1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * (C) Copyright Linus Torvalds 1999 4 * (C) Copyright Johannes Erdfelt 1999-2001 5 * (C) Copyright Andreas Gal 1999 6 * (C) Copyright Gregory P. Smith 1999 7 * (C) Copyright Deti Fliegl 1999 8 * (C) Copyright Randy Dunlap 2000 9 * (C) Copyright David Brownell 2000-2002 10 */ 11 12 #include <linux/bcd.h> 13 #include <linux/module.h> 14 #include <linux/version.h> 15 #include <linux/kernel.h> 16 #include <linux/sched/task_stack.h> 17 #include <linux/slab.h> 18 #include <linux/completion.h> 19 #include <linux/utsname.h> 20 #include <linux/mm.h> 21 #include <asm/io.h> 22 #include <linux/device.h> 23 #include <linux/dma-mapping.h> 24 #include <linux/mutex.h> 25 #include <asm/irq.h> 26 #include <asm/byteorder.h> 27 #include <asm/unaligned.h> 28 #include <linux/platform_device.h> 29 #include <linux/workqueue.h> 30 #include <linux/pm_runtime.h> 31 #include <linux/types.h> 32 #include <linux/genalloc.h> 33 #include <linux/io.h> 34 #include <linux/kcov.h> 35 36 #include <linux/phy/phy.h> 37 #include <linux/usb.h> 38 #include <linux/usb/hcd.h> 39 #include <linux/usb/otg.h> 40 41 #include "usb.h" 42 #include "phy.h" 43 44 45 /*-------------------------------------------------------------------------*/ 46 47 /* 48 * USB Host Controller Driver framework 49 * 50 * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing 51 * HCD-specific behaviors/bugs. 52 * 53 * This does error checks, tracks devices and urbs, and delegates to a 54 * "hc_driver" only for code (and data) that really needs to know about 55 * hardware differences. That includes root hub registers, i/o queues, 56 * and so on ... but as little else as possible. 57 * 58 * Shared code includes most of the "root hub" code (these are emulated, 59 * though each HC's hardware works differently) and PCI glue, plus request 60 * tracking overhead. The HCD code should only block on spinlocks or on 61 * hardware handshaking; blocking on software events (such as other kernel 62 * threads releasing resources, or completing actions) is all generic. 63 * 64 * Happens the USB 2.0 spec says this would be invisible inside the "USBD", 65 * and includes mostly a "HCDI" (HCD Interface) along with some APIs used 66 * only by the hub driver ... and that neither should be seen or used by 67 * usb client device drivers. 68 * 69 * Contributors of ideas or unattributed patches include: David Brownell, 70 * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ... 71 * 72 * HISTORY: 73 * 2002-02-21 Pull in most of the usb_bus support from usb.c; some 74 * associated cleanup. "usb_hcd" still != "usb_bus". 75 * 2001-12-12 Initial patch version for Linux 2.5.1 kernel. 76 */ 77 78 /*-------------------------------------------------------------------------*/ 79 80 /* Keep track of which host controller drivers are loaded */ 81 unsigned long usb_hcds_loaded; 82 EXPORT_SYMBOL_GPL(usb_hcds_loaded); 83 84 /* host controllers we manage */ 85 DEFINE_IDR (usb_bus_idr); 86 EXPORT_SYMBOL_GPL (usb_bus_idr); 87 88 /* used when allocating bus numbers */ 89 #define USB_MAXBUS 64 90 91 /* used when updating list of hcds */ 92 DEFINE_MUTEX(usb_bus_idr_lock); /* exported only for usbfs */ 93 EXPORT_SYMBOL_GPL (usb_bus_idr_lock); 94 95 /* used for controlling access to virtual root hubs */ 96 static DEFINE_SPINLOCK(hcd_root_hub_lock); 97 98 /* used when updating an endpoint's URB list */ 99 static DEFINE_SPINLOCK(hcd_urb_list_lock); 100 101 /* used to protect against unlinking URBs after the device is gone */ 102 static DEFINE_SPINLOCK(hcd_urb_unlink_lock); 103 104 /* wait queue for synchronous unlinks */ 105 DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue); 106 107 /*-------------------------------------------------------------------------*/ 108 109 /* 110 * Sharable chunks of root hub code. 111 */ 112 113 /*-------------------------------------------------------------------------*/ 114 #define KERNEL_REL bin2bcd(LINUX_VERSION_MAJOR) 115 #define KERNEL_VER bin2bcd(LINUX_VERSION_PATCHLEVEL) 116 117 /* usb 3.1 root hub device descriptor */ 118 static const u8 usb31_rh_dev_descriptor[18] = { 119 0x12, /* __u8 bLength; */ 120 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */ 121 0x10, 0x03, /* __le16 bcdUSB; v3.1 */ 122 123 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */ 124 0x00, /* __u8 bDeviceSubClass; */ 125 0x03, /* __u8 bDeviceProtocol; USB 3 hub */ 126 0x09, /* __u8 bMaxPacketSize0; 2^9 = 512 Bytes */ 127 128 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */ 129 0x03, 0x00, /* __le16 idProduct; device 0x0003 */ 130 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */ 131 132 0x03, /* __u8 iManufacturer; */ 133 0x02, /* __u8 iProduct; */ 134 0x01, /* __u8 iSerialNumber; */ 135 0x01 /* __u8 bNumConfigurations; */ 136 }; 137 138 /* usb 3.0 root hub device descriptor */ 139 static const u8 usb3_rh_dev_descriptor[18] = { 140 0x12, /* __u8 bLength; */ 141 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */ 142 0x00, 0x03, /* __le16 bcdUSB; v3.0 */ 143 144 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */ 145 0x00, /* __u8 bDeviceSubClass; */ 146 0x03, /* __u8 bDeviceProtocol; USB 3.0 hub */ 147 0x09, /* __u8 bMaxPacketSize0; 2^9 = 512 Bytes */ 148 149 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */ 150 0x03, 0x00, /* __le16 idProduct; device 0x0003 */ 151 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */ 152 153 0x03, /* __u8 iManufacturer; */ 154 0x02, /* __u8 iProduct; */ 155 0x01, /* __u8 iSerialNumber; */ 156 0x01 /* __u8 bNumConfigurations; */ 157 }; 158 159 /* usb 2.0 root hub device descriptor */ 160 static const u8 usb2_rh_dev_descriptor[18] = { 161 0x12, /* __u8 bLength; */ 162 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */ 163 0x00, 0x02, /* __le16 bcdUSB; v2.0 */ 164 165 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */ 166 0x00, /* __u8 bDeviceSubClass; */ 167 0x00, /* __u8 bDeviceProtocol; [ usb 2.0 no TT ] */ 168 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */ 169 170 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */ 171 0x02, 0x00, /* __le16 idProduct; device 0x0002 */ 172 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */ 173 174 0x03, /* __u8 iManufacturer; */ 175 0x02, /* __u8 iProduct; */ 176 0x01, /* __u8 iSerialNumber; */ 177 0x01 /* __u8 bNumConfigurations; */ 178 }; 179 180 /* no usb 2.0 root hub "device qualifier" descriptor: one speed only */ 181 182 /* usb 1.1 root hub device descriptor */ 183 static const u8 usb11_rh_dev_descriptor[18] = { 184 0x12, /* __u8 bLength; */ 185 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */ 186 0x10, 0x01, /* __le16 bcdUSB; v1.1 */ 187 188 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */ 189 0x00, /* __u8 bDeviceSubClass; */ 190 0x00, /* __u8 bDeviceProtocol; [ low/full speeds only ] */ 191 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */ 192 193 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */ 194 0x01, 0x00, /* __le16 idProduct; device 0x0001 */ 195 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */ 196 197 0x03, /* __u8 iManufacturer; */ 198 0x02, /* __u8 iProduct; */ 199 0x01, /* __u8 iSerialNumber; */ 200 0x01 /* __u8 bNumConfigurations; */ 201 }; 202 203 204 /*-------------------------------------------------------------------------*/ 205 206 /* Configuration descriptors for our root hubs */ 207 208 static const u8 fs_rh_config_descriptor[] = { 209 210 /* one configuration */ 211 0x09, /* __u8 bLength; */ 212 USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */ 213 0x19, 0x00, /* __le16 wTotalLength; */ 214 0x01, /* __u8 bNumInterfaces; (1) */ 215 0x01, /* __u8 bConfigurationValue; */ 216 0x00, /* __u8 iConfiguration; */ 217 0xc0, /* __u8 bmAttributes; 218 Bit 7: must be set, 219 6: Self-powered, 220 5: Remote wakeup, 221 4..0: resvd */ 222 0x00, /* __u8 MaxPower; */ 223 224 /* USB 1.1: 225 * USB 2.0, single TT organization (mandatory): 226 * one interface, protocol 0 227 * 228 * USB 2.0, multiple TT organization (optional): 229 * two interfaces, protocols 1 (like single TT) 230 * and 2 (multiple TT mode) ... config is 231 * sometimes settable 232 * NOT IMPLEMENTED 233 */ 234 235 /* one interface */ 236 0x09, /* __u8 if_bLength; */ 237 USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */ 238 0x00, /* __u8 if_bInterfaceNumber; */ 239 0x00, /* __u8 if_bAlternateSetting; */ 240 0x01, /* __u8 if_bNumEndpoints; */ 241 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */ 242 0x00, /* __u8 if_bInterfaceSubClass; */ 243 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */ 244 0x00, /* __u8 if_iInterface; */ 245 246 /* one endpoint (status change endpoint) */ 247 0x07, /* __u8 ep_bLength; */ 248 USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */ 249 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */ 250 0x03, /* __u8 ep_bmAttributes; Interrupt */ 251 0x02, 0x00, /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */ 252 0xff /* __u8 ep_bInterval; (255ms -- usb 2.0 spec) */ 253 }; 254 255 static const u8 hs_rh_config_descriptor[] = { 256 257 /* one configuration */ 258 0x09, /* __u8 bLength; */ 259 USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */ 260 0x19, 0x00, /* __le16 wTotalLength; */ 261 0x01, /* __u8 bNumInterfaces; (1) */ 262 0x01, /* __u8 bConfigurationValue; */ 263 0x00, /* __u8 iConfiguration; */ 264 0xc0, /* __u8 bmAttributes; 265 Bit 7: must be set, 266 6: Self-powered, 267 5: Remote wakeup, 268 4..0: resvd */ 269 0x00, /* __u8 MaxPower; */ 270 271 /* USB 1.1: 272 * USB 2.0, single TT organization (mandatory): 273 * one interface, protocol 0 274 * 275 * USB 2.0, multiple TT organization (optional): 276 * two interfaces, protocols 1 (like single TT) 277 * and 2 (multiple TT mode) ... config is 278 * sometimes settable 279 * NOT IMPLEMENTED 280 */ 281 282 /* one interface */ 283 0x09, /* __u8 if_bLength; */ 284 USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */ 285 0x00, /* __u8 if_bInterfaceNumber; */ 286 0x00, /* __u8 if_bAlternateSetting; */ 287 0x01, /* __u8 if_bNumEndpoints; */ 288 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */ 289 0x00, /* __u8 if_bInterfaceSubClass; */ 290 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */ 291 0x00, /* __u8 if_iInterface; */ 292 293 /* one endpoint (status change endpoint) */ 294 0x07, /* __u8 ep_bLength; */ 295 USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */ 296 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */ 297 0x03, /* __u8 ep_bmAttributes; Interrupt */ 298 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) 299 * see hub.c:hub_configure() for details. */ 300 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00, 301 0x0c /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */ 302 }; 303 304 static const u8 ss_rh_config_descriptor[] = { 305 /* one configuration */ 306 0x09, /* __u8 bLength; */ 307 USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */ 308 0x1f, 0x00, /* __le16 wTotalLength; */ 309 0x01, /* __u8 bNumInterfaces; (1) */ 310 0x01, /* __u8 bConfigurationValue; */ 311 0x00, /* __u8 iConfiguration; */ 312 0xc0, /* __u8 bmAttributes; 313 Bit 7: must be set, 314 6: Self-powered, 315 5: Remote wakeup, 316 4..0: resvd */ 317 0x00, /* __u8 MaxPower; */ 318 319 /* one interface */ 320 0x09, /* __u8 if_bLength; */ 321 USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */ 322 0x00, /* __u8 if_bInterfaceNumber; */ 323 0x00, /* __u8 if_bAlternateSetting; */ 324 0x01, /* __u8 if_bNumEndpoints; */ 325 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */ 326 0x00, /* __u8 if_bInterfaceSubClass; */ 327 0x00, /* __u8 if_bInterfaceProtocol; */ 328 0x00, /* __u8 if_iInterface; */ 329 330 /* one endpoint (status change endpoint) */ 331 0x07, /* __u8 ep_bLength; */ 332 USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */ 333 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */ 334 0x03, /* __u8 ep_bmAttributes; Interrupt */ 335 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) 336 * see hub.c:hub_configure() for details. */ 337 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00, 338 0x0c, /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */ 339 340 /* one SuperSpeed endpoint companion descriptor */ 341 0x06, /* __u8 ss_bLength */ 342 USB_DT_SS_ENDPOINT_COMP, /* __u8 ss_bDescriptorType; SuperSpeed EP */ 343 /* Companion */ 344 0x00, /* __u8 ss_bMaxBurst; allows 1 TX between ACKs */ 345 0x00, /* __u8 ss_bmAttributes; 1 packet per service interval */ 346 0x02, 0x00 /* __le16 ss_wBytesPerInterval; 15 bits for max 15 ports */ 347 }; 348 349 /* authorized_default behaviour: 350 * -1 is authorized for all devices (leftover from wireless USB) 351 * 0 is unauthorized for all devices 352 * 1 is authorized for all devices 353 * 2 is authorized for internal devices 354 */ 355 #define USB_AUTHORIZE_WIRED -1 356 #define USB_AUTHORIZE_NONE 0 357 #define USB_AUTHORIZE_ALL 1 358 #define USB_AUTHORIZE_INTERNAL 2 359 360 static int authorized_default = CONFIG_USB_DEFAULT_AUTHORIZATION_MODE; 361 module_param(authorized_default, int, S_IRUGO|S_IWUSR); 362 MODULE_PARM_DESC(authorized_default, 363 "Default USB device authorization: 0 is not authorized, 1 is authorized (default), 2 is authorized for internal devices, -1 is authorized (same as 1)"); 364 /*-------------------------------------------------------------------------*/ 365 366 /** 367 * ascii2desc() - Helper routine for producing UTF-16LE string descriptors 368 * @s: Null-terminated ASCII (actually ISO-8859-1) string 369 * @buf: Buffer for USB string descriptor (header + UTF-16LE) 370 * @len: Length (in bytes; may be odd) of descriptor buffer. 