xref: /linux/drivers/usb/core/hcd.c (revision 3eeebf17f31c583f83e081b17b3076477cb96886)
1 /*
2  * (C) Copyright Linus Torvalds 1999
3  * (C) Copyright Johannes Erdfelt 1999-2001
4  * (C) Copyright Andreas Gal 1999
5  * (C) Copyright Gregory P. Smith 1999
6  * (C) Copyright Deti Fliegl 1999
7  * (C) Copyright Randy Dunlap 2000
8  * (C) Copyright David Brownell 2000-2002
9  *
10  * This program is free software; you can redistribute it and/or modify it
11  * under the terms of the GNU General Public License as published by the
12  * Free Software Foundation; either version 2 of the License, or (at your
13  * option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful, but
16  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
17  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
18  * for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software Foundation,
22  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23  */
24 
25 #include <linux/module.h>
26 #include <linux/version.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/completion.h>
30 #include <linux/utsname.h>
31 #include <linux/mm.h>
32 #include <asm/io.h>
33 #include <linux/device.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/mutex.h>
36 #include <asm/irq.h>
37 #include <asm/byteorder.h>
38 #include <asm/unaligned.h>
39 #include <linux/platform_device.h>
40 #include <linux/workqueue.h>
41 
42 #include <linux/usb.h>
43 
44 #include "usb.h"
45 #include "hcd.h"
46 #include "hub.h"
47 
48 
49 /*-------------------------------------------------------------------------*/
50 
51 /*
52  * USB Host Controller Driver framework
53  *
54  * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing
55  * HCD-specific behaviors/bugs.
56  *
57  * This does error checks, tracks devices and urbs, and delegates to a
58  * "hc_driver" only for code (and data) that really needs to know about
59  * hardware differences.  That includes root hub registers, i/o queues,
60  * and so on ... but as little else as possible.
61  *
62  * Shared code includes most of the "root hub" code (these are emulated,
63  * though each HC's hardware works differently) and PCI glue, plus request
64  * tracking overhead.  The HCD code should only block on spinlocks or on
65  * hardware handshaking; blocking on software events (such as other kernel
66  * threads releasing resources, or completing actions) is all generic.
67  *
68  * Happens the USB 2.0 spec says this would be invisible inside the "USBD",
69  * and includes mostly a "HCDI" (HCD Interface) along with some APIs used
70  * only by the hub driver ... and that neither should be seen or used by
71  * usb client device drivers.
72  *
73  * Contributors of ideas or unattributed patches include: David Brownell,
74  * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ...
75  *
76  * HISTORY:
77  * 2002-02-21	Pull in most of the usb_bus support from usb.c; some
78  *		associated cleanup.  "usb_hcd" still != "usb_bus".
79  * 2001-12-12	Initial patch version for Linux 2.5.1 kernel.
80  */
81 
82 /*-------------------------------------------------------------------------*/
83 
84 /* Keep track of which host controller drivers are loaded */
85 unsigned long usb_hcds_loaded;
86 EXPORT_SYMBOL_GPL(usb_hcds_loaded);
87 
88 /* host controllers we manage */
89 LIST_HEAD (usb_bus_list);
90 EXPORT_SYMBOL_GPL (usb_bus_list);
91 
92 /* used when allocating bus numbers */
93 #define USB_MAXBUS		64
94 struct usb_busmap {
95 	unsigned long busmap [USB_MAXBUS / (8*sizeof (unsigned long))];
96 };
97 static struct usb_busmap busmap;
98 
99 /* used when updating list of hcds */
100 DEFINE_MUTEX(usb_bus_list_lock);	/* exported only for usbfs */
101 EXPORT_SYMBOL_GPL (usb_bus_list_lock);
102 
103 /* used for controlling access to virtual root hubs */
104 static DEFINE_SPINLOCK(hcd_root_hub_lock);
105 
106 /* used when updating an endpoint's URB list */
107 static DEFINE_SPINLOCK(hcd_urb_list_lock);
108 
109 /* wait queue for synchronous unlinks */
110 DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue);
111 
112 static inline int is_root_hub(struct usb_device *udev)
113 {
114 	return (udev->parent == NULL);
115 }
116 
117 /*-------------------------------------------------------------------------*/
118 
119 /*
120  * Sharable chunks of root hub code.
121  */
122 
123 /*-------------------------------------------------------------------------*/
124 
125 #define KERNEL_REL	((LINUX_VERSION_CODE >> 16) & 0x0ff)
126 #define KERNEL_VER	((LINUX_VERSION_CODE >> 8) & 0x0ff)
127 
128 /* usb 2.0 root hub device descriptor */
129 static const u8 usb2_rh_dev_descriptor [18] = {
130 	0x12,       /*  __u8  bLength; */
131 	0x01,       /*  __u8  bDescriptorType; Device */
132 	0x00, 0x02, /*  __le16 bcdUSB; v2.0 */
133 
134 	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */
135 	0x00,	    /*  __u8  bDeviceSubClass; */
136 	0x00,       /*  __u8  bDeviceProtocol; [ usb 2.0 no TT ] */
137 	0x40,       /*  __u8  bMaxPacketSize0; 64 Bytes */
138 
139 	0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation */
140 	0x02, 0x00, /*  __le16 idProduct; device 0x0002 */
141 	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
142 
143 	0x03,       /*  __u8  iManufacturer; */
144 	0x02,       /*  __u8  iProduct; */
145 	0x01,       /*  __u8  iSerialNumber; */
146 	0x01        /*  __u8  bNumConfigurations; */
147 };
148 
149 /* no usb 2.0 root hub "device qualifier" descriptor: one speed only */
150 
151 /* usb 1.1 root hub device descriptor */
152 static const u8 usb11_rh_dev_descriptor [18] = {
153 	0x12,       /*  __u8  bLength; */
154 	0x01,       /*  __u8  bDescriptorType; Device */
155 	0x10, 0x01, /*  __le16 bcdUSB; v1.1 */
156 
157 	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */
158 	0x00,	    /*  __u8  bDeviceSubClass; */
159 	0x00,       /*  __u8  bDeviceProtocol; [ low/full speeds only ] */
160 	0x40,       /*  __u8  bMaxPacketSize0; 64 Bytes */
161 
162 	0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation */
163 	0x01, 0x00, /*  __le16 idProduct; device 0x0001 */
164 	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
165 
166 	0x03,       /*  __u8  iManufacturer; */
167 	0x02,       /*  __u8  iProduct; */
168 	0x01,       /*  __u8  iSerialNumber; */
169 	0x01        /*  __u8  bNumConfigurations; */
170 };
171 
172 
173 /*-------------------------------------------------------------------------*/
174 
175 /* Configuration descriptors for our root hubs */
176 
177 static const u8 fs_rh_config_descriptor [] = {
178 
179 	/* one configuration */
180 	0x09,       /*  __u8  bLength; */
181 	0x02,       /*  __u8  bDescriptorType; Configuration */
182 	0x19, 0x00, /*  __le16 wTotalLength; */
183 	0x01,       /*  __u8  bNumInterfaces; (1) */
184 	0x01,       /*  __u8  bConfigurationValue; */
185 	0x00,       /*  __u8  iConfiguration; */
186 	0xc0,       /*  __u8  bmAttributes;
187 				 Bit 7: must be set,
188 				     6: Self-powered,
189 				     5: Remote wakeup,
190 				     4..0: resvd */
191 	0x00,       /*  __u8  MaxPower; */
192 
193 	/* USB 1.1:
194 	 * USB 2.0, single TT organization (mandatory):
195 	 *	one interface, protocol 0
196 	 *
197 	 * USB 2.0, multiple TT organization (optional):
198 	 *	two interfaces, protocols 1 (like single TT)
199 	 *	and 2 (multiple TT mode) ... config is
200 	 *	sometimes settable
201 	 *	NOT IMPLEMENTED
202 	 */
203 
204 	/* one interface */
205 	0x09,       /*  __u8  if_bLength; */
206 	0x04,       /*  __u8  if_bDescriptorType; Interface */
207 	0x00,       /*  __u8  if_bInterfaceNumber; */
208 	0x00,       /*  __u8  if_bAlternateSetting; */
209 	0x01,       /*  __u8  if_bNumEndpoints; */
210 	0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
211 	0x00,       /*  __u8  if_bInterfaceSubClass; */
212 	0x00,       /*  __u8  if_bInterfaceProtocol; [usb1.1 or single tt] */
213 	0x00,       /*  __u8  if_iInterface; */
214 
215 	/* one endpoint (status change endpoint) */
216 	0x07,       /*  __u8  ep_bLength; */
217 	0x05,       /*  __u8  ep_bDescriptorType; Endpoint */
218 	0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
219  	0x03,       /*  __u8  ep_bmAttributes; Interrupt */
220  	0x02, 0x00, /*  __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */
221 	0xff        /*  __u8  ep_bInterval; (255ms -- usb 2.0 spec) */
222 };
223 
224 static const u8 hs_rh_config_descriptor [] = {
225 
226 	/* one configuration */
227 	0x09,       /*  __u8  bLength; */
228 	0x02,       /*  __u8  bDescriptorType; Configuration */
229 	0x19, 0x00, /*  __le16 wTotalLength; */
230 	0x01,       /*  __u8  bNumInterfaces; (1) */
231 	0x01,       /*  __u8  bConfigurationValue; */
232 	0x00,       /*  __u8  iConfiguration; */
233 	0xc0,       /*  __u8  bmAttributes;
234 				 Bit 7: must be set,
235 				     6: Self-powered,
236 				     5: Remote wakeup,
237 				     4..0: resvd */
238 	0x00,       /*  __u8  MaxPower; */
239 
240 	/* USB 1.1:
241 	 * USB 2.0, single TT organization (mandatory):
242 	 *	one interface, protocol 0
243 	 *
244 	 * USB 2.0, multiple TT organization (optional):
245 	 *	two interfaces, protocols 1 (like single TT)
246 	 *	and 2 (multiple TT mode) ... config is
247 	 *	sometimes settable
248 	 *	NOT IMPLEMENTED
249 	 */
250 
251 	/* one interface */
252 	0x09,       /*  __u8  if_bLength; */
253 	0x04,       /*  __u8  if_bDescriptorType; Interface */
254 	0x00,       /*  __u8  if_bInterfaceNumber; */
255 	0x00,       /*  __u8  if_bAlternateSetting; */
256 	0x01,       /*  __u8  if_bNumEndpoints; */
257 	0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
258 	0x00,       /*  __u8  if_bInterfaceSubClass; */
259 	0x00,       /*  __u8  if_bInterfaceProtocol; [usb1.1 or single tt] */
260 	0x00,       /*  __u8  if_iInterface; */
261 
262 	/* one endpoint (status change endpoint) */
263 	0x07,       /*  __u8  ep_bLength; */
264 	0x05,       /*  __u8  ep_bDescriptorType; Endpoint */
265 	0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
266  	0x03,       /*  __u8  ep_bmAttributes; Interrupt */
267 		    /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
268 		     * see hub.c:hub_configure() for details. */
269 	(USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
270 	0x0c        /*  __u8  ep_bInterval; (256ms -- usb 2.0 spec) */
271 };
272 
273 /*-------------------------------------------------------------------------*/
274 
275 /*
276  * helper routine for returning string descriptors in UTF-16LE
277  * input can actually be ISO-8859-1; ASCII is its 7-bit subset
278  */
279 static int ascii2utf (char *s, u8 *utf, int utfmax)
280 {
281 	int retval;
282 
283 	for (retval = 0; *s && utfmax > 1; utfmax -= 2, retval += 2) {
284 		*utf++ = *s++;
285 		*utf++ = 0;
286 	}
287 	if (utfmax > 0) {
288 		*utf = *s;
289 		++retval;
290 	}
291 	return retval;
292 }
293 
294 /*
295  * rh_string - provides manufacturer, product and serial strings for root hub
296  * @id: the string ID number (1: serial number, 2: product, 3: vendor)
297  * @hcd: the host controller for this root hub
298  * @data: return packet in UTF-16 LE
299  * @len: length of the return packet
300  *
301  * Produces either a manufacturer, product or serial number string for the
302  * virtual root hub device.
