1 /* 2 * (C) Copyright Linus Torvalds 1999 3 * (C) Copyright Johannes Erdfelt 1999-2001 4 * (C) Copyright Andreas Gal 1999 5 * (C) Copyright Gregory P. Smith 1999 6 * (C) Copyright Deti Fliegl 1999 7 * (C) Copyright Randy Dunlap 2000 8 * (C) Copyright David Brownell 2000-2002 9 * 10 * This program is free software; you can redistribute it and/or modify it 11 * under the terms of the GNU General Public License as published by the 12 * Free Software Foundation; either version 2 of the License, or (at your 13 * option) any later version. 14 * 15 * This program is distributed in the hope that it will be useful, but 16 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 17 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 18 * for more details. 19 * 20 * You should have received a copy of the GNU General Public License 21 * along with this program; if not, write to the Free Software Foundation, 22 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 23 */ 24 25 #include <linux/bcd.h> 26 #include <linux/module.h> 27 #include <linux/version.h> 28 #include <linux/kernel.h> 29 #include <linux/slab.h> 30 #include <linux/completion.h> 31 #include <linux/utsname.h> 32 #include <linux/mm.h> 33 #include <asm/io.h> 34 #include <linux/device.h> 35 #include <linux/dma-mapping.h> 36 #include <linux/mutex.h> 37 #include <asm/irq.h> 38 #include <asm/byteorder.h> 39 #include <asm/unaligned.h> 40 #include <linux/platform_device.h> 41 #include <linux/workqueue.h> 42 #include <linux/pm_runtime.h> 43 #include <linux/types.h> 44 45 #include <linux/phy/phy.h> 46 #include <linux/usb.h> 47 #include <linux/usb/hcd.h> 48 #include <linux/usb/phy.h> 49 50 #include "usb.h" 51 52 53 /*-------------------------------------------------------------------------*/ 54 55 /* 56 * USB Host Controller Driver framework 57 * 58 * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing 59 * HCD-specific behaviors/bugs. 60 * 61 * This does error checks, tracks devices and urbs, and delegates to a 62 * "hc_driver" only for code (and data) that really needs to know about 63 * hardware differences. That includes root hub registers, i/o queues, 64 * and so on ... but as little else as possible. 65 * 66 * Shared code includes most of the "root hub" code (these are emulated, 67 * though each HC's hardware works differently) and PCI glue, plus request 68 * tracking overhead. The HCD code should only block on spinlocks or on 69 * hardware handshaking; blocking on software events (such as other kernel 70 * threads releasing resources, or completing actions) is all generic. 71 * 72 * Happens the USB 2.0 spec says this would be invisible inside the "USBD", 73 * and includes mostly a "HCDI" (HCD Interface) along with some APIs used 74 * only by the hub driver ... and that neither should be seen or used by 75 * usb client device drivers. 76 * 77 * Contributors of ideas or unattributed patches include: David Brownell, 78 * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ... 79 * 80 * HISTORY: 81 * 2002-02-21 Pull in most of the usb_bus support from usb.c; some 82 * associated cleanup. "usb_hcd" still != "usb_bus". 83 * 2001-12-12 Initial patch version for Linux 2.5.1 kernel. 84 */ 85 86 /*-------------------------------------------------------------------------*/ 87 88 /* Keep track of which host controller drivers are loaded */ 89 unsigned long usb_hcds_loaded; 90 EXPORT_SYMBOL_GPL(usb_hcds_loaded); 91 92 /* host controllers we manage */ 93 LIST_HEAD (usb_bus_list); 94 EXPORT_SYMBOL_GPL (usb_bus_list); 95 96 /* used when allocating bus numbers */ 97 #define USB_MAXBUS 64 98 static DECLARE_BITMAP(busmap, USB_MAXBUS); 99 100 /* used when updating list of hcds */ 101 DEFINE_MUTEX(usb_bus_list_lock); /* exported only for usbfs */ 102 EXPORT_SYMBOL_GPL (usb_bus_list_lock); 103 104 /* used for controlling access to virtual root hubs */ 105 static DEFINE_SPINLOCK(hcd_root_hub_lock); 106 107 /* used when updating an endpoint's URB list */ 108 static DEFINE_SPINLOCK(hcd_urb_list_lock); 109 110 /* used to protect against unlinking URBs after the device is gone */ 111 static DEFINE_SPINLOCK(hcd_urb_unlink_lock); 112 113 /* wait queue for synchronous unlinks */ 114 DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue); 115 116 static inline int is_root_hub(struct usb_device *udev) 117 { 118 return (udev->parent == NULL); 119 } 120 121 /*-------------------------------------------------------------------------*/ 122 123 /* 124 * Sharable chunks of root hub code. 125 */ 126 127 /*-------------------------------------------------------------------------*/ 128 #define KERNEL_REL bin2bcd(((LINUX_VERSION_CODE >> 16) & 0x0ff)) 129 #define KERNEL_VER bin2bcd(((LINUX_VERSION_CODE >> 8) & 0x0ff)) 130 131 /* usb 3.0 root hub device descriptor */ 132 static const u8 usb3_rh_dev_descriptor[18] = { 133 0x12, /* __u8 bLength; */ 134 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */ 135 0x00, 0x03, /* __le16 bcdUSB; v3.0 */ 136 137 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */ 138 0x00, /* __u8 bDeviceSubClass; */ 139 0x03, /* __u8 bDeviceProtocol; USB 3.0 hub */ 140 0x09, /* __u8 bMaxPacketSize0; 2^9 = 512 Bytes */ 141 142 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */ 143 0x03, 0x00, /* __le16 idProduct; device 0x0003 */ 144 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */ 145 146 0x03, /* __u8 iManufacturer; */ 147 0x02, /* __u8 iProduct; */ 148 0x01, /* __u8 iSerialNumber; */ 149 0x01 /* __u8 bNumConfigurations; */ 150 }; 151 152 /* usb 2.5 (wireless USB 1.0) root hub device descriptor */ 153 static const u8 usb25_rh_dev_descriptor[18] = { 154 0x12, /* __u8 bLength; */ 155 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */ 156 0x50, 0x02, /* __le16 bcdUSB; v2.5 */ 157 158 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */ 159 0x00, /* __u8 bDeviceSubClass; */ 160 0x00, /* __u8 bDeviceProtocol; [ usb 2.0 no TT ] */ 161 0xFF, /* __u8 bMaxPacketSize0; always 0xFF (WUSB Spec 7.4.1). */ 162 163 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */ 164 0x02, 0x00, /* __le16 idProduct; device 0x0002 */ 165 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */ 166 167 0x03, /* __u8 iManufacturer; */ 168 0x02, /* __u8 iProduct; */ 169 0x01, /* __u8 iSerialNumber; */ 170 0x01 /* __u8 bNumConfigurations; */ 171 }; 172 173 /* usb 2.0 root hub device descriptor */ 174 static const u8 usb2_rh_dev_descriptor[18] = { 175 0x12, /* __u8 bLength; */ 176 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */ 177 0x00, 0x02, /* __le16 bcdUSB; v2.0 */ 178 179 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */ 180 0x00, /* __u8 bDeviceSubClass; */ 181 0x00, /* __u8 bDeviceProtocol; [ usb 2.0 no TT ] */ 182 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */ 183 184 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */ 185 0x02, 0x00, /* __le16 idProduct; device 0x0002 */ 186 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */ 187 188 0x03, /* __u8 iManufacturer; */ 189 0x02, /* __u8 iProduct; */ 190 0x01, /* __u8 iSerialNumber; */ 191 0x01 /* __u8 bNumConfigurations; */ 192 }; 193 194 /* no usb 2.0 root hub "device qualifier" descriptor: one speed only */ 195 196 /* usb 1.1 root hub device descriptor */ 197 static const u8 usb11_rh_dev_descriptor[18] = { 198 0x12, /* __u8 bLength; */ 199 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */ 200 0x10, 0x01, /* __le16 bcdUSB; v1.1 */ 201 202 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */ 203 0x00, /* __u8 bDeviceSubClass; */ 204 0x00, /* __u8 bDeviceProtocol; [ low/full speeds only ] */ 205 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */ 206 207 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */ 208 0x01, 0x00, /* __le16 idProduct; device 0x0001 */ 209 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */ 210 211 0x03, /* __u8 iManufacturer; */ 212 0x02, /* __u8 iProduct; */ 213 0x01, /* __u8 iSerialNumber; */ 214 0x01 /* __u8 bNumConfigurations; */ 215 }; 216 217 218 /*-------------------------------------------------------------------------*/ 219 220 /* Configuration descriptors for our root hubs */ 221 222 static const u8 fs_rh_config_descriptor[] = { 223 224 /* one configuration */ 225 0x09, /* __u8 bLength; */ 226 USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */ 227 0x19, 0x00, /* __le16 wTotalLength; */ 228 0x01, /* __u8 bNumInterfaces; (1) */ 229 0x01, /* __u8 bConfigurationValue; */ 230 0x00, /* __u8 iConfiguration; */ 231 0xc0, /* __u8 bmAttributes; 232 Bit 7: must be set, 233 6: Self-powered, 234 5: Remote wakeup, 235 4..0: resvd */ 236 0x00, /* __u8 MaxPower; */ 237 238 /* USB 1.1: 239 * USB 2.0, single TT organization (mandatory): 240 * one interface, protocol 0 241 * 242 * USB 2.0, multiple TT organization (optional): 243 * two interfaces, protocols 1 (like single TT) 244 * and 2 (multiple TT mode) ... config is 245 * sometimes settable 246 * NOT IMPLEMENTED 247 */ 248 249 /* one interface */ 250 0x09, /* __u8 if_bLength; */ 251 USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */ 252 0x00, /* __u8 if_bInterfaceNumber; */ 253 0x00, /* __u8 if_bAlternateSetting; */ 254 0x01, /* __u8 if_bNumEndpoints; */ 255 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */ 256 0x00, /* __u8 if_bInterfaceSubClass; */ 257 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */ 258 0x00, /* __u8 if_iInterface; */ 259 260 /* one endpoint (status change endpoint) */ 261 0x07, /* __u8 ep_bLength; */ 262 USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */ 263 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */ 264 0x03, /* __u8 ep_bmAttributes; Interrupt */ 265 0x02, 0x00, /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */ 266 0xff /* __u8 ep_bInterval; (255ms -- usb 2.0 spec) */ 267 }; 268 269 static const u8 hs_rh_config_descriptor[] = { 270 271 /* one configuration */ 272 0x09, /* __u8 bLength; */ 273 USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */ 274 0x19, 0x00, /* __le16 wTotalLength; */ 275 0x01, /* __u8 bNumInterfaces; (1) */ 276 0x01, /* __u8 bConfigurationValue; */ 277 0x00, /* __u8 iConfiguration; */ 278 0xc0, /* __u8 bmAttributes; 279 Bit 7: must be set, 280 6: Self-powered, 281 5: Remote wakeup, 282 4..0: resvd */ 283 0x00, /* __u8 MaxPower; */ 284 285 /* USB 1.1: 286 * USB 2.0, single TT organization (mandatory): 287 * one interface, protocol 0 288 * 289 * USB 2.0, multiple TT organization (optional): 290 * two interfaces, protocols 1 (like single TT) 291 * and 2 (multiple TT mode) ... config is 292 * sometimes settable 293 * NOT IMPLEMENTED 294 */ 295 296 /* one interface */ 297 0x09, /* __u8 if_bLength; */ 298 USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */ 299 0x00, /* __u8 if_bInterfaceNumber; */ 300 0x00, /* __u8 if_bAlternateSetting; */ 301 0x01, /* __u8 if_bNumEndpoints; */ 302 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */ 303 0x00, /* __u8 if_bInterfaceSubClass; */ 304 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */ 305 0x00, /* __u8 if_iInterface; */ 306 307 /* one endpoint (status change endpoint) */ 308 0x07, /* __u8 ep_bLength; */ 309 USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */ 310 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */ 311 0x03, /* __u8 ep_bmAttributes; Interrupt */ 312 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) 313 * see hub.c:hub_configure() for details. */ 314 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00, 315 0x0c /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */ 316 }; 317 318 static const u8 ss_rh_config_descriptor[] = { 319 /* one configuration */ 320 0x09, /* __u8 bLength; */ 321 USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */ 322 0x1f, 0x00, /* __le16 wTotalLength; */ 323 0x01, /* __u8 bNumInterfaces; (1) */ 324 0x01, /* __u8 bConfigurationValue; */ 325 0x00, /* __u8 iConfiguration; */ 326 0xc0, /* __u8 bmAttributes; 327 Bit 7: must be set, 328 6: Self-powered, 329 5: Remote wakeup, 330 4..0: resvd */ 331 0x00, /* __u8 MaxPower; */ 332 333 /* one interface */ 334 0x09, /* __u8 if_bLength; */ 335 USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */ 336 0x00, /* __u8 if_bInterfaceNumber; */ 337 0x00, /* __u8 if_bAlternateSetting; */ 338 0x01, /* __u8 