1 /* 2 * (C) Copyright Linus Torvalds 1999 3 * (C) Copyright Johannes Erdfelt 1999-2001 4 * (C) Copyright Andreas Gal 1999 5 * (C) Copyright Gregory P. Smith 1999 6 * (C) Copyright Deti Fliegl 1999 7 * (C) Copyright Randy Dunlap 2000 8 * (C) Copyright David Brownell 2000-2002 9 * 10 * This program is free software; you can redistribute it and/or modify it 11 * under the terms of the GNU General Public License as published by the 12 * Free Software Foundation; either version 2 of the License, or (at your 13 * option) any later version. 14 * 15 * This program is distributed in the hope that it will be useful, but 16 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 17 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 18 * for more details. 19 * 20 * You should have received a copy of the GNU General Public License 21 * along with this program; if not, write to the Free Software Foundation, 22 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 23 */ 24 25 #include <linux/bcd.h> 26 #include <linux/module.h> 27 #include <linux/version.h> 28 #include <linux/kernel.h> 29 #include <linux/slab.h> 30 #include <linux/completion.h> 31 #include <linux/utsname.h> 32 #include <linux/mm.h> 33 #include <asm/io.h> 34 #include <linux/device.h> 35 #include <linux/dma-mapping.h> 36 #include <linux/mutex.h> 37 #include <asm/irq.h> 38 #include <asm/byteorder.h> 39 #include <asm/unaligned.h> 40 #include <linux/platform_device.h> 41 #include <linux/workqueue.h> 42 #include <linux/pm_runtime.h> 43 44 #include <linux/usb.h> 45 #include <linux/usb/hcd.h> 46 47 #include "usb.h" 48 49 50 /*-------------------------------------------------------------------------*/ 51 52 /* 53 * USB Host Controller Driver framework 54 * 55 * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing 56 * HCD-specific behaviors/bugs. 57 * 58 * This does error checks, tracks devices and urbs, and delegates to a 59 * "hc_driver" only for code (and data) that really needs to know about 60 * hardware differences. That includes root hub registers, i/o queues, 61 * and so on ... but as little else as possible. 62 * 63 * Shared code includes most of the "root hub" code (these are emulated, 64 * though each HC's hardware works differently) and PCI glue, plus request 65 * tracking overhead. The HCD code should only block on spinlocks or on 66 * hardware handshaking; blocking on software events (such as other kernel 67 * threads releasing resources, or completing actions) is all generic. 68 * 69 * Happens the USB 2.0 spec says this would be invisible inside the "USBD", 70 * and includes mostly a "HCDI" (HCD Interface) along with some APIs used 71 * only by the hub driver ... and that neither should be seen or used by 72 * usb client device drivers. 73 * 74 * Contributors of ideas or unattributed patches include: David Brownell, 75 * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ... 76 * 77 * HISTORY: 78 * 2002-02-21 Pull in most of the usb_bus support from usb.c; some 79 * associated cleanup. "usb_hcd" still != "usb_bus". 80 * 2001-12-12 Initial patch version for Linux 2.5.1 kernel. 81 */ 82 83 /*-------------------------------------------------------------------------*/ 84 85 /* Keep track of which host controller drivers are loaded */ 86 unsigned long usb_hcds_loaded; 87 EXPORT_SYMBOL_GPL(usb_hcds_loaded); 88 89 /* host controllers we manage */ 90 LIST_HEAD (usb_bus_list); 91 EXPORT_SYMBOL_GPL (usb_bus_list); 92 93 /* used when allocating bus numbers */ 94 #define USB_MAXBUS 64 95 struct usb_busmap { 96 unsigned long busmap [USB_MAXBUS / (8*sizeof (unsigned long))]; 97 }; 98 static struct usb_busmap busmap; 99 100 /* used when updating list of hcds */ 101 DEFINE_MUTEX(usb_bus_list_lock); /* exported only for usbfs */ 102 EXPORT_SYMBOL_GPL (usb_bus_list_lock); 103 104 /* used for controlling access to virtual root hubs */ 105 static DEFINE_SPINLOCK(hcd_root_hub_lock); 106 107 /* used when updating an endpoint's URB list */ 108 static DEFINE_SPINLOCK(hcd_urb_list_lock); 109 110 /* used to protect against unlinking URBs after the device is gone */ 111 static DEFINE_SPINLOCK(hcd_urb_unlink_lock); 112 113 /* wait queue for synchronous unlinks */ 114 DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue); 115 116 static inline int is_root_hub(struct usb_device *udev) 117 { 118 return (udev->parent == NULL); 119 } 120 121 /*-------------------------------------------------------------------------*/ 122 123 /* 124 * Sharable chunks of root hub code. 125 */ 126 127 /*-------------------------------------------------------------------------*/ 128 #define KERNEL_REL bin2bcd(((LINUX_VERSION_CODE >> 16) & 0x0ff)) 129 #define KERNEL_VER bin2bcd(((LINUX_VERSION_CODE >> 8) & 0x0ff)) 130 131 /* usb 3.0 root hub device descriptor */ 132 static const u8 usb3_rh_dev_descriptor[18] = { 133 0x12, /* __u8 bLength; */ 134 0x01, /* __u8 bDescriptorType; Device */ 135 0x00, 0x03, /* __le16 bcdUSB; v3.0 */ 136 137 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */ 138 0x00, /* __u8 bDeviceSubClass; */ 139 0x03, /* __u8 bDeviceProtocol; USB 3.0 hub */ 140 0x09, /* __u8 bMaxPacketSize0; 2^9 = 512 Bytes */ 141 142 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */ 143 0x03, 0x00, /* __le16 idProduct; device 0x0003 */ 144 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */ 145 146 0x03, /* __u8 iManufacturer; */ 147 0x02, /* __u8 iProduct; */ 148 0x01, /* __u8 iSerialNumber; */ 149 0x01 /* __u8 bNumConfigurations; */ 150 }; 151 152 /* usb 2.5 (wireless USB 1.0) root hub device descriptor */ 153 static const u8 usb25_rh_dev_descriptor[18] = { 154 0x12, /* __u8 bLength; */ 155 0x01, /* __u8 bDescriptorType; Device */ 156 0x50, 0x02, /* __le16 bcdUSB; v2.5 */ 157 158 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */ 159 0x00, /* __u8 bDeviceSubClass; */ 160 0x00, /* __u8 bDeviceProtocol; [ usb 2.0 no TT ] */ 161 0xFF, /* __u8 bMaxPacketSize0; always 0xFF (WUSB Spec 7.4.1). */ 162 163 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */ 164 0x02, 0x00, /* __le16 idProduct; device 0x0002 */ 165 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */ 166 167 0x03, /* __u8 iManufacturer; */ 168 0x02, /* __u8 iProduct; */ 169 0x01, /* __u8 iSerialNumber; */ 170 0x01 /* __u8 bNumConfigurations; */ 171 }; 172 173 /* usb 2.0 root hub device descriptor */ 174 static const u8 usb2_rh_dev_descriptor [18] = { 175 0x12, /* __u8 bLength; */ 176 0x01, /* __u8 bDescriptorType; Device */ 177 0x00, 0x02, /* __le16 bcdUSB; v2.0 */ 178 179 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */ 180 0x00, /* __u8 bDeviceSubClass; */ 181 0x00, /* __u8 bDeviceProtocol; [ usb 2.0 no TT ] */ 182 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */ 183 184 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */ 185 0x02, 0x00, /* __le16 idProduct; device 0x0002 */ 186 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */ 187 188 0x03, /* __u8 iManufacturer; */ 189 0x02, /* __u8 iProduct; */ 190 0x01, /* __u8 iSerialNumber; */ 191 0x01 /* __u8 bNumConfigurations; */ 192 }; 193 194 /* no usb 2.0 root hub "device qualifier" descriptor: one speed only */ 195 196 /* usb 1.1 root hub device descriptor */ 197 static const u8 usb11_rh_dev_descriptor [18] = { 198 0x12, /* __u8 bLength; */ 199 0x01, /* __u8 bDescriptorType; Device */ 200 0x10, 0x01, /* __le16 bcdUSB; v1.1 */ 201 202 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */ 203 0x00, /* __u8 bDeviceSubClass; */ 204 0x00, /* __u8 bDeviceProtocol; [ low/full speeds only ] */ 205 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */ 206 207 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */ 208 0x01, 0x00, /* __le16 idProduct; device 0x0001 */ 209 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */ 210 211 0x03, /* __u8 iManufacturer; */ 212 0x02, /* __u8 iProduct; */ 213 0x01, /* __u8 iSerialNumber; */ 214 0x01 /* __u8 bNumConfigurations; */ 215 }; 216 217 218 /*-------------------------------------------------------------------------*/ 219 220 /* Configuration descriptors for our root hubs */ 221 222 static const u8 fs_rh_config_descriptor [] = { 223 224 /* one configuration */ 225 0x09, /* __u8 bLength; */ 226 0x02, /* __u8 bDescriptorType; Configuration */ 227 0x19, 0x00, /* __le16 wTotalLength; */ 228 0x01, /* __u8 bNumInterfaces; (1) */ 229 0x01, /* __u8 bConfigurationValue; */ 230 0x00, /* __u8 iConfiguration; */ 231 0xc0, /* __u8 bmAttributes; 232 Bit 7: must be set, 233 6: Self-powered, 234 5: Remote wakeup, 235 4..0: resvd */ 236 0x00, /* __u8 MaxPower; */ 237 238 /* USB 1.1: 239 * USB 2.0, single TT organization (mandatory): 240 * one interface, protocol 0 241 * 242 * USB 2.0, multiple TT organization (optional): 243 * two interfaces, protocols 1 (like single TT) 244 * and 2 (multiple TT mode) ... config is 245 * sometimes settable 246 * NOT IMPLEMENTED 247 */ 248 249 /* one interface */ 250 0x09, /* __u8 if_bLength; */ 251 0x04, /* __u8 if_bDescriptorType; Interface */ 252 0x00, /* __u8 if_bInterfaceNumber; */ 253 0x00, /* __u8 if_bAlternateSetting; */ 254 0x01, /* __u8 if_bNumEndpoints; */ 255 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */ 256 0x00, /* __u8 if_bInterfaceSubClass; */ 257 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */ 258 0x00, /* __u8 if_iInterface; */ 259 260 /* one endpoint (status change endpoint) */ 261 0x07, /* __u8 ep_bLength; */ 262 0x05, /* __u8 ep_bDescriptorType; Endpoint */ 263 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */ 264 0x03, /* __u8 ep_bmAttributes; Interrupt */ 265 0x02, 0x00, /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */ 266 0xff /* __u8 ep_bInterval; (255ms -- usb 2.0 spec) */ 267 }; 268 269 static const u8 hs_rh_config_descriptor [] = { 270 271 /* one configuration */ 272 0x09, /* __u8 bLength; */ 273 0x02, /* __u8 bDescriptorType; Configuration */ 274 0x19, 0x00, /* __le16 wTotalLength; */ 275 0x01, /* __u8 bNumInterfaces; (1) */ 276 0x01, /* __u8 bConfigurationValue; */ 277 0x00, /* __u8 iConfiguration; */ 278 0xc0, /* __u8 bmAttributes; 279 Bit 7: must be set, 280 6: Self-powered, 281 5: Remote wakeup, 282 4..0: resvd */ 283 0x00, /* __u8 MaxPower; */ 284 285 /* USB 1.1: 286 * USB 2.0, single TT organization (mandatory): 287 * one interface, protocol 0 288 * 289 * USB 2.0, multiple TT organization (optional): 290 * two interfaces, protocols 1 (like single TT) 291 * and 2 (multiple TT mode) ... config is 292 * sometimes settable 293 * NOT IMPLEMENTED 294 */ 295 296 /* one interface */ 297 0x09, /* __u8 if_bLength; */ 298 0x04, /* __u8 if_bDescriptorType; Interface */ 299 0x00, /* __u8 if_bInterfaceNumber; */ 300 0x00, /* __u8 if_bAlternateSetting; */ 301 0x01, /* __u8 if_bNumEndpoints; */ 302 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */ 303 0x00, /* __u8 if_bInterfaceSubClass; */ 304 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */ 305 0x00, /* __u8 if_iInterface; */ 306 307 /* one endpoint (status change endpoint) */ 308 0x07, /* __u8 ep_bLength; */ 309 0x05, /* __u8 ep_bDescriptorType; Endpoint */ 310 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */ 311 0x03, /* __u8 ep_bmAttributes; Interrupt */ 312 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) 313 * see hub.c:hub_configure() for details. */ 314 