303  */
304 static int rh_string (
305 	int		id,
306 	struct usb_hcd	*hcd,
307 	u8		*data,
308 	int		len
309 ) {
310 	char buf [100];
311 
312 	// language ids
313 	if (id == 0) {
314 		buf[0] = 4;    buf[1] = 3;	/* 4 bytes string data */
315 		buf[2] = 0x09; buf[3] = 0x04;	/* MSFT-speak for "en-us" */
316 		len = min (len, 4);
317 		memcpy (data, buf, len);
318 		return len;
319 
320 	// serial number
321 	} else if (id == 1) {
322 		strlcpy (buf, hcd->self.bus_name, sizeof buf);
323 
324 	// product description
325 	} else if (id == 2) {
326 		strlcpy (buf, hcd->product_desc, sizeof buf);
327 
328  	// id 3 == vendor description
329 	} else if (id == 3) {
330 		snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname,
331 			init_utsname()->release, hcd->driver->description);
332 
333 	// unsupported IDs --> "protocol stall"
334 	} else
335 		return -EPIPE;
336 
337 	switch (len) {		/* All cases fall through */
338 	default:
339 		len = 2 + ascii2utf (buf, data + 2, len - 2);
340 	case 2:
341 		data [1] = 3;	/* type == string */
342 	case 1:
343 		data [0] = 2 * (strlen (buf) + 1);
344 	case 0:
345 		;		/* Compiler wants a statement here */
346 	}
347 	return len;
348 }
349 
350 
351 /* Root hub control transfers execute synchronously */
352 static int rh_call_control (struct usb_hcd *hcd, struct urb *urb)
353 {
354 	struct usb_ctrlrequest *cmd;
355  	u16		typeReq, wValue, wIndex, wLength;
356 	u8		*ubuf = urb->transfer_buffer;
357 	u8		tbuf [sizeof (struct usb_hub_descriptor)]
358 		__attribute__((aligned(4)));
359 	const u8	*bufp = tbuf;
360 	int		len = 0;
361 	int		status;
362 	int		n;
363 	u8		patch_wakeup = 0;
364 	u8		patch_protocol = 0;
365 
366 	might_sleep();
367 
368 	spin_lock_irq(&hcd_root_hub_lock);
369 	status = usb_hcd_link_urb_to_ep(hcd, urb);
370 	spin_unlock_irq(&hcd_root_hub_lock);
371 	if (status)
372 		return status;
373 	urb->hcpriv = hcd;	/* Indicate it's queued */
374 
375 	cmd = (struct usb_ctrlrequest *) urb->setup_packet;
376 	typeReq  = (cmd->bRequestType << 8) | cmd->bRequest;
377 	wValue   = le16_to_cpu (cmd->wValue);
378 	wIndex   = le16_to_cpu (cmd->wIndex);
379 	wLength  = le16_to_cpu (cmd->wLength);
380 
381 	if (wLength > urb->transfer_buffer_length)
382 		goto error;
383 
384 	urb->actual_length = 0;
385 	switch (typeReq) {
386 
387 	/* DEVICE REQUESTS */
388 
389 	/* The root hub's remote wakeup enable bit is implemented using
390 	 * driver model wakeup flags.  If this system supports wakeup
391 	 * through USB, userspace may change the default "allow wakeup"
392 	 * policy through sysfs or these calls.
393 	 *
394 	 * Most root hubs support wakeup from downstream devices, for
395 	 * runtime power management (disabling USB clocks and reducing
396 	 * VBUS power usage).  However, not all of them do so; silicon,
397 	 * board, and BIOS bugs here are not uncommon, so these can't
398 	 * be treated quite like external hubs.
399 	 *
400 	 * Likewise, not all root hubs will pass wakeup events upstream,
401 	 * to wake up the whole system.  So don't assume root hub and
402 	 * controller capabilities are identical.
403 	 */
404 
405 	case DeviceRequest | USB_REQ_GET_STATUS:
406 		tbuf [0] = (device_may_wakeup(&hcd->self.root_hub->dev)
407 					<< USB_DEVICE_REMOTE_WAKEUP)
408 				| (1 << USB_DEVICE_SELF_POWERED);
409 		tbuf [1] = 0;
410 		len = 2;
411 		break;
412 	case DeviceOutRequest | USB_REQ_CLEAR_FEATURE:
413 		if (wValue == USB_DEVICE_REMOTE_WAKEUP)
414 			device_set_wakeup_enable(&hcd->self.root_hub->dev, 0);
415 		else
416 			goto error;
417 		break;
418 	case DeviceOutRequest | USB_REQ_SET_FEATURE:
419 		if (device_can_wakeup(&hcd->self.root_hub->dev)
420 				&& wValue == USB_DEVICE_REMOTE_WAKEUP)
421 			device_set_wakeup_enable(&hcd->self.root_hub->dev, 1);
422 		else
423 			goto error;
424 		break;
425 	case DeviceRequest | USB_REQ_GET_CONFIGURATION:
426 		tbuf [0] = 1;
427 		len = 1;
428 			/* FALLTHROUGH */
429 	case DeviceOutRequest | USB_REQ_SET_CONFIGURATION:
430 		break;
431 	case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
432 		switch (wValue & 0xff00) {
433 		case USB_DT_DEVICE << 8:
434 			if (hcd->driver->flags & HCD_USB2)
435 				bufp = usb2_rh_dev_descriptor;
436 			else if (hcd->driver->flags & HCD_USB11)
437 				bufp = usb11_rh_dev_descriptor;
438 			else
439 				goto error;
440 			len = 18;
441 			if (hcd->has_tt)
442 				patch_protocol = 1;
443 			break;
444 		case USB_DT_CONFIG << 8:
445 			if (hcd->driver->flags & HCD_USB2) {
446 				bufp = hs_rh_config_descriptor;
447 				len = sizeof hs_rh_config_descriptor;
448 			} else {
449 				bufp = fs_rh_config_descriptor;
450 				len = sizeof fs_rh_config_descriptor;
451 			}
452 			if (device_can_wakeup(&hcd->self.root_hub->dev))
453 				patch_wakeup = 1;
454 			break;
455 		case USB_DT_STRING << 8:
456 			n = rh_string (wValue & 0xff, hcd, ubuf, wLength);
457 			if (n < 0)
458 				goto error;
459 			urb->actual_length = n;
460 			break;
461 		default:
462 			goto error;
463 		}
464 		break;
465 	case DeviceRequest | USB_REQ_GET_INTERFACE:
466 		tbuf [0] = 0;
467 		len = 1;
468 			/* FALLTHROUGH */
469 	case DeviceOutRequest | USB_REQ_SET_INTERFACE:
470 		break;
471 	case DeviceOutRequest | USB_REQ_SET_ADDRESS:
472 		// wValue == urb->dev->devaddr
473 		dev_dbg (hcd->self.controller, "root hub device address %d\n",
474 			wValue);
475 		break;
476 
477 	/* INTERFACE REQUESTS (no defined feature/status flags) */
478 
479 	/* ENDPOINT REQUESTS */
480 
481 	case EndpointRequest | USB_REQ_GET_STATUS:
482 		// ENDPOINT_HALT flag
483 		tbuf [0] = 0;
484 		tbuf [1] = 0;
485 		len = 2;
486 			/* FALLTHROUGH */
487 	case EndpointOutRequest | USB_REQ_CLEAR_FEATURE:
488 	case EndpointOutRequest | USB_REQ_SET_FEATURE:
489 		dev_dbg (hcd->self.controller, "no endpoint features yet\n");
490 		break;
491 
492 	/* CLASS REQUESTS (and errors) */
493 
494 	default:
495 		/* non-generic request */
496 		switch (typeReq) {
497 		case GetHubStatus:
498 		case GetPortStatus:
499 			len = 4;
500 			break;
501 		case GetHubDescriptor:
502 			len = sizeof (struct usb_hub_descriptor);
503 			break;
504 		}
505 		status = hcd->driver->hub_control (hcd,
506 			typeReq, wValue, wIndex,
507 			tbuf, wLength);
508 		break;
509 error:
510 		/* "protocol stall" on error */
511 		status = -EPIPE;
512 	}
513 
514 	if (status) {
515 		len = 0;
516 		if (status != -EPIPE) {
517 			dev_dbg (hcd->self.controller,
518 				"CTRL: TypeReq=0x%x val=0x%x "
519 				"idx=0x%x len=%d ==> %d\n",
520 				typeReq, wValue, wIndex,
521 				wLength, status);
522 		}
523 	}
524 	if (len) {
525 		if (urb->transfer_buffer_length < len)
526 			len = urb->transfer_buffer_length;
527 		urb->actual_length = len;
528 		// always USB_DIR_IN, toward host
529 		memcpy (ubuf, bufp, len);
530 
531 		/* report whether RH hardware supports remote wakeup */
532 		if (patch_wakeup &&
533 				len > offsetof (struct usb_config_descriptor,
534 						bmAttributes))
535 			((struct usb_config_descriptor *)ubuf)->bmAttributes
536 				|= USB_CONFIG_ATT_WAKEUP;
537 
538 		/* report whether RH hardware has an integrated TT */
539 		if (patch_protocol &&
540 				len > offsetof(struct usb_device_descriptor,
541 						bDeviceProtocol))
542 			((struct usb_device_descriptor *) ubuf)->
543 					bDeviceProtocol = 1;
544 	}
545 
546 	/* any errors get returned through the urb completion */
547 	spin_lock_irq(&hcd_root_hub_lock);
548 	usb_hcd_unlink_urb_from_ep(hcd, urb);
549 
550 	/* This peculiar use of spinlocks echoes what real HC drivers do.
