xref: /linux/drivers/usb/chipidea/udc.c (revision 2eff01ee2881becc9daaa0d53477ec202136b1f4)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * udc.c - ChipIdea UDC driver
4  *
5  * Copyright (C) 2008 Chipidea - MIPS Technologies, Inc. All rights reserved.
6  *
7  * Author: David Lopo
8  */
9 
10 #include <linux/delay.h>
11 #include <linux/device.h>
12 #include <linux/dmapool.h>
13 #include <linux/dma-direct.h>
14 #include <linux/err.h>
15 #include <linux/irqreturn.h>
16 #include <linux/kernel.h>
17 #include <linux/slab.h>
18 #include <linux/pm_runtime.h>
19 #include <linux/pinctrl/consumer.h>
20 #include <linux/usb/ch9.h>
21 #include <linux/usb/gadget.h>
22 #include <linux/usb/otg-fsm.h>
23 #include <linux/usb/chipidea.h>
24 
25 #include "ci.h"
26 #include "udc.h"
27 #include "bits.h"
28 #include "otg.h"
29 #include "otg_fsm.h"
30 #include "trace.h"
31 
32 /* control endpoint description */
33 static const struct usb_endpoint_descriptor
34 ctrl_endpt_out_desc = {
35 	.bLength         = USB_DT_ENDPOINT_SIZE,
36 	.bDescriptorType = USB_DT_ENDPOINT,
37 
38 	.bEndpointAddress = USB_DIR_OUT,
39 	.bmAttributes    = USB_ENDPOINT_XFER_CONTROL,
40 	.wMaxPacketSize  = cpu_to_le16(CTRL_PAYLOAD_MAX),
41 };
42 
43 static const struct usb_endpoint_descriptor
44 ctrl_endpt_in_desc = {
45 	.bLength         = USB_DT_ENDPOINT_SIZE,
46 	.bDescriptorType = USB_DT_ENDPOINT,
47 
48 	.bEndpointAddress = USB_DIR_IN,
49 	.bmAttributes    = USB_ENDPOINT_XFER_CONTROL,
50 	.wMaxPacketSize  = cpu_to_le16(CTRL_PAYLOAD_MAX),
51 };
52 
53 static int reprime_dtd(struct ci_hdrc *ci, struct ci_hw_ep *hwep,
54 		       struct td_node *node);
55 /**
56  * hw_ep_bit: calculates the bit number
57  * @num: endpoint number
58  * @dir: endpoint direction
59  *
60  * This function returns bit number
61  */
62 static inline int hw_ep_bit(int num, int dir)
63 {
64 	return num + ((dir == TX) ? 16 : 0);
65 }
66 
67 static inline int ep_to_bit(struct ci_hdrc *ci, int n)
68 {
69 	int fill = 16 - ci->hw_ep_max / 2;
70 
71 	if (n >= ci->hw_ep_max / 2)
72 		n += fill;
73 
74 	return n;
75 }
76 
77 /**
78  * hw_device_state: enables/disables interrupts (execute without interruption)
79  * @ci: the controller
80  * @dma: 0 => disable, !0 => enable and set dma engine
81  *
82  * This function returns an error code
83  */
84 static int hw_device_state(struct ci_hdrc *ci, u32 dma)
85 {
86 	if (dma) {
87 		hw_write(ci, OP_ENDPTLISTADDR, ~0, dma);
88 		/* interrupt, error, port change, reset, sleep/suspend */
89 		hw_write(ci, OP_USBINTR, ~0,
90 			     USBi_UI|USBi_UEI|USBi_PCI|USBi_URI);
91 	} else {
92 		hw_write(ci, OP_USBINTR, ~0, 0);
93 	}
94 	return 0;
95 }
96 
97 /**
98  * hw_ep_flush: flush endpoint fifo (execute without interruption)
99  * @ci: the controller
100  * @num: endpoint number
101  * @dir: endpoint direction
102  *
103  * This function returns an error code
104  */
105 static int hw_ep_flush(struct ci_hdrc *ci, int num, int dir)
106 {
107 	int n = hw_ep_bit(num, dir);
108 
109 	do {
110 		/* flush any pending transfer */
111 		hw_write(ci, OP_ENDPTFLUSH, ~0, BIT(n));
112 		while (hw_read(ci, OP_ENDPTFLUSH, BIT(n)))
113 			cpu_relax();
114 	} while (hw_read(ci, OP_ENDPTSTAT, BIT(n)));
115 
116 	return 0;
117 }
118 
119 /**
120  * hw_ep_disable: disables endpoint (execute without interruption)
121  * @ci: the controller
122  * @num: endpoint number
123  * @dir: endpoint direction
124  *
125  * This function returns an error code
126  */
127 static int hw_ep_disable(struct ci_hdrc *ci, int num, int dir)
128 {
129 	hw_write(ci, OP_ENDPTCTRL + num,
130 		 (dir == TX) ? ENDPTCTRL_TXE : ENDPTCTRL_RXE, 0);
131 	return 0;
132 }
133 
134 /**
135  * hw_ep_enable: enables endpoint (execute without interruption)
136  * @ci: the controller
137  * @num:  endpoint number
138  * @dir:  endpoint direction
139  * @type: endpoint type
140  *
141  * This function returns an error code
142  */
143 static int hw_ep_enable(struct ci_hdrc *ci, int num, int dir, int type)
144 {
145 	u32 mask, data;
146 
147 	if (dir == TX) {
148 		mask  = ENDPTCTRL_TXT;  /* type    */
149 		data  = type << __ffs(mask);
150 
151 		mask |= ENDPTCTRL_TXS;  /* unstall */
152 		mask |= ENDPTCTRL_TXR;  /* reset data toggle */
153 		data |= ENDPTCTRL_TXR;
154 		mask |= ENDPTCTRL_TXE;  /* enable  */
155 		data |= ENDPTCTRL_TXE;
156 	} else {
157 		mask  = ENDPTCTRL_RXT;  /* type    */
158 		data  = type << __ffs(mask);
159 
160 		mask |= ENDPTCTRL_RXS;  /* unstall */
161 		mask |= ENDPTCTRL_RXR;  /* reset data toggle */
162 		data |= ENDPTCTRL_RXR;
163 		mask |= ENDPTCTRL_RXE;  /* enable  */
164 		data |= ENDPTCTRL_RXE;
165 	}
166 	hw_write(ci, OP_ENDPTCTRL + num, mask, data);
167 	return 0;
168 }
169 
170 /**
171  * hw_ep_get_halt: return endpoint halt status
172  * @ci: the controller
173  * @num: endpoint number
174  * @dir: endpoint direction
175  *
176  * This function returns 1 if endpoint halted
177  */
178 static int hw_ep_get_halt(struct ci_hdrc *ci, int num, int dir)
179 {
180 	u32 mask = (dir == TX) ? ENDPTCTRL_TXS : ENDPTCTRL_RXS;
181 
182 	return hw_read(ci, OP_ENDPTCTRL + num, mask) ? 1 : 0;
183 }
184 
185 /**
186  * hw_ep_prime: primes endpoint (execute without interruption)
187  * @ci: the controller
188  * @num:     endpoint number
189  * @dir:     endpoint direction
190  * @is_ctrl: true if control endpoint
191  *
192  * This function returns an error code
193  */
194 static int hw_ep_prime(struct ci_hdrc *ci, int num, int dir, int is_ctrl)
195 {
196 	int n = hw_ep_bit(num, dir);
197 
198 	/* Synchronize before ep prime */
199 	wmb();
200 
201 	if (is_ctrl && dir == RX && hw_read(ci, OP_ENDPTSETUPSTAT, BIT(num)))
202 		return -EAGAIN;
203 
204 	hw_write(ci, OP_ENDPTPRIME, ~0, BIT(n));
205 
206 	while (hw_read(ci, OP_ENDPTPRIME, BIT(n)))
207 		cpu_relax();
208 	if (is_ctrl && dir == RX && hw_read(ci, OP_ENDPTSETUPSTAT, BIT(num)))
209 		return -EAGAIN;
210 
211 	/* status shoult be tested according with manual but it doesn't work */
212 	return 0;
213 }
214 
215 /**
216  * hw_ep_set_halt: configures ep halt & resets data toggle after clear (execute
217  *                 without interruption)
218  * @ci: the controller
219  * @num:   endpoint number
220  * @dir:   endpoint direction
221  * @value: true => stall, false => unstall
222  *
223  * This function returns an error code
224  */
225 static int hw_ep_set_halt(struct ci_hdrc *ci, int num, int dir, int value)
226 {
227 	if (value != 0 && value != 1)
228 		return -EINVAL;
229 
230 	do {
231 		enum ci_hw_regs reg = OP_ENDPTCTRL + num;
232 		u32 mask_xs = (dir == TX) ? ENDPTCTRL_TXS : ENDPTCTRL_RXS;
233 		u32 mask_xr = (dir == TX) ? ENDPTCTRL_TXR : ENDPTCTRL_RXR;
234 
235 		/* data toggle - reserved for EP0 but it's in ESS */
236 		hw_write(ci, reg, mask_xs|mask_xr,
237 			  value ? mask_xs : mask_xr);
238 	} while (value != hw_ep_get_halt(ci, num, dir));
239 
240 	return 0;
241 }
242 
243 /**
244  * hw_port_is_high_speed: test if port is high speed
245  * @ci: the controller
246  *
247  * This function returns true if high speed port
248  */
249 static int hw_port_is_high_speed(struct ci_hdrc *ci)
250 {
251 	return ci->hw_bank.lpm ? hw_read(ci, OP_DEVLC, DEVLC_PSPD) :
252 		hw_read(ci, OP_PORTSC, PORTSC_HSP);
253 }
254 
255 /**
256  * hw_test_and_clear_complete: test & clear complete status (execute without
257  *                             interruption)
258  * @ci: the controller
259  * @n: endpoint number
260  *
261  * This function returns complete status
262  */
263 static int hw_test_and_clear_complete(struct ci_hdrc *ci, int n)
264 {
265 	n = ep_to_bit(ci, n);
266 	return hw_test_and_clear(ci, OP_ENDPTCOMPLETE, BIT(n));
267 }
268 
269 /**
270  * hw_test_and_clear_intr_active: test & clear active interrupts (execute
271  *                                without interruption)
272  * @ci: the controller
273  *
274  * This function returns active interrutps
275  */
276 static u32 hw_test_and_clear_intr_active(struct ci_hdrc *ci)
277 {
278 	u32 reg = hw_read_intr_status(ci) & hw_read_intr_enable(ci);
279 
280 	hw_write(ci, OP_USBSTS, ~0, reg);
281 	return reg;
282 }
283 
284 /**
285  * hw_test_and_clear_setup_guard: test & clear setup guard (execute without
286  *                                interruption)
287  * @ci: the controller
288  *
289  * This function returns guard value
290  */
291 static int hw_test_and_clear_setup_guard(struct ci_hdrc *ci)
292 {
293 	return hw_test_and_write(ci, OP_USBCMD, USBCMD_SUTW, 0);
294 }
295 
296 /**
297  * hw_test_and_set_setup_guard: test & set setup guard (execute without
298  *                              interruption)
299  * @ci: the controller
300  *
301  * This function returns guard value
302  */
303 static int hw_test_and_set_setup_guard(struct ci_hdrc *ci)
304 {
305 	return hw_test_and_write(ci, OP_USBCMD, USBCMD_SUTW, USBCMD_SUTW);
306 }
307 
308 /**
309  * hw_usb_set_address: configures USB address (execute without interruption)
310  * @ci: the controller
311  * @value: new USB address
312  *
313  * This function explicitly sets the address, without the "USBADRA" (advance)
314  * feature, which is not supported by older versions of the controller.
