1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Cadence CDNSP DRD Driver. 4 * 5 * Copyright (C) 2020 Cadence. 6 * 7 * Author: Pawel Laszczak <pawell@cadence.com> 8 * 9 * Code based on Linux XHCI driver. 10 * Origin: Copyright (C) 2008 Intel Corp 11 */ 12 13 /* 14 * Ring initialization rules: 15 * 1. Each segment is initialized to zero, except for link TRBs. 16 * 2. Ring cycle state = 0. This represents Producer Cycle State (PCS) or 17 * Consumer Cycle State (CCS), depending on ring function. 18 * 3. Enqueue pointer = dequeue pointer = address of first TRB in the segment. 19 * 20 * Ring behavior rules: 21 * 1. A ring is empty if enqueue == dequeue. This means there will always be at 22 * least one free TRB in the ring. This is useful if you want to turn that 23 * into a link TRB and expand the ring. 24 * 2. When incrementing an enqueue or dequeue pointer, if the next TRB is a 25 * link TRB, then load the pointer with the address in the link TRB. If the 26 * link TRB had its toggle bit set, you may need to update the ring cycle 27 * state (see cycle bit rules). You may have to do this multiple times 28 * until you reach a non-link TRB. 29 * 3. A ring is full if enqueue++ (for the definition of increment above) 30 * equals the dequeue pointer. 31 * 32 * Cycle bit rules: 33 * 1. When a consumer increments a dequeue pointer and encounters a toggle bit 34 * in a link TRB, it must toggle the ring cycle state. 35 * 2. When a producer increments an enqueue pointer and encounters a toggle bit 36 * in a link TRB, it must toggle the ring cycle state. 37 * 38 * Producer rules: 39 * 1. Check if ring is full before you enqueue. 40 * 2. Write the ring cycle state to the cycle bit in the TRB you're enqueuing. 41 * Update enqueue pointer between each write (which may update the ring 42 * cycle state). 43 * 3. Notify consumer. If SW is producer, it rings the doorbell for command 44 * and endpoint rings. If controller is the producer for the event ring, 45 * and it generates an interrupt according to interrupt modulation rules. 46 * 47 * Consumer rules: 48 * 1. Check if TRB belongs to you. If the cycle bit == your ring cycle state, 49 * the TRB is owned by the consumer. 50 * 2. Update dequeue pointer (which may update the ring cycle state) and 51 * continue processing TRBs until you reach a TRB which is not owned by you. 52 * 3. Notify the producer. SW is the consumer for the event ring, and it 53 * updates event ring dequeue pointer. Controller is the consumer for the 54 * command and endpoint rings; it generates events on the event ring 55 * for these. 56 */ 57 58 #include <linux/scatterlist.h> 59 #include <linux/dma-mapping.h> 60 #include <linux/delay.h> 61 #include <linux/slab.h> 62 #include <linux/irq.h> 63 64 #include "cdnsp-trace.h" 65 #include "cdnsp-gadget.h" 66 67 /* 68 * Returns zero if the TRB isn't in this segment, otherwise it returns the DMA 69 * address of the TRB. 70 */ 71 dma_addr_t cdnsp_trb_virt_to_dma(struct cdnsp_segment *seg, 72 union cdnsp_trb *trb) 73 { 74 unsigned long segment_offset = trb - seg->trbs; 75 76 if (trb < seg->trbs || segment_offset >= TRBS_PER_SEGMENT) 77 return 0; 78 79 return seg->dma + (segment_offset * sizeof(*trb)); 80 } 81 82 static bool cdnsp_trb_is_noop(union cdnsp_trb *trb) 83 { 84 return TRB_TYPE_NOOP_LE32(trb->generic.field[3]); 85 } 86 87 static bool cdnsp_trb_is_link(union cdnsp_trb *trb) 88 { 89 return TRB_TYPE_LINK_LE32(trb->link.control); 90 } 91 92 bool cdnsp_last_trb_on_seg(struct cdnsp_segment *seg, union cdnsp_trb *trb) 93 { 94 return trb == &seg->trbs[TRBS_PER_SEGMENT - 1]; 95 } 96 97 bool cdnsp_last_trb_on_ring(struct cdnsp_ring *ring, 98 struct cdnsp_segment *seg, 99 union cdnsp_trb *trb) 100 { 101 return cdnsp_last_trb_on_seg(seg, trb) && (seg->next == ring->first_seg); 102 } 103 104 static bool cdnsp_link_trb_toggles_cycle(union cdnsp_trb *trb) 105 { 106 return le32_to_cpu(trb->link.control) & LINK_TOGGLE; 107 } 108 109 static void cdnsp_trb_to_noop(union cdnsp_trb *trb, u32 noop_type) 110 { 111 if (cdnsp_trb_is_link(trb)) { 112 /* Unchain chained link TRBs. */ 113 trb->link.control &= cpu_to_le32(~TRB_CHAIN); 114 } else { 115 trb->generic.field[0] = 0; 116 trb->generic.field[1] = 0; 117 trb->generic.field[2] = 0; 118 /* Preserve only the cycle bit of this TRB. */ 119 trb->generic.field[3] &= cpu_to_le32(TRB_CYCLE); 120 trb->generic.field[3] |= cpu_to_le32(TRB_TYPE(noop_type)); 121 } 122 } 123 124 /* 125 * Updates trb to point to the next TRB in the ring, and updates seg if the next 126 * TRB is in a new segment. This does not skip over link TRBs, and it does not 127 * effect the ring dequeue or enqueue pointers. 128 */ 129 static void cdnsp_next_trb(struct cdnsp_device *pdev, 130 struct cdnsp_ring *ring, 131 struct cdnsp_segment **seg, 132 union cdnsp_trb **trb) 133 { 134 if (cdnsp_trb_is_link(*trb)) { 135 *seg = (*seg)->next; 136 *trb = ((*seg)->trbs); 137 } else { 138 (*trb)++; 139 } 140 } 141 142 /* 143 * See Cycle bit rules. SW is the consumer for the event ring only. 144 * Don't make a ring full of link TRBs. That would be dumb and this would loop. 145 */ 146 void cdnsp_inc_deq(struct cdnsp_device *pdev, struct cdnsp_ring *ring) 147 { 148 /* event ring doesn't have link trbs, check for last trb. */ 149 if (ring->type == TYPE_EVENT) { 150 if (!cdnsp_last_trb_on_seg(ring->deq_seg, ring->dequeue)) { 151 ring->dequeue++; 152 goto out; 153 } 154 155 if (cdnsp_last_trb_on_ring(ring, ring->deq_seg, ring->dequeue)) 156 ring->cycle_state ^= 1; 157 158 ring->deq_seg = ring->deq_seg->next; 159 ring->dequeue = ring->deq_seg->trbs; 160 goto out; 161 } 162 163 /* All other rings have link trbs. */ 164 if (!cdnsp_trb_is_link(ring->dequeue)) { 165 ring->dequeue++; 166 ring->num_trbs_free++; 167 } 168 while (cdnsp_trb_is_link(ring->dequeue)) { 169 ring->deq_seg = ring->deq_seg->next; 170 ring->dequeue = ring->deq_seg->trbs; 171 } 172 out: 173 trace_cdnsp_inc_deq(ring); 174 } 175 176 /* 177 * See Cycle bit rules. SW is the consumer for the event ring only. 178 * Don't make a ring full of link TRBs. That would be dumb and this would loop. 179 * 180 * If we've just enqueued a TRB that is in the middle of a TD (meaning the 181 * chain bit is set), then set the chain bit in all the following link TRBs. 182 * If we've enqueued the last TRB in a TD, make sure the following link TRBs 183 * have their chain bit cleared (so that each Link TRB is a separate TD). 184 * 185 * @more_trbs_coming: Will you enqueue more TRBs before ringing the doorbell. 186 */ 187 static void cdnsp_inc_enq(struct cdnsp_device *pdev, 188 struct cdnsp_ring *ring, 189 bool more_trbs_coming) 190 { 191 union cdnsp_trb *next; 192 u32 chain; 193 194 chain = le32_to_cpu(ring->enqueue->generic.field[3]) & TRB_CHAIN; 195 196 /* If this is not event ring, there is one less usable TRB. */ 197 if (!cdnsp_trb_is_link(ring->enqueue)) 198 ring->num_trbs_free--; 199 next = ++(ring->enqueue); 200 201 /* Update the dequeue pointer further if that was a link TRB */ 202 while (cdnsp_trb_is_link(next)) { 203 /* 204 * If the caller doesn't plan on enqueuing more TDs before 205 * ringing the doorbell, then we don't want to give the link TRB 206 * to the hardware just yet. We'll give the link TRB back in 207 * cdnsp_prepare_ring() just before we enqueue the TD at the 208 * top of the ring. 209 */ 210 if (!chain && !more_trbs_coming) 211 break; 212 213 next->link.control &= cpu_to_le32(~TRB_CHAIN); 214 next->link.control |= cpu_to_le32(chain); 215 216 /* Give this link TRB to the hardware */ 217 wmb(); 218 next->link.control ^= cpu_to_le32(TRB_CYCLE); 219 220 /* Toggle the cycle bit after the last ring segment. */ 221 if (cdnsp_link_trb_toggles_cycle(next)) 222 ring->cycle_state ^= 1; 223 224 ring->enq_seg = ring->enq_seg->next; 225 ring->enqueue = ring->enq_seg->trbs; 226 next = ring->enqueue; 227 } 228 229 trace_cdnsp_inc_enq(ring); 230 } 231 232 /* 233 * Check to see if there's room to enqueue num_trbs on the ring and make sure 234 * enqueue pointer will not advance into dequeue segment. 235 */ 236 static bool cdnsp_room_on_ring(struct cdnsp_device *pdev, 237 struct cdnsp_ring *ring, 238 unsigned int num_trbs) 239 { 240 int num_trbs_in_deq_seg; 241 242 if (ring->num_trbs_free < num_trbs) 243 return false; 244 245 if (ring->type != TYPE_COMMAND && ring->type != TYPE_EVENT) { 246 num_trbs_in_deq_seg = ring->dequeue - ring->deq_seg->trbs; 247 248 if (ring->num_trbs_free < num_trbs + num_trbs_in_deq_seg) 249 return false; 250 } 251 252 return true; 253 } 254 255 /* 256 * Workaround for L1: controller has issue with resuming from L1 after 257 * setting doorbell for endpoint during L1 state. This function forces 258 * resume signal in such case. 259 */ 260 static void cdnsp_force_l0_go(struct cdnsp_device *pdev) 261 { 262 if (pdev->active_port == &pdev->usb2_port && pdev->gadget.lpm_capable) 263 cdnsp_set_link_state(pdev, &pdev->active_port->regs->portsc, XDEV_U0); 264 } 265 266 /* Ring the doorbell after placing a command on the ring. */ 267 void cdnsp_ring_cmd_db(struct cdnsp_device *pdev) 268 { 269 writel(DB_VALUE_CMD, &pdev->dba->cmd_db); 270 } 271 272 /* 273 * Ring the doorbell after placing a transfer on the ring. 274 * Returns true if doorbell was set, otherwise false. 