551 	 * Avoiding calls to local_irq_disable/enable makes the code
552 	 * RT-friendly.
553 	 */
554 	spin_unlock(&hcd_root_hub_lock);
555 	usb_hcd_giveback_urb(hcd, urb, status);
556 	spin_lock(&hcd_root_hub_lock);
557 
558 	spin_unlock_irq(&hcd_root_hub_lock);
559 	return 0;
560 }
561 
562 /*-------------------------------------------------------------------------*/
563 
564 /*
565  * Root Hub interrupt transfers are polled using a timer if the
566  * driver requests it; otherwise the driver is responsible for
567  * calling usb_hcd_poll_rh_status() when an event occurs.
568  *
569  * Completions are called in_interrupt(), but they may or may not
570  * be in_irq().
571  */
572 void usb_hcd_poll_rh_status(struct usb_hcd *hcd)
573 {
574 	struct urb	*urb;
575 	int		length;
576 	unsigned long	flags;
577 	char		buffer[4];	/* Any root hubs with > 31 ports? */
578 
579 	if (unlikely(!hcd->rh_registered))
580 		return;
581 	if (!hcd->uses_new_polling && !hcd->status_urb)
582 		return;
583 
584 	length = hcd->driver->hub_status_data(hcd, buffer);
585 	if (length > 0) {
586 
587 		/* try to complete the status urb */
588 		spin_lock_irqsave(&hcd_root_hub_lock, flags);
589 		urb = hcd->status_urb;
590 		if (urb) {
591 			hcd->poll_pending = 0;
592 			hcd->status_urb = NULL;
593 			urb->actual_length = length;
594 			memcpy(urb->transfer_buffer, buffer, length);
595 
596 			usb_hcd_unlink_urb_from_ep(hcd, urb);
597 			spin_unlock(&hcd_root_hub_lock);
598 			usb_hcd_giveback_urb(hcd, urb, 0);
599 			spin_lock(&hcd_root_hub_lock);
600 		} else {
601 			length = 0;
602 			hcd->poll_pending = 1;
603 		}
604 		spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
605 	}
606 
607 	/* The USB 2.0 spec says 256 ms.  This is close enough and won't
608 	 * exceed that limit if HZ is 100. The math is more clunky than
609 	 * maybe expected, this is to make sure that all timers for USB devices
610 	 * fire at the same time to give the CPU a break inbetween */
611 	if (hcd->uses_new_polling ? hcd->poll_rh :
612 			(length == 0 && hcd->status_urb != NULL))
613 		mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
614 }
615 EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status);
616 
617 /* timer callback */
618 static void rh_timer_func (unsigned long _hcd)
619 {
620 	usb_hcd_poll_rh_status((struct usb_hcd *) _hcd);
621 }
622 
623 /*-------------------------------------------------------------------------*/
624 
625 static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb)
626 {
627 	int		retval;
628 	unsigned long	flags;
629 	int		len = 1 + (urb->dev->maxchild / 8);
630 
631 	spin_lock_irqsave (&hcd_root_hub_lock, flags);
632 	if (hcd->status_urb || urb->transfer_buffer_length < len) {
633 		dev_dbg (hcd->self.controller, "not queuing rh status urb\n");
634 		retval = -EINVAL;
635 		goto done;
636 	}
637 
638 	retval = usb_hcd_link_urb_to_ep(hcd, urb);
639 	if (retval)
640 		goto done;
641 
642 	hcd->status_urb = urb;
643 	urb->hcpriv = hcd;	/* indicate it's queued */
644 	if (!hcd->uses_new_polling)
645 		mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
646 
647 	/* If a status change has already occurred, report it ASAP */
648 	else if (hcd->poll_pending)
649 		mod_timer(&hcd->rh_timer, jiffies);
650 	retval = 0;
651  done:
652 	spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
653 	return retval;
654 }
655 
656 static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb)
657 {
658 	if (usb_endpoint_xfer_int(&urb->ep->desc))
659 		return rh_queue_status (hcd, urb);
660 	if (usb_endpoint_xfer_control(&urb->ep->desc))
661 		return rh_call_control (hcd, urb);
662 	return -EINVAL;
663 }
664 
665 /*-------------------------------------------------------------------------*/
666 
667 /* Unlinks of root-hub control URBs are legal, but they don't do anything
668  * since these URBs always execute synchronously.
669  */
670 static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
671 {
672 	unsigned long	flags;
673 	int		rc;
674 
675 	spin_lock_irqsave(&hcd_root_hub_lock, flags);
676 	rc = usb_hcd_check_unlink_urb(hcd, urb, status);
677 	if (rc)
678 		goto done;
679 
680 	if (usb_endpoint_num(&urb->ep->desc) == 0) {	/* Control URB */
681 		;	/* Do nothing */
682 
683 	} else {				/* Status URB */
684 		if (!hcd->uses_new_polling)
685 			del_timer (&hcd->rh_timer);
686 		if (urb == hcd->status_urb) {
687 			hcd->status_urb = NULL;
688 			usb_hcd_unlink_urb_from_ep(hcd, urb);
689 
690 			spin_unlock(&hcd_root_hub_lock);
691 			usb_hcd_giveback_urb(hcd, urb, status);
692 			spin_lock(&hcd_root_hub_lock);
693 		}
694 	}
695  done:
696 	spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
697 	return rc;
698 }
699 
700 
701 
702 /*
703  * Show & store the current value of authorized_default
704  */
705 static ssize_t usb_host_authorized_default_show(struct device *dev,
706 						struct device_attribute *attr,
707 						char *buf)
708 {
709 	struct usb_device *rh_usb_dev = to_usb_device(dev);
710 	struct usb_bus *usb_bus = rh_usb_dev->bus;
711 	struct usb_hcd *usb_hcd;
712 
713 	if (usb_bus == NULL)	/* FIXME: not sure if this case is possible */
714 		return -ENODEV;
715 	usb_hcd = bus_to_hcd(usb_bus);
716 	return snprintf(buf, PAGE_SIZE, "%u\n", usb_hcd->authorized_default);
717 }
718 
719 static ssize_t usb_host_authorized_default_store(struct device *dev,
720 						 struct device_attribute *attr,
721 						 const char *buf, size_t size)
722 {
723 	ssize_t result;
724 	unsigned val;
725 	struct usb_device *rh_usb_dev = to_usb_device(dev);
726 	struct usb_bus *usb_bus = rh_usb_dev->bus;
727 	struct usb_hcd *usb_hcd;
728 
729 	if (usb_bus == NULL)	/* FIXME: not sure if this case is possible */
730 		return -ENODEV;
731 	usb_hcd = bus_to_hcd(usb_bus);
732 	result = sscanf(buf, "%u\n", &val);
733 	if (result == 1) {
734 		usb_hcd->authorized_default = val? 1 : 0;
735 		result = size;
736 	}
737 	else
738 		result = -EINVAL;
739 	return result;
740 }
741 
742 static DEVICE_ATTR(authorized_default, 0644,
743 	    usb_host_authorized_default_show,
744 	    usb_host_authorized_default_store);
745 
746 
747 /* Group all the USB bus attributes */
748 static struct attribute *usb_bus_attrs[] = {
749 		&dev_attr_authorized_default.attr,
750 		NULL,
751 };
752 
753 static struct attribute_group usb_bus_attr_group = {
754 	.name = NULL,	/* we want them in the same directory */
755 	.attrs = usb_bus_attrs,
756 };
757 
758 
759 
760 /*-------------------------------------------------------------------------*/
761 
762 static struct class *usb_host_class;
763 
764 int usb_host_init(void)
765 {
766 	int retval = 0;
767 
768 	usb_host_class = class_create(THIS_MODULE, "usb_host");
769 	if (IS_ERR(usb_host_class))
770 		retval = PTR_ERR(usb_host_class);
771 	return retval;
772 }
773 
774 void usb_host_cleanup(void)
775 {
776 	class_destroy(usb_host_class);
777 }
778 
779 /**
780  * usb_bus_init - shared initialization code
781  * @bus: the bus structure being initialized
782  *
783  * This code is used to initialize a usb_bus structure, memory for which is
784  * separately managed.
