1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * (C) Copyright Linus Torvalds 1999 4 * (C) Copyright Johannes Erdfelt 1999-2001 5 * (C) Copyright Andreas Gal 1999 6 * (C) Copyright Gregory P. Smith 1999 7 * (C) Copyright Deti Fliegl 1999 8 * (C) Copyright Randy Dunlap 2000 9 * (C) Copyright David Brownell 2000-2002 10 */ 11 12 #include <linux/bcd.h> 13 #include <linux/module.h> 14 #include <linux/version.h> 15 #include <linux/kernel.h> 16 #include <linux/sched/task_stack.h> 17 #include <linux/slab.h> 18 #include <linux/completion.h> 19 #include <linux/utsname.h> 20 #include <linux/mm.h> 21 #include <asm/io.h> 22 #include <linux/device.h> 23 #include <linux/dma-mapping.h> 24 #include <linux/mutex.h> 25 #include <asm/irq.h> 26 #include <asm/byteorder.h> 27 #include <asm/unaligned.h> 28 #include <linux/platform_device.h> 29 #include <linux/workqueue.h> 30 #include <linux/pm_runtime.h> 31 #include <linux/types.h> 32 33 #include <linux/phy/phy.h> 34 #include <linux/usb.h> 35 #include <linux/usb/hcd.h> 36 #include <linux/usb/otg.h> 37 38 #include "usb.h" 39 #include "phy.h" 40 41 42 /*-------------------------------------------------------------------------*/ 43 44 /* 45 * USB Host Controller Driver framework 46 * 47 * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing 48 * HCD-specific behaviors/bugs. 49 * 50 * This does error checks, tracks devices and urbs, and delegates to a 51 * "hc_driver" only for code (and data) that really needs to know about 52 * hardware differences. That includes root hub registers, i/o queues, 53 * and so on ... but as little else as possible. 54 * 55 * Shared code includes most of the "root hub" code (these are emulated, 56 * though each HC's hardware works differently) and PCI glue, plus request 57 * tracking overhead. The HCD code should only block on spinlocks or on 58 * hardware handshaking; blocking on software events (such as other kernel 59 * threads releasing resources, or completing actions) is all generic. 60 * 61 * Happens the USB 2.0 spec says this would be invisible inside the "USBD", 62 * and includes mostly a "HCDI" (HCD Interface) along with some APIs used 63 * only by the hub driver ... and that neither should be seen or used by 64 * usb client device drivers. 65 * 66 * Contributors of ideas or unattributed patches include: David Brownell, 67 * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ... 68 * 69 * HISTORY: 70 * 2002-02-21 Pull in most of the usb_bus support from usb.c; some 71 * associated cleanup. "usb_hcd" still != "usb_bus". 72 * 2001-12-12 Initial patch version for Linux 2.5.1 kernel. 73 */ 74 75 /*-------------------------------------------------------------------------*/ 76 77 /* Keep track of which host controller drivers are loaded */ 78 unsigned long usb_hcds_loaded; 79 EXPORT_SYMBOL_GPL(usb_hcds_loaded); 80 81 /* host controllers we manage */ 82 DEFINE_IDR (usb_bus_idr); 83 EXPORT_SYMBOL_GPL (usb_bus_idr); 84 85 /* used when allocating bus numbers */ 86 #define USB_MAXBUS 64 87 88 /* used when updating list of hcds */ 89 DEFINE_MUTEX(usb_bus_idr_lock); /* exported only for usbfs */ 90 EXPORT_SYMBOL_GPL (usb_bus_idr_lock); 91 92 /* used for controlling access to virtual root hubs */ 93 static DEFINE_SPINLOCK(hcd_root_hub_lock); 94 95 /* used when updating an endpoint's URB list */ 96 static DEFINE_SPINLOCK(hcd_urb_list_lock); 97 98 /* used to protect against unlinking URBs after the device is gone */ 99 static DEFINE_SPINLOCK(hcd_urb_unlink_lock); 100 101 /* wait queue for synchronous unlinks */ 102 DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue); 103 104 static inline int is_root_hub(struct usb_device *udev) 105 { 106 return (udev->parent == NULL); 107 } 108 109 /*-------------------------------------------------------------------------*/ 110 111 /* 112 * Sharable chunks of root hub code. 113 */ 114 115 /*-------------------------------------------------------------------------*/ 116 #define KERNEL_REL bin2bcd(((LINUX_VERSION_CODE >> 16) & 0x0ff)) 117 #define KERNEL_VER bin2bcd(((LINUX_VERSION_CODE >> 8) & 0x0ff)) 118 119 /* usb 3.1 root hub device descriptor */ 120 static const u8 usb31_rh_dev_descriptor[18] = { 121 0x12, /* __u8 bLength; */ 122 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */ 123 0x10, 0x03, /* __le16 bcdUSB; v3.1 */ 124 125 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */ 126 0x00, /* __u8 bDeviceSubClass; */ 127 0x03, /* __u8 bDeviceProtocol; USB 3 hub */ 128 0x09, /* __u8 bMaxPacketSize0; 2^9 = 512 Bytes */ 129 130 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */ 131 0x03, 0x00, /* __le16 idProduct; device 0x0003 */ 132 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */ 133 134 0x03, /* __u8 iManufacturer; */ 135 0x02, /* __u8 iProduct; */ 136 0x01, /* __u8 iSerialNumber; */ 137 0x01 /* __u8 bNumConfigurations; */ 138 }; 139 140 /* usb 3.0 root hub device descriptor */ 141 static const u8 usb3_rh_dev_descriptor[18] = { 142 0x12, /* __u8 bLength; */ 143 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */ 144 0x00, 0x03, /* __le16 bcdUSB; v3.0 */ 145 146 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */ 147 0x00, /* __u8 bDeviceSubClass; */ 148 0x03, /* __u8 bDeviceProtocol; USB 3.0 hub */ 149 0x09, /* __u8 bMaxPacketSize0; 2^9 = 512 Bytes */ 150 151 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */ 152 0x03, 0x00, /* __le16 idProduct; device 0x0003 */ 153 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */ 154 155 0x03, /* __u8 iManufacturer; */ 156 0x02, /* __u8 iProduct; */ 157 0x01, /* __u8 iSerialNumber; */ 158 0x01 /* __u8 bNumConfigurations; */ 159 }; 160 161 /* usb 2.5 (wireless USB 1.0) root hub device descriptor */ 162 static const u8 usb25_rh_dev_descriptor[18] = { 163 0x12, /* __u8 bLength; */ 164 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */ 165 0x50, 0x02, /* __le16 bcdUSB; v2.5 */ 166 167 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */ 168 0x00, /* __u8 bDeviceSubClass; */ 169 0x00, /* __u8 bDeviceProtocol; [ usb 2.0 no TT ] */ 170 0xFF, /* __u8 bMaxPacketSize0; always 0xFF (WUSB Spec 7.4.1). */ 171 172 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */ 173 0x02, 0x00, /* __le16 idProduct; device 0x0002 */ 174 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */ 175 176 0x03, /* __u8 iManufacturer; */ 177 0x02, /* __u8 iProduct; */ 178 0x01, /* __u8 iSerialNumber; */ 179 0x01 /* __u8 bNumConfigurations; */ 180 }; 181 182 /* usb 2.0 root hub device descriptor */ 183 static const u8 usb2_rh_dev_descriptor[18] = { 184 0x12, /* __u8 bLength; */ 185 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */ 186 0x00, 0x02, /* __le16 bcdUSB; v2.0 */ 187 188 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */ 189 0x00, /* __u8 bDeviceSubClass; */ 190 0x00, /* __u8 bDeviceProtocol; [ usb 2.0 no TT ] */ 191 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */ 192 193 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */ 194 0x02, 0x00, /* __le16 idProduct; device 0x0002 */ 195 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */ 196 197 0x03, /* __u8 iManufacturer; */ 198 0x02, /* __u8 iProduct; */ 199 0x01, /* __u8 iSerialNumber; */ 200 0x01 /* __u8 bNumConfigurations; */ 201 }; 202 203 /* no usb 2.0 root hub "device qualifier" descriptor: one speed only */ 204 205 /* usb 1.1 root hub device descriptor */ 206 static const u8 usb11_rh_dev_descriptor[18] = { 207 0x12, /* __u8 bLength; */ 208 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */ 209 0x10, 0x01, /* __le16 bcdUSB; v1.1 */ 210 211 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */ 212 0x00, /* __u8 bDeviceSubClass; */ 213 0x00, /* __u8 bDeviceProtocol; [ low/full speeds only ] */ 214 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */ 215 216 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */ 217 0x01, 0x00, /* __le16 idProduct; device 0x0001 */ 218 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */ 219 220 0x03, /* __u8 iManufacturer; */ 221 0x02, /* __u8 iProduct; */ 222 0x01, /* __u8 iSerialNumber; */ 223 0x01 /* __u8 bNumConfigurations; */ 224 }; 225 226 227 /*-------------------------------------------------------------------------*/ 228 229 /* Configuration descriptors for our root hubs */ 230 231 static const u8 fs_rh_config_descriptor[] = { 232 233 /* one configuration */ 234 0x09, /* __u8 bLength; */ 235 USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */ 236 0x19, 0x00, /* __le16 wTotalLength; */ 237 0x01, /* __u8 bNumInterfaces; (1) */ 238 0x01, /* __u8 bConfigurationValue; */ 239 0x00, /* __u8 iConfiguration; */ 240 0xc0, /* __u8 bmAttributes; 241 Bit 7: must be set, 242 6: Self-powered, 243 5: Remote wakeup, 244 4..0: resvd */ 245 0x00, /* __u8 MaxPower; */ 246 247 /* USB 1.1: 248 * USB 2.0, single TT organization (mandatory): 249 * one interface, protocol 0 250 * 251 * USB 2.0, multiple TT organization (optional): 252 * two interfaces, protocols 1 (like single TT) 253 * and 2 (multiple TT mode) ... config is 254 * sometimes settable 255 * NOT IMPLEMENTED 256 */ 257 258 /* one interface */ 259 0x09, /* __u8 if_bLength; */ 260 USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */ 261 0x00, /* __u8 if_bInterfaceNumber; */ 262 0x00, /* __u8 if_bAlternateSetting; */ 263 0x01, /* __u8 if_bNumEndpoints; */ 264 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */ 265 0x00, /* __u8 if_bInterfaceSubClass; */ 266 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */ 267 0x00, /* __u8 if_iInterface; */ 268 269 /* one endpoint (status change endpoint) */ 270 0x07, /* __u8 ep_bLength; */ 271 USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */ 272 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */ 273 0x03, /* __u8 ep_bmAttributes; Interrupt */ 274 0x02, 0x00, /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */ 275 0xff /* __u8 ep_bInterval; (255ms -- usb 2.0 spec) */ 276 }; 277 278 static const u8 hs_rh_config_descriptor[] = { 279 280 /* one configuration */ 281 0x09, /* __u8 bLength; */ 282 USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */ 283 0x19, 0x00, /* __le16 wTotalLength; */ 284 0x01, /* __u8 bNumInterfaces; (1) */ 285 0x01, /* __u8 bConfigurationValue; */ 286 0x00, /* __u8 iConfiguration; */ 287 0xc0, /* __u8 bmAttributes; 288 Bit 7: must be set, 289 6: Self-powered, 290 5: Remote wakeup, 291 4..0: resvd */ 292 0x00, /* __u8 MaxPower; */ 293 294 /* USB 1.1: 295 * USB 2.0, single TT organization (mandatory): 296 * one interface, protocol 0 297 * 298 * USB 2.0, multiple TT organization (optional): 299 * two interfaces, protocols 1 (like single TT) 300 * and 2 (multiple TT mode) ... config is 301 * sometimes settable 302 * NOT IMPLEMENTED 303 */ 304 305 /* one interface */ 306 0x09, /* __u8 if_bLength; */ 307 USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */ 308 0x00, /* __u8 if_bInterfaceNumber; */ 309 0x00, /* __u8 if_bAlternateSetting; */ 310 0x01, /* __u8 if_bNumEndpoints; */ 311 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */ 312 0x00, /* __u8 if_bInterfaceSubClass; */ 313 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */ 314 0x00, /* __u8 if_iInterface; */ 315 316 /* one endpoint (status change endpoint) */ 317 0x07, /* __u8 ep_bLength; */ 318 USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */ 319 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */ 320 0x03, /* __u8 ep_bmAttributes; Interrupt */ 321 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) 322 * see hub.c:hub_configure() for details. */ 323 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00, 324 0x0c /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */ 325 }; 326 327 static const u8 ss_rh_config_descriptor[] = { 328 /* one configuration */ 329 0x09, /* __u8 bLength; */ 330 USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */ 331 0x1f, 0x00, /* __le16 wTotalLength; */ 332 0x01, /* __u8 bNumInterfaces; (1) */ 333 0x01, /* __u8 bConfigurationValue; */ 334 0x00, /* __u8 iConfiguration; */ 335 0xc0, /* __u8 bmAttributes; 336 Bit 7: must be set, 337 6: Self-powered, 338 5: Remote wakeup, 339 4..0: resvd */ 340 0x00, /* __u8 MaxPower; */ 341 342 /* one interface */ 343 0x09, /* __u8 if_bLength; */ 344 USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */ 345 0x00, /* __u8 if_bInterfaceNumber; */ 346 0x00, /* __u8 if_bAlternateSetting; */ 347 0x01, /* __u8 