1 /* 2 * (C) Copyright Linus Torvalds 1999 3 * (C) Copyright Johannes Erdfelt 1999-2001 4 * (C) Copyright Andreas Gal 1999 5 * (C) Copyright Gregory P. Smith 1999 6 * (C) Copyright Deti Fliegl 1999 7 * (C) Copyright Randy Dunlap 2000 8 * (C) Copyright David Brownell 2000-2002 9 * 10 * This program is free software; you can redistribute it and/or modify it 11 * under the terms of the GNU General Public License as published by the 12 * Free Software Foundation; either version 2 of the License, or (at your 13 * option) any later version. 14 * 15 * This program is distributed in the hope that it will be useful, but 16 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 17 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 18 * for more details. 19 * 20 * You should have received a copy of the GNU General Public License 21 * along with this program; if not, write to the Free Software Foundation, 22 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 23 */ 24 25 #include <linux/module.h> 26 #include <linux/version.h> 27 #include <linux/kernel.h> 28 #include <linux/slab.h> 29 #include <linux/completion.h> 30 #include <linux/utsname.h> 31 #include <linux/mm.h> 32 #include <asm/io.h> 33 #include <linux/device.h> 34 #include <linux/dma-mapping.h> 35 #include <linux/mutex.h> 36 #include <asm/irq.h> 37 #include <asm/byteorder.h> 38 #include <asm/unaligned.h> 39 #include <linux/platform_device.h> 40 #include <linux/workqueue.h> 41 #include <linux/mutex.h> 42 #include <linux/pm_runtime.h> 43 44 #include <linux/usb.h> 45 46 #include "usb.h" 47 #include "hcd.h" 48 #include "hub.h" 49 50 51 /*-------------------------------------------------------------------------*/ 52 53 /* 54 * USB Host Controller Driver framework 55 * 56 * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing 57 * HCD-specific behaviors/bugs. 58 * 59 * This does error checks, tracks devices and urbs, and delegates to a 60 * "hc_driver" only for code (and data) that really needs to know about 61 * hardware differences. That includes root hub registers, i/o queues, 62 * and so on ... but as little else as possible. 63 * 64 * Shared code includes most of the "root hub" code (these are emulated, 65 * though each HC's hardware works differently) and PCI glue, plus request 66 * tracking overhead. The HCD code should only block on spinlocks or on 67 * hardware handshaking; blocking on software events (such as other kernel 68 * threads releasing resources, or completing actions) is all generic. 69 * 70 * Happens the USB 2.0 spec says this would be invisible inside the "USBD", 71 * and includes mostly a "HCDI" (HCD Interface) along with some APIs used 72 * only by the hub driver ... and that neither should be seen or used by 73 * usb client device drivers. 74 * 75 * Contributors of ideas or unattributed patches include: David Brownell, 76 * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ... 77 * 78 * HISTORY: 79 * 2002-02-21 Pull in most of the usb_bus support from usb.c; some 80 * associated cleanup. "usb_hcd" still != "usb_bus". 81 * 2001-12-12 Initial patch version for Linux 2.5.1 kernel. 82 */ 83 84 /*-------------------------------------------------------------------------*/ 85 86 /* Keep track of which host controller drivers are loaded */ 87 unsigned long usb_hcds_loaded; 88 EXPORT_SYMBOL_GPL(usb_hcds_loaded); 89 90 /* host controllers we manage */ 91 LIST_HEAD (usb_bus_list); 92 EXPORT_SYMBOL_GPL (usb_bus_list); 93 94 /* used when allocating bus numbers */ 95 #define USB_MAXBUS 64 96 struct usb_busmap { 97 unsigned long busmap [USB_MAXBUS / (8*sizeof (unsigned long))]; 98 }; 99 static struct usb_busmap busmap; 100 101 /* used when updating list of hcds */ 102 DEFINE_MUTEX(usb_bus_list_lock); /* exported only for usbfs */ 103 EXPORT_SYMBOL_GPL (usb_bus_list_lock); 104 105 /* used for controlling access to virtual root hubs */ 106 static DEFINE_SPINLOCK(hcd_root_hub_lock); 107 108 /* used when updating an endpoint's URB list */ 109 static DEFINE_SPINLOCK(hcd_urb_list_lock); 110 111 /* used to protect against unlinking URBs after the device is gone */ 112 static DEFINE_SPINLOCK(hcd_urb_unlink_lock); 113 114 /* wait queue for synchronous unlinks */ 115 DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue); 116 117 static inline int is_root_hub(struct usb_device *udev) 118 { 119 return (udev->parent == NULL); 120 } 121 122 /*-------------------------------------------------------------------------*/ 123 124 /* 125 * Sharable chunks of root hub code. 126 */ 127 128 /*-------------------------------------------------------------------------*/ 129 130 #define KERNEL_REL ((LINUX_VERSION_CODE >> 16) & 0x0ff) 131 #define KERNEL_VER ((LINUX_VERSION_CODE >> 8) & 0x0ff) 132 133 /* usb 3.0 root hub device descriptor */ 134 static const u8 usb3_rh_dev_descriptor[18] = { 135 0x12, /* __u8 bLength; */ 136 0x01, /* __u8 bDescriptorType; Device */ 137 0x00, 0x03, /* __le16 bcdUSB; v3.0 */ 138 139 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */ 140 0x00, /* __u8 bDeviceSubClass; */ 141 0x03, /* __u8 bDeviceProtocol; USB 3.0 hub */ 142 0x09, /* __u8 bMaxPacketSize0; 2^9 = 512 Bytes */ 143 144 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation */ 145 0x03, 0x00, /* __le16 idProduct; device 0x0003 */ 146 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */ 147 148 0x03, /* __u8 iManufacturer; */ 149 0x02, /* __u8 iProduct; */ 150 0x01, /* __u8 iSerialNumber; */ 151 0x01 /* __u8 bNumConfigurations; */ 152 }; 153 154 /* usb 2.0 root hub device descriptor */ 155 static const u8 usb2_rh_dev_descriptor [18] = { 156 0x12, /* __u8 bLength; */ 157 0x01, /* __u8 bDescriptorType; Device */ 158 0x00, 0x02, /* __le16 bcdUSB; v2.0 */ 159 160 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */ 161 0x00, /* __u8 bDeviceSubClass; */ 162 0x00, /* __u8 bDeviceProtocol; [ usb 2.0 no TT ] */ 163 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */ 164 165 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation */ 166 0x02, 0x00, /* __le16 idProduct; device 0x0002 */ 167 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */ 168 169 0x03, /* __u8 iManufacturer; */ 170 0x02, /* __u8 iProduct; */ 171 0x01, /* __u8 iSerialNumber; */ 172 0x01 /* __u8 bNumConfigurations; */ 173 }; 174 175 /* no usb 2.0 root hub "device qualifier" descriptor: one speed only */ 176 177 /* usb 1.1 root hub device descriptor */ 178 static const u8 usb11_rh_dev_descriptor [18] = { 179 0x12, /* __u8 bLength; */ 180 0x01, /* __u8 bDescriptorType; Device */ 181 0x10, 0x01, /* __le16 bcdUSB; v1.1 */ 182 183 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */ 184 0x00, /* __u8 bDeviceSubClass; */ 185 0x00, /* __u8 bDeviceProtocol; [ low/full speeds only ] */ 186 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */ 187 188 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation */ 189 0x01, 0x00, /* __le16 idProduct; device 0x0001 */ 190 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */ 191 192 0x03, /* __u8 iManufacturer; */ 193 0x02, /* __u8 iProduct; */ 194 0x01, /* __u8 iSerialNumber; */ 195 0x01 /* __u8 bNumConfigurations; */ 196 }; 197 198 199 /*-------------------------------------------------------------------------*/ 200 201 /* Configuration descriptors for our root hubs */ 202 203 static const u8 fs_rh_config_descriptor [] = { 204 205 /* one configuration */ 206 0x09, /* __u8 bLength; */ 207 0x02, /* __u8 bDescriptorType; Configuration */ 208 0x19, 0x00, /* __le16 wTotalLength; */ 209 0x01, /* __u8 bNumInterfaces; (1) */ 210 0x01, /* __u8 bConfigurationValue; */ 211 0x00, /* __u8 iConfiguration; */ 212 0xc0, /* __u8 bmAttributes; 213 Bit 7: must be set, 214 6: Self-powered, 215 5: Remote wakeup, 216 4..0: resvd */ 217 0x00, /* __u8 MaxPower; */ 218 219 /* USB 1.1: 220 * USB 2.0, single TT organization (mandatory): 221 * one interface, protocol 0 222 * 223 * USB 2.0, multiple TT organization (optional): 224 * two interfaces, protocols 1 (like single TT) 225 * and 2 (multiple TT mode) ... config is 226 * sometimes settable 227 * NOT IMPLEMENTED 228 */ 229 230 /* one interface */ 231 0x09, /* __u8 if_bLength; */ 232 0x04, /* __u8 if_bDescriptorType; Interface */ 233 0x00, /* __u8 if_bInterfaceNumber; */ 234 0x00, /* __u8 if_bAlternateSetting; */ 235 0x01, /* __u8 if_bNumEndpoints; */ 236 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */ 237 0x00, /* __u8 if_bInterfaceSubClass; */ 238 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */ 239 0x00, /* __u8 if_iInterface; */ 240 241 /* one endpoint (status change endpoint) */ 242 0x07, /* __u8 ep_bLength; */ 243 0x05, /* __u8 ep_bDescriptorType; Endpoint */ 244 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */ 245 0x03, /* __u8 ep_bmAttributes; Interrupt */ 246 0x02, 0x00, /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */ 247 0xff /* __u8 ep_bInterval; (255ms -- usb 2.0 spec) */ 248 }; 249 250 static const u8 hs_rh_config_descriptor [] = { 251 252 /* one configuration */ 253 0x09, /* __u8 bLength; */ 254 0x02, /* __u8 bDescriptorType; Configuration */ 255 0x19, 0x00, /* __le16 wTotalLength; */ 256 0x01, /* __u8 bNumInterfaces; (1) */ 257 0x01, /* __u8 bConfigurationValue; */ 258 0x00, /* __u8 iConfiguration; */ 259 0xc0, /* __u8 bmAttributes; 260 Bit 7: must be set, 261 6: Self-powered, 262 5: Remote wakeup, 263 4..0: resvd */ 264 0x00, /* __u8 MaxPower; */ 265 266 /* USB 1.1: 267 * USB 2.0, single TT organization (mandatory): 268 * one interface, protocol 0 269 * 270 * USB 2.0, multiple TT organization (optional): 271 * two interfaces, protocols 1 (like single TT) 272 * and 2 (multiple TT mode) ... config is 273 * sometimes settable 274 * NOT IMPLEMENTED 275 */ 276 277 /* one interface */ 278 0x09, /* __u8 if_bLength; */ 279 0x04, /* __u8 if_bDescriptorType; Interface */ 280 0x00, /* __u8 if_bInterfaceNumber; */ 281 0x00, /* __u8 if_bAlternateSetting; */ 282 0x01, /* __u8 if_bNumEndpoints; */ 283 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */ 284 0x00, /* __u8 if_bInterfaceSubClass; */ 285 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */ 286 0x00, /* __u8 if_iInterface; */ 287 288 /* one endpoint (status change endpoint) */ 289 0x07, /* __u8 ep_bLength; */ 290 0x05, /* __u8 ep_bDescriptorType; Endpoint */ 291 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */ 292 0x03, /* __u8 ep_bmAttributes; Interrupt */ 293 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) 294 * see hub.c:hub_configure() for details. */ 295 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00, 296 0x0c /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */ 297 }; 298 299 static const u8 ss_rh_config_descriptor[] = { 300 /* one configuration */ 301 0x09, /* __u8 bLength; */ 302 0x02, /* __u8 bDescriptorType; Configuration */ 303 0x19, 0x00, /* __le16 wTotalLength; FIXME */ 304 0x01, /* __u8 bNumInterfaces; (1) */ 305 0x01, /* __u8 bConfigurationValue; */ 306 0x00, /* __u8 iConfiguration; */ 307 0xc0, /* __u8 bmAttributes; 308 Bit 7: must be set, 309 6: Self-powered, 310 5: Remote wakeup, 311 4..0: resvd */ 312 0x00, /* __u8 MaxPower; */ 313 314 /* one interface */ 315 0x09, /* __u8 if_bLength; */ 316 0x04, /* __u8 if_bDescriptorType; Interface */ 317 0x00, /* __u8 if_bInterfaceNumber; */ 318 0x00, /* __u8 if_bAlternateSetting; */ 319 0x01, /* __u8 if_bNumEndpoints; */ 320 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */ 321 0x00, /* __u8 if_bInterfaceSubClass; */ 322 0x00, /* __u8 if_bInterfaceProtocol; */ 323 0x00, /* __u8 if_iInterface; */ 324 325 /* one endpoint (status change endpoint) */ 326 0x07, /* __u8 ep_bLength; */ 327 0x05, /* __u8 ep_bDescriptorType; Endpoint */ 328 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */ 329 0x03, /* __u8 ep_bmAttributes; Interrupt */ 330 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) 331 * see hub.c:hub_configure() for details. */ 332 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00, 333 0x0c /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */ 334 /* 335 * All 3.0 hubs should have an endpoint companion descriptor, 336 * but we're ignoring that for now. FIXME? 337 */ 338 }; 339 340 /*-------------------------------------------------------------------------*/ 341 342 /** 343 * ascii2desc() - Helper routine for producing UTF-16LE string descriptors 344 * @s: Null-terminated ASCII (actually ISO-8859-1) string 345 * @buf: Buffer for USB string descriptor (header + UTF-16LE) 346 * @len: Length (in bytes; may be odd) of descriptor buffer. 347 * 348 * The return value is the number of bytes filled in: 2 + 2*strlen(s) or 349 * buflen, whichever is less. 350 * 351 * USB String descriptors can contain at most 126 characters; input 352 * strings longer than that are truncated. 353 */ 354 static unsigned 355 ascii2desc(char const *s, u8 *buf, unsigned len) 356 { 357 unsigned n, t = 2 + 2*strlen(s); 358 359 if (t > 254) 360 t = 254; /* Longest possible UTF string descriptor */ 361 if (len > t) 362 len = t; 363 364 t += USB_DT_STRING << 8; /* Now t is first 16 bits to store */ 365 366 n = len; 367 while (n--) { 368 *buf++ = t; 369 if (!n--) 370 break; 371 *buf++ = t >> 8; 372 t = (unsigned char)*s++; 373 } 374 return len; 375 } 376 377 /** 378 * rh_string() - provides string descriptors for root hub 379 * @id: the string ID number (0: langids, 1: serial #, 2: product, 3: vendor) 380 * @hcd: the host controller for this root hub 381 * @data: buffer for output packet 382 * @len: length of the provided buffer 383 * 384 * Produces either a manufacturer, product or serial number string for the 385 * virtual root hub device. 386 * Returns the number of bytes filled in: the length of the descriptor or 387 * of the provided buffer, whichever is less. 388 */ 389 static unsigned 390 rh_string(int id, struct usb_hcd const *hcd, u8 *data, unsigned len) 391 { 392 char buf[100]; 393 char const *s; 394 static char const langids[4] = {4, USB_DT_STRING, 0x09, 0x04}; 395 396 // language ids 397 switch (id) { 398 case 0: 399 /* Array of LANGID codes (0x0409 is MSFT-speak for "en-us") */ 400 /* See http://www.usb.org/developers/docs/USB_LANGIDs.pdf */ 401 if (len > 4) 402 len = 4; 403 memcpy(data, langids, len); 404 return len; 405 case 1: 406 /* Serial number */ 407 s = hcd->self.bus_name; 408 break; 409 case 2: 410 /* Product name */ 411 s = hcd->product_desc; 412 break; 413 case 3: 414 /* Manufacturer */ 415 snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname, 416 init_utsname()->release, hcd->driver->description); 417 s = buf; 418 break; 419 default: 420 /* Can't happen; caller guarantees it */ 421 return 0; 422 } 423 424 return ascii2desc(s, data, len); 425 } 426 427 428 /* Root hub control transfers execute synchronously */ 429 static int rh_call_control (struct usb_hcd *hcd, struct urb *urb) 430 { 431 struct usb_ctrlrequest *cmd; 432 u16 typeReq, wValue, wIndex, wLength; 433 u8 *ubuf = urb->transfer_buffer; 434 u8 tbuf [sizeof (struct usb_hub_descriptor)] 435 __attribute__((aligned(4))); 436 const u8 *bufp = tbuf; 437 unsigned len = 0; 438 int status; 439 u8 patch_wakeup = 0; 440 u8 patch_protocol = 0; 441 442 might_sleep(); 443 444 spin_lock_irq(&hcd_root_hub_lock); 445 status = usb_hcd_link_urb_to_ep(hcd, urb); 446 spin_unlock_irq(&hcd_root_hub_lock); 447 if (status) 448 return status; 449 urb->hcpriv = hcd; /* Indicate it's queued */ 450 451 cmd = (struct usb_ctrlrequest *) urb->setup_packet; 452 typeReq = (cmd->bRequestType << 8) | cmd->bRequest; 453 wValue = le16_to_cpu (cmd->wValue); 454 wIndex = le16_to_cpu (cmd->wIndex); 455 wLength = le16_to_cpu (cmd->wLength); 456 457 if (wLength > urb->transfer_buffer_length) 458 goto error; 459 460 urb->actual_length = 0; 461 switch (typeReq) { 462 463 /* DEVICE REQUESTS */ 464 465 /* The root hub's remote wakeup enable bit is implemented using 466 * driver model wakeup flags. If this system supports wakeup 467 * through USB, userspace may change the default "allow wakeup" 468 * policy through sysfs or these calls. 469 * 470 * Most root hubs support wakeup from downstream devices, for 471 * runtime power management (disabling USB clocks and reducing 472 * VBUS power usage). However, not all of them do so; silicon, 473 * board, and BIOS bugs here are not uncommon, so these can't 474 * be treated quite like external hubs. 475 * 476 * Likewise, not all root hubs will pass wakeup events upstream, 477 * to wake up the whole system. So don't assume root hub and 478 * controller capabilities are identical. 479 */ 480 481 case DeviceRequest | USB_REQ_GET_STATUS: 482 tbuf [0] = (device_may_wakeup(&hcd->self.root_hub->dev) 483 << USB_DEVICE_REMOTE_WAKEUP) 484 | (1 << USB_DEVICE_SELF_POWERED); 485 tbuf [1] = 0; 486 len = 2; 487 break; 488 case DeviceOutRequest | USB_REQ_CLEAR_FEATURE: 489 if (wValue == USB_DEVICE_REMOTE_WAKEUP) 490 device_set_wakeup_enable(&hcd->self.root_hub->dev, 0); 491 else 492 goto error; 493 break; 494 case DeviceOutRequest | USB_REQ_SET_FEATURE: 495 if (device_can_wakeup(&hcd->self.root_hub->dev) 496 && wValue == USB_DEVICE_REMOTE_WAKEUP) 497 device_set_wakeup_enable(&hcd->self.root_hub->dev, 1); 498 else 499 goto error; 500 break; 501 case DeviceRequest | USB_REQ_GET_CONFIGURATION: 502 tbuf [0] = 1; 503 len = 1; 504 /* FALLTHROUGH */ 505 case DeviceOutRequest | USB_REQ_SET_CONFIGURATION: 506 break; 507 case DeviceRequest | USB_REQ_GET_DESCRIPTOR: 508 switch (wValue & 0xff00) { 509 case USB_DT_DEVICE << 8: 510 switch (hcd->driver->flags & HCD_MASK) { 511 case HCD_USB3: 512 bufp = usb3_rh_dev_descriptor; 513 break; 514 case HCD_USB2: 515 bufp = usb2_rh_dev_descriptor; 516 break; 517 case HCD_USB11: 518 bufp = usb11_rh_dev_descriptor; 519 break; 520 default: 521 goto error; 522 } 523 len = 18; 524 if (hcd->has_tt) 525 patch_protocol = 1; 526 break; 527 case USB_DT_CONFIG << 8: 528 switch (hcd->driver->flags & HCD_MASK) { 529 case HCD_USB3: 530 bufp = ss_rh_config_descriptor; 531 len = sizeof ss_rh_config_descriptor; 532 break; 533 case HCD_USB2: 534 bufp = hs_rh_config_descriptor; 535 len = sizeof hs_rh_config_descriptor; 536 break; 537 case HCD_USB11: 538 bufp = fs_rh_config_descriptor; 539 len = sizeof fs_rh_config_descriptor; 540 break; 541 default: 542 goto error; 543 } 544 if (device_can_wakeup(&hcd->self.root_hub->dev)) 545 patch_wakeup = 1; 546 break; 547 case USB_DT_STRING << 8: 548 if ((wValue & 0xff) < 4) 549 urb->actual_length = rh_string(wValue & 0xff, 550 hcd, ubuf, wLength); 551 else /* unsupported IDs --> "protocol stall" */ 552 goto error; 553 break; 554 default: 555 goto error; 556 } 557 break; 558 case DeviceRequest | USB_REQ_GET_INTERFACE: 559 tbuf [0] = 0; 560 len = 1; 561 /* FALLTHROUGH */ 562 case DeviceOutRequest | USB_REQ_SET_INTERFACE: 