if_bNumEndpoints; */ 339 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */ 340 0x00, /* __u8 if_bInterfaceSubClass; */ 341 0x00, /* __u8 if_bInterfaceProtocol; */ 342 0x00, /* __u8 if_iInterface; */ 343 344 /* one endpoint (status change endpoint) */ 345 0x07, /* __u8 ep_bLength; */ 346 USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */ 347 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */ 348 0x03, /* __u8 ep_bmAttributes; Interrupt */ 349 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) 350 * see hub.c:hub_configure() for details. */ 351 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00, 352 0x0c, /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */ 353 354 /* one SuperSpeed endpoint companion descriptor */ 355 0x06, /* __u8 ss_bLength */ 356 USB_DT_SS_ENDPOINT_COMP, /* __u8 ss_bDescriptorType; SuperSpeed EP */ 357 /* Companion */ 358 0x00, /* __u8 ss_bMaxBurst; allows 1 TX between ACKs */ 359 0x00, /* __u8 ss_bmAttributes; 1 packet per service interval */ 360 0x02, 0x00 /* __le16 ss_wBytesPerInterval; 15 bits for max 15 ports */ 361 }; 362 363 /* authorized_default behaviour: 364 * -1 is authorized for all devices except wireless (old behaviour) 365 * 0 is unauthorized for all devices 366 * 1 is authorized for all devices 367 */ 368 static int authorized_default = -1; 369 module_param(authorized_default, int, S_IRUGO|S_IWUSR); 370 MODULE_PARM_DESC(authorized_default, 371 "Default USB device authorization: 0 is not authorized, 1 is " 372 "authorized, -1 is authorized except for wireless USB (default, " 373 "old behaviour"); 374 /*-------------------------------------------------------------------------*/ 375 376 /** 377 * ascii2desc() - Helper routine for producing UTF-16LE string descriptors 378 * @s: Null-terminated ASCII (actually ISO-8859-1) string 379 * @buf: Buffer for USB string descriptor (header + UTF-16LE) 380 * @len: Length (in bytes; may be odd) of descriptor buffer. 381 * 382 * Return: The number of bytes filled in: 2 + 2*strlen(s) or @len, 383 * whichever is less. 384 * 385 * Note: 386 * USB String descriptors can contain at most 126 characters; input 387 * strings longer than that are truncated. 388 */ 389 static unsigned 390 ascii2desc(char const *s, u8 *buf, unsigned len) 391 { 392 unsigned n, t = 2 + 2*strlen(s); 393 394 if (t > 254) 395 t = 254; /* Longest possible UTF string descriptor */ 396 if (len > t) 397 len = t; 398 399 t += USB_DT_STRING << 8; /* Now t is first 16 bits to store */ 400 401 n = len; 402 while (n--) { 403 *buf++ = t; 404 if (!n--) 405 break; 406 *buf++ = t >> 8; 407 t = (unsigned char)*s++; 408 } 409 return len; 410 } 411 412 /** 413 * rh_string() - provides string descriptors for root hub 414 * @id: the string ID number (0: langids, 1: serial #, 2: product, 3: vendor) 415 * @hcd: the host controller for this root hub 416 * @data: buffer for output packet 417 * @len: length of the provided buffer 418 * 419 * Produces either a manufacturer, product or serial number string for the 420 * virtual root hub device. 421 * 422 * Return: The number of bytes filled in: the length of the descriptor or 423 * of the provided buffer, whichever is less. 424 */ 425 static unsigned 426 rh_string(int id, struct usb_hcd const *hcd, u8 *data, unsigned len) 427 { 428 char buf[100]; 429 char const *s; 430 static char const langids[4] = {4, USB_DT_STRING, 0x09, 0x04}; 431 432 /* language ids */ 433 switch (id) { 434 case 0: 435 /* Array of LANGID codes (0x0409 is MSFT-speak for "en-us") */ 436 /* See http://www.usb.org/developers/docs/USB_LANGIDs.pdf */ 437 if (len > 4) 438 len = 4; 439 memcpy(data, langids, len); 440 return len; 441 case 1: 442 /* Serial number */ 443 s = hcd->self.bus_name; 444 break; 445 case 2: 446 /* Product name */ 447 s = hcd->product_desc; 448 break; 449 case 3: 450 /* Manufacturer */ 451 snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname, 452 init_utsname()->release, hcd->driver->description); 453 s = buf; 454 break; 455 default: 456 /* Can't happen; caller guarantees it */ 457 return 0; 458 } 459 460 return ascii2desc(s, data, len); 461 } 462 463 464 /* Root hub control transfers execute synchronously */ 465 static int rh_call_control (struct usb_hcd *hcd, struct urb *urb) 466 { 467 struct usb_ctrlrequest *cmd; 468 u16 typeReq, wValue, wIndex, wLength; 469 u8 *ubuf = urb->transfer_buffer; 470 unsigned len = 0; 471 int status; 472 u8 patch_wakeup = 0; 473 u8 patch_protocol = 0; 474 u16 tbuf_size; 475 u8 *tbuf = NULL; 476 const u8 *bufp; 477 478 might_sleep(); 479 480 spin_lock_irq(&hcd_root_hub_lock); 481 status = usb_hcd_link_urb_to_ep(hcd, urb); 482 spin_unlock_irq(&hcd_root_hub_lock); 483 if (status) 484 return status; 485 urb->hcpriv = hcd; /* Indicate it's queued */ 486 487 cmd = (struct usb_ctrlrequest *) urb->setup_packet; 488 typeReq = (cmd->bRequestType << 8) | cmd->bRequest; 489 wValue = le16_to_cpu (cmd->wValue); 490 wIndex = le16_to_cpu (cmd->wIndex); 491 wLength = le16_to_cpu (cmd->wLength); 492 493 if (wLength > urb->transfer_buffer_length) 494 goto error; 495 496 /* 497 * tbuf should be at least as big as the 498 * USB hub descriptor. 499 */ 500 tbuf_size = max_t(u16, sizeof(struct usb_hub_descriptor), wLength); 501 tbuf = kzalloc(tbuf_size, GFP_KERNEL); 502 if (!tbuf) 503 return -ENOMEM; 504 505 bufp = tbuf; 506 507 508 urb->actual_length = 0; 509 switch (typeReq) { 510 511 /* DEVICE REQUESTS */ 512 513 /* The root hub's remote wakeup enable bit is implemented using 514 * driver model wakeup flags. If this system supports wakeup 515 * through USB, userspace may change the default "allow wakeup" 516 * policy through sysfs or these calls. 517 * 518 * Most root hubs support wakeup from downstream devices, for 519 * runtime power management (disabling USB clocks and reducing 520 * VBUS power usage). However, not all of them do so; silicon, 521 * board, and BIOS bugs here are not uncommon, so these can't 522 * be treated quite like external hubs. 523 * 524 * Likewise, not all root hubs will pass wakeup events upstream, 525 * to wake up the whole system. So don't assume root hub and 526 * controller capabilities are identical. 527 */ 528 529 case DeviceRequest | USB_REQ_GET_STATUS: 530 tbuf[0] = (device_may_wakeup(&hcd->self.root_hub->dev) 531 << USB_DEVICE_REMOTE_WAKEUP) 532 | (1 << USB_DEVICE_SELF_POWERED); 533 tbuf[1] = 0; 534 len = 2; 535 break; 536 case DeviceOutRequest | USB_REQ_CLEAR_FEATURE: 537 if (wValue == USB_DEVICE_REMOTE_WAKEUP) 538 device_set_wakeup_enable(&hcd->self.root_hub->dev, 0); 539 else 540 goto error; 541 break; 542 case DeviceOutRequest | USB_REQ_SET_FEATURE: 543 if (device_can_wakeup(&hcd->self.root_hub->dev) 544 && wValue == USB_DEVICE_REMOTE_WAKEUP) 545 device_set_wakeup_enable(&hcd->self.root_hub->dev, 1); 546 else 547 goto error; 548 break; 549 case DeviceRequest | USB_REQ_GET_CONFIGURATION: 550 tbuf[0] = 1; 551 len = 1; 552 /* FALLTHROUGH */ 553 case DeviceOutRequest | USB_REQ_SET_CONFIGURATION: 554 break; 555 case DeviceRequest | USB_REQ_GET_DESCRIPTOR: 556 switch (wValue & 0xff00) { 557 case USB_DT_DEVICE << 8: 558 switch (hcd->speed) { 559 case HCD_USB31: 560 case HCD_USB3: 561 bufp = usb3_rh_dev_descriptor; 562 break; 563 case HCD_USB25: 564 bufp = usb25_rh_dev_descriptor; 565 break; 566 case HCD_USB2: 567 bufp = usb2_rh_dev_descriptor; 568 break; 569 case HCD_USB11: 570 bufp = usb11_rh_dev_descriptor; 571 break; 572 default: 573 goto error; 574 } 575 len = 18; 576 if (hcd->has_tt) 577 patch_protocol = 1; 578 break; 579 case USB_DT_CONFIG << 8: 580 switch (hcd->speed) { 581 case HCD_USB31: 582 case HCD_USB3: 583 bufp = ss_rh_config_descriptor; 584 len = sizeof ss_rh_config_descriptor; 585 break; 586 case HCD_USB25: 587 case HCD_USB2: 588 bufp = hs_rh_config_descriptor; 589 len = sizeof hs_rh_config_descriptor; 590 break; 591 case HCD_USB11: 592 bufp = fs_rh_config_descriptor; 593 len = sizeof fs_rh_config_descriptor; 594 break; 595 default: 596 goto error; 597 } 598 if (device_can_wakeup(&hcd->self.root_hub->dev)) 599 patch_wakeup = 1; 600 break; 601 case USB_DT_STRING << 8: 602 if ((wValue & 0xff) < 4) 603 urb->actual_length = rh_string(wValue & 0xff, 604 hcd, ubuf, wLength); 605 else /* unsupported IDs --> "protocol stall" */ 606 goto error; 607 break; 608 case USB_DT_BOS << 8: 609 goto nongeneric; 610 default: 611 goto error; 612 } 613 break; 614 case DeviceRequest | USB_REQ_GET_INTERFACE: 615 tbuf[0] = 0; 616 len = 1; 617 /* FALLTHROUGH */ 618 case DeviceOutRequest | USB_REQ_SET_INTERFACE: 619 break; 620 case DeviceOutRequest | USB_REQ_SET_ADDRESS: 621 /* wValue == urb->dev->devaddr */ 622 dev_dbg (hcd->self.controller, "root hub device address %d\n", 623 wValue); 624 break; 625 626 /* INTERFACE REQUESTS (no defined feature/status flags) */ 627 628 /* ENDPOINT REQUESTS */ 629 630 case EndpointRequest | USB_REQ_GET_STATUS: 631 /* ENDPOINT_HALT flag */ 632 tbuf[0] = 0; 633 tbuf[1] = 0; 634 len = 2; 635 /* FALLTHROUGH */ 636 case EndpointOutRequest | USB_REQ_CLEAR_FEATURE: 637 case EndpointOutRequest | USB_REQ_SET_FEATURE: 638 dev_dbg (hcd->self.controller, "no endpoint features yet\n"); 639 break; 640 641 /* CLASS REQUESTS (and errors) */ 642 643 default: 644 nongeneric: 645 /* non-generic request */ 646 switch (typeReq) { 647 case GetHubStatus: 648 case GetPortStatus: 649 len = 4; 650 break; 651 case GetHubDescriptor: 652 len = sizeof (struct usb_hub_descriptor); 653 break; 654 case DeviceRequest | USB_REQ_GET_DESCRIPTOR: 655 /* len is returned by hub_control */ 656 break; 657 } 658 status = hcd->driver->hub_control (hcd, 659 typeReq, wValue, wIndex, 660 tbuf, wLength); 661 662 if (typeReq == GetHubDescriptor) 663 usb_hub_adjust_deviceremovable(hcd->self.root_hub, 664 (struct usb_hub_descriptor *)tbuf); 665 break; 666 error: 667 /* "protocol stall" on error */ 668 status = -EPIPE; 669 } 670 671 if (status < 0) { 672 len = 0; 673 if (status != -EPIPE) { 674 dev_dbg (hcd->self.controller, 675 "CTRL: TypeReq=0x%x val=0x%x " 676 "idx=0x%x len=%d ==> %d\n", 677 typeReq, wValue, wIndex, 678 wLength, status); 679 } 680 } else if (status > 0) { 681 /* hub_control may return the length of data copied. */ 682 len = status; 683 status = 0; 684 } 685 if (len) { 686 if (urb->transfer_buffer_length < len) 687 len = urb->transfer_buffer_length; 688 urb->actual_length = len; 689 /* always USB_DIR_IN, toward host */ 690 memcpy (ubuf, bufp, len); 691 692 /* report whether RH hardware supports remote wakeup */ 693 if (patch_wakeup && 694 len > offsetof (struct usb_config_descriptor, 695 bmAttributes)) 696 ((struct usb_config_descriptor *)ubuf)->bmAttributes 697 |= USB_CONFIG_ATT_WAKEUP; 698 699 /* report whether RH hardware has an integrated TT */ 700 if (patch_protocol && 701 len > offsetof(struct usb_device_descriptor, 702 bDeviceProtocol)) 703 ((struct usb_device_descriptor *) ubuf)-> 704 bDeviceProtocol = USB_HUB_PR_HS_SINGLE_TT; 705 } 706 707 kfree(tbuf); 708 709 /* any errors get returned through the urb completion */ 710 spin_lock_irq(&hcd_root_hub_lock); 711 usb_hcd_unlink_urb_from_ep(hcd, urb); 712 usb_hcd_giveback_urb(hcd, urb, status); 713 spin_unlock_irq(&hcd_root_hub_lock); 714 return 0; 715 } 716 717 /*-------------------------------------------------------------------------*/ 718 719 /* 720 * Root Hub interrupt transfers are polled using a timer if the 721 * driver requests it; otherwise the driver is responsible for 722 * calling usb_hcd_poll_rh_status() when an event occurs. 723 * 724 * Completions are called in_interrupt(), but they may or may not 725 * be in_irq(). 