xref: /linux/drivers/ufs/host/ufs-qcom.c (revision 4fc012daf9c074772421c904357abf586336b1ca)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2013-2016, Linux Foundation. All rights reserved.
4  */
5 
6 #include <linux/acpi.h>
7 #include <linux/clk.h>
8 #include <linux/cleanup.h>
9 #include <linux/delay.h>
10 #include <linux/devfreq.h>
11 #include <linux/gpio/consumer.h>
12 #include <linux/interconnect.h>
13 #include <linux/module.h>
14 #include <linux/of.h>
15 #include <linux/phy/phy.h>
16 #include <linux/platform_device.h>
17 #include <linux/reset-controller.h>
18 #include <linux/time.h>
19 #include <linux/unaligned.h>
20 #include <linux/units.h>
21 
22 #include <soc/qcom/ice.h>
23 
24 #include <ufs/ufshcd.h>
25 #include <ufs/ufshci.h>
26 #include <ufs/ufs_quirks.h>
27 #include <ufs/unipro.h>
28 #include "ufshcd-pltfrm.h"
29 #include "ufs-qcom.h"
30 
31 #define MCQ_QCFGPTR_MASK	GENMASK(7, 0)
32 #define MCQ_QCFGPTR_UNIT	0x200
33 #define MCQ_SQATTR_OFFSET(c) \
34 	((((c) >> 16) & MCQ_QCFGPTR_MASK) * MCQ_QCFGPTR_UNIT)
35 #define MCQ_QCFG_SIZE	0x40
36 
37 /* De-emphasis for gear-5 */
38 #define DEEMPHASIS_3_5_dB	0x04
39 #define NO_DEEMPHASIS		0x0
40 
41 enum {
42 	TSTBUS_UAWM,
43 	TSTBUS_UARM,
44 	TSTBUS_TXUC,
45 	TSTBUS_RXUC,
46 	TSTBUS_DFC,
47 	TSTBUS_TRLUT,
48 	TSTBUS_TMRLUT,
49 	TSTBUS_OCSC,
50 	TSTBUS_UTP_HCI,
51 	TSTBUS_COMBINED,
52 	TSTBUS_WRAPPER,
53 	TSTBUS_UNIPRO,
54 	TSTBUS_MAX,
55 };
56 
57 #define QCOM_UFS_MAX_GEAR 5
58 #define QCOM_UFS_MAX_LANE 2
59 
60 enum {
61 	MODE_MIN,
62 	MODE_PWM,
63 	MODE_HS_RA,
64 	MODE_HS_RB,
65 	MODE_MAX,
66 };
67 
68 static const struct __ufs_qcom_bw_table {
69 	u32 mem_bw;
70 	u32 cfg_bw;
71 } ufs_qcom_bw_table[MODE_MAX + 1][QCOM_UFS_MAX_GEAR + 1][QCOM_UFS_MAX_LANE + 1] = {
72 	[MODE_MIN][0][0]		   = { 0,		0 }, /* Bandwidth values in KB/s */
73 	[MODE_PWM][UFS_PWM_G1][UFS_LANE_1] = { 922,		1000 },
74 	[MODE_PWM][UFS_PWM_G2][UFS_LANE_1] = { 1844,		1000 },
75 	[MODE_PWM][UFS_PWM_G3][UFS_LANE_1] = { 3688,		1000 },
76 	[MODE_PWM][UFS_PWM_G4][UFS_LANE_1] = { 7376,		1000 },
77 	[MODE_PWM][UFS_PWM_G5][UFS_LANE_1] = { 14752,		1000 },
78 	[MODE_PWM][UFS_PWM_G1][UFS_LANE_2] = { 1844,		1000 },
79 	[MODE_PWM][UFS_PWM_G2][UFS_LANE_2] = { 3688,		1000 },
80 	[MODE_PWM][UFS_PWM_G3][UFS_LANE_2] = { 7376,		1000 },
81 	[MODE_PWM][UFS_PWM_G4][UFS_LANE_2] = { 14752,		1000 },
82 	[MODE_PWM][UFS_PWM_G5][UFS_LANE_2] = { 29504,		1000 },
83 	[MODE_HS_RA][UFS_HS_G1][UFS_LANE_1] = { 127796,		1000 },
84 	[MODE_HS_RA][UFS_HS_G2][UFS_LANE_1] = { 255591,		1000 },
85 	[MODE_HS_RA][UFS_HS_G3][UFS_LANE_1] = { 1492582,	102400 },
86 	[MODE_HS_RA][UFS_HS_G4][UFS_LANE_1] = { 2915200,	204800 },
87 	[MODE_HS_RA][UFS_HS_G5][UFS_LANE_1] = { 5836800,	409600 },
88 	[MODE_HS_RA][UFS_HS_G1][UFS_LANE_2] = { 255591,		1000 },
89 	[MODE_HS_RA][UFS_HS_G2][UFS_LANE_2] = { 511181,		1000 },
90 	[MODE_HS_RA][UFS_HS_G3][UFS_LANE_2] = { 1492582,	204800 },
91 	[MODE_HS_RA][UFS_HS_G4][UFS_LANE_2] = { 2915200,	409600 },
92 	[MODE_HS_RA][UFS_HS_G5][UFS_LANE_2] = { 5836800,	819200 },
93 	[MODE_HS_RB][UFS_HS_G1][UFS_LANE_1] = { 149422,		1000 },
94 	[MODE_HS_RB][UFS_HS_G2][UFS_LANE_1] = { 298189,		1000 },
95 	[MODE_HS_RB][UFS_HS_G3][UFS_LANE_1] = { 1492582,	102400 },
96 	[MODE_HS_RB][UFS_HS_G4][UFS_LANE_1] = { 2915200,	204800 },
97 	[MODE_HS_RB][UFS_HS_G5][UFS_LANE_1] = { 5836800,	409600 },
98 	[MODE_HS_RB][UFS_HS_G1][UFS_LANE_2] = { 298189,		1000 },
99 	[MODE_HS_RB][UFS_HS_G2][UFS_LANE_2] = { 596378,		1000 },
100 	[MODE_HS_RB][UFS_HS_G3][UFS_LANE_2] = { 1492582,	204800 },
101 	[MODE_HS_RB][UFS_HS_G4][UFS_LANE_2] = { 2915200,	409600 },
102 	[MODE_HS_RB][UFS_HS_G5][UFS_LANE_2] = { 5836800,	819200 },
103 	[MODE_MAX][0][0]		    = { 7643136,	819200 },
104 };
105 
106 static const struct {
107 	int nminor;
108 	char *prefix;
109 } testbus_info[TSTBUS_MAX] = {
110 	[TSTBUS_UAWM]     = {32, "TSTBUS_UAWM"},
111 	[TSTBUS_UARM]     = {32, "TSTBUS_UARM"},
112 	[TSTBUS_TXUC]     = {32, "TSTBUS_TXUC"},
113 	[TSTBUS_RXUC]     = {32, "TSTBUS_RXUC"},
114 	[TSTBUS_DFC]      = {32, "TSTBUS_DFC"},
115 	[TSTBUS_TRLUT]    = {32, "TSTBUS_TRLUT"},
116 	[TSTBUS_TMRLUT]   = {32, "TSTBUS_TMRLUT"},
117 	[TSTBUS_OCSC]     = {32, "TSTBUS_OCSC"},
118 	[TSTBUS_UTP_HCI]  = {32, "TSTBUS_UTP_HCI"},
119 	[TSTBUS_COMBINED] = {32, "TSTBUS_COMBINED"},
120 	[TSTBUS_WRAPPER]  = {32, "TSTBUS_WRAPPER"},
121 	[TSTBUS_UNIPRO]   = {256, "TSTBUS_UNIPRO"},
122 };
123 
124 static void ufs_qcom_get_default_testbus_cfg(struct ufs_qcom_host *host);
125 static int ufs_qcom_set_core_clk_ctrl(struct ufs_hba *hba, unsigned long freq);
126 
127 static struct ufs_qcom_host *rcdev_to_ufs_host(struct reset_controller_dev *rcd)
128 {
129 	return container_of(rcd, struct ufs_qcom_host, rcdev);
130 }
131 
132 #ifdef CONFIG_SCSI_UFS_CRYPTO
133 /**
134  * ufs_qcom_config_ice_allocator() - ICE core allocator configuration
135  *
136  * @host: pointer to qcom specific variant structure.
137  */
138 static void ufs_qcom_config_ice_allocator(struct ufs_qcom_host *host)
139 {
140 	struct ufs_hba *hba = host->hba;
141 	static const uint8_t val[4] = { NUM_RX_R1W0, NUM_TX_R0W1, NUM_RX_R1W1, NUM_TX_R1W1 };
142 	u32 config;
143 
144 	if (!(host->caps & UFS_QCOM_CAP_ICE_CONFIG) ||
145 			!(host->hba->caps & UFSHCD_CAP_CRYPTO))
146 		return;
147 
148 	config = get_unaligned_le32(val);
149 
150 	ufshcd_writel(hba, ICE_ALLOCATOR_TYPE, REG_UFS_MEM_ICE_CONFIG);
151 	ufshcd_writel(hba, config, REG_UFS_MEM_ICE_NUM_CORE);
152 }
153 
154 static inline void ufs_qcom_ice_enable(struct ufs_qcom_host *host)
155 {
156 	if (host->hba->caps & UFSHCD_CAP_CRYPTO)
157 		qcom_ice_enable(host->ice);
158 }
159 
160 static const struct blk_crypto_ll_ops ufs_qcom_crypto_ops; /* forward decl */
161 
162 static int ufs_qcom_ice_init(struct ufs_qcom_host *host)
163 {
164 	struct ufs_hba *hba = host->hba;
165 	struct blk_crypto_profile *profile = &hba->crypto_profile;
166 	struct device *dev = hba->dev;
167 	struct qcom_ice *ice;
168 	union ufs_crypto_capabilities caps;
169 	union ufs_crypto_cap_entry cap;
170 	int err;
171 	int i;
172 
173 	ice = devm_of_qcom_ice_get(dev);
174 	if (ice == ERR_PTR(-EOPNOTSUPP)) {
175 		dev_warn(dev, "Disabling inline encryption support\n");
176 		ice = NULL;
177 	}
178 
179 	if (IS_ERR_OR_NULL(ice))
180 		return PTR_ERR_OR_ZERO(ice);
181 
182 	host->ice = ice;
183 
184 	/* Initialize the blk_crypto_profile */
185 
186 	caps.reg_val = cpu_to_le32(ufshcd_readl(hba, REG_UFS_CCAP));
187 
188 	/* The number of keyslots supported is (CFGC+1) */
189 	err = devm_blk_crypto_profile_init(dev, profile, caps.config_count + 1);
190 	if (err)
191 		return err;
192 
193 	profile->ll_ops = ufs_qcom_crypto_ops;
194 	profile->max_dun_bytes_supported = 8;
195 	profile->key_types_supported = qcom_ice_get_supported_key_type(ice);
196 	profile->dev = dev;
197 
198 	/*
199 	 * Currently this driver only supports AES-256-XTS.  All known versions
200 	 * of ICE support it, but to be safe make sure it is really declared in
201 	 * the crypto capability registers.  The crypto capability registers
202 	 * also give the supported data unit size(s).
