1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (c) 2013-2016, Linux Foundation. All rights reserved. 4 */ 5 6 #include <linux/acpi.h> 7 #include <linux/clk.h> 8 #include <linux/cleanup.h> 9 #include <linux/delay.h> 10 #include <linux/devfreq.h> 11 #include <linux/gpio/consumer.h> 12 #include <linux/interconnect.h> 13 #include <linux/module.h> 14 #include <linux/of.h> 15 #include <linux/phy/phy.h> 16 #include <linux/platform_device.h> 17 #include <linux/reset-controller.h> 18 #include <linux/time.h> 19 #include <linux/unaligned.h> 20 #include <linux/units.h> 21 22 #include <soc/qcom/ice.h> 23 24 #include <ufs/ufshcd.h> 25 #include <ufs/ufshci.h> 26 #include <ufs/ufs_quirks.h> 27 #include <ufs/unipro.h> 28 #include "ufshcd-pltfrm.h" 29 #include "ufs-qcom.h" 30 31 #define MCQ_QCFGPTR_MASK GENMASK(7, 0) 32 #define MCQ_QCFGPTR_UNIT 0x200 33 #define MCQ_SQATTR_OFFSET(c) \ 34 ((((c) >> 16) & MCQ_QCFGPTR_MASK) * MCQ_QCFGPTR_UNIT) 35 #define MCQ_QCFG_SIZE 0x40 36 37 /* De-emphasis for gear-5 */ 38 #define DEEMPHASIS_3_5_dB 0x04 39 #define NO_DEEMPHASIS 0x0 40 41 #define UFS_ICE_SYNC_RST_SEL BIT(3) 42 #define UFS_ICE_SYNC_RST_SW BIT(4) 43 44 enum { 45 TSTBUS_UAWM, 46 TSTBUS_UARM, 47 TSTBUS_TXUC, 48 TSTBUS_RXUC, 49 TSTBUS_DFC, 50 TSTBUS_TRLUT, 51 TSTBUS_TMRLUT, 52 TSTBUS_OCSC, 53 TSTBUS_UTP_HCI, 54 TSTBUS_COMBINED, 55 TSTBUS_WRAPPER, 56 TSTBUS_UNIPRO, 57 TSTBUS_MAX, 58 }; 59 60 #define QCOM_UFS_MAX_GEAR 5 61 #define QCOM_UFS_MAX_LANE 2 62 63 enum { 64 MODE_MIN, 65 MODE_PWM, 66 MODE_HS_RA, 67 MODE_HS_RB, 68 MODE_MAX, 69 }; 70 71 static const struct __ufs_qcom_bw_table { 72 u32 mem_bw; 73 u32 cfg_bw; 74 } ufs_qcom_bw_table[MODE_MAX + 1][QCOM_UFS_MAX_GEAR + 1][QCOM_UFS_MAX_LANE + 1] = { 75 [MODE_MIN][0][0] = { 0, 0 }, /* Bandwidth values in KB/s */ 76 [MODE_PWM][UFS_PWM_G1][UFS_LANE_1] = { 922, 1000 }, 77 [MODE_PWM][UFS_PWM_G2][UFS_LANE_1] = { 1844, 1000 }, 78 [MODE_PWM][UFS_PWM_G3][UFS_LANE_1] = { 3688, 1000 }, 79 [MODE_PWM][UFS_PWM_G4][UFS_LANE_1] = { 7376, 1000 }, 80 [MODE_PWM][UFS_PWM_G5][UFS_LANE_1] = { 14752, 1000 }, 81 [MODE_PWM][UFS_PWM_G1][UFS_LANE_2] = { 1844, 1000 }, 82 [MODE_PWM][UFS_PWM_G2][UFS_LANE_2] = { 3688, 1000 }, 83 [MODE_PWM][UFS_PWM_G3][UFS_LANE_2] = { 7376, 1000 }, 84 [MODE_PWM][UFS_PWM_G4][UFS_LANE_2] = { 14752, 1000 }, 85 [MODE_PWM][UFS_PWM_G5][UFS_LANE_2] = { 29504, 1000 }, 86 [MODE_HS_RA][UFS_HS_G1][UFS_LANE_1] = { 127796, 1000 }, 87 [MODE_HS_RA][UFS_HS_G2][UFS_LANE_1] = { 255591, 1000 }, 88 [MODE_HS_RA][UFS_HS_G3][UFS_LANE_1] = { 1492582, 102400 }, 89 [MODE_HS_RA][UFS_HS_G4][UFS_LANE_1] = { 2915200, 204800 }, 90 [MODE_HS_RA][UFS_HS_G5][UFS_LANE_1] = { 5836800, 409600 }, 91 [MODE_HS_RA][UFS_HS_G1][UFS_LANE_2] = { 255591, 1000 }, 92 [MODE_HS_RA][UFS_HS_G2][UFS_LANE_2] = { 511181, 1000 }, 93 [MODE_HS_RA][UFS_HS_G3][UFS_LANE_2] = { 1492582, 204800 }, 94 [MODE_HS_RA][UFS_HS_G4][UFS_LANE_2] = { 2915200, 409600 }, 95 [MODE_HS_RA][UFS_HS_G5][UFS_LANE_2] = { 5836800, 819200 }, 96 [MODE_HS_RB][UFS_HS_G1][UFS_LANE_1] = { 149422, 1000 }, 97 [MODE_HS_RB][UFS_HS_G2][UFS_LANE_1] = { 298189, 1000 }, 98 [MODE_HS_RB][UFS_HS_G3][UFS_LANE_1] = { 1492582, 102400 }, 99 [MODE_HS_RB][UFS_HS_G4][UFS_LANE_1] = { 2915200, 204800 }, 100 [MODE_HS_RB][UFS_HS_G5][UFS_LANE_1] = { 5836800, 409600 }, 101 [MODE_HS_RB][UFS_HS_G1][UFS_LANE_2] = { 298189, 1000 }, 102 [MODE_HS_RB][UFS_HS_G2][UFS_LANE_2] = { 596378, 1000 }, 103 [MODE_HS_RB][UFS_HS_G3][UFS_LANE_2] = { 1492582, 204800 }, 104 [MODE_HS_RB][UFS_HS_G4][UFS_LANE_2] = { 2915200, 409600 }, 105 [MODE_HS_RB][UFS_HS_G5][UFS_LANE_2] = { 5836800, 819200 }, 106 [MODE_MAX][0][0] = { 7643136, 819200 }, 107 }; 108 109 static const struct { 110 int nminor; 111 char *prefix; 112 } testbus_info[TSTBUS_MAX] = { 113 [TSTBUS_UAWM] = {32, "TSTBUS_UAWM"}, 114 [TSTBUS_UARM] = {32, "TSTBUS_UARM"}, 115 [TSTBUS_TXUC] = {32, "TSTBUS_TXUC"}, 116 [TSTBUS_RXUC] = {32, "TSTBUS_RXUC"}, 117 [TSTBUS_DFC] = {32, "TSTBUS_DFC"}, 118 [TSTBUS_TRLUT] = {32, "TSTBUS_TRLUT"}, 119 [TSTBUS_TMRLUT] = {32, "TSTBUS_TMRLUT"}, 120 [TSTBUS_OCSC] = {32, "TSTBUS_OCSC"}, 121 [TSTBUS_UTP_HCI] = {32, "TSTBUS_UTP_HCI"}, 122 [TSTBUS_COMBINED] = {32, "TSTBUS_COMBINED"}, 123 [TSTBUS_WRAPPER] = {32, "TSTBUS_WRAPPER"}, 124 [TSTBUS_UNIPRO] = {256, "TSTBUS_UNIPRO"}, 125 }; 126 127 static void ufs_qcom_get_default_testbus_cfg(struct ufs_qcom_host *host); 128 static unsigned long ufs_qcom_opp_freq_to_clk_freq(struct ufs_hba *hba, 129 unsigned long freq, char *name); 130 static int ufs_qcom_set_core_clk_ctrl(struct ufs_hba *hba, bool is_scale_up, unsigned long freq); 131 132 static struct ufs_qcom_host *rcdev_to_ufs_host(struct reset_controller_dev *rcd) 133 { 134 return container_of(rcd, struct ufs_qcom_host, rcdev); 135 } 136 137 #ifdef CONFIG_SCSI_UFS_CRYPTO 138 /** 139 * ufs_qcom_config_ice_allocator() - ICE core allocator configuration 140 * 141 * @host: pointer to qcom specific variant structure. 142 */ 143 static void ufs_qcom_config_ice_allocator(struct ufs_qcom_host *host) 144 { 145 struct ufs_hba *hba = host->hba; 146 static const uint8_t val[4] = { NUM_RX_R1W0, NUM_TX_R0W1, NUM_RX_R1W1, NUM_TX_R1W1 }; 147 u32 config; 148 149 if (!(host->caps & UFS_QCOM_CAP_ICE_CONFIG) || 150 !(host->hba->caps & UFSHCD_CAP_CRYPTO)) 151 return; 152 153 config = get_unaligned_le32(val); 154 155 ufshcd_writel(hba, ICE_ALLOCATOR_TYPE, REG_UFS_MEM_ICE_CONFIG); 156 ufshcd_writel(hba, config, REG_UFS_MEM_ICE_NUM_CORE); 157 } 158 159 static inline void ufs_qcom_ice_enable(struct ufs_qcom_host *host) 160 { 161 if (host->hba->caps & UFSHCD_CAP_CRYPTO) 162 qcom_ice_enable(host->ice); 163 } 164 165 static const struct blk_crypto_ll_ops ufs_qcom_crypto_ops; /* forward decl */ 166 167 static int ufs_qcom_ice_init(struct ufs_qcom_host *host) 168 { 169 struct ufs_hba *hba = host->hba; 170 struct blk_crypto_profile *profile = &hba->crypto_profile; 171 struct device *dev = hba->dev; 172 struct qcom_ice *ice; 173 union ufs_crypto_capabilities caps; 174 union ufs_crypto_cap_entry cap; 175 int err; 176 int i; 177 178 ice = devm_of_qcom_ice_get(dev); 179 if (ice == ERR_PTR(-EOPNOTSUPP)) { 180 dev_warn(dev, "Disabling inline encryption support\n"); 181 ice = NULL; 182 } 183 184 if (IS_ERR_OR_NULL(ice)) 185 return PTR_ERR_OR_ZERO(ice); 186 187 host->ice = ice; 188 189 /* Initialize the blk_crypto_profile */ 190 191 caps.reg_val = cpu_to_le32(ufshcd_readl(hba, REG_UFS_CCAP)); 192 193 /* The number of keyslots supported is (CFGC+1) */ 194 err = devm_blk_crypto_profile_init(dev, profile, caps.config_count + 1); 195 if (err) 196 return err; 197 198 profile->ll_ops = ufs_qcom_crypto_ops; 199 profile->max_dun_bytes_supported = 8; 200 profile->key_types_supported = qcom_ice_get_supported_key_type(ice); 201 profile->dev = dev; 202 203 /* 204 * Currently this driver only supports AES-256-XTS. All known versions 205 * of ICE support it, but to be safe make sure it is really declared in 206 * the crypto capability registers. The crypto capability registers 207 * also give the supported data unit size(s). 208 */ 209 for (i = 0; i < caps.num_crypto_cap; i++) { 210 cap.reg_val = cpu_to_le32(ufshcd_readl(hba, 211 REG_UFS_CRYPTOCAP + 212 i * sizeof(__le32))); 213 if (cap.algorithm_id == UFS_CRYPTO_ALG_AES_XTS && 214 cap.key_size == UFS_CRYPTO_KEY_SIZE_256) 215 profile->modes_supported[BLK_ENCRYPTION_MODE_AES_256_XTS] |= 216 cap.sdus_mask * 512; 217 } 218 219 hba->caps |= UFSHCD_CAP_CRYPTO; 220 hba->quirks |= UFSHCD_QUIRK_CUSTOM_CRYPTO_PROFILE; 221 return 0; 222 } 223 224 static inline int ufs_qcom_ice_resume(struct ufs_qcom_host *host) 225 { 226 if (host->hba->caps & UFSHCD_CAP_CRYPTO) 227 return qcom_ice_resume(host->ice); 228 229 return 0; 230 } 231 232 static inline int ufs_qcom_ice_suspend(struct ufs_qcom_host *host) 233 { 234 if (host->hba->caps & UFSHCD_CAP_CRYPTO) 235 return qcom_ice_suspend(host->ice); 236 237 return 0; 238 } 239 240 static int ufs_qcom_ice_keyslot_program(struct blk_crypto_profile *profile, 241 const struct blk_crypto_key *key, 242 unsigned int slot) 243 { 244 struct ufs_hba *hba = ufs_hba_from_crypto_profile(profile); 245 struct ufs_qcom_host *host = ufshcd_get_variant(hba); 246 int err; 247 248 ufshcd_hold(hba); 249 err = qcom_ice_program_key(host->ice, slot, key); 250 ufshcd_release(hba); 251 return err; 252 } 253 254 static int ufs_qcom_ice_keyslot_evict(struct blk_crypto_profile *profile, 255 const struct blk_crypto_key *key, 256 unsigned int slot) 257 { 258 struct ufs_hba *hba = ufs_hba_from_crypto_profile(profile); 259 struct ufs_qcom_host *host = ufshcd_get_variant(hba); 260 int err; 261 262 ufshcd_hold(hba); 263 err = qcom_ice_evict_key(host->ice, slot); 264 ufshcd_release(hba); 265 return err; 266 } 267 268 static int ufs_qcom_ice_derive_sw_secret(struct blk_crypto_profile *profile, 269 const u8 *eph_key, size_t eph_key_size, 270 u8 