1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Cadence CDNSP DRD Driver. 4 * 5 * Copyright (C) 2020 Cadence. 6 * 7 * Author: Pawel Laszczak <pawell@cadence.com> 8 * 9 */ 10 11 #include <linux/moduleparam.h> 12 #include <linux/dma-mapping.h> 13 #include <linux/module.h> 14 #include <linux/iopoll.h> 15 #include <linux/delay.h> 16 #include <linux/log2.h> 17 #include <linux/slab.h> 18 #include <linux/pci.h> 19 #include <linux/irq.h> 20 #include <linux/dmi.h> 21 22 #include "core.h" 23 #include "gadget-export.h" 24 #include "drd.h" 25 #include "cdnsp-gadget.h" 26 #include "cdnsp-trace.h" 27 28 unsigned int cdnsp_port_speed(unsigned int port_status) 29 { 30 /*Detect gadget speed based on PORTSC register*/ 31 if (DEV_SUPERSPEEDPLUS(port_status)) 32 return USB_SPEED_SUPER_PLUS; 33 else if (DEV_SUPERSPEED(port_status)) 34 return USB_SPEED_SUPER; 35 else if (DEV_HIGHSPEED(port_status)) 36 return USB_SPEED_HIGH; 37 else if (DEV_FULLSPEED(port_status)) 38 return USB_SPEED_FULL; 39 40 /* If device is detached then speed will be USB_SPEED_UNKNOWN.*/ 41 return USB_SPEED_UNKNOWN; 42 } 43 44 /* 45 * Given a port state, this function returns a value that would result in the 46 * port being in the same state, if the value was written to the port status 47 * control register. 48 * Save Read Only (RO) bits and save read/write bits where 49 * writing a 0 clears the bit and writing a 1 sets the bit (RWS). 50 * For all other types (RW1S, RW1CS, RW, and RZ), writing a '0' has no effect. 51 */ 52 u32 cdnsp_port_state_to_neutral(u32 state) 53 { 54 /* Save read-only status and port state. */ 55 return (state & CDNSP_PORT_RO) | (state & CDNSP_PORT_RWS); 56 } 57 58 /** 59 * cdnsp_find_next_ext_cap - Find the offset of the extended capabilities 60 * with capability ID id. 61 * @base: PCI MMIO registers base address. 62 * @start: Address at which to start looking, (0 or HCC_PARAMS to start at 63 * beginning of list) 64 * @id: Extended capability ID to search for. 65 * 66 * Returns the offset of the next matching extended capability structure. 67 * Some capabilities can occur several times, 68 * e.g., the EXT_CAPS_PROTOCOL, and this provides a way to find them all. 69 */ 70 int cdnsp_find_next_ext_cap(void __iomem *base, u32 start, int id) 71 { 72 u32 offset = start; 73 u32 next; 74 u32 val; 75 76 if (!start || start == HCC_PARAMS_OFFSET) { 77 val = readl(base + HCC_PARAMS_OFFSET); 78 if (val == ~0) 79 return 0; 80 81 offset = HCC_EXT_CAPS(val) << 2; 82 if (!offset) 83 return 0; 84 } 85 86 do { 87 val = readl(base + offset); 88 if (val == ~0) 89 return 0; 90 91 if (EXT_CAPS_ID(val) == id && offset != start) 92 return offset; 93 94 next = EXT_CAPS_NEXT(val); 95 offset += next << 2; 96 } while (next); 97 98 return 0; 99 } 100 101 void cdnsp_set_link_state(struct cdnsp_device *pdev, 102 __le32 __iomem *port_regs, 103 u32 link_state) 104 { 105 int port_num = 0xFF; 106 u32 temp; 107 108 temp = readl(port_regs); 109 temp = cdnsp_port_state_to_neutral(temp); 110 temp |= PORT_WKCONN_E | PORT_WKDISC_E; 111 writel(temp, port_regs); 112 113 temp &= ~PORT_PLS_MASK; 114 temp |= PORT_LINK_STROBE | link_state; 115 116 if (pdev->active_port) 117 port_num = pdev->active_port->port_num; 118 119 trace_cdnsp_handle_port_status(port_num, readl(port_regs)); 120 writel(temp, port_regs); 121 trace_cdnsp_link_state_changed(port_num, readl(port_regs)); 122 } 123 124 static void cdnsp_disable_port(struct cdnsp_device *pdev, 125 __le32 __iomem *port_regs) 126 { 127 u32 temp = cdnsp_port_state_to_neutral(readl(port_regs)); 128 129 writel(temp | PORT_PED, port_regs); 130 } 131 132 static void cdnsp_clear_port_change_bit(struct cdnsp_device *pdev, 133 __le32 __iomem *port_regs) 134 { 135 u32 portsc = readl(port_regs); 136 137 writel(cdnsp_port_state_to_neutral(portsc) | 138 (portsc & PORT_CHANGE_BITS), port_regs); 139 } 140 141 static void cdnsp_set_chicken_bits_2(struct cdnsp_device *pdev, u32 bit) 142 { 143 __le32 __iomem *reg; 144 void __iomem *base; 145 u32 offset = 0; 146 147 base = &pdev->cap_regs->hc_capbase; 148 offset = cdnsp_find_next_ext_cap(base, offset, D_XEC_PRE_REGS_CAP); 149 reg = base + offset + REG_CHICKEN_BITS_2_OFFSET; 150 151 bit = readl(reg) | bit; 152 writel(bit, reg); 153 } 154 155 static void cdnsp_clear_chicken_bits_2(struct cdnsp_device *pdev, u32 bit) 156 { 157 __le32 __iomem *reg; 158 void __iomem *base; 159 u32 offset = 0; 160 161 base = &pdev->cap_regs->hc_capbase; 162 offset = cdnsp_find_next_ext_cap(base, offset, D_XEC_PRE_REGS_CAP); 163 reg = base + offset + REG_CHICKEN_BITS_2_OFFSET; 164 165 bit = readl(reg) & ~bit; 166 writel(bit, reg); 167 } 168 169 /* 170 * Disable interrupts and begin the controller halting process. 171 */ 172 static void cdnsp_quiesce(struct cdnsp_device *pdev) 173 { 174 u32 halted; 175 u32 mask; 176 u32 cmd; 177 178 mask = ~(u32)(CDNSP_IRQS); 179 180 halted = readl(&pdev->op_regs->status) & STS_HALT; 181 if (!halted) 182 mask &= ~(CMD_R_S | CMD_DEVEN); 183 184 cmd = readl(&pdev->op_regs->command); 185 cmd &= mask; 186 writel(cmd, &pdev->op_regs->command); 187 } 188 189 /* 190 * Force controller into halt state. 191 * 192 * Disable any IRQs and clear the run/stop bit. 193 * Controller will complete any current and actively pipelined transactions, and 194 * should halt within 16 ms of the run/stop bit being cleared. 195 * Read controller Halted bit in the status register to see when the 196 * controller is finished. 197 */ 198 int cdnsp_halt(struct cdnsp_device *pdev) 199 { 200 int ret; 201 u32 val; 202 203 cdnsp_quiesce(pdev); 204 205 ret = readl_poll_timeout_atomic(&pdev->op_regs->status, val, 206 val & STS_HALT, 1, 207 CDNSP_MAX_HALT_USEC); 208 if (ret) { 209 dev_err(pdev->dev, "ERROR: Device halt failed\n"); 210 return ret; 211 } 212 213 pdev->cdnsp_state |= CDNSP_STATE_HALTED; 214 215 return 0; 216 } 217 218 /* 219 * device controller died, register read returns 0xffffffff, or command never 220 * ends. 221 */ 222 void cdnsp_died(struct cdnsp_device *pdev) 223 { 224 dev_err(pdev->dev, "ERROR: CDNSP controller not responding\n"); 225 pdev->cdnsp_state |= CDNSP_STATE_DYING; 226 cdnsp_halt(pdev); 227 } 228 229 /* 230 * Set the run bit and wait for the device to be running. 231 */ 232 static int cdnsp_start(struct cdnsp_device *pdev) 233 { 234 u32 temp; 235 int ret; 236 237 temp = readl(&pdev->op_regs->command); 238 temp |= (CMD_R_S | CMD_DEVEN); 239 writel(temp, &pdev->op_regs->command); 240 241 pdev->cdnsp_state = 0; 242 243 /* 244 * Wait for the STS_HALT Status bit to be 0 to indicate the device is 245 * running. 246 */ 247 ret = readl_poll_timeout_atomic(&pdev->op_regs->status, temp, 248 !(temp & STS_HALT), 1, 249 CDNSP_MAX_HALT_USEC); 250 if (ret) { 251 pdev->cdnsp_state = CDNSP_STATE_DYING; 252 dev_err(pdev->dev, "ERROR: Controller run failed\n"); 253 } 254 255 return ret; 256 } 257 258 /* 259 * Reset a halted controller. 260 * 261 * This resets pipelines, timers, counters, state machines, etc. 262 * Transactions will be terminated immediately, and operational registers 263 * will be set to their defaults. 264 */ 265 int cdnsp_reset(struct cdnsp_device *pdev) 266 { 267 u32 command; 268 u32 temp; 269 int ret; 270 271 temp = readl(&pdev->op_regs->status); 272 273 if (temp == ~(u32)0) { 274 dev_err(pdev->dev, "Device not accessible, reset failed.