1 /* 2 * udc.c - ChipIdea UDC driver 3 * 4 * Copyright (C) 2008 Chipidea - MIPS Technologies, Inc. All rights reserved. 5 * 6 * Author: David Lopo 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License version 2 as 10 * published by the Free Software Foundation. 11 */ 12 13 #include <linux/delay.h> 14 #include <linux/device.h> 15 #include <linux/dmapool.h> 16 #include <linux/err.h> 17 #include <linux/irqreturn.h> 18 #include <linux/kernel.h> 19 #include <linux/slab.h> 20 #include <linux/pm_runtime.h> 21 #include <linux/usb/ch9.h> 22 #include <linux/usb/gadget.h> 23 #include <linux/usb/chipidea.h> 24 25 #include "ci.h" 26 #include "udc.h" 27 #include "bits.h" 28 #include "debug.h" 29 #include "otg.h" 30 31 /* control endpoint description */ 32 static const struct usb_endpoint_descriptor 33 ctrl_endpt_out_desc = { 34 .bLength = USB_DT_ENDPOINT_SIZE, 35 .bDescriptorType = USB_DT_ENDPOINT, 36 37 .bEndpointAddress = USB_DIR_OUT, 38 .bmAttributes = USB_ENDPOINT_XFER_CONTROL, 39 .wMaxPacketSize = cpu_to_le16(CTRL_PAYLOAD_MAX), 40 }; 41 42 static const struct usb_endpoint_descriptor 43 ctrl_endpt_in_desc = { 44 .bLength = USB_DT_ENDPOINT_SIZE, 45 .bDescriptorType = USB_DT_ENDPOINT, 46 47 .bEndpointAddress = USB_DIR_IN, 48 .bmAttributes = USB_ENDPOINT_XFER_CONTROL, 49 .wMaxPacketSize = cpu_to_le16(CTRL_PAYLOAD_MAX), 50 }; 51 52 /** 53 * hw_ep_bit: calculates the bit number 54 * @num: endpoint number 55 * @dir: endpoint direction 56 * 57 * This function returns bit number 58 */ 59 static inline int hw_ep_bit(int num, int dir) 60 { 61 return num + (dir ? 16 : 0); 62 } 63 64 static inline int ep_to_bit(struct ci_hdrc *ci, int n) 65 { 66 int fill = 16 - ci->hw_ep_max / 2; 67 68 if (n >= ci->hw_ep_max / 2) 69 n += fill; 70 71 return n; 72 } 73 74 /** 75 * hw_device_state: enables/disables interrupts (execute without interruption) 76 * @dma: 0 => disable, !0 => enable and set dma engine 77 * 78 * This function returns an error code 79 */ 80 static int hw_device_state(struct ci_hdrc *ci, u32 dma) 81 { 82 if (dma) { 83 hw_write(ci, OP_ENDPTLISTADDR, ~0, dma); 84 /* interrupt, error, port change, reset, sleep/suspend */ 85 hw_write(ci, OP_USBINTR, ~0, 86 USBi_UI|USBi_UEI|USBi_PCI|USBi_URI|USBi_SLI); 87 hw_write(ci, OP_USBCMD, USBCMD_RS, USBCMD_RS); 88 } else { 89 hw_write(ci, OP_USBINTR, ~0, 0); 90 hw_write(ci, OP_USBCMD, USBCMD_RS, 0); 91 } 92 return 0; 93 } 94 95 /** 96 * hw_ep_flush: flush endpoint fifo (execute without interruption) 97 * @num: endpoint number 98 * @dir: endpoint direction 99 * 100 * This function returns an error code 101 */ 102 static int hw_ep_flush(struct ci_hdrc *ci, int num, int dir) 103 { 104 int n = hw_ep_bit(num, dir); 105 106 do { 107 /* flush any pending transfer */ 108 hw_write(ci, OP_ENDPTFLUSH, BIT(n), BIT(n)); 109 while (hw_read(ci, OP_ENDPTFLUSH, BIT(n))) 110 cpu_relax(); 111 } while (hw_read(ci, OP_ENDPTSTAT, BIT(n))); 112 113 return 0; 114 } 115 116 /** 117 * hw_ep_disable: disables endpoint (execute without interruption) 118 * @num: endpoint number 119 * @dir: endpoint direction 120 * 121 * This function returns an error code 122 */ 123 static int hw_ep_disable(struct ci_hdrc *ci, int num, int dir) 124 { 125 hw_ep_flush(ci, num, dir); 126 hw_write(ci, OP_ENDPTCTRL + num, 127 dir ? ENDPTCTRL_TXE : ENDPTCTRL_RXE, 0); 128 return 0; 129 } 130 131 /** 132 * hw_ep_enable: enables endpoint (execute without interruption) 133 * @num: endpoint number 134 * @dir: endpoint direction 135 * @type: endpoint type 136 * 137 * This function returns an error code 138 */ 139 static int hw_ep_enable(struct ci_hdrc *ci, int num, int dir, int type) 140 { 141 u32 mask, data; 142 143 if (dir) { 144 mask = ENDPTCTRL_TXT; /* type */ 145 data = type << __ffs(mask); 146 147 mask |= ENDPTCTRL_TXS; /* unstall */ 148 mask |= ENDPTCTRL_TXR; /* reset data toggle */ 149 data |= ENDPTCTRL_TXR; 150 mask |= ENDPTCTRL_TXE; /* enable */ 151 data |= ENDPTCTRL_TXE; 152 } else { 153 mask = ENDPTCTRL_RXT; /* type */ 154 data = type << __ffs(mask); 155 156 mask |= ENDPTCTRL_RXS; /* unstall */ 157 mask |= ENDPTCTRL_RXR; /* reset data toggle */ 158 data |= ENDPTCTRL_RXR; 159 mask |= ENDPTCTRL_RXE; /* enable */ 160 data |= ENDPTCTRL_RXE; 161 } 162 hw_write(ci, OP_ENDPTCTRL + num, mask, data); 163 return 0; 164 } 165 166 /** 167 * hw_ep_get_halt: return endpoint halt status 168 * @num: endpoint number 169 * @dir: endpoint direction 170 * 171 * This function returns 1 if endpoint halted 172 */ 173 static int hw_ep_get_halt(struct ci_hdrc *ci, int num, int dir) 174 { 175 u32 mask = dir ? ENDPTCTRL_TXS : ENDPTCTRL_RXS; 176 177 return hw_read(ci, OP_ENDPTCTRL + num, mask) ? 1 : 0; 178 } 179 180 /** 181 * hw_test_and_clear_setup_status: test & clear setup status (execute without 182 * interruption) 183 * @n: endpoint number 184 * 185 * This function returns setup status 186 */ 187 static int hw_test_and_clear_setup_status(struct ci_hdrc *ci, int n) 188 { 189 n = ep_to_bit(ci, n); 190 return hw_test_and_clear(ci, OP_ENDPTSETUPSTAT, BIT(n)); 191 } 192 193 /** 194 * hw_ep_prime: primes endpoint (execute without interruption) 195 * @num: endpoint number 196 * @dir: endpoint direction 197 * @is_ctrl: true if control endpoint 198 * 199 * This function returns an error code 200 */ 201 static int hw_ep_prime(struct ci_hdrc *ci, int num, int dir, int is_ctrl) 202 { 203 int n = hw_ep_bit(num, dir); 204 205 if (is_ctrl && dir == RX && hw_read(ci, OP_ENDPTSETUPSTAT, BIT(num))) 206 return -EAGAIN; 207 208 hw_write(ci, OP_ENDPTPRIME, BIT(n), BIT(n)); 209 210 while (hw_read(ci, OP_ENDPTPRIME, BIT(n))) 211 cpu_relax(); 212 if (is_ctrl && dir == RX && hw_read(ci, OP_ENDPTSETUPSTAT, BIT(num))) 213 return -EAGAIN; 214 215 /* status shoult be tested according with manual but it doesn't work */ 216 return 0; 217 } 218 219 /** 220 * hw_ep_set_halt: configures ep halt & resets data toggle after clear (execute 221 * without interruption) 222 * @num: endpoint number 223 * @dir: endpoint direction 224 * @value: true => stall, false => unstall 225 * 226 * This function returns an error code 227 */ 228 static int hw_ep_set_halt(struct ci_hdrc *ci, int num, int dir, int value) 229 { 230 if (value != 0 && value != 1) 231 return -EINVAL; 232 233 do { 234 enum ci_hw_regs reg = OP_ENDPTCTRL + num; 235 u32 mask_xs = dir ? ENDPTCTRL_TXS : ENDPTCTRL_RXS; 236 u32 mask_xr = dir ? ENDPTCTRL_TXR : ENDPTCTRL_RXR; 237 238 /* data toggle - reserved for EP0 but it's in ESS */ 239 hw_write(ci, reg, mask_xs|mask_xr, 240 value ? mask_xs : mask_xr); 241 } while (value != hw_ep_get_halt(ci, num, dir)); 242 243 return 0; 244 } 245 246 /** 247 * hw_is_port_high_speed: test if port is high speed 248 * 249 * This function returns true if high speed port 250 */ 251 static int hw_port_is_high_speed(struct ci_hdrc *ci) 252 { 253 return ci->hw_bank.lpm ? hw_read(ci, OP_DEVLC, DEVLC_PSPD) : 254 hw_read(ci, OP_PORTSC, PORTSC_HSP); 255 } 256 257 /** 258 * hw_read_intr_enable: returns interrupt enable register 259 * 260 * This function returns register data 261 */ 262 static u32 hw_read_intr_enable(struct ci_hdrc *ci) 263 { 264 return hw_read(ci, OP_USBINTR, ~0); 265 } 266 267 /** 268 * hw_read_intr_status: returns interrupt status register 269 * 270 * This function returns register data 271 */ 272 static u32 hw_read_intr_status(struct ci_hdrc *ci) 273 { 274 return hw_read(ci, OP_USBSTS, ~0); 275 } 276 277 /** 278 * hw_test_and_clear_complete: test & clear complete status (execute without 279 * interruption) 280 * @n: endpoint number 281 * 282 * This function returns complete status 283 */ 284 static int hw_test_and_clear_complete(struct ci_hdrc *ci, int n) 285 { 286 n = ep_to_bit(ci, n); 287 return hw_test_and_clear(ci, OP_ENDPTCOMPLETE, BIT(n)); 288 } 289 290 /** 291 * hw_test_and_clear_intr_active: test & clear active interrupts (execute 292 * without interruption) 293 * 294 * This function returns active interrutps 295 */ 296 static u32 hw_test_and_clear_intr_active(struct ci_hdrc *ci) 297 { 298 u32 reg = hw_read_intr_status(ci) & hw_read_intr_enable(ci); 299 300 hw_write(ci, OP_USBSTS, ~0, reg); 301 return reg; 302 } 303 304 /** 305 * hw_test_and_clear_setup_guard: test & clear setup guard (execute without 306 * interruption) 307 * 308 * This function returns guard value 309 */ 310 static int hw_test_and_clear_setup_guard(struct ci_hdrc *ci) 311 { 312 return hw_test_and_write(ci, OP_USBCMD, USBCMD_SUTW, 0); 313 } 314 315 /** 316 * hw_test_and_set_setup_guard: test & set setup guard (execute without 317 * interruption) 318 * 319 * This function returns guard value 320 */ 321 static int hw_test_and_set_setup_guard(struct ci_hdrc *ci) 322 { 323 return hw_test_and_write(ci, OP_USBCMD, USBCMD_SUTW, USBCMD_SUTW); 324 } 325 326 /** 327 * hw_usb_set_address: configures USB address (execute without interruption) 328 * @value: new USB address 329 * 330 * This function explicitly sets the address, without the "USBADRA" (advance) 331 * feature, which is not supported by older versions of the controller. 332 */ 333 static void hw_usb_set_address(struct ci_hdrc *ci, u8 value) 334 { 335 hw_write(ci, OP_DEVICEADDR, DEVICEADDR_USBADR, 336 value << __ffs(DEVICEADDR_USBADR)); 337 } 338 339 /** 340 * hw_usb_reset: restart device after a bus reset (execute without 341 * interruption) 342 * 343 * This function returns an error code 344 */ 345 static int hw_usb_reset(struct ci_hdrc *ci) 346 { 347 hw_usb_set_address(ci, 0); 348 349 /* ESS flushes only at end?!? */ 350 hw_write(ci, OP_ENDPTFLUSH, ~0, ~0); 351 352 /* clear setup token semaphores */ 353 hw_write(ci, OP_ENDPTSETUPSTAT, 0, 0); 354 355 /* clear complete status */ 356 hw_write(ci, OP_ENDPTCOMPLETE, 0, 0); 357 358 /* wait until all bits cleared */ 359 while (hw_read(ci, OP_ENDPTPRIME, ~0)) 360 udelay(10); /* not RTOS friendly */ 361 362 /* reset all endpoints ? */ 363 364 /* reset internal status and wait for further instructions 365 no need to verify the port reset status (ESS does it) */ 366 367 return 0; 368 } 369 370 /****************************************************************************** 371 * UTIL block 372 *****************************************************************************/ 373 374 static int add_td_to_list(struct ci_hw_ep *hwep, struct ci_hw_req *hwreq, 375 unsigned length) 376 { 377 int i; 378 u32 temp; 379 struct td_node *lastnode, *node = kzalloc(sizeof(struct td_node), 380 GFP_ATOMIC); 381 382 if (node == NULL) 383 return -ENOMEM; 384 385 node->ptr = dma_pool_alloc(hwep->td_pool, GFP_ATOMIC, 386 &node->dma); 387 if (node->ptr == NULL) { 388 kfree(node); 389 return -ENOMEM; 390 } 391 392 memset(node->ptr, 0, sizeof(struct ci_hw_td)); 393 node->ptr->token = cpu_to_le32(length << __ffs(TD_TOTAL_BYTES)); 394 node->ptr->token &= cpu_to_le32(TD_TOTAL_BYTES); 395 node->ptr->token |= cpu_to_le32(TD_STATUS_ACTIVE); 396 397 temp = (u32) (hwreq->req.dma + hwreq->req.actual); 398 if (length) { 399 node->ptr->page[0] = cpu_to_le32(temp); 400 for (i = 1; i < TD_PAGE_COUNT; i++) { 401 u32 page = temp + i * CI_HDRC_PAGE_SIZE; 402 page &= ~TD_RESERVED_MASK; 403 node->ptr->page[i] = cpu_to_le32(page); 404 } 405 } 406 407 hwreq->req.actual += length; 408 409 if (!list_empty(&hwreq->tds)) { 410 /* get the last entry */ 411 lastnode = list_entry(hwreq->tds.prev, 412 struct td_node, td); 413 lastnode->ptr->next = cpu_to_le32(node->dma); 414 } 415 416 INIT_LIST_HEAD(&node->td); 417 list_add_tail(&node->td, &hwreq->tds); 418 419 return 0; 420 } 421 422 /** 423 * _usb_addr: calculates endpoint address from direction & number 424 * @ep: endpoint 425 */ 426 static inline u8 _usb_addr(struct ci_hw_ep *ep) 427 { 428 return ((ep->dir == TX) ? USB_ENDPOINT_DIR_MASK : 0) | ep->num; 429 } 430 431 /** 432 * _hardware_queue: configures a request at hardware level 433 * @gadget: gadget 434 * @hwep: endpoint 435 * 436 * This function returns an error code 437 */ 438 static int _hardware_enqueue(struct ci_hw_ep *hwep, struct ci_hw_req *hwreq) 439 { 440 struct ci_hdrc *ci = hwep->ci; 441 int ret = 0; 442 unsigned rest = hwreq->req.length; 443 int pages = TD_PAGE_COUNT; 444 struct td_node *firstnode, *lastnode; 445 446 /* don't queue twice */ 447 if (hwreq->req.status == -EALREADY) 448 return -EALREADY; 449 450 hwreq->req.status = -EALREADY; 451 452 ret = usb_gadget_map_request(&ci->gadget, &hwreq->req, hwep->dir); 453 if (ret) 454 return ret; 455 456 /* 457 * The first buffer could be not page aligned. 