xref: /linux/drivers/ufs/core/ufshcd.c (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Universal Flash Storage Host controller driver Core
4  * Copyright (C) 2011-2013 Samsung India Software Operations
5  * Copyright (c) 2013-2016, The Linux Foundation. All rights reserved.
6  *
7  * Authors:
8  *	Santosh Yaraganavi <santosh.sy@samsung.com>
9  *	Vinayak Holikatti <h.vinayak@samsung.com>
10  */
11 
12 #include <linux/async.h>
13 #include <linux/devfreq.h>
14 #include <linux/nls.h>
15 #include <linux/of.h>
16 #include <linux/bitfield.h>
17 #include <linux/blk-pm.h>
18 #include <linux/blkdev.h>
19 #include <linux/clk.h>
20 #include <linux/delay.h>
21 #include <linux/interrupt.h>
22 #include <linux/module.h>
23 #include <linux/pm_opp.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/sched/clock.h>
26 #include <linux/iopoll.h>
27 #include <scsi/scsi_cmnd.h>
28 #include <scsi/scsi_dbg.h>
29 #include <scsi/scsi_driver.h>
30 #include <scsi/scsi_eh.h>
31 #include "ufshcd-priv.h"
32 #include <ufs/ufs_quirks.h>
33 #include <ufs/unipro.h>
34 #include "ufs-sysfs.h"
35 #include "ufs-debugfs.h"
36 #include "ufs-fault-injection.h"
37 #include "ufs_bsg.h"
38 #include "ufshcd-crypto.h"
39 #include <asm/unaligned.h>
40 
41 #define CREATE_TRACE_POINTS
42 #include <trace/events/ufs.h>
43 
44 #define UFSHCD_ENABLE_INTRS	(UTP_TRANSFER_REQ_COMPL |\
45 				 UTP_TASK_REQ_COMPL |\
46 				 UFSHCD_ERROR_MASK)
47 
48 #define UFSHCD_ENABLE_MCQ_INTRS	(UTP_TASK_REQ_COMPL |\
49 				 UFSHCD_ERROR_MASK |\
50 				 MCQ_CQ_EVENT_STATUS)
51 
52 
53 /* UIC command timeout, unit: ms */
54 #define UIC_CMD_TIMEOUT	500
55 
56 /* NOP OUT retries waiting for NOP IN response */
57 #define NOP_OUT_RETRIES    10
58 /* Timeout after 50 msecs if NOP OUT hangs without response */
59 #define NOP_OUT_TIMEOUT    50 /* msecs */
60 
61 /* Query request retries */
62 #define QUERY_REQ_RETRIES 3
63 /* Query request timeout */
64 #define QUERY_REQ_TIMEOUT 1500 /* 1.5 seconds */
65 
66 /* Advanced RPMB request timeout */
67 #define ADVANCED_RPMB_REQ_TIMEOUT  3000 /* 3 seconds */
68 
69 /* Task management command timeout */
70 #define TM_CMD_TIMEOUT	100 /* msecs */
71 
72 /* maximum number of retries for a general UIC command  */
73 #define UFS_UIC_COMMAND_RETRIES 3
74 
75 /* maximum number of link-startup retries */
76 #define DME_LINKSTARTUP_RETRIES 3
77 
78 /* maximum number of reset retries before giving up */
79 #define MAX_HOST_RESET_RETRIES 5
80 
81 /* Maximum number of error handler retries before giving up */
82 #define MAX_ERR_HANDLER_RETRIES 5
83 
84 /* Expose the flag value from utp_upiu_query.value */
85 #define MASK_QUERY_UPIU_FLAG_LOC 0xFF
86 
87 /* Interrupt aggregation default timeout, unit: 40us */
88 #define INT_AGGR_DEF_TO	0x02
89 
90 /* default delay of autosuspend: 2000 ms */
91 #define RPM_AUTOSUSPEND_DELAY_MS 2000
92 
93 /* Default delay of RPM device flush delayed work */
94 #define RPM_DEV_FLUSH_RECHECK_WORK_DELAY_MS 5000
95 
96 /* Default value of wait time before gating device ref clock */
97 #define UFSHCD_REF_CLK_GATING_WAIT_US 0xFF /* microsecs */
98 
99 /* Polling time to wait for fDeviceInit */
100 #define FDEVICEINIT_COMPL_TIMEOUT 1500 /* millisecs */
101 
102 /* Default RTC update every 10 seconds */
103 #define UFS_RTC_UPDATE_INTERVAL_MS (10 * MSEC_PER_SEC)
104 
105 /* UFSHC 4.0 compliant HC support this mode. */
106 static bool use_mcq_mode = true;
107 
108 static bool is_mcq_supported(struct ufs_hba *hba)
109 {
110 	return hba->mcq_sup && use_mcq_mode;
111 }
112 
113 module_param(use_mcq_mode, bool, 0644);
114 MODULE_PARM_DESC(use_mcq_mode, "Control MCQ mode for controllers starting from UFSHCI 4.0. 1 - enable MCQ, 0 - disable MCQ. MCQ is enabled by default");
115 
116 #define ufshcd_toggle_vreg(_dev, _vreg, _on)				\
117 	({                                                              \
118 		int _ret;                                               \
119 		if (_on)                                                \
120 			_ret = ufshcd_enable_vreg(_dev, _vreg);         \
121 		else                                                    \
122 			_ret = ufshcd_disable_vreg(_dev, _vreg);        \
123 		_ret;                                                   \
124 	})
125 
126 #define ufshcd_hex_dump(prefix_str, buf, len) do {                       \
127 	size_t __len = (len);                                            \
128 	print_hex_dump(KERN_ERR, prefix_str,                             \
129 		       __len > 4 ? DUMP_PREFIX_OFFSET : DUMP_PREFIX_NONE,\
130 		       16, 4, buf, __len, false);                        \
131 } while (0)
132 
133 int ufshcd_dump_regs(struct ufs_hba *hba, size_t offset, size_t len,
134 		     const char *prefix)
135 {
136 	u32 *regs;
137 	size_t pos;
138 
139 	if (offset % 4 != 0 || len % 4 != 0) /* keep readl happy */
140 		return -EINVAL;
141 
142 	regs = kzalloc(len, GFP_ATOMIC);
143 	if (!regs)
144 		return -ENOMEM;
145 
146 	for (pos = 0; pos < len; pos += 4) {
147 		if (offset == 0 &&
148 		    pos >= REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER &&
149 		    pos <= REG_UIC_ERROR_CODE_DME)
150 			continue;
151 		regs[pos / 4] = ufshcd_readl(hba, offset + pos);
152 	}
153 
154 	ufshcd_hex_dump(prefix, regs, len);
155 	kfree(regs);
156 
157 	return 0;
158 }
159 EXPORT_SYMBOL_GPL(ufshcd_dump_regs);
160 
161 enum {
162 	UFSHCD_MAX_CHANNEL	= 0,
163 	UFSHCD_MAX_ID		= 1,
164 	UFSHCD_CMD_PER_LUN	= 32 - UFSHCD_NUM_RESERVED,
165 	UFSHCD_CAN_QUEUE	= 32 - UFSHCD_NUM_RESERVED,
166 };
167 
168 static const char *const ufshcd_state_name[] = {
169 	[UFSHCD_STATE_RESET]			= "reset",
170 	[UFSHCD_STATE_OPERATIONAL]		= "operational",
171 	[UFSHCD_STATE_ERROR]			= "error",
172 	[UFSHCD_STATE_EH_SCHEDULED_FATAL]	= "eh_fatal",
173 	[UFSHCD_STATE_EH_SCHEDULED_NON_FATAL]	= "eh_non_fatal",
174 };
175 
176 /* UFSHCD error handling flags */
177 enum {
178 	UFSHCD_EH_IN_PROGRESS = (1 << 0),
179 };
180 
181 /* UFSHCD UIC layer error flags */
182 enum {
183 	UFSHCD_UIC_DL_PA_INIT_ERROR = (1 << 0), /* Data link layer error */
184 	UFSHCD_UIC_DL_NAC_RECEIVED_ERROR = (1 << 1), /* Data link layer error */
185 	UFSHCD_UIC_DL_TCx_REPLAY_ERROR = (1 << 2), /* Data link layer error */
186 	UFSHCD_UIC_NL_ERROR = (1 << 3), /* Network layer error */
187 	UFSHCD_UIC_TL_ERROR = (1 << 4), /* Transport Layer error */
188 	UFSHCD_UIC_DME_ERROR = (1 << 5), /* DME error */
189 	UFSHCD_UIC_PA_GENERIC_ERROR = (1 << 6), /* Generic PA error */
190 };
191 
192 #define ufshcd_set_eh_in_progress(h) \
193 	((h)->eh_flags |= UFSHCD_EH_IN_PROGRESS)
194 #define ufshcd_eh_in_progress(h) \
195 	((h)->eh_flags & UFSHCD_EH_IN_PROGRESS)
196 #define ufshcd_clear_eh_in_progress(h) \
197 	((h)->eh_flags &= ~UFSHCD_EH_IN_PROGRESS)
198 
199 const struct ufs_pm_lvl_states ufs_pm_lvl_states[] = {
200 	[UFS_PM_LVL_0] = {UFS_ACTIVE_PWR_MODE, UIC_LINK_ACTIVE_STATE},
201 	[UFS_PM_LVL_1] = {UFS_ACTIVE_PWR_MODE, UIC_LINK_HIBERN8_STATE},
202 	[UFS_PM_LVL_2] = {UFS_SLEEP_PWR_MODE, UIC_LINK_ACTIVE_STATE},
203 	[UFS_PM_LVL_3] = {UFS_SLEEP_PWR_MODE, UIC_LINK_HIBERN8_STATE},
204 	[UFS_PM_LVL_4] = {UFS_POWERDOWN_PWR_MODE, UIC_LINK_HIBERN8_STATE},
205 	[UFS_PM_LVL_5] = {UFS_POWERDOWN_PWR_MODE, UIC_LINK_OFF_STATE},
206 	/*
207 	 * For DeepSleep, the link is first put in hibern8 and then off.