371 * 372 * Return: The number of bytes filled in: 2 + 2*strlen(s) or @len, 373 * whichever is less. 374 * 375 * Note: 376 * USB String descriptors can contain at most 126 characters; input 377 * strings longer than that are truncated. 378 */ 379 static unsigned 380 ascii2desc(char const *s, u8 *buf, unsigned len) 381 { 382 unsigned n, t = 2 + 2*strlen(s); 383 384 if (t > 254) 385 t = 254; /* Longest possible UTF string descriptor */ 386 if (len > t) 387 len = t; 388 389 t += USB_DT_STRING << 8; /* Now t is first 16 bits to store */ 390 391 n = len; 392 while (n--) { 393 *buf++ = t; 394 if (!n--) 395 break; 396 *buf++ = t >> 8; 397 t = (unsigned char)*s++; 398 } 399 return len; 400 } 401 402 /** 403 * rh_string() - provides string descriptors for root hub 404 * @id: the string ID number (0: langids, 1: serial #, 2: product, 3: vendor) 405 * @hcd: the host controller for this root hub 406 * @data: buffer for output packet 407 * @len: length of the provided buffer 408 * 409 * Produces either a manufacturer, product or serial number string for the 410 * virtual root hub device. 411 * 412 * Return: The number of bytes filled in: the length of the descriptor or 413 * of the provided buffer, whichever is less. 414 */ 415 static unsigned 416 rh_string(int id, struct usb_hcd const *hcd, u8 *data, unsigned len) 417 { 418 char buf[100]; 419 char const *s; 420 static char const langids[4] = {4, USB_DT_STRING, 0x09, 0x04}; 421 422 /* language ids */ 423 switch (id) { 424 case 0: 425 /* Array of LANGID codes (0x0409 is MSFT-speak for "en-us") */ 426 /* See http://www.usb.org/developers/docs/USB_LANGIDs.pdf */ 427 if (len > 4) 428 len = 4; 429 memcpy(data, langids, len); 430 return len; 431 case 1: 432 /* Serial number */ 433 s = hcd->self.bus_name; 434 break; 435 case 2: 436 /* Product name */ 437 s = hcd->product_desc; 438 break; 439 case 3: 440 /* Manufacturer */ 441 snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname, 442 init_utsname()->release, hcd->driver->description); 443 s = buf; 444 break; 445 default: 446 /* Can't happen; caller guarantees it */ 447 return 0; 448 } 449 450 return ascii2desc(s, data, len); 451 } 452 453 454 /* Root hub control transfers execute synchronously */ 455 static int rh_call_control (struct usb_hcd *hcd, struct urb *urb) 456 { 457 struct usb_ctrlrequest *cmd; 458 u16 typeReq, wValue, wIndex, wLength; 459 u8 *ubuf = urb->transfer_buffer; 460 unsigned len = 0; 461 int status; 462 u8 patch_wakeup = 0; 463 u8 patch_protocol = 0; 464 u16 tbuf_size; 465 u8 *tbuf = NULL; 466 const u8 *bufp; 467 468 might_sleep(); 469 470 spin_lock_irq(&hcd_root_hub_lock); 471 status = usb_hcd_link_urb_to_ep(hcd, urb); 472 spin_unlock_irq(&hcd_root_hub_lock); 473 if (status) 474 return status; 475 urb->hcpriv = hcd; /* Indicate it's queued */ 476 477 cmd = (struct usb_ctrlrequest *) urb->setup_packet; 478 typeReq = (cmd->bRequestType << 8) | cmd->bRequest; 479 wValue = le16_to_cpu (cmd->wValue); 480 wIndex = le16_to_cpu (cmd->wIndex); 481 wLength = le16_to_cpu (cmd->wLength); 482 483 if (wLength > urb->transfer_buffer_length) 484 goto error; 485 486 /* 487 * tbuf should be at least as big as the 488 * USB hub descriptor. 489 */ 490 tbuf_size = max_t(u16, sizeof(struct usb_hub_descriptor), wLength); 491 tbuf = kzalloc(tbuf_size, GFP_KERNEL); 492 if (!tbuf) { 493 status = -ENOMEM; 494 goto err_alloc; 495 } 496 497 bufp = tbuf; 498 499 500 urb->actual_length = 0; 501 switch (typeReq) { 502 503 /* DEVICE REQUESTS */ 504 505 /* The root hub's remote wakeup enable bit is implemented using 506 * driver model wakeup flags. If this system supports wakeup 507 * through USB, userspace may change the default "allow wakeup" 508 * policy through sysfs or these calls. 509 * 510 * Most root hubs support wakeup from downstream devices, for 511 * runtime power management (disabling USB clocks and reducing 512 * VBUS power usage). However, not all of them do so; silicon, 513 * board, and BIOS bugs here are not uncommon, so these can't 514 * be treated quite like external hubs. 515 * 516 * Likewise, not all root hubs will pass wakeup events upstream, 517 * to wake up the whole system. So don't assume root hub and 518 * controller capabilities are identical. 519 */ 520 521 case DeviceRequest | USB_REQ_GET_STATUS: 522 tbuf[0] = (device_may_wakeup(&hcd->self.root_hub->dev) 523 << USB_DEVICE_REMOTE_WAKEUP) 524 | (1 << USB_DEVICE_SELF_POWERED); 525 tbuf[1] = 0; 526 len = 2; 527 break; 528 case DeviceOutRequest | USB_REQ_CLEAR_FEATURE: 529 if (wValue == USB_DEVICE_REMOTE_WAKEUP) 530 device_set_wakeup_enable(&hcd->self.root_hub->dev, 0); 531 else 532 goto error; 533 break; 534 case DeviceOutRequest | USB_REQ_SET_FEATURE: 535 if (device_can_wakeup(&hcd->self.root_hub->dev) 536 && wValue == USB_DEVICE_REMOTE_WAKEUP) 537 device_set_wakeup_enable(&hcd->self.root_hub->dev, 1); 538 else 539 goto error; 540 break; 541 case DeviceRequest | USB_REQ_GET_CONFIGURATION: 542 tbuf[0] = 1; 543 len = 1; 544 fallthrough; 545 case DeviceOutRequest | USB_REQ_SET_CONFIGURATION: 546 break; 547 case DeviceRequest | USB_REQ_GET_DESCRIPTOR: 548 switch (wValue & 0xff00) { 549 case USB_DT_DEVICE << 8: 550 switch (hcd->speed) { 551 case HCD_USB32: 552 case HCD_USB31: 553 bufp = usb31_rh_dev_descriptor; 554 break; 555 case HCD_USB3: 556 bufp = usb3_rh_dev_descriptor; 557 break; 558 case HCD_USB2: 559 bufp = usb2_rh_dev_descriptor; 560 break; 561 case HCD_USB11: 562 bufp = usb11_rh_dev_descriptor; 563 break; 564 default: 565 goto error; 566 } 567 len = 18; 568 if (hcd->has_tt) 569 patch_protocol = 1; 570 break; 571 case USB_DT_CONFIG << 8: 572 switch (hcd->speed) { 573 case HCD_USB32: 574 case HCD_USB31: 575 case HCD_USB3: 576 bufp = ss_rh_config_descriptor; 577 len = sizeof ss_rh_config_descriptor; 578 break; 579 case HCD_USB2: 580 bufp = hs_rh_config_descriptor; 581 len = sizeof hs_rh_config_descriptor; 582 break; 583 case HCD_USB11: 584 bufp = fs_rh_config_descriptor; 585 len = sizeof fs_rh_config_descriptor; 586 break; 587 default: 588 goto error; 589 } 590 if (device_can_wakeup(&hcd->self.root_hub->dev)) 591 patch_wakeup = 1; 592 break; 593 case USB_DT_STRING << 8: 594 if ((wValue & 0xff) < 4) 595 urb->actual_length = rh_string(wValue & 0xff, 596 hcd, ubuf, wLength); 597 else /* unsupported IDs --> "protocol stall" */ 598 goto error; 599 break; 600 case USB_DT_BOS << 8: 601 goto nongeneric; 602 default: 603 goto error; 604 } 605 break; 606 case DeviceRequest | USB_REQ_GET_INTERFACE: 607 tbuf[0] = 0; 608 len = 1; 609 fallthrough; 610 case DeviceOutRequest | USB_REQ_SET_INTERFACE: 611 break; 612 case DeviceOutRequest | USB_REQ_SET_ADDRESS: 613 /* wValue == urb->dev->devaddr */ 614 dev_dbg (hcd->self.controller, "root hub device address %d\n", 615 wValue); 616 break; 617 618 /* INTERFACE REQUESTS (no defined feature/status flags) */ 619 620 /* ENDPOINT REQUESTS */ 621 622 case EndpointRequest | USB_REQ_GET_STATUS: 623 /* ENDPOINT_HALT flag */ 624 tbuf[0] = 0; 625 tbuf[1] = 0; 626 len = 2; 627 fallthrough; 628 case EndpointOutRequest | USB_REQ_CLEAR_FEATURE: 629 case EndpointOutRequest | USB_REQ_SET_FEATURE: 630 dev_dbg (hcd->self.controller, "no endpoint features yet\n"); 631 break; 632 633 /* CLASS REQUESTS (and errors) */ 634 635 default: 636 nongeneric: 637 /* non-generic request */ 638 switch (typeReq) { 639 case GetHubStatus: 640 len = 4; 641 break; 642 case GetPortStatus: 643 if (wValue == HUB_PORT_STATUS) 644 len = 4; 645 else 646 /* other port status types return 8 bytes */ 647 len = 8; 648 break; 649 case GetHubDescriptor: 650 len = sizeof (struct usb_hub_descriptor); 651 break; 652 case DeviceRequest | USB_REQ_GET_DESCRIPTOR: 653 /* len is returned by hub_control */ 654 break; 655 } 656 status = hcd->driver->hub_control (hcd, 657 typeReq, wValue, wIndex, 658 tbuf, wLength); 659 660 if (typeReq == GetHubDescriptor) 661 usb_hub_adjust_deviceremovable(hcd->self.root_hub, 662 (struct usb_hub_descriptor *)tbuf); 663 break; 664 error: 665 /* "protocol stall" on error */ 666 status = -EPIPE; 667 } 668 669 if (status < 0) { 670 len = 0; 671 if (status != -EPIPE) { 672 dev_dbg (hcd->self.controller, 673 "CTRL: TypeReq=0x%x val=0x%x " 674 "idx=0x%x len=%d ==> %d\n", 675 typeReq, wValue, wIndex, 676 wLength, status); 677 } 678 } else if (status > 0) { 679 /* hub_control may return the length of data copied. */ 680 len = status; 681 status = 0; 682 } 683 if (len) { 684 if (urb->transfer_buffer_length < len) 685 len = urb->transfer_buffer_length; 686 urb->actual_length = len; 687 /* always USB_DIR_IN, toward host */ 688 memcpy (ubuf, bufp, len); 689 690 /* report whether RH hardware supports remote wakeup */ 691 if (patch_wakeup && 692 len > offsetof (struct usb_config_descriptor, 693 bmAttributes)) 694 ((struct usb_config_descriptor *)ubuf)->bmAttributes 695 |= USB_CONFIG_ATT_WAKEUP; 696 697 /* report whether RH hardware has an integrated TT */ 698 if (patch_protocol && 699 len > offsetof(struct usb_device_descriptor, 700 bDeviceProtocol)) 701 ((struct usb_device_descriptor *) ubuf)-> 702 bDeviceProtocol = USB_HUB_PR_HS_SINGLE_TT; 703 } 704 705 kfree(tbuf); 706 err_alloc: 707 708 /* any errors get returned through the urb completion */ 709 spin_lock_irq(&hcd_root_hub_lock); 710 usb_hcd_unlink_urb_from_ep(hcd, urb); 711 usb_hcd_giveback_urb(hcd, urb, status); 712 spin_unlock_irq(&hcd_root_hub_lock); 713 return 0; 714 } 715 716 /*-------------------------------------------------------------------------*/ 717 718 /* 719 * Root Hub interrupt transfers are polled using a timer if the 720 * driver requests it; otherwise the driver is responsible for 721 * calling usb_hcd_poll_rh_status() when an event occurs. 722 * 723 * Completion handler may not sleep. See usb_hcd_giveback_urb() for details. 724 */ 725 void usb_hcd_poll_rh_status(struct usb_hcd *hcd) 726 { 727 struct urb *urb; 728 int length; 729 int status; 730 unsigned long flags; 731 char buffer[6]; /* Any root hubs with > 31 ports? */ 732 733 if (unlikely(!hcd->rh_pollable)) 734 return; 735 if (!hcd->uses_new_polling && !hcd->status_urb) 736 return; 737 738 length = hcd->driver->hub_status_data(hcd, buffer); 739 if (length > 0) { 740 741 /* try to complete the status urb */ 742 spin_lock_irqsave(&hcd_root_hub_lock, flags); 743 urb = hcd->status_urb; 744 if (urb) { 745 clear_bit(HCD_FLAG_POLL_PENDING, &hcd->flags); 746 hcd->status_urb = NULL; 747 if (urb->transfer_buffer_length >= length) { 748 status = 0; 749 } else { 750 status = -EOVERFLOW; 751 length = urb->transfer_buffer_length; 752 } 753 urb->actual_length = length; 754 memcpy(urb->transfer_buffer, buffer, length); 755 756 usb_hcd_unlink_urb_from_ep(hcd, urb); 757 usb_hcd_giveback_urb(hcd, urb, status); 758 } else { 759 length = 0; 760 set_bit(HCD_FLAG_POLL_PENDING, &hcd->flags); 761 } 762 spin_unlock_irqrestore(&hcd_root_hub_lock, flags); 763 } 764 765 /* The USB 2.0 spec says 256 ms. This is close enough and won't 766 * exceed that limit if HZ is 100. The math is more clunky than 767 * maybe expected, this is to make sure that all timers for USB devices 768 * fire at the same time to give the CPU a break in between */ 769 if (hcd->uses_new_polling ? HCD_POLL_RH(hcd) : 770 (length == 0 && hcd->status_urb != NULL)) 771 mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4)); 772 } 773 EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status); 774 775 /* timer callback */ 776 static void rh_timer_func (struct timer_list *t) 777 { 778 struct usb_hcd *_hcd = from_timer(_hcd, t, rh_timer); 779 780 usb_hcd_poll_rh_status(_hcd); 781 } 782 783 /*-------------------------------------------------------------------------*/ 784 785 static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb) 786 { 787 int retval; 788 unsigned long flags; 789 unsigned len = 1 + (urb->dev->maxchild / 8); 790 791 spin_lock_irqsave (&hcd_root_hub_lock, flags); 792 if (hcd->status_urb || urb->transfer_buffer_length < len) { 793 dev_dbg (hcd->self.controller, "not queuing rh status urb\n"); 794 retval = -EINVAL; 795 goto done; 796 } 797 798 retval = usb_hcd_link_urb_to_ep(hcd, urb); 799 if (retval) 800 goto done; 801 802 hcd->status_urb = urb; 803 urb->hcpriv = hcd; /* indicate it's queued */ 804 if (!hcd->uses_new_polling) 805 mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4)); 806 807 /* If a status change has already occurred, report it ASAP */ 808 else if (HCD_POLL_PENDING(hcd)) 809 mod_timer(&hcd->rh_timer, jiffies); 810 retval = 0; 811 done: 812 spin_unlock_irqrestore (&hcd_root_hub_lock, flags); 813 return retval; 814 } 815 816 static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb) 817 { 818 if (usb_endpoint_xfer_int(&urb->ep->desc)) 819 return rh_queue_status (hcd, urb); 820 if (usb_endpoint_xfer_control(&urb->ep->desc)) 821 return rh_call_control (hcd, urb); 822 return -EINVAL; 823 } 824 825 /*-------------------------------------------------------------------------*/ 826 827 /* Unlinks of root-hub control URBs are legal, but they don't do anything 828 * since these URBs always execute synchronously. 