203 	 */
204 	for (i = 0; i < caps.num_crypto_cap; i++) {
205 		cap.reg_val = cpu_to_le32(ufshcd_readl(hba,
206 						       REG_UFS_CRYPTOCAP +
207 						       i * sizeof(__le32)));
208 		if (cap.algorithm_id == UFS_CRYPTO_ALG_AES_XTS &&
209 		    cap.key_size == UFS_CRYPTO_KEY_SIZE_256)
210 			profile->modes_supported[BLK_ENCRYPTION_MODE_AES_256_XTS] |=
211 				cap.sdus_mask * 512;
212 	}
213 
214 	hba->caps |= UFSHCD_CAP_CRYPTO;
215 	hba->quirks |= UFSHCD_QUIRK_CUSTOM_CRYPTO_PROFILE;
216 	return 0;
217 }
218 
219 static inline int ufs_qcom_ice_resume(struct ufs_qcom_host *host)
220 {
221 	if (host->hba->caps & UFSHCD_CAP_CRYPTO)
222 		return qcom_ice_resume(host->ice);
223 
224 	return 0;
225 }
226 
227 static inline int ufs_qcom_ice_suspend(struct ufs_qcom_host *host)
228 {
229 	if (host->hba->caps & UFSHCD_CAP_CRYPTO)
230 		return qcom_ice_suspend(host->ice);
231 
232 	return 0;
233 }
234 
235 static int ufs_qcom_ice_keyslot_program(struct blk_crypto_profile *profile,
236 					const struct blk_crypto_key *key,
237 					unsigned int slot)
238 {
239 	struct ufs_hba *hba = ufs_hba_from_crypto_profile(profile);
240 	struct ufs_qcom_host *host = ufshcd_get_variant(hba);
241 	int err;
242 
243 	ufshcd_hold(hba);
244 	err = qcom_ice_program_key(host->ice, slot, key);
245 	ufshcd_release(hba);
246 	return err;
247 }
248 
249 static int ufs_qcom_ice_keyslot_evict(struct blk_crypto_profile *profile,
250 				      const struct blk_crypto_key *key,
251 				      unsigned int slot)
252 {
253 	struct ufs_hba *hba = ufs_hba_from_crypto_profile(profile);
254 	struct ufs_qcom_host *host = ufshcd_get_variant(hba);
255 	int err;
256 
257 	ufshcd_hold(hba);
258 	err = qcom_ice_evict_key(host->ice, slot);
259 	ufshcd_release(hba);
260 	return err;
261 }
262 
263 static int ufs_qcom_ice_derive_sw_secret(struct blk_crypto_profile *profile,
264 					 const u8 *eph_key, size_t eph_key_size,
265 					 u8 sw_secret[BLK_CRYPTO_SW_SECRET_SIZE])
266 {
267 	struct ufs_hba *hba = ufs_hba_from_crypto_profile(profile);
268 	struct ufs_qcom_host *host = ufshcd_get_variant(hba);
269 
270 	return qcom_ice_derive_sw_secret(host->ice, eph_key, eph_key_size,
271 					 sw_secret);
272 }
273 
274 static int ufs_qcom_ice_import_key(struct blk_crypto_profile *profile,
275 				   const u8 *raw_key, size_t raw_key_size,
276 				   u8 lt_key[BLK_CRYPTO_MAX_HW_WRAPPED_KEY_SIZE])
277 {
278 	struct ufs_hba *hba = ufs_hba_from_crypto_profile(profile);
279 	struct ufs_qcom_host *host = ufshcd_get_variant(hba);
280 
281 	return qcom_ice_import_key(host->ice, raw_key, raw_key_size, lt_key);
282 }
283 
284 static int ufs_qcom_ice_generate_key(struct blk_crypto_profile *profile,
285 				     u8 lt_key[BLK_CRYPTO_MAX_HW_WRAPPED_KEY_SIZE])
286 {
287 	struct ufs_hba *hba = ufs_hba_from_crypto_profile(profile);
288 	struct ufs_qcom_host *host = ufshcd_get_variant(hba);
289 
290 	return qcom_ice_generate_key(host->ice, lt_key);
291 }
292 
293 static int ufs_qcom_ice_prepare_key(struct blk_crypto_profile *profile,
294 				    const u8 *lt_key, size_t lt_key_size,
295 				    u8 eph_key[BLK_CRYPTO_MAX_HW_WRAPPED_KEY_SIZE])
296 {
297 	struct ufs_hba *hba = ufs_hba_from_crypto_profile(profile);
298 	struct ufs_qcom_host *host = ufshcd_get_variant(hba);
299 
300 	return qcom_ice_prepare_key(host->ice, lt_key, lt_key_size, eph_key);
301 }
302 
303 static const struct blk_crypto_ll_ops ufs_qcom_crypto_ops = {
304 	.keyslot_program	= ufs_qcom_ice_keyslot_program,
305 	.keyslot_evict		= ufs_qcom_ice_keyslot_evict,
306 	.derive_sw_secret	= ufs_qcom_ice_derive_sw_secret,
307 	.import_key		= ufs_qcom_ice_import_key,
308 	.generate_key		= ufs_qcom_ice_generate_key,
309 	.prepare_key		= ufs_qcom_ice_prepare_key,
310 };
311 
312 #else
313 
314 static inline void ufs_qcom_ice_enable(struct ufs_qcom_host *host)
315 {
316 }
317 
318 static int ufs_qcom_ice_init(struct ufs_qcom_host *host)
319 {
320 	return 0;
321 }
322 
323 static inline int ufs_qcom_ice_resume(struct ufs_qcom_host *host)
324 {
325 	return 0;
326 }
327 
328 static inline int ufs_qcom_ice_suspend(struct ufs_qcom_host *host)
329 {
330 	return 0;
331 }
332 
333 static void ufs_qcom_config_ice_allocator(struct ufs_qcom_host *host)
334 {
335 }
336 
337 #endif
338 
339 static void ufs_qcom_disable_lane_clks(struct ufs_qcom_host *host)
340 {
341 	if (!host->is_lane_clks_enabled)
342 		return;
343 
344 	clk_bulk_disable_unprepare(host->num_clks, host->clks);
345 
346 	host->is_lane_clks_enabled = false;
347 }
348 
349 static int ufs_qcom_enable_lane_clks(struct ufs_qcom_host *host)
350 {
351 	int err;
352 
353 	err = clk_bulk_prepare_enable(host->num_clks, host->clks);
354 	if (err)
355 		return err;
356 
357 	host->is_lane_clks_enabled = true;
358 
359 	return 0;
360 }
361 
362 static int ufs_qcom_init_lane_clks(struct ufs_qcom_host *host)
363 {
364 	int err;
365 	struct device *dev = host->hba->dev;
366 
367 	if (has_acpi_companion(dev))
368 		return 0;
369 
370 	err = devm_clk_bulk_get_all(dev, &host->clks);
371 	if (err <= 0)
372 		return err;
373 
374 	host->num_clks = err;
375 
376 	return 0;
377 }
378 
379 static int ufs_qcom_check_hibern8(struct ufs_hba *hba)
380 {
381 	int err;
382 	u32 tx_fsm_val;
383 	unsigned long timeout = jiffies + msecs_to_jiffies(HBRN8_POLL_TOUT_MS);
384 
385 	do {
386 		err = ufshcd_dme_get(hba,
387 				UIC_ARG_MIB_SEL(MPHY_TX_FSM_STATE,
388 					UIC_ARG_MPHY_TX_GEN_SEL_INDEX(0)),
389 				&tx_fsm_val);
390 		if (err || tx_fsm_val == TX_FSM_HIBERN8)
391 			break;
392 
393 		/* sleep for max. 200us */
394 		usleep_range(100, 200);
395 	} while (time_before(jiffies, timeout));
396 
397 	/*
398 	 * we might have scheduled out for long during polling so
399 	 * check the state again.
400 	 */
401 	if (time_after(jiffies, timeout))
402 		err = ufshcd_dme_get(hba,
403 				UIC_ARG_MIB_SEL(MPHY_TX_FSM_STATE,
404 					UIC_ARG_MPHY_TX_GEN_SEL_INDEX(0)),
405 				&tx_fsm_val);
406 
407 	if (err) {
408 		dev_err(hba->dev, "%s: unable to get TX_FSM_STATE, err %d\n",
409 				__func__, err);
410 	} else if (tx_fsm_val != TX_FSM_HIBERN8) {
411 		err = tx_fsm_val;
412 		dev_err(hba->dev, "%s: invalid TX_FSM_STATE = %d\n",
413 				__func__, err);
414 	}
415 
416 	return err;
417 }
418 
419 static void ufs_qcom_select_unipro_mode(struct ufs_qcom_host *host)
420 {
421 	ufshcd_rmwl(host->hba, QUNIPRO_SEL, QUNIPRO_SEL, REG_UFS_CFG1);
422 
423 	if (host->hw_ver.major >= 0x05)
424 		ufshcd_rmwl(host->hba, QUNIPRO_G4_SEL, 0, REG_UFS_CFG0);
425 }
426 
427 /*
428  * ufs_qcom_host_reset - reset host controller and PHY
429  */
430 static int ufs_qcom_host_reset(struct ufs_hba *hba)
431 {
432 	int ret;
433 	struct ufs_qcom_host *host = ufshcd_get_variant(hba);
434 	bool reenable_intr;
435 
436 	if (!host->core_reset)
437 		return 0;
438 
439 	reenable_intr = hba->is_irq_enabled;
440 	ufshcd_disable_irq(hba);
441 
442 	ret = reset_control_assert(host->core_reset);
443 	if (ret) {
444 		dev_err(hba->dev, "%s: core_reset assert failed, err = %d\n",
445 				 __func__, ret);
446 		return ret;
447 	}
448 
449 	/*
450 	 * The hardware requirement for delay between assert/deassert
451 	 * is at least 3-4 sleep clock (32.7KHz) cycles, which comes to
452 	 * ~125us (4/32768). To be on the safe side add 200us delay.
453 	 */
454 	usleep_range(200, 210);
455 
456 	ret = reset_control_deassert(host->core_reset);
457 	if (ret) {
458 		dev_err(hba->dev, "%s: core_reset deassert failed, err = %d\n",
459 				 __func__, ret);
460 		return ret;
461 	}
462 
463 	usleep_range(1000, 1100);
464 
465 	if (reenable_intr)
466 		ufshcd_enable_irq(hba);
467 
468 	return 0;
469 }
470 
471 static u32 ufs_qcom_get_hs_gear(struct ufs_hba *hba)
472 {
473 	struct ufs_qcom_host *host = ufshcd_get_variant(hba);
474 
475 	if (host->hw_ver.major >= 0x4)
476 		return UFS_QCOM_MAX_GEAR(ufshcd_readl(hba, REG_UFS_PARAM0));
477 
478 	/* Default is HS-G3 */
479 	return UFS_HS_G3;
480 }
481 
482 static int ufs_qcom_power_up_sequence(struct ufs_hba *hba)
483 {
484 	struct ufs_qcom_host *host = ufshcd_get_variant(hba);
485 	struct ufs_host_params *host_params = &host->host_params;
486 	struct phy *phy = host->generic_phy;
487 	enum phy_mode mode;
488 	int ret;
489 
490 	/*
491 	 * HW ver 5 can only support up to HS-G5 Rate-A due to HW limitations.
492 	 * If the HS-G5 PHY gear is used, update host_params->hs_rate to Rate-A,
493 	 * so that the subsequent power mode change shall stick to Rate-A.
494 	 */
495 	if (host->hw_ver.major == 0x5) {
496 		if (host->phy_gear == UFS_HS_G5)
497 			host_params->hs_rate = PA_HS_MODE_A;
498 		else
499 			host_params->hs_rate = PA_HS_MODE_B;
500 	}
501 
502 	mode = host_params->hs_rate == PA_HS_MODE_B ? PHY_MODE_UFS_HS_B : PHY_MODE_UFS_HS_A;
503 
504 	/* Reset UFS Host Controller and PHY */
505 	ret = ufs_qcom_host_reset(hba);
506 	if (ret)
507 		return ret;
508 
509 	if (phy->power_count) {
510 		phy_power_off(phy);
511 		phy_exit(phy);
512 	}
513 
514 	/* phy initialization - calibrate the phy */
515 	ret = phy_init(phy);
516 	if (ret) {
517 		dev_err(hba->dev, "%s: phy init failed, ret = %d\n",
518 			__func__, ret);
519 		return ret;
520 	}
521 
522 	ret = phy_set_mode_ext(phy, mode, host->phy_gear);
523 	if (ret)
524 		goto out_disable_phy;
525 
526 	/* power on phy - start serdes and phy's power and clocks */
527 	ret = phy_power_on(phy);
528 	if (ret) {
529 		dev_err(hba->dev, "%s: phy power on failed, ret = %d\n",
530 			__func__, ret);
531 		goto out_disable_phy;
532 	}
533 
534 	ufs_qcom_select_unipro_mode(host);
535 
536 	return 0;
537 
538 out_disable_phy:
539 	phy_exit(phy);
540 
541 	return ret;
542 }
543 
544 /*
545  * The UTP controller has a number of internal clock gating cells (CGCs).
546  * Internal hardware sub-modules within the UTP controller control the CGCs.
547  * Hardware CGCs disable the clock to inactivate UTP sub-modules not involved
548  * in a specific operation, UTP controller CGCs are by default disabled and
549  * this function enables them (after every UFS link startup) to save some power
550  * leakage.