208 	 * Leaving the link in hibern8 is not supported.
209 	 */
210 	[UFS_PM_LVL_6] = {UFS_DEEPSLEEP_PWR_MODE, UIC_LINK_OFF_STATE},
211 };
212 
213 static inline enum ufs_dev_pwr_mode
214 ufs_get_pm_lvl_to_dev_pwr_mode(enum ufs_pm_level lvl)
215 {
216 	return ufs_pm_lvl_states[lvl].dev_state;
217 }
218 
219 static inline enum uic_link_state
220 ufs_get_pm_lvl_to_link_pwr_state(enum ufs_pm_level lvl)
221 {
222 	return ufs_pm_lvl_states[lvl].link_state;
223 }
224 
225 static inline enum ufs_pm_level
226 ufs_get_desired_pm_lvl_for_dev_link_state(enum ufs_dev_pwr_mode dev_state,
227 					enum uic_link_state link_state)
228 {
229 	enum ufs_pm_level lvl;
230 
231 	for (lvl = UFS_PM_LVL_0; lvl < UFS_PM_LVL_MAX; lvl++) {
232 		if ((ufs_pm_lvl_states[lvl].dev_state == dev_state) &&
233 			(ufs_pm_lvl_states[lvl].link_state == link_state))
234 			return lvl;
235 	}
236 
237 	/* if no match found, return the level 0 */
238 	return UFS_PM_LVL_0;
239 }
240 
241 static bool ufshcd_is_ufs_dev_busy(struct ufs_hba *hba)
242 {
243 	return (hba->clk_gating.active_reqs || hba->outstanding_reqs || hba->outstanding_tasks ||
244 		hba->active_uic_cmd || hba->uic_async_done);
245 }
246 
247 static const struct ufs_dev_quirk ufs_fixups[] = {
248 	/* UFS cards deviations table */
249 	{ .wmanufacturerid = UFS_VENDOR_MICRON,
250 	  .model = UFS_ANY_MODEL,
251 	  .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM },
252 	{ .wmanufacturerid = UFS_VENDOR_SAMSUNG,
253 	  .model = UFS_ANY_MODEL,
254 	  .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM |
255 		   UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE |
256 		   UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS },
257 	{ .wmanufacturerid = UFS_VENDOR_SKHYNIX,
258 	  .model = UFS_ANY_MODEL,
259 	  .quirk = UFS_DEVICE_QUIRK_HOST_PA_SAVECONFIGTIME },
260 	{ .wmanufacturerid = UFS_VENDOR_SKHYNIX,
261 	  .model = "hB8aL1" /*H28U62301AMR*/,
262 	  .quirk = UFS_DEVICE_QUIRK_HOST_VS_DEBUGSAVECONFIGTIME },
263 	{ .wmanufacturerid = UFS_VENDOR_TOSHIBA,
264 	  .model = UFS_ANY_MODEL,
265 	  .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM },
266 	{ .wmanufacturerid = UFS_VENDOR_TOSHIBA,
267 	  .model = "THGLF2G9C8KBADG",
268 	  .quirk = UFS_DEVICE_QUIRK_PA_TACTIVATE },
269 	{ .wmanufacturerid = UFS_VENDOR_TOSHIBA,
270 	  .model = "THGLF2G9D8KBADG",
271 	  .quirk = UFS_DEVICE_QUIRK_PA_TACTIVATE },
272 	{}
273 };
274 
275 static irqreturn_t ufshcd_tmc_handler(struct ufs_hba *hba);
276 static void ufshcd_async_scan(void *data, async_cookie_t cookie);
277 static int ufshcd_reset_and_restore(struct ufs_hba *hba);
278 static int ufshcd_eh_host_reset_handler(struct scsi_cmnd *cmd);
279 static int ufshcd_clear_tm_cmd(struct ufs_hba *hba, int tag);
280 static void ufshcd_hba_exit(struct ufs_hba *hba);
281 static int ufshcd_probe_hba(struct ufs_hba *hba, bool init_dev_params);
282 static int ufshcd_setup_clocks(struct ufs_hba *hba, bool on);
283 static inline void ufshcd_add_delay_before_dme_cmd(struct ufs_hba *hba);
284 static int ufshcd_host_reset_and_restore(struct ufs_hba *hba);
285 static void ufshcd_resume_clkscaling(struct ufs_hba *hba);
286 static void ufshcd_suspend_clkscaling(struct ufs_hba *hba);
287 static int ufshcd_scale_clks(struct ufs_hba *hba, unsigned long freq,
288 			     bool scale_up);
289 static irqreturn_t ufshcd_intr(int irq, void *__hba);
290 static int ufshcd_change_power_mode(struct ufs_hba *hba,
291 			     struct ufs_pa_layer_attr *pwr_mode);
292 static int ufshcd_setup_hba_vreg(struct ufs_hba *hba, bool on);
293 static int ufshcd_setup_vreg(struct ufs_hba *hba, bool on);
294 static inline int ufshcd_config_vreg_hpm(struct ufs_hba *hba,
295 					 struct ufs_vreg *vreg);
296 static void ufshcd_wb_toggle_buf_flush_during_h8(struct ufs_hba *hba,
297 						 bool enable);
298 static void ufshcd_hba_vreg_set_lpm(struct ufs_hba *hba);
299 static void ufshcd_hba_vreg_set_hpm(struct ufs_hba *hba);
300 
301 void ufshcd_enable_irq(struct ufs_hba *hba)
302 {
303 	if (!hba->is_irq_enabled) {
304 		enable_irq(hba->irq);
305 		hba->is_irq_enabled = true;
306 	}
307 }
308 EXPORT_SYMBOL_GPL(ufshcd_enable_irq);
309 
310 void ufshcd_disable_irq(struct ufs_hba *hba)
311 {
312 	if (hba->is_irq_enabled) {
313 		disable_irq(hba->irq);
314 		hba->is_irq_enabled = false;
315 	}
316 }
317 EXPORT_SYMBOL_GPL(ufshcd_disable_irq);
318 
319 static void ufshcd_configure_wb(struct ufs_hba *hba)
320 {
321 	if (!ufshcd_is_wb_allowed(hba))
322 		return;
323 
324 	ufshcd_wb_toggle(hba, true);
325 
326 	ufshcd_wb_toggle_buf_flush_during_h8(hba, true);
327 
328 	if (ufshcd_is_wb_buf_flush_allowed(hba))
329 		ufshcd_wb_toggle_buf_flush(hba, true);
330 }
331 
332 static void ufshcd_scsi_unblock_requests(struct ufs_hba *hba)
333 {
334 	if (atomic_dec_and_test(&hba->scsi_block_reqs_cnt))
335 		scsi_unblock_requests(hba->host);
336 }
337 
338 static void ufshcd_scsi_block_requests(struct ufs_hba *hba)
339 {
340 	if (atomic_inc_return(&hba->scsi_block_reqs_cnt) == 1)
341 		scsi_block_requests(hba->host);
342 }
343 
344 static void ufshcd_add_cmd_upiu_trace(struct ufs_hba *hba, unsigned int tag,
345 				      enum ufs_trace_str_t str_t)
346 {
347 	struct utp_upiu_req *rq = hba->lrb[tag].ucd_req_ptr;
348 	struct utp_upiu_header *header;
349 
350 	if (!trace_ufshcd_upiu_enabled())
351 		return;
352 
353 	if (str_t == UFS_CMD_SEND)
354 		header = &rq->header;
355 	else
356 		header = &hba->lrb[tag].ucd_rsp_ptr->header;
357 
358 	trace_ufshcd_upiu(dev_name(hba->dev), str_t, header, &rq->sc.cdb,
359 			  UFS_TSF_CDB);
360 }
361 
362 static void ufshcd_add_query_upiu_trace(struct ufs_hba *hba,
363 					enum ufs_trace_str_t str_t,
364 					struct utp_upiu_req *rq_rsp)
365 {
366 	if (!trace_ufshcd_upiu_enabled())
367 		return;
368 
369 	trace_ufshcd_upiu(dev_name(hba->dev), str_t, &rq_rsp->header,
370 			  &rq_rsp->qr, UFS_TSF_OSF);
371 }
372 
373 static void ufshcd_add_tm_upiu_trace(struct ufs_hba *hba, unsigned int tag,
374 				     enum ufs_trace_str_t str_t)
375 {
376 	struct utp_task_req_desc *descp = &hba->utmrdl_base_addr[tag];
377 
378 	if (!trace_ufshcd_upiu_enabled())
379 		return;
380 
381 	if (str_t == UFS_TM_SEND)
382 		trace_ufshcd_upiu(dev_name(hba->dev), str_t,
383 				  &descp->upiu_req.req_header,
384 				  &descp->upiu_req.input_param1,
385 				  UFS_TSF_TM_INPUT);
386 	else
387 		trace_ufshcd_upiu(dev_name(hba->dev), str_t,
388 				  &descp->upiu_rsp.rsp_header,
389 				  &descp->upiu_rsp.output_param1,
390 				  UFS_TSF_TM_OUTPUT);
