xref: /linux/drivers/usb/chipidea/udc.c (revision 8137a49e1567726eb10fcf55ad141ac19804ca6b)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * udc.c - ChipIdea UDC driver
4  *
5  * Copyright (C) 2008 Chipidea - MIPS Technologies, Inc. All rights reserved.
6  *
7  * Author: David Lopo
8  */
9 
10 #include <linux/delay.h>
11 #include <linux/device.h>
12 #include <linux/dmapool.h>
13 #include <linux/err.h>
14 #include <linux/irqreturn.h>
15 #include <linux/kernel.h>
16 #include <linux/slab.h>
17 #include <linux/pm_runtime.h>
18 #include <linux/pinctrl/consumer.h>
19 #include <linux/usb/ch9.h>
20 #include <linux/usb/gadget.h>
21 #include <linux/usb/otg-fsm.h>
22 #include <linux/usb/chipidea.h>
23 
24 #include "ci.h"
25 #include "udc.h"
26 #include "bits.h"
27 #include "otg.h"
28 #include "otg_fsm.h"
29 #include "trace.h"
30 
31 /* control endpoint description */
32 static const struct usb_endpoint_descriptor
33 ctrl_endpt_out_desc = {
34 	.bLength         = USB_DT_ENDPOINT_SIZE,
35 	.bDescriptorType = USB_DT_ENDPOINT,
36 
37 	.bEndpointAddress = USB_DIR_OUT,
38 	.bmAttributes    = USB_ENDPOINT_XFER_CONTROL,
39 	.wMaxPacketSize  = cpu_to_le16(CTRL_PAYLOAD_MAX),
40 };
41 
42 static const struct usb_endpoint_descriptor
43 ctrl_endpt_in_desc = {
44 	.bLength         = USB_DT_ENDPOINT_SIZE,
45 	.bDescriptorType = USB_DT_ENDPOINT,
46 
47 	.bEndpointAddress = USB_DIR_IN,
48 	.bmAttributes    = USB_ENDPOINT_XFER_CONTROL,
49 	.wMaxPacketSize  = cpu_to_le16(CTRL_PAYLOAD_MAX),
50 };
51 
52 /**
53  * hw_ep_bit: calculates the bit number
54  * @num: endpoint number
55  * @dir: endpoint direction
56  *
57  * This function returns bit number
58  */
59 static inline int hw_ep_bit(int num, int dir)
60 {
61 	return num + ((dir == TX) ? 16 : 0);
62 }
63 
64 static inline int ep_to_bit(struct ci_hdrc *ci, int n)
65 {
66 	int fill = 16 - ci->hw_ep_max / 2;
67 
68 	if (n >= ci->hw_ep_max / 2)
69 		n += fill;
70 
71 	return n;
72 }
73 
74 /**
75  * hw_device_state: enables/disables interrupts (execute without interruption)
76  * @ci: the controller
77  * @dma: 0 => disable, !0 => enable and set dma engine
78  *
79  * This function returns an error code
80  */
81 static int hw_device_state(struct ci_hdrc *ci, u32 dma)
82 {
83 	if (dma) {
84 		hw_write(ci, OP_ENDPTLISTADDR, ~0, dma);
85 		/* interrupt, error, port change, reset, sleep/suspend */
86 		hw_write(ci, OP_USBINTR, ~0,
87 			     USBi_UI|USBi_UEI|USBi_PCI|USBi_URI|USBi_SLI);
88 	} else {
89 		hw_write(ci, OP_USBINTR, ~0, 0);
90 	}
91 	return 0;
92 }
93 
94 /**
95  * hw_ep_flush: flush endpoint fifo (execute without interruption)
96  * @ci: the controller
97  * @num: endpoint number
98  * @dir: endpoint direction
99  *
100  * This function returns an error code
101  */
102 static int hw_ep_flush(struct ci_hdrc *ci, int num, int dir)
103 {
104 	int n = hw_ep_bit(num, dir);
105 
106 	do {
107 		/* flush any pending transfer */
108 		hw_write(ci, OP_ENDPTFLUSH, ~0, BIT(n));
109 		while (hw_read(ci, OP_ENDPTFLUSH, BIT(n)))
110 			cpu_relax();
111 	} while (hw_read(ci, OP_ENDPTSTAT, BIT(n)));
112 
113 	return 0;
114 }
115 
116 /**
117  * hw_ep_disable: disables endpoint (execute without interruption)
118  * @ci: the controller
119  * @num: endpoint number
120  * @dir: endpoint direction
121  *
122  * This function returns an error code
123  */
124 static int hw_ep_disable(struct ci_hdrc *ci, int num, int dir)
125 {
126 	hw_write(ci, OP_ENDPTCTRL + num,
127 		 (dir == TX) ? ENDPTCTRL_TXE : ENDPTCTRL_RXE, 0);
128 	return 0;
129 }
130 
131 /**
132  * hw_ep_enable: enables endpoint (execute without interruption)
133  * @ci: the controller
134  * @num:  endpoint number
135  * @dir:  endpoint direction
136  * @type: endpoint type
137  *
138  * This function returns an error code
139  */
140 static int hw_ep_enable(struct ci_hdrc *ci, int num, int dir, int type)
141 {
142 	u32 mask, data;
143 
144 	if (dir == TX) {
145 		mask  = ENDPTCTRL_TXT;  /* type    */
146 		data  = type << __ffs(mask);
147 
148 		mask |= ENDPTCTRL_TXS;  /* unstall */
149 		mask |= ENDPTCTRL_TXR;  /* reset data toggle */
150 		data |= ENDPTCTRL_TXR;
151 		mask |= ENDPTCTRL_TXE;  /* enable  */
152 		data |= ENDPTCTRL_TXE;
153 	} else {
154 		mask  = ENDPTCTRL_RXT;  /* type    */
155 		data  = type << __ffs(mask);
156 
157 		mask |= ENDPTCTRL_RXS;  /* unstall */
158 		mask |= ENDPTCTRL_RXR;  /* reset data toggle */
159 		data |= ENDPTCTRL_RXR;
160 		mask |= ENDPTCTRL_RXE;  /* enable  */
161 		data |= ENDPTCTRL_RXE;
162 	}
163 	hw_write(ci, OP_ENDPTCTRL + num, mask, data);
164 	return 0;
165 }
166 
167 /**
168  * hw_ep_get_halt: return endpoint halt status
169  * @ci: the controller
170  * @num: endpoint number
171  * @dir: endpoint direction
172  *
173  * This function returns 1 if endpoint halted
174  */
175 static int hw_ep_get_halt(struct ci_hdrc *ci, int num, int dir)
176 {
177 	u32 mask = (dir == TX) ? ENDPTCTRL_TXS : ENDPTCTRL_RXS;
178 
179 	return hw_read(ci, OP_ENDPTCTRL + num, mask) ? 1 : 0;
180 }
181 
182 /**
183  * hw_ep_prime: primes endpoint (execute without interruption)
184  * @ci: the controller
185  * @num:     endpoint number
186  * @dir:     endpoint direction
187  * @is_ctrl: true if control endpoint
188  *
189  * This function returns an error code
190  */
191 static int hw_ep_prime(struct ci_hdrc *ci, int num, int dir, int is_ctrl)
192 {
193 	int n = hw_ep_bit(num, dir);
194 
195 	/* Synchronize before ep prime */
196 	wmb();
197 
198 	if (is_ctrl && dir == RX && hw_read(ci, OP_ENDPTSETUPSTAT, BIT(num)))
199 		return -EAGAIN;
200 
201 	hw_write(ci, OP_ENDPTPRIME, ~0, BIT(n));
202 
203 	while (hw_read(ci, OP_ENDPTPRIME, BIT(n)))
204 		cpu_relax();
205 	if (is_ctrl && dir == RX && hw_read(ci, OP_ENDPTSETUPSTAT, BIT(num)))
206 		return -EAGAIN;
207 
208 	/* status shoult be tested according with manual but it doesn't work */
209 	return 0;
210 }
211 
212 /**
213  * hw_ep_set_halt: configures ep halt & resets data toggle after clear (execute
214  *                 without interruption)
215  * @ci: the controller
216  * @num:   endpoint number
217  * @dir:   endpoint direction
218  * @value: true => stall, false => unstall
219  *
220  * This function returns an error code
221  */
222 static int hw_ep_set_halt(struct ci_hdrc *ci, int num, int dir, int value)
223 {
224 	if (value != 0 && value != 1)
225 		return -EINVAL;
226 
227 	do {
228 		enum ci_hw_regs reg = OP_ENDPTCTRL + num;
229 		u32 mask_xs = (dir == TX) ? ENDPTCTRL_TXS : ENDPTCTRL_RXS;
230 		u32 mask_xr = (dir == TX) ? ENDPTCTRL_TXR : ENDPTCTRL_RXR;
231 
232 		/* data toggle - reserved for EP0 but it's in ESS */
233 		hw_write(ci, reg, mask_xs|mask_xr,
234 			  value ? mask_xs : mask_xr);
235 	} while (value != hw_ep_get_halt(ci, num, dir));
236 
237 	return 0;
238 }
239 
240 /**
241  * hw_port_is_high_speed: test if port is high speed
242  * @ci: the controller
243  *
244  * This function returns true if high speed port
245  */
246 static int hw_port_is_high_speed(struct ci_hdrc *ci)
247 {
248 	return ci->hw_bank.lpm ? hw_read(ci, OP_DEVLC, DEVLC_PSPD) :
249 		hw_read(ci, OP_PORTSC, PORTSC_HSP);
250 }
251 
252 /**
253  * hw_test_and_clear_complete: test & clear complete status (execute without
254  *                             interruption)
255  * @ci: the controller
256  * @n: endpoint number
257  *
258  * This function returns complete status
259  */
260 static int hw_test_and_clear_complete(struct ci_hdrc *ci, int n)
261 {
262 	n = ep_to_bit(ci, n);
263 	return hw_test_and_clear(ci, OP_ENDPTCOMPLETE, BIT(n));
264 }
265 
266 /**
267  * hw_test_and_clear_intr_active: test & clear active interrupts (execute
268  *                                without interruption)
269  * @ci: the controller
270  *
271  * This function returns active interrutps
272  */
273 static u32 hw_test_and_clear_intr_active(struct ci_hdrc *ci)
274 {
275 	u32 reg = hw_read_intr_status(ci) & hw_read_intr_enable(ci);
276 
277 	hw_write(ci, OP_USBSTS, ~0, reg);
278 	return reg;
279 }
280 
281 /**
282  * hw_test_and_clear_setup_guard: test & clear setup guard (execute without
283  *                                interruption)
284  * @ci: the controller
285  *
286  * This function returns guard value
287  */
288 static int hw_test_and_clear_setup_guard(struct ci_hdrc *ci)
289 {
290 	return hw_test_and_write(ci, OP_USBCMD, USBCMD_SUTW, 0);
291 }
292 
293 /**
294  * hw_test_and_set_setup_guard: test & set setup guard (execute without
295  *                              interruption)
296  * @ci: the controller
297  *
298  * This function returns guard value
299  */
300 static int hw_test_and_set_setup_guard(struct ci_hdrc *ci)
301 {
302 	return hw_test_and_write(ci, OP_USBCMD, USBCMD_SUTW, USBCMD_SUTW);
303 }
304 
305 /**
306  * hw_usb_set_address: configures USB address (execute without interruption)
307  * @ci: the controller
308  * @value: new USB address
309  *
310  * This function explicitly sets the address, without the "USBADRA" (advance)
311  * feature, which is not supported by older versions of the controller.