785  */
786 static void usb_bus_init (struct usb_bus *bus)
787 {
788 	memset (&bus->devmap, 0, sizeof(struct usb_devmap));
789 
790 	bus->devnum_next = 1;
791 
792 	bus->root_hub = NULL;
793 	bus->busnum = -1;
794 	bus->bandwidth_allocated = 0;
795 	bus->bandwidth_int_reqs  = 0;
796 	bus->bandwidth_isoc_reqs = 0;
797 
798 	INIT_LIST_HEAD (&bus->bus_list);
799 }
800 
801 /*-------------------------------------------------------------------------*/
802 
803 /**
804  * usb_register_bus - registers the USB host controller with the usb core
805  * @bus: pointer to the bus to register
806  * Context: !in_interrupt()
807  *
808  * Assigns a bus number, and links the controller into usbcore data
809  * structures so that it can be seen by scanning the bus list.
810  */
811 static int usb_register_bus(struct usb_bus *bus)
812 {
813 	int result = -E2BIG;
814 	int busnum;
815 
816 	mutex_lock(&usb_bus_list_lock);
817 	busnum = find_next_zero_bit (busmap.busmap, USB_MAXBUS, 1);
818 	if (busnum >= USB_MAXBUS) {
819 		printk (KERN_ERR "%s: too many buses\n", usbcore_name);
820 		goto error_find_busnum;
821 	}
822 	set_bit (busnum, busmap.busmap);
823 	bus->busnum = busnum;
824 
825 	bus->dev = device_create(usb_host_class, bus->controller, MKDEV(0, 0),
826 				 bus, "usb_host%d", busnum);
827 	result = PTR_ERR(bus->dev);
828 	if (IS_ERR(bus->dev))
829 		goto error_create_class_dev;
830 
831 	/* Add it to the local list of buses */
832 	list_add (&bus->bus_list, &usb_bus_list);
833 	mutex_unlock(&usb_bus_list_lock);
834 
835 	usb_notify_add_bus(bus);
836 
837 	dev_info (bus->controller, "new USB bus registered, assigned bus "
838 		  "number %d\n", bus->busnum);
839 	return 0;
840 
841 error_create_class_dev:
842 	clear_bit(busnum, busmap.busmap);
843 error_find_busnum:
844 	mutex_unlock(&usb_bus_list_lock);
845 	return result;
846 }
847 
848 /**
849  * usb_deregister_bus - deregisters the USB host controller
850  * @bus: pointer to the bus to deregister
851  * Context: !in_interrupt()
852  *
853  * Recycles the bus number, and unlinks the controller from usbcore data
854  * structures so that it won't be seen by scanning the bus list.
855  */
856 static void usb_deregister_bus (struct usb_bus *bus)
857 {
858 	dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum);
859 
860 	/*
861 	 * NOTE: make sure that all the devices are removed by the
862 	 * controller code, as well as having it call this when cleaning
863 	 * itself up
864 	 */
865 	mutex_lock(&usb_bus_list_lock);
866 	list_del (&bus->bus_list);
867 	mutex_unlock(&usb_bus_list_lock);
868 
869 	usb_notify_remove_bus(bus);
870 
871 	clear_bit (bus->busnum, busmap.busmap);
872 
873 	device_unregister(bus->dev);
874 }
875 
876 /**
877  * register_root_hub - called by usb_add_hcd() to register a root hub
878  * @hcd: host controller for this root hub
879  *
880  * This function registers the root hub with the USB subsystem.  It sets up
881  * the device properly in the device tree and then calls usb_new_device()
882  * to register the usb device.  It also assigns the root hub's USB address
883  * (always 1).
884  */
885 static int register_root_hub(struct usb_hcd *hcd)
886 {
887 	struct device *parent_dev = hcd->self.controller;
888 	struct usb_device *usb_dev = hcd->self.root_hub;
889 	const int devnum = 1;
890 	int retval;
891 
892 	usb_dev->devnum = devnum;
893 	usb_dev->bus->devnum_next = devnum + 1;
894 	memset (&usb_dev->bus->devmap.devicemap, 0,
895 			sizeof usb_dev->bus->devmap.devicemap);
896 	set_bit (devnum, usb_dev->bus->devmap.devicemap);
897 	usb_set_device_state(usb_dev, USB_STATE_ADDRESS);
898 
899 	mutex_lock(&usb_bus_list_lock);
900 
901 	usb_dev->ep0.desc.wMaxPacketSize = __constant_cpu_to_le16(64);
902 	retval = usb_get_device_descriptor(usb_dev, USB_DT_DEVICE_SIZE);
903 	if (retval != sizeof usb_dev->descriptor) {
904 		mutex_unlock(&usb_bus_list_lock);
905 		dev_dbg (parent_dev, "can't read %s device descriptor %d\n",
906 				dev_name(&usb_dev->dev), retval);
907 		return (retval < 0) ? retval : -EMSGSIZE;
908 	}
909 
910 	retval = usb_new_device (usb_dev);
911 	if (retval) {
912 		dev_err (parent_dev, "can't register root hub for %s, %d\n",
913 				dev_name(&usb_dev->dev), retval);
914 	}
915 	mutex_unlock(&usb_bus_list_lock);
916 
917 	if (retval == 0) {
918 		spin_lock_irq (&hcd_root_hub_lock);
919 		hcd->rh_registered = 1;
920 		spin_unlock_irq (&hcd_root_hub_lock);
921 
922 		/* Did the HC die before the root hub was registered? */
923 		if (hcd->state == HC_STATE_HALT)
924 			usb_hc_died (hcd);	/* This time clean up */
925 	}
926 
927 	return retval;
928 }
929 
930 
931 /*-------------------------------------------------------------------------*/
932 
933 /**
934  * usb_calc_bus_time - approximate periodic transaction time in nanoseconds
935  * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH}
936  * @is_input: true iff the transaction sends data to the host
937  * @isoc: true for isochronous transactions, false for interrupt ones
938  * @bytecount: how many bytes in the transaction.
939  *
940  * Returns approximate bus time in nanoseconds for a periodic transaction.
941  * See USB 2.0 spec section 5.11.3; only periodic transfers need to be
942  * scheduled in software, this function is only used for such scheduling.
943  */
944 long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount)
945 {
946 	unsigned long	tmp;
947 
948 	switch (speed) {
949 	case USB_SPEED_LOW: 	/* INTR only */
950 		if (is_input) {
951 			tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L;
952 			return (64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp);
953 		} else {
954 			tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L;
955 			return (64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp);
956 		}
957 	case USB_SPEED_FULL:	/* ISOC or INTR */
958 		if (isoc) {
959 			tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
960 			return (((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp);
961 		} else {
962 			tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
963 			return (9107L + BW_HOST_DELAY + tmp);
964 		}
965 	case USB_SPEED_HIGH:	/* ISOC or INTR */
966 		// FIXME adjust for input vs output
967 		if (isoc)
968 			tmp = HS_NSECS_ISO (bytecount);
969 		else
970 			tmp = HS_NSECS (bytecount);
971 		return tmp;
972 	default:
973 		pr_debug ("%s: bogus device speed!\n", usbcore_name);
974 		return -1;
975 	}
976 }
977 EXPORT_SYMBOL_GPL(usb_calc_bus_time);
978 
979 
980 /*-------------------------------------------------------------------------*/
981 
982 /*
983  * Generic HC operations.
984  */
985 
986 /*-------------------------------------------------------------------------*/
987 
988 /**
989  * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue
990  * @hcd: host controller to which @urb was submitted
991  * @urb: URB being submitted
992  *
993  * Host controller drivers should call this routine in their enqueue()
994  * method.  The HCD's private spinlock must be held and interrupts must
995  * be disabled.  The actions carried out here are required for URB
996  * submission, as well as for endpoint shutdown and for usb_kill_urb.
997  *
998  * Returns 0 for no error, otherwise a negative error code (in which case
999  * the enqueue() method must fail).  If no error occurs but enqueue() fails
1000  * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing
1001  * the private spinlock and returning.
1002  */
1003 int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb)
1004 {
1005 	int		rc = 0;
1006 
1007 	spin_lock(&hcd_urb_list_lock);
1008 
1009 	/* Check that the URB isn't being killed */
1010 	if (unlikely(urb->reject)) {
1011 		rc = -EPERM;
1012 		goto done;
1013 	}
1014 
1015 	if (unlikely(!urb->ep->enabled)) {
1016 		rc = -ENOENT;
1017 		goto done;
1018 	}
1019 
1020 	if (unlikely(!urb->dev->can_submit)) {
1021 		rc = -EHOSTUNREACH;
1022 		goto done;
1023 	}
1024 
1025 	/*
1026 	 * Check the host controller's state and add the URB to the
1027 	 * endpoint's queue.
1028 	 */
1029 	switch (hcd->state) {
1030 	case HC_STATE_RUNNING:
1031 	case HC_STATE_RESUMING:
1032 		urb->unlinked = 0;
1033 		list_add_tail(&urb->urb_list, &urb->ep->urb_list);
1034 		break;
1035 	default:
1036 		rc = -ESHUTDOWN;
1037 		goto done;
1038 	}
1039  done:
1040 	spin_unlock(&hcd_urb_list_lock);
1041 	return rc;
1042 }
1043 EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep);
1044 
1045 /**
1046  * usb_hcd_check_unlink_urb - check whether an URB may be unlinked
1047  * @hcd: host controller to which @urb was submitted
1048  * @urb: URB being checked for unlinkability
1049  * @status: error code to store in @urb if the unlink succeeds
1050  *
1051  * Host controller drivers should call this routine in their dequeue()
1052  * method.  The HCD's private spinlock must be held and interrupts must
1053  * be disabled.  The actions carried out here are required for making
1054  * sure than an unlink is valid.