\n"); 275 return -ENODEV; 276 } 277 278 if ((temp & STS_HALT) == 0) { 279 dev_err(pdev->dev, "Controller not halted, aborting reset.\n"); 280 return -EINVAL; 281 } 282 283 command = readl(&pdev->op_regs->command); 284 command |= CMD_RESET; 285 writel(command, &pdev->op_regs->command); 286 287 ret = readl_poll_timeout_atomic(&pdev->op_regs->command, temp, 288 !(temp & CMD_RESET), 1, 289 10 * 1000); 290 if (ret) { 291 dev_err(pdev->dev, "ERROR: Controller reset failed\n"); 292 return ret; 293 } 294 295 /* 296 * CDNSP cannot write any doorbells or operational registers other 297 * than status until the "Controller Not Ready" flag is cleared. 298 */ 299 ret = readl_poll_timeout_atomic(&pdev->op_regs->status, temp, 300 !(temp & STS_CNR), 1, 301 10 * 1000); 302 303 if (ret) { 304 dev_err(pdev->dev, "ERROR: Controller not ready to work\n"); 305 return ret; 306 } 307 308 dev_dbg(pdev->dev, "Controller ready to work"); 309 310 return ret; 311 } 312 313 /* 314 * cdnsp_get_endpoint_index - Find the index for an endpoint given its 315 * descriptor.Use the return value to right shift 1 for the bitmask. 316 * 317 * Index = (epnum * 2) + direction - 1, 318 * where direction = 0 for OUT, 1 for IN. 319 * For control endpoints, the IN index is used (OUT index is unused), so 320 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2) 321 */ 322 static unsigned int 323 cdnsp_get_endpoint_index(const struct usb_endpoint_descriptor *desc) 324 { 325 unsigned int index = (unsigned int)usb_endpoint_num(desc); 326 327 if (usb_endpoint_xfer_control(desc)) 328 return index * 2; 329 330 return (index * 2) + (usb_endpoint_dir_in(desc) ? 1 : 0) - 1; 331 } 332 333 /* 334 * Find the flag for this endpoint (for use in the control context). Use the 335 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is 336 * bit 1, etc. 337 */ 338 static unsigned int 339 cdnsp_get_endpoint_flag(const struct usb_endpoint_descriptor *desc) 340 { 341 return 1 << (cdnsp_get_endpoint_index(desc) + 1); 342 } 343 344 int cdnsp_ep_enqueue(struct cdnsp_ep *pep, struct cdnsp_request *preq) 345 { 346 struct cdnsp_device *pdev = pep->pdev; 347 struct usb_request *request; 348 int ret; 349 350 if (preq->epnum == 0 && !list_empty(&pep->pending_list)) { 351 trace_cdnsp_request_enqueue_busy(preq); 352 return -EBUSY; 353 } 354 355 request = &preq->request; 356 request->actual = 0; 357 request->status = -EINPROGRESS; 358 preq->direction = pep->direction; 359 preq->epnum = pep->number; 360 preq->td.drbl = 0; 361 362 ret = usb_gadget_map_request_by_dev(pdev->dev, request, pep->direction); 363 if (ret) { 364 trace_cdnsp_request_enqueue_error(preq); 365 return ret; 366 } 367 368 list_add_tail(&preq->list, &pep->pending_list); 369 370 trace_cdnsp_request_enqueue(preq); 371 372 switch (usb_endpoint_type(pep->endpoint.desc)) { 373 case USB_ENDPOINT_XFER_CONTROL: 374 ret = cdnsp_queue_ctrl_tx(pdev, preq); 375 break; 376 case USB_ENDPOINT_XFER_BULK: 377 case USB_ENDPOINT_XFER_INT: 378 ret = cdnsp_queue_bulk_tx(pdev, preq); 379 break; 380 case USB_ENDPOINT_XFER_ISOC: 381 ret = cdnsp_queue_isoc_tx(pdev, preq); 382 } 383 384 if (ret) 385 goto unmap; 386 387 return 0; 388 389 unmap: 390 usb_gadget_unmap_request_by_dev(pdev->dev, &preq->request, 391 pep->direction); 392 list_del(&preq->list); 393 trace_cdnsp_request_enqueue_error(preq); 394 395 return ret; 396 } 397 398 /* 399 * Remove the request's TD from the endpoint ring. This may cause the 400 * controller to stop USB transfers, potentially stopping in the middle of a 401 * TRB buffer. The controller should pick up where it left off in the TD, 402 * unless a Set Transfer Ring Dequeue Pointer is issued. 403 * 404 * The TRBs that make up the buffers for the canceled request will be "removed" 405 * from the ring. Since the ring is a contiguous structure, they can't be 406 * physically removed. Instead, there are two options: 407 * 408 * 1) If the controller is in the middle of processing the request to be 409 * canceled, we simply move the ring's dequeue pointer past those TRBs 410 * using the Set Transfer Ring Dequeue Pointer command. This will be 411 * the common case, when drivers timeout on the last submitted request 412 * and attempt to cancel. 413 * 414 * 2) If the controller is in the middle of a different TD, we turn the TRBs 415 * into a series of 1-TRB transfer no-op TDs. No-ops shouldn't be chained. 416 * The controller will need to invalidate the any TRBs it has cached after 417 * the stop endpoint command. 418 * 419 * 3) The TD may have completed by the time the Stop Endpoint Command 420 * completes, so software needs to handle that case too. 421 * 422 */ 423 int cdnsp_ep_dequeue(struct cdnsp_ep *pep, struct cdnsp_request *preq) 424 { 425 struct cdnsp_device *pdev = pep->pdev; 426 int ret_stop = 0; 427 int ret_rem; 428 429 trace_cdnsp_request_dequeue(preq); 430 431 if (GET_EP_CTX_STATE(pep->out_ctx) == EP_STATE_RUNNING) 432 ret_stop = cdnsp_cmd_stop_ep(pdev, pep); 433 434 ret_rem = cdnsp_remove_request(pdev, preq, pep); 435 436 return ret_rem ? ret_rem : ret_stop; 437 } 438 439 static void cdnsp_zero_in_ctx(struct cdnsp_device *pdev) 440 { 441 struct cdnsp_input_control_ctx *ctrl_ctx; 442 struct cdnsp_slot_ctx *slot_ctx; 443 struct cdnsp_ep_ctx *ep_ctx; 444 int i; 445 446 ctrl_ctx = cdnsp_get_input_control_ctx(&pdev->in_ctx); 447 448 /* 449 * When a device's add flag and drop flag are zero, any subsequent 450 * configure endpoint command will leave that endpoint's state 451 * untouched. Make sure we don't leave any old state in the input 452 * endpoint contexts. 453 */ 454 ctrl_ctx->drop_flags = 0; 455 ctrl_ctx->add_flags = 0; 456 slot_ctx = cdnsp_get_slot_ctx(&pdev->in_ctx); 457 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 458 459 /* Endpoint 0 is always valid */ 460 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1)); 461 for (i = 1; i < CDNSP_ENDPOINTS_NUM; ++i) { 462 ep_ctx = cdnsp_get_ep_ctx(&pdev->in_ctx, i); 463 ep_ctx->ep_info = 0; 464 ep_ctx->ep_info2 = 0; 465 ep_ctx->deq = 0; 466 ep_ctx->tx_info = 0; 467 } 468 } 469 470 /* Issue a configure endpoint command and wait for it to finish. */ 471 static int cdnsp_configure_endpoint(struct cdnsp_device *pdev) 472 { 473 int ret; 474 475 cdnsp_queue_configure_endpoint(pdev, pdev->cmd.in_ctx->dma); 476 cdnsp_ring_cmd_db(pdev); 477 ret = cdnsp_wait_for_cmd_compl(pdev); 478 if (ret) { 479 dev_err(pdev->dev, 480 "ERR: unexpected command completion code 0x%x.