563 break; 564 case DeviceOutRequest | USB_REQ_SET_ADDRESS: 565 // wValue == urb->dev->devaddr 566 dev_dbg (hcd->self.controller, "root hub device address %d\n", 567 wValue); 568 break; 569 570 /* INTERFACE REQUESTS (no defined feature/status flags) */ 571 572 /* ENDPOINT REQUESTS */ 573 574 case EndpointRequest | USB_REQ_GET_STATUS: 575 // ENDPOINT_HALT flag 576 tbuf [0] = 0; 577 tbuf [1] = 0; 578 len = 2; 579 /* FALLTHROUGH */ 580 case EndpointOutRequest | USB_REQ_CLEAR_FEATURE: 581 case EndpointOutRequest | USB_REQ_SET_FEATURE: 582 dev_dbg (hcd->self.controller, "no endpoint features yet\n"); 583 break; 584 585 /* CLASS REQUESTS (and errors) */ 586 587 default: 588 /* non-generic request */ 589 switch (typeReq) { 590 case GetHubStatus: 591 case GetPortStatus: 592 len = 4; 593 break; 594 case GetHubDescriptor: 595 len = sizeof (struct usb_hub_descriptor); 596 break; 597 } 598 status = hcd->driver->hub_control (hcd, 599 typeReq, wValue, wIndex, 600 tbuf, wLength); 601 break; 602 error: 603 /* "protocol stall" on error */ 604 status = -EPIPE; 605 } 606 607 if (status) { 608 len = 0; 609 if (status != -EPIPE) { 610 dev_dbg (hcd->self.controller, 611 "CTRL: TypeReq=0x%x val=0x%x " 612 "idx=0x%x len=%d ==> %d\n", 613 typeReq, wValue, wIndex, 614 wLength, status); 615 } 616 } 617 if (len) { 618 if (urb->transfer_buffer_length < len) 619 len = urb->transfer_buffer_length; 620 urb->actual_length = len; 621 // always USB_DIR_IN, toward host 622 memcpy (ubuf, bufp, len); 623 624 /* report whether RH hardware supports remote wakeup */ 625 if (patch_wakeup && 626 len > offsetof (struct usb_config_descriptor, 627 bmAttributes)) 628 ((struct usb_config_descriptor *)ubuf)->bmAttributes 629 |= USB_CONFIG_ATT_WAKEUP; 630 631 /* report whether RH hardware has an integrated TT */ 632 if (patch_protocol && 633 len > offsetof(struct usb_device_descriptor, 634 bDeviceProtocol)) 635 ((struct usb_device_descriptor *) ubuf)-> 636 bDeviceProtocol = 1; 637 } 638 639 /* any errors get returned through the urb completion */ 640 spin_lock_irq(&hcd_root_hub_lock); 641 usb_hcd_unlink_urb_from_ep(hcd, urb); 642 643 /* This peculiar use of spinlocks echoes what real HC drivers do. 644 * Avoiding calls to local_irq_disable/enable makes the code 645 * RT-friendly. 646 */ 647 spin_unlock(&hcd_root_hub_lock); 648 usb_hcd_giveback_urb(hcd, urb, status); 649 spin_lock(&hcd_root_hub_lock); 650 651 spin_unlock_irq(&hcd_root_hub_lock); 652 return 0; 653 } 654 655 /*-------------------------------------------------------------------------*/ 656 657 /* 658 * Root Hub interrupt transfers are polled using a timer if the 659 * driver requests it; otherwise the driver is responsible for 660 * calling usb_hcd_poll_rh_status() when an event occurs. 661 * 662 * Completions are called in_interrupt(), but they may or may not 663 * be in_irq(). 664 */ 665 void usb_hcd_poll_rh_status(struct usb_hcd *hcd) 666 { 667 struct urb *urb; 668 int length; 669 unsigned long flags; 670 char buffer[6]; /* Any root hubs with > 31 ports? */ 671 672 if (unlikely(!hcd->rh_registered)) 673 return; 674 if (!hcd->uses_new_polling && !hcd->status_urb) 675 return; 676 677 length = hcd->driver->hub_status_data(hcd, buffer); 678 if (length > 0) { 679 680 /* try to complete the status urb */ 681 spin_lock_irqsave(&hcd_root_hub_lock, flags); 682 urb = hcd->status_urb; 683 if (urb) { 684 hcd->poll_pending = 0; 685 hcd->status_urb = NULL; 686 urb->actual_length = length; 687 memcpy(urb->transfer_buffer, buffer, length); 688 689 usb_hcd_unlink_urb_from_ep(hcd, urb); 690 spin_unlock(&hcd_root_hub_lock); 691 usb_hcd_giveback_urb(hcd, urb, 0); 692 spin_lock(&hcd_root_hub_lock); 693 } else { 694 length = 0; 695 hcd->poll_pending = 1; 696 } 697 spin_unlock_irqrestore(&hcd_root_hub_lock, flags); 698 } 699 700 /* The USB 2.0 spec says 256 ms. This is close enough and won't 701 * exceed that limit if HZ is 100. The math is more clunky than 702 * maybe expected, this is to make sure that all timers for USB devices 703 * fire at the same time to give the CPU a break inbetween */ 704 if (hcd->uses_new_polling ? hcd->poll_rh : 705 (length == 0 && hcd->status_urb != NULL)) 706 mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4)); 707 } 708 EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status); 709 710 /* timer callback */ 711 static void rh_timer_func (unsigned long _hcd) 712 { 713 usb_hcd_poll_rh_status((struct usb_hcd *) _hcd); 714 } 715 716 /*-------------------------------------------------------------------------*/ 717 718 static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb) 719 { 720 int retval; 721 unsigned long flags; 722 unsigned len = 1 + (urb->dev->maxchild / 8); 723 724 spin_lock_irqsave (&hcd_root_hub_lock, flags); 725 if (hcd->status_urb || urb->transfer_buffer_length < len) { 726 dev_dbg (hcd->self.controller, "not queuing rh status urb\n"); 727 retval = -EINVAL; 728 goto done; 729 } 730 731 retval = usb_hcd_link_urb_to_ep(hcd, urb); 732 if (retval) 733 goto done; 734 735 hcd->status_urb = urb; 736 urb->hcpriv = hcd; /* indicate it's queued */ 737 if (!hcd->uses_new_polling) 738 mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4)); 739 740 /* If a status change has already occurred, report it ASAP */ 741 else if (hcd->poll_pending) 742 mod_timer(&hcd->rh_timer, jiffies); 743 retval = 0; 744 done: 745 spin_unlock_irqrestore (&hcd_root_hub_lock, flags); 746 return retval; 747 } 748 749 static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb) 750 { 751 if (usb_endpoint_xfer_int(&urb->ep->desc)) 752 return rh_queue_status (hcd, urb); 753 if (usb_endpoint_xfer_control(&urb->ep->desc)) 754 return rh_call_control (hcd, urb); 755 return -EINVAL; 756 } 757 758 /*-------------------------------------------------------------------------*/ 759 760 /* Unlinks of root-hub control URBs are legal, but they don't do anything 761 * since these URBs always execute synchronously. 762 */ 763 static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status) 764 { 765 unsigned long flags; 766 int rc; 767 768 spin_lock_irqsave(&hcd_root_hub_lock, flags); 769 rc = usb_hcd_check_unlink_urb(hcd, urb, status); 770 if (rc) 771 goto done; 772 773 if (usb_endpoint_num(&urb->ep->desc) == 0) { /* Control URB */ 774 ; /* Do nothing */ 775 776 } else { /* Status URB */ 777 if (!hcd->uses_new_polling) 778 del_timer (&hcd->rh_timer); 779 if (urb == hcd->status_urb) { 780 hcd->status_urb = NULL; 781 usb_hcd_unlink_urb_from_ep(hcd, urb); 782 783 spin_unlock(&hcd_root_hub_lock); 784 usb_hcd_giveback_urb(hcd, urb, status); 785 spin_lock(&hcd_root_hub_lock); 786 } 787 } 788 done: 789 spin_unlock_irqrestore(&hcd_root_hub_lock, flags); 790 return rc; 791 } 792 793 794 795 /* 796 * Show & store the current value of authorized_default 797 */ 798 static ssize_t usb_host_authorized_default_show(struct device *dev, 799 struct device_attribute *attr, 800 char *buf) 801 { 802 struct usb_device *rh_usb_dev = to_usb_device(dev); 803 struct usb_bus *usb_bus = rh_usb_dev->bus; 804 struct usb_hcd *usb_hcd; 805 806 if (usb_bus == NULL) /* FIXME: not sure if this case is possible */ 807 return -ENODEV; 808 usb_hcd = bus_to_hcd(usb_bus); 809 return snprintf(buf, PAGE_SIZE, "%u\n", usb_hcd->authorized_default); 810 } 811 812 static ssize_t usb_host_authorized_default_store(struct device *dev, 813 struct device_attribute *attr, 814 const char *buf, size_t size) 815 { 816 ssize_t result; 817 unsigned val; 818 struct usb_device *rh_usb_dev = to_usb_device(dev); 819 struct usb_bus *usb_bus = rh_usb_dev->bus; 820 struct usb_hcd *usb_hcd; 821 822 if (usb_bus == NULL) /* FIXME: not sure if this case is possible */ 823 return -ENODEV; 824 usb_hcd = bus_to_hcd(usb_bus); 825 result = sscanf(buf, "%u\n", &val); 826 if (result == 1) { 827 usb_hcd->authorized_default = val? 1 : 0; 828 result = size; 829 } 830 else 831 result = -EINVAL; 832 return result; 833 } 834 835 static DEVICE_ATTR(authorized_default, 0644, 836 usb_host_authorized_default_show, 837 usb_host_authorized_default_store); 838 839 840 /* Group all the USB bus attributes */ 841 static struct attribute *usb_bus_attrs[] = { 842 &dev_attr_authorized_default.attr, 843 NULL, 844 }; 845 846 static struct attribute_group usb_bus_attr_group = { 847 .name = NULL, /* we want them in the same directory */ 848 .attrs = usb_bus_attrs, 849 }; 850 851 852 853 /*-------------------------------------------------------------------------*/ 854 855 /** 856 * usb_bus_init - shared initialization code 857 * @bus: the bus structure being initialized 858 * 859 * This code is used to initialize a usb_bus structure, memory for which is 860 * separately managed. 