1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * (C) Copyright Linus Torvalds 1999 4 * (C) Copyright Johannes Erdfelt 1999-2001 5 * (C) Copyright Andreas Gal 1999 6 * (C) Copyright Gregory P. Smith 1999 7 * (C) Copyright Deti Fliegl 1999 8 * (C) Copyright Randy Dunlap 2000 9 * (C) Copyright David Brownell 2000-2002 10 */ 11 12 #include <linux/bcd.h> 13 #include <linux/module.h> 14 #include <linux/version.h> 15 #include <linux/kernel.h> 16 #include <linux/sched/task_stack.h> 17 #include <linux/slab.h> 18 #include <linux/completion.h> 19 #include <linux/utsname.h> 20 #include <linux/mm.h> 21 #include <asm/io.h> 22 #include <linux/device.h> 23 #include <linux/dma-mapping.h> 24 #include <linux/mutex.h> 25 #include <asm/irq.h> 26 #include <asm/byteorder.h> 27 #include <linux/unaligned.h> 28 #include <linux/platform_device.h> 29 #include <linux/workqueue.h> 30 #include <linux/pm_runtime.h> 31 #include <linux/types.h> 32 #include <linux/genalloc.h> 33 #include <linux/io.h> 34 #include <linux/kcov.h> 35 36 #include <linux/phy/phy.h> 37 #include <linux/usb.h> 38 #include <linux/usb/hcd.h> 39 #include <linux/usb/otg.h> 40 41 #include "usb.h" 42 #include "phy.h" 43 44 45 /*-------------------------------------------------------------------------*/ 46 47 /* 48 * USB Host Controller Driver framework 49 * 50 * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing 51 * HCD-specific behaviors/bugs. 52 * 53 * This does error checks, tracks devices and urbs, and delegates to a 54 * "hc_driver" only for code (and data) that really needs to know about 55 * hardware differences. That includes root hub registers, i/o queues, 56 * and so on ... but as little else as possible. 57 * 58 * Shared code includes most of the "root hub" code (these are emulated, 59 * though each HC's hardware works differently) and PCI glue, plus request 60 * tracking overhead. The HCD code should only block on spinlocks or on 61 * hardware handshaking; blocking on software events (such as other kernel 62 * threads releasing resources, or completing actions) is all generic. 63 * 64 * Happens the USB 2.0 spec says this would be invisible inside the "USBD", 65 * and includes mostly a "HCDI" (HCD Interface) along with some APIs used 66 * only by the hub driver ... and that neither should be seen or used by 67 * usb client device drivers. 68 * 69 * Contributors of ideas or unattributed patches include: David Brownell, 70 * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ... 71 * 72 * HISTORY: 73 * 2002-02-21 Pull in most of the usb_bus support from usb.c; some 74 * associated cleanup. "usb_hcd" still != "usb_bus". 75 * 2001-12-12 Initial patch version for Linux 2.5.1 kernel. 76 */ 77 78 /*-------------------------------------------------------------------------*/ 79 80 /* Keep track of which host controller drivers are loaded */ 81 unsigned long usb_hcds_loaded; 82 EXPORT_SYMBOL_GPL(usb_hcds_loaded); 83 84 /* host controllers we manage */ 85 DEFINE_IDR (usb_bus_idr); 86 EXPORT_SYMBOL_GPL (usb_bus_idr); 87 88 /* used when allocating bus numbers */ 89 #define USB_MAXBUS 64 90 91 /* used when updating list of hcds */ 92 DEFINE_MUTEX(usb_bus_idr_lock); /* exported only for usbfs */ 93 EXPORT_SYMBOL_GPL (usb_bus_idr_lock); 94 95 /* used for controlling access to virtual root hubs */ 96 static DEFINE_SPINLOCK(hcd_root_hub_lock); 97 98 /* used when updating an endpoint's URB list */ 99 static DEFINE_SPINLOCK(hcd_urb_list_lock); 100 101 /* used to protect against unlinking URBs after the device is gone */ 102 static DEFINE_SPINLOCK(hcd_urb_unlink_lock); 103 104 /* wait queue for synchronous unlinks */ 105 DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue); 106 107 /*-------------------------------------------------------------------------*/ 108 109 /* 110 * Sharable chunks of root hub code. 111 */ 112 113 /*-------------------------------------------------------------------------*/ 114 #define KERNEL_REL bin2bcd(LINUX_VERSION_MAJOR) 115 #define KERNEL_VER bin2bcd(LINUX_VERSION_PATCHLEVEL) 116 117 /* usb 3.1 root hub device descriptor */ 118 static const u8 usb31_rh_dev_descriptor[18] = { 119 0x12, /* __u8 bLength; */ 120 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */ 121 0x10, 0x03, /* __le16 bcdUSB; v3.1 */ 122 123 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */ 124 0x00, /* __u8 bDeviceSubClass; */ 125 0x03, /* __u8 bDeviceProtocol; USB 3 hub */ 126 0x09, /* __u8 bMaxPacketSize0; 2^9 = 512 Bytes */ 127 128 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */ 129 0x03, 0x00, /* __le16 idProduct; device 0x0003 */ 130 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */ 131 132 0x03, /* __u8 iManufacturer; */ 133 0x02, /* __u8 iProduct; */ 134 0x01, /* __u8 iSerialNumber; */ 135 0x01 /* __u8 bNumConfigurations; */ 136 }; 137 138 /* usb 3.0 root hub device descriptor */ 139 static const u8 usb3_rh_dev_descriptor[18] = { 140 0x12, /* __u8 bLength; */ 141 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */ 142 0x00, 0x03, /* __le16 bcdUSB; v3.0 */ 143 144 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */ 145 0x00, /* __u8 bDeviceSubClass; */ 146 0x03, /* __u8 bDeviceProtocol; USB 3.0 hub */ 147 0x09, /* __u8 bMaxPacketSize0; 2^9 = 512 Bytes */ 148 149 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */ 150 0x03, 0x00, /* __le16 idProduct; device 0x0003 */ 151 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */ 152 153 0x03, /* __u8 iManufacturer; */ 154 0x02, /* __u8 iProduct; */ 155 0x01, /* __u8 iSerialNumber; */ 156 0x01 /* __u8 bNumConfigurations; */ 157 }; 158 159 /* usb 2.0 root hub device descriptor */ 160 static const u8 usb2_rh_dev_descriptor[18] = { 161 0x12, /* __u8 bLength; */ 162 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */ 163 0x00, 0x02, /* __le16 bcdUSB; v2.0 */ 164 165 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */ 166 0x00, /* __u8 bDeviceSubClass; */ 167 0x00, /* __u8 bDeviceProtocol; [ usb 2.0 no TT ] */ 168 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */ 169 170 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */ 171 0x02, 0x00, /* __le16 idProduct; device 0x0002 */ 172 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */ 173 174 0x03, /* __u8 iManufacturer; */ 175 0x02, /* __u8 iProduct; */ 176 0x01, /* __u8 iSerialNumber; */ 177 0x01 /* __u8 bNumConfigurations; */ 178 }; 179 180 /* no usb 2.0 root hub "device qualifier" descriptor: one speed only */ 181 182 /* usb 1.1 root hub device descriptor */ 183 static const u8 usb11_rh_dev_descriptor[18] = { 184 0x12, /* __u8 bLength; */ 185 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */ 186 0x10, 0x01, /* __le16 bcdUSB; v1.1 */ 187 188 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */ 189 0x00, /* __u8 bDeviceSubClass; */ 190 0x00, /* __u8 bDeviceProtocol; [ low/full speeds only ] */ 191 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */ 192 193 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */ 194 0x01, 0x00, /* __le16 idProduct; device 0x0001 */ 195 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */ 196 197 0x03, /* __u8 iManufacturer; */ 198 0x02, /* __u8 iProduct; */ 199 0x01, /* __u8 iSerialNumber; */ 200 0x01 /* __u8 bNumConfigurations; */ 201 }; 202 203 204 /*-------------------------------------------------------------------------*/ 205 206 /* Configuration descriptors for our root hubs */ 207 208 static const u8 fs_rh_config_descriptor[] = { 209 210 /* one configuration */ 211 0x09, /* __u8 bLength; */ 212 USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */ 213 0x19, 0x00, /* __le16 wTotalLength; */ 214 0x01, /* __u8 bNumInterfaces; (1) */ 215 0x01, /* __u8 bConfigurationValue; */ 216 0x00, /* __u8 iConfiguration; */ 217 0xc0, /* __u8 bmAttributes; 218 Bit 7: must be set, 219 6: Self-powered, 220 5: Remote wakeup, 221 4..0: resvd */ 222 0x00, /* __u8 MaxPower; */ 223 224 /* USB 1.1: 225 * USB 2.0, single TT organization (mandatory): 226 * one interface, protocol 0 227 * 228 * USB 2.0, multiple TT organization (optional): 229 * two interfaces, protocols 1 (like single TT) 230 * and 2 (multiple TT mode) ... config is 231 * sometimes settable 232 * NOT IMPLEMENTED 233 */ 234 235 /* one interface */ 236 0x09, /* __u8 if_bLength; */ 237 USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */ 238 0x00, /* __u8 if_bInterfaceNumber; */ 239 0x00, /* __u8 if_bAlternateSetting; */ 240 0x01, /* __u8 if_bNumEndpoints; */ 241 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */ 242 0x00, /* __u8 if_bInterfaceSubClass; */ 243 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */ 244 0x00, /* __u8 if_iInterface; */ 245 246 /* one endpoint (status change endpoint) */ 247 0x07, /* __u8 ep_bLength; */ 248 USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */ 249 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */ 250 0x03, /* __u8 ep_bmAttributes; Interrupt */ 251 0x02, 0x00, /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */ 252 0xff /* __u8 ep_bInterval; (255ms -- usb 2.0 spec) */ 253 }; 254 255 static const u8 hs_rh_config_descriptor[] = { 256 257 /* one configuration */ 258 0x09, /* __u8 bLength; */ 259 USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */ 260 0x19, 0x00, /* __le16 wTotalLength; */ 261 0x01, /* __u8 bNumInterfaces; (1) */ 262 0x01, /* __u8 bConfigurationValue; */ 263 0x00, /* __u8 iConfiguration; */ 264 0xc0, /* __u8 bmAttributes; 265 Bit 7: must be set, 266 6: Self-powered, 267 5: Remote wakeup, 268 4..0: resvd */ 269 0x00, /* __u8 MaxPower; */ 270 271 /* USB 1.1: 272 * USB 2.0, single TT organization (mandatory): 273 * one interface, protocol 0 274 * 275 * USB 2.0, multiple TT organization (optional): 276 * two interfaces, protocols 1 (like single TT) 277 * and 2 (multiple TT mode) ... config is 278 * sometimes settable 279 * NOT IMPLEMENTED 280 */ 281 282 /* one interface */ 283 0x09, /* __u8 if_bLength; */ 284 USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */ 285 0x00, /* __u8 if_bInterfaceNumber; */ 286 0x00, /* __u8 if_bAlternateSetting; */ 287 0x01, /* __u8 if_bNumEndpoints; */ 288 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */ 289 0x00, /* __u8 if_bInterfaceSubClass; */ 290 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */ 291 0x00, /* __u8 if_iInterface; */ 292 293 /* one endpoint (status change endpoint) */ 294 0x07, /* __u8 ep_bLength; */ 295 USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */ 296 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */ 297 0x03, /* __u8 ep_bmAttributes; Interrupt */ 298 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) 299 * see hub.c:hub_configure() for details. */ 300 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00, 301 0x0c /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */ 302 }; 303 304 static const u8 ss_rh_config_descriptor[] = { 305 /* one configuration */ 306 0x09, /* __u8 bLength; */ 307 USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */ 308 0x1f, 0x00, /* __le16 wTotalLength; */ 309 0x01, /* __u8 bNumInterfaces; (1) */ 310 0x01, /* __u8 bConfigurationValue; */ 311 0x00, /* __u8 iConfiguration; */ 312 0xc0, /* __u8 bmAttributes; 313 Bit 7: must be set, 314 6: Self-powered, 315 5: Remote wakeup, 316 4..0: resvd */ 317 0x00, /* __u8 MaxPower; */ 318 319 /* one interface */ 320 0x09, /* __u8 if_bLength; */ 321 USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */ 322 0x00, /* __u8 if_bInterfaceNumber; */ 323 0x00, /* __u8 if_bAlternateSetting; */ 324 0x01, /* __u8 if_bNumEndpoints; */ 325 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */ 326 0x00, /* __u8 if_bInterfaceSubClass; */ 327 0x00, /* __u8 if_bInterfaceProtocol; */ 328 0x00, /* __u8 if_iInterface; */ 329 330 /* one endpoint (status change endpoint) */ 331 0x07, /* __u8 ep_bLength; */ 332 USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */ 333 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */ 334 0x03, /* __u8 ep_bmAttributes; Interrupt */ 335 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) 336 * see hub.c:hub_configure() for details. */ 337 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00, 338 0x0c, /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */ 339 340 /* one SuperSpeed endpoint companion descriptor */ 341 0x06, /* __u8 ss_bLength */ 342 USB_DT_SS_ENDPOINT_COMP, /* __u8 ss_bDescriptorType; SuperSpeed EP */ 343 /* Companion */ 344 0x00, /* __u8 ss_bMaxBurst; allows 1 TX between ACKs */ 345 0x00, /* __u8 ss_bmAttributes; 1 packet per service interval */ 346 0x02, 0x00 /* __le16 ss_wBytesPerInterval; 15 bits for max 15 ports */ 347 }; 348 349 /* authorized_default behaviour: 350 * -1 is authorized for all devices (leftover from wireless USB) 351 * 0 is unauthorized for all devices 352 * 1 is authorized for all devices 353 * 2 is authorized for internal devices 354 */ 355 #define USB_AUTHORIZE_WIRED -1 356 #define USB_AUTHORIZE_NONE 0 357 #define USB_AUTHORIZE_ALL 1 358 #define USB_AUTHORIZE_INTERNAL 2 359 360 static int authorized_default = CONFIG_USB_DEFAULT_AUTHORIZATION_MODE; 361 module_param(authorized_default, int, S_IRUGO|S_IWUSR); 362 MODULE_PARM_DESC(authorized_default, 363 "Default USB device authorization: 0 is not authorized, 1 is authorized (default), 2 is authorized for internal devices, -1 is authorized (same as 1)"); 364 /*-------------------------------------------------------------------------*/ 365 366 /** 367 * ascii2desc() - Helper routine for producing UTF-16LE string descriptors 368 * @s: Null-terminated ASCII (actually ISO-8859-1) string 369 * @buf: Buffer for USB string descriptor (header + UTF-16LE) 370 * @len: Length (in bytes; may be odd) of descriptor buffer. 