xref: /linux/drivers/usb/chipidea/udc.c (revision 566ab427f827b0256d3e8ce0235d088e6a9c28bd)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * udc.c - ChipIdea UDC driver
4  *
5  * Copyright (C) 2008 Chipidea - MIPS Technologies, Inc. All rights reserved.
6  *
7  * Author: David Lopo
8  */
9 
10 #include <linux/delay.h>
11 #include <linux/device.h>
12 #include <linux/dmapool.h>
13 #include <linux/err.h>
14 #include <linux/irqreturn.h>
15 #include <linux/kernel.h>
16 #include <linux/slab.h>
17 #include <linux/pm_runtime.h>
18 #include <linux/pinctrl/consumer.h>
19 #include <linux/usb/ch9.h>
20 #include <linux/usb/gadget.h>
21 #include <linux/usb/otg-fsm.h>
22 #include <linux/usb/chipidea.h>
23 
24 #include "ci.h"
25 #include "udc.h"
26 #include "bits.h"
27 #include "otg.h"
28 #include "otg_fsm.h"
29 #include "trace.h"
30 
31 /* control endpoint description */
32 static const struct usb_endpoint_descriptor
33 ctrl_endpt_out_desc = {
34 	.bLength         = USB_DT_ENDPOINT_SIZE,
35 	.bDescriptorType = USB_DT_ENDPOINT,
36 
37 	.bEndpointAddress = USB_DIR_OUT,
38 	.bmAttributes    = USB_ENDPOINT_XFER_CONTROL,
39 	.wMaxPacketSize  = cpu_to_le16(CTRL_PAYLOAD_MAX),
40 };
41 
42 static const struct usb_endpoint_descriptor
43 ctrl_endpt_in_desc = {
44 	.bLength         = USB_DT_ENDPOINT_SIZE,
45 	.bDescriptorType = USB_DT_ENDPOINT,
46 
47 	.bEndpointAddress = USB_DIR_IN,
48 	.bmAttributes    = USB_ENDPOINT_XFER_CONTROL,
49 	.wMaxPacketSize  = cpu_to_le16(CTRL_PAYLOAD_MAX),
50 };
51 
52 static int reprime_dtd(struct ci_hdrc *ci, struct ci_hw_ep *hwep,
53 		       struct td_node *node);
54 /**
55  * hw_ep_bit: calculates the bit number
56  * @num: endpoint number
57  * @dir: endpoint direction
58  *
59  * This function returns bit number
60  */
61 static inline int hw_ep_bit(int num, int dir)
62 {
63 	return num + ((dir == TX) ? 16 : 0);
64 }
65 
66 static inline int ep_to_bit(struct ci_hdrc *ci, int n)
67 {
68 	int fill = 16 - ci->hw_ep_max / 2;
69 
70 	if (n >= ci->hw_ep_max / 2)
71 		n += fill;
72 
73 	return n;
74 }
75 
76 /**
77  * hw_device_state: enables/disables interrupts (execute without interruption)
78  * @ci: the controller
79  * @dma: 0 => disable, !0 => enable and set dma engine
80  *
81  * This function returns an error code
82  */
83 static int hw_device_state(struct ci_hdrc *ci, u32 dma)
84 {
85 	if (dma) {
86 		hw_write(ci, OP_ENDPTLISTADDR, ~0, dma);
87 		/* interrupt, error, port change, reset, sleep/suspend */
88 		hw_write(ci, OP_USBINTR, ~0,
89 			     USBi_UI|USBi_UEI|USBi_PCI|USBi_URI);
90 	} else {
91 		hw_write(ci, OP_USBINTR, ~0, 0);
92 	}
93 	return 0;
94 }
95 
96 /**
97  * hw_ep_flush: flush endpoint fifo (execute without interruption)
98  * @ci: the controller
99  * @num: endpoint number
100  * @dir: endpoint direction
101  *
102  * This function returns an error code
103  */
104 static int hw_ep_flush(struct ci_hdrc *ci, int num, int dir)
105 {
106 	int n = hw_ep_bit(num, dir);
107 
108 	do {
109 		/* flush any pending transfer */
110 		hw_write(ci, OP_ENDPTFLUSH, ~0, BIT(n));
111 		while (hw_read(ci, OP_ENDPTFLUSH, BIT(n)))
112 			cpu_relax();
113 	} while (hw_read(ci, OP_ENDPTSTAT, BIT(n)));
114 
115 	return 0;
116 }
117 
118 /**
119  * hw_ep_disable: disables endpoint (execute without interruption)
120  * @ci: the controller
121  * @num: endpoint number
122  * @dir: endpoint direction
123  *
124  * This function returns an error code
125  */
126 static int hw_ep_disable(struct ci_hdrc *ci, int num, int dir)
127 {
128 	hw_write(ci, OP_ENDPTCTRL + num,
129 		 (dir == TX) ? ENDPTCTRL_TXE : ENDPTCTRL_RXE, 0);
130 	return 0;
131 }
132 
133 /**
134  * hw_ep_enable: enables endpoint (execute without interruption)
135  * @ci: the controller
136  * @num:  endpoint number
137  * @dir:  endpoint direction
138  * @type: endpoint type
139  *
140  * This function returns an error code
141  */
142 static int hw_ep_enable(struct ci_hdrc *ci, int num, int dir, int type)
143 {
144 	u32 mask, data;
145 
146 	if (dir == TX) {
147 		mask  = ENDPTCTRL_TXT;  /* type    */
148 		data  = type << __ffs(mask);
149 
150 		mask |= ENDPTCTRL_TXS;  /* unstall */
151 		mask |= ENDPTCTRL_TXR;  /* reset data toggle */
152 		data |= ENDPTCTRL_TXR;
153 		mask |= ENDPTCTRL_TXE;  /* enable  */
154 		data |= ENDPTCTRL_TXE;
155 	} else {
156 		mask  = ENDPTCTRL_RXT;  /* type    */
157 		data  = type << __ffs(mask);
158 
159 		mask |= ENDPTCTRL_RXS;  /* unstall */
160 		mask |= ENDPTCTRL_RXR;  /* reset data toggle */
161 		data |= ENDPTCTRL_RXR;
162 		mask |= ENDPTCTRL_RXE;  /* enable  */
163 		data |= ENDPTCTRL_RXE;
164 	}
165 	hw_write(ci, OP_ENDPTCTRL + num, mask, data);
166 	return 0;
167 }
168 
169 /**
170  * hw_ep_get_halt: return endpoint halt status
171  * @ci: the controller
172  * @num: endpoint number
173  * @dir: endpoint direction
174  *
175  * This function returns 1 if endpoint halted
176  */
177 static int hw_ep_get_halt(struct ci_hdrc *ci, int num, int dir)
178 {
179 	u32 mask = (dir == TX) ? ENDPTCTRL_TXS : ENDPTCTRL_RXS;
180 
181 	return hw_read(ci, OP_ENDPTCTRL + num, mask) ? 1 : 0;
182 }
183 
184 /**
185  * hw_ep_prime: primes endpoint (execute without interruption)
186  * @ci: the controller
187  * @num:     endpoint number
188  * @dir:     endpoint direction
189  * @is_ctrl: true if control endpoint
190  *
191  * This function returns an error code
192  */
193 static int hw_ep_prime(struct ci_hdrc *ci, int num, int dir, int is_ctrl)
194 {
195 	int n = hw_ep_bit(num, dir);
196 
197 	/* Synchronize before ep prime */
198 	wmb();
199 
200 	if (is_ctrl && dir == RX && hw_read(ci, OP_ENDPTSETUPSTAT, BIT(num)))
201 		return -EAGAIN;
202 
203 	hw_write(ci, OP_ENDPTPRIME, ~0, BIT(n));
204 
205 	while (hw_read(ci, OP_ENDPTPRIME, BIT(n)))
206 		cpu_relax();
207 	if (is_ctrl && dir == RX && hw_read(ci, OP_ENDPTSETUPSTAT, BIT(num)))
208 		return -EAGAIN;
209 
210 	/* status shoult be tested according with manual but it doesn't work */
211 	return 0;
212 }
213 
214 /**
215  * hw_ep_set_halt: configures ep halt & resets data toggle after clear (execute
216  *                 without interruption)
217  * @ci: the controller
218  * @num:   endpoint number
219  * @dir:   endpoint direction
220  * @value: true => stall, false => unstall
221  *
222  * This function returns an error code
223  */
224 static int hw_ep_set_halt(struct ci_hdrc *ci, int num, int dir, int value)
225 {
226 	if (value != 0 && value != 1)
227 		return -EINVAL;
228 
229 	do {
230 		enum ci_hw_regs reg = OP_ENDPTCTRL + num;
231 		u32 mask_xs = (dir == TX) ? ENDPTCTRL_TXS : ENDPTCTRL_RXS;
232 		u32 mask_xr = (dir == TX) ? ENDPTCTRL_TXR : ENDPTCTRL_RXR;
233 
234 		/* data toggle - reserved for EP0 but it's in ESS */
235 		hw_write(ci, reg, mask_xs|mask_xr,
236 			  value ? mask_xs : mask_xr);
237 	} while (value != hw_ep_get_halt(ci, num, dir));
238 
239 	return 0;
240 }
241 
242 /**
243  * hw_port_is_high_speed: test if port is high speed
244  * @ci: the controller
245  *
246  * This function returns true if high speed port
247  */
248 static int hw_port_is_high_speed(struct ci_hdrc *ci)
249 {
250 	return ci->hw_bank.lpm ? hw_read(ci, OP_DEVLC, DEVLC_PSPD) :
251 		hw_read(ci, OP_PORTSC, PORTSC_HSP);
252 }
253 
254 /**
255  * hw_test_and_clear_complete: test & clear complete status (execute without
256  *                             interruption)
257  * @ci: the controller
258  * @n: endpoint number
259  *
260  * This function returns complete status
261  */
262 static int hw_test_and_clear_complete(struct ci_hdrc *ci, int n)
263 {
264 	n = ep_to_bit(ci, n);
265 	return hw_test_and_clear(ci, OP_ENDPTCOMPLETE, BIT(n));
266 }
267 
268 /**
269  * hw_test_and_clear_intr_active: test & clear active interrupts (execute
270  *                                without interruption)
271  * @ci: the controller
272  *
273  * This function returns active interrutps
274  */
275 static u32 hw_test_and_clear_intr_active(struct ci_hdrc *ci)
276 {
277 	u32 reg = hw_read_intr_status(ci) & hw_read_intr_enable(ci);
278 
279 	hw_write(ci, OP_USBSTS, ~0, reg);
280 	return reg;
281 }
282 
283 /**
284  * hw_test_and_clear_setup_guard: test & clear setup guard (execute without
285  *                                interruption)
286  * @ci: the controller
287  *
288  * This function returns guard value
289  */
290 static int hw_test_and_clear_setup_guard(struct ci_hdrc *ci)
291 {
292 	return hw_test_and_write(ci, OP_USBCMD, USBCMD_SUTW, 0);
293 }
294 
295 /**
296  * hw_test_and_set_setup_guard: test & set setup guard (execute without
297  *                              interruption)
298  * @ci: the controller
299  *
300  * This function returns guard value
301  */
302 static int hw_test_and_set_setup_guard(struct ci_hdrc *ci)
303 {
304 	return hw_test_and_write(ci, OP_USBCMD, USBCMD_SUTW, USBCMD_SUTW);
305 }
306 
307 /**
308  * hw_usb_set_address: configures USB address (execute without interruption)
309  * @ci: the controller
310  * @value: new USB address
311  *
312  * This function explicitly sets the address, without the "USBADRA" (advance)
313  * feature, which is not supported by older versions of the controller.