391 }
392 
393 static void ufshcd_add_uic_command_trace(struct ufs_hba *hba,
394 					 const struct uic_command *ucmd,
395 					 enum ufs_trace_str_t str_t)
396 {
397 	u32 cmd;
398 
399 	if (!trace_ufshcd_uic_command_enabled())
400 		return;
401 
402 	if (str_t == UFS_CMD_SEND)
403 		cmd = ucmd->command;
404 	else
405 		cmd = ufshcd_readl(hba, REG_UIC_COMMAND);
406 
407 	trace_ufshcd_uic_command(dev_name(hba->dev), str_t, cmd,
408 				 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_1),
409 				 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_2),
410 				 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_3));
411 }
412 
413 static void ufshcd_add_command_trace(struct ufs_hba *hba, unsigned int tag,
414 				     enum ufs_trace_str_t str_t)
415 {
416 	u64 lba = 0;
417 	u8 opcode = 0, group_id = 0;
418 	u32 doorbell = 0;
419 	u32 intr;
420 	int hwq_id = -1;
421 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
422 	struct scsi_cmnd *cmd = lrbp->cmd;
423 	struct request *rq = scsi_cmd_to_rq(cmd);
424 	int transfer_len = -1;
425 
426 	if (!cmd)
427 		return;
428 
429 	/* trace UPIU also */
430 	ufshcd_add_cmd_upiu_trace(hba, tag, str_t);
431 	if (!trace_ufshcd_command_enabled())
432 		return;
433 
434 	opcode = cmd->cmnd[0];
435 
436 	if (opcode == READ_10 || opcode == WRITE_10) {
437 		/*
438 		 * Currently we only fully trace read(10) and write(10) commands
439 		 */
440 		transfer_len =
441 		       be32_to_cpu(lrbp->ucd_req_ptr->sc.exp_data_transfer_len);
442 		lba = scsi_get_lba(cmd);
443 		if (opcode == WRITE_10)
444 			group_id = lrbp->cmd->cmnd[6];
445 	} else if (opcode == UNMAP) {
446 		/*
447 		 * The number of Bytes to be unmapped beginning with the lba.
448 		 */
449 		transfer_len = blk_rq_bytes(rq);
450 		lba = scsi_get_lba(cmd);
451 	}
452 
453 	intr = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
454 
455 	if (is_mcq_enabled(hba)) {
456 		struct ufs_hw_queue *hwq = ufshcd_mcq_req_to_hwq(hba, rq);
457 
458 		hwq_id = hwq->id;
459 	} else {
460 		doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
461 	}
462 	trace_ufshcd_command(cmd->device, str_t, tag, doorbell, hwq_id,
463 			     transfer_len, intr, lba, opcode, group_id);
464 }
465 
466 static void ufshcd_print_clk_freqs(struct ufs_hba *hba)
467 {
468 	struct ufs_clk_info *clki;
469 	struct list_head *head = &hba->clk_list_head;
470 
471 	if (list_empty(head))
472 		return;
473 
474 	list_for_each_entry(clki, head, list) {
475 		if (!IS_ERR_OR_NULL(clki->clk) && clki->min_freq &&
476 				clki->max_freq)
477 			dev_err(hba->dev, "clk: %s, rate: %u\n",
478 					clki->name, clki->curr_freq);
479 	}
480 }
481 
482 static void ufshcd_print_evt(struct ufs_hba *hba, u32 id,
483 			     const char *err_name)
484 {
485 	int i;
486 	bool found = false;
487 	const struct ufs_event_hist *e;
488 
489 	if (id >= UFS_EVT_CNT)
490 		return;
491 
492 	e = &hba->ufs_stats.event[id];
493 
494 	for (i = 0; i < UFS_EVENT_HIST_LENGTH; i++) {
495 		int p = (i + e->pos) % UFS_EVENT_HIST_LENGTH;
496 
497 		if (e->tstamp[p] == 0)
498 			continue;
499 		dev_err(hba->dev, "%s[%d] = 0x%x at %lld us\n", err_name, p,
500 			e->val[p], div_u64(e->tstamp[p], 1000));
501 		found = true;
502 	}
503 
504 	if (!found)
505 		dev_err(hba->dev, "No record of %s\n", err_name);
506 	else
507 		dev_err(hba->dev, "%s: total cnt=%llu\n", err_name, e->cnt);
508 }
509 
510 static void ufshcd_print_evt_hist(struct ufs_hba *hba)
511 {
512 	ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, "host_regs: ");
513 
514 	ufshcd_print_evt(hba, UFS_EVT_PA_ERR, "pa_err");
515 	ufshcd_print_evt(hba, UFS_EVT_DL_ERR, "dl_err");
516 	ufshcd_print_evt(hba, UFS_EVT_NL_ERR, "nl_err");
517 	ufshcd_print_evt(hba, UFS_EVT_TL_ERR, "tl_err");
518 	ufshcd_print_evt(hba, UFS_EVT_DME_ERR, "dme_err");
519 	ufshcd_print_evt(hba, UFS_EVT_AUTO_HIBERN8_ERR,
520 			 "auto_hibern8_err");
521 	ufshcd_print_evt(hba, UFS_EVT_FATAL_ERR, "fatal_err");
522 	ufshcd_print_evt(hba, UFS_EVT_LINK_STARTUP_FAIL,
523 			 "link_startup_fail");
524 	ufshcd_print_evt(hba, UFS_EVT_RESUME_ERR, "resume_fail");
525 	ufshcd_print_evt(hba, UFS_EVT_SUSPEND_ERR,
526 			 "suspend_fail");
527 	ufshcd_print_evt(hba, UFS_EVT_WL_RES_ERR, "wlun resume_fail");
528 	ufshcd_print_evt(hba, UFS_EVT_WL_SUSP_ERR,
529 			 "wlun suspend_fail");
530 	ufshcd_print_evt(hba, UFS_EVT_DEV_RESET, "dev_reset");
531 	ufshcd_print_evt(hba, UFS_EVT_HOST_RESET, "host_reset");
532 	ufshcd_print_evt(hba, UFS_EVT_ABORT, "task_abort");
533 
534 	ufshcd_vops_dbg_register_dump(hba);
535 }
536 
537 static
538 void ufshcd_print_tr(struct ufs_hba *hba, int tag, bool pr_prdt)
539 {
540 	const struct ufshcd_lrb *lrbp;
541 	int prdt_length;
542 
543 	lrbp = &hba->lrb[tag];
544 
545 	dev_err(hba->dev, "UPIU[%d] - issue time %lld us\n",
546 			tag, div_u64(lrbp->issue_time_stamp_local_clock, 1000));
547 	dev_err(hba->dev, "UPIU[%d] - complete time %lld us\n",
548 			tag, div_u64(lrbp->compl_time_stamp_local_clock, 1000));
549 	dev_err(hba->dev,
550 		"UPIU[%d] - Transfer Request Descriptor phys@0x%llx\n",
551 		tag, (u64)lrbp->utrd_dma_addr);
552 
553 	ufshcd_hex_dump("UPIU TRD: ", lrbp->utr_descriptor_ptr,
554 			sizeof(struct utp_transfer_req_desc));
555 	dev_err(hba->dev, "UPIU[%d] - Request UPIU phys@0x%llx\n", tag,
556 		(u64)lrbp->ucd_req_dma_addr);
557 	ufshcd_hex_dump("UPIU REQ: ", lrbp->ucd_req_ptr,
558 			sizeof(struct utp_upiu_req));
559 	dev_err(hba->dev, "UPIU[%d] - Response UPIU phys@0x%llx\n", tag,
560 		(u64)lrbp->ucd_rsp_dma_addr);
561 	ufshcd_hex_dump("UPIU RSP: ", lrbp->ucd_rsp_ptr,
562 			sizeof(struct utp_upiu_rsp));
563 
564 	prdt_length = le16_to_cpu(
565 		lrbp->utr_descriptor_ptr->prd_table_length);
566 	if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN)
567 		prdt_length /= ufshcd_sg_entry_size(hba);
568 
569 	dev_err(hba->dev,
570 		"UPIU[%d] - PRDT - %d entries  phys@0x%llx\n",
571 		tag, prdt_length,
572 		(u64)lrbp->ucd_prdt_dma_addr);
573 
574 	if (pr_prdt)
575 		ufshcd_hex_dump("UPIU PRDT: ", lrbp->ucd_prdt_ptr,
576 			ufshcd_sg_entry_size(hba) * prdt_length);
577 }
578 
579 static bool ufshcd_print_tr_iter(struct request *req, void *priv)
580 {
581 	struct scsi_device *sdev = req->q->queuedata;
582 	struct Scsi_Host *shost = sdev->host;
583 	struct ufs_hba *hba = shost_priv(shost);
584 
585 	ufshcd_print_tr(hba, req->tag, *(bool *)priv);
586 
587 	return true;
588 }
589 
590 /**
591  * ufshcd_print_trs_all - print trs for all started requests.
