xref: /linux/drivers/ufs/host/ufs-qcom.c (revision 89748acdf226fd1a8775ff6fa2703f8412b286c8)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2013-2016, Linux Foundation. All rights reserved.
4  */
5 
6 #include <linux/acpi.h>
7 #include <linux/clk.h>
8 #include <linux/cleanup.h>
9 #include <linux/delay.h>
10 #include <linux/devfreq.h>
11 #include <linux/gpio/consumer.h>
12 #include <linux/interconnect.h>
13 #include <linux/module.h>
14 #include <linux/of.h>
15 #include <linux/phy/phy.h>
16 #include <linux/platform_device.h>
17 #include <linux/reset-controller.h>
18 #include <linux/time.h>
19 #include <linux/unaligned.h>
20 #include <linux/units.h>
21 
22 #include <soc/qcom/ice.h>
23 
24 #include <ufs/ufshcd.h>
25 #include <ufs/ufshci.h>
26 #include <ufs/ufs_quirks.h>
27 #include <ufs/unipro.h>
28 #include "ufshcd-pltfrm.h"
29 #include "ufs-qcom.h"
30 
31 #define MCQ_QCFGPTR_MASK	GENMASK(7, 0)
32 #define MCQ_QCFGPTR_UNIT	0x200
33 #define MCQ_SQATTR_OFFSET(c) \
34 	((((c) >> 16) & MCQ_QCFGPTR_MASK) * MCQ_QCFGPTR_UNIT)
35 #define MCQ_QCFG_SIZE	0x40
36 
37 /* De-emphasis for gear-5 */
38 #define DEEMPHASIS_3_5_dB	0x04
39 #define NO_DEEMPHASIS		0x0
40 
41 enum {
42 	TSTBUS_UAWM,
43 	TSTBUS_UARM,
44 	TSTBUS_TXUC,
45 	TSTBUS_RXUC,
46 	TSTBUS_DFC,
47 	TSTBUS_TRLUT,
48 	TSTBUS_TMRLUT,
49 	TSTBUS_OCSC,
50 	TSTBUS_UTP_HCI,
51 	TSTBUS_COMBINED,
52 	TSTBUS_WRAPPER,
53 	TSTBUS_UNIPRO,
54 	TSTBUS_MAX,
55 };
56 
57 #define QCOM_UFS_MAX_GEAR 5
58 #define QCOM_UFS_MAX_LANE 2
59 
60 enum {
61 	MODE_MIN,
62 	MODE_PWM,
63 	MODE_HS_RA,
64 	MODE_HS_RB,
65 	MODE_MAX,
66 };
67 
68 static const struct __ufs_qcom_bw_table {
69 	u32 mem_bw;
70 	u32 cfg_bw;
71 } ufs_qcom_bw_table[MODE_MAX + 1][QCOM_UFS_MAX_GEAR + 1][QCOM_UFS_MAX_LANE + 1] = {
72 	[MODE_MIN][0][0]		   = { 0,		0 }, /* Bandwidth values in KB/s */
73 	[MODE_PWM][UFS_PWM_G1][UFS_LANE_1] = { 922,		1000 },
74 	[MODE_PWM][UFS_PWM_G2][UFS_LANE_1] = { 1844,		1000 },
75 	[MODE_PWM][UFS_PWM_G3][UFS_LANE_1] = { 3688,		1000 },
76 	[MODE_PWM][UFS_PWM_G4][UFS_LANE_1] = { 7376,		1000 },
77 	[MODE_PWM][UFS_PWM_G5][UFS_LANE_1] = { 14752,		1000 },
78 	[MODE_PWM][UFS_PWM_G1][UFS_LANE_2] = { 1844,		1000 },
79 	[MODE_PWM][UFS_PWM_G2][UFS_LANE_2] = { 3688,		1000 },
80 	[MODE_PWM][UFS_PWM_G3][UFS_LANE_2] = { 7376,		1000 },
81 	[MODE_PWM][UFS_PWM_G4][UFS_LANE_2] = { 14752,		1000 },
82 	[MODE_PWM][UFS_PWM_G5][UFS_LANE_2] = { 29504,		1000 },
83 	[MODE_HS_RA][UFS_HS_G1][UFS_LANE_1] = { 127796,		1000 },
84 	[MODE_HS_RA][UFS_HS_G2][UFS_LANE_1] = { 255591,		1000 },
85 	[MODE_HS_RA][UFS_HS_G3][UFS_LANE_1] = { 1492582,	102400 },
86 	[MODE_HS_RA][UFS_HS_G4][UFS_LANE_1] = { 2915200,	204800 },
87 	[MODE_HS_RA][UFS_HS_G5][UFS_LANE_1] = { 5836800,	409600 },
88 	[MODE_HS_RA][UFS_HS_G1][UFS_LANE_2] = { 255591,		1000 },
89 	[MODE_HS_RA][UFS_HS_G2][UFS_LANE_2] = { 511181,		1000 },
90 	[MODE_HS_RA][UFS_HS_G3][UFS_LANE_2] = { 1492582,	204800 },
91 	[MODE_HS_RA][UFS_HS_G4][UFS_LANE_2] = { 2915200,	409600 },
92 	[MODE_HS_RA][UFS_HS_G5][UFS_LANE_2] = { 5836800,	819200 },
93 	[MODE_HS_RB][UFS_HS_G1][UFS_LANE_1] = { 149422,		1000 },
94 	[MODE_HS_RB][UFS_HS_G2][UFS_LANE_1] = { 298189,		1000 },
95 	[MODE_HS_RB][UFS_HS_G3][UFS_LANE_1] = { 1492582,	102400 },
96 	[MODE_HS_RB][UFS_HS_G4][UFS_LANE_1] = { 2915200,	204800 },
97 	[MODE_HS_RB][UFS_HS_G5][UFS_LANE_1] = { 5836800,	409600 },
98 	[MODE_HS_RB][UFS_HS_G1][UFS_LANE_2] = { 298189,		1000 },
99 	[MODE_HS_RB][UFS_HS_G2][UFS_LANE_2] = { 596378,		1000 },
100 	[MODE_HS_RB][UFS_HS_G3][UFS_LANE_2] = { 1492582,	204800 },
101 	[MODE_HS_RB][UFS_HS_G4][UFS_LANE_2] = { 2915200,	409600 },
102 	[MODE_HS_RB][UFS_HS_G5][UFS_LANE_2] = { 5836800,	819200 },
103 	[MODE_MAX][0][0]		    = { 7643136,	819200 },
104 };
105 
106 static const struct {
107 	int nminor;
108 	char *prefix;
109 } testbus_info[TSTBUS_MAX] = {
110 	[TSTBUS_UAWM]     = {32, "TSTBUS_UAWM"},
111 	[TSTBUS_UARM]     = {32, "TSTBUS_UARM"},
112 	[TSTBUS_TXUC]     = {32, "TSTBUS_TXUC"},
113 	[TSTBUS_RXUC]     = {32, "TSTBUS_RXUC"},
114 	[TSTBUS_DFC]      = {32, "TSTBUS_DFC"},
115 	[TSTBUS_TRLUT]    = {32, "TSTBUS_TRLUT"},
116 	[TSTBUS_TMRLUT]   = {32, "TSTBUS_TMRLUT"},
117 	[TSTBUS_OCSC]     = {32, "TSTBUS_OCSC"},
118 	[TSTBUS_UTP_HCI]  = {32, "TSTBUS_UTP_HCI"},
119 	[TSTBUS_COMBINED] = {32, "TSTBUS_COMBINED"},
120 	[TSTBUS_WRAPPER]  = {32, "TSTBUS_WRAPPER"},
121 	[TSTBUS_UNIPRO]   = {256, "TSTBUS_UNIPRO"},
122 };
123 
124 static void ufs_qcom_get_default_testbus_cfg(struct ufs_qcom_host *host);
125 static unsigned long ufs_qcom_opp_freq_to_clk_freq(struct ufs_hba *hba,
126 						   unsigned long freq, char *name);
127 static int ufs_qcom_set_core_clk_ctrl(struct ufs_hba *hba, bool is_scale_up, unsigned long freq);
128 
129 static struct ufs_qcom_host *rcdev_to_ufs_host(struct reset_controller_dev *rcd)
130 {
131 	return container_of(rcd, struct ufs_qcom_host, rcdev);
132 }
133 
134 #ifdef CONFIG_SCSI_UFS_CRYPTO
135 /**
136  * ufs_qcom_config_ice_allocator() - ICE core allocator configuration
137  *
138  * @host: pointer to qcom specific variant structure.
139  */
140 static void ufs_qcom_config_ice_allocator(struct ufs_qcom_host *host)
141 {
142 	struct ufs_hba *hba = host->hba;
143 	static const uint8_t val[4] = { NUM_RX_R1W0, NUM_TX_R0W1, NUM_RX_R1W1, NUM_TX_R1W1 };
144 	u32 config;
145 
146 	if (!(host->caps & UFS_QCOM_CAP_ICE_CONFIG) ||
147 			!(host->hba->caps & UFSHCD_CAP_CRYPTO))
148 		return;
149 
150 	config = get_unaligned_le32(val);
151 
152 	ufshcd_writel(hba, ICE_ALLOCATOR_TYPE, REG_UFS_MEM_ICE_CONFIG);
153 	ufshcd_writel(hba, config, REG_UFS_MEM_ICE_NUM_CORE);
154 }
155 
156 static inline void ufs_qcom_ice_enable(struct ufs_qcom_host *host)
157 {
158 	if (host->hba->caps & UFSHCD_CAP_CRYPTO)
159 		qcom_ice_enable(host->ice);
160 }
161 
162 static const struct blk_crypto_ll_ops ufs_qcom_crypto_ops; /* forward decl */
163 
164 static int ufs_qcom_ice_init(struct ufs_qcom_host *host)
165 {
166 	struct ufs_hba *hba = host->hba;
167 	struct blk_crypto_profile *profile = &hba->crypto_profile;
168 	struct device *dev = hba->dev;
169 	struct qcom_ice *ice;
170 	union ufs_crypto_capabilities caps;
171 	union ufs_crypto_cap_entry cap;
172 	int err;
173 	int i;
174 
175 	ice = devm_of_qcom_ice_get(dev);
176 	if (ice == ERR_PTR(-EOPNOTSUPP)) {
177 		dev_warn(dev, "Disabling inline encryption support\n");
178 		ice = NULL;
179 	}
180 
181 	if (IS_ERR_OR_NULL(ice))
182 		return PTR_ERR_OR_ZERO(ice);
183 
184 	host->ice = ice;
185 
186 	/* Initialize the blk_crypto_profile */
187 
188 	caps.reg_val = cpu_to_le32(ufshcd_readl(hba, REG_UFS_CCAP));
189 
190 	/* The number of keyslots supported is (CFGC+1) */
191 	err = devm_blk_crypto_profile_init(dev, profile, caps.config_count + 1);
192 	if (err)
193 		return err;
194 
195 	profile->ll_ops = ufs_qcom_crypto_ops;
196 	profile->max_dun_bytes_supported = 8;
197 	profile->key_types_supported = qcom_ice_get_supported_key_type(ice);
198 	profile->dev = dev;
199 
200 	/*
201 	 * Currently this driver only supports AES-256-XTS.  All known versions
202 	 * of ICE support it, but to be safe make sure it is really declared in
203 	 * the crypto capability registers.  The crypto capability registers
204 	 * also give the supported data unit size(s).