829 */ 830 static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status) 831 { 832 unsigned long flags; 833 int rc; 834 835 spin_lock_irqsave(&hcd_root_hub_lock, flags); 836 rc = usb_hcd_check_unlink_urb(hcd, urb, status); 837 if (rc) 838 goto done; 839 840 if (usb_endpoint_num(&urb->ep->desc) == 0) { /* Control URB */ 841 ; /* Do nothing */ 842 843 } else { /* Status URB */ 844 if (!hcd->uses_new_polling) 845 del_timer (&hcd->rh_timer); 846 if (urb == hcd->status_urb) { 847 hcd->status_urb = NULL; 848 usb_hcd_unlink_urb_from_ep(hcd, urb); 849 usb_hcd_giveback_urb(hcd, urb, status); 850 } 851 } 852 done: 853 spin_unlock_irqrestore(&hcd_root_hub_lock, flags); 854 return rc; 855 } 856 857 858 /*-------------------------------------------------------------------------*/ 859 860 /** 861 * usb_bus_init - shared initialization code 862 * @bus: the bus structure being initialized 863 * 864 * This code is used to initialize a usb_bus structure, memory for which is 865 * separately managed. 866 */ 867 static void usb_bus_init (struct usb_bus *bus) 868 { 869 memset(&bus->devmap, 0, sizeof(bus->devmap)); 870 871 bus->devnum_next = 1; 872 873 bus->root_hub = NULL; 874 bus->busnum = -1; 875 bus->bandwidth_allocated = 0; 876 bus->bandwidth_int_reqs = 0; 877 bus->bandwidth_isoc_reqs = 0; 878 mutex_init(&bus->devnum_next_mutex); 879 } 880 881 /*-------------------------------------------------------------------------*/ 882 883 /** 884 * usb_register_bus - registers the USB host controller with the usb core 885 * @bus: pointer to the bus to register 886 * 887 * Context: task context, might sleep. 888 * 889 * Assigns a bus number, and links the controller into usbcore data 890 * structures so that it can be seen by scanning the bus list. 891 * 892 * Return: 0 if successful. A negative error code otherwise. 893 */ 894 static int usb_register_bus(struct usb_bus *bus) 895 { 896 int result = -E2BIG; 897 int busnum; 898 899 mutex_lock(&usb_bus_idr_lock); 900 busnum = idr_alloc(&usb_bus_idr, bus, 1, USB_MAXBUS, GFP_KERNEL); 901 if (busnum < 0) { 902 pr_err("%s: failed to get bus number\n", usbcore_name); 903 goto error_find_busnum; 904 } 905 bus->busnum = busnum; 906 mutex_unlock(&usb_bus_idr_lock); 907 908 usb_notify_add_bus(bus); 909 910 dev_info (bus->controller, "new USB bus registered, assigned bus " 911 "number %d\n", bus->busnum); 912 return 0; 913 914 error_find_busnum: 915 mutex_unlock(&usb_bus_idr_lock); 916 return result; 917 } 918 919 /** 920 * usb_deregister_bus - deregisters the USB host controller 921 * @bus: pointer to the bus to deregister 922 * 923 * Context: task context, might sleep. 924 * 925 * Recycles the bus number, and unlinks the controller from usbcore data 926 * structures so that it won't be seen by scanning the bus list. 927 */ 928 static void usb_deregister_bus (struct usb_bus *bus) 929 { 930 dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum); 931 932 /* 933 * NOTE: make sure that all the devices are removed by the 934 * controller code, as well as having it call this when cleaning 935 * itself up 936 */ 937 mutex_lock(&usb_bus_idr_lock); 938 idr_remove(&usb_bus_idr, bus->busnum); 939 mutex_unlock(&usb_bus_idr_lock); 940 941 usb_notify_remove_bus(bus); 942 } 943 944 /** 945 * register_root_hub - called by usb_add_hcd() to register a root hub 946 * @hcd: host controller for this root hub 947 * 948 * This function registers the root hub with the USB subsystem. It sets up 949 * the device properly in the device tree and then calls usb_new_device() 950 * to register the usb device. It also assigns the root hub's USB address 951 * (always 1). 952 * 953 * Return: 0 if successful. A negative error code otherwise. 954 */ 955 static int register_root_hub(struct usb_hcd *hcd) 956 { 957 struct device *parent_dev = hcd->self.controller; 958 struct usb_device *usb_dev = hcd->self.root_hub; 959 struct usb_device_descriptor *descr; 960 const int devnum = 1; 961 int retval; 962 963 usb_dev->devnum = devnum; 964 usb_dev->bus->devnum_next = devnum + 1; 965 set_bit(devnum, usb_dev->bus->devmap); 966 usb_set_device_state(usb_dev, USB_STATE_ADDRESS); 967 968 mutex_lock(&usb_bus_idr_lock); 969 970 usb_dev->ep0.desc.wMaxPacketSize = cpu_to_le16(64); 971 descr = usb_get_device_descriptor(usb_dev); 972 if (IS_ERR(descr)) { 973 retval = PTR_ERR(descr); 974 mutex_unlock(&usb_bus_idr_lock); 975 dev_dbg (parent_dev, "can't read %s device descriptor %d\n", 976 dev_name(&usb_dev->dev), retval); 977 return retval; 978 } 979 usb_dev->descriptor = *descr; 980 kfree(descr); 981 982 if (le16_to_cpu(usb_dev->descriptor.bcdUSB) >= 0x0201) { 983 retval = usb_get_bos_descriptor(usb_dev); 984 if (!retval) { 985 usb_dev->lpm_capable = usb_device_supports_lpm(usb_dev); 986 } else if (usb_dev->speed >= USB_SPEED_SUPER) { 987 mutex_unlock(&usb_bus_idr_lock); 988 dev_dbg(parent_dev, "can't read %s bos descriptor %d\n", 989 dev_name(&usb_dev->dev), retval); 990 return retval; 991 } 992 } 993 994 retval = usb_new_device (usb_dev); 995 if (retval) { 996 dev_err (parent_dev, "can't register root hub for %s, %d\n", 997 dev_name(&usb_dev->dev), retval); 998 } else { 999 spin_lock_irq (&hcd_root_hub_lock); 1000 hcd->rh_registered = 1; 1001 spin_unlock_irq (&hcd_root_hub_lock); 1002 1003 /* Did the HC die before the root hub was registered? */ 1004 if (HCD_DEAD(hcd)) 1005 usb_hc_died (hcd); /* This time clean up */ 1006 } 1007 mutex_unlock(&usb_bus_idr_lock); 1008 1009 return retval; 1010 } 1011 1012 /* 1013 * usb_hcd_start_port_resume - a root-hub port is sending a resume signal 1014 * @bus: the bus which the root hub belongs to 1015 * @portnum: the port which is being resumed 1016 * 1017 * HCDs should call this function when they know that a resume signal is 1018 * being sent to a root-hub port. The root hub will be prevented from 1019 * going into autosuspend until usb_hcd_end_port_resume() is called. 1020 * 1021 * The bus's private lock must be held by the caller. 1022 */ 1023 void usb_hcd_start_port_resume(struct usb_bus *bus, int portnum) 1024 { 1025 unsigned bit = 1 << portnum; 1026 1027 if (!(bus->resuming_ports & bit)) { 1028 bus->resuming_ports |= bit; 1029 pm_runtime_get_noresume(&bus->root_hub->dev); 1030 } 1031 } 1032 EXPORT_SYMBOL_GPL(usb_hcd_start_port_resume); 1033 1034 /* 1035 * usb_hcd_end_port_resume - a root-hub port has stopped sending a resume signal 1036 * @bus: the bus which the root hub belongs to 1037 * @portnum: the port which is being resumed 1038 * 1039 * HCDs should call this function when they know that a resume signal has 1040 * stopped being sent to a root-hub port. The root hub will be allowed to 1041 * autosuspend again. 1042 * 1043 * The bus's private lock must be held by the caller. 1044 */ 1045 void usb_hcd_end_port_resume(struct usb_bus *bus, int portnum) 1046 { 1047 unsigned bit = 1 << portnum; 1048 1049 if (bus->resuming_ports & bit) { 1050 bus->resuming_ports &= ~bit; 1051 pm_runtime_put_noidle(&bus->root_hub->dev); 1052 } 1053 } 1054 EXPORT_SYMBOL_GPL(usb_hcd_end_port_resume); 1055 1056 /*-------------------------------------------------------------------------*/ 1057 1058 /** 1059 * usb_calc_bus_time - approximate periodic transaction time in nanoseconds 1060 * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH} 1061 * @is_input: true iff the transaction sends data to the host 1062 * @isoc: true for isochronous transactions, false for interrupt ones 1063 * @bytecount: how many bytes in the transaction. 1064 * 1065 * Return: Approximate bus time in nanoseconds for a periodic transaction. 1066 * 1067 * Note: 1068 * See USB 2.0 spec section 5.11.3; only periodic transfers need to be 1069 * scheduled in software, this function is only used for such scheduling. 1070 */ 1071 long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount) 1072 { 1073 unsigned long tmp; 1074 1075 switch (speed) { 1076 case USB_SPEED_LOW: /* INTR only */ 1077 if (is_input) { 1078 tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L; 1079 return 64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp; 1080 } else { 1081 tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L; 1082 return 64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp; 1083 } 1084 case USB_SPEED_FULL: /* ISOC or INTR */ 1085 if (isoc) { 1086 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L; 1087 return ((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp; 1088 } else { 1089 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L; 1090 return 9107L + BW_HOST_DELAY + tmp; 1091 } 1092 case USB_SPEED_HIGH: /* ISOC or INTR */ 1093 /* FIXME adjust for input vs output */ 1094 if (isoc) 1095 tmp = HS_NSECS_ISO (bytecount); 1096 else 1097 tmp = HS_NSECS (bytecount); 1098 return tmp; 1099 default: 1100 pr_debug ("%s: bogus device speed!\n", usbcore_name); 1101 return -1; 1102 } 1103 } 1104 EXPORT_SYMBOL_GPL(usb_calc_bus_time); 1105 1106 1107 /*-------------------------------------------------------------------------*/ 1108 1109 /* 1110 * Generic HC operations. 1111 */ 1112 1113 /*-------------------------------------------------------------------------*/ 1114 1115 /** 1116 * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue 1117 * @hcd: host controller to which @urb was submitted 1118 * @urb: URB being submitted 1119 * 1120 * Host controller drivers should call this routine in their enqueue() 1121 * method. The HCD's private spinlock must be held and interrupts must 1122 * be disabled. The actions carried out here are required for URB 1123 * submission, as well as for endpoint shutdown and for usb_kill_urb. 1124 * 1125 * Return: 0 for no error, otherwise a negative error code (in which case 1126 * the enqueue() method must fail). If no error occurs but enqueue() fails 1127 * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing 1128 * the private spinlock and returning. 1129 */ 1130 int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb) 1131 { 1132 int rc = 0; 1133 1134 spin_lock(&hcd_urb_list_lock); 1135 1136 /* Check that the URB isn't being killed */ 1137 if (unlikely(atomic_read(&urb->reject))) { 1138 rc = -EPERM; 1139 goto done; 1140 } 1141 1142 if (unlikely(!urb->ep->enabled)) { 1143 rc = -ENOENT; 1144 goto done; 1145 } 1146 1147 if (unlikely(!urb->dev->can_submit)) { 1148 rc = -EHOSTUNREACH; 1149 goto done; 1150 } 1151 1152 /* 1153 * Check the host controller's state and add the URB to the 1154 * endpoint's queue. 1155 */ 1156 if (HCD_RH_RUNNING(hcd)) { 1157 urb->unlinked = 0; 1158 list_add_tail(&urb->urb_list, &urb->ep->urb_list); 1159 } else { 1160 rc = -ESHUTDOWN; 1161 goto done; 1162 } 1163 done: 1164 spin_unlock(&hcd_urb_list_lock); 1165 return rc; 1166 } 1167 EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep); 1168 1169 /** 1170 * usb_hcd_check_unlink_urb - check whether an URB may be unlinked 1171 * @hcd: host controller to which @urb was submitted 1172 * @urb: URB being checked for unlinkability 1173 * @status: error code to store in @urb if the unlink succeeds 1174 * 1175 * Host controller drivers should call this routine in their dequeue() 1176 * method. The HCD's private spinlock must be held and interrupts must 1177 * be disabled. The actions carried out here are required for making 1178 * sure than an unlink is valid. 