1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * (C) Copyright Linus Torvalds 1999 4 * (C) Copyright Johannes Erdfelt 1999-2001 5 * (C) Copyright Andreas Gal 1999 6 * (C) Copyright Gregory P. Smith 1999 7 * (C) Copyright Deti Fliegl 1999 8 * (C) Copyright Randy Dunlap 2000 9 * (C) Copyright David Brownell 2000-2002 10 */ 11 12 #include <linux/bcd.h> 13 #include <linux/module.h> 14 #include <linux/version.h> 15 #include <linux/kernel.h> 16 #include <linux/sched/task_stack.h> 17 #include <linux/slab.h> 18 #include <linux/completion.h> 19 #include <linux/utsname.h> 20 #include <linux/mm.h> 21 #include <asm/io.h> 22 #include <linux/device.h> 23 #include <linux/dma-mapping.h> 24 #include <linux/mutex.h> 25 #include <asm/irq.h> 26 #include <asm/byteorder.h> 27 #include <asm/unaligned.h> 28 #include <linux/platform_device.h> 29 #include <linux/workqueue.h> 30 #include <linux/pm_runtime.h> 31 #include <linux/types.h> 32 #include <linux/genalloc.h> 33 #include <linux/io.h> 34 #include <linux/kcov.h> 35 36 #include <linux/phy/phy.h> 37 #include <linux/usb.h> 38 #include <linux/usb/hcd.h> 39 #include <linux/usb/otg.h> 40 41 #include "usb.h" 42 #include "phy.h" 43 44 45 /*-------------------------------------------------------------------------*/ 46 47 /* 48 * USB Host Controller Driver framework 49 * 50 * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing 51 * HCD-specific behaviors/bugs. 52 * 53 * This does error checks, tracks devices and urbs, and delegates to a 54 * "hc_driver" only for code (and data) that really needs to know about 55 * hardware differences. That includes root hub registers, i/o queues, 56 * and so on ... but as little else as possible. 57 * 58 * Shared code includes most of the "root hub" code (these are emulated, 59 * though each HC's hardware works differently) and PCI glue, plus request 60 * tracking overhead. The HCD code should only block on spinlocks or on 61 * hardware handshaking; blocking on software events (such as other kernel 62 * threads releasing resources, or completing actions) is all generic. 63 * 64 * Happens the USB 2.0 spec says this would be invisible inside the "USBD", 65 * and includes mostly a "HCDI" (HCD Interface) along with some APIs used 66 * only by the hub driver ... and that neither should be seen or used by 67 * usb client device drivers. 68 * 69 * Contributors of ideas or unattributed patches include: David Brownell, 70 * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ... 71 * 72 * HISTORY: 73 * 2002-02-21 Pull in most of the usb_bus support from usb.c; some 74 * associated cleanup. "usb_hcd" still != "usb_bus". 75 * 2001-12-12 Initial patch version for Linux 2.5.1 kernel. 76 */ 77 78 /*-------------------------------------------------------------------------*/ 79 80 /* Keep track of which host controller drivers are loaded */ 81 unsigned long usb_hcds_loaded; 82 EXPORT_SYMBOL_GPL(usb_hcds_loaded); 83 84 /* host controllers we manage */ 85 DEFINE_IDR (usb_bus_idr); 86 EXPORT_SYMBOL_GPL (usb_bus_idr); 87 88 /* used when allocating bus numbers */ 89 #define USB_MAXBUS 64 90 91 /* used when updating list of hcds */ 92 DEFINE_MUTEX(usb_bus_idr_lock); /* exported only for usbfs */ 93 EXPORT_SYMBOL_GPL (usb_bus_idr_lock); 94 95 /* used for controlling access to virtual root hubs */ 96 static DEFINE_SPINLOCK(hcd_root_hub_lock); 97 98 /* used when updating an endpoint's URB list */ 99 static DEFINE_SPINLOCK(hcd_urb_list_lock); 100 101 /* used to protect against unlinking URBs after the device is gone */ 102 static DEFINE_SPINLOCK(hcd_urb_unlink_lock); 103 104 /* wait queue for synchronous unlinks */ 105 DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue); 106 107 /*-------------------------------------------------------------------------*/ 108 109 /* 110 * Sharable chunks of root hub code. 111 */ 112 113 /*-------------------------------------------------------------------------*/ 114 #define KERNEL_REL bin2bcd(LINUX_VERSION_MAJOR) 115 #define KERNEL_VER bin2bcd(LINUX_VERSION_PATCHLEVEL) 116 117 /* usb 3.1 root hub device descriptor */ 118 static const u8 usb31_rh_dev_descriptor[18] = { 119 0x12, /* __u8 bLength; */ 120 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */ 121 0x10, 0x03, /* __le16 bcdUSB; v3.1 */ 122 123 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */ 124 0x00, /* __u8 bDeviceSubClass; */ 125 0x03, /* __u8 bDeviceProtocol; USB 3 hub */ 126 0x09, /* __u8 bMaxPacketSize0; 2^9 = 512 Bytes */ 127 128 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */ 129 0x03, 0x00, /* __le16 idProduct; device 0x0003 */ 130 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */ 131 132 0x03, /* __u8 iManufacturer; */ 133 0x02, /* __u8 iProduct; */ 134 0x01, /* __u8 iSerialNumber; */ 135 0x01 /* __u8 bNumConfigurations; */ 136 }; 137 138 /* usb 3.0 root hub device descriptor */ 139 static const u8 usb3_rh_dev_descriptor[18] = { 140 0x12, /* __u8 bLength; */ 141 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */ 142 0x00, 0x03, /* __le16 bcdUSB; v3.0 */ 143 144 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */ 145 0x00, /* __u8 bDeviceSubClass; */ 146 0x03, /* __u8 bDeviceProtocol; USB 3.0 hub */ 147 0x09, /* __u8 bMaxPacketSize0; 2^9 = 512 Bytes */ 148 149 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */ 150 0x03, 0x00, /* __le16 idProduct; device 0x0003 */ 151 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */ 152 153 0x03, /* __u8 iManufacturer; */ 154 0x02, /* __u8 iProduct; */ 155 0x01, /* __u8 iSerialNumber; */ 156 0x01 /* __u8 bNumConfigurations; */ 157 }; 158 159 /* usb 2.0 root hub device descriptor */ 160 static const u8 usb2_rh_dev_descriptor[18] = { 161 0x12, /* __u8 bLength; */ 162 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */ 163 0x00, 0x02, /* __le16 bcdUSB; v2.0 */ 164 165 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */ 166 0x00, /* __u8 bDeviceSubClass; */ 167 0x00, /* __u8 bDeviceProtocol; [ usb 2.0 no TT ] */ 168 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */ 169 170 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */ 171 0x02, 0x00, /* __le16 idProduct; device 0x0002 */ 172 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */ 173 174 0x03, /* __u8 iManufacturer; */ 175 0x02, /* __u8 iProduct; */ 176 0x01, /* __u8 iSerialNumber; */ 177 0x01 /* __u8 bNumConfigurations; */ 178 }; 179 180 /* no usb 2.0 root hub "device qualifier" descriptor: one speed only */ 181 182 /* usb 1.1 root hub device descriptor */ 183 static const u8 usb11_rh_dev_descriptor[18] = { 184 0x12, /* __u8 bLength; */ 185 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */ 186 0x10, 0x01, /* __le16 bcdUSB; v1.1 */ 187 188 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */ 189 0x00, /* __u8 bDeviceSubClass; */ 190 0x00, /* __u8 bDeviceProtocol; [ low/full speeds only ] */ 191 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */ 192 193 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */ 194 0x01, 0x00, /* __le16 idProduct; device 0x0001 */ 195 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */ 196 197 0x03, /* __u8 iManufacturer; */ 198 0x02, /* __u8 iProduct; */ 199 0x01, /* __u8 iSerialNumber; */ 200 0x01 /* __u8 bNumConfigurations; */ 201 }; 202 203 204 /*-------------------------------------------------------------------------*/ 205 206 /* Configuration descriptors for our root hubs */ 207 208 static const u8 fs_rh_config_descriptor[] = { 209 210 /* one configuration */ 211 0x09, /* __u8 bLength; */ 212 USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */ 213 0x19, 0x00, /* __le16 wTotalLength; */ 214 0x01, /* __u8 bNumInterfaces; (1) */ 215 0x01, /* __u8 bConfigurationValue; */ 216 0x00, /* __u8 iConfiguration; */ 217 0xc0, /* __u8 bmAttributes; 218 Bit 7: must be set, 219 6: Self-powered, 220 5: Remote wakeup, 221 4..0: resvd */ 222 0x00, /* __u8 MaxPower; */ 223 224 /* USB 1.1: 225 * USB 2.0, single TT organization (mandatory): 226 * one interface, protocol 0 227 * 228 * USB 2.0, multiple TT organization (optional): 229 * two interfaces, protocols 1 (like single TT) 230 * and 2 (multiple TT mode) ... config is 231 * sometimes settable 232 * NOT IMPLEMENTED 233 */ 234 235 /* one interface */ 236 0x09, /* __u8 if_bLength; */ 237 USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */ 238 0x00, /* __u8 if_bInterfaceNumber; */ 239 0x00, /* __u8 if_bAlternateSetting; */ 240 0x01, /* __u8 if_bNumEndpoints; */ 241 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */ 242 0x00, /* __u8 if_bInterfaceSubClass; */ 243 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */ 244 0x00, /* __u8 if_iInterface; */ 245 246 /* one endpoint (status change endpoint) */ 247 0x07, /* __u8 ep_bLength; */ 248 USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */ 249 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */ 250 0x03, /* __u8 ep_bmAttributes; Interrupt */ 251 0x02, 0x00, /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */ 252 0xff /* __u8 ep_bInterval; (255ms -- usb 2.0 spec) */ 253 }; 254 255 static const u8 hs_rh_config_descriptor[] = { 256 257 /* one configuration */ 258 0x09, /* __u8 bLength; */ 259 USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */ 260 0x19, 0x00, /* __le16 wTotalLength; */ 261 0x01, /* __u8 bNumInterfaces; (1) */ 262 0x01, /* __u8 bConfigurationValue; */ 263 0x00, /* __u8 iConfiguration; */ 264 0xc0, /* __u8 bmAttributes; 265 Bit 7: must be set, 266 6: Self-powered, 267 5: Remote wakeup, 268 4..0: resvd */ 269 0x00, /* __u8 MaxPower; */ 270 271 /* USB 1.1: 272 * USB 2.0, single TT organization (mandatory): 273 * one interface, protocol 0 274 * 275 * USB 2.0, multiple TT organization (optional): 276 * two interfaces, protocols 1 (like single TT) 277 * and 2 (multiple TT mode) ... config is 278 * sometimes settable 279 * NOT IMPLEMENTED 280 */ 281 282 /* one interface */ 283 0x09, /* __u8 if_bLength; */ 284 USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */ 285 0x00, /* __u8 if_bInterfaceNumber; */ 286 0x00, /* __u8 if_bAlternateSetting; */ 287 0x01, /* __u8 if_bNumEndpoints; */ 288 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */ 289 0x00, /* __u8 if_bInterfaceSubClass; */ 290 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */ 291 0x00, /* __u8 if_iInterface; */ 292 293 /* one endpoint (status change endpoint) */ 294 0x07, /* __u8 ep_bLength; */ 295 USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */ 296 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */ 297 0x03, /* __u8 ep_bmAttributes; Interrupt */ 298 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) 299 * see hub.c:hub_configure() for details. */ 300 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00, 301 0x0c /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */ 302 }; 303 304 static const u8 ss_rh_config_descriptor[] = { 305 /* one configuration */ 306 0x09, /* __u8 bLength; */ 307 USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */ 308 0x1f, 0x00, /* __le16 wTotalLength; */ 309 0x01, /* __u8 bNumInterfaces; (1) */ 310 0x01, /* __u8 bConfigurationValue; */ 311 0x00, /* __u8 iConfiguration; */ 312 0xc0, /* __u8 bmAttributes; 313 Bit 7: must be set, 314 6: Self-powered, 315 5: Remote wakeup, 316 4..0: resvd */ 317 0x00, /* __u8 MaxPower; */ 318 319 /* one interface */ 320 0x09, /* __u8 if_bLength; */ 321 USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */ 322 0x00, /* __u8 if_bInterfaceNumber; */ 323 0x00, /* __u8 if_bAlternateSetting; */ 324 0x01, /* __u8 if_bNumEndpoints; */ 325 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */ 326 0x00, /* __u8 if_bInterfaceSubClass; */ 327 0x00, /* __u8 if_bInterfaceProtocol; */ 328 0x00, /* __u8 if_iInterface; */ 329 330 /* one endpoint (status change endpoint) */ 331 0x07, /* __u8 ep_bLength; */ 332 USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */ 333 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */ 334 0x03, /* __u8 ep_bmAttributes; Interrupt */ 335 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) 336 * see hub.c:hub_configure() for details. */ 337 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00, 338 0x0c, /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */ 339 340 /* one SuperSpeed endpoint companion descriptor */ 341 0x06, /* __u8 ss_bLength */ 342 USB_DT_SS_ENDPOINT_COMP, /* __u8 ss_bDescriptorType; SuperSpeed EP */ 343 /* Companion */ 344 0x00, /* __u8 ss_bMaxBurst; allows 1 TX between ACKs */ 345 0x00, /* __u8 ss_bmAttributes; 1 packet per service interval */ 346 0x02, 0x00 /* __le16 ss_wBytesPerInterval; 15 bits for max 15 ports */ 347 }; 348 349 /* authorized_default behaviour: 350 * -1 is authorized for all devices (leftover from wireless USB) 351 * 0 is unauthorized for all devices 352 * 1 is authorized for all devices 353 * 2 is authorized for internal devices 354 */ 355 #define USB_AUTHORIZE_WIRED -1 356 #define USB_AUTHORIZE_NONE 0 357 #define USB_AUTHORIZE_ALL 1 358 #define USB_AUTHORIZE_INTERNAL 2 359 360 static int authorized_default = USB_AUTHORIZE_WIRED; 361 module_param(authorized_default, int, S_IRUGO|S_IWUSR); 362 MODULE_PARM_DESC(authorized_default, 363 "Default USB device authorization: 0 is not authorized, 1 is " 364 "authorized, 2 is authorized for internal devices, -1 is " 365 "authorized (default, same as 1)"); 366 /*-------------------------------------------------------------------------*/ 367 368 /** 369 * ascii2desc() - Helper routine for producing UTF-16LE string descriptors 370 * @s: Null-terminated ASCII (actually ISO-8859-1) string 371 * @buf: Buffer for USB string descriptor (header + UTF-16LE) 372 * @len: Length (in bytes; may be odd) of descriptor buffer. 