314  */
315 static void hw_usb_set_address(struct ci_hdrc *ci, u8 value)
316 {
317 	hw_write(ci, OP_DEVICEADDR, DEVICEADDR_USBADR,
318 		 value << __ffs(DEVICEADDR_USBADR));
319 }
320 
321 /**
322  * hw_usb_reset: restart device after a bus reset (execute without
323  *               interruption)
324  * @ci: the controller
325  *
326  * This function returns an error code
327  */
328 static int hw_usb_reset(struct ci_hdrc *ci)
329 {
330 	hw_usb_set_address(ci, 0);
331 
332 	/* ESS flushes only at end?!? */
333 	hw_write(ci, OP_ENDPTFLUSH,    ~0, ~0);
334 
335 	/* clear setup token semaphores */
336 	hw_write(ci, OP_ENDPTSETUPSTAT, 0,  0);
337 
338 	/* clear complete status */
339 	hw_write(ci, OP_ENDPTCOMPLETE,  0,  0);
340 
341 	/* wait until all bits cleared */
342 	while (hw_read(ci, OP_ENDPTPRIME, ~0))
343 		udelay(10);             /* not RTOS friendly */
344 
345 	/* reset all endpoints ? */
346 
347 	/* reset internal status and wait for further instructions
348 	   no need to verify the port reset status (ESS does it) */
349 
350 	return 0;
351 }
352 
353 /******************************************************************************
354  * UTIL block
355  *****************************************************************************/
356 
357 static int add_td_to_list(struct ci_hw_ep *hwep, struct ci_hw_req *hwreq,
358 			unsigned int length, struct scatterlist *s)
359 {
360 	int i;
361 	u32 temp;
362 	struct td_node *lastnode, *node = kzalloc(sizeof(struct td_node),
363 						  GFP_ATOMIC);
364 
365 	if (node == NULL)
366 		return -ENOMEM;
367 
368 	node->ptr = dma_pool_zalloc(hwep->td_pool, GFP_ATOMIC, &node->dma);
369 	if (node->ptr == NULL) {
370 		kfree(node);
371 		return -ENOMEM;
372 	}
373 
374 	node->ptr->token = cpu_to_le32(length << __ffs(TD_TOTAL_BYTES));
375 	node->ptr->token &= cpu_to_le32(TD_TOTAL_BYTES);
376 	node->ptr->token |= cpu_to_le32(TD_STATUS_ACTIVE);
377 	if (hwep->type == USB_ENDPOINT_XFER_ISOC && hwep->dir == TX) {
378 		u32 mul = hwreq->req.length / hwep->ep.maxpacket;
379 
380 		if (hwreq->req.length == 0
381 				|| hwreq->req.length % hwep->ep.maxpacket)
382 			mul++;
383 		node->ptr->token |= cpu_to_le32(mul << __ffs(TD_MULTO));
384 	}
385 
386 	if (s) {
387 		temp = (u32) (sg_dma_address(s) + hwreq->req.actual);
388 		node->td_remaining_size = CI_MAX_BUF_SIZE - length;
389 	} else {
390 		temp = (u32) (hwreq->req.dma + hwreq->req.actual);
391 	}
392 
393 	if (length) {
394 		node->ptr->page[0] = cpu_to_le32(temp);
395 		for (i = 1; i < TD_PAGE_COUNT; i++) {
396 			u32 page = temp + i * CI_HDRC_PAGE_SIZE;
397 			page &= ~TD_RESERVED_MASK;
398 			node->ptr->page[i] = cpu_to_le32(page);
399 		}
400 	}
401 
402 	hwreq->req.actual += length;
403 
404 	if (!list_empty(&hwreq->tds)) {
405 		/* get the last entry */
406 		lastnode = list_entry(hwreq->tds.prev,
407 				struct td_node, td);
408 		lastnode->ptr->next = cpu_to_le32(node->dma);
409 	}
410 
411 	INIT_LIST_HEAD(&node->td);
412 	list_add_tail(&node->td, &hwreq->tds);
413 
414 	return 0;
415 }
416 
417 /**
418  * _usb_addr: calculates endpoint address from direction & number
419  * @ep:  endpoint
420  */
421 static inline u8 _usb_addr(struct ci_hw_ep *ep)
422 {
423 	return ((ep->dir == TX) ? USB_ENDPOINT_DIR_MASK : 0) | ep->num;
424 }
425 
426 static int prepare_td_for_non_sg(struct ci_hw_ep *hwep,
427 		struct ci_hw_req *hwreq)
428 {
429 	unsigned int rest = hwreq->req.length;
430 	int pages = TD_PAGE_COUNT;
431 	int ret = 0;
432 
433 	if (rest == 0) {
434 		ret = add_td_to_list(hwep, hwreq, 0, NULL);
435 		if (ret < 0)
436 			return ret;
437 	}
438 
439 	/*
440 	 * The first buffer could be not page aligned.
441 	 * In that case we have to span into one extra td.
442 	 */
443 	if (hwreq->req.dma % PAGE_SIZE)
444 		pages--;
445 
446 	while (rest > 0) {
447 		unsigned int count = min(hwreq->req.length - hwreq->req.actual,
448 			(unsigned int)(pages * CI_HDRC_PAGE_SIZE));
449 
450 		ret = add_td_to_list(hwep, hwreq, count, NULL);
451 		if (ret < 0)
452 			return ret;
453 
454 		rest -= count;
455 	}
456 
457 	if (hwreq->req.zero && hwreq->req.length && hwep->dir == TX
458 	    && (hwreq->req.length % hwep->ep.maxpacket == 0)) {
459 		ret = add_td_to_list(hwep, hwreq, 0, NULL);
460 		if (ret < 0)
461 			return ret;
462 	}
463 
464 	return ret;
465 }
466 
467 static int prepare_td_per_sg(struct ci_hw_ep *hwep, struct ci_hw_req *hwreq,
468 		struct scatterlist *s)
469 {
470 	unsigned int rest = sg_dma_len(s);
471 	int ret = 0;
472 
473 	hwreq->req.actual = 0;
474 	while (rest > 0) {
475 		unsigned int count = min_t(unsigned int, rest,
476 				CI_MAX_BUF_SIZE);
477 
478 		ret = add_td_to_list(hwep, hwreq, count, s);
479 		if (ret < 0)
480 			return ret;
481 
482 		rest -= count;
483 	}
484 
485 	return ret;
486 }
487 
488 static void ci_add_buffer_entry(struct td_node *node, struct scatterlist *s)
489 {
490 	int empty_td_slot_index = (CI_MAX_BUF_SIZE - node->td_remaining_size)
491 			/ CI_HDRC_PAGE_SIZE;
492 	int i;
493 	u32 token;
494 
495 	token = le32_to_cpu(node->ptr->token) + (sg_dma_len(s) << __ffs(TD_TOTAL_BYTES));
496 	node->ptr->token = cpu_to_le32(token);
497 
498 	for (i = empty_td_slot_index; i < TD_PAGE_COUNT; i++) {
499 		u32 page = (u32) sg_dma_address(s) +
500 			(i - empty_td_slot_index) * CI_HDRC_PAGE_SIZE;
501 
502 		page &= ~TD_RESERVED_MASK;
503 		node->ptr->page[i] = cpu_to_le32(page);
504 	}
505 }
506 
507 static int prepare_td_for_sg(struct ci_hw_ep *hwep, struct ci_hw_req *hwreq)
508 {
509 	struct usb_request *req = &hwreq->req;
510 	struct scatterlist *s = req->sg;
511 	int ret = 0, i = 0;
512 	struct td_node *node = NULL;
513 
514 	if (!s || req->zero || req->length == 0) {
515 		dev_err(hwep->ci->dev, "not supported operation for sg\n");
516 		return -EINVAL;
517 	}
518 
519 	while (i++ < req->num_mapped_sgs) {
520 		if (sg_dma_address(s) % PAGE_SIZE) {
521 			dev_err(hwep->ci->dev, "not page aligned sg buffer\n");
522 			return -EINVAL;
523 		}
524 
525 		if (node && (node->td_remaining_size >= sg_dma_len(s))) {
526 			ci_add_buffer_entry(node, s);
527 			node->td_remaining_size -= sg_dma_len(s);
528 		} else {
529 			ret = prepare_td_per_sg(hwep, hwreq, s);
530 			if (ret)
531 				return ret;
532 
533 			node = list_entry(hwreq->tds.prev,
534 				struct td_node, td);
535 		}
536 
537 		s = sg_next(s);
538 	}
539 
540 	return ret;
541 }
542 
543 /**
544  * _hardware_enqueue: configures a request at hardware level
545  * @hwep:   endpoint
546  * @hwreq:  request
547  *
548  * This function returns an error code
549  */
550 static int _hardware_enqueue(struct ci_hw_ep *hwep, struct ci_hw_req *hwreq)
551 {
552 	struct ci_hdrc *ci = hwep->ci;
553 	int ret = 0;
554 	struct td_node *firstnode, *lastnode;
555 
556 	/* don't queue twice */
557 	if (hwreq->req.status == -EALREADY)
558 		return -EALREADY;
559 
560 	hwreq->req.status = -EALREADY;
561 
562 	ret = usb_gadget_map_request_by_dev(ci->dev->parent,
563 					    &hwreq->req, hwep->dir);
564 	if (ret)
565 		return ret;
566 
567 	if (hwreq->req.num_mapped_sgs)
568 		ret = prepare_td_for_sg(hwep, hwreq);
569 	else
570 		ret = prepare_td_for_non_sg(hwep, hwreq);
571 
572 	if (ret)
573 		return ret;
574 
575 	lastnode = list_entry(hwreq->tds.prev,
576 		struct td_node, td);
577 
578 	lastnode->ptr->next = cpu_to_le32(TD_TERMINATE);
579 	if (!hwreq->req.no_interrupt)
580 		lastnode->ptr->token |= cpu_to_le32(TD_IOC);
581 
582 	list_for_each_entry_safe(firstnode, lastnode, &hwreq->tds, td)
583 		trace_ci_prepare_td(hwep, hwreq, firstnode);
584 
585 	firstnode = list_first_entry(&hwreq->tds, struct td_node, td);
586 
587 	wmb();
588 
589 	hwreq->req.actual = 0;
590 	if (!list_empty(&hwep->qh.queue)) {
591 		struct ci_hw_req *hwreqprev;
592 		int n = hw_ep_bit(hwep->num, hwep->dir);
593 		int tmp_stat;
594 		struct td_node *prevlastnode;
595 		u32 next = firstnode->dma & TD_ADDR_MASK;
596 
597 		hwreqprev = list_entry(hwep->qh.queue.prev,
598 				struct ci_hw_req, queue);
599 		prevlastnode = list_entry(hwreqprev->tds.prev,
600 				struct td_node, td);
601 
602 		prevlastnode->ptr->next = cpu_to_le32(next);
603 		wmb();
604 
605 		if (ci->rev == CI_REVISION_22) {
606 			if (!hw_read(ci, OP_ENDPTSTAT, BIT(n)))
607 				reprime_dtd(ci, hwep, prevlastnode);
608 		}
609 
610 		if (hw_read(ci, OP_ENDPTPRIME, BIT(n)))
611 			goto done;
612 		do {
613 			hw_write(ci, OP_USBCMD, USBCMD_ATDTW, USBCMD_ATDTW);
614 			tmp_stat = hw_read(ci, OP_ENDPTSTAT, BIT(n));
615 		} while (!hw_read(ci, OP_USBCMD, USBCMD_ATDTW));
616 		hw_write(ci, OP_USBCMD, USBCMD_ATDTW, 0);
617 		if (tmp_stat)
618 			goto done;
619 	}
620 
621 	/*  QH configuration */
622 	hwep->qh.ptr->td.next = cpu_to_le32(firstnode->dma);
623 	hwep->qh.ptr->td.token &=
624 		cpu_to_le32(~(TD_STATUS_HALTED|TD_STATUS_ACTIVE));
625 
626 	if (hwep->type == USB_ENDPOINT_XFER_ISOC && hwep->dir == RX) {
627 		u32 mul = hwreq->req.length / hwep->ep.maxpacket;