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00, 315 0x0c /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */ 316 }; 317 318 static const u8 ss_rh_config_descriptor[] = { 319 /* one configuration */ 320 0x09, /* __u8 bLength; */ 321 0x02, /* __u8 bDescriptorType; Configuration */ 322 0x1f, 0x00, /* __le16 wTotalLength; */ 323 0x01, /* __u8 bNumInterfaces; (1) */ 324 0x01, /* __u8 bConfigurationValue; */ 325 0x00, /* __u8 iConfiguration; */ 326 0xc0, /* __u8 bmAttributes; 327 Bit 7: must be set, 328 6: Self-powered, 329 5: Remote wakeup, 330 4..0: resvd */ 331 0x00, /* __u8 MaxPower; */ 332 333 /* one interface */ 334 0x09, /* __u8 if_bLength; */ 335 0x04, /* __u8 if_bDescriptorType; Interface */ 336 0x00, /* __u8 if_bInterfaceNumber; */ 337 0x00, /* __u8 if_bAlternateSetting; */ 338 0x01, /* __u8 if_bNumEndpoints; */ 339 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */ 340 0x00, /* __u8 if_bInterfaceSubClass; */ 341 0x00, /* __u8 if_bInterfaceProtocol; */ 342 0x00, /* __u8 if_iInterface; */ 343 344 /* one endpoint (status change endpoint) */ 345 0x07, /* __u8 ep_bLength; */ 346 0x05, /* __u8 ep_bDescriptorType; Endpoint */ 347 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */ 348 0x03, /* __u8 ep_bmAttributes; Interrupt */ 349 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) 350 * see hub.c:hub_configure() for details. */ 351 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00, 352 0x0c, /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */ 353 354 /* one SuperSpeed endpoint companion descriptor */ 355 0x06, /* __u8 ss_bLength */ 356 0x30, /* __u8 ss_bDescriptorType; SuperSpeed EP Companion */ 357 0x00, /* __u8 ss_bMaxBurst; allows 1 TX between ACKs */ 358 0x00, /* __u8 ss_bmAttributes; 1 packet per service interval */ 359 0x02, 0x00 /* __le16 ss_wBytesPerInterval; 15 bits for max 15 ports */ 360 }; 361 362 /* authorized_default behaviour: 363 * -1 is authorized for all devices except wireless (old behaviour) 364 * 0 is unauthorized for all devices 365 * 1 is authorized for all devices 366 */ 367 static int authorized_default = -1; 368 module_param(authorized_default, int, S_IRUGO|S_IWUSR); 369 MODULE_PARM_DESC(authorized_default, 370 "Default USB device authorization: 0 is not authorized, 1 is " 371 "authorized, -1 is authorized except for wireless USB (default, " 372 "old behaviour"); 373 /*-------------------------------------------------------------------------*/ 374 375 /** 376 * ascii2desc() - Helper routine for producing UTF-16LE string descriptors 377 * @s: Null-terminated ASCII (actually ISO-8859-1) string 378 * @buf: Buffer for USB string descriptor (header + UTF-16LE) 379 * @len: Length (in bytes; may be odd) of descriptor buffer. 380 * 381 * The return value is the number of bytes filled in: 2 + 2*strlen(s) or 382 * buflen, whichever is less. 383 * 384 * USB String descriptors can contain at most 126 characters; input 385 * strings longer than that are truncated. 386 */ 387 static unsigned 388 ascii2desc(char const *s, u8 *buf, unsigned len) 389 { 390 unsigned n, t = 2 + 2*strlen(s); 391 392 if (t > 254) 393 t = 254; /* Longest possible UTF string descriptor */ 394 if (len > t) 395 len = t; 396 397 t += USB_DT_STRING << 8; /* Now t is first 16 bits to store */ 398 399 n = len; 400 while (n--) { 401 *buf++ = t; 402 if (!n--) 403 break; 404 *buf++ = t >> 8; 405 t = (unsigned char)*s++; 406 } 407 return len; 408 } 409 410 /** 411 * rh_string() - provides string descriptors for root hub 412 * @id: the string ID number (0: langids, 1: serial #, 2: product, 3: vendor) 413 * @hcd: the host controller for this root hub 414 * @data: buffer for output packet 415 * @len: length of the provided buffer 416 * 417 * Produces either a manufacturer, product or serial number string for the 418 * virtual root hub device. 419 * Returns the number of bytes filled in: the length of the descriptor or 420 * of the provided buffer, whichever is less. 421 */ 422 static unsigned 423 rh_string(int id, struct usb_hcd const *hcd, u8 *data, unsigned len) 424 { 425 char buf[100]; 426 char const *s; 427 static char const langids[4] = {4, USB_DT_STRING, 0x09, 0x04}; 428 429 // language ids 430 switch (id) { 431 case 0: 432 /* Array of LANGID codes (0x0409 is MSFT-speak for "en-us") */ 433 /* See http://www.usb.org/developers/docs/USB_LANGIDs.pdf */ 434 if (len > 4) 435 len = 4; 436 memcpy(data, langids, len); 437 return len; 438 case 1: 439 /* Serial number */ 440 s = hcd->self.bus_name; 441 break; 442 case 2: 443 /* Product name */ 444 s = hcd->product_desc; 445 break; 446 case 3: 447 /* Manufacturer */ 448 snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname, 449 init_utsname()->release, hcd->driver->description); 450 s = buf; 451 break; 452 default: 453 /* Can't happen; caller guarantees it */ 454 return 0; 455 } 456 457 return ascii2desc(s, data, len); 458 } 459 460 461 /* Root hub control transfers execute synchronously */ 462 static int rh_call_control (struct usb_hcd *hcd, struct urb *urb) 463 { 464 struct usb_ctrlrequest *cmd; 465 u16 typeReq, wValue, wIndex, wLength; 466 u8 *ubuf = urb->transfer_buffer; 467 /* 468 * tbuf should be as big as the BOS descriptor and 469 * the USB hub descriptor. 470 */ 471 u8 tbuf[USB_DT_BOS_SIZE + USB_DT_USB_SS_CAP_SIZE] 472 __attribute__((aligned(4))); 473 const u8 *bufp = tbuf; 474 unsigned len = 0; 475 int status; 476 u8 patch_wakeup = 0; 477 u8 patch_protocol = 0; 478 479 might_sleep(); 480 481 spin_lock_irq(&hcd_root_hub_lock); 482 status = usb_hcd_link_urb_to_ep(hcd, urb); 483 spin_unlock_irq(&hcd_root_hub_lock); 484 if (status) 485 return status; 486 urb->hcpriv = hcd; /* Indicate it's queued */ 487 488 cmd = (struct usb_ctrlrequest *) urb->setup_packet; 489 typeReq = (cmd->bRequestType << 8) | cmd->bRequest; 490 wValue = le16_to_cpu (cmd->wValue); 491 wIndex = le16_to_cpu (cmd->wIndex); 492 wLength = le16_to_cpu (cmd->wLength); 493 494 if (wLength > urb->transfer_buffer_length) 495 goto error; 496 497 urb->actual_length = 0; 498 switch (typeReq) { 499 500 /* DEVICE REQUESTS */ 501 502 /* The root hub's remote wakeup enable bit is implemented using 503 * driver model wakeup flags. If this system supports wakeup 504 * through USB, userspace may change the default "allow wakeup" 505 * policy through sysfs or these calls. 506 * 507 * Most root hubs support wakeup from downstream devices, for 508 * runtime power management (disabling USB clocks and reducing 509 * VBUS power usage). However, not all of them do so; silicon, 510 * board, and BIOS bugs here are not uncommon, so these can't 511 * be treated quite like external hubs. 512 * 513 * Likewise, not all root hubs will pass wakeup events upstream, 514 * to wake up the whole system. So don't assume root hub and 515 * controller capabilities are identical. 516 */ 517 518 case DeviceRequest | USB_REQ_GET_STATUS: 519 tbuf [0] = (device_may_wakeup(&hcd->self.root_hub->dev) 520 << USB_DEVICE_REMOTE_WAKEUP) 521 | (1 << USB_DEVICE_SELF_POWERED); 522 tbuf [1] = 0; 523 len = 2; 524 break; 525 case DeviceOutRequest | USB_REQ_CLEAR_FEATURE: 526 if (wValue == USB_DEVICE_REMOTE_WAKEUP) 527 device_set_wakeup_enable(&hcd->self.root_hub->dev, 0); 528 else 529 goto error; 530 break; 531 case DeviceOutRequest | USB_REQ_SET_FEATURE: 532 if (device_can_wakeup(&hcd->self.root_hub->dev) 533 && wValue == USB_DEVICE_REMOTE_WAKEUP) 534 device_set_wakeup_enable(&hcd->self.root_hub->dev, 1); 535 else 536 goto error; 537 break; 538 case DeviceRequest | USB_REQ_GET_CONFIGURATION: 539 tbuf [0] = 1; 540 len = 1; 541 /* FALLTHROUGH */ 542 case DeviceOutRequest | USB_REQ_SET_CONFIGURATION: 543 break; 544 case DeviceRequest | USB_REQ_GET_DESCRIPTOR: 545 switch (wValue & 0xff00) { 546 case USB_DT_DEVICE << 8: 547 switch (hcd->speed) { 548 case HCD_USB3: 549 bufp = usb3_rh_dev_descriptor; 550 break; 551 case HCD_USB25: 552 bufp = usb25_rh_dev_descriptor; 553 break; 554 case HCD_USB2: 555 bufp = usb2_rh_dev_descriptor; 556 break; 557 case HCD_USB11: 558 bufp = usb11_rh_dev_descriptor; 559 break; 560 default: 561 goto error; 562 } 563 len = 18; 564 if (hcd->has_tt) 565 patch_protocol = 1; 566 break; 567 case USB_DT_CONFIG << 8: 568 switch (hcd->speed) { 569 case HCD_USB3: 570 bufp = ss_rh_config_descriptor; 571 len = sizeof ss_rh_config_descriptor; 572 break; 573 case HCD_USB25: 574 case HCD_USB2: 575 bufp = hs_rh_config_descriptor; 576 len = sizeof hs_rh_config_descriptor; 577 break; 578 case HCD_USB11: 579 bufp = fs_rh_config_descriptor; 580 len = sizeof fs_rh_config_descriptor; 581 break; 582 default: 583 goto error; 584 } 585 if (device_can_wakeup(&hcd->self.root_hub->dev)) 586 patch_wakeup = 1; 587 break; 588 case USB_DT_STRING << 8: 589 if ((wValue & 0xff) < 4) 590 urb->actual_length = rh_string(wValue & 0xff, 591 hcd, ubuf, wLength); 592 else /* unsupported IDs --> "protocol stall" */ 593 goto error; 594 break; 595 case USB_DT_BOS << 8: 596 goto nongeneric; 597 default: 598 goto error; 599 } 600 break; 601 case DeviceRequest | USB_REQ_GET_INTERFACE: 602 tbuf [0] = 0; 603 len = 1; 604 /* FALLTHROUGH */ 605 case DeviceOutRequest | USB_REQ_SET_INTERFACE: 606 break; 607 case DeviceOutRequest | USB_REQ_SET_ADDRESS: 608 // wValue == urb->dev->devaddr 609 dev_dbg (hcd->self.controller, "root hub device address %d\n", 610 wValue); 611 break; 612 613 /* INTERFACE REQUESTS (no defined feature/status flags) */ 614 615 /* ENDPOINT REQUESTS */ 616 617 case EndpointRequest | USB_REQ_GET_STATUS: 618 // ENDPOINT_HALT flag 619 tbuf [0] = 0; 620 tbuf [1] = 0; 621 len = 2; 622 /* FALLTHROUGH */ 623 case EndpointOutRequest | USB_REQ_CLEAR_FEATURE: 624 case EndpointOutRequest | USB_REQ_SET_FEATURE: 625 dev_dbg (hcd->self.controller, "no endpoint features yet\n"); 626 break; 627 628 /* CLASS REQUESTS (and errors) */ 629 630 default: 631 nongeneric: 632 /* non-generic request */ 633 switch (typeReq) { 634 case GetHubStatus: 635 case GetPortStatus: 636 len = 4; 637 break; 638 case GetHubDescriptor: 639 len = sizeof (struct usb_hub_descriptor); 640 break; 641 case DeviceRequest | USB_REQ_GET_DESCRIPTOR: 642 /* len is returned by hub_control */ 643 break; 644 } 645 status = hcd->driver->hub_control (hcd, 646 typeReq, wValue, wIndex, 647 tbuf, wLength); 648 649 if (typeReq == GetHubDescriptor) 650 usb_hub_adjust_deviceremovable(hcd->self.root_hub, 651 (struct usb_hub_descriptor *)tbuf); 652 break; 653 error: 654 /* "protocol stall" on error */ 655 status = -EPIPE; 656 } 657 658 if (status < 0) { 659 len = 0; 660 if (status != -EPIPE) { 661 dev_dbg (hcd->self.controller, 662 "CTRL: TypeReq=0x%x val=0x%x " 663 "idx=0x%x len=%d ==> %d\n", 664 typeReq, wValue, wIndex, 665 wLength, status); 666 } 667 } else if (status > 0) { 668 /* hub_control may return the length of data copied. */ 669 len = status; 670 status = 0; 671 } 672 if (len) { 673 if (urb->transfer_buffer_length < len) 674 len = urb->transfer_buffer_length; 675 urb->actual_length = len; 676 // always USB_DIR_IN, toward host 677 memcpy (ubuf, bufp, len); 678 679 /* report whether RH hardware supports remote wakeup */ 680 if (patch_wakeup && 681 len > offsetof (struct usb_config_descriptor, 682 bmAttributes)) 683 ((struct usb_config_descriptor *)ubuf)->bmAttributes 684 |= USB_CONFIG_ATT_WAKEUP; 685 686 /* report whether RH hardware has an integrated TT */ 687 if (patch_protocol && 688 len > offsetof(struct usb_device_descriptor, 689 bDeviceProtocol)) 690 ((struct usb_device_descriptor *) ubuf)-> 691 bDeviceProtocol = USB_HUB_PR_HS_SINGLE_TT; 692 } 693 694 /* any errors get returned through the urb completion */ 695 spin_lock_irq(&hcd_root_hub_lock); 696 usb_hcd_unlink_urb_from_ep(hcd, urb); 697 698 /* This peculiar use of spinlocks echoes what real HC drivers do. 699 * Avoiding calls to local_irq_disable/enable makes the code 700 * RT-friendly. 