861 */ 862 static void usb_bus_init (struct usb_bus *bus) 863 { 864 memset (&bus->devmap, 0, sizeof(struct usb_devmap)); 865 866 bus->devnum_next = 1; 867 868 bus->root_hub = NULL; 869 bus->busnum = -1; 870 bus->bandwidth_allocated = 0; 871 bus->bandwidth_int_reqs = 0; 872 bus->bandwidth_isoc_reqs = 0; 873 874 INIT_LIST_HEAD (&bus->bus_list); 875 } 876 877 /*-------------------------------------------------------------------------*/ 878 879 /** 880 * usb_register_bus - registers the USB host controller with the usb core 881 * @bus: pointer to the bus to register 882 * Context: !in_interrupt() 883 * 884 * Assigns a bus number, and links the controller into usbcore data 885 * structures so that it can be seen by scanning the bus list. 886 */ 887 static int usb_register_bus(struct usb_bus *bus) 888 { 889 int result = -E2BIG; 890 int busnum; 891 892 mutex_lock(&usb_bus_list_lock); 893 busnum = find_next_zero_bit (busmap.busmap, USB_MAXBUS, 1); 894 if (busnum >= USB_MAXBUS) { 895 printk (KERN_ERR "%s: too many buses\n", usbcore_name); 896 goto error_find_busnum; 897 } 898 set_bit (busnum, busmap.busmap); 899 bus->busnum = busnum; 900 901 /* Add it to the local list of buses */ 902 list_add (&bus->bus_list, &usb_bus_list); 903 mutex_unlock(&usb_bus_list_lock); 904 905 usb_notify_add_bus(bus); 906 907 dev_info (bus->controller, "new USB bus registered, assigned bus " 908 "number %d\n", bus->busnum); 909 return 0; 910 911 error_find_busnum: 912 mutex_unlock(&usb_bus_list_lock); 913 return result; 914 } 915 916 /** 917 * usb_deregister_bus - deregisters the USB host controller 918 * @bus: pointer to the bus to deregister 919 * Context: !in_interrupt() 920 * 921 * Recycles the bus number, and unlinks the controller from usbcore data 922 * structures so that it won't be seen by scanning the bus list. 923 */ 924 static void usb_deregister_bus (struct usb_bus *bus) 925 { 926 dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum); 927 928 /* 929 * NOTE: make sure that all the devices are removed by the 930 * controller code, as well as having it call this when cleaning 931 * itself up 932 */ 933 mutex_lock(&usb_bus_list_lock); 934 list_del (&bus->bus_list); 935 mutex_unlock(&usb_bus_list_lock); 936 937 usb_notify_remove_bus(bus); 938 939 clear_bit (bus->busnum, busmap.busmap); 940 } 941 942 /** 943 * register_root_hub - called by usb_add_hcd() to register a root hub 944 * @hcd: host controller for this root hub 945 * 946 * This function registers the root hub with the USB subsystem. It sets up 947 * the device properly in the device tree and then calls usb_new_device() 948 * to register the usb device. It also assigns the root hub's USB address 949 * (always 1). 950 */ 951 static int register_root_hub(struct usb_hcd *hcd) 952 { 953 struct device *parent_dev = hcd->self.controller; 954 struct usb_device *usb_dev = hcd->self.root_hub; 955 const int devnum = 1; 956 int retval; 957 958 usb_dev->devnum = devnum; 959 usb_dev->bus->devnum_next = devnum + 1; 960 memset (&usb_dev->bus->devmap.devicemap, 0, 961 sizeof usb_dev->bus->devmap.devicemap); 962 set_bit (devnum, usb_dev->bus->devmap.devicemap); 963 usb_set_device_state(usb_dev, USB_STATE_ADDRESS); 964 965 mutex_lock(&usb_bus_list_lock); 966 967 usb_dev->ep0.desc.wMaxPacketSize = cpu_to_le16(64); 968 retval = usb_get_device_descriptor(usb_dev, USB_DT_DEVICE_SIZE); 969 if (retval != sizeof usb_dev->descriptor) { 970 mutex_unlock(&usb_bus_list_lock); 971 dev_dbg (parent_dev, "can't read %s device descriptor %d\n", 972 dev_name(&usb_dev->dev), retval); 973 return (retval < 0) ? retval : -EMSGSIZE; 974 } 975 976 retval = usb_new_device (usb_dev); 977 if (retval) { 978 dev_err (parent_dev, "can't register root hub for %s, %d\n", 979 dev_name(&usb_dev->dev), retval); 980 } 981 mutex_unlock(&usb_bus_list_lock); 982 983 if (retval == 0) { 984 spin_lock_irq (&hcd_root_hub_lock); 985 hcd->rh_registered = 1; 986 spin_unlock_irq (&hcd_root_hub_lock); 987 988 /* Did the HC die before the root hub was registered? */ 989 if (hcd->state == HC_STATE_HALT) 990 usb_hc_died (hcd); /* This time clean up */ 991 } 992 993 return retval; 994 } 995 996 997 /*-------------------------------------------------------------------------*/ 998 999 /** 1000 * usb_calc_bus_time - approximate periodic transaction time in nanoseconds 1001 * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH} 1002 * @is_input: true iff the transaction sends data to the host 1003 * @isoc: true for isochronous transactions, false for interrupt ones 1004 * @bytecount: how many bytes in the transaction. 1005 * 1006 * Returns approximate bus time in nanoseconds for a periodic transaction. 1007 * See USB 2.0 spec section 5.11.3; only periodic transfers need to be 1008 * scheduled in software, this function is only used for such scheduling. 1009 */ 1010 long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount) 1011 { 1012 unsigned long tmp; 1013 1014 switch (speed) { 1015 case USB_SPEED_LOW: /* INTR only */ 1016 if (is_input) { 1017 tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L; 1018 return (64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp); 1019 } else { 1020 tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L; 1021 return (64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp); 1022 } 1023 case USB_SPEED_FULL: /* ISOC or INTR */ 1024 if (isoc) { 1025 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L; 1026 return (((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp); 1027 } else { 1028 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L; 1029 return (9107L + BW_HOST_DELAY + tmp); 1030 } 1031 case USB_SPEED_HIGH: /* ISOC or INTR */ 1032 // FIXME adjust for input vs output 1033 if (isoc) 1034 tmp = HS_NSECS_ISO (bytecount); 1035 else 1036 tmp = HS_NSECS (bytecount); 1037 return tmp; 1038 default: 1039 pr_debug ("%s: bogus device speed!\n", usbcore_name); 1040 return -1; 1041 } 1042 } 1043 EXPORT_SYMBOL_GPL(usb_calc_bus_time); 1044 1045 1046 /*-------------------------------------------------------------------------*/ 1047 1048 /* 1049 * Generic HC operations. 1050 */ 1051 1052 /*-------------------------------------------------------------------------*/ 1053 1054 /** 1055 * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue 1056 * @hcd: host controller to which @urb was submitted 1057 * @urb: URB being submitted 1058 * 1059 * Host controller drivers should call this routine in their enqueue() 1060 * method. The HCD's private spinlock must be held and interrupts must 1061 * be disabled. The actions carried out here are required for URB 1062 * submission, as well as for endpoint shutdown and for usb_kill_urb. 1063 * 1064 * Returns 0 for no error, otherwise a negative error code (in which case 1065 * the enqueue() method must fail). If no error occurs but enqueue() fails 1066 * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing 1067 * the private spinlock and returning. 1068 */ 1069 int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb) 1070 { 1071 int rc = 0; 1072 1073 spin_lock(&hcd_urb_list_lock); 1074 1075 /* Check that the URB isn't being killed */ 1076 if (unlikely(atomic_read(&urb->reject))) { 1077 rc = -EPERM; 1078 goto done; 1079 } 1080 1081 if (unlikely(!urb->ep->enabled)) { 1082 rc = -ENOENT; 1083 goto done; 1084 } 1085 1086 if (unlikely(!urb->dev->can_submit)) { 1087 rc = -EHOSTUNREACH; 1088 goto done; 1089 } 1090 1091 /* 1092 * Check the host controller's state and add the URB to the 1093 * endpoint's queue. 1094 */ 1095 switch (hcd->state) { 1096 case HC_STATE_RUNNING: 1097 case HC_STATE_RESUMING: 1098 urb->unlinked = 0; 1099 list_add_tail(&urb->urb_list, &urb->ep->urb_list); 1100 break; 1101 default: 1102 rc = -ESHUTDOWN; 1103 goto done; 1104 } 1105 done: 1106 spin_unlock(&hcd_urb_list_lock); 1107 return rc; 1108 } 1109 EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep); 1110 1111 /** 1112 * usb_hcd_check_unlink_urb - check whether an URB may be unlinked 1113 * @hcd: host controller to which @urb was submitted 1114 * @urb: URB being checked for unlinkability 1115 * @status: error code to store in @urb if the unlink succeeds 1116 * 1117 * Host controller drivers should call this routine in their dequeue() 1118 * method. The HCD's private spinlock must be held and interrupts must 1119 * be disabled. The actions carried out here are required for making 1120 * sure than an unlink is valid. 1121 * 1122 * Returns 0 for no error, otherwise a negative error code (in which case 1123 * the dequeue() method must fail). The possible error codes are: 1124 * 1125 * -EIDRM: @urb was not submitted or has already completed. 1126 * The completion function may not have been called yet. 1127 * 1128 * -EBUSY: @urb has already been unlinked. 1129 */ 1130 int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb, 1131 int status) 1132 { 1133 struct list_head *tmp; 1134 1135 /* insist the urb is still queued */ 1136 list_for_each(tmp, &urb->ep->urb_list) { 1137 if (tmp == &urb->urb_list) 1138 break; 1139 } 1140 if (tmp != &urb->urb_list) 1141 return -EIDRM; 1142 1143 /* Any status except -EINPROGRESS means something already started to 1144 * unlink this URB from the hardware. So there's no more work to do. 1145 */ 1146 if (urb->unlinked) 1147 return -EBUSY; 1148 urb->unlinked = status; 1149 1150 /* IRQ setup can easily be broken so that USB controllers 1151 * never get completion IRQs ... maybe even the ones we need to 1152 * finish unlinking the initial failed usb_set_address() 1153 * or device descriptor fetch. 1154 */ 1155 if (!test_bit(HCD_FLAG_SAW_IRQ, &hcd->flags) && 1156 !is_root_hub(urb->dev)) { 1157 dev_warn(hcd->self.controller, "Unlink after no-IRQ? " 1158 "Controller is probably using the wrong IRQ.