458 * In that case we have to span into one extra td. 459 */ 460 if (hwreq->req.dma % PAGE_SIZE) 461 pages--; 462 463 if (rest == 0) 464 add_td_to_list(hwep, hwreq, 0); 465 466 while (rest > 0) { 467 unsigned count = min(hwreq->req.length - hwreq->req.actual, 468 (unsigned)(pages * CI_HDRC_PAGE_SIZE)); 469 add_td_to_list(hwep, hwreq, count); 470 rest -= count; 471 } 472 473 if (hwreq->req.zero && hwreq->req.length 474 && (hwreq->req.length % hwep->ep.maxpacket == 0)) 475 add_td_to_list(hwep, hwreq, 0); 476 477 firstnode = list_first_entry(&hwreq->tds, struct td_node, td); 478 479 lastnode = list_entry(hwreq->tds.prev, 480 struct td_node, td); 481 482 lastnode->ptr->next = cpu_to_le32(TD_TERMINATE); 483 if (!hwreq->req.no_interrupt) 484 lastnode->ptr->token |= cpu_to_le32(TD_IOC); 485 wmb(); 486 487 hwreq->req.actual = 0; 488 if (!list_empty(&hwep->qh.queue)) { 489 struct ci_hw_req *hwreqprev; 490 int n = hw_ep_bit(hwep->num, hwep->dir); 491 int tmp_stat; 492 struct td_node *prevlastnode; 493 u32 next = firstnode->dma & TD_ADDR_MASK; 494 495 hwreqprev = list_entry(hwep->qh.queue.prev, 496 struct ci_hw_req, queue); 497 prevlastnode = list_entry(hwreqprev->tds.prev, 498 struct td_node, td); 499 500 prevlastnode->ptr->next = cpu_to_le32(next); 501 wmb(); 502 if (hw_read(ci, OP_ENDPTPRIME, BIT(n))) 503 goto done; 504 do { 505 hw_write(ci, OP_USBCMD, USBCMD_ATDTW, USBCMD_ATDTW); 506 tmp_stat = hw_read(ci, OP_ENDPTSTAT, BIT(n)); 507 } while (!hw_read(ci, OP_USBCMD, USBCMD_ATDTW)); 508 hw_write(ci, OP_USBCMD, USBCMD_ATDTW, 0); 509 if (tmp_stat) 510 goto done; 511 } 512 513 /* QH configuration */ 514 hwep->qh.ptr->td.next = cpu_to_le32(firstnode->dma); 515 hwep->qh.ptr->td.token &= 516 cpu_to_le32(~(TD_STATUS_HALTED|TD_STATUS_ACTIVE)); 517 518 if (hwep->type == USB_ENDPOINT_XFER_ISOC) { 519 u32 mul = hwreq->req.length / hwep->ep.maxpacket; 520 521 if (hwreq->req.length % hwep->ep.maxpacket) 522 mul++; 523 hwep->qh.ptr->cap |= mul << __ffs(QH_MULT); 524 } 525 526 wmb(); /* synchronize before ep prime */ 527 528 ret = hw_ep_prime(ci, hwep->num, hwep->dir, 529 hwep->type == USB_ENDPOINT_XFER_CONTROL); 530 done: 531 return ret; 532 } 533 534 /* 535 * free_pending_td: remove a pending request for the endpoint 536 * @hwep: endpoint 537 */ 538 static void free_pending_td(struct ci_hw_ep *hwep) 539 { 540 struct td_node *pending = hwep->pending_td; 541 542 dma_pool_free(hwep->td_pool, pending->ptr, pending->dma); 543 hwep->pending_td = NULL; 544 kfree(pending); 545 } 546 547 /** 548 * _hardware_dequeue: handles a request at hardware level 549 * @gadget: gadget 550 * @hwep: endpoint 551 * 552 * This function returns an error code 553 */ 554 static int _hardware_dequeue(struct ci_hw_ep *hwep, struct ci_hw_req *hwreq) 555 { 556 u32 tmptoken; 557 struct td_node *node, *tmpnode; 558 unsigned remaining_length; 559 unsigned actual = hwreq->req.length; 560 561 if (hwreq->req.status != -EALREADY) 562 return -EINVAL; 563 564 hwreq->req.status = 0; 565 566 list_for_each_entry_safe(node, tmpnode, &hwreq->tds, td) { 567 tmptoken = le32_to_cpu(node->ptr->token); 568 if ((TD_STATUS_ACTIVE & tmptoken) != 0) { 569 hwreq->req.status = -EALREADY; 570 return -EBUSY; 571 } 572 573 remaining_length = (tmptoken & TD_TOTAL_BYTES); 574 remaining_length >>= __ffs(TD_TOTAL_BYTES); 575 actual -= remaining_length; 576 577 hwreq->req.status = tmptoken & TD_STATUS; 578 if ((TD_STATUS_HALTED & hwreq->req.status)) { 579 hwreq->req.status = -EPIPE; 580 break; 581 } else if ((TD_STATUS_DT_ERR & hwreq->req.status)) { 582 hwreq->req.status = -EPROTO; 583 break; 584 } else if ((TD_STATUS_TR_ERR & hwreq->req.status)) { 585 hwreq->req.status = -EILSEQ; 586 break; 587 } 588 589 if (remaining_length) { 590 if (hwep->dir) { 591 hwreq->req.status = -EPROTO; 592 break; 593 } 594 } 595 /* 596 * As the hardware could still address the freed td 597 * which will run the udc unusable, the cleanup of the 598 * td has to be delayed by one. 599 */ 600 if (hwep->pending_td) 601 free_pending_td(hwep); 602 603 hwep->pending_td = node; 604 list_del_init(&node->td); 605 } 606 607 usb_gadget_unmap_request(&hwep->ci->gadget, &hwreq->req, hwep->dir); 608 609 hwreq->req.actual += actual; 610 611 if (hwreq->req.status) 612 return hwreq->req.status; 613 614 return hwreq->req.actual; 615 } 616 617 /** 618 * _ep_nuke: dequeues all endpoint requests 619 * @hwep: endpoint 620 * 621 * This function returns an error code 622 * Caller must hold lock 623 */ 624 static int _ep_nuke(struct ci_hw_ep *hwep) 625 __releases(hwep->lock) 626 __acquires(hwep->lock) 627 { 628 struct td_node *node, *tmpnode; 629 if (hwep == NULL) 630 return -EINVAL; 631 632 hw_ep_flush(hwep->ci, hwep->num, hwep->dir); 633 634 while (!list_empty(&hwep->qh.queue)) { 635 636 /* pop oldest request */ 637 struct ci_hw_req *hwreq = list_entry(hwep->qh.queue.next, 638 struct ci_hw_req, queue); 639 640 list_for_each_entry_safe(node, tmpnode, &hwreq->tds, td) { 641 dma_pool_free(hwep->td_pool, node->ptr, node->dma); 642 list_del_init(&node->td); 643 node->ptr = NULL; 644 kfree(node); 645 } 646 647 list_del_init(&hwreq->queue); 648 hwreq->req.status = -ESHUTDOWN; 649 650 if (hwreq->req.complete != NULL) { 651 spin_unlock(hwep->lock); 652 hwreq->req.complete(&hwep->ep, &hwreq->req); 653 spin_lock(hwep->lock); 654 } 655 } 656 657 if (hwep->pending_td) 658 free_pending_td(hwep); 659 660 return 0; 661 } 662 663 /** 664 * _gadget_stop_activity: stops all USB activity, flushes & disables all endpts 665 * @gadget: gadget 666 * 667 * This function returns an error code 668 */ 669 static int _gadget_stop_activity(struct usb_gadget *gadget) 670 { 671 struct usb_ep *ep; 672 struct ci_hdrc *ci = container_of(gadget, struct ci_hdrc, gadget); 673 unsigned long flags; 674 675 spin_lock_irqsave(&ci->lock, flags); 676 ci->gadget.speed = USB_SPEED_UNKNOWN; 677 ci->remote_wakeup = 0; 678 ci->suspended = 0; 679 spin_unlock_irqrestore(&ci->lock, flags); 680 681 /* flush all endpoints */ 682 gadget_for_each_ep(ep, gadget) { 683 usb_ep_fifo_flush(ep); 684 } 685 usb_ep_fifo_flush(&ci->ep0out->ep); 686 usb_ep_fifo_flush(&ci->ep0in->ep); 687 688 /* make sure to disable all endpoints */ 689 gadget_for_each_ep(ep, gadget) { 690 usb_ep_disable(ep); 691 } 692 693 if (ci->status != NULL) { 694 usb_ep_free_request(&ci->ep0in->ep, ci->status); 695 ci->status = NULL; 696 } 697 698 return 0; 699 } 700 701 /****************************************************************************** 702 * ISR block 703 *****************************************************************************/ 