312  */
313 static void hw_usb_set_address(struct ci_hdrc *ci, u8 value)
314 {
315 	hw_write(ci, OP_DEVICEADDR, DEVICEADDR_USBADR,
316 		 value << __ffs(DEVICEADDR_USBADR));
317 }
318 
319 /**
320  * hw_usb_reset: restart device after a bus reset (execute without
321  *               interruption)
322  * @ci: the controller
323  *
324  * This function returns an error code
325  */
326 static int hw_usb_reset(struct ci_hdrc *ci)
327 {
328 	hw_usb_set_address(ci, 0);
329 
330 	/* ESS flushes only at end?!? */
331 	hw_write(ci, OP_ENDPTFLUSH,    ~0, ~0);
332 
333 	/* clear setup token semaphores */
334 	hw_write(ci, OP_ENDPTSETUPSTAT, 0,  0);
335 
336 	/* clear complete status */
337 	hw_write(ci, OP_ENDPTCOMPLETE,  0,  0);
338 
339 	/* wait until all bits cleared */
340 	while (hw_read(ci, OP_ENDPTPRIME, ~0))
341 		udelay(10);             /* not RTOS friendly */
342 
343 	/* reset all endpoints ? */
344 
345 	/* reset internal status and wait for further instructions
346 	   no need to verify the port reset status (ESS does it) */
347 
348 	return 0;
349 }
350 
351 /******************************************************************************
352  * UTIL block
353  *****************************************************************************/
354 
355 static int add_td_to_list(struct ci_hw_ep *hwep, struct ci_hw_req *hwreq,
356 			unsigned int length, struct scatterlist *s)
357 {
358 	int i;
359 	u32 temp;
360 	struct td_node *lastnode, *node = kzalloc(sizeof(struct td_node),
361 						  GFP_ATOMIC);
362 
363 	if (node == NULL)
364 		return -ENOMEM;
365 
366 	node->ptr = dma_pool_zalloc(hwep->td_pool, GFP_ATOMIC, &node->dma);
367 	if (node->ptr == NULL) {
368 		kfree(node);
369 		return -ENOMEM;
370 	}
371 
372 	node->ptr->token = cpu_to_le32(length << __ffs(TD_TOTAL_BYTES));
373 	node->ptr->token &= cpu_to_le32(TD_TOTAL_BYTES);
374 	node->ptr->token |= cpu_to_le32(TD_STATUS_ACTIVE);
375 	if (hwep->type == USB_ENDPOINT_XFER_ISOC && hwep->dir == TX) {
376 		u32 mul = hwreq->req.length / hwep->ep.maxpacket;
377 
378 		if (hwreq->req.length == 0
379 				|| hwreq->req.length % hwep->ep.maxpacket)
380 			mul++;
381 		node->ptr->token |= cpu_to_le32(mul << __ffs(TD_MULTO));
382 	}
383 
384 	if (s) {
385 		temp = (u32) (sg_dma_address(s) + hwreq->req.actual);
386 		node->td_remaining_size = CI_MAX_BUF_SIZE - length;
387 	} else {
388 		temp = (u32) (hwreq->req.dma + hwreq->req.actual);
389 	}
390 
391 	if (length) {
392 		node->ptr->page[0] = cpu_to_le32(temp);
393 		for (i = 1; i < TD_PAGE_COUNT; i++) {
394 			u32 page = temp + i * CI_HDRC_PAGE_SIZE;
395 			page &= ~TD_RESERVED_MASK;
396 			node->ptr->page[i] = cpu_to_le32(page);
397 		}
398 	}
399 
400 	hwreq->req.actual += length;
401 
402 	if (!list_empty(&hwreq->tds)) {
403 		/* get the last entry */
404 		lastnode = list_entry(hwreq->tds.prev,
405 				struct td_node, td);
406 		lastnode->ptr->next = cpu_to_le32(node->dma);
407 	}
408 
409 	INIT_LIST_HEAD(&node->td);
410 	list_add_tail(&node->td, &hwreq->tds);
411 
412 	return 0;
413 }
414 
415 /**
416  * _usb_addr: calculates endpoint address from direction & number
417  * @ep:  endpoint
418  */
419 static inline u8 _usb_addr(struct ci_hw_ep *ep)
420 {
421 	return ((ep->dir == TX) ? USB_ENDPOINT_DIR_MASK : 0) | ep->num;
422 }
423 
424 static int prepare_td_for_non_sg(struct ci_hw_ep *hwep,
425 		struct ci_hw_req *hwreq)
426 {
427 	unsigned int rest = hwreq->req.length;
428 	int pages = TD_PAGE_COUNT;
429 	int ret = 0;
430 
431 	if (rest == 0) {
432 		ret = add_td_to_list(hwep, hwreq, 0, NULL);
433 		if (ret < 0)
434 			return ret;
435 	}
436 
437 	/*
438 	 * The first buffer could be not page aligned.
439 	 * In that case we have to span into one extra td.
440 	 */
441 	if (hwreq->req.dma % PAGE_SIZE)
442 		pages--;
443 
444 	while (rest > 0) {
445 		unsigned int count = min(hwreq->req.length - hwreq->req.actual,
446 			(unsigned int)(pages * CI_HDRC_PAGE_SIZE));
447 
448 		ret = add_td_to_list(hwep, hwreq, count, NULL);
449 		if (ret < 0)
450 			return ret;
451 
452 		rest -= count;
453 	}
454 
455 	if (hwreq->req.zero && hwreq->req.length && hwep->dir == TX
456 	    && (hwreq->req.length % hwep->ep.maxpacket == 0)) {
457 		ret = add_td_to_list(hwep, hwreq, 0, NULL);
458 		if (ret < 0)
459 			return ret;
460 	}
461 
462 	return ret;
463 }
464 
465 static int prepare_td_per_sg(struct ci_hw_ep *hwep, struct ci_hw_req *hwreq,
466 		struct scatterlist *s)
467 {
468 	unsigned int rest = sg_dma_len(s);
469 	int ret = 0;
470 
471 	hwreq->req.actual = 0;
472 	while (rest > 0) {
473 		unsigned int count = min_t(unsigned int, rest,
474 				CI_MAX_BUF_SIZE);
475 
476 		ret = add_td_to_list(hwep, hwreq, count, s);
477 		if (ret < 0)
478 			return ret;
479 
480 		rest -= count;
481 	}
482 
483 	return ret;
484 }
485 
486 static void ci_add_buffer_entry(struct td_node *node, struct scatterlist *s)
487 {
488 	int empty_td_slot_index = (CI_MAX_BUF_SIZE - node->td_remaining_size)
489 			/ CI_HDRC_PAGE_SIZE;
490 	int i;
491 	u32 token;
492 
493 	token = le32_to_cpu(node->ptr->token) + (sg_dma_len(s) << __ffs(TD_TOTAL_BYTES));
494 	node->ptr->token = cpu_to_le32(token);
495 
496 	for (i = empty_td_slot_index; i < TD_PAGE_COUNT; i++) {
497 		u32 page = (u32) sg_dma_address(s) +
498 			(i - empty_td_slot_index) * CI_HDRC_PAGE_SIZE;
499 
500 		page &= ~TD_RESERVED_MASK;
501 		node->ptr->page[i] = cpu_to_le32(page);
502 	}
503 }
504 
505 static int prepare_td_for_sg(struct ci_hw_ep *hwep, struct ci_hw_req *hwreq)
506 {
507 	struct usb_request *req = &hwreq->req;
508 	struct scatterlist *s = req->sg;
509 	int ret = 0, i = 0;
510 	struct td_node *node = NULL;
511 
512 	if (!s || req->zero || req->length == 0) {
513 		dev_err(hwep->ci->dev, "not supported operation for sg\n");
514 		return -EINVAL;
515 	}
516 
517 	while (i++ < req->num_mapped_sgs) {
518 		if (sg_dma_address(s) % PAGE_SIZE) {
519 			dev_err(hwep->ci->dev, "not page aligned sg buffer\n");
520 			return -EINVAL;
521 		}
522 
523 		if (node && (node->td_remaining_size >= sg_dma_len(s))) {
524 			ci_add_buffer_entry(node, s);
525 			node->td_remaining_size -= sg_dma_len(s);
526 		} else {
527 			ret = prepare_td_per_sg(hwep, hwreq, s);
528 			if (ret)
529 				return ret;
530 
531 			node = list_entry(hwreq->tds.prev,
532 				struct td_node, td);
533 		}
534 
535 		s = sg_next(s);
536 	}
537 
538 	return ret;
539 }
540 
541 /**
542  * _hardware_enqueue: configures a request at hardware level
543  * @hwep:   endpoint
544  * @hwreq:  request
545  *
546  * This function returns an error code
547  */
548 static int _hardware_enqueue(struct ci_hw_ep *hwep, struct ci_hw_req *hwreq)
549 {
550 	struct ci_hdrc *ci = hwep->ci;
551 	int ret = 0;
552 	struct td_node *firstnode, *lastnode;
553 
554 	/* don't queue twice */
555 	if (hwreq->req.status == -EALREADY)
556 		return -EALREADY;
557 
558 	hwreq->req.status = -EALREADY;
559 
560 	ret = usb_gadget_map_request_by_dev(ci->dev->parent,
561 					    &hwreq->req, hwep->dir);
562 	if (ret)
563 		return ret;
564 
565 	if (hwreq->req.num_mapped_sgs)
566 		ret = prepare_td_for_sg(hwep, hwreq);
567 	else
568 		ret = prepare_td_for_non_sg(hwep, hwreq);
569 
570 	if (ret)
571 		return ret;
572 
573 	lastnode = list_entry(hwreq->tds.prev,
574 		struct td_node, td);
575 
576 	lastnode->ptr->next = cpu_to_le32(TD_TERMINATE);
577 	if (!hwreq->req.no_interrupt)
578 		lastnode->ptr->token |= cpu_to_le32(TD_IOC);
579 
580 	list_for_each_entry_safe(firstnode, lastnode, &hwreq->tds, td)
581 		trace_ci_prepare_td(hwep, hwreq, firstnode);
582 
583 	firstnode = list_first_entry(&hwreq->tds, struct td_node, td);
584 
585 	wmb();
586 
587 	hwreq->req.actual = 0;
588 	if (!list_empty(&hwep->qh.queue)) {
589 		struct ci_hw_req *hwreqprev;
590 		int n = hw_ep_bit(hwep->num, hwep->dir);
591 		int tmp_stat;
592 		struct td_node *prevlastnode;
593 		u32 next = firstnode->dma & TD_ADDR_MASK;
594 
595 		hwreqprev = list_entry(hwep->qh.queue.prev,
596 				struct ci_hw_req, queue);
597 		prevlastnode = list_entry(hwreqprev->tds.prev,
598 				struct td_node, td);
599 
600 		prevlastnode->ptr->next = cpu_to_le32(next);
601 		wmb();
602 		if (hw_read(ci, OP_ENDPTPRIME, BIT(n)))
603 			goto done;
604 		do {
605 			hw_write(ci, OP_USBCMD, USBCMD_ATDTW, USBCMD_ATDTW);
606 			tmp_stat = hw_read(ci, OP_ENDPTSTAT, BIT(n));
607 		} while (!hw_read(ci, OP_USBCMD, USBCMD_ATDTW));
608 		hw_write(ci, OP_USBCMD, USBCMD_ATDTW, 0);
609 		if (tmp_stat)
610 			goto done;
611 	}
612 
613 	/*  QH configuration */
614 	hwep->qh.ptr->td.next = cpu_to_le32(firstnode->dma);
615 	hwep->qh.ptr->td.token &=
616 		cpu_to_le32(~(TD_STATUS_HALTED|TD_STATUS_ACTIVE));
617 
618 	if (hwep->type == USB_ENDPOINT_XFER_ISOC && hwep->dir == RX) {