373 * 374 * Return: The number of bytes filled in: 2 + 2*strlen(s) or @len, 375 * whichever is less. 376 * 377 * Note: 378 * USB String descriptors can contain at most 126 characters; input 379 * strings longer than that are truncated. 380 */ 381 static unsigned 382 ascii2desc(char const *s, u8 *buf, unsigned len) 383 { 384 unsigned n, t = 2 + 2*strlen(s); 385 386 if (t > 254) 387 t = 254; /* Longest possible UTF string descriptor */ 388 if (len > t) 389 len = t; 390 391 t += USB_DT_STRING << 8; /* Now t is first 16 bits to store */ 392 393 n = len; 394 while (n--) { 395 *buf++ = t; 396 if (!n--) 397 break; 398 *buf++ = t >> 8; 399 t = (unsigned char)*s++; 400 } 401 return len; 402 } 403 404 /** 405 * rh_string() - provides string descriptors for root hub 406 * @id: the string ID number (0: langids, 1: serial #, 2: product, 3: vendor) 407 * @hcd: the host controller for this root hub 408 * @data: buffer for output packet 409 * @len: length of the provided buffer 410 * 411 * Produces either a manufacturer, product or serial number string for the 412 * virtual root hub device. 413 * 414 * Return: The number of bytes filled in: the length of the descriptor or 415 * of the provided buffer, whichever is less. 416 */ 417 static unsigned 418 rh_string(int id, struct usb_hcd const *hcd, u8 *data, unsigned len) 419 { 420 char buf[100]; 421 char const *s; 422 static char const langids[4] = {4, USB_DT_STRING, 0x09, 0x04}; 423 424 /* language ids */ 425 switch (id) { 426 case 0: 427 /* Array of LANGID codes (0x0409 is MSFT-speak for "en-us") */ 428 /* See http://www.usb.org/developers/docs/USB_LANGIDs.pdf */ 429 if (len > 4) 430 len = 4; 431 memcpy(data, langids, len); 432 return len; 433 case 1: 434 /* Serial number */ 435 s = hcd->self.bus_name; 436 break; 437 case 2: 438 /* Product name */ 439 s = hcd->product_desc; 440 break; 441 case 3: 442 /* Manufacturer */ 443 snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname, 444 init_utsname()->release, hcd->driver->description); 445 s = buf; 446 break; 447 default: 448 /* Can't happen; caller guarantees it */ 449 return 0; 450 } 451 452 return ascii2desc(s, data, len); 453 } 454 455 456 /* Root hub control transfers execute synchronously */ 457 static int rh_call_control (struct usb_hcd *hcd, struct urb *urb) 458 { 459 struct usb_ctrlrequest *cmd; 460 u16 typeReq, wValue, wIndex, wLength; 461 u8 *ubuf = urb->transfer_buffer; 462 unsigned len = 0; 463 int status; 464 u8 patch_wakeup = 0; 465 u8 patch_protocol = 0; 466 u16 tbuf_size; 467 u8 *tbuf = NULL; 468 const u8 *bufp; 469 470 might_sleep(); 471 472 spin_lock_irq(&hcd_root_hub_lock); 473 status = usb_hcd_link_urb_to_ep(hcd, urb); 474 spin_unlock_irq(&hcd_root_hub_lock); 475 if (status) 476 return status; 477 urb->hcpriv = hcd; /* Indicate it's queued */ 478 479 cmd = (struct usb_ctrlrequest *) urb->setup_packet; 480 typeReq = (cmd->bRequestType << 8) | cmd->bRequest; 481 wValue = le16_to_cpu (cmd->wValue); 482 wIndex = le16_to_cpu (cmd->wIndex); 483 wLength = le16_to_cpu (cmd->wLength); 484 485 if (wLength > urb->transfer_buffer_length) 486 goto error; 487 488 /* 489 * tbuf should be at least as big as the 490 * USB hub descriptor. 491 */ 492 tbuf_size = max_t(u16, sizeof(struct usb_hub_descriptor), wLength); 493 tbuf = kzalloc(tbuf_size, GFP_KERNEL); 494 if (!tbuf) { 495 status = -ENOMEM; 496 goto err_alloc; 497 } 498 499 bufp = tbuf; 500 501 502 urb->actual_length = 0; 503 switch (typeReq) { 504 505 /* DEVICE REQUESTS */ 506 507 /* The root hub's remote wakeup enable bit is implemented using 508 * driver model wakeup flags. If this system supports wakeup 509 * through USB, userspace may change the default "allow wakeup" 510 * policy through sysfs or these calls. 511 * 512 * Most root hubs support wakeup from downstream devices, for 513 * runtime power management (disabling USB clocks and reducing 514 * VBUS power usage). However, not all of them do so; silicon, 515 * board, and BIOS bugs here are not uncommon, so these can't 516 * be treated quite like external hubs. 517 * 518 * Likewise, not all root hubs will pass wakeup events upstream, 519 * to wake up the whole system. So don't assume root hub and 520 * controller capabilities are identical. 521 */ 522 523 case DeviceRequest | USB_REQ_GET_STATUS: 524 tbuf[0] = (device_may_wakeup(&hcd->self.root_hub->dev) 525 << USB_DEVICE_REMOTE_WAKEUP) 526 | (1 << USB_DEVICE_SELF_POWERED); 527 tbuf[1] = 0; 528 len = 2; 529 break; 530 case DeviceOutRequest | USB_REQ_CLEAR_FEATURE: 531 if (wValue == USB_DEVICE_REMOTE_WAKEUP) 532 device_set_wakeup_enable(&hcd->self.root_hub->dev, 0); 533 else 534 goto error; 535 break; 536 case DeviceOutRequest | USB_REQ_SET_FEATURE: 537 if (device_can_wakeup(&hcd->self.root_hub->dev) 538 && wValue == USB_DEVICE_REMOTE_WAKEUP) 539 device_set_wakeup_enable(&hcd->self.root_hub->dev, 1); 540 else 541 goto error; 542 break; 543 case DeviceRequest | USB_REQ_GET_CONFIGURATION: 544 tbuf[0] = 1; 545 len = 1; 546 fallthrough; 547 case DeviceOutRequest | USB_REQ_SET_CONFIGURATION: 548 break; 549 case DeviceRequest | USB_REQ_GET_DESCRIPTOR: 550 switch (wValue & 0xff00) { 551 case USB_DT_DEVICE << 8: 552 switch (hcd->speed) { 553 case HCD_USB32: 554 case HCD_USB31: 555 bufp = usb31_rh_dev_descriptor; 556 break; 557 case HCD_USB3: 558 bufp = usb3_rh_dev_descriptor; 559 break; 560 case HCD_USB2: 561 bufp = usb2_rh_dev_descriptor; 562 break; 563 case HCD_USB11: 564 bufp = usb11_rh_dev_descriptor; 565 break; 566 default: 567 goto error; 568 } 569 len = 18; 570 if (hcd->has_tt) 571 patch_protocol = 1; 572 break; 573 case USB_DT_CONFIG << 8: 574 switch (hcd->speed) { 575 case HCD_USB32: 576 case HCD_USB31: 577 case HCD_USB3: 578 bufp = ss_rh_config_descriptor; 579 len = sizeof ss_rh_config_descriptor; 580 break; 581 case HCD_USB2: 582 bufp = hs_rh_config_descriptor; 583 len = sizeof hs_rh_config_descriptor; 584 break; 585 case HCD_USB11: 586 bufp = fs_rh_config_descriptor; 587 len = sizeof fs_rh_config_descriptor; 588 break; 589 default: 590 goto error; 591 } 592 if (device_can_wakeup(&hcd->self.root_hub->dev)) 593 patch_wakeup = 1; 594 break; 595 case USB_DT_STRING << 8: 596 if ((wValue & 0xff) < 4) 597 urb->actual_length = rh_string(wValue & 0xff, 598 hcd, ubuf, wLength); 599 else /* unsupported IDs --> "protocol stall" */ 600 goto error; 601 break; 602 case USB_DT_BOS << 8: 603 goto nongeneric; 604 default: 605 goto error; 606 } 607 break; 608 case DeviceRequest | USB_REQ_GET_INTERFACE: 609 tbuf[0] = 0; 610 len = 1; 611 fallthrough; 612 case DeviceOutRequest | USB_REQ_SET_INTERFACE: 613 break; 614 case DeviceOutRequest | USB_REQ_SET_ADDRESS: 615 /* wValue == urb->dev->devaddr */ 616 dev_dbg (hcd->self.controller, "root hub device address %d\n", 617 wValue); 618 break; 619 620 /* INTERFACE REQUESTS (no defined feature/status flags) */ 621 622 /* ENDPOINT REQUESTS */ 623 624 case EndpointRequest | USB_REQ_GET_STATUS: 625 /* ENDPOINT_HALT flag */ 626 tbuf[0] = 0; 627 tbuf[1] = 0; 628 len = 2; 629 fallthrough; 630 case EndpointOutRequest | USB_REQ_CLEAR_FEATURE: 631 case EndpointOutRequest | USB_REQ_SET_FEATURE: 632 dev_dbg (hcd->self.controller, "no endpoint features yet\n"); 633 break; 634 635 /* CLASS REQUESTS (and errors) */ 636 637 default: 638 nongeneric: 639 /* non-generic request */ 640 switch (typeReq) { 641 case GetHubStatus: 642 len = 4; 643 break; 644 case GetPortStatus: 645 if (wValue == HUB_PORT_STATUS) 646 len = 4; 647 else 648 /* other port status types return 8 bytes */ 649 len = 8; 650 break; 651 case GetHubDescriptor: 652 len = sizeof (struct usb_hub_descriptor); 653 break; 654 case DeviceRequest | USB_REQ_GET_DESCRIPTOR: 655 /* len is returned by hub_control */ 656 break; 657 } 658 status = hcd->driver->hub_control (hcd, 659 typeReq, wValue, wIndex, 660 tbuf, wLength); 661 662 if (typeReq == GetHubDescriptor) 663 usb_hub_adjust_deviceremovable(hcd->self.root_hub, 664 (struct usb_hub_descriptor *)tbuf); 665 break; 666 error: 667 /* "protocol stall" on error */ 668 status = -EPIPE; 669 } 670 671 if (status < 0) { 672 len = 0; 673 if (status != -EPIPE) { 674 dev_dbg (hcd->self.controller, 675 "CTRL: TypeReq=0x%x val=0x%x " 676 "idx=0x%x len=%d ==> %d\n", 677 typeReq, wValue, wIndex, 678 wLength, status); 679 } 680 } else if (status > 0) { 681 /* hub_control may return the length of data copied. */ 682 len = status; 683 status = 0; 684 } 685 if (len) { 686 if (urb->transfer_buffer_length < len) 687 len = urb->transfer_buffer_length; 688 urb->actual_length = len; 689 /* always USB_DIR_IN, toward host */ 690 memcpy (ubuf, bufp, len); 691 692 /* report whether RH hardware supports remote wakeup */ 693 if (patch_wakeup && 694 len > offsetof (struct usb_config_descriptor, 695 bmAttributes)) 696 ((struct usb_config_descriptor *)ubuf)->bmAttributes 697 |= USB_CONFIG_ATT_WAKEUP; 698 699 /* report whether RH hardware has an integrated TT */ 700 if (patch_protocol && 701 len > offsetof(struct usb_device_descriptor, 702 bDeviceProtocol)) 703 ((struct usb_device_descriptor *) ubuf)-> 704 bDeviceProtocol = USB_HUB_PR_HS_SINGLE_TT; 705 } 706 707 kfree(tbuf); 708 err_alloc: 709 710 /* any errors get returned through the urb completion */ 711 spin_lock_irq(&hcd_root_hub_lock); 712 usb_hcd_unlink_urb_from_ep(hcd, urb); 713 usb_hcd_giveback_urb(hcd, urb, status); 714 spin_unlock_irq(&hcd_root_hub_lock); 715 return 0; 716 } 717 718 /*-------------------------------------------------------------------------*/ 719 720 /* 721 * Root Hub interrupt transfers are polled using a timer if the 722 * driver requests it; otherwise the driver is responsible for 723 * calling usb_hcd_poll_rh_status() when an event occurs. 724 * 725 * Completion handler may not sleep. See usb_hcd_giveback_urb() for details. 726 */ 727 void usb_hcd_poll_rh_status(struct usb_hcd *hcd) 728 { 729 struct urb *urb; 730 int length; 731 int status; 732 unsigned long flags; 733 char buffer[6]; /* Any root hubs with > 31 ports? */ 734 735 if (unlikely(!hcd->rh_pollable)) 736 return; 737 if (!hcd->uses_new_polling && !hcd->status_urb) 738 return; 739 740 length = hcd->driver->hub_status_data(hcd, buffer); 741 if (length > 0) { 742 743 /* try to complete the status urb */ 744 spin_lock_irqsave(&hcd_root_hub_lock, flags); 745 urb = hcd->status_urb; 746 if (urb) { 747 clear_bit(HCD_FLAG_POLL_PENDING, &hcd->flags); 748 hcd->status_urb = NULL; 749 if (urb->transfer_buffer_length >= length) { 750 status = 0; 751 } else { 752 status = -EOVERFLOW; 753 length = urb->transfer_buffer_length; 754 } 755 urb->actual_length = length; 756 memcpy(urb->transfer_buffer, buffer, length); 757 758 usb_hcd_unlink_urb_from_ep(hcd, urb); 759 usb_hcd_giveback_urb(hcd, urb, status); 760 } else { 761 length = 0; 762 set_bit(HCD_FLAG_POLL_PENDING, &hcd->flags); 763 } 764 spin_unlock_irqrestore(&hcd_root_hub_lock, flags); 765 } 766 767 /* The USB 2.0 spec says 256 ms. This is close enough and won't 768 * exceed that limit if HZ is 100. The math is more clunky than 769 * maybe expected, this is to make sure that all timers for USB devices 770 * fire at the same time to give the CPU a break in between */ 771 if (hcd->uses_new_polling ? HCD_POLL_RH(hcd) : 772 (length == 0 && hcd->status_urb != NULL)) 773 mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4)); 774 } 775 EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status); 776 777 /* timer callback */ 778 static void rh_timer_func (struct timer_list *t) 779 { 780 struct usb_hcd *_hcd = from_timer(_hcd, t, rh_timer); 781 782 usb_hcd_poll_rh_status(_hcd); 783 } 784 785 /*-------------------------------------------------------------------------*/ 786 787 static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb) 788 { 789 int retval; 790 unsigned long flags; 791 unsigned len = 1 + (urb->dev->maxchild / 8); 792 793 spin_lock_irqsave (&hcd_root_hub_lock, flags); 794 if (hcd->status_urb || urb->transfer_buffer_length < len) { 795 dev_dbg (hcd->self.controller, "not queuing rh status urb\n"); 796 retval = -EINVAL; 797 goto done; 798 } 799 800 retval = usb_hcd_link_urb_to_ep(hcd, urb); 801 if (retval) 802 goto done; 803 804 hcd->status_urb = urb; 805 urb->hcpriv = hcd; /* indicate it's queued */ 806 if (!hcd->uses_new_polling) 807 mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4)); 808 809 /* If a status change has already occurred, report it ASAP */ 810 else if (HCD_POLL_PENDING(hcd)) 811 mod_timer(&hcd->rh_timer, jiffies); 812 retval = 0; 813 done: 814 spin_unlock_irqrestore (&hcd_root_hub_lock, flags); 815 return retval; 816 } 817 818 static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb) 819 { 820 if (usb_endpoint_xfer_int(&urb->ep->desc)) 821 return rh_queue_status (hcd, urb); 822 if (usb_endpoint_xfer_control(&urb->ep->desc)) 823 return rh_call_control (hcd, urb); 824 return -EINVAL; 825 } 826 827 /*-------------------------------------------------------------------------*/ 828 829 /* Unlinks of root-hub control URBs are legal, but they don't do anything 830 * since these URBs always execute synchronously. 