1 /* 2 * (C) Copyright Linus Torvalds 1999 3 * (C) Copyright Johannes Erdfelt 1999-2001 4 * (C) Copyright Andreas Gal 1999 5 * (C) Copyright Gregory P. Smith 1999 6 * (C) Copyright Deti Fliegl 1999 7 * (C) Copyright Randy Dunlap 2000 8 * (C) Copyright David Brownell 2000-2002 9 * 10 * This program is free software; you can redistribute it and/or modify it 11 * under the terms of the GNU General Public License as published by the 12 * Free Software Foundation; either version 2 of the License, or (at your 13 * option) any later version. 14 * 15 * This program is distributed in the hope that it will be useful, but 16 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 17 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 18 * for more details. 19 * 20 * You should have received a copy of the GNU General Public License 21 * along with this program; if not, write to the Free Software Foundation, 22 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 23 */ 24 25 #include <linux/module.h> 26 #include <linux/version.h> 27 #include <linux/kernel.h> 28 #include <linux/slab.h> 29 #include <linux/completion.h> 30 #include <linux/utsname.h> 31 #include <linux/mm.h> 32 #include <asm/io.h> 33 #include <linux/device.h> 34 #include <linux/dma-mapping.h> 35 #include <linux/mutex.h> 36 #include <asm/irq.h> 37 #include <asm/byteorder.h> 38 #include <asm/unaligned.h> 39 #include <linux/platform_device.h> 40 #include <linux/workqueue.h> 41 42 #include <linux/usb.h> 43 44 #include "usb.h" 45 #include "hcd.h" 46 #include "hub.h" 47 48 49 /*-------------------------------------------------------------------------*/ 50 51 /* 52 * USB Host Controller Driver framework 53 * 54 * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing 55 * HCD-specific behaviors/bugs. 56 * 57 * This does error checks, tracks devices and urbs, and delegates to a 58 * "hc_driver" only for code (and data) that really needs to know about 59 * hardware differences. That includes root hub registers, i/o queues, 60 * and so on ... but as little else as possible. 61 * 62 * Shared code includes most of the "root hub" code (these are emulated, 63 * though each HC's hardware works differently) and PCI glue, plus request 64 * tracking overhead. The HCD code should only block on spinlocks or on 65 * hardware handshaking; blocking on software events (such as other kernel 66 * threads releasing resources, or completing actions) is all generic. 67 * 68 * Happens the USB 2.0 spec says this would be invisible inside the "USBD", 69 * and includes mostly a "HCDI" (HCD Interface) along with some APIs used 70 * only by the hub driver ... and that neither should be seen or used by 71 * usb client device drivers. 72 * 73 * Contributors of ideas or unattributed patches include: David Brownell, 74 * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ... 75 * 76 * HISTORY: 77 * 2002-02-21 Pull in most of the usb_bus support from usb.c; some 78 * associated cleanup. "usb_hcd" still != "usb_bus". 79 * 2001-12-12 Initial patch version for Linux 2.5.1 kernel. 80 */ 81 82 /*-------------------------------------------------------------------------*/ 83 84 /* Keep track of which host controller drivers are loaded */ 85 unsigned long usb_hcds_loaded; 86 EXPORT_SYMBOL_GPL(usb_hcds_loaded); 87 88 /* host controllers we manage */ 89 LIST_HEAD (usb_bus_list); 90 EXPORT_SYMBOL_GPL (usb_bus_list); 91 92 /* used when allocating bus numbers */ 93 #define USB_MAXBUS 64 94 struct usb_busmap { 95 unsigned long busmap [USB_MAXBUS / (8*sizeof (unsigned long))]; 96 }; 97 static struct usb_busmap busmap; 98 99 /* used when updating list of hcds */ 100 DEFINE_MUTEX(usb_bus_list_lock); /* exported only for usbfs */ 101 EXPORT_SYMBOL_GPL (usb_bus_list_lock); 102 103 /* used for controlling access to virtual root hubs */ 104 static DEFINE_SPINLOCK(hcd_root_hub_lock); 105 106 /* used when updating an endpoint's URB list */ 107 static DEFINE_SPINLOCK(hcd_urb_list_lock); 108 109 /* wait queue for synchronous unlinks */ 110 DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue); 111 112 static inline int is_root_hub(struct usb_device *udev) 113 { 114 return (udev->parent == NULL); 115 } 116 117 /*-------------------------------------------------------------------------*/ 118 119 /* 120 * Sharable chunks of root hub code. 121 */ 122 123 /*-------------------------------------------------------------------------*/ 124 125 #define KERNEL_REL ((LINUX_VERSION_CODE >> 16) & 0x0ff) 126 #define KERNEL_VER ((LINUX_VERSION_CODE >> 8) & 0x0ff) 127 128 /* usb 2.0 root hub device descriptor */ 129 static const u8 usb2_rh_dev_descriptor [18] = { 130 0x12, /* __u8 bLength; */ 131 0x01, /* __u8 bDescriptorType; Device */ 132 0x00, 0x02, /* __le16 bcdUSB; v2.0 */ 133 134 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */ 135 0x00, /* __u8 bDeviceSubClass; */ 136 0x00, /* __u8 bDeviceProtocol; [ usb 2.0 no TT ] */ 137 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */ 138 139 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation */ 140 0x02, 0x00, /* __le16 idProduct; device 0x0002 */ 141 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */ 142 143 0x03, /* __u8 iManufacturer; */ 144 0x02, /* __u8 iProduct; */ 145 0x01, /* __u8 iSerialNumber; */ 146 0x01 /* __u8 bNumConfigurations; */ 147 }; 148 149 /* no usb 2.0 root hub "device qualifier" descriptor: one speed only */ 150 151 /* usb 1.1 root hub device descriptor */ 152 static const u8 usb11_rh_dev_descriptor [18] = { 153 0x12, /* __u8 bLength; */ 154 0x01, /* __u8 bDescriptorType; Device */ 155 0x10, 0x01, /* __le16 bcdUSB; v1.1 */ 156 157 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */ 158 0x00, /* __u8 bDeviceSubClass; */ 159 0x00, /* __u8 bDeviceProtocol; [ low/full speeds only ] */ 160 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */ 161 162 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation */ 163 0x01, 0x00, /* __le16 idProduct; device 0x0001 */ 164 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */ 165 166 0x03, /* __u8 iManufacturer; */ 167 0x02, /* __u8 iProduct; */ 168 0x01, /* __u8 iSerialNumber; */ 169 0x01 /* __u8 bNumConfigurations; */ 170 }; 171 172 173 /*-------------------------------------------------------------------------*/ 174 175 /* Configuration descriptors for our root hubs */ 176 177 static const u8 fs_rh_config_descriptor [] = { 178 179 /* one configuration */ 180 0x09, /* __u8 bLength; */ 181 0x02, /* __u8 bDescriptorType; Configuration */ 182 0x19, 0x00, /* __le16 wTotalLength; */ 183 0x01, /* __u8 bNumInterfaces; (1) */ 184 0x01, /* __u8 bConfigurationValue; */ 185 0x00, /* __u8 iConfiguration; */ 186 0xc0, /* __u8 bmAttributes; 187 Bit 7: must be set, 188 6: Self-powered, 189 5: Remote wakeup, 190 4..0: resvd */ 191 0x00, /* __u8 MaxPower; */ 192 193 /* USB 1.1: 194 * USB 2.0, single TT organization (mandatory): 195 * one interface, protocol 0 196 * 197 * USB 2.0, multiple TT organization (optional): 198 * two interfaces, protocols 1 (like single TT) 199 * and 2 (multiple TT mode) ... config is 200 * sometimes settable 201 * NOT IMPLEMENTED 202 */ 203 204 /* one interface */ 205 0x09, /* __u8 if_bLength; */ 206 0x04, /* __u8 if_bDescriptorType; Interface */ 207 0x00, /* __u8 if_bInterfaceNumber; */ 208 0x00, /* __u8 if_bAlternateSetting; */ 209 0x01, /* __u8 if_bNumEndpoints; */ 210 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */ 211 0x00, /* __u8 if_bInterfaceSubClass; */ 212 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */ 213 0x00, /* __u8 if_iInterface; */ 214 215 /* one endpoint (status change endpoint) */ 216 0x07, /* __u8 ep_bLength; */ 217 0x05, /* __u8 ep_bDescriptorType; Endpoint */ 218 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */ 219 0x03, /* __u8 ep_bmAttributes; Interrupt */ 220 0x02, 0x00, /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */ 221 0xff /* __u8 ep_bInterval; (255ms -- usb 2.0 spec) */ 222 }; 223 224 static const u8 hs_rh_config_descriptor [] = { 225 226 /* one configuration */ 227 0x09, /* __u8 bLength; */ 228 0x02, /* __u8 bDescriptorType; Configuration */ 229 0x19, 0x00, /* __le16 