 * 1330 * Host controller drivers should call this routine before calling 1331 * usb_hcd_giveback_urb(). The HCD's private spinlock must be held and 1332 * interrupts must be disabled. The actions carried out here are required 1333 * for URB completion. 1334 */ 1335 void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb) 1336 { 1337 /* clear all state linking urb to this dev (and hcd) */ 1338 spin_lock(&hcd_urb_list_lock); 1339 list_del_init(&urb->urb_list); 1340 spin_unlock(&hcd_urb_list_lock); 1341 } 1342 EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep); 1343 1344 /* 1345 * Some usb host controllers can only perform dma using a small SRAM area. 1346 * The usb core itself is however optimized for host controllers that can dma 1347 * using regular system memory - like pci devices doing bus mastering. 1348 * 1349 * To support host controllers with limited dma capabilities we provide dma 1350 * bounce buffers. This feature can be enabled by initializing 1351 * hcd->localmem_pool using usb_hcd_setup_local_mem(). 1352 * For this to work properly the host controller code must first use the 1353 * function dma_declare_coherent_memory() to point out which memory area 1354 * that should be used for dma allocations. 1355 * 1356 * The initialized hcd->localmem_pool then tells the usb code to allocate all 1357 * data for dma using the genalloc API. 1358 * 1359 * So, to summarize... 1360 * 1361 * - We need "local" memory, canonical example being 1362 * a small SRAM on a discrete controller being the 1363 * only memory that the controller can read ... 1364 * (a) "normal" kernel memory is no good, and 1365 * (b) there's not enough to share 1366 * 1367 * - So we use that, even though the primary requirement 1368 * is that the memory be "local" (hence addressable 1369 * by that device), not "coherent". 1370 * 1371 */ 1372 1373 static int hcd_alloc_coherent(struct usb_bus *bus, 1374 gfp_t mem_flags, dma_addr_t *dma_handle, 1375 void **vaddr_handle, size_t size, 1376 enum dma_data_direction dir) 1377 { 1378 unsigned char *vaddr; 1379 1380 if (*vaddr_handle == NULL) { 1381 WARN_ON_ONCE(1); 1382 return -EFAULT; 1383 } 1384 1385 vaddr = hcd_buffer_alloc(bus, size + sizeof(vaddr), 1386 mem_flags, dma_handle); 1387 if (!vaddr) 1388 return -ENOMEM; 1389 1390 /* 1391 * Store the virtual address of the buffer at the end 1392 * of the allocated dma buffer. The size of the buffer 1393 * may be uneven so use unaligned functions instead 1394 * of just rounding up. It makes sense to optimize for 1395 * memory footprint over access speed since the amount 1396 * of memory available for dma may be limited. 1397 */ 1398 put_unaligned((unsigned long)*vaddr_handle, 1399 (unsigned long *)(vaddr + size)); 1400 1401 if (dir == DMA_TO_DEVICE) 1402 memcpy(vaddr, *vaddr_handle, size); 1403 1404 *vaddr_handle = vaddr; 1405 return 0; 1406 } 1407 1408 static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle, 1409 void **vaddr_handle, size_t size, 1410 enum dma_data_direction dir) 1411 { 1412 unsigned char *vaddr = *vaddr_handle; 1413 1414 vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size)); 1415 1416 if (dir == DMA_FROM_DEVICE) 1417 memcpy(vaddr, *vaddr_handle, size); 1418 1419 hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle); 1420 1421 *vaddr_handle = vaddr; 1422 *dma_handle = 0; 1423 } 1424 1425 void usb_hcd_unmap_urb_setup_for_dma(struct usb_hcd *hcd, struct urb *urb) 1426 { 1427 if (IS_ENABLED(CONFIG_HAS_DMA) && 1428 (urb->transfer_flags & URB_SETUP_MAP_SINGLE)) 1429 dma_unmap_single(hcd->self.sysdev, 1430 urb->setup_dma, 1431 sizeof(struct usb_ctrlrequest), 1432 DMA_TO_DEVICE); 1433 else if (urb->transfer_flags & URB_SETUP_MAP_LOCAL) 1434 hcd_free_coherent(urb->dev->bus, 1435 &urb->setup_dma, 1436 (void **) &urb->setup_packet, 1437 sizeof(struct usb_ctrlrequest), 1438 DMA_TO_DEVICE); 1439 1440 /* Make it safe to call this routine more than once */ 1441 urb->transfer_flags &= ~(URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL); 1442 } 1443 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_setup_for_dma); 1444 1445 static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb) 1446 { 1447 if (hcd->driver->unmap_urb_for_dma) 1448 hcd->driver->unmap_urb_for_dma(hcd, urb); 1449 else 1450 usb_hcd_unmap_urb_for_dma(hcd, urb); 1451 } 1452 1453 void usb_hcd_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb) 1454 { 1455 enum dma_data_direction dir; 1456 1457 usb_hcd_unmap_urb_setup_for_dma(hcd, urb); 1458 1459 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE; 1460 if (IS_ENABLED(CONFIG_HAS_DMA) && 1461 (urb->transfer_flags & URB_DMA_MAP_SG)) 1462 dma_unmap_sg(hcd->self.sysdev, 1463 urb->sg, 1464 urb->num_sgs, 1465 dir); 1466 else if (IS_ENABLED(CONFIG_HAS_DMA) && 1467 (urb->transfer_flags & URB_DMA_MAP_PAGE)) 1468 dma_unmap_page(hcd->self.sysdev, 1469 urb->transfer_dma, 1470 urb->transfer_buffer_length, 1471 dir); 1472 else if (IS_ENABLED(CONFIG_HAS_DMA) && 1473 (urb->transfer_flags & URB_DMA_MAP_SINGLE)) 1474 dma_unmap_single(hcd->self.sysdev, 1475 urb->transfer_dma, 1476 urb->transfer_buffer_length, 1477 dir); 1478 else if (urb->transfer_flags & URB_MAP_LOCAL) 1479 hcd_free_coherent(urb->dev->bus, 1480 &urb->transfer_dma, 1481 &urb->transfer_buffer, 1482 urb->transfer_buffer_length, 1483 dir); 1484 1485 /* Make it safe to call this routine more than once */ 1486 urb->transfer_flags &= ~(URB_DMA_MAP_SG | URB_DMA_MAP_PAGE | 1487 URB_DMA_MAP_SINGLE | URB_MAP_LOCAL); 1488 } 1489 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_for_dma); 1490 1491 static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb, 1492 gfp_t mem_flags) 1493 { 1494 if (hcd->driver->map_urb_for_dma) 1495 return hcd->driver->map_urb_for_dma(hcd, urb, mem_flags); 1496 else 1497 return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags); 1498 } 1499 1500 int usb_hcd_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb, 1501 gfp_t mem_flags) 1502 { 1503 enum dma_data_direction dir; 1504 int ret = 0; 1505 1506 /* Map the URB's buffers for DMA access. 1507 * Lower level HCD code should use *_dma exclusively, 1508 * unless it uses pio or talks to another transport, 1509 * or uses the provided scatter gather list for bulk. 1510 */ 1511 1512 if (usb_endpoint_xfer_control(&urb->ep->desc)) { 1513 if (hcd->self.uses_pio_for_control) 1514 return ret; 1515 if (IS_ENABLED(CONFIG_HAS_DMA) && hcd->self.uses_dma) { 1516 if (is_vmalloc_addr(urb->setup_packet)) { 1517 WARN_ONCE(1, "setup packet is not dma capable\n"); 1518 return -EAGAIN; 1519 } else if (object_is_on_stack(urb->setup_packet)) { 1520 WARN_ONCE(1, "setup packet is on stack\n"); 1521 return -EAGAIN; 1522 } 1523 1524 urb->setup_dma = dma_map_single( 1525 hcd->self.sysdev, 1526 urb->setup_packet, 1527 sizeof(struct usb_ctrlrequest), 1528 DMA_TO_DEVICE); 1529 if (dma_mapping_error(hcd->self.sysdev, 1530 urb->setup_dma)) 1531 return -EAGAIN; 1532 urb->transfer_flags |= URB_SETUP_MAP_SINGLE; 1533 } else if (hcd->localmem_pool) { 1534 ret = hcd_alloc_coherent( 1535 urb->dev->bus, mem_flags, 1536 &urb->setup_dma, 1537 (void **)&urb->setup_packet, 1538 sizeof(struct usb_ctrlrequest), 