xref: /linux/drivers/usb/core/hcd.c (revision 23b0f90ba871f096474e1c27c3d14f455189d2d9)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * (C) Copyright Linus Torvalds 1999
4  * (C) Copyright Johannes Erdfelt 1999-2001
5  * (C) Copyright Andreas Gal 1999
6  * (C) Copyright Gregory P. Smith 1999
7  * (C) Copyright Deti Fliegl 1999
8  * (C) Copyright Randy Dunlap 2000
9  * (C) Copyright David Brownell 2000-2002
10  */
11 
12 #include <linux/bcd.h>
13 #include <linux/module.h>
14 #include <linux/version.h>
15 #include <linux/kernel.h>
16 #include <linux/sched/task_stack.h>
17 #include <linux/slab.h>
18 #include <linux/completion.h>
19 #include <linux/utsname.h>
20 #include <linux/mm.h>
21 #include <asm/io.h>
22 #include <linux/device.h>
23 #include <linux/dma-mapping.h>
24 #include <linux/mutex.h>
25 #include <asm/irq.h>
26 #include <asm/byteorder.h>
27 #include <linux/unaligned.h>
28 #include <linux/platform_device.h>
29 #include <linux/workqueue.h>
30 #include <linux/pm_runtime.h>
31 #include <linux/types.h>
32 #include <linux/genalloc.h>
33 #include <linux/io.h>
34 #include <linux/kcov.h>
35 
36 #include <linux/phy/phy.h>
37 #include <linux/usb.h>
38 #include <linux/usb/hcd.h>
39 #include <linux/usb/otg.h>
40 
41 #include "usb.h"
42 #include "phy.h"
43 
44 
45 /*-------------------------------------------------------------------------*/
46 
47 /*
48  * USB Host Controller Driver framework
49  *
50  * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing
51  * HCD-specific behaviors/bugs.
52  *
53  * This does error checks, tracks devices and urbs, and delegates to a
54  * "hc_driver" only for code (and data) that really needs to know about
55  * hardware differences.  That includes root hub registers, i/o queues,
56  * and so on ... but as little else as possible.
57  *
58  * Shared code includes most of the "root hub" code (these are emulated,
59  * though each HC's hardware works differently) and PCI glue, plus request
60  * tracking overhead.  The HCD code should only block on spinlocks or on
61  * hardware handshaking; blocking on software events (such as other kernel
62  * threads releasing resources, or completing actions) is all generic.
63  *
64  * Happens the USB 2.0 spec says this would be invisible inside the "USBD",
65  * and includes mostly a "HCDI" (HCD Interface) along with some APIs used
66  * only by the hub driver ... and that neither should be seen or used by
67  * usb client device drivers.
68  *
69  * Contributors of ideas or unattributed patches include: David Brownell,
70  * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ...
71  *
72  * HISTORY:
73  * 2002-02-21	Pull in most of the usb_bus support from usb.c; some
74  *		associated cleanup.  "usb_hcd" still != "usb_bus".
75  * 2001-12-12	Initial patch version for Linux 2.5.1 kernel.
76  */
77 
78 /*-------------------------------------------------------------------------*/
79 
80 /* host controllers we manage */
81 DEFINE_IDR (usb_bus_idr);
82 EXPORT_SYMBOL_GPL (usb_bus_idr);
83 
84 /* used when allocating bus numbers */
85 #define USB_MAXBUS		64
86 
87 /* used when updating list of hcds */
88 DEFINE_MUTEX(usb_bus_idr_lock);	/* exported only for usbfs */
89 EXPORT_SYMBOL_GPL (usb_bus_idr_lock);
90 
91 /* used for controlling access to virtual root hubs */
92 static DEFINE_SPINLOCK(hcd_root_hub_lock);
93 
94 /* used when updating an endpoint's URB list */
95 static DEFINE_SPINLOCK(hcd_urb_list_lock);
96 
97 /* used to protect against unlinking URBs after the device is gone */
98 static DEFINE_SPINLOCK(hcd_urb_unlink_lock);
99 
100 /* wait queue for synchronous unlinks */
101 DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue);
102 
103 /*-------------------------------------------------------------------------*/
104 
105 /*
106  * Sharable chunks of root hub code.
107  */
108 
109 /*-------------------------------------------------------------------------*/
110 #define KERNEL_REL	bin2bcd(LINUX_VERSION_MAJOR)
111 #define KERNEL_VER	bin2bcd(LINUX_VERSION_PATCHLEVEL)
112 
113 /* usb 3.1 root hub device descriptor */
114 static const u8 usb31_rh_dev_descriptor[18] = {
115 	0x12,       /*  __u8  bLength; */
116 	USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
117 	0x10, 0x03, /*  __le16 bcdUSB; v3.1 */
118 
119 	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */
120 	0x00,	    /*  __u8  bDeviceSubClass; */
121 	0x03,       /*  __u8  bDeviceProtocol; USB 3 hub */
122 	0x09,       /*  __u8  bMaxPacketSize0; 2^9 = 512 Bytes */
123 
124 	0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
125 	0x03, 0x00, /*  __le16 idProduct; device 0x0003 */
126 	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
127 
128 	0x03,       /*  __u8  iManufacturer; */
129 	0x02,       /*  __u8  iProduct; */
130 	0x01,       /*  __u8  iSerialNumber; */
131 	0x01        /*  __u8  bNumConfigurations; */
132 };
133 
134 /* usb 3.0 root hub device descriptor */
135 static const u8 usb3_rh_dev_descriptor[18] = {
136 	0x12,       /*  __u8  bLength; */
137 	USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
138 	0x00, 0x03, /*  __le16 bcdUSB; v3.0 */
139 
140 	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */
141 	0x00,	    /*  __u8  bDeviceSubClass; */
142 	0x03,       /*  __u8  bDeviceProtocol; USB 3.0 hub */
143 	0x09,       /*  __u8  bMaxPacketSize0; 2^9 = 512 Bytes */
144 
145 	0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
146 	0x03, 0x00, /*  __le16 idProduct; device 0x0003 */
147 	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
148 
149 	0x03,       /*  __u8  iManufacturer; */
150 	0x02,       /*  __u8  iProduct; */
151 	0x01,       /*  __u8  iSerialNumber; */
152 	0x01        /*  __u8  bNumConfigurations; */
153 };
154 
155 /* usb 2.0 root hub device descriptor */
156 static const u8 usb2_rh_dev_descriptor[18] = {
157 	0x12,       /*  __u8  bLength; */
158 	USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
159 	0x00, 0x02, /*  __le16 bcdUSB; v2.0 */
160 
161 	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */
162 	0x00,	    /*  __u8  bDeviceSubClass; */
163 	0x00,       /*  __u8  bDeviceProtocol; [ usb 2.0 no TT ] */
164 	0x40,       /*  __u8  bMaxPacketSize0; 64 Bytes */
165 
166 	0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
167 	0x02, 0x00, /*  __le16 idProduct; device 0x0002 */
168 	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
169 
170 	0x03,       /*  __u8  iManufacturer; */
171 	0x02,       /*  __u8  iProduct; */
172 	0x01,       /*  __u8  iSerialNumber; */
173 	0x01        /*  __u8  bNumConfigurations; */
174 };
175 
176 /* no usb 2.0 root hub "device qualifier" descriptor: one speed only */
177 
178 /* usb 1.1 root hub device descriptor */
179 static const u8 usb11_rh_dev_descriptor[18] = {
180 	0x12,       /*  __u8  bLength; */
181 	USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
182 	0x10, 0x01, /*  __le16 bcdUSB; v1.1 */
183 
184 	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */
185 	0x00,	    /*  __u8  bDeviceSubClass; */
186 	0x00,       /*  __u8  bDeviceProtocol; [ low/full speeds only ] */
187 	0x40,       /*  __u8  bMaxPacketSize0; 64 Bytes */
188 
189 	0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
190 	0x01, 0x00, /*  __le16 idProduct; device 0x0001 */
191 	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
192 
193 	0x03,       /*  __u8  iManufacturer; */
194 	0x02,       /*  __u8  iProduct; */
195 	0x01,       /*  __u8  iSerialNumber; */
196 	0x01        /*  __u8  bNumConfigurations; */
197 };
198 
199 
200 /*-------------------------------------------------------------------------*/
201 
202 /* Configuration descriptors for our root hubs */
203 
204 static const u8 fs_rh_config_descriptor[] = {
205 
206 	/* one configuration */
207 	0x09,       /*  __u8  bLength; */
208 	USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
209 	0x19, 0x00, /*  __le16 wTotalLength; */
210 	0x01,       /*  __u8  bNumInterfaces; (1) */
211 	0x01,       /*  __u8  bConfigurationValue; */
212 	0x00,       /*  __u8  iConfiguration; */
213 	0xc0,       /*  __u8  bmAttributes;
214 				 Bit 7: must be set,
215 				     6: Self-powered,
216 				     5: Remote wakeup,
217 				     4..0: resvd */
218 	0x00,       /*  __u8  MaxPower; */
219 
220 	/* USB 1.1:
221 	 * USB 2.0, single TT organization (mandatory):
222 	 *	one interface, protocol 0
223 	 *
224 	 * USB 2.0, multiple TT organization (optional):
225 	 *	two interfaces, protocols 1 (like single TT)
226 	 *	and 2 (multiple TT mode) ... config is
227 	 *	sometimes settable
228 	 *	NOT IMPLEMENTED
229 	 */
230 
231 	/* one interface */
232 	0x09,       /*  __u8  if_bLength; */
233 	USB_DT_INTERFACE,  /* __u8 if_bDescriptorType; Interface */
234 	0x00,       /*  __u8  if_bInterfaceNumber; */
235 	0x00,       /*  __u8  if_bAlternateSetting; */
236 	0x01,       /*  __u8  if_bNumEndpoints; */
237 	0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
238 	0x00,       /*  __u8  if_bInterfaceSubClass; */
239 	0x00,       /*  __u8  if_bInterfaceProtocol; [usb1.1 or single tt] */
240 	0x00,       /*  __u8  if_iInterface; */
241 
242 	/* one endpoint (status change endpoint) */
243 	0x07,       /*  __u8  ep_bLength; */
244 	USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
245 	0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
246 	0x03,       /*  __u8  ep_bmAttributes; Interrupt */
247 	0x02, 0x00, /*  __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */
248 	0xff        /*  __u8  ep_bInterval; (255ms -- usb 2.0 spec) */
249 };
250 
251 static const u8 hs_rh_config_descriptor[] = {
252 
253 	/* one configuration */
254 	0x09,       /*  __u8  bLength; */
255 	USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
256 	0x19, 0x00, /*  __le16 wTotalLength; */
257 	0x01,       /*  __u8  bNumInterfaces; (1) */
258 	0x01,       /*  __u8  bConfigurationValue; */
259 	0x00,       /*  __u8  iConfiguration; */
260 	0xc0,       /*  __u8  bmAttributes;
261 				 Bit 7: must be set,
262 				     6: Self-powered,
263 				     5: Remote wakeup,
264 				     4..0: resvd */
265 	0x00,       /*  __u8  MaxPower; */
266 
267 	/* USB 1.1:
268 	 * USB 2.0, single TT organization (mandatory):
269 	 *	one interface, protocol 0
270 	 *
271 	 * USB 2.0, multiple TT organization (optional):
272 	 *	two interfaces, protocols 1 (like single TT)
273 	 *	and 2 (multiple TT mode) ... config is
274 	 *	sometimes settable
275 	 *	NOT IMPLEMENTED
276 	 */
277 
278 	/* one interface */
279 	0x09,       /*  __u8  if_bLength; */
280 	USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
281 	0x00,       /*  __u8  if_bInterfaceNumber; */
282 	0x00,       /*  __u8  if_bAlternateSetting; */
283 	0x01,       /*  __u8  if_bNumEndpoints; */
284 	0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
285 	0x00,       /*  __u8  if_bInterfaceSubClass; */
286 	0x00,       /*  __u8  if_bInterfaceProtocol; [usb1.1 or single tt] */
287 	0x00,       /*  __u8  if_iInterface; */
288 
289 	/* one endpoint (status change endpoint) */
290 	0x07,       /*  __u8  ep_bLength; */
291 	USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
292 	0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
293 	0x03,       /*  __u8  ep_bmAttributes; Interrupt */
294 		    /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
295 		     * see hub.c:hub_configure() for details. */
296 	(USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
297 	0x0c        /*  __u8  ep_bInterval; (256ms -- usb 2.0 spec) */
298 };
299 
300 static const u8 ss_rh_config_descriptor[] = {
301 	/* one configuration */
302 	0x09,       /*  __u8  bLength; */
303 	USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
304 	0x1f, 0x00, /*  __le16 wTotalLength; */
305 	0x01,       /*  __u8  bNumInterfaces; (1) */
306 	0x01,       /*  __u8  bConfigurationValue; */
307 	0x00,       /*  __u8  iConfiguration; */
308 	0xc0,       /*  __u8  bmAttributes;
309 				 Bit 7: must be set,
310 				     6: Self-powered,
311 				     5: Remote wakeup,
312 				     4..0: resvd */
313 	0x00,       /*  __u8  MaxPower; */
314 
315 	/* one interface */
316 	0x09,       /*  __u8  if_bLength; */
317 	USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
318 	0x00,       /*  __u8  if_bInterfaceNumber; */
319 	0x00,       /*  __u8  if_bAlternateSetting; */
320 	0x01,       /*  __u8  if_bNumEndpoints; */
321 	0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
322 	0x00,       /*  __u8  if_bInterfaceSubClass; */
323 	0x00,       /*  __u8  if_bInterfaceProtocol; */
324 	0x00,       /*  __u8  if_iInterface; */
325 
326 	/* one endpoint (status change endpoint) */
327 	0x07,       /*  __u8  ep_bLength; */
328 	USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
329 	0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
330 	0x03,       /*  __u8  ep_bmAttributes; Interrupt */
331 		    /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
332 		     * see hub.c:hub_configure() for details. */
333 	(USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
334 	0x0c,       /*  __u8  ep_bInterval; (256ms -- usb 2.0 spec) */
335 
336 	/* one SuperSpeed endpoint companion descriptor */
337 	0x06,        /* __u8 ss_bLength */
338 	USB_DT_SS_ENDPOINT_COMP, /* __u8 ss_bDescriptorType; SuperSpeed EP */
339 		     /* Companion */
340 	0x00,        /* __u8 ss_bMaxBurst; allows 1 TX between ACKs */
341 	0x00,        /* __u8 ss_bmAttributes; 1 packet per service interval */
342 	0x02, 0x00   /* __le16 ss_wBytesPerInterval; 15 bits for max 15 ports */
343 };
344 
345 /* authorized_default behaviour:
346  * -1 is authorized for all devices (leftover from wireless USB)
347  * 0 is unauthorized for all devices
348  * 1 is authorized for all devices
349  * 2 is authorized for internal devices
350  */
351 #define USB_AUTHORIZE_WIRED	-1
352 #define USB_AUTHORIZE_NONE	0
353 #define USB_AUTHORIZE_ALL	1
354 #define USB_AUTHORIZE_INTERNAL	2
355 
356 static int authorized_default = CONFIG_USB_DEFAULT_AUTHORIZATION_MODE;
357 module_param(authorized_default, int, S_IRUGO|S_IWUSR);
358 MODULE_PARM_DESC(authorized_default,
359 		"Default USB device authorization: 0 is not authorized, 1 is authorized (default), 2 is authorized for internal devices, -1 is authorized (same as 1)");
360 /*-------------------------------------------------------------------------*/
361 
362 /**
363  * ascii2desc() - Helper routine for producing UTF-16LE string descriptors
364  * @s: Null-terminated ASCII (actually ISO-8859-1) string
365  * @buf: Buffer for USB string descriptor (header + UTF-16LE)
366  * @len: Length (in bytes; may be odd) of descriptor buffer.
367  *
368  * Return: The number of bytes filled in: 2 + 2*strlen(s) or @len,
369  * whichever is less.