619 		u32 mul = hwreq->req.length / hwep->ep.maxpacket;
620 
621 		if (hwreq->req.length == 0
622 				|| hwreq->req.length % hwep->ep.maxpacket)
623 			mul++;
624 		hwep->qh.ptr->cap |= cpu_to_le32(mul << __ffs(QH_MULT));
625 	}
626 
627 	ret = hw_ep_prime(ci, hwep->num, hwep->dir,
628 			   hwep->type == USB_ENDPOINT_XFER_CONTROL);
629 done:
630 	return ret;
631 }
632 
633 /**
634  * free_pending_td: remove a pending request for the endpoint
635  * @hwep: endpoint
636  */
637 static void free_pending_td(struct ci_hw_ep *hwep)
638 {
639 	struct td_node *pending = hwep->pending_td;
640 
641 	dma_pool_free(hwep->td_pool, pending->ptr, pending->dma);
642 	hwep->pending_td = NULL;
643 	kfree(pending);
644 }
645 
646 static int reprime_dtd(struct ci_hdrc *ci, struct ci_hw_ep *hwep,
647 					   struct td_node *node)
648 {
649 	hwep->qh.ptr->td.next = cpu_to_le32(node->dma);
650 	hwep->qh.ptr->td.token &=
651 		cpu_to_le32(~(TD_STATUS_HALTED | TD_STATUS_ACTIVE));
652 
653 	return hw_ep_prime(ci, hwep->num, hwep->dir,
654 				hwep->type == USB_ENDPOINT_XFER_CONTROL);
655 }
656 
657 /**
658  * _hardware_dequeue: handles a request at hardware level
659  * @hwep: endpoint
660  * @hwreq:  request
661  *
662  * This function returns an error code
663  */
664 static int _hardware_dequeue(struct ci_hw_ep *hwep, struct ci_hw_req *hwreq)
665 {
666 	u32 tmptoken;
667 	struct td_node *node, *tmpnode;
668 	unsigned remaining_length;
669 	unsigned actual = hwreq->req.length;
670 	struct ci_hdrc *ci = hwep->ci;
671 
672 	if (hwreq->req.status != -EALREADY)
673 		return -EINVAL;
674 
675 	hwreq->req.status = 0;
676 
677 	list_for_each_entry_safe(node, tmpnode, &hwreq->tds, td) {
678 		tmptoken = le32_to_cpu(node->ptr->token);
679 		trace_ci_complete_td(hwep, hwreq, node);
680 		if ((TD_STATUS_ACTIVE & tmptoken) != 0) {
681 			int n = hw_ep_bit(hwep->num, hwep->dir);
682 
683 			if (ci->rev == CI_REVISION_24)
684 				if (!hw_read(ci, OP_ENDPTSTAT, BIT(n)))
685 					reprime_dtd(ci, hwep, node);
686 			hwreq->req.status = -EALREADY;
687 			return -EBUSY;
688 		}
689 
690 		remaining_length = (tmptoken & TD_TOTAL_BYTES);
691 		remaining_length >>= __ffs(TD_TOTAL_BYTES);
692 		actual -= remaining_length;
693 
694 		hwreq->req.status = tmptoken & TD_STATUS;
695 		if ((TD_STATUS_HALTED & hwreq->req.status)) {
696 			hwreq->req.status = -EPIPE;
697 			break;
698 		} else if ((TD_STATUS_DT_ERR & hwreq->req.status)) {
699 			hwreq->req.status = -EPROTO;
700 			break;
701 		} else if ((TD_STATUS_TR_ERR & hwreq->req.status)) {
702 			hwreq->req.status = -EILSEQ;
703 			break;
704 		}
705 
706 		if (remaining_length) {
707 			if (hwep->dir == TX) {
708 				hwreq->req.status = -EPROTO;
709 				break;
710 			}
711 		}
712 		/*
713 		 * As the hardware could still address the freed td
714 		 * which will run the udc unusable, the cleanup of the
715 		 * td has to be delayed by one.
716 		 */
717 		if (hwep->pending_td)
718 			free_pending_td(hwep);
719 
720 		hwep->pending_td = node;
721 		list_del_init(&node->td);
722 	}
723 
724 	usb_gadget_unmap_request_by_dev(hwep->ci->dev->parent,
725 					&hwreq->req, hwep->dir);
726 
727 	hwreq->req.actual += actual;
728 
729 	if (hwreq->req.status)
730 		return hwreq->req.status;
731 
732 	return hwreq->req.actual;
733 }
734 
735 /**
736  * _ep_nuke: dequeues all endpoint requests
737  * @hwep: endpoint
738  *
739  * This function returns an error code
740  * Caller must hold lock
741  */
742 static int _ep_nuke(struct ci_hw_ep *hwep)
743 __releases(hwep->lock)
744 __acquires(hwep->lock)
745 {
746 	struct td_node *node, *tmpnode;
747 	if (hwep == NULL)
748 		return -EINVAL;
749 
750 	hw_ep_flush(hwep->ci, hwep->num, hwep->dir);
751 
752 	while (!list_empty(&hwep->qh.queue)) {
753 
754 		/* pop oldest request */
755 		struct ci_hw_req *hwreq = list_entry(hwep->qh.queue.next,
756 						     struct ci_hw_req, queue);
757 
758 		list_for_each_entry_safe(node, tmpnode, &hwreq->tds, td) {
759 			dma_pool_free(hwep->td_pool, node->ptr, node->dma);
760 			list_del_init(&node->td);
761 			node->ptr = NULL;
762 			kfree(node);
763 		}
764 
765 		list_del_init(&hwreq->queue);
766 		hwreq->req.status = -ESHUTDOWN;
767 
768 		if (hwreq->req.complete != NULL) {
769 			spin_unlock(hwep->lock);
770 			usb_gadget_giveback_request(&hwep->ep, &hwreq->req);
771 			spin_lock(hwep->lock);
772 		}
773 	}
774 
775 	if (hwep->pending_td)
776 		free_pending_td(hwep);
777 
778 	return 0;
779 }
780 
781 static int _ep_set_halt(struct usb_ep *ep, int value, bool check_transfer)
782 {
783 	struct ci_hw_ep *hwep = container_of(ep, struct ci_hw_ep, ep);
784 	int direction, retval = 0;
785 	unsigned long flags;
786 
787 	if (ep == NULL || hwep->ep.desc == NULL)
788 		return -EINVAL;
789 
790 	if (usb_endpoint_xfer_isoc(hwep->ep.desc))
791 		return -EOPNOTSUPP;
792 
793 	spin_lock_irqsave(hwep->lock, flags);
794 
795 	if (value && hwep->dir == TX && check_transfer &&
796 		!list_empty(&hwep->qh.queue) &&
797 			!usb_endpoint_xfer_control(hwep->ep.desc)) {
798 		spin_unlock_irqrestore(hwep->lock, flags);
799 		return -EAGAIN;
800 	}
801 
802 	direction = hwep->dir;
803 	do {
804 		retval |= hw_ep_set_halt(hwep->ci, hwep->num, hwep->dir, value);
805 
806 		if (!value)
807 			hwep->wedge = 0;
808 
809 		if (hwep->type == USB_ENDPOINT_XFER_CONTROL)
810 			hwep->dir = (hwep->dir == TX) ? RX : TX;
811 
812 	} while (hwep->dir != direction);
813 
814 	spin_unlock_irqrestore(hwep->lock, flags);
815 	return retval;
816 }
817 
818 
819 /**
820  * _gadget_stop_activity: stops all USB activity, flushes & disables all endpts
821  * @gadget: gadget
822  *
823  * This function returns an error code
824  */
825 static int _gadget_stop_activity(struct usb_gadget *gadget)
826 {
827 	struct usb_ep *ep;
828 	struct ci_hdrc    *ci = container_of(gadget, struct ci_hdrc, gadget);
829 	unsigned long flags;
830 
831 	/* flush all endpoints */
832 	gadget_for_each_ep(ep, gadget) {
833 		usb_ep_fifo_flush(ep);
834 	}
835 	usb_ep_fifo_flush(&ci->ep0out->ep);
836 	usb_ep_fifo_flush(&ci->ep0in->ep);
837 
838 	/* make sure to disable all endpoints */
839 	gadget_for_each_ep(ep, gadget) {
840 		usb_ep_disable(ep);
841 	}
842 
843 	if (ci->status != NULL) {
844 		usb_ep_free_request(&ci->ep0in->ep, ci->status);
845 		ci->status = NULL;
846 	}
847 
848 	spin_lock_irqsave(&ci->lock, flags);
849 	ci->gadget.speed = USB_SPEED_UNKNOWN;
850 	ci->remote_wakeup = 0;
851 	ci->suspended = 0;
852 	spin_unlock_irqrestore(&ci->lock, flags);
853 
854 	return 0;
855 }
856 
857 /******************************************************************************
858  * ISR block
859  *****************************************************************************/
860 /**
861  * isr_reset_handler: USB reset interrupt handler
862  * @ci: UDC device
863  *
864  * This function resets USB engine after a bus reset occurred
865  */
866 static void isr_reset_handler(struct ci_hdrc *ci)
867 __releases(ci->lock)
868 __acquires(ci->lock)
869 {
870 	int retval;
871 
872 	spin_unlock(&ci->lock);
873 	if (ci->gadget.speed != USB_SPEED_UNKNOWN)
874 		usb_gadget_udc_reset(&ci->gadget, ci->driver);
875 
876 	retval = _gadget_stop_activity(&ci->gadget);
877 	if (retval)
878 		goto done;
879 
880 	retval = hw_usb_reset(ci);
881 	if (retval)
882 		goto done;
883 
884 	ci->status = usb_ep_alloc_request(&ci->ep0in->ep, GFP_ATOMIC);
885 	if (ci->status == NULL)
886 		retval = -ENOMEM;
887 
888 done:
889 	spin_lock(&ci->lock);
890 
891 	if (retval)
892 		dev_err(ci->dev, "error: %i\n", retval);
893 }
894 
895 /**
896  * isr_get_status_complete: get_status request complete function
897  * @ep:  endpoint
898  * @req: request handled
899  *
900  * Caller must release lock
901  */
902 static void isr_get_status_complete(struct usb_ep *ep, struct usb_request *req)
903 {
904 	if (ep == NULL || req == NULL)
905 		return;
906 
907 	kfree(req->buf);
908 	usb_ep_free_request(ep, req);
909 }
910 
911 /**
912  * _ep_queue: queues (submits) an I/O request to an endpoint
913  * @ep:        endpoint
914  * @req:       request
915  * @gfp_flags: GFP flags (not used)
916  *
917  * Caller must hold lock
918  * This function returns an error code
919  */
920 static int _ep_queue(struct usb_ep *ep, struct usb_request *req,
921 		    gfp_t __maybe_unused gfp_flags)
922 {
923 	struct ci_hw_ep  *hwep  = container_of(ep,  struct ci_hw_ep, ep);
924 	struct ci_hw_req *hwreq = container_of(req, struct ci_hw_req, req);
925 	struct ci_hdrc *ci = hwep->ci;
926 	int retval = 0;
927 
928 	if (ep == NULL || req == NULL || hwep->ep.desc == NULL)
929 		return -EINVAL;
930 
931 	if (hwep->type == USB_ENDPOINT_XFER_CONTROL) {
932 		if (req->length)
933 			hwep = (ci->ep0_dir == RX) ?