1179 * 1180 * Return: 0 for no error, otherwise a negative error code (in which case 1181 * the dequeue() method must fail). The possible error codes are: 1182 * 1183 * -EIDRM: @urb was not submitted or has already completed. 1184 * The completion function may not have been called yet. 1185 * 1186 * -EBUSY: @urb has already been unlinked. 1187 */ 1188 int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb, 1189 int status) 1190 { 1191 struct list_head *tmp; 1192 1193 /* insist the urb is still queued */ 1194 list_for_each(tmp, &urb->ep->urb_list) { 1195 if (tmp == &urb->urb_list) 1196 break; 1197 } 1198 if (tmp != &urb->urb_list) 1199 return -EIDRM; 1200 1201 /* Any status except -EINPROGRESS means something already started to 1202 * unlink this URB from the hardware. So there's no more work to do. 1203 */ 1204 if (urb->unlinked) 1205 return -EBUSY; 1206 urb->unlinked = status; 1207 return 0; 1208 } 1209 EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb); 1210 1211 /** 1212 * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue 1213 * @hcd: host controller to which @urb was submitted 1214 * @urb: URB being unlinked 1215 * 1216 * Host controller drivers should call this routine before calling 1217 * usb_hcd_giveback_urb(). The HCD's private spinlock must be held and 1218 * interrupts must be disabled. The actions carried out here are required 1219 * for URB completion. 1220 */ 1221 void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb) 1222 { 1223 /* clear all state linking urb to this dev (and hcd) */ 1224 spin_lock(&hcd_urb_list_lock); 1225 list_del_init(&urb->urb_list); 1226 spin_unlock(&hcd_urb_list_lock); 1227 } 1228 EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep); 1229 1230 /* 1231 * Some usb host controllers can only perform dma using a small SRAM area, 1232 * or have restrictions on addressable DRAM. 1233 * The usb core itself is however optimized for host controllers that can dma 1234 * using regular system memory - like pci devices doing bus mastering. 1235 * 1236 * To support host controllers with limited dma capabilities we provide dma 1237 * bounce buffers. This feature can be enabled by initializing 1238 * hcd->localmem_pool using usb_hcd_setup_local_mem(). 1239 * 1240 * The initialized hcd->localmem_pool then tells the usb code to allocate all 1241 * data for dma using the genalloc API. 1242 * 1243 * So, to summarize... 1244 * 1245 * - We need "local" memory, canonical example being 1246 * a small SRAM on a discrete controller being the 1247 * only memory that the controller can read ... 1248 * (a) "normal" kernel memory is no good, and 1249 * (b) there's not enough to share 1250 * 1251 * - So we use that, even though the primary requirement 1252 * is that the memory be "local" (hence addressable 1253 * by that device), not "coherent". 1254 * 1255 */ 1256 1257 static int hcd_alloc_coherent(struct usb_bus *bus, 1258 gfp_t mem_flags, dma_addr_t *dma_handle, 1259 void **vaddr_handle, size_t size, 1260 enum dma_data_direction dir) 1261 { 1262 unsigned char *vaddr; 1263 1264 if (*vaddr_handle == NULL) { 1265 WARN_ON_ONCE(1); 1266 return -EFAULT; 1267 } 1268 1269 vaddr = hcd_buffer_alloc(bus, size + sizeof(unsigned long), 1270 mem_flags, dma_handle); 1271 if (!vaddr) 1272 return -ENOMEM; 1273 1274 /* 1275 * Store the virtual address of the buffer at the end 1276 * of the allocated dma buffer. The size of the buffer 1277 * may be uneven so use unaligned functions instead 1278 * of just rounding up. It makes sense to optimize for 1279 * memory footprint over access speed since the amount 1280 * of memory available for dma may be limited. 1281 */ 1282 put_unaligned((unsigned long)*vaddr_handle, 1283 (unsigned long *)(vaddr + size)); 1284 1285 if (dir == DMA_TO_DEVICE) 1286 memcpy(vaddr, *vaddr_handle, size); 1287 1288 *vaddr_handle = vaddr; 1289 return 0; 1290 } 1291 1292 static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle, 1293 void **vaddr_handle, size_t size, 1294 enum dma_data_direction dir) 1295 { 1296 unsigned char *vaddr = *vaddr_handle; 1297 1298 vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size)); 1299 1300 if (dir == DMA_FROM_DEVICE) 1301 memcpy(vaddr, *vaddr_handle, size); 1302 1303 hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle); 1304 1305 *vaddr_handle = vaddr; 1306 *dma_handle = 0; 1307 } 1308 1309 void usb_hcd_unmap_urb_setup_for_dma(struct usb_hcd *hcd, struct urb *urb) 1310 { 1311 if (IS_ENABLED(CONFIG_HAS_DMA) && 1312 (urb->transfer_flags & URB_SETUP_MAP_SINGLE)) 1313 dma_unmap_single(hcd->self.sysdev, 1314 urb->setup_dma, 1315 sizeof(struct usb_ctrlrequest), 1316 DMA_TO_DEVICE); 1317 else if (urb->transfer_flags & URB_SETUP_MAP_LOCAL) 1318 hcd_free_coherent(urb->dev->bus, 1319 &urb->setup_dma, 1320 (void **) &urb->setup_packet, 1321 sizeof(struct usb_ctrlrequest), 1322 DMA_TO_DEVICE); 1323 1324 /* Make it safe to call this routine more than once */ 1325 urb->transfer_flags &= ~(URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL); 1326 } 1327 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_setup_for_dma); 1328 1329 static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb) 1330 { 1331 if (hcd->driver->unmap_urb_for_dma) 1332 hcd->driver->unmap_urb_for_dma(hcd, urb); 1333 else 1334 usb_hcd_unmap_urb_for_dma(hcd, urb); 1335 } 1336 1337 void usb_hcd_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb) 1338 { 1339 enum dma_data_direction dir; 1340 1341 usb_hcd_unmap_urb_setup_for_dma(hcd, urb); 1342 1343 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE; 1344 if (IS_ENABLED(CONFIG_HAS_DMA) && 1345 (urb->transfer_flags & URB_DMA_MAP_SG)) 1346 dma_unmap_sg(hcd->self.sysdev, 1347 urb->sg, 1348 urb->num_sgs, 1349 dir); 1350 else if (IS_ENABLED(CONFIG_HAS_DMA) && 1351 (urb->transfer_flags & URB_DMA_MAP_PAGE)) 1352 dma_unmap_page(hcd->self.sysdev, 1353 urb->transfer_dma, 1354 urb->transfer_buffer_length, 1355 dir); 1356 else if (IS_ENABLED(CONFIG_HAS_DMA) && 1357 (urb->transfer_flags & URB_DMA_MAP_SINGLE)) 1358 dma_unmap_single(hcd->self.sysdev, 1359 urb->transfer_dma, 1360 urb->transfer_buffer_length, 1361 dir); 1362 else if (urb->transfer_flags & URB_MAP_LOCAL) 1363 hcd_free_coherent(urb->dev->bus, 1364 &urb->transfer_dma, 1365 &urb->transfer_buffer, 1366 urb->transfer_buffer_length, 1367 dir); 1368 1369 /* Make it safe to call this routine more than once */ 1370 urb->transfer_flags &= ~(URB_DMA_MAP_SG | URB_DMA_MAP_PAGE | 1371 URB_DMA_MAP_SINGLE | URB_MAP_LOCAL); 1372 } 1373 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_for_dma); 1374 1375 static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb, 1376 gfp_t mem_flags) 1377 { 1378 if (hcd->driver->map_urb_for_dma) 1379 return hcd->driver->map_urb_for_dma(hcd, urb, mem_flags); 1380 else 1381 return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags); 1382 } 1383 1384 int usb_hcd_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb, 1385 gfp_t mem_flags) 1386 { 1387 enum dma_data_direction dir; 1388 int ret = 0; 1389 1390 /* Map the URB's buffers for DMA access. 1391 * Lower level HCD code should use *_dma exclusively, 1392 * unless it uses pio or talks to another transport, 1393 * or uses the provided scatter gather list for bulk. 1394 */ 1395 1396 if (usb_endpoint_xfer_control(&urb->ep->desc)) { 1397 if (hcd->self.uses_pio_for_control) 1398 return ret; 1399 if (hcd->localmem_pool) { 1400 ret = hcd_alloc_coherent( 1401 urb->dev->bus, mem_flags, 1402 &urb->setup_dma, 1403 (void **)&urb->setup_packet, 1404 sizeof(struct usb_ctrlrequest), 1405 DMA_TO_DEVICE); 1406 if (ret) 1407 return ret; 1408 urb->transfer_flags |= URB_SETUP_MAP_LOCAL; 1409 } else if (hcd_uses_dma(hcd)) { 1410 if (object_is_on_stack(urb->setup_packet)) { 1411 WARN_ONCE(1, "setup packet is on stack\n"); 1412 return -EAGAIN; 1413 } 1414 1415 urb->setup_dma = dma_map_single( 1416 hcd->self.sysdev, 1417 urb->setup_packet, 1418 sizeof(struct usb_ctrlrequest), 1419 DMA_TO_DEVICE); 1420 if (dma_mapping_error(hcd->self.sysdev, 1421 urb->setup_dma)) 1422 return -EAGAIN; 1423 urb->transfer_flags |= URB_SETUP_MAP_SINGLE; 1424 } 1425 } 1426 1427 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE; 1428 if (urb->transfer_buffer_length != 0 1429 && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) { 1430 if (hcd->localmem_pool) { 1431 ret = hcd_alloc_coherent( 1432 urb->dev->bus, mem_flags, 1433 &urb->transfer_dma, 1434 &urb->transfer_buffer, 1435 urb->transfer_buffer_length, 1436 dir); 1437 if (ret == 0) 1438 urb->transfer_flags |= URB_MAP_LOCAL; 1439 } else if (hcd_uses_dma(hcd)) { 1440 if (urb->num_sgs) { 1441 int n; 1442 1443 /* We don't support sg for isoc transfers ! */ 1444 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) { 1445 WARN_ON(1); 1446 return -EINVAL; 1447 } 1448 1449 n = dma_map_sg( 1450 hcd->self.sysdev, 1451 urb->sg, 1452 urb->num_sgs, 1453 dir); 1454 if (!n) 1455 ret = -EAGAIN; 1456 else 1457 urb->transfer_flags |= URB_DMA_MAP_SG; 1458 urb->num_mapped_sgs = n; 1459 if (n != urb->num_sgs) 1460 urb->transfer_flags |= 1461 URB_DMA_SG_COMBINED; 1462 } else if (urb->sg) { 1463 struct scatterlist *sg = urb->sg; 1464 urb->transfer_dma = dma_map_page( 1465 hcd->self.sysdev, 1466 sg_page(sg), 1467 sg->offset, 1468 urb->transfer_buffer_length, 1469 dir); 1470 if (dma_mapping_error(hcd->self.sysdev, 1471 urb->transfer_dma)) 1472 ret = -EAGAIN; 1473 else 1474 urb->transfer_flags |= URB_DMA_MAP_PAGE; 1475 } else if (object_is_on_stack(urb->transfer_buffer)) { 1476 WARN_ONCE(1, "transfer buffer is on stack\n"); 1477 ret = -EAGAIN; 1478 } else { 1479 urb->transfer_dma = dma_map_single( 1480 hcd->self.sysdev, 1481 urb->transfer_buffer, 1482 urb->transfer_buffer_length, 1483 dir); 1484 if (dma_mapping_error(hcd->self.sysdev, 1485 urb->transfer_dma)) 1486 ret = -EAGAIN; 1487 else 1488 urb->transfer_flags |= URB_DMA_MAP_SINGLE; 1489 } 1490 } 1491 if (ret && (urb->transfer_flags & (URB_SETUP_MAP_SINGLE | 1492 URB_SETUP_MAP_LOCAL))) 1493 usb_hcd_unmap_urb_for_dma(hcd, urb); 1494 } 1495 return ret; 1496 } 1497 EXPORT_SYMBOL_GPL(usb_hcd_map_urb_for_dma); 1498 1499 /*-------------------------------------------------------------------------*/ 1500 1501 /* may be called in any context with a valid urb->dev usecount 1502 * caller surrenders "ownership" of urb 1503 * expects usb_submit_urb() to have sanity checked and conditioned all 1504 * inputs in the urb 1505 */ 1506 int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags) 1507 { 1508 int status; 1509 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus); 1510 1511 /* increment urb's reference count as part of giving it to the HCD 1512 * (which will control it). HCD guarantees that it either returns 1513 * an error or calls giveback(), but not both. 1514 */ 1515 usb_get_urb(urb); 1516 atomic_inc(&urb->use_count); 1517 atomic_inc(&urb->dev->urbnum); 1518 usbmon_urb_submit(&hcd->self, urb); 1519 1520 /* NOTE requirements on root-hub callers (usbfs and the hub 1521 * driver, for now): URBs' urb->transfer_buffer must be 1522 * valid and usb_buffer_{sync,unmap}() not be needed, since 1523 * they could clobber root hub response data. Also, control 1524 * URBs must be submitted in process context with interrupts 1525 * enabled. 1526 */ 1527 1528 if (is_root_hub(urb->dev)) { 1529 status = rh_urb_enqueue(hcd, urb); 1530 } else { 1531 status = map_urb_for_dma(hcd, urb, mem_flags); 1532 if (likely(status == 0)) { 1533 status = hcd->driver->urb_enqueue(hcd, urb, mem_flags); 1534 if (unlikely(status)) 1535 unmap_urb_for_dma(hcd, urb); 1536 } 1537 } 1538 1539 if (unlikely(status)) { 1540 usbmon_urb_submit_error(&hcd->self, urb, status); 1541 urb->hcpriv = NULL; 1542 INIT_LIST_HEAD(&urb->urb_list); 1543 atomic_dec(&urb->use_count); 1544 /* 1545 * Order the write of urb->use_count above before the read 1546 * of urb->reject below. Pairs with the memory barriers in 1547 * usb_kill_urb() and usb_poison_urb(). 1548 */ 1549 smp_mb__after_atomic(); 1550 1551 atomic_dec(&urb->dev->urbnum); 1552 if (atomic_read(&urb->reject)) 1553 wake_up(&usb_kill_urb_queue); 1554 usb_put_urb(urb); 1555 } 1556 return status; 1557 } 1558 1559 /*-------------------------------------------------------------------------*/ 1560 1561 /* this makes the hcd giveback() the urb more quickly, by kicking it 1562 * off hardware queues (which may take a while) and returning it as 1563 * soon as practical. we've already set up the urb's return status, 1564 * but we can't know if the callback completed already. 