371 * 372 * Return: The number of bytes filled in: 2 + 2*strlen(s) or @len, 373 * whichever is less. 374 * 375 * Note: 376 * USB String descriptors can contain at most 126 characters; input 377 * strings longer than that are truncated. 378 */ 379 static unsigned 380 ascii2desc(char const *s, u8 *buf, unsigned len) 381 { 382 unsigned n, t = 2 + 2*strlen(s); 383 384 if (t > 254) 385 t = 254; /* Longest possible UTF string descriptor */ 386 if (len > t) 387 len = t; 388 389 t += USB_DT_STRING << 8; /* Now t is first 16 bits to store */ 390 391 n = len; 392 while (n--) { 393 *buf++ = t; 394 if (!n--) 395 break; 396 *buf++ = t >> 8; 397 t = (unsigned char)*s++; 398 } 399 return len; 400 } 401 402 /** 403 * rh_string() - provides string descriptors for root hub 404 * @id: the string ID number (0: langids, 1: serial #, 2: product, 3: vendor) 405 * @hcd: the host controller for this root hub 406 * @data: buffer for output packet 407 * @len: length of the provided buffer 408 * 409 * Produces either a manufacturer, product or serial number string for the 410 * virtual root hub device. 411 * 412 * Return: The number of bytes filled in: the length of the descriptor or 413 * of the provided buffer, whichever is less. 414 */ 415 static unsigned 416 rh_string(int id, struct usb_hcd const *hcd, u8 *data, unsigned len) 417 { 418 char buf[100]; 419 char const *s; 420 static char const langids[4] = {4, USB_DT_STRING, 0x09, 0x04}; 421 422 /* language ids */ 423 switch (id) { 424 case 0: 425 /* Array of LANGID codes (0x0409 is MSFT-speak for "en-us") */ 426 /* See http://www.usb.org/developers/docs/USB_LANGIDs.pdf */ 427 if (len > 4) 428 len = 4; 429 memcpy(data, langids, len); 430 return len; 431 case 1: 432 /* Serial number */ 433 s = hcd->self.bus_name; 434 break; 435 case 2: 436 /* Product name */ 437 s = hcd->product_desc; 438 break; 439 case 3: 440 /* Manufacturer */ 441 snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname, 442 init_utsname()->release, hcd->driver->description); 443 s = buf; 444 break; 445 default: 446 /* Can't happen; caller guarantees it */ 447 return 0; 448 } 449 450 return ascii2desc(s, data, len); 451 } 452 453 454 /* Root hub control transfers execute synchronously */ 455 static int rh_call_control (struct usb_hcd *hcd, struct urb *urb) 456 { 457 struct usb_ctrlrequest *cmd; 458 u16 typeReq, wValue, wIndex, wLength; 459 u8 *ubuf = urb->transfer_buffer; 460 unsigned len = 0; 461 int status; 462 u8 patch_wakeup = 0; 463 u8 patch_protocol = 0; 464 u16 tbuf_size; 465 u8 *tbuf = NULL; 466 const u8 *bufp; 467 468 might_sleep(); 469 470 spin_lock_irq(&hcd_root_hub_lock); 471 status = usb_hcd_link_urb_to_ep(hcd, urb); 472 spin_unlock_irq(&hcd_root_hub_lock); 473 if (status) 474 return status; 475 urb->hcpriv = hcd; /* Indicate it's queued */ 476 477 cmd = (struct usb_ctrlrequest *) urb->setup_packet; 478 typeReq = (cmd->bRequestType << 8) | cmd->bRequest; 479 wValue = le16_to_cpu (cmd->wValue); 480 wIndex = le16_to_cpu (cmd->wIndex); 481 wLength = le16_to_cpu (cmd->wLength); 482 483 if (wLength > urb->transfer_buffer_length) 484 goto error; 485 486 /* 487 * tbuf should be at least as big as the 488 * USB hub descriptor. 489 */ 490 tbuf_size = max_t(u16, sizeof(struct usb_hub_descriptor), wLength); 491 tbuf = kzalloc(tbuf_size, GFP_KERNEL); 492 if (!tbuf) { 493 status = -ENOMEM; 494 goto err_alloc; 495 } 496 497 bufp = tbuf; 498 499 500 urb->actual_length = 0; 501 switch (typeReq) { 502 503 /* DEVICE REQUESTS */ 504 505 /* The root hub's remote wakeup enable bit is implemented using 506 * driver model wakeup flags. If this system supports wakeup 507 * through USB, userspace may change the default "allow wakeup" 508 * policy through sysfs or these calls. 509 * 510 * Most root hubs support wakeup from downstream devices, for 511 * runtime power management (disabling USB clocks and reducing 512 * VBUS power usage). However, not all of them do so; silicon, 513 * board, and BIOS bugs here are not uncommon, so these can't 514 * be treated quite like external hubs. 515 * 516 * Likewise, not all root hubs will pass wakeup events upstream, 517 * to wake up the whole system. So don't assume root hub and 518 * controller capabilities are identical. 519 */ 520 521 case DeviceRequest | USB_REQ_GET_STATUS: 522 tbuf[0] = (device_may_wakeup(&hcd->self.root_hub->dev) 523 << USB_DEVICE_REMOTE_WAKEUP) 524 | (1 << USB_DEVICE_SELF_POWERED); 525 tbuf[1] = 0; 526 len = 2; 527 break; 528 case DeviceOutRequest | USB_REQ_CLEAR_FEATURE: 529 if (wValue == USB_DEVICE_REMOTE_WAKEUP) 530 device_set_wakeup_enable(&hcd->self.root_hub->dev, 0); 531 else 532 goto error; 533 break; 534 case DeviceOutRequest | USB_REQ_SET_FEATURE: 535 if (device_can_wakeup(&hcd->self.root_hub->dev) 536 && wValue == USB_DEVICE_REMOTE_WAKEUP) 537 device_set_wakeup_enable(&hcd->self.root_hub->dev, 1); 538 else 539 goto error; 540 break; 541 case DeviceRequest | USB_REQ_GET_CONFIGURATION: 542 tbuf[0] = 1; 543 len = 1; 544 fallthrough; 545 case DeviceOutRequest | USB_REQ_SET_CONFIGURATION: 546 break; 547 case DeviceRequest | USB_REQ_GET_DESCRIPTOR: 548 switch (wValue & 0xff00) { 549 case USB_DT_DEVICE << 8: 550 switch (hcd->speed) { 551 case HCD_USB32: 552 case HCD_USB31: 553 bufp = usb31_rh_dev_descriptor; 554 break; 555 case HCD_USB3: 556 bufp = usb3_rh_dev_descriptor; 557 break; 558 case HCD_USB2: 559 bufp = usb2_rh_dev_descriptor; 560 break; 561 case HCD_USB11: 562 bufp = usb11_rh_dev_descriptor; 563 break; 564 default: 565 goto error; 566 } 567 len = 18; 568 if (hcd->has_tt) 569 patch_protocol = 1; 570 break; 571 case USB_DT_CONFIG << 8: 572 switch (hcd->speed) { 573 case HCD_USB32: 574 case HCD_USB31: 575 case HCD_USB3: 576 bufp = ss_rh_config_descriptor; 577 len = sizeof ss_rh_config_descriptor; 578 break; 579 case HCD_USB2: 580 bufp = hs_rh_config_descriptor; 581 len = sizeof hs_rh_config_descriptor; 582 break; 583 case HCD_USB11: 584 bufp = fs_rh_config_descriptor; 585 len = sizeof fs_rh_config_descriptor; 586 break; 587 default: 588 goto error; 589 } 590 if (device_can_wakeup(&hcd->self.root_hub->dev)) 591 patch_wakeup = 1; 592 break; 593 case USB_DT_STRING << 8: 594 if ((wValue & 0xff) < 4) 595 urb->actual_length = rh_string(wValue & 0xff, 596 hcd, ubuf, wLength); 597 else /* unsupported IDs --> "protocol stall" */ 598 goto error; 599 break; 600 case USB_DT_BOS << 8: 601 goto nongeneric; 602 default: 603 goto error; 604 } 605 break; 606 case DeviceRequest | USB_REQ_GET_INTERFACE: 607 tbuf[0] = 0; 608 len = 1; 609 fallthrough; 610 case DeviceOutRequest | USB_REQ_SET_INTERFACE: 611 break; 612 case DeviceOutRequest | USB_REQ_SET_ADDRESS: 613 /* wValue == urb->dev->devaddr */ 614 dev_dbg (hcd->self.controller, "root hub device address %d\n", 615 wValue); 616 break; 617 618 /* INTERFACE REQUESTS (no defined feature/status flags) */ 619 620 /* ENDPOINT REQUESTS */ 621 622 case EndpointRequest | USB_REQ_GET_STATUS: 623 /* ENDPOINT_HALT flag */ 624 tbuf[0] = 0; 625 tbuf[1] = 0; 626 len = 2; 627 fallthrough; 628 case EndpointOutRequest | USB_REQ_CLEAR_FEATURE: 629 case EndpointOutRequest | USB_REQ_SET_FEATURE: 630 dev_dbg (hcd->self.controller, "no endpoint features yet\n"); 631 break; 632 633 /* CLASS REQUESTS (and errors) */ 634 635 default: 636 nongeneric: 637 /* non-generic request */ 638 switch (typeReq) { 639 case GetHubStatus: 640 len = 4; 641 break; 642 case GetPortStatus: 643 if (wValue == HUB_PORT_STATUS) 644 len = 4; 645 else 646 /* other port status types return 8 bytes */ 647 len = 8; 648 break; 649 case GetHubDescriptor: 650 len = sizeof (struct usb_hub_descriptor); 651 break; 652 case DeviceRequest | USB_REQ_GET_DESCRIPTOR: 653 /* len is returned by hub_control */ 654 break; 655 } 656 status = hcd->driver->hub_control (hcd, 657 typeReq, wValue, wIndex, 658 tbuf, wLength); 659 660 if (typeReq == GetHubDescriptor) 661 usb_hub_adjust_deviceremovable(hcd->self.root_hub, 662 (struct usb_hub_descriptor *)tbuf); 663 break; 664 error: 665 /* "protocol stall" on error */ 666 status = -EPIPE; 667 } 668 669 if (status < 0) { 670 len = 0; 671 if (status != -EPIPE) { 672 dev_dbg (hcd->self.controller, 673 "CTRL: TypeReq=0x%x val=0x%x " 674 "idx=0x%x len=%d ==> %d\n", 675 typeReq, wValue, wIndex, 676 wLength, status); 677 } 678 } else if (status > 0) { 679 /* hub_control may return the length of data copied. */ 680 len = status; 681 status = 0; 682 } 683 if (len) { 684 if (urb->transfer_buffer_length < len) 685 len = urb->transfer_buffer_length; 686 urb->actual_length = len; 687 /* always USB_DIR_IN, toward host */ 688 memcpy (ubuf, bufp, len); 689 690 /* report whether RH hardware supports remote wakeup */ 691 if (patch_wakeup && 692 len > offsetof (struct usb_config_descriptor, 693 bmAttributes)) 694 ((struct usb_config_descriptor *)ubuf)->bmAttributes 695 |= USB_CONFIG_ATT_WAKEUP; 696 697 /* report whether RH hardware has an integrated TT */ 698 if (patch_protocol && 699 len > offsetof(struct usb_device_descriptor, 700 bDeviceProtocol)) 701 ((struct usb_device_descriptor *) ubuf)-> 702 bDeviceProtocol = USB_HUB_PR_HS_SINGLE_TT; 703 } 704 705 kfree(tbuf); 706 err_alloc: 707 708 /* any errors get returned through the urb completion */ 709 spin_lock_irq(&hcd_root_hub_lock); 710 usb_hcd_unlink_urb_from_ep(hcd, urb); 711 usb_hcd_giveback_urb(hcd, urb, status); 712 spin_unlock_irq(&hcd_root_hub_lock); 713 return 0; 714 } 715 716 /*-------------------------------------------------------------------------*/ 717 718 /* 719 * Root Hub interrupt transfers are polled using a timer if the 720 * driver requests it; otherwise the driver is responsible for 721 * calling usb_hcd_poll_rh_status() when an event occurs. 722 * 723 * Completion handler may not sleep. See usb_hcd_giveback_urb() for details. 724 */ 725 void usb_hcd_poll_rh_status(struct usb_hcd *hcd) 726 { 727 struct urb *urb; 728 int length; 729 int status; 730 unsigned long flags; 731 char buffer[6]; /* Any root hubs with > 31 ports? */ 732 733 if (unlikely(!hcd->rh_pollable)) 734 return; 735 if (!hcd->uses_new_polling && !hcd->status_urb) 736 return; 737 738 length = hcd->driver->hub_status_data(hcd, buffer); 739 if (length > 0) { 740 741 /* try to complete the status urb */ 742 spin_lock_irqsave(&hcd_root_hub_lock, flags); 743 urb = hcd->status_urb; 744 if (urb) { 745 clear_bit(HCD_FLAG_POLL_PENDING, &hcd->flags); 746 hcd->status_urb = NULL; 747 if (urb->transfer_buffer_length >= length) { 748 status = 0; 749 } else { 750 status = -EOVERFLOW; 751 length = urb->transfer_buffer_length; 752 } 753 urb->actual_length = length; 754 memcpy(urb->transfer_buffer, buffer, length); 755 756 usb_hcd_unlink_urb_from_ep(hcd, urb); 757 usb_hcd_giveback_urb(hcd, urb, status); 758 } else { 759 length = 0; 760 set_bit(HCD_FLAG_POLL_PENDING, &hcd->flags); 761 } 762 spin_unlock_irqrestore(&hcd_root_hub_lock, flags); 763 } 764 765 /* The USB 2.0 spec says 256 ms. This is close enough and won't 766 * exceed that limit if HZ is 100. The math is more clunky than 767 * maybe expected, this is to make sure that all timers for USB devices 768 * fire at the same time to give the CPU a break in between */ 769 if (hcd->uses_new_polling ? HCD_POLL_RH(hcd) : 770 (length == 0 && hcd->status_urb != NULL)) 771 mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4)); 772 } 773 EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status); 774 775 /* timer callback */ 776 static void rh_timer_func (struct timer_list *t) 777 { 778 struct usb_hcd *_hcd = from_timer(_hcd, t, rh_timer); 779 780 usb_hcd_poll_rh_status(_hcd); 781 } 782 783 /*-------------------------------------------------------------------------*/ 784 785 static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb) 786 { 787 int retval; 788 unsigned long flags; 789 unsigned len = 1 + (urb->dev->maxchild / 8); 790 791 spin_lock_irqsave (&hcd_root_hub_lock, flags); 792 if (hcd->status_urb || urb->transfer_buffer_length < len) { 793 dev_dbg (hcd->self.controller, "not queuing rh status urb\n"); 794 retval = -EINVAL; 795 goto done; 796 } 797 798 retval = usb_hcd_link_urb_to_ep(hcd, urb); 799 if (retval) 800 goto done; 801 802 hcd->status_urb = urb; 803 urb->hcpriv = hcd; /* indicate it's queued */ 804 if (!hcd->uses_new_polling) 805 mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4)); 806 807 /* If a status change has already occurred, report it ASAP */ 808 else if (HCD_POLL_PENDING(hcd)) 809 mod_timer(&hcd->rh_timer, jiffies); 810 retval = 0; 811 done: 812 spin_unlock_irqrestore (&hcd_root_hub_lock, flags); 813 return retval; 814 } 815 816 static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb) 817 { 818 if (usb_endpoint_xfer_int(&urb->ep->desc)) 819 return rh_queue_status (hcd, urb); 820 if (usb_endpoint_xfer_control(&urb->ep->desc)) 821 return rh_call_control (hcd, urb); 822 return -EINVAL; 823 } 824 825 /*-------------------------------------------------------------------------*/ 826 827 /* Unlinks of root-hub control URBs are legal, but they don't do anything 828 * since these URBs always execute synchronously. 