1055  *
1056  * Returns 0 for no error, otherwise a negative error code (in which case
1057  * the dequeue() method must fail).  The possible error codes are:
1058  *
1059  *	-EIDRM: @urb was not submitted or has already completed.
1060  *		The completion function may not have been called yet.
1061  *
1062  *	-EBUSY: @urb has already been unlinked.
1063  */
1064 int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb,
1065 		int status)
1066 {
1067 	struct list_head	*tmp;
1068 
1069 	/* insist the urb is still queued */
1070 	list_for_each(tmp, &urb->ep->urb_list) {
1071 		if (tmp == &urb->urb_list)
1072 			break;
1073 	}
1074 	if (tmp != &urb->urb_list)
1075 		return -EIDRM;
1076 
1077 	/* Any status except -EINPROGRESS means something already started to
1078 	 * unlink this URB from the hardware.  So there's no more work to do.
1079 	 */
1080 	if (urb->unlinked)
1081 		return -EBUSY;
1082 	urb->unlinked = status;
1083 
1084 	/* IRQ setup can easily be broken so that USB controllers
1085 	 * never get completion IRQs ... maybe even the ones we need to
1086 	 * finish unlinking the initial failed usb_set_address()
1087 	 * or device descriptor fetch.
1088 	 */
1089 	if (!test_bit(HCD_FLAG_SAW_IRQ, &hcd->flags) &&
1090 			!is_root_hub(urb->dev)) {
1091 		dev_warn(hcd->self.controller, "Unlink after no-IRQ?  "
1092 			"Controller is probably using the wrong IRQ.\n");
1093 		set_bit(HCD_FLAG_SAW_IRQ, &hcd->flags);
1094 	}
1095 
1096 	return 0;
1097 }
1098 EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb);
1099 
1100 /**
1101  * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue
1102  * @hcd: host controller to which @urb was submitted
1103  * @urb: URB being unlinked
1104  *
1105  * Host controller drivers should call this routine before calling
1106  * usb_hcd_giveback_urb().  The HCD's private spinlock must be held and
1107  * interrupts must be disabled.  The actions carried out here are required
1108  * for URB completion.
1109  */
1110 void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb)
1111 {
1112 	/* clear all state linking urb to this dev (and hcd) */
1113 	spin_lock(&hcd_urb_list_lock);
1114 	list_del_init(&urb->urb_list);
1115 	spin_unlock(&hcd_urb_list_lock);
1116 }
1117 EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep);
1118 
1119 /*
1120  * Some usb host controllers can only perform dma using a small SRAM area.
1121  * The usb core itself is however optimized for host controllers that can dma
1122  * using regular system memory - like pci devices doing bus mastering.
1123  *
1124  * To support host controllers with limited dma capabilites we provide dma
1125  * bounce buffers. This feature can be enabled using the HCD_LOCAL_MEM flag.
1126  * For this to work properly the host controller code must first use the
1127  * function dma_declare_coherent_memory() to point out which memory area
1128  * that should be used for dma allocations.
1129  *
1130  * The HCD_LOCAL_MEM flag then tells the usb code to allocate all data for
1131  * dma using dma_alloc_coherent() which in turn allocates from the memory
1132  * area pointed out with dma_declare_coherent_memory().
1133  *
1134  * So, to summarize...
1135  *
1136  * - We need "local" memory, canonical example being
1137  *   a small SRAM on a discrete controller being the
1138  *   only memory that the controller can read ...
1139  *   (a) "normal" kernel memory is no good, and
1140  *   (b) there's not enough to share
1141  *
1142  * - The only *portable* hook for such stuff in the
1143  *   DMA framework is dma_declare_coherent_memory()
1144  *
1145  * - So we use that, even though the primary requirement
1146  *   is that the memory be "local" (hence addressible
1147  *   by that device), not "coherent".
1148  *
1149  */
1150 
1151 static int hcd_alloc_coherent(struct usb_bus *bus,
1152 			      gfp_t mem_flags, dma_addr_t *dma_handle,
1153 			      void **vaddr_handle, size_t size,
1154 			      enum dma_data_direction dir)
1155 {
1156 	unsigned char *vaddr;
1157 
1158 	vaddr = hcd_buffer_alloc(bus, size + sizeof(vaddr),
1159 				 mem_flags, dma_handle);
1160 	if (!vaddr)
1161 		return -ENOMEM;
1162 
1163 	/*
1164 	 * Store the virtual address of the buffer at the end
1165 	 * of the allocated dma buffer. The size of the buffer
1166 	 * may be uneven so use unaligned functions instead
1167 	 * of just rounding up. It makes sense to optimize for
1168 	 * memory footprint over access speed since the amount
1169 	 * of memory available for dma may be limited.
1170 	 */
1171 	put_unaligned((unsigned long)*vaddr_handle,
1172 		      (unsigned long *)(vaddr + size));
1173 
1174 	if (dir == DMA_TO_DEVICE)
1175 		memcpy(vaddr, *vaddr_handle, size);
1176 
1177 	*vaddr_handle = vaddr;
1178 	return 0;
1179 }
1180 
1181 static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle,
1182 			      void **vaddr_handle, size_t size,
1183 			      enum dma_data_direction dir)
1184 {
1185 	unsigned char *vaddr = *vaddr_handle;
1186 
1187 	vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size));
1188 
1189 	if (dir == DMA_FROM_DEVICE)
1190 		memcpy(vaddr, *vaddr_handle, size);
1191 
1192 	hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle);
1193 
1194 	*vaddr_handle = vaddr;
1195 	*dma_handle = 0;
1196 }
1197 
1198 static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1199 			   gfp_t mem_flags)
1200 {
1201 	enum dma_data_direction dir;
1202 	int ret = 0;
1203 
1204 	/* Map the URB's buffers for DMA access.
1205 	 * Lower level HCD code should use *_dma exclusively,
1206 	 * unless it uses pio or talks to another transport.
1207 	 */
1208 	if (is_root_hub(urb->dev))
1209 		return 0;
1210 
1211 	if (usb_endpoint_xfer_control(&urb->ep->desc)
1212 	    && !(urb->transfer_flags & URB_NO_SETUP_DMA_MAP)) {
1213 		if (hcd->self.uses_dma)
1214 			urb->setup_dma = dma_map_single(
1215 					hcd->self.controller,
1216 					urb->setup_packet,
1217 					sizeof(struct usb_ctrlrequest),
1218 					DMA_TO_DEVICE);
1219 		else if (hcd->driver->flags & HCD_LOCAL_MEM)
1220 			ret = hcd_alloc_coherent(
1221 					urb->dev->bus, mem_flags,
1222 					&urb->setup_dma,
1223 					(void **)&urb->setup_packet,
1224 					sizeof(struct usb_ctrlrequest),
1225 					DMA_TO_DEVICE);
1226 	}
1227 
1228 	dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1229 	if (ret == 0 && urb->transfer_buffer_length != 0
1230 	    && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1231 		if (hcd->self.uses_dma)
1232 			urb->transfer_dma = dma_map_single (
1233 					hcd->self.controller,
1234 					urb->transfer_buffer,
1235 					urb->transfer_buffer_length,
1236 					dir);
1237 		else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1238 			ret = hcd_alloc_coherent(
1239 					urb->dev->bus, mem_flags,
1240 					&urb->transfer_dma,
1241 					&urb->transfer_buffer,
1242 					urb->transfer_buffer_length,
1243 					dir);
1244 
1245 			if (ret && usb_endpoint_xfer_control(&urb->ep->desc)
1246 			    && !(urb->transfer_flags & URB_NO_SETUP_DMA_MAP))
1247 				hcd_free_coherent(urb->dev->bus,
1248 					&urb->setup_dma,
1249 					(void **)&urb->setup_packet,
1250 					sizeof(struct usb_ctrlrequest),
1251 					DMA_TO_DEVICE);
1252 		}
1253 	}
1254 	return ret;
1255 }
1256 
1257 static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1258 {
1259 	enum dma_data_direction dir;
1260 
1261 	if (is_root_hub(urb->dev))
1262 		return;
1263 
1264 	if (usb_endpoint_xfer_control(&urb->ep->desc)
1265 	    && !(urb->transfer_flags & URB_NO_SETUP_DMA_MAP)) {
1266 		if (hcd->self.uses_dma)
1267 			dma_unmap_single(hcd->self.controller, urb->setup_dma,
1268 					sizeof(struct usb_ctrlrequest),
1269 					DMA_TO_DEVICE);
1270 		else if (hcd->driver->flags & HCD_LOCAL_MEM)
1271 			hcd_free_coherent(urb->dev->bus, &urb->setup_dma,
1272 					(void **)&urb->setup_packet,
1273 					sizeof(struct usb_ctrlrequest),
1274 					DMA_TO_DEVICE);
1275 	}
1276 
1277 	dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1278 	if (urb->transfer_buffer_length != 0
1279 	    && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1280 		if (hcd->self.uses_dma)
1281 			dma_unmap_single(hcd->self.controller,
1282 					urb->transfer_dma,
1283 					urb->transfer_buffer_length,
1284 					dir);
1285 		else if (hcd->driver->flags & HCD_LOCAL_MEM)
1286 			hcd_free_coherent(urb->dev->bus, &urb->transfer_dma,
1287 					&urb->transfer_buffer,
1288 					urb->transfer_buffer_length,
1289 					dir);
1290 	}
1291 }
1292 
1293 /*-------------------------------------------------------------------------*/
1294 
1295 /* may be called in any context with a valid urb->dev usecount
1296  * caller surrenders "ownership" of urb
1297  * expects usb_submit_urb() to have sanity checked and conditioned all
1298  * inputs in the urb
1299  */
1300 int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags)
1301 {
1302 	int			status;
1303 	struct usb_hcd		*hcd = bus_to_hcd(urb->dev->bus);
1304 
1305 	/* increment urb's reference count as part of giving it to the HCD
1306 	 * (which will control it).  HCD guarantees that it either returns
1307 	 * an error or calls giveback(), but not both.