205 	 */
206 	for (i = 0; i < caps.num_crypto_cap; i++) {
207 		cap.reg_val = cpu_to_le32(ufshcd_readl(hba,
208 						       REG_UFS_CRYPTOCAP +
209 						       i * sizeof(__le32)));
210 		if (cap.algorithm_id == UFS_CRYPTO_ALG_AES_XTS &&
211 		    cap.key_size == UFS_CRYPTO_KEY_SIZE_256)
212 			profile->modes_supported[BLK_ENCRYPTION_MODE_AES_256_XTS] |=
213 				cap.sdus_mask * 512;
214 	}
215 
216 	hba->caps |= UFSHCD_CAP_CRYPTO;
217 	hba->quirks |= UFSHCD_QUIRK_CUSTOM_CRYPTO_PROFILE;
218 	return 0;
219 }
220 
221 static inline int ufs_qcom_ice_resume(struct ufs_qcom_host *host)
222 {
223 	if (host->hba->caps & UFSHCD_CAP_CRYPTO)
224 		return qcom_ice_resume(host->ice);
225 
226 	return 0;
227 }
228 
229 static inline int ufs_qcom_ice_suspend(struct ufs_qcom_host *host)
230 {
231 	if (host->hba->caps & UFSHCD_CAP_CRYPTO)
232 		return qcom_ice_suspend(host->ice);
233 
234 	return 0;
235 }
236 
237 static int ufs_qcom_ice_keyslot_program(struct blk_crypto_profile *profile,
238 					const struct blk_crypto_key *key,
239 					unsigned int slot)
240 {
241 	struct ufs_hba *hba = ufs_hba_from_crypto_profile(profile);
242 	struct ufs_qcom_host *host = ufshcd_get_variant(hba);
243 	int err;
244 
245 	ufshcd_hold(hba);
246 	err = qcom_ice_program_key(host->ice, slot, key);
247 	ufshcd_release(hba);
248 	return err;
249 }
250 
251 static int ufs_qcom_ice_keyslot_evict(struct blk_crypto_profile *profile,
252 				      const struct blk_crypto_key *key,
253 				      unsigned int slot)
254 {
255 	struct ufs_hba *hba = ufs_hba_from_crypto_profile(profile);
256 	struct ufs_qcom_host *host = ufshcd_get_variant(hba);
257 	int err;
258 
259 	ufshcd_hold(hba);
260 	err = qcom_ice_evict_key(host->ice, slot);
261 	ufshcd_release(hba);
262 	return err;
263 }
264 
265 static int ufs_qcom_ice_derive_sw_secret(struct blk_crypto_profile *profile,
266 					 const u8 *eph_key, size_t eph_key_size,
267 					 u8 sw_secret[BLK_CRYPTO_SW_SECRET_SIZE])
268 {
269 	struct ufs_hba *hba = ufs_hba_from_crypto_profile(profile);
270 	struct ufs_qcom_host *host = ufshcd_get_variant(hba);
271 
272 	return qcom_ice_derive_sw_secret(host->ice, eph_key, eph_key_size,
273 					 sw_secret);
274 }
275 
276 static int ufs_qcom_ice_import_key(struct blk_crypto_profile *profile,
277 				   const u8 *raw_key, size_t raw_key_size,
278 				   u8 lt_key[BLK_CRYPTO_MAX_HW_WRAPPED_KEY_SIZE])
279 {
280 	struct ufs_hba *hba = ufs_hba_from_crypto_profile(profile);
281 	struct ufs_qcom_host *host = ufshcd_get_variant(hba);
282 
283 	return qcom_ice_import_key(host->ice, raw_key, raw_key_size, lt_key);
284 }
285 
286 static int ufs_qcom_ice_generate_key(struct blk_crypto_profile *profile,
287 				     u8 lt_key[BLK_CRYPTO_MAX_HW_WRAPPED_KEY_SIZE])
288 {
289 	struct ufs_hba *hba = ufs_hba_from_crypto_profile(profile);
290 	struct ufs_qcom_host *host = ufshcd_get_variant(hba);
291 
292 	return qcom_ice_generate_key(host->ice, lt_key);
293 }
294 
295 static int ufs_qcom_ice_prepare_key(struct blk_crypto_profile *profile,
296 				    const u8 *lt_key, size_t lt_key_size,
297 				    u8 eph_key[BLK_CRYPTO_MAX_HW_WRAPPED_KEY_SIZE])
298 {
299 	struct ufs_hba *hba = ufs_hba_from_crypto_profile(profile);
300 	struct ufs_qcom_host *host = ufshcd_get_variant(hba);
301 
302 	return qcom_ice_prepare_key(host->ice, lt_key, lt_key_size, eph_key);
303 }
304 
305 static const struct blk_crypto_ll_ops ufs_qcom_crypto_ops = {
306 	.keyslot_program	= ufs_qcom_ice_keyslot_program,
307 	.keyslot_evict		= ufs_qcom_ice_keyslot_evict,
308 	.derive_sw_secret	= ufs_qcom_ice_derive_sw_secret,
309 	.import_key		= ufs_qcom_ice_import_key,
310 	.generate_key		= ufs_qcom_ice_generate_key,
311 	.prepare_key		= ufs_qcom_ice_prepare_key,
312 };
313 
314 #else
315 
316 static inline void ufs_qcom_ice_enable(struct ufs_qcom_host *host)
317 {
318 }
319 
320 static int ufs_qcom_ice_init(struct ufs_qcom_host *host)
321 {
322 	return 0;
323 }
324 
325 static inline int ufs_qcom_ice_resume(struct ufs_qcom_host *host)
326 {
327 	return 0;
328 }
329 
330 static inline int ufs_qcom_ice_suspend(struct ufs_qcom_host *host)
331 {
332 	return 0;
333 }
334 
335 static void ufs_qcom_config_ice_allocator(struct ufs_qcom_host *host)
336 {
337 }
338 
339 #endif
340 
341 static void ufs_qcom_disable_lane_clks(struct ufs_qcom_host *host)
342 {
343 	if (!host->is_lane_clks_enabled)
344 		return;
345 
346 	clk_bulk_disable_unprepare(host->num_clks, host->clks);
347 
348 	host->is_lane_clks_enabled = false;
349 }
350 
351 static int ufs_qcom_enable_lane_clks(struct ufs_qcom_host *host)
352 {
353 	int err;
354 
355 	err = clk_bulk_prepare_enable(host->num_clks, host->clks);
356 	if (err)
357 		return err;
358 
359 	host->is_lane_clks_enabled = true;
360 
361 	return 0;
362 }
363 
364 static int ufs_qcom_init_lane_clks(struct ufs_qcom_host *host)
365 {
366 	int err;
367 	struct device *dev = host->hba->dev;
368 
369 	if (has_acpi_companion(dev))
370 		return 0;
371 
372 	err = devm_clk_bulk_get_all(dev, &host->clks);
373 	if (err <= 0)
374 		return err;
375 
376 	host->num_clks = err;
377 
378 	return 0;
379 }
380 
381 static int ufs_qcom_check_hibern8(struct ufs_hba *hba)
382 {
383 	int err;
384 	u32 tx_fsm_val;
385 	unsigned long timeout = jiffies + msecs_to_jiffies(HBRN8_POLL_TOUT_MS);
386 
387 	do {
388 		err = ufshcd_dme_get(hba,
389 				UIC_ARG_MIB_SEL(MPHY_TX_FSM_STATE,
390 					UIC_ARG_MPHY_TX_GEN_SEL_INDEX(0)),
391 				&tx_fsm_val);
392 		if (err || tx_fsm_val == TX_FSM_HIBERN8)
393 			break;
394 
395 		/* sleep for max. 200us */
396 		usleep_range(100, 200);
397 	} while (time_before(jiffies, timeout));
398 
399 	/*
400 	 * we might have scheduled out for long during polling so
401 	 * check the state again.
402 	 */
403 	if (time_after(jiffies, timeout))
404 		err = ufshcd_dme_get(hba,
405 				UIC_ARG_MIB_SEL(MPHY_TX_FSM_STATE,
406 					UIC_ARG_MPHY_TX_GEN_SEL_INDEX(0)),
407 				&tx_fsm_val);
408 
409 	if (err) {
410 		dev_err(hba->dev, "%s: unable to get TX_FSM_STATE, err %d\n",
411 				__func__, err);
412 	} else if (tx_fsm_val != TX_FSM_HIBERN8) {
413 		err = tx_fsm_val;
414 		dev_err(hba->dev, "%s: invalid TX_FSM_STATE = %d\n",
415 				__func__, err);
416 	}
417 
418 	return err;
419 }
420 
421 static void ufs_qcom_select_unipro_mode(struct ufs_qcom_host *host)
422 {
423 	ufshcd_rmwl(host->hba, QUNIPRO_SEL, QUNIPRO_SEL, REG_UFS_CFG1);
424 
425 	if (host->hw_ver.major >= 0x05)
426 		ufshcd_rmwl(host->hba, QUNIPRO_G4_SEL, 0, REG_UFS_CFG0);
427 }
428 
429 /*
430  * ufs_qcom_host_reset - reset host controller and PHY
431  */
432 static int ufs_qcom_host_reset(struct ufs_hba *hba)
433 {
434 	int ret;
435 	struct ufs_qcom_host *host = ufshcd_get_variant(hba);
436 	bool reenable_intr;
437 
438 	if (!host->core_reset)
439 		return 0;
440 
441 	reenable_intr = hba->is_irq_enabled;
442 	ufshcd_disable_irq(hba);
443 
444 	ret = reset_control_assert(host->core_reset);
445 	if (ret) {
446 		dev_err(hba->dev, "%s: core_reset assert failed, err = %d\n",
447 				 __func__, ret);
448 		return ret;
449 	}
450 
451 	/*
452 	 * The hardware requirement for delay between assert/deassert
453 	 * is at least 3-4 sleep clock (32.7KHz) cycles, which comes to
454 	 * ~125us (4/32768). To be on the safe side add 200us delay.
455 	 */
456 	usleep_range(200, 210);
457 
458 	ret = reset_control_deassert(host->core_reset);
459 	if (ret) {
460 		dev_err(hba->dev, "%s: core_reset deassert failed, err = %d\n",
461 				 __func__, ret);
462 		return ret;
463 	}
464 
465 	usleep_range(1000, 1100);
466 
467 	if (reenable_intr)
468 		ufshcd_enable_irq(hba);
469 
470 	return 0;
471 }
472 
473 static u32 ufs_qcom_get_hs_gear(struct ufs_hba *hba)
474 {
475 	struct ufs_qcom_host *host = ufshcd_get_variant(hba);
476 
477 	if (host->hw_ver.major >= 0x4)
478 		return UFS_QCOM_MAX_GEAR(ufshcd_readl(hba, REG_UFS_PARAM0));
479 
480 	/* Default is HS-G3 */
481 	return UFS_HS_G3;
482 }
483 
484 static int ufs_qcom_power_up_sequence(struct ufs_hba *hba)
485 {
486 	struct ufs_qcom_host *host = ufshcd_get_variant(hba);
487 	struct ufs_host_params *host_params = &host->host_params;
488 	struct phy *phy = host->generic_phy;
489 	enum phy_mode mode;
490 	int ret;
491 
492 	/*
493 	 * HW ver 5 can only support up to HS-G5 Rate-A due to HW limitations.
494 	 * If the HS-G5 PHY gear is used, update host_params->hs_rate to Rate-A,
495 	 * so that the subsequent power mode change shall stick to Rate-A.
496 	 */
497 	if (host->hw_ver.major == 0x5) {
498 		if (host->phy_gear == UFS_HS_G5)
499 			host_params->hs_rate = PA_HS_MODE_A;
500 		else
501 			host_params->hs_rate = PA_HS_MODE_B;
502 	}
503 
504 	mode = host_params->hs_rate == PA_HS_MODE_B ? PHY_MODE_UFS_HS_B : PHY_MODE_UFS_HS_A;
505 
506 	/* Reset UFS Host Controller and PHY */
507 	ret = ufs_qcom_host_reset(hba);
508 	if (ret)
509 		return ret;
510 
511 	if (phy->power_count)
512 		phy_power_off(phy);
513 
514 
515 	/* phy initialization - calibrate the phy */
516 	ret = phy_init(phy);
517 	if (ret) {
518 		dev_err(hba->dev, "%s: phy init failed, ret = %d\n",
519 			__func__, ret);
520 		return ret;
521 	}
522 
523 	ret = phy_set_mode_ext(phy, mode, host->phy_gear);
524 	if (ret)
525 		goto out_disable_phy;
526 
527 	/* power on phy - start serdes and phy's power and clocks */
528 	ret = phy_power_on(phy);
529 	if (ret) {
530 		dev_err(hba->dev, "%s: phy power on failed, ret = %d\n",
531 			__func__, ret);
532 		goto out_disable_phy;
533 	}
534 
535 	ufs_qcom_select_unipro_mode(host);
536 
537 	return 0;
538 
539 out_disable_phy:
540 	phy_exit(phy);
541 
542 	return ret;
543 }
544 
545 /*
546  * The UTP controller has a number of internal clock gating cells (CGCs).
547  * Internal hardware sub-modules within the UTP controller control the CGCs.
548  * Hardware CGCs disable the clock to inactivate UTP sub-modules not involved
549  * in a specific operation, UTP controller CGCs are by default disabled and
550  * this function enables them (after every UFS link startup) to save some power
551  * leakage.
552  */
553 static void ufs_qcom_enable_hw_clk_gating(struct ufs_hba *hba)
554 {
555 	int err;
556 
557 	/* Enable UTP internal clock gating */
558 	ufshcd_rmwl(hba, REG_UFS_CFG2_CGC_EN_ALL, REG_UFS_CFG2_CGC_EN_ALL,
559 		    REG_UFS_CFG2);
560 
561 	/* Ensure that HW clock gating is enabled before next operations */
562 	ufshcd_readl(hba, REG_UFS_CFG2);
563 
564 	/* Enable Unipro internal clock gating */
565 	err = ufshcd_dme_rmw(hba, DL_VS_CLK_CFG_MASK,
566 			     DL_VS_CLK_CFG_MASK, DL_VS_CLK_CFG);
567 	if (err)
568 		goto out;
569 
570 	err = ufshcd_dme_rmw(hba, PA_VS_CLK_CFG_REG_MASK,
571 			     PA_VS_CLK_CFG_REG_MASK, PA_VS_CLK_CFG_REG);
572 	if (err)
573 		goto out;
574 
575 	err = ufshcd_dme_rmw(hba, DME_VS_CORE_CLK_CTRL_DME_HW_CGC_EN,
576 			     DME_VS_CORE_CLK_CTRL_DME_HW_CGC_EN,
577 			     DME_VS_CORE_CLK_CTRL);
578 out:
579 	if (err)
580 		dev_err(hba->dev, "hw clk gating enabled failed\n");
581 }
582 
583 static int ufs_qcom_hce_enable_notify(struct ufs_hba *hba,
584 				      enum ufs_notify_change_status status)
585 {
586 	struct ufs_qcom_host *host = ufshcd_get_variant(hba);
587 	int err;
588 
589 	switch (status) {
590 	case PRE_CHANGE:
591 		err = ufs_qcom_power_up_sequence(hba);
592 		if (err)
593 			return err;
594 
595 		/*
596 		 * The PHY PLL output is the source of tx/rx lane symbol
597 		 * clocks, hence, enable the lane clocks only after PHY
598 		 * is initialized.
