xref: /linux/drivers/usb/core/hcd.c (revision 606d099cdd1080bbb50ea50dc52d98252f8f10a1)
1 /*
2  * (C) Copyright Linus Torvalds 1999
3  * (C) Copyright Johannes Erdfelt 1999-2001
4  * (C) Copyright Andreas Gal 1999
5  * (C) Copyright Gregory P. Smith 1999
6  * (C) Copyright Deti Fliegl 1999
7  * (C) Copyright Randy Dunlap 2000
8  * (C) Copyright David Brownell 2000-2002
9  *
10  * This program is free software; you can redistribute it and/or modify it
11  * under the terms of the GNU General Public License as published by the
12  * Free Software Foundation; either version 2 of the License, or (at your
13  * option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful, but
16  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
17  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
18  * for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software Foundation,
22  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23  */
24 
25 #include <linux/module.h>
26 #include <linux/version.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/completion.h>
30 #include <linux/utsname.h>
31 #include <linux/mm.h>
32 #include <asm/io.h>
33 #include <asm/scatterlist.h>
34 #include <linux/device.h>
35 #include <linux/dma-mapping.h>
36 #include <linux/mutex.h>
37 #include <asm/irq.h>
38 #include <asm/byteorder.h>
39 #include <linux/platform_device.h>
40 
41 #include <linux/usb.h>
42 
43 #include "usb.h"
44 #include "hcd.h"
45 #include "hub.h"
46 
47 
48 // #define USB_BANDWIDTH_MESSAGES
49 
50 /*-------------------------------------------------------------------------*/
51 
52 /*
53  * USB Host Controller Driver framework
54  *
55  * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing
56  * HCD-specific behaviors/bugs.
57  *
58  * This does error checks, tracks devices and urbs, and delegates to a
59  * "hc_driver" only for code (and data) that really needs to know about
60  * hardware differences.  That includes root hub registers, i/o queues,
61  * and so on ... but as little else as possible.
62  *
63  * Shared code includes most of the "root hub" code (these are emulated,
64  * though each HC's hardware works differently) and PCI glue, plus request
65  * tracking overhead.  The HCD code should only block on spinlocks or on
66  * hardware handshaking; blocking on software events (such as other kernel
67  * threads releasing resources, or completing actions) is all generic.
68  *
69  * Happens the USB 2.0 spec says this would be invisible inside the "USBD",
70  * and includes mostly a "HCDI" (HCD Interface) along with some APIs used
71  * only by the hub driver ... and that neither should be seen or used by
72  * usb client device drivers.
73  *
74  * Contributors of ideas or unattributed patches include: David Brownell,
75  * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ...
76  *
77  * HISTORY:
78  * 2002-02-21	Pull in most of the usb_bus support from usb.c; some
79  *		associated cleanup.  "usb_hcd" still != "usb_bus".
80  * 2001-12-12	Initial patch version for Linux 2.5.1 kernel.
81  */
82 
83 /*-------------------------------------------------------------------------*/
84 
85 /* host controllers we manage */
86 LIST_HEAD (usb_bus_list);
87 EXPORT_SYMBOL_GPL (usb_bus_list);
88 
89 /* used when allocating bus numbers */
90 #define USB_MAXBUS		64
91 struct usb_busmap {
92 	unsigned long busmap [USB_MAXBUS / (8*sizeof (unsigned long))];
93 };
94 static struct usb_busmap busmap;
95 
96 /* used when updating list of hcds */
97 DEFINE_MUTEX(usb_bus_list_lock);	/* exported only for usbfs */
98 EXPORT_SYMBOL_GPL (usb_bus_list_lock);
99 
100 /* used for controlling access to virtual root hubs */
101 static DEFINE_SPINLOCK(hcd_root_hub_lock);
102 
103 /* used when updating hcd data */
104 static DEFINE_SPINLOCK(hcd_data_lock);
105 
106 /* wait queue for synchronous unlinks */
107 DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue);
108 
109 /*-------------------------------------------------------------------------*/
110 
111 /*
112  * Sharable chunks of root hub code.
113  */
114 
115 /*-------------------------------------------------------------------------*/
116 
117 #define KERNEL_REL	((LINUX_VERSION_CODE >> 16) & 0x0ff)
118 #define KERNEL_VER	((LINUX_VERSION_CODE >> 8) & 0x0ff)
119 
120 /* usb 2.0 root hub device descriptor */
121 static const u8 usb2_rh_dev_descriptor [18] = {
122 	0x12,       /*  __u8  bLength; */
123 	0x01,       /*  __u8  bDescriptorType; Device */
124 	0x00, 0x02, /*  __le16 bcdUSB; v2.0 */
125 
126 	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */
127 	0x00,	    /*  __u8  bDeviceSubClass; */
128 	0x01,       /*  __u8  bDeviceProtocol; [ usb 2.0 single TT ]*/
129 	0x40,       /*  __u8  bMaxPacketSize0; 64 Bytes */
130 
131 	0x00, 0x00, /*  __le16 idVendor; */
132  	0x00, 0x00, /*  __le16 idProduct; */
133 	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
134 
135 	0x03,       /*  __u8  iManufacturer; */
136 	0x02,       /*  __u8  iProduct; */
137 	0x01,       /*  __u8  iSerialNumber; */
138 	0x01        /*  __u8  bNumConfigurations; */
139 };
140 
141 /* no usb 2.0 root hub "device qualifier" descriptor: one speed only */
142 
143 /* usb 1.1 root hub device descriptor */
144 static const u8 usb11_rh_dev_descriptor [18] = {
145 	0x12,       /*  __u8  bLength; */
146 	0x01,       /*  __u8  bDescriptorType; Device */
147 	0x10, 0x01, /*  __le16 bcdUSB; v1.1 */
148 
149 	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */
150 	0x00,	    /*  __u8  bDeviceSubClass; */
151 	0x00,       /*  __u8  bDeviceProtocol; [ low/full speeds only ] */
152 	0x40,       /*  __u8  bMaxPacketSize0; 64 Bytes */
153 
154 	0x00, 0x00, /*  __le16 idVendor; */
155  	0x00, 0x00, /*  __le16 idProduct; */
156 	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
157 
158 	0x03,       /*  __u8  iManufacturer; */
159 	0x02,       /*  __u8  iProduct; */
160 	0x01,       /*  __u8  iSerialNumber; */
161 	0x01        /*  __u8  bNumConfigurations; */
162 };
163 
164 
165 /*-------------------------------------------------------------------------*/
166 
167 /* Configuration descriptors for our root hubs */
168 
169 static const u8 fs_rh_config_descriptor [] = {
170 
171 	/* one configuration */
172 	0x09,       /*  __u8  bLength; */
173 	0x02,       /*  __u8  bDescriptorType; Configuration */
174 	0x19, 0x00, /*  __le16 wTotalLength; */
175 	0x01,       /*  __u8  bNumInterfaces; (1) */
176 	0x01,       /*  __u8  bConfigurationValue; */
177 	0x00,       /*  __u8  iConfiguration; */
178 	0xc0,       /*  __u8  bmAttributes;
179 				 Bit 7: must be set,
180 				     6: Self-powered,
181 				     5: Remote wakeup,
182 				     4..0: resvd */
183 	0x00,       /*  __u8  MaxPower; */
184 
185 	/* USB 1.1:
186 	 * USB 2.0, single TT organization (mandatory):
187 	 *	one interface, protocol 0
188 	 *
189 	 * USB 2.0, multiple TT organization (optional):
190 	 *	two interfaces, protocols 1 (like single TT)
191 	 *	and 2 (multiple TT mode) ... config is
192 	 *	sometimes settable
193 	 *	NOT IMPLEMENTED
194 	 */
195 
196 	/* one interface */
197 	0x09,       /*  __u8  if_bLength; */
198 	0x04,       /*  __u8  if_bDescriptorType; Interface */
199 	0x00,       /*  __u8  if_bInterfaceNumber; */
200 	0x00,       /*  __u8  if_bAlternateSetting; */
201 	0x01,       /*  __u8  if_bNumEndpoints; */
202 	0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
203 	0x00,       /*  __u8  if_bInterfaceSubClass; */
204 	0x00,       /*  __u8  if_bInterfaceProtocol; [usb1.1 or single tt] */
205 	0x00,       /*  __u8  if_iInterface; */
206 
207 	/* one endpoint (status change endpoint) */
208 	0x07,       /*  __u8  ep_bLength; */
209 	0x05,       /*  __u8  ep_bDescriptorType; Endpoint */
210 	0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
211  	0x03,       /*  __u8  ep_bmAttributes; Interrupt */
212  	0x02, 0x00, /*  __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */
213 	0xff        /*  __u8  ep_bInterval; (255ms -- usb 2.0 spec) */
214 };
215 
216 static const u8 hs_rh_config_descriptor [] = {
217 
218 	/* one configuration */
219 	0x09,       /*  __u8  bLength; */
220 	0x02,       /*  __u8  bDescriptorType; Configuration */
221 	0x19, 0x00, /*  __le16 wTotalLength; */
222 	0x01,       /*  __u8  bNumInterfaces; (1) */
223 	0x01,       /*  __u8  bConfigurationValue; */
224 	0x00,       /*  __u8  iConfiguration; */
225 	0xc0,       /*  __u8  bmAttributes;
226 				 Bit 7: must be set,
227 				     6: Self-powered,
228 				     5: Remote wakeup,
229 				     4..0: resvd */
230 	0x00,       /*  __u8  MaxPower; */
231 
232 	/* USB 1.1:
233 	 * USB 2.0, single TT organization (mandatory):
234 	 *	one interface, protocol 0
235 	 *
236 	 * USB 2.0, multiple TT organization (optional):
237 	 *	two interfaces, protocols 1 (like single TT)
238 	 *	and 2 (multiple TT mode) ... config is
239 	 *	sometimes settable
240 	 *	NOT IMPLEMENTED
241 	 */
242 
243 	/* one interface */
244 	0x09,       /*  __u8  if_bLength; */
245 	0x04,       /*  __u8  if_bDescriptorType; Interface */
246 	0x00,       /*  __u8  if_bInterfaceNumber; */
247 	0x00,       /*  __u8  if_bAlternateSetting; */
248 	0x01,       /*  __u8  if_bNumEndpoints; */
249 	0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
250 	0x00,       /*  __u8  if_bInterfaceSubClass; */
251 	0x00,       /*  __u8  if_bInterfaceProtocol; [usb1.1 or single tt] */
252 	0x00,       /*  __u8  if_iInterface; */
253 
254 	/* one endpoint (status change endpoint) */
255 	0x07,       /*  __u8  ep_bLength; */
256 	0x05,       /*  __u8  ep_bDescriptorType; Endpoint */
257 	0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
258  	0x03,       /*  __u8  ep_bmAttributes; Interrupt */
259 		    /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
260 		     * see hub.c:hub_configure() for details. */
261 	(USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
262 	0x0c        /*  __u8  ep_bInterval; (256ms -- usb 2.0 spec) */
263 };
264 
265 /*-------------------------------------------------------------------------*/
266 
267 /*
268  * helper routine for returning string descriptors in UTF-16LE
269  * input can actually be ISO-8859-1; ASCII is its 7-bit subset
270  */
271 static int ascii2utf (char *s, u8 *utf, int utfmax)
272 {
273 	int retval;
274 
275 	for (retval = 0; *s && utfmax > 1; utfmax -= 2, retval += 2) {
276 		*utf++ = *s++;
277 		*utf++ = 0;
278 	}
279 	if (utfmax > 0) {
280 		*utf = *s;
281 		++retval;
282 	}
283 	return retval;
284 }
285 
286 /*
287  * rh_string - provides manufacturer, product and serial strings for root hub
288  * @id: the string ID number (1: serial number, 2: product, 3: vendor)
289  * @hcd: the host controller for this root hub
290  * @type: string describing our driver
291  * @data: return packet in UTF-16 LE
292  * @len: length of the return packet
293  *
294  * Produces either a manufacturer, product or serial number string for the
295  * virtual root hub device.
296  */
297 static int rh_string (
298 	int		id,
299 	struct usb_hcd	*hcd,
300 	u8		*data,
301 	int		len
302 ) {
303 	char buf [100];
304 
305 	// language ids
306 	if (id == 0) {
307 		buf[0] = 4;    buf[1] = 3;	/* 4 bytes string data */
308 		buf[2] = 0x09; buf[3] = 0x04;	/* MSFT-speak for "en-us" */
309 		len = min (len, 4);
310 		memcpy (data, buf, len);
311 		return len;
312 
313 	// serial number
314 	} else if (id == 1) {
315 		strlcpy (buf, hcd->self.bus_name, sizeof buf);
316 
317 	// product description
318 	} else if (id == 2) {
319 		strlcpy (buf, hcd->product_desc, sizeof buf);
320 
321  	// id 3 == vendor description
322 	} else if (id == 3) {
323 		snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname,
324 			init_utsname()->release, hcd->driver->description);
325 
326 	// unsupported IDs --> "protocol stall"
327 	} else
328 		return -EPIPE;
329 
330 	switch (len) {		/* All cases fall through */
331 	default:
332 		len = 2 + ascii2utf (buf, data + 2, len - 2);
333 	case 2:
334 		data [1] = 3;	/* type == string */
335 	case 1:
336 		data [0] = 2 * (strlen (buf) + 1);
337 	case 0:
338 		;		/* Compiler wants a statement here */
339 	}
340 	return len;
341 }
342 
343 
344 /* Root hub control transfers execute synchronously */
345 static int rh_call_control (struct usb_hcd *hcd, struct urb *urb)
346 {
347 	struct usb_ctrlrequest *cmd;
348  	u16		typeReq, wValue, wIndex, wLength;
349 	u8		*ubuf = urb->transfer_buffer;
350 	u8		tbuf [sizeof (struct usb_hub_descriptor)]
351 		__attribute__((aligned(4)));
352 	const u8	*bufp = tbuf;
353 	int		len = 0;
354 	int		patch_wakeup = 0;
355 	unsigned long	flags;
356 	int		status = 0;
357 	int		n;
358 
359 	cmd = (struct usb_ctrlrequest *) urb->setup_packet;
360 	typeReq  = (cmd->bRequestType << 8) | cmd->bRequest;
361 	wValue   = le16_to_cpu (cmd->wValue);
362 	wIndex   = le16_to_cpu (cmd->wIndex);
363 	wLength  = le16_to_cpu (cmd->wLength);
364 
365 	if (wLength > urb->transfer_buffer_length)
366 		goto error;
367 
368 	urb->actual_length = 0;
369 	switch (typeReq) {
370 
371 	/* DEVICE REQUESTS */
372 
373 	/* The root hub's remote wakeup enable bit is implemented using
374 	 * driver model wakeup flags.  If this system supports wakeup
375 	 * through USB, userspace may change the default "allow wakeup"
376 	 * policy through sysfs or these calls.
377 	 *
378 	 * Most root hubs support wakeup from downstream devices, for
379 	 * runtime power management (disabling USB clocks and reducing
380 	 * VBUS power usage).  However, not all of them do so; silicon,
381 	 * board, and BIOS bugs here are not uncommon, so these can't
382 	 * be treated quite like external hubs.
383 	 *
384 	 * Likewise, not all root hubs will pass wakeup events upstream,
385 	 * to wake up the whole system.  So don't assume root hub and
386 	 * controller capabilities are identical.
387 	 */
388 
389 	case DeviceRequest | USB_REQ_GET_STATUS:
390 		tbuf [0] = (device_may_wakeup(&hcd->self.root_hub->dev)
391 					<< USB_DEVICE_REMOTE_WAKEUP)
392 				| (1 << USB_DEVICE_SELF_POWERED);
393 		tbuf [1] = 0;
394 		len = 2;
395 		break;
396 	case DeviceOutRequest | USB_REQ_CLEAR_FEATURE:
397 		if (wValue == USB_DEVICE_REMOTE_WAKEUP)
398 			device_set_wakeup_enable(&hcd->self.root_hub->dev, 0);
399 		else
400 			goto error;
401 		break;
402 	case DeviceOutRequest | USB_REQ_SET_FEATURE:
403 		if (device_can_wakeup(&hcd->self.root_hub->dev)
404 				&& wValue == USB_DEVICE_REMOTE_WAKEUP)
405 			device_set_wakeup_enable(&hcd->self.root_hub->dev, 1);
406 		else
407 			goto error;
408 		break;
409 	case DeviceRequest | USB_REQ_GET_CONFIGURATION:
410 		tbuf [0] = 1;
411 		len = 1;
412 			/* FALLTHROUGH */
413 	case DeviceOutRequest | USB_REQ_SET_CONFIGURATION:
414 		break;
415 	case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
416 		switch (wValue & 0xff00) {
417 		case USB_DT_DEVICE << 8:
418 			if (hcd->driver->flags & HCD_USB2)
419 				bufp = usb2_rh_dev_descriptor;
420 			else if (hcd->driver->flags & HCD_USB11)
421 				bufp = usb11_rh_dev_descriptor;
422 			else
423 				goto error;
424 			len = 18;
425 			break;
426 		case USB_DT_CONFIG << 8:
427 			if (hcd->driver->flags & HCD_USB2) {
428 				bufp = hs_rh_config_descriptor;
429 				len = sizeof hs_rh_config_descriptor;
430 			} else {
431 				bufp = fs_rh_config_descriptor;
432 				len = sizeof fs_rh_config_descriptor;
433 			}
434 			if (device_can_wakeup(&hcd->self.root_hub->dev))
435 				patch_wakeup = 1;
436 			break;
437 		case USB_DT_STRING << 8:
438 			n = rh_string (wValue & 0xff, hcd, ubuf, wLength);
439 			if (n < 0)
440 				goto error;
441 			urb->actual_length = n;
442 			break;
443 		default:
444 			goto error;
445 		}
446 		break;
447 	case DeviceRequest | USB_REQ_GET_INTERFACE:
448 		tbuf [0] = 0;
449 		len = 1;
450 			/* FALLTHROUGH */
451 	case DeviceOutRequest | USB_REQ_SET_INTERFACE:
