1 /* 2 * (C) Copyright Linus Torvalds 1999 3 * (C) Copyright Johannes Erdfelt 1999-2001 4 * (C) Copyright Andreas Gal 1999 5 * (C) Copyright Gregory P. Smith 1999 6 * (C) Copyright Deti Fliegl 1999 7 * (C) Copyright Randy Dunlap 2000 8 * (C) Copyright David Brownell 2000-2002 9 * 10 * This program is free software; you can redistribute it and/or modify it 11 * under the terms of the GNU General Public License as published by the 12 * Free Software Foundation; either version 2 of the License, or (at your 13 * option) any later version. 14 * 15 * This program is distributed in the hope that it will be useful, but 16 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 17 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 18 * for more details. 19 * 20 * You should have received a copy of the GNU General Public License 21 * along with this program; if not, write to the Free Software Foundation, 22 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 23 */ 24 25 #include <linux/module.h> 26 #include <linux/version.h> 27 #include <linux/kernel.h> 28 #include <linux/slab.h> 29 #include <linux/completion.h> 30 #include <linux/utsname.h> 31 #include <linux/mm.h> 32 #include <asm/io.h> 33 #include <linux/device.h> 34 #include <linux/dma-mapping.h> 35 #include <linux/mutex.h> 36 #include <asm/irq.h> 37 #include <asm/byteorder.h> 38 #include <asm/unaligned.h> 39 #include <linux/platform_device.h> 40 #include <linux/workqueue.h> 41 42 #include <linux/usb.h> 43 #include <linux/usb/hcd.h> 44 45 #include "usb.h" 46 47 48 /*-------------------------------------------------------------------------*/ 49 50 /* 51 * USB Host Controller Driver framework 52 * 53 * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing 54 * HCD-specific behaviors/bugs. 55 * 56 * This does error checks, tracks devices and urbs, and delegates to a 57 * "hc_driver" only for code (and data) that really needs to know about 58 * hardware differences. That includes root hub registers, i/o queues, 59 * and so on ... but as little else as possible. 60 * 61 * Shared code includes most of the "root hub" code (these are emulated, 62 * though each HC's hardware works differently) and PCI glue, plus request 63 * tracking overhead. The HCD code should only block on spinlocks or on 64 * hardware handshaking; blocking on software events (such as other kernel 65 * threads releasing resources, or completing actions) is all generic. 66 * 67 * Happens the USB 2.0 spec says this would be invisible inside the "USBD", 68 * and includes mostly a "HCDI" (HCD Interface) along with some APIs used 69 * only by the hub driver ... and that neither should be seen or used by 70 * usb client device drivers. 71 * 72 * Contributors of ideas or unattributed patches include: David Brownell, 73 * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ... 74 * 75 * HISTORY: 76 * 2002-02-21 Pull in most of the usb_bus support from usb.c; some 77 * associated cleanup. "usb_hcd" still != "usb_bus". 78 * 2001-12-12 Initial patch version for Linux 2.5.1 kernel. 79 */ 80 81 /*-------------------------------------------------------------------------*/ 82 83 /* Keep track of which host controller drivers are loaded */ 84 unsigned long usb_hcds_loaded; 85 EXPORT_SYMBOL_GPL(usb_hcds_loaded); 86 87 /* host controllers we manage */ 88 LIST_HEAD (usb_bus_list); 89 EXPORT_SYMBOL_GPL (usb_bus_list); 90 91 /* used when allocating bus numbers */ 92 #define USB_MAXBUS 64 93 struct usb_busmap { 94 unsigned long busmap [USB_MAXBUS / (8*sizeof (unsigned long))]; 95 }; 96 static struct usb_busmap busmap; 97 98 /* used when updating list of hcds */ 99 DEFINE_MUTEX(usb_bus_list_lock); /* exported only for usbfs */ 100 EXPORT_SYMBOL_GPL (usb_bus_list_lock); 101 102 /* used for controlling access to virtual root hubs */ 103 static DEFINE_SPINLOCK(hcd_root_hub_lock); 104 105 /* used when updating an endpoint's URB list */ 106 static DEFINE_SPINLOCK(hcd_urb_list_lock); 107 108 /* used to protect against unlinking URBs after the device is gone */ 109 static DEFINE_SPINLOCK(hcd_urb_unlink_lock); 110 111 /* wait queue for synchronous unlinks */ 112 DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue); 113 114 static inline int is_root_hub(struct usb_device *udev) 115 { 116 return (udev->parent == NULL); 117 } 118 119 /*-------------------------------------------------------------------------*/ 120 121 /* 122 * Sharable chunks of root hub code. 123 */ 124 125 /*-------------------------------------------------------------------------*/ 126 127 #define KERNEL_REL ((LINUX_VERSION_CODE >> 16) & 0x0ff) 128 #define KERNEL_VER ((LINUX_VERSION_CODE >> 8) & 0x0ff) 129 130 /* usb 3.0 root hub device descriptor */ 131 static const u8 usb3_rh_dev_descriptor[18] = { 132 0x12, /* __u8 bLength; */ 133 0x01, /* __u8 bDescriptorType; Device */ 134 0x00, 0x03, /* __le16 bcdUSB; v3.0 */ 135 136 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */ 137 0x00, /* __u8 bDeviceSubClass; */ 138 0x03, /* __u8 bDeviceProtocol; USB 3.0 hub */ 139 0x09, /* __u8 bMaxPacketSize0; 2^9 = 512 Bytes */ 140 141 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */ 142 0x03, 0x00, /* __le16 idProduct; device 0x0003 */ 143 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */ 144 145 0x03, /* __u8 iManufacturer; */ 146 0x02, /* __u8 iProduct; */ 147 0x01, /* __u8 iSerialNumber; */ 148 0x01 /* __u8 bNumConfigurations; */ 149 }; 150 151 /* usb 2.0 root hub device descriptor */ 152 static const u8 usb2_rh_dev_descriptor [18] = { 153 0x12, /* __u8 bLength; */ 154 0x01, /* __u8 bDescriptorType; Device */ 155 0x00, 0x02, /* __le16 bcdUSB; v2.0 */ 156 157 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */ 158 0x00, /* __u8 bDeviceSubClass; */ 159 0x00, /* __u8 bDeviceProtocol; [ usb 2.0 no TT ] */ 160 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */ 161 162 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */ 163 0x02, 0x00, /* __le16 idProduct; device 0x0002 */ 164 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */ 165 166 0x03, /* __u8 iManufacturer; */ 167 0x02, /* __u8 iProduct; */ 168 0x01, /* __u8 iSerialNumber; */ 169 0x01 /* __u8 bNumConfigurations; */ 170 }; 171 172 /* no usb 2.0 root hub "device qualifier" descriptor: one speed only */ 173 174 /* usb 1.1 root hub device descriptor */ 175 static const u8 usb11_rh_dev_descriptor [18] = { 176 0x12, /* __u8 bLength; */ 177 0x01, /* __u8 bDescriptorType; Device */ 178 0x10, 0x01, /* __le16 bcdUSB; v1.1 */ 179 180 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */ 181 0x00, /* __u8 bDeviceSubClass; */ 182 0x00, /* __u8 bDeviceProtocol; [ low/full speeds only ] */ 183 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */ 184 185 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */ 186 0x01, 0x00, /* __le16 idProduct; device 0x0001 */ 187 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */ 188 189 0x03, /* __u8 iManufacturer; */ 190 0x02, /* __u8 iProduct; */ 191 0x01, /* __u8 iSerialNumber; */ 192 0x01 /* __u8 bNumConfigurations; */ 193 }; 194 195 196 /*-------------------------------------------------------------------------*/ 197 198 /* Configuration descriptors for our root hubs */ 199 200 static const u8 fs_rh_config_descriptor [] = { 201 202 /* one configuration */ 203 0x09, /* __u8 bLength; */ 204 0x02, /* __u8 bDescriptorType; Configuration */ 205 0x19, 0x00, /* __le16 wTotalLength; */ 206 0x01, /* __u8 bNumInterfaces; (1) */ 207 0x01, /* __u8 bConfigurationValue; */ 208 0x00, /* __u8 iConfiguration; */ 209 0xc0, /* __u8 bmAttributes; 210 Bit 7: must be set, 211 6: Self-powered, 212 5: Remote wakeup, 213 4..0: resvd */ 214 0x00, /* __u8 MaxPower; */ 215 216 /* USB 1.1: 217 * USB 2.0, single TT organization (mandatory): 218 * one interface, protocol 0 219 * 220 * USB 2.0, multiple TT organization (optional): 221 * two interfaces, protocols 1 (like single TT) 222 * and 2 (multiple TT mode) ... config is 223 * sometimes settable 224 * NOT IMPLEMENTED 225 */ 226 227 /* one interface */ 228 0x09, /* __u8 if_bLength; */ 229 0x04, /* __u8 if_bDescriptorType; Interface */ 230 0x00, /* __u8 if_bInterfaceNumber; */ 231 0x00, /* __u8 if_bAlternateSetting; */ 232 0x01, /* __u8 if_bNumEndpoints; */ 233 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */ 234 0x00, /* __u8 if_bInterfaceSubClass; */ 235 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */ 236 0x00, /* __u8 if_iInterface; */ 237 238 /* one endpoint (status change endpoint) */ 239 0x07, /* __u8 ep_bLength; */ 240 0x05, /* __u8 ep_bDescriptorType; Endpoint */ 241 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */ 242 0x03, /* __u8 ep_bmAttributes; Interrupt */ 243 0x02, 0x00, /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */ 244 0xff /* __u8 ep_bInterval; (255ms -- usb 2.0 spec) */ 245 }; 246 247 static const u8 hs_rh_config_descriptor [] = { 248 249 /* one configuration */ 250 0x09, /* __u8 bLength; */ 251 0x02, /* __u8 bDescriptorType; Configuration */ 252 0x19, 0x00, /* __le16 wTotalLength; */ 253 0x01, /* __u8 bNumInterfaces; (1) */ 254 0x01, /* __u8 bConfigurationValue; */ 255 0x00, /* __u8 iConfiguration; */ 256 0xc0, /* __u8 bmAttributes; 257 Bit 7: must be set, 258 6: Self-powered, 259 5: Remote wakeup, 260 4..0: resvd */ 261 0x00, /* __u8 MaxPower; */ 262 263 /* USB 1.1: 264 * USB 2.0, single TT organization (mandatory): 265 * one interface, protocol 0 266 * 267 * USB 2.0, multiple TT organization (optional): 268 * two interfaces, protocols 1 (like single TT) 269 * and 2 (multiple TT mode) ... config is 270 * sometimes settable 271 * NOT IMPLEMENTED 272 */ 273 274 /* one interface */ 275 0x09, /* __u8 if_bLength; */ 276 0x04, /* __u8 if_bDescriptorType; Interface */ 277 0x00, /* __u8 if_bInterfaceNumber; */ 278 0x00, /* __u8 if_bAlternateSetting; */ 279 0x01, /* __u8 if_bNumEndpoints; */ 280 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */ 281 0x00, /* __u8 if_bInterfaceSubClass; */ 282 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */ 283 0x00, /* __u8 if_iInterface; */ 284 285 /* one endpoint (status change endpoint) */ 286 0x07, /* __u8 ep_bLength; */ 287 0x05, /* __u8 ep_bDescriptorType; Endpoint */ 288 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */ 289 0x03, /* __u8 ep_bmAttributes; Interrupt */ 290 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) 291 * see hub.c:hub_configure() for details. */ 292 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00, 293 0x0c /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */ 294 }; 295 296 static const u8 ss_rh_config_descriptor[] = { 297 /* one configuration */ 298 0x09, /* __u8 bLength; */ 299 0x02, /* __u8 bDescriptorType; Configuration */ 300 0x1f, 0x00, /* __le16 wTotalLength; */ 301 0x01, /* __u8 bNumInterfaces; (1) */ 302 0x01, /* __u8 bConfigurationValue; */ 303 