1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * (C) Copyright Linus Torvalds 1999 4 * (C) Copyright Johannes Erdfelt 1999-2001 5 * (C) Copyright Andreas Gal 1999 6 * (C) Copyright Gregory P. Smith 1999 7 * (C) Copyright Deti Fliegl 1999 8 * (C) Copyright Randy Dunlap 2000 9 * (C) Copyright David Brownell 2000-2002 10 */ 11 12 #include <linux/bcd.h> 13 #include <linux/module.h> 14 #include <linux/version.h> 15 #include <linux/kernel.h> 16 #include <linux/sched/task_stack.h> 17 #include <linux/slab.h> 18 #include <linux/completion.h> 19 #include <linux/utsname.h> 20 #include <linux/mm.h> 21 #include <asm/io.h> 22 #include <linux/device.h> 23 #include <linux/dma-mapping.h> 24 #include <linux/mutex.h> 25 #include <asm/irq.h> 26 #include <asm/byteorder.h> 27 #include <asm/unaligned.h> 28 #include <linux/platform_device.h> 29 #include <linux/workqueue.h> 30 #include <linux/pm_runtime.h> 31 #include <linux/types.h> 32 33 #include <linux/phy/phy.h> 34 #include <linux/usb.h> 35 #include <linux/usb/hcd.h> 36 #include <linux/usb/phy.h> 37 #include <linux/usb/otg.h> 38 39 #include "usb.h" 40 41 42 /*-------------------------------------------------------------------------*/ 43 44 /* 45 * USB Host Controller Driver framework 46 * 47 * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing 48 * HCD-specific behaviors/bugs. 49 * 50 * This does error checks, tracks devices and urbs, and delegates to a 51 * "hc_driver" only for code (and data) that really needs to know about 52 * hardware differences. That includes root hub registers, i/o queues, 53 * and so on ... but as little else as possible. 54 * 55 * Shared code includes most of the "root hub" code (these are emulated, 56 * though each HC's hardware works differently) and PCI glue, plus request 57 * tracking overhead. The HCD code should only block on spinlocks or on 58 * hardware handshaking; blocking on software events (such as other kernel 59 * threads releasing resources, or completing actions) is all generic. 60 * 61 * Happens the USB 2.0 spec says this would be invisible inside the "USBD", 62 * and includes mostly a "HCDI" (HCD Interface) along with some APIs used 63 * only by the hub driver ... and that neither should be seen or used by 64 * usb client device drivers. 65 * 66 * Contributors of ideas or unattributed patches include: David Brownell, 67 * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ... 68 * 69 * HISTORY: 70 * 2002-02-21 Pull in most of the usb_bus support from usb.c; some 71 * associated cleanup. "usb_hcd" still != "usb_bus". 72 * 2001-12-12 Initial patch version for Linux 2.5.1 kernel. 73 */ 74 75 /*-------------------------------------------------------------------------*/ 76 77 /* Keep track of which host controller drivers are loaded */ 78 unsigned long usb_hcds_loaded; 79 EXPORT_SYMBOL_GPL(usb_hcds_loaded); 80 81 /* host controllers we manage */ 82 DEFINE_IDR (usb_bus_idr); 83 EXPORT_SYMBOL_GPL (usb_bus_idr); 84 85 /* used when allocating bus numbers */ 86 #define USB_MAXBUS 64 87 88 /* used when updating list of hcds */ 89 DEFINE_MUTEX(usb_bus_idr_lock); /* exported only for usbfs */ 90 EXPORT_SYMBOL_GPL (usb_bus_idr_lock); 91 92 /* used for controlling access to virtual root hubs */ 93 static DEFINE_SPINLOCK(hcd_root_hub_lock); 94 95 /* used when updating an endpoint's URB list */ 96 static DEFINE_SPINLOCK(hcd_urb_list_lock); 97 98 /* used to protect against unlinking URBs after the device is gone */ 99 static DEFINE_SPINLOCK(hcd_urb_unlink_lock); 100 101 /* wait queue for synchronous unlinks */ 102 DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue); 103 104 static inline int is_root_hub(struct usb_device *udev) 105 { 106 return (udev->parent == NULL); 107 } 108 109 /*-------------------------------------------------------------------------*/ 110 111 /* 112 * Sharable chunks of root hub code. 113 */ 114 115 /*-------------------------------------------------------------------------*/ 116 #define KERNEL_REL bin2bcd(((LINUX_VERSION_CODE >> 16) & 0x0ff)) 117 #define KERNEL_VER bin2bcd(((LINUX_VERSION_CODE >> 8) & 0x0ff)) 118 119 /* usb 3.1 root hub device descriptor */ 120 static const u8 usb31_rh_dev_descriptor[18] = { 121 0x12, /* __u8 bLength; */ 122 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */ 123 0x10, 0x03, /* __le16 bcdUSB; v3.1 */ 124 125 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */ 126 0x00, /* __u8 bDeviceSubClass; */ 127 0x03, /* __u8 bDeviceProtocol; USB 3 hub */ 128 0x09, /* __u8 bMaxPacketSize0; 2^9 = 512 Bytes */ 129 130 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */ 131 0x03, 0x00, /* __le16 idProduct; device 0x0003 */ 132 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */ 133 134 0x03, /* __u8 iManufacturer; */ 135 0x02, /* __u8 iProduct; */ 136 0x01, /* __u8 iSerialNumber; */ 137 0x01 /* __u8 bNumConfigurations; */ 138 }; 139 140 /* usb 3.0 root hub device descriptor */ 141 static const u8 usb3_rh_dev_descriptor[18] = { 142 0x12, /* __u8 bLength; */ 143 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */ 144 0x00, 0x03, /* __le16 bcdUSB; v3.0 */ 145 146 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */ 147 0x00, /* __u8 bDeviceSubClass; */ 148 0x03, /* __u8 bDeviceProtocol; USB 3.0 hub */ 149 0x09, /* __u8 bMaxPacketSize0; 2^9 = 512 Bytes */ 150 151 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */ 152 0x03, 0x00, /* __le16 idProduct; device 0x0003 */ 153 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */ 154 155 0x03, /* __u8 iManufacturer; */ 156 0x02, /* __u8 iProduct; */ 157 0x01, /* __u8 iSerialNumber; */ 158 0x01 /* __u8 bNumConfigurations; */ 159 }; 160 161 /* usb 2.5 (wireless USB 1.0) root hub device descriptor */ 162 static const u8 usb25_rh_dev_descriptor[18] = { 163 0x12, /* __u8 bLength; */ 164 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */ 165 0x50, 0x02, /* __le16 bcdUSB; v2.5 */ 166 167 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */ 168 0x00, /* __u8 bDeviceSubClass; */ 169 0x00, /* __u8 bDeviceProtocol; [ usb 2.0 no TT ] */ 170 0xFF, /* __u8 bMaxPacketSize0; always 0xFF (WUSB Spec 7.4.1). */ 171 172 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */ 173 0x02, 0x00, /* __le16 idProduct; device 0x0002 */ 174 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */ 175 176 0x03, /* __u8 iManufacturer; */ 177 0x02, /* __u8 iProduct; */ 178 0x01, /* __u8 iSerialNumber; */ 179 0x01 /* __u8 bNumConfigurations; */ 180 }; 181 182 /* usb 2.0 root hub device descriptor */ 183 static const u8 usb2_rh_dev_descriptor[18] = { 184 0x12, /* __u8 bLength; */ 185 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */ 186 0x00, 0x02, /* __le16 bcdUSB; v2.0 */ 187 188 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */ 189 0x00, /* __u8 bDeviceSubClass; */ 190 0x00, /* __u8 bDeviceProtocol; [ usb 2.0 no TT ] */ 191 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */ 192 193 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */ 194 0x02, 0x00, /* __le16 idProduct; device 0x0002 */ 195 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */ 196 197 0x03, /* __u8 iManufacturer; */ 198 0x02, /* __u8 iProduct; */ 199 0x01, /* __u8 iSerialNumber; */ 200 0x01 /* __u8 bNumConfigurations; */ 201 }; 202 203 /* no usb 2.0 root hub "device qualifier" descriptor: one speed only */ 204 205 /* usb 1.1 root hub device descriptor */ 206 static const u8 usb11_rh_dev_descriptor[18] = { 207 0x12, /* __u8 bLength; */ 208 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */ 209 0x10, 0x01, /* __le16 bcdUSB; v1.1 */ 210 211 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */ 212 0x00, /* __u8 bDeviceSubClass; */ 213 0x00, /* __u8 bDeviceProtocol; [ low/full speeds only ] */ 214 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */ 215 216 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */ 217 0x01, 0x00, /* __le16 idProduct; device 0x0001 */ 218 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */ 219 220 0x03, /* __u8 iManufacturer; */ 221 0x02, /* __u8 iProduct; */ 222 0x01, /* __u8 iSerialNumber; */ 223 0x01 /* __u8 bNumConfigurations; */ 224 }; 225 226 227 /*-------------------------------------------------------------------------*/ 228 229 /* Configuration descriptors for our root hubs */ 230 231 static const u8 fs_rh_config_descriptor[] = { 232 233 /* one configuration */ 234 0x09, /* __u8 bLength; */ 235 USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */ 236 0x19, 0x00, /* __le16 wTotalLength; */ 237 0x01, /* __u8 bNumInterfaces; (1) */ 238 0x01, /* __u8 bConfigurationValue; */ 239 0x00, /* __u8 iConfiguration; */ 240 0xc0, /* __u8 bmAttributes; 241 Bit 7: must be set, 242 6: Self-powered, 243 5: Remote wakeup, 244 4..0: resvd */ 245 0x00, /* __u8 MaxPower; */ 246 247 /* USB 1.1: 248 * USB 2.0, single TT organization (mandatory): 249 * one interface, protocol 0 250 * 251 * USB 2.0, multiple TT organization (optional): 252 * two interfaces, protocols 1 (like single TT) 253 * and 2 (multiple TT mode) ... config is 254 * sometimes settable 255 * NOT IMPLEMENTED 256 */ 257 258 /* one interface */ 259 0x09, /* __u8 if_bLength; */ 260 USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */ 261 0x00, /* __u8 if_bInterfaceNumber; */ 262 0x00, /* __u8 if_bAlternateSetting; */ 263 0x01, /* __u8 if_bNumEndpoints; */ 264 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */ 265 0x00, /* __u8 if_bInterfaceSubClass; */ 266 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */ 267 0x00, /* __u8 if_iInterface; */ 268 269 /* one endpoint (status change endpoint) */ 270 0x07, /* __u8 ep_bLength; */ 271 USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */ 272 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */ 273 0x03, /* __u8 ep_bmAttributes; Interrupt */ 274 0x02, 0x00, /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */ 275 0xff /* __u8 ep_bInterval; (255ms -- usb 2.0 spec) */ 276 }; 277 278 static const u8 hs_rh_config_descriptor[] = { 279 280 /* one configuration */ 281 0x09, /* __u8 bLength; */ 282 USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */ 283 0x19, 0x00, /* __le16 wTotalLength; */ 284 0x01, /* __u8 bNumInterfaces; (1) */ 285 0x01, /* __u8 bConfigurationValue; */ 286 0x00, /* __u8 iConfiguration; */ 287 0xc0, /* __u8 bmAttributes; 288 Bit 7: must be set, 289 6: Self-powered, 290 5: Remote wakeup, 291 4..0: resvd */ 292 0x00, /* __u8 MaxPower; */ 293 294 /* USB 1.1: 295 * USB 2.0, single TT organization (mandatory): 296 * one interface, protocol 0 297 * 298 * USB 2.0, multiple TT organization (optional): 299 * two interfaces, protocols 1 (like single TT) 300 * and 2 (multiple TT mode) ... config is 301 * sometimes settable 302 * NOT IMPLEMENTED 303 */ 304 305 /* one interface */ 306 0x09, /* __u8 if_bLength; */ 307 USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */ 308 0x00, /* __u8 if_bInterfaceNumber; */ 309 0x00, /* __u8 if_bAlternateSetting; */ 310 0x01, /* __u8 if_bNumEndpoints; */ 311 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */ 312 0x00, /* __u8 if_bInterfaceSubClass; */ 313 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */ 314 0x00, /* __u8 if_iInterface; */ 315 316 /* one endpoint (status change endpoint) */ 317 0x07, /* __u8 ep_bLength; */ 318 USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */ 319 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */ 320 0x03, /* __u8 ep_bmAttributes; Interrupt */ 321 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) 322 * see hub.c:hub_configure() for details. */ 323 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00, 324 0x0c /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */ 325 }; 326 327 static const u8 ss_rh_config_descriptor[] = { 328 /* one configuration */ 329 0x09, /* __u8 bLength; */ 330 USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */ 331 0x1f, 0x00, /* __le16 wTotalLength; */ 332 0x01, /* __u8 bNumInterfaces; (1) */ 333 0x01, /* __u8 bConfigurationValue; */ 334 0x00, /* __u8 iConfiguration; */ 335 0xc0, /* __u8 bmAttributes; 336 Bit 7: must be set, 337 6: Self-powered, 338 5: Remote wakeup, 339 4..0: resvd */ 340 0x00, /* __u8 MaxPower; */ 341 342 /* one interface */ 343 0x09, /* __u8 if_bLength; */ 344 USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */ 345 0x00, /* __u8 if_bInterfaceNumber; */ 346 0x00, /* __u8 if_bAlternateSetting; */ 347 0x01, /* __u8 if_bNumEndpoints; */ 348 