628 
629 		if (hwreq->req.length == 0
630 				|| hwreq->req.length % hwep->ep.maxpacket)
631 			mul++;
632 		hwep->qh.ptr->cap |= cpu_to_le32(mul << __ffs(QH_MULT));
633 	}
634 
635 	ret = hw_ep_prime(ci, hwep->num, hwep->dir,
636 			   hwep->type == USB_ENDPOINT_XFER_CONTROL);
637 done:
638 	return ret;
639 }
640 
641 /**
642  * free_pending_td: remove a pending request for the endpoint
643  * @hwep: endpoint
644  */
645 static void free_pending_td(struct ci_hw_ep *hwep)
646 {
647 	struct td_node *pending = hwep->pending_td;
648 
649 	dma_pool_free(hwep->td_pool, pending->ptr, pending->dma);
650 	hwep->pending_td = NULL;
651 	kfree(pending);
652 }
653 
654 static int reprime_dtd(struct ci_hdrc *ci, struct ci_hw_ep *hwep,
655 					   struct td_node *node)
656 {
657 	hwep->qh.ptr->td.next = cpu_to_le32(node->dma);
658 	hwep->qh.ptr->td.token &=
659 		cpu_to_le32(~(TD_STATUS_HALTED | TD_STATUS_ACTIVE));
660 
661 	return hw_ep_prime(ci, hwep->num, hwep->dir,
662 				hwep->type == USB_ENDPOINT_XFER_CONTROL);
663 }
664 
665 /**
666  * _hardware_dequeue: handles a request at hardware level
667  * @hwep: endpoint
668  * @hwreq:  request
669  *
670  * This function returns an error code
671  */
672 static int _hardware_dequeue(struct ci_hw_ep *hwep, struct ci_hw_req *hwreq)
673 {
674 	u32 tmptoken;
675 	struct td_node *node, *tmpnode;
676 	unsigned remaining_length;
677 	unsigned actual = hwreq->req.length;
678 	struct ci_hdrc *ci = hwep->ci;
679 
680 	if (hwreq->req.status != -EALREADY)
681 		return -EINVAL;
682 
683 	hwreq->req.status = 0;
684 
685 	list_for_each_entry_safe(node, tmpnode, &hwreq->tds, td) {
686 		tmptoken = le32_to_cpu(node->ptr->token);
687 		trace_ci_complete_td(hwep, hwreq, node);
688 		if ((TD_STATUS_ACTIVE & tmptoken) != 0) {
689 			int n = hw_ep_bit(hwep->num, hwep->dir);
690 
691 			if (ci->rev == CI_REVISION_24 ||
692 			    ci->rev == CI_REVISION_22)
693 				if (!hw_read(ci, OP_ENDPTSTAT, BIT(n)))
694 					reprime_dtd(ci, hwep, node);
695 			hwreq->req.status = -EALREADY;
696 			return -EBUSY;
697 		}
698 
699 		remaining_length = (tmptoken & TD_TOTAL_BYTES);
700 		remaining_length >>= __ffs(TD_TOTAL_BYTES);
701 		actual -= remaining_length;
702 
703 		hwreq->req.status = tmptoken & TD_STATUS;
704 		if ((TD_STATUS_HALTED & hwreq->req.status)) {
705 			hwreq->req.status = -EPIPE;
706 			break;
707 		} else if ((TD_STATUS_DT_ERR & hwreq->req.status)) {
708 			hwreq->req.status = -EPROTO;
709 			break;
710 		} else if ((TD_STATUS_TR_ERR & hwreq->req.status)) {
711 			hwreq->req.status = -EILSEQ;
712 			break;
713 		}
714 
715 		if (remaining_length) {
716 			if (hwep->dir == TX) {
717 				hwreq->req.status = -EPROTO;
718 				break;
719 			}
720 		}
721 		/*
722 		 * As the hardware could still address the freed td
723 		 * which will run the udc unusable, the cleanup of the
724 		 * td has to be delayed by one.
725 		 */
726 		if (hwep->pending_td)
727 			free_pending_td(hwep);
728 
729 		hwep->pending_td = node;
730 		list_del_init(&node->td);
731 	}
732 
733 	usb_gadget_unmap_request_by_dev(hwep->ci->dev->parent,
734 					&hwreq->req, hwep->dir);
735 
736 	hwreq->req.actual += actual;
737 
738 	if (hwreq->req.status)
739 		return hwreq->req.status;
740 
741 	return hwreq->req.actual;
742 }
743 
744 /**
745  * _ep_nuke: dequeues all endpoint requests
746  * @hwep: endpoint
747  *
748  * This function returns an error code
749  * Caller must hold lock
750  */
751 static int _ep_nuke(struct ci_hw_ep *hwep)
752 __releases(hwep->lock)
753 __acquires(hwep->lock)
754 {
755 	struct td_node *node, *tmpnode;
756 	if (hwep == NULL)
757 		return -EINVAL;
758 
759 	hw_ep_flush(hwep->ci, hwep->num, hwep->dir);
760 
761 	while (!list_empty(&hwep->qh.queue)) {
762 
763 		/* pop oldest request */
764 		struct ci_hw_req *hwreq = list_entry(hwep->qh.queue.next,
765 						     struct ci_hw_req, queue);
766 
767 		list_for_each_entry_safe(node, tmpnode, &hwreq->tds, td) {
768 			dma_pool_free(hwep->td_pool, node->ptr, node->dma);
769 			list_del_init(&node->td);
770 			node->ptr = NULL;
771 			kfree(node);
772 		}
773 
774 		list_del_init(&hwreq->queue);
775 		hwreq->req.status = -ESHUTDOWN;
776 
777 		if (hwreq->req.complete != NULL) {
778 			spin_unlock(hwep->lock);
779 			usb_gadget_giveback_request(&hwep->ep, &hwreq->req);
780 			spin_lock(hwep->lock);
781 		}
782 	}
783 
784 	if (hwep->pending_td)
785 		free_pending_td(hwep);
786 
787 	return 0;
788 }
789 
790 static int _ep_set_halt(struct usb_ep *ep, int value, bool check_transfer)
791 {
792 	struct ci_hw_ep *hwep = container_of(ep, struct ci_hw_ep, ep);
793 	int direction, retval = 0;
794 	unsigned long flags;
795 
796 	if (ep == NULL || hwep->ep.desc == NULL)
797 		return -EINVAL;
798 
799 	if (usb_endpoint_xfer_isoc(hwep->ep.desc))
800 		return -EOPNOTSUPP;
801 
802 	spin_lock_irqsave(hwep->lock, flags);
803 
804 	if (value && hwep->dir == TX && check_transfer &&
805 		!list_empty(&hwep->qh.queue) &&
806 			!usb_endpoint_xfer_control(hwep->ep.desc)) {
807 		spin_unlock_irqrestore(hwep->lock, flags);
808 		return -EAGAIN;
809 	}
810 
811 	direction = hwep->dir;
812 	do {
813 		retval |= hw_ep_set_halt(hwep->ci, hwep->num, hwep->dir, value);
814 
815 		if (!value)
816 			hwep->wedge = 0;
817 
818 		if (hwep->type == USB_ENDPOINT_XFER_CONTROL)
819 			hwep->dir = (hwep->dir == TX) ? RX : TX;
820 
821 	} while (hwep->dir != direction);
822 
823 	spin_unlock_irqrestore(hwep->lock, flags);
824 	return retval;
825 }
826 
827 
828 /**
829  * _gadget_stop_activity: stops all USB activity, flushes & disables all endpts
830  * @gadget: gadget
831  *
832  * This function returns an error code
833  */
834 static int _gadget_stop_activity(struct usb_gadget *gadget)
835 {
836 	struct usb_ep *ep;
837 	struct ci_hdrc    *ci = container_of(gadget, struct ci_hdrc, gadget);
838 	unsigned long flags;
839 
840 	/* flush all endpoints */
841 	gadget_for_each_ep(ep, gadget) {
842 		usb_ep_fifo_flush(ep);
843 	}
844 	usb_ep_fifo_flush(&ci->ep0out->ep);
845 	usb_ep_fifo_flush(&ci->ep0in->ep);
846 
847 	/* make sure to disable all endpoints */
848 	gadget_for_each_ep(ep, gadget) {
849 		usb_ep_disable(ep);
850 	}
851 
852 	if (ci->status != NULL) {
853 		usb_ep_free_request(&ci->ep0in->ep, ci->status);
854 		ci->status = NULL;
855 	}
856 
857 	spin_lock_irqsave(&ci->lock, flags);
858 	ci->gadget.speed = USB_SPEED_UNKNOWN;
859 	ci->remote_wakeup = 0;
860 	ci->suspended = 0;
861 	spin_unlock_irqrestore(&ci->lock, flags);
862 
863 	return 0;
864 }
865 
866 /******************************************************************************
867  * ISR block
868  *****************************************************************************/
869 /**
870  * isr_reset_handler: USB reset interrupt handler
871  * @ci: UDC device
872  *
873  * This function resets USB engine after a bus reset occurred
874  */
875 static void isr_reset_handler(struct ci_hdrc *ci)
876 __releases(ci->lock)
877 __acquires(ci->lock)
878 {
879 	int retval;
880 	u32 intr;
881 
882 	spin_unlock(&ci->lock);
883 	if (ci->gadget.speed != USB_SPEED_UNKNOWN)
884 		usb_gadget_udc_reset(&ci->gadget, ci->driver);
885 
886 	retval = _gadget_stop_activity(&ci->gadget);
887 	if (retval)
888 		goto done;
889 
890 	retval = hw_usb_reset(ci);
891 	if (retval)
892 		goto done;
893 
894 	/* clear SLI */
895 	hw_write(ci, OP_USBSTS, USBi_SLI, USBi_SLI);
896 	intr = hw_read(ci, OP_USBINTR, ~0);
897 	hw_write(ci, OP_USBINTR, ~0, intr | USBi_SLI);
898 
899 	ci->status = usb_ep_alloc_request(&ci->ep0in->ep, GFP_ATOMIC);
900 	if (ci->status == NULL)
901 		retval = -ENOMEM;
902 
903 done:
904 	spin_lock(&ci->lock);
905 
906 	if (retval)
907 		dev_err(ci->dev, "error: %i\n", retval);
908 }
909 
910 /**
911  * isr_get_status_complete: get_status request complete function
912  * @ep:  endpoint
913  * @req: request handled
914  *
915  * Caller must release lock
916  */
917 static void isr_get_status_complete(struct usb_ep *ep, struct usb_request *req)
918 {
919 	if (ep == NULL || req == NULL)
920 		return;
921 
922 	kfree(req->buf);
923 	usb_ep_free_request(ep, req);
924 }
925 
926 /**
927  * _ep_queue: queues (submits) an I/O request to an endpoint
928  * @ep:        endpoint
929  * @req:       request
930  * @gfp_flags: GFP flags (not used)
931  *
932  * Caller must hold lock
933  * This function returns an error code
934  */
935 static int _ep_queue(struct usb_ep *ep, struct usb_request *req,
936 		    gfp_t __maybe_unused gfp_flags)
937 {
938 	struct ci_hw_ep  *hwep  = container_of(ep,  struct ci_hw_ep, ep);
939 	struct ci_hw_req *hwreq = container_of(req, struct ci_hw_req, req);
940 	struct ci_hdrc *ci = hwep->ci;
941 	int retval = 0;
942 
943 	if (ep == NULL || req == NULL || hwep->ep.desc == NULL)
944 		return -EINVAL;
945 
946 	if (hwep->type == USB_ENDPOINT_XFER_CONTROL) {
947 		if (req->length)
948 			hwep = (ci->ep0_dir == RX) ?