sw_secret[BLK_CRYPTO_SW_SECRET_SIZE]) 271 { 272 struct ufs_hba *hba = ufs_hba_from_crypto_profile(profile); 273 struct ufs_qcom_host *host = ufshcd_get_variant(hba); 274 275 return qcom_ice_derive_sw_secret(host->ice, eph_key, eph_key_size, 276 sw_secret); 277 } 278 279 static int ufs_qcom_ice_import_key(struct blk_crypto_profile *profile, 280 const u8 *raw_key, size_t raw_key_size, 281 u8 lt_key[BLK_CRYPTO_MAX_HW_WRAPPED_KEY_SIZE]) 282 { 283 struct ufs_hba *hba = ufs_hba_from_crypto_profile(profile); 284 struct ufs_qcom_host *host = ufshcd_get_variant(hba); 285 286 return qcom_ice_import_key(host->ice, raw_key, raw_key_size, lt_key); 287 } 288 289 static int ufs_qcom_ice_generate_key(struct blk_crypto_profile *profile, 290 u8 lt_key[BLK_CRYPTO_MAX_HW_WRAPPED_KEY_SIZE]) 291 { 292 struct ufs_hba *hba = ufs_hba_from_crypto_profile(profile); 293 struct ufs_qcom_host *host = ufshcd_get_variant(hba); 294 295 return qcom_ice_generate_key(host->ice, lt_key); 296 } 297 298 static int ufs_qcom_ice_prepare_key(struct blk_crypto_profile *profile, 299 const u8 *lt_key, size_t lt_key_size, 300 u8 eph_key[BLK_CRYPTO_MAX_HW_WRAPPED_KEY_SIZE]) 301 { 302 struct ufs_hba *hba = ufs_hba_from_crypto_profile(profile); 303 struct ufs_qcom_host *host = ufshcd_get_variant(hba); 304 305 return qcom_ice_prepare_key(host->ice, lt_key, lt_key_size, eph_key); 306 } 307 308 static const struct blk_crypto_ll_ops ufs_qcom_crypto_ops = { 309 .keyslot_program = ufs_qcom_ice_keyslot_program, 310 .keyslot_evict = ufs_qcom_ice_keyslot_evict, 311 .derive_sw_secret = ufs_qcom_ice_derive_sw_secret, 312 .import_key = ufs_qcom_ice_import_key, 313 .generate_key = ufs_qcom_ice_generate_key, 314 .prepare_key = ufs_qcom_ice_prepare_key, 315 }; 316 317 #else 318 319 static inline void ufs_qcom_ice_enable(struct ufs_qcom_host *host) 320 { 321 } 322 323 static int ufs_qcom_ice_init(struct ufs_qcom_host *host) 324 { 325 return 0; 326 } 327 328 static inline int ufs_qcom_ice_resume(struct ufs_qcom_host *host) 329 { 330 return 0; 331 } 332 333 static inline int ufs_qcom_ice_suspend(struct ufs_qcom_host *host) 334 { 335 return 0; 336 } 337 338 static void ufs_qcom_config_ice_allocator(struct ufs_qcom_host *host) 339 { 340 } 341 342 #endif 343 344 static void ufs_qcom_disable_lane_clks(struct ufs_qcom_host *host) 345 { 346 if (!host->is_lane_clks_enabled) 347 return; 348 349 clk_bulk_disable_unprepare(host->num_clks, host->clks); 350 351 host->is_lane_clks_enabled = false; 352 } 353 354 static int ufs_qcom_enable_lane_clks(struct ufs_qcom_host *host) 355 { 356 int err; 357 358 err = clk_bulk_prepare_enable(host->num_clks, host->clks); 359 if (err) 360 return err; 361 362 host->is_lane_clks_enabled = true; 363 364 return 0; 365 } 366 367 static int ufs_qcom_init_lane_clks(struct ufs_qcom_host *host) 368 { 369 int err; 370 struct device *dev = host->hba->dev; 371 372 if (has_acpi_companion(dev)) 373 return 0; 374 375 err = devm_clk_bulk_get_all(dev, &host->clks); 376 if (err <= 0) 377 return err; 378 379 host->num_clks = err; 380 381 return 0; 382 } 383 384 static int ufs_qcom_check_hibern8(struct ufs_hba *hba) 385 { 386 int err; 387 u32 tx_fsm_val; 388 unsigned long timeout = jiffies + msecs_to_jiffies(HBRN8_POLL_TOUT_MS); 389 390 do { 391 err = ufshcd_dme_get(hba, 392 UIC_ARG_MIB_SEL(MPHY_TX_FSM_STATE, 393 UIC_ARG_MPHY_TX_GEN_SEL_INDEX(0)), 394 &tx_fsm_val); 395 if (err || tx_fsm_val == TX_FSM_HIBERN8) 396 break; 397 398 /* sleep for max. 200us */ 399 usleep_range(100, 200); 400 } while (time_before(jiffies, timeout)); 401 402 /* 403 * we might have scheduled out for long during polling so 404 * check the state again. 405 */ 406 if (time_after(jiffies, timeout)) 407 err = ufshcd_dme_get(hba, 408 UIC_ARG_MIB_SEL(MPHY_TX_FSM_STATE, 409 UIC_ARG_MPHY_TX_GEN_SEL_INDEX(0)), 410 &tx_fsm_val); 411 412 if (err) { 413 dev_err(hba->dev, "%s: unable to get TX_FSM_STATE, err %d\n", 414 __func__, err); 415 } else if (tx_fsm_val != TX_FSM_HIBERN8) { 416 err = tx_fsm_val; 417 dev_err(hba->dev, "%s: invalid TX_FSM_STATE = %d\n", 418 __func__, err); 419 } 420 421 return err; 422 } 423 424 static void ufs_qcom_select_unipro_mode(struct ufs_qcom_host *host) 425 { 426 ufshcd_rmwl(host->hba, QUNIPRO_SEL, QUNIPRO_SEL, REG_UFS_CFG1); 427 428 if (host->hw_ver.major >= 0x05) 429 ufshcd_rmwl(host->hba, QUNIPRO_G4_SEL, 0, REG_UFS_CFG0); 430 } 431 432 /* 433 * ufs_qcom_host_reset - reset host controller and PHY 434 */ 435 static int ufs_qcom_host_reset(struct ufs_hba *hba) 436 { 437 int ret; 438 struct ufs_qcom_host *host = ufshcd_get_variant(hba); 439 bool reenable_intr; 440 441 if (!host->core_reset) 442 return 0; 443 444 reenable_intr = hba->is_irq_enabled; 445 ufshcd_disable_irq(hba); 446 447 ret = reset_control_assert(host->core_reset); 448 if (ret) { 449 dev_err(hba->dev, "%s: core_reset assert failed, err = %d\n", 450 __func__, ret); 451 return ret; 452 } 453 454 /* 455 * The hardware requirement for delay between assert/deassert 456 * is at least 3-4 sleep clock (32.7KHz) cycles, which comes to 457 * ~125us (4/32768). To be on the safe side add 200us delay. 458 */ 459 usleep_range(200, 210); 460 461 ret = reset_control_deassert(host->core_reset); 462 if (ret) { 463 dev_err(hba->dev, "%s: core_reset deassert failed, err = %d\n", 464 __func__, ret); 465 return ret; 466 } 467 468 usleep_range(1000, 1100); 469 470 if (reenable_intr) 471 ufshcd_enable_irq(hba); 472 473 return 0; 474 } 475 476 static u32 ufs_qcom_get_hs_gear(struct ufs_hba *hba) 477 { 478 struct ufs_qcom_host *host = ufshcd_get_variant(hba); 479 480 if (host->hw_ver.major >= 0x4) 481 return UFS_QCOM_MAX_GEAR(ufshcd_readl(hba, REG_UFS_PARAM0)); 482 483 /* Default is HS-G3 */ 484 return UFS_HS_G3; 485 } 486 487 static int ufs_qcom_power_up_sequence(struct ufs_hba *hba) 488 { 489 struct ufs_qcom_host *host = ufshcd_get_variant(hba); 490 struct ufs_host_params *host_params = &host->host_params; 491 struct phy *phy = host->generic_phy; 492 enum phy_mode mode; 493 int ret; 494 495 /* 496 * HW ver 5 can only support up to HS-G5 Rate-A due to HW limitations. 497 * If the HS-G5 PHY gear is used, update host_params->hs_rate to Rate-A, 498 * so that the subsequent power mode change shall stick to Rate-A. 499 */ 500 if (host->hw_ver.major == 0x5 && host->phy_gear == UFS_HS_G5) 501 host_params->hs_rate = PA_HS_MODE_A; 502 503 mode = host_params->hs_rate == PA_HS_MODE_B ? PHY_MODE_UFS_HS_B : PHY_MODE_UFS_HS_A; 504 505 /* Reset UFS Host Controller and PHY */ 506 ret = ufs_qcom_host_reset(hba); 507 if (ret) 508 return ret; 509 510 if (phy->power_count) 511 phy_power_off(phy); 512 513 514 /* phy initialization - calibrate the phy */ 515 ret = phy_init(phy); 516 if (ret) { 517 dev_err(hba->dev, "%s: phy init failed, ret = %d\n", 518 __func__, ret); 519 return ret; 520 } 521 522 ret = phy_set_mode_ext(phy, mode, host->phy_gear); 523 if (ret) 524 goto out_disable_phy; 525 526 /* power on phy - start serdes and phy's power and clocks */ 527 ret = phy_power_on(phy); 528 if (ret) { 529 dev_err(hba->dev, "%s: phy power on failed, ret = %d\n", 530 __func__, ret); 531 goto out_disable_phy; 532 } 533 534 ret = phy_calibrate(phy); 535 if (ret) { 536 dev_err(hba->dev, "Failed to calibrate PHY: %d\n", ret); 537 goto out_disable_phy; 538 } 539 540 ufs_qcom_select_unipro_mode(host); 541 542 return 0; 543 544 out_disable_phy: 545 phy_exit(phy); 546 547 return ret; 548 } 549 550 /* 551 * The UTP controller has a number of internal clock gating cells (CGCs). 552 * Internal hardware sub-modules within the UTP controller control the CGCs. 553 * Hardware CGCs disable the clock to inactivate UTP sub-modules not involved 554 * in a specific operation, UTP controller CGCs are by default disabled and 555 * this function enables them (after every UFS link startup) to save some power 556 * leakage. 557 */ 558 static void ufs_qcom_enable_hw_clk_gating(struct ufs_hba *hba) 559 { 560 int err; 561 562 /* Enable UTP internal clock gating */ 563 ufshcd_rmwl(hba, REG_UFS_CFG2_CGC_EN_ALL, REG_UFS_CFG2_CGC_EN_ALL, 564 REG_UFS_CFG2); 565 566 /* Ensure that HW clock gating is enabled before next operations */ 567 ufshcd_readl(hba, REG_UFS_CFG2); 568 569 /* Enable Unipro internal clock gating */ 570 err = ufshcd_dme_rmw(hba, DL_VS_CLK_CFG_MASK, 571 DL_VS_CLK_CFG_MASK, DL_VS_CLK_CFG); 572 if (err) 573 goto out; 574 575 err = ufshcd_dme_rmw(hba, PA_VS_CLK_CFG_REG_MASK, 576 PA_VS_CLK_CFG_REG_MASK, PA_VS_CLK_CFG_REG); 577 if (err) 578 goto out; 579 580 err = ufshcd_dme_rmw(hba, DME_VS_CORE_CLK_CTRL_DME_HW_CGC_EN, 581 DME_VS_CORE_CLK_CTRL_DME_HW_CGC_EN, 582 DME_VS_CORE_CLK_CTRL); 583 out: 584 if (err) 585 dev_err(hba->dev, "hw clk gating enabled failed\n"); 586 } 587 588 static int ufs_qcom_hce_enable_notify(struct ufs_hba *hba, 589 enum ufs_notify_change_status status) 590 { 591 struct ufs_qcom_host *host = ufshcd_get_variant(hba); 592 int err; 593 594 switch (status) { 595 case PRE_CHANGE: 596 err = ufs_qcom_power_up_sequence(hba); 597 if (err) 598 return err; 599 600 /* 601 * The PHY PLL output is the source of tx/rx lane symbol 602 * clocks, hence, enable the lane clocks only after PHY 603 * is initialized. 