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */ 349 0x00, /* __u8 if_bInterfaceSubClass; */ 350 0x00, /* __u8 if_bInterfaceProtocol; */ 351 0x00, /* __u8 if_iInterface; */ 352 353 /* one endpoint (status change endpoint) */ 354 0x07, /* __u8 ep_bLength; */ 355 USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */ 356 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */ 357 0x03, /* __u8 ep_bmAttributes; Interrupt */ 358 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) 359 * see hub.c:hub_configure() for details. */ 360 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00, 361 0x0c, /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */ 362 363 /* one SuperSpeed endpoint companion descriptor */ 364 0x06, /* __u8 ss_bLength */ 365 USB_DT_SS_ENDPOINT_COMP, /* __u8 ss_bDescriptorType; SuperSpeed EP */ 366 /* Companion */ 367 0x00, /* __u8 ss_bMaxBurst; allows 1 TX between ACKs */ 368 0x00, /* __u8 ss_bmAttributes; 1 packet per service interval */ 369 0x02, 0x00 /* __le16 ss_wBytesPerInterval; 15 bits for max 15 ports */ 370 }; 371 372 /* authorized_default behaviour: 373 * -1 is authorized for all devices except wireless (old behaviour) 374 * 0 is unauthorized for all devices 375 * 1 is authorized for all devices 376 */ 377 static int authorized_default = -1; 378 module_param(authorized_default, int, S_IRUGO|S_IWUSR); 379 MODULE_PARM_DESC(authorized_default, 380 "Default USB device authorization: 0 is not authorized, 1 is " 381 "authorized, -1 is authorized except for wireless USB (default, " 382 "old behaviour"); 383 /*-------------------------------------------------------------------------*/ 384 385 /** 386 * ascii2desc() - Helper routine for producing UTF-16LE string descriptors 387 * @s: Null-terminated ASCII (actually ISO-8859-1) string 388 * @buf: Buffer for USB string descriptor (header + UTF-16LE) 389 * @len: Length (in bytes; may be odd) of descriptor buffer. 390 * 391 * Return: The number of bytes filled in: 2 + 2*strlen(s) or @len, 392 * whichever is less. 393 * 394 * Note: 395 * USB String descriptors can contain at most 126 characters; input 396 * strings longer than that are truncated. 397 */ 398 static unsigned 399 ascii2desc(char const *s, u8 *buf, unsigned len) 400 { 401 unsigned n, t = 2 + 2*strlen(s); 402 403 if (t > 254) 404 t = 254; /* Longest possible UTF string descriptor */ 405 if (len > t) 406 len = t; 407 408 t += USB_DT_STRING << 8; /* Now t is first 16 bits to store */ 409 410 n = len; 411 while (n--) { 412 *buf++ = t; 413 if (!n--) 414 break; 415 *buf++ = t >> 8; 416 t = (unsigned char)*s++; 417 } 418 return len; 419 } 420 421 /** 422 * rh_string() - provides string descriptors for root hub 423 * @id: the string ID number (0: langids, 1: serial #, 2: product, 3: vendor) 424 * @hcd: the host controller for this root hub 425 * @data: buffer for output packet 426 * @len: length of the provided buffer 427 * 428 * Produces either a manufacturer, product or serial number string for the 429 * virtual root hub device. 430 * 431 * Return: The number of bytes filled in: the length of the descriptor or 432 * of the provided buffer, whichever is less. 433 */ 434 static unsigned 435 rh_string(int id, struct usb_hcd const *hcd, u8 *data, unsigned len) 436 { 437 char buf[100]; 438 char const *s; 439 static char const langids[4] = {4, USB_DT_STRING, 0x09, 0x04}; 440 441 /* language ids */ 442 switch (id) { 443 case 0: 444 /* Array of LANGID codes (0x0409 is MSFT-speak for "en-us") */ 445 /* See http://www.usb.org/developers/docs/USB_LANGIDs.pdf */ 446 if (len > 4) 447 len = 4; 448 memcpy(data, langids, len); 449 return len; 450 case 1: 451 /* Serial number */ 452 s = hcd->self.bus_name; 453 break; 454 case 2: 455 /* Product name */ 456 s = hcd->product_desc; 457 break; 458 case 3: 459 /* Manufacturer */ 460 snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname, 461 init_utsname()->release, hcd->driver->description); 462 s = buf; 463 break; 464 default: 465 /* Can't happen; caller guarantees it */ 466 return 0; 467 } 468 469 return ascii2desc(s, data, len); 470 } 471 472 473 /* Root hub control transfers execute synchronously */ 474 static int rh_call_control (struct usb_hcd *hcd, struct urb *urb) 475 { 476 struct usb_ctrlrequest *cmd; 477 u16 typeReq, wValue, wIndex, wLength; 478 u8 *ubuf = urb->transfer_buffer; 479 unsigned len = 0; 480 int status; 481 u8 patch_wakeup = 0; 482 u8 patch_protocol = 0; 483 u16 tbuf_size; 484 u8 *tbuf = NULL; 485 const u8 *bufp; 486 487 might_sleep(); 488 489 spin_lock_irq(&hcd_root_hub_lock); 490 status = usb_hcd_link_urb_to_ep(hcd, urb); 491 spin_unlock_irq(&hcd_root_hub_lock); 492 if (status) 493 return status; 494 urb->hcpriv = hcd; /* Indicate it's queued */ 495 496 cmd = (struct usb_ctrlrequest *) urb->setup_packet; 497 typeReq = (cmd->bRequestType << 8) | cmd->bRequest; 498 wValue = le16_to_cpu (cmd->wValue); 499 wIndex = le16_to_cpu (cmd->wIndex); 500 wLength = le16_to_cpu (cmd->wLength); 501 502 if (wLength > urb->transfer_buffer_length) 503 goto error; 504 505 /* 506 * tbuf should be at least as big as the 507 * USB hub descriptor. 508 */ 509 tbuf_size = max_t(u16, sizeof(struct usb_hub_descriptor), wLength); 510 tbuf = kzalloc(tbuf_size, GFP_KERNEL); 511 if (!tbuf) { 512 status = -ENOMEM; 513 goto err_alloc; 514 } 515 516 bufp = tbuf; 517 518 519 urb->actual_length = 0; 520 switch (typeReq) { 521 522 /* DEVICE REQUESTS */ 523 524 /* The root hub's remote wakeup enable bit is implemented using 525 * driver model wakeup flags. If this system supports wakeup 526 * through USB, userspace may change the default "allow wakeup" 527 * policy through sysfs or these calls. 528 * 529 * Most root hubs support wakeup from downstream devices, for 530 * runtime power management (disabling USB clocks and reducing 531 * VBUS power usage). However, not all of them do so; silicon, 532 * board, and BIOS bugs here are not uncommon, so these can't 533 * be treated quite like external hubs. 534 * 535 * Likewise, not all root hubs will pass wakeup events upstream, 536 * to wake up the whole system. So don't assume root hub and 537 * controller capabilities are identical. 538 */ 539 540 case DeviceRequest | USB_REQ_GET_STATUS: 541 tbuf[0] = (device_may_wakeup(&hcd->self.root_hub->dev) 542 << USB_DEVICE_REMOTE_WAKEUP) 543 | (1 << USB_DEVICE_SELF_POWERED); 544 tbuf[1] = 0; 545 len = 2; 546 break; 547 case DeviceOutRequest | USB_REQ_CLEAR_FEATURE: 548 if (wValue == USB_DEVICE_REMOTE_WAKEUP) 549 device_set_wakeup_enable(&hcd->self.root_hub->dev, 0); 550 else 551 goto error; 552 break; 553 case DeviceOutRequest | USB_REQ_SET_FEATURE: 554 if (device_can_wakeup(&hcd->self.root_hub->dev) 555 && wValue == USB_DEVICE_REMOTE_WAKEUP) 556 device_set_wakeup_enable(&hcd->self.root_hub->dev, 1); 557 else 558 goto error; 559 break; 560 case DeviceRequest | USB_REQ_GET_CONFIGURATION: 561 tbuf[0] = 1; 562 len = 1; 563 /* FALLTHROUGH */ 564 case DeviceOutRequest | USB_REQ_SET_CONFIGURATION: 565 break; 566 case DeviceRequest | USB_REQ_GET_DESCRIPTOR: 567 switch (wValue & 0xff00) { 568 case USB_DT_DEVICE << 8: 569 switch (hcd->speed) { 570 case HCD_USB31: 571 bufp = usb31_rh_dev_descriptor; 572 break; 573 case HCD_USB3: 574 bufp = usb3_rh_dev_descriptor; 575 break; 576 case HCD_USB25: 577 bufp = usb25_rh_dev_descriptor; 578 break; 579 case HCD_USB2: 580 bufp = usb2_rh_dev_descriptor; 581 break; 582 case HCD_USB11: 583 bufp = usb11_rh_dev_descriptor; 584 break; 585 default: 586 goto error; 587 } 588 len = 18; 589 if (hcd->has_tt) 590 patch_protocol = 1; 591 break; 592 case USB_DT_CONFIG << 8: 593 switch (hcd->speed) { 594 case HCD_USB31: 595 case HCD_USB3: 596 bufp = ss_rh_config_descriptor; 597 len = sizeof ss_rh_config_descriptor; 598 break; 599 case HCD_USB25: 600 case HCD_USB2: 601 bufp = hs_rh_config_descriptor; 602 len = sizeof hs_rh_config_descriptor; 603 break; 604 case HCD_USB11: 605 bufp = fs_rh_config_descriptor; 606 len = sizeof fs_rh_config_descriptor; 607 break; 608 default: 609 goto error; 610 } 611 if (device_can_wakeup(&hcd->self.root_hub->dev)) 612 patch_wakeup = 1; 613 break; 614 case USB_DT_STRING << 8: 615 if ((wValue & 0xff) < 4) 616 urb->actual_length = rh_string(wValue & 0xff, 617 hcd, ubuf, wLength); 618 else /* unsupported IDs --> "protocol stall" */ 619 goto error; 620 break; 621 case USB_DT_BOS << 8: 622 goto nongeneric; 623 default: 624 goto error; 625 } 626 break; 627 case DeviceRequest | USB_REQ_GET_INTERFACE: 628 tbuf[0] = 0; 629 len = 1; 630 /* FALLTHROUGH */ 631 case DeviceOutRequest | USB_REQ_SET_INTERFACE: 632 break; 633 case DeviceOutRequest | USB_REQ_SET_ADDRESS: 634 /* wValue == urb->dev->devaddr */ 635 dev_dbg (hcd->self.controller, "root hub device address %d\n", 636 wValue); 637 break; 638 639 /* INTERFACE REQUESTS (no defined feature/status flags) */ 640 641 /* ENDPOINT REQUESTS */ 642 643 case EndpointRequest | USB_REQ_GET_STATUS: 644 /* ENDPOINT_HALT flag */ 645 tbuf[0] = 0; 646 tbuf[1] = 0; 647 len = 2; 648 /* FALLTHROUGH */ 649 case EndpointOutRequest | USB_REQ_CLEAR_FEATURE: 650 case EndpointOutRequest | USB_REQ_SET_FEATURE: 651 dev_dbg (hcd->self.controller, "no endpoint features yet\n"); 652 break; 653 654 /* CLASS REQUESTS (and errors) */ 655 656 default: 657 nongeneric: 658 /* non-generic request */ 659 switch (typeReq) { 660 case GetHubStatus: 661 len = 4; 662 break; 663 case GetPortStatus: 664 if (wValue == HUB_PORT_STATUS) 665 len = 4; 666 else 667 /* other port status types return 8 bytes */ 668 len = 8; 669 break; 670 case GetHubDescriptor: 671 len = sizeof (struct usb_hub_descriptor); 672 break; 673 case DeviceRequest | USB_REQ_GET_DESCRIPTOR: 674 /* len is returned by hub_control */ 675 break; 676 } 677 status = hcd->driver->hub_control (hcd, 678 typeReq, wValue, wIndex, 679 tbuf, wLength); 680 681 if (typeReq == GetHubDescriptor) 682 usb_hub_adjust_deviceremovable(hcd->self.root_hub, 683 (struct usb_hub_descriptor *)tbuf); 684 break; 685 error: 686 /* "protocol stall" on error */ 687 status = -EPIPE; 688 } 689 690 if (status < 0) { 691 len = 0; 692 if (status != -EPIPE) { 693 dev_dbg (hcd->self.controller, 694 "CTRL: TypeReq=0x%x val=0x%x " 695 "idx=0x%x len=%d ==> %d\n", 696 typeReq, wValue, wIndex, 697 wLength, status); 698 } 699 } else if (status > 0) { 700 /* hub_control may return the length of data copied. */ 701 len = status; 702 status = 0; 703 } 704 if (len) { 705 if (urb->transfer_buffer_length < len) 706 len = urb->transfer_buffer_length; 707 urb->actual_length = len; 708 /* always USB_DIR_IN, toward host */ 709 memcpy (ubuf, bufp, len); 710 711 /* report whether RH hardware supports remote wakeup */ 712 if (patch_wakeup && 713 len > offsetof (struct usb_config_descriptor, 714 bmAttributes)) 715 ((struct usb_config_descriptor *)ubuf)->bmAttributes 716 |= USB_CONFIG_ATT_WAKEUP; 717 718 /* report whether RH hardware has an integrated TT */ 719 if (patch_protocol && 720 len > offsetof(struct usb_device_descriptor, 721 bDeviceProtocol)) 722 ((struct usb_device_descriptor *) ubuf)-> 723 bDeviceProtocol = USB_HUB_PR_HS_SINGLE_TT; 724 } 725 726 kfree(tbuf); 727 err_alloc: 728 729 /* any errors get returned through the urb completion */ 730 spin_lock_irq(&hcd_root_hub_lock); 731 usb_hcd_unlink_urb_from_ep(hcd, urb); 732 usb_hcd_giveback_urb(hcd, urb, status); 733 spin_unlock_irq(&hcd_root_hub_lock); 734 return 0; 735 } 736 737 /*-------------------------------------------------------------------------*/ 738 739 /* 740 * Root Hub interrupt transfers are polled using a timer if the 741 * driver requests it; otherwise the driver is responsible for 742 * calling usb_hcd_poll_rh_status() when an event occurs. 743 * 744 * Completions are called in_interrupt(), but they may or may not 745 * be in_irq(). 