\n"); 1159 set_bit(HCD_FLAG_SAW_IRQ, &hcd->flags); 1160 } 1161 1162 return 0; 1163 } 1164 EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb); 1165 1166 /** 1167 * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue 1168 * @hcd: host controller to which @urb was submitted 1169 * @urb: URB being unlinked 1170 * 1171 * Host controller drivers should call this routine before calling 1172 * usb_hcd_giveback_urb(). The HCD's private spinlock must be held and 1173 * interrupts must be disabled. The actions carried out here are required 1174 * for URB completion. 1175 */ 1176 void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb) 1177 { 1178 /* clear all state linking urb to this dev (and hcd) */ 1179 spin_lock(&hcd_urb_list_lock); 1180 list_del_init(&urb->urb_list); 1181 spin_unlock(&hcd_urb_list_lock); 1182 } 1183 EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep); 1184 1185 /* 1186 * Some usb host controllers can only perform dma using a small SRAM area. 1187 * The usb core itself is however optimized for host controllers that can dma 1188 * using regular system memory - like pci devices doing bus mastering. 1189 * 1190 * To support host controllers with limited dma capabilites we provide dma 1191 * bounce buffers. This feature can be enabled using the HCD_LOCAL_MEM flag. 1192 * For this to work properly the host controller code must first use the 1193 * function dma_declare_coherent_memory() to point out which memory area 1194 * that should be used for dma allocations. 1195 * 1196 * The HCD_LOCAL_MEM flag then tells the usb code to allocate all data for 1197 * dma using dma_alloc_coherent() which in turn allocates from the memory 1198 * area pointed out with dma_declare_coherent_memory(). 1199 * 1200 * So, to summarize... 1201 * 1202 * - We need "local" memory, canonical example being 1203 * a small SRAM on a discrete controller being the 1204 * only memory that the controller can read ... 1205 * (a) "normal" kernel memory is no good, and 1206 * (b) there's not enough to share 1207 * 1208 * - The only *portable* hook for such stuff in the 1209 * DMA framework is dma_declare_coherent_memory() 1210 * 1211 * - So we use that, even though the primary requirement 1212 * is that the memory be "local" (hence addressible 1213 * by that device), not "coherent". 1214 * 1215 */ 1216 1217 static int hcd_alloc_coherent(struct usb_bus *bus, 1218 gfp_t mem_flags, dma_addr_t *dma_handle, 1219 void **vaddr_handle, size_t size, 1220 enum dma_data_direction dir) 1221 { 1222 unsigned char *vaddr; 1223 1224 vaddr = hcd_buffer_alloc(bus, size + sizeof(vaddr), 1225 mem_flags, dma_handle); 1226 if (!vaddr) 1227 return -ENOMEM; 1228 1229 /* 1230 * Store the virtual address of the buffer at the end 1231 * of the allocated dma buffer. The size of the buffer 1232 * may be uneven so use unaligned functions instead 1233 * of just rounding up. It makes sense to optimize for 1234 * memory footprint over access speed since the amount 1235 * of memory available for dma may be limited. 1236 */ 1237 put_unaligned((unsigned long)*vaddr_handle, 1238 (unsigned long *)(vaddr + size)); 1239 1240 if (dir == DMA_TO_DEVICE) 1241 memcpy(vaddr, *vaddr_handle, size); 1242 1243 *vaddr_handle = vaddr; 1244 return 0; 1245 } 1246 1247 static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle, 1248 void **vaddr_handle, size_t size, 1249 enum dma_data_direction dir) 1250 { 1251 unsigned char *vaddr = *vaddr_handle; 1252 1253 vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size)); 1254 1255 if (dir == DMA_FROM_DEVICE) 1256 memcpy(vaddr, *vaddr_handle, size); 1257 1258 hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle); 1259 1260 *vaddr_handle = vaddr; 1261 *dma_handle = 0; 1262 } 1263 1264 static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb, 1265 gfp_t mem_flags) 1266 { 1267 enum dma_data_direction dir; 1268 int ret = 0; 1269 1270 /* Map the URB's buffers for DMA access. 1271 * Lower level HCD code should use *_dma exclusively, 1272 * unless it uses pio or talks to another transport, 1273 * or uses the provided scatter gather list for bulk. 1274 */ 1275 if (is_root_hub(urb->dev)) 1276 return 0; 1277 1278 if (usb_endpoint_xfer_control(&urb->ep->desc) 1279 && !(urb->transfer_flags & URB_NO_SETUP_DMA_MAP)) { 1280 if (hcd->self.uses_dma) { 1281 urb->setup_dma = dma_map_single( 1282 hcd->self.controller, 1283 urb->setup_packet, 1284 sizeof(struct usb_ctrlrequest), 1285 DMA_TO_DEVICE); 1286 if (dma_mapping_error(hcd->self.controller, 1287 urb->setup_dma)) 1288 return -EAGAIN; 1289 } else if (hcd->driver->flags & HCD_LOCAL_MEM) 1290 ret = hcd_alloc_coherent( 1291 urb->dev->bus, mem_flags, 1292 &urb->setup_dma, 1293 (void **)&urb->setup_packet, 1294 sizeof(struct usb_ctrlrequest), 1295 DMA_TO_DEVICE); 1296 } 1297 1298 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE; 1299 if (ret == 0 && urb->transfer_buffer_length != 0 1300 && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) { 1301 if (hcd->self.uses_dma) { 1302 urb->transfer_dma = dma_map_single ( 1303 hcd->self.controller, 1304 urb->transfer_buffer, 1305 urb->transfer_buffer_length, 1306 dir); 1307 if (dma_mapping_error(hcd->self.controller, 1308 urb->transfer_dma)) 1309 return -EAGAIN; 1310 } else if (hcd->driver->flags & HCD_LOCAL_MEM) { 1311 ret = hcd_alloc_coherent( 1312 urb->dev->bus, mem_flags, 1313 &urb->transfer_dma, 1314 &urb->transfer_buffer, 1315 urb->transfer_buffer_length, 1316 dir); 1317 1318 if (ret && usb_endpoint_xfer_control(&urb->ep->desc) 1319 && !(urb->transfer_flags & URB_NO_SETUP_DMA_MAP)) 1320 hcd_free_coherent(urb->dev->bus, 1321 &urb->setup_dma, 1322 (void **)&urb->setup_packet, 1323 sizeof(struct usb_ctrlrequest), 1324 DMA_TO_DEVICE); 1325 } 1326 } 1327 return ret; 1328 } 1329 1330 static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb) 1331 { 1332 enum dma_data_direction dir; 1333 1334 if (is_root_hub(urb->dev)) 1335 return; 1336 1337 if (usb_endpoint_xfer_control(&urb->ep->desc) 1338 && !(urb->transfer_flags & URB_NO_SETUP_DMA_MAP)) { 1339 if (hcd->self.uses_dma) 1340 dma_unmap_single(hcd->self.controller, urb->setup_dma, 1341 sizeof(struct usb_ctrlrequest), 1342 DMA_TO_DEVICE); 1343 else if (hcd->driver->flags & HCD_LOCAL_MEM) 1344 hcd_free_coherent(urb->dev->bus, &urb->setup_dma, 1345 (void **)&urb->setup_packet, 1346 sizeof(struct usb_ctrlrequest), 1347 DMA_TO_DEVICE); 1348 } 1349 1350 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE; 1351 if (urb->transfer_buffer_length != 0 1352 && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) { 1353 if (hcd->self.uses_dma) 1354 dma_unmap_single(hcd->self.controller, 1355 urb->transfer_dma, 1356 urb->transfer_buffer_length, 1357 dir); 1358 else if (hcd->driver->flags & HCD_LOCAL_MEM) 1359 hcd_free_coherent(urb->dev->bus, &urb->transfer_dma, 1360 &urb->transfer_buffer, 1361 urb->transfer_buffer_length, 1362 dir); 1363 } 1364 } 1365 1366 /*-------------------------------------------------------------------------*/ 1367 1368 /* may be called in any context with a valid urb->dev usecount 1369 * caller surrenders "ownership" of urb 1370 * expects usb_submit_urb() to have sanity checked and conditioned all 1371 * inputs in the urb 1372 */ 1373 int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags) 1374 { 1375 int status; 1376 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus); 1377 1378 /* increment urb's reference count as part of giving it to the HCD 1379 * (which will control it). HCD guarantees that it either returns 1380 * an error or calls giveback(), but not both. 1381 */ 1382 usb_get_urb(urb); 1383 atomic_inc(&urb->use_count); 1384 atomic_inc(&urb->dev->urbnum); 1385 usbmon_urb_submit(&hcd->self, urb); 1386 1387 /* NOTE requirements on root-hub callers (usbfs and the hub 1388 * driver, for now): URBs' urb->transfer_buffer must be 1389 * valid and usb_buffer_{sync,unmap}() not be needed, since 1390 * they could clobber root hub response data. Also, control 1391 * URBs must be submitted in process context with interrupts 1392 * enabled. 1393 */ 1394 status = map_urb_for_dma(hcd, urb, mem_flags); 1395 if (unlikely(status)) { 1396 usbmon_urb_submit_error(&hcd->self, urb, status); 1397 goto error; 1398 } 1399 1400 if (is_root_hub(urb->dev)) 1401 status = rh_urb_enqueue(hcd, urb); 1402 else 1403 status = hcd->driver->urb_enqueue(hcd, urb, mem_flags); 1404 1405 if (unlikely(status)) { 1406 usbmon_urb_submit_error(&hcd->self, urb, status); 1407 unmap_urb_for_dma(hcd, urb); 1408 error: 1409 urb->hcpriv = NULL; 1410 INIT_LIST_HEAD(&urb->urb_list); 1411 atomic_dec(&urb->use_count); 1412 atomic_dec(&urb->dev->urbnum); 1413 if (atomic_read(&urb->reject)) 1414 wake_up(&usb_kill_urb_queue); 1415 usb_put_urb(urb); 1416 } 1417 return status; 1418 } 1419 1420 /*-------------------------------------------------------------------------*/ 1421 1422 /* this makes the hcd giveback() the urb more quickly, by kicking it 1423 * off hardware queues (which may take a while) and returning it as 1424 * soon as practical. we've already set up the urb's return status, 1425 * but we can't know if the callback completed already. 