829 */ 830 static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status) 831 { 832 unsigned long flags; 833 int rc; 834 835 spin_lock_irqsave(&hcd_root_hub_lock, flags); 836 rc = usb_hcd_check_unlink_urb(hcd, urb, status); 837 if (rc) 838 goto done; 839 840 if (usb_endpoint_num(&urb->ep->desc) == 0) { /* Control URB */ 841 ; /* Do nothing */ 842 843 } else { /* Status URB */ 844 if (!hcd->uses_new_polling) 845 del_timer (&hcd->rh_timer); 846 if (urb == hcd->status_urb) { 847 hcd->status_urb = NULL; 848 usb_hcd_unlink_urb_from_ep(hcd, urb); 849 usb_hcd_giveback_urb(hcd, urb, status); 850 } 851 } 852 done: 853 spin_unlock_irqrestore(&hcd_root_hub_lock, flags); 854 return rc; 855 } 856 857 858 /*-------------------------------------------------------------------------*/ 859 860 /** 861 * usb_bus_init - shared initialization code 862 * @bus: the bus structure being initialized 863 * 864 * This code is used to initialize a usb_bus structure, memory for which is 865 * separately managed. 866 */ 867 static void usb_bus_init (struct usb_bus *bus) 868 { 869 memset(&bus->devmap, 0, sizeof(bus->devmap)); 870 871 bus->devnum_next = 1; 872 873 bus->root_hub = NULL; 874 bus->busnum = -1; 875 bus->bandwidth_allocated = 0; 876 bus->bandwidth_int_reqs = 0; 877 bus->bandwidth_isoc_reqs = 0; 878 mutex_init(&bus->devnum_next_mutex); 879 } 880 881 /*-------------------------------------------------------------------------*/ 882 883 /** 884 * usb_register_bus - registers the USB host controller with the usb core 885 * @bus: pointer to the bus to register 886 * 887 * Context: task context, might sleep. 888 * 889 * Assigns a bus number, and links the controller into usbcore data 890 * structures so that it can be seen by scanning the bus list. 891 * 892 * Return: 0 if successful. A negative error code otherwise. 893 */ 894 static int usb_register_bus(struct usb_bus *bus) 895 { 896 int result = -E2BIG; 897 int busnum; 898 899 mutex_lock(&usb_bus_idr_lock); 900 busnum = idr_alloc(&usb_bus_idr, bus, 1, USB_MAXBUS, GFP_KERNEL); 901 if (busnum < 0) { 902 pr_err("%s: failed to get bus number\n", usbcore_name); 903 goto error_find_busnum; 904 } 905 bus->busnum = busnum; 906 mutex_unlock(&usb_bus_idr_lock); 907 908 usb_notify_add_bus(bus); 909 910 dev_info (bus->controller, "new USB bus registered, assigned bus " 911 "number %d\n", bus->busnum); 912 return 0; 913 914 error_find_busnum: 915 mutex_unlock(&usb_bus_idr_lock); 916 return result; 917 } 918 919 /** 920 * usb_deregister_bus - deregisters the USB host controller 921 * @bus: pointer to the bus to deregister 922 * 923 * Context: task context, might sleep. 924 * 925 * Recycles the bus number, and unlinks the controller from usbcore data 926 * structures so that it won't be seen by scanning the bus list. 927 */ 928 static void usb_deregister_bus (struct usb_bus *bus) 929 { 930 dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum); 931 932 /* 933 * NOTE: make sure that all the devices are removed by the 934 * controller code, as well as having it call this when cleaning 935 * itself up 936 */ 937 mutex_lock(&usb_bus_idr_lock); 938 idr_remove(&usb_bus_idr, bus->busnum); 939 mutex_unlock(&usb_bus_idr_lock); 940 941 usb_notify_remove_bus(bus); 942 } 943 944 /** 945 * register_root_hub - called by usb_add_hcd() to register a root hub 946 * @hcd: host controller for this root hub 947 * 948 * This function registers the root hub with the USB subsystem. It sets up 949 * the device properly in the device tree and then calls usb_new_device() 950 * to register the usb device. It also assigns the root hub's USB address 951 * (always 1). 952 * 953 * Return: 0 if successful. A negative error code otherwise. 954 */ 955 static int register_root_hub(struct usb_hcd *hcd) 956 { 957 struct device *parent_dev = hcd->self.controller; 958 struct usb_device *usb_dev = hcd->self.root_hub; 959 struct usb_device_descriptor *descr; 960 const int devnum = 1; 961 int retval; 962 963 usb_dev->devnum = devnum; 964 usb_dev->bus->devnum_next = devnum + 1; 965 set_bit(devnum, usb_dev->bus->devmap); 966 usb_set_device_state(usb_dev, USB_STATE_ADDRESS); 967 968 mutex_lock(&usb_bus_idr_lock); 969 970 usb_dev->ep0.desc.wMaxPacketSize = cpu_to_le16(64); 971 descr = usb_get_device_descriptor(usb_dev); 972 if (IS_ERR(descr)) { 973 retval = PTR_ERR(descr); 974 mutex_unlock(&usb_bus_idr_lock); 975 dev_dbg (parent_dev, "can't read %s device descriptor %d\n", 976 dev_name(&usb_dev->dev), retval); 977 return retval; 978 } 979 usb_dev->descriptor = *descr; 980 kfree(descr); 981 982 if (le16_to_cpu(usb_dev->descriptor.bcdUSB) >= 0x0201) { 983 retval = usb_get_bos_descriptor(usb_dev); 984 if (!retval) { 985 usb_dev->lpm_capable = usb_device_supports_lpm(usb_dev); 986 } else if (usb_dev->speed >= USB_SPEED_SUPER) { 987 mutex_unlock(&usb_bus_idr_lock); 988 dev_dbg(parent_dev, "can't read %s bos descriptor %d\n", 989 dev_name(&usb_dev->dev), retval); 990 return retval; 991 } 992 } 993 994 retval = usb_new_device (usb_dev); 995 if (retval) { 996 dev_err (parent_dev, "can't register root hub for %s, %d\n", 997 dev_name(&usb_dev->dev), retval); 998 } else { 999 spin_lock_irq (&hcd_root_hub_lock); 1000 hcd->rh_registered = 1; 1001 spin_unlock_irq (&hcd_root_hub_lock); 1002 1003 /* Did the HC die before the root hub was registered? */ 1004 if (HCD_DEAD(hcd)) 1005 usb_hc_died (hcd); /* This time clean up */ 1006 } 1007 mutex_unlock(&usb_bus_idr_lock); 1008 1009 return retval; 1010 } 1011 1012 /* 1013 * usb_hcd_start_port_resume - a root-hub port is sending a resume signal 1014 * @bus: the bus which the root hub belongs to 1015 * @portnum: the port which is being resumed 1016 * 1017 * HCDs should call this function when they know that a resume signal is 1018 * being sent to a root-hub port. The root hub will be prevented from 1019 * going into autosuspend until usb_hcd_end_port_resume() is called. 1020 * 1021 * The bus's private lock must be held by the caller. 1022 */ 1023 void usb_hcd_start_port_resume(struct usb_bus *bus, int portnum) 1024 { 1025 unsigned bit = 1 << portnum; 1026 1027 if (!(bus->resuming_ports & bit)) { 1028 bus->resuming_ports |= bit; 1029 pm_runtime_get_noresume(&bus->root_hub->dev); 1030 } 1031 } 1032 EXPORT_SYMBOL_GPL(usb_hcd_start_port_resume); 1033 1034 /* 1035 * usb_hcd_end_port_resume - a root-hub port has stopped sending a resume signal 1036 * @bus: the bus which the root hub belongs to 1037 * @portnum: the port which is being resumed 1038 * 1039 * HCDs should call this function when they know that a resume signal has 1040 * stopped being sent to a root-hub port. The root hub will be allowed to 1041 * autosuspend again. 1042 * 1043 * The bus's private lock must be held by the caller. 1044 */ 1045 void usb_hcd_end_port_resume(struct usb_bus *bus, int portnum) 1046 { 1047 unsigned bit = 1 << portnum; 1048 1049 if (bus->resuming_ports & bit) { 1050 bus->resuming_ports &= ~bit; 1051 pm_runtime_put_noidle(&bus->root_hub->dev); 1052 } 1053 } 1054 EXPORT_SYMBOL_GPL(usb_hcd_end_port_resume); 1055 1056 /*-------------------------------------------------------------------------*/ 1057 1058 /** 1059 * usb_calc_bus_time - approximate periodic transaction time in nanoseconds 1060 * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH} 1061 * @is_input: true iff the transaction sends data to the host 1062 * @isoc: true for isochronous transactions, false for interrupt ones 1063 * @bytecount: how many bytes in the transaction. 1064 * 1065 * Return: Approximate bus time in nanoseconds for a periodic transaction. 1066 * 1067 * Note: 1068 * See USB 2.0 spec section 5.11.3; only periodic transfers need to be 1069 * scheduled in software, this function is only used for such scheduling. 1070 */ 1071 long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount) 1072 { 1073 unsigned long tmp; 1074 1075 switch (speed) { 1076 case USB_SPEED_LOW: /* INTR only */ 1077 if (is_input) { 1078 tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L; 1079 return 64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp; 1080 } else { 1081 tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L; 1082 return 64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp; 1083 } 1084 case USB_SPEED_FULL: /* ISOC or INTR */ 1085 if (isoc) { 1086 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L; 1087 return ((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp; 1088 } else { 1089 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L; 1090 return 9107L + BW_HOST_DELAY + tmp; 1091 } 1092 case USB_SPEED_HIGH: /* ISOC or INTR */ 1093 /* FIXME adjust for input vs output */ 1094 if (isoc) 1095 tmp = HS_NSECS_ISO (bytecount); 1096 else 1097 tmp = HS_NSECS (bytecount); 1098 return tmp; 1099 default: 1100 pr_debug ("%s: bogus device speed!\n", usbcore_name); 1101 return -1; 1102 } 1103 } 1104 EXPORT_SYMBOL_GPL(usb_calc_bus_time); 1105 1106 1107 /*-------------------------------------------------------------------------*/ 1108 1109 /* 1110 * Generic HC operations. 1111 */ 1112 1113 /*-------------------------------------------------------------------------*/ 1114 1115 /** 1116 * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue 1117 * @hcd: host controller to which @urb was submitted 1118 * @urb: URB being submitted 1119 * 1120 * Host controller drivers should call this routine in their enqueue() 1121 * method. The HCD's private spinlock must be held and interrupts must 1122 * be disabled. The actions carried out here are required for URB 1123 * submission, as well as for endpoint shutdown and for usb_kill_urb. 1124 * 1125 * Return: 0 for no error, otherwise a negative error code (in which case 1126 * the enqueue() method must fail). If no error occurs but enqueue() fails 1127 * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing 1128 * the private spinlock and returning. 1129 */ 1130 int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb) 1131 { 1132 int rc = 0; 1133 1134 spin_lock(&hcd_urb_list_lock); 1135 1136 /* Check that the URB isn't being killed */ 1137 if (unlikely(atomic_read(&urb->reject))) { 1138 rc = -EPERM; 1139 goto done; 1140 } 1141 1142 if (unlikely(!urb->ep->enabled)) { 1143 rc = -ENOENT; 1144 goto done; 1145 } 1146 1147 if (unlikely(!urb->dev->can_submit)) { 1148 rc = -EHOSTUNREACH; 1149 goto done; 1150 } 1151 1152 /* 1153 * Check the host controller's state and add the URB to the 1154 * endpoint's queue. 1155 */ 1156 if (HCD_RH_RUNNING(hcd)) { 1157 urb->unlinked = 0; 1158 list_add_tail(&urb->urb_list, &urb->ep->urb_list); 1159 } else { 1160 rc = -ESHUTDOWN; 1161 goto done; 1162 } 1163 done: 1164 spin_unlock(&hcd_urb_list_lock); 1165 return rc; 1166 } 1167 EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep); 1168 1169 /** 1170 * usb_hcd_check_unlink_urb - check whether an URB may be unlinked 1171 * @hcd: host controller to which @urb was submitted 1172 * @urb: URB being checked for unlinkability 1173 * @status: error code to store in @urb if the unlink succeeds 1174 * 1175 * Host controller drivers should call this routine in their dequeue() 1176 * method. The HCD's private spinlock must be held and interrupts must 1177 * be disabled. The actions carried out here are required for making 1178 * sure than an unlink is valid. 