275 */ 276 static bool cdnsp_ring_ep_doorbell(struct cdnsp_device *pdev, 277 struct cdnsp_ep *pep, 278 unsigned int stream_id) 279 { 280 __le32 __iomem *reg_addr = &pdev->dba->ep_db; 281 unsigned int ep_state = pep->ep_state; 282 unsigned int db_value; 283 284 /* 285 * Don't ring the doorbell for this endpoint if endpoint is halted or 286 * disabled. 287 */ 288 if (ep_state & EP_HALTED || !(ep_state & EP_ENABLED)) 289 return false; 290 291 /* For stream capable endpoints driver can ring doorbell only twice. */ 292 if (pep->ep_state & EP_HAS_STREAMS) { 293 if (pep->stream_info.drbls_count >= 2) 294 return false; 295 296 pep->stream_info.drbls_count++; 297 } 298 299 pep->ep_state &= ~EP_STOPPED; 300 301 if (pep->idx == 0 && pdev->ep0_stage == CDNSP_DATA_STAGE && 302 !pdev->ep0_expect_in) 303 db_value = DB_VALUE_EP0_OUT(pep->idx, stream_id); 304 else 305 db_value = DB_VALUE(pep->idx, stream_id); 306 307 trace_cdnsp_tr_drbl(pep, stream_id); 308 309 writel(db_value, reg_addr); 310 311 cdnsp_force_l0_go(pdev); 312 313 /* Doorbell was set. */ 314 return true; 315 } 316 317 /* 318 * Get the right ring for the given pep and stream_id. 319 * If the endpoint supports streams, boundary check the USB request's stream ID. 320 * If the endpoint doesn't support streams, return the singular endpoint ring. 321 */ 322 static struct cdnsp_ring *cdnsp_get_transfer_ring(struct cdnsp_device *pdev, 323 struct cdnsp_ep *pep, 324 unsigned int stream_id) 325 { 326 if (!(pep->ep_state & EP_HAS_STREAMS)) 327 return pep->ring; 328 329 if (stream_id == 0 || stream_id >= pep->stream_info.num_streams) { 330 dev_err(pdev->dev, "ERR: %s ring doesn't exist for SID: %d.\n", 331 pep->name, stream_id); 332 return NULL; 333 } 334 335 return pep->stream_info.stream_rings[stream_id]; 336 } 337 338 static struct cdnsp_ring * 339 cdnsp_request_to_transfer_ring(struct cdnsp_device *pdev, 340 struct cdnsp_request *preq) 341 { 342 return cdnsp_get_transfer_ring(pdev, preq->pep, 343 preq->request.stream_id); 344 } 345 346 /* Ring the doorbell for any rings with pending requests. */ 347 void cdnsp_ring_doorbell_for_active_rings(struct cdnsp_device *pdev, 348 struct cdnsp_ep *pep) 349 { 350 struct cdnsp_stream_info *stream_info; 351 unsigned int stream_id; 352 int ret; 353 354 if (pep->ep_state & EP_DIS_IN_RROGRESS) 355 return; 356 357 /* A ring has pending Request if its TD list is not empty. */ 358 if (!(pep->ep_state & EP_HAS_STREAMS) && pep->number) { 359 if (pep->ring && !list_empty(&pep->ring->td_list)) 360 cdnsp_ring_ep_doorbell(pdev, pep, 0); 361 return; 362 } 363 364 stream_info = &pep->stream_info; 365 366 for (stream_id = 1; stream_id < stream_info->num_streams; stream_id++) { 367 struct cdnsp_td *td, *td_temp; 368 struct cdnsp_ring *ep_ring; 369 370 if (stream_info->drbls_count >= 2) 371 return; 372 373 ep_ring = cdnsp_get_transfer_ring(pdev, pep, stream_id); 374 if (!ep_ring) 375 continue; 376 377 if (!ep_ring->stream_active || ep_ring->stream_rejected) 378 continue; 379 380 list_for_each_entry_safe(td, td_temp, &ep_ring->td_list, 381 td_list) { 382 if (td->drbl) 383 continue; 384 385 ret = cdnsp_ring_ep_doorbell(pdev, pep, stream_id); 386 if (ret) 387 td->drbl = 1; 388 } 389 } 390 } 391 392 /* 393 * Get the hw dequeue pointer controller stopped on, either directly from the 394 * endpoint context, or if streams are in use from the stream context. 395 * The returned hw_dequeue contains the lowest four bits with cycle state 396 * and possible stream context type. 397 */ 398 static u64 cdnsp_get_hw_deq(struct cdnsp_device *pdev, 399 unsigned int ep_index, 400 unsigned int stream_id) 401 { 402 struct cdnsp_stream_ctx *st_ctx; 403 struct cdnsp_ep *pep; 404 405 pep = &pdev->eps[stream_id]; 406 407 if (pep->ep_state & EP_HAS_STREAMS) { 408 st_ctx = &pep->stream_info.stream_ctx_array[stream_id]; 409 return le64_to_cpu(st_ctx->stream_ring); 410 } 411 412 return le64_to_cpu(pep->out_ctx->deq); 413 } 414 415 /* 416 * Move the controller endpoint ring dequeue pointer past cur_td. 417 * Record the new state of the controller endpoint ring dequeue segment, 418 * dequeue pointer, and new consumer cycle state in state. 419 * Update internal representation of the ring's dequeue pointer. 420 * 421 * We do this in three jumps: 422 * - First we update our new ring state to be the same as when the 423 * controller stopped. 424 * - Then we traverse the ring to find the segment that contains 425 * the last TRB in the TD. We toggle the controller new cycle state 426 * when we pass any link TRBs with the toggle cycle bit set. 427 * - Finally we move the dequeue state one TRB further, toggling the cycle bit 428 * if we've moved it past a link TRB with the toggle cycle bit set. 429 */ 430 static void cdnsp_find_new_dequeue_state(struct cdnsp_device *pdev, 431 struct cdnsp_ep *pep, 432 unsigned int stream_id, 433 struct cdnsp_td *cur_td, 434 struct cdnsp_dequeue_state *state) 435 { 436 bool td_last_trb_found = false; 437 struct cdnsp_segment *new_seg; 438 struct cdnsp_ring *ep_ring; 439 union cdnsp_trb *new_deq; 440 bool cycle_found = false; 441 u64 hw_dequeue; 442 443 ep_ring = cdnsp_get_transfer_ring(pdev, pep, stream_id); 444 if (!ep_ring) 445 return; 446 447 /* 448 * Dig out the cycle state saved by the controller during the 449 * stop endpoint command. 450 */ 451 hw_dequeue = cdnsp_get_hw_deq(pdev, pep->idx, stream_id); 452 new_seg = ep_ring->deq_seg; 453 new_deq = ep_ring->dequeue; 454 state->new_cycle_state = hw_dequeue & 0x1; 455 state->stream_id = stream_id; 456 457 /* 458 * We want to find the pointer, segment and cycle state of the new trb 459 * (the one after current TD's last_trb). We know the cycle state at 460 * hw_dequeue, so walk the ring until both hw_dequeue and last_trb are 461 * found. 462 */ 463 do { 464 if (!cycle_found && cdnsp_trb_virt_to_dma(new_seg, new_deq) 465 == (dma_addr_t)(hw_dequeue & ~0xf)) { 466 cycle_found = true; 467 468 if (td_last_trb_found) 469 break; 470 } 471 472 if (new_deq == cur_td->last_trb) 473 td_last_trb_found = true; 474 475 if (cycle_found && cdnsp_trb_is_link(new_deq) && 476 cdnsp_link_trb_toggles_cycle(new_deq)) 477 state->new_cycle_state ^= 0x1; 478 479 cdnsp_next_trb(pdev, ep_ring, &new_seg, &new_deq); 480 481 /* Search wrapped around, bail out. */ 482 if (new_deq == pep->ring->dequeue) { 483 dev_err(pdev->dev, 484 "Error: Failed finding new dequeue state\n"); 485 state->new_deq_seg = NULL; 486 state->new_deq_ptr = NULL; 487 return; 488 } 489 490 } while (!cycle_found || !td_last_trb_found); 491 492 state->new_deq_seg = new_seg; 493 state->new_deq_ptr = new_deq; 494 495 trace_cdnsp_new_deq_state(state); 496 } 497 498 /* 499 * flip_cycle means flip the cycle bit of all but the first and last TRB. 500 * (The last TRB actually points to the ring enqueue pointer, which is not part 501 * of this TD.) This is used to remove partially enqueued isoc TDs from a ring. 502 */ 503 static void cdnsp_td_to_noop(struct cdnsp_device *pdev, 504 struct cdnsp_ring *ep_ring, 505 struct cdnsp_td *td, 506 bool flip_cycle) 507 { 508 struct cdnsp_segment *seg = td->start_seg; 509 union cdnsp_trb *trb = td->first_trb; 510 511 while (1) { 512 cdnsp_trb_to_noop(trb, TRB_TR_NOOP); 513 514 /* flip cycle if asked to */ 515 if (flip_cycle && trb != td->first_trb && trb != td->last_trb) 516 trb->generic.field[3] ^= cpu_to_le32(TRB_CYCLE); 517 518 if (trb == td->last_trb) 519 break; 520 521 cdnsp_next_trb(pdev, ep_ring, &seg, &trb); 522 } 523 } 524 525 /* 526 * This TD is defined by the TRBs starting at start_trb in start_seg and ending 527 * at end_trb, which may be in another segment. If the suspect DMA address is a 528 * TRB in this TD, this function returns that TRB's segment. Otherwise it 529 * returns 0. 530 */ 531 static struct cdnsp_segment *cdnsp_trb_in_td(struct cdnsp_device *pdev, 532 struct cdnsp_segment *start_seg, 533 union cdnsp_trb *start_trb, 534 union cdnsp_trb *end_trb, 535 dma_addr_t suspect_dma) 536 { 537 struct cdnsp_segment *cur_seg; 538 union cdnsp_trb *temp_trb; 539 dma_addr_t end_seg_dma; 540 dma_addr_t end_trb_dma; 541 dma_addr_t start_dma; 542 543 start_dma = cdnsp_trb_virt_to_dma(start_seg, start_trb); 544 cur_seg = start_seg; 545 546 do { 547 if (start_dma == 0) 548 return NULL; 549 550 temp_trb = &cur_seg->trbs[TRBS_PER_SEGMENT - 1]; 551 /* We may get an event for a Link TRB in the middle of a TD */ 552 end_seg_dma = cdnsp_trb_virt_to_dma(cur_seg, temp_trb); 553 /* If the end TRB isn't in this segment, this is set to 0 */ 554 end_trb_dma = cdnsp_trb_virt_to_dma(cur_seg, end_trb); 555 556 trace_cdnsp_looking_trb_in_td(suspect_dma, start_dma, 557 end_trb_dma, cur_seg->dma, 558 end_seg_dma); 559 560 if (end_trb_dma > 0) { 561 /* 562 * The end TRB is in this segment, so suspect should 563 * be here 564 */ 565 if (start_dma <= end_trb_dma) { 566 if (suspect_dma >= start_dma && 567 suspect_dma <= end_trb_dma) { 568 return cur_seg; 569 } 570 } else { 571 /* 572 * Case for one segment with a 573 * TD wrapped around to the top 574 */ 575 if ((suspect_dma >= start_dma && 576 suspect_dma <= end_seg_dma) || 577 (suspect_dma >= cur_seg->dma && 578 suspect_dma <= end_trb_dma)) { 579 return cur_seg; 580 } 581 } 582 583 return NULL; 584 } 585 586 /* Might still be somewhere in this segment */ 587 if (suspect_dma >= start_dma && suspect_dma <= end_seg_dma) 588 return cur_seg; 589 590 cur_seg = cur_seg->next; 591 start_dma = cdnsp_trb_virt_to_dma(cur_seg, &cur_seg->trbs[0]); 592 } while (cur_seg != start_seg); 593 594 return NULL; 595 } 596 597 static void cdnsp_unmap_td_bounce_buffer(struct cdnsp_device *pdev, 598 struct cdnsp_ring *ring, 599 struct cdnsp_td *td) 600 { 601 struct cdnsp_segment *seg = td->bounce_seg; 602 struct cdnsp_request *preq; 603 size_t len; 604 605 if (!seg) 606 return; 607 608 preq = td->preq; 609 610 trace_cdnsp_bounce_unmap(td->preq, seg->bounce_len, seg->bounce_offs, 611 seg->bounce_dma, 0); 612 613 if (!preq->direction) { 614 dma_unmap_single(pdev->dev, seg->bounce_dma, 615 ring->bounce_buf_len, DMA_TO_DEVICE); 616 return; 617 } 618 619 dma_unmap_single(pdev->dev, seg->bounce_dma, ring->bounce_buf_len, 620 DMA_FROM_DEVICE); 621 622 /* For in transfers we need to copy the data from bounce to sg */ 623 len = sg_pcopy_from_buffer(preq->request.sg, preq->request.num_sgs, 624 seg->bounce_buf, seg->bounce_len, 625 seg->bounce_offs); 626 if (len != seg->bounce_len) 627 dev_warn(pdev->dev, "WARN Wrong bounce buffer read length: %zu != %d\n", 628 len, seg->bounce_len); 629 630 seg->bounce_len = 0; 631 seg->bounce_offs = 0; 632 } 633 634 static int cdnsp_cmd_set_deq(struct cdnsp_device *pdev, 635 struct cdnsp_ep *pep, 636 struct cdnsp_dequeue_state *deq_state) 637 { 638 struct cdnsp_ring *ep_ring; 639 int ret; 640 641 if (!deq_state->new_deq_ptr || !deq_state->new_deq_seg) { 642 cdnsp_ring_doorbell_for_active_rings(pdev, pep); 643 return 0; 644 } 645 646 cdnsp_queue_new_dequeue_state(pdev, pep, deq_state); 647 cdnsp_ring_cmd_db(pdev); 648 ret = cdnsp_wait_for_cmd_compl(pdev); 649 650 trace_cdnsp_handle_cmd_set_deq(cdnsp_get_slot_ctx(&pdev->out_ctx)); 651 trace_cdnsp_handle_cmd_set_deq_ep(pep->out_ctx); 652 653 /* 654 * Update the ring's dequeue segment and dequeue pointer 655 * to reflect the new position. 656 */ 657 ep_ring = cdnsp_get_transfer_ring(pdev, pep, deq_state->stream_id); 658 659 if (cdnsp_trb_is_link(ep_ring->dequeue)) { 660 ep_ring->deq_seg = ep_ring->deq_seg->next; 661 ep_ring->dequeue = ep_ring->deq_seg->trbs; 662 } 663 664 while (ep_ring->dequeue != deq_state->new_deq_ptr) { 665 ep_ring->num_trbs_free++; 666 ep_ring->dequeue++; 667 668 if (cdnsp_trb_is_link(ep_ring->dequeue)) { 669 if (ep_ring->dequeue == deq_state->new_deq_ptr) 670 break; 671 672 ep_ring->deq_seg = ep_ring->deq_seg->next; 673 ep_ring->dequeue = ep_ring->deq_seg->trbs; 674 } 675 } 676 677 /* 678 * Probably there was TIMEOUT during handling Set Dequeue Pointer 679 * command. It's critical error and controller will be stopped. 680 */ 681 if (ret) 682 return -ESHUTDOWN; 683 684 /* Restart any rings with pending requests */ 685 cdnsp_ring_doorbell_for_active_rings(pdev, pep); 686 687 return 0; 688 } 689 690 int cdnsp_remove_request(struct cdnsp_device *pdev, 691 struct cdnsp_request *preq, 692 struct cdnsp_ep *pep) 693 { 694 struct cdnsp_dequeue_state deq_state; 695 struct cdnsp_td *cur_td = NULL; 696 struct cdnsp_ring *ep_ring; 697 struct cdnsp_segment *seg; 698 int status = -ECONNRESET; 699 int ret = 0; 700 u64 hw_deq; 701 702 memset(&deq_state, 0, sizeof(deq_state)); 703 704 trace_cdnsp_remove_request(pep->out_ctx); 705 trace_cdnsp_remove_request_td(preq); 706 707 cur_td = &preq->td; 708 ep_ring = cdnsp_request_to_transfer_ring(pdev, preq); 709 710 /* 711 * If we stopped on the TD we need to cancel, then we have to 712 * move the controller endpoint ring dequeue pointer past 713 * this TD. 714 */ 715 hw_deq = cdnsp_get_hw_deq(pdev, pep->idx, preq->request.stream_id); 716 hw_deq &= ~0xf; 717 718 seg = cdnsp_trb_in_td(pdev, cur_td->start_seg, cur_td->first_trb, 719 cur_td->last_trb, hw_deq); 720 721 if (seg && (pep->ep_state & EP_ENABLED)) 722 cdnsp_find_new_dequeue_state(pdev, pep, preq->request.stream_id, 723 cur_td, &deq_state); 724 else 725 cdnsp_td_to_noop(pdev, ep_ring, cur_td, false); 726 727 /* 728 * The event handler won't see a completion for this TD anymore, 729 * so remove it from the endpoint ring's TD list. 730 */ 731 list_del_init(&cur_td->td_list); 732 ep_ring->num_tds--; 733 pep->stream_info.td_count--; 734 735 /* 736 * During disconnecting all endpoint will be disabled so we don't 737 * have to worry about updating dequeue pointer. 738 */ 739 if (pdev->cdnsp_state & CDNSP_STATE_DISCONNECT_PENDING) { 740 status = -ESHUTDOWN; 741 ret = cdnsp_cmd_set_deq(pdev, pep, &deq_state); 742 } 743 744 cdnsp_unmap_td_bounce_buffer(pdev, ep_ring, cur_td); 745 cdnsp_gadget_giveback(pep, cur_td->preq, status); 746 747 return ret; 748 } 749 750 static int cdnsp_update_port_id(struct cdnsp_device *pdev, u32 port_id) 751 { 752 struct cdnsp_port *port = pdev->active_port; 753 u8 old_port = 0; 754 755 if (port && port->port_num == port_id) 756 return 0; 757 758 if (port) 759 old_port = port->port_num; 760 761 if (port_id == pdev->usb2_port.port_num) { 762 port = &pdev->usb2_port; 763 } else if (port_id == pdev->usb3_port.port_num) { 764 port = &pdev->usb3_port; 765 } else { 766 dev_err(pdev->dev, "Port event with invalid port ID %d\n", 767 port_id); 768 return -EINVAL; 769 } 770 771 if (port_id != old_port) { 772 cdnsp_disable_slot(pdev); 773 pdev->active_port = port; 774 cdnsp_enable_slot(pdev); 775 } 776 777 if (port_id == pdev->usb2_port.port_num) 778 cdnsp_set_usb2_hardware_lpm(pdev, NULL, 1); 779 else 780 writel(PORT_U1_TIMEOUT(1) | PORT_U2_TIMEOUT(1), 781 &pdev->usb3_port.regs->portpmsc); 782 783 return 0; 784 } 785 786 static void cdnsp_handle_port_status(struct cdnsp_device *pdev, 787 union cdnsp_trb *event) 788 { 789 struct cdnsp_port_regs __iomem *port_regs; 790 u32 portsc, cmd_regs; 791 bool port2 = false; 792 u32 link_state; 793 u32 port_id; 794 795 /* Port status change events always have a successful completion code */ 796 if (GET_COMP_CODE(le32_to_cpu(event->generic.field[2])) != COMP_SUCCESS) 797 dev_err(pdev->dev, "ERR: incorrect PSC event\n"); 798 799 port_id = GET_PORT_ID(le32_to_cpu(event->generic.field[0])); 800 801 if (cdnsp_update_port_id(pdev, port_id)) 802 goto cleanup; 803 804 port_regs = pdev->active_port->regs; 805 806 if (port_id == pdev->usb2_port.port_num) 807 port2 = true; 808 809 new_event: 810 portsc = readl(&port_regs->portsc); 811 writel(cdnsp_port_state_to_neutral(portsc) | 812 (portsc & PORT_CHANGE_BITS), &port_regs->portsc); 813 814 trace_cdnsp_handle_port_status(pdev->active_port->port_num, portsc); 815 816 pdev->gadget.speed = cdnsp_port_speed(portsc); 817 link_state = portsc & PORT_PLS_MASK; 818 819 /* Port Link State change detected. */ 820 if ((portsc & PORT_PLC)) { 821 if (!(pdev->cdnsp_state & CDNSP_WAKEUP_PENDING) && 822 link_state == XDEV_RESUME) { 823 cmd_regs = readl(&pdev->op_regs->command); 824 if (!(cmd_regs & CMD_R_S)) 825 goto cleanup; 826 827 if (DEV_SUPERSPEED_ANY(portsc)) { 828 cdnsp_set_link_state(pdev, &port_regs->portsc, 829 XDEV_U0); 830 831 cdnsp_resume_gadget(pdev); 832 } 833 } 834 835 if ((pdev->cdnsp_state & CDNSP_WAKEUP_PENDING) && 836 link_state == XDEV_U0) { 837 pdev->cdnsp_state &= ~CDNSP_WAKEUP_PENDING; 838 839 cdnsp_force_header_wakeup(pdev, 1); 840 cdnsp_ring_cmd_db(pdev); 841 cdnsp_wait_for_cmd_compl(pdev); 842 } 843 844 if (link_state == XDEV_U0 && pdev->link_state == XDEV_U3 && 845 !DEV_SUPERSPEED_ANY(portsc)) 846 cdnsp_resume_gadget(pdev); 847 848 if (link_state == XDEV_U3 && pdev->link_state != XDEV_U3) 849 cdnsp_suspend_gadget(pdev); 850 851 pdev->link_state = link_state; 852 } 853 854 if (portsc & PORT_CSC) { 855 /* Detach device. */ 856 if (pdev->gadget.connected && !(portsc & PORT_CONNECT)) 857 cdnsp_disconnect_gadget(pdev); 858 859 /* Attach device. */ 860 if (portsc & PORT_CONNECT) { 861 if (!port2) 862 cdnsp_irq_reset(pdev); 863 864 usb_gadget_set_state(&pdev->gadget, USB_STATE_ATTACHED); 865 } 866 } 867 868 /* Port reset. */ 869 if ((portsc & (PORT_RC | PORT_WRC)) && (portsc & PORT_CONNECT)) { 870 cdnsp_irq_reset(pdev); 871 pdev->u1_allowed = 0; 872 pdev->u2_allowed = 0; 873 pdev->may_wakeup = 0; 874 } 875 876 if (portsc & PORT_CEC) 877 dev_err(pdev->dev, "Port Over Current detected\n"); 878 879 if (portsc & PORT_CEC) 880 dev_err(pdev->dev, "Port Configure Error detected\n"); 881 882 if (readl(&port_regs->portsc) & PORT_CHANGE_BITS) 883 goto new_event; 884 885 cleanup: 886 cdnsp_inc_deq(pdev, pdev->event_ring); 887 } 888 889 static void cdnsp_td_cleanup(struct cdnsp_device *pdev, 890 struct cdnsp_td *td, 891 struct cdnsp_ring *ep_ring, 892 int *status) 893 { 894 struct cdnsp_request *preq = td->preq; 895 896 /* if a bounce buffer was used to align this td then unmap it */ 897 cdnsp_unmap_td_bounce_buffer(pdev, ep_ring, td); 898 899 /* 900 * If the controller said we transferred more data than the buffer 901 * length, Play it safe and say we didn't transfer anything. 