xref: /linux/drivers/usb/chipidea/udc.c (revision e606c759f43b18de768253c70290cb023245faee)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * udc.c - ChipIdea UDC driver
4  *
5  * Copyright (C) 2008 Chipidea - MIPS Technologies, Inc. All rights reserved.
6  *
7  * Author: David Lopo
8  */
9 
10 #include <linux/delay.h>
11 #include <linux/device.h>
12 #include <linux/dmapool.h>
13 #include <linux/err.h>
14 #include <linux/irqreturn.h>
15 #include <linux/kernel.h>
16 #include <linux/slab.h>
17 #include <linux/pm_runtime.h>
18 #include <linux/pinctrl/consumer.h>
19 #include <linux/usb/ch9.h>
20 #include <linux/usb/gadget.h>
21 #include <linux/usb/otg-fsm.h>
22 #include <linux/usb/chipidea.h>
23 
24 #include "ci.h"
25 #include "udc.h"
26 #include "bits.h"
27 #include "otg.h"
28 #include "otg_fsm.h"
29 
30 /* control endpoint description */
31 static const struct usb_endpoint_descriptor
32 ctrl_endpt_out_desc = {
33 	.bLength         = USB_DT_ENDPOINT_SIZE,
34 	.bDescriptorType = USB_DT_ENDPOINT,
35 
36 	.bEndpointAddress = USB_DIR_OUT,
37 	.bmAttributes    = USB_ENDPOINT_XFER_CONTROL,
38 	.wMaxPacketSize  = cpu_to_le16(CTRL_PAYLOAD_MAX),
39 };
40 
41 static const struct usb_endpoint_descriptor
42 ctrl_endpt_in_desc = {
43 	.bLength         = USB_DT_ENDPOINT_SIZE,
44 	.bDescriptorType = USB_DT_ENDPOINT,
45 
46 	.bEndpointAddress = USB_DIR_IN,
47 	.bmAttributes    = USB_ENDPOINT_XFER_CONTROL,
48 	.wMaxPacketSize  = cpu_to_le16(CTRL_PAYLOAD_MAX),
49 };
50 
51 /**
52  * hw_ep_bit: calculates the bit number
53  * @num: endpoint number
54  * @dir: endpoint direction
55  *
56  * This function returns bit number
57  */
58 static inline int hw_ep_bit(int num, int dir)
59 {
60 	return num + ((dir == TX) ? 16 : 0);
61 }
62 
63 static inline int ep_to_bit(struct ci_hdrc *ci, int n)
64 {
65 	int fill = 16 - ci->hw_ep_max / 2;
66 
67 	if (n >= ci->hw_ep_max / 2)
68 		n += fill;
69 
70 	return n;
71 }
72 
73 /**
74  * hw_device_state: enables/disables interrupts (execute without interruption)
75  * @ci: the controller
76  * @dma: 0 => disable, !0 => enable and set dma engine
77  *
78  * This function returns an error code
79  */
80 static int hw_device_state(struct ci_hdrc *ci, u32 dma)
81 {
82 	if (dma) {
83 		hw_write(ci, OP_ENDPTLISTADDR, ~0, dma);
84 		/* interrupt, error, port change, reset, sleep/suspend */
85 		hw_write(ci, OP_USBINTR, ~0,
86 			     USBi_UI|USBi_UEI|USBi_PCI|USBi_URI|USBi_SLI);
87 	} else {
88 		hw_write(ci, OP_USBINTR, ~0, 0);
89 	}
90 	return 0;
91 }
92 
93 /**
94  * hw_ep_flush: flush endpoint fifo (execute without interruption)
95  * @ci: the controller
96  * @num: endpoint number
97  * @dir: endpoint direction
98  *
99  * This function returns an error code
100  */
101 static int hw_ep_flush(struct ci_hdrc *ci, int num, int dir)
102 {
103 	int n = hw_ep_bit(num, dir);
104 
105 	do {
106 		/* flush any pending transfer */
107 		hw_write(ci, OP_ENDPTFLUSH, ~0, BIT(n));
108 		while (hw_read(ci, OP_ENDPTFLUSH, BIT(n)))
109 			cpu_relax();
110 	} while (hw_read(ci, OP_ENDPTSTAT, BIT(n)));
111 
112 	return 0;
113 }
114 
115 /**
116  * hw_ep_disable: disables endpoint (execute without interruption)
117  * @ci: the controller
118  * @num: endpoint number
119  * @dir: endpoint direction
120  *
121  * This function returns an error code
122  */
123 static int hw_ep_disable(struct ci_hdrc *ci, int num, int dir)
124 {
125 	hw_write(ci, OP_ENDPTCTRL + num,
126 		 (dir == TX) ? ENDPTCTRL_TXE : ENDPTCTRL_RXE, 0);
127 	return 0;
128 }
129 
130 /**
131  * hw_ep_enable: enables endpoint (execute without interruption)
132  * @ci: the controller
133  * @num:  endpoint number
134  * @dir:  endpoint direction
135  * @type: endpoint type
136  *
137  * This function returns an error code
138  */
139 static int hw_ep_enable(struct ci_hdrc *ci, int num, int dir, int type)
140 {
141 	u32 mask, data;
142 
143 	if (dir == TX) {
144 		mask  = ENDPTCTRL_TXT;  /* type    */
145 		data  = type << __ffs(mask);
146 
147 		mask |= ENDPTCTRL_TXS;  /* unstall */
148 		mask |= ENDPTCTRL_TXR;  /* reset data toggle */
149 		data |= ENDPTCTRL_TXR;
150 		mask |= ENDPTCTRL_TXE;  /* enable  */
151 		data |= ENDPTCTRL_TXE;
152 	} else {
153 		mask  = ENDPTCTRL_RXT;  /* type    */
154 		data  = type << __ffs(mask);
155 
156 		mask |= ENDPTCTRL_RXS;  /* unstall */
157 		mask |= ENDPTCTRL_RXR;  /* reset data toggle */
158 		data |= ENDPTCTRL_RXR;
159 		mask |= ENDPTCTRL_RXE;  /* enable  */
160 		data |= ENDPTCTRL_RXE;
161 	}
162 	hw_write(ci, OP_ENDPTCTRL + num, mask, data);
163 	return 0;
164 }
165 
166 /**
167  * hw_ep_get_halt: return endpoint halt status
168  * @ci: the controller
169  * @num: endpoint number
170  * @dir: endpoint direction
171  *
172  * This function returns 1 if endpoint halted
173  */
174 static int hw_ep_get_halt(struct ci_hdrc *ci, int num, int dir)
175 {
176 	u32 mask = (dir == TX) ? ENDPTCTRL_TXS : ENDPTCTRL_RXS;
177 
178 	return hw_read(ci, OP_ENDPTCTRL + num, mask) ? 1 : 0;
179 }
180 
181 /**
182  * hw_ep_prime: primes endpoint (execute without interruption)
183  * @ci: the controller
184  * @num:     endpoint number
185  * @dir:     endpoint direction
186  * @is_ctrl: true if control endpoint
187  *
188  * This function returns an error code
189  */
190 static int hw_ep_prime(struct ci_hdrc *ci, int num, int dir, int is_ctrl)
191 {
192 	int n = hw_ep_bit(num, dir);
193 
194 	/* Synchronize before ep prime */
195 	wmb();
196 
197 	if (is_ctrl && dir == RX && hw_read(ci, OP_ENDPTSETUPSTAT, BIT(num)))
198 		return -EAGAIN;
199 
200 	hw_write(ci, OP_ENDPTPRIME, ~0, BIT(n));
201 
202 	while (hw_read(ci, OP_ENDPTPRIME, BIT(n)))
203 		cpu_relax();
204 	if (is_ctrl && dir == RX && hw_read(ci, OP_ENDPTSETUPSTAT, BIT(num)))
205 		return -EAGAIN;
206 
207 	/* status shoult be tested according with manual but it doesn't work */
208 	return 0;
209 }
210 
211 /**
212  * hw_ep_set_halt: configures ep halt & resets data toggle after clear (execute
213  *                 without interruption)
214  * @ci: the controller
215  * @num:   endpoint number
216  * @dir:   endpoint direction
217  * @value: true => stall, false => unstall
218  *
219  * This function returns an error code
220  */
221 static int hw_ep_set_halt(struct ci_hdrc *ci, int num, int dir, int value)
222 {
223 	if (value != 0 && value != 1)
224 		return -EINVAL;
225 
226 	do {
227 		enum ci_hw_regs reg = OP_ENDPTCTRL + num;
228 		u32 mask_xs = (dir == TX) ? ENDPTCTRL_TXS : ENDPTCTRL_RXS;
229 		u32 mask_xr = (dir == TX) ? ENDPTCTRL_TXR : ENDPTCTRL_RXR;
230 
231 		/* data toggle - reserved for EP0 but it's in ESS */
232 		hw_write(ci, reg, mask_xs|mask_xr,
233 			  value ? mask_xs : mask_xr);
234 	} while (value != hw_ep_get_halt(ci, num, dir));
235 
236 	return 0;
237 }
238 
239 /**
240  * hw_is_port_high_speed: test if port is high speed
241  * @ci: the controller
242  *
243  * This function returns true if high speed port
244  */
245 static int hw_port_is_high_speed(struct ci_hdrc *ci)
246 {
247 	return ci->hw_bank.lpm ? hw_read(ci, OP_DEVLC, DEVLC_PSPD) :
248 		hw_read(ci, OP_PORTSC, PORTSC_HSP);
249 }
250 
251 /**
252  * hw_test_and_clear_complete: test & clear complete status (execute without
253  *                             interruption)
254  * @ci: the controller
255  * @n: endpoint number
256  *
257  * This function returns complete status
258  */
259 static int hw_test_and_clear_complete(struct ci_hdrc *ci, int n)
260 {
261 	n = ep_to_bit(ci, n);
262 	return hw_test_and_clear(ci, OP_ENDPTCOMPLETE, BIT(n));
263 }
264 
265 /**
266  * hw_test_and_clear_intr_active: test & clear active interrupts (execute
267  *                                without interruption)
268  * @ci: the controller
269  *
270  * This function returns active interrutps
271  */
272 static u32 hw_test_and_clear_intr_active(struct ci_hdrc *ci)
273 {
274 	u32 reg = hw_read_intr_status(ci) & hw_read_intr_enable(ci);
275 
276 	hw_write(ci, OP_USBSTS, ~0, reg);
277 	return reg;
278 }
279 
280 /**
281  * hw_test_and_clear_setup_guard: test & clear setup guard (execute without
282  *                                interruption)
283  * @ci: the controller
284  *
285  * This function returns guard value
286  */
287 static int hw_test_and_clear_setup_guard(struct ci_hdrc *ci)
288 {
289 	return hw_test_and_write(ci, OP_USBCMD, USBCMD_SUTW, 0);
290 }
291 
292 /**
293  * hw_test_and_set_setup_guard: test & set setup guard (execute without
294  *                              interruption)
295  * @ci: the controller
296  *
297  * This function returns guard value
298  */
299 static int hw_test_and_set_setup_guard(struct ci_hdrc *ci)
300 {
301 	return hw_test_and_write(ci, OP_USBCMD, USBCMD_SUTW, USBCMD_SUTW);
302 }
303 
304 /**
305  * hw_usb_set_address: configures USB address (execute without interruption)
306  * @ci: the controller
307  * @value: new USB address
308  *
309  * This function explicitly sets the address, without the "USBADRA" (advance)
310  * feature, which is not supported by older versions of the controller.