831 */ 832 static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status) 833 { 834 unsigned long flags; 835 int rc; 836 837 spin_lock_irqsave(&hcd_root_hub_lock, flags); 838 rc = usb_hcd_check_unlink_urb(hcd, urb, status); 839 if (rc) 840 goto done; 841 842 if (usb_endpoint_num(&urb->ep->desc) == 0) { /* Control URB */ 843 ; /* Do nothing */ 844 845 } else { /* Status URB */ 846 if (!hcd->uses_new_polling) 847 del_timer (&hcd->rh_timer); 848 if (urb == hcd->status_urb) { 849 hcd->status_urb = NULL; 850 usb_hcd_unlink_urb_from_ep(hcd, urb); 851 usb_hcd_giveback_urb(hcd, urb, status); 852 } 853 } 854 done: 855 spin_unlock_irqrestore(&hcd_root_hub_lock, flags); 856 return rc; 857 } 858 859 860 /*-------------------------------------------------------------------------*/ 861 862 /** 863 * usb_bus_init - shared initialization code 864 * @bus: the bus structure being initialized 865 * 866 * This code is used to initialize a usb_bus structure, memory for which is 867 * separately managed. 868 */ 869 static void usb_bus_init (struct usb_bus *bus) 870 { 871 memset (&bus->devmap, 0, sizeof(struct usb_devmap)); 872 873 bus->devnum_next = 1; 874 875 bus->root_hub = NULL; 876 bus->busnum = -1; 877 bus->bandwidth_allocated = 0; 878 bus->bandwidth_int_reqs = 0; 879 bus->bandwidth_isoc_reqs = 0; 880 mutex_init(&bus->devnum_next_mutex); 881 } 882 883 /*-------------------------------------------------------------------------*/ 884 885 /** 886 * usb_register_bus - registers the USB host controller with the usb core 887 * @bus: pointer to the bus to register 888 * 889 * Context: task context, might sleep. 890 * 891 * Assigns a bus number, and links the controller into usbcore data 892 * structures so that it can be seen by scanning the bus list. 893 * 894 * Return: 0 if successful. A negative error code otherwise. 895 */ 896 static int usb_register_bus(struct usb_bus *bus) 897 { 898 int result = -E2BIG; 899 int busnum; 900 901 mutex_lock(&usb_bus_idr_lock); 902 busnum = idr_alloc(&usb_bus_idr, bus, 1, USB_MAXBUS, GFP_KERNEL); 903 if (busnum < 0) { 904 pr_err("%s: failed to get bus number\n", usbcore_name); 905 goto error_find_busnum; 906 } 907 bus->busnum = busnum; 908 mutex_unlock(&usb_bus_idr_lock); 909 910 usb_notify_add_bus(bus); 911 912 dev_info (bus->controller, "new USB bus registered, assigned bus " 913 "number %d\n", bus->busnum); 914 return 0; 915 916 error_find_busnum: 917 mutex_unlock(&usb_bus_idr_lock); 918 return result; 919 } 920 921 /** 922 * usb_deregister_bus - deregisters the USB host controller 923 * @bus: pointer to the bus to deregister 924 * 925 * Context: task context, might sleep. 926 * 927 * Recycles the bus number, and unlinks the controller from usbcore data 928 * structures so that it won't be seen by scanning the bus list. 929 */ 930 static void usb_deregister_bus (struct usb_bus *bus) 931 { 932 dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum); 933 934 /* 935 * NOTE: make sure that all the devices are removed by the 936 * controller code, as well as having it call this when cleaning 937 * itself up 938 */ 939 mutex_lock(&usb_bus_idr_lock); 940 idr_remove(&usb_bus_idr, bus->busnum); 941 mutex_unlock(&usb_bus_idr_lock); 942 943 usb_notify_remove_bus(bus); 944 } 945 946 /** 947 * register_root_hub - called by usb_add_hcd() to register a root hub 948 * @hcd: host controller for this root hub 949 * 950 * This function registers the root hub with the USB subsystem. It sets up 951 * the device properly in the device tree and then calls usb_new_device() 952 * to register the usb device. It also assigns the root hub's USB address 953 * (always 1). 954 * 955 * Return: 0 if successful. A negative error code otherwise. 956 */ 957 static int register_root_hub(struct usb_hcd *hcd) 958 { 959 struct device *parent_dev = hcd->self.controller; 960 struct usb_device *usb_dev = hcd->self.root_hub; 961 struct usb_device_descriptor *descr; 962 const int devnum = 1; 963 int retval; 964 965 usb_dev->devnum = devnum; 966 usb_dev->bus->devnum_next = devnum + 1; 967 set_bit (devnum, usb_dev->bus->devmap.devicemap); 968 usb_set_device_state(usb_dev, USB_STATE_ADDRESS); 969 970 mutex_lock(&usb_bus_idr_lock); 971 972 usb_dev->ep0.desc.wMaxPacketSize = cpu_to_le16(64); 973 descr = usb_get_device_descriptor(usb_dev); 974 if (IS_ERR(descr)) { 975 retval = PTR_ERR(descr); 976 mutex_unlock(&usb_bus_idr_lock); 977 dev_dbg (parent_dev, "can't read %s device descriptor %d\n", 978 dev_name(&usb_dev->dev), retval); 979 return retval; 980 } 981 usb_dev->descriptor = *descr; 982 kfree(descr); 983 984 if (le16_to_cpu(usb_dev->descriptor.bcdUSB) >= 0x0201) { 985 retval = usb_get_bos_descriptor(usb_dev); 986 if (!retval) { 987 usb_dev->lpm_capable = usb_device_supports_lpm(usb_dev); 988 } else if (usb_dev->speed >= USB_SPEED_SUPER) { 989 mutex_unlock(&usb_bus_idr_lock); 990 dev_dbg(parent_dev, "can't read %s bos descriptor %d\n", 991 dev_name(&usb_dev->dev), retval); 992 return retval; 993 } 994 } 995 996 retval = usb_new_device (usb_dev); 997 if (retval) { 998 dev_err (parent_dev, "can't register root hub for %s, %d\n", 999 dev_name(&usb_dev->dev), retval); 1000 } else { 1001 spin_lock_irq (&hcd_root_hub_lock); 1002 hcd->rh_registered = 1; 1003 spin_unlock_irq (&hcd_root_hub_lock); 1004 1005 /* Did the HC die before the root hub was registered? */ 1006 if (HCD_DEAD(hcd)) 1007 usb_hc_died (hcd); /* This time clean up */ 1008 } 1009 mutex_unlock(&usb_bus_idr_lock); 1010 1011 return retval; 1012 } 1013 1014 /* 1015 * usb_hcd_start_port_resume - a root-hub port is sending a resume signal 1016 * @bus: the bus which the root hub belongs to 1017 * @portnum: the port which is being resumed 1018 * 1019 * HCDs should call this function when they know that a resume signal is 1020 * being sent to a root-hub port. The root hub will be prevented from 1021 * going into autosuspend until usb_hcd_end_port_resume() is called. 1022 * 1023 * The bus's private lock must be held by the caller. 1024 */ 1025 void usb_hcd_start_port_resume(struct usb_bus *bus, int portnum) 1026 { 1027 unsigned bit = 1 << portnum; 1028 1029 if (!(bus->resuming_ports & bit)) { 1030 bus->resuming_ports |= bit; 1031 pm_runtime_get_noresume(&bus->root_hub->dev); 1032 } 1033 } 1034 EXPORT_SYMBOL_GPL(usb_hcd_start_port_resume); 1035 1036 /* 1037 * usb_hcd_end_port_resume - a root-hub port has stopped sending a resume signal 1038 * @bus: the bus which the root hub belongs to 1039 * @portnum: the port which is being resumed 1040 * 1041 * HCDs should call this function when they know that a resume signal has 1042 * stopped being sent to a root-hub port. The root hub will be allowed to 1043 * autosuspend again. 1044 * 1045 * The bus's private lock must be held by the caller. 1046 */ 1047 void usb_hcd_end_port_resume(struct usb_bus *bus, int portnum) 1048 { 1049 unsigned bit = 1 << portnum; 1050 1051 if (bus->resuming_ports & bit) { 1052 bus->resuming_ports &= ~bit; 1053 pm_runtime_put_noidle(&bus->root_hub->dev); 1054 } 1055 } 1056 EXPORT_SYMBOL_GPL(usb_hcd_end_port_resume); 1057 1058 /*-------------------------------------------------------------------------*/ 1059 1060 /** 1061 * usb_calc_bus_time - approximate periodic transaction time in nanoseconds 1062 * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH} 1063 * @is_input: true iff the transaction sends data to the host 1064 * @isoc: true for isochronous transactions, false for interrupt ones 1065 * @bytecount: how many bytes in the transaction. 1066 * 1067 * Return: Approximate bus time in nanoseconds for a periodic transaction. 1068 * 1069 * Note: 1070 * See USB 2.0 spec section 5.11.3; only periodic transfers need to be 1071 * scheduled in software, this function is only used for such scheduling. 1072 */ 1073 long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount) 1074 { 1075 unsigned long tmp; 1076 1077 switch (speed) { 1078 case USB_SPEED_LOW: /* INTR only */ 1079 if (is_input) { 1080 tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L; 1081 return 64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp; 1082 } else { 1083 tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L; 1084 return 64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp; 1085 } 1086 case USB_SPEED_FULL: /* ISOC or INTR */ 1087 if (isoc) { 1088 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L; 1089 return ((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp; 1090 } else { 1091 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L; 1092 return 9107L + BW_HOST_DELAY + tmp; 1093 } 1094 case USB_SPEED_HIGH: /* ISOC or INTR */ 1095 /* FIXME adjust for input vs output */ 1096 if (isoc) 1097 tmp = HS_NSECS_ISO (bytecount); 1098 else 1099 tmp = HS_NSECS (bytecount); 1100 return tmp; 1101 default: 1102 pr_debug ("%s: bogus device speed!\n", usbcore_name); 1103 return -1; 1104 } 1105 } 1106 EXPORT_SYMBOL_GPL(usb_calc_bus_time); 1107 1108 1109 /*-------------------------------------------------------------------------*/ 1110 1111 /* 1112 * Generic HC operations. 1113 */ 1114 1115 /*-------------------------------------------------------------------------*/ 1116 1117 /** 1118 * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue 1119 * @hcd: host controller to which @urb was submitted 1120 * @urb: URB being submitted 1121 * 1122 * Host controller drivers should call this routine in their enqueue() 1123 * method. The HCD's private spinlock must be held and interrupts must 1124 * be disabled. The actions carried out here are required for URB 1125 * submission, as well as for endpoint shutdown and for usb_kill_urb. 1126 * 1127 * Return: 0 for no error, otherwise a negative error code (in which case 1128 * the enqueue() method must fail). If no error occurs but enqueue() fails 1129 * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing 1130 * the private spinlock and returning. 1131 */ 1132 int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb) 1133 { 1134 int rc = 0; 1135 1136 spin_lock(&hcd_urb_list_lock); 1137 1138 /* Check that the URB isn't being killed */ 1139 if (unlikely(atomic_read(&urb->reject))) { 1140 rc = -EPERM; 1141 goto done; 1142 } 1143 1144 if (unlikely(!urb->ep->enabled)) { 1145 rc = -ENOENT; 1146 goto done; 1147 } 1148 1149 if (unlikely(!urb->dev->can_submit)) { 1150 rc = -EHOSTUNREACH; 1151 goto done; 1152 } 1153 1154 /* 1155 * Check the host controller's state and add the URB to the 1156 * endpoint's queue. 1157 */ 1158 if (HCD_RH_RUNNING(hcd)) { 1159 urb->unlinked = 0; 1160 list_add_tail(&urb->urb_list, &urb->ep->urb_list); 1161 } else { 1162 rc = -ESHUTDOWN; 1163 goto done; 1164 } 1165 done: 1166 spin_unlock(&hcd_urb_list_lock); 1167 return rc; 1168 } 1169 EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep); 1170 1171 /** 1172 * usb_hcd_check_unlink_urb - check whether an URB may be unlinked 1173 * @hcd: host controller to which @urb was submitted 1174 * @urb: URB being checked for unlinkability 1175 * @status: error code to store in @urb if the unlink succeeds 1176 * 1177 * Host controller drivers should call this routine in their dequeue() 1178 * method. The HCD's private spinlock must be held and interrupts must 1179 * be disabled. The actions carried out here are required for making 1180 * sure than an unlink is valid. 