949 			       ci->ep0out : ci->ep0in;
950 		if (!list_empty(&hwep->qh.queue)) {
951 			_ep_nuke(hwep);
952 			dev_warn(hwep->ci->dev, "endpoint ctrl %X nuked\n",
953 				 _usb_addr(hwep));
954 		}
955 	}
956 
957 	if (usb_endpoint_xfer_isoc(hwep->ep.desc) &&
958 	    hwreq->req.length > hwep->ep.mult * hwep->ep.maxpacket) {
959 		dev_err(hwep->ci->dev, "request length too big for isochronous\n");
960 		return -EMSGSIZE;
961 	}
962 
963 	/* first nuke then test link, e.g. previous status has not sent */
964 	if (!list_empty(&hwreq->queue)) {
965 		dev_err(hwep->ci->dev, "request already in queue\n");
966 		return -EBUSY;
967 	}
968 
969 	/* push request */
970 	hwreq->req.status = -EINPROGRESS;
971 	hwreq->req.actual = 0;
972 
973 	retval = _hardware_enqueue(hwep, hwreq);
974 
975 	if (retval == -EALREADY)
976 		retval = 0;
977 	if (!retval)
978 		list_add_tail(&hwreq->queue, &hwep->qh.queue);
979 
980 	return retval;
981 }
982 
983 /**
984  * isr_get_status_response: get_status request response
985  * @ci: ci struct
986  * @setup: setup request packet
987  *
988  * This function returns an error code
989  */
990 static int isr_get_status_response(struct ci_hdrc *ci,
991 				   struct usb_ctrlrequest *setup)
992 __releases(hwep->lock)
993 __acquires(hwep->lock)
994 {
995 	struct ci_hw_ep *hwep = ci->ep0in;
996 	struct usb_request *req = NULL;
997 	gfp_t gfp_flags = GFP_ATOMIC;
998 	int dir, num, retval;
999 
1000 	if (hwep == NULL || setup == NULL)
1001 		return -EINVAL;
1002 
1003 	spin_unlock(hwep->lock);
1004 	req = usb_ep_alloc_request(&hwep->ep, gfp_flags);
1005 	spin_lock(hwep->lock);
1006 	if (req == NULL)
1007 		return -ENOMEM;
1008 
1009 	req->complete = isr_get_status_complete;
1010 	req->length   = 2;
1011 	req->buf      = kzalloc(req->length, gfp_flags);
1012 	if (req->buf == NULL) {
1013 		retval = -ENOMEM;
1014 		goto err_free_req;
1015 	}
1016 
1017 	if ((setup->bRequestType & USB_RECIP_MASK) == USB_RECIP_DEVICE) {
1018 		*(u16 *)req->buf = (ci->remote_wakeup << 1) |
1019 			ci->gadget.is_selfpowered;
1020 	} else if ((setup->bRequestType & USB_RECIP_MASK) \
1021 		   == USB_RECIP_ENDPOINT) {
1022 		dir = (le16_to_cpu(setup->wIndex) & USB_ENDPOINT_DIR_MASK) ?
1023 			TX : RX;
1024 		num =  le16_to_cpu(setup->wIndex) & USB_ENDPOINT_NUMBER_MASK;
1025 		*(u16 *)req->buf = hw_ep_get_halt(ci, num, dir);
1026 	}
1027 	/* else do nothing; reserved for future use */
1028 
1029 	retval = _ep_queue(&hwep->ep, req, gfp_flags);
1030 	if (retval)
1031 		goto err_free_buf;
1032 
1033 	return 0;
1034 
1035  err_free_buf:
1036 	kfree(req->buf);
1037  err_free_req:
1038 	spin_unlock(hwep->lock);
1039 	usb_ep_free_request(&hwep->ep, req);
1040 	spin_lock(hwep->lock);
1041 	return retval;
1042 }
1043 
1044 /**
1045  * isr_setup_status_complete: setup_status request complete function
1046  * @ep:  endpoint
1047  * @req: request handled
1048  *
1049  * Caller must release lock. Put the port in test mode if test mode
1050  * feature is selected.
1051  */
1052 static void
1053 isr_setup_status_complete(struct usb_ep *ep, struct usb_request *req)
1054 {
1055 	struct ci_hdrc *ci = req->context;
1056 	unsigned long flags;
1057 
1058 	if (req->status < 0)
1059 		return;
1060 
1061 	if (ci->setaddr) {
1062 		hw_usb_set_address(ci, ci->address);
1063 		ci->setaddr = false;
1064 		if (ci->address)
1065 			usb_gadget_set_state(&ci->gadget, USB_STATE_ADDRESS);
1066 	}
1067 
1068 	spin_lock_irqsave(&ci->lock, flags);
1069 	if (ci->test_mode)
1070 		hw_port_test_set(ci, ci->test_mode);
1071 	spin_unlock_irqrestore(&ci->lock, flags);
1072 }
1073 
1074 /**
1075  * isr_setup_status_phase: queues the status phase of a setup transation
1076  * @ci: ci struct
1077  *
1078  * This function returns an error code
1079  */
1080 static int isr_setup_status_phase(struct ci_hdrc *ci)
1081 {
1082 	struct ci_hw_ep *hwep;
1083 
1084 	/*
1085 	 * Unexpected USB controller behavior, caused by bad signal integrity
1086 	 * or ground reference problems, can lead to isr_setup_status_phase
1087 	 * being called with ci->status equal to NULL.
1088 	 * If this situation occurs, you should review your USB hardware design.
1089 	 */
1090 	if (WARN_ON_ONCE(!ci->status))
1091 		return -EPIPE;
1092 
1093 	hwep = (ci->ep0_dir == TX) ? ci->ep0out : ci->ep0in;
1094 	ci->status->context = ci;
1095 	ci->status->complete = isr_setup_status_complete;
1096 
1097 	return _ep_queue(&hwep->ep, ci->status, GFP_ATOMIC);
1098 }
1099 
1100 /**
1101  * isr_tr_complete_low: transaction complete low level handler
1102  * @hwep: endpoint
1103  *
1104  * This function returns an error code
1105  * Caller must hold lock
1106  */
1107 static int isr_tr_complete_low(struct ci_hw_ep *hwep)
1108 __releases(hwep->lock)
1109 __acquires(hwep->lock)
1110 {
1111 	struct ci_hw_req *hwreq, *hwreqtemp;
1112 	struct ci_hw_ep *hweptemp = hwep;
1113 	int retval = 0;
1114 
1115 	list_for_each_entry_safe(hwreq, hwreqtemp, &hwep->qh.queue,
1116 			queue) {
1117 		retval = _hardware_dequeue(hwep, hwreq);
1118 		if (retval < 0)
1119 			break;
1120 		list_del_init(&hwreq->queue);
1121 		if (hwreq->req.complete != NULL) {
1122 			spin_unlock(hwep->lock);
1123 			if ((hwep->type == USB_ENDPOINT_XFER_CONTROL) &&
1124 					hwreq->req.length)
1125 				hweptemp = hwep->ci->ep0in;
1126 			usb_gadget_giveback_request(&hweptemp->ep, &hwreq->req);
1127 			spin_lock(hwep->lock);
1128 		}
1129 	}
1130 
1131 	if (retval == -EBUSY)
1132 		retval = 0;
1133 
1134 	return retval;
1135 }
1136 
1137 static int otg_a_alt_hnp_support(struct ci_hdrc *ci)
1138 {
1139 	dev_warn(&ci->gadget.dev,
1140 		"connect the device to an alternate port if you want HNP\n");
1141 	return isr_setup_status_phase(ci);
1142 }
1143 
1144 /**
1145  * isr_setup_packet_handler: setup packet handler
1146  * @ci: UDC descriptor
1147  *
1148  * This function handles setup packet
1149  */
1150 static void isr_setup_packet_handler(struct ci_hdrc *ci)
1151 __releases(ci->lock)
1152 __acquires(ci->lock)
1153 {
1154 	struct ci_hw_ep *hwep = &ci->ci_hw_ep[0];
1155 	struct usb_ctrlrequest req;
1156 	int type, num, dir, err = -EINVAL;
1157 	u8 tmode = 0;
1158 
1159 	/*
1160 	 * Flush data and handshake transactions of previous
1161 	 * setup packet.