1539 DMA_TO_DEVICE); 1540 if (ret) 1541 return ret; 1542 urb->transfer_flags |= URB_SETUP_MAP_LOCAL; 1543 } 1544 } 1545 1546 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE; 1547 if (urb->transfer_buffer_length != 0 1548 && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) { 1549 if (IS_ENABLED(CONFIG_HAS_DMA) && hcd->self.uses_dma) { 1550 if (urb->num_sgs) { 1551 int n; 1552 1553 /* We don't support sg for isoc transfers ! */ 1554 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) { 1555 WARN_ON(1); 1556 return -EINVAL; 1557 } 1558 1559 n = dma_map_sg( 1560 hcd->self.sysdev, 1561 urb->sg, 1562 urb->num_sgs, 1563 dir); 1564 if (n <= 0) 1565 ret = -EAGAIN; 1566 else 1567 urb->transfer_flags |= URB_DMA_MAP_SG; 1568 urb->num_mapped_sgs = n; 1569 if (n != urb->num_sgs) 1570 urb->transfer_flags |= 1571 URB_DMA_SG_COMBINED; 1572 } else if (urb->sg) { 1573 struct scatterlist *sg = urb->sg; 1574 urb->transfer_dma = dma_map_page( 1575 hcd->self.sysdev, 1576 sg_page(sg), 1577 sg->offset, 1578 urb->transfer_buffer_length, 1579 dir); 1580 if (dma_mapping_error(hcd->self.sysdev, 1581 urb->transfer_dma)) 1582 ret = -EAGAIN; 1583 else 1584 urb->transfer_flags |= URB_DMA_MAP_PAGE; 1585 } else if (is_vmalloc_addr(urb->transfer_buffer)) { 1586 WARN_ONCE(1, "transfer buffer not dma capable\n"); 1587 ret = -EAGAIN; 1588 } else if (object_is_on_stack(urb->transfer_buffer)) { 1589 WARN_ONCE(1, "transfer buffer is on stack\n"); 1590 ret = -EAGAIN; 1591 } else { 1592 urb->transfer_dma = dma_map_single( 1593 hcd->self.sysdev, 1594 urb->transfer_buffer, 1595 urb->transfer_buffer_length, 1596 dir); 1597 if (dma_mapping_error(hcd->self.sysdev, 1598 urb->transfer_dma)) 1599 ret = -EAGAIN; 1600 else 1601 urb->transfer_flags |= URB_DMA_MAP_SINGLE; 1602 } 1603 } else if (hcd->localmem_pool) { 1604 ret = hcd_alloc_coherent( 1605 urb->dev->bus, mem_flags, 1606 &urb->transfer_dma, 1607 &urb->transfer_buffer, 1608 urb->transfer_buffer_length, 1609 dir); 1610 if (ret == 0) 1611 urb->transfer_flags |= URB_MAP_LOCAL; 1612 } 1613 if (ret && (urb->transfer_flags & (URB_SETUP_MAP_SINGLE | 1614 URB_SETUP_MAP_LOCAL))) 1615 usb_hcd_unmap_urb_for_dma(hcd, urb); 1616 } 1617 return ret; 1618 } 1619 EXPORT_SYMBOL_GPL(usb_hcd_map_urb_for_dma); 1620 1621 /*-------------------------------------------------------------------------*/ 1622 1623 /* may be called in any context with a valid urb->dev usecount 1624 * caller surrenders "ownership" of urb 1625 * expects usb_submit_urb() to have sanity checked and conditioned all 1626 * inputs in the urb 1627 */ 1628 int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags) 1629 { 1630 int status; 1631 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus); 1632 1633 /* increment urb's reference count as part of giving it to the HCD 1634 * (which will control it). HCD guarantees that it either returns 1635 * an error or calls giveback(), but not both. 1636 */ 1637 usb_get_urb(urb); 1638 atomic_inc(&urb->use_count); 1639 atomic_inc(&urb->dev->urbnum); 1640 usbmon_urb_submit(&hcd->self, urb); 1641 1642 /* NOTE requirements on root-hub callers (usbfs and the hub 1643 * driver, for now): URBs' urb->transfer_buffer must be 1644 * valid and usb_buffer_{sync,unmap}() not be needed, since 1645 * they could clobber root hub response data. Also, control 1646 * URBs must be submitted in process context with interrupts 1647 * enabled. 1648 */ 1649 1650 if (is_root_hub(urb->dev)) { 1651 status = rh_urb_enqueue(hcd, urb); 1652 } else { 1653 status = map_urb_for_dma(hcd, urb, mem_flags); 1654 if (likely(status == 0)) { 1655 status = hcd->driver->urb_enqueue(hcd, urb, mem_flags); 1656 if (unlikely(status)) 1657 unmap_urb_for_dma(hcd, urb); 1658 } 1659 } 1660 1661 if (unlikely(status)) { 1662 usbmon_urb_submit_error(&hcd->self, urb, status); 1663 urb->hcpriv = NULL; 1664 INIT_LIST_HEAD(&urb->urb_list); 1665 atomic_dec(&urb->use_count); 1666 atomic_dec(&urb->dev->urbnum); 1667 if (atomic_read(&urb->reject)) 1668 wake_up(&usb_kill_urb_queue); 1669 usb_put_urb(urb); 1670 } 1671 return status; 1672 } 1673 1674 /*-------------------------------------------------------------------------*/ 1675 1676 /* this makes the hcd giveback() the urb more quickly, by kicking it 1677 * off hardware queues (which may take a while) and returning it as 1678 * soon as practical. we've already set up the urb's return status, 1679 * but we can't know if the callback completed already. 1680 */ 1681 static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status) 1682 { 1683 int value; 1684 1685 if (is_root_hub(urb->dev)) 1686 value = usb_rh_urb_dequeue(hcd, urb, status); 1687 else { 1688 1689 /* The only reason an HCD might fail this call is if 1690 * it has not yet fully queued the urb to begin with. 1691 * Such failures should be harmless. */ 1692 value = hcd->driver->urb_dequeue(hcd, urb, status); 1693 } 1694 return value; 1695 } 1696 1697 /* 1698 * called in any context 1699 * 1700 * caller guarantees urb won't be recycled till both unlink() 1701 * and the urb's completion function return 1702 */ 1703 int usb_hcd_unlink_urb (struct urb *urb, int status) 1704 { 1705 struct usb_hcd *hcd; 1706 struct usb_device *udev = urb->dev; 1707 int retval = -EIDRM; 1708 unsigned long flags; 1709 1710 /* Prevent the device and bus from going away while 1711 * the unlink is carried out. If they are already gone 1712 * then urb->use_count must be 0, since disconnected 1713 * devices can't have any active URBs. 1714 */ 1715 spin_lock_irqsave(&hcd_urb_unlink_lock, flags); 1716 if (atomic_read(&urb->use_count) > 0) { 1717 retval = 0; 1718 usb_get_dev(udev); 1719 } 1720 spin_unlock_irqrestore(&hcd_urb_unlink_lock, flags); 1721 if (retval == 0) { 1722 hcd = bus_to_hcd(urb->dev->bus); 1723 retval = unlink1(hcd, urb, status); 1724 if (retval == 0) 1725 retval = -EINPROGRESS; 1726 else if (retval != -EIDRM && retval != -EBUSY) 1727 dev_dbg(&udev->dev, "hcd_unlink_urb %pK fail %d\n", 1728 urb, retval); 1729 usb_put_dev(udev); 1730 } 1731 return retval; 1732 } 1733 1734 /*-------------------------------------------------------------------------*/ 1735 1736 static void __usb_hcd_giveback_urb(struct urb *urb) 1737 { 1738 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus); 1739 struct usb_anchor *anchor = urb->anchor; 1740 int status = urb->unlinked; 1741 1742 urb->hcpriv = NULL; 1743 if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) && 1744 urb->actual_length < urb->transfer_buffer_length && 1745 !status)) 1746 status = -EREMOTEIO; 1747 1748 unmap_urb_for_dma(hcd, urb); 1749 usbmon_urb_complete(&hcd->self, urb, status); 1750 usb_anchor_suspend_wakeups(anchor); 1751 usb_unanchor_urb(urb); 1752 if (likely(status == 0)) 1753 usb_led_activity(USB_LED_EVENT_HOST); 1754 1755 /* pass ownership to the completion handler */ 1756 urb->status = status; 1757 urb->complete(urb); 1758 1759 usb_anchor_resume_wakeups(anchor); 1760 atomic_dec(&urb->use_count); 1761 if (unlikely(atomic_read(&urb->reject))) 1762 wake_up(&usb_kill_urb_queue); 1763 usb_put_urb(urb); 1764 } 1765 1766 static void usb_giveback_urb_bh(unsigned long param) 1767 { 1768 struct giveback_urb_bh *bh = (struct giveback_urb_bh *)param; 1769 struct list_head local_list; 1770 1771 spin_lock_irq(&bh->lock); 1772 bh->running = true; 1773 restart: 1774 list_replace_init(&bh->head, &local_list); 1775 spin_unlock_irq(&bh->lock); 1776 1777 while (!list_empty(&local_list)) { 1778 struct urb *urb; 1779 1780 urb = list_entry(local_list.next, struct urb, urb_list); 1781 list_del_init(&urb->urb_list); 1782 bh->completing_ep = urb->ep; 1783 __usb_hcd_giveback_urb(urb); 1784 bh->completing_ep = NULL; 1785 } 1786 1787 /* check if there are new URBs to giveback */ 1788 spin_lock_irq(&bh->lock); 1789 if (!list_empty(&bh->head)) 1790 goto restart; 1791 bh->running = false; 1792 spin_unlock_irq(&bh->lock); 1793 } 1794 1795 /** 1796 * usb_hcd_giveback_urb - return URB from HCD to device driver 1797 * @hcd: host controller returning the URB 1798 * @urb: urb being returned to the USB device driver. 