452 		break;
453 	case DeviceOutRequest | USB_REQ_SET_ADDRESS:
454 		// wValue == urb->dev->devaddr
455 		dev_dbg (hcd->self.controller, "root hub device address %d\n",
456 			wValue);
457 		break;
458 
459 	/* INTERFACE REQUESTS (no defined feature/status flags) */
460 
461 	/* ENDPOINT REQUESTS */
462 
463 	case EndpointRequest | USB_REQ_GET_STATUS:
464 		// ENDPOINT_HALT flag
465 		tbuf [0] = 0;
466 		tbuf [1] = 0;
467 		len = 2;
468 			/* FALLTHROUGH */
469 	case EndpointOutRequest | USB_REQ_CLEAR_FEATURE:
470 	case EndpointOutRequest | USB_REQ_SET_FEATURE:
471 		dev_dbg (hcd->self.controller, "no endpoint features yet\n");
472 		break;
473 
474 	/* CLASS REQUESTS (and errors) */
475 
476 	default:
477 		/* non-generic request */
478 		switch (typeReq) {
479 		case GetHubStatus:
480 		case GetPortStatus:
481 			len = 4;
482 			break;
483 		case GetHubDescriptor:
484 			len = sizeof (struct usb_hub_descriptor);
485 			break;
486 		}
487 		status = hcd->driver->hub_control (hcd,
488 			typeReq, wValue, wIndex,
489 			tbuf, wLength);
490 		break;
491 error:
492 		/* "protocol stall" on error */
493 		status = -EPIPE;
494 	}
495 
496 	if (status) {
497 		len = 0;
498 		if (status != -EPIPE) {
499 			dev_dbg (hcd->self.controller,
500 				"CTRL: TypeReq=0x%x val=0x%x "
501 				"idx=0x%x len=%d ==> %d\n",
502 				typeReq, wValue, wIndex,
503 				wLength, status);
504 		}
505 	}
506 	if (len) {
507 		if (urb->transfer_buffer_length < len)
508 			len = urb->transfer_buffer_length;
509 		urb->actual_length = len;
510 		// always USB_DIR_IN, toward host
511 		memcpy (ubuf, bufp, len);
512 
513 		/* report whether RH hardware supports remote wakeup */
514 		if (patch_wakeup &&
515 				len > offsetof (struct usb_config_descriptor,
516 						bmAttributes))
517 			((struct usb_config_descriptor *)ubuf)->bmAttributes
518 				|= USB_CONFIG_ATT_WAKEUP;
519 	}
520 
521 	/* any errors get returned through the urb completion */
522 	local_irq_save (flags);
523 	spin_lock (&urb->lock);
524 	if (urb->status == -EINPROGRESS)
525 		urb->status = status;
526 	spin_unlock (&urb->lock);
527 	usb_hcd_giveback_urb (hcd, urb);
528 	local_irq_restore (flags);
529 	return 0;
530 }
531 
532 /*-------------------------------------------------------------------------*/
533 
534 /*
535  * Root Hub interrupt transfers are polled using a timer if the
536  * driver requests it; otherwise the driver is responsible for
537  * calling usb_hcd_poll_rh_status() when an event occurs.
538  *
539  * Completions are called in_interrupt(), but they may or may not
540  * be in_irq().
541  */
542 void usb_hcd_poll_rh_status(struct usb_hcd *hcd)
543 {
544 	struct urb	*urb;
545 	int		length;
546 	unsigned long	flags;
547 	char		buffer[4];	/* Any root hubs with > 31 ports? */
548 
549 	if (!hcd->uses_new_polling && !hcd->status_urb)
550 		return;
551 
552 	length = hcd->driver->hub_status_data(hcd, buffer);
553 	if (length > 0) {
554 
555 		/* try to complete the status urb */
556 		local_irq_save (flags);
557 		spin_lock(&hcd_root_hub_lock);
558 		urb = hcd->status_urb;
559 		if (urb) {
560 			spin_lock(&urb->lock);
561 			if (urb->status == -EINPROGRESS) {
562 				hcd->poll_pending = 0;
563 				hcd->status_urb = NULL;
564 				urb->status = 0;
565 				urb->hcpriv = NULL;
566 				urb->actual_length = length;
567 				memcpy(urb->transfer_buffer, buffer, length);
568 			} else		/* urb has been unlinked */
569 				length = 0;
570 			spin_unlock(&urb->lock);
571 		} else
572 			length = 0;
573 		spin_unlock(&hcd_root_hub_lock);
574 
575 		/* local irqs are always blocked in completions */
576 		if (length > 0)
577 			usb_hcd_giveback_urb (hcd, urb);
578 		else
579 			hcd->poll_pending = 1;
580 		local_irq_restore (flags);
581 	}
582 
583 	/* The USB 2.0 spec says 256 ms.  This is close enough and won't
584 	 * exceed that limit if HZ is 100. */
585 	if (hcd->uses_new_polling ? hcd->poll_rh :
586 			(length == 0 && hcd->status_urb != NULL))
587 		mod_timer (&hcd->rh_timer, jiffies + msecs_to_jiffies(250));
588 }
589 EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status);
590 
591 /* timer callback */
592 static void rh_timer_func (unsigned long _hcd)
593 {
594 	usb_hcd_poll_rh_status((struct usb_hcd *) _hcd);
595 }
596 
597 /*-------------------------------------------------------------------------*/
598 
599 static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb)
600 {
601 	int		retval;
602 	unsigned long	flags;
603 	int		len = 1 + (urb->dev->maxchild / 8);
604 
605 	spin_lock_irqsave (&hcd_root_hub_lock, flags);
606 	if (urb->status != -EINPROGRESS)	/* already unlinked */
607 		retval = urb->status;
608 	else if (hcd->status_urb || urb->transfer_buffer_length < len) {
609 		dev_dbg (hcd->self.controller, "not queuing rh status urb\n");
610 		retval = -EINVAL;
611 	} else {
612 		hcd->status_urb = urb;
613 		urb->hcpriv = hcd;	/* indicate it's queued */
614 
615 		if (!hcd->uses_new_polling)
616 			mod_timer (&hcd->rh_timer, jiffies +
617 					msecs_to_jiffies(250));
618 
619 		/* If a status change has already occurred, report it ASAP */
620 		else if (hcd->poll_pending)
621 			mod_timer (&hcd->rh_timer, jiffies);
622 		retval = 0;
623 	}
624 	spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
625 	return retval;
626 }
627 
628 static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb)
629 {
630 	if (usb_pipeint (urb->pipe))
631 		return rh_queue_status (hcd, urb);
632 	if (usb_pipecontrol (urb->pipe))
633 		return rh_call_control (hcd, urb);
634 	return -EINVAL;
635 }
636 
637 /*-------------------------------------------------------------------------*/
638 
639 /* Unlinks of root-hub control URBs are legal, but they don't do anything
640  * since these URBs always execute synchronously.
641  */
642 static int usb_rh_urb_dequeue (struct usb_hcd *hcd, struct urb *urb)
643 {
644 	unsigned long	flags;
645 
646 	if (usb_pipeendpoint(urb->pipe) == 0) {	/* Control URB */
647 		;	/* Do nothing */
648 
649 	} else {				/* Status URB */
650 		if (!hcd->uses_new_polling)
651 			del_timer (&hcd->rh_timer);
652 		local_irq_save (flags);
653 		spin_lock (&hcd_root_hub_lock);
654 		if (urb == hcd->status_urb) {
655 			hcd->status_urb = NULL;
656 			urb->hcpriv = NULL;
657 		} else
658 			urb = NULL;		/* wasn't fully queued */
659 		spin_unlock (&hcd_root_hub_lock);
660 		if (urb)
661 			usb_hcd_giveback_urb (hcd, urb);
662 		local_irq_restore (flags);
663 	}
664 
665 	return 0;
666 }
667 
668 /*-------------------------------------------------------------------------*/
669 
670 static struct class *usb_host_class;
671 
672 int usb_host_init(void)
673 {
674 	int retval = 0;
675 
676 	usb_host_class = class_create(THIS_MODULE, "usb_host");
677 	if (IS_ERR(usb_host_class))
678 		retval = PTR_ERR(usb_host_class);
679 	return retval;
680 }
681 
682 void usb_host_cleanup(void)
683 {
684 	class_destroy(usb_host_class);
685 }
686 
687 /**
688  * usb_bus_init - shared initialization code
689  * @bus: the bus structure being initialized
690  *
691  * This code is used to initialize a usb_bus structure, memory for which is
692  * separately managed.
693  */
694 static void usb_bus_init (struct usb_bus *bus)
695 {
696 	memset (&bus->devmap, 0, sizeof(struct usb_devmap));
697 
698 	bus->devnum_next = 1;
699 
700 	bus->root_hub = NULL;
701 	bus->busnum = -1;
702 	bus->bandwidth_allocated = 0;
703 	bus->bandwidth_int_reqs  = 0;
704 	bus->bandwidth_isoc_reqs = 0;
705 
706 	INIT_LIST_HEAD (&bus->bus_list);
707 }
708 
709 /*-------------------------------------------------------------------------*/
710 
711 /**
712  * usb_register_bus - registers the USB host controller with the usb core
713  * @bus: pointer to the bus to register
714  * Context: !in_interrupt()
715  *
716  * Assigns a bus number, and links the controller into usbcore data
717  * structures so that it can be seen by scanning the bus list.