1565 */ 1566 static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status) 1567 { 1568 int value; 1569 1570 if (is_root_hub(urb->dev)) 1571 value = usb_rh_urb_dequeue(hcd, urb, status); 1572 else { 1573 1574 /* The only reason an HCD might fail this call is if 1575 * it has not yet fully queued the urb to begin with. 1576 * Such failures should be harmless. */ 1577 value = hcd->driver->urb_dequeue(hcd, urb, status); 1578 } 1579 return value; 1580 } 1581 1582 /* 1583 * called in any context 1584 * 1585 * caller guarantees urb won't be recycled till both unlink() 1586 * and the urb's completion function return 1587 */ 1588 int usb_hcd_unlink_urb (struct urb *urb, int status) 1589 { 1590 struct usb_hcd *hcd; 1591 struct usb_device *udev = urb->dev; 1592 int retval = -EIDRM; 1593 unsigned long flags; 1594 1595 /* Prevent the device and bus from going away while 1596 * the unlink is carried out. If they are already gone 1597 * then urb->use_count must be 0, since disconnected 1598 * devices can't have any active URBs. 1599 */ 1600 spin_lock_irqsave(&hcd_urb_unlink_lock, flags); 1601 if (atomic_read(&urb->use_count) > 0) { 1602 retval = 0; 1603 usb_get_dev(udev); 1604 } 1605 spin_unlock_irqrestore(&hcd_urb_unlink_lock, flags); 1606 if (retval == 0) { 1607 hcd = bus_to_hcd(urb->dev->bus); 1608 retval = unlink1(hcd, urb, status); 1609 if (retval == 0) 1610 retval = -EINPROGRESS; 1611 else if (retval != -EIDRM && retval != -EBUSY) 1612 dev_dbg(&udev->dev, "hcd_unlink_urb %pK fail %d\n", 1613 urb, retval); 1614 usb_put_dev(udev); 1615 } 1616 return retval; 1617 } 1618 1619 /*-------------------------------------------------------------------------*/ 1620 1621 static void __usb_hcd_giveback_urb(struct urb *urb) 1622 { 1623 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus); 1624 struct usb_anchor *anchor = urb->anchor; 1625 int status = urb->unlinked; 1626 1627 urb->hcpriv = NULL; 1628 if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) && 1629 urb->actual_length < urb->transfer_buffer_length && 1630 !status)) 1631 status = -EREMOTEIO; 1632 1633 unmap_urb_for_dma(hcd, urb); 1634 usbmon_urb_complete(&hcd->self, urb, status); 1635 usb_anchor_suspend_wakeups(anchor); 1636 usb_unanchor_urb(urb); 1637 if (likely(status == 0)) 1638 usb_led_activity(USB_LED_EVENT_HOST); 1639 1640 /* pass ownership to the completion handler */ 1641 urb->status = status; 1642 /* 1643 * This function can be called in task context inside another remote 1644 * coverage collection section, but kcov doesn't support that kind of 1645 * recursion yet. Only collect coverage in softirq context for now. 1646 */ 1647 kcov_remote_start_usb_softirq((u64)urb->dev->bus->busnum); 1648 urb->complete(urb); 1649 kcov_remote_stop_softirq(); 1650 1651 usb_anchor_resume_wakeups(anchor); 1652 atomic_dec(&urb->use_count); 1653 /* 1654 * Order the write of urb->use_count above before the read 1655 * of urb->reject below. Pairs with the memory barriers in 1656 * usb_kill_urb() and usb_poison_urb(). 1657 */ 1658 smp_mb__after_atomic(); 1659 1660 if (unlikely(atomic_read(&urb->reject))) 1661 wake_up(&usb_kill_urb_queue); 1662 usb_put_urb(urb); 1663 } 1664 1665 static void usb_giveback_urb_bh(struct work_struct *work) 1666 { 1667 struct giveback_urb_bh *bh = 1668 container_of(work, struct giveback_urb_bh, bh); 1669 struct list_head local_list; 1670 1671 spin_lock_irq(&bh->lock); 1672 bh->running = true; 1673 list_replace_init(&bh->head, &local_list); 1674 spin_unlock_irq(&bh->lock); 1675 1676 while (!list_empty(&local_list)) { 1677 struct urb *urb; 1678 1679 urb = list_entry(local_list.next, struct urb, urb_list); 1680 list_del_init(&urb->urb_list); 1681 bh->completing_ep = urb->ep; 1682 __usb_hcd_giveback_urb(urb); 1683 bh->completing_ep = NULL; 1684 } 1685 1686 /* 1687 * giveback new URBs next time to prevent this function 1688 * from not exiting for a long time. 1689 */ 1690 spin_lock_irq(&bh->lock); 1691 if (!list_empty(&bh->head)) { 1692 if (bh->high_prio) 1693 queue_work(system_bh_highpri_wq, &bh->bh); 1694 else 1695 queue_work(system_bh_wq, &bh->bh); 1696 } 1697 bh->running = false; 1698 spin_unlock_irq(&bh->lock); 1699 } 1700 1701 /** 1702 * usb_hcd_giveback_urb - return URB from HCD to device driver 1703 * @hcd: host controller returning the URB 1704 * @urb: urb being returned to the USB device driver. 1705 * @status: completion status code for the URB. 1706 * 1707 * Context: atomic. The completion callback is invoked in caller's context. 1708 * For HCDs with HCD_BH flag set, the completion callback is invoked in BH 1709 * context (except for URBs submitted to the root hub which always complete in 1710 * caller's context). 1711 * 1712 * This hands the URB from HCD to its USB device driver, using its 1713 * completion function. The HCD has freed all per-urb resources 1714 * (and is done using urb->hcpriv). It also released all HCD locks; 1715 * the device driver won't cause problems if it frees, modifies, 1716 * or resubmits this URB. 1717 * 1718 * If @urb was unlinked, the value of @status will be overridden by 1719 * @urb->unlinked. Erroneous short transfers are detected in case 1720 * the HCD hasn't checked for them. 1721 */ 1722 void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status) 1723 { 1724 struct giveback_urb_bh *bh; 1725 bool running; 1726 1727 /* pass status to BH via unlinked */ 1728 if (likely(!urb->unlinked)) 1729 urb->unlinked = status; 1730 1731 if (!hcd_giveback_urb_in_bh(hcd) && !is_root_hub(urb->dev)) { 1732 __usb_hcd_giveback_urb(urb); 1733 return; 1734 } 1735 1736 if (usb_pipeisoc(urb->pipe) || usb_pipeint(urb->pipe)) 1737 bh = &hcd->high_prio_bh; 1738 else 1739 bh = &hcd->low_prio_bh; 1740 1741 spin_lock(&bh->lock); 1742 list_add_tail(&urb->urb_list, &bh->head); 1743 running = bh->running; 1744 spin_unlock(&bh->lock); 1745 1746 if (running) 1747 ; 1748 else if (bh->high_prio) 1749 queue_work(system_bh_highpri_wq, &bh->bh); 1750 else 1751 queue_work(system_bh_wq, &bh->bh); 1752 } 1753 EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb); 1754 1755 /*-------------------------------------------------------------------------*/ 1756 1757 /* Cancel all URBs pending on this endpoint and wait for the endpoint's 1758 * queue to drain completely. The caller must first insure that no more 1759 * URBs can be submitted for this endpoint. 1760 */ 1761 void usb_hcd_flush_endpoint(struct usb_device *udev, 1762 struct usb_host_endpoint *ep) 1763 { 1764 struct usb_hcd *hcd; 1765 struct urb *urb; 1766 1767 if (!ep) 1768 return; 1769 might_sleep(); 1770 hcd = bus_to_hcd(udev->bus); 1771 1772 /* No more submits can occur */ 1773 spin_lock_irq(&hcd_urb_list_lock); 1774 rescan: 1775 list_for_each_entry_reverse(urb, &ep->urb_list, urb_list) { 1776 int is_in; 1777 1778 if (urb->unlinked) 1779 continue; 1780 usb_get_urb (urb); 1781 is_in = usb_urb_dir_in(urb); 1782 spin_unlock(&hcd_urb_list_lock); 1783 1784 /* kick hcd */ 1785 unlink1(hcd, urb, -ESHUTDOWN); 1786 dev_dbg (hcd->self.controller, 1787 "shutdown urb %pK ep%d%s-%s\n", 1788 urb, usb_endpoint_num(&ep->desc), 1789 is_in ? "in" : "out", 1790 usb_ep_type_string(usb_endpoint_type(&ep->desc))); 1791 usb_put_urb (urb); 1792 1793 /* list contents may have changed */ 1794 spin_lock(&hcd_urb_list_lock); 1795 goto rescan; 1796 } 1797 spin_unlock_irq(&hcd_urb_list_lock); 1798 1799 /* Wait until the endpoint queue is completely empty */ 1800 while (!list_empty (&ep->urb_list)) { 1801 spin_lock_irq(&hcd_urb_list_lock); 1802 1803 /* The list may have changed while we acquired the spinlock */ 1804 urb = NULL; 1805 if (!list_empty (&ep->urb_list)) { 1806 urb = list_entry (ep->urb_list.prev, struct urb, 1807 urb_list); 1808 usb_get_urb (urb); 1809 } 1810 spin_unlock_irq(&hcd_urb_list_lock); 1811 1812 if (urb) { 1813 usb_kill_urb (urb); 1814 usb_put_urb (urb); 1815 } 1816 } 1817 } 1818 1819 /** 1820 * usb_hcd_alloc_bandwidth - check whether a new bandwidth setting exceeds 1821 * the bus bandwidth 1822 * @udev: target &usb_device 1823 * @new_config: new configuration to install 1824 * @cur_alt: the current alternate interface setting 1825 * @new_alt: alternate interface setting that is being installed 1826 * 1827 * To change configurations, pass in the new configuration in new_config, 1828 * and pass NULL for cur_alt and new_alt. 1829 * 1830 * To reset a device's configuration (put the device in the ADDRESSED state), 1831 * pass in NULL for new_config, cur_alt, and new_alt. 1832 * 1833 * To change alternate interface settings, pass in NULL for new_config, 1834 * pass in the current alternate interface setting in cur_alt, 1835 * and pass in the new alternate interface setting in new_alt. 1836 * 1837 * Return: An error if the requested bandwidth change exceeds the 1838 * bus bandwidth or host controller internal resources. 1839 */ 1840 int usb_hcd_alloc_bandwidth(struct usb_device *udev, 1841 struct usb_host_config *new_config, 1842 struct usb_host_interface *cur_alt, 1843 struct usb_host_interface *new_alt) 1844 { 1845 int num_intfs, i, j; 1846 struct usb_host_interface *alt = NULL; 1847 int ret = 0; 1848 struct usb_hcd *hcd; 1849 struct usb_host_endpoint *ep; 1850 1851 hcd = bus_to_hcd(udev->bus); 1852 if (!hcd->driver->check_bandwidth) 1853 return 0; 1854 1855 /* Configuration is being removed - set configuration 0 */ 1856 if (!new_config && !cur_alt) { 1857 for (i = 1; i < 16; ++i) { 1858 ep = udev->ep_out[i]; 1859 if (ep) 1860 hcd->driver->drop_endpoint(hcd, udev, ep); 1861 ep = udev->ep_in[i]; 1862 if (ep) 1863 hcd->driver->drop_endpoint(hcd, udev, ep); 1864 } 1865 hcd->driver->check_bandwidth(hcd, udev); 1866 return 0; 1867 } 1868 /* Check if the HCD says there's enough bandwidth. Enable all endpoints 1869 * each interface's alt setting 0 and ask the HCD to check the bandwidth 1870 * of the bus. There will always be bandwidth for endpoint 0, so it's 1871 * ok to exclude it. 1872 */ 1873 if (new_config) { 1874 num_intfs = new_config->desc.bNumInterfaces; 1875 /* Remove endpoints (except endpoint 0, which is always on the 1876 * schedule) from the old config from the schedule 1877 */ 1878 for (i = 1; i < 16; ++i) { 1879 ep = udev->ep_out[i]; 1880 if (ep) { 1881 ret = hcd->driver->drop_endpoint(hcd, udev, ep); 1882 if (ret < 0) 1883 goto reset; 1884 } 1885 ep = udev->ep_in[i]; 1886 if (ep) { 1887 ret = hcd->driver->drop_endpoint(hcd, udev, ep); 1888 if (ret < 0) 1889 goto reset; 1890 } 1891 } 1892 for (i = 0; i < num_intfs; ++i) { 1893 struct usb_host_interface *first_alt; 1894 int iface_num; 1895 1896 first_alt = &new_config->intf_cache[i]->altsetting[0]; 1897 iface_num = first_alt->desc.bInterfaceNumber; 1898 /* Set up endpoints for alternate interface setting 0 */ 1899 alt = usb_find_alt_setting(new_config, iface_num, 0); 1900 if (!alt) 1901 /* No alt setting 0? Pick the first setting. */ 1902 alt = first_alt; 1903 1904 for (j = 0; j < alt->desc.bNumEndpoints; j++) { 1905 ret = hcd->driver->add_endpoint(hcd, udev, &alt->endpoint[j]); 1906 if (ret < 0) 1907 goto reset; 1908 } 1909 } 1910 } 1911 if (cur_alt && new_alt) { 1912 struct usb_interface *iface = usb_ifnum_to_if(udev, 1913 cur_alt->desc.bInterfaceNumber); 1914 1915 if (!iface) 1916 return -EINVAL; 1917 if (iface->resetting_device) { 1918 /* 1919 * The USB core just reset the device, so the xHCI host 1920 * and the device will think alt setting 0 is installed. 1921 * However, the USB core will pass in the alternate 1922 * setting installed before the reset as cur_alt. Dig 1923 * out the alternate setting 0 structure, or the first 1924 * alternate setting if a broken device doesn't have alt 1925 * setting 0. 1926 */ 1927 cur_alt = usb_altnum_to_altsetting(iface, 0); 1928 if (!cur_alt) 1929 cur_alt = &iface->altsetting[0]; 1930 } 1931 1932 /* Drop all the endpoints in the current alt setting */ 1933 for (i = 0; i < cur_alt->desc.bNumEndpoints; i++) { 1934 ret = hcd->driver->drop_endpoint(hcd, udev, 1935 &cur_alt->endpoint[i]); 1936 if (ret < 0) 1937 goto reset; 1938 } 1939 /* Add all the endpoints in the new alt setting */ 1940 for (i = 0; i < new_alt->desc.bNumEndpoints; i++) { 1941 ret = hcd->driver->add_endpoint(hcd, udev, 1942 &new_alt->endpoint[i]); 1943 if (ret < 0) 1944 goto reset; 1945 } 1946 } 1947 ret = hcd->driver->check_bandwidth(hcd, udev); 1948 reset: 1949 if (ret < 0) 1950 hcd->driver->reset_bandwidth(hcd, udev); 1951 return ret; 1952 } 1953 1954 /* Disables the endpoint: synchronizes with the hcd to make sure all 1955 * endpoint state is gone from hardware. usb_hcd_flush_endpoint() must 1956 * have been called previously. Use for set_configuration, set_interface, 1957 * driver removal, physical disconnect. 1958 * 1959 * example: a qh stored in ep->hcpriv, holding state related to endpoint 1960 * type, maxpacket size, toggle, halt status, and scheduling. 