592  * @hba: per-adapter instance.
593  * @pr_prdt: need to print prdt or not.
594  */
595 static void ufshcd_print_trs_all(struct ufs_hba *hba, bool pr_prdt)
596 {
597 	blk_mq_tagset_busy_iter(&hba->host->tag_set, ufshcd_print_tr_iter, &pr_prdt);
598 }
599 
600 static void ufshcd_print_tmrs(struct ufs_hba *hba, unsigned long bitmap)
601 {
602 	int tag;
603 
604 	for_each_set_bit(tag, &bitmap, hba->nutmrs) {
605 		struct utp_task_req_desc *tmrdp = &hba->utmrdl_base_addr[tag];
606 
607 		dev_err(hba->dev, "TM[%d] - Task Management Header\n", tag);
608 		ufshcd_hex_dump("", tmrdp, sizeof(*tmrdp));
609 	}
610 }
611 
612 static void ufshcd_print_host_state(struct ufs_hba *hba)
613 {
614 	const struct scsi_device *sdev_ufs = hba->ufs_device_wlun;
615 
616 	dev_err(hba->dev, "UFS Host state=%d\n", hba->ufshcd_state);
617 	dev_err(hba->dev, "outstanding reqs=0x%lx tasks=0x%lx\n",
618 		hba->outstanding_reqs, hba->outstanding_tasks);
619 	dev_err(hba->dev, "saved_err=0x%x, saved_uic_err=0x%x\n",
620 		hba->saved_err, hba->saved_uic_err);
621 	dev_err(hba->dev, "Device power mode=%d, UIC link state=%d\n",
622 		hba->curr_dev_pwr_mode, hba->uic_link_state);
623 	dev_err(hba->dev, "PM in progress=%d, sys. suspended=%d\n",
624 		hba->pm_op_in_progress, hba->is_sys_suspended);
625 	dev_err(hba->dev, "Auto BKOPS=%d, Host self-block=%d\n",
626 		hba->auto_bkops_enabled, hba->host->host_self_blocked);
627 	dev_err(hba->dev, "Clk gate=%d\n", hba->clk_gating.state);
628 	dev_err(hba->dev,
629 		"last_hibern8_exit_tstamp at %lld us, hibern8_exit_cnt=%d\n",
630 		div_u64(hba->ufs_stats.last_hibern8_exit_tstamp, 1000),
631 		hba->ufs_stats.hibern8_exit_cnt);
632 	dev_err(hba->dev, "last intr at %lld us, last intr status=0x%x\n",
633 		div_u64(hba->ufs_stats.last_intr_ts, 1000),
634 		hba->ufs_stats.last_intr_status);
635 	dev_err(hba->dev, "error handling flags=0x%x, req. abort count=%d\n",
636 		hba->eh_flags, hba->req_abort_count);
637 	dev_err(hba->dev, "hba->ufs_version=0x%x, Host capabilities=0x%x, caps=0x%x\n",
638 		hba->ufs_version, hba->capabilities, hba->caps);
639 	dev_err(hba->dev, "quirks=0x%x, dev. quirks=0x%x\n", hba->quirks,
640 		hba->dev_quirks);
641 	if (sdev_ufs)
642 		dev_err(hba->dev, "UFS dev info: %.8s %.16s rev %.4s\n",
643 			sdev_ufs->vendor, sdev_ufs->model, sdev_ufs->rev);
644 
645 	ufshcd_print_clk_freqs(hba);
646 }
647 
648 /**
649  * ufshcd_print_pwr_info - print power params as saved in hba
650  * power info
651  * @hba: per-adapter instance
652  */
653 static void ufshcd_print_pwr_info(struct ufs_hba *hba)
654 {
655 	static const char * const names[] = {
656 		"INVALID MODE",
657 		"FAST MODE",
658 		"SLOW_MODE",
659 		"INVALID MODE",
660 		"FASTAUTO_MODE",
661 		"SLOWAUTO_MODE",
662 		"INVALID MODE",
663 	};
664 
665 	/*
666 	 * Using dev_dbg to avoid messages during runtime PM to avoid
667 	 * never-ending cycles of messages written back to storage by user space
668 	 * causing runtime resume, causing more messages and so on.
669 	 */
670 	dev_dbg(hba->dev, "%s:[RX, TX]: gear=[%d, %d], lane[%d, %d], pwr[%s, %s], rate = %d\n",
671 		 __func__,
672 		 hba->pwr_info.gear_rx, hba->pwr_info.gear_tx,
673 		 hba->pwr_info.lane_rx, hba->pwr_info.lane_tx,
674 		 names[hba->pwr_info.pwr_rx],
675 		 names[hba->pwr_info.pwr_tx],
676 		 hba->pwr_info.hs_rate);
677 }
678 
679 static void ufshcd_device_reset(struct ufs_hba *hba)
680 {
681 	int err;
682 
683 	err = ufshcd_vops_device_reset(hba);
684 
685 	if (!err) {
686 		ufshcd_set_ufs_dev_active(hba);
687 		if (ufshcd_is_wb_allowed(hba)) {
688 			hba->dev_info.wb_enabled = false;
689 			hba->dev_info.wb_buf_flush_enabled = false;
690 		}
691 		if (hba->dev_info.rtc_type == UFS_RTC_RELATIVE)
692 			hba->dev_info.rtc_time_baseline = 0;
693 	}
694 	if (err != -EOPNOTSUPP)
695 		ufshcd_update_evt_hist(hba, UFS_EVT_DEV_RESET, err);
696 }
697 
698 void ufshcd_delay_us(unsigned long us, unsigned long tolerance)
699 {
700 	if (!us)
701 		return;
702 
703 	if (us < 10)
704 		udelay(us);
705 	else
706 		usleep_range(us, us + tolerance);
707 }
708 EXPORT_SYMBOL_GPL(ufshcd_delay_us);
709 
710 /**
711  * ufshcd_wait_for_register - wait for register value to change
712  * @hba: per-adapter interface
713  * @reg: mmio register offset
714  * @mask: mask to apply to the read register value
715  * @val: value to wait for
716  * @interval_us: polling interval in microseconds
717  * @timeout_ms: timeout in milliseconds
718  *
719  * Return: -ETIMEDOUT on error, zero on success.