315  */
316 static void hw_usb_set_address(struct ci_hdrc *ci, u8 value)
317 {
318 	hw_write(ci, OP_DEVICEADDR, DEVICEADDR_USBADR,
319 		 value << __ffs(DEVICEADDR_USBADR));
320 }
321 
322 /**
323  * hw_usb_reset: restart device after a bus reset (execute without
324  *               interruption)
325  * @ci: the controller
326  *
327  * This function returns an error code
328  */
329 static int hw_usb_reset(struct ci_hdrc *ci)
330 {
331 	hw_usb_set_address(ci, 0);
332 
333 	/* ESS flushes only at end?!? */
334 	hw_write(ci, OP_ENDPTFLUSH,    ~0, ~0);
335 
336 	/* clear setup token semaphores */
337 	hw_write(ci, OP_ENDPTSETUPSTAT, 0,  0);
338 
339 	/* clear complete status */
340 	hw_write(ci, OP_ENDPTCOMPLETE,  0,  0);
341 
342 	/* wait until all bits cleared */
343 	while (hw_read(ci, OP_ENDPTPRIME, ~0))
344 		udelay(10);             /* not RTOS friendly */
345 
346 	/* reset all endpoints ? */
347 
348 	/* reset internal status and wait for further instructions
349 	   no need to verify the port reset status (ESS does it) */
350 
351 	return 0;
352 }
353 
354 /******************************************************************************
355  * UTIL block
356  *****************************************************************************/
357 
358 static int add_td_to_list(struct ci_hw_ep *hwep, struct ci_hw_req *hwreq,
359 			unsigned int length, struct scatterlist *s)
360 {
361 	int i;
362 	u32 temp;
363 	struct td_node *lastnode, *node = kzalloc(sizeof(struct td_node),
364 						  GFP_ATOMIC);
365 
366 	if (node == NULL)
367 		return -ENOMEM;
368 
369 	node->ptr = dma_pool_zalloc(hwep->td_pool, GFP_ATOMIC, &node->dma);
370 	if (node->ptr == NULL) {
371 		kfree(node);
372 		return -ENOMEM;
373 	}
374 
375 	node->ptr->token = cpu_to_le32(length << __ffs(TD_TOTAL_BYTES));
376 	node->ptr->token &= cpu_to_le32(TD_TOTAL_BYTES);
377 	node->ptr->token |= cpu_to_le32(TD_STATUS_ACTIVE);
378 	if (hwep->type == USB_ENDPOINT_XFER_ISOC && hwep->dir == TX) {
379 		u32 mul = hwreq->req.length / hwep->ep.maxpacket;
380 
381 		if (hwreq->req.length == 0
382 				|| hwreq->req.length % hwep->ep.maxpacket)
383 			mul++;
384 		node->ptr->token |= cpu_to_le32(mul << __ffs(TD_MULTO));
385 	}
386 
387 	if (s) {
388 		temp = (u32) (sg_dma_address(s) + hwreq->req.actual);
389 		node->td_remaining_size = CI_MAX_BUF_SIZE - length;
390 	} else {
391 		temp = (u32) (hwreq->req.dma + hwreq->req.actual);
392 	}
393 
394 	if (length) {
395 		node->ptr->page[0] = cpu_to_le32(temp);
396 		for (i = 1; i < TD_PAGE_COUNT; i++) {
397 			u32 page = temp + i * CI_HDRC_PAGE_SIZE;
398 			page &= ~TD_RESERVED_MASK;
399 			node->ptr->page[i] = cpu_to_le32(page);
400 		}
401 	}
402 
403 	hwreq->req.actual += length;
404 
405 	if (!list_empty(&hwreq->tds)) {
406 		/* get the last entry */
407 		lastnode = list_entry(hwreq->tds.prev,
408 				struct td_node, td);
409 		lastnode->ptr->next = cpu_to_le32(node->dma);
410 	}
411 
412 	INIT_LIST_HEAD(&node->td);
413 	list_add_tail(&node->td, &hwreq->tds);
414 
415 	return 0;
416 }
417 
418 /**
419  * _usb_addr: calculates endpoint address from direction & number
420  * @ep:  endpoint
421  */
422 static inline u8 _usb_addr(struct ci_hw_ep *ep)
423 {
424 	return ((ep->dir == TX) ? USB_ENDPOINT_DIR_MASK : 0) | ep->num;
425 }
426 
427 static int prepare_td_for_non_sg(struct ci_hw_ep *hwep,
428 		struct ci_hw_req *hwreq)
429 {
430 	unsigned int rest = hwreq->req.length;
431 	int pages = TD_PAGE_COUNT;
432 	int ret = 0;
433 
434 	if (rest == 0) {
435 		ret = add_td_to_list(hwep, hwreq, 0, NULL);
436 		if (ret < 0)
437 			return ret;
438 	}
439 
440 	/*
441 	 * The first buffer could be not page aligned.
442 	 * In that case we have to span into one extra td.
443 	 */
444 	if (hwreq->req.dma % PAGE_SIZE)
445 		pages--;
446 
447 	while (rest > 0) {
448 		unsigned int count = min(hwreq->req.length - hwreq->req.actual,
449 			(unsigned int)(pages * CI_HDRC_PAGE_SIZE));
450 
451 		ret = add_td_to_list(hwep, hwreq, count, NULL);
452 		if (ret < 0)
453 			return ret;
454 
455 		rest -= count;
456 	}
457 
458 	if (hwreq->req.zero && hwreq->req.length && hwep->dir == TX
459 	    && (hwreq->req.length % hwep->ep.maxpacket == 0)) {
460 		ret = add_td_to_list(hwep, hwreq, 0, NULL);
461 		if (ret < 0)
462 			return ret;
463 	}
464 
465 	return ret;
466 }
467 
468 static int prepare_td_per_sg(struct ci_hw_ep *hwep, struct ci_hw_req *hwreq,
469 		struct scatterlist *s)
470 {
471 	unsigned int rest = sg_dma_len(s);
472 	int ret = 0;
473 
474 	hwreq->req.actual = 0;
475 	while (rest > 0) {
476 		unsigned int count = min_t(unsigned int, rest,
477 				CI_MAX_BUF_SIZE);
478 
479 		ret = add_td_to_list(hwep, hwreq, count, s);
480 		if (ret < 0)
481 			return ret;
482 
483 		rest -= count;
484 	}
485 
486 	return ret;
487 }
488 
489 static void ci_add_buffer_entry(struct td_node *node, struct scatterlist *s)
490 {
491 	int empty_td_slot_index = (CI_MAX_BUF_SIZE - node->td_remaining_size)
492 			/ CI_HDRC_PAGE_SIZE;
493 	int i;
494 	u32 token;
495 
496 	token = le32_to_cpu(node->ptr->token) + (sg_dma_len(s) << __ffs(TD_TOTAL_BYTES));
497 	node->ptr->token = cpu_to_le32(token);
498 
499 	for (i = empty_td_slot_index; i < TD_PAGE_COUNT; i++) {
500 		u32 page = (u32) sg_dma_address(s) +
501 			(i - empty_td_slot_index) * CI_HDRC_PAGE_SIZE;
502 
503 		page &= ~TD_RESERVED_MASK;
504 		node->ptr->page[i] = cpu_to_le32(page);
505 	}
506 }
507 
508 static int prepare_td_for_sg(struct ci_hw_ep *hwep, struct ci_hw_req *hwreq)
509 {
510 	struct usb_request *req = &hwreq->req;
511 	struct scatterlist *s = req->sg;
512 	int ret = 0, i = 0;
513 	struct td_node *node = NULL;
514 
515 	if (!s || req->zero || req->length == 0) {
516 		dev_err(hwep->ci->dev, "not supported operation for sg\n");
517 		return -EINVAL;
518 	}
519 
520 	while (i++ < req->num_mapped_sgs) {
521 		if (sg_dma_address(s) % PAGE_SIZE) {
522 			dev_err(hwep->ci->dev, "not page aligned sg buffer\n");
523 			return -EINVAL;
524 		}
525 
526 		if (node && (node->td_remaining_size >= sg_dma_len(s))) {
527 			ci_add_buffer_entry(node, s);
528 			node->td_remaining_size -= sg_dma_len(s);
529 		} else {
530 			ret = prepare_td_per_sg(hwep, hwreq, s);
531 			if (ret)
532 				return ret;
533 
534 			node = list_entry(hwreq->tds.prev,
535 				struct td_node, td);
536 		}
537 
538 		s = sg_next(s);
539 	}
540 
541 	return ret;
542 }
543 
544 /*
545  * Verify if the scatterlist is valid by iterating each sg entry.
546  * Return invalid sg entry index which is less than num_sgs.
547  */
548 static int sglist_get_invalid_entry(struct device *dma_dev, u8 dir,
549 			struct usb_request *req)
550 {
551 	int i;
552 	struct scatterlist *s = req->sg;
553 
554 	if (req->num_sgs == 1)
555 		return 1;
556 
557 	dir = dir ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
558 
559 	for (i = 0; i < req->num_sgs; i++, s = sg_next(s)) {
560 		/* Only small sg (generally last sg) may be bounced. If
561 		 * that happens. we can't ensure the addr is page-aligned
562 		 * after dma map.
563 		 */
564 		if (dma_kmalloc_needs_bounce(dma_dev, s->length, dir))
565 			break;
566 
567 		/* Make sure each sg start address (except first sg) is
568 		 * page-aligned and end address (except last sg) is also
569 		 * page-aligned.
