xref: /linux/drivers/ufs/host/ufs-qcom.c (revision 55a42f78ffd386e01a5404419f8c5ded7db70a21)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2013-2016, Linux Foundation. All rights reserved.
4  */
5 
6 #include <linux/acpi.h>
7 #include <linux/clk.h>
8 #include <linux/cleanup.h>
9 #include <linux/delay.h>
10 #include <linux/devfreq.h>
11 #include <linux/gpio/consumer.h>
12 #include <linux/interconnect.h>
13 #include <linux/module.h>
14 #include <linux/of.h>
15 #include <linux/phy/phy.h>
16 #include <linux/platform_device.h>
17 #include <linux/reset-controller.h>
18 #include <linux/time.h>
19 #include <linux/unaligned.h>
20 #include <linux/units.h>
21 
22 #include <soc/qcom/ice.h>
23 
24 #include <ufs/ufshcd.h>
25 #include <ufs/ufshci.h>
26 #include <ufs/ufs_quirks.h>
27 #include <ufs/unipro.h>
28 #include "ufshcd-pltfrm.h"
29 #include "ufs-qcom.h"
30 
31 #define MCQ_QCFGPTR_MASK	GENMASK(7, 0)
32 #define MCQ_QCFGPTR_UNIT	0x200
33 #define MCQ_SQATTR_OFFSET(c) \
34 	((((c) >> 16) & MCQ_QCFGPTR_MASK) * MCQ_QCFGPTR_UNIT)
35 #define MCQ_QCFG_SIZE	0x40
36 
37 /* De-emphasis for gear-5 */
38 #define DEEMPHASIS_3_5_dB	0x04
39 #define NO_DEEMPHASIS		0x0
40 
41 #define UFS_ICE_SYNC_RST_SEL	BIT(3)
42 #define UFS_ICE_SYNC_RST_SW	BIT(4)
43 
44 enum {
45 	TSTBUS_UAWM,
46 	TSTBUS_UARM,
47 	TSTBUS_TXUC,
48 	TSTBUS_RXUC,
49 	TSTBUS_DFC,
50 	TSTBUS_TRLUT,
51 	TSTBUS_TMRLUT,
52 	TSTBUS_OCSC,
53 	TSTBUS_UTP_HCI,
54 	TSTBUS_COMBINED,
55 	TSTBUS_WRAPPER,
56 	TSTBUS_UNIPRO,
57 	TSTBUS_MAX,
58 };
59 
60 #define QCOM_UFS_MAX_GEAR 5
61 #define QCOM_UFS_MAX_LANE 2
62 
63 enum {
64 	MODE_MIN,
65 	MODE_PWM,
66 	MODE_HS_RA,
67 	MODE_HS_RB,
68 	MODE_MAX,
69 };
70 
71 static const struct __ufs_qcom_bw_table {
72 	u32 mem_bw;
73 	u32 cfg_bw;
74 } ufs_qcom_bw_table[MODE_MAX + 1][QCOM_UFS_MAX_GEAR + 1][QCOM_UFS_MAX_LANE + 1] = {
75 	[MODE_MIN][0][0]		   = { 0,		0 }, /* Bandwidth values in KB/s */
76 	[MODE_PWM][UFS_PWM_G1][UFS_LANE_1] = { 922,		1000 },
77 	[MODE_PWM][UFS_PWM_G2][UFS_LANE_1] = { 1844,		1000 },
78 	[MODE_PWM][UFS_PWM_G3][UFS_LANE_1] = { 3688,		1000 },
79 	[MODE_PWM][UFS_PWM_G4][UFS_LANE_1] = { 7376,		1000 },
80 	[MODE_PWM][UFS_PWM_G5][UFS_LANE_1] = { 14752,		1000 },
81 	[MODE_PWM][UFS_PWM_G1][UFS_LANE_2] = { 1844,		1000 },
82 	[MODE_PWM][UFS_PWM_G2][UFS_LANE_2] = { 3688,		1000 },
83 	[MODE_PWM][UFS_PWM_G3][UFS_LANE_2] = { 7376,		1000 },
84 	[MODE_PWM][UFS_PWM_G4][UFS_LANE_2] = { 14752,		1000 },
85 	[MODE_PWM][UFS_PWM_G5][UFS_LANE_2] = { 29504,		1000 },
86 	[MODE_HS_RA][UFS_HS_G1][UFS_LANE_1] = { 127796,		1000 },
87 	[MODE_HS_RA][UFS_HS_G2][UFS_LANE_1] = { 255591,		1000 },
88 	[MODE_HS_RA][UFS_HS_G3][UFS_LANE_1] = { 1492582,	102400 },
89 	[MODE_HS_RA][UFS_HS_G4][UFS_LANE_1] = { 2915200,	204800 },
90 	[MODE_HS_RA][UFS_HS_G5][UFS_LANE_1] = { 5836800,	409600 },
91 	[MODE_HS_RA][UFS_HS_G1][UFS_LANE_2] = { 255591,		1000 },
92 	[MODE_HS_RA][UFS_HS_G2][UFS_LANE_2] = { 511181,		1000 },
93 	[MODE_HS_RA][UFS_HS_G3][UFS_LANE_2] = { 1492582,	204800 },
94 	[MODE_HS_RA][UFS_HS_G4][UFS_LANE_2] = { 2915200,	409600 },
95 	[MODE_HS_RA][UFS_HS_G5][UFS_LANE_2] = { 5836800,	819200 },
96 	[MODE_HS_RB][UFS_HS_G1][UFS_LANE_1] = { 149422,		1000 },
97 	[MODE_HS_RB][UFS_HS_G2][UFS_LANE_1] = { 298189,		1000 },
98 	[MODE_HS_RB][UFS_HS_G3][UFS_LANE_1] = { 1492582,	102400 },
99 	[MODE_HS_RB][UFS_HS_G4][UFS_LANE_1] = { 2915200,	204800 },
100 	[MODE_HS_RB][UFS_HS_G5][UFS_LANE_1] = { 5836800,	409600 },
101 	[MODE_HS_RB][UFS_HS_G1][UFS_LANE_2] = { 298189,		1000 },
102 	[MODE_HS_RB][UFS_HS_G2][UFS_LANE_2] = { 596378,		1000 },
103 	[MODE_HS_RB][UFS_HS_G3][UFS_LANE_2] = { 1492582,	204800 },
104 	[MODE_HS_RB][UFS_HS_G4][UFS_LANE_2] = { 2915200,	409600 },
105 	[MODE_HS_RB][UFS_HS_G5][UFS_LANE_2] = { 5836800,	819200 },
106 	[MODE_MAX][0][0]		    = { 7643136,	819200 },
107 };
108 
109 static const struct {
110 	int nminor;
111 	char *prefix;
112 } testbus_info[TSTBUS_MAX] = {
113 	[TSTBUS_UAWM]     = {32, "TSTBUS_UAWM"},
114 	[TSTBUS_UARM]     = {32, "TSTBUS_UARM"},
115 	[TSTBUS_TXUC]     = {32, "TSTBUS_TXUC"},
116 	[TSTBUS_RXUC]     = {32, "TSTBUS_RXUC"},
117 	[TSTBUS_DFC]      = {32, "TSTBUS_DFC"},
118 	[TSTBUS_TRLUT]    = {32, "TSTBUS_TRLUT"},
119 	[TSTBUS_TMRLUT]   = {32, "TSTBUS_TMRLUT"},
120 	[TSTBUS_OCSC]     = {32, "TSTBUS_OCSC"},
121 	[TSTBUS_UTP_HCI]  = {32, "TSTBUS_UTP_HCI"},
122 	[TSTBUS_COMBINED] = {32, "TSTBUS_COMBINED"},
123 	[TSTBUS_WRAPPER]  = {32, "TSTBUS_WRAPPER"},
124 	[TSTBUS_UNIPRO]   = {256, "TSTBUS_UNIPRO"},
125 };
126 
127 static void ufs_qcom_get_default_testbus_cfg(struct ufs_qcom_host *host);
128 static unsigned long ufs_qcom_opp_freq_to_clk_freq(struct ufs_hba *hba,
129 						   unsigned long freq, char *name);
130 static int ufs_qcom_set_core_clk_ctrl(struct ufs_hba *hba, bool is_scale_up, unsigned long freq);
131 
132 static struct ufs_qcom_host *rcdev_to_ufs_host(struct reset_controller_dev *rcd)
133 {
134 	return container_of(rcd, struct ufs_qcom_host, rcdev);
135 }
136 
137 #ifdef CONFIG_SCSI_UFS_CRYPTO
138 /**
139  * ufs_qcom_config_ice_allocator() - ICE core allocator configuration
140  *
141  * @host: pointer to qcom specific variant structure.
142  */
143 static void ufs_qcom_config_ice_allocator(struct ufs_qcom_host *host)
144 {
145 	struct ufs_hba *hba = host->hba;
146 	static const uint8_t val[4] = { NUM_RX_R1W0, NUM_TX_R0W1, NUM_RX_R1W1, NUM_TX_R1W1 };
147 	u32 config;
148 
149 	if (!(host->caps & UFS_QCOM_CAP_ICE_CONFIG) ||
150 			!(host->hba->caps & UFSHCD_CAP_CRYPTO))
151 		return;
152 
153 	config = get_unaligned_le32(val);
154 
155 	ufshcd_writel(hba, ICE_ALLOCATOR_TYPE, REG_UFS_MEM_ICE_CONFIG);
156 	ufshcd_writel(hba, config, REG_UFS_MEM_ICE_NUM_CORE);
157 }
158 
159 static inline void ufs_qcom_ice_enable(struct ufs_qcom_host *host)
160 {
161 	if (host->hba->caps & UFSHCD_CAP_CRYPTO)
162 		qcom_ice_enable(host->ice);
163 }
164 
165 static const struct blk_crypto_ll_ops ufs_qcom_crypto_ops; /* forward decl */
166 
167 static int ufs_qcom_ice_init(struct ufs_qcom_host *host)
168 {
169 	struct ufs_hba *hba = host->hba;
170 	struct blk_crypto_profile *profile = &hba->crypto_profile;
171 	struct device *dev = hba->dev;
172 	struct qcom_ice *ice;
173 	union ufs_crypto_capabilities caps;
174 	union ufs_crypto_cap_entry cap;
175 	int err;
176 	int i;
177 
178 	ice = devm_of_qcom_ice_get(dev);
179 	if (ice == ERR_PTR(-EOPNOTSUPP)) {
180 		dev_warn(dev, "Disabling inline encryption support\n");
181 		ice = NULL;
182 	}
183 
184 	if (IS_ERR_OR_NULL(ice))
185 		return PTR_ERR_OR_ZERO(ice);
186 
187 	host->ice = ice;
188 
189 	/* Initialize the blk_crypto_profile */
190 
191 	caps.reg_val = cpu_to_le32(ufshcd_readl(hba, REG_UFS_CCAP));
192 
193 	/* The number of keyslots supported is (CFGC+1) */
194 	err = devm_blk_crypto_profile_init(dev, profile, caps.config_count + 1);
195 	if (err)
196 		return err;
197 
198 	profile->ll_ops = ufs_qcom_crypto_ops;
199 	profile->max_dun_bytes_supported = 8;
200 	profile->key_types_supported = qcom_ice_get_supported_key_type(ice);
201 	profile->dev = dev;
202 
203 	/*
204 	 * Currently this driver only supports AES-256-XTS.  All known versions
205 	 * of ICE support it, but to be safe make sure it is really declared in
206 	 * the crypto capability registers.  The crypto capability registers
207 	 * also give the supported data unit size(s).