746 */ 747 void usb_hcd_poll_rh_status(struct usb_hcd *hcd) 748 { 749 struct urb *urb; 750 int length; 751 unsigned long flags; 752 char buffer[6]; /* Any root hubs with > 31 ports? */ 753 754 if (unlikely(!hcd->rh_pollable)) 755 return; 756 if (!hcd->uses_new_polling && !hcd->status_urb) 757 return; 758 759 length = hcd->driver->hub_status_data(hcd, buffer); 760 if (length > 0) { 761 762 /* try to complete the status urb */ 763 spin_lock_irqsave(&hcd_root_hub_lock, flags); 764 urb = hcd->status_urb; 765 if (urb) { 766 clear_bit(HCD_FLAG_POLL_PENDING, &hcd->flags); 767 hcd->status_urb = NULL; 768 urb->actual_length = length; 769 memcpy(urb->transfer_buffer, buffer, length); 770 771 usb_hcd_unlink_urb_from_ep(hcd, urb); 772 usb_hcd_giveback_urb(hcd, urb, 0); 773 } else { 774 length = 0; 775 set_bit(HCD_FLAG_POLL_PENDING, &hcd->flags); 776 } 777 spin_unlock_irqrestore(&hcd_root_hub_lock, flags); 778 } 779 780 /* The USB 2.0 spec says 256 ms. This is close enough and won't 781 * exceed that limit if HZ is 100. The math is more clunky than 782 * maybe expected, this is to make sure that all timers for USB devices 783 * fire at the same time to give the CPU a break in between */ 784 if (hcd->uses_new_polling ? HCD_POLL_RH(hcd) : 785 (length == 0 && hcd->status_urb != NULL)) 786 mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4)); 787 } 788 EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status); 789 790 /* timer callback */ 791 static void rh_timer_func (unsigned long _hcd) 792 { 793 usb_hcd_poll_rh_status((struct usb_hcd *) _hcd); 794 } 795 796 /*-------------------------------------------------------------------------*/ 797 798 static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb) 799 { 800 int retval; 801 unsigned long flags; 802 unsigned len = 1 + (urb->dev->maxchild / 8); 803 804 spin_lock_irqsave (&hcd_root_hub_lock, flags); 805 if (hcd->status_urb || urb->transfer_buffer_length < len) { 806 dev_dbg (hcd->self.controller, "not queuing rh status urb\n"); 807 retval = -EINVAL; 808 goto done; 809 } 810 811 retval = usb_hcd_link_urb_to_ep(hcd, urb); 812 if (retval) 813 goto done; 814 815 hcd->status_urb = urb; 816 urb->hcpriv = hcd; /* indicate it's queued */ 817 if (!hcd->uses_new_polling) 818 mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4)); 819 820 /* If a status change has already occurred, report it ASAP */ 821 else if (HCD_POLL_PENDING(hcd)) 822 mod_timer(&hcd->rh_timer, jiffies); 823 retval = 0; 824 done: 825 spin_unlock_irqrestore (&hcd_root_hub_lock, flags); 826 return retval; 827 } 828 829 static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb) 830 { 831 if (usb_endpoint_xfer_int(&urb->ep->desc)) 832 return rh_queue_status (hcd, urb); 833 if (usb_endpoint_xfer_control(&urb->ep->desc)) 834 return rh_call_control (hcd, urb); 835 return -EINVAL; 836 } 837 838 /*-------------------------------------------------------------------------*/ 839 840 /* Unlinks of root-hub control URBs are legal, but they don't do anything 841 * since these URBs always execute synchronously. 842 */ 843 static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status) 844 { 845 unsigned long flags; 846 int rc; 847 848 spin_lock_irqsave(&hcd_root_hub_lock, flags); 849 rc = usb_hcd_check_unlink_urb(hcd, urb, status); 850 if (rc) 851 goto done; 852 853 if (usb_endpoint_num(&urb->ep->desc) == 0) { /* Control URB */ 854 ; /* Do nothing */ 855 856 } else { /* Status URB */ 857 if (!hcd->uses_new_polling) 858 del_timer (&hcd->rh_timer); 859 if (urb == hcd->status_urb) { 860 hcd->status_urb = NULL; 861 usb_hcd_unlink_urb_from_ep(hcd, urb); 862 usb_hcd_giveback_urb(hcd, urb, status); 863 } 864 } 865 done: 866 spin_unlock_irqrestore(&hcd_root_hub_lock, flags); 867 return rc; 868 } 869 870 871 872 /* 873 * Show & store the current value of authorized_default 874 */ 875 static ssize_t authorized_default_show(struct device *dev, 876 struct device_attribute *attr, char *buf) 877 { 878 struct usb_device *rh_usb_dev = to_usb_device(dev); 879 struct usb_bus *usb_bus = rh_usb_dev->bus; 880 struct usb_hcd *hcd; 881 882 hcd = bus_to_hcd(usb_bus); 883 return snprintf(buf, PAGE_SIZE, "%u\n", !!HCD_DEV_AUTHORIZED(hcd)); 884 } 885 886 static ssize_t authorized_default_store(struct device *dev, 887 struct device_attribute *attr, 888 const char *buf, size_t size) 889 { 890 ssize_t result; 891 unsigned val; 892 struct usb_device *rh_usb_dev = to_usb_device(dev); 893 struct usb_bus *usb_bus = rh_usb_dev->bus; 894 struct usb_hcd *hcd; 895 896 hcd = bus_to_hcd(usb_bus); 897 result = sscanf(buf, "%u\n", &val); 898 if (result == 1) { 899 if (val) 900 set_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags); 901 else 902 clear_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags); 903 904 result = size; 905 } else { 906 result = -EINVAL; 907 } 908 return result; 909 } 910 static DEVICE_ATTR_RW(authorized_default); 911 912 /* 913 * interface_authorized_default_show - show default authorization status 914 * for USB interfaces 915 * 916 * note: interface_authorized_default is the default value 917 * for initializing the authorized attribute of interfaces 918 */ 919 static ssize_t interface_authorized_default_show(struct device *dev, 920 struct device_attribute *attr, char *buf) 921 { 922 struct usb_device *usb_dev = to_usb_device(dev); 923 struct usb_hcd *hcd = bus_to_hcd(usb_dev->bus); 924 925 return sprintf(buf, "%u\n", !!HCD_INTF_AUTHORIZED(hcd)); 926 } 927 928 /* 929 * interface_authorized_default_store - store default authorization status 930 * for USB interfaces 931 * 932 * note: interface_authorized_default is the default value 933 * for initializing the authorized attribute of interfaces 934 */ 935 static ssize_t interface_authorized_default_store(struct device *dev, 936 struct device_attribute *attr, const char *buf, size_t count) 937 { 938 struct usb_device *usb_dev = to_usb_device(dev); 939 struct usb_hcd *hcd = bus_to_hcd(usb_dev->bus); 940 int rc = count; 941 bool val; 942 943 if (strtobool(buf, &val) != 0) 944 return -EINVAL; 945 946 if (val) 947 set_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags); 948 else 949 clear_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags); 950 951 return rc; 952 } 953 static DEVICE_ATTR_RW(interface_authorized_default); 954 955 /* Group all the USB bus attributes */ 956 static struct attribute *usb_bus_attrs[] = { 957 &dev_attr_authorized_default.attr, 958 &dev_attr_interface_authorized_default.attr, 959 NULL, 960 }; 961 962 static const struct attribute_group usb_bus_attr_group = { 963 .name = NULL, /* we want them in the same directory */ 964 .attrs = usb_bus_attrs, 965 }; 966 967 968 969 /*-------------------------------------------------------------------------*/ 970 971 /** 972 * usb_bus_init - shared initialization code 973 * @bus: the bus structure being initialized 974 * 975 * This code is used to initialize a usb_bus structure, memory for which is 976 * separately managed. 977 */ 978 static void usb_bus_init (struct usb_bus *bus) 979 { 980 memset (&bus->devmap, 0, sizeof(struct usb_devmap)); 981 982 bus->devnum_next = 1; 983 984 bus->root_hub = NULL; 985 bus->busnum = -1; 986 bus->bandwidth_allocated = 0; 987 bus->bandwidth_int_reqs = 0; 988 bus->bandwidth_isoc_reqs = 0; 989 mutex_init(&bus->devnum_next_mutex); 990 } 991 992 /*-------------------------------------------------------------------------*/ 993 994 /** 995 * usb_register_bus - registers the USB host controller with the usb core 996 * @bus: pointer to the bus to register 997 * Context: !in_interrupt() 998 * 999 * Assigns a bus number, and links the controller into usbcore data 1000 * structures so that it can be seen by scanning the bus list. 1001 * 1002 * Return: 0 if successful. A negative error code otherwise. 1003 */ 1004 static int usb_register_bus(struct usb_bus *bus) 1005 { 1006 int result = -E2BIG; 1007 int busnum; 1008 1009 mutex_lock(&usb_bus_idr_lock); 1010 busnum = idr_alloc(&usb_bus_idr, bus, 1, USB_MAXBUS, GFP_KERNEL); 1011 if (busnum < 0) { 1012 pr_err("%s: failed to get bus number\n", usbcore_name); 1013 goto error_find_busnum; 1014 } 1015 bus->busnum = busnum; 1016 mutex_unlock(&usb_bus_idr_lock); 1017 1018 usb_notify_add_bus(bus); 1019 1020 dev_info (bus->controller, "new USB bus registered, assigned bus " 1021 "number %d\n", bus->busnum); 1022 return 0; 1023 1024 error_find_busnum: 1025 mutex_unlock(&usb_bus_idr_lock); 1026 return result; 1027 } 1028 1029 /** 1030 * usb_deregister_bus - deregisters the USB host controller 1031 * @bus: pointer to the bus to deregister 1032 * Context: !in_interrupt() 1033 * 1034 * Recycles the bus number, and unlinks the controller from usbcore data 1035 * structures so that it won't be seen by scanning the bus list. 1036 */ 1037 static void usb_deregister_bus (struct usb_bus *bus) 1038 { 1039 dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum); 1040 1041 /* 1042 * NOTE: make sure that all the devices are removed by the 1043 * controller code, as well as having it call this when cleaning 1044 * itself up 1045 */ 1046 mutex_lock(&usb_bus_idr_lock); 1047 idr_remove(&usb_bus_idr, bus->busnum); 1048 mutex_unlock(&usb_bus_idr_lock); 1049 1050 usb_notify_remove_bus(bus); 1051 } 1052 1053 /** 1054 * register_root_hub - called by usb_add_hcd() to register a root hub 1055 * @hcd: host controller for this root hub 1056 * 1057 * This function registers the root hub with the USB subsystem. It sets up 1058 * the device properly in the device tree and then calls usb_new_device() 1059 * to register the usb device. It also assigns the root hub's USB address 1060 * (always 1). 1061 * 1062 * Return: 0 if successful. A negative error code otherwise. 1063 */ 1064 static int register_root_hub(struct usb_hcd *hcd) 1065 { 1066 struct device *parent_dev = hcd->self.controller; 1067 struct usb_device *usb_dev = hcd->self.root_hub; 1068 const int devnum = 1; 1069 int retval; 1070 1071 usb_dev->devnum = devnum; 1072 usb_dev->bus->devnum_next = devnum + 1; 1073 memset (&usb_dev->bus->devmap.devicemap, 0, 1074 sizeof usb_dev->bus->devmap.devicemap); 1075 set_bit (devnum, usb_dev->bus->devmap.devicemap); 1076 usb_set_device_state(usb_dev, USB_STATE_ADDRESS); 1077 1078 mutex_lock(&usb_bus_idr_lock); 1079 1080 usb_dev->ep0.desc.wMaxPacketSize = cpu_to_le16(64); 1081 retval = usb_get_device_descriptor(usb_dev, USB_DT_DEVICE_SIZE); 1082 if (retval != sizeof usb_dev->descriptor) { 1083 mutex_unlock(&usb_bus_idr_lock); 1084 dev_dbg (parent_dev, "can't read %s device descriptor %d\n", 1085 dev_name(&usb_dev->dev), retval); 1086 return (retval < 0) ? retval : -EMSGSIZE; 1087 } 1088 1089 if (le16_to_cpu(usb_dev->descriptor.bcdUSB) >= 0x0201) { 1090 retval = usb_get_bos_descriptor(usb_dev); 1091 if (!retval) { 1092 usb_dev->lpm_capable = usb_device_supports_lpm(usb_dev); 1093 } else if (usb_dev->speed >= USB_SPEED_SUPER) { 1094 mutex_unlock(&usb_bus_idr_lock); 1095 dev_dbg(parent_dev, "can't read %s bos descriptor %d\n", 1096 dev_name(&usb_dev->dev), retval); 1097 return retval; 1098 } 1099 } 1100 1101 retval = usb_new_device (usb_dev); 1102 if (retval) { 1103 dev_err (parent_dev, "can't register root hub for %s, %d\n", 1104 dev_name(&usb_dev->dev), retval); 1105 } else { 1106 spin_lock_irq (&hcd_root_hub_lock); 1107 hcd->rh_registered = 1; 1108 spin_unlock_irq (&hcd_root_hub_lock); 1109 1110 /* Did the HC die before the root hub was registered? */ 1111 if (HCD_DEAD(hcd)) 1112 usb_hc_died (hcd); /* This time clean up */ 1113 } 1114 mutex_unlock(&usb_bus_idr_lock); 1115 1116 return retval; 1117 } 1118 1119 /* 1120 * usb_hcd_start_port_resume - a root-hub port is sending a resume signal 1121 * @bus: the bus which the root hub belongs to 1122 * @portnum: the port which is being resumed 1123 * 1124 * HCDs should call this function when they know that a resume signal is 1125 * being sent to a root-hub port. The root hub will be prevented from 1126 * going into autosuspend until usb_hcd_end_port_resume() is called. 1127 * 1128 * The bus's private lock must be held by the caller. 1129 */ 1130 void usb_hcd_start_port_resume(struct usb_bus *bus, int portnum) 1131 { 1132 unsigned bit = 1 << portnum; 1133 1134 if (!(bus->resuming_ports & bit)) { 1135 bus->resuming_ports |= bit; 1136 pm_runtime_get_noresume(&bus->root_hub->dev); 1137 } 1138 } 1139 EXPORT_SYMBOL_GPL(usb_hcd_start_port_resume); 1140 1141 /* 1142 * usb_hcd_end_port_resume - a root-hub port has stopped sending a resume signal 1143 * @bus: the bus which the root hub belongs to 1144 * @portnum: the port which is being resumed 1145 * 1146 * HCDs should call this function when they know that a resume signal has 1147 * stopped being sent to a root-hub port. The root hub will be allowed to 1148 * autosuspend again. 1149 * 1150 * The bus's private lock must be held by the caller. 