701 */ 702 spin_unlock(&hcd_root_hub_lock); 703 usb_hcd_giveback_urb(hcd, urb, status); 704 spin_lock(&hcd_root_hub_lock); 705 706 spin_unlock_irq(&hcd_root_hub_lock); 707 return 0; 708 } 709 710 /*-------------------------------------------------------------------------*/ 711 712 /* 713 * Root Hub interrupt transfers are polled using a timer if the 714 * driver requests it; otherwise the driver is responsible for 715 * calling usb_hcd_poll_rh_status() when an event occurs. 716 * 717 * Completions are called in_interrupt(), but they may or may not 718 * be in_irq(). 719 */ 720 void usb_hcd_poll_rh_status(struct usb_hcd *hcd) 721 { 722 struct urb *urb; 723 int length; 724 unsigned long flags; 725 char buffer[6]; /* Any root hubs with > 31 ports? */ 726 727 if (unlikely(!hcd->rh_pollable)) 728 return; 729 if (!hcd->uses_new_polling && !hcd->status_urb) 730 return; 731 732 length = hcd->driver->hub_status_data(hcd, buffer); 733 if (length > 0) { 734 735 /* try to complete the status urb */ 736 spin_lock_irqsave(&hcd_root_hub_lock, flags); 737 urb = hcd->status_urb; 738 if (urb) { 739 clear_bit(HCD_FLAG_POLL_PENDING, &hcd->flags); 740 hcd->status_urb = NULL; 741 urb->actual_length = length; 742 memcpy(urb->transfer_buffer, buffer, length); 743 744 usb_hcd_unlink_urb_from_ep(hcd, urb); 745 spin_unlock(&hcd_root_hub_lock); 746 usb_hcd_giveback_urb(hcd, urb, 0); 747 spin_lock(&hcd_root_hub_lock); 748 } else { 749 length = 0; 750 set_bit(HCD_FLAG_POLL_PENDING, &hcd->flags); 751 } 752 spin_unlock_irqrestore(&hcd_root_hub_lock, flags); 753 } 754 755 /* The USB 2.0 spec says 256 ms. This is close enough and won't 756 * exceed that limit if HZ is 100. The math is more clunky than 757 * maybe expected, this is to make sure that all timers for USB devices 758 * fire at the same time to give the CPU a break in between */ 759 if (hcd->uses_new_polling ? HCD_POLL_RH(hcd) : 760 (length == 0 && hcd->status_urb != NULL)) 761 mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4)); 762 } 763 EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status); 764 765 /* timer callback */ 766 static void rh_timer_func (unsigned long _hcd) 767 { 768 usb_hcd_poll_rh_status((struct usb_hcd *) _hcd); 769 } 770 771 /*-------------------------------------------------------------------------*/ 772 773 static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb) 774 { 775 int retval; 776 unsigned long flags; 777 unsigned len = 1 + (urb->dev->maxchild / 8); 778 779 spin_lock_irqsave (&hcd_root_hub_lock, flags); 780 if (hcd->status_urb || urb->transfer_buffer_length < len) { 781 dev_dbg (hcd->self.controller, "not queuing rh status urb\n"); 782 retval = -EINVAL; 783 goto done; 784 } 785 786 retval = usb_hcd_link_urb_to_ep(hcd, urb); 787 if (retval) 788 goto done; 789 790 hcd->status_urb = urb; 791 urb->hcpriv = hcd; /* indicate it's queued */ 792 if (!hcd->uses_new_polling) 793 mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4)); 794 795 /* If a status change has already occurred, report it ASAP */ 796 else if (HCD_POLL_PENDING(hcd)) 797 mod_timer(&hcd->rh_timer, jiffies); 798 retval = 0; 799 done: 800 spin_unlock_irqrestore (&hcd_root_hub_lock, flags); 801 return retval; 802 } 803 804 static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb) 805 { 806 if (usb_endpoint_xfer_int(&urb->ep->desc)) 807 return rh_queue_status (hcd, urb); 808 if (usb_endpoint_xfer_control(&urb->ep->desc)) 809 return rh_call_control (hcd, urb); 810 return -EINVAL; 811 } 812 813 /*-------------------------------------------------------------------------*/ 814 815 /* Unlinks of root-hub control URBs are legal, but they don't do anything 816 * since these URBs always execute synchronously. 817 */ 818 static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status) 819 { 820 unsigned long flags; 821 int rc; 822 823 spin_lock_irqsave(&hcd_root_hub_lock, flags); 824 rc = usb_hcd_check_unlink_urb(hcd, urb, status); 825 if (rc) 826 goto done; 827 828 if (usb_endpoint_num(&urb->ep->desc) == 0) { /* Control URB */ 829 ; /* Do nothing */ 830 831 } else { /* Status URB */ 832 if (!hcd->uses_new_polling) 833 del_timer (&hcd->rh_timer); 834 if (urb == hcd->status_urb) { 835 hcd->status_urb = NULL; 836 usb_hcd_unlink_urb_from_ep(hcd, urb); 837 838 spin_unlock(&hcd_root_hub_lock); 839 usb_hcd_giveback_urb(hcd, urb, status); 840 spin_lock(&hcd_root_hub_lock); 841 } 842 } 843 done: 844 spin_unlock_irqrestore(&hcd_root_hub_lock, flags); 845 return rc; 846 } 847 848 849 850 /* 851 * Show & store the current value of authorized_default 852 */ 853 static ssize_t usb_host_authorized_default_show(struct device *dev, 854 struct device_attribute *attr, 855 char *buf) 856 { 857 struct usb_device *rh_usb_dev = to_usb_device(dev); 858 struct usb_bus *usb_bus = rh_usb_dev->bus; 859 struct usb_hcd *usb_hcd; 860 861 if (usb_bus == NULL) /* FIXME: not sure if this case is possible */ 862 return -ENODEV; 863 usb_hcd = bus_to_hcd(usb_bus); 864 return snprintf(buf, PAGE_SIZE, "%u\n", usb_hcd->authorized_default); 865 } 866 867 static ssize_t usb_host_authorized_default_store(struct device *dev, 868 struct device_attribute *attr, 869 const char *buf, size_t size) 870 { 871 ssize_t result; 872 unsigned val; 873 struct usb_device *rh_usb_dev = to_usb_device(dev); 874 struct usb_bus *usb_bus = rh_usb_dev->bus; 875 struct usb_hcd *usb_hcd; 876 877 if (usb_bus == NULL) /* FIXME: not sure if this case is possible */ 878 return -ENODEV; 879 usb_hcd = bus_to_hcd(usb_bus); 880 result = sscanf(buf, "%u\n", &val); 881 if (result == 1) { 882 usb_hcd->authorized_default = val? 1 : 0; 883 result = size; 884 } 885 else 886 result = -EINVAL; 887 return result; 888 } 889 890 static DEVICE_ATTR(authorized_default, 0644, 891 usb_host_authorized_default_show, 892 usb_host_authorized_default_store); 893 894 895 /* Group all the USB bus attributes */ 896 static struct attribute *usb_bus_attrs[] = { 897 &dev_attr_authorized_default.attr, 898 NULL, 899 }; 900 901 static struct attribute_group usb_bus_attr_group = { 902 .name = NULL, /* we want them in the same directory */ 903 .attrs = usb_bus_attrs, 904 }; 905 906 907 908 /*-------------------------------------------------------------------------*/ 909 910 /** 911 * usb_bus_init - shared initialization code 912 * @bus: the bus structure being initialized 913 * 914 * This code is used to initialize a usb_bus structure, memory for which is 915 * separately managed. 916 */ 917 static void usb_bus_init (struct usb_bus *bus) 918 { 919 memset (&bus->devmap, 0, sizeof(struct usb_devmap)); 920 921 bus->devnum_next = 1; 922 923 bus->root_hub = NULL; 924 bus->busnum = -1; 925 bus->bandwidth_allocated = 0; 926 bus->bandwidth_int_reqs = 0; 927 bus->bandwidth_isoc_reqs = 0; 928 929 INIT_LIST_HEAD (&bus->bus_list); 930 } 931 932 /*-------------------------------------------------------------------------*/ 933 934 /** 935 * usb_register_bus - registers the USB host controller with the usb core 936 * @bus: pointer to the bus to register 937 * Context: !in_interrupt() 938 * 939 * Assigns a bus number, and links the controller into usbcore data 940 * structures so that it can be seen by scanning the bus list. 941 */ 942 static int usb_register_bus(struct usb_bus *bus) 943 { 944 int result = -E2BIG; 945 int busnum; 946 947 mutex_lock(&usb_bus_list_lock); 948 busnum = find_next_zero_bit (busmap.busmap, USB_MAXBUS, 1); 949 if (busnum >= USB_MAXBUS) { 950 printk (KERN_ERR "%s: too many buses\n", usbcore_name); 951 goto error_find_busnum; 952 } 953 set_bit (busnum, busmap.busmap); 954 bus->busnum = busnum; 955 956 /* Add it to the local list of buses */ 957 list_add (&bus->bus_list, &usb_bus_list); 958 mutex_unlock(&usb_bus_list_lock); 959 960 usb_notify_add_bus(bus); 961 962 dev_info (bus->controller, "new USB bus registered, assigned bus " 963 "number %d\n", bus->busnum); 964 return 0; 965 966 error_find_busnum: 967 mutex_unlock(&usb_bus_list_lock); 968 return result; 969 } 970 971 /** 972 * usb_deregister_bus - deregisters the USB host controller 973 * @bus: pointer to the bus to deregister 974 * Context: !in_interrupt() 975 * 976 * Recycles the bus number, and unlinks the controller from usbcore data 977 * structures so that it won't be seen by scanning the bus list. 978 */ 979 static void usb_deregister_bus (struct usb_bus *bus) 980 { 981 dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum); 982 983 /* 984 * NOTE: make sure that all the devices are removed by the 985 * controller code, as well as having it call this when cleaning 986 * itself up 987 */ 988 mutex_lock(&usb_bus_list_lock); 989 list_del (&bus->bus_list); 990 mutex_unlock(&usb_bus_list_lock); 991 992 usb_notify_remove_bus(bus); 993 994 clear_bit (bus->busnum, busmap.busmap); 995 } 996 997 /** 998 * register_root_hub - called by usb_add_hcd() to register a root hub 999 * @hcd: host controller for this root hub 1000 * 1001 * This function registers the root hub with the USB subsystem. It sets up 1002 * the device properly in the device tree and then calls usb_new_device() 1003 * to register the usb device. It also assigns the root hub's USB address 1004 * (always 1). 1005 */ 1006 static int register_root_hub(struct usb_hcd *hcd) 1007 { 1008 struct device *parent_dev = hcd->self.controller; 1009 struct usb_device *usb_dev = hcd->self.root_hub; 1010 const int devnum = 1; 1011 int retval; 1012 1013 usb_dev->devnum = devnum; 1014 usb_dev->bus->devnum_next = devnum + 1; 1015 memset (&usb_dev->bus->devmap.devicemap, 0, 1016 sizeof usb_dev->bus->devmap.devicemap); 1017 set_bit (devnum, usb_dev->bus->devmap.devicemap); 1018 usb_set_device_state(usb_dev, USB_STATE_ADDRESS); 1019 1020 mutex_lock(&usb_bus_list_lock); 1021 1022 usb_dev->ep0.desc.wMaxPacketSize = cpu_to_le16(64); 1023 retval = usb_get_device_descriptor(usb_dev, USB_DT_DEVICE_SIZE); 1024 if (retval != sizeof usb_dev->descriptor) { 1025 mutex_unlock(&usb_bus_list_lock); 1026 dev_dbg (parent_dev, "can't read %s device descriptor %d\n", 1027 dev_name(&usb_dev->dev), retval); 1028 return (retval < 0) ? retval : -EMSGSIZE; 1029 } 1030 if (usb_dev->speed == USB_SPEED_SUPER) { 1031 retval = usb_get_bos_descriptor(usb_dev); 1032 if (retval < 0) { 1033 mutex_unlock(&usb_bus_list_lock); 1034 dev_dbg(parent_dev, "can't read %s bos descriptor %d\n", 1035 dev_name(&usb_dev->dev), retval); 1036 return retval; 1037 } 1038 } 1039 1040 retval = usb_new_device (usb_dev); 1041 if (retval) { 1042 dev_err (parent_dev, "can't register root hub for %s, %d\n", 1043 dev_name(&usb_dev->dev), retval); 1044 } else { 1045 spin_lock_irq (&hcd_root_hub_lock); 1046 hcd->rh_registered = 1; 1047 spin_unlock_irq (&hcd_root_hub_lock); 1048 1049 /* Did the HC die before the root hub was registered? */ 1050 if (HCD_DEAD(hcd)) 1051 usb_hc_died (hcd); /* This time clean up */ 1052 } 1053 mutex_unlock(&usb_bus_list_lock); 1054 1055 return retval; 1056 } 1057 1058 /* 1059 * usb_hcd_start_port_resume - a root-hub port is sending a resume signal 1060 * @bus: the bus which the root hub belongs to 1061 * @portnum: the port which is being resumed 1062 * 1063 * HCDs should call this function when they know that a resume signal is 1064 * being sent to a root-hub port. The root hub will be prevented from 1065 * going into autosuspend until usb_hcd_end_port_resume() is called. 