wTotalLength; */ 230 0x01, /* __u8 bNumInterfaces; (1) */ 231 0x01, /* __u8 bConfigurationValue; */ 232 0x00, /* __u8 iConfiguration; */ 233 0xc0, /* __u8 bmAttributes; 234 Bit 7: must be set, 235 6: Self-powered, 236 5: Remote wakeup, 237 4..0: resvd */ 238 0x00, /* __u8 MaxPower; */ 239 240 /* USB 1.1: 241 * USB 2.0, single TT organization (mandatory): 242 * one interface, protocol 0 243 * 244 * USB 2.0, multiple TT organization (optional): 245 * two interfaces, protocols 1 (like single TT) 246 * and 2 (multiple TT mode) ... config is 247 * sometimes settable 248 * NOT IMPLEMENTED 249 */ 250 251 /* one interface */ 252 0x09, /* __u8 if_bLength; */ 253 0x04, /* __u8 if_bDescriptorType; Interface */ 254 0x00, /* __u8 if_bInterfaceNumber; */ 255 0x00, /* __u8 if_bAlternateSetting; */ 256 0x01, /* __u8 if_bNumEndpoints; */ 257 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */ 258 0x00, /* __u8 if_bInterfaceSubClass; */ 259 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */ 260 0x00, /* __u8 if_iInterface; */ 261 262 /* one endpoint (status change endpoint) */ 263 0x07, /* __u8 ep_bLength; */ 264 0x05, /* __u8 ep_bDescriptorType; Endpoint */ 265 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */ 266 0x03, /* __u8 ep_bmAttributes; Interrupt */ 267 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) 268 * see hub.c:hub_configure() for details. */ 269 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00, 270 0x0c /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */ 271 }; 272 273 /*-------------------------------------------------------------------------*/ 274 275 /* 276 * helper routine for returning string descriptors in UTF-16LE 277 * input can actually be ISO-8859-1; ASCII is its 7-bit subset 278 */ 279 static int ascii2utf (char *s, u8 *utf, int utfmax) 280 { 281 int retval; 282 283 for (retval = 0; *s && utfmax > 1; utfmax -= 2, retval += 2) { 284 *utf++ = *s++; 285 *utf++ = 0; 286 } 287 if (utfmax > 0) { 288 *utf = *s; 289 ++retval; 290 } 291 return retval; 292 } 293 294 /* 295 * rh_string - provides manufacturer, product and serial strings for root hub 296 * @id: the string ID number (1: serial number, 2: product, 3: vendor) 297 * @hcd: the host controller for this root hub 298 * @data: return packet in UTF-16 LE 299 * @len: length of the return packet 300 * 301 * Produces either a manufacturer, product or serial number string for the 302 * virtual root hub device. 303 */ 304 static int rh_string ( 305 int id, 306 struct usb_hcd *hcd, 307 u8 *data, 308 int len 309 ) { 310 char buf [100]; 311 312 // language ids 313 if (id == 0) { 314 buf[0] = 4; buf[1] = 3; /* 4 bytes string data */ 315 buf[2] = 0x09; buf[3] = 0x04; /* MSFT-speak for "en-us" */ 316 len = min (len, 4); 317 memcpy (data, buf, len); 318 return len; 319 320 // serial number 321 } else if (id == 1) { 322 strlcpy (buf, hcd->self.bus_name, sizeof buf); 323 324 // product description 325 } else if (id == 2) { 326 strlcpy (buf, hcd->product_desc, sizeof buf); 327 328 // id 3 == vendor description 329 } else if (id == 3) { 330 snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname, 331 init_utsname()->release, hcd->driver->description); 332 333 // unsupported IDs --> "protocol stall" 334 } else 335 return -EPIPE; 336 337 switch (len) { /* All cases fall through */ 338 default: 339 len = 2 + ascii2utf (buf, data + 2, len - 2); 340 case 2: 341 data [1] = 3; /* type == string */ 342 case 1: 343 data [0] = 2 * (strlen (buf) + 1); 344 case 0: 345 ; /* Compiler wants a statement here */ 346 } 347 return len; 348 } 349 350 351 /* Root hub control transfers execute synchronously */ 352 static int rh_call_control (struct usb_hcd *hcd, struct urb *urb) 353 { 354 struct usb_ctrlrequest *cmd; 355 u16 typeReq, wValue, wIndex, wLength; 356 u8 *ubuf = urb->transfer_buffer; 357 u8 tbuf [sizeof (struct usb_hub_descriptor)] 358 __attribute__((aligned(4))); 359 const u8 *bufp = tbuf; 360 int len = 0; 361 int status; 362 int n; 363 u8 patch_wakeup = 0; 364 u8 patch_protocol = 0; 365 366 might_sleep(); 367 368 spin_lock_irq(&hcd_root_hub_lock); 369 status = usb_hcd_link_urb_to_ep(hcd, urb); 370 spin_unlock_irq(&hcd_root_hub_lock); 371 if (status) 372 return status; 373 urb->hcpriv = hcd; /* Indicate it's queued */ 374 375 cmd = (struct usb_ctrlrequest *) urb->setup_packet; 376 typeReq = (cmd->bRequestType << 8) | cmd->bRequest; 377 wValue = le16_to_cpu (cmd->wValue); 378 wIndex = le16_to_cpu (cmd->wIndex); 379 wLength = le16_to_cpu (cmd->wLength); 380 381 if (wLength > urb->transfer_buffer_length) 382 goto error; 383 384 urb->actual_length = 0; 385 switch (typeReq) { 386 387 /* DEVICE REQUESTS */ 388 389 /* The root hub's remote wakeup enable bit is implemented using 390 * driver model wakeup flags. If this system supports wakeup 391 * through USB, userspace may change the default "allow wakeup" 392 * policy through sysfs or these calls. 393 * 394 * Most root hubs support wakeup from downstream devices, for 395 * runtime power management (disabling USB clocks and reducing 396 * VBUS power usage). However, not all of them do so; silicon, 397 * board, and BIOS bugs here are not uncommon, so these can't 398 * be treated quite like external hubs. 399 * 400 * Likewise, not all root hubs will pass wakeup events upstream, 401 * to wake up the whole system. So don't assume root hub and 402 * controller capabilities are identical. 403 */ 404 405 case DeviceRequest | USB_REQ_GET_STATUS: 406 tbuf [0] = (device_may_wakeup(&hcd->self.root_hub->dev) 407 << USB_DEVICE_REMOTE_WAKEUP) 408 | (1 << USB_DEVICE_SELF_POWERED); 409 tbuf [1] = 0; 410 len = 2; 411 break; 412 case DeviceOutRequest | USB_REQ_CLEAR_FEATURE: 413 if (wValue == USB_DEVICE_REMOTE_WAKEUP) 414 device_set_wakeup_enable(&hcd->self.root_hub->dev, 0); 415 else 416 goto error; 417 break; 418 case DeviceOutRequest | USB_REQ_SET_FEATURE: 419 if (device_can_wakeup(&hcd->self.root_hub->dev) 420 && wValue == USB_DEVICE_REMOTE_WAKEUP) 421 device_set_wakeup_enable(&hcd->self.root_hub->dev, 1); 422 else 423 goto error; 424 break; 425 case DeviceRequest | USB_REQ_GET_CONFIGURATION: 426 tbuf [0] = 1; 427 len = 1; 428 /* FALLTHROUGH */ 429 case DeviceOutRequest | USB_REQ_SET_CONFIGURATION: 430 break; 431 case DeviceRequest | USB_REQ_GET_DESCRIPTOR: 432 switch (wValue & 0xff00) { 433 case USB_DT_DEVICE << 8: 434 if (hcd->driver->flags & HCD_USB2) 435 bufp = usb2_rh_dev_descriptor; 436 else if (hcd->driver->flags & HCD_USB11) 437 bufp = usb11_rh_dev_descriptor; 438 else 439 goto error; 440 len = 18; 441 if (hcd->has_tt) 442 patch_protocol = 1; 443 break; 444 case USB_DT_CONFIG << 8: 445 if (hcd->driver->flags & HCD_USB2) { 446 bufp = hs_rh_config_descriptor; 447 len = sizeof hs_rh_config_descriptor; 448 } else { 449 bufp = fs_rh_config_descriptor; 450 len = sizeof fs_rh_config_descriptor; 451 } 452 if (device_can_wakeup(&hcd->self.root_hub->dev)) 453 patch_wakeup = 1; 454 break; 455 case USB_DT_STRING << 8: 456 n = rh_string (wValue & 0xff, hcd, ubuf, wLength); 457 if (n < 0) 458 goto error; 459 urb->actual_length = n; 460 break; 461 default: 462 goto error; 463 } 464 break; 465 case DeviceRequest | USB_REQ_GET_INTERFACE: 466 tbuf [0] = 0; 467 len = 1; 468 /* FALLTHROUGH */ 469 case DeviceOutRequest | USB_REQ_SET_INTERFACE: 470 break; 471 case DeviceOutRequest | USB_REQ_SET_ADDRESS: 472 // wValue == urb->dev->devaddr 473 dev_dbg (hcd->self.controller, "root hub device address %d\n", 474 wValue); 475 break; 476 477 /* INTERFACE REQUESTS (no defined feature/status flags) */ 478 479 /* ENDPOINT REQUESTS */ 480 481 case EndpointRequest | USB_REQ_GET_STATUS: 482 // ENDPOINT_HALT flag 483 tbuf [0] = 0; 484 tbuf [1] = 0; 485 len = 2; 486 /* FALLTHROUGH */ 487 case EndpointOutRequest | USB_REQ_CLEAR_FEATURE: 488 case EndpointOutRequest | USB_REQ_SET_FEATURE: 489 dev_dbg (hcd->self.controller, "no endpoint features yet\n"); 490 break; 491 492 /* CLASS REQUESTS (and errors) */ 493 494 default: 495 /* non-generic request */ 496 switch (typeReq) { 497 case GetHubStatus: 498 case GetPortStatus: 499 len = 4; 500 break; 501 case GetHubDescriptor: 502 len = sizeof (struct usb_hub_descriptor); 503 break; 504 } 505 status = hcd->driver->hub_control (hcd, 506 typeReq, wValue, wIndex, 507 tbuf, wLength); 508 break; 509 error: 510 /* "protocol stall" on error */ 511 status = -EPIPE; 512 } 513 514 if (status) { 515 len = 0; 516 if (status != -EPIPE) { 517 dev_dbg (hcd->self.controller, 518 "CTRL: TypeReq=0x%x val=0x%x " 519 "idx=0x%x len=%d ==> %d\n", 520 typeReq, wValue, wIndex, 521 wLength, status); 522 } 523 } 524 if (len) { 525 if (urb->transfer_buffer_length < len) 526 len = urb->transfer_buffer_length; 527 urb->actual_length = len; 528 // always USB_DIR_IN, toward host 529 memcpy (ubuf, bufp, len); 530 531 /* report whether RH hardware supports remote wakeup */ 532 if (patch_wakeup && 533 len > offsetof (struct usb_config_descriptor, 534 bmAttributes)) 535 ((struct usb_config_descriptor *)ubuf)->bmAttributes 536 |= USB_CONFIG_ATT_WAKEUP; 537 538 /* report whether RH hardware has an integrated TT */ 539 if (patch_protocol && 540 len > offsetof(struct usb_device_descriptor, 541 bDeviceProtocol)) 542 ((struct usb_device_descriptor *) ubuf)-> 543 bDeviceProtocol = 1; 544 } 545 546 /* any errors get returned through the urb completion */ 547 spin_lock_irq(&hcd_root_hub_lock); 548 usb_hcd_unlink_urb_from_ep(hcd, urb); 549 550 /* This peculiar use of spinlocks echoes what real HC drivers do. 551 * Avoiding calls to local_irq_disable/enable makes the code 552 * RT-friendly. 553 */ 554 spin_unlock(&hcd_root_hub_lock); 555 usb_hcd_giveback_urb(hcd, urb, status); 556 spin_lock(&hcd_root_hub_lock); 557 558 spin_unlock_irq(&hcd_root_hub_lock); 559 return 0; 560 } 561 562 /*-------------------------------------------------------------------------*/ 563 564 /* 565 * Root Hub interrupt transfers are polled using a timer if the 566 * driver requests it; otherwise the driver is responsible for 567 * calling usb_hcd_poll_rh_status() when an event occurs. 568 * 569 * Completions are called in_interrupt(), but they may or may not 570 * be in_irq(). 571 */ 572 void usb_hcd_poll_rh_status(struct usb_hcd *hcd) 573 { 574 struct urb *urb; 575 int length; 576 unsigned long flags; 577 char buffer[4]; /* Any root hubs with > 31 ports? */ 578 579 if (unlikely(!hcd->rh_registered)) 580 return; 581 if (!hcd->uses_new_polling && !hcd->status_urb) 582 return; 583 584 length = hcd->driver->hub_status_data(hcd, buffer); 585 if (length > 0) { 586 587 /* try to complete the status urb */ 588 spin_lock_irqsave(&hcd_root_hub_lock, flags); 589 urb = hcd->status_urb; 590 if (urb) { 591 hcd->poll_pending = 0; 592 hcd->status_urb = NULL; 593 urb->actual_length = length; 594 memcpy(urb->transfer_buffer, buffer, length); 595 596 usb_hcd_unlink_urb_from_ep(hcd, urb); 597 spin_unlock(&hcd_root_hub_lock); 598 usb_hcd_giveback_urb(hcd, urb, 0); 599 spin_lock(&hcd_root_hub_lock); 600 } else { 601 length = 0; 602 hcd->poll_pending = 1; 603 } 604 spin_unlock_irqrestore(&hcd_root_hub_lock, flags); 605 } 606 607 /* The USB 2.0 spec says 256 ms. This is close enough and won't 608 * exceed that limit if HZ is 100. The math is more clunky than 609 * maybe expected, this is to make sure that all timers for USB devices 610 * fire at the same time to give the CPU a break inbetween */ 611 if (hcd->uses_new_polling ? hcd->poll_rh : 612 (length == 0 && hcd->status_urb != NULL)) 613 mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4)); 614 } 615 EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status); 616 617 /* timer callback */ 618 static void rh_timer_func (unsigned long _hcd) 619 { 620 usb_hcd_poll_rh_status((struct usb_hcd *) _hcd); 621 } 622 623 /*-------------------------------------------------------------------------*/ 624 625 static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb) 626 { 627 int retval; 628 unsigned long flags; 629 int len = 1 + (urb->dev->maxchild / 8); 630 631 spin_lock_irqsave (&hcd_root_hub_lock, flags); 632 if (hcd->status_urb || urb->transfer_buffer_length < len) { 633 dev_dbg (hcd->self.controller, "not queuing rh status urb\n"); 634 retval = -EINVAL; 635 goto done; 636 } 637 638 retval = usb_hcd_link_urb_to_ep(hcd, urb); 639 if (retval) 640 goto done; 641 642 hcd->status_urb = urb; 643 urb->hcpriv = hcd; /* indicate it's queued */ 644 if (!hcd->uses_new_polling) 645 mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4)); 646 647 /* If a status change has already occurred, report it ASAP */ 648 else if (hcd->poll_pending) 649 mod_timer(&hcd->rh_timer, jiffies); 650 retval = 0; 651 done: 652 spin_unlock_irqrestore (&hcd_root_hub_lock, flags); 653 return retval; 654 } 655 656 static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb) 657 { 658 if (usb_endpoint_xfer_int(&urb->ep->desc)) 659 return rh_queue_status (hcd, urb); 660 if (usb_endpoint_xfer_control(&urb->ep->desc)) 661 return rh_call_control (hcd, urb); 662 return -EINVAL; 663 } 664 665 /*-------------------------------------------------------------------------*/ 666 667 /* Unlinks of root-hub control URBs are legal, but they don't do anything 668 * since these URBs always execute synchronously. 669 */ 670 static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status) 671 { 672 unsigned long flags; 673 int rc; 674 675 spin_lock_irqsave(&hcd_root_hub_lock, flags); 676 rc = usb_hcd_check_unlink_urb(hcd, urb, status); 677 if (rc) 678 goto done; 679 680 if (usb_endpoint_num(&urb->ep->desc) == 0) { /* Control URB */ 681 ; /* Do nothing */ 682 683 } else { /* Status URB */ 684 if (!hcd->uses_new_polling) 685 del_timer (&hcd->rh_timer); 686 if (urb == hcd->status_urb) { 687 hcd->status_urb = NULL; 688 usb_hcd_unlink_urb_from_ep(hcd, urb); 689 690 spin_unlock(&hcd_root_hub_lock); 691 usb_hcd_giveback_urb(hcd, urb, status); 692 spin_lock(&hcd_root_hub_lock); 693 } 694 } 695 done: 696 spin_unlock_irqrestore(&hcd_root_hub_lock, flags); 697 return rc; 698 } 699 700 701 702 /* 703 * Show & store the current value of authorized_default 704 */ 705 static ssize_t usb_host_authorized_default_show(struct device *dev, 706 struct device_attribute *attr, 707 char *buf) 708 { 709 struct usb_device *rh_usb_dev = to_usb_device(dev); 710 struct usb_bus *usb_bus = rh_usb_dev->bus; 711 struct usb_hcd *usb_hcd; 712 713 if (usb_bus == NULL) /* FIXME: not sure if this case is possible */ 714 return -ENODEV; 715 usb_hcd = bus_to_hcd(usb_bus); 716 return snprintf(buf, PAGE_SIZE, "%u\n", usb_hcd->authorized_default); 717 } 718 719 static ssize_t usb_host_authorized_default_store(struct device *dev, 720 struct device_attribute *attr, 721 const char *buf, size_t size) 722 { 723 ssize_t result; 724 unsigned val; 725 struct usb_device *rh_usb_dev = to_usb_device(dev); 726 struct usb_bus *usb_bus = rh_usb_dev->bus; 727 struct usb_hcd *usb_hcd; 728 729 if (usb_bus == NULL) /* FIXME: not sure if this case is possible */ 730 return -ENODEV; 731 usb_hcd = bus_to_hcd(usb_bus); 732 result = sscanf(buf, "%u\n", &val); 733 if (result == 1) { 734 usb_hcd->authorized_default = val? 1 : 0; 735 result = size; 736 } 737 else 738 result = -EINVAL; 739 return result; 740 } 741 742 static DEVICE_ATTR(authorized_default, 0644, 743 usb_host_authorized_default_show, 744 usb_host_authorized_default_store); 745 746 747 /* Group all the USB bus attributes */ 748 static struct attribute *usb_bus_attrs[] = { 749 &dev_attr_authorized_default.attr, 750 NULL, 751 }; 752 753 static struct attribute_group usb_bus_attr_group = { 754 .name = NULL, /* we want them in the same directory */ 755 .attrs = usb_bus_attrs, 756 }; 757 758 759 760 /*-------------------------------------------------------------------------*/ 761 762 static struct class *usb_host_class; 763 764 int usb_host_init(void) 765 { 766 int retval = 0; 767 768 usb_host_class = class_create(THIS_MODULE, "usb_host"); 769 if (IS_ERR(usb_host_class)) 770 retval = PTR_ERR(usb_host_class); 771 return retval; 772 } 773 774 void usb_host_cleanup(void) 775 { 776 class_destroy(usb_host_class); 777 } 778 779 /** 780 * usb_bus_init - shared initialization code 781 * @bus: the bus structure being initialized 782 * 783 * This code is used to initialize a usb_bus structure, memory for which is 784 * separately managed. 