\n", ret); 481 return -EINVAL; 482 } 483 484 return ret; 485 } 486 487 static void cdnsp_invalidate_ep_events(struct cdnsp_device *pdev, 488 struct cdnsp_ep *pep) 489 { 490 struct cdnsp_segment *segment; 491 union cdnsp_trb *event; 492 u32 cycle_state; 493 u32 data; 494 495 event = pdev->event_ring->dequeue; 496 segment = pdev->event_ring->deq_seg; 497 cycle_state = pdev->event_ring->cycle_state; 498 499 while (1) { 500 data = le32_to_cpu(event->trans_event.flags); 501 502 /* Check the owner of the TRB. */ 503 if ((data & TRB_CYCLE) != cycle_state) 504 break; 505 506 if (TRB_FIELD_TO_TYPE(data) == TRB_TRANSFER && 507 TRB_TO_EP_ID(data) == (pep->idx + 1)) { 508 data |= TRB_EVENT_INVALIDATE; 509 event->trans_event.flags = cpu_to_le32(data); 510 } 511 512 if (cdnsp_last_trb_on_seg(segment, event)) { 513 cycle_state ^= 1; 514 segment = pdev->event_ring->deq_seg->next; 515 event = segment->trbs; 516 } else { 517 event++; 518 } 519 } 520 } 521 522 int cdnsp_wait_for_cmd_compl(struct cdnsp_device *pdev) 523 { 524 struct cdnsp_segment *event_deq_seg; 525 union cdnsp_trb *cmd_trb; 526 dma_addr_t cmd_deq_dma; 527 union cdnsp_trb *event; 528 u32 cycle_state; 529 int ret, val; 530 u64 cmd_dma; 531 u32 flags; 532 533 cmd_trb = pdev->cmd.command_trb; 534 pdev->cmd.status = 0; 535 536 trace_cdnsp_cmd_wait_for_compl(pdev->cmd_ring, &cmd_trb->generic); 537 538 ret = readl_poll_timeout_atomic(&pdev->op_regs->cmd_ring, val, 539 !CMD_RING_BUSY(val), 1, 540 CDNSP_CMD_TIMEOUT); 541 if (ret) { 542 dev_err(pdev->dev, "ERR: Timeout while waiting for command\n"); 543 trace_cdnsp_cmd_timeout(pdev->cmd_ring, &cmd_trb->generic); 544 pdev->cdnsp_state = CDNSP_STATE_DYING; 545 return -ETIMEDOUT; 546 } 547 548 event = pdev->event_ring->dequeue; 549 event_deq_seg = pdev->event_ring->deq_seg; 550 cycle_state = pdev->event_ring->cycle_state; 551 552 cmd_deq_dma = cdnsp_trb_virt_to_dma(pdev->cmd_ring->deq_seg, cmd_trb); 553 if (!cmd_deq_dma) 554 return -EINVAL; 555 556 while (1) { 557 flags = le32_to_cpu(event->event_cmd.flags); 558 559 /* Check the owner of the TRB. */ 560 if ((flags & TRB_CYCLE) != cycle_state) 561 return -EINVAL; 562 563 cmd_dma = le64_to_cpu(event->event_cmd.cmd_trb); 564 565 /* 566 * Check whether the completion event is for last queued 567 * command. 568 */ 569 if (TRB_FIELD_TO_TYPE(flags) != TRB_COMPLETION || 570 cmd_dma != (u64)cmd_deq_dma) { 571 if (!cdnsp_last_trb_on_seg(event_deq_seg, event)) { 572 event++; 573 continue; 574 } 575 576 if (cdnsp_last_trb_on_ring(pdev->event_ring, 577 event_deq_seg, event)) 578 cycle_state ^= 1; 579 580 event_deq_seg = event_deq_seg->next; 581 event = event_deq_seg->trbs; 582 continue; 583 } 584 585 trace_cdnsp_handle_command(pdev->cmd_ring, &cmd_trb->generic); 586 587 pdev->cmd.status = GET_COMP_CODE(le32_to_cpu(event->event_cmd.status)); 588 if (pdev->cmd.status == COMP_SUCCESS) 589 return 0; 590 591 return -pdev->cmd.status; 592 } 593 } 594 595 int cdnsp_halt_endpoint(struct cdnsp_device *pdev, 596 struct cdnsp_ep *pep, 597 int value) 598 { 599 int ret; 600 601 trace_cdnsp_ep_halt(value ? "Set" : "Clear"); 602 603 ret = cdnsp_cmd_stop_ep(pdev, pep); 604 if (ret) 605 return ret; 606 607 if (value) { 608 if (GET_EP_CTX_STATE(pep->out_ctx) == EP_STATE_STOPPED) { 609 cdnsp_queue_halt_endpoint(pdev, pep->idx); 610 cdnsp_ring_cmd_db(pdev); 611 ret = cdnsp_wait_for_cmd_compl(pdev); 612 } 613 614 pep->ep_state |= EP_HALTED; 615 } else { 616 cdnsp_queue_reset_ep(pdev, pep->idx); 617 cdnsp_ring_cmd_db(pdev); 618 ret = cdnsp_wait_for_cmd_compl(pdev); 619 trace_cdnsp_handle_cmd_reset_ep(pep->out_ctx); 620 621 if (ret) 622 return ret; 623 624 pep->ep_state &= ~EP_HALTED; 625 626 if (pep->idx != 0 && !(pep->ep_state & EP_WEDGE)) 627 cdnsp_ring_doorbell_for_active_rings(pdev, pep); 628 629 pep->ep_state &= ~EP_WEDGE; 630 } 631 632 return 0; 633 } 634 635 static int cdnsp_update_eps_configuration(struct cdnsp_device *pdev, 636 struct cdnsp_ep *pep) 637 { 638 struct cdnsp_input_control_ctx *ctrl_ctx; 639 struct cdnsp_slot_ctx *slot_ctx; 640 int ret = 0; 641 u32 ep_sts; 642 int i; 643 644 ctrl_ctx = cdnsp_get_input_control_ctx(&pdev->in_ctx); 645 646 /* Don't issue the command if there's no endpoints to update. */ 647 if (ctrl_ctx->add_flags == 0 && ctrl_ctx->drop_flags == 0) 648 return 0; 649 650 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 651 ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG); 652 ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG)); 653 654 /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */ 655 slot_ctx = cdnsp_get_slot_ctx(&pdev->in_ctx); 656 for (i = CDNSP_ENDPOINTS_NUM; i >= 1; i--) { 657 __le32 le32 = cpu_to_le32(BIT(i)); 658 659 if ((pdev->eps[i - 1].ring && !(ctrl_ctx->drop_flags & le32)) || 660 (ctrl_ctx->add_flags & le32) || i == 1) { 661 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 662 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i)); 663 break; 664 } 665 } 666 667 ep_sts = GET_EP_CTX_STATE(pep->out_ctx); 668 669 if ((ctrl_ctx->add_flags != cpu_to_le32(SLOT_FLAG) && 670 ep_sts == EP_STATE_DISABLED) || 671 (ep_sts != EP_STATE_DISABLED && ctrl_ctx->drop_flags)) 672 ret = cdnsp_configure_endpoint(pdev); 673 674 trace_cdnsp_configure_endpoint(cdnsp_get_slot_ctx(&pdev->out_ctx)); 675 trace_cdnsp_handle_cmd_config_ep(pep->out_ctx); 676 677 cdnsp_zero_in_ctx(pdev); 678 679 return ret; 680 } 681 682 /* 683 * This submits a Reset Device Command, which will set the device state to 0, 684 * set the device address to 0, and disable all the endpoints except the default 685 * control endpoint. The USB core should come back and call 686 * cdnsp_setup_device(), and then re-set up the configuration. 687 */ 688 int cdnsp_reset_device(struct cdnsp_device *pdev) 689 { 690 struct cdnsp_slot_ctx *slot_ctx; 691 int slot_state; 692 int ret, i; 693 694 slot_ctx = cdnsp_get_slot_ctx(&pdev->in_ctx); 695 slot_ctx->dev_info = 0; 696 pdev->device_address = 0; 697 698 /* If device is not setup, there is no point in resetting it. */ 699 slot_ctx = cdnsp_get_slot_ctx(&pdev->out_ctx); 700 slot_state = GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)); 701 trace_cdnsp_reset_device(slot_ctx); 702 703 if (slot_state <= SLOT_STATE_DEFAULT && 704 pdev->eps[0].ep_state & EP_HALTED) { 705 cdnsp_halt_endpoint(pdev, &pdev->eps[0], 0); 706 } 707 708 /* 709 * During Reset Device command controller shall transition the 710 * endpoint ep0 to the Running State. 711 */ 712 pdev->eps[0].ep_state &= ~(EP_STOPPED | EP_HALTED); 713 pdev->eps[0].ep_state |= EP_ENABLED; 714 715 if (slot_state <= SLOT_STATE_DEFAULT) 716 return 0; 717 718 cdnsp_queue_reset_device(pdev); 719 cdnsp_ring_cmd_db(pdev); 720 ret = cdnsp_wait_for_cmd_compl(pdev); 721 722 /* 723 * After Reset Device command all not default endpoints 724 * are in Disabled state. 725 */ 726 for (i = 1; i < CDNSP_ENDPOINTS_NUM; ++i) 727 pdev->eps[i].ep_state |= EP_STOPPED | EP_UNCONFIGURED; 728 729 trace_cdnsp_handle_cmd_reset_dev(slot_ctx); 730 731 if (ret) 732 dev_err(pdev->dev, "Reset device failed with error code %d", 733 ret); 734 735 return ret; 736 } 737 738 /* 739 * Sets the MaxPStreams field and the Linear Stream Array field. 740 * Sets the dequeue pointer to the stream context array. 741 */ 742 static void cdnsp_setup_streams_ep_input_ctx(struct cdnsp_device *pdev, 743 struct cdnsp_ep_ctx *ep_ctx, 744 struct cdnsp_stream_info *stream_info) 745 { 746 u32 max_primary_streams; 747 748 /* MaxPStreams is the number of stream context array entries, not the 749 * number we're actually using. Must be in 2^(MaxPstreams + 1) format. 750 * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc. 751 */ 752 max_primary_streams = fls(stream_info->num_stream_ctxs) - 2; 753 ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK); 754 ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams) 755 | EP_HAS_LSA); 756 ep_ctx->deq = cpu_to_le64(stream_info->ctx_array_dma); 757 } 758 759 /* 760 * The drivers use this function to prepare a bulk endpoints to use streams. 