1 /* 2 * (C) Copyright Linus Torvalds 1999 3 * (C) Copyright Johannes Erdfelt 1999-2001 4 * (C) Copyright Andreas Gal 1999 5 * (C) Copyright Gregory P. Smith 1999 6 * (C) Copyright Deti Fliegl 1999 7 * (C) Copyright Randy Dunlap 2000 8 * (C) Copyright David Brownell 2000-2002 9 * 10 * This program is free software; you can redistribute it and/or modify it 11 * under the terms of the GNU General Public License as published by the 12 * Free Software Foundation; either version 2 of the License, or (at your 13 * option) any later version. 14 * 15 * This program is distributed in the hope that it will be useful, but 16 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 17 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 18 * for more details. 19 * 20 * You should have received a copy of the GNU General Public License 21 * along with this program; if not, write to the Free Software Foundation, 22 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 23 */ 24 25 #include <linux/module.h> 26 #include <linux/version.h> 27 #include <linux/kernel.h> 28 #include <linux/slab.h> 29 #include <linux/completion.h> 30 #include <linux/utsname.h> 31 #include <linux/mm.h> 32 #include <asm/io.h> 33 #include <asm/scatterlist.h> 34 #include <linux/device.h> 35 #include <linux/dma-mapping.h> 36 #include <linux/mutex.h> 37 #include <asm/irq.h> 38 #include <asm/byteorder.h> 39 #include <linux/platform_device.h> 40 41 #include <linux/usb.h> 42 43 #include "usb.h" 44 #include "hcd.h" 45 #include "hub.h" 46 47 48 // #define USB_BANDWIDTH_MESSAGES 49 50 /*-------------------------------------------------------------------------*/ 51 52 /* 53 * USB Host Controller Driver framework 54 * 55 * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing 56 * HCD-specific behaviors/bugs. 57 * 58 * This does error checks, tracks devices and urbs, and delegates to a 59 * "hc_driver" only for code (and data) that really needs to know about 60 * hardware differences. That includes root hub registers, i/o queues, 61 * and so on ... but as little else as possible. 62 * 63 * Shared code includes most of the "root hub" code (these are emulated, 64 * though each HC's hardware works differently) and PCI glue, plus request 65 * tracking overhead. The HCD code should only block on spinlocks or on 66 * hardware handshaking; blocking on software events (such as other kernel 67 * threads releasing resources, or completing actions) is all generic. 68 * 69 * Happens the USB 2.0 spec says this would be invisible inside the "USBD", 70 * and includes mostly a "HCDI" (HCD Interface) along with some APIs used 71 * only by the hub driver ... and that neither should be seen or used by 72 * usb client device drivers. 73 * 74 * Contributors of ideas or unattributed patches include: David Brownell, 75 * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ... 76 * 77 * HISTORY: 78 * 2002-02-21 Pull in most of the usb_bus support from usb.c; some 79 * associated cleanup. "usb_hcd" still != "usb_bus". 80 * 2001-12-12 Initial patch version for Linux 2.5.1 kernel. 81 */ 82 83 /*-------------------------------------------------------------------------*/ 84 85 /* host controllers we manage */ 86 LIST_HEAD (usb_bus_list); 87 EXPORT_SYMBOL_GPL (usb_bus_list); 88 89 /* used when allocating bus numbers */ 90 #define USB_MAXBUS 64 91 struct usb_busmap { 92 unsigned long busmap [USB_MAXBUS / (8*sizeof (unsigned long))]; 93 }; 94 static struct usb_busmap busmap; 95 96 /* used when updating list of hcds */ 97 DEFINE_MUTEX(usb_bus_list_lock); /* exported only for usbfs */ 98 EXPORT_SYMBOL_GPL (usb_bus_list_lock); 99 100 /* used for controlling access to virtual root hubs */ 101 static DEFINE_SPINLOCK(hcd_root_hub_lock); 102 103 /* used when updating hcd data */ 104 static DEFINE_SPINLOCK(hcd_data_lock); 105 106 /* wait queue for synchronous unlinks */ 107 DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue); 108 109 /*-------------------------------------------------------------------------*/ 110 111 /* 112 * Sharable chunks of root hub code. 113 */ 114 115 /*-------------------------------------------------------------------------*/ 116 117 #define KERNEL_REL ((LINUX_VERSION_CODE >> 16) & 0x0ff) 118 #define KERNEL_VER ((LINUX_VERSION_CODE >> 8) & 0x0ff) 119 120 /* usb 2.0 root hub device descriptor */ 121 static const u8 usb2_rh_dev_descriptor [18] = { 122 0x12, /* __u8 bLength; */ 123 0x01, /* __u8 bDescriptorType; Device */ 124 0x00, 0x02, /* __le16 bcdUSB; v2.0 */ 125 126 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */ 127 0x00, /* __u8 bDeviceSubClass; */ 128 0x01, /* __u8 bDeviceProtocol; [ usb 2.0 single TT ]*/ 129 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */ 130 131 0x00, 0x00, /* __le16 idVendor; */ 132 0x00, 0x00, /* __le16 idProduct; */ 133 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */ 134 135 0x03, /* __u8 iManufacturer; */ 136 0x02, /* __u8 iProduct; */ 137 0x01, /* __u8 iSerialNumber; */ 138 0x01 /* __u8 bNumConfigurations; */ 139 }; 140 141 /* no usb 2.0 root hub "device qualifier" descriptor: one speed only */ 142 143 /* usb 1.1 root hub device descriptor */ 144 static const u8 usb11_rh_dev_descriptor [18] = { 145 0x12, /* __u8 bLength; */ 146 0x01, /* __u8 bDescriptorType; Device */ 147 0x10, 0x01, /* __le16 bcdUSB; v1.1 */ 148 149 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */ 150 0x00, /* __u8 bDeviceSubClass; */ 151 0x00, /* __u8 bDeviceProtocol; [ low/full speeds only ] */ 152 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */ 153 154 0x00, 0x00, /* __le16 idVendor; */ 155 0x00, 0x00, /* __le16 idProduct; */ 156 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */ 157 158 0x03, /* __u8 iManufacturer; */ 159 0x02, /* __u8 iProduct; */ 160 0x01, /* __u8 iSerialNumber; */ 161 0x01 /* __u8 bNumConfigurations; */ 162 }; 163 164 165 /*-------------------------------------------------------------------------*/ 166 167 /* Configuration descriptors for our root hubs */ 168 169 static const u8 fs_rh_config_descriptor [] = { 170 171 /* one configuration */ 172 0x09, /* __u8 bLength; */ 173 0x02, /* __u8 bDescriptorType; Configuration */ 174 0x19, 0x00, /* __le16 wTotalLength; */ 175 0x01, /* __u8 bNumInterfaces; (1) */ 176 0x01, /* __u8 bConfigurationValue; */ 177 0x00, /* __u8 iConfiguration; */ 178 0xc0, /* __u8 bmAttributes; 179 Bit 7: must be set, 180 6: Self-powered, 181 5: Remote wakeup, 182 4..0: resvd */ 183 0x00, /* __u8 MaxPower; */ 184 185 /* USB 1.1: 186 * USB 2.0, single TT organization (mandatory): 187 * one interface, protocol 0 188 * 189 * USB 2.0, multiple TT organization (optional): 190 * two interfaces, protocols 1 (like single TT) 191 * and 2 (multiple TT mode) ... config is 192 * sometimes settable 193 * NOT IMPLEMENTED 194 */ 195 196 /* one interface */ 197 0x09, /* __u8 if_bLength; */ 198 0x04, /* __u8 if_bDescriptorType; Interface */ 199 0x00, /* __u8 if_bInterfaceNumber; */ 200 0x00, /* __u8 if_bAlternateSetting; */ 201 0x01, /* __u8 if_bNumEndpoints; */ 202 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */ 203 0x00, /* __u8 if_bInterfaceSubClass; */ 204 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */ 205 0x00, /* __u8 if_iInterface; */ 206 207 /* one endpoint (status change endpoint) */ 208 0x07, /* __u8 ep_bLength; */ 209 0x05, /* __u8 ep_bDescriptorType; Endpoint */ 210 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */ 211 0x03, /* __u8 ep_bmAttributes; Interrupt */ 212 0x02, 0x00, /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */ 213 0xff /* __u8 ep_bInterval; (255ms -- usb 2.0 spec) */ 214 }; 215 216 static const u8 hs_rh_config_descriptor [] = { 217 218 /* one configuration */ 219 0x09, /* __u8 bLength; */ 220 0x02, /* __u8 bDescriptorType; Configuration */ 221 0x19, 0x00, /* __le16 wTotalLength; */ 222 0x01, /* __u8 bNumInterfaces; (1) */ 223 0x01, /* __u8 bConfigurationValue; */ 224 0x00, /* __u8 iConfiguration; */ 225 0xc0, /* __u8 bmAttributes; 226 Bit 7: must be set, 227 6: Self-powered, 228 5: Remote wakeup, 229 4..0: resvd */ 230 0x00, /* __u8 MaxPower; */ 231 232 /* USB 1.1: 233 * USB 2.0, single TT organization (mandatory): 234 * one interface, protocol 0 235 * 236 * USB 2.0, multiple TT organization (optional): 237 * two interfaces, protocols 1 (like single TT) 238 * and 2 (multiple TT mode) ... config is 239 * sometimes settable 240 * NOT IMPLEMENTED 241 */ 242 243 /* one interface */ 244 0x09, /* __u8 if_bLength; */ 245 0x04, /* __u8 if_bDescriptorType; Interface */ 246 0x00, /* __u8 if_bInterfaceNumber; */ 247 0x00, /* __u8 if_bAlternateSetting; */ 248 0x01, /* __u8 if_bNumEndpoints; */ 249 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */ 250 0x00, /* __u8 if_bInterfaceSubClass; */ 251 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */ 252 0x00, /* __u8 if_iInterface; */ 253 254 /* one endpoint (status change endpoint) */ 255 0x07, /* __u8 ep_bLength; */ 256 0x05, /* __u8 ep_bDescriptorType; Endpoint */ 257 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */ 258 0x03, /* __u8 ep_bmAttributes; Interrupt */ 259 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) 260 * see hub.c:hub_configure() for details. */ 261 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00, 262 0x0c /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */ 263 }; 264 265 /*-------------------------------------------------------------------------*/ 266 267 /* 268 * helper routine for returning string descriptors in UTF-16LE 269 * input can actually be ISO-8859-1; ASCII is its 7-bit subset 270 */ 271 static int ascii2utf (char *s, u8 *utf, int utfmax) 272 { 273 int retval; 274 275 for (retval = 0; *s && utfmax > 1; utfmax -= 2, retval += 2) { 276 *utf++ = *s++; 277 *utf++ = 0; 278 } 279 if (utfmax > 0) { 280 *utf = *s; 281 ++retval; 282 } 283 return retval; 284 } 285 286 /* 287 * rh_string - provides manufacturer, product and serial strings for root hub 288 * @id: the string ID number (1: serial number, 2: product, 3: vendor) 289 * @hcd: the host controller for this root hub 290 * @type: string describing our driver 291 * @data: return packet in UTF-16 LE 292 * @len: length of the return packet 293 * 294 * Produces either a manufacturer, product or serial number string for the 295 * virtual root hub device. 296 */ 297 static int rh_string ( 298 int id, 299 struct usb_hcd *hcd, 300 u8 *data, 301 int len 302 ) { 303 char buf [100]; 304 305 // language ids 306 if (id == 0) { 307 buf[0] = 4; buf[1] = 3; /* 4 bytes string data */ 308 buf[2] = 0x09; buf[3] = 0x04; /* MSFT-speak for "en-us" */ 309 len = min (len, 4); 310 memcpy (data, buf, len); 311 return len; 312 313 // serial number 314 } else if (id == 1) { 315 strlcpy (buf, hcd->self.bus_name, sizeof buf); 316 317 // product description 318 } else if (id == 2) { 319 strlcpy (buf, hcd->product_desc, sizeof buf); 320 321 // id 3 == vendor description 322 } else if (id == 3) { 323 snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname, 324 init_utsname()->release, hcd->driver->description); 325 326 // unsupported IDs --> "protocol stall" 327 } else 328 return -EPIPE; 329 330 switch (len) { /* All cases fall through */ 331 default: 332 len = 2 + ascii2utf (buf, data + 2, len - 2); 333 case 2: 334 data [1] = 3; /* type == string */ 335 case 1: 336 data [0] = 2 * (strlen (buf) + 1); 337 case 0: 338 ; /* Compiler wants a statement here */ 339 } 340 return len; 341 } 342 343 344 /* Root hub control transfers execute synchronously */ 345 static int rh_call_control (struct usb_hcd *hcd, struct urb *urb) 346 { 347 struct usb_ctrlrequest *cmd; 348 u16 typeReq, wValue, wIndex, wLength; 349 u8 *ubuf = urb->transfer_buffer; 350 u8 tbuf [sizeof (struct usb_hub_descriptor)] 351 __attribute__((aligned(4))); 352 const u8 *bufp = tbuf; 353 int len = 0; 354 int patch_wakeup = 0; 355 unsigned long flags; 356 int status = 0; 357 int n; 358 359 cmd = (struct usb_ctrlrequest *) urb->setup_packet; 360 typeReq = (cmd->bRequestType << 8) | cmd->bRequest; 361 wValue = le16_to_cpu (cmd->wValue); 362 wIndex = le16_to_cpu (cmd->wIndex); 363 wLength = le16_to_cpu (cmd->wLength); 364 365 if (wLength > urb->transfer_buffer_length) 366 goto error; 367 368 urb->actual_length = 0; 369 switch (typeReq) { 370 371 /* DEVICE REQUESTS */ 372 373 /* The root hub's remote wakeup enable bit is implemented using 374 * driver model wakeup flags. If this system supports wakeup 375 * through USB, userspace may change the default "allow wakeup" 376 * policy through sysfs or these calls. 377 * 378 * Most root hubs support wakeup from downstream devices, for 379 * runtime power management (disabling USB clocks and reducing 380 * VBUS power usage). However, not all of them do so; silicon, 381 * board, and BIOS bugs here are not uncommon, so these can't 382 * be treated quite like external hubs. 383 * 384 * Likewise, not all root hubs will pass wakeup events upstream, 385 * to wake up the whole system. So don't assume root hub and 386 * controller capabilities are identical. 387 */ 388 389 case DeviceRequest | USB_REQ_GET_STATUS: 390 tbuf [0] = (device_may_wakeup(&hcd->self.root_hub->dev) 391 << USB_DEVICE_REMOTE_WAKEUP) 392 | (1 << USB_DEVICE_SELF_POWERED); 393 tbuf [1] = 0; 394 len = 2; 395 break; 396 case DeviceOutRequest | USB_REQ_CLEAR_FEATURE: 397 if (wValue == USB_DEVICE_REMOTE_WAKEUP) 398 device_set_wakeup_enable(&hcd->self.root_hub->dev, 0); 399 else 400 goto error; 401 break; 402 case DeviceOutRequest | USB_REQ_SET_FEATURE: 403 if (device_can_wakeup(&hcd->self.root_hub->dev) 404 && wValue == USB_DEVICE_REMOTE_WAKEUP) 405 device_set_wakeup_enable(&hcd->self.root_hub->dev, 1); 406 else 407 goto error; 408 break; 409 case DeviceRequest | USB_REQ_GET_CONFIGURATION: 410 tbuf [0] = 1; 411 len = 1; 412 /* FALLTHROUGH */ 413 case DeviceOutRequest | USB_REQ_SET_CONFIGURATION: 414 break; 415 case DeviceRequest | USB_REQ_GET_DESCRIPTOR: 416 switch (wValue & 0xff00) { 417 case USB_DT_DEVICE << 8: 418 if (hcd->driver->flags & HCD_USB2) 419 bufp = usb2_rh_dev_descriptor; 420 else if (hcd->driver->flags & HCD_USB11) 421 bufp = usb11_rh_dev_descriptor; 422 else 423 goto error; 424 len = 18; 425 break; 426 case USB_DT_CONFIG << 8: 427 if (hcd->driver->flags & HCD_USB2) { 428 bufp = hs_rh_config_descriptor; 429 len = sizeof hs_rh_config_descriptor; 430 } else { 431 bufp = fs_rh_config_descriptor; 432 len = sizeof fs_rh_config_descriptor; 433 } 434 if (device_can_wakeup(&hcd->self.root_hub->dev)) 435 patch_wakeup = 1; 436 break; 437 case USB_DT_STRING << 8: 438 n = rh_string (wValue & 0xff, hcd, ubuf, wLength); 439 if (n < 0) 440 goto error; 441 urb->actual_length = n; 442 break; 443 default: 444 goto error; 445 } 446 break; 447 case DeviceRequest | USB_REQ_GET_INTERFACE: 448 tbuf [0] = 0; 449 len = 1; 450 /* FALLTHROUGH */ 451 case DeviceOutRequest | USB_REQ_SET_INTERFACE: 452 break; 453 case DeviceOutRequest | USB_REQ_SET_ADDRESS: 