1179 * 1180 * Return: 0 for no error, otherwise a negative error code (in which case 1181 * the dequeue() method must fail). The possible error codes are: 1182 * 1183 * -EIDRM: @urb was not submitted or has already completed. 1184 * The completion function may not have been called yet. 1185 * 1186 * -EBUSY: @urb has already been unlinked. 1187 */ 1188 int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb, 1189 int status) 1190 { 1191 struct list_head *tmp; 1192 1193 /* insist the urb is still queued */ 1194 list_for_each(tmp, &urb->ep->urb_list) { 1195 if (tmp == &urb->urb_list) 1196 break; 1197 } 1198 if (tmp != &urb->urb_list) 1199 return -EIDRM; 1200 1201 /* Any status except -EINPROGRESS means something already started to 1202 * unlink this URB from the hardware. So there's no more work to do. 1203 */ 1204 if (urb->unlinked) 1205 return -EBUSY; 1206 urb->unlinked = status; 1207 return 0; 1208 } 1209 EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb); 1210 1211 /** 1212 * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue 1213 * @hcd: host controller to which @urb was submitted 1214 * @urb: URB being unlinked 1215 * 1216 * Host controller drivers should call this routine before calling 1217 * usb_hcd_giveback_urb(). The HCD's private spinlock must be held and 1218 * interrupts must be disabled. The actions carried out here are required 1219 * for URB completion. 1220 */ 1221 void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb) 1222 { 1223 /* clear all state linking urb to this dev (and hcd) */ 1224 spin_lock(&hcd_urb_list_lock); 1225 list_del_init(&urb->urb_list); 1226 spin_unlock(&hcd_urb_list_lock); 1227 } 1228 EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep); 1229 1230 /* 1231 * Some usb host controllers can only perform dma using a small SRAM area, 1232 * or have restrictions on addressable DRAM. 1233 * The usb core itself is however optimized for host controllers that can dma 1234 * using regular system memory - like pci devices doing bus mastering. 1235 * 1236 * To support host controllers with limited dma capabilities we provide dma 1237 * bounce buffers. This feature can be enabled by initializing 1238 * hcd->localmem_pool using usb_hcd_setup_local_mem(). 1239 * 1240 * The initialized hcd->localmem_pool then tells the usb code to allocate all 1241 * data for dma using the genalloc API. 1242 * 1243 * So, to summarize... 1244 * 1245 * - We need "local" memory, canonical example being 1246 * a small SRAM on a discrete controller being the 1247 * only memory that the controller can read ... 1248 * (a) "normal" kernel memory is no good, and 1249 * (b) there's not enough to share 1250 * 1251 * - So we use that, even though the primary requirement 1252 * is that the memory be "local" (hence addressable 1253 * by that device), not "coherent". 1254 * 1255 */ 1256 1257 static int hcd_alloc_coherent(struct usb_bus *bus, 1258 gfp_t mem_flags, dma_addr_t *dma_handle, 1259 void **vaddr_handle, size_t size, 1260 enum dma_data_direction dir) 1261 { 1262 unsigned char *vaddr; 1263 1264 if (*vaddr_handle == NULL) { 1265 WARN_ON_ONCE(1); 1266 return -EFAULT; 1267 } 1268 1269 vaddr = hcd_buffer_alloc(bus, size + sizeof(unsigned long), 1270 mem_flags, dma_handle); 1271 if (!vaddr) 1272 return -ENOMEM; 1273 1274 /* 1275 * Store the virtual address of the buffer at the end 1276 * of the allocated dma buffer. The size of the buffer 1277 * may be uneven so use unaligned functions instead 1278 * of just rounding up. It makes sense to optimize for 1279 * memory footprint over access speed since the amount 1280 * of memory available for dma may be limited. 1281 */ 1282 put_unaligned((unsigned long)*vaddr_handle, 1283 (unsigned long *)(vaddr + size)); 1284 1285 if (dir == DMA_TO_DEVICE) 1286 memcpy(vaddr, *vaddr_handle, size); 1287 1288 *vaddr_handle = vaddr; 1289 return 0; 1290 } 1291 1292 static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle, 1293 void **vaddr_handle, size_t size, 1294 enum dma_data_direction dir) 1295 { 1296 unsigned char *vaddr = *vaddr_handle; 1297 1298 vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size)); 1299 1300 if (dir == DMA_FROM_DEVICE) 1301 memcpy(vaddr, *vaddr_handle, size); 1302 1303 hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle); 1304 1305 *vaddr_handle = vaddr; 1306 *dma_handle = 0; 1307 } 1308 1309 void usb_hcd_unmap_urb_setup_for_dma(struct usb_hcd *hcd, struct urb *urb) 1310 { 1311 if (IS_ENABLED(CONFIG_HAS_DMA) && 1312 (urb->transfer_flags & URB_SETUP_MAP_SINGLE)) 1313 dma_unmap_single(hcd->self.sysdev, 1314 urb->setup_dma, 1315 sizeof(struct usb_ctrlrequest), 1316 DMA_TO_DEVICE); 1317 else if (urb->transfer_flags & URB_SETUP_MAP_LOCAL) 1318 hcd_free_coherent(urb->dev->bus, 1319 &urb->setup_dma, 1320 (void **) &urb->setup_packet, 1321 sizeof(struct usb_ctrlrequest), 1322 DMA_TO_DEVICE); 1323 1324 /* Make it safe to call this routine more than once */ 1325 urb->transfer_flags &= ~(URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL); 1326 } 1327 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_setup_for_dma); 1328 1329 static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb) 1330 { 1331 if (hcd->driver->unmap_urb_for_dma) 1332 hcd->driver->unmap_urb_for_dma(hcd, urb); 1333 else 1334 usb_hcd_unmap_urb_for_dma(hcd, urb); 1335 } 1336 1337 void usb_hcd_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb) 1338 { 1339 enum dma_data_direction dir; 1340 1341 usb_hcd_unmap_urb_setup_for_dma(hcd, urb); 1342 1343 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE; 1344 if (IS_ENABLED(CONFIG_HAS_DMA) && 1345 (urb->transfer_flags & URB_DMA_MAP_SG)) 1346 dma_unmap_sg(hcd->self.sysdev, 1347 urb->sg, 1348 urb->num_sgs, 1349 dir); 1350 else if (IS_ENABLED(CONFIG_HAS_DMA) && 1351 (urb->transfer_flags & URB_DMA_MAP_PAGE)) 1352 dma_unmap_page(hcd->self.sysdev, 1353 urb->transfer_dma, 1354 urb->transfer_buffer_length, 1355 dir); 1356 else if (IS_ENABLED(CONFIG_HAS_DMA) && 1357 (urb->transfer_flags & URB_DMA_MAP_SINGLE)) 1358 dma_unmap_single(hcd->self.sysdev, 1359 urb->transfer_dma, 1360 urb->transfer_buffer_length, 1361 dir); 1362 else if (urb->transfer_flags & URB_MAP_LOCAL) 1363 hcd_free_coherent(urb->dev->bus, 1364 &urb->transfer_dma, 1365 &urb->transfer_buffer, 1366 urb->transfer_buffer_length, 1367 dir); 1368 1369 /* Make it safe to call this routine more than once */ 1370 urb->transfer_flags &= ~(URB_DMA_MAP_SG | URB_DMA_MAP_PAGE | 1371 URB_DMA_MAP_SINGLE | URB_MAP_LOCAL); 1372 } 1373 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_for_dma); 1374 1375 static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb, 1376 gfp_t mem_flags) 1377 { 1378 if (hcd->driver->map_urb_for_dma) 1379 return hcd->driver->map_urb_for_dma(hcd, urb, mem_flags); 1380 else 1381 return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags); 1382 } 1383 1384 int usb_hcd_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb, 1385 gfp_t mem_flags) 1386 { 1387 enum dma_data_direction dir; 1388 int ret = 0; 1389 1390 /* Map the URB's buffers for DMA access. 1391 * Lower level HCD code should use *_dma exclusively, 1392 * unless it uses pio or talks to another transport, 1393 * or uses the provided scatter gather list for bulk. 1394 */ 1395 1396 if (usb_endpoint_xfer_control(&urb->ep->desc)) { 1397 if (hcd->self.uses_pio_for_control) 1398 return ret; 1399 if (hcd->localmem_pool) { 1400 ret = hcd_alloc_coherent( 1401 urb->dev->bus, mem_flags, 1402 &urb->setup_dma, 1403 (void **)&urb->setup_packet, 1404 sizeof(struct usb_ctrlrequest), 1405 DMA_TO_DEVICE); 1406 if (ret) 1407 return ret; 1408 urb->transfer_flags |= URB_SETUP_MAP_LOCAL; 1409 } else if (hcd_uses_dma(hcd)) { 1410 if (object_is_on_stack(urb->setup_packet)) { 1411 WARN_ONCE(1, "setup packet is on stack\n"); 1412 return -EAGAIN; 1413 } 1414 1415 urb->setup_dma = dma_map_single( 1416 hcd->self.sysdev, 1417 urb->setup_packet, 1418 sizeof(struct usb_ctrlrequest), 1419 DMA_TO_DEVICE); 1420 if (dma_mapping_error(hcd->self.sysdev, 1421 urb->setup_dma)) 1422 return -EAGAIN; 1423 urb->transfer_flags |= URB_SETUP_MAP_SINGLE; 1424 } 1425 } 1426 1427 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE; 1428 if (urb->transfer_buffer_length != 0 1429 && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) { 1430 if (hcd->localmem_pool) { 1431 ret = hcd_alloc_coherent( 1432 urb->dev->bus, mem_flags, 1433 &urb->transfer_dma, 1434 &urb->transfer_buffer, 1435 urb->transfer_buffer_length, 1436 dir); 1437 if (ret == 0) 1438 urb->transfer_flags |= URB_MAP_LOCAL; 1439 } else if (hcd_uses_dma(hcd)) { 1440 if (urb->num_sgs) { 1441 int n; 1442 1443 /* We don't support sg for isoc transfers ! */ 1444 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) { 1445 WARN_ON(1); 1446 return -EINVAL; 1447 } 1448 1449 n = dma_map_sg( 1450 hcd->self.sysdev, 1451 urb->sg, 1452 urb->num_sgs, 1453 dir); 1454 if (!n) 1455 ret = -EAGAIN; 1456 else 1457 urb->transfer_flags |= URB_DMA_MAP_SG; 1458 urb->num_mapped_sgs = n; 1459 if (n != urb->num_sgs) 1460 urb->transfer_flags |= 1461 URB_DMA_SG_COMBINED; 1462 } else if (urb->sg) { 1463 struct scatterlist *sg = urb->sg; 1464 urb->transfer_dma = dma_map_page( 1465 hcd->self.sysdev, 1466 sg_page(sg), 1467 sg->offset, 1468 urb->transfer_buffer_length, 1469 dir); 1470 if (dma_mapping_error(hcd->self.sysdev, 1471 urb->transfer_dma)) 1472 ret = -EAGAIN; 1473 else 1474 urb->transfer_flags |= URB_DMA_MAP_PAGE; 1475 } else if (object_is_on_stack(urb->transfer_buffer)) { 1476 WARN_ONCE(1, "transfer buffer is on stack\n"); 1477 ret = -EAGAIN; 1478 } else { 1479 urb->transfer_dma = dma_map_single( 1480 hcd->self.sysdev, 1481 urb->transfer_buffer, 1482 urb->transfer_buffer_length, 1483 dir); 1484 if (dma_mapping_error(hcd->self.sysdev, 1485 urb->transfer_dma)) 1486 ret = -EAGAIN; 1487 else 1488 urb->transfer_flags |= URB_DMA_MAP_SINGLE; 1489 } 1490 } 1491 if (ret && (urb->transfer_flags & (URB_SETUP_MAP_SINGLE | 1492 URB_SETUP_MAP_LOCAL))) 1493 usb_hcd_unmap_urb_for_dma(hcd, urb); 1494 } 1495 return ret; 1496 } 1497 EXPORT_SYMBOL_GPL(usb_hcd_map_urb_for_dma); 1498 1499 /*-------------------------------------------------------------------------*/ 1500 1501 /* may be called in any context with a valid urb->dev usecount 1502 * caller surrenders "ownership" of urb 1503 * expects usb_submit_urb() to have sanity checked and conditioned all 1504 * inputs in the urb 1505 */ 1506 int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags) 1507 { 1508 int status; 1509 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus); 1510 1511 /* increment urb's reference count as part of giving it to the HCD 1512 * (which will control it). HCD guarantees that it either returns 1513 * an error or calls giveback(), but not both. 1514 */ 1515 usb_get_urb(urb); 1516 atomic_inc(&urb->use_count); 1517 atomic_inc(&urb->dev->urbnum); 1518 usbmon_urb_submit(&hcd->self, urb); 1519 1520 /* NOTE requirements on root-hub callers (usbfs and the hub 1521 * driver, for now): URBs' urb->transfer_buffer must be 1522 * valid and usb_buffer_{sync,unmap}() not be needed, since 1523 * they could clobber root hub response data. Also, control 1524 * URBs must be submitted in process context with interrupts 1525 * enabled. 1526 */ 1527 1528 if (is_root_hub(urb->dev)) { 1529 status = rh_urb_enqueue(hcd, urb); 1530 } else { 1531 status = map_urb_for_dma(hcd, urb, mem_flags); 1532 if (likely(status == 0)) { 1533 status = hcd->driver->urb_enqueue(hcd, urb, mem_flags); 1534 if (unlikely(status)) 1535 unmap_urb_for_dma(hcd, urb); 1536 } 1537 } 1538 1539 if (unlikely(status)) { 1540 usbmon_urb_submit_error(&hcd->self, urb, status); 1541 urb->hcpriv = NULL; 1542 INIT_LIST_HEAD(&urb->urb_list); 1543 atomic_dec(&urb->use_count); 1544 /* 1545 * Order the write of urb->use_count above before the read 1546 * of urb->reject below. Pairs with the memory barriers in 1547 * usb_kill_urb() and usb_poison_urb(). 1548 */ 1549 smp_mb__after_atomic(); 1550 1551 atomic_dec(&urb->dev->urbnum); 1552 if (atomic_read(&urb->reject)) 1553 wake_up(&usb_kill_urb_queue); 1554 usb_put_urb(urb); 1555 } 1556 return status; 1557 } 1558 1559 /*-------------------------------------------------------------------------*/ 1560 1561 /* this makes the hcd giveback() the urb more quickly, by kicking it 1562 * off hardware queues (which may take a while) and returning it as 1563 * soon as practical. we've already set up the urb's return status, 1564 * but we can't know if the callback completed already. 