1162 	 */
1163 	_ep_nuke(ci->ep0out);
1164 	_ep_nuke(ci->ep0in);
1165 
1166 	/* read_setup_packet */
1167 	do {
1168 		hw_test_and_set_setup_guard(ci);
1169 		memcpy(&req, &hwep->qh.ptr->setup, sizeof(req));
1170 	} while (!hw_test_and_clear_setup_guard(ci));
1171 
1172 	type = req.bRequestType;
1173 
1174 	ci->ep0_dir = (type & USB_DIR_IN) ? TX : RX;
1175 
1176 	switch (req.bRequest) {
1177 	case USB_REQ_CLEAR_FEATURE:
1178 		if (type == (USB_DIR_OUT|USB_RECIP_ENDPOINT) &&
1179 				le16_to_cpu(req.wValue) ==
1180 				USB_ENDPOINT_HALT) {
1181 			if (req.wLength != 0)
1182 				break;
1183 			num  = le16_to_cpu(req.wIndex);
1184 			dir = (num & USB_ENDPOINT_DIR_MASK) ? TX : RX;
1185 			num &= USB_ENDPOINT_NUMBER_MASK;
1186 			if (dir == TX)
1187 				num += ci->hw_ep_max / 2;
1188 			if (!ci->ci_hw_ep[num].wedge) {
1189 				spin_unlock(&ci->lock);
1190 				err = usb_ep_clear_halt(
1191 					&ci->ci_hw_ep[num].ep);
1192 				spin_lock(&ci->lock);
1193 				if (err)
1194 					break;
1195 			}
1196 			err = isr_setup_status_phase(ci);
1197 		} else if (type == (USB_DIR_OUT|USB_RECIP_DEVICE) &&
1198 				le16_to_cpu(req.wValue) ==
1199 				USB_DEVICE_REMOTE_WAKEUP) {
1200 			if (req.wLength != 0)
1201 				break;
1202 			ci->remote_wakeup = 0;
1203 			err = isr_setup_status_phase(ci);
1204 		} else {
1205 			goto delegate;
1206 		}
1207 		break;
1208 	case USB_REQ_GET_STATUS:
1209 		if ((type != (USB_DIR_IN|USB_RECIP_DEVICE) ||
1210 			le16_to_cpu(req.wIndex) == OTG_STS_SELECTOR) &&
1211 		    type != (USB_DIR_IN|USB_RECIP_ENDPOINT) &&
1212 		    type != (USB_DIR_IN|USB_RECIP_INTERFACE))
1213 			goto delegate;
1214 		if (le16_to_cpu(req.wLength) != 2 ||
1215 		    le16_to_cpu(req.wValue)  != 0)
1216 			break;
1217 		err = isr_get_status_response(ci, &req);
1218 		break;
1219 	case USB_REQ_SET_ADDRESS:
1220 		if (type != (USB_DIR_OUT|USB_RECIP_DEVICE))
1221 			goto delegate;
1222 		if (le16_to_cpu(req.wLength) != 0 ||
1223 		    le16_to_cpu(req.wIndex)  != 0)
1224 			break;
1225 		ci->address = (u8)le16_to_cpu(req.wValue);
1226 		ci->setaddr = true;
1227 		err = isr_setup_status_phase(ci);
1228 		break;
1229 	case USB_REQ_SET_FEATURE:
1230 		if (type == (USB_DIR_OUT|USB_RECIP_ENDPOINT) &&
1231 				le16_to_cpu(req.wValue) ==
1232 				USB_ENDPOINT_HALT) {
1233 			if (req.wLength != 0)
1234 				break;
1235 			num  = le16_to_cpu(req.wIndex);
1236 			dir = (num & USB_ENDPOINT_DIR_MASK) ? TX : RX;
1237 			num &= USB_ENDPOINT_NUMBER_MASK;
1238 			if (dir == TX)
1239 				num += ci->hw_ep_max / 2;
1240 
1241 			spin_unlock(&ci->lock);
1242 			err = _ep_set_halt(&ci->ci_hw_ep[num].ep, 1, false);
1243 			spin_lock(&ci->lock);
1244 			if (!err)
1245 				isr_setup_status_phase(ci);
1246 		} else if (type == (USB_DIR_OUT|USB_RECIP_DEVICE)) {
1247 			if (req.wLength != 0)
1248 				break;
1249 			switch (le16_to_cpu(req.wValue)) {
1250 			case USB_DEVICE_REMOTE_WAKEUP:
1251 				ci->remote_wakeup = 1;
1252 				err = isr_setup_status_phase(ci);
1253 				break;
1254 			case USB_DEVICE_TEST_MODE:
1255 				tmode = le16_to_cpu(req.wIndex) >> 8;
1256 				switch (tmode) {
1257 				case USB_TEST_J:
1258 				case USB_TEST_K:
1259 				case USB_TEST_SE0_NAK:
1260 				case USB_TEST_PACKET:
1261 				case USB_TEST_FORCE_ENABLE:
1262 					ci->test_mode = tmode;
1263 					err = isr_setup_status_phase(
1264 							ci);
1265 					break;
1266 				default:
1267 					break;
1268 				}
1269 				break;
1270 			case USB_DEVICE_B_HNP_ENABLE:
1271 				if (ci_otg_is_fsm_mode(ci)) {
1272 					ci->gadget.b_hnp_enable = 1;
1273 					err = isr_setup_status_phase(
1274 							ci);
1275 				}
1276 				break;
1277 			case USB_DEVICE_A_ALT_HNP_SUPPORT:
1278 				if (ci_otg_is_fsm_mode(ci))
1279 					err = otg_a_alt_hnp_support(ci);
1280 				break;
1281 			case USB_DEVICE_A_HNP_SUPPORT:
1282 				if (ci_otg_is_fsm_mode(ci)) {
1283 					ci->gadget.a_hnp_support = 1;
1284 					err = isr_setup_status_phase(
1285 							ci);
1286 				}
1287 				break;
1288 			default:
1289 				goto delegate;
1290 			}
1291 		} else {
1292 			goto delegate;
1293 		}
1294 		break;
1295 	default:
1296 delegate:
1297 		if (req.wLength == 0)   /* no data phase */
1298 			ci->ep0_dir = TX;
1299 
1300 		spin_unlock(&ci->lock);
1301 		err = ci->driver->setup(&ci->gadget, &req);
1302 		spin_lock(&ci->lock);
1303 		break;
1304 	}
1305 
1306 	if (err < 0) {
1307 		spin_unlock(&ci->lock);
1308 		if (_ep_set_halt(&hwep->ep, 1, false))
1309 			dev_err(ci->dev, "error: _ep_set_halt\n");
1310 		spin_lock(&ci->lock);
1311 	}
1312 }
1313 
1314 /**
1315  * isr_tr_complete_handler: transaction complete interrupt handler
1316  * @ci: UDC descriptor
1317  *
1318  * This function handles traffic events
1319  */
1320 static void isr_tr_complete_handler(struct ci_hdrc *ci)
1321 __releases(ci->lock)
1322 __acquires(ci->lock)
1323 {
1324 	unsigned i;
1325 	int err;
1326 
1327 	for (i = 0; i < ci->hw_ep_max; i++) {
1328 		struct ci_hw_ep *hwep  = &ci->ci_hw_ep[i];
1329 
1330 		if (hwep->ep.desc == NULL)
1331 			continue;   /* not configured */
1332 
1333 		if (hw_test_and_clear_complete(ci, i)) {
1334 			err = isr_tr_complete_low(hwep);
1335 			if (hwep->type == USB_ENDPOINT_XFER_CONTROL) {
1336 				if (err > 0)   /* needs status phase */
1337 					err = isr_setup_status_phase(ci);
1338 				if (err < 0) {
1339 					spin_unlock(&ci->lock);
1340 					if (_ep_set_halt(&hwep->ep, 1, false))
1341 						dev_err(ci->dev,
1342 						"error: _ep_set_halt\n");
1343 					spin_lock(&ci->lock);
1344 				}
1345 			}
1346 		}
1347 
1348 		/* Only handle setup packet below */
1349 		if (i == 0 &&
1350 			hw_test_and_clear(ci, OP_ENDPTSETUPSTAT, BIT(0)))
1351 			isr_setup_packet_handler(ci);
1352 	}
1353 }
1354 
1355 /******************************************************************************
1356  * ENDPT block
1357  *****************************************************************************/
1358 /*
1359  * ep_enable: configure endpoint, making it usable
1360  *
1361  * Check usb_ep_enable() at "usb_gadget.h" for details
1362  */
1363 static int ep_enable(struct usb_ep *ep,
1364 		     const struct usb_endpoint_descriptor *desc)
1365 {
1366 	struct ci_hw_ep *hwep = container_of(ep, struct ci_hw_ep, ep);
1367 	int retval = 0;
1368 	unsigned long flags;
1369 	u32 cap = 0;
1370 
1371 	if (ep == NULL || desc == NULL)
1372 		return -EINVAL;
1373 
1374 	spin_lock_irqsave(hwep->lock, flags);
1375 
1376 	/* only internal SW should enable ctrl endpts */
1377 
1378 	if (!list_empty(&hwep->qh.queue)) {
1379 		dev_warn(hwep->ci->dev, "enabling a non-empty endpoint!\n");
1380 		spin_unlock_irqrestore(hwep->lock, flags);
1381 		return -EBUSY;
1382 	}
1383 
1384 	hwep->ep.desc = desc;
1385 
1386 	hwep->dir  = usb_endpoint_dir_in(desc) ? TX : RX;
1387 	hwep->num  = usb_endpoint_num(desc);
1388 	hwep->type = usb_endpoint_type(desc);
1389 
1390 	hwep->ep.maxpacket = usb_endpoint_maxp(desc);
1391 	hwep->ep.mult = usb_endpoint_maxp_mult(desc);
1392 
1393 	if (hwep->type == USB_ENDPOINT_XFER_CONTROL)
1394 		cap |= QH_IOS;
1395 
1396 	cap |= QH_ZLT;
1397 	cap |= (hwep->ep.maxpacket << __ffs(QH_MAX_PKT)) & QH_MAX_PKT;
1398 	/*
1399 	 * For ISO-TX, we set mult at QH as the largest value, and use
1400 	 * MultO at TD as real mult value.