1181 * 1182 * Return: 0 for no error, otherwise a negative error code (in which case 1183 * the dequeue() method must fail). The possible error codes are: 1184 * 1185 * -EIDRM: @urb was not submitted or has already completed. 1186 * The completion function may not have been called yet. 1187 * 1188 * -EBUSY: @urb has already been unlinked. 1189 */ 1190 int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb, 1191 int status) 1192 { 1193 struct list_head *tmp; 1194 1195 /* insist the urb is still queued */ 1196 list_for_each(tmp, &urb->ep->urb_list) { 1197 if (tmp == &urb->urb_list) 1198 break; 1199 } 1200 if (tmp != &urb->urb_list) 1201 return -EIDRM; 1202 1203 /* Any status except -EINPROGRESS means something already started to 1204 * unlink this URB from the hardware. So there's no more work to do. 1205 */ 1206 if (urb->unlinked) 1207 return -EBUSY; 1208 urb->unlinked = status; 1209 return 0; 1210 } 1211 EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb); 1212 1213 /** 1214 * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue 1215 * @hcd: host controller to which @urb was submitted 1216 * @urb: URB being unlinked 1217 * 1218 * Host controller drivers should call this routine before calling 1219 * usb_hcd_giveback_urb(). The HCD's private spinlock must be held and 1220 * interrupts must be disabled. The actions carried out here are required 1221 * for URB completion. 1222 */ 1223 void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb) 1224 { 1225 /* clear all state linking urb to this dev (and hcd) */ 1226 spin_lock(&hcd_urb_list_lock); 1227 list_del_init(&urb->urb_list); 1228 spin_unlock(&hcd_urb_list_lock); 1229 } 1230 EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep); 1231 1232 /* 1233 * Some usb host controllers can only perform dma using a small SRAM area, 1234 * or have restrictions on addressable DRAM. 1235 * The usb core itself is however optimized for host controllers that can dma 1236 * using regular system memory - like pci devices doing bus mastering. 1237 * 1238 * To support host controllers with limited dma capabilities we provide dma 1239 * bounce buffers. This feature can be enabled by initializing 1240 * hcd->localmem_pool using usb_hcd_setup_local_mem(). 1241 * 1242 * The initialized hcd->localmem_pool then tells the usb code to allocate all 1243 * data for dma using the genalloc API. 1244 * 1245 * So, to summarize... 1246 * 1247 * - We need "local" memory, canonical example being 1248 * a small SRAM on a discrete controller being the 1249 * only memory that the controller can read ... 1250 * (a) "normal" kernel memory is no good, and 1251 * (b) there's not enough to share 1252 * 1253 * - So we use that, even though the primary requirement 1254 * is that the memory be "local" (hence addressable 1255 * by that device), not "coherent". 1256 * 1257 */ 1258 1259 static int hcd_alloc_coherent(struct usb_bus *bus, 1260 gfp_t mem_flags, dma_addr_t *dma_handle, 1261 void **vaddr_handle, size_t size, 1262 enum dma_data_direction dir) 1263 { 1264 unsigned char *vaddr; 1265 1266 if (*vaddr_handle == NULL) { 1267 WARN_ON_ONCE(1); 1268 return -EFAULT; 1269 } 1270 1271 vaddr = hcd_buffer_alloc(bus, size + sizeof(unsigned long), 1272 mem_flags, dma_handle); 1273 if (!vaddr) 1274 return -ENOMEM; 1275 1276 /* 1277 * Store the virtual address of the buffer at the end 1278 * of the allocated dma buffer. The size of the buffer 1279 * may be uneven so use unaligned functions instead 1280 * of just rounding up. It makes sense to optimize for 1281 * memory footprint over access speed since the amount 1282 * of memory available for dma may be limited. 1283 */ 1284 put_unaligned((unsigned long)*vaddr_handle, 1285 (unsigned long *)(vaddr + size)); 1286 1287 if (dir == DMA_TO_DEVICE) 1288 memcpy(vaddr, *vaddr_handle, size); 1289 1290 *vaddr_handle = vaddr; 1291 return 0; 1292 } 1293 1294 static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle, 1295 void **vaddr_handle, size_t size, 1296 enum dma_data_direction dir) 1297 { 1298 unsigned char *vaddr = *vaddr_handle; 1299 1300 vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size)); 1301 1302 if (dir == DMA_FROM_DEVICE) 1303 memcpy(vaddr, *vaddr_handle, size); 1304 1305 hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle); 1306 1307 *vaddr_handle = vaddr; 1308 *dma_handle = 0; 1309 } 1310 1311 void usb_hcd_unmap_urb_setup_for_dma(struct usb_hcd *hcd, struct urb *urb) 1312 { 1313 if (IS_ENABLED(CONFIG_HAS_DMA) && 1314 (urb->transfer_flags & URB_SETUP_MAP_SINGLE)) 1315 dma_unmap_single(hcd->self.sysdev, 1316 urb->setup_dma, 1317 sizeof(struct usb_ctrlrequest), 1318 DMA_TO_DEVICE); 1319 else if (urb->transfer_flags & URB_SETUP_MAP_LOCAL) 1320 hcd_free_coherent(urb->dev->bus, 1321 &urb->setup_dma, 1322 (void **) &urb->setup_packet, 1323 sizeof(struct usb_ctrlrequest), 1324 DMA_TO_DEVICE); 1325 1326 /* Make it safe to call this routine more than once */ 1327 urb->transfer_flags &= ~(URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL); 1328 } 1329 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_setup_for_dma); 1330 1331 static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb) 1332 { 1333 if (hcd->driver->unmap_urb_for_dma) 1334 hcd->driver->unmap_urb_for_dma(hcd, urb); 1335 else 1336 usb_hcd_unmap_urb_for_dma(hcd, urb); 1337 } 1338 1339 void usb_hcd_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb) 1340 { 1341 enum dma_data_direction dir; 1342 1343 usb_hcd_unmap_urb_setup_for_dma(hcd, urb); 1344 1345 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE; 1346 if (IS_ENABLED(CONFIG_HAS_DMA) && 1347 (urb->transfer_flags & URB_DMA_MAP_SG)) 1348 dma_unmap_sg(hcd->self.sysdev, 1349 urb->sg, 1350 urb->num_sgs, 1351 dir); 1352 else if (IS_ENABLED(CONFIG_HAS_DMA) && 1353 (urb->transfer_flags & URB_DMA_MAP_PAGE)) 1354 dma_unmap_page(hcd->self.sysdev, 1355 urb->transfer_dma, 1356 urb->transfer_buffer_length, 1357 dir); 1358 else if (IS_ENABLED(CONFIG_HAS_DMA) && 1359 (urb->transfer_flags & URB_DMA_MAP_SINGLE)) 1360 dma_unmap_single(hcd->self.sysdev, 1361 urb->transfer_dma, 1362 urb->transfer_buffer_length, 1363 dir); 1364 else if (urb->transfer_flags & URB_MAP_LOCAL) 1365 hcd_free_coherent(urb->dev->bus, 1366 &urb->transfer_dma, 1367 &urb->transfer_buffer, 1368 urb->transfer_buffer_length, 1369 dir); 1370 1371 /* Make it safe to call this routine more than once */ 1372 urb->transfer_flags &= ~(URB_DMA_MAP_SG | URB_DMA_MAP_PAGE | 1373 URB_DMA_MAP_SINGLE | URB_MAP_LOCAL); 1374 } 1375 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_for_dma); 1376 1377 static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb, 1378 gfp_t mem_flags) 1379 { 1380 if (hcd->driver->map_urb_for_dma) 1381 return hcd->driver->map_urb_for_dma(hcd, urb, mem_flags); 1382 else 1383 return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags); 1384 } 1385 1386 int usb_hcd_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb, 1387 gfp_t mem_flags) 1388 { 1389 enum dma_data_direction dir; 1390 int ret = 0; 1391 1392 /* Map the URB's buffers for DMA access. 1393 * Lower level HCD code should use *_dma exclusively, 1394 * unless it uses pio or talks to another transport, 1395 * or uses the provided scatter gather list for bulk. 1396 */ 1397 1398 if (usb_endpoint_xfer_control(&urb->ep->desc)) { 1399 if (hcd->self.uses_pio_for_control) 1400 return ret; 1401 if (hcd->localmem_pool) { 1402 ret = hcd_alloc_coherent( 1403 urb->dev->bus, mem_flags, 1404 &urb->setup_dma, 1405 (void **)&urb->setup_packet, 1406 sizeof(struct usb_ctrlrequest), 1407 DMA_TO_DEVICE); 1408 if (ret) 1409 return ret; 1410 urb->transfer_flags |= URB_SETUP_MAP_LOCAL; 1411 } else if (hcd_uses_dma(hcd)) { 1412 if (object_is_on_stack(urb->setup_packet)) { 1413 WARN_ONCE(1, "setup packet is on stack\n"); 1414 return -EAGAIN; 1415 } 1416 1417 urb->setup_dma = dma_map_single( 1418 hcd->self.sysdev, 1419 urb->setup_packet, 1420 sizeof(struct usb_ctrlrequest), 1421 DMA_TO_DEVICE); 1422 if (dma_mapping_error(hcd->self.sysdev, 1423 urb->setup_dma)) 1424 return -EAGAIN; 1425 urb->transfer_flags |= URB_SETUP_MAP_SINGLE; 1426 } 1427 } 1428 1429 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE; 1430 if (urb->transfer_buffer_length != 0 1431 && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) { 1432 if (hcd->localmem_pool) { 1433 ret = hcd_alloc_coherent( 1434 urb->dev->bus, mem_flags, 1435 &urb->transfer_dma, 1436 &urb->transfer_buffer, 1437 urb->transfer_buffer_length, 1438 dir); 1439 if (ret == 0) 1440 urb->transfer_flags |= URB_MAP_LOCAL; 1441 } else if (hcd_uses_dma(hcd)) { 1442 if (urb->num_sgs) { 1443 int n; 1444 1445 /* We don't support sg for isoc transfers ! */ 1446 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) { 1447 WARN_ON(1); 1448 return -EINVAL; 1449 } 1450 1451 n = dma_map_sg( 1452 hcd->self.sysdev, 1453 urb->sg, 1454 urb->num_sgs, 1455 dir); 1456 if (!n) 1457 ret = -EAGAIN; 1458 else 1459 urb->transfer_flags |= URB_DMA_MAP_SG; 1460 urb->num_mapped_sgs = n; 1461 if (n != urb->num_sgs) 1462 urb->transfer_flags |= 1463 URB_DMA_SG_COMBINED; 1464 } else if (urb->sg) { 1465 struct scatterlist *sg = urb->sg; 1466 urb->transfer_dma = dma_map_page( 1467 hcd->self.sysdev, 1468 sg_page(sg), 1469 sg->offset, 1470 urb->transfer_buffer_length, 1471 dir); 1472 if (dma_mapping_error(hcd->self.sysdev, 1473 urb->transfer_dma)) 1474 ret = -EAGAIN; 1475 else 1476 urb->transfer_flags |= URB_DMA_MAP_PAGE; 1477 } else if (object_is_on_stack(urb->transfer_buffer)) { 1478 WARN_ONCE(1, "transfer buffer is on stack\n"); 1479 ret = -EAGAIN; 1480 } else { 1481 urb->transfer_dma = dma_map_single( 1482 hcd->self.sysdev, 1483 urb->transfer_buffer, 1484 urb->transfer_buffer_length, 1485 dir); 1486 if (dma_mapping_error(hcd->self.sysdev, 1487 urb->transfer_dma)) 1488 ret = -EAGAIN; 1489 else 1490 urb->transfer_flags |= URB_DMA_MAP_SINGLE; 1491 } 1492 } 1493 if (ret && (urb->transfer_flags & (URB_SETUP_MAP_SINGLE | 1494 URB_SETUP_MAP_LOCAL))) 1495 usb_hcd_unmap_urb_for_dma(hcd, urb); 1496 } 1497 return ret; 1498 } 1499 EXPORT_SYMBOL_GPL(usb_hcd_map_urb_for_dma); 1500 1501 /*-------------------------------------------------------------------------*/ 1502 1503 /* may be called in any context with a valid urb->dev usecount 1504 * caller surrenders "ownership" of urb 1505 * expects usb_submit_urb() to have sanity checked and conditioned all 1506 * inputs in the urb 1507 */ 1508 int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags) 1509 { 1510 int status; 1511 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus); 1512 1513 /* increment urb's reference count as part of giving it to the HCD 1514 * (which will control it). HCD guarantees that it either returns 1515 * an error or calls giveback(), but not both. 1516 */ 1517 usb_get_urb(urb); 1518 atomic_inc(&urb->use_count); 1519 atomic_inc(&urb->dev->urbnum); 1520 usbmon_urb_submit(&hcd->self, urb); 1521 1522 /* NOTE requirements on root-hub callers (usbfs and the hub 1523 * driver, for now): URBs' urb->transfer_buffer must be 1524 * valid and usb_buffer_{sync,unmap}() not be needed, since 1525 * they could clobber root hub response data. Also, control 1526 * URBs must be submitted in process context with interrupts 1527 * enabled. 1528 */ 1529 1530 if (is_root_hub(urb->dev)) { 1531 status = rh_urb_enqueue(hcd, urb); 1532 } else { 1533 status = map_urb_for_dma(hcd, urb, mem_flags); 1534 if (likely(status == 0)) { 1535 status = hcd->driver->urb_enqueue(hcd, urb, mem_flags); 1536 if (unlikely(status)) 1537 unmap_urb_for_dma(hcd, urb); 1538 } 1539 } 1540 1541 if (unlikely(status)) { 1542 usbmon_urb_submit_error(&hcd->self, urb, status); 1543 urb->hcpriv = NULL; 1544 INIT_LIST_HEAD(&urb->urb_list); 1545 atomic_dec(&urb->use_count); 1546 /* 1547 * Order the write of urb->use_count above before the read 1548 * of urb->reject below. Pairs with the memory barriers in 1549 * usb_kill_urb() and usb_poison_urb(). 1550 */ 1551 smp_mb__after_atomic(); 1552 1553 atomic_dec(&urb->dev->urbnum); 1554 if (atomic_read(&urb->reject)) 1555 wake_up(&usb_kill_urb_queue); 1556 usb_put_urb(urb); 1557 } 1558 return status; 1559 } 1560 1561 /*-------------------------------------------------------------------------*/ 1562 1563 /* this makes the hcd giveback() the urb more quickly, by kicking it 1564 * off hardware queues (which may take a while) and returning it as 1565 * soon as practical. we've already set up the urb's return status, 1566 * but we can't know if the callback completed already. 