785 */ 786 static void usb_bus_init (struct usb_bus *bus) 787 { 788 memset (&bus->devmap, 0, sizeof(struct usb_devmap)); 789 790 bus->devnum_next = 1; 791 792 bus->root_hub = NULL; 793 bus->busnum = -1; 794 bus->bandwidth_allocated = 0; 795 bus->bandwidth_int_reqs = 0; 796 bus->bandwidth_isoc_reqs = 0; 797 798 INIT_LIST_HEAD (&bus->bus_list); 799 } 800 801 /*-------------------------------------------------------------------------*/ 802 803 /** 804 * usb_register_bus - registers the USB host controller with the usb core 805 * @bus: pointer to the bus to register 806 * Context: !in_interrupt() 807 * 808 * Assigns a bus number, and links the controller into usbcore data 809 * structures so that it can be seen by scanning the bus list. 810 */ 811 static int usb_register_bus(struct usb_bus *bus) 812 { 813 int result = -E2BIG; 814 int busnum; 815 816 mutex_lock(&usb_bus_list_lock); 817 busnum = find_next_zero_bit (busmap.busmap, USB_MAXBUS, 1); 818 if (busnum >= USB_MAXBUS) { 819 printk (KERN_ERR "%s: too many buses\n", usbcore_name); 820 goto error_find_busnum; 821 } 822 set_bit (busnum, busmap.busmap); 823 bus->busnum = busnum; 824 825 bus->dev = device_create(usb_host_class, bus->controller, MKDEV(0, 0), 826 bus, "usb_host%d", busnum); 827 result = PTR_ERR(bus->dev); 828 if (IS_ERR(bus->dev)) 829 goto error_create_class_dev; 830 831 /* Add it to the local list of buses */ 832 list_add (&bus->bus_list, &usb_bus_list); 833 mutex_unlock(&usb_bus_list_lock); 834 835 usb_notify_add_bus(bus); 836 837 dev_info (bus->controller, "new USB bus registered, assigned bus " 838 "number %d\n", bus->busnum); 839 return 0; 840 841 error_create_class_dev: 842 clear_bit(busnum, busmap.busmap); 843 error_find_busnum: 844 mutex_unlock(&usb_bus_list_lock); 845 return result; 846 } 847 848 /** 849 * usb_deregister_bus - deregisters the USB host controller 850 * @bus: pointer to the bus to deregister 851 * Context: !in_interrupt() 852 * 853 * Recycles the bus number, and unlinks the controller from usbcore data 854 * structures so that it won't be seen by scanning the bus list. 855 */ 856 static void usb_deregister_bus (struct usb_bus *bus) 857 { 858 dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum); 859 860 /* 861 * NOTE: make sure that all the devices are removed by the 862 * controller code, as well as having it call this when cleaning 863 * itself up 864 */ 865 mutex_lock(&usb_bus_list_lock); 866 list_del (&bus->bus_list); 867 mutex_unlock(&usb_bus_list_lock); 868 869 usb_notify_remove_bus(bus); 870 871 clear_bit (bus->busnum, busmap.busmap); 872 873 device_unregister(bus->dev); 874 } 875 876 /** 877 * register_root_hub - called by usb_add_hcd() to register a root hub 878 * @hcd: host controller for this root hub 879 * 880 * This function registers the root hub with the USB subsystem. It sets up 881 * the device properly in the device tree and then calls usb_new_device() 882 * to register the usb device. It also assigns the root hub's USB address 883 * (always 1). 884 */ 885 static int register_root_hub(struct usb_hcd *hcd) 886 { 887 struct device *parent_dev = hcd->self.controller; 888 struct usb_device *usb_dev = hcd->self.root_hub; 889 const int devnum = 1; 890 int retval; 891 892 usb_dev->devnum = devnum; 893 usb_dev->bus->devnum_next = devnum + 1; 894 memset (&usb_dev->bus->devmap.devicemap, 0, 895 sizeof usb_dev->bus->devmap.devicemap); 896 set_bit (devnum, usb_dev->bus->devmap.devicemap); 897 usb_set_device_state(usb_dev, USB_STATE_ADDRESS); 898 899 mutex_lock(&usb_bus_list_lock); 900 901 usb_dev->ep0.desc.wMaxPacketSize = __constant_cpu_to_le16(64); 902 retval = usb_get_device_descriptor(usb_dev, USB_DT_DEVICE_SIZE); 903 if (retval != sizeof usb_dev->descriptor) { 904 mutex_unlock(&usb_bus_list_lock); 905 dev_dbg (parent_dev, "can't read %s device descriptor %d\n", 906 dev_name(&usb_dev->dev), retval); 907 return (retval < 0) ? retval : -EMSGSIZE; 908 } 909 910 retval = usb_new_device (usb_dev); 911 if (retval) { 912 dev_err (parent_dev, "can't register root hub for %s, %d\n", 913 dev_name(&usb_dev->dev), retval); 914 } 915 mutex_unlock(&usb_bus_list_lock); 916 917 if (retval == 0) { 918 spin_lock_irq (&hcd_root_hub_lock); 919 hcd->rh_registered = 1; 920 spin_unlock_irq (&hcd_root_hub_lock); 921 922 /* Did the HC die before the root hub was registered? */ 923 if (hcd->state == HC_STATE_HALT) 924 usb_hc_died (hcd); /* This time clean up */ 925 } 926 927 return retval; 928 } 929 930 931 /*-------------------------------------------------------------------------*/ 932 933 /** 934 * usb_calc_bus_time - approximate periodic transaction time in nanoseconds 935 * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH} 936 * @is_input: true iff the transaction sends data to the host 937 * @isoc: true for isochronous transactions, false for interrupt ones 938 * @bytecount: how many bytes in the transaction. 939 * 940 * Returns approximate bus time in nanoseconds for a periodic transaction. 941 * See USB 2.0 spec section 5.11.3; only periodic transfers need to be 942 * scheduled in software, this function is only used for such scheduling. 943 */ 944 long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount) 945 { 946 unsigned long tmp; 947 948 switch (speed) { 949 case USB_SPEED_LOW: /* INTR only */ 950 if (is_input) { 951 tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L; 952 return (64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp); 953 } else { 954 tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L; 955 return (64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp); 956 } 957 case USB_SPEED_FULL: /* ISOC or INTR */ 958 if (isoc) { 959 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L; 960 return (((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp); 961 } else { 962 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L; 963 return (9107L + BW_HOST_DELAY + tmp); 964 } 965 case USB_SPEED_HIGH: /* ISOC or INTR */ 966 // FIXME adjust for input vs output 967 if (isoc) 968 tmp = HS_NSECS_ISO (bytecount); 969 else 970 tmp = HS_NSECS (bytecount); 971 return tmp; 972 default: 973 pr_debug ("%s: bogus device speed!\n", usbcore_name); 974 return -1; 975 } 976 } 977 EXPORT_SYMBOL_GPL(usb_calc_bus_time); 978 979 980 /*-------------------------------------------------------------------------*/ 981 982 /* 983 * Generic HC operations. 984 */ 985 986 /*-------------------------------------------------------------------------*/ 987 988 /** 989 * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue 990 * @hcd: host controller to which @urb was submitted 991 * @urb: URB being submitted 992 * 993 * Host controller drivers should call this routine in their enqueue() 994 * method. The HCD's private spinlock must be held and interrupts must 995 * be disabled. The actions carried out here are required for URB 996 * submission, as well as for endpoint shutdown and for usb_kill_urb. 997 * 998 * Returns 0 for no error, otherwise a negative error code (in which case 999 * the enqueue() method must fail). If no error occurs but enqueue() fails 1000 * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing 1001 * the private spinlock and returning. 1002 */ 1003 int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb) 1004 { 1005 int rc = 0; 1006 1007 spin_lock(&hcd_urb_list_lock); 1008 1009 /* Check that the URB isn't being killed */ 1010 if (unlikely(urb->reject)) { 1011 rc = -EPERM; 1012 goto done; 1013 } 1014 1015 if (unlikely(!urb->ep->enabled)) { 1016 rc = -ENOENT; 1017 goto done; 1018 } 1019 1020 if (unlikely(!urb->dev->can_submit)) { 1021 rc = -EHOSTUNREACH; 1022 goto done; 1023 } 1024 1025 /* 1026 * Check the host controller's state and add the URB to the 1027 * endpoint's queue. 