1565 */ 1566 static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status) 1567 { 1568 int value; 1569 1570 if (is_root_hub(urb->dev)) 1571 value = usb_rh_urb_dequeue(hcd, urb, status); 1572 else { 1573 1574 /* The only reason an HCD might fail this call is if 1575 * it has not yet fully queued the urb to begin with. 1576 * Such failures should be harmless. */ 1577 value = hcd->driver->urb_dequeue(hcd, urb, status); 1578 } 1579 return value; 1580 } 1581 1582 /* 1583 * called in any context 1584 * 1585 * caller guarantees urb won't be recycled till both unlink() 1586 * and the urb's completion function return 1587 */ 1588 int usb_hcd_unlink_urb (struct urb *urb, int status) 1589 { 1590 struct usb_hcd *hcd; 1591 struct usb_device *udev = urb->dev; 1592 int retval = -EIDRM; 1593 unsigned long flags; 1594 1595 /* Prevent the device and bus from going away while 1596 * the unlink is carried out. If they are already gone 1597 * then urb->use_count must be 0, since disconnected 1598 * devices can't have any active URBs. 1599 */ 1600 spin_lock_irqsave(&hcd_urb_unlink_lock, flags); 1601 if (atomic_read(&urb->use_count) > 0) { 1602 retval = 0; 1603 usb_get_dev(udev); 1604 } 1605 spin_unlock_irqrestore(&hcd_urb_unlink_lock, flags); 1606 if (retval == 0) { 1607 hcd = bus_to_hcd(urb->dev->bus); 1608 retval = unlink1(hcd, urb, status); 1609 if (retval == 0) 1610 retval = -EINPROGRESS; 1611 else if (retval != -EIDRM && retval != -EBUSY) 1612 dev_dbg(&udev->dev, "hcd_unlink_urb %pK fail %d\n", 1613 urb, retval); 1614 usb_put_dev(udev); 1615 } 1616 return retval; 1617 } 1618 1619 /*-------------------------------------------------------------------------*/ 1620 1621 static void __usb_hcd_giveback_urb(struct urb *urb) 1622 { 1623 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus); 1624 struct usb_anchor *anchor = urb->anchor; 1625 int status = urb->unlinked; 1626 unsigned long flags; 1627 1628 urb->hcpriv = NULL; 1629 if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) && 1630 urb->actual_length < urb->transfer_buffer_length && 1631 !status)) 1632 status = -EREMOTEIO; 1633 1634 unmap_urb_for_dma(hcd, urb); 1635 usbmon_urb_complete(&hcd->self, urb, status); 1636 usb_anchor_suspend_wakeups(anchor); 1637 usb_unanchor_urb(urb); 1638 if (likely(status == 0)) 1639 usb_led_activity(USB_LED_EVENT_HOST); 1640 1641 /* pass ownership to the completion handler */ 1642 urb->status = status; 1643 /* 1644 * Only collect coverage in the softirq context and disable interrupts 1645 * to avoid scenarios with nested remote coverage collection sections 1646 * that KCOV does not support. 1647 * See the comment next to kcov_remote_start_usb_softirq() for details. 1648 */ 1649 flags = kcov_remote_start_usb_softirq((u64)urb->dev->bus->busnum); 1650 urb->complete(urb); 1651 kcov_remote_stop_softirq(flags); 1652 1653 usb_anchor_resume_wakeups(anchor); 1654 atomic_dec(&urb->use_count); 1655 /* 1656 * Order the write of urb->use_count above before the read 1657 * of urb->reject below. Pairs with the memory barriers in 1658 * usb_kill_urb() and usb_poison_urb(). 1659 */ 1660 smp_mb__after_atomic(); 1661 1662 if (unlikely(atomic_read(&urb->reject))) 1663 wake_up(&usb_kill_urb_queue); 1664 usb_put_urb(urb); 1665 } 1666 1667 static void usb_giveback_urb_bh(struct work_struct *work) 1668 { 1669 struct giveback_urb_bh *bh = 1670 container_of(work, struct giveback_urb_bh, bh); 1671 struct list_head local_list; 1672 1673 spin_lock_irq(&bh->lock); 1674 bh->running = true; 1675 list_replace_init(&bh->head, &local_list); 1676 spin_unlock_irq(&bh->lock); 1677 1678 while (!list_empty(&local_list)) { 1679 struct urb *urb; 1680 1681 urb = list_entry(local_list.next, struct urb, urb_list); 1682 list_del_init(&urb->urb_list); 1683 bh->completing_ep = urb->ep; 1684 __usb_hcd_giveback_urb(urb); 1685 bh->completing_ep = NULL; 1686 } 1687 1688 /* 1689 * giveback new URBs next time to prevent this function 1690 * from not exiting for a long time. 1691 */ 1692 spin_lock_irq(&bh->lock); 1693 if (!list_empty(&bh->head)) { 1694 if (bh->high_prio) 1695 queue_work(system_bh_highpri_wq, &bh->bh); 1696 else 1697 queue_work(system_bh_wq, &bh->bh); 1698 } 1699 bh->running = false; 1700 spin_unlock_irq(&bh->lock); 1701 } 1702 1703 /** 1704 * usb_hcd_giveback_urb - return URB from HCD to device driver 1705 * @hcd: host controller returning the URB 1706 * @urb: urb being returned to the USB device driver. 1707 * @status: completion status code for the URB. 1708 * 1709 * Context: atomic. The completion callback is invoked in caller's context. 1710 * For HCDs with HCD_BH flag set, the completion callback is invoked in BH 1711 * context (except for URBs submitted to the root hub which always complete in 1712 * caller's context). 1713 * 1714 * This hands the URB from HCD to its USB device driver, using its 1715 * completion function. The HCD has freed all per-urb resources 1716 * (and is done using urb->hcpriv). It also released all HCD locks; 1717 * the device driver won't cause problems if it frees, modifies, 1718 * or resubmits this URB. 1719 * 1720 * If @urb was unlinked, the value of @status will be overridden by 1721 * @urb->unlinked. Erroneous short transfers are detected in case 1722 * the HCD hasn't checked for them. 1723 */ 1724 void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status) 1725 { 1726 struct giveback_urb_bh *bh; 1727 bool running; 1728 1729 /* pass status to BH via unlinked */ 1730 if (likely(!urb->unlinked)) 1731 urb->unlinked = status; 1732 1733 if (!hcd_giveback_urb_in_bh(hcd) && !is_root_hub(urb->dev)) { 1734 __usb_hcd_giveback_urb(urb); 1735 return; 1736 } 1737 1738 if (usb_pipeisoc(urb->pipe) || usb_pipeint(urb->pipe)) 1739 bh = &hcd->high_prio_bh; 1740 else 1741 bh = &hcd->low_prio_bh; 1742 1743 spin_lock(&bh->lock); 1744 list_add_tail(&urb->urb_list, &bh->head); 1745 running = bh->running; 1746 spin_unlock(&bh->lock); 1747 1748 if (running) 1749 ; 1750 else if (bh->high_prio) 1751 queue_work(system_bh_highpri_wq, &bh->bh); 1752 else 1753 queue_work(system_bh_wq, &bh->bh); 1754 } 1755 EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb); 1756 1757 /*-------------------------------------------------------------------------*/ 1758 1759 /* Cancel all URBs pending on this endpoint and wait for the endpoint's 1760 * queue to drain completely. The caller must first insure that no more 1761 * URBs can be submitted for this endpoint. 1762 */ 1763 void usb_hcd_flush_endpoint(struct usb_device *udev, 1764 struct usb_host_endpoint *ep) 1765 { 1766 struct usb_hcd *hcd; 1767 struct urb *urb; 1768 1769 if (!ep) 1770 return; 1771 might_sleep(); 1772 hcd = bus_to_hcd(udev->bus); 1773 1774 /* No more submits can occur */ 1775 spin_lock_irq(&hcd_urb_list_lock); 1776 rescan: 1777 list_for_each_entry_reverse(urb, &ep->urb_list, urb_list) { 1778 int is_in; 1779 1780 if (urb->unlinked) 1781 continue; 1782 usb_get_urb (urb); 1783 is_in = usb_urb_dir_in(urb); 1784 spin_unlock(&hcd_urb_list_lock); 1785 1786 /* kick hcd */ 1787 unlink1(hcd, urb, -ESHUTDOWN); 1788 dev_dbg (hcd->self.controller, 1789 "shutdown urb %pK ep%d%s-%s\n", 1790 urb, usb_endpoint_num(&ep->desc), 1791 is_in ? "in" : "out", 1792 usb_ep_type_string(usb_endpoint_type(&ep->desc))); 1793 usb_put_urb (urb); 1794 1795 /* list contents may have changed */ 1796 spin_lock(&hcd_urb_list_lock); 1797 goto rescan; 1798 } 1799 spin_unlock_irq(&hcd_urb_list_lock); 1800 1801 /* Wait until the endpoint queue is completely empty */ 1802 while (!list_empty (&ep->urb_list)) { 1803 spin_lock_irq(&hcd_urb_list_lock); 1804 1805 /* The list may have changed while we acquired the spinlock */ 1806 urb = NULL; 1807 if (!list_empty (&ep->urb_list)) { 1808 urb = list_entry (ep->urb_list.prev, struct urb, 1809 urb_list); 1810 usb_get_urb (urb); 1811 } 1812 spin_unlock_irq(&hcd_urb_list_lock); 1813 1814 if (urb) { 1815 usb_kill_urb (urb); 1816 usb_put_urb (urb); 1817 } 1818 } 1819 } 1820 1821 /** 1822 * usb_hcd_alloc_bandwidth - check whether a new bandwidth setting exceeds 1823 * the bus bandwidth 1824 * @udev: target &usb_device 1825 * @new_config: new configuration to install 1826 * @cur_alt: the current alternate interface setting 1827 * @new_alt: alternate interface setting that is being installed 1828 * 1829 * To change configurations, pass in the new configuration in new_config, 1830 * and pass NULL for cur_alt and new_alt. 1831 * 1832 * To reset a device's configuration (put the device in the ADDRESSED state), 1833 * pass in NULL for new_config, cur_alt, and new_alt. 1834 * 1835 * To change alternate interface settings, pass in NULL for new_config, 1836 * pass in the current alternate interface setting in cur_alt, 1837 * and pass in the new alternate interface setting in new_alt. 1838 * 1839 * Return: An error if the requested bandwidth change exceeds the 1840 * bus bandwidth or host controller internal resources. 1841 */ 1842 int usb_hcd_alloc_bandwidth(struct usb_device *udev, 1843 struct usb_host_config *new_config, 1844 struct usb_host_interface *cur_alt, 1845 struct usb_host_interface *new_alt) 1846 { 1847 int num_intfs, i, j; 1848 struct usb_host_interface *alt = NULL; 1849 int ret = 0; 1850 struct usb_hcd *hcd; 1851 struct usb_host_endpoint *ep; 1852 1853 hcd = bus_to_hcd(udev->bus); 1854 if (!hcd->driver->check_bandwidth) 1855 return 0; 1856 1857 /* Configuration is being removed - set configuration 0 */ 1858 if (!new_config && !cur_alt) { 1859 for (i = 1; i < 16; ++i) { 1860 ep = udev->ep_out[i]; 1861 if (ep) 1862 hcd->driver->drop_endpoint(hcd, udev, ep); 1863 ep = udev->ep_in[i]; 1864 if (ep) 1865 hcd->driver->drop_endpoint(hcd, udev, ep); 1866 } 1867 hcd->driver->check_bandwidth(hcd, udev); 1868 return 0; 1869 } 1870 /* Check if the HCD says there's enough bandwidth. Enable all endpoints 1871 * each interface's alt setting 0 and ask the HCD to check the bandwidth 1872 * of the bus. There will always be bandwidth for endpoint 0, so it's 1873 * ok to exclude it. 1874 */ 1875 if (new_config) { 1876 num_intfs = new_config->desc.bNumInterfaces; 1877 /* Remove endpoints (except endpoint 0, which is always on the 1878 * schedule) from the old config from the schedule 1879 */ 1880 for (i = 1; i < 16; ++i) { 1881 ep = udev->ep_out[i]; 1882 if (ep) { 1883 ret = hcd->driver->drop_endpoint(hcd, udev, ep); 1884 if (ret < 0) 1885 goto reset; 1886 } 1887 ep = udev->ep_in[i]; 1888 if (ep) { 1889 ret = hcd->driver->drop_endpoint(hcd, udev, ep); 1890 if (ret < 0) 1891 goto reset; 1892 } 1893 } 1894 for (i = 0; i < num_intfs; ++i) { 1895 struct usb_host_interface *first_alt; 1896 int iface_num; 1897 1898 first_alt = &new_config->intf_cache[i]->altsetting[0]; 1899 iface_num = first_alt->desc.bInterfaceNumber; 1900 /* Set up endpoints for alternate interface setting 0 */ 1901 alt = usb_find_alt_setting(new_config, iface_num, 0); 1902 if (!alt) 1903 /* No alt setting 0? Pick the first setting. */ 1904 alt = first_alt; 1905 1906 for (j = 0; j < alt->desc.bNumEndpoints; j++) { 1907 ret = hcd->driver->add_endpoint(hcd, udev, &alt->endpoint[j]); 1908 if (ret < 0) 1909 goto reset; 1910 } 1911 } 1912 } 1913 if (cur_alt && new_alt) { 1914 struct usb_interface *iface = usb_ifnum_to_if(udev, 1915 cur_alt->desc.bInterfaceNumber); 1916 1917 if (!iface) 1918 return -EINVAL; 1919 if (iface->resetting_device) { 1920 /* 1921 * The USB core just reset the device, so the xHCI host 1922 * and the device will think alt setting 0 is installed. 1923 * However, the USB core will pass in the alternate 1924 * setting installed before the reset as cur_alt. Dig 1925 * out the alternate setting 0 structure, or the first 1926 * alternate setting if a broken device doesn't have alt 1927 * setting 0. 1928 */ 1929 cur_alt = usb_altnum_to_altsetting(iface, 0); 1930 if (!cur_alt) 1931 cur_alt = &iface->altsetting[0]; 1932 } 1933 1934 /* Drop all the endpoints in the current alt setting */ 1935 for (i = 0; i < cur_alt->desc.bNumEndpoints; i++) { 1936 ret = hcd->driver->drop_endpoint(hcd, udev, 1937 &cur_alt->endpoint[i]); 1938 if (ret < 0) 1939 goto reset; 1940 } 1941 /* Add all the endpoints in the new alt setting */ 1942 for (i = 0; i < new_alt->desc.bNumEndpoints; i++) { 1943 ret = hcd->driver->add_endpoint(hcd, udev, 1944 &new_alt->endpoint[i]); 1945 if (ret < 0) 1946 goto reset; 1947 } 1948 } 1949 ret = hcd->driver->check_bandwidth(hcd, udev); 1950 reset: 1951 if (ret < 0) 1952 hcd->driver->reset_bandwidth(hcd, udev); 1953 return ret; 1954 } 1955 1956 /* Disables the endpoint: synchronizes with the hcd to make sure all 1957 * endpoint state is gone from hardware. usb_hcd_flush_endpoint() must 1958 * have been called previously. Use for set_configuration, set_interface, 1959 * driver removal, physical disconnect. 1960 * 1961 * example: a qh stored in ep->hcpriv, holding state related to endpoint 1962 * type, maxpacket size, toggle, halt status, and scheduling. 