718  */
719 static int usb_register_bus(struct usb_bus *bus)
720 {
721 	int busnum;
722 
723 	mutex_lock(&usb_bus_list_lock);
724 	busnum = find_next_zero_bit (busmap.busmap, USB_MAXBUS, 1);
725 	if (busnum < USB_MAXBUS) {
726 		set_bit (busnum, busmap.busmap);
727 		bus->busnum = busnum;
728 	} else {
729 		printk (KERN_ERR "%s: too many buses\n", usbcore_name);
730 		mutex_unlock(&usb_bus_list_lock);
731 		return -E2BIG;
732 	}
733 
734 	bus->class_dev = class_device_create(usb_host_class, NULL, MKDEV(0,0),
735 					     bus->controller, "usb_host%d", busnum);
736 	if (IS_ERR(bus->class_dev)) {
737 		clear_bit(busnum, busmap.busmap);
738 		mutex_unlock(&usb_bus_list_lock);
739 		return PTR_ERR(bus->class_dev);
740 	}
741 
742 	class_set_devdata(bus->class_dev, bus);
743 
744 	/* Add it to the local list of buses */
745 	list_add (&bus->bus_list, &usb_bus_list);
746 	mutex_unlock(&usb_bus_list_lock);
747 
748 	usb_notify_add_bus(bus);
749 
750 	dev_info (bus->controller, "new USB bus registered, assigned bus number %d\n", bus->busnum);
751 	return 0;
752 }
753 
754 /**
755  * usb_deregister_bus - deregisters the USB host controller
756  * @bus: pointer to the bus to deregister
757  * Context: !in_interrupt()
758  *
759  * Recycles the bus number, and unlinks the controller from usbcore data
760  * structures so that it won't be seen by scanning the bus list.
761  */
762 static void usb_deregister_bus (struct usb_bus *bus)
763 {
764 	dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum);
765 
766 	/*
767 	 * NOTE: make sure that all the devices are removed by the
768 	 * controller code, as well as having it call this when cleaning
769 	 * itself up
770 	 */
771 	mutex_lock(&usb_bus_list_lock);
772 	list_del (&bus->bus_list);
773 	mutex_unlock(&usb_bus_list_lock);
774 
775 	usb_notify_remove_bus(bus);
776 
777 	clear_bit (bus->busnum, busmap.busmap);
778 
779 	class_device_unregister(bus->class_dev);
780 }
781 
782 /**
783  * register_root_hub - called by usb_add_hcd() to register a root hub
784  * @hcd: host controller for this root hub
785  *
786  * This function registers the root hub with the USB subsystem.  It sets up
787  * the device properly in the device tree and then calls usb_new_device()
788  * to register the usb device.  It also assigns the root hub's USB address
789  * (always 1).
790  */
791 static int register_root_hub(struct usb_hcd *hcd)
792 {
793 	struct device *parent_dev = hcd->self.controller;
794 	struct usb_device *usb_dev = hcd->self.root_hub;
795 	const int devnum = 1;
796 	int retval;
797 
798 	usb_dev->devnum = devnum;
799 	usb_dev->bus->devnum_next = devnum + 1;
800 	memset (&usb_dev->bus->devmap.devicemap, 0,
801 			sizeof usb_dev->bus->devmap.devicemap);
802 	set_bit (devnum, usb_dev->bus->devmap.devicemap);
803 	usb_set_device_state(usb_dev, USB_STATE_ADDRESS);
804 
805 	mutex_lock(&usb_bus_list_lock);
806 
807 	usb_dev->ep0.desc.wMaxPacketSize = __constant_cpu_to_le16(64);
808 	retval = usb_get_device_descriptor(usb_dev, USB_DT_DEVICE_SIZE);
809 	if (retval != sizeof usb_dev->descriptor) {
810 		mutex_unlock(&usb_bus_list_lock);
811 		dev_dbg (parent_dev, "can't read %s device descriptor %d\n",
812 				usb_dev->dev.bus_id, retval);
813 		return (retval < 0) ? retval : -EMSGSIZE;
814 	}
815 
816 	retval = usb_new_device (usb_dev);
817 	if (retval) {
818 		dev_err (parent_dev, "can't register root hub for %s, %d\n",
819 				usb_dev->dev.bus_id, retval);
820 	}
821 	mutex_unlock(&usb_bus_list_lock);
822 
823 	if (retval == 0) {
824 		spin_lock_irq (&hcd_root_hub_lock);
825 		hcd->rh_registered = 1;
826 		spin_unlock_irq (&hcd_root_hub_lock);
827 
828 		/* Did the HC die before the root hub was registered? */
829 		if (hcd->state == HC_STATE_HALT)
830 			usb_hc_died (hcd);	/* This time clean up */
831 	}
832 
833 	return retval;
834 }
835 
836 void usb_enable_root_hub_irq (struct usb_bus *bus)
837 {
838 	struct usb_hcd *hcd;
839 
840 	hcd = container_of (bus, struct usb_hcd, self);
841 	if (hcd->driver->hub_irq_enable && hcd->state != HC_STATE_HALT)
842 		hcd->driver->hub_irq_enable (hcd);
843 }
844 
845 
846 /*-------------------------------------------------------------------------*/
847 
848 /**
849  * usb_calc_bus_time - approximate periodic transaction time in nanoseconds
850  * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH}
851  * @is_input: true iff the transaction sends data to the host
852  * @isoc: true for isochronous transactions, false for interrupt ones
853  * @bytecount: how many bytes in the transaction.
854  *
855  * Returns approximate bus time in nanoseconds for a periodic transaction.
856  * See USB 2.0 spec section 5.11.3; only periodic transfers need to be
857  * scheduled in software, this function is only used for such scheduling.
858  */
859 long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount)
860 {
861 	unsigned long	tmp;
862 
863 	switch (speed) {
864 	case USB_SPEED_LOW: 	/* INTR only */
865 		if (is_input) {
866 			tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L;
867 			return (64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp);
868 		} else {
869 			tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L;
870 			return (64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp);
871 		}
872 	case USB_SPEED_FULL:	/* ISOC or INTR */
873 		if (isoc) {
874 			tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
875 			return (((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp);
876 		} else {
877 			tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
878 			return (9107L + BW_HOST_DELAY + tmp);
879 		}
880 	case USB_SPEED_HIGH:	/* ISOC or INTR */
881 		// FIXME adjust for input vs output
882 		if (isoc)
883 			tmp = HS_NSECS_ISO (bytecount);
884 		else
885 			tmp = HS_NSECS (bytecount);
886 		return tmp;
887 	default:
888 		pr_debug ("%s: bogus device speed!\n", usbcore_name);
889 		return -1;
890 	}
891 }
892 EXPORT_SYMBOL (usb_calc_bus_time);
893 
894 /*
895  * usb_check_bandwidth():
896  *
897  * old_alloc is from host_controller->bandwidth_allocated in microseconds;
898  * bustime is from calc_bus_time(), but converted to microseconds.
899  *
900  * returns <bustime in us> if successful,
901  * or -ENOSPC if bandwidth request fails.
902  *
903  * FIXME:
904  * This initial implementation does not use Endpoint.bInterval
905  * in managing bandwidth allocation.
906  * It probably needs to be expanded to use Endpoint.bInterval.
907  * This can be done as a later enhancement (correction).
908  *
909  * This will also probably require some kind of
910  * frame allocation tracking...meaning, for example,
911  * that if multiple drivers request interrupts every 10 USB frames,
912  * they don't all have to be allocated at
913  * frame numbers N, N+10, N+20, etc.  Some of them could be at
914  * N+11, N+21, N+31, etc., and others at
915  * N+12, N+22, N+32, etc.
916  *
917  * Similarly for isochronous transfers...
918  *
919  * Individual HCDs can schedule more directly ... this logic
920  * is not correct for high speed transfers.
921  */
922 int usb_check_bandwidth (struct usb_device *dev, struct urb *urb)
923 {
924 	unsigned int	pipe = urb->pipe;
925 	long		bustime;
926 	int		is_in = usb_pipein (pipe);
927 	int		is_iso = usb_pipeisoc (pipe);
928 	int		old_alloc = dev->bus->bandwidth_allocated;
929 	int		new_alloc;
930 
931 
932 	bustime = NS_TO_US (usb_calc_bus_time (dev->speed, is_in, is_iso,
933 			usb_maxpacket (dev, pipe, !is_in)));
934 	if (is_iso)
935 		bustime /= urb->number_of_packets;
936 
937 	new_alloc = old_alloc + (int) bustime;
938 	if (new_alloc > FRAME_TIME_MAX_USECS_ALLOC) {
939 #ifdef	DEBUG
940 		char	*mode =
941 #ifdef CONFIG_USB_BANDWIDTH
942 			"";
943 #else
944 			"would have ";
945 #endif
946 		dev_dbg (&dev->dev, "usb_check_bandwidth %sFAILED: %d + %ld = %d usec\n",
947 			mode, old_alloc, bustime, new_alloc);
948 #endif
949 #ifdef CONFIG_USB_BANDWIDTH
950 		bustime = -ENOSPC;	/* report error */
951 #endif
952 	}
953 
954 	return bustime;
955 }
956 EXPORT_SYMBOL (usb_check_bandwidth);
957 
958 
959 /**
960  * usb_claim_bandwidth - records bandwidth for a periodic transfer
961  * @dev: source/target of request
962  * @urb: request (urb->dev == dev)
963  * @bustime: bandwidth consumed, in (average) microseconds per frame
964  * @isoc: true iff the request is isochronous
965  *
966  * Bus bandwidth reservations are recorded purely for diagnostic purposes.