if_bNumEndpoints; */ 348 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */ 349 0x00, /* __u8 if_bInterfaceSubClass; */ 350 0x00, /* __u8 if_bInterfaceProtocol; */ 351 0x00, /* __u8 if_iInterface; */ 352 353 /* one endpoint (status change endpoint) */ 354 0x07, /* __u8 ep_bLength; */ 355 USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */ 356 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */ 357 0x03, /* __u8 ep_bmAttributes; Interrupt */ 358 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) 359 * see hub.c:hub_configure() for details. */ 360 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00, 361 0x0c, /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */ 362 363 /* one SuperSpeed endpoint companion descriptor */ 364 0x06, /* __u8 ss_bLength */ 365 USB_DT_SS_ENDPOINT_COMP, /* __u8 ss_bDescriptorType; SuperSpeed EP */ 366 /* Companion */ 367 0x00, /* __u8 ss_bMaxBurst; allows 1 TX between ACKs */ 368 0x00, /* __u8 ss_bmAttributes; 1 packet per service interval */ 369 0x02, 0x00 /* __le16 ss_wBytesPerInterval; 15 bits for max 15 ports */ 370 }; 371 372 /* authorized_default behaviour: 373 * -1 is authorized for all devices except wireless (old behaviour) 374 * 0 is unauthorized for all devices 375 * 1 is authorized for all devices 376 */ 377 static int authorized_default = -1; 378 module_param(authorized_default, int, S_IRUGO|S_IWUSR); 379 MODULE_PARM_DESC(authorized_default, 380 "Default USB device authorization: 0 is not authorized, 1 is " 381 "authorized, -1 is authorized except for wireless USB (default, " 382 "old behaviour"); 383 /*-------------------------------------------------------------------------*/ 384 385 /** 386 * ascii2desc() - Helper routine for producing UTF-16LE string descriptors 387 * @s: Null-terminated ASCII (actually ISO-8859-1) string 388 * @buf: Buffer for USB string descriptor (header + UTF-16LE) 389 * @len: Length (in bytes; may be odd) of descriptor buffer. 390 * 391 * Return: The number of bytes filled in: 2 + 2*strlen(s) or @len, 392 * whichever is less. 393 * 394 * Note: 395 * USB String descriptors can contain at most 126 characters; input 396 * strings longer than that are truncated. 397 */ 398 static unsigned 399 ascii2desc(char const *s, u8 *buf, unsigned len) 400 { 401 unsigned n, t = 2 + 2*strlen(s); 402 403 if (t > 254) 404 t = 254; /* Longest possible UTF string descriptor */ 405 if (len > t) 406 len = t; 407 408 t += USB_DT_STRING << 8; /* Now t is first 16 bits to store */ 409 410 n = len; 411 while (n--) { 412 *buf++ = t; 413 if (!n--) 414 break; 415 *buf++ = t >> 8; 416 t = (unsigned char)*s++; 417 } 418 return len; 419 } 420 421 /** 422 * rh_string() - provides string descriptors for root hub 423 * @id: the string ID number (0: langids, 1: serial #, 2: product, 3: vendor) 424 * @hcd: the host controller for this root hub 425 * @data: buffer for output packet 426 * @len: length of the provided buffer 427 * 428 * Produces either a manufacturer, product or serial number string for the 429 * virtual root hub device. 430 * 431 * Return: The number of bytes filled in: the length of the descriptor or 432 * of the provided buffer, whichever is less. 433 */ 434 static unsigned 435 rh_string(int id, struct usb_hcd const *hcd, u8 *data, unsigned len) 436 { 437 char buf[100]; 438 char const *s; 439 static char const langids[4] = {4, USB_DT_STRING, 0x09, 0x04}; 440 441 /* language ids */ 442 switch (id) { 443 case 0: 444 /* Array of LANGID codes (0x0409 is MSFT-speak for "en-us") */ 445 /* See http://www.usb.org/developers/docs/USB_LANGIDs.pdf */ 446 if (len > 4) 447 len = 4; 448 memcpy(data, langids, len); 449 return len; 450 case 1: 451 /* Serial number */ 452 s = hcd->self.bus_name; 453 break; 454 case 2: 455 /* Product name */ 456 s = hcd->product_desc; 457 break; 458 case 3: 459 /* Manufacturer */ 460 snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname, 461 init_utsname()->release, hcd->driver->description); 462 s = buf; 463 break; 464 default: 465 /* Can't happen; caller guarantees it */ 466 return 0; 467 } 468 469 return ascii2desc(s, data, len); 470 } 471 472 473 /* Root hub control transfers execute synchronously */ 474 static int rh_call_control (struct usb_hcd *hcd, struct urb *urb) 475 { 476 struct usb_ctrlrequest *cmd; 477 u16 typeReq, wValue, wIndex, wLength; 478 u8 *ubuf = urb->transfer_buffer; 479 unsigned len = 0; 480 int status; 481 u8 patch_wakeup = 0; 482 u8 patch_protocol = 0; 483 u16 tbuf_size; 484 u8 *tbuf = NULL; 485 const u8 *bufp; 486 487 might_sleep(); 488 489 spin_lock_irq(&hcd_root_hub_lock); 490 status = usb_hcd_link_urb_to_ep(hcd, urb); 491 spin_unlock_irq(&hcd_root_hub_lock); 492 if (status) 493 return status; 494 urb->hcpriv = hcd; /* Indicate it's queued */ 495 496 cmd = (struct usb_ctrlrequest *) urb->setup_packet; 497 typeReq = (cmd->bRequestType << 8) | cmd->bRequest; 498 wValue = le16_to_cpu (cmd->wValue); 499 wIndex = le16_to_cpu (cmd->wIndex); 500 wLength = le16_to_cpu (cmd->wLength); 501 502 if (wLength > urb->transfer_buffer_length) 503 goto error; 504 505 /* 506 * tbuf should be at least as big as the 507 * USB hub descriptor. 508 */ 509 tbuf_size = max_t(u16, sizeof(struct usb_hub_descriptor), wLength); 510 tbuf = kzalloc(tbuf_size, GFP_KERNEL); 511 if (!tbuf) { 512 status = -ENOMEM; 513 goto err_alloc; 514 } 515 516 bufp = tbuf; 517 518 519 urb->actual_length = 0; 520 switch (typeReq) { 521 522 /* DEVICE REQUESTS */ 523 524 /* The root hub's remote wakeup enable bit is implemented using 525 * driver model wakeup flags. If this system supports wakeup 526 * through USB, userspace may change the default "allow wakeup" 527 * policy through sysfs or these calls. 528 * 529 * Most root hubs support wakeup from downstream devices, for 530 * runtime power management (disabling USB clocks and reducing 531 * VBUS power usage). However, not all of them do so; silicon, 532 * board, and BIOS bugs here are not uncommon, so these can't 533 * be treated quite like external hubs. 534 * 535 * Likewise, not all root hubs will pass wakeup events upstream, 536 * to wake up the whole system. So don't assume root hub and 537 * controller capabilities are identical. 538 */ 539 540 case DeviceRequest | USB_REQ_GET_STATUS: 541 tbuf[0] = (device_may_wakeup(&hcd->self.root_hub->dev) 542 << USB_DEVICE_REMOTE_WAKEUP) 543 | (1 << USB_DEVICE_SELF_POWERED); 544 tbuf[1] = 0; 545 len = 2; 546 break; 547 case DeviceOutRequest | USB_REQ_CLEAR_FEATURE: 548 if (wValue == USB_DEVICE_REMOTE_WAKEUP) 549 device_set_wakeup_enable(&hcd->self.root_hub->dev, 0); 550 else 551 goto error; 552 break; 553 case DeviceOutRequest | USB_REQ_SET_FEATURE: 554 if (device_can_wakeup(&hcd->self.root_hub->dev) 555 && wValue == USB_DEVICE_REMOTE_WAKEUP) 556 device_set_wakeup_enable(&hcd->self.root_hub->dev, 1); 557 else 558 goto error; 559 break; 560 case DeviceRequest | USB_REQ_GET_CONFIGURATION: 561 tbuf[0] = 1; 562 len = 1; 563 /* FALLTHROUGH */ 564 case DeviceOutRequest | USB_REQ_SET_CONFIGURATION: 565 break; 566 case DeviceRequest | USB_REQ_GET_DESCRIPTOR: 567 switch (wValue & 0xff00) { 568 case USB_DT_DEVICE << 8: 569 switch (hcd->speed) { 570 case HCD_USB32: 571 case HCD_USB31: 572 bufp = usb31_rh_dev_descriptor; 573 break; 574 case HCD_USB3: 575 bufp = usb3_rh_dev_descriptor; 576 break; 577 case HCD_USB25: 578 bufp = usb25_rh_dev_descriptor; 579 break; 580 case HCD_USB2: 581 bufp = usb2_rh_dev_descriptor; 582 break; 583 case HCD_USB11: 584 bufp = usb11_rh_dev_descriptor; 585 break; 586 default: 587 goto error; 588 } 589 len = 18; 590 if (hcd->has_tt) 591 patch_protocol = 1; 592 break; 593 case USB_DT_CONFIG << 8: 594 switch (hcd->speed) { 595 case HCD_USB32: 596 case HCD_USB31: 597 case HCD_USB3: 598 bufp = ss_rh_config_descriptor; 599 len = sizeof ss_rh_config_descriptor; 600 break; 601 case HCD_USB25: 602 case HCD_USB2: 603 bufp = hs_rh_config_descriptor; 604 len = sizeof hs_rh_config_descriptor; 605 break; 606 case HCD_USB11: 607 bufp = fs_rh_config_descriptor; 608 len = sizeof fs_rh_config_descriptor; 609 break; 610 default: 611 goto error; 612 } 613 if (device_can_wakeup(&hcd->self.root_hub->dev)) 614 patch_wakeup = 1; 615 break; 616 case USB_DT_STRING << 8: 617 if ((wValue & 0xff) < 4) 618 urb->actual_length = rh_string(wValue & 0xff, 619 hcd, ubuf, wLength); 620 else /* unsupported IDs --> "protocol stall" */ 621 goto error; 622 break; 623 case USB_DT_BOS << 8: 624 goto nongeneric; 625 default: 626 goto error; 627 } 628 break; 629 case DeviceRequest | USB_REQ_GET_INTERFACE: 630 tbuf[0] = 0; 631 len = 1; 632 /* FALLTHROUGH */ 633 case DeviceOutRequest | USB_REQ_SET_INTERFACE: 634 break; 635 case DeviceOutRequest | USB_REQ_SET_ADDRESS: 636 /* wValue == urb->dev->devaddr */ 637 dev_dbg (hcd->self.controller, "root hub device address %d\n", 638 wValue); 639 break; 640 641 /* INTERFACE REQUESTS (no defined feature/status flags) */ 642 643 /* ENDPOINT REQUESTS */ 644 645 case EndpointRequest | USB_REQ_GET_STATUS: 646 /* ENDPOINT_HALT flag */ 647 tbuf[0] = 0; 648 tbuf[1] = 0; 649 len = 2; 650 /* FALLTHROUGH */ 651 case EndpointOutRequest | USB_REQ_CLEAR_FEATURE: 652 case EndpointOutRequest | USB_REQ_SET_FEATURE: 653 dev_dbg (hcd->self.controller, "no endpoint features yet\n"); 654 break; 655 656 /* CLASS REQUESTS (and errors) */ 657 658 default: 659 nongeneric: 660 /* non-generic request */ 661 switch (typeReq) { 662 case GetHubStatus: 663 len = 4; 664 break; 665 case GetPortStatus: 666 if (wValue == HUB_PORT_STATUS) 667 len = 4; 668 else 669 /* other port status types return 8 bytes */ 670 len = 8; 671 break; 672 case GetHubDescriptor: 673 len = sizeof (struct usb_hub_descriptor); 674 break; 675 case DeviceRequest | USB_REQ_GET_DESCRIPTOR: 676 /* len is returned by hub_control */ 677 break; 678 } 679 status = hcd->driver->hub_control (hcd, 680 typeReq, wValue, wIndex, 681 tbuf, wLength); 682 683 if (typeReq == GetHubDescriptor) 684 usb_hub_adjust_deviceremovable(hcd->self.root_hub, 685 (struct usb_hub_descriptor *)tbuf); 686 break; 687 error: 688 /* "protocol stall" on error */ 689 status = -EPIPE; 690 } 691 692 if (status < 0) { 693 len = 0; 694 if (status != -EPIPE) { 695 dev_dbg (hcd->self.controller, 696 "CTRL: TypeReq=0x%x val=0x%x " 697 "idx=0x%x len=%d ==> %d\n", 698 typeReq, wValue, wIndex, 699 wLength, status); 700 } 701 } else if (status > 0) { 702 /* hub_control may return the length of data copied. */ 703 len = status; 704 status = 0; 705 } 706 if (len) { 707 if (urb->transfer_buffer_length < len) 708 len = urb->transfer_buffer_length; 709 urb->actual_length = len; 710 /* always USB_DIR_IN, toward host */ 711 memcpy (ubuf, bufp, len); 712 713 /* report whether RH hardware supports remote wakeup */ 714 if (patch_wakeup && 715 len > offsetof (struct usb_config_descriptor, 716 bmAttributes)) 717 ((struct usb_config_descriptor *)ubuf)->bmAttributes 718 |= USB_CONFIG_ATT_WAKEUP; 719 720 /* report whether RH hardware has an integrated TT */ 721 if (patch_protocol && 722 len > offsetof(struct usb_device_descriptor, 723 bDeviceProtocol)) 724 ((struct usb_device_descriptor *) ubuf)-> 725 bDeviceProtocol = USB_HUB_PR_HS_SINGLE_TT; 726 } 727 728 kfree(tbuf); 729 err_alloc: 730 731 /* any errors get returned through the urb completion */ 732 spin_lock_irq(&hcd_root_hub_lock); 733 usb_hcd_unlink_urb_from_ep(hcd, urb); 734 usb_hcd_giveback_urb(hcd, urb, status); 735 spin_unlock_irq(&hcd_root_hub_lock); 736 return 0; 737 } 738 739 /*-------------------------------------------------------------------------*/ 740 741 /* 742 * Root Hub interrupt transfers are polled using a timer if the 743 * driver requests it; otherwise the driver is responsible for 744 * calling usb_hcd_poll_rh_status() when an event occurs. 745 * 746 * Completions are called in_interrupt(), but they may or may not 747 * be in_irq(). 