1963 */ 1964 void usb_hcd_disable_endpoint(struct usb_device *udev, 1965 struct usb_host_endpoint *ep) 1966 { 1967 struct usb_hcd *hcd; 1968 1969 might_sleep(); 1970 hcd = bus_to_hcd(udev->bus); 1971 if (hcd->driver->endpoint_disable) 1972 hcd->driver->endpoint_disable(hcd, ep); 1973 } 1974 1975 /** 1976 * usb_hcd_reset_endpoint - reset host endpoint state 1977 * @udev: USB device. 1978 * @ep: the endpoint to reset. 1979 * 1980 * Resets any host endpoint state such as the toggle bit, sequence 1981 * number and current window. 1982 */ 1983 void usb_hcd_reset_endpoint(struct usb_device *udev, 1984 struct usb_host_endpoint *ep) 1985 { 1986 struct usb_hcd *hcd = bus_to_hcd(udev->bus); 1987 1988 if (hcd->driver->endpoint_reset) 1989 hcd->driver->endpoint_reset(hcd, ep); 1990 else { 1991 int epnum = usb_endpoint_num(&ep->desc); 1992 int is_out = usb_endpoint_dir_out(&ep->desc); 1993 int is_control = usb_endpoint_xfer_control(&ep->desc); 1994 1995 usb_settoggle(udev, epnum, is_out, 0); 1996 if (is_control) 1997 usb_settoggle(udev, epnum, !is_out, 0); 1998 } 1999 } 2000 2001 /** 2002 * usb_alloc_streams - allocate bulk endpoint stream IDs. 2003 * @interface: alternate setting that includes all endpoints. 2004 * @eps: array of endpoints that need streams. 2005 * @num_eps: number of endpoints in the array. 2006 * @num_streams: number of streams to allocate. 2007 * @mem_flags: flags hcd should use to allocate memory. 2008 * 2009 * Sets up a group of bulk endpoints to have @num_streams stream IDs available. 2010 * Drivers may queue multiple transfers to different stream IDs, which may 2011 * complete in a different order than they were queued. 2012 * 2013 * Return: On success, the number of allocated streams. On failure, a negative 2014 * error code. 2015 */ 2016 int usb_alloc_streams(struct usb_interface *interface, 2017 struct usb_host_endpoint **eps, unsigned int num_eps, 2018 unsigned int num_streams, gfp_t mem_flags) 2019 { 2020 struct usb_hcd *hcd; 2021 struct usb_device *dev; 2022 int i, ret; 2023 2024 dev = interface_to_usbdev(interface); 2025 hcd = bus_to_hcd(dev->bus); 2026 if (!hcd->driver->alloc_streams || !hcd->driver->free_streams) 2027 return -EINVAL; 2028 if (dev->speed < USB_SPEED_SUPER) 2029 return -EINVAL; 2030 if (dev->state < USB_STATE_CONFIGURED) 2031 return -ENODEV; 2032 2033 for (i = 0; i < num_eps; i++) { 2034 /* Streams only apply to bulk endpoints. */ 2035 if (!usb_endpoint_xfer_bulk(&eps[i]->desc)) 2036 return -EINVAL; 2037 /* Re-alloc is not allowed */ 2038 if (eps[i]->streams) 2039 return -EINVAL; 2040 } 2041 2042 ret = hcd->driver->alloc_streams(hcd, dev, eps, num_eps, 2043 num_streams, mem_flags); 2044 if (ret < 0) 2045 return ret; 2046 2047 for (i = 0; i < num_eps; i++) 2048 eps[i]->streams = ret; 2049 2050 return ret; 2051 } 2052 EXPORT_SYMBOL_GPL(usb_alloc_streams); 2053 2054 /** 2055 * usb_free_streams - free bulk endpoint stream IDs. 2056 * @interface: alternate setting that includes all endpoints. 2057 * @eps: array of endpoints to remove streams from. 2058 * @num_eps: number of endpoints in the array. 2059 * @mem_flags: flags hcd should use to allocate memory. 2060 * 2061 * Reverts a group of bulk endpoints back to not using stream IDs. 2062 * Can fail if we are given bad arguments, or HCD is broken. 2063 * 2064 * Return: 0 on success. On failure, a negative error code. 2065 */ 2066 int usb_free_streams(struct usb_interface *interface, 2067 struct usb_host_endpoint **eps, unsigned int num_eps, 2068 gfp_t mem_flags) 2069 { 2070 struct usb_hcd *hcd; 2071 struct usb_device *dev; 2072 int i, ret; 2073 2074 dev = interface_to_usbdev(interface); 2075 hcd = bus_to_hcd(dev->bus); 2076 if (dev->speed < USB_SPEED_SUPER) 2077 return -EINVAL; 2078 2079 /* Double-free is not allowed */ 2080 for (i = 0; i < num_eps; i++) 2081 if (!eps[i] || !eps[i]->streams) 2082 return -EINVAL; 2083 2084 ret = hcd->driver->free_streams(hcd, dev, eps, num_eps, mem_flags); 2085 if (ret < 0) 2086 return ret; 2087 2088 for (i = 0; i < num_eps; i++) 2089 eps[i]->streams = 0; 2090 2091 return ret; 2092 } 2093 EXPORT_SYMBOL_GPL(usb_free_streams); 2094 2095 /* Protect against drivers that try to unlink URBs after the device 2096 * is gone, by waiting until all unlinks for @udev are finished. 2097 * Since we don't currently track URBs by device, simply wait until 2098 * nothing is running in the locked region of usb_hcd_unlink_urb(). 2099 */ 2100 void usb_hcd_synchronize_unlinks(struct usb_device *udev) 2101 { 2102 spin_lock_irq(&hcd_urb_unlink_lock); 2103 spin_unlock_irq(&hcd_urb_unlink_lock); 2104 } 2105 2106 /*-------------------------------------------------------------------------*/ 2107 2108 /* called in any context */ 2109 int usb_hcd_get_frame_number (struct usb_device *udev) 2110 { 2111 struct usb_hcd *hcd = bus_to_hcd(udev->bus); 2112 2113 if (!HCD_RH_RUNNING(hcd)) 2114 return -ESHUTDOWN; 2115 return hcd->driver->get_frame_number (hcd); 2116 } 2117 2118 /*-------------------------------------------------------------------------*/ 2119 #ifdef CONFIG_USB_HCD_TEST_MODE 2120 2121 static void usb_ehset_completion(struct urb *urb) 2122 { 2123 struct completion *done = urb->context; 2124 2125 complete(done); 2126 } 2127 /* 2128 * Allocate and initialize a control URB. This request will be used by the 2129 * EHSET SINGLE_STEP_SET_FEATURE test in which the DATA and STATUS stages 2130 * of the GetDescriptor request are sent 15 seconds after the SETUP stage. 2131 * Return NULL if failed. 2132 */ 2133 static struct urb *request_single_step_set_feature_urb( 2134 struct usb_device *udev, 2135 void *dr, 2136 void *buf, 2137 struct completion *done) 2138 { 2139 struct urb *urb; 2140 struct usb_hcd *hcd = bus_to_hcd(udev->bus); 2141 2142 urb = usb_alloc_urb(0, GFP_KERNEL); 2143 if (!urb) 2144 return NULL; 2145 2146 urb->pipe = usb_rcvctrlpipe(udev, 0); 2147 2148 urb->ep = &udev->ep0; 2149 urb->dev = udev; 2150 urb->setup_packet = (void *)dr; 2151 urb->transfer_buffer = buf; 2152 urb->transfer_buffer_length = USB_DT_DEVICE_SIZE; 2153 urb->complete = usb_ehset_completion; 2154 urb->status = -EINPROGRESS; 2155 urb->actual_length = 0; 2156 urb->transfer_flags = URB_DIR_IN; 2157 usb_get_urb(urb); 2158 atomic_inc(&urb->use_count); 2159 atomic_inc(&urb->dev->urbnum); 2160 if (map_urb_for_dma(hcd, urb, GFP_KERNEL)) { 2161 usb_put_urb(urb); 2162 usb_free_urb(urb); 2163 return NULL; 2164 } 2165 2166 urb->context = done; 2167 return urb; 2168 } 2169 2170 int ehset_single_step_set_feature(struct usb_hcd *hcd, int port) 2171 { 2172 int retval = -ENOMEM; 2173 struct usb_ctrlrequest *dr; 2174 struct urb *urb; 2175 struct usb_device *udev; 2176 struct usb_device_descriptor *buf; 2177 DECLARE_COMPLETION_ONSTACK(done); 2178 2179 /* Obtain udev of the rhub's child port */ 2180 udev = usb_hub_find_child(hcd->self.root_hub, port); 2181 if (!udev) { 2182 dev_err(hcd->self.controller, "No device attached to the RootHub\n"); 2183 return -ENODEV; 2184 } 2185 buf = kmalloc(USB_DT_DEVICE_SIZE, GFP_KERNEL); 2186 if (!buf) 2187 return -ENOMEM; 2188 2189 dr = kmalloc(sizeof(struct usb_ctrlrequest), GFP_KERNEL); 2190 if (!dr) { 2191 kfree(buf); 2192 return -ENOMEM; 2193 } 2194 2195 /* Fill Setup packet for GetDescriptor */ 2196 dr->bRequestType = USB_DIR_IN; 2197 dr->bRequest = USB_REQ_GET_DESCRIPTOR; 2198 dr->wValue = cpu_to_le16(USB_DT_DEVICE << 8); 2199 dr->wIndex = 0; 2200 dr->wLength = cpu_to_le16(USB_DT_DEVICE_SIZE); 2201 urb = request_single_step_set_feature_urb(udev, dr, buf, &done); 2202 if (!urb) 2203 goto cleanup; 2204 2205 /* Submit just the SETUP stage */ 2206 retval = hcd->driver->submit_single_step_set_feature(hcd, urb, 1); 2207 if (retval) 2208 goto out1; 2209 if (!wait_for_completion_timeout(&done, msecs_to_jiffies(2000))) { 2210 usb_kill_urb(urb); 2211 retval = -ETIMEDOUT; 2212 dev_err(hcd->self.controller, 2213 "%s SETUP stage timed out on ep0\n", __func__); 2214 goto out1; 2215 } 2216 msleep(15 * 1000); 2217 2218 /* Complete remaining DATA and STATUS stages using the same URB */ 2219 urb->status = -EINPROGRESS; 2220 usb_get_urb(urb); 2221 atomic_inc(&urb->use_count); 2222 atomic_inc(&urb->dev->urbnum); 2223 retval = hcd->driver->submit_single_step_set_feature(hcd, urb, 0); 2224 if (!retval && !wait_for_completion_timeout(&done, 2225 msecs_to_jiffies(2000))) { 2226 usb_kill_urb(urb); 2227 retval = -ETIMEDOUT; 2228 dev_err(hcd->self.controller, 2229 "%s IN stage timed out on ep0\n", __func__); 2230 } 2231 out1: 2232 usb_free_urb(urb); 2233 cleanup: 2234 kfree(dr); 2235 kfree(buf); 2236 return retval; 2237 } 2238 EXPORT_SYMBOL_GPL(ehset_single_step_set_feature); 2239 #endif /* CONFIG_USB_HCD_TEST_MODE */ 2240 2241 /*-------------------------------------------------------------------------*/ 2242 2243 #ifdef CONFIG_PM 2244 2245 int hcd_bus_suspend(struct usb_device *rhdev, pm_message_t msg) 2246 { 2247 struct usb_hcd *hcd = bus_to_hcd(rhdev->bus); 2248 int status; 2249 int old_state = hcd->state; 2250 2251 dev_dbg(&rhdev->dev, "bus %ssuspend, wakeup %d\n", 2252 (PMSG_IS_AUTO(msg) ? "auto-" : ""), 2253 rhdev->do_remote_wakeup); 2254 if (HCD_DEAD(hcd)) { 2255 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "suspend"); 2256 return 0; 2257 } 2258 2259 if (!hcd->driver->bus_suspend) { 2260 status = -ENOENT; 2261 } else { 2262 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2263 hcd->state = HC_STATE_QUIESCING; 2264 status = hcd->driver->bus_suspend(hcd); 2265 } 2266 if (status == 0) { 2267 usb_set_device_state(rhdev, USB_STATE_SUSPENDED); 2268 hcd->state = HC_STATE_SUSPENDED; 2269 2270 if (!PMSG_IS_AUTO(msg)) 2271 usb_phy_roothub_suspend(hcd->self.sysdev, 2272 hcd->phy_roothub); 2273 2274 /* Did we race with a root-hub wakeup event? */ 2275 if (rhdev->do_remote_wakeup) { 2276 char buffer[6]; 2277 2278 status = hcd->driver->hub_status_data(hcd, buffer); 2279 if (status != 0) { 2280 dev_dbg(&rhdev->dev, "suspend raced with wakeup event\n"); 2281 hcd_bus_resume(rhdev, PMSG_AUTO_RESUME); 2282 status = -EBUSY; 2283 } 2284 } 2285 } else { 2286 spin_lock_irq(&hcd_root_hub_lock); 2287 if (!HCD_DEAD(hcd)) { 2288 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2289 hcd->state = old_state; 2290 } 2291 spin_unlock_irq(&hcd_root_hub_lock); 2292 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n", 2293 "suspend", status); 2294 } 2295 return status; 2296 } 2297 2298 int hcd_bus_resume(struct usb_device *rhdev, pm_message_t msg) 2299 { 2300 struct usb_hcd *hcd = bus_to_hcd(rhdev->bus); 2301 int status; 2302 int old_state = hcd->state; 2303 2304 dev_dbg(&rhdev->dev, "usb %sresume\n", 2305 (PMSG_IS_AUTO(msg) ? "auto-" : "")); 2306 if (HCD_DEAD(hcd)) { 2307 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "resume"); 2308 return 0; 2309 } 2310 2311 if (!PMSG_IS_AUTO(msg)) { 2312 status = usb_phy_roothub_resume(hcd->self.sysdev, 2313 hcd->phy_roothub); 2314 if (status) 2315 return status; 2316 } 2317 2318 if (!hcd->driver->bus_resume) 2319 return -ENOENT; 2320 if (HCD_RH_RUNNING(hcd)) 2321 return 0; 2322 2323 hcd->state = HC_STATE_RESUMING; 2324 status = hcd->driver->bus_resume(hcd); 2325 clear_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags); 2326 if (status == 0) 2327 status = usb_phy_roothub_calibrate(hcd->phy_roothub); 2328 2329 if (status == 0) { 2330 struct usb_device *udev; 2331 int port1; 2332 2333 spin_lock_irq(&hcd_root_hub_lock); 2334 if (!HCD_DEAD(hcd)) { 2335 usb_set_device_state(rhdev, rhdev->actconfig 2336 ? USB_STATE_CONFIGURED 2337 : USB_STATE_ADDRESS); 2338 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2339 hcd->state = HC_STATE_RUNNING; 2340 } 2341 spin_unlock_irq(&hcd_root_hub_lock); 2342 2343 /* 2344 * Check whether any of the enabled ports on the root hub are 2345 * unsuspended. If they are then a TRSMRCY delay is needed 2346 * (this is what the USB-2 spec calls a "global resume"). 2347 * Otherwise we can skip the delay. 2348 */ 2349 usb_hub_for_each_child(rhdev, port1, udev) { 2350 if (udev->state != USB_STATE_NOTATTACHED && 2351 !udev->port_is_suspended) { 2352 usleep_range(10000, 11000); /* TRSMRCY */ 2353 break; 2354 } 2355 } 2356 } else { 2357 hcd->state = old_state; 2358 usb_phy_roothub_suspend(hcd->self.sysdev, hcd->phy_roothub); 2359 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n", 2360 "resume", status); 2361 if (status != -ESHUTDOWN) 2362 usb_hc_died(hcd); 2363 } 2364 return status; 2365 } 2366 2367 /* Workqueue routine for root-hub remote wakeup */ 2368 static void hcd_resume_work(struct work_struct *work) 2369 { 2370 struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work); 2371 struct usb_device *udev = hcd->self.root_hub; 2372 2373 usb_remote_wakeup(udev); 2374 } 2375 2376 /** 2377 * usb_hcd_resume_root_hub - called by HCD to resume its root hub 2378 * @hcd: host controller for this root hub 2379 * 2380 * The USB host controller calls this function when its root hub is 2381 * suspended (with the remote wakeup feature enabled) and a remote 2382 * wakeup request is received. The routine submits a workqueue request 2383 * to resume the root hub (that is, manage its downstream ports again). 