0x00, /* __u8 iConfiguration; */ 304 0xc0, /* __u8 bmAttributes; 305 Bit 7: must be set, 306 6: Self-powered, 307 5: Remote wakeup, 308 4..0: resvd */ 309 0x00, /* __u8 MaxPower; */ 310 311 /* one interface */ 312 0x09, /* __u8 if_bLength; */ 313 0x04, /* __u8 if_bDescriptorType; Interface */ 314 0x00, /* __u8 if_bInterfaceNumber; */ 315 0x00, /* __u8 if_bAlternateSetting; */ 316 0x01, /* __u8 if_bNumEndpoints; */ 317 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */ 318 0x00, /* __u8 if_bInterfaceSubClass; */ 319 0x00, /* __u8 if_bInterfaceProtocol; */ 320 0x00, /* __u8 if_iInterface; */ 321 322 /* one endpoint (status change endpoint) */ 323 0x07, /* __u8 ep_bLength; */ 324 0x05, /* __u8 ep_bDescriptorType; Endpoint */ 325 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */ 326 0x03, /* __u8 ep_bmAttributes; Interrupt */ 327 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) 328 * see hub.c:hub_configure() for details. */ 329 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00, 330 0x0c, /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */ 331 332 /* one SuperSpeed endpoint companion descriptor */ 333 0x06, /* __u8 ss_bLength */ 334 0x30, /* __u8 ss_bDescriptorType; SuperSpeed EP Companion */ 335 0x00, /* __u8 ss_bMaxBurst; allows 1 TX between ACKs */ 336 0x00, /* __u8 ss_bmAttributes; 1 packet per service interval */ 337 0x02, 0x00 /* __le16 ss_wBytesPerInterval; 15 bits for max 15 ports */ 338 }; 339 340 /* authorized_default behaviour: 341 * -1 is authorized for all devices except wireless (old behaviour) 342 * 0 is unauthorized for all devices 343 * 1 is authorized for all devices 344 */ 345 static int authorized_default = -1; 346 module_param(authorized_default, int, S_IRUGO|S_IWUSR); 347 MODULE_PARM_DESC(authorized_default, 348 "Default USB device authorization: 0 is not authorized, 1 is " 349 "authorized, -1 is authorized except for wireless USB (default, " 350 "old behaviour"); 351 /*-------------------------------------------------------------------------*/ 352 353 /** 354 * ascii2desc() - Helper routine for producing UTF-16LE string descriptors 355 * @s: Null-terminated ASCII (actually ISO-8859-1) string 356 * @buf: Buffer for USB string descriptor (header + UTF-16LE) 357 * @len: Length (in bytes; may be odd) of descriptor buffer. 358 * 359 * The return value is the number of bytes filled in: 2 + 2*strlen(s) or 360 * buflen, whichever is less. 361 * 362 * USB String descriptors can contain at most 126 characters; input 363 * strings longer than that are truncated. 364 */ 365 static unsigned 366 ascii2desc(char const *s, u8 *buf, unsigned len) 367 { 368 unsigned n, t = 2 + 2*strlen(s); 369 370 if (t > 254) 371 t = 254; /* Longest possible UTF string descriptor */ 372 if (len > t) 373 len = t; 374 375 t += USB_DT_STRING << 8; /* Now t is first 16 bits to store */ 376 377 n = len; 378 while (n--) { 379 *buf++ = t; 380 if (!n--) 381 break; 382 *buf++ = t >> 8; 383 t = (unsigned char)*s++; 384 } 385 return len; 386 } 387 388 /** 389 * rh_string() - provides string descriptors for root hub 390 * @id: the string ID number (0: langids, 1: serial #, 2: product, 3: vendor) 391 * @hcd: the host controller for this root hub 392 * @data: buffer for output packet 393 * @len: length of the provided buffer 394 * 395 * Produces either a manufacturer, product or serial number string for the 396 * virtual root hub device. 397 * Returns the number of bytes filled in: the length of the descriptor or 398 * of the provided buffer, whichever is less. 399 */ 400 static unsigned 401 rh_string(int id, struct usb_hcd const *hcd, u8 *data, unsigned len) 402 { 403 char buf[100]; 404 char const *s; 405 static char const langids[4] = {4, USB_DT_STRING, 0x09, 0x04}; 406 407 // language ids 408 switch (id) { 409 case 0: 410 /* Array of LANGID codes (0x0409 is MSFT-speak for "en-us") */ 411 /* See http://www.usb.org/developers/docs/USB_LANGIDs.pdf */ 412 if (len > 4) 413 len = 4; 414 memcpy(data, langids, len); 415 return len; 416 case 1: 417 /* Serial number */ 418 s = hcd->self.bus_name; 419 break; 420 case 2: 421 /* Product name */ 422 s = hcd->product_desc; 423 break; 424 case 3: 425 /* Manufacturer */ 426 snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname, 427 init_utsname()->release, hcd->driver->description); 428 s = buf; 429 break; 430 default: 431 /* Can't happen; caller guarantees it */ 432 return 0; 433 } 434 435 return ascii2desc(s, data, len); 436 } 437 438 439 /* Root hub control transfers execute synchronously */ 440 static int rh_call_control (struct usb_hcd *hcd, struct urb *urb) 441 { 442 struct usb_ctrlrequest *cmd; 443 u16 typeReq, wValue, wIndex, wLength; 444 u8 *ubuf = urb->transfer_buffer; 445 /* 446 * tbuf should be as big as the BOS descriptor and 447 * the USB hub descriptor. 448 */ 449 u8 tbuf[USB_DT_BOS_SIZE + USB_DT_USB_SS_CAP_SIZE] 450 __attribute__((aligned(4))); 451 const u8 *bufp = tbuf; 452 unsigned len = 0; 453 int status; 454 u8 patch_wakeup = 0; 455 u8 patch_protocol = 0; 456 457 might_sleep(); 458 459 spin_lock_irq(&hcd_root_hub_lock); 460 status = usb_hcd_link_urb_to_ep(hcd, urb); 461 spin_unlock_irq(&hcd_root_hub_lock); 462 if (status) 463 return status; 464 urb->hcpriv = hcd; /* Indicate it's queued */ 465 466 cmd = (struct usb_ctrlrequest *) urb->setup_packet; 467 typeReq = (cmd->bRequestType << 8) | cmd->bRequest; 468 wValue = le16_to_cpu (cmd->wValue); 469 wIndex = le16_to_cpu (cmd->wIndex); 470 wLength = le16_to_cpu (cmd->wLength); 471 472 if (wLength > urb->transfer_buffer_length) 473 goto error; 474 475 urb->actual_length = 0; 476 switch (typeReq) { 477 478 /* DEVICE REQUESTS */ 479 480 /* The root hub's remote wakeup enable bit is implemented using 481 * driver model wakeup flags. If this system supports wakeup 482 * through USB, userspace may change the default "allow wakeup" 483 * policy through sysfs or these calls. 484 * 485 * Most root hubs support wakeup from downstream devices, for 486 * runtime power management (disabling USB clocks and reducing 487 * VBUS power usage). However, not all of them do so; silicon, 488 * board, and BIOS bugs here are not uncommon, so these can't 489 * be treated quite like external hubs. 490 * 491 * Likewise, not all root hubs will pass wakeup events upstream, 492 * to wake up the whole system. So don't assume root hub and 493 * controller capabilities are identical. 494 */ 495 496 case DeviceRequest | USB_REQ_GET_STATUS: 497 tbuf [0] = (device_may_wakeup(&hcd->self.root_hub->dev) 498 << USB_DEVICE_REMOTE_WAKEUP) 499 | (1 << USB_DEVICE_SELF_POWERED); 500 tbuf [1] = 0; 501 len = 2; 502 break; 503 case DeviceOutRequest | USB_REQ_CLEAR_FEATURE: 504 if (wValue == USB_DEVICE_REMOTE_WAKEUP) 505 device_set_wakeup_enable(&hcd->self.root_hub->dev, 0); 506 else 507 goto error; 508 break; 509 case DeviceOutRequest | USB_REQ_SET_FEATURE: 510 if (device_can_wakeup(&hcd->self.root_hub->dev) 511 && wValue == USB_DEVICE_REMOTE_WAKEUP) 512 device_set_wakeup_enable(&hcd->self.root_hub->dev, 1); 513 else 514 goto error; 515 break; 516 case DeviceRequest | USB_REQ_GET_CONFIGURATION: 517 tbuf [0] = 1; 518 len = 1; 519 /* FALLTHROUGH */ 520 case DeviceOutRequest | USB_REQ_SET_CONFIGURATION: 521 break; 522 case DeviceRequest | USB_REQ_GET_DESCRIPTOR: 523 switch (wValue & 0xff00) { 524 case USB_DT_DEVICE << 8: 525 switch (hcd->speed) { 526 case HCD_USB3: 527 bufp = usb3_rh_dev_descriptor; 528 break; 529 case HCD_USB2: 530 bufp = usb2_rh_dev_descriptor; 531 break; 532 case HCD_USB11: 533 bufp = usb11_rh_dev_descriptor; 534 break; 535 default: 536 goto error; 537 } 538 len = 18; 539 if (hcd->has_tt) 540 patch_protocol = 1; 541 break; 542 case USB_DT_CONFIG << 8: 543 switch (hcd->speed) { 544 case HCD_USB3: 545 bufp = ss_rh_config_descriptor; 546 len = sizeof ss_rh_config_descriptor; 547 break; 548 case HCD_USB2: 549 bufp = hs_rh_config_descriptor; 550 len = sizeof hs_rh_config_descriptor; 551 break; 552 case HCD_USB11: 553 bufp = fs_rh_config_descriptor; 554 len = sizeof fs_rh_config_descriptor; 555 break; 556 default: 557 goto error; 558 } 559 if (device_can_wakeup(&hcd->self.root_hub->dev)) 560 patch_wakeup = 1; 561 break; 562 case USB_DT_STRING << 8: 563 if ((wValue & 0xff) < 4) 564 urb->actual_length = rh_string(wValue & 0xff, 565 hcd, ubuf, wLength); 566 else /* unsupported IDs --> "protocol stall" */ 567 goto error; 568 break; 569 case USB_DT_BOS << 8: 570 goto nongeneric; 571 default: 572 goto error; 573 } 574 break; 575 case DeviceRequest | USB_REQ_GET_INTERFACE: 576 tbuf [0] = 0; 577 len = 1; 578 /* FALLTHROUGH */ 579 case DeviceOutRequest | USB_REQ_SET_INTERFACE: 580 break; 581 case DeviceOutRequest | USB_REQ_SET_ADDRESS: 582 // wValue == urb->dev->devaddr 583 dev_dbg (hcd->self.controller, "root hub device address %d\n", 584 wValue); 585 break; 586 587 /* INTERFACE REQUESTS (no defined feature/status flags) */ 588 589 /* ENDPOINT REQUESTS */ 590 591 case EndpointRequest | USB_REQ_GET_STATUS: 592 // ENDPOINT_HALT flag 593 tbuf [0] = 0; 594 tbuf [1] = 0; 595 len = 2; 596 /* FALLTHROUGH */ 597 case EndpointOutRequest | USB_REQ_CLEAR_FEATURE: 598 case EndpointOutRequest | USB_REQ_SET_FEATURE: 599 dev_dbg (hcd->self.controller, "no endpoint features yet\n"); 600 break; 601 602 /* CLASS REQUESTS (and errors) */ 603 604 default: 605 nongeneric: 606 /* non-generic request */ 607 switch (typeReq) { 608 case GetHubStatus: 609 case GetPortStatus: 610 len = 4; 611 break; 612 case GetHubDescriptor: 613 len = sizeof (struct usb_hub_descriptor); 614 break; 615 case DeviceRequest | USB_REQ_GET_DESCRIPTOR: 616 /* len is returned by hub_control */ 617 break; 618 } 619 status = hcd->driver->hub_control (hcd, 620 typeReq, wValue, wIndex, 621 tbuf, wLength); 622 break; 623 error: 624 /* "protocol stall" on error */ 625 status = -EPIPE; 626 } 627 628 if (status < 0) { 629 len = 0; 630 if (status != -EPIPE) { 631 dev_dbg (hcd->self.controller, 632 "CTRL: TypeReq=0x%x val=0x%x " 633 "idx=0x%x len=%d ==> %d\n", 634 typeReq, wValue, wIndex, 635 wLength, status); 636 } 637 } else if (status > 0) { 638 /* hub_control may return the length of data copied. */ 639 len = status; 640 status = 0; 641 } 642 if (len) { 643 if (urb->transfer_buffer_length < len) 644 len = urb->transfer_buffer_length; 645 urb->actual_length = len; 646 // always USB_DIR_IN, toward host 647 memcpy (ubuf, bufp, len); 648 649 /* report whether RH hardware supports remote wakeup */ 650 if (patch_wakeup && 651 len > offsetof (struct usb_config_descriptor, 652 bmAttributes)) 653 ((struct usb_config_descriptor *)ubuf)->bmAttributes 654 |= USB_CONFIG_ATT_WAKEUP; 655 656 /* report whether RH hardware has an integrated TT */ 657 if (patch_protocol && 658 len > offsetof(struct usb_device_descriptor, 659 bDeviceProtocol)) 660 ((struct usb_device_descriptor *) ubuf)-> 661 bDeviceProtocol = USB_HUB_PR_HS_SINGLE_TT; 662 } 663 664 /* any errors get returned through the urb completion */ 665 spin_lock_irq(&hcd_root_hub_lock); 666 usb_hcd_unlink_urb_from_ep(hcd, urb); 667 668 /* This peculiar use of spinlocks echoes what real HC drivers do. 669 * Avoiding calls to local_irq_disable/enable makes the code 670 * RT-friendly. 