454 // wValue == urb->dev->devaddr 455 dev_dbg (hcd->self.controller, "root hub device address %d\n", 456 wValue); 457 break; 458 459 /* INTERFACE REQUESTS (no defined feature/status flags) */ 460 461 /* ENDPOINT REQUESTS */ 462 463 case EndpointRequest | USB_REQ_GET_STATUS: 464 // ENDPOINT_HALT flag 465 tbuf [0] = 0; 466 tbuf [1] = 0; 467 len = 2; 468 /* FALLTHROUGH */ 469 case EndpointOutRequest | USB_REQ_CLEAR_FEATURE: 470 case EndpointOutRequest | USB_REQ_SET_FEATURE: 471 dev_dbg (hcd->self.controller, "no endpoint features yet\n"); 472 break; 473 474 /* CLASS REQUESTS (and errors) */ 475 476 default: 477 /* non-generic request */ 478 switch (typeReq) { 479 case GetHubStatus: 480 case GetPortStatus: 481 len = 4; 482 break; 483 case GetHubDescriptor: 484 len = sizeof (struct usb_hub_descriptor); 485 break; 486 } 487 status = hcd->driver->hub_control (hcd, 488 typeReq, wValue, wIndex, 489 tbuf, wLength); 490 break; 491 error: 492 /* "protocol stall" on error */ 493 status = -EPIPE; 494 } 495 496 if (status) { 497 len = 0; 498 if (status != -EPIPE) { 499 dev_dbg (hcd->self.controller, 500 "CTRL: TypeReq=0x%x val=0x%x " 501 "idx=0x%x len=%d ==> %d\n", 502 typeReq, wValue, wIndex, 503 wLength, status); 504 } 505 } 506 if (len) { 507 if (urb->transfer_buffer_length < len) 508 len = urb->transfer_buffer_length; 509 urb->actual_length = len; 510 // always USB_DIR_IN, toward host 511 memcpy (ubuf, bufp, len); 512 513 /* report whether RH hardware supports remote wakeup */ 514 if (patch_wakeup && 515 len > offsetof (struct usb_config_descriptor, 516 bmAttributes)) 517 ((struct usb_config_descriptor *)ubuf)->bmAttributes 518 |= USB_CONFIG_ATT_WAKEUP; 519 } 520 521 /* any errors get returned through the urb completion */ 522 local_irq_save (flags); 523 spin_lock (&urb->lock); 524 if (urb->status == -EINPROGRESS) 525 urb->status = status; 526 spin_unlock (&urb->lock); 527 usb_hcd_giveback_urb (hcd, urb); 528 local_irq_restore (flags); 529 return 0; 530 } 531 532 /*-------------------------------------------------------------------------*/ 533 534 /* 535 * Root Hub interrupt transfers are polled using a timer if the 536 * driver requests it; otherwise the driver is responsible for 537 * calling usb_hcd_poll_rh_status() when an event occurs. 538 * 539 * Completions are called in_interrupt(), but they may or may not 540 * be in_irq(). 541 */ 542 void usb_hcd_poll_rh_status(struct usb_hcd *hcd) 543 { 544 struct urb *urb; 545 int length; 546 unsigned long flags; 547 char buffer[4]; /* Any root hubs with > 31 ports? */ 548 549 if (!hcd->uses_new_polling && !hcd->status_urb) 550 return; 551 552 length = hcd->driver->hub_status_data(hcd, buffer); 553 if (length > 0) { 554 555 /* try to complete the status urb */ 556 local_irq_save (flags); 557 spin_lock(&hcd_root_hub_lock); 558 urb = hcd->status_urb; 559 if (urb) { 560 spin_lock(&urb->lock); 561 if (urb->status == -EINPROGRESS) { 562 hcd->poll_pending = 0; 563 hcd->status_urb = NULL; 564 urb->status = 0; 565 urb->hcpriv = NULL; 566 urb->actual_length = length; 567 memcpy(urb->transfer_buffer, buffer, length); 568 } else /* urb has been unlinked */ 569 length = 0; 570 spin_unlock(&urb->lock); 571 } else 572 length = 0; 573 spin_unlock(&hcd_root_hub_lock); 574 575 /* local irqs are always blocked in completions */ 576 if (length > 0) 577 usb_hcd_giveback_urb (hcd, urb); 578 else 579 hcd->poll_pending = 1; 580 local_irq_restore (flags); 581 } 582 583 /* The USB 2.0 spec says 256 ms. This is close enough and won't 584 * exceed that limit if HZ is 100. */ 585 if (hcd->uses_new_polling ? hcd->poll_rh : 586 (length == 0 && hcd->status_urb != NULL)) 587 mod_timer (&hcd->rh_timer, jiffies + msecs_to_jiffies(250)); 588 } 589 EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status); 590 591 /* timer callback */ 592 static void rh_timer_func (unsigned long _hcd) 593 { 594 usb_hcd_poll_rh_status((struct usb_hcd *) _hcd); 595 } 596 597 /*-------------------------------------------------------------------------*/ 598 599 static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb) 600 { 601 int retval; 602 unsigned long flags; 603 int len = 1 + (urb->dev->maxchild / 8); 604 605 spin_lock_irqsave (&hcd_root_hub_lock, flags); 606 if (urb->status != -EINPROGRESS) /* already unlinked */ 607 retval = urb->status; 608 else if (hcd->status_urb || urb->transfer_buffer_length < len) { 609 dev_dbg (hcd->self.controller, "not queuing rh status urb\n"); 610 retval = -EINVAL; 611 } else { 612 hcd->status_urb = urb; 613 urb->hcpriv = hcd; /* indicate it's queued */ 614 615 if (!hcd->uses_new_polling) 616 mod_timer (&hcd->rh_timer, jiffies + 617 msecs_to_jiffies(250)); 618 619 /* If a status change has already occurred, report it ASAP */ 620 else if (hcd->poll_pending) 621 mod_timer (&hcd->rh_timer, jiffies); 622 retval = 0; 623 } 624 spin_unlock_irqrestore (&hcd_root_hub_lock, flags); 625 return retval; 626 } 627 628 static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb) 629 { 630 if (usb_pipeint (urb->pipe)) 631 return rh_queue_status (hcd, urb); 632 if (usb_pipecontrol (urb->pipe)) 633 return rh_call_control (hcd, urb); 634 return -EINVAL; 635 } 636 637 /*-------------------------------------------------------------------------*/ 638 639 /* Unlinks of root-hub control URBs are legal, but they don't do anything 640 * since these URBs always execute synchronously. 641 */ 642 static int usb_rh_urb_dequeue (struct usb_hcd *hcd, struct urb *urb) 643 { 644 unsigned long flags; 645 646 if (usb_pipeendpoint(urb->pipe) == 0) { /* Control URB */ 647 ; /* Do nothing */ 648 649 } else { /* Status URB */ 650 if (!hcd->uses_new_polling) 651 del_timer (&hcd->rh_timer); 652 local_irq_save (flags); 653 spin_lock (&hcd_root_hub_lock); 654 if (urb == hcd->status_urb) { 655 hcd->status_urb = NULL; 656 urb->hcpriv = NULL; 657 } else 658 urb = NULL; /* wasn't fully queued */ 659 spin_unlock (&hcd_root_hub_lock); 660 if (urb) 661 usb_hcd_giveback_urb (hcd, urb); 662 local_irq_restore (flags); 663 } 664 665 return 0; 666 } 667 668 /*-------------------------------------------------------------------------*/ 669 670 static struct class *usb_host_class; 671 672 int usb_host_init(void) 673 { 674 int retval = 0; 675 676 usb_host_class = class_create(THIS_MODULE, "usb_host"); 677 if (IS_ERR(usb_host_class)) 678 retval = PTR_ERR(usb_host_class); 679 return retval; 680 } 681 682 void usb_host_cleanup(void) 683 { 684 class_destroy(usb_host_class); 685 } 686 687 /** 688 * usb_bus_init - shared initialization code 689 * @bus: the bus structure being initialized 690 * 691 * This code is used to initialize a usb_bus structure, memory for which is 692 * separately managed. 