761 * 762 * Don't allow the call to succeed if endpoint only supports one stream 763 * (which means it doesn't support streams at all). 764 */ 765 int cdnsp_alloc_streams(struct cdnsp_device *pdev, struct cdnsp_ep *pep) 766 { 767 unsigned int num_streams = usb_ss_max_streams(pep->endpoint.comp_desc); 768 unsigned int num_stream_ctxs; 769 int ret; 770 771 if (num_streams == 0) 772 return 0; 773 774 if (num_streams > STREAM_NUM_STREAMS) 775 return -EINVAL; 776 777 /* 778 * Add two to the number of streams requested to account for 779 * stream 0 that is reserved for controller usage and one additional 780 * for TASK SET FULL response. 781 */ 782 num_streams += 2; 783 784 /* The stream context array size must be a power of two */ 785 num_stream_ctxs = roundup_pow_of_two(num_streams); 786 787 trace_cdnsp_stream_number(pep, num_stream_ctxs, num_streams); 788 789 ret = cdnsp_alloc_stream_info(pdev, pep, num_stream_ctxs, num_streams); 790 if (ret) 791 return ret; 792 793 cdnsp_setup_streams_ep_input_ctx(pdev, pep->in_ctx, &pep->stream_info); 794 795 pep->ep_state |= EP_HAS_STREAMS; 796 pep->stream_info.td_count = 0; 797 pep->stream_info.first_prime_det = 0; 798 799 /* Subtract 1 for stream 0, which drivers can't use. */ 800 return num_streams - 1; 801 } 802 803 int cdnsp_disable_slot(struct cdnsp_device *pdev) 804 { 805 int ret; 806 807 cdnsp_queue_slot_control(pdev, TRB_DISABLE_SLOT); 808 cdnsp_ring_cmd_db(pdev); 809 ret = cdnsp_wait_for_cmd_compl(pdev); 810 811 pdev->slot_id = 0; 812 pdev->active_port = NULL; 813 814 trace_cdnsp_handle_cmd_disable_slot(cdnsp_get_slot_ctx(&pdev->out_ctx)); 815 816 memset(pdev->in_ctx.bytes, 0, CDNSP_CTX_SIZE); 817 memset(pdev->out_ctx.bytes, 0, CDNSP_CTX_SIZE); 818 819 return ret; 820 } 821 822 int cdnsp_enable_slot(struct cdnsp_device *pdev) 823 { 824 struct cdnsp_slot_ctx *slot_ctx; 825 int slot_state; 826 int ret; 827 828 /* If device is not setup, there is no point in resetting it */ 829 slot_ctx = cdnsp_get_slot_ctx(&pdev->out_ctx); 830 slot_state = GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)); 831 832 if (slot_state != SLOT_STATE_DISABLED) 833 return 0; 834 835 cdnsp_queue_slot_control(pdev, TRB_ENABLE_SLOT); 836 cdnsp_ring_cmd_db(pdev); 837 ret = cdnsp_wait_for_cmd_compl(pdev); 838 if (ret) 839 goto show_trace; 840 841 pdev->slot_id = 1; 842 843 show_trace: 844 trace_cdnsp_handle_cmd_enable_slot(cdnsp_get_slot_ctx(&pdev->out_ctx)); 845 846 return ret; 847 } 848 849 /* 850 * Issue an Address Device command with BSR=0 if setup is SETUP_CONTEXT_ONLY 851 * or with BSR = 1 if set_address is SETUP_CONTEXT_ADDRESS. 852 */ 853 int cdnsp_setup_device(struct cdnsp_device *pdev, enum cdnsp_setup_dev setup) 854 { 855 struct cdnsp_input_control_ctx *ctrl_ctx; 856 struct cdnsp_slot_ctx *slot_ctx; 857 int dev_state = 0; 858 int ret; 859 860 if (!pdev->slot_id) { 861 trace_cdnsp_slot_id("incorrect"); 862 return -EINVAL; 863 } 864 865 if (!pdev->active_port->port_num) 866 return -EINVAL; 867 868 slot_ctx = cdnsp_get_slot_ctx(&pdev->out_ctx); 869 dev_state = GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)); 870 871 if (setup == SETUP_CONTEXT_ONLY && dev_state == SLOT_STATE_DEFAULT) { 872 trace_cdnsp_slot_already_in_default(slot_ctx); 873 return 0; 874 } 875 876 slot_ctx = cdnsp_get_slot_ctx(&pdev->in_ctx); 877 ctrl_ctx = cdnsp_get_input_control_ctx(&pdev->in_ctx); 878 879 if (!slot_ctx->dev_info || dev_state == SLOT_STATE_DEFAULT) { 880 ret = cdnsp_setup_addressable_priv_dev(pdev); 881 if (ret) 882 return ret; 883 } 884 885 cdnsp_copy_ep0_dequeue_into_input_ctx(pdev); 886 887 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG); 888 ctrl_ctx->drop_flags = 0; 889 890 trace_cdnsp_setup_device_slot(slot_ctx); 891 892 cdnsp_queue_address_device(pdev, pdev->in_ctx.dma, setup); 893 cdnsp_ring_cmd_db(pdev); 894 ret = cdnsp_wait_for_cmd_compl(pdev); 895 896 trace_cdnsp_handle_cmd_addr_dev(cdnsp_get_slot_ctx(&pdev->out_ctx)); 897 898 /* Zero the input context control for later use. */ 899 ctrl_ctx->add_flags = 0; 900 ctrl_ctx->drop_flags = 0; 901 902 return ret; 903 } 904 905 void cdnsp_set_usb2_hardware_lpm(struct cdnsp_device *pdev, 906 struct usb_request *req, 907 int enable) 908 { 909 if (pdev->active_port != &pdev->usb2_port || !pdev->gadget.lpm_capable) 910 return; 911 912 trace_cdnsp_lpm(enable); 913 914 if (enable) 915 writel(PORT_BESL(CDNSP_DEFAULT_BESL) | PORT_L1S_NYET | PORT_HLE, 916 &pdev->active_port->regs->portpmsc); 917 else 918 writel(PORT_L1S_NYET, &pdev->active_port->regs->portpmsc); 919 } 920 921 static int cdnsp_get_frame(struct cdnsp_device *pdev) 922 { 923 return readl(&pdev->run_regs->microframe_index) >> 3; 924 } 925 926 static int cdnsp_gadget_ep_enable(struct usb_ep *ep, 927 const struct usb_endpoint_descriptor *desc) 928 { 929 struct cdnsp_input_control_ctx *ctrl_ctx; 930 struct cdnsp_device *pdev; 931 struct cdnsp_ep *pep; 932 unsigned long flags; 933 u32 added_ctxs; 934 int ret; 935 936 if (!ep || !desc || desc->bDescriptorType != USB_DT_ENDPOINT || 937 !desc->wMaxPacketSize) 938 return -EINVAL; 939 940 pep = to_cdnsp_ep(ep); 941 pdev = pep->pdev; 942 pep->ep_state &= ~EP_UNCONFIGURED; 943 944 if (dev_WARN_ONCE(pdev->dev, pep->ep_state & EP_ENABLED, 945 "%s is already enabled\n", pep->name)) 946 return 0; 947 948 spin_lock_irqsave(&pdev->lock, flags); 949 950 added_ctxs = cdnsp_get_endpoint_flag(desc); 951 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) { 952 dev_err(pdev->dev, "ERROR: Bad endpoint number\n"); 953 ret = -EINVAL; 954 goto unlock; 955 } 956 957 pep->interval = desc->bInterval ? BIT(desc->bInterval - 1) : 0; 958 959 if (pdev->gadget.speed == USB_SPEED_FULL) { 960 if (usb_endpoint_type(desc) == USB_ENDPOINT_XFER_INT) 961 pep->interval = desc->bInterval << 3; 962 if (usb_endpoint_type(desc) == USB_ENDPOINT_XFER_ISOC) 963 pep->interval = BIT(desc->bInterval - 1) << 3; 964 } 965 966 if (usb_endpoint_type(desc) == USB_ENDPOINT_XFER_ISOC) { 967 if (pep->interval > BIT(12)) { 968 dev_err(pdev->dev, "bInterval %d not supported\n", 969 desc->bInterval); 970 ret = -EINVAL; 971 goto unlock; 972 } 973 cdnsp_set_chicken_bits_2(pdev, CHICKEN_XDMA_2_TP_CACHE_DIS); 974 } 975 976 ret = cdnsp_endpoint_init(pdev, pep, GFP_ATOMIC); 977 if (ret) 978 goto unlock; 979 980 ctrl_ctx = cdnsp_get_input_control_ctx(&pdev->in_ctx); 981 ctrl_ctx->add_flags = cpu_to_le32(added_ctxs); 982 ctrl_ctx->drop_flags = 0; 983 984 ret = cdnsp_update_eps_configuration(pdev, pep); 985 if (ret) { 986 cdnsp_free_endpoint_rings(pdev, pep); 987 goto unlock; 988 } 989 990 pep->ep_state |= EP_ENABLED; 991 pep->ep_state &= ~EP_STOPPED; 992 993 unlock: 994 trace_cdnsp_ep_enable_end(pep, 0); 995 spin_unlock_irqrestore(&pdev->lock, flags); 996 997 return ret; 998 } 999 1000 static int cdnsp_gadget_ep_disable(struct usb_ep *ep) 1001 { 1002 struct cdnsp_input_control_ctx *ctrl_ctx; 1003 struct cdnsp_request *preq; 1004 struct cdnsp_device *pdev; 1005 struct cdnsp_ep *pep; 1006 unsigned long flags; 1007 u32 drop_flag; 1008 int ret = 0; 1009 1010 if (!ep) 1011 return -EINVAL; 1012 1013 pep = to_cdnsp_ep(ep); 1014 pdev = pep->pdev; 1015 1016 spin_lock_irqsave(&pdev->lock, flags); 1017 1018 if (!