208 	 */
209 	for (i = 0; i < caps.num_crypto_cap; i++) {
210 		cap.reg_val = cpu_to_le32(ufshcd_readl(hba,
211 						       REG_UFS_CRYPTOCAP +
212 						       i * sizeof(__le32)));
213 		if (cap.algorithm_id == UFS_CRYPTO_ALG_AES_XTS &&
214 		    cap.key_size == UFS_CRYPTO_KEY_SIZE_256)
215 			profile->modes_supported[BLK_ENCRYPTION_MODE_AES_256_XTS] |=
216 				cap.sdus_mask * 512;
217 	}
218 
219 	hba->caps |= UFSHCD_CAP_CRYPTO;
220 	hba->quirks |= UFSHCD_QUIRK_CUSTOM_CRYPTO_PROFILE;
221 	return 0;
222 }
223 
224 static inline int ufs_qcom_ice_resume(struct ufs_qcom_host *host)
225 {
226 	if (host->hba->caps & UFSHCD_CAP_CRYPTO)
227 		return qcom_ice_resume(host->ice);
228 
229 	return 0;
230 }
231 
232 static inline int ufs_qcom_ice_suspend(struct ufs_qcom_host *host)
233 {
234 	if (host->hba->caps & UFSHCD_CAP_CRYPTO)
235 		return qcom_ice_suspend(host->ice);
236 
237 	return 0;
238 }
239 
240 static int ufs_qcom_ice_keyslot_program(struct blk_crypto_profile *profile,
241 					const struct blk_crypto_key *key,
242 					unsigned int slot)
243 {
244 	struct ufs_hba *hba = ufs_hba_from_crypto_profile(profile);
245 	struct ufs_qcom_host *host = ufshcd_get_variant(hba);
246 	int err;
247 
248 	ufshcd_hold(hba);
249 	err = qcom_ice_program_key(host->ice, slot, key);
250 	ufshcd_release(hba);
251 	return err;
252 }
253 
254 static int ufs_qcom_ice_keyslot_evict(struct blk_crypto_profile *profile,
255 				      const struct blk_crypto_key *key,
256 				      unsigned int slot)
257 {
258 	struct ufs_hba *hba = ufs_hba_from_crypto_profile(profile);
259 	struct ufs_qcom_host *host = ufshcd_get_variant(hba);
260 	int err;
261 
262 	ufshcd_hold(hba);
263 	err = qcom_ice_evict_key(host->ice, slot);
264 	ufshcd_release(hba);
265 	return err;
266 }
267 
268 static int ufs_qcom_ice_derive_sw_secret(struct blk_crypto_profile *profile,
269 					 const u8 *eph_key, size_t eph_key_size,
270 					 u8 sw_secret[BLK_CRYPTO_SW_SECRET_SIZE])
271 {
272 	struct ufs_hba *hba = ufs_hba_from_crypto_profile(profile);
273 	struct ufs_qcom_host *host = ufshcd_get_variant(hba);
274 
275 	return qcom_ice_derive_sw_secret(host->ice, eph_key, eph_key_size,
276 					 sw_secret);
277 }
278 
279 static int ufs_qcom_ice_import_key(struct blk_crypto_profile *profile,
280 				   const u8 *raw_key, size_t raw_key_size,
281 				   u8 lt_key[BLK_CRYPTO_MAX_HW_WRAPPED_KEY_SIZE])
282 {
283 	struct ufs_hba *hba = ufs_hba_from_crypto_profile(profile);
284 	struct ufs_qcom_host *host = ufshcd_get_variant(hba);
285 
286 	return qcom_ice_import_key(host->ice, raw_key, raw_key_size, lt_key);
287 }
288 
289 static int ufs_qcom_ice_generate_key(struct blk_crypto_profile *profile,
290 				     u8 lt_key[BLK_CRYPTO_MAX_HW_WRAPPED_KEY_SIZE])
291 {
292 	struct ufs_hba *hba = ufs_hba_from_crypto_profile(profile);
293 	struct ufs_qcom_host *host = ufshcd_get_variant(hba);
294 
295 	return qcom_ice_generate_key(host->ice, lt_key);
296 }
297 
298 static int ufs_qcom_ice_prepare_key(struct blk_crypto_profile *profile,
299 				    const u8 *lt_key, size_t lt_key_size,
300 				    u8 eph_key[BLK_CRYPTO_MAX_HW_WRAPPED_KEY_SIZE])
301 {
302 	struct ufs_hba *hba = ufs_hba_from_crypto_profile(profile);
303 	struct ufs_qcom_host *host = ufshcd_get_variant(hba);
304 
305 	return qcom_ice_prepare_key(host->ice, lt_key, lt_key_size, eph_key);
306 }
307 
308 static const struct blk_crypto_ll_ops ufs_qcom_crypto_ops = {
309 	.keyslot_program	= ufs_qcom_ice_keyslot_program,
310 	.keyslot_evict		= ufs_qcom_ice_keyslot_evict,
311 	.derive_sw_secret	= ufs_qcom_ice_derive_sw_secret,
312 	.import_key		= ufs_qcom_ice_import_key,
313 	.generate_key		= ufs_qcom_ice_generate_key,
314 	.prepare_key		= ufs_qcom_ice_prepare_key,
315 };
316 
317 #else
318 
319 static inline void ufs_qcom_ice_enable(struct ufs_qcom_host *host)
320 {
321 }
322 
323 static int ufs_qcom_ice_init(struct ufs_qcom_host *host)
324 {
325 	return 0;
326 }
327 
328 static inline int ufs_qcom_ice_resume(struct ufs_qcom_host *host)
329 {
330 	return 0;
331 }
332 
333 static inline int ufs_qcom_ice_suspend(struct ufs_qcom_host *host)
334 {
335 	return 0;
336 }
337 
338 static void ufs_qcom_config_ice_allocator(struct ufs_qcom_host *host)
339 {
340 }
341 
342 #endif
343 
344 static void ufs_qcom_disable_lane_clks(struct ufs_qcom_host *host)
345 {
346 	if (!host->is_lane_clks_enabled)
347 		return;
348 
349 	clk_bulk_disable_unprepare(host->num_clks, host->clks);
350 
351 	host->is_lane_clks_enabled = false;
352 }
353 
354 static int ufs_qcom_enable_lane_clks(struct ufs_qcom_host *host)
355 {
356 	int err;
357 
358 	err = clk_bulk_prepare_enable(host->num_clks, host->clks);
359 	if (err)
360 		return err;
361 
362 	host->is_lane_clks_enabled = true;
363 
364 	return 0;
365 }
366 
367 static int ufs_qcom_init_lane_clks(struct ufs_qcom_host *host)
368 {
369 	int err;
370 	struct device *dev = host->hba->dev;
371 
372 	if (has_acpi_companion(dev))
373 		return 0;
374 
375 	err = devm_clk_bulk_get_all(dev, &host->clks);
376 	if (err <= 0)
377 		return err;
378 
379 	host->num_clks = err;
380 
381 	return 0;
382 }
383 
384 static int ufs_qcom_check_hibern8(struct ufs_hba *hba)
385 {
386 	int err;
387 	u32 tx_fsm_val;
388 	unsigned long timeout = jiffies + msecs_to_jiffies(HBRN8_POLL_TOUT_MS);
389 
390 	do {
391 		err = ufshcd_dme_get(hba,
392 				UIC_ARG_MIB_SEL(MPHY_TX_FSM_STATE,
393 					UIC_ARG_MPHY_TX_GEN_SEL_INDEX(0)),
394 				&tx_fsm_val);
395 		if (err || tx_fsm_val == TX_FSM_HIBERN8)
396 			break;
397 
398 		/* sleep for max. 200us */
399 		usleep_range(100, 200);
400 	} while (time_before(jiffies, timeout));
401 
402 	/*
403 	 * we might have scheduled out for long during polling so
404 	 * check the state again.
405 	 */
406 	if (time_after(jiffies, timeout))
407 		err = ufshcd_dme_get(hba,
408 				UIC_ARG_MIB_SEL(MPHY_TX_FSM_STATE,
409 					UIC_ARG_MPHY_TX_GEN_SEL_INDEX(0)),
410 				&tx_fsm_val);
411 
412 	if (err) {
413 		dev_err(hba->dev, "%s: unable to get TX_FSM_STATE, err %d\n",
414 				__func__, err);
415 	} else if (tx_fsm_val != TX_FSM_HIBERN8) {
416 		err = tx_fsm_val;
417 		dev_err(hba->dev, "%s: invalid TX_FSM_STATE = %d\n",
418 				__func__, err);
419 	}
420 
421 	return err;
422 }
423 
424 static void ufs_qcom_select_unipro_mode(struct ufs_qcom_host *host)
425 {
426 	ufshcd_rmwl(host->hba, QUNIPRO_SEL, QUNIPRO_SEL, REG_UFS_CFG1);
427 
428 	if (host->hw_ver.major >= 0x05)
429 		ufshcd_rmwl(host->hba, QUNIPRO_G4_SEL, 0, REG_UFS_CFG0);
430 }
431 
432 /*
433  * ufs_qcom_host_reset - reset host controller and PHY
434  */
435 static int ufs_qcom_host_reset(struct ufs_hba *hba)
436 {
437 	int ret;
438 	struct ufs_qcom_host *host = ufshcd_get_variant(hba);
439 	bool reenable_intr;
440 
441 	if (!host->core_reset)
442 		return 0;
443 
444 	reenable_intr = hba->is_irq_enabled;
445 	ufshcd_disable_irq(hba);
446 
447 	ret = reset_control_assert(host->core_reset);
448 	if (ret) {
449 		dev_err(hba->dev, "%s: core_reset assert failed, err = %d\n",
450 				 __func__, ret);
451 		return ret;
452 	}
453 
454 	/*
455 	 * The hardware requirement for delay between assert/deassert
456 	 * is at least 3-4 sleep clock (32.7KHz) cycles, which comes to
457 	 * ~125us (4/32768). To be on the safe side add 200us delay.
458 	 */
459 	usleep_range(200, 210);
460 
461 	ret = reset_control_deassert(host->core_reset);
462 	if (ret) {
463 		dev_err(hba->dev, "%s: core_reset deassert failed, err = %d\n",
464 				 __func__, ret);
465 		return ret;
466 	}
467 
468 	usleep_range(1000, 1100);
469 
470 	if (reenable_intr)
471 		ufshcd_enable_irq(hba);
472 
473 	return 0;
474 }
475 
476 static u32 ufs_qcom_get_hs_gear(struct ufs_hba *hba)
477 {
478 	struct ufs_qcom_host *host = ufshcd_get_variant(hba);
479 
480 	if (host->hw_ver.major >= 0x4)
481 		return UFS_QCOM_MAX_GEAR(ufshcd_readl(hba, REG_UFS_PARAM0));
482 
483 	/* Default is HS-G3 */
484 	return UFS_HS_G3;
485 }
486 
487 static int ufs_qcom_power_up_sequence(struct ufs_hba *hba)
488 {
489 	struct ufs_qcom_host *host = ufshcd_get_variant(hba);
490 	struct ufs_host_params *host_params = &host->host_params;
491 	struct phy *phy = host->generic_phy;
492 	enum phy_mode mode;
493 	int ret;
494 
495 	/*
496 	 * HW ver 5 can only support up to HS-G5 Rate-A due to HW limitations.
497 	 * If the HS-G5 PHY gear is used, update host_params->hs_rate to Rate-A,
498 	 * so that the subsequent power mode change shall stick to Rate-A.
499 	 */
500 	if (host->hw_ver.major == 0x5 && host->phy_gear == UFS_HS_G5)
501 		host_params->hs_rate = PA_HS_MODE_A;
502 
503 	mode = host_params->hs_rate == PA_HS_MODE_B ? PHY_MODE_UFS_HS_B : PHY_MODE_UFS_HS_A;
504 
505 	/* Reset UFS Host Controller and PHY */
506 	ret = ufs_qcom_host_reset(hba);
507 	if (ret)
508 		return ret;
509 
510 	if (phy->power_count)
511 		phy_power_off(phy);
512 
513 
514 	/* phy initialization - calibrate the phy */
515 	ret = phy_init(phy);
516 	if (ret) {
517 		dev_err(hba->dev, "%s: phy init failed, ret = %d\n",
518 			__func__, ret);
519 		return ret;
520 	}
521 
522 	ret = phy_set_mode_ext(phy, mode, host->phy_gear);
523 	if (ret)
524 		goto out_disable_phy;
525 
526 	/* power on phy - start serdes and phy's power and clocks */
527 	ret = phy_power_on(phy);
528 	if (ret) {
529 		dev_err(hba->dev, "%s: phy power on failed, ret = %d\n",
530 			__func__, ret);
531 		goto out_disable_phy;
532 	}
533 
534 	ret = phy_calibrate(phy);
535 	if (ret) {
536 		dev_err(hba->dev, "Failed to calibrate PHY: %d\n", ret);
537 		goto out_disable_phy;
538 	}
539 
540 	ufs_qcom_select_unipro_mode(host);
541 
542 	return 0;
543 
544 out_disable_phy:
545 	phy_exit(phy);
546 
547 	return ret;
548 }
549 
550 /*
551  * The UTP controller has a number of internal clock gating cells (CGCs).
552  * Internal hardware sub-modules within the UTP controller control the CGCs.
553  * Hardware CGCs disable the clock to inactivate UTP sub-modules not involved
554  * in a specific operation, UTP controller CGCs are by default disabled and
555  * this function enables them (after every UFS link startup) to save some power
556  * leakage.