1151 */ 1152 void usb_hcd_end_port_resume(struct usb_bus *bus, int portnum) 1153 { 1154 unsigned bit = 1 << portnum; 1155 1156 if (bus->resuming_ports & bit) { 1157 bus->resuming_ports &= ~bit; 1158 pm_runtime_put_noidle(&bus->root_hub->dev); 1159 } 1160 } 1161 EXPORT_SYMBOL_GPL(usb_hcd_end_port_resume); 1162 1163 /*-------------------------------------------------------------------------*/ 1164 1165 /** 1166 * usb_calc_bus_time - approximate periodic transaction time in nanoseconds 1167 * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH} 1168 * @is_input: true iff the transaction sends data to the host 1169 * @isoc: true for isochronous transactions, false for interrupt ones 1170 * @bytecount: how many bytes in the transaction. 1171 * 1172 * Return: Approximate bus time in nanoseconds for a periodic transaction. 1173 * 1174 * Note: 1175 * See USB 2.0 spec section 5.11.3; only periodic transfers need to be 1176 * scheduled in software, this function is only used for such scheduling. 1177 */ 1178 long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount) 1179 { 1180 unsigned long tmp; 1181 1182 switch (speed) { 1183 case USB_SPEED_LOW: /* INTR only */ 1184 if (is_input) { 1185 tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L; 1186 return 64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp; 1187 } else { 1188 tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L; 1189 return 64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp; 1190 } 1191 case USB_SPEED_FULL: /* ISOC or INTR */ 1192 if (isoc) { 1193 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L; 1194 return ((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp; 1195 } else { 1196 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L; 1197 return 9107L + BW_HOST_DELAY + tmp; 1198 } 1199 case USB_SPEED_HIGH: /* ISOC or INTR */ 1200 /* FIXME adjust for input vs output */ 1201 if (isoc) 1202 tmp = HS_NSECS_ISO (bytecount); 1203 else 1204 tmp = HS_NSECS (bytecount); 1205 return tmp; 1206 default: 1207 pr_debug ("%s: bogus device speed!\n", usbcore_name); 1208 return -1; 1209 } 1210 } 1211 EXPORT_SYMBOL_GPL(usb_calc_bus_time); 1212 1213 1214 /*-------------------------------------------------------------------------*/ 1215 1216 /* 1217 * Generic HC operations. 1218 */ 1219 1220 /*-------------------------------------------------------------------------*/ 1221 1222 /** 1223 * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue 1224 * @hcd: host controller to which @urb was submitted 1225 * @urb: URB being submitted 1226 * 1227 * Host controller drivers should call this routine in their enqueue() 1228 * method. The HCD's private spinlock must be held and interrupts must 1229 * be disabled. The actions carried out here are required for URB 1230 * submission, as well as for endpoint shutdown and for usb_kill_urb. 1231 * 1232 * Return: 0 for no error, otherwise a negative error code (in which case 1233 * the enqueue() method must fail). If no error occurs but enqueue() fails 1234 * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing 1235 * the private spinlock and returning. 1236 */ 1237 int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb) 1238 { 1239 int rc = 0; 1240 1241 spin_lock(&hcd_urb_list_lock); 1242 1243 /* Check that the URB isn't being killed */ 1244 if (unlikely(atomic_read(&urb->reject))) { 1245 rc = -EPERM; 1246 goto done; 1247 } 1248 1249 if (unlikely(!urb->ep->enabled)) { 1250 rc = -ENOENT; 1251 goto done; 1252 } 1253 1254 if (unlikely(!urb->dev->can_submit)) { 1255 rc = -EHOSTUNREACH; 1256 goto done; 1257 } 1258 1259 /* 1260 * Check the host controller's state and add the URB to the 1261 * endpoint's queue. 1262 */ 1263 if (HCD_RH_RUNNING(hcd)) { 1264 urb->unlinked = 0; 1265 list_add_tail(&urb->urb_list, &urb->ep->urb_list); 1266 } else { 1267 rc = -ESHUTDOWN; 1268 goto done; 1269 } 1270 done: 1271 spin_unlock(&hcd_urb_list_lock); 1272 return rc; 1273 } 1274 EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep); 1275 1276 /** 1277 * usb_hcd_check_unlink_urb - check whether an URB may be unlinked 1278 * @hcd: host controller to which @urb was submitted 1279 * @urb: URB being checked for unlinkability 1280 * @status: error code to store in @urb if the unlink succeeds 1281 * 1282 * Host controller drivers should call this routine in their dequeue() 1283 * method. The HCD's private spinlock must be held and interrupts must 1284 * be disabled. The actions carried out here are required for making 1285 * sure than an unlink is valid. 1286 * 1287 * Return: 0 for no error, otherwise a negative error code (in which case 1288 * the dequeue() method must fail). The possible error codes are: 1289 * 1290 * -EIDRM: @urb was not submitted or has already completed. 1291 * The completion function may not have been called yet. 1292 * 1293 * -EBUSY: @urb has already been unlinked. 1294 */ 1295 int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb, 1296 int status) 1297 { 1298 struct list_head *tmp; 1299 1300 /* insist the urb is still queued */ 1301 list_for_each(tmp, &urb->ep->urb_list) { 1302 if (tmp == &urb->urb_list) 1303 break; 1304 } 1305 if (tmp != &urb->urb_list) 1306 return -EIDRM; 1307 1308 /* Any status except -EINPROGRESS means something already started to 1309 * unlink this URB from the hardware. So there's no more work to do. 1310 */ 1311 if (urb->unlinked) 1312 return -EBUSY; 1313 urb->unlinked = status; 1314 return 0; 1315 } 1316 EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb); 1317 1318 /** 1319 * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue 1320 * @hcd: host controller to which @urb was submitted 1321 * @urb: URB being unlinked 1322 * 1323 * Host controller drivers should call this routine before calling 1324 * usb_hcd_giveback_urb(). The HCD's private spinlock must be held and 1325 * interrupts must be disabled. The actions carried out here are required 1326 * for URB completion. 1327 */ 1328 void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb) 1329 { 1330 /* clear all state linking urb to this dev (and hcd) */ 1331 spin_lock(&hcd_urb_list_lock); 1332 list_del_init(&urb->urb_list); 1333 spin_unlock(&hcd_urb_list_lock); 1334 } 1335 EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep); 1336 1337 /* 1338 * Some usb host controllers can only perform dma using a small SRAM area. 1339 * The usb core itself is however optimized for host controllers that can dma 1340 * using regular system memory - like pci devices doing bus mastering. 1341 * 1342 * To support host controllers with limited dma capabilities we provide dma 1343 * bounce buffers. This feature can be enabled using the HCD_LOCAL_MEM flag. 1344 * For this to work properly the host controller code must first use the 1345 * function dma_declare_coherent_memory() to point out which memory area 1346 * that should be used for dma allocations. 1347 * 1348 * The HCD_LOCAL_MEM flag then tells the usb code to allocate all data for 1349 * dma using dma_alloc_coherent() which in turn allocates from the memory 1350 * area pointed out with dma_declare_coherent_memory(). 1351 * 1352 * So, to summarize... 1353 * 1354 * - We need "local" memory, canonical example being 1355 * a small SRAM on a discrete controller being the 1356 * only memory that the controller can read ... 1357 * (a) "normal" kernel memory is no good, and 1358 * (b) there's not enough to share 1359 * 1360 * - The only *portable* hook for such stuff in the 1361 * DMA framework is dma_declare_coherent_memory() 1362 * 1363 * - So we use that, even though the primary requirement 1364 * is that the memory be "local" (hence addressable 1365 * by that device), not "coherent". 1366 * 1367 */ 1368 1369 static int hcd_alloc_coherent(struct usb_bus *bus, 1370 gfp_t mem_flags, dma_addr_t *dma_handle, 1371 void **vaddr_handle, size_t size, 1372 enum dma_data_direction dir) 1373 { 1374 unsigned char *vaddr; 1375 1376 if (*vaddr_handle == NULL) { 1377 WARN_ON_ONCE(1); 1378 return -EFAULT; 1379 } 1380 1381 vaddr = hcd_buffer_alloc(bus, size + sizeof(vaddr), 1382 mem_flags, dma_handle); 1383 if (!vaddr) 1384 return -ENOMEM; 1385 1386 /* 1387 * Store the virtual address of the buffer at the end 1388 * of the allocated dma buffer. The size of the buffer 1389 * may be uneven so use unaligned functions instead 1390 * of just rounding up. It makes sense to optimize for 1391 * memory footprint over access speed since the amount 1392 * of memory available for dma may be limited. 1393 */ 1394 put_unaligned((unsigned long)*vaddr_handle, 1395 (unsigned long *)(vaddr + size)); 1396 1397 if (dir == DMA_TO_DEVICE) 1398 memcpy(vaddr, *vaddr_handle, size); 1399 1400 *vaddr_handle = vaddr; 1401 return 0; 1402 } 1403 1404 static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle, 1405 void **vaddr_handle, size_t size, 1406 enum dma_data_direction dir) 1407 { 1408 unsigned char *vaddr = *vaddr_handle; 1409 1410 vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size)); 1411 1412 if (dir == DMA_FROM_DEVICE) 1413 memcpy(vaddr, *vaddr_handle, size); 1414 1415 hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle); 1416 1417 *vaddr_handle = vaddr; 1418 *dma_handle = 0; 1419 } 1420 1421 void usb_hcd_unmap_urb_setup_for_dma(struct usb_hcd *hcd, struct urb *urb) 1422 { 1423 if (IS_ENABLED(CONFIG_HAS_DMA) && 1424 (urb->transfer_flags & URB_SETUP_MAP_SINGLE)) 1425 dma_unmap_single(hcd->self.sysdev, 1426 urb->setup_dma, 1427 sizeof(struct usb_ctrlrequest), 1428 DMA_TO_DEVICE); 1429 else if (urb->transfer_flags & URB_SETUP_MAP_LOCAL) 1430 hcd_free_coherent(urb->dev->bus, 1431 &urb->setup_dma, 1432 (void **) &urb->setup_packet, 1433 sizeof(struct usb_ctrlrequest), 1434 DMA_TO_DEVICE); 1435 1436 /* Make it safe to call this routine more than once */ 1437 urb->transfer_flags &= ~(URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL); 1438 } 1439 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_setup_for_dma); 1440 1441 static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb) 1442 { 1443 if (hcd->driver->unmap_urb_for_dma) 1444 hcd->driver->unmap_urb_for_dma(hcd, urb); 1445 else 1446 usb_hcd_unmap_urb_for_dma(hcd, urb); 1447 } 1448 1449 void usb_hcd_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb) 1450 { 1451 enum dma_data_direction dir; 1452 1453 usb_hcd_unmap_urb_setup_for_dma(hcd, urb); 1454 1455 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE; 1456 if (IS_ENABLED(CONFIG_HAS_DMA) && 1457 (urb->transfer_flags & URB_DMA_MAP_SG)) 1458 dma_unmap_sg(hcd->self.sysdev, 1459 urb->sg, 1460 urb->num_sgs, 1461 dir); 1462 else if (IS_ENABLED(CONFIG_HAS_DMA) && 1463 (urb->transfer_flags & URB_DMA_MAP_PAGE)) 1464 dma_unmap_page(hcd->self.sysdev, 1465 urb->transfer_dma, 1466 urb->transfer_buffer_length, 1467 dir); 1468 else if (IS_ENABLED(CONFIG_HAS_DMA) && 1469 (urb->transfer_flags & URB_DMA_MAP_SINGLE)) 1470 dma_unmap_single(hcd->self.sysdev, 1471 urb->transfer_dma, 1472 urb->transfer_buffer_length, 1473 dir); 1474 else if (urb->transfer_flags & URB_MAP_LOCAL) 1475 hcd_free_coherent(urb->dev->bus, 1476 &urb->transfer_dma, 1477 &urb->transfer_buffer, 1478 urb->transfer_buffer_length, 1479 dir); 1480 1481 /* Make it safe to call this routine more than once */ 1482 urb->transfer_flags &= ~(URB_DMA_MAP_SG | URB_DMA_MAP_PAGE | 1483 URB_DMA_MAP_SINGLE | URB_MAP_LOCAL); 1484 } 1485 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_for_dma); 1486 1487 static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb, 1488 gfp_t mem_flags) 1489 { 1490 if (hcd->driver->map_urb_for_dma) 1491 return hcd->driver->map_urb_for_dma(hcd, urb, mem_flags); 1492 else 1493 return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags); 1494 } 1495 1496 int usb_hcd_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb, 1497 gfp_t mem_flags) 1498 { 1499 enum dma_data_direction dir; 1500 int ret = 0; 1501 1502 /* Map the URB's buffers for DMA access. 