1401 	 */
1402 	if (hwep->type == USB_ENDPOINT_XFER_ISOC && hwep->dir == TX)
1403 		cap |= 3 << __ffs(QH_MULT);
1404 
1405 	hwep->qh.ptr->cap = cpu_to_le32(cap);
1406 
1407 	hwep->qh.ptr->td.next |= cpu_to_le32(TD_TERMINATE);   /* needed? */
1408 
1409 	if (hwep->num != 0 && hwep->type == USB_ENDPOINT_XFER_CONTROL) {
1410 		dev_err(hwep->ci->dev, "Set control xfer at non-ep0\n");
1411 		retval = -EINVAL;
1412 	}
1413 
1414 	/*
1415 	 * Enable endpoints in the HW other than ep0 as ep0
1416 	 * is always enabled
1417 	 */
1418 	if (hwep->num)
1419 		retval |= hw_ep_enable(hwep->ci, hwep->num, hwep->dir,
1420 				       hwep->type);
1421 
1422 	spin_unlock_irqrestore(hwep->lock, flags);
1423 	return retval;
1424 }
1425 
1426 /*
1427  * ep_disable: endpoint is no longer usable
1428  *
1429  * Check usb_ep_disable() at "usb_gadget.h" for details
1430  */
1431 static int ep_disable(struct usb_ep *ep)
1432 {
1433 	struct ci_hw_ep *hwep = container_of(ep, struct ci_hw_ep, ep);
1434 	int direction, retval = 0;
1435 	unsigned long flags;
1436 
1437 	if (ep == NULL)
1438 		return -EINVAL;
1439 	else if (hwep->ep.desc == NULL)
1440 		return -EBUSY;
1441 
1442 	spin_lock_irqsave(hwep->lock, flags);
1443 	if (hwep->ci->gadget.speed == USB_SPEED_UNKNOWN) {
1444 		spin_unlock_irqrestore(hwep->lock, flags);
1445 		return 0;
1446 	}
1447 
1448 	/* only internal SW should disable ctrl endpts */
1449 
1450 	direction = hwep->dir;
1451 	do {
1452 		retval |= _ep_nuke(hwep);
1453 		retval |= hw_ep_disable(hwep->ci, hwep->num, hwep->dir);
1454 
1455 		if (hwep->type == USB_ENDPOINT_XFER_CONTROL)
1456 			hwep->dir = (hwep->dir == TX) ? RX : TX;
1457 
1458 	} while (hwep->dir != direction);
1459 
1460 	hwep->ep.desc = NULL;
1461 
1462 	spin_unlock_irqrestore(hwep->lock, flags);
1463 	return retval;
1464 }
1465 
1466 /*
1467  * ep_alloc_request: allocate a request object to use with this endpoint
1468  *
1469  * Check usb_ep_alloc_request() at "usb_gadget.h" for details
1470  */
1471 static struct usb_request *ep_alloc_request(struct usb_ep *ep, gfp_t gfp_flags)
1472 {
1473 	struct ci_hw_req *hwreq;
1474 
1475 	if (ep == NULL)
1476 		return NULL;
1477 
1478 	hwreq = kzalloc(sizeof(struct ci_hw_req), gfp_flags);
1479 	if (hwreq != NULL) {
1480 		INIT_LIST_HEAD(&hwreq->queue);
1481 		INIT_LIST_HEAD(&hwreq->tds);
1482 	}
1483 
1484 	return (hwreq == NULL) ? NULL : &hwreq->req;
1485 }
1486 
1487 /*
1488  * ep_free_request: frees a request object
1489  *
1490  * Check usb_ep_free_request() at "usb_gadget.h" for details
1491  */
1492 static void ep_free_request(struct usb_ep *ep, struct usb_request *req)
1493 {
1494 	struct ci_hw_ep  *hwep  = container_of(ep,  struct ci_hw_ep, ep);
1495 	struct ci_hw_req *hwreq = container_of(req, struct ci_hw_req, req);
1496 	struct td_node *node, *tmpnode;
1497 	unsigned long flags;
1498 
1499 	if (ep == NULL || req == NULL) {
1500 		return;
1501 	} else if (!list_empty(&hwreq->queue)) {
1502 		dev_err(hwep->ci->dev, "freeing queued request\n");
1503 		return;
1504 	}
1505 
1506 	spin_lock_irqsave(hwep->lock, flags);
1507 
1508 	list_for_each_entry_safe(node, tmpnode, &hwreq->tds, td) {
1509 		dma_pool_free(hwep->td_pool, node->ptr, node->dma);
1510 		list_del_init(&node->td);
1511 		node->ptr = NULL;
1512 		kfree(node);
1513 	}
1514 
1515 	kfree(hwreq);
1516 
1517 	spin_unlock_irqrestore(hwep->lock, flags);
1518 }
1519 
1520 /*
1521  * ep_queue: queues (submits) an I/O request to an endpoint
1522  *
1523  * Check usb_ep_queue()* at usb_gadget.h" for details
1524  */
1525 static int ep_queue(struct usb_ep *ep, struct usb_request *req,
1526 		    gfp_t __maybe_unused gfp_flags)
1527 {
1528 	struct ci_hw_ep  *hwep  = container_of(ep,  struct ci_hw_ep, ep);
1529 	int retval = 0;
1530 	unsigned long flags;
1531 
1532 	if (ep == NULL || req == NULL || hwep->ep.desc == NULL)
1533 		return -EINVAL;
1534 
1535 	spin_lock_irqsave(hwep->lock, flags);
1536 	if (hwep->ci->gadget.speed == USB_SPEED_UNKNOWN) {
1537 		spin_unlock_irqrestore(hwep->lock, flags);
1538 		return 0;
1539 	}
1540 	retval = _ep_queue(ep, req, gfp_flags);
1541 	spin_unlock_irqrestore(hwep->lock, flags);
1542 	return retval;
1543 }
1544 
1545 /*
1546  * ep_dequeue: dequeues (cancels, unlinks) an I/O request from an endpoint
1547  *
1548  * Check usb_ep_dequeue() at "usb_gadget.h" for details
1549  */
1550 static int ep_dequeue(struct usb_ep *ep, struct usb_request *req)
1551 {
1552 	struct ci_hw_ep  *hwep  = container_of(ep,  struct ci_hw_ep, ep);
1553 	struct ci_hw_req *hwreq = container_of(req, struct ci_hw_req, req);
1554 	unsigned long flags;
1555 	struct td_node *node, *tmpnode;
1556 
1557 	if (ep == NULL || req == NULL || hwreq->req.status != -EALREADY ||
1558 		hwep->ep.desc == NULL || list_empty(&hwreq->queue) ||
1559 		list_empty(&hwep->qh.queue))
1560 		return -EINVAL;
1561 
1562 	spin_lock_irqsave(hwep->lock, flags);
1563 	if (hwep->ci->gadget.speed != USB_SPEED_UNKNOWN)
1564 		hw_ep_flush(hwep->ci, hwep->num, hwep->dir);
1565 
1566 	list_for_each_entry_safe(node, tmpnode, &hwreq->tds, td) {
1567 		dma_pool_free(hwep->td_pool, node->ptr, node->dma);
1568 		list_del(&node->td);
1569 		kfree(node);
1570 	}
1571 
1572 	/* pop request */
1573 	list_del_init(&hwreq->queue);
1574 
1575 	usb_gadget_unmap_request(&hwep->ci->gadget, req, hwep->dir);
1576 
1577 	req->status = -ECONNRESET;
1578 
1579 	if (hwreq->req.complete != NULL) {
1580 		spin_unlock(hwep->lock);
1581 		usb_gadget_giveback_request(&hwep->ep, &hwreq->req);
1582 		spin_lock(hwep->lock);
1583 	}
1584 
1585 	spin_unlock_irqrestore(hwep->lock, flags);
1586 	return 0;
1587 }
1588 
1589 /*
1590  * ep_set_halt: sets the endpoint halt feature
1591  *
1592  * Check usb_ep_set_halt() at "usb_gadget.h" for details
1593  */
1594 static int ep_set_halt(struct usb_ep *ep, int value)
1595 {
1596 	return _ep_set_halt(ep, value, true);
1597 }
1598 
1599 /*
1600  * ep_set_wedge: sets the halt feature and ignores clear requests
1601  *
1602  * Check usb_ep_set_wedge() at "usb_gadget.h" for details
1603  */
1604 static int ep_set_wedge(struct usb_ep *ep)
1605 {
1606 	struct ci_hw_ep *hwep = container_of(ep, struct ci_hw_ep, ep);
1607 	unsigned long flags;
1608 
1609 	if (ep == NULL || hwep->ep.desc == NULL)
1610 		return -EINVAL;
1611 
1612 	spin_lock_irqsave(hwep->lock, flags);
1613 	hwep->wedge = 1;
1614 	spin_unlock_irqrestore(hwep->lock, flags);
1615 
1616 	return usb_ep_set_halt(ep);
1617 }
1618 
1619 /*
1620  * ep_fifo_flush: flushes contents of a fifo
1621  *
1622  * Check usb_ep_fifo_flush() at "usb_gadget.h" for details
1623  */
1624 static void ep_fifo_flush(struct usb_ep *ep)
1625 {
1626 	struct ci_hw_ep *hwep = container_of(ep, struct ci_hw_ep, ep);
1627 	unsigned long flags;
1628 
1629 	if (ep == NULL) {
1630 		dev_err(hwep->ci->dev, "%02X: -EINVAL\n", _usb_addr(hwep));
1631 		return;
1632 	}
1633 
1634 	spin_lock_irqsave(hwep->lock, flags);
1635 	if (hwep->ci->gadget.speed == USB_SPEED_UNKNOWN) {
1636 		spin_unlock_irqrestore(hwep->lock, flags);
1637 		return;
1638 	}
1639 
1640 	hw_ep_flush(hwep->ci, hwep->num, hwep->dir);
1641 
1642 	spin_unlock_irqrestore(hwep->lock, flags);
1643 }
1644 
1645 /*
1646  * Endpoint-specific part of the API to the USB controller hardware
1647  * Check "usb_gadget.h" for details
1648  */
1649 static const struct usb_ep_ops usb_ep_ops = {
1650 	.enable	       = ep_enable,
1651 	.disable       = ep_disable,
1652 	.alloc_request = ep_alloc_request,
1653 	.free_request  = ep_free_request,
1654 	.queue	       = ep_queue,
1655 	.dequeue       = ep_dequeue,
1656 	.set_halt      = ep_set_halt,
1657 	.set_wedge     = ep_set_wedge,
1658 	.fifo_flush    = ep_fifo_flush,
1659 };
1660 
1661 /******************************************************************************
1662  * GADGET block
1663  *****************************************************************************/
1664 
1665 static int ci_udc_get_frame(struct usb_gadget *_gadget)
1666 {
1667 	struct ci_hdrc *ci = container_of(_gadget, struct ci_hdrc, gadget);
1668 	unsigned long flags;
1669 	int ret;
1670 
1671 	spin_lock_irqsave(&ci->lock, flags);
1672 	ret = hw_read(ci, OP_FRINDEX, 0x3fff);
1673 	spin_unlock_irqrestore(&ci->lock, flags);
1674 	return ret >> 3;
1675 }
1676 
1677 /*
1678  * ci_hdrc_gadget_connect: caller makes sure gadget driver is binded
1679  */
1680 static void ci_hdrc_gadget_connect(struct usb_gadget *_gadget, int is_active)
1681 {
1682 	struct ci_hdrc *ci = container_of(_gadget, struct ci_hdrc, gadget);
1683 
1684 	if (is_active) {
1685 		pm_runtime_get_sync(ci->dev);
1686 		hw_device_reset(ci);
1687 		spin_lock_irq(&ci->lock);
1688 		if (ci->driver) {
1689 			hw_device_state(ci, ci->ep0out->qh.dma);
1690 			usb_gadget_set_state(_gadget, USB_STATE_POWERED);
1691 			spin_unlock_irq(&ci->lock);
1692 			usb_udc_vbus_handler(_gadget, true);
1693 		} else {
1694 			spin_unlock_irq(&ci->lock);
1695 		}
1696 	} else {
1697 		usb_udc_vbus_handler(_gadget, false);
1698 		if (ci->driver)
1699 			ci->driver->disconnect(&ci->gadget);
1700 		hw_device_state(ci, 0);
1701 		if (ci->platdata->notify_event)
1702 			ci->platdata->notify_event(ci,
1703 			CI_HDRC_CONTROLLER_STOPPED_EVENT);
1704 		_gadget_stop_activity(&ci->gadget);
1705 		pm_runtime_put_sync(ci->dev);
1706 		usb_gadget_set_state(_gadget, USB_STATE_NOTATTACHED);
1707 	}
1708 }
1709 
1710 static int ci_udc_vbus_session(struct usb_gadget *_gadget, int is_active)
1711 {
1712 	struct ci_hdrc *ci = container_of(_gadget, struct ci_hdrc, gadget);
1713 	unsigned long flags;
1714 	int ret = 0;
1715 
1716 	spin_lock_irqsave(&ci->lock, flags);
1717 	ci->vbus_active = is_active;
1718 	spin_unlock_irqrestore(&ci->lock, flags);
1719 
1720 	if (ci->usb_phy)
1721 		usb_phy_set_charger_state(ci->usb_phy, is_active ?