967  * HCDs are expected not to overcommit periodic bandwidth, and to record such
968  * reservations whenever endpoints are added to the periodic schedule.
969  *
970  * FIXME averaging per-frame is suboptimal.  Better to sum over the HCD's
971  * entire periodic schedule ... 32 frames for OHCI, 1024 for UHCI, settable
972  * for EHCI (256/512/1024 frames, default 1024) and have the bus expose how
973  * large its periodic schedule is.
974  */
975 void usb_claim_bandwidth (struct usb_device *dev, struct urb *urb, int bustime, int isoc)
976 {
977 	dev->bus->bandwidth_allocated += bustime;
978 	if (isoc)
979 		dev->bus->bandwidth_isoc_reqs++;
980 	else
981 		dev->bus->bandwidth_int_reqs++;
982 	urb->bandwidth = bustime;
983 
984 #ifdef USB_BANDWIDTH_MESSAGES
985 	dev_dbg (&dev->dev, "bandwidth alloc increased by %d (%s) to %d for %d requesters\n",
986 		bustime,
987 		isoc ? "ISOC" : "INTR",
988 		dev->bus->bandwidth_allocated,
989 		dev->bus->bandwidth_int_reqs + dev->bus->bandwidth_isoc_reqs);
990 #endif
991 }
992 EXPORT_SYMBOL (usb_claim_bandwidth);
993 
994 
995 /**
996  * usb_release_bandwidth - reverses effect of usb_claim_bandwidth()
997  * @dev: source/target of request
998  * @urb: request (urb->dev == dev)
999  * @isoc: true iff the request is isochronous
1000  *
1001  * This records that previously allocated bandwidth has been released.
1002  * Bandwidth is released when endpoints are removed from the host controller's
1003  * periodic schedule.
1004  */
1005 void usb_release_bandwidth (struct usb_device *dev, struct urb *urb, int isoc)
1006 {
1007 	dev->bus->bandwidth_allocated -= urb->bandwidth;
1008 	if (isoc)
1009 		dev->bus->bandwidth_isoc_reqs--;
1010 	else
1011 		dev->bus->bandwidth_int_reqs--;
1012 
1013 #ifdef USB_BANDWIDTH_MESSAGES
1014 	dev_dbg (&dev->dev, "bandwidth alloc reduced by %d (%s) to %d for %d requesters\n",
1015 		urb->bandwidth,
1016 		isoc ? "ISOC" : "INTR",
1017 		dev->bus->bandwidth_allocated,
1018 		dev->bus->bandwidth_int_reqs + dev->bus->bandwidth_isoc_reqs);
1019 #endif
1020 	urb->bandwidth = 0;
1021 }
1022 EXPORT_SYMBOL (usb_release_bandwidth);
1023 
1024 
1025 /*-------------------------------------------------------------------------*/
1026 
1027 /*
1028  * Generic HC operations.
1029  */
1030 
1031 /*-------------------------------------------------------------------------*/
1032 
1033 static void urb_unlink (struct urb *urb)
1034 {
1035 	unsigned long		flags;
1036 
1037 	/* Release any periodic transfer bandwidth */
1038 	if (urb->bandwidth)
1039 		usb_release_bandwidth (urb->dev, urb,
1040 			usb_pipeisoc (urb->pipe));
1041 
1042 	/* clear all state linking urb to this dev (and hcd) */
1043 
1044 	spin_lock_irqsave (&hcd_data_lock, flags);
1045 	list_del_init (&urb->urb_list);
1046 	spin_unlock_irqrestore (&hcd_data_lock, flags);
1047 }
1048 
1049 
1050 /* may be called in any context with a valid urb->dev usecount
1051  * caller surrenders "ownership" of urb
1052  * expects usb_submit_urb() to have sanity checked and conditioned all
1053  * inputs in the urb
1054  */
1055 int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags)
1056 {
1057 	int			status;
1058 	struct usb_hcd		*hcd = bus_to_hcd(urb->dev->bus);
1059 	struct usb_host_endpoint *ep;
1060 	unsigned long		flags;
1061 
1062 	if (!hcd)
1063 		return -ENODEV;
1064 
1065 	usbmon_urb_submit(&hcd->self, urb);
1066 
1067 	/*
1068 	 * Atomically queue the urb,  first to our records, then to the HCD.
1069 	 * Access to urb->status is controlled by urb->lock ... changes on
1070 	 * i/o completion (normal or fault) or unlinking.
1071 	 */
1072 
1073 	// FIXME:  verify that quiescing hc works right (RH cleans up)
1074 
1075 	spin_lock_irqsave (&hcd_data_lock, flags);
1076 	ep = (usb_pipein(urb->pipe) ? urb->dev->ep_in : urb->dev->ep_out)
1077 			[usb_pipeendpoint(urb->pipe)];
1078 	if (unlikely (!ep))
1079 		status = -ENOENT;
1080 	else if (unlikely (urb->reject))
1081 		status = -EPERM;
1082 	else switch (hcd->state) {
1083 	case HC_STATE_RUNNING:
1084 	case HC_STATE_RESUMING:
1085 doit:
1086 		list_add_tail (&urb->urb_list, &ep->urb_list);
1087 		status = 0;
1088 		break;
1089 	case HC_STATE_SUSPENDED:
1090 		/* HC upstream links (register access, wakeup signaling) can work
1091 		 * even when the downstream links (and DMA etc) are quiesced; let
1092 		 * usbcore talk to the root hub.
1093 		 */
1094 		if (hcd->self.controller->power.power_state.event == PM_EVENT_ON
1095 				&& urb->dev->parent == NULL)
1096 			goto doit;
1097 		/* FALL THROUGH */
1098 	default:
1099 		status = -ESHUTDOWN;
1100 		break;
1101 	}
1102 	spin_unlock_irqrestore (&hcd_data_lock, flags);
1103 	if (status) {
1104 		INIT_LIST_HEAD (&urb->urb_list);
1105 		usbmon_urb_submit_error(&hcd->self, urb, status);
1106 		return status;
1107 	}
1108 
1109 	/* increment urb's reference count as part of giving it to the HCD
1110 	 * (which now controls it).  HCD guarantees that it either returns
1111 	 * an error or calls giveback(), but not both.
1112 	 */
1113 	urb = usb_get_urb (urb);
1114 	atomic_inc (&urb->use_count);
1115 
1116 	if (urb->dev == hcd->self.root_hub) {
1117 		/* NOTE:  requirement on hub callers (usbfs and the hub
1118 		 * driver, for now) that URBs' urb->transfer_buffer be
1119 		 * valid and usb_buffer_{sync,unmap}() not be needed, since
1120 		 * they could clobber root hub response data.
1121 		 */
1122 		status = rh_urb_enqueue (hcd, urb);
1123 		goto done;
1124 	}
1125 
1126 	/* lower level hcd code should use *_dma exclusively,
1127 	 * unless it uses pio or talks to another transport.
1128 	 */
1129 	if (hcd->self.uses_dma) {
1130 		if (usb_pipecontrol (urb->pipe)
1131 			&& !(urb->transfer_flags & URB_NO_SETUP_DMA_MAP))
1132 			urb->setup_dma = dma_map_single (
1133 					hcd->self.controller,
1134 					urb->setup_packet,
1135 					sizeof (struct usb_ctrlrequest),
1136 					DMA_TO_DEVICE);
1137 		if (urb->transfer_buffer_length != 0
1138 			&& !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP))
1139 			urb->transfer_dma = dma_map_single (
1140 					hcd->self.controller,
1141 					urb->transfer_buffer,
1142 					urb->transfer_buffer_length,
1143 					usb_pipein (urb->pipe)
1144 					    ? DMA_FROM_DEVICE
1145 					    : DMA_TO_DEVICE);
1146 	}
1147 
1148 	status = hcd->driver->urb_enqueue (hcd, ep, urb, mem_flags);
1149 done:
1150 	if (unlikely (status)) {
1151 		urb_unlink (urb);
1152 		atomic_dec (&urb->use_count);
1153 		if (urb->reject)
1154 			wake_up (&usb_kill_urb_queue);
1155 		usb_put_urb (urb);
1156 		usbmon_urb_submit_error(&hcd->self, urb, status);
1157 	}
1158 	return status;
1159 }
1160 
1161 /*-------------------------------------------------------------------------*/
1162 
1163 /* called in any context */
1164 int usb_hcd_get_frame_number (struct usb_device *udev)
1165 {
1166 	struct usb_hcd	*hcd = bus_to_hcd(udev->bus);
1167 
1168 	if (!HC_IS_RUNNING (hcd->state))
1169 		return -ESHUTDOWN;
1170 	return hcd->driver->get_frame_number (hcd);
1171 }
1172 
1173 /*-------------------------------------------------------------------------*/
1174 
1175 /* this makes the hcd giveback() the urb more quickly, by kicking it
1176  * off hardware queues (which may take a while) and returning it as
1177  * soon as practical.  we've already set up the urb's return status,
1178  * but we can't know if the callback completed already.
1179  */
1180 static int
1181 unlink1 (struct usb_hcd *hcd, struct urb *urb)
1182 {
1183 	int		value;
1184 
1185 	if (urb->dev == hcd->self.root_hub)
1186 		value = usb_rh_urb_dequeue (hcd, urb);
1187 	else {
1188 
1189 		/* The only reason an HCD might fail this call is if
1190 		 * it has not yet fully queued the urb to begin with.