671 */ 672 spin_unlock(&hcd_root_hub_lock); 673 usb_hcd_giveback_urb(hcd, urb, status); 674 spin_lock(&hcd_root_hub_lock); 675 676 spin_unlock_irq(&hcd_root_hub_lock); 677 return 0; 678 } 679 680 /*-------------------------------------------------------------------------*/ 681 682 /* 683 * Root Hub interrupt transfers are polled using a timer if the 684 * driver requests it; otherwise the driver is responsible for 685 * calling usb_hcd_poll_rh_status() when an event occurs. 686 * 687 * Completions are called in_interrupt(), but they may or may not 688 * be in_irq(). 689 */ 690 void usb_hcd_poll_rh_status(struct usb_hcd *hcd) 691 { 692 struct urb *urb; 693 int length; 694 unsigned long flags; 695 char buffer[6]; /* Any root hubs with > 31 ports? */ 696 697 if (unlikely(!hcd->rh_pollable)) 698 return; 699 if (!hcd->uses_new_polling && !hcd->status_urb) 700 return; 701 702 length = hcd->driver->hub_status_data(hcd, buffer); 703 if (length > 0) { 704 705 /* try to complete the status urb */ 706 spin_lock_irqsave(&hcd_root_hub_lock, flags); 707 urb = hcd->status_urb; 708 if (urb) { 709 clear_bit(HCD_FLAG_POLL_PENDING, &hcd->flags); 710 hcd->status_urb = NULL; 711 urb->actual_length = length; 712 memcpy(urb->transfer_buffer, buffer, length); 713 714 usb_hcd_unlink_urb_from_ep(hcd, urb); 715 spin_unlock(&hcd_root_hub_lock); 716 usb_hcd_giveback_urb(hcd, urb, 0); 717 spin_lock(&hcd_root_hub_lock); 718 } else { 719 length = 0; 720 set_bit(HCD_FLAG_POLL_PENDING, &hcd->flags); 721 } 722 spin_unlock_irqrestore(&hcd_root_hub_lock, flags); 723 } 724 725 /* The USB 2.0 spec says 256 ms. This is close enough and won't 726 * exceed that limit if HZ is 100. The math is more clunky than 727 * maybe expected, this is to make sure that all timers for USB devices 728 * fire at the same time to give the CPU a break in between */ 729 if (hcd->uses_new_polling ? HCD_POLL_RH(hcd) : 730 (length == 0 && hcd->status_urb != NULL)) 731 mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4)); 732 } 733 EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status); 734 735 /* timer callback */ 736 static void rh_timer_func (unsigned long _hcd) 737 { 738 usb_hcd_poll_rh_status((struct usb_hcd *) _hcd); 739 } 740 741 /*-------------------------------------------------------------------------*/ 742 743 static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb) 744 { 745 int retval; 746 unsigned long flags; 747 unsigned len = 1 + (urb->dev->maxchild / 8); 748 749 spin_lock_irqsave (&hcd_root_hub_lock, flags); 750 if (hcd->status_urb || urb->transfer_buffer_length < len) { 751 dev_dbg (hcd->self.controller, "not queuing rh status urb\n"); 752 retval = -EINVAL; 753 goto done; 754 } 755 756 retval = usb_hcd_link_urb_to_ep(hcd, urb); 757 if (retval) 758 goto done; 759 760 hcd->status_urb = urb; 761 urb->hcpriv = hcd; /* indicate it's queued */ 762 if (!hcd->uses_new_polling) 763 mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4)); 764 765 /* If a status change has already occurred, report it ASAP */ 766 else if (HCD_POLL_PENDING(hcd)) 767 mod_timer(&hcd->rh_timer, jiffies); 768 retval = 0; 769 done: 770 spin_unlock_irqrestore (&hcd_root_hub_lock, flags); 771 return retval; 772 } 773 774 static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb) 775 { 776 if (usb_endpoint_xfer_int(&urb->ep->desc)) 777 return rh_queue_status (hcd, urb); 778 if (usb_endpoint_xfer_control(&urb->ep->desc)) 779 return rh_call_control (hcd, urb); 780 return -EINVAL; 781 } 782 783 /*-------------------------------------------------------------------------*/ 784 785 /* Unlinks of root-hub control URBs are legal, but they don't do anything 786 * since these URBs always execute synchronously. 787 */ 788 static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status) 789 { 790 unsigned long flags; 791 int rc; 792 793 spin_lock_irqsave(&hcd_root_hub_lock, flags); 794 rc = usb_hcd_check_unlink_urb(hcd, urb, status); 795 if (rc) 796 goto done; 797 798 if (usb_endpoint_num(&urb->ep->desc) == 0) { /* Control URB */ 799 ; /* Do nothing */ 800 801 } else { /* Status URB */ 802 if (!hcd->uses_new_polling) 803 del_timer (&hcd->rh_timer); 804 if (urb == hcd->status_urb) { 805 hcd->status_urb = NULL; 806 usb_hcd_unlink_urb_from_ep(hcd, urb); 807 808 spin_unlock(&hcd_root_hub_lock); 809 usb_hcd_giveback_urb(hcd, urb, status); 810 spin_lock(&hcd_root_hub_lock); 811 } 812 } 813 done: 814 spin_unlock_irqrestore(&hcd_root_hub_lock, flags); 815 return rc; 816 } 817 818 819 820 /* 821 * Show & store the current value of authorized_default 822 */ 823 static ssize_t usb_host_authorized_default_show(struct device *dev, 824 struct device_attribute *attr, 825 char *buf) 826 { 827 struct usb_device *rh_usb_dev = to_usb_device(dev); 828 struct usb_bus *usb_bus = rh_usb_dev->bus; 829 struct usb_hcd *usb_hcd; 830 831 if (usb_bus == NULL) /* FIXME: not sure if this case is possible */ 832 return -ENODEV; 833 usb_hcd = bus_to_hcd(usb_bus); 834 return snprintf(buf, PAGE_SIZE, "%u\n", usb_hcd->authorized_default); 835 } 836 837 static ssize_t usb_host_authorized_default_store(struct device *dev, 838 struct device_attribute *attr, 839 const char *buf, size_t size) 840 { 841 ssize_t result; 842 unsigned val; 843 struct usb_device *rh_usb_dev = to_usb_device(dev); 844 struct usb_bus *usb_bus = rh_usb_dev->bus; 845 struct usb_hcd *usb_hcd; 846 847 if (usb_bus == NULL) /* FIXME: not sure if this case is possible */ 848 return -ENODEV; 849 usb_hcd = bus_to_hcd(usb_bus); 850 result = sscanf(buf, "%u\n", &val); 851 if (result == 1) { 852 usb_hcd->authorized_default = val? 1 : 0; 853 result = size; 854 } 855 else 856 result = -EINVAL; 857 return result; 858 } 859 860 static DEVICE_ATTR(authorized_default, 0644, 861 usb_host_authorized_default_show, 862 usb_host_authorized_default_store); 863 864 865 /* Group all the USB bus attributes */ 866 static struct attribute *usb_bus_attrs[] = { 867 &dev_attr_authorized_default.attr, 868 NULL, 869 }; 870 871 static struct attribute_group usb_bus_attr_group = { 872 .name = NULL, /* we want them in the same directory */ 873 .attrs = usb_bus_attrs, 874 }; 875 876 877 878 /*-------------------------------------------------------------------------*/ 879 880 /** 881 * usb_bus_init - shared initialization code 882 * @bus: the bus structure being initialized 883 * 884 * This code is used to initialize a usb_bus structure, memory for which is 885 * separately managed. 886 */ 887 static void usb_bus_init (struct usb_bus *bus) 888 { 889 memset (&bus->devmap, 0, sizeof(struct usb_devmap)); 890 891 bus->devnum_next = 1; 892 893 bus->root_hub = NULL; 894 bus->busnum = -1; 895 bus->bandwidth_allocated = 0; 896 bus->bandwidth_int_reqs = 0; 897 bus->bandwidth_isoc_reqs = 0; 898 899 INIT_LIST_HEAD (&bus->bus_list); 900 } 901 902 /*-------------------------------------------------------------------------*/ 903 904 /** 905 * usb_register_bus - registers the USB host controller with the usb core 906 * @bus: pointer to the bus to register 907 * Context: !in_interrupt() 908 * 909 * Assigns a bus number, and links the controller into usbcore data 910 * structures so that it can be seen by scanning the bus list. 911 */ 912 static int usb_register_bus(struct usb_bus *bus) 913 { 914 int result = -E2BIG; 915 int busnum; 916 917 mutex_lock(&usb_bus_list_lock); 918 busnum = find_next_zero_bit (busmap.busmap, USB_MAXBUS, 1); 919 if (busnum >= USB_MAXBUS) { 920 printk (KERN_ERR "%s: too many buses\n", usbcore_name); 921 goto error_find_busnum; 922 } 923 set_bit (busnum, busmap.busmap); 924 bus->busnum = busnum; 925 926 /* Add it to the local list of buses */ 927 list_add (&bus->bus_list, &usb_bus_list); 928 mutex_unlock(&usb_bus_list_lock); 929 930 usb_notify_add_bus(bus); 931 932 dev_info (bus->controller, "new USB bus registered, assigned bus " 933 "number %d\n", bus->busnum); 934 return 0; 935 936 error_find_busnum: 937 mutex_unlock(&usb_bus_list_lock); 938 return result; 939 } 940 941 /** 942 * usb_deregister_bus - deregisters the USB host controller 943 * @bus: pointer to the bus to deregister 944 * Context: !in_interrupt() 945 * 946 * Recycles the bus number, and unlinks the controller from usbcore data 947 * structures so that it won't be seen by scanning the bus list. 948 */ 949 static void usb_deregister_bus (struct usb_bus *bus) 950 { 951 dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum); 952 953 /* 954 * NOTE: make sure that all the devices are removed by the 955 * controller code, as well as having it call this when cleaning 956 * itself up 957 */ 958 mutex_lock(&usb_bus_list_lock); 959 list_del (&bus->bus_list); 960 mutex_unlock(&usb_bus_list_lock); 961 962 usb_notify_remove_bus(bus); 963 964 clear_bit (bus->busnum, busmap.busmap); 965 } 966 967 /** 968 * register_root_hub - called by usb_add_hcd() to register a root hub 969 * @hcd: host controller for this root hub 970 * 971 * This function registers the root hub with the USB subsystem. It sets up 972 * the device properly in the device tree and then calls usb_new_device() 973 * to register the usb device. It also assigns the root hub's USB address 974 * (always 1). 975 */ 976 static int register_root_hub(struct usb_hcd *hcd) 977 { 978 struct device *parent_dev = hcd->self.controller; 979 struct usb_device *usb_dev = hcd->self.root_hub; 980 const int devnum = 1; 981 int retval; 982 983 usb_dev->devnum = devnum; 984 usb_dev->bus->devnum_next = devnum + 1; 985 memset (&usb_dev->bus->devmap.devicemap, 0, 986 sizeof usb_dev->bus->devmap.devicemap); 987 set_bit (devnum, usb_dev->bus->devmap.devicemap); 988 usb_set_device_state(usb_dev, USB_STATE_ADDRESS); 989 990 mutex_lock(&usb_bus_list_lock); 991 992 usb_dev->ep0.desc.wMaxPacketSize = cpu_to_le16(64); 993 retval = usb_get_device_descriptor(usb_dev, USB_DT_DEVICE_SIZE); 994 if (retval != sizeof usb_dev->descriptor) { 995 mutex_unlock(&usb_bus_list_lock); 996 dev_dbg (parent_dev, "can't read %s device descriptor %d\n", 997 dev_name(&usb_dev->dev), retval); 998 return (retval < 0) ? retval : -EMSGSIZE; 999 } 1000 if (usb_dev->speed == USB_SPEED_SUPER) { 1001 retval = usb_get_bos_descriptor(usb_dev); 1002 if (retval < 0) { 1003 mutex_unlock(&usb_bus_list_lock); 1004 dev_dbg(parent_dev, "can't read %s bos descriptor %d\n", 1005 dev_name(&usb_dev->dev), retval); 1006 return retval; 1007 } 1008 } 1009 1010 retval = usb_new_device (usb_dev); 1011 if (retval) { 1012 dev_err (parent_dev, "can't register root hub for %s, %d\n", 1013 dev_name(&usb_dev->dev), retval); 1014 } 1015 mutex_unlock(&usb_bus_list_lock); 1016 1017 if (retval == 0) { 1018 spin_lock_irq (&hcd_root_hub_lock); 1019 hcd->rh_registered = 1; 1020 spin_unlock_irq (&hcd_root_hub_lock); 1021 1022 /* Did the HC die before the root hub was registered? */ 1023 if (HCD_DEAD(hcd)) 1024 usb_hc_died (hcd); /* This time clean up */ 1025 } 1026 1027 return retval; 1028 } 1029 1030 1031 /*-------------------------------------------------------------------------*/ 1032 1033 /** 1034 * usb_calc_bus_time - approximate periodic transaction time in nanoseconds 1035 * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH} 1036 * @is_input: true iff the transaction sends data to the host 1037 * @isoc: true for isochronous transactions, false for interrupt ones 1038 * @bytecount: how many bytes in the transaction. 