604 */ 605 err = ufs_qcom_enable_lane_clks(host); 606 break; 607 case POST_CHANGE: 608 /* check if UFS PHY moved from DISABLED to HIBERN8 */ 609 err = ufs_qcom_check_hibern8(hba); 610 ufs_qcom_enable_hw_clk_gating(hba); 611 ufs_qcom_ice_enable(host); 612 ufs_qcom_config_ice_allocator(host); 613 break; 614 default: 615 dev_err(hba->dev, "%s: invalid status %d\n", __func__, status); 616 err = -EINVAL; 617 break; 618 } 619 return err; 620 } 621 622 /** 623 * ufs_qcom_cfg_timers - Configure ufs qcom cfg timers 624 * 625 * @hba: host controller instance 626 * @is_pre_scale_up: flag to check if pre scale up condition. 627 * @freq: target opp freq 628 * Return: zero for success and non-zero in case of a failure. 629 */ 630 static int ufs_qcom_cfg_timers(struct ufs_hba *hba, bool is_pre_scale_up, unsigned long freq) 631 { 632 struct ufs_qcom_host *host = ufshcd_get_variant(hba); 633 struct ufs_clk_info *clki; 634 unsigned long clk_freq = 0; 635 u32 core_clk_cycles_per_us; 636 637 /* 638 * UTP controller uses SYS1CLK_1US_REG register for Interrupt 639 * Aggregation logic. 640 * It is mandatory to write SYS1CLK_1US_REG register on UFS host 641 * controller V4.0.0 onwards. 642 */ 643 if (host->hw_ver.major < 4 && !ufshcd_is_intr_aggr_allowed(hba)) 644 return 0; 645 646 if (hba->use_pm_opp && freq != ULONG_MAX) { 647 clk_freq = ufs_qcom_opp_freq_to_clk_freq(hba, freq, "core_clk"); 648 if (clk_freq) 649 goto cfg_timers; 650 } 651 652 list_for_each_entry(clki, &hba->clk_list_head, list) { 653 if (!strcmp(clki->name, "core_clk")) { 654 if (freq == ULONG_MAX) { 655 clk_freq = clki->max_freq; 656 break; 657 } 658 659 if (is_pre_scale_up) 660 clk_freq = clki->max_freq; 661 else 662 clk_freq = clk_get_rate(clki->clk); 663 break; 664 } 665 666 } 667 668 cfg_timers: 669 /* If frequency is smaller than 1MHz, set to 1MHz */ 670 if (clk_freq < DEFAULT_CLK_RATE_HZ) 671 clk_freq = DEFAULT_CLK_RATE_HZ; 672 673 core_clk_cycles_per_us = clk_freq / USEC_PER_SEC; 674 if (ufshcd_readl(hba, REG_UFS_SYS1CLK_1US) != core_clk_cycles_per_us) { 675 ufshcd_writel(hba, core_clk_cycles_per_us, REG_UFS_SYS1CLK_1US); 676 /* 677 * make sure above write gets applied before we return from 678 * this function. 679 */ 680 ufshcd_readl(hba, REG_UFS_SYS1CLK_1US); 681 } 682 683 return 0; 684 } 685 686 static int ufs_qcom_link_startup_notify(struct ufs_hba *hba, 687 enum ufs_notify_change_status status) 688 { 689 int err = 0; 690 691 switch (status) { 692 case PRE_CHANGE: 693 if (ufs_qcom_cfg_timers(hba, false, ULONG_MAX)) { 694 dev_err(hba->dev, "%s: ufs_qcom_cfg_timers() failed\n", 695 __func__); 696 return -EINVAL; 697 } 698 699 err = ufs_qcom_set_core_clk_ctrl(hba, true, ULONG_MAX); 700 if (err) 701 dev_err(hba->dev, "cfg core clk ctrl failed\n"); 702 /* 703 * Some UFS devices (and may be host) have issues if LCC is 704 * enabled. So we are setting PA_Local_TX_LCC_Enable to 0 705 * before link startup which will make sure that both host 706 * and device TX LCC are disabled once link startup is 707 * completed. 708 */ 709 err = ufshcd_disable_host_tx_lcc(hba); 710 711 break; 712 default: 713 break; 714 } 715 716 return err; 717 } 718 719 static void ufs_qcom_device_reset_ctrl(struct ufs_hba *hba, bool asserted) 720 { 721 struct ufs_qcom_host *host = ufshcd_get_variant(hba); 722 723 /* reset gpio is optional */ 724 if (!host->device_reset) 725 return; 726 727 gpiod_set_value_cansleep(host->device_reset, asserted); 728 } 729 730 static int ufs_qcom_suspend(struct ufs_hba *hba, enum ufs_pm_op pm_op, 731 enum ufs_notify_change_status status) 732 { 733 struct ufs_qcom_host *host = ufshcd_get_variant(hba); 734 735 if (status == PRE_CHANGE) 736 return 0; 737 738 if (!ufs_qcom_is_link_active(hba)) 739 ufs_qcom_disable_lane_clks(host); 740 741 742 /* reset the connected UFS device during power down */ 743 if (ufs_qcom_is_link_off(hba) && host->device_reset) { 744 ufs_qcom_device_reset_ctrl(hba, true); 745 /* 746 * After sending the SSU command, asserting the rst_n 747 * line causes the device firmware to wake up and 748 * execute its reset routine. 749 * 750 * During this process, the device may draw current 751 * beyond the permissible limit for low-power mode (LPM). 752 * A 10ms delay, based on experimental observations, 753 * allows the UFS device to complete its hardware reset 754 * before transitioning the power rail to LPM. 755 */ 756 usleep_range(10000, 11000); 757 } 758 759 return ufs_qcom_ice_suspend(host); 760 } 761 762 static int ufs_qcom_resume(struct ufs_hba *hba, enum ufs_pm_op pm_op) 763 { 764 struct ufs_qcom_host *host = ufshcd_get_variant(hba); 765 int err; 766 u32 reg_val; 767 768 err = ufs_qcom_enable_lane_clks(host); 769 if (err) 770 return err; 771 772 if ((!ufs_qcom_is_link_active(hba)) && 773 host->hw_ver.major == 5 && 774 host->hw_ver.minor == 0 && 775 host->hw_ver.step == 0) { 776 ufshcd_writel(hba, UFS_ICE_SYNC_RST_SEL | UFS_ICE_SYNC_RST_SW, UFS_MEM_ICE_CFG); 777 reg_val = ufshcd_readl(hba, UFS_MEM_ICE_CFG); 778 reg_val &= ~(UFS_ICE_SYNC_RST_SEL | UFS_ICE_SYNC_RST_SW); 779 /* 780 * HW documentation doesn't recommend any delay between the 781 * reset set and clear. But we are enforcing an arbitrary delay 782 * to give flops enough time to settle in. 783 */ 784 usleep_range(50, 100); 785 ufshcd_writel(hba, reg_val, UFS_MEM_ICE_CFG); 786 ufshcd_readl(hba, UFS_MEM_ICE_CFG); 787 } 788 789 return ufs_qcom_ice_resume(host); 790 } 791 792 static void ufs_qcom_dev_ref_clk_ctrl(struct ufs_qcom_host *host, bool enable) 793 { 794 if (host->dev_ref_clk_ctrl_mmio && 795 (enable ^ host->is_dev_ref_clk_enabled)) { 796 u32 temp = readl_relaxed(host->dev_ref_clk_ctrl_mmio); 797 798 if (enable) 799 temp |= host->dev_ref_clk_en_mask; 800 else 801 temp &= ~host->dev_ref_clk_en_mask; 802 803 /* 804 * If we are here to disable this clock it might be immediately 805 * after entering into hibern8 in which case we need to make 806 * sure that device ref_clk is active for specific time after 807 * hibern8 enter. 808 */ 809 if (!enable) { 810 unsigned long gating_wait; 811 812 gating_wait = host->hba->dev_info.clk_gating_wait_us; 813 if (!gating_wait) { 814 udelay(1); 815 } else { 816 /* 817 * bRefClkGatingWaitTime defines the minimum 818 * time for which the reference clock is 819 * required by device during transition from 820 * HS-MODE to LS-MODE or HIBERN8 state. Give it 821 * more delay to be on the safe side. 822 */ 823 gating_wait += 10; 824 usleep_range(gating_wait, gating_wait + 10); 825 } 826 } 827 828 writel_relaxed(temp, host->dev_ref_clk_ctrl_mmio); 829 830 /* 831 * Make sure the write to ref_clk reaches the destination and 832 * not stored in a Write Buffer (WB). 833 */ 834 readl(host->dev_ref_clk_ctrl_mmio); 835 836 /* 837 * If we call hibern8 exit after this, we need to make sure that 838 * device ref_clk is stable for at least 1us before the hibern8 839 * exit command. 840 */ 841 if (enable) 842 udelay(1); 843 844 host->is_dev_ref_clk_enabled = enable; 845 } 846 } 847 848 static int ufs_qcom_icc_set_bw(struct ufs_qcom_host *host, u32 mem_bw, u32 cfg_bw) 849 { 850 struct device *dev = host->hba->dev; 851 int ret; 852 853 ret = icc_set_bw(host->icc_ddr, 0, mem_bw); 854 if (ret < 0) { 855 dev_err(dev, "failed to set bandwidth request: %d\n", ret); 856 return ret; 857 } 858 859 ret = icc_set_bw(host->icc_cpu, 0, cfg_bw); 860 if (ret < 0) { 861 dev_err(dev, "failed to set bandwidth request: %d\n", ret); 862 return ret; 863 } 864 865 return 0; 866 } 867 868 static struct __ufs_qcom_bw_table ufs_qcom_get_bw_table(struct ufs_qcom_host *host) 869 { 870 struct ufs_pa_layer_attr *p = &host->dev_req_params; 871 int gear = max_t(u32, p->gear_rx, p->gear_tx); 872 int lane = max_t(u32, p->lane_rx, p->lane_tx); 873 874 if (WARN_ONCE(gear > QCOM_UFS_MAX_GEAR, 875 "ICC scaling for UFS Gear (%d) not supported. Using Gear (%d) bandwidth\n", 876 gear, QCOM_UFS_MAX_GEAR)) 877 gear = QCOM_UFS_MAX_GEAR; 878 879 if (WARN_ONCE(lane > QCOM_UFS_MAX_LANE, 880 "ICC scaling for UFS Lane (%d) not supported. Using Lane (%d) bandwidth\n", 881 lane, QCOM_UFS_MAX_LANE)) 882 lane = QCOM_UFS_MAX_LANE; 883 884 if (ufshcd_is_hs_mode(p)) { 885 if (p->hs_rate == PA_HS_MODE_B) 886 return ufs_qcom_bw_table[MODE_HS_RB][gear][lane]; 887 else 888 return ufs_qcom_bw_table[MODE_HS_RA][gear][lane]; 889 } else { 890 return ufs_qcom_bw_table[MODE_PWM][gear][lane]; 891 } 892 } 893 894 static int ufs_qcom_icc_update_bw(struct ufs_qcom_host *host) 895 { 896 struct __ufs_qcom_bw_table bw_table; 897 898 bw_table = ufs_qcom_get_bw_table(host); 899 900 return ufs_qcom_icc_set_bw(host, bw_table.mem_bw, bw_table.cfg_bw); 901 } 902 903 static void ufs_qcom_set_tx_hs_equalizer(struct ufs_hba *hba, u32 gear, u32 tx_lanes) 904 { 905 u32 equalizer_val; 906 int ret, i; 907 908 /* Determine the equalizer value based on the gear */ 909 equalizer_val = (gear == 5) ? DEEMPHASIS_3_5_dB : NO_DEEMPHASIS; 910 911 for (i = 0; i < tx_lanes; i++) { 912 ret = ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(TX_HS_EQUALIZER, i), 913 equalizer_val); 914 if (ret) 915 dev_err(hba->dev, "%s: failed equalizer lane %d\n", 916 __func__, i); 917 } 918 } 919 920 static int ufs_qcom_pwr_change_notify(struct ufs_hba *hba, 921 enum ufs_notify_change_status status, 922 const struct ufs_pa_layer_attr *dev_max_params, 923 struct ufs_pa_layer_attr *dev_req_params) 924 { 925 struct ufs_qcom_host *host = ufshcd_get_variant(hba); 926 struct ufs_host_params *host_params = &host->host_params; 927 int ret = 0; 928 929 if (!dev_req_params) { 930 pr_err("%s: incoming dev_req_params is NULL\n", __func__); 931 return -EINVAL; 932 } 933 934 switch (status) { 935 case PRE_CHANGE: 936 ret = ufshcd_negotiate_pwr_params(host_params, dev_max_params, dev_req_params); 937 if (ret) { 938 dev_err(hba->dev, "%s: failed to determine capabilities\n", 939 __func__); 940 return ret; 941 } 942 943 /* 944 * During UFS driver probe, always update the PHY gear to match the negotiated 945 * gear, so that, if quirk UFSHCD_QUIRK_REINIT_AFTER_MAX_GEAR_SWITCH is enabled, 946 * the second init can program the optimal PHY settings. This allows one to start 947 * the first init with either the minimum or the maximum support gear. 948 */ 949 if (hba->ufshcd_state == UFSHCD_STATE_RESET) { 950 /* 951 * Skip REINIT if the negotiated gear matches with the 952 * initial phy_gear. Otherwise, update the phy_gear to 953 * program the optimal gear setting during REINIT. 954 */ 955 if (host->phy_gear == dev_req_params->gear_tx) 956 hba->quirks &= ~UFSHCD_QUIRK_REINIT_AFTER_MAX_GEAR_SWITCH; 957 else 958 host->phy_gear = dev_req_params->gear_tx; 959 } 960 961 /* enable the device ref clock before changing to HS mode */ 962 if (!ufshcd_is_hs_mode(&hba->pwr_info) && 963 ufshcd_is_hs_mode(dev_req_params)) 964 ufs_qcom_dev_ref_clk_ctrl(host, true); 965 966 if (host->hw_ver.major >= 0x4) { 967 ufshcd_dme_configure_adapt(hba, 968 dev_req_params->gear_tx, 969 PA_INITIAL_ADAPT); 970 } 971 972 if (hba->dev_quirks & UFS_DEVICE_QUIRK_PA_TX_DEEMPHASIS_TUNING) 973 ufs_qcom_set_tx_hs_equalizer(hba, 974 dev_req_params->gear_tx, dev_req_params->lane_tx); 975 976 break; 977 case POST_CHANGE: 978 /* cache the power mode parameters to use internally */ 979 memcpy(&host->dev_req_params, 980 dev_req_params, sizeof(*dev_req_params)); 981 982 ufs_qcom_icc_update_bw(host); 983 984 /* disable the device ref clock if entered PWM mode */ 985 if (ufshcd_is_hs_mode(&hba->pwr_info) && 986 !ufshcd_is_hs_mode(dev_req_params)) 987 ufs_qcom_dev_ref_clk_ctrl(host, false); 988 break; 989 default: 990 ret = -EINVAL; 991 break; 992 } 993 994 return ret; 995 } 996 997 static int ufs_qcom_quirk_host_pa_saveconfigtime(struct ufs_hba *hba) 998 { 999 int err; 1000 u32 pa_vs_config_reg1; 1001 1002 err = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_VS_CONFIG_REG1), 1003 &pa_vs_config_reg1); 1004 if (err) 1005 return err; 1006 1007 /* Allow extension of MSB bits of PA_SaveConfigTime attribute */ 1008 return ufshcd_dme_set(hba, UIC_ARG_MIB(PA_VS_CONFIG_REG1), 1009 (pa_vs_config_reg1 | (1 << 12))); 1010 } 1011 1012 static void ufs_qcom_override_pa_tx_hsg1_sync_len(struct ufs_hba *hba) 1013 { 1014 int err; 1015 1016 err = ufshcd_dme_peer_set(hba, UIC_ARG_MIB(PA_TX_HSG1_SYNC_LENGTH), 1017 PA_TX_HSG1_SYNC_LENGTH_VAL); 1018 if (err) 1019 dev_err(hba->dev, "Failed (%d) set PA_TX_HSG1_SYNC_LENGTH\n", err); 1020 } 1021 1022 static int ufs_qcom_apply_dev_quirks(struct ufs_hba *hba) 1023 { 1024 int err = 0; 1025 1026 if (hba->dev_quirks & UFS_DEVICE_QUIRK_HOST_PA_SAVECONFIGTIME) 1027 err = ufs_qcom_quirk_host_pa_saveconfigtime(hba); 1028 1029 if (hba->dev_quirks & UFS_DEVICE_QUIRK_PA_TX_HSG1_SYNC_LENGTH) 1030 ufs_qcom_override_pa_tx_hsg1_sync_len(hba); 1031 1032 return err; 1033 } 1034 1035 /* UFS device-specific quirks */ 1036 static struct ufs_dev_quirk ufs_qcom_dev_fixups[] = { 1037 { .wmanufacturerid = UFS_VENDOR_SKHYNIX, 1038 .model = UFS_ANY_MODEL, 1039 .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM }, 1040 { .wmanufacturerid = UFS_VENDOR_TOSHIBA, 1041 .model = UFS_ANY_MODEL, 1042 .quirk = UFS_DEVICE_QUIRK_DELAY_AFTER_LPM }, 1043 { .wmanufacturerid = UFS_VENDOR_WDC, 1044 .model = UFS_ANY_MODEL, 1045 .quirk = UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE }, 1046 { .wmanufacturerid = UFS_VENDOR_SAMSUNG, 1047 .model = UFS_ANY_MODEL, 1048 .quirk = UFS_DEVICE_QUIRK_PA_TX_HSG1_SYNC_LENGTH | 1049 UFS_DEVICE_QUIRK_PA_TX_DEEMPHASIS_TUNING }, 1050 {} 1051 }; 1052 1053 static void ufs_qcom_fixup_dev_quirks(struct ufs_hba *hba) 1054 { 1055 ufshcd_fixup_dev_quirks(hba, ufs_qcom_dev_fixups); 1056 } 1057 1058 static u32 ufs_qcom_get_ufs_hci_version(struct ufs_hba *hba) 1059 { 1060 return ufshci_version(2, 0); 1061 } 1062 1063 /** 1064 * ufs_qcom_advertise_quirks - advertise the known QCOM UFS controller quirks 1065 * @hba: host controller instance 1066 * 1067 * QCOM UFS host controller might have some non standard behaviours (quirks) 1068 * than what is specified by UFSHCI specification. Advertise all such 1069 * quirks to standard UFS host controller driver so standard takes them into 1070 * account. 1071 */ 1072 static void ufs_qcom_advertise_quirks(struct ufs_hba *hba) 1073 { 1074 const struct ufs_qcom_drvdata *drvdata = of_device_get_match_data(hba->dev); 1075 struct ufs_qcom_host *host = ufshcd_get_variant(hba); 1076 1077 if (host->hw_ver.major == 0x2) 1078 hba->quirks |= UFSHCD_QUIRK_BROKEN_UFS_HCI_VERSION; 1079 1080 if (host->hw_ver.major > 0x3) 1081 hba->quirks |= UFSHCD_QUIRK_REINIT_AFTER_MAX_GEAR_SWITCH; 1082 1083 if (drvdata && drvdata->quirks) 1084 hba->quirks |= drvdata->quirks; 1085 } 1086 1087 static void ufs_qcom_set_phy_gear(struct ufs_qcom_host *host) 1088 { 1089 struct ufs_host_params *host_params = &host->host_params; 1090 u32 val, dev_major; 1091 1092 /* 1093 * Default to powering up the PHY to the max gear possible, which is 1094 * backwards compatible with lower gears but not optimal from 1095 * a power usage point of view. After device negotiation, if the 1096 * gear is lower a reinit will be performed to program the PHY 1097 * to the ideal gear for this combo of controller and device. 1098 */ 1099 host->phy_gear = host_params->hs_tx_gear; 1100 1101 if (host->hw_ver.major < 0x4) { 1102 /* 1103 * These controllers only have one PHY init sequence, 1104 * let's power up the PHY using that (the minimum supported 1105 * gear, UFS_HS_G2). 1106 */ 1107 host->phy_gear = UFS_HS_G2; 1108 } else if (host->hw_ver.major >= 0x5) { 1109 val = ufshcd_readl(host->hba, REG_UFS_DEBUG_SPARE_CFG); 1110 dev_major = FIELD_GET(UFS_DEV_VER_MAJOR_MASK, val); 1111 1112 /* 1113 * Since the UFS device version is populated, let's remove the 1114 * REINIT quirk as the negotiated gear won't change during boot. 1115 * So there is no need to do reinit. 1116 */ 1117 if (dev_major != 0x0) 1118 host->hba->quirks &= ~UFSHCD_QUIRK_REINIT_AFTER_MAX_GEAR_SWITCH; 1119 1120 /* 1121 * For UFS 3.1 device and older, power up the PHY using HS-G4 1122 * PHY gear to save power. 1123 */ 1124 if (dev_major > 0x0 && dev_major < 0x4) 1125 host->phy_gear = UFS_HS_G4; 1126 } 1127 } 1128 1129 static void ufs_qcom_parse_gear_limits(struct ufs_hba *hba) 1130 { 1131 struct ufs_qcom_host *host = ufshcd_get_variant(hba); 1132 struct ufs_host_params *host_params = &host->host_params; 1133 u32 hs_gear_old = host_params->hs_tx_gear; 1134 1135 ufshcd_parse_gear_limits(hba, host_params); 1136 if (host_params->hs_tx_gear != hs_gear_old) { 1137 host->phy_gear = host_params->hs_tx_gear; 1138 } 1139 } 1140 1141 static void ufs_qcom_set_host_params(struct ufs_hba *hba) 1142 { 1143 struct ufs_qcom_host *host = ufshcd_get_variant(hba); 1144 struct ufs_host_params *host_params = &host->host_params; 1145 1146 ufshcd_init_host_params(host_params); 1147 1148 /* This driver only supports symmetic gear setting i.e., hs_tx_gear == hs_rx_gear */ 1149 host_params->hs_tx_gear = host_params->hs_rx_gear = ufs_qcom_get_hs_gear(hba); 1150 } 1151 1152 static void ufs_qcom_set_host_caps(struct ufs_hba *hba) 1153 { 1154 struct ufs_qcom_host *host = ufshcd_get_variant(hba); 1155 1156 if (host->hw_ver.major >= 0x5) 1157 host->caps |= UFS_QCOM_CAP_ICE_CONFIG; 1158 } 1159 1160 static void ufs_qcom_set_caps(struct ufs_hba *hba) 1161 { 1162 hba->caps |= UFSHCD_CAP_CLK_GATING | UFSHCD_CAP_HIBERN8_WITH_CLK_GATING; 1163 hba->caps |= UFSHCD_CAP_CLK_SCALING | UFSHCD_CAP_WB_WITH_CLK_SCALING; 1164 hba->caps |= UFSHCD_CAP_AUTO_BKOPS_SUSPEND; 1165 hba->caps |= UFSHCD_CAP_WB_EN; 1166 hba->caps |= UFSHCD_CAP_AGGR_POWER_COLLAPSE; 1167 hba->caps |= UFSHCD_CAP_RPM_AUTOSUSPEND; 1168 1169 ufs_qcom_set_host_caps(hba); 1170 } 1171 1172 /** 1173 * ufs_qcom_setup_clocks - enables/disable clocks 1174 * @hba: host controller instance 1175 * @on: If true, enable clocks else disable them. 1176 * @status: PRE_CHANGE or POST_CHANGE notify 1177 * 1178 * There are certain clocks which comes from the PHY so it needs 1179 * to be managed together along with controller clocks which also 1180 * provides a better power saving. Hence keep phy_power_off/on calls 1181 * in ufs_qcom_setup_clocks, so that PHY's regulators & clks can be 1182 * turned on/off along with UFS's clocks. 