693 */ 694 static void usb_bus_init (struct usb_bus *bus) 695 { 696 memset (&bus->devmap, 0, sizeof(struct usb_devmap)); 697 698 bus->devnum_next = 1; 699 700 bus->root_hub = NULL; 701 bus->busnum = -1; 702 bus->bandwidth_allocated = 0; 703 bus->bandwidth_int_reqs = 0; 704 bus->bandwidth_isoc_reqs = 0; 705 706 INIT_LIST_HEAD (&bus->bus_list); 707 } 708 709 /*-------------------------------------------------------------------------*/ 710 711 /** 712 * usb_register_bus - registers the USB host controller with the usb core 713 * @bus: pointer to the bus to register 714 * Context: !in_interrupt() 715 * 716 * Assigns a bus number, and links the controller into usbcore data 717 * structures so that it can be seen by scanning the bus list. 718 */ 719 static int usb_register_bus(struct usb_bus *bus) 720 { 721 int busnum; 722 723 mutex_lock(&usb_bus_list_lock); 724 busnum = find_next_zero_bit (busmap.busmap, USB_MAXBUS, 1); 725 if (busnum < USB_MAXBUS) { 726 set_bit (busnum, busmap.busmap); 727 bus->busnum = busnum; 728 } else { 729 printk (KERN_ERR "%s: too many buses\n", usbcore_name); 730 mutex_unlock(&usb_bus_list_lock); 731 return -E2BIG; 732 } 733 734 bus->class_dev = class_device_create(usb_host_class, NULL, MKDEV(0,0), 735 bus->controller, "usb_host%d", busnum); 736 if (IS_ERR(bus->class_dev)) { 737 clear_bit(busnum, busmap.busmap); 738 mutex_unlock(&usb_bus_list_lock); 739 return PTR_ERR(bus->class_dev); 740 } 741 742 class_set_devdata(bus->class_dev, bus); 743 744 /* Add it to the local list of buses */ 745 list_add (&bus->bus_list, &usb_bus_list); 746 mutex_unlock(&usb_bus_list_lock); 747 748 usb_notify_add_bus(bus); 749 750 dev_info (bus->controller, "new USB bus registered, assigned bus number %d\n", bus->busnum); 751 return 0; 752 } 753 754 /** 755 * usb_deregister_bus - deregisters the USB host controller 756 * @bus: pointer to the bus to deregister 757 * Context: !in_interrupt() 758 * 759 * Recycles the bus number, and unlinks the controller from usbcore data 760 * structures so that it won't be seen by scanning the bus list. 761 */ 762 static void usb_deregister_bus (struct usb_bus *bus) 763 { 764 dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum); 765 766 /* 767 * NOTE: make sure that all the devices are removed by the 768 * controller code, as well as having it call this when cleaning 769 * itself up 770 */ 771 mutex_lock(&usb_bus_list_lock); 772 list_del (&bus->bus_list); 773 mutex_unlock(&usb_bus_list_lock); 774 775 usb_notify_remove_bus(bus); 776 777 clear_bit (bus->busnum, busmap.busmap); 778 779 class_device_unregister(bus->class_dev); 780 } 781 782 /** 783 * register_root_hub - called by usb_add_hcd() to register a root hub 784 * @hcd: host controller for this root hub 785 * 786 * This function registers the root hub with the USB subsystem. It sets up 787 * the device properly in the device tree and then calls usb_new_device() 788 * to register the usb device. It also assigns the root hub's USB address 789 * (always 1). 790 */ 791 static int register_root_hub(struct usb_hcd *hcd) 792 { 793 struct device *parent_dev = hcd->self.controller; 794 struct usb_device *usb_dev = hcd->self.root_hub; 795 const int devnum = 1; 796 int retval; 797 798 usb_dev->devnum = devnum; 799 usb_dev->bus->devnum_next = devnum + 1; 800 memset (&usb_dev->bus->devmap.devicemap, 0, 801 sizeof usb_dev->bus->devmap.devicemap); 802 set_bit (devnum, usb_dev->bus->devmap.devicemap); 803 usb_set_device_state(usb_dev, USB_STATE_ADDRESS); 804 805 mutex_lock(&usb_bus_list_lock); 806 807 usb_dev->ep0.desc.wMaxPacketSize = __constant_cpu_to_le16(64); 808 retval = usb_get_device_descriptor(usb_dev, USB_DT_DEVICE_SIZE); 809 if (retval != sizeof usb_dev->descriptor) { 810 mutex_unlock(&usb_bus_list_lock); 811 dev_dbg (parent_dev, "can't read %s device descriptor %d\n", 812 usb_dev->dev.bus_id, retval); 813 return (retval < 0) ? retval : -EMSGSIZE; 814 } 815 816 retval = usb_new_device (usb_dev); 817 if (retval) { 818 dev_err (parent_dev, "can't register root hub for %s, %d\n", 819 usb_dev->dev.bus_id, retval); 820 } 821 mutex_unlock(&usb_bus_list_lock); 822 823 if (retval == 0) { 824 spin_lock_irq (&hcd_root_hub_lock); 825 hcd->rh_registered = 1; 826 spin_unlock_irq (&hcd_root_hub_lock); 827 828 /* Did the HC die before the root hub was registered? */ 829 if (hcd->state == HC_STATE_HALT) 830 usb_hc_died (hcd); /* This time clean up */ 831 } 832 833 return retval; 834 } 835 836 void usb_enable_root_hub_irq (struct usb_bus *bus) 837 { 838 struct usb_hcd *hcd; 839 840 hcd = container_of (bus, struct usb_hcd, self); 841 if (hcd->driver->hub_irq_enable && hcd->state != HC_STATE_HALT) 842 hcd->driver->hub_irq_enable (hcd); 843 } 844 845 846 /*-------------------------------------------------------------------------*/ 847 848 /** 849 * usb_calc_bus_time - approximate periodic transaction time in nanoseconds 850 * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH} 851 * @is_input: true iff the transaction sends data to the host 852 * @isoc: true for isochronous transactions, false for interrupt ones 853 * @bytecount: how many bytes in the transaction. 854 * 855 * Returns approximate bus time in nanoseconds for a periodic transaction. 856 * See USB 2.0 spec section 5.11.3; only periodic transfers need to be 857 * scheduled in software, this function is only used for such scheduling. 858 */ 859 long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount) 860 { 861 unsigned long tmp; 862 863 switch (speed) { 864 case USB_SPEED_LOW: /* INTR only */ 865 if (is_input) { 866 tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L; 867 return (64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp); 868 } else { 869 tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L; 870 return (64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp); 871 } 872 case USB_SPEED_FULL: /* ISOC or INTR */ 873 if (isoc) { 874 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L; 875 return (((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp); 876 } else { 877 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L; 878 return (9107L + BW_HOST_DELAY + tmp); 879 } 880 case USB_SPEED_HIGH: /* ISOC or INTR */ 881 // FIXME adjust for input vs output 882 if (isoc) 883 tmp = HS_NSECS_ISO (bytecount); 884 else 885 tmp = HS_NSECS (bytecount); 886 return tmp; 887 default: 888 pr_debug ("%s: bogus device speed!\n", usbcore_name); 889 return -1; 890 } 891 } 892 EXPORT_SYMBOL (usb_calc_bus_time); 893 894 /* 895 * usb_check_bandwidth(): 896 * 897 * old_alloc is from host_controller->bandwidth_allocated in microseconds; 898 * bustime is from calc_bus_time(), but converted to microseconds. 899 * 900 * returns <bustime in us> if successful, 901 * or -ENOSPC if bandwidth request fails. 902 * 903 * FIXME: 904 * This initial implementation does not use Endpoint.bInterval 905 * in managing bandwidth allocation. 906 * It probably needs to be expanded to use Endpoint.bInterval. 907 * This can be done as a later enhancement (correction). 908 * 909 * This will also probably require some kind of 910 * frame allocation tracking...meaning, for example, 911 * that if multiple drivers request interrupts every 10 USB frames, 912 * they don't all have to be allocated at 913 * frame numbers N, N+10, N+20, etc. Some of them could be at 914 * N+11, N+21, N+31, etc., and others at 915 * N+12, N+22, N+32, etc. 916 * 917 * Similarly for isochronous transfers... 918 * 919 * Individual HCDs can schedule more directly ... this logic 920 * is not correct for high speed transfers. 