599 		 */
600 		err = ufs_qcom_enable_lane_clks(host);
601 		break;
602 	case POST_CHANGE:
603 		/* check if UFS PHY moved from DISABLED to HIBERN8 */
604 		err = ufs_qcom_check_hibern8(hba);
605 		ufs_qcom_enable_hw_clk_gating(hba);
606 		ufs_qcom_ice_enable(host);
607 		ufs_qcom_config_ice_allocator(host);
608 		break;
609 	default:
610 		dev_err(hba->dev, "%s: invalid status %d\n", __func__, status);
611 		err = -EINVAL;
612 		break;
613 	}
614 	return err;
615 }
616 
617 /**
618  * ufs_qcom_cfg_timers - Configure ufs qcom cfg timers
619  *
620  * @hba: host controller instance
621  * @is_pre_scale_up: flag to check if pre scale up condition.
622  * @freq: target opp freq
623  * Return: zero for success and non-zero in case of a failure.
624  */
625 static int ufs_qcom_cfg_timers(struct ufs_hba *hba, bool is_pre_scale_up, unsigned long freq)
626 {
627 	struct ufs_qcom_host *host = ufshcd_get_variant(hba);
628 	struct ufs_clk_info *clki;
629 	unsigned long clk_freq = 0;
630 	u32 core_clk_cycles_per_us;
631 
632 	/*
633 	 * UTP controller uses SYS1CLK_1US_REG register for Interrupt
634 	 * Aggregation logic.
635 	 * It is mandatory to write SYS1CLK_1US_REG register on UFS host
636 	 * controller V4.0.0 onwards.
637 	 */
638 	if (host->hw_ver.major < 4 && !ufshcd_is_intr_aggr_allowed(hba))
639 		return 0;
640 
641 	if (hba->use_pm_opp && freq != ULONG_MAX) {
642 		clk_freq = ufs_qcom_opp_freq_to_clk_freq(hba, freq, "core_clk");
643 		if (clk_freq)
644 			goto cfg_timers;
645 	}
646 
647 	list_for_each_entry(clki, &hba->clk_list_head, list) {
648 		if (!strcmp(clki->name, "core_clk")) {
649 			if (freq == ULONG_MAX) {
650 				clk_freq = clki->max_freq;
651 				break;
652 			}
653 
654 			if (is_pre_scale_up)
655 				clk_freq = clki->max_freq;
656 			else
657 				clk_freq = clk_get_rate(clki->clk);
658 			break;
659 		}
660 
661 	}
662 
663 cfg_timers:
664 	/* If frequency is smaller than 1MHz, set to 1MHz */
665 	if (clk_freq < DEFAULT_CLK_RATE_HZ)
666 		clk_freq = DEFAULT_CLK_RATE_HZ;
667 
668 	core_clk_cycles_per_us = clk_freq / USEC_PER_SEC;
669 	if (ufshcd_readl(hba, REG_UFS_SYS1CLK_1US) != core_clk_cycles_per_us) {
670 		ufshcd_writel(hba, core_clk_cycles_per_us, REG_UFS_SYS1CLK_1US);
671 		/*
672 		 * make sure above write gets applied before we return from
673 		 * this function.
674 		 */
675 		ufshcd_readl(hba, REG_UFS_SYS1CLK_1US);
676 	}
677 
678 	return 0;
679 }
680 
681 static int ufs_qcom_link_startup_notify(struct ufs_hba *hba,
682 					enum ufs_notify_change_status status)
683 {
684 	int err = 0;
685 
686 	switch (status) {
687 	case PRE_CHANGE:
688 		if (ufs_qcom_cfg_timers(hba, false, ULONG_MAX)) {
689 			dev_err(hba->dev, "%s: ufs_qcom_cfg_timers() failed\n",
690 				__func__);
691 			return -EINVAL;
692 		}
693 
694 		err = ufs_qcom_set_core_clk_ctrl(hba, true, ULONG_MAX);
695 		if (err)
696 			dev_err(hba->dev, "cfg core clk ctrl failed\n");
697 		/*
698 		 * Some UFS devices (and may be host) have issues if LCC is
699 		 * enabled. So we are setting PA_Local_TX_LCC_Enable to 0
700 		 * before link startup which will make sure that both host
701 		 * and device TX LCC are disabled once link startup is
702 		 * completed.
703 		 */
704 		err = ufshcd_disable_host_tx_lcc(hba);
705 
706 		break;
707 	default:
708 		break;
709 	}
710 
711 	return err;
712 }
713 
714 static void ufs_qcom_device_reset_ctrl(struct ufs_hba *hba, bool asserted)
715 {
716 	struct ufs_qcom_host *host = ufshcd_get_variant(hba);
717 
718 	/* reset gpio is optional */
719 	if (!host->device_reset)
720 		return;
721 
722 	gpiod_set_value_cansleep(host->device_reset, asserted);
723 }
724 
725 static int ufs_qcom_suspend(struct ufs_hba *hba, enum ufs_pm_op pm_op,
726 	enum ufs_notify_change_status status)
727 {
728 	struct ufs_qcom_host *host = ufshcd_get_variant(hba);
729 	struct phy *phy = host->generic_phy;
730 
731 	if (status == PRE_CHANGE)
732 		return 0;
733 
734 	if (ufs_qcom_is_link_off(hba)) {
735 		/*
736 		 * Disable the tx/rx lane symbol clocks before PHY is
737 		 * powered down as the PLL source should be disabled
738 		 * after downstream clocks are disabled.
739 		 */
740 		ufs_qcom_disable_lane_clks(host);
741 		phy_power_off(phy);
742 
743 		/* reset the connected UFS device during power down */
744 		ufs_qcom_device_reset_ctrl(hba, true);
745 
746 	} else if (!ufs_qcom_is_link_active(hba)) {
747 		ufs_qcom_disable_lane_clks(host);
748 	}
749 
750 	return ufs_qcom_ice_suspend(host);
751 }
752 
753 static int ufs_qcom_resume(struct ufs_hba *hba, enum ufs_pm_op pm_op)
754 {
755 	struct ufs_qcom_host *host = ufshcd_get_variant(hba);
756 	struct phy *phy = host->generic_phy;
757 	int err;
758 
759 	if (ufs_qcom_is_link_off(hba)) {
760 		err = phy_power_on(phy);
761 		if (err) {
762 			dev_err(hba->dev, "%s: failed PHY power on: %d\n",
763 				__func__, err);
764 			return err;
765 		}
766 
767 		err = ufs_qcom_enable_lane_clks(host);
768 		if (err)
769 			return err;
770 
771 	} else if (!ufs_qcom_is_link_active(hba)) {
772 		err = ufs_qcom_enable_lane_clks(host);
773 		if (err)
774 			return err;
775 	}
776 
777 	return ufs_qcom_ice_resume(host);
778 }
779 
780 static void ufs_qcom_dev_ref_clk_ctrl(struct ufs_qcom_host *host, bool enable)
781 {
782 	if (host->dev_ref_clk_ctrl_mmio &&
783 	    (enable ^ host->is_dev_ref_clk_enabled)) {
784 		u32 temp = readl_relaxed(host->dev_ref_clk_ctrl_mmio);
785 
786 		if (enable)
787 			temp |= host->dev_ref_clk_en_mask;
788 		else
789 			temp &= ~host->dev_ref_clk_en_mask;
790 
791 		/*
792 		 * If we are here to disable this clock it might be immediately
793 		 * after entering into hibern8 in which case we need to make
794 		 * sure that device ref_clk is active for specific time after
795 		 * hibern8 enter.
796 		 */
797 		if (!enable) {
798 			unsigned long gating_wait;
799 
800 			gating_wait = host->hba->dev_info.clk_gating_wait_us;
801 			if (!gating_wait) {
802 				udelay(1);
803 			} else {
804 				/*
805 				 * bRefClkGatingWaitTime defines the minimum
806 				 * time for which the reference clock is
807 				 * required by device during transition from
808 				 * HS-MODE to LS-MODE or HIBERN8 state. Give it
809 				 * more delay to be on the safe side.
810 				 */
811 				gating_wait += 10;
812 				usleep_range(gating_wait, gating_wait + 10);
813 			}
814 		}
815 
816 		writel_relaxed(temp, host->dev_ref_clk_ctrl_mmio);
817 
818 		/*
819 		 * Make sure the write to ref_clk reaches the destination and
820 		 * not stored in a Write Buffer (WB).
821 		 */
822 		readl(host->dev_ref_clk_ctrl_mmio);
823 
824 		/*
825 		 * If we call hibern8 exit after this, we need to make sure that
826 		 * device ref_clk is stable for at least 1us before the hibern8
827 		 * exit command.
828 		 */
829 		if (enable)
830 			udelay(1);
831 
832 		host->is_dev_ref_clk_enabled = enable;
833 	}
834 }
835 
836 static int ufs_qcom_icc_set_bw(struct ufs_qcom_host *host, u32 mem_bw, u32 cfg_bw)
837 {
838 	struct device *dev = host->hba->dev;
839 	int ret;
840 
841 	ret = icc_set_bw(host->icc_ddr, 0, mem_bw);
842 	if (ret < 0) {
843 		dev_err(dev, "failed to set bandwidth request: %d\n", ret);
844 		return ret;
845 	}
846 
847 	ret = icc_set_bw(host->icc_cpu, 0, cfg_bw);
848 	if (ret < 0) {
849 		dev_err(dev, "failed to set bandwidth request: %d\n", ret);
850 		return ret;
851 	}
852 
853 	return 0;
854 }
855 
856 static struct __ufs_qcom_bw_table ufs_qcom_get_bw_table(struct ufs_qcom_host *host)
857 {
858 	struct ufs_pa_layer_attr *p = &host->dev_req_params;
859 	int gear = max_t(u32, p->gear_rx, p->gear_tx);
860 	int lane = max_t(u32, p->lane_rx, p->lane_tx);
861 
862 	if (WARN_ONCE(gear > QCOM_UFS_MAX_GEAR,
863 		      "ICC scaling for UFS Gear (%d) not supported. Using Gear (%d) bandwidth\n",
864 		      gear, QCOM_UFS_MAX_GEAR))
865 		gear = QCOM_UFS_MAX_GEAR;
866 
867 	if (WARN_ONCE(lane > QCOM_UFS_MAX_LANE,
868 		      "ICC scaling for UFS Lane (%d) not supported. Using Lane (%d) bandwidth\n",
869 		      lane, QCOM_UFS_MAX_LANE))
870 		lane = QCOM_UFS_MAX_LANE;
871 
872 	if (ufshcd_is_hs_mode(p)) {
873 		if (p->hs_rate == PA_HS_MODE_B)
874 			return ufs_qcom_bw_table[MODE_HS_RB][gear][lane];
875 		else
876 			return ufs_qcom_bw_table[MODE_HS_RA][gear][lane];
877 	} else {
878 		return ufs_qcom_bw_table[MODE_PWM][gear][lane];
879 	}
880 }
881 
882 static int ufs_qcom_icc_update_bw(struct ufs_qcom_host *host)
883 {
884 	struct __ufs_qcom_bw_table bw_table;
885 
886 	bw_table = ufs_qcom_get_bw_table(host);
887 
888 	return ufs_qcom_icc_set_bw(host, bw_table.mem_bw, bw_table.cfg_bw);
889 }
890 
891 static void ufs_qcom_set_tx_hs_equalizer(struct ufs_hba *hba, u32 gear, u32 tx_lanes)
892 {
893 	u32 equalizer_val;
894 	int ret, i;
895 
896 	/* Determine the equalizer value based on the gear */
897 	equalizer_val = (gear == 5) ? DEEMPHASIS_3_5_dB : NO_DEEMPHASIS;
898 
899 	for (i = 0; i < tx_lanes; i++) {
900 		ret = ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(TX_HS_EQUALIZER, i),
901 				     equalizer_val);
902 		if (ret)
903 			dev_err(hba->dev, "%s: failed equalizer lane %d\n",
904 				__func__, i);
905 	}
906 }
907 
908 static int ufs_qcom_pwr_change_notify(struct ufs_hba *hba,
909 				enum ufs_notify_change_status status,
910 				const struct ufs_pa_layer_attr *dev_max_params,
911 				struct ufs_pa_layer_attr *dev_req_params)
912 {
913 	struct ufs_qcom_host *host = ufshcd_get_variant(hba);
914 	struct ufs_host_params *host_params = &host->host_params;
915 	int ret = 0;
916 
917 	if (!dev_req_params) {
918 		pr_err("%s: incoming dev_req_params is NULL\n", __func__);
919 		return -EINVAL;
920 	}
921 
922 	switch (status) {
923 	case PRE_CHANGE:
924 		ret = ufshcd_negotiate_pwr_params(host_params, dev_max_params, dev_req_params);
925 		if (ret) {
926 			dev_err(hba->dev, "%s: failed to determine capabilities\n",
927 					__func__);
928 			return ret;
929 		}
930 
931 		/*
932 		 * During UFS driver probe, always update the PHY gear to match the negotiated
933 		 * gear, so that, if quirk UFSHCD_QUIRK_REINIT_AFTER_MAX_GEAR_SWITCH is enabled,
934 		 * the second init can program the optimal PHY settings. This allows one to start
935 		 * the first init with either the minimum or the maximum support gear.