311  */
312 static void hw_usb_set_address(struct ci_hdrc *ci, u8 value)
313 {
314 	hw_write(ci, OP_DEVICEADDR, DEVICEADDR_USBADR,
315 		 value << __ffs(DEVICEADDR_USBADR));
316 }
317 
318 /**
319  * hw_usb_reset: restart device after a bus reset (execute without
320  *               interruption)
321  * @ci: the controller
322  *
323  * This function returns an error code
324  */
325 static int hw_usb_reset(struct ci_hdrc *ci)
326 {
327 	hw_usb_set_address(ci, 0);
328 
329 	/* ESS flushes only at end?!? */
330 	hw_write(ci, OP_ENDPTFLUSH,    ~0, ~0);
331 
332 	/* clear setup token semaphores */
333 	hw_write(ci, OP_ENDPTSETUPSTAT, 0,  0);
334 
335 	/* clear complete status */
336 	hw_write(ci, OP_ENDPTCOMPLETE,  0,  0);
337 
338 	/* wait until all bits cleared */
339 	while (hw_read(ci, OP_ENDPTPRIME, ~0))
340 		udelay(10);             /* not RTOS friendly */
341 
342 	/* reset all endpoints ? */
343 
344 	/* reset internal status and wait for further instructions
345 	   no need to verify the port reset status (ESS does it) */
346 
347 	return 0;
348 }
349 
350 /******************************************************************************
351  * UTIL block
352  *****************************************************************************/
353 
354 static int add_td_to_list(struct ci_hw_ep *hwep, struct ci_hw_req *hwreq,
355 			unsigned int length, struct scatterlist *s)
356 {
357 	int i;
358 	u32 temp;
359 	struct td_node *lastnode, *node = kzalloc(sizeof(struct td_node),
360 						  GFP_ATOMIC);
361 
362 	if (node == NULL)
363 		return -ENOMEM;
364 
365 	node->ptr = dma_pool_zalloc(hwep->td_pool, GFP_ATOMIC, &node->dma);
366 	if (node->ptr == NULL) {
367 		kfree(node);
368 		return -ENOMEM;
369 	}
370 
371 	node->ptr->token = cpu_to_le32(length << __ffs(TD_TOTAL_BYTES));
372 	node->ptr->token &= cpu_to_le32(TD_TOTAL_BYTES);
373 	node->ptr->token |= cpu_to_le32(TD_STATUS_ACTIVE);
374 	if (hwep->type == USB_ENDPOINT_XFER_ISOC && hwep->dir == TX) {
375 		u32 mul = hwreq->req.length / hwep->ep.maxpacket;
376 
377 		if (hwreq->req.length == 0
378 				|| hwreq->req.length % hwep->ep.maxpacket)
379 			mul++;
380 		node->ptr->token |= cpu_to_le32(mul << __ffs(TD_MULTO));
381 	}
382 
383 	if (s) {
384 		temp = (u32) (sg_dma_address(s) + hwreq->req.actual);
385 		node->td_remaining_size = CI_MAX_BUF_SIZE - length;
386 	} else {
387 		temp = (u32) (hwreq->req.dma + hwreq->req.actual);
388 	}
389 
390 	if (length) {
391 		node->ptr->page[0] = cpu_to_le32(temp);
392 		for (i = 1; i < TD_PAGE_COUNT; i++) {
393 			u32 page = temp + i * CI_HDRC_PAGE_SIZE;
394 			page &= ~TD_RESERVED_MASK;
395 			node->ptr->page[i] = cpu_to_le32(page);
396 		}
397 	}
398 
399 	hwreq->req.actual += length;
400 
401 	if (!list_empty(&hwreq->tds)) {
402 		/* get the last entry */
403 		lastnode = list_entry(hwreq->tds.prev,
404 				struct td_node, td);
405 		lastnode->ptr->next = cpu_to_le32(node->dma);
406 	}
407 
408 	INIT_LIST_HEAD(&node->td);
409 	list_add_tail(&node->td, &hwreq->tds);
410 
411 	return 0;
412 }
413 
414 /**
415  * _usb_addr: calculates endpoint address from direction & number
416  * @ep:  endpoint
417  */
418 static inline u8 _usb_addr(struct ci_hw_ep *ep)
419 {
420 	return ((ep->dir == TX) ? USB_ENDPOINT_DIR_MASK : 0) | ep->num;
421 }
422 
423 static int prepare_td_for_non_sg(struct ci_hw_ep *hwep,
424 		struct ci_hw_req *hwreq)
425 {
426 	unsigned int rest = hwreq->req.length;
427 	int pages = TD_PAGE_COUNT;
428 	int ret = 0;
429 
430 	if (rest == 0) {
431 		ret = add_td_to_list(hwep, hwreq, 0, NULL);
432 		if (ret < 0)
433 			return ret;
434 	}
435 
436 	/*
437 	 * The first buffer could be not page aligned.
438 	 * In that case we have to span into one extra td.
439 	 */
440 	if (hwreq->req.dma % PAGE_SIZE)
441 		pages--;
442 
443 	while (rest > 0) {
444 		unsigned int count = min(hwreq->req.length - hwreq->req.actual,
445 			(unsigned int)(pages * CI_HDRC_PAGE_SIZE));
446 
447 		ret = add_td_to_list(hwep, hwreq, count, NULL);
448 		if (ret < 0)
449 			return ret;
450 
451 		rest -= count;
452 	}
453 
454 	if (hwreq->req.zero && hwreq->req.length && hwep->dir == TX
455 	    && (hwreq->req.length % hwep->ep.maxpacket == 0)) {
456 		ret = add_td_to_list(hwep, hwreq, 0, NULL);
457 		if (ret < 0)
458 			return ret;
459 	}
460 
461 	return ret;
462 }
463 
464 static int prepare_td_per_sg(struct ci_hw_ep *hwep, struct ci_hw_req *hwreq,
465 		struct scatterlist *s)
466 {
467 	unsigned int rest = sg_dma_len(s);
468 	int ret = 0;
469 
470 	hwreq->req.actual = 0;
471 	while (rest > 0) {
472 		unsigned int count = min_t(unsigned int, rest,
473 				CI_MAX_BUF_SIZE);
474 
475 		ret = add_td_to_list(hwep, hwreq, count, s);
476 		if (ret < 0)
477 			return ret;
478 
479 		rest -= count;
480 	}
481 
482 	return ret;
483 }
484 
485 static void ci_add_buffer_entry(struct td_node *node, struct scatterlist *s)
486 {
487 	int empty_td_slot_index = (CI_MAX_BUF_SIZE - node->td_remaining_size)
488 			/ CI_HDRC_PAGE_SIZE;
489 	int i;
490 
491 	node->ptr->token +=
492 		cpu_to_le32(sg_dma_len(s) << __ffs(TD_TOTAL_BYTES));
493 
494 	for (i = empty_td_slot_index; i < TD_PAGE_COUNT; i++) {
495 		u32 page = (u32) sg_dma_address(s) +
496 			(i - empty_td_slot_index) * CI_HDRC_PAGE_SIZE;
497 
498 		page &= ~TD_RESERVED_MASK;
499 		node->ptr->page[i] = cpu_to_le32(page);
500 	}
501 }
502 
503 static int prepare_td_for_sg(struct ci_hw_ep *hwep, struct ci_hw_req *hwreq)
504 {
505 	struct usb_request *req = &hwreq->req;
506 	struct scatterlist *s = req->sg;
507 	int ret = 0, i = 0;
508 	struct td_node *node = NULL;
509 
510 	if (!s || req->zero || req->length == 0) {
511 		dev_err(hwep->ci->dev, "not supported operation for sg\n");
512 		return -EINVAL;
513 	}
514 
515 	while (i++ < req->num_mapped_sgs) {
516 		if (sg_dma_address(s) % PAGE_SIZE) {
517 			dev_err(hwep->ci->dev, "not page aligned sg buffer\n");
518 			return -EINVAL;
519 		}
520 
521 		if (node && (node->td_remaining_size >= sg_dma_len(s))) {
522 			ci_add_buffer_entry(node, s);
523 			node->td_remaining_size -= sg_dma_len(s);
524 		} else {
525 			ret = prepare_td_per_sg(hwep, hwreq, s);
526 			if (ret)
527 				return ret;
528 
529 			node = list_entry(hwreq->tds.prev,
530 				struct td_node, td);
531 		}
532 
533 		s = sg_next(s);
534 	}
535 
536 	return ret;
537 }
538 
539 /**
540  * _hardware_enqueue: configures a request at hardware level
541  * @hwep:   endpoint
542  * @hwreq:  request
543  *
544  * This function returns an error code
545  */
546 static int _hardware_enqueue(struct ci_hw_ep *hwep, struct ci_hw_req *hwreq)
547 {
548 	struct ci_hdrc *ci = hwep->ci;
549 	int ret = 0;
550 	struct td_node *firstnode, *lastnode;
551 
552 	/* don't queue twice */
553 	if (hwreq->req.status == -EALREADY)
554 		return -EALREADY;
555 
556 	hwreq->req.status = -EALREADY;
557 
558 	ret = usb_gadget_map_request_by_dev(ci->dev->parent,
559 					    &hwreq->req, hwep->dir);
560 	if (ret)
561 		return ret;
562 
563 	if (hwreq->req.num_mapped_sgs)
564 		ret = prepare_td_for_sg(hwep, hwreq);
565 	else
566 		ret = prepare_td_for_non_sg(hwep, hwreq);
567 
568 	if (ret)
569 		return ret;
570 
571 	firstnode = list_first_entry(&hwreq->tds, struct td_node, td);
572 
573 	lastnode = list_entry(hwreq->tds.prev,
574 		struct td_node, td);
575 
576 	lastnode->ptr->next = cpu_to_le32(TD_TERMINATE);
577 	if (!hwreq->req.no_interrupt)
578 		lastnode->ptr->token |= cpu_to_le32(TD_IOC);
579 	wmb();
580 
581 	hwreq->req.actual = 0;
582 	if (!list_empty(&hwep->qh.queue)) {
583 		struct ci_hw_req *hwreqprev;
584 		int n = hw_ep_bit(hwep->num, hwep->dir);
585 		int tmp_stat;
586 		struct td_node *prevlastnode;
587 		u32 next = firstnode->dma & TD_ADDR_MASK;
588 
589 		hwreqprev = list_entry(hwep->qh.queue.prev,
590 				struct ci_hw_req, queue);
591 		prevlastnode = list_entry(hwreqprev->tds.prev,
592 				struct td_node, td);
593 
594 		prevlastnode->ptr->next = cpu_to_le32(next);
595 		wmb();
596 		if (hw_read(ci, OP_ENDPTPRIME, BIT(n)))
597 			goto done;
598 		do {
599 			hw_write(ci, OP_USBCMD, USBCMD_ATDTW, USBCMD_ATDTW);
600 			tmp_stat = hw_read(ci, OP_ENDPTSTAT, BIT(n));
601 		} while (!hw_read(ci, OP_USBCMD, USBCMD_ATDTW));
602 		hw_write(ci, OP_USBCMD, USBCMD_ATDTW, 0);
603 		if (tmp_stat)
604 			goto done;
605 	}
606 
607 	/*  QH configuration */
608 	hwep->qh.ptr->td.next = cpu_to_le32(firstnode->dma);
609 	hwep->qh.ptr->td.token &=
610 		cpu_to_le32(~(TD_STATUS_HALTED|TD_STATUS_ACTIVE));
611 
612 	if (hwep->type == USB_ENDPOINT_XFER_ISOC && hwep->dir == RX) {
613 		u32 mul = hwreq->req.length / hwep->ep.maxpacket;
614 