726 */ 727 void usb_hcd_poll_rh_status(struct usb_hcd *hcd) 728 { 729 struct urb *urb; 730 int length; 731 unsigned long flags; 732 char buffer[6]; /* Any root hubs with > 31 ports? */ 733 734 if (unlikely(!hcd->rh_pollable)) 735 return; 736 if (!hcd->uses_new_polling && !hcd->status_urb) 737 return; 738 739 length = hcd->driver->hub_status_data(hcd, buffer); 740 if (length > 0) { 741 742 /* try to complete the status urb */ 743 spin_lock_irqsave(&hcd_root_hub_lock, flags); 744 urb = hcd->status_urb; 745 if (urb) { 746 clear_bit(HCD_FLAG_POLL_PENDING, &hcd->flags); 747 hcd->status_urb = NULL; 748 urb->actual_length = length; 749 memcpy(urb->transfer_buffer, buffer, length); 750 751 usb_hcd_unlink_urb_from_ep(hcd, urb); 752 usb_hcd_giveback_urb(hcd, urb, 0); 753 } else { 754 length = 0; 755 set_bit(HCD_FLAG_POLL_PENDING, &hcd->flags); 756 } 757 spin_unlock_irqrestore(&hcd_root_hub_lock, flags); 758 } 759 760 /* The USB 2.0 spec says 256 ms. This is close enough and won't 761 * exceed that limit if HZ is 100. The math is more clunky than 762 * maybe expected, this is to make sure that all timers for USB devices 763 * fire at the same time to give the CPU a break in between */ 764 if (hcd->uses_new_polling ? HCD_POLL_RH(hcd) : 765 (length == 0 && hcd->status_urb != NULL)) 766 mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4)); 767 } 768 EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status); 769 770 /* timer callback */ 771 static void rh_timer_func (unsigned long _hcd) 772 { 773 usb_hcd_poll_rh_status((struct usb_hcd *) _hcd); 774 } 775 776 /*-------------------------------------------------------------------------*/ 777 778 static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb) 779 { 780 int retval; 781 unsigned long flags; 782 unsigned len = 1 + (urb->dev->maxchild / 8); 783 784 spin_lock_irqsave (&hcd_root_hub_lock, flags); 785 if (hcd->status_urb || urb->transfer_buffer_length < len) { 786 dev_dbg (hcd->self.controller, "not queuing rh status urb\n"); 787 retval = -EINVAL; 788 goto done; 789 } 790 791 retval = usb_hcd_link_urb_to_ep(hcd, urb); 792 if (retval) 793 goto done; 794 795 hcd->status_urb = urb; 796 urb->hcpriv = hcd; /* indicate it's queued */ 797 if (!hcd->uses_new_polling) 798 mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4)); 799 800 /* If a status change has already occurred, report it ASAP */ 801 else if (HCD_POLL_PENDING(hcd)) 802 mod_timer(&hcd->rh_timer, jiffies); 803 retval = 0; 804 done: 805 spin_unlock_irqrestore (&hcd_root_hub_lock, flags); 806 return retval; 807 } 808 809 static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb) 810 { 811 if (usb_endpoint_xfer_int(&urb->ep->desc)) 812 return rh_queue_status (hcd, urb); 813 if (usb_endpoint_xfer_control(&urb->ep->desc)) 814 return rh_call_control (hcd, urb); 815 return -EINVAL; 816 } 817 818 /*-------------------------------------------------------------------------*/ 819 820 /* Unlinks of root-hub control URBs are legal, but they don't do anything 821 * since these URBs always execute synchronously. 822 */ 823 static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status) 824 { 825 unsigned long flags; 826 int rc; 827 828 spin_lock_irqsave(&hcd_root_hub_lock, flags); 829 rc = usb_hcd_check_unlink_urb(hcd, urb, status); 830 if (rc) 831 goto done; 832 833 if (usb_endpoint_num(&urb->ep->desc) == 0) { /* Control URB */ 834 ; /* Do nothing */ 835 836 } else { /* Status URB */ 837 if (!hcd->uses_new_polling) 838 del_timer (&hcd->rh_timer); 839 if (urb == hcd->status_urb) { 840 hcd->status_urb = NULL; 841 usb_hcd_unlink_urb_from_ep(hcd, urb); 842 usb_hcd_giveback_urb(hcd, urb, status); 843 } 844 } 845 done: 846 spin_unlock_irqrestore(&hcd_root_hub_lock, flags); 847 return rc; 848 } 849 850 851 852 /* 853 * Show & store the current value of authorized_default 854 */ 855 static ssize_t authorized_default_show(struct device *dev, 856 struct device_attribute *attr, char *buf) 857 { 858 struct usb_device *rh_usb_dev = to_usb_device(dev); 859 struct usb_bus *usb_bus = rh_usb_dev->bus; 860 struct usb_hcd *hcd; 861 862 hcd = bus_to_hcd(usb_bus); 863 return snprintf(buf, PAGE_SIZE, "%u\n", !!HCD_DEV_AUTHORIZED(hcd)); 864 } 865 866 static ssize_t authorized_default_store(struct device *dev, 867 struct device_attribute *attr, 868 const char *buf, size_t size) 869 { 870 ssize_t result; 871 unsigned val; 872 struct usb_device *rh_usb_dev = to_usb_device(dev); 873 struct usb_bus *usb_bus = rh_usb_dev->bus; 874 struct usb_hcd *hcd; 875 876 hcd = bus_to_hcd(usb_bus); 877 result = sscanf(buf, "%u\n", &val); 878 if (result == 1) { 879 if (val) 880 set_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags); 881 else 882 clear_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags); 883 884 result = size; 885 } else { 886 result = -EINVAL; 887 } 888 return result; 889 } 890 static DEVICE_ATTR_RW(authorized_default); 891 892 /* 893 * interface_authorized_default_show - show default authorization status 894 * for USB interfaces 895 * 896 * note: interface_authorized_default is the default value 897 * for initializing the authorized attribute of interfaces 898 */ 899 static ssize_t interface_authorized_default_show(struct device *dev, 900 struct device_attribute *attr, char *buf) 901 { 902 struct usb_device *usb_dev = to_usb_device(dev); 903 struct usb_hcd *hcd = bus_to_hcd(usb_dev->bus); 904 905 return sprintf(buf, "%u\n", !!HCD_INTF_AUTHORIZED(hcd)); 906 } 907 908 /* 909 * interface_authorized_default_store - store default authorization status 910 * for USB interfaces 911 * 912 * note: interface_authorized_default is the default value 913 * for initializing the authorized attribute of interfaces 914 */ 915 static ssize_t interface_authorized_default_store(struct device *dev, 916 struct device_attribute *attr, const char *buf, size_t count) 917 { 918 struct usb_device *usb_dev = to_usb_device(dev); 919 struct usb_hcd *hcd = bus_to_hcd(usb_dev->bus); 920 int rc = count; 921 bool val; 922 923 if (strtobool(buf, &val) != 0) 924 return -EINVAL; 925 926 if (val) 927 set_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags); 928 else 929 clear_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags); 930 931 return rc; 932 } 933 static DEVICE_ATTR_RW(interface_authorized_default); 934 935 /* Group all the USB bus attributes */ 936 static struct attribute *usb_bus_attrs[] = { 937 &dev_attr_authorized_default.attr, 938 &dev_attr_interface_authorized_default.attr, 939 NULL, 940 }; 941 942 static struct attribute_group usb_bus_attr_group = { 943 .name = NULL, /* we want them in the same directory */ 944 .attrs = usb_bus_attrs, 945 }; 946 947 948 949 /*-------------------------------------------------------------------------*/ 950 951 /** 952 * usb_bus_init - shared initialization code 953 * @bus: the bus structure being initialized 954 * 955 * This code is used to initialize a usb_bus structure, memory for which is 956 * separately managed. 957 */ 958 static void usb_bus_init (struct usb_bus *bus) 959 { 960 memset (&bus->devmap, 0, sizeof(struct usb_devmap)); 961 962 bus->devnum_next = 1; 963 964 bus->root_hub = NULL; 965 bus->busnum = -1; 966 bus->bandwidth_allocated = 0; 967 bus->bandwidth_int_reqs = 0; 968 bus->bandwidth_isoc_reqs = 0; 969 mutex_init(&bus->usb_address0_mutex); 970 971 INIT_LIST_HEAD (&bus->bus_list); 972 } 973 974 /*-------------------------------------------------------------------------*/ 975 976 /** 977 * usb_register_bus - registers the USB host controller with the usb core 978 * @bus: pointer to the bus to register 979 * Context: !in_interrupt() 980 * 981 * Assigns a bus number, and links the controller into usbcore data 982 * structures so that it can be seen by scanning the bus list. 983 * 984 * Return: 0 if successful. A negative error code otherwise. 985 */ 986 static int usb_register_bus(struct usb_bus *bus) 987 { 988 int result = -E2BIG; 989 int busnum; 990 991 mutex_lock(&usb_bus_list_lock); 992 busnum = find_next_zero_bit(busmap, USB_MAXBUS, 1); 993 if (busnum >= USB_MAXBUS) { 994 printk (KERN_ERR "%s: too many buses\n", usbcore_name); 995 goto error_find_busnum; 996 } 997 set_bit(busnum, busmap); 998 bus->busnum = busnum; 999 1000 /* Add it to the local list of buses */ 1001 list_add (&bus->bus_list, &usb_bus_list); 1002 mutex_unlock(&usb_bus_list_lock); 1003 1004 usb_notify_add_bus(bus); 1005 1006 dev_info (bus->controller, "new USB bus registered, assigned bus " 1007 "number %d\n", bus->busnum); 1008 return 0; 1009 1010 error_find_busnum: 1011 mutex_unlock(&usb_bus_list_lock); 1012 return result; 1013 } 1014 1015 /** 1016 * usb_deregister_bus - deregisters the USB host controller 1017 * @bus: pointer to the bus to deregister 1018 * Context: !in_interrupt() 1019 * 1020 * Recycles the bus number, and unlinks the controller from usbcore data 1021 * structures so that it won't be seen by scanning the bus list. 1022 */ 1023 static void usb_deregister_bus (struct usb_bus *bus) 1024 { 1025 dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum); 1026 1027 /* 1028 * NOTE: make sure that all the devices are removed by the 1029 * controller code, as well as having it call this when cleaning 1030 * itself up 1031 */ 1032 mutex_lock(&usb_bus_list_lock); 1033 list_del (&bus->bus_list); 1034 mutex_unlock(&usb_bus_list_lock); 1035 1036 usb_notify_remove_bus(bus); 1037 1038 clear_bit(bus->busnum, busmap); 1039 } 1040 1041 /** 1042 * register_root_hub - called by usb_add_hcd() to register a root hub 1043 * @hcd: host controller for this root hub 1044 * 1045 * This function registers the root hub with the USB subsystem. It sets up 1046 * the device properly in the device tree and then calls usb_new_device() 1047 * to register the usb device. It also assigns the root hub's USB address 1048 * (always 1). 1049 * 1050 * Return: 0 if successful. A negative error code otherwise. 1051 */ 1052 static int register_root_hub(struct usb_hcd *hcd) 1053 { 1054 struct device *parent_dev = hcd->self.controller; 1055 struct usb_device *usb_dev = hcd->self.root_hub; 1056 const int devnum = 1; 1057 int retval; 1058 1059 usb_dev->devnum = devnum; 1060 usb_dev->bus->devnum_next = devnum + 1; 1061 memset (&usb_dev->bus->devmap.devicemap, 0, 1062 sizeof usb_dev->bus->devmap.devicemap); 1063 set_bit (devnum, usb_dev->bus->devmap.devicemap); 1064 usb_set_device_state(usb_dev, USB_STATE_ADDRESS); 1065 1066 mutex_lock(&usb_bus_list_lock); 1067 1068 usb_dev->ep0.desc.wMaxPacketSize = cpu_to_le16(64); 1069 retval = usb_get_device_descriptor(usb_dev, USB_DT_DEVICE_SIZE); 1070 if (retval != sizeof usb_dev->descriptor) { 1071 mutex_unlock(&usb_bus_list_lock); 1072 dev_dbg (parent_dev, "can't read %s device descriptor %d\n", 1073 dev_name(&usb_dev->dev), retval); 1074 return (retval < 0) ? retval : -EMSGSIZE; 1075 } 1076 1077 if (le16_to_cpu(usb_dev->descriptor.bcdUSB) >= 0x0201) { 1078 retval = usb_get_bos_descriptor(usb_dev); 1079 if (!retval) { 1080 usb_dev->lpm_capable = usb_device_supports_lpm(usb_dev); 1081 } else if (usb_dev->speed == USB_SPEED_SUPER) { 1082 mutex_unlock(&usb_bus_list_lock); 1083 dev_dbg(parent_dev, "can't read %s bos descriptor %d\n", 1084 dev_name(&usb_dev->dev), retval); 1085 return retval; 1086 } 1087 } 1088 1089 retval = usb_new_device (usb_dev); 1090 if (retval) { 1091 dev_err (parent_dev, "can't register root hub for %s, %d\n", 1092 dev_name(&usb_dev->dev), retval); 1093 } else { 1094 spin_lock_irq (&hcd_root_hub_lock); 1095 hcd->rh_registered = 1; 1096 spin_unlock_irq (&hcd_root_hub_lock); 1097 1098 /* Did the HC die before the root hub was registered? */ 1099 if (HCD_DEAD(hcd)) 1100 usb_hc_died (hcd); /* This time clean up */ 1101 } 1102 mutex_unlock(&usb_bus_list_lock); 1103 1104 return retval; 1105 } 1106 1107 /* 1108 * usb_hcd_start_port_resume - a root-hub port is sending a resume signal 1109 * @bus: the bus which the root hub belongs to 1110 * @portnum: the port which is being resumed 1111 * 1112 * HCDs should call this function when they know that a resume signal is 1113 * being sent to a root-hub port. The root hub will be prevented from 1114 * going into autosuspend until usb_hcd_end_port_resume() is called. 1115 * 1116 * The bus's private lock must be held by the caller. 1117 */ 1118 void usb_hcd_start_port_resume(struct usb_bus *bus, int portnum) 1119 { 1120 unsigned bit = 1 << portnum; 1121 1122 if (!(bus->resuming_ports & bit)) { 1123 bus->resuming_ports |= bit; 1124 pm_runtime_get_noresume(&bus->root_hub->dev); 1125 } 1126 } 1127 EXPORT_SYMBOL_GPL(usb_hcd_start_port_resume); 1128 1129 /* 1130 * usb_hcd_end_port_resume - a root-hub port has stopped sending a resume signal 1131 * @bus: the bus which the root hub belongs to 1132 * @portnum: the port which is being resumed 1133 * 1134 * HCDs should call this function when they know that a resume signal has 1135 * stopped being sent to a root-hub port. The root hub will be allowed to 1136 * autosuspend again. 