1799 * @status: completion status code for the URB. 1800 * Context: in_interrupt() 1801 * 1802 * This hands the URB from HCD to its USB device driver, using its 1803 * completion function. The HCD has freed all per-urb resources 1804 * (and is done using urb->hcpriv). It also released all HCD locks; 1805 * the device driver won't cause problems if it frees, modifies, 1806 * or resubmits this URB. 1807 * 1808 * If @urb was unlinked, the value of @status will be overridden by 1809 * @urb->unlinked. Erroneous short transfers are detected in case 1810 * the HCD hasn't checked for them. 1811 */ 1812 void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status) 1813 { 1814 struct giveback_urb_bh *bh; 1815 bool running, high_prio_bh; 1816 1817 /* pass status to tasklet via unlinked */ 1818 if (likely(!urb->unlinked)) 1819 urb->unlinked = status; 1820 1821 if (!hcd_giveback_urb_in_bh(hcd) && !is_root_hub(urb->dev)) { 1822 __usb_hcd_giveback_urb(urb); 1823 return; 1824 } 1825 1826 if (usb_pipeisoc(urb->pipe) || usb_pipeint(urb->pipe)) { 1827 bh = &hcd->high_prio_bh; 1828 high_prio_bh = true; 1829 } else { 1830 bh = &hcd->low_prio_bh; 1831 high_prio_bh = false; 1832 } 1833 1834 spin_lock(&bh->lock); 1835 list_add_tail(&urb->urb_list, &bh->head); 1836 running = bh->running; 1837 spin_unlock(&bh->lock); 1838 1839 if (running) 1840 ; 1841 else if (high_prio_bh) 1842 tasklet_hi_schedule(&bh->bh); 1843 else 1844 tasklet_schedule(&bh->bh); 1845 } 1846 EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb); 1847 1848 /*-------------------------------------------------------------------------*/ 1849 1850 /* Cancel all URBs pending on this endpoint and wait for the endpoint's 1851 * queue to drain completely. The caller must first insure that no more 1852 * URBs can be submitted for this endpoint. 1853 */ 1854 void usb_hcd_flush_endpoint(struct usb_device *udev, 1855 struct usb_host_endpoint *ep) 1856 { 1857 struct usb_hcd *hcd; 1858 struct urb *urb; 1859 1860 if (!ep) 1861 return; 1862 might_sleep(); 1863 hcd = bus_to_hcd(udev->bus); 1864 1865 /* No more submits can occur */ 1866 spin_lock_irq(&hcd_urb_list_lock); 1867 rescan: 1868 list_for_each_entry_reverse(urb, &ep->urb_list, urb_list) { 1869 int is_in; 1870 1871 if (urb->unlinked) 1872 continue; 1873 usb_get_urb (urb); 1874 is_in = usb_urb_dir_in(urb); 1875 spin_unlock(&hcd_urb_list_lock); 1876 1877 /* kick hcd */ 1878 unlink1(hcd, urb, -ESHUTDOWN); 1879 dev_dbg (hcd->self.controller, 1880 "shutdown urb %pK ep%d%s-%s\n", 1881 urb, usb_endpoint_num(&ep->desc), 1882 is_in ? "in" : "out", 1883 usb_ep_type_string(usb_endpoint_type(&ep->desc))); 1884 usb_put_urb (urb); 1885 1886 /* list contents may have changed */ 1887 spin_lock(&hcd_urb_list_lock); 1888 goto rescan; 1889 } 1890 spin_unlock_irq(&hcd_urb_list_lock); 1891 1892 /* Wait until the endpoint queue is completely empty */ 1893 while (!list_empty (&ep->urb_list)) { 1894 spin_lock_irq(&hcd_urb_list_lock); 1895 1896 /* The list may have changed while we acquired the spinlock */ 1897 urb = NULL; 1898 if (!list_empty (&ep->urb_list)) { 1899 urb = list_entry (ep->urb_list.prev, struct urb, 1900 urb_list); 1901 usb_get_urb (urb); 1902 } 1903 spin_unlock_irq(&hcd_urb_list_lock); 1904 1905 if (urb) { 1906 usb_kill_urb (urb); 1907 usb_put_urb (urb); 1908 } 1909 } 1910 } 1911 1912 /** 1913 * usb_hcd_alloc_bandwidth - check whether a new bandwidth setting exceeds 1914 * the bus bandwidth 1915 * @udev: target &usb_device 1916 * @new_config: new configuration to install 1917 * @cur_alt: the current alternate interface setting 1918 * @new_alt: alternate interface setting that is being installed 1919 * 1920 * To change configurations, pass in the new configuration in new_config, 1921 * and pass NULL for cur_alt and new_alt. 1922 * 1923 * To reset a device's configuration (put the device in the ADDRESSED state), 1924 * pass in NULL for new_config, cur_alt, and new_alt. 1925 * 1926 * To change alternate interface settings, pass in NULL for new_config, 1927 * pass in the current alternate interface setting in cur_alt, 1928 * and pass in the new alternate interface setting in new_alt. 1929 * 1930 * Return: An error if the requested bandwidth change exceeds the 1931 * bus bandwidth or host controller internal resources. 1932 */ 1933 int usb_hcd_alloc_bandwidth(struct usb_device *udev, 1934 struct usb_host_config *new_config, 1935 struct usb_host_interface *cur_alt, 1936 struct usb_host_interface *new_alt) 1937 { 1938 int num_intfs, i, j; 1939 struct usb_host_interface *alt = NULL; 1940 int ret = 0; 1941 struct usb_hcd *hcd; 1942 struct usb_host_endpoint *ep; 1943 1944 hcd = bus_to_hcd(udev->bus); 1945 if (!hcd->driver->check_bandwidth) 1946 return 0; 1947 1948 /* Configuration is being removed - set configuration 0 */ 1949 if (!new_config && !cur_alt) { 1950 for (i = 1; i < 16; ++i) { 1951 ep = udev->ep_out[i]; 1952 if (ep) 1953 hcd->driver->drop_endpoint(hcd, udev, ep); 1954 ep = udev->ep_in[i]; 1955 if (ep) 1956 hcd->driver->drop_endpoint(hcd, udev, ep); 1957 } 1958 hcd->driver->check_bandwidth(hcd, udev); 1959 return 0; 1960 } 1961 /* Check if the HCD says there's enough bandwidth. Enable all endpoints 1962 * each interface's alt setting 0 and ask the HCD to check the bandwidth 1963 * of the bus. There will always be bandwidth for endpoint 0, so it's 1964 * ok to exclude it. 1965 */ 1966 if (new_config) { 1967 num_intfs = new_config->desc.bNumInterfaces; 1968 /* Remove endpoints (except endpoint 0, which is always on the 1969 * schedule) from the old config from the schedule 1970 */ 1971 for (i = 1; i < 16; ++i) { 1972 ep = udev->ep_out[i]; 1973 if (ep) { 1974 ret = hcd->driver->drop_endpoint(hcd, udev, ep); 1975 if (ret < 0) 1976 goto reset; 1977 } 1978 ep = udev->ep_in[i]; 1979 if (ep) { 1980 ret = hcd->driver->drop_endpoint(hcd, udev, ep); 1981 if (ret < 0) 1982 goto reset; 1983 } 1984 } 1985 for (i = 0; i < num_intfs; ++i) { 1986 struct usb_host_interface *first_alt; 1987 int iface_num; 1988 1989 first_alt = &new_config->intf_cache[i]->altsetting[0]; 1990 iface_num = first_alt->desc.bInterfaceNumber; 1991 /* Set up endpoints for alternate interface setting 0 */ 1992 alt = usb_find_alt_setting(new_config, iface_num, 0); 1993 if (!alt) 1994 /* No alt setting 0? Pick the first setting. */ 1995 alt = first_alt; 1996 1997 for (j = 0; j < alt->desc.bNumEndpoints; j++) { 1998 ret = hcd->driver->add_endpoint(hcd, udev, &alt->endpoint[j]); 1999 if (ret < 0) 2000 goto reset; 2001 } 2002 } 2003 } 2004 if (cur_alt && new_alt) { 2005 struct usb_interface *iface = usb_ifnum_to_if(udev, 2006 cur_alt->desc.bInterfaceNumber); 2007 2008 if (!iface) 2009 return -EINVAL; 2010 if (iface->resetting_device) { 2011 /* 2012 * The USB core just reset the device, so the xHCI host 2013 * and the device will think alt setting 0 is installed. 