902 */ 903 if (preq->request.actual > preq->request.length) { 904 preq->request.actual = 0; 905 *status = 0; 906 } 907 908 list_del_init(&td->td_list); 909 ep_ring->num_tds--; 910 preq->pep->stream_info.td_count--; 911 912 cdnsp_gadget_giveback(preq->pep, preq, *status); 913 } 914 915 static void cdnsp_finish_td(struct cdnsp_device *pdev, 916 struct cdnsp_td *td, 917 struct cdnsp_transfer_event *event, 918 struct cdnsp_ep *ep, 919 int *status) 920 { 921 struct cdnsp_ring *ep_ring; 922 u32 trb_comp_code; 923 924 ep_ring = cdnsp_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 925 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 926 927 if (trb_comp_code == COMP_STOPPED_LENGTH_INVALID || 928 trb_comp_code == COMP_STOPPED || 929 trb_comp_code == COMP_STOPPED_SHORT_PACKET) { 930 /* 931 * The Endpoint Stop Command completion will take care of any 932 * stopped TDs. A stopped TD may be restarted, so don't update 933 * the ring dequeue pointer or take this TD off any lists yet. 934 */ 935 return; 936 } 937 938 /* Update ring dequeue pointer */ 939 while (ep_ring->dequeue != td->last_trb) 940 cdnsp_inc_deq(pdev, ep_ring); 941 942 cdnsp_inc_deq(pdev, ep_ring); 943 944 cdnsp_td_cleanup(pdev, td, ep_ring, status); 945 } 946 947 /* sum trb lengths from ring dequeue up to stop_trb, _excluding_ stop_trb */ 948 static int cdnsp_sum_trb_lengths(struct cdnsp_device *pdev, 949 struct cdnsp_ring *ring, 950 union cdnsp_trb *stop_trb) 951 { 952 struct cdnsp_segment *seg = ring->deq_seg; 953 union cdnsp_trb *trb = ring->dequeue; 954 u32 sum; 955 956 for (sum = 0; trb != stop_trb; cdnsp_next_trb(pdev, ring, &seg, &trb)) { 957 if (!cdnsp_trb_is_noop(trb) && !cdnsp_trb_is_link(trb)) 958 sum += TRB_LEN(le32_to_cpu(trb->generic.field[2])); 959 } 960 return sum; 961 } 962 963 static int cdnsp_giveback_first_trb(struct cdnsp_device *pdev, 964 struct cdnsp_ep *pep, 965 unsigned int stream_id, 966 int start_cycle, 967 struct cdnsp_generic_trb *start_trb) 968 { 969 /* 970 * Pass all the TRBs to the hardware at once and make sure this write 971 * isn't reordered. 972 */ 973 wmb(); 974 975 if (start_cycle) 976 start_trb->field[3] |= cpu_to_le32(start_cycle); 977 else 978 start_trb->field[3] &= cpu_to_le32(~TRB_CYCLE); 979 980 if ((pep->ep_state & EP_HAS_STREAMS) && 981 !pep->stream_info.first_prime_det) { 982 trace_cdnsp_wait_for_prime(pep, stream_id); 983 return 0; 984 } 985 986 return cdnsp_ring_ep_doorbell(pdev, pep, stream_id); 987 } 988 989 /* 990 * Process control tds, update USB request status and actual_length. 991 */ 992 static void cdnsp_process_ctrl_td(struct cdnsp_device *pdev, 993 struct cdnsp_td *td, 994 union cdnsp_trb *event_trb, 995 struct cdnsp_transfer_event *event, 996 struct cdnsp_ep *pep, 997 int *status) 998 { 999 struct cdnsp_ring *ep_ring; 1000 u32 remaining; 1001 u32 trb_type; 1002 1003 trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(event_trb->generic.field[3])); 1004 ep_ring = cdnsp_dma_to_transfer_ring(pep, le64_to_cpu(event->buffer)); 1005 remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 1006 1007 /* 1008 * if on data stage then update the actual_length of the USB 1009 * request and flag it as set, so it won't be overwritten in the event 1010 * for the last TRB. 1011 */ 1012 if (trb_type == TRB_DATA) { 1013 td->request_length_set = true; 1014 td->preq->request.actual = td->preq->request.length - remaining; 1015 } 1016 1017 /* at status stage */ 1018 if (!td->request_length_set) 1019 td->preq->request.actual = td->preq->request.length; 1020 1021 if (pdev->ep0_stage == CDNSP_DATA_STAGE && pep->number == 0 && 1022 pdev->three_stage_setup) { 1023 td = list_entry(ep_ring->td_list.next, struct cdnsp_td, 1024 td_list); 1025 pdev->ep0_stage = CDNSP_STATUS_STAGE; 1026 1027 cdnsp_giveback_first_trb(pdev, pep, 0, ep_ring->cycle_state, 1028 &td->last_trb->generic); 1029 return; 1030 } 1031 1032 *status = 0; 1033 1034 cdnsp_finish_td(pdev, td, event, pep, status); 1035 } 1036 1037 /* 1038 * Process isochronous tds, update usb request status and actual_length. 1039 */ 1040 static void cdnsp_process_isoc_td(struct cdnsp_device *pdev, 1041 struct cdnsp_td *td, 1042 union cdnsp_trb *ep_trb, 1043 struct cdnsp_transfer_event *event, 1044 struct cdnsp_ep *pep, 1045 int status) 1046 { 1047 struct cdnsp_request *preq = td->preq; 1048 u32 remaining, requested, ep_trb_len; 1049 bool sum_trbs_for_length = false; 1050 struct cdnsp_ring *ep_ring; 1051 u32 trb_comp_code; 1052 u32 td_length; 1053 1054 ep_ring = cdnsp_dma_to_transfer_ring(pep, le64_to_cpu(event->buffer)); 1055 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 1056 remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 1057 ep_trb_len = TRB_LEN(le32_to_cpu(ep_trb->generic.field[2])); 1058 1059 requested = preq->request.length; 1060 1061 /* handle completion code */ 1062 switch (trb_comp_code) { 1063 case COMP_SUCCESS: 1064 preq->request.status = 0; 1065 break; 1066 case COMP_SHORT_PACKET: 1067 preq->request.status = 0; 1068 sum_trbs_for_length = true; 1069 break; 1070 case COMP_ISOCH_BUFFER_OVERRUN: 1071 case COMP_BABBLE_DETECTED_ERROR: 1072 preq->request.status = -EOVERFLOW; 1073 break; 1074 case COMP_STOPPED: 1075 sum_trbs_for_length = true; 1076 break; 1077 case COMP_STOPPED_SHORT_PACKET: 1078 /* field normally containing residue now contains transferred */ 1079 preq->request.status = 0; 1080 requested = remaining; 1081 break; 1082 case COMP_STOPPED_LENGTH_INVALID: 1083 requested = 0; 1084 remaining = 0; 1085 break; 1086 default: 1087 sum_trbs_for_length = true; 1088 preq->request.status = -1; 1089 break; 1090 } 1091 1092 if (sum_trbs_for_length) { 1093 td_length = cdnsp_sum_trb_lengths(pdev, ep_ring, ep_trb); 1094 td_length += ep_trb_len - remaining; 1095 } else { 1096 td_length = requested; 1097 } 1098 1099 td->preq->request.actual += td_length; 1100 1101 cdnsp_finish_td(pdev, td, event, pep, &status); 1102 } 1103 1104 static void cdnsp_skip_isoc_td(struct cdnsp_device *pdev, 1105 struct cdnsp_td *td, 1106 struct cdnsp_transfer_event *event, 1107 struct cdnsp_ep *pep, 1108 int status) 1109 { 1110 struct cdnsp_ring *ep_ring; 1111 1112 ep_ring = cdnsp_dma_to_transfer_ring(pep, le64_to_cpu(event->buffer)); 1113 td->preq->request.status = -EXDEV; 1114 td->preq->request.actual = 0; 1115 1116 /* Update ring dequeue pointer */ 1117 while (ep_ring->dequeue != td->last_trb) 1118 cdnsp_inc_deq(pdev, ep_ring); 1119 1120 cdnsp_inc_deq(pdev, ep_ring); 1121 1122 cdnsp_td_cleanup(pdev, td, ep_ring, &status); 1123 } 1124 1125 /* 1126 * Process bulk and interrupt tds, update usb request status and actual_length. 1127 */ 1128 static void cdnsp_process_bulk_intr_td(struct cdnsp_device *pdev, 1129 struct cdnsp_td *td, 1130 union cdnsp_trb *ep_trb, 1131 struct cdnsp_transfer_event *event, 1132 struct cdnsp_ep *ep, 1133 int *status) 1134 { 1135 u32 remaining, requested, ep_trb_len; 1136 struct cdnsp_ring *ep_ring; 1137 u32 trb_comp_code; 1138 1139 ep_ring = cdnsp_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 1140 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 1141 remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 1142 ep_trb_len = TRB_LEN(le32_to_cpu(ep_trb->generic.field[2])); 1143 requested = td->preq->request.length; 1144 1145 switch (trb_comp_code) { 1146 case COMP_SUCCESS: 1147 case COMP_SHORT_PACKET: 1148 *status = 0; 1149 break; 1150 case COMP_STOPPED_SHORT_PACKET: 1151 td->preq->request.actual = remaining; 1152 goto finish_td; 1153 case COMP_STOPPED_LENGTH_INVALID: 1154 /* Stopped on ep trb with invalid length, exclude it. */ 1155 ep_trb_len = 0; 1156 remaining = 0; 1157 break; 1158 } 1159 1160 if (ep_trb == td->last_trb) 1161 ep_trb_len = requested - remaining; 1162 else 1163 ep_trb_len = cdnsp_sum_trb_lengths(pdev, ep_ring, ep_trb) + 1164 ep_trb_len - remaining; 1165 td->preq->request.actual = ep_trb_len; 1166 1167 finish_td: 1168 ep->stream_info.drbls_count--; 1169 1170 cdnsp_finish_td(pdev, td, event, ep, status); 1171 } 1172 1173 static void cdnsp_handle_tx_nrdy(struct cdnsp_device *pdev, 1174 struct cdnsp_transfer_event *event) 1175 { 1176 struct cdnsp_generic_trb *generic; 1177 struct cdnsp_ring *ep_ring; 1178 struct cdnsp_ep *pep; 1179 int cur_stream; 1180 int ep_index; 1181 int host_sid; 1182 int dev_sid; 1183 1184 generic = (struct cdnsp_generic_trb *)event; 1185 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1; 1186 dev_sid = TRB_TO_DEV_STREAM(le32_to_cpu(generic->field[0])); 1187 host_sid = TRB_TO_HOST_STREAM(le32_to_cpu(generic->field[2])); 1188 1189 pep = &pdev->eps[ep_index]; 1190 1191 if (!(pep->ep_state & EP_HAS_STREAMS)) 1192 return; 1193 1194 if (host_sid == STREAM_PRIME_ACK) { 1195 pep->stream_info.first_prime_det = 1; 1196 for (cur_stream = 1; cur_stream < pep->stream_info.num_streams; 1197 cur_stream++) { 1198 ep_ring = pep->stream_info.stream_rings[cur_stream]; 1199 ep_ring->stream_active = 1; 1200 ep_ring->stream_rejected = 0; 1201 } 1202 } 1203 1204 if (host_sid == STREAM_REJECTED) { 1205 struct cdnsp_td *td, *td_temp; 1206 1207 pep->stream_info.drbls_count--; 1208 ep_ring = pep->stream_info.stream_rings[dev_sid]; 1209 ep_ring->stream_active = 0; 1210 ep_ring->stream_rejected = 1; 1211 1212 list_for_each_entry_safe(td, td_temp, &ep_ring->td_list, 1213 td_list) { 1214 td->drbl = 0; 1215 } 1216 } 1217 1218 cdnsp_ring_doorbell_for_active_rings(pdev, pep); 1219 } 1220 1221 /* 1222 * If this function returns an error condition, it means it got a Transfer 1223 * event with a corrupted TRB DMA address or endpoint is disabled. 1224 */ 1225 static int cdnsp_handle_tx_event(struct cdnsp_device *pdev, 1226 struct cdnsp_transfer_event *event) 1227 { 1228 const struct usb_endpoint_descriptor *desc; 1229 bool handling_skipped_tds = false; 1230 struct cdnsp_segment *ep_seg; 1231 struct cdnsp_ring *ep_ring; 1232 int status = -EINPROGRESS; 1233 union cdnsp_trb *ep_trb; 1234 dma_addr_t ep_trb_dma; 1235 struct cdnsp_ep *pep; 1236 struct cdnsp_td *td; 1237 u32 trb_comp_code; 1238 int invalidate; 1239 int ep_index; 1240 1241 invalidate = le32_to_cpu(event->flags) & TRB_EVENT_INVALIDATE; 1242 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1; 1243 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 1244 ep_trb_dma = le64_to_cpu(event->buffer); 1245 1246 pep = &pdev->eps[ep_index]; 1247 ep_ring = cdnsp_dma_to_transfer_ring(pep, le64_to_cpu(event->buffer)); 1248 1249 /* 1250 * If device is disconnect then all requests will be dequeued 1251 * by upper layers as part of disconnect sequence. 