1137 * 1138 * The bus's private lock must be held by the caller. 1139 */ 1140 void usb_hcd_end_port_resume(struct usb_bus *bus, int portnum) 1141 { 1142 unsigned bit = 1 << portnum; 1143 1144 if (bus->resuming_ports & bit) { 1145 bus->resuming_ports &= ~bit; 1146 pm_runtime_put_noidle(&bus->root_hub->dev); 1147 } 1148 } 1149 EXPORT_SYMBOL_GPL(usb_hcd_end_port_resume); 1150 1151 /*-------------------------------------------------------------------------*/ 1152 1153 /** 1154 * usb_calc_bus_time - approximate periodic transaction time in nanoseconds 1155 * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH} 1156 * @is_input: true iff the transaction sends data to the host 1157 * @isoc: true for isochronous transactions, false for interrupt ones 1158 * @bytecount: how many bytes in the transaction. 1159 * 1160 * Return: Approximate bus time in nanoseconds for a periodic transaction. 1161 * 1162 * Note: 1163 * See USB 2.0 spec section 5.11.3; only periodic transfers need to be 1164 * scheduled in software, this function is only used for such scheduling. 1165 */ 1166 long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount) 1167 { 1168 unsigned long tmp; 1169 1170 switch (speed) { 1171 case USB_SPEED_LOW: /* INTR only */ 1172 if (is_input) { 1173 tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L; 1174 return 64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp; 1175 } else { 1176 tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L; 1177 return 64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp; 1178 } 1179 case USB_SPEED_FULL: /* ISOC or INTR */ 1180 if (isoc) { 1181 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L; 1182 return ((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp; 1183 } else { 1184 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L; 1185 return 9107L + BW_HOST_DELAY + tmp; 1186 } 1187 case USB_SPEED_HIGH: /* ISOC or INTR */ 1188 /* FIXME adjust for input vs output */ 1189 if (isoc) 1190 tmp = HS_NSECS_ISO (bytecount); 1191 else 1192 tmp = HS_NSECS (bytecount); 1193 return tmp; 1194 default: 1195 pr_debug ("%s: bogus device speed!\n", usbcore_name); 1196 return -1; 1197 } 1198 } 1199 EXPORT_SYMBOL_GPL(usb_calc_bus_time); 1200 1201 1202 /*-------------------------------------------------------------------------*/ 1203 1204 /* 1205 * Generic HC operations. 1206 */ 1207 1208 /*-------------------------------------------------------------------------*/ 1209 1210 /** 1211 * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue 1212 * @hcd: host controller to which @urb was submitted 1213 * @urb: URB being submitted 1214 * 1215 * Host controller drivers should call this routine in their enqueue() 1216 * method. The HCD's private spinlock must be held and interrupts must 1217 * be disabled. The actions carried out here are required for URB 1218 * submission, as well as for endpoint shutdown and for usb_kill_urb. 1219 * 1220 * Return: 0 for no error, otherwise a negative error code (in which case 1221 * the enqueue() method must fail). If no error occurs but enqueue() fails 1222 * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing 1223 * the private spinlock and returning. 1224 */ 1225 int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb) 1226 { 1227 int rc = 0; 1228 1229 spin_lock(&hcd_urb_list_lock); 1230 1231 /* Check that the URB isn't being killed */ 1232 if (unlikely(atomic_read(&urb->reject))) { 1233 rc = -EPERM; 1234 goto done; 1235 } 1236 1237 if (unlikely(!urb->ep->enabled)) { 1238 rc = -ENOENT; 1239 goto done; 1240 } 1241 1242 if (unlikely(!urb->dev->can_submit)) { 1243 rc = -EHOSTUNREACH; 1244 goto done; 1245 } 1246 1247 /* 1248 * Check the host controller's state and add the URB to the 1249 * endpoint's queue. 1250 */ 1251 if (HCD_RH_RUNNING(hcd)) { 1252 urb->unlinked = 0; 1253 list_add_tail(&urb->urb_list, &urb->ep->urb_list); 1254 } else { 1255 rc = -ESHUTDOWN; 1256 goto done; 1257 } 1258 done: 1259 spin_unlock(&hcd_urb_list_lock); 1260 return rc; 1261 } 1262 EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep); 1263 1264 /** 1265 * usb_hcd_check_unlink_urb - check whether an URB may be unlinked 1266 * @hcd: host controller to which @urb was submitted 1267 * @urb: URB being checked for unlinkability 1268 * @status: error code to store in @urb if the unlink succeeds 1269 * 1270 * Host controller drivers should call this routine in their dequeue() 1271 * method. The HCD's private spinlock must be held and interrupts must 1272 * be disabled. The actions carried out here are required for making 1273 * sure than an unlink is valid. 1274 * 1275 * Return: 0 for no error, otherwise a negative error code (in which case 1276 * the dequeue() method must fail). The possible error codes are: 1277 * 1278 * -EIDRM: @urb was not submitted or has already completed. 1279 * The completion function may not have been called yet. 1280 * 1281 * -EBUSY: @urb has already been unlinked. 1282 */ 1283 int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb, 1284 int status) 1285 { 1286 struct list_head *tmp; 1287 1288 /* insist the urb is still queued */ 1289 list_for_each(tmp, &urb->ep->urb_list) { 1290 if (tmp == &urb->urb_list) 1291 break; 1292 } 1293 if (tmp != &urb->urb_list) 1294 return -EIDRM; 1295 1296 /* Any status except -EINPROGRESS means something already started to 1297 * unlink this URB from the hardware. So there's no more work to do. 1298 */ 1299 if (urb->unlinked) 1300 return -EBUSY; 1301 urb->unlinked = status; 1302 return 0; 1303 } 1304 EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb); 1305 1306 /** 1307 * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue 1308 * @hcd: host controller to which @urb was submitted 1309 * @urb: URB being unlinked 1310 * 1311 * Host controller drivers should call this routine before calling 1312 * usb_hcd_giveback_urb(). The HCD's private spinlock must be held and 1313 * interrupts must be disabled. The actions carried out here are required 1314 * for URB completion. 1315 */ 1316 void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb) 1317 { 1318 /* clear all state linking urb to this dev (and hcd) */ 1319 spin_lock(&hcd_urb_list_lock); 1320 list_del_init(&urb->urb_list); 1321 spin_unlock(&hcd_urb_list_lock); 1322 } 1323 EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep); 1324 1325 /* 1326 * Some usb host controllers can only perform dma using a small SRAM area. 1327 * The usb core itself is however optimized for host controllers that can dma 1328 * using regular system memory - like pci devices doing bus mastering. 1329 * 1330 * To support host controllers with limited dma capabilities we provide dma 1331 * bounce buffers. This feature can be enabled using the HCD_LOCAL_MEM flag. 1332 * For this to work properly the host controller code must first use the 1333 * function dma_declare_coherent_memory() to point out which memory area 1334 * that should be used for dma allocations. 1335 * 1336 * The HCD_LOCAL_MEM flag then tells the usb code to allocate all data for 1337 * dma using dma_alloc_coherent() which in turn allocates from the memory 1338 * area pointed out with dma_declare_coherent_memory(). 1339 * 1340 * So, to summarize... 1341 * 1342 * - We need "local" memory, canonical example being 1343 * a small SRAM on a discrete controller being the 1344 * only memory that the controller can read ... 1345 * (a) "normal" kernel memory is no good, and 1346 * (b) there's not enough to share 1347 * 1348 * - The only *portable* hook for such stuff in the 1349 * DMA framework is dma_declare_coherent_memory() 1350 * 1351 * - So we use that, even though the primary requirement 1352 * is that the memory be "local" (hence addressable 1353 * by that device), not "coherent". 1354 * 1355 */ 1356 1357 static int hcd_alloc_coherent(struct usb_bus *bus, 1358 gfp_t mem_flags, dma_addr_t *dma_handle, 1359 void **vaddr_handle, size_t size, 1360 enum dma_data_direction dir) 1361 { 1362 unsigned char *vaddr; 1363 1364 if (*vaddr_handle == NULL) { 1365 WARN_ON_ONCE(1); 1366 return -EFAULT; 1367 } 1368 1369 vaddr = hcd_buffer_alloc(bus, size + sizeof(vaddr), 1370 mem_flags, dma_handle); 1371 if (!vaddr) 1372 return -ENOMEM; 1373 1374 /* 1375 * Store the virtual address of the buffer at the end 1376 * of the allocated dma buffer. The size of the buffer 1377 * may be uneven so use unaligned functions instead 1378 * of just rounding up. It makes sense to optimize for 1379 * memory footprint over access speed since the amount 1380 * of memory available for dma may be limited. 1381 */ 1382 put_unaligned((unsigned long)*vaddr_handle, 1383 (unsigned long *)(vaddr + size)); 1384 1385 if (dir == DMA_TO_DEVICE) 1386 memcpy(vaddr, *vaddr_handle, size); 1387 1388 *vaddr_handle = vaddr; 1389 return 0; 1390 } 1391 1392 static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle, 1393 void **vaddr_handle, size_t size, 1394 enum dma_data_direction dir) 1395 { 1396 unsigned char *vaddr = *vaddr_handle; 1397 1398 vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size)); 1399 1400 if (dir == DMA_FROM_DEVICE) 1401 memcpy(vaddr, *vaddr_handle, size); 1402 1403 hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle); 1404 1405 *vaddr_handle = vaddr; 1406 *dma_handle = 0; 1407 } 1408 1409 void usb_hcd_unmap_urb_setup_for_dma(struct usb_hcd *hcd, struct urb *urb) 1410 { 1411 if (urb->transfer_flags & URB_SETUP_MAP_SINGLE) 1412 dma_unmap_single(hcd->self.controller, 1413 urb->setup_dma, 1414 sizeof(struct usb_ctrlrequest), 1415 DMA_TO_DEVICE); 1416 else if (urb->transfer_flags & URB_SETUP_MAP_LOCAL) 1417 hcd_free_coherent(urb->dev->bus, 1418 &urb->setup_dma, 1419 (void **) &urb->setup_packet, 1420 sizeof(struct usb_ctrlrequest), 1421 DMA_TO_DEVICE); 1422 1423 /* Make it safe to call this routine more than once */ 1424 urb->transfer_flags &= ~(URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL); 1425 } 1426 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_setup_for_dma); 1427 1428 static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb) 1429 { 1430 if (hcd->driver->unmap_urb_for_dma) 1431 hcd->driver->unmap_urb_for_dma(hcd, urb); 1432 else 1433 usb_hcd_unmap_urb_for_dma(hcd, urb); 1434 } 1435 1436 void usb_hcd_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb) 1437 { 1438 enum dma_data_direction dir; 1439 1440 usb_hcd_unmap_urb_setup_for_dma(hcd, urb); 1441 1442 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE; 1443 if (urb->transfer_flags & URB_DMA_MAP_SG) 1444 dma_unmap_sg(hcd->self.controller, 1445 urb->sg, 1446 urb->num_sgs, 1447 dir); 1448 else if (urb->transfer_flags & URB_DMA_MAP_PAGE) 1449 dma_unmap_page(hcd->self.controller, 1450 urb->transfer_dma, 1451 urb->transfer_buffer_length, 1452 dir); 1453 else if (urb->transfer_flags & URB_DMA_MAP_SINGLE) 1454 dma_unmap_single(hcd->self.controller, 1455 urb->transfer_dma, 1456 urb->transfer_buffer_length, 1457 dir); 1458 else if (urb->transfer_flags & URB_MAP_LOCAL) 1459 hcd_free_coherent(urb->dev->bus, 1460 &urb->transfer_dma, 1461 &urb->transfer_buffer, 1462 urb->transfer_buffer_length, 1463 dir); 1464 1465 /* Make it safe to call this routine more than once */ 1466 urb->transfer_flags &= ~(URB_DMA_MAP_SG | URB_DMA_MAP_PAGE | 1467 URB_DMA_MAP_SINGLE | URB_MAP_LOCAL); 1468 } 1469 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_for_dma); 1470 1471 static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb, 1472 gfp_t mem_flags) 1473 { 1474 if (hcd->driver->map_urb_for_dma) 1475 return hcd->driver->map_urb_for_dma(hcd, urb, mem_flags); 1476 else 1477 return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags); 1478 } 1479 1480 int usb_hcd_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb, 1481 gfp_t mem_flags) 1482 { 1483 enum dma_data_direction dir; 1484 int ret = 0; 1485 1486 /* Map the URB's buffers for DMA access. 