921 */ 922 int usb_check_bandwidth (struct usb_device *dev, struct urb *urb) 923 { 924 unsigned int pipe = urb->pipe; 925 long bustime; 926 int is_in = usb_pipein (pipe); 927 int is_iso = usb_pipeisoc (pipe); 928 int old_alloc = dev->bus->bandwidth_allocated; 929 int new_alloc; 930 931 932 bustime = NS_TO_US (usb_calc_bus_time (dev->speed, is_in, is_iso, 933 usb_maxpacket (dev, pipe, !is_in))); 934 if (is_iso) 935 bustime /= urb->number_of_packets; 936 937 new_alloc = old_alloc + (int) bustime; 938 if (new_alloc > FRAME_TIME_MAX_USECS_ALLOC) { 939 #ifdef DEBUG 940 char *mode = 941 #ifdef CONFIG_USB_BANDWIDTH 942 ""; 943 #else 944 "would have "; 945 #endif 946 dev_dbg (&dev->dev, "usb_check_bandwidth %sFAILED: %d + %ld = %d usec\n", 947 mode, old_alloc, bustime, new_alloc); 948 #endif 949 #ifdef CONFIG_USB_BANDWIDTH 950 bustime = -ENOSPC; /* report error */ 951 #endif 952 } 953 954 return bustime; 955 } 956 EXPORT_SYMBOL (usb_check_bandwidth); 957 958 959 /** 960 * usb_claim_bandwidth - records bandwidth for a periodic transfer 961 * @dev: source/target of request 962 * @urb: request (urb->dev == dev) 963 * @bustime: bandwidth consumed, in (average) microseconds per frame 964 * @isoc: true iff the request is isochronous 965 * 966 * Bus bandwidth reservations are recorded purely for diagnostic purposes. 967 * HCDs are expected not to overcommit periodic bandwidth, and to record such 968 * reservations whenever endpoints are added to the periodic schedule. 969 * 970 * FIXME averaging per-frame is suboptimal. Better to sum over the HCD's 971 * entire periodic schedule ... 32 frames for OHCI, 1024 for UHCI, settable 972 * for EHCI (256/512/1024 frames, default 1024) and have the bus expose how 973 * large its periodic schedule is. 974 */ 975 void usb_claim_bandwidth (struct usb_device *dev, struct urb *urb, int bustime, int isoc) 976 { 977 dev->bus->bandwidth_allocated += bustime; 978 if (isoc) 979 dev->bus->bandwidth_isoc_reqs++; 980 else 981 dev->bus->bandwidth_int_reqs++; 982 urb->bandwidth = bustime; 983 984 #ifdef USB_BANDWIDTH_MESSAGES 985 dev_dbg (&dev->dev, "bandwidth alloc increased by %d (%s) to %d for %d requesters\n", 986 bustime, 987 isoc ? "ISOC" : "INTR", 988 dev->bus->bandwidth_allocated, 989 dev->bus->bandwidth_int_reqs + dev->bus->bandwidth_isoc_reqs); 990 #endif 991 } 992 EXPORT_SYMBOL (usb_claim_bandwidth); 993 994 995 /** 996 * usb_release_bandwidth - reverses effect of usb_claim_bandwidth() 997 * @dev: source/target of request 998 * @urb: request (urb->dev == dev) 999 * @isoc: true iff the request is isochronous 1000 * 1001 * This records that previously allocated bandwidth has been released. 1002 * Bandwidth is released when endpoints are removed from the host controller's 1003 * periodic schedule. 1004 */ 1005 void usb_release_bandwidth (struct usb_device *dev, struct urb *urb, int isoc) 1006 { 1007 dev->bus->bandwidth_allocated -= urb->bandwidth; 1008 if (isoc) 1009 dev->bus->bandwidth_isoc_reqs--; 1010 else 1011 dev->bus->bandwidth_int_reqs--; 1012 1013 #ifdef USB_BANDWIDTH_MESSAGES 1014 dev_dbg (&dev->dev, "bandwidth alloc reduced by %d (%s) to %d for %d requesters\n", 1015 urb->bandwidth, 1016 isoc ? "ISOC" : "INTR", 1017 dev->bus->bandwidth_allocated, 1018 dev->bus->bandwidth_int_reqs + dev->bus->bandwidth_isoc_reqs); 1019 #endif 1020 urb->bandwidth = 0; 1021 } 1022 EXPORT_SYMBOL (usb_release_bandwidth); 1023 1024 1025 /*-------------------------------------------------------------------------*/ 1026 1027 /* 1028 * Generic HC operations. 1029 */ 1030 1031 /*-------------------------------------------------------------------------*/ 1032 1033 static void urb_unlink (struct urb *urb) 1034 { 1035 unsigned long flags; 1036 1037 /* Release any periodic transfer bandwidth */ 1038 if (urb->bandwidth) 1039 usb_release_bandwidth (urb->dev, urb, 1040 usb_pipeisoc (urb->pipe)); 1041 1042 /* clear all state linking urb to this dev (and hcd) */ 1043 1044 spin_lock_irqsave (&hcd_data_lock, flags); 1045 list_del_init (&urb->urb_list); 1046 spin_unlock_irqrestore (&hcd_data_lock, flags); 1047 } 1048 1049 1050 /* may be called in any context with a valid urb->dev usecount 1051 * caller surrenders "ownership" of urb 1052 * expects usb_submit_urb() to have sanity checked and conditioned all 1053 * inputs in the urb 1054 */ 1055 int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags) 1056 { 1057 int status; 1058 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus); 1059 struct usb_host_endpoint *ep; 1060 unsigned long flags; 1061 1062 if (!hcd) 1063 return -ENODEV; 1064 1065 usbmon_urb_submit(&hcd->self, urb); 1066 1067 /* 1068 * Atomically queue the urb, first to our records, then to the HCD. 1069 * Access to urb->status is controlled by urb->lock ... changes on 1070 * i/o completion (normal or fault) or unlinking. 1071 */ 1072 1073 // FIXME: verify that quiescing hc works right (RH cleans up) 1074 1075 spin_lock_irqsave (&hcd_data_lock, flags); 1076 ep = (usb_pipein(urb->pipe) ? urb->dev->ep_in : urb->dev->ep_out) 1077 [usb_pipeendpoint(urb->pipe)]; 1078 if (unlikely (!ep)) 1079 status = -ENOENT; 1080 else if (unlikely (urb->reject)) 1081 status = -EPERM; 1082 else switch (hcd->state) { 1083 case HC_STATE_RUNNING: 1084 case HC_STATE_RESUMING: 1085 doit: 1086 list_add_tail (&urb->urb_list, &ep->urb_list); 1087 status = 0; 1088 break; 1089 case HC_STATE_SUSPENDED: 1090 /* HC upstream links (register access, wakeup signaling) can work 1091 * even when the downstream links (and DMA etc) are quiesced; let 1092 * usbcore talk to the root hub. 1093 */ 1094 if (hcd->self.controller->power.power_state.event == PM_EVENT_ON 1095 && urb->dev->parent == NULL) 1096 goto doit; 1097 /* FALL THROUGH */ 1098 default: 1099 status = -ESHUTDOWN; 1100 break; 1101 } 1102 spin_unlock_irqrestore (&hcd_data_lock, flags); 1103 if (status) { 1104 INIT_LIST_HEAD (&urb->urb_list); 1105 usbmon_urb_submit_error(&hcd->self, urb, status); 1106 return status; 1107 } 1108 1109 /* increment urb's reference count as part of giving it to the HCD 1110 * (which now controls it). HCD guarantees that it either returns 1111 * an error or calls giveback(), but not both. 1112 */ 1113 urb = usb_get_urb (urb); 1114 atomic_inc (&urb->use_count); 1115 1116 if (urb->dev == hcd->self.root_hub) { 1117 /* NOTE: requirement on hub callers (usbfs and the hub 1118 * driver, for now) that URBs' urb->transfer_buffer be 1119 * valid and usb_buffer_{sync,unmap}() not be needed, since 1120 * they could clobber root hub response data. 1121 */ 1122 status = rh_urb_enqueue (hcd, urb); 1123 goto done; 1124 } 1125 1126 /* lower level hcd code should use *_dma exclusively, 1127 * unless it uses pio or talks to another transport. 1128 */ 1129 if (hcd->self.uses_dma) { 1130 if (usb_pipecontrol (urb->pipe) 1131 && !(urb->transfer_flags & URB_NO_SETUP_DMA_MAP)) 1132 urb->setup_dma = dma_map_single ( 1133 hcd->self.controller, 1134 urb->setup_packet, 1135 sizeof (struct usb_ctrlrequest), 1136 DMA_TO_DEVICE); 1137 if (urb->transfer_buffer_length != 0 1138 && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) 1139 urb->transfer_dma = dma_map_single ( 1140 hcd->self.controller, 1141 urb->transfer_buffer, 1142 urb->transfer_buffer_length, 1143 usb_pipein (urb->pipe) 1144 ? DMA_FROM_DEVICE 1145 : DMA_TO_DEVICE); 1146 } 1147 1148 status = hcd->driver->urb_enqueue (hcd, ep, urb, mem_flags); 1149 done: 1150 if (unlikely (status)) { 1151 urb_unlink (urb); 1152 atomic_dec (&urb->use_count); 1153 if (urb->reject) 1154 wake_up (&usb_kill_urb_queue); 1155 usb_put_urb (urb); 1156 usbmon_urb_submit_error(&hcd->self, urb, status); 1157 } 1158 return status; 1159 } 1160 1161 /*-------------------------------------------------------------------------*/ 1162 1163 /* called in any context */ 1164 int usb_hcd_get_frame_number (struct usb_device *udev) 1165 { 1166 struct usb_hcd *hcd = bus_to_hcd(udev->bus); 1167 1168 if (!HC_IS_RUNNING (hcd->state)) 1169 return -ESHUTDOWN; 1170 return hcd->driver->get_frame_number (hcd); 1171 } 1172 1173 /*-------------------------------------------------------------------------*/ 1174 1175 /* this makes the hcd giveback() the urb more quickly, by kicking it 1176 * off hardware queues (which may take a while) and returning it as 1177 * soon as practical. we've already set up the urb's return status, 1178 * but we can't know if the callback completed already. 