1252 * We don't want handle such event to avoid racing. 1253 */ 1254 if (invalidate || !pdev->gadget.connected) 1255 goto cleanup; 1256 1257 if (GET_EP_CTX_STATE(pep->out_ctx) == EP_STATE_DISABLED) { 1258 trace_cdnsp_ep_disabled(pep->out_ctx); 1259 goto err_out; 1260 } 1261 1262 /* Some transfer events don't always point to a trb*/ 1263 if (!ep_ring) { 1264 switch (trb_comp_code) { 1265 case COMP_INVALID_STREAM_TYPE_ERROR: 1266 case COMP_INVALID_STREAM_ID_ERROR: 1267 case COMP_RING_UNDERRUN: 1268 case COMP_RING_OVERRUN: 1269 goto cleanup; 1270 default: 1271 dev_err(pdev->dev, "ERROR: %s event for unknown ring\n", 1272 pep->name); 1273 goto err_out; 1274 } 1275 } 1276 1277 /* Look for some error cases that need special treatment. */ 1278 switch (trb_comp_code) { 1279 case COMP_BABBLE_DETECTED_ERROR: 1280 status = -EOVERFLOW; 1281 break; 1282 case COMP_RING_UNDERRUN: 1283 case COMP_RING_OVERRUN: 1284 /* 1285 * When the Isoch ring is empty, the controller will generate 1286 * a Ring Overrun Event for IN Isoch endpoint or Ring 1287 * Underrun Event for OUT Isoch endpoint. 1288 */ 1289 goto cleanup; 1290 case COMP_MISSED_SERVICE_ERROR: 1291 /* 1292 * When encounter missed service error, one or more isoc tds 1293 * may be missed by controller. 1294 * Set skip flag of the ep_ring; Complete the missed tds as 1295 * short transfer when process the ep_ring next time. 1296 */ 1297 pep->skip = true; 1298 break; 1299 } 1300 1301 do { 1302 /* 1303 * This TRB should be in the TD at the head of this ring's TD 1304 * list. 1305 */ 1306 if (list_empty(&ep_ring->td_list)) { 1307 /* 1308 * Don't print warnings if it's due to a stopped 1309 * endpoint generating an extra completion event, or 1310 * a event for the last TRB of a short TD we already 1311 * got a short event for. 1312 * The short TD is already removed from the TD list. 1313 */ 1314 if (!(trb_comp_code == COMP_STOPPED || 1315 trb_comp_code == COMP_STOPPED_LENGTH_INVALID || 1316 ep_ring->last_td_was_short)) 1317 trace_cdnsp_trb_without_td(ep_ring, 1318 (struct cdnsp_generic_trb *)event); 1319 1320 if (pep->skip) { 1321 pep->skip = false; 1322 trace_cdnsp_ep_list_empty_with_skip(pep, 0); 1323 } 1324 1325 goto cleanup; 1326 } 1327 1328 td = list_entry(ep_ring->td_list.next, struct cdnsp_td, 1329 td_list); 1330 1331 /* Is this a TRB in the currently executing TD? */ 1332 ep_seg = cdnsp_trb_in_td(pdev, ep_ring->deq_seg, 1333 ep_ring->dequeue, td->last_trb, 1334 ep_trb_dma); 1335 1336 /* 1337 * Skip the Force Stopped Event. The event_trb(ep_trb_dma) 1338 * of FSE is not in the current TD pointed by ep_ring->dequeue 1339 * because that the hardware dequeue pointer still at the 1340 * previous TRB of the current TD. The previous TRB maybe a 1341 * Link TD or the last TRB of the previous TD. The command 1342 * completion handle will take care the rest. 1343 */ 1344 if (!ep_seg && (trb_comp_code == COMP_STOPPED || 1345 trb_comp_code == COMP_STOPPED_LENGTH_INVALID)) { 1346 pep->skip = false; 1347 goto cleanup; 1348 } 1349 1350 desc = td->preq->pep->endpoint.desc; 1351 if (!ep_seg) { 1352 if (!pep->skip || !usb_endpoint_xfer_isoc(desc)) { 1353 /* Something is busted, give up! */ 1354 dev_err(pdev->dev, 1355 "ERROR Transfer event TRB DMA ptr not " 1356 "part of current TD ep_index %d " 1357 "comp_code %u\n", ep_index, 1358 trb_comp_code); 1359 return -EINVAL; 1360 } 1361 1362 cdnsp_skip_isoc_td(pdev, td, event, pep, status); 1363 goto cleanup; 1364 } 1365 1366 if (trb_comp_code == COMP_SHORT_PACKET) 1367 ep_ring->last_td_was_short = true; 1368 else 1369 ep_ring->last_td_was_short = false; 1370 1371 if (pep->skip) { 1372 pep->skip = false; 1373 cdnsp_skip_isoc_td(pdev, td, event, pep, status); 1374 goto cleanup; 1375 } 1376 1377 ep_trb = &ep_seg->trbs[(ep_trb_dma - ep_seg->dma) 1378 / sizeof(*ep_trb)]; 1379 1380 trace_cdnsp_handle_transfer(ep_ring, 1381 (struct cdnsp_generic_trb *)ep_trb); 1382 1383 if (cdnsp_trb_is_noop(ep_trb)) 1384 goto cleanup; 1385 1386 if (usb_endpoint_xfer_control(desc)) 1387 cdnsp_process_ctrl_td(pdev, td, ep_trb, event, pep, 1388 &status); 1389 else if (usb_endpoint_xfer_isoc(desc)) 1390 cdnsp_process_isoc_td(pdev, td, ep_trb, event, pep, 1391 status); 1392 else 1393 cdnsp_process_bulk_intr_td(pdev, td, ep_trb, event, pep, 1394 &status); 1395 cleanup: 1396 handling_skipped_tds = pep->skip; 1397 1398 /* 1399 * Do not update event ring dequeue pointer if we're in a loop 1400 * processing missed tds. 1401 */ 1402 if (!handling_skipped_tds) 1403 cdnsp_inc_deq(pdev, pdev->event_ring); 1404 1405 /* 1406 * If ep->skip is set, it means there are missed tds on the 1407 * endpoint ring need to take care of. 1408 * Process them as short transfer until reach the td pointed by 1409 * the event. 1410 */ 1411 } while (handling_skipped_tds); 1412 return 0; 1413 1414 err_out: 1415 dev_err(pdev->dev, "@%016llx %08x %08x %08x %08x\n", 1416 (unsigned long long) 1417 cdnsp_trb_virt_to_dma(pdev->event_ring->deq_seg, 1418 pdev->event_ring->dequeue), 1419 lower_32_bits(le64_to_cpu(event->buffer)), 1420 upper_32_bits(le64_to_cpu(event->buffer)), 1421 le32_to_cpu(event->transfer_len), 1422 le32_to_cpu(event->flags)); 1423 return -EINVAL; 1424 } 1425 1426 /* 1427 * This function handles all events on the event ring. 1428 * Returns true for "possibly more events to process" (caller should call 1429 * again), otherwise false if done. 1430 */ 1431 static bool cdnsp_handle_event(struct cdnsp_device *pdev) 1432 { 1433 unsigned int comp_code; 1434 union cdnsp_trb *event; 1435 bool update_ptrs = true; 1436 u32 cycle_bit; 1437 int ret = 0; 1438 u32 flags; 1439 1440 event = pdev->event_ring->dequeue; 1441 flags = le32_to_cpu(event->event_cmd.flags); 1442 cycle_bit = (flags & TRB_CYCLE); 1443 1444 /* Does the controller or driver own the TRB? */ 1445 if (cycle_bit != pdev->event_ring->cycle_state) 1446 return false; 1447 1448 trace_cdnsp_handle_event(pdev->event_ring, &event->generic); 1449 1450 /* 1451 * Barrier between reading the TRB_CYCLE (valid) flag above and any 1452 * reads of the event's flags/data below. 1453 */ 1454 rmb(); 1455 1456 switch (flags & TRB_TYPE_BITMASK) { 1457 case TRB_TYPE(TRB_COMPLETION): 1458 /* 1459 * Command can't be handled in interrupt context so just 1460 * increment command ring dequeue pointer. 1461 */ 1462 cdnsp_inc_deq(pdev, pdev->cmd_ring); 1463 break; 1464 case TRB_TYPE(TRB_PORT_STATUS): 1465 cdnsp_handle_port_status(pdev, event); 1466 update_ptrs = false; 1467 break; 1468 case TRB_TYPE(TRB_TRANSFER): 1469 ret = cdnsp_handle_tx_event(pdev, &event->trans_event); 1470 if (ret >= 0) 1471 update_ptrs = false; 1472 break; 1473 case TRB_TYPE(TRB_SETUP): 1474 pdev->ep0_stage = CDNSP_SETUP_STAGE; 1475 pdev->setup_id = TRB_SETUPID_TO_TYPE(flags); 1476 pdev->setup_speed = TRB_SETUP_SPEEDID(flags); 1477 pdev->setup = *((struct usb_ctrlrequest *) 1478 &event->trans_event.buffer); 1479 1480 cdnsp_setup_analyze(pdev); 1481 break; 1482 case TRB_TYPE(TRB_ENDPOINT_NRDY): 1483 cdnsp_handle_tx_nrdy(pdev, &event->trans_event); 1484 break; 1485 case TRB_TYPE(TRB_HC_EVENT): { 1486 comp_code = GET_COMP_CODE(le32_to_cpu(event->generic.field[2])); 1487 1488 switch (comp_code) { 1489 case COMP_EVENT_RING_FULL_ERROR: 1490 dev_err(pdev->dev, "Event Ring Full\n"); 1491 break; 1492 default: 1493 dev_err(pdev->dev, "Controller error code 0x%02x\n", 1494 comp_code); 1495 } 1496 1497 break; 1498 } 1499 case TRB_TYPE(TRB_MFINDEX_WRAP): 1500 case TRB_TYPE(TRB_DRB_OVERFLOW): 1501 break; 1502 default: 1503 dev_warn(pdev->dev, "ERROR unknown event type %ld\n", 1504 TRB_FIELD_TO_TYPE(flags)); 1505 } 1506 1507 if (update_ptrs) 1508 /* Update SW event ring dequeue pointer. */ 1509 cdnsp_inc_deq(pdev, pdev->event_ring); 1510 1511 /* 1512 * Caller will call us again to check if there are more items 1513 * on the event ring. 1514 */ 1515 return true; 1516 } 1517 1518 irqreturn_t cdnsp_thread_irq_handler(int irq, void *data) 1519 { 1520 struct cdnsp_device *pdev = (struct cdnsp_device *)data; 1521 union cdnsp_trb *event_ring_deq; 1522 unsigned long flags; 1523 int counter = 0; 1524 1525 spin_lock_irqsave(&pdev->lock, flags); 1526 1527 if (pdev->cdnsp_state & (CDNSP_STATE_HALTED | CDNSP_STATE_DYING)) { 1528 /* 1529 * While removing or stopping driver there may still be deferred 1530 * not handled interrupt which should not be treated as error. 1531 * Driver should simply ignore it. 1532 */ 1533 if (pdev->gadget_driver) 1534 cdnsp_died(pdev); 1535 1536 spin_unlock_irqrestore(&pdev->lock, flags); 1537 return IRQ_HANDLED; 1538 } 1539 1540 event_ring_deq = pdev->event_ring->dequeue; 1541 1542 while (cdnsp_handle_event(pdev)) { 1543 if (++counter >= TRBS_PER_EV_DEQ_UPDATE) { 1544 cdnsp_update_erst_dequeue(pdev, event_ring_deq, 0); 1545 event_ring_deq = pdev->event_ring->dequeue; 1546 counter = 0; 1547 } 1548 } 1549 1550 cdnsp_update_erst_dequeue(pdev, event_ring_deq, 1); 1551 1552 spin_unlock_irqrestore(&pdev->lock, flags); 1553 1554 return IRQ_HANDLED; 1555 } 1556 1557 irqreturn_t cdnsp_irq_handler(int irq, void *priv) 1558 { 1559 struct cdnsp_device *pdev = (struct cdnsp_device *)priv; 1560 u32 irq_pending; 1561 u32 status; 1562 1563 status = readl(&pdev->op_regs->status); 1564 1565 if (status == ~(u32)0) { 1566 cdnsp_died(pdev); 1567 return IRQ_HANDLED; 1568 } 1569 1570 if (!