1183 * 1184 * Return: 0 on success, non-zero on failure. 1185 */ 1186 static int ufs_qcom_setup_clocks(struct ufs_hba *hba, bool on, 1187 enum ufs_notify_change_status status) 1188 { 1189 struct ufs_qcom_host *host = ufshcd_get_variant(hba); 1190 struct phy *phy; 1191 int err; 1192 1193 /* 1194 * In case ufs_qcom_init() is not yet done, simply ignore. 1195 * This ufs_qcom_setup_clocks() shall be called from 1196 * ufs_qcom_init() after init is done. 1197 */ 1198 if (!host) 1199 return 0; 1200 1201 phy = host->generic_phy; 1202 1203 switch (status) { 1204 case PRE_CHANGE: 1205 if (on) { 1206 ufs_qcom_icc_update_bw(host); 1207 if (ufs_qcom_is_link_hibern8(hba)) { 1208 err = ufs_qcom_enable_lane_clks(host); 1209 if (err) { 1210 dev_err(hba->dev, "enable lane clks failed, ret=%d\n", err); 1211 return err; 1212 } 1213 } 1214 } else { 1215 if (!ufs_qcom_is_link_active(hba)) { 1216 /* disable device ref_clk */ 1217 ufs_qcom_dev_ref_clk_ctrl(host, false); 1218 } 1219 1220 err = phy_power_off(phy); 1221 if (err) { 1222 dev_err(hba->dev, "phy power off failed, ret=%d\n", err); 1223 return err; 1224 } 1225 } 1226 break; 1227 case POST_CHANGE: 1228 if (on) { 1229 err = phy_power_on(phy); 1230 if (err) { 1231 dev_err(hba->dev, "phy power on failed, ret = %d\n", err); 1232 return err; 1233 } 1234 1235 /* enable the device ref clock for HS mode*/ 1236 if (ufshcd_is_hs_mode(&hba->pwr_info)) 1237 ufs_qcom_dev_ref_clk_ctrl(host, true); 1238 } else { 1239 if (ufs_qcom_is_link_hibern8(hba)) 1240 ufs_qcom_disable_lane_clks(host); 1241 1242 ufs_qcom_icc_set_bw(host, ufs_qcom_bw_table[MODE_MIN][0][0].mem_bw, 1243 ufs_qcom_bw_table[MODE_MIN][0][0].cfg_bw); 1244 } 1245 break; 1246 } 1247 1248 return 0; 1249 } 1250 1251 static int 1252 ufs_qcom_reset_assert(struct reset_controller_dev *rcdev, unsigned long id) 1253 { 1254 struct ufs_qcom_host *host = rcdev_to_ufs_host(rcdev); 1255 1256 ufs_qcom_assert_reset(host->hba); 1257 /* provide 1ms delay to let the reset pulse propagate. */ 1258 usleep_range(1000, 1100); 1259 return 0; 1260 } 1261 1262 static int 1263 ufs_qcom_reset_deassert(struct reset_controller_dev *rcdev, unsigned long id) 1264 { 1265 struct ufs_qcom_host *host = rcdev_to_ufs_host(rcdev); 1266 1267 ufs_qcom_deassert_reset(host->hba); 1268 1269 /* 1270 * after reset deassertion, phy will need all ref clocks, 1271 * voltage, current to settle down before starting serdes. 1272 */ 1273 usleep_range(1000, 1100); 1274 return 0; 1275 } 1276 1277 static const struct reset_control_ops ufs_qcom_reset_ops = { 1278 .assert = ufs_qcom_reset_assert, 1279 .deassert = ufs_qcom_reset_deassert, 1280 }; 1281 1282 static int ufs_qcom_icc_init(struct ufs_qcom_host *host) 1283 { 1284 struct device *dev = host->hba->dev; 1285 int ret; 1286 1287 host->icc_ddr = devm_of_icc_get(dev, "ufs-ddr"); 1288 if (IS_ERR(host->icc_ddr)) 1289 return dev_err_probe(dev, PTR_ERR(host->icc_ddr), 1290 "failed to acquire interconnect path\n"); 1291 1292 host->icc_cpu = devm_of_icc_get(dev, "cpu-ufs"); 1293 if (IS_ERR(host->icc_cpu)) 1294 return dev_err_probe(dev, PTR_ERR(host->icc_cpu), 1295 "failed to acquire interconnect path\n"); 1296 1297 /* 1298 * Set Maximum bandwidth vote before initializing the UFS controller and 1299 * device. Ideally, a minimal interconnect vote would suffice for the 1300 * initialization, but a max vote would allow faster initialization. 1301 */ 1302 ret = ufs_qcom_icc_set_bw(host, ufs_qcom_bw_table[MODE_MAX][0][0].mem_bw, 1303 ufs_qcom_bw_table[MODE_MAX][0][0].cfg_bw); 1304 if (ret < 0) 1305 return dev_err_probe(dev, ret, "failed to set bandwidth request\n"); 1306 1307 return 0; 1308 } 1309 1310 /** 1311 * ufs_qcom_init - bind phy with controller 1312 * @hba: host controller instance 1313 * 1314 * Binds PHY with controller and powers up PHY enabling clocks 1315 * and regulators. 1316 * 1317 * Return: -EPROBE_DEFER if binding fails, returns negative error 1318 * on phy power up failure and returns zero on success. 1319 */ 1320 static int ufs_qcom_init(struct ufs_hba *hba) 1321 { 1322 int err; 1323 struct device *dev = hba->dev; 1324 struct ufs_qcom_host *host; 1325 struct ufs_clk_info *clki; 1326 const struct ufs_qcom_drvdata *drvdata = of_device_get_match_data(hba->dev); 1327 1328 host = devm_kzalloc(dev, sizeof(*host), GFP_KERNEL); 1329 if (!host) 1330 return -ENOMEM; 1331 1332 /* Make a two way bind between the qcom host and the hba */ 1333 host->hba = hba; 1334 ufshcd_set_variant(hba, host); 1335 1336 /* Setup the optional reset control of HCI */ 1337 host->core_reset = devm_reset_control_get_optional(hba->dev, "rst"); 1338 if (IS_ERR(host->core_reset)) { 1339 err = dev_err_probe(dev, PTR_ERR(host->core_reset), 1340 "Failed to get reset control\n"); 1341 goto out_variant_clear; 1342 } 1343 1344 /* Fire up the reset controller. Failure here is non-fatal. */ 1345 host->rcdev.of_node = dev->of_node; 1346 host->rcdev.ops = &ufs_qcom_reset_ops; 1347 host->rcdev.owner = dev->driver->owner; 1348 host->rcdev.nr_resets = 1; 1349 err = devm_reset_controller_register(dev, &host->rcdev); 1350 if (err) 1351 dev_warn(dev, "Failed to register reset controller\n"); 1352 1353 if (!has_acpi_companion(dev)) { 1354 host->generic_phy = devm_phy_get(dev, "ufsphy"); 1355 if (IS_ERR(host->generic_phy)) { 1356 err = dev_err_probe(dev, PTR_ERR(host->generic_phy), "Failed to get PHY\n"); 1357 goto out_variant_clear; 1358 } 1359 } 1360 1361 err = ufs_qcom_icc_init(host); 1362 if (err) 1363 goto out_variant_clear; 1364 1365 host->device_reset = devm_gpiod_get_optional(dev, "reset", 1366 GPIOD_OUT_HIGH); 1367 if (IS_ERR(host->device_reset)) { 1368 err = dev_err_probe(dev, PTR_ERR(host->device_reset), 1369 "Failed to acquire device reset gpio\n"); 1370 goto out_variant_clear; 1371 } 1372 1373 ufs_qcom_get_controller_revision(hba, &host->hw_ver.major, 1374 &host->hw_ver.minor, &host->hw_ver.step); 1375 1376 host->dev_ref_clk_ctrl_mmio = hba->mmio_base + REG_UFS_CFG1; 1377 host->dev_ref_clk_en_mask = BIT(26); 1378 1379 list_for_each_entry(clki, &hba->clk_list_head, list) { 1380 if (!strcmp(clki->name, "core_clk_unipro")) 1381 clki->keep_link_active = true; 1382 } 1383 1384 err = ufs_qcom_init_lane_clks(host); 1385 if (err) 1386 goto out_variant_clear; 1387 1388 ufs_qcom_set_caps(hba); 1389 ufs_qcom_advertise_quirks(hba); 1390 ufs_qcom_set_host_params(hba); 1391 ufs_qcom_set_phy_gear(host); 1392 ufs_qcom_parse_gear_limits(hba); 1393 1394 err = ufs_qcom_ice_init(host); 1395 if (err) 1396 goto out_variant_clear; 1397 1398 ufs_qcom_setup_clocks(hba, true, POST_CHANGE); 1399 1400 ufs_qcom_get_default_testbus_cfg(host); 1401 err = ufs_qcom_testbus_config(host); 1402 if (err) 1403 /* Failure is non-fatal */ 1404 dev_warn(dev, "%s: failed to configure the testbus %d\n", 1405 __func__, err); 1406 1407 if (drvdata && drvdata->no_phy_retention) 1408 hba->spm_lvl = UFS_PM_LVL_5; 1409 1410 return 0; 1411 1412 out_variant_clear: 1413 ufshcd_set_variant(hba, NULL); 1414 1415 return err; 1416 } 1417 1418 static void ufs_qcom_exit(struct ufs_hba *hba) 1419 { 1420 struct ufs_qcom_host *host = ufshcd_get_variant(hba); 1421 1422 ufs_qcom_disable_lane_clks(host); 1423 phy_power_off(host->generic_phy); 1424 phy_exit(host->generic_phy); 1425 } 1426 1427 /** 1428 * ufs_qcom_set_clk_40ns_cycles - Configure 40ns clk cycles 1429 * 1430 * @hba: host controller instance 1431 * @cycles_in_1us: No of cycles in 1us to be configured 1432 * 1433 * Returns error if dme get/set configuration for 40ns fails 1434 * and returns zero on success. 1435 */ 1436 static int ufs_qcom_set_clk_40ns_cycles(struct ufs_hba *hba, 1437 u32 cycles_in_1us) 1438 { 1439 struct ufs_qcom_host *host = ufshcd_get_variant(hba); 1440 u32 cycles_in_40ns; 1441 u32 reg; 1442 int err; 1443 1444 /* 1445 * UFS host controller V4.0.0 onwards needs to program 1446 * PA_VS_CORE_CLK_40NS_CYCLES attribute per programmed 1447 * frequency of unipro core clk of UFS host controller. 