934 			       ci->ep0out : ci->ep0in;
935 		if (!list_empty(&hwep->qh.queue)) {
936 			_ep_nuke(hwep);
937 			dev_warn(hwep->ci->dev, "endpoint ctrl %X nuked\n",
938 				 _usb_addr(hwep));
939 		}
940 	}
941 
942 	if (usb_endpoint_xfer_isoc(hwep->ep.desc) &&
943 	    hwreq->req.length > hwep->ep.mult * hwep->ep.maxpacket) {
944 		dev_err(hwep->ci->dev, "request length too big for isochronous\n");
945 		return -EMSGSIZE;
946 	}
947 
948 	/* first nuke then test link, e.g. previous status has not sent */
949 	if (!list_empty(&hwreq->queue)) {
950 		dev_err(hwep->ci->dev, "request already in queue\n");
951 		return -EBUSY;
952 	}
953 
954 	/* push request */
955 	hwreq->req.status = -EINPROGRESS;
956 	hwreq->req.actual = 0;
957 
958 	retval = _hardware_enqueue(hwep, hwreq);
959 
960 	if (retval == -EALREADY)
961 		retval = 0;
962 	if (!retval)
963 		list_add_tail(&hwreq->queue, &hwep->qh.queue);
964 
965 	return retval;
966 }
967 
968 /**
969  * isr_get_status_response: get_status request response
970  * @ci: ci struct
971  * @setup: setup request packet
972  *
973  * This function returns an error code
974  */
975 static int isr_get_status_response(struct ci_hdrc *ci,
976 				   struct usb_ctrlrequest *setup)
977 __releases(hwep->lock)
978 __acquires(hwep->lock)
979 {
980 	struct ci_hw_ep *hwep = ci->ep0in;
981 	struct usb_request *req = NULL;
982 	gfp_t gfp_flags = GFP_ATOMIC;
983 	int dir, num, retval;
984 
985 	if (hwep == NULL || setup == NULL)
986 		return -EINVAL;
987 
988 	spin_unlock(hwep->lock);
989 	req = usb_ep_alloc_request(&hwep->ep, gfp_flags);
990 	spin_lock(hwep->lock);
991 	if (req == NULL)
992 		return -ENOMEM;
993 
994 	req->complete = isr_get_status_complete;
995 	req->length   = 2;
996 	req->buf      = kzalloc(req->length, gfp_flags);
997 	if (req->buf == NULL) {
998 		retval = -ENOMEM;
999 		goto err_free_req;
1000 	}
1001 
1002 	if ((setup->bRequestType & USB_RECIP_MASK) == USB_RECIP_DEVICE) {
1003 		*(u16 *)req->buf = (ci->remote_wakeup << 1) |
1004 			ci->gadget.is_selfpowered;
1005 	} else if ((setup->bRequestType & USB_RECIP_MASK) \
1006 		   == USB_RECIP_ENDPOINT) {
1007 		dir = (le16_to_cpu(setup->wIndex) & USB_ENDPOINT_DIR_MASK) ?
1008 			TX : RX;
1009 		num =  le16_to_cpu(setup->wIndex) & USB_ENDPOINT_NUMBER_MASK;
1010 		*(u16 *)req->buf = hw_ep_get_halt(ci, num, dir);
1011 	}
1012 	/* else do nothing; reserved for future use */
1013 
1014 	retval = _ep_queue(&hwep->ep, req, gfp_flags);
1015 	if (retval)
1016 		goto err_free_buf;
1017 
1018 	return 0;
1019 
1020  err_free_buf:
1021 	kfree(req->buf);
1022  err_free_req:
1023 	spin_unlock(hwep->lock);
1024 	usb_ep_free_request(&hwep->ep, req);
1025 	spin_lock(hwep->lock);
1026 	return retval;
1027 }
1028 
1029 /**
1030  * isr_setup_status_complete: setup_status request complete function
1031  * @ep:  endpoint
1032  * @req: request handled
1033  *
1034  * Caller must release lock. Put the port in test mode if test mode
1035  * feature is selected.
1036  */
1037 static void
1038 isr_setup_status_complete(struct usb_ep *ep, struct usb_request *req)
1039 {
1040 	struct ci_hdrc *ci = req->context;
1041 	unsigned long flags;
1042 
1043 	if (ci->setaddr) {
1044 		hw_usb_set_address(ci, ci->address);
1045 		ci->setaddr = false;
1046 		if (ci->address)
1047 			usb_gadget_set_state(&ci->gadget, USB_STATE_ADDRESS);
1048 	}
1049 
1050 	spin_lock_irqsave(&ci->lock, flags);
1051 	if (ci->test_mode)
1052 		hw_port_test_set(ci, ci->test_mode);
1053 	spin_unlock_irqrestore(&ci->lock, flags);
1054 }
1055 
1056 /**
1057  * isr_setup_status_phase: queues the status phase of a setup transation
1058  * @ci: ci struct
1059  *
1060  * This function returns an error code
1061  */
1062 static int isr_setup_status_phase(struct ci_hdrc *ci)
1063 {
1064 	struct ci_hw_ep *hwep;
1065 
1066 	/*
1067 	 * Unexpected USB controller behavior, caused by bad signal integrity
1068 	 * or ground reference problems, can lead to isr_setup_status_phase
1069 	 * being called with ci->status equal to NULL.
1070 	 * If this situation occurs, you should review your USB hardware design.
1071 	 */
1072 	if (WARN_ON_ONCE(!ci->status))
1073 		return -EPIPE;
1074 
1075 	hwep = (ci->ep0_dir == TX) ? ci->ep0out : ci->ep0in;
1076 	ci->status->context = ci;
1077 	ci->status->complete = isr_setup_status_complete;
1078 
1079 	return _ep_queue(&hwep->ep, ci->status, GFP_ATOMIC);
1080 }
1081 
1082 /**
1083  * isr_tr_complete_low: transaction complete low level handler
1084  * @hwep: endpoint
1085  *
1086  * This function returns an error code
1087  * Caller must hold lock
1088  */
1089 static int isr_tr_complete_low(struct ci_hw_ep *hwep)
1090 __releases(hwep->lock)
1091 __acquires(hwep->lock)
1092 {
1093 	struct ci_hw_req *hwreq, *hwreqtemp;
1094 	struct ci_hw_ep *hweptemp = hwep;
1095 	int retval = 0;
1096 
1097 	list_for_each_entry_safe(hwreq, hwreqtemp, &hwep->qh.queue,
1098 			queue) {
1099 		retval = _hardware_dequeue(hwep, hwreq);
1100 		if (retval < 0)
1101 			break;
1102 		list_del_init(&hwreq->queue);
1103 		if (hwreq->req.complete != NULL) {
1104 			spin_unlock(hwep->lock);
1105 			if ((hwep->type == USB_ENDPOINT_XFER_CONTROL) &&
1106 					hwreq->req.length)
1107 				hweptemp = hwep->ci->ep0in;
1108 			usb_gadget_giveback_request(&hweptemp->ep, &hwreq->req);
1109 			spin_lock(hwep->lock);
1110 		}
1111 	}
1112 
1113 	if (retval == -EBUSY)
1114 		retval = 0;
1115 
1116 	return retval;
1117 }
1118 
1119 static int otg_a_alt_hnp_support(struct ci_hdrc *ci)
1120 {
1121 	dev_warn(&ci->gadget.dev,
1122 		"connect the device to an alternate port if you want HNP\n");
1123 	return isr_setup_status_phase(ci);
1124 }
1125 
1126 /**
1127  * isr_setup_packet_handler: setup packet handler
1128  * @ci: UDC descriptor
1129  *
1130  * This function handles setup packet
1131  */
1132 static void isr_setup_packet_handler(struct ci_hdrc *ci)
1133 __releases(ci->lock)
1134 __acquires(ci->lock)
1135 {
1136 	struct ci_hw_ep *hwep = &ci->ci_hw_ep[0];
1137 	struct usb_ctrlrequest req;
1138 	int type, num, dir, err = -EINVAL;
1139 	u8 tmode = 0;
1140 
1141 	/*
1142 	 * Flush data and handshake transactions of previous
1143 	 * setup packet.