370  *
371  * Note:
372  * USB String descriptors can contain at most 126 characters; input
373  * strings longer than that are truncated.
374  */
375 static unsigned
376 ascii2desc(char const *s, u8 *buf, unsigned len)
377 {
378 	unsigned n, t = 2 + 2*strlen(s);
379 
380 	if (t > 254)
381 		t = 254;	/* Longest possible UTF string descriptor */
382 	if (len > t)
383 		len = t;
384 
385 	t += USB_DT_STRING << 8;	/* Now t is first 16 bits to store */
386 
387 	n = len;
388 	while (n--) {
389 		*buf++ = t;
390 		if (!n--)
391 			break;
392 		*buf++ = t >> 8;
393 		t = (unsigned char)*s++;
394 	}
395 	return len;
396 }
397 
398 /**
399  * rh_string() - provides string descriptors for root hub
400  * @id: the string ID number (0: langids, 1: serial #, 2: product, 3: vendor)
401  * @hcd: the host controller for this root hub
402  * @data: buffer for output packet
403  * @len: length of the provided buffer
404  *
405  * Produces either a manufacturer, product or serial number string for the
406  * virtual root hub device.
407  *
408  * Return: The number of bytes filled in: the length of the descriptor or
409  * of the provided buffer, whichever is less.
410  */
411 static unsigned
412 rh_string(int id, struct usb_hcd const *hcd, u8 *data, unsigned len)
413 {
414 	char buf[160];
415 	char const *s;
416 	static char const langids[4] = {4, USB_DT_STRING, 0x09, 0x04};
417 
418 	/* language ids */
419 	switch (id) {
420 	case 0:
421 		/* Array of LANGID codes (0x0409 is MSFT-speak for "en-us") */
422 		/* See http://www.usb.org/developers/docs/USB_LANGIDs.pdf */
423 		if (len > 4)
424 			len = 4;
425 		memcpy(data, langids, len);
426 		return len;
427 	case 1:
428 		/* Serial number */
429 		s = hcd->self.bus_name;
430 		break;
431 	case 2:
432 		/* Product name */
433 		s = hcd->product_desc;
434 		break;
435 	case 3:
436 		/* Manufacturer */
437 		snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname,
438 			init_utsname()->release, hcd->driver->description);
439 		s = buf;
440 		break;
441 	default:
442 		/* Can't happen; caller guarantees it */
443 		return 0;
444 	}
445 
446 	return ascii2desc(s, data, len);
447 }
448 
449 
450 /* Root hub control transfers execute synchronously */
451 static int rh_call_control (struct usb_hcd *hcd, struct urb *urb)
452 {
453 	struct usb_ctrlrequest *cmd;
454 	u16		typeReq, wValue, wIndex, wLength;
455 	u8		*ubuf = urb->transfer_buffer;
456 	unsigned	len = 0;
457 	int		status;
458 	u8		patch_wakeup = 0;
459 	u8		patch_protocol = 0;
460 	u16		tbuf_size;
461 	u8		*tbuf = NULL;
462 	const u8	*bufp;
463 
464 	might_sleep();
465 
466 	spin_lock_irq(&hcd_root_hub_lock);
467 	status = usb_hcd_link_urb_to_ep(hcd, urb);
468 	spin_unlock_irq(&hcd_root_hub_lock);
469 	if (status)
470 		return status;
471 	urb->hcpriv = hcd;	/* Indicate it's queued */
472 
473 	cmd = (struct usb_ctrlrequest *) urb->setup_packet;
474 	typeReq  = (cmd->bRequestType << 8) | cmd->bRequest;
475 	wValue   = le16_to_cpu (cmd->wValue);
476 	wIndex   = le16_to_cpu (cmd->wIndex);
477 	wLength  = le16_to_cpu (cmd->wLength);
478 
479 	if (wLength > urb->transfer_buffer_length)
480 		goto error;
481 
482 	/*
483 	 * tbuf should be at least as big as the
484 	 * USB hub descriptor.
485 	 */
486 	tbuf_size =  max_t(u16, sizeof(struct usb_hub_descriptor), wLength);
487 	tbuf = kzalloc(tbuf_size, GFP_KERNEL);
488 	if (!tbuf) {
489 		status = -ENOMEM;
490 		goto err_alloc;
491 	}
492 
493 	bufp = tbuf;
494 
495 
496 	urb->actual_length = 0;
497 	switch (typeReq) {
498 
499 	/* DEVICE REQUESTS */
500 
501 	/* The root hub's remote wakeup enable bit is implemented using
502 	 * driver model wakeup flags.  If this system supports wakeup
503 	 * through USB, userspace may change the default "allow wakeup"
504 	 * policy through sysfs or these calls.
505 	 *
506 	 * Most root hubs support wakeup from downstream devices, for
507 	 * runtime power management (disabling USB clocks and reducing
508 	 * VBUS power usage).  However, not all of them do so; silicon,
509 	 * board, and BIOS bugs here are not uncommon, so these can't
510 	 * be treated quite like external hubs.
511 	 *
512 	 * Likewise, not all root hubs will pass wakeup events upstream,
513 	 * to wake up the whole system.  So don't assume root hub and
514 	 * controller capabilities are identical.
515 	 */
516 
517 	case DeviceRequest | USB_REQ_GET_STATUS:
518 		tbuf[0] = (device_may_wakeup(&hcd->self.root_hub->dev)
519 					<< USB_DEVICE_REMOTE_WAKEUP)
520 				| (1 << USB_DEVICE_SELF_POWERED);
521 		tbuf[1] = 0;
522 		len = 2;
523 		break;
524 	case DeviceOutRequest | USB_REQ_CLEAR_FEATURE:
525 		if (wValue == USB_DEVICE_REMOTE_WAKEUP)
526 			device_set_wakeup_enable(&hcd->self.root_hub->dev, 0);
527 		else
528 			goto error;
529 		break;
530 	case DeviceOutRequest | USB_REQ_SET_FEATURE:
531 		if (device_can_wakeup(&hcd->self.root_hub->dev)
532 				&& wValue == USB_DEVICE_REMOTE_WAKEUP)
533 			device_set_wakeup_enable(&hcd->self.root_hub->dev, 1);
534 		else
535 			goto error;
536 		break;
537 	case DeviceRequest | USB_REQ_GET_CONFIGURATION:
538 		tbuf[0] = 1;
539 		len = 1;
540 		fallthrough;
541 	case DeviceOutRequest | USB_REQ_SET_CONFIGURATION:
542 		break;
543 	case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
544 		switch (wValue & 0xff00) {
545 		case USB_DT_DEVICE << 8:
546 			switch (hcd->speed) {
547 			case HCD_USB32:
548 			case HCD_USB31:
549 				bufp = usb31_rh_dev_descriptor;
550 				break;
551 			case HCD_USB3:
552 				bufp = usb3_rh_dev_descriptor;
553 				break;
554 			case HCD_USB2:
555 				bufp = usb2_rh_dev_descriptor;
556 				break;
557 			case HCD_USB11:
558 				bufp = usb11_rh_dev_descriptor;
559 				break;
560 			default:
561 				goto error;
562 			}
563 			len = 18;
564 			if (hcd->has_tt)
565 				patch_protocol = 1;
566 			break;
567 		case USB_DT_CONFIG << 8:
568 			switch (hcd->speed) {
569 			case HCD_USB32:
570 			case HCD_USB31:
571 			case HCD_USB3:
572 				bufp = ss_rh_config_descriptor;
573 				len = sizeof ss_rh_config_descriptor;
574 				break;
575 			case HCD_USB2:
576 				bufp = hs_rh_config_descriptor;
577 				len = sizeof hs_rh_config_descriptor;
578 				break;
579 			case HCD_USB11:
580 				bufp = fs_rh_config_descriptor;
581 				len = sizeof fs_rh_config_descriptor;
582 				break;
583 			default:
584 				goto error;
585 			}
586 			if (device_can_wakeup(&hcd->self.root_hub->dev))
587 				patch_wakeup = 1;
588 			break;
589 		case USB_DT_STRING << 8:
590 			if ((wValue & 0xff) < 4)
591 				urb->actual_length = rh_string(wValue & 0xff,
592 						hcd, ubuf, wLength);
593 			else /* unsupported IDs --> "protocol stall" */
594 				goto error;
595 			break;
596 		case USB_DT_BOS << 8:
597 			goto nongeneric;
598 		default:
599 			goto error;
600 		}
601 		break;
602 	case DeviceRequest | USB_REQ_GET_INTERFACE:
603 		tbuf[0] = 0;
604 		len = 1;
605 		fallthrough;
606 	case DeviceOutRequest | USB_REQ_SET_INTERFACE:
607 		break;
608 	case DeviceOutRequest | USB_REQ_SET_ADDRESS:
609 		/* wValue == urb->dev->devaddr */
610 		dev_dbg (hcd->self.controller, "root hub device address %d\n",
611 			wValue);
612 		break;
613 
614 	/* INTERFACE REQUESTS (no defined feature/status flags) */
615 
616 	/* ENDPOINT REQUESTS */
617 
618 	case EndpointRequest | USB_REQ_GET_STATUS:
619 		/* ENDPOINT_HALT flag */
620 		tbuf[0] = 0;
621 		tbuf[1] = 0;
622 		len = 2;
623 		fallthrough;
624 	case EndpointOutRequest | USB_REQ_CLEAR_FEATURE:
625 	case EndpointOutRequest | USB_REQ_SET_FEATURE:
626 		dev_dbg (hcd->self.controller, "no endpoint features yet\n");
627 		break;
628 
629 	/* CLASS REQUESTS (and errors) */
630 
631 	default:
632 nongeneric:
633 		/* non-generic request */
634 		switch (typeReq) {
635 		case GetHubStatus:
636 			len = 4;
637 			break;
638 		case GetPortStatus:
639 			if (wValue == HUB_PORT_STATUS)
640 				len = 4;
641 			else
642 				/* other port status types return 8 bytes */
643 				len = 8;
644 			break;
645 		case GetHubDescriptor:
646 			len = sizeof (struct usb_hub_descriptor);
647 			break;
648 		case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
649 			/* len is returned by hub_control */
650 			break;
651 		}
652 		status = hcd->driver->hub_control (hcd,
653 			typeReq, wValue, wIndex,
654 			tbuf, wLength);
655 
656 		if (typeReq == GetHubDescriptor)
657 			usb_hub_adjust_deviceremovable(hcd->self.root_hub,
658 				(struct usb_hub_descriptor *)tbuf);
659 		break;
660 error:
661 		/* "protocol stall" on error */
662 		status = -EPIPE;
663 	}
664 
665 	if (status < 0) {
666 		len = 0;
667 		if (status != -EPIPE) {
668 			dev_dbg (hcd->self.controller,
669 				"CTRL: TypeReq=0x%x val=0x%x "
670 				"idx=0x%x len=%d ==> %d\n",
671 				typeReq, wValue, wIndex,
672 				wLength, status);
673 		}
674 	} else if (status > 0) {
675 		/* hub_control may return the length of data copied. */
676 		len = status;
677 		status = 0;
678 	}
679 	if (len) {
680 		if (urb->transfer_buffer_length < len)
681 			len = urb->transfer_buffer_length;
682 		urb->actual_length = len;
683 		/* always USB_DIR_IN, toward host */
684 		memcpy (ubuf, bufp, len);
685 
686 		/* report whether RH hardware supports remote wakeup */
687 		if (patch_wakeup &&
688 				len > offsetof (struct usb_config_descriptor,
689 						bmAttributes))
690 			((struct usb_config_descriptor *)ubuf)->bmAttributes
691 				|= USB_CONFIG_ATT_WAKEUP;
692 
693 		/* report whether RH hardware has an integrated TT */
694 		if (patch_protocol &&
695 				len > offsetof(struct usb_device_descriptor,
696 						bDeviceProtocol))
697 			((struct usb_device_descriptor *) ubuf)->
698 				bDeviceProtocol = USB_HUB_PR_HS_SINGLE_TT;
699 	}
700 
701 	kfree(tbuf);
702  err_alloc:
703 
704 	/* any errors get returned through the urb completion */
705 	spin_lock_irq(&hcd_root_hub_lock);
706 	usb_hcd_unlink_urb_from_ep(hcd, urb);
707 	usb_hcd_giveback_urb(hcd, urb, status);
708 	spin_unlock_irq(&hcd_root_hub_lock);
709 	return 0;
710 }
711 
712 /*-------------------------------------------------------------------------*/
713 
714 /*
715  * Root Hub interrupt transfers are polled using a timer if the
716  * driver requests it; otherwise the driver is responsible for
717  * calling usb_hcd_poll_rh_status() when an event occurs.
718  *
719  * Completion handler may not sleep. See usb_hcd_giveback_urb() for details.
720  */
721 void usb_hcd_poll_rh_status(struct usb_hcd *hcd)
722 {
723 	struct urb	*urb;
724 	int		length;
725 	int		status;
726 	unsigned long	flags;
727 	char		buffer[6];	/* Any root hubs with > 31 ports? */
728 
729 	if (unlikely(!hcd->rh_pollable))
730 		return;
731 	if (!hcd->uses_new_polling && !hcd->status_urb)
732 		return;
733 
734 	length = hcd->driver->hub_status_data(hcd, buffer);
735 	if (length > 0) {
736 
737 		/* try to complete the status urb */
738 		spin_lock_irqsave(&hcd_root_hub_lock, flags);
739 		urb = hcd->status_urb;
740 		if (urb) {
741 			clear_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
742 			hcd->status_urb = NULL;
743 			if (urb->transfer_buffer_length >= length) {
744 				status = 0;
745 			} else {
746 				status = -EOVERFLOW;
747 				length = urb->transfer_buffer_length;
748 			}
749 			urb->actual_length = length;
750 			memcpy(urb->transfer_buffer, buffer, length);
751 
752 			usb_hcd_unlink_urb_from_ep(hcd, urb);
753 			usb_hcd_giveback_urb(hcd, urb, status);
754 		} else {
755 			length = 0;
756 			set_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
757 		}
758 		spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
759 	}
760 
761 	/* The USB 2.0 spec says 256 ms.  This is close enough and won't
762 	 * exceed that limit if HZ is 100. The math is more clunky than
763 	 * maybe expected, this is to make sure that all timers for USB devices
764 	 * fire at the same time to give the CPU a break in between */
765 	if (hcd->uses_new_polling ? HCD_POLL_RH(hcd) :
766 			(length == 0 && hcd->status_urb != NULL))
767 		mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
768 }
769 EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status);
770 
771 /* timer callback */
772 static void rh_timer_func (struct timer_list *t)
773 {
774 	struct usb_hcd *_hcd = timer_container_of(_hcd, t, rh_timer);
775 
776 	usb_hcd_poll_rh_status(_hcd);
777 }
778 
779 /*-------------------------------------------------------------------------*/
780 
781 static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb)
782 {
783 	int		retval;
784 	unsigned long	flags;
785 	unsigned	len = 1 + (urb->dev->maxchild / 8);
786 
787 	spin_lock_irqsave (&hcd_root_hub_lock, flags);
788 	if (hcd->status_urb || urb->transfer_buffer_length < len) {
789 		dev_dbg (hcd->self.controller, "not queuing rh status urb\n");
790 		retval = -EINVAL;
791 		goto done;
792 	}
793 
794 	retval = usb_hcd_link_urb_to_ep(hcd, urb);
795 	if (retval)
796 		goto done;
797 
798 	hcd->status_urb = urb;
799 	urb->hcpriv = hcd;	/* indicate it's queued */
800 	if (!hcd->uses_new_polling)
801 		mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
802 
803 	/* If a status change has already occurred, report it ASAP */
804 	else if (HCD_POLL_PENDING(hcd))
805 		mod_timer(&hcd->rh_timer, jiffies);
806 	retval = 0;
807  done:
808 	spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
809 	return retval;
810 }
811 
812 static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb)
813 {
814 	if (usb_endpoint_xfer_int(&urb->ep->desc))
815 		return rh_queue_status (hcd, urb);
816 	if (usb_endpoint_xfer_control(&urb->ep->desc))
817 		return rh_call_control (hcd, urb);
818 	return -EINVAL;
819 }
820 
821 /*-------------------------------------------------------------------------*/
822 
823 /* Unlinks of root-hub control URBs are legal, but they don't do anything
824  * since these URBs always execute synchronously.