2384 */ 2385 void usb_hcd_resume_root_hub (struct usb_hcd *hcd) 2386 { 2387 unsigned long flags; 2388 2389 spin_lock_irqsave (&hcd_root_hub_lock, flags); 2390 if (hcd->rh_registered) { 2391 pm_wakeup_event(&hcd->self.root_hub->dev, 0); 2392 set_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags); 2393 queue_work(pm_wq, &hcd->wakeup_work); 2394 } 2395 spin_unlock_irqrestore (&hcd_root_hub_lock, flags); 2396 } 2397 EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub); 2398 2399 #endif /* CONFIG_PM */ 2400 2401 /*-------------------------------------------------------------------------*/ 2402 2403 #ifdef CONFIG_USB_OTG 2404 2405 /** 2406 * usb_bus_start_enum - start immediate enumeration (for OTG) 2407 * @bus: the bus (must use hcd framework) 2408 * @port_num: 1-based number of port; usually bus->otg_port 2409 * Context: atomic 2410 * 2411 * Starts enumeration, with an immediate reset followed later by 2412 * hub_wq identifying and possibly configuring the device. 2413 * This is needed by OTG controller drivers, where it helps meet 2414 * HNP protocol timing requirements for starting a port reset. 2415 * 2416 * Return: 0 if successful. 2417 */ 2418 int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num) 2419 { 2420 struct usb_hcd *hcd; 2421 int status = -EOPNOTSUPP; 2422 2423 /* NOTE: since HNP can't start by grabbing the bus's address0_sem, 2424 * boards with root hubs hooked up to internal devices (instead of 2425 * just the OTG port) may need more attention to resetting... 2426 */ 2427 hcd = bus_to_hcd(bus); 2428 if (port_num && hcd->driver->start_port_reset) 2429 status = hcd->driver->start_port_reset(hcd, port_num); 2430 2431 /* allocate hub_wq shortly after (first) root port reset finishes; 2432 * it may issue others, until at least 50 msecs have passed. 2433 */ 2434 if (status == 0) 2435 mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10)); 2436 return status; 2437 } 2438 EXPORT_SYMBOL_GPL(usb_bus_start_enum); 2439 2440 #endif 2441 2442 /*-------------------------------------------------------------------------*/ 2443 2444 /** 2445 * usb_hcd_irq - hook IRQs to HCD framework (bus glue) 2446 * @irq: the IRQ being raised 2447 * @__hcd: pointer to the HCD whose IRQ is being signaled 2448 * 2449 * If the controller isn't HALTed, calls the driver's irq handler. 2450 * Checks whether the controller is now dead. 2451 * 2452 * Return: %IRQ_HANDLED if the IRQ was handled. %IRQ_NONE otherwise. 2453 */ 2454 irqreturn_t usb_hcd_irq (int irq, void *__hcd) 2455 { 2456 struct usb_hcd *hcd = __hcd; 2457 irqreturn_t rc; 2458 2459 if (unlikely(HCD_DEAD(hcd) || !HCD_HW_ACCESSIBLE(hcd))) 2460 rc = IRQ_NONE; 2461 else if (hcd->driver->irq(hcd) == IRQ_NONE) 2462 rc = IRQ_NONE; 2463 else 2464 rc = IRQ_HANDLED; 2465 2466 return rc; 2467 } 2468 EXPORT_SYMBOL_GPL(usb_hcd_irq); 2469 2470 /*-------------------------------------------------------------------------*/ 2471 2472 /* Workqueue routine for when the root-hub has died. */ 2473 static void hcd_died_work(struct work_struct *work) 2474 { 2475 struct usb_hcd *hcd = container_of(work, struct usb_hcd, died_work); 2476 static char *env[] = { 2477 "ERROR=DEAD", 2478 NULL 2479 }; 2480 2481 /* Notify user space that the host controller has died */ 2482 kobject_uevent_env(&hcd->self.root_hub->dev.kobj, KOBJ_OFFLINE, env); 2483 } 2484 2485 /** 2486 * usb_hc_died - report abnormal shutdown of a host controller (bus glue) 2487 * @hcd: pointer to the HCD representing the controller 2488 * 2489 * This is called by bus glue to report a USB host controller that died 2490 * while operations may still have been pending. It's called automatically 2491 * by the PCI glue, so only glue for non-PCI busses should need to call it. 2492 * 2493 * Only call this function with the primary HCD. 2494 */ 2495 void usb_hc_died (struct usb_hcd *hcd) 2496 { 2497 unsigned long flags; 2498 2499 dev_err (hcd->self.controller, "HC died; cleaning up\n"); 2500 2501 spin_lock_irqsave (&hcd_root_hub_lock, flags); 2502 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2503 set_bit(HCD_FLAG_DEAD, &hcd->flags); 2504 if (hcd->rh_registered) { 2505 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2506 2507 /* make hub_wq clean up old urbs and devices */ 2508 usb_set_device_state (hcd->self.root_hub, 2509 USB_STATE_NOTATTACHED); 2510 usb_kick_hub_wq(hcd->self.root_hub); 2511 } 2512 if (usb_hcd_is_primary_hcd(hcd) && hcd->shared_hcd) { 2513 hcd = hcd->shared_hcd; 2514 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2515 set_bit(HCD_FLAG_DEAD, &hcd->flags); 2516 if (hcd->rh_registered) { 2517 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2518 2519 /* make hub_wq clean up old urbs and devices */ 2520 usb_set_device_state(hcd->self.root_hub, 2521 USB_STATE_NOTATTACHED); 2522 usb_kick_hub_wq(hcd->self.root_hub); 2523 } 2524 } 2525 2526 /* Handle the case where this function gets called with a shared HCD */ 2527 if (usb_hcd_is_primary_hcd(hcd)) 2528 schedule_work(&hcd->died_work); 2529 else 2530 schedule_work(&hcd->primary_hcd->died_work); 2531 2532 spin_unlock_irqrestore (&hcd_root_hub_lock, flags); 2533 /* Make sure that the other roothub is also deallocated. */ 2534 } 2535 EXPORT_SYMBOL_GPL (usb_hc_died); 2536 2537 /*-------------------------------------------------------------------------*/ 2538 2539 static void init_giveback_urb_bh(struct giveback_urb_bh *bh) 2540 { 2541 2542 spin_lock_init(&bh->lock); 2543 INIT_LIST_HEAD(&bh->head); 2544 INIT_WORK(&bh->bh, usb_giveback_urb_bh); 2545 } 2546 2547 struct usb_hcd *__usb_create_hcd(const struct hc_driver *driver, 2548 struct device *sysdev, struct device *dev, const char *bus_name, 2549 struct usb_hcd *primary_hcd) 2550 { 2551 struct usb_hcd *hcd; 2552 2553 hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL); 2554 if (!hcd) 2555 return NULL; 2556 if (primary_hcd == NULL) { 2557 hcd->address0_mutex = kmalloc(sizeof(*hcd->address0_mutex), 2558 GFP_KERNEL); 2559 if (!hcd->address0_mutex) { 2560 kfree(hcd); 2561 dev_dbg(dev, "hcd address0 mutex alloc failed\n"); 2562 return NULL; 2563 } 2564 mutex_init(hcd->address0_mutex); 2565 hcd->bandwidth_mutex = kmalloc(sizeof(*hcd->bandwidth_mutex), 2566 GFP_KERNEL); 2567 if (!hcd->bandwidth_mutex) { 2568 kfree(hcd->address0_mutex); 2569 kfree(hcd); 2570 dev_dbg(dev, "hcd bandwidth mutex alloc failed\n"); 2571 return NULL; 2572 } 2573 mutex_init(hcd->bandwidth_mutex); 2574 dev_set_drvdata(dev, hcd); 2575 } else { 2576 mutex_lock(&usb_port_peer_mutex); 2577 hcd->address0_mutex = primary_hcd->address0_mutex; 2578 hcd->bandwidth_mutex = primary_hcd->bandwidth_mutex; 2579 hcd->primary_hcd = primary_hcd; 2580 primary_hcd->primary_hcd = primary_hcd; 2581 hcd->shared_hcd = primary_hcd; 2582 primary_hcd->shared_hcd = hcd; 2583 mutex_unlock(&usb_port_peer_mutex); 2584 } 2585 2586 kref_init(&hcd->kref); 2587 2588 usb_bus_init(&hcd->self); 2589 hcd->self.controller = dev; 2590 hcd->self.sysdev = sysdev; 2591 hcd->self.bus_name = bus_name; 2592 2593 timer_setup(&hcd->rh_timer, rh_timer_func, 0); 2594 #ifdef CONFIG_PM 2595 INIT_WORK(&hcd->wakeup_work, hcd_resume_work); 2596 #endif 2597 2598 INIT_WORK(&hcd->died_work, hcd_died_work); 2599 2600 hcd->driver = driver; 2601 hcd->speed = driver->flags & HCD_MASK; 2602 hcd->product_desc = (driver->product_desc) ? driver->product_desc : 2603 "USB Host Controller"; 2604 return hcd; 2605 } 2606 EXPORT_SYMBOL_GPL(__usb_create_hcd); 2607 2608 /** 2609 * usb_create_shared_hcd - create and initialize an HCD structure 2610 * @driver: HC driver that will use this hcd 2611 * @dev: device for this HC, stored in hcd->self.controller 2612 * @bus_name: value to store in hcd->self.bus_name 2613 * @primary_hcd: a pointer to the usb_hcd structure that is sharing the 2614 * PCI device. Only allocate certain resources for the primary HCD 2615 * 2616 * Context: task context, might sleep. 2617 * 2618 * Allocate a struct usb_hcd, with extra space at the end for the 2619 * HC driver's private data. Initialize the generic members of the 2620 * hcd structure. 2621 * 2622 * Return: On success, a pointer to the created and initialized HCD structure. 2623 * On failure (e.g. if memory is unavailable), %NULL. 2624 */ 2625 struct usb_hcd *usb_create_shared_hcd(const struct hc_driver *driver, 2626 struct device *dev, const char *bus_name, 2627 struct usb_hcd *primary_hcd) 2628 { 2629 return __usb_create_hcd(driver, dev, dev, bus_name, primary_hcd); 2630 } 2631 EXPORT_SYMBOL_GPL(usb_create_shared_hcd); 2632 2633 /** 2634 * usb_create_hcd - create and initialize an HCD structure 2635 * @driver: HC driver that will use this hcd 2636 * @dev: device for this HC, stored in hcd->self.controller 2637 * @bus_name: value to store in hcd->self.bus_name 2638 * 2639 * Context: task context, might sleep. 2640 * 2641 * Allocate a struct usb_hcd, with extra space at the end for the 2642 * HC driver's private data. Initialize the generic members of the 2643 * hcd structure. 2644 * 2645 * Return: On success, a pointer to the created and initialized HCD 2646 * structure. On failure (e.g. if memory is unavailable), %NULL. 2647 */ 2648 struct usb_hcd *usb_create_hcd(const struct hc_driver *driver, 2649 struct device *dev, const char *bus_name) 2650 { 2651 return __usb_create_hcd(driver, dev, dev, bus_name, NULL); 2652 } 2653 EXPORT_SYMBOL_GPL(usb_create_hcd); 2654 2655 /* 2656 * Roothubs that share one PCI device must also share the bandwidth mutex. 2657 * Don't deallocate the bandwidth_mutex until the last shared usb_hcd is 2658 * deallocated. 2659 * 2660 * Make sure to deallocate the bandwidth_mutex only when the last HCD is 2661 * freed. When hcd_release() is called for either hcd in a peer set, 2662 * invalidate the peer's ->shared_hcd and ->primary_hcd pointers. 2663 */ 2664 static void hcd_release(struct kref *kref) 2665 { 2666 struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref); 2667 2668 mutex_lock(&usb_port_peer_mutex); 2669 if (hcd->shared_hcd) { 2670 struct usb_hcd *peer = hcd->shared_hcd; 2671 2672 peer->shared_hcd = NULL; 2673 peer->primary_hcd = NULL; 2674 } else { 2675 kfree(hcd->address0_mutex); 2676 kfree(hcd->bandwidth_mutex); 2677 } 2678 mutex_unlock(&usb_port_peer_mutex); 2679 kfree(hcd); 2680 } 2681 2682 struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd) 2683 { 2684 if (hcd) 2685 kref_get (&hcd->kref); 2686 return hcd; 2687 } 2688 EXPORT_SYMBOL_GPL(usb_get_hcd); 2689 2690 void usb_put_hcd (struct usb_hcd *hcd) 2691 { 2692 if (hcd) 2693 kref_put (&hcd->kref, hcd_release); 2694 } 2695 EXPORT_SYMBOL_GPL(usb_put_hcd); 2696 2697 int usb_hcd_is_primary_hcd(struct usb_hcd *hcd) 2698 { 2699 if (!hcd->primary_hcd) 2700 return 1; 2701 return hcd == hcd->primary_hcd; 2702 } 2703 EXPORT_SYMBOL_GPL(usb_hcd_is_primary_hcd); 2704 2705 int usb_hcd_find_raw_port_number(struct usb_hcd *hcd, int port1) 2706 { 2707 if (!hcd->driver->find_raw_port_number) 2708 return port1; 2709 2710 return hcd->driver->find_raw_port_number(hcd, port1); 2711 } 2712 2713 static int usb_hcd_request_irqs(struct usb_hcd *hcd, 2714 unsigned int irqnum, unsigned long irqflags) 2715 { 2716 int retval; 2717 2718 if (hcd->driver->irq) { 2719 2720 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d", 2721 hcd->driver->description, hcd->self.busnum); 2722 retval = request_irq(irqnum, &usb_hcd_irq, irqflags, 2723 hcd->irq_descr, hcd); 2724 if (retval != 0) { 2725 dev_err(hcd->self.controller, 2726 "request interrupt %d failed\n", 2727 irqnum); 2728 return retval; 2729 } 2730 hcd->irq = irqnum; 2731 dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum, 2732 (hcd->driver->flags & HCD_MEMORY) ? 2733 "io mem" : "io port", 2734 (unsigned long long)hcd->rsrc_start); 2735 } else { 2736 hcd->irq = 0; 2737 if (hcd->rsrc_start) 2738 dev_info(hcd->self.controller, "%s 0x%08llx\n", 2739 (hcd->driver->flags & HCD_MEMORY) ? 2740 "io mem" : "io port", 2741 (unsigned long long)hcd->rsrc_start); 2742 } 2743 return 0; 2744 } 2745 2746 /* 2747 * Before we free this root hub, flush in-flight peering attempts 2748 * and disable peer lookups 2749 */ 2750 static void usb_put_invalidate_rhdev(struct usb_hcd *hcd) 2751 { 2752 struct usb_device *rhdev; 2753 2754 mutex_lock(&usb_port_peer_mutex); 2755 rhdev = hcd->self.root_hub; 2756 hcd->self.root_hub = NULL; 2757 mutex_unlock(&usb_port_peer_mutex); 2758 usb_put_dev(rhdev); 2759 } 2760 2761 /** 2762 * usb_stop_hcd - Halt the HCD 2763 * @hcd: the usb_hcd that has to be halted 2764 * 2765 * Stop the root-hub polling timer and invoke the HCD's ->stop callback. 