1448 */ 1449 if (host->hw_ver.major < 4) 1450 return 0; 1451 1452 /* 1453 * Generic formulae for cycles_in_40ns = (freq_unipro/25) is not 1454 * applicable for all frequencies. For ex: ceil(37.5 MHz/25) will 1455 * be 2 and ceil(403 MHZ/25) will be 17 whereas Hardware 1456 * specification expect to be 16. Hence use exact hardware spec 1457 * mandated value for cycles_in_40ns instead of calculating using 1458 * generic formulae. 1459 */ 1460 switch (cycles_in_1us) { 1461 case UNIPRO_CORE_CLK_FREQ_403_MHZ: 1462 cycles_in_40ns = 16; 1463 break; 1464 case UNIPRO_CORE_CLK_FREQ_300_MHZ: 1465 cycles_in_40ns = 12; 1466 break; 1467 case UNIPRO_CORE_CLK_FREQ_201_5_MHZ: 1468 cycles_in_40ns = 8; 1469 break; 1470 case UNIPRO_CORE_CLK_FREQ_150_MHZ: 1471 cycles_in_40ns = 6; 1472 break; 1473 case UNIPRO_CORE_CLK_FREQ_100_MHZ: 1474 cycles_in_40ns = 4; 1475 break; 1476 case UNIPRO_CORE_CLK_FREQ_75_MHZ: 1477 cycles_in_40ns = 3; 1478 break; 1479 case UNIPRO_CORE_CLK_FREQ_37_5_MHZ: 1480 cycles_in_40ns = 2; 1481 break; 1482 default: 1483 dev_err(hba->dev, "UNIPRO clk freq %u MHz not supported\n", 1484 cycles_in_1us); 1485 return -EINVAL; 1486 } 1487 1488 err = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_VS_CORE_CLK_40NS_CYCLES), ®); 1489 if (err) 1490 return err; 1491 1492 reg &= ~PA_VS_CORE_CLK_40NS_CYCLES_MASK; 1493 reg |= cycles_in_40ns; 1494 1495 return ufshcd_dme_set(hba, UIC_ARG_MIB(PA_VS_CORE_CLK_40NS_CYCLES), reg); 1496 } 1497 1498 static int ufs_qcom_set_core_clk_ctrl(struct ufs_hba *hba, bool is_scale_up, unsigned long freq) 1499 { 1500 struct ufs_qcom_host *host = ufshcd_get_variant(hba); 1501 struct list_head *head = &hba->clk_list_head; 1502 struct ufs_clk_info *clki; 1503 u32 cycles_in_1us = 0; 1504 u32 core_clk_ctrl_reg; 1505 unsigned long clk_freq; 1506 int err; 1507 1508 if (hba->use_pm_opp && freq != ULONG_MAX) { 1509 clk_freq = ufs_qcom_opp_freq_to_clk_freq(hba, freq, "core_clk_unipro"); 1510 if (clk_freq) { 1511 cycles_in_1us = ceil(clk_freq, HZ_PER_MHZ); 1512 goto set_core_clk_ctrl; 1513 } 1514 } 1515 1516 list_for_each_entry(clki, head, list) { 1517 if (!IS_ERR_OR_NULL(clki->clk) && 1518 !strcmp(clki->name, "core_clk_unipro")) { 1519 if (!clki->max_freq) { 1520 cycles_in_1us = 150; /* default for backwards compatibility */ 1521 break; 1522 } 1523 1524 if (freq == ULONG_MAX) { 1525 cycles_in_1us = ceil(clki->max_freq, HZ_PER_MHZ); 1526 break; 1527 } 1528 1529 if (is_scale_up) 1530 cycles_in_1us = ceil(clki->max_freq, HZ_PER_MHZ); 1531 else 1532 cycles_in_1us = ceil(clk_get_rate(clki->clk), HZ_PER_MHZ); 1533 break; 1534 } 1535 } 1536 1537 set_core_clk_ctrl: 1538 err = ufshcd_dme_get(hba, 1539 UIC_ARG_MIB(DME_VS_CORE_CLK_CTRL), 1540 &core_clk_ctrl_reg); 1541 if (err) 1542 return err; 1543 1544 /* Bit mask is different for UFS host controller V4.0.0 onwards */ 1545 if (host->hw_ver.major >= 4) { 1546 if (!FIELD_FIT(CLK_1US_CYCLES_MASK_V4, cycles_in_1us)) 1547 return -ERANGE; 1548 core_clk_ctrl_reg &= ~CLK_1US_CYCLES_MASK_V4; 1549 core_clk_ctrl_reg |= FIELD_PREP(CLK_1US_CYCLES_MASK_V4, cycles_in_1us); 1550 } else { 1551 if (!FIELD_FIT(CLK_1US_CYCLES_MASK, cycles_in_1us)) 1552 return -ERANGE; 1553 core_clk_ctrl_reg &= ~CLK_1US_CYCLES_MASK; 1554 core_clk_ctrl_reg |= FIELD_PREP(CLK_1US_CYCLES_MASK, cycles_in_1us); 1555 } 1556 1557 /* Clear CORE_CLK_DIV_EN */ 1558 core_clk_ctrl_reg &= ~DME_VS_CORE_CLK_CTRL_CORE_CLK_DIV_EN_BIT; 1559 1560 err = ufshcd_dme_set(hba, 1561 UIC_ARG_MIB(DME_VS_CORE_CLK_CTRL), 1562 core_clk_ctrl_reg); 1563 if (err) 1564 return err; 1565 1566 /* Configure unipro core clk 40ns attribute */ 1567 return ufs_qcom_set_clk_40ns_cycles(hba, cycles_in_1us); 1568 } 1569 1570 static int ufs_qcom_clk_scale_up_pre_change(struct ufs_hba *hba, unsigned long freq) 1571 { 1572 int ret; 1573 1574 ret = ufs_qcom_cfg_timers(hba, true, freq); 1575 if (ret) { 1576 dev_err(hba->dev, "%s ufs cfg timer failed\n", __func__); 1577 return ret; 1578 } 1579 /* set unipro core clock attributes and clear clock divider */ 1580 return ufs_qcom_set_core_clk_ctrl(hba, true, freq); 1581 } 1582 1583 static int ufs_qcom_clk_scale_up_post_change(struct ufs_hba *hba) 1584 { 1585 return 0; 1586 } 1587 1588 static int ufs_qcom_clk_scale_down_pre_change(struct ufs_hba *hba) 1589 { 1590 int err; 1591 u32 core_clk_ctrl_reg; 1592 1593 err = ufshcd_dme_get(hba, 1594 UIC_ARG_MIB(DME_VS_CORE_CLK_CTRL), 1595 &core_clk_ctrl_reg); 1596 1597 /* make sure CORE_CLK_DIV_EN is cleared */ 1598 if (!err && 1599 (core_clk_ctrl_reg & DME_VS_CORE_CLK_CTRL_CORE_CLK_DIV_EN_BIT)) { 1600 core_clk_ctrl_reg &= ~DME_VS_CORE_CLK_CTRL_CORE_CLK_DIV_EN_BIT; 1601 err = ufshcd_dme_set(hba, 1602 UIC_ARG_MIB(DME_VS_CORE_CLK_CTRL), 1603 core_clk_ctrl_reg); 1604 } 1605 1606 return err; 1607 } 1608 1609 static int ufs_qcom_clk_scale_down_post_change(struct ufs_hba *hba, unsigned long freq) 1610 { 1611 int ret; 1612 1613 ret = ufs_qcom_cfg_timers(hba, false, freq); 1614 if (ret) { 1615 dev_err(hba->dev, "%s: ufs_qcom_cfg_timers() failed\n", __func__); 1616 return ret; 1617 } 1618 /* set unipro core clock attributes and clear clock divider */ 1619 return ufs_qcom_set_core_clk_ctrl(hba, false, freq); 1620 } 1621 1622 static int ufs_qcom_clk_scale_notify(struct ufs_hba *hba, bool scale_up, 1623 unsigned long target_freq, 1624 enum ufs_notify_change_status status) 1625 { 1626 struct ufs_qcom_host *host = ufshcd_get_variant(hba); 1627 int err; 1628 1629 /* check the host controller state before sending hibern8 cmd */ 1630 if (!ufshcd_is_hba_active(hba)) 1631 return 0; 1632 1633 if (status == PRE_CHANGE) { 1634 err = ufshcd_uic_hibern8_enter(hba); 1635 if (err) 1636 return err; 1637 if (scale_up) 1638 err = ufs_qcom_clk_scale_up_pre_change(hba, target_freq); 1639 else 1640 err = ufs_qcom_clk_scale_down_pre_change(hba); 1641 1642 if (err) { 1643 ufshcd_uic_hibern8_exit(hba); 1644 return err; 1645 } 1646 } else { 1647 if (scale_up) 1648 err = ufs_qcom_clk_scale_up_post_change(hba); 1649 else 1650 err = ufs_qcom_clk_scale_down_post_change(hba, target_freq); 1651 1652 1653 if (err) { 1654 ufshcd_uic_hibern8_exit(hba); 1655 return err; 1656 } 1657 1658 ufs_qcom_icc_update_bw(host); 1659 ufshcd_uic_hibern8_exit(hba); 1660 } 1661 1662 return 0; 1663 } 1664 1665 static void ufs_qcom_enable_test_bus(struct ufs_qcom_host *host) 1666 { 1667 ufshcd_rmwl(host->hba, UFS_REG_TEST_BUS_EN, 1668 UFS_REG_TEST_BUS_EN, REG_UFS_CFG1); 1669 ufshcd_rmwl(host->hba, TEST_BUS_EN, TEST_BUS_EN, REG_UFS_CFG1); 1670 } 1671 1672 static void ufs_qcom_get_default_testbus_cfg(struct ufs_qcom_host *host) 1673 { 1674 /* provide a legal default configuration */ 1675 host->testbus.select_major = TSTBUS_UNIPRO; 1676 host->testbus.select_minor = 37; 1677 } 1678 1679 static bool ufs_qcom_testbus_cfg_is_ok(struct ufs_qcom_host *host) 1680 { 1681 if (host->testbus.select_major >= TSTBUS_MAX) { 1682 dev_err(host->hba->dev, 1683 "%s: UFS_CFG1[TEST_BUS_SEL} may not equal 0x%05X\n", 1684 __func__, host->testbus.select_major); 1685 return false; 1686 } 1687 1688 return true; 1689 } 1690 1691 int ufs_qcom_testbus_config(struct ufs_qcom_host *host) 1692 { 1693 int reg; 1694 int offset; 1695 u32 mask = TEST_BUS_SUB_SEL_MASK; 1696 1697 if (!host) 1698 return -EINVAL; 1699 1700 if (!ufs_qcom_testbus_cfg_is_ok(host)) 1701 return -EPERM; 1702 1703 switch (host->testbus.select_major) { 1704 case TSTBUS_UAWM: 1705 reg = UFS_TEST_BUS_CTRL_0; 1706 offset = 24; 1707 break; 1708 case TSTBUS_UARM: 1709 reg = UFS_TEST_BUS_CTRL_0; 1710 offset = 16; 1711 break; 1712 case TSTBUS_TXUC: 1713 reg = UFS_TEST_BUS_CTRL_0; 1714 offset = 8; 1715 break; 1716 case TSTBUS_RXUC: 1717 reg = UFS_TEST_BUS_CTRL_0; 1718 offset = 0; 1719 break; 1720 case TSTBUS_DFC: 1721 reg = UFS_TEST_BUS_CTRL_1; 1722 offset = 24; 1723 break; 1724 case TSTBUS_TRLUT: 1725 reg = UFS_TEST_BUS_CTRL_1; 1726 offset = 16; 1727 break; 1728 case TSTBUS_TMRLUT: 1729 reg = UFS_TEST_BUS_CTRL_1; 1730 offset = 8; 1731 break; 1732 case TSTBUS_OCSC: 1733 reg = UFS_TEST_BUS_CTRL_1; 1734 offset = 0; 1735 break; 1736 case TSTBUS_WRAPPER: 1737 reg = UFS_TEST_BUS_CTRL_2; 1738 offset = 16; 1739 break; 1740 case TSTBUS_COMBINED: 1741 reg = UFS_TEST_BUS_CTRL_2; 1742 offset = 8; 1743 break; 1744 case TSTBUS_UTP_HCI: 1745 reg = UFS_TEST_BUS_CTRL_2; 1746 offset = 0; 1747 break; 1748 case TSTBUS_UNIPRO: 1749 reg = UFS_UNIPRO_CFG; 1750 offset = 20; 1751 mask = 0xFFF; 1752 break; 1753 /* 1754 * No need for a default case, since 1755 * ufs_qcom_testbus_cfg_is_ok() checks that the configuration 1756 * is legal 1757 */ 1758 } 1759 mask <<= offset; 1760 ufshcd_rmwl(host->hba, TEST_BUS_SEL, 1761 (u32)host->testbus.select_major << 19, 1762 REG_UFS_CFG1); 1763 ufshcd_rmwl(host->hba, mask, 1764 (u32)host->testbus.select_minor << offset, 1765 reg); 1766 ufs_qcom_enable_test_bus(host); 