1567 */ 1568 static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status) 1569 { 1570 int value; 1571 1572 if (is_root_hub(urb->dev)) 1573 value = usb_rh_urb_dequeue(hcd, urb, status); 1574 else { 1575 1576 /* The only reason an HCD might fail this call is if 1577 * it has not yet fully queued the urb to begin with. 1578 * Such failures should be harmless. */ 1579 value = hcd->driver->urb_dequeue(hcd, urb, status); 1580 } 1581 return value; 1582 } 1583 1584 /* 1585 * called in any context 1586 * 1587 * caller guarantees urb won't be recycled till both unlink() 1588 * and the urb's completion function return 1589 */ 1590 int usb_hcd_unlink_urb (struct urb *urb, int status) 1591 { 1592 struct usb_hcd *hcd; 1593 struct usb_device *udev = urb->dev; 1594 int retval = -EIDRM; 1595 unsigned long flags; 1596 1597 /* Prevent the device and bus from going away while 1598 * the unlink is carried out. If they are already gone 1599 * then urb->use_count must be 0, since disconnected 1600 * devices can't have any active URBs. 1601 */ 1602 spin_lock_irqsave(&hcd_urb_unlink_lock, flags); 1603 if (atomic_read(&urb->use_count) > 0) { 1604 retval = 0; 1605 usb_get_dev(udev); 1606 } 1607 spin_unlock_irqrestore(&hcd_urb_unlink_lock, flags); 1608 if (retval == 0) { 1609 hcd = bus_to_hcd(urb->dev->bus); 1610 retval = unlink1(hcd, urb, status); 1611 if (retval == 0) 1612 retval = -EINPROGRESS; 1613 else if (retval != -EIDRM && retval != -EBUSY) 1614 dev_dbg(&udev->dev, "hcd_unlink_urb %pK fail %d\n", 1615 urb, retval); 1616 usb_put_dev(udev); 1617 } 1618 return retval; 1619 } 1620 1621 /*-------------------------------------------------------------------------*/ 1622 1623 static void __usb_hcd_giveback_urb(struct urb *urb) 1624 { 1625 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus); 1626 struct usb_anchor *anchor = urb->anchor; 1627 int status = urb->unlinked; 1628 1629 urb->hcpriv = NULL; 1630 if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) && 1631 urb->actual_length < urb->transfer_buffer_length && 1632 !status)) 1633 status = -EREMOTEIO; 1634 1635 unmap_urb_for_dma(hcd, urb); 1636 usbmon_urb_complete(&hcd->self, urb, status); 1637 usb_anchor_suspend_wakeups(anchor); 1638 usb_unanchor_urb(urb); 1639 if (likely(status == 0)) 1640 usb_led_activity(USB_LED_EVENT_HOST); 1641 1642 /* pass ownership to the completion handler */ 1643 urb->status = status; 1644 /* 1645 * This function can be called in task context inside another remote 1646 * coverage collection section, but kcov doesn't support that kind of 1647 * recursion yet. Only collect coverage in softirq context for now. 1648 */ 1649 kcov_remote_start_usb_softirq((u64)urb->dev->bus->busnum); 1650 urb->complete(urb); 1651 kcov_remote_stop_softirq(); 1652 1653 usb_anchor_resume_wakeups(anchor); 1654 atomic_dec(&urb->use_count); 1655 /* 1656 * Order the write of urb->use_count above before the read 1657 * of urb->reject below. Pairs with the memory barriers in 1658 * usb_kill_urb() and usb_poison_urb(). 1659 */ 1660 smp_mb__after_atomic(); 1661 1662 if (unlikely(atomic_read(&urb->reject))) 1663 wake_up(&usb_kill_urb_queue); 1664 usb_put_urb(urb); 1665 } 1666 1667 static void usb_giveback_urb_bh(struct tasklet_struct *t) 1668 { 1669 struct giveback_urb_bh *bh = from_tasklet(bh, t, bh); 1670 struct list_head local_list; 1671 1672 spin_lock_irq(&bh->lock); 1673 bh->running = true; 1674 list_replace_init(&bh->head, &local_list); 1675 spin_unlock_irq(&bh->lock); 1676 1677 while (!list_empty(&local_list)) { 1678 struct urb *urb; 1679 1680 urb = list_entry(local_list.next, struct urb, urb_list); 1681 list_del_init(&urb->urb_list); 1682 bh->completing_ep = urb->ep; 1683 __usb_hcd_giveback_urb(urb); 1684 bh->completing_ep = NULL; 1685 } 1686 1687 /* 1688 * giveback new URBs next time to prevent this function 1689 * from not exiting for a long time. 1690 */ 1691 spin_lock_irq(&bh->lock); 1692 if (!list_empty(&bh->head)) { 1693 if (bh->high_prio) 1694 tasklet_hi_schedule(&bh->bh); 1695 else 1696 tasklet_schedule(&bh->bh); 1697 } 1698 bh->running = false; 1699 spin_unlock_irq(&bh->lock); 1700 } 1701 1702 /** 1703 * usb_hcd_giveback_urb - return URB from HCD to device driver 1704 * @hcd: host controller returning the URB 1705 * @urb: urb being returned to the USB device driver. 1706 * @status: completion status code for the URB. 1707 * 1708 * Context: atomic. The completion callback is invoked in caller's context. 1709 * For HCDs with HCD_BH flag set, the completion callback is invoked in tasklet 1710 * context (except for URBs submitted to the root hub which always complete in 1711 * caller's context). 1712 * 1713 * This hands the URB from HCD to its USB device driver, using its 1714 * completion function. The HCD has freed all per-urb resources 1715 * (and is done using urb->hcpriv). It also released all HCD locks; 1716 * the device driver won't cause problems if it frees, modifies, 1717 * or resubmits this URB. 1718 * 1719 * If @urb was unlinked, the value of @status will be overridden by 1720 * @urb->unlinked. Erroneous short transfers are detected in case 1721 * the HCD hasn't checked for them. 1722 */ 1723 void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status) 1724 { 1725 struct giveback_urb_bh *bh; 1726 bool running; 1727 1728 /* pass status to tasklet via unlinked */ 1729 if (likely(!urb->unlinked)) 1730 urb->unlinked = status; 1731 1732 if (!hcd_giveback_urb_in_bh(hcd) && !is_root_hub(urb->dev)) { 1733 __usb_hcd_giveback_urb(urb); 1734 return; 1735 } 1736 1737 if (usb_pipeisoc(urb->pipe) || usb_pipeint(urb->pipe)) 1738 bh = &hcd->high_prio_bh; 1739 else 1740 bh = &hcd->low_prio_bh; 1741 1742 spin_lock(&bh->lock); 1743 list_add_tail(&urb->urb_list, &bh->head); 1744 running = bh->running; 1745 spin_unlock(&bh->lock); 1746 1747 if (running) 1748 ; 1749 else if (bh->high_prio) 1750 tasklet_hi_schedule(&bh->bh); 1751 else 1752 tasklet_schedule(&bh->bh); 1753 } 1754 EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb); 1755 1756 /*-------------------------------------------------------------------------*/ 1757 1758 /* Cancel all URBs pending on this endpoint and wait for the endpoint's 1759 * queue to drain completely. The caller must first insure that no more 1760 * URBs can be submitted for this endpoint. 1761 */ 1762 void usb_hcd_flush_endpoint(struct usb_device *udev, 1763 struct usb_host_endpoint *ep) 1764 { 1765 struct usb_hcd *hcd; 1766 struct urb *urb; 1767 1768 if (!ep) 1769 return; 1770 might_sleep(); 1771 hcd = bus_to_hcd(udev->bus); 1772 1773 /* No more submits can occur */ 1774 spin_lock_irq(&hcd_urb_list_lock); 1775 rescan: 1776 list_for_each_entry_reverse(urb, &ep->urb_list, urb_list) { 1777 int is_in; 1778 1779 if (urb->unlinked) 1780 continue; 1781 usb_get_urb (urb); 1782 is_in = usb_urb_dir_in(urb); 1783 spin_unlock(&hcd_urb_list_lock); 1784 1785 /* kick hcd */ 1786 unlink1(hcd, urb, -ESHUTDOWN); 1787 dev_dbg (hcd->self.controller, 1788 "shutdown urb %pK ep%d%s-%s\n", 1789 urb, usb_endpoint_num(&ep->desc), 1790 is_in ? "in" : "out", 1791 usb_ep_type_string(usb_endpoint_type(&ep->desc))); 1792 usb_put_urb (urb); 1793 1794 /* list contents may have changed */ 1795 spin_lock(&hcd_urb_list_lock); 1796 goto rescan; 1797 } 1798 spin_unlock_irq(&hcd_urb_list_lock); 1799 1800 /* Wait until the endpoint queue is completely empty */ 1801 while (!list_empty (&ep->urb_list)) { 1802 spin_lock_irq(&hcd_urb_list_lock); 1803 1804 /* The list may have changed while we acquired the spinlock */ 1805 urb = NULL; 1806 if (!list_empty (&ep->urb_list)) { 1807 urb = list_entry (ep->urb_list.prev, struct urb, 1808 urb_list); 1809 usb_get_urb (urb); 1810 } 1811 spin_unlock_irq(&hcd_urb_list_lock); 1812 1813 if (urb) { 1814 usb_kill_urb (urb); 1815 usb_put_urb (urb); 1816 } 1817 } 1818 } 1819 1820 /** 1821 * usb_hcd_alloc_bandwidth - check whether a new bandwidth setting exceeds 1822 * the bus bandwidth 1823 * @udev: target &usb_device 1824 * @new_config: new configuration to install 1825 * @cur_alt: the current alternate interface setting 1826 * @new_alt: alternate interface setting that is being installed 1827 * 1828 * To change configurations, pass in the new configuration in new_config, 1829 * and pass NULL for cur_alt and new_alt. 1830 * 1831 * To reset a device's configuration (put the device in the ADDRESSED state), 1832 * pass in NULL for new_config, cur_alt, and new_alt. 1833 * 1834 * To change alternate interface settings, pass in NULL for new_config, 1835 * pass in the current alternate interface setting in cur_alt, 1836 * and pass in the new alternate interface setting in new_alt. 1837 * 1838 * Return: An error if the requested bandwidth change exceeds the 1839 * bus bandwidth or host controller internal resources. 1840 */ 1841 int usb_hcd_alloc_bandwidth(struct usb_device *udev, 1842 struct usb_host_config *new_config, 1843 struct usb_host_interface *cur_alt, 1844 struct usb_host_interface *new_alt) 1845 { 1846 int num_intfs, i, j; 1847 struct usb_host_interface *alt = NULL; 1848 int ret = 0; 1849 struct usb_hcd *hcd; 1850 struct usb_host_endpoint *ep; 1851 1852 hcd = bus_to_hcd(udev->bus); 1853 if (!hcd->driver->check_bandwidth) 1854 return 0; 1855 1856 /* Configuration is being removed - set configuration 0 */ 1857 if (!new_config && !cur_alt) { 1858 for (i = 1; i < 16; ++i) { 1859 ep = udev->ep_out[i]; 1860 if (ep) 1861 hcd->driver->drop_endpoint(hcd, udev, ep); 1862 ep = udev->ep_in[i]; 1863 if (ep) 1864 hcd->driver->drop_endpoint(hcd, udev, ep); 1865 } 1866 hcd->driver->check_bandwidth(hcd, udev); 1867 return 0; 1868 } 1869 /* Check if the HCD says there's enough bandwidth. Enable all endpoints 1870 * each interface's alt setting 0 and ask the HCD to check the bandwidth 1871 * of the bus. There will always be bandwidth for endpoint 0, so it's 1872 * ok to exclude it. 1873 */ 1874 if (new_config) { 1875 num_intfs = new_config->desc.bNumInterfaces; 1876 /* Remove endpoints (except endpoint 0, which is always on the 1877 * schedule) from the old config from the schedule 1878 */ 1879 for (i = 1; i < 16; ++i) { 1880 ep = udev->ep_out[i]; 1881 if (ep) { 1882 ret = hcd->driver->drop_endpoint(hcd, udev, ep); 1883 if (ret < 0) 1884 goto reset; 1885 } 1886 ep = udev->ep_in[i]; 1887 if (ep) { 1888 ret = hcd->driver->drop_endpoint(hcd, udev, ep); 1889 if (ret < 0) 1890 goto reset; 1891 } 1892 } 1893 for (i = 0; i < num_intfs; ++i) { 1894 struct usb_host_interface *first_alt; 1895 int iface_num; 1896 1897 first_alt = &new_config->intf_cache[i]->altsetting[0]; 1898 iface_num = first_alt->desc.bInterfaceNumber; 1899 /* Set up endpoints for alternate interface setting 0 */ 1900 alt = usb_find_alt_setting(new_config, iface_num, 0); 1901 if (!alt) 1902 /* No alt setting 0? Pick the first setting. */ 1903 alt = first_alt; 1904 1905 for (j = 0; j < alt->desc.bNumEndpoints; j++) { 1906 ret = hcd->driver->add_endpoint(hcd, udev, &alt->endpoint[j]); 1907 if (ret < 0) 1908 goto reset; 1909 } 1910 } 1911 } 1912 if (cur_alt && new_alt) { 1913 struct usb_interface *iface = usb_ifnum_to_if(udev, 1914 cur_alt->desc.bInterfaceNumber); 1915 1916 if (!iface) 1917 return -EINVAL; 1918 if (iface->resetting_device) { 1919 /* 1920 * The USB core just reset the device, so the xHCI host 1921 * and the device will think alt setting 0 is installed. 1922 * However, the USB core will pass in the alternate 1923 * setting installed before the reset as cur_alt. Dig 1924 * out the alternate setting 0 structure, or the first 1925 * alternate setting if a broken device doesn't have alt 1926 * setting 0. 1927 */ 1928 cur_alt = usb_altnum_to_altsetting(iface, 0); 1929 if (!cur_alt) 1930 cur_alt = &iface->altsetting[0]; 1931 } 1932 1933 /* Drop all the endpoints in the current alt setting */ 1934 for (i = 0; i < cur_alt->desc.bNumEndpoints; i++) { 1935 ret = hcd->driver->drop_endpoint(hcd, udev, 1936 &cur_alt->endpoint[i]); 1937 if (ret < 0) 1938 goto reset; 1939 } 1940 /* Add all the endpoints in the new alt setting */ 1941 for (i = 0; i < new_alt->desc.bNumEndpoints; i++) { 1942 ret = hcd->driver->add_endpoint(hcd, udev, 1943 &new_alt->endpoint[i]); 1944 if (ret < 0) 1945 goto reset; 1946 } 1947 } 1948 ret = hcd->driver->check_bandwidth(hcd, udev); 1949 reset: 1950 if (ret < 0) 1951 hcd->driver->reset_bandwidth(hcd, udev); 1952 return ret; 1953 } 1954 1955 /* Disables the endpoint: synchronizes with the hcd to make sure all 1956 * endpoint state is gone from hardware. usb_hcd_flush_endpoint() must 1957 * have been called previously. Use for set_configuration, set_interface, 1958 * driver removal, physical disconnect. 1959 * 1960 * example: a qh stored in ep->hcpriv, holding state related to endpoint 1961 * type, maxpacket size, toggle, halt status, and scheduling. 