551  */
552 static void ufs_qcom_enable_hw_clk_gating(struct ufs_hba *hba)
553 {
554 	ufshcd_rmwl(hba, REG_UFS_CFG2_CGC_EN_ALL, REG_UFS_CFG2_CGC_EN_ALL,
555 		    REG_UFS_CFG2);
556 
557 	/* Ensure that HW clock gating is enabled before next operations */
558 	ufshcd_readl(hba, REG_UFS_CFG2);
559 }
560 
561 static int ufs_qcom_hce_enable_notify(struct ufs_hba *hba,
562 				      enum ufs_notify_change_status status)
563 {
564 	struct ufs_qcom_host *host = ufshcd_get_variant(hba);
565 	int err;
566 
567 	switch (status) {
568 	case PRE_CHANGE:
569 		err = ufs_qcom_power_up_sequence(hba);
570 		if (err)
571 			return err;
572 
573 		/*
574 		 * The PHY PLL output is the source of tx/rx lane symbol
575 		 * clocks, hence, enable the lane clocks only after PHY
576 		 * is initialized.
577 		 */
578 		err = ufs_qcom_enable_lane_clks(host);
579 		break;
580 	case POST_CHANGE:
581 		/* check if UFS PHY moved from DISABLED to HIBERN8 */
582 		err = ufs_qcom_check_hibern8(hba);
583 		ufs_qcom_enable_hw_clk_gating(hba);
584 		ufs_qcom_ice_enable(host);
585 		ufs_qcom_config_ice_allocator(host);
586 		break;
587 	default:
588 		dev_err(hba->dev, "%s: invalid status %d\n", __func__, status);
589 		err = -EINVAL;
590 		break;
591 	}
592 	return err;
593 }
594 
595 /**
596  * ufs_qcom_cfg_timers - Configure ufs qcom cfg timers
597  *
598  * @hba: host controller instance
599  * @is_pre_scale_up: flag to check if pre scale up condition.
600  * Return: zero for success and non-zero in case of a failure.
601  */
602 static int ufs_qcom_cfg_timers(struct ufs_hba *hba, bool is_pre_scale_up)
603 {
604 	struct ufs_qcom_host *host = ufshcd_get_variant(hba);
605 	struct ufs_clk_info *clki;
606 	unsigned long core_clk_rate = 0;
607 	u32 core_clk_cycles_per_us;
608 
609 	/*
610 	 * UTP controller uses SYS1CLK_1US_REG register for Interrupt
611 	 * Aggregation logic.
612 	 * It is mandatory to write SYS1CLK_1US_REG register on UFS host
613 	 * controller V4.0.0 onwards.
614 	 */
615 	if (host->hw_ver.major < 4 && !ufshcd_is_intr_aggr_allowed(hba))
616 		return 0;
617 
618 	list_for_each_entry(clki, &hba->clk_list_head, list) {
619 		if (!strcmp(clki->name, "core_clk")) {
620 			if (is_pre_scale_up)
621 				core_clk_rate = clki->max_freq;
622 			else
623 				core_clk_rate = clk_get_rate(clki->clk);
624 			break;
625 		}
626 
627 	}
628 
629 	/* If frequency is smaller than 1MHz, set to 1MHz */
630 	if (core_clk_rate < DEFAULT_CLK_RATE_HZ)
631 		core_clk_rate = DEFAULT_CLK_RATE_HZ;
632 
633 	core_clk_cycles_per_us = core_clk_rate / USEC_PER_SEC;
634 	if (ufshcd_readl(hba, REG_UFS_SYS1CLK_1US) != core_clk_cycles_per_us) {
635 		ufshcd_writel(hba, core_clk_cycles_per_us, REG_UFS_SYS1CLK_1US);
636 		/*
637 		 * make sure above write gets applied before we return from
638 		 * this function.
639 		 */
640 		ufshcd_readl(hba, REG_UFS_SYS1CLK_1US);
641 	}
642 
643 	return 0;
644 }
645 
646 static int ufs_qcom_link_startup_notify(struct ufs_hba *hba,
647 					enum ufs_notify_change_status status)
648 {
649 	int err = 0;
650 
651 	switch (status) {
652 	case PRE_CHANGE:
653 		if (ufs_qcom_cfg_timers(hba, false)) {
654 			dev_err(hba->dev, "%s: ufs_qcom_cfg_timers() failed\n",
655 				__func__);
656 			return -EINVAL;
657 		}
658 
659 		err = ufs_qcom_set_core_clk_ctrl(hba, ULONG_MAX);
660 		if (err)
661 			dev_err(hba->dev, "cfg core clk ctrl failed\n");
662 		/*
663 		 * Some UFS devices (and may be host) have issues if LCC is
664 		 * enabled. So we are setting PA_Local_TX_LCC_Enable to 0
665 		 * before link startup which will make sure that both host
666 		 * and device TX LCC are disabled once link startup is
667 		 * completed.
668 		 */
669 		err = ufshcd_disable_host_tx_lcc(hba);
670 
671 		break;
672 	default:
673 		break;
674 	}
675 
676 	return err;
677 }
678 
679 static void ufs_qcom_device_reset_ctrl(struct ufs_hba *hba, bool asserted)
680 {
681 	struct ufs_qcom_host *host = ufshcd_get_variant(hba);
682 
683 	/* reset gpio is optional */
684 	if (!host->device_reset)
685 		return;
686 
687 	gpiod_set_value_cansleep(host->device_reset, asserted);
688 }
689 
690 static int ufs_qcom_suspend(struct ufs_hba *hba, enum ufs_pm_op pm_op,
691 	enum ufs_notify_change_status status)
692 {
693 	struct ufs_qcom_host *host = ufshcd_get_variant(hba);
694 	struct phy *phy = host->generic_phy;
695 
696 	if (status == PRE_CHANGE)
697 		return 0;
698 
699 	if (ufs_qcom_is_link_off(hba)) {
700 		/*
701 		 * Disable the tx/rx lane symbol clocks before PHY is
702 		 * powered down as the PLL source should be disabled
703 		 * after downstream clocks are disabled.
704 		 */
705 		ufs_qcom_disable_lane_clks(host);
706 		phy_power_off(phy);
707 
708 		/* reset the connected UFS device during power down */
709 		ufs_qcom_device_reset_ctrl(hba, true);
710 
711 	} else if (!ufs_qcom_is_link_active(hba)) {
712 		ufs_qcom_disable_lane_clks(host);
713 	}
714 
715 	return ufs_qcom_ice_suspend(host);
716 }
717 
718 static int ufs_qcom_resume(struct ufs_hba *hba, enum ufs_pm_op pm_op)
719 {
720 	struct ufs_qcom_host *host = ufshcd_get_variant(hba);
721 	struct phy *phy = host->generic_phy;
722 	int err;
723 
724 	if (ufs_qcom_is_link_off(hba)) {
725 		err = phy_power_on(phy);
726 		if (err) {
727 			dev_err(hba->dev, "%s: failed PHY power on: %d\n",
728 				__func__, err);
729 			return err;
730 		}
731 
732 		err = ufs_qcom_enable_lane_clks(host);
733 		if (err)
734 			return err;
735 
736 	} else if (!ufs_qcom_is_link_active(hba)) {
737 		err = ufs_qcom_enable_lane_clks(host);
738 		if (err)
739 			return err;
740 	}
741 
742 	return ufs_qcom_ice_resume(host);
743 }
744 
745 static void ufs_qcom_dev_ref_clk_ctrl(struct ufs_qcom_host *host, bool enable)
746 {
747 	if (host->dev_ref_clk_ctrl_mmio &&
748 	    (enable ^ host->is_dev_ref_clk_enabled)) {
749 		u32 temp = readl_relaxed(host->dev_ref_clk_ctrl_mmio);
750 
751 		if (enable)
752 			temp |= host->dev_ref_clk_en_mask;
753 		else
754 			temp &= ~host->dev_ref_clk_en_mask;
755 
756 		/*
757 		 * If we are here to disable this clock it might be immediately
758 		 * after entering into hibern8 in which case we need to make
759 		 * sure that device ref_clk is active for specific time after
760 		 * hibern8 enter.
761 		 */
762 		if (!enable) {
763 			unsigned long gating_wait;
764 
765 			gating_wait = host->hba->dev_info.clk_gating_wait_us;
766 			if (!gating_wait) {
767 				udelay(1);
768 			} else {
769 				/*
770 				 * bRefClkGatingWaitTime defines the minimum
771 				 * time for which the reference clock is
772 				 * required by device during transition from
773 				 * HS-MODE to LS-MODE or HIBERN8 state. Give it
774 				 * more delay to be on the safe side.
775 				 */
776 				gating_wait += 10;
777 				usleep_range(gating_wait, gating_wait + 10);
778 			}
779 		}
780 
781 		writel_relaxed(temp, host->dev_ref_clk_ctrl_mmio);
782 
783 		/*
784 		 * Make sure the write to ref_clk reaches the destination and
785 		 * not stored in a Write Buffer (WB).
786 		 */
787 		readl(host->dev_ref_clk_ctrl_mmio);
788 
789 		/*
790 		 * If we call hibern8 exit after this, we need to make sure that
791 		 * device ref_clk is stable for at least 1us before the hibern8
792 		 * exit command.
793 		 */
794 		if (enable)
795 			udelay(1);
796 
797 		host->is_dev_ref_clk_enabled = enable;
798 	}
799 }
800 
801 static int ufs_qcom_icc_set_bw(struct ufs_qcom_host *host, u32 mem_bw, u32 cfg_bw)
802 {
803 	struct device *dev = host->hba->dev;
804 	int ret;
805 
806 	ret = icc_set_bw(host->icc_ddr, 0, mem_bw);
807 	if (ret < 0) {
808 		dev_err(dev, "failed to set bandwidth request: %d\n", ret);
809 		return ret;
810 	}
811 
812 	ret = icc_set_bw(host->icc_cpu, 0, cfg_bw);
813 	if (ret < 0) {
814 		dev_err(dev, "failed to set bandwidth request: %d\n", ret);
815 		return ret;
816 	}
817 
818 	return 0;
819 }
820 
821 static struct __ufs_qcom_bw_table ufs_qcom_get_bw_table(struct ufs_qcom_host *host)
822 {
823 	struct ufs_pa_layer_attr *p = &host->dev_req_params;
824 	int gear = max_t(u32, p->gear_rx, p->gear_tx);
825 	int lane = max_t(u32, p->lane_rx, p->lane_tx);
826 
827 	if (WARN_ONCE(gear > QCOM_UFS_MAX_GEAR,
828 		      "ICC scaling for UFS Gear (%d) not supported. Using Gear (%d) bandwidth\n",
829 		      gear, QCOM_UFS_MAX_GEAR))
830 		gear = QCOM_UFS_MAX_GEAR;
831 
832 	if (WARN_ONCE(lane > QCOM_UFS_MAX_LANE,
833 		      "ICC scaling for UFS Lane (%d) not supported. Using Lane (%d) bandwidth\n",
834 		      lane, QCOM_UFS_MAX_LANE))
835 		lane = QCOM_UFS_MAX_LANE;
836 
837 	if (ufshcd_is_hs_mode(p)) {
838 		if (p->hs_rate == PA_HS_MODE_B)
839 			return ufs_qcom_bw_table[MODE_HS_RB][gear][lane];
840 		else
841 			return ufs_qcom_bw_table[MODE_HS_RA][gear][lane];
842 	} else {
843 		return ufs_qcom_bw_table[MODE_PWM][gear][lane];
844 	}
845 }
846 
847 static int ufs_qcom_icc_update_bw(struct ufs_qcom_host *host)
848 {
849 	struct __ufs_qcom_bw_table bw_table;
850 
851 	bw_table = ufs_qcom_get_bw_table(host);
852 
853 	return ufs_qcom_icc_set_bw(host, bw_table.mem_bw, bw_table.cfg_bw);
854 }
855 
856 static void ufs_qcom_set_tx_hs_equalizer(struct ufs_hba *hba, u32 gear, u32 tx_lanes)
857 {
858 	u32 equalizer_val;
859 	int ret, i;
860 
861 	/* Determine the equalizer value based on the gear */
862 	equalizer_val = (gear == 5) ? DEEMPHASIS_3_5_dB : NO_DEEMPHASIS;
863 
864 	for (i = 0; i < tx_lanes; i++) {
865 		ret = ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(TX_HS_EQUALIZER, i),
866 				     equalizer_val);
867 		if (ret)
868 			dev_err(hba->dev, "%s: failed equalizer lane %d\n",
869 				__func__, i);
870 	}
871 }
872 
873 static int ufs_qcom_pwr_change_notify(struct ufs_hba *hba,
874 				enum ufs_notify_change_status status,
875 				const struct ufs_pa_layer_attr *dev_max_params,
876 				struct ufs_pa_layer_attr *dev_req_params)
877 {
878 	struct ufs_qcom_host *host = ufshcd_get_variant(hba);
879 	struct ufs_host_params *host_params = &host->host_params;
880 	int ret = 0;
881 
882 	if (!dev_req_params) {
883 		pr_err("%s: incoming dev_req_params is NULL\n", __func__);
884 		return -EINVAL;
885 	}
886 
887 	switch (status) {
888 	case PRE_CHANGE:
889 		ret = ufshcd_negotiate_pwr_params(host_params, dev_max_params, dev_req_params);
890 		if (ret) {
891 			dev_err(hba->dev, "%s: failed to determine capabilities\n",
892 					__func__);
893 			return ret;
894 		}
895 
896 		/*
897 		 * During UFS driver probe, always update the PHY gear to match the negotiated
898 		 * gear, so that, if quirk UFSHCD_QUIRK_REINIT_AFTER_MAX_GEAR_SWITCH is enabled,
899 		 * the second init can program the optimal PHY settings. This allows one to start
900 		 * the first init with either the minimum or the maximum support gear.