(pep->ep_state & EP_ENABLED)) { 1019 dev_err(pdev->dev, "%s is already disabled\n", pep->name); 1020 ret = -EINVAL; 1021 goto finish; 1022 } 1023 1024 pep->ep_state |= EP_DIS_IN_RROGRESS; 1025 1026 /* Endpoint was unconfigured by Reset Device command. */ 1027 if (!(pep->ep_state & EP_UNCONFIGURED)) { 1028 cdnsp_cmd_stop_ep(pdev, pep); 1029 cdnsp_cmd_flush_ep(pdev, pep); 1030 } 1031 1032 /* Remove all queued USB requests. */ 1033 while (!list_empty(&pep->pending_list)) { 1034 preq = next_request(&pep->pending_list); 1035 cdnsp_ep_dequeue(pep, preq); 1036 } 1037 1038 cdnsp_invalidate_ep_events(pdev, pep); 1039 1040 pep->ep_state &= ~EP_DIS_IN_RROGRESS; 1041 drop_flag = cdnsp_get_endpoint_flag(pep->endpoint.desc); 1042 ctrl_ctx = cdnsp_get_input_control_ctx(&pdev->in_ctx); 1043 ctrl_ctx->drop_flags = cpu_to_le32(drop_flag); 1044 ctrl_ctx->add_flags = 0; 1045 1046 cdnsp_endpoint_zero(pdev, pep); 1047 1048 if (!(pep->ep_state & EP_UNCONFIGURED)) 1049 ret = cdnsp_update_eps_configuration(pdev, pep); 1050 1051 cdnsp_free_endpoint_rings(pdev, pep); 1052 1053 pep->ep_state &= ~(EP_ENABLED | EP_UNCONFIGURED); 1054 pep->ep_state |= EP_STOPPED; 1055 1056 finish: 1057 trace_cdnsp_ep_disable_end(pep, 0); 1058 spin_unlock_irqrestore(&pdev->lock, flags); 1059 1060 return ret; 1061 } 1062 1063 static struct usb_request *cdnsp_gadget_ep_alloc_request(struct usb_ep *ep, 1064 gfp_t gfp_flags) 1065 { 1066 struct cdnsp_ep *pep = to_cdnsp_ep(ep); 1067 struct cdnsp_request *preq; 1068 1069 preq = kzalloc(sizeof(*preq), gfp_flags); 1070 if (!preq) 1071 return NULL; 1072 1073 preq->epnum = pep->number; 1074 preq->pep = pep; 1075 1076 trace_cdnsp_alloc_request(preq); 1077 1078 return &preq->request; 1079 } 1080 1081 static void cdnsp_gadget_ep_free_request(struct usb_ep *ep, 1082 struct usb_request *request) 1083 { 1084 struct cdnsp_request *preq = to_cdnsp_request(request); 1085 1086 trace_cdnsp_free_request(preq); 1087 kfree(preq); 1088 } 1089 1090 static int cdnsp_gadget_ep_queue(struct usb_ep *ep, 1091 struct usb_request *request, 1092 gfp_t gfp_flags) 1093 { 1094 struct cdnsp_request *preq; 1095 struct cdnsp_device *pdev; 1096 struct cdnsp_ep *pep; 1097 unsigned long flags; 1098 int ret; 1099 1100 if (!request || !ep) 1101 return -EINVAL; 1102 1103 pep = to_cdnsp_ep(ep); 1104 pdev = pep->pdev; 1105 1106 if (!(pep->ep_state & EP_ENABLED)) { 1107 dev_err(pdev->dev, "%s: can't queue to disabled endpoint\n", 1108 pep->name); 1109 return -EINVAL; 1110 } 1111 1112 preq = to_cdnsp_request(request); 1113 spin_lock_irqsave(&pdev->lock, flags); 1114 ret = cdnsp_ep_enqueue(pep, preq); 1115 spin_unlock_irqrestore(&pdev->lock, flags); 1116 1117 return ret; 1118 } 1119 1120 static int cdnsp_gadget_ep_dequeue(struct usb_ep *ep, 1121 struct usb_request *request) 1122 { 1123 struct cdnsp_ep *pep = to_cdnsp_ep(ep); 1124 struct cdnsp_device *pdev = pep->pdev; 1125 unsigned long flags; 1126 int ret; 1127 1128 if (!pep->endpoint.desc) { 1129 dev_err(pdev->dev, 1130 "%s: can't dequeue to disabled endpoint\n", 1131 pep->name); 1132 return -ESHUTDOWN; 1133 } 1134 1135 /* Requests has been dequeued during disabling endpoint. */ 1136 if (!(pep->ep_state & EP_ENABLED)) 1137 return 0; 1138 1139 spin_lock_irqsave(&pdev->lock, flags); 1140 ret = cdnsp_ep_dequeue(pep, to_cdnsp_request(request)); 1141 spin_unlock_irqrestore(&pdev->lock, flags); 1142 1143 return ret; 1144 } 1145 1146 static int cdnsp_gadget_ep_set_halt(struct usb_ep *ep, int value) 1147 { 1148 struct cdnsp_ep *pep = to_cdnsp_ep(ep); 1149 struct cdnsp_device *pdev = pep->pdev; 1150 struct cdnsp_request *preq; 1151 unsigned long flags; 1152 int ret; 1153 1154 spin_lock_irqsave(&pdev->lock, flags); 1155 1156 preq = next_request(&pep->pending_list); 1157 if (value) { 1158 if (preq) { 1159 trace_cdnsp_ep_busy_try_halt_again(pep, 0); 1160 ret = -EAGAIN; 1161 goto done; 1162 } 1163 } 1164 1165 ret = cdnsp_halt_endpoint(pdev, pep, value); 1166 1167 done: 1168 spin_unlock_irqrestore(&pdev->lock, flags); 1169 return ret; 1170 } 1171 1172 static int cdnsp_gadget_ep_set_wedge(struct usb_ep *ep) 1173 { 1174 struct cdnsp_ep *pep = to_cdnsp_ep(ep); 1175 struct cdnsp_device *pdev = pep->pdev; 1176 unsigned long flags; 1177 int ret; 1178 1179 spin_lock_irqsave(&pdev->lock, flags); 1180 pep->ep_state |= EP_WEDGE; 1181 ret = cdnsp_halt_endpoint(pdev, pep, 1); 1182 spin_unlock_irqrestore(&pdev->lock, flags); 1183 1184 return ret; 1185 } 1186 1187 static const struct usb_ep_ops cdnsp_gadget_ep0_ops = { 1188 .enable = cdnsp_gadget_ep_enable, 1189 .disable = cdnsp_gadget_ep_disable, 1190 .alloc_request = cdnsp_gadget_ep_alloc_request, 1191 .free_request = cdnsp_gadget_ep_free_request, 1192 .queue = cdnsp_gadget_ep_queue, 1193 .dequeue = cdnsp_gadget_ep_dequeue, 1194 .set_halt = cdnsp_gadget_ep_set_halt, 1195 .set_wedge = cdnsp_gadget_ep_set_wedge, 1196 }; 1197 1198 static const struct usb_ep_ops cdnsp_gadget_ep_ops = { 1199 .enable = cdnsp_gadget_ep_enable, 1200 .disable = cdnsp_gadget_ep_disable, 1201 .alloc_request = cdnsp_gadget_ep_alloc_request, 1202 .free_request = cdnsp_gadget_ep_free_request, 1203 .queue = cdnsp_gadget_ep_queue, 1204 .dequeue = cdnsp_gadget_ep_dequeue, 1205 .set_halt = cdnsp_gadget_ep_set_halt, 1206 .set_wedge = cdnsp_gadget_ep_set_wedge, 1207 }; 1208 1209 void cdnsp_gadget_giveback(struct cdnsp_ep *pep, 1210 struct cdnsp_request *preq, 1211 int status) 1212 { 1213 struct cdnsp_device *pdev = pep->pdev; 1214 1215 list_del(&preq->list); 1216 1217 if (preq->request.status == -EINPROGRESS) 1218 preq->request.status = status; 1219 1220 usb_gadget_unmap_request_by_dev(pdev->dev, &preq->request, 1221 preq->direction); 1222 1223 trace_cdnsp_request_giveback(preq); 1224 1225 if (preq != &pdev->ep0_preq) { 1226 spin_unlock(&pdev->lock); 1227 usb_gadget_giveback_request(&pep->endpoint, &preq->request); 1228 spin_lock(&pdev->lock); 1229 } 1230 } 1231 1232 static struct usb_endpoint_descriptor cdnsp_gadget_ep0_desc = { 1233 .bLength = USB_DT_ENDPOINT_SIZE, 1234 .bDescriptorType = USB_DT_ENDPOINT, 1235 .bmAttributes = USB_ENDPOINT_XFER_CONTROL, 1236 }; 1237 1238 static int cdnsp_run(struct cdnsp_device *pdev, 1239 enum usb_device_speed speed) 1240 { 1241 u32 fs_speed = 0; 1242 u32 temp; 1243 int ret; 1244 1245 temp = readl(&pdev->ir_set->irq_control); 1246 temp &= ~IMOD_INTERVAL_MASK; 1247 temp |= ((IMOD_DEFAULT_INTERVAL / 250) & IMOD_INTERVAL_MASK); 1248 writel(temp, &pdev->ir_set->irq_control); 1249 1250 temp = readl(&pdev->port3x_regs->mode_addr); 1251 1252 switch (speed) { 1253 case USB_SPEED_SUPER_PLUS: 1254 temp |= CFG_3XPORT_SSP_SUPPORT; 1255 break; 1256 case USB_SPEED_SUPER: 1257 temp &= ~CFG_3XPORT_SSP_SUPPORT; 1258 break; 1259 case USB_SPEED_HIGH: 1260 break; 1261 case USB_SPEED_FULL: 1262 fs_speed = PORT_REG6_FORCE_FS; 1263 break; 1264 default: 1265 dev_err(pdev->dev, "invalid maximum_speed parameter %d\n", 1266 speed); 1267 fallthrough; 1268 case USB_SPEED_UNKNOWN: 1269 /* Default to superspeed. */ 1270 speed = USB_SPEED_SUPER; 1271 break; 1272 } 1273 1274 if (speed >= USB_SPEED_SUPER) { 1275 writel(temp, &pdev->port3x_regs->mode_addr); 1276 cdnsp_set_link_state(pdev, &pdev->usb3_port.regs->portsc, 1277 XDEV_RXDETECT); 