1028 */ 1029 switch (hcd->state) { 1030 case HC_STATE_RUNNING: 1031 case HC_STATE_RESUMING: 1032 urb->unlinked = 0; 1033 list_add_tail(&urb->urb_list, &urb->ep->urb_list); 1034 break; 1035 default: 1036 rc = -ESHUTDOWN; 1037 goto done; 1038 } 1039 done: 1040 spin_unlock(&hcd_urb_list_lock); 1041 return rc; 1042 } 1043 EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep); 1044 1045 /** 1046 * usb_hcd_check_unlink_urb - check whether an URB may be unlinked 1047 * @hcd: host controller to which @urb was submitted 1048 * @urb: URB being checked for unlinkability 1049 * @status: error code to store in @urb if the unlink succeeds 1050 * 1051 * Host controller drivers should call this routine in their dequeue() 1052 * method. The HCD's private spinlock must be held and interrupts must 1053 * be disabled. The actions carried out here are required for making 1054 * sure than an unlink is valid. 1055 * 1056 * Returns 0 for no error, otherwise a negative error code (in which case 1057 * the dequeue() method must fail). The possible error codes are: 1058 * 1059 * -EIDRM: @urb was not submitted or has already completed. 1060 * The completion function may not have been called yet. 1061 * 1062 * -EBUSY: @urb has already been unlinked. 1063 */ 1064 int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb, 1065 int status) 1066 { 1067 struct list_head *tmp; 1068 1069 /* insist the urb is still queued */ 1070 list_for_each(tmp, &urb->ep->urb_list) { 1071 if (tmp == &urb->urb_list) 1072 break; 1073 } 1074 if (tmp != &urb->urb_list) 1075 return -EIDRM; 1076 1077 /* Any status except -EINPROGRESS means something already started to 1078 * unlink this URB from the hardware. So there's no more work to do. 1079 */ 1080 if (urb->unlinked) 1081 return -EBUSY; 1082 urb->unlinked = status; 1083 1084 /* IRQ setup can easily be broken so that USB controllers 1085 * never get completion IRQs ... maybe even the ones we need to 1086 * finish unlinking the initial failed usb_set_address() 1087 * or device descriptor fetch. 1088 */ 1089 if (!test_bit(HCD_FLAG_SAW_IRQ, &hcd->flags) && 1090 !is_root_hub(urb->dev)) { 1091 dev_warn(hcd->self.controller, "Unlink after no-IRQ? " 1092 "Controller is probably using the wrong IRQ.\n"); 1093 set_bit(HCD_FLAG_SAW_IRQ, &hcd->flags); 1094 } 1095 1096 return 0; 1097 } 1098 EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb); 1099 1100 /** 1101 * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue 1102 * @hcd: host controller to which @urb was submitted 1103 * @urb: URB being unlinked 1104 * 1105 * Host controller drivers should call this routine before calling 1106 * usb_hcd_giveback_urb(). The HCD's private spinlock must be held and 1107 * interrupts must be disabled. The actions carried out here are required 1108 * for URB completion. 1109 */ 1110 void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb) 1111 { 1112 /* clear all state linking urb to this dev (and hcd) */ 1113 spin_lock(&hcd_urb_list_lock); 1114 list_del_init(&urb->urb_list); 1115 spin_unlock(&hcd_urb_list_lock); 1116 } 1117 EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep); 1118 1119 /* 1120 * Some usb host controllers can only perform dma using a small SRAM area. 1121 * The usb core itself is however optimized for host controllers that can dma 1122 * using regular system memory - like pci devices doing bus mastering. 1123 * 1124 * To support host controllers with limited dma capabilites we provide dma 1125 * bounce buffers. This feature can be enabled using the HCD_LOCAL_MEM flag. 1126 * For this to work properly the host controller code must first use the 1127 * function dma_declare_coherent_memory() to point out which memory area 1128 * that should be used for dma allocations. 1129 * 1130 * The HCD_LOCAL_MEM flag then tells the usb code to allocate all data for 1131 * dma using dma_alloc_coherent() which in turn allocates from the memory 1132 * area pointed out with dma_declare_coherent_memory(). 1133 * 1134 * So, to summarize... 1135 * 1136 * - We need "local" memory, canonical example being 1137 * a small SRAM on a discrete controller being the 1138 * only memory that the controller can read ... 1139 * (a) "normal" kernel memory is no good, and 1140 * (b) there's not enough to share 1141 * 1142 * - The only *portable* hook for such stuff in the 1143 * DMA framework is dma_declare_coherent_memory() 1144 * 1145 * - So we use that, even though the primary requirement 1146 * is that the memory be "local" (hence addressible 1147 * by that device), not "coherent". 1148 * 1149 */ 1150 1151 static int hcd_alloc_coherent(struct usb_bus *bus, 1152 gfp_t mem_flags, dma_addr_t *dma_handle, 1153 void **vaddr_handle, size_t size, 1154 enum dma_data_direction dir) 1155 { 1156 unsigned char *vaddr; 1157 1158 vaddr = hcd_buffer_alloc(bus, size + sizeof(vaddr), 1159 mem_flags, dma_handle); 1160 if (!vaddr) 1161 return -ENOMEM; 1162 1163 /* 1164 * Store the virtual address of the buffer at the end 1165 * of the allocated dma buffer. The size of the buffer 1166 * may be uneven so use unaligned functions instead 1167 * of just rounding up. It makes sense to optimize for 1168 * memory footprint over access speed since the amount 1169 * of memory available for dma may be limited. 1170 */ 1171 put_unaligned((unsigned long)*vaddr_handle, 1172 (unsigned long *)(vaddr + size)); 1173 1174 if (dir == DMA_TO_DEVICE) 1175 memcpy(vaddr, *vaddr_handle, size); 1176 1177 *vaddr_handle = vaddr; 1178 return 0; 1179 } 1180 1181 static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle, 1182 void **vaddr_handle, size_t size, 1183 enum dma_data_direction dir) 1184 { 1185 unsigned char *vaddr = *vaddr_handle; 1186 1187 vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size)); 1188 1189 if (dir == DMA_FROM_DEVICE) 1190 memcpy(vaddr, *vaddr_handle, size); 1191 1192 hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle); 1193 1194 *vaddr_handle = vaddr; 1195 *dma_handle = 0; 1196 } 1197 1198 static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb, 1199 gfp_t mem_flags) 1200 { 1201 enum dma_data_direction dir; 1202 int ret = 0; 1203 1204 /* Map the URB's buffers for DMA access. 1205 * Lower level HCD code should use *_dma exclusively, 1206 * unless it uses pio or talks to another transport. 1207 */ 1208 if (is_root_hub(urb->dev)) 1209 return 0; 1210 1211 if (usb_endpoint_xfer_control(&urb->ep->desc) 1212 && !(urb->transfer_flags & URB_NO_SETUP_DMA_MAP)) { 1213 if (hcd->self.uses_dma) 1214 urb->setup_dma = dma_map_single( 1215 hcd->self.controller, 1216 urb->setup_packet, 1217 sizeof(struct usb_ctrlrequest), 1218 DMA_TO_DEVICE); 1219 else if (hcd->driver->flags & HCD_LOCAL_MEM) 1220 ret = hcd_alloc_coherent( 1221 urb->dev->bus, mem_flags, 1222 &urb->setup_dma, 1223 (void **)&urb->setup_packet, 1224 sizeof(struct usb_ctrlrequest), 1225 DMA_TO_DEVICE); 1226 } 1227 1228 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE; 1229 if (ret == 0 && urb->transfer_buffer_length != 0 1230 && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) { 1231 if (hcd->self.uses_dma) 1232 urb->transfer_dma = dma_map_single ( 1233 hcd->self.controller, 1234 urb->transfer_buffer, 1235 urb->transfer_buffer_length, 1236 dir); 1237 else if (hcd->driver->flags & HCD_LOCAL_MEM) { 1238 ret = hcd_alloc_coherent( 1239 urb->dev->bus, mem_flags, 1240 &urb->transfer_dma, 1241 &urb->transfer_buffer, 1242 urb->transfer_buffer_length, 1243 dir); 1244 1245 if (ret && usb_endpoint_xfer_control(&urb->ep->desc) 1246 && !(urb->transfer_flags & URB_NO_SETUP_DMA_MAP)) 1247 hcd_free_coherent(urb->dev->bus, 1248 &urb->setup_dma, 1249 (void **)&urb->setup_packet, 1250 sizeof(struct usb_ctrlrequest), 1251 DMA_TO_DEVICE); 1252 } 1253 } 1254 return ret; 1255 } 1256 1257 static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb) 1258 { 1259 enum dma_data_direction dir; 1260 1261 if (is_root_hub(urb->dev)) 1262 return; 1263 1264 if (usb_endpoint_xfer_control(&urb->ep->desc) 1265 && !