704 /** 705 * isr_reset_handler: USB reset interrupt handler 706 * @ci: UDC device 707 * 708 * This function resets USB engine after a bus reset occurred 709 */ 710 static void isr_reset_handler(struct ci_hdrc *ci) 711 __releases(ci->lock) 712 __acquires(ci->lock) 713 { 714 int retval; 715 716 spin_unlock(&ci->lock); 717 if (ci->gadget.speed != USB_SPEED_UNKNOWN) { 718 if (ci->driver) 719 ci->driver->disconnect(&ci->gadget); 720 } 721 722 retval = _gadget_stop_activity(&ci->gadget); 723 if (retval) 724 goto done; 725 726 retval = hw_usb_reset(ci); 727 if (retval) 728 goto done; 729 730 ci->status = usb_ep_alloc_request(&ci->ep0in->ep, GFP_ATOMIC); 731 if (ci->status == NULL) 732 retval = -ENOMEM; 733 734 done: 735 spin_lock(&ci->lock); 736 737 if (retval) 738 dev_err(ci->dev, "error: %i\n", retval); 739 } 740 741 /** 742 * isr_get_status_complete: get_status request complete function 743 * @ep: endpoint 744 * @req: request handled 745 * 746 * Caller must release lock 747 */ 748 static void isr_get_status_complete(struct usb_ep *ep, struct usb_request *req) 749 { 750 if (ep == NULL || req == NULL) 751 return; 752 753 kfree(req->buf); 754 usb_ep_free_request(ep, req); 755 } 756 757 /** 758 * _ep_queue: queues (submits) an I/O request to an endpoint 759 * 760 * Caller must hold lock 761 */ 762 static int _ep_queue(struct usb_ep *ep, struct usb_request *req, 763 gfp_t __maybe_unused gfp_flags) 764 { 765 struct ci_hw_ep *hwep = container_of(ep, struct ci_hw_ep, ep); 766 struct ci_hw_req *hwreq = container_of(req, struct ci_hw_req, req); 767 struct ci_hdrc *ci = hwep->ci; 768 int retval = 0; 769 770 if (ep == NULL || req == NULL || hwep->ep.desc == NULL) 771 return -EINVAL; 772 773 if (hwep->type == USB_ENDPOINT_XFER_CONTROL) { 774 if (req->length) 775 hwep = (ci->ep0_dir == RX) ? 776 ci->ep0out : ci->ep0in; 777 if (!list_empty(&hwep->qh.queue)) { 778 _ep_nuke(hwep); 779 retval = -EOVERFLOW; 780 dev_warn(hwep->ci->dev, "endpoint ctrl %X nuked\n", 781 _usb_addr(hwep)); 782 } 783 } 784 785 if (usb_endpoint_xfer_isoc(hwep->ep.desc) && 786 hwreq->req.length > (1 + hwep->ep.mult) * hwep->ep.maxpacket) { 787 dev_err(hwep->ci->dev, "request length too big for isochronous\n"); 788 return -EMSGSIZE; 789 } 790 791 /* first nuke then test link, e.g. previous status has not sent */ 792 if (!list_empty(&hwreq->queue)) { 793 dev_err(hwep->ci->dev, "request already in queue\n"); 794 return -EBUSY; 795 } 796 797 /* push request */ 798 hwreq->req.status = -EINPROGRESS; 799 hwreq->req.actual = 0; 800 801 retval = _hardware_enqueue(hwep, hwreq); 802 803 if (retval == -EALREADY) 804 retval = 0; 805 if (!retval) 806 list_add_tail(&hwreq->queue, &hwep->qh.queue); 807 808 return retval; 809 } 810 811 /** 812 * isr_get_status_response: get_status request response 813 * @ci: ci struct 814 * @setup: setup request packet 815 * 816 * This function returns an error code 817 */ 818 static int isr_get_status_response(struct ci_hdrc *ci, 819 struct usb_ctrlrequest *setup) 820 __releases(hwep->lock) 821 __acquires(hwep->lock) 822 { 823 struct ci_hw_ep *hwep = ci->ep0in; 824 struct usb_request *req = NULL; 825 gfp_t gfp_flags = GFP_ATOMIC; 826 int dir, num, retval; 827 828 if (hwep == NULL || setup == NULL) 829 return -EINVAL; 830 831 spin_unlock(hwep->lock); 832 req = usb_ep_alloc_request(&hwep->ep, gfp_flags); 833 spin_lock(hwep->lock); 834 if (req == NULL) 835 return -ENOMEM; 836 837 req->complete = isr_get_status_complete; 838 req->length = 2; 839 req->buf = kzalloc(req->length, gfp_flags); 840 if (req->buf == NULL) { 841 retval = -ENOMEM; 842 goto err_free_req; 843 } 844 845 if ((setup->bRequestType & USB_RECIP_MASK) == USB_RECIP_DEVICE) { 846 /* Assume that device is bus powered for now. */ 847 *(u16 *)req->buf = ci->remote_wakeup << 1; 848 retval = 0; 849 } else if ((setup->bRequestType & USB_RECIP_MASK) \ 850 == USB_RECIP_ENDPOINT) { 851 dir = (le16_to_cpu(setup->wIndex) & USB_ENDPOINT_DIR_MASK) ? 852 TX : RX; 853 num = le16_to_cpu(setup->wIndex) & USB_ENDPOINT_NUMBER_MASK; 854 *(u16 *)req->buf = hw_ep_get_halt(ci, num, dir); 855 } 856 /* else do nothing; reserved for future use */ 857 858 retval = _ep_queue(&hwep->ep, req, gfp_flags); 859 if (retval) 860 goto err_free_buf; 861 862 return 0; 863 864 err_free_buf: 865 kfree(req->buf); 866 err_free_req: 867 spin_unlock(hwep->lock); 868 usb_ep_free_request(&hwep->ep, req); 869 spin_lock(hwep->lock); 870 return retval; 871 } 872 873 /** 874 * isr_setup_status_complete: setup_status request complete function 875 * @ep: endpoint 876 * @req: request handled 877 * 878 * Caller must release lock. Put the port in test mode if test mode 879 * feature is selected. 880 */ 881 static void 882 isr_setup_status_complete(struct usb_ep *ep, struct usb_request *req) 883 { 884 struct ci_hdrc *ci = req->context; 885 unsigned long flags; 886 887 if (ci->setaddr) { 888 hw_usb_set_address(ci, ci->address); 889 ci->setaddr = false; 890 } 891 892 spin_lock_irqsave(&ci->lock, flags); 893 if (ci->test_mode) 894 hw_port_test_set(ci, ci->test_mode); 895 spin_unlock_irqrestore(&ci->lock, flags); 896 } 897 898 /** 899 * isr_setup_status_phase: queues the status phase of a setup transation 900 * @ci: ci struct 901 * 902 * This function returns an error code 903 */ 904 static int isr_setup_status_phase(struct ci_hdrc *ci) 905 { 906 int retval; 907 struct ci_hw_ep *hwep; 908 909 hwep = (ci->ep0_dir == TX) ? ci->ep0out : ci->ep0in; 910 ci->status->context = ci; 911 ci->status->complete = isr_setup_status_complete; 912 913 retval = _ep_queue(&hwep->ep, ci->status, GFP_ATOMIC); 914 915 return retval; 916 } 917 918 /** 919 * isr_tr_complete_low: transaction complete low level handler 920 * @hwep: endpoint 921 * 922 * This function returns an error code 923 * Caller must hold lock 924 */ 925 static int isr_tr_complete_low(struct ci_hw_ep *hwep) 926 __releases(hwep->lock) 927 __acquires(hwep->lock) 928 { 929 struct ci_hw_req *hwreq, *hwreqtemp; 930 struct ci_hw_ep *hweptemp = hwep; 931 int retval = 0; 932 933 list_for_each_entry_safe(hwreq, hwreqtemp, &hwep->qh.queue, 934 queue) { 935 retval = _hardware_dequeue(hwep, hwreq); 936 if (retval < 0) 937 break; 938 list_del_init(&hwreq->queue); 939 if (hwreq->req.complete != NULL) { 940 spin_unlock(hwep->lock); 941 if ((hwep->type == USB_ENDPOINT_XFER_CONTROL) && 942 hwreq->req.length) 943 hweptemp = hwep->ci->ep0in; 944 hwreq->req.complete(&hweptemp->ep, &hwreq->req); 945 spin_lock(hwep->lock); 946 } 947 } 948 949 if (retval == -EBUSY) 950 retval = 0; 951 952 return retval; 953 } 954 955 /** 956 * isr_tr_complete_handler: transaction complete interrupt handler 957 * @ci: UDC descriptor 958 * 959 * This function handles traffic events 960 */ 961 static void isr_tr_complete_handler(struct ci_hdrc *ci) 962 __releases(ci->lock) 963 __acquires(ci->lock) 964 { 965 unsigned i; 966 u8 tmode = 0; 967 968 for (i = 0; i < ci->hw_ep_max; i++) { 969 struct ci_hw_ep *hwep = &ci->ci_hw_ep[i]; 970 int type, num, dir, err = -EINVAL; 971 struct usb_ctrlrequest req; 972 973 if (hwep->ep.desc == NULL) 974 continue; /* not configured */ 975 976 if (hw_test_and_clear_complete(ci, i)) { 977 err = isr_tr_complete_low(hwep); 978 if (hwep->type == USB_ENDPOINT_XFER_CONTROL) { 979 if (err > 0) /* needs status phase */ 980 err = isr_setup_status_phase(ci); 981 if (err < 0) { 982 spin_unlock(&ci->lock); 983 if (usb_ep_set_halt(&hwep->ep)) 984 dev_err(ci->dev, 985 "error: ep_set_halt\n"); 986 spin_lock(&ci->lock); 987 } 988 } 989 } 990 991 if (hwep->type != USB_ENDPOINT_XFER_CONTROL || 992 !hw_test_and_clear_setup_status(ci, i)) 993 continue; 994 995 if (i != 0) { 996 dev_warn(ci->dev, "ctrl traffic at endpoint %d\n", i); 997 continue; 998 } 999 1000 /* 1001 * Flush data and handshake transactions of previous 1002 * setup packet. 1003 */ 1004 _ep_nuke(ci->ep0out); 1005 _ep_nuke(ci->ep0in); 1006 1007 /* read_setup_packet */ 1008 do { 1009 hw_test_and_set_setup_guard(ci); 1010 memcpy(&req, &hwep->qh.ptr->setup, sizeof(req)); 1011 } while (!hw_test_and_clear_setup_guard(ci)); 1012 1013 type = req.bRequestType; 1014 1015 ci->ep0_dir = (type & USB_DIR_IN) ? TX : RX; 1016 1017 switch (req.bRequest) { 1018 case USB_REQ_CLEAR_FEATURE: 1019 if (type == (USB_DIR_OUT|USB_RECIP_ENDPOINT) && 1020 le16_to_cpu(req.wValue) == 1021 USB_ENDPOINT_HALT) { 1022 if (req.wLength != 0) 1023 break; 1024 num = le16_to_cpu(req.wIndex); 1025 dir = num & USB_ENDPOINT_DIR_MASK; 1026 num &= USB_ENDPOINT_NUMBER_MASK; 1027 if (dir) /* TX */ 1028 num += ci->hw_ep_max/2; 1029 if (!ci->ci_hw_ep[num].wedge) { 1030 spin_unlock(&ci->lock); 1031 err = usb_ep_clear_halt( 1032 &ci->ci_hw_ep[num].ep); 1033 spin_lock(&ci->lock); 1034 if (err) 1035 break; 1036 } 1037 err = isr_setup_status_phase(ci); 1038 } else if (type == (USB_DIR_OUT|USB_RECIP_DEVICE) && 1039 le16_to_cpu(req.wValue) == 1040 USB_DEVICE_REMOTE_WAKEUP) { 1041 if (req.wLength != 0) 1042 break; 1043 ci->remote_wakeup = 0; 1044 err = isr_setup_status_phase(ci); 1045 } else { 1046 goto delegate; 1047 } 1048 break; 1049 case USB_REQ_GET_STATUS: 1050 if (type != (USB_DIR_IN|USB_RECIP_DEVICE) && 1051 type != (USB_DIR_IN|USB_RECIP_ENDPOINT) && 1052 type != (USB_DIR_IN|USB_RECIP_INTERFACE)) 1053 goto delegate; 1054 if (le16_to_cpu(req.wLength) != 2 || 1055 le16_to_cpu(req.wValue) != 0) 1056 break; 1057 err = isr_get_status_response(ci, &req); 1058 break; 1059 case USB_REQ_SET_ADDRESS: 1060 if (type != (USB_DIR_OUT|USB_RECIP_DEVICE)) 1061 goto delegate; 1062 if (le16_to_cpu(req.wLength) != 0 || 1063 le16_to_cpu(req.wIndex) != 0) 1064 break; 1065 ci->address = (u8)le16_to_cpu(req.wValue); 1066 ci->setaddr = true; 1067 err = isr_setup_status_phase(ci); 1068 break; 1069 case USB_REQ_SET_FEATURE: 1070 if (type == (USB_DIR_OUT|USB_RECIP_ENDPOINT) && 1071 le16_to_cpu(req.wValue) == 1072 USB_ENDPOINT_HALT) { 1073 if (req.wLength != 0) 1074 break; 1075 num = le16_to_cpu(req.wIndex); 1076 dir = num & USB_ENDPOINT_DIR_MASK; 1077 num &= USB_ENDPOINT_NUMBER_MASK; 1078 if (dir) /* TX */ 1079 num += ci->hw_ep_max/2; 1080 1081 spin_unlock(&ci->lock); 1082 err = usb_ep_set_halt(&ci->ci_hw_ep[num].ep); 1083 spin_lock(&ci->lock); 1084 if (!err) 1085 isr_setup_status_phase(ci); 1086 } else if (type == (USB_DIR_OUT|USB_RECIP_DEVICE)) { 1087 if (req.wLength != 0) 1088 break; 1089 switch (le16_to_cpu(req.wValue)) { 1090 case USB_DEVICE_REMOTE_WAKEUP: 1091 ci->remote_wakeup = 1; 1092 err = isr_setup_status_phase(ci); 1093 break; 1094 case USB_DEVICE_TEST_MODE: 1095 tmode = le16_to_cpu(req.wIndex) >> 8; 1096 switch (tmode) { 1097 case TEST_J: 1098 case TEST_K: 1099 case TEST_SE0_NAK: 1100 case TEST_PACKET: 1101 case TEST_FORCE_EN: 1102 ci->test_mode = tmode; 1103 err = isr_setup_status_phase( 1104 ci); 1105 break; 1106 default: 1107 break; 1108 } 1109 default: 1110 goto delegate; 1111 } 1112 } else { 1113 goto delegate; 1114 } 1115 break; 1116 default: 1117 delegate: 1118 if (req.wLength == 0) /* no data phase */ 1119 ci->ep0_dir = TX; 1120 1121 spin_unlock(&ci->lock); 1122 err = ci->driver->setup(&ci->gadget, &req); 1123 spin_lock(&ci->lock); 1124 break; 1125 } 1126 1127 if (err < 0) { 1128 spin_unlock(&ci->lock); 1129 if (usb_ep_set_halt(&hwep->ep)) 1130 dev_err(ci->dev, "error: ep_set_halt\n"); 1131 spin_lock(&ci->lock); 1132 } 1133 } 1134 } 1135 1136 /****************************************************************************** 1137 * ENDPT block 1138 *****************************************************************************/ 1139 /** 1140 * ep_enable: configure endpoint, making it usable 1141 * 1142 * Check usb_ep_enable() at "usb_gadget.h" for details 1143 */ 1144 static int ep_enable(struct usb_ep *ep, 1145 const struct usb_endpoint_descriptor *desc) 1146 { 1147 struct ci_hw_ep *hwep = container_of(ep, struct ci_hw_ep, ep); 1148 int retval = 0; 1149 unsigned long flags; 1150 u32 cap = 0; 1151 1152 if (ep == NULL || desc == NULL) 1153 return -EINVAL; 1154 1155 spin_lock_irqsave(hwep->lock, flags); 1156 1157 /* only internal SW should enable ctrl endpts */ 1158 1159 hwep->ep.desc = desc; 1160 1161 if (!list_empty(&hwep->qh.queue)) 1162 dev_warn(hwep->ci->dev, "enabling a non-empty endpoint!