1767 1768 return 0; 1769 } 1770 1771 static void ufs_qcom_dump_testbus(struct ufs_hba *hba) 1772 { 1773 struct ufs_qcom_host *host = ufshcd_get_variant(hba); 1774 int i, j, nminor = 0, testbus_len = 0; 1775 u32 *testbus __free(kfree) = NULL; 1776 char *prefix; 1777 1778 testbus = kmalloc_array(256, sizeof(u32), GFP_KERNEL); 1779 if (!testbus) 1780 return; 1781 1782 for (j = 0; j < TSTBUS_MAX; j++) { 1783 nminor = testbus_info[j].nminor; 1784 prefix = testbus_info[j].prefix; 1785 host->testbus.select_major = j; 1786 testbus_len = nminor * sizeof(u32); 1787 for (i = 0; i < nminor; i++) { 1788 host->testbus.select_minor = i; 1789 ufs_qcom_testbus_config(host); 1790 testbus[i] = ufshcd_readl(hba, UFS_TEST_BUS); 1791 } 1792 print_hex_dump(KERN_ERR, prefix, DUMP_PREFIX_OFFSET, 1793 16, 4, testbus, testbus_len, false); 1794 } 1795 } 1796 1797 static int ufs_qcom_dump_regs(struct ufs_hba *hba, size_t offset, size_t len, 1798 const char *prefix, void __iomem *base) 1799 { 1800 u32 *regs __free(kfree) = NULL; 1801 size_t pos; 1802 1803 if (offset % 4 != 0 || len % 4 != 0) 1804 return -EINVAL; 1805 1806 regs = kzalloc(len, GFP_ATOMIC); 1807 if (!regs) 1808 return -ENOMEM; 1809 1810 for (pos = 0; pos < len; pos += 4) 1811 regs[pos / 4] = readl(base + offset + pos); 1812 1813 print_hex_dump(KERN_ERR, prefix, 1814 len > 4 ? DUMP_PREFIX_OFFSET : DUMP_PREFIX_NONE, 1815 16, 4, regs, len, false); 1816 1817 return 0; 1818 } 1819 1820 static void ufs_qcom_dump_mcq_hci_regs(struct ufs_hba *hba) 1821 { 1822 struct ufshcd_mcq_opr_info_t *opr = &hba->mcq_opr[0]; 1823 void __iomem *mcq_vs_base = hba->mcq_base + UFS_MEM_VS_BASE; 1824 1825 struct dump_info { 1826 void __iomem *base; 1827 size_t offset; 1828 size_t len; 1829 const char *prefix; 1830 }; 1831 1832 struct dump_info mcq_dumps[] = { 1833 {hba->mcq_base, 0x0, 256 * 4, "MCQ HCI-0 "}, 1834 {hba->mcq_base, 0x400, 256 * 4, "MCQ HCI-1 "}, 1835 {mcq_vs_base, 0x0, 5 * 4, "MCQ VS-0 "}, 1836 {opr->base, 0x0, 256 * 4, "MCQ SQD-0 "}, 1837 {opr->base, 0x400, 256 * 4, "MCQ SQD-1 "}, 1838 {opr->base, 0x800, 256 * 4, "MCQ SQD-2 "}, 1839 {opr->base, 0xc00, 256 * 4, "MCQ SQD-3 "}, 1840 {opr->base, 0x1000, 256 * 4, "MCQ SQD-4 "}, 1841 {opr->base, 0x1400, 256 * 4, "MCQ SQD-5 "}, 1842 {opr->base, 0x1800, 256 * 4, "MCQ SQD-6 "}, 1843 {opr->base, 0x1c00, 256 * 4, "MCQ SQD-7 "}, 1844 1845 }; 1846 1847 for (int i = 0; i < ARRAY_SIZE(mcq_dumps); i++) { 1848 ufs_qcom_dump_regs(hba, mcq_dumps[i].offset, mcq_dumps[i].len, 1849 mcq_dumps[i].prefix, mcq_dumps[i].base); 1850 cond_resched(); 1851 } 1852 } 1853 1854 static void ufs_qcom_dump_dbg_regs(struct ufs_hba *hba) 1855 { 1856 u32 reg; 1857 struct ufs_qcom_host *host; 1858 1859 host = ufshcd_get_variant(hba); 1860 1861 dev_err(hba->dev, "HW_H8_ENTER_CNT=%d\n", ufshcd_readl(hba, REG_UFS_HW_H8_ENTER_CNT)); 1862 dev_err(hba->dev, "HW_H8_EXIT_CNT=%d\n", ufshcd_readl(hba, REG_UFS_HW_H8_EXIT_CNT)); 1863 1864 dev_err(hba->dev, "SW_H8_ENTER_CNT=%d\n", ufshcd_readl(hba, REG_UFS_SW_H8_ENTER_CNT)); 1865 dev_err(hba->dev, "SW_H8_EXIT_CNT=%d\n", ufshcd_readl(hba, REG_UFS_SW_H8_EXIT_CNT)); 1866 1867 dev_err(hba->dev, "SW_AFTER_HW_H8_ENTER_CNT=%d\n", 1868 ufshcd_readl(hba, REG_UFS_SW_AFTER_HW_H8_ENTER_CNT)); 1869 1870 ufshcd_dump_regs(hba, REG_UFS_SYS1CLK_1US, 16 * 4, 1871 "HCI Vendor Specific Registers "); 1872 1873 reg = ufs_qcom_get_debug_reg_offset(host, UFS_UFS_DBG_RD_REG_OCSC); 1874 ufshcd_dump_regs(hba, reg, 44 * 4, "UFS_UFS_DBG_RD_REG_OCSC "); 1875 1876 reg = ufshcd_readl(hba, REG_UFS_CFG1); 1877 reg |= UTP_DBG_RAMS_EN; 1878 ufshcd_writel(hba, reg, REG_UFS_CFG1); 1879 1880 reg = ufs_qcom_get_debug_reg_offset(host, UFS_UFS_DBG_RD_EDTL_RAM); 1881 ufshcd_dump_regs(hba, reg, 32 * 4, "UFS_UFS_DBG_RD_EDTL_RAM "); 1882 1883 reg = ufs_qcom_get_debug_reg_offset(host, UFS_UFS_DBG_RD_DESC_RAM); 1884 ufshcd_dump_regs(hba, reg, 128 * 4, "UFS_UFS_DBG_RD_DESC_RAM "); 1885 1886 reg = ufs_qcom_get_debug_reg_offset(host, UFS_UFS_DBG_RD_PRDT_RAM); 1887 ufshcd_dump_regs(hba, reg, 64 * 4, "UFS_UFS_DBG_RD_PRDT_RAM "); 1888 1889 /* clear bit 17 - UTP_DBG_RAMS_EN */ 1890 ufshcd_rmwl(hba, UTP_DBG_RAMS_EN, 0, REG_UFS_CFG1); 1891 1892 reg = ufs_qcom_get_debug_reg_offset(host, UFS_DBG_RD_REG_UAWM); 1893 ufshcd_dump_regs(hba, reg, 4 * 4, "UFS_DBG_RD_REG_UAWM "); 1894 1895 reg = ufs_qcom_get_debug_reg_offset(host, UFS_DBG_RD_REG_UARM); 1896 ufshcd_dump_regs(hba, reg, 4 * 4, "UFS_DBG_RD_REG_UARM "); 1897 1898 reg = ufs_qcom_get_debug_reg_offset(host, UFS_DBG_RD_REG_TXUC); 1899 ufshcd_dump_regs(hba, reg, 48 * 4, "UFS_DBG_RD_REG_TXUC "); 1900 1901 reg = ufs_qcom_get_debug_reg_offset(host, UFS_DBG_RD_REG_RXUC); 1902 ufshcd_dump_regs(hba, reg, 27 * 4, "UFS_DBG_RD_REG_RXUC "); 1903 1904 reg = ufs_qcom_get_debug_reg_offset(host, UFS_DBG_RD_REG_DFC); 1905 ufshcd_dump_regs(hba, reg, 19 * 4, "UFS_DBG_RD_REG_DFC "); 1906 1907 reg = ufs_qcom_get_debug_reg_offset(host, UFS_DBG_RD_REG_TRLUT); 1908 ufshcd_dump_regs(hba, reg, 34 * 4, "UFS_DBG_RD_REG_TRLUT "); 1909 1910 reg = ufs_qcom_get_debug_reg_offset(host, UFS_DBG_RD_REG_TMRLUT); 1911 ufshcd_dump_regs(hba, reg, 9 * 4, "UFS_DBG_RD_REG_TMRLUT "); 1912 1913 if (hba->mcq_enabled) { 1914 reg = ufs_qcom_get_debug_reg_offset(host, UFS_RD_REG_MCQ); 1915 ufshcd_dump_regs(hba, reg, 64 * 4, "HCI MCQ Debug Registers "); 1916 } 1917 1918 /* ensure below dumps occur only in task context due to blocking calls. */ 1919 if (in_task()) { 1920 /* Dump MCQ Host Vendor Specific Registers */ 1921 if (hba->mcq_enabled) 1922 ufs_qcom_dump_mcq_hci_regs(hba); 1923 1924 /* voluntarily yield the CPU as we are dumping too much data */ 1925 ufshcd_dump_regs(hba, UFS_TEST_BUS, 4, "UFS_TEST_BUS "); 1926 cond_resched(); 1927 ufs_qcom_dump_testbus(hba); 1928 } 1929 } 1930 1931 /** 1932 * ufs_qcom_device_reset() - toggle the (optional) device reset line 1933 * @hba: per-adapter instance 1934 * 1935 * Toggles the (optional) reset line to reset the attached device. 1936 */ 1937 static int ufs_qcom_device_reset(struct ufs_hba *hba) 1938 { 1939 struct ufs_qcom_host *host = ufshcd_get_variant(hba); 1940 1941 /* reset gpio is optional */ 1942 if (!host->device_reset) 1943 return -EOPNOTSUPP; 1944 1945 /* 1946 * The UFS device shall detect reset pulses of 1us, sleep for 10us to 1947 * be on the safe side. 1948 */ 1949 ufs_qcom_device_reset_ctrl(hba, true); 1950 usleep_range(10, 15); 1951 1952 ufs_qcom_device_reset_ctrl(hba, false); 1953 usleep_range(10, 15); 1954 1955 return 0; 1956 } 1957 1958 static void ufs_qcom_config_scaling_param(struct ufs_hba *hba, 1959 struct devfreq_dev_profile *p, 1960 struct devfreq_simple_ondemand_data *d) 1961 { 1962 p->polling_ms = 60; 1963 p->timer = DEVFREQ_TIMER_DELAYED; 1964 d->upthreshold = 70; 1965 d->downdifferential = 5; 1966 1967 hba->clk_scaling.suspend_on_no_request = true; 1968 } 1969 1970 static int ufs_qcom_mcq_config_resource(struct ufs_hba *hba) 1971 { 1972 struct platform_device *pdev = to_platform_device(hba->dev); 1973 struct resource *res; 1974 1975 /* Map the MCQ configuration region */ 1976 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "mcq"); 1977 if (!res) { 1978 dev_err(hba->dev, "MCQ resource not found in device tree\n"); 1979 return -ENODEV; 1980 } 1981 1982 hba->mcq_base = devm_ioremap_resource(hba->dev, res); 1983 if (IS_ERR(hba->mcq_base)) { 1984 dev_err(hba->dev, "Failed to map MCQ region: %ld\n", 1985 PTR_ERR(hba->mcq_base)); 1986 return PTR_ERR(hba->mcq_base); 1987 } 1988 1989 return 0; 1990 } 1991 1992 static int ufs_qcom_op_runtime_config(struct ufs_hba *hba) 1993 { 1994 struct ufshcd_mcq_opr_info_t *opr; 1995 int i; 1996 u32 doorbell_offsets[OPR_MAX]; 1997 1998 /* 1999 * Configure doorbell address offsets in MCQ configuration registers. 2000 * These values are offsets relative to mmio_base (UFS_HCI_BASE). 2001 * 2002 * Memory Layout: 2003 * - mmio_base = UFS_HCI_BASE 2004 * - mcq_base = MCQ_CONFIG_BASE = mmio_base + (UFS_QCOM_MCQCAP_QCFGPTR * 0x200) 2005 * - Doorbell registers are at: mmio_base + (UFS_QCOM_MCQCAP_QCFGPTR * 0x200) + 2006 * - UFS_QCOM_MCQ_SQD_OFFSET 2007 * - Which is also: mcq_base + UFS_QCOM_MCQ_SQD_OFFSET 2008 */ 2009 2010 doorbell_offsets[OPR_SQD] = UFS_QCOM_SQD_ADDR_OFFSET; 2011 doorbell_offsets[OPR_SQIS] = UFS_QCOM_SQIS_ADDR_OFFSET; 2012 doorbell_offsets[OPR_CQD] = UFS_QCOM_CQD_ADDR_OFFSET; 2013 doorbell_offsets[OPR_CQIS] = UFS_QCOM_CQIS_ADDR_OFFSET; 2014 2015 /* 2016 * Configure MCQ operation registers. 