2014 * However, the USB core will pass in the alternate 2015 * setting installed before the reset as cur_alt. Dig 2016 * out the alternate setting 0 structure, or the first 2017 * alternate setting if a broken device doesn't have alt 2018 * setting 0. 2019 */ 2020 cur_alt = usb_altnum_to_altsetting(iface, 0); 2021 if (!cur_alt) 2022 cur_alt = &iface->altsetting[0]; 2023 } 2024 2025 /* Drop all the endpoints in the current alt setting */ 2026 for (i = 0; i < cur_alt->desc.bNumEndpoints; i++) { 2027 ret = hcd->driver->drop_endpoint(hcd, udev, 2028 &cur_alt->endpoint[i]); 2029 if (ret < 0) 2030 goto reset; 2031 } 2032 /* Add all the endpoints in the new alt setting */ 2033 for (i = 0; i < new_alt->desc.bNumEndpoints; i++) { 2034 ret = hcd->driver->add_endpoint(hcd, udev, 2035 &new_alt->endpoint[i]); 2036 if (ret < 0) 2037 goto reset; 2038 } 2039 } 2040 ret = hcd->driver->check_bandwidth(hcd, udev); 2041 reset: 2042 if (ret < 0) 2043 hcd->driver->reset_bandwidth(hcd, udev); 2044 return ret; 2045 } 2046 2047 /* Disables the endpoint: synchronizes with the hcd to make sure all 2048 * endpoint state is gone from hardware. usb_hcd_flush_endpoint() must 2049 * have been called previously. Use for set_configuration, set_interface, 2050 * driver removal, physical disconnect. 2051 * 2052 * example: a qh stored in ep->hcpriv, holding state related to endpoint 2053 * type, maxpacket size, toggle, halt status, and scheduling. 2054 */ 2055 void usb_hcd_disable_endpoint(struct usb_device *udev, 2056 struct usb_host_endpoint *ep) 2057 { 2058 struct usb_hcd *hcd; 2059 2060 might_sleep(); 2061 hcd = bus_to_hcd(udev->bus); 2062 if (hcd->driver->endpoint_disable) 2063 hcd->driver->endpoint_disable(hcd, ep); 2064 } 2065 2066 /** 2067 * usb_hcd_reset_endpoint - reset host endpoint state 2068 * @udev: USB device. 2069 * @ep: the endpoint to reset. 2070 * 2071 * Resets any host endpoint state such as the toggle bit, sequence 2072 * number and current window. 2073 */ 2074 void usb_hcd_reset_endpoint(struct usb_device *udev, 2075 struct usb_host_endpoint *ep) 2076 { 2077 struct usb_hcd *hcd = bus_to_hcd(udev->bus); 2078 2079 if (hcd->driver->endpoint_reset) 2080 hcd->driver->endpoint_reset(hcd, ep); 2081 else { 2082 int epnum = usb_endpoint_num(&ep->desc); 2083 int is_out = usb_endpoint_dir_out(&ep->desc); 2084 int is_control = usb_endpoint_xfer_control(&ep->desc); 2085 2086 usb_settoggle(udev, epnum, is_out, 0); 2087 if (is_control) 2088 usb_settoggle(udev, epnum, !is_out, 0); 2089 } 2090 } 2091 2092 /** 2093 * usb_alloc_streams - allocate bulk endpoint stream IDs. 2094 * @interface: alternate setting that includes all endpoints. 2095 * @eps: array of endpoints that need streams. 2096 * @num_eps: number of endpoints in the array. 2097 * @num_streams: number of streams to allocate. 2098 * @mem_flags: flags hcd should use to allocate memory. 2099 * 2100 * Sets up a group of bulk endpoints to have @num_streams stream IDs available. 2101 * Drivers may queue multiple transfers to different stream IDs, which may 2102 * complete in a different order than they were queued. 2103 * 2104 * Return: On success, the number of allocated streams. On failure, a negative 2105 * error code. 2106 */ 2107 int usb_alloc_streams(struct usb_interface *interface, 2108 struct usb_host_endpoint **eps, unsigned int num_eps, 2109 unsigned int num_streams, gfp_t mem_flags) 2110 { 2111 struct usb_hcd *hcd; 2112 struct usb_device *dev; 2113 int i, ret; 2114 2115 dev = interface_to_usbdev(interface); 2116 hcd = bus_to_hcd(dev->bus); 2117 if (!hcd->driver->alloc_streams || !hcd->driver->free_streams) 2118 return -EINVAL; 2119 if (dev->speed < USB_SPEED_SUPER) 2120 return -EINVAL; 2121 if (dev->state < USB_STATE_CONFIGURED) 2122 return -ENODEV; 2123 2124 for (i = 0; i < num_eps; i++) { 2125 /* Streams only apply to bulk endpoints. */ 2126 if (!usb_endpoint_xfer_bulk(&eps[i]->desc)) 2127 return -EINVAL; 2128 /* Re-alloc is not allowed */ 2129 if (eps[i]->streams) 2130 return -EINVAL; 2131 } 2132 2133 ret = hcd->driver->alloc_streams(hcd, dev, eps, num_eps, 2134 num_streams, mem_flags); 2135 if (ret < 0) 2136 return ret; 2137 2138 for (i = 0; i < num_eps; i++) 2139 eps[i]->streams = ret; 2140 2141 return ret; 2142 } 2143 EXPORT_SYMBOL_GPL(usb_alloc_streams); 2144 2145 /** 2146 * usb_free_streams - free bulk endpoint stream IDs. 2147 * @interface: alternate setting that includes all endpoints. 2148 * @eps: array of endpoints to remove streams from. 2149 * @num_eps: number of endpoints in the array. 2150 * @mem_flags: flags hcd should use to allocate memory. 2151 * 2152 * Reverts a group of bulk endpoints back to not using stream IDs. 2153 * Can fail if we are given bad arguments, or HCD is broken. 2154 * 2155 * Return: 0 on success. On failure, a negative error code. 2156 */ 2157 int usb_free_streams(struct usb_interface *interface, 2158 struct usb_host_endpoint **eps, unsigned int num_eps, 2159 gfp_t mem_flags) 2160 { 2161 struct usb_hcd *hcd; 2162 struct usb_device *dev; 2163 int i, ret; 2164 2165 dev = interface_to_usbdev(interface); 2166 hcd = bus_to_hcd(dev->bus); 2167 if (dev->speed < USB_SPEED_SUPER) 2168 return -EINVAL; 2169 2170 /* Double-free is not allowed */ 2171 for (i = 0; i < num_eps; i++) 2172 if (!eps[i] || !eps[i]->streams) 2173 return -EINVAL; 2174 2175 ret = hcd->driver->free_streams(hcd, dev, eps, num_eps, mem_flags); 2176 if (ret < 0) 2177 return ret; 2178 2179 for (i = 0; i < num_eps; i++) 2180 eps[i]->streams = 0; 2181 2182 return ret; 2183 } 2184 EXPORT_SYMBOL_GPL(usb_free_streams); 2185 2186 /* Protect against drivers that try to unlink URBs after the device 2187 * is gone, by waiting until all unlinks for @udev are finished. 2188 * Since we don't currently track URBs by device, simply wait until 2189 * nothing is running in the locked region of usb_hcd_unlink_urb(). 