936 		 */
937 		if (hba->ufshcd_state == UFSHCD_STATE_RESET) {
938 			/*
939 			 * Skip REINIT if the negotiated gear matches with the
940 			 * initial phy_gear. Otherwise, update the phy_gear to
941 			 * program the optimal gear setting during REINIT.
942 			 */
943 			if (host->phy_gear == dev_req_params->gear_tx)
944 				hba->quirks &= ~UFSHCD_QUIRK_REINIT_AFTER_MAX_GEAR_SWITCH;
945 			else
946 				host->phy_gear = dev_req_params->gear_tx;
947 		}
948 
949 		/* enable the device ref clock before changing to HS mode */
950 		if (!ufshcd_is_hs_mode(&hba->pwr_info) &&
951 			ufshcd_is_hs_mode(dev_req_params))
952 			ufs_qcom_dev_ref_clk_ctrl(host, true);
953 
954 		if (host->hw_ver.major >= 0x4) {
955 			ufshcd_dme_configure_adapt(hba,
956 						dev_req_params->gear_tx,
957 						PA_INITIAL_ADAPT);
958 		}
959 
960 		if (hba->dev_quirks & UFS_DEVICE_QUIRK_PA_TX_DEEMPHASIS_TUNING)
961 			ufs_qcom_set_tx_hs_equalizer(hba,
962 					dev_req_params->gear_tx, dev_req_params->lane_tx);
963 
964 		break;
965 	case POST_CHANGE:
966 		/* cache the power mode parameters to use internally */
967 		memcpy(&host->dev_req_params,
968 				dev_req_params, sizeof(*dev_req_params));
969 
970 		ufs_qcom_icc_update_bw(host);
971 
972 		/* disable the device ref clock if entered PWM mode */
973 		if (ufshcd_is_hs_mode(&hba->pwr_info) &&
974 			!ufshcd_is_hs_mode(dev_req_params))
975 			ufs_qcom_dev_ref_clk_ctrl(host, false);
976 		break;
977 	default:
978 		ret = -EINVAL;
979 		break;
980 	}
981 
982 	return ret;
983 }
984 
985 static int ufs_qcom_quirk_host_pa_saveconfigtime(struct ufs_hba *hba)
986 {
987 	int err;
988 	u32 pa_vs_config_reg1;
989 
990 	err = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_VS_CONFIG_REG1),
991 			     &pa_vs_config_reg1);
992 	if (err)
993 		return err;
994 
995 	/* Allow extension of MSB bits of PA_SaveConfigTime attribute */
996 	return ufshcd_dme_set(hba, UIC_ARG_MIB(PA_VS_CONFIG_REG1),
997 			    (pa_vs_config_reg1 | (1 << 12)));
998 }
999 
1000 static void ufs_qcom_override_pa_tx_hsg1_sync_len(struct ufs_hba *hba)
1001 {
1002 	int err;
1003 
1004 	err = ufshcd_dme_peer_set(hba, UIC_ARG_MIB(PA_TX_HSG1_SYNC_LENGTH),
1005 				  PA_TX_HSG1_SYNC_LENGTH_VAL);
1006 	if (err)
1007 		dev_err(hba->dev, "Failed (%d) set PA_TX_HSG1_SYNC_LENGTH\n", err);
1008 }
1009 
1010 static int ufs_qcom_apply_dev_quirks(struct ufs_hba *hba)
1011 {
1012 	int err = 0;
1013 
1014 	if (hba->dev_quirks & UFS_DEVICE_QUIRK_HOST_PA_SAVECONFIGTIME)
1015 		err = ufs_qcom_quirk_host_pa_saveconfigtime(hba);
1016 
1017 	if (hba->dev_quirks & UFS_DEVICE_QUIRK_PA_TX_HSG1_SYNC_LENGTH)
1018 		ufs_qcom_override_pa_tx_hsg1_sync_len(hba);
1019 
1020 	return err;
1021 }
1022 
1023 /* UFS device-specific quirks */
1024 static struct ufs_dev_quirk ufs_qcom_dev_fixups[] = {
1025 	{ .wmanufacturerid = UFS_VENDOR_SKHYNIX,
1026 	  .model = UFS_ANY_MODEL,
1027 	  .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM },
1028 	{ .wmanufacturerid = UFS_VENDOR_TOSHIBA,
1029 	  .model = UFS_ANY_MODEL,
1030 	  .quirk = UFS_DEVICE_QUIRK_DELAY_AFTER_LPM },
1031 	{ .wmanufacturerid = UFS_VENDOR_WDC,
1032 	  .model = UFS_ANY_MODEL,
1033 	  .quirk = UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE },
1034 	{ .wmanufacturerid = UFS_VENDOR_SAMSUNG,
1035 	  .model = UFS_ANY_MODEL,
1036 	  .quirk = UFS_DEVICE_QUIRK_PA_TX_HSG1_SYNC_LENGTH |
1037 		   UFS_DEVICE_QUIRK_PA_TX_DEEMPHASIS_TUNING },
1038 	{}
1039 };
1040 
1041 static void ufs_qcom_fixup_dev_quirks(struct ufs_hba *hba)
1042 {
1043 	ufshcd_fixup_dev_quirks(hba, ufs_qcom_dev_fixups);
1044 }
1045 
1046 static u32 ufs_qcom_get_ufs_hci_version(struct ufs_hba *hba)
1047 {
1048 	return ufshci_version(2, 0);
1049 }
1050 
1051 /**
1052  * ufs_qcom_advertise_quirks - advertise the known QCOM UFS controller quirks
1053  * @hba: host controller instance
1054  *
1055  * QCOM UFS host controller might have some non standard behaviours (quirks)
1056  * than what is specified by UFSHCI specification. Advertise all such
1057  * quirks to standard UFS host controller driver so standard takes them into
1058  * account.
1059  */
1060 static void ufs_qcom_advertise_quirks(struct ufs_hba *hba)
1061 {
1062 	const struct ufs_qcom_drvdata *drvdata = of_device_get_match_data(hba->dev);
1063 	struct ufs_qcom_host *host = ufshcd_get_variant(hba);
1064 
1065 	if (host->hw_ver.major == 0x2)
1066 		hba->quirks |= UFSHCD_QUIRK_BROKEN_UFS_HCI_VERSION;
1067 
1068 	if (host->hw_ver.major > 0x3)
1069 		hba->quirks |= UFSHCD_QUIRK_REINIT_AFTER_MAX_GEAR_SWITCH;
1070 
1071 	if (drvdata && drvdata->quirks)
1072 		hba->quirks |= drvdata->quirks;
1073 }
1074 
1075 static void ufs_qcom_set_phy_gear(struct ufs_qcom_host *host)
1076 {
1077 	struct ufs_host_params *host_params = &host->host_params;
1078 	u32 val, dev_major;
1079 
1080 	/*
1081 	 * Default to powering up the PHY to the max gear possible, which is
1082 	 * backwards compatible with lower gears but not optimal from
1083 	 * a power usage point of view. After device negotiation, if the
1084 	 * gear is lower a reinit will be performed to program the PHY
1085 	 * to the ideal gear for this combo of controller and device.
1086 	 */
1087 	host->phy_gear = host_params->hs_tx_gear;
1088 
1089 	if (host->hw_ver.major < 0x4) {
1090 		/*
1091 		 * These controllers only have one PHY init sequence,
1092 		 * let's power up the PHY using that (the minimum supported
1093 		 * gear, UFS_HS_G2).
1094 		 */
1095 		host->phy_gear = UFS_HS_G2;
1096 	} else if (host->hw_ver.major >= 0x5) {
1097 		val = ufshcd_readl(host->hba, REG_UFS_DEBUG_SPARE_CFG);
1098 		dev_major = FIELD_GET(UFS_DEV_VER_MAJOR_MASK, val);
1099 
1100 		/*
1101 		 * Since the UFS device version is populated, let's remove the
1102 		 * REINIT quirk as the negotiated gear won't change during boot.
1103 		 * So there is no need to do reinit.
1104 		 */
1105 		if (dev_major != 0x0)
1106 			host->hba->quirks &= ~UFSHCD_QUIRK_REINIT_AFTER_MAX_GEAR_SWITCH;
1107 
1108 		/*
1109 		 * For UFS 3.1 device and older, power up the PHY using HS-G4
1110 		 * PHY gear to save power.
1111 		 */
1112 		if (dev_major > 0x0 && dev_major < 0x4)
1113 			host->phy_gear = UFS_HS_G4;
1114 	}
1115 }
1116 
1117 static void ufs_qcom_set_host_params(struct ufs_hba *hba)
1118 {
1119 	struct ufs_qcom_host *host = ufshcd_get_variant(hba);
1120 	struct ufs_host_params *host_params = &host->host_params;
1121 
1122 	ufshcd_init_host_params(host_params);
1123 
1124 	/* This driver only supports symmetic gear setting i.e., hs_tx_gear == hs_rx_gear */
1125 	host_params->hs_tx_gear = host_params->hs_rx_gear = ufs_qcom_get_hs_gear(hba);
1126 }
1127 
1128 static void ufs_qcom_set_host_caps(struct ufs_hba *hba)
1129 {
1130 	struct ufs_qcom_host *host = ufshcd_get_variant(hba);
1131 
1132 	if (host->hw_ver.major >= 0x5)
1133 		host->caps |= UFS_QCOM_CAP_ICE_CONFIG;
1134 }
1135 
1136 static void ufs_qcom_set_caps(struct ufs_hba *hba)
1137 {
1138 	hba->caps |= UFSHCD_CAP_CLK_GATING | UFSHCD_CAP_HIBERN8_WITH_CLK_GATING;
1139 	hba->caps |= UFSHCD_CAP_CLK_SCALING | UFSHCD_CAP_WB_WITH_CLK_SCALING;
1140 	hba->caps |= UFSHCD_CAP_AUTO_BKOPS_SUSPEND;
1141 	hba->caps |= UFSHCD_CAP_WB_EN;
1142 	hba->caps |= UFSHCD_CAP_AGGR_POWER_COLLAPSE;
1143 	hba->caps |= UFSHCD_CAP_RPM_AUTOSUSPEND;
1144 
1145 	ufs_qcom_set_host_caps(hba);
1146 }
1147 
1148 /**
1149  * ufs_qcom_setup_clocks - enables/disable clocks
1150  * @hba: host controller instance
1151  * @on: If true, enable clocks else disable them.
1152  * @status: PRE_CHANGE or POST_CHANGE notify
1153  *
1154  * Return: 0 on success, non-zero on failure.
1155  */
1156 static int ufs_qcom_setup_clocks(struct ufs_hba *hba, bool on,
1157 				 enum ufs_notify_change_status status)
1158 {
1159 	struct ufs_qcom_host *host = ufshcd_get_variant(hba);
1160 
1161 	/*
1162 	 * In case ufs_qcom_init() is not yet done, simply ignore.
1163 	 * This ufs_qcom_setup_clocks() shall be called from
1164 	 * ufs_qcom_init() after init is done.