1308 	 */
1309 	usb_get_urb(urb);
1310 	atomic_inc(&urb->use_count);
1311 	atomic_inc(&urb->dev->urbnum);
1312 	usbmon_urb_submit(&hcd->self, urb);
1313 
1314 	/* NOTE requirements on root-hub callers (usbfs and the hub
1315 	 * driver, for now):  URBs' urb->transfer_buffer must be
1316 	 * valid and usb_buffer_{sync,unmap}() not be needed, since
1317 	 * they could clobber root hub response data.  Also, control
1318 	 * URBs must be submitted in process context with interrupts
1319 	 * enabled.
1320 	 */
1321 	status = map_urb_for_dma(hcd, urb, mem_flags);
1322 	if (unlikely(status)) {
1323 		usbmon_urb_submit_error(&hcd->self, urb, status);
1324 		goto error;
1325 	}
1326 
1327 	if (is_root_hub(urb->dev))
1328 		status = rh_urb_enqueue(hcd, urb);
1329 	else
1330 		status = hcd->driver->urb_enqueue(hcd, urb, mem_flags);
1331 
1332 	if (unlikely(status)) {
1333 		usbmon_urb_submit_error(&hcd->self, urb, status);
1334 		unmap_urb_for_dma(hcd, urb);
1335  error:
1336 		urb->hcpriv = NULL;
1337 		INIT_LIST_HEAD(&urb->urb_list);
1338 		atomic_dec(&urb->use_count);
1339 		atomic_dec(&urb->dev->urbnum);
1340 		if (urb->reject)
1341 			wake_up(&usb_kill_urb_queue);
1342 		usb_put_urb(urb);
1343 	}
1344 	return status;
1345 }
1346 
1347 /*-------------------------------------------------------------------------*/
1348 
1349 /* this makes the hcd giveback() the urb more quickly, by kicking it
1350  * off hardware queues (which may take a while) and returning it as
1351  * soon as practical.  we've already set up the urb's return status,
1352  * but we can't know if the callback completed already.
1353  */
1354 static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status)
1355 {
1356 	int		value;
1357 
1358 	if (is_root_hub(urb->dev))
1359 		value = usb_rh_urb_dequeue(hcd, urb, status);
1360 	else {
1361 
1362 		/* The only reason an HCD might fail this call is if
1363 		 * it has not yet fully queued the urb to begin with.
1364 		 * Such failures should be harmless. */
1365 		value = hcd->driver->urb_dequeue(hcd, urb, status);
1366 	}
1367 	return value;
1368 }
1369 
1370 /*
1371  * called in any context
1372  *
1373  * caller guarantees urb won't be recycled till both unlink()
1374  * and the urb's completion function return
1375  */
1376 int usb_hcd_unlink_urb (struct urb *urb, int status)
1377 {
1378 	struct usb_hcd		*hcd;
1379 	int			retval;
1380 
1381 	hcd = bus_to_hcd(urb->dev->bus);
1382 	retval = unlink1(hcd, urb, status);
1383 
1384 	if (retval == 0)
1385 		retval = -EINPROGRESS;
1386 	else if (retval != -EIDRM && retval != -EBUSY)
1387 		dev_dbg(&urb->dev->dev, "hcd_unlink_urb %p fail %d\n",
1388 				urb, retval);
1389 	return retval;
1390 }
1391 
1392 /*-------------------------------------------------------------------------*/
1393 
1394 /**
1395  * usb_hcd_giveback_urb - return URB from HCD to device driver
1396  * @hcd: host controller returning the URB
1397  * @urb: urb being returned to the USB device driver.
1398  * @status: completion status code for the URB.
1399  * Context: in_interrupt()
1400  *
1401  * This hands the URB from HCD to its USB device driver, using its
1402  * completion function.  The HCD has freed all per-urb resources
1403  * (and is done using urb->hcpriv).  It also released all HCD locks;
1404  * the device driver won't cause problems if it frees, modifies,
1405  * or resubmits this URB.
1406  *
1407  * If @urb was unlinked, the value of @status will be overridden by
1408  * @urb->unlinked.  Erroneous short transfers are detected in case
1409  * the HCD hasn't checked for them.
1410  */
1411 void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status)
1412 {
1413 	urb->hcpriv = NULL;
1414 	if (unlikely(urb->unlinked))
1415 		status = urb->unlinked;
1416 	else if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) &&
1417 			urb->actual_length < urb->transfer_buffer_length &&
1418 			!status))
1419 		status = -EREMOTEIO;
1420 
1421 	unmap_urb_for_dma(hcd, urb);
1422 	usbmon_urb_complete(&hcd->self, urb, status);
1423 	usb_unanchor_urb(urb);
1424 
1425 	/* pass ownership to the completion handler */
1426 	urb->status = status;
1427 	urb->complete (urb);
1428 	atomic_dec (&urb->use_count);
1429 	if (unlikely (urb->reject))
1430 		wake_up (&usb_kill_urb_queue);
1431 	usb_put_urb (urb);
1432 }
1433 EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb);
1434 
1435 /*-------------------------------------------------------------------------*/
1436 
1437 /* Cancel all URBs pending on this endpoint and wait for the endpoint's
1438  * queue to drain completely.  The caller must first insure that no more
1439  * URBs can be submitted for this endpoint.
1440  */
1441 void usb_hcd_flush_endpoint(struct usb_device *udev,
1442 		struct usb_host_endpoint *ep)
1443 {
1444 	struct usb_hcd		*hcd;
1445 	struct urb		*urb;
1446 
1447 	if (!ep)
1448 		return;
1449 	might_sleep();
1450 	hcd = bus_to_hcd(udev->bus);
1451 
1452 	/* No more submits can occur */
1453 	spin_lock_irq(&hcd_urb_list_lock);
1454 rescan:
1455 	list_for_each_entry (urb, &ep->urb_list, urb_list) {
1456 		int	is_in;
1457 
1458 		if (urb->unlinked)
1459 			continue;
1460 		usb_get_urb (urb);
1461 		is_in = usb_urb_dir_in(urb);
1462 		spin_unlock(&hcd_urb_list_lock);
1463 
1464 		/* kick hcd */
1465 		unlink1(hcd, urb, -ESHUTDOWN);
1466 		dev_dbg (hcd->self.controller,
1467 			"shutdown urb %p ep%d%s%s\n",
1468 			urb, usb_endpoint_num(&ep->desc),
1469 			is_in ? "in" : "out",
1470 			({	char *s;
1471 
1472 				 switch (usb_endpoint_type(&ep->desc)) {
1473 				 case USB_ENDPOINT_XFER_CONTROL:
1474 					s = ""; break;
1475 				 case USB_ENDPOINT_XFER_BULK:
1476 					s = "-bulk"; break;
1477 				 case USB_ENDPOINT_XFER_INT:
1478 					s = "-intr"; break;
1479 				 default:
1480 			 		s = "-iso"; break;
1481 				};
1482 				s;
1483 			}));
1484 		usb_put_urb (urb);
1485 
1486 		/* list contents may have changed */
1487 		spin_lock(&hcd_urb_list_lock);
1488 		goto rescan;
1489 	}
1490 	spin_unlock_irq(&hcd_urb_list_lock);
1491 
1492 	/* Wait until the endpoint queue is completely empty */
1493 	while (!list_empty (&ep->urb_list)) {
1494 		spin_lock_irq(&hcd_urb_list_lock);
1495 
1496 		/* The list may have changed while we acquired the spinlock */
1497 		urb = NULL;
1498 		if (!list_empty (&ep->urb_list)) {
1499 			urb = list_entry (ep->urb_list.prev, struct urb,
1500 					urb_list);
1501 			usb_get_urb (urb);
1502 		}
1503 		spin_unlock_irq(&hcd_urb_list_lock);
1504 
1505 		if (urb) {
1506 			usb_kill_urb (urb);
1507 			usb_put_urb (urb);
1508 		}
1509 	}
1510 }
1511 
1512 /* Disables the endpoint: synchronizes with the hcd to make sure all
1513  * endpoint state is gone from hardware.  usb_hcd_flush_endpoint() must
1514  * have been called previously.  Use for set_configuration, set_interface,
1515  * driver removal, physical disconnect.
1516  *
1517  * example:  a qh stored in ep->hcpriv, holding state related to endpoint
1518  * type, maxpacket size, toggle, halt status, and scheduling.