570 		 */
571 		if (i == 0) {
572 			if (!IS_ALIGNED(s->offset + s->length,
573 						CI_HDRC_PAGE_SIZE))
574 				break;
575 		} else {
576 			if (s->offset)
577 				break;
578 			if (!sg_is_last(s) && !IS_ALIGNED(s->length,
579 						CI_HDRC_PAGE_SIZE))
580 				break;
581 		}
582 	}
583 
584 	return i;
585 }
586 
587 static int sglist_do_bounce(struct ci_hw_req *hwreq, int index,
588 			bool copy, unsigned int *bounced)
589 {
590 	void *buf;
591 	int i, ret, nents, num_sgs;
592 	unsigned int rest, rounded;
593 	struct scatterlist *sg, *src, *dst;
594 
595 	nents = index + 1;
596 	ret = sg_alloc_table(&hwreq->sgt, nents, GFP_KERNEL);
597 	if (ret)
598 		return ret;
599 
600 	sg = src = hwreq->req.sg;
601 	num_sgs = hwreq->req.num_sgs;
602 	rest = hwreq->req.length;
603 	dst = hwreq->sgt.sgl;
604 
605 	for (i = 0; i < index; i++) {
606 		memcpy(dst, src, sizeof(*src));
607 		rest -= src->length;
608 		src = sg_next(src);
609 		dst = sg_next(dst);
610 	}
611 
612 	/* create one bounce buffer */
613 	rounded = round_up(rest, CI_HDRC_PAGE_SIZE);
614 	buf = kmalloc(rounded, GFP_KERNEL);
615 	if (!buf) {
616 		sg_free_table(&hwreq->sgt);
617 		return -ENOMEM;
618 	}
619 
620 	sg_set_buf(dst, buf, rounded);
621 
622 	hwreq->req.sg = hwreq->sgt.sgl;
623 	hwreq->req.num_sgs = nents;
624 	hwreq->sgt.sgl = sg;
625 	hwreq->sgt.nents = num_sgs;
626 
627 	if (copy)
628 		sg_copy_to_buffer(src, num_sgs - index, buf, rest);
629 
630 	*bounced = rest;
631 
632 	return 0;
633 }
634 
635 static void sglist_do_debounce(struct ci_hw_req *hwreq, bool copy)
636 {
637 	void *buf;
638 	int i, nents, num_sgs;
639 	struct scatterlist *sg, *src, *dst;
640 
641 	sg = hwreq->req.sg;
642 	num_sgs = hwreq->req.num_sgs;
643 	src = sg_last(sg, num_sgs);
644 	buf = sg_virt(src);
645 
646 	if (copy) {
647 		dst = hwreq->sgt.sgl;
648 		for (i = 0; i < num_sgs - 1; i++)
649 			dst = sg_next(dst);
650 
651 		nents = hwreq->sgt.nents - num_sgs + 1;
652 		sg_copy_from_buffer(dst, nents, buf, sg_dma_len(src));
653 	}
654 
655 	hwreq->req.sg = hwreq->sgt.sgl;
656 	hwreq->req.num_sgs = hwreq->sgt.nents;
657 	hwreq->sgt.sgl = sg;
658 	hwreq->sgt.nents = num_sgs;
659 
660 	kfree(buf);
661 	sg_free_table(&hwreq->sgt);
662 }
663 
664 /**
665  * _hardware_enqueue: configures a request at hardware level
666  * @hwep:   endpoint
667  * @hwreq:  request
668  *
669  * This function returns an error code
670  */
671 static int _hardware_enqueue(struct ci_hw_ep *hwep, struct ci_hw_req *hwreq)
672 {
673 	struct ci_hdrc *ci = hwep->ci;
674 	int ret = 0;
675 	struct td_node *firstnode, *lastnode;
676 	unsigned int bounced_size;
677 	struct scatterlist *sg;
678 
679 	/* don't queue twice */
680 	if (hwreq->req.status == -EALREADY)
681 		return -EALREADY;
682 
683 	hwreq->req.status = -EALREADY;
684 
685 	if (hwreq->req.num_sgs && hwreq->req.length &&
686 		ci->has_short_pkt_limit) {
687 		ret = sglist_get_invalid_entry(ci->dev->parent, hwep->dir,
688 					&hwreq->req);
689 		if (ret < hwreq->req.num_sgs) {
690 			ret = sglist_do_bounce(hwreq, ret, hwep->dir == TX,
691 					&bounced_size);
692 			if (ret)
693 				return ret;
694 		}
695 	}
696 
697 	ret = usb_gadget_map_request_by_dev(ci->dev->parent,
698 					    &hwreq->req, hwep->dir);
699 	if (ret)
700 		return ret;
701 
702 	if (hwreq->sgt.sgl) {
703 		/* We've mapped a bigger buffer, now recover the actual size */
704 		sg = sg_last(hwreq->req.sg, hwreq->req.num_sgs);
705 		sg_dma_len(sg) = min(sg_dma_len(sg), bounced_size);
706 	}
707 
708 	if (hwreq->req.num_mapped_sgs)
709 		ret = prepare_td_for_sg(hwep, hwreq);
710 	else
711 		ret = prepare_td_for_non_sg(hwep, hwreq);
712 
713 	if (ret)
714 		return ret;
715 
716 	lastnode = list_entry(hwreq->tds.prev,
717 		struct td_node, td);
718 
719 	lastnode->ptr->next = cpu_to_le32(TD_TERMINATE);
720 	if (!hwreq->req.no_interrupt)
721 		lastnode->ptr->token |= cpu_to_le32(TD_IOC);
722 
723 	list_for_each_entry_safe(firstnode, lastnode, &hwreq->tds, td)
724 		trace_ci_prepare_td(hwep, hwreq, firstnode);
725 
726 	firstnode = list_first_entry(&hwreq->tds, struct td_node, td);
727 
728 	wmb();
729 
730 	hwreq->req.actual = 0;
731 	if (!list_empty(&hwep->qh.queue)) {
732 		struct ci_hw_req *hwreqprev;
733 		int n = hw_ep_bit(hwep->num, hwep->dir);
734 		int tmp_stat;
735 		struct td_node *prevlastnode;
736 		u32 next = firstnode->dma & TD_ADDR_MASK;
737 
738 		hwreqprev = list_entry(hwep->qh.queue.prev,
739 				struct ci_hw_req, queue);
740 		prevlastnode = list_entry(hwreqprev->tds.prev,
741 				struct td_node, td);
742 
743 		prevlastnode->ptr->next = cpu_to_le32(next);
744 		wmb();
745 
746 		if (ci->rev == CI_REVISION_22) {
747 			if (!hw_read(ci, OP_ENDPTSTAT, BIT(n)))
748 				reprime_dtd(ci, hwep, prevlastnode);
749 		}
750 
751 		if (hw_read(ci, OP_ENDPTPRIME, BIT(n)))
752 			goto done;
753 		do {
754 			hw_write(ci, OP_USBCMD, USBCMD_ATDTW, USBCMD_ATDTW);
755 			tmp_stat = hw_read(ci, OP_ENDPTSTAT, BIT(n));
756 		} while (!hw_read(ci, OP_USBCMD, USBCMD_ATDTW) && tmp_stat);
757 		hw_write(ci, OP_USBCMD, USBCMD_ATDTW, 0);
758 		if (tmp_stat)
759 			goto done;
760 
761 		/* OP_ENDPTSTAT will be clear by HW when the endpoint met
762 		 * err. This dTD don't push to dQH if current dTD point is
763 		 * not the last one in previous request.
764 		 */
765 		if (hwep->qh.ptr->curr != cpu_to_le32(prevlastnode->dma))
766 			goto done;
767 	}
768 
769 	/*  QH configuration */
770 	hwep->qh.ptr->td.next = cpu_to_le32(firstnode->dma);
771 	hwep->qh.ptr->td.token &=
772 		cpu_to_le32(~(TD_STATUS_HALTED|TD_STATUS_ACTIVE));
773 
774 	if (hwep->type == USB_ENDPOINT_XFER_ISOC && hwep->dir == RX) {
775 		u32 mul = hwreq->req.length / hwep->ep.maxpacket;
776 
777 		if (hwreq->req.length == 0
778 				|| hwreq->req.length % hwep->ep.maxpacket)
779 			mul++;
780 		hwep->qh.ptr->cap |= cpu_to_le32(mul << __ffs(QH_MULT));
781 	}
782 
783 	ret = hw_ep_prime(ci, hwep->num, hwep->dir,
784 			   hwep->type == USB_ENDPOINT_XFER_CONTROL);
785 done:
786 	return ret;
787 }
788 
789 /**
790  * free_pending_td: remove a pending request for the endpoint
791  * @hwep: endpoint
792  */
793 static void free_pending_td(struct ci_hw_ep *hwep)
794 {
795 	struct td_node *pending = hwep->pending_td;
796 
797 	dma_pool_free(hwep->td_pool, pending->ptr, pending->dma);
798 	hwep->pending_td = NULL;
799 	kfree(pending);
800 }
801 
802 static int reprime_dtd(struct ci_hdrc *ci, struct ci_hw_ep *hwep,
803 					   struct td_node *node)
804 {
805 	hwep->qh.ptr->td.next = cpu_to_le32(node->dma);
806 	hwep->qh.ptr->td.token &=
807 		cpu_to_le32(~(TD_STATUS_HALTED | TD_STATUS_ACTIVE));
808 
809 	return hw_ep_prime(ci, hwep->num, hwep->dir,
810 				hwep->type == USB_ENDPOINT_XFER_CONTROL);
811 }
812 
813 /**
814  * _hardware_dequeue: handles a request at hardware level
815  * @hwep: endpoint
816  * @hwreq:  request
817  *
818  * This function returns an error code
819  */
820 static int _hardware_dequeue(struct ci_hw_ep *hwep, struct ci_hw_req *hwreq)
821 {
822 	u32 tmptoken;
823 	struct td_node *node, *tmpnode;
824 	unsigned remaining_length;
825 	unsigned actual = hwreq->req.length;
826 	struct ci_hdrc *ci = hwep->ci;
827 	bool is_isoc = hwep->type == USB_ENDPOINT_XFER_ISOC;
828 
829 	if (hwreq->req.status != -EALREADY)
830 		return -EINVAL;
831 
832 	hwreq->req.status = 0;
833 
834 	list_for_each_entry_safe(node, tmpnode, &hwreq->tds, td) {
835 		tmptoken = le32_to_cpu(node->ptr->token);
836 		trace_ci_complete_td(hwep, hwreq, node);
837 		if ((TD_STATUS_ACTIVE & tmptoken) != 0) {
838 			int n = hw_ep_bit(hwep->num, hwep->dir);
839 
840 			if (ci->rev == CI_REVISION_24 ||
841 			    ci->rev == CI_REVISION_22 || is_isoc)
842 				if (!hw_read(ci, OP_ENDPTSTAT, BIT(n)))
843 					reprime_dtd(ci, hwep, node);
844 			hwreq->req.status = -EALREADY;
845 			return -EBUSY;
846 		}
847 
848 		remaining_length = (tmptoken & TD_TOTAL_BYTES);
849 		remaining_length >>= __ffs(TD_TOTAL_BYTES);
850 		actual -= remaining_length;
851 
852 		hwreq->req.status = tmptoken & TD_STATUS;
853 		if ((TD_STATUS_HALTED & hwreq->req.status)) {
854 			hwreq->req.status = -EPIPE;
855 			break;
856 		} else if ((TD_STATUS_DT_ERR & hwreq->req.status)) {
857 			hwreq->req.status = -EPROTO;
858 			break;
859 		} else if ((TD_STATUS_TR_ERR & hwreq->req.status)) {
860 			if (is_isoc) {
861 				hwreq->req.status = 0;
862 			} else {
863 				hwreq->req.status = -EILSEQ;
864 				break;
865 			}
866 		}
867 
868 		if (remaining_length && !is_isoc) {
869 			if (hwep->dir == TX) {
870 				hwreq->req.status = -EPROTO;
871 				break;
872 			}
873 		}
874 		/*
875 		 * As the hardware could still address the freed td
876 		 * which will run the udc unusable, the cleanup of the
877 		 * td has to be delayed by one.