1039 * 1040 * Returns approximate bus time in nanoseconds for a periodic transaction. 1041 * See USB 2.0 spec section 5.11.3; only periodic transfers need to be 1042 * scheduled in software, this function is only used for such scheduling. 1043 */ 1044 long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount) 1045 { 1046 unsigned long tmp; 1047 1048 switch (speed) { 1049 case USB_SPEED_LOW: /* INTR only */ 1050 if (is_input) { 1051 tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L; 1052 return (64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp); 1053 } else { 1054 tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L; 1055 return (64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp); 1056 } 1057 case USB_SPEED_FULL: /* ISOC or INTR */ 1058 if (isoc) { 1059 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L; 1060 return (((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp); 1061 } else { 1062 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L; 1063 return (9107L + BW_HOST_DELAY + tmp); 1064 } 1065 case USB_SPEED_HIGH: /* ISOC or INTR */ 1066 // FIXME adjust for input vs output 1067 if (isoc) 1068 tmp = HS_NSECS_ISO (bytecount); 1069 else 1070 tmp = HS_NSECS (bytecount); 1071 return tmp; 1072 default: 1073 pr_debug ("%s: bogus device speed!\n", usbcore_name); 1074 return -1; 1075 } 1076 } 1077 EXPORT_SYMBOL_GPL(usb_calc_bus_time); 1078 1079 1080 /*-------------------------------------------------------------------------*/ 1081 1082 /* 1083 * Generic HC operations. 1084 */ 1085 1086 /*-------------------------------------------------------------------------*/ 1087 1088 /** 1089 * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue 1090 * @hcd: host controller to which @urb was submitted 1091 * @urb: URB being submitted 1092 * 1093 * Host controller drivers should call this routine in their enqueue() 1094 * method. The HCD's private spinlock must be held and interrupts must 1095 * be disabled. The actions carried out here are required for URB 1096 * submission, as well as for endpoint shutdown and for usb_kill_urb. 1097 * 1098 * Returns 0 for no error, otherwise a negative error code (in which case 1099 * the enqueue() method must fail). If no error occurs but enqueue() fails 1100 * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing 1101 * the private spinlock and returning. 1102 */ 1103 int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb) 1104 { 1105 int rc = 0; 1106 1107 spin_lock(&hcd_urb_list_lock); 1108 1109 /* Check that the URB isn't being killed */ 1110 if (unlikely(atomic_read(&urb->reject))) { 1111 rc = -EPERM; 1112 goto done; 1113 } 1114 1115 if (unlikely(!urb->ep->enabled)) { 1116 rc = -ENOENT; 1117 goto done; 1118 } 1119 1120 if (unlikely(!urb->dev->can_submit)) { 1121 rc = -EHOSTUNREACH; 1122 goto done; 1123 } 1124 1125 /* 1126 * Check the host controller's state and add the URB to the 1127 * endpoint's queue. 1128 */ 1129 if (HCD_RH_RUNNING(hcd)) { 1130 urb->unlinked = 0; 1131 list_add_tail(&urb->urb_list, &urb->ep->urb_list); 1132 } else { 1133 rc = -ESHUTDOWN; 1134 goto done; 1135 } 1136 done: 1137 spin_unlock(&hcd_urb_list_lock); 1138 return rc; 1139 } 1140 EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep); 1141 1142 /** 1143 * usb_hcd_check_unlink_urb - check whether an URB may be unlinked 1144 * @hcd: host controller to which @urb was submitted 1145 * @urb: URB being checked for unlinkability 1146 * @status: error code to store in @urb if the unlink succeeds 1147 * 1148 * Host controller drivers should call this routine in their dequeue() 1149 * method. The HCD's private spinlock must be held and interrupts must 1150 * be disabled. The actions carried out here are required for making 1151 * sure than an unlink is valid. 1152 * 1153 * Returns 0 for no error, otherwise a negative error code (in which case 1154 * the dequeue() method must fail). The possible error codes are: 1155 * 1156 * -EIDRM: @urb was not submitted or has already completed. 1157 * The completion function may not have been called yet. 1158 * 1159 * -EBUSY: @urb has already been unlinked. 1160 */ 1161 int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb, 1162 int status) 1163 { 1164 struct list_head *tmp; 1165 1166 /* insist the urb is still queued */ 1167 list_for_each(tmp, &urb->ep->urb_list) { 1168 if (tmp == &urb->urb_list) 1169 break; 1170 } 1171 if (tmp != &urb->urb_list) 1172 return -EIDRM; 1173 1174 /* Any status except -EINPROGRESS means something already started to 1175 * unlink this URB from the hardware. So there's no more work to do. 1176 */ 1177 if (urb->unlinked) 1178 return -EBUSY; 1179 urb->unlinked = status; 1180 return 0; 1181 } 1182 EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb); 1183 1184 /** 1185 * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue 1186 * @hcd: host controller to which @urb was submitted 1187 * @urb: URB being unlinked 1188 * 1189 * Host controller drivers should call this routine before calling 1190 * usb_hcd_giveback_urb(). The HCD's private spinlock must be held and 1191 * interrupts must be disabled. The actions carried out here are required 1192 * for URB completion. 1193 */ 1194 void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb) 1195 { 1196 /* clear all state linking urb to this dev (and hcd) */ 1197 spin_lock(&hcd_urb_list_lock); 1198 list_del_init(&urb->urb_list); 1199 spin_unlock(&hcd_urb_list_lock); 1200 } 1201 EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep); 1202 1203 /* 1204 * Some usb host controllers can only perform dma using a small SRAM area. 1205 * The usb core itself is however optimized for host controllers that can dma 1206 * using regular system memory - like pci devices doing bus mastering. 1207 * 1208 * To support host controllers with limited dma capabilites we provide dma 1209 * bounce buffers. This feature can be enabled using the HCD_LOCAL_MEM flag. 1210 * For this to work properly the host controller code must first use the 1211 * function dma_declare_coherent_memory() to point out which memory area 1212 * that should be used for dma allocations. 1213 * 1214 * The HCD_LOCAL_MEM flag then tells the usb code to allocate all data for 1215 * dma using dma_alloc_coherent() which in turn allocates from the memory 1216 * area pointed out with dma_declare_coherent_memory(). 1217 * 1218 * So, to summarize... 1219 * 1220 * - We need "local" memory, canonical example being 1221 * a small SRAM on a discrete controller being the 1222 * only memory that the controller can read ... 1223 * (a) "normal" kernel memory is no good, and 1224 * (b) there's not enough to share 1225 * 1226 * - The only *portable* hook for such stuff in the 1227 * DMA framework is dma_declare_coherent_memory() 1228 * 1229 * - So we use that, even though the primary requirement 1230 * is that the memory be "local" (hence addressible 1231 * by that device), not "coherent". 1232 * 1233 */ 1234 1235 static int hcd_alloc_coherent(struct usb_bus *bus, 1236 gfp_t mem_flags, dma_addr_t *dma_handle, 1237 void **vaddr_handle, size_t size, 1238 enum dma_data_direction dir) 1239 { 1240 unsigned char *vaddr; 1241 1242 if (*vaddr_handle == NULL) { 1243 WARN_ON_ONCE(1); 1244 return -EFAULT; 1245 } 1246 1247 vaddr = hcd_buffer_alloc(bus, size + sizeof(vaddr), 1248 mem_flags, dma_handle); 1249 if (!vaddr) 1250 return -ENOMEM; 1251 1252 /* 1253 * Store the virtual address of the buffer at the end 1254 * of the allocated dma buffer. The size of the buffer 1255 * may be uneven so use unaligned functions instead 1256 * of just rounding up. It makes sense to optimize for 1257 * memory footprint over access speed since the amount 1258 * of memory available for dma may be limited. 1259 */ 1260 put_unaligned((unsigned long)*vaddr_handle, 1261 (unsigned long *)(vaddr + size)); 1262 1263 if (dir == DMA_TO_DEVICE) 1264 memcpy(vaddr, *vaddr_handle, size); 1265 1266 *vaddr_handle = vaddr; 1267 return 0; 1268 } 1269 1270 static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle, 1271 void **vaddr_handle, size_t size, 1272 enum dma_data_direction dir) 1273 { 1274 unsigned char *vaddr = *vaddr_handle; 1275 1276 vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size)); 1277 1278 if (dir == DMA_FROM_DEVICE) 1279 memcpy(vaddr, *vaddr_handle, size); 1280 1281 hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle); 1282 1283 *vaddr_handle = vaddr; 1284 *dma_handle = 0; 1285 } 1286 1287 void usb_hcd_unmap_urb_setup_for_dma(struct usb_hcd *hcd, struct urb *urb) 1288 { 1289 if (urb->transfer_flags & URB_SETUP_MAP_SINGLE) 1290 dma_unmap_single(hcd->self.controller, 1291 urb->setup_dma, 1292 sizeof(struct usb_ctrlrequest), 1293 DMA_TO_DEVICE); 1294 else if (urb->transfer_flags & URB_SETUP_MAP_LOCAL) 1295 hcd_free_coherent(urb->dev->bus, 1296 &urb->setup_dma, 1297 (void **) &urb->setup_packet, 1298 sizeof(struct usb_ctrlrequest), 1299 DMA_TO_DEVICE); 1300 1301 /* Make it safe to call this routine more than once */ 1302 urb->transfer_flags &= ~(URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL); 1303 } 1304 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_setup_for_dma); 1305 1306 static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb) 1307 { 1308 if (hcd->driver->unmap_urb_for_dma) 1309 hcd->driver->unmap_urb_for_dma(hcd, urb); 1310 else 1311 usb_hcd_unmap_urb_for_dma(hcd, urb); 1312 } 1313 1314 void usb_hcd_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb) 1315 { 1316 enum dma_data_direction dir; 1317 1318 usb_hcd_unmap_urb_setup_for_dma(hcd, urb); 1319 1320 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE; 1321 if (urb->transfer_flags & URB_DMA_MAP_SG) 1322 dma_unmap_sg(hcd->self.controller, 1323 urb->sg, 1324 urb->num_sgs, 1325 dir); 1326 else if (urb->transfer_flags & URB_DMA_MAP_PAGE) 1327 dma_unmap_page(hcd->self.controller, 1328 urb->transfer_dma, 1329 urb->transfer_buffer_length, 1330 dir); 1331 else if (urb->transfer_flags & URB_DMA_MAP_SINGLE) 1332 dma_unmap_single(hcd->self.controller, 1333 urb->transfer_dma, 1334 urb->transfer_buffer_length, 1335 dir); 1336 else if (urb->transfer_flags & URB_MAP_LOCAL) 1337 hcd_free_coherent(urb->dev->bus, 1338 &urb->transfer_dma, 1339 &urb->transfer_buffer, 1340 urb->transfer_buffer_length, 1341 dir); 1342 1343 /* Make it safe to call this routine more than once */ 1344 urb->transfer_flags &= ~(URB_DMA_MAP_SG | URB_DMA_MAP_PAGE | 1345 URB_DMA_MAP_SINGLE | URB_MAP_LOCAL); 1346 } 1347 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_for_dma); 1348 1349 static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb, 1350 gfp_t mem_flags) 1351 { 1352 if (hcd->driver->map_urb_for_dma) 1353 return hcd->driver->map_urb_for_dma(hcd, urb, mem_flags); 1354 else 1355 return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags); 1356 } 1357 1358 int usb_hcd_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb, 1359 gfp_t mem_flags) 1360 { 1361 enum dma_data_direction dir; 1362 int ret = 0; 1363 1364 /* Map the URB's buffers for DMA access. 