\n"); 1163 1164 hwep->dir = usb_endpoint_dir_in(desc) ? TX : RX; 1165 hwep->num = usb_endpoint_num(desc); 1166 hwep->type = usb_endpoint_type(desc); 1167 1168 hwep->ep.maxpacket = usb_endpoint_maxp(desc) & 0x07ff; 1169 hwep->ep.mult = QH_ISO_MULT(usb_endpoint_maxp(desc)); 1170 1171 if (hwep->type == USB_ENDPOINT_XFER_CONTROL) 1172 cap |= QH_IOS; 1173 if (hwep->num) 1174 cap |= QH_ZLT; 1175 cap |= (hwep->ep.maxpacket << __ffs(QH_MAX_PKT)) & QH_MAX_PKT; 1176 1177 hwep->qh.ptr->cap = cpu_to_le32(cap); 1178 1179 hwep->qh.ptr->td.next |= cpu_to_le32(TD_TERMINATE); /* needed? */ 1180 1181 /* 1182 * Enable endpoints in the HW other than ep0 as ep0 1183 * is always enabled 1184 */ 1185 if (hwep->num) 1186 retval |= hw_ep_enable(hwep->ci, hwep->num, hwep->dir, 1187 hwep->type); 1188 1189 spin_unlock_irqrestore(hwep->lock, flags); 1190 return retval; 1191 } 1192 1193 /** 1194 * ep_disable: endpoint is no longer usable 1195 * 1196 * Check usb_ep_disable() at "usb_gadget.h" for details 1197 */ 1198 static int ep_disable(struct usb_ep *ep) 1199 { 1200 struct ci_hw_ep *hwep = container_of(ep, struct ci_hw_ep, ep); 1201 int direction, retval = 0; 1202 unsigned long flags; 1203 1204 if (ep == NULL) 1205 return -EINVAL; 1206 else if (hwep->ep.desc == NULL) 1207 return -EBUSY; 1208 1209 spin_lock_irqsave(hwep->lock, flags); 1210 1211 /* only internal SW should disable ctrl endpts */ 1212 1213 direction = hwep->dir; 1214 do { 1215 retval |= _ep_nuke(hwep); 1216 retval |= hw_ep_disable(hwep->ci, hwep->num, hwep->dir); 1217 1218 if (hwep->type == USB_ENDPOINT_XFER_CONTROL) 1219 hwep->dir = (hwep->dir == TX) ? RX : TX; 1220 1221 } while (hwep->dir != direction); 1222 1223 hwep->ep.desc = NULL; 1224 1225 spin_unlock_irqrestore(hwep->lock, flags); 1226 return retval; 1227 } 1228 1229 /** 1230 * ep_alloc_request: allocate a request object to use with this endpoint 1231 * 1232 * Check usb_ep_alloc_request() at "usb_gadget.h" for details 1233 */ 1234 static struct usb_request *ep_alloc_request(struct usb_ep *ep, gfp_t gfp_flags) 1235 { 1236 struct ci_hw_req *hwreq = NULL; 1237 1238 if (ep == NULL) 1239 return NULL; 1240 1241 hwreq = kzalloc(sizeof(struct ci_hw_req), gfp_flags); 1242 if (hwreq != NULL) { 1243 INIT_LIST_HEAD(&hwreq->queue); 1244 INIT_LIST_HEAD(&hwreq->tds); 1245 } 1246 1247 return (hwreq == NULL) ? NULL : &hwreq->req; 1248 } 1249 1250 /** 1251 * ep_free_request: frees a request object 1252 * 1253 * Check usb_ep_free_request() at "usb_gadget.h" for details 1254 */ 1255 static void ep_free_request(struct usb_ep *ep, struct usb_request *req) 1256 { 1257 struct ci_hw_ep *hwep = container_of(ep, struct ci_hw_ep, ep); 1258 struct ci_hw_req *hwreq = container_of(req, struct ci_hw_req, req); 1259 struct td_node *node, *tmpnode; 1260 unsigned long flags; 1261 1262 if (ep == NULL || req == NULL) { 1263 return; 1264 } else if (!list_empty(&hwreq->queue)) { 1265 dev_err(hwep->ci->dev, "freeing queued request\n"); 1266 return; 1267 } 1268 1269 spin_lock_irqsave(hwep->lock, flags); 1270 1271 list_for_each_entry_safe(node, tmpnode, &hwreq->tds, td) { 1272 dma_pool_free(hwep->td_pool, node->ptr, node->dma); 1273 list_del_init(&node->td); 1274 node->ptr = NULL; 1275 kfree(node); 1276 } 1277 1278 kfree(hwreq); 1279 1280 spin_unlock_irqrestore(hwep->lock, flags); 1281 } 1282 1283 /** 1284 * ep_queue: queues (submits) an I/O request to an endpoint 1285 * 1286 * Check usb_ep_queue()* at usb_gadget.h" for details 1287 */ 1288 static int ep_queue(struct usb_ep *ep, struct usb_request *req, 1289 gfp_t __maybe_unused gfp_flags) 1290 { 1291 struct ci_hw_ep *hwep = container_of(ep, struct ci_hw_ep, ep); 1292 int retval = 0; 1293 unsigned long flags; 1294 1295 if (ep == NULL || req == NULL || hwep->ep.desc == NULL) 1296 return -EINVAL; 1297 1298 spin_lock_irqsave(hwep->lock, flags); 1299 retval = _ep_queue(ep, req, gfp_flags); 1300 spin_unlock_irqrestore(hwep->lock, flags); 1301 return retval; 1302 } 1303 1304 /** 1305 * ep_dequeue: dequeues (cancels, unlinks) an I/O request from an endpoint 1306 * 1307 * Check usb_ep_dequeue() at "usb_gadget.h" for details 1308 */ 1309 static int ep_dequeue(struct usb_ep *ep, struct usb_request *req) 1310 { 1311 struct ci_hw_ep *hwep = container_of(ep, struct ci_hw_ep, ep); 1312 struct ci_hw_req *hwreq = container_of(req, struct ci_hw_req, req); 1313 unsigned long flags; 1314 1315 if (ep == NULL || req == NULL || hwreq->req.status != -EALREADY || 1316 hwep->ep.desc == NULL || list_empty(&hwreq->queue) || 1317 list_empty(&hwep->qh.queue)) 1318 return -EINVAL; 1319 1320 spin_lock_irqsave(hwep->lock, flags); 1321 1322 hw_ep_flush(hwep->ci, hwep->num, hwep->dir); 1323 1324 /* pop request */ 1325 list_del_init(&hwreq->queue); 1326 1327 usb_gadget_unmap_request(&hwep->ci->gadget, req, hwep->dir); 1328 1329 req->status = -ECONNRESET; 1330 1331 if (hwreq->req.complete != NULL) { 1332 spin_unlock(hwep->lock); 1333 hwreq->req.complete(&hwep->ep, &hwreq->req); 1334 spin_lock(hwep->lock); 1335 } 1336 1337 spin_unlock_irqrestore(hwep->lock, flags); 1338 return 0; 1339 } 1340 1341 /** 1342 * ep_set_halt: sets the endpoint halt feature 1343 * 1344 * Check usb_ep_set_halt() at "usb_gadget.h" for details 1345 */ 1346 static int ep_set_halt(struct usb_ep *ep, int value) 1347 { 1348 struct ci_hw_ep *hwep = container_of(ep, struct ci_hw_ep, ep); 1349 int direction, retval = 0; 1350 unsigned long flags; 1351 1352 if (ep == NULL || hwep->ep.desc == NULL) 1353 return -EINVAL; 1354 1355 if (usb_endpoint_xfer_isoc(hwep->ep.desc)) 1356 return -EOPNOTSUPP; 1357 1358 spin_lock_irqsave(hwep->lock, flags); 1359 1360 #ifndef STALL_IN 1361 /* g_file_storage MS compliant but g_zero fails chapter 9 compliance */ 1362 if (value && hwep->type == USB_ENDPOINT_XFER_BULK && hwep->dir == TX && 1363 !list_empty(&hwep->qh.queue)) { 1364 spin_unlock_irqrestore(hwep->lock, flags); 1365 return -EAGAIN; 1366 } 1367 #endif 1368 1369 direction = hwep->dir; 1370 do { 1371 retval |= hw_ep_set_halt(hwep->ci, hwep->num, hwep->dir, value); 1372 1373 if (!value) 1374 hwep->wedge = 0; 1375 1376 if (hwep->type == USB_ENDPOINT_XFER_CONTROL) 1377 hwep->dir = (hwep->dir == TX) ? RX : TX; 1378 1379 } while (hwep->dir != direction); 1380 1381 spin_unlock_irqrestore(hwep->lock, flags); 1382 return retval; 1383 } 1384 1385 /** 1386 * ep_set_wedge: sets the halt feature and ignores clear requests 1387 * 1388 * Check usb_ep_set_wedge() at "usb_gadget.h" for details 1389 */ 1390 static int ep_set_wedge(struct usb_ep *ep) 1391 { 1392 struct ci_hw_ep *hwep = container_of(ep, struct ci_hw_ep, ep); 1393 unsigned long flags; 1394 1395 if (ep == NULL || hwep->ep.desc == NULL) 1396 return -EINVAL; 1397 1398 spin_lock_irqsave(hwep->lock, flags); 1399 hwep->wedge = 1; 1400 spin_unlock_irqrestore(hwep->lock, flags); 