1519  */
1520 void usb_hcd_disable_endpoint(struct usb_device *udev,
1521 		struct usb_host_endpoint *ep)
1522 {
1523 	struct usb_hcd		*hcd;
1524 
1525 	might_sleep();
1526 	hcd = bus_to_hcd(udev->bus);
1527 	if (hcd->driver->endpoint_disable)
1528 		hcd->driver->endpoint_disable(hcd, ep);
1529 }
1530 
1531 /*-------------------------------------------------------------------------*/
1532 
1533 /* called in any context */
1534 int usb_hcd_get_frame_number (struct usb_device *udev)
1535 {
1536 	struct usb_hcd	*hcd = bus_to_hcd(udev->bus);
1537 
1538 	if (!HC_IS_RUNNING (hcd->state))
1539 		return -ESHUTDOWN;
1540 	return hcd->driver->get_frame_number (hcd);
1541 }
1542 
1543 /*-------------------------------------------------------------------------*/
1544 
1545 #ifdef	CONFIG_PM
1546 
1547 int hcd_bus_suspend(struct usb_device *rhdev)
1548 {
1549 	struct usb_hcd	*hcd = container_of(rhdev->bus, struct usb_hcd, self);
1550 	int		status;
1551 	int		old_state = hcd->state;
1552 
1553 	dev_dbg(&rhdev->dev, "bus %s%s\n",
1554 			rhdev->auto_pm ? "auto-" : "", "suspend");
1555 	if (!hcd->driver->bus_suspend) {
1556 		status = -ENOENT;
1557 	} else {
1558 		hcd->state = HC_STATE_QUIESCING;
1559 		status = hcd->driver->bus_suspend(hcd);
1560 	}
1561 	if (status == 0) {
1562 		usb_set_device_state(rhdev, USB_STATE_SUSPENDED);
1563 		hcd->state = HC_STATE_SUSPENDED;
1564 	} else {
1565 		hcd->state = old_state;
1566 		dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
1567 				"suspend", status);
1568 	}
1569 	return status;
1570 }
1571 
1572 int hcd_bus_resume(struct usb_device *rhdev)
1573 {
1574 	struct usb_hcd	*hcd = container_of(rhdev->bus, struct usb_hcd, self);
1575 	int		status;
1576 	int		old_state = hcd->state;
1577 
1578 	dev_dbg(&rhdev->dev, "usb %s%s\n",
1579 			rhdev->auto_pm ? "auto-" : "", "resume");
1580 	if (!hcd->driver->bus_resume)
1581 		return -ENOENT;
1582 	if (hcd->state == HC_STATE_RUNNING)
1583 		return 0;
1584 
1585 	hcd->state = HC_STATE_RESUMING;
1586 	status = hcd->driver->bus_resume(hcd);
1587 	if (status == 0) {
1588 		/* TRSMRCY = 10 msec */
1589 		msleep(10);
1590 		usb_set_device_state(rhdev, rhdev->actconfig
1591 				? USB_STATE_CONFIGURED
1592 				: USB_STATE_ADDRESS);
1593 		hcd->state = HC_STATE_RUNNING;
1594 	} else {
1595 		hcd->state = old_state;
1596 		dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
1597 				"resume", status);
1598 		if (status != -ESHUTDOWN)
1599 			usb_hc_died(hcd);
1600 	}
1601 	return status;
1602 }
1603 
1604 /* Workqueue routine for root-hub remote wakeup */
1605 static void hcd_resume_work(struct work_struct *work)
1606 {
1607 	struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work);
1608 	struct usb_device *udev = hcd->self.root_hub;
1609 
1610 	usb_lock_device(udev);
1611 	usb_mark_last_busy(udev);
1612 	usb_external_resume_device(udev);
1613 	usb_unlock_device(udev);
1614 }
1615 
1616 /**
1617  * usb_hcd_resume_root_hub - called by HCD to resume its root hub
1618  * @hcd: host controller for this root hub
1619  *
1620  * The USB host controller calls this function when its root hub is
1621  * suspended (with the remote wakeup feature enabled) and a remote
1622  * wakeup request is received.  The routine submits a workqueue request
1623  * to resume the root hub (that is, manage its downstream ports again).
1624  */
1625 void usb_hcd_resume_root_hub (struct usb_hcd *hcd)
1626 {
1627 	unsigned long flags;
1628 
1629 	spin_lock_irqsave (&hcd_root_hub_lock, flags);
1630 	if (hcd->rh_registered)
1631 		queue_work(ksuspend_usb_wq, &hcd->wakeup_work);
1632 	spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
1633 }
1634 EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub);
1635 
1636 #endif
1637 
1638 /*-------------------------------------------------------------------------*/
1639 
1640 #ifdef	CONFIG_USB_OTG
1641 
1642 /**
1643  * usb_bus_start_enum - start immediate enumeration (for OTG)
1644  * @bus: the bus (must use hcd framework)
1645  * @port_num: 1-based number of port; usually bus->otg_port
1646  * Context: in_interrupt()
1647  *
1648  * Starts enumeration, with an immediate reset followed later by
1649  * khubd identifying and possibly configuring the device.
1650  * This is needed by OTG controller drivers, where it helps meet
1651  * HNP protocol timing requirements for starting a port reset.
1652  */
1653 int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num)
1654 {
1655 	struct usb_hcd		*hcd;
1656 	int			status = -EOPNOTSUPP;
1657 
1658 	/* NOTE: since HNP can't start by grabbing the bus's address0_sem,
1659 	 * boards with root hubs hooked up to internal devices (instead of
1660 	 * just the OTG port) may need more attention to resetting...
1661 	 */
1662 	hcd = container_of (bus, struct usb_hcd, self);
1663 	if (port_num && hcd->driver->start_port_reset)
1664 		status = hcd->driver->start_port_reset(hcd, port_num);
1665 
1666 	/* run khubd shortly after (first) root port reset finishes;
1667 	 * it may issue others, until at least 50 msecs have passed.
1668 	 */
1669 	if (status == 0)
1670 		mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10));
1671 	return status;
1672 }
1673 EXPORT_SYMBOL_GPL(usb_bus_start_enum);
1674 
1675 #endif
1676 
1677 /*-------------------------------------------------------------------------*/
1678 
1679 /**
1680  * usb_hcd_irq - hook IRQs to HCD framework (bus glue)
1681  * @irq: the IRQ being raised
1682  * @__hcd: pointer to the HCD whose IRQ is being signaled
1683  *
1684  * If the controller isn't HALTed, calls the driver's irq handler.
1685  * Checks whether the controller is now dead.
1686  */
1687 irqreturn_t usb_hcd_irq (int irq, void *__hcd)
1688 {
1689 	struct usb_hcd		*hcd = __hcd;
1690 	unsigned long		flags;
1691 	irqreturn_t		rc;
1692 
1693 	/* IRQF_DISABLED doesn't work correctly with shared IRQs
1694 	 * when the first handler doesn't use it.  So let's just
1695 	 * assume it's never used.
1696 	 */
1697 	local_irq_save(flags);
1698 
1699 	if (unlikely(hcd->state == HC_STATE_HALT ||
1700 		     !test_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags))) {
1701 		rc = IRQ_NONE;
1702 	} else if (hcd->driver->irq(hcd) == IRQ_NONE) {
1703 		rc = IRQ_NONE;
1704 	} else {
1705 		set_bit(HCD_FLAG_SAW_IRQ, &hcd->flags);
1706 
1707 		if (unlikely(hcd->state == HC_STATE_HALT))
1708 			usb_hc_died(hcd);
1709 		rc = IRQ_HANDLED;
1710 	}
1711 
1712 	local_irq_restore(flags);
1713 	return rc;
1714 }
1715 
1716 /*-------------------------------------------------------------------------*/
1717 
1718 /**
1719  * usb_hc_died - report abnormal shutdown of a host controller (bus glue)
1720  * @hcd: pointer to the HCD representing the controller
1721  *
1722  * This is called by bus glue to report a USB host controller that died
1723  * while operations may still have been pending.  It's called automatically
1724  * by the PCI glue, so only glue for non-PCI busses should need to call it.
1725  */
1726 void usb_hc_died (struct usb_hcd *hcd)
1727 {
1728 	unsigned long flags;
1729 
1730 	dev_err (hcd->self.controller, "HC died; cleaning up\n");
1731 
1732 	spin_lock_irqsave (&hcd_root_hub_lock, flags);
1733 	if (hcd->rh_registered) {
1734 		hcd->poll_rh = 0;
1735 
1736 		/* make khubd clean up old urbs and devices */
1737 		usb_set_device_state (hcd->self.root_hub,
1738 				USB_STATE_NOTATTACHED);
1739 		usb_kick_khubd (hcd->self.root_hub);
1740 	}
1741 	spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
1742 }
1743 EXPORT_SYMBOL_GPL (usb_hc_died);
1744 
1745 /*-------------------------------------------------------------------------*/
1746 
1747 /**
1748  * usb_create_hcd - create and initialize an HCD structure
1749  * @driver: HC driver that will use this hcd
1750  * @dev: device for this HC, stored in hcd->self.controller
1751  * @bus_name: value to store in hcd->self.bus_name
1752  * Context: !in_interrupt()
1753  *
1754  * Allocate a struct usb_hcd, with extra space at the end for the
1755  * HC driver's private data.  Initialize the generic members of the
1756  * hcd structure.
1757  *
1758  * If memory is unavailable, returns NULL.
1759  */
1760 struct usb_hcd *usb_create_hcd (const struct hc_driver *driver,
1761 		struct device *dev, const char *bus_name)
1762 {
1763 	struct usb_hcd *hcd;
1764 
1765 	hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL);
1766 	if (!hcd) {
1767 		dev_dbg (dev, "hcd alloc failed\n");
1768 		return NULL;
1769 	}
1770 	dev_set_drvdata(dev, hcd);
1771 	kref_init(&hcd->kref);
1772 
1773 	usb_bus_init(&hcd->self);
1774 	hcd->self.controller = dev;
1775 	hcd->self.bus_name = bus_name;
1776 	hcd->self.uses_dma = (dev->dma_mask != NULL);
1777 
1778 	init_timer(&hcd->rh_timer);
1779 	hcd->rh_timer.function = rh_timer_func;
1780 	hcd->rh_timer.data = (unsigned long) hcd;
1781 #ifdef CONFIG_PM
1782 	INIT_WORK(&hcd->wakeup_work, hcd_resume_work);
1783 #endif
1784 
1785 	hcd->driver = driver;
1786 	hcd->product_desc = (driver->product_desc) ? driver->product_desc :
1787 			"USB Host Controller";
1788 	return hcd;
1789 }
1790 EXPORT_SYMBOL_GPL(usb_create_hcd);
1791 
1792 static void hcd_release (struct kref *kref)
1793 {
1794 	struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref);
1795 
1796 	kfree(hcd);
1797 }
1798 
1799 struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd)
1800 {
1801 	if (hcd)
1802 		kref_get (&hcd->kref);
1803 	return hcd;
1804 }
1805 EXPORT_SYMBOL_GPL(usb_get_hcd);
1806 
1807 void usb_put_hcd (struct usb_hcd *hcd)
1808 {
1809 	if (hcd)
1810 		kref_put (&hcd->kref, hcd_release);
1811 }
1812 EXPORT_SYMBOL_GPL(usb_put_hcd);
1813 
1814 /**
1815  * usb_add_hcd - finish generic HCD structure initialization and register
1816  * @hcd: the usb_hcd structure to initialize
1817  * @irqnum: Interrupt line to allocate
1818  * @irqflags: Interrupt type flags
1819  *
1820  * Finish the remaining parts of generic HCD initialization: allocate the
1821  * buffers of consistent memory, register the bus, request the IRQ line,
1822  * and call the driver's reset() and start() routines.