(status & STS_EINT)) 1571 return IRQ_NONE; 1572 1573 writel(status | STS_EINT, &pdev->op_regs->status); 1574 irq_pending = readl(&pdev->ir_set->irq_pending); 1575 irq_pending |= IMAN_IP; 1576 writel(irq_pending, &pdev->ir_set->irq_pending); 1577 1578 if (status & STS_FATAL) { 1579 cdnsp_died(pdev); 1580 return IRQ_HANDLED; 1581 } 1582 1583 return IRQ_WAKE_THREAD; 1584 } 1585 1586 /* 1587 * Generic function for queuing a TRB on a ring. 1588 * The caller must have checked to make sure there's room on the ring. 1589 * 1590 * @more_trbs_coming: Will you enqueue more TRBs before setting doorbell? 1591 */ 1592 static void cdnsp_queue_trb(struct cdnsp_device *pdev, struct cdnsp_ring *ring, 1593 bool more_trbs_coming, u32 field1, u32 field2, 1594 u32 field3, u32 field4) 1595 { 1596 struct cdnsp_generic_trb *trb; 1597 1598 trb = &ring->enqueue->generic; 1599 1600 trb->field[0] = cpu_to_le32(field1); 1601 trb->field[1] = cpu_to_le32(field2); 1602 trb->field[2] = cpu_to_le32(field3); 1603 trb->field[3] = cpu_to_le32(field4); 1604 1605 trace_cdnsp_queue_trb(ring, trb); 1606 cdnsp_inc_enq(pdev, ring, more_trbs_coming); 1607 } 1608 1609 /* 1610 * Does various checks on the endpoint ring, and makes it ready to 1611 * queue num_trbs. 1612 */ 1613 static int cdnsp_prepare_ring(struct cdnsp_device *pdev, 1614 struct cdnsp_ring *ep_ring, 1615 u32 ep_state, unsigned 1616 int num_trbs, 1617 gfp_t mem_flags) 1618 { 1619 unsigned int num_trbs_needed; 1620 1621 /* Make sure the endpoint has been added to controller schedule. */ 1622 switch (ep_state) { 1623 case EP_STATE_STOPPED: 1624 case EP_STATE_RUNNING: 1625 case EP_STATE_HALTED: 1626 break; 1627 default: 1628 dev_err(pdev->dev, "ERROR: incorrect endpoint state\n"); 1629 return -EINVAL; 1630 } 1631 1632 while (1) { 1633 if (cdnsp_room_on_ring(pdev, ep_ring, num_trbs)) 1634 break; 1635 1636 trace_cdnsp_no_room_on_ring("try ring expansion"); 1637 1638 num_trbs_needed = num_trbs - ep_ring->num_trbs_free; 1639 if (cdnsp_ring_expansion(pdev, ep_ring, num_trbs_needed, 1640 mem_flags)) { 1641 dev_err(pdev->dev, "Ring expansion failed\n"); 1642 return -ENOMEM; 1643 } 1644 } 1645 1646 while (cdnsp_trb_is_link(ep_ring->enqueue)) { 1647 ep_ring->enqueue->link.control |= cpu_to_le32(TRB_CHAIN); 1648 /* The cycle bit must be set as the last operation. */ 1649 wmb(); 1650 ep_ring->enqueue->link.control ^= cpu_to_le32(TRB_CYCLE); 1651 1652 /* Toggle the cycle bit after the last ring segment. */ 1653 if (cdnsp_link_trb_toggles_cycle(ep_ring->enqueue)) 1654 ep_ring->cycle_state ^= 1; 1655 ep_ring->enq_seg = ep_ring->enq_seg->next; 1656 ep_ring->enqueue = ep_ring->enq_seg->trbs; 1657 } 1658 return 0; 1659 } 1660 1661 static int cdnsp_prepare_transfer(struct cdnsp_device *pdev, 1662 struct cdnsp_request *preq, 1663 unsigned int num_trbs) 1664 { 1665 struct cdnsp_ring *ep_ring; 1666 int ret; 1667 1668 ep_ring = cdnsp_get_transfer_ring(pdev, preq->pep, 1669 preq->request.stream_id); 1670 if (!ep_ring) 1671 return -EINVAL; 1672 1673 ret = cdnsp_prepare_ring(pdev, ep_ring, 1674 GET_EP_CTX_STATE(preq->pep->out_ctx), 1675 num_trbs, GFP_ATOMIC); 1676 if (ret) 1677 return ret; 1678 1679 INIT_LIST_HEAD(&preq->td.td_list); 1680 preq->td.preq = preq; 1681 1682 /* Add this TD to the tail of the endpoint ring's TD list. */ 1683 list_add_tail(&preq->td.td_list, &ep_ring->td_list); 1684 ep_ring->num_tds++; 1685 preq->pep->stream_info.td_count++; 1686 1687 preq->td.start_seg = ep_ring->enq_seg; 1688 preq->td.first_trb = ep_ring->enqueue; 1689 1690 return 0; 1691 } 1692 1693 static unsigned int cdnsp_count_trbs(u64 addr, u64 len) 1694 { 1695 unsigned int num_trbs; 1696 1697 num_trbs = DIV_ROUND_UP(len + (addr & (TRB_MAX_BUFF_SIZE - 1)), 1698 TRB_MAX_BUFF_SIZE); 1699 if (num_trbs == 0) 1700 num_trbs++; 1701 1702 return num_trbs; 1703 } 1704 1705 static unsigned int count_trbs_needed(struct cdnsp_request *preq) 1706 { 1707 return cdnsp_count_trbs(preq->request.dma, preq->request.length); 1708 } 1709 1710 static unsigned int count_sg_trbs_needed(struct cdnsp_request *preq) 1711 { 1712 unsigned int i, len, full_len, num_trbs = 0; 1713 struct scatterlist *sg; 1714 1715 full_len = preq->request.length; 1716 1717 for_each_sg(preq->request.sg, sg, preq->request.num_sgs, i) { 1718 len = sg_dma_len(sg); 1719 num_trbs += cdnsp_count_trbs(sg_dma_address(sg), len); 1720 len = min(len, full_len); 1721 full_len -= len; 1722 if (full_len == 0) 1723 break; 1724 } 1725 1726 return num_trbs; 1727 } 1728 1729 static unsigned int count_isoc_trbs_needed(struct cdnsp_request *preq) 1730 { 1731 return cdnsp_count_trbs(preq->request.dma, preq->request.length); 1732 } 1733 1734 static void cdnsp_check_trb_math(struct cdnsp_request *preq, int running_total) 1735 { 1736 if (running_total != preq->request.length) 1737 dev_err(preq->pep->pdev->dev, 1738 "%s - Miscalculated tx length, " 1739 "queued %#x, asked for %#x (%d)\n", 1740 preq->pep->name, running_total, 1741 preq->request.length, preq->request.actual); 1742 } 1743 1744 /* 1745 * TD size is the number of max packet sized packets remaining in the TD 1746 * (*not* including this TRB). 1747 * 1748 * Total TD packet count = total_packet_count = 1749 * DIV_ROUND_UP(TD size in bytes / wMaxPacketSize) 1750 * 1751 * Packets transferred up to and including this TRB = packets_transferred = 1752 * rounddown(total bytes transferred including this TRB / wMaxPacketSize) 1753 * 1754 * TD size = total_packet_count - packets_transferred 1755 * 1756 * It must fit in bits 21:17, so it can't be bigger than 31. 1757 * This is taken care of in the TRB_TD_SIZE() macro 1758 * 1759 * The last TRB in a TD must have the TD size set to zero. 1760 */ 1761 static u32 cdnsp_td_remainder(struct cdnsp_device *pdev, 1762 int transferred, 1763 int trb_buff_len, 1764 unsigned int td_total_len, 1765 struct cdnsp_request *preq, 1766 bool more_trbs_coming, 1767 bool zlp) 1768 { 1769 u32 maxp, total_packet_count; 1770 1771 /* Before ZLP driver needs set TD_SIZE = 1. */ 1772 if (zlp) 1773 return 1; 1774 1775 /* One TRB with a zero-length data packet. */ 1776 if (!more_trbs_coming || (transferred == 0 && trb_buff_len == 0) || 1777 trb_buff_len == td_total_len) 1778 return 0; 1779 1780 maxp = usb_endpoint_maxp(preq->pep->endpoint.desc); 1781 total_packet_count = DIV_ROUND_UP(td_total_len, maxp); 1782 1783 /* Queuing functions don't count the current TRB into transferred. */ 1784 return (total_packet_count - ((transferred + trb_buff_len) / maxp)); 1785 } 1786 1787 static int cdnsp_align_td(struct cdnsp_device *pdev, 1788 struct cdnsp_request *preq, u32 enqd_len, 1789 u32 *trb_buff_len, struct cdnsp_segment *seg) 1790 { 1791 struct device *dev = pdev->dev; 1792 unsigned int unalign; 1793 unsigned int max_pkt; 1794 u32 new_buff_len; 1795 1796 max_pkt = usb_endpoint_maxp(preq->pep->endpoint.desc); 1797 unalign = (enqd_len + *trb_buff_len) % max_pkt; 1798 1799 /* We got lucky, last normal TRB data on segment is packet aligned. */ 1800 if (unalign == 0) 1801 return 0; 1802 1803 /* Is the last nornal TRB alignable by splitting it. */ 1804 if (*trb_buff_len > unalign) { 1805 *trb_buff_len -= unalign; 1806 trace_cdnsp_bounce_align_td_split(preq, *trb_buff_len, 1807 enqd_len, 0, unalign); 1808 return 0; 1809 } 1810 1811 /* 1812 * We want enqd_len + trb_buff_len to sum up to a number aligned to 1813 * number which is divisible by the endpoint's wMaxPacketSize. IOW: 1814 * (size of currently enqueued TRBs + remainder) % wMaxPacketSize == 0. 1815 */ 1816 new_buff_len = max_pkt - (enqd_len % max_pkt); 1817 1818 if (new_buff_len > (preq->request.length - enqd_len)) 1819 new_buff_len = (preq->request.length - enqd_len); 1820 1821 /* Create a max max_pkt sized bounce buffer pointed to by last trb. */ 1822 if (preq->direction) { 1823 sg_pcopy_to_buffer(preq->request.sg, 1824 preq->request.num_mapped_sgs, 1825 seg->bounce_buf, new_buff_len, enqd_len); 1826 seg->bounce_dma = dma_map_single(dev, seg->bounce_buf, 1827 max_pkt, DMA_TO_DEVICE); 1828 } else { 1829 seg->bounce_dma = dma_map_single(dev, seg->bounce_buf, 1830 max_pkt, DMA_FROM_DEVICE); 1831 } 1832 1833 if (dma_mapping_error(dev, seg->bounce_dma)) { 1834 /* Try without aligning.*/ 1835 dev_warn(pdev->dev, 1836 "Failed mapping bounce buffer, not aligning\n"); 1837 return 0; 1838 } 1839 1840 *trb_buff_len = new_buff_len; 1841 seg->bounce_len = new_buff_len; 1842 seg->bounce_offs = enqd_len; 1843 1844 trace_cdnsp_bounce_map(preq, new_buff_len, enqd_len, seg->bounce_dma, 1845 unalign); 1846 1847 /* 1848 * Bounce buffer successful aligned and seg->bounce_dma will be used 1849 * in transfer TRB as new transfer buffer address. 