720  */
721 static int ufshcd_wait_for_register(struct ufs_hba *hba, u32 reg, u32 mask,
722 				u32 val, unsigned long interval_us,
723 				unsigned long timeout_ms)
724 {
725 	int err = 0;
726 	unsigned long timeout = jiffies + msecs_to_jiffies(timeout_ms);
727 
728 	/* ignore bits that we don't intend to wait on */
729 	val = val & mask;
730 
731 	while ((ufshcd_readl(hba, reg) & mask) != val) {
732 		usleep_range(interval_us, interval_us + 50);
733 		if (time_after(jiffies, timeout)) {
734 			if ((ufshcd_readl(hba, reg) & mask) != val)
735 				err = -ETIMEDOUT;
736 			break;
737 		}
738 	}
739 
740 	return err;
741 }
742 
743 /**
744  * ufshcd_get_intr_mask - Get the interrupt bit mask
745  * @hba: Pointer to adapter instance
746  *
747  * Return: interrupt bit mask per version
748  */
749 static inline u32 ufshcd_get_intr_mask(struct ufs_hba *hba)
750 {
751 	if (hba->ufs_version == ufshci_version(1, 0))
752 		return INTERRUPT_MASK_ALL_VER_10;
753 	if (hba->ufs_version <= ufshci_version(2, 0))
754 		return INTERRUPT_MASK_ALL_VER_11;
755 
756 	return INTERRUPT_MASK_ALL_VER_21;
757 }
758 
759 /**
760  * ufshcd_get_ufs_version - Get the UFS version supported by the HBA
761  * @hba: Pointer to adapter instance
762  *
763  * Return: UFSHCI version supported by the controller
764  */
765 static inline u32 ufshcd_get_ufs_version(struct ufs_hba *hba)
766 {
767 	u32 ufshci_ver;
768 
769 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_UFS_HCI_VERSION)
770 		ufshci_ver = ufshcd_vops_get_ufs_hci_version(hba);
771 	else
772 		ufshci_ver = ufshcd_readl(hba, REG_UFS_VERSION);
773 
774 	/*
775 	 * UFSHCI v1.x uses a different version scheme, in order
776 	 * to allow the use of comparisons with the ufshci_version
777 	 * function, we convert it to the same scheme as ufs 2.0+.
778 	 */
779 	if (ufshci_ver & 0x00010000)
780 		return ufshci_version(1, ufshci_ver & 0x00000100);
781 
782 	return ufshci_ver;
783 }
784 
785 /**
786  * ufshcd_is_device_present - Check if any device connected to
787  *			      the host controller
788  * @hba: pointer to adapter instance
789  *
790  * Return: true if device present, false if no device detected
791  */
792 static inline bool ufshcd_is_device_present(struct ufs_hba *hba)
793 {
794 	return ufshcd_readl(hba, REG_CONTROLLER_STATUS) & DEVICE_PRESENT;
795 }
796 
797 /**
798  * ufshcd_get_tr_ocs - Get the UTRD Overall Command Status
799  * @lrbp: pointer to local command reference block
800  * @cqe: pointer to the completion queue entry
801  *
802  * This function is used to get the OCS field from UTRD
803  *
804  * Return: the OCS field in the UTRD.
805  */
806 static enum utp_ocs ufshcd_get_tr_ocs(struct ufshcd_lrb *lrbp,
807 				      struct cq_entry *cqe)
808 {
809 	if (cqe)
810 		return le32_to_cpu(cqe->status) & MASK_OCS;
811 
812 	return lrbp->utr_descriptor_ptr->header.ocs & MASK_OCS;
813 }
814 
815 /**
816  * ufshcd_utrl_clear() - Clear requests from the controller request list.
817  * @hba: per adapter instance
818  * @mask: mask with one bit set for each request to be cleared
819  */
820 static inline void ufshcd_utrl_clear(struct ufs_hba *hba, u32 mask)
821 {
822 	if (hba->quirks & UFSHCI_QUIRK_BROKEN_REQ_LIST_CLR)
823 		mask = ~mask;
824 	/*
825 	 * From the UFSHCI specification: "UTP Transfer Request List CLear
826 	 * Register (UTRLCLR): This field is bit significant. Each bit
827 	 * corresponds to a slot in the UTP Transfer Request List, where bit 0
828 	 * corresponds to request slot 0. A bit in this field is set to ‘0’
829 	 * by host software to indicate to the host controller that a transfer
830 	 * request slot is cleared. The host controller
831 	 * shall free up any resources associated to the request slot
832 	 * immediately, and shall set the associated bit in UTRLDBR to ‘0’. The
833 	 * host software indicates no change to request slots by setting the
834 	 * associated bits in this field to ‘1’. Bits in this field shall only
835 	 * be set ‘1’ or ‘0’ by host software when UTRLRSR is set to ‘1’."
836 	 */
837 	ufshcd_writel(hba, ~mask, REG_UTP_TRANSFER_REQ_LIST_CLEAR);
838 }
839 
840 /**
841  * ufshcd_utmrl_clear - Clear a bit in UTMRLCLR register
842  * @hba: per adapter instance
843  * @pos: position of the bit to be cleared
844  */
845 static inline void ufshcd_utmrl_clear(struct ufs_hba *hba, u32 pos)
846 {
847 	if (hba->quirks & UFSHCI_QUIRK_BROKEN_REQ_LIST_CLR)
848 		ufshcd_writel(hba, (1 << pos), REG_UTP_TASK_REQ_LIST_CLEAR);
849 	else
850 		ufshcd_writel(hba, ~(1 << pos), REG_UTP_TASK_REQ_LIST_CLEAR);
851 }
852 
853 /**
854  * ufshcd_get_lists_status - Check UCRDY, UTRLRDY and UTMRLRDY
855  * @reg: Register value of host controller status
856  *
857  * Return: 0 on success; a positive value if failed.
858  */
859 static inline int ufshcd_get_lists_status(u32 reg)
860 {
861 	return !((reg & UFSHCD_STATUS_READY) == UFSHCD_STATUS_READY);
862 }
863 
864 /**
865  * ufshcd_get_uic_cmd_result - Get the UIC command result
866  * @hba: Pointer to adapter instance
867  *
868  * This function gets the result of UIC command completion
869  *
870  * Return: 0 on success; non-zero value on error.
871  */
872 static inline int ufshcd_get_uic_cmd_result(struct ufs_hba *hba)
873 {
874 	return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_2) &
875 	       MASK_UIC_COMMAND_RESULT;
876 }
877 
878 /**
879  * ufshcd_get_dme_attr_val - Get the value of attribute returned by UIC command
880  * @hba: Pointer to adapter instance
881  *
882  * This function gets UIC command argument3
883  *
884  * Return: 0 on success; non-zero value on error.
885  */
886 static inline u32 ufshcd_get_dme_attr_val(struct ufs_hba *hba)
887 {
888 	return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_3);
889 }
890 
891 /**
892  * ufshcd_get_req_rsp - returns the TR response transaction type
893  * @ucd_rsp_ptr: pointer to response UPIU
894  *
895  * Return: UPIU type.
896  */
897 static inline enum upiu_response_transaction
898 ufshcd_get_req_rsp(struct utp_upiu_rsp *ucd_rsp_ptr)
899 {
900 	return ucd_rsp_ptr->header.transaction_code;
901 }
902 
903 /**
904  * ufshcd_is_exception_event - Check if the device raised an exception event
905  * @ucd_rsp_ptr: pointer to response UPIU
906  *
907  * The function checks if the device raised an exception event indicated in
908  * the Device Information field of response UPIU.
909  *
910  * Return: true if exception is raised, false otherwise.
911  */
912 static inline bool ufshcd_is_exception_event(struct utp_upiu_rsp *ucd_rsp_ptr)
913 {
914 	return ucd_rsp_ptr->header.device_information & 1;
915 }
916 
917 /**
918  * ufshcd_reset_intr_aggr - Reset interrupt aggregation values.
919  * @hba: per adapter instance
920  */
921 static inline void
922 ufshcd_reset_intr_aggr(struct ufs_hba *hba)
923 {
924 	ufshcd_writel(hba, INT_AGGR_ENABLE |
925 		      INT_AGGR_COUNTER_AND_TIMER_RESET,
926 		      REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
927 }
928 
929 /**
930  * ufshcd_config_intr_aggr - Configure interrupt aggregation values.
931  * @hba: per adapter instance
932  * @cnt: Interrupt aggregation counter threshold
933  * @tmout: Interrupt aggregation timeout value
934  */
935 static inline void
936 ufshcd_config_intr_aggr(struct ufs_hba *hba, u8 cnt, u8 tmout)
937 {
938 	ufshcd_writel(hba, INT_AGGR_ENABLE | INT_AGGR_PARAM_WRITE |
939 		      INT_AGGR_COUNTER_THLD_VAL(cnt) |
940 		      INT_AGGR_TIMEOUT_VAL(tmout),
941 		      REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
942 }
943 
944 /**
945  * ufshcd_disable_intr_aggr - Disables interrupt aggregation.