1278 } else { 1279 cdnsp_disable_port(pdev, &pdev->usb3_port.regs->portsc); 1280 } 1281 1282 cdnsp_set_link_state(pdev, &pdev->usb2_port.regs->portsc, 1283 XDEV_RXDETECT); 1284 1285 cdnsp_gadget_ep0_desc.wMaxPacketSize = cpu_to_le16(512); 1286 1287 writel(PORT_REG6_L1_L0_HW_EN | fs_speed, &pdev->port20_regs->port_reg6); 1288 1289 ret = cdnsp_start(pdev); 1290 if (ret) { 1291 ret = -ENODEV; 1292 goto err; 1293 } 1294 1295 temp = readl(&pdev->op_regs->command); 1296 temp |= (CMD_INTE); 1297 writel(temp, &pdev->op_regs->command); 1298 1299 temp = readl(&pdev->ir_set->irq_pending); 1300 writel(IMAN_IE_SET(temp), &pdev->ir_set->irq_pending); 1301 1302 trace_cdnsp_init("Controller ready to work"); 1303 return 0; 1304 err: 1305 cdnsp_halt(pdev); 1306 return ret; 1307 } 1308 1309 static int cdnsp_gadget_udc_start(struct usb_gadget *g, 1310 struct usb_gadget_driver *driver) 1311 { 1312 enum usb_device_speed max_speed = driver->max_speed; 1313 struct cdnsp_device *pdev = gadget_to_cdnsp(g); 1314 unsigned long flags; 1315 int ret; 1316 1317 spin_lock_irqsave(&pdev->lock, flags); 1318 pdev->gadget_driver = driver; 1319 1320 /* limit speed if necessary */ 1321 max_speed = min(driver->max_speed, g->max_speed); 1322 ret = cdnsp_run(pdev, max_speed); 1323 1324 spin_unlock_irqrestore(&pdev->lock, flags); 1325 1326 return ret; 1327 } 1328 1329 /* 1330 * Update Event Ring Dequeue Pointer: 1331 * - When all events have finished 1332 * - To avoid "Event Ring Full Error" condition 1333 */ 1334 void cdnsp_update_erst_dequeue(struct cdnsp_device *pdev, 1335 union cdnsp_trb *event_ring_deq, 1336 u8 clear_ehb) 1337 { 1338 u64 temp_64; 1339 dma_addr_t deq; 1340 1341 temp_64 = cdnsp_read_64(&pdev->ir_set->erst_dequeue); 1342 1343 /* If necessary, update the HW's version of the event ring deq ptr. */ 1344 if (event_ring_deq != pdev->event_ring->dequeue) { 1345 deq = cdnsp_trb_virt_to_dma(pdev->event_ring->deq_seg, 1346 pdev->event_ring->dequeue); 1347 temp_64 &= ERST_PTR_MASK; 1348 temp_64 |= ((u64)deq & (u64)~ERST_PTR_MASK); 1349 } 1350 1351 /* Clear the event handler busy flag (RW1C). */ 1352 if (clear_ehb) 1353 temp_64 |= ERST_EHB; 1354 else 1355 temp_64 &= ~ERST_EHB; 1356 1357 cdnsp_write_64(temp_64, &pdev->ir_set->erst_dequeue); 1358 } 1359 1360 static void cdnsp_clear_cmd_ring(struct cdnsp_device *pdev) 1361 { 1362 struct cdnsp_segment *seg; 1363 u64 val_64; 1364 int i; 1365 1366 cdnsp_initialize_ring_info(pdev->cmd_ring); 1367 1368 seg = pdev->cmd_ring->first_seg; 1369 for (i = 0; i < pdev->cmd_ring->num_segs; i++) { 1370 memset(seg->trbs, 0, 1371 sizeof(union cdnsp_trb) * (TRBS_PER_SEGMENT - 1)); 1372 seg = seg->next; 1373 } 1374 1375 /* Set the address in the Command Ring Control register. */ 1376 val_64 = cdnsp_read_64(&pdev->op_regs->cmd_ring); 1377 val_64 = (val_64 & (u64)CMD_RING_RSVD_BITS) | 1378 (pdev->cmd_ring->first_seg->dma & (u64)~CMD_RING_RSVD_BITS) | 1379 pdev->cmd_ring->cycle_state; 1380 cdnsp_write_64(val_64, &pdev->op_regs->cmd_ring); 1381 } 1382 1383 static void cdnsp_consume_all_events(struct cdnsp_device *pdev) 1384 { 1385 struct cdnsp_segment *event_deq_seg; 1386 union cdnsp_trb *event_ring_deq; 1387 union cdnsp_trb *event; 1388 u32 cycle_bit; 1389 1390 event_ring_deq = pdev->event_ring->dequeue; 1391 event_deq_seg = pdev->event_ring->deq_seg; 1392 event = pdev->event_ring->dequeue; 1393 1394 /* Update ring dequeue pointer. */ 1395 while (1) { 1396 cycle_bit = (le32_to_cpu(event->event_cmd.flags) & TRB_CYCLE); 1397 1398 /* Does the controller or driver own the TRB? */ 1399 if (cycle_bit != pdev->event_ring->cycle_state) 1400 break; 1401 1402 cdnsp_inc_deq(pdev, pdev->event_ring); 1403 1404 if (!cdnsp_last_trb_on_seg(event_deq_seg, event)) { 1405 event++; 1406 continue; 1407 } 1408 1409 if (cdnsp_last_trb_on_ring(pdev->event_ring, event_deq_seg, 1410 event)) 1411 cycle_bit ^= 1; 1412 1413 event_deq_seg = event_deq_seg->next; 1414 event = event_deq_seg->trbs; 1415 } 1416 1417 cdnsp_update_erst_dequeue(pdev, event_ring_deq, 1); 1418 } 1419 1420 static void cdnsp_stop(struct cdnsp_device *pdev) 1421 { 1422 u32 temp; 1423 1424 cdnsp_cmd_flush_ep(pdev, &pdev->eps[0]); 1425 1426 /* Remove internally queued request for ep0. */ 1427 if (!list_empty(&pdev->eps[0].pending_list)) { 1428 struct cdnsp_request *req; 1429 1430 req = next_request(&pdev->eps[0].pending_list); 1431 if (req == &pdev->ep0_preq) 1432 cdnsp_ep_dequeue(&pdev->eps[0], req); 1433 } 1434 1435 cdnsp_disable_port(pdev, &pdev->usb2_port.regs->portsc); 1436 cdnsp_disable_port(pdev, &pdev->usb3_port.regs->portsc); 1437 cdnsp_disable_slot(pdev); 1438 cdnsp_halt(pdev); 1439 1440 temp = readl(&pdev->op_regs->status); 1441 writel((temp & ~0x1fff) | STS_EINT, &pdev->op_regs->status); 1442 temp = readl(&pdev->ir_set->irq_pending); 1443 writel(IMAN_IE_CLEAR(temp), &pdev->ir_set->irq_pending); 1444 1445 cdnsp_clear_port_change_bit(pdev, &pdev->usb2_port.regs->portsc); 1446 cdnsp_clear_port_change_bit(pdev, &pdev->usb3_port.regs->portsc); 1447 1448 /* Clear interrupt line */ 1449 temp = readl(&pdev->ir_set->irq_pending); 1450 temp |= IMAN_IP; 1451 writel(temp, &pdev->ir_set->irq_pending); 1452 1453 cdnsp_consume_all_events(pdev); 1454 cdnsp_clear_cmd_ring(pdev); 1455 1456 trace_cdnsp_exit("Controller stopped."); 1457 } 1458 1459 /* 1460 * Stop controller. 1461 * This function is called by the gadget core when the driver is removed. 1462 * Disable slot, disable IRQs, and quiesce the controller. 1463 */ 1464 static int cdnsp_gadget_udc_stop(struct usb_gadget *g) 1465 { 1466 struct cdnsp_device *pdev = gadget_to_cdnsp(g); 1467 unsigned long flags; 1468 1469 spin_lock_irqsave(&pdev->lock, flags); 1470 cdnsp_stop(pdev); 1471 pdev->gadget_driver = NULL; 1472 spin_unlock_irqrestore(&pdev->lock, flags); 1473 1474 return 0; 1475 } 1476 1477 static int cdnsp_gadget_get_frame(struct usb_gadget *g) 1478 { 1479 struct cdnsp_device *pdev = gadget_to_cdnsp(g); 1480 1481 return cdnsp_get_frame(pdev); 1482 } 1483 1484 static void __cdnsp_gadget_wakeup(struct cdnsp_device *pdev) 1485 { 1486 struct cdnsp_port_regs __iomem *port_regs; 1487 u32 portpm, portsc; 1488 1489 port_regs = pdev->active_port->regs; 1490 portsc = readl(&port_regs->portsc) & PORT_PLS_MASK; 1491 1492 /* Remote wakeup feature is not enabled by host. */ 1493 if (pdev->gadget.speed < USB_SPEED_SUPER && portsc == XDEV_U2) { 1494 portpm = readl(&port_regs->portpmsc); 1495 1496 if (!(portpm & PORT_RWE)) 1497 return; 1498 } 1499 1500 if (portsc == XDEV_U3 && !pdev->may_wakeup) 1501 return; 1502 1503 cdnsp_set_link_state(pdev, &port_regs->portsc, XDEV_U0); 1504 1505 pdev->cdnsp_state |= CDNSP_WAKEUP_PENDING; 1506 } 1507 1508 static int cdnsp_gadget_wakeup(struct usb_gadget *g) 1509 { 1510 struct cdnsp_device *pdev = gadget_to_cdnsp(g); 1511 unsigned long flags; 1512 1513 spin_lock_irqsave(&pdev->lock, flags); 1514 __cdnsp_gadget_wakeup(pdev); 1515 spin_unlock_irqrestore(&pdev->lock, flags); 1516 1517 return 0; 1518 } 1519 1520 static int cdnsp_gadget_set_selfpowered(struct usb_gadget *g, 1521 int is_selfpowered) 1522 { 1523 struct cdnsp_device *pdev = gadget_to_cdnsp(g); 1524 unsigned long flags; 1525 1526 spin_lock_irqsave(&pdev->lock, flags); 1527 g->is_selfpowered = !!is_selfpowered; 1528 spin_unlock_irqrestore(&pdev->lock, flags); 1529 1530 return 0; 1531 } 1532 1533 static int cdnsp_gadget_pullup(struct usb_gadget *gadget, int is_on) 1534 { 1535 struct cdnsp_device *pdev = gadget_to_cdnsp(gadget); 1536 struct cdns *cdns = dev_get_drvdata(pdev->dev); 1537 unsigned long flags; 1538 1539 trace_cdnsp_pullup(is_on); 1540 1541 /* 1542 * Disable events handling while controller is being 1543 * enabled/disabled. 