1722 			USB_CHARGER_PRESENT : USB_CHARGER_ABSENT);
1723 
1724 	if (ci->platdata->notify_event)
1725 		ret = ci->platdata->notify_event(ci,
1726 				CI_HDRC_CONTROLLER_VBUS_EVENT);
1727 
1728 	if (ci->usb_phy) {
1729 		if (is_active)
1730 			usb_phy_set_event(ci->usb_phy, USB_EVENT_VBUS);
1731 		else
1732 			usb_phy_set_event(ci->usb_phy, USB_EVENT_NONE);
1733 	}
1734 
1735 	if (ci->driver)
1736 		ci_hdrc_gadget_connect(_gadget, is_active);
1737 
1738 	return ret;
1739 }
1740 
1741 static int ci_udc_wakeup(struct usb_gadget *_gadget)
1742 {
1743 	struct ci_hdrc *ci = container_of(_gadget, struct ci_hdrc, gadget);
1744 	unsigned long flags;
1745 	int ret = 0;
1746 
1747 	spin_lock_irqsave(&ci->lock, flags);
1748 	if (ci->gadget.speed == USB_SPEED_UNKNOWN) {
1749 		spin_unlock_irqrestore(&ci->lock, flags);
1750 		return 0;
1751 	}
1752 	if (!ci->remote_wakeup) {
1753 		ret = -EOPNOTSUPP;
1754 		goto out;
1755 	}
1756 	if (!hw_read(ci, OP_PORTSC, PORTSC_SUSP)) {
1757 		ret = -EINVAL;
1758 		goto out;
1759 	}
1760 	hw_write(ci, OP_PORTSC, PORTSC_FPR, PORTSC_FPR);
1761 out:
1762 	spin_unlock_irqrestore(&ci->lock, flags);
1763 	return ret;
1764 }
1765 
1766 static int ci_udc_vbus_draw(struct usb_gadget *_gadget, unsigned ma)
1767 {
1768 	struct ci_hdrc *ci = container_of(_gadget, struct ci_hdrc, gadget);
1769 
1770 	if (ci->usb_phy)
1771 		return usb_phy_set_power(ci->usb_phy, ma);
1772 	return -ENOTSUPP;
1773 }
1774 
1775 static int ci_udc_selfpowered(struct usb_gadget *_gadget, int is_on)
1776 {
1777 	struct ci_hdrc *ci = container_of(_gadget, struct ci_hdrc, gadget);
1778 	struct ci_hw_ep *hwep = ci->ep0in;
1779 	unsigned long flags;
1780 
1781 	spin_lock_irqsave(hwep->lock, flags);
1782 	_gadget->is_selfpowered = (is_on != 0);
1783 	spin_unlock_irqrestore(hwep->lock, flags);
1784 
1785 	return 0;
1786 }
1787 
1788 /* Change Data+ pullup status
1789  * this func is used by usb_gadget_connect/disconnect
1790  */
1791 static int ci_udc_pullup(struct usb_gadget *_gadget, int is_on)
1792 {
1793 	struct ci_hdrc *ci = container_of(_gadget, struct ci_hdrc, gadget);
1794 
1795 	/*
1796 	 * Data+ pullup controlled by OTG state machine in OTG fsm mode;
1797 	 * and don't touch Data+ in host mode for dual role config.
1798 	 */
1799 	if (ci_otg_is_fsm_mode(ci) || ci->role == CI_ROLE_HOST)
1800 		return 0;
1801 
1802 	pm_runtime_get_sync(ci->dev);
1803 	if (is_on)
1804 		hw_write(ci, OP_USBCMD, USBCMD_RS, USBCMD_RS);
1805 	else
1806 		hw_write(ci, OP_USBCMD, USBCMD_RS, 0);
1807 	pm_runtime_put_sync(ci->dev);
1808 
1809 	return 0;
1810 }
1811 
1812 static int ci_udc_start(struct usb_gadget *gadget,
1813 			 struct usb_gadget_driver *driver);
1814 static int ci_udc_stop(struct usb_gadget *gadget);
1815 
1816 /* Match ISOC IN from the highest endpoint */
1817 static struct usb_ep *ci_udc_match_ep(struct usb_gadget *gadget,
1818 			      struct usb_endpoint_descriptor *desc,
1819 			      struct usb_ss_ep_comp_descriptor *comp_desc)
1820 {
1821 	struct ci_hdrc *ci = container_of(gadget, struct ci_hdrc, gadget);
1822 	struct usb_ep *ep;
1823 
1824 	if (usb_endpoint_xfer_isoc(desc) && usb_endpoint_dir_in(desc)) {
1825 		list_for_each_entry_reverse(ep, &ci->gadget.ep_list, ep_list) {
1826 			if (ep->caps.dir_in && !ep->claimed)
1827 				return ep;
1828 		}
1829 	}
1830 
1831 	return NULL;
1832 }
1833 
1834 /*
1835  * Device operations part of the API to the USB controller hardware,
1836  * which don't involve endpoints (or i/o)
1837  * Check  "usb_gadget.h" for details
1838  */
1839 static const struct usb_gadget_ops usb_gadget_ops = {
1840 	.get_frame	= ci_udc_get_frame,
1841 	.vbus_session	= ci_udc_vbus_session,
1842 	.wakeup		= ci_udc_wakeup,
1843 	.set_selfpowered	= ci_udc_selfpowered,
1844 	.pullup		= ci_udc_pullup,
1845 	.vbus_draw	= ci_udc_vbus_draw,
1846 	.udc_start	= ci_udc_start,
1847 	.udc_stop	= ci_udc_stop,
1848 	.match_ep 	= ci_udc_match_ep,
1849 };
1850 
1851 static int init_eps(struct ci_hdrc *ci)
1852 {
1853 	int retval = 0, i, j;
1854 
1855 	for (i = 0; i < ci->hw_ep_max/2; i++)
1856 		for (j = RX; j <= TX; j++) {
1857 			int k = i + j * ci->hw_ep_max/2;
1858 			struct ci_hw_ep *hwep = &ci->ci_hw_ep[k];
1859 
1860 			scnprintf(hwep->name, sizeof(hwep->name), "ep%i%s", i,
1861 					(j == TX)  ? "in" : "out");
1862 
1863 			hwep->ci          = ci;
1864 			hwep->lock         = &ci->lock;
1865 			hwep->td_pool      = ci->td_pool;
1866 
1867 			hwep->ep.name      = hwep->name;
1868 			hwep->ep.ops       = &usb_ep_ops;
1869 
1870 			if (i == 0) {
1871 				hwep->ep.caps.type_control = true;
1872 			} else {
1873 				hwep->ep.caps.type_iso = true;
1874 				hwep->ep.caps.type_bulk = true;
1875 				hwep->ep.caps.type_int = true;
1876 			}
1877 
1878 			if (j == TX)
1879 				hwep->ep.caps.dir_in = true;
1880 			else
1881 				hwep->ep.caps.dir_out = true;
1882 
1883 			/*
1884 			 * for ep0: maxP defined in desc, for other
1885 			 * eps, maxP is set by epautoconfig() called
1886 			 * by gadget layer
1887 			 */
1888 			usb_ep_set_maxpacket_limit(&hwep->ep, (unsigned short)~0);
1889 
1890 			INIT_LIST_HEAD(&hwep->qh.queue);
1891 			hwep->qh.ptr = dma_pool_zalloc(ci->qh_pool, GFP_KERNEL,
1892 						       &hwep->qh.dma);
1893 			if (hwep->qh.ptr == NULL)
1894 				retval = -ENOMEM;
1895 
1896 			/*
1897 			 * set up shorthands for ep0 out and in endpoints,
1898 			 * don't add to gadget's ep_list
1899 			 */
1900 			if (i == 0) {
1901 				if (j == RX)
1902 					ci->ep0out = hwep;
1903 				else
1904 					ci->ep0in = hwep;
1905 
1906 				usb_ep_set_maxpacket_limit(&hwep->ep, CTRL_PAYLOAD_MAX);
1907 				continue;
1908 			}
1909 
1910 			list_add_tail(&hwep->ep.ep_list, &ci->gadget.ep_list);
1911 		}
1912 
1913 	return retval;
1914 }
1915 
1916 static void destroy_eps(struct ci_hdrc *ci)
1917 {
1918 	int i;
1919 
1920 	for (i = 0; i < ci->hw_ep_max; i++) {
1921 		struct ci_hw_ep *hwep = &ci->ci_hw_ep[i];
1922 
1923 		if (hwep->pending_td)
1924 			free_pending_td(hwep);
1925 		dma_pool_free(ci->qh_pool, hwep->qh.ptr, hwep->qh.dma);
1926 	}
1927 }
1928 
1929 /**
1930  * ci_udc_start: register a gadget driver
1931  * @gadget: our gadget
1932  * @driver: the driver being registered
1933  *
1934  * Interrupts are enabled here.