615 		if (hwreq->req.length == 0
616 				|| hwreq->req.length % hwep->ep.maxpacket)
617 			mul++;
618 		hwep->qh.ptr->cap |= cpu_to_le32(mul << __ffs(QH_MULT));
619 	}
620 
621 	ret = hw_ep_prime(ci, hwep->num, hwep->dir,
622 			   hwep->type == USB_ENDPOINT_XFER_CONTROL);
623 done:
624 	return ret;
625 }
626 
627 /**
628  * free_pending_td: remove a pending request for the endpoint
629  * @hwep: endpoint
630  */
631 static void free_pending_td(struct ci_hw_ep *hwep)
632 {
633 	struct td_node *pending = hwep->pending_td;
634 
635 	dma_pool_free(hwep->td_pool, pending->ptr, pending->dma);
636 	hwep->pending_td = NULL;
637 	kfree(pending);
638 }
639 
640 static int reprime_dtd(struct ci_hdrc *ci, struct ci_hw_ep *hwep,
641 					   struct td_node *node)
642 {
643 	hwep->qh.ptr->td.next = cpu_to_le32(node->dma);
644 	hwep->qh.ptr->td.token &=
645 		cpu_to_le32(~(TD_STATUS_HALTED | TD_STATUS_ACTIVE));
646 
647 	return hw_ep_prime(ci, hwep->num, hwep->dir,
648 				hwep->type == USB_ENDPOINT_XFER_CONTROL);
649 }
650 
651 /**
652  * _hardware_dequeue: handles a request at hardware level
653  * @hwep: endpoint
654  * @hwreq:  request
655  *
656  * This function returns an error code
657  */
658 static int _hardware_dequeue(struct ci_hw_ep *hwep, struct ci_hw_req *hwreq)
659 {
660 	u32 tmptoken;
661 	struct td_node *node, *tmpnode;
662 	unsigned remaining_length;
663 	unsigned actual = hwreq->req.length;
664 	struct ci_hdrc *ci = hwep->ci;
665 
666 	if (hwreq->req.status != -EALREADY)
667 		return -EINVAL;
668 
669 	hwreq->req.status = 0;
670 
671 	list_for_each_entry_safe(node, tmpnode, &hwreq->tds, td) {
672 		tmptoken = le32_to_cpu(node->ptr->token);
673 		if ((TD_STATUS_ACTIVE & tmptoken) != 0) {
674 			int n = hw_ep_bit(hwep->num, hwep->dir);
675 
676 			if (ci->rev == CI_REVISION_24)
677 				if (!hw_read(ci, OP_ENDPTSTAT, BIT(n)))
678 					reprime_dtd(ci, hwep, node);
679 			hwreq->req.status = -EALREADY;
680 			return -EBUSY;
681 		}
682 
683 		remaining_length = (tmptoken & TD_TOTAL_BYTES);
684 		remaining_length >>= __ffs(TD_TOTAL_BYTES);
685 		actual -= remaining_length;
686 
687 		hwreq->req.status = tmptoken & TD_STATUS;
688 		if ((TD_STATUS_HALTED & hwreq->req.status)) {
689 			hwreq->req.status = -EPIPE;
690 			break;
691 		} else if ((TD_STATUS_DT_ERR & hwreq->req.status)) {
692 			hwreq->req.status = -EPROTO;
693 			break;
694 		} else if ((TD_STATUS_TR_ERR & hwreq->req.status)) {
695 			hwreq->req.status = -EILSEQ;
696 			break;
697 		}
698 
699 		if (remaining_length) {
700 			if (hwep->dir == TX) {
701 				hwreq->req.status = -EPROTO;
702 				break;
703 			}
704 		}
705 		/*
706 		 * As the hardware could still address the freed td
707 		 * which will run the udc unusable, the cleanup of the
708 		 * td has to be delayed by one.
709 		 */
710 		if (hwep->pending_td)
711 			free_pending_td(hwep);
712 
713 		hwep->pending_td = node;
714 		list_del_init(&node->td);
715 	}
716 
717 	usb_gadget_unmap_request_by_dev(hwep->ci->dev->parent,
718 					&hwreq->req, hwep->dir);
719 
720 	hwreq->req.actual += actual;
721 
722 	if (hwreq->req.status)
723 		return hwreq->req.status;
724 
725 	return hwreq->req.actual;
726 }
727 
728 /**
729  * _ep_nuke: dequeues all endpoint requests
730  * @hwep: endpoint
731  *
732  * This function returns an error code
733  * Caller must hold lock
734  */
735 static int _ep_nuke(struct ci_hw_ep *hwep)
736 __releases(hwep->lock)
737 __acquires(hwep->lock)
738 {
739 	struct td_node *node, *tmpnode;
740 	if (hwep == NULL)
741 		return -EINVAL;
742 
743 	hw_ep_flush(hwep->ci, hwep->num, hwep->dir);
744 
745 	while (!list_empty(&hwep->qh.queue)) {
746 
747 		/* pop oldest request */
748 		struct ci_hw_req *hwreq = list_entry(hwep->qh.queue.next,
749 						     struct ci_hw_req, queue);
750 
751 		list_for_each_entry_safe(node, tmpnode, &hwreq->tds, td) {
752 			dma_pool_free(hwep->td_pool, node->ptr, node->dma);
753 			list_del_init(&node->td);
754 			node->ptr = NULL;
755 			kfree(node);
756 		}
757 
758 		list_del_init(&hwreq->queue);
759 		hwreq->req.status = -ESHUTDOWN;
760 
761 		if (hwreq->req.complete != NULL) {
762 			spin_unlock(hwep->lock);
763 			usb_gadget_giveback_request(&hwep->ep, &hwreq->req);
764 			spin_lock(hwep->lock);
765 		}
766 	}
767 
768 	if (hwep->pending_td)
769 		free_pending_td(hwep);
770 
771 	return 0;
772 }
773 
774 static int _ep_set_halt(struct usb_ep *ep, int value, bool check_transfer)
775 {
776 	struct ci_hw_ep *hwep = container_of(ep, struct ci_hw_ep, ep);
777 	int direction, retval = 0;
778 	unsigned long flags;
779 
780 	if (ep == NULL || hwep->ep.desc == NULL)
781 		return -EINVAL;
782 
783 	if (usb_endpoint_xfer_isoc(hwep->ep.desc))
784 		return -EOPNOTSUPP;
785 
786 	spin_lock_irqsave(hwep->lock, flags);
787 
788 	if (value && hwep->dir == TX && check_transfer &&
789 		!list_empty(&hwep->qh.queue) &&
790 			!usb_endpoint_xfer_control(hwep->ep.desc)) {
791 		spin_unlock_irqrestore(hwep->lock, flags);
792 		return -EAGAIN;
793 	}
794 
795 	direction = hwep->dir;
796 	do {
797 		retval |= hw_ep_set_halt(hwep->ci, hwep->num, hwep->dir, value);
798 
799 		if (!value)
800 			hwep->wedge = 0;
801 
802 		if (hwep->type == USB_ENDPOINT_XFER_CONTROL)
803 			hwep->dir = (hwep->dir == TX) ? RX : TX;
804 
805 	} while (hwep->dir != direction);
806 
807 	spin_unlock_irqrestore(hwep->lock, flags);
808 	return retval;
809 }
810 
811 
812 /**
813  * _gadget_stop_activity: stops all USB activity, flushes & disables all endpts
814  * @gadget: gadget
815  *
816  * This function returns an error code
817  */
818 static int _gadget_stop_activity(struct usb_gadget *gadget)
819 {
820 	struct usb_ep *ep;
821 	struct ci_hdrc    *ci = container_of(gadget, struct ci_hdrc, gadget);
822 	unsigned long flags;
823 
824 	/* flush all endpoints */
825 	gadget_for_each_ep(ep, gadget) {
826 		usb_ep_fifo_flush(ep);
827 	}
828 	usb_ep_fifo_flush(&ci->ep0out->ep);
829 	usb_ep_fifo_flush(&ci->ep0in->ep);
830 
831 	/* make sure to disable all endpoints */
832 	gadget_for_each_ep(ep, gadget) {
833 		usb_ep_disable(ep);
834 	}
835 
836 	if (ci->status != NULL) {
837 		usb_ep_free_request(&ci->ep0in->ep, ci->status);
838 		ci->status = NULL;
839 	}
840 
841 	spin_lock_irqsave(&ci->lock, flags);
842 	ci->gadget.speed = USB_SPEED_UNKNOWN;
843 	ci->remote_wakeup = 0;
844 	ci->suspended = 0;
845 	spin_unlock_irqrestore(&ci->lock, flags);
846 
847 	return 0;
848 }
849 
850 /******************************************************************************
851  * ISR block
852  *****************************************************************************/
853 /**
854  * isr_reset_handler: USB reset interrupt handler
855  * @ci: UDC device
856  *
857  * This function resets USB engine after a bus reset occurred
858  */
859 static void isr_reset_handler(struct ci_hdrc *ci)
860 __releases(ci->lock)
861 __acquires(ci->lock)
862 {
863 	int retval;
864 
865 	spin_unlock(&ci->lock);
866 	if (ci->gadget.speed != USB_SPEED_UNKNOWN)
867 		usb_gadget_udc_reset(&ci->gadget, ci->driver);
868 
869 	retval = _gadget_stop_activity(&ci->gadget);
870 	if (retval)
871 		goto done;
872 
873 	retval = hw_usb_reset(ci);
874 	if (retval)
875 		goto done;
876 
877 	ci->status = usb_ep_alloc_request(&ci->ep0in->ep, GFP_ATOMIC);
878 	if (ci->status == NULL)
879 		retval = -ENOMEM;
880 
881 done:
882 	spin_lock(&ci->lock);
883 
884 	if (retval)
885 		dev_err(ci->dev, "error: %i\n", retval);
886 }
887 
888 /**
889  * isr_get_status_complete: get_status request complete function
890  * @ep:  endpoint
891  * @req: request handled
892  *
893  * Caller must release lock
894  */
895 static void isr_get_status_complete(struct usb_ep *ep, struct usb_request *req)
896 {
897 	if (ep == NULL || req == NULL)
898 		return;
899 
900 	kfree(req->buf);
901 	usb_ep_free_request(ep, req);
902 }
903 
904 /**
905  * _ep_queue: queues (submits) an I/O request to an endpoint
906  * @ep:        endpoint
907  * @req:       request
908  * @gfp_flags: GFP flags (not used)
909  *
910  * Caller must hold lock
911  * This function returns an error code
912  */
913 static int _ep_queue(struct usb_ep *ep, struct usb_request *req,
914 		    gfp_t __maybe_unused gfp_flags)
915 {
916 	struct ci_hw_ep  *hwep  = container_of(ep,  struct ci_hw_ep, ep);
917 	struct ci_hw_req *hwreq = container_of(req, struct ci_hw_req, req);
918 	struct ci_hdrc *ci = hwep->ci;
919 	int retval = 0;
920 
921 	if (ep == NULL || req == NULL || hwep->ep.desc == NULL)
922 		return -EINVAL;
923 
924 	if (hwep->type == USB_ENDPOINT_XFER_CONTROL) {
925 		if (req->length)
926 			hwep = (ci->ep0_dir == RX) ?