1165 	 */
1166 	if (!host)
1167 		return 0;
1168 
1169 	switch (status) {
1170 	case PRE_CHANGE:
1171 		if (on) {
1172 			ufs_qcom_icc_update_bw(host);
1173 		} else {
1174 			if (!ufs_qcom_is_link_active(hba)) {
1175 				/* disable device ref_clk */
1176 				ufs_qcom_dev_ref_clk_ctrl(host, false);
1177 			}
1178 		}
1179 		break;
1180 	case POST_CHANGE:
1181 		if (on) {
1182 			/* enable the device ref clock for HS mode*/
1183 			if (ufshcd_is_hs_mode(&hba->pwr_info))
1184 				ufs_qcom_dev_ref_clk_ctrl(host, true);
1185 		} else {
1186 			ufs_qcom_icc_set_bw(host, ufs_qcom_bw_table[MODE_MIN][0][0].mem_bw,
1187 					    ufs_qcom_bw_table[MODE_MIN][0][0].cfg_bw);
1188 		}
1189 		break;
1190 	}
1191 
1192 	return 0;
1193 }
1194 
1195 static int
1196 ufs_qcom_reset_assert(struct reset_controller_dev *rcdev, unsigned long id)
1197 {
1198 	struct ufs_qcom_host *host = rcdev_to_ufs_host(rcdev);
1199 
1200 	ufs_qcom_assert_reset(host->hba);
1201 	/* provide 1ms delay to let the reset pulse propagate. */
1202 	usleep_range(1000, 1100);
1203 	return 0;
1204 }
1205 
1206 static int
1207 ufs_qcom_reset_deassert(struct reset_controller_dev *rcdev, unsigned long id)
1208 {
1209 	struct ufs_qcom_host *host = rcdev_to_ufs_host(rcdev);
1210 
1211 	ufs_qcom_deassert_reset(host->hba);
1212 
1213 	/*
1214 	 * after reset deassertion, phy will need all ref clocks,
1215 	 * voltage, current to settle down before starting serdes.
1216 	 */
1217 	usleep_range(1000, 1100);
1218 	return 0;
1219 }
1220 
1221 static const struct reset_control_ops ufs_qcom_reset_ops = {
1222 	.assert = ufs_qcom_reset_assert,
1223 	.deassert = ufs_qcom_reset_deassert,
1224 };
1225 
1226 static int ufs_qcom_icc_init(struct ufs_qcom_host *host)
1227 {
1228 	struct device *dev = host->hba->dev;
1229 	int ret;
1230 
1231 	host->icc_ddr = devm_of_icc_get(dev, "ufs-ddr");
1232 	if (IS_ERR(host->icc_ddr))
1233 		return dev_err_probe(dev, PTR_ERR(host->icc_ddr),
1234 				    "failed to acquire interconnect path\n");
1235 
1236 	host->icc_cpu = devm_of_icc_get(dev, "cpu-ufs");
1237 	if (IS_ERR(host->icc_cpu))
1238 		return dev_err_probe(dev, PTR_ERR(host->icc_cpu),
1239 				    "failed to acquire interconnect path\n");
1240 
1241 	/*
1242 	 * Set Maximum bandwidth vote before initializing the UFS controller and
1243 	 * device. Ideally, a minimal interconnect vote would suffice for the
1244 	 * initialization, but a max vote would allow faster initialization.
1245 	 */
1246 	ret = ufs_qcom_icc_set_bw(host, ufs_qcom_bw_table[MODE_MAX][0][0].mem_bw,
1247 				  ufs_qcom_bw_table[MODE_MAX][0][0].cfg_bw);
1248 	if (ret < 0)
1249 		return dev_err_probe(dev, ret, "failed to set bandwidth request\n");
1250 
1251 	return 0;
1252 }
1253 
1254 /**
1255  * ufs_qcom_init - bind phy with controller
1256  * @hba: host controller instance
1257  *
1258  * Binds PHY with controller and powers up PHY enabling clocks
1259  * and regulators.
1260  *
1261  * Return: -EPROBE_DEFER if binding fails, returns negative error
1262  * on phy power up failure and returns zero on success.
1263  */
1264 static int ufs_qcom_init(struct ufs_hba *hba)
1265 {
1266 	int err;
1267 	struct device *dev = hba->dev;
1268 	struct ufs_qcom_host *host;
1269 	struct ufs_clk_info *clki;
1270 	const struct ufs_qcom_drvdata *drvdata = of_device_get_match_data(hba->dev);
1271 
1272 	host = devm_kzalloc(dev, sizeof(*host), GFP_KERNEL);
1273 	if (!host)
1274 		return -ENOMEM;
1275 
1276 	/* Make a two way bind between the qcom host and the hba */
1277 	host->hba = hba;
1278 	ufshcd_set_variant(hba, host);
1279 
1280 	/* Setup the optional reset control of HCI */
1281 	host->core_reset = devm_reset_control_get_optional(hba->dev, "rst");
1282 	if (IS_ERR(host->core_reset)) {
1283 		err = dev_err_probe(dev, PTR_ERR(host->core_reset),
1284 				    "Failed to get reset control\n");
1285 		goto out_variant_clear;
1286 	}
1287 
1288 	/* Fire up the reset controller. Failure here is non-fatal. */
1289 	host->rcdev.of_node = dev->of_node;
1290 	host->rcdev.ops = &ufs_qcom_reset_ops;
1291 	host->rcdev.owner = dev->driver->owner;
1292 	host->rcdev.nr_resets = 1;
1293 	err = devm_reset_controller_register(dev, &host->rcdev);
1294 	if (err)
1295 		dev_warn(dev, "Failed to register reset controller\n");
1296 
1297 	if (!has_acpi_companion(dev)) {
1298 		host->generic_phy = devm_phy_get(dev, "ufsphy");
1299 		if (IS_ERR(host->generic_phy)) {
1300 			err = dev_err_probe(dev, PTR_ERR(host->generic_phy), "Failed to get PHY\n");
1301 			goto out_variant_clear;
1302 		}
1303 	}
1304 
1305 	err = ufs_qcom_icc_init(host);
1306 	if (err)
1307 		goto out_variant_clear;
1308 
1309 	host->device_reset = devm_gpiod_get_optional(dev, "reset",
1310 						     GPIOD_OUT_HIGH);
1311 	if (IS_ERR(host->device_reset)) {
1312 		err = dev_err_probe(dev, PTR_ERR(host->device_reset),
1313 				    "Failed to acquire device reset gpio\n");
1314 		goto out_variant_clear;
1315 	}
1316 
1317 	ufs_qcom_get_controller_revision(hba, &host->hw_ver.major,
1318 		&host->hw_ver.minor, &host->hw_ver.step);
1319 
1320 	host->dev_ref_clk_ctrl_mmio = hba->mmio_base + REG_UFS_CFG1;
1321 	host->dev_ref_clk_en_mask = BIT(26);
1322 
1323 	list_for_each_entry(clki, &hba->clk_list_head, list) {
1324 		if (!strcmp(clki->name, "core_clk_unipro"))
1325 			clki->keep_link_active = true;
1326 	}
1327 
1328 	err = ufs_qcom_init_lane_clks(host);
1329 	if (err)
1330 		goto out_variant_clear;
1331 
1332 	ufs_qcom_set_caps(hba);
1333 	ufs_qcom_advertise_quirks(hba);
1334 	ufs_qcom_set_host_params(hba);
1335 	ufs_qcom_set_phy_gear(host);
1336 
1337 	err = ufs_qcom_ice_init(host);
1338 	if (err)
1339 		goto out_variant_clear;
1340 
1341 	ufs_qcom_setup_clocks(hba, true, POST_CHANGE);
1342 
1343 	ufs_qcom_get_default_testbus_cfg(host);
1344 	err = ufs_qcom_testbus_config(host);
1345 	if (err)
1346 		/* Failure is non-fatal */
1347 		dev_warn(dev, "%s: failed to configure the testbus %d\n",
1348 				__func__, err);
1349 
1350 	if (drvdata && drvdata->no_phy_retention)
1351 		hba->spm_lvl = UFS_PM_LVL_5;
1352 
1353 	return 0;
1354 
1355 out_variant_clear:
1356 	ufshcd_set_variant(hba, NULL);
1357 
1358 	return err;
1359 }
1360 
1361 static void ufs_qcom_exit(struct ufs_hba *hba)
1362 {
1363 	struct ufs_qcom_host *host = ufshcd_get_variant(hba);
1364 
1365 	ufs_qcom_disable_lane_clks(host);
1366 	phy_power_off(host->generic_phy);
1367 	phy_exit(host->generic_phy);
1368 }
1369 
1370 /**
1371  * ufs_qcom_set_clk_40ns_cycles - Configure 40ns clk cycles
1372  *
1373  * @hba: host controller instance
1374  * @cycles_in_1us: No of cycles in 1us to be configured
1375  *
1376  * Returns error if dme get/set configuration for 40ns fails
1377  * and returns zero on success.
1378  */
1379 static int ufs_qcom_set_clk_40ns_cycles(struct ufs_hba *hba,
1380 					u32 cycles_in_1us)
1381 {
1382 	struct ufs_qcom_host *host = ufshcd_get_variant(hba);
1383 	u32 cycles_in_40ns;
1384 	u32 reg;
1385 	int err;
1386 
1387 	/*
1388 	 * UFS host controller V4.0.0 onwards needs to program
1389 	 * PA_VS_CORE_CLK_40NS_CYCLES attribute per programmed
1390 	 * frequency of unipro core clk of UFS host controller.
1391 	 */
1392 	if (host->hw_ver.major < 4)
1393 		return 0;
1394 
1395 	/*
1396 	 * Generic formulae for cycles_in_40ns = (freq_unipro/25) is not
1397 	 * applicable for all frequencies. For ex: ceil(37.5 MHz/25) will
1398 	 * be 2 and ceil(403 MHZ/25) will be 17 whereas Hardware
1399 	 * specification expect to be 16. Hence use exact hardware spec
1400 	 * mandated value for cycles_in_40ns instead of calculating using
1401 	 * generic formulae.