748 */ 749 void usb_hcd_poll_rh_status(struct usb_hcd *hcd) 750 { 751 struct urb *urb; 752 int length; 753 unsigned long flags; 754 char buffer[6]; /* Any root hubs with > 31 ports? */ 755 756 if (unlikely(!hcd->rh_pollable)) 757 return; 758 if (!hcd->uses_new_polling && !hcd->status_urb) 759 return; 760 761 length = hcd->driver->hub_status_data(hcd, buffer); 762 if (length > 0) { 763 764 /* try to complete the status urb */ 765 spin_lock_irqsave(&hcd_root_hub_lock, flags); 766 urb = hcd->status_urb; 767 if (urb) { 768 clear_bit(HCD_FLAG_POLL_PENDING, &hcd->flags); 769 hcd->status_urb = NULL; 770 urb->actual_length = length; 771 memcpy(urb->transfer_buffer, buffer, length); 772 773 usb_hcd_unlink_urb_from_ep(hcd, urb); 774 usb_hcd_giveback_urb(hcd, urb, 0); 775 } else { 776 length = 0; 777 set_bit(HCD_FLAG_POLL_PENDING, &hcd->flags); 778 } 779 spin_unlock_irqrestore(&hcd_root_hub_lock, flags); 780 } 781 782 /* The USB 2.0 spec says 256 ms. This is close enough and won't 783 * exceed that limit if HZ is 100. The math is more clunky than 784 * maybe expected, this is to make sure that all timers for USB devices 785 * fire at the same time to give the CPU a break in between */ 786 if (hcd->uses_new_polling ? HCD_POLL_RH(hcd) : 787 (length == 0 && hcd->status_urb != NULL)) 788 mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4)); 789 } 790 EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status); 791 792 /* timer callback */ 793 static void rh_timer_func (struct timer_list *t) 794 { 795 struct usb_hcd *_hcd = from_timer(_hcd, t, rh_timer); 796 797 usb_hcd_poll_rh_status(_hcd); 798 } 799 800 /*-------------------------------------------------------------------------*/ 801 802 static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb) 803 { 804 int retval; 805 unsigned long flags; 806 unsigned len = 1 + (urb->dev->maxchild / 8); 807 808 spin_lock_irqsave (&hcd_root_hub_lock, flags); 809 if (hcd->status_urb || urb->transfer_buffer_length < len) { 810 dev_dbg (hcd->self.controller, "not queuing rh status urb\n"); 811 retval = -EINVAL; 812 goto done; 813 } 814 815 retval = usb_hcd_link_urb_to_ep(hcd, urb); 816 if (retval) 817 goto done; 818 819 hcd->status_urb = urb; 820 urb->hcpriv = hcd; /* indicate it's queued */ 821 if (!hcd->uses_new_polling) 822 mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4)); 823 824 /* If a status change has already occurred, report it ASAP */ 825 else if (HCD_POLL_PENDING(hcd)) 826 mod_timer(&hcd->rh_timer, jiffies); 827 retval = 0; 828 done: 829 spin_unlock_irqrestore (&hcd_root_hub_lock, flags); 830 return retval; 831 } 832 833 static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb) 834 { 835 if (usb_endpoint_xfer_int(&urb->ep->desc)) 836 return rh_queue_status (hcd, urb); 837 if (usb_endpoint_xfer_control(&urb->ep->desc)) 838 return rh_call_control (hcd, urb); 839 return -EINVAL; 840 } 841 842 /*-------------------------------------------------------------------------*/ 843 844 /* Unlinks of root-hub control URBs are legal, but they don't do anything 845 * since these URBs always execute synchronously. 846 */ 847 static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status) 848 { 849 unsigned long flags; 850 int rc; 851 852 spin_lock_irqsave(&hcd_root_hub_lock, flags); 853 rc = usb_hcd_check_unlink_urb(hcd, urb, status); 854 if (rc) 855 goto done; 856 857 if (usb_endpoint_num(&urb->ep->desc) == 0) { /* Control URB */ 858 ; /* Do nothing */ 859 860 } else { /* Status URB */ 861 if (!hcd->uses_new_polling) 862 del_timer (&hcd->rh_timer); 863 if (urb == hcd->status_urb) { 864 hcd->status_urb = NULL; 865 usb_hcd_unlink_urb_from_ep(hcd, urb); 866 usb_hcd_giveback_urb(hcd, urb, status); 867 } 868 } 869 done: 870 spin_unlock_irqrestore(&hcd_root_hub_lock, flags); 871 return rc; 872 } 873 874 875 876 /* 877 * Show & store the current value of authorized_default 878 */ 879 static ssize_t authorized_default_show(struct device *dev, 880 struct device_attribute *attr, char *buf) 881 { 882 struct usb_device *rh_usb_dev = to_usb_device(dev); 883 struct usb_bus *usb_bus = rh_usb_dev->bus; 884 struct usb_hcd *hcd; 885 886 hcd = bus_to_hcd(usb_bus); 887 return snprintf(buf, PAGE_SIZE, "%u\n", !!HCD_DEV_AUTHORIZED(hcd)); 888 } 889 890 static ssize_t authorized_default_store(struct device *dev, 891 struct device_attribute *attr, 892 const char *buf, size_t size) 893 { 894 ssize_t result; 895 unsigned val; 896 struct usb_device *rh_usb_dev = to_usb_device(dev); 897 struct usb_bus *usb_bus = rh_usb_dev->bus; 898 struct usb_hcd *hcd; 899 900 hcd = bus_to_hcd(usb_bus); 901 result = sscanf(buf, "%u\n", &val); 902 if (result == 1) { 903 if (val) 904 set_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags); 905 else 906 clear_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags); 907 908 result = size; 909 } else { 910 result = -EINVAL; 911 } 912 return result; 913 } 914 static DEVICE_ATTR_RW(authorized_default); 915 916 /* 917 * interface_authorized_default_show - show default authorization status 918 * for USB interfaces 919 * 920 * note: interface_authorized_default is the default value 921 * for initializing the authorized attribute of interfaces 922 */ 923 static ssize_t interface_authorized_default_show(struct device *dev, 924 struct device_attribute *attr, char *buf) 925 { 926 struct usb_device *usb_dev = to_usb_device(dev); 927 struct usb_hcd *hcd = bus_to_hcd(usb_dev->bus); 928 929 return sprintf(buf, "%u\n", !!HCD_INTF_AUTHORIZED(hcd)); 930 } 931 932 /* 933 * interface_authorized_default_store - store default authorization status 934 * for USB interfaces 935 * 936 * note: interface_authorized_default is the default value 937 * for initializing the authorized attribute of interfaces 938 */ 939 static ssize_t interface_authorized_default_store(struct device *dev, 940 struct device_attribute *attr, const char *buf, size_t count) 941 { 942 struct usb_device *usb_dev = to_usb_device(dev); 943 struct usb_hcd *hcd = bus_to_hcd(usb_dev->bus); 944 int rc = count; 945 bool val; 946 947 if (strtobool(buf, &val) != 0) 948 return -EINVAL; 949 950 if (val) 951 set_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags); 952 else 953 clear_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags); 954 955 return rc; 956 } 957 static DEVICE_ATTR_RW(interface_authorized_default); 958 959 /* Group all the USB bus attributes */ 960 static struct attribute *usb_bus_attrs[] = { 961 &dev_attr_authorized_default.attr, 962 &dev_attr_interface_authorized_default.attr, 963 NULL, 964 }; 965 966 static const struct attribute_group usb_bus_attr_group = { 967 .name = NULL, /* we want them in the same directory */ 968 .attrs = usb_bus_attrs, 969 }; 970 971 972 973 /*-------------------------------------------------------------------------*/ 974 975 /** 976 * usb_bus_init - shared initialization code 977 * @bus: the bus structure being initialized 978 * 979 * This code is used to initialize a usb_bus structure, memory for which is 980 * separately managed. 981 */ 982 static void usb_bus_init (struct usb_bus *bus) 983 { 984 memset (&bus->devmap, 0, sizeof(struct usb_devmap)); 985 986 bus->devnum_next = 1; 987 988 bus->root_hub = NULL; 989 bus->busnum = -1; 990 bus->bandwidth_allocated = 0; 991 bus->bandwidth_int_reqs = 0; 992 bus->bandwidth_isoc_reqs = 0; 993 mutex_init(&bus->devnum_next_mutex); 994 } 995 996 /*-------------------------------------------------------------------------*/ 997 998 /** 999 * usb_register_bus - registers the USB host controller with the usb core 1000 * @bus: pointer to the bus to register 1001 * Context: !in_interrupt() 1002 * 1003 * Assigns a bus number, and links the controller into usbcore data 1004 * structures so that it can be seen by scanning the bus list. 1005 * 1006 * Return: 0 if successful. A negative error code otherwise. 1007 */ 1008 static int usb_register_bus(struct usb_bus *bus) 1009 { 1010 int result = -E2BIG; 1011 int busnum; 1012 1013 mutex_lock(&usb_bus_idr_lock); 1014 busnum = idr_alloc(&usb_bus_idr, bus, 1, USB_MAXBUS, GFP_KERNEL); 1015 if (busnum < 0) { 1016 pr_err("%s: failed to get bus number\n", usbcore_name); 1017 goto error_find_busnum; 1018 } 1019 bus->busnum = busnum; 1020 mutex_unlock(&usb_bus_idr_lock); 1021 1022 usb_notify_add_bus(bus); 1023 1024 dev_info (bus->controller, "new USB bus registered, assigned bus " 1025 "number %d\n", bus->busnum); 1026 return 0; 1027 1028 error_find_busnum: 1029 mutex_unlock(&usb_bus_idr_lock); 1030 return result; 1031 } 1032 1033 /** 1034 * usb_deregister_bus - deregisters the USB host controller 1035 * @bus: pointer to the bus to deregister 1036 * Context: !in_interrupt() 1037 * 1038 * Recycles the bus number, and unlinks the controller from usbcore data 1039 * structures so that it won't be seen by scanning the bus list. 1040 */ 1041 static void usb_deregister_bus (struct usb_bus *bus) 1042 { 1043 dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum); 1044 1045 /* 1046 * NOTE: make sure that all the devices are removed by the 1047 * controller code, as well as having it call this when cleaning 1048 * itself up 1049 */ 1050 mutex_lock(&usb_bus_idr_lock); 1051 idr_remove(&usb_bus_idr, bus->busnum); 1052 mutex_unlock(&usb_bus_idr_lock); 1053 1054 usb_notify_remove_bus(bus); 1055 } 1056 1057 /** 1058 * register_root_hub - called by usb_add_hcd() to register a root hub 1059 * @hcd: host controller for this root hub 1060 * 1061 * This function registers the root hub with the USB subsystem. It sets up 1062 * the device properly in the device tree and then calls usb_new_device() 1063 * to register the usb device. It also assigns the root hub's USB address 1064 * (always 1). 1065 * 1066 * Return: 0 if successful. A negative error code otherwise. 1067 */ 1068 static int register_root_hub(struct usb_hcd *hcd) 1069 { 1070 struct device *parent_dev = hcd->self.controller; 1071 struct usb_device *usb_dev = hcd->self.root_hub; 1072 const int devnum = 1; 1073 int retval; 1074 1075 usb_dev->devnum = devnum; 1076 usb_dev->bus->devnum_next = devnum + 1; 1077 memset (&usb_dev->bus->devmap.devicemap, 0, 1078 sizeof usb_dev->bus->devmap.devicemap); 1079 set_bit (devnum, usb_dev->bus->devmap.devicemap); 1080 usb_set_device_state(usb_dev, USB_STATE_ADDRESS); 1081 1082 mutex_lock(&usb_bus_idr_lock); 1083 1084 usb_dev->ep0.desc.wMaxPacketSize = cpu_to_le16(64); 1085 retval = usb_get_device_descriptor(usb_dev, USB_DT_DEVICE_SIZE); 1086 if (retval != sizeof usb_dev->descriptor) { 1087 mutex_unlock(&usb_bus_idr_lock); 1088 dev_dbg (parent_dev, "can't read %s device descriptor %d\n", 1089 dev_name(&usb_dev->dev), retval); 1090 return (retval < 0) ? retval : -EMSGSIZE; 1091 } 1092 1093 if (le16_to_cpu(usb_dev->descriptor.bcdUSB) >= 0x0201) { 1094 retval = usb_get_bos_descriptor(usb_dev); 1095 if (!retval) { 1096 usb_dev->lpm_capable = usb_device_supports_lpm(usb_dev); 1097 } else if (usb_dev->speed >= USB_SPEED_SUPER) { 1098 mutex_unlock(&usb_bus_idr_lock); 1099 dev_dbg(parent_dev, "can't read %s bos descriptor %d\n", 1100 dev_name(&usb_dev->dev), retval); 1101 return retval; 1102 } 1103 } 1104 1105 retval = usb_new_device (usb_dev); 1106 if (retval) { 1107 dev_err (parent_dev, "can't register root hub for %s, %d\n", 1108 dev_name(&usb_dev->dev), retval); 1109 } else { 1110 spin_lock_irq (&hcd_root_hub_lock); 1111 hcd->rh_registered = 1; 1112 spin_unlock_irq (&hcd_root_hub_lock); 1113 1114 /* Did the HC die before the root hub was registered? */ 1115 if (HCD_DEAD(hcd)) 1116 usb_hc_died (hcd); /* This time clean up */ 1117 } 1118 mutex_unlock(&usb_bus_idr_lock); 1119 1120 return retval; 1121 } 1122 1123 /* 1124 * usb_hcd_start_port_resume - a root-hub port is sending a resume signal 1125 * @bus: the bus which the root hub belongs to 1126 * @portnum: the port which is being resumed 1127 * 1128 * HCDs should call this function when they know that a resume signal is 1129 * being sent to a root-hub port. The root hub will be prevented from 1130 * going into autosuspend until usb_hcd_end_port_resume() is called. 1131 * 1132 * The bus's private lock must be held by the caller. 1133 */ 1134 void usb_hcd_start_port_resume(struct usb_bus *bus, int portnum) 1135 { 1136 unsigned bit = 1 << portnum; 1137 1138 if (!(bus->resuming_ports & bit)) { 1139 bus->resuming_ports |= bit; 1140 pm_runtime_get_noresume(&bus->root_hub->dev); 1141 } 1142 } 1143 EXPORT_SYMBOL_GPL(usb_hcd_start_port_resume); 1144 1145 /* 1146 * usb_hcd_end_port_resume - a root-hub port has stopped sending a resume signal 1147 * @bus: the bus which the root hub belongs to 1148 * @portnum: the port which is being resumed 1149 * 1150 * HCDs should call this function when they know that a resume signal has 1151 * stopped being sent to a root-hub port. The root hub will be allowed to 1152 * autosuspend again. 1153 * 1154 * The bus's private lock must be held by the caller. 