557  */
558 static void ufs_qcom_enable_hw_clk_gating(struct ufs_hba *hba)
559 {
560 	int err;
561 
562 	/* Enable UTP internal clock gating */
563 	ufshcd_rmwl(hba, REG_UFS_CFG2_CGC_EN_ALL, REG_UFS_CFG2_CGC_EN_ALL,
564 		    REG_UFS_CFG2);
565 
566 	/* Ensure that HW clock gating is enabled before next operations */
567 	ufshcd_readl(hba, REG_UFS_CFG2);
568 
569 	/* Enable Unipro internal clock gating */
570 	err = ufshcd_dme_rmw(hba, DL_VS_CLK_CFG_MASK,
571 			     DL_VS_CLK_CFG_MASK, DL_VS_CLK_CFG);
572 	if (err)
573 		goto out;
574 
575 	err = ufshcd_dme_rmw(hba, PA_VS_CLK_CFG_REG_MASK,
576 			     PA_VS_CLK_CFG_REG_MASK, PA_VS_CLK_CFG_REG);
577 	if (err)
578 		goto out;
579 
580 	err = ufshcd_dme_rmw(hba, DME_VS_CORE_CLK_CTRL_DME_HW_CGC_EN,
581 			     DME_VS_CORE_CLK_CTRL_DME_HW_CGC_EN,
582 			     DME_VS_CORE_CLK_CTRL);
583 out:
584 	if (err)
585 		dev_err(hba->dev, "hw clk gating enabled failed\n");
586 }
587 
588 static int ufs_qcom_hce_enable_notify(struct ufs_hba *hba,
589 				      enum ufs_notify_change_status status)
590 {
591 	struct ufs_qcom_host *host = ufshcd_get_variant(hba);
592 	int err;
593 
594 	switch (status) {
595 	case PRE_CHANGE:
596 		err = ufs_qcom_power_up_sequence(hba);
597 		if (err)
598 			return err;
599 
600 		/*
601 		 * The PHY PLL output is the source of tx/rx lane symbol
602 		 * clocks, hence, enable the lane clocks only after PHY
603 		 * is initialized.
604 		 */
605 		err = ufs_qcom_enable_lane_clks(host);
606 		break;
607 	case POST_CHANGE:
608 		/* check if UFS PHY moved from DISABLED to HIBERN8 */
609 		err = ufs_qcom_check_hibern8(hba);
610 		ufs_qcom_enable_hw_clk_gating(hba);
611 		ufs_qcom_ice_enable(host);
612 		ufs_qcom_config_ice_allocator(host);
613 		break;
614 	default:
615 		dev_err(hba->dev, "%s: invalid status %d\n", __func__, status);
616 		err = -EINVAL;
617 		break;
618 	}
619 	return err;
620 }
621 
622 /**
623  * ufs_qcom_cfg_timers - Configure ufs qcom cfg timers
624  *
625  * @hba: host controller instance
626  * @is_pre_scale_up: flag to check if pre scale up condition.
627  * @freq: target opp freq
628  * Return: zero for success and non-zero in case of a failure.
629  */
630 static int ufs_qcom_cfg_timers(struct ufs_hba *hba, bool is_pre_scale_up, unsigned long freq)
631 {
632 	struct ufs_qcom_host *host = ufshcd_get_variant(hba);
633 	struct ufs_clk_info *clki;
634 	unsigned long clk_freq = 0;
635 	u32 core_clk_cycles_per_us;
636 
637 	/*
638 	 * UTP controller uses SYS1CLK_1US_REG register for Interrupt
639 	 * Aggregation logic.
640 	 * It is mandatory to write SYS1CLK_1US_REG register on UFS host
641 	 * controller V4.0.0 onwards.
642 	 */
643 	if (host->hw_ver.major < 4 && !ufshcd_is_intr_aggr_allowed(hba))
644 		return 0;
645 
646 	if (hba->use_pm_opp && freq != ULONG_MAX) {
647 		clk_freq = ufs_qcom_opp_freq_to_clk_freq(hba, freq, "core_clk");
648 		if (clk_freq)
649 			goto cfg_timers;
650 	}
651 
652 	list_for_each_entry(clki, &hba->clk_list_head, list) {
653 		if (!strcmp(clki->name, "core_clk")) {
654 			if (freq == ULONG_MAX) {
655 				clk_freq = clki->max_freq;
656 				break;
657 			}
658 
659 			if (is_pre_scale_up)
660 				clk_freq = clki->max_freq;
661 			else
662 				clk_freq = clk_get_rate(clki->clk);
663 			break;
664 		}
665 
666 	}
667 
668 cfg_timers:
669 	/* If frequency is smaller than 1MHz, set to 1MHz */
670 	if (clk_freq < DEFAULT_CLK_RATE_HZ)
671 		clk_freq = DEFAULT_CLK_RATE_HZ;
672 
673 	core_clk_cycles_per_us = clk_freq / USEC_PER_SEC;
674 	if (ufshcd_readl(hba, REG_UFS_SYS1CLK_1US) != core_clk_cycles_per_us) {
675 		ufshcd_writel(hba, core_clk_cycles_per_us, REG_UFS_SYS1CLK_1US);
676 		/*
677 		 * make sure above write gets applied before we return from
678 		 * this function.
679 		 */
680 		ufshcd_readl(hba, REG_UFS_SYS1CLK_1US);
681 	}
682 
683 	return 0;
684 }
685 
686 static int ufs_qcom_link_startup_notify(struct ufs_hba *hba,
687 					enum ufs_notify_change_status status)
688 {
689 	int err = 0;
690 
691 	switch (status) {
692 	case PRE_CHANGE:
693 		if (ufs_qcom_cfg_timers(hba, false, ULONG_MAX)) {
694 			dev_err(hba->dev, "%s: ufs_qcom_cfg_timers() failed\n",
695 				__func__);
696 			return -EINVAL;
697 		}
698 
699 		err = ufs_qcom_set_core_clk_ctrl(hba, true, ULONG_MAX);
700 		if (err)
701 			dev_err(hba->dev, "cfg core clk ctrl failed\n");
702 		/*
703 		 * Some UFS devices (and may be host) have issues if LCC is
704 		 * enabled. So we are setting PA_Local_TX_LCC_Enable to 0
705 		 * before link startup which will make sure that both host
706 		 * and device TX LCC are disabled once link startup is
707 		 * completed.
708 		 */
709 		err = ufshcd_disable_host_tx_lcc(hba);
710 
711 		break;
712 	default:
713 		break;
714 	}
715 
716 	return err;
717 }
718 
719 static void ufs_qcom_device_reset_ctrl(struct ufs_hba *hba, bool asserted)
720 {
721 	struct ufs_qcom_host *host = ufshcd_get_variant(hba);
722 
723 	/* reset gpio is optional */
724 	if (!host->device_reset)
725 		return;
726 
727 	gpiod_set_value_cansleep(host->device_reset, asserted);
728 }
729 
730 static int ufs_qcom_suspend(struct ufs_hba *hba, enum ufs_pm_op pm_op,
731 	enum ufs_notify_change_status status)
732 {
733 	struct ufs_qcom_host *host = ufshcd_get_variant(hba);
734 
735 	if (status == PRE_CHANGE)
736 		return 0;
737 
738 	if (!ufs_qcom_is_link_active(hba))
739 		ufs_qcom_disable_lane_clks(host);
740 
741 
742 	/* reset the connected UFS device during power down */
743 	if (ufs_qcom_is_link_off(hba) && host->device_reset)
744 		ufs_qcom_device_reset_ctrl(hba, true);
745 
746 	return ufs_qcom_ice_suspend(host);
747 }
748 
749 static int ufs_qcom_resume(struct ufs_hba *hba, enum ufs_pm_op pm_op)
750 {
751 	struct ufs_qcom_host *host = ufshcd_get_variant(hba);
752 	int err;
753 	u32 reg_val;
754 
755 	err = ufs_qcom_enable_lane_clks(host);
756 	if (err)
757 		return err;
758 
759 	if ((!ufs_qcom_is_link_active(hba)) &&
760 	    host->hw_ver.major == 5 &&
761 	    host->hw_ver.minor == 0 &&
762 	    host->hw_ver.step == 0) {
763 		ufshcd_writel(hba, UFS_ICE_SYNC_RST_SEL | UFS_ICE_SYNC_RST_SW, UFS_MEM_ICE_CFG);
764 		reg_val = ufshcd_readl(hba, UFS_MEM_ICE_CFG);
765 		reg_val &= ~(UFS_ICE_SYNC_RST_SEL | UFS_ICE_SYNC_RST_SW);
766 		/*
767 		 * HW documentation doesn't recommend any delay between the
768 		 * reset set and clear. But we are enforcing an arbitrary delay
769 		 * to give flops enough time to settle in.
770 		 */
771 		usleep_range(50, 100);
772 		ufshcd_writel(hba, reg_val, UFS_MEM_ICE_CFG);
773 		ufshcd_readl(hba, UFS_MEM_ICE_CFG);
774 	}
775 
776 	return ufs_qcom_ice_resume(host);
777 }
778 
779 static void ufs_qcom_dev_ref_clk_ctrl(struct ufs_qcom_host *host, bool enable)
780 {
781 	if (host->dev_ref_clk_ctrl_mmio &&
782 	    (enable ^ host->is_dev_ref_clk_enabled)) {
783 		u32 temp = readl_relaxed(host->dev_ref_clk_ctrl_mmio);
784 
785 		if (enable)
786 			temp |= host->dev_ref_clk_en_mask;
787 		else
788 			temp &= ~host->dev_ref_clk_en_mask;
789 
790 		/*
791 		 * If we are here to disable this clock it might be immediately
792 		 * after entering into hibern8 in which case we need to make
793 		 * sure that device ref_clk is active for specific time after
794 		 * hibern8 enter.
795 		 */
796 		if (!enable) {
797 			unsigned long gating_wait;
798 
799 			gating_wait = host->hba->dev_info.clk_gating_wait_us;
800 			if (!gating_wait) {
801 				udelay(1);
802 			} else {
803 				/*
804 				 * bRefClkGatingWaitTime defines the minimum
805 				 * time for which the reference clock is
806 				 * required by device during transition from
807 				 * HS-MODE to LS-MODE or HIBERN8 state. Give it
808 				 * more delay to be on the safe side.
809 				 */
810 				gating_wait += 10;
811 				usleep_range(gating_wait, gating_wait + 10);
812 			}
813 		}
814 
815 		writel_relaxed(temp, host->dev_ref_clk_ctrl_mmio);
816 
817 		/*
818 		 * Make sure the write to ref_clk reaches the destination and
819 		 * not stored in a Write Buffer (WB).
820 		 */
821 		readl(host->dev_ref_clk_ctrl_mmio);
822 
823 		/*
824 		 * If we call hibern8 exit after this, we need to make sure that
825 		 * device ref_clk is stable for at least 1us before the hibern8
826 		 * exit command.
827 		 */
828 		if (enable)
829 			udelay(1);
830 
831 		host->is_dev_ref_clk_enabled = enable;
832 	}
833 }
834 
835 static int ufs_qcom_icc_set_bw(struct ufs_qcom_host *host, u32 mem_bw, u32 cfg_bw)
836 {
837 	struct device *dev = host->hba->dev;
838 	int ret;
839 
840 	ret = icc_set_bw(host->icc_ddr, 0, mem_bw);
841 	if (ret < 0) {
842 		dev_err(dev, "failed to set bandwidth request: %d\n", ret);
843 		return ret;
844 	}
845 
846 	ret = icc_set_bw(host->icc_cpu, 0, cfg_bw);
847 	if (ret < 0) {
848 		dev_err(dev, "failed to set bandwidth request: %d\n", ret);
849 		return ret;
850 	}
851 
852 	return 0;
853 }
854 
855 static struct __ufs_qcom_bw_table ufs_qcom_get_bw_table(struct ufs_qcom_host *host)
856 {
857 	struct ufs_pa_layer_attr *p = &host->dev_req_params;
858 	int gear = max_t(u32, p->gear_rx, p->gear_tx);
859 	int lane = max_t(u32, p->lane_rx, p->lane_tx);
860 
861 	if (WARN_ONCE(gear > QCOM_UFS_MAX_GEAR,
862 		      "ICC scaling for UFS Gear (%d) not supported. Using Gear (%d) bandwidth\n",
863 		      gear, QCOM_UFS_MAX_GEAR))
864 		gear = QCOM_UFS_MAX_GEAR;
865 
866 	if (WARN_ONCE(lane > QCOM_UFS_MAX_LANE,
867 		      "ICC scaling for UFS Lane (%d) not supported. Using Lane (%d) bandwidth\n",
868 		      lane, QCOM_UFS_MAX_LANE))
869 		lane = QCOM_UFS_MAX_LANE;
870 
871 	if (ufshcd_is_hs_mode(p)) {
872 		if (p->hs_rate == PA_HS_MODE_B)
873 			return ufs_qcom_bw_table[MODE_HS_RB][gear][lane];
874 		else
875 			return ufs_qcom_bw_table[MODE_HS_RA][gear][lane];
876 	} else {
877 		return ufs_qcom_bw_table[MODE_PWM][gear][lane];
878 	}
879 }
880 
881 static int ufs_qcom_icc_update_bw(struct ufs_qcom_host *host)
882 {
883 	struct __ufs_qcom_bw_table bw_table;
884 
885 	bw_table = ufs_qcom_get_bw_table(host);
886 
887 	return ufs_qcom_icc_set_bw(host, bw_table.mem_bw, bw_table.cfg_bw);
888 }
889 
890 static void ufs_qcom_set_tx_hs_equalizer(struct ufs_hba *hba, u32 gear, u32 tx_lanes)
891 {
892 	u32 equalizer_val;
893 	int ret, i;
894 
895 	/* Determine the equalizer value based on the gear */
896 	equalizer_val = (gear == 5) ? DEEMPHASIS_3_5_dB : NO_DEEMPHASIS;
897 
898 	for (i = 0; i < tx_lanes; i++) {
899 		ret = ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(TX_HS_EQUALIZER, i),
900 				     equalizer_val);
901 		if (ret)
902 			dev_err(hba->dev, "%s: failed equalizer lane %d\n",
903 				__func__, i);
904 	}
905 }
906 
907 static int ufs_qcom_pwr_change_notify(struct ufs_hba *hba,
908 				enum ufs_notify_change_status status,
909 				const struct ufs_pa_layer_attr *dev_max_params,
910 				struct ufs_pa_layer_attr *dev_req_params)
911 {
912 	struct ufs_qcom_host *host = ufshcd_get_variant(hba);
913 	struct ufs_host_params *host_params = &host->host_params;
914 	int ret = 0;
915 
916 	if (!dev_req_params) {
917 		pr_err("%s: incoming dev_req_params is NULL\n", __func__);
918 		return -EINVAL;
919 	}
920 
921 	switch (status) {
922 	case PRE_CHANGE:
923 		ret = ufshcd_negotiate_pwr_params(host_params, dev_max_params, dev_req_params);
924 		if (ret) {
925 			dev_err(hba->dev, "%s: failed to determine capabilities\n",
926 					__func__);
927 			return ret;
928 		}
929 
930 		/*
931 		 * During UFS driver probe, always update the PHY gear to match the negotiated
932 		 * gear, so that, if quirk UFSHCD_QUIRK_REINIT_AFTER_MAX_GEAR_SWITCH is enabled,
933 		 * the second init can program the optimal PHY settings. This allows one to start
934 		 * the first init with either the minimum or the maximum support gear.