1503 * Lower level HCD code should use *_dma exclusively, 1504 * unless it uses pio or talks to another transport, 1505 * or uses the provided scatter gather list for bulk. 1506 */ 1507 1508 if (usb_endpoint_xfer_control(&urb->ep->desc)) { 1509 if (hcd->self.uses_pio_for_control) 1510 return ret; 1511 if (IS_ENABLED(CONFIG_HAS_DMA) && hcd->self.uses_dma) { 1512 if (is_vmalloc_addr(urb->setup_packet)) { 1513 WARN_ONCE(1, "setup packet is not dma capable\n"); 1514 return -EAGAIN; 1515 } else if (object_is_on_stack(urb->setup_packet)) { 1516 WARN_ONCE(1, "setup packet is on stack\n"); 1517 return -EAGAIN; 1518 } 1519 1520 urb->setup_dma = dma_map_single( 1521 hcd->self.sysdev, 1522 urb->setup_packet, 1523 sizeof(struct usb_ctrlrequest), 1524 DMA_TO_DEVICE); 1525 if (dma_mapping_error(hcd->self.sysdev, 1526 urb->setup_dma)) 1527 return -EAGAIN; 1528 urb->transfer_flags |= URB_SETUP_MAP_SINGLE; 1529 } else if (hcd->driver->flags & HCD_LOCAL_MEM) { 1530 ret = hcd_alloc_coherent( 1531 urb->dev->bus, mem_flags, 1532 &urb->setup_dma, 1533 (void **)&urb->setup_packet, 1534 sizeof(struct usb_ctrlrequest), 1535 DMA_TO_DEVICE); 1536 if (ret) 1537 return ret; 1538 urb->transfer_flags |= URB_SETUP_MAP_LOCAL; 1539 } 1540 } 1541 1542 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE; 1543 if (urb->transfer_buffer_length != 0 1544 && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) { 1545 if (IS_ENABLED(CONFIG_HAS_DMA) && hcd->self.uses_dma) { 1546 if (urb->num_sgs) { 1547 int n; 1548 1549 /* We don't support sg for isoc transfers ! */ 1550 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) { 1551 WARN_ON(1); 1552 return -EINVAL; 1553 } 1554 1555 n = dma_map_sg( 1556 hcd->self.sysdev, 1557 urb->sg, 1558 urb->num_sgs, 1559 dir); 1560 if (n <= 0) 1561 ret = -EAGAIN; 1562 else 1563 urb->transfer_flags |= URB_DMA_MAP_SG; 1564 urb->num_mapped_sgs = n; 1565 if (n != urb->num_sgs) 1566 urb->transfer_flags |= 1567 URB_DMA_SG_COMBINED; 1568 } else if (urb->sg) { 1569 struct scatterlist *sg = urb->sg; 1570 urb->transfer_dma = dma_map_page( 1571 hcd->self.sysdev, 1572 sg_page(sg), 1573 sg->offset, 1574 urb->transfer_buffer_length, 1575 dir); 1576 if (dma_mapping_error(hcd->self.sysdev, 1577 urb->transfer_dma)) 1578 ret = -EAGAIN; 1579 else 1580 urb->transfer_flags |= URB_DMA_MAP_PAGE; 1581 } else if (is_vmalloc_addr(urb->transfer_buffer)) { 1582 WARN_ONCE(1, "transfer buffer not dma capable\n"); 1583 ret = -EAGAIN; 1584 } else if (object_is_on_stack(urb->transfer_buffer)) { 1585 WARN_ONCE(1, "transfer buffer is on stack\n"); 1586 ret = -EAGAIN; 1587 } else { 1588 urb->transfer_dma = dma_map_single( 1589 hcd->self.sysdev, 1590 urb->transfer_buffer, 1591 urb->transfer_buffer_length, 1592 dir); 1593 if (dma_mapping_error(hcd->self.sysdev, 1594 urb->transfer_dma)) 1595 ret = -EAGAIN; 1596 else 1597 urb->transfer_flags |= URB_DMA_MAP_SINGLE; 1598 } 1599 } else if (hcd->driver->flags & HCD_LOCAL_MEM) { 1600 ret = hcd_alloc_coherent( 1601 urb->dev->bus, mem_flags, 1602 &urb->transfer_dma, 1603 &urb->transfer_buffer, 1604 urb->transfer_buffer_length, 1605 dir); 1606 if (ret == 0) 1607 urb->transfer_flags |= URB_MAP_LOCAL; 1608 } 1609 if (ret && (urb->transfer_flags & (URB_SETUP_MAP_SINGLE | 1610 URB_SETUP_MAP_LOCAL))) 1611 usb_hcd_unmap_urb_for_dma(hcd, urb); 1612 } 1613 return ret; 1614 } 1615 EXPORT_SYMBOL_GPL(usb_hcd_map_urb_for_dma); 1616 1617 /*-------------------------------------------------------------------------*/ 1618 1619 /* may be called in any context with a valid urb->dev usecount 1620 * caller surrenders "ownership" of urb 1621 * expects usb_submit_urb() to have sanity checked and conditioned all 1622 * inputs in the urb 1623 */ 1624 int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags) 1625 { 1626 int status; 1627 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus); 1628 1629 /* increment urb's reference count as part of giving it to the HCD 1630 * (which will control it). HCD guarantees that it either returns 1631 * an error or calls giveback(), but not both. 1632 */ 1633 usb_get_urb(urb); 1634 atomic_inc(&urb->use_count); 1635 atomic_inc(&urb->dev->urbnum); 1636 usbmon_urb_submit(&hcd->self, urb); 1637 1638 /* NOTE requirements on root-hub callers (usbfs and the hub 1639 * driver, for now): URBs' urb->transfer_buffer must be 1640 * valid and usb_buffer_{sync,unmap}() not be needed, since 1641 * they could clobber root hub response data. Also, control 1642 * URBs must be submitted in process context with interrupts 1643 * enabled. 1644 */ 1645 1646 if (is_root_hub(urb->dev)) { 1647 status = rh_urb_enqueue(hcd, urb); 1648 } else { 1649 status = map_urb_for_dma(hcd, urb, mem_flags); 1650 if (likely(status == 0)) { 1651 status = hcd->driver->urb_enqueue(hcd, urb, mem_flags); 1652 if (unlikely(status)) 1653 unmap_urb_for_dma(hcd, urb); 1654 } 1655 } 1656 1657 if (unlikely(status)) { 1658 usbmon_urb_submit_error(&hcd->self, urb, status); 1659 urb->hcpriv = NULL; 1660 INIT_LIST_HEAD(&urb->urb_list); 1661 atomic_dec(&urb->use_count); 1662 atomic_dec(&urb->dev->urbnum); 1663 if (atomic_read(&urb->reject)) 1664 wake_up(&usb_kill_urb_queue); 1665 usb_put_urb(urb); 1666 } 1667 return status; 1668 } 1669 1670 /*-------------------------------------------------------------------------*/ 1671 1672 /* this makes the hcd giveback() the urb more quickly, by kicking it 1673 * off hardware queues (which may take a while) and returning it as 1674 * soon as practical. we've already set up the urb's return status, 1675 * but we can't know if the callback completed already. 1676 */ 1677 static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status) 1678 { 1679 int value; 1680 1681 if (is_root_hub(urb->dev)) 1682 value = usb_rh_urb_dequeue(hcd, urb, status); 1683 else { 1684 1685 /* The only reason an HCD might fail this call is if 1686 * it has not yet fully queued the urb to begin with. 1687 * Such failures should be harmless. */ 1688 value = hcd->driver->urb_dequeue(hcd, urb, status); 1689 } 1690 return value; 1691 } 1692 1693 /* 1694 * called in any context 1695 * 1696 * caller guarantees urb won't be recycled till both unlink() 1697 * and the urb's completion function return 1698 */ 1699 int usb_hcd_unlink_urb (struct urb *urb, int status) 1700 { 1701 struct usb_hcd *hcd; 1702 struct usb_device *udev = urb->dev; 1703 int retval = -EIDRM; 1704 unsigned long flags; 1705 1706 /* Prevent the device and bus from going away while 1707 * the unlink is carried out. If they are already gone 1708 * then urb->use_count must be 0, since disconnected 1709 * devices can't have any active URBs. 1710 */ 1711 spin_lock_irqsave(&hcd_urb_unlink_lock, flags); 1712 if (atomic_read(&urb->use_count) > 0) { 1713 retval = 0; 1714 usb_get_dev(udev); 1715 } 1716 spin_unlock_irqrestore(&hcd_urb_unlink_lock, flags); 1717 if (retval == 0) { 1718 hcd = bus_to_hcd(urb->dev->bus); 1719 retval = unlink1(hcd, urb, status); 1720 if (retval == 0) 1721 retval = -EINPROGRESS; 1722 else if (retval != -EIDRM && retval != -EBUSY) 1723 dev_dbg(&udev->dev, "hcd_unlink_urb %pK fail %d\n", 1724 urb, retval); 1725 usb_put_dev(udev); 1726 } 1727 return retval; 1728 } 1729 1730 /*-------------------------------------------------------------------------*/ 1731 1732 static void __usb_hcd_giveback_urb(struct urb *urb) 1733 { 1734 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus); 1735 struct usb_anchor *anchor = urb->anchor; 1736 int status = urb->unlinked; 1737 unsigned long flags; 1738 1739 urb->hcpriv = NULL; 1740 if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) && 1741 urb->actual_length < urb->transfer_buffer_length && 1742 !status)) 1743 status = -EREMOTEIO; 1744 1745 unmap_urb_for_dma(hcd, urb); 1746 usbmon_urb_complete(&hcd->self, urb, status); 1747 usb_anchor_suspend_wakeups(anchor); 1748 usb_unanchor_urb(urb); 1749 if (likely(status == 0)) 1750 usb_led_activity(USB_LED_EVENT_HOST); 1751 1752 /* pass ownership to the completion handler */ 1753 urb->status = status; 1754 1755 /* 1756 * We disable local IRQs here avoid possible deadlock because 1757 * drivers may call spin_lock() to hold lock which might be 1758 * acquired in one hard interrupt handler. 1759 * 1760 * The local_irq_save()/local_irq_restore() around complete() 1761 * will be removed if current USB drivers have been cleaned up 1762 * and no one may trigger the above deadlock situation when 1763 * running complete() in tasklet. 1764 */ 1765 local_irq_save(flags); 1766 urb->complete(urb); 1767 local_irq_restore(flags); 1768 1769 usb_anchor_resume_wakeups(anchor); 1770 atomic_dec(&urb->use_count); 1771 if (unlikely(atomic_read(&urb->reject))) 1772 wake_up(&usb_kill_urb_queue); 1773 usb_put_urb(urb); 1774 } 1775 1776 static void usb_giveback_urb_bh(unsigned long param) 1777 { 1778 struct giveback_urb_bh *bh = (struct giveback_urb_bh *)param; 1779 struct list_head local_list; 1780 1781 spin_lock_irq(&bh->lock); 1782 bh->running = true; 1783 restart: 1784 list_replace_init(&bh->head, &local_list); 1785 spin_unlock_irq(&bh->lock); 1786 1787 while (!list_empty(&local_list)) { 1788 struct urb *urb; 1789 1790 urb = list_entry(local_list.next, struct urb, urb_list); 1791 list_del_init(&urb->urb_list); 1792 bh->completing_ep = urb->ep; 1793 __usb_hcd_giveback_urb(urb); 1794 bh->completing_ep = NULL; 1795 } 1796 1797 /* check if there are new URBs to giveback */ 1798 spin_lock_irq(&bh->lock); 1799 if (!list_empty(&bh->head)) 1800 goto restart; 1801 bh->running = false; 1802 spin_unlock_irq(&bh->lock); 1803 } 1804 1805 /** 1806 * usb_hcd_giveback_urb - return URB from HCD to device driver 1807 * @hcd: host controller returning the URB 1808 * @urb: urb being returned to the USB device driver. 1809 * @status: completion status code for the URB. 1810 * Context: in_interrupt() 1811 * 1812 * This hands the URB from HCD to its USB device driver, using its 1813 * completion function. The HCD has freed all per-urb resources 1814 * (and is done using urb->hcpriv). It also released all HCD locks; 1815 * the device driver won't cause problems if it frees, modifies, 1816 * or resubmits this URB. 1817 * 1818 * If @urb was unlinked, the value of @status will be overridden by 1819 * @urb->unlinked. Erroneous short transfers are detected in case 1820 * the HCD hasn't checked for them. 1821 */ 1822 void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status) 1823 { 1824 struct giveback_urb_bh *bh; 1825 bool running, high_prio_bh; 1826 1827 /* pass status to tasklet via unlinked */ 1828 if (likely(!urb->unlinked)) 1829 urb->unlinked = status; 1830 1831 if (!hcd_giveback_urb_in_bh(hcd) && !is_root_hub(urb->dev)) { 1832 __usb_hcd_giveback_urb(urb); 1833 return; 1834 } 1835 1836 if (usb_pipeisoc(urb->pipe) || usb_pipeint(urb->pipe)) { 1837 bh = &hcd->high_prio_bh; 1838 high_prio_bh = true; 1839 } else { 1840 bh = &hcd->low_prio_bh; 1841 high_prio_bh = false; 1842 } 1843 1844 spin_lock(&bh->lock); 1845 list_add_tail(&urb->urb_list, &bh->head); 1846 running = bh->running; 1847 spin_unlock(&bh->lock); 1848 1849 if (running) 1850 ; 1851 else if (high_prio_bh) 1852 tasklet_hi_schedule(&bh->bh); 1853 else 1854 tasklet_schedule(&bh->bh); 1855 } 1856 EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb); 1857 1858 /*-------------------------------------------------------------------------*/ 1859 1860 /* Cancel all URBs pending on this endpoint and wait for the endpoint's 1861 * queue to drain completely. The caller must first insure that no more 1862 * URBs can be submitted for this endpoint. 1863 */ 1864 void usb_hcd_flush_endpoint(struct usb_device *udev, 1865 struct usb_host_endpoint *ep) 1866 { 1867 struct usb_hcd *hcd; 1868 struct urb *urb; 1869 1870 if (!ep) 1871 return; 1872 might_sleep(); 1873 hcd = bus_to_hcd(udev->bus); 1874 1875 /* No more submits can occur */ 1876 spin_lock_irq(&hcd_urb_list_lock); 1877 rescan: 1878 list_for_each_entry_reverse(urb, &ep->urb_list, urb_list) { 1879 int is_in; 1880 1881 if (urb->unlinked) 1882 continue; 1883 usb_get_urb (urb); 1884 is_in = usb_urb_dir_in(urb); 1885 spin_unlock(&hcd_urb_list_lock); 1886 1887 /* kick hcd */ 1888 unlink1(hcd, urb, -ESHUTDOWN); 1889 dev_dbg (hcd->self.controller, 1890 "shutdown urb %pK ep%d%s%s\n", 1891 urb, usb_endpoint_num(&ep->desc), 1892 is_in ? "in" : "out", 1893 ({ char *s; 1894 1895 switch (usb_endpoint_type(&ep->desc)) { 1896 case USB_ENDPOINT_XFER_CONTROL: 1897 s = ""; break; 1898 case USB_ENDPOINT_XFER_BULK: 1899 s = "-bulk"; break; 1900 case USB_ENDPOINT_XFER_INT: 1901 s = "-intr"; break; 1902 default: 1903 s = "-iso"; break; 1904 }; 1905 s; 1906 })); 1907 usb_put_urb (urb); 1908 1909 /* list contents may have changed */ 1910 spin_lock(&hcd_urb_list_lock); 1911 goto rescan; 1912 } 1913 spin_unlock_irq(&hcd_urb_list_lock); 1914 1915 /* Wait until the endpoint queue is completely empty */ 1916 while (!list_empty (&ep->urb_list)) { 1917 spin_lock_irq(&hcd_urb_list_lock); 1918 1919 /* The list may have changed while we acquired the spinlock */ 1920 urb = NULL; 1921 if (!list_empty (&ep->urb_list)) { 1922 urb = list_entry (ep->urb_list.prev, struct urb, 1923 urb_list); 1924 usb_get_urb (urb); 1925 } 1926 spin_unlock_irq(&hcd_urb_list_lock); 1927 1928 if (urb) { 1929 usb_kill_urb (urb); 1930 usb_put_urb (urb); 1931 } 1932 } 1933 } 1934 1935 /** 1936 * usb_hcd_alloc_bandwidth - check whether a new bandwidth setting exceeds 1937 * the bus bandwidth 1938 * @udev: target &usb_device 1939 * @new_config: new configuration to install 1940 * @cur_alt: the current alternate interface setting 1941 * @new_alt: alternate interface setting that is being installed 1942 * 1943 * To change configurations, pass in the new configuration in new_config, 1944 * and pass NULL for cur_alt and new_alt. 1945 * 1946 * To reset a device's configuration (put the device in the ADDRESSED state), 1947 * pass in NULL for new_config, cur_alt, and new_alt. 1948 * 1949 * To change alternate interface settings, pass in NULL for new_config, 1950 * pass in the current alternate interface setting in cur_alt, 1951 * and pass in the new alternate interface setting in new_alt. 1952 * 1953 * Return: An error if the requested bandwidth change exceeds the 1954 * bus bandwidth or host controller internal resources. 