1961 */ 1962 void usb_hcd_disable_endpoint(struct usb_device *udev, 1963 struct usb_host_endpoint *ep) 1964 { 1965 struct usb_hcd *hcd; 1966 1967 might_sleep(); 1968 hcd = bus_to_hcd(udev->bus); 1969 if (hcd->driver->endpoint_disable) 1970 hcd->driver->endpoint_disable(hcd, ep); 1971 } 1972 1973 /** 1974 * usb_hcd_reset_endpoint - reset host endpoint state 1975 * @udev: USB device. 1976 * @ep: the endpoint to reset. 1977 * 1978 * Resets any host endpoint state such as the toggle bit, sequence 1979 * number and current window. 1980 */ 1981 void usb_hcd_reset_endpoint(struct usb_device *udev, 1982 struct usb_host_endpoint *ep) 1983 { 1984 struct usb_hcd *hcd = bus_to_hcd(udev->bus); 1985 1986 if (hcd->driver->endpoint_reset) 1987 hcd->driver->endpoint_reset(hcd, ep); 1988 else { 1989 int epnum = usb_endpoint_num(&ep->desc); 1990 int is_out = usb_endpoint_dir_out(&ep->desc); 1991 int is_control = usb_endpoint_xfer_control(&ep->desc); 1992 1993 usb_settoggle(udev, epnum, is_out, 0); 1994 if (is_control) 1995 usb_settoggle(udev, epnum, !is_out, 0); 1996 } 1997 } 1998 1999 /** 2000 * usb_alloc_streams - allocate bulk endpoint stream IDs. 2001 * @interface: alternate setting that includes all endpoints. 2002 * @eps: array of endpoints that need streams. 2003 * @num_eps: number of endpoints in the array. 2004 * @num_streams: number of streams to allocate. 2005 * @mem_flags: flags hcd should use to allocate memory. 2006 * 2007 * Sets up a group of bulk endpoints to have @num_streams stream IDs available. 2008 * Drivers may queue multiple transfers to different stream IDs, which may 2009 * complete in a different order than they were queued. 2010 * 2011 * Return: On success, the number of allocated streams. On failure, a negative 2012 * error code. 2013 */ 2014 int usb_alloc_streams(struct usb_interface *interface, 2015 struct usb_host_endpoint **eps, unsigned int num_eps, 2016 unsigned int num_streams, gfp_t mem_flags) 2017 { 2018 struct usb_hcd *hcd; 2019 struct usb_device *dev; 2020 int i, ret; 2021 2022 dev = interface_to_usbdev(interface); 2023 hcd = bus_to_hcd(dev->bus); 2024 if (!hcd->driver->alloc_streams || !hcd->driver->free_streams) 2025 return -EINVAL; 2026 if (dev->speed < USB_SPEED_SUPER) 2027 return -EINVAL; 2028 if (dev->state < USB_STATE_CONFIGURED) 2029 return -ENODEV; 2030 2031 for (i = 0; i < num_eps; i++) { 2032 /* Streams only apply to bulk endpoints. */ 2033 if (!usb_endpoint_xfer_bulk(&eps[i]->desc)) 2034 return -EINVAL; 2035 /* Re-alloc is not allowed */ 2036 if (eps[i]->streams) 2037 return -EINVAL; 2038 } 2039 2040 ret = hcd->driver->alloc_streams(hcd, dev, eps, num_eps, 2041 num_streams, mem_flags); 2042 if (ret < 0) 2043 return ret; 2044 2045 for (i = 0; i < num_eps; i++) 2046 eps[i]->streams = ret; 2047 2048 return ret; 2049 } 2050 EXPORT_SYMBOL_GPL(usb_alloc_streams); 2051 2052 /** 2053 * usb_free_streams - free bulk endpoint stream IDs. 2054 * @interface: alternate setting that includes all endpoints. 2055 * @eps: array of endpoints to remove streams from. 2056 * @num_eps: number of endpoints in the array. 2057 * @mem_flags: flags hcd should use to allocate memory. 2058 * 2059 * Reverts a group of bulk endpoints back to not using stream IDs. 2060 * Can fail if we are given bad arguments, or HCD is broken. 2061 * 2062 * Return: 0 on success. On failure, a negative error code. 2063 */ 2064 int usb_free_streams(struct usb_interface *interface, 2065 struct usb_host_endpoint **eps, unsigned int num_eps, 2066 gfp_t mem_flags) 2067 { 2068 struct usb_hcd *hcd; 2069 struct usb_device *dev; 2070 int i, ret; 2071 2072 dev = interface_to_usbdev(interface); 2073 hcd = bus_to_hcd(dev->bus); 2074 if (dev->speed < USB_SPEED_SUPER) 2075 return -EINVAL; 2076 2077 /* Double-free is not allowed */ 2078 for (i = 0; i < num_eps; i++) 2079 if (!eps[i] || !eps[i]->streams) 2080 return -EINVAL; 2081 2082 ret = hcd->driver->free_streams(hcd, dev, eps, num_eps, mem_flags); 2083 if (ret < 0) 2084 return ret; 2085 2086 for (i = 0; i < num_eps; i++) 2087 eps[i]->streams = 0; 2088 2089 return ret; 2090 } 2091 EXPORT_SYMBOL_GPL(usb_free_streams); 2092 2093 /* Protect against drivers that try to unlink URBs after the device 2094 * is gone, by waiting until all unlinks for @udev are finished. 2095 * Since we don't currently track URBs by device, simply wait until 2096 * nothing is running in the locked region of usb_hcd_unlink_urb(). 2097 */ 2098 void usb_hcd_synchronize_unlinks(struct usb_device *udev) 2099 { 2100 spin_lock_irq(&hcd_urb_unlink_lock); 2101 spin_unlock_irq(&hcd_urb_unlink_lock); 2102 } 2103 2104 /*-------------------------------------------------------------------------*/ 2105 2106 /* called in any context */ 2107 int usb_hcd_get_frame_number (struct usb_device *udev) 2108 { 2109 struct usb_hcd *hcd = bus_to_hcd(udev->bus); 2110 2111 if (!HCD_RH_RUNNING(hcd)) 2112 return -ESHUTDOWN; 2113 return hcd->driver->get_frame_number (hcd); 2114 } 2115 2116 /*-------------------------------------------------------------------------*/ 2117 #ifdef CONFIG_USB_HCD_TEST_MODE 2118 2119 static void usb_ehset_completion(struct urb *urb) 2120 { 2121 struct completion *done = urb->context; 2122 2123 complete(done); 2124 } 2125 /* 2126 * Allocate and initialize a control URB. This request will be used by the 2127 * EHSET SINGLE_STEP_SET_FEATURE test in which the DATA and STATUS stages 2128 * of the GetDescriptor request are sent 15 seconds after the SETUP stage. 2129 * Return NULL if failed. 2130 */ 2131 static struct urb *request_single_step_set_feature_urb( 2132 struct usb_device *udev, 2133 void *dr, 2134 void *buf, 2135 struct completion *done) 2136 { 2137 struct urb *urb; 2138 struct usb_hcd *hcd = bus_to_hcd(udev->bus); 2139 2140 urb = usb_alloc_urb(0, GFP_KERNEL); 2141 if (!urb) 2142 return NULL; 2143 2144 urb->pipe = usb_rcvctrlpipe(udev, 0); 2145 2146 urb->ep = &udev->ep0; 2147 urb->dev = udev; 2148 urb->setup_packet = (void *)dr; 2149 urb->transfer_buffer = buf; 2150 urb->transfer_buffer_length = USB_DT_DEVICE_SIZE; 2151 urb->complete = usb_ehset_completion; 2152 urb->status = -EINPROGRESS; 2153 urb->actual_length = 0; 2154 urb->transfer_flags = URB_DIR_IN; 2155 usb_get_urb(urb); 2156 atomic_inc(&urb->use_count); 2157 atomic_inc(&urb->dev->urbnum); 2158 if (map_urb_for_dma(hcd, urb, GFP_KERNEL)) { 2159 usb_put_urb(urb); 2160 usb_free_urb(urb); 2161 return NULL; 2162 } 2163 2164 urb->context = done; 2165 return urb; 2166 } 2167 2168 int ehset_single_step_set_feature(struct usb_hcd *hcd, int port) 2169 { 2170 int retval = -ENOMEM; 2171 struct usb_ctrlrequest *dr; 2172 struct urb *urb; 2173 struct usb_device *udev; 2174 struct usb_device_descriptor *buf; 2175 DECLARE_COMPLETION_ONSTACK(done); 2176 2177 /* Obtain udev of the rhub's child port */ 2178 udev = usb_hub_find_child(hcd->self.root_hub, port); 2179 if (!udev) { 2180 dev_err(hcd->self.controller, "No device attached to the RootHub\n"); 2181 return -ENODEV; 2182 } 2183 buf = kmalloc(USB_DT_DEVICE_SIZE, GFP_KERNEL); 2184 if (!buf) 2185 return -ENOMEM; 2186 2187 dr = kmalloc(sizeof(struct usb_ctrlrequest), GFP_KERNEL); 2188 if (!dr) { 2189 kfree(buf); 2190 return -ENOMEM; 2191 } 2192 2193 /* Fill Setup packet for GetDescriptor */ 2194 dr->bRequestType = USB_DIR_IN; 2195 dr->bRequest = USB_REQ_GET_DESCRIPTOR; 2196 dr->wValue = cpu_to_le16(USB_DT_DEVICE << 8); 2197 dr->wIndex = 0; 2198 dr->wLength = cpu_to_le16(USB_DT_DEVICE_SIZE); 2199 urb = request_single_step_set_feature_urb(udev, dr, buf, &done); 2200 if (!urb) 2201 goto cleanup; 2202 2203 /* Submit just the SETUP stage */ 2204 retval = hcd->driver->submit_single_step_set_feature(hcd, urb, 1); 2205 if (retval) 2206 goto out1; 2207 if (!wait_for_completion_timeout(&done, msecs_to_jiffies(2000))) { 2208 usb_kill_urb(urb); 2209 retval = -ETIMEDOUT; 2210 dev_err(hcd->self.controller, 2211 "%s SETUP stage timed out on ep0\n", __func__); 2212 goto out1; 2213 } 2214 msleep(15 * 1000); 2215 2216 /* Complete remaining DATA and STATUS stages using the same URB */ 2217 urb->status = -EINPROGRESS; 2218 usb_get_urb(urb); 2219 atomic_inc(&urb->use_count); 2220 atomic_inc(&urb->dev->urbnum); 2221 retval = hcd->driver->submit_single_step_set_feature(hcd, urb, 0); 2222 if (!retval && !wait_for_completion_timeout(&done, 2223 msecs_to_jiffies(2000))) { 2224 usb_kill_urb(urb); 2225 retval = -ETIMEDOUT; 2226 dev_err(hcd->self.controller, 2227 "%s IN stage timed out on ep0\n", __func__); 2228 } 2229 out1: 2230 usb_free_urb(urb); 2231 cleanup: 2232 kfree(dr); 2233 kfree(buf); 2234 return retval; 2235 } 2236 EXPORT_SYMBOL_GPL(ehset_single_step_set_feature); 2237 #endif /* CONFIG_USB_HCD_TEST_MODE */ 2238 2239 /*-------------------------------------------------------------------------*/ 2240 2241 #ifdef CONFIG_PM 2242 2243 int hcd_bus_suspend(struct usb_device *rhdev, pm_message_t msg) 2244 { 2245 struct usb_hcd *hcd = bus_to_hcd(rhdev->bus); 2246 int status; 2247 int old_state = hcd->state; 2248 2249 dev_dbg(&rhdev->dev, "bus %ssuspend, wakeup %d\n", 2250 (PMSG_IS_AUTO(msg) ? "auto-" : ""), 2251 rhdev->do_remote_wakeup); 2252 if (HCD_DEAD(hcd)) { 2253 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "suspend"); 2254 return 0; 2255 } 2256 2257 if (!hcd->driver->bus_suspend) { 2258 status = -ENOENT; 2259 } else { 2260 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2261 hcd->state = HC_STATE_QUIESCING; 2262 status = hcd->driver->bus_suspend(hcd); 2263 } 2264 if (status == 0) { 2265 usb_set_device_state(rhdev, USB_STATE_SUSPENDED); 2266 hcd->state = HC_STATE_SUSPENDED; 2267 2268 if (!PMSG_IS_AUTO(msg)) 2269 usb_phy_roothub_suspend(hcd->self.sysdev, 2270 hcd->phy_roothub); 2271 2272 /* Did we race with a root-hub wakeup event? */ 2273 if (rhdev->do_remote_wakeup) { 2274 char buffer[6]; 2275 2276 status = hcd->driver->hub_status_data(hcd, buffer); 2277 if (status != 0) { 2278 dev_dbg(&rhdev->dev, "suspend raced with wakeup event\n"); 2279 hcd_bus_resume(rhdev, PMSG_AUTO_RESUME); 2280 status = -EBUSY; 2281 } 2282 } 2283 } else { 2284 spin_lock_irq(&hcd_root_hub_lock); 2285 if (!HCD_DEAD(hcd)) { 2286 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2287 hcd->state = old_state; 2288 } 2289 spin_unlock_irq(&hcd_root_hub_lock); 2290 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n", 2291 "suspend", status); 2292 } 2293 return status; 2294 } 2295 2296 int hcd_bus_resume(struct usb_device *rhdev, pm_message_t msg) 2297 { 2298 struct usb_hcd *hcd = bus_to_hcd(rhdev->bus); 2299 int status; 2300 int old_state = hcd->state; 2301 2302 dev_dbg(&rhdev->dev, "usb %sresume\n", 2303 (PMSG_IS_AUTO(msg) ? "auto-" : "")); 2304 if (HCD_DEAD(hcd)) { 2305 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "resume"); 2306 return 0; 2307 } 2308 2309 if (!PMSG_IS_AUTO(msg)) { 2310 status = usb_phy_roothub_resume(hcd->self.sysdev, 2311 hcd->phy_roothub); 2312 if (status) 2313 return status; 2314 } 2315 2316 if (!hcd->driver->bus_resume) 2317 return -ENOENT; 2318 if (HCD_RH_RUNNING(hcd)) 2319 return 0; 2320 2321 hcd->state = HC_STATE_RESUMING; 2322 status = hcd->driver->bus_resume(hcd); 2323 clear_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags); 2324 if (status == 0) 2325 status = usb_phy_roothub_calibrate(hcd->phy_roothub); 2326 2327 if (status == 0) { 2328 struct usb_device *udev; 2329 int port1; 2330 2331 spin_lock_irq(&hcd_root_hub_lock); 2332 if (!HCD_DEAD(hcd)) { 2333 usb_set_device_state(rhdev, rhdev->actconfig 2334 ? USB_STATE_CONFIGURED 2335 : USB_STATE_ADDRESS); 2336 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2337 hcd->state = HC_STATE_RUNNING; 2338 } 2339 spin_unlock_irq(&hcd_root_hub_lock); 2340 2341 /* 2342 * Check whether any of the enabled ports on the root hub are 2343 * unsuspended. If they are then a TRSMRCY delay is needed 2344 * (this is what the USB-2 spec calls a "global resume"). 2345 * Otherwise we can skip the delay. 2346 */ 2347 usb_hub_for_each_child(rhdev, port1, udev) { 2348 if (udev->state != USB_STATE_NOTATTACHED && 2349 !udev->port_is_suspended) { 2350 usleep_range(10000, 11000); /* TRSMRCY */ 2351 break; 2352 } 2353 } 2354 } else { 2355 hcd->state = old_state; 2356 usb_phy_roothub_suspend(hcd->self.sysdev, hcd->phy_roothub); 2357 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n", 2358 "resume", status); 2359 if (status != -ESHUTDOWN) 2360 usb_hc_died(hcd); 2361 } 2362 return status; 2363 } 2364 2365 /* Workqueue routine for root-hub remote wakeup */ 2366 static void hcd_resume_work(struct work_struct *work) 2367 { 2368 struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work); 2369 struct usb_device *udev = hcd->self.root_hub; 2370 2371 usb_remote_wakeup(udev); 2372 } 2373 2374 /** 2375 * usb_hcd_resume_root_hub - called by HCD to resume its root hub 2376 * @hcd: host controller for this root hub 2377 * 2378 * The USB host controller calls this function when its root hub is 2379 * suspended (with the remote wakeup feature enabled) and a remote 2380 * wakeup request is received. The routine submits a workqueue request 2381 * to resume the root hub (that is, manage its downstream ports again). 