878 		 */
879 		if (hwep->pending_td)
880 			free_pending_td(hwep);
881 
882 		hwep->pending_td = node;
883 		list_del_init(&node->td);
884 	}
885 
886 	usb_gadget_unmap_request_by_dev(hwep->ci->dev->parent,
887 					&hwreq->req, hwep->dir);
888 
889 	/* sglist bounced */
890 	if (hwreq->sgt.sgl)
891 		sglist_do_debounce(hwreq, hwep->dir == RX);
892 
893 	hwreq->req.actual += actual;
894 
895 	if (hwreq->req.status)
896 		return hwreq->req.status;
897 
898 	return hwreq->req.actual;
899 }
900 
901 /**
902  * _ep_nuke: dequeues all endpoint requests
903  * @hwep: endpoint
904  *
905  * This function returns an error code
906  * Caller must hold lock
907  */
908 static int _ep_nuke(struct ci_hw_ep *hwep)
909 __releases(hwep->lock)
910 __acquires(hwep->lock)
911 {
912 	struct td_node *node, *tmpnode;
913 	if (hwep == NULL)
914 		return -EINVAL;
915 
916 	hw_ep_flush(hwep->ci, hwep->num, hwep->dir);
917 
918 	while (!list_empty(&hwep->qh.queue)) {
919 
920 		/* pop oldest request */
921 		struct ci_hw_req *hwreq = list_entry(hwep->qh.queue.next,
922 						     struct ci_hw_req, queue);
923 
924 		list_for_each_entry_safe(node, tmpnode, &hwreq->tds, td) {
925 			dma_pool_free(hwep->td_pool, node->ptr, node->dma);
926 			list_del_init(&node->td);
927 			node->ptr = NULL;
928 			kfree(node);
929 		}
930 
931 		list_del_init(&hwreq->queue);
932 		hwreq->req.status = -ESHUTDOWN;
933 
934 		if (hwreq->req.complete != NULL) {
935 			spin_unlock(hwep->lock);
936 			usb_gadget_giveback_request(&hwep->ep, &hwreq->req);
937 			spin_lock(hwep->lock);
938 		}
939 	}
940 
941 	if (hwep->pending_td)
942 		free_pending_td(hwep);
943 
944 	return 0;
945 }
946 
947 static int _ep_set_halt(struct usb_ep *ep, int value, bool check_transfer)
948 {
949 	struct ci_hw_ep *hwep = container_of(ep, struct ci_hw_ep, ep);
950 	int direction, retval = 0;
951 	unsigned long flags;
952 
953 	if (ep == NULL || hwep->ep.desc == NULL)
954 		return -EINVAL;
955 
956 	if (usb_endpoint_xfer_isoc(hwep->ep.desc))
957 		return -EOPNOTSUPP;
958 
959 	spin_lock_irqsave(hwep->lock, flags);
960 
961 	if (value && hwep->dir == TX && check_transfer &&
962 		!list_empty(&hwep->qh.queue) &&
963 			!usb_endpoint_xfer_control(hwep->ep.desc)) {
964 		spin_unlock_irqrestore(hwep->lock, flags);
965 		return -EAGAIN;
966 	}
967 
968 	direction = hwep->dir;
969 	do {
970 		retval |= hw_ep_set_halt(hwep->ci, hwep->num, hwep->dir, value);
971 
972 		if (!value)
973 			hwep->wedge = 0;
974 
975 		if (hwep->type == USB_ENDPOINT_XFER_CONTROL)
976 			hwep->dir = (hwep->dir == TX) ? RX : TX;
977 
978 	} while (hwep->dir != direction);
979 
980 	spin_unlock_irqrestore(hwep->lock, flags);
981 	return retval;
982 }
983 
984 
985 /**
986  * _gadget_stop_activity: stops all USB activity, flushes & disables all endpts
987  * @gadget: gadget
988  *
989  * This function returns an error code
990  */
991 static int _gadget_stop_activity(struct usb_gadget *gadget)
992 {
993 	struct usb_ep *ep;
994 	struct ci_hdrc    *ci = container_of(gadget, struct ci_hdrc, gadget);
995 	unsigned long flags;
996 
997 	/* flush all endpoints */
998 	gadget_for_each_ep(ep, gadget) {
999 		usb_ep_fifo_flush(ep);
1000 	}
1001 	usb_ep_fifo_flush(&ci->ep0out->ep);
1002 	usb_ep_fifo_flush(&ci->ep0in->ep);
1003 
1004 	/* make sure to disable all endpoints */
1005 	gadget_for_each_ep(ep, gadget) {
1006 		usb_ep_disable(ep);
1007 	}
1008 
1009 	if (ci->status != NULL) {
1010 		usb_ep_free_request(&ci->ep0in->ep, ci->status);
1011 		ci->status = NULL;
1012 	}
1013 
1014 	spin_lock_irqsave(&ci->lock, flags);
1015 	ci->gadget.speed = USB_SPEED_UNKNOWN;
1016 	ci->remote_wakeup = 0;
1017 	ci->suspended = 0;
1018 	spin_unlock_irqrestore(&ci->lock, flags);
1019 
1020 	return 0;
1021 }
1022 
1023 /******************************************************************************
1024  * ISR block
1025  *****************************************************************************/
1026 /**
1027  * isr_reset_handler: USB reset interrupt handler
1028  * @ci: UDC device
1029  *
1030  * This function resets USB engine after a bus reset occurred
1031  */
1032 static void isr_reset_handler(struct ci_hdrc *ci)
1033 __releases(ci->lock)
1034 __acquires(ci->lock)
1035 {
1036 	int retval;
1037 	u32 intr;
1038 
1039 	spin_unlock(&ci->lock);
1040 	if (ci->gadget.speed != USB_SPEED_UNKNOWN)
1041 		usb_gadget_udc_reset(&ci->gadget, ci->driver);
1042 
1043 	retval = _gadget_stop_activity(&ci->gadget);
1044 	if (retval)
1045 		goto done;
1046 
1047 	retval = hw_usb_reset(ci);
1048 	if (retval)
1049 		goto done;
1050 
1051 	/* clear SLI */
1052 	hw_write(ci, OP_USBSTS, USBi_SLI, USBi_SLI);
1053 	intr = hw_read(ci, OP_USBINTR, ~0);
1054 	hw_write(ci, OP_USBINTR, ~0, intr | USBi_SLI);
1055 
1056 	ci->status = usb_ep_alloc_request(&ci->ep0in->ep, GFP_ATOMIC);
1057 	if (ci->status == NULL)
1058 		retval = -ENOMEM;
1059 
1060 done:
1061 	spin_lock(&ci->lock);
1062 
1063 	if (retval)
1064 		dev_err(ci->dev, "error: %i\n", retval);
1065 }
1066 
1067 /**
1068  * isr_get_status_complete: get_status request complete function
1069  * @ep:  endpoint
1070  * @req: request handled
1071  *
1072  * Caller must release lock
1073  */
1074 static void isr_get_status_complete(struct usb_ep *ep, struct usb_request *req)
1075 {
1076 	if (ep == NULL || req == NULL)
1077 		return;
1078 
1079 	kfree(req->buf);
1080 	usb_ep_free_request(ep, req);
1081 }
1082 
1083 /**
1084  * _ep_queue: queues (submits) an I/O request to an endpoint
1085  * @ep:        endpoint
1086  * @req:       request
1087  * @gfp_flags: GFP flags (not used)
1088  *
1089  * Caller must hold lock
1090  * This function returns an error code
1091  */
1092 static int _ep_queue(struct usb_ep *ep, struct usb_request *req,
1093 		    gfp_t __maybe_unused gfp_flags)
1094 {
1095 	struct ci_hw_ep  *hwep  = container_of(ep,  struct ci_hw_ep, ep);
1096 	struct ci_hw_req *hwreq = container_of(req, struct ci_hw_req, req);
1097 	struct ci_hdrc *ci = hwep->ci;
1098 	int retval = 0;
1099 
1100 	if (ep == NULL || req == NULL || hwep->ep.desc == NULL)
1101 		return -EINVAL;
1102 
1103 	if (hwep->type == USB_ENDPOINT_XFER_CONTROL) {
1104 		if (req->length)
1105 			hwep = (ci->ep0_dir == RX) ?
1106 			       ci->ep0out : ci->ep0in;
1107 		if (!list_empty(&hwep->qh.queue)) {
1108 			_ep_nuke(hwep);
1109 			dev_warn(hwep->ci->dev, "endpoint ctrl %X nuked\n",
1110 				 _usb_addr(hwep));
1111 		}
1112 	}
1113 
1114 	if (usb_endpoint_xfer_isoc(hwep->ep.desc) &&
1115 	    hwreq->req.length > hwep->ep.mult * hwep->ep.maxpacket) {
1116 		dev_err(hwep->ci->dev, "request length too big for isochronous\n");
1117 		return -EMSGSIZE;
1118 	}
1119 
1120 	if (ci->has_short_pkt_limit &&
1121 		hwreq->req.length > CI_MAX_REQ_SIZE) {
1122 		dev_err(hwep->ci->dev, "request length too big (max 16KB)\n");
1123 		return -EMSGSIZE;
1124 	}
1125 
1126 	/* first nuke then test link, e.g. previous status has not sent */
1127 	if (!list_empty(&hwreq->queue)) {
1128 		dev_err(hwep->ci->dev, "request already in queue\n");
1129 		return -EBUSY;
1130 	}
1131 
1132 	/* push request */
1133 	hwreq->req.status = -EINPROGRESS;
1134 	hwreq->req.actual = 0;
1135 
1136 	retval = _hardware_enqueue(hwep, hwreq);
1137 
1138 	if (retval == -EALREADY)
1139 		retval = 0;
1140 	if (!retval)
1141 		list_add_tail(&hwreq->queue, &hwep->qh.queue);
1142 
1143 	return retval;
1144 }
1145 
1146 /**
1147  * isr_get_status_response: get_status request response
1148  * @ci: ci struct
1149  * @setup: setup request packet
1150  *
1151  * This function returns an error code
1152  */
1153 static int isr_get_status_response(struct ci_hdrc *ci,
1154 				   struct usb_ctrlrequest *setup)
1155 __releases(hwep->lock)
1156 __acquires(hwep->lock)
1157 {
1158 	struct ci_hw_ep *hwep = ci->ep0in;
1159 	struct usb_request *req = NULL;
1160 	gfp_t gfp_flags = GFP_ATOMIC;
1161 	int dir, num, retval;
1162 
1163 	if (hwep == NULL || setup == NULL)
1164 		return -EINVAL;
1165 
1166 	spin_unlock(hwep->lock);
1167 	req = usb_ep_alloc_request(&hwep->ep, gfp_flags);
1168 	spin_lock(hwep->lock);
1169 	if (req == NULL)
1170 		return -ENOMEM;
1171 
1172 	req->complete = isr_get_status_complete;
1173 	req->length   = 2;
1174 	req->buf      = kzalloc(req->length, gfp_flags);
1175 	if (req->buf == NULL) {
1176 		retval = -ENOMEM;
1177 		goto err_free_req;
1178 	}
1179 
1180 	if ((setup->bRequestType & USB_RECIP_MASK) == USB_RECIP_DEVICE) {
1181 		*(u16 *)req->buf = (ci->remote_wakeup << 1) |
1182 			ci->gadget.is_selfpowered;
1183 	} else if ((setup->bRequestType & USB_RECIP_MASK) \
1184 		   == USB_RECIP_ENDPOINT) {
1185 		dir = (le16_to_cpu(setup->wIndex) & USB_ENDPOINT_DIR_MASK) ?
1186 			TX : RX;
1187 		num =  le16_to_cpu(setup->wIndex) & USB_ENDPOINT_NUMBER_MASK;
1188 		*(u16 *)req->buf = hw_ep_get_halt(ci, num, dir);
1189 	}
1190 	/* else do nothing; reserved for future use */
1191 
1192 	retval = _ep_queue(&hwep->ep, req, gfp_flags);
1193 	if (retval)
1194 		goto err_free_buf;
1195 
1196 	return 0;
1197 
1198  err_free_buf:
1199 	kfree(req->buf);
1200  err_free_req:
1201 	spin_unlock(hwep->lock);
1202 	usb_ep_free_request(&hwep->ep, req);
1203 	spin_lock(hwep->lock);
1204 	return retval;
1205 }
1206 
1207 /**
1208  * isr_setup_status_complete: setup_status request complete function
1209  * @ep:  endpoint
1210  * @req: request handled
1211  *
1212  * Caller must release lock. Put the port in test mode if test mode
1213  * feature is selected.
1214  */
1215 static void
1216 isr_setup_status_complete(struct usb_ep *ep, struct usb_request *req)
1217 {
1218 	struct ci_hdrc *ci = req->context;
1219 	unsigned long flags;
1220 
1221 	if (req->status < 0)
1222 		return;
1223 
1224 	if (ci->setaddr) {
1225 		hw_usb_set_address(ci, ci->address);
1226 		ci->setaddr = false;
1227 		if (ci->address)
1228 			usb_gadget_set_state(&ci->gadget, USB_STATE_ADDRESS);
1229 	}
1230 
1231 	spin_lock_irqsave(&ci->lock, flags);
1232 	if (ci->test_mode)
1233 		hw_port_test_set(ci, ci->test_mode);
1234 	spin_unlock_irqrestore(&ci->lock, flags);
1235 }
1236 
1237 /**
1238  * isr_setup_status_phase: queues the status phase of a setup transation
1239  * @ci: ci struct
1240  *
1241  * This function returns an error code
1242  */
1243 static int isr_setup_status_phase(struct ci_hdrc *ci)
1244 {
1245 	struct ci_hw_ep *hwep;
1246 
1247 	/*
1248 	 * Unexpected USB controller behavior, caused by bad signal integrity
1249 	 * or ground reference problems, can lead to isr_setup_status_phase
1250 	 * being called with ci->status equal to NULL.
1251 	 * If this situation occurs, you should review your USB hardware design.