1402 	 */
1403 	switch (cycles_in_1us) {
1404 	case UNIPRO_CORE_CLK_FREQ_403_MHZ:
1405 		cycles_in_40ns = 16;
1406 		break;
1407 	case UNIPRO_CORE_CLK_FREQ_300_MHZ:
1408 		cycles_in_40ns = 12;
1409 		break;
1410 	case UNIPRO_CORE_CLK_FREQ_201_5_MHZ:
1411 		cycles_in_40ns = 8;
1412 		break;
1413 	case UNIPRO_CORE_CLK_FREQ_150_MHZ:
1414 		cycles_in_40ns = 6;
1415 		break;
1416 	case UNIPRO_CORE_CLK_FREQ_100_MHZ:
1417 		cycles_in_40ns = 4;
1418 		break;
1419 	case  UNIPRO_CORE_CLK_FREQ_75_MHZ:
1420 		cycles_in_40ns = 3;
1421 		break;
1422 	case UNIPRO_CORE_CLK_FREQ_37_5_MHZ:
1423 		cycles_in_40ns = 2;
1424 		break;
1425 	default:
1426 		dev_err(hba->dev, "UNIPRO clk freq %u MHz not supported\n",
1427 				cycles_in_1us);
1428 		return -EINVAL;
1429 	}
1430 
1431 	err = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_VS_CORE_CLK_40NS_CYCLES), &reg);
1432 	if (err)
1433 		return err;
1434 
1435 	reg &= ~PA_VS_CORE_CLK_40NS_CYCLES_MASK;
1436 	reg |= cycles_in_40ns;
1437 
1438 	return ufshcd_dme_set(hba, UIC_ARG_MIB(PA_VS_CORE_CLK_40NS_CYCLES), reg);
1439 }
1440 
1441 static int ufs_qcom_set_core_clk_ctrl(struct ufs_hba *hba, bool is_scale_up, unsigned long freq)
1442 {
1443 	struct ufs_qcom_host *host = ufshcd_get_variant(hba);
1444 	struct list_head *head = &hba->clk_list_head;
1445 	struct ufs_clk_info *clki;
1446 	u32 cycles_in_1us = 0;
1447 	u32 core_clk_ctrl_reg;
1448 	unsigned long clk_freq;
1449 	int err;
1450 
1451 	if (hba->use_pm_opp && freq != ULONG_MAX) {
1452 		clk_freq = ufs_qcom_opp_freq_to_clk_freq(hba, freq, "core_clk_unipro");
1453 		if (clk_freq) {
1454 			cycles_in_1us = ceil(clk_freq, HZ_PER_MHZ);
1455 			goto set_core_clk_ctrl;
1456 		}
1457 	}
1458 
1459 	list_for_each_entry(clki, head, list) {
1460 		if (!IS_ERR_OR_NULL(clki->clk) &&
1461 		    !strcmp(clki->name, "core_clk_unipro")) {
1462 			if (!clki->max_freq) {
1463 				cycles_in_1us = 150; /* default for backwards compatibility */
1464 				break;
1465 			}
1466 
1467 			if (freq == ULONG_MAX) {
1468 				cycles_in_1us = ceil(clki->max_freq, HZ_PER_MHZ);
1469 				break;
1470 			}
1471 
1472 			if (is_scale_up)
1473 				cycles_in_1us = ceil(clki->max_freq, HZ_PER_MHZ);
1474 			else
1475 				cycles_in_1us = ceil(clk_get_rate(clki->clk), HZ_PER_MHZ);
1476 			break;
1477 		}
1478 	}
1479 
1480 set_core_clk_ctrl:
1481 	err = ufshcd_dme_get(hba,
1482 			    UIC_ARG_MIB(DME_VS_CORE_CLK_CTRL),
1483 			    &core_clk_ctrl_reg);
1484 	if (err)
1485 		return err;
1486 
1487 	/* Bit mask is different for UFS host controller V4.0.0 onwards */
1488 	if (host->hw_ver.major >= 4) {
1489 		if (!FIELD_FIT(CLK_1US_CYCLES_MASK_V4, cycles_in_1us))
1490 			return -ERANGE;
1491 		core_clk_ctrl_reg &= ~CLK_1US_CYCLES_MASK_V4;
1492 		core_clk_ctrl_reg |= FIELD_PREP(CLK_1US_CYCLES_MASK_V4, cycles_in_1us);
1493 	} else {
1494 		if (!FIELD_FIT(CLK_1US_CYCLES_MASK, cycles_in_1us))
1495 			return -ERANGE;
1496 		core_clk_ctrl_reg &= ~CLK_1US_CYCLES_MASK;
1497 		core_clk_ctrl_reg |= FIELD_PREP(CLK_1US_CYCLES_MASK, cycles_in_1us);
1498 	}
1499 
1500 	/* Clear CORE_CLK_DIV_EN */
1501 	core_clk_ctrl_reg &= ~DME_VS_CORE_CLK_CTRL_CORE_CLK_DIV_EN_BIT;
1502 
1503 	err = ufshcd_dme_set(hba,
1504 			    UIC_ARG_MIB(DME_VS_CORE_CLK_CTRL),
1505 			    core_clk_ctrl_reg);
1506 	if (err)
1507 		return err;
1508 
1509 	/* Configure unipro core clk 40ns attribute */
1510 	return ufs_qcom_set_clk_40ns_cycles(hba, cycles_in_1us);
1511 }
1512 
1513 static int ufs_qcom_clk_scale_up_pre_change(struct ufs_hba *hba, unsigned long freq)
1514 {
1515 	int ret;
1516 
1517 	ret = ufs_qcom_cfg_timers(hba, true, freq);
1518 	if (ret) {
1519 		dev_err(hba->dev, "%s ufs cfg timer failed\n", __func__);
1520 		return ret;
1521 	}
1522 	/* set unipro core clock attributes and clear clock divider */
1523 	return ufs_qcom_set_core_clk_ctrl(hba, true, freq);
1524 }
1525 
1526 static int ufs_qcom_clk_scale_up_post_change(struct ufs_hba *hba)
1527 {
1528 	return 0;
1529 }
1530 
1531 static int ufs_qcom_clk_scale_down_pre_change(struct ufs_hba *hba)
1532 {
1533 	int err;
1534 	u32 core_clk_ctrl_reg;
1535 
1536 	err = ufshcd_dme_get(hba,
1537 			    UIC_ARG_MIB(DME_VS_CORE_CLK_CTRL),
1538 			    &core_clk_ctrl_reg);
1539 
1540 	/* make sure CORE_CLK_DIV_EN is cleared */
1541 	if (!err &&
1542 	    (core_clk_ctrl_reg & DME_VS_CORE_CLK_CTRL_CORE_CLK_DIV_EN_BIT)) {
1543 		core_clk_ctrl_reg &= ~DME_VS_CORE_CLK_CTRL_CORE_CLK_DIV_EN_BIT;
1544 		err = ufshcd_dme_set(hba,
1545 				    UIC_ARG_MIB(DME_VS_CORE_CLK_CTRL),
1546 				    core_clk_ctrl_reg);
1547 	}
1548 
1549 	return err;
1550 }
1551 
1552 static int ufs_qcom_clk_scale_down_post_change(struct ufs_hba *hba, unsigned long freq)
1553 {
1554 	int ret;
1555 
1556 	ret = ufs_qcom_cfg_timers(hba, false, freq);
1557 	if (ret) {
1558 		dev_err(hba->dev, "%s: ufs_qcom_cfg_timers() failed\n",	__func__);
1559 		return ret;
1560 	}
1561 	/* set unipro core clock attributes and clear clock divider */
1562 	return ufs_qcom_set_core_clk_ctrl(hba, false, freq);
1563 }
1564 
1565 static int ufs_qcom_clk_scale_notify(struct ufs_hba *hba, bool scale_up,
1566 				     unsigned long target_freq,
1567 				     enum ufs_notify_change_status status)
1568 {
1569 	struct ufs_qcom_host *host = ufshcd_get_variant(hba);
1570 	int err;
1571 
1572 	/* check the host controller state before sending hibern8 cmd */
1573 	if (!ufshcd_is_hba_active(hba))
1574 		return 0;
1575 
1576 	if (status == PRE_CHANGE) {
1577 		err = ufshcd_uic_hibern8_enter(hba);
1578 		if (err)
1579 			return err;
1580 		if (scale_up)
1581 			err = ufs_qcom_clk_scale_up_pre_change(hba, target_freq);
1582 		else
1583 			err = ufs_qcom_clk_scale_down_pre_change(hba);
1584 
1585 		if (err) {
1586 			ufshcd_uic_hibern8_exit(hba);
1587 			return err;
1588 		}
1589 	} else {
1590 		if (scale_up)
1591 			err = ufs_qcom_clk_scale_up_post_change(hba);
1592 		else
1593 			err = ufs_qcom_clk_scale_down_post_change(hba, target_freq);
1594 
1595 
1596 		if (err) {
1597 			ufshcd_uic_hibern8_exit(hba);
1598 			return err;
1599 		}
1600 
1601 		ufs_qcom_icc_update_bw(host);
1602 		ufshcd_uic_hibern8_exit(hba);
1603 	}
1604 
1605 	return 0;
1606 }
1607 
1608 static void ufs_qcom_enable_test_bus(struct ufs_qcom_host *host)
1609 {
1610 	ufshcd_rmwl(host->hba, UFS_REG_TEST_BUS_EN,
1611 			UFS_REG_TEST_BUS_EN, REG_UFS_CFG1);
1612 	ufshcd_rmwl(host->hba, TEST_BUS_EN, TEST_BUS_EN, REG_UFS_CFG1);
1613 }
1614 
1615 static void ufs_qcom_get_default_testbus_cfg(struct ufs_qcom_host *host)
1616 {
1617 	/* provide a legal default configuration */
1618 	host->testbus.select_major = TSTBUS_UNIPRO;
1619 	host->testbus.select_minor = 37;
1620 }
1621 
1622 static bool ufs_qcom_testbus_cfg_is_ok(struct ufs_qcom_host *host)
1623 {
1624 	if (host->testbus.select_major >= TSTBUS_MAX) {
1625 		dev_err(host->hba->dev,
1626 			"%s: UFS_CFG1[TEST_BUS_SEL} may not equal 0x%05X\n",
1627 			__func__, host->testbus.select_major);
1628 		return false;
1629 	}
1630 
1631 	return true;
1632 }
1633 
1634 int ufs_qcom_testbus_config(struct ufs_qcom_host *host)
1635 {
1636 	int reg;
1637 	int offset;
1638 	u32 mask = TEST_BUS_SUB_SEL_MASK;
1639 
1640 	if (!host)
1641 		return -EINVAL;
1642 
1643 	if (!ufs_qcom_testbus_cfg_is_ok(host))
1644 		return -EPERM;
1645 
1646 	switch (host->testbus.select_major) {
1647 	case TSTBUS_UAWM:
1648 		reg = UFS_TEST_BUS_CTRL_0;
1649 		offset = 24;
1650 		break;
1651 	case TSTBUS_UARM:
1652 		reg = UFS_TEST_BUS_CTRL_0;
1653 		offset = 16;
1654 		break;
1655 	case TSTBUS_TXUC:
1656 		reg = UFS_TEST_BUS_CTRL_0;
1657 		offset = 8;
1658 		break;
1659 	case TSTBUS_RXUC:
1660 		reg = UFS_TEST_BUS_CTRL_0;
1661 		offset = 0;
1662 		break;
1663 	case TSTBUS_DFC:
1664 		reg = UFS_TEST_BUS_CTRL_1;
1665 		offset = 24;
1666 		break;
1667 	case TSTBUS_TRLUT:
1668 		reg = UFS_TEST_BUS_CTRL_1;
1669 		offset = 16;
1670 		break;
1671 	case TSTBUS_TMRLUT:
1672 		reg = UFS_TEST_BUS_CTRL_1;
1673 		offset = 8;
1674 		break;
1675 	case TSTBUS_OCSC:
1676 		reg = UFS_TEST_BUS_CTRL_1;
1677 		offset = 0;
1678 		break;
1679 	case TSTBUS_WRAPPER:
1680 		reg = UFS_TEST_BUS_CTRL_2;
1681 		offset = 16;
1682 		break;
1683 	case TSTBUS_COMBINED:
1684 		reg = UFS_TEST_BUS_CTRL_2;
1685 		offset = 8;
1686 		break;
1687 	case TSTBUS_UTP_HCI:
1688 		reg = UFS_TEST_BUS_CTRL_2;
1689 		offset = 0;
1690 		break;
1691 	case TSTBUS_UNIPRO:
1692 		reg = UFS_UNIPRO_CFG;
1693 		offset = 20;
1694 		mask = 0xFFF;
1695 		break;
1696 	/*
1697 	 * No need for a default case, since
1698 	 * ufs_qcom_testbus_cfg_is_ok() checks that the configuration
1699 	 * is legal
1700 	 */
1701 	}
1702 	mask <<= offset;
1703 	ufshcd_rmwl(host->hba, TEST_BUS_SEL,
1704 		    (u32)host->testbus.select_major << 19,
1705 		    REG_UFS_CFG1);
1706 	ufshcd_rmwl(host->hba, mask,
1707 		    (u32)host->testbus.select_minor << offset,
1708 		    reg);
1709 	ufs_qcom_enable_test_bus(host);
1710 
1711 	return 0;
1712 }
1713 
1714 static void ufs_qcom_dump_testbus(struct ufs_hba *hba)
1715 {
1716 	struct ufs_qcom_host *host = ufshcd_get_variant(hba);
1717 	int i, j, nminor = 0, testbus_len = 0;
1718 	u32 *testbus __free(kfree) = NULL;
1719 	char *prefix;
1720 
1721 	testbus = kmalloc_array(256, sizeof(u32), GFP_KERNEL);
1722 	if (!testbus)
1723 		return;
1724 
1725 	for (j = 0; j < TSTBUS_MAX; j++) {
1726 		nminor = testbus_info[j].nminor;
1727 		prefix = testbus_info[j].prefix;
1728 		host->testbus.select_major = j;
1729 		testbus_len = nminor * sizeof(u32);
1730 		for (i = 0; i < nminor; i++) {
1731 			host->testbus.select_minor = i;
1732 			ufs_qcom_testbus_config(host);
1733 			testbus[i] = ufshcd_readl(hba, UFS_TEST_BUS);
1734 		}
1735 		print_hex_dump(KERN_ERR, prefix, DUMP_PREFIX_OFFSET,
1736 			       16, 4, testbus, testbus_len, false);
1737 	}
1738 }
1739 
1740 static int ufs_qcom_dump_regs(struct ufs_hba *hba, size_t offset, size_t len,
1741 			      const char *prefix, enum ufshcd_res id)
1742 {
1743 	u32 *regs __free(kfree) = NULL;
1744 	size_t pos;
1745 
1746 	if (offset % 4 != 0 || len % 4 != 0)
1747 		return -EINVAL;
1748 
1749 	regs = kzalloc(len, GFP_ATOMIC);
1750 	if (!regs)
1751 		return -ENOMEM;
1752 
1753 	for (pos = 0; pos < len; pos += 4)
1754 		regs[pos / 4] = readl(hba->res[id].base + offset + pos);
1755 
1756 	print_hex_dump(KERN_ERR, prefix,
1757 		       len > 4 ? DUMP_PREFIX_OFFSET : DUMP_PREFIX_NONE,
1758 		       16, 4, regs, len, false);
1759 
1760 	return 0;
1761 }
1762 
1763 static void ufs_qcom_dump_mcq_hci_regs(struct ufs_hba *hba)
1764 {
1765 	struct dump_info {
1766 		size_t offset;
1767 		size_t len;
1768 		const char *prefix;
1769 		enum ufshcd_res id;
1770 	};
1771 
1772 	struct dump_info mcq_dumps[] = {