2190 */ 2191 void usb_hcd_synchronize_unlinks(struct usb_device *udev) 2192 { 2193 spin_lock_irq(&hcd_urb_unlink_lock); 2194 spin_unlock_irq(&hcd_urb_unlink_lock); 2195 } 2196 2197 /*-------------------------------------------------------------------------*/ 2198 2199 /* called in any context */ 2200 int usb_hcd_get_frame_number (struct usb_device *udev) 2201 { 2202 struct usb_hcd *hcd = bus_to_hcd(udev->bus); 2203 2204 if (!HCD_RH_RUNNING(hcd)) 2205 return -ESHUTDOWN; 2206 return hcd->driver->get_frame_number (hcd); 2207 } 2208 2209 /*-------------------------------------------------------------------------*/ 2210 2211 #ifdef CONFIG_PM 2212 2213 int hcd_bus_suspend(struct usb_device *rhdev, pm_message_t msg) 2214 { 2215 struct usb_hcd *hcd = bus_to_hcd(rhdev->bus); 2216 int status; 2217 int old_state = hcd->state; 2218 2219 dev_dbg(&rhdev->dev, "bus %ssuspend, wakeup %d\n", 2220 (PMSG_IS_AUTO(msg) ? "auto-" : ""), 2221 rhdev->do_remote_wakeup); 2222 if (HCD_DEAD(hcd)) { 2223 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "suspend"); 2224 return 0; 2225 } 2226 2227 if (!hcd->driver->bus_suspend) { 2228 status = -ENOENT; 2229 } else { 2230 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2231 hcd->state = HC_STATE_QUIESCING; 2232 status = hcd->driver->bus_suspend(hcd); 2233 } 2234 if (status == 0) { 2235 usb_set_device_state(rhdev, USB_STATE_SUSPENDED); 2236 hcd->state = HC_STATE_SUSPENDED; 2237 2238 if (!PMSG_IS_AUTO(msg)) 2239 usb_phy_roothub_suspend(hcd->self.sysdev, 2240 hcd->phy_roothub); 2241 2242 /* Did we race with a root-hub wakeup event? */ 2243 if (rhdev->do_remote_wakeup) { 2244 char buffer[6]; 2245 2246 status = hcd->driver->hub_status_data(hcd, buffer); 2247 if (status != 0) { 2248 dev_dbg(&rhdev->dev, "suspend raced with wakeup event\n"); 2249 hcd_bus_resume(rhdev, PMSG_AUTO_RESUME); 2250 status = -EBUSY; 2251 } 2252 } 2253 } else { 2254 spin_lock_irq(&hcd_root_hub_lock); 2255 if (!HCD_DEAD(hcd)) { 2256 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2257 hcd->state = old_state; 2258 } 2259 spin_unlock_irq(&hcd_root_hub_lock); 2260 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n", 2261 "suspend", status); 2262 } 2263 return status; 2264 } 2265 2266 int hcd_bus_resume(struct usb_device *rhdev, pm_message_t msg) 2267 { 2268 struct usb_hcd *hcd = bus_to_hcd(rhdev->bus); 2269 int status; 2270 int old_state = hcd->state; 2271 2272 dev_dbg(&rhdev->dev, "usb %sresume\n", 2273 (PMSG_IS_AUTO(msg) ? "auto-" : "")); 2274 if (HCD_DEAD(hcd)) { 2275 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "resume"); 2276 return 0; 2277 } 2278 2279 if (!PMSG_IS_AUTO(msg)) { 2280 status = usb_phy_roothub_resume(hcd->self.sysdev, 2281 hcd->phy_roothub); 2282 if (status) 2283 return status; 2284 } 2285 2286 if (!hcd->driver->bus_resume) 2287 return -ENOENT; 2288 if (HCD_RH_RUNNING(hcd)) 2289 return 0; 2290 2291 hcd->state = HC_STATE_RESUMING; 2292 status = hcd->driver->bus_resume(hcd); 2293 clear_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags); 2294 if (status == 0) { 2295 struct usb_device *udev; 2296 int port1; 2297 2298 spin_lock_irq(&hcd_root_hub_lock); 2299 if (!HCD_DEAD(hcd)) { 2300 usb_set_device_state(rhdev, rhdev->actconfig 2301 ? USB_STATE_CONFIGURED 2302 : USB_STATE_ADDRESS); 2303 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2304 hcd->state = HC_STATE_RUNNING; 2305 } 2306 spin_unlock_irq(&hcd_root_hub_lock); 2307 2308 /* 2309 * Check whether any of the enabled ports on the root hub are 2310 * unsuspended. If they are then a TRSMRCY delay is needed 2311 * (this is what the USB-2 spec calls a "global resume"). 2312 * Otherwise we can skip the delay. 2313 */ 2314 usb_hub_for_each_child(rhdev, port1, udev) { 2315 if (udev->state != USB_STATE_NOTATTACHED && 2316 !udev->port_is_suspended) { 2317 usleep_range(10000, 11000); /* TRSMRCY */ 2318 break; 2319 } 2320 } 2321 } else { 2322 hcd->state = old_state; 2323 usb_phy_roothub_suspend(hcd->self.sysdev, hcd->phy_roothub); 2324 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n", 2325 "resume", status); 2326 if (status != -ESHUTDOWN) 2327 usb_hc_died(hcd); 2328 } 2329 return status; 2330 } 2331 2332 /* Workqueue routine for root-hub remote wakeup */ 2333 static void hcd_resume_work(struct work_struct *work) 2334 { 2335 struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work); 2336 struct usb_device *udev = hcd->self.root_hub; 2337 2338 usb_remote_wakeup(udev); 2339 } 2340 2341 /** 2342 * usb_hcd_resume_root_hub - called by HCD to resume its root hub 2343 * @hcd: host controller for this root hub 2344 * 2345 * The USB host controller calls this function when its root hub is 2346 * suspended (with the remote wakeup feature enabled) and a remote 2347 * wakeup request is received. The routine submits a workqueue request 2348 * to resume the root hub (that is, manage its downstream ports again). 2349 */ 2350 void usb_hcd_resume_root_hub (struct usb_hcd *hcd) 2351 { 2352 unsigned long flags; 2353 2354 spin_lock_irqsave (&hcd_root_hub_lock, flags); 2355 if (hcd->rh_registered) { 2356 pm_wakeup_event(&hcd->self.root_hub->dev, 0); 2357 set_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags); 2358 queue_work(pm_wq, &hcd->wakeup_work); 2359 } 2360 spin_unlock_irqrestore (&hcd_root_hub_lock, flags); 2361 } 2362 EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub); 2363 2364 #endif /* CONFIG_PM */ 2365 2366 /*-------------------------------------------------------------------------*/ 2367 2368 #ifdef CONFIG_USB_OTG 2369 2370 /** 2371 * usb_bus_start_enum - start immediate enumeration (for OTG) 2372 * @bus: the bus (must use hcd framework) 2373 * @port_num: 1-based number of port; usually bus->otg_port 2374 * Context: in_interrupt() 2375 * 2376 * Starts enumeration, with an immediate reset followed later by 2377 * hub_wq identifying and possibly configuring the device. 2378 * This is needed by OTG controller drivers, where it helps meet 2379 * HNP protocol timing requirements for starting a port reset. 2380 * 2381 * Return: 0 if successful. 2382 */ 2383 int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num) 2384 { 2385 struct usb_hcd *hcd; 2386 int status = -EOPNOTSUPP; 2387 2388 /* NOTE: since HNP can't start by grabbing the bus's address0_sem, 2389 * boards with root hubs hooked up to internal devices (instead of 2390 * just the OTG port) may need more attention to resetting... 2391 */ 2392 hcd = bus_to_hcd(bus); 2393 if (port_num && hcd->driver->start_port_reset) 2394 status = hcd->driver->start_port_reset(hcd, port_num); 2395 2396 /* allocate hub_wq shortly after (first) root port reset finishes; 2397 * it may issue others, until at least 50 msecs have passed. 2398 */ 2399 if (status == 0) 2400 mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10)); 2401 return status; 2402 } 2403 EXPORT_SYMBOL_GPL(usb_bus_start_enum); 2404 2405 #endif 2406 2407 /*-------------------------------------------------------------------------*/ 2408 2409 /** 2410 * usb_hcd_irq - hook IRQs to HCD framework (bus glue) 2411 * @irq: the IRQ being raised 2412 * @__hcd: pointer to the HCD whose IRQ is being signaled 2413 * 2414 * If the controller isn't HALTed, calls the driver's irq handler. 2415 * Checks whether the controller is now dead. 2416 * 2417 * Return: %IRQ_HANDLED if the IRQ was handled. %IRQ_NONE otherwise. 