1426 */ 1427 static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status) 1428 { 1429 int value; 1430 1431 if (is_root_hub(urb->dev)) 1432 value = usb_rh_urb_dequeue(hcd, urb, status); 1433 else { 1434 1435 /* The only reason an HCD might fail this call is if 1436 * it has not yet fully queued the urb to begin with. 1437 * Such failures should be harmless. */ 1438 value = hcd->driver->urb_dequeue(hcd, urb, status); 1439 } 1440 return value; 1441 } 1442 1443 /* 1444 * called in any context 1445 * 1446 * caller guarantees urb won't be recycled till both unlink() 1447 * and the urb's completion function return 1448 */ 1449 int usb_hcd_unlink_urb (struct urb *urb, int status) 1450 { 1451 struct usb_hcd *hcd; 1452 int retval = -EIDRM; 1453 unsigned long flags; 1454 1455 /* Prevent the device and bus from going away while 1456 * the unlink is carried out. If they are already gone 1457 * then urb->use_count must be 0, since disconnected 1458 * devices can't have any active URBs. 1459 */ 1460 spin_lock_irqsave(&hcd_urb_unlink_lock, flags); 1461 if (atomic_read(&urb->use_count) > 0) { 1462 retval = 0; 1463 usb_get_dev(urb->dev); 1464 } 1465 spin_unlock_irqrestore(&hcd_urb_unlink_lock, flags); 1466 if (retval == 0) { 1467 hcd = bus_to_hcd(urb->dev->bus); 1468 retval = unlink1(hcd, urb, status); 1469 usb_put_dev(urb->dev); 1470 } 1471 1472 if (retval == 0) 1473 retval = -EINPROGRESS; 1474 else if (retval != -EIDRM && retval != -EBUSY) 1475 dev_dbg(&urb->dev->dev, "hcd_unlink_urb %p fail %d\n", 1476 urb, retval); 1477 return retval; 1478 } 1479 1480 /*-------------------------------------------------------------------------*/ 1481 1482 /** 1483 * usb_hcd_giveback_urb - return URB from HCD to device driver 1484 * @hcd: host controller returning the URB 1485 * @urb: urb being returned to the USB device driver. 1486 * @status: completion status code for the URB. 1487 * Context: in_interrupt() 1488 * 1489 * This hands the URB from HCD to its USB device driver, using its 1490 * completion function. The HCD has freed all per-urb resources 1491 * (and is done using urb->hcpriv). It also released all HCD locks; 1492 * the device driver won't cause problems if it frees, modifies, 1493 * or resubmits this URB. 1494 * 1495 * If @urb was unlinked, the value of @status will be overridden by 1496 * @urb->unlinked. Erroneous short transfers are detected in case 1497 * the HCD hasn't checked for them. 1498 */ 1499 void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status) 1500 { 1501 urb->hcpriv = NULL; 1502 if (unlikely(urb->unlinked)) 1503 status = urb->unlinked; 1504 else if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) && 1505 urb->actual_length < urb->transfer_buffer_length && 1506 !status)) 1507 status = -EREMOTEIO; 1508 1509 unmap_urb_for_dma(hcd, urb); 1510 usbmon_urb_complete(&hcd->self, urb, status); 1511 usb_unanchor_urb(urb); 1512 1513 /* pass ownership to the completion handler */ 1514 urb->status = status; 1515 urb->complete (urb); 1516 atomic_dec (&urb->use_count); 1517 if (unlikely(atomic_read(&urb->reject))) 1518 wake_up (&usb_kill_urb_queue); 1519 usb_put_urb (urb); 1520 } 1521 EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb); 1522 1523 /*-------------------------------------------------------------------------*/ 1524 1525 /* Cancel all URBs pending on this endpoint and wait for the endpoint's 1526 * queue to drain completely. The caller must first insure that no more 1527 * URBs can be submitted for this endpoint. 1528 */ 1529 void usb_hcd_flush_endpoint(struct usb_device *udev, 1530 struct usb_host_endpoint *ep) 1531 { 1532 struct usb_hcd *hcd; 1533 struct urb *urb; 1534 1535 if (!ep) 1536 return; 1537 might_sleep(); 1538 hcd = bus_to_hcd(udev->bus); 1539 1540 /* No more submits can occur */ 1541 spin_lock_irq(&hcd_urb_list_lock); 1542 rescan: 1543 list_for_each_entry (urb, &ep->urb_list, urb_list) { 1544 int is_in; 1545 1546 if (urb->unlinked) 1547 continue; 1548 usb_get_urb (urb); 1549 is_in = usb_urb_dir_in(urb); 1550 spin_unlock(&hcd_urb_list_lock); 1551 1552 /* kick hcd */ 1553 unlink1(hcd, urb, -ESHUTDOWN); 1554 dev_dbg (hcd->self.controller, 1555 "shutdown urb %p ep%d%s%s\n", 1556 urb, usb_endpoint_num(&ep->desc), 1557 is_in ? "in" : "out", 1558 ({ char *s; 1559 1560 switch (usb_endpoint_type(&ep->desc)) { 1561 case USB_ENDPOINT_XFER_CONTROL: 1562 s = ""; break; 1563 case USB_ENDPOINT_XFER_BULK: 1564 s = "-bulk"; break; 1565 case USB_ENDPOINT_XFER_INT: 1566 s = "-intr"; break; 1567 default: 1568 s = "-iso"; break; 1569 }; 1570 s; 1571 })); 1572 usb_put_urb (urb); 1573 1574 /* list contents may have changed */ 1575 spin_lock(&hcd_urb_list_lock); 1576 goto rescan; 1577 } 1578 spin_unlock_irq(&hcd_urb_list_lock); 1579 1580 /* Wait until the endpoint queue is completely empty */ 1581 while (!list_empty (&ep->urb_list)) { 1582 spin_lock_irq(&hcd_urb_list_lock); 1583 1584 /* The list may have changed while we acquired the spinlock */ 1585 urb = NULL; 1586 if (!list_empty (&ep->urb_list)) { 1587 urb = list_entry (ep->urb_list.prev, struct urb, 1588 urb_list); 1589 usb_get_urb (urb); 1590 } 1591 spin_unlock_irq(&hcd_urb_list_lock); 1592 1593 if (urb) { 1594 usb_kill_urb (urb); 1595 usb_put_urb (urb); 1596 } 1597 } 1598 } 1599 1600 /** 1601 * usb_hcd_alloc_bandwidth - check whether a new bandwidth setting exceeds 1602 * the bus bandwidth 1603 * @udev: target &usb_device 1604 * @new_config: new configuration to install 1605 * @cur_alt: the current alternate interface setting 1606 * @new_alt: alternate interface setting that is being installed 1607 * 1608 * To change configurations, pass in the new configuration in new_config, 1609 * and pass NULL for cur_alt and new_alt. 1610 * 1611 * To reset a device's configuration (put the device in the ADDRESSED state), 1612 * pass in NULL for new_config, cur_alt, and new_alt. 1613 * 1614 * To change alternate interface settings, pass in NULL for new_config, 1615 * pass in the current alternate interface setting in cur_alt, 1616 * and pass in the new alternate interface setting in new_alt. 1617 * 1618 * Returns an error if the requested bandwidth change exceeds the 1619 * bus bandwidth or host controller internal resources. 1620 */ 1621 int usb_hcd_alloc_bandwidth(struct usb_device *udev, 1622 struct usb_host_config *new_config, 1623 struct usb_host_interface *cur_alt, 1624 struct usb_host_interface *new_alt) 1625 { 1626 int num_intfs, i, j; 1627 struct usb_host_interface *alt = NULL; 1628 int ret = 0; 1629 struct usb_hcd *hcd; 1630 struct usb_host_endpoint *ep; 1631 1632 hcd = bus_to_hcd(udev->bus); 1633 if (!hcd->driver->check_bandwidth) 1634 return 0; 1635 1636 /* Configuration is being removed - set configuration 0 */ 1637 if (!new_config && !cur_alt) { 1638 for (i = 1; i < 16; ++i) { 1639 ep = udev->ep_out[i]; 1640 if (ep) 1641 hcd->driver->drop_endpoint(hcd, udev, ep); 1642 ep = udev->ep_in[i]; 1643 if (ep) 1644 hcd->driver->drop_endpoint(hcd, udev, ep); 1645 } 1646 hcd->driver->check_bandwidth(hcd, udev); 1647 return 0; 1648 } 1649 /* Check if the HCD says there's enough bandwidth. Enable all endpoints 1650 * each interface's alt setting 0 and ask the HCD to check the bandwidth 1651 * of the bus. There will always be bandwidth for endpoint 0, so it's 1652 * ok to exclude it. 1653 */ 1654 if (new_config) { 1655 num_intfs = new_config->desc.bNumInterfaces; 1656 /* Remove endpoints (except endpoint 0, which is always on the 1657 * schedule) from the old config from the schedule 1658 */ 1659 for (i = 1; i < 16; ++i) { 1660 ep = udev->ep_out[i]; 1661 if (ep) { 1662 ret = hcd->driver->drop_endpoint(hcd, udev, ep); 1663 if (ret < 0) 1664 goto reset; 1665 } 1666 ep = udev->ep_in[i]; 1667 if (ep) { 1668 ret = hcd->driver->drop_endpoint(hcd, udev, ep); 1669 if (ret < 0) 1670 goto reset; 1671 } 1672 } 1673 for (i = 0; i < num_intfs; ++i) { 1674 struct usb_host_interface *first_alt; 1675 int iface_num; 1676 1677 first_alt = &new_config->intf_cache[i]->altsetting[0]; 1678 iface_num = first_alt->desc.bInterfaceNumber; 1679 /* Set up endpoints for alternate interface setting 0 */ 1680 alt = usb_find_alt_setting(new_config, iface_num, 0); 1681 if (!alt) 1682 /* No alt setting 0? Pick the first setting. */ 1683 alt = first_alt; 1684 1685 for (j = 0; j < alt->desc.bNumEndpoints; j++) { 1686 ret = hcd->driver->add_endpoint(hcd, udev, &alt->endpoint[j]); 1687 if (ret < 0) 1688 goto reset; 1689 } 1690 } 1691 } 1692 if (cur_alt && new_alt) { 1693 struct usb_interface *iface = usb_ifnum_to_if(udev, 1694 cur_alt->desc.bInterfaceNumber); 1695 1696 if (iface->resetting_device) { 1697 /* 1698 * The USB core just reset the device, so the xHCI host 1699 * and the device will think alt setting 0 is installed. 1700 * However, the USB core will pass in the alternate 1701 * setting installed before the reset as cur_alt. Dig 1702 * out the alternate setting 0 structure, or the first 1703 * alternate setting if a broken device doesn't have alt 1704 * setting 0. 1705 */ 1706 cur_alt = usb_altnum_to_altsetting(iface, 0); 1707 if (!cur_alt) 1708 cur_alt = &iface->altsetting[0]; 1709 } 1710 1711 /* Drop all the endpoints in the current alt setting */ 1712 for (i = 0; i < cur_alt->desc.bNumEndpoints; i++) { 1713 ret = hcd->driver->drop_endpoint(hcd, udev, 1714 &cur_alt->endpoint[i]); 1715 if (ret < 0) 1716 goto reset; 1717 } 1718 /* Add all the endpoints in the new alt setting */ 1719 for (i = 0; i < new_alt->desc.bNumEndpoints; i++) { 1720 ret = hcd->driver->add_endpoint(hcd, udev, 1721 &new_alt->endpoint[i]); 1722 if (ret < 0) 1723 goto reset; 1724 } 1725 } 1726 ret = hcd->driver->check_bandwidth(hcd, udev); 1727 reset: 1728 if (ret < 0) 1729 hcd->driver->reset_bandwidth(hcd, udev); 1730 return ret; 1731 } 1732 1733 /* Disables the endpoint: synchronizes with the hcd to make sure all 1734 * endpoint state is gone from hardware. usb_hcd_flush_endpoint() must 1735 * have been called previously. Use for set_configuration, set_interface, 1736 * driver removal, physical disconnect. 