901 		 */
902 		if (hba->ufshcd_state == UFSHCD_STATE_RESET) {
903 			/*
904 			 * Skip REINIT if the negotiated gear matches with the
905 			 * initial phy_gear. Otherwise, update the phy_gear to
906 			 * program the optimal gear setting during REINIT.
907 			 */
908 			if (host->phy_gear == dev_req_params->gear_tx)
909 				hba->quirks &= ~UFSHCD_QUIRK_REINIT_AFTER_MAX_GEAR_SWITCH;
910 			else
911 				host->phy_gear = dev_req_params->gear_tx;
912 		}
913 
914 		/* enable the device ref clock before changing to HS mode */
915 		if (!ufshcd_is_hs_mode(&hba->pwr_info) &&
916 			ufshcd_is_hs_mode(dev_req_params))
917 			ufs_qcom_dev_ref_clk_ctrl(host, true);
918 
919 		if (host->hw_ver.major >= 0x4) {
920 			ufshcd_dme_configure_adapt(hba,
921 						dev_req_params->gear_tx,
922 						PA_INITIAL_ADAPT);
923 		}
924 
925 		if (hba->dev_quirks & UFS_DEVICE_QUIRK_PA_TX_DEEMPHASIS_TUNING)
926 			ufs_qcom_set_tx_hs_equalizer(hba,
927 					dev_req_params->gear_tx, dev_req_params->lane_tx);
928 
929 		break;
930 	case POST_CHANGE:
931 		if (ufs_qcom_cfg_timers(hba, false)) {
932 			dev_err(hba->dev, "%s: ufs_qcom_cfg_timers() failed\n",
933 				__func__);
934 			/*
935 			 * we return error code at the end of the routine,
936 			 * but continue to configure UFS_PHY_TX_LANE_ENABLE
937 			 * and bus voting as usual
938 			 */
939 			ret = -EINVAL;
940 		}
941 
942 		/* cache the power mode parameters to use internally */
943 		memcpy(&host->dev_req_params,
944 				dev_req_params, sizeof(*dev_req_params));
945 
946 		ufs_qcom_icc_update_bw(host);
947 
948 		/* disable the device ref clock if entered PWM mode */
949 		if (ufshcd_is_hs_mode(&hba->pwr_info) &&
950 			!ufshcd_is_hs_mode(dev_req_params))
951 			ufs_qcom_dev_ref_clk_ctrl(host, false);
952 		break;
953 	default:
954 		ret = -EINVAL;
955 		break;
956 	}
957 
958 	return ret;
959 }
960 
961 static int ufs_qcom_quirk_host_pa_saveconfigtime(struct ufs_hba *hba)
962 {
963 	int err;
964 	u32 pa_vs_config_reg1;
965 
966 	err = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_VS_CONFIG_REG1),
967 			     &pa_vs_config_reg1);
968 	if (err)
969 		return err;
970 
971 	/* Allow extension of MSB bits of PA_SaveConfigTime attribute */
972 	return ufshcd_dme_set(hba, UIC_ARG_MIB(PA_VS_CONFIG_REG1),
973 			    (pa_vs_config_reg1 | (1 << 12)));
974 }
975 
976 static void ufs_qcom_override_pa_tx_hsg1_sync_len(struct ufs_hba *hba)
977 {
978 	int err;
979 
980 	err = ufshcd_dme_peer_set(hba, UIC_ARG_MIB(PA_TX_HSG1_SYNC_LENGTH),
981 				  PA_TX_HSG1_SYNC_LENGTH_VAL);
982 	if (err)
983 		dev_err(hba->dev, "Failed (%d) set PA_TX_HSG1_SYNC_LENGTH\n", err);
984 }
985 
986 static int ufs_qcom_apply_dev_quirks(struct ufs_hba *hba)
987 {
988 	int err = 0;
989 
990 	if (hba->dev_quirks & UFS_DEVICE_QUIRK_HOST_PA_SAVECONFIGTIME)
991 		err = ufs_qcom_quirk_host_pa_saveconfigtime(hba);
992 
993 	if (hba->dev_quirks & UFS_DEVICE_QUIRK_PA_TX_HSG1_SYNC_LENGTH)
994 		ufs_qcom_override_pa_tx_hsg1_sync_len(hba);
995 
996 	return err;
997 }
998 
999 /* UFS device-specific quirks */
1000 static struct ufs_dev_quirk ufs_qcom_dev_fixups[] = {
1001 	{ .wmanufacturerid = UFS_VENDOR_SKHYNIX,
1002 	  .model = UFS_ANY_MODEL,
1003 	  .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM },
1004 	{ .wmanufacturerid = UFS_VENDOR_TOSHIBA,
1005 	  .model = UFS_ANY_MODEL,
1006 	  .quirk = UFS_DEVICE_QUIRK_DELAY_AFTER_LPM },
1007 	{ .wmanufacturerid = UFS_VENDOR_WDC,
1008 	  .model = UFS_ANY_MODEL,
1009 	  .quirk = UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE },
1010 	{ .wmanufacturerid = UFS_VENDOR_SAMSUNG,
1011 	  .model = UFS_ANY_MODEL,
1012 	  .quirk = UFS_DEVICE_QUIRK_PA_TX_HSG1_SYNC_LENGTH |
1013 		   UFS_DEVICE_QUIRK_PA_TX_DEEMPHASIS_TUNING },
1014 	{}
1015 };
1016 
1017 static void ufs_qcom_fixup_dev_quirks(struct ufs_hba *hba)
1018 {
1019 	ufshcd_fixup_dev_quirks(hba, ufs_qcom_dev_fixups);
1020 }
1021 
1022 static u32 ufs_qcom_get_ufs_hci_version(struct ufs_hba *hba)
1023 {
1024 	return ufshci_version(2, 0);
1025 }
1026 
1027 /**
1028  * ufs_qcom_advertise_quirks - advertise the known QCOM UFS controller quirks
1029  * @hba: host controller instance
1030  *
1031  * QCOM UFS host controller might have some non standard behaviours (quirks)
1032  * than what is specified by UFSHCI specification. Advertise all such
1033  * quirks to standard UFS host controller driver so standard takes them into
1034  * account.
1035  */
1036 static void ufs_qcom_advertise_quirks(struct ufs_hba *hba)
1037 {
1038 	const struct ufs_qcom_drvdata *drvdata = of_device_get_match_data(hba->dev);
1039 	struct ufs_qcom_host *host = ufshcd_get_variant(hba);
1040 
1041 	if (host->hw_ver.major == 0x2)
1042 		hba->quirks |= UFSHCD_QUIRK_BROKEN_UFS_HCI_VERSION;
1043 
1044 	if (host->hw_ver.major > 0x3)
1045 		hba->quirks |= UFSHCD_QUIRK_REINIT_AFTER_MAX_GEAR_SWITCH;
1046 
1047 	if (drvdata && drvdata->quirks)
1048 		hba->quirks |= drvdata->quirks;
1049 }
1050 
1051 static void ufs_qcom_set_phy_gear(struct ufs_qcom_host *host)
1052 {
1053 	struct ufs_host_params *host_params = &host->host_params;
1054 	u32 val, dev_major;
1055 
1056 	/*
1057 	 * Default to powering up the PHY to the max gear possible, which is
1058 	 * backwards compatible with lower gears but not optimal from
1059 	 * a power usage point of view. After device negotiation, if the
1060 	 * gear is lower a reinit will be performed to program the PHY
1061 	 * to the ideal gear for this combo of controller and device.
1062 	 */
1063 	host->phy_gear = host_params->hs_tx_gear;
1064 
1065 	if (host->hw_ver.major < 0x4) {
1066 		/*
1067 		 * These controllers only have one PHY init sequence,
1068 		 * let's power up the PHY using that (the minimum supported
1069 		 * gear, UFS_HS_G2).
1070 		 */
1071 		host->phy_gear = UFS_HS_G2;
1072 	} else if (host->hw_ver.major >= 0x5) {
1073 		val = ufshcd_readl(host->hba, REG_UFS_DEBUG_SPARE_CFG);
1074 		dev_major = FIELD_GET(UFS_DEV_VER_MAJOR_MASK, val);
1075 
1076 		/*
1077 		 * Since the UFS device version is populated, let's remove the
1078 		 * REINIT quirk as the negotiated gear won't change during boot.
1079 		 * So there is no need to do reinit.
1080 		 */
1081 		if (dev_major != 0x0)
1082 			host->hba->quirks &= ~UFSHCD_QUIRK_REINIT_AFTER_MAX_GEAR_SWITCH;
1083 
1084 		/*
1085 		 * For UFS 3.1 device and older, power up the PHY using HS-G4
1086 		 * PHY gear to save power.
1087 		 */
1088 		if (dev_major > 0x0 && dev_major < 0x4)
1089 			host->phy_gear = UFS_HS_G4;
1090 	}
1091 }
1092 
1093 static void ufs_qcom_set_host_params(struct ufs_hba *hba)
1094 {
1095 	struct ufs_qcom_host *host = ufshcd_get_variant(hba);
1096 	struct ufs_host_params *host_params = &host->host_params;
1097 
1098 	ufshcd_init_host_params(host_params);
1099 
1100 	/* This driver only supports symmetic gear setting i.e., hs_tx_gear == hs_rx_gear */
1101 	host_params->hs_tx_gear = host_params->hs_rx_gear = ufs_qcom_get_hs_gear(hba);
1102 }
1103 
1104 static void ufs_qcom_set_host_caps(struct ufs_hba *hba)
1105 {
1106 	struct ufs_qcom_host *host = ufshcd_get_variant(hba);
1107 
1108 	if (host->hw_ver.major >= 0x5)
1109 		host->caps |= UFS_QCOM_CAP_ICE_CONFIG;
1110 }
1111 
1112 static void ufs_qcom_set_caps(struct ufs_hba *hba)
1113 {
1114 	hba->caps |= UFSHCD_CAP_CLK_GATING | UFSHCD_CAP_HIBERN8_WITH_CLK_GATING;
1115 	hba->caps |= UFSHCD_CAP_CLK_SCALING | UFSHCD_CAP_WB_WITH_CLK_SCALING;
1116 	hba->caps |= UFSHCD_CAP_AUTO_BKOPS_SUSPEND;
1117 	hba->caps |= UFSHCD_CAP_WB_EN;
1118 	hba->caps |= UFSHCD_CAP_AGGR_POWER_COLLAPSE;
1119 	hba->caps |= UFSHCD_CAP_RPM_AUTOSUSPEND;
1120 
1121 	ufs_qcom_set_host_caps(hba);
1122 }
1123 
1124 /**
1125  * ufs_qcom_setup_clocks - enables/disable clocks
1126  * @hba: host controller instance
1127  * @on: If true, enable clocks else disable them.
1128  * @status: PRE_CHANGE or POST_CHANGE notify
1129  *
1130  * Return: 0 on success, non-zero on failure.
1131  */
1132 static int ufs_qcom_setup_clocks(struct ufs_hba *hba, bool on,
1133 				 enum ufs_notify_change_status status)
1134 {
1135 	struct ufs_qcom_host *host = ufshcd_get_variant(hba);
1136 
1137 	/*
1138 	 * In case ufs_qcom_init() is not yet done, simply ignore.
1139 	 * This ufs_qcom_setup_clocks() shall be called from
1140 	 * ufs_qcom_init() after init is done.