825  */
826 static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
827 {
828 	unsigned long	flags;
829 	int		rc;
830 
831 	spin_lock_irqsave(&hcd_root_hub_lock, flags);
832 	rc = usb_hcd_check_unlink_urb(hcd, urb, status);
833 	if (rc)
834 		goto done;
835 
836 	if (usb_endpoint_num(&urb->ep->desc) == 0) {	/* Control URB */
837 		;	/* Do nothing */
838 
839 	} else {				/* Status URB */
840 		if (!hcd->uses_new_polling)
841 			timer_delete(&hcd->rh_timer);
842 		if (urb == hcd->status_urb) {
843 			hcd->status_urb = NULL;
844 			usb_hcd_unlink_urb_from_ep(hcd, urb);
845 			usb_hcd_giveback_urb(hcd, urb, status);
846 		}
847 	}
848  done:
849 	spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
850 	return rc;
851 }
852 
853 
854 /*-------------------------------------------------------------------------*/
855 
856 /**
857  * usb_bus_init - shared initialization code
858  * @bus: the bus structure being initialized
859  *
860  * This code is used to initialize a usb_bus structure, memory for which is
861  * separately managed.
862  */
863 static void usb_bus_init (struct usb_bus *bus)
864 {
865 	memset(&bus->devmap, 0, sizeof(bus->devmap));
866 
867 	bus->devnum_next = 1;
868 
869 	bus->root_hub = NULL;
870 	bus->busnum = -1;
871 	bus->bandwidth_allocated = 0;
872 	bus->bandwidth_int_reqs  = 0;
873 	bus->bandwidth_isoc_reqs = 0;
874 	mutex_init(&bus->devnum_next_mutex);
875 }
876 
877 /*-------------------------------------------------------------------------*/
878 
879 /**
880  * usb_register_bus - registers the USB host controller with the usb core
881  * @bus: pointer to the bus to register
882  *
883  * Context: task context, might sleep.
884  *
885  * Assigns a bus number, and links the controller into usbcore data
886  * structures so that it can be seen by scanning the bus list.
887  *
888  * Return: 0 if successful. A negative error code otherwise.
889  */
890 static int usb_register_bus(struct usb_bus *bus)
891 {
892 	int result = -E2BIG;
893 	int busnum;
894 
895 	mutex_lock(&usb_bus_idr_lock);
896 	busnum = idr_alloc(&usb_bus_idr, bus, 1, USB_MAXBUS, GFP_KERNEL);
897 	if (busnum < 0) {
898 		pr_err("%s: failed to get bus number\n", usbcore_name);
899 		goto error_find_busnum;
900 	}
901 	bus->busnum = busnum;
902 	mutex_unlock(&usb_bus_idr_lock);
903 
904 	usb_notify_add_bus(bus);
905 
906 	dev_info (bus->controller, "new USB bus registered, assigned bus "
907 		  "number %d\n", bus->busnum);
908 	return 0;
909 
910 error_find_busnum:
911 	mutex_unlock(&usb_bus_idr_lock);
912 	return result;
913 }
914 
915 /**
916  * usb_deregister_bus - deregisters the USB host controller
917  * @bus: pointer to the bus to deregister
918  *
919  * Context: task context, might sleep.
920  *
921  * Recycles the bus number, and unlinks the controller from usbcore data
922  * structures so that it won't be seen by scanning the bus list.
923  */
924 static void usb_deregister_bus (struct usb_bus *bus)
925 {
926 	dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum);
927 
928 	/*
929 	 * NOTE: make sure that all the devices are removed by the
930 	 * controller code, as well as having it call this when cleaning
931 	 * itself up
932 	 */
933 	mutex_lock(&usb_bus_idr_lock);
934 	idr_remove(&usb_bus_idr, bus->busnum);
935 	mutex_unlock(&usb_bus_idr_lock);
936 
937 	usb_notify_remove_bus(bus);
938 }
939 
940 /**
941  * register_root_hub - called by usb_add_hcd() to register a root hub
942  * @hcd: host controller for this root hub
943  *
944  * This function registers the root hub with the USB subsystem.  It sets up
945  * the device properly in the device tree and then calls usb_new_device()
946  * to register the usb device.  It also assigns the root hub's USB address
947  * (always 1).
948  *
949  * Return: 0 if successful. A negative error code otherwise.
950  */
951 static int register_root_hub(struct usb_hcd *hcd)
952 {
953 	struct device *parent_dev = hcd->self.controller;
954 	struct usb_device *usb_dev = hcd->self.root_hub;
955 	struct usb_device_descriptor *descr;
956 	const int devnum = 1;
957 	int retval;
958 
959 	usb_dev->devnum = devnum;
960 	usb_dev->bus->devnum_next = devnum + 1;
961 	set_bit(devnum, usb_dev->bus->devmap);
962 	usb_set_device_state(usb_dev, USB_STATE_ADDRESS);
963 
964 	mutex_lock(&usb_bus_idr_lock);
965 
966 	usb_dev->ep0.desc.wMaxPacketSize = cpu_to_le16(64);
967 	descr = usb_get_device_descriptor(usb_dev);
968 	if (IS_ERR(descr)) {
969 		retval = PTR_ERR(descr);
970 		mutex_unlock(&usb_bus_idr_lock);
971 		dev_dbg (parent_dev, "can't read %s device descriptor %d\n",
972 				dev_name(&usb_dev->dev), retval);
973 		return retval;
974 	}
975 	usb_dev->descriptor = *descr;
976 	kfree(descr);
977 
978 	if (le16_to_cpu(usb_dev->descriptor.bcdUSB) >= 0x0201) {
979 		retval = usb_get_bos_descriptor(usb_dev);
980 		if (!retval) {
981 			usb_dev->lpm_capable = usb_device_supports_lpm(usb_dev);
982 		} else if (usb_dev->speed >= USB_SPEED_SUPER) {
983 			mutex_unlock(&usb_bus_idr_lock);
984 			dev_dbg(parent_dev, "can't read %s bos descriptor %d\n",
985 					dev_name(&usb_dev->dev), retval);
986 			return retval;
987 		}
988 	}
989 
990 	retval = usb_new_device (usb_dev);
991 	if (retval) {
992 		dev_err (parent_dev, "can't register root hub for %s, %d\n",
993 				dev_name(&usb_dev->dev), retval);
994 	} else {
995 		spin_lock_irq (&hcd_root_hub_lock);
996 		hcd->rh_registered = 1;
997 		spin_unlock_irq (&hcd_root_hub_lock);
998 
999 		/* Did the HC die before the root hub was registered? */
1000 		if (HCD_DEAD(hcd))
1001 			usb_hc_died (hcd);	/* This time clean up */
1002 	}
1003 	mutex_unlock(&usb_bus_idr_lock);
1004 
1005 	return retval;
1006 }
1007 
1008 /*
1009  * usb_hcd_start_port_resume - a root-hub port is sending a resume signal
1010  * @bus: the bus which the root hub belongs to
1011  * @portnum: the port which is being resumed
1012  *
1013  * HCDs should call this function when they know that a resume signal is
1014  * being sent to a root-hub port.  The root hub will be prevented from
1015  * going into autosuspend until usb_hcd_end_port_resume() is called.
1016  *
1017  * The bus's private lock must be held by the caller.
1018  */
1019 void usb_hcd_start_port_resume(struct usb_bus *bus, int portnum)
1020 {
1021 	unsigned bit = 1 << portnum;
1022 
1023 	if (!(bus->resuming_ports & bit)) {
1024 		bus->resuming_ports |= bit;
1025 		pm_runtime_get_noresume(&bus->root_hub->dev);
1026 	}
1027 }
1028 EXPORT_SYMBOL_GPL(usb_hcd_start_port_resume);
1029 
1030 /*
1031  * usb_hcd_end_port_resume - a root-hub port has stopped sending a resume signal
1032  * @bus: the bus which the root hub belongs to
1033  * @portnum: the port which is being resumed
1034  *
1035  * HCDs should call this function when they know that a resume signal has
1036  * stopped being sent to a root-hub port.  The root hub will be allowed to
1037  * autosuspend again.
1038  *
1039  * The bus's private lock must be held by the caller.
1040  */
1041 void usb_hcd_end_port_resume(struct usb_bus *bus, int portnum)
1042 {
1043 	unsigned bit = 1 << portnum;
1044 
1045 	if (bus->resuming_ports & bit) {
1046 		bus->resuming_ports &= ~bit;
1047 		pm_runtime_put_noidle(&bus->root_hub->dev);
1048 	}
1049 }
1050 EXPORT_SYMBOL_GPL(usb_hcd_end_port_resume);
1051 
1052 /*-------------------------------------------------------------------------*/
1053 
1054 /**
1055  * usb_calc_bus_time - approximate periodic transaction time in nanoseconds
1056  * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH}
1057  * @is_input: true iff the transaction sends data to the host
1058  * @isoc: true for isochronous transactions, false for interrupt ones
1059  * @bytecount: how many bytes in the transaction.
1060  *
1061  * Return: Approximate bus time in nanoseconds for a periodic transaction.
1062  *
1063  * Note:
1064  * See USB 2.0 spec section 5.11.3; only periodic transfers need to be
1065  * scheduled in software, this function is only used for such scheduling.
1066  */
1067 long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount)
1068 {
1069 	unsigned long	tmp;
1070 
1071 	switch (speed) {
1072 	case USB_SPEED_LOW: 	/* INTR only */
1073 		if (is_input) {
1074 			tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L;
1075 			return 64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp;
1076 		} else {
1077 			tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L;
1078 			return 64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp;
1079 		}
1080 	case USB_SPEED_FULL:	/* ISOC or INTR */
1081 		if (isoc) {
1082 			tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1083 			return ((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp;
1084 		} else {
1085 			tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1086 			return 9107L + BW_HOST_DELAY + tmp;
1087 		}
1088 	case USB_SPEED_HIGH:	/* ISOC or INTR */
1089 		/* FIXME adjust for input vs output */
1090 		if (isoc)
1091 			tmp = HS_NSECS_ISO (bytecount);
1092 		else
1093 			tmp = HS_NSECS (bytecount);
1094 		return tmp;
1095 	default:
1096 		pr_debug ("%s: bogus device speed!\n", usbcore_name);
1097 		return -1;
1098 	}
1099 }
1100 EXPORT_SYMBOL_GPL(usb_calc_bus_time);
1101 
1102 
1103 /*-------------------------------------------------------------------------*/
1104 
1105 /*
1106  * Generic HC operations.
1107  */
1108 
1109 /*-------------------------------------------------------------------------*/
1110 
1111 /**
1112  * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue
1113  * @hcd: host controller to which @urb was submitted
1114  * @urb: URB being submitted
1115  *
1116  * Host controller drivers should call this routine in their enqueue()
1117  * method.  The HCD's private spinlock must be held and interrupts must
1118  * be disabled.  The actions carried out here are required for URB
1119  * submission, as well as for endpoint shutdown and for usb_kill_urb.
1120  *
1121  * Return: 0 for no error, otherwise a negative error code (in which case
1122  * the enqueue() method must fail).  If no error occurs but enqueue() fails
1123  * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing
1124  * the private spinlock and returning.
1125  */
1126 int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb)
1127 {
1128 	int		rc = 0;
1129 
1130 	spin_lock(&hcd_urb_list_lock);
1131 
1132 	/* Check that the URB isn't being killed */
1133 	if (unlikely(atomic_read(&urb->reject))) {
1134 		rc = -EPERM;
1135 		goto done;
1136 	}
1137 
1138 	if (unlikely(!urb->ep->enabled)) {
1139 		rc = -ENOENT;
1140 		goto done;
1141 	}
1142 
1143 	if (unlikely(!urb->dev->can_submit)) {
1144 		rc = -EHOSTUNREACH;
1145 		goto done;
1146 	}
1147 
1148 	/*
1149 	 * Check the host controller's state and add the URB to the
1150 	 * endpoint's queue.
1151 	 */
1152 	if (HCD_RH_RUNNING(hcd)) {
1153 		urb->unlinked = 0;
1154 		list_add_tail(&urb->urb_list, &urb->ep->urb_list);
1155 	} else {
1156 		rc = -ESHUTDOWN;
1157 		goto done;
1158 	}
1159  done:
1160 	spin_unlock(&hcd_urb_list_lock);
1161 	return rc;
1162 }
1163 EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep);
1164 
1165 /**
1166  * usb_hcd_check_unlink_urb - check whether an URB may be unlinked
1167  * @hcd: host controller to which @urb was submitted
1168  * @urb: URB being checked for unlinkability
1169  * @status: error code to store in @urb if the unlink succeeds
1170  *
1171  * Host controller drivers should call this routine in their dequeue()
1172  * method.  The HCD's private spinlock must be held and interrupts must
1173  * be disabled.  The actions carried out here are required for making
1174  * sure than an unlink is valid.
1175  *
1176  * Return: 0 for no error, otherwise a negative error code (in which case
1177  * the dequeue() method must fail).  The possible error codes are:
1178  *
1179  *	-EIDRM: @urb was not submitted or has already completed.
1180  *		The completion function may not have been called yet.
1181  *
1182  *	-EBUSY: @urb has already been unlinked.
1183  */
1184 int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb,
1185 		int status)
1186 {
1187 	struct list_head	*tmp;
1188 
1189 	/* insist the urb is still queued */
1190 	list_for_each(tmp, &urb->ep->urb_list) {
1191 		if (tmp == &urb->urb_list)
1192 			break;
1193 	}
1194 	if (tmp != &urb->urb_list)
1195 		return -EIDRM;
1196 
1197 	/* Any status except -EINPROGRESS means something already started to
1198 	 * unlink this URB from the hardware.  So there's no more work to do.
1199 	 */
1200 	if (urb->unlinked)
1201 		return -EBUSY;
1202 	urb->unlinked = status;
1203 	return 0;
1204 }
1205 EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb);
1206 
1207 /**
1208  * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue
1209  * @hcd: host controller to which @urb was submitted
1210  * @urb: URB being unlinked
1211  *
1212  * Host controller drivers should call this routine before calling
1213  * usb_hcd_giveback_urb().  The HCD's private spinlock must be held and
1214  * interrupts must be disabled.  The actions carried out here are required
1215  * for URB completion.
1216  */
1217 void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb)
1218 {
1219 	/* clear all state linking urb to this dev (and hcd) */
1220 	spin_lock(&hcd_urb_list_lock);
1221 	list_del_init(&urb->urb_list);
1222 	spin_unlock(&hcd_urb_list_lock);
1223 }
1224 EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep);
1225 
1226 /*
1227  * Some usb host controllers can only perform dma using a small SRAM area,
1228  * or have restrictions on addressable DRAM.
1229  * The usb core itself is however optimized for host controllers that can dma
1230  * using regular system memory - like pci devices doing bus mastering.
1231  *
1232  * To support host controllers with limited dma capabilities we provide dma
1233  * bounce buffers. This feature can be enabled by initializing
1234  * hcd->localmem_pool using usb_hcd_setup_local_mem().
1235  *
1236  * The initialized hcd->localmem_pool then tells the usb code to allocate all
1237  * data for dma using the genalloc API.
1238  *
1239  * So, to summarize...
1240  *
1241  * - We need "local" memory, canonical example being
1242  *   a small SRAM on a discrete controller being the
1243  *   only memory that the controller can read ...
1244  *   (a) "normal" kernel memory is no good, and
1245  *   (b) there's not enough to share
1246  *
1247  * - So we use that, even though the primary requirement
1248  *   is that the memory be "local" (hence addressable
1249  *   by that device), not "coherent".