1066 * 1067 * The bus's private lock must be held by the caller. 1068 */ 1069 void usb_hcd_start_port_resume(struct usb_bus *bus, int portnum) 1070 { 1071 unsigned bit = 1 << portnum; 1072 1073 if (!(bus->resuming_ports & bit)) { 1074 bus->resuming_ports |= bit; 1075 pm_runtime_get_noresume(&bus->root_hub->dev); 1076 } 1077 } 1078 EXPORT_SYMBOL_GPL(usb_hcd_start_port_resume); 1079 1080 /* 1081 * usb_hcd_end_port_resume - a root-hub port has stopped sending a resume signal 1082 * @bus: the bus which the root hub belongs to 1083 * @portnum: the port which is being resumed 1084 * 1085 * HCDs should call this function when they know that a resume signal has 1086 * stopped being sent to a root-hub port. The root hub will be allowed to 1087 * autosuspend again. 1088 * 1089 * The bus's private lock must be held by the caller. 1090 */ 1091 void usb_hcd_end_port_resume(struct usb_bus *bus, int portnum) 1092 { 1093 unsigned bit = 1 << portnum; 1094 1095 if (bus->resuming_ports & bit) { 1096 bus->resuming_ports &= ~bit; 1097 pm_runtime_put_noidle(&bus->root_hub->dev); 1098 } 1099 } 1100 EXPORT_SYMBOL_GPL(usb_hcd_end_port_resume); 1101 1102 /*-------------------------------------------------------------------------*/ 1103 1104 /** 1105 * usb_calc_bus_time - approximate periodic transaction time in nanoseconds 1106 * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH} 1107 * @is_input: true iff the transaction sends data to the host 1108 * @isoc: true for isochronous transactions, false for interrupt ones 1109 * @bytecount: how many bytes in the transaction. 1110 * 1111 * Returns approximate bus time in nanoseconds for a periodic transaction. 1112 * See USB 2.0 spec section 5.11.3; only periodic transfers need to be 1113 * scheduled in software, this function is only used for such scheduling. 1114 */ 1115 long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount) 1116 { 1117 unsigned long tmp; 1118 1119 switch (speed) { 1120 case USB_SPEED_LOW: /* INTR only */ 1121 if (is_input) { 1122 tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L; 1123 return (64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp); 1124 } else { 1125 tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L; 1126 return (64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp); 1127 } 1128 case USB_SPEED_FULL: /* ISOC or INTR */ 1129 if (isoc) { 1130 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L; 1131 return (((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp); 1132 } else { 1133 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L; 1134 return (9107L + BW_HOST_DELAY + tmp); 1135 } 1136 case USB_SPEED_HIGH: /* ISOC or INTR */ 1137 // FIXME adjust for input vs output 1138 if (isoc) 1139 tmp = HS_NSECS_ISO (bytecount); 1140 else 1141 tmp = HS_NSECS (bytecount); 1142 return tmp; 1143 default: 1144 pr_debug ("%s: bogus device speed!\n", usbcore_name); 1145 return -1; 1146 } 1147 } 1148 EXPORT_SYMBOL_GPL(usb_calc_bus_time); 1149 1150 1151 /*-------------------------------------------------------------------------*/ 1152 1153 /* 1154 * Generic HC operations. 1155 */ 1156 1157 /*-------------------------------------------------------------------------*/ 1158 1159 /** 1160 * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue 1161 * @hcd: host controller to which @urb was submitted 1162 * @urb: URB being submitted 1163 * 1164 * Host controller drivers should call this routine in their enqueue() 1165 * method. The HCD's private spinlock must be held and interrupts must 1166 * be disabled. The actions carried out here are required for URB 1167 * submission, as well as for endpoint shutdown and for usb_kill_urb. 1168 * 1169 * Returns 0 for no error, otherwise a negative error code (in which case 1170 * the enqueue() method must fail). If no error occurs but enqueue() fails 1171 * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing 1172 * the private spinlock and returning. 1173 */ 1174 int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb) 1175 { 1176 int rc = 0; 1177 1178 spin_lock(&hcd_urb_list_lock); 1179 1180 /* Check that the URB isn't being killed */ 1181 if (unlikely(atomic_read(&urb->reject))) { 1182 rc = -EPERM; 1183 goto done; 1184 } 1185 1186 if (unlikely(!urb->ep->enabled)) { 1187 rc = -ENOENT; 1188 goto done; 1189 } 1190 1191 if (unlikely(!urb->dev->can_submit)) { 1192 rc = -EHOSTUNREACH; 1193 goto done; 1194 } 1195 1196 /* 1197 * Check the host controller's state and add the URB to the 1198 * endpoint's queue. 1199 */ 1200 if (HCD_RH_RUNNING(hcd)) { 1201 urb->unlinked = 0; 1202 list_add_tail(&urb->urb_list, &urb->ep->urb_list); 1203 } else { 1204 rc = -ESHUTDOWN; 1205 goto done; 1206 } 1207 done: 1208 spin_unlock(&hcd_urb_list_lock); 1209 return rc; 1210 } 1211 EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep); 1212 1213 /** 1214 * usb_hcd_check_unlink_urb - check whether an URB may be unlinked 1215 * @hcd: host controller to which @urb was submitted 1216 * @urb: URB being checked for unlinkability 1217 * @status: error code to store in @urb if the unlink succeeds 1218 * 1219 * Host controller drivers should call this routine in their dequeue() 1220 * method. The HCD's private spinlock must be held and interrupts must 1221 * be disabled. The actions carried out here are required for making 1222 * sure than an unlink is valid. 1223 * 1224 * Returns 0 for no error, otherwise a negative error code (in which case 1225 * the dequeue() method must fail). The possible error codes are: 1226 * 1227 * -EIDRM: @urb was not submitted or has already completed. 1228 * The completion function may not have been called yet. 1229 * 1230 * -EBUSY: @urb has already been unlinked. 1231 */ 1232 int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb, 1233 int status) 1234 { 1235 struct list_head *tmp; 1236 1237 /* insist the urb is still queued */ 1238 list_for_each(tmp, &urb->ep->urb_list) { 1239 if (tmp == &urb->urb_list) 1240 break; 1241 } 1242 if (tmp != &urb->urb_list) 1243 return -EIDRM; 1244 1245 /* Any status except -EINPROGRESS means something already started to 1246 * unlink this URB from the hardware. So there's no more work to do. 1247 */ 1248 if (urb->unlinked) 1249 return -EBUSY; 1250 urb->unlinked = status; 1251 return 0; 1252 } 1253 EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb); 1254 1255 /** 1256 * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue 1257 * @hcd: host controller to which @urb was submitted 1258 * @urb: URB being unlinked 1259 * 1260 * Host controller drivers should call this routine before calling 1261 * usb_hcd_giveback_urb(). The HCD's private spinlock must be held and 1262 * interrupts must be disabled. The actions carried out here are required 1263 * for URB completion. 1264 */ 1265 void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb) 1266 { 1267 /* clear all state linking urb to this dev (and hcd) */ 1268 spin_lock(&hcd_urb_list_lock); 1269 list_del_init(&urb->urb_list); 1270 spin_unlock(&hcd_urb_list_lock); 1271 } 1272 EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep); 1273 1274 /* 1275 * Some usb host controllers can only perform dma using a small SRAM area. 1276 * The usb core itself is however optimized for host controllers that can dma 1277 * using regular system memory - like pci devices doing bus mastering. 1278 * 1279 * To support host controllers with limited dma capabilites we provide dma 1280 * bounce buffers. This feature can be enabled using the HCD_LOCAL_MEM flag. 1281 * For this to work properly the host controller code must first use the 1282 * function dma_declare_coherent_memory() to point out which memory area 1283 * that should be used for dma allocations. 1284 * 1285 * The HCD_LOCAL_MEM flag then tells the usb code to allocate all data for 1286 * dma using dma_alloc_coherent() which in turn allocates from the memory 1287 * area pointed out with dma_declare_coherent_memory(). 1288 * 1289 * So, to summarize... 1290 * 1291 * - We need "local" memory, canonical example being 1292 * a small SRAM on a discrete controller being the 1293 * only memory that the controller can read ... 1294 * (a) "normal" kernel memory is no good, and 1295 * (b) there's not enough to share 1296 * 1297 * - The only *portable* hook for such stuff in the 1298 * DMA framework is dma_declare_coherent_memory() 1299 * 1300 * - So we use that, even though the primary requirement 1301 * is that the memory be "local" (hence addressible 1302 * by that device), not "coherent". 1303 * 1304 */ 1305 1306 static int hcd_alloc_coherent(struct usb_bus *bus, 1307 gfp_t mem_flags, dma_addr_t *dma_handle, 1308 void **vaddr_handle, size_t size, 1309 enum dma_data_direction dir) 1310 { 1311 unsigned char *vaddr; 1312 1313 if (*vaddr_handle == NULL) { 1314 WARN_ON_ONCE(1); 1315 return -EFAULT; 1316 } 1317 1318 vaddr = hcd_buffer_alloc(bus, size + sizeof(vaddr), 1319 mem_flags, dma_handle); 1320 if (!vaddr) 1321 return -ENOMEM; 1322 1323 /* 1324 * Store the virtual address of the buffer at the end 1325 * of the allocated dma buffer. The size of the buffer 1326 * may be uneven so use unaligned functions instead 1327 * of just rounding up. It makes sense to optimize for 1328 * memory footprint over access speed since the amount 1329 * of memory available for dma may be limited. 