1191 		 * Such failures should be harmless. */
1192 		value = hcd->driver->urb_dequeue (hcd, urb);
1193 	}
1194 
1195 	if (value != 0)
1196 		dev_dbg (hcd->self.controller, "dequeue %p --> %d\n",
1197 				urb, value);
1198 	return value;
1199 }
1200 
1201 /*
1202  * called in any context
1203  *
1204  * caller guarantees urb won't be recycled till both unlink()
1205  * and the urb's completion function return
1206  */
1207 int usb_hcd_unlink_urb (struct urb *urb, int status)
1208 {
1209 	struct usb_host_endpoint	*ep;
1210 	struct usb_hcd			*hcd = NULL;
1211 	struct device			*sys = NULL;
1212 	unsigned long			flags;
1213 	struct list_head		*tmp;
1214 	int				retval;
1215 
1216 	if (!urb)
1217 		return -EINVAL;
1218 	if (!urb->dev || !urb->dev->bus)
1219 		return -ENODEV;
1220 	ep = (usb_pipein(urb->pipe) ? urb->dev->ep_in : urb->dev->ep_out)
1221 			[usb_pipeendpoint(urb->pipe)];
1222 	if (!ep)
1223 		return -ENODEV;
1224 
1225 	/*
1226 	 * we contend for urb->status with the hcd core,
1227 	 * which changes it while returning the urb.
1228 	 *
1229 	 * Caller guaranteed that the urb pointer hasn't been freed, and
1230 	 * that it was submitted.  But as a rule it can't know whether or
1231 	 * not it's already been unlinked ... so we respect the reversed
1232 	 * lock sequence needed for the usb_hcd_giveback_urb() code paths
1233 	 * (urb lock, then hcd_data_lock) in case some other CPU is now
1234 	 * unlinking it.
1235 	 */
1236 	spin_lock_irqsave (&urb->lock, flags);
1237 	spin_lock (&hcd_data_lock);
1238 
1239 	sys = &urb->dev->dev;
1240 	hcd = bus_to_hcd(urb->dev->bus);
1241 	if (hcd == NULL) {
1242 		retval = -ENODEV;
1243 		goto done;
1244 	}
1245 
1246 	/* insist the urb is still queued */
1247 	list_for_each(tmp, &ep->urb_list) {
1248 		if (tmp == &urb->urb_list)
1249 			break;
1250 	}
1251 	if (tmp != &urb->urb_list) {
1252 		retval = -EIDRM;
1253 		goto done;
1254 	}
1255 
1256 	/* Any status except -EINPROGRESS means something already started to
1257 	 * unlink this URB from the hardware.  So there's no more work to do.
1258 	 */
1259 	if (urb->status != -EINPROGRESS) {
1260 		retval = -EBUSY;
1261 		goto done;
1262 	}
1263 
1264 	/* IRQ setup can easily be broken so that USB controllers
1265 	 * never get completion IRQs ... maybe even the ones we need to
1266 	 * finish unlinking the initial failed usb_set_address()
1267 	 * or device descriptor fetch.
1268 	 */
1269 	if (!test_bit(HCD_FLAG_SAW_IRQ, &hcd->flags)
1270 	    && hcd->self.root_hub != urb->dev) {
1271 		dev_warn (hcd->self.controller, "Unlink after no-IRQ?  "
1272 			"Controller is probably using the wrong IRQ."
1273 			"\n");
1274 		set_bit(HCD_FLAG_SAW_IRQ, &hcd->flags);
1275 	}
1276 
1277 	urb->status = status;
1278 
1279 	spin_unlock (&hcd_data_lock);
1280 	spin_unlock_irqrestore (&urb->lock, flags);
1281 
1282 	retval = unlink1 (hcd, urb);
1283 	if (retval == 0)
1284 		retval = -EINPROGRESS;
1285 	return retval;
1286 
1287 done:
1288 	spin_unlock (&hcd_data_lock);
1289 	spin_unlock_irqrestore (&urb->lock, flags);
1290 	if (retval != -EIDRM && sys && sys->driver)
1291 		dev_dbg (sys, "hcd_unlink_urb %p fail %d\n", urb, retval);
1292 	return retval;
1293 }
1294 
1295 /*-------------------------------------------------------------------------*/
1296 
1297 /* disables the endpoint: cancels any pending urbs, then synchronizes with
1298  * the hcd to make sure all endpoint state is gone from hardware, and then
1299  * waits until the endpoint's queue is completely drained. use for
1300  * set_configuration, set_interface, driver removal, physical disconnect.
1301  *
1302  * example:  a qh stored in ep->hcpriv, holding state related to endpoint
1303  * type, maxpacket size, toggle, halt status, and scheduling.
1304  */
1305 void usb_hcd_endpoint_disable (struct usb_device *udev,
1306 		struct usb_host_endpoint *ep)
1307 {
1308 	struct usb_hcd		*hcd;
1309 	struct urb		*urb;
1310 
1311 	hcd = bus_to_hcd(udev->bus);
1312 
1313 	WARN_ON (!HC_IS_RUNNING (hcd->state) && hcd->state != HC_STATE_HALT &&
1314 			udev->state != USB_STATE_NOTATTACHED);
1315 
1316 	local_irq_disable ();
1317 
1318 	/* ep is already gone from udev->ep_{in,out}[]; no more submits */
1319 rescan:
1320 	spin_lock (&hcd_data_lock);
1321 	list_for_each_entry (urb, &ep->urb_list, urb_list) {
1322 		int	tmp;
1323 
1324 		/* the urb may already have been unlinked */
1325 		if (urb->status != -EINPROGRESS)
1326 			continue;
1327 		usb_get_urb (urb);
1328 		spin_unlock (&hcd_data_lock);
1329 
1330 		spin_lock (&urb->lock);
1331 		tmp = urb->status;
1332 		if (tmp == -EINPROGRESS)
1333 			urb->status = -ESHUTDOWN;
1334 		spin_unlock (&urb->lock);
1335 
1336 		/* kick hcd unless it's already returning this */
1337 		if (tmp == -EINPROGRESS) {
1338 			tmp = urb->pipe;
1339 			unlink1 (hcd, urb);
1340 			dev_dbg (hcd->self.controller,
1341 				"shutdown urb %p pipe %08x ep%d%s%s\n",
1342 				urb, tmp, usb_pipeendpoint (tmp),
1343 				(tmp & USB_DIR_IN) ? "in" : "out",
1344 				({ char *s; \
1345 				 switch (usb_pipetype (tmp)) { \
1346 				 case PIPE_CONTROL:	s = ""; break; \
1347 				 case PIPE_BULK:	s = "-bulk"; break; \
1348 				 case PIPE_INTERRUPT:	s = "-intr"; break; \
1349 				 default: 		s = "-iso"; break; \
1350 				}; s;}));
1351 		}
1352 		usb_put_urb (urb);
1353 
1354 		/* list contents may have changed */
1355 		goto rescan;
1356 	}
1357 	spin_unlock (&hcd_data_lock);
1358 	local_irq_enable ();
1359 
1360 	/* synchronize with the hardware, so old configuration state
1361 	 * clears out immediately (and will be freed).
1362 	 */
1363 	might_sleep ();
1364 	if (hcd->driver->endpoint_disable)
1365 		hcd->driver->endpoint_disable (hcd, ep);
1366 
1367 	/* Wait until the endpoint queue is completely empty.  Most HCDs
1368 	 * will have done this already in their endpoint_disable method,
1369 	 * but some might not.  And there could be root-hub control URBs
1370 	 * still pending since they aren't affected by the HCDs'
1371 	 * endpoint_disable methods.
1372 	 */
1373 	while (!list_empty (&ep->urb_list)) {
1374 		spin_lock_irq (&hcd_data_lock);
1375 
1376 		/* The list may have changed while we acquired the spinlock */
1377 		urb = NULL;
1378 		if (!list_empty (&ep->urb_list)) {
1379 			urb = list_entry (ep->urb_list.prev, struct urb,
1380 					urb_list);
1381 			usb_get_urb (urb);
1382 		}
1383 		spin_unlock_irq (&hcd_data_lock);
1384 
1385 		if (urb) {
1386 			usb_kill_urb (urb);
1387 			usb_put_urb (urb);
1388 		}
1389 	}
1390 }
1391 
1392 /*-------------------------------------------------------------------------*/
1393 
1394 #ifdef	CONFIG_PM
1395 
1396 int hcd_bus_suspend (struct usb_bus *bus)
1397 {
1398 	struct usb_hcd		*hcd;
1399 	int			status;
1400 
1401 	hcd = container_of (bus, struct usb_hcd, self);
1402 	if (!hcd->driver->bus_suspend)
1403 		return -ENOENT;
1404 	hcd->state = HC_STATE_QUIESCING;
1405 	status = hcd->driver->bus_suspend (hcd);
1406 	if (status == 0)
1407 		hcd->state = HC_STATE_SUSPENDED;
1408 	else
1409 		dev_dbg(&bus->root_hub->dev, "%s fail, err %d\n",
1410 				"suspend", status);
1411 	return status;
1412 }
1413 
1414 int hcd_bus_resume (struct usb_bus *bus)
1415 {
1416 	struct usb_hcd		*hcd;
1417 	int			status;
1418 
1419 	hcd = container_of (bus, struct usb_hcd, self);
1420 	if (!hcd->driver->bus_resume)
1421 		return -ENOENT;
1422 	if (hcd->state == HC_STATE_RUNNING)
1423 		return 0;
1424 	hcd->state = HC_STATE_RESUMING;
1425 	status = hcd->driver->bus_resume (hcd);
1426 	if (status == 0)
1427 		hcd->state = HC_STATE_RUNNING;
1428 	else {
1429 		dev_dbg(&bus->root_hub->dev, "%s fail, err %d\n",
1430 				"resume", status);
1431 		usb_hc_died(hcd);
1432 	}
1433 	return status;
1434 }
1435 
1436 /**
1437  * usb_hcd_resume_root_hub - called by HCD to resume its root hub
1438  * @hcd: host controller for this root hub
1439  *
1440  * The USB host controller calls this function when its root hub is
1441  * suspended (with the remote wakeup feature enabled) and a remote
1442  * wakeup request is received.  It queues a request for khubd to
1443  * resume the root hub (that is, manage its downstream ports again).