1179 */ 1180 static int 1181 unlink1 (struct usb_hcd *hcd, struct urb *urb) 1182 { 1183 int value; 1184 1185 if (urb->dev == hcd->self.root_hub) 1186 value = usb_rh_urb_dequeue (hcd, urb); 1187 else { 1188 1189 /* The only reason an HCD might fail this call is if 1190 * it has not yet fully queued the urb to begin with. 1191 * Such failures should be harmless. */ 1192 value = hcd->driver->urb_dequeue (hcd, urb); 1193 } 1194 1195 if (value != 0) 1196 dev_dbg (hcd->self.controller, "dequeue %p --> %d\n", 1197 urb, value); 1198 return value; 1199 } 1200 1201 /* 1202 * called in any context 1203 * 1204 * caller guarantees urb won't be recycled till both unlink() 1205 * and the urb's completion function return 1206 */ 1207 int usb_hcd_unlink_urb (struct urb *urb, int status) 1208 { 1209 struct usb_host_endpoint *ep; 1210 struct usb_hcd *hcd = NULL; 1211 struct device *sys = NULL; 1212 unsigned long flags; 1213 struct list_head *tmp; 1214 int retval; 1215 1216 if (!urb) 1217 return -EINVAL; 1218 if (!urb->dev || !urb->dev->bus) 1219 return -ENODEV; 1220 ep = (usb_pipein(urb->pipe) ? urb->dev->ep_in : urb->dev->ep_out) 1221 [usb_pipeendpoint(urb->pipe)]; 1222 if (!ep) 1223 return -ENODEV; 1224 1225 /* 1226 * we contend for urb->status with the hcd core, 1227 * which changes it while returning the urb. 1228 * 1229 * Caller guaranteed that the urb pointer hasn't been freed, and 1230 * that it was submitted. But as a rule it can't know whether or 1231 * not it's already been unlinked ... so we respect the reversed 1232 * lock sequence needed for the usb_hcd_giveback_urb() code paths 1233 * (urb lock, then hcd_data_lock) in case some other CPU is now 1234 * unlinking it. 1235 */ 1236 spin_lock_irqsave (&urb->lock, flags); 1237 spin_lock (&hcd_data_lock); 1238 1239 sys = &urb->dev->dev; 1240 hcd = bus_to_hcd(urb->dev->bus); 1241 if (hcd == NULL) { 1242 retval = -ENODEV; 1243 goto done; 1244 } 1245 1246 /* insist the urb is still queued */ 1247 list_for_each(tmp, &ep->urb_list) { 1248 if (tmp == &urb->urb_list) 1249 break; 1250 } 1251 if (tmp != &urb->urb_list) { 1252 retval = -EIDRM; 1253 goto done; 1254 } 1255 1256 /* Any status except -EINPROGRESS means something already started to 1257 * unlink this URB from the hardware. So there's no more work to do. 1258 */ 1259 if (urb->status != -EINPROGRESS) { 1260 retval = -EBUSY; 1261 goto done; 1262 } 1263 1264 /* IRQ setup can easily be broken so that USB controllers 1265 * never get completion IRQs ... maybe even the ones we need to 1266 * finish unlinking the initial failed usb_set_address() 1267 * or device descriptor fetch. 1268 */ 1269 if (!test_bit(HCD_FLAG_SAW_IRQ, &hcd->flags) 1270 && hcd->self.root_hub != urb->dev) { 1271 dev_warn (hcd->self.controller, "Unlink after no-IRQ? " 1272 "Controller is probably using the wrong IRQ." 1273 "\n"); 1274 set_bit(HCD_FLAG_SAW_IRQ, &hcd->flags); 1275 } 1276 1277 urb->status = status; 1278 1279 spin_unlock (&hcd_data_lock); 1280 spin_unlock_irqrestore (&urb->lock, flags); 1281 1282 retval = unlink1 (hcd, urb); 1283 if (retval == 0) 1284 retval = -EINPROGRESS; 1285 return retval; 1286 1287 done: 1288 spin_unlock (&hcd_data_lock); 1289 spin_unlock_irqrestore (&urb->lock, flags); 1290 if (retval != -EIDRM && sys && sys->driver) 1291 dev_dbg (sys, "hcd_unlink_urb %p fail %d\n", urb, retval); 1292 return retval; 1293 } 1294 1295 /*-------------------------------------------------------------------------*/ 1296 1297 /* disables the endpoint: cancels any pending urbs, then synchronizes with 1298 * the hcd to make sure all endpoint state is gone from hardware, and then 1299 * waits until the endpoint's queue is completely drained. use for 1300 * set_configuration, set_interface, driver removal, physical disconnect. 1301 * 1302 * example: a qh stored in ep->hcpriv, holding state related to endpoint 1303 * type, maxpacket size, toggle, halt status, and scheduling. 1304 */ 1305 void usb_hcd_endpoint_disable (struct usb_device *udev, 1306 struct usb_host_endpoint *ep) 1307 { 1308 struct usb_hcd *hcd; 1309 struct urb *urb; 1310 1311 hcd = bus_to_hcd(udev->bus); 1312 1313 WARN_ON (!HC_IS_RUNNING (hcd->state) && hcd->state != HC_STATE_HALT && 1314 udev->state != USB_STATE_NOTATTACHED); 1315 1316 local_irq_disable (); 1317 1318 /* ep is already gone from udev->ep_{in,out}[]; no more submits */ 1319 rescan: 1320 spin_lock (&hcd_data_lock); 1321 list_for_each_entry (urb, &ep->urb_list, urb_list) { 1322 int tmp; 1323 1324 /* the urb may already have been unlinked */ 1325 if (urb->status != -EINPROGRESS) 1326 continue; 1327 usb_get_urb (urb); 1328 spin_unlock (&hcd_data_lock); 1329 1330 spin_lock (&urb->lock); 1331 tmp = urb->status; 1332 if (tmp == -EINPROGRESS) 1333 urb->status = -ESHUTDOWN; 1334 spin_unlock (&urb->lock); 1335 1336 /* kick hcd unless it's already returning this */ 1337 if (tmp == -EINPROGRESS) { 1338 tmp = urb->pipe; 1339 unlink1 (hcd, urb); 1340 dev_dbg (hcd->self.controller, 1341 "shutdown urb %p pipe %08x ep%d%s%s\n", 1342 urb, tmp, usb_pipeendpoint (tmp), 1343 (tmp & USB_DIR_IN) ? "in" : "out", 1344 ({ char *s; \ 1345 switch (usb_pipetype (tmp)) { \ 1346 case PIPE_CONTROL: s = ""; break; \ 1347 case PIPE_BULK: s = "-bulk"; break; \ 1348 case PIPE_INTERRUPT: s = "-intr"; break; \ 1349 default: s = "-iso"; break; \ 1350 }; s;})); 1351 } 1352 usb_put_urb (urb); 1353 1354 /* list contents may have changed */ 1355 goto rescan; 1356 } 1357 spin_unlock (&hcd_data_lock); 1358 local_irq_enable (); 1359 1360 /* synchronize with the hardware, so old configuration state 1361 * clears out immediately (and will be freed). 1362 */ 1363 might_sleep (); 1364 if (hcd->driver->endpoint_disable) 1365 hcd->driver->endpoint_disable (hcd, ep); 1366 1367 /* Wait until the endpoint queue is completely empty. Most HCDs 1368 * will have done this already in their endpoint_disable method, 1369 * but some might not. And there could be root-hub control URBs 1370 * still pending since they aren't affected by the HCDs' 1371 * endpoint_disable methods. 1372 */ 1373 while (!list_empty (&ep->urb_list)) { 1374 spin_lock_irq (&hcd_data_lock); 1375 1376 /* The list may have changed while we acquired the spinlock */ 1377 urb = NULL; 1378 if (!list_empty (&ep->urb_list)) { 1379 urb = list_entry (ep->urb_list.prev, struct urb, 1380 urb_list); 1381 usb_get_urb (urb); 1382 } 1383 spin_unlock_irq (&hcd_data_lock); 1384 1385 if (urb) { 1386 usb_kill_urb (urb); 1387 usb_put_urb (urb); 1388 } 1389 } 1390 } 1391 1392 /*-------------------------------------------------------------------------*/ 1393 1394 #ifdef CONFIG_PM 1395 1396 int hcd_bus_suspend (struct usb_bus *bus) 1397 { 1398 struct usb_hcd *hcd; 1399 int status; 1400 1401 hcd = container_of (bus, struct usb_hcd, self); 1402 if (!hcd->driver->bus_suspend) 1403 return -ENOENT; 1404 hcd->state = HC_STATE_QUIESCING; 1405 status = hcd->driver->bus_suspend (hcd); 1406 if (status == 0) 1407 hcd->state = HC_STATE_SUSPENDED; 1408 else 1409 dev_dbg(&bus->root_hub->dev, "%s fail, err %d\n", 1410 "suspend", status); 1411 return status; 1412 } 1413 1414 int hcd_bus_resume (struct usb_bus *bus) 1415 { 1416 struct usb_hcd *hcd; 1417 int status; 1418 1419 hcd = container_of (bus, struct usb_hcd, self); 1420 if (!hcd->driver->bus_resume) 1421 return -ENOENT; 1422 if (hcd->state == HC_STATE_RUNNING) 1423 return 0; 1424 hcd->state = HC_STATE_RESUMING; 1425 status = hcd->driver->bus_resume (hcd); 1426 if (status == 0) 1427 hcd->state = HC_STATE_RUNNING; 1428 else { 1429 dev_dbg(&bus->root_hub->dev, "%s fail, err %d\n", 1430 "resume", status); 1431 usb_hc_died(hcd); 1432 } 1433 return status; 1434 } 1435 1436 /** 1437 * usb_hcd_resume_root_hub - called by HCD to resume its root hub 1438 * @hcd: host controller for this root hub 1439 * 1440 * The USB host controller calls this function when its root hub is 1441 * suspended (with the remote wakeup feature enabled) and a remote 1442 * wakeup request is received. It queues a request for khubd to 1443 * resume the root hub (that is, manage its downstream ports again). 