1330 */ 1331 put_unaligned((unsigned long)*vaddr_handle, 1332 (unsigned long *)(vaddr + size)); 1333 1334 if (dir == DMA_TO_DEVICE) 1335 memcpy(vaddr, *vaddr_handle, size); 1336 1337 *vaddr_handle = vaddr; 1338 return 0; 1339 } 1340 1341 static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle, 1342 void **vaddr_handle, size_t size, 1343 enum dma_data_direction dir) 1344 { 1345 unsigned char *vaddr = *vaddr_handle; 1346 1347 vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size)); 1348 1349 if (dir == DMA_FROM_DEVICE) 1350 memcpy(vaddr, *vaddr_handle, size); 1351 1352 hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle); 1353 1354 *vaddr_handle = vaddr; 1355 *dma_handle = 0; 1356 } 1357 1358 void usb_hcd_unmap_urb_setup_for_dma(struct usb_hcd *hcd, struct urb *urb) 1359 { 1360 if (urb->transfer_flags & URB_SETUP_MAP_SINGLE) 1361 dma_unmap_single(hcd->self.controller, 1362 urb->setup_dma, 1363 sizeof(struct usb_ctrlrequest), 1364 DMA_TO_DEVICE); 1365 else if (urb->transfer_flags & URB_SETUP_MAP_LOCAL) 1366 hcd_free_coherent(urb->dev->bus, 1367 &urb->setup_dma, 1368 (void **) &urb->setup_packet, 1369 sizeof(struct usb_ctrlrequest), 1370 DMA_TO_DEVICE); 1371 1372 /* Make it safe to call this routine more than once */ 1373 urb->transfer_flags &= ~(URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL); 1374 } 1375 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_setup_for_dma); 1376 1377 static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb) 1378 { 1379 if (hcd->driver->unmap_urb_for_dma) 1380 hcd->driver->unmap_urb_for_dma(hcd, urb); 1381 else 1382 usb_hcd_unmap_urb_for_dma(hcd, urb); 1383 } 1384 1385 void usb_hcd_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb) 1386 { 1387 enum dma_data_direction dir; 1388 1389 usb_hcd_unmap_urb_setup_for_dma(hcd, urb); 1390 1391 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE; 1392 if (urb->transfer_flags & URB_DMA_MAP_SG) 1393 dma_unmap_sg(hcd->self.controller, 1394 urb->sg, 1395 urb->num_sgs, 1396 dir); 1397 else if (urb->transfer_flags & URB_DMA_MAP_PAGE) 1398 dma_unmap_page(hcd->self.controller, 1399 urb->transfer_dma, 1400 urb->transfer_buffer_length, 1401 dir); 1402 else if (urb->transfer_flags & URB_DMA_MAP_SINGLE) 1403 dma_unmap_single(hcd->self.controller, 1404 urb->transfer_dma, 1405 urb->transfer_buffer_length, 1406 dir); 1407 else if (urb->transfer_flags & URB_MAP_LOCAL) 1408 hcd_free_coherent(urb->dev->bus, 1409 &urb->transfer_dma, 1410 &urb->transfer_buffer, 1411 urb->transfer_buffer_length, 1412 dir); 1413 1414 /* Make it safe to call this routine more than once */ 1415 urb->transfer_flags &= ~(URB_DMA_MAP_SG | URB_DMA_MAP_PAGE | 1416 URB_DMA_MAP_SINGLE | URB_MAP_LOCAL); 1417 } 1418 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_for_dma); 1419 1420 static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb, 1421 gfp_t mem_flags) 1422 { 1423 if (hcd->driver->map_urb_for_dma) 1424 return hcd->driver->map_urb_for_dma(hcd, urb, mem_flags); 1425 else 1426 return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags); 1427 } 1428 1429 int usb_hcd_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb, 1430 gfp_t mem_flags) 1431 { 1432 enum dma_data_direction dir; 1433 int ret = 0; 1434 1435 /* Map the URB's buffers for DMA access. 1436 * Lower level HCD code should use *_dma exclusively, 1437 * unless it uses pio or talks to another transport, 1438 * or uses the provided scatter gather list for bulk. 1439 */ 1440 1441 if (usb_endpoint_xfer_control(&urb->ep->desc)) { 1442 if (hcd->self.uses_pio_for_control) 1443 return ret; 1444 if (hcd->self.uses_dma) { 1445 urb->setup_dma = dma_map_single( 1446 hcd->self.controller, 1447 urb->setup_packet, 1448 sizeof(struct usb_ctrlrequest), 1449 DMA_TO_DEVICE); 1450 if (dma_mapping_error(hcd->self.controller, 1451 urb->setup_dma)) 1452 return -EAGAIN; 1453 urb->transfer_flags |= URB_SETUP_MAP_SINGLE; 1454 } else if (hcd->driver->flags & HCD_LOCAL_MEM) { 1455 ret = hcd_alloc_coherent( 1456 urb->dev->bus, mem_flags, 1457 &urb->setup_dma, 1458 (void **)&urb->setup_packet, 1459 sizeof(struct usb_ctrlrequest), 1460 DMA_TO_DEVICE); 1461 if (ret) 1462 return ret; 1463 urb->transfer_flags |= URB_SETUP_MAP_LOCAL; 1464 } 1465 } 1466 1467 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE; 1468 if (urb->transfer_buffer_length != 0 1469 && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) { 1470 if (hcd->self.uses_dma) { 1471 if (urb->num_sgs) { 1472 int n; 1473 1474 /* We don't support sg for isoc transfers ! */ 1475 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) { 1476 WARN_ON(1); 1477 return -EINVAL; 1478 } 1479 1480 n = dma_map_sg( 1481 hcd->self.controller, 1482 urb->sg, 1483 urb->num_sgs, 1484 dir); 1485 if (n <= 0) 1486 ret = -EAGAIN; 1487 else 1488 urb->transfer_flags |= URB_DMA_MAP_SG; 1489 urb->num_mapped_sgs = n; 1490 if (n != urb->num_sgs) 1491 urb->transfer_flags |= 1492 URB_DMA_SG_COMBINED; 1493 } else if (urb->sg) { 1494 struct scatterlist *sg = urb->sg; 1495 urb->transfer_dma = dma_map_page( 1496 hcd->self.controller, 1497 sg_page(sg), 1498 sg->offset, 1499 urb->transfer_buffer_length, 1500 dir); 1501 if (dma_mapping_error(hcd->self.controller, 1502 urb->transfer_dma)) 1503 ret = -EAGAIN; 1504 else 1505 urb->transfer_flags |= URB_DMA_MAP_PAGE; 1506 } else { 1507 urb->transfer_dma = dma_map_single( 1508 hcd->self.controller, 1509 urb->transfer_buffer, 1510 urb->transfer_buffer_length, 1511 dir); 1512 if (dma_mapping_error(hcd->self.controller, 1513 urb->transfer_dma)) 1514 ret = -EAGAIN; 1515 else 1516 urb->transfer_flags |= URB_DMA_MAP_SINGLE; 1517 } 1518 } else if (hcd->driver->flags & HCD_LOCAL_MEM) { 1519 ret = hcd_alloc_coherent( 1520 urb->dev->bus, mem_flags, 1521 &urb->transfer_dma, 1522 &urb->transfer_buffer, 1523 urb->transfer_buffer_length, 1524 dir); 1525 if (ret == 0) 1526 urb->transfer_flags |= URB_MAP_LOCAL; 1527 } 1528 if (ret && (urb->transfer_flags & (URB_SETUP_MAP_SINGLE | 1529 URB_SETUP_MAP_LOCAL))) 1530 usb_hcd_unmap_urb_for_dma(hcd, urb); 1531 } 1532 return ret; 1533 } 1534 EXPORT_SYMBOL_GPL(usb_hcd_map_urb_for_dma); 1535 1536 /*-------------------------------------------------------------------------*/ 1537 1538 /* may be called in any context with a valid urb->dev usecount 1539 * caller surrenders "ownership" of urb 1540 * expects usb_submit_urb() to have sanity checked and conditioned all 1541 * inputs in the urb 1542 */ 1543 int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags) 1544 { 1545 int status; 1546 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus); 1547 1548 /* increment urb's reference count as part of giving it to the HCD 1549 * (which will control it). HCD guarantees that it either returns 1550 * an error or calls giveback(), but not both. 1551 */ 1552 usb_get_urb(urb); 1553 atomic_inc(&urb->use_count); 1554 atomic_inc(&urb->dev->urbnum); 1555 usbmon_urb_submit(&hcd->self, urb); 1556 1557 /* NOTE requirements on root-hub callers (usbfs and the hub 1558 * driver, for now): URBs' urb->transfer_buffer must be 1559 * valid and usb_buffer_{sync,unmap}() not be needed, since 1560 * they could clobber root hub response data. Also, control 1561 * URBs must be submitted in process context with interrupts 1562 * enabled. 1563 */ 1564 1565 if (is_root_hub(urb->dev)) { 1566 status = rh_urb_enqueue(hcd, urb); 1567 } else { 1568 status = map_urb_for_dma(hcd, urb, mem_flags); 1569 if (likely(status == 0)) { 1570 status = hcd->driver->urb_enqueue(hcd, urb, mem_flags); 1571 if (unlikely(status)) 1572 unmap_urb_for_dma(hcd, urb); 1573 } 1574 } 1575 1576 if (unlikely(status)) { 1577 usbmon_urb_submit_error(&hcd->self, urb, status); 1578 urb->hcpriv = NULL; 1579 INIT_LIST_HEAD(&urb->urb_list); 1580 atomic_dec(&urb->use_count); 1581 atomic_dec(&urb->dev->urbnum); 1582 if (atomic_read(&urb->reject)) 1583 wake_up(&usb_kill_urb_queue); 1584 usb_put_urb(urb); 1585 } 1586 return status; 1587 } 1588 1589 /*-------------------------------------------------------------------------*/ 1590 1591 /* this makes the hcd giveback() the urb more quickly, by kicking it 1592 * off hardware queues (which may take a while) and returning it as 1593 * soon as practical. we've already set up the urb's return status, 1594 * but we can't know if the callback completed already. 1595 */ 1596 static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status) 1597 { 1598 int value; 1599 1600 if (is_root_hub(urb->dev)) 1601 value = usb_rh_urb_dequeue(hcd, urb, status); 1602 else { 1603 1604 /* The only reason an HCD might fail this call is if 1605 * it has not yet fully queued the urb to begin with. 1606 * Such failures should be harmless. */ 1607 value = hcd->driver->urb_dequeue(hcd, urb, status); 1608 } 1609 return value; 1610 } 1611 1612 /* 1613 * called in any context 1614 * 1615 * caller guarantees urb won't be recycled till both unlink() 1616 * and the urb's completion function return 1617 */ 1618 int usb_hcd_unlink_urb (struct urb *urb, int status) 1619 { 1620 struct usb_hcd *hcd; 1621 int retval = -EIDRM; 1622 unsigned long flags; 1623 1624 /* Prevent the device and bus from going away while 1625 * the unlink is carried out. If they are already gone 1626 * then urb->use_count must be 0, since disconnected 1627 * devices can't have any active URBs. 1628 */ 1629 spin_lock_irqsave(&hcd_urb_unlink_lock, flags); 1630 if (atomic_read(&urb->use_count) > 0) { 1631 retval = 0; 1632 usb_get_dev(urb->dev); 1633 } 1634 spin_unlock_irqrestore(&hcd_urb_unlink_lock, flags); 1635 if (retval == 0) { 1636 hcd = bus_to_hcd(urb->dev->bus); 1637 retval = unlink1(hcd, urb, status); 1638 usb_put_dev(urb->dev); 1639 } 1640 1641 if (retval == 0) 1642 retval = -EINPROGRESS; 1643 else if (retval != -EIDRM && retval != -EBUSY) 1644 dev_dbg(&urb->dev->dev, "hcd_unlink_urb %p fail %d\n", 1645 urb, retval); 1646 return retval; 1647 } 1648 1649 /*-------------------------------------------------------------------------*/ 1650 1651 /** 1652 * usb_hcd_giveback_urb - return URB from HCD to device driver 1653 * @hcd: host controller returning the URB 1654 * @urb: urb being returned to the USB device driver. 1655 * @status: completion status code for the URB. 1656 * Context: in_interrupt() 1657 * 1658 * This hands the URB from HCD to its USB device driver, using its 1659 * completion function. The HCD has freed all per-urb resources 1660 * (and is done using urb->hcpriv). It also released all HCD locks; 1661 * the device driver won't cause problems if it frees, modifies, 1662 * or resubmits this URB. 1663 * 1664 * If @urb was unlinked, the value of @status will be overridden by 1665 * @urb->unlinked. Erroneous short transfers are detected in case 1666 * the HCD hasn't checked for them. 1667 */ 1668 void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status) 1669 { 1670 urb->hcpriv = NULL; 1671 if (unlikely(urb->unlinked)) 1672 status = urb->unlinked; 1673 else if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) && 1674 urb->actual_length < urb->transfer_buffer_length && 1675 !status)) 1676 status = -EREMOTEIO; 1677 1678 unmap_urb_for_dma(hcd, urb); 1679 usbmon_urb_complete(&hcd->self, urb, status); 1680 usb_unanchor_urb(urb); 1681 1682 /* pass ownership to the completion handler */ 1683 urb->status = status; 1684 urb->complete (urb); 1685 atomic_dec (&urb->use_count); 1686 if (unlikely(atomic_read(&urb->reject))) 1687 wake_up (&usb_kill_urb_queue); 1688 usb_put_urb (urb); 1689 } 1690 EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb); 1691 1692 /*-------------------------------------------------------------------------*/ 1693 1694 /* Cancel all URBs pending on this endpoint and wait for the endpoint's 1695 * queue to drain completely. The caller must first insure that no more 1696 * URBs can be submitted for this endpoint. 