2766 */ 2767 static void usb_stop_hcd(struct usb_hcd *hcd) 2768 { 2769 hcd->rh_pollable = 0; 2770 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2771 del_timer_sync(&hcd->rh_timer); 2772 2773 hcd->driver->stop(hcd); 2774 hcd->state = HC_STATE_HALT; 2775 2776 /* In case the HCD restarted the timer, stop it again. */ 2777 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2778 del_timer_sync(&hcd->rh_timer); 2779 } 2780 2781 /** 2782 * usb_add_hcd - finish generic HCD structure initialization and register 2783 * @hcd: the usb_hcd structure to initialize 2784 * @irqnum: Interrupt line to allocate 2785 * @irqflags: Interrupt type flags 2786 * 2787 * Finish the remaining parts of generic HCD initialization: allocate the 2788 * buffers of consistent memory, register the bus, request the IRQ line, 2789 * and call the driver's reset() and start() routines. 2790 */ 2791 int usb_add_hcd(struct usb_hcd *hcd, 2792 unsigned int irqnum, unsigned long irqflags) 2793 { 2794 int retval; 2795 struct usb_device *rhdev; 2796 struct usb_hcd *shared_hcd; 2797 2798 if (!hcd->skip_phy_initialization) { 2799 if (usb_hcd_is_primary_hcd(hcd)) { 2800 hcd->phy_roothub = usb_phy_roothub_alloc(hcd->self.sysdev); 2801 if (IS_ERR(hcd->phy_roothub)) 2802 return PTR_ERR(hcd->phy_roothub); 2803 } else { 2804 hcd->phy_roothub = usb_phy_roothub_alloc_usb3_phy(hcd->self.sysdev); 2805 if (IS_ERR(hcd->phy_roothub)) 2806 return PTR_ERR(hcd->phy_roothub); 2807 } 2808 2809 retval = usb_phy_roothub_init(hcd->phy_roothub); 2810 if (retval) 2811 return retval; 2812 2813 retval = usb_phy_roothub_set_mode(hcd->phy_roothub, 2814 PHY_MODE_USB_HOST_SS); 2815 if (retval) 2816 retval = usb_phy_roothub_set_mode(hcd->phy_roothub, 2817 PHY_MODE_USB_HOST); 2818 if (retval) 2819 goto err_usb_phy_roothub_power_on; 2820 2821 retval = usb_phy_roothub_power_on(hcd->phy_roothub); 2822 if (retval) 2823 goto err_usb_phy_roothub_power_on; 2824 } 2825 2826 dev_info(hcd->self.controller, "%s\n", hcd->product_desc); 2827 2828 switch (authorized_default) { 2829 case USB_AUTHORIZE_NONE: 2830 hcd->dev_policy = USB_DEVICE_AUTHORIZE_NONE; 2831 break; 2832 2833 case USB_AUTHORIZE_INTERNAL: 2834 hcd->dev_policy = USB_DEVICE_AUTHORIZE_INTERNAL; 2835 break; 2836 2837 case USB_AUTHORIZE_ALL: 2838 case USB_AUTHORIZE_WIRED: 2839 default: 2840 hcd->dev_policy = USB_DEVICE_AUTHORIZE_ALL; 2841 break; 2842 } 2843 2844 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 2845 2846 /* per default all interfaces are authorized */ 2847 set_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags); 2848 2849 /* HC is in reset state, but accessible. Now do the one-time init, 2850 * bottom up so that hcds can customize the root hubs before hub_wq 2851 * starts talking to them. (Note, bus id is assigned early too.) 2852 */ 2853 retval = hcd_buffer_create(hcd); 2854 if (retval != 0) { 2855 dev_dbg(hcd->self.sysdev, "pool alloc failed\n"); 2856 goto err_create_buf; 2857 } 2858 2859 retval = usb_register_bus(&hcd->self); 2860 if (retval < 0) 2861 goto err_register_bus; 2862 2863 rhdev = usb_alloc_dev(NULL, &hcd->self, 0); 2864 if (rhdev == NULL) { 2865 dev_err(hcd->self.sysdev, "unable to allocate root hub\n"); 2866 retval = -ENOMEM; 2867 goto err_allocate_root_hub; 2868 } 2869 mutex_lock(&usb_port_peer_mutex); 2870 hcd->self.root_hub = rhdev; 2871 mutex_unlock(&usb_port_peer_mutex); 2872 2873 rhdev->rx_lanes = 1; 2874 rhdev->tx_lanes = 1; 2875 rhdev->ssp_rate = USB_SSP_GEN_UNKNOWN; 2876 2877 switch (hcd->speed) { 2878 case HCD_USB11: 2879 rhdev->speed = USB_SPEED_FULL; 2880 break; 2881 case HCD_USB2: 2882 rhdev->speed = USB_SPEED_HIGH; 2883 break; 2884 case HCD_USB3: 2885 rhdev->speed = USB_SPEED_SUPER; 2886 break; 2887 case HCD_USB32: 2888 rhdev->rx_lanes = 2; 2889 rhdev->tx_lanes = 2; 2890 rhdev->ssp_rate = USB_SSP_GEN_2x2; 2891 rhdev->speed = USB_SPEED_SUPER_PLUS; 2892 break; 2893 case HCD_USB31: 2894 rhdev->ssp_rate = USB_SSP_GEN_2x1; 2895 rhdev->speed = USB_SPEED_SUPER_PLUS; 2896 break; 2897 default: 2898 retval = -EINVAL; 2899 goto err_set_rh_speed; 2900 } 2901 2902 /* wakeup flag init defaults to "everything works" for root hubs, 2903 * but drivers can override it in reset() if needed, along with 2904 * recording the overall controller's system wakeup capability. 2905 */ 2906 device_set_wakeup_capable(&rhdev->dev, 1); 2907 2908 /* HCD_FLAG_RH_RUNNING doesn't matter until the root hub is 2909 * registered. But since the controller can die at any time, 2910 * let's initialize the flag before touching the hardware. 2911 */ 2912 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2913 2914 /* "reset" is misnamed; its role is now one-time init. the controller 2915 * should already have been reset (and boot firmware kicked off etc). 2916 */ 2917 if (hcd->driver->reset) { 2918 retval = hcd->driver->reset(hcd); 2919 if (retval < 0) { 2920 dev_err(hcd->self.controller, "can't setup: %d\n", 2921 retval); 2922 goto err_hcd_driver_setup; 2923 } 2924 } 2925 hcd->rh_pollable = 1; 2926 2927 retval = usb_phy_roothub_calibrate(hcd->phy_roothub); 2928 if (retval) 2929 goto err_hcd_driver_setup; 2930 2931 /* NOTE: root hub and controller capabilities may not be the same */ 2932 if (device_can_wakeup(hcd->self.controller) 2933 && device_can_wakeup(&hcd->self.root_hub->dev)) 2934 dev_dbg(hcd->self.controller, "supports USB remote wakeup\n"); 2935 2936 /* initialize BHs */ 2937 init_giveback_urb_bh(&hcd->high_prio_bh); 2938 hcd->high_prio_bh.high_prio = true; 2939 init_giveback_urb_bh(&hcd->low_prio_bh); 2940 2941 /* enable irqs just before we start the controller, 2942 * if the BIOS provides legacy PCI irqs. 2943 */ 2944 if (usb_hcd_is_primary_hcd(hcd) && irqnum) { 2945 retval = usb_hcd_request_irqs(hcd, irqnum, irqflags); 2946 if (retval) 2947 goto err_request_irq; 2948 } 2949 2950 hcd->state = HC_STATE_RUNNING; 2951 retval = hcd->driver->start(hcd); 2952 if (retval < 0) { 2953 dev_err(hcd->self.controller, "startup error %d\n", retval); 2954 goto err_hcd_driver_start; 2955 } 2956 2957 /* starting here, usbcore will pay attention to the shared HCD roothub */ 2958 shared_hcd = hcd->shared_hcd; 2959 if (!usb_hcd_is_primary_hcd(hcd) && shared_hcd && HCD_DEFER_RH_REGISTER(shared_hcd)) { 2960 retval = register_root_hub(shared_hcd); 2961 if (retval != 0) 2962 goto err_register_root_hub; 2963 2964 if (shared_hcd->uses_new_polling && HCD_POLL_RH(shared_hcd)) 2965 usb_hcd_poll_rh_status(shared_hcd); 2966 } 2967 2968 /* starting here, usbcore will pay attention to this root hub */ 2969 if (!HCD_DEFER_RH_REGISTER(hcd)) { 2970 retval = register_root_hub(hcd); 2971 if (retval != 0) 2972 goto err_register_root_hub; 2973 2974 if (hcd->uses_new_polling && HCD_POLL_RH(hcd)) 2975 usb_hcd_poll_rh_status(hcd); 2976 } 2977 2978 return retval; 2979 2980 err_register_root_hub: 2981 usb_stop_hcd(hcd); 2982 err_hcd_driver_start: 2983 if (usb_hcd_is_primary_hcd(hcd) && hcd->irq > 0) 2984 free_irq(irqnum, hcd); 2985 err_request_irq: 2986 err_hcd_driver_setup: 2987 err_set_rh_speed: 2988 usb_put_invalidate_rhdev(hcd); 2989 err_allocate_root_hub: 2990 usb_deregister_bus(&hcd->self); 2991 err_register_bus: 2992 hcd_buffer_destroy(hcd); 2993 err_create_buf: 2994 usb_phy_roothub_power_off(hcd->phy_roothub); 2995 err_usb_phy_roothub_power_on: 2996 usb_phy_roothub_exit(hcd->phy_roothub); 2997 2998 return retval; 2999 } 3000 EXPORT_SYMBOL_GPL(usb_add_hcd); 3001 3002 /** 3003 * usb_remove_hcd - shutdown processing for generic HCDs 3004 * @hcd: the usb_hcd structure to remove 3005 * 3006 * Context: task context, might sleep. 3007 * 3008 * Disconnects the root hub, then reverses the effects of usb_add_hcd(), 3009 * invoking the HCD's stop() method. 3010 */ 3011 void usb_remove_hcd(struct usb_hcd *hcd) 3012 { 3013 struct usb_device *rhdev; 3014 bool rh_registered; 3015 3016 if (!hcd) { 3017 pr_debug("%s: hcd is NULL\n", __func__); 3018 return; 3019 } 3020 rhdev = hcd->self.root_hub; 3021 3022 dev_info(hcd->self.controller, "remove, state %x\n", hcd->state); 3023 3024 usb_get_dev(rhdev); 3025 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 3026 if (HC_IS_RUNNING (hcd->state)) 3027 hcd->state = HC_STATE_QUIESCING; 3028 3029 dev_dbg(hcd->self.controller, "roothub graceful disconnect\n"); 3030 spin_lock_irq (&hcd_root_hub_lock); 3031 rh_registered = hcd->rh_registered; 3032 hcd->rh_registered = 0; 3033 spin_unlock_irq (&hcd_root_hub_lock); 3034 3035 #ifdef CONFIG_PM 3036 cancel_work_sync(&hcd->wakeup_work); 3037 #endif 3038 cancel_work_sync(&hcd->died_work); 3039 3040 mutex_lock(&usb_bus_idr_lock); 3041 if (rh_registered) 3042 usb_disconnect(&rhdev); /* Sets rhdev to NULL */ 3043 mutex_unlock(&usb_bus_idr_lock); 3044 3045 /* 3046 * flush_work() isn't needed here because: 3047 * - driver's disconnect() called from usb_disconnect() should 3048 * make sure its URBs are completed during the disconnect() 3049 * callback 3050 * 3051 * - it is too late to run complete() here since driver may have 3052 * been removed already now 3053 */ 3054 3055 /* Prevent any more root-hub status calls from the timer. 3056 * The HCD might still restart the timer (if a port status change 3057 * interrupt occurs), but usb_hcd_poll_rh_status() won't invoke 3058 * the hub_status_data() callback. 3059 */ 3060 usb_stop_hcd(hcd); 3061 3062 if (usb_hcd_is_primary_hcd(hcd)) { 3063 if (hcd->irq > 0) 3064 free_irq(hcd->irq, hcd); 3065 } 3066 3067 usb_deregister_bus(&hcd->self); 3068 hcd_buffer_destroy(hcd); 3069 3070 usb_phy_roothub_power_off(hcd->phy_roothub); 3071 usb_phy_roothub_exit(hcd->phy_roothub); 3072 3073 usb_put_invalidate_rhdev(hcd); 3074 hcd->flags = 0; 3075 } 3076 EXPORT_SYMBOL_GPL(usb_remove_hcd); 3077 3078 void 3079 usb_hcd_platform_shutdown(struct platform_device *dev) 3080 { 3081 struct usb_hcd *hcd = platform_get_drvdata(dev); 3082 3083 /* No need for pm_runtime_put(), we're shutting down */ 3084 pm_runtime_get_sync(&dev->dev); 3085 3086 if (hcd->driver->shutdown) 3087 hcd->driver->shutdown(hcd); 3088 } 3089 EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown); 3090 3091 int usb_hcd_setup_local_mem(struct usb_hcd *hcd, phys_addr_t phys_addr, 3092 dma_addr_t dma, size_t size) 3093 { 3094 int err; 3095 void *local_mem; 3096 3097 hcd->localmem_pool = devm_gen_pool_create(hcd->self.sysdev, 4, 3098 dev_to_node(hcd->self.sysdev), 3099 dev_name(hcd->self.sysdev)); 3100 if (IS_ERR(hcd->localmem_pool)) 3101 return PTR_ERR(hcd->localmem_pool); 3102 3103 /* 3104 * if a physical SRAM address was passed, map it, otherwise 3105 * allocate system memory as a buffer. 3106 */ 3107 if (phys_addr) 3108 local_mem = devm_memremap(hcd->self.sysdev, phys_addr, 3109 size, MEMREMAP_WC); 3110 else 3111 local_mem = dmam_alloc_attrs(hcd->self.sysdev, size, &dma, 3112 GFP_KERNEL, 3113 DMA_ATTR_WRITE_COMBINE); 3114 3115 if (IS_ERR_OR_NULL(local_mem)) { 3116 if (!local_mem) 3117 return -ENOMEM; 3118 3119 return PTR_ERR(local_mem); 3120 } 3121 3122 /* 3123 * Here we pass a dma_addr_t but the arg type is a phys_addr_t. 3124 * It's not backed by system memory and thus there's no kernel mapping 3125 * for it. 3126 */ 3127 err = gen_pool_add_virt(hcd->localmem_pool, (unsigned long)local_mem, 3128 dma, size, dev_to_node(hcd->self.sysdev)); 3129 if (err < 0) { 3130 dev_err(hcd->self.sysdev, "gen_pool_add_virt failed with %d\n", 3131 err); 3132 return err; 3133 } 3134 3135 return 0; 3136 } 3137 EXPORT_SYMBOL_GPL(usb_hcd_setup_local_mem); 3138 3139 /*-------------------------------------------------------------------------*/ 3140 3141 #if IS_ENABLED(CONFIG_USB_MON) 3142 3143 const struct usb_mon_operations *mon_ops; 3144 3145 /* 3146 * The registration is unlocked. 3147 * We do it this way because we do not want to lock in hot paths. 3148 * 3149 * Notice that the code is minimally error-proof. Because usbmon needs 3150 * symbols from usbcore, usbcore gets referenced and cannot be unloaded first. 3151 */ 3152 3153 int usb_mon_register(const struct usb_mon_operations *ops) 3154 { 3155 3156 if (mon_ops) 3157 return -EBUSY; 3158 3159 mon_ops = ops; 3160 mb(); 3161 return 0; 3162 } 3163 EXPORT_SYMBOL_GPL (usb_mon_register); 3164 3165 void usb_mon_deregister (void) 3166 { 3167 3168 if (mon_ops == NULL) { 3169 printk(KERN_ERR "USB: monitor was not registered\n"); 3170 return; 3171 } 3172 mon_ops = NULL; 3173 mb(); 3174 } 3175 EXPORT_SYMBOL_GPL (usb_mon_deregister); 3176 3177 #endif /* CONFIG_USB_MON || CONFIG_USB_MON_MODULE */ 3178