1737 * 1738 * example: a qh stored in ep->hcpriv, holding state related to endpoint 1739 * type, maxpacket size, toggle, halt status, and scheduling. 1740 */ 1741 void usb_hcd_disable_endpoint(struct usb_device *udev, 1742 struct usb_host_endpoint *ep) 1743 { 1744 struct usb_hcd *hcd; 1745 1746 might_sleep(); 1747 hcd = bus_to_hcd(udev->bus); 1748 if (hcd->driver->endpoint_disable) 1749 hcd->driver->endpoint_disable(hcd, ep); 1750 } 1751 1752 /** 1753 * usb_hcd_reset_endpoint - reset host endpoint state 1754 * @udev: USB device. 1755 * @ep: the endpoint to reset. 1756 * 1757 * Resets any host endpoint state such as the toggle bit, sequence 1758 * number and current window. 1759 */ 1760 void usb_hcd_reset_endpoint(struct usb_device *udev, 1761 struct usb_host_endpoint *ep) 1762 { 1763 struct usb_hcd *hcd = bus_to_hcd(udev->bus); 1764 1765 if (hcd->driver->endpoint_reset) 1766 hcd->driver->endpoint_reset(hcd, ep); 1767 else { 1768 int epnum = usb_endpoint_num(&ep->desc); 1769 int is_out = usb_endpoint_dir_out(&ep->desc); 1770 int is_control = usb_endpoint_xfer_control(&ep->desc); 1771 1772 usb_settoggle(udev, epnum, is_out, 0); 1773 if (is_control) 1774 usb_settoggle(udev, epnum, !is_out, 0); 1775 } 1776 } 1777 1778 /* Protect against drivers that try to unlink URBs after the device 1779 * is gone, by waiting until all unlinks for @udev are finished. 1780 * Since we don't currently track URBs by device, simply wait until 1781 * nothing is running in the locked region of usb_hcd_unlink_urb(). 1782 */ 1783 void usb_hcd_synchronize_unlinks(struct usb_device *udev) 1784 { 1785 spin_lock_irq(&hcd_urb_unlink_lock); 1786 spin_unlock_irq(&hcd_urb_unlink_lock); 1787 } 1788 1789 /*-------------------------------------------------------------------------*/ 1790 1791 /* called in any context */ 1792 int usb_hcd_get_frame_number (struct usb_device *udev) 1793 { 1794 struct usb_hcd *hcd = bus_to_hcd(udev->bus); 1795 1796 if (!HC_IS_RUNNING (hcd->state)) 1797 return -ESHUTDOWN; 1798 return hcd->driver->get_frame_number (hcd); 1799 } 1800 1801 /*-------------------------------------------------------------------------*/ 1802 1803 #ifdef CONFIG_PM 1804 1805 int hcd_bus_suspend(struct usb_device *rhdev, pm_message_t msg) 1806 { 1807 struct usb_hcd *hcd = container_of(rhdev->bus, struct usb_hcd, self); 1808 int status; 1809 int old_state = hcd->state; 1810 1811 dev_dbg(&rhdev->dev, "bus %s%s\n", 1812 (msg.event & PM_EVENT_AUTO ? "auto-" : ""), "suspend"); 1813 if (!hcd->driver->bus_suspend) { 1814 status = -ENOENT; 1815 } else { 1816 hcd->state = HC_STATE_QUIESCING; 1817 status = hcd->driver->bus_suspend(hcd); 1818 } 1819 if (status == 0) { 1820 usb_set_device_state(rhdev, USB_STATE_SUSPENDED); 1821 hcd->state = HC_STATE_SUSPENDED; 1822 } else { 1823 hcd->state = old_state; 1824 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n", 1825 "suspend", status); 1826 } 1827 return status; 1828 } 1829 1830 int hcd_bus_resume(struct usb_device *rhdev, pm_message_t msg) 1831 { 1832 struct usb_hcd *hcd = container_of(rhdev->bus, struct usb_hcd, self); 1833 int status; 1834 int old_state = hcd->state; 1835 1836 dev_dbg(&rhdev->dev, "usb %s%s\n", 1837 (msg.event & PM_EVENT_AUTO ? "auto-" : ""), "resume"); 1838 if (!hcd->driver->bus_resume) 1839 return -ENOENT; 1840 if (hcd->state == HC_STATE_RUNNING) 1841 return 0; 1842 1843 hcd->state = HC_STATE_RESUMING; 1844 status = hcd->driver->bus_resume(hcd); 1845 if (status == 0) { 1846 /* TRSMRCY = 10 msec */ 1847 msleep(10); 1848 usb_set_device_state(rhdev, rhdev->actconfig 1849 ? USB_STATE_CONFIGURED 1850 : USB_STATE_ADDRESS); 1851 hcd->state = HC_STATE_RUNNING; 1852 } else { 1853 hcd->state = old_state; 1854 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n", 1855 "resume", status); 1856 if (status != -ESHUTDOWN) 1857 usb_hc_died(hcd); 1858 } 1859 return status; 1860 } 1861 1862 #endif /* CONFIG_PM */ 1863 1864 #ifdef CONFIG_USB_SUSPEND 1865 1866 /* Workqueue routine for root-hub remote wakeup */ 1867 static void hcd_resume_work(struct work_struct *work) 1868 { 1869 struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work); 1870 struct usb_device *udev = hcd->self.root_hub; 1871 1872 usb_lock_device(udev); 1873 usb_remote_wakeup(udev); 1874 usb_unlock_device(udev); 1875 } 1876 1877 /** 1878 * usb_hcd_resume_root_hub - called by HCD to resume its root hub 1879 * @hcd: host controller for this root hub 1880 * 1881 * The USB host controller calls this function when its root hub is 1882 * suspended (with the remote wakeup feature enabled) and a remote 1883 * wakeup request is received. The routine submits a workqueue request 1884 * to resume the root hub (that is, manage its downstream ports again). 1885 */ 1886 void usb_hcd_resume_root_hub (struct usb_hcd *hcd) 1887 { 1888 unsigned long flags; 1889 1890 spin_lock_irqsave (&hcd_root_hub_lock, flags); 1891 if (hcd->rh_registered) 1892 queue_work(pm_wq, &hcd->wakeup_work); 1893 spin_unlock_irqrestore (&hcd_root_hub_lock, flags); 1894 } 1895 EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub); 1896 1897 #endif /* CONFIG_USB_SUSPEND */ 1898 1899 /*-------------------------------------------------------------------------*/ 1900 1901 #ifdef CONFIG_USB_OTG 1902 1903 /** 1904 * usb_bus_start_enum - start immediate enumeration (for OTG) 1905 * @bus: the bus (must use hcd framework) 1906 * @port_num: 1-based number of port; usually bus->otg_port 1907 * Context: in_interrupt() 1908 * 1909 * Starts enumeration, with an immediate reset followed later by 1910 * khubd identifying and possibly configuring the device. 1911 * This is needed by OTG controller drivers, where it helps meet 1912 * HNP protocol timing requirements for starting a port reset. 1913 */ 1914 int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num) 1915 { 1916 struct usb_hcd *hcd; 1917 int status = -EOPNOTSUPP; 1918 1919 /* NOTE: since HNP can't start by grabbing the bus's address0_sem, 1920 * boards with root hubs hooked up to internal devices (instead of 1921 * just the OTG port) may need more attention to resetting... 1922 */ 1923 hcd = container_of (bus, struct usb_hcd, self); 1924 if (port_num && hcd->driver->start_port_reset) 1925 status = hcd->driver->start_port_reset(hcd, port_num); 1926 1927 /* run khubd shortly after (first) root port reset finishes; 1928 * it may issue others, until at least 50 msecs have passed. 1929 */ 1930 if (status == 0) 1931 mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10)); 1932 return status; 1933 } 1934 EXPORT_SYMBOL_GPL(usb_bus_start_enum); 1935 1936 #endif 1937 1938 /*-------------------------------------------------------------------------*/ 1939 1940 /** 1941 * usb_hcd_irq - hook IRQs to HCD framework (bus glue) 1942 * @irq: the IRQ being raised 1943 * @__hcd: pointer to the HCD whose IRQ is being signaled 1944 * 1945 * If the controller isn't HALTed, calls the driver's irq handler. 1946 * Checks whether the controller is now dead. 1947 */ 1948 irqreturn_t usb_hcd_irq (int irq, void *__hcd) 1949 { 1950 struct usb_hcd *hcd = __hcd; 1951 unsigned long flags; 1952 irqreturn_t rc; 1953 1954 /* IRQF_DISABLED doesn't work correctly with shared IRQs 1955 * when the first handler doesn't use it. So let's just 1956 * assume it's never used. 1957 */ 1958 local_irq_save(flags); 1959 1960 if (unlikely(hcd->state == HC_STATE_HALT || 1961 !test_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags))) { 1962 rc = IRQ_NONE; 1963 } else if (hcd->driver->irq(hcd) == IRQ_NONE) { 1964 rc = IRQ_NONE; 1965 } else { 1966 set_bit(HCD_FLAG_SAW_IRQ, &hcd->flags); 1967 1968 if (unlikely(hcd->state == HC_STATE_HALT)) 1969 usb_hc_died(hcd); 1970 rc = IRQ_HANDLED; 1971 } 1972 1973 local_irq_restore(flags); 1974 return rc; 1975 } 1976 1977 /*-------------------------------------------------------------------------*/ 1978 1979 /** 1980 * usb_hc_died - report abnormal shutdown of a host controller (bus glue) 1981 * @hcd: pointer to the HCD representing the controller 1982 * 1983 * This is called by bus glue to report a USB host controller that died 1984 * while operations may still have been pending. It's called automatically 1985 * by the PCI glue, so only glue for non-PCI busses should need to call it. 1986 */ 1987 void usb_hc_died (struct usb_hcd *hcd) 1988 { 1989 unsigned long flags; 1990 1991 dev_err (hcd->self.controller, "HC died; cleaning up\n"); 1992 1993 spin_lock_irqsave (&hcd_root_hub_lock, flags); 1994 if (hcd->rh_registered) { 1995 hcd->poll_rh = 0; 1996 1997 /* make khubd clean up old urbs and devices */ 1998 usb_set_device_state (hcd->self.root_hub, 1999 USB_STATE_NOTATTACHED); 2000 usb_kick_khubd (hcd->self.root_hub); 2001 } 2002 spin_unlock_irqrestore (&hcd_root_hub_lock, flags); 2003 } 2004 EXPORT_SYMBOL_GPL (usb_hc_died); 2005 2006 /*-------------------------------------------------------------------------*/ 2007 2008 /** 2009 * usb_create_hcd - create and initialize an HCD structure 2010 * @driver: HC driver that will use this hcd 2011 * @dev: device for this HC, stored in hcd->self.controller 2012 * @bus_name: value to store in hcd->self.bus_name 2013 * Context: !in_interrupt() 2014 * 2015 * Allocate a struct usb_hcd, with extra space at the end for the 2016 * HC driver's private data. Initialize the generic members of the 2017 * hcd structure. 