935 		 */
936 		if (hba->ufshcd_state == UFSHCD_STATE_RESET) {
937 			/*
938 			 * Skip REINIT if the negotiated gear matches with the
939 			 * initial phy_gear. Otherwise, update the phy_gear to
940 			 * program the optimal gear setting during REINIT.
941 			 */
942 			if (host->phy_gear == dev_req_params->gear_tx)
943 				hba->quirks &= ~UFSHCD_QUIRK_REINIT_AFTER_MAX_GEAR_SWITCH;
944 			else
945 				host->phy_gear = dev_req_params->gear_tx;
946 		}
947 
948 		/* enable the device ref clock before changing to HS mode */
949 		if (!ufshcd_is_hs_mode(&hba->pwr_info) &&
950 			ufshcd_is_hs_mode(dev_req_params))
951 			ufs_qcom_dev_ref_clk_ctrl(host, true);
952 
953 		if (host->hw_ver.major >= 0x4) {
954 			ufshcd_dme_configure_adapt(hba,
955 						dev_req_params->gear_tx,
956 						PA_INITIAL_ADAPT);
957 		}
958 
959 		if (hba->dev_quirks & UFS_DEVICE_QUIRK_PA_TX_DEEMPHASIS_TUNING)
960 			ufs_qcom_set_tx_hs_equalizer(hba,
961 					dev_req_params->gear_tx, dev_req_params->lane_tx);
962 
963 		break;
964 	case POST_CHANGE:
965 		/* cache the power mode parameters to use internally */
966 		memcpy(&host->dev_req_params,
967 				dev_req_params, sizeof(*dev_req_params));
968 
969 		ufs_qcom_icc_update_bw(host);
970 
971 		/* disable the device ref clock if entered PWM mode */
972 		if (ufshcd_is_hs_mode(&hba->pwr_info) &&
973 			!ufshcd_is_hs_mode(dev_req_params))
974 			ufs_qcom_dev_ref_clk_ctrl(host, false);
975 		break;
976 	default:
977 		ret = -EINVAL;
978 		break;
979 	}
980 
981 	return ret;
982 }
983 
984 static int ufs_qcom_quirk_host_pa_saveconfigtime(struct ufs_hba *hba)
985 {
986 	int err;
987 	u32 pa_vs_config_reg1;
988 
989 	err = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_VS_CONFIG_REG1),
990 			     &pa_vs_config_reg1);
991 	if (err)
992 		return err;
993 
994 	/* Allow extension of MSB bits of PA_SaveConfigTime attribute */
995 	return ufshcd_dme_set(hba, UIC_ARG_MIB(PA_VS_CONFIG_REG1),
996 			    (pa_vs_config_reg1 | (1 << 12)));
997 }
998 
999 static void ufs_qcom_override_pa_tx_hsg1_sync_len(struct ufs_hba *hba)
1000 {
1001 	int err;
1002 
1003 	err = ufshcd_dme_peer_set(hba, UIC_ARG_MIB(PA_TX_HSG1_SYNC_LENGTH),
1004 				  PA_TX_HSG1_SYNC_LENGTH_VAL);
1005 	if (err)
1006 		dev_err(hba->dev, "Failed (%d) set PA_TX_HSG1_SYNC_LENGTH\n", err);
1007 }
1008 
1009 static int ufs_qcom_apply_dev_quirks(struct ufs_hba *hba)
1010 {
1011 	int err = 0;
1012 
1013 	if (hba->dev_quirks & UFS_DEVICE_QUIRK_HOST_PA_SAVECONFIGTIME)
1014 		err = ufs_qcom_quirk_host_pa_saveconfigtime(hba);
1015 
1016 	if (hba->dev_quirks & UFS_DEVICE_QUIRK_PA_TX_HSG1_SYNC_LENGTH)
1017 		ufs_qcom_override_pa_tx_hsg1_sync_len(hba);
1018 
1019 	return err;
1020 }
1021 
1022 /* UFS device-specific quirks */
1023 static struct ufs_dev_quirk ufs_qcom_dev_fixups[] = {
1024 	{ .wmanufacturerid = UFS_VENDOR_SKHYNIX,
1025 	  .model = UFS_ANY_MODEL,
1026 	  .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM },
1027 	{ .wmanufacturerid = UFS_VENDOR_TOSHIBA,
1028 	  .model = UFS_ANY_MODEL,
1029 	  .quirk = UFS_DEVICE_QUIRK_DELAY_AFTER_LPM },
1030 	{ .wmanufacturerid = UFS_VENDOR_WDC,
1031 	  .model = UFS_ANY_MODEL,
1032 	  .quirk = UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE },
1033 	{ .wmanufacturerid = UFS_VENDOR_SAMSUNG,
1034 	  .model = UFS_ANY_MODEL,
1035 	  .quirk = UFS_DEVICE_QUIRK_PA_TX_HSG1_SYNC_LENGTH |
1036 		   UFS_DEVICE_QUIRK_PA_TX_DEEMPHASIS_TUNING },
1037 	{}
1038 };
1039 
1040 static void ufs_qcom_fixup_dev_quirks(struct ufs_hba *hba)
1041 {
1042 	ufshcd_fixup_dev_quirks(hba, ufs_qcom_dev_fixups);
1043 }
1044 
1045 static u32 ufs_qcom_get_ufs_hci_version(struct ufs_hba *hba)
1046 {
1047 	return ufshci_version(2, 0);
1048 }
1049 
1050 /**
1051  * ufs_qcom_advertise_quirks - advertise the known QCOM UFS controller quirks
1052  * @hba: host controller instance
1053  *
1054  * QCOM UFS host controller might have some non standard behaviours (quirks)
1055  * than what is specified by UFSHCI specification. Advertise all such
1056  * quirks to standard UFS host controller driver so standard takes them into
1057  * account.
1058  */
1059 static void ufs_qcom_advertise_quirks(struct ufs_hba *hba)
1060 {
1061 	const struct ufs_qcom_drvdata *drvdata = of_device_get_match_data(hba->dev);
1062 	struct ufs_qcom_host *host = ufshcd_get_variant(hba);
1063 
1064 	if (host->hw_ver.major == 0x2)
1065 		hba->quirks |= UFSHCD_QUIRK_BROKEN_UFS_HCI_VERSION;
1066 
1067 	if (host->hw_ver.major > 0x3)
1068 		hba->quirks |= UFSHCD_QUIRK_REINIT_AFTER_MAX_GEAR_SWITCH;
1069 
1070 	if (drvdata && drvdata->quirks)
1071 		hba->quirks |= drvdata->quirks;
1072 }
1073 
1074 static void ufs_qcom_set_phy_gear(struct ufs_qcom_host *host)
1075 {
1076 	struct ufs_host_params *host_params = &host->host_params;
1077 	u32 val, dev_major;
1078 
1079 	/*
1080 	 * Default to powering up the PHY to the max gear possible, which is
1081 	 * backwards compatible with lower gears but not optimal from
1082 	 * a power usage point of view. After device negotiation, if the
1083 	 * gear is lower a reinit will be performed to program the PHY
1084 	 * to the ideal gear for this combo of controller and device.
1085 	 */
1086 	host->phy_gear = host_params->hs_tx_gear;
1087 
1088 	if (host->hw_ver.major < 0x4) {
1089 		/*
1090 		 * These controllers only have one PHY init sequence,
1091 		 * let's power up the PHY using that (the minimum supported
1092 		 * gear, UFS_HS_G2).
1093 		 */
1094 		host->phy_gear = UFS_HS_G2;
1095 	} else if (host->hw_ver.major >= 0x5) {
1096 		val = ufshcd_readl(host->hba, REG_UFS_DEBUG_SPARE_CFG);
1097 		dev_major = FIELD_GET(UFS_DEV_VER_MAJOR_MASK, val);
1098 
1099 		/*
1100 		 * Since the UFS device version is populated, let's remove the
1101 		 * REINIT quirk as the negotiated gear won't change during boot.
1102 		 * So there is no need to do reinit.
1103 		 */
1104 		if (dev_major != 0x0)
1105 			host->hba->quirks &= ~UFSHCD_QUIRK_REINIT_AFTER_MAX_GEAR_SWITCH;
1106 
1107 		/*
1108 		 * For UFS 3.1 device and older, power up the PHY using HS-G4
1109 		 * PHY gear to save power.
1110 		 */
1111 		if (dev_major > 0x0 && dev_major < 0x4)
1112 			host->phy_gear = UFS_HS_G4;
1113 	}
1114 }
1115 
1116 static void ufs_qcom_parse_gear_limits(struct ufs_hba *hba)
1117 {
1118 	struct ufs_qcom_host *host = ufshcd_get_variant(hba);
1119 	struct ufs_host_params *host_params = &host->host_params;
1120 	u32 hs_gear_old = host_params->hs_tx_gear;
1121 
1122 	ufshcd_parse_gear_limits(hba, host_params);
1123 	if (host_params->hs_tx_gear != hs_gear_old) {
1124 		host->phy_gear = host_params->hs_tx_gear;
1125 	}
1126 }
1127 
1128 static void ufs_qcom_set_host_params(struct ufs_hba *hba)
1129 {
1130 	struct ufs_qcom_host *host = ufshcd_get_variant(hba);
1131 	struct ufs_host_params *host_params = &host->host_params;
1132 
1133 	ufshcd_init_host_params(host_params);
1134 
1135 	/* This driver only supports symmetic gear setting i.e., hs_tx_gear == hs_rx_gear */
1136 	host_params->hs_tx_gear = host_params->hs_rx_gear = ufs_qcom_get_hs_gear(hba);
1137 }
1138 
1139 static void ufs_qcom_set_host_caps(struct ufs_hba *hba)
1140 {
1141 	struct ufs_qcom_host *host = ufshcd_get_variant(hba);
1142 
1143 	if (host->hw_ver.major >= 0x5)
1144 		host->caps |= UFS_QCOM_CAP_ICE_CONFIG;
1145 }
1146 
1147 static void ufs_qcom_set_caps(struct ufs_hba *hba)
1148 {
1149 	hba->caps |= UFSHCD_CAP_CLK_GATING | UFSHCD_CAP_HIBERN8_WITH_CLK_GATING;
1150 	hba->caps |= UFSHCD_CAP_CLK_SCALING | UFSHCD_CAP_WB_WITH_CLK_SCALING;
1151 	hba->caps |= UFSHCD_CAP_AUTO_BKOPS_SUSPEND;
1152 	hba->caps |= UFSHCD_CAP_WB_EN;
1153 	hba->caps |= UFSHCD_CAP_AGGR_POWER_COLLAPSE;
1154 	hba->caps |= UFSHCD_CAP_RPM_AUTOSUSPEND;
1155 
1156 	ufs_qcom_set_host_caps(hba);
1157 }
1158 
1159 /**
1160  * ufs_qcom_setup_clocks - enables/disable clocks
1161  * @hba: host controller instance
1162  * @on: If true, enable clocks else disable them.
1163  * @status: PRE_CHANGE or POST_CHANGE notify
1164  *
1165  * There are certain clocks which comes from the PHY so it needs
1166  * to be managed together along with controller clocks which also
1167  * provides a better power saving. Hence keep phy_power_off/on calls
1168  * in ufs_qcom_setup_clocks, so that PHY's regulators & clks can be
1169  * turned on/off along with UFS's clocks.
1170  *
1171  * Return: 0 on success, non-zero on failure.