1141 	 */
1142 	if (!host)
1143 		return 0;
1144 
1145 	switch (status) {
1146 	case PRE_CHANGE:
1147 		if (on) {
1148 			ufs_qcom_icc_update_bw(host);
1149 		} else {
1150 			if (!ufs_qcom_is_link_active(hba)) {
1151 				/* disable device ref_clk */
1152 				ufs_qcom_dev_ref_clk_ctrl(host, false);
1153 			}
1154 		}
1155 		break;
1156 	case POST_CHANGE:
1157 		if (on) {
1158 			/* enable the device ref clock for HS mode*/
1159 			if (ufshcd_is_hs_mode(&hba->pwr_info))
1160 				ufs_qcom_dev_ref_clk_ctrl(host, true);
1161 		} else {
1162 			ufs_qcom_icc_set_bw(host, ufs_qcom_bw_table[MODE_MIN][0][0].mem_bw,
1163 					    ufs_qcom_bw_table[MODE_MIN][0][0].cfg_bw);
1164 		}
1165 		break;
1166 	}
1167 
1168 	return 0;
1169 }
1170 
1171 static int
1172 ufs_qcom_reset_assert(struct reset_controller_dev *rcdev, unsigned long id)
1173 {
1174 	struct ufs_qcom_host *host = rcdev_to_ufs_host(rcdev);
1175 
1176 	ufs_qcom_assert_reset(host->hba);
1177 	/* provide 1ms delay to let the reset pulse propagate. */
1178 	usleep_range(1000, 1100);
1179 	return 0;
1180 }
1181 
1182 static int
1183 ufs_qcom_reset_deassert(struct reset_controller_dev *rcdev, unsigned long id)
1184 {
1185 	struct ufs_qcom_host *host = rcdev_to_ufs_host(rcdev);
1186 
1187 	ufs_qcom_deassert_reset(host->hba);
1188 
1189 	/*
1190 	 * after reset deassertion, phy will need all ref clocks,
1191 	 * voltage, current to settle down before starting serdes.
1192 	 */
1193 	usleep_range(1000, 1100);
1194 	return 0;
1195 }
1196 
1197 static const struct reset_control_ops ufs_qcom_reset_ops = {
1198 	.assert = ufs_qcom_reset_assert,
1199 	.deassert = ufs_qcom_reset_deassert,
1200 };
1201 
1202 static int ufs_qcom_icc_init(struct ufs_qcom_host *host)
1203 {
1204 	struct device *dev = host->hba->dev;
1205 	int ret;
1206 
1207 	host->icc_ddr = devm_of_icc_get(dev, "ufs-ddr");
1208 	if (IS_ERR(host->icc_ddr))
1209 		return dev_err_probe(dev, PTR_ERR(host->icc_ddr),
1210 				    "failed to acquire interconnect path\n");
1211 
1212 	host->icc_cpu = devm_of_icc_get(dev, "cpu-ufs");
1213 	if (IS_ERR(host->icc_cpu))
1214 		return dev_err_probe(dev, PTR_ERR(host->icc_cpu),
1215 				    "failed to acquire interconnect path\n");
1216 
1217 	/*
1218 	 * Set Maximum bandwidth vote before initializing the UFS controller and
1219 	 * device. Ideally, a minimal interconnect vote would suffice for the
1220 	 * initialization, but a max vote would allow faster initialization.
1221 	 */
1222 	ret = ufs_qcom_icc_set_bw(host, ufs_qcom_bw_table[MODE_MAX][0][0].mem_bw,
1223 				  ufs_qcom_bw_table[MODE_MAX][0][0].cfg_bw);
1224 	if (ret < 0)
1225 		return dev_err_probe(dev, ret, "failed to set bandwidth request\n");
1226 
1227 	return 0;
1228 }
1229 
1230 /**
1231  * ufs_qcom_init - bind phy with controller
1232  * @hba: host controller instance
1233  *
1234  * Binds PHY with controller and powers up PHY enabling clocks
1235  * and regulators.
1236  *
1237  * Return: -EPROBE_DEFER if binding fails, returns negative error
1238  * on phy power up failure and returns zero on success.
1239  */
1240 static int ufs_qcom_init(struct ufs_hba *hba)
1241 {
1242 	int err;
1243 	struct device *dev = hba->dev;
1244 	struct ufs_qcom_host *host;
1245 	struct ufs_clk_info *clki;
1246 	const struct ufs_qcom_drvdata *drvdata = of_device_get_match_data(hba->dev);
1247 
1248 	host = devm_kzalloc(dev, sizeof(*host), GFP_KERNEL);
1249 	if (!host)
1250 		return -ENOMEM;
1251 
1252 	/* Make a two way bind between the qcom host and the hba */
1253 	host->hba = hba;
1254 	ufshcd_set_variant(hba, host);
1255 
1256 	/* Setup the optional reset control of HCI */
1257 	host->core_reset = devm_reset_control_get_optional(hba->dev, "rst");
1258 	if (IS_ERR(host->core_reset)) {
1259 		err = dev_err_probe(dev, PTR_ERR(host->core_reset),
1260 				    "Failed to get reset control\n");
1261 		goto out_variant_clear;
1262 	}
1263 
1264 	/* Fire up the reset controller. Failure here is non-fatal. */
1265 	host->rcdev.of_node = dev->of_node;
1266 	host->rcdev.ops = &ufs_qcom_reset_ops;
1267 	host->rcdev.owner = dev->driver->owner;
1268 	host->rcdev.nr_resets = 1;
1269 	err = devm_reset_controller_register(dev, &host->rcdev);
1270 	if (err)
1271 		dev_warn(dev, "Failed to register reset controller\n");
1272 
1273 	if (!has_acpi_companion(dev)) {
1274 		host->generic_phy = devm_phy_get(dev, "ufsphy");
1275 		if (IS_ERR(host->generic_phy)) {
1276 			err = dev_err_probe(dev, PTR_ERR(host->generic_phy), "Failed to get PHY\n");
1277 			goto out_variant_clear;
1278 		}
1279 	}
1280 
1281 	err = ufs_qcom_icc_init(host);
1282 	if (err)
1283 		goto out_variant_clear;
1284 
1285 	host->device_reset = devm_gpiod_get_optional(dev, "reset",
1286 						     GPIOD_OUT_HIGH);
1287 	if (IS_ERR(host->device_reset)) {
1288 		err = dev_err_probe(dev, PTR_ERR(host->device_reset),
1289 				    "Failed to acquire device reset gpio\n");
1290 		goto out_variant_clear;
1291 	}
1292 
1293 	ufs_qcom_get_controller_revision(hba, &host->hw_ver.major,
1294 		&host->hw_ver.minor, &host->hw_ver.step);
1295 
1296 	host->dev_ref_clk_ctrl_mmio = hba->mmio_base + REG_UFS_CFG1;
1297 	host->dev_ref_clk_en_mask = BIT(26);
1298 
1299 	list_for_each_entry(clki, &hba->clk_list_head, list) {
1300 		if (!strcmp(clki->name, "core_clk_unipro"))
1301 			clki->keep_link_active = true;
1302 	}
1303 
1304 	err = ufs_qcom_init_lane_clks(host);
1305 	if (err)
1306 		goto out_variant_clear;
1307 
1308 	ufs_qcom_set_caps(hba);
1309 	ufs_qcom_advertise_quirks(hba);
1310 	ufs_qcom_set_host_params(hba);
1311 	ufs_qcom_set_phy_gear(host);
1312 
1313 	err = ufs_qcom_ice_init(host);
1314 	if (err)
1315 		goto out_variant_clear;
1316 
1317 	ufs_qcom_setup_clocks(hba, true, POST_CHANGE);
1318 
1319 	ufs_qcom_get_default_testbus_cfg(host);
1320 	err = ufs_qcom_testbus_config(host);
1321 	if (err)
1322 		/* Failure is non-fatal */
1323 		dev_warn(dev, "%s: failed to configure the testbus %d\n",
1324 				__func__, err);
1325 
1326 	if (drvdata && drvdata->no_phy_retention)
1327 		hba->spm_lvl = UFS_PM_LVL_5;
1328 
1329 	return 0;
1330 
1331 out_variant_clear:
1332 	ufshcd_set_variant(hba, NULL);
1333 
1334 	return err;
1335 }
1336 
1337 static void ufs_qcom_exit(struct ufs_hba *hba)
1338 {
1339 	struct ufs_qcom_host *host = ufshcd_get_variant(hba);
1340 
1341 	ufs_qcom_disable_lane_clks(host);
1342 	phy_power_off(host->generic_phy);
1343 	phy_exit(host->generic_phy);
1344 }
1345 
1346 /**
1347  * ufs_qcom_set_clk_40ns_cycles - Configure 40ns clk cycles
1348  *
1349  * @hba: host controller instance
1350  * @cycles_in_1us: No of cycles in 1us to be configured
1351  *
1352  * Returns error if dme get/set configuration for 40ns fails
1353  * and returns zero on success.
1354  */
1355 static int ufs_qcom_set_clk_40ns_cycles(struct ufs_hba *hba,
1356 					u32 cycles_in_1us)
1357 {
1358 	struct ufs_qcom_host *host = ufshcd_get_variant(hba);
1359 	u32 cycles_in_40ns;
1360 	u32 reg;
1361 	int err;
1362 
1363 	/*
1364 	 * UFS host controller V4.0.0 onwards needs to program
1365 	 * PA_VS_CORE_CLK_40NS_CYCLES attribute per programmed
1366 	 * frequency of unipro core clk of UFS host controller.
1367 	 */
1368 	if (host->hw_ver.major < 4)
1369 		return 0;
1370 
1371 	/*
1372 	 * Generic formulae for cycles_in_40ns = (freq_unipro/25) is not
1373 	 * applicable for all frequencies. For ex: ceil(37.5 MHz/25) will
1374 	 * be 2 and ceil(403 MHZ/25) will be 17 whereas Hardware
1375 	 * specification expect to be 16. Hence use exact hardware spec
1376 	 * mandated value for cycles_in_40ns instead of calculating using
1377 	 * generic formulae.