1144 	 */
1145 	_ep_nuke(ci->ep0out);
1146 	_ep_nuke(ci->ep0in);
1147 
1148 	/* read_setup_packet */
1149 	do {
1150 		hw_test_and_set_setup_guard(ci);
1151 		memcpy(&req, &hwep->qh.ptr->setup, sizeof(req));
1152 	} while (!hw_test_and_clear_setup_guard(ci));
1153 
1154 	type = req.bRequestType;
1155 
1156 	ci->ep0_dir = (type & USB_DIR_IN) ? TX : RX;
1157 
1158 	switch (req.bRequest) {
1159 	case USB_REQ_CLEAR_FEATURE:
1160 		if (type == (USB_DIR_OUT|USB_RECIP_ENDPOINT) &&
1161 				le16_to_cpu(req.wValue) ==
1162 				USB_ENDPOINT_HALT) {
1163 			if (req.wLength != 0)
1164 				break;
1165 			num  = le16_to_cpu(req.wIndex);
1166 			dir = (num & USB_ENDPOINT_DIR_MASK) ? TX : RX;
1167 			num &= USB_ENDPOINT_NUMBER_MASK;
1168 			if (dir == TX)
1169 				num += ci->hw_ep_max / 2;
1170 			if (!ci->ci_hw_ep[num].wedge) {
1171 				spin_unlock(&ci->lock);
1172 				err = usb_ep_clear_halt(
1173 					&ci->ci_hw_ep[num].ep);
1174 				spin_lock(&ci->lock);
1175 				if (err)
1176 					break;
1177 			}
1178 			err = isr_setup_status_phase(ci);
1179 		} else if (type == (USB_DIR_OUT|USB_RECIP_DEVICE) &&
1180 				le16_to_cpu(req.wValue) ==
1181 				USB_DEVICE_REMOTE_WAKEUP) {
1182 			if (req.wLength != 0)
1183 				break;
1184 			ci->remote_wakeup = 0;
1185 			err = isr_setup_status_phase(ci);
1186 		} else {
1187 			goto delegate;
1188 		}
1189 		break;
1190 	case USB_REQ_GET_STATUS:
1191 		if ((type != (USB_DIR_IN|USB_RECIP_DEVICE) ||
1192 			le16_to_cpu(req.wIndex) == OTG_STS_SELECTOR) &&
1193 		    type != (USB_DIR_IN|USB_RECIP_ENDPOINT) &&
1194 		    type != (USB_DIR_IN|USB_RECIP_INTERFACE))
1195 			goto delegate;
1196 		if (le16_to_cpu(req.wLength) != 2 ||
1197 		    le16_to_cpu(req.wValue)  != 0)
1198 			break;
1199 		err = isr_get_status_response(ci, &req);
1200 		break;
1201 	case USB_REQ_SET_ADDRESS:
1202 		if (type != (USB_DIR_OUT|USB_RECIP_DEVICE))
1203 			goto delegate;
1204 		if (le16_to_cpu(req.wLength) != 0 ||
1205 		    le16_to_cpu(req.wIndex)  != 0)
1206 			break;
1207 		ci->address = (u8)le16_to_cpu(req.wValue);
1208 		ci->setaddr = true;
1209 		err = isr_setup_status_phase(ci);
1210 		break;
1211 	case USB_REQ_SET_FEATURE:
1212 		if (type == (USB_DIR_OUT|USB_RECIP_ENDPOINT) &&
1213 				le16_to_cpu(req.wValue) ==
1214 				USB_ENDPOINT_HALT) {
1215 			if (req.wLength != 0)
1216 				break;
1217 			num  = le16_to_cpu(req.wIndex);
1218 			dir = (num & USB_ENDPOINT_DIR_MASK) ? TX : RX;
1219 			num &= USB_ENDPOINT_NUMBER_MASK;
1220 			if (dir == TX)
1221 				num += ci->hw_ep_max / 2;
1222 
1223 			spin_unlock(&ci->lock);
1224 			err = _ep_set_halt(&ci->ci_hw_ep[num].ep, 1, false);
1225 			spin_lock(&ci->lock);
1226 			if (!err)
1227 				isr_setup_status_phase(ci);
1228 		} else if (type == (USB_DIR_OUT|USB_RECIP_DEVICE)) {
1229 			if (req.wLength != 0)
1230 				break;
1231 			switch (le16_to_cpu(req.wValue)) {
1232 			case USB_DEVICE_REMOTE_WAKEUP:
1233 				ci->remote_wakeup = 1;
1234 				err = isr_setup_status_phase(ci);
1235 				break;
1236 			case USB_DEVICE_TEST_MODE:
1237 				tmode = le16_to_cpu(req.wIndex) >> 8;
1238 				switch (tmode) {
1239 				case USB_TEST_J:
1240 				case USB_TEST_K:
1241 				case USB_TEST_SE0_NAK:
1242 				case USB_TEST_PACKET:
1243 				case USB_TEST_FORCE_ENABLE:
1244 					ci->test_mode = tmode;
1245 					err = isr_setup_status_phase(
1246 							ci);
1247 					break;
1248 				default:
1249 					break;
1250 				}
1251 				break;
1252 			case USB_DEVICE_B_HNP_ENABLE:
1253 				if (ci_otg_is_fsm_mode(ci)) {
1254 					ci->gadget.b_hnp_enable = 1;
1255 					err = isr_setup_status_phase(
1256 							ci);
1257 				}
1258 				break;
1259 			case USB_DEVICE_A_ALT_HNP_SUPPORT:
1260 				if (ci_otg_is_fsm_mode(ci))
1261 					err = otg_a_alt_hnp_support(ci);
1262 				break;
1263 			case USB_DEVICE_A_HNP_SUPPORT:
1264 				if (ci_otg_is_fsm_mode(ci)) {
1265 					ci->gadget.a_hnp_support = 1;
1266 					err = isr_setup_status_phase(
1267 							ci);
1268 				}
1269 				break;
1270 			default:
1271 				goto delegate;
1272 			}
1273 		} else {
1274 			goto delegate;
1275 		}
1276 		break;
1277 	default:
1278 delegate:
1279 		if (req.wLength == 0)   /* no data phase */
1280 			ci->ep0_dir = TX;
1281 
1282 		spin_unlock(&ci->lock);
1283 		err = ci->driver->setup(&ci->gadget, &req);
1284 		spin_lock(&ci->lock);
1285 		break;
1286 	}
1287 
1288 	if (err < 0) {
1289 		spin_unlock(&ci->lock);
1290 		if (_ep_set_halt(&hwep->ep, 1, false))
1291 			dev_err(ci->dev, "error: _ep_set_halt\n");
1292 		spin_lock(&ci->lock);
1293 	}
1294 }
1295 
1296 /**
1297  * isr_tr_complete_handler: transaction complete interrupt handler
1298  * @ci: UDC descriptor
1299  *
1300  * This function handles traffic events
1301  */
1302 static void isr_tr_complete_handler(struct ci_hdrc *ci)
1303 __releases(ci->lock)
1304 __acquires(ci->lock)
1305 {
1306 	unsigned i;
1307 	int err;
1308 
1309 	for (i = 0; i < ci->hw_ep_max; i++) {
1310 		struct ci_hw_ep *hwep  = &ci->ci_hw_ep[i];
1311 
1312 		if (hwep->ep.desc == NULL)
1313 			continue;   /* not configured */
1314 
1315 		if (hw_test_and_clear_complete(ci, i)) {
1316 			err = isr_tr_complete_low(hwep);
1317 			if (hwep->type == USB_ENDPOINT_XFER_CONTROL) {
1318 				if (err > 0)   /* needs status phase */
1319 					err = isr_setup_status_phase(ci);
1320 				if (err < 0) {
1321 					spin_unlock(&ci->lock);
1322 					if (_ep_set_halt(&hwep->ep, 1, false))
1323 						dev_err(ci->dev,
1324 						"error: _ep_set_halt\n");
1325 					spin_lock(&ci->lock);
1326 				}
1327 			}
1328 		}
1329 
1330 		/* Only handle setup packet below */
1331 		if (i == 0 &&
1332 			hw_test_and_clear(ci, OP_ENDPTSETUPSTAT, BIT(0)))
1333 			isr_setup_packet_handler(ci);
1334 	}
1335 }
1336 
1337 /******************************************************************************
1338  * ENDPT block
1339  *****************************************************************************/
1340 /*
1341  * ep_enable: configure endpoint, making it usable
1342  *
1343  * Check usb_ep_enable() at "usb_gadget.h" for details
1344  */
1345 static int ep_enable(struct usb_ep *ep,
1346 		     const struct usb_endpoint_descriptor *desc)
1347 {
1348 	struct ci_hw_ep *hwep = container_of(ep, struct ci_hw_ep, ep);
1349 	int retval = 0;
1350 	unsigned long flags;
1351 	u32 cap = 0;
1352 
1353 	if (ep == NULL || desc == NULL)
1354 		return -EINVAL;
1355 
1356 	spin_lock_irqsave(hwep->lock, flags);
1357 
1358 	/* only internal SW should enable ctrl endpts */
1359 
1360 	if (!list_empty(&hwep->qh.queue)) {
1361 		dev_warn(hwep->ci->dev, "enabling a non-empty endpoint!\n");
1362 		spin_unlock_irqrestore(hwep->lock, flags);
1363 		return -EBUSY;
1364 	}
1365 
1366 	hwep->ep.desc = desc;
1367 
1368 	hwep->dir  = usb_endpoint_dir_in(desc) ? TX : RX;
1369 	hwep->num  = usb_endpoint_num(desc);
1370 	hwep->type = usb_endpoint_type(desc);
1371 
1372 	hwep->ep.maxpacket = usb_endpoint_maxp(desc);
1373 	hwep->ep.mult = usb_endpoint_maxp_mult(desc);
1374 
1375 	if (hwep->type == USB_ENDPOINT_XFER_CONTROL)
1376 		cap |= QH_IOS;
1377 
1378 	cap |= QH_ZLT;
1379 	cap |= (hwep->ep.maxpacket << __ffs(QH_MAX_PKT)) & QH_MAX_PKT;
1380 	/*
1381 	 * For ISO-TX, we set mult at QH as the largest value, and use
1382 	 * MultO at TD as real mult value.