1955 */ 1956 int usb_hcd_alloc_bandwidth(struct usb_device *udev, 1957 struct usb_host_config *new_config, 1958 struct usb_host_interface *cur_alt, 1959 struct usb_host_interface *new_alt) 1960 { 1961 int num_intfs, i, j; 1962 struct usb_host_interface *alt = NULL; 1963 int ret = 0; 1964 struct usb_hcd *hcd; 1965 struct usb_host_endpoint *ep; 1966 1967 hcd = bus_to_hcd(udev->bus); 1968 if (!hcd->driver->check_bandwidth) 1969 return 0; 1970 1971 /* Configuration is being removed - set configuration 0 */ 1972 if (!new_config && !cur_alt) { 1973 for (i = 1; i < 16; ++i) { 1974 ep = udev->ep_out[i]; 1975 if (ep) 1976 hcd->driver->drop_endpoint(hcd, udev, ep); 1977 ep = udev->ep_in[i]; 1978 if (ep) 1979 hcd->driver->drop_endpoint(hcd, udev, ep); 1980 } 1981 hcd->driver->check_bandwidth(hcd, udev); 1982 return 0; 1983 } 1984 /* Check if the HCD says there's enough bandwidth. Enable all endpoints 1985 * each interface's alt setting 0 and ask the HCD to check the bandwidth 1986 * of the bus. There will always be bandwidth for endpoint 0, so it's 1987 * ok to exclude it. 1988 */ 1989 if (new_config) { 1990 num_intfs = new_config->desc.bNumInterfaces; 1991 /* Remove endpoints (except endpoint 0, which is always on the 1992 * schedule) from the old config from the schedule 1993 */ 1994 for (i = 1; i < 16; ++i) { 1995 ep = udev->ep_out[i]; 1996 if (ep) { 1997 ret = hcd->driver->drop_endpoint(hcd, udev, ep); 1998 if (ret < 0) 1999 goto reset; 2000 } 2001 ep = udev->ep_in[i]; 2002 if (ep) { 2003 ret = hcd->driver->drop_endpoint(hcd, udev, ep); 2004 if (ret < 0) 2005 goto reset; 2006 } 2007 } 2008 for (i = 0; i < num_intfs; ++i) { 2009 struct usb_host_interface *first_alt; 2010 int iface_num; 2011 2012 first_alt = &new_config->intf_cache[i]->altsetting[0]; 2013 iface_num = first_alt->desc.bInterfaceNumber; 2014 /* Set up endpoints for alternate interface setting 0 */ 2015 alt = usb_find_alt_setting(new_config, iface_num, 0); 2016 if (!alt) 2017 /* No alt setting 0? Pick the first setting. */ 2018 alt = first_alt; 2019 2020 for (j = 0; j < alt->desc.bNumEndpoints; j++) { 2021 ret = hcd->driver->add_endpoint(hcd, udev, &alt->endpoint[j]); 2022 if (ret < 0) 2023 goto reset; 2024 } 2025 } 2026 } 2027 if (cur_alt && new_alt) { 2028 struct usb_interface *iface = usb_ifnum_to_if(udev, 2029 cur_alt->desc.bInterfaceNumber); 2030 2031 if (!iface) 2032 return -EINVAL; 2033 if (iface->resetting_device) { 2034 /* 2035 * The USB core just reset the device, so the xHCI host 2036 * and the device will think alt setting 0 is installed. 2037 * However, the USB core will pass in the alternate 2038 * setting installed before the reset as cur_alt. Dig 2039 * out the alternate setting 0 structure, or the first 2040 * alternate setting if a broken device doesn't have alt 2041 * setting 0. 2042 */ 2043 cur_alt = usb_altnum_to_altsetting(iface, 0); 2044 if (!cur_alt) 2045 cur_alt = &iface->altsetting[0]; 2046 } 2047 2048 /* Drop all the endpoints in the current alt setting */ 2049 for (i = 0; i < cur_alt->desc.bNumEndpoints; i++) { 2050 ret = hcd->driver->drop_endpoint(hcd, udev, 2051 &cur_alt->endpoint[i]); 2052 if (ret < 0) 2053 goto reset; 2054 } 2055 /* Add all the endpoints in the new alt setting */ 2056 for (i = 0; i < new_alt->desc.bNumEndpoints; i++) { 2057 ret = hcd->driver->add_endpoint(hcd, udev, 2058 &new_alt->endpoint[i]); 2059 if (ret < 0) 2060 goto reset; 2061 } 2062 } 2063 ret = hcd->driver->check_bandwidth(hcd, udev); 2064 reset: 2065 if (ret < 0) 2066 hcd->driver->reset_bandwidth(hcd, udev); 2067 return ret; 2068 } 2069 2070 /* Disables the endpoint: synchronizes with the hcd to make sure all 2071 * endpoint state is gone from hardware. usb_hcd_flush_endpoint() must 2072 * have been called previously. Use for set_configuration, set_interface, 2073 * driver removal, physical disconnect. 2074 * 2075 * example: a qh stored in ep->hcpriv, holding state related to endpoint 2076 * type, maxpacket size, toggle, halt status, and scheduling. 2077 */ 2078 void usb_hcd_disable_endpoint(struct usb_device *udev, 2079 struct usb_host_endpoint *ep) 2080 { 2081 struct usb_hcd *hcd; 2082 2083 might_sleep(); 2084 hcd = bus_to_hcd(udev->bus); 2085 if (hcd->driver->endpoint_disable) 2086 hcd->driver->endpoint_disable(hcd, ep); 2087 } 2088 2089 /** 2090 * usb_hcd_reset_endpoint - reset host endpoint state 2091 * @udev: USB device. 2092 * @ep: the endpoint to reset. 2093 * 2094 * Resets any host endpoint state such as the toggle bit, sequence 2095 * number and current window. 2096 */ 2097 void usb_hcd_reset_endpoint(struct usb_device *udev, 2098 struct usb_host_endpoint *ep) 2099 { 2100 struct usb_hcd *hcd = bus_to_hcd(udev->bus); 2101 2102 if (hcd->driver->endpoint_reset) 2103 hcd->driver->endpoint_reset(hcd, ep); 2104 else { 2105 int epnum = usb_endpoint_num(&ep->desc); 2106 int is_out = usb_endpoint_dir_out(&ep->desc); 2107 int is_control = usb_endpoint_xfer_control(&ep->desc); 2108 2109 usb_settoggle(udev, epnum, is_out, 0); 2110 if (is_control) 2111 usb_settoggle(udev, epnum, !is_out, 0); 2112 } 2113 } 2114 2115 /** 2116 * usb_alloc_streams - allocate bulk endpoint stream IDs. 2117 * @interface: alternate setting that includes all endpoints. 2118 * @eps: array of endpoints that need streams. 2119 * @num_eps: number of endpoints in the array. 2120 * @num_streams: number of streams to allocate. 2121 * @mem_flags: flags hcd should use to allocate memory. 2122 * 2123 * Sets up a group of bulk endpoints to have @num_streams stream IDs available. 2124 * Drivers may queue multiple transfers to different stream IDs, which may 2125 * complete in a different order than they were queued. 2126 * 2127 * Return: On success, the number of allocated streams. On failure, a negative 2128 * error code. 2129 */ 2130 int usb_alloc_streams(struct usb_interface *interface, 2131 struct usb_host_endpoint **eps, unsigned int num_eps, 2132 unsigned int num_streams, gfp_t mem_flags) 2133 { 2134 struct usb_hcd *hcd; 2135 struct usb_device *dev; 2136 int i, ret; 2137 2138 dev = interface_to_usbdev(interface); 2139 hcd = bus_to_hcd(dev->bus); 2140 if (!hcd->driver->alloc_streams || !hcd->driver->free_streams) 2141 return -EINVAL; 2142 if (dev->speed < USB_SPEED_SUPER) 2143 return -EINVAL; 2144 if (dev->state < USB_STATE_CONFIGURED) 2145 return -ENODEV; 2146 2147 for (i = 0; i < num_eps; i++) { 2148 /* Streams only apply to bulk endpoints. */ 2149 if (!usb_endpoint_xfer_bulk(&eps[i]->desc)) 2150 return -EINVAL; 2151 /* Re-alloc is not allowed */ 2152 if (eps[i]->streams) 2153 return -EINVAL; 2154 } 2155 2156 ret = hcd->driver->alloc_streams(hcd, dev, eps, num_eps, 2157 num_streams, mem_flags); 2158 if (ret < 0) 2159 return ret; 2160 2161 for (i = 0; i < num_eps; i++) 2162 eps[i]->streams = ret; 2163 2164 return ret; 2165 } 2166 EXPORT_SYMBOL_GPL(usb_alloc_streams); 2167 2168 /** 2169 * usb_free_streams - free bulk endpoint stream IDs. 2170 * @interface: alternate setting that includes all endpoints. 2171 * @eps: array of endpoints to remove streams from. 2172 * @num_eps: number of endpoints in the array. 2173 * @mem_flags: flags hcd should use to allocate memory. 2174 * 2175 * Reverts a group of bulk endpoints back to not using stream IDs. 2176 * Can fail if we are given bad arguments, or HCD is broken. 2177 * 2178 * Return: 0 on success. On failure, a negative error code. 2179 */ 2180 int usb_free_streams(struct usb_interface *interface, 2181 struct usb_host_endpoint **eps, unsigned int num_eps, 2182 gfp_t mem_flags) 2183 { 2184 struct usb_hcd *hcd; 2185 struct usb_device *dev; 2186 int i, ret; 2187 2188 dev = interface_to_usbdev(interface); 2189 hcd = bus_to_hcd(dev->bus); 2190 if (dev->speed < USB_SPEED_SUPER) 2191 return -EINVAL; 2192 2193 /* Double-free is not allowed */ 2194 for (i = 0; i < num_eps; i++) 2195 if (!eps[i] || !eps[i]->streams) 2196 return -EINVAL; 2197 2198 ret = hcd->driver->free_streams(hcd, dev, eps, num_eps, mem_flags); 2199 if (ret < 0) 2200 return ret; 2201 2202 for (i = 0; i < num_eps; i++) 2203 eps[i]->streams = 0; 2204 2205 return ret; 2206 } 2207 EXPORT_SYMBOL_GPL(usb_free_streams); 2208 2209 /* Protect against drivers that try to unlink URBs after the device 2210 * is gone, by waiting until all unlinks for @udev are finished. 2211 * Since we don't currently track URBs by device, simply wait until 2212 * nothing is running in the locked region of usb_hcd_unlink_urb(). 2213 */ 2214 void usb_hcd_synchronize_unlinks(struct usb_device *udev) 2215 { 2216 spin_lock_irq(&hcd_urb_unlink_lock); 2217 spin_unlock_irq(&hcd_urb_unlink_lock); 2218 } 2219 2220 /*-------------------------------------------------------------------------*/ 2221 2222 /* called in any context */ 2223 int usb_hcd_get_frame_number (struct usb_device *udev) 2224 { 2225 struct usb_hcd *hcd = bus_to_hcd(udev->bus); 2226 2227 if (!HCD_RH_RUNNING(hcd)) 2228 return -ESHUTDOWN; 2229 return hcd->driver->get_frame_number (hcd); 2230 } 2231 2232 /*-------------------------------------------------------------------------*/ 2233 2234 #ifdef CONFIG_PM 2235 2236 int hcd_bus_suspend(struct usb_device *rhdev, pm_message_t msg) 2237 { 2238 struct usb_hcd *hcd = bus_to_hcd(rhdev->bus); 2239 int status; 2240 int old_state = hcd->state; 2241 2242 dev_dbg(&rhdev->dev, "bus %ssuspend, wakeup %d\n", 2243 (PMSG_IS_AUTO(msg) ? "auto-" : ""), 2244 rhdev->do_remote_wakeup); 2245 if (HCD_DEAD(hcd)) { 2246 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "suspend"); 2247 return 0; 2248 } 2249 2250 if (!hcd->driver->bus_suspend) { 2251 status = -ENOENT; 2252 } else { 2253 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2254 hcd->state = HC_STATE_QUIESCING; 2255 status = hcd->driver->bus_suspend(hcd); 2256 } 2257 if (status == 0) { 2258 usb_set_device_state(rhdev, USB_STATE_SUSPENDED); 2259 hcd->state = HC_STATE_SUSPENDED; 2260 2261 /* Did we race with a root-hub wakeup event? */ 2262 if (rhdev->do_remote_wakeup) { 2263 char buffer[6]; 2264 2265 status = hcd->driver->hub_status_data(hcd, buffer); 2266 if (status != 0) { 2267 dev_dbg(&rhdev->dev, "suspend raced with wakeup event\n"); 2268 hcd_bus_resume(rhdev, PMSG_AUTO_RESUME); 2269 status = -EBUSY; 2270 } 2271 } 2272 } else { 2273 spin_lock_irq(&hcd_root_hub_lock); 2274 if (!HCD_DEAD(hcd)) { 2275 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2276 hcd->state = old_state; 2277 } 2278 spin_unlock_irq(&hcd_root_hub_lock); 2279 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n", 2280 "suspend", status); 2281 } 2282 return status; 2283 } 2284 2285 int hcd_bus_resume(struct usb_device *rhdev, pm_message_t msg) 2286 { 2287 struct usb_hcd *hcd = bus_to_hcd(rhdev->bus); 2288 int status; 2289 int old_state = hcd->state; 2290 2291 dev_dbg(&rhdev->dev, "usb %sresume\n", 2292 (PMSG_IS_AUTO(msg) ? "auto-" : "")); 2293 if (HCD_DEAD(hcd)) { 2294 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "resume"); 2295 return 0; 2296 } 2297 if (!hcd->driver->bus_resume) 2298 return -ENOENT; 2299 if (HCD_RH_RUNNING(hcd)) 2300 return 0; 2301 2302 hcd->state = HC_STATE_RESUMING; 2303 status = hcd->driver->bus_resume(hcd); 2304 clear_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags); 2305 if (status == 0) { 2306 struct usb_device *udev; 2307 int port1; 2308 2309 spin_lock_irq(&hcd_root_hub_lock); 2310 if (!HCD_DEAD(hcd)) { 2311 usb_set_device_state(rhdev, rhdev->actconfig 2312 ? USB_STATE_CONFIGURED 2313 : USB_STATE_ADDRESS); 2314 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2315 hcd->state = HC_STATE_RUNNING; 2316 } 2317 spin_unlock_irq(&hcd_root_hub_lock); 2318 2319 /* 2320 * Check whether any of the enabled ports on the root hub are 2321 * unsuspended. If they are then a TRSMRCY delay is needed 2322 * (this is what the USB-2 spec calls a "global resume"). 