2418 */ 2419 irqreturn_t usb_hcd_irq (int irq, void *__hcd) 2420 { 2421 struct usb_hcd *hcd = __hcd; 2422 irqreturn_t rc; 2423 2424 if (unlikely(HCD_DEAD(hcd) || !HCD_HW_ACCESSIBLE(hcd))) 2425 rc = IRQ_NONE; 2426 else if (hcd->driver->irq(hcd) == IRQ_NONE) 2427 rc = IRQ_NONE; 2428 else 2429 rc = IRQ_HANDLED; 2430 2431 return rc; 2432 } 2433 EXPORT_SYMBOL_GPL(usb_hcd_irq); 2434 2435 /*-------------------------------------------------------------------------*/ 2436 2437 /* Workqueue routine for when the root-hub has died. */ 2438 static void hcd_died_work(struct work_struct *work) 2439 { 2440 struct usb_hcd *hcd = container_of(work, struct usb_hcd, died_work); 2441 static char *env[] = { 2442 "ERROR=DEAD", 2443 NULL 2444 }; 2445 2446 /* Notify user space that the host controller has died */ 2447 kobject_uevent_env(&hcd->self.root_hub->dev.kobj, KOBJ_OFFLINE, env); 2448 } 2449 2450 /** 2451 * usb_hc_died - report abnormal shutdown of a host controller (bus glue) 2452 * @hcd: pointer to the HCD representing the controller 2453 * 2454 * This is called by bus glue to report a USB host controller that died 2455 * while operations may still have been pending. It's called automatically 2456 * by the PCI glue, so only glue for non-PCI busses should need to call it. 2457 * 2458 * Only call this function with the primary HCD. 2459 */ 2460 void usb_hc_died (struct usb_hcd *hcd) 2461 { 2462 unsigned long flags; 2463 2464 dev_err (hcd->self.controller, "HC died; cleaning up\n"); 2465 2466 spin_lock_irqsave (&hcd_root_hub_lock, flags); 2467 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2468 set_bit(HCD_FLAG_DEAD, &hcd->flags); 2469 if (hcd->rh_registered) { 2470 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2471 2472 /* make hub_wq clean up old urbs and devices */ 2473 usb_set_device_state (hcd->self.root_hub, 2474 USB_STATE_NOTATTACHED); 2475 usb_kick_hub_wq(hcd->self.root_hub); 2476 } 2477 if (usb_hcd_is_primary_hcd(hcd) && hcd->shared_hcd) { 2478 hcd = hcd->shared_hcd; 2479 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2480 set_bit(HCD_FLAG_DEAD, &hcd->flags); 2481 if (hcd->rh_registered) { 2482 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2483 2484 /* make hub_wq clean up old urbs and devices */ 2485 usb_set_device_state(hcd->self.root_hub, 2486 USB_STATE_NOTATTACHED); 2487 usb_kick_hub_wq(hcd->self.root_hub); 2488 } 2489 } 2490 2491 /* Handle the case where this function gets called with a shared HCD */ 2492 if (usb_hcd_is_primary_hcd(hcd)) 2493 schedule_work(&hcd->died_work); 2494 else 2495 schedule_work(&hcd->primary_hcd->died_work); 2496 2497 spin_unlock_irqrestore (&hcd_root_hub_lock, flags); 2498 /* Make sure that the other roothub is also deallocated. */ 2499 } 2500 EXPORT_SYMBOL_GPL (usb_hc_died); 2501 2502 /*-------------------------------------------------------------------------*/ 2503 2504 static void init_giveback_urb_bh(struct giveback_urb_bh *bh) 2505 { 2506 2507 spin_lock_init(&bh->lock); 2508 INIT_LIST_HEAD(&bh->head); 2509 tasklet_init(&bh->bh, usb_giveback_urb_bh, (unsigned long)bh); 2510 } 2511 2512 struct usb_hcd *__usb_create_hcd(const struct hc_driver *driver, 2513 struct device *sysdev, struct device *dev, const char *bus_name, 2514 struct usb_hcd *primary_hcd) 2515 { 2516 struct usb_hcd *hcd; 2517 2518 hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL); 2519 if (!hcd) 2520 return NULL; 2521 if (primary_hcd == NULL) { 2522 hcd->address0_mutex = kmalloc(sizeof(*hcd->address0_mutex), 2523 GFP_KERNEL); 2524 if (!hcd->address0_mutex) { 2525 kfree(hcd); 2526 dev_dbg(dev, "hcd address0 mutex alloc failed\n"); 2527 return NULL; 2528 } 2529 mutex_init(hcd->address0_mutex); 2530 hcd->bandwidth_mutex = kmalloc(sizeof(*hcd->bandwidth_mutex), 2531 GFP_KERNEL); 2532 if (!hcd->bandwidth_mutex) { 2533 kfree(hcd->address0_mutex); 2534 kfree(hcd); 2535 dev_dbg(dev, "hcd bandwidth mutex alloc failed\n"); 2536 return NULL; 2537 } 2538 mutex_init(hcd->bandwidth_mutex); 2539 dev_set_drvdata(dev, hcd); 2540 } else { 2541 mutex_lock(&usb_port_peer_mutex); 2542 hcd->address0_mutex = primary_hcd->address0_mutex; 2543 hcd->bandwidth_mutex = primary_hcd->bandwidth_mutex; 2544 hcd->primary_hcd = primary_hcd; 2545 primary_hcd->primary_hcd = primary_hcd; 2546 hcd->shared_hcd = primary_hcd; 2547 primary_hcd->shared_hcd = hcd; 2548 mutex_unlock(&usb_port_peer_mutex); 2549 } 2550 2551 kref_init(&hcd->kref); 2552 2553 usb_bus_init(&hcd->self); 2554 hcd->self.controller = dev; 2555 hcd->self.sysdev = sysdev; 2556 hcd->self.bus_name = bus_name; 2557 hcd->self.uses_dma = (sysdev->dma_mask != NULL); 2558 2559 timer_setup(&hcd->rh_timer, rh_timer_func, 0); 2560 #ifdef CONFIG_PM 2561 INIT_WORK(&hcd->wakeup_work, hcd_resume_work); 2562 #endif 2563 2564 INIT_WORK(&hcd->died_work, hcd_died_work); 2565 2566 hcd->driver = driver; 2567 hcd->speed = driver->flags & HCD_MASK; 2568 hcd->product_desc = (driver->product_desc) ? driver->product_desc : 2569 "USB Host Controller"; 2570 return hcd; 2571 } 2572 EXPORT_SYMBOL_GPL(__usb_create_hcd); 2573 2574 /** 2575 * usb_create_shared_hcd - create and initialize an HCD structure 2576 * @driver: HC driver that will use this hcd 2577 * @dev: device for this HC, stored in hcd->self.controller 2578 * @bus_name: value to store in hcd->self.bus_name 2579 * @primary_hcd: a pointer to the usb_hcd structure that is sharing the 2580 * PCI device. Only allocate certain resources for the primary HCD 2581 * Context: !in_interrupt() 2582 * 2583 * Allocate a struct usb_hcd, with extra space at the end for the 2584 * HC driver's private data. Initialize the generic members of the 2585 * hcd structure. 2586 * 2587 * Return: On success, a pointer to the created and initialized HCD structure. 2588 * On failure (e.g. if memory is unavailable), %NULL. 2589 */ 2590 struct usb_hcd *usb_create_shared_hcd(const struct hc_driver *driver, 2591 struct device *dev, const char *bus_name, 2592 struct usb_hcd *primary_hcd) 2593 { 2594 return __usb_create_hcd(driver, dev, dev, bus_name, primary_hcd); 2595 } 2596 EXPORT_SYMBOL_GPL(usb_create_shared_hcd); 2597 2598 /** 2599 * usb_create_hcd - create and initialize an HCD structure 2600 * @driver: HC driver that will use this hcd 2601 * @dev: device for this HC, stored in hcd->self.controller 2602 * @bus_name: value to store in hcd->self.bus_name 2603 * Context: !in_interrupt() 2604 * 2605 * Allocate a struct usb_hcd, with extra space at the end for the 2606 * HC driver's private data. Initialize the generic members of the 2607 * hcd structure. 2608 * 2609 * Return: On success, a pointer to the created and initialized HCD 2610 * structure. On failure (e.g. if memory is unavailable), %NULL. 2611 */ 2612 struct usb_hcd *usb_create_hcd(const struct hc_driver *driver, 2613 struct device *dev, const char *bus_name) 2614 { 2615 return __usb_create_hcd(driver, dev, dev, bus_name, NULL); 2616 } 2617 EXPORT_SYMBOL_GPL(usb_create_hcd); 2618 2619 /* 2620 * Roothubs that share one PCI device must also share the bandwidth mutex. 2621 * Don't deallocate the bandwidth_mutex until the last shared usb_hcd is 2622 * deallocated. 2623 * 2624 * Make sure to deallocate the bandwidth_mutex only when the last HCD is 2625 * freed. When hcd_release() is called for either hcd in a peer set, 2626 * invalidate the peer's ->shared_hcd and ->primary_hcd pointers. 