927 			       ci->ep0out : ci->ep0in;
928 		if (!list_empty(&hwep->qh.queue)) {
929 			_ep_nuke(hwep);
930 			dev_warn(hwep->ci->dev, "endpoint ctrl %X nuked\n",
931 				 _usb_addr(hwep));
932 		}
933 	}
934 
935 	if (usb_endpoint_xfer_isoc(hwep->ep.desc) &&
936 	    hwreq->req.length > hwep->ep.mult * hwep->ep.maxpacket) {
937 		dev_err(hwep->ci->dev, "request length too big for isochronous\n");
938 		return -EMSGSIZE;
939 	}
940 
941 	/* first nuke then test link, e.g. previous status has not sent */
942 	if (!list_empty(&hwreq->queue)) {
943 		dev_err(hwep->ci->dev, "request already in queue\n");
944 		return -EBUSY;
945 	}
946 
947 	/* push request */
948 	hwreq->req.status = -EINPROGRESS;
949 	hwreq->req.actual = 0;
950 
951 	retval = _hardware_enqueue(hwep, hwreq);
952 
953 	if (retval == -EALREADY)
954 		retval = 0;
955 	if (!retval)
956 		list_add_tail(&hwreq->queue, &hwep->qh.queue);
957 
958 	return retval;
959 }
960 
961 /**
962  * isr_get_status_response: get_status request response
963  * @ci: ci struct
964  * @setup: setup request packet
965  *
966  * This function returns an error code
967  */
968 static int isr_get_status_response(struct ci_hdrc *ci,
969 				   struct usb_ctrlrequest *setup)
970 __releases(hwep->lock)
971 __acquires(hwep->lock)
972 {
973 	struct ci_hw_ep *hwep = ci->ep0in;
974 	struct usb_request *req = NULL;
975 	gfp_t gfp_flags = GFP_ATOMIC;
976 	int dir, num, retval;
977 
978 	if (hwep == NULL || setup == NULL)
979 		return -EINVAL;
980 
981 	spin_unlock(hwep->lock);
982 	req = usb_ep_alloc_request(&hwep->ep, gfp_flags);
983 	spin_lock(hwep->lock);
984 	if (req == NULL)
985 		return -ENOMEM;
986 
987 	req->complete = isr_get_status_complete;
988 	req->length   = 2;
989 	req->buf      = kzalloc(req->length, gfp_flags);
990 	if (req->buf == NULL) {
991 		retval = -ENOMEM;
992 		goto err_free_req;
993 	}
994 
995 	if ((setup->bRequestType & USB_RECIP_MASK) == USB_RECIP_DEVICE) {
996 		*(u16 *)req->buf = (ci->remote_wakeup << 1) |
997 			ci->gadget.is_selfpowered;
998 	} else if ((setup->bRequestType & USB_RECIP_MASK) \
999 		   == USB_RECIP_ENDPOINT) {
1000 		dir = (le16_to_cpu(setup->wIndex) & USB_ENDPOINT_DIR_MASK) ?
1001 			TX : RX;
1002 		num =  le16_to_cpu(setup->wIndex) & USB_ENDPOINT_NUMBER_MASK;
1003 		*(u16 *)req->buf = hw_ep_get_halt(ci, num, dir);
1004 	}
1005 	/* else do nothing; reserved for future use */
1006 
1007 	retval = _ep_queue(&hwep->ep, req, gfp_flags);
1008 	if (retval)
1009 		goto err_free_buf;
1010 
1011 	return 0;
1012 
1013  err_free_buf:
1014 	kfree(req->buf);
1015  err_free_req:
1016 	spin_unlock(hwep->lock);
1017 	usb_ep_free_request(&hwep->ep, req);
1018 	spin_lock(hwep->lock);
1019 	return retval;
1020 }
1021 
1022 /**
1023  * isr_setup_status_complete: setup_status request complete function
1024  * @ep:  endpoint
1025  * @req: request handled
1026  *
1027  * Caller must release lock. Put the port in test mode if test mode
1028  * feature is selected.
1029  */
1030 static void
1031 isr_setup_status_complete(struct usb_ep *ep, struct usb_request *req)
1032 {
1033 	struct ci_hdrc *ci = req->context;
1034 	unsigned long flags;
1035 
1036 	if (ci->setaddr) {
1037 		hw_usb_set_address(ci, ci->address);
1038 		ci->setaddr = false;
1039 		if (ci->address)
1040 			usb_gadget_set_state(&ci->gadget, USB_STATE_ADDRESS);
1041 	}
1042 
1043 	spin_lock_irqsave(&ci->lock, flags);
1044 	if (ci->test_mode)
1045 		hw_port_test_set(ci, ci->test_mode);
1046 	spin_unlock_irqrestore(&ci->lock, flags);
1047 }
1048 
1049 /**
1050  * isr_setup_status_phase: queues the status phase of a setup transation
1051  * @ci: ci struct
1052  *
1053  * This function returns an error code
1054  */
1055 static int isr_setup_status_phase(struct ci_hdrc *ci)
1056 {
1057 	struct ci_hw_ep *hwep;
1058 
1059 	/*
1060 	 * Unexpected USB controller behavior, caused by bad signal integrity
1061 	 * or ground reference problems, can lead to isr_setup_status_phase
1062 	 * being called with ci->status equal to NULL.
1063 	 * If this situation occurs, you should review your USB hardware design.
1064 	 */
1065 	if (WARN_ON_ONCE(!ci->status))
1066 		return -EPIPE;
1067 
1068 	hwep = (ci->ep0_dir == TX) ? ci->ep0out : ci->ep0in;
1069 	ci->status->context = ci;
1070 	ci->status->complete = isr_setup_status_complete;
1071 
1072 	return _ep_queue(&hwep->ep, ci->status, GFP_ATOMIC);
1073 }
1074 
1075 /**
1076  * isr_tr_complete_low: transaction complete low level handler
1077  * @hwep: endpoint
1078  *
1079  * This function returns an error code
1080  * Caller must hold lock
1081  */
1082 static int isr_tr_complete_low(struct ci_hw_ep *hwep)
1083 __releases(hwep->lock)
1084 __acquires(hwep->lock)
1085 {
1086 	struct ci_hw_req *hwreq, *hwreqtemp;
1087 	struct ci_hw_ep *hweptemp = hwep;
1088 	int retval = 0;
1089 
1090 	list_for_each_entry_safe(hwreq, hwreqtemp, &hwep->qh.queue,
1091 			queue) {
1092 		retval = _hardware_dequeue(hwep, hwreq);
1093 		if (retval < 0)
1094 			break;
1095 		list_del_init(&hwreq->queue);
1096 		if (hwreq->req.complete != NULL) {
1097 			spin_unlock(hwep->lock);
1098 			if ((hwep->type == USB_ENDPOINT_XFER_CONTROL) &&
1099 					hwreq->req.length)
1100 				hweptemp = hwep->ci->ep0in;
1101 			usb_gadget_giveback_request(&hweptemp->ep, &hwreq->req);
1102 			spin_lock(hwep->lock);
1103 		}
1104 	}
1105 
1106 	if (retval == -EBUSY)
1107 		retval = 0;
1108 
1109 	return retval;
1110 }
1111 
1112 static int otg_a_alt_hnp_support(struct ci_hdrc *ci)
1113 {
1114 	dev_warn(&ci->gadget.dev,
1115 		"connect the device to an alternate port if you want HNP\n");
1116 	return isr_setup_status_phase(ci);
1117 }
1118 
1119 /**
1120  * isr_setup_packet_handler: setup packet handler
1121  * @ci: UDC descriptor
1122  *
1123  * This function handles setup packet
1124  */
1125 static void isr_setup_packet_handler(struct ci_hdrc *ci)
1126 __releases(ci->lock)
1127 __acquires(ci->lock)
1128 {
1129 	struct ci_hw_ep *hwep = &ci->ci_hw_ep[0];
1130 	struct usb_ctrlrequest req;
1131 	int type, num, dir, err = -EINVAL;
1132 	u8 tmode = 0;
1133 
1134 	/*
1135 	 * Flush data and handshake transactions of previous
1136 	 * setup packet.