1444 */ 1445 void usb_hcd_resume_root_hub (struct usb_hcd *hcd) 1446 { 1447 unsigned long flags; 1448 1449 spin_lock_irqsave (&hcd_root_hub_lock, flags); 1450 if (hcd->rh_registered) 1451 usb_resume_root_hub (hcd->self.root_hub); 1452 spin_unlock_irqrestore (&hcd_root_hub_lock, flags); 1453 } 1454 EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub); 1455 1456 #endif 1457 1458 /*-------------------------------------------------------------------------*/ 1459 1460 #ifdef CONFIG_USB_OTG 1461 1462 /** 1463 * usb_bus_start_enum - start immediate enumeration (for OTG) 1464 * @bus: the bus (must use hcd framework) 1465 * @port_num: 1-based number of port; usually bus->otg_port 1466 * Context: in_interrupt() 1467 * 1468 * Starts enumeration, with an immediate reset followed later by 1469 * khubd identifying and possibly configuring the device. 1470 * This is needed by OTG controller drivers, where it helps meet 1471 * HNP protocol timing requirements for starting a port reset. 1472 */ 1473 int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num) 1474 { 1475 struct usb_hcd *hcd; 1476 int status = -EOPNOTSUPP; 1477 1478 /* NOTE: since HNP can't start by grabbing the bus's address0_sem, 1479 * boards with root hubs hooked up to internal devices (instead of 1480 * just the OTG port) may need more attention to resetting... 1481 */ 1482 hcd = container_of (bus, struct usb_hcd, self); 1483 if (port_num && hcd->driver->start_port_reset) 1484 status = hcd->driver->start_port_reset(hcd, port_num); 1485 1486 /* run khubd shortly after (first) root port reset finishes; 1487 * it may issue others, until at least 50 msecs have passed. 1488 */ 1489 if (status == 0) 1490 mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10)); 1491 return status; 1492 } 1493 EXPORT_SYMBOL (usb_bus_start_enum); 1494 1495 #endif 1496 1497 /*-------------------------------------------------------------------------*/ 1498 1499 /** 1500 * usb_hcd_giveback_urb - return URB from HCD to device driver 1501 * @hcd: host controller returning the URB 1502 * @urb: urb being returned to the USB device driver. 1503 * Context: in_interrupt() 1504 * 1505 * This hands the URB from HCD to its USB device driver, using its 1506 * completion function. The HCD has freed all per-urb resources 1507 * (and is done using urb->hcpriv). It also released all HCD locks; 1508 * the device driver won't cause problems if it frees, modifies, 1509 * or resubmits this URB. 1510 */ 1511 void usb_hcd_giveback_urb (struct usb_hcd *hcd, struct urb *urb) 1512 { 1513 int at_root_hub; 1514 1515 at_root_hub = (urb->dev == hcd->self.root_hub); 1516 urb_unlink (urb); 1517 1518 /* lower level hcd code should use *_dma exclusively if the 1519 * host controller does DMA */ 1520 if (hcd->self.uses_dma && !at_root_hub) { 1521 if (usb_pipecontrol (urb->pipe) 1522 && !(urb->transfer_flags & URB_NO_SETUP_DMA_MAP)) 1523 dma_unmap_single (hcd->self.controller, urb->setup_dma, 1524 sizeof (struct usb_ctrlrequest), 1525 DMA_TO_DEVICE); 1526 if (urb->transfer_buffer_length != 0 1527 && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) 1528 dma_unmap_single (hcd->self.controller, 1529 urb->transfer_dma, 1530 urb->transfer_buffer_length, 1531 usb_pipein (urb->pipe) 1532 ? DMA_FROM_DEVICE 1533 : DMA_TO_DEVICE); 1534 } 1535 1536 usbmon_urb_complete (&hcd->self, urb); 1537 /* pass ownership to the completion handler */ 1538 urb->complete (urb); 1539 atomic_dec (&urb->use_count); 1540 if (unlikely (urb->reject)) 1541 wake_up (&usb_kill_urb_queue); 1542 usb_put_urb (urb); 1543 } 1544 EXPORT_SYMBOL (usb_hcd_giveback_urb); 1545 1546 /*-------------------------------------------------------------------------*/ 1547 1548 /** 1549 * usb_hcd_irq - hook IRQs to HCD framework (bus glue) 1550 * @irq: the IRQ being raised 1551 * @__hcd: pointer to the HCD whose IRQ is being signaled 1552 * @r: saved hardware registers 1553 * 1554 * If the controller isn't HALTed, calls the driver's irq handler. 1555 * Checks whether the controller is now dead. 1556 */ 1557 irqreturn_t usb_hcd_irq (int irq, void *__hcd) 1558 { 1559 struct usb_hcd *hcd = __hcd; 1560 int start = hcd->state; 1561 1562 if (unlikely(start == HC_STATE_HALT || 1563 !test_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags))) 1564 return IRQ_NONE; 1565 if (hcd->driver->irq (hcd) == IRQ_NONE) 1566 return IRQ_NONE; 1567 1568 set_bit(HCD_FLAG_SAW_IRQ, &hcd->flags); 1569 1570 if (unlikely(hcd->state == HC_STATE_HALT)) 1571 usb_hc_died (hcd); 1572 return IRQ_HANDLED; 1573 } 1574 1575 /*-------------------------------------------------------------------------*/ 1576 1577 /** 1578 * usb_hc_died - report abnormal shutdown of a host controller (bus glue) 1579 * @hcd: pointer to the HCD representing the controller 1580 * 1581 * This is called by bus glue to report a USB host controller that died 1582 * while operations may still have been pending. It's called automatically 1583 * by the PCI glue, so only glue for non-PCI busses should need to call it. 1584 */ 1585 void usb_hc_died (struct usb_hcd *hcd) 1586 { 1587 unsigned long flags; 1588 1589 dev_err (hcd->self.controller, "HC died; cleaning up\n"); 1590 1591 spin_lock_irqsave (&hcd_root_hub_lock, flags); 1592 if (hcd->rh_registered) { 1593 hcd->poll_rh = 0; 1594 1595 /* make khubd clean up old urbs and devices */ 1596 usb_set_device_state (hcd->self.root_hub, 1597 USB_STATE_NOTATTACHED); 1598 usb_kick_khubd (hcd->self.root_hub); 1599 } 1600 spin_unlock_irqrestore (&hcd_root_hub_lock, flags); 1601 } 1602 EXPORT_SYMBOL_GPL (usb_hc_died); 1603 1604 /*-------------------------------------------------------------------------*/ 1605 1606 /** 1607 * usb_create_hcd - create and initialize an HCD structure 1608 * @driver: HC driver that will use this hcd 1609 * @dev: device for this HC, stored in hcd->self.controller 1610 * @bus_name: value to store in hcd->self.bus_name 1611 * Context: !in_interrupt() 1612 * 1613 * Allocate a struct usb_hcd, with extra space at the end for the 1614 * HC driver's private data. Initialize the generic members of the 1615 * hcd structure. 