1962 */ 1963 void usb_hcd_disable_endpoint(struct usb_device *udev, 1964 struct usb_host_endpoint *ep) 1965 { 1966 struct usb_hcd *hcd; 1967 1968 might_sleep(); 1969 hcd = bus_to_hcd(udev->bus); 1970 if (hcd->driver->endpoint_disable) 1971 hcd->driver->endpoint_disable(hcd, ep); 1972 } 1973 1974 /** 1975 * usb_hcd_reset_endpoint - reset host endpoint state 1976 * @udev: USB device. 1977 * @ep: the endpoint to reset. 1978 * 1979 * Resets any host endpoint state such as the toggle bit, sequence 1980 * number and current window. 1981 */ 1982 void usb_hcd_reset_endpoint(struct usb_device *udev, 1983 struct usb_host_endpoint *ep) 1984 { 1985 struct usb_hcd *hcd = bus_to_hcd(udev->bus); 1986 1987 if (hcd->driver->endpoint_reset) 1988 hcd->driver->endpoint_reset(hcd, ep); 1989 else { 1990 int epnum = usb_endpoint_num(&ep->desc); 1991 int is_out = usb_endpoint_dir_out(&ep->desc); 1992 int is_control = usb_endpoint_xfer_control(&ep->desc); 1993 1994 usb_settoggle(udev, epnum, is_out, 0); 1995 if (is_control) 1996 usb_settoggle(udev, epnum, !is_out, 0); 1997 } 1998 } 1999 2000 /** 2001 * usb_alloc_streams - allocate bulk endpoint stream IDs. 2002 * @interface: alternate setting that includes all endpoints. 2003 * @eps: array of endpoints that need streams. 2004 * @num_eps: number of endpoints in the array. 2005 * @num_streams: number of streams to allocate. 2006 * @mem_flags: flags hcd should use to allocate memory. 2007 * 2008 * Sets up a group of bulk endpoints to have @num_streams stream IDs available. 2009 * Drivers may queue multiple transfers to different stream IDs, which may 2010 * complete in a different order than they were queued. 2011 * 2012 * Return: On success, the number of allocated streams. On failure, a negative 2013 * error code. 2014 */ 2015 int usb_alloc_streams(struct usb_interface *interface, 2016 struct usb_host_endpoint **eps, unsigned int num_eps, 2017 unsigned int num_streams, gfp_t mem_flags) 2018 { 2019 struct usb_hcd *hcd; 2020 struct usb_device *dev; 2021 int i, ret; 2022 2023 dev = interface_to_usbdev(interface); 2024 hcd = bus_to_hcd(dev->bus); 2025 if (!hcd->driver->alloc_streams || !hcd->driver->free_streams) 2026 return -EINVAL; 2027 if (dev->speed < USB_SPEED_SUPER) 2028 return -EINVAL; 2029 if (dev->state < USB_STATE_CONFIGURED) 2030 return -ENODEV; 2031 2032 for (i = 0; i < num_eps; i++) { 2033 /* Streams only apply to bulk endpoints. */ 2034 if (!usb_endpoint_xfer_bulk(&eps[i]->desc)) 2035 return -EINVAL; 2036 /* Re-alloc is not allowed */ 2037 if (eps[i]->streams) 2038 return -EINVAL; 2039 } 2040 2041 ret = hcd->driver->alloc_streams(hcd, dev, eps, num_eps, 2042 num_streams, mem_flags); 2043 if (ret < 0) 2044 return ret; 2045 2046 for (i = 0; i < num_eps; i++) 2047 eps[i]->streams = ret; 2048 2049 return ret; 2050 } 2051 EXPORT_SYMBOL_GPL(usb_alloc_streams); 2052 2053 /** 2054 * usb_free_streams - free bulk endpoint stream IDs. 2055 * @interface: alternate setting that includes all endpoints. 2056 * @eps: array of endpoints to remove streams from. 2057 * @num_eps: number of endpoints in the array. 2058 * @mem_flags: flags hcd should use to allocate memory. 2059 * 2060 * Reverts a group of bulk endpoints back to not using stream IDs. 2061 * Can fail if we are given bad arguments, or HCD is broken. 2062 * 2063 * Return: 0 on success. On failure, a negative error code. 2064 */ 2065 int usb_free_streams(struct usb_interface *interface, 2066 struct usb_host_endpoint **eps, unsigned int num_eps, 2067 gfp_t mem_flags) 2068 { 2069 struct usb_hcd *hcd; 2070 struct usb_device *dev; 2071 int i, ret; 2072 2073 dev = interface_to_usbdev(interface); 2074 hcd = bus_to_hcd(dev->bus); 2075 if (dev->speed < USB_SPEED_SUPER) 2076 return -EINVAL; 2077 2078 /* Double-free is not allowed */ 2079 for (i = 0; i < num_eps; i++) 2080 if (!eps[i] || !eps[i]->streams) 2081 return -EINVAL; 2082 2083 ret = hcd->driver->free_streams(hcd, dev, eps, num_eps, mem_flags); 2084 if (ret < 0) 2085 return ret; 2086 2087 for (i = 0; i < num_eps; i++) 2088 eps[i]->streams = 0; 2089 2090 return ret; 2091 } 2092 EXPORT_SYMBOL_GPL(usb_free_streams); 2093 2094 /* Protect against drivers that try to unlink URBs after the device 2095 * is gone, by waiting until all unlinks for @udev are finished. 2096 * Since we don't currently track URBs by device, simply wait until 2097 * nothing is running in the locked region of usb_hcd_unlink_urb(). 2098 */ 2099 void usb_hcd_synchronize_unlinks(struct usb_device *udev) 2100 { 2101 spin_lock_irq(&hcd_urb_unlink_lock); 2102 spin_unlock_irq(&hcd_urb_unlink_lock); 2103 } 2104 2105 /*-------------------------------------------------------------------------*/ 2106 2107 /* called in any context */ 2108 int usb_hcd_get_frame_number (struct usb_device *udev) 2109 { 2110 struct usb_hcd *hcd = bus_to_hcd(udev->bus); 2111 2112 if (!HCD_RH_RUNNING(hcd)) 2113 return -ESHUTDOWN; 2114 return hcd->driver->get_frame_number (hcd); 2115 } 2116 2117 /*-------------------------------------------------------------------------*/ 2118 #ifdef CONFIG_USB_HCD_TEST_MODE 2119 2120 static void usb_ehset_completion(struct urb *urb) 2121 { 2122 struct completion *done = urb->context; 2123 2124 complete(done); 2125 } 2126 /* 2127 * Allocate and initialize a control URB. This request will be used by the 2128 * EHSET SINGLE_STEP_SET_FEATURE test in which the DATA and STATUS stages 2129 * of the GetDescriptor request are sent 15 seconds after the SETUP stage. 2130 * Return NULL if failed. 2131 */ 2132 static struct urb *request_single_step_set_feature_urb( 2133 struct usb_device *udev, 2134 void *dr, 2135 void *buf, 2136 struct completion *done) 2137 { 2138 struct urb *urb; 2139 struct usb_hcd *hcd = bus_to_hcd(udev->bus); 2140 2141 urb = usb_alloc_urb(0, GFP_KERNEL); 2142 if (!urb) 2143 return NULL; 2144 2145 urb->pipe = usb_rcvctrlpipe(udev, 0); 2146 2147 urb->ep = &udev->ep0; 2148 urb->dev = udev; 2149 urb->setup_packet = (void *)dr; 2150 urb->transfer_buffer = buf; 2151 urb->transfer_buffer_length = USB_DT_DEVICE_SIZE; 2152 urb->complete = usb_ehset_completion; 2153 urb->status = -EINPROGRESS; 2154 urb->actual_length = 0; 2155 urb->transfer_flags = URB_DIR_IN; 2156 usb_get_urb(urb); 2157 atomic_inc(&urb->use_count); 2158 atomic_inc(&urb->dev->urbnum); 2159 if (map_urb_for_dma(hcd, urb, GFP_KERNEL)) { 2160 usb_put_urb(urb); 2161 usb_free_urb(urb); 2162 return NULL; 2163 } 2164 2165 urb->context = done; 2166 return urb; 2167 } 2168 2169 int ehset_single_step_set_feature(struct usb_hcd *hcd, int port) 2170 { 2171 int retval = -ENOMEM; 2172 struct usb_ctrlrequest *dr; 2173 struct urb *urb; 2174 struct usb_device *udev; 2175 struct usb_device_descriptor *buf; 2176 DECLARE_COMPLETION_ONSTACK(done); 2177 2178 /* Obtain udev of the rhub's child port */ 2179 udev = usb_hub_find_child(hcd->self.root_hub, port); 2180 if (!udev) { 2181 dev_err(hcd->self.controller, "No device attached to the RootHub\n"); 2182 return -ENODEV; 2183 } 2184 buf = kmalloc(USB_DT_DEVICE_SIZE, GFP_KERNEL); 2185 if (!buf) 2186 return -ENOMEM; 2187 2188 dr = kmalloc(sizeof(struct usb_ctrlrequest), GFP_KERNEL); 2189 if (!dr) { 2190 kfree(buf); 2191 return -ENOMEM; 2192 } 2193 2194 /* Fill Setup packet for GetDescriptor */ 2195 dr->bRequestType = USB_DIR_IN; 2196 dr->bRequest = USB_REQ_GET_DESCRIPTOR; 2197 dr->wValue = cpu_to_le16(USB_DT_DEVICE << 8); 2198 dr->wIndex = 0; 2199 dr->wLength = cpu_to_le16(USB_DT_DEVICE_SIZE); 2200 urb = request_single_step_set_feature_urb(udev, dr, buf, &done); 2201 if (!urb) 2202 goto cleanup; 2203 2204 /* Submit just the SETUP stage */ 2205 retval = hcd->driver->submit_single_step_set_feature(hcd, urb, 1); 2206 if (retval) 2207 goto out1; 2208 if (!wait_for_completion_timeout(&done, msecs_to_jiffies(2000))) { 2209 usb_kill_urb(urb); 2210 retval = -ETIMEDOUT; 2211 dev_err(hcd->self.controller, 2212 "%s SETUP stage timed out on ep0\n", __func__); 2213 goto out1; 2214 } 2215 msleep(15 * 1000); 2216 2217 /* Complete remaining DATA and STATUS stages using the same URB */ 2218 urb->status = -EINPROGRESS; 2219 usb_get_urb(urb); 2220 atomic_inc(&urb->use_count); 2221 atomic_inc(&urb->dev->urbnum); 2222 retval = hcd->driver->submit_single_step_set_feature(hcd, urb, 0); 2223 if (!retval && !wait_for_completion_timeout(&done, 2224 msecs_to_jiffies(2000))) { 2225 usb_kill_urb(urb); 2226 retval = -ETIMEDOUT; 2227 dev_err(hcd->self.controller, 2228 "%s IN stage timed out on ep0\n", __func__); 2229 } 2230 out1: 2231 usb_free_urb(urb); 2232 cleanup: 2233 kfree(dr); 2234 kfree(buf); 2235 return retval; 2236 } 2237 EXPORT_SYMBOL_GPL(ehset_single_step_set_feature); 2238 #endif /* CONFIG_USB_HCD_TEST_MODE */ 2239 2240 /*-------------------------------------------------------------------------*/ 2241 2242 #ifdef CONFIG_PM 2243 2244 int hcd_bus_suspend(struct usb_device *rhdev, pm_message_t msg) 2245 { 2246 struct usb_hcd *hcd = bus_to_hcd(rhdev->bus); 2247 int status; 2248 int old_state = hcd->state; 2249 2250 dev_dbg(&rhdev->dev, "bus %ssuspend, wakeup %d\n", 2251 (PMSG_IS_AUTO(msg) ? "auto-" : ""), 2252 rhdev->do_remote_wakeup); 2253 if (HCD_DEAD(hcd)) { 2254 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "suspend"); 2255 return 0; 2256 } 2257 2258 if (!hcd->driver->bus_suspend) { 2259 status = -ENOENT; 2260 } else { 2261 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2262 hcd->state = HC_STATE_QUIESCING; 2263 status = hcd->driver->bus_suspend(hcd); 2264 } 2265 if (status == 0) { 2266 usb_set_device_state(rhdev, USB_STATE_SUSPENDED); 2267 hcd->state = HC_STATE_SUSPENDED; 2268 2269 if (!PMSG_IS_AUTO(msg)) 2270 usb_phy_roothub_suspend(hcd->self.sysdev, 2271 hcd->phy_roothub); 2272 2273 /* Did we race with a root-hub wakeup event? */ 2274 if (rhdev->do_remote_wakeup) { 2275 char buffer[6]; 2276 2277 status = hcd->driver->hub_status_data(hcd, buffer); 2278 if (status != 0) { 2279 dev_dbg(&rhdev->dev, "suspend raced with wakeup event\n"); 2280 hcd_bus_resume(rhdev, PMSG_AUTO_RESUME); 2281 status = -EBUSY; 2282 } 2283 } 2284 } else { 2285 spin_lock_irq(&hcd_root_hub_lock); 2286 if (!HCD_DEAD(hcd)) { 2287 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2288 hcd->state = old_state; 2289 } 2290 spin_unlock_irq(&hcd_root_hub_lock); 2291 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n", 2292 "suspend", status); 2293 } 2294 return status; 2295 } 2296 2297 int hcd_bus_resume(struct usb_device *rhdev, pm_message_t msg) 2298 { 2299 struct usb_hcd *hcd = bus_to_hcd(rhdev->bus); 2300 int status; 2301 int old_state = hcd->state; 2302 2303 dev_dbg(&rhdev->dev, "usb %sresume\n", 2304 (PMSG_IS_AUTO(msg) ? "auto-" : "")); 2305 if (HCD_DEAD(hcd)) { 2306 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "resume"); 2307 return 0; 2308 } 2309 2310 if (!PMSG_IS_AUTO(msg)) { 2311 status = usb_phy_roothub_resume(hcd->self.sysdev, 2312 hcd->phy_roothub); 2313 if (status) 2314 return status; 2315 } 2316 2317 if (!hcd->driver->bus_resume) 2318 return -ENOENT; 2319 if (HCD_RH_RUNNING(hcd)) 2320 return 0; 2321 2322 hcd->state = HC_STATE_RESUMING; 2323 status = hcd->driver->bus_resume(hcd); 2324 clear_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags); 2325 if (status == 0) 2326 status = usb_phy_roothub_calibrate(hcd->phy_roothub); 2327 2328 if (status == 0) { 2329 struct usb_device *udev; 2330 int port1; 2331 2332 spin_lock_irq(&hcd_root_hub_lock); 2333 if (!HCD_DEAD(hcd)) { 2334 usb_set_device_state(rhdev, rhdev->actconfig 2335 ? USB_STATE_CONFIGURED 2336 : USB_STATE_ADDRESS); 2337 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2338 hcd->state = HC_STATE_RUNNING; 2339 } 2340 spin_unlock_irq(&hcd_root_hub_lock); 2341 2342 /* 2343 * Check whether any of the enabled ports on the root hub are 2344 * unsuspended. If they are then a TRSMRCY delay is needed 2345 * (this is what the USB-2 spec calls a "global resume"). 2346 * Otherwise we can skip the delay. 2347 */ 2348 usb_hub_for_each_child(rhdev, port1, udev) { 2349 if (udev->state != USB_STATE_NOTATTACHED && 2350 !udev->port_is_suspended) { 2351 usleep_range(10000, 11000); /* TRSMRCY */ 2352 break; 2353 } 2354 } 2355 } else { 2356 hcd->state = old_state; 2357 usb_phy_roothub_suspend(hcd->self.sysdev, hcd->phy_roothub); 2358 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n", 2359 "resume", status); 2360 if (status != -ESHUTDOWN) 2361 usb_hc_died(hcd); 2362 } 2363 return status; 2364 } 2365 2366 /* Workqueue routine for root-hub remote wakeup */ 2367 static void hcd_resume_work(struct work_struct *work) 2368 { 2369 struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work); 2370 struct usb_device *udev = hcd->self.root_hub; 2371 2372 usb_remote_wakeup(udev); 2373 } 2374 2375 /** 2376 * usb_hcd_resume_root_hub - called by HCD to resume its root hub 2377 * @hcd: host controller for this root hub 2378 * 2379 * The USB host controller calls this function when its root hub is 2380 * suspended (with the remote wakeup feature enabled) and a remote 2381 * wakeup request is received. The routine submits a workqueue request 2382 * to resume the root hub (that is, manage its downstream ports again). 