1252 	 */
1253 	if (WARN_ON_ONCE(!ci->status))
1254 		return -EPIPE;
1255 
1256 	hwep = (ci->ep0_dir == TX) ? ci->ep0out : ci->ep0in;
1257 	ci->status->context = ci;
1258 	ci->status->complete = isr_setup_status_complete;
1259 
1260 	return _ep_queue(&hwep->ep, ci->status, GFP_ATOMIC);
1261 }
1262 
1263 /**
1264  * isr_tr_complete_low: transaction complete low level handler
1265  * @hwep: endpoint
1266  *
1267  * This function returns an error code
1268  * Caller must hold lock
1269  */
1270 static int isr_tr_complete_low(struct ci_hw_ep *hwep)
1271 __releases(hwep->lock)
1272 __acquires(hwep->lock)
1273 {
1274 	struct ci_hw_req *hwreq, *hwreqtemp;
1275 	struct ci_hw_ep *hweptemp = hwep;
1276 	int retval = 0;
1277 
1278 	list_for_each_entry_safe(hwreq, hwreqtemp, &hwep->qh.queue,
1279 			queue) {
1280 		retval = _hardware_dequeue(hwep, hwreq);
1281 		if (retval < 0)
1282 			break;
1283 		list_del_init(&hwreq->queue);
1284 		if (hwreq->req.complete != NULL) {
1285 			spin_unlock(hwep->lock);
1286 			if ((hwep->type == USB_ENDPOINT_XFER_CONTROL) &&
1287 					hwreq->req.length)
1288 				hweptemp = hwep->ci->ep0in;
1289 			usb_gadget_giveback_request(&hweptemp->ep, &hwreq->req);
1290 			spin_lock(hwep->lock);
1291 		}
1292 	}
1293 
1294 	if (retval == -EBUSY)
1295 		retval = 0;
1296 
1297 	return retval;
1298 }
1299 
1300 static int otg_a_alt_hnp_support(struct ci_hdrc *ci)
1301 {
1302 	dev_warn(&ci->gadget.dev,
1303 		"connect the device to an alternate port if you want HNP\n");
1304 	return isr_setup_status_phase(ci);
1305 }
1306 
1307 /**
1308  * isr_setup_packet_handler: setup packet handler
1309  * @ci: UDC descriptor
1310  *
1311  * This function handles setup packet
1312  */
1313 static void isr_setup_packet_handler(struct ci_hdrc *ci)
1314 __releases(ci->lock)
1315 __acquires(ci->lock)
1316 {
1317 	struct ci_hw_ep *hwep = &ci->ci_hw_ep[0];
1318 	struct usb_ctrlrequest req;
1319 	int type, num, dir, err = -EINVAL;
1320 	u8 tmode = 0;
1321 
1322 	/*
1323 	 * Flush data and handshake transactions of previous
1324 	 * setup packet.
1325 	 */
1326 	_ep_nuke(ci->ep0out);
1327 	_ep_nuke(ci->ep0in);
1328 
1329 	/* read_setup_packet */
1330 	do {
1331 		hw_test_and_set_setup_guard(ci);
1332 		memcpy(&req, &hwep->qh.ptr->setup, sizeof(req));
1333 	} while (!hw_test_and_clear_setup_guard(ci));
1334 
1335 	type = req.bRequestType;
1336 
1337 	ci->ep0_dir = (type & USB_DIR_IN) ? TX : RX;
1338 
1339 	switch (req.bRequest) {
1340 	case USB_REQ_CLEAR_FEATURE:
1341 		if (type == (USB_DIR_OUT|USB_RECIP_ENDPOINT) &&
1342 				le16_to_cpu(req.wValue) ==
1343 				USB_ENDPOINT_HALT) {
1344 			if (req.wLength != 0)
1345 				break;
1346 			num  = le16_to_cpu(req.wIndex);
1347 			dir = (num & USB_ENDPOINT_DIR_MASK) ? TX : RX;
1348 			num &= USB_ENDPOINT_NUMBER_MASK;
1349 			if (dir == TX)
1350 				num += ci->hw_ep_max / 2;
1351 			if (!ci->ci_hw_ep[num].wedge) {
1352 				spin_unlock(&ci->lock);
1353 				err = usb_ep_clear_halt(
1354 					&ci->ci_hw_ep[num].ep);
1355 				spin_lock(&ci->lock);
1356 				if (err)
1357 					break;
1358 			}
1359 			err = isr_setup_status_phase(ci);
1360 		} else if (type == (USB_DIR_OUT|USB_RECIP_DEVICE) &&
1361 				le16_to_cpu(req.wValue) ==
1362 				USB_DEVICE_REMOTE_WAKEUP) {
1363 			if (req.wLength != 0)
1364 				break;
1365 			ci->remote_wakeup = 0;
1366 			err = isr_setup_status_phase(ci);
1367 		} else {
1368 			goto delegate;
1369 		}
1370 		break;
1371 	case USB_REQ_GET_STATUS:
1372 		if ((type != (USB_DIR_IN|USB_RECIP_DEVICE) ||
1373 			le16_to_cpu(req.wIndex) == OTG_STS_SELECTOR) &&
1374 		    type != (USB_DIR_IN|USB_RECIP_ENDPOINT) &&
1375 		    type != (USB_DIR_IN|USB_RECIP_INTERFACE))
1376 			goto delegate;
1377 		if (le16_to_cpu(req.wLength) != 2 ||
1378 		    le16_to_cpu(req.wValue)  != 0)
1379 			break;
1380 		err = isr_get_status_response(ci, &req);
1381 		break;
1382 	case USB_REQ_SET_ADDRESS:
1383 		if (type != (USB_DIR_OUT|USB_RECIP_DEVICE))
1384 			goto delegate;
1385 		if (le16_to_cpu(req.wLength) != 0 ||
1386 		    le16_to_cpu(req.wIndex)  != 0)
1387 			break;
1388 		ci->address = (u8)le16_to_cpu(req.wValue);
1389 		ci->setaddr = true;
1390 		err = isr_setup_status_phase(ci);
1391 		break;
1392 	case USB_REQ_SET_FEATURE:
1393 		if (type == (USB_DIR_OUT|USB_RECIP_ENDPOINT) &&
1394 				le16_to_cpu(req.wValue) ==
1395 				USB_ENDPOINT_HALT) {
1396 			if (req.wLength != 0)
1397 				break;
1398 			num  = le16_to_cpu(req.wIndex);
1399 			dir = (num & USB_ENDPOINT_DIR_MASK) ? TX : RX;
1400 			num &= USB_ENDPOINT_NUMBER_MASK;
1401 			if (dir == TX)
1402 				num += ci->hw_ep_max / 2;
1403 
1404 			spin_unlock(&ci->lock);
1405 			err = _ep_set_halt(&ci->ci_hw_ep[num].ep, 1, false);
1406 			spin_lock(&ci->lock);
1407 			if (!err)
1408 				isr_setup_status_phase(ci);
1409 		} else if (type == (USB_DIR_OUT|USB_RECIP_DEVICE)) {
1410 			if (req.wLength != 0)
1411 				break;
1412 			switch (le16_to_cpu(req.wValue)) {
1413 			case USB_DEVICE_REMOTE_WAKEUP:
1414 				ci->remote_wakeup = 1;
1415 				err = isr_setup_status_phase(ci);
1416 				break;
1417 			case USB_DEVICE_TEST_MODE:
1418 				tmode = le16_to_cpu(req.wIndex) >> 8;
1419 				switch (tmode) {
1420 				case USB_TEST_J:
1421 				case USB_TEST_K:
1422 				case USB_TEST_SE0_NAK:
1423 				case USB_TEST_PACKET:
1424 				case USB_TEST_FORCE_ENABLE:
1425 					ci->test_mode = tmode;
1426 					err = isr_setup_status_phase(
1427 							ci);
1428 					break;
1429 				default:
1430 					break;
1431 				}
1432 				break;
1433 			case USB_DEVICE_B_HNP_ENABLE:
1434 				if (ci_otg_is_fsm_mode(ci)) {
1435 					ci->gadget.b_hnp_enable = 1;
1436 					err = isr_setup_status_phase(
1437 							ci);
1438 				}
1439 				break;
1440 			case USB_DEVICE_A_ALT_HNP_SUPPORT:
1441 				if (ci_otg_is_fsm_mode(ci))
1442 					err = otg_a_alt_hnp_support(ci);
1443 				break;
1444 			case USB_DEVICE_A_HNP_SUPPORT:
1445 				if (ci_otg_is_fsm_mode(ci)) {
1446 					ci->gadget.a_hnp_support = 1;
1447 					err = isr_setup_status_phase(
1448 							ci);
1449 				}
1450 				break;
1451 			default:
1452 				goto delegate;
1453 			}
1454 		} else {
1455 			goto delegate;
1456 		}
1457 		break;
1458 	default:
1459 delegate:
1460 		if (req.wLength == 0)   /* no data phase */
1461 			ci->ep0_dir = TX;
1462 
1463 		spin_unlock(&ci->lock);
1464 		err = ci->driver->setup(&ci->gadget, &req);
1465 		spin_lock(&ci->lock);
1466 		break;
1467 	}
1468 
1469 	if (err < 0) {
1470 		spin_unlock(&ci->lock);
1471 		if (_ep_set_halt(&hwep->ep, 1, false))
1472 			dev_err(ci->dev, "error: _ep_set_halt\n");
1473 		spin_lock(&ci->lock);
1474 	}
1475 }
1476 
1477 /**
1478  * isr_tr_complete_handler: transaction complete interrupt handler
1479  * @ci: UDC descriptor
1480  *
1481  * This function handles traffic events
1482  */
1483 static void isr_tr_complete_handler(struct ci_hdrc *ci)
1484 __releases(ci->lock)
1485 __acquires(ci->lock)
1486 {
1487 	unsigned i;
1488 	int err;
1489 
1490 	for (i = 0; i < ci->hw_ep_max; i++) {
1491 		struct ci_hw_ep *hwep  = &ci->ci_hw_ep[i];
1492 
1493 		if (hwep->ep.desc == NULL)
1494 			continue;   /* not configured */
1495 
1496 		if (hw_test_and_clear_complete(ci, i)) {
1497 			err = isr_tr_complete_low(hwep);
1498 			if (hwep->type == USB_ENDPOINT_XFER_CONTROL) {
1499 				if (err > 0)   /* needs status phase */
1500 					err = isr_setup_status_phase(ci);
1501 				if (err < 0) {
1502 					spin_unlock(&ci->lock);
1503 					if (_ep_set_halt(&hwep->ep, 1, false))
1504 						dev_err(ci->dev,
1505 						"error: _ep_set_halt\n");
1506 					spin_lock(&ci->lock);
1507 				}
1508 			}
1509 		}
1510 
1511 		/* Only handle setup packet below */
1512 		if (i == 0 &&
1513 			hw_test_and_clear(ci, OP_ENDPTSETUPSTAT, BIT(0)))
1514 			isr_setup_packet_handler(ci);
1515 	}
1516 }
1517 
1518 /******************************************************************************
1519  * ENDPT block
1520  *****************************************************************************/
1521 /*
1522  * ep_enable: configure endpoint, making it usable
1523  *
1524  * Check usb_ep_enable() at "usb_gadget.h" for details
1525  */
1526 static int ep_enable(struct usb_ep *ep,
1527 		     const struct usb_endpoint_descriptor *desc)
1528 {
1529 	struct ci_hw_ep *hwep = container_of(ep, struct ci_hw_ep, ep);
1530 	int retval = 0;
1531 	unsigned long flags;
1532 	u32 cap = 0;
1533 
1534 	if (ep == NULL || desc == NULL)
1535 		return -EINVAL;
1536 
1537 	spin_lock_irqsave(hwep->lock, flags);
1538 
1539 	/* only internal SW should enable ctrl endpts */
1540 
1541 	if (!list_empty(&hwep->qh.queue)) {
1542 		dev_warn(hwep->ci->dev, "enabling a non-empty endpoint!\n");
1543 		spin_unlock_irqrestore(hwep->lock, flags);
1544 		return -EBUSY;
1545 	}
1546 
1547 	hwep->ep.desc = desc;
1548 
1549 	hwep->dir  = usb_endpoint_dir_in(desc) ? TX : RX;
1550 	hwep->num  = usb_endpoint_num(desc);
1551 	hwep->type = usb_endpoint_type(desc);
1552 
1553 	hwep->ep.maxpacket = usb_endpoint_maxp(desc);
1554 	hwep->ep.mult = usb_endpoint_maxp_mult(desc);
1555 
1556 	if (hwep->type == USB_ENDPOINT_XFER_CONTROL)
1557 		cap |= QH_IOS;
1558 
1559 	cap |= QH_ZLT;
1560 	cap |= (hwep->ep.maxpacket << __ffs(QH_MAX_PKT)) & QH_MAX_PKT;
1561 	/*
1562 	 * For ISO-TX, we set mult at QH as the largest value, and use
1563 	 * MultO at TD as real mult value.