1383 	 */
1384 	if (hwep->type == USB_ENDPOINT_XFER_ISOC && hwep->dir == TX)
1385 		cap |= 3 << __ffs(QH_MULT);
1386 
1387 	hwep->qh.ptr->cap = cpu_to_le32(cap);
1388 
1389 	hwep->qh.ptr->td.next |= cpu_to_le32(TD_TERMINATE);   /* needed? */
1390 
1391 	if (hwep->num != 0 && hwep->type == USB_ENDPOINT_XFER_CONTROL) {
1392 		dev_err(hwep->ci->dev, "Set control xfer at non-ep0\n");
1393 		retval = -EINVAL;
1394 	}
1395 
1396 	/*
1397 	 * Enable endpoints in the HW other than ep0 as ep0
1398 	 * is always enabled
1399 	 */
1400 	if (hwep->num)
1401 		retval |= hw_ep_enable(hwep->ci, hwep->num, hwep->dir,
1402 				       hwep->type);
1403 
1404 	spin_unlock_irqrestore(hwep->lock, flags);
1405 	return retval;
1406 }
1407 
1408 /*
1409  * ep_disable: endpoint is no longer usable
1410  *
1411  * Check usb_ep_disable() at "usb_gadget.h" for details
1412  */
1413 static int ep_disable(struct usb_ep *ep)
1414 {
1415 	struct ci_hw_ep *hwep = container_of(ep, struct ci_hw_ep, ep);
1416 	int direction, retval = 0;
1417 	unsigned long flags;
1418 
1419 	if (ep == NULL)
1420 		return -EINVAL;
1421 	else if (hwep->ep.desc == NULL)
1422 		return -EBUSY;
1423 
1424 	spin_lock_irqsave(hwep->lock, flags);
1425 	if (hwep->ci->gadget.speed == USB_SPEED_UNKNOWN) {
1426 		spin_unlock_irqrestore(hwep->lock, flags);
1427 		return 0;
1428 	}
1429 
1430 	/* only internal SW should disable ctrl endpts */
1431 
1432 	direction = hwep->dir;
1433 	do {
1434 		retval |= _ep_nuke(hwep);
1435 		retval |= hw_ep_disable(hwep->ci, hwep->num, hwep->dir);
1436 
1437 		if (hwep->type == USB_ENDPOINT_XFER_CONTROL)
1438 			hwep->dir = (hwep->dir == TX) ? RX : TX;
1439 
1440 	} while (hwep->dir != direction);
1441 
1442 	hwep->ep.desc = NULL;
1443 
1444 	spin_unlock_irqrestore(hwep->lock, flags);
1445 	return retval;
1446 }
1447 
1448 /*
1449  * ep_alloc_request: allocate a request object to use with this endpoint
1450  *
1451  * Check usb_ep_alloc_request() at "usb_gadget.h" for details
1452  */
1453 static struct usb_request *ep_alloc_request(struct usb_ep *ep, gfp_t gfp_flags)
1454 {
1455 	struct ci_hw_req *hwreq = NULL;
1456 
1457 	if (ep == NULL)
1458 		return NULL;
1459 
1460 	hwreq = kzalloc(sizeof(struct ci_hw_req), gfp_flags);
1461 	if (hwreq != NULL) {
1462 		INIT_LIST_HEAD(&hwreq->queue);
1463 		INIT_LIST_HEAD(&hwreq->tds);
1464 	}
1465 
1466 	return (hwreq == NULL) ? NULL : &hwreq->req;
1467 }
1468 
1469 /*
1470  * ep_free_request: frees a request object
1471  *
1472  * Check usb_ep_free_request() at "usb_gadget.h" for details
1473  */
1474 static void ep_free_request(struct usb_ep *ep, struct usb_request *req)
1475 {
1476 	struct ci_hw_ep  *hwep  = container_of(ep,  struct ci_hw_ep, ep);
1477 	struct ci_hw_req *hwreq = container_of(req, struct ci_hw_req, req);
1478 	struct td_node *node, *tmpnode;
1479 	unsigned long flags;
1480 
1481 	if (ep == NULL || req == NULL) {
1482 		return;
1483 	} else if (!list_empty(&hwreq->queue)) {
1484 		dev_err(hwep->ci->dev, "freeing queued request\n");
1485 		return;
1486 	}
1487 
1488 	spin_lock_irqsave(hwep->lock, flags);
1489 
1490 	list_for_each_entry_safe(node, tmpnode, &hwreq->tds, td) {
1491 		dma_pool_free(hwep->td_pool, node->ptr, node->dma);
1492 		list_del_init(&node->td);
1493 		node->ptr = NULL;
1494 		kfree(node);
1495 	}
1496 
1497 	kfree(hwreq);
1498 
1499 	spin_unlock_irqrestore(hwep->lock, flags);
1500 }
1501 
1502 /*
1503  * ep_queue: queues (submits) an I/O request to an endpoint
1504  *
1505  * Check usb_ep_queue()* at usb_gadget.h" for details
1506  */
1507 static int ep_queue(struct usb_ep *ep, struct usb_request *req,
1508 		    gfp_t __maybe_unused gfp_flags)
1509 {
1510 	struct ci_hw_ep  *hwep  = container_of(ep,  struct ci_hw_ep, ep);
1511 	int retval = 0;
1512 	unsigned long flags;
1513 
1514 	if (ep == NULL || req == NULL || hwep->ep.desc == NULL)
1515 		return -EINVAL;
1516 
1517 	spin_lock_irqsave(hwep->lock, flags);
1518 	if (hwep->ci->gadget.speed == USB_SPEED_UNKNOWN) {
1519 		spin_unlock_irqrestore(hwep->lock, flags);
1520 		return 0;
1521 	}
1522 	retval = _ep_queue(ep, req, gfp_flags);
1523 	spin_unlock_irqrestore(hwep->lock, flags);
1524 	return retval;
1525 }
1526 
1527 /*
1528  * ep_dequeue: dequeues (cancels, unlinks) an I/O request from an endpoint
1529  *
1530  * Check usb_ep_dequeue() at "usb_gadget.h" for details
1531  */
1532 static int ep_dequeue(struct usb_ep *ep, struct usb_request *req)
1533 {
1534 	struct ci_hw_ep  *hwep  = container_of(ep,  struct ci_hw_ep, ep);
1535 	struct ci_hw_req *hwreq = container_of(req, struct ci_hw_req, req);
1536 	unsigned long flags;
1537 	struct td_node *node, *tmpnode;
1538 
1539 	if (ep == NULL || req == NULL || hwreq->req.status != -EALREADY ||
1540 		hwep->ep.desc == NULL || list_empty(&hwreq->queue) ||
1541 		list_empty(&hwep->qh.queue))
1542 		return -EINVAL;
1543 
1544 	spin_lock_irqsave(hwep->lock, flags);
1545 	if (hwep->ci->gadget.speed != USB_SPEED_UNKNOWN)
1546 		hw_ep_flush(hwep->ci, hwep->num, hwep->dir);
1547 
1548 	list_for_each_entry_safe(node, tmpnode, &hwreq->tds, td) {
1549 		dma_pool_free(hwep->td_pool, node->ptr, node->dma);
1550 		list_del(&node->td);
1551 		kfree(node);
1552 	}
1553 
1554 	/* pop request */
1555 	list_del_init(&hwreq->queue);
1556 
1557 	usb_gadget_unmap_request(&hwep->ci->gadget, req, hwep->dir);
1558 
1559 	req->status = -ECONNRESET;
1560 
1561 	if (hwreq->req.complete != NULL) {
1562 		spin_unlock(hwep->lock);
1563 		usb_gadget_giveback_request(&hwep->ep, &hwreq->req);
1564 		spin_lock(hwep->lock);
1565 	}
1566 
1567 	spin_unlock_irqrestore(hwep->lock, flags);
1568 	return 0;
1569 }
1570 
1571 /*
1572  * ep_set_halt: sets the endpoint halt feature
1573  *
1574  * Check usb_ep_set_halt() at "usb_gadget.h" for details
1575  */
1576 static int ep_set_halt(struct usb_ep *ep, int value)
1577 {
1578 	return _ep_set_halt(ep, value, true);
1579 }
1580 
1581 /*
1582  * ep_set_wedge: sets the halt feature and ignores clear requests
1583  *
1584  * Check usb_ep_set_wedge() at "usb_gadget.h" for details
1585  */
1586 static int ep_set_wedge(struct usb_ep *ep)
1587 {
1588 	struct ci_hw_ep *hwep = container_of(ep, struct ci_hw_ep, ep);
1589 	unsigned long flags;
1590 
1591 	if (ep == NULL || hwep->ep.desc == NULL)
1592 		return -EINVAL;
1593 
1594 	spin_lock_irqsave(hwep->lock, flags);
1595 	hwep->wedge = 1;
1596 	spin_unlock_irqrestore(hwep->lock, flags);
1597 
1598 	return usb_ep_set_halt(ep);
1599 }
1600 
1601 /*
1602  * ep_fifo_flush: flushes contents of a fifo
1603  *
1604  * Check usb_ep_fifo_flush() at "usb_gadget.h" for details
1605  */
1606 static void ep_fifo_flush(struct usb_ep *ep)
1607 {
1608 	struct ci_hw_ep *hwep = container_of(ep, struct ci_hw_ep, ep);
1609 	unsigned long flags;
1610 
1611 	if (ep == NULL) {
1612 		dev_err(hwep->ci->dev, "%02X: -EINVAL\n", _usb_addr(hwep));
1613 		return;
1614 	}
1615 
1616 	spin_lock_irqsave(hwep->lock, flags);
1617 	if (hwep->ci->gadget.speed == USB_SPEED_UNKNOWN) {
1618 		spin_unlock_irqrestore(hwep->lock, flags);
1619 		return;
1620 	}
1621 
1622 	hw_ep_flush(hwep->ci, hwep->num, hwep->dir);
1623 
1624 	spin_unlock_irqrestore(hwep->lock, flags);
1625 }
1626 
1627 /*
1628  * Endpoint-specific part of the API to the USB controller hardware
1629  * Check "usb_gadget.h" for details
1630  */
1631 static const struct usb_ep_ops usb_ep_ops = {
1632 	.enable	       = ep_enable,
1633 	.disable       = ep_disable,
1634 	.alloc_request = ep_alloc_request,
1635 	.free_request  = ep_free_request,
1636 	.queue	       = ep_queue,
1637 	.dequeue       = ep_dequeue,
1638 	.set_halt      = ep_set_halt,
1639 	.set_wedge     = ep_set_wedge,
1640 	.fifo_flush    = ep_fifo_flush,
1641 };
1642 
1643 /******************************************************************************
1644  * GADGET block
1645  *****************************************************************************/
1646 /*
1647  * ci_hdrc_gadget_connect: caller makes sure gadget driver is binded
1648  */
1649 static void ci_hdrc_gadget_connect(struct usb_gadget *_gadget, int is_active)
1650 {
1651 	struct ci_hdrc *ci = container_of(_gadget, struct ci_hdrc, gadget);
1652 
1653 	if (is_active) {
1654 		pm_runtime_get_sync(ci->dev);
1655 		hw_device_reset(ci);
1656 		spin_lock_irq(&ci->lock);
1657 		if (ci->driver) {
1658 			hw_device_state(ci, ci->ep0out->qh.dma);
1659 			usb_gadget_set_state(_gadget, USB_STATE_POWERED);
1660 			spin_unlock_irq(&ci->lock);
1661 			usb_udc_vbus_handler(_gadget, true);
1662 		} else {
1663 			spin_unlock_irq(&ci->lock);
1664 		}
1665 	} else {
1666 		usb_udc_vbus_handler(_gadget, false);
1667 		if (ci->driver)
1668 			ci->driver->disconnect(&ci->gadget);
1669 		hw_device_state(ci, 0);
1670 		if (ci->platdata->notify_event)
1671 			ci->platdata->notify_event(ci,
1672 			CI_HDRC_CONTROLLER_STOPPED_EVENT);
1673 		_gadget_stop_activity(&ci->gadget);
1674 		pm_runtime_put_sync(ci->dev);
1675 		usb_gadget_set_state(_gadget, USB_STATE_NOTATTACHED);
1676 	}
1677 }
1678 
1679 static int ci_udc_vbus_session(struct usb_gadget *_gadget, int is_active)
1680 {
1681 	struct ci_hdrc *ci = container_of(_gadget, struct ci_hdrc, gadget);
1682 	unsigned long flags;
1683 	int ret = 0;
1684 
1685 	spin_lock_irqsave(&ci->lock, flags);
1686 	ci->vbus_active = is_active;
1687 	spin_unlock_irqrestore(&ci->lock, flags);
1688 
1689 	if (ci->usb_phy)
1690 		usb_phy_set_charger_state(ci->usb_phy, is_active ?