1378 	 */
1379 	switch (cycles_in_1us) {
1380 	case UNIPRO_CORE_CLK_FREQ_403_MHZ:
1381 		cycles_in_40ns = 16;
1382 		break;
1383 	case UNIPRO_CORE_CLK_FREQ_300_MHZ:
1384 		cycles_in_40ns = 12;
1385 		break;
1386 	case UNIPRO_CORE_CLK_FREQ_201_5_MHZ:
1387 		cycles_in_40ns = 8;
1388 		break;
1389 	case UNIPRO_CORE_CLK_FREQ_150_MHZ:
1390 		cycles_in_40ns = 6;
1391 		break;
1392 	case UNIPRO_CORE_CLK_FREQ_100_MHZ:
1393 		cycles_in_40ns = 4;
1394 		break;
1395 	case  UNIPRO_CORE_CLK_FREQ_75_MHZ:
1396 		cycles_in_40ns = 3;
1397 		break;
1398 	case UNIPRO_CORE_CLK_FREQ_37_5_MHZ:
1399 		cycles_in_40ns = 2;
1400 		break;
1401 	default:
1402 		dev_err(hba->dev, "UNIPRO clk freq %u MHz not supported\n",
1403 				cycles_in_1us);
1404 		return -EINVAL;
1405 	}
1406 
1407 	err = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_VS_CORE_CLK_40NS_CYCLES), &reg);
1408 	if (err)
1409 		return err;
1410 
1411 	reg &= ~PA_VS_CORE_CLK_40NS_CYCLES_MASK;
1412 	reg |= cycles_in_40ns;
1413 
1414 	return ufshcd_dme_set(hba, UIC_ARG_MIB(PA_VS_CORE_CLK_40NS_CYCLES), reg);
1415 }
1416 
1417 static int ufs_qcom_set_core_clk_ctrl(struct ufs_hba *hba, unsigned long freq)
1418 {
1419 	struct ufs_qcom_host *host = ufshcd_get_variant(hba);
1420 	struct list_head *head = &hba->clk_list_head;
1421 	struct ufs_clk_info *clki;
1422 	u32 cycles_in_1us = 0;
1423 	u32 core_clk_ctrl_reg;
1424 	int err;
1425 
1426 	list_for_each_entry(clki, head, list) {
1427 		if (!IS_ERR_OR_NULL(clki->clk) &&
1428 		    !strcmp(clki->name, "core_clk_unipro")) {
1429 			if (!clki->max_freq)
1430 				cycles_in_1us = 150; /* default for backwards compatibility */
1431 			else if (freq == ULONG_MAX)
1432 				cycles_in_1us = ceil(clki->max_freq, HZ_PER_MHZ);
1433 			else
1434 				cycles_in_1us = ceil(freq, HZ_PER_MHZ);
1435 
1436 			break;
1437 		}
1438 	}
1439 
1440 	err = ufshcd_dme_get(hba,
1441 			    UIC_ARG_MIB(DME_VS_CORE_CLK_CTRL),
1442 			    &core_clk_ctrl_reg);
1443 	if (err)
1444 		return err;
1445 
1446 	/* Bit mask is different for UFS host controller V4.0.0 onwards */
1447 	if (host->hw_ver.major >= 4) {
1448 		if (!FIELD_FIT(CLK_1US_CYCLES_MASK_V4, cycles_in_1us))
1449 			return -ERANGE;
1450 		core_clk_ctrl_reg &= ~CLK_1US_CYCLES_MASK_V4;
1451 		core_clk_ctrl_reg |= FIELD_PREP(CLK_1US_CYCLES_MASK_V4, cycles_in_1us);
1452 	} else {
1453 		if (!FIELD_FIT(CLK_1US_CYCLES_MASK, cycles_in_1us))
1454 			return -ERANGE;
1455 		core_clk_ctrl_reg &= ~CLK_1US_CYCLES_MASK;
1456 		core_clk_ctrl_reg |= FIELD_PREP(CLK_1US_CYCLES_MASK, cycles_in_1us);
1457 	}
1458 
1459 	/* Clear CORE_CLK_DIV_EN */
1460 	core_clk_ctrl_reg &= ~DME_VS_CORE_CLK_CTRL_CORE_CLK_DIV_EN_BIT;
1461 
1462 	err = ufshcd_dme_set(hba,
1463 			    UIC_ARG_MIB(DME_VS_CORE_CLK_CTRL),
1464 			    core_clk_ctrl_reg);
1465 	if (err)
1466 		return err;
1467 
1468 	/* Configure unipro core clk 40ns attribute */
1469 	return ufs_qcom_set_clk_40ns_cycles(hba, cycles_in_1us);
1470 }
1471 
1472 static int ufs_qcom_clk_scale_up_pre_change(struct ufs_hba *hba, unsigned long freq)
1473 {
1474 	int ret;
1475 
1476 	ret = ufs_qcom_cfg_timers(hba, true);
1477 	if (ret) {
1478 		dev_err(hba->dev, "%s ufs cfg timer failed\n", __func__);
1479 		return ret;
1480 	}
1481 	/* set unipro core clock attributes and clear clock divider */
1482 	return ufs_qcom_set_core_clk_ctrl(hba, freq);
1483 }
1484 
1485 static int ufs_qcom_clk_scale_up_post_change(struct ufs_hba *hba)
1486 {
1487 	return 0;
1488 }
1489 
1490 static int ufs_qcom_clk_scale_down_pre_change(struct ufs_hba *hba)
1491 {
1492 	int err;
1493 	u32 core_clk_ctrl_reg;
1494 
1495 	err = ufshcd_dme_get(hba,
1496 			    UIC_ARG_MIB(DME_VS_CORE_CLK_CTRL),
1497 			    &core_clk_ctrl_reg);
1498 
1499 	/* make sure CORE_CLK_DIV_EN is cleared */
1500 	if (!err &&
1501 	    (core_clk_ctrl_reg & DME_VS_CORE_CLK_CTRL_CORE_CLK_DIV_EN_BIT)) {
1502 		core_clk_ctrl_reg &= ~DME_VS_CORE_CLK_CTRL_CORE_CLK_DIV_EN_BIT;
1503 		err = ufshcd_dme_set(hba,
1504 				    UIC_ARG_MIB(DME_VS_CORE_CLK_CTRL),
1505 				    core_clk_ctrl_reg);
1506 	}
1507 
1508 	return err;
1509 }
1510 
1511 static int ufs_qcom_clk_scale_down_post_change(struct ufs_hba *hba, unsigned long freq)
1512 {
1513 	/* set unipro core clock attributes and clear clock divider */
1514 	return ufs_qcom_set_core_clk_ctrl(hba, freq);
1515 }
1516 
1517 static int ufs_qcom_clk_scale_notify(struct ufs_hba *hba, bool scale_up,
1518 				     unsigned long target_freq,
1519 				     enum ufs_notify_change_status status)
1520 {
1521 	struct ufs_qcom_host *host = ufshcd_get_variant(hba);
1522 	int err;
1523 
1524 	/* check the host controller state before sending hibern8 cmd */
1525 	if (!ufshcd_is_hba_active(hba))
1526 		return 0;
1527 
1528 	if (status == PRE_CHANGE) {
1529 		err = ufshcd_uic_hibern8_enter(hba);
1530 		if (err)
1531 			return err;
1532 		if (scale_up)
1533 			err = ufs_qcom_clk_scale_up_pre_change(hba, target_freq);
1534 		else
1535 			err = ufs_qcom_clk_scale_down_pre_change(hba);
1536 
1537 		if (err) {
1538 			ufshcd_uic_hibern8_exit(hba);
1539 			return err;
1540 		}
1541 	} else {
1542 		if (scale_up)
1543 			err = ufs_qcom_clk_scale_up_post_change(hba);
1544 		else
1545 			err = ufs_qcom_clk_scale_down_post_change(hba, target_freq);
1546 
1547 
1548 		if (err) {
1549 			ufshcd_uic_hibern8_exit(hba);
1550 			return err;
1551 		}
1552 
1553 		ufs_qcom_icc_update_bw(host);
1554 		ufshcd_uic_hibern8_exit(hba);
1555 	}
1556 
1557 	return 0;
1558 }
1559 
1560 static void ufs_qcom_enable_test_bus(struct ufs_qcom_host *host)
1561 {
1562 	ufshcd_rmwl(host->hba, UFS_REG_TEST_BUS_EN,
1563 			UFS_REG_TEST_BUS_EN, REG_UFS_CFG1);
1564 	ufshcd_rmwl(host->hba, TEST_BUS_EN, TEST_BUS_EN, REG_UFS_CFG1);
1565 }
1566 
1567 static void ufs_qcom_get_default_testbus_cfg(struct ufs_qcom_host *host)
1568 {
1569 	/* provide a legal default configuration */
1570 	host->testbus.select_major = TSTBUS_UNIPRO;
1571 	host->testbus.select_minor = 37;
1572 }
1573 
1574 static bool ufs_qcom_testbus_cfg_is_ok(struct ufs_qcom_host *host)
1575 {
1576 	if (host->testbus.select_major >= TSTBUS_MAX) {
1577 		dev_err(host->hba->dev,
1578 			"%s: UFS_CFG1[TEST_BUS_SEL} may not equal 0x%05X\n",
1579 			__func__, host->testbus.select_major);
1580 		return false;
1581 	}
1582 
1583 	return true;
1584 }
1585 
1586 int ufs_qcom_testbus_config(struct ufs_qcom_host *host)
1587 {
1588 	int reg;
1589 	int offset;
1590 	u32 mask = TEST_BUS_SUB_SEL_MASK;
1591 
1592 	if (!host)
1593 		return -EINVAL;
1594 
1595 	if (!ufs_qcom_testbus_cfg_is_ok(host))
1596 		return -EPERM;
1597 
1598 	switch (host->testbus.select_major) {
1599 	case TSTBUS_UAWM:
1600 		reg = UFS_TEST_BUS_CTRL_0;
1601 		offset = 24;
1602 		break;
1603 	case TSTBUS_UARM:
1604 		reg = UFS_TEST_BUS_CTRL_0;
1605 		offset = 16;
1606 		break;
1607 	case TSTBUS_TXUC:
1608 		reg = UFS_TEST_BUS_CTRL_0;
1609 		offset = 8;
1610 		break;
1611 	case TSTBUS_RXUC:
1612 		reg = UFS_TEST_BUS_CTRL_0;
1613 		offset = 0;
1614 		break;
1615 	case TSTBUS_DFC:
1616 		reg = UFS_TEST_BUS_CTRL_1;
1617 		offset = 24;
1618 		break;
1619 	case TSTBUS_TRLUT:
1620 		reg = UFS_TEST_BUS_CTRL_1;
1621 		offset = 16;
1622 		break;
1623 	case TSTBUS_TMRLUT:
1624 		reg = UFS_TEST_BUS_CTRL_1;
1625 		offset = 8;
1626 		break;
1627 	case TSTBUS_OCSC:
1628 		reg = UFS_TEST_BUS_CTRL_1;
1629 		offset = 0;
1630 		break;
1631 	case TSTBUS_WRAPPER:
1632 		reg = UFS_TEST_BUS_CTRL_2;
1633 		offset = 16;
1634 		break;
1635 	case TSTBUS_COMBINED:
1636 		reg = UFS_TEST_BUS_CTRL_2;
1637 		offset = 8;
1638 		break;
1639 	case TSTBUS_UTP_HCI:
1640 		reg = UFS_TEST_BUS_CTRL_2;
1641 		offset = 0;
1642 		break;
1643 	case TSTBUS_UNIPRO:
1644 		reg = UFS_UNIPRO_CFG;
1645 		offset = 20;
1646 		mask = 0xFFF;
1647 		break;
1648 	/*
1649 	 * No need for a default case, since
1650 	 * ufs_qcom_testbus_cfg_is_ok() checks that the configuration
1651 	 * is legal
1652 	 */
1653 	}
1654 	mask <<= offset;
1655 	ufshcd_rmwl(host->hba, TEST_BUS_SEL,
1656 		    (u32)host->testbus.select_major << 19,
1657 		    REG_UFS_CFG1);
1658 	ufshcd_rmwl(host->hba, mask,
1659 		    (u32)host->testbus.select_minor << offset,
1660 		    reg);
1661 	ufs_qcom_enable_test_bus(host);
1662 
1663 	return 0;
1664 }
1665 
1666 static void ufs_qcom_dump_testbus(struct ufs_hba *hba)
1667 {
1668 	struct ufs_qcom_host *host = ufshcd_get_variant(hba);
1669 	int i, j, nminor = 0, testbus_len = 0;
1670 	u32 *testbus __free(kfree) = NULL;
1671 	char *prefix;
1672 
1673 	testbus = kmalloc_array(256, sizeof(u32), GFP_KERNEL);
1674 	if (!testbus)
1675 		return;
1676 
1677 	for (j = 0; j < TSTBUS_MAX; j++) {
1678 		nminor = testbus_info[j].nminor;
1679 		prefix = testbus_info[j].prefix;
1680 		host->testbus.select_major = j;
1681 		testbus_len = nminor * sizeof(u32);
1682 		for (i = 0; i < nminor; i++) {
1683 			host->testbus.select_minor = i;
1684 			ufs_qcom_testbus_config(host);
1685 			testbus[i] = ufshcd_readl(hba, UFS_TEST_BUS);
1686 		}
1687 		print_hex_dump(KERN_ERR, prefix, DUMP_PREFIX_OFFSET,
1688 			       16, 4, testbus, testbus_len, false);
1689 	}
1690 }
1691 
1692 static int ufs_qcom_dump_regs(struct ufs_hba *hba, size_t offset, size_t len,
1693 			      const char *prefix, enum ufshcd_res id)
1694 {
1695 	u32 *regs __free(kfree) = NULL;
1696 	size_t pos;
1697 
1698 	if (offset % 4 != 0 || len % 4 != 0)
1699 		return -EINVAL;
1700 
1701 	regs = kzalloc(len, GFP_ATOMIC);
1702 	if (!regs)
1703 		return -ENOMEM;
1704 
1705 	for (pos = 0; pos < len; pos += 4)
1706 		regs[pos / 4] = readl(hba->res[id].base + offset + pos);
1707 
1708 	print_hex_dump(KERN_ERR, prefix,
1709 		       len > 4 ? DUMP_PREFIX_OFFSET : DUMP_PREFIX_NONE,
1710 		       16, 4, regs, len, false);
1711 
1712 	return 0;
1713 }
1714 
1715 static void ufs_qcom_dump_mcq_hci_regs(struct ufs_hba *hba)
1716 {
1717 	struct dump_info {
1718 		size_t offset;
1719 		size_t len;
1720 		const char *prefix;
1721 		enum ufshcd_res id;
1722 	};
1723 
1724 	struct dump_info mcq_dumps[] = {
1725 		{0x0, 256 * 4, "MCQ HCI-0 ", RES_MCQ},
1726 		{0x400, 256 * 4, "MCQ HCI-1 ", RES_MCQ},
1727 		{0x0, 5 * 4, "MCQ VS-0 ", RES_MCQ_VS},
1728 		{0x0, 256 * 4, "MCQ SQD-0 ", RES_MCQ_SQD},
1729 		{0x400, 256 * 4, "MCQ SQD-1 ", RES_MCQ_SQD},
1730 		{0x800, 256 * 4, "MCQ SQD-2 ", RES_MCQ_SQD},
1731 		{0xc00, 256 * 4, "MCQ SQD-3 ", RES_MCQ_SQD},