1172  */
1173 static int ufs_qcom_setup_clocks(struct ufs_hba *hba, bool on,
1174 				 enum ufs_notify_change_status status)
1175 {
1176 	struct ufs_qcom_host *host = ufshcd_get_variant(hba);
1177 	struct phy *phy;
1178 	int err;
1179 
1180 	/*
1181 	 * In case ufs_qcom_init() is not yet done, simply ignore.
1182 	 * This ufs_qcom_setup_clocks() shall be called from
1183 	 * ufs_qcom_init() after init is done.
1184 	 */
1185 	if (!host)
1186 		return 0;
1187 
1188 	phy = host->generic_phy;
1189 
1190 	switch (status) {
1191 	case PRE_CHANGE:
1192 		if (on) {
1193 			ufs_qcom_icc_update_bw(host);
1194 			if (ufs_qcom_is_link_hibern8(hba)) {
1195 				err = ufs_qcom_enable_lane_clks(host);
1196 				if (err) {
1197 					dev_err(hba->dev, "enable lane clks failed, ret=%d\n", err);
1198 					return err;
1199 				}
1200 			}
1201 		} else {
1202 			if (!ufs_qcom_is_link_active(hba)) {
1203 				/* disable device ref_clk */
1204 				ufs_qcom_dev_ref_clk_ctrl(host, false);
1205 			}
1206 
1207 			err = phy_power_off(phy);
1208 			if (err) {
1209 				dev_err(hba->dev, "phy power off failed, ret=%d\n", err);
1210 				return err;
1211 			}
1212 		}
1213 		break;
1214 	case POST_CHANGE:
1215 		if (on) {
1216 			err = phy_power_on(phy);
1217 			if (err) {
1218 				dev_err(hba->dev, "phy power on failed, ret = %d\n", err);
1219 				return err;
1220 			}
1221 
1222 			/* enable the device ref clock for HS mode*/
1223 			if (ufshcd_is_hs_mode(&hba->pwr_info))
1224 				ufs_qcom_dev_ref_clk_ctrl(host, true);
1225 		} else {
1226 			if (ufs_qcom_is_link_hibern8(hba))
1227 				ufs_qcom_disable_lane_clks(host);
1228 
1229 			ufs_qcom_icc_set_bw(host, ufs_qcom_bw_table[MODE_MIN][0][0].mem_bw,
1230 					    ufs_qcom_bw_table[MODE_MIN][0][0].cfg_bw);
1231 		}
1232 		break;
1233 	}
1234 
1235 	return 0;
1236 }
1237 
1238 static int
1239 ufs_qcom_reset_assert(struct reset_controller_dev *rcdev, unsigned long id)
1240 {
1241 	struct ufs_qcom_host *host = rcdev_to_ufs_host(rcdev);
1242 
1243 	ufs_qcom_assert_reset(host->hba);
1244 	/* provide 1ms delay to let the reset pulse propagate. */
1245 	usleep_range(1000, 1100);
1246 	return 0;
1247 }
1248 
1249 static int
1250 ufs_qcom_reset_deassert(struct reset_controller_dev *rcdev, unsigned long id)
1251 {
1252 	struct ufs_qcom_host *host = rcdev_to_ufs_host(rcdev);
1253 
1254 	ufs_qcom_deassert_reset(host->hba);
1255 
1256 	/*
1257 	 * after reset deassertion, phy will need all ref clocks,
1258 	 * voltage, current to settle down before starting serdes.
1259 	 */
1260 	usleep_range(1000, 1100);
1261 	return 0;
1262 }
1263 
1264 static const struct reset_control_ops ufs_qcom_reset_ops = {
1265 	.assert = ufs_qcom_reset_assert,
1266 	.deassert = ufs_qcom_reset_deassert,
1267 };
1268 
1269 static int ufs_qcom_icc_init(struct ufs_qcom_host *host)
1270 {
1271 	struct device *dev = host->hba->dev;
1272 	int ret;
1273 
1274 	host->icc_ddr = devm_of_icc_get(dev, "ufs-ddr");
1275 	if (IS_ERR(host->icc_ddr))
1276 		return dev_err_probe(dev, PTR_ERR(host->icc_ddr),
1277 				    "failed to acquire interconnect path\n");
1278 
1279 	host->icc_cpu = devm_of_icc_get(dev, "cpu-ufs");
1280 	if (IS_ERR(host->icc_cpu))
1281 		return dev_err_probe(dev, PTR_ERR(host->icc_cpu),
1282 				    "failed to acquire interconnect path\n");
1283 
1284 	/*
1285 	 * Set Maximum bandwidth vote before initializing the UFS controller and
1286 	 * device. Ideally, a minimal interconnect vote would suffice for the
1287 	 * initialization, but a max vote would allow faster initialization.
1288 	 */
1289 	ret = ufs_qcom_icc_set_bw(host, ufs_qcom_bw_table[MODE_MAX][0][0].mem_bw,
1290 				  ufs_qcom_bw_table[MODE_MAX][0][0].cfg_bw);
1291 	if (ret < 0)
1292 		return dev_err_probe(dev, ret, "failed to set bandwidth request\n");
1293 
1294 	return 0;
1295 }
1296 
1297 /**
1298  * ufs_qcom_init - bind phy with controller
1299  * @hba: host controller instance
1300  *
1301  * Binds PHY with controller and powers up PHY enabling clocks
1302  * and regulators.
1303  *
1304  * Return: -EPROBE_DEFER if binding fails, returns negative error
1305  * on phy power up failure and returns zero on success.
1306  */
1307 static int ufs_qcom_init(struct ufs_hba *hba)
1308 {
1309 	int err;
1310 	struct device *dev = hba->dev;
1311 	struct ufs_qcom_host *host;
1312 	struct ufs_clk_info *clki;
1313 	const struct ufs_qcom_drvdata *drvdata = of_device_get_match_data(hba->dev);
1314 
1315 	host = devm_kzalloc(dev, sizeof(*host), GFP_KERNEL);
1316 	if (!host)
1317 		return -ENOMEM;
1318 
1319 	/* Make a two way bind between the qcom host and the hba */
1320 	host->hba = hba;
1321 	ufshcd_set_variant(hba, host);
1322 
1323 	/* Setup the optional reset control of HCI */
1324 	host->core_reset = devm_reset_control_get_optional(hba->dev, "rst");
1325 	if (IS_ERR(host->core_reset)) {
1326 		err = dev_err_probe(dev, PTR_ERR(host->core_reset),
1327 				    "Failed to get reset control\n");
1328 		goto out_variant_clear;
1329 	}
1330 
1331 	/* Fire up the reset controller. Failure here is non-fatal. */
1332 	host->rcdev.of_node = dev->of_node;
1333 	host->rcdev.ops = &ufs_qcom_reset_ops;
1334 	host->rcdev.owner = dev->driver->owner;
1335 	host->rcdev.nr_resets = 1;
1336 	err = devm_reset_controller_register(dev, &host->rcdev);
1337 	if (err)
1338 		dev_warn(dev, "Failed to register reset controller\n");
1339 
1340 	if (!has_acpi_companion(dev)) {
1341 		host->generic_phy = devm_phy_get(dev, "ufsphy");
1342 		if (IS_ERR(host->generic_phy)) {
1343 			err = dev_err_probe(dev, PTR_ERR(host->generic_phy), "Failed to get PHY\n");
1344 			goto out_variant_clear;
1345 		}
1346 	}
1347 
1348 	err = ufs_qcom_icc_init(host);
1349 	if (err)
1350 		goto out_variant_clear;
1351 
1352 	host->device_reset = devm_gpiod_get_optional(dev, "reset",
1353 						     GPIOD_OUT_HIGH);
1354 	if (IS_ERR(host->device_reset)) {
1355 		err = dev_err_probe(dev, PTR_ERR(host->device_reset),
1356 				    "Failed to acquire device reset gpio\n");
1357 		goto out_variant_clear;
1358 	}
1359 
1360 	ufs_qcom_get_controller_revision(hba, &host->hw_ver.major,
1361 		&host->hw_ver.minor, &host->hw_ver.step);
1362 
1363 	host->dev_ref_clk_ctrl_mmio = hba->mmio_base + REG_UFS_CFG1;
1364 	host->dev_ref_clk_en_mask = BIT(26);
1365 
1366 	list_for_each_entry(clki, &hba->clk_list_head, list) {
1367 		if (!strcmp(clki->name, "core_clk_unipro"))
1368 			clki->keep_link_active = true;
1369 	}
1370 
1371 	err = ufs_qcom_init_lane_clks(host);
1372 	if (err)
1373 		goto out_variant_clear;
1374 
1375 	ufs_qcom_set_caps(hba);
1376 	ufs_qcom_advertise_quirks(hba);
1377 	ufs_qcom_set_host_params(hba);
1378 	ufs_qcom_set_phy_gear(host);
1379 	ufs_qcom_parse_gear_limits(hba);
1380 
1381 	err = ufs_qcom_ice_init(host);
1382 	if (err)
1383 		goto out_variant_clear;
1384 
1385 	ufs_qcom_setup_clocks(hba, true, POST_CHANGE);
1386 
1387 	ufs_qcom_get_default_testbus_cfg(host);
1388 	err = ufs_qcom_testbus_config(host);
1389 	if (err)
1390 		/* Failure is non-fatal */
1391 		dev_warn(dev, "%s: failed to configure the testbus %d\n",
1392 				__func__, err);
1393 
1394 	if (drvdata && drvdata->no_phy_retention)
1395 		hba->spm_lvl = UFS_PM_LVL_5;
1396 
1397 	return 0;
1398 
1399 out_variant_clear:
1400 	ufshcd_set_variant(hba, NULL);
1401 
1402 	return err;
1403 }
1404 
1405 static void ufs_qcom_exit(struct ufs_hba *hba)
1406 {
1407 	struct ufs_qcom_host *host = ufshcd_get_variant(hba);
1408 
1409 	ufs_qcom_disable_lane_clks(host);
1410 	phy_power_off(host->generic_phy);
1411 	phy_exit(host->generic_phy);
1412 }
1413 
1414 /**
1415  * ufs_qcom_set_clk_40ns_cycles - Configure 40ns clk cycles
1416  *
1417  * @hba: host controller instance
1418  * @cycles_in_1us: No of cycles in 1us to be configured
1419  *
1420  * Returns error if dme get/set configuration for 40ns fails
1421  * and returns zero on success.
1422  */
1423 static int ufs_qcom_set_clk_40ns_cycles(struct ufs_hba *hba,
1424 					u32 cycles_in_1us)
1425 {
1426 	struct ufs_qcom_host *host = ufshcd_get_variant(hba);
1427 	u32 cycles_in_40ns;
1428 	u32 reg;
1429 	int err;
1430 
1431 	/*
1432 	 * UFS host controller V4.0.0 onwards needs to program
1433 	 * PA_VS_CORE_CLK_40NS_CYCLES attribute per programmed
1434 	 * frequency of unipro core clk of UFS host controller.
1435 	 */
1436 	if (host->hw_ver.major < 4)
1437 		return 0;
1438 
1439 	/*
1440 	 * Generic formulae for cycles_in_40ns = (freq_unipro/25) is not
1441 	 * applicable for all frequencies. For ex: ceil(37.5 MHz/25) will
1442 	 * be 2 and ceil(403 MHZ/25) will be 17 whereas Hardware
1443 	 * specification expect to be 16. Hence use exact hardware spec
1444 	 * mandated value for cycles_in_40ns instead of calculating using
1445 	 * generic formulae.