1155 */ 1156 void usb_hcd_end_port_resume(struct usb_bus *bus, int portnum) 1157 { 1158 unsigned bit = 1 << portnum; 1159 1160 if (bus->resuming_ports & bit) { 1161 bus->resuming_ports &= ~bit; 1162 pm_runtime_put_noidle(&bus->root_hub->dev); 1163 } 1164 } 1165 EXPORT_SYMBOL_GPL(usb_hcd_end_port_resume); 1166 1167 /*-------------------------------------------------------------------------*/ 1168 1169 /** 1170 * usb_calc_bus_time - approximate periodic transaction time in nanoseconds 1171 * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH} 1172 * @is_input: true iff the transaction sends data to the host 1173 * @isoc: true for isochronous transactions, false for interrupt ones 1174 * @bytecount: how many bytes in the transaction. 1175 * 1176 * Return: Approximate bus time in nanoseconds for a periodic transaction. 1177 * 1178 * Note: 1179 * See USB 2.0 spec section 5.11.3; only periodic transfers need to be 1180 * scheduled in software, this function is only used for such scheduling. 1181 */ 1182 long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount) 1183 { 1184 unsigned long tmp; 1185 1186 switch (speed) { 1187 case USB_SPEED_LOW: /* INTR only */ 1188 if (is_input) { 1189 tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L; 1190 return 64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp; 1191 } else { 1192 tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L; 1193 return 64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp; 1194 } 1195 case USB_SPEED_FULL: /* ISOC or INTR */ 1196 if (isoc) { 1197 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L; 1198 return ((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp; 1199 } else { 1200 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L; 1201 return 9107L + BW_HOST_DELAY + tmp; 1202 } 1203 case USB_SPEED_HIGH: /* ISOC or INTR */ 1204 /* FIXME adjust for input vs output */ 1205 if (isoc) 1206 tmp = HS_NSECS_ISO (bytecount); 1207 else 1208 tmp = HS_NSECS (bytecount); 1209 return tmp; 1210 default: 1211 pr_debug ("%s: bogus device speed!\n", usbcore_name); 1212 return -1; 1213 } 1214 } 1215 EXPORT_SYMBOL_GPL(usb_calc_bus_time); 1216 1217 1218 /*-------------------------------------------------------------------------*/ 1219 1220 /* 1221 * Generic HC operations. 1222 */ 1223 1224 /*-------------------------------------------------------------------------*/ 1225 1226 /** 1227 * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue 1228 * @hcd: host controller to which @urb was submitted 1229 * @urb: URB being submitted 1230 * 1231 * Host controller drivers should call this routine in their enqueue() 1232 * method. The HCD's private spinlock must be held and interrupts must 1233 * be disabled. The actions carried out here are required for URB 1234 * submission, as well as for endpoint shutdown and for usb_kill_urb. 1235 * 1236 * Return: 0 for no error, otherwise a negative error code (in which case 1237 * the enqueue() method must fail). If no error occurs but enqueue() fails 1238 * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing 1239 * the private spinlock and returning. 1240 */ 1241 int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb) 1242 { 1243 int rc = 0; 1244 1245 spin_lock(&hcd_urb_list_lock); 1246 1247 /* Check that the URB isn't being killed */ 1248 if (unlikely(atomic_read(&urb->reject))) { 1249 rc = -EPERM; 1250 goto done; 1251 } 1252 1253 if (unlikely(!urb->ep->enabled)) { 1254 rc = -ENOENT; 1255 goto done; 1256 } 1257 1258 if (unlikely(!urb->dev->can_submit)) { 1259 rc = -EHOSTUNREACH; 1260 goto done; 1261 } 1262 1263 /* 1264 * Check the host controller's state and add the URB to the 1265 * endpoint's queue. 1266 */ 1267 if (HCD_RH_RUNNING(hcd)) { 1268 urb->unlinked = 0; 1269 list_add_tail(&urb->urb_list, &urb->ep->urb_list); 1270 } else { 1271 rc = -ESHUTDOWN; 1272 goto done; 1273 } 1274 done: 1275 spin_unlock(&hcd_urb_list_lock); 1276 return rc; 1277 } 1278 EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep); 1279 1280 /** 1281 * usb_hcd_check_unlink_urb - check whether an URB may be unlinked 1282 * @hcd: host controller to which @urb was submitted 1283 * @urb: URB being checked for unlinkability 1284 * @status: error code to store in @urb if the unlink succeeds 1285 * 1286 * Host controller drivers should call this routine in their dequeue() 1287 * method. The HCD's private spinlock must be held and interrupts must 1288 * be disabled. The actions carried out here are required for making 1289 * sure than an unlink is valid. 1290 * 1291 * Return: 0 for no error, otherwise a negative error code (in which case 1292 * the dequeue() method must fail). The possible error codes are: 1293 * 1294 * -EIDRM: @urb was not submitted or has already completed. 1295 * The completion function may not have been called yet. 1296 * 1297 * -EBUSY: @urb has already been unlinked. 1298 */ 1299 int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb, 1300 int status) 1301 { 1302 struct list_head *tmp; 1303 1304 /* insist the urb is still queued */ 1305 list_for_each(tmp, &urb->ep->urb_list) { 1306 if (tmp == &urb->urb_list) 1307 break; 1308 } 1309 if (tmp != &urb->urb_list) 1310 return -EIDRM; 1311 1312 /* Any status except -EINPROGRESS means something already started to 1313 * unlink this URB from the hardware. So there's no more work to do. 1314 */ 1315 if (urb->unlinked) 1316 return -EBUSY; 1317 urb->unlinked = status; 1318 return 0; 1319 } 1320 EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb); 1321 1322 /** 1323 * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue 1324 * @hcd: host controller to which @urb was submitted 1325 * @urb: URB being unlinked 1326 * 1327 * Host controller drivers should call this routine before calling 1328 * usb_hcd_giveback_urb(). The HCD's private spinlock must be held and 1329 * interrupts must be disabled. The actions carried out here are required 1330 * for URB completion. 1331 */ 1332 void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb) 1333 { 1334 /* clear all state linking urb to this dev (and hcd) */ 1335 spin_lock(&hcd_urb_list_lock); 1336 list_del_init(&urb->urb_list); 1337 spin_unlock(&hcd_urb_list_lock); 1338 } 1339 EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep); 1340 1341 /* 1342 * Some usb host controllers can only perform dma using a small SRAM area. 1343 * The usb core itself is however optimized for host controllers that can dma 1344 * using regular system memory - like pci devices doing bus mastering. 1345 * 1346 * To support host controllers with limited dma capabilities we provide dma 1347 * bounce buffers. This feature can be enabled using the HCD_LOCAL_MEM flag. 1348 * For this to work properly the host controller code must first use the 1349 * function dma_declare_coherent_memory() to point out which memory area 1350 * that should be used for dma allocations. 1351 * 1352 * The HCD_LOCAL_MEM flag then tells the usb code to allocate all data for 1353 * dma using dma_alloc_coherent() which in turn allocates from the memory 1354 * area pointed out with dma_declare_coherent_memory(). 1355 * 1356 * So, to summarize... 1357 * 1358 * - We need "local" memory, canonical example being 1359 * a small SRAM on a discrete controller being the 1360 * only memory that the controller can read ... 1361 * (a) "normal" kernel memory is no good, and 1362 * (b) there's not enough to share 1363 * 1364 * - The only *portable* hook for such stuff in the 1365 * DMA framework is dma_declare_coherent_memory() 1366 * 1367 * - So we use that, even though the primary requirement 1368 * is that the memory be "local" (hence addressable 1369 * by that device), not "coherent". 1370 * 1371 */ 1372 1373 static int hcd_alloc_coherent(struct usb_bus *bus, 1374 gfp_t mem_flags, dma_addr_t *dma_handle, 1375 void **vaddr_handle, size_t size, 1376 enum dma_data_direction dir) 1377 { 1378 unsigned char *vaddr; 1379 1380 if (*vaddr_handle == NULL) { 1381 WARN_ON_ONCE(1); 1382 return -EFAULT; 1383 } 1384 1385 vaddr = hcd_buffer_alloc(bus, size + sizeof(vaddr), 1386 mem_flags, dma_handle); 1387 if (!vaddr) 1388 return -ENOMEM; 1389 1390 /* 1391 * Store the virtual address of the buffer at the end 1392 * of the allocated dma buffer. The size of the buffer 1393 * may be uneven so use unaligned functions instead 1394 * of just rounding up. It makes sense to optimize for 1395 * memory footprint over access speed since the amount 1396 * of memory available for dma may be limited. 1397 */ 1398 put_unaligned((unsigned long)*vaddr_handle, 1399 (unsigned long *)(vaddr + size)); 1400 1401 if (dir == DMA_TO_DEVICE) 1402 memcpy(vaddr, *vaddr_handle, size); 1403 1404 *vaddr_handle = vaddr; 1405 return 0; 1406 } 1407 1408 static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle, 1409 void **vaddr_handle, size_t size, 1410 enum dma_data_direction dir) 1411 { 1412 unsigned char *vaddr = *vaddr_handle; 1413 1414 vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size)); 1415 1416 if (dir == DMA_FROM_DEVICE) 1417 memcpy(vaddr, *vaddr_handle, size); 1418 1419 hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle); 1420 1421 *vaddr_handle = vaddr; 1422 *dma_handle = 0; 1423 } 1424 1425 void usb_hcd_unmap_urb_setup_for_dma(struct usb_hcd *hcd, struct urb *urb) 1426 { 1427 if (IS_ENABLED(CONFIG_HAS_DMA) && 1428 (urb->transfer_flags & URB_SETUP_MAP_SINGLE)) 1429 dma_unmap_single(hcd->self.sysdev, 1430 urb->setup_dma, 1431 sizeof(struct usb_ctrlrequest), 1432 DMA_TO_DEVICE); 1433 else if (urb->transfer_flags & URB_SETUP_MAP_LOCAL) 1434 hcd_free_coherent(urb->dev->bus, 1435 &urb->setup_dma, 1436 (void **) &urb->setup_packet, 1437 sizeof(struct usb_ctrlrequest), 1438 DMA_TO_DEVICE); 1439 1440 /* Make it safe to call this routine more than once */ 1441 urb->transfer_flags &= ~(URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL); 1442 } 1443 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_setup_for_dma); 1444 1445 static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb) 1446 { 1447 if (hcd->driver->unmap_urb_for_dma) 1448 hcd->driver->unmap_urb_for_dma(hcd, urb); 1449 else 1450 usb_hcd_unmap_urb_for_dma(hcd, urb); 1451 } 1452 1453 void usb_hcd_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb) 1454 { 1455 enum dma_data_direction dir; 1456 1457 usb_hcd_unmap_urb_setup_for_dma(hcd, urb); 1458 1459 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE; 1460 if (IS_ENABLED(CONFIG_HAS_DMA) && 1461 (urb->transfer_flags & URB_DMA_MAP_SG)) 1462 dma_unmap_sg(hcd->self.sysdev, 1463 urb->sg, 1464 urb->num_sgs, 1465 dir); 1466 else if (IS_ENABLED(CONFIG_HAS_DMA) && 1467 (urb->transfer_flags & URB_DMA_MAP_PAGE)) 1468 dma_unmap_page(hcd->self.sysdev, 1469 urb->transfer_dma, 1470 urb->transfer_buffer_length, 1471 dir); 1472 else if (IS_ENABLED(CONFIG_HAS_DMA) && 1473 (urb->transfer_flags & URB_DMA_MAP_SINGLE)) 1474 dma_unmap_single(hcd->self.sysdev, 1475 urb->transfer_dma, 1476 urb->transfer_buffer_length, 1477 dir); 1478 else if (urb->transfer_flags & URB_MAP_LOCAL) 1479 hcd_free_coherent(urb->dev->bus, 1480 &urb->transfer_dma, 1481 &urb->transfer_buffer, 1482 urb->transfer_buffer_length, 1483 dir); 1484 1485 /* Make it safe to call this routine more than once */ 1486 urb->transfer_flags &= ~(URB_DMA_MAP_SG | URB_DMA_MAP_PAGE | 1487 URB_DMA_MAP_SINGLE | URB_MAP_LOCAL); 1488 } 1489 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_for_dma); 1490 1491 static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb, 1492 gfp_t mem_flags) 1493 { 1494 if (hcd->driver->map_urb_for_dma) 1495 return hcd->driver->map_urb_for_dma(hcd, urb, mem_flags); 1496 else 1497 return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags); 1498 } 1499 1500 int usb_hcd_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb, 1501 gfp_t mem_flags) 1502 { 1503 enum dma_data_direction dir; 1504 int ret = 0; 1505 1506 /* Map the URB's buffers for DMA access. 