1250  *
1251  */
1252 
1253 static int hcd_alloc_coherent(struct usb_bus *bus,
1254 			      gfp_t mem_flags, dma_addr_t *dma_handle,
1255 			      void **vaddr_handle, size_t size,
1256 			      enum dma_data_direction dir)
1257 {
1258 	unsigned char *vaddr;
1259 
1260 	if (*vaddr_handle == NULL) {
1261 		WARN_ON_ONCE(1);
1262 		return -EFAULT;
1263 	}
1264 
1265 	vaddr = hcd_buffer_alloc(bus, size + sizeof(unsigned long),
1266 				 mem_flags, dma_handle);
1267 	if (!vaddr)
1268 		return -ENOMEM;
1269 
1270 	/*
1271 	 * Store the virtual address of the buffer at the end
1272 	 * of the allocated dma buffer. The size of the buffer
1273 	 * may be uneven so use unaligned functions instead
1274 	 * of just rounding up. It makes sense to optimize for
1275 	 * memory footprint over access speed since the amount
1276 	 * of memory available for dma may be limited.
1277 	 */
1278 	put_unaligned((unsigned long)*vaddr_handle,
1279 		      (unsigned long *)(vaddr + size));
1280 
1281 	if (dir == DMA_TO_DEVICE)
1282 		memcpy(vaddr, *vaddr_handle, size);
1283 
1284 	*vaddr_handle = vaddr;
1285 	return 0;
1286 }
1287 
1288 static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle,
1289 			      void **vaddr_handle, size_t size,
1290 			      enum dma_data_direction dir)
1291 {
1292 	unsigned char *vaddr = *vaddr_handle;
1293 
1294 	vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size));
1295 
1296 	if (dir == DMA_FROM_DEVICE)
1297 		memcpy(vaddr, *vaddr_handle, size);
1298 
1299 	hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle);
1300 
1301 	*vaddr_handle = vaddr;
1302 	*dma_handle = 0;
1303 }
1304 
1305 void usb_hcd_unmap_urb_setup_for_dma(struct usb_hcd *hcd, struct urb *urb)
1306 {
1307 	if (IS_ENABLED(CONFIG_HAS_DMA) &&
1308 	    (urb->transfer_flags & URB_SETUP_MAP_SINGLE))
1309 		dma_unmap_single(hcd->self.sysdev,
1310 				urb->setup_dma,
1311 				sizeof(struct usb_ctrlrequest),
1312 				DMA_TO_DEVICE);
1313 	else if (urb->transfer_flags & URB_SETUP_MAP_LOCAL)
1314 		hcd_free_coherent(urb->dev->bus,
1315 				&urb->setup_dma,
1316 				(void **) &urb->setup_packet,
1317 				sizeof(struct usb_ctrlrequest),
1318 				DMA_TO_DEVICE);
1319 
1320 	/* Make it safe to call this routine more than once */
1321 	urb->transfer_flags &= ~(URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL);
1322 }
1323 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_setup_for_dma);
1324 
1325 static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1326 {
1327 	if (hcd->driver->unmap_urb_for_dma)
1328 		hcd->driver->unmap_urb_for_dma(hcd, urb);
1329 	else
1330 		usb_hcd_unmap_urb_for_dma(hcd, urb);
1331 }
1332 
1333 void usb_hcd_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1334 {
1335 	enum dma_data_direction dir;
1336 
1337 	usb_hcd_unmap_urb_setup_for_dma(hcd, urb);
1338 
1339 	dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1340 	if (IS_ENABLED(CONFIG_HAS_DMA) &&
1341 	    (urb->transfer_flags & URB_DMA_MAP_SG)) {
1342 		dma_unmap_sg(hcd->self.sysdev,
1343 				urb->sg,
1344 				urb->num_sgs,
1345 				dir);
1346 	} else if (IS_ENABLED(CONFIG_HAS_DMA) &&
1347 		 (urb->transfer_flags & URB_DMA_MAP_PAGE)) {
1348 		dma_unmap_page(hcd->self.sysdev,
1349 				urb->transfer_dma,
1350 				urb->transfer_buffer_length,
1351 				dir);
1352 	} else if (IS_ENABLED(CONFIG_HAS_DMA) &&
1353 		 (urb->transfer_flags & URB_DMA_MAP_SINGLE)) {
1354 		dma_unmap_single(hcd->self.sysdev,
1355 				urb->transfer_dma,
1356 				urb->transfer_buffer_length,
1357 				dir);
1358 	} else if (urb->transfer_flags & URB_MAP_LOCAL) {
1359 		hcd_free_coherent(urb->dev->bus,
1360 				&urb->transfer_dma,
1361 				&urb->transfer_buffer,
1362 				urb->transfer_buffer_length,
1363 				dir);
1364 	} else if ((urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP) && urb->sgt) {
1365 		dma_sync_sgtable_for_cpu(hcd->self.sysdev, urb->sgt, dir);
1366 		if (dir == DMA_FROM_DEVICE)
1367 			invalidate_kernel_vmap_range(urb->transfer_buffer,
1368 						     urb->transfer_buffer_length);
1369 	}
1370 
1371 	/* Make it safe to call this routine more than once */
1372 	urb->transfer_flags &= ~(URB_DMA_MAP_SG | URB_DMA_MAP_PAGE |
1373 			URB_DMA_MAP_SINGLE | URB_MAP_LOCAL);
1374 }
1375 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_for_dma);
1376 
1377 static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1378 			   gfp_t mem_flags)
1379 {
1380 	if (hcd->driver->map_urb_for_dma)
1381 		return hcd->driver->map_urb_for_dma(hcd, urb, mem_flags);
1382 	else
1383 		return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1384 }
1385 
1386 int usb_hcd_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1387 			    gfp_t mem_flags)
1388 {
1389 	enum dma_data_direction dir;
1390 	int ret = 0;
1391 
1392 	/* Map the URB's buffers for DMA access.
1393 	 * Lower level HCD code should use *_dma exclusively,
1394 	 * unless it uses pio or talks to another transport,
1395 	 * or uses the provided scatter gather list for bulk.
1396 	 */
1397 
1398 	if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1399 		if (hcd->self.uses_pio_for_control)
1400 			return ret;
1401 		if (hcd->localmem_pool) {
1402 			ret = hcd_alloc_coherent(
1403 					urb->dev->bus, mem_flags,
1404 					&urb->setup_dma,
1405 					(void **)&urb->setup_packet,
1406 					sizeof(struct usb_ctrlrequest),
1407 					DMA_TO_DEVICE);
1408 			if (ret)
1409 				return ret;
1410 			urb->transfer_flags |= URB_SETUP_MAP_LOCAL;
1411 		} else if (hcd_uses_dma(hcd)) {
1412 			if (object_is_on_stack(urb->setup_packet)) {
1413 				WARN_ONCE(1, "setup packet is on stack\n");
1414 				return -EAGAIN;
1415 			}
1416 
1417 			urb->setup_dma = dma_map_single(
1418 					hcd->self.sysdev,
1419 					urb->setup_packet,
1420 					sizeof(struct usb_ctrlrequest),
1421 					DMA_TO_DEVICE);
1422 			if (dma_mapping_error(hcd->self.sysdev,
1423 						urb->setup_dma))
1424 				return -EAGAIN;
1425 			urb->transfer_flags |= URB_SETUP_MAP_SINGLE;
1426 		}
1427 	}
1428 
1429 	dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1430 	if (urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP) {
1431 		if (!urb->sgt)
1432 			return 0;
1433 
1434 		if (dir == DMA_TO_DEVICE)
1435 			flush_kernel_vmap_range(urb->transfer_buffer,
1436 						urb->transfer_buffer_length);
1437 		dma_sync_sgtable_for_device(hcd->self.sysdev, urb->sgt, dir);
1438 	} else if (urb->transfer_buffer_length != 0) {
1439 		if (hcd->localmem_pool) {
1440 			ret = hcd_alloc_coherent(
1441 					urb->dev->bus, mem_flags,
1442 					&urb->transfer_dma,
1443 					&urb->transfer_buffer,
1444 					urb->transfer_buffer_length,
1445 					dir);
1446 			if (ret == 0)
1447 				urb->transfer_flags |= URB_MAP_LOCAL;
1448 		} else if (hcd_uses_dma(hcd)) {
1449 			if (urb->num_sgs) {
1450 				int n;
1451 
1452 				/* We don't support sg for isoc transfers ! */
1453 				if (usb_endpoint_xfer_isoc(&urb->ep->desc)) {
1454 					WARN_ON(1);
1455 					return -EINVAL;
1456 				}
1457 
1458 				n = dma_map_sg(
1459 						hcd->self.sysdev,
1460 						urb->sg,
1461 						urb->num_sgs,
1462 						dir);
1463 				if (!n)
1464 					ret = -EAGAIN;
1465 				else
1466 					urb->transfer_flags |= URB_DMA_MAP_SG;
1467 				urb->num_mapped_sgs = n;
1468 				if (n != urb->num_sgs)
1469 					urb->transfer_flags |=
1470 							URB_DMA_SG_COMBINED;
1471 			} else if (urb->sg) {
1472 				struct scatterlist *sg = urb->sg;
1473 				urb->transfer_dma = dma_map_page(
1474 						hcd->self.sysdev,
1475 						sg_page(sg),
1476 						sg->offset,
1477 						urb->transfer_buffer_length,
1478 						dir);
1479 				if (dma_mapping_error(hcd->self.sysdev,
1480 						urb->transfer_dma))
1481 					ret = -EAGAIN;
1482 				else
1483 					urb->transfer_flags |= URB_DMA_MAP_PAGE;
1484 			} else if (object_is_on_stack(urb->transfer_buffer)) {
1485 				WARN_ONCE(1, "transfer buffer is on stack\n");
1486 				ret = -EAGAIN;
1487 			} else {
1488 				urb->transfer_dma = dma_map_single(
1489 						hcd->self.sysdev,
1490 						urb->transfer_buffer,
1491 						urb->transfer_buffer_length,
1492 						dir);
1493 				if (dma_mapping_error(hcd->self.sysdev,
1494 						urb->transfer_dma))
1495 					ret = -EAGAIN;
1496 				else
1497 					urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1498 			}
1499 		}
1500 		if (ret && (urb->transfer_flags & (URB_SETUP_MAP_SINGLE |
1501 				URB_SETUP_MAP_LOCAL)))
1502 			usb_hcd_unmap_urb_for_dma(hcd, urb);
1503 	}
1504 	return ret;
1505 }
1506 EXPORT_SYMBOL_GPL(usb_hcd_map_urb_for_dma);
1507 
1508 /*-------------------------------------------------------------------------*/
1509 
1510 /* may be called in any context with a valid urb->dev usecount
1511  * caller surrenders "ownership" of urb
1512  * expects usb_submit_urb() to have sanity checked and conditioned all
1513  * inputs in the urb
1514  */
1515 int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags)
1516 {
1517 	int			status;
1518 	struct usb_hcd		*hcd = bus_to_hcd(urb->dev->bus);
1519 
1520 	/* increment urb's reference count as part of giving it to the HCD
1521 	 * (which will control it).  HCD guarantees that it either returns
1522 	 * an error or calls giveback(), but not both.
1523 	 */
1524 	usb_get_urb(urb);
1525 	atomic_inc(&urb->use_count);
1526 	atomic_inc(&urb->dev->urbnum);
1527 	usbmon_urb_submit(&hcd->self, urb);
1528 
1529 	/* NOTE requirements on root-hub callers (usbfs and the hub
1530 	 * driver, for now):  URBs' urb->transfer_buffer must be
1531 	 * valid and usb_buffer_{sync,unmap}() not be needed, since
1532 	 * they could clobber root hub response data.  Also, control
1533 	 * URBs must be submitted in process context with interrupts
1534 	 * enabled.
1535 	 */
1536 
1537 	if (is_root_hub(urb->dev)) {
1538 		status = rh_urb_enqueue(hcd, urb);
1539 	} else {
1540 		status = map_urb_for_dma(hcd, urb, mem_flags);
1541 		if (likely(status == 0)) {
1542 			status = hcd->driver->urb_enqueue(hcd, urb, mem_flags);
1543 			if (unlikely(status))
1544 				unmap_urb_for_dma(hcd, urb);
1545 		}
1546 	}
1547 
1548 	if (unlikely(status)) {
1549 		usbmon_urb_submit_error(&hcd->self, urb, status);
1550 		urb->hcpriv = NULL;
1551 		INIT_LIST_HEAD(&urb->urb_list);
1552 		atomic_dec(&urb->use_count);
1553 		/*
1554 		 * Order the write of urb->use_count above before the read
1555 		 * of urb->reject below.  Pairs with the memory barriers in
1556 		 * usb_kill_urb() and usb_poison_urb().
1557 		 */
1558 		smp_mb__after_atomic();
1559 
1560 		atomic_dec(&urb->dev->urbnum);
1561 		if (atomic_read(&urb->reject))
1562 			wake_up(&usb_kill_urb_queue);
1563 		usb_put_urb(urb);
1564 	}
1565 	return status;
1566 }
1567 
1568 /*-------------------------------------------------------------------------*/
1569 
1570 /* this makes the hcd giveback() the urb more quickly, by kicking it
1571  * off hardware queues (which may take a while) and returning it as
1572  * soon as practical.  we've already set up the urb's return status,
1573  * but we can't know if the callback completed already.
1574  */
1575 static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status)
1576 {
1577 	int		value;
1578 
1579 	if (is_root_hub(urb->dev))
1580 		value = usb_rh_urb_dequeue(hcd, urb, status);
1581 	else {
1582 
1583 		/* The only reason an HCD might fail this call is if
1584 		 * it has not yet fully queued the urb to begin with.
1585 		 * Such failures should be harmless. */
1586 		value = hcd->driver->urb_dequeue(hcd, urb, status);
1587 	}
1588 	return value;
1589 }
1590 
1591 /*
1592  * called in any context
1593  *
1594  * caller guarantees urb won't be recycled till both unlink()
1595  * and the urb's completion function return
1596  */
1597 int usb_hcd_unlink_urb (struct urb *urb, int status)
1598 {
1599 	struct usb_hcd		*hcd;
1600 	struct usb_device	*udev = urb->dev;
1601 	int			retval = -EIDRM;
1602 	unsigned long		flags;
1603 
1604 	/* Prevent the device and bus from going away while
1605 	 * the unlink is carried out.  If they are already gone
1606 	 * then urb->use_count must be 0, since disconnected
1607 	 * devices can't have any active URBs.
1608 	 */
1609 	spin_lock_irqsave(&hcd_urb_unlink_lock, flags);
1610 	if (atomic_read(&urb->use_count) > 0) {
1611 		retval = 0;
1612 		usb_get_dev(udev);
1613 	}
1614 	spin_unlock_irqrestore(&hcd_urb_unlink_lock, flags);
1615 	if (retval == 0) {
1616 		hcd = bus_to_hcd(urb->dev->bus);
1617 		retval = unlink1(hcd, urb, status);
1618 		if (retval == 0)
1619 			retval = -EINPROGRESS;
1620 		else if (retval != -EIDRM && retval != -EBUSY)
1621 			dev_dbg(&udev->dev, "hcd_unlink_urb %p fail %d\n",
1622 					urb, retval);
1623 		usb_put_dev(udev);
1624 	}
1625 	return retval;
1626 }
1627 
1628 /*-------------------------------------------------------------------------*/
1629 
1630 static void __usb_hcd_giveback_urb(struct urb *urb)
1631 {
1632 	struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus);
1633 	struct usb_anchor *anchor = urb->anchor;
1634 	int status = urb->unlinked;
1635 
1636 	urb->hcpriv = NULL;
1637 	if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) &&
1638 	    urb->actual_length < urb->transfer_buffer_length &&
1639 	    !status))
1640 		status = -EREMOTEIO;
1641 
1642 	unmap_urb_for_dma(hcd, urb);
1643 	usbmon_urb_complete(&hcd->self, urb, status);
1644 	usb_anchor_suspend_wakeups(anchor);
1645 	usb_unanchor_urb(urb);
1646 	if (likely(status == 0))
1647 		usb_led_activity(USB_LED_EVENT_HOST);
1648 
1649 	/* pass ownership to the completion handler */
1650 	urb->status = status;
1651 	/*
1652 	 * This function can be called in task context inside another remote
1653 	 * coverage collection section, but kcov doesn't support that kind of
1654 	 * recursion yet. Only collect coverage in softirq context for now.