1732 		{0x1000, 256 * 4, "MCQ SQD-4 ", RES_MCQ_SQD},
1733 		{0x1400, 256 * 4, "MCQ SQD-5 ", RES_MCQ_SQD},
1734 		{0x1800, 256 * 4, "MCQ SQD-6 ", RES_MCQ_SQD},
1735 		{0x1c00, 256 * 4, "MCQ SQD-7 ", RES_MCQ_SQD},
1736 	};
1737 
1738 	for (int i = 0; i < ARRAY_SIZE(mcq_dumps); i++) {
1739 		ufs_qcom_dump_regs(hba, mcq_dumps[i].offset, mcq_dumps[i].len,
1740 				   mcq_dumps[i].prefix, mcq_dumps[i].id);
1741 		cond_resched();
1742 	}
1743 }
1744 
1745 static void ufs_qcom_dump_dbg_regs(struct ufs_hba *hba)
1746 {
1747 	u32 reg;
1748 	struct ufs_qcom_host *host;
1749 
1750 	host = ufshcd_get_variant(hba);
1751 
1752 	dev_err(hba->dev, "HW_H8_ENTER_CNT=%d\n", ufshcd_readl(hba, REG_UFS_HW_H8_ENTER_CNT));
1753 	dev_err(hba->dev, "HW_H8_EXIT_CNT=%d\n", ufshcd_readl(hba, REG_UFS_HW_H8_EXIT_CNT));
1754 
1755 	dev_err(hba->dev, "SW_H8_ENTER_CNT=%d\n", ufshcd_readl(hba, REG_UFS_SW_H8_ENTER_CNT));
1756 	dev_err(hba->dev, "SW_H8_EXIT_CNT=%d\n", ufshcd_readl(hba, REG_UFS_SW_H8_EXIT_CNT));
1757 
1758 	dev_err(hba->dev, "SW_AFTER_HW_H8_ENTER_CNT=%d\n",
1759 			ufshcd_readl(hba, REG_UFS_SW_AFTER_HW_H8_ENTER_CNT));
1760 
1761 	ufshcd_dump_regs(hba, REG_UFS_SYS1CLK_1US, 16 * 4,
1762 			 "HCI Vendor Specific Registers ");
1763 
1764 	reg = ufs_qcom_get_debug_reg_offset(host, UFS_UFS_DBG_RD_REG_OCSC);
1765 	ufshcd_dump_regs(hba, reg, 44 * 4, "UFS_UFS_DBG_RD_REG_OCSC ");
1766 
1767 	reg = ufshcd_readl(hba, REG_UFS_CFG1);
1768 	reg |= UTP_DBG_RAMS_EN;
1769 	ufshcd_writel(hba, reg, REG_UFS_CFG1);
1770 
1771 	reg = ufs_qcom_get_debug_reg_offset(host, UFS_UFS_DBG_RD_EDTL_RAM);
1772 	ufshcd_dump_regs(hba, reg, 32 * 4, "UFS_UFS_DBG_RD_EDTL_RAM ");
1773 
1774 	reg = ufs_qcom_get_debug_reg_offset(host, UFS_UFS_DBG_RD_DESC_RAM);
1775 	ufshcd_dump_regs(hba, reg, 128 * 4, "UFS_UFS_DBG_RD_DESC_RAM ");
1776 
1777 	reg = ufs_qcom_get_debug_reg_offset(host, UFS_UFS_DBG_RD_PRDT_RAM);
1778 	ufshcd_dump_regs(hba, reg, 64 * 4, "UFS_UFS_DBG_RD_PRDT_RAM ");
1779 
1780 	/* clear bit 17 - UTP_DBG_RAMS_EN */
1781 	ufshcd_rmwl(hba, UTP_DBG_RAMS_EN, 0, REG_UFS_CFG1);
1782 
1783 	reg = ufs_qcom_get_debug_reg_offset(host, UFS_DBG_RD_REG_UAWM);
1784 	ufshcd_dump_regs(hba, reg, 4 * 4, "UFS_DBG_RD_REG_UAWM ");
1785 
1786 	reg = ufs_qcom_get_debug_reg_offset(host, UFS_DBG_RD_REG_UARM);
1787 	ufshcd_dump_regs(hba, reg, 4 * 4, "UFS_DBG_RD_REG_UARM ");
1788 
1789 	reg = ufs_qcom_get_debug_reg_offset(host, UFS_DBG_RD_REG_TXUC);
1790 	ufshcd_dump_regs(hba, reg, 48 * 4, "UFS_DBG_RD_REG_TXUC ");
1791 
1792 	reg = ufs_qcom_get_debug_reg_offset(host, UFS_DBG_RD_REG_RXUC);
1793 	ufshcd_dump_regs(hba, reg, 27 * 4, "UFS_DBG_RD_REG_RXUC ");
1794 
1795 	reg = ufs_qcom_get_debug_reg_offset(host, UFS_DBG_RD_REG_DFC);
1796 	ufshcd_dump_regs(hba, reg, 19 * 4, "UFS_DBG_RD_REG_DFC ");
1797 
1798 	reg = ufs_qcom_get_debug_reg_offset(host, UFS_DBG_RD_REG_TRLUT);
1799 	ufshcd_dump_regs(hba, reg, 34 * 4, "UFS_DBG_RD_REG_TRLUT ");
1800 
1801 	reg = ufs_qcom_get_debug_reg_offset(host, UFS_DBG_RD_REG_TMRLUT);
1802 	ufshcd_dump_regs(hba, reg, 9 * 4, "UFS_DBG_RD_REG_TMRLUT ");
1803 
1804 	if (hba->mcq_enabled) {
1805 		reg = ufs_qcom_get_debug_reg_offset(host, UFS_RD_REG_MCQ);
1806 		ufshcd_dump_regs(hba, reg, 64 * 4, "HCI MCQ Debug Registers ");
1807 	}
1808 
1809 	/* ensure below dumps occur only in task context due to blocking calls. */
1810 	if (in_task()) {
1811 		/* Dump MCQ Host Vendor Specific Registers */
1812 		if (hba->mcq_enabled)
1813 			ufs_qcom_dump_mcq_hci_regs(hba);
1814 
1815 		/* voluntarily yield the CPU as we are dumping too much data */
1816 		ufshcd_dump_regs(hba, UFS_TEST_BUS, 4, "UFS_TEST_BUS ");
1817 		cond_resched();
1818 		ufs_qcom_dump_testbus(hba);
1819 	}
1820 }
1821 
1822 /**
1823  * ufs_qcom_device_reset() - toggle the (optional) device reset line
1824  * @hba: per-adapter instance
1825  *
1826  * Toggles the (optional) reset line to reset the attached device.
1827  */
1828 static int ufs_qcom_device_reset(struct ufs_hba *hba)
1829 {
1830 	struct ufs_qcom_host *host = ufshcd_get_variant(hba);
1831 
1832 	/* reset gpio is optional */
1833 	if (!host->device_reset)
1834 		return -EOPNOTSUPP;
1835 
1836 	/*
1837 	 * The UFS device shall detect reset pulses of 1us, sleep for 10us to
1838 	 * be on the safe side.
1839 	 */
1840 	ufs_qcom_device_reset_ctrl(hba, true);
1841 	usleep_range(10, 15);
1842 
1843 	ufs_qcom_device_reset_ctrl(hba, false);
1844 	usleep_range(10, 15);
1845 
1846 	return 0;
1847 }
1848 
1849 #if IS_ENABLED(CONFIG_DEVFREQ_GOV_SIMPLE_ONDEMAND)
1850 static void ufs_qcom_config_scaling_param(struct ufs_hba *hba,
1851 					struct devfreq_dev_profile *p,
1852 					struct devfreq_simple_ondemand_data *d)
1853 {
1854 	p->polling_ms = 60;
1855 	p->timer = DEVFREQ_TIMER_DELAYED;
1856 	d->upthreshold = 70;
1857 	d->downdifferential = 5;
1858 
1859 	hba->clk_scaling.suspend_on_no_request = true;
1860 }
1861 #else
1862 static void ufs_qcom_config_scaling_param(struct ufs_hba *hba,
1863 		struct devfreq_dev_profile *p,
1864 		struct devfreq_simple_ondemand_data *data)
1865 {
1866 }
1867 #endif
1868 
1869 /* Resources */
1870 static const struct ufshcd_res_info ufs_res_info[RES_MAX] = {
1871 	{.name = "ufs_mem",},
1872 	{.name = "mcq",},
1873 	/* Submission Queue DAO */
1874 	{.name = "mcq_sqd",},
1875 	/* Submission Queue Interrupt Status */
1876 	{.name = "mcq_sqis",},
1877 	/* Completion Queue DAO */
1878 	{.name = "mcq_cqd",},
1879 	/* Completion Queue Interrupt Status */
1880 	{.name = "mcq_cqis",},
1881 	/* MCQ vendor specific */
1882 	{.name = "mcq_vs",},
1883 };
1884 
1885 static int ufs_qcom_mcq_config_resource(struct ufs_hba *hba)
1886 {
1887 	struct platform_device *pdev = to_platform_device(hba->dev);
1888 	struct ufshcd_res_info *res;
1889 	struct resource *res_mem, *res_mcq;
1890 	int i, ret;
1891 
1892 	memcpy(hba->res, ufs_res_info, sizeof(ufs_res_info));
1893 
1894 	for (i = 0; i < RES_MAX; i++) {
1895 		res = &hba->res[i];
1896 		res->resource = platform_get_resource_byname(pdev,
1897 							     IORESOURCE_MEM,
1898 							     res->name);
1899 		if (!res->resource) {
1900 			dev_info(hba->dev, "Resource %s not provided\n", res->name);
1901 			if (i == RES_UFS)
1902 				return -ENODEV;
1903 			continue;
1904 		} else if (i == RES_UFS) {
1905 			res_mem = res->resource;
1906 			res->base = hba->mmio_base;
1907 			continue;
1908 		}
1909 
1910 		res->base = devm_ioremap_resource(hba->dev, res->resource);
1911 		if (IS_ERR(res->base)) {
1912 			dev_err(hba->dev, "Failed to map res %s, err=%d\n",
1913 					 res->name, (int)PTR_ERR(res->base));
1914 			ret = PTR_ERR(res->base);
1915 			res->base = NULL;
1916 			return ret;
1917 		}
1918 	}
1919 
1920 	/* MCQ resource provided in DT */
1921 	res = &hba->res[RES_MCQ];
1922 	/* Bail if MCQ resource is provided */
1923 	if (res->base)
1924 		goto out;
1925 
1926 	/* Explicitly allocate MCQ resource from ufs_mem */
1927 	res_mcq = devm_kzalloc(hba->dev, sizeof(*res_mcq), GFP_KERNEL);
1928 	if (!res_mcq)
1929 		return -ENOMEM;
1930 
1931 	res_mcq->start = res_mem->start +
1932 			 MCQ_SQATTR_OFFSET(hba->mcq_capabilities);
1933 	res_mcq->end = res_mcq->start + hba->nr_hw_queues * MCQ_QCFG_SIZE - 1;
1934 	res_mcq->flags = res_mem->flags;
1935 	res_mcq->name = "mcq";
1936 
1937 	ret = insert_resource(&iomem_resource, res_mcq);
1938 	if (ret) {
1939 		dev_err(hba->dev, "Failed to insert MCQ resource, err=%d\n",
1940 			ret);
1941 		return ret;
1942 	}
1943 
1944 	res->base = devm_ioremap_resource(hba->dev, res_mcq);
1945 	if (IS_ERR(res->base)) {
1946 		dev_err(hba->dev, "MCQ registers mapping failed, err=%d\n",
1947 			(int)PTR_ERR(res->base));
1948 		ret = PTR_ERR(res->base);
1949 		goto ioremap_err;
1950 	}
1951 
1952 out:
1953 	hba->mcq_base = res->base;
1954 	return 0;
1955 ioremap_err:
1956 	res->base = NULL;
1957 	remove_resource(res_mcq);
1958 	return ret;
1959 }
1960 
1961 static int ufs_qcom_op_runtime_config(struct ufs_hba *hba)
1962 {
1963 	struct ufshcd_res_info *mem_res, *sqdao_res;
1964 	struct ufshcd_mcq_opr_info_t *opr;
1965 	int i;
1966 
1967 	mem_res = &hba->res[RES_UFS];
1968 	sqdao_res = &hba->res[RES_MCQ_SQD];
1969 
1970 	if (!mem_res->base || !sqdao_res->base)
1971 		return -EINVAL;
1972 
1973 	for (i = 0; i < OPR_MAX; i++) {
1974 		opr = &hba->mcq_opr[i];
1975 		opr->offset = sqdao_res->resource->start -
1976 			      mem_res->resource->start + 0x40 * i;
1977 		opr->stride = 0x100;
1978 		opr->base = sqdao_res->base + 0x40 * i;
1979 	}
1980 
1981 	return 0;
1982 }
1983 
1984 static int ufs_qcom_get_hba_mac(struct ufs_hba *hba)
1985 {
1986 	/* Qualcomm HC supports up to 64 */
1987 	return MAX_SUPP_MAC;
1988 }
1989 
1990 static int ufs_qcom_get_outstanding_cqs(struct ufs_hba *hba,
1991 					unsigned long *ocqs)
1992 {
1993 	struct ufshcd_res_info *mcq_vs_res = &hba->res[RES_MCQ_VS];
1994 
1995 	if (!mcq_vs_res->base)
1996 		return -EINVAL;
1997 
1998 	*ocqs = readl(mcq_vs_res->base + UFS_MEM_CQIS_VS);
1999 
2000 	return 0;
2001 }
2002 
2003 static void ufs_qcom_write_msi_msg(struct msi_desc *desc, struct msi_msg *msg)
2004 {
2005 	struct device *dev = msi_desc_to_dev(desc);
2006 	struct ufs_hba *hba = dev_get_drvdata(dev);
2007 
2008 	ufshcd_mcq_config_esi(hba, msg);
2009 }
2010 
2011 struct ufs_qcom_irq {
2012 	unsigned int		irq;
2013 	unsigned int		idx;
2014 	struct ufs_hba		*hba;
2015 };
2016 
2017 static irqreturn_t ufs_qcom_mcq_esi_handler(int irq, void *data)
2018 {
2019 	struct ufs_qcom_irq *qi = data;
2020 	struct ufs_hba *hba = qi->hba;
2021 	struct ufs_hw_queue *hwq = &hba->uhq[qi->idx];
2022 
2023 	ufshcd_mcq_write_cqis(hba, 0x1, qi->idx);
2024 	ufshcd_mcq_poll_cqe_lock(hba, hwq);
2025 
2026 	return IRQ_HANDLED;
2027 }
2028 
2029 static void ufs_qcom_irq_free(struct ufs_qcom_irq *uqi)
2030 {
2031 	for (struct ufs_qcom_irq *q = uqi; q->irq; q++)
2032 		devm_free_irq(q->hba->dev, q->irq, q->hba);
2033 
2034 	platform_device_msi_free_irqs_all(uqi->hba->dev);
2035 	devm_kfree(uqi->hba->dev, uqi);
2036 }
2037 
2038 DEFINE_FREE(ufs_qcom_irq, struct ufs_qcom_irq *, if (_T) ufs_qcom_irq_free(_T))
2039 
2040 static int ufs_qcom_config_esi(struct ufs_hba *hba)
2041 {
2042 	struct ufs_qcom_host *host = ufshcd_get_variant(hba);
2043 	int nr_irqs, ret;
2044 
2045 	if (host->esi_enabled)
2046 		return 0;
2047 
2048 	/*
2049 	 * 1. We only handle CQs as of now.