1507 * Lower level HCD code should use *_dma exclusively, 1508 * unless it uses pio or talks to another transport, 1509 * or uses the provided scatter gather list for bulk. 1510 */ 1511 1512 if (usb_endpoint_xfer_control(&urb->ep->desc)) { 1513 if (hcd->self.uses_pio_for_control) 1514 return ret; 1515 if (IS_ENABLED(CONFIG_HAS_DMA) && hcd->self.uses_dma) { 1516 if (is_vmalloc_addr(urb->setup_packet)) { 1517 WARN_ONCE(1, "setup packet is not dma capable\n"); 1518 return -EAGAIN; 1519 } else if (object_is_on_stack(urb->setup_packet)) { 1520 WARN_ONCE(1, "setup packet is on stack\n"); 1521 return -EAGAIN; 1522 } 1523 1524 urb->setup_dma = dma_map_single( 1525 hcd->self.sysdev, 1526 urb->setup_packet, 1527 sizeof(struct usb_ctrlrequest), 1528 DMA_TO_DEVICE); 1529 if (dma_mapping_error(hcd->self.sysdev, 1530 urb->setup_dma)) 1531 return -EAGAIN; 1532 urb->transfer_flags |= URB_SETUP_MAP_SINGLE; 1533 } else if (hcd->driver->flags & HCD_LOCAL_MEM) { 1534 ret = hcd_alloc_coherent( 1535 urb->dev->bus, mem_flags, 1536 &urb->setup_dma, 1537 (void **)&urb->setup_packet, 1538 sizeof(struct usb_ctrlrequest), 1539 DMA_TO_DEVICE); 1540 if (ret) 1541 return ret; 1542 urb->transfer_flags |= URB_SETUP_MAP_LOCAL; 1543 } 1544 } 1545 1546 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE; 1547 if (urb->transfer_buffer_length != 0 1548 && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) { 1549 if (IS_ENABLED(CONFIG_HAS_DMA) && hcd->self.uses_dma) { 1550 if (urb->num_sgs) { 1551 int n; 1552 1553 /* We don't support sg for isoc transfers ! */ 1554 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) { 1555 WARN_ON(1); 1556 return -EINVAL; 1557 } 1558 1559 n = dma_map_sg( 1560 hcd->self.sysdev, 1561 urb->sg, 1562 urb->num_sgs, 1563 dir); 1564 if (n <= 0) 1565 ret = -EAGAIN; 1566 else 1567 urb->transfer_flags |= URB_DMA_MAP_SG; 1568 urb->num_mapped_sgs = n; 1569 if (n != urb->num_sgs) 1570 urb->transfer_flags |= 1571 URB_DMA_SG_COMBINED; 1572 } else if (urb->sg) { 1573 struct scatterlist *sg = urb->sg; 1574 urb->transfer_dma = dma_map_page( 1575 hcd->self.sysdev, 1576 sg_page(sg), 1577 sg->offset, 1578 urb->transfer_buffer_length, 1579 dir); 1580 if (dma_mapping_error(hcd->self.sysdev, 1581 urb->transfer_dma)) 1582 ret = -EAGAIN; 1583 else 1584 urb->transfer_flags |= URB_DMA_MAP_PAGE; 1585 } else if (is_vmalloc_addr(urb->transfer_buffer)) { 1586 WARN_ONCE(1, "transfer buffer not dma capable\n"); 1587 ret = -EAGAIN; 1588 } else if (object_is_on_stack(urb->transfer_buffer)) { 1589 WARN_ONCE(1, "transfer buffer is on stack\n"); 1590 ret = -EAGAIN; 1591 } else { 1592 urb->transfer_dma = dma_map_single( 1593 hcd->self.sysdev, 1594 urb->transfer_buffer, 1595 urb->transfer_buffer_length, 1596 dir); 1597 if (dma_mapping_error(hcd->self.sysdev, 1598 urb->transfer_dma)) 1599 ret = -EAGAIN; 1600 else 1601 urb->transfer_flags |= URB_DMA_MAP_SINGLE; 1602 } 1603 } else if (hcd->driver->flags & HCD_LOCAL_MEM) { 1604 ret = hcd_alloc_coherent( 1605 urb->dev->bus, mem_flags, 1606 &urb->transfer_dma, 1607 &urb->transfer_buffer, 1608 urb->transfer_buffer_length, 1609 dir); 1610 if (ret == 0) 1611 urb->transfer_flags |= URB_MAP_LOCAL; 1612 } 1613 if (ret && (urb->transfer_flags & (URB_SETUP_MAP_SINGLE | 1614 URB_SETUP_MAP_LOCAL))) 1615 usb_hcd_unmap_urb_for_dma(hcd, urb); 1616 } 1617 return ret; 1618 } 1619 EXPORT_SYMBOL_GPL(usb_hcd_map_urb_for_dma); 1620 1621 /*-------------------------------------------------------------------------*/ 1622 1623 /* may be called in any context with a valid urb->dev usecount 1624 * caller surrenders "ownership" of urb 1625 * expects usb_submit_urb() to have sanity checked and conditioned all 1626 * inputs in the urb 1627 */ 1628 int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags) 1629 { 1630 int status; 1631 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus); 1632 1633 /* increment urb's reference count as part of giving it to the HCD 1634 * (which will control it). HCD guarantees that it either returns 1635 * an error or calls giveback(), but not both. 1636 */ 1637 usb_get_urb(urb); 1638 atomic_inc(&urb->use_count); 1639 atomic_inc(&urb->dev->urbnum); 1640 usbmon_urb_submit(&hcd->self, urb); 1641 1642 /* NOTE requirements on root-hub callers (usbfs and the hub 1643 * driver, for now): URBs' urb->transfer_buffer must be 1644 * valid and usb_buffer_{sync,unmap}() not be needed, since 1645 * they could clobber root hub response data. Also, control 1646 * URBs must be submitted in process context with interrupts 1647 * enabled. 1648 */ 1649 1650 if (is_root_hub(urb->dev)) { 1651 status = rh_urb_enqueue(hcd, urb); 1652 } else { 1653 status = map_urb_for_dma(hcd, urb, mem_flags); 1654 if (likely(status == 0)) { 1655 status = hcd->driver->urb_enqueue(hcd, urb, mem_flags); 1656 if (unlikely(status)) 1657 unmap_urb_for_dma(hcd, urb); 1658 } 1659 } 1660 1661 if (unlikely(status)) { 1662 usbmon_urb_submit_error(&hcd->self, urb, status); 1663 urb->hcpriv = NULL; 1664 INIT_LIST_HEAD(&urb->urb_list); 1665 atomic_dec(&urb->use_count); 1666 atomic_dec(&urb->dev->urbnum); 1667 if (atomic_read(&urb->reject)) 1668 wake_up(&usb_kill_urb_queue); 1669 usb_put_urb(urb); 1670 } 1671 return status; 1672 } 1673 1674 /*-------------------------------------------------------------------------*/ 1675 1676 /* this makes the hcd giveback() the urb more quickly, by kicking it 1677 * off hardware queues (which may take a while) and returning it as 1678 * soon as practical. we've already set up the urb's return status, 1679 * but we can't know if the callback completed already. 1680 */ 1681 static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status) 1682 { 1683 int value; 1684 1685 if (is_root_hub(urb->dev)) 1686 value = usb_rh_urb_dequeue(hcd, urb, status); 1687 else { 1688 1689 /* The only reason an HCD might fail this call is if 1690 * it has not yet fully queued the urb to begin with. 1691 * Such failures should be harmless. */ 1692 value = hcd->driver->urb_dequeue(hcd, urb, status); 1693 } 1694 return value; 1695 } 1696 1697 /* 1698 * called in any context 1699 * 1700 * caller guarantees urb won't be recycled till both unlink() 1701 * and the urb's completion function return 1702 */ 1703 int usb_hcd_unlink_urb (struct urb *urb, int status) 1704 { 1705 struct usb_hcd *hcd; 1706 struct usb_device *udev = urb->dev; 1707 int retval = -EIDRM; 1708 unsigned long flags; 1709 1710 /* Prevent the device and bus from going away while 1711 * the unlink is carried out. If they are already gone 1712 * then urb->use_count must be 0, since disconnected 1713 * devices can't have any active URBs. 1714 */ 1715 spin_lock_irqsave(&hcd_urb_unlink_lock, flags); 1716 if (atomic_read(&urb->use_count) > 0) { 1717 retval = 0; 1718 usb_get_dev(udev); 1719 } 1720 spin_unlock_irqrestore(&hcd_urb_unlink_lock, flags); 1721 if (retval == 0) { 1722 hcd = bus_to_hcd(urb->dev->bus); 1723 retval = unlink1(hcd, urb, status); 1724 if (retval == 0) 1725 retval = -EINPROGRESS; 1726 else if (retval != -EIDRM && retval != -EBUSY) 1727 dev_dbg(&udev->dev, "hcd_unlink_urb %pK fail %d\n", 1728 urb, retval); 1729 usb_put_dev(udev); 1730 } 1731 return retval; 1732 } 1733 1734 /*-------------------------------------------------------------------------*/ 1735 1736 static void __usb_hcd_giveback_urb(struct urb *urb) 1737 { 1738 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus); 1739 struct usb_anchor *anchor = urb->anchor; 1740 int status = urb->unlinked; 1741 unsigned long flags; 1742 1743 urb->hcpriv = NULL; 1744 if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) && 1745 urb->actual_length < urb->transfer_buffer_length && 1746 !status)) 1747 status = -EREMOTEIO; 1748 1749 unmap_urb_for_dma(hcd, urb); 1750 usbmon_urb_complete(&hcd->self, urb, status); 1751 usb_anchor_suspend_wakeups(anchor); 1752 usb_unanchor_urb(urb); 1753 if (likely(status == 0)) 1754 usb_led_activity(USB_LED_EVENT_HOST); 1755 1756 /* pass ownership to the completion handler */ 1757 urb->status = status; 1758 1759 /* 1760 * We disable local IRQs here avoid possible deadlock because 1761 * drivers may call spin_lock() to hold lock which might be 1762 * acquired in one hard interrupt handler. 1763 * 1764 * The local_irq_save()/local_irq_restore() around complete() 1765 * will be removed if current USB drivers have been cleaned up 1766 * and no one may trigger the above deadlock situation when 1767 * running complete() in tasklet. 1768 */ 1769 local_irq_save(flags); 1770 urb->complete(urb); 1771 local_irq_restore(flags); 1772 1773 usb_anchor_resume_wakeups(anchor); 1774 atomic_dec(&urb->use_count); 1775 if (unlikely(atomic_read(&urb->reject))) 1776 wake_up(&usb_kill_urb_queue); 1777 usb_put_urb(urb); 1778 } 1779 1780 static void usb_giveback_urb_bh(unsigned long param) 1781 { 1782 struct giveback_urb_bh *bh = (struct giveback_urb_bh *)param; 1783 struct list_head local_list; 1784 1785 spin_lock_irq(&bh->lock); 1786 bh->running = true; 1787 restart: 1788 list_replace_init(&bh->head, &local_list); 1789 spin_unlock_irq(&bh->lock); 1790 1791 while (!list_empty(&local_list)) { 1792 struct urb *urb; 1793 1794 urb = list_entry(local_list.next, struct urb, urb_list); 1795 list_del_init(&urb->urb_list); 1796 bh->completing_ep = urb->ep; 1797 __usb_hcd_giveback_urb(urb); 1798 bh->completing_ep = NULL; 1799 } 1800 1801 /* check if there are new URBs to giveback */ 1802 spin_lock_irq(&bh->lock); 1803 if (!list_empty(&bh->head)) 1804 goto restart; 1805 bh->running = false; 1806 spin_unlock_irq(&bh->lock); 1807 } 1808 1809 /** 1810 * usb_hcd_giveback_urb - return URB from HCD to device driver 1811 * @hcd: host controller returning the URB 1812 * @urb: urb being returned to the USB device driver. 1813 * @status: completion status code for the URB. 1814 * Context: in_interrupt() 1815 * 1816 * This hands the URB from HCD to its USB device driver, using its 1817 * completion function. The HCD has freed all per-urb resources 1818 * (and is done using urb->hcpriv). It also released all HCD locks; 1819 * the device driver won't cause problems if it frees, modifies, 1820 * or resubmits this URB. 1821 * 1822 * If @urb was unlinked, the value of @status will be overridden by 1823 * @urb->unlinked. Erroneous short transfers are detected in case 1824 * the HCD hasn't checked for them. 1825 */ 1826 void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status) 1827 { 1828 struct giveback_urb_bh *bh; 1829 bool running, high_prio_bh; 1830 1831 /* pass status to tasklet via unlinked */ 1832 if (likely(!urb->unlinked)) 1833 urb->unlinked = status; 1834 1835 if (!hcd_giveback_urb_in_bh(hcd) && !is_root_hub(urb->dev)) { 1836 __usb_hcd_giveback_urb(urb); 1837 return; 1838 } 1839 1840 if (usb_pipeisoc(urb->pipe) || usb_pipeint(urb->pipe)) { 1841 bh = &hcd->high_prio_bh; 1842 high_prio_bh = true; 1843 } else { 1844 bh = &hcd->low_prio_bh; 1845 high_prio_bh = false; 1846 } 1847 1848 spin_lock(&bh->lock); 1849 list_add_tail(&urb->urb_list, &bh->head); 1850 running = bh->running; 1851 spin_unlock(&bh->lock); 1852 1853 if (running) 1854 ; 1855 else if (high_prio_bh) 1856 tasklet_hi_schedule(&bh->bh); 1857 else 1858 tasklet_schedule(&bh->bh); 1859 } 1860 EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb); 1861 1862 /*-------------------------------------------------------------------------*/ 1863 1864 /* Cancel all URBs pending on this endpoint and wait for the endpoint's 1865 * queue to drain completely. The caller must first insure that no more 1866 * URBs can be submitted for this endpoint. 