2627 */ 2628 static void hcd_release(struct kref *kref) 2629 { 2630 struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref); 2631 2632 mutex_lock(&usb_port_peer_mutex); 2633 if (hcd->shared_hcd) { 2634 struct usb_hcd *peer = hcd->shared_hcd; 2635 2636 peer->shared_hcd = NULL; 2637 peer->primary_hcd = NULL; 2638 } else { 2639 kfree(hcd->address0_mutex); 2640 kfree(hcd->bandwidth_mutex); 2641 } 2642 mutex_unlock(&usb_port_peer_mutex); 2643 kfree(hcd); 2644 } 2645 2646 struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd) 2647 { 2648 if (hcd) 2649 kref_get (&hcd->kref); 2650 return hcd; 2651 } 2652 EXPORT_SYMBOL_GPL(usb_get_hcd); 2653 2654 void usb_put_hcd (struct usb_hcd *hcd) 2655 { 2656 if (hcd) 2657 kref_put (&hcd->kref, hcd_release); 2658 } 2659 EXPORT_SYMBOL_GPL(usb_put_hcd); 2660 2661 int usb_hcd_is_primary_hcd(struct usb_hcd *hcd) 2662 { 2663 if (!hcd->primary_hcd) 2664 return 1; 2665 return hcd == hcd->primary_hcd; 2666 } 2667 EXPORT_SYMBOL_GPL(usb_hcd_is_primary_hcd); 2668 2669 int usb_hcd_find_raw_port_number(struct usb_hcd *hcd, int port1) 2670 { 2671 if (!hcd->driver->find_raw_port_number) 2672 return port1; 2673 2674 return hcd->driver->find_raw_port_number(hcd, port1); 2675 } 2676 2677 static int usb_hcd_request_irqs(struct usb_hcd *hcd, 2678 unsigned int irqnum, unsigned long irqflags) 2679 { 2680 int retval; 2681 2682 if (hcd->driver->irq) { 2683 2684 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d", 2685 hcd->driver->description, hcd->self.busnum); 2686 retval = request_irq(irqnum, &usb_hcd_irq, irqflags, 2687 hcd->irq_descr, hcd); 2688 if (retval != 0) { 2689 dev_err(hcd->self.controller, 2690 "request interrupt %d failed\n", 2691 irqnum); 2692 return retval; 2693 } 2694 hcd->irq = irqnum; 2695 dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum, 2696 (hcd->driver->flags & HCD_MEMORY) ? 2697 "io mem" : "io base", 2698 (unsigned long long)hcd->rsrc_start); 2699 } else { 2700 hcd->irq = 0; 2701 if (hcd->rsrc_start) 2702 dev_info(hcd->self.controller, "%s 0x%08llx\n", 2703 (hcd->driver->flags & HCD_MEMORY) ? 2704 "io mem" : "io base", 2705 (unsigned long long)hcd->rsrc_start); 2706 } 2707 return 0; 2708 } 2709 2710 /* 2711 * Before we free this root hub, flush in-flight peering attempts 2712 * and disable peer lookups 2713 */ 2714 static void usb_put_invalidate_rhdev(struct usb_hcd *hcd) 2715 { 2716 struct usb_device *rhdev; 2717 2718 mutex_lock(&usb_port_peer_mutex); 2719 rhdev = hcd->self.root_hub; 2720 hcd->self.root_hub = NULL; 2721 mutex_unlock(&usb_port_peer_mutex); 2722 usb_put_dev(rhdev); 2723 } 2724 2725 /** 2726 * usb_add_hcd - finish generic HCD structure initialization and register 2727 * @hcd: the usb_hcd structure to initialize 2728 * @irqnum: Interrupt line to allocate 2729 * @irqflags: Interrupt type flags 2730 * 2731 * Finish the remaining parts of generic HCD initialization: allocate the 2732 * buffers of consistent memory, register the bus, request the IRQ line, 2733 * and call the driver's reset() and start() routines. 2734 */ 2735 int usb_add_hcd(struct usb_hcd *hcd, 2736 unsigned int irqnum, unsigned long irqflags) 2737 { 2738 int retval; 2739 struct usb_device *rhdev; 2740 2741 if (!hcd->skip_phy_initialization && usb_hcd_is_primary_hcd(hcd)) { 2742 hcd->phy_roothub = usb_phy_roothub_alloc(hcd->self.sysdev); 2743 if (IS_ERR(hcd->phy_roothub)) 2744 return PTR_ERR(hcd->phy_roothub); 2745 2746 retval = usb_phy_roothub_init(hcd->phy_roothub); 2747 if (retval) 2748 return retval; 2749 2750 retval = usb_phy_roothub_set_mode(hcd->phy_roothub, 2751 PHY_MODE_USB_HOST_SS); 2752 if (retval) 2753 retval = usb_phy_roothub_set_mode(hcd->phy_roothub, 2754 PHY_MODE_USB_HOST); 2755 if (retval) 2756 goto err_usb_phy_roothub_power_on; 2757 2758 retval = usb_phy_roothub_power_on(hcd->phy_roothub); 2759 if (retval) 2760 goto err_usb_phy_roothub_power_on; 2761 } 2762 2763 dev_info(hcd->self.controller, "%s\n", hcd->product_desc); 2764 2765 switch (authorized_default) { 2766 case USB_AUTHORIZE_NONE: 2767 hcd->dev_policy = USB_DEVICE_AUTHORIZE_NONE; 2768 break; 2769 2770 case USB_AUTHORIZE_ALL: 2771 hcd->dev_policy = USB_DEVICE_AUTHORIZE_ALL; 2772 break; 2773 2774 case USB_AUTHORIZE_INTERNAL: 2775 hcd->dev_policy = USB_DEVICE_AUTHORIZE_INTERNAL; 2776 break; 2777 2778 case USB_AUTHORIZE_WIRED: 2779 default: 2780 hcd->dev_policy = hcd->wireless ? 2781 USB_DEVICE_AUTHORIZE_NONE : USB_DEVICE_AUTHORIZE_ALL; 2782 break; 2783 } 2784 2785 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 2786 2787 /* per default all interfaces are authorized */ 2788 set_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags); 2789 2790 /* HC is in reset state, but accessible. Now do the one-time init, 2791 * bottom up so that hcds can customize the root hubs before hub_wq 2792 * starts talking to them. (Note, bus id is assigned early too.) 2793 */ 2794 retval = hcd_buffer_create(hcd); 2795 if (retval != 0) { 2796 dev_dbg(hcd->self.sysdev, "pool alloc failed\n"); 2797 goto err_create_buf; 2798 } 2799 2800 retval = usb_register_bus(&hcd->self); 2801 if (retval < 0) 2802 goto err_register_bus; 2803 2804 rhdev = usb_alloc_dev(NULL, &hcd->self, 0); 2805 if (rhdev == NULL) { 2806 dev_err(hcd->self.sysdev, "unable to allocate root hub\n"); 2807 retval = -ENOMEM; 2808 goto err_allocate_root_hub; 2809 } 2810 mutex_lock(&usb_port_peer_mutex); 2811 hcd->self.root_hub = rhdev; 2812 mutex_unlock(&usb_port_peer_mutex); 2813 2814 rhdev->rx_lanes = 1; 2815 rhdev->tx_lanes = 1; 2816 2817 switch (hcd->speed) { 2818 case HCD_USB11: 2819 rhdev->speed = USB_SPEED_FULL; 2820 break; 2821 case HCD_USB2: 2822 rhdev->speed = USB_SPEED_HIGH; 2823 break; 2824 case HCD_USB25: 2825 rhdev->speed = USB_SPEED_WIRELESS; 2826 break; 2827 case HCD_USB3: 2828 rhdev->speed = USB_SPEED_SUPER; 2829 break; 2830 case HCD_USB32: 2831 rhdev->rx_lanes = 2; 2832 rhdev->tx_lanes = 2; 2833 /* fall through */ 2834 case HCD_USB31: 2835 rhdev->speed = USB_SPEED_SUPER_PLUS; 2836 break; 2837 default: 2838 retval = -EINVAL; 2839 goto err_set_rh_speed; 2840 } 2841 2842 /* wakeup flag init defaults to "everything works" for root hubs, 2843 * but drivers can override it in reset() if needed, along with 2844 * recording the overall controller's system wakeup capability. 2845 */ 2846 device_set_wakeup_capable(&rhdev->dev, 1); 2847 2848 /* HCD_FLAG_RH_RUNNING doesn't matter until the root hub is 2849 * registered. But since the controller can die at any time, 2850 * let's initialize the flag before touching the hardware. 2851 */ 2852 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2853 2854 /* "reset" is misnamed; its role is now one-time init. the controller 2855 * should already have been reset (and boot firmware kicked off etc). 