2383 */ 2384 void usb_hcd_resume_root_hub (struct usb_hcd *hcd) 2385 { 2386 unsigned long flags; 2387 2388 spin_lock_irqsave (&hcd_root_hub_lock, flags); 2389 if (hcd->rh_registered) { 2390 pm_wakeup_event(&hcd->self.root_hub->dev, 0); 2391 set_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags); 2392 queue_work(pm_wq, &hcd->wakeup_work); 2393 } 2394 spin_unlock_irqrestore (&hcd_root_hub_lock, flags); 2395 } 2396 EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub); 2397 2398 #endif /* CONFIG_PM */ 2399 2400 /*-------------------------------------------------------------------------*/ 2401 2402 #ifdef CONFIG_USB_OTG 2403 2404 /** 2405 * usb_bus_start_enum - start immediate enumeration (for OTG) 2406 * @bus: the bus (must use hcd framework) 2407 * @port_num: 1-based number of port; usually bus->otg_port 2408 * Context: atomic 2409 * 2410 * Starts enumeration, with an immediate reset followed later by 2411 * hub_wq identifying and possibly configuring the device. 2412 * This is needed by OTG controller drivers, where it helps meet 2413 * HNP protocol timing requirements for starting a port reset. 2414 * 2415 * Return: 0 if successful. 2416 */ 2417 int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num) 2418 { 2419 struct usb_hcd *hcd; 2420 int status = -EOPNOTSUPP; 2421 2422 /* NOTE: since HNP can't start by grabbing the bus's address0_sem, 2423 * boards with root hubs hooked up to internal devices (instead of 2424 * just the OTG port) may need more attention to resetting... 2425 */ 2426 hcd = bus_to_hcd(bus); 2427 if (port_num && hcd->driver->start_port_reset) 2428 status = hcd->driver->start_port_reset(hcd, port_num); 2429 2430 /* allocate hub_wq shortly after (first) root port reset finishes; 2431 * it may issue others, until at least 50 msecs have passed. 2432 */ 2433 if (status == 0) 2434 mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10)); 2435 return status; 2436 } 2437 EXPORT_SYMBOL_GPL(usb_bus_start_enum); 2438 2439 #endif 2440 2441 /*-------------------------------------------------------------------------*/ 2442 2443 /** 2444 * usb_hcd_irq - hook IRQs to HCD framework (bus glue) 2445 * @irq: the IRQ being raised 2446 * @__hcd: pointer to the HCD whose IRQ is being signaled 2447 * 2448 * If the controller isn't HALTed, calls the driver's irq handler. 2449 * Checks whether the controller is now dead. 2450 * 2451 * Return: %IRQ_HANDLED if the IRQ was handled. %IRQ_NONE otherwise. 2452 */ 2453 irqreturn_t usb_hcd_irq (int irq, void *__hcd) 2454 { 2455 struct usb_hcd *hcd = __hcd; 2456 irqreturn_t rc; 2457 2458 if (unlikely(HCD_DEAD(hcd) || !HCD_HW_ACCESSIBLE(hcd))) 2459 rc = IRQ_NONE; 2460 else if (hcd->driver->irq(hcd) == IRQ_NONE) 2461 rc = IRQ_NONE; 2462 else 2463 rc = IRQ_HANDLED; 2464 2465 return rc; 2466 } 2467 EXPORT_SYMBOL_GPL(usb_hcd_irq); 2468 2469 /*-------------------------------------------------------------------------*/ 2470 2471 /* Workqueue routine for when the root-hub has died. */ 2472 static void hcd_died_work(struct work_struct *work) 2473 { 2474 struct usb_hcd *hcd = container_of(work, struct usb_hcd, died_work); 2475 static char *env[] = { 2476 "ERROR=DEAD", 2477 NULL 2478 }; 2479 2480 /* Notify user space that the host controller has died */ 2481 kobject_uevent_env(&hcd->self.root_hub->dev.kobj, KOBJ_OFFLINE, env); 2482 } 2483 2484 /** 2485 * usb_hc_died - report abnormal shutdown of a host controller (bus glue) 2486 * @hcd: pointer to the HCD representing the controller 2487 * 2488 * This is called by bus glue to report a USB host controller that died 2489 * while operations may still have been pending. It's called automatically 2490 * by the PCI glue, so only glue for non-PCI busses should need to call it. 2491 * 2492 * Only call this function with the primary HCD. 2493 */ 2494 void usb_hc_died (struct usb_hcd *hcd) 2495 { 2496 unsigned long flags; 2497 2498 dev_err (hcd->self.controller, "HC died; cleaning up\n"); 2499 2500 spin_lock_irqsave (&hcd_root_hub_lock, flags); 2501 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2502 set_bit(HCD_FLAG_DEAD, &hcd->flags); 2503 if (hcd->rh_registered) { 2504 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2505 2506 /* make hub_wq clean up old urbs and devices */ 2507 usb_set_device_state (hcd->self.root_hub, 2508 USB_STATE_NOTATTACHED); 2509 usb_kick_hub_wq(hcd->self.root_hub); 2510 } 2511 if (usb_hcd_is_primary_hcd(hcd) && hcd->shared_hcd) { 2512 hcd = hcd->shared_hcd; 2513 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2514 set_bit(HCD_FLAG_DEAD, &hcd->flags); 2515 if (hcd->rh_registered) { 2516 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2517 2518 /* make hub_wq clean up old urbs and devices */ 2519 usb_set_device_state(hcd->self.root_hub, 2520 USB_STATE_NOTATTACHED); 2521 usb_kick_hub_wq(hcd->self.root_hub); 2522 } 2523 } 2524 2525 /* Handle the case where this function gets called with a shared HCD */ 2526 if (usb_hcd_is_primary_hcd(hcd)) 2527 schedule_work(&hcd->died_work); 2528 else 2529 schedule_work(&hcd->primary_hcd->died_work); 2530 2531 spin_unlock_irqrestore (&hcd_root_hub_lock, flags); 2532 /* Make sure that the other roothub is also deallocated. */ 2533 } 2534 EXPORT_SYMBOL_GPL (usb_hc_died); 2535 2536 /*-------------------------------------------------------------------------*/ 2537 2538 static void init_giveback_urb_bh(struct giveback_urb_bh *bh) 2539 { 2540 2541 spin_lock_init(&bh->lock); 2542 INIT_LIST_HEAD(&bh->head); 2543 tasklet_setup(&bh->bh, usb_giveback_urb_bh); 2544 } 2545 2546 struct usb_hcd *__usb_create_hcd(const struct hc_driver *driver, 2547 struct device *sysdev, struct device *dev, const char *bus_name, 2548 struct usb_hcd *primary_hcd) 2549 { 2550 struct usb_hcd *hcd; 2551 2552 hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL); 2553 if (!hcd) 2554 return NULL; 2555 if (primary_hcd == NULL) { 2556 hcd->address0_mutex = kmalloc(sizeof(*hcd->address0_mutex), 2557 GFP_KERNEL); 2558 if (!hcd->address0_mutex) { 2559 kfree(hcd); 2560 dev_dbg(dev, "hcd address0 mutex alloc failed\n"); 2561 return NULL; 2562 } 2563 mutex_init(hcd->address0_mutex); 2564 hcd->bandwidth_mutex = kmalloc(sizeof(*hcd->bandwidth_mutex), 2565 GFP_KERNEL); 2566 if (!hcd->bandwidth_mutex) { 2567 kfree(hcd->address0_mutex); 2568 kfree(hcd); 2569 dev_dbg(dev, "hcd bandwidth mutex alloc failed\n"); 2570 return NULL; 2571 } 2572 mutex_init(hcd->bandwidth_mutex); 2573 dev_set_drvdata(dev, hcd); 2574 } else { 2575 mutex_lock(&usb_port_peer_mutex); 2576 hcd->address0_mutex = primary_hcd->address0_mutex; 2577 hcd->bandwidth_mutex = primary_hcd->bandwidth_mutex; 2578 hcd->primary_hcd = primary_hcd; 2579 primary_hcd->primary_hcd = primary_hcd; 2580 hcd->shared_hcd = primary_hcd; 2581 primary_hcd->shared_hcd = hcd; 2582 mutex_unlock(&usb_port_peer_mutex); 2583 } 2584 2585 kref_init(&hcd->kref); 2586 2587 usb_bus_init(&hcd->self); 2588 hcd->self.controller = dev; 2589 hcd->self.sysdev = sysdev; 2590 hcd->self.bus_name = bus_name; 2591 2592 timer_setup(&hcd->rh_timer, rh_timer_func, 0); 2593 #ifdef CONFIG_PM 2594 INIT_WORK(&hcd->wakeup_work, hcd_resume_work); 2595 #endif 2596 2597 INIT_WORK(&hcd->died_work, hcd_died_work); 2598 2599 hcd->driver = driver; 2600 hcd->speed = driver->flags & HCD_MASK; 2601 hcd->product_desc = (driver->product_desc) ? driver->product_desc : 2602 "USB Host Controller"; 2603 return hcd; 2604 } 2605 EXPORT_SYMBOL_GPL(__usb_create_hcd); 2606 2607 /** 2608 * usb_create_shared_hcd - create and initialize an HCD structure 2609 * @driver: HC driver that will use this hcd 2610 * @dev: device for this HC, stored in hcd->self.controller 2611 * @bus_name: value to store in hcd->self.bus_name 2612 * @primary_hcd: a pointer to the usb_hcd structure that is sharing the 2613 * PCI device. Only allocate certain resources for the primary HCD 2614 * 2615 * Context: task context, might sleep. 2616 * 2617 * Allocate a struct usb_hcd, with extra space at the end for the 2618 * HC driver's private data. Initialize the generic members of the 2619 * hcd structure. 2620 * 2621 * Return: On success, a pointer to the created and initialized HCD structure. 2622 * On failure (e.g. if memory is unavailable), %NULL. 2623 */ 2624 struct usb_hcd *usb_create_shared_hcd(const struct hc_driver *driver, 2625 struct device *dev, const char *bus_name, 2626 struct usb_hcd *primary_hcd) 2627 { 2628 return __usb_create_hcd(driver, dev, dev, bus_name, primary_hcd); 2629 } 2630 EXPORT_SYMBOL_GPL(usb_create_shared_hcd); 2631 2632 /** 2633 * usb_create_hcd - create and initialize an HCD structure 2634 * @driver: HC driver that will use this hcd 2635 * @dev: device for this HC, stored in hcd->self.controller 2636 * @bus_name: value to store in hcd->self.bus_name 2637 * 2638 * Context: task context, might sleep. 2639 * 2640 * Allocate a struct usb_hcd, with extra space at the end for the 2641 * HC driver's private data. Initialize the generic members of the 2642 * hcd structure. 2643 * 2644 * Return: On success, a pointer to the created and initialized HCD 2645 * structure. On failure (e.g. if memory is unavailable), %NULL. 2646 */ 2647 struct usb_hcd *usb_create_hcd(const struct hc_driver *driver, 2648 struct device *dev, const char *bus_name) 2649 { 2650 return __usb_create_hcd(driver, dev, dev, bus_name, NULL); 2651 } 2652 EXPORT_SYMBOL_GPL(usb_create_hcd); 2653 2654 /* 2655 * Roothubs that share one PCI device must also share the bandwidth mutex. 2656 * Don't deallocate the bandwidth_mutex until the last shared usb_hcd is 2657 * deallocated. 2658 * 2659 * Make sure to deallocate the bandwidth_mutex only when the last HCD is 2660 * freed. When hcd_release() is called for either hcd in a peer set, 2661 * invalidate the peer's ->shared_hcd and ->primary_hcd pointers. 2662 */ 2663 static void hcd_release(struct kref *kref) 2664 { 2665 struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref); 2666 2667 mutex_lock(&usb_port_peer_mutex); 2668 if (hcd->shared_hcd) { 2669 struct usb_hcd *peer = hcd->shared_hcd; 2670 2671 peer->shared_hcd = NULL; 2672 peer->primary_hcd = NULL; 2673 } else { 2674 kfree(hcd->address0_mutex); 2675 kfree(hcd->bandwidth_mutex); 2676 } 2677 mutex_unlock(&usb_port_peer_mutex); 2678 kfree(hcd); 2679 } 2680 2681 struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd) 2682 { 2683 if (hcd) 2684 kref_get (&hcd->kref); 2685 return hcd; 2686 } 2687 EXPORT_SYMBOL_GPL(usb_get_hcd); 2688 2689 void usb_put_hcd (struct usb_hcd *hcd) 2690 { 2691 if (hcd) 2692 kref_put (&hcd->kref, hcd_release); 2693 } 2694 EXPORT_SYMBOL_GPL(usb_put_hcd); 2695 2696 int usb_hcd_is_primary_hcd(struct usb_hcd *hcd) 2697 { 2698 if (!hcd->primary_hcd) 2699 return 1; 2700 return hcd == hcd->primary_hcd; 2701 } 2702 EXPORT_SYMBOL_GPL(usb_hcd_is_primary_hcd); 2703 2704 int usb_hcd_find_raw_port_number(struct usb_hcd *hcd, int port1) 2705 { 2706 if (!hcd->driver->find_raw_port_number) 2707 return port1; 2708 2709 return hcd->driver->find_raw_port_number(hcd, port1); 2710 } 2711 2712 static int usb_hcd_request_irqs(struct usb_hcd *hcd, 2713 unsigned int irqnum, unsigned long irqflags) 2714 { 2715 int retval; 2716 2717 if (hcd->driver->irq) { 2718 2719 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d", 2720 hcd->driver->description, hcd->self.busnum); 2721 retval = request_irq(irqnum, &usb_hcd_irq, irqflags, 2722 hcd->irq_descr, hcd); 2723 if (retval != 0) { 2724 dev_err(hcd->self.controller, 2725 "request interrupt %d failed\n", 2726 irqnum); 2727 return retval; 2728 } 2729 hcd->irq = irqnum; 2730 dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum, 2731 (hcd->driver->flags & HCD_MEMORY) ? 2732 "io mem" : "io port", 2733 (unsigned long long)hcd->rsrc_start); 2734 } else { 2735 hcd->irq = 0; 2736 if (hcd->rsrc_start) 2737 dev_info(hcd->self.controller, "%s 0x%08llx\n", 2738 (hcd->driver->flags & HCD_MEMORY) ? 