1487 * Lower level HCD code should use *_dma exclusively, 1488 * unless it uses pio or talks to another transport, 1489 * or uses the provided scatter gather list for bulk. 1490 */ 1491 1492 if (usb_endpoint_xfer_control(&urb->ep->desc)) { 1493 if (hcd->self.uses_pio_for_control) 1494 return ret; 1495 if (hcd->self.uses_dma) { 1496 urb->setup_dma = dma_map_single( 1497 hcd->self.controller, 1498 urb->setup_packet, 1499 sizeof(struct usb_ctrlrequest), 1500 DMA_TO_DEVICE); 1501 if (dma_mapping_error(hcd->self.controller, 1502 urb->setup_dma)) 1503 return -EAGAIN; 1504 urb->transfer_flags |= URB_SETUP_MAP_SINGLE; 1505 } else if (hcd->driver->flags & HCD_LOCAL_MEM) { 1506 ret = hcd_alloc_coherent( 1507 urb->dev->bus, mem_flags, 1508 &urb->setup_dma, 1509 (void **)&urb->setup_packet, 1510 sizeof(struct usb_ctrlrequest), 1511 DMA_TO_DEVICE); 1512 if (ret) 1513 return ret; 1514 urb->transfer_flags |= URB_SETUP_MAP_LOCAL; 1515 } 1516 } 1517 1518 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE; 1519 if (urb->transfer_buffer_length != 0 1520 && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) { 1521 if (hcd->self.uses_dma) { 1522 if (urb->num_sgs) { 1523 int n; 1524 1525 /* We don't support sg for isoc transfers ! */ 1526 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) { 1527 WARN_ON(1); 1528 return -EINVAL; 1529 } 1530 1531 n = dma_map_sg( 1532 hcd->self.controller, 1533 urb->sg, 1534 urb->num_sgs, 1535 dir); 1536 if (n <= 0) 1537 ret = -EAGAIN; 1538 else 1539 urb->transfer_flags |= URB_DMA_MAP_SG; 1540 urb->num_mapped_sgs = n; 1541 if (n != urb->num_sgs) 1542 urb->transfer_flags |= 1543 URB_DMA_SG_COMBINED; 1544 } else if (urb->sg) { 1545 struct scatterlist *sg = urb->sg; 1546 urb->transfer_dma = dma_map_page( 1547 hcd->self.controller, 1548 sg_page(sg), 1549 sg->offset, 1550 urb->transfer_buffer_length, 1551 dir); 1552 if (dma_mapping_error(hcd->self.controller, 1553 urb->transfer_dma)) 1554 ret = -EAGAIN; 1555 else 1556 urb->transfer_flags |= URB_DMA_MAP_PAGE; 1557 } else if (is_vmalloc_addr(urb->transfer_buffer)) { 1558 WARN_ONCE(1, "transfer buffer not dma capable\n"); 1559 ret = -EAGAIN; 1560 } else { 1561 urb->transfer_dma = dma_map_single( 1562 hcd->self.controller, 1563 urb->transfer_buffer, 1564 urb->transfer_buffer_length, 1565 dir); 1566 if (dma_mapping_error(hcd->self.controller, 1567 urb->transfer_dma)) 1568 ret = -EAGAIN; 1569 else 1570 urb->transfer_flags |= URB_DMA_MAP_SINGLE; 1571 } 1572 } else if (hcd->driver->flags & HCD_LOCAL_MEM) { 1573 ret = hcd_alloc_coherent( 1574 urb->dev->bus, mem_flags, 1575 &urb->transfer_dma, 1576 &urb->transfer_buffer, 1577 urb->transfer_buffer_length, 1578 dir); 1579 if (ret == 0) 1580 urb->transfer_flags |= URB_MAP_LOCAL; 1581 } 1582 if (ret && (urb->transfer_flags & (URB_SETUP_MAP_SINGLE | 1583 URB_SETUP_MAP_LOCAL))) 1584 usb_hcd_unmap_urb_for_dma(hcd, urb); 1585 } 1586 return ret; 1587 } 1588 EXPORT_SYMBOL_GPL(usb_hcd_map_urb_for_dma); 1589 1590 /*-------------------------------------------------------------------------*/ 1591 1592 /* may be called in any context with a valid urb->dev usecount 1593 * caller surrenders "ownership" of urb 1594 * expects usb_submit_urb() to have sanity checked and conditioned all 1595 * inputs in the urb 1596 */ 1597 int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags) 1598 { 1599 int status; 1600 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus); 1601 1602 /* increment urb's reference count as part of giving it to the HCD 1603 * (which will control it). HCD guarantees that it either returns 1604 * an error or calls giveback(), but not both. 1605 */ 1606 usb_get_urb(urb); 1607 atomic_inc(&urb->use_count); 1608 atomic_inc(&urb->dev->urbnum); 1609 usbmon_urb_submit(&hcd->self, urb); 1610 1611 /* NOTE requirements on root-hub callers (usbfs and the hub 1612 * driver, for now): URBs' urb->transfer_buffer must be 1613 * valid and usb_buffer_{sync,unmap}() not be needed, since 1614 * they could clobber root hub response data. Also, control 1615 * URBs must be submitted in process context with interrupts 1616 * enabled. 1617 */ 1618 1619 if (is_root_hub(urb->dev)) { 1620 status = rh_urb_enqueue(hcd, urb); 1621 } else { 1622 status = map_urb_for_dma(hcd, urb, mem_flags); 1623 if (likely(status == 0)) { 1624 status = hcd->driver->urb_enqueue(hcd, urb, mem_flags); 1625 if (unlikely(status)) 1626 unmap_urb_for_dma(hcd, urb); 1627 } 1628 } 1629 1630 if (unlikely(status)) { 1631 usbmon_urb_submit_error(&hcd->self, urb, status); 1632 urb->hcpriv = NULL; 1633 INIT_LIST_HEAD(&urb->urb_list); 1634 atomic_dec(&urb->use_count); 1635 atomic_dec(&urb->dev->urbnum); 1636 if (atomic_read(&urb->reject)) 1637 wake_up(&usb_kill_urb_queue); 1638 usb_put_urb(urb); 1639 } 1640 return status; 1641 } 1642 1643 /*-------------------------------------------------------------------------*/ 1644 1645 /* this makes the hcd giveback() the urb more quickly, by kicking it 1646 * off hardware queues (which may take a while) and returning it as 1647 * soon as practical. we've already set up the urb's return status, 1648 * but we can't know if the callback completed already. 1649 */ 1650 static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status) 1651 { 1652 int value; 1653 1654 if (is_root_hub(urb->dev)) 1655 value = usb_rh_urb_dequeue(hcd, urb, status); 1656 else { 1657 1658 /* The only reason an HCD might fail this call is if 1659 * it has not yet fully queued the urb to begin with. 1660 * Such failures should be harmless. */ 1661 value = hcd->driver->urb_dequeue(hcd, urb, status); 1662 } 1663 return value; 1664 } 1665 1666 /* 1667 * called in any context 1668 * 1669 * caller guarantees urb won't be recycled till both unlink() 1670 * and the urb's completion function return 1671 */ 1672 int usb_hcd_unlink_urb (struct urb *urb, int status) 1673 { 1674 struct usb_hcd *hcd; 1675 struct usb_device *udev = urb->dev; 1676 int retval = -EIDRM; 1677 unsigned long flags; 1678 1679 /* Prevent the device and bus from going away while 1680 * the unlink is carried out. If they are already gone 1681 * then urb->use_count must be 0, since disconnected 1682 * devices can't have any active URBs. 1683 */ 1684 spin_lock_irqsave(&hcd_urb_unlink_lock, flags); 1685 if (atomic_read(&urb->use_count) > 0) { 1686 retval = 0; 1687 usb_get_dev(udev); 1688 } 1689 spin_unlock_irqrestore(&hcd_urb_unlink_lock, flags); 1690 if (retval == 0) { 1691 hcd = bus_to_hcd(urb->dev->bus); 1692 retval = unlink1(hcd, urb, status); 1693 if (retval == 0) 1694 retval = -EINPROGRESS; 1695 else if (retval != -EIDRM && retval != -EBUSY) 1696 dev_dbg(&udev->dev, "hcd_unlink_urb %p fail %d\n", 1697 urb, retval); 1698 usb_put_dev(udev); 1699 } 1700 return retval; 1701 } 1702 1703 /*-------------------------------------------------------------------------*/ 1704 1705 static void __usb_hcd_giveback_urb(struct urb *urb) 1706 { 1707 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus); 1708 struct usb_anchor *anchor = urb->anchor; 1709 int status = urb->unlinked; 1710 unsigned long flags; 1711 1712 urb->hcpriv = NULL; 1713 if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) && 1714 urb->actual_length < urb->transfer_buffer_length && 1715 !status)) 1716 status = -EREMOTEIO; 1717 1718 unmap_urb_for_dma(hcd, urb); 1719 usbmon_urb_complete(&hcd->self, urb, status); 1720 usb_anchor_suspend_wakeups(anchor); 1721 usb_unanchor_urb(urb); 1722 if (likely(status == 0)) 1723 usb_led_activity(USB_LED_EVENT_HOST); 1724 1725 /* pass ownership to the completion handler */ 1726 urb->status = status; 1727 1728 /* 1729 * We disable local IRQs here avoid possible deadlock because 1730 * drivers may call spin_lock() to hold lock which might be 1731 * acquired in one hard interrupt handler. 1732 * 1733 * The local_irq_save()/local_irq_restore() around complete() 1734 * will be removed if current USB drivers have been cleaned up 1735 * and no one may trigger the above deadlock situation when 1736 * running complete() in tasklet. 1737 */ 1738 local_irq_save(flags); 1739 urb->complete(urb); 1740 local_irq_restore(flags); 1741 1742 usb_anchor_resume_wakeups(anchor); 1743 atomic_dec(&urb->use_count); 1744 if (unlikely(atomic_read(&urb->reject))) 1745 wake_up(&usb_kill_urb_queue); 1746 usb_put_urb(urb); 1747 } 1748 1749 static void usb_giveback_urb_bh(unsigned long param) 1750 { 1751 struct giveback_urb_bh *bh = (struct giveback_urb_bh *)param; 1752 struct list_head local_list; 1753 1754 spin_lock_irq(&bh->lock); 1755 bh->running = true; 1756 restart: 1757 list_replace_init(&bh->head, &local_list); 1758 spin_unlock_irq(&bh->lock); 1759 1760 while (!list_empty(&local_list)) { 1761 struct urb *urb; 1762 1763 urb = list_entry(local_list.next, struct urb, urb_list); 1764 list_del_init(&urb->urb_list); 1765 bh->completing_ep = urb->ep; 1766 __usb_hcd_giveback_urb(urb); 1767 bh->completing_ep = NULL; 1768 } 1769 1770 /* check if there are new URBs to giveback */ 1771 spin_lock_irq(&bh->lock); 1772 if (!list_empty(&bh->head)) 1773 goto restart; 1774 bh->running = false; 1775 spin_unlock_irq(&bh->lock); 1776 } 1777 1778 /** 1779 * usb_hcd_giveback_urb - return URB from HCD to device driver 1780 * @hcd: host controller returning the URB 1781 * @urb: urb being returned to the USB device driver. 1782 * @status: completion status code for the URB. 1783 * Context: in_interrupt() 1784 * 1785 * This hands the URB from HCD to its USB device driver, using its 1786 * completion function. The HCD has freed all per-urb resources 1787 * (and is done using urb->hcpriv). It also released all HCD locks; 1788 * the device driver won't cause problems if it frees, modifies, 1789 * or resubmits this URB. 1790 * 1791 * If @urb was unlinked, the value of @status will be overridden by 1792 * @urb->unlinked. Erroneous short transfers are detected in case 1793 * the HCD hasn't checked for them. 1794 */ 1795 void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status) 1796 { 1797 struct giveback_urb_bh *bh; 1798 bool running, high_prio_bh; 1799 1800 /* pass status to tasklet via unlinked */ 1801 if (likely(!urb->unlinked)) 1802 urb->unlinked = status; 1803 1804 if (!hcd_giveback_urb_in_bh(hcd) && !is_root_hub(urb->dev)) { 1805 __usb_hcd_giveback_urb(urb); 1806 return; 1807 } 1808 1809 if (usb_pipeisoc(urb->pipe) || usb_pipeint(urb->pipe)) { 1810 bh = &hcd->high_prio_bh; 1811 high_prio_bh = true; 1812 } else { 1813 bh = &hcd->low_prio_bh; 1814 high_prio_bh = false; 1815 } 1816 1817 spin_lock(&bh->lock); 1818 list_add_tail(&urb->urb_list, &bh->head); 1819 running = bh->running; 1820 spin_unlock(&bh->lock); 1821 1822 if (running) 1823 ; 1824 else if (high_prio_bh) 1825 tasklet_hi_schedule(&bh->bh); 1826 else 1827 tasklet_schedule(&bh->bh); 1828 } 1829 EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb); 1830 1831 /*-------------------------------------------------------------------------*/ 1832 1833 /* Cancel all URBs pending on this endpoint and wait for the endpoint's 1834 * queue to drain completely. The caller must first insure that no more 1835 * URBs can be submitted for this endpoint. 1836 */ 1837 void usb_hcd_flush_endpoint(struct usb_device *udev, 1838 struct usb_host_endpoint *ep) 1839 { 1840 struct usb_hcd *hcd; 1841 struct urb *urb; 1842 1843 if (!ep) 1844 return; 1845 might_sleep(); 1846 hcd = bus_to_hcd(udev->bus); 1847 1848 /* No more submits can occur */ 1849 spin_lock_irq(&hcd_urb_list_lock); 1850 rescan: 1851 list_for_each_entry (urb, &ep->urb_list, urb_list) { 1852 int is_in; 1853 1854 if (urb->unlinked) 1855 continue; 1856 usb_get_urb (urb); 1857 is_in = usb_urb_dir_in(urb); 1858 spin_unlock(&hcd_urb_list_lock); 1859 1860 /* kick hcd */ 1861 unlink1(hcd, urb, -ESHUTDOWN); 1862 dev_dbg (hcd->self.controller, 1863 "shutdown urb %p ep%d%s%s\n", 1864 urb, usb_endpoint_num(&ep->desc), 1865 is_in ? "in" : "out", 1866 ({ char *s; 1867 1868 switch (usb_endpoint_type(&ep->desc)) { 1869 case USB_ENDPOINT_XFER_CONTROL: 1870 s = ""; break; 1871 case USB_ENDPOINT_XFER_BULK: 1872 s = "-bulk"; break; 1873 case USB_ENDPOINT_XFER_INT: 1874 s = "-intr"; break; 1875 default: 1876 s = "-iso"; break; 1877 }; 1878 s; 1879 })); 1880 usb_put_urb (urb); 1881 1882 /* list contents may have changed */ 1883 spin_lock(&hcd_urb_list_lock); 1884 goto rescan; 1885 } 1886 spin_unlock_irq(&hcd_urb_list_lock); 1887 1888 /* Wait until the endpoint queue is completely empty */ 1889 while (!list_empty (&ep->urb_list)) { 1890 spin_lock_irq(&hcd_urb_list_lock); 1891 1892 /* The list may have changed while we acquired the spinlock */ 1893 urb = NULL; 1894 if (!list_empty (&ep->urb_list)) { 1895 urb = list_entry (ep->urb_list.prev, struct urb, 1896 urb_list); 1897 usb_get_urb (urb); 1898 } 1899 spin_unlock_irq(&hcd_urb_list_lock); 1900 1901 if (urb) { 1902 usb_kill_urb (urb); 1903 usb_put_urb (urb); 1904 } 1905 } 1906 } 1907 1908 /** 1909 * usb_hcd_alloc_bandwidth - check whether a new bandwidth setting exceeds 1910 * the bus bandwidth 1911 * @udev: target &usb_device 1912 * @new_config: new configuration to install 1913 * @cur_alt: the current alternate interface setting 1914 * @new_alt: alternate interface setting that is being installed 1915 * 1916 * To change configurations, pass in the new configuration in new_config, 1917 * and pass NULL for cur_alt and new_alt. 1918 * 1919 * To reset a device's configuration (put the device in the ADDRESSED state), 1920 * pass in NULL for new_config, cur_alt, and new_alt. 1921 * 1922 * To change alternate interface settings, pass in NULL for new_config, 1923 * pass in the current alternate interface setting in cur_alt, 1924 * and pass in the new alternate interface setting in new_alt. 1925 * 1926 * Return: An error if the requested bandwidth change exceeds the 1927 * bus bandwidth or host controller internal resources. 