1823  */
1824 int usb_add_hcd(struct usb_hcd *hcd,
1825 		unsigned int irqnum, unsigned long irqflags)
1826 {
1827 	int retval;
1828 	struct usb_device *rhdev;
1829 
1830 	dev_info(hcd->self.controller, "%s\n", hcd->product_desc);
1831 
1832 	hcd->authorized_default = hcd->wireless? 0 : 1;
1833 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1834 
1835 	/* HC is in reset state, but accessible.  Now do the one-time init,
1836 	 * bottom up so that hcds can customize the root hubs before khubd
1837 	 * starts talking to them.  (Note, bus id is assigned early too.)
1838 	 */
1839 	if ((retval = hcd_buffer_create(hcd)) != 0) {
1840 		dev_dbg(hcd->self.controller, "pool alloc failed\n");
1841 		return retval;
1842 	}
1843 
1844 	if ((retval = usb_register_bus(&hcd->self)) < 0)
1845 		goto err_register_bus;
1846 
1847 	if ((rhdev = usb_alloc_dev(NULL, &hcd->self, 0)) == NULL) {
1848 		dev_err(hcd->self.controller, "unable to allocate root hub\n");
1849 		retval = -ENOMEM;
1850 		goto err_allocate_root_hub;
1851 	}
1852 	rhdev->speed = (hcd->driver->flags & HCD_USB2) ? USB_SPEED_HIGH :
1853 			USB_SPEED_FULL;
1854 	hcd->self.root_hub = rhdev;
1855 
1856 	/* wakeup flag init defaults to "everything works" for root hubs,
1857 	 * but drivers can override it in reset() if needed, along with
1858 	 * recording the overall controller's system wakeup capability.
1859 	 */
1860 	device_init_wakeup(&rhdev->dev, 1);
1861 
1862 	/* "reset" is misnamed; its role is now one-time init. the controller
1863 	 * should already have been reset (and boot firmware kicked off etc).
1864 	 */
1865 	if (hcd->driver->reset && (retval = hcd->driver->reset(hcd)) < 0) {
1866 		dev_err(hcd->self.controller, "can't setup\n");
1867 		goto err_hcd_driver_setup;
1868 	}
1869 
1870 	/* NOTE: root hub and controller capabilities may not be the same */
1871 	if (device_can_wakeup(hcd->self.controller)
1872 			&& device_can_wakeup(&hcd->self.root_hub->dev))
1873 		dev_dbg(hcd->self.controller, "supports USB remote wakeup\n");
1874 
1875 	/* enable irqs just before we start the controller */
1876 	if (hcd->driver->irq) {
1877 
1878 		/* IRQF_DISABLED doesn't work as advertised when used together
1879 		 * with IRQF_SHARED. As usb_hcd_irq() will always disable
1880 		 * interrupts we can remove it here.
1881 		 */
1882 		if (irqflags & IRQF_SHARED)
1883 			irqflags &= ~IRQF_DISABLED;
1884 
1885 		snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
1886 				hcd->driver->description, hcd->self.busnum);
1887 		if ((retval = request_irq(irqnum, &usb_hcd_irq, irqflags,
1888 				hcd->irq_descr, hcd)) != 0) {
1889 			dev_err(hcd->self.controller,
1890 					"request interrupt %d failed\n", irqnum);
1891 			goto err_request_irq;
1892 		}
1893 		hcd->irq = irqnum;
1894 		dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum,
1895 				(hcd->driver->flags & HCD_MEMORY) ?
1896 					"io mem" : "io base",
1897 					(unsigned long long)hcd->rsrc_start);
1898 	} else {
1899 		hcd->irq = -1;
1900 		if (hcd->rsrc_start)
1901 			dev_info(hcd->self.controller, "%s 0x%08llx\n",
1902 					(hcd->driver->flags & HCD_MEMORY) ?
1903 					"io mem" : "io base",
1904 					(unsigned long long)hcd->rsrc_start);
1905 	}
1906 
1907 	if ((retval = hcd->driver->start(hcd)) < 0) {
1908 		dev_err(hcd->self.controller, "startup error %d\n", retval);
1909 		goto err_hcd_driver_start;
1910 	}
1911 
1912 	/* starting here, usbcore will pay attention to this root hub */
1913 	rhdev->bus_mA = min(500u, hcd->power_budget);
1914 	if ((retval = register_root_hub(hcd)) != 0)
1915 		goto err_register_root_hub;
1916 
1917 	retval = sysfs_create_group(&rhdev->dev.kobj, &usb_bus_attr_group);
1918 	if (retval < 0) {
1919 		printk(KERN_ERR "Cannot register USB bus sysfs attributes: %d\n",
1920 		       retval);
1921 		goto error_create_attr_group;
1922 	}
1923 	if (hcd->uses_new_polling && hcd->poll_rh)
1924 		usb_hcd_poll_rh_status(hcd);
1925 	return retval;
1926 
1927 error_create_attr_group:
1928 	mutex_lock(&usb_bus_list_lock);
1929 	usb_disconnect(&hcd->self.root_hub);
1930 	mutex_unlock(&usb_bus_list_lock);
1931 err_register_root_hub:
1932 	hcd->driver->stop(hcd);
1933 err_hcd_driver_start:
1934 	if (hcd->irq >= 0)
1935 		free_irq(irqnum, hcd);
1936 err_request_irq:
1937 err_hcd_driver_setup:
1938 	hcd->self.root_hub = NULL;
1939 	usb_put_dev(rhdev);
1940 err_allocate_root_hub:
1941 	usb_deregister_bus(&hcd->self);
1942 err_register_bus:
1943 	hcd_buffer_destroy(hcd);
1944 	return retval;
1945 }
1946 EXPORT_SYMBOL_GPL(usb_add_hcd);
1947 
1948 /**
1949  * usb_remove_hcd - shutdown processing for generic HCDs
1950  * @hcd: the usb_hcd structure to remove
1951  * Context: !in_interrupt()
1952  *
1953  * Disconnects the root hub, then reverses the effects of usb_add_hcd(),
1954  * invoking the HCD's stop() method.
1955  */
1956 void usb_remove_hcd(struct usb_hcd *hcd)
1957 {
1958 	dev_info(hcd->self.controller, "remove, state %x\n", hcd->state);
1959 
1960 	if (HC_IS_RUNNING (hcd->state))
1961 		hcd->state = HC_STATE_QUIESCING;
1962 
1963 	dev_dbg(hcd->self.controller, "roothub graceful disconnect\n");
1964 	spin_lock_irq (&hcd_root_hub_lock);
1965 	hcd->rh_registered = 0;
1966 	spin_unlock_irq (&hcd_root_hub_lock);
1967 
1968 #ifdef CONFIG_PM
1969 	cancel_work_sync(&hcd->wakeup_work);
1970 #endif
1971 
1972 	sysfs_remove_group(&hcd->self.root_hub->dev.kobj, &usb_bus_attr_group);
1973 	mutex_lock(&usb_bus_list_lock);
1974 	usb_disconnect(&hcd->self.root_hub);
1975 	mutex_unlock(&usb_bus_list_lock);
1976 
1977 	hcd->driver->stop(hcd);
1978 	hcd->state = HC_STATE_HALT;
1979 
1980 	hcd->poll_rh = 0;
1981 	del_timer_sync(&hcd->rh_timer);
1982 
1983 	if (hcd->irq >= 0)
1984 		free_irq(hcd->irq, hcd);
1985 	usb_deregister_bus(&hcd->self);
1986 	hcd_buffer_destroy(hcd);
1987 }
1988 EXPORT_SYMBOL_GPL(usb_remove_hcd);
1989 
1990 void
1991 usb_hcd_platform_shutdown(struct platform_device* dev)
1992 {
1993 	struct usb_hcd *hcd = platform_get_drvdata(dev);
1994 
1995 	if (hcd->driver->shutdown)
1996 		hcd->driver->shutdown(hcd);
1997 }
1998 EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown);
1999 
2000 /*-------------------------------------------------------------------------*/
2001 
2002 #if defined(CONFIG_USB_MON)
2003 
2004 struct usb_mon_operations *mon_ops;
2005 
2006 /*
2007  * The registration is unlocked.
2008  * We do it this way because we do not want to lock in hot paths.
2009  *
2010  * Notice that the code is minimally error-proof. Because usbmon needs
2011  * symbols from usbcore, usbcore gets referenced and cannot be unloaded first.
2012  */
2013 
2014 int usb_mon_register (struct usb_mon_operations *ops)
2015 {
2016 
2017 	if (mon_ops)
2018 		return -EBUSY;
2019 
2020 	mon_ops = ops;
2021 	mb();
2022 	return 0;
2023 }
2024 EXPORT_SYMBOL_GPL (usb_mon_register);
2025 
2026 void usb_mon_deregister (void)
2027 {
2028 
2029 	if (mon_ops == NULL) {
2030 		printk(KERN_ERR "USB: monitor was not registered\n");
2031 		return;
2032 	}
2033 	mon_ops = NULL;
2034 	mb();
2035 }
2036 EXPORT_SYMBOL_GPL (usb_mon_deregister);
2037 
2038 #endif /* CONFIG_USB_MON */
2039