1564 	 */
1565 	if (hwep->type == USB_ENDPOINT_XFER_ISOC && hwep->dir == TX)
1566 		cap |= 3 << __ffs(QH_MULT);
1567 
1568 	hwep->qh.ptr->cap = cpu_to_le32(cap);
1569 
1570 	hwep->qh.ptr->td.next |= cpu_to_le32(TD_TERMINATE);   /* needed? */
1571 
1572 	if (hwep->num != 0 && hwep->type == USB_ENDPOINT_XFER_CONTROL) {
1573 		dev_err(hwep->ci->dev, "Set control xfer at non-ep0\n");
1574 		retval = -EINVAL;
1575 	}
1576 
1577 	/*
1578 	 * Enable endpoints in the HW other than ep0 as ep0
1579 	 * is always enabled
1580 	 */
1581 	if (hwep->num)
1582 		retval |= hw_ep_enable(hwep->ci, hwep->num, hwep->dir,
1583 				       hwep->type);
1584 
1585 	spin_unlock_irqrestore(hwep->lock, flags);
1586 	return retval;
1587 }
1588 
1589 /*
1590  * ep_disable: endpoint is no longer usable
1591  *
1592  * Check usb_ep_disable() at "usb_gadget.h" for details
1593  */
1594 static int ep_disable(struct usb_ep *ep)
1595 {
1596 	struct ci_hw_ep *hwep = container_of(ep, struct ci_hw_ep, ep);
1597 	int direction, retval = 0;
1598 	unsigned long flags;
1599 
1600 	if (ep == NULL)
1601 		return -EINVAL;
1602 	else if (hwep->ep.desc == NULL)
1603 		return -EBUSY;
1604 
1605 	spin_lock_irqsave(hwep->lock, flags);
1606 	if (hwep->ci->gadget.speed == USB_SPEED_UNKNOWN) {
1607 		spin_unlock_irqrestore(hwep->lock, flags);
1608 		return 0;
1609 	}
1610 
1611 	/* only internal SW should disable ctrl endpts */
1612 
1613 	direction = hwep->dir;
1614 	do {
1615 		retval |= _ep_nuke(hwep);
1616 		retval |= hw_ep_disable(hwep->ci, hwep->num, hwep->dir);
1617 
1618 		if (hwep->type == USB_ENDPOINT_XFER_CONTROL)
1619 			hwep->dir = (hwep->dir == TX) ? RX : TX;
1620 
1621 	} while (hwep->dir != direction);
1622 
1623 	hwep->ep.desc = NULL;
1624 
1625 	spin_unlock_irqrestore(hwep->lock, flags);
1626 	return retval;
1627 }
1628 
1629 /*
1630  * ep_alloc_request: allocate a request object to use with this endpoint
1631  *
1632  * Check usb_ep_alloc_request() at "usb_gadget.h" for details
1633  */
1634 static struct usb_request *ep_alloc_request(struct usb_ep *ep, gfp_t gfp_flags)
1635 {
1636 	struct ci_hw_req *hwreq;
1637 
1638 	if (ep == NULL)
1639 		return NULL;
1640 
1641 	hwreq = kzalloc(sizeof(struct ci_hw_req), gfp_flags);
1642 	if (hwreq != NULL) {
1643 		INIT_LIST_HEAD(&hwreq->queue);
1644 		INIT_LIST_HEAD(&hwreq->tds);
1645 	}
1646 
1647 	return (hwreq == NULL) ? NULL : &hwreq->req;
1648 }
1649 
1650 /*
1651  * ep_free_request: frees a request object
1652  *
1653  * Check usb_ep_free_request() at "usb_gadget.h" for details
1654  */
1655 static void ep_free_request(struct usb_ep *ep, struct usb_request *req)
1656 {
1657 	struct ci_hw_ep  *hwep  = container_of(ep,  struct ci_hw_ep, ep);
1658 	struct ci_hw_req *hwreq = container_of(req, struct ci_hw_req, req);
1659 	struct td_node *node, *tmpnode;
1660 	unsigned long flags;
1661 
1662 	if (ep == NULL || req == NULL) {
1663 		return;
1664 	} else if (!list_empty(&hwreq->queue)) {
1665 		dev_err(hwep->ci->dev, "freeing queued request\n");
1666 		return;
1667 	}
1668 
1669 	spin_lock_irqsave(hwep->lock, flags);
1670 
1671 	list_for_each_entry_safe(node, tmpnode, &hwreq->tds, td) {
1672 		dma_pool_free(hwep->td_pool, node->ptr, node->dma);
1673 		list_del_init(&node->td);
1674 		node->ptr = NULL;
1675 		kfree(node);
1676 	}
1677 
1678 	kfree(hwreq);
1679 
1680 	spin_unlock_irqrestore(hwep->lock, flags);
1681 }
1682 
1683 /*
1684  * ep_queue: queues (submits) an I/O request to an endpoint
1685  *
1686  * Check usb_ep_queue()* at usb_gadget.h" for details
1687  */
1688 static int ep_queue(struct usb_ep *ep, struct usb_request *req,
1689 		    gfp_t __maybe_unused gfp_flags)
1690 {
1691 	struct ci_hw_ep  *hwep  = container_of(ep,  struct ci_hw_ep, ep);
1692 	int retval = 0;
1693 	unsigned long flags;
1694 
1695 	if (ep == NULL || req == NULL || hwep->ep.desc == NULL)
1696 		return -EINVAL;
1697 
1698 	spin_lock_irqsave(hwep->lock, flags);
1699 	if (hwep->ci->gadget.speed == USB_SPEED_UNKNOWN) {
1700 		spin_unlock_irqrestore(hwep->lock, flags);
1701 		return 0;
1702 	}
1703 	retval = _ep_queue(ep, req, gfp_flags);
1704 	spin_unlock_irqrestore(hwep->lock, flags);
1705 	return retval;
1706 }
1707 
1708 /*
1709  * ep_dequeue: dequeues (cancels, unlinks) an I/O request from an endpoint
1710  *
1711  * Check usb_ep_dequeue() at "usb_gadget.h" for details
1712  */
1713 static int ep_dequeue(struct usb_ep *ep, struct usb_request *req)
1714 {
1715 	struct ci_hw_ep  *hwep  = container_of(ep,  struct ci_hw_ep, ep);
1716 	struct ci_hw_req *hwreq = container_of(req, struct ci_hw_req, req);
1717 	unsigned long flags;
1718 	struct td_node *node, *tmpnode;
1719 
1720 	if (ep == NULL || req == NULL || hwreq->req.status != -EALREADY ||
1721 		hwep->ep.desc == NULL || list_empty(&hwreq->queue) ||
1722 		list_empty(&hwep->qh.queue))
1723 		return -EINVAL;
1724 
1725 	spin_lock_irqsave(hwep->lock, flags);
1726 	if (hwep->ci->gadget.speed != USB_SPEED_UNKNOWN)
1727 		hw_ep_flush(hwep->ci, hwep->num, hwep->dir);
1728 
1729 	list_for_each_entry_safe(node, tmpnode, &hwreq->tds, td) {
1730 		dma_pool_free(hwep->td_pool, node->ptr, node->dma);
1731 		list_del(&node->td);
1732 		kfree(node);
1733 	}
1734 
1735 	/* pop request */
1736 	list_del_init(&hwreq->queue);
1737 
1738 	usb_gadget_unmap_request(&hwep->ci->gadget, req, hwep->dir);
1739 
1740 	if (hwreq->sgt.sgl)
1741 		sglist_do_debounce(hwreq, false);
1742 
1743 	req->status = -ECONNRESET;
1744 
1745 	if (hwreq->req.complete != NULL) {
1746 		spin_unlock(hwep->lock);
1747 		usb_gadget_giveback_request(&hwep->ep, &hwreq->req);
1748 		spin_lock(hwep->lock);
1749 	}
1750 
1751 	spin_unlock_irqrestore(hwep->lock, flags);
1752 	return 0;
1753 }
1754 
1755 /*
1756  * ep_set_halt: sets the endpoint halt feature
1757  *
1758  * Check usb_ep_set_halt() at "usb_gadget.h" for details
1759  */
1760 static int ep_set_halt(struct usb_ep *ep, int value)
1761 {
1762 	return _ep_set_halt(ep, value, true);
1763 }
1764 
1765 /*
1766  * ep_set_wedge: sets the halt feature and ignores clear requests
1767  *
1768  * Check usb_ep_set_wedge() at "usb_gadget.h" for details
1769  */
1770 static int ep_set_wedge(struct usb_ep *ep)
1771 {
1772 	struct ci_hw_ep *hwep = container_of(ep, struct ci_hw_ep, ep);
1773 	unsigned long flags;
1774 
1775 	if (ep == NULL || hwep->ep.desc == NULL)
1776 		return -EINVAL;
1777 
1778 	spin_lock_irqsave(hwep->lock, flags);
1779 	hwep->wedge = 1;
1780 	spin_unlock_irqrestore(hwep->lock, flags);
1781 
1782 	return usb_ep_set_halt(ep);
1783 }
1784 
1785 /*
1786  * ep_fifo_flush: flushes contents of a fifo
1787  *
1788  * Check usb_ep_fifo_flush() at "usb_gadget.h" for details
1789  */
1790 static void ep_fifo_flush(struct usb_ep *ep)
1791 {
1792 	struct ci_hw_ep *hwep = container_of(ep, struct ci_hw_ep, ep);
1793 	unsigned long flags;
1794 
1795 	if (ep == NULL) {
1796 		dev_err(hwep->ci->dev, "%02X: -EINVAL\n", _usb_addr(hwep));
1797 		return;
1798 	}
1799 
1800 	spin_lock_irqsave(hwep->lock, flags);
1801 	if (hwep->ci->gadget.speed == USB_SPEED_UNKNOWN) {
1802 		spin_unlock_irqrestore(hwep->lock, flags);
1803 		return;
1804 	}
1805 
1806 	hw_ep_flush(hwep->ci, hwep->num, hwep->dir);
1807 
1808 	spin_unlock_irqrestore(hwep->lock, flags);
1809 }
1810 
1811 /*
1812  * Endpoint-specific part of the API to the USB controller hardware
1813  * Check "usb_gadget.h" for details
1814  */
1815 static const struct usb_ep_ops usb_ep_ops = {
1816 	.enable	       = ep_enable,
1817 	.disable       = ep_disable,
1818 	.alloc_request = ep_alloc_request,
1819 	.free_request  = ep_free_request,
1820 	.queue	       = ep_queue,
1821 	.dequeue       = ep_dequeue,
1822 	.set_halt      = ep_set_halt,
1823 	.set_wedge     = ep_set_wedge,
1824 	.fifo_flush    = ep_fifo_flush,
1825 };
1826 
1827 /******************************************************************************
1828  * GADGET block
1829  *****************************************************************************/
1830 
1831 static int ci_udc_get_frame(struct usb_gadget *_gadget)
1832 {
1833 	struct ci_hdrc *ci = container_of(_gadget, struct ci_hdrc, gadget);
1834 	unsigned long flags;
1835 	int ret;
1836 
1837 	spin_lock_irqsave(&ci->lock, flags);
1838 	ret = hw_read(ci, OP_FRINDEX, 0x3fff);
1839 	spin_unlock_irqrestore(&ci->lock, flags);
1840 	return ret >> 3;
1841 }
1842 
1843 /*
1844  * ci_hdrc_gadget_connect: caller makes sure gadget driver is binded
1845  */
1846 static void ci_hdrc_gadget_connect(struct usb_gadget *_gadget, int is_active)
1847 {
1848 	struct ci_hdrc *ci = container_of(_gadget, struct ci_hdrc, gadget);
1849 
1850 	if (is_active) {
1851 		pm_runtime_get_sync(ci->dev);
1852 		hw_device_reset(ci);
1853 		spin_lock_irq(&ci->lock);
1854 		if (ci->driver) {
1855 			hw_device_state(ci, ci->ep0out->qh.dma);
1856 			usb_gadget_set_state(_gadget, USB_STATE_POWERED);
1857 			spin_unlock_irq(&ci->lock);
1858 			usb_udc_vbus_handler(_gadget, true);
1859 		} else {
1860 			spin_unlock_irq(&ci->lock);
1861 		}
1862 	} else {
1863 		usb_udc_vbus_handler(_gadget, false);
1864 		if (ci->driver)
1865 			ci->driver->disconnect(&ci->gadget);
1866 		hw_device_state(ci, 0);
1867 		if (ci->platdata->notify_event)
1868 			ci->platdata->notify_event(ci,
1869 			CI_HDRC_CONTROLLER_STOPPED_EVENT);
1870 		_gadget_stop_activity(&ci->gadget);
1871 		pm_runtime_put_sync(ci->dev);
1872 		usb_gadget_set_state(_gadget, USB_STATE_NOTATTACHED);
1873 	}
1874 }
1875 
1876 static int ci_udc_vbus_session(struct usb_gadget *_gadget, int is_active)
1877 {
1878 	struct ci_hdrc *ci = container_of(_gadget, struct ci_hdrc, gadget);
1879 	unsigned long flags;
1880 	int ret = 0;
1881 
1882 	spin_lock_irqsave(&ci->lock, flags);
1883 	ci->vbus_active = is_active;
1884 	spin_unlock_irqrestore(&ci->lock, flags);
1885 
1886 	if (ci->usb_phy)
1887 		usb_phy_set_charger_state(ci->usb_phy, is_active ?