1928 */ 1929 int usb_hcd_alloc_bandwidth(struct usb_device *udev, 1930 struct usb_host_config *new_config, 1931 struct usb_host_interface *cur_alt, 1932 struct usb_host_interface *new_alt) 1933 { 1934 int num_intfs, i, j; 1935 struct usb_host_interface *alt = NULL; 1936 int ret = 0; 1937 struct usb_hcd *hcd; 1938 struct usb_host_endpoint *ep; 1939 1940 hcd = bus_to_hcd(udev->bus); 1941 if (!hcd->driver->check_bandwidth) 1942 return 0; 1943 1944 /* Configuration is being removed - set configuration 0 */ 1945 if (!new_config && !cur_alt) { 1946 for (i = 1; i < 16; ++i) { 1947 ep = udev->ep_out[i]; 1948 if (ep) 1949 hcd->driver->drop_endpoint(hcd, udev, ep); 1950 ep = udev->ep_in[i]; 1951 if (ep) 1952 hcd->driver->drop_endpoint(hcd, udev, ep); 1953 } 1954 hcd->driver->check_bandwidth(hcd, udev); 1955 return 0; 1956 } 1957 /* Check if the HCD says there's enough bandwidth. Enable all endpoints 1958 * each interface's alt setting 0 and ask the HCD to check the bandwidth 1959 * of the bus. There will always be bandwidth for endpoint 0, so it's 1960 * ok to exclude it. 1961 */ 1962 if (new_config) { 1963 num_intfs = new_config->desc.bNumInterfaces; 1964 /* Remove endpoints (except endpoint 0, which is always on the 1965 * schedule) from the old config from the schedule 1966 */ 1967 for (i = 1; i < 16; ++i) { 1968 ep = udev->ep_out[i]; 1969 if (ep) { 1970 ret = hcd->driver->drop_endpoint(hcd, udev, ep); 1971 if (ret < 0) 1972 goto reset; 1973 } 1974 ep = udev->ep_in[i]; 1975 if (ep) { 1976 ret = hcd->driver->drop_endpoint(hcd, udev, ep); 1977 if (ret < 0) 1978 goto reset; 1979 } 1980 } 1981 for (i = 0; i < num_intfs; ++i) { 1982 struct usb_host_interface *first_alt; 1983 int iface_num; 1984 1985 first_alt = &new_config->intf_cache[i]->altsetting[0]; 1986 iface_num = first_alt->desc.bInterfaceNumber; 1987 /* Set up endpoints for alternate interface setting 0 */ 1988 alt = usb_find_alt_setting(new_config, iface_num, 0); 1989 if (!alt) 1990 /* No alt setting 0? Pick the first setting. */ 1991 alt = first_alt; 1992 1993 for (j = 0; j < alt->desc.bNumEndpoints; j++) { 1994 ret = hcd->driver->add_endpoint(hcd, udev, &alt->endpoint[j]); 1995 if (ret < 0) 1996 goto reset; 1997 } 1998 } 1999 } 2000 if (cur_alt && new_alt) { 2001 struct usb_interface *iface = usb_ifnum_to_if(udev, 2002 cur_alt->desc.bInterfaceNumber); 2003 2004 if (!iface) 2005 return -EINVAL; 2006 if (iface->resetting_device) { 2007 /* 2008 * The USB core just reset the device, so the xHCI host 2009 * and the device will think alt setting 0 is installed. 2010 * However, the USB core will pass in the alternate 2011 * setting installed before the reset as cur_alt. Dig 2012 * out the alternate setting 0 structure, or the first 2013 * alternate setting if a broken device doesn't have alt 2014 * setting 0. 2015 */ 2016 cur_alt = usb_altnum_to_altsetting(iface, 0); 2017 if (!cur_alt) 2018 cur_alt = &iface->altsetting[0]; 2019 } 2020 2021 /* Drop all the endpoints in the current alt setting */ 2022 for (i = 0; i < cur_alt->desc.bNumEndpoints; i++) { 2023 ret = hcd->driver->drop_endpoint(hcd, udev, 2024 &cur_alt->endpoint[i]); 2025 if (ret < 0) 2026 goto reset; 2027 } 2028 /* Add all the endpoints in the new alt setting */ 2029 for (i = 0; i < new_alt->desc.bNumEndpoints; i++) { 2030 ret = hcd->driver->add_endpoint(hcd, udev, 2031 &new_alt->endpoint[i]); 2032 if (ret < 0) 2033 goto reset; 2034 } 2035 } 2036 ret = hcd->driver->check_bandwidth(hcd, udev); 2037 reset: 2038 if (ret < 0) 2039 hcd->driver->reset_bandwidth(hcd, udev); 2040 return ret; 2041 } 2042 2043 /* Disables the endpoint: synchronizes with the hcd to make sure all 2044 * endpoint state is gone from hardware. usb_hcd_flush_endpoint() must 2045 * have been called previously. Use for set_configuration, set_interface, 2046 * driver removal, physical disconnect. 2047 * 2048 * example: a qh stored in ep->hcpriv, holding state related to endpoint 2049 * type, maxpacket size, toggle, halt status, and scheduling. 2050 */ 2051 void usb_hcd_disable_endpoint(struct usb_device *udev, 2052 struct usb_host_endpoint *ep) 2053 { 2054 struct usb_hcd *hcd; 2055 2056 might_sleep(); 2057 hcd = bus_to_hcd(udev->bus); 2058 if (hcd->driver->endpoint_disable) 2059 hcd->driver->endpoint_disable(hcd, ep); 2060 } 2061 2062 /** 2063 * usb_hcd_reset_endpoint - reset host endpoint state 2064 * @udev: USB device. 2065 * @ep: the endpoint to reset. 2066 * 2067 * Resets any host endpoint state such as the toggle bit, sequence 2068 * number and current window. 2069 */ 2070 void usb_hcd_reset_endpoint(struct usb_device *udev, 2071 struct usb_host_endpoint *ep) 2072 { 2073 struct usb_hcd *hcd = bus_to_hcd(udev->bus); 2074 2075 if (hcd->driver->endpoint_reset) 2076 hcd->driver->endpoint_reset(hcd, ep); 2077 else { 2078 int epnum = usb_endpoint_num(&ep->desc); 2079 int is_out = usb_endpoint_dir_out(&ep->desc); 2080 int is_control = usb_endpoint_xfer_control(&ep->desc); 2081 2082 usb_settoggle(udev, epnum, is_out, 0); 2083 if (is_control) 2084 usb_settoggle(udev, epnum, !is_out, 0); 2085 } 2086 } 2087 2088 /** 2089 * usb_alloc_streams - allocate bulk endpoint stream IDs. 2090 * @interface: alternate setting that includes all endpoints. 2091 * @eps: array of endpoints that need streams. 2092 * @num_eps: number of endpoints in the array. 2093 * @num_streams: number of streams to allocate. 2094 * @mem_flags: flags hcd should use to allocate memory. 2095 * 2096 * Sets up a group of bulk endpoints to have @num_streams stream IDs available. 2097 * Drivers may queue multiple transfers to different stream IDs, which may 2098 * complete in a different order than they were queued. 2099 * 2100 * Return: On success, the number of allocated streams. On failure, a negative 2101 * error code. 2102 */ 2103 int usb_alloc_streams(struct usb_interface *interface, 2104 struct usb_host_endpoint **eps, unsigned int num_eps, 2105 unsigned int num_streams, gfp_t mem_flags) 2106 { 2107 struct usb_hcd *hcd; 2108 struct usb_device *dev; 2109 int i, ret; 2110 2111 dev = interface_to_usbdev(interface); 2112 hcd = bus_to_hcd(dev->bus); 2113 if (!hcd->driver->alloc_streams || !hcd->driver->free_streams) 2114 return -EINVAL; 2115 if (dev->speed != USB_SPEED_SUPER) 2116 return -EINVAL; 2117 if (dev->state < USB_STATE_CONFIGURED) 2118 return -ENODEV; 2119 2120 for (i = 0; i < num_eps; i++) { 2121 /* Streams only apply to bulk endpoints. */ 2122 if (!usb_endpoint_xfer_bulk(&eps[i]->desc)) 2123 return -EINVAL; 2124 /* Re-alloc is not allowed */ 2125 if (eps[i]->streams) 2126 return -EINVAL; 2127 } 2128 2129 ret = hcd->driver->alloc_streams(hcd, dev, eps, num_eps, 2130 num_streams, mem_flags); 2131 if (ret < 0) 2132 return ret; 2133 2134 for (i = 0; i < num_eps; i++) 2135 eps[i]->streams = ret; 2136 2137 return ret; 2138 } 2139 EXPORT_SYMBOL_GPL(usb_alloc_streams); 2140 2141 /** 2142 * usb_free_streams - free bulk endpoint stream IDs. 2143 * @interface: alternate setting that includes all endpoints. 2144 * @eps: array of endpoints to remove streams from. 2145 * @num_eps: number of endpoints in the array. 2146 * @mem_flags: flags hcd should use to allocate memory. 2147 * 2148 * Reverts a group of bulk endpoints back to not using stream IDs. 2149 * Can fail if we are given bad arguments, or HCD is broken. 2150 * 2151 * Return: 0 on success. On failure, a negative error code. 2152 */ 2153 int usb_free_streams(struct usb_interface *interface, 2154 struct usb_host_endpoint **eps, unsigned int num_eps, 2155 gfp_t mem_flags) 2156 { 2157 struct usb_hcd *hcd; 2158 struct usb_device *dev; 2159 int i, ret; 2160 2161 dev = interface_to_usbdev(interface); 2162 hcd = bus_to_hcd(dev->bus); 2163 if (dev->speed != USB_SPEED_SUPER) 2164 return -EINVAL; 2165 2166 /* Double-free is not allowed */ 2167 for (i = 0; i < num_eps; i++) 2168 if (!eps[i] || !eps[i]->streams) 2169 return -EINVAL; 2170 2171 ret = hcd->driver->free_streams(hcd, dev, eps, num_eps, mem_flags); 2172 if (ret < 0) 2173 return ret; 2174 2175 for (i = 0; i < num_eps; i++) 2176 eps[i]->streams = 0; 2177 2178 return ret; 2179 } 2180 EXPORT_SYMBOL_GPL(usb_free_streams); 2181 2182 /* Protect against drivers that try to unlink URBs after the device 2183 * is gone, by waiting until all unlinks for @udev are finished. 2184 * Since we don't currently track URBs by device, simply wait until 2185 * nothing is running in the locked region of usb_hcd_unlink_urb(). 2186 */ 2187 void usb_hcd_synchronize_unlinks(struct usb_device *udev) 2188 { 2189 spin_lock_irq(&hcd_urb_unlink_lock); 2190 spin_unlock_irq(&hcd_urb_unlink_lock); 2191 } 2192 2193 /*-------------------------------------------------------------------------*/ 2194 2195 /* called in any context */ 2196 int usb_hcd_get_frame_number (struct usb_device *udev) 2197 { 2198 struct usb_hcd *hcd = bus_to_hcd(udev->bus); 2199 2200 if (!HCD_RH_RUNNING(hcd)) 2201 return -ESHUTDOWN; 2202 return hcd->driver->get_frame_number (hcd); 2203 } 2204 2205 /*-------------------------------------------------------------------------*/ 2206 2207 #ifdef CONFIG_PM 2208 2209 int hcd_bus_suspend(struct usb_device *rhdev, pm_message_t msg) 2210 { 2211 struct usb_hcd *hcd = container_of(rhdev->bus, struct usb_hcd, self); 2212 int status; 2213 int old_state = hcd->state; 2214 2215 dev_dbg(&rhdev->dev, "bus %ssuspend, wakeup %d\n", 2216 (PMSG_IS_AUTO(msg) ? "auto-" : ""), 2217 rhdev->do_remote_wakeup); 2218 if (HCD_DEAD(hcd)) { 2219 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "suspend"); 2220 return 0; 2221 } 2222 2223 if (!hcd->driver->bus_suspend) { 2224 status = -ENOENT; 2225 } else { 2226 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2227 hcd->state = HC_STATE_QUIESCING; 2228 status = hcd->driver->bus_suspend(hcd); 2229 } 2230 if (status == 0) { 2231 usb_set_device_state(rhdev, USB_STATE_SUSPENDED); 2232 hcd->state = HC_STATE_SUSPENDED; 2233 2234 /* Did we race with a root-hub wakeup event? */ 2235 if (rhdev->do_remote_wakeup) { 2236 char buffer[6]; 2237 2238 status = hcd->driver->hub_status_data(hcd, buffer); 2239 if (status != 0) { 2240 dev_dbg(&rhdev->dev, "suspend raced with wakeup event\n"); 2241 hcd_bus_resume(rhdev, PMSG_AUTO_RESUME); 2242 status = -EBUSY; 2243 } 2244 } 2245 } else { 2246 spin_lock_irq(&hcd_root_hub_lock); 2247 if (!HCD_DEAD(hcd)) { 2248 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2249 hcd->state = old_state; 2250 } 2251 spin_unlock_irq(&hcd_root_hub_lock); 2252 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n", 2253 "suspend", status); 2254 } 2255 return status; 2256 } 2257 2258 int hcd_bus_resume(struct usb_device *rhdev, pm_message_t msg) 2259 { 2260 struct usb_hcd *hcd = container_of(rhdev->bus, struct usb_hcd, self); 2261 int status; 2262 int old_state = hcd->state; 2263 2264 dev_dbg(&rhdev->dev, "usb %sresume\n", 2265 (PMSG_IS_AUTO(msg) ? "auto-" : "")); 2266 if (HCD_DEAD(hcd)) { 2267 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "resume"); 2268 return 0; 2269 } 2270 if (!hcd->driver->bus_resume) 2271 return -ENOENT; 2272 if (HCD_RH_RUNNING(hcd)) 2273 return 0; 2274 2275 hcd->state = HC_STATE_RESUMING; 2276 status = hcd->driver->bus_resume(hcd); 2277 clear_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags); 2278 if (status == 0) { 2279 struct usb_device *udev; 2280 int port1; 2281 2282 spin_lock_irq(&hcd_root_hub_lock); 2283 if (!HCD_DEAD(hcd)) { 2284 usb_set_device_state(rhdev, rhdev->actconfig 2285 ? USB_STATE_CONFIGURED 2286 : USB_STATE_ADDRESS); 2287 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2288 hcd->state = HC_STATE_RUNNING; 2289 } 2290 spin_unlock_irq(&hcd_root_hub_lock); 2291 2292 /* 2293 * Check whether any of the enabled ports on the root hub are 2294 * unsuspended. If they are then a TRSMRCY delay is needed 2295 * (this is what the USB-2 spec calls a "global resume"). 