946  * @hba: per adapter instance
947  */
948 static inline void ufshcd_disable_intr_aggr(struct ufs_hba *hba)
949 {
950 	ufshcd_writel(hba, 0, REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
951 }
952 
953 /**
954  * ufshcd_enable_run_stop_reg - Enable run-stop registers,
955  *			When run-stop registers are set to 1, it indicates the
956  *			host controller that it can process the requests
957  * @hba: per adapter instance
958  */
959 static void ufshcd_enable_run_stop_reg(struct ufs_hba *hba)
960 {
961 	ufshcd_writel(hba, UTP_TASK_REQ_LIST_RUN_STOP_BIT,
962 		      REG_UTP_TASK_REQ_LIST_RUN_STOP);
963 	ufshcd_writel(hba, UTP_TRANSFER_REQ_LIST_RUN_STOP_BIT,
964 		      REG_UTP_TRANSFER_REQ_LIST_RUN_STOP);
965 }
966 
967 /**
968  * ufshcd_hba_start - Start controller initialization sequence
969  * @hba: per adapter instance
970  */
971 static inline void ufshcd_hba_start(struct ufs_hba *hba)
972 {
973 	u32 val = CONTROLLER_ENABLE;
974 
975 	if (ufshcd_crypto_enable(hba))
976 		val |= CRYPTO_GENERAL_ENABLE;
977 
978 	ufshcd_writel(hba, val, REG_CONTROLLER_ENABLE);
979 }
980 
981 /**
982  * ufshcd_is_hba_active - Get controller state
983  * @hba: per adapter instance
984  *
985  * Return: true if and only if the controller is active.
986  */
987 bool ufshcd_is_hba_active(struct ufs_hba *hba)
988 {
989 	return ufshcd_readl(hba, REG_CONTROLLER_ENABLE) & CONTROLLER_ENABLE;
990 }
991 EXPORT_SYMBOL_GPL(ufshcd_is_hba_active);
992 
993 u32 ufshcd_get_local_unipro_ver(struct ufs_hba *hba)
994 {
995 	/* HCI version 1.0 and 1.1 supports UniPro 1.41 */
996 	if (hba->ufs_version <= ufshci_version(1, 1))
997 		return UFS_UNIPRO_VER_1_41;
998 	else
999 		return UFS_UNIPRO_VER_1_6;
1000 }
1001 EXPORT_SYMBOL(ufshcd_get_local_unipro_ver);
1002 
1003 static bool ufshcd_is_unipro_pa_params_tuning_req(struct ufs_hba *hba)
1004 {
1005 	/*
1006 	 * If both host and device support UniPro ver1.6 or later, PA layer
1007 	 * parameters tuning happens during link startup itself.
1008 	 *
1009 	 * We can manually tune PA layer parameters if either host or device
1010 	 * doesn't support UniPro ver 1.6 or later. But to keep manual tuning
1011 	 * logic simple, we will only do manual tuning if local unipro version
1012 	 * doesn't support ver1.6 or later.
1013 	 */
1014 	return ufshcd_get_local_unipro_ver(hba) < UFS_UNIPRO_VER_1_6;
1015 }
1016 
1017 /**
1018  * ufshcd_pm_qos_init - initialize PM QoS request
1019  * @hba: per adapter instance
1020  */
1021 void ufshcd_pm_qos_init(struct ufs_hba *hba)
1022 {
1023 
1024 	if (hba->pm_qos_enabled)
1025 		return;
1026 
1027 	cpu_latency_qos_add_request(&hba->pm_qos_req, PM_QOS_DEFAULT_VALUE);
1028 
1029 	if (cpu_latency_qos_request_active(&hba->pm_qos_req))
1030 		hba->pm_qos_enabled = true;
1031 }
1032 
1033 /**
1034  * ufshcd_pm_qos_exit - remove request from PM QoS
1035  * @hba: per adapter instance
1036  */
1037 void ufshcd_pm_qos_exit(struct ufs_hba *hba)
1038 {
1039 	if (!hba->pm_qos_enabled)
1040 		return;
1041 
1042 	cpu_latency_qos_remove_request(&hba->pm_qos_req);
1043 	hba->pm_qos_enabled = false;
1044 }
1045 
1046 /**
1047  * ufshcd_pm_qos_update - update PM QoS request
1048  * @hba: per adapter instance
1049  * @on: If True, vote for perf PM QoS mode otherwise power save mode
1050  */
1051 static void ufshcd_pm_qos_update(struct ufs_hba *hba, bool on)
1052 {
1053 	if (!hba->pm_qos_enabled)
1054 		return;
1055 
1056 	cpu_latency_qos_update_request(&hba->pm_qos_req, on ? 0 : PM_QOS_DEFAULT_VALUE);
1057 }
1058 
1059 /**
1060  * ufshcd_set_clk_freq - set UFS controller clock frequencies
1061  * @hba: per adapter instance
1062  * @scale_up: If True, set max possible frequency othewise set low frequency
1063  *
1064  * Return: 0 if successful; < 0 upon failure.
1065  */
1066 static int ufshcd_set_clk_freq(struct ufs_hba *hba, bool scale_up)
1067 {
1068 	int ret = 0;
1069 	struct ufs_clk_info *clki;
1070 	struct list_head *head = &hba->clk_list_head;
1071 
1072 	if (list_empty(head))
1073 		goto out;
1074 
1075 	list_for_each_entry(clki, head, list) {
1076 		if (!IS_ERR_OR_NULL(clki->clk)) {
1077 			if (scale_up && clki->max_freq) {
1078 				if (clki->curr_freq == clki->max_freq)
1079 					continue;
1080 
1081 				ret = clk_set_rate(clki->clk, clki->max_freq);
1082 				if (ret) {
1083 					dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
1084 						__func__, clki->name,
1085 						clki->max_freq, ret);
1086 					break;
1087 				}
1088 				trace_ufshcd_clk_scaling(dev_name(hba->dev),
1089 						"scaled up", clki->name,
1090 						clki->curr_freq,
1091 						clki->max_freq);
1092 
1093 				clki->curr_freq = clki->max_freq;
1094 
1095 			} else if (!scale_up && clki->min_freq) {
1096 				if (clki->curr_freq == clki->min_freq)
1097 					continue;
1098 
1099 				ret = clk_set_rate(clki->clk, clki->min_freq);
1100 				if (ret) {
1101 					dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
1102 						__func__, clki->name,
1103 						clki->min_freq, ret);
1104 					break;
1105 				}
1106 				trace_ufshcd_clk_scaling(dev_name(hba->dev),
1107 						"scaled down", clki->name,
1108 						clki->curr_freq,
1109 						clki->min_freq);
1110 				clki->curr_freq = clki->min_freq;
1111 			}
1112 		}
1113 		dev_dbg(hba->dev, "%s: clk: %s, rate: %lu\n", __func__,
1114 				clki->name, clk_get_rate(clki->clk));
1115 	}
1116 
1117 out:
1118 	return ret;
1119 }
1120 
1121 int ufshcd_opp_config_clks(struct device *dev, struct opp_table *opp_table,
1122 			   struct dev_pm_opp *opp, void *data,
1123 			   bool scaling_down)
1124 {
1125 	struct ufs_hba *hba = dev_get_drvdata(dev);
1126 	struct list_head *head = &hba->clk_list_head;
1127 	struct ufs_clk_info *clki;
1128 	unsigned long freq;
1129 	u8 idx = 0;
1130 	int ret;
1131 
1132 	list_for_each_entry(clki, head, list) {
1133 		if (!IS_ERR_OR_NULL(clki->clk)) {
1134 			freq = dev_pm_opp_get_freq_indexed(opp, idx++);
1135 
1136 			/* Do not set rate for clocks having frequency as 0 */
1137 			if (!freq)
1138 				continue;
1139 
1140 			ret = clk_set_rate(clki->clk, freq);
1141 			if (ret) {
1142 				dev_err(dev, "%s: %s clk set rate(%ldHz) failed, %d\n",
1143 					__func__, clki->name, freq, ret);
1144 				return ret;
1145 			}
1146 
1147 			trace_ufshcd_clk_scaling(dev_name(dev),
1148 				(scaling_down ? "scaled down" : "scaled up"),
1149 				clki->name, hba->clk_scaling.target_freq, freq);
1150 		}
1151 	}
1152 
1153 	return 0;
1154 }
1155 EXPORT_SYMBOL_GPL(ufshcd_opp_config_clks);
1156 
1157 static int ufshcd_opp_set_rate(struct ufs_hba *hba, unsigned long freq)
1158 {
1159 	struct dev_pm_opp *opp;
1160 	int ret;
1161 
1162 	opp = dev_pm_opp_find_freq_floor_indexed(hba->dev,
1163 						 &freq, 0);
1164 	if (IS_ERR(opp))
1165 		return PTR_ERR(opp);
1166 
1167 	ret = dev_pm_opp_set_opp(hba->dev, opp);
1168 	dev_pm_opp_put(opp);
1169 
1170 	return ret;
1171 }
1172 
1173 /**
1174  * ufshcd_scale_clks - scale up or scale down UFS controller clocks
1175  * @hba: per adapter instance
1176  * @freq: frequency to scale
1177  * @scale_up: True if scaling up and false if scaling down
1178  *
1179  * Return: 0 if successful; < 0 upon failure.