2018 * 2019 * If memory is unavailable, returns NULL. 2020 */ 2021 struct usb_hcd *usb_create_hcd (const struct hc_driver *driver, 2022 struct device *dev, const char *bus_name) 2023 { 2024 struct usb_hcd *hcd; 2025 2026 hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL); 2027 if (!hcd) { 2028 dev_dbg (dev, "hcd alloc failed\n"); 2029 return NULL; 2030 } 2031 dev_set_drvdata(dev, hcd); 2032 kref_init(&hcd->kref); 2033 2034 usb_bus_init(&hcd->self); 2035 hcd->self.controller = dev; 2036 hcd->self.bus_name = bus_name; 2037 hcd->self.uses_dma = (dev->dma_mask != NULL); 2038 2039 init_timer(&hcd->rh_timer); 2040 hcd->rh_timer.function = rh_timer_func; 2041 hcd->rh_timer.data = (unsigned long) hcd; 2042 #ifdef CONFIG_USB_SUSPEND 2043 INIT_WORK(&hcd->wakeup_work, hcd_resume_work); 2044 #endif 2045 mutex_init(&hcd->bandwidth_mutex); 2046 2047 hcd->driver = driver; 2048 hcd->product_desc = (driver->product_desc) ? driver->product_desc : 2049 "USB Host Controller"; 2050 return hcd; 2051 } 2052 EXPORT_SYMBOL_GPL(usb_create_hcd); 2053 2054 static void hcd_release (struct kref *kref) 2055 { 2056 struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref); 2057 2058 kfree(hcd); 2059 } 2060 2061 struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd) 2062 { 2063 if (hcd) 2064 kref_get (&hcd->kref); 2065 return hcd; 2066 } 2067 EXPORT_SYMBOL_GPL(usb_get_hcd); 2068 2069 void usb_put_hcd (struct usb_hcd *hcd) 2070 { 2071 if (hcd) 2072 kref_put (&hcd->kref, hcd_release); 2073 } 2074 EXPORT_SYMBOL_GPL(usb_put_hcd); 2075 2076 /** 2077 * usb_add_hcd - finish generic HCD structure initialization and register 2078 * @hcd: the usb_hcd structure to initialize 2079 * @irqnum: Interrupt line to allocate 2080 * @irqflags: Interrupt type flags 2081 * 2082 * Finish the remaining parts of generic HCD initialization: allocate the 2083 * buffers of consistent memory, register the bus, request the IRQ line, 2084 * and call the driver's reset() and start() routines. 2085 */ 2086 int usb_add_hcd(struct usb_hcd *hcd, 2087 unsigned int irqnum, unsigned long irqflags) 2088 { 2089 int retval; 2090 struct usb_device *rhdev; 2091 2092 dev_info(hcd->self.controller, "%s\n", hcd->product_desc); 2093 2094 hcd->authorized_default = hcd->wireless? 0 : 1; 2095 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 2096 2097 /* HC is in reset state, but accessible. Now do the one-time init, 2098 * bottom up so that hcds can customize the root hubs before khubd 2099 * starts talking to them. (Note, bus id is assigned early too.) 2100 */ 2101 if ((retval = hcd_buffer_create(hcd)) != 0) { 2102 dev_dbg(hcd->self.controller, "pool alloc failed\n"); 2103 return retval; 2104 } 2105 2106 if ((retval = usb_register_bus(&hcd->self)) < 0) 2107 goto err_register_bus; 2108 2109 if ((rhdev = usb_alloc_dev(NULL, &hcd->self, 0)) == NULL) { 2110 dev_err(hcd->self.controller, "unable to allocate root hub\n"); 2111 retval = -ENOMEM; 2112 goto err_allocate_root_hub; 2113 } 2114 2115 switch (hcd->driver->flags & HCD_MASK) { 2116 case HCD_USB11: 2117 rhdev->speed = USB_SPEED_FULL; 2118 break; 2119 case HCD_USB2: 2120 rhdev->speed = USB_SPEED_HIGH; 2121 break; 2122 case HCD_USB3: 2123 rhdev->speed = USB_SPEED_SUPER; 2124 break; 2125 default: 2126 goto err_allocate_root_hub; 2127 } 2128 hcd->self.root_hub = rhdev; 2129 2130 /* wakeup flag init defaults to "everything works" for root hubs, 2131 * but drivers can override it in reset() if needed, along with 2132 * recording the overall controller's system wakeup capability. 2133 */ 2134 device_init_wakeup(&rhdev->dev, 1); 2135 2136 /* "reset" is misnamed; its role is now one-time init. the controller 2137 * should already have been reset (and boot firmware kicked off etc). 2138 */ 2139 if (hcd->driver->reset && (retval = hcd->driver->reset(hcd)) < 0) { 2140 dev_err(hcd->self.controller, "can't setup\n"); 2141 goto err_hcd_driver_setup; 2142 } 2143 2144 /* NOTE: root hub and controller capabilities may not be the same */ 2145 if (device_can_wakeup(hcd->self.controller) 2146 && device_can_wakeup(&hcd->self.root_hub->dev)) 2147 dev_dbg(hcd->self.controller, "supports USB remote wakeup\n"); 2148 2149 /* enable irqs just before we start the controller */ 2150 if (hcd->driver->irq) { 2151 2152 /* IRQF_DISABLED doesn't work as advertised when used together 2153 * with IRQF_SHARED. As usb_hcd_irq() will always disable 2154 * interrupts we can remove it here. 2155 */ 2156 if (irqflags & IRQF_SHARED) 2157 irqflags &= ~IRQF_DISABLED; 2158 2159 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d", 2160 hcd->driver->description, hcd->self.busnum); 2161 if ((retval = request_irq(irqnum, &usb_hcd_irq, irqflags, 2162 hcd->irq_descr, hcd)) != 0) { 2163 dev_err(hcd->self.controller, 2164 "request interrupt %d failed\n", irqnum); 2165 goto err_request_irq; 2166 } 2167 hcd->irq = irqnum; 2168 dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum, 2169 (hcd->driver->flags & HCD_MEMORY) ? 2170 "io mem" : "io base", 2171 (unsigned long long)hcd->rsrc_start); 2172 } else { 2173 hcd->irq = -1; 2174 if (hcd->rsrc_start) 2175 dev_info(hcd->self.controller, "%s 0x%08llx\n", 2176 (hcd->driver->flags & HCD_MEMORY) ? 2177 "io mem" : "io base", 2178 (unsigned long long)hcd->rsrc_start); 2179 } 2180 2181 if ((retval = hcd->driver->start(hcd)) < 0) { 2182 dev_err(hcd->self.controller, "startup error %d\n", retval); 2183 goto err_hcd_driver_start; 2184 } 2185 2186 /* starting here, usbcore will pay attention to this root hub */ 2187 rhdev->bus_mA = min(500u, hcd->power_budget); 2188 if ((retval = register_root_hub(hcd)) != 0) 2189 goto err_register_root_hub; 2190 2191 retval = sysfs_create_group(&rhdev->dev.kobj, &usb_bus_attr_group); 2192 if (retval < 0) { 2193 printk(KERN_ERR "Cannot register USB bus sysfs attributes: %d\n", 2194 retval); 2195 goto error_create_attr_group; 2196 } 2197 if (hcd->uses_new_polling && hcd->poll_rh) 2198 usb_hcd_poll_rh_status(hcd); 2199 return retval; 2200 2201 error_create_attr_group: 2202 mutex_lock(&usb_bus_list_lock); 2203 usb_disconnect(&hcd->self.root_hub); 2204 mutex_unlock(&usb_bus_list_lock); 2205 err_register_root_hub: 2206 hcd->driver->stop(hcd); 2207 err_hcd_driver_start: 2208 if (hcd->irq >= 0) 2209 free_irq(irqnum, hcd); 2210 err_request_irq: 2211 err_hcd_driver_setup: 2212 hcd->self.root_hub = NULL; 2213 usb_put_dev(rhdev); 2214 err_allocate_root_hub: 2215 usb_deregister_bus(&hcd->self); 2216 err_register_bus: 2217 hcd_buffer_destroy(hcd); 2218 return retval; 2219 } 2220 EXPORT_SYMBOL_GPL(usb_add_hcd); 2221 2222 /** 2223 * usb_remove_hcd - shutdown processing for generic HCDs 2224 * @hcd: the usb_hcd structure to remove 2225 * Context: !in_interrupt() 2226 * 2227 * Disconnects the root hub, then reverses the effects of usb_add_hcd(), 2228 * invoking the HCD's stop() method. 2229 */ 2230 void usb_remove_hcd(struct usb_hcd *hcd) 2231 { 2232 dev_info(hcd->self.controller, "remove, state %x\n", hcd->state); 2233 2234 if (HC_IS_RUNNING (hcd->state)) 2235 hcd->state = HC_STATE_QUIESCING; 2236 2237 dev_dbg(hcd->self.controller, "roothub graceful disconnect\n"); 2238 spin_lock_irq (&hcd_root_hub_lock); 2239 hcd->rh_registered = 0; 2240 spin_unlock_irq (&hcd_root_hub_lock); 2241 2242 #ifdef CONFIG_USB_SUSPEND 2243 cancel_work_sync(&hcd->wakeup_work); 2244 #endif 2245 2246 sysfs_remove_group(&hcd->self.root_hub->dev.kobj, &usb_bus_attr_group); 2247 mutex_lock(&usb_bus_list_lock); 2248 usb_disconnect(&hcd->self.root_hub); 2249 mutex_unlock(&usb_bus_list_lock); 2250 2251 hcd->driver->stop(hcd); 2252 hcd->state = HC_STATE_HALT; 2253 2254 hcd->poll_rh = 0; 2255 del_timer_sync(&hcd->rh_timer); 2256 2257 if (hcd->irq >= 0) 2258 free_irq(hcd->irq, hcd); 2259 usb_deregister_bus(&hcd->self); 2260 hcd_buffer_destroy(hcd); 2261 } 2262 EXPORT_SYMBOL_GPL(usb_remove_hcd); 2263 2264 void 2265 usb_hcd_platform_shutdown(struct platform_device* dev) 2266 { 2267 struct usb_hcd *hcd = platform_get_drvdata(dev); 2268 2269 if (hcd->driver->shutdown) 2270 hcd->driver->shutdown(hcd); 2271 } 2272 EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown); 2273 2274 /*-------------------------------------------------------------------------*/ 2275 2276 #if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE) 2277 2278 struct usb_mon_operations *mon_ops; 2279 2280 /* 2281 * The registration is unlocked. 2282 * We do it this way because we do not want to lock in hot paths. 2283 * 2284 * Notice that the code is minimally error-proof. Because usbmon needs 2285 * symbols from usbcore, usbcore gets referenced and cannot be unloaded first. 2286 */ 2287 2288 int usb_mon_register (struct usb_mon_operations *ops) 2289 { 2290 2291 if (mon_ops) 2292 return -EBUSY; 2293 2294 mon_ops = ops; 2295 mb(); 2296 return 0; 2297 } 2298 EXPORT_SYMBOL_GPL (usb_mon_register); 2299 2300 void usb_mon_deregister (void) 2301 { 2302 2303 if (mon_ops == NULL) { 2304 printk(KERN_ERR "USB: monitor was not registered\n"); 2305 return; 2306 } 2307 mon_ops = NULL; 2308 mb(); 2309 } 2310 EXPORT_SYMBOL_GPL (usb_mon_deregister); 2311 2312 #endif /* CONFIG_USB_MON || CONFIG_USB_MON_MODULE */ 2313