(urb->transfer_flags & URB_NO_SETUP_DMA_MAP)) { 1266 if (hcd->self.uses_dma) 1267 dma_unmap_single(hcd->self.controller, urb->setup_dma, 1268 sizeof(struct usb_ctrlrequest), 1269 DMA_TO_DEVICE); 1270 else if (hcd->driver->flags & HCD_LOCAL_MEM) 1271 hcd_free_coherent(urb->dev->bus, &urb->setup_dma, 1272 (void **)&urb->setup_packet, 1273 sizeof(struct usb_ctrlrequest), 1274 DMA_TO_DEVICE); 1275 } 1276 1277 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE; 1278 if (urb->transfer_buffer_length != 0 1279 && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) { 1280 if (hcd->self.uses_dma) 1281 dma_unmap_single(hcd->self.controller, 1282 urb->transfer_dma, 1283 urb->transfer_buffer_length, 1284 dir); 1285 else if (hcd->driver->flags & HCD_LOCAL_MEM) 1286 hcd_free_coherent(urb->dev->bus, &urb->transfer_dma, 1287 &urb->transfer_buffer, 1288 urb->transfer_buffer_length, 1289 dir); 1290 } 1291 } 1292 1293 /*-------------------------------------------------------------------------*/ 1294 1295 /* may be called in any context with a valid urb->dev usecount 1296 * caller surrenders "ownership" of urb 1297 * expects usb_submit_urb() to have sanity checked and conditioned all 1298 * inputs in the urb 1299 */ 1300 int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags) 1301 { 1302 int status; 1303 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus); 1304 1305 /* increment urb's reference count as part of giving it to the HCD 1306 * (which will control it). HCD guarantees that it either returns 1307 * an error or calls giveback(), but not both. 1308 */ 1309 usb_get_urb(urb); 1310 atomic_inc(&urb->use_count); 1311 atomic_inc(&urb->dev->urbnum); 1312 usbmon_urb_submit(&hcd->self, urb); 1313 1314 /* NOTE requirements on root-hub callers (usbfs and the hub 1315 * driver, for now): URBs' urb->transfer_buffer must be 1316 * valid and usb_buffer_{sync,unmap}() not be needed, since 1317 * they could clobber root hub response data. Also, control 1318 * URBs must be submitted in process context with interrupts 1319 * enabled. 1320 */ 1321 status = map_urb_for_dma(hcd, urb, mem_flags); 1322 if (unlikely(status)) { 1323 usbmon_urb_submit_error(&hcd->self, urb, status); 1324 goto error; 1325 } 1326 1327 if (is_root_hub(urb->dev)) 1328 status = rh_urb_enqueue(hcd, urb); 1329 else 1330 status = hcd->driver->urb_enqueue(hcd, urb, mem_flags); 1331 1332 if (unlikely(status)) { 1333 usbmon_urb_submit_error(&hcd->self, urb, status); 1334 unmap_urb_for_dma(hcd, urb); 1335 error: 1336 urb->hcpriv = NULL; 1337 INIT_LIST_HEAD(&urb->urb_list); 1338 atomic_dec(&urb->use_count); 1339 atomic_dec(&urb->dev->urbnum); 1340 if (urb->reject) 1341 wake_up(&usb_kill_urb_queue); 1342 usb_put_urb(urb); 1343 } 1344 return status; 1345 } 1346 1347 /*-------------------------------------------------------------------------*/ 1348 1349 /* this makes the hcd giveback() the urb more quickly, by kicking it 1350 * off hardware queues (which may take a while) and returning it as 1351 * soon as practical. we've already set up the urb's return status, 1352 * but we can't know if the callback completed already. 1353 */ 1354 static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status) 1355 { 1356 int value; 1357 1358 if (is_root_hub(urb->dev)) 1359 value = usb_rh_urb_dequeue(hcd, urb, status); 1360 else { 1361 1362 /* The only reason an HCD might fail this call is if 1363 * it has not yet fully queued the urb to begin with. 1364 * Such failures should be harmless. */ 1365 value = hcd->driver->urb_dequeue(hcd, urb, status); 1366 } 1367 return value; 1368 } 1369 1370 /* 1371 * called in any context 1372 * 1373 * caller guarantees urb won't be recycled till both unlink() 1374 * and the urb's completion function return 1375 */ 1376 int usb_hcd_unlink_urb (struct urb *urb, int status) 1377 { 1378 struct usb_hcd *hcd; 1379 int retval; 1380 1381 hcd = bus_to_hcd(urb->dev->bus); 1382 retval = unlink1(hcd, urb, status); 1383 1384 if (retval == 0) 1385 retval = -EINPROGRESS; 1386 else if (retval != -EIDRM && retval != -EBUSY) 1387 dev_dbg(&urb->dev->dev, "hcd_unlink_urb %p fail %d\n", 1388 urb, retval); 1389 return retval; 1390 } 1391 1392 /*-------------------------------------------------------------------------*/ 1393 1394 /** 1395 * usb_hcd_giveback_urb - return URB from HCD to device driver 1396 * @hcd: host controller returning the URB 1397 * @urb: urb being returned to the USB device driver. 1398 * @status: completion status code for the URB. 1399 * Context: in_interrupt() 1400 * 1401 * This hands the URB from HCD to its USB device driver, using its 1402 * completion function. The HCD has freed all per-urb resources 1403 * (and is done using urb->hcpriv). It also released all HCD locks; 1404 * the device driver won't cause problems if it frees, modifies, 1405 * or resubmits this URB. 1406 * 1407 * If @urb was unlinked, the value of @status will be overridden by 1408 * @urb->unlinked. Erroneous short transfers are detected in case 1409 * the HCD hasn't checked for them. 1410 */ 1411 void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status) 1412 { 1413 urb->hcpriv = NULL; 1414 if (unlikely(urb->unlinked)) 1415 status = urb->unlinked; 1416 else if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) && 1417 urb->actual_length < urb->transfer_buffer_length && 1418 !status)) 1419 status = -EREMOTEIO; 1420 1421 unmap_urb_for_dma(hcd, urb); 1422 usbmon_urb_complete(&hcd->self, urb, status); 1423 usb_unanchor_urb(urb); 1424 1425 /* pass ownership to the completion handler */ 1426 urb->status = status; 1427 urb->complete (urb); 1428 atomic_dec (&urb->use_count); 1429 if (unlikely (urb->reject)) 1430 wake_up (&usb_kill_urb_queue); 1431 usb_put_urb (urb); 1432 } 1433 EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb); 1434 1435 /*-------------------------------------------------------------------------*/ 1436 1437 /* Cancel all URBs pending on this endpoint and wait for the endpoint's 1438 * queue to drain completely. The caller must first insure that no more 1439 * URBs can be submitted for this endpoint. 1440 */ 1441 void usb_hcd_flush_endpoint(struct usb_device *udev, 1442 struct usb_host_endpoint *ep) 1443 { 1444 struct usb_hcd *hcd; 1445 struct urb *urb; 1446 1447 if (!ep) 1448 return; 1449 might_sleep(); 1450 hcd = bus_to_hcd(udev->bus); 1451 1452 /* No more submits can occur */ 1453 spin_lock_irq(&hcd_urb_list_lock); 1454 rescan: 1455 list_for_each_entry (urb, &ep->urb_list, urb_list) { 1456 int is_in; 1457 1458 if (urb->unlinked) 1459 continue; 1460 usb_get_urb (urb); 1461 is_in = usb_urb_dir_in(urb); 1462 spin_unlock(&hcd_urb_list_lock); 1463 1464 /* kick hcd */ 1465 unlink1(hcd, urb, -ESHUTDOWN); 1466 dev_dbg (hcd->self.controller, 1467 "shutdown urb %p ep%d%s%s\n", 1468 urb, usb_endpoint_num(&ep->desc), 1469 is_in ? "in" : "out", 1470 ({ char *s; 1471 1472 switch (usb_endpoint_type(&ep->desc)) { 1473 case USB_ENDPOINT_XFER_CONTROL: 1474 s = ""; break; 1475 case USB_ENDPOINT_XFER_BULK: 1476 s = "-bulk"; break; 1477 case USB_ENDPOINT_XFER_INT: 1478 s = "-intr"; break; 1479 default: 1480 s = "-iso"; break; 1481 }; 1482 s; 1483 })); 1484 usb_put_urb (urb); 1485 1486 /* list contents may have changed */ 1487 spin_lock(&hcd_urb_list_lock); 1488 goto rescan; 1489 } 1490 spin_unlock_irq(&hcd_urb_list_lock); 1491 1492 /* Wait until the endpoint queue is completely empty */ 1493 while (!list_empty (&ep->urb_list)) { 1494 spin_lock_irq(&hcd_urb_list_lock); 1495 1496 /* The list may have changed while we acquired the spinlock */ 1497 urb = NULL; 1498 if (!list_empty (&ep->urb_list)) { 1499 urb = list_entry (ep->urb_list.prev, struct urb, 1500 urb_list); 1501 usb_get_urb (urb); 1502 } 1503 spin_unlock_irq(&hcd_urb_list_lock); 1504 1505 if (urb) { 1506 usb_kill_urb (urb); 1507 usb_put_urb (urb); 1508 } 1509 } 1510 } 1511 1512 /* Disables the endpoint: synchronizes with the hcd to make sure all 1513 * endpoint state is gone from hardware. usb_hcd_flush_endpoint() must 1514 * have been called previously. Use for set_configuration, set_interface, 1515 * driver removal, physical disconnect. 1516 * 1517 * example: a qh stored in ep->hcpriv, holding state related to endpoint 1518 * type, maxpacket size, toggle, halt status, and scheduling. 