1180  */
1181 static int ufshcd_scale_clks(struct ufs_hba *hba, unsigned long freq,
1182 			     bool scale_up)
1183 {
1184 	int ret = 0;
1185 	ktime_t start = ktime_get();
1186 
1187 	ret = ufshcd_vops_clk_scale_notify(hba, scale_up, PRE_CHANGE);
1188 	if (ret)
1189 		goto out;
1190 
1191 	if (hba->use_pm_opp)
1192 		ret = ufshcd_opp_set_rate(hba, freq);
1193 	else
1194 		ret = ufshcd_set_clk_freq(hba, scale_up);
1195 	if (ret)
1196 		goto out;
1197 
1198 	ret = ufshcd_vops_clk_scale_notify(hba, scale_up, POST_CHANGE);
1199 	if (ret) {
1200 		if (hba->use_pm_opp)
1201 			ufshcd_opp_set_rate(hba,
1202 					    hba->devfreq->previous_freq);
1203 		else
1204 			ufshcd_set_clk_freq(hba, !scale_up);
1205 		goto out;
1206 	}
1207 
1208 	ufshcd_pm_qos_update(hba, scale_up);
1209 
1210 out:
1211 	trace_ufshcd_profile_clk_scaling(dev_name(hba->dev),
1212 			(scale_up ? "up" : "down"),
1213 			ktime_to_us(ktime_sub(ktime_get(), start)), ret);
1214 	return ret;
1215 }
1216 
1217 /**
1218  * ufshcd_is_devfreq_scaling_required - check if scaling is required or not
1219  * @hba: per adapter instance
1220  * @freq: frequency to scale
1221  * @scale_up: True if scaling up and false if scaling down
1222  *
1223  * Return: true if scaling is required, false otherwise.
1224  */
1225 static bool ufshcd_is_devfreq_scaling_required(struct ufs_hba *hba,
1226 					       unsigned long freq, bool scale_up)
1227 {
1228 	struct ufs_clk_info *clki;
1229 	struct list_head *head = &hba->clk_list_head;
1230 
1231 	if (list_empty(head))
1232 		return false;
1233 
1234 	if (hba->use_pm_opp)
1235 		return freq != hba->clk_scaling.target_freq;
1236 
1237 	list_for_each_entry(clki, head, list) {
1238 		if (!IS_ERR_OR_NULL(clki->clk)) {
1239 			if (scale_up && clki->max_freq) {
1240 				if (clki->curr_freq == clki->max_freq)
1241 					continue;
1242 				return true;
1243 			} else if (!scale_up && clki->min_freq) {
1244 				if (clki->curr_freq == clki->min_freq)
1245 					continue;
1246 				return true;
1247 			}
1248 		}
1249 	}
1250 
1251 	return false;
1252 }
1253 
1254 /*
1255  * Determine the number of pending commands by counting the bits in the SCSI
1256  * device budget maps. This approach has been selected because a bit is set in
1257  * the budget map before scsi_host_queue_ready() checks the host_self_blocked
1258  * flag. The host_self_blocked flag can be modified by calling
1259  * scsi_block_requests() or scsi_unblock_requests().
1260  */
1261 static u32 ufshcd_pending_cmds(struct ufs_hba *hba)
1262 {
1263 	const struct scsi_device *sdev;
1264 	u32 pending = 0;
1265 
1266 	lockdep_assert_held(hba->host->host_lock);
1267 	__shost_for_each_device(sdev, hba->host)
1268 		pending += sbitmap_weight(&sdev->budget_map);
1269 
1270 	return pending;
1271 }
1272 
1273 /*
1274  * Wait until all pending SCSI commands and TMFs have finished or the timeout
1275  * has expired.
1276  *
1277  * Return: 0 upon success; -EBUSY upon timeout.
1278  */
1279 static int ufshcd_wait_for_doorbell_clr(struct ufs_hba *hba,
1280 					u64 wait_timeout_us)
1281 {
1282 	unsigned long flags;
1283 	int ret = 0;
1284 	u32 tm_doorbell;
1285 	u32 tr_pending;
1286 	bool timeout = false, do_last_check = false;
1287 	ktime_t start;
1288 
1289 	ufshcd_hold(hba);
1290 	spin_lock_irqsave(hba->host->host_lock, flags);
1291 	/*
1292 	 * Wait for all the outstanding tasks/transfer requests.
1293 	 * Verify by checking the doorbell registers are clear.
1294 	 */
1295 	start = ktime_get();
1296 	do {
1297 		if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL) {
1298 			ret = -EBUSY;
1299 			goto out;
1300 		}
1301 
1302 		tm_doorbell = ufshcd_readl(hba, REG_UTP_TASK_REQ_DOOR_BELL);
1303 		tr_pending = ufshcd_pending_cmds(hba);
1304 		if (!tm_doorbell && !tr_pending) {
1305 			timeout = false;
1306 			break;
1307 		} else if (do_last_check) {
1308 			break;
1309 		}
1310 
1311 		spin_unlock_irqrestore(hba->host->host_lock, flags);
1312 		io_schedule_timeout(msecs_to_jiffies(20));
1313 		if (ktime_to_us(ktime_sub(ktime_get(), start)) >
1314 		    wait_timeout_us) {
1315 			timeout = true;
1316 			/*
1317 			 * We might have scheduled out for long time so make
1318 			 * sure to check if doorbells are cleared by this time
1319 			 * or not.
1320 			 */
1321 			do_last_check = true;
1322 		}
1323 		spin_lock_irqsave(hba->host->host_lock, flags);
1324 	} while (tm_doorbell || tr_pending);
1325 
1326 	if (timeout) {
1327 		dev_err(hba->dev,
1328 			"%s: timedout waiting for doorbell to clear (tm=0x%x, tr=0x%x)\n",
1329 			__func__, tm_doorbell, tr_pending);
1330 		ret = -EBUSY;
1331 	}
1332 out:
1333 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1334 	ufshcd_release(hba);
1335 	return ret;
1336 }
1337 
1338 /**
1339  * ufshcd_scale_gear - scale up/down UFS gear
1340  * @hba: per adapter instance
1341  * @scale_up: True for scaling up gear and false for scaling down
1342  *
1343  * Return: 0 for success; -EBUSY if scaling can't happen at this time;
1344  * non-zero for any other errors.
1345  */
1346 static int ufshcd_scale_gear(struct ufs_hba *hba, bool scale_up)
1347 {
1348 	int ret = 0;
1349 	struct ufs_pa_layer_attr new_pwr_info;
1350 
1351 	if (scale_up) {
1352 		memcpy(&new_pwr_info, &hba->clk_scaling.saved_pwr_info,
1353 		       sizeof(struct ufs_pa_layer_attr));
1354 	} else {
1355 		memcpy(&new_pwr_info, &hba->pwr_info,
1356 		       sizeof(struct ufs_pa_layer_attr));
1357 
1358 		if (hba->pwr_info.gear_tx > hba->clk_scaling.min_gear ||
1359 		    hba->pwr_info.gear_rx > hba->clk_scaling.min_gear) {
1360 			/* save the current power mode */
1361 			memcpy(&hba->clk_scaling.saved_pwr_info,
1362 				&hba->pwr_info,
1363 				sizeof(struct ufs_pa_layer_attr));
1364 
1365 			/* scale down gear */
1366 			new_pwr_info.gear_tx = hba->clk_scaling.min_gear;
1367 			new_pwr_info.gear_rx = hba->clk_scaling.min_gear;
1368 		}
1369 	}
1370 
1371 	/* check if the power mode needs to be changed or not? */
1372 	ret = ufshcd_config_pwr_mode(hba, &new_pwr_info);
1373 	if (ret)
1374 		dev_err(hba->dev, "%s: failed err %d, old gear: (tx %d rx %d), new gear: (tx %d rx %d)",
1375 			__func__, ret,
1376 			hba->pwr_info.gear_tx, hba->pwr_info.gear_rx,
1377 			new_pwr_info.gear_tx, new_pwr_info.gear_rx);
1378 
1379 	return ret;
1380 }
1381 
1382 /*
1383  * Wait until all pending SCSI commands and TMFs have finished or the timeout
1384  * has expired.
1385  *
1386  * Return: 0 upon success; -EBUSY upon timeout.