1867 */ 1868 void usb_hcd_flush_endpoint(struct usb_device *udev, 1869 struct usb_host_endpoint *ep) 1870 { 1871 struct usb_hcd *hcd; 1872 struct urb *urb; 1873 1874 if (!ep) 1875 return; 1876 might_sleep(); 1877 hcd = bus_to_hcd(udev->bus); 1878 1879 /* No more submits can occur */ 1880 spin_lock_irq(&hcd_urb_list_lock); 1881 rescan: 1882 list_for_each_entry_reverse(urb, &ep->urb_list, urb_list) { 1883 int is_in; 1884 1885 if (urb->unlinked) 1886 continue; 1887 usb_get_urb (urb); 1888 is_in = usb_urb_dir_in(urb); 1889 spin_unlock(&hcd_urb_list_lock); 1890 1891 /* kick hcd */ 1892 unlink1(hcd, urb, -ESHUTDOWN); 1893 dev_dbg (hcd->self.controller, 1894 "shutdown urb %pK ep%d%s%s\n", 1895 urb, usb_endpoint_num(&ep->desc), 1896 is_in ? "in" : "out", 1897 ({ char *s; 1898 1899 switch (usb_endpoint_type(&ep->desc)) { 1900 case USB_ENDPOINT_XFER_CONTROL: 1901 s = ""; break; 1902 case USB_ENDPOINT_XFER_BULK: 1903 s = "-bulk"; break; 1904 case USB_ENDPOINT_XFER_INT: 1905 s = "-intr"; break; 1906 default: 1907 s = "-iso"; break; 1908 }; 1909 s; 1910 })); 1911 usb_put_urb (urb); 1912 1913 /* list contents may have changed */ 1914 spin_lock(&hcd_urb_list_lock); 1915 goto rescan; 1916 } 1917 spin_unlock_irq(&hcd_urb_list_lock); 1918 1919 /* Wait until the endpoint queue is completely empty */ 1920 while (!list_empty (&ep->urb_list)) { 1921 spin_lock_irq(&hcd_urb_list_lock); 1922 1923 /* The list may have changed while we acquired the spinlock */ 1924 urb = NULL; 1925 if (!list_empty (&ep->urb_list)) { 1926 urb = list_entry (ep->urb_list.prev, struct urb, 1927 urb_list); 1928 usb_get_urb (urb); 1929 } 1930 spin_unlock_irq(&hcd_urb_list_lock); 1931 1932 if (urb) { 1933 usb_kill_urb (urb); 1934 usb_put_urb (urb); 1935 } 1936 } 1937 } 1938 1939 /** 1940 * usb_hcd_alloc_bandwidth - check whether a new bandwidth setting exceeds 1941 * the bus bandwidth 1942 * @udev: target &usb_device 1943 * @new_config: new configuration to install 1944 * @cur_alt: the current alternate interface setting 1945 * @new_alt: alternate interface setting that is being installed 1946 * 1947 * To change configurations, pass in the new configuration in new_config, 1948 * and pass NULL for cur_alt and new_alt. 1949 * 1950 * To reset a device's configuration (put the device in the ADDRESSED state), 1951 * pass in NULL for new_config, cur_alt, and new_alt. 1952 * 1953 * To change alternate interface settings, pass in NULL for new_config, 1954 * pass in the current alternate interface setting in cur_alt, 1955 * and pass in the new alternate interface setting in new_alt. 1956 * 1957 * Return: An error if the requested bandwidth change exceeds the 1958 * bus bandwidth or host controller internal resources. 1959 */ 1960 int usb_hcd_alloc_bandwidth(struct usb_device *udev, 1961 struct usb_host_config *new_config, 1962 struct usb_host_interface *cur_alt, 1963 struct usb_host_interface *new_alt) 1964 { 1965 int num_intfs, i, j; 1966 struct usb_host_interface *alt = NULL; 1967 int ret = 0; 1968 struct usb_hcd *hcd; 1969 struct usb_host_endpoint *ep; 1970 1971 hcd = bus_to_hcd(udev->bus); 1972 if (!hcd->driver->check_bandwidth) 1973 return 0; 1974 1975 /* Configuration is being removed - set configuration 0 */ 1976 if (!new_config && !cur_alt) { 1977 for (i = 1; i < 16; ++i) { 1978 ep = udev->ep_out[i]; 1979 if (ep) 1980 hcd->driver->drop_endpoint(hcd, udev, ep); 1981 ep = udev->ep_in[i]; 1982 if (ep) 1983 hcd->driver->drop_endpoint(hcd, udev, ep); 1984 } 1985 hcd->driver->check_bandwidth(hcd, udev); 1986 return 0; 1987 } 1988 /* Check if the HCD says there's enough bandwidth. Enable all endpoints 1989 * each interface's alt setting 0 and ask the HCD to check the bandwidth 1990 * of the bus. There will always be bandwidth for endpoint 0, so it's 1991 * ok to exclude it. 1992 */ 1993 if (new_config) { 1994 num_intfs = new_config->desc.bNumInterfaces; 1995 /* Remove endpoints (except endpoint 0, which is always on the 1996 * schedule) from the old config from the schedule 1997 */ 1998 for (i = 1; i < 16; ++i) { 1999 ep = udev->ep_out[i]; 2000 if (ep) { 2001 ret = hcd->driver->drop_endpoint(hcd, udev, ep); 2002 if (ret < 0) 2003 goto reset; 2004 } 2005 ep = udev->ep_in[i]; 2006 if (ep) { 2007 ret = hcd->driver->drop_endpoint(hcd, udev, ep); 2008 if (ret < 0) 2009 goto reset; 2010 } 2011 } 2012 for (i = 0; i < num_intfs; ++i) { 2013 struct usb_host_interface *first_alt; 2014 int iface_num; 2015 2016 first_alt = &new_config->intf_cache[i]->altsetting[0]; 2017 iface_num = first_alt->desc.bInterfaceNumber; 2018 /* Set up endpoints for alternate interface setting 0 */ 2019 alt = usb_find_alt_setting(new_config, iface_num, 0); 2020 if (!alt) 2021 /* No alt setting 0? Pick the first setting. */ 2022 alt = first_alt; 2023 2024 for (j = 0; j < alt->desc.bNumEndpoints; j++) { 2025 ret = hcd->driver->add_endpoint(hcd, udev, &alt->endpoint[j]); 2026 if (ret < 0) 2027 goto reset; 2028 } 2029 } 2030 } 2031 if (cur_alt && new_alt) { 2032 struct usb_interface *iface = usb_ifnum_to_if(udev, 2033 cur_alt->desc.bInterfaceNumber); 2034 2035 if (!iface) 2036 return -EINVAL; 2037 if (iface->resetting_device) { 2038 /* 2039 * The USB core just reset the device, so the xHCI host 2040 * and the device will think alt setting 0 is installed. 2041 * However, the USB core will pass in the alternate 2042 * setting installed before the reset as cur_alt. Dig 2043 * out the alternate setting 0 structure, or the first 2044 * alternate setting if a broken device doesn't have alt 2045 * setting 0. 2046 */ 2047 cur_alt = usb_altnum_to_altsetting(iface, 0); 2048 if (!cur_alt) 2049 cur_alt = &iface->altsetting[0]; 2050 } 2051 2052 /* Drop all the endpoints in the current alt setting */ 2053 for (i = 0; i < cur_alt->desc.bNumEndpoints; i++) { 2054 ret = hcd->driver->drop_endpoint(hcd, udev, 2055 &cur_alt->endpoint[i]); 2056 if (ret < 0) 2057 goto reset; 2058 } 2059 /* Add all the endpoints in the new alt setting */ 2060 for (i = 0; i < new_alt->desc.bNumEndpoints; i++) { 2061 ret = hcd->driver->add_endpoint(hcd, udev, 2062 &new_alt->endpoint[i]); 2063 if (ret < 0) 2064 goto reset; 2065 } 2066 } 2067 ret = hcd->driver->check_bandwidth(hcd, udev); 2068 reset: 2069 if (ret < 0) 2070 hcd->driver->reset_bandwidth(hcd, udev); 2071 return ret; 2072 } 2073 2074 /* Disables the endpoint: synchronizes with the hcd to make sure all 2075 * endpoint state is gone from hardware. usb_hcd_flush_endpoint() must 2076 * have been called previously. Use for set_configuration, set_interface, 2077 * driver removal, physical disconnect. 2078 * 2079 * example: a qh stored in ep->hcpriv, holding state related to endpoint 2080 * type, maxpacket size, toggle, halt status, and scheduling. 2081 */ 2082 void usb_hcd_disable_endpoint(struct usb_device *udev, 2083 struct usb_host_endpoint *ep) 2084 { 2085 struct usb_hcd *hcd; 2086 2087 might_sleep(); 2088 hcd = bus_to_hcd(udev->bus); 2089 if (hcd->driver->endpoint_disable) 2090 hcd->driver->endpoint_disable(hcd, ep); 2091 } 2092 2093 /** 2094 * usb_hcd_reset_endpoint - reset host endpoint state 2095 * @udev: USB device. 2096 * @ep: the endpoint to reset. 2097 * 2098 * Resets any host endpoint state such as the toggle bit, sequence 2099 * number and current window. 2100 */ 2101 void usb_hcd_reset_endpoint(struct usb_device *udev, 2102 struct usb_host_endpoint *ep) 2103 { 2104 struct usb_hcd *hcd = bus_to_hcd(udev->bus); 2105 2106 if (hcd->driver->endpoint_reset) 2107 hcd->driver->endpoint_reset(hcd, ep); 2108 else { 2109 int epnum = usb_endpoint_num(&ep->desc); 2110 int is_out = usb_endpoint_dir_out(&ep->desc); 2111 int is_control = usb_endpoint_xfer_control(&ep->desc); 2112 2113 usb_settoggle(udev, epnum, is_out, 0); 2114 if (is_control) 2115 usb_settoggle(udev, epnum, !is_out, 0); 2116 } 2117 } 2118 2119 /** 2120 * usb_alloc_streams - allocate bulk endpoint stream IDs. 2121 * @interface: alternate setting that includes all endpoints. 2122 * @eps: array of endpoints that need streams. 2123 * @num_eps: number of endpoints in the array. 2124 * @num_streams: number of streams to allocate. 2125 * @mem_flags: flags hcd should use to allocate memory. 2126 * 2127 * Sets up a group of bulk endpoints to have @num_streams stream IDs available. 2128 * Drivers may queue multiple transfers to different stream IDs, which may 2129 * complete in a different order than they were queued. 2130 * 2131 * Return: On success, the number of allocated streams. On failure, a negative 2132 * error code. 2133 */ 2134 int usb_alloc_streams(struct usb_interface *interface, 2135 struct usb_host_endpoint **eps, unsigned int num_eps, 2136 unsigned int num_streams, gfp_t mem_flags) 2137 { 2138 struct usb_hcd *hcd; 2139 struct usb_device *dev; 2140 int i, ret; 2141 2142 dev = interface_to_usbdev(interface); 2143 hcd = bus_to_hcd(dev->bus); 2144 if (!hcd->driver->alloc_streams || !hcd->driver->free_streams) 2145 return -EINVAL; 2146 if (dev->speed < USB_SPEED_SUPER) 2147 return -EINVAL; 2148 if (dev->state < USB_STATE_CONFIGURED) 2149 return -ENODEV; 2150 2151 for (i = 0; i < num_eps; i++) { 2152 /* Streams only apply to bulk endpoints. */ 2153 if (!usb_endpoint_xfer_bulk(&eps[i]->desc)) 2154 return -EINVAL; 2155 /* Re-alloc is not allowed */ 2156 if (eps[i]->streams) 2157 return -EINVAL; 2158 } 2159 2160 ret = hcd->driver->alloc_streams(hcd, dev, eps, num_eps, 2161 num_streams, mem_flags); 2162 if (ret < 0) 2163 return ret; 2164 2165 for (i = 0; i < num_eps; i++) 2166 eps[i]->streams = ret; 2167 2168 return ret; 2169 } 2170 EXPORT_SYMBOL_GPL(usb_alloc_streams); 2171 2172 /** 2173 * usb_free_streams - free bulk endpoint stream IDs. 2174 * @interface: alternate setting that includes all endpoints. 2175 * @eps: array of endpoints to remove streams from. 2176 * @num_eps: number of endpoints in the array. 2177 * @mem_flags: flags hcd should use to allocate memory. 2178 * 2179 * Reverts a group of bulk endpoints back to not using stream IDs. 2180 * Can fail if we are given bad arguments, or HCD is broken. 2181 * 2182 * Return: 0 on success. On failure, a negative error code. 2183 */ 2184 int usb_free_streams(struct usb_interface *interface, 2185 struct usb_host_endpoint **eps, unsigned int num_eps, 2186 gfp_t mem_flags) 2187 { 2188 struct usb_hcd *hcd; 2189 struct usb_device *dev; 2190 int i, ret; 2191 2192 dev = interface_to_usbdev(interface); 2193 hcd = bus_to_hcd(dev->bus); 2194 if (dev->speed < USB_SPEED_SUPER) 2195 return -EINVAL; 2196 2197 /* Double-free is not allowed */ 2198 for (i = 0; i < num_eps; i++) 2199 if (!eps[i] || !eps[i]->streams) 2200 return -EINVAL; 2201 2202 ret = hcd->driver->free_streams(hcd, dev, eps, num_eps, mem_flags); 2203 if (ret < 0) 2204 return ret; 2205 2206 for (i = 0; i < num_eps; i++) 2207 eps[i]->streams = 0; 2208 2209 return ret; 2210 } 2211 EXPORT_SYMBOL_GPL(usb_free_streams); 2212 2213 /* Protect against drivers that try to unlink URBs after the device 2214 * is gone, by waiting until all unlinks for @udev are finished. 2215 * Since we don't currently track URBs by device, simply wait until 2216 * nothing is running in the locked region of usb_hcd_unlink_urb(). 2217 */ 2218 void usb_hcd_synchronize_unlinks(struct usb_device *udev) 2219 { 2220 spin_lock_irq(&hcd_urb_unlink_lock); 2221 spin_unlock_irq(&hcd_urb_unlink_lock); 2222 } 2223 2224 /*-------------------------------------------------------------------------*/ 2225 2226 /* called in any context */ 2227 int usb_hcd_get_frame_number (struct usb_device *udev) 2228 { 2229 struct usb_hcd *hcd = bus_to_hcd(udev->bus); 2230 2231 if (!HCD_RH_RUNNING(hcd)) 2232 return -ESHUTDOWN; 2233 return hcd->driver->get_frame_number (hcd); 2234 } 2235 2236 /*-------------------------------------------------------------------------*/ 2237 2238 #ifdef CONFIG_PM 2239 2240 int hcd_bus_suspend(struct usb_device *rhdev, pm_message_t msg) 2241 { 2242 struct usb_hcd *hcd = bus_to_hcd(rhdev->bus); 2243 int status; 2244 int old_state = hcd->state; 2245 2246 dev_dbg(&rhdev->dev, "bus %ssuspend, wakeup %d\n", 2247 (PMSG_IS_AUTO(msg) ? "auto-" : ""), 2248 rhdev->do_remote_wakeup); 2249 if (HCD_DEAD(hcd)) { 2250 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "suspend"); 2251 return 0; 2252 } 2253 2254 if (!hcd->driver->bus_suspend) { 2255 status = -ENOENT; 2256 } else { 2257 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2258 hcd->state = HC_STATE_QUIESCING; 2259 status = hcd->driver->bus_suspend(hcd); 2260 } 2261 if (status == 0) { 2262 usb_set_device_state(rhdev, USB_STATE_SUSPENDED); 2263 hcd->state = HC_STATE_SUSPENDED; 2264 2265 if (!PMSG_IS_AUTO(msg)) 2266 usb_phy_roothub_suspend(hcd->self.sysdev, 2267 hcd->phy_roothub); 2268 2269 /* Did we race with a root-hub wakeup event? */ 2270 if (rhdev->do_remote_wakeup) { 2271 char buffer[6]; 2272 2273 status = hcd->driver->hub_status_data(hcd, buffer); 2274 if (status != 0) { 2275 dev_dbg(&rhdev->dev, "suspend raced with wakeup event\n"); 2276 hcd_bus_resume(rhdev, PMSG_AUTO_RESUME); 2277 status = -EBUSY; 2278 } 2279 } 2280 } else { 2281 spin_lock_irq(&hcd_root_hub_lock); 2282 if (!HCD_DEAD(hcd)) { 2283 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2284 hcd->state = old_state; 2285 } 2286 spin_unlock_irq(&hcd_root_hub_lock); 2287 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n", 2288 "suspend", status); 2289 } 2290 return status; 2291 } 2292 2293 int hcd_bus_resume(struct usb_device *rhdev, pm_message_t msg) 2294 { 2295 struct usb_hcd *hcd = bus_to_hcd(rhdev->bus); 2296 int status; 2297 int old_state = hcd->state; 2298 2299 dev_dbg(&rhdev->dev, "usb %sresume\n", 2300 (PMSG_IS_AUTO(msg) ? "auto-" : "")); 2301 if (HCD_DEAD(hcd)) { 2302 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "resume"); 2303 return 0; 2304 } 2305 2306 if (!PMSG_IS_AUTO(msg)) { 2307 status = usb_phy_roothub_resume(hcd->self.sysdev, 2308 hcd->phy_roothub); 2309 if (status) 2310 return status; 2311 } 2312 2313 if (!hcd->driver->bus_resume) 2314 return -ENOENT; 2315 if (HCD_RH_RUNNING(hcd)) 2316 return 0; 2317 2318 hcd->state = HC_STATE_RESUMING; 2319 status = hcd->driver->bus_resume(hcd); 2320 clear_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags); 2321 if (status == 0) { 2322 struct usb_device *udev; 2323 int port1; 2324 2325 spin_lock_irq(&hcd_root_hub_lock); 2326 if (!HCD_DEAD(hcd)) { 2327 usb_set_device_state(rhdev, rhdev->actconfig 2328 ? USB_STATE_CONFIGURED 2329 : USB_STATE_ADDRESS); 2330 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2331 hcd->state = HC_STATE_RUNNING; 2332 } 2333 spin_unlock_irq(&hcd_root_hub_lock); 2334 2335 /* 2336 * Check whether any of the enabled ports on the root hub are 2337 * unsuspended. If they are then a TRSMRCY delay is needed 2338 * (this is what the USB-2 spec calls a "global resume"). 