1850 */ 1851 return 1; 1852 } 1853 1854 int cdnsp_queue_bulk_tx(struct cdnsp_device *pdev, struct cdnsp_request *preq) 1855 { 1856 unsigned int enqd_len, block_len, trb_buff_len, full_len; 1857 unsigned int start_cycle, num_sgs = 0; 1858 struct cdnsp_generic_trb *start_trb; 1859 u32 field, length_field, remainder; 1860 struct scatterlist *sg = NULL; 1861 bool more_trbs_coming = true; 1862 bool need_zero_pkt = false; 1863 bool zero_len_trb = false; 1864 struct cdnsp_ring *ring; 1865 bool first_trb = true; 1866 unsigned int num_trbs; 1867 struct cdnsp_ep *pep; 1868 u64 addr, send_addr; 1869 int sent_len, ret; 1870 1871 ring = cdnsp_request_to_transfer_ring(pdev, preq); 1872 if (!ring) 1873 return -EINVAL; 1874 1875 full_len = preq->request.length; 1876 1877 if (preq->request.num_sgs) { 1878 num_sgs = preq->request.num_sgs; 1879 sg = preq->request.sg; 1880 addr = (u64)sg_dma_address(sg); 1881 block_len = sg_dma_len(sg); 1882 num_trbs = count_sg_trbs_needed(preq); 1883 } else { 1884 num_trbs = count_trbs_needed(preq); 1885 addr = (u64)preq->request.dma; 1886 block_len = full_len; 1887 } 1888 1889 pep = preq->pep; 1890 1891 /* Deal with request.zero - need one more td/trb. */ 1892 if (preq->request.zero && preq->request.length && 1893 IS_ALIGNED(full_len, usb_endpoint_maxp(pep->endpoint.desc))) { 1894 need_zero_pkt = true; 1895 num_trbs++; 1896 } 1897 1898 ret = cdnsp_prepare_transfer(pdev, preq, num_trbs); 1899 if (ret) 1900 return ret; 1901 1902 /* 1903 * Don't give the first TRB to the hardware (by toggling the cycle bit) 1904 * until we've finished creating all the other TRBs. The ring's cycle 1905 * state may change as we enqueue the other TRBs, so save it too. 1906 */ 1907 start_trb = &ring->enqueue->generic; 1908 start_cycle = ring->cycle_state; 1909 send_addr = addr; 1910 1911 /* Queue the TRBs, even if they are zero-length */ 1912 for (enqd_len = 0; zero_len_trb || first_trb || enqd_len < full_len; 1913 enqd_len += trb_buff_len) { 1914 field = TRB_TYPE(TRB_NORMAL); 1915 1916 /* TRB buffer should not cross 64KB boundaries */ 1917 trb_buff_len = TRB_BUFF_LEN_UP_TO_BOUNDARY(addr); 1918 trb_buff_len = min(trb_buff_len, block_len); 1919 if (enqd_len + trb_buff_len > full_len) 1920 trb_buff_len = full_len - enqd_len; 1921 1922 /* Don't change the cycle bit of the first TRB until later */ 1923 if (first_trb) { 1924 first_trb = false; 1925 if (start_cycle == 0) 1926 field |= TRB_CYCLE; 1927 } else { 1928 field |= ring->cycle_state; 1929 } 1930 1931 /* 1932 * Chain all the TRBs together; clear the chain bit in the last 1933 * TRB to indicate it's the last TRB in the chain. 1934 */ 1935 if (enqd_len + trb_buff_len < full_len || need_zero_pkt) { 1936 field |= TRB_CHAIN; 1937 if (cdnsp_trb_is_link(ring->enqueue + 1)) { 1938 if (cdnsp_align_td(pdev, preq, enqd_len, 1939 &trb_buff_len, 1940 ring->enq_seg)) { 1941 send_addr = ring->enq_seg->bounce_dma; 1942 /* Assuming TD won't span 2 segs */ 1943 preq->td.bounce_seg = ring->enq_seg; 1944 } 1945 } 1946 } 1947 1948 if (enqd_len + trb_buff_len >= full_len) { 1949 if (need_zero_pkt && !zero_len_trb) { 1950 zero_len_trb = true; 1951 } else { 1952 zero_len_trb = false; 1953 field &= ~TRB_CHAIN; 1954 field |= TRB_IOC; 1955 more_trbs_coming = false; 1956 need_zero_pkt = false; 1957 preq->td.last_trb = ring->enqueue; 1958 } 1959 } 1960 1961 /* Only set interrupt on short packet for OUT endpoints. */ 1962 if (!preq->direction) 1963 field |= TRB_ISP; 1964 1965 /* Set the TRB length, TD size, and interrupter fields. */ 1966 remainder = cdnsp_td_remainder(pdev, enqd_len, trb_buff_len, 1967 full_len, preq, 1968 more_trbs_coming, 1969 zero_len_trb); 1970 1971 length_field = TRB_LEN(trb_buff_len) | TRB_TD_SIZE(remainder) | 1972 TRB_INTR_TARGET(0); 1973 1974 cdnsp_queue_trb(pdev, ring, more_trbs_coming, 1975 lower_32_bits(send_addr), 1976 upper_32_bits(send_addr), 1977 length_field, 1978 field); 1979 1980 addr += trb_buff_len; 1981 sent_len = trb_buff_len; 1982 while (sg && sent_len >= block_len) { 1983 /* New sg entry */ 1984 --num_sgs; 1985 sent_len -= block_len; 1986 if (num_sgs != 0) { 1987 sg = sg_next(sg); 1988 block_len = sg_dma_len(sg); 1989 addr = (u64)sg_dma_address(sg); 1990 addr += sent_len; 1991 } 1992 } 1993 block_len -= sent_len; 1994 send_addr = addr; 1995 } 1996 1997 cdnsp_check_trb_math(preq, enqd_len); 1998 ret = cdnsp_giveback_first_trb(pdev, pep, preq->request.stream_id, 1999 start_cycle, start_trb); 2000 2001 if (ret) 2002 preq->td.drbl = 1; 2003 2004 return 0; 2005 } 2006 2007 int cdnsp_queue_ctrl_tx(struct cdnsp_device *pdev, struct cdnsp_request *preq) 2008 { 2009 u32 field, length_field, remainder; 2010 struct cdnsp_ep *pep = preq->pep; 2011 struct cdnsp_ring *ep_ring; 2012 int num_trbs; 2013 int ret; 2014 2015 ep_ring = cdnsp_request_to_transfer_ring(pdev, preq); 2016 if (!ep_ring) 2017 return -EINVAL; 2018 2019 /* 1 TRB for data, 1 for status */ 2020 num_trbs = (pdev->three_stage_setup) ? 2 : 1; 2021 2022 ret = cdnsp_prepare_transfer(pdev, preq, num_trbs); 2023 if (ret) 2024 return ret; 2025 2026 /* If there's data, queue data TRBs */ 2027 if (pdev->ep0_expect_in) 2028 field = TRB_TYPE(TRB_DATA) | TRB_IOC; 2029 else 2030 field = TRB_ISP | TRB_TYPE(TRB_DATA) | TRB_IOC; 2031 2032 if (preq->request.length > 0) { 2033 remainder = cdnsp_td_remainder(pdev, 0, preq->request.length, 2034 preq->request.length, preq, 1, 0); 2035 2036 length_field = TRB_LEN(preq->request.length) | 2037 TRB_TD_SIZE(remainder) | TRB_INTR_TARGET(0); 2038 2039 if (pdev->ep0_expect_in) 2040 field |= TRB_DIR_IN; 2041 2042 cdnsp_queue_trb(pdev, ep_ring, true, 2043 lower_32_bits(preq->request.dma), 2044 upper_32_bits(preq->request.dma), length_field, 2045 field | ep_ring->cycle_state | 2046 TRB_SETUPID(pdev->setup_id) | 2047 pdev->setup_speed); 2048 2049 pdev->ep0_stage = CDNSP_DATA_STAGE; 2050 } 2051 2052 /* Save the DMA address of the last TRB in the TD. */ 2053 preq->td.last_trb = ep_ring->enqueue; 2054 2055 /* Queue status TRB. */ 2056 if (preq->request.length == 0) 2057 field = ep_ring->cycle_state; 2058 else 2059 field = (ep_ring->cycle_state ^ 1); 2060 2061 if (preq->request.length > 0 && pdev->ep0_expect_in) 2062 field |= TRB_DIR_IN; 2063 2064 if (pep->ep_state & EP0_HALTED_STATUS) { 2065 pep->ep_state &= ~EP0_HALTED_STATUS; 2066 field |= TRB_SETUPSTAT(TRB_SETUPSTAT_STALL); 2067 } else { 2068 field |= TRB_SETUPSTAT(TRB_SETUPSTAT_ACK); 2069 } 2070 2071 cdnsp_queue_trb(pdev, ep_ring, false, 0, 0, TRB_INTR_TARGET(0), 2072 field | TRB_IOC | TRB_SETUPID(pdev->setup_id) | 2073 TRB_TYPE(TRB_STATUS) | pdev->setup_speed); 2074 2075 cdnsp_ring_ep_doorbell(pdev, pep, preq->request.stream_id); 2076 2077 return 0; 2078 } 2079 2080 int cdnsp_cmd_stop_ep(struct cdnsp_device *pdev, struct cdnsp_ep *pep) 2081 { 2082 u32 ep_state = GET_EP_CTX_STATE(pep->out_ctx); 2083 int ret = 0; 2084 2085 if (ep_state == EP_STATE_STOPPED || ep_state == EP_STATE_DISABLED || 2086 ep_state == EP_STATE_HALTED) { 2087 trace_cdnsp_ep_stopped_or_disabled(pep->out_ctx); 2088 goto ep_stopped; 2089 } 2090 2091 cdnsp_queue_stop_endpoint(pdev, pep->idx); 2092 cdnsp_ring_cmd_db(pdev); 2093 ret = cdnsp_wait_for_cmd_compl(pdev); 2094 2095 trace_cdnsp_handle_cmd_stop_ep(pep->out_ctx); 2096 2097 ep_stopped: 2098 pep->ep_state |= EP_STOPPED; 2099 return ret; 2100 } 2101 2102 int cdnsp_cmd_flush_ep(struct cdnsp_device *pdev, struct cdnsp_ep *pep) 2103 { 2104 int ret; 2105 2106 cdnsp_queue_flush_endpoint(pdev, pep->idx); 2107 cdnsp_ring_cmd_db(pdev); 2108 ret = cdnsp_wait_for_cmd_compl(pdev); 2109 2110 trace_cdnsp_handle_cmd_flush_ep(pep->out_ctx); 2111 2112 return ret; 2113 } 2114 2115 /* 2116 * The transfer burst count field of the isochronous TRB defines the number of 2117 * bursts that are required to move all packets in this TD. Only SuperSpeed 2118 * devices can burst up to bMaxBurst number of packets per service interval. 2119 * This field is zero based, meaning a value of zero in the field means one 2120 * burst. Basically, for everything but SuperSpeed devices, this field will be 2121 * zero. 2122 */ 2123 static unsigned int cdnsp_get_burst_count(struct cdnsp_device *pdev, 2124 struct cdnsp_request *preq, 2125 unsigned int total_packet_count) 2126 { 2127 unsigned int max_burst; 2128 2129 if (pdev->gadget.speed < USB_SPEED_SUPER) 2130 return 0; 2131 2132 max_burst = preq->pep->endpoint.comp_desc->bMaxBurst; 2133 return DIV_ROUND_UP(total_packet_count, max_burst + 1) - 1; 2134 } 2135 2136 /* 2137 * Returns the number of packets in the last "burst" of packets. This field is 2138 * valid for all speeds of devices. USB 2.0 devices can only do one "burst", so 2139 * the last burst packet count is equal to the total number of packets in the 2140 * TD. SuperSpeed endpoints can have up to 3 bursts. All but the last burst 2141 * must contain (bMaxBurst + 1) number of packets, but the last burst can 2142 * contain 1 to (bMaxBurst + 1) packets. 2143 */ 2144 static unsigned int 2145 cdnsp_get_last_burst_packet_count(struct cdnsp_device *pdev, 2146 struct cdnsp_request *preq, 2147 unsigned int total_packet_count) 2148 { 2149 unsigned int max_burst; 2150 unsigned int residue; 2151 2152 if (pdev->gadget.speed >= USB_SPEED_SUPER) { 2153 /* bMaxBurst is zero based: 0 means 1 packet per burst. */ 2154 max_burst = preq->pep->endpoint.comp_desc->bMaxBurst; 2155 residue = total_packet_count % (max_burst + 1); 2156 2157 /* 2158 * If residue is zero, the last burst contains (max_burst + 1) 2159 * number of packets, but the TLBPC field is zero-based. 