1697 */ 1698 void usb_hcd_flush_endpoint(struct usb_device *udev, 1699 struct usb_host_endpoint *ep) 1700 { 1701 struct usb_hcd *hcd; 1702 struct urb *urb; 1703 1704 if (!ep) 1705 return; 1706 might_sleep(); 1707 hcd = bus_to_hcd(udev->bus); 1708 1709 /* No more submits can occur */ 1710 spin_lock_irq(&hcd_urb_list_lock); 1711 rescan: 1712 list_for_each_entry (urb, &ep->urb_list, urb_list) { 1713 int is_in; 1714 1715 if (urb->unlinked) 1716 continue; 1717 usb_get_urb (urb); 1718 is_in = usb_urb_dir_in(urb); 1719 spin_unlock(&hcd_urb_list_lock); 1720 1721 /* kick hcd */ 1722 unlink1(hcd, urb, -ESHUTDOWN); 1723 dev_dbg (hcd->self.controller, 1724 "shutdown urb %p ep%d%s%s\n", 1725 urb, usb_endpoint_num(&ep->desc), 1726 is_in ? "in" : "out", 1727 ({ char *s; 1728 1729 switch (usb_endpoint_type(&ep->desc)) { 1730 case USB_ENDPOINT_XFER_CONTROL: 1731 s = ""; break; 1732 case USB_ENDPOINT_XFER_BULK: 1733 s = "-bulk"; break; 1734 case USB_ENDPOINT_XFER_INT: 1735 s = "-intr"; break; 1736 default: 1737 s = "-iso"; break; 1738 }; 1739 s; 1740 })); 1741 usb_put_urb (urb); 1742 1743 /* list contents may have changed */ 1744 spin_lock(&hcd_urb_list_lock); 1745 goto rescan; 1746 } 1747 spin_unlock_irq(&hcd_urb_list_lock); 1748 1749 /* Wait until the endpoint queue is completely empty */ 1750 while (!list_empty (&ep->urb_list)) { 1751 spin_lock_irq(&hcd_urb_list_lock); 1752 1753 /* The list may have changed while we acquired the spinlock */ 1754 urb = NULL; 1755 if (!list_empty (&ep->urb_list)) { 1756 urb = list_entry (ep->urb_list.prev, struct urb, 1757 urb_list); 1758 usb_get_urb (urb); 1759 } 1760 spin_unlock_irq(&hcd_urb_list_lock); 1761 1762 if (urb) { 1763 usb_kill_urb (urb); 1764 usb_put_urb (urb); 1765 } 1766 } 1767 } 1768 1769 /** 1770 * usb_hcd_alloc_bandwidth - check whether a new bandwidth setting exceeds 1771 * the bus bandwidth 1772 * @udev: target &usb_device 1773 * @new_config: new configuration to install 1774 * @cur_alt: the current alternate interface setting 1775 * @new_alt: alternate interface setting that is being installed 1776 * 1777 * To change configurations, pass in the new configuration in new_config, 1778 * and pass NULL for cur_alt and new_alt. 1779 * 1780 * To reset a device's configuration (put the device in the ADDRESSED state), 1781 * pass in NULL for new_config, cur_alt, and new_alt. 1782 * 1783 * To change alternate interface settings, pass in NULL for new_config, 1784 * pass in the current alternate interface setting in cur_alt, 1785 * and pass in the new alternate interface setting in new_alt. 1786 * 1787 * Returns an error if the requested bandwidth change exceeds the 1788 * bus bandwidth or host controller internal resources. 1789 */ 1790 int usb_hcd_alloc_bandwidth(struct usb_device *udev, 1791 struct usb_host_config *new_config, 1792 struct usb_host_interface *cur_alt, 1793 struct usb_host_interface *new_alt) 1794 { 1795 int num_intfs, i, j; 1796 struct usb_host_interface *alt = NULL; 1797 int ret = 0; 1798 struct usb_hcd *hcd; 1799 struct usb_host_endpoint *ep; 1800 1801 hcd = bus_to_hcd(udev->bus); 1802 if (!hcd->driver->check_bandwidth) 1803 return 0; 1804 1805 /* Configuration is being removed - set configuration 0 */ 1806 if (!new_config && !cur_alt) { 1807 for (i = 1; i < 16; ++i) { 1808 ep = udev->ep_out[i]; 1809 if (ep) 1810 hcd->driver->drop_endpoint(hcd, udev, ep); 1811 ep = udev->ep_in[i]; 1812 if (ep) 1813 hcd->driver->drop_endpoint(hcd, udev, ep); 1814 } 1815 hcd->driver->check_bandwidth(hcd, udev); 1816 return 0; 1817 } 1818 /* Check if the HCD says there's enough bandwidth. Enable all endpoints 1819 * each interface's alt setting 0 and ask the HCD to check the bandwidth 1820 * of the bus. There will always be bandwidth for endpoint 0, so it's 1821 * ok to exclude it. 1822 */ 1823 if (new_config) { 1824 num_intfs = new_config->desc.bNumInterfaces; 1825 /* Remove endpoints (except endpoint 0, which is always on the 1826 * schedule) from the old config from the schedule 1827 */ 1828 for (i = 1; i < 16; ++i) { 1829 ep = udev->ep_out[i]; 1830 if (ep) { 1831 ret = hcd->driver->drop_endpoint(hcd, udev, ep); 1832 if (ret < 0) 1833 goto reset; 1834 } 1835 ep = udev->ep_in[i]; 1836 if (ep) { 1837 ret = hcd->driver->drop_endpoint(hcd, udev, ep); 1838 if (ret < 0) 1839 goto reset; 1840 } 1841 } 1842 for (i = 0; i < num_intfs; ++i) { 1843 struct usb_host_interface *first_alt; 1844 int iface_num; 1845 1846 first_alt = &new_config->intf_cache[i]->altsetting[0]; 1847 iface_num = first_alt->desc.bInterfaceNumber; 1848 /* Set up endpoints for alternate interface setting 0 */ 1849 alt = usb_find_alt_setting(new_config, iface_num, 0); 1850 if (!alt) 1851 /* No alt setting 0? Pick the first setting. */ 1852 alt = first_alt; 1853 1854 for (j = 0; j < alt->desc.bNumEndpoints; j++) { 1855 ret = hcd->driver->add_endpoint(hcd, udev, &alt->endpoint[j]); 1856 if (ret < 0) 1857 goto reset; 1858 } 1859 } 1860 } 1861 if (cur_alt && new_alt) { 1862 struct usb_interface *iface = usb_ifnum_to_if(udev, 1863 cur_alt->desc.bInterfaceNumber); 1864 1865 if (!iface) 1866 return -EINVAL; 1867 if (iface->resetting_device) { 1868 /* 1869 * The USB core just reset the device, so the xHCI host 1870 * and the device will think alt setting 0 is installed. 1871 * However, the USB core will pass in the alternate 1872 * setting installed before the reset as cur_alt. Dig 1873 * out the alternate setting 0 structure, or the first 1874 * alternate setting if a broken device doesn't have alt 1875 * setting 0. 1876 */ 1877 cur_alt = usb_altnum_to_altsetting(iface, 0); 1878 if (!cur_alt) 1879 cur_alt = &iface->altsetting[0]; 1880 } 1881 1882 /* Drop all the endpoints in the current alt setting */ 1883 for (i = 0; i < cur_alt->desc.bNumEndpoints; i++) { 1884 ret = hcd->driver->drop_endpoint(hcd, udev, 1885 &cur_alt->endpoint[i]); 1886 if (ret < 0) 1887 goto reset; 1888 } 1889 /* Add all the endpoints in the new alt setting */ 1890 for (i = 0; i < new_alt->desc.bNumEndpoints; i++) { 1891 ret = hcd->driver->add_endpoint(hcd, udev, 1892 &new_alt->endpoint[i]); 1893 if (ret < 0) 1894 goto reset; 1895 } 1896 } 1897 ret = hcd->driver->check_bandwidth(hcd, udev); 1898 reset: 1899 if (ret < 0) 1900 hcd->driver->reset_bandwidth(hcd, udev); 1901 return ret; 1902 } 1903 1904 /* Disables the endpoint: synchronizes with the hcd to make sure all 1905 * endpoint state is gone from hardware. usb_hcd_flush_endpoint() must 1906 * have been called previously. Use for set_configuration, set_interface, 1907 * driver removal, physical disconnect. 1908 * 1909 * example: a qh stored in ep->hcpriv, holding state related to endpoint 1910 * type, maxpacket size, toggle, halt status, and scheduling. 1911 */ 1912 void usb_hcd_disable_endpoint(struct usb_device *udev, 1913 struct usb_host_endpoint *ep) 1914 { 1915 struct usb_hcd *hcd; 1916 1917 might_sleep(); 1918 hcd = bus_to_hcd(udev->bus); 1919 if (hcd->driver->endpoint_disable) 1920 hcd->driver->endpoint_disable(hcd, ep); 1921 } 1922 1923 /** 1924 * usb_hcd_reset_endpoint - reset host endpoint state 1925 * @udev: USB device. 1926 * @ep: the endpoint to reset. 1927 * 1928 * Resets any host endpoint state such as the toggle bit, sequence 1929 * number and current window. 1930 */ 1931 void usb_hcd_reset_endpoint(struct usb_device *udev, 1932 struct usb_host_endpoint *ep) 1933 { 1934 struct usb_hcd *hcd = bus_to_hcd(udev->bus); 1935 1936 if (hcd->driver->endpoint_reset) 1937 hcd->driver->endpoint_reset(hcd, ep); 1938 else { 1939 int epnum = usb_endpoint_num(&ep->desc); 1940 int is_out = usb_endpoint_dir_out(&ep->desc); 1941 int is_control = usb_endpoint_xfer_control(&ep->desc); 1942 1943 usb_settoggle(udev, epnum, is_out, 0); 1944 if (is_control) 1945 usb_settoggle(udev, epnum, !is_out, 0); 1946 } 1947 } 1948 1949 /** 1950 * usb_alloc_streams - allocate bulk endpoint stream IDs. 1951 * @interface: alternate setting that includes all endpoints. 1952 * @eps: array of endpoints that need streams. 1953 * @num_eps: number of endpoints in the array. 1954 * @num_streams: number of streams to allocate. 1955 * @mem_flags: flags hcd should use to allocate memory. 1956 * 1957 * Sets up a group of bulk endpoints to have num_streams stream IDs available. 1958 * Drivers may queue multiple transfers to different stream IDs, which may 1959 * complete in a different order than they were queued. 1960 */ 1961 int usb_alloc_streams(struct usb_interface *interface, 1962 struct usb_host_endpoint **eps, unsigned int num_eps, 1963 unsigned int num_streams, gfp_t mem_flags) 1964 { 1965 struct usb_hcd *hcd; 1966 struct usb_device *dev; 1967 int i; 1968 1969 dev = interface_to_usbdev(interface); 1970 hcd = bus_to_hcd(dev->bus); 1971 if (!hcd->driver->alloc_streams || !hcd->driver->free_streams) 1972 return -EINVAL; 1973 if (dev->speed != USB_SPEED_SUPER) 1974 return -EINVAL; 1975 1976 /* Streams only apply to bulk endpoints. */ 1977 for (i = 0; i < num_eps; i++) 1978 if (!usb_endpoint_xfer_bulk(&eps[i]->desc)) 1979 return -EINVAL; 1980 1981 return hcd->driver->alloc_streams(hcd, dev, eps, num_eps, 1982 num_streams, mem_flags); 1983 } 1984 EXPORT_SYMBOL_GPL(usb_alloc_streams); 1985 1986 /** 1987 * usb_free_streams - free bulk endpoint stream IDs. 1988 * @interface: alternate setting that includes all endpoints. 1989 * @eps: array of endpoints to remove streams from. 1990 * @num_eps: number of endpoints in the array. 1991 * @mem_flags: flags hcd should use to allocate memory. 1992 * 1993 * Reverts a group of bulk endpoints back to not using stream IDs. 1994 * Can fail if we are given bad arguments, or HCD is broken. 1995 */ 1996 void usb_free_streams(struct usb_interface *interface, 1997 struct usb_host_endpoint **eps, unsigned int num_eps, 1998 gfp_t mem_flags) 1999 { 2000 struct usb_hcd *hcd; 2001 struct usb_device *dev; 2002 int i; 2003 2004 dev = interface_to_usbdev(interface); 2005 hcd = bus_to_hcd(dev->bus); 2006 if (dev->speed != USB_SPEED_SUPER) 2007 return; 2008 2009 /* Streams only apply to bulk endpoints. */ 2010 for (i = 0; i < num_eps; i++) 2011 if (!eps[i] || !usb_endpoint_xfer_bulk(&eps[i]->desc)) 2012 return; 2013 2014 hcd->driver->free_streams(hcd, dev, eps, num_eps, mem_flags); 2015 } 2016 EXPORT_SYMBOL_GPL(usb_free_streams); 2017 2018 /* Protect against drivers that try to unlink URBs after the device 2019 * is gone, by waiting until all unlinks for @udev are finished. 2020 * Since we don't currently track URBs by device, simply wait until 2021 * nothing is running in the locked region of usb_hcd_unlink_urb(). 