2339 * Otherwise we can skip the delay. 2340 */ 2341 usb_hub_for_each_child(rhdev, port1, udev) { 2342 if (udev->state != USB_STATE_NOTATTACHED && 2343 !udev->port_is_suspended) { 2344 usleep_range(10000, 11000); /* TRSMRCY */ 2345 break; 2346 } 2347 } 2348 } else { 2349 hcd->state = old_state; 2350 usb_phy_roothub_suspend(hcd->self.sysdev, hcd->phy_roothub); 2351 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n", 2352 "resume", status); 2353 if (status != -ESHUTDOWN) 2354 usb_hc_died(hcd); 2355 } 2356 return status; 2357 } 2358 2359 /* Workqueue routine for root-hub remote wakeup */ 2360 static void hcd_resume_work(struct work_struct *work) 2361 { 2362 struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work); 2363 struct usb_device *udev = hcd->self.root_hub; 2364 2365 usb_remote_wakeup(udev); 2366 } 2367 2368 /** 2369 * usb_hcd_resume_root_hub - called by HCD to resume its root hub 2370 * @hcd: host controller for this root hub 2371 * 2372 * The USB host controller calls this function when its root hub is 2373 * suspended (with the remote wakeup feature enabled) and a remote 2374 * wakeup request is received. The routine submits a workqueue request 2375 * to resume the root hub (that is, manage its downstream ports again). 2376 */ 2377 void usb_hcd_resume_root_hub (struct usb_hcd *hcd) 2378 { 2379 unsigned long flags; 2380 2381 spin_lock_irqsave (&hcd_root_hub_lock, flags); 2382 if (hcd->rh_registered) { 2383 pm_wakeup_event(&hcd->self.root_hub->dev, 0); 2384 set_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags); 2385 queue_work(pm_wq, &hcd->wakeup_work); 2386 } 2387 spin_unlock_irqrestore (&hcd_root_hub_lock, flags); 2388 } 2389 EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub); 2390 2391 #endif /* CONFIG_PM */ 2392 2393 /*-------------------------------------------------------------------------*/ 2394 2395 #ifdef CONFIG_USB_OTG 2396 2397 /** 2398 * usb_bus_start_enum - start immediate enumeration (for OTG) 2399 * @bus: the bus (must use hcd framework) 2400 * @port_num: 1-based number of port; usually bus->otg_port 2401 * Context: in_interrupt() 2402 * 2403 * Starts enumeration, with an immediate reset followed later by 2404 * hub_wq identifying and possibly configuring the device. 2405 * This is needed by OTG controller drivers, where it helps meet 2406 * HNP protocol timing requirements for starting a port reset. 2407 * 2408 * Return: 0 if successful. 2409 */ 2410 int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num) 2411 { 2412 struct usb_hcd *hcd; 2413 int status = -EOPNOTSUPP; 2414 2415 /* NOTE: since HNP can't start by grabbing the bus's address0_sem, 2416 * boards with root hubs hooked up to internal devices (instead of 2417 * just the OTG port) may need more attention to resetting... 2418 */ 2419 hcd = bus_to_hcd(bus); 2420 if (port_num && hcd->driver->start_port_reset) 2421 status = hcd->driver->start_port_reset(hcd, port_num); 2422 2423 /* allocate hub_wq shortly after (first) root port reset finishes; 2424 * it may issue others, until at least 50 msecs have passed. 2425 */ 2426 if (status == 0) 2427 mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10)); 2428 return status; 2429 } 2430 EXPORT_SYMBOL_GPL(usb_bus_start_enum); 2431 2432 #endif 2433 2434 /*-------------------------------------------------------------------------*/ 2435 2436 /** 2437 * usb_hcd_irq - hook IRQs to HCD framework (bus glue) 2438 * @irq: the IRQ being raised 2439 * @__hcd: pointer to the HCD whose IRQ is being signaled 2440 * 2441 * If the controller isn't HALTed, calls the driver's irq handler. 2442 * Checks whether the controller is now dead. 2443 * 2444 * Return: %IRQ_HANDLED if the IRQ was handled. %IRQ_NONE otherwise. 2445 */ 2446 irqreturn_t usb_hcd_irq (int irq, void *__hcd) 2447 { 2448 struct usb_hcd *hcd = __hcd; 2449 irqreturn_t rc; 2450 2451 if (unlikely(HCD_DEAD(hcd) || !HCD_HW_ACCESSIBLE(hcd))) 2452 rc = IRQ_NONE; 2453 else if (hcd->driver->irq(hcd) == IRQ_NONE) 2454 rc = IRQ_NONE; 2455 else 2456 rc = IRQ_HANDLED; 2457 2458 return rc; 2459 } 2460 EXPORT_SYMBOL_GPL(usb_hcd_irq); 2461 2462 /*-------------------------------------------------------------------------*/ 2463 2464 /** 2465 * usb_hc_died - report abnormal shutdown of a host controller (bus glue) 2466 * @hcd: pointer to the HCD representing the controller 2467 * 2468 * This is called by bus glue to report a USB host controller that died 2469 * while operations may still have been pending. It's called automatically 2470 * by the PCI glue, so only glue for non-PCI busses should need to call it. 2471 * 2472 * Only call this function with the primary HCD. 2473 */ 2474 void usb_hc_died (struct usb_hcd *hcd) 2475 { 2476 unsigned long flags; 2477 2478 dev_err (hcd->self.controller, "HC died; cleaning up\n"); 2479 2480 spin_lock_irqsave (&hcd_root_hub_lock, flags); 2481 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2482 set_bit(HCD_FLAG_DEAD, &hcd->flags); 2483 if (hcd->rh_registered) { 2484 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2485 2486 /* make hub_wq clean up old urbs and devices */ 2487 usb_set_device_state (hcd->self.root_hub, 2488 USB_STATE_NOTATTACHED); 2489 usb_kick_hub_wq(hcd->self.root_hub); 2490 } 2491 if (usb_hcd_is_primary_hcd(hcd) && hcd->shared_hcd) { 2492 hcd = hcd->shared_hcd; 2493 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2494 set_bit(HCD_FLAG_DEAD, &hcd->flags); 2495 if (hcd->rh_registered) { 2496 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2497 2498 /* make hub_wq clean up old urbs and devices */ 2499 usb_set_device_state(hcd->self.root_hub, 2500 USB_STATE_NOTATTACHED); 2501 usb_kick_hub_wq(hcd->self.root_hub); 2502 } 2503 } 2504 spin_unlock_irqrestore (&hcd_root_hub_lock, flags); 2505 /* Make sure that the other roothub is also deallocated. */ 2506 } 2507 EXPORT_SYMBOL_GPL (usb_hc_died); 2508 2509 /*-------------------------------------------------------------------------*/ 2510 2511 static void init_giveback_urb_bh(struct giveback_urb_bh *bh) 2512 { 2513 2514 spin_lock_init(&bh->lock); 2515 INIT_LIST_HEAD(&bh->head); 2516 tasklet_init(&bh->bh, usb_giveback_urb_bh, (unsigned long)bh); 2517 } 2518 2519 struct usb_hcd *__usb_create_hcd(const struct hc_driver *driver, 2520 struct device *sysdev, struct device *dev, const char *bus_name, 2521 struct usb_hcd *primary_hcd) 2522 { 2523 struct usb_hcd *hcd; 2524 2525 hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL); 2526 if (!hcd) 2527 return NULL; 2528 if (primary_hcd == NULL) { 2529 hcd->address0_mutex = kmalloc(sizeof(*hcd->address0_mutex), 2530 GFP_KERNEL); 2531 if (!hcd->address0_mutex) { 2532 kfree(hcd); 2533 dev_dbg(dev, "hcd address0 mutex alloc failed\n"); 2534 return NULL; 2535 } 2536 mutex_init(hcd->address0_mutex); 2537 hcd->bandwidth_mutex = kmalloc(sizeof(*hcd->bandwidth_mutex), 2538 GFP_KERNEL); 2539 if (!hcd->bandwidth_mutex) { 2540 kfree(hcd->address0_mutex); 2541 kfree(hcd); 2542 dev_dbg(dev, "hcd bandwidth mutex alloc failed\n"); 2543 return NULL; 2544 } 2545 mutex_init(hcd->bandwidth_mutex); 2546 dev_set_drvdata(dev, hcd); 2547 } else { 2548 mutex_lock(&usb_port_peer_mutex); 2549 hcd->address0_mutex = primary_hcd->address0_mutex; 2550 hcd->bandwidth_mutex = primary_hcd->bandwidth_mutex; 2551 hcd->primary_hcd = primary_hcd; 2552 primary_hcd->primary_hcd = primary_hcd; 2553 hcd->shared_hcd = primary_hcd; 2554 primary_hcd->shared_hcd = hcd; 2555 mutex_unlock(&usb_port_peer_mutex); 2556 } 2557 2558 kref_init(&hcd->kref); 2559 2560 usb_bus_init(&hcd->self); 2561 hcd->self.controller = dev; 2562 hcd->self.sysdev = sysdev; 2563 hcd->self.bus_name = bus_name; 2564 hcd->self.uses_dma = (sysdev->dma_mask != NULL); 2565 2566 timer_setup(&hcd->rh_timer, rh_timer_func, 0); 2567 #ifdef CONFIG_PM 2568 INIT_WORK(&hcd->wakeup_work, hcd_resume_work); 2569 #endif 2570 2571 hcd->driver = driver; 2572 hcd->speed = driver->flags & HCD_MASK; 2573 hcd->product_desc = (driver->product_desc) ? driver->product_desc : 2574 "USB Host Controller"; 2575 return hcd; 2576 } 2577 EXPORT_SYMBOL_GPL(__usb_create_hcd); 2578 2579 /** 2580 * usb_create_shared_hcd - create and initialize an HCD structure 2581 * @driver: HC driver that will use this hcd 2582 * @dev: device for this HC, stored in hcd->self.controller 2583 * @bus_name: value to store in hcd->self.bus_name 2584 * @primary_hcd: a pointer to the usb_hcd structure that is sharing the 2585 * PCI device. Only allocate certain resources for the primary HCD 2586 * Context: !in_interrupt() 2587 * 2588 * Allocate a struct usb_hcd, with extra space at the end for the 2589 * HC driver's private data. Initialize the generic members of the 2590 * hcd structure. 2591 * 2592 * Return: On success, a pointer to the created and initialized HCD structure. 2593 * On failure (e.g. if memory is unavailable), %NULL. 2594 */ 2595 struct usb_hcd *usb_create_shared_hcd(const struct hc_driver *driver, 2596 struct device *dev, const char *bus_name, 2597 struct usb_hcd *primary_hcd) 2598 { 2599 return __usb_create_hcd(driver, dev, dev, bus_name, primary_hcd); 2600 } 2601 EXPORT_SYMBOL_GPL(usb_create_shared_hcd); 2602 2603 /** 2604 * usb_create_hcd - create and initialize an HCD structure 2605 * @driver: HC driver that will use this hcd 2606 * @dev: device for this HC, stored in hcd->self.controller 2607 * @bus_name: value to store in hcd->self.bus_name 2608 * Context: !in_interrupt() 2609 * 2610 * Allocate a struct usb_hcd, with extra space at the end for the 2611 * HC driver's private data. Initialize the generic members of the 2612 * hcd structure. 2613 * 2614 * Return: On success, a pointer to the created and initialized HCD 2615 * structure. On failure (e.g. if memory is unavailable), %NULL. 2616 */ 2617 struct usb_hcd *usb_create_hcd(const struct hc_driver *driver, 2618 struct device *dev, const char *bus_name) 2619 { 2620 return __usb_create_hcd(driver, dev, dev, bus_name, NULL); 2621 } 2622 EXPORT_SYMBOL_GPL(usb_create_hcd); 2623 2624 /* 2625 * Roothubs that share one PCI device must also share the bandwidth mutex. 2626 * Don't deallocate the bandwidth_mutex until the last shared usb_hcd is 2627 * deallocated. 2628 * 2629 * Make sure to deallocate the bandwidth_mutex only when the last HCD is 2630 * freed. When hcd_release() is called for either hcd in a peer set, 2631 * invalidate the peer's ->shared_hcd and ->primary_hcd pointers. 