1137 	 */
1138 	_ep_nuke(ci->ep0out);
1139 	_ep_nuke(ci->ep0in);
1140 
1141 	/* read_setup_packet */
1142 	do {
1143 		hw_test_and_set_setup_guard(ci);
1144 		memcpy(&req, &hwep->qh.ptr->setup, sizeof(req));
1145 	} while (!hw_test_and_clear_setup_guard(ci));
1146 
1147 	type = req.bRequestType;
1148 
1149 	ci->ep0_dir = (type & USB_DIR_IN) ? TX : RX;
1150 
1151 	switch (req.bRequest) {
1152 	case USB_REQ_CLEAR_FEATURE:
1153 		if (type == (USB_DIR_OUT|USB_RECIP_ENDPOINT) &&
1154 				le16_to_cpu(req.wValue) ==
1155 				USB_ENDPOINT_HALT) {
1156 			if (req.wLength != 0)
1157 				break;
1158 			num  = le16_to_cpu(req.wIndex);
1159 			dir = (num & USB_ENDPOINT_DIR_MASK) ? TX : RX;
1160 			num &= USB_ENDPOINT_NUMBER_MASK;
1161 			if (dir == TX)
1162 				num += ci->hw_ep_max / 2;
1163 			if (!ci->ci_hw_ep[num].wedge) {
1164 				spin_unlock(&ci->lock);
1165 				err = usb_ep_clear_halt(
1166 					&ci->ci_hw_ep[num].ep);
1167 				spin_lock(&ci->lock);
1168 				if (err)
1169 					break;
1170 			}
1171 			err = isr_setup_status_phase(ci);
1172 		} else if (type == (USB_DIR_OUT|USB_RECIP_DEVICE) &&
1173 				le16_to_cpu(req.wValue) ==
1174 				USB_DEVICE_REMOTE_WAKEUP) {
1175 			if (req.wLength != 0)
1176 				break;
1177 			ci->remote_wakeup = 0;
1178 			err = isr_setup_status_phase(ci);
1179 		} else {
1180 			goto delegate;
1181 		}
1182 		break;
1183 	case USB_REQ_GET_STATUS:
1184 		if ((type != (USB_DIR_IN|USB_RECIP_DEVICE) ||
1185 			le16_to_cpu(req.wIndex) == OTG_STS_SELECTOR) &&
1186 		    type != (USB_DIR_IN|USB_RECIP_ENDPOINT) &&
1187 		    type != (USB_DIR_IN|USB_RECIP_INTERFACE))
1188 			goto delegate;
1189 		if (le16_to_cpu(req.wLength) != 2 ||
1190 		    le16_to_cpu(req.wValue)  != 0)
1191 			break;
1192 		err = isr_get_status_response(ci, &req);
1193 		break;
1194 	case USB_REQ_SET_ADDRESS:
1195 		if (type != (USB_DIR_OUT|USB_RECIP_DEVICE))
1196 			goto delegate;
1197 		if (le16_to_cpu(req.wLength) != 0 ||
1198 		    le16_to_cpu(req.wIndex)  != 0)
1199 			break;
1200 		ci->address = (u8)le16_to_cpu(req.wValue);
1201 		ci->setaddr = true;
1202 		err = isr_setup_status_phase(ci);
1203 		break;
1204 	case USB_REQ_SET_FEATURE:
1205 		if (type == (USB_DIR_OUT|USB_RECIP_ENDPOINT) &&
1206 				le16_to_cpu(req.wValue) ==
1207 				USB_ENDPOINT_HALT) {
1208 			if (req.wLength != 0)
1209 				break;
1210 			num  = le16_to_cpu(req.wIndex);
1211 			dir = (num & USB_ENDPOINT_DIR_MASK) ? TX : RX;
1212 			num &= USB_ENDPOINT_NUMBER_MASK;
1213 			if (dir == TX)
1214 				num += ci->hw_ep_max / 2;
1215 
1216 			spin_unlock(&ci->lock);
1217 			err = _ep_set_halt(&ci->ci_hw_ep[num].ep, 1, false);
1218 			spin_lock(&ci->lock);
1219 			if (!err)
1220 				isr_setup_status_phase(ci);
1221 		} else if (type == (USB_DIR_OUT|USB_RECIP_DEVICE)) {
1222 			if (req.wLength != 0)
1223 				break;
1224 			switch (le16_to_cpu(req.wValue)) {
1225 			case USB_DEVICE_REMOTE_WAKEUP:
1226 				ci->remote_wakeup = 1;
1227 				err = isr_setup_status_phase(ci);
1228 				break;
1229 			case USB_DEVICE_TEST_MODE:
1230 				tmode = le16_to_cpu(req.wIndex) >> 8;
1231 				switch (tmode) {
1232 				case USB_TEST_J:
1233 				case USB_TEST_K:
1234 				case USB_TEST_SE0_NAK:
1235 				case USB_TEST_PACKET:
1236 				case USB_TEST_FORCE_ENABLE:
1237 					ci->test_mode = tmode;
1238 					err = isr_setup_status_phase(
1239 							ci);
1240 					break;
1241 				default:
1242 					break;
1243 				}
1244 				break;
1245 			case USB_DEVICE_B_HNP_ENABLE:
1246 				if (ci_otg_is_fsm_mode(ci)) {
1247 					ci->gadget.b_hnp_enable = 1;
1248 					err = isr_setup_status_phase(
1249 							ci);
1250 				}
1251 				break;
1252 			case USB_DEVICE_A_ALT_HNP_SUPPORT:
1253 				if (ci_otg_is_fsm_mode(ci))
1254 					err = otg_a_alt_hnp_support(ci);
1255 				break;
1256 			case USB_DEVICE_A_HNP_SUPPORT:
1257 				if (ci_otg_is_fsm_mode(ci)) {
1258 					ci->gadget.a_hnp_support = 1;
1259 					err = isr_setup_status_phase(
1260 							ci);
1261 				}
1262 				break;
1263 			default:
1264 				goto delegate;
1265 			}
1266 		} else {
1267 			goto delegate;
1268 		}
1269 		break;
1270 	default:
1271 delegate:
1272 		if (req.wLength == 0)   /* no data phase */
1273 			ci->ep0_dir = TX;
1274 
1275 		spin_unlock(&ci->lock);
1276 		err = ci->driver->setup(&ci->gadget, &req);
1277 		spin_lock(&ci->lock);
1278 		break;
1279 	}
1280 
1281 	if (err < 0) {
1282 		spin_unlock(&ci->lock);
1283 		if (_ep_set_halt(&hwep->ep, 1, false))
1284 			dev_err(ci->dev, "error: _ep_set_halt\n");
1285 		spin_lock(&ci->lock);
1286 	}
1287 }
1288 
1289 /**
1290  * isr_tr_complete_handler: transaction complete interrupt handler
1291  * @ci: UDC descriptor
1292  *
1293  * This function handles traffic events
1294  */
1295 static void isr_tr_complete_handler(struct ci_hdrc *ci)
1296 __releases(ci->lock)
1297 __acquires(ci->lock)
1298 {
1299 	unsigned i;
1300 	int err;
1301 
1302 	for (i = 0; i < ci->hw_ep_max; i++) {
1303 		struct ci_hw_ep *hwep  = &ci->ci_hw_ep[i];
1304 
1305 		if (hwep->ep.desc == NULL)
1306 			continue;   /* not configured */
1307 
1308 		if (hw_test_and_clear_complete(ci, i)) {
1309 			err = isr_tr_complete_low(hwep);
1310 			if (hwep->type == USB_ENDPOINT_XFER_CONTROL) {
1311 				if (err > 0)   /* needs status phase */
1312 					err = isr_setup_status_phase(ci);
1313 				if (err < 0) {
1314 					spin_unlock(&ci->lock);
1315 					if (_ep_set_halt(&hwep->ep, 1, false))
1316 						dev_err(ci->dev,
1317 						"error: _ep_set_halt\n");
1318 					spin_lock(&ci->lock);
1319 				}
1320 			}
1321 		}
1322 
1323 		/* Only handle setup packet below */
1324 		if (i == 0 &&
1325 			hw_test_and_clear(ci, OP_ENDPTSETUPSTAT, BIT(0)))
1326 			isr_setup_packet_handler(ci);
1327 	}
1328 }
1329 
1330 /******************************************************************************
1331  * ENDPT block
1332  *****************************************************************************/
1333 /*
1334  * ep_enable: configure endpoint, making it usable
1335  *
1336  * Check usb_ep_enable() at "usb_gadget.h" for details
1337  */
1338 static int ep_enable(struct usb_ep *ep,
1339 		     const struct usb_endpoint_descriptor *desc)
1340 {
1341 	struct ci_hw_ep *hwep = container_of(ep, struct ci_hw_ep, ep);
1342 	int retval = 0;
1343 	unsigned long flags;
1344 	u32 cap = 0;
1345 
1346 	if (ep == NULL || desc == NULL)
1347 		return -EINVAL;
1348 
1349 	spin_lock_irqsave(hwep->lock, flags);
1350 
1351 	/* only internal SW should enable ctrl endpts */
1352 
1353 	if (!list_empty(&hwep->qh.queue)) {
1354 		dev_warn(hwep->ci->dev, "enabling a non-empty endpoint!\n");
1355 		spin_unlock_irqrestore(hwep->lock, flags);
1356 		return -EBUSY;
1357 	}
1358 
1359 	hwep->ep.desc = desc;
1360 
1361 	hwep->dir  = usb_endpoint_dir_in(desc) ? TX : RX;
1362 	hwep->num  = usb_endpoint_num(desc);
1363 	hwep->type = usb_endpoint_type(desc);
1364 
1365 	hwep->ep.maxpacket = usb_endpoint_maxp(desc);
1366 	hwep->ep.mult = usb_endpoint_maxp_mult(desc);
1367 
1368 	if (hwep->type == USB_ENDPOINT_XFER_CONTROL)
1369 		cap |= QH_IOS;
1370 
1371 	cap |= QH_ZLT;
1372 	cap |= (hwep->ep.maxpacket << __ffs(QH_MAX_PKT)) & QH_MAX_PKT;
1373 	/*
1374 	 * For ISO-TX, we set mult at QH as the largest value, and use
1375 	 * MultO at TD as real mult value.