2856 */ 2857 if (hcd->driver->reset) { 2858 retval = hcd->driver->reset(hcd); 2859 if (retval < 0) { 2860 dev_err(hcd->self.controller, "can't setup: %d\n", 2861 retval); 2862 goto err_hcd_driver_setup; 2863 } 2864 } 2865 hcd->rh_pollable = 1; 2866 2867 /* NOTE: root hub and controller capabilities may not be the same */ 2868 if (device_can_wakeup(hcd->self.controller) 2869 && device_can_wakeup(&hcd->self.root_hub->dev)) 2870 dev_dbg(hcd->self.controller, "supports USB remote wakeup\n"); 2871 2872 /* initialize tasklets */ 2873 init_giveback_urb_bh(&hcd->high_prio_bh); 2874 init_giveback_urb_bh(&hcd->low_prio_bh); 2875 2876 /* enable irqs just before we start the controller, 2877 * if the BIOS provides legacy PCI irqs. 2878 */ 2879 if (usb_hcd_is_primary_hcd(hcd) && irqnum) { 2880 retval = usb_hcd_request_irqs(hcd, irqnum, irqflags); 2881 if (retval) 2882 goto err_request_irq; 2883 } 2884 2885 hcd->state = HC_STATE_RUNNING; 2886 retval = hcd->driver->start(hcd); 2887 if (retval < 0) { 2888 dev_err(hcd->self.controller, "startup error %d\n", retval); 2889 goto err_hcd_driver_start; 2890 } 2891 2892 /* starting here, usbcore will pay attention to this root hub */ 2893 retval = register_root_hub(hcd); 2894 if (retval != 0) 2895 goto err_register_root_hub; 2896 2897 retval = sysfs_create_group(&rhdev->dev.kobj, &usb_bus_attr_group); 2898 if (retval < 0) { 2899 printk(KERN_ERR "Cannot register USB bus sysfs attributes: %d\n", 2900 retval); 2901 goto error_create_attr_group; 2902 } 2903 if (hcd->uses_new_polling && HCD_POLL_RH(hcd)) 2904 usb_hcd_poll_rh_status(hcd); 2905 2906 return retval; 2907 2908 error_create_attr_group: 2909 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2910 if (HC_IS_RUNNING(hcd->state)) 2911 hcd->state = HC_STATE_QUIESCING; 2912 spin_lock_irq(&hcd_root_hub_lock); 2913 hcd->rh_registered = 0; 2914 spin_unlock_irq(&hcd_root_hub_lock); 2915 2916 #ifdef CONFIG_PM 2917 cancel_work_sync(&hcd->wakeup_work); 2918 #endif 2919 cancel_work_sync(&hcd->died_work); 2920 mutex_lock(&usb_bus_idr_lock); 2921 usb_disconnect(&rhdev); /* Sets rhdev to NULL */ 2922 mutex_unlock(&usb_bus_idr_lock); 2923 err_register_root_hub: 2924 hcd->rh_pollable = 0; 2925 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2926 del_timer_sync(&hcd->rh_timer); 2927 hcd->driver->stop(hcd); 2928 hcd->state = HC_STATE_HALT; 2929 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2930 del_timer_sync(&hcd->rh_timer); 2931 err_hcd_driver_start: 2932 if (usb_hcd_is_primary_hcd(hcd) && hcd->irq > 0) 2933 free_irq(irqnum, hcd); 2934 err_request_irq: 2935 err_hcd_driver_setup: 2936 err_set_rh_speed: 2937 usb_put_invalidate_rhdev(hcd); 2938 err_allocate_root_hub: 2939 usb_deregister_bus(&hcd->self); 2940 err_register_bus: 2941 hcd_buffer_destroy(hcd); 2942 err_create_buf: 2943 usb_phy_roothub_power_off(hcd->phy_roothub); 2944 err_usb_phy_roothub_power_on: 2945 usb_phy_roothub_exit(hcd->phy_roothub); 2946 2947 return retval; 2948 } 2949 EXPORT_SYMBOL_GPL(usb_add_hcd); 2950 2951 /** 2952 * usb_remove_hcd - shutdown processing for generic HCDs 2953 * @hcd: the usb_hcd structure to remove 2954 * Context: !in_interrupt() 2955 * 2956 * Disconnects the root hub, then reverses the effects of usb_add_hcd(), 2957 * invoking the HCD's stop() method. 2958 */ 2959 void usb_remove_hcd(struct usb_hcd *hcd) 2960 { 2961 struct usb_device *rhdev = hcd->self.root_hub; 2962 2963 dev_info(hcd->self.controller, "remove, state %x\n", hcd->state); 2964 2965 usb_get_dev(rhdev); 2966 sysfs_remove_group(&rhdev->dev.kobj, &usb_bus_attr_group); 2967 2968 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2969 if (HC_IS_RUNNING (hcd->state)) 2970 hcd->state = HC_STATE_QUIESCING; 2971 2972 dev_dbg(hcd->self.controller, "roothub graceful disconnect\n"); 2973 spin_lock_irq (&hcd_root_hub_lock); 2974 hcd->rh_registered = 0; 2975 spin_unlock_irq (&hcd_root_hub_lock); 2976 2977 #ifdef CONFIG_PM 2978 cancel_work_sync(&hcd->wakeup_work); 2979 #endif 2980 cancel_work_sync(&hcd->died_work); 2981 2982 mutex_lock(&usb_bus_idr_lock); 2983 usb_disconnect(&rhdev); /* Sets rhdev to NULL */ 2984 mutex_unlock(&usb_bus_idr_lock); 2985 2986 /* 2987 * tasklet_kill() isn't needed here because: 2988 * - driver's disconnect() called from usb_disconnect() should 2989 * make sure its URBs are completed during the disconnect() 2990 * callback 2991 * 2992 * - it is too late to run complete() here since driver may have 2993 * been removed already now 2994 */ 2995 2996 /* Prevent any more root-hub status calls from the timer. 2997 * The HCD might still restart the timer (if a port status change 2998 * interrupt occurs), but usb_hcd_poll_rh_status() won't invoke 2999 * the hub_status_data() callback. 3000 */ 3001 hcd->rh_pollable = 0; 3002 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 3003 del_timer_sync(&hcd->rh_timer); 3004 3005 hcd->driver->stop(hcd); 3006 hcd->state = HC_STATE_HALT; 3007 3008 /* In case the HCD restarted the timer, stop it again. */ 3009 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 3010 del_timer_sync(&hcd->rh_timer); 3011 3012 if (usb_hcd_is_primary_hcd(hcd)) { 3013 if (hcd->irq > 0) 3014 free_irq(hcd->irq, hcd); 3015 } 3016 3017 usb_deregister_bus(&hcd->self); 3018 hcd_buffer_destroy(hcd); 3019 3020 usb_phy_roothub_power_off(hcd->phy_roothub); 3021 usb_phy_roothub_exit(hcd->phy_roothub); 3022 3023 usb_put_invalidate_rhdev(hcd); 3024 hcd->flags = 0; 3025 } 3026 EXPORT_SYMBOL_GPL(usb_remove_hcd); 3027 3028 void 3029 usb_hcd_platform_shutdown(struct platform_device *dev) 3030 { 3031 struct usb_hcd *hcd = platform_get_drvdata(dev); 3032 3033 /* No need for pm_runtime_put(), we're shutting down */ 3034 pm_runtime_get_sync(&dev->dev); 3035 3036 if (hcd->driver->shutdown) 3037 hcd->driver->shutdown(hcd); 3038 } 3039 EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown); 3040 3041 int usb_hcd_setup_local_mem(struct usb_hcd *hcd, phys_addr_t phys_addr, 3042 dma_addr_t dma, size_t size) 3043 { 3044 int err; 3045 void *local_mem; 3046 3047 hcd->localmem_pool = devm_gen_pool_create(hcd->self.sysdev, 4, 3048 dev_to_node(hcd->self.sysdev), 3049 dev_name(hcd->self.sysdev)); 3050 if (IS_ERR(hcd->localmem_pool)) 3051 return PTR_ERR(hcd->localmem_pool); 3052 3053 local_mem = devm_memremap(hcd->self.sysdev, phys_addr, 3054 size, MEMREMAP_WC); 3055 if (IS_ERR(local_mem)) 3056 return PTR_ERR(local_mem); 3057 3058 /* 3059 * Here we pass a dma_addr_t but the arg type is a phys_addr_t. 3060 * It's not backed by system memory and thus there's no kernel mapping 3061 * for it. 3062 */ 3063 err = gen_pool_add_virt(hcd->localmem_pool, (unsigned long)local_mem, 3064 dma, size, dev_to_node(hcd->self.sysdev)); 3065 if (err < 0) { 3066 dev_err(hcd->self.sysdev, "gen_pool_add_virt failed with %d\n", 3067 err); 3068 return err; 3069 } 3070 3071 return 0; 3072 } 3073 EXPORT_SYMBOL_GPL(usb_hcd_setup_local_mem); 3074 3075 /*-------------------------------------------------------------------------*/ 3076 3077 #if IS_ENABLED(CONFIG_USB_MON) 3078 3079 const struct usb_mon_operations *mon_ops; 3080 3081 /* 3082 * The registration is unlocked. 3083 * We do it this way because we do not want to lock in hot paths. 3084 * 3085 * Notice that the code is minimally error-proof. Because usbmon needs 3086 * symbols from usbcore, usbcore gets referenced and cannot be unloaded first. 3087 */ 3088 3089 int usb_mon_register(const struct usb_mon_operations *ops) 3090 { 3091 3092 if (mon_ops) 3093 return -EBUSY; 3094 3095 mon_ops = ops; 3096 mb(); 3097 return 0; 3098 } 3099 EXPORT_SYMBOL_GPL (usb_mon_register); 3100 3101 void usb_mon_deregister (void) 3102 { 3103 3104 if (mon_ops == NULL) { 3105 printk(KERN_ERR "USB: monitor was not registered\n"); 3106 return; 3107 } 3108 mon_ops = NULL; 3109 mb(); 3110 } 3111 EXPORT_SYMBOL_GPL (usb_mon_deregister); 3112 3113 #endif /* CONFIG_USB_MON || CONFIG_USB_MON_MODULE */ 3114