2017 * 2018 * The doorbell registers are physically located within the MCQ region: 2019 * - doorbell_physical_addr = mmio_base + doorbell_offset 2020 * - doorbell_physical_addr = mcq_base + (doorbell_offset - MCQ_CONFIG_OFFSET) 2021 */ 2022 for (i = 0; i < OPR_MAX; i++) { 2023 opr = &hba->mcq_opr[i]; 2024 opr->offset = doorbell_offsets[i]; /* Offset relative to mmio_base */ 2025 opr->stride = UFS_QCOM_MCQ_STRIDE; /* 256 bytes between queues */ 2026 2027 /* 2028 * Calculate the actual doorbell base address within MCQ region: 2029 * base = mcq_base + (doorbell_offset - MCQ_CONFIG_OFFSET) 2030 */ 2031 opr->base = hba->mcq_base + (opr->offset - UFS_QCOM_MCQ_CONFIG_OFFSET); 2032 } 2033 2034 return 0; 2035 } 2036 2037 static int ufs_qcom_get_hba_mac(struct ufs_hba *hba) 2038 { 2039 /* Qualcomm HC supports up to 64 */ 2040 return MAX_SUPP_MAC; 2041 } 2042 2043 static int ufs_qcom_get_outstanding_cqs(struct ufs_hba *hba, 2044 unsigned long *ocqs) 2045 { 2046 /* Read from MCQ vendor-specific register in MCQ region */ 2047 *ocqs = readl(hba->mcq_base + UFS_MEM_CQIS_VS); 2048 2049 return 0; 2050 } 2051 2052 static void ufs_qcom_write_msi_msg(struct msi_desc *desc, struct msi_msg *msg) 2053 { 2054 struct device *dev = msi_desc_to_dev(desc); 2055 struct ufs_hba *hba = dev_get_drvdata(dev); 2056 2057 ufshcd_mcq_config_esi(hba, msg); 2058 } 2059 2060 struct ufs_qcom_irq { 2061 unsigned int irq; 2062 unsigned int idx; 2063 struct ufs_hba *hba; 2064 }; 2065 2066 static irqreturn_t ufs_qcom_mcq_esi_handler(int irq, void *data) 2067 { 2068 struct ufs_qcom_irq *qi = data; 2069 struct ufs_hba *hba = qi->hba; 2070 struct ufs_hw_queue *hwq = &hba->uhq[qi->idx]; 2071 2072 ufshcd_mcq_write_cqis(hba, 0x1, qi->idx); 2073 ufshcd_mcq_poll_cqe_lock(hba, hwq); 2074 2075 return IRQ_HANDLED; 2076 } 2077 2078 static int ufs_qcom_config_esi(struct ufs_hba *hba) 2079 { 2080 struct ufs_qcom_host *host = ufshcd_get_variant(hba); 2081 int nr_irqs, ret; 2082 2083 if (host->esi_enabled) 2084 return 0; 2085 2086 /* 2087 * 1. We only handle CQs as of now. 2088 * 2. Poll queues do not need ESI. 2089 */ 2090 nr_irqs = hba->nr_hw_queues - hba->nr_queues[HCTX_TYPE_POLL]; 2091 2092 ret = platform_device_msi_init_and_alloc_irqs(hba->dev, nr_irqs, 2093 ufs_qcom_write_msi_msg); 2094 if (ret) { 2095 dev_warn(hba->dev, "Platform MSI not supported or failed, continuing without ESI\n"); 2096 return ret; /* Continue without ESI */ 2097 } 2098 2099 struct ufs_qcom_irq *qi = devm_kcalloc(hba->dev, nr_irqs, sizeof(*qi), GFP_KERNEL); 2100 2101 if (!qi) { 2102 platform_device_msi_free_irqs_all(hba->dev); 2103 return -ENOMEM; 2104 } 2105 2106 for (int idx = 0; idx < nr_irqs; idx++) { 2107 qi[idx].irq = msi_get_virq(hba->dev, idx); 2108 qi[idx].idx = idx; 2109 qi[idx].hba = hba; 2110 2111 ret = devm_request_irq(hba->dev, qi[idx].irq, ufs_qcom_mcq_esi_handler, 2112 IRQF_SHARED, "qcom-mcq-esi", qi + idx); 2113 if (ret) { 2114 dev_err(hba->dev, "%s: Failed to request IRQ for %d, err = %d\n", 2115 __func__, qi[idx].irq, ret); 2116 /* Free previously allocated IRQs */ 2117 for (int j = 0; j < idx; j++) 2118 devm_free_irq(hba->dev, qi[j].irq, qi + j); 2119 platform_device_msi_free_irqs_all(hba->dev); 2120 devm_kfree(hba->dev, qi); 2121 return ret; 2122 } 2123 } 2124 2125 if (host->hw_ver.major >= 6) { 2126 ufshcd_rmwl(hba, ESI_VEC_MASK, FIELD_PREP(ESI_VEC_MASK, MAX_ESI_VEC - 1), 2127 REG_UFS_CFG3); 2128 } 2129 ufshcd_mcq_enable_esi(hba); 2130 host->esi_enabled = true; 2131 return 0; 2132 } 2133 2134 static unsigned long ufs_qcom_opp_freq_to_clk_freq(struct ufs_hba *hba, 2135 unsigned long freq, char *name) 2136 { 2137 struct ufs_clk_info *clki; 2138 struct dev_pm_opp *opp; 2139 unsigned long clk_freq; 2140 int idx = 0; 2141 bool found = false; 2142 2143 opp = dev_pm_opp_find_freq_exact_indexed(hba->dev, freq, 0, true); 2144 if (IS_ERR(opp)) { 2145 dev_err(hba->dev, "Failed to find OPP for exact frequency %lu\n", freq); 2146 return 0; 2147 } 2148 2149 list_for_each_entry(clki, &hba->clk_list_head, list) { 2150 if (!strcmp(clki->name, name)) { 2151 found = true; 2152 break; 2153 } 2154 2155 idx++; 2156 } 2157 2158 if (!found) { 2159 dev_err(hba->dev, "Failed to find clock '%s' in clk list\n", name); 2160 dev_pm_opp_put(opp); 2161 return 0; 2162 } 2163 2164 clk_freq = dev_pm_opp_get_freq_indexed(opp, idx); 2165 2166 dev_pm_opp_put(opp); 2167 2168 return clk_freq; 2169 } 2170 2171 static u32 ufs_qcom_freq_to_gear_speed(struct ufs_hba *hba, unsigned long freq) 2172 { 2173 u32 gear = UFS_HS_DONT_CHANGE; 2174 unsigned long unipro_freq; 2175 2176 if (!hba->use_pm_opp) 2177 return gear; 2178 2179 unipro_freq = ufs_qcom_opp_freq_to_clk_freq(hba, freq, "core_clk_unipro"); 2180 switch (unipro_freq) { 2181 case 403000000: 2182 gear = UFS_HS_G5; 2183 break; 2184 case 300000000: 2185 gear = UFS_HS_G4; 2186 break; 2187 case 201500000: 2188 gear = UFS_HS_G3; 2189 break; 2190 case 150000000: 2191 case 100000000: 2192 gear = UFS_HS_G2; 2193 break; 2194 case 75000000: 2195 case 37500000: 2196 gear = UFS_HS_G1; 2197 break; 2198 default: 2199 dev_err(hba->dev, "%s: Unsupported clock freq : %lu\n", __func__, freq); 2200 return UFS_HS_DONT_CHANGE; 2201 } 2202 2203 return min_t(u32, gear, hba->max_pwr_info.info.gear_rx); 2204 } 2205 2206 /* 2207 * struct ufs_hba_qcom_vops - UFS QCOM specific variant operations 2208 * 2209 * The variant operations configure the necessary controller and PHY 2210 * handshake during initialization. 2211 */ 2212 static const struct ufs_hba_variant_ops ufs_hba_qcom_vops = { 2213 .name = "qcom", 2214 .init = ufs_qcom_init, 2215 .exit = ufs_qcom_exit, 2216 .get_ufs_hci_version = ufs_qcom_get_ufs_hci_version, 2217 .clk_scale_notify = ufs_qcom_clk_scale_notify, 2218 .setup_clocks = ufs_qcom_setup_clocks, 2219 .hce_enable_notify = ufs_qcom_hce_enable_notify, 2220 .link_startup_notify = ufs_qcom_link_startup_notify, 2221 .pwr_change_notify = ufs_qcom_pwr_change_notify, 2222 .apply_dev_quirks = ufs_qcom_apply_dev_quirks, 2223 .fixup_dev_quirks = ufs_qcom_fixup_dev_quirks, 2224 .suspend = ufs_qcom_suspend, 2225 .resume = ufs_qcom_resume, 2226 .dbg_register_dump = ufs_qcom_dump_dbg_regs, 2227 .device_reset = ufs_qcom_device_reset, 2228 .config_scaling_param = ufs_qcom_config_scaling_param, 2229 .mcq_config_resource = ufs_qcom_mcq_config_resource, 2230 .get_hba_mac = ufs_qcom_get_hba_mac, 2231 .op_runtime_config = ufs_qcom_op_runtime_config, 2232 .get_outstanding_cqs = ufs_qcom_get_outstanding_cqs, 2233 .config_esi = ufs_qcom_config_esi, 2234 .freq_to_gear_speed = ufs_qcom_freq_to_gear_speed, 2235 }; 2236 2237 /** 2238 * ufs_qcom_probe - probe routine of the driver 2239 * @pdev: pointer to Platform device handle 2240 * 2241 * Return: zero for success and non-zero for failure. 2242 */ 2243 static int ufs_qcom_probe(struct platform_device *pdev) 2244 { 2245 int err; 2246 struct device *dev = &pdev->dev; 2247 2248 /* Perform generic probe */ 2249 err = ufshcd_pltfrm_init(pdev, &ufs_hba_qcom_vops); 2250 if (err) 2251 return dev_err_probe(dev, err, "ufshcd_pltfrm_init() failed\n"); 2252 2253 return 0; 2254 } 2255 2256 /** 2257 * ufs_qcom_remove - set driver_data of the device to NULL 2258 * @pdev: pointer to platform device handle 2259 * 2260 * Always returns 0 2261 */ 2262 static void ufs_qcom_remove(struct platform_device *pdev) 2263 { 2264 struct ufs_hba *hba = platform_get_drvdata(pdev); 2265 struct ufs_qcom_host *host = ufshcd_get_variant(hba); 2266 2267 ufshcd_pltfrm_remove(pdev); 2268 if (host->esi_enabled) 2269 platform_device_msi_free_irqs_all(hba->dev); 2270 } 2271 2272 static const struct ufs_qcom_drvdata ufs_qcom_sm8550_drvdata = { 2273 .quirks = UFSHCD_QUIRK_BROKEN_LSDBS_CAP, 2274 .no_phy_retention = true, 2275 }; 2276 2277 static const struct of_device_id ufs_qcom_of_match[] __maybe_unused = { 2278 { .compatible = "qcom,ufshc" }, 2279 { .compatible = "qcom,sm8550-ufshc", .data = &ufs_qcom_sm8550_drvdata }, 2280 { .compatible = "qcom,sm8650-ufshc", .data = &ufs_qcom_sm8550_drvdata }, 2281 {}, 2282 }; 2283 MODULE_DEVICE_TABLE(of, ufs_qcom_of_match); 2284 2285 #ifdef CONFIG_ACPI 2286 static const struct acpi_device_id ufs_qcom_acpi_match[] = { 2287 { "QCOM24A5" }, 2288 { }, 2289 }; 2290 MODULE_DEVICE_TABLE(acpi, ufs_qcom_acpi_match); 2291 #endif 2292 2293 static const struct dev_pm_ops ufs_qcom_pm_ops = { 2294 SET_RUNTIME_PM_OPS(ufshcd_runtime_suspend, ufshcd_runtime_resume, NULL) 2295 .prepare = ufshcd_suspend_prepare, 2296 .complete = ufshcd_resume_complete, 2297 #ifdef CONFIG_PM_SLEEP 2298 .suspend = ufshcd_system_suspend, 2299 .resume = ufshcd_system_resume, 2300 .freeze = ufshcd_system_freeze, 2301 .restore = ufshcd_system_restore, 2302 .thaw = ufshcd_system_thaw, 2303 #endif 2304 }; 2305 2306 static struct platform_driver ufs_qcom_pltform = { 2307 .probe = ufs_qcom_probe, 2308 .remove = ufs_qcom_remove, 2309 .driver = { 2310 .name = "ufshcd-qcom", 2311 .pm = &ufs_qcom_pm_ops, 2312 .of_match_table = of_match_ptr(ufs_qcom_of_match), 2313 .acpi_match_table = ACPI_PTR(ufs_qcom_acpi_match), 2314 }, 2315 }; 2316 module_platform_driver(ufs_qcom_pltform); 2317 2318 MODULE_DESCRIPTION("Qualcomm UFS host controller driver"); 2319 MODULE_LICENSE("GPL v2"); 2320