1655 	 */
1656 	kcov_remote_start_usb_softirq((u64)urb->dev->bus->busnum);
1657 	urb->complete(urb);
1658 	kcov_remote_stop_softirq();
1659 
1660 	usb_anchor_resume_wakeups(anchor);
1661 	atomic_dec(&urb->use_count);
1662 	/*
1663 	 * Order the write of urb->use_count above before the read
1664 	 * of urb->reject below.  Pairs with the memory barriers in
1665 	 * usb_kill_urb() and usb_poison_urb().
1666 	 */
1667 	smp_mb__after_atomic();
1668 
1669 	if (unlikely(atomic_read(&urb->reject)))
1670 		wake_up(&usb_kill_urb_queue);
1671 	usb_put_urb(urb);
1672 }
1673 
1674 static void usb_giveback_urb_bh(struct work_struct *work)
1675 {
1676 	struct giveback_urb_bh *bh =
1677 		container_of(work, struct giveback_urb_bh, bh);
1678 	struct list_head local_list;
1679 
1680 	spin_lock_irq(&bh->lock);
1681 	bh->running = true;
1682 	list_replace_init(&bh->head, &local_list);
1683 	spin_unlock_irq(&bh->lock);
1684 
1685 	while (!list_empty(&local_list)) {
1686 		struct urb *urb;
1687 
1688 		urb = list_entry(local_list.next, struct urb, urb_list);
1689 		list_del_init(&urb->urb_list);
1690 		bh->completing_ep = urb->ep;
1691 		__usb_hcd_giveback_urb(urb);
1692 		bh->completing_ep = NULL;
1693 	}
1694 
1695 	/*
1696 	 * giveback new URBs next time to prevent this function
1697 	 * from not exiting for a long time.
1698 	 */
1699 	spin_lock_irq(&bh->lock);
1700 	if (!list_empty(&bh->head)) {
1701 		if (bh->high_prio)
1702 			queue_work(system_bh_highpri_wq, &bh->bh);
1703 		else
1704 			queue_work(system_bh_wq, &bh->bh);
1705 	}
1706 	bh->running = false;
1707 	spin_unlock_irq(&bh->lock);
1708 }
1709 
1710 /**
1711  * usb_hcd_giveback_urb - return URB from HCD to device driver
1712  * @hcd: host controller returning the URB
1713  * @urb: urb being returned to the USB device driver.
1714  * @status: completion status code for the URB.
1715  *
1716  * Context: atomic. The completion callback is invoked either in a work queue
1717  * (BH) context or in the caller's context, depending on whether the HCD_BH
1718  * flag is set in the @hcd structure, except that URBs submitted to the
1719  * root hub always complete in BH context.
1720  *
1721  * This hands the URB from HCD to its USB device driver, using its
1722  * completion function.  The HCD has freed all per-urb resources
1723  * (and is done using urb->hcpriv).  It also released all HCD locks;
1724  * the device driver won't cause problems if it frees, modifies,
1725  * or resubmits this URB.
1726  *
1727  * If @urb was unlinked, the value of @status will be overridden by
1728  * @urb->unlinked.  Erroneous short transfers are detected in case
1729  * the HCD hasn't checked for them.
1730  */
1731 void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status)
1732 {
1733 	struct giveback_urb_bh *bh;
1734 	bool running;
1735 
1736 	/* pass status to BH via unlinked */
1737 	if (likely(!urb->unlinked))
1738 		urb->unlinked = status;
1739 
1740 	if (!hcd_giveback_urb_in_bh(hcd) && !is_root_hub(urb->dev)) {
1741 		__usb_hcd_giveback_urb(urb);
1742 		return;
1743 	}
1744 
1745 	if (usb_pipeisoc(urb->pipe) || usb_pipeint(urb->pipe))
1746 		bh = &hcd->high_prio_bh;
1747 	else
1748 		bh = &hcd->low_prio_bh;
1749 
1750 	spin_lock(&bh->lock);
1751 	list_add_tail(&urb->urb_list, &bh->head);
1752 	running = bh->running;
1753 	spin_unlock(&bh->lock);
1754 
1755 	if (running)
1756 		;
1757 	else if (bh->high_prio)
1758 		queue_work(system_bh_highpri_wq, &bh->bh);
1759 	else
1760 		queue_work(system_bh_wq, &bh->bh);
1761 }
1762 EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb);
1763 
1764 /*-------------------------------------------------------------------------*/
1765 
1766 /* Cancel all URBs pending on this endpoint and wait for the endpoint's
1767  * queue to drain completely.  The caller must first insure that no more
1768  * URBs can be submitted for this endpoint.
1769  */
1770 void usb_hcd_flush_endpoint(struct usb_device *udev,
1771 		struct usb_host_endpoint *ep)
1772 {
1773 	struct usb_hcd		*hcd;
1774 	struct urb		*urb;
1775 
1776 	if (!ep)
1777 		return;
1778 	might_sleep();
1779 	hcd = bus_to_hcd(udev->bus);
1780 
1781 	/* No more submits can occur */
1782 	spin_lock_irq(&hcd_urb_list_lock);
1783 rescan:
1784 	list_for_each_entry_reverse(urb, &ep->urb_list, urb_list) {
1785 		int	is_in;
1786 
1787 		if (urb->unlinked)
1788 			continue;
1789 		usb_get_urb (urb);
1790 		is_in = usb_urb_dir_in(urb);
1791 		spin_unlock(&hcd_urb_list_lock);
1792 
1793 		/* kick hcd */
1794 		unlink1(hcd, urb, -ESHUTDOWN);
1795 		dev_dbg (hcd->self.controller,
1796 			"shutdown urb %p ep%d%s-%s\n",
1797 			urb, usb_endpoint_num(&ep->desc),
1798 			is_in ? "in" : "out",
1799 			usb_ep_type_string(usb_endpoint_type(&ep->desc)));
1800 		usb_put_urb (urb);
1801 
1802 		/* list contents may have changed */
1803 		spin_lock(&hcd_urb_list_lock);
1804 		goto rescan;
1805 	}
1806 	spin_unlock_irq(&hcd_urb_list_lock);
1807 
1808 	/* Wait until the endpoint queue is completely empty */
1809 	while (!list_empty (&ep->urb_list)) {
1810 		spin_lock_irq(&hcd_urb_list_lock);
1811 
1812 		/* The list may have changed while we acquired the spinlock */
1813 		urb = NULL;
1814 		if (!list_empty (&ep->urb_list)) {
1815 			urb = list_entry (ep->urb_list.prev, struct urb,
1816 					urb_list);
1817 			usb_get_urb (urb);
1818 		}
1819 		spin_unlock_irq(&hcd_urb_list_lock);
1820 
1821 		if (urb) {
1822 			usb_kill_urb (urb);
1823 			usb_put_urb (urb);
1824 		}
1825 	}
1826 }
1827 
1828 /**
1829  * usb_hcd_alloc_bandwidth - check whether a new bandwidth setting exceeds
1830  *				the bus bandwidth
1831  * @udev: target &usb_device
1832  * @new_config: new configuration to install
1833  * @cur_alt: the current alternate interface setting
1834  * @new_alt: alternate interface setting that is being installed
1835  *
1836  * To change configurations, pass in the new configuration in new_config,
1837  * and pass NULL for cur_alt and new_alt.
1838  *
1839  * To reset a device's configuration (put the device in the ADDRESSED state),
1840  * pass in NULL for new_config, cur_alt, and new_alt.
1841  *
1842  * To change alternate interface settings, pass in NULL for new_config,
1843  * pass in the current alternate interface setting in cur_alt,
1844  * and pass in the new alternate interface setting in new_alt.
1845  *
1846  * Return: An error if the requested bandwidth change exceeds the
1847  * bus bandwidth or host controller internal resources.
1848  */
1849 int usb_hcd_alloc_bandwidth(struct usb_device *udev,
1850 		struct usb_host_config *new_config,
1851 		struct usb_host_interface *cur_alt,
1852 		struct usb_host_interface *new_alt)
1853 {
1854 	int num_intfs, i, j;
1855 	struct usb_host_interface *alt = NULL;
1856 	int ret = 0;
1857 	struct usb_hcd *hcd;
1858 	struct usb_host_endpoint *ep;
1859 
1860 	hcd = bus_to_hcd(udev->bus);
1861 	if (!hcd->driver->check_bandwidth)
1862 		return 0;
1863 
1864 	/* Configuration is being removed - set configuration 0 */
1865 	if (!new_config && !cur_alt) {
1866 		for (i = 1; i < 16; ++i) {
1867 			ep = udev->ep_out[i];
1868 			if (ep)
1869 				hcd->driver->drop_endpoint(hcd, udev, ep);
1870 			ep = udev->ep_in[i];
1871 			if (ep)
1872 				hcd->driver->drop_endpoint(hcd, udev, ep);
1873 		}
1874 		hcd->driver->check_bandwidth(hcd, udev);
1875 		return 0;
1876 	}
1877 	/* Check if the HCD says there's enough bandwidth.  Enable all endpoints
1878 	 * each interface's alt setting 0 and ask the HCD to check the bandwidth
1879 	 * of the bus.  There will always be bandwidth for endpoint 0, so it's
1880 	 * ok to exclude it.
1881 	 */
1882 	if (new_config) {
1883 		num_intfs = new_config->desc.bNumInterfaces;
1884 		/* Remove endpoints (except endpoint 0, which is always on the
1885 		 * schedule) from the old config from the schedule
1886 		 */
1887 		for (i = 1; i < 16; ++i) {
1888 			ep = udev->ep_out[i];
1889 			if (ep) {
1890 				ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1891 				if (ret < 0)
1892 					goto reset;
1893 			}
1894 			ep = udev->ep_in[i];
1895 			if (ep) {
1896 				ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1897 				if (ret < 0)
1898 					goto reset;
1899 			}
1900 		}
1901 		for (i = 0; i < num_intfs; ++i) {
1902 			struct usb_host_interface *first_alt;
1903 			int iface_num;
1904 
1905 			first_alt = &new_config->intf_cache[i]->altsetting[0];
1906 			iface_num = first_alt->desc.bInterfaceNumber;
1907 			/* Set up endpoints for alternate interface setting 0 */
1908 			alt = usb_find_alt_setting(new_config, iface_num, 0);
1909 			if (!alt)
1910 				/* No alt setting 0? Pick the first setting. */
1911 				alt = first_alt;
1912 
1913 			for (j = 0; j < alt->desc.bNumEndpoints; j++) {
1914 				ret = hcd->driver->add_endpoint(hcd, udev, &alt->endpoint[j]);
1915 				if (ret < 0)
1916 					goto reset;
1917 			}
1918 		}
1919 	}
1920 	if (cur_alt && new_alt) {
1921 		struct usb_interface *iface = usb_ifnum_to_if(udev,
1922 				cur_alt->desc.bInterfaceNumber);
1923 
1924 		if (!iface)
1925 			return -EINVAL;
1926 		if (iface->resetting_device) {
1927 			/*
1928 			 * The USB core just reset the device, so the xHCI host
1929 			 * and the device will think alt setting 0 is installed.
1930 			 * However, the USB core will pass in the alternate
1931 			 * setting installed before the reset as cur_alt.  Dig
1932 			 * out the alternate setting 0 structure, or the first
1933 			 * alternate setting if a broken device doesn't have alt
1934 			 * setting 0.
1935 			 */
1936 			cur_alt = usb_altnum_to_altsetting(iface, 0);
1937 			if (!cur_alt)
1938 				cur_alt = &iface->altsetting[0];
1939 		}
1940 
1941 		/* Drop all the endpoints in the current alt setting */
1942 		for (i = 0; i < cur_alt->desc.bNumEndpoints; i++) {
1943 			ret = hcd->driver->drop_endpoint(hcd, udev,
1944 					&cur_alt->endpoint[i]);
1945 			if (ret < 0)
1946 				goto reset;
1947 		}
1948 		/* Add all the endpoints in the new alt setting */
1949 		for (i = 0; i < new_alt->desc.bNumEndpoints; i++) {
1950 			ret = hcd->driver->add_endpoint(hcd, udev,
1951 					&new_alt->endpoint[i]);
1952 			if (ret < 0)
1953 				goto reset;
1954 		}
1955 	}
1956 	ret = hcd->driver->check_bandwidth(hcd, udev);
1957 reset:
1958 	if (ret < 0)
1959 		hcd->driver->reset_bandwidth(hcd, udev);
1960 	return ret;
1961 }
1962 
1963 /* Disables the endpoint: synchronizes with the hcd to make sure all
1964  * endpoint state is gone from hardware.  usb_hcd_flush_endpoint() must
1965  * have been called previously.  Use for set_configuration, set_interface,
1966  * driver removal, physical disconnect.
1967  *
1968  * example:  a qh stored in ep->hcpriv, holding state related to endpoint
1969  * type, maxpacket size, toggle, halt status, and scheduling.
1970  */
1971 void usb_hcd_disable_endpoint(struct usb_device *udev,
1972 		struct usb_host_endpoint *ep)
1973 {
1974 	struct usb_hcd		*hcd;
1975 
1976 	might_sleep();
1977 	hcd = bus_to_hcd(udev->bus);
1978 	if (hcd->driver->endpoint_disable)
1979 		hcd->driver->endpoint_disable(hcd, ep);
1980 }
1981 
1982 /**
1983  * usb_hcd_reset_endpoint - reset host endpoint state
1984  * @udev: USB device.
1985  * @ep:   the endpoint to reset.
1986  *
1987  * Resets any host endpoint state such as the toggle bit, sequence
1988  * number and current window.
1989  */
1990 void usb_hcd_reset_endpoint(struct usb_device *udev,
1991 			    struct usb_host_endpoint *ep)
1992 {
1993 	struct usb_hcd *hcd = bus_to_hcd(udev->bus);
1994 
1995 	if (hcd->driver->endpoint_reset)
1996 		hcd->driver->endpoint_reset(hcd, ep);
1997 	else {
1998 		int epnum = usb_endpoint_num(&ep->desc);
1999 		int is_out = usb_endpoint_dir_out(&ep->desc);
2000 		int is_control = usb_endpoint_xfer_control(&ep->desc);
2001 
2002 		usb_settoggle(udev, epnum, is_out, 0);
2003 		if (is_control)
2004 			usb_settoggle(udev, epnum, !is_out, 0);
2005 	}
2006 }
2007 
2008 /**
2009  * usb_alloc_streams - allocate bulk endpoint stream IDs.
2010  * @interface:		alternate setting that includes all endpoints.
2011  * @eps:		array of endpoints that need streams.
2012  * @num_eps:		number of endpoints in the array.
2013  * @num_streams:	number of streams to allocate.
2014  * @mem_flags:		flags hcd should use to allocate memory.
2015  *
2016  * Sets up a group of bulk endpoints to have @num_streams stream IDs available.
2017  * Drivers may queue multiple transfers to different stream IDs, which may
2018  * complete in a different order than they were queued.
2019  *
2020  * Return: On success, the number of allocated streams. On failure, a negative
2021  * error code.