1365 * Lower level HCD code should use *_dma exclusively, 1366 * unless it uses pio or talks to another transport, 1367 * or uses the provided scatter gather list for bulk. 1368 */ 1369 1370 if (usb_endpoint_xfer_control(&urb->ep->desc)) { 1371 if (hcd->self.uses_pio_for_control) 1372 return ret; 1373 if (hcd->self.uses_dma) { 1374 urb->setup_dma = dma_map_single( 1375 hcd->self.controller, 1376 urb->setup_packet, 1377 sizeof(struct usb_ctrlrequest), 1378 DMA_TO_DEVICE); 1379 if (dma_mapping_error(hcd->self.controller, 1380 urb->setup_dma)) 1381 return -EAGAIN; 1382 urb->transfer_flags |= URB_SETUP_MAP_SINGLE; 1383 } else if (hcd->driver->flags & HCD_LOCAL_MEM) { 1384 ret = hcd_alloc_coherent( 1385 urb->dev->bus, mem_flags, 1386 &urb->setup_dma, 1387 (void **)&urb->setup_packet, 1388 sizeof(struct usb_ctrlrequest), 1389 DMA_TO_DEVICE); 1390 if (ret) 1391 return ret; 1392 urb->transfer_flags |= URB_SETUP_MAP_LOCAL; 1393 } 1394 } 1395 1396 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE; 1397 if (urb->transfer_buffer_length != 0 1398 && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) { 1399 if (hcd->self.uses_dma) { 1400 if (urb->num_sgs) { 1401 int n = dma_map_sg( 1402 hcd->self.controller, 1403 urb->sg, 1404 urb->num_sgs, 1405 dir); 1406 if (n <= 0) 1407 ret = -EAGAIN; 1408 else 1409 urb->transfer_flags |= URB_DMA_MAP_SG; 1410 urb->num_mapped_sgs = n; 1411 if (n != urb->num_sgs) 1412 urb->transfer_flags |= 1413 URB_DMA_SG_COMBINED; 1414 } else if (urb->sg) { 1415 struct scatterlist *sg = urb->sg; 1416 urb->transfer_dma = dma_map_page( 1417 hcd->self.controller, 1418 sg_page(sg), 1419 sg->offset, 1420 urb->transfer_buffer_length, 1421 dir); 1422 if (dma_mapping_error(hcd->self.controller, 1423 urb->transfer_dma)) 1424 ret = -EAGAIN; 1425 else 1426 urb->transfer_flags |= URB_DMA_MAP_PAGE; 1427 } else { 1428 urb->transfer_dma = dma_map_single( 1429 hcd->self.controller, 1430 urb->transfer_buffer, 1431 urb->transfer_buffer_length, 1432 dir); 1433 if (dma_mapping_error(hcd->self.controller, 1434 urb->transfer_dma)) 1435 ret = -EAGAIN; 1436 else 1437 urb->transfer_flags |= URB_DMA_MAP_SINGLE; 1438 } 1439 } else if (hcd->driver->flags & HCD_LOCAL_MEM) { 1440 ret = hcd_alloc_coherent( 1441 urb->dev->bus, mem_flags, 1442 &urb->transfer_dma, 1443 &urb->transfer_buffer, 1444 urb->transfer_buffer_length, 1445 dir); 1446 if (ret == 0) 1447 urb->transfer_flags |= URB_MAP_LOCAL; 1448 } 1449 if (ret && (urb->transfer_flags & (URB_SETUP_MAP_SINGLE | 1450 URB_SETUP_MAP_LOCAL))) 1451 usb_hcd_unmap_urb_for_dma(hcd, urb); 1452 } 1453 return ret; 1454 } 1455 EXPORT_SYMBOL_GPL(usb_hcd_map_urb_for_dma); 1456 1457 /*-------------------------------------------------------------------------*/ 1458 1459 /* may be called in any context with a valid urb->dev usecount 1460 * caller surrenders "ownership" of urb 1461 * expects usb_submit_urb() to have sanity checked and conditioned all 1462 * inputs in the urb 1463 */ 1464 int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags) 1465 { 1466 int status; 1467 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus); 1468 1469 /* increment urb's reference count as part of giving it to the HCD 1470 * (which will control it). HCD guarantees that it either returns 1471 * an error or calls giveback(), but not both. 1472 */ 1473 usb_get_urb(urb); 1474 atomic_inc(&urb->use_count); 1475 atomic_inc(&urb->dev->urbnum); 1476 usbmon_urb_submit(&hcd->self, urb); 1477 1478 /* NOTE requirements on root-hub callers (usbfs and the hub 1479 * driver, for now): URBs' urb->transfer_buffer must be 1480 * valid and usb_buffer_{sync,unmap}() not be needed, since 1481 * they could clobber root hub response data. Also, control 1482 * URBs must be submitted in process context with interrupts 1483 * enabled. 1484 */ 1485 1486 if (is_root_hub(urb->dev)) { 1487 status = rh_urb_enqueue(hcd, urb); 1488 } else { 1489 status = map_urb_for_dma(hcd, urb, mem_flags); 1490 if (likely(status == 0)) { 1491 status = hcd->driver->urb_enqueue(hcd, urb, mem_flags); 1492 if (unlikely(status)) 1493 unmap_urb_for_dma(hcd, urb); 1494 } 1495 } 1496 1497 if (unlikely(status)) { 1498 usbmon_urb_submit_error(&hcd->self, urb, status); 1499 urb->hcpriv = NULL; 1500 INIT_LIST_HEAD(&urb->urb_list); 1501 atomic_dec(&urb->use_count); 1502 atomic_dec(&urb->dev->urbnum); 1503 if (atomic_read(&urb->reject)) 1504 wake_up(&usb_kill_urb_queue); 1505 usb_put_urb(urb); 1506 } 1507 return status; 1508 } 1509 1510 /*-------------------------------------------------------------------------*/ 1511 1512 /* this makes the hcd giveback() the urb more quickly, by kicking it 1513 * off hardware queues (which may take a while) and returning it as 1514 * soon as practical. we've already set up the urb's return status, 1515 * but we can't know if the callback completed already. 1516 */ 1517 static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status) 1518 { 1519 int value; 1520 1521 if (is_root_hub(urb->dev)) 1522 value = usb_rh_urb_dequeue(hcd, urb, status); 1523 else { 1524 1525 /* The only reason an HCD might fail this call is if 1526 * it has not yet fully queued the urb to begin with. 1527 * Such failures should be harmless. */ 1528 value = hcd->driver->urb_dequeue(hcd, urb, status); 1529 } 1530 return value; 1531 } 1532 1533 /* 1534 * called in any context 1535 * 1536 * caller guarantees urb won't be recycled till both unlink() 1537 * and the urb's completion function return 1538 */ 1539 int usb_hcd_unlink_urb (struct urb *urb, int status) 1540 { 1541 struct usb_hcd *hcd; 1542 int retval = -EIDRM; 1543 unsigned long flags; 1544 1545 /* Prevent the device and bus from going away while 1546 * the unlink is carried out. If they are already gone 1547 * then urb->use_count must be 0, since disconnected 1548 * devices can't have any active URBs. 1549 */ 1550 spin_lock_irqsave(&hcd_urb_unlink_lock, flags); 1551 if (atomic_read(&urb->use_count) > 0) { 1552 retval = 0; 1553 usb_get_dev(urb->dev); 1554 } 1555 spin_unlock_irqrestore(&hcd_urb_unlink_lock, flags); 1556 if (retval == 0) { 1557 hcd = bus_to_hcd(urb->dev->bus); 1558 retval = unlink1(hcd, urb, status); 1559 usb_put_dev(urb->dev); 1560 } 1561 1562 if (retval == 0) 1563 retval = -EINPROGRESS; 1564 else if (retval != -EIDRM && retval != -EBUSY) 1565 dev_dbg(&urb->dev->dev, "hcd_unlink_urb %p fail %d\n", 1566 urb, retval); 1567 return retval; 1568 } 1569 1570 /*-------------------------------------------------------------------------*/ 1571 1572 /** 1573 * usb_hcd_giveback_urb - return URB from HCD to device driver 1574 * @hcd: host controller returning the URB 1575 * @urb: urb being returned to the USB device driver. 1576 * @status: completion status code for the URB. 1577 * Context: in_interrupt() 1578 * 1579 * This hands the URB from HCD to its USB device driver, using its 1580 * completion function. The HCD has freed all per-urb resources 1581 * (and is done using urb->hcpriv). It also released all HCD locks; 1582 * the device driver won't cause problems if it frees, modifies, 1583 * or resubmits this URB. 1584 * 1585 * If @urb was unlinked, the value of @status will be overridden by 1586 * @urb->unlinked. Erroneous short transfers are detected in case 1587 * the HCD hasn't checked for them. 1588 */ 1589 void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status) 1590 { 1591 urb->hcpriv = NULL; 1592 if (unlikely(urb->unlinked)) 1593 status = urb->unlinked; 1594 else if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) && 1595 urb->actual_length < urb->transfer_buffer_length && 1596 !status)) 1597 status = -EREMOTEIO; 1598 1599 unmap_urb_for_dma(hcd, urb); 1600 usbmon_urb_complete(&hcd->self, urb, status); 1601 usb_unanchor_urb(urb); 1602 1603 /* pass ownership to the completion handler */ 1604 urb->status = status; 1605 urb->complete (urb); 1606 atomic_dec (&urb->use_count); 1607 if (unlikely(atomic_read(&urb->reject))) 1608 wake_up (&usb_kill_urb_queue); 1609 usb_put_urb (urb); 1610 } 1611 EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb); 1612 1613 /*-------------------------------------------------------------------------*/ 1614 1615 /* Cancel all URBs pending on this endpoint and wait for the endpoint's 1616 * queue to drain completely. The caller must first insure that no more 1617 * URBs can be submitted for this endpoint. 1618 */ 1619 void usb_hcd_flush_endpoint(struct usb_device *udev, 1620 struct usb_host_endpoint *ep) 1621 { 1622 struct usb_hcd *hcd; 1623 struct urb *urb; 1624 1625 if (!ep) 1626 return; 1627 might_sleep(); 1628 hcd = bus_to_hcd(udev->bus); 1629 1630 /* No more submits can occur */ 1631 spin_lock_irq(&hcd_urb_list_lock); 1632 rescan: 1633 list_for_each_entry (urb, &ep->urb_list, urb_list) { 1634 int is_in; 1635 1636 if (urb->unlinked) 1637 continue; 1638 usb_get_urb (urb); 1639 is_in = usb_urb_dir_in(urb); 1640 spin_unlock(&hcd_urb_list_lock); 1641 1642 /* kick hcd */ 1643 unlink1(hcd, urb, -ESHUTDOWN); 1644 dev_dbg (hcd->self.controller, 1645 "shutdown urb %p ep%d%s%s\n", 1646 urb, usb_endpoint_num(&ep->desc), 1647 is_in ? "in" : "out", 1648 ({ char *s; 1649 1650 switch (usb_endpoint_type(&ep->desc)) { 1651 case USB_ENDPOINT_XFER_CONTROL: 1652 s = ""; break; 1653 case USB_ENDPOINT_XFER_BULK: 1654 s = "-bulk"; break; 1655 case USB_ENDPOINT_XFER_INT: 1656 s = "-intr"; break; 1657 default: 1658 s = "-iso"; break; 1659 }; 1660 s; 1661 })); 1662 usb_put_urb (urb); 1663 1664 /* list contents may have changed */ 1665 spin_lock(&hcd_urb_list_lock); 1666 goto rescan; 1667 } 1668 spin_unlock_irq(&hcd_urb_list_lock); 1669 1670 /* Wait until the endpoint queue is completely empty */ 1671 while (!list_empty (&ep->urb_list)) { 1672 spin_lock_irq(&hcd_urb_list_lock); 1673 1674 /* The list may have changed while we acquired the spinlock */ 1675 urb = NULL; 1676 if (!list_empty (&ep->urb_list)) { 1677 urb = list_entry (ep->urb_list.prev, struct urb, 1678 urb_list); 1679 usb_get_urb (urb); 1680 } 1681 spin_unlock_irq(&hcd_urb_list_lock); 1682 1683 if (urb) { 1684 usb_kill_urb (urb); 1685 usb_put_urb (urb); 1686 } 1687 } 1688 } 1689 1690 /** 1691 * usb_hcd_alloc_bandwidth - check whether a new bandwidth setting exceeds 1692 * the bus bandwidth 1693 * @udev: target &usb_device 1694 * @new_config: new configuration to install 1695 * @cur_alt: the current alternate interface setting 1696 * @new_alt: alternate interface setting that is being installed 1697 * 1698 * To change configurations, pass in the new configuration in new_config, 1699 * and pass NULL for cur_alt and new_alt. 1700 * 1701 * To reset a device's configuration (put the device in the ADDRESSED state), 1702 * pass in NULL for new_config, cur_alt, and new_alt. 1703 * 1704 * To change alternate interface settings, pass in NULL for new_config, 1705 * pass in the current alternate interface setting in cur_alt, 1706 * and pass in the new alternate interface setting in new_alt. 1707 * 1708 * Returns an error if the requested bandwidth change exceeds the 1709 * bus bandwidth or host controller internal resources. 