2382 */ 2383 void usb_hcd_resume_root_hub (struct usb_hcd *hcd) 2384 { 2385 unsigned long flags; 2386 2387 spin_lock_irqsave (&hcd_root_hub_lock, flags); 2388 if (hcd->rh_registered) { 2389 pm_wakeup_event(&hcd->self.root_hub->dev, 0); 2390 set_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags); 2391 queue_work(pm_wq, &hcd->wakeup_work); 2392 } 2393 spin_unlock_irqrestore (&hcd_root_hub_lock, flags); 2394 } 2395 EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub); 2396 2397 #endif /* CONFIG_PM */ 2398 2399 /*-------------------------------------------------------------------------*/ 2400 2401 #ifdef CONFIG_USB_OTG 2402 2403 /** 2404 * usb_bus_start_enum - start immediate enumeration (for OTG) 2405 * @bus: the bus (must use hcd framework) 2406 * @port_num: 1-based number of port; usually bus->otg_port 2407 * Context: atomic 2408 * 2409 * Starts enumeration, with an immediate reset followed later by 2410 * hub_wq identifying and possibly configuring the device. 2411 * This is needed by OTG controller drivers, where it helps meet 2412 * HNP protocol timing requirements for starting a port reset. 2413 * 2414 * Return: 0 if successful. 2415 */ 2416 int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num) 2417 { 2418 struct usb_hcd *hcd; 2419 int status = -EOPNOTSUPP; 2420 2421 /* NOTE: since HNP can't start by grabbing the bus's address0_sem, 2422 * boards with root hubs hooked up to internal devices (instead of 2423 * just the OTG port) may need more attention to resetting... 2424 */ 2425 hcd = bus_to_hcd(bus); 2426 if (port_num && hcd->driver->start_port_reset) 2427 status = hcd->driver->start_port_reset(hcd, port_num); 2428 2429 /* allocate hub_wq shortly after (first) root port reset finishes; 2430 * it may issue others, until at least 50 msecs have passed. 2431 */ 2432 if (status == 0) 2433 mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10)); 2434 return status; 2435 } 2436 EXPORT_SYMBOL_GPL(usb_bus_start_enum); 2437 2438 #endif 2439 2440 /*-------------------------------------------------------------------------*/ 2441 2442 /** 2443 * usb_hcd_irq - hook IRQs to HCD framework (bus glue) 2444 * @irq: the IRQ being raised 2445 * @__hcd: pointer to the HCD whose IRQ is being signaled 2446 * 2447 * If the controller isn't HALTed, calls the driver's irq handler. 2448 * Checks whether the controller is now dead. 2449 * 2450 * Return: %IRQ_HANDLED if the IRQ was handled. %IRQ_NONE otherwise. 2451 */ 2452 irqreturn_t usb_hcd_irq (int irq, void *__hcd) 2453 { 2454 struct usb_hcd *hcd = __hcd; 2455 irqreturn_t rc; 2456 2457 if (unlikely(HCD_DEAD(hcd) || !HCD_HW_ACCESSIBLE(hcd))) 2458 rc = IRQ_NONE; 2459 else if (hcd->driver->irq(hcd) == IRQ_NONE) 2460 rc = IRQ_NONE; 2461 else 2462 rc = IRQ_HANDLED; 2463 2464 return rc; 2465 } 2466 EXPORT_SYMBOL_GPL(usb_hcd_irq); 2467 2468 /*-------------------------------------------------------------------------*/ 2469 2470 /* Workqueue routine for when the root-hub has died. */ 2471 static void hcd_died_work(struct work_struct *work) 2472 { 2473 struct usb_hcd *hcd = container_of(work, struct usb_hcd, died_work); 2474 static char *env[] = { 2475 "ERROR=DEAD", 2476 NULL 2477 }; 2478 2479 /* Notify user space that the host controller has died */ 2480 kobject_uevent_env(&hcd->self.root_hub->dev.kobj, KOBJ_OFFLINE, env); 2481 } 2482 2483 /** 2484 * usb_hc_died - report abnormal shutdown of a host controller (bus glue) 2485 * @hcd: pointer to the HCD representing the controller 2486 * 2487 * This is called by bus glue to report a USB host controller that died 2488 * while operations may still have been pending. It's called automatically 2489 * by the PCI glue, so only glue for non-PCI busses should need to call it. 2490 * 2491 * Only call this function with the primary HCD. 2492 */ 2493 void usb_hc_died (struct usb_hcd *hcd) 2494 { 2495 unsigned long flags; 2496 2497 dev_err (hcd->self.controller, "HC died; cleaning up\n"); 2498 2499 spin_lock_irqsave (&hcd_root_hub_lock, flags); 2500 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2501 set_bit(HCD_FLAG_DEAD, &hcd->flags); 2502 if (hcd->rh_registered) { 2503 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2504 2505 /* make hub_wq clean up old urbs and devices */ 2506 usb_set_device_state (hcd->self.root_hub, 2507 USB_STATE_NOTATTACHED); 2508 usb_kick_hub_wq(hcd->self.root_hub); 2509 } 2510 if (usb_hcd_is_primary_hcd(hcd) && hcd->shared_hcd) { 2511 hcd = hcd->shared_hcd; 2512 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2513 set_bit(HCD_FLAG_DEAD, &hcd->flags); 2514 if (hcd->rh_registered) { 2515 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2516 2517 /* make hub_wq clean up old urbs and devices */ 2518 usb_set_device_state(hcd->self.root_hub, 2519 USB_STATE_NOTATTACHED); 2520 usb_kick_hub_wq(hcd->self.root_hub); 2521 } 2522 } 2523 2524 /* Handle the case where this function gets called with a shared HCD */ 2525 if (usb_hcd_is_primary_hcd(hcd)) 2526 schedule_work(&hcd->died_work); 2527 else 2528 schedule_work(&hcd->primary_hcd->died_work); 2529 2530 spin_unlock_irqrestore (&hcd_root_hub_lock, flags); 2531 /* Make sure that the other roothub is also deallocated. */ 2532 } 2533 EXPORT_SYMBOL_GPL (usb_hc_died); 2534 2535 /*-------------------------------------------------------------------------*/ 2536 2537 static void init_giveback_urb_bh(struct giveback_urb_bh *bh) 2538 { 2539 2540 spin_lock_init(&bh->lock); 2541 INIT_LIST_HEAD(&bh->head); 2542 INIT_WORK(&bh->bh, usb_giveback_urb_bh); 2543 } 2544 2545 struct usb_hcd *__usb_create_hcd(const struct hc_driver *driver, 2546 struct device *sysdev, struct device *dev, const char *bus_name, 2547 struct usb_hcd *primary_hcd) 2548 { 2549 struct usb_hcd *hcd; 2550 2551 hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL); 2552 if (!hcd) 2553 return NULL; 2554 if (primary_hcd == NULL) { 2555 hcd->address0_mutex = kmalloc(sizeof(*hcd->address0_mutex), 2556 GFP_KERNEL); 2557 if (!hcd->address0_mutex) { 2558 kfree(hcd); 2559 dev_dbg(dev, "hcd address0 mutex alloc failed\n"); 2560 return NULL; 2561 } 2562 mutex_init(hcd->address0_mutex); 2563 hcd->bandwidth_mutex = kmalloc(sizeof(*hcd->bandwidth_mutex), 2564 GFP_KERNEL); 2565 if (!hcd->bandwidth_mutex) { 2566 kfree(hcd->address0_mutex); 2567 kfree(hcd); 2568 dev_dbg(dev, "hcd bandwidth mutex alloc failed\n"); 2569 return NULL; 2570 } 2571 mutex_init(hcd->bandwidth_mutex); 2572 dev_set_drvdata(dev, hcd); 2573 } else { 2574 mutex_lock(&usb_port_peer_mutex); 2575 hcd->address0_mutex = primary_hcd->address0_mutex; 2576 hcd->bandwidth_mutex = primary_hcd->bandwidth_mutex; 2577 hcd->primary_hcd = primary_hcd; 2578 primary_hcd->primary_hcd = primary_hcd; 2579 hcd->shared_hcd = primary_hcd; 2580 primary_hcd->shared_hcd = hcd; 2581 mutex_unlock(&usb_port_peer_mutex); 2582 } 2583 2584 kref_init(&hcd->kref); 2585 2586 usb_bus_init(&hcd->self); 2587 hcd->self.controller = dev; 2588 hcd->self.sysdev = sysdev; 2589 hcd->self.bus_name = bus_name; 2590 2591 timer_setup(&hcd->rh_timer, rh_timer_func, 0); 2592 #ifdef CONFIG_PM 2593 INIT_WORK(&hcd->wakeup_work, hcd_resume_work); 2594 #endif 2595 2596 INIT_WORK(&hcd->died_work, hcd_died_work); 2597 2598 hcd->driver = driver; 2599 hcd->speed = driver->flags & HCD_MASK; 2600 hcd->product_desc = (driver->product_desc) ? driver->product_desc : 2601 "USB Host Controller"; 2602 return hcd; 2603 } 2604 EXPORT_SYMBOL_GPL(__usb_create_hcd); 2605 2606 /** 2607 * usb_create_shared_hcd - create and initialize an HCD structure 2608 * @driver: HC driver that will use this hcd 2609 * @dev: device for this HC, stored in hcd->self.controller 2610 * @bus_name: value to store in hcd->self.bus_name 2611 * @primary_hcd: a pointer to the usb_hcd structure that is sharing the 2612 * PCI device. Only allocate certain resources for the primary HCD 2613 * 2614 * Context: task context, might sleep. 2615 * 2616 * Allocate a struct usb_hcd, with extra space at the end for the 2617 * HC driver's private data. Initialize the generic members of the 2618 * hcd structure. 2619 * 2620 * Return: On success, a pointer to the created and initialized HCD structure. 2621 * On failure (e.g. if memory is unavailable), %NULL. 2622 */ 2623 struct usb_hcd *usb_create_shared_hcd(const struct hc_driver *driver, 2624 struct device *dev, const char *bus_name, 2625 struct usb_hcd *primary_hcd) 2626 { 2627 return __usb_create_hcd(driver, dev, dev, bus_name, primary_hcd); 2628 } 2629 EXPORT_SYMBOL_GPL(usb_create_shared_hcd); 2630 2631 /** 2632 * usb_create_hcd - create and initialize an HCD structure 2633 * @driver: HC driver that will use this hcd 2634 * @dev: device for this HC, stored in hcd->self.controller 2635 * @bus_name: value to store in hcd->self.bus_name 2636 * 2637 * Context: task context, might sleep. 2638 * 2639 * Allocate a struct usb_hcd, with extra space at the end for the 2640 * HC driver's private data. Initialize the generic members of the 2641 * hcd structure. 2642 * 2643 * Return: On success, a pointer to the created and initialized HCD 2644 * structure. On failure (e.g. if memory is unavailable), %NULL. 2645 */ 2646 struct usb_hcd *usb_create_hcd(const struct hc_driver *driver, 2647 struct device *dev, const char *bus_name) 2648 { 2649 return __usb_create_hcd(driver, dev, dev, bus_name, NULL); 2650 } 2651 EXPORT_SYMBOL_GPL(usb_create_hcd); 2652 2653 /* 2654 * Roothubs that share one PCI device must also share the bandwidth mutex. 2655 * Don't deallocate the bandwidth_mutex until the last shared usb_hcd is 2656 * deallocated. 2657 * 2658 * Make sure to deallocate the bandwidth_mutex only when the last HCD is 2659 * freed. When hcd_release() is called for either hcd in a peer set, 2660 * invalidate the peer's ->shared_hcd and ->primary_hcd pointers. 2661 */ 2662 static void hcd_release(struct kref *kref) 2663 { 2664 struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref); 2665 2666 mutex_lock(&usb_port_peer_mutex); 2667 if (hcd->shared_hcd) { 2668 struct usb_hcd *peer = hcd->shared_hcd; 2669 2670 peer->shared_hcd = NULL; 2671 peer->primary_hcd = NULL; 2672 } else { 2673 kfree(hcd->address0_mutex); 2674 kfree(hcd->bandwidth_mutex); 2675 } 2676 mutex_unlock(&usb_port_peer_mutex); 2677 kfree(hcd); 2678 } 2679 2680 struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd) 2681 { 2682 if (hcd) 2683 kref_get (&hcd->kref); 2684 return hcd; 2685 } 2686 EXPORT_SYMBOL_GPL(usb_get_hcd); 2687 2688 void usb_put_hcd (struct usb_hcd *hcd) 2689 { 2690 if (hcd) 2691 kref_put (&hcd->kref, hcd_release); 2692 } 2693 EXPORT_SYMBOL_GPL(usb_put_hcd); 2694 2695 int usb_hcd_is_primary_hcd(struct usb_hcd *hcd) 2696 { 2697 if (!hcd->primary_hcd) 2698 return 1; 2699 return hcd == hcd->primary_hcd; 2700 } 2701 EXPORT_SYMBOL_GPL(usb_hcd_is_primary_hcd); 2702 2703 int usb_hcd_find_raw_port_number(struct usb_hcd *hcd, int port1) 2704 { 2705 if (!hcd->driver->find_raw_port_number) 2706 return port1; 2707 2708 return hcd->driver->find_raw_port_number(hcd, port1); 2709 } 2710 2711 static int usb_hcd_request_irqs(struct usb_hcd *hcd, 2712 unsigned int irqnum, unsigned long irqflags) 2713 { 2714 int retval; 2715 2716 if (hcd->driver->irq) { 2717 2718 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d", 2719 hcd->driver->description, hcd->self.busnum); 2720 retval = request_irq(irqnum, &usb_hcd_irq, irqflags, 2721 hcd->irq_descr, hcd); 2722 if (retval != 0) { 2723 dev_err(hcd->self.controller, 2724 "request interrupt %d failed\n", 2725 irqnum); 2726 return retval; 2727 } 2728 hcd->irq = irqnum; 2729 dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum, 2730 (hcd->driver->flags & HCD_MEMORY) ? 2731 "io mem" : "io port", 2732 (unsigned long long)hcd->rsrc_start); 2733 } else { 2734 hcd->irq = 0; 2735 if (hcd->rsrc_start) 2736 dev_info(hcd->self.controller, "%s 0x%08llx\n", 2737 (hcd->driver->flags & HCD_MEMORY) ? 2738 "io mem" : "io port", 2739 (unsigned long long)hcd->rsrc_start); 2740 } 2741 return 0; 2742 } 2743 2744 /* 2745 * Before we free this root hub, flush in-flight peering attempts 2746 * and disable peer lookups 2747 */ 2748 static void usb_put_invalidate_rhdev(struct usb_hcd *hcd) 2749 { 2750 struct usb_device *rhdev; 2751 2752 mutex_lock(&usb_port_peer_mutex); 2753 rhdev = hcd->self.root_hub; 2754 hcd->self.root_hub = NULL; 2755 mutex_unlock(&usb_port_peer_mutex); 2756 usb_put_dev(rhdev); 2757 } 2758 2759 /** 2760 * usb_stop_hcd - Halt the HCD 2761 * @hcd: the usb_hcd that has to be halted 2762 * 2763 * Stop the root-hub polling timer and invoke the HCD's ->stop callback. 