2739 "io mem" : "io port", 2740 (unsigned long long)hcd->rsrc_start); 2741 } 2742 return 0; 2743 } 2744 2745 /* 2746 * Before we free this root hub, flush in-flight peering attempts 2747 * and disable peer lookups 2748 */ 2749 static void usb_put_invalidate_rhdev(struct usb_hcd *hcd) 2750 { 2751 struct usb_device *rhdev; 2752 2753 mutex_lock(&usb_port_peer_mutex); 2754 rhdev = hcd->self.root_hub; 2755 hcd->self.root_hub = NULL; 2756 mutex_unlock(&usb_port_peer_mutex); 2757 usb_put_dev(rhdev); 2758 } 2759 2760 /** 2761 * usb_stop_hcd - Halt the HCD 2762 * @hcd: the usb_hcd that has to be halted 2763 * 2764 * Stop the root-hub polling timer and invoke the HCD's ->stop callback. 2765 */ 2766 static void usb_stop_hcd(struct usb_hcd *hcd) 2767 { 2768 hcd->rh_pollable = 0; 2769 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2770 del_timer_sync(&hcd->rh_timer); 2771 2772 hcd->driver->stop(hcd); 2773 hcd->state = HC_STATE_HALT; 2774 2775 /* In case the HCD restarted the timer, stop it again. */ 2776 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2777 del_timer_sync(&hcd->rh_timer); 2778 } 2779 2780 /** 2781 * usb_add_hcd - finish generic HCD structure initialization and register 2782 * @hcd: the usb_hcd structure to initialize 2783 * @irqnum: Interrupt line to allocate 2784 * @irqflags: Interrupt type flags 2785 * 2786 * Finish the remaining parts of generic HCD initialization: allocate the 2787 * buffers of consistent memory, register the bus, request the IRQ line, 2788 * and call the driver's reset() and start() routines. 2789 */ 2790 int usb_add_hcd(struct usb_hcd *hcd, 2791 unsigned int irqnum, unsigned long irqflags) 2792 { 2793 int retval; 2794 struct usb_device *rhdev; 2795 struct usb_hcd *shared_hcd; 2796 2797 if (!hcd->skip_phy_initialization && usb_hcd_is_primary_hcd(hcd)) { 2798 hcd->phy_roothub = usb_phy_roothub_alloc(hcd->self.sysdev); 2799 if (IS_ERR(hcd->phy_roothub)) 2800 return PTR_ERR(hcd->phy_roothub); 2801 2802 retval = usb_phy_roothub_init(hcd->phy_roothub); 2803 if (retval) 2804 return retval; 2805 2806 retval = usb_phy_roothub_set_mode(hcd->phy_roothub, 2807 PHY_MODE_USB_HOST_SS); 2808 if (retval) 2809 retval = usb_phy_roothub_set_mode(hcd->phy_roothub, 2810 PHY_MODE_USB_HOST); 2811 if (retval) 2812 goto err_usb_phy_roothub_power_on; 2813 2814 retval = usb_phy_roothub_power_on(hcd->phy_roothub); 2815 if (retval) 2816 goto err_usb_phy_roothub_power_on; 2817 } 2818 2819 dev_info(hcd->self.controller, "%s\n", hcd->product_desc); 2820 2821 switch (authorized_default) { 2822 case USB_AUTHORIZE_NONE: 2823 hcd->dev_policy = USB_DEVICE_AUTHORIZE_NONE; 2824 break; 2825 2826 case USB_AUTHORIZE_INTERNAL: 2827 hcd->dev_policy = USB_DEVICE_AUTHORIZE_INTERNAL; 2828 break; 2829 2830 case USB_AUTHORIZE_ALL: 2831 case USB_AUTHORIZE_WIRED: 2832 default: 2833 hcd->dev_policy = USB_DEVICE_AUTHORIZE_ALL; 2834 break; 2835 } 2836 2837 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 2838 2839 /* per default all interfaces are authorized */ 2840 set_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags); 2841 2842 /* HC is in reset state, but accessible. Now do the one-time init, 2843 * bottom up so that hcds can customize the root hubs before hub_wq 2844 * starts talking to them. (Note, bus id is assigned early too.) 2845 */ 2846 retval = hcd_buffer_create(hcd); 2847 if (retval != 0) { 2848 dev_dbg(hcd->self.sysdev, "pool alloc failed\n"); 2849 goto err_create_buf; 2850 } 2851 2852 retval = usb_register_bus(&hcd->self); 2853 if (retval < 0) 2854 goto err_register_bus; 2855 2856 rhdev = usb_alloc_dev(NULL, &hcd->self, 0); 2857 if (rhdev == NULL) { 2858 dev_err(hcd->self.sysdev, "unable to allocate root hub\n"); 2859 retval = -ENOMEM; 2860 goto err_allocate_root_hub; 2861 } 2862 mutex_lock(&usb_port_peer_mutex); 2863 hcd->self.root_hub = rhdev; 2864 mutex_unlock(&usb_port_peer_mutex); 2865 2866 rhdev->rx_lanes = 1; 2867 rhdev->tx_lanes = 1; 2868 rhdev->ssp_rate = USB_SSP_GEN_UNKNOWN; 2869 2870 switch (hcd->speed) { 2871 case HCD_USB11: 2872 rhdev->speed = USB_SPEED_FULL; 2873 break; 2874 case HCD_USB2: 2875 rhdev->speed = USB_SPEED_HIGH; 2876 break; 2877 case HCD_USB3: 2878 rhdev->speed = USB_SPEED_SUPER; 2879 break; 2880 case HCD_USB32: 2881 rhdev->rx_lanes = 2; 2882 rhdev->tx_lanes = 2; 2883 rhdev->ssp_rate = USB_SSP_GEN_2x2; 2884 rhdev->speed = USB_SPEED_SUPER_PLUS; 2885 break; 2886 case HCD_USB31: 2887 rhdev->ssp_rate = USB_SSP_GEN_2x1; 2888 rhdev->speed = USB_SPEED_SUPER_PLUS; 2889 break; 2890 default: 2891 retval = -EINVAL; 2892 goto err_set_rh_speed; 2893 } 2894 2895 /* wakeup flag init defaults to "everything works" for root hubs, 2896 * but drivers can override it in reset() if needed, along with 2897 * recording the overall controller's system wakeup capability. 2898 */ 2899 device_set_wakeup_capable(&rhdev->dev, 1); 2900 2901 /* HCD_FLAG_RH_RUNNING doesn't matter until the root hub is 2902 * registered. But since the controller can die at any time, 2903 * let's initialize the flag before touching the hardware. 2904 */ 2905 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2906 2907 /* "reset" is misnamed; its role is now one-time init. the controller 2908 * should already have been reset (and boot firmware kicked off etc). 2909 */ 2910 if (hcd->driver->reset) { 2911 retval = hcd->driver->reset(hcd); 2912 if (retval < 0) { 2913 dev_err(hcd->self.controller, "can't setup: %d\n", 2914 retval); 2915 goto err_hcd_driver_setup; 2916 } 2917 } 2918 hcd->rh_pollable = 1; 2919 2920 retval = usb_phy_roothub_calibrate(hcd->phy_roothub); 2921 if (retval) 2922 goto err_hcd_driver_setup; 2923 2924 /* NOTE: root hub and controller capabilities may not be the same */ 2925 if (device_can_wakeup(hcd->self.controller) 2926 && device_can_wakeup(&hcd->self.root_hub->dev)) 2927 dev_dbg(hcd->self.controller, "supports USB remote wakeup\n"); 2928 2929 /* initialize tasklets */ 2930 init_giveback_urb_bh(&hcd->high_prio_bh); 2931 hcd->high_prio_bh.high_prio = true; 2932 init_giveback_urb_bh(&hcd->low_prio_bh); 2933 2934 /* enable irqs just before we start the controller, 2935 * if the BIOS provides legacy PCI irqs. 2936 */ 2937 if (usb_hcd_is_primary_hcd(hcd) && irqnum) { 2938 retval = usb_hcd_request_irqs(hcd, irqnum, irqflags); 2939 if (retval) 2940 goto err_request_irq; 2941 } 2942 2943 hcd->state = HC_STATE_RUNNING; 2944 retval = hcd->driver->start(hcd); 2945 if (retval < 0) { 2946 dev_err(hcd->self.controller, "startup error %d\n", retval); 2947 goto err_hcd_driver_start; 2948 } 2949 2950 /* starting here, usbcore will pay attention to the shared HCD roothub */ 2951 shared_hcd = hcd->shared_hcd; 2952 if (!usb_hcd_is_primary_hcd(hcd) && shared_hcd && HCD_DEFER_RH_REGISTER(shared_hcd)) { 2953 retval = register_root_hub(shared_hcd); 2954 if (retval != 0) 2955 goto err_register_root_hub; 2956 2957 if (shared_hcd->uses_new_polling && HCD_POLL_RH(shared_hcd)) 2958 usb_hcd_poll_rh_status(shared_hcd); 2959 } 2960 2961 /* starting here, usbcore will pay attention to this root hub */ 2962 if (!HCD_DEFER_RH_REGISTER(hcd)) { 2963 retval = register_root_hub(hcd); 2964 if (retval != 0) 2965 goto err_register_root_hub; 2966 2967 if (hcd->uses_new_polling && HCD_POLL_RH(hcd)) 2968 usb_hcd_poll_rh_status(hcd); 2969 } 2970 2971 return retval; 2972 2973 err_register_root_hub: 2974 usb_stop_hcd(hcd); 2975 err_hcd_driver_start: 2976 if (usb_hcd_is_primary_hcd(hcd) && hcd->irq > 0) 2977 free_irq(irqnum, hcd); 2978 err_request_irq: 2979 err_hcd_driver_setup: 2980 err_set_rh_speed: 2981 usb_put_invalidate_rhdev(hcd); 2982 err_allocate_root_hub: 2983 usb_deregister_bus(&hcd->self); 2984 err_register_bus: 2985 hcd_buffer_destroy(hcd); 2986 err_create_buf: 2987 usb_phy_roothub_power_off(hcd->phy_roothub); 2988 err_usb_phy_roothub_power_on: 2989 usb_phy_roothub_exit(hcd->phy_roothub); 2990 2991 return retval; 2992 } 2993 EXPORT_SYMBOL_GPL(usb_add_hcd); 2994 2995 /** 2996 * usb_remove_hcd - shutdown processing for generic HCDs 2997 * @hcd: the usb_hcd structure to remove 2998 * 2999 * Context: task context, might sleep. 3000 * 3001 * Disconnects the root hub, then reverses the effects of usb_add_hcd(), 3002 * invoking the HCD's stop() method. 3003 */ 3004 void usb_remove_hcd(struct usb_hcd *hcd) 3005 { 3006 struct usb_device *rhdev; 3007 bool rh_registered; 3008 3009 if (!hcd) { 3010 pr_debug("%s: hcd is NULL\n", __func__); 3011 return; 3012 } 3013 rhdev = hcd->self.root_hub; 3014 3015 dev_info(hcd->self.controller, "remove, state %x\n", hcd->state); 3016 3017 usb_get_dev(rhdev); 3018 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 3019 if (HC_IS_RUNNING (hcd->state)) 3020 hcd->state = HC_STATE_QUIESCING; 3021 3022 dev_dbg(hcd->self.controller, "roothub graceful disconnect\n"); 3023 spin_lock_irq (&hcd_root_hub_lock); 3024 rh_registered = hcd->rh_registered; 3025 hcd->rh_registered = 0; 3026 spin_unlock_irq (&hcd_root_hub_lock); 3027 3028 #ifdef CONFIG_PM 3029 cancel_work_sync(&hcd->wakeup_work); 3030 #endif 3031 cancel_work_sync(&hcd->died_work); 3032 3033 mutex_lock(&usb_bus_idr_lock); 3034 if (rh_registered) 3035 usb_disconnect(&rhdev); /* Sets rhdev to NULL */ 3036 mutex_unlock(&usb_bus_idr_lock); 3037 3038 /* 3039 * tasklet_kill() isn't needed here because: 3040 * - driver's disconnect() called from usb_disconnect() should 3041 * make sure its URBs are completed during the disconnect() 3042 * callback 3043 * 3044 * - it is too late to run complete() here since driver may have 3045 * been removed already now 3046 */ 3047 3048 /* Prevent any more root-hub status calls from the timer. 3049 * The HCD might still restart the timer (if a port status change 3050 * interrupt occurs), but usb_hcd_poll_rh_status() won't invoke 3051 * the hub_status_data() callback. 3052 */ 3053 usb_stop_hcd(hcd); 3054 3055 if (usb_hcd_is_primary_hcd(hcd)) { 3056 if (hcd->irq > 0) 3057 free_irq(hcd->irq, hcd); 3058 } 3059 3060 usb_deregister_bus(&hcd->self); 3061 hcd_buffer_destroy(hcd); 3062 3063 usb_phy_roothub_power_off(hcd->phy_roothub); 3064 usb_phy_roothub_exit(hcd->phy_roothub); 3065 3066 usb_put_invalidate_rhdev(hcd); 3067 hcd->flags = 0; 3068 } 3069 EXPORT_SYMBOL_GPL(usb_remove_hcd); 3070 3071 void 3072 usb_hcd_platform_shutdown(struct platform_device *dev) 3073 { 3074 struct usb_hcd *hcd = platform_get_drvdata(dev); 3075 3076 /* No need for pm_runtime_put(), we're shutting down */ 3077 pm_runtime_get_sync(&dev->dev); 3078 3079 if (hcd->driver->shutdown) 3080 hcd->driver->shutdown(hcd); 3081 } 3082 EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown); 3083 3084 int usb_hcd_setup_local_mem(struct usb_hcd *hcd, phys_addr_t phys_addr, 3085 dma_addr_t dma, size_t size) 3086 { 3087 int err; 3088 void *local_mem; 3089 3090 hcd->localmem_pool = devm_gen_pool_create(hcd->self.sysdev, 4, 3091 dev_to_node(hcd->self.sysdev), 3092 dev_name(hcd->self.sysdev)); 3093 if (IS_ERR(hcd->localmem_pool)) 3094 return PTR_ERR(hcd->localmem_pool); 3095 3096 /* 3097 * if a physical SRAM address was passed, map it, otherwise 3098 * allocate system memory as a buffer. 3099 */ 3100 if (phys_addr) 3101 local_mem = devm_memremap(hcd->self.sysdev, phys_addr, 3102 size, MEMREMAP_WC); 3103 else 3104 local_mem = dmam_alloc_attrs(hcd->self.sysdev, size, &dma, 3105 GFP_KERNEL, 3106 DMA_ATTR_WRITE_COMBINE); 3107 3108 if (IS_ERR_OR_NULL(local_mem)) { 3109 if (!local_mem) 3110 return -ENOMEM; 3111 3112 return PTR_ERR(local_mem); 3113 } 3114 3115 /* 3116 * Here we pass a dma_addr_t but the arg type is a phys_addr_t. 3117 * It's not backed by system memory and thus there's no kernel mapping 3118 * for it. 3119 */ 3120 err = gen_pool_add_virt(hcd->localmem_pool, (unsigned long)local_mem, 3121 dma, size, dev_to_node(hcd->self.sysdev)); 3122 if (err < 0) { 3123 dev_err(hcd->self.sysdev, "gen_pool_add_virt failed with %d\n", 3124 err); 3125 return err; 3126 } 3127 3128 return 0; 3129 } 3130 EXPORT_SYMBOL_GPL(usb_hcd_setup_local_mem); 3131 3132 /*-------------------------------------------------------------------------*/ 3133 3134 #if IS_ENABLED(CONFIG_USB_MON) 3135 3136 const struct usb_mon_operations *mon_ops; 3137 3138 /* 3139 * The registration is unlocked. 3140 * We do it this way because we do not want to lock in hot paths. 3141 * 3142 * Notice that the code is minimally error-proof. Because usbmon needs 3143 * symbols from usbcore, usbcore gets referenced and cannot be unloaded first. 3144 */ 3145 3146 int usb_mon_register(const struct usb_mon_operations *ops) 3147 { 3148 3149 if (mon_ops) 3150 return -EBUSY; 3151 3152 mon_ops = ops; 3153 mb(); 3154 return 0; 3155 } 3156 EXPORT_SYMBOL_GPL (usb_mon_register); 3157 3158 void usb_mon_deregister (void) 3159 { 3160 3161 if (mon_ops == NULL) { 3162 printk(KERN_ERR "USB: monitor was not registered\n"); 3163 return; 3164 } 3165 mon_ops = NULL; 3166 mb(); 3167 } 3168 EXPORT_SYMBOL_GPL (usb_mon_deregister); 3169 3170 #endif /* CONFIG_USB_MON || CONFIG_USB_MON_MODULE */ 3171