1710 */ 1711 int usb_hcd_alloc_bandwidth(struct usb_device *udev, 1712 struct usb_host_config *new_config, 1713 struct usb_host_interface *cur_alt, 1714 struct usb_host_interface *new_alt) 1715 { 1716 int num_intfs, i, j; 1717 struct usb_host_interface *alt = NULL; 1718 int ret = 0; 1719 struct usb_hcd *hcd; 1720 struct usb_host_endpoint *ep; 1721 1722 hcd = bus_to_hcd(udev->bus); 1723 if (!hcd->driver->check_bandwidth) 1724 return 0; 1725 1726 /* Configuration is being removed - set configuration 0 */ 1727 if (!new_config && !cur_alt) { 1728 for (i = 1; i < 16; ++i) { 1729 ep = udev->ep_out[i]; 1730 if (ep) 1731 hcd->driver->drop_endpoint(hcd, udev, ep); 1732 ep = udev->ep_in[i]; 1733 if (ep) 1734 hcd->driver->drop_endpoint(hcd, udev, ep); 1735 } 1736 hcd->driver->check_bandwidth(hcd, udev); 1737 return 0; 1738 } 1739 /* Check if the HCD says there's enough bandwidth. Enable all endpoints 1740 * each interface's alt setting 0 and ask the HCD to check the bandwidth 1741 * of the bus. There will always be bandwidth for endpoint 0, so it's 1742 * ok to exclude it. 1743 */ 1744 if (new_config) { 1745 num_intfs = new_config->desc.bNumInterfaces; 1746 /* Remove endpoints (except endpoint 0, which is always on the 1747 * schedule) from the old config from the schedule 1748 */ 1749 for (i = 1; i < 16; ++i) { 1750 ep = udev->ep_out[i]; 1751 if (ep) { 1752 ret = hcd->driver->drop_endpoint(hcd, udev, ep); 1753 if (ret < 0) 1754 goto reset; 1755 } 1756 ep = udev->ep_in[i]; 1757 if (ep) { 1758 ret = hcd->driver->drop_endpoint(hcd, udev, ep); 1759 if (ret < 0) 1760 goto reset; 1761 } 1762 } 1763 for (i = 0; i < num_intfs; ++i) { 1764 struct usb_host_interface *first_alt; 1765 int iface_num; 1766 1767 first_alt = &new_config->intf_cache[i]->altsetting[0]; 1768 iface_num = first_alt->desc.bInterfaceNumber; 1769 /* Set up endpoints for alternate interface setting 0 */ 1770 alt = usb_find_alt_setting(new_config, iface_num, 0); 1771 if (!alt) 1772 /* No alt setting 0? Pick the first setting. */ 1773 alt = first_alt; 1774 1775 for (j = 0; j < alt->desc.bNumEndpoints; j++) { 1776 ret = hcd->driver->add_endpoint(hcd, udev, &alt->endpoint[j]); 1777 if (ret < 0) 1778 goto reset; 1779 } 1780 } 1781 } 1782 if (cur_alt && new_alt) { 1783 struct usb_interface *iface = usb_ifnum_to_if(udev, 1784 cur_alt->desc.bInterfaceNumber); 1785 1786 if (!iface) 1787 return -EINVAL; 1788 if (iface->resetting_device) { 1789 /* 1790 * The USB core just reset the device, so the xHCI host 1791 * and the device will think alt setting 0 is installed. 1792 * However, the USB core will pass in the alternate 1793 * setting installed before the reset as cur_alt. Dig 1794 * out the alternate setting 0 structure, or the first 1795 * alternate setting if a broken device doesn't have alt 1796 * setting 0. 1797 */ 1798 cur_alt = usb_altnum_to_altsetting(iface, 0); 1799 if (!cur_alt) 1800 cur_alt = &iface->altsetting[0]; 1801 } 1802 1803 /* Drop all the endpoints in the current alt setting */ 1804 for (i = 0; i < cur_alt->desc.bNumEndpoints; i++) { 1805 ret = hcd->driver->drop_endpoint(hcd, udev, 1806 &cur_alt->endpoint[i]); 1807 if (ret < 0) 1808 goto reset; 1809 } 1810 /* Add all the endpoints in the new alt setting */ 1811 for (i = 0; i < new_alt->desc.bNumEndpoints; i++) { 1812 ret = hcd->driver->add_endpoint(hcd, udev, 1813 &new_alt->endpoint[i]); 1814 if (ret < 0) 1815 goto reset; 1816 } 1817 } 1818 ret = hcd->driver->check_bandwidth(hcd, udev); 1819 reset: 1820 if (ret < 0) 1821 hcd->driver->reset_bandwidth(hcd, udev); 1822 return ret; 1823 } 1824 1825 /* Disables the endpoint: synchronizes with the hcd to make sure all 1826 * endpoint state is gone from hardware. usb_hcd_flush_endpoint() must 1827 * have been called previously. Use for set_configuration, set_interface, 1828 * driver removal, physical disconnect. 1829 * 1830 * example: a qh stored in ep->hcpriv, holding state related to endpoint 1831 * type, maxpacket size, toggle, halt status, and scheduling. 1832 */ 1833 void usb_hcd_disable_endpoint(struct usb_device *udev, 1834 struct usb_host_endpoint *ep) 1835 { 1836 struct usb_hcd *hcd; 1837 1838 might_sleep(); 1839 hcd = bus_to_hcd(udev->bus); 1840 if (hcd->driver->endpoint_disable) 1841 hcd->driver->endpoint_disable(hcd, ep); 1842 } 1843 1844 /** 1845 * usb_hcd_reset_endpoint - reset host endpoint state 1846 * @udev: USB device. 1847 * @ep: the endpoint to reset. 1848 * 1849 * Resets any host endpoint state such as the toggle bit, sequence 1850 * number and current window. 1851 */ 1852 void usb_hcd_reset_endpoint(struct usb_device *udev, 1853 struct usb_host_endpoint *ep) 1854 { 1855 struct usb_hcd *hcd = bus_to_hcd(udev->bus); 1856 1857 if (hcd->driver->endpoint_reset) 1858 hcd->driver->endpoint_reset(hcd, ep); 1859 else { 1860 int epnum = usb_endpoint_num(&ep->desc); 1861 int is_out = usb_endpoint_dir_out(&ep->desc); 1862 int is_control = usb_endpoint_xfer_control(&ep->desc); 1863 1864 usb_settoggle(udev, epnum, is_out, 0); 1865 if (is_control) 1866 usb_settoggle(udev, epnum, !is_out, 0); 1867 } 1868 } 1869 1870 /** 1871 * usb_alloc_streams - allocate bulk endpoint stream IDs. 1872 * @interface: alternate setting that includes all endpoints. 1873 * @eps: array of endpoints that need streams. 1874 * @num_eps: number of endpoints in the array. 1875 * @num_streams: number of streams to allocate. 1876 * @mem_flags: flags hcd should use to allocate memory. 1877 * 1878 * Sets up a group of bulk endpoints to have num_streams stream IDs available. 1879 * Drivers may queue multiple transfers to different stream IDs, which may 1880 * complete in a different order than they were queued. 1881 */ 1882 int usb_alloc_streams(struct usb_interface *interface, 1883 struct usb_host_endpoint **eps, unsigned int num_eps, 1884 unsigned int num_streams, gfp_t mem_flags) 1885 { 1886 struct usb_hcd *hcd; 1887 struct usb_device *dev; 1888 int i; 1889 1890 dev = interface_to_usbdev(interface); 1891 hcd = bus_to_hcd(dev->bus); 1892 if (!hcd->driver->alloc_streams || !hcd->driver->free_streams) 1893 return -EINVAL; 1894 if (dev->speed != USB_SPEED_SUPER) 1895 return -EINVAL; 1896 1897 /* Streams only apply to bulk endpoints. */ 1898 for (i = 0; i < num_eps; i++) 1899 if (!usb_endpoint_xfer_bulk(&eps[i]->desc)) 1900 return -EINVAL; 1901 1902 return hcd->driver->alloc_streams(hcd, dev, eps, num_eps, 1903 num_streams, mem_flags); 1904 } 1905 EXPORT_SYMBOL_GPL(usb_alloc_streams); 1906 1907 /** 1908 * usb_free_streams - free bulk endpoint stream IDs. 1909 * @interface: alternate setting that includes all endpoints. 1910 * @eps: array of endpoints to remove streams from. 1911 * @num_eps: number of endpoints in the array. 1912 * @mem_flags: flags hcd should use to allocate memory. 1913 * 1914 * Reverts a group of bulk endpoints back to not using stream IDs. 1915 * Can fail if we are given bad arguments, or HCD is broken. 1916 */ 1917 void usb_free_streams(struct usb_interface *interface, 1918 struct usb_host_endpoint **eps, unsigned int num_eps, 1919 gfp_t mem_flags) 1920 { 1921 struct usb_hcd *hcd; 1922 struct usb_device *dev; 1923 int i; 1924 1925 dev = interface_to_usbdev(interface); 1926 hcd = bus_to_hcd(dev->bus); 1927 if (dev->speed != USB_SPEED_SUPER) 1928 return; 1929 1930 /* Streams only apply to bulk endpoints. */ 1931 for (i = 0; i < num_eps; i++) 1932 if (!eps[i] || !usb_endpoint_xfer_bulk(&eps[i]->desc)) 1933 return; 1934 1935 hcd->driver->free_streams(hcd, dev, eps, num_eps, mem_flags); 1936 } 1937 EXPORT_SYMBOL_GPL(usb_free_streams); 1938 1939 /* Protect against drivers that try to unlink URBs after the device 1940 * is gone, by waiting until all unlinks for @udev are finished. 1941 * Since we don't currently track URBs by device, simply wait until 1942 * nothing is running in the locked region of usb_hcd_unlink_urb(). 1943 */ 1944 void usb_hcd_synchronize_unlinks(struct usb_device *udev) 1945 { 1946 spin_lock_irq(&hcd_urb_unlink_lock); 1947 spin_unlock_irq(&hcd_urb_unlink_lock); 1948 } 1949 1950 /*-------------------------------------------------------------------------*/ 1951 1952 /* called in any context */ 1953 int usb_hcd_get_frame_number (struct usb_device *udev) 1954 { 1955 struct usb_hcd *hcd = bus_to_hcd(udev->bus); 1956 1957 if (!HCD_RH_RUNNING(hcd)) 1958 return -ESHUTDOWN; 1959 return hcd->driver->get_frame_number (hcd); 1960 } 1961 1962 /*-------------------------------------------------------------------------*/ 1963 1964 #ifdef CONFIG_PM 1965 1966 int hcd_bus_suspend(struct usb_device *rhdev, pm_message_t msg) 1967 { 1968 struct usb_hcd *hcd = container_of(rhdev->bus, struct usb_hcd, self); 1969 int status; 1970 int old_state = hcd->state; 1971 1972 dev_dbg(&rhdev->dev, "bus %ssuspend, wakeup %d\n", 1973 (PMSG_IS_AUTO(msg) ? "auto-" : ""), 1974 rhdev->do_remote_wakeup); 1975 if (HCD_DEAD(hcd)) { 1976 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "suspend"); 1977 return 0; 1978 } 1979 1980 if (!hcd->driver->bus_suspend) { 1981 status = -ENOENT; 1982 } else { 1983 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 1984 hcd->state = HC_STATE_QUIESCING; 1985 status = hcd->driver->bus_suspend(hcd); 1986 } 1987 if (status == 0) { 1988 usb_set_device_state(rhdev, USB_STATE_SUSPENDED); 1989 hcd->state = HC_STATE_SUSPENDED; 1990 1991 /* Did we race with a root-hub wakeup event? */ 1992 if (rhdev->do_remote_wakeup) { 1993 char buffer[6]; 1994 1995 status = hcd->driver->hub_status_data(hcd, buffer); 1996 if (status != 0) { 1997 dev_dbg(&rhdev->dev, "suspend