2764 */ 2765 static void usb_stop_hcd(struct usb_hcd *hcd) 2766 { 2767 hcd->rh_pollable = 0; 2768 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2769 del_timer_sync(&hcd->rh_timer); 2770 2771 hcd->driver->stop(hcd); 2772 hcd->state = HC_STATE_HALT; 2773 2774 /* In case the HCD restarted the timer, stop it again. */ 2775 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2776 del_timer_sync(&hcd->rh_timer); 2777 } 2778 2779 /** 2780 * usb_add_hcd - finish generic HCD structure initialization and register 2781 * @hcd: the usb_hcd structure to initialize 2782 * @irqnum: Interrupt line to allocate 2783 * @irqflags: Interrupt type flags 2784 * 2785 * Finish the remaining parts of generic HCD initialization: allocate the 2786 * buffers of consistent memory, register the bus, request the IRQ line, 2787 * and call the driver's reset() and start() routines. 2788 */ 2789 int usb_add_hcd(struct usb_hcd *hcd, 2790 unsigned int irqnum, unsigned long irqflags) 2791 { 2792 int retval; 2793 struct usb_device *rhdev; 2794 struct usb_hcd *shared_hcd; 2795 2796 if (!hcd->skip_phy_initialization) { 2797 if (usb_hcd_is_primary_hcd(hcd)) { 2798 hcd->phy_roothub = usb_phy_roothub_alloc(hcd->self.sysdev); 2799 if (IS_ERR(hcd->phy_roothub)) 2800 return PTR_ERR(hcd->phy_roothub); 2801 } else { 2802 hcd->phy_roothub = usb_phy_roothub_alloc_usb3_phy(hcd->self.sysdev); 2803 if (IS_ERR(hcd->phy_roothub)) 2804 return PTR_ERR(hcd->phy_roothub); 2805 } 2806 2807 retval = usb_phy_roothub_init(hcd->phy_roothub); 2808 if (retval) 2809 return retval; 2810 2811 retval = usb_phy_roothub_set_mode(hcd->phy_roothub, 2812 PHY_MODE_USB_HOST_SS); 2813 if (retval) 2814 retval = usb_phy_roothub_set_mode(hcd->phy_roothub, 2815 PHY_MODE_USB_HOST); 2816 if (retval) 2817 goto err_usb_phy_roothub_power_on; 2818 2819 retval = usb_phy_roothub_power_on(hcd->phy_roothub); 2820 if (retval) 2821 goto err_usb_phy_roothub_power_on; 2822 } 2823 2824 dev_info(hcd->self.controller, "%s\n", hcd->product_desc); 2825 2826 switch (authorized_default) { 2827 case USB_AUTHORIZE_NONE: 2828 hcd->dev_policy = USB_DEVICE_AUTHORIZE_NONE; 2829 break; 2830 2831 case USB_AUTHORIZE_INTERNAL: 2832 hcd->dev_policy = USB_DEVICE_AUTHORIZE_INTERNAL; 2833 break; 2834 2835 case USB_AUTHORIZE_ALL: 2836 case USB_AUTHORIZE_WIRED: 2837 default: 2838 hcd->dev_policy = USB_DEVICE_AUTHORIZE_ALL; 2839 break; 2840 } 2841 2842 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 2843 2844 /* per default all interfaces are authorized */ 2845 set_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags); 2846 2847 /* HC is in reset state, but accessible. Now do the one-time init, 2848 * bottom up so that hcds can customize the root hubs before hub_wq 2849 * starts talking to them. (Note, bus id is assigned early too.) 2850 */ 2851 retval = hcd_buffer_create(hcd); 2852 if (retval != 0) { 2853 dev_dbg(hcd->self.sysdev, "pool alloc failed\n"); 2854 goto err_create_buf; 2855 } 2856 2857 retval = usb_register_bus(&hcd->self); 2858 if (retval < 0) 2859 goto err_register_bus; 2860 2861 rhdev = usb_alloc_dev(NULL, &hcd->self, 0); 2862 if (rhdev == NULL) { 2863 dev_err(hcd->self.sysdev, "unable to allocate root hub\n"); 2864 retval = -ENOMEM; 2865 goto err_allocate_root_hub; 2866 } 2867 mutex_lock(&usb_port_peer_mutex); 2868 hcd->self.root_hub = rhdev; 2869 mutex_unlock(&usb_port_peer_mutex); 2870 2871 rhdev->rx_lanes = 1; 2872 rhdev->tx_lanes = 1; 2873 rhdev->ssp_rate = USB_SSP_GEN_UNKNOWN; 2874 2875 switch (hcd->speed) { 2876 case HCD_USB11: 2877 rhdev->speed = USB_SPEED_FULL; 2878 break; 2879 case HCD_USB2: 2880 rhdev->speed = USB_SPEED_HIGH; 2881 break; 2882 case HCD_USB3: 2883 rhdev->speed = USB_SPEED_SUPER; 2884 break; 2885 case HCD_USB32: 2886 rhdev->rx_lanes = 2; 2887 rhdev->tx_lanes = 2; 2888 rhdev->ssp_rate = USB_SSP_GEN_2x2; 2889 rhdev->speed = USB_SPEED_SUPER_PLUS; 2890 break; 2891 case HCD_USB31: 2892 rhdev->ssp_rate = USB_SSP_GEN_2x1; 2893 rhdev->speed = USB_SPEED_SUPER_PLUS; 2894 break; 2895 default: 2896 retval = -EINVAL; 2897 goto err_set_rh_speed; 2898 } 2899 2900 /* wakeup flag init defaults to "everything works" for root hubs, 2901 * but drivers can override it in reset() if needed, along with 2902 * recording the overall controller's system wakeup capability. 2903 */ 2904 device_set_wakeup_capable(&rhdev->dev, 1); 2905 2906 /* HCD_FLAG_RH_RUNNING doesn't matter until the root hub is 2907 * registered. But since the controller can die at any time, 2908 * let's initialize the flag before touching the hardware. 2909 */ 2910 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2911 2912 /* "reset" is misnamed; its role is now one-time init. the controller 2913 * should already have been reset (and boot firmware kicked off etc). 2914 */ 2915 if (hcd->driver->reset) { 2916 retval = hcd->driver->reset(hcd); 2917 if (retval < 0) { 2918 dev_err(hcd->self.controller, "can't setup: %d\n", 2919 retval); 2920 goto err_hcd_driver_setup; 2921 } 2922 } 2923 hcd->rh_pollable = 1; 2924 2925 retval = usb_phy_roothub_calibrate(hcd->phy_roothub); 2926 if (retval) 2927 goto err_hcd_driver_setup; 2928 2929 /* NOTE: root hub and controller capabilities may not be the same */ 2930 if (device_can_wakeup(hcd->self.controller) 2931 && device_can_wakeup(&hcd->self.root_hub->dev)) 2932 dev_dbg(hcd->self.controller, "supports USB remote wakeup\n"); 2933 2934 /* initialize BHs */ 2935 init_giveback_urb_bh(&hcd->high_prio_bh); 2936 hcd->high_prio_bh.high_prio = true; 2937 init_giveback_urb_bh(&hcd->low_prio_bh); 2938 2939 /* enable irqs just before we start the controller, 2940 * if the BIOS provides legacy PCI irqs. 2941 */ 2942 if (usb_hcd_is_primary_hcd(hcd) && irqnum) { 2943 retval = usb_hcd_request_irqs(hcd, irqnum, irqflags); 2944 if (retval) 2945 goto err_request_irq; 2946 } 2947 2948 hcd->state = HC_STATE_RUNNING; 2949 retval = hcd->driver->start(hcd); 2950 if (retval < 0) { 2951 dev_err(hcd->self.controller, "startup error %d\n", retval); 2952 goto err_hcd_driver_start; 2953 } 2954 2955 /* starting here, usbcore will pay attention to the shared HCD roothub */ 2956 shared_hcd = hcd->shared_hcd; 2957 if (!usb_hcd_is_primary_hcd(hcd) && shared_hcd && HCD_DEFER_RH_REGISTER(shared_hcd)) { 2958 retval = register_root_hub(shared_hcd); 2959 if (retval != 0) 2960 goto err_register_root_hub; 2961 2962 if (shared_hcd->uses_new_polling && HCD_POLL_RH(shared_hcd)) 2963 usb_hcd_poll_rh_status(shared_hcd); 2964 } 2965 2966 /* starting here, usbcore will pay attention to this root hub */ 2967 if (!HCD_DEFER_RH_REGISTER(hcd)) { 2968 retval = register_root_hub(hcd); 2969 if (retval != 0) 2970 goto err_register_root_hub; 2971 2972 if (hcd->uses_new_polling && HCD_POLL_RH(hcd)) 2973 usb_hcd_poll_rh_status(hcd); 2974 } 2975 2976 return retval; 2977 2978 err_register_root_hub: 2979 usb_stop_hcd(hcd); 2980 err_hcd_driver_start: 2981 if (usb_hcd_is_primary_hcd(hcd) && hcd->irq > 0) 2982 free_irq(irqnum, hcd); 2983 err_request_irq: 2984 err_hcd_driver_setup: 2985 err_set_rh_speed: 2986 usb_put_invalidate_rhdev(hcd); 2987 err_allocate_root_hub: 2988 usb_deregister_bus(&hcd->self); 2989 err_register_bus: 2990 hcd_buffer_destroy(hcd); 2991 err_create_buf: 2992 usb_phy_roothub_power_off(hcd->phy_roothub); 2993 err_usb_phy_roothub_power_on: 2994 usb_phy_roothub_exit(hcd->phy_roothub); 2995 2996 return retval; 2997 } 2998 EXPORT_SYMBOL_GPL(usb_add_hcd); 2999 3000 /** 3001 * usb_remove_hcd - shutdown processing for generic HCDs 3002 * @hcd: the usb_hcd structure to remove 3003 * 3004 * Context: task context, might sleep. 3005 * 3006 * Disconnects the root hub, then reverses the effects of usb_add_hcd(), 3007 * invoking the HCD's stop() method. 3008 */ 3009 void usb_remove_hcd(struct usb_hcd *hcd) 3010 { 3011 struct usb_device *rhdev; 3012 bool rh_registered; 3013 3014 if (!hcd) { 3015 pr_debug("%s: hcd is NULL\n", __func__); 3016 return; 3017 } 3018 rhdev = hcd->self.root_hub; 3019 3020 dev_info(hcd->self.controller, "remove, state %x\n", hcd->state); 3021 3022 usb_get_dev(rhdev); 3023 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 3024 if (HC_IS_RUNNING (hcd->state)) 3025 hcd->state = HC_STATE_QUIESCING; 3026 3027 dev_dbg(hcd->self.controller, "roothub graceful disconnect\n"); 3028 spin_lock_irq (&hcd_root_hub_lock); 3029 rh_registered = hcd->rh_registered; 3030 hcd->rh_registered = 0; 3031 spin_unlock_irq (&hcd_root_hub_lock); 3032 3033 #ifdef CONFIG_PM 3034 cancel_work_sync(&hcd->wakeup_work); 3035 #endif 3036 cancel_work_sync(&hcd->died_work); 3037 3038 mutex_lock(&usb_bus_idr_lock); 3039 if (rh_registered) 3040 usb_disconnect(&rhdev); /* Sets rhdev to NULL */ 3041 mutex_unlock(&usb_bus_idr_lock); 3042 3043 /* 3044 * flush_work() isn't needed here because: 3045 * - driver's disconnect() called from usb_disconnect() should 3046 * make sure its URBs are completed during the disconnect() 3047 * callback 3048 * 3049 * - it is too late to run complete() here since driver may have 3050 * been removed already now 3051 */ 3052 3053 /* Prevent any more root-hub status calls from the timer. 3054 * The HCD might still restart the timer (if a port status change 3055 * interrupt occurs), but usb_hcd_poll_rh_status() won't invoke 3056 * the hub_status_data() callback. 3057 */ 3058 usb_stop_hcd(hcd); 3059 3060 if (usb_hcd_is_primary_hcd(hcd)) { 3061 if (hcd->irq > 0) 3062 free_irq(hcd->irq, hcd); 3063 } 3064 3065 usb_deregister_bus(&hcd->self); 3066 hcd_buffer_destroy(hcd); 3067 3068 usb_phy_roothub_power_off(hcd->phy_roothub); 3069 usb_phy_roothub_exit(hcd->phy_roothub); 3070 3071 usb_put_invalidate_rhdev(hcd); 3072 hcd->flags = 0; 3073 } 3074 EXPORT_SYMBOL_GPL(usb_remove_hcd); 3075 3076 void 3077 usb_hcd_platform_shutdown(struct platform_device *dev) 3078 { 3079 struct usb_hcd *hcd = platform_get_drvdata(dev); 3080 3081 /* No need for pm_runtime_put(), we're shutting down */ 3082 pm_runtime_get_sync(&dev->dev); 3083 3084 if (hcd->driver->shutdown) 3085 hcd->driver->shutdown(hcd); 3086 } 3087 EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown); 3088 3089 int usb_hcd_setup_local_mem(struct usb_hcd *hcd, phys_addr_t phys_addr, 3090 dma_addr_t dma, size_t size) 3091 { 3092 int err; 3093 void *local_mem; 3094 3095 hcd->localmem_pool = devm_gen_pool_create(hcd->self.sysdev, 4, 3096 dev_to_node(hcd->self.sysdev), 3097 dev_name(hcd->self.sysdev)); 3098 if (IS_ERR(hcd->localmem_pool)) 3099 return PTR_ERR(hcd->localmem_pool); 3100 3101 /* 3102 * if a physical SRAM address was passed, map it, otherwise 3103 * allocate system memory as a buffer. 3104 */ 3105 if (phys_addr) 3106 local_mem = devm_memremap(hcd->self.sysdev, phys_addr, 3107 size, MEMREMAP_WC); 3108 else 3109 local_mem = dmam_alloc_attrs(hcd->self.sysdev, size, &dma, 3110 GFP_KERNEL, 3111 DMA_ATTR_WRITE_COMBINE); 3112 3113 if (IS_ERR_OR_NULL(local_mem)) { 3114 if (!local_mem) 3115 return -ENOMEM; 3116 3117 return PTR_ERR(local_mem); 3118 } 3119 3120 /* 3121 * Here we pass a dma_addr_t but the arg type is a phys_addr_t. 3122 * It's not backed by system memory and thus there's no kernel mapping 3123 * for it. 3124 */ 3125 err = gen_pool_add_virt(hcd->localmem_pool, (unsigned long)local_mem, 3126 dma, size, dev_to_node(hcd->self.sysdev)); 3127 if (err < 0) { 3128 dev_err(hcd->self.sysdev, "gen_pool_add_virt failed with %d\n", 3129 err); 3130 return err; 3131 } 3132 3133 return 0; 3134 } 3135 EXPORT_SYMBOL_GPL(usb_hcd_setup_local_mem); 3136 3137 /*-------------------------------------------------------------------------*/ 3138 3139 #if IS_ENABLED(CONFIG_USB_MON) 3140 3141 const struct usb_mon_operations *mon_ops; 3142 3143 /* 3144 * The registration is unlocked. 3145 * We do it this way because we do not want to lock in hot paths. 3146 * 3147 * Notice that the code is minimally error-proof. Because usbmon needs 3148 * symbols from usbcore, usbcore gets referenced and cannot be unloaded first. 3149 */ 3150 3151 int usb_mon_register(const struct usb_mon_operations *ops) 3152 { 3153 3154 if (mon_ops) 3155 return -EBUSY; 3156 3157 mon_ops = ops; 3158 mb(); 3159 return 0; 3160 } 3161 EXPORT_SYMBOL_GPL (usb_mon_register); 3162 3163 void usb_mon_deregister (void) 3164 { 3165 3166 if (mon_ops == NULL) { 3167 printk(KERN_ERR "USB: monitor was not registered\n"); 3168 return; 3169 } 3170 mon_ops = NULL; 3171 mb(); 3172 } 3173 EXPORT_SYMBOL_GPL (usb_mon_deregister); 3174 3175 #endif /* CONFIG_USB_MON || CONFIG_USB_MON_MODULE */ 3176