2323 * Otherwise we can skip the delay. 2324 */ 2325 usb_hub_for_each_child(rhdev, port1, udev) { 2326 if (udev->state != USB_STATE_NOTATTACHED && 2327 !udev->port_is_suspended) { 2328 usleep_range(10000, 11000); /* TRSMRCY */ 2329 break; 2330 } 2331 } 2332 } else { 2333 hcd->state = old_state; 2334 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n", 2335 "resume", status); 2336 if (status != -ESHUTDOWN) 2337 usb_hc_died(hcd); 2338 } 2339 return status; 2340 } 2341 2342 /* Workqueue routine for root-hub remote wakeup */ 2343 static void hcd_resume_work(struct work_struct *work) 2344 { 2345 struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work); 2346 struct usb_device *udev = hcd->self.root_hub; 2347 2348 usb_remote_wakeup(udev); 2349 } 2350 2351 /** 2352 * usb_hcd_resume_root_hub - called by HCD to resume its root hub 2353 * @hcd: host controller for this root hub 2354 * 2355 * The USB host controller calls this function when its root hub is 2356 * suspended (with the remote wakeup feature enabled) and a remote 2357 * wakeup request is received. The routine submits a workqueue request 2358 * to resume the root hub (that is, manage its downstream ports again). 2359 */ 2360 void usb_hcd_resume_root_hub (struct usb_hcd *hcd) 2361 { 2362 unsigned long flags; 2363 2364 spin_lock_irqsave (&hcd_root_hub_lock, flags); 2365 if (hcd->rh_registered) { 2366 set_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags); 2367 queue_work(pm_wq, &hcd->wakeup_work); 2368 } 2369 spin_unlock_irqrestore (&hcd_root_hub_lock, flags); 2370 } 2371 EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub); 2372 2373 #endif /* CONFIG_PM */ 2374 2375 /*-------------------------------------------------------------------------*/ 2376 2377 #ifdef CONFIG_USB_OTG 2378 2379 /** 2380 * usb_bus_start_enum - start immediate enumeration (for OTG) 2381 * @bus: the bus (must use hcd framework) 2382 * @port_num: 1-based number of port; usually bus->otg_port 2383 * Context: in_interrupt() 2384 * 2385 * Starts enumeration, with an immediate reset followed later by 2386 * hub_wq identifying and possibly configuring the device. 2387 * This is needed by OTG controller drivers, where it helps meet 2388 * HNP protocol timing requirements for starting a port reset. 2389 * 2390 * Return: 0 if successful. 2391 */ 2392 int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num) 2393 { 2394 struct usb_hcd *hcd; 2395 int status = -EOPNOTSUPP; 2396 2397 /* NOTE: since HNP can't start by grabbing the bus's address0_sem, 2398 * boards with root hubs hooked up to internal devices (instead of 2399 * just the OTG port) may need more attention to resetting... 2400 */ 2401 hcd = bus_to_hcd(bus); 2402 if (port_num && hcd->driver->start_port_reset) 2403 status = hcd->driver->start_port_reset(hcd, port_num); 2404 2405 /* allocate hub_wq shortly after (first) root port reset finishes; 2406 * it may issue others, until at least 50 msecs have passed. 2407 */ 2408 if (status == 0) 2409 mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10)); 2410 return status; 2411 } 2412 EXPORT_SYMBOL_GPL(usb_bus_start_enum); 2413 2414 #endif 2415 2416 /*-------------------------------------------------------------------------*/ 2417 2418 /** 2419 * usb_hcd_irq - hook IRQs to HCD framework (bus glue) 2420 * @irq: the IRQ being raised 2421 * @__hcd: pointer to the HCD whose IRQ is being signaled 2422 * 2423 * If the controller isn't HALTed, calls the driver's irq handler. 2424 * Checks whether the controller is now dead. 2425 * 2426 * Return: %IRQ_HANDLED if the IRQ was handled. %IRQ_NONE otherwise. 2427 */ 2428 irqreturn_t usb_hcd_irq (int irq, void *__hcd) 2429 { 2430 struct usb_hcd *hcd = __hcd; 2431 irqreturn_t rc; 2432 2433 if (unlikely(HCD_DEAD(hcd) || !HCD_HW_ACCESSIBLE(hcd))) 2434 rc = IRQ_NONE; 2435 else if (hcd->driver->irq(hcd) == IRQ_NONE) 2436 rc = IRQ_NONE; 2437 else 2438 rc = IRQ_HANDLED; 2439 2440 return rc; 2441 } 2442 EXPORT_SYMBOL_GPL(usb_hcd_irq); 2443 2444 /*-------------------------------------------------------------------------*/ 2445 2446 /** 2447 * usb_hc_died - report abnormal shutdown of a host controller (bus glue) 2448 * @hcd: pointer to the HCD representing the controller 2449 * 2450 * This is called by bus glue to report a USB host controller that died 2451 * while operations may still have been pending. It's called automatically 2452 * by the PCI glue, so only glue for non-PCI busses should need to call it. 2453 * 2454 * Only call this function with the primary HCD. 2455 */ 2456 void usb_hc_died (struct usb_hcd *hcd) 2457 { 2458 unsigned long flags; 2459 2460 dev_err (hcd->self.controller, "HC died; cleaning up\n"); 2461 2462 spin_lock_irqsave (&hcd_root_hub_lock, flags); 2463 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2464 set_bit(HCD_FLAG_DEAD, &hcd->flags); 2465 if (hcd->rh_registered) { 2466 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2467 2468 /* make hub_wq clean up old urbs and devices */ 2469 usb_set_device_state (hcd->self.root_hub, 2470 USB_STATE_NOTATTACHED); 2471 usb_kick_hub_wq(hcd->self.root_hub); 2472 } 2473 if (usb_hcd_is_primary_hcd(hcd) && hcd->shared_hcd) { 2474 hcd = hcd->shared_hcd; 2475 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2476 set_bit(HCD_FLAG_DEAD, &hcd->flags); 2477 if (hcd->rh_registered) { 2478 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2479 2480 /* make hub_wq clean up old urbs and devices */ 2481 usb_set_device_state(hcd->self.root_hub, 2482 USB_STATE_NOTATTACHED); 2483 usb_kick_hub_wq(hcd->self.root_hub); 2484 } 2485 } 2486 spin_unlock_irqrestore (&hcd_root_hub_lock, flags); 2487 /* Make sure that the other roothub is also deallocated. */ 2488 } 2489 EXPORT_SYMBOL_GPL (usb_hc_died); 2490 2491 /*-------------------------------------------------------------------------*/ 2492 2493 static void init_giveback_urb_bh(struct giveback_urb_bh *bh) 2494 { 2495 2496 spin_lock_init(&bh->lock); 2497 INIT_LIST_HEAD(&bh->head); 2498 tasklet_init(&bh->bh, usb_giveback_urb_bh, (unsigned long)bh); 2499 } 2500 2501 struct usb_hcd *__usb_create_hcd(const struct hc_driver *driver, 2502 struct device *sysdev, struct device *dev, const char *bus_name, 2503 struct usb_hcd *primary_hcd) 2504 { 2505 struct usb_hcd *hcd; 2506 2507 hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL); 2508 if (!hcd) 2509 return NULL; 2510 if (primary_hcd == NULL) { 2511 hcd->address0_mutex = kmalloc(sizeof(*hcd->address0_mutex), 2512 GFP_KERNEL); 2513 if (!hcd->address0_mutex) { 2514 kfree(hcd); 2515 dev_dbg(dev, "hcd address0 mutex alloc failed\n"); 2516 return NULL; 2517 } 2518 mutex_init(hcd->address0_mutex); 2519 hcd->bandwidth_mutex = kmalloc(sizeof(*hcd->bandwidth_mutex), 2520 GFP_KERNEL); 2521 if (!hcd->bandwidth_mutex) { 2522 kfree(hcd->address0_mutex); 2523 kfree(hcd); 2524 dev_dbg(dev, "hcd bandwidth mutex alloc failed\n"); 2525 return NULL; 2526 } 2527 mutex_init(hcd->bandwidth_mutex); 2528 dev_set_drvdata(dev, hcd); 2529 } else { 2530 mutex_lock(&usb_port_peer_mutex); 2531 hcd->address0_mutex = primary_hcd->address0_mutex; 2532 hcd->bandwidth_mutex = primary_hcd->bandwidth_mutex; 2533 hcd->primary_hcd = primary_hcd; 2534 primary_hcd->primary_hcd = primary_hcd; 2535 hcd->shared_hcd = primary_hcd; 2536 primary_hcd->shared_hcd = hcd; 2537 mutex_unlock(&usb_port_peer_mutex); 2538 } 2539 2540 kref_init(&hcd->kref); 2541 2542 usb_bus_init(&hcd->self); 2543 hcd->self.controller = dev; 2544 hcd->self.sysdev = sysdev; 2545 hcd->self.bus_name = bus_name; 2546 hcd->self.uses_dma = (sysdev->dma_mask != NULL); 2547 2548 setup_timer(&hcd->rh_timer, rh_timer_func, (unsigned long)hcd); 2549 #ifdef CONFIG_PM 2550 INIT_WORK(&hcd->wakeup_work, hcd_resume_work); 2551 #endif 2552 2553 hcd->driver = driver; 2554 hcd->speed = driver->flags & HCD_MASK; 2555 hcd->product_desc = (driver->product_desc) ? driver->product_desc : 2556 "USB Host Controller"; 2557 return hcd; 2558 } 2559 EXPORT_SYMBOL_GPL(__usb_create_hcd); 2560 2561 /** 2562 * usb_create_shared_hcd - create and initialize an HCD structure 2563 * @driver: HC driver that will use this hcd 2564 * @dev: device for this HC, stored in hcd->self.controller 2565 * @bus_name: value to store in hcd->self.bus_name 2566 * @primary_hcd: a pointer to the usb_hcd structure that is sharing the 2567 * PCI device. Only allocate certain resources for the primary HCD 2568 * Context: !in_interrupt() 2569 * 2570 * Allocate a struct usb_hcd, with extra space at the end for the 2571 * HC driver's private data. Initialize the generic members of the 2572 * hcd structure. 2573 * 2574 * Return: On success, a pointer to the created and initialized HCD structure. 2575 * On failure (e.g. if memory is unavailable), %NULL. 2576 */ 2577 struct usb_hcd *usb_create_shared_hcd(const struct hc_driver *driver, 2578 struct device *dev, const char *bus_name, 2579 struct usb_hcd *primary_hcd) 2580 { 2581 return __usb_create_hcd(driver, dev, dev, bus_name, primary_hcd); 2582 } 2583 EXPORT_SYMBOL_GPL(usb_create_shared_hcd); 2584 2585 /** 2586 * usb_create_hcd - create and initialize an HCD structure 2587 * @driver: HC driver that will use this hcd 2588 * @dev: device for this HC, stored in hcd->self.controller 2589 * @bus_name: value to store in hcd->self.bus_name 2590 * Context: !in_interrupt() 2591 * 2592 * Allocate a struct usb_hcd, with extra space at the end for the 2593 * HC driver's private data. Initialize the generic members of the 2594 * hcd structure. 2595 * 2596 * Return: On success, a pointer to the created and initialized HCD 2597 * structure. On failure (e.g. if memory is unavailable), %NULL. 2598 */ 2599 struct usb_hcd *usb_create_hcd(const struct hc_driver *driver, 2600 struct device *dev, const char *bus_name) 2601 { 2602 return __usb_create_hcd(driver, dev, dev, bus_name, NULL); 2603 } 2604 EXPORT_SYMBOL_GPL(usb_create_hcd); 2605 2606 /* 2607 * Roothubs that share one PCI device must also share the bandwidth mutex. 2608 * Don't deallocate the bandwidth_mutex until the last shared usb_hcd is 2609 * deallocated. 2610 * 2611 * Make sure to deallocate the bandwidth_mutex only when the last HCD is 2612 * freed. When hcd_release() is called for either hcd in a peer set, 2613 * invalidate the peer's ->shared_hcd and ->primary_hcd pointers. 2614 */ 2615 static void hcd_release(struct kref *kref) 2616 { 2617 struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref); 2618 2619 mutex_lock(&usb_port_peer_mutex); 2620 if (hcd->shared_hcd) { 2621 struct usb_hcd *peer = hcd->shared_hcd; 2622 2623 peer->shared_hcd = NULL; 2624 peer->primary_hcd = NULL; 2625 } else { 2626 kfree(hcd->address0_mutex); 2627 kfree(hcd->bandwidth_mutex); 2628 } 2629 mutex_unlock(&usb_port_peer_mutex); 2630 kfree(hcd); 2631 } 2632 2633 struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd) 2634 { 2635 if (hcd) 2636 kref_get (&hcd->kref); 2637 return hcd; 2638 } 2639 EXPORT_SYMBOL_GPL(usb_get_hcd); 2640 2641 void usb_put_hcd (struct usb_hcd *hcd) 2642 { 2643 if (hcd) 2644 kref_put (&hcd->kref, hcd_release); 2645 } 2646 EXPORT_SYMBOL_GPL(usb_put_hcd); 2647 2648 int usb_hcd_is_primary_hcd(struct usb_hcd *hcd) 2649 { 2650 if (!hcd->primary_hcd) 2651 return 1; 2652 return hcd == hcd->primary_hcd; 2653 } 2654 EXPORT_SYMBOL_GPL(usb_hcd_is_primary_hcd); 2655 2656 int usb_hcd_find_raw_port_number(struct usb_hcd *hcd, int port1) 2657 { 2658 if (!hcd->driver->find_raw_port_number) 2659 return port1; 2660 2661 return hcd->driver->find_raw_port_number(hcd, port1); 2662 } 2663 2664 static int usb_hcd_request_irqs(struct usb_hcd *hcd, 2665 unsigned int irqnum, unsigned long irqflags) 2666 { 2667 int retval; 2668 2669 if (hcd->driver->irq) { 2670 2671 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d", 2672 hcd->driver->description, hcd->self.busnum); 2673 retval = request_irq(irqnum, &usb_hcd_irq, irqflags, 2674 hcd->irq_descr, hcd); 2675 if (retval != 0) { 2676 dev_err(hcd->self.controller, 2677 "request interrupt %d failed\n", 2678 irqnum); 2679 return retval; 2680 } 2681 hcd->irq = irqnum; 2682 dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum, 2683 (hcd->driver->flags & HCD_MEMORY) ? 