1446 	 */
1447 	switch (cycles_in_1us) {
1448 	case UNIPRO_CORE_CLK_FREQ_403_MHZ:
1449 		cycles_in_40ns = 16;
1450 		break;
1451 	case UNIPRO_CORE_CLK_FREQ_300_MHZ:
1452 		cycles_in_40ns = 12;
1453 		break;
1454 	case UNIPRO_CORE_CLK_FREQ_201_5_MHZ:
1455 		cycles_in_40ns = 8;
1456 		break;
1457 	case UNIPRO_CORE_CLK_FREQ_150_MHZ:
1458 		cycles_in_40ns = 6;
1459 		break;
1460 	case UNIPRO_CORE_CLK_FREQ_100_MHZ:
1461 		cycles_in_40ns = 4;
1462 		break;
1463 	case  UNIPRO_CORE_CLK_FREQ_75_MHZ:
1464 		cycles_in_40ns = 3;
1465 		break;
1466 	case UNIPRO_CORE_CLK_FREQ_37_5_MHZ:
1467 		cycles_in_40ns = 2;
1468 		break;
1469 	default:
1470 		dev_err(hba->dev, "UNIPRO clk freq %u MHz not supported\n",
1471 				cycles_in_1us);
1472 		return -EINVAL;
1473 	}
1474 
1475 	err = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_VS_CORE_CLK_40NS_CYCLES), &reg);
1476 	if (err)
1477 		return err;
1478 
1479 	reg &= ~PA_VS_CORE_CLK_40NS_CYCLES_MASK;
1480 	reg |= cycles_in_40ns;
1481 
1482 	return ufshcd_dme_set(hba, UIC_ARG_MIB(PA_VS_CORE_CLK_40NS_CYCLES), reg);
1483 }
1484 
1485 static int ufs_qcom_set_core_clk_ctrl(struct ufs_hba *hba, bool is_scale_up, unsigned long freq)
1486 {
1487 	struct ufs_qcom_host *host = ufshcd_get_variant(hba);
1488 	struct list_head *head = &hba->clk_list_head;
1489 	struct ufs_clk_info *clki;
1490 	u32 cycles_in_1us = 0;
1491 	u32 core_clk_ctrl_reg;
1492 	unsigned long clk_freq;
1493 	int err;
1494 
1495 	if (hba->use_pm_opp && freq != ULONG_MAX) {
1496 		clk_freq = ufs_qcom_opp_freq_to_clk_freq(hba, freq, "core_clk_unipro");
1497 		if (clk_freq) {
1498 			cycles_in_1us = ceil(clk_freq, HZ_PER_MHZ);
1499 			goto set_core_clk_ctrl;
1500 		}
1501 	}
1502 
1503 	list_for_each_entry(clki, head, list) {
1504 		if (!IS_ERR_OR_NULL(clki->clk) &&
1505 		    !strcmp(clki->name, "core_clk_unipro")) {
1506 			if (!clki->max_freq) {
1507 				cycles_in_1us = 150; /* default for backwards compatibility */
1508 				break;
1509 			}
1510 
1511 			if (freq == ULONG_MAX) {
1512 				cycles_in_1us = ceil(clki->max_freq, HZ_PER_MHZ);
1513 				break;
1514 			}
1515 
1516 			if (is_scale_up)
1517 				cycles_in_1us = ceil(clki->max_freq, HZ_PER_MHZ);
1518 			else
1519 				cycles_in_1us = ceil(clk_get_rate(clki->clk), HZ_PER_MHZ);
1520 			break;
1521 		}
1522 	}
1523 
1524 set_core_clk_ctrl:
1525 	err = ufshcd_dme_get(hba,
1526 			    UIC_ARG_MIB(DME_VS_CORE_CLK_CTRL),
1527 			    &core_clk_ctrl_reg);
1528 	if (err)
1529 		return err;
1530 
1531 	/* Bit mask is different for UFS host controller V4.0.0 onwards */
1532 	if (host->hw_ver.major >= 4) {
1533 		if (!FIELD_FIT(CLK_1US_CYCLES_MASK_V4, cycles_in_1us))
1534 			return -ERANGE;
1535 		core_clk_ctrl_reg &= ~CLK_1US_CYCLES_MASK_V4;
1536 		core_clk_ctrl_reg |= FIELD_PREP(CLK_1US_CYCLES_MASK_V4, cycles_in_1us);
1537 	} else {
1538 		if (!FIELD_FIT(CLK_1US_CYCLES_MASK, cycles_in_1us))
1539 			return -ERANGE;
1540 		core_clk_ctrl_reg &= ~CLK_1US_CYCLES_MASK;
1541 		core_clk_ctrl_reg |= FIELD_PREP(CLK_1US_CYCLES_MASK, cycles_in_1us);
1542 	}
1543 
1544 	/* Clear CORE_CLK_DIV_EN */
1545 	core_clk_ctrl_reg &= ~DME_VS_CORE_CLK_CTRL_CORE_CLK_DIV_EN_BIT;
1546 
1547 	err = ufshcd_dme_set(hba,
1548 			    UIC_ARG_MIB(DME_VS_CORE_CLK_CTRL),
1549 			    core_clk_ctrl_reg);
1550 	if (err)
1551 		return err;
1552 
1553 	/* Configure unipro core clk 40ns attribute */
1554 	return ufs_qcom_set_clk_40ns_cycles(hba, cycles_in_1us);
1555 }
1556 
1557 static int ufs_qcom_clk_scale_up_pre_change(struct ufs_hba *hba, unsigned long freq)
1558 {
1559 	int ret;
1560 
1561 	ret = ufs_qcom_cfg_timers(hba, true, freq);
1562 	if (ret) {
1563 		dev_err(hba->dev, "%s ufs cfg timer failed\n", __func__);
1564 		return ret;
1565 	}
1566 	/* set unipro core clock attributes and clear clock divider */
1567 	return ufs_qcom_set_core_clk_ctrl(hba, true, freq);
1568 }
1569 
1570 static int ufs_qcom_clk_scale_up_post_change(struct ufs_hba *hba)
1571 {
1572 	return 0;
1573 }
1574 
1575 static int ufs_qcom_clk_scale_down_pre_change(struct ufs_hba *hba)
1576 {
1577 	int err;
1578 	u32 core_clk_ctrl_reg;
1579 
1580 	err = ufshcd_dme_get(hba,
1581 			    UIC_ARG_MIB(DME_VS_CORE_CLK_CTRL),
1582 			    &core_clk_ctrl_reg);
1583 
1584 	/* make sure CORE_CLK_DIV_EN is cleared */
1585 	if (!err &&
1586 	    (core_clk_ctrl_reg & DME_VS_CORE_CLK_CTRL_CORE_CLK_DIV_EN_BIT)) {
1587 		core_clk_ctrl_reg &= ~DME_VS_CORE_CLK_CTRL_CORE_CLK_DIV_EN_BIT;
1588 		err = ufshcd_dme_set(hba,
1589 				    UIC_ARG_MIB(DME_VS_CORE_CLK_CTRL),
1590 				    core_clk_ctrl_reg);
1591 	}
1592 
1593 	return err;
1594 }
1595 
1596 static int ufs_qcom_clk_scale_down_post_change(struct ufs_hba *hba, unsigned long freq)
1597 {
1598 	int ret;
1599 
1600 	ret = ufs_qcom_cfg_timers(hba, false, freq);
1601 	if (ret) {
1602 		dev_err(hba->dev, "%s: ufs_qcom_cfg_timers() failed\n",	__func__);
1603 		return ret;
1604 	}
1605 	/* set unipro core clock attributes and clear clock divider */
1606 	return ufs_qcom_set_core_clk_ctrl(hba, false, freq);
1607 }
1608 
1609 static int ufs_qcom_clk_scale_notify(struct ufs_hba *hba, bool scale_up,
1610 				     unsigned long target_freq,
1611 				     enum ufs_notify_change_status status)
1612 {
1613 	struct ufs_qcom_host *host = ufshcd_get_variant(hba);
1614 	int err;
1615 
1616 	/* check the host controller state before sending hibern8 cmd */
1617 	if (!ufshcd_is_hba_active(hba))
1618 		return 0;
1619 
1620 	if (status == PRE_CHANGE) {
1621 		err = ufshcd_uic_hibern8_enter(hba);
1622 		if (err)
1623 			return err;
1624 		if (scale_up)
1625 			err = ufs_qcom_clk_scale_up_pre_change(hba, target_freq);
1626 		else
1627 			err = ufs_qcom_clk_scale_down_pre_change(hba);
1628 
1629 		if (err) {
1630 			ufshcd_uic_hibern8_exit(hba);
1631 			return err;
1632 		}
1633 	} else {
1634 		if (scale_up)
1635 			err = ufs_qcom_clk_scale_up_post_change(hba);
1636 		else
1637 			err = ufs_qcom_clk_scale_down_post_change(hba, target_freq);
1638 
1639 
1640 		if (err) {
1641 			ufshcd_uic_hibern8_exit(hba);
1642 			return err;
1643 		}
1644 
1645 		ufs_qcom_icc_update_bw(host);
1646 		ufshcd_uic_hibern8_exit(hba);
1647 	}
1648 
1649 	return 0;
1650 }
1651 
1652 static void ufs_qcom_enable_test_bus(struct ufs_qcom_host *host)
1653 {
1654 	ufshcd_rmwl(host->hba, UFS_REG_TEST_BUS_EN,
1655 			UFS_REG_TEST_BUS_EN, REG_UFS_CFG1);
1656 	ufshcd_rmwl(host->hba, TEST_BUS_EN, TEST_BUS_EN, REG_UFS_CFG1);
1657 }
1658 
1659 static void ufs_qcom_get_default_testbus_cfg(struct ufs_qcom_host *host)
1660 {
1661 	/* provide a legal default configuration */
1662 	host->testbus.select_major = TSTBUS_UNIPRO;
1663 	host->testbus.select_minor = 37;
1664 }
1665 
1666 static bool ufs_qcom_testbus_cfg_is_ok(struct ufs_qcom_host *host)
1667 {
1668 	if (host->testbus.select_major >= TSTBUS_MAX) {
1669 		dev_err(host->hba->dev,
1670 			"%s: UFS_CFG1[TEST_BUS_SEL} may not equal 0x%05X\n",
1671 			__func__, host->testbus.select_major);
1672 		return false;
1673 	}
1674 
1675 	return true;
1676 }
1677 
1678 int ufs_qcom_testbus_config(struct ufs_qcom_host *host)
1679 {
1680 	int reg;
1681 	int offset;
1682 	u32 mask = TEST_BUS_SUB_SEL_MASK;
1683 
1684 	if (!host)
1685 		return -EINVAL;
1686 
1687 	if (!ufs_qcom_testbus_cfg_is_ok(host))
1688 		return -EPERM;
1689 
1690 	switch (host->testbus.select_major) {
1691 	case TSTBUS_UAWM:
1692 		reg = UFS_TEST_BUS_CTRL_0;
1693 		offset = 24;
1694 		break;
1695 	case TSTBUS_UARM:
1696 		reg = UFS_TEST_BUS_CTRL_0;
1697 		offset = 16;
1698 		break;
1699 	case TSTBUS_TXUC:
1700 		reg = UFS_TEST_BUS_CTRL_0;
1701 		offset = 8;
1702 		break;
1703 	case TSTBUS_RXUC:
1704 		reg = UFS_TEST_BUS_CTRL_0;
1705 		offset = 0;
1706 		break;
1707 	case TSTBUS_DFC:
1708 		reg = UFS_TEST_BUS_CTRL_1;
1709 		offset = 24;
1710 		break;
1711 	case TSTBUS_TRLUT:
1712 		reg = UFS_TEST_BUS_CTRL_1;
1713 		offset = 16;
1714 		break;
1715 	case TSTBUS_TMRLUT:
1716 		reg = UFS_TEST_BUS_CTRL_1;
1717 		offset = 8;
1718 		break;
1719 	case TSTBUS_OCSC:
1720 		reg = UFS_TEST_BUS_CTRL_1;
1721 		offset = 0;
1722 		break;
1723 	case TSTBUS_WRAPPER:
1724 		reg = UFS_TEST_BUS_CTRL_2;
1725 		offset = 16;
1726 		break;
1727 	case TSTBUS_COMBINED:
1728 		reg = UFS_TEST_BUS_CTRL_2;
1729 		offset = 8;
1730 		break;
1731 	case TSTBUS_UTP_HCI:
1732 		reg = UFS_TEST_BUS_CTRL_2;
1733 		offset = 0;
1734 		break;
1735 	case TSTBUS_UNIPRO:
1736 		reg = UFS_UNIPRO_CFG;
1737 		offset = 20;
1738 		mask = 0xFFF;
1739 		break;
1740 	/*
1741 	 * No need for a default case, since
1742 	 * ufs_qcom_testbus_cfg_is_ok() checks that the configuration
1743 	 * is legal
1744 	 */
1745 	}
1746 	mask <<= offset;
1747 	ufshcd_rmwl(host->hba, TEST_BUS_SEL,
1748 		    (u32)host->testbus.select_major << 19,
1749 		    REG_UFS_CFG1);
1750 	ufshcd_rmwl(host->hba, mask,
1751 		    (u32)host->testbus.select_minor << offset,