1544 */ 1545 disable_irq(cdns->dev_irq); 1546 spin_lock_irqsave(&pdev->lock, flags); 1547 1548 if (!is_on) { 1549 cdnsp_reset_device(pdev); 1550 cdns_clear_vbus(cdns); 1551 } else { 1552 cdns_set_vbus(cdns); 1553 } 1554 1555 spin_unlock_irqrestore(&pdev->lock, flags); 1556 enable_irq(cdns->dev_irq); 1557 1558 return 0; 1559 } 1560 1561 static const struct usb_gadget_ops cdnsp_gadget_ops = { 1562 .get_frame = cdnsp_gadget_get_frame, 1563 .wakeup = cdnsp_gadget_wakeup, 1564 .set_selfpowered = cdnsp_gadget_set_selfpowered, 1565 .pullup = cdnsp_gadget_pullup, 1566 .udc_start = cdnsp_gadget_udc_start, 1567 .udc_stop = cdnsp_gadget_udc_stop, 1568 }; 1569 1570 static void cdnsp_get_ep_buffering(struct cdnsp_device *pdev, 1571 struct cdnsp_ep *pep) 1572 { 1573 void __iomem *reg = &pdev->cap_regs->hc_capbase; 1574 int endpoints; 1575 1576 reg += cdnsp_find_next_ext_cap(reg, 0, XBUF_CAP_ID); 1577 1578 if (!pep->direction) { 1579 pep->buffering = readl(reg + XBUF_RX_TAG_MASK_0_OFFSET); 1580 pep->buffering_period = readl(reg + XBUF_RX_TAG_MASK_1_OFFSET); 1581 pep->buffering = (pep->buffering + 1) / 2; 1582 pep->buffering_period = (pep->buffering_period + 1) / 2; 1583 return; 1584 } 1585 1586 endpoints = HCS_ENDPOINTS(pdev->hcs_params1) / 2; 1587 1588 /* Set to XBUF_TX_TAG_MASK_0 register. */ 1589 reg += XBUF_TX_CMD_OFFSET + (endpoints * 2 + 2) * sizeof(u32); 1590 /* Set reg to XBUF_TX_TAG_MASK_N related with this endpoint. */ 1591 reg += pep->number * sizeof(u32) * 2; 1592 1593 pep->buffering = (readl(reg) + 1) / 2; 1594 pep->buffering_period = pep->buffering; 1595 } 1596 1597 static int cdnsp_gadget_init_endpoints(struct cdnsp_device *pdev) 1598 { 1599 int max_streams = HCC_MAX_PSA(pdev->hcc_params); 1600 struct cdnsp_ep *pep; 1601 int i; 1602 1603 INIT_LIST_HEAD(&pdev->gadget.ep_list); 1604 1605 if (max_streams < STREAM_LOG_STREAMS) { 1606 dev_err(pdev->dev, "Stream size %d not supported\n", 1607 max_streams); 1608 return -EINVAL; 1609 } 1610 1611 max_streams = STREAM_LOG_STREAMS; 1612 1613 for (i = 0; i < CDNSP_ENDPOINTS_NUM; i++) { 1614 bool direction = !(i & 1); /* Start from OUT endpoint. */ 1615 u8 epnum = ((i + 1) >> 1); 1616 1617 if (!CDNSP_IF_EP_EXIST(pdev, epnum, direction)) 1618 continue; 1619 1620 pep = &pdev->eps[i]; 1621 pep->pdev = pdev; 1622 pep->number = epnum; 1623 pep->direction = direction; /* 0 for OUT, 1 for IN. */ 1624 1625 /* 1626 * Ep0 is bidirectional, so ep0in and ep0out are represented by 1627 * pdev->eps[0] 1628 */ 1629 if (epnum == 0) { 1630 snprintf(pep->name, sizeof(pep->name), "ep%d%s", 1631 epnum, "BiDir"); 1632 1633 pep->idx = 0; 1634 usb_ep_set_maxpacket_limit(&pep->endpoint, 512); 1635 pep->endpoint.maxburst = 1; 1636 pep->endpoint.ops = &cdnsp_gadget_ep0_ops; 1637 pep->endpoint.desc = &cdnsp_gadget_ep0_desc; 1638 pep->endpoint.comp_desc = NULL; 1639 pep->endpoint.caps.type_control = true; 1640 pep->endpoint.caps.dir_in = true; 1641 pep->endpoint.caps.dir_out = true; 1642 1643 pdev->ep0_preq.epnum = pep->number; 1644 pdev->ep0_preq.pep = pep; 1645 pdev->gadget.ep0 = &pep->endpoint; 1646 } else { 1647 snprintf(pep->name, sizeof(pep->name), "ep%d%s", 1648 epnum, (pep->direction) ? "in" : "out"); 1649 1650 pep->idx = (epnum * 2 + (direction ? 1 : 0)) - 1; 1651 usb_ep_set_maxpacket_limit(&pep->endpoint, 1024); 1652 1653 pep->endpoint.max_streams = max_streams; 1654 pep->endpoint.ops = &cdnsp_gadget_ep_ops; 1655 list_add_tail(&pep->endpoint.ep_list, 1656 &pdev->gadget.ep_list); 1657 1658 pep->endpoint.caps.type_iso = true; 1659 pep->endpoint.caps.type_bulk = true; 1660 pep->endpoint.caps.type_int = true; 1661 1662 pep->endpoint.caps.dir_in = direction; 1663 pep->endpoint.caps.dir_out = !direction; 1664 } 1665 1666 pep->endpoint.name = pep->name; 1667 pep->in_ctx = cdnsp_get_ep_ctx(&pdev->in_ctx, pep->idx); 1668 pep->out_ctx = cdnsp_get_ep_ctx(&pdev->out_ctx, pep->idx); 1669 cdnsp_get_ep_buffering(pdev, pep); 1670 1671 dev_dbg(pdev->dev, "Init %s, MPS: %04x SupType: " 1672 "CTRL: %s, INT: %s, BULK: %s, ISOC %s, " 1673 "SupDir IN: %s, OUT: %s\n", 1674 pep->name, 1024, 1675 (pep->endpoint.caps.type_control) ? "yes" : "no", 1676 (pep->endpoint.caps.type_int) ? "yes" : "no", 1677 (pep->endpoint.caps.type_bulk) ? "yes" : "no", 1678 (pep->endpoint.caps.type_iso) ? "yes" : "no", 1679 (pep->endpoint.caps.dir_in) ? "yes" : "no", 1680 (pep->endpoint.caps.dir_out) ? "yes" : "no"); 1681 1682 INIT_LIST_HEAD(&pep->pending_list); 1683 } 1684 1685 return 0; 1686 } 1687 1688 static void cdnsp_gadget_free_endpoints(struct cdnsp_device *pdev) 1689 { 1690 struct cdnsp_ep *pep; 1691 int i; 1692 1693 for (i = 0; i < CDNSP_ENDPOINTS_NUM; i++) { 1694 pep = &pdev->eps[i]; 1695 if (pep->number != 0 && pep->out_ctx) 1696 list_del(&pep->endpoint.ep_list); 1697 } 1698 } 1699 1700 void cdnsp_disconnect_gadget(struct cdnsp_device *pdev) 1701 { 1702 pdev->cdnsp_state |= CDNSP_STATE_DISCONNECT_PENDING; 1703 1704 if (pdev->gadget_driver && pdev->gadget_driver->disconnect) { 1705 spin_unlock(&pdev->lock); 1706 pdev->gadget_driver->disconnect(&pdev->gadget); 1707 spin_lock(&pdev->lock); 1708 } 1709 1710 pdev->gadget.speed = USB_SPEED_UNKNOWN; 1711 usb_gadget_set_state(&pdev->gadget, USB_STATE_NOTATTACHED); 1712 1713 pdev->cdnsp_state &= ~CDNSP_STATE_DISCONNECT_PENDING; 1714 } 1715 1716 void cdnsp_suspend_gadget(struct cdnsp_device *pdev) 1717 { 1718 if (pdev->gadget_driver && pdev->gadget_driver->suspend) { 1719 spin_unlock(&pdev->lock); 1720 pdev->gadget_driver->suspend(&pdev->gadget); 1721 spin_lock(&pdev->lock); 1722 } 1723 } 1724 1725 void cdnsp_resume_gadget(struct cdnsp_device *pdev) 1726 { 1727 if (pdev->gadget_driver && pdev->gadget_driver->resume) { 1728 spin_unlock(&pdev->lock); 1729 pdev->gadget_driver->resume(&pdev->gadget); 1730 spin_lock(&pdev->lock); 1731 } 1732 } 1733 1734 void cdnsp_irq_reset(struct cdnsp_device *pdev) 1735 { 1736 struct cdnsp_port_regs __iomem *port_regs; 1737 1738 cdnsp_reset_device(pdev); 1739 1740 port_regs = pdev->active_port->regs; 1741 pdev->gadget.speed = cdnsp_port_speed(readl(port_regs)); 1742 1743 spin_unlock(&pdev->lock); 1744 usb_gadget_udc_reset(&pdev->gadget, pdev->gadget_driver); 1745 spin_lock(&pdev->lock); 1746 1747 switch (pdev->gadget.speed) { 1748 case USB_SPEED_SUPER_PLUS: 1749 case USB_SPEED_SUPER: 1750 cdnsp_gadget_ep0_desc.wMaxPacketSize = cpu_to_le16(512); 1751 pdev->gadget.ep0->maxpacket = 512; 1752 break; 1753 case USB_SPEED_HIGH: 1754 case USB_SPEED_FULL: 1755 cdnsp_gadget_ep0_desc.wMaxPacketSize = cpu_to_le16(64); 1756 pdev->gadget.ep0->maxpacket = 64; 1757 break; 1758 default: 1759 /* Low speed is not supported. */ 1760 dev_err(pdev->dev, "Unknown device speed\n"); 1761 break; 1762 } 1763 1764 cdnsp_clear_chicken_bits_2(pdev, CHICKEN_XDMA_2_TP_CACHE_DIS); 1765 cdnsp_setup_device(pdev, SETUP_CONTEXT_ONLY); 