1888 			USB_CHARGER_PRESENT : USB_CHARGER_ABSENT);
1889 
1890 	if (ci->platdata->notify_event)
1891 		ret = ci->platdata->notify_event(ci,
1892 				CI_HDRC_CONTROLLER_VBUS_EVENT);
1893 
1894 	if (ci->usb_phy) {
1895 		if (is_active)
1896 			usb_phy_set_event(ci->usb_phy, USB_EVENT_VBUS);
1897 		else
1898 			usb_phy_set_event(ci->usb_phy, USB_EVENT_NONE);
1899 	}
1900 
1901 	if (ci->driver)
1902 		ci_hdrc_gadget_connect(_gadget, is_active);
1903 
1904 	return ret;
1905 }
1906 
1907 static int ci_udc_wakeup(struct usb_gadget *_gadget)
1908 {
1909 	struct ci_hdrc *ci = container_of(_gadget, struct ci_hdrc, gadget);
1910 	unsigned long flags;
1911 	int ret = 0;
1912 
1913 	spin_lock_irqsave(&ci->lock, flags);
1914 	if (ci->gadget.speed == USB_SPEED_UNKNOWN) {
1915 		spin_unlock_irqrestore(&ci->lock, flags);
1916 		return 0;
1917 	}
1918 	if (!ci->remote_wakeup) {
1919 		ret = -EOPNOTSUPP;
1920 		goto out;
1921 	}
1922 	if (!hw_read(ci, OP_PORTSC, PORTSC_SUSP)) {
1923 		ret = -EINVAL;
1924 		goto out;
1925 	}
1926 	hw_write(ci, OP_PORTSC, PORTSC_FPR, PORTSC_FPR);
1927 out:
1928 	spin_unlock_irqrestore(&ci->lock, flags);
1929 	return ret;
1930 }
1931 
1932 static int ci_udc_vbus_draw(struct usb_gadget *_gadget, unsigned ma)
1933 {
1934 	struct ci_hdrc *ci = container_of(_gadget, struct ci_hdrc, gadget);
1935 
1936 	if (ci->usb_phy)
1937 		return usb_phy_set_power(ci->usb_phy, ma);
1938 	return -ENOTSUPP;
1939 }
1940 
1941 static int ci_udc_selfpowered(struct usb_gadget *_gadget, int is_on)
1942 {
1943 	struct ci_hdrc *ci = container_of(_gadget, struct ci_hdrc, gadget);
1944 	struct ci_hw_ep *hwep = ci->ep0in;
1945 	unsigned long flags;
1946 
1947 	spin_lock_irqsave(hwep->lock, flags);
1948 	_gadget->is_selfpowered = (is_on != 0);
1949 	spin_unlock_irqrestore(hwep->lock, flags);
1950 
1951 	return 0;
1952 }
1953 
1954 /* Change Data+ pullup status
1955  * this func is used by usb_gadget_connect/disconnect
1956  */
1957 static int ci_udc_pullup(struct usb_gadget *_gadget, int is_on)
1958 {
1959 	struct ci_hdrc *ci = container_of(_gadget, struct ci_hdrc, gadget);
1960 
1961 	/*
1962 	 * Data+ pullup controlled by OTG state machine in OTG fsm mode;
1963 	 * and don't touch Data+ in host mode for dual role config.
1964 	 */
1965 	if (ci_otg_is_fsm_mode(ci) || ci->role == CI_ROLE_HOST)
1966 		return 0;
1967 
1968 	pm_runtime_get_sync(ci->dev);
1969 	if (is_on)
1970 		hw_write(ci, OP_USBCMD, USBCMD_RS, USBCMD_RS);
1971 	else
1972 		hw_write(ci, OP_USBCMD, USBCMD_RS, 0);
1973 	pm_runtime_put_sync(ci->dev);
1974 
1975 	return 0;
1976 }
1977 
1978 static int ci_udc_start(struct usb_gadget *gadget,
1979 			 struct usb_gadget_driver *driver);
1980 static int ci_udc_stop(struct usb_gadget *gadget);
1981 
1982 /* Match ISOC IN from the highest endpoint */
1983 static struct usb_ep *ci_udc_match_ep(struct usb_gadget *gadget,
1984 			      struct usb_endpoint_descriptor *desc,
1985 			      struct usb_ss_ep_comp_descriptor *comp_desc)
1986 {
1987 	struct ci_hdrc *ci = container_of(gadget, struct ci_hdrc, gadget);
1988 	struct usb_ep *ep;
1989 
1990 	if (usb_endpoint_xfer_isoc(desc) && usb_endpoint_dir_in(desc)) {
1991 		list_for_each_entry_reverse(ep, &ci->gadget.ep_list, ep_list) {
1992 			if (ep->caps.dir_in && !ep->claimed)
1993 				return ep;
1994 		}
1995 	}
1996 
1997 	return NULL;
1998 }
1999 
2000 /*
2001  * Device operations part of the API to the USB controller hardware,
2002  * which don't involve endpoints (or i/o)
2003  * Check  "usb_gadget.h" for details
2004  */
2005 static const struct usb_gadget_ops usb_gadget_ops = {
2006 	.get_frame	= ci_udc_get_frame,
2007 	.vbus_session	= ci_udc_vbus_session,
2008 	.wakeup		= ci_udc_wakeup,
2009 	.set_selfpowered	= ci_udc_selfpowered,
2010 	.pullup		= ci_udc_pullup,
2011 	.vbus_draw	= ci_udc_vbus_draw,
2012 	.udc_start	= ci_udc_start,
2013 	.udc_stop	= ci_udc_stop,
2014 	.match_ep 	= ci_udc_match_ep,
2015 };
2016 
2017 static int init_eps(struct ci_hdrc *ci)
2018 {
2019 	int retval = 0, i, j;
2020 
2021 	for (i = 0; i < ci->hw_ep_max/2; i++)
2022 		for (j = RX; j <= TX; j++) {
2023 			int k = i + j * ci->hw_ep_max/2;
2024 			struct ci_hw_ep *hwep = &ci->ci_hw_ep[k];
2025 
2026 			scnprintf(hwep->name, sizeof(hwep->name), "ep%i%s", i,
2027 					(j == TX)  ? "in" : "out");
2028 
2029 			hwep->ci          = ci;
2030 			hwep->lock         = &ci->lock;
2031 			hwep->td_pool      = ci->td_pool;
2032 
2033 			hwep->ep.name      = hwep->name;
2034 			hwep->ep.ops       = &usb_ep_ops;
2035 
2036 			if (i == 0) {
2037 				hwep->ep.caps.type_control = true;
2038 			} else {
2039 				hwep->ep.caps.type_iso = true;
2040 				hwep->ep.caps.type_bulk = true;
2041 				hwep->ep.caps.type_int = true;
2042 			}
2043 
2044 			if (j == TX)
2045 				hwep->ep.caps.dir_in = true;
2046 			else
2047 				hwep->ep.caps.dir_out = true;
2048 
2049 			/*
2050 			 * for ep0: maxP defined in desc, for other
2051 			 * eps, maxP is set by epautoconfig() called
2052 			 * by gadget layer
2053 			 */
2054 			usb_ep_set_maxpacket_limit(&hwep->ep, (unsigned short)~0);
2055 
2056 			INIT_LIST_HEAD(&hwep->qh.queue);
2057 			hwep->qh.ptr = dma_pool_zalloc(ci->qh_pool, GFP_KERNEL,
2058 						       &hwep->qh.dma);
2059 			if (hwep->qh.ptr == NULL)
2060 				retval = -ENOMEM;
2061 
2062 			/*
2063 			 * set up shorthands for ep0 out and in endpoints,
2064 			 * don't add to gadget's ep_list
2065 			 */
2066 			if (i == 0) {
2067 				if (j == RX)
2068 					ci->ep0out = hwep;
2069 				else
2070 					ci->ep0in = hwep;
2071 
2072 				usb_ep_set_maxpacket_limit(&hwep->ep, CTRL_PAYLOAD_MAX);
2073 				continue;
2074 			}
2075 
2076 			list_add_tail(&hwep->ep.ep_list, &ci->gadget.ep_list);
2077 		}
2078 
2079 	return retval;
2080 }
2081 
2082 static void destroy_eps(struct ci_hdrc *ci)
2083 {
2084 	int i;
2085 
2086 	for (i = 0; i < ci->hw_ep_max; i++) {
2087 		struct ci_hw_ep *hwep = &ci->ci_hw_ep[i];
2088 
2089 		if (hwep->pending_td)
2090 			free_pending_td(hwep);
2091 		dma_pool_free(ci->qh_pool, hwep->qh.ptr, hwep->qh.dma);
2092 	}
2093 }
2094 
2095 /**
2096  * ci_udc_start: register a gadget driver
2097  * @gadget: our gadget
2098  * @driver: the driver being registered
2099  *
2100  * Interrupts are enabled here.