1376 	 */
1377 	if (hwep->type == USB_ENDPOINT_XFER_ISOC && hwep->dir == TX)
1378 		cap |= 3 << __ffs(QH_MULT);
1379 
1380 	hwep->qh.ptr->cap = cpu_to_le32(cap);
1381 
1382 	hwep->qh.ptr->td.next |= cpu_to_le32(TD_TERMINATE);   /* needed? */
1383 
1384 	if (hwep->num != 0 && hwep->type == USB_ENDPOINT_XFER_CONTROL) {
1385 		dev_err(hwep->ci->dev, "Set control xfer at non-ep0\n");
1386 		retval = -EINVAL;
1387 	}
1388 
1389 	/*
1390 	 * Enable endpoints in the HW other than ep0 as ep0
1391 	 * is always enabled
1392 	 */
1393 	if (hwep->num)
1394 		retval |= hw_ep_enable(hwep->ci, hwep->num, hwep->dir,
1395 				       hwep->type);
1396 
1397 	spin_unlock_irqrestore(hwep->lock, flags);
1398 	return retval;
1399 }
1400 
1401 /*
1402  * ep_disable: endpoint is no longer usable
1403  *
1404  * Check usb_ep_disable() at "usb_gadget.h" for details
1405  */
1406 static int ep_disable(struct usb_ep *ep)
1407 {
1408 	struct ci_hw_ep *hwep = container_of(ep, struct ci_hw_ep, ep);
1409 	int direction, retval = 0;
1410 	unsigned long flags;
1411 
1412 	if (ep == NULL)
1413 		return -EINVAL;
1414 	else if (hwep->ep.desc == NULL)
1415 		return -EBUSY;
1416 
1417 	spin_lock_irqsave(hwep->lock, flags);
1418 	if (hwep->ci->gadget.speed == USB_SPEED_UNKNOWN) {
1419 		spin_unlock_irqrestore(hwep->lock, flags);
1420 		return 0;
1421 	}
1422 
1423 	/* only internal SW should disable ctrl endpts */
1424 
1425 	direction = hwep->dir;
1426 	do {
1427 		retval |= _ep_nuke(hwep);
1428 		retval |= hw_ep_disable(hwep->ci, hwep->num, hwep->dir);
1429 
1430 		if (hwep->type == USB_ENDPOINT_XFER_CONTROL)
1431 			hwep->dir = (hwep->dir == TX) ? RX : TX;
1432 
1433 	} while (hwep->dir != direction);
1434 
1435 	hwep->ep.desc = NULL;
1436 
1437 	spin_unlock_irqrestore(hwep->lock, flags);
1438 	return retval;
1439 }
1440 
1441 /*
1442  * ep_alloc_request: allocate a request object to use with this endpoint
1443  *
1444  * Check usb_ep_alloc_request() at "usb_gadget.h" for details
1445  */
1446 static struct usb_request *ep_alloc_request(struct usb_ep *ep, gfp_t gfp_flags)
1447 {
1448 	struct ci_hw_req *hwreq = NULL;
1449 
1450 	if (ep == NULL)
1451 		return NULL;
1452 
1453 	hwreq = kzalloc(sizeof(struct ci_hw_req), gfp_flags);
1454 	if (hwreq != NULL) {
1455 		INIT_LIST_HEAD(&hwreq->queue);
1456 		INIT_LIST_HEAD(&hwreq->tds);
1457 	}
1458 
1459 	return (hwreq == NULL) ? NULL : &hwreq->req;
1460 }
1461 
1462 /*
1463  * ep_free_request: frees a request object
1464  *
1465  * Check usb_ep_free_request() at "usb_gadget.h" for details
1466  */
1467 static void ep_free_request(struct usb_ep *ep, struct usb_request *req)
1468 {
1469 	struct ci_hw_ep  *hwep  = container_of(ep,  struct ci_hw_ep, ep);
1470 	struct ci_hw_req *hwreq = container_of(req, struct ci_hw_req, req);
1471 	struct td_node *node, *tmpnode;
1472 	unsigned long flags;
1473 
1474 	if (ep == NULL || req == NULL) {
1475 		return;
1476 	} else if (!list_empty(&hwreq->queue)) {
1477 		dev_err(hwep->ci->dev, "freeing queued request\n");
1478 		return;
1479 	}
1480 
1481 	spin_lock_irqsave(hwep->lock, flags);
1482 
1483 	list_for_each_entry_safe(node, tmpnode, &hwreq->tds, td) {
1484 		dma_pool_free(hwep->td_pool, node->ptr, node->dma);
1485 		list_del_init(&node->td);
1486 		node->ptr = NULL;
1487 		kfree(node);
1488 	}
1489 
1490 	kfree(hwreq);
1491 
1492 	spin_unlock_irqrestore(hwep->lock, flags);
1493 }
1494 
1495 /*
1496  * ep_queue: queues (submits) an I/O request to an endpoint
1497  *
1498  * Check usb_ep_queue()* at usb_gadget.h" for details
1499  */
1500 static int ep_queue(struct usb_ep *ep, struct usb_request *req,
1501 		    gfp_t __maybe_unused gfp_flags)
1502 {
1503 	struct ci_hw_ep  *hwep  = container_of(ep,  struct ci_hw_ep, ep);
1504 	int retval = 0;
1505 	unsigned long flags;
1506 
1507 	if (ep == NULL || req == NULL || hwep->ep.desc == NULL)
1508 		return -EINVAL;
1509 
1510 	spin_lock_irqsave(hwep->lock, flags);
1511 	if (hwep->ci->gadget.speed == USB_SPEED_UNKNOWN) {
1512 		spin_unlock_irqrestore(hwep->lock, flags);
1513 		return 0;
1514 	}
1515 	retval = _ep_queue(ep, req, gfp_flags);
1516 	spin_unlock_irqrestore(hwep->lock, flags);
1517 	return retval;
1518 }
1519 
1520 /*
1521  * ep_dequeue: dequeues (cancels, unlinks) an I/O request from an endpoint
1522  *
1523  * Check usb_ep_dequeue() at "usb_gadget.h" for details
1524  */
1525 static int ep_dequeue(struct usb_ep *ep, struct usb_request *req)
1526 {
1527 	struct ci_hw_ep  *hwep  = container_of(ep,  struct ci_hw_ep, ep);
1528 	struct ci_hw_req *hwreq = container_of(req, struct ci_hw_req, req);
1529 	unsigned long flags;
1530 	struct td_node *node, *tmpnode;
1531 
1532 	if (ep == NULL || req == NULL || hwreq->req.status != -EALREADY ||
1533 		hwep->ep.desc == NULL || list_empty(&hwreq->queue) ||
1534 		list_empty(&hwep->qh.queue))
1535 		return -EINVAL;
1536 
1537 	spin_lock_irqsave(hwep->lock, flags);
1538 	if (hwep->ci->gadget.speed != USB_SPEED_UNKNOWN)
1539 		hw_ep_flush(hwep->ci, hwep->num, hwep->dir);
1540 
1541 	list_for_each_entry_safe(node, tmpnode, &hwreq->tds, td) {
1542 		dma_pool_free(hwep->td_pool, node->ptr, node->dma);
1543 		list_del(&node->td);
1544 		kfree(node);
1545 	}
1546 
1547 	/* pop request */
1548 	list_del_init(&hwreq->queue);
1549 
1550 	usb_gadget_unmap_request(&hwep->ci->gadget, req, hwep->dir);
1551 
1552 	req->status = -ECONNRESET;
1553 
1554 	if (hwreq->req.complete != NULL) {
1555 		spin_unlock(hwep->lock);
1556 		usb_gadget_giveback_request(&hwep->ep, &hwreq->req);
1557 		spin_lock(hwep->lock);
1558 	}
1559 
1560 	spin_unlock_irqrestore(hwep->lock, flags);
1561 	return 0;
1562 }
1563 
1564 /*
1565  * ep_set_halt: sets the endpoint halt feature
1566  *
1567  * Check usb_ep_set_halt() at "usb_gadget.h" for details
1568  */
1569 static int ep_set_halt(struct usb_ep *ep, int value)
1570 {
1571 	return _ep_set_halt(ep, value, true);
1572 }
1573 
1574 /*
1575  * ep_set_wedge: sets the halt feature and ignores clear requests
1576  *
1577  * Check usb_ep_set_wedge() at "usb_gadget.h" for details
1578  */
1579 static int ep_set_wedge(struct usb_ep *ep)
1580 {
1581 	struct ci_hw_ep *hwep = container_of(ep, struct ci_hw_ep, ep);
1582 	unsigned long flags;
1583 
1584 	if (ep == NULL || hwep->ep.desc == NULL)
1585 		return -EINVAL;
1586 
1587 	spin_lock_irqsave(hwep->lock, flags);
1588 	hwep->wedge = 1;
1589 	spin_unlock_irqrestore(hwep->lock, flags);
1590 
1591 	return usb_ep_set_halt(ep);
1592 }
1593 
1594 /*
1595  * ep_fifo_flush: flushes contents of a fifo
1596  *
1597  * Check usb_ep_fifo_flush() at "usb_gadget.h" for details
1598  */
1599 static void ep_fifo_flush(struct usb_ep *ep)
1600 {
1601 	struct ci_hw_ep *hwep = container_of(ep, struct ci_hw_ep, ep);
1602 	unsigned long flags;
1603 
1604 	if (ep == NULL) {
1605 		dev_err(hwep->ci->dev, "%02X: -EINVAL\n", _usb_addr(hwep));
1606 		return;
1607 	}
1608 
1609 	spin_lock_irqsave(hwep->lock, flags);
1610 	if (hwep->ci->gadget.speed == USB_SPEED_UNKNOWN) {
1611 		spin_unlock_irqrestore(hwep->lock, flags);
1612 		return;
1613 	}
1614 
1615 	hw_ep_flush(hwep->ci, hwep->num, hwep->dir);
1616 
1617 	spin_unlock_irqrestore(hwep->lock, flags);
1618 }
1619 
1620 /*
1621  * Endpoint-specific part of the API to the USB controller hardware
1622  * Check "usb_gadget.h" for details
1623  */
1624 static const struct usb_ep_ops usb_ep_ops = {
1625 	.enable	       = ep_enable,
1626 	.disable       = ep_disable,
1627 	.alloc_request = ep_alloc_request,
1628 	.free_request  = ep_free_request,
1629 	.queue	       = ep_queue,
1630 	.dequeue       = ep_dequeue,
1631 	.set_halt      = ep_set_halt,
1632 	.set_wedge     = ep_set_wedge,
1633 	.fifo_flush    = ep_fifo_flush,
1634 };
1635 
1636 /******************************************************************************
1637  * GADGET block
1638  *****************************************************************************/
1639 /*
1640  * ci_hdrc_gadget_connect: caller makes sure gadget driver is binded
1641  */
1642 static void ci_hdrc_gadget_connect(struct usb_gadget *_gadget, int is_active)
1643 {
1644 	struct ci_hdrc *ci = container_of(_gadget, struct ci_hdrc, gadget);
1645 
1646 	if (is_active) {
1647 		pm_runtime_get_sync(ci->dev);
1648 		hw_device_reset(ci);
1649 		spin_lock_irq(&ci->lock);
1650 		if (ci->driver) {
1651 			hw_device_state(ci, ci->ep0out->qh.dma);
1652 			usb_gadget_set_state(_gadget, USB_STATE_POWERED);
1653 			spin_unlock_irq(&ci->lock);
1654 			usb_udc_vbus_handler(_gadget, true);
1655 		} else {
1656 			spin_unlock_irq(&ci->lock);
1657 		}
1658 	} else {
1659 		usb_udc_vbus_handler(_gadget, false);
1660 		if (ci->driver)
1661 			ci->driver->disconnect(&ci->gadget);
1662 		hw_device_state(ci, 0);
1663 		if (ci->platdata->notify_event)
1664 			ci->platdata->notify_event(ci,
1665 			CI_HDRC_CONTROLLER_STOPPED_EVENT);
1666 		_gadget_stop_activity(&ci->gadget);
1667 		pm_runtime_put_sync(ci->dev);
1668 		usb_gadget_set_state(_gadget, USB_STATE_NOTATTACHED);
1669 	}
1670 }
1671 
1672 static int ci_udc_vbus_session(struct usb_gadget *_gadget, int is_active)
1673 {
1674 	struct ci_hdrc *ci = container_of(_gadget, struct ci_hdrc, gadget);
1675 	unsigned long flags;
1676 	int ret = 0;
1677 
1678 	spin_lock_irqsave(&ci->lock, flags);
1679 	ci->vbus_active = is_active;
1680 	spin_unlock_irqrestore(&ci->lock, flags);
1681 
1682 	if (ci->usb_phy)
1683 		usb_phy_set_charger_state(ci->usb_phy, is_active ?