1691 			USB_CHARGER_PRESENT : USB_CHARGER_ABSENT);
1692 
1693 	if (ci->platdata->notify_event)
1694 		ret = ci->platdata->notify_event(ci,
1695 				CI_HDRC_CONTROLLER_VBUS_EVENT);
1696 
1697 	if (ci->driver)
1698 		ci_hdrc_gadget_connect(_gadget, is_active);
1699 
1700 	return ret;
1701 }
1702 
1703 static int ci_udc_wakeup(struct usb_gadget *_gadget)
1704 {
1705 	struct ci_hdrc *ci = container_of(_gadget, struct ci_hdrc, gadget);
1706 	unsigned long flags;
1707 	int ret = 0;
1708 
1709 	spin_lock_irqsave(&ci->lock, flags);
1710 	if (ci->gadget.speed == USB_SPEED_UNKNOWN) {
1711 		spin_unlock_irqrestore(&ci->lock, flags);
1712 		return 0;
1713 	}
1714 	if (!ci->remote_wakeup) {
1715 		ret = -EOPNOTSUPP;
1716 		goto out;
1717 	}
1718 	if (!hw_read(ci, OP_PORTSC, PORTSC_SUSP)) {
1719 		ret = -EINVAL;
1720 		goto out;
1721 	}
1722 	hw_write(ci, OP_PORTSC, PORTSC_FPR, PORTSC_FPR);
1723 out:
1724 	spin_unlock_irqrestore(&ci->lock, flags);
1725 	return ret;
1726 }
1727 
1728 static int ci_udc_vbus_draw(struct usb_gadget *_gadget, unsigned ma)
1729 {
1730 	struct ci_hdrc *ci = container_of(_gadget, struct ci_hdrc, gadget);
1731 
1732 	if (ci->usb_phy)
1733 		return usb_phy_set_power(ci->usb_phy, ma);
1734 	return -ENOTSUPP;
1735 }
1736 
1737 static int ci_udc_selfpowered(struct usb_gadget *_gadget, int is_on)
1738 {
1739 	struct ci_hdrc *ci = container_of(_gadget, struct ci_hdrc, gadget);
1740 	struct ci_hw_ep *hwep = ci->ep0in;
1741 	unsigned long flags;
1742 
1743 	spin_lock_irqsave(hwep->lock, flags);
1744 	_gadget->is_selfpowered = (is_on != 0);
1745 	spin_unlock_irqrestore(hwep->lock, flags);
1746 
1747 	return 0;
1748 }
1749 
1750 /* Change Data+ pullup status
1751  * this func is used by usb_gadget_connect/disconnect
1752  */
1753 static int ci_udc_pullup(struct usb_gadget *_gadget, int is_on)
1754 {
1755 	struct ci_hdrc *ci = container_of(_gadget, struct ci_hdrc, gadget);
1756 
1757 	/*
1758 	 * Data+ pullup controlled by OTG state machine in OTG fsm mode;
1759 	 * and don't touch Data+ in host mode for dual role config.
1760 	 */
1761 	if (ci_otg_is_fsm_mode(ci) || ci->role == CI_ROLE_HOST)
1762 		return 0;
1763 
1764 	pm_runtime_get_sync(ci->dev);
1765 	if (is_on)
1766 		hw_write(ci, OP_USBCMD, USBCMD_RS, USBCMD_RS);
1767 	else
1768 		hw_write(ci, OP_USBCMD, USBCMD_RS, 0);
1769 	pm_runtime_put_sync(ci->dev);
1770 
1771 	return 0;
1772 }
1773 
1774 static int ci_udc_start(struct usb_gadget *gadget,
1775 			 struct usb_gadget_driver *driver);
1776 static int ci_udc_stop(struct usb_gadget *gadget);
1777 
1778 /* Match ISOC IN from the highest endpoint */
1779 static struct usb_ep *ci_udc_match_ep(struct usb_gadget *gadget,
1780 			      struct usb_endpoint_descriptor *desc,
1781 			      struct usb_ss_ep_comp_descriptor *comp_desc)
1782 {
1783 	struct ci_hdrc *ci = container_of(gadget, struct ci_hdrc, gadget);
1784 	struct usb_ep *ep;
1785 
1786 	if (usb_endpoint_xfer_isoc(desc) && usb_endpoint_dir_in(desc)) {
1787 		list_for_each_entry_reverse(ep, &ci->gadget.ep_list, ep_list) {
1788 			if (ep->caps.dir_in && !ep->claimed)
1789 				return ep;
1790 		}
1791 	}
1792 
1793 	return NULL;
1794 }
1795 
1796 /*
1797  * Device operations part of the API to the USB controller hardware,
1798  * which don't involve endpoints (or i/o)
1799  * Check  "usb_gadget.h" for details
1800  */
1801 static const struct usb_gadget_ops usb_gadget_ops = {
1802 	.vbus_session	= ci_udc_vbus_session,
1803 	.wakeup		= ci_udc_wakeup,
1804 	.set_selfpowered	= ci_udc_selfpowered,
1805 	.pullup		= ci_udc_pullup,
1806 	.vbus_draw	= ci_udc_vbus_draw,
1807 	.udc_start	= ci_udc_start,
1808 	.udc_stop	= ci_udc_stop,
1809 	.match_ep 	= ci_udc_match_ep,
1810 };
1811 
1812 static int init_eps(struct ci_hdrc *ci)
1813 {
1814 	int retval = 0, i, j;
1815 
1816 	for (i = 0; i < ci->hw_ep_max/2; i++)
1817 		for (j = RX; j <= TX; j++) {
1818 			int k = i + j * ci->hw_ep_max/2;
1819 			struct ci_hw_ep *hwep = &ci->ci_hw_ep[k];
1820 
1821 			scnprintf(hwep->name, sizeof(hwep->name), "ep%i%s", i,
1822 					(j == TX)  ? "in" : "out");
1823 
1824 			hwep->ci          = ci;
1825 			hwep->lock         = &ci->lock;
1826 			hwep->td_pool      = ci->td_pool;
1827 
1828 			hwep->ep.name      = hwep->name;
1829 			hwep->ep.ops       = &usb_ep_ops;
1830 
1831 			if (i == 0) {
1832 				hwep->ep.caps.type_control = true;
1833 			} else {
1834 				hwep->ep.caps.type_iso = true;
1835 				hwep->ep.caps.type_bulk = true;
1836 				hwep->ep.caps.type_int = true;
1837 			}
1838 
1839 			if (j == TX)
1840 				hwep->ep.caps.dir_in = true;
1841 			else
1842 				hwep->ep.caps.dir_out = true;
1843 
1844 			/*
1845 			 * for ep0: maxP defined in desc, for other
1846 			 * eps, maxP is set by epautoconfig() called
1847 			 * by gadget layer
1848 			 */
1849 			usb_ep_set_maxpacket_limit(&hwep->ep, (unsigned short)~0);
1850 
1851 			INIT_LIST_HEAD(&hwep->qh.queue);
1852 			hwep->qh.ptr = dma_pool_zalloc(ci->qh_pool, GFP_KERNEL,
1853 						       &hwep->qh.dma);
1854 			if (hwep->qh.ptr == NULL)
1855 				retval = -ENOMEM;
1856 
1857 			/*
1858 			 * set up shorthands for ep0 out and in endpoints,
1859 			 * don't add to gadget's ep_list
1860 			 */
1861 			if (i == 0) {
1862 				if (j == RX)
1863 					ci->ep0out = hwep;
1864 				else
1865 					ci->ep0in = hwep;
1866 
1867 				usb_ep_set_maxpacket_limit(&hwep->ep, CTRL_PAYLOAD_MAX);
1868 				continue;
1869 			}
1870 
1871 			list_add_tail(&hwep->ep.ep_list, &ci->gadget.ep_list);
1872 		}
1873 
1874 	return retval;
1875 }
1876 
1877 static void destroy_eps(struct ci_hdrc *ci)
1878 {
1879 	int i;
1880 
1881 	for (i = 0; i < ci->hw_ep_max; i++) {
1882 		struct ci_hw_ep *hwep = &ci->ci_hw_ep[i];
1883 
1884 		if (hwep->pending_td)
1885 			free_pending_td(hwep);
1886 		dma_pool_free(ci->qh_pool, hwep->qh.ptr, hwep->qh.dma);
1887 	}
1888 }
1889 
1890 /**
1891  * ci_udc_start: register a gadget driver
1892  * @gadget: our gadget
1893  * @driver: the driver being registered
1894  *
1895  * Interrupts are enabled here.