1752 		    reg);
1753 	ufs_qcom_enable_test_bus(host);
1754 
1755 	return 0;
1756 }
1757 
1758 static void ufs_qcom_dump_testbus(struct ufs_hba *hba)
1759 {
1760 	struct ufs_qcom_host *host = ufshcd_get_variant(hba);
1761 	int i, j, nminor = 0, testbus_len = 0;
1762 	u32 *testbus __free(kfree) = NULL;
1763 	char *prefix;
1764 
1765 	testbus = kmalloc_array(256, sizeof(u32), GFP_KERNEL);
1766 	if (!testbus)
1767 		return;
1768 
1769 	for (j = 0; j < TSTBUS_MAX; j++) {
1770 		nminor = testbus_info[j].nminor;
1771 		prefix = testbus_info[j].prefix;
1772 		host->testbus.select_major = j;
1773 		testbus_len = nminor * sizeof(u32);
1774 		for (i = 0; i < nminor; i++) {
1775 			host->testbus.select_minor = i;
1776 			ufs_qcom_testbus_config(host);
1777 			testbus[i] = ufshcd_readl(hba, UFS_TEST_BUS);
1778 		}
1779 		print_hex_dump(KERN_ERR, prefix, DUMP_PREFIX_OFFSET,
1780 			       16, 4, testbus, testbus_len, false);
1781 	}
1782 }
1783 
1784 static int ufs_qcom_dump_regs(struct ufs_hba *hba, size_t offset, size_t len,
1785 			      const char *prefix, void __iomem *base)
1786 {
1787 	u32 *regs __free(kfree) = NULL;
1788 	size_t pos;
1789 
1790 	if (offset % 4 != 0 || len % 4 != 0)
1791 		return -EINVAL;
1792 
1793 	regs = kzalloc(len, GFP_ATOMIC);
1794 	if (!regs)
1795 		return -ENOMEM;
1796 
1797 	for (pos = 0; pos < len; pos += 4)
1798 		regs[pos / 4] = readl(base + offset + pos);
1799 
1800 	print_hex_dump(KERN_ERR, prefix,
1801 		       len > 4 ? DUMP_PREFIX_OFFSET : DUMP_PREFIX_NONE,
1802 		       16, 4, regs, len, false);
1803 
1804 	return 0;
1805 }
1806 
1807 static void ufs_qcom_dump_mcq_hci_regs(struct ufs_hba *hba)
1808 {
1809 	struct ufshcd_mcq_opr_info_t *opr = &hba->mcq_opr[0];
1810 	void __iomem *mcq_vs_base = hba->mcq_base + UFS_MEM_VS_BASE;
1811 
1812 	struct dump_info {
1813 		void __iomem *base;
1814 		size_t offset;
1815 		size_t len;
1816 		const char *prefix;
1817 	};
1818 
1819 	struct dump_info mcq_dumps[] = {
1820 		{hba->mcq_base, 0x0, 256 * 4, "MCQ HCI-0 "},
1821 		{hba->mcq_base, 0x400, 256 * 4, "MCQ HCI-1 "},
1822 		{mcq_vs_base, 0x0, 5 * 4, "MCQ VS-0 "},
1823 		{opr->base, 0x0, 256 * 4, "MCQ SQD-0 "},
1824 		{opr->base, 0x400, 256 * 4, "MCQ SQD-1 "},
1825 		{opr->base, 0x800, 256 * 4, "MCQ SQD-2 "},
1826 		{opr->base, 0xc00, 256 * 4, "MCQ SQD-3 "},
1827 		{opr->base, 0x1000, 256 * 4, "MCQ SQD-4 "},
1828 		{opr->base, 0x1400, 256 * 4, "MCQ SQD-5 "},
1829 		{opr->base, 0x1800, 256 * 4, "MCQ SQD-6 "},
1830 		{opr->base, 0x1c00, 256 * 4, "MCQ SQD-7 "},
1831 
1832 	};
1833 
1834 	for (int i = 0; i < ARRAY_SIZE(mcq_dumps); i++) {
1835 		ufs_qcom_dump_regs(hba, mcq_dumps[i].offset, mcq_dumps[i].len,
1836 				   mcq_dumps[i].prefix, mcq_dumps[i].base);
1837 		cond_resched();
1838 	}
1839 }
1840 
1841 static void ufs_qcom_dump_dbg_regs(struct ufs_hba *hba)
1842 {
1843 	u32 reg;
1844 	struct ufs_qcom_host *host;
1845 
1846 	host = ufshcd_get_variant(hba);
1847 
1848 	dev_err(hba->dev, "HW_H8_ENTER_CNT=%d\n", ufshcd_readl(hba, REG_UFS_HW_H8_ENTER_CNT));
1849 	dev_err(hba->dev, "HW_H8_EXIT_CNT=%d\n", ufshcd_readl(hba, REG_UFS_HW_H8_EXIT_CNT));
1850 
1851 	dev_err(hba->dev, "SW_H8_ENTER_CNT=%d\n", ufshcd_readl(hba, REG_UFS_SW_H8_ENTER_CNT));
1852 	dev_err(hba->dev, "SW_H8_EXIT_CNT=%d\n", ufshcd_readl(hba, REG_UFS_SW_H8_EXIT_CNT));
1853 
1854 	dev_err(hba->dev, "SW_AFTER_HW_H8_ENTER_CNT=%d\n",
1855 			ufshcd_readl(hba, REG_UFS_SW_AFTER_HW_H8_ENTER_CNT));
1856 
1857 	ufshcd_dump_regs(hba, REG_UFS_SYS1CLK_1US, 16 * 4,
1858 			 "HCI Vendor Specific Registers ");
1859 
1860 	reg = ufs_qcom_get_debug_reg_offset(host, UFS_UFS_DBG_RD_REG_OCSC);
1861 	ufshcd_dump_regs(hba, reg, 44 * 4, "UFS_UFS_DBG_RD_REG_OCSC ");
1862 
1863 	reg = ufshcd_readl(hba, REG_UFS_CFG1);
1864 	reg |= UTP_DBG_RAMS_EN;
1865 	ufshcd_writel(hba, reg, REG_UFS_CFG1);
1866 
1867 	reg = ufs_qcom_get_debug_reg_offset(host, UFS_UFS_DBG_RD_EDTL_RAM);
1868 	ufshcd_dump_regs(hba, reg, 32 * 4, "UFS_UFS_DBG_RD_EDTL_RAM ");
1869 
1870 	reg = ufs_qcom_get_debug_reg_offset(host, UFS_UFS_DBG_RD_DESC_RAM);
1871 	ufshcd_dump_regs(hba, reg, 128 * 4, "UFS_UFS_DBG_RD_DESC_RAM ");
1872 
1873 	reg = ufs_qcom_get_debug_reg_offset(host, UFS_UFS_DBG_RD_PRDT_RAM);
1874 	ufshcd_dump_regs(hba, reg, 64 * 4, "UFS_UFS_DBG_RD_PRDT_RAM ");
1875 
1876 	/* clear bit 17 - UTP_DBG_RAMS_EN */
1877 	ufshcd_rmwl(hba, UTP_DBG_RAMS_EN, 0, REG_UFS_CFG1);
1878 
1879 	reg = ufs_qcom_get_debug_reg_offset(host, UFS_DBG_RD_REG_UAWM);
1880 	ufshcd_dump_regs(hba, reg, 4 * 4, "UFS_DBG_RD_REG_UAWM ");
1881 
1882 	reg = ufs_qcom_get_debug_reg_offset(host, UFS_DBG_RD_REG_UARM);
1883 	ufshcd_dump_regs(hba, reg, 4 * 4, "UFS_DBG_RD_REG_UARM ");
1884 
1885 	reg = ufs_qcom_get_debug_reg_offset(host, UFS_DBG_RD_REG_TXUC);
1886 	ufshcd_dump_regs(hba, reg, 48 * 4, "UFS_DBG_RD_REG_TXUC ");
1887 
1888 	reg = ufs_qcom_get_debug_reg_offset(host, UFS_DBG_RD_REG_RXUC);
1889 	ufshcd_dump_regs(hba, reg, 27 * 4, "UFS_DBG_RD_REG_RXUC ");
1890 
1891 	reg = ufs_qcom_get_debug_reg_offset(host, UFS_DBG_RD_REG_DFC);
1892 	ufshcd_dump_regs(hba, reg, 19 * 4, "UFS_DBG_RD_REG_DFC ");
1893 
1894 	reg = ufs_qcom_get_debug_reg_offset(host, UFS_DBG_RD_REG_TRLUT);
1895 	ufshcd_dump_regs(hba, reg, 34 * 4, "UFS_DBG_RD_REG_TRLUT ");
1896 
1897 	reg = ufs_qcom_get_debug_reg_offset(host, UFS_DBG_RD_REG_TMRLUT);
1898 	ufshcd_dump_regs(hba, reg, 9 * 4, "UFS_DBG_RD_REG_TMRLUT ");
1899 
1900 	if (hba->mcq_enabled) {
1901 		reg = ufs_qcom_get_debug_reg_offset(host, UFS_RD_REG_MCQ);
1902 		ufshcd_dump_regs(hba, reg, 64 * 4, "HCI MCQ Debug Registers ");
1903 	}
1904 
1905 	/* ensure below dumps occur only in task context due to blocking calls. */
1906 	if (in_task()) {
1907 		/* Dump MCQ Host Vendor Specific Registers */
1908 		if (hba->mcq_enabled)
1909 			ufs_qcom_dump_mcq_hci_regs(hba);
1910 
1911 		/* voluntarily yield the CPU as we are dumping too much data */
1912 		ufshcd_dump_regs(hba, UFS_TEST_BUS, 4, "UFS_TEST_BUS ");
1913 		cond_resched();
1914 		ufs_qcom_dump_testbus(hba);
1915 	}
1916 }
1917 
1918 /**
1919  * ufs_qcom_device_reset() - toggle the (optional) device reset line
1920  * @hba: per-adapter instance
1921  *
1922  * Toggles the (optional) reset line to reset the attached device.
1923  */
1924 static int ufs_qcom_device_reset(struct ufs_hba *hba)
1925 {
1926 	struct ufs_qcom_host *host = ufshcd_get_variant(hba);
1927 
1928 	/* reset gpio is optional */
1929 	if (!host->device_reset)
1930 		return -EOPNOTSUPP;
1931 
1932 	/*
1933 	 * The UFS device shall detect reset pulses of 1us, sleep for 10us to
1934 	 * be on the safe side.
1935 	 */
1936 	ufs_qcom_device_reset_ctrl(hba, true);
1937 	usleep_range(10, 15);
1938 
1939 	ufs_qcom_device_reset_ctrl(hba, false);
1940 	usleep_range(10, 15);
1941 
1942 	return 0;
1943 }
1944 
1945 static void ufs_qcom_config_scaling_param(struct ufs_hba *hba,
1946 					struct devfreq_dev_profile *p,
1947 					struct devfreq_simple_ondemand_data *d)
1948 {
1949 	p->polling_ms = 60;
1950 	p->timer = DEVFREQ_TIMER_DELAYED;
1951 	d->upthreshold = 70;
1952 	d->downdifferential = 5;
1953 
1954 	hba->clk_scaling.suspend_on_no_request = true;
1955 }
1956 
1957 static int ufs_qcom_mcq_config_resource(struct ufs_hba *hba)
1958 {
1959 	struct platform_device *pdev = to_platform_device(hba->dev);
1960 	struct resource *res;
1961 
1962 	/* Map the MCQ configuration region */
1963 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "mcq");
1964 	if (!res) {
1965 		dev_err(hba->dev, "MCQ resource not found in device tree\n");
1966 		return -ENODEV;
1967 	}
1968 
1969 	hba->mcq_base = devm_ioremap_resource(hba->dev, res);
1970 	if (IS_ERR(hba->mcq_base)) {
1971 		dev_err(hba->dev, "Failed to map MCQ region: %ld\n",
1972 			PTR_ERR(hba->mcq_base));
1973 		return PTR_ERR(hba->mcq_base);
1974 	}
1975 
1976 	return 0;
1977 }
1978 
1979 static int ufs_qcom_op_runtime_config(struct ufs_hba *hba)
1980 {
1981 	struct ufshcd_mcq_opr_info_t *opr;
1982 	int i;
1983 	u32 doorbell_offsets[OPR_MAX];
1984 
1985 	/*
1986 	 * Configure doorbell address offsets in MCQ configuration registers.
1987 	 * These values are offsets relative to mmio_base (UFS_HCI_BASE).
1988 	 *
1989 	 * Memory Layout:
1990 	 * - mmio_base = UFS_HCI_BASE
1991 	 * - mcq_base  = MCQ_CONFIG_BASE = mmio_base + (UFS_QCOM_MCQCAP_QCFGPTR * 0x200)
1992 	 * - Doorbell registers are at: mmio_base + (UFS_QCOM_MCQCAP_QCFGPTR * 0x200) +
1993 	 * -				UFS_QCOM_MCQ_SQD_OFFSET
1994 	 * - Which is also: mcq_base +  UFS_QCOM_MCQ_SQD_OFFSET
1995 	 */
1996 
1997 	doorbell_offsets[OPR_SQD] = UFS_QCOM_SQD_ADDR_OFFSET;
1998 	doorbell_offsets[OPR_SQIS] = UFS_QCOM_SQIS_ADDR_OFFSET;
1999 	doorbell_offsets[OPR_CQD] = UFS_QCOM_CQD_ADDR_OFFSET;
2000 	doorbell_offsets[OPR_CQIS] = UFS_QCOM_CQIS_ADDR_OFFSET;
2001 
2002 	/*
2003 	 * Configure MCQ operation registers.