1766 usb_gadget_set_state(&pdev->gadget, USB_STATE_DEFAULT); 1767 } 1768 1769 static void cdnsp_get_rev_cap(struct cdnsp_device *pdev) 1770 { 1771 void __iomem *reg = &pdev->cap_regs->hc_capbase; 1772 1773 reg += cdnsp_find_next_ext_cap(reg, 0, RTL_REV_CAP); 1774 pdev->rev_cap = reg; 1775 1776 dev_info(pdev->dev, "Rev: %08x/%08x, eps: %08x, buff: %08x/%08x\n", 1777 readl(&pdev->rev_cap->ctrl_revision), 1778 readl(&pdev->rev_cap->rtl_revision), 1779 readl(&pdev->rev_cap->ep_supported), 1780 readl(&pdev->rev_cap->rx_buff_size), 1781 readl(&pdev->rev_cap->tx_buff_size)); 1782 } 1783 1784 static int cdnsp_gen_setup(struct cdnsp_device *pdev) 1785 { 1786 int ret; 1787 u32 reg; 1788 1789 pdev->cap_regs = pdev->regs; 1790 pdev->op_regs = pdev->regs + 1791 HC_LENGTH(readl(&pdev->cap_regs->hc_capbase)); 1792 pdev->run_regs = pdev->regs + 1793 (readl(&pdev->cap_regs->run_regs_off) & RTSOFF_MASK); 1794 1795 /* Cache read-only capability registers */ 1796 pdev->hcs_params1 = readl(&pdev->cap_regs->hcs_params1); 1797 pdev->hcc_params = readl(&pdev->cap_regs->hc_capbase); 1798 pdev->hci_version = HC_VERSION(pdev->hcc_params); 1799 pdev->hcc_params = readl(&pdev->cap_regs->hcc_params); 1800 1801 cdnsp_get_rev_cap(pdev); 1802 1803 /* Make sure the Device Controller is halted. */ 1804 ret = cdnsp_halt(pdev); 1805 if (ret) 1806 return ret; 1807 1808 /* Reset the internal controller memory state and registers. */ 1809 ret = cdnsp_reset(pdev); 1810 if (ret) 1811 return ret; 1812 1813 /* 1814 * Set dma_mask and coherent_dma_mask to 64-bits, 1815 * if controller supports 64-bit addressing. 1816 */ 1817 if (HCC_64BIT_ADDR(pdev->hcc_params) && 1818 !dma_set_mask(pdev->dev, DMA_BIT_MASK(64))) { 1819 dev_dbg(pdev->dev, "Enabling 64-bit DMA addresses.\n"); 1820 dma_set_coherent_mask(pdev->dev, DMA_BIT_MASK(64)); 1821 } else { 1822 /* 1823 * This is to avoid error in cases where a 32-bit USB 1824 * controller is used on a 64-bit capable system. 1825 */ 1826 ret = dma_set_mask(pdev->dev, DMA_BIT_MASK(32)); 1827 if (ret) 1828 return ret; 1829 1830 dev_dbg(pdev->dev, "Enabling 32-bit DMA addresses.\n"); 1831 dma_set_coherent_mask(pdev->dev, DMA_BIT_MASK(32)); 1832 } 1833 1834 spin_lock_init(&pdev->lock); 1835 1836 ret = cdnsp_mem_init(pdev); 1837 if (ret) 1838 return ret; 1839 1840 /* 1841 * Software workaround for U1: after transition 1842 * to U1 the controller starts gating clock, and in some cases, 1843 * it causes that controller stack. 1844 */ 1845 reg = readl(&pdev->port3x_regs->mode_2); 1846 reg &= ~CFG_3XPORT_U1_PIPE_CLK_GATE_EN; 1847 writel(reg, &pdev->port3x_regs->mode_2); 1848 1849 return 0; 1850 } 1851 1852 static int __cdnsp_gadget_init(struct cdns *cdns) 1853 { 1854 struct cdnsp_device *pdev; 1855 u32 max_speed; 1856 int ret = -ENOMEM; 1857 1858 cdns_drd_gadget_on(cdns); 1859 1860 pdev = kzalloc(sizeof(*pdev), GFP_KERNEL); 1861 if (!pdev) 1862 return -ENOMEM; 1863 1864 pm_runtime_get_sync(cdns->dev); 1865 1866 cdns->gadget_dev = pdev; 1867 pdev->dev = cdns->dev; 1868 pdev->regs = cdns->dev_regs; 1869 max_speed = usb_get_maximum_speed(cdns->dev); 1870 1871 switch (max_speed) { 1872 case USB_SPEED_FULL: 1873 case USB_SPEED_HIGH: 1874 case USB_SPEED_SUPER: 1875 case USB_SPEED_SUPER_PLUS: 1876 break; 1877 default: 1878 dev_err(cdns->dev, "invalid speed parameter %d\n", max_speed); 1879 fallthrough; 1880 case USB_SPEED_UNKNOWN: 1881 /* Default to SSP */ 1882 max_speed = USB_SPEED_SUPER_PLUS; 1883 break; 1884 } 1885 1886 pdev->gadget.ops = &cdnsp_gadget_ops; 1887 pdev->gadget.name = "cdnsp-gadget"; 1888 pdev->gadget.speed = USB_SPEED_UNKNOWN; 1889 pdev->gadget.sg_supported = 1; 1890 pdev->gadget.max_speed = max_speed; 1891 pdev->gadget.lpm_capable = 1; 1892 1893 pdev->setup_buf = kzalloc(CDNSP_EP0_SETUP_SIZE, GFP_KERNEL); 1894 if (!pdev->setup_buf) 1895 goto free_pdev; 1896 1897 /* 1898 * Controller supports not aligned buffer but it should improve 1899 * performance. 1900 */ 1901 pdev->gadget.quirk_ep_out_aligned_size = true; 1902 1903 ret = cdnsp_gen_setup(pdev); 1904 if (ret) { 1905 dev_err(pdev->dev, "Generic initialization failed %d\n", ret); 1906 goto free_setup; 1907 } 1908 1909 ret = cdnsp_gadget_init_endpoints(pdev); 1910 if (ret) { 1911 dev_err(pdev->dev, "failed to initialize endpoints\n"); 1912 goto halt_pdev; 1913 } 1914 1915 ret = usb_add_gadget_udc(pdev->dev, &pdev->gadget); 1916 if (ret) { 1917 dev_err(pdev->dev, "failed to register udc\n"); 1918 goto free_endpoints; 1919 } 1920 1921 ret = devm_request_threaded_irq(pdev->dev, cdns->dev_irq, 1922 cdnsp_irq_handler, 1923 cdnsp_thread_irq_handler, IRQF_SHARED, 1924 dev_name(pdev->dev), pdev); 1925 if (ret) 1926 goto del_gadget; 1927 1928 return 0; 1929 1930 del_gadget: 1931 usb_del_gadget_udc(&pdev->gadget); 1932 free_endpoints: 1933 cdnsp_gadget_free_endpoints(pdev); 1934 halt_pdev: 1935 cdnsp_halt(pdev); 1936 cdnsp_reset(pdev); 1937 cdnsp_mem_cleanup(pdev); 1938 free_setup: 1939 kfree(pdev->setup_buf); 1940 free_pdev: 1941 kfree(pdev); 1942 1943 return ret; 1944 } 1945 1946 static void cdnsp_gadget_exit(struct cdns *cdns) 1947 { 1948 struct cdnsp_device *pdev = cdns->gadget_dev; 1949 1950 devm_free_irq(pdev->dev, cdns->dev_irq, pdev); 1951 pm_runtime_mark_last_busy(cdns->dev); 1952 pm_runtime_put_autosuspend(cdns->dev); 1953 usb_del_gadget_udc(&pdev->gadget); 1954 cdnsp_gadget_free_endpoints(pdev); 1955 cdnsp_mem_cleanup(pdev); 1956 kfree(pdev); 1957 cdns->gadget_dev = NULL; 1958 cdns_drd_gadget_off(cdns); 1959 } 1960 1961 static int cdnsp_gadget_suspend(struct cdns *cdns, bool do_wakeup) 1962 { 1963 struct cdnsp_device *pdev = cdns->gadget_dev; 1964 unsigned long flags; 1965 1966 if (pdev->link_state == XDEV_U3) 1967 return 0; 1968 1969 spin_lock_irqsave(&pdev->lock, flags); 1970 cdnsp_disconnect_gadget(pdev); 1971 cdnsp_stop(pdev); 1972 spin_unlock_irqrestore(&pdev->lock, flags); 1973 1974 return 0; 1975 } 1976 1977 static int cdnsp_gadget_resume(struct cdns *cdns, bool hibernated) 1978 { 1979 struct cdnsp_device *pdev = cdns->gadget_dev; 1980 enum usb_device_speed max_speed; 1981 unsigned long flags; 1982 int ret; 1983 1984 if (!pdev->gadget_driver) 1985 return 0; 1986 1987 spin_lock_irqsave(&pdev->lock, flags); 1988 max_speed = pdev->gadget_driver->max_speed; 1989 1990 /* Limit speed if necessary. */ 1991 max_speed = min(max_speed, pdev->gadget.max_speed); 1992 1993 ret = cdnsp_run(pdev, max_speed); 1994 1995 if (pdev->link_state == XDEV_U3) 1996 __cdnsp_gadget_wakeup(pdev); 1997 1998 spin_unlock_irqrestore(&pdev->lock, flags); 1999 2000 return ret; 2001 } 2002 2003 /** 2004 * cdnsp_gadget_init - initialize device structure 2005 * @cdns: cdnsp instance 2006 * 2007 * This function initializes the gadget. 2008 */ 2009 int cdnsp_gadget_init(struct cdns *cdns) 2010 { 2011 struct cdns_role_driver *rdrv; 2012 2013 rdrv = devm_kzalloc(cdns->dev, sizeof(*rdrv), GFP_KERNEL); 2014 if (!rdrv) 2015 return -ENOMEM; 2016 2017 rdrv->start = __cdnsp_gadget_init; 2018 rdrv->stop = cdnsp_gadget_exit; 2019 rdrv->suspend = cdnsp_gadget_suspend; 2020 rdrv->resume = cdnsp_gadget_resume; 2021 rdrv->state = CDNS_ROLE_STATE_INACTIVE; 2022 rdrv->name = "gadget"; 2023 cdns->roles[USB_ROLE_DEVICE] = rdrv; 2024 2025 return 0; 2026 } 2027