2296 * Otherwise we can skip the delay. 2297 */ 2298 usb_hub_for_each_child(rhdev, port1, udev) { 2299 if (udev->state != USB_STATE_NOTATTACHED && 2300 !udev->port_is_suspended) { 2301 usleep_range(10000, 11000); /* TRSMRCY */ 2302 break; 2303 } 2304 } 2305 } else { 2306 hcd->state = old_state; 2307 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n", 2308 "resume", status); 2309 if (status != -ESHUTDOWN) 2310 usb_hc_died(hcd); 2311 } 2312 return status; 2313 } 2314 2315 /* Workqueue routine for root-hub remote wakeup */ 2316 static void hcd_resume_work(struct work_struct *work) 2317 { 2318 struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work); 2319 struct usb_device *udev = hcd->self.root_hub; 2320 2321 usb_remote_wakeup(udev); 2322 } 2323 2324 /** 2325 * usb_hcd_resume_root_hub - called by HCD to resume its root hub 2326 * @hcd: host controller for this root hub 2327 * 2328 * The USB host controller calls this function when its root hub is 2329 * suspended (with the remote wakeup feature enabled) and a remote 2330 * wakeup request is received. The routine submits a workqueue request 2331 * to resume the root hub (that is, manage its downstream ports again). 2332 */ 2333 void usb_hcd_resume_root_hub (struct usb_hcd *hcd) 2334 { 2335 unsigned long flags; 2336 2337 spin_lock_irqsave (&hcd_root_hub_lock, flags); 2338 if (hcd->rh_registered) { 2339 set_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags); 2340 queue_work(pm_wq, &hcd->wakeup_work); 2341 } 2342 spin_unlock_irqrestore (&hcd_root_hub_lock, flags); 2343 } 2344 EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub); 2345 2346 #endif /* CONFIG_PM */ 2347 2348 /*-------------------------------------------------------------------------*/ 2349 2350 #ifdef CONFIG_USB_OTG 2351 2352 /** 2353 * usb_bus_start_enum - start immediate enumeration (for OTG) 2354 * @bus: the bus (must use hcd framework) 2355 * @port_num: 1-based number of port; usually bus->otg_port 2356 * Context: in_interrupt() 2357 * 2358 * Starts enumeration, with an immediate reset followed later by 2359 * hub_wq identifying and possibly configuring the device. 2360 * This is needed by OTG controller drivers, where it helps meet 2361 * HNP protocol timing requirements for starting a port reset. 2362 * 2363 * Return: 0 if successful. 2364 */ 2365 int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num) 2366 { 2367 struct usb_hcd *hcd; 2368 int status = -EOPNOTSUPP; 2369 2370 /* NOTE: since HNP can't start by grabbing the bus's address0_sem, 2371 * boards with root hubs hooked up to internal devices (instead of 2372 * just the OTG port) may need more attention to resetting... 2373 */ 2374 hcd = container_of (bus, struct usb_hcd, self); 2375 if (port_num && hcd->driver->start_port_reset) 2376 status = hcd->driver->start_port_reset(hcd, port_num); 2377 2378 /* allocate hub_wq shortly after (first) root port reset finishes; 2379 * it may issue others, until at least 50 msecs have passed. 2380 */ 2381 if (status == 0) 2382 mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10)); 2383 return status; 2384 } 2385 EXPORT_SYMBOL_GPL(usb_bus_start_enum); 2386 2387 #endif 2388 2389 /*-------------------------------------------------------------------------*/ 2390 2391 /** 2392 * usb_hcd_irq - hook IRQs to HCD framework (bus glue) 2393 * @irq: the IRQ being raised 2394 * @__hcd: pointer to the HCD whose IRQ is being signaled 2395 * 2396 * If the controller isn't HALTed, calls the driver's irq handler. 2397 * Checks whether the controller is now dead. 2398 * 2399 * Return: %IRQ_HANDLED if the IRQ was handled. %IRQ_NONE otherwise. 2400 */ 2401 irqreturn_t usb_hcd_irq (int irq, void *__hcd) 2402 { 2403 struct usb_hcd *hcd = __hcd; 2404 irqreturn_t rc; 2405 2406 if (unlikely(HCD_DEAD(hcd) || !HCD_HW_ACCESSIBLE(hcd))) 2407 rc = IRQ_NONE; 2408 else if (hcd->driver->irq(hcd) == IRQ_NONE) 2409 rc = IRQ_NONE; 2410 else 2411 rc = IRQ_HANDLED; 2412 2413 return rc; 2414 } 2415 EXPORT_SYMBOL_GPL(usb_hcd_irq); 2416 2417 /*-------------------------------------------------------------------------*/ 2418 2419 /** 2420 * usb_hc_died - report abnormal shutdown of a host controller (bus glue) 2421 * @hcd: pointer to the HCD representing the controller 2422 * 2423 * This is called by bus glue to report a USB host controller that died 2424 * while operations may still have been pending. It's called automatically 2425 * by the PCI glue, so only glue for non-PCI busses should need to call it. 2426 * 2427 * Only call this function with the primary HCD. 2428 */ 2429 void usb_hc_died (struct usb_hcd *hcd) 2430 { 2431 unsigned long flags; 2432 2433 dev_err (hcd->self.controller, "HC died; cleaning up\n"); 2434 2435 spin_lock_irqsave (&hcd_root_hub_lock, flags); 2436 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2437 set_bit(HCD_FLAG_DEAD, &hcd->flags); 2438 if (hcd->rh_registered) { 2439 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2440 2441 /* make hub_wq clean up old urbs and devices */ 2442 usb_set_device_state (hcd->self.root_hub, 2443 USB_STATE_NOTATTACHED); 2444 usb_kick_hub_wq(hcd->self.root_hub); 2445 } 2446 if (usb_hcd_is_primary_hcd(hcd) && hcd->shared_hcd) { 2447 hcd = hcd->shared_hcd; 2448 if (hcd->rh_registered) { 2449 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2450 2451 /* make hub_wq clean up old urbs and devices */ 2452 usb_set_device_state(hcd->self.root_hub, 2453 USB_STATE_NOTATTACHED); 2454 usb_kick_hub_wq(hcd->self.root_hub); 2455 } 2456 } 2457 spin_unlock_irqrestore (&hcd_root_hub_lock, flags); 2458 /* Make sure that the other roothub is also deallocated. */ 2459 } 2460 EXPORT_SYMBOL_GPL (usb_hc_died); 2461 2462 /*-------------------------------------------------------------------------*/ 2463 2464 static void init_giveback_urb_bh(struct giveback_urb_bh *bh) 2465 { 2466 2467 spin_lock_init(&bh->lock); 2468 INIT_LIST_HEAD(&bh->head); 2469 tasklet_init(&bh->bh, usb_giveback_urb_bh, (unsigned long)bh); 2470 } 2471 2472 /** 2473 * usb_create_shared_hcd - create and initialize an HCD structure 2474 * @driver: HC driver that will use this hcd 2475 * @dev: device for this HC, stored in hcd->self.controller 2476 * @bus_name: value to store in hcd->self.bus_name 2477 * @primary_hcd: a pointer to the usb_hcd structure that is sharing the 2478 * PCI device. Only allocate certain resources for the primary HCD 2479 * Context: !in_interrupt() 2480 * 2481 * Allocate a struct usb_hcd, with extra space at the end for the 2482 * HC driver's private data. Initialize the generic members of the 2483 * hcd structure. 2484 * 2485 * Return: On success, a pointer to the created and initialized HCD structure. 2486 * On failure (e.g. if memory is unavailable), %NULL. 2487 */ 2488 struct usb_hcd *usb_create_shared_hcd(const struct hc_driver *driver, 2489 struct device *dev, const char *bus_name, 2490 struct usb_hcd *primary_hcd) 2491 { 2492 struct usb_hcd *hcd; 2493 2494 hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL); 2495 if (!hcd) { 2496 dev_dbg (dev, "hcd alloc failed\n"); 2497 return NULL; 2498 } 2499 if (primary_hcd == NULL) { 2500 hcd->bandwidth_mutex = kmalloc(sizeof(*hcd->bandwidth_mutex), 2501 GFP_KERNEL); 2502 if (!hcd->bandwidth_mutex) { 2503 kfree(hcd); 2504 dev_dbg(dev, "hcd bandwidth mutex alloc failed\n"); 2505 return NULL; 2506 } 2507 mutex_init(hcd->bandwidth_mutex); 2508 dev_set_drvdata(dev, hcd); 2509 } else { 2510 mutex_lock(&usb_port_peer_mutex); 2511 hcd->bandwidth_mutex = primary_hcd->bandwidth_mutex; 2512 hcd->primary_hcd = primary_hcd; 2513 primary_hcd->primary_hcd = primary_hcd; 2514 hcd->shared_hcd = primary_hcd; 2515 primary_hcd->shared_hcd = hcd; 2516 mutex_unlock(&usb_port_peer_mutex); 2517 } 2518 2519 kref_init(&hcd->kref); 2520 2521 usb_bus_init(&hcd->self); 2522 hcd->self.controller = dev; 2523 hcd->self.bus_name = bus_name; 2524 hcd->self.uses_dma = (dev->dma_mask != NULL); 2525 2526 init_timer(&hcd->rh_timer); 2527 hcd->rh_timer.function = rh_timer_func; 2528 hcd->rh_timer.data = (unsigned long) hcd; 2529 #ifdef CONFIG_PM 2530 INIT_WORK(&hcd->wakeup_work, hcd_resume_work); 2531 #endif 2532 2533 hcd->driver = driver; 2534 hcd->speed = driver->flags & HCD_MASK; 2535 hcd->product_desc = (driver->product_desc) ? driver->product_desc : 2536 "USB Host Controller"; 2537 return hcd; 2538 } 2539 EXPORT_SYMBOL_GPL(usb_create_shared_hcd); 2540 2541 /** 2542 * usb_create_hcd - create and initialize an HCD structure 2543 * @driver: HC driver that will use this hcd 2544 * @dev: device for this HC, stored in hcd->self.controller 2545 * @bus_name: value to store in hcd->self.bus_name 2546 * Context: !in_interrupt() 2547 * 2548 * Allocate a struct usb_hcd, with extra space at the end for the 2549 * HC driver's private data. Initialize the generic members of the 2550 * hcd structure. 2551 * 2552 * Return: On success, a pointer to the created and initialized HCD 2553 * structure. On failure (e.g. if memory is unavailable), %NULL. 2554 */ 2555 struct usb_hcd *usb_create_hcd(const struct hc_driver *driver, 2556 struct device *dev, const char *bus_name) 2557 { 2558 return usb_create_shared_hcd(driver, dev, bus_name, NULL); 2559 } 2560 EXPORT_SYMBOL_GPL(usb_create_hcd); 2561 2562 /* 2563 * Roothubs that share one PCI device must also share the bandwidth mutex. 2564 * Don't deallocate the bandwidth_mutex until the last shared usb_hcd is 2565 * deallocated. 2566 * 2567 * Make sure to only deallocate the bandwidth_mutex when the primary HCD is 2568 * freed. When hcd_release() is called for either hcd in a peer set 2569 * invalidate the peer's ->shared_hcd and ->primary_hcd pointers to 2570 * block new peering attempts 2571 */ 2572 static void hcd_release(struct kref *kref) 2573 { 2574 struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref); 2575 2576 mutex_lock(&usb_port_peer_mutex); 2577 if (usb_hcd_is_primary_hcd(hcd)) 2578 kfree(hcd->bandwidth_mutex); 2579 if (hcd->shared_hcd) { 2580 struct usb_hcd *peer = hcd->shared_hcd; 2581 2582 peer->shared_hcd = NULL; 2583 if (peer->primary_hcd == hcd) 2584 peer->primary_hcd = NULL; 2585 } 2586 mutex_unlock(&usb_port_peer_mutex); 2587 kfree(hcd); 2588 } 2589 2590 struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd) 2591 { 2592 if (hcd) 2593 kref_get (&hcd->kref); 2594 return hcd; 2595 } 2596 EXPORT_SYMBOL_GPL(usb_get_hcd); 2597 2598 void usb_put_hcd (struct usb_hcd *hcd) 2599 { 2600 if (hcd) 2601 kref_put (&hcd->kref, hcd_release); 2602 } 2603 EXPORT_SYMBOL_GPL(usb_put_hcd); 2604 2605 int usb_hcd_is_primary_hcd(struct usb_hcd *hcd) 2606 { 2607 if (!hcd->primary_hcd) 2608 return 1; 2609 return hcd == hcd->primary_hcd; 2610 } 2611 EXPORT_SYMBOL_GPL(usb_hcd_is_primary_hcd); 2612 2613 int usb_hcd_find_raw_port_number(struct usb_hcd *hcd, int port1) 2614 { 2615 if (!hcd->driver->find_raw_port_number) 2616 return port1; 2617 2618 return hcd->driver->find_raw_port_number(hcd, port1); 2619 } 2620 2621 static int usb_hcd_request_irqs(struct usb_hcd *hcd, 2622 unsigned int irqnum, unsigned long irqflags) 2623 { 2624 int retval; 2625 2626 if (hcd->driver->irq) { 2627 2628 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d", 2629 hcd->driver->description, hcd->self.busnum); 2630 retval = request_irq(irqnum, &usb_hcd_irq, irqflags, 2631 hcd->irq_descr, hcd); 2632 if (retval != 0) { 2633 dev_err(hcd->self.controller, 2634 "request interrupt %d failed\n", 2635 irqnum); 2636 return retval; 2637 } 2638 hcd->irq = irqnum; 2639 dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum, 2640 (hcd->driver->flags & HCD_MEMORY) ? 