1616 * 1617 * If memory is unavailable, returns NULL. 1618 */ 1619 struct usb_hcd *usb_create_hcd (const struct hc_driver *driver, 1620 struct device *dev, char *bus_name) 1621 { 1622 struct usb_hcd *hcd; 1623 1624 hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL); 1625 if (!hcd) { 1626 dev_dbg (dev, "hcd alloc failed\n"); 1627 return NULL; 1628 } 1629 dev_set_drvdata(dev, hcd); 1630 kref_init(&hcd->kref); 1631 1632 usb_bus_init(&hcd->self); 1633 hcd->self.controller = dev; 1634 hcd->self.bus_name = bus_name; 1635 hcd->self.uses_dma = (dev->dma_mask != NULL); 1636 1637 init_timer(&hcd->rh_timer); 1638 hcd->rh_timer.function = rh_timer_func; 1639 hcd->rh_timer.data = (unsigned long) hcd; 1640 1641 hcd->driver = driver; 1642 hcd->product_desc = (driver->product_desc) ? driver->product_desc : 1643 "USB Host Controller"; 1644 1645 return hcd; 1646 } 1647 EXPORT_SYMBOL (usb_create_hcd); 1648 1649 static void hcd_release (struct kref *kref) 1650 { 1651 struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref); 1652 1653 kfree(hcd); 1654 } 1655 1656 struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd) 1657 { 1658 if (hcd) 1659 kref_get (&hcd->kref); 1660 return hcd; 1661 } 1662 EXPORT_SYMBOL (usb_get_hcd); 1663 1664 void usb_put_hcd (struct usb_hcd *hcd) 1665 { 1666 if (hcd) 1667 kref_put (&hcd->kref, hcd_release); 1668 } 1669 EXPORT_SYMBOL (usb_put_hcd); 1670 1671 /** 1672 * usb_add_hcd - finish generic HCD structure initialization and register 1673 * @hcd: the usb_hcd structure to initialize 1674 * @irqnum: Interrupt line to allocate 1675 * @irqflags: Interrupt type flags 1676 * 1677 * Finish the remaining parts of generic HCD initialization: allocate the 1678 * buffers of consistent memory, register the bus, request the IRQ line, 1679 * and call the driver's reset() and start() routines. 1680 */ 1681 int usb_add_hcd(struct usb_hcd *hcd, 1682 unsigned int irqnum, unsigned long irqflags) 1683 { 1684 int retval; 1685 struct usb_device *rhdev; 1686 1687 dev_info(hcd->self.controller, "%s\n", hcd->product_desc); 1688 1689 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 1690 1691 /* HC is in reset state, but accessible. Now do the one-time init, 1692 * bottom up so that hcds can customize the root hubs before khubd 1693 * starts talking to them. (Note, bus id is assigned early too.) 1694 */ 1695 if ((retval = hcd_buffer_create(hcd)) != 0) { 1696 dev_dbg(hcd->self.controller, "pool alloc failed\n"); 1697 return retval; 1698 } 1699 1700 if ((retval = usb_register_bus(&hcd->self)) < 0) 1701 goto err_register_bus; 1702 1703 if ((rhdev = usb_alloc_dev(NULL, &hcd->self, 0)) == NULL) { 1704 dev_err(hcd->self.controller, "unable to allocate root hub\n"); 1705 retval = -ENOMEM; 1706 goto err_allocate_root_hub; 1707 } 1708 rhdev->speed = (hcd->driver->flags & HCD_USB2) ? USB_SPEED_HIGH : 1709 USB_SPEED_FULL; 1710 hcd->self.root_hub = rhdev; 1711 1712 /* wakeup flag init defaults to "everything works" for root hubs, 1713 * but drivers can override it in reset() if needed, along with 1714 * recording the overall controller's system wakeup capability. 1715 */ 1716 device_init_wakeup(&rhdev->dev, 1); 1717 1718 /* "reset" is misnamed; its role is now one-time init. the controller 1719 * should already have been reset (and boot firmware kicked off etc). 1720 */ 1721 if (hcd->driver->reset && (retval = hcd->driver->reset(hcd)) < 0) { 1722 dev_err(hcd->self.controller, "can't setup\n"); 1723 goto err_hcd_driver_setup; 1724 } 1725 1726 /* NOTE: root hub and controller capabilities may not be the same */ 1727 if (device_can_wakeup(hcd->self.controller) 1728 && device_can_wakeup(&hcd->self.root_hub->dev)) 1729 dev_dbg(hcd->self.controller, "supports USB remote wakeup\n"); 1730 1731 /* enable irqs just before we start the controller */ 1732 if (hcd->driver->irq) { 1733 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d", 1734 hcd->driver->description, hcd->self.busnum); 1735 if ((retval = request_irq(irqnum, &usb_hcd_irq, irqflags, 1736 hcd->irq_descr, hcd)) != 0) { 1737 dev_err(hcd->self.controller, 1738 "request interrupt %d failed\n", irqnum); 1739 goto err_request_irq; 1740 } 1741 hcd->irq = irqnum; 1742 dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum, 1743 (hcd->driver->flags & HCD_MEMORY) ? 1744 "io mem" : "io base", 1745 (unsigned long long)hcd->rsrc_start); 1746 } else { 1747 hcd->irq = -1; 1748 if (hcd->rsrc_start) 1749 dev_info(hcd->self.controller, "%s 0x%08llx\n", 1750 (hcd->driver->flags & HCD_MEMORY) ? 1751 "io mem" : "io base", 1752 (unsigned long long)hcd->rsrc_start); 1753 } 1754 1755 if ((retval = hcd->driver->start(hcd)) < 0) { 1756 dev_err(hcd->self.controller, "startup error %d\n", retval); 1757 goto err_hcd_driver_start; 1758 } 1759 1760 /* starting here, usbcore will pay attention to this root hub */ 1761 rhdev->bus_mA = min(500u, hcd->power_budget); 1762 if ((retval = register_root_hub(hcd)) != 0) 1763 goto err_register_root_hub; 1764 1765 if (hcd->uses_new_polling && hcd->poll_rh) 1766 usb_hcd_poll_rh_status(hcd); 1767 return retval; 1768 1769 err_register_root_hub: 1770 hcd->driver->stop(hcd); 1771 err_hcd_driver_start: 1772 if (hcd->irq >= 0) 1773 free_irq(irqnum, hcd); 1774 err_request_irq: 1775 err_hcd_driver_setup: 1776 hcd->self.root_hub = NULL; 1777 usb_put_dev(rhdev); 1778 err_allocate_root_hub: 1779 usb_deregister_bus(&hcd->self); 1780 err_register_bus: 1781 hcd_buffer_destroy(hcd); 1782 return retval; 1783 } 1784 EXPORT_SYMBOL (usb_add_hcd); 1785 1786 /** 1787 * usb_remove_hcd - shutdown processing for generic HCDs 1788 * @hcd: the usb_hcd structure to remove 1789 * Context: !in_interrupt() 1790 * 1791 * Disconnects the root hub, then reverses the effects of usb_add_hcd(), 1792 * invoking the HCD's stop() method. 1793 */ 1794 void usb_remove_hcd(struct usb_hcd *hcd) 1795 { 1796 dev_info(hcd->self.controller, "remove, state %x\n", hcd->state); 1797 1798 if (HC_IS_RUNNING (hcd->state)) 1799 hcd->state = HC_STATE_QUIESCING; 1800 1801 dev_dbg(hcd->self.controller, "roothub graceful disconnect\n"); 1802 spin_lock_irq (&hcd_root_hub_lock); 1803 hcd->rh_registered = 0; 1804 spin_unlock_irq (&hcd_root_hub_lock); 1805 1806 mutex_lock(&usb_bus_list_lock); 1807 usb_disconnect(&hcd->self.root_hub); 1808 mutex_unlock(&usb_bus_list_lock); 1809 1810 hcd->poll_rh = 0; 1811 del_timer_sync(&hcd->rh_timer); 1812 1813 hcd->driver->stop(hcd); 1814 hcd->state = HC_STATE_HALT; 1815 1816 if (hcd->irq >= 0) 1817 free_irq(hcd->irq, hcd); 1818 usb_deregister_bus(&hcd->self); 1819 hcd_buffer_destroy(hcd); 1820 } 1821 EXPORT_SYMBOL (usb_remove_hcd); 1822 1823 void 1824 usb_hcd_platform_shutdown(struct platform_device* dev) 1825 { 1826 struct usb_hcd *hcd = platform_get_drvdata(dev); 1827 1828 if (hcd->driver->shutdown) 1829 hcd->driver->shutdown(hcd); 1830 } 1831 EXPORT_SYMBOL (usb_hcd_platform_shutdown); 1832 1833 /*-------------------------------------------------------------------------*/ 1834 1835 #if defined(CONFIG_USB_MON) 1836 1837 struct usb_mon_operations *mon_ops; 1838 1839 /* 1840 * The registration is unlocked. 1841 * We do it this way because we do not want to lock in hot paths. 1842 * 1843 * Notice that the code is minimally error-proof. Because usbmon needs 1844 * symbols from usbcore, usbcore gets referenced and cannot be unloaded first. 1845 */ 1846 1847 int usb_mon_register (struct usb_mon_operations *ops) 1848 { 1849 1850 if (mon_ops) 1851 return -EBUSY; 1852 1853 mon_ops = ops; 1854 mb(); 1855 return 0; 1856 } 1857 EXPORT_SYMBOL_GPL (usb_mon_register); 1858 1859 void usb_mon_deregister (void) 1860 { 1861 1862 if (mon_ops == NULL) { 1863 printk(KERN_ERR "USB: monitor was not registered\n"); 1864 return; 1865 } 1866 mon_ops = NULL; 1867 mb(); 1868 } 1869 EXPORT_SYMBOL_GPL (usb_mon_deregister); 1870 1871 #endif /* CONFIG_USB_MON */ 1872