1401 1402 return usb_ep_set_halt(ep); 1403 } 1404 1405 /** 1406 * ep_fifo_flush: flushes contents of a fifo 1407 * 1408 * Check usb_ep_fifo_flush() at "usb_gadget.h" for details 1409 */ 1410 static void ep_fifo_flush(struct usb_ep *ep) 1411 { 1412 struct ci_hw_ep *hwep = container_of(ep, struct ci_hw_ep, ep); 1413 unsigned long flags; 1414 1415 if (ep == NULL) { 1416 dev_err(hwep->ci->dev, "%02X: -EINVAL\n", _usb_addr(hwep)); 1417 return; 1418 } 1419 1420 spin_lock_irqsave(hwep->lock, flags); 1421 1422 hw_ep_flush(hwep->ci, hwep->num, hwep->dir); 1423 1424 spin_unlock_irqrestore(hwep->lock, flags); 1425 } 1426 1427 /** 1428 * Endpoint-specific part of the API to the USB controller hardware 1429 * Check "usb_gadget.h" for details 1430 */ 1431 static const struct usb_ep_ops usb_ep_ops = { 1432 .enable = ep_enable, 1433 .disable = ep_disable, 1434 .alloc_request = ep_alloc_request, 1435 .free_request = ep_free_request, 1436 .queue = ep_queue, 1437 .dequeue = ep_dequeue, 1438 .set_halt = ep_set_halt, 1439 .set_wedge = ep_set_wedge, 1440 .fifo_flush = ep_fifo_flush, 1441 }; 1442 1443 /****************************************************************************** 1444 * GADGET block 1445 *****************************************************************************/ 1446 static int ci_udc_vbus_session(struct usb_gadget *_gadget, int is_active) 1447 { 1448 struct ci_hdrc *ci = container_of(_gadget, struct ci_hdrc, gadget); 1449 unsigned long flags; 1450 int gadget_ready = 0; 1451 1452 spin_lock_irqsave(&ci->lock, flags); 1453 ci->vbus_active = is_active; 1454 if (ci->driver) 1455 gadget_ready = 1; 1456 spin_unlock_irqrestore(&ci->lock, flags); 1457 1458 if (gadget_ready) { 1459 if (is_active) { 1460 pm_runtime_get_sync(&_gadget->dev); 1461 hw_device_reset(ci, USBMODE_CM_DC); 1462 hw_device_state(ci, ci->ep0out->qh.dma); 1463 dev_dbg(ci->dev, "Connected to host\n"); 1464 } else { 1465 if (ci->driver) 1466 ci->driver->disconnect(&ci->gadget); 1467 hw_device_state(ci, 0); 1468 if (ci->platdata->notify_event) 1469 ci->platdata->notify_event(ci, 1470 CI_HDRC_CONTROLLER_STOPPED_EVENT); 1471 _gadget_stop_activity(&ci->gadget); 1472 pm_runtime_put_sync(&_gadget->dev); 1473 dev_dbg(ci->dev, "Disconnected from host\n"); 1474 } 1475 } 1476 1477 return 0; 1478 } 1479 1480 static int ci_udc_wakeup(struct usb_gadget *_gadget) 1481 { 1482 struct ci_hdrc *ci = container_of(_gadget, struct ci_hdrc, gadget); 1483 unsigned long flags; 1484 int ret = 0; 1485 1486 spin_lock_irqsave(&ci->lock, flags); 1487 if (!ci->remote_wakeup) { 1488 ret = -EOPNOTSUPP; 1489 goto out; 1490 } 1491 if (!hw_read(ci, OP_PORTSC, PORTSC_SUSP)) { 1492 ret = -EINVAL; 1493 goto out; 1494 } 1495 hw_write(ci, OP_PORTSC, PORTSC_FPR, PORTSC_FPR); 1496 out: 1497 spin_unlock_irqrestore(&ci->lock, flags); 1498 return ret; 1499 } 1500 1501 static int ci_udc_vbus_draw(struct usb_gadget *_gadget, unsigned ma) 1502 { 1503 struct ci_hdrc *ci = container_of(_gadget, struct ci_hdrc, gadget); 1504 1505 if (ci->transceiver) 1506 return usb_phy_set_power(ci->transceiver, ma); 1507 return -ENOTSUPP; 1508 } 1509 1510 /* Change Data+ pullup status 1511 * this func is used by usb_gadget_connect/disconnet 1512 */ 1513 static int ci_udc_pullup(struct usb_gadget *_gadget, int is_on) 1514 { 1515 struct ci_hdrc *ci = container_of(_gadget, struct ci_hdrc, gadget); 1516 1517 if (!ci->vbus_active) 1518 return -EOPNOTSUPP; 1519 1520 if (is_on) 1521 hw_write(ci, OP_USBCMD, USBCMD_RS, USBCMD_RS); 1522 else 1523 hw_write(ci, OP_USBCMD, USBCMD_RS, 0); 1524 1525 return 0; 1526 } 1527 1528 static int ci_udc_start(struct usb_gadget *gadget, 1529 struct usb_gadget_driver *driver); 1530 static int ci_udc_stop(struct usb_gadget *gadget, 1531 struct usb_gadget_driver *driver); 1532 /** 1533 * Device operations part of the API to the USB controller hardware, 1534 * which don't involve endpoints (or i/o) 1535 * Check "usb_gadget.h" for details 1536 */ 1537 static const struct usb_gadget_ops usb_gadget_ops = { 1538 .vbus_session = ci_udc_vbus_session, 1539 .wakeup = ci_udc_wakeup, 1540 .pullup = ci_udc_pullup, 1541 .vbus_draw = ci_udc_vbus_draw, 1542 .udc_start = ci_udc_start, 1543 .udc_stop = ci_udc_stop, 1544 }; 1545 1546 static int init_eps(struct ci_hdrc *ci) 1547 { 1548 int retval = 0, i, j; 1549 1550 for (i = 0; i < ci->hw_ep_max/2; i++) 1551 for (j = RX; j <= TX; j++) { 1552 int k = i + j * ci->hw_ep_max/2; 1553 struct ci_hw_ep *hwep = &ci->ci_hw_ep[k]; 1554 1555 scnprintf(hwep->name, sizeof(hwep->name), "ep%i%s", i, 1556 (j == TX) ? "in" : "out"); 1557 1558 hwep->ci = ci; 1559 hwep->lock = &ci->lock; 1560 hwep->td_pool = ci->td_pool; 1561 1562 hwep->ep.name = hwep->name; 1563 hwep->ep.ops = &usb_ep_ops; 1564 /* 1565 * for ep0: maxP defined in desc, for other 1566 * eps, maxP is set by epautoconfig() called 1567 * by gadget layer 1568 */ 1569 hwep->ep.maxpacket = (unsigned short)~0; 1570 1571 INIT_LIST_HEAD(&hwep->qh.queue); 1572 hwep->qh.ptr = dma_pool_alloc(ci->qh_pool, GFP_KERNEL, 1573 &hwep->qh.dma); 1574 if (hwep->qh.ptr == NULL) 1575 retval = -ENOMEM; 1576 else 1577 memset(hwep->qh.ptr, 0, sizeof(*hwep->qh.ptr)); 1578 1579 /* 1580 * set up shorthands for ep0 out and in endpoints, 1581 * don't add to gadget's ep_list 1582 */ 1583 if (i == 0) { 1584 if (j == RX) 1585 ci->ep0out = hwep; 1586 else 1587 ci->ep0in = hwep; 1588 1589 hwep->ep.maxpacket = CTRL_PAYLOAD_MAX; 1590 continue; 1591 } 1592 1593 list_add_tail(&hwep->ep.ep_list, &ci->gadget.ep_list); 1594 } 1595 1596 return retval; 1597 } 1598 1599 static void destroy_eps(struct ci_hdrc *ci) 1600 { 1601 int i; 1602 1603 for (i = 0; i < ci->hw_ep_max; i++) { 1604 struct ci_hw_ep *hwep = &ci->ci_hw_ep[i]; 1605 1606 if (hwep->pending_td) 1607 free_pending_td(hwep); 1608 dma_pool_free(ci->qh_pool, hwep->qh.ptr, hwep->qh.dma); 1609 } 1610 } 1611 1612 /** 1613 * ci_udc_start: register a gadget driver 1614 * @gadget: our gadget 1615 * @driver: the driver being registered 1616 * 1617 * Interrupts are enabled here. 1618 */ 1619 static int ci_udc_start(struct usb_gadget *gadget, 1620 struct usb_gadget_driver *driver) 1621 { 1622 struct ci_hdrc *ci = container_of(gadget, struct ci_hdrc, gadget); 1623 unsigned long flags; 1624 int retval = -ENOMEM; 1625 1626 if (driver->disconnect == NULL) 1627 return -EINVAL; 1628 1629 1630 