raced with wakeup event\n"); 1998 hcd_bus_resume(rhdev, PMSG_AUTO_RESUME); 1999 status = -EBUSY; 2000 } 2001 } 2002 } else { 2003 spin_lock_irq(&hcd_root_hub_lock); 2004 if (!HCD_DEAD(hcd)) { 2005 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2006 hcd->state = old_state; 2007 } 2008 spin_unlock_irq(&hcd_root_hub_lock); 2009 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n", 2010 "suspend", status); 2011 } 2012 return status; 2013 } 2014 2015 int hcd_bus_resume(struct usb_device *rhdev, pm_message_t msg) 2016 { 2017 struct usb_hcd *hcd = container_of(rhdev->bus, struct usb_hcd, self); 2018 int status; 2019 int old_state = hcd->state; 2020 2021 dev_dbg(&rhdev->dev, "usb %sresume\n", 2022 (PMSG_IS_AUTO(msg) ? "auto-" : "")); 2023 if (HCD_DEAD(hcd)) { 2024 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "resume"); 2025 return 0; 2026 } 2027 if (!hcd->driver->bus_resume) 2028 return -ENOENT; 2029 if (HCD_RH_RUNNING(hcd)) 2030 return 0; 2031 2032 hcd->state = HC_STATE_RESUMING; 2033 status = hcd->driver->bus_resume(hcd); 2034 clear_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags); 2035 if (status == 0) { 2036 /* TRSMRCY = 10 msec */ 2037 msleep(10); 2038 spin_lock_irq(&hcd_root_hub_lock); 2039 if (!HCD_DEAD(hcd)) { 2040 usb_set_device_state(rhdev, rhdev->actconfig 2041 ? USB_STATE_CONFIGURED 2042 : USB_STATE_ADDRESS); 2043 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2044 hcd->state = HC_STATE_RUNNING; 2045 } 2046 spin_unlock_irq(&hcd_root_hub_lock); 2047 } else { 2048 hcd->state = old_state; 2049 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n", 2050 "resume", status); 2051 if (status != -ESHUTDOWN) 2052 usb_hc_died(hcd); 2053 } 2054 return status; 2055 } 2056 2057 #endif /* CONFIG_PM */ 2058 2059 #ifdef CONFIG_USB_SUSPEND 2060 2061 /* Workqueue routine for root-hub remote wakeup */ 2062 static void hcd_resume_work(struct work_struct *work) 2063 { 2064 struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work); 2065 struct usb_device *udev = hcd->self.root_hub; 2066 2067 usb_lock_device(udev); 2068 usb_remote_wakeup(udev); 2069 usb_unlock_device(udev); 2070 } 2071 2072 /** 2073 * usb_hcd_resume_root_hub - called by HCD to resume its root hub 2074 * @hcd: host controller for this root hub 2075 * 2076 * The USB host controller calls this function when its root hub is 2077 * suspended (with the remote wakeup feature enabled) and a remote 2078 * wakeup request is received. The routine submits a workqueue request 2079 * to resume the root hub (that is, manage its downstream ports again). 2080 */ 2081 void usb_hcd_resume_root_hub (struct usb_hcd *hcd) 2082 { 2083 unsigned long flags; 2084 2085 spin_lock_irqsave (&hcd_root_hub_lock, flags); 2086 if (hcd->rh_registered) { 2087 set_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags); 2088 queue_work(pm_wq, &hcd->wakeup_work); 2089 } 2090 spin_unlock_irqrestore (&hcd_root_hub_lock, flags); 2091 } 2092 EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub); 2093 2094 #endif /* CONFIG_USB_SUSPEND */ 2095 2096 /*-------------------------------------------------------------------------*/ 2097 2098 #ifdef CONFIG_USB_OTG 2099 2100 /** 2101 * usb_bus_start_enum - start immediate enumeration (for OTG) 2102 * @bus: the bus (must use hcd framework) 2103 * @port_num: 1-based number of port; usually bus->otg_port 2104 * Context: in_interrupt() 2105 * 2106 * Starts enumeration, with an immediate reset followed later by 2107 * khubd identifying and possibly configuring the device. 2108 * This is needed by OTG controller drivers, where it helps meet 2109 * HNP protocol timing requirements for starting a port reset. 2110 */ 2111 int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num) 2112 { 2113 struct usb_hcd *hcd; 2114 int status = -EOPNOTSUPP; 2115 2116 /* NOTE: since HNP can't start by grabbing the bus's address0_sem, 2117 * boards with root hubs hooked up to internal devices (instead of 2118 * just the OTG port) may need more attention to resetting... 2119 */ 2120 hcd = container_of (bus, struct usb_hcd, self); 2121 if (port_num && hcd->driver->start_port_reset) 2122 status = hcd->driver->start_port_reset(hcd, port_num); 2123 2124 /* run khubd shortly after (first) root port reset finishes; 2125 * it may issue others, until at least 50 msecs have passed. 2126 */ 2127 if (status == 0) 2128 mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10)); 2129 return status; 2130 } 2131 EXPORT_SYMBOL_GPL(usb_bus_start_enum); 2132 2133 #endif 2134 2135 /*-------------------------------------------------------------------------*/ 2136 2137 /** 2138 * usb_hcd_irq - hook IRQs to HCD framework (bus glue) 2139 * @irq: the IRQ being raised 2140 * @__hcd: pointer to the HCD whose IRQ is being signaled 2141 * 2142 * If the controller isn't HALTed, calls the driver's irq handler. 2143 * Checks whether the controller is now dead. 2144 */ 2145 irqreturn_t usb_hcd_irq (int irq, void *__hcd) 2146 { 2147 struct usb_hcd *hcd = __hcd; 2148 unsigned long flags; 2149 irqreturn_t rc; 2150 2151 /* IRQF_DISABLED doesn't work correctly with shared IRQs 2152 * when the first handler doesn't use it. So let's just 2153 * assume it's never used. 2154 */ 2155 local_irq_save(flags); 2156 2157 if (unlikely(HCD_DEAD(hcd) || !HCD_HW_ACCESSIBLE(hcd))) 2158 rc = IRQ_NONE; 2159 else if (hcd->driver->irq(hcd) == IRQ_NONE) 2160 rc = IRQ_NONE; 2161 else 2162 rc = IRQ_HANDLED; 2163 2164 local_irq_restore(flags); 2165 return rc; 2166 } 2167 EXPORT_SYMBOL_GPL(usb_hcd_irq); 2168 2169 /*-------------------------------------------------------------------------*/ 2170 2171 /** 2172 * usb_hc_died - report abnormal shutdown of a host controller (bus glue) 2173 * @hcd: pointer to the HCD representing the controller 2174 * 2175 * This is called by bus glue to report a USB host controller that died 2176 * while operations may still have been pending. It's called automatically 2177 * by the PCI glue, so only glue for non-PCI busses should need to call it. 2178 * 2179 * Only call this function with the primary HCD. 2180 */ 2181 void usb_hc_died (struct usb_hcd *hcd) 2182 { 2183 unsigned long flags; 2184 2185 dev_err (hcd->self.controller, "HC died; cleaning up\n"); 2186 2187 spin_lock_irqsave (&hcd_root_hub_lock, flags); 2188 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2189 set_bit(HCD_FLAG_DEAD, &hcd->flags); 2190 if (hcd->rh_registered) { 2191 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2192 2193 /* make khubd clean up old urbs and devices */ 2194 usb_set_device_state (hcd->self.root_hub, 2195 USB_STATE_NOTATTACHED); 2196 usb_kick_khubd (hcd->self.root_hub); 2197 } 2198 if (usb_hcd_is_primary_hcd(hcd) && hcd->shared_hcd) { 2199 hcd = hcd->shared_hcd; 2200 if (hcd->rh_registered) { 2201 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2202 2203 /* make khubd clean up old urbs and devices */ 2204 usb_set_device_state(hcd->self.root_hub, 2205 USB_STATE_NOTATTACHED); 2206 usb_kick_khubd(hcd->self.root_hub); 2207 } 2208 } 2209 spin_unlock_irqrestore (&hcd_root_hub_lock, flags); 2210 /* Make sure that the other roothub is also deallocated. */ 2211 } 2212 EXPORT_SYMBOL_GPL (usb_hc_died); 2213 2214 /*-------------------------------------------------------------------------*/ 2215 2216 /** 2217 * usb_create_shared_hcd - create and initialize an HCD structure 2218 * @driver: HC driver that will use this hcd 2219 * @dev: device for this HC, stored in hcd->self.controller 2220 * @bus_name: value to store in hcd->self.bus_name 2221 * @primary_hcd: a pointer to the usb_hcd structure that is sharing the 2222 * PCI device. Only allocate certain resources for the primary HCD 2223 * Context: !in_interrupt() 2224 * 2225 * Allocate a struct usb_hcd, with extra space at the end for the 2226 * HC driver's private data. Initialize the generic members of the 2227 * hcd structure. 2228 * 2229 * If memory is unavailable, returns NULL. 2230 */ 2231 struct usb_hcd *usb_create_shared_hcd(const struct hc_driver *driver, 2232 struct device *dev, const char *bus_name, 2233 struct usb_hcd *primary_hcd) 2234 { 2235 struct usb_hcd *hcd; 2236 2237 hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL); 2238 if (!hcd) { 2239 dev_dbg (dev, "hcd alloc failed\n"); 2240 return NULL; 2241 } 2242 if (primary_hcd == NULL) { 2243 hcd->bandwidth_mutex = kmalloc(sizeof(*hcd->bandwidth_mutex), 2244 GFP_KERNEL); 2245 if (!hcd->bandwidth_mutex) { 2246 kfree(hcd); 2247 dev_dbg(dev, "hcd bandwidth mutex alloc failed\n"); 2248 return NULL; 2249 } 2250 mutex_init(hcd->bandwidth_mutex); 2251 dev_set_drvdata(dev, hcd); 2252 } else { 2253 hcd->bandwidth_mutex = primary_hcd->bandwidth_mutex; 2254 hcd->primary_hcd = primary_hcd; 2255 primary_hcd->primary_hcd = primary_hcd; 2256 hcd->shared_hcd = primary_hcd; 2257 primary_hcd->shared_hcd = hcd; 2258 } 2259 2260 kref_init(&hcd->kref); 2261 2262 usb_bus_init(&hcd->self); 2263 hcd->self.controller = dev; 2264 hcd->self.bus_name = bus_name; 2265 hcd->self.uses_dma = (dev->dma_mask != NULL); 2266 2267 init_timer(&hcd->rh_timer); 2268 hcd->rh_timer.function = rh_timer_func; 2269 hcd->rh_timer.data = (unsigned long) hcd; 2270 #ifdef CONFIG_USB_SUSPEND 2271 INIT_WORK(&hcd->wakeup_work, hcd_resume_work); 2272 #endif 2273 2274 hcd->driver = driver; 2275 hcd->speed = driver->flags & HCD_MASK; 2276 hcd->product_desc = (driver->product_desc) ? driver->product_desc : 2277 "USB Host Controller"; 2278 return hcd; 2279 } 2280 EXPORT_SYMBOL_GPL(usb_create_shared_hcd); 2281 2282 /** 2283 * usb_create_hcd - create and initialize an HCD structure 2284 * @driver: HC driver that will use this hcd 2285 * @dev: device for this HC, stored in hcd->self.controller 2286 * @bus_name: value to store in hcd->self.bus_name 2287 * Context: !in_interrupt() 2288 * 2289 * Allocate a struct usb_hcd, with extra space at the end for the 2290 * HC driver's private data. Initialize the generic members of the 2291 * hcd structure. 2292 * 2293 * If memory is unavailable, returns NULL. 2294 */ 2295 struct usb_hcd *usb_create_hcd(const struct hc_driver *driver, 2296 struct device *dev, const char *bus_name) 2297 { 2298 return usb_create_shared_hcd(driver, dev, bus_name, NULL); 2299 } 2300 EXPORT_SYMBOL_GPL(usb_create_hcd); 2301 2302 /* 2303 * Roothubs that share one PCI device must also share the bandwidth mutex. 2304 * Don't deallocate the bandwidth_mutex until the last shared usb_hcd is 2305 * deallocated. 2306 * 2307 * Make sure to only deallocate the bandwidth_mutex when the primary HCD is 2308 * freed. When hcd_release() is called for the non-primary HCD, set the 2309 * primary_hcd's shared_hcd pointer to null (since the non-primary HCD will be 2310 * freed shortly). 