1684 			USB_CHARGER_PRESENT : USB_CHARGER_ABSENT);
1685 
1686 	if (ci->platdata->notify_event)
1687 		ret = ci->platdata->notify_event(ci,
1688 				CI_HDRC_CONTROLLER_VBUS_EVENT);
1689 
1690 	if (ci->driver)
1691 		ci_hdrc_gadget_connect(_gadget, is_active);
1692 
1693 	return ret;
1694 }
1695 
1696 static int ci_udc_wakeup(struct usb_gadget *_gadget)
1697 {
1698 	struct ci_hdrc *ci = container_of(_gadget, struct ci_hdrc, gadget);
1699 	unsigned long flags;
1700 	int ret = 0;
1701 
1702 	spin_lock_irqsave(&ci->lock, flags);
1703 	if (ci->gadget.speed == USB_SPEED_UNKNOWN) {
1704 		spin_unlock_irqrestore(&ci->lock, flags);
1705 		return 0;
1706 	}
1707 	if (!ci->remote_wakeup) {
1708 		ret = -EOPNOTSUPP;
1709 		goto out;
1710 	}
1711 	if (!hw_read(ci, OP_PORTSC, PORTSC_SUSP)) {
1712 		ret = -EINVAL;
1713 		goto out;
1714 	}
1715 	hw_write(ci, OP_PORTSC, PORTSC_FPR, PORTSC_FPR);
1716 out:
1717 	spin_unlock_irqrestore(&ci->lock, flags);
1718 	return ret;
1719 }
1720 
1721 static int ci_udc_vbus_draw(struct usb_gadget *_gadget, unsigned ma)
1722 {
1723 	struct ci_hdrc *ci = container_of(_gadget, struct ci_hdrc, gadget);
1724 
1725 	if (ci->usb_phy)
1726 		return usb_phy_set_power(ci->usb_phy, ma);
1727 	return -ENOTSUPP;
1728 }
1729 
1730 static int ci_udc_selfpowered(struct usb_gadget *_gadget, int is_on)
1731 {
1732 	struct ci_hdrc *ci = container_of(_gadget, struct ci_hdrc, gadget);
1733 	struct ci_hw_ep *hwep = ci->ep0in;
1734 	unsigned long flags;
1735 
1736 	spin_lock_irqsave(hwep->lock, flags);
1737 	_gadget->is_selfpowered = (is_on != 0);
1738 	spin_unlock_irqrestore(hwep->lock, flags);
1739 
1740 	return 0;
1741 }
1742 
1743 /* Change Data+ pullup status
1744  * this func is used by usb_gadget_connect/disconnect
1745  */
1746 static int ci_udc_pullup(struct usb_gadget *_gadget, int is_on)
1747 {
1748 	struct ci_hdrc *ci = container_of(_gadget, struct ci_hdrc, gadget);
1749 
1750 	/*
1751 	 * Data+ pullup controlled by OTG state machine in OTG fsm mode;
1752 	 * and don't touch Data+ in host mode for dual role config.
1753 	 */
1754 	if (ci_otg_is_fsm_mode(ci) || ci->role == CI_ROLE_HOST)
1755 		return 0;
1756 
1757 	pm_runtime_get_sync(ci->dev);
1758 	if (is_on)
1759 		hw_write(ci, OP_USBCMD, USBCMD_RS, USBCMD_RS);
1760 	else
1761 		hw_write(ci, OP_USBCMD, USBCMD_RS, 0);
1762 	pm_runtime_put_sync(ci->dev);
1763 
1764 	return 0;
1765 }
1766 
1767 static int ci_udc_start(struct usb_gadget *gadget,
1768 			 struct usb_gadget_driver *driver);
1769 static int ci_udc_stop(struct usb_gadget *gadget);
1770 
1771 /* Match ISOC IN from the highest endpoint */
1772 static struct usb_ep *ci_udc_match_ep(struct usb_gadget *gadget,
1773 			      struct usb_endpoint_descriptor *desc,
1774 			      struct usb_ss_ep_comp_descriptor *comp_desc)
1775 {
1776 	struct ci_hdrc *ci = container_of(gadget, struct ci_hdrc, gadget);
1777 	struct usb_ep *ep;
1778 
1779 	if (usb_endpoint_xfer_isoc(desc) && usb_endpoint_dir_in(desc)) {
1780 		list_for_each_entry_reverse(ep, &ci->gadget.ep_list, ep_list) {
1781 			if (ep->caps.dir_in && !ep->claimed)
1782 				return ep;
1783 		}
1784 	}
1785 
1786 	return NULL;
1787 }
1788 
1789 /*
1790  * Device operations part of the API to the USB controller hardware,
1791  * which don't involve endpoints (or i/o)
1792  * Check  "usb_gadget.h" for details
1793  */
1794 static const struct usb_gadget_ops usb_gadget_ops = {
1795 	.vbus_session	= ci_udc_vbus_session,
1796 	.wakeup		= ci_udc_wakeup,
1797 	.set_selfpowered	= ci_udc_selfpowered,
1798 	.pullup		= ci_udc_pullup,
1799 	.vbus_draw	= ci_udc_vbus_draw,
1800 	.udc_start	= ci_udc_start,
1801 	.udc_stop	= ci_udc_stop,
1802 	.match_ep 	= ci_udc_match_ep,
1803 };
1804 
1805 static int init_eps(struct ci_hdrc *ci)
1806 {
1807 	int retval = 0, i, j;
1808 
1809 	for (i = 0; i < ci->hw_ep_max/2; i++)
1810 		for (j = RX; j <= TX; j++) {
1811 			int k = i + j * ci->hw_ep_max/2;
1812 			struct ci_hw_ep *hwep = &ci->ci_hw_ep[k];
1813 
1814 			scnprintf(hwep->name, sizeof(hwep->name), "ep%i%s", i,
1815 					(j == TX)  ? "in" : "out");
1816 
1817 			hwep->ci          = ci;
1818 			hwep->lock         = &ci->lock;
1819 			hwep->td_pool      = ci->td_pool;
1820 
1821 			hwep->ep.name      = hwep->name;
1822 			hwep->ep.ops       = &usb_ep_ops;
1823 
1824 			if (i == 0) {
1825 				hwep->ep.caps.type_control = true;
1826 			} else {
1827 				hwep->ep.caps.type_iso = true;
1828 				hwep->ep.caps.type_bulk = true;
1829 				hwep->ep.caps.type_int = true;
1830 			}
1831 
1832 			if (j == TX)
1833 				hwep->ep.caps.dir_in = true;
1834 			else
1835 				hwep->ep.caps.dir_out = true;
1836 
1837 			/*
1838 			 * for ep0: maxP defined in desc, for other
1839 			 * eps, maxP is set by epautoconfig() called
1840 			 * by gadget layer
1841 			 */
1842 			usb_ep_set_maxpacket_limit(&hwep->ep, (unsigned short)~0);
1843 
1844 			INIT_LIST_HEAD(&hwep->qh.queue);
1845 			hwep->qh.ptr = dma_pool_zalloc(ci->qh_pool, GFP_KERNEL,
1846 						       &hwep->qh.dma);
1847 			if (hwep->qh.ptr == NULL)
1848 				retval = -ENOMEM;
1849 
1850 			/*
1851 			 * set up shorthands for ep0 out and in endpoints,
1852 			 * don't add to gadget's ep_list
1853 			 */
1854 			if (i == 0) {
1855 				if (j == RX)
1856 					ci->ep0out = hwep;
1857 				else
1858 					ci->ep0in = hwep;
1859 
1860 				usb_ep_set_maxpacket_limit(&hwep->ep, CTRL_PAYLOAD_MAX);
1861 				continue;
1862 			}
1863 
1864 			list_add_tail(&hwep->ep.ep_list, &ci->gadget.ep_list);
1865 		}
1866 
1867 	return retval;
1868 }
1869 
1870 static void destroy_eps(struct ci_hdrc *ci)
1871 {
1872 	int i;
1873 
1874 	for (i = 0; i < ci->hw_ep_max; i++) {
1875 		struct ci_hw_ep *hwep = &ci->ci_hw_ep[i];
1876 
1877 		if (hwep->pending_td)
1878 			free_pending_td(hwep);
1879 		dma_pool_free(ci->qh_pool, hwep->qh.ptr, hwep->qh.dma);
1880 	}
1881 }
1882 
1883 /**
1884  * ci_udc_start: register a gadget driver
1885  * @gadget: our gadget
1886  * @driver: the driver being registered
1887  *
1888  * Interrupts are enabled here.