2022  */
2023 int usb_alloc_streams(struct usb_interface *interface,
2024 		struct usb_host_endpoint **eps, unsigned int num_eps,
2025 		unsigned int num_streams, gfp_t mem_flags)
2026 {
2027 	struct usb_hcd *hcd;
2028 	struct usb_device *dev;
2029 	int i, ret;
2030 
2031 	dev = interface_to_usbdev(interface);
2032 	hcd = bus_to_hcd(dev->bus);
2033 	if (!hcd->driver->alloc_streams || !hcd->driver->free_streams)
2034 		return -EINVAL;
2035 	if (dev->speed < USB_SPEED_SUPER)
2036 		return -EINVAL;
2037 	if (dev->state < USB_STATE_CONFIGURED)
2038 		return -ENODEV;
2039 
2040 	for (i = 0; i < num_eps; i++) {
2041 		/* Streams only apply to bulk endpoints. */
2042 		if (!usb_endpoint_xfer_bulk(&eps[i]->desc))
2043 			return -EINVAL;
2044 		/* Re-alloc is not allowed */
2045 		if (eps[i]->streams)
2046 			return -EINVAL;
2047 	}
2048 
2049 	ret = hcd->driver->alloc_streams(hcd, dev, eps, num_eps,
2050 			num_streams, mem_flags);
2051 	if (ret < 0)
2052 		return ret;
2053 
2054 	for (i = 0; i < num_eps; i++)
2055 		eps[i]->streams = ret;
2056 
2057 	return ret;
2058 }
2059 EXPORT_SYMBOL_GPL(usb_alloc_streams);
2060 
2061 /**
2062  * usb_free_streams - free bulk endpoint stream IDs.
2063  * @interface:	alternate setting that includes all endpoints.
2064  * @eps:	array of endpoints to remove streams from.
2065  * @num_eps:	number of endpoints in the array.
2066  * @mem_flags:	flags hcd should use to allocate memory.
2067  *
2068  * Reverts a group of bulk endpoints back to not using stream IDs.
2069  * Can fail if we are given bad arguments, or HCD is broken.
2070  *
2071  * Return: 0 on success. On failure, a negative error code.
2072  */
2073 int usb_free_streams(struct usb_interface *interface,
2074 		struct usb_host_endpoint **eps, unsigned int num_eps,
2075 		gfp_t mem_flags)
2076 {
2077 	struct usb_hcd *hcd;
2078 	struct usb_device *dev;
2079 	int i, ret;
2080 
2081 	dev = interface_to_usbdev(interface);
2082 	hcd = bus_to_hcd(dev->bus);
2083 	if (dev->speed < USB_SPEED_SUPER)
2084 		return -EINVAL;
2085 
2086 	/* Double-free is not allowed */
2087 	for (i = 0; i < num_eps; i++)
2088 		if (!eps[i] || !eps[i]->streams)
2089 			return -EINVAL;
2090 
2091 	ret = hcd->driver->free_streams(hcd, dev, eps, num_eps, mem_flags);
2092 	if (ret < 0)
2093 		return ret;
2094 
2095 	for (i = 0; i < num_eps; i++)
2096 		eps[i]->streams = 0;
2097 
2098 	return ret;
2099 }
2100 EXPORT_SYMBOL_GPL(usb_free_streams);
2101 
2102 /* Protect against drivers that try to unlink URBs after the device
2103  * is gone, by waiting until all unlinks for @udev are finished.
2104  * Since we don't currently track URBs by device, simply wait until
2105  * nothing is running in the locked region of usb_hcd_unlink_urb().
2106  */
2107 void usb_hcd_synchronize_unlinks(struct usb_device *udev)
2108 {
2109 	spin_lock_irq(&hcd_urb_unlink_lock);
2110 	spin_unlock_irq(&hcd_urb_unlink_lock);
2111 }
2112 
2113 /*-------------------------------------------------------------------------*/
2114 
2115 /* called in any context */
2116 int usb_hcd_get_frame_number (struct usb_device *udev)
2117 {
2118 	struct usb_hcd	*hcd = bus_to_hcd(udev->bus);
2119 
2120 	if (!HCD_RH_RUNNING(hcd))
2121 		return -ESHUTDOWN;
2122 	return hcd->driver->get_frame_number (hcd);
2123 }
2124 
2125 /*-------------------------------------------------------------------------*/
2126 #ifdef CONFIG_USB_HCD_TEST_MODE
2127 
2128 static void usb_ehset_completion(struct urb *urb)
2129 {
2130 	struct completion  *done = urb->context;
2131 
2132 	complete(done);
2133 }
2134 /*
2135  * Allocate and initialize a control URB. This request will be used by the
2136  * EHSET SINGLE_STEP_SET_FEATURE test in which the DATA and STATUS stages
2137  * of the GetDescriptor request are sent 15 seconds after the SETUP stage.
2138  * Return NULL if failed.
2139  */
2140 static struct urb *request_single_step_set_feature_urb(
2141 	struct usb_device	*udev,
2142 	void			*dr,
2143 	void			*buf,
2144 	struct completion	*done)
2145 {
2146 	struct urb *urb;
2147 	struct usb_hcd *hcd = bus_to_hcd(udev->bus);
2148 
2149 	urb = usb_alloc_urb(0, GFP_KERNEL);
2150 	if (!urb)
2151 		return NULL;
2152 
2153 	urb->pipe = usb_rcvctrlpipe(udev, 0);
2154 
2155 	urb->ep = &udev->ep0;
2156 	urb->dev = udev;
2157 	urb->setup_packet = (void *)dr;
2158 	urb->transfer_buffer = buf;
2159 	urb->transfer_buffer_length = USB_DT_DEVICE_SIZE;
2160 	urb->complete = usb_ehset_completion;
2161 	urb->status = -EINPROGRESS;
2162 	urb->actual_length = 0;
2163 	urb->transfer_flags = URB_DIR_IN | URB_NO_TRANSFER_DMA_MAP;
2164 	usb_get_urb(urb);
2165 	atomic_inc(&urb->use_count);
2166 	atomic_inc(&urb->dev->urbnum);
2167 	if (map_urb_for_dma(hcd, urb, GFP_KERNEL)) {
2168 		usb_put_urb(urb);
2169 		usb_free_urb(urb);
2170 		return NULL;
2171 	}
2172 
2173 	urb->context = done;
2174 	return urb;
2175 }
2176 
2177 int ehset_single_step_set_feature(struct usb_hcd *hcd, int port)
2178 {
2179 	int retval = -ENOMEM;
2180 	struct usb_ctrlrequest *dr;
2181 	struct urb *urb;
2182 	struct usb_device *udev;
2183 	struct usb_device_descriptor *buf;
2184 	DECLARE_COMPLETION_ONSTACK(done);
2185 
2186 	/* Obtain udev of the rhub's child port */
2187 	udev = usb_hub_find_child(hcd->self.root_hub, port);
2188 	if (!udev) {
2189 		dev_err(hcd->self.controller, "No device attached to the RootHub\n");
2190 		return -ENODEV;
2191 	}
2192 	buf = kmalloc(USB_DT_DEVICE_SIZE, GFP_KERNEL);
2193 	if (!buf)
2194 		return -ENOMEM;
2195 
2196 	dr = kmalloc(sizeof(struct usb_ctrlrequest), GFP_KERNEL);
2197 	if (!dr) {
2198 		kfree(buf);
2199 		return -ENOMEM;
2200 	}
2201 
2202 	/* Fill Setup packet for GetDescriptor */
2203 	dr->bRequestType = USB_DIR_IN;
2204 	dr->bRequest = USB_REQ_GET_DESCRIPTOR;
2205 	dr->wValue = cpu_to_le16(USB_DT_DEVICE << 8);
2206 	dr->wIndex = 0;
2207 	dr->wLength = cpu_to_le16(USB_DT_DEVICE_SIZE);
2208 	urb = request_single_step_set_feature_urb(udev, dr, buf, &done);
2209 	if (!urb)
2210 		goto cleanup;
2211 
2212 	/* Submit just the SETUP stage */
2213 	retval = hcd->driver->submit_single_step_set_feature(hcd, urb, 1);
2214 	if (retval)
2215 		goto out1;
2216 	if (!wait_for_completion_timeout(&done, msecs_to_jiffies(2000))) {
2217 		usb_kill_urb(urb);
2218 		retval = -ETIMEDOUT;
2219 		dev_err(hcd->self.controller,
2220 			"%s SETUP stage timed out on ep0\n", __func__);
2221 		goto out1;
2222 	}
2223 	msleep(15 * 1000);
2224 
2225 	/* Complete remaining DATA and STATUS stages using the same URB */
2226 	urb->status = -EINPROGRESS;
2227 	urb->transfer_flags &= ~URB_NO_TRANSFER_DMA_MAP;
2228 	usb_get_urb(urb);
2229 	atomic_inc(&urb->use_count);
2230 	atomic_inc(&urb->dev->urbnum);
2231 	if (map_urb_for_dma(hcd, urb, GFP_KERNEL)) {
2232 		usb_put_urb(urb);
2233 		goto out1;
2234 	}
2235 
2236 	retval = hcd->driver->submit_single_step_set_feature(hcd, urb, 0);
2237 	if (!retval && !wait_for_completion_timeout(&done,
2238 						msecs_to_jiffies(2000))) {
2239 		usb_kill_urb(urb);
2240 		retval = -ETIMEDOUT;
2241 		dev_err(hcd->self.controller,
2242 			"%s IN stage timed out on ep0\n", __func__);
2243 	}
2244 out1:
2245 	usb_free_urb(urb);
2246 cleanup:
2247 	kfree(dr);
2248 	kfree(buf);
2249 	return retval;
2250 }
2251 EXPORT_SYMBOL_GPL(ehset_single_step_set_feature);
2252 #endif /* CONFIG_USB_HCD_TEST_MODE */
2253 
2254 /*-------------------------------------------------------------------------*/
2255 
2256 #ifdef	CONFIG_PM
2257 
2258 int hcd_bus_suspend(struct usb_device *rhdev, pm_message_t msg)
2259 {
2260 	struct usb_hcd	*hcd = bus_to_hcd(rhdev->bus);
2261 	int		status;
2262 	int		old_state = hcd->state;
2263 
2264 	dev_dbg(&rhdev->dev, "bus %ssuspend, wakeup %d\n",
2265 			(PMSG_IS_AUTO(msg) ? "auto-" : ""),
2266 			rhdev->do_remote_wakeup);
2267 	if (HCD_DEAD(hcd)) {
2268 		dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "suspend");
2269 		return 0;
2270 	}
2271 
2272 	if (!hcd->driver->bus_suspend) {
2273 		status = -ENOENT;
2274 	} else {
2275 		clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2276 		hcd->state = HC_STATE_QUIESCING;
2277 		status = hcd->driver->bus_suspend(hcd);
2278 	}
2279 	if (status == 0) {
2280 		usb_set_device_state(rhdev, USB_STATE_SUSPENDED);
2281 		hcd->state = HC_STATE_SUSPENDED;
2282 
2283 		if (!PMSG_IS_AUTO(msg))
2284 			usb_phy_roothub_suspend(hcd->self.sysdev,
2285 						hcd->phy_roothub);
2286 
2287 		/* Did we race with a root-hub wakeup event? */
2288 		if (rhdev->do_remote_wakeup) {
2289 			char	buffer[6];
2290 
2291 			status = hcd->driver->hub_status_data(hcd, buffer);
2292 			if (status != 0) {
2293 				dev_dbg(&rhdev->dev, "suspend raced with wakeup event\n");
2294 				hcd_bus_resume(rhdev, PMSG_AUTO_RESUME);
2295 				status = -EBUSY;
2296 			}
2297 		}
2298 	} else {
2299 		spin_lock_irq(&hcd_root_hub_lock);
2300 		if (!HCD_DEAD(hcd)) {
2301 			set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2302 			hcd->state = old_state;
2303 		}
2304 		spin_unlock_irq(&hcd_root_hub_lock);
2305 		dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2306 				"suspend", status);
2307 	}
2308 	return status;
2309 }
2310 
2311 int hcd_bus_resume(struct usb_device *rhdev, pm_message_t msg)
2312 {
2313 	struct usb_hcd	*hcd = bus_to_hcd(rhdev->bus);
2314 	int		status;
2315 	int		old_state = hcd->state;
2316 
2317 	dev_dbg(&rhdev->dev, "usb %sresume\n",
2318 			(PMSG_IS_AUTO(msg) ? "auto-" : ""));
2319 	if (HCD_DEAD(hcd)) {
2320 		dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "resume");
2321 		return 0;
2322 	}
2323 
2324 	if (!PMSG_IS_AUTO(msg)) {
2325 		status = usb_phy_roothub_resume(hcd->self.sysdev,
2326 						hcd->phy_roothub);
2327 		if (status)
2328 			return status;
2329 	}
2330 
2331 	if (!hcd->driver->bus_resume)
2332 		return -ENOENT;
2333 	if (HCD_RH_RUNNING(hcd))
2334 		return 0;
2335 
2336 	hcd->state = HC_STATE_RESUMING;
2337 	status = hcd->driver->bus_resume(hcd);
2338 	clear_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2339 	if (status == 0)
2340 		status = usb_phy_roothub_calibrate(hcd->phy_roothub);
2341 
2342 	if (status == 0) {
2343 		struct usb_device *udev;
2344 		int port1;
2345 
2346 		spin_lock_irq(&hcd_root_hub_lock);
2347 		if (!HCD_DEAD(hcd)) {
2348 			usb_set_device_state(rhdev, rhdev->actconfig
2349 					? USB_STATE_CONFIGURED
2350 					: USB_STATE_ADDRESS);
2351 			set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2352 			hcd->state = HC_STATE_RUNNING;
2353 		}
2354 		spin_unlock_irq(&hcd_root_hub_lock);
2355 
2356 		/*
2357 		 * Check whether any of the enabled ports on the root hub are
2358 		 * unsuspended.  If they are then a TRSMRCY delay is needed
2359 		 * (this is what the USB-2 spec calls a "global resume").
2360 		 * Otherwise we can skip the delay.
2361 		 */
2362 		usb_hub_for_each_child(rhdev, port1, udev) {
2363 			if (udev->state != USB_STATE_NOTATTACHED &&
2364 					!udev->port_is_suspended) {
2365 				usleep_range(10000, 11000);	/* TRSMRCY */
2366 				break;
2367 			}
2368 		}
2369 	} else {
2370 		hcd->state = old_state;
2371 		usb_phy_roothub_suspend(hcd->self.sysdev, hcd->phy_roothub);
2372 		dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2373 				"resume", status);
2374 		if (status != -ESHUTDOWN)
2375 			usb_hc_died(hcd);
2376 	}
2377 	return status;
2378 }
2379 
2380 /* Workqueue routine for root-hub remote wakeup */
2381 static void hcd_resume_work(struct work_struct *work)
2382 {
2383 	struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work);
2384 	struct usb_device *udev = hcd->self.root_hub;
2385 
2386 	usb_remote_wakeup(udev);
2387 }
2388 
2389 /**
2390  * usb_hcd_resume_root_hub - called by HCD to resume its root hub
2391  * @hcd: host controller for this root hub
2392  *
2393  * The USB host controller calls this function when its root hub is
2394  * suspended (with the remote wakeup feature enabled) and a remote
2395  * wakeup request is received.  The routine submits a workqueue request
2396  * to resume the root hub (that is, manage its downstream ports again).
2397  */
2398 void usb_hcd_resume_root_hub (struct usb_hcd *hcd)
2399 {
2400 	unsigned long flags;
2401 
2402 	spin_lock_irqsave (&hcd_root_hub_lock, flags);
2403 	if (hcd->rh_registered) {
2404 		pm_wakeup_event(&hcd->self.root_hub->dev, 0);
2405 		set_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2406 		queue_work(pm_wq, &hcd->wakeup_work);
2407 	}
2408 	spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2409 }
2410 EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub);
2411 
2412 #endif	/* CONFIG_PM */
2413 
2414 /*-------------------------------------------------------------------------*/
2415 
2416 #ifdef	CONFIG_USB_OTG
2417 
2418 /**
2419  * usb_bus_start_enum - start immediate enumeration (for OTG)
2420  * @bus: the bus (must use hcd framework)
2421  * @port_num: 1-based number of port; usually bus->otg_port
2422  * Context: atomic
2423  *
2424  * Starts enumeration, with an immediate reset followed later by
2425  * hub_wq identifying and possibly configuring the device.