1519 */ 1520 void usb_hcd_disable_endpoint(struct usb_device *udev, 1521 struct usb_host_endpoint *ep) 1522 { 1523 struct usb_hcd *hcd; 1524 1525 might_sleep(); 1526 hcd = bus_to_hcd(udev->bus); 1527 if (hcd->driver->endpoint_disable) 1528 hcd->driver->endpoint_disable(hcd, ep); 1529 } 1530 1531 /*-------------------------------------------------------------------------*/ 1532 1533 /* called in any context */ 1534 int usb_hcd_get_frame_number (struct usb_device *udev) 1535 { 1536 struct usb_hcd *hcd = bus_to_hcd(udev->bus); 1537 1538 if (!HC_IS_RUNNING (hcd->state)) 1539 return -ESHUTDOWN; 1540 return hcd->driver->get_frame_number (hcd); 1541 } 1542 1543 /*-------------------------------------------------------------------------*/ 1544 1545 #ifdef CONFIG_PM 1546 1547 int hcd_bus_suspend(struct usb_device *rhdev) 1548 { 1549 struct usb_hcd *hcd = container_of(rhdev->bus, struct usb_hcd, self); 1550 int status; 1551 int old_state = hcd->state; 1552 1553 dev_dbg(&rhdev->dev, "bus %s%s\n", 1554 rhdev->auto_pm ? "auto-" : "", "suspend"); 1555 if (!hcd->driver->bus_suspend) { 1556 status = -ENOENT; 1557 } else { 1558 hcd->state = HC_STATE_QUIESCING; 1559 status = hcd->driver->bus_suspend(hcd); 1560 } 1561 if (status == 0) { 1562 usb_set_device_state(rhdev, USB_STATE_SUSPENDED); 1563 hcd->state = HC_STATE_SUSPENDED; 1564 } else { 1565 hcd->state = old_state; 1566 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n", 1567 "suspend", status); 1568 } 1569 return status; 1570 } 1571 1572 int hcd_bus_resume(struct usb_device *rhdev) 1573 { 1574 struct usb_hcd *hcd = container_of(rhdev->bus, struct usb_hcd, self); 1575 int status; 1576 int old_state = hcd->state; 1577 1578 dev_dbg(&rhdev->dev, "usb %s%s\n", 1579 rhdev->auto_pm ? "auto-" : "", "resume"); 1580 if (!hcd->driver->bus_resume) 1581 return -ENOENT; 1582 if (hcd->state == HC_STATE_RUNNING) 1583 return 0; 1584 1585 hcd->state = HC_STATE_RESUMING; 1586 status = hcd->driver->bus_resume(hcd); 1587 if (status == 0) { 1588 /* TRSMRCY = 10 msec */ 1589 msleep(10); 1590 usb_set_device_state(rhdev, rhdev->actconfig 1591 ? USB_STATE_CONFIGURED 1592 : USB_STATE_ADDRESS); 1593 hcd->state = HC_STATE_RUNNING; 1594 } else { 1595 hcd->state = old_state; 1596 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n", 1597 "resume", status); 1598 if (status != -ESHUTDOWN) 1599 usb_hc_died(hcd); 1600 } 1601 return status; 1602 } 1603 1604 /* Workqueue routine for root-hub remote wakeup */ 1605 static void hcd_resume_work(struct work_struct *work) 1606 { 1607 struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work); 1608 struct usb_device *udev = hcd->self.root_hub; 1609 1610 usb_lock_device(udev); 1611 usb_mark_last_busy(udev); 1612 usb_external_resume_device(udev); 1613 usb_unlock_device(udev); 1614 } 1615 1616 /** 1617 * usb_hcd_resume_root_hub - called by HCD to resume its root hub 1618 * @hcd: host controller for this root hub 1619 * 1620 * The USB host controller calls this function when its root hub is 1621 * suspended (with the remote wakeup feature enabled) and a remote 1622 * wakeup request is received. The routine submits a workqueue request 1623 * to resume the root hub (that is, manage its downstream ports again). 1624 */ 1625 void usb_hcd_resume_root_hub (struct usb_hcd *hcd) 1626 { 1627 unsigned long flags; 1628 1629 spin_lock_irqsave (&hcd_root_hub_lock, flags); 1630 if (hcd->rh_registered) 1631 queue_work(ksuspend_usb_wq, &hcd->wakeup_work); 1632 spin_unlock_irqrestore (&hcd_root_hub_lock, flags); 1633 } 1634 EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub); 1635 1636 #endif 1637 1638 /*-------------------------------------------------------------------------*/ 1639 1640 #ifdef CONFIG_USB_OTG 1641 1642 /** 1643 * usb_bus_start_enum - start immediate enumeration (for OTG) 1644 * @bus: the bus (must use hcd framework) 1645 * @port_num: 1-based number of port; usually bus->otg_port 1646 * Context: in_interrupt() 1647 * 1648 * Starts enumeration, with an immediate reset followed later by 1649 * khubd identifying and possibly configuring the device. 1650 * This is needed by OTG controller drivers, where it helps meet 1651 * HNP protocol timing requirements for starting a port reset. 1652 */ 1653 int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num) 1654 { 1655 struct usb_hcd *hcd; 1656 int status = -EOPNOTSUPP; 1657 1658 /* NOTE: since HNP can't start by grabbing the bus's address0_sem, 1659 * boards with root hubs hooked up to internal devices (instead of 1660 * just the OTG port) may need more attention to resetting... 1661 */ 1662 hcd = container_of (bus, struct usb_hcd, self); 1663 if (port_num && hcd->driver->start_port_reset) 1664 status = hcd->driver->start_port_reset(hcd, port_num); 1665 1666 /* run khubd shortly after (first) root port reset finishes; 1667 * it may issue others, until at least 50 msecs have passed. 1668 */ 1669 if (status == 0) 1670 mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10)); 1671 return status; 1672 } 1673 EXPORT_SYMBOL_GPL(usb_bus_start_enum); 1674 1675 #endif 1676 1677 /*-------------------------------------------------------------------------*/ 1678 1679 /** 1680 * usb_hcd_irq - hook IRQs to HCD framework (bus glue) 1681 * @irq: the IRQ being raised 1682 * @__hcd: pointer to the HCD whose IRQ is being signaled 1683 * 1684 * If the controller isn't HALTed, calls the driver's irq handler. 1685 * Checks whether the controller is now dead. 1686 */ 1687 irqreturn_t usb_hcd_irq (int irq, void *__hcd) 1688 { 1689 struct usb_hcd *hcd = __hcd; 1690 unsigned long flags; 1691 irqreturn_t rc; 1692 1693 /* IRQF_DISABLED doesn't work correctly with shared IRQs 1694 * when the first handler doesn't use it. So let's just 1695 * assume it's never used. 1696 */ 1697 local_irq_save(flags); 1698 1699 if (unlikely(hcd->state == HC_STATE_HALT || 1700 !test_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags))) { 1701 rc = IRQ_NONE; 1702 } else if (hcd->driver->irq(hcd) == IRQ_NONE) { 1703 rc = IRQ_NONE; 1704 } else { 1705 set_bit(HCD_FLAG_SAW_IRQ, &hcd->flags); 1706 1707 if (unlikely(hcd->state == HC_STATE_HALT)) 1708 usb_hc_died(hcd); 1709 rc = IRQ_HANDLED; 1710 } 1711 1712 local_irq_restore(flags); 1713 return rc; 1714 } 1715 1716 /*-------------------------------------------------------------------------*/ 1717 1718 /** 1719 * usb_hc_died - report abnormal shutdown of a host controller (bus glue) 1720 * @hcd: pointer to the HCD representing the controller 1721 * 1722 * This is called by bus glue to report a USB host controller that died 1723 * while operations may still have been pending. It's called automatically 1724 * by the PCI glue, so only glue for non-PCI busses should need to call it. 1725 */ 1726 void usb_hc_died (struct usb_hcd *hcd) 1727 { 1728 unsigned long flags; 1729 1730 dev_err (hcd->self.controller, "HC died; cleaning up\n"); 1731 1732 spin_lock_irqsave (&hcd_root_hub_lock, flags); 1733 if (hcd->rh_registered) { 1734 hcd->poll_rh = 0; 1735 1736 /* make khubd clean up old urbs and devices */ 1737 usb_set_device_state (hcd->self.root_hub, 1738 USB_STATE_NOTATTACHED); 1739 usb_kick_khubd (hcd->self.root_hub); 1740 } 1741 spin_unlock_irqrestore (&hcd_root_hub_lock, flags); 1742 } 1743 EXPORT_SYMBOL_GPL (usb_hc_died); 1744 1745 /*-------------------------------------------------------------------------*/ 1746 1747 /** 1748 * usb_create_hcd - create and initialize an HCD structure 1749 * @driver: HC driver that will use this hcd 1750 * @dev: device for this HC, stored in hcd->self.controller 1751 * @bus_name: value to store in hcd->self.bus_name 1752 * Context: !in_interrupt() 1753 * 1754 * Allocate a struct usb_hcd, with extra space at the end for the 1755 * HC driver's private data. Initialize the generic members of the 1756 * hcd structure. 