1773 		{0x0, 256 * 4, "MCQ HCI-0 ", RES_MCQ},
1774 		{0x400, 256 * 4, "MCQ HCI-1 ", RES_MCQ},
1775 		{0x0, 5 * 4, "MCQ VS-0 ", RES_MCQ_VS},
1776 		{0x0, 256 * 4, "MCQ SQD-0 ", RES_MCQ_SQD},
1777 		{0x400, 256 * 4, "MCQ SQD-1 ", RES_MCQ_SQD},
1778 		{0x800, 256 * 4, "MCQ SQD-2 ", RES_MCQ_SQD},
1779 		{0xc00, 256 * 4, "MCQ SQD-3 ", RES_MCQ_SQD},
1780 		{0x1000, 256 * 4, "MCQ SQD-4 ", RES_MCQ_SQD},
1781 		{0x1400, 256 * 4, "MCQ SQD-5 ", RES_MCQ_SQD},
1782 		{0x1800, 256 * 4, "MCQ SQD-6 ", RES_MCQ_SQD},
1783 		{0x1c00, 256 * 4, "MCQ SQD-7 ", RES_MCQ_SQD},
1784 	};
1785 
1786 	for (int i = 0; i < ARRAY_SIZE(mcq_dumps); i++) {
1787 		ufs_qcom_dump_regs(hba, mcq_dumps[i].offset, mcq_dumps[i].len,
1788 				   mcq_dumps[i].prefix, mcq_dumps[i].id);
1789 		cond_resched();
1790 	}
1791 }
1792 
1793 static void ufs_qcom_dump_dbg_regs(struct ufs_hba *hba)
1794 {
1795 	u32 reg;
1796 	struct ufs_qcom_host *host;
1797 
1798 	host = ufshcd_get_variant(hba);
1799 
1800 	dev_err(hba->dev, "HW_H8_ENTER_CNT=%d\n", ufshcd_readl(hba, REG_UFS_HW_H8_ENTER_CNT));
1801 	dev_err(hba->dev, "HW_H8_EXIT_CNT=%d\n", ufshcd_readl(hba, REG_UFS_HW_H8_EXIT_CNT));
1802 
1803 	dev_err(hba->dev, "SW_H8_ENTER_CNT=%d\n", ufshcd_readl(hba, REG_UFS_SW_H8_ENTER_CNT));
1804 	dev_err(hba->dev, "SW_H8_EXIT_CNT=%d\n", ufshcd_readl(hba, REG_UFS_SW_H8_EXIT_CNT));
1805 
1806 	dev_err(hba->dev, "SW_AFTER_HW_H8_ENTER_CNT=%d\n",
1807 			ufshcd_readl(hba, REG_UFS_SW_AFTER_HW_H8_ENTER_CNT));
1808 
1809 	ufshcd_dump_regs(hba, REG_UFS_SYS1CLK_1US, 16 * 4,
1810 			 "HCI Vendor Specific Registers ");
1811 
1812 	reg = ufs_qcom_get_debug_reg_offset(host, UFS_UFS_DBG_RD_REG_OCSC);
1813 	ufshcd_dump_regs(hba, reg, 44 * 4, "UFS_UFS_DBG_RD_REG_OCSC ");
1814 
1815 	reg = ufshcd_readl(hba, REG_UFS_CFG1);
1816 	reg |= UTP_DBG_RAMS_EN;
1817 	ufshcd_writel(hba, reg, REG_UFS_CFG1);
1818 
1819 	reg = ufs_qcom_get_debug_reg_offset(host, UFS_UFS_DBG_RD_EDTL_RAM);
1820 	ufshcd_dump_regs(hba, reg, 32 * 4, "UFS_UFS_DBG_RD_EDTL_RAM ");
1821 
1822 	reg = ufs_qcom_get_debug_reg_offset(host, UFS_UFS_DBG_RD_DESC_RAM);
1823 	ufshcd_dump_regs(hba, reg, 128 * 4, "UFS_UFS_DBG_RD_DESC_RAM ");
1824 
1825 	reg = ufs_qcom_get_debug_reg_offset(host, UFS_UFS_DBG_RD_PRDT_RAM);
1826 	ufshcd_dump_regs(hba, reg, 64 * 4, "UFS_UFS_DBG_RD_PRDT_RAM ");
1827 
1828 	/* clear bit 17 - UTP_DBG_RAMS_EN */
1829 	ufshcd_rmwl(hba, UTP_DBG_RAMS_EN, 0, REG_UFS_CFG1);
1830 
1831 	reg = ufs_qcom_get_debug_reg_offset(host, UFS_DBG_RD_REG_UAWM);
1832 	ufshcd_dump_regs(hba, reg, 4 * 4, "UFS_DBG_RD_REG_UAWM ");
1833 
1834 	reg = ufs_qcom_get_debug_reg_offset(host, UFS_DBG_RD_REG_UARM);
1835 	ufshcd_dump_regs(hba, reg, 4 * 4, "UFS_DBG_RD_REG_UARM ");
1836 
1837 	reg = ufs_qcom_get_debug_reg_offset(host, UFS_DBG_RD_REG_TXUC);
1838 	ufshcd_dump_regs(hba, reg, 48 * 4, "UFS_DBG_RD_REG_TXUC ");
1839 
1840 	reg = ufs_qcom_get_debug_reg_offset(host, UFS_DBG_RD_REG_RXUC);
1841 	ufshcd_dump_regs(hba, reg, 27 * 4, "UFS_DBG_RD_REG_RXUC ");
1842 
1843 	reg = ufs_qcom_get_debug_reg_offset(host, UFS_DBG_RD_REG_DFC);
1844 	ufshcd_dump_regs(hba, reg, 19 * 4, "UFS_DBG_RD_REG_DFC ");
1845 
1846 	reg = ufs_qcom_get_debug_reg_offset(host, UFS_DBG_RD_REG_TRLUT);
1847 	ufshcd_dump_regs(hba, reg, 34 * 4, "UFS_DBG_RD_REG_TRLUT ");
1848 
1849 	reg = ufs_qcom_get_debug_reg_offset(host, UFS_DBG_RD_REG_TMRLUT);
1850 	ufshcd_dump_regs(hba, reg, 9 * 4, "UFS_DBG_RD_REG_TMRLUT ");
1851 
1852 	if (hba->mcq_enabled) {
1853 		reg = ufs_qcom_get_debug_reg_offset(host, UFS_RD_REG_MCQ);
1854 		ufshcd_dump_regs(hba, reg, 64 * 4, "HCI MCQ Debug Registers ");
1855 	}
1856 
1857 	/* ensure below dumps occur only in task context due to blocking calls. */
1858 	if (in_task()) {
1859 		/* Dump MCQ Host Vendor Specific Registers */
1860 		if (hba->mcq_enabled)
1861 			ufs_qcom_dump_mcq_hci_regs(hba);
1862 
1863 		/* voluntarily yield the CPU as we are dumping too much data */
1864 		ufshcd_dump_regs(hba, UFS_TEST_BUS, 4, "UFS_TEST_BUS ");
1865 		cond_resched();
1866 		ufs_qcom_dump_testbus(hba);
1867 	}
1868 }
1869 
1870 /**
1871  * ufs_qcom_device_reset() - toggle the (optional) device reset line
1872  * @hba: per-adapter instance
1873  *
1874  * Toggles the (optional) reset line to reset the attached device.
1875  */
1876 static int ufs_qcom_device_reset(struct ufs_hba *hba)
1877 {
1878 	struct ufs_qcom_host *host = ufshcd_get_variant(hba);
1879 
1880 	/* reset gpio is optional */
1881 	if (!host->device_reset)
1882 		return -EOPNOTSUPP;
1883 
1884 	/*
1885 	 * The UFS device shall detect reset pulses of 1us, sleep for 10us to
1886 	 * be on the safe side.
1887 	 */
1888 	ufs_qcom_device_reset_ctrl(hba, true);
1889 	usleep_range(10, 15);
1890 
1891 	ufs_qcom_device_reset_ctrl(hba, false);
1892 	usleep_range(10, 15);
1893 
1894 	return 0;
1895 }
1896 
1897 #if IS_ENABLED(CONFIG_DEVFREQ_GOV_SIMPLE_ONDEMAND)
1898 static void ufs_qcom_config_scaling_param(struct ufs_hba *hba,
1899 					struct devfreq_dev_profile *p,
1900 					struct devfreq_simple_ondemand_data *d)
1901 {
1902 	p->polling_ms = 60;
1903 	p->timer = DEVFREQ_TIMER_DELAYED;
1904 	d->upthreshold = 70;
1905 	d->downdifferential = 5;
1906 
1907 	hba->clk_scaling.suspend_on_no_request = true;
1908 }
1909 #else
1910 static void ufs_qcom_config_scaling_param(struct ufs_hba *hba,
1911 		struct devfreq_dev_profile *p,
1912 		struct devfreq_simple_ondemand_data *data)
1913 {
1914 }
1915 #endif
1916 
1917 /* Resources */
1918 static const struct ufshcd_res_info ufs_res_info[RES_MAX] = {
1919 	{.name = "ufs_mem",},
1920 	{.name = "mcq",},
1921 	/* Submission Queue DAO */
1922 	{.name = "mcq_sqd",},
1923 	/* Submission Queue Interrupt Status */
1924 	{.name = "mcq_sqis",},
1925 	/* Completion Queue DAO */
1926 	{.name = "mcq_cqd",},
1927 	/* Completion Queue Interrupt Status */
1928 	{.name = "mcq_cqis",},
1929 	/* MCQ vendor specific */
1930 	{.name = "mcq_vs",},
1931 };
1932 
1933 static int ufs_qcom_mcq_config_resource(struct ufs_hba *hba)
1934 {
1935 	struct platform_device *pdev = to_platform_device(hba->dev);
1936 	struct ufshcd_res_info *res;
1937 	struct resource *res_mem, *res_mcq;
1938 	int i, ret;
1939 
1940 	memcpy(hba->res, ufs_res_info, sizeof(ufs_res_info));
1941 
1942 	for (i = 0; i < RES_MAX; i++) {
1943 		res = &hba->res[i];
1944 		res->resource = platform_get_resource_byname(pdev,
1945 							     IORESOURCE_MEM,
1946 							     res->name);
1947 		if (!res->resource) {
1948 			dev_info(hba->dev, "Resource %s not provided\n", res->name);
1949 			if (i == RES_UFS)
1950 				return -ENODEV;
1951 			continue;
1952 		} else if (i == RES_UFS) {
1953 			res_mem = res->resource;
1954 			res->base = hba->mmio_base;
1955 			continue;
1956 		}
1957 
1958 		res->base = devm_ioremap_resource(hba->dev, res->resource);
1959 		if (IS_ERR(res->base)) {
1960 			dev_err(hba->dev, "Failed to map res %s, err=%d\n",
1961 					 res->name, (int)PTR_ERR(res->base));
1962 			ret = PTR_ERR(res->base);
1963 			res->base = NULL;
1964 			return ret;
1965 		}
1966 	}
1967 
1968 	/* MCQ resource provided in DT */
1969 	res = &hba->res[RES_MCQ];
1970 	/* Bail if MCQ resource is provided */
1971 	if (res->base)
1972 		goto out;
1973 
1974 	/* Explicitly allocate MCQ resource from ufs_mem */
1975 	res_mcq = devm_kzalloc(hba->dev, sizeof(*res_mcq), GFP_KERNEL);
1976 	if (!res_mcq)
1977 		return -ENOMEM;
1978 
1979 	res_mcq->start = res_mem->start +
1980 			 MCQ_SQATTR_OFFSET(hba->mcq_capabilities);
1981 	res_mcq->end = res_mcq->start + hba->nr_hw_queues * MCQ_QCFG_SIZE - 1;
1982 	res_mcq->flags = res_mem->flags;
1983 	res_mcq->name = "mcq";
1984 
1985 	ret = insert_resource(&iomem_resource, res_mcq);
1986 	if (ret) {
1987 		dev_err(hba->dev, "Failed to insert MCQ resource, err=%d\n",
1988 			ret);
1989 		return ret;
1990 	}
1991 
1992 	res->base = devm_ioremap_resource(hba->dev, res_mcq);
1993 	if (IS_ERR(res->base)) {
1994 		dev_err(hba->dev, "MCQ registers mapping failed, err=%d\n",
1995 			(int)PTR_ERR(res->base));
1996 		ret = PTR_ERR(res->base);
1997 		goto ioremap_err;
1998 	}
1999 
2000 out:
2001 	hba->mcq_base = res->base;
2002 	return 0;
2003 ioremap_err:
2004 	res->base = NULL;
2005 	remove_resource(res_mcq);
2006 	return ret;
2007 }
2008 
2009 static int ufs_qcom_op_runtime_config(struct ufs_hba *hba)
2010 {
2011 	struct ufshcd_res_info *mem_res, *sqdao_res;
2012 	struct ufshcd_mcq_opr_info_t *opr;
2013 	int i;
2014 
2015 	mem_res = &hba->res[RES_UFS];
2016 	sqdao_res = &hba->res[RES_MCQ_SQD];
2017 
2018 	if (!mem_res->base || !sqdao_res->base)
2019 		return -EINVAL;
2020 
2021 	for (i = 0; i < OPR_MAX; i++) {
2022 		opr = &hba->mcq_opr[i];
2023 		opr->offset = sqdao_res->resource->start -
2024 			      mem_res->resource->start + 0x40 * i;
2025 		opr->stride = 0x100;
2026 		opr->base = sqdao_res->base + 0x40 * i;
2027 	}
2028 
2029 	return 0;
2030 }
2031 
2032 static int ufs_qcom_get_hba_mac(struct ufs_hba *hba)
2033 {
2034 	/* Qualcomm HC supports up to 64 */
2035 	return MAX_SUPP_MAC;
2036 }
2037 
2038 static int ufs_qcom_get_outstanding_cqs(struct ufs_hba *hba,
2039 					unsigned long *ocqs)
2040 {
2041 	struct ufshcd_res_info *mcq_vs_res = &hba->res[RES_MCQ_VS];
2042 
2043 	if (!mcq_vs_res->base)
2044 		return -EINVAL;
2045 
2046 	*ocqs = readl(mcq_vs_res->base + UFS_MEM_CQIS_VS);
2047 
2048 	return 0;
2049 }
2050 
2051 static void ufs_qcom_write_msi_msg(struct msi_desc *desc, struct msi_msg *msg)
2052 {
2053 	struct device *dev = msi_desc_to_dev(desc);
2054 	struct ufs_hba *hba = dev_get_drvdata(dev);
2055 
2056 	ufshcd_mcq_config_esi(hba, msg);
2057 }
2058 
2059 struct ufs_qcom_irq {
2060 	unsigned int		irq;
2061 	unsigned int		idx;
2062 	struct ufs_hba		*hba;
2063 };
2064 
2065 static irqreturn_t ufs_qcom_mcq_esi_handler(int irq, void *data)
2066 {
2067 	struct ufs_qcom_irq *qi = data;
2068 	struct ufs_hba *hba = qi->hba;
2069 	struct ufs_hw_queue *hwq = &hba->uhq[qi->idx];
2070 
2071 	ufshcd_mcq_write_cqis(hba, 0x1, qi->idx);
2072 	ufshcd_mcq_poll_cqe_lock(hba, hwq);
2073 
2074 	return IRQ_HANDLED;
2075 }
2076 
2077 static void ufs_qcom_irq_free(struct ufs_qcom_irq *uqi)
2078 {
2079 	for (struct ufs_qcom_irq *q = uqi; q->irq; q++)
2080 		devm_free_irq(q->hba->dev, q->irq, q->hba);
2081 
2082 	platform_device_msi_free_irqs_all(uqi->hba->dev);
2083 	devm_kfree(uqi->hba->dev, uqi);
2084 }
2085 
2086 DEFINE_FREE(ufs_qcom_irq, struct ufs_qcom_irq *, if (_T) ufs_qcom_irq_free(_T))
2087 
2088 static int ufs_qcom_config_esi(struct ufs_hba *hba)
2089 {
2090 	struct ufs_qcom_host *host = ufshcd_get_variant(hba);
2091 	int nr_irqs, ret;
2092 
2093 	if (host->esi_enabled)
2094 		return 0;
2095 
2096 	/*
2097 	 * 1. We only handle CQs as of now.