2426  * This is needed by OTG controller drivers, where it helps meet
2427  * HNP protocol timing requirements for starting a port reset.
2428  *
2429  * Return: 0 if successful.
2430  */
2431 int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num)
2432 {
2433 	struct usb_hcd		*hcd;
2434 	int			status = -EOPNOTSUPP;
2435 
2436 	/* NOTE: since HNP can't start by grabbing the bus's address0_sem,
2437 	 * boards with root hubs hooked up to internal devices (instead of
2438 	 * just the OTG port) may need more attention to resetting...
2439 	 */
2440 	hcd = bus_to_hcd(bus);
2441 	if (port_num && hcd->driver->start_port_reset)
2442 		status = hcd->driver->start_port_reset(hcd, port_num);
2443 
2444 	/* allocate hub_wq shortly after (first) root port reset finishes;
2445 	 * it may issue others, until at least 50 msecs have passed.
2446 	 */
2447 	if (status == 0)
2448 		mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10));
2449 	return status;
2450 }
2451 EXPORT_SYMBOL_GPL(usb_bus_start_enum);
2452 
2453 #endif
2454 
2455 /*-------------------------------------------------------------------------*/
2456 
2457 /**
2458  * usb_hcd_irq - hook IRQs to HCD framework (bus glue)
2459  * @irq: the IRQ being raised
2460  * @__hcd: pointer to the HCD whose IRQ is being signaled
2461  *
2462  * If the controller isn't HALTed, calls the driver's irq handler.
2463  * Checks whether the controller is now dead.
2464  *
2465  * Return: %IRQ_HANDLED if the IRQ was handled. %IRQ_NONE otherwise.
2466  */
2467 irqreturn_t usb_hcd_irq (int irq, void *__hcd)
2468 {
2469 	struct usb_hcd		*hcd = __hcd;
2470 	irqreturn_t		rc;
2471 
2472 	if (unlikely(HCD_DEAD(hcd) || !HCD_HW_ACCESSIBLE(hcd)))
2473 		rc = IRQ_NONE;
2474 	else if (hcd->driver->irq(hcd) == IRQ_NONE)
2475 		rc = IRQ_NONE;
2476 	else
2477 		rc = IRQ_HANDLED;
2478 
2479 	return rc;
2480 }
2481 EXPORT_SYMBOL_GPL(usb_hcd_irq);
2482 
2483 /*-------------------------------------------------------------------------*/
2484 
2485 /* Workqueue routine for when the root-hub has died. */
2486 static void hcd_died_work(struct work_struct *work)
2487 {
2488 	struct usb_hcd *hcd = container_of(work, struct usb_hcd, died_work);
2489 	static char *env[] = {
2490 		"ERROR=DEAD",
2491 		NULL
2492 	};
2493 
2494 	/* Notify user space that the host controller has died */
2495 	kobject_uevent_env(&hcd->self.root_hub->dev.kobj, KOBJ_OFFLINE, env);
2496 }
2497 
2498 /**
2499  * usb_hc_died - report abnormal shutdown of a host controller (bus glue)
2500  * @hcd: pointer to the HCD representing the controller
2501  *
2502  * This is called by bus glue to report a USB host controller that died
2503  * while operations may still have been pending.  It's called automatically
2504  * by the PCI glue, so only glue for non-PCI busses should need to call it.
2505  *
2506  * Only call this function with the primary HCD.
2507  */
2508 void usb_hc_died (struct usb_hcd *hcd)
2509 {
2510 	unsigned long flags;
2511 
2512 	dev_err (hcd->self.controller, "HC died; cleaning up\n");
2513 
2514 	spin_lock_irqsave (&hcd_root_hub_lock, flags);
2515 	clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2516 	set_bit(HCD_FLAG_DEAD, &hcd->flags);
2517 	if (hcd->rh_registered) {
2518 		clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2519 
2520 		/* make hub_wq clean up old urbs and devices */
2521 		usb_set_device_state (hcd->self.root_hub,
2522 				USB_STATE_NOTATTACHED);
2523 		usb_kick_hub_wq(hcd->self.root_hub);
2524 	}
2525 	if (usb_hcd_is_primary_hcd(hcd) && hcd->shared_hcd) {
2526 		hcd = hcd->shared_hcd;
2527 		clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2528 		set_bit(HCD_FLAG_DEAD, &hcd->flags);
2529 		if (hcd->rh_registered) {
2530 			clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2531 
2532 			/* make hub_wq clean up old urbs and devices */
2533 			usb_set_device_state(hcd->self.root_hub,
2534 					USB_STATE_NOTATTACHED);
2535 			usb_kick_hub_wq(hcd->self.root_hub);
2536 		}
2537 	}
2538 
2539 	/* Handle the case where this function gets called with a shared HCD */
2540 	if (usb_hcd_is_primary_hcd(hcd))
2541 		schedule_work(&hcd->died_work);
2542 	else
2543 		schedule_work(&hcd->primary_hcd->died_work);
2544 
2545 	spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2546 	/* Make sure that the other roothub is also deallocated. */
2547 }
2548 EXPORT_SYMBOL_GPL (usb_hc_died);
2549 
2550 /*-------------------------------------------------------------------------*/
2551 
2552 static void init_giveback_urb_bh(struct giveback_urb_bh *bh)
2553 {
2554 
2555 	spin_lock_init(&bh->lock);
2556 	INIT_LIST_HEAD(&bh->head);
2557 	INIT_WORK(&bh->bh, usb_giveback_urb_bh);
2558 }
2559 
2560 struct usb_hcd *__usb_create_hcd(const struct hc_driver *driver,
2561 		struct device *sysdev, struct device *dev, const char *bus_name,
2562 		struct usb_hcd *primary_hcd)
2563 {
2564 	struct usb_hcd *hcd;
2565 
2566 	hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL);
2567 	if (!hcd)
2568 		return NULL;
2569 	if (primary_hcd == NULL) {
2570 		hcd->address0_mutex = kmalloc(sizeof(*hcd->address0_mutex),
2571 				GFP_KERNEL);
2572 		if (!hcd->address0_mutex) {
2573 			kfree(hcd);
2574 			dev_dbg(dev, "hcd address0 mutex alloc failed\n");
2575 			return NULL;
2576 		}
2577 		mutex_init(hcd->address0_mutex);
2578 		hcd->bandwidth_mutex = kmalloc(sizeof(*hcd->bandwidth_mutex),
2579 				GFP_KERNEL);
2580 		if (!hcd->bandwidth_mutex) {
2581 			kfree(hcd->address0_mutex);
2582 			kfree(hcd);
2583 			dev_dbg(dev, "hcd bandwidth mutex alloc failed\n");
2584 			return NULL;
2585 		}
2586 		mutex_init(hcd->bandwidth_mutex);
2587 		dev_set_drvdata(dev, hcd);
2588 	} else {
2589 		mutex_lock(&usb_port_peer_mutex);
2590 		hcd->address0_mutex = primary_hcd->address0_mutex;
2591 		hcd->bandwidth_mutex = primary_hcd->bandwidth_mutex;
2592 		hcd->primary_hcd = primary_hcd;
2593 		primary_hcd->primary_hcd = primary_hcd;
2594 		hcd->shared_hcd = primary_hcd;
2595 		primary_hcd->shared_hcd = hcd;
2596 		mutex_unlock(&usb_port_peer_mutex);
2597 	}
2598 
2599 	kref_init(&hcd->kref);
2600 
2601 	usb_bus_init(&hcd->self);
2602 	hcd->self.controller = dev;
2603 	hcd->self.sysdev = sysdev;
2604 	hcd->self.bus_name = bus_name;
2605 
2606 	timer_setup(&hcd->rh_timer, rh_timer_func, 0);
2607 #ifdef CONFIG_PM
2608 	INIT_WORK(&hcd->wakeup_work, hcd_resume_work);
2609 #endif
2610 
2611 	INIT_WORK(&hcd->died_work, hcd_died_work);
2612 
2613 	hcd->driver = driver;
2614 	hcd->speed = driver->flags & HCD_MASK;
2615 	hcd->product_desc = (driver->product_desc) ? driver->product_desc :
2616 			"USB Host Controller";
2617 	return hcd;
2618 }
2619 EXPORT_SYMBOL_GPL(__usb_create_hcd);
2620 
2621 /**
2622  * usb_create_shared_hcd - create and initialize an HCD structure
2623  * @driver: HC driver that will use this hcd
2624  * @dev: device for this HC, stored in hcd->self.controller
2625  * @bus_name: value to store in hcd->self.bus_name
2626  * @primary_hcd: a pointer to the usb_hcd structure that is sharing the
2627  *              PCI device.  Only allocate certain resources for the primary HCD
2628  *
2629  * Context: task context, might sleep.
2630  *
2631  * Allocate a struct usb_hcd, with extra space at the end for the
2632  * HC driver's private data.  Initialize the generic members of the
2633  * hcd structure.
2634  *
2635  * Return: On success, a pointer to the created and initialized HCD structure.
2636  * On failure (e.g. if memory is unavailable), %NULL.
2637  */
2638 struct usb_hcd *usb_create_shared_hcd(const struct hc_driver *driver,
2639 		struct device *dev, const char *bus_name,
2640 		struct usb_hcd *primary_hcd)
2641 {
2642 	return __usb_create_hcd(driver, dev, dev, bus_name, primary_hcd);
2643 }
2644 EXPORT_SYMBOL_GPL(usb_create_shared_hcd);
2645 
2646 /**
2647  * usb_create_hcd - create and initialize an HCD structure
2648  * @driver: HC driver that will use this hcd
2649  * @dev: device for this HC, stored in hcd->self.controller
2650  * @bus_name: value to store in hcd->self.bus_name
2651  *
2652  * Context: task context, might sleep.
2653  *
2654  * Allocate a struct usb_hcd, with extra space at the end for the
2655  * HC driver's private data.  Initialize the generic members of the
2656  * hcd structure.
2657  *
2658  * Return: On success, a pointer to the created and initialized HCD
2659  * structure. On failure (e.g. if memory is unavailable), %NULL.
2660  */
2661 struct usb_hcd *usb_create_hcd(const struct hc_driver *driver,
2662 		struct device *dev, const char *bus_name)
2663 {
2664 	return __usb_create_hcd(driver, dev, dev, bus_name, NULL);
2665 }
2666 EXPORT_SYMBOL_GPL(usb_create_hcd);
2667 
2668 /*
2669  * Roothubs that share one PCI device must also share the bandwidth mutex.
2670  * Don't deallocate the bandwidth_mutex until the last shared usb_hcd is
2671  * deallocated.
2672  *
2673  * Make sure to deallocate the bandwidth_mutex only when the last HCD is
2674  * freed.  When hcd_release() is called for either hcd in a peer set,
2675  * invalidate the peer's ->shared_hcd and ->primary_hcd pointers.
2676  */
2677 static void hcd_release(struct kref *kref)
2678 {
2679 	struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref);
2680 
2681 	mutex_lock(&usb_port_peer_mutex);
2682 	if (hcd->shared_hcd) {
2683 		struct usb_hcd *peer = hcd->shared_hcd;
2684 
2685 		peer->shared_hcd = NULL;
2686 		peer->primary_hcd = NULL;
2687 	} else {
2688 		kfree(hcd->address0_mutex);
2689 		kfree(hcd->bandwidth_mutex);
2690 	}
2691 	mutex_unlock(&usb_port_peer_mutex);
2692 	kfree(hcd);
2693 }
2694 
2695 struct usb_hcd *usb_get_hcd(struct usb_hcd *hcd)
2696 {
2697 	if (hcd)
2698 		kref_get(&hcd->kref);
2699 	return hcd;
2700 }
2701 EXPORT_SYMBOL_GPL(usb_get_hcd);
2702 
2703 void usb_put_hcd(struct usb_hcd *hcd)
2704 {
2705 	if (hcd)
2706 		kref_put(&hcd->kref, hcd_release);
2707 }
2708 EXPORT_SYMBOL_GPL(usb_put_hcd);
2709 
2710 int usb_hcd_is_primary_hcd(struct usb_hcd *hcd)
2711 {
2712 	if (!hcd->primary_hcd)
2713 		return 1;
2714 	return hcd == hcd->primary_hcd;
2715 }
2716 EXPORT_SYMBOL_GPL(usb_hcd_is_primary_hcd);
2717 
2718 int usb_hcd_find_raw_port_number(struct usb_hcd *hcd, int port1)
2719 {
2720 	if (!hcd->driver->find_raw_port_number)
2721 		return port1;
2722 
2723 	return hcd->driver->find_raw_port_number(hcd, port1);
2724 }
2725 
2726 static int usb_hcd_request_irqs(struct usb_hcd *hcd,
2727 		unsigned int irqnum, unsigned long irqflags)
2728 {
2729 	int retval;
2730 
2731 	if (hcd->driver->irq) {
2732 
2733 		snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
2734 				hcd->driver->description, hcd->self.busnum);
2735 		retval = request_irq(irqnum, &usb_hcd_irq, irqflags,
2736 				hcd->irq_descr, hcd);
2737 		if (retval != 0) {
2738 			dev_err(hcd->self.controller,
2739 					"request interrupt %d failed\n",
2740 					irqnum);
2741 			return retval;
2742 		}
2743 		hcd->irq = irqnum;
2744 		dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum,
2745 				(hcd->driver->flags & HCD_MEMORY) ?
2746 					"io mem" : "io port",
2747 				(unsigned long long)hcd->rsrc_start);
2748 	} else {
2749 		hcd->irq = 0;
2750 		if (hcd->rsrc_start)
2751 			dev_info(hcd->self.controller, "%s 0x%08llx\n",
2752 					(hcd->driver->flags & HCD_MEMORY) ?
2753 						"io mem" : "io port",
2754 					(unsigned long long)hcd->rsrc_start);
2755 	}
2756 	return 0;
2757 }
2758 
2759 /*
2760  * Before we free this root hub, flush in-flight peering attempts
2761  * and disable peer lookups
2762  */
2763 static void usb_put_invalidate_rhdev(struct usb_hcd *hcd)
2764 {
2765 	struct usb_device *rhdev;
2766 
2767 	mutex_lock(&usb_port_peer_mutex);
2768 	rhdev = hcd->self.root_hub;
2769 	hcd->self.root_hub = NULL;
2770 	mutex_unlock(&usb_port_peer_mutex);
2771 	usb_put_dev(rhdev);
2772 }
2773 
2774 /**
2775  * usb_stop_hcd - Halt the HCD
2776  * @hcd: the usb_hcd that has to be halted
2777  *
2778  * Stop the root-hub polling timer and invoke the HCD's ->stop callback.
2779  */
2780 static void usb_stop_hcd(struct usb_hcd *hcd)
2781 {
2782 	hcd->rh_pollable = 0;
2783 	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2784 	timer_delete_sync(&hcd->rh_timer);
2785 
2786 	hcd->driver->stop(hcd);
2787 	hcd->state = HC_STATE_HALT;
2788 
2789 	/* In case the HCD restarted the timer, stop it again. */
2790 	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2791 	timer_delete_sync(&hcd->rh_timer);
2792 }
2793 
2794 /**
2795  * usb_add_hcd - finish generic HCD structure initialization and register
2796  * @hcd: the usb_hcd structure to initialize
2797  * @irqnum: Interrupt line to allocate
2798  * @irqflags: Interrupt type flags
2799  *
2800  * Finish the remaining parts of generic HCD initialization: allocate the
2801  * buffers of consistent memory, register the bus, request the IRQ line,
2802  * and call the driver's reset() and start() routines.