ci->ep0out->ep.desc = &ctrl_endpt_out_desc; 1631 retval = usb_ep_enable(&ci->ep0out->ep); 1632 if (retval) 1633 return retval; 1634 1635 ci->ep0in->ep.desc = &ctrl_endpt_in_desc; 1636 retval = usb_ep_enable(&ci->ep0in->ep); 1637 if (retval) 1638 return retval; 1639 1640 ci->driver = driver; 1641 pm_runtime_get_sync(&ci->gadget.dev); 1642 if (ci->vbus_active) { 1643 spin_lock_irqsave(&ci->lock, flags); 1644 hw_device_reset(ci, USBMODE_CM_DC); 1645 } else { 1646 pm_runtime_put_sync(&ci->gadget.dev); 1647 return retval; 1648 } 1649 1650 retval = hw_device_state(ci, ci->ep0out->qh.dma); 1651 spin_unlock_irqrestore(&ci->lock, flags); 1652 if (retval) 1653 pm_runtime_put_sync(&ci->gadget.dev); 1654 1655 return retval; 1656 } 1657 1658 /** 1659 * ci_udc_stop: unregister a gadget driver 1660 */ 1661 static int ci_udc_stop(struct usb_gadget *gadget, 1662 struct usb_gadget_driver *driver) 1663 { 1664 struct ci_hdrc *ci = container_of(gadget, struct ci_hdrc, gadget); 1665 unsigned long flags; 1666 1667 spin_lock_irqsave(&ci->lock, flags); 1668 1669 if (ci->vbus_active) { 1670 hw_device_state(ci, 0); 1671 if (ci->platdata->notify_event) 1672 ci->platdata->notify_event(ci, 1673 CI_HDRC_CONTROLLER_STOPPED_EVENT); 1674 spin_unlock_irqrestore(&ci->lock, flags); 1675 _gadget_stop_activity(&ci->gadget); 1676 spin_lock_irqsave(&ci->lock, flags); 1677 pm_runtime_put(&ci->gadget.dev); 1678 } 1679 1680 ci->driver = NULL; 1681 spin_unlock_irqrestore(&ci->lock, flags); 1682 1683 return 0; 1684 } 1685 1686 /****************************************************************************** 1687 * BUS block 1688 *****************************************************************************/ 1689 /** 1690 * udc_irq: ci interrupt handler 1691 * 1692 * This function returns IRQ_HANDLED if the IRQ has been handled 1693 * It locks access to registers 1694 */ 1695 static irqreturn_t udc_irq(struct ci_hdrc *ci) 1696 { 1697 irqreturn_t retval; 1698 u32 intr; 1699 1700 if (ci == NULL) 1701 return IRQ_HANDLED; 1702 1703 spin_lock(&ci->lock); 1704 1705 if (ci->platdata->flags & CI_HDRC_REGS_SHARED) { 1706 if (hw_read(ci, OP_USBMODE, USBMODE_CM) != 1707 USBMODE_CM_DC) { 1708 spin_unlock(&ci->lock); 1709 return IRQ_NONE; 1710 } 1711 } 1712 intr = hw_test_and_clear_intr_active(ci); 1713 1714 if (intr) { 1715 /* order defines priority - do NOT change it */ 1716 if (USBi_URI & intr) 1717 isr_reset_handler(ci); 1718 1719 if (USBi_PCI & intr) { 1720 ci->gadget.speed = hw_port_is_high_speed(ci) ? 1721 USB_SPEED_HIGH : USB_SPEED_FULL; 1722 if (ci->suspended && ci->driver->resume) { 1723 spin_unlock(&ci->lock); 1724 ci->driver->resume(&ci->gadget); 1725 spin_lock(&ci->lock); 1726 ci->suspended = 0; 1727 } 1728 } 1729 1730 if (USBi_UI & intr) 1731 isr_tr_complete_handler(ci); 1732 1733 if (USBi_SLI & intr) { 1734 if (ci->gadget.speed != USB_SPEED_UNKNOWN && 1735 ci->driver->suspend) { 1736 ci->suspended = 1; 1737 spin_unlock(&ci->lock); 1738 ci->driver->suspend(&ci->gadget); 1739 spin_lock(&ci->lock); 1740 } 1741 } 1742 retval = IRQ_HANDLED; 1743 } else { 1744 retval = IRQ_NONE; 1745 } 1746 spin_unlock(&ci->lock); 1747 1748 return retval; 1749 } 1750 1751 /** 1752 * udc_start: initialize gadget role 1753 * @ci: chipidea controller 1754 */ 1755 static int udc_start(struct ci_hdrc *ci) 1756 { 1757 struct device *dev = ci->dev; 1758 int retval = 0; 1759 1760 spin_lock_init(&ci->lock); 1761 1762 ci->gadget.ops = &usb_gadget_ops; 1763 ci->gadget.speed = USB_SPEED_UNKNOWN; 1764 ci->gadget.max_speed = USB_SPEED_HIGH; 1765 ci->gadget.is_otg = 0; 1766 ci->gadget.name = ci->platdata->name; 1767 1768 INIT_LIST_HEAD(&ci->gadget.ep_list); 1769 1770 /* alloc resources */ 1771 ci->qh_pool = dma_pool_create("ci_hw_qh", dev, 1772 sizeof(struct ci_hw_qh), 1773 64, CI_HDRC_PAGE_SIZE); 1774 if (ci->qh_pool == NULL) 1775 return -ENOMEM; 1776 1777 ci->td_pool = dma_pool_create("ci_hw_td", dev, 1778 sizeof(struct ci_hw_td), 1779 64, CI_HDRC_PAGE_SIZE); 1780 if (ci->td_pool == NULL) { 1781 retval = -ENOMEM; 1782 goto free_qh_pool; 1783 } 1784 1785 retval = init_eps(ci); 1786 if (retval) 1787 goto free_pools; 1788 1789 ci->gadget.ep0 = &ci->ep0in->ep; 1790 1791 retval = usb_add_gadget_udc(dev, &ci->gadget); 1792 if (retval) 1793 goto destroy_eps; 1794 1795 pm_runtime_no_callbacks(&ci->gadget.dev); 1796 pm_runtime_enable(&ci->gadget.dev); 1797 1798 return retval; 1799 1800 destroy_eps: 1801 destroy_eps(ci); 1802 free_pools: 1803 dma_pool_destroy(ci->td_pool); 1804 free_qh_pool: 1805 dma_pool_destroy(ci->qh_pool); 1806 return retval; 1807 } 1808 1809 /** 1810 * ci_hdrc_gadget_destroy: parent remove must call this to remove UDC 1811 * 1812 * No interrupts active, the IRQ has been released 1813 */ 1814 void ci_hdrc_gadget_destroy(struct ci_hdrc *ci) 1815 { 1816 if (!ci->roles[CI_ROLE_GADGET]) 1817 return; 1818 1819 usb_del_gadget_udc(&ci->gadget); 1820 1821 destroy_eps(ci); 1822 1823 dma_pool_destroy(ci->td_pool); 1824 dma_pool_destroy(ci->qh_pool); 1825 1826 if (ci->transceiver) { 1827 otg_set_peripheral(ci->transceiver->otg, NULL); 1828 if (ci->global_phy) 1829 usb_put_phy(ci->transceiver); 1830 } 1831 } 1832 1833 static int udc_id_switch_for_device(struct ci_hdrc *ci) 1834 { 1835 if (ci->is_otg) { 1836 ci_clear_otg_interrupt(ci, OTGSC_BSVIS); 1837 ci_enable_otg_interrupt(ci, OTGSC_BSVIE); 1838 } 1839 1840 return 0; 1841 } 1842 1843 static void udc_id_switch_for_host(struct ci_hdrc *ci) 1844 { 1845 if (ci->is_otg) { 1846 /* host doesn't care B_SESSION_VALID event */ 1847 ci_clear_otg_interrupt(ci, OTGSC_BSVIS); 1848 ci_disable_otg_interrupt(ci, OTGSC_BSVIE); 1849 } 1850 } 1851 1852 /** 1853 * ci_hdrc_gadget_init - initialize device related bits 1854 * ci: the controller 1855 * 1856 * This function initializes the gadget, if the device is "device capable". 1857 */ 1858 int ci_hdrc_gadget_init(struct ci_hdrc *ci) 1859 { 1860 struct ci_role_driver *rdrv; 1861 1862 if (!hw_read(ci, CAP_DCCPARAMS, DCCPARAMS_DC)) 1863 return -ENXIO; 1864 1865 rdrv = devm_kzalloc(ci->dev, sizeof(struct ci_role_driver), GFP_KERNEL); 1866 if (!rdrv) 1867 return -ENOMEM; 1868 1869 rdrv->start = udc_id_switch_for_device; 1870 rdrv->stop = udc_id_switch_for_host; 1871 rdrv->irq = udc_irq; 1872 rdrv->name = "gadget"; 1873 ci->roles[CI_ROLE_GADGET] = rdrv; 1874 1875 return udc_start(ci); 1876 } 1877