2160 */ 2161 if (residue == 0) 2162 return max_burst; 2163 2164 return residue - 1; 2165 } 2166 if (total_packet_count == 0) 2167 return 0; 2168 2169 return total_packet_count - 1; 2170 } 2171 2172 /* Queue function isoc transfer */ 2173 static int cdnsp_queue_isoc_tx(struct cdnsp_device *pdev, 2174 struct cdnsp_request *preq) 2175 { 2176 int trb_buff_len, td_len, td_remain_len, ret; 2177 unsigned int burst_count, last_burst_pkt; 2178 unsigned int total_pkt_count, max_pkt; 2179 struct cdnsp_generic_trb *start_trb; 2180 bool more_trbs_coming = true; 2181 struct cdnsp_ring *ep_ring; 2182 int running_total = 0; 2183 u32 field, length_field; 2184 int start_cycle; 2185 int trbs_per_td; 2186 u64 addr; 2187 int i; 2188 2189 ep_ring = preq->pep->ring; 2190 start_trb = &ep_ring->enqueue->generic; 2191 start_cycle = ep_ring->cycle_state; 2192 td_len = preq->request.length; 2193 addr = (u64)preq->request.dma; 2194 td_remain_len = td_len; 2195 2196 max_pkt = usb_endpoint_maxp(preq->pep->endpoint.desc); 2197 total_pkt_count = DIV_ROUND_UP(td_len, max_pkt); 2198 2199 /* A zero-length transfer still involves at least one packet. */ 2200 if (total_pkt_count == 0) 2201 total_pkt_count++; 2202 2203 burst_count = cdnsp_get_burst_count(pdev, preq, total_pkt_count); 2204 last_burst_pkt = cdnsp_get_last_burst_packet_count(pdev, preq, 2205 total_pkt_count); 2206 trbs_per_td = count_isoc_trbs_needed(preq); 2207 2208 ret = cdnsp_prepare_transfer(pdev, preq, trbs_per_td); 2209 if (ret) 2210 goto cleanup; 2211 2212 /* 2213 * Set isoc specific data for the first TRB in a TD. 2214 * Prevent HW from getting the TRBs by keeping the cycle state 2215 * inverted in the first TDs isoc TRB. 2216 */ 2217 field = TRB_TYPE(TRB_ISOC) | TRB_TLBPC(last_burst_pkt) | 2218 TRB_SIA | TRB_TBC(burst_count); 2219 2220 if (!start_cycle) 2221 field |= TRB_CYCLE; 2222 2223 /* Fill the rest of the TRB fields, and remaining normal TRBs. */ 2224 for (i = 0; i < trbs_per_td; i++) { 2225 u32 remainder; 2226 2227 /* Calculate TRB length. */ 2228 trb_buff_len = TRB_BUFF_LEN_UP_TO_BOUNDARY(addr); 2229 if (trb_buff_len > td_remain_len) 2230 trb_buff_len = td_remain_len; 2231 2232 /* Set the TRB length, TD size, & interrupter fields. */ 2233 remainder = cdnsp_td_remainder(pdev, running_total, 2234 trb_buff_len, td_len, preq, 2235 more_trbs_coming, 0); 2236 2237 length_field = TRB_LEN(trb_buff_len) | TRB_INTR_TARGET(0); 2238 2239 /* Only first TRB is isoc, overwrite otherwise. */ 2240 if (i) { 2241 field = TRB_TYPE(TRB_NORMAL) | ep_ring->cycle_state; 2242 length_field |= TRB_TD_SIZE(remainder); 2243 } else { 2244 length_field |= TRB_TD_SIZE_TBC(burst_count); 2245 } 2246 2247 /* Only set interrupt on short packet for OUT EPs. */ 2248 if (usb_endpoint_dir_out(preq->pep->endpoint.desc)) 2249 field |= TRB_ISP; 2250 2251 /* Set the chain bit for all except the last TRB. */ 2252 if (i < trbs_per_td - 1) { 2253 more_trbs_coming = true; 2254 field |= TRB_CHAIN; 2255 } else { 2256 more_trbs_coming = false; 2257 preq->td.last_trb = ep_ring->enqueue; 2258 field |= TRB_IOC; 2259 } 2260 2261 cdnsp_queue_trb(pdev, ep_ring, more_trbs_coming, 2262 lower_32_bits(addr), upper_32_bits(addr), 2263 length_field, field); 2264 2265 running_total += trb_buff_len; 2266 addr += trb_buff_len; 2267 td_remain_len -= trb_buff_len; 2268 } 2269 2270 /* Check TD length */ 2271 if (running_total != td_len) { 2272 dev_err(pdev->dev, "ISOC TD length unmatch\n"); 2273 ret = -EINVAL; 2274 goto cleanup; 2275 } 2276 2277 cdnsp_giveback_first_trb(pdev, preq->pep, preq->request.stream_id, 2278 start_cycle, start_trb); 2279 2280 return 0; 2281 2282 cleanup: 2283 /* Clean up a partially enqueued isoc transfer. */ 2284 list_del_init(&preq->td.td_list); 2285 ep_ring->num_tds--; 2286 2287 /* 2288 * Use the first TD as a temporary variable to turn the TDs we've 2289 * queued into No-ops with a software-owned cycle bit. 2290 * That way the hardware won't accidentally start executing bogus TDs 2291 * when we partially overwrite them. 2292 * td->first_trb and td->start_seg are already set. 2293 */ 2294 preq->td.last_trb = ep_ring->enqueue; 2295 /* Every TRB except the first & last will have its cycle bit flipped. */ 2296 cdnsp_td_to_noop(pdev, ep_ring, &preq->td, true); 2297 2298 /* Reset the ring enqueue back to the first TRB and its cycle bit. */ 2299 ep_ring->enqueue = preq->td.first_trb; 2300 ep_ring->enq_seg = preq->td.start_seg; 2301 ep_ring->cycle_state = start_cycle; 2302 return ret; 2303 } 2304 2305 int cdnsp_queue_isoc_tx_prepare(struct cdnsp_device *pdev, 2306 struct cdnsp_request *preq) 2307 { 2308 struct cdnsp_ring *ep_ring; 2309 u32 ep_state; 2310 int num_trbs; 2311 int ret; 2312 2313 ep_ring = preq->pep->ring; 2314 ep_state = GET_EP_CTX_STATE(preq->pep->out_ctx); 2315 num_trbs = count_isoc_trbs_needed(preq); 2316 2317 /* 2318 * Check the ring to guarantee there is enough room for the whole 2319 * request. Do not insert any td of the USB Request to the ring if the 2320 * check failed. 2321 */ 2322 ret = cdnsp_prepare_ring(pdev, ep_ring, ep_state, num_trbs, GFP_ATOMIC); 2323 if (ret) 2324 return ret; 2325 2326 return cdnsp_queue_isoc_tx(pdev, preq); 2327 } 2328 2329 /**** Command Ring Operations ****/ 2330 /* 2331 * Generic function for queuing a command TRB on the command ring. 2332 * Driver queue only one command to ring in the moment. 2333 */ 2334 static void cdnsp_queue_command(struct cdnsp_device *pdev, 2335 u32 field1, 2336 u32 field2, 2337 u32 field3, 2338 u32 field4) 2339 { 2340 cdnsp_prepare_ring(pdev, pdev->cmd_ring, EP_STATE_RUNNING, 1, 2341 GFP_ATOMIC); 2342 2343 pdev->cmd.command_trb = pdev->cmd_ring->enqueue; 2344 2345 cdnsp_queue_trb(pdev, pdev->cmd_ring, false, field1, field2, 2346 field3, field4 | pdev->cmd_ring->cycle_state); 2347 } 2348 2349 /* Queue a slot enable or disable request on the command ring */ 2350 void cdnsp_queue_slot_control(struct cdnsp_device *pdev, u32 trb_type) 2351 { 2352 cdnsp_queue_command(pdev, 0, 0, 0, TRB_TYPE(trb_type) | 2353 SLOT_ID_FOR_TRB(pdev->slot_id)); 2354 } 2355 2356 /* Queue an address device command TRB */ 2357 void cdnsp_queue_address_device(struct cdnsp_device *pdev, 2358 dma_addr_t in_ctx_ptr, 2359 enum cdnsp_setup_dev setup) 2360 { 2361 cdnsp_queue_command(pdev, lower_32_bits(in_ctx_ptr), 2362 upper_32_bits(in_ctx_ptr), 0, 2363 TRB_TYPE(TRB_ADDR_DEV) | 2364 SLOT_ID_FOR_TRB(pdev->slot_id) | 2365 (setup == SETUP_CONTEXT_ONLY ? TRB_BSR : 0)); 2366 } 2367 2368 /* Queue a reset device command TRB */ 2369 void cdnsp_queue_reset_device(struct cdnsp_device *pdev) 2370 { 2371 cdnsp_queue_command(pdev, 0, 0, 0, TRB_TYPE(TRB_RESET_DEV) | 2372 SLOT_ID_FOR_TRB(pdev->slot_id)); 2373 } 2374 2375 /* Queue a configure endpoint command TRB */ 2376 void cdnsp_queue_configure_endpoint(struct cdnsp_device *pdev, 2377 dma_addr_t in_ctx_ptr) 2378 { 2379 cdnsp_queue_command(pdev, lower_32_bits(in_ctx_ptr), 2380 upper_32_bits(in_ctx_ptr), 0, 2381 TRB_TYPE(TRB_CONFIG_EP) | 2382 SLOT_ID_FOR_TRB(pdev->slot_id)); 2383 } 2384 2385 /* 2386 * Suspend is set to indicate "Stop Endpoint Command" is being issued to stop 2387 * activity on an endpoint that is about to be suspended. 2388 */ 2389 void cdnsp_queue_stop_endpoint(struct cdnsp_device *pdev, unsigned int ep_index) 2390 { 2391 cdnsp_queue_command(pdev, 0, 0, 0, SLOT_ID_FOR_TRB(pdev->slot_id) | 2392 EP_ID_FOR_TRB(ep_index) | TRB_TYPE(TRB_STOP_RING)); 2393 } 2394 2395 /* Set Transfer Ring Dequeue Pointer command. */ 2396 void cdnsp_queue_new_dequeue_state(struct cdnsp_device *pdev, 2397 struct cdnsp_ep *pep, 2398 struct cdnsp_dequeue_state *deq_state) 2399 { 2400 u32 trb_stream_id = STREAM_ID_FOR_TRB(deq_state->stream_id); 2401 u32 trb_slot_id = SLOT_ID_FOR_TRB(pdev->slot_id); 2402 u32 type = TRB_TYPE(TRB_SET_DEQ); 2403 u32 trb_sct = 0; 2404 dma_addr_t addr; 2405 2406 addr = cdnsp_trb_virt_to_dma(deq_state->new_deq_seg, 2407 deq_state->new_deq_ptr); 2408 2409 if (deq_state->stream_id) 2410 trb_sct = SCT_FOR_TRB(SCT_PRI_TR); 2411 2412 cdnsp_queue_command(pdev, lower_32_bits(addr) | trb_sct | 2413 deq_state->new_cycle_state, upper_32_bits(addr), 2414 trb_stream_id, trb_slot_id | 2415 EP_ID_FOR_TRB(pep->idx) | type); 2416 } 2417 2418 void cdnsp_queue_reset_ep(struct cdnsp_device *pdev, unsigned int ep_index) 2419 { 2420 return cdnsp_queue_command(pdev, 0, 0, 0, 2421 SLOT_ID_FOR_TRB(pdev->slot_id) | 2422 EP_ID_FOR_TRB(ep_index) | 2423 TRB_TYPE(TRB_RESET_EP)); 2424 } 2425 2426 /* 2427 * Queue a halt endpoint request on the command ring. 2428 */ 2429 void cdnsp_queue_halt_endpoint(struct cdnsp_device *pdev, unsigned int ep_index) 2430 { 2431 cdnsp_queue_command(pdev, 0, 0, 0, TRB_TYPE(TRB_HALT_ENDPOINT) | 2432 SLOT_ID_FOR_TRB(pdev->slot_id) | 2433 EP_ID_FOR_TRB(ep_index)); 2434 } 2435 2436 /* 2437 * Queue a flush endpoint request on the command ring. 2438 */ 2439 void cdnsp_queue_flush_endpoint(struct cdnsp_device *pdev, 2440 unsigned int ep_index) 2441 { 2442 cdnsp_queue_command(pdev, 0, 0, 0, TRB_TYPE(TRB_FLUSH_ENDPOINT) | 2443 SLOT_ID_FOR_TRB(pdev->slot_id) | 2444 EP_ID_FOR_TRB(ep_index)); 2445 } 2446 2447 void cdnsp_force_header_wakeup(struct cdnsp_device *pdev, int intf_num) 2448 { 2449 u32 lo, mid; 2450 2451 lo = TRB_FH_TO_PACKET_TYPE(TRB_FH_TR_PACKET) | 2452 TRB_FH_TO_DEVICE_ADDRESS(pdev->device_address); 2453 mid = TRB_FH_TR_PACKET_DEV_NOT | 2454 TRB_FH_TO_NOT_TYPE(TRB_FH_TR_PACKET_FUNCTION_WAKE) | 2455 TRB_FH_TO_INTERFACE(intf_num); 2456 2457 cdnsp_queue_command(pdev, lo, mid, 0, 2458 TRB_TYPE(TRB_FORCE_HEADER) | SET_PORT_ID(2)); 2459 } 2460