2684 "io mem" : "io base", 2685 (unsigned long long)hcd->rsrc_start); 2686 } else { 2687 hcd->irq = 0; 2688 if (hcd->rsrc_start) 2689 dev_info(hcd->self.controller, "%s 0x%08llx\n", 2690 (hcd->driver->flags & HCD_MEMORY) ? 2691 "io mem" : "io base", 2692 (unsigned long long)hcd->rsrc_start); 2693 } 2694 return 0; 2695 } 2696 2697 /* 2698 * Before we free this root hub, flush in-flight peering attempts 2699 * and disable peer lookups 2700 */ 2701 static void usb_put_invalidate_rhdev(struct usb_hcd *hcd) 2702 { 2703 struct usb_device *rhdev; 2704 2705 mutex_lock(&usb_port_peer_mutex); 2706 rhdev = hcd->self.root_hub; 2707 hcd->self.root_hub = NULL; 2708 mutex_unlock(&usb_port_peer_mutex); 2709 usb_put_dev(rhdev); 2710 } 2711 2712 /** 2713 * usb_add_hcd - finish generic HCD structure initialization and register 2714 * @hcd: the usb_hcd structure to initialize 2715 * @irqnum: Interrupt line to allocate 2716 * @irqflags: Interrupt type flags 2717 * 2718 * Finish the remaining parts of generic HCD initialization: allocate the 2719 * buffers of consistent memory, register the bus, request the IRQ line, 2720 * and call the driver's reset() and start() routines. 2721 */ 2722 int usb_add_hcd(struct usb_hcd *hcd, 2723 unsigned int irqnum, unsigned long irqflags) 2724 { 2725 int retval; 2726 struct usb_device *rhdev; 2727 2728 if (IS_ENABLED(CONFIG_USB_PHY) && !hcd->usb_phy) { 2729 struct usb_phy *phy = usb_get_phy_dev(hcd->self.sysdev, 0); 2730 2731 if (IS_ERR(phy)) { 2732 retval = PTR_ERR(phy); 2733 if (retval == -EPROBE_DEFER) 2734 return retval; 2735 } else { 2736 retval = usb_phy_init(phy); 2737 if (retval) { 2738 usb_put_phy(phy); 2739 return retval; 2740 } 2741 hcd->usb_phy = phy; 2742 hcd->remove_phy = 1; 2743 } 2744 } 2745 2746 if (IS_ENABLED(CONFIG_GENERIC_PHY) && !hcd->phy) { 2747 struct phy *phy = phy_get(hcd->self.sysdev, "usb"); 2748 2749 if (IS_ERR(phy)) { 2750 retval = PTR_ERR(phy); 2751 if (retval == -EPROBE_DEFER) 2752 goto err_phy; 2753 } else { 2754 retval = phy_init(phy); 2755 if (retval) { 2756 phy_put(phy); 2757 goto err_phy; 2758 } 2759 retval = phy_power_on(phy); 2760 if (retval) { 2761 phy_exit(phy); 2762 phy_put(phy); 2763 goto err_phy; 2764 } 2765 hcd->phy = phy; 2766 hcd->remove_phy = 1; 2767 } 2768 } 2769 2770 dev_info(hcd->self.controller, "%s\n", hcd->product_desc); 2771 2772 /* Keep old behaviour if authorized_default is not in [0, 1]. */ 2773 if (authorized_default < 0 || authorized_default > 1) { 2774 if (hcd->wireless) 2775 clear_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags); 2776 else 2777 set_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags); 2778 } else { 2779 if (authorized_default) 2780 set_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags); 2781 else 2782 clear_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags); 2783 } 2784 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 2785 2786 /* per default all interfaces are authorized */ 2787 set_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags); 2788 2789 /* HC is in reset state, but accessible. Now do the one-time init, 2790 * bottom up so that hcds can customize the root hubs before hub_wq 2791 * starts talking to them. (Note, bus id is assigned early too.) 2792 */ 2793 retval = hcd_buffer_create(hcd); 2794 if (retval != 0) { 2795 dev_dbg(hcd->self.sysdev, "pool alloc failed\n"); 2796 goto err_create_buf; 2797 } 2798 2799 retval = usb_register_bus(&hcd->self); 2800 if (retval < 0) 2801 goto err_register_bus; 2802 2803 rhdev = usb_alloc_dev(NULL, &hcd->self, 0); 2804 if (rhdev == NULL) { 2805 dev_err(hcd->self.sysdev, "unable to allocate root hub\n"); 2806 retval = -ENOMEM; 2807 goto err_allocate_root_hub; 2808 } 2809 mutex_lock(&usb_port_peer_mutex); 2810 hcd->self.root_hub = rhdev; 2811 mutex_unlock(&usb_port_peer_mutex); 2812 2813 switch (hcd->speed) { 2814 case HCD_USB11: 2815 rhdev->speed = USB_SPEED_FULL; 2816 break; 2817 case HCD_USB2: 2818 rhdev->speed = USB_SPEED_HIGH; 2819 break; 2820 case HCD_USB25: 2821 rhdev->speed = USB_SPEED_WIRELESS; 2822 break; 2823 case HCD_USB3: 2824 rhdev->speed = USB_SPEED_SUPER; 2825 break; 2826 case HCD_USB31: 2827 rhdev->speed = USB_SPEED_SUPER_PLUS; 2828 break; 2829 default: 2830 retval = -EINVAL; 2831 goto err_set_rh_speed; 2832 } 2833 2834 /* wakeup flag init defaults to "everything works" for root hubs, 2835 * but drivers can override it in reset() if needed, along with 2836 * recording the overall controller's system wakeup capability. 2837 */ 2838 device_set_wakeup_capable(&rhdev->dev, 1); 2839 2840 /* HCD_FLAG_RH_RUNNING doesn't matter until the root hub is 2841 * registered. But since the controller can die at any time, 2842 * let's initialize the flag before touching the hardware. 2843 */ 2844 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2845 2846 /* "reset" is misnamed; its role is now one-time init. the controller 2847 * should already have been reset (and boot firmware kicked off etc). 2848 */ 2849 if (hcd->driver->reset) { 2850 retval = hcd->driver->reset(hcd); 2851 if (retval < 0) { 2852 dev_err(hcd->self.controller, "can't setup: %d\n", 2853 retval); 2854 goto err_hcd_driver_setup; 2855 } 2856 } 2857 hcd->rh_pollable = 1; 2858 2859 /* NOTE: root hub and controller capabilities may not be the same */ 2860 if (device_can_wakeup(hcd->self.controller) 2861 && device_can_wakeup(&hcd->self.root_hub->dev)) 2862 dev_dbg(hcd->self.controller, "supports USB remote wakeup\n"); 2863 2864 /* initialize tasklets */ 2865 init_giveback_urb_bh(&hcd->high_prio_bh); 2866 init_giveback_urb_bh(&hcd->low_prio_bh); 2867 2868 /* enable irqs just before we start the controller, 2869 * if the BIOS provides legacy PCI irqs. 2870 */ 2871 if (usb_hcd_is_primary_hcd(hcd) && irqnum) { 2872 retval = usb_hcd_request_irqs(hcd, irqnum, irqflags); 2873 if (retval) 2874 goto err_request_irq; 2875 } 2876 2877 hcd->state = HC_STATE_RUNNING; 2878 retval = hcd->driver->start(hcd); 2879 if (retval < 0) { 2880 dev_err(hcd->self.controller, "startup error %d\n", retval); 2881 goto err_hcd_driver_start; 2882 } 2883 2884 /* starting here, usbcore will pay attention to this root hub */ 2885 retval = register_root_hub(hcd); 2886 if (retval != 0) 2887 goto err_register_root_hub; 2888 2889 retval = sysfs_create_group(&rhdev->dev.kobj, &usb_bus_attr_group); 2890 if (retval < 0) { 2891 printk(KERN_ERR "Cannot register USB bus sysfs attributes: %d\n", 2892 retval); 2893 goto error_create_attr_group; 2894 } 2895 if (hcd->uses_new_polling && HCD_POLL_RH(hcd)) 2896 usb_hcd_poll_rh_status(hcd); 2897 2898 return retval; 2899 2900 error_create_attr_group: 2901 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2902 if (HC_IS_RUNNING(hcd->state)) 2903 hcd->state = HC_STATE_QUIESCING; 2904 spin_lock_irq(&hcd_root_hub_lock); 2905 hcd->rh_registered = 0; 2906 spin_unlock_irq(&hcd_root_hub_lock); 2907 2908 #ifdef CONFIG_PM 2909 cancel_work_sync(&hcd->wakeup_work); 2910 #endif 2911 mutex_lock(&usb_bus_idr_lock); 2912 usb_disconnect(&rhdev); /* Sets rhdev to NULL */ 2913 mutex_unlock(&usb_bus_idr_lock); 2914 err_register_root_hub: 2915 hcd->rh_pollable = 0; 2916 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2917 del_timer_sync(&hcd->rh_timer); 2918 hcd->driver->stop(hcd); 2919 hcd->state = HC_STATE_HALT; 2920 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2921 del_timer_sync(&hcd->rh_timer); 2922 err_hcd_driver_start: 2923 if (usb_hcd_is_primary_hcd(hcd) && hcd->irq > 0) 2924 free_irq(irqnum, hcd); 2925 err_request_irq: 2926 err_hcd_driver_setup: 2927 err_set_rh_speed: 2928 usb_put_invalidate_rhdev(hcd); 2929 err_allocate_root_hub: 2930 usb_deregister_bus(&hcd->self); 2931 err_register_bus: 2932 hcd_buffer_destroy(hcd); 2933 err_create_buf: 2934 if (IS_ENABLED(CONFIG_GENERIC_PHY) && hcd->remove_phy && hcd->phy) { 2935 phy_power_off(hcd->phy); 2936 phy_exit(hcd->phy); 2937 phy_put(hcd->phy); 2938 hcd->phy = NULL; 2939 } 2940 err_phy: 2941 if (hcd->remove_phy && hcd->usb_phy) { 2942 usb_phy_shutdown(hcd->usb_phy); 2943 usb_put_phy(hcd->usb_phy); 2944 hcd->usb_phy = NULL; 2945 } 2946 return retval; 2947 } 2948 EXPORT_SYMBOL_GPL(usb_add_hcd); 2949 2950 /** 2951 * usb_remove_hcd - shutdown processing for generic HCDs 2952 * @hcd: the usb_hcd structure to remove 2953 * Context: !in_interrupt() 2954 * 2955 * Disconnects the root hub, then reverses the effects of usb_add_hcd(), 2956 * invoking the HCD's stop() method. 2957 */ 2958 void usb_remove_hcd(struct usb_hcd *hcd) 2959 { 2960 struct usb_device *rhdev = hcd->self.root_hub; 2961 2962 dev_info(hcd->self.controller, "remove, state %x\n", hcd->state); 2963 2964 usb_get_dev(rhdev); 2965 sysfs_remove_group(&rhdev->dev.kobj, &usb_bus_attr_group); 2966 2967 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2968 if (HC_IS_RUNNING (hcd->state)) 2969 hcd->state = HC_STATE_QUIESCING; 2970 2971 dev_dbg(hcd->self.controller, "roothub graceful disconnect\n"); 2972 spin_lock_irq (&hcd_root_hub_lock); 2973 hcd->rh_registered = 0; 2974 spin_unlock_irq (&hcd_root_hub_lock); 2975 2976 #ifdef CONFIG_PM 2977 cancel_work_sync(&hcd->wakeup_work); 2978 #endif 2979 2980 mutex_lock(&usb_bus_idr_lock); 2981 usb_disconnect(&rhdev); /* Sets rhdev to NULL */ 2982 mutex_unlock(&usb_bus_idr_lock); 2983 2984 /* 2985 * tasklet_kill() isn't needed here because: 2986 * - driver's disconnect() called from usb_disconnect() should 2987 * make sure its URBs are completed during the disconnect() 2988 * callback 2989 * 2990 * - it is too late to run complete() here since driver may have 2991 * been removed already now 2992 */ 2993 2994 /* Prevent any more root-hub status calls from the timer. 2995 * The HCD might still restart the timer (if a port status change 2996 * interrupt occurs), but usb_hcd_poll_rh_status() won't invoke 2997 * the hub_status_data() callback. 2998 */ 2999 hcd->rh_pollable = 0; 3000 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 3001 del_timer_sync(&hcd->rh_timer); 3002 3003 hcd->driver->stop(hcd); 3004 hcd->state = HC_STATE_HALT; 3005 3006 /* In case the HCD restarted the timer, stop it again. */ 3007 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 3008 del_timer_sync(&hcd->rh_timer); 3009 3010 if (usb_hcd_is_primary_hcd(hcd)) { 3011 if (hcd->irq > 0) 3012 free_irq(hcd->irq, hcd); 3013 } 3014 3015 usb_deregister_bus(&hcd->self); 3016 hcd_buffer_destroy(hcd); 3017 3018 if (IS_ENABLED(CONFIG_GENERIC_PHY) && hcd->remove_phy && hcd->phy) { 3019 phy_power_off(hcd->phy); 3020 phy_exit(hcd->phy); 3021 phy_put(hcd->phy); 3022 hcd->phy = NULL; 3023 } 3024 if (hcd->remove_phy && hcd->usb_phy) { 3025 usb_phy_shutdown(hcd->usb_phy); 3026 usb_put_phy(hcd->usb_phy); 3027 hcd->usb_phy = NULL; 3028 } 3029 3030 usb_put_invalidate_rhdev(hcd); 3031 hcd->flags = 0; 3032 } 3033 EXPORT_SYMBOL_GPL(usb_remove_hcd); 3034 3035 void 3036 usb_hcd_platform_shutdown(struct platform_device *dev) 3037 { 3038 struct usb_hcd *hcd = platform_get_drvdata(dev); 3039 3040 if (hcd->driver->shutdown) 3041 hcd->driver->shutdown(hcd); 3042 } 3043 EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown); 3044 3045 /*-------------------------------------------------------------------------*/ 3046 3047 #if IS_ENABLED(CONFIG_USB_MON) 3048 3049 const struct usb_mon_operations *mon_ops; 3050 3051 /* 3052 * The registration is unlocked. 3053 * We do it this way because we do not want to lock in hot paths. 3054 * 3055 * Notice that the code is minimally error-proof. Because usbmon needs 3056 * symbols from usbcore, usbcore gets referenced and cannot be unloaded first. 3057 */ 3058 3059 int usb_mon_register(const struct usb_mon_operations *ops) 3060 { 3061 3062 if (mon_ops) 3063 return -EBUSY; 3064 3065 mon_ops = ops; 3066 mb(); 3067 return 0; 3068 } 3069 EXPORT_SYMBOL_GPL (usb_mon_register); 3070 3071 void usb_mon_deregister (void) 3072 { 3073 3074 if (mon_ops == NULL) { 3075 printk(KERN_ERR "USB: monitor was not registered\n"); 3076 return; 3077 } 3078 mon_ops = NULL; 3079 mb(); 3080 } 3081 EXPORT_SYMBOL_GPL (usb_mon_deregister); 3082 3083 #endif /* CONFIG_USB_MON || CONFIG_USB_MON_MODULE */ 3084