2101  */
2102 static int ci_udc_start(struct usb_gadget *gadget,
2103 			 struct usb_gadget_driver *driver)
2104 {
2105 	struct ci_hdrc *ci = container_of(gadget, struct ci_hdrc, gadget);
2106 	int retval;
2107 
2108 	if (driver->disconnect == NULL)
2109 		return -EINVAL;
2110 
2111 	ci->ep0out->ep.desc = &ctrl_endpt_out_desc;
2112 	retval = usb_ep_enable(&ci->ep0out->ep);
2113 	if (retval)
2114 		return retval;
2115 
2116 	ci->ep0in->ep.desc = &ctrl_endpt_in_desc;
2117 	retval = usb_ep_enable(&ci->ep0in->ep);
2118 	if (retval)
2119 		return retval;
2120 
2121 	ci->driver = driver;
2122 
2123 	/* Start otg fsm for B-device */
2124 	if (ci_otg_is_fsm_mode(ci) && ci->fsm.id) {
2125 		ci_hdrc_otg_fsm_start(ci);
2126 		return retval;
2127 	}
2128 
2129 	if (ci->vbus_active)
2130 		ci_hdrc_gadget_connect(gadget, 1);
2131 	else
2132 		usb_udc_vbus_handler(&ci->gadget, false);
2133 
2134 	return retval;
2135 }
2136 
2137 static void ci_udc_stop_for_otg_fsm(struct ci_hdrc *ci)
2138 {
2139 	if (!ci_otg_is_fsm_mode(ci))
2140 		return;
2141 
2142 	mutex_lock(&ci->fsm.lock);
2143 	if (ci->fsm.otg->state == OTG_STATE_A_PERIPHERAL) {
2144 		ci->fsm.a_bidl_adis_tmout = 1;
2145 		ci_hdrc_otg_fsm_start(ci);
2146 	} else if (ci->fsm.otg->state == OTG_STATE_B_PERIPHERAL) {
2147 		ci->fsm.protocol = PROTO_UNDEF;
2148 		ci->fsm.otg->state = OTG_STATE_UNDEFINED;
2149 	}
2150 	mutex_unlock(&ci->fsm.lock);
2151 }
2152 
2153 /*
2154  * ci_udc_stop: unregister a gadget driver
2155  */
2156 static int ci_udc_stop(struct usb_gadget *gadget)
2157 {
2158 	struct ci_hdrc *ci = container_of(gadget, struct ci_hdrc, gadget);
2159 	unsigned long flags;
2160 
2161 	spin_lock_irqsave(&ci->lock, flags);
2162 	ci->driver = NULL;
2163 
2164 	if (ci->vbus_active) {
2165 		hw_device_state(ci, 0);
2166 		spin_unlock_irqrestore(&ci->lock, flags);
2167 		if (ci->platdata->notify_event)
2168 			ci->platdata->notify_event(ci,
2169 			CI_HDRC_CONTROLLER_STOPPED_EVENT);
2170 		_gadget_stop_activity(&ci->gadget);
2171 		spin_lock_irqsave(&ci->lock, flags);
2172 		pm_runtime_put(ci->dev);
2173 	}
2174 
2175 	spin_unlock_irqrestore(&ci->lock, flags);
2176 
2177 	ci_udc_stop_for_otg_fsm(ci);
2178 	return 0;
2179 }
2180 
2181 /******************************************************************************
2182  * BUS block
2183  *****************************************************************************/
2184 /*
2185  * udc_irq: ci interrupt handler
2186  *
2187  * This function returns IRQ_HANDLED if the IRQ has been handled
2188  * It locks access to registers
2189  */
2190 static irqreturn_t udc_irq(struct ci_hdrc *ci)
2191 {
2192 	irqreturn_t retval;
2193 	u32 intr;
2194 
2195 	if (ci == NULL)
2196 		return IRQ_HANDLED;
2197 
2198 	spin_lock(&ci->lock);
2199 
2200 	if (ci->platdata->flags & CI_HDRC_REGS_SHARED) {
2201 		if (hw_read(ci, OP_USBMODE, USBMODE_CM) !=
2202 				USBMODE_CM_DC) {
2203 			spin_unlock(&ci->lock);
2204 			return IRQ_NONE;
2205 		}
2206 	}
2207 	intr = hw_test_and_clear_intr_active(ci);
2208 
2209 	if (intr) {
2210 		/* order defines priority - do NOT change it */
2211 		if (USBi_URI & intr)
2212 			isr_reset_handler(ci);
2213 
2214 		if (USBi_PCI & intr) {
2215 			ci->gadget.speed = hw_port_is_high_speed(ci) ?
2216 				USB_SPEED_HIGH : USB_SPEED_FULL;
2217 			if (ci->usb_phy)
2218 				usb_phy_set_event(ci->usb_phy,
2219 					USB_EVENT_ENUMERATED);
2220 			if (ci->suspended) {
2221 				if (ci->driver->resume) {
2222 					spin_unlock(&ci->lock);
2223 					ci->driver->resume(&ci->gadget);
2224 					spin_lock(&ci->lock);
2225 				}
2226 				ci->suspended = 0;
2227 				usb_gadget_set_state(&ci->gadget,
2228 						ci->resume_state);
2229 			}
2230 		}
2231 
2232 		if ((USBi_UI | USBi_UEI) & intr)
2233 			isr_tr_complete_handler(ci);
2234 
2235 		if ((USBi_SLI & intr) && !(ci->suspended)) {
2236 			ci->suspended = 1;
2237 			ci->resume_state = ci->gadget.state;
2238 			if (ci->gadget.speed != USB_SPEED_UNKNOWN &&
2239 			    ci->driver->suspend) {
2240 				spin_unlock(&ci->lock);
2241 				ci->driver->suspend(&ci->gadget);
2242 				spin_lock(&ci->lock);
2243 			}
2244 			usb_gadget_set_state(&ci->gadget,
2245 					USB_STATE_SUSPENDED);
2246 		}
2247 		retval = IRQ_HANDLED;
2248 	} else {
2249 		retval = IRQ_NONE;
2250 	}
2251 	spin_unlock(&ci->lock);
2252 
2253 	return retval;
2254 }
2255 
2256 /**
2257  * udc_start: initialize gadget role
2258  * @ci: chipidea controller
2259  */
2260 static int udc_start(struct ci_hdrc *ci)
2261 {
2262 	struct device *dev = ci->dev;
2263 	struct usb_otg_caps *otg_caps = &ci->platdata->ci_otg_caps;
2264 	int retval = 0;
2265 
2266 	ci->gadget.ops          = &usb_gadget_ops;
2267 	ci->gadget.speed        = USB_SPEED_UNKNOWN;
2268 	ci->gadget.max_speed    = USB_SPEED_HIGH;
2269 	ci->gadget.name         = ci->platdata->name;
2270 	ci->gadget.otg_caps	= otg_caps;
2271 	ci->gadget.sg_supported = 1;
2272 	ci->gadget.irq		= ci->irq;
2273 
2274 	if (ci->platdata->flags & CI_HDRC_REQUIRES_ALIGNED_DMA)
2275 		ci->gadget.quirk_avoids_skb_reserve = 1;
2276 
2277 	if (ci->is_otg && (otg_caps->hnp_support || otg_caps->srp_support ||
2278 						otg_caps->adp_support))
2279 		ci->gadget.is_otg = 1;
2280 
2281 	INIT_LIST_HEAD(&ci->gadget.ep_list);
2282 
2283 	/* alloc resources */
2284 	ci->qh_pool = dma_pool_create("ci_hw_qh", dev->parent,
2285 				       sizeof(struct ci_hw_qh),
2286 				       64, CI_HDRC_PAGE_SIZE);
2287 	if (ci->qh_pool == NULL)
2288 		return -ENOMEM;
2289 
2290 	ci->td_pool = dma_pool_create("ci_hw_td", dev->parent,
2291 				       sizeof(struct ci_hw_td),
2292 				       64, CI_HDRC_PAGE_SIZE);
2293 	if (ci->td_pool == NULL) {
2294 		retval = -ENOMEM;
2295 		goto free_qh_pool;
2296 	}
2297 
2298 	retval = init_eps(ci);
2299 	if (retval)
2300 		goto free_pools;
2301 
2302 	ci->gadget.ep0 = &ci->ep0in->ep;
2303 
2304 	retval = usb_add_gadget_udc(dev, &ci->gadget);
2305 	if (retval)
2306 		goto destroy_eps;
2307 
2308 	return retval;
2309 
2310 destroy_eps:
2311 	destroy_eps(ci);
2312 free_pools:
2313 	dma_pool_destroy(ci->td_pool);
2314 free_qh_pool:
2315 	dma_pool_destroy(ci->qh_pool);
2316 	return retval;
2317 }
2318 
2319 /*
2320  * ci_hdrc_gadget_destroy: parent remove must call this to remove UDC
2321  *
2322  * No interrupts active, the IRQ has been released
2323  */
2324 void ci_hdrc_gadget_destroy(struct ci_hdrc *ci)
2325 {
2326 	if (!ci->roles[CI_ROLE_GADGET])
2327 		return;
2328 
2329 	usb_del_gadget_udc(&ci->gadget);
2330 
2331 	destroy_eps(ci);
2332 
2333 	dma_pool_destroy(ci->td_pool);
2334 	dma_pool_destroy(ci->qh_pool);
2335 }
2336 
2337 static int udc_id_switch_for_device(struct ci_hdrc *ci)
2338 {
2339 	if (ci->platdata->pins_device)
2340 		pinctrl_select_state(ci->platdata->pctl,
2341 				     ci->platdata->pins_device);
2342 
2343 	if (ci->is_otg)
2344 		/* Clear and enable BSV irq */
2345 		hw_write_otgsc(ci, OTGSC_BSVIS | OTGSC_BSVIE,
2346 					OTGSC_BSVIS | OTGSC_BSVIE);
2347 
2348 	return 0;
2349 }
2350 
2351 static void udc_id_switch_for_host(struct ci_hdrc *ci)
2352 {
2353 	/*
2354 	 * host doesn't care B_SESSION_VALID event
2355 	 * so clear and disable BSV irq
2356 	 */
2357 	if (ci->is_otg)
2358 		hw_write_otgsc(ci, OTGSC_BSVIE | OTGSC_BSVIS, OTGSC_BSVIS);
2359 
2360 	ci->vbus_active = 0;
2361 
2362 	if (ci->platdata->pins_device && ci->platdata->pins_default)
2363 		pinctrl_select_state(ci->platdata->pctl,
2364 				     ci->platdata->pins_default);
2365 }
2366 
2367 #ifdef CONFIG_PM_SLEEP
2368 static void udc_suspend(struct ci_hdrc *ci)
2369 {
2370 	/*
2371 	 * Set OP_ENDPTLISTADDR to be non-zero for
2372 	 * checking if controller resume from power lost
2373 	 * in non-host mode.
2374 	 */
2375 	if (hw_read(ci, OP_ENDPTLISTADDR, ~0) == 0)
2376 		hw_write(ci, OP_ENDPTLISTADDR, ~0, ~0);
2377 }
2378 
2379 static void udc_resume(struct ci_hdrc *ci, bool power_lost)
2380 {
2381 	if (power_lost) {
2382 		if (ci->is_otg)
2383 			hw_write_otgsc(ci, OTGSC_BSVIS | OTGSC_BSVIE,
2384 					OTGSC_BSVIS | OTGSC_BSVIE);
2385 		if (ci->vbus_active)
2386 			usb_gadget_vbus_disconnect(&ci->gadget);
2387 	}
2388 
2389 	/* Restore value 0 if it was set for power lost check */
2390 	if (hw_read(ci, OP_ENDPTLISTADDR, ~0) == 0xFFFFFFFF)
2391 		hw_write(ci, OP_ENDPTLISTADDR, ~0, 0);
2392 }
2393 #endif
2394 
2395 /**
2396  * ci_hdrc_gadget_init - initialize device related bits
2397  * @ci: the controller
2398  *
2399  * This function initializes the gadget, if the device is "device capable".
2400  */
2401 int ci_hdrc_gadget_init(struct ci_hdrc *ci)
2402 {
2403 	struct ci_role_driver *rdrv;
2404 	int ret;
2405 
2406 	if (!hw_read(ci, CAP_DCCPARAMS, DCCPARAMS_DC))
2407 		return -ENXIO;
2408 
2409 	rdrv = devm_kzalloc(ci->dev, sizeof(*rdrv), GFP_KERNEL);
2410 	if (!rdrv)
2411 		return -ENOMEM;
2412 
2413 	rdrv->start	= udc_id_switch_for_device;
2414 	rdrv->stop	= udc_id_switch_for_host;
2415 #ifdef CONFIG_PM_SLEEP
2416 	rdrv->suspend	= udc_suspend;
2417 	rdrv->resume	= udc_resume;
2418 #endif
2419 	rdrv->irq	= udc_irq;
2420 	rdrv->name	= "gadget";
2421 
2422 	ret = udc_start(ci);
2423 	if (!ret)
2424 		ci->roles[CI_ROLE_GADGET] = rdrv;
2425 
2426 	return ret;
2427 }
2428