2022 */ 2023 void usb_hcd_synchronize_unlinks(struct usb_device *udev) 2024 { 2025 spin_lock_irq(&hcd_urb_unlink_lock); 2026 spin_unlock_irq(&hcd_urb_unlink_lock); 2027 } 2028 2029 /*-------------------------------------------------------------------------*/ 2030 2031 /* called in any context */ 2032 int usb_hcd_get_frame_number (struct usb_device *udev) 2033 { 2034 struct usb_hcd *hcd = bus_to_hcd(udev->bus); 2035 2036 if (!HCD_RH_RUNNING(hcd)) 2037 return -ESHUTDOWN; 2038 return hcd->driver->get_frame_number (hcd); 2039 } 2040 2041 /*-------------------------------------------------------------------------*/ 2042 2043 #ifdef CONFIG_PM 2044 2045 int hcd_bus_suspend(struct usb_device *rhdev, pm_message_t msg) 2046 { 2047 struct usb_hcd *hcd = container_of(rhdev->bus, struct usb_hcd, self); 2048 int status; 2049 int old_state = hcd->state; 2050 2051 dev_dbg(&rhdev->dev, "bus %ssuspend, wakeup %d\n", 2052 (PMSG_IS_AUTO(msg) ? "auto-" : ""), 2053 rhdev->do_remote_wakeup); 2054 if (HCD_DEAD(hcd)) { 2055 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "suspend"); 2056 return 0; 2057 } 2058 2059 if (!hcd->driver->bus_suspend) { 2060 status = -ENOENT; 2061 } else { 2062 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2063 hcd->state = HC_STATE_QUIESCING; 2064 status = hcd->driver->bus_suspend(hcd); 2065 } 2066 if (status == 0) { 2067 usb_set_device_state(rhdev, USB_STATE_SUSPENDED); 2068 hcd->state = HC_STATE_SUSPENDED; 2069 2070 /* Did we race with a root-hub wakeup event? */ 2071 if (rhdev->do_remote_wakeup) { 2072 char buffer[6]; 2073 2074 status = hcd->driver->hub_status_data(hcd, buffer); 2075 if (status != 0) { 2076 dev_dbg(&rhdev->dev, "suspend raced with wakeup event\n"); 2077 hcd_bus_resume(rhdev, PMSG_AUTO_RESUME); 2078 status = -EBUSY; 2079 } 2080 } 2081 } else { 2082 spin_lock_irq(&hcd_root_hub_lock); 2083 if (!HCD_DEAD(hcd)) { 2084 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2085 hcd->state = old_state; 2086 } 2087 spin_unlock_irq(&hcd_root_hub_lock); 2088 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n", 2089 "suspend", status); 2090 } 2091 return status; 2092 } 2093 2094 int hcd_bus_resume(struct usb_device *rhdev, pm_message_t msg) 2095 { 2096 struct usb_hcd *hcd = container_of(rhdev->bus, struct usb_hcd, self); 2097 int status; 2098 int old_state = hcd->state; 2099 2100 dev_dbg(&rhdev->dev, "usb %sresume\n", 2101 (PMSG_IS_AUTO(msg) ? "auto-" : "")); 2102 if (HCD_DEAD(hcd)) { 2103 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "resume"); 2104 return 0; 2105 } 2106 if (!hcd->driver->bus_resume) 2107 return -ENOENT; 2108 if (HCD_RH_RUNNING(hcd)) 2109 return 0; 2110 2111 hcd->state = HC_STATE_RESUMING; 2112 status = hcd->driver->bus_resume(hcd); 2113 clear_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags); 2114 if (status == 0) { 2115 struct usb_device *udev; 2116 int port1; 2117 2118 spin_lock_irq(&hcd_root_hub_lock); 2119 if (!HCD_DEAD(hcd)) { 2120 usb_set_device_state(rhdev, rhdev->actconfig 2121 ? USB_STATE_CONFIGURED 2122 : USB_STATE_ADDRESS); 2123 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2124 hcd->state = HC_STATE_RUNNING; 2125 } 2126 spin_unlock_irq(&hcd_root_hub_lock); 2127 2128 /* 2129 * Check whether any of the enabled ports on the root hub are 2130 * unsuspended. If they are then a TRSMRCY delay is needed 2131 * (this is what the USB-2 spec calls a "global resume"). 2132 * Otherwise we can skip the delay. 2133 */ 2134 usb_hub_for_each_child(rhdev, port1, udev) { 2135 if (udev->state != USB_STATE_NOTATTACHED && 2136 !udev->port_is_suspended) { 2137 usleep_range(10000, 11000); /* TRSMRCY */ 2138 break; 2139 } 2140 } 2141 } else { 2142 hcd->state = old_state; 2143 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n", 2144 "resume", status); 2145 if (status != -ESHUTDOWN) 2146 usb_hc_died(hcd); 2147 } 2148 return status; 2149 } 2150 2151 #endif /* CONFIG_PM */ 2152 2153 #ifdef CONFIG_PM_RUNTIME 2154 2155 /* Workqueue routine for root-hub remote wakeup */ 2156 static void hcd_resume_work(struct work_struct *work) 2157 { 2158 struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work); 2159 struct usb_device *udev = hcd->self.root_hub; 2160 2161 usb_lock_device(udev); 2162 usb_remote_wakeup(udev); 2163 usb_unlock_device(udev); 2164 } 2165 2166 /** 2167 * usb_hcd_resume_root_hub - called by HCD to resume its root hub 2168 * @hcd: host controller for this root hub 2169 * 2170 * The USB host controller calls this function when its root hub is 2171 * suspended (with the remote wakeup feature enabled) and a remote 2172 * wakeup request is received. The routine submits a workqueue request 2173 * to resume the root hub (that is, manage its downstream ports again). 2174 */ 2175 void usb_hcd_resume_root_hub (struct usb_hcd *hcd) 2176 { 2177 unsigned long flags; 2178 2179 spin_lock_irqsave (&hcd_root_hub_lock, flags); 2180 if (hcd->rh_registered) { 2181 set_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags); 2182 queue_work(pm_wq, &hcd->wakeup_work); 2183 } 2184 spin_unlock_irqrestore (&hcd_root_hub_lock, flags); 2185 } 2186 EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub); 2187 2188 #endif /* CONFIG_PM_RUNTIME */ 2189 2190 /*-------------------------------------------------------------------------*/ 2191 2192 #ifdef CONFIG_USB_OTG 2193 2194 /** 2195 * usb_bus_start_enum - start immediate enumeration (for OTG) 2196 * @bus: the bus (must use hcd framework) 2197 * @port_num: 1-based number of port; usually bus->otg_port 2198 * Context: in_interrupt() 2199 * 2200 * Starts enumeration, with an immediate reset followed later by 2201 * khubd identifying and possibly configuring the device. 2202 * This is needed by OTG controller drivers, where it helps meet 2203 * HNP protocol timing requirements for starting a port reset. 2204 */ 2205 int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num) 2206 { 2207 struct usb_hcd *hcd; 2208 int status = -EOPNOTSUPP; 2209 2210 /* NOTE: since HNP can't start by grabbing the bus's address0_sem, 2211 * boards with root hubs hooked up to internal devices (instead of 2212 * just the OTG port) may need more attention to resetting... 2213 */ 2214 hcd = container_of (bus, struct usb_hcd, self); 2215 if (port_num && hcd->driver->start_port_reset) 2216 status = hcd->driver->start_port_reset(hcd, port_num); 2217 2218 /* run khubd shortly after (first) root port reset finishes; 2219 * it may issue others, until at least 50 msecs have passed. 2220 */ 2221 if (status == 0) 2222 mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10)); 2223 return status; 2224 } 2225 EXPORT_SYMBOL_GPL(usb_bus_start_enum); 2226 2227 #endif 2228 2229 /*-------------------------------------------------------------------------*/ 2230 2231 /** 2232 * usb_hcd_irq - hook IRQs to HCD framework (bus glue) 2233 * @irq: the IRQ being raised 2234 * @__hcd: pointer to the HCD whose IRQ is being signaled 2235 * 2236 * If the controller isn't HALTed, calls the driver's irq handler. 2237 * Checks whether the controller is now dead. 2238 */ 2239 irqreturn_t usb_hcd_irq (int irq, void *__hcd) 2240 { 2241 struct usb_hcd *hcd = __hcd; 2242 unsigned long flags; 2243 irqreturn_t rc; 2244 2245 /* IRQF_DISABLED doesn't work correctly with shared IRQs 2246 * when the first handler doesn't use it. So let's just 2247 * assume it's never used. 2248 */ 2249 local_irq_save(flags); 2250 2251 if (unlikely(HCD_DEAD(hcd) || !HCD_HW_ACCESSIBLE(hcd))) 2252 rc = IRQ_NONE; 2253 else if (hcd->driver->irq(hcd) == IRQ_NONE) 2254 rc = IRQ_NONE; 2255 else 2256 rc = IRQ_HANDLED; 2257 2258 local_irq_restore(flags); 2259 return rc; 2260 } 2261 EXPORT_SYMBOL_GPL(usb_hcd_irq); 2262 2263 /*-------------------------------------------------------------------------*/ 2264 2265 /** 2266 * usb_hc_died - report abnormal shutdown of a host controller (bus glue) 2267 * @hcd: pointer to the HCD representing the controller 2268 * 2269 * This is called by bus glue to report a USB host controller that died 2270 * while operations may still have been pending. It's called automatically 2271 * by the PCI glue, so only glue for non-PCI busses should need to call it. 2272 * 2273 * Only call this function with the primary HCD. 2274 */ 2275 void usb_hc_died (struct usb_hcd *hcd) 2276 { 2277 unsigned long flags; 2278 2279 dev_err (hcd->self.controller, "HC died; cleaning up\n"); 2280 2281 spin_lock_irqsave (&hcd_root_hub_lock, flags); 2282 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2283 set_bit(HCD_FLAG_DEAD, &hcd->flags); 2284 if (hcd->rh_registered) { 2285 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2286 2287 /* make khubd clean up old urbs and devices */ 2288 usb_set_device_state (hcd->self.root_hub, 2289 USB_STATE_NOTATTACHED); 2290 usb_kick_khubd (hcd->self.root_hub); 2291 } 2292 if (usb_hcd_is_primary_hcd(hcd) && hcd->shared_hcd) { 2293 hcd = hcd->shared_hcd; 2294 if (hcd->rh_registered) { 2295 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2296 2297 /* make khubd clean up old urbs and devices */ 2298 usb_set_device_state(hcd->self.root_hub, 2299 USB_STATE_NOTATTACHED); 2300 usb_kick_khubd(hcd->self.root_hub); 2301 } 2302 } 2303 spin_unlock_irqrestore (&hcd_root_hub_lock, flags); 2304 /* Make sure that the other roothub is also deallocated. */ 2305 } 2306 EXPORT_SYMBOL_GPL (usb_hc_died); 2307 2308 /*-------------------------------------------------------------------------*/ 2309 2310 /** 2311 * usb_create_shared_hcd - create and initialize an HCD structure 2312 * @driver: HC driver that will use this hcd 2313 * @dev: device for this HC, stored in hcd->self.controller 2314 * @bus_name: value to store in hcd->self.bus_name 2315 * @primary_hcd: a pointer to the usb_hcd structure that is sharing the 2316 * PCI device. Only allocate certain resources for the primary HCD 2317 * Context: !in_interrupt() 2318 * 2319 * Allocate a struct usb_hcd, with extra space at the end for the 2320 * HC driver's private data. Initialize the generic members of the 2321 * hcd structure. 2322 * 2323 * If memory is unavailable, returns NULL. 2324 */ 2325 struct usb_hcd *usb_create_shared_hcd(const struct hc_driver *driver, 2326 struct device *dev, const char *bus_name, 2327 struct usb_hcd *primary_hcd) 2328 { 2329 struct usb_hcd *hcd; 2330 2331 hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL); 2332 if (!hcd) { 2333 dev_dbg (dev, "hcd alloc failed\n"); 2334 return NULL; 2335 } 2336 if (primary_hcd == NULL) { 2337 hcd->bandwidth_mutex = kmalloc(sizeof(*hcd->bandwidth_mutex), 2338 GFP_KERNEL); 2339 if (!hcd->bandwidth_mutex) { 2340 kfree(hcd); 2341 dev_dbg(dev, "hcd bandwidth mutex alloc failed\n"); 2342 return NULL; 2343 } 2344 mutex_init(hcd->bandwidth_mutex); 2345 dev_set_drvdata(dev, hcd); 2346 } else { 2347 hcd->bandwidth_mutex = primary_hcd->bandwidth_mutex; 2348 hcd->primary_hcd = primary_hcd; 2349 primary_hcd->primary_hcd = primary_hcd; 2350 hcd->shared_hcd = primary_hcd; 2351 primary_hcd->shared_hcd = hcd; 2352 } 2353 2354 kref_init(&hcd->kref); 2355 2356 usb_bus_init(&hcd->self); 2357 hcd->self.controller = dev; 2358 hcd->self.bus_name = bus_name; 2359 hcd->self.uses_dma = (dev->dma_mask != NULL); 2360 2361 init_timer(&hcd->rh_timer); 2362 hcd->rh_timer.function = rh_timer_func; 2363 hcd->rh_timer.data = (unsigned long) hcd; 2364 #ifdef CONFIG_PM_RUNTIME 2365 INIT_WORK(&hcd->wakeup_work, hcd_resume_work); 2366 #endif 2367 2368 hcd->driver = driver; 2369 hcd->speed = driver->flags & HCD_MASK; 2370 hcd->product_desc = (driver->product_desc) ? driver->product_desc : 2371 "USB Host Controller"; 2372 return hcd; 2373 } 2374 EXPORT_SYMBOL_GPL(usb_create_shared_hcd); 2375 2376 /** 2377 * usb_create_hcd - create and initialize an HCD structure 2378 * @driver: HC driver that will use this hcd 2379 * @dev: device for this HC, stored in hcd->self.controller 2380 * @bus_name: value to store in hcd->self.bus_name 2381 * Context: !in_interrupt() 2382 * 2383 * Allocate a struct usb_hcd, with extra space at the end for the 2384 * HC driver's private data. Initialize the generic members of the 2385 * hcd structure. 2386 * 2387 * If memory is unavailable, returns NULL. 2388 */ 2389 struct usb_hcd *usb_create_hcd(const struct hc_driver *driver, 2390 struct device *dev, const char *bus_name) 2391 { 2392 return usb_create_shared_hcd(driver, dev, bus_name, NULL); 2393 } 2394 EXPORT_SYMBOL_GPL(usb_create_hcd); 2395 2396 /* 2397 * Roothubs that share one PCI device must also share the bandwidth mutex. 2398 * Don't deallocate the bandwidth_mutex until the last shared usb_hcd is 2399 * deallocated. 2400 * 2401 * Make sure to only deallocate the bandwidth_mutex when the primary HCD is 2402 * freed. When hcd_release() is called for the non-primary HCD, set the 2403 * primary_hcd's shared_hcd pointer to null (since the non-primary HCD will be 2404 * freed shortly). 