2004 	 *
2005 	 * The doorbell registers are physically located within the MCQ region:
2006 	 * - doorbell_physical_addr = mmio_base + doorbell_offset
2007 	 * - doorbell_physical_addr = mcq_base + (doorbell_offset - MCQ_CONFIG_OFFSET)
2008 	 */
2009 	for (i = 0; i < OPR_MAX; i++) {
2010 		opr = &hba->mcq_opr[i];
2011 		opr->offset = doorbell_offsets[i];  /* Offset relative to mmio_base */
2012 		opr->stride = UFS_QCOM_MCQ_STRIDE;  /* 256 bytes between queues */
2013 
2014 		/*
2015 		 * Calculate the actual doorbell base address within MCQ region:
2016 		 * base = mcq_base + (doorbell_offset - MCQ_CONFIG_OFFSET)
2017 		 */
2018 		opr->base = hba->mcq_base + (opr->offset - UFS_QCOM_MCQ_CONFIG_OFFSET);
2019 	}
2020 
2021 	return 0;
2022 }
2023 
2024 static int ufs_qcom_get_hba_mac(struct ufs_hba *hba)
2025 {
2026 	/* Qualcomm HC supports up to 64 */
2027 	return MAX_SUPP_MAC;
2028 }
2029 
2030 static int ufs_qcom_get_outstanding_cqs(struct ufs_hba *hba,
2031 					unsigned long *ocqs)
2032 {
2033 	/* Read from MCQ vendor-specific register in MCQ region */
2034 	*ocqs = readl(hba->mcq_base + UFS_MEM_CQIS_VS);
2035 
2036 	return 0;
2037 }
2038 
2039 static void ufs_qcom_write_msi_msg(struct msi_desc *desc, struct msi_msg *msg)
2040 {
2041 	struct device *dev = msi_desc_to_dev(desc);
2042 	struct ufs_hba *hba = dev_get_drvdata(dev);
2043 
2044 	ufshcd_mcq_config_esi(hba, msg);
2045 }
2046 
2047 struct ufs_qcom_irq {
2048 	unsigned int		irq;
2049 	unsigned int		idx;
2050 	struct ufs_hba		*hba;
2051 };
2052 
2053 static irqreturn_t ufs_qcom_mcq_esi_handler(int irq, void *data)
2054 {
2055 	struct ufs_qcom_irq *qi = data;
2056 	struct ufs_hba *hba = qi->hba;
2057 	struct ufs_hw_queue *hwq = &hba->uhq[qi->idx];
2058 
2059 	ufshcd_mcq_write_cqis(hba, 0x1, qi->idx);
2060 	ufshcd_mcq_poll_cqe_lock(hba, hwq);
2061 
2062 	return IRQ_HANDLED;
2063 }
2064 
2065 static int ufs_qcom_config_esi(struct ufs_hba *hba)
2066 {
2067 	struct ufs_qcom_host *host = ufshcd_get_variant(hba);
2068 	int nr_irqs, ret;
2069 
2070 	if (host->esi_enabled)
2071 		return 0;
2072 
2073 	/*
2074 	 * 1. We only handle CQs as of now.
2075 	 * 2. Poll queues do not need ESI.
2076 	 */
2077 	nr_irqs = hba->nr_hw_queues - hba->nr_queues[HCTX_TYPE_POLL];
2078 
2079 	ret = platform_device_msi_init_and_alloc_irqs(hba->dev, nr_irqs,
2080 						      ufs_qcom_write_msi_msg);
2081 	if (ret) {
2082 		dev_warn(hba->dev, "Platform MSI not supported or failed, continuing without ESI\n");
2083 		return ret; /* Continue without ESI */
2084 	}
2085 
2086 	struct ufs_qcom_irq *qi = devm_kcalloc(hba->dev, nr_irqs, sizeof(*qi), GFP_KERNEL);
2087 
2088 	if (!qi) {
2089 		platform_device_msi_free_irqs_all(hba->dev);
2090 		return -ENOMEM;
2091 	}
2092 
2093 	for (int idx = 0; idx < nr_irqs; idx++) {
2094 		qi[idx].irq = msi_get_virq(hba->dev, idx);
2095 		qi[idx].idx = idx;
2096 		qi[idx].hba = hba;
2097 
2098 		ret = devm_request_irq(hba->dev, qi[idx].irq, ufs_qcom_mcq_esi_handler,
2099 				       IRQF_SHARED, "qcom-mcq-esi", qi + idx);
2100 		if (ret) {
2101 			dev_err(hba->dev, "%s: Failed to request IRQ for %d, err = %d\n",
2102 				__func__, qi[idx].irq, ret);
2103 			/* Free previously allocated IRQs */
2104 			for (int j = 0; j < idx; j++)
2105 				devm_free_irq(hba->dev, qi[j].irq, qi + j);
2106 			platform_device_msi_free_irqs_all(hba->dev);
2107 			devm_kfree(hba->dev, qi);
2108 			return ret;
2109 		}
2110 	}
2111 
2112 	if (host->hw_ver.major >= 6) {
2113 		ufshcd_rmwl(hba, ESI_VEC_MASK, FIELD_PREP(ESI_VEC_MASK, MAX_ESI_VEC - 1),
2114 			    REG_UFS_CFG3);
2115 	}
2116 	ufshcd_mcq_enable_esi(hba);
2117 	host->esi_enabled = true;
2118 	return 0;
2119 }
2120 
2121 static unsigned long ufs_qcom_opp_freq_to_clk_freq(struct ufs_hba *hba,
2122 						   unsigned long freq, char *name)
2123 {
2124 	struct ufs_clk_info *clki;
2125 	struct dev_pm_opp *opp;
2126 	unsigned long clk_freq;
2127 	int idx = 0;
2128 	bool found = false;
2129 
2130 	opp = dev_pm_opp_find_freq_exact_indexed(hba->dev, freq, 0, true);
2131 	if (IS_ERR(opp)) {
2132 		dev_err(hba->dev, "Failed to find OPP for exact frequency %lu\n", freq);
2133 		return 0;
2134 	}
2135 
2136 	list_for_each_entry(clki, &hba->clk_list_head, list) {
2137 		if (!strcmp(clki->name, name)) {
2138 			found = true;
2139 			break;
2140 		}
2141 
2142 		idx++;
2143 	}
2144 
2145 	if (!found) {
2146 		dev_err(hba->dev, "Failed to find clock '%s' in clk list\n", name);
2147 		dev_pm_opp_put(opp);
2148 		return 0;
2149 	}
2150 
2151 	clk_freq = dev_pm_opp_get_freq_indexed(opp, idx);
2152 
2153 	dev_pm_opp_put(opp);
2154 
2155 	return clk_freq;
2156 }
2157 
2158 static u32 ufs_qcom_freq_to_gear_speed(struct ufs_hba *hba, unsigned long freq)
2159 {
2160 	u32 gear = UFS_HS_DONT_CHANGE;
2161 	unsigned long unipro_freq;
2162 
2163 	if (!hba->use_pm_opp)
2164 		return gear;
2165 
2166 	unipro_freq = ufs_qcom_opp_freq_to_clk_freq(hba, freq, "core_clk_unipro");
2167 	switch (unipro_freq) {
2168 	case 403000000:
2169 		gear = UFS_HS_G5;
2170 		break;
2171 	case 300000000:
2172 		gear = UFS_HS_G4;
2173 		break;
2174 	case 201500000:
2175 		gear = UFS_HS_G3;
2176 		break;
2177 	case 150000000:
2178 	case 100000000:
2179 		gear = UFS_HS_G2;
2180 		break;
2181 	case 75000000:
2182 	case 37500000:
2183 		gear = UFS_HS_G1;
2184 		break;
2185 	default:
2186 		dev_err(hba->dev, "%s: Unsupported clock freq : %lu\n", __func__, freq);
2187 		return UFS_HS_DONT_CHANGE;
2188 	}
2189 
2190 	return min_t(u32, gear, hba->max_pwr_info.info.gear_rx);
2191 }
2192 
2193 /*
2194  * struct ufs_hba_qcom_vops - UFS QCOM specific variant operations
2195  *
2196  * The variant operations configure the necessary controller and PHY
2197  * handshake during initialization.
2198  */
2199 static const struct ufs_hba_variant_ops ufs_hba_qcom_vops = {
2200 	.name                   = "qcom",
2201 	.init                   = ufs_qcom_init,
2202 	.exit                   = ufs_qcom_exit,
2203 	.get_ufs_hci_version	= ufs_qcom_get_ufs_hci_version,
2204 	.clk_scale_notify	= ufs_qcom_clk_scale_notify,
2205 	.setup_clocks           = ufs_qcom_setup_clocks,
2206 	.hce_enable_notify      = ufs_qcom_hce_enable_notify,
2207 	.link_startup_notify    = ufs_qcom_link_startup_notify,
2208 	.pwr_change_notify	= ufs_qcom_pwr_change_notify,
2209 	.apply_dev_quirks	= ufs_qcom_apply_dev_quirks,
2210 	.fixup_dev_quirks       = ufs_qcom_fixup_dev_quirks,
2211 	.suspend		= ufs_qcom_suspend,
2212 	.resume			= ufs_qcom_resume,
2213 	.dbg_register_dump	= ufs_qcom_dump_dbg_regs,
2214 	.device_reset		= ufs_qcom_device_reset,
2215 	.config_scaling_param = ufs_qcom_config_scaling_param,
2216 	.mcq_config_resource	= ufs_qcom_mcq_config_resource,
2217 	.get_hba_mac		= ufs_qcom_get_hba_mac,
2218 	.op_runtime_config	= ufs_qcom_op_runtime_config,
2219 	.get_outstanding_cqs	= ufs_qcom_get_outstanding_cqs,
2220 	.config_esi		= ufs_qcom_config_esi,
2221 	.freq_to_gear_speed	= ufs_qcom_freq_to_gear_speed,
2222 };
2223 
2224 /**
2225  * ufs_qcom_probe - probe routine of the driver
2226  * @pdev: pointer to Platform device handle
2227  *
2228  * Return: zero for success and non-zero for failure.
2229  */
2230 static int ufs_qcom_probe(struct platform_device *pdev)
2231 {
2232 	int err;
2233 	struct device *dev = &pdev->dev;
2234 
2235 	/* Perform generic probe */
2236 	err = ufshcd_pltfrm_init(pdev, &ufs_hba_qcom_vops);
2237 	if (err)
2238 		return dev_err_probe(dev, err, "ufshcd_pltfrm_init() failed\n");
2239 
2240 	return 0;
2241 }
2242 
2243 /**
2244  * ufs_qcom_remove - set driver_data of the device to NULL
2245  * @pdev: pointer to platform device handle
2246  *
2247  * Always returns 0
2248  */
2249 static void ufs_qcom_remove(struct platform_device *pdev)
2250 {
2251 	struct ufs_hba *hba =  platform_get_drvdata(pdev);
2252 	struct ufs_qcom_host *host = ufshcd_get_variant(hba);
2253 
2254 	ufshcd_pltfrm_remove(pdev);
2255 	if (host->esi_enabled)
2256 		platform_device_msi_free_irqs_all(hba->dev);
2257 }
2258 
2259 static const struct ufs_qcom_drvdata ufs_qcom_sm8550_drvdata = {
2260 	.quirks = UFSHCD_QUIRK_BROKEN_LSDBS_CAP,
2261 	.no_phy_retention = true,
2262 };
2263 
2264 static const struct of_device_id ufs_qcom_of_match[] __maybe_unused = {
2265 	{ .compatible = "qcom,ufshc" },
2266 	{ .compatible = "qcom,sm8550-ufshc", .data = &ufs_qcom_sm8550_drvdata },
2267 	{ .compatible = "qcom,sm8650-ufshc", .data = &ufs_qcom_sm8550_drvdata },
2268 	{},
2269 };
2270 MODULE_DEVICE_TABLE(of, ufs_qcom_of_match);
2271 
2272 #ifdef CONFIG_ACPI
2273 static const struct acpi_device_id ufs_qcom_acpi_match[] = {
2274 	{ "QCOM24A5" },
2275 	{ },
2276 };
2277 MODULE_DEVICE_TABLE(acpi, ufs_qcom_acpi_match);
2278 #endif
2279 
2280 static const struct dev_pm_ops ufs_qcom_pm_ops = {
2281 	SET_RUNTIME_PM_OPS(ufshcd_runtime_suspend, ufshcd_runtime_resume, NULL)
2282 	.prepare	 = ufshcd_suspend_prepare,
2283 	.complete	 = ufshcd_resume_complete,
2284 #ifdef CONFIG_PM_SLEEP
2285 	.suspend         = ufshcd_system_suspend,
2286 	.resume          = ufshcd_system_resume,
2287 	.freeze          = ufshcd_system_freeze,
2288 	.restore         = ufshcd_system_restore,
2289 	.thaw            = ufshcd_system_thaw,
2290 #endif
2291 };
2292 
2293 static struct platform_driver ufs_qcom_pltform = {
2294 	.probe	= ufs_qcom_probe,
2295 	.remove = ufs_qcom_remove,
2296 	.driver	= {
2297 		.name	= "ufshcd-qcom",
2298 		.pm	= &ufs_qcom_pm_ops,
2299 		.of_match_table = of_match_ptr(ufs_qcom_of_match),
2300 		.acpi_match_table = ACPI_PTR(ufs_qcom_acpi_match),
2301 	},
2302 };
2303 module_platform_driver(ufs_qcom_pltform);
2304 
2305 MODULE_DESCRIPTION("Qualcomm UFS host controller driver");
2306 MODULE_LICENSE("GPL v2");
2307