2050 	 * 2. Poll queues do not need ESI.
2051 	 */
2052 	nr_irqs = hba->nr_hw_queues - hba->nr_queues[HCTX_TYPE_POLL];
2053 
2054 	struct ufs_qcom_irq *qi __free(ufs_qcom_irq) =
2055 		devm_kcalloc(hba->dev, nr_irqs, sizeof(*qi), GFP_KERNEL);
2056 	if (!qi)
2057 		return -ENOMEM;
2058 	/* Preset so __free() has a pointer to hba in all error paths */
2059 	qi[0].hba = hba;
2060 
2061 	ret = platform_device_msi_init_and_alloc_irqs(hba->dev, nr_irqs,
2062 						      ufs_qcom_write_msi_msg);
2063 	if (ret) {
2064 		dev_err(hba->dev, "Failed to request Platform MSI %d\n", ret);
2065 		return ret;
2066 	}
2067 
2068 	for (int idx = 0; idx < nr_irqs; idx++) {
2069 		qi[idx].irq = msi_get_virq(hba->dev, idx);
2070 		qi[idx].idx = idx;
2071 		qi[idx].hba = hba;
2072 
2073 		ret = devm_request_irq(hba->dev, qi[idx].irq, ufs_qcom_mcq_esi_handler,
2074 				       IRQF_SHARED, "qcom-mcq-esi", qi + idx);
2075 		if (ret) {
2076 			dev_err(hba->dev, "%s: Fail to request IRQ for %d, err = %d\n",
2077 				__func__, qi[idx].irq, ret);
2078 			qi[idx].irq = 0;
2079 			return ret;
2080 		}
2081 	}
2082 
2083 	retain_and_null_ptr(qi);
2084 
2085 	if (host->hw_ver.major == 6 && host->hw_ver.minor == 0 &&
2086 	    host->hw_ver.step == 0) {
2087 		ufshcd_rmwl(hba, ESI_VEC_MASK, FIELD_PREP(ESI_VEC_MASK, MAX_ESI_VEC - 1),
2088 			    REG_UFS_CFG3);
2089 	}
2090 	ufshcd_mcq_enable_esi(hba);
2091 	host->esi_enabled = true;
2092 	return 0;
2093 }
2094 
2095 static u32 ufs_qcom_freq_to_gear_speed(struct ufs_hba *hba, unsigned long freq)
2096 {
2097 	u32 gear = 0;
2098 
2099 	switch (freq) {
2100 	case 403000000:
2101 		gear = UFS_HS_G5;
2102 		break;
2103 	case 300000000:
2104 		gear = UFS_HS_G4;
2105 		break;
2106 	case 201500000:
2107 		gear = UFS_HS_G3;
2108 		break;
2109 	case 150000000:
2110 	case 100000000:
2111 		gear = UFS_HS_G2;
2112 		break;
2113 	case 75000000:
2114 	case 37500000:
2115 		gear = UFS_HS_G1;
2116 		break;
2117 	default:
2118 		dev_err(hba->dev, "%s: Unsupported clock freq : %lu\n", __func__, freq);
2119 		break;
2120 	}
2121 
2122 	return gear;
2123 }
2124 
2125 /*
2126  * struct ufs_hba_qcom_vops - UFS QCOM specific variant operations
2127  *
2128  * The variant operations configure the necessary controller and PHY
2129  * handshake during initialization.
2130  */
2131 static const struct ufs_hba_variant_ops ufs_hba_qcom_vops = {
2132 	.name                   = "qcom",
2133 	.init                   = ufs_qcom_init,
2134 	.exit                   = ufs_qcom_exit,
2135 	.get_ufs_hci_version	= ufs_qcom_get_ufs_hci_version,
2136 	.clk_scale_notify	= ufs_qcom_clk_scale_notify,
2137 	.setup_clocks           = ufs_qcom_setup_clocks,
2138 	.hce_enable_notify      = ufs_qcom_hce_enable_notify,
2139 	.link_startup_notify    = ufs_qcom_link_startup_notify,
2140 	.pwr_change_notify	= ufs_qcom_pwr_change_notify,
2141 	.apply_dev_quirks	= ufs_qcom_apply_dev_quirks,
2142 	.fixup_dev_quirks       = ufs_qcom_fixup_dev_quirks,
2143 	.suspend		= ufs_qcom_suspend,
2144 	.resume			= ufs_qcom_resume,
2145 	.dbg_register_dump	= ufs_qcom_dump_dbg_regs,
2146 	.device_reset		= ufs_qcom_device_reset,
2147 	.config_scaling_param = ufs_qcom_config_scaling_param,
2148 	.mcq_config_resource	= ufs_qcom_mcq_config_resource,
2149 	.get_hba_mac		= ufs_qcom_get_hba_mac,
2150 	.op_runtime_config	= ufs_qcom_op_runtime_config,
2151 	.get_outstanding_cqs	= ufs_qcom_get_outstanding_cqs,
2152 	.config_esi		= ufs_qcom_config_esi,
2153 	.freq_to_gear_speed	= ufs_qcom_freq_to_gear_speed,
2154 };
2155 
2156 /**
2157  * ufs_qcom_probe - probe routine of the driver
2158  * @pdev: pointer to Platform device handle
2159  *
2160  * Return: zero for success and non-zero for failure.
2161  */
2162 static int ufs_qcom_probe(struct platform_device *pdev)
2163 {
2164 	int err;
2165 	struct device *dev = &pdev->dev;
2166 
2167 	/* Perform generic probe */
2168 	err = ufshcd_pltfrm_init(pdev, &ufs_hba_qcom_vops);
2169 	if (err)
2170 		return dev_err_probe(dev, err, "ufshcd_pltfrm_init() failed\n");
2171 
2172 	return 0;
2173 }
2174 
2175 /**
2176  * ufs_qcom_remove - set driver_data of the device to NULL
2177  * @pdev: pointer to platform device handle
2178  *
2179  * Always returns 0
2180  */
2181 static void ufs_qcom_remove(struct platform_device *pdev)
2182 {
2183 	struct ufs_hba *hba =  platform_get_drvdata(pdev);
2184 	struct ufs_qcom_host *host = ufshcd_get_variant(hba);
2185 
2186 	ufshcd_pltfrm_remove(pdev);
2187 	if (host->esi_enabled)
2188 		platform_device_msi_free_irqs_all(hba->dev);
2189 }
2190 
2191 static const struct ufs_qcom_drvdata ufs_qcom_sm8550_drvdata = {
2192 	.quirks = UFSHCD_QUIRK_BROKEN_LSDBS_CAP,
2193 	.no_phy_retention = true,
2194 };
2195 
2196 static const struct of_device_id ufs_qcom_of_match[] __maybe_unused = {
2197 	{ .compatible = "qcom,ufshc" },
2198 	{ .compatible = "qcom,sm8550-ufshc", .data = &ufs_qcom_sm8550_drvdata },
2199 	{ .compatible = "qcom,sm8650-ufshc", .data = &ufs_qcom_sm8550_drvdata },
2200 	{},
2201 };
2202 MODULE_DEVICE_TABLE(of, ufs_qcom_of_match);
2203 
2204 #ifdef CONFIG_ACPI
2205 static const struct acpi_device_id ufs_qcom_acpi_match[] = {
2206 	{ "QCOM24A5" },
2207 	{ },
2208 };
2209 MODULE_DEVICE_TABLE(acpi, ufs_qcom_acpi_match);
2210 #endif
2211 
2212 static const struct dev_pm_ops ufs_qcom_pm_ops = {
2213 	SET_RUNTIME_PM_OPS(ufshcd_runtime_suspend, ufshcd_runtime_resume, NULL)
2214 	.prepare	 = ufshcd_suspend_prepare,
2215 	.complete	 = ufshcd_resume_complete,
2216 #ifdef CONFIG_PM_SLEEP
2217 	.suspend         = ufshcd_system_suspend,
2218 	.resume          = ufshcd_system_resume,
2219 	.freeze          = ufshcd_system_freeze,
2220 	.restore         = ufshcd_system_restore,
2221 	.thaw            = ufshcd_system_thaw,
2222 #endif
2223 };
2224 
2225 static struct platform_driver ufs_qcom_pltform = {
2226 	.probe	= ufs_qcom_probe,
2227 	.remove = ufs_qcom_remove,
2228 	.driver	= {
2229 		.name	= "ufshcd-qcom",
2230 		.pm	= &ufs_qcom_pm_ops,
2231 		.of_match_table = of_match_ptr(ufs_qcom_of_match),
2232 		.acpi_match_table = ACPI_PTR(ufs_qcom_acpi_match),
2233 	},
2234 };
2235 module_platform_driver(ufs_qcom_pltform);
2236 
2237 MODULE_DESCRIPTION("Qualcomm UFS host controller driver");
2238 MODULE_LICENSE("GPL v2");
2239