2405 */ 2406 static void hcd_release (struct kref *kref) 2407 { 2408 struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref); 2409 2410 if (usb_hcd_is_primary_hcd(hcd)) 2411 kfree(hcd->bandwidth_mutex); 2412 else 2413 hcd->shared_hcd->shared_hcd = NULL; 2414 kfree(hcd); 2415 } 2416 2417 struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd) 2418 { 2419 if (hcd) 2420 kref_get (&hcd->kref); 2421 return hcd; 2422 } 2423 EXPORT_SYMBOL_GPL(usb_get_hcd); 2424 2425 void usb_put_hcd (struct usb_hcd *hcd) 2426 { 2427 if (hcd) 2428 kref_put (&hcd->kref, hcd_release); 2429 } 2430 EXPORT_SYMBOL_GPL(usb_put_hcd); 2431 2432 int usb_hcd_is_primary_hcd(struct usb_hcd *hcd) 2433 { 2434 if (!hcd->primary_hcd) 2435 return 1; 2436 return hcd == hcd->primary_hcd; 2437 } 2438 EXPORT_SYMBOL_GPL(usb_hcd_is_primary_hcd); 2439 2440 int usb_hcd_find_raw_port_number(struct usb_hcd *hcd, int port1) 2441 { 2442 if (!hcd->driver->find_raw_port_number) 2443 return port1; 2444 2445 return hcd->driver->find_raw_port_number(hcd, port1); 2446 } 2447 2448 static int usb_hcd_request_irqs(struct usb_hcd *hcd, 2449 unsigned int irqnum, unsigned long irqflags) 2450 { 2451 int retval; 2452 2453 if (hcd->driver->irq) { 2454 2455 /* IRQF_DISABLED doesn't work as advertised when used together 2456 * with IRQF_SHARED. As usb_hcd_irq() will always disable 2457 * interrupts we can remove it here. 2458 */ 2459 if (irqflags & IRQF_SHARED) 2460 irqflags &= ~IRQF_DISABLED; 2461 2462 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d", 2463 hcd->driver->description, hcd->self.busnum); 2464 retval = request_irq(irqnum, &usb_hcd_irq, irqflags, 2465 hcd->irq_descr, hcd); 2466 if (retval != 0) { 2467 dev_err(hcd->self.controller, 2468 "request interrupt %d failed\n", 2469 irqnum); 2470 return retval; 2471 } 2472 hcd->irq = irqnum; 2473 dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum, 2474 (hcd->driver->flags & HCD_MEMORY) ? 2475 "io mem" : "io base", 2476 (unsigned long long)hcd->rsrc_start); 2477 } else { 2478 hcd->irq = 0; 2479 if (hcd->rsrc_start) 2480 dev_info(hcd->self.controller, "%s 0x%08llx\n", 2481 (hcd->driver->flags & HCD_MEMORY) ? 2482 "io mem" : "io base", 2483 (unsigned long long)hcd->rsrc_start); 2484 } 2485 return 0; 2486 } 2487 2488 /** 2489 * usb_add_hcd - finish generic HCD structure initialization and register 2490 * @hcd: the usb_hcd structure to initialize 2491 * @irqnum: Interrupt line to allocate 2492 * @irqflags: Interrupt type flags 2493 * 2494 * Finish the remaining parts of generic HCD initialization: allocate the 2495 * buffers of consistent memory, register the bus, request the IRQ line, 2496 * and call the driver's reset() and start() routines. 2497 */ 2498 int usb_add_hcd(struct usb_hcd *hcd, 2499 unsigned int irqnum, unsigned long irqflags) 2500 { 2501 int retval; 2502 struct usb_device *rhdev; 2503 2504 dev_info(hcd->self.controller, "%s\n", hcd->product_desc); 2505 2506 /* Keep old behaviour if authorized_default is not in [0, 1]. */ 2507 if (authorized_default < 0 || authorized_default > 1) 2508 hcd->authorized_default = hcd->wireless? 0 : 1; 2509 else 2510 hcd->authorized_default = authorized_default; 2511 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 2512 2513 /* HC is in reset state, but accessible. Now do the one-time init, 2514 * bottom up so that hcds can customize the root hubs before khubd 2515 * starts talking to them. (Note, bus id is assigned early too.) 2516 */ 2517 if ((retval = hcd_buffer_create(hcd)) != 0) { 2518 dev_dbg(hcd->self.controller, "pool alloc failed\n"); 2519 return retval; 2520 } 2521 2522 if ((retval = usb_register_bus(&hcd->self)) < 0) 2523 goto err_register_bus; 2524 2525 if ((rhdev = usb_alloc_dev(NULL, &hcd->self, 0)) == NULL) { 2526 dev_err(hcd->self.controller, "unable to allocate root hub\n"); 2527 retval = -ENOMEM; 2528 goto err_allocate_root_hub; 2529 } 2530 hcd->self.root_hub = rhdev; 2531 2532 switch (hcd->speed) { 2533 case HCD_USB11: 2534 rhdev->speed = USB_SPEED_FULL; 2535 break; 2536 case HCD_USB2: 2537 rhdev->speed = USB_SPEED_HIGH; 2538 break; 2539 case HCD_USB25: 2540 rhdev->speed = USB_SPEED_WIRELESS; 2541 break; 2542 case HCD_USB3: 2543 rhdev->speed = USB_SPEED_SUPER; 2544 break; 2545 default: 2546 retval = -EINVAL; 2547 goto err_set_rh_speed; 2548 } 2549 2550 /* wakeup flag init defaults to "everything works" for root hubs, 2551 * but drivers can override it in reset() if needed, along with 2552 * recording the overall controller's system wakeup capability. 2553 */ 2554 device_set_wakeup_capable(&rhdev->dev, 1); 2555 2556 /* HCD_FLAG_RH_RUNNING doesn't matter until the root hub is 2557 * registered. But since the controller can die at any time, 2558 * let's initialize the flag before touching the hardware. 2559 */ 2560 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2561 2562 /* "reset" is misnamed; its role is now one-time init. the controller 2563 * should already have been reset (and boot firmware kicked off etc). 2564 */ 2565 if (hcd->driver->reset && (retval = hcd->driver->reset(hcd)) < 0) { 2566 dev_err(hcd->self.controller, "can't setup\n"); 2567 goto err_hcd_driver_setup; 2568 } 2569 hcd->rh_pollable = 1; 2570 2571 /* NOTE: root hub and controller capabilities may not be the same */ 2572 if (device_can_wakeup(hcd->self.controller) 2573 && device_can_wakeup(&hcd->self.root_hub->dev)) 2574 dev_dbg(hcd->self.controller, "supports USB remote wakeup\n"); 2575 2576 /* enable irqs just before we start the controller, 2577 * if the BIOS provides legacy PCI irqs. 2578 */ 2579 if (usb_hcd_is_primary_hcd(hcd) && irqnum) { 2580 retval = usb_hcd_request_irqs(hcd, irqnum, irqflags); 2581 if (retval) 2582 goto err_request_irq; 2583 } 2584 2585 hcd->state = HC_STATE_RUNNING; 2586 retval = hcd->driver->start(hcd); 2587 if (retval < 0) { 2588 dev_err(hcd->self.controller, "startup error %d\n", retval); 2589 goto err_hcd_driver_start; 2590 } 2591 2592 /* starting here, usbcore will pay attention to this root hub */ 2593 if ((retval = register_root_hub(hcd)) != 0) 2594 goto err_register_root_hub; 2595 2596 retval = sysfs_create_group(&rhdev->dev.kobj, &usb_bus_attr_group); 2597 if (retval < 0) { 2598 printk(KERN_ERR "Cannot register USB bus sysfs attributes: %d\n", 2599 retval); 2600 goto error_create_attr_group; 2601 } 2602 if (hcd->uses_new_polling && HCD_POLL_RH(hcd)) 2603 usb_hcd_poll_rh_status(hcd); 2604 2605 /* 2606 * Host controllers don't generate their own wakeup requests; 2607 * they only forward requests from the root hub. Therefore 2608 * controllers should always be enabled for remote wakeup. 2609 */ 2610 device_wakeup_enable(hcd->self.controller); 2611 return retval; 2612 2613 error_create_attr_group: 2614 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2615 if (HC_IS_RUNNING(hcd->state)) 2616 hcd->state = HC_STATE_QUIESCING; 2617 spin_lock_irq(&hcd_root_hub_lock); 2618 hcd->rh_registered = 0; 2619 spin_unlock_irq(&hcd_root_hub_lock); 2620 2621 #ifdef CONFIG_PM_RUNTIME 2622 cancel_work_sync(&hcd->wakeup_work); 2623 #endif 2624 mutex_lock(&usb_bus_list_lock); 2625 usb_disconnect(&rhdev); /* Sets rhdev to NULL */ 2626 mutex_unlock(&usb_bus_list_lock); 2627 err_register_root_hub: 2628 hcd->rh_pollable = 0; 2629 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2630 del_timer_sync(&hcd->rh_timer); 2631 hcd->driver->stop(hcd); 2632 hcd->state = HC_STATE_HALT; 2633 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2634 del_timer_sync(&hcd->rh_timer); 2635 err_hcd_driver_start: 2636 if (usb_hcd_is_primary_hcd(hcd) && hcd->irq > 0) 2637 free_irq(irqnum, hcd); 2638 err_request_irq: 2639 err_hcd_driver_setup: 2640 err_set_rh_speed: 2641 usb_put_dev(hcd->self.root_hub); 2642 err_allocate_root_hub: 2643 usb_deregister_bus(&hcd->self); 2644 err_register_bus: 2645 hcd_buffer_destroy(hcd); 2646 return retval; 2647 } 2648 EXPORT_SYMBOL_GPL(usb_add_hcd); 2649 2650 /** 2651 * usb_remove_hcd - shutdown processing for generic HCDs 2652 * @hcd: the usb_hcd structure to remove 2653 * Context: !in_interrupt() 2654 * 2655 * Disconnects the root hub, then reverses the effects of usb_add_hcd(), 2656 * invoking the HCD's stop() method. 2657 */ 2658 void usb_remove_hcd(struct usb_hcd *hcd) 2659 { 2660 struct usb_device *rhdev = hcd->self.root_hub; 2661 2662 dev_info(hcd->self.controller, "remove, state %x\n", hcd->state); 2663 2664 usb_get_dev(rhdev); 2665 sysfs_remove_group(&rhdev->dev.kobj, &usb_bus_attr_group); 2666 2667 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2668 if (HC_IS_RUNNING (hcd->state)) 2669 hcd->state = HC_STATE_QUIESCING; 2670 2671 dev_dbg(hcd->self.controller, "roothub graceful disconnect\n"); 2672 spin_lock_irq (&hcd_root_hub_lock); 2673 hcd->rh_registered = 0; 2674 spin_unlock_irq (&hcd_root_hub_lock); 2675 2676 #ifdef CONFIG_PM_RUNTIME 2677 cancel_work_sync(&hcd->wakeup_work); 2678 #endif 2679 2680 mutex_lock(&usb_bus_list_lock); 2681 usb_disconnect(&rhdev); /* Sets rhdev to NULL */ 2682 mutex_unlock(&usb_bus_list_lock); 2683 2684 /* Prevent any more root-hub status calls from the timer. 2685 * The HCD might still restart the timer (if a port status change 2686 * interrupt occurs), but usb_hcd_poll_rh_status() won't invoke 2687 * the hub_status_data() callback. 2688 */ 2689 hcd->rh_pollable = 0; 2690 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2691 del_timer_sync(&hcd->rh_timer); 2692 2693 hcd->driver->stop(hcd); 2694 hcd->state = HC_STATE_HALT; 2695 2696 /* In case the HCD restarted the timer, stop it again. */ 2697 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2698 del_timer_sync(&hcd->rh_timer); 2699 2700 if (usb_hcd_is_primary_hcd(hcd)) { 2701 if (hcd->irq > 0) 2702 free_irq(hcd->irq, hcd); 2703 } 2704 2705 usb_put_dev(hcd->self.root_hub); 2706 usb_deregister_bus(&hcd->self); 2707 hcd_buffer_destroy(hcd); 2708 } 2709 EXPORT_SYMBOL_GPL(usb_remove_hcd); 2710 2711 void 2712 usb_hcd_platform_shutdown(struct platform_device* dev) 2713 { 2714 struct usb_hcd *hcd = platform_get_drvdata(dev); 2715 2716 if (hcd->driver->shutdown) 2717 hcd->driver->shutdown(hcd); 2718 } 2719 EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown); 2720 2721 /*-------------------------------------------------------------------------*/ 2722 2723 #if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE) 2724 2725 struct usb_mon_operations *mon_ops; 2726 2727 /* 2728 * The registration is unlocked. 2729 * We do it this way because we do not want to lock in hot paths. 2730 * 2731 * Notice that the code is minimally error-proof. Because usbmon needs 2732 * symbols from usbcore, usbcore gets referenced and cannot be unloaded first. 2733 */ 2734 2735 int usb_mon_register (struct usb_mon_operations *ops) 2736 { 2737 2738 if (mon_ops) 2739 return -EBUSY; 2740 2741 mon_ops = ops; 2742 mb(); 2743 return 0; 2744 } 2745 EXPORT_SYMBOL_GPL (usb_mon_register); 2746 2747 void usb_mon_deregister (void) 2748 { 2749 2750 if (mon_ops == NULL) { 2751 printk(KERN_ERR "USB: monitor was not registered\n"); 2752 return; 2753 } 2754 mon_ops = NULL; 2755 mb(); 2756 } 2757 EXPORT_SYMBOL_GPL (usb_mon_deregister); 2758 2759 #endif /* CONFIG_USB_MON || CONFIG_USB_MON_MODULE */ 2760