1444  */
1445 void usb_hcd_resume_root_hub (struct usb_hcd *hcd)
1446 {
1447 	unsigned long flags;
1448 
1449 	spin_lock_irqsave (&hcd_root_hub_lock, flags);
1450 	if (hcd->rh_registered)
1451 		usb_resume_root_hub (hcd->self.root_hub);
1452 	spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
1453 }
1454 EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub);
1455 
1456 #endif
1457 
1458 /*-------------------------------------------------------------------------*/
1459 
1460 #ifdef	CONFIG_USB_OTG
1461 
1462 /**
1463  * usb_bus_start_enum - start immediate enumeration (for OTG)
1464  * @bus: the bus (must use hcd framework)
1465  * @port_num: 1-based number of port; usually bus->otg_port
1466  * Context: in_interrupt()
1467  *
1468  * Starts enumeration, with an immediate reset followed later by
1469  * khubd identifying and possibly configuring the device.
1470  * This is needed by OTG controller drivers, where it helps meet
1471  * HNP protocol timing requirements for starting a port reset.
1472  */
1473 int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num)
1474 {
1475 	struct usb_hcd		*hcd;
1476 	int			status = -EOPNOTSUPP;
1477 
1478 	/* NOTE: since HNP can't start by grabbing the bus's address0_sem,
1479 	 * boards with root hubs hooked up to internal devices (instead of
1480 	 * just the OTG port) may need more attention to resetting...
1481 	 */
1482 	hcd = container_of (bus, struct usb_hcd, self);
1483 	if (port_num && hcd->driver->start_port_reset)
1484 		status = hcd->driver->start_port_reset(hcd, port_num);
1485 
1486 	/* run khubd shortly after (first) root port reset finishes;
1487 	 * it may issue others, until at least 50 msecs have passed.
1488 	 */
1489 	if (status == 0)
1490 		mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10));
1491 	return status;
1492 }
1493 EXPORT_SYMBOL (usb_bus_start_enum);
1494 
1495 #endif
1496 
1497 /*-------------------------------------------------------------------------*/
1498 
1499 /**
1500  * usb_hcd_giveback_urb - return URB from HCD to device driver
1501  * @hcd: host controller returning the URB
1502  * @urb: urb being returned to the USB device driver.
1503  * Context: in_interrupt()
1504  *
1505  * This hands the URB from HCD to its USB device driver, using its
1506  * completion function.  The HCD has freed all per-urb resources
1507  * (and is done using urb->hcpriv).  It also released all HCD locks;
1508  * the device driver won't cause problems if it frees, modifies,
1509  * or resubmits this URB.
1510  */
1511 void usb_hcd_giveback_urb (struct usb_hcd *hcd, struct urb *urb)
1512 {
1513 	int at_root_hub;
1514 
1515 	at_root_hub = (urb->dev == hcd->self.root_hub);
1516 	urb_unlink (urb);
1517 
1518 	/* lower level hcd code should use *_dma exclusively if the
1519 	 * host controller does DMA */
1520 	if (hcd->self.uses_dma && !at_root_hub) {
1521 		if (usb_pipecontrol (urb->pipe)
1522 			&& !(urb->transfer_flags & URB_NO_SETUP_DMA_MAP))
1523 			dma_unmap_single (hcd->self.controller, urb->setup_dma,
1524 					sizeof (struct usb_ctrlrequest),
1525 					DMA_TO_DEVICE);
1526 		if (urb->transfer_buffer_length != 0
1527 			&& !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP))
1528 			dma_unmap_single (hcd->self.controller,
1529 					urb->transfer_dma,
1530 					urb->transfer_buffer_length,
1531 					usb_pipein (urb->pipe)
1532 					    ? DMA_FROM_DEVICE
1533 					    : DMA_TO_DEVICE);
1534 	}
1535 
1536 	usbmon_urb_complete (&hcd->self, urb);
1537 	/* pass ownership to the completion handler */
1538 	urb->complete (urb);
1539 	atomic_dec (&urb->use_count);
1540 	if (unlikely (urb->reject))
1541 		wake_up (&usb_kill_urb_queue);
1542 	usb_put_urb (urb);
1543 }
1544 EXPORT_SYMBOL (usb_hcd_giveback_urb);
1545 
1546 /*-------------------------------------------------------------------------*/
1547 
1548 /**
1549  * usb_hcd_irq - hook IRQs to HCD framework (bus glue)
1550  * @irq: the IRQ being raised
1551  * @__hcd: pointer to the HCD whose IRQ is being signaled
1552  * @r: saved hardware registers
1553  *
1554  * If the controller isn't HALTed, calls the driver's irq handler.
1555  * Checks whether the controller is now dead.
1556  */
1557 irqreturn_t usb_hcd_irq (int irq, void *__hcd)
1558 {
1559 	struct usb_hcd		*hcd = __hcd;
1560 	int			start = hcd->state;
1561 
1562 	if (unlikely(start == HC_STATE_HALT ||
1563 	    !test_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags)))
1564 		return IRQ_NONE;
1565 	if (hcd->driver->irq (hcd) == IRQ_NONE)
1566 		return IRQ_NONE;
1567 
1568 	set_bit(HCD_FLAG_SAW_IRQ, &hcd->flags);
1569 
1570 	if (unlikely(hcd->state == HC_STATE_HALT))
1571 		usb_hc_died (hcd);
1572 	return IRQ_HANDLED;
1573 }
1574 
1575 /*-------------------------------------------------------------------------*/
1576 
1577 /**
1578  * usb_hc_died - report abnormal shutdown of a host controller (bus glue)
1579  * @hcd: pointer to the HCD representing the controller
1580  *
1581  * This is called by bus glue to report a USB host controller that died
1582  * while operations may still have been pending.  It's called automatically
1583  * by the PCI glue, so only glue for non-PCI busses should need to call it.
1584  */
1585 void usb_hc_died (struct usb_hcd *hcd)
1586 {
1587 	unsigned long flags;
1588 
1589 	dev_err (hcd->self.controller, "HC died; cleaning up\n");
1590 
1591 	spin_lock_irqsave (&hcd_root_hub_lock, flags);
1592 	if (hcd->rh_registered) {
1593 		hcd->poll_rh = 0;
1594 
1595 		/* make khubd clean up old urbs and devices */
1596 		usb_set_device_state (hcd->self.root_hub,
1597 				USB_STATE_NOTATTACHED);
1598 		usb_kick_khubd (hcd->self.root_hub);
1599 	}
1600 	spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
1601 }
1602 EXPORT_SYMBOL_GPL (usb_hc_died);
1603 
1604 /*-------------------------------------------------------------------------*/
1605 
1606 /**
1607  * usb_create_hcd - create and initialize an HCD structure
1608  * @driver: HC driver that will use this hcd
1609  * @dev: device for this HC, stored in hcd->self.controller
1610  * @bus_name: value to store in hcd->self.bus_name
1611  * Context: !in_interrupt()
1612  *
1613  * Allocate a struct usb_hcd, with extra space at the end for the
1614  * HC driver's private data.  Initialize the generic members of the
1615  * hcd structure.
1616  *
1617  * If memory is unavailable, returns NULL.