2641 "io mem" : "io base", 2642 (unsigned long long)hcd->rsrc_start); 2643 } else { 2644 hcd->irq = 0; 2645 if (hcd->rsrc_start) 2646 dev_info(hcd->self.controller, "%s 0x%08llx\n", 2647 (hcd->driver->flags & HCD_MEMORY) ? 2648 "io mem" : "io base", 2649 (unsigned long long)hcd->rsrc_start); 2650 } 2651 return 0; 2652 } 2653 2654 /* 2655 * Before we free this root hub, flush in-flight peering attempts 2656 * and disable peer lookups 2657 */ 2658 static void usb_put_invalidate_rhdev(struct usb_hcd *hcd) 2659 { 2660 struct usb_device *rhdev; 2661 2662 mutex_lock(&usb_port_peer_mutex); 2663 rhdev = hcd->self.root_hub; 2664 hcd->self.root_hub = NULL; 2665 mutex_unlock(&usb_port_peer_mutex); 2666 usb_put_dev(rhdev); 2667 } 2668 2669 /** 2670 * usb_add_hcd - finish generic HCD structure initialization and register 2671 * @hcd: the usb_hcd structure to initialize 2672 * @irqnum: Interrupt line to allocate 2673 * @irqflags: Interrupt type flags 2674 * 2675 * Finish the remaining parts of generic HCD initialization: allocate the 2676 * buffers of consistent memory, register the bus, request the IRQ line, 2677 * and call the driver's reset() and start() routines. 2678 */ 2679 int usb_add_hcd(struct usb_hcd *hcd, 2680 unsigned int irqnum, unsigned long irqflags) 2681 { 2682 int retval; 2683 struct usb_device *rhdev; 2684 2685 if (IS_ENABLED(CONFIG_USB_PHY) && !hcd->usb_phy) { 2686 struct usb_phy *phy = usb_get_phy_dev(hcd->self.controller, 0); 2687 2688 if (IS_ERR(phy)) { 2689 retval = PTR_ERR(phy); 2690 if (retval == -EPROBE_DEFER) 2691 return retval; 2692 } else { 2693 retval = usb_phy_init(phy); 2694 if (retval) { 2695 usb_put_phy(phy); 2696 return retval; 2697 } 2698 hcd->usb_phy = phy; 2699 hcd->remove_phy = 1; 2700 } 2701 } 2702 2703 if (IS_ENABLED(CONFIG_GENERIC_PHY) && !hcd->phy) { 2704 struct phy *phy = phy_get(hcd->self.controller, "usb"); 2705 2706 if (IS_ERR(phy)) { 2707 retval = PTR_ERR(phy); 2708 if (retval == -EPROBE_DEFER) 2709 goto err_phy; 2710 } else { 2711 retval = phy_init(phy); 2712 if (retval) { 2713 phy_put(phy); 2714 goto err_phy; 2715 } 2716 retval = phy_power_on(phy); 2717 if (retval) { 2718 phy_exit(phy); 2719 phy_put(phy); 2720 goto err_phy; 2721 } 2722 hcd->phy = phy; 2723 hcd->remove_phy = 1; 2724 } 2725 } 2726 2727 dev_info(hcd->self.controller, "%s\n", hcd->product_desc); 2728 2729 /* Keep old behaviour if authorized_default is not in [0, 1]. */ 2730 if (authorized_default < 0 || authorized_default > 1) { 2731 if (hcd->wireless) 2732 clear_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags); 2733 else 2734 set_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags); 2735 } else { 2736 if (authorized_default) 2737 set_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags); 2738 else 2739 clear_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags); 2740 } 2741 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 2742 2743 /* per default all interfaces are authorized */ 2744 set_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags); 2745 2746 /* HC is in reset state, but accessible. Now do the one-time init, 2747 * bottom up so that hcds can customize the root hubs before hub_wq 2748 * starts talking to them. (Note, bus id is assigned early too.) 2749 */ 2750 retval = hcd_buffer_create(hcd); 2751 if (retval != 0) { 2752 dev_dbg(hcd->self.controller, "pool alloc failed\n"); 2753 goto err_create_buf; 2754 } 2755 2756 retval = usb_register_bus(&hcd->self); 2757 if (retval < 0) 2758 goto err_register_bus; 2759 2760 rhdev = usb_alloc_dev(NULL, &hcd->self, 0); 2761 if (rhdev == NULL) { 2762 dev_err(hcd->self.controller, "unable to allocate root hub\n"); 2763 retval = -ENOMEM; 2764 goto err_allocate_root_hub; 2765 } 2766 mutex_lock(&usb_port_peer_mutex); 2767 hcd->self.root_hub = rhdev; 2768 mutex_unlock(&usb_port_peer_mutex); 2769 2770 switch (hcd->speed) { 2771 case HCD_USB11: 2772 rhdev->speed = USB_SPEED_FULL; 2773 break; 2774 case HCD_USB2: 2775 rhdev->speed = USB_SPEED_HIGH; 2776 break; 2777 case HCD_USB25: 2778 rhdev->speed = USB_SPEED_WIRELESS; 2779 break; 2780 case HCD_USB3: 2781 case HCD_USB31: 2782 rhdev->speed = USB_SPEED_SUPER; 2783 break; 2784 default: 2785 retval = -EINVAL; 2786 goto err_set_rh_speed; 2787 } 2788 2789 /* wakeup flag init defaults to "everything works" for root hubs, 2790 * but drivers can override it in reset() if needed, along with 2791 * recording the overall controller's system wakeup capability. 2792 */ 2793 device_set_wakeup_capable(&rhdev->dev, 1); 2794 2795 /* HCD_FLAG_RH_RUNNING doesn't matter until the root hub is 2796 * registered. But since the controller can die at any time, 2797 * let's initialize the flag before touching the hardware. 2798 */ 2799 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2800 2801 /* "reset" is misnamed; its role is now one-time init. the controller 2802 * should already have been reset (and boot firmware kicked off etc). 2803 */ 2804 if (hcd->driver->reset) { 2805 retval = hcd->driver->reset(hcd); 2806 if (retval < 0) { 2807 dev_err(hcd->self.controller, "can't setup: %d\n", 2808 retval); 2809 goto err_hcd_driver_setup; 2810 } 2811 } 2812 hcd->rh_pollable = 1; 2813 2814 /* NOTE: root hub and controller capabilities may not be the same */ 2815 if (device_can_wakeup(hcd->self.controller) 2816 && device_can_wakeup(&hcd->self.root_hub->dev)) 2817 dev_dbg(hcd->self.controller, "supports USB remote wakeup\n"); 2818 2819 /* initialize tasklets */ 2820 init_giveback_urb_bh(&hcd->high_prio_bh); 2821 init_giveback_urb_bh(&hcd->low_prio_bh); 2822 2823 /* enable irqs just before we start the controller, 2824 * if the BIOS provides legacy PCI irqs. 2825 */ 2826 if (usb_hcd_is_primary_hcd(hcd) && irqnum) { 2827 retval = usb_hcd_request_irqs(hcd, irqnum, irqflags); 2828 if (retval) 2829 goto err_request_irq; 2830 } 2831 2832 hcd->state = HC_STATE_RUNNING; 2833 retval = hcd->driver->start(hcd); 2834 if (retval < 0) { 2835 dev_err(hcd->self.controller, "startup error %d\n", retval); 2836 goto err_hcd_driver_start; 2837 } 2838 2839 /* starting here, usbcore will pay attention to this root hub */ 2840 retval = register_root_hub(hcd); 2841 if (retval != 0) 2842 goto err_register_root_hub; 2843 2844 retval = sysfs_create_group(&rhdev->dev.kobj, &usb_bus_attr_group); 2845 if (retval < 0) { 2846 printk(KERN_ERR "Cannot register USB bus sysfs attributes: %d\n", 2847 retval); 2848 goto error_create_attr_group; 2849 } 2850 if (hcd->uses_new_polling && HCD_POLL_RH(hcd)) 2851 usb_hcd_poll_rh_status(hcd); 2852 2853 return retval; 2854 2855 error_create_attr_group: 2856 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2857 if (HC_IS_RUNNING(hcd->state)) 2858 hcd->state = HC_STATE_QUIESCING; 2859 spin_lock_irq(&hcd_root_hub_lock); 2860 hcd->rh_registered = 0; 2861 spin_unlock_irq(&hcd_root_hub_lock); 2862 2863 #ifdef CONFIG_PM 2864 cancel_work_sync(&hcd->wakeup_work); 2865 #endif 2866 mutex_lock(&usb_bus_list_lock); 2867 usb_disconnect(&rhdev); /* Sets rhdev to NULL */ 2868 mutex_unlock(&usb_bus_list_lock); 2869 err_register_root_hub: 2870 hcd->rh_pollable = 0; 2871 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2872 del_timer_sync(&hcd->rh_timer); 2873 hcd->driver->stop(hcd); 2874 hcd->state = HC_STATE_HALT; 2875 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2876 del_timer_sync(&hcd->rh_timer); 2877 err_hcd_driver_start: 2878 if (usb_hcd_is_primary_hcd(hcd) && hcd->irq > 0) 2879 free_irq(irqnum, hcd); 2880 err_request_irq: 2881 err_hcd_driver_setup: 2882 err_set_rh_speed: 2883 usb_put_invalidate_rhdev(hcd); 2884 err_allocate_root_hub: 2885 usb_deregister_bus(&hcd->self); 2886 err_register_bus: 2887 hcd_buffer_destroy(hcd); 2888 err_create_buf: 2889 if (IS_ENABLED(CONFIG_GENERIC_PHY) && hcd->remove_phy && hcd->phy) { 2890 phy_power_off(hcd->phy); 2891 phy_exit(hcd->phy); 2892 phy_put(hcd->phy); 2893 hcd->phy = NULL; 2894 } 2895 err_phy: 2896 if (hcd->remove_phy && hcd->usb_phy) { 2897 usb_phy_shutdown(hcd->usb_phy); 2898 usb_put_phy(hcd->usb_phy); 2899 hcd->usb_phy = NULL; 2900 } 2901 return retval; 2902 } 2903 EXPORT_SYMBOL_GPL(usb_add_hcd); 2904 2905 /** 2906 * usb_remove_hcd - shutdown processing for generic HCDs 2907 * @hcd: the usb_hcd structure to remove 2908 * Context: !in_interrupt() 2909 * 2910 * Disconnects the root hub, then reverses the effects of usb_add_hcd(), 2911 * invoking the HCD's stop() method. 2912 */ 2913 void usb_remove_hcd(struct usb_hcd *hcd) 2914 { 2915 struct usb_device *rhdev = hcd->self.root_hub; 2916 2917 dev_info(hcd->self.controller, "remove, state %x\n", hcd->state); 2918 2919 usb_get_dev(rhdev); 2920 sysfs_remove_group(&rhdev->dev.kobj, &usb_bus_attr_group); 2921 2922 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2923 if (HC_IS_RUNNING (hcd->state)) 2924 hcd->state = HC_STATE_QUIESCING; 2925 2926 dev_dbg(hcd->self.controller, "roothub graceful disconnect\n"); 2927 spin_lock_irq (&hcd_root_hub_lock); 2928 hcd->rh_registered = 0; 2929 spin_unlock_irq (&hcd_root_hub_lock); 2930 2931 #ifdef CONFIG_PM 2932 cancel_work_sync(&hcd->wakeup_work); 2933 #endif 2934 2935 mutex_lock(&usb_bus_list_lock); 2936 usb_disconnect(&rhdev); /* Sets rhdev to NULL */ 2937 mutex_unlock(&usb_bus_list_lock); 2938 2939 /* 2940 * tasklet_kill() isn't needed here because: 2941 * - driver's disconnect() called from usb_disconnect() should 2942 * make sure its URBs are completed during the disconnect() 2943 * callback 2944 * 2945 * - it is too late to run complete() here since driver may have 2946 * been removed already now 2947 */ 2948 2949 /* Prevent any more root-hub status calls from the timer. 2950 * The HCD might still restart the timer (if a port status change 2951 * interrupt occurs), but usb_hcd_poll_rh_status() won't invoke 2952 * the hub_status_data() callback. 2953 */ 2954 hcd->rh_pollable = 0; 2955 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2956 del_timer_sync(&hcd->rh_timer); 2957 2958 hcd->driver->stop(hcd); 2959 hcd->state = HC_STATE_HALT; 2960 2961 /* In case the HCD restarted the timer, stop it again. */ 2962 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2963 del_timer_sync(&hcd->rh_timer); 2964 2965 if (usb_hcd_is_primary_hcd(hcd)) { 2966 if (hcd->irq > 0) 2967 free_irq(hcd->irq, hcd); 2968 } 2969 2970 usb_deregister_bus(&hcd->self); 2971 hcd_buffer_destroy(hcd); 2972 2973 if (IS_ENABLED(CONFIG_GENERIC_PHY) && hcd->remove_phy && hcd->phy) { 2974 phy_power_off(hcd->phy); 2975 phy_exit(hcd->phy); 2976 phy_put(hcd->phy); 2977 hcd->phy = NULL; 2978 } 2979 if (hcd->remove_phy && hcd->usb_phy) { 2980 usb_phy_shutdown(hcd->usb_phy); 2981 usb_put_phy(hcd->usb_phy); 2982 hcd->usb_phy = NULL; 2983 } 2984 2985 usb_put_invalidate_rhdev(hcd); 2986 } 2987 EXPORT_SYMBOL_GPL(usb_remove_hcd); 2988 2989 void 2990 usb_hcd_platform_shutdown(struct platform_device *dev) 2991 { 2992 struct usb_hcd *hcd = platform_get_drvdata(dev); 2993 2994 if (hcd->driver->shutdown) 2995 hcd->driver->shutdown(hcd); 2996 } 2997 EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown); 2998 2999 /*-------------------------------------------------------------------------*/ 3000 3001 #if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE) 3002 3003 const struct usb_mon_operations *mon_ops; 3004 3005 /* 3006 * The registration is unlocked. 3007 * We do it this way because we do not want to lock in hot paths. 3008 * 3009 * Notice that the code is minimally error-proof. Because usbmon needs 3010 * symbols from usbcore, usbcore gets referenced and cannot be unloaded first. 3011 */ 3012 3013 int usb_mon_register(const struct usb_mon_operations *ops) 3014 { 3015 3016 if (mon_ops) 3017 return -EBUSY; 3018 3019 mon_ops = ops; 3020 mb(); 3021 return 0; 3022 } 3023 EXPORT_SYMBOL_GPL (usb_mon_register); 3024 3025 void usb_mon_deregister (void) 3026 { 3027 3028 if (mon_ops == NULL) { 3029 printk(KERN_ERR "USB: monitor was not registered\n"); 3030 return; 3031 } 3032 mon_ops = NULL; 3033 mb(); 3034 } 3035 EXPORT_SYMBOL_GPL (usb_mon_deregister); 3036 3037 #endif /* CONFIG_USB_MON || CONFIG_USB_MON_MODULE */ 3038