1757 * 1758 * If memory is unavailable, returns NULL. 1759 */ 1760 struct usb_hcd *usb_create_hcd (const struct hc_driver *driver, 1761 struct device *dev, const char *bus_name) 1762 { 1763 struct usb_hcd *hcd; 1764 1765 hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL); 1766 if (!hcd) { 1767 dev_dbg (dev, "hcd alloc failed\n"); 1768 return NULL; 1769 } 1770 dev_set_drvdata(dev, hcd); 1771 kref_init(&hcd->kref); 1772 1773 usb_bus_init(&hcd->self); 1774 hcd->self.controller = dev; 1775 hcd->self.bus_name = bus_name; 1776 hcd->self.uses_dma = (dev->dma_mask != NULL); 1777 1778 init_timer(&hcd->rh_timer); 1779 hcd->rh_timer.function = rh_timer_func; 1780 hcd->rh_timer.data = (unsigned long) hcd; 1781 #ifdef CONFIG_PM 1782 INIT_WORK(&hcd->wakeup_work, hcd_resume_work); 1783 #endif 1784 1785 hcd->driver = driver; 1786 hcd->product_desc = (driver->product_desc) ? driver->product_desc : 1787 "USB Host Controller"; 1788 return hcd; 1789 } 1790 EXPORT_SYMBOL_GPL(usb_create_hcd); 1791 1792 static void hcd_release (struct kref *kref) 1793 { 1794 struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref); 1795 1796 kfree(hcd); 1797 } 1798 1799 struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd) 1800 { 1801 if (hcd) 1802 kref_get (&hcd->kref); 1803 return hcd; 1804 } 1805 EXPORT_SYMBOL_GPL(usb_get_hcd); 1806 1807 void usb_put_hcd (struct usb_hcd *hcd) 1808 { 1809 if (hcd) 1810 kref_put (&hcd->kref, hcd_release); 1811 } 1812 EXPORT_SYMBOL_GPL(usb_put_hcd); 1813 1814 /** 1815 * usb_add_hcd - finish generic HCD structure initialization and register 1816 * @hcd: the usb_hcd structure to initialize 1817 * @irqnum: Interrupt line to allocate 1818 * @irqflags: Interrupt type flags 1819 * 1820 * Finish the remaining parts of generic HCD initialization: allocate the 1821 * buffers of consistent memory, register the bus, request the IRQ line, 1822 * and call the driver's reset() and start() routines. 1823 */ 1824 int usb_add_hcd(struct usb_hcd *hcd, 1825 unsigned int irqnum, unsigned long irqflags) 1826 { 1827 int retval; 1828 struct usb_device *rhdev; 1829 1830 dev_info(hcd->self.controller, "%s\n", hcd->product_desc); 1831 1832 hcd->authorized_default = hcd->wireless? 0 : 1; 1833 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 1834 1835 /* HC is in reset state, but accessible. Now do the one-time init, 1836 * bottom up so that hcds can customize the root hubs before khubd 1837 * starts talking to them. (Note, bus id is assigned early too.) 1838 */ 1839 if ((retval = hcd_buffer_create(hcd)) != 0) { 1840 dev_dbg(hcd->self.controller, "pool alloc failed\n"); 1841 return retval; 1842 } 1843 1844 if ((retval = usb_register_bus(&hcd->self)) < 0) 1845 goto err_register_bus; 1846 1847 if ((rhdev = usb_alloc_dev(NULL, &hcd->self, 0)) == NULL) { 1848 dev_err(hcd->self.controller, "unable to allocate root hub\n"); 1849 retval = -ENOMEM; 1850 goto err_allocate_root_hub; 1851 } 1852 rhdev->speed = (hcd->driver->flags & HCD_USB2) ? USB_SPEED_HIGH : 1853 USB_SPEED_FULL; 1854 hcd->self.root_hub = rhdev; 1855 1856 /* wakeup flag init defaults to "everything works" for root hubs, 1857 * but drivers can override it in reset() if needed, along with 1858 * recording the overall controller's system wakeup capability. 1859 */ 1860 device_init_wakeup(&rhdev->dev, 1); 1861 1862 /* "reset" is misnamed; its role is now one-time init. the controller 1863 * should already have been reset (and boot firmware kicked off etc). 1864 */ 1865 if (hcd->driver->reset && (retval = hcd->driver->reset(hcd)) < 0) { 1866 dev_err(hcd->self.controller, "can't setup\n"); 1867 goto err_hcd_driver_setup; 1868 } 1869 1870 /* NOTE: root hub and controller capabilities may not be the same */ 1871 if (device_can_wakeup(hcd->self.controller) 1872 && device_can_wakeup(&hcd->self.root_hub->dev)) 1873 dev_dbg(hcd->self.controller, "supports USB remote wakeup\n"); 1874 1875 /* enable irqs just before we start the controller */ 1876 if (hcd->driver->irq) { 1877 1878 /* IRQF_DISABLED doesn't work as advertised when used together 1879 * with IRQF_SHARED. As usb_hcd_irq() will always disable 1880 * interrupts we can remove it here. 1881 */ 1882 if (irqflags & IRQF_SHARED) 1883 irqflags &= ~IRQF_DISABLED; 1884 1885 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d", 1886 hcd->driver->description, hcd->self.busnum); 1887 if ((retval = request_irq(irqnum, &usb_hcd_irq, irqflags, 1888 hcd->irq_descr, hcd)) != 0) { 1889 dev_err(hcd->self.controller, 1890 "request interrupt %d failed\n", irqnum); 1891 goto err_request_irq; 1892 } 1893 hcd->irq = irqnum; 1894 dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum, 1895 (hcd->driver->flags & HCD_MEMORY) ? 1896 "io mem" : "io base", 1897 (unsigned long long)hcd->rsrc_start); 1898 } else { 1899 hcd->irq = -1; 1900 if (hcd->rsrc_start) 1901 dev_info(hcd->self.controller, "%s 0x%08llx\n", 1902 (hcd->driver->flags & HCD_MEMORY) ? 1903 "io mem" : "io base", 1904 (unsigned long long)hcd->rsrc_start); 1905 } 1906 1907 if ((retval = hcd->driver->start(hcd)) < 0) { 1908 dev_err(hcd->self.controller, "startup error %d\n", retval); 1909 goto err_hcd_driver_start; 1910 } 1911 1912 /* starting here, usbcore will pay attention to this root hub */ 1913 rhdev->bus_mA = min(500u, hcd->power_budget); 1914 if ((retval = register_root_hub(hcd)) != 0) 1915 goto err_register_root_hub; 1916 1917 retval = sysfs_create_group(&rhdev->dev.kobj, &usb_bus_attr_group); 1918 if (retval < 0) { 1919 printk(KERN_ERR "Cannot register USB bus sysfs attributes: %d\n", 1920 retval); 1921 goto error_create_attr_group; 1922 } 1923 if (hcd->uses_new_polling && hcd->poll_rh) 1924 usb_hcd_poll_rh_status(hcd); 1925 return retval; 1926 1927 error_create_attr_group: 1928 mutex_lock(&usb_bus_list_lock); 1929 usb_disconnect(&hcd->self.root_hub); 1930 mutex_unlock(&usb_bus_list_lock); 1931 err_register_root_hub: 1932 hcd->driver->stop(hcd); 1933 err_hcd_driver_start: 1934 if (hcd->irq >= 0) 1935 free_irq(irqnum, hcd); 1936 err_request_irq: 1937 err_hcd_driver_setup: 1938 hcd->self.root_hub = NULL; 1939 usb_put_dev(rhdev); 1940 err_allocate_root_hub: 1941 usb_deregister_bus(&hcd->self); 1942 err_register_bus: 1943 hcd_buffer_destroy(hcd); 1944 return retval; 1945 } 1946 EXPORT_SYMBOL_GPL(usb_add_hcd); 1947 1948 /** 1949 * usb_remove_hcd - shutdown processing for generic HCDs 1950 * @hcd: the usb_hcd structure to remove 1951 * Context: !in_interrupt() 1952 * 1953 * Disconnects the root hub, then reverses the effects of usb_add_hcd(), 1954 * invoking the HCD's stop() method. 1955 */ 1956 void usb_remove_hcd(struct usb_hcd *hcd) 1957 { 1958 dev_info(hcd->self.controller, "remove, state %x\n", hcd->state); 1959 1960 if (HC_IS_RUNNING (hcd->state)) 1961 hcd->state = HC_STATE_QUIESCING; 1962 1963 dev_dbg(hcd->self.controller, "roothub graceful disconnect\n"); 1964 spin_lock_irq (&hcd_root_hub_lock); 1965 hcd->rh_registered = 0; 1966 spin_unlock_irq (&hcd_root_hub_lock); 1967 1968 #ifdef CONFIG_PM 1969 cancel_work_sync(&hcd->wakeup_work); 1970 #endif 1971 1972 sysfs_remove_group(&hcd->self.root_hub->dev.kobj, &usb_bus_attr_group); 1973 mutex_lock(&usb_bus_list_lock); 1974 usb_disconnect(&hcd->self.root_hub); 1975 mutex_unlock(&usb_bus_list_lock); 1976 1977 hcd->driver->stop(hcd); 1978 hcd->state = HC_STATE_HALT; 1979 1980 hcd->poll_rh = 0; 1981 del_timer_sync(&hcd->rh_timer); 1982 1983 if (hcd->irq >= 0) 1984 free_irq(hcd->irq, hcd); 1985 usb_deregister_bus(&hcd->self); 1986 hcd_buffer_destroy(hcd); 1987 } 1988 EXPORT_SYMBOL_GPL(usb_remove_hcd); 1989 1990 void 1991 usb_hcd_platform_shutdown(struct platform_device* dev) 1992 { 1993 struct usb_hcd *hcd = platform_get_drvdata(dev); 1994 1995 if (hcd->driver->shutdown) 1996 hcd->driver->shutdown(hcd); 1997 } 1998 EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown); 1999 2000 /*-------------------------------------------------------------------------*/ 2001 2002 #if defined(CONFIG_USB_MON) 2003 2004 struct usb_mon_operations *mon_ops; 2005 2006 /* 2007 * The registration is unlocked. 2008 * We do it this way because we do not want to lock in hot paths. 2009 * 2010 * Notice that the code is minimally error-proof. Because usbmon needs 2011 * symbols from usbcore, usbcore gets referenced and cannot be unloaded first. 2012 */ 2013 2014 int usb_mon_register (struct usb_mon_operations *ops) 2015 { 2016 2017 if (mon_ops) 2018 return -EBUSY; 2019 2020 mon_ops = ops; 2021 mb(); 2022 return 0; 2023 } 2024 EXPORT_SYMBOL_GPL (usb_mon_register); 2025 2026 void usb_mon_deregister (void) 2027 { 2028 2029 if (mon_ops == NULL) { 2030 printk(KERN_ERR "USB: monitor was not registered\n"); 2031 return; 2032 } 2033 mon_ops = NULL; 2034 mb(); 2035 } 2036 EXPORT_SYMBOL_GPL (usb_mon_deregister); 2037 2038 #endif /* CONFIG_USB_MON */ 2039