1618  */
1619 struct usb_hcd *usb_create_hcd (const struct hc_driver *driver,
1620 		struct device *dev, char *bus_name)
1621 {
1622 	struct usb_hcd *hcd;
1623 
1624 	hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL);
1625 	if (!hcd) {
1626 		dev_dbg (dev, "hcd alloc failed\n");
1627 		return NULL;
1628 	}
1629 	dev_set_drvdata(dev, hcd);
1630 	kref_init(&hcd->kref);
1631 
1632 	usb_bus_init(&hcd->self);
1633 	hcd->self.controller = dev;
1634 	hcd->self.bus_name = bus_name;
1635 	hcd->self.uses_dma = (dev->dma_mask != NULL);
1636 
1637 	init_timer(&hcd->rh_timer);
1638 	hcd->rh_timer.function = rh_timer_func;
1639 	hcd->rh_timer.data = (unsigned long) hcd;
1640 
1641 	hcd->driver = driver;
1642 	hcd->product_desc = (driver->product_desc) ? driver->product_desc :
1643 			"USB Host Controller";
1644 
1645 	return hcd;
1646 }
1647 EXPORT_SYMBOL (usb_create_hcd);
1648 
1649 static void hcd_release (struct kref *kref)
1650 {
1651 	struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref);
1652 
1653 	kfree(hcd);
1654 }
1655 
1656 struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd)
1657 {
1658 	if (hcd)
1659 		kref_get (&hcd->kref);
1660 	return hcd;
1661 }
1662 EXPORT_SYMBOL (usb_get_hcd);
1663 
1664 void usb_put_hcd (struct usb_hcd *hcd)
1665 {
1666 	if (hcd)
1667 		kref_put (&hcd->kref, hcd_release);
1668 }
1669 EXPORT_SYMBOL (usb_put_hcd);
1670 
1671 /**
1672  * usb_add_hcd - finish generic HCD structure initialization and register
1673  * @hcd: the usb_hcd structure to initialize
1674  * @irqnum: Interrupt line to allocate
1675  * @irqflags: Interrupt type flags
1676  *
1677  * Finish the remaining parts of generic HCD initialization: allocate the
1678  * buffers of consistent memory, register the bus, request the IRQ line,
1679  * and call the driver's reset() and start() routines.
1680  */
1681 int usb_add_hcd(struct usb_hcd *hcd,
1682 		unsigned int irqnum, unsigned long irqflags)
1683 {
1684 	int retval;
1685 	struct usb_device *rhdev;
1686 
1687 	dev_info(hcd->self.controller, "%s\n", hcd->product_desc);
1688 
1689 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1690 
1691 	/* HC is in reset state, but accessible.  Now do the one-time init,
1692 	 * bottom up so that hcds can customize the root hubs before khubd
1693 	 * starts talking to them.  (Note, bus id is assigned early too.)
1694 	 */
1695 	if ((retval = hcd_buffer_create(hcd)) != 0) {
1696 		dev_dbg(hcd->self.controller, "pool alloc failed\n");
1697 		return retval;
1698 	}
1699 
1700 	if ((retval = usb_register_bus(&hcd->self)) < 0)
1701 		goto err_register_bus;
1702 
1703 	if ((rhdev = usb_alloc_dev(NULL, &hcd->self, 0)) == NULL) {
1704 		dev_err(hcd->self.controller, "unable to allocate root hub\n");
1705 		retval = -ENOMEM;
1706 		goto err_allocate_root_hub;
1707 	}
1708 	rhdev->speed = (hcd->driver->flags & HCD_USB2) ? USB_SPEED_HIGH :
1709 			USB_SPEED_FULL;
1710 	hcd->self.root_hub = rhdev;
1711 
1712 	/* wakeup flag init defaults to "everything works" for root hubs,
1713 	 * but drivers can override it in reset() if needed, along with
1714 	 * recording the overall controller's system wakeup capability.
1715 	 */
1716 	device_init_wakeup(&rhdev->dev, 1);
1717 
1718 	/* "reset" is misnamed; its role is now one-time init. the controller
1719 	 * should already have been reset (and boot firmware kicked off etc).
1720 	 */
1721 	if (hcd->driver->reset && (retval = hcd->driver->reset(hcd)) < 0) {
1722 		dev_err(hcd->self.controller, "can't setup\n");
1723 		goto err_hcd_driver_setup;
1724 	}
1725 
1726 	/* NOTE: root hub and controller capabilities may not be the same */
1727 	if (device_can_wakeup(hcd->self.controller)
1728 			&& device_can_wakeup(&hcd->self.root_hub->dev))
1729 		dev_dbg(hcd->self.controller, "supports USB remote wakeup\n");
1730 
1731 	/* enable irqs just before we start the controller */
1732 	if (hcd->driver->irq) {
1733 		snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
1734 				hcd->driver->description, hcd->self.busnum);
1735 		if ((retval = request_irq(irqnum, &usb_hcd_irq, irqflags,
1736 				hcd->irq_descr, hcd)) != 0) {
1737 			dev_err(hcd->self.controller,
1738 					"request interrupt %d failed\n", irqnum);
1739 			goto err_request_irq;
1740 		}
1741 		hcd->irq = irqnum;
1742 		dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum,
1743 				(hcd->driver->flags & HCD_MEMORY) ?
1744 					"io mem" : "io base",
1745 					(unsigned long long)hcd->rsrc_start);
1746 	} else {
1747 		hcd->irq = -1;
1748 		if (hcd->rsrc_start)
1749 			dev_info(hcd->self.controller, "%s 0x%08llx\n",
1750 					(hcd->driver->flags & HCD_MEMORY) ?
1751 					"io mem" : "io base",
1752 					(unsigned long long)hcd->rsrc_start);
1753 	}
1754 
1755 	if ((retval = hcd->driver->start(hcd)) < 0) {
1756 		dev_err(hcd->self.controller, "startup error %d\n", retval);
1757 		goto err_hcd_driver_start;
1758 	}
1759 
1760 	/* starting here, usbcore will pay attention to this root hub */
1761 	rhdev->bus_mA = min(500u, hcd->power_budget);
1762 	if ((retval = register_root_hub(hcd)) != 0)
1763 		goto err_register_root_hub;
1764 
1765 	if (hcd->uses_new_polling && hcd->poll_rh)
1766 		usb_hcd_poll_rh_status(hcd);
1767 	return retval;
1768 
1769 err_register_root_hub:
1770 	hcd->driver->stop(hcd);
1771 err_hcd_driver_start:
1772 	if (hcd->irq >= 0)
1773 		free_irq(irqnum, hcd);
1774 err_request_irq:
1775 err_hcd_driver_setup:
1776 	hcd->self.root_hub = NULL;
1777 	usb_put_dev(rhdev);
1778 err_allocate_root_hub:
1779 	usb_deregister_bus(&hcd->self);
1780 err_register_bus:
1781 	hcd_buffer_destroy(hcd);
1782 	return retval;
1783 }
1784 EXPORT_SYMBOL (usb_add_hcd);
1785 
1786 /**
1787  * usb_remove_hcd - shutdown processing for generic HCDs
1788  * @hcd: the usb_hcd structure to remove
1789  * Context: !in_interrupt()
1790  *
1791  * Disconnects the root hub, then reverses the effects of usb_add_hcd(),
1792  * invoking the HCD's stop() method.
1793  */
1794 void usb_remove_hcd(struct usb_hcd *hcd)
1795 {
1796 	dev_info(hcd->self.controller, "remove, state %x\n", hcd->state);
1797 
1798 	if (HC_IS_RUNNING (hcd->state))
1799 		hcd->state = HC_STATE_QUIESCING;
1800 
1801 	dev_dbg(hcd->self.controller, "roothub graceful disconnect\n");
1802 	spin_lock_irq (&hcd_root_hub_lock);
1803 	hcd->rh_registered = 0;
1804 	spin_unlock_irq (&hcd_root_hub_lock);
1805 
1806 	mutex_lock(&usb_bus_list_lock);
1807 	usb_disconnect(&hcd->self.root_hub);
1808 	mutex_unlock(&usb_bus_list_lock);
1809 
1810 	hcd->poll_rh = 0;
1811 	del_timer_sync(&hcd->rh_timer);
1812 
1813 	hcd->driver->stop(hcd);
1814 	hcd->state = HC_STATE_HALT;
1815 
1816 	if (hcd->irq >= 0)
1817 		free_irq(hcd->irq, hcd);
1818 	usb_deregister_bus(&hcd->self);
1819 	hcd_buffer_destroy(hcd);
1820 }
1821 EXPORT_SYMBOL (usb_remove_hcd);
1822 
1823 void
1824 usb_hcd_platform_shutdown(struct platform_device* dev)
1825 {
1826 	struct usb_hcd *hcd = platform_get_drvdata(dev);
1827 
1828 	if (hcd->driver->shutdown)
1829 		hcd->driver->shutdown(hcd);
1830 }
1831 EXPORT_SYMBOL (usb_hcd_platform_shutdown);
1832 
1833 /*-------------------------------------------------------------------------*/
1834 
1835 #if defined(CONFIG_USB_MON)
1836 
1837 struct usb_mon_operations *mon_ops;
1838 
1839 /*
1840  * The registration is unlocked.
1841  * We do it this way because we do not want to lock in hot paths.
1842  *
1843  * Notice that the code is minimally error-proof. Because usbmon needs
1844  * symbols from usbcore, usbcore gets referenced and cannot be unloaded first.
1845  */
1846 
1847 int usb_mon_register (struct usb_mon_operations *ops)
1848 {
1849 
1850 	if (mon_ops)
1851 		return -EBUSY;
1852 
1853 	mon_ops = ops;
1854 	mb();
1855 	return 0;
1856 }
1857 EXPORT_SYMBOL_GPL (usb_mon_register);
1858 
1859 void usb_mon_deregister (void)
1860 {
1861 
1862 	if (mon_ops == NULL) {
1863 		printk(KERN_ERR "USB: monitor was not registered\n");
1864 		return;
1865 	}
1866 	mon_ops = NULL;
1867 	mb();
1868 }
1869 EXPORT_SYMBOL_GPL (usb_mon_deregister);
1870 
1871 #endif /* CONFIG_USB_MON */
1872