1896  */
1897 static int ci_udc_start(struct usb_gadget *gadget,
1898 			 struct usb_gadget_driver *driver)
1899 {
1900 	struct ci_hdrc *ci = container_of(gadget, struct ci_hdrc, gadget);
1901 	int retval;
1902 
1903 	if (driver->disconnect == NULL)
1904 		return -EINVAL;
1905 
1906 	ci->ep0out->ep.desc = &ctrl_endpt_out_desc;
1907 	retval = usb_ep_enable(&ci->ep0out->ep);
1908 	if (retval)
1909 		return retval;
1910 
1911 	ci->ep0in->ep.desc = &ctrl_endpt_in_desc;
1912 	retval = usb_ep_enable(&ci->ep0in->ep);
1913 	if (retval)
1914 		return retval;
1915 
1916 	ci->driver = driver;
1917 
1918 	/* Start otg fsm for B-device */
1919 	if (ci_otg_is_fsm_mode(ci) && ci->fsm.id) {
1920 		ci_hdrc_otg_fsm_start(ci);
1921 		return retval;
1922 	}
1923 
1924 	if (ci->vbus_active)
1925 		ci_hdrc_gadget_connect(gadget, 1);
1926 	else
1927 		usb_udc_vbus_handler(&ci->gadget, false);
1928 
1929 	return retval;
1930 }
1931 
1932 static void ci_udc_stop_for_otg_fsm(struct ci_hdrc *ci)
1933 {
1934 	if (!ci_otg_is_fsm_mode(ci))
1935 		return;
1936 
1937 	mutex_lock(&ci->fsm.lock);
1938 	if (ci->fsm.otg->state == OTG_STATE_A_PERIPHERAL) {
1939 		ci->fsm.a_bidl_adis_tmout = 1;
1940 		ci_hdrc_otg_fsm_start(ci);
1941 	} else if (ci->fsm.otg->state == OTG_STATE_B_PERIPHERAL) {
1942 		ci->fsm.protocol = PROTO_UNDEF;
1943 		ci->fsm.otg->state = OTG_STATE_UNDEFINED;
1944 	}
1945 	mutex_unlock(&ci->fsm.lock);
1946 }
1947 
1948 /*
1949  * ci_udc_stop: unregister a gadget driver
1950  */
1951 static int ci_udc_stop(struct usb_gadget *gadget)
1952 {
1953 	struct ci_hdrc *ci = container_of(gadget, struct ci_hdrc, gadget);
1954 	unsigned long flags;
1955 
1956 	spin_lock_irqsave(&ci->lock, flags);
1957 	ci->driver = NULL;
1958 
1959 	if (ci->vbus_active) {
1960 		hw_device_state(ci, 0);
1961 		spin_unlock_irqrestore(&ci->lock, flags);
1962 		if (ci->platdata->notify_event)
1963 			ci->platdata->notify_event(ci,
1964 			CI_HDRC_CONTROLLER_STOPPED_EVENT);
1965 		_gadget_stop_activity(&ci->gadget);
1966 		spin_lock_irqsave(&ci->lock, flags);
1967 		pm_runtime_put(ci->dev);
1968 	}
1969 
1970 	spin_unlock_irqrestore(&ci->lock, flags);
1971 
1972 	ci_udc_stop_for_otg_fsm(ci);
1973 	return 0;
1974 }
1975 
1976 /******************************************************************************
1977  * BUS block
1978  *****************************************************************************/
1979 /*
1980  * udc_irq: ci interrupt handler
1981  *
1982  * This function returns IRQ_HANDLED if the IRQ has been handled
1983  * It locks access to registers
1984  */
1985 static irqreturn_t udc_irq(struct ci_hdrc *ci)
1986 {
1987 	irqreturn_t retval;
1988 	u32 intr;
1989 
1990 	if (ci == NULL)
1991 		return IRQ_HANDLED;
1992 
1993 	spin_lock(&ci->lock);
1994 
1995 	if (ci->platdata->flags & CI_HDRC_REGS_SHARED) {
1996 		if (hw_read(ci, OP_USBMODE, USBMODE_CM) !=
1997 				USBMODE_CM_DC) {
1998 			spin_unlock(&ci->lock);
1999 			return IRQ_NONE;
2000 		}
2001 	}
2002 	intr = hw_test_and_clear_intr_active(ci);
2003 
2004 	if (intr) {
2005 		/* order defines priority - do NOT change it */
2006 		if (USBi_URI & intr)
2007 			isr_reset_handler(ci);
2008 
2009 		if (USBi_PCI & intr) {
2010 			ci->gadget.speed = hw_port_is_high_speed(ci) ?
2011 				USB_SPEED_HIGH : USB_SPEED_FULL;
2012 			if (ci->suspended) {
2013 				if (ci->driver->resume) {
2014 					spin_unlock(&ci->lock);
2015 					ci->driver->resume(&ci->gadget);
2016 					spin_lock(&ci->lock);
2017 				}
2018 				ci->suspended = 0;
2019 				usb_gadget_set_state(&ci->gadget,
2020 						ci->resume_state);
2021 			}
2022 		}
2023 
2024 		if (USBi_UI  & intr)
2025 			isr_tr_complete_handler(ci);
2026 
2027 		if ((USBi_SLI & intr) && !(ci->suspended)) {
2028 			ci->suspended = 1;
2029 			ci->resume_state = ci->gadget.state;
2030 			if (ci->gadget.speed != USB_SPEED_UNKNOWN &&
2031 			    ci->driver->suspend) {
2032 				spin_unlock(&ci->lock);
2033 				ci->driver->suspend(&ci->gadget);
2034 				spin_lock(&ci->lock);
2035 			}
2036 			usb_gadget_set_state(&ci->gadget,
2037 					USB_STATE_SUSPENDED);
2038 		}
2039 		retval = IRQ_HANDLED;
2040 	} else {
2041 		retval = IRQ_NONE;
2042 	}
2043 	spin_unlock(&ci->lock);
2044 
2045 	return retval;
2046 }
2047 
2048 /**
2049  * udc_start: initialize gadget role
2050  * @ci: chipidea controller
2051  */
2052 static int udc_start(struct ci_hdrc *ci)
2053 {
2054 	struct device *dev = ci->dev;
2055 	struct usb_otg_caps *otg_caps = &ci->platdata->ci_otg_caps;
2056 	int retval = 0;
2057 
2058 	ci->gadget.ops          = &usb_gadget_ops;
2059 	ci->gadget.speed        = USB_SPEED_UNKNOWN;
2060 	ci->gadget.max_speed    = USB_SPEED_HIGH;
2061 	ci->gadget.name         = ci->platdata->name;
2062 	ci->gadget.otg_caps	= otg_caps;
2063 	ci->gadget.sg_supported = 1;
2064 	ci->gadget.irq		= ci->irq;
2065 
2066 	if (ci->platdata->flags & CI_HDRC_REQUIRES_ALIGNED_DMA)
2067 		ci->gadget.quirk_avoids_skb_reserve = 1;
2068 
2069 	if (ci->is_otg && (otg_caps->hnp_support || otg_caps->srp_support ||
2070 						otg_caps->adp_support))
2071 		ci->gadget.is_otg = 1;
2072 
2073 	INIT_LIST_HEAD(&ci->gadget.ep_list);
2074 
2075 	/* alloc resources */
2076 	ci->qh_pool = dma_pool_create("ci_hw_qh", dev->parent,
2077 				       sizeof(struct ci_hw_qh),
2078 				       64, CI_HDRC_PAGE_SIZE);
2079 	if (ci->qh_pool == NULL)
2080 		return -ENOMEM;
2081 
2082 	ci->td_pool = dma_pool_create("ci_hw_td", dev->parent,
2083 				       sizeof(struct ci_hw_td),
2084 				       64, CI_HDRC_PAGE_SIZE);
2085 	if (ci->td_pool == NULL) {
2086 		retval = -ENOMEM;
2087 		goto free_qh_pool;
2088 	}
2089 
2090 	retval = init_eps(ci);
2091 	if (retval)
2092 		goto free_pools;
2093 
2094 	ci->gadget.ep0 = &ci->ep0in->ep;
2095 
2096 	retval = usb_add_gadget_udc(dev, &ci->gadget);
2097 	if (retval)
2098 		goto destroy_eps;
2099 
2100 	return retval;
2101 
2102 destroy_eps:
2103 	destroy_eps(ci);
2104 free_pools:
2105 	dma_pool_destroy(ci->td_pool);
2106 free_qh_pool:
2107 	dma_pool_destroy(ci->qh_pool);
2108 	return retval;
2109 }
2110 
2111 /*
2112  * ci_hdrc_gadget_destroy: parent remove must call this to remove UDC
2113  *
2114  * No interrupts active, the IRQ has been released
2115  */
2116 void ci_hdrc_gadget_destroy(struct ci_hdrc *ci)
2117 {
2118 	if (!ci->roles[CI_ROLE_GADGET])
2119 		return;
2120 
2121 	usb_del_gadget_udc(&ci->gadget);
2122 
2123 	destroy_eps(ci);
2124 
2125 	dma_pool_destroy(ci->td_pool);
2126 	dma_pool_destroy(ci->qh_pool);
2127 }
2128 
2129 static int udc_id_switch_for_device(struct ci_hdrc *ci)
2130 {
2131 	if (ci->platdata->pins_device)
2132 		pinctrl_select_state(ci->platdata->pctl,
2133 				     ci->platdata->pins_device);
2134 
2135 	if (ci->is_otg)
2136 		/* Clear and enable BSV irq */
2137 		hw_write_otgsc(ci, OTGSC_BSVIS | OTGSC_BSVIE,
2138 					OTGSC_BSVIS | OTGSC_BSVIE);
2139 
2140 	return 0;
2141 }
2142 
2143 static void udc_id_switch_for_host(struct ci_hdrc *ci)
2144 {
2145 	/*
2146 	 * host doesn't care B_SESSION_VALID event
2147 	 * so clear and disbale BSV irq
2148 	 */
2149 	if (ci->is_otg)
2150 		hw_write_otgsc(ci, OTGSC_BSVIE | OTGSC_BSVIS, OTGSC_BSVIS);
2151 
2152 	ci->vbus_active = 0;
2153 
2154 	if (ci->platdata->pins_device && ci->platdata->pins_default)
2155 		pinctrl_select_state(ci->platdata->pctl,
2156 				     ci->platdata->pins_default);
2157 }
2158 
2159 /**
2160  * ci_hdrc_gadget_init - initialize device related bits
2161  * @ci: the controller
2162  *
2163  * This function initializes the gadget, if the device is "device capable".
2164  */
2165 int ci_hdrc_gadget_init(struct ci_hdrc *ci)
2166 {
2167 	struct ci_role_driver *rdrv;
2168 	int ret;
2169 
2170 	if (!hw_read(ci, CAP_DCCPARAMS, DCCPARAMS_DC))
2171 		return -ENXIO;
2172 
2173 	rdrv = devm_kzalloc(ci->dev, sizeof(*rdrv), GFP_KERNEL);
2174 	if (!rdrv)
2175 		return -ENOMEM;
2176 
2177 	rdrv->start	= udc_id_switch_for_device;
2178 	rdrv->stop	= udc_id_switch_for_host;
2179 	rdrv->irq	= udc_irq;
2180 	rdrv->name	= "gadget";
2181 
2182 	ret = udc_start(ci);
2183 	if (!ret)
2184 		ci->roles[CI_ROLE_GADGET] = rdrv;
2185 
2186 	return ret;
2187 }
2188