2803  */
2804 int usb_add_hcd(struct usb_hcd *hcd,
2805 		unsigned int irqnum, unsigned long irqflags)
2806 {
2807 	int retval;
2808 	struct usb_device *rhdev;
2809 	struct usb_hcd *shared_hcd;
2810 	int skip_phy_initialization;
2811 
2812 	if (usb_hcd_is_primary_hcd(hcd))
2813 		skip_phy_initialization = hcd->skip_phy_initialization;
2814 	else
2815 		skip_phy_initialization = hcd->primary_hcd->skip_phy_initialization;
2816 
2817 	if (!skip_phy_initialization) {
2818 		if (usb_hcd_is_primary_hcd(hcd)) {
2819 			hcd->phy_roothub = usb_phy_roothub_alloc(hcd->self.sysdev);
2820 			if (IS_ERR(hcd->phy_roothub))
2821 				return PTR_ERR(hcd->phy_roothub);
2822 		} else {
2823 			hcd->phy_roothub = usb_phy_roothub_alloc_usb3_phy(hcd->self.sysdev);
2824 			if (IS_ERR(hcd->phy_roothub))
2825 				return PTR_ERR(hcd->phy_roothub);
2826 		}
2827 
2828 		retval = usb_phy_roothub_init(hcd->phy_roothub);
2829 		if (retval)
2830 			return retval;
2831 
2832 		retval = usb_phy_roothub_set_mode(hcd->phy_roothub,
2833 						  PHY_MODE_USB_HOST_SS);
2834 		if (retval)
2835 			retval = usb_phy_roothub_set_mode(hcd->phy_roothub,
2836 							  PHY_MODE_USB_HOST);
2837 		if (retval)
2838 			goto err_usb_phy_roothub_power_on;
2839 
2840 		retval = usb_phy_roothub_power_on(hcd->phy_roothub);
2841 		if (retval)
2842 			goto err_usb_phy_roothub_power_on;
2843 	}
2844 
2845 	dev_info(hcd->self.controller, "%s\n", hcd->product_desc);
2846 
2847 	switch (authorized_default) {
2848 	case USB_AUTHORIZE_NONE:
2849 		hcd->dev_policy = USB_DEVICE_AUTHORIZE_NONE;
2850 		break;
2851 
2852 	case USB_AUTHORIZE_INTERNAL:
2853 		hcd->dev_policy = USB_DEVICE_AUTHORIZE_INTERNAL;
2854 		break;
2855 
2856 	case USB_AUTHORIZE_ALL:
2857 	case USB_AUTHORIZE_WIRED:
2858 	default:
2859 		hcd->dev_policy = USB_DEVICE_AUTHORIZE_ALL;
2860 		break;
2861 	}
2862 
2863 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
2864 
2865 	/* per default all interfaces are authorized */
2866 	set_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags);
2867 
2868 	/* HC is in reset state, but accessible.  Now do the one-time init,
2869 	 * bottom up so that hcds can customize the root hubs before hub_wq
2870 	 * starts talking to them.  (Note, bus id is assigned early too.)
2871 	 */
2872 	retval = hcd_buffer_create(hcd);
2873 	if (retval != 0) {
2874 		dev_dbg(hcd->self.sysdev, "pool alloc failed\n");
2875 		goto err_create_buf;
2876 	}
2877 
2878 	retval = usb_register_bus(&hcd->self);
2879 	if (retval < 0)
2880 		goto err_register_bus;
2881 
2882 	rhdev = usb_alloc_dev(NULL, &hcd->self, 0);
2883 	if (rhdev == NULL) {
2884 		dev_err(hcd->self.sysdev, "unable to allocate root hub\n");
2885 		retval = -ENOMEM;
2886 		goto err_allocate_root_hub;
2887 	}
2888 	mutex_lock(&usb_port_peer_mutex);
2889 	hcd->self.root_hub = rhdev;
2890 	mutex_unlock(&usb_port_peer_mutex);
2891 
2892 	rhdev->rx_lanes = 1;
2893 	rhdev->tx_lanes = 1;
2894 	rhdev->ssp_rate = USB_SSP_GEN_UNKNOWN;
2895 
2896 	switch (hcd->speed) {
2897 	case HCD_USB11:
2898 		rhdev->speed = USB_SPEED_FULL;
2899 		break;
2900 	case HCD_USB2:
2901 		rhdev->speed = USB_SPEED_HIGH;
2902 		break;
2903 	case HCD_USB3:
2904 		rhdev->speed = USB_SPEED_SUPER;
2905 		break;
2906 	case HCD_USB32:
2907 		rhdev->rx_lanes = 2;
2908 		rhdev->tx_lanes = 2;
2909 		rhdev->ssp_rate = USB_SSP_GEN_2x2;
2910 		rhdev->speed = USB_SPEED_SUPER_PLUS;
2911 		break;
2912 	case HCD_USB31:
2913 		rhdev->ssp_rate = USB_SSP_GEN_2x1;
2914 		rhdev->speed = USB_SPEED_SUPER_PLUS;
2915 		break;
2916 	default:
2917 		retval = -EINVAL;
2918 		goto err_set_rh_speed;
2919 	}
2920 
2921 	/* wakeup flag init defaults to "everything works" for root hubs,
2922 	 * but drivers can override it in reset() if needed, along with
2923 	 * recording the overall controller's system wakeup capability.
2924 	 */
2925 	device_set_wakeup_capable(&rhdev->dev, 1);
2926 
2927 	/* HCD_FLAG_RH_RUNNING doesn't matter until the root hub is
2928 	 * registered.  But since the controller can die at any time,
2929 	 * let's initialize the flag before touching the hardware.
2930 	 */
2931 	set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2932 
2933 	/* "reset" is misnamed; its role is now one-time init. the controller
2934 	 * should already have been reset (and boot firmware kicked off etc).
2935 	 */
2936 	if (hcd->driver->reset) {
2937 		retval = hcd->driver->reset(hcd);
2938 		if (retval < 0) {
2939 			dev_err(hcd->self.controller, "can't setup: %d\n",
2940 					retval);
2941 			goto err_hcd_driver_setup;
2942 		}
2943 	}
2944 	hcd->rh_pollable = 1;
2945 
2946 	retval = usb_phy_roothub_calibrate(hcd->phy_roothub);
2947 	if (retval)
2948 		goto err_hcd_driver_setup;
2949 
2950 	/* NOTE: root hub and controller capabilities may not be the same */
2951 	if (device_can_wakeup(hcd->self.controller)
2952 			&& device_can_wakeup(&hcd->self.root_hub->dev))
2953 		dev_dbg(hcd->self.controller, "supports USB remote wakeup\n");
2954 
2955 	/* initialize BHs */
2956 	init_giveback_urb_bh(&hcd->high_prio_bh);
2957 	hcd->high_prio_bh.high_prio = true;
2958 	init_giveback_urb_bh(&hcd->low_prio_bh);
2959 
2960 	/* enable irqs just before we start the controller,
2961 	 * if the BIOS provides legacy PCI irqs.
2962 	 */
2963 	if (usb_hcd_is_primary_hcd(hcd) && irqnum) {
2964 		retval = usb_hcd_request_irqs(hcd, irqnum, irqflags);
2965 		if (retval)
2966 			goto err_request_irq;
2967 	}
2968 
2969 	hcd->state = HC_STATE_RUNNING;
2970 	retval = hcd->driver->start(hcd);
2971 	if (retval < 0) {
2972 		dev_err(hcd->self.controller, "startup error %d\n", retval);
2973 		goto err_hcd_driver_start;
2974 	}
2975 
2976 	/* starting here, usbcore will pay attention to the shared HCD roothub */
2977 	shared_hcd = hcd->shared_hcd;
2978 	if (!usb_hcd_is_primary_hcd(hcd) && shared_hcd && HCD_DEFER_RH_REGISTER(shared_hcd)) {
2979 		retval = register_root_hub(shared_hcd);
2980 		if (retval != 0)
2981 			goto err_register_root_hub;
2982 
2983 		if (shared_hcd->uses_new_polling && HCD_POLL_RH(shared_hcd))
2984 			usb_hcd_poll_rh_status(shared_hcd);
2985 	}
2986 
2987 	/* starting here, usbcore will pay attention to this root hub */
2988 	if (!HCD_DEFER_RH_REGISTER(hcd)) {
2989 		retval = register_root_hub(hcd);
2990 		if (retval != 0)
2991 			goto err_register_root_hub;
2992 
2993 		if (hcd->uses_new_polling && HCD_POLL_RH(hcd))
2994 			usb_hcd_poll_rh_status(hcd);
2995 	}
2996 
2997 	return retval;
2998 
2999 err_register_root_hub:
3000 	usb_stop_hcd(hcd);
3001 err_hcd_driver_start:
3002 	if (usb_hcd_is_primary_hcd(hcd) && hcd->irq > 0)
3003 		free_irq(irqnum, hcd);
3004 err_request_irq:
3005 err_hcd_driver_setup:
3006 err_set_rh_speed:
3007 	usb_put_invalidate_rhdev(hcd);
3008 err_allocate_root_hub:
3009 	usb_deregister_bus(&hcd->self);
3010 err_register_bus:
3011 	hcd_buffer_destroy(hcd);
3012 err_create_buf:
3013 	usb_phy_roothub_power_off(hcd->phy_roothub);
3014 err_usb_phy_roothub_power_on:
3015 	usb_phy_roothub_exit(hcd->phy_roothub);
3016 
3017 	return retval;
3018 }
3019 EXPORT_SYMBOL_GPL(usb_add_hcd);
3020 
3021 /**
3022  * usb_remove_hcd - shutdown processing for generic HCDs
3023  * @hcd: the usb_hcd structure to remove
3024  *
3025  * Context: task context, might sleep.
3026  *
3027  * Disconnects the root hub, then reverses the effects of usb_add_hcd(),
3028  * invoking the HCD's stop() method.
3029  */
3030 void usb_remove_hcd(struct usb_hcd *hcd)
3031 {
3032 	struct usb_device *rhdev;
3033 	bool rh_registered;
3034 
3035 	if (!hcd) {
3036 		pr_debug("%s: hcd is NULL\n", __func__);
3037 		return;
3038 	}
3039 	rhdev = hcd->self.root_hub;
3040 
3041 	dev_info(hcd->self.controller, "remove, state %x\n", hcd->state);
3042 
3043 	usb_get_dev(rhdev);
3044 	clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
3045 	if (HC_IS_RUNNING (hcd->state))
3046 		hcd->state = HC_STATE_QUIESCING;
3047 
3048 	dev_dbg(hcd->self.controller, "roothub graceful disconnect\n");
3049 	spin_lock_irq (&hcd_root_hub_lock);
3050 	rh_registered = hcd->rh_registered;
3051 	hcd->rh_registered = 0;
3052 	spin_unlock_irq (&hcd_root_hub_lock);
3053 
3054 #ifdef CONFIG_PM
3055 	cancel_work_sync(&hcd->wakeup_work);
3056 #endif
3057 	cancel_work_sync(&hcd->died_work);
3058 
3059 	mutex_lock(&usb_bus_idr_lock);
3060 	if (rh_registered)
3061 		usb_disconnect(&rhdev);		/* Sets rhdev to NULL */
3062 	mutex_unlock(&usb_bus_idr_lock);
3063 
3064 	/*
3065 	 * flush_work() isn't needed here because:
3066 	 * - driver's disconnect() called from usb_disconnect() should
3067 	 *   make sure its URBs are completed during the disconnect()
3068 	 *   callback
3069 	 *
3070 	 * - it is too late to run complete() here since driver may have
3071 	 *   been removed already now
3072 	 */
3073 
3074 	/* Prevent any more root-hub status calls from the timer.
3075 	 * The HCD might still restart the timer (if a port status change
3076 	 * interrupt occurs), but usb_hcd_poll_rh_status() won't invoke
3077 	 * the hub_status_data() callback.
3078 	 */
3079 	usb_stop_hcd(hcd);
3080 
3081 	if (usb_hcd_is_primary_hcd(hcd)) {
3082 		if (hcd->irq > 0)
3083 			free_irq(hcd->irq, hcd);
3084 	}
3085 
3086 	usb_deregister_bus(&hcd->self);
3087 	hcd_buffer_destroy(hcd);
3088 
3089 	usb_phy_roothub_power_off(hcd->phy_roothub);
3090 	usb_phy_roothub_exit(hcd->phy_roothub);
3091 
3092 	usb_put_invalidate_rhdev(hcd);
3093 	hcd->flags = 0;
3094 }
3095 EXPORT_SYMBOL_GPL(usb_remove_hcd);
3096 
3097 void
3098 usb_hcd_platform_shutdown(struct platform_device *dev)
3099 {
3100 	struct usb_hcd *hcd = platform_get_drvdata(dev);
3101 
3102 	/* No need for pm_runtime_put(), we're shutting down */
3103 	pm_runtime_get_sync(&dev->dev);
3104 
3105 	if (hcd->driver->shutdown)
3106 		hcd->driver->shutdown(hcd);
3107 }
3108 EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown);
3109 
3110 int usb_hcd_setup_local_mem(struct usb_hcd *hcd, phys_addr_t phys_addr,
3111 			    dma_addr_t dma, size_t size)
3112 {
3113 	int err;
3114 	void *local_mem;
3115 
3116 	hcd->localmem_pool = devm_gen_pool_create(hcd->self.sysdev, 4,
3117 						  dev_to_node(hcd->self.sysdev),
3118 						  dev_name(hcd->self.sysdev));
3119 	if (IS_ERR(hcd->localmem_pool))
3120 		return PTR_ERR(hcd->localmem_pool);
3121 
3122 	/*
3123 	 * if a physical SRAM address was passed, map it, otherwise
3124 	 * allocate system memory as a buffer.
3125 	 */
3126 	if (phys_addr)
3127 		local_mem = devm_memremap(hcd->self.sysdev, phys_addr,
3128 					  size, MEMREMAP_WC);
3129 	else
3130 		local_mem = dmam_alloc_attrs(hcd->self.sysdev, size, &dma,
3131 					     GFP_KERNEL,
3132 					     DMA_ATTR_WRITE_COMBINE);
3133 
3134 	if (IS_ERR_OR_NULL(local_mem)) {
3135 		if (!local_mem)
3136 			return -ENOMEM;
3137 
3138 		return PTR_ERR(local_mem);
3139 	}
3140 
3141 	/*
3142 	 * Here we pass a dma_addr_t but the arg type is a phys_addr_t.
3143 	 * It's not backed by system memory and thus there's no kernel mapping
3144 	 * for it.
3145 	 */
3146 	err = gen_pool_add_virt(hcd->localmem_pool, (unsigned long)local_mem,
3147 				dma, size, dev_to_node(hcd->self.sysdev));
3148 	if (err < 0) {
3149 		dev_err(hcd->self.sysdev, "gen_pool_add_virt failed with %d\n",
3150 			err);
3151 		return err;
3152 	}
3153 
3154 	return 0;
3155 }
3156 EXPORT_SYMBOL_GPL(usb_hcd_setup_local_mem);
3157 
3158 /*-------------------------------------------------------------------------*/
3159 
3160 #if IS_ENABLED(CONFIG_USB_MON)
3161 
3162 const struct usb_mon_operations *mon_ops;
3163 
3164 /*
3165  * The registration is unlocked.
3166  * We do it this way because we do not want to lock in hot paths.
3167  *
3168  * Notice that the code is minimally error-proof. Because usbmon needs
3169  * symbols from usbcore, usbcore gets referenced and cannot be unloaded first.
3170  */
3171 
3172 int usb_mon_register(const struct usb_mon_operations *ops)
3173 {
3174 
3175 	if (mon_ops)
3176 		return -EBUSY;
3177 
3178 	mon_ops = ops;
3179 	mb();
3180 	return 0;
3181 }
3182 EXPORT_SYMBOL_GPL (usb_mon_register);
3183 
3184 void usb_mon_deregister (void)
3185 {
3186 
3187 	if (mon_ops == NULL) {
3188 		printk(KERN_ERR "USB: monitor was not registered\n");
3189 		return;
3190 	}
3191 	mon_ops = NULL;
3192 	mb();
3193 }
3194 EXPORT_SYMBOL_GPL (usb_mon_deregister);
3195 
3196 #endif /* CONFIG_USB_MON || CONFIG_USB_MON_MODULE */
3197