2632 */ 2633 static void hcd_release(struct kref *kref) 2634 { 2635 struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref); 2636 2637 mutex_lock(&usb_port_peer_mutex); 2638 if (hcd->shared_hcd) { 2639 struct usb_hcd *peer = hcd->shared_hcd; 2640 2641 peer->shared_hcd = NULL; 2642 peer->primary_hcd = NULL; 2643 } else { 2644 kfree(hcd->address0_mutex); 2645 kfree(hcd->bandwidth_mutex); 2646 } 2647 mutex_unlock(&usb_port_peer_mutex); 2648 kfree(hcd); 2649 } 2650 2651 struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd) 2652 { 2653 if (hcd) 2654 kref_get (&hcd->kref); 2655 return hcd; 2656 } 2657 EXPORT_SYMBOL_GPL(usb_get_hcd); 2658 2659 void usb_put_hcd (struct usb_hcd *hcd) 2660 { 2661 if (hcd) 2662 kref_put (&hcd->kref, hcd_release); 2663 } 2664 EXPORT_SYMBOL_GPL(usb_put_hcd); 2665 2666 int usb_hcd_is_primary_hcd(struct usb_hcd *hcd) 2667 { 2668 if (!hcd->primary_hcd) 2669 return 1; 2670 return hcd == hcd->primary_hcd; 2671 } 2672 EXPORT_SYMBOL_GPL(usb_hcd_is_primary_hcd); 2673 2674 int usb_hcd_find_raw_port_number(struct usb_hcd *hcd, int port1) 2675 { 2676 if (!hcd->driver->find_raw_port_number) 2677 return port1; 2678 2679 return hcd->driver->find_raw_port_number(hcd, port1); 2680 } 2681 2682 static int usb_hcd_request_irqs(struct usb_hcd *hcd, 2683 unsigned int irqnum, unsigned long irqflags) 2684 { 2685 int retval; 2686 2687 if (hcd->driver->irq) { 2688 2689 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d", 2690 hcd->driver->description, hcd->self.busnum); 2691 retval = request_irq(irqnum, &usb_hcd_irq, irqflags, 2692 hcd->irq_descr, hcd); 2693 if (retval != 0) { 2694 dev_err(hcd->self.controller, 2695 "request interrupt %d failed\n", 2696 irqnum); 2697 return retval; 2698 } 2699 hcd->irq = irqnum; 2700 dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum, 2701 (hcd->driver->flags & HCD_MEMORY) ? 2702 "io mem" : "io base", 2703 (unsigned long long)hcd->rsrc_start); 2704 } else { 2705 hcd->irq = 0; 2706 if (hcd->rsrc_start) 2707 dev_info(hcd->self.controller, "%s 0x%08llx\n", 2708 (hcd->driver->flags & HCD_MEMORY) ? 2709 "io mem" : "io base", 2710 (unsigned long long)hcd->rsrc_start); 2711 } 2712 return 0; 2713 } 2714 2715 /* 2716 * Before we free this root hub, flush in-flight peering attempts 2717 * and disable peer lookups 2718 */ 2719 static void usb_put_invalidate_rhdev(struct usb_hcd *hcd) 2720 { 2721 struct usb_device *rhdev; 2722 2723 mutex_lock(&usb_port_peer_mutex); 2724 rhdev = hcd->self.root_hub; 2725 hcd->self.root_hub = NULL; 2726 mutex_unlock(&usb_port_peer_mutex); 2727 usb_put_dev(rhdev); 2728 } 2729 2730 /** 2731 * usb_add_hcd - finish generic HCD structure initialization and register 2732 * @hcd: the usb_hcd structure to initialize 2733 * @irqnum: Interrupt line to allocate 2734 * @irqflags: Interrupt type flags 2735 * 2736 * Finish the remaining parts of generic HCD initialization: allocate the 2737 * buffers of consistent memory, register the bus, request the IRQ line, 2738 * and call the driver's reset() and start() routines. 2739 */ 2740 int usb_add_hcd(struct usb_hcd *hcd, 2741 unsigned int irqnum, unsigned long irqflags) 2742 { 2743 int retval; 2744 struct usb_device *rhdev; 2745 2746 if (!hcd->skip_phy_initialization && usb_hcd_is_primary_hcd(hcd)) { 2747 hcd->phy_roothub = usb_phy_roothub_alloc(hcd->self.sysdev); 2748 if (IS_ERR(hcd->phy_roothub)) 2749 return PTR_ERR(hcd->phy_roothub); 2750 2751 retval = usb_phy_roothub_init(hcd->phy_roothub); 2752 if (retval) 2753 return retval; 2754 2755 retval = usb_phy_roothub_power_on(hcd->phy_roothub); 2756 if (retval) 2757 goto err_usb_phy_roothub_power_on; 2758 } 2759 2760 dev_info(hcd->self.controller, "%s\n", hcd->product_desc); 2761 2762 /* Keep old behaviour if authorized_default is not in [0, 1]. */ 2763 if (authorized_default < 0 || authorized_default > 1) { 2764 if (hcd->wireless) 2765 clear_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags); 2766 else 2767 set_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags); 2768 } else { 2769 if (authorized_default) 2770 set_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags); 2771 else 2772 clear_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags); 2773 } 2774 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 2775 2776 /* per default all interfaces are authorized */ 2777 set_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags); 2778 2779 /* HC is in reset state, but accessible. Now do the one-time init, 2780 * bottom up so that hcds can customize the root hubs before hub_wq 2781 * starts talking to them. (Note, bus id is assigned early too.) 2782 */ 2783 retval = hcd_buffer_create(hcd); 2784 if (retval != 0) { 2785 dev_dbg(hcd->self.sysdev, "pool alloc failed\n"); 2786 goto err_create_buf; 2787 } 2788 2789 retval = usb_register_bus(&hcd->self); 2790 if (retval < 0) 2791 goto err_register_bus; 2792 2793 rhdev = usb_alloc_dev(NULL, &hcd->self, 0); 2794 if (rhdev == NULL) { 2795 dev_err(hcd->self.sysdev, "unable to allocate root hub\n"); 2796 retval = -ENOMEM; 2797 goto err_allocate_root_hub; 2798 } 2799 mutex_lock(&usb_port_peer_mutex); 2800 hcd->self.root_hub = rhdev; 2801 mutex_unlock(&usb_port_peer_mutex); 2802 2803 rhdev->rx_lanes = 1; 2804 rhdev->tx_lanes = 1; 2805 2806 switch (hcd->speed) { 2807 case HCD_USB11: 2808 rhdev->speed = USB_SPEED_FULL; 2809 break; 2810 case HCD_USB2: 2811 rhdev->speed = USB_SPEED_HIGH; 2812 break; 2813 case HCD_USB25: 2814 rhdev->speed = USB_SPEED_WIRELESS; 2815 break; 2816 case HCD_USB3: 2817 rhdev->speed = USB_SPEED_SUPER; 2818 break; 2819 case HCD_USB32: 2820 rhdev->rx_lanes = 2; 2821 rhdev->tx_lanes = 2; 2822 /* fall through */ 2823 case HCD_USB31: 2824 rhdev->speed = USB_SPEED_SUPER_PLUS; 2825 break; 2826 default: 2827 retval = -EINVAL; 2828 goto err_set_rh_speed; 2829 } 2830 2831 /* wakeup flag init defaults to "everything works" for root hubs, 2832 * but drivers can override it in reset() if needed, along with 2833 * recording the overall controller's system wakeup capability. 2834 */ 2835 device_set_wakeup_capable(&rhdev->dev, 1); 2836 2837 /* HCD_FLAG_RH_RUNNING doesn't matter until the root hub is 2838 * registered. But since the controller can die at any time, 2839 * let's initialize the flag before touching the hardware. 2840 */ 2841 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2842 2843 /* "reset" is misnamed; its role is now one-time init. the controller 2844 * should already have been reset (and boot firmware kicked off etc). 2845 */ 2846 if (hcd->driver->reset) { 2847 retval = hcd->driver->reset(hcd); 2848 if (retval < 0) { 2849 dev_err(hcd->self.controller, "can't setup: %d\n", 2850 retval); 2851 goto err_hcd_driver_setup; 2852 } 2853 } 2854 hcd->rh_pollable = 1; 2855 2856 /* NOTE: root hub and controller capabilities may not be the same */ 2857 if (device_can_wakeup(hcd->self.controller) 2858 && device_can_wakeup(&hcd->self.root_hub->dev)) 2859 dev_dbg(hcd->self.controller, "supports USB remote wakeup\n"); 2860 2861 /* initialize tasklets */ 2862 init_giveback_urb_bh(&hcd->high_prio_bh); 2863 init_giveback_urb_bh(&hcd->low_prio_bh); 2864 2865 /* enable irqs just before we start the controller, 2866 * if the BIOS provides legacy PCI irqs. 2867 */ 2868 if (usb_hcd_is_primary_hcd(hcd) && irqnum) { 2869 retval = usb_hcd_request_irqs(hcd, irqnum, irqflags); 2870 if (retval) 2871 goto err_request_irq; 2872 } 2873 2874 hcd->state = HC_STATE_RUNNING; 2875 retval = hcd->driver->start(hcd); 2876 if (retval < 0) { 2877 dev_err(hcd->self.controller, "startup error %d\n", retval); 2878 goto err_hcd_driver_start; 2879 } 2880 2881 /* starting here, usbcore will pay attention to this root hub */ 2882 retval = register_root_hub(hcd); 2883 if (retval != 0) 2884 goto err_register_root_hub; 2885 2886 retval = sysfs_create_group(&rhdev->dev.kobj, &usb_bus_attr_group); 2887 if (retval < 0) { 2888 printk(KERN_ERR "Cannot register USB bus sysfs attributes: %d\n", 2889 retval); 2890 goto error_create_attr_group; 2891 } 2892 if (hcd->uses_new_polling && HCD_POLL_RH(hcd)) 2893 usb_hcd_poll_rh_status(hcd); 2894 2895 return retval; 2896 2897 error_create_attr_group: 2898 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2899 if (HC_IS_RUNNING(hcd->state)) 2900 hcd->state = HC_STATE_QUIESCING; 2901 spin_lock_irq(&hcd_root_hub_lock); 2902 hcd->rh_registered = 0; 2903 spin_unlock_irq(&hcd_root_hub_lock); 2904 2905 #ifdef CONFIG_PM 2906 cancel_work_sync(&hcd->wakeup_work); 2907 #endif 2908 mutex_lock(&usb_bus_idr_lock); 2909 usb_disconnect(&rhdev); /* Sets rhdev to NULL */ 2910 mutex_unlock(&usb_bus_idr_lock); 2911 err_register_root_hub: 2912 hcd->rh_pollable = 0; 2913 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2914 del_timer_sync(&hcd->rh_timer); 2915 hcd->driver->stop(hcd); 2916 hcd->state = HC_STATE_HALT; 2917 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2918 del_timer_sync(&hcd->rh_timer); 2919 err_hcd_driver_start: 2920 if (usb_hcd_is_primary_hcd(hcd) && hcd->irq > 0) 2921 free_irq(irqnum, hcd); 2922 err_request_irq: 2923 err_hcd_driver_setup: 2924 err_set_rh_speed: 2925 usb_put_invalidate_rhdev(hcd); 2926 err_allocate_root_hub: 2927 usb_deregister_bus(&hcd->self); 2928 err_register_bus: 2929 hcd_buffer_destroy(hcd); 2930 err_create_buf: 2931 usb_phy_roothub_power_off(hcd->phy_roothub); 2932 err_usb_phy_roothub_power_on: 2933 usb_phy_roothub_exit(hcd->phy_roothub); 2934 2935 return retval; 2936 } 2937 EXPORT_SYMBOL_GPL(usb_add_hcd); 2938 2939 /** 2940 * usb_remove_hcd - shutdown processing for generic HCDs 2941 * @hcd: the usb_hcd structure to remove 2942 * Context: !in_interrupt() 2943 * 2944 * Disconnects the root hub, then reverses the effects of usb_add_hcd(), 2945 * invoking the HCD's stop() method. 2946 */ 2947 void usb_remove_hcd(struct usb_hcd *hcd) 2948 { 2949 struct usb_device *rhdev = hcd->self.root_hub; 2950 2951 dev_info(hcd->self.controller, "remove, state %x\n", hcd->state); 2952 2953 usb_get_dev(rhdev); 2954 sysfs_remove_group(&rhdev->dev.kobj, &usb_bus_attr_group); 2955 2956 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2957 if (HC_IS_RUNNING (hcd->state)) 2958 hcd->state = HC_STATE_QUIESCING; 2959 2960 dev_dbg(hcd->self.controller, "roothub graceful disconnect\n"); 2961 spin_lock_irq (&hcd_root_hub_lock); 2962 hcd->rh_registered = 0; 2963 spin_unlock_irq (&hcd_root_hub_lock); 2964 2965 #ifdef CONFIG_PM 2966 cancel_work_sync(&hcd->wakeup_work); 2967 #endif 2968 2969 mutex_lock(&usb_bus_idr_lock); 2970 usb_disconnect(&rhdev); /* Sets rhdev to NULL */ 2971 mutex_unlock(&usb_bus_idr_lock); 2972 2973 /* 2974 * tasklet_kill() isn't needed here because: 2975 * - driver's disconnect() called from usb_disconnect() should 2976 * make sure its URBs are completed during the disconnect() 2977 * callback 2978 * 2979 * - it is too late to run complete() here since driver may have 2980 * been removed already now 2981 */ 2982 2983 /* Prevent any more root-hub status calls from the timer. 2984 * The HCD might still restart the timer (if a port status change 2985 * interrupt occurs), but usb_hcd_poll_rh_status() won't invoke 2986 * the hub_status_data() callback. 2987 */ 2988 hcd->rh_pollable = 0; 2989 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2990 del_timer_sync(&hcd->rh_timer); 2991 2992 hcd->driver->stop(hcd); 2993 hcd->state = HC_STATE_HALT; 2994 2995 /* In case the HCD restarted the timer, stop it again. */ 2996 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2997 del_timer_sync(&hcd->rh_timer); 2998 2999 if (usb_hcd_is_primary_hcd(hcd)) { 3000 if (hcd->irq > 0) 3001 free_irq(hcd->irq, hcd); 3002 } 3003 3004 usb_deregister_bus(&hcd->self); 3005 hcd_buffer_destroy(hcd); 3006 3007 usb_phy_roothub_power_off(hcd->phy_roothub); 3008 usb_phy_roothub_exit(hcd->phy_roothub); 3009 3010 usb_put_invalidate_rhdev(hcd); 3011 hcd->flags = 0; 3012 } 3013 EXPORT_SYMBOL_GPL(usb_remove_hcd); 3014 3015 void 3016 usb_hcd_platform_shutdown(struct platform_device *dev) 3017 { 3018 struct usb_hcd *hcd = platform_get_drvdata(dev); 3019 3020 if (hcd->driver->shutdown) 3021 hcd->driver->shutdown(hcd); 3022 } 3023 EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown); 3024 3025 /*-------------------------------------------------------------------------*/ 3026 3027 #if IS_ENABLED(CONFIG_USB_MON) 3028 3029 const struct usb_mon_operations *mon_ops; 3030 3031 /* 3032 * The registration is unlocked. 3033 * We do it this way because we do not want to lock in hot paths. 3034 * 3035 * Notice that the code is minimally error-proof. Because usbmon needs 3036 * symbols from usbcore, usbcore gets referenced and cannot be unloaded first. 3037 */ 3038 3039 int usb_mon_register(const struct usb_mon_operations *ops) 3040 { 3041 3042 if (mon_ops) 3043 return -EBUSY; 3044 3045 mon_ops = ops; 3046 mb(); 3047 return 0; 3048 } 3049 EXPORT_SYMBOL_GPL (usb_mon_register); 3050 3051 void usb_mon_deregister (void) 3052 { 3053 3054 if (mon_ops == NULL) { 3055 printk(KERN_ERR "USB: monitor was not registered\n"); 3056 return; 3057 } 3058 mon_ops = NULL; 3059 mb(); 3060 } 3061 EXPORT_SYMBOL_GPL (usb_mon_deregister); 3062 3063 #endif /* CONFIG_USB_MON || CONFIG_USB_MON_MODULE */ 3064