2311 */ 2312 static void hcd_release (struct kref *kref) 2313 { 2314 struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref); 2315 2316 if (usb_hcd_is_primary_hcd(hcd)) 2317 kfree(hcd->bandwidth_mutex); 2318 else 2319 hcd->shared_hcd->shared_hcd = NULL; 2320 kfree(hcd); 2321 } 2322 2323 struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd) 2324 { 2325 if (hcd) 2326 kref_get (&hcd->kref); 2327 return hcd; 2328 } 2329 EXPORT_SYMBOL_GPL(usb_get_hcd); 2330 2331 void usb_put_hcd (struct usb_hcd *hcd) 2332 { 2333 if (hcd) 2334 kref_put (&hcd->kref, hcd_release); 2335 } 2336 EXPORT_SYMBOL_GPL(usb_put_hcd); 2337 2338 int usb_hcd_is_primary_hcd(struct usb_hcd *hcd) 2339 { 2340 if (!hcd->primary_hcd) 2341 return 1; 2342 return hcd == hcd->primary_hcd; 2343 } 2344 EXPORT_SYMBOL_GPL(usb_hcd_is_primary_hcd); 2345 2346 static int usb_hcd_request_irqs(struct usb_hcd *hcd, 2347 unsigned int irqnum, unsigned long irqflags) 2348 { 2349 int retval; 2350 2351 if (hcd->driver->irq) { 2352 2353 /* IRQF_DISABLED doesn't work as advertised when used together 2354 * with IRQF_SHARED. As usb_hcd_irq() will always disable 2355 * interrupts we can remove it here. 2356 */ 2357 if (irqflags & IRQF_SHARED) 2358 irqflags &= ~IRQF_DISABLED; 2359 2360 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d", 2361 hcd->driver->description, hcd->self.busnum); 2362 retval = request_irq(irqnum, &usb_hcd_irq, irqflags, 2363 hcd->irq_descr, hcd); 2364 if (retval != 0) { 2365 dev_err(hcd->self.controller, 2366 "request interrupt %d failed\n", 2367 irqnum); 2368 return retval; 2369 } 2370 hcd->irq = irqnum; 2371 dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum, 2372 (hcd->driver->flags & HCD_MEMORY) ? 2373 "io mem" : "io base", 2374 (unsigned long long)hcd->rsrc_start); 2375 } else { 2376 hcd->irq = 0; 2377 if (hcd->rsrc_start) 2378 dev_info(hcd->self.controller, "%s 0x%08llx\n", 2379 (hcd->driver->flags & HCD_MEMORY) ? 2380 "io mem" : "io base", 2381 (unsigned long long)hcd->rsrc_start); 2382 } 2383 return 0; 2384 } 2385 2386 /** 2387 * usb_add_hcd - finish generic HCD structure initialization and register 2388 * @hcd: the usb_hcd structure to initialize 2389 * @irqnum: Interrupt line to allocate 2390 * @irqflags: Interrupt type flags 2391 * 2392 * Finish the remaining parts of generic HCD initialization: allocate the 2393 * buffers of consistent memory, register the bus, request the IRQ line, 2394 * and call the driver's reset() and start() routines. 2395 */ 2396 int usb_add_hcd(struct usb_hcd *hcd, 2397 unsigned int irqnum, unsigned long irqflags) 2398 { 2399 int retval; 2400 struct usb_device *rhdev; 2401 2402 dev_info(hcd->self.controller, "%s\n", hcd->product_desc); 2403 2404 /* Keep old behaviour if authorized_default is not in [0, 1]. */ 2405 if (authorized_default < 0 || authorized_default > 1) 2406 hcd->authorized_default = hcd->wireless? 0 : 1; 2407 else 2408 hcd->authorized_default = authorized_default; 2409 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 2410 2411 /* HC is in reset state, but accessible. Now do the one-time init, 2412 * bottom up so that hcds can customize the root hubs before khubd 2413 * starts talking to them. (Note, bus id is assigned early too.) 2414 */ 2415 if ((retval = hcd_buffer_create(hcd)) != 0) { 2416 dev_dbg(hcd->self.controller, "pool alloc failed\n"); 2417 return retval; 2418 } 2419 2420 if ((retval = usb_register_bus(&hcd->self)) < 0) 2421 goto err_register_bus; 2422 2423 if ((rhdev = usb_alloc_dev(NULL, &hcd->self, 0)) == NULL) { 2424 dev_err(hcd->self.controller, "unable to allocate root hub\n"); 2425 retval = -ENOMEM; 2426 goto err_allocate_root_hub; 2427 } 2428 hcd->self.root_hub = rhdev; 2429 2430 switch (hcd->speed) { 2431 case HCD_USB11: 2432 rhdev->speed = USB_SPEED_FULL; 2433 break; 2434 case HCD_USB2: 2435 rhdev->speed = USB_SPEED_HIGH; 2436 break; 2437 case HCD_USB3: 2438 rhdev->speed = USB_SPEED_SUPER; 2439 break; 2440 default: 2441 retval = -EINVAL; 2442 goto err_set_rh_speed; 2443 } 2444 2445 /* wakeup flag init defaults to "everything works" for root hubs, 2446 * but drivers can override it in reset() if needed, along with 2447 * recording the overall controller's system wakeup capability. 2448 */ 2449 device_set_wakeup_capable(&rhdev->dev, 1); 2450 2451 /* HCD_FLAG_RH_RUNNING doesn't matter until the root hub is 2452 * registered. But since the controller can die at any time, 2453 * let's initialize the flag before touching the hardware. 2454 */ 2455 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2456 2457 /* "reset" is misnamed; its role is now one-time init. the controller 2458 * should already have been reset (and boot firmware kicked off etc). 2459 */ 2460 if (hcd->driver->reset && (retval = hcd->driver->reset(hcd)) < 0) { 2461 dev_err(hcd->self.controller, "can't setup\n"); 2462 goto err_hcd_driver_setup; 2463 } 2464 hcd->rh_pollable = 1; 2465 2466 /* NOTE: root hub and controller capabilities may not be the same */ 2467 if (device_can_wakeup(hcd->self.controller) 2468 && device_can_wakeup(&hcd->self.root_hub->dev)) 2469 dev_dbg(hcd->self.controller, "supports USB remote wakeup\n"); 2470 2471 /* enable irqs just before we start the controller, 2472 * if the BIOS provides legacy PCI irqs. 2473 */ 2474 if (usb_hcd_is_primary_hcd(hcd) && irqnum) { 2475 retval = usb_hcd_request_irqs(hcd, irqnum, irqflags); 2476 if (retval) 2477 goto err_request_irq; 2478 } 2479 2480 hcd->state = HC_STATE_RUNNING; 2481 retval = hcd->driver->start(hcd); 2482 if (retval < 0) { 2483 dev_err(hcd->self.controller, "startup error %d\n", retval); 2484 goto err_hcd_driver_start; 2485 } 2486 2487 /* starting here, usbcore will pay attention to this root hub */ 2488 rhdev->bus_mA = min(500u, hcd->power_budget); 2489 if ((retval = register_root_hub(hcd)) != 0) 2490 goto err_register_root_hub; 2491 2492 retval = sysfs_create_group(&rhdev->dev.kobj, &usb_bus_attr_group); 2493 if (retval < 0) { 2494 printk(KERN_ERR "Cannot register USB bus sysfs attributes: %d\n", 2495 retval); 2496 goto error_create_attr_group; 2497 } 2498 if (hcd->uses_new_polling && HCD_POLL_RH(hcd)) 2499 usb_hcd_poll_rh_status(hcd); 2500 2501 /* 2502 * Host controllers don't generate their own wakeup requests; 2503 * they only forward requests from the root hub. Therefore 2504 * controllers should always be enabled for remote wakeup. 2505 */ 2506 device_wakeup_enable(hcd->self.controller); 2507 return retval; 2508 2509 error_create_attr_group: 2510 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2511 if (HC_IS_RUNNING(hcd->state)) 2512 hcd->state = HC_STATE_QUIESCING; 2513 spin_lock_irq(&hcd_root_hub_lock); 2514 hcd->rh_registered = 0; 2515 spin_unlock_irq(&hcd_root_hub_lock); 2516 2517 #ifdef CONFIG_USB_SUSPEND 2518 cancel_work_sync(&hcd->wakeup_work); 2519 #endif 2520 mutex_lock(&usb_bus_list_lock); 2521 usb_disconnect(&rhdev); /* Sets rhdev to NULL */ 2522 mutex_unlock(&usb_bus_list_lock); 2523 err_register_root_hub: 2524 hcd->rh_pollable = 0; 2525 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2526 del_timer_sync(&hcd->rh_timer); 2527 hcd->driver->stop(hcd); 2528 hcd->state = HC_STATE_HALT; 2529 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2530 del_timer_sync(&hcd->rh_timer); 2531 err_hcd_driver_start: 2532 if (usb_hcd_is_primary_hcd(hcd) && hcd->irq > 0) 2533 free_irq(irqnum, hcd); 2534 err_request_irq: 2535 err_hcd_driver_setup: 2536 err_set_rh_speed: 2537 usb_put_dev(hcd->self.root_hub); 2538 err_allocate_root_hub: 2539 usb_deregister_bus(&hcd->self); 2540 err_register_bus: 2541 hcd_buffer_destroy(hcd); 2542 return retval; 2543 } 2544 EXPORT_SYMBOL_GPL(usb_add_hcd); 2545 2546 /** 2547 * usb_remove_hcd - shutdown processing for generic HCDs 2548 * @hcd: the usb_hcd structure to remove 2549 * Context: !in_interrupt() 2550 * 2551 * Disconnects the root hub, then reverses the effects of usb_add_hcd(), 2552 * invoking the HCD's stop() method. 2553 */ 2554 void usb_remove_hcd(struct usb_hcd *hcd) 2555 { 2556 struct usb_device *rhdev = hcd->self.root_hub; 2557 2558 dev_info(hcd->self.controller, "remove, state %x\n", hcd->state); 2559 2560 usb_get_dev(rhdev); 2561 sysfs_remove_group(&rhdev->dev.kobj, &usb_bus_attr_group); 2562 2563 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2564 if (HC_IS_RUNNING (hcd->state)) 2565 hcd->state = HC_STATE_QUIESCING; 2566 2567 dev_dbg(hcd->self.controller, "roothub graceful disconnect\n"); 2568 spin_lock_irq (&hcd_root_hub_lock); 2569 hcd->rh_registered = 0; 2570 spin_unlock_irq (&hcd_root_hub_lock); 2571 2572 #ifdef CONFIG_USB_SUSPEND 2573 cancel_work_sync(&hcd->wakeup_work); 2574 #endif 2575 2576 mutex_lock(&usb_bus_list_lock); 2577 usb_disconnect(&rhdev); /* Sets rhdev to NULL */ 2578 mutex_unlock(&usb_bus_list_lock); 2579 2580 /* Prevent any more root-hub status calls from the timer. 2581 * The HCD might still restart the timer (if a port status change 2582 * interrupt occurs), but usb_hcd_poll_rh_status() won't invoke 2583 * the hub_status_data() callback. 2584 */ 2585 hcd->rh_pollable = 0; 2586 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2587 del_timer_sync(&hcd->rh_timer); 2588 2589 hcd->driver->stop(hcd); 2590 hcd->state = HC_STATE_HALT; 2591 2592 /* In case the HCD restarted the timer, stop it again. */ 2593 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2594 del_timer_sync(&hcd->rh_timer); 2595 2596 if (usb_hcd_is_primary_hcd(hcd)) { 2597 if (hcd->irq > 0) 2598 free_irq(hcd->irq, hcd); 2599 } 2600 2601 usb_put_dev(hcd->self.root_hub); 2602 usb_deregister_bus(&hcd->self); 2603 hcd_buffer_destroy(hcd); 2604 } 2605 EXPORT_SYMBOL_GPL(usb_remove_hcd); 2606 2607 void 2608 usb_hcd_platform_shutdown(struct platform_device* dev) 2609 { 2610 struct usb_hcd *hcd = platform_get_drvdata(dev); 2611 2612 if (hcd->driver->shutdown) 2613 hcd->driver->shutdown(hcd); 2614 } 2615 EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown); 2616 2617 /*-------------------------------------------------------------------------*/ 2618 2619 #if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE) 2620 2621 struct usb_mon_operations *mon_ops; 2622 2623 /* 2624 * The registration is unlocked. 2625 * We do it this way because we do not want to lock in hot paths. 2626 * 2627 * Notice that the code is minimally error-proof. Because usbmon needs 2628 * symbols from usbcore, usbcore gets referenced and cannot be unloaded first. 2629 */ 2630 2631 int usb_mon_register (struct usb_mon_operations *ops) 2632 { 2633 2634 if (mon_ops) 2635 return -EBUSY; 2636 2637 mon_ops = ops; 2638 mb(); 2639 return 0; 2640 } 2641 EXPORT_SYMBOL_GPL (usb_mon_register); 2642 2643 void usb_mon_deregister (void) 2644 { 2645 2646 if (mon_ops == NULL) { 2647 printk(KERN_ERR "USB: monitor was not registered\n"); 2648 return; 2649 } 2650 mon_ops = NULL; 2651 mb(); 2652 } 2653 EXPORT_SYMBOL_GPL (usb_mon_deregister); 2654 2655 #endif /* CONFIG_USB_MON || CONFIG_USB_MON_MODULE */ 2656