1935  */
1936 static int ci_udc_start(struct usb_gadget *gadget,
1937 			 struct usb_gadget_driver *driver)
1938 {
1939 	struct ci_hdrc *ci = container_of(gadget, struct ci_hdrc, gadget);
1940 	int retval;
1941 
1942 	if (driver->disconnect == NULL)
1943 		return -EINVAL;
1944 
1945 	ci->ep0out->ep.desc = &ctrl_endpt_out_desc;
1946 	retval = usb_ep_enable(&ci->ep0out->ep);
1947 	if (retval)
1948 		return retval;
1949 
1950 	ci->ep0in->ep.desc = &ctrl_endpt_in_desc;
1951 	retval = usb_ep_enable(&ci->ep0in->ep);
1952 	if (retval)
1953 		return retval;
1954 
1955 	ci->driver = driver;
1956 
1957 	/* Start otg fsm for B-device */
1958 	if (ci_otg_is_fsm_mode(ci) && ci->fsm.id) {
1959 		ci_hdrc_otg_fsm_start(ci);
1960 		return retval;
1961 	}
1962 
1963 	if (ci->vbus_active)
1964 		ci_hdrc_gadget_connect(gadget, 1);
1965 	else
1966 		usb_udc_vbus_handler(&ci->gadget, false);
1967 
1968 	return retval;
1969 }
1970 
1971 static void ci_udc_stop_for_otg_fsm(struct ci_hdrc *ci)
1972 {
1973 	if (!ci_otg_is_fsm_mode(ci))
1974 		return;
1975 
1976 	mutex_lock(&ci->fsm.lock);
1977 	if (ci->fsm.otg->state == OTG_STATE_A_PERIPHERAL) {
1978 		ci->fsm.a_bidl_adis_tmout = 1;
1979 		ci_hdrc_otg_fsm_start(ci);
1980 	} else if (ci->fsm.otg->state == OTG_STATE_B_PERIPHERAL) {
1981 		ci->fsm.protocol = PROTO_UNDEF;
1982 		ci->fsm.otg->state = OTG_STATE_UNDEFINED;
1983 	}
1984 	mutex_unlock(&ci->fsm.lock);
1985 }
1986 
1987 /*
1988  * ci_udc_stop: unregister a gadget driver
1989  */
1990 static int ci_udc_stop(struct usb_gadget *gadget)
1991 {
1992 	struct ci_hdrc *ci = container_of(gadget, struct ci_hdrc, gadget);
1993 	unsigned long flags;
1994 
1995 	spin_lock_irqsave(&ci->lock, flags);
1996 	ci->driver = NULL;
1997 
1998 	if (ci->vbus_active) {
1999 		hw_device_state(ci, 0);
2000 		spin_unlock_irqrestore(&ci->lock, flags);
2001 		if (ci->platdata->notify_event)
2002 			ci->platdata->notify_event(ci,
2003 			CI_HDRC_CONTROLLER_STOPPED_EVENT);
2004 		_gadget_stop_activity(&ci->gadget);
2005 		spin_lock_irqsave(&ci->lock, flags);
2006 		pm_runtime_put(ci->dev);
2007 	}
2008 
2009 	spin_unlock_irqrestore(&ci->lock, flags);
2010 
2011 	ci_udc_stop_for_otg_fsm(ci);
2012 	return 0;
2013 }
2014 
2015 /******************************************************************************
2016  * BUS block
2017  *****************************************************************************/
2018 /*
2019  * udc_irq: ci interrupt handler
2020  *
2021  * This function returns IRQ_HANDLED if the IRQ has been handled
2022  * It locks access to registers
2023  */
2024 static irqreturn_t udc_irq(struct ci_hdrc *ci)
2025 {
2026 	irqreturn_t retval;
2027 	u32 intr;
2028 
2029 	if (ci == NULL)
2030 		return IRQ_HANDLED;
2031 
2032 	spin_lock(&ci->lock);
2033 
2034 	if (ci->platdata->flags & CI_HDRC_REGS_SHARED) {
2035 		if (hw_read(ci, OP_USBMODE, USBMODE_CM) !=
2036 				USBMODE_CM_DC) {
2037 			spin_unlock(&ci->lock);
2038 			return IRQ_NONE;
2039 		}
2040 	}
2041 	intr = hw_test_and_clear_intr_active(ci);
2042 
2043 	if (intr) {
2044 		/* order defines priority - do NOT change it */
2045 		if (USBi_URI & intr)
2046 			isr_reset_handler(ci);
2047 
2048 		if (USBi_PCI & intr) {
2049 			ci->gadget.speed = hw_port_is_high_speed(ci) ?
2050 				USB_SPEED_HIGH : USB_SPEED_FULL;
2051 			if (ci->usb_phy)
2052 				usb_phy_set_event(ci->usb_phy,
2053 					USB_EVENT_ENUMERATED);
2054 			if (ci->suspended) {
2055 				if (ci->driver->resume) {
2056 					spin_unlock(&ci->lock);
2057 					ci->driver->resume(&ci->gadget);
2058 					spin_lock(&ci->lock);
2059 				}
2060 				ci->suspended = 0;
2061 				usb_gadget_set_state(&ci->gadget,
2062 						ci->resume_state);
2063 			}
2064 		}
2065 
2066 		if (USBi_UI  & intr)
2067 			isr_tr_complete_handler(ci);
2068 
2069 		if ((USBi_SLI & intr) && !(ci->suspended)) {
2070 			ci->suspended = 1;
2071 			ci->resume_state = ci->gadget.state;
2072 			if (ci->gadget.speed != USB_SPEED_UNKNOWN &&
2073 			    ci->driver->suspend) {
2074 				spin_unlock(&ci->lock);
2075 				ci->driver->suspend(&ci->gadget);
2076 				spin_lock(&ci->lock);
2077 			}
2078 			usb_gadget_set_state(&ci->gadget,
2079 					USB_STATE_SUSPENDED);
2080 		}
2081 		retval = IRQ_HANDLED;
2082 	} else {
2083 		retval = IRQ_NONE;
2084 	}
2085 	spin_unlock(&ci->lock);
2086 
2087 	return retval;
2088 }
2089 
2090 /**
2091  * udc_start: initialize gadget role
2092  * @ci: chipidea controller
2093  */
2094 static int udc_start(struct ci_hdrc *ci)
2095 {
2096 	struct device *dev = ci->dev;
2097 	struct usb_otg_caps *otg_caps = &ci->platdata->ci_otg_caps;
2098 	int retval = 0;
2099 
2100 	ci->gadget.ops          = &usb_gadget_ops;
2101 	ci->gadget.speed        = USB_SPEED_UNKNOWN;
2102 	ci->gadget.max_speed    = USB_SPEED_HIGH;
2103 	ci->gadget.name         = ci->platdata->name;
2104 	ci->gadget.otg_caps	= otg_caps;
2105 	ci->gadget.sg_supported = 1;
2106 	ci->gadget.irq		= ci->irq;
2107 
2108 	if (ci->platdata->flags & CI_HDRC_REQUIRES_ALIGNED_DMA)
2109 		ci->gadget.quirk_avoids_skb_reserve = 1;
2110 
2111 	if (ci->is_otg && (otg_caps->hnp_support || otg_caps->srp_support ||
2112 						otg_caps->adp_support))
2113 		ci->gadget.is_otg = 1;
2114 
2115 	INIT_LIST_HEAD(&ci->gadget.ep_list);
2116 
2117 	/* alloc resources */
2118 	ci->qh_pool = dma_pool_create("ci_hw_qh", dev->parent,
2119 				       sizeof(struct ci_hw_qh),
2120 				       64, CI_HDRC_PAGE_SIZE);
2121 	if (ci->qh_pool == NULL)
2122 		return -ENOMEM;
2123 
2124 	ci->td_pool = dma_pool_create("ci_hw_td", dev->parent,
2125 				       sizeof(struct ci_hw_td),
2126 				       64, CI_HDRC_PAGE_SIZE);
2127 	if (ci->td_pool == NULL) {
2128 		retval = -ENOMEM;
2129 		goto free_qh_pool;
2130 	}
2131 
2132 	retval = init_eps(ci);
2133 	if (retval)
2134 		goto free_pools;
2135 
2136 	ci->gadget.ep0 = &ci->ep0in->ep;
2137 
2138 	retval = usb_add_gadget_udc(dev, &ci->gadget);
2139 	if (retval)
2140 		goto destroy_eps;
2141 
2142 	return retval;
2143 
2144 destroy_eps:
2145 	destroy_eps(ci);
2146 free_pools:
2147 	dma_pool_destroy(ci->td_pool);
2148 free_qh_pool:
2149 	dma_pool_destroy(ci->qh_pool);
2150 	return retval;
2151 }
2152 
2153 /*
2154  * ci_hdrc_gadget_destroy: parent remove must call this to remove UDC
2155  *
2156  * No interrupts active, the IRQ has been released
2157  */
2158 void ci_hdrc_gadget_destroy(struct ci_hdrc *ci)
2159 {
2160 	if (!ci->roles[CI_ROLE_GADGET])
2161 		return;
2162 
2163 	usb_del_gadget_udc(&ci->gadget);
2164 
2165 	destroy_eps(ci);
2166 
2167 	dma_pool_destroy(ci->td_pool);
2168 	dma_pool_destroy(ci->qh_pool);
2169 }
2170 
2171 static int udc_id_switch_for_device(struct ci_hdrc *ci)
2172 {
2173 	if (ci->platdata->pins_device)
2174 		pinctrl_select_state(ci->platdata->pctl,
2175 				     ci->platdata->pins_device);
2176 
2177 	if (ci->is_otg)
2178 		/* Clear and enable BSV irq */
2179 		hw_write_otgsc(ci, OTGSC_BSVIS | OTGSC_BSVIE,
2180 					OTGSC_BSVIS | OTGSC_BSVIE);
2181 
2182 	return 0;
2183 }
2184 
2185 static void udc_id_switch_for_host(struct ci_hdrc *ci)
2186 {
2187 	/*
2188 	 * host doesn't care B_SESSION_VALID event
2189 	 * so clear and disable BSV irq
2190 	 */
2191 	if (ci->is_otg)
2192 		hw_write_otgsc(ci, OTGSC_BSVIE | OTGSC_BSVIS, OTGSC_BSVIS);
2193 
2194 	ci->vbus_active = 0;
2195 
2196 	if (ci->platdata->pins_device && ci->platdata->pins_default)
2197 		pinctrl_select_state(ci->platdata->pctl,
2198 				     ci->platdata->pins_default);
2199 }
2200 
2201 #ifdef CONFIG_PM_SLEEP
2202 static void udc_suspend(struct ci_hdrc *ci)
2203 {
2204 	/*
2205 	 * Set OP_ENDPTLISTADDR to be non-zero for
2206 	 * checking if controller resume from power lost
2207 	 * in non-host mode.
2208 	 */
2209 	if (hw_read(ci, OP_ENDPTLISTADDR, ~0) == 0)
2210 		hw_write(ci, OP_ENDPTLISTADDR, ~0, ~0);
2211 }
2212 
2213 static void udc_resume(struct ci_hdrc *ci, bool power_lost)
2214 {
2215 	if (power_lost) {
2216 		if (ci->is_otg)
2217 			hw_write_otgsc(ci, OTGSC_BSVIS | OTGSC_BSVIE,
2218 					OTGSC_BSVIS | OTGSC_BSVIE);
2219 		if (ci->vbus_active)
2220 			usb_gadget_vbus_disconnect(&ci->gadget);
2221 	}
2222 
2223 	/* Restore value 0 if it was set for power lost check */
2224 	if (hw_read(ci, OP_ENDPTLISTADDR, ~0) == 0xFFFFFFFF)
2225 		hw_write(ci, OP_ENDPTLISTADDR, ~0, 0);
2226 }
2227 #endif
2228 
2229 /**
2230  * ci_hdrc_gadget_init - initialize device related bits
2231  * @ci: the controller
2232  *
2233  * This function initializes the gadget, if the device is "device capable".
2234  */
2235 int ci_hdrc_gadget_init(struct ci_hdrc *ci)
2236 {
2237 	struct ci_role_driver *rdrv;
2238 	int ret;
2239 
2240 	if (!hw_read(ci, CAP_DCCPARAMS, DCCPARAMS_DC))
2241 		return -ENXIO;
2242 
2243 	rdrv = devm_kzalloc(ci->dev, sizeof(*rdrv), GFP_KERNEL);
2244 	if (!rdrv)
2245 		return -ENOMEM;
2246 
2247 	rdrv->start	= udc_id_switch_for_device;
2248 	rdrv->stop	= udc_id_switch_for_host;
2249 #ifdef CONFIG_PM_SLEEP
2250 	rdrv->suspend	= udc_suspend;
2251 	rdrv->resume	= udc_resume;
2252 #endif
2253 	rdrv->irq	= udc_irq;
2254 	rdrv->name	= "gadget";
2255 
2256 	ret = udc_start(ci);
2257 	if (!ret)
2258 		ci->roles[CI_ROLE_GADGET] = rdrv;
2259 
2260 	return ret;
2261 }
2262