2098 	 * 2. Poll queues do not need ESI.
2099 	 */
2100 	nr_irqs = hba->nr_hw_queues - hba->nr_queues[HCTX_TYPE_POLL];
2101 
2102 	struct ufs_qcom_irq *qi __free(ufs_qcom_irq) =
2103 		devm_kcalloc(hba->dev, nr_irqs, sizeof(*qi), GFP_KERNEL);
2104 	if (!qi)
2105 		return -ENOMEM;
2106 	/* Preset so __free() has a pointer to hba in all error paths */
2107 	qi[0].hba = hba;
2108 
2109 	ret = platform_device_msi_init_and_alloc_irqs(hba->dev, nr_irqs,
2110 						      ufs_qcom_write_msi_msg);
2111 	if (ret) {
2112 		dev_err(hba->dev, "Failed to request Platform MSI %d\n", ret);
2113 		return ret;
2114 	}
2115 
2116 	for (int idx = 0; idx < nr_irqs; idx++) {
2117 		qi[idx].irq = msi_get_virq(hba->dev, idx);
2118 		qi[idx].idx = idx;
2119 		qi[idx].hba = hba;
2120 
2121 		ret = devm_request_irq(hba->dev, qi[idx].irq, ufs_qcom_mcq_esi_handler,
2122 				       IRQF_SHARED, "qcom-mcq-esi", qi + idx);
2123 		if (ret) {
2124 			dev_err(hba->dev, "%s: Fail to request IRQ for %d, err = %d\n",
2125 				__func__, qi[idx].irq, ret);
2126 			qi[idx].irq = 0;
2127 			return ret;
2128 		}
2129 	}
2130 
2131 	retain_and_null_ptr(qi);
2132 
2133 	if (host->hw_ver.major >= 6) {
2134 		ufshcd_rmwl(hba, ESI_VEC_MASK, FIELD_PREP(ESI_VEC_MASK, MAX_ESI_VEC - 1),
2135 			    REG_UFS_CFG3);
2136 	}
2137 	ufshcd_mcq_enable_esi(hba);
2138 	host->esi_enabled = true;
2139 	return 0;
2140 }
2141 
2142 static unsigned long ufs_qcom_opp_freq_to_clk_freq(struct ufs_hba *hba,
2143 						   unsigned long freq, char *name)
2144 {
2145 	struct ufs_clk_info *clki;
2146 	struct dev_pm_opp *opp;
2147 	unsigned long clk_freq;
2148 	int idx = 0;
2149 	bool found = false;
2150 
2151 	opp = dev_pm_opp_find_freq_exact_indexed(hba->dev, freq, 0, true);
2152 	if (IS_ERR(opp)) {
2153 		dev_err(hba->dev, "Failed to find OPP for exact frequency %lu\n", freq);
2154 		return 0;
2155 	}
2156 
2157 	list_for_each_entry(clki, &hba->clk_list_head, list) {
2158 		if (!strcmp(clki->name, name)) {
2159 			found = true;
2160 			break;
2161 		}
2162 
2163 		idx++;
2164 	}
2165 
2166 	if (!found) {
2167 		dev_err(hba->dev, "Failed to find clock '%s' in clk list\n", name);
2168 		dev_pm_opp_put(opp);
2169 		return 0;
2170 	}
2171 
2172 	clk_freq = dev_pm_opp_get_freq_indexed(opp, idx);
2173 
2174 	dev_pm_opp_put(opp);
2175 
2176 	return clk_freq;
2177 }
2178 
2179 static u32 ufs_qcom_freq_to_gear_speed(struct ufs_hba *hba, unsigned long freq)
2180 {
2181 	u32 gear = UFS_HS_DONT_CHANGE;
2182 	unsigned long unipro_freq;
2183 
2184 	if (!hba->use_pm_opp)
2185 		return gear;
2186 
2187 	unipro_freq = ufs_qcom_opp_freq_to_clk_freq(hba, freq, "core_clk_unipro");
2188 	switch (unipro_freq) {
2189 	case 403000000:
2190 		gear = UFS_HS_G5;
2191 		break;
2192 	case 300000000:
2193 		gear = UFS_HS_G4;
2194 		break;
2195 	case 201500000:
2196 		gear = UFS_HS_G3;
2197 		break;
2198 	case 150000000:
2199 	case 100000000:
2200 		gear = UFS_HS_G2;
2201 		break;
2202 	case 75000000:
2203 	case 37500000:
2204 		gear = UFS_HS_G1;
2205 		break;
2206 	default:
2207 		dev_err(hba->dev, "%s: Unsupported clock freq : %lu\n", __func__, freq);
2208 		return UFS_HS_DONT_CHANGE;
2209 	}
2210 
2211 	return min_t(u32, gear, hba->max_pwr_info.info.gear_rx);
2212 }
2213 
2214 /*
2215  * struct ufs_hba_qcom_vops - UFS QCOM specific variant operations
2216  *
2217  * The variant operations configure the necessary controller and PHY
2218  * handshake during initialization.
2219  */
2220 static const struct ufs_hba_variant_ops ufs_hba_qcom_vops = {
2221 	.name                   = "qcom",
2222 	.init                   = ufs_qcom_init,
2223 	.exit                   = ufs_qcom_exit,
2224 	.get_ufs_hci_version	= ufs_qcom_get_ufs_hci_version,
2225 	.clk_scale_notify	= ufs_qcom_clk_scale_notify,
2226 	.setup_clocks           = ufs_qcom_setup_clocks,
2227 	.hce_enable_notify      = ufs_qcom_hce_enable_notify,
2228 	.link_startup_notify    = ufs_qcom_link_startup_notify,
2229 	.pwr_change_notify	= ufs_qcom_pwr_change_notify,
2230 	.apply_dev_quirks	= ufs_qcom_apply_dev_quirks,
2231 	.fixup_dev_quirks       = ufs_qcom_fixup_dev_quirks,
2232 	.suspend		= ufs_qcom_suspend,
2233 	.resume			= ufs_qcom_resume,
2234 	.dbg_register_dump	= ufs_qcom_dump_dbg_regs,
2235 	.device_reset		= ufs_qcom_device_reset,
2236 	.config_scaling_param = ufs_qcom_config_scaling_param,
2237 	.mcq_config_resource	= ufs_qcom_mcq_config_resource,
2238 	.get_hba_mac		= ufs_qcom_get_hba_mac,
2239 	.op_runtime_config	= ufs_qcom_op_runtime_config,
2240 	.get_outstanding_cqs	= ufs_qcom_get_outstanding_cqs,
2241 	.config_esi		= ufs_qcom_config_esi,
2242 	.freq_to_gear_speed	= ufs_qcom_freq_to_gear_speed,
2243 };
2244 
2245 /**
2246  * ufs_qcom_probe - probe routine of the driver
2247  * @pdev: pointer to Platform device handle
2248  *
2249  * Return: zero for success and non-zero for failure.
2250  */
2251 static int ufs_qcom_probe(struct platform_device *pdev)
2252 {
2253 	int err;
2254 	struct device *dev = &pdev->dev;
2255 
2256 	/* Perform generic probe */
2257 	err = ufshcd_pltfrm_init(pdev, &ufs_hba_qcom_vops);
2258 	if (err)
2259 		return dev_err_probe(dev, err, "ufshcd_pltfrm_init() failed\n");
2260 
2261 	return 0;
2262 }
2263 
2264 /**
2265  * ufs_qcom_remove - set driver_data of the device to NULL
2266  * @pdev: pointer to platform device handle
2267  *
2268  * Always returns 0
2269  */
2270 static void ufs_qcom_remove(struct platform_device *pdev)
2271 {
2272 	struct ufs_hba *hba =  platform_get_drvdata(pdev);
2273 	struct ufs_qcom_host *host = ufshcd_get_variant(hba);
2274 
2275 	ufshcd_pltfrm_remove(pdev);
2276 	if (host->esi_enabled)
2277 		platform_device_msi_free_irqs_all(hba->dev);
2278 }
2279 
2280 static const struct ufs_qcom_drvdata ufs_qcom_sm8550_drvdata = {
2281 	.quirks = UFSHCD_QUIRK_BROKEN_LSDBS_CAP,
2282 	.no_phy_retention = true,
2283 };
2284 
2285 static const struct of_device_id ufs_qcom_of_match[] __maybe_unused = {
2286 	{ .compatible = "qcom,ufshc" },
2287 	{ .compatible = "qcom,sm8550-ufshc", .data = &ufs_qcom_sm8550_drvdata },
2288 	{ .compatible = "qcom,sm8650-ufshc", .data = &ufs_qcom_sm8550_drvdata },
2289 	{},
2290 };
2291 MODULE_DEVICE_TABLE(of, ufs_qcom_of_match);
2292 
2293 #ifdef CONFIG_ACPI
2294 static const struct acpi_device_id ufs_qcom_acpi_match[] = {
2295 	{ "QCOM24A5" },
2296 	{ },
2297 };
2298 MODULE_DEVICE_TABLE(acpi, ufs_qcom_acpi_match);
2299 #endif
2300 
2301 static const struct dev_pm_ops ufs_qcom_pm_ops = {
2302 	SET_RUNTIME_PM_OPS(ufshcd_runtime_suspend, ufshcd_runtime_resume, NULL)
2303 	.prepare	 = ufshcd_suspend_prepare,
2304 	.complete	 = ufshcd_resume_complete,
2305 #ifdef CONFIG_PM_SLEEP
2306 	.suspend         = ufshcd_system_suspend,
2307 	.resume          = ufshcd_system_resume,
2308 	.freeze          = ufshcd_system_freeze,
2309 	.restore         = ufshcd_system_restore,
2310 	.thaw            = ufshcd_system_thaw,
2311 #endif
2312 };
2313 
2314 static struct platform_driver ufs_qcom_pltform = {
2315 	.probe	= ufs_qcom_probe,
2316 	.remove = ufs_qcom_remove,
2317 	.driver	= {
2318 		.name	= "ufshcd-qcom",
2319 		.pm	= &ufs_qcom_pm_ops,
2320 		.of_match_table = of_match_ptr(ufs_qcom_of_match),
2321 		.acpi_match_table = ACPI_PTR(ufs_qcom_acpi_match),
2322 	},
2323 };
2324 module_platform_driver(ufs_qcom_pltform);
2325 
2326 MODULE_DESCRIPTION("Qualcomm UFS host controller driver");
2327 MODULE_LICENSE("GPL v2");
2328