1889  */
1890 static int ci_udc_start(struct usb_gadget *gadget,
1891 			 struct usb_gadget_driver *driver)
1892 {
1893 	struct ci_hdrc *ci = container_of(gadget, struct ci_hdrc, gadget);
1894 	int retval;
1895 
1896 	if (driver->disconnect == NULL)
1897 		return -EINVAL;
1898 
1899 	ci->ep0out->ep.desc = &ctrl_endpt_out_desc;
1900 	retval = usb_ep_enable(&ci->ep0out->ep);
1901 	if (retval)
1902 		return retval;
1903 
1904 	ci->ep0in->ep.desc = &ctrl_endpt_in_desc;
1905 	retval = usb_ep_enable(&ci->ep0in->ep);
1906 	if (retval)
1907 		return retval;
1908 
1909 	ci->driver = driver;
1910 
1911 	/* Start otg fsm for B-device */
1912 	if (ci_otg_is_fsm_mode(ci) && ci->fsm.id) {
1913 		ci_hdrc_otg_fsm_start(ci);
1914 		return retval;
1915 	}
1916 
1917 	if (ci->vbus_active)
1918 		ci_hdrc_gadget_connect(gadget, 1);
1919 	else
1920 		usb_udc_vbus_handler(&ci->gadget, false);
1921 
1922 	return retval;
1923 }
1924 
1925 static void ci_udc_stop_for_otg_fsm(struct ci_hdrc *ci)
1926 {
1927 	if (!ci_otg_is_fsm_mode(ci))
1928 		return;
1929 
1930 	mutex_lock(&ci->fsm.lock);
1931 	if (ci->fsm.otg->state == OTG_STATE_A_PERIPHERAL) {
1932 		ci->fsm.a_bidl_adis_tmout = 1;
1933 		ci_hdrc_otg_fsm_start(ci);
1934 	} else if (ci->fsm.otg->state == OTG_STATE_B_PERIPHERAL) {
1935 		ci->fsm.protocol = PROTO_UNDEF;
1936 		ci->fsm.otg->state = OTG_STATE_UNDEFINED;
1937 	}
1938 	mutex_unlock(&ci->fsm.lock);
1939 }
1940 
1941 /*
1942  * ci_udc_stop: unregister a gadget driver
1943  */
1944 static int ci_udc_stop(struct usb_gadget *gadget)
1945 {
1946 	struct ci_hdrc *ci = container_of(gadget, struct ci_hdrc, gadget);
1947 	unsigned long flags;
1948 
1949 	spin_lock_irqsave(&ci->lock, flags);
1950 	ci->driver = NULL;
1951 
1952 	if (ci->vbus_active) {
1953 		hw_device_state(ci, 0);
1954 		spin_unlock_irqrestore(&ci->lock, flags);
1955 		if (ci->platdata->notify_event)
1956 			ci->platdata->notify_event(ci,
1957 			CI_HDRC_CONTROLLER_STOPPED_EVENT);
1958 		_gadget_stop_activity(&ci->gadget);
1959 		spin_lock_irqsave(&ci->lock, flags);
1960 		pm_runtime_put(ci->dev);
1961 	}
1962 
1963 	spin_unlock_irqrestore(&ci->lock, flags);
1964 
1965 	ci_udc_stop_for_otg_fsm(ci);
1966 	return 0;
1967 }
1968 
1969 /******************************************************************************
1970  * BUS block
1971  *****************************************************************************/
1972 /*
1973  * udc_irq: ci interrupt handler
1974  *
1975  * This function returns IRQ_HANDLED if the IRQ has been handled
1976  * It locks access to registers
1977  */
1978 static irqreturn_t udc_irq(struct ci_hdrc *ci)
1979 {
1980 	irqreturn_t retval;
1981 	u32 intr;
1982 
1983 	if (ci == NULL)
1984 		return IRQ_HANDLED;
1985 
1986 	spin_lock(&ci->lock);
1987 
1988 	if (ci->platdata->flags & CI_HDRC_REGS_SHARED) {
1989 		if (hw_read(ci, OP_USBMODE, USBMODE_CM) !=
1990 				USBMODE_CM_DC) {
1991 			spin_unlock(&ci->lock);
1992 			return IRQ_NONE;
1993 		}
1994 	}
1995 	intr = hw_test_and_clear_intr_active(ci);
1996 
1997 	if (intr) {
1998 		/* order defines priority - do NOT change it */
1999 		if (USBi_URI & intr)
2000 			isr_reset_handler(ci);
2001 
2002 		if (USBi_PCI & intr) {
2003 			ci->gadget.speed = hw_port_is_high_speed(ci) ?
2004 				USB_SPEED_HIGH : USB_SPEED_FULL;
2005 			if (ci->suspended) {
2006 				if (ci->driver->resume) {
2007 					spin_unlock(&ci->lock);
2008 					ci->driver->resume(&ci->gadget);
2009 					spin_lock(&ci->lock);
2010 				}
2011 				ci->suspended = 0;
2012 				usb_gadget_set_state(&ci->gadget,
2013 						ci->resume_state);
2014 			}
2015 		}
2016 
2017 		if (USBi_UI  & intr)
2018 			isr_tr_complete_handler(ci);
2019 
2020 		if ((USBi_SLI & intr) && !(ci->suspended)) {
2021 			ci->suspended = 1;
2022 			ci->resume_state = ci->gadget.state;
2023 			if (ci->gadget.speed != USB_SPEED_UNKNOWN &&
2024 			    ci->driver->suspend) {
2025 				spin_unlock(&ci->lock);
2026 				ci->driver->suspend(&ci->gadget);
2027 				spin_lock(&ci->lock);
2028 			}
2029 			usb_gadget_set_state(&ci->gadget,
2030 					USB_STATE_SUSPENDED);
2031 		}
2032 		retval = IRQ_HANDLED;
2033 	} else {
2034 		retval = IRQ_NONE;
2035 	}
2036 	spin_unlock(&ci->lock);
2037 
2038 	return retval;
2039 }
2040 
2041 /**
2042  * udc_start: initialize gadget role
2043  * @ci: chipidea controller
2044  */
2045 static int udc_start(struct ci_hdrc *ci)
2046 {
2047 	struct device *dev = ci->dev;
2048 	struct usb_otg_caps *otg_caps = &ci->platdata->ci_otg_caps;
2049 	int retval = 0;
2050 
2051 	ci->gadget.ops          = &usb_gadget_ops;
2052 	ci->gadget.speed        = USB_SPEED_UNKNOWN;
2053 	ci->gadget.max_speed    = USB_SPEED_HIGH;
2054 	ci->gadget.name         = ci->platdata->name;
2055 	ci->gadget.otg_caps	= otg_caps;
2056 	ci->gadget.sg_supported = 1;
2057 
2058 	if (ci->platdata->flags & CI_HDRC_REQUIRES_ALIGNED_DMA)
2059 		ci->gadget.quirk_avoids_skb_reserve = 1;
2060 
2061 	if (ci->is_otg && (otg_caps->hnp_support || otg_caps->srp_support ||
2062 						otg_caps->adp_support))
2063 		ci->gadget.is_otg = 1;
2064 
2065 	INIT_LIST_HEAD(&ci->gadget.ep_list);
2066 
2067 	/* alloc resources */
2068 	ci->qh_pool = dma_pool_create("ci_hw_qh", dev->parent,
2069 				       sizeof(struct ci_hw_qh),
2070 				       64, CI_HDRC_PAGE_SIZE);
2071 	if (ci->qh_pool == NULL)
2072 		return -ENOMEM;
2073 
2074 	ci->td_pool = dma_pool_create("ci_hw_td", dev->parent,
2075 				       sizeof(struct ci_hw_td),
2076 				       64, CI_HDRC_PAGE_SIZE);
2077 	if (ci->td_pool == NULL) {
2078 		retval = -ENOMEM;
2079 		goto free_qh_pool;
2080 	}
2081 
2082 	retval = init_eps(ci);
2083 	if (retval)
2084 		goto free_pools;
2085 
2086 	ci->gadget.ep0 = &ci->ep0in->ep;
2087 
2088 	retval = usb_add_gadget_udc(dev, &ci->gadget);
2089 	if (retval)
2090 		goto destroy_eps;
2091 
2092 	return retval;
2093 
2094 destroy_eps:
2095 	destroy_eps(ci);
2096 free_pools:
2097 	dma_pool_destroy(ci->td_pool);
2098 free_qh_pool:
2099 	dma_pool_destroy(ci->qh_pool);
2100 	return retval;
2101 }
2102 
2103 /*
2104  * ci_hdrc_gadget_destroy: parent remove must call this to remove UDC
2105  *
2106  * No interrupts active, the IRQ has been released
2107  */
2108 void ci_hdrc_gadget_destroy(struct ci_hdrc *ci)
2109 {
2110 	if (!ci->roles[CI_ROLE_GADGET])
2111 		return;
2112 
2113 	usb_del_gadget_udc(&ci->gadget);
2114 
2115 	destroy_eps(ci);
2116 
2117 	dma_pool_destroy(ci->td_pool);
2118 	dma_pool_destroy(ci->qh_pool);
2119 }
2120 
2121 static int udc_id_switch_for_device(struct ci_hdrc *ci)
2122 {
2123 	if (ci->platdata->pins_device)
2124 		pinctrl_select_state(ci->platdata->pctl,
2125 				     ci->platdata->pins_device);
2126 
2127 	if (ci->is_otg)
2128 		/* Clear and enable BSV irq */
2129 		hw_write_otgsc(ci, OTGSC_BSVIS | OTGSC_BSVIE,
2130 					OTGSC_BSVIS | OTGSC_BSVIE);
2131 
2132 	return 0;
2133 }
2134 
2135 static void udc_id_switch_for_host(struct ci_hdrc *ci)
2136 {
2137 	/*
2138 	 * host doesn't care B_SESSION_VALID event
2139 	 * so clear and disbale BSV irq
2140 	 */
2141 	if (ci->is_otg)
2142 		hw_write_otgsc(ci, OTGSC_BSVIE | OTGSC_BSVIS, OTGSC_BSVIS);
2143 
2144 	ci->vbus_active = 0;
2145 
2146 	if (ci->platdata->pins_device && ci->platdata->pins_default)
2147 		pinctrl_select_state(ci->platdata->pctl,
2148 				     ci->platdata->pins_default);
2149 }
2150 
2151 /**
2152  * ci_hdrc_gadget_init - initialize device related bits
2153  * @ci: the controller
2154  *
2155  * This function initializes the gadget, if the device is "device capable".
2156  */
2157 int ci_hdrc_gadget_init(struct ci_hdrc *ci)
2158 {
2159 	struct ci_role_driver *rdrv;
2160 	int ret;
2161 
2162 	if (!hw_read(ci, CAP_DCCPARAMS, DCCPARAMS_DC))
2163 		return -ENXIO;
2164 
2165 	rdrv = devm_kzalloc(ci->dev, sizeof(*rdrv), GFP_KERNEL);
2166 	if (!rdrv)
2167 		return -ENOMEM;
2168 
2169 	rdrv->start	= udc_id_switch_for_device;
2170 	rdrv->stop	= udc_id_switch_for_host;
2171 	rdrv->irq	= udc_irq;
2172 	rdrv->name	= "gadget";
2173 
2174 	ret = udc_start(ci);
2175 	if (!ret)
2176 		ci->roles[CI_ROLE_GADGET] = rdrv;
2177 
2178 	return ret;
2179 }
2180