1387  */
1388 static int ufshcd_clock_scaling_prepare(struct ufs_hba *hba, u64 timeout_us)
1389 {
1390 	int ret = 0;
1391 	/*
1392 	 * make sure that there are no outstanding requests when
1393 	 * clock scaling is in progress
1394 	 */
1395 	ufshcd_scsi_block_requests(hba);
1396 	mutex_lock(&hba->wb_mutex);
1397 	down_write(&hba->clk_scaling_lock);
1398 
1399 	if (!hba->clk_scaling.is_allowed ||
1400 	    ufshcd_wait_for_doorbell_clr(hba, timeout_us)) {
1401 		ret = -EBUSY;
1402 		up_write(&hba->clk_scaling_lock);
1403 		mutex_unlock(&hba->wb_mutex);
1404 		ufshcd_scsi_unblock_requests(hba);
1405 		goto out;
1406 	}
1407 
1408 	/* let's not get into low power until clock scaling is completed */
1409 	ufshcd_hold(hba);
1410 
1411 out:
1412 	return ret;
1413 }
1414 
1415 static void ufshcd_clock_scaling_unprepare(struct ufs_hba *hba, int err, bool scale_up)
1416 {
1417 	up_write(&hba->clk_scaling_lock);
1418 
1419 	/* Enable Write Booster if we have scaled up else disable it */
1420 	if (ufshcd_enable_wb_if_scaling_up(hba) && !err)
1421 		ufshcd_wb_toggle(hba, scale_up);
1422 
1423 	mutex_unlock(&hba->wb_mutex);
1424 
1425 	ufshcd_scsi_unblock_requests(hba);
1426 	ufshcd_release(hba);
1427 }
1428 
1429 /**
1430  * ufshcd_devfreq_scale - scale up/down UFS clocks and gear
1431  * @hba: per adapter instance
1432  * @freq: frequency to scale
1433  * @scale_up: True for scaling up and false for scalin down
1434  *
1435  * Return: 0 for success; -EBUSY if scaling can't happen at this time; non-zero
1436  * for any other errors.
1437  */
1438 static int ufshcd_devfreq_scale(struct ufs_hba *hba, unsigned long freq,
1439 				bool scale_up)
1440 {
1441 	int ret = 0;
1442 
1443 	ret = ufshcd_clock_scaling_prepare(hba, 1 * USEC_PER_SEC);
1444 	if (ret)
1445 		return ret;
1446 
1447 	/* scale down the gear before scaling down clocks */
1448 	if (!scale_up) {
1449 		ret = ufshcd_scale_gear(hba, false);
1450 		if (ret)
1451 			goto out_unprepare;
1452 	}
1453 
1454 	ret = ufshcd_scale_clks(hba, freq, scale_up);
1455 	if (ret) {
1456 		if (!scale_up)
1457 			ufshcd_scale_gear(hba, true);
1458 		goto out_unprepare;
1459 	}
1460 
1461 	/* scale up the gear after scaling up clocks */
1462 	if (scale_up) {
1463 		ret = ufshcd_scale_gear(hba, true);
1464 		if (ret) {
1465 			ufshcd_scale_clks(hba, hba->devfreq->previous_freq,
1466 					  false);
1467 			goto out_unprepare;
1468 		}
1469 	}
1470 
1471 out_unprepare:
1472 	ufshcd_clock_scaling_unprepare(hba, ret, scale_up);
1473 	return ret;
1474 }
1475 
1476 static void ufshcd_clk_scaling_suspend_work(struct work_struct *work)
1477 {
1478 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1479 					   clk_scaling.suspend_work);
1480 	unsigned long irq_flags;
1481 
1482 	spin_lock_irqsave(hba->host->host_lock, irq_flags);
1483 	if (hba->clk_scaling.active_reqs || hba->clk_scaling.is_suspended) {
1484 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1485 		return;
1486 	}
1487 	hba->clk_scaling.is_suspended = true;
1488 	hba->clk_scaling.window_start_t = 0;
1489 	spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1490 
1491 	devfreq_suspend_device(hba->devfreq);
1492 }
1493 
1494 static void ufshcd_clk_scaling_resume_work(struct work_struct *work)
1495 {
1496 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1497 					   clk_scaling.resume_work);
1498 	unsigned long irq_flags;
1499 
1500 	spin_lock_irqsave(hba->host->host_lock, irq_flags);
1501 	if (!hba->clk_scaling.is_suspended) {
1502 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1503 		return;
1504 	}
1505 	hba->clk_scaling.is_suspended = false;
1506 	spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1507 
1508 	devfreq_resume_device(hba->devfreq);
1509 }
1510 
1511 static int ufshcd_devfreq_target(struct device *dev,
1512 				unsigned long *freq, u32 flags)
1513 {
1514 	int ret = 0;
1515 	struct ufs_hba *hba = dev_get_drvdata(dev);
1516 	ktime_t start;
1517 	bool scale_up = false, sched_clk_scaling_suspend_work = false;
1518 	struct list_head *clk_list = &hba->clk_list_head;
1519 	struct ufs_clk_info *clki;
1520 	unsigned long irq_flags;
1521 
1522 	if (!ufshcd_is_clkscaling_supported(hba))
1523 		return -EINVAL;
1524 
1525 	if (hba->use_pm_opp) {
1526 		struct dev_pm_opp *opp;
1527 
1528 		/* Get the recommended frequency from OPP framework */
1529 		opp = devfreq_recommended_opp(dev, freq, flags);
1530 		if (IS_ERR(opp))
1531 			return PTR_ERR(opp);
1532 
1533 		dev_pm_opp_put(opp);
1534 	} else {
1535 		/* Override with the closest supported frequency */
1536 		clki = list_first_entry(&hba->clk_list_head, struct ufs_clk_info,
1537 					list);
1538 		*freq =	(unsigned long) clk_round_rate(clki->clk, *freq);
1539 	}
1540 
1541 	spin_lock_irqsave(hba->host->host_lock, irq_flags);
1542 	if (ufshcd_eh_in_progress(hba)) {
1543 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1544 		return 0;
1545 	}
1546 
1547 	/* Skip scaling clock when clock scaling is suspended */
1548 	if (hba->clk_scaling.is_suspended) {
1549 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1550 		dev_warn(hba->dev, "clock scaling is suspended, skip");
1551 		return 0;
1552 	}
1553 
1554 	if (!hba->clk_scaling.active_reqs)
1555 		sched_clk_scaling_suspend_work = true;
1556 
1557 	if (list_empty(clk_list)) {
1558 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1559 		goto out;
1560 	}
1561 
1562 	/* Decide based on the target or rounded-off frequency and update */
1563 	if (hba->use_pm_opp)
1564 		scale_up = *freq > hba->clk_scaling.target_freq;
1565 	else
1566 		scale_up = *freq == clki->max_freq;
1567 
1568 	if (!hba->use_pm_opp && !scale_up)
1569 		*freq = clki->min_freq;
1570 
1571 	/* Update the frequency */
1572 	if (!ufshcd_is_devfreq_scaling_required(hba, *freq, scale_up)) {
1573 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1574 		ret = 0;
1575 		goto out; /* no state change required */
1576 	}
1577 	spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1578 
1579 	start = ktime_get();
1580 	ret = ufshcd_devfreq_scale(hba, *freq, scale_up);
1581 	if (!ret)
1582 		hba->clk_scaling.target_freq = *freq;
1583 
1584 	trace_ufshcd_profile_clk_scaling(dev_name(hba->dev),
1585 		(scale_up ? "up" : "down"),
1586 		ktime_to_us(ktime_sub(ktime_get(), start)), ret);
1587 
1588 out:
1589 	if (sched_clk_scaling_suspend_work && !scale_up)
1590 		queue_work(hba->clk_scaling.workq,
1591 			   &hba->clk_scaling.suspend_work);
1592 
1593 	return ret;
1594 }
1595 
1596 static int ufshcd_devfreq_get_dev_status(struct device *dev,
1597 		struct devfreq_dev_status *stat)
1598 {
1599 	struct ufs_hba *hba = dev_get_drvdata(dev);
1600 	struct ufs_clk_scaling *scaling = &hba->clk_scaling;
1601 	unsigned long flags;
1602 	ktime_t curr_t;
1603 
1604 	if (!ufshcd_is_clkscaling_supported(hba))
1605 		return -EINVAL;
1606 
1607 	memset(stat, 0, sizeof(*stat));
1608 
1609 	spin_lock_irqsave(hba->host->host_lock, flags);
1610 	curr_t = ktime_get();
1611 	if (!scaling->window_start_t)
1612 		goto start_window;
1613 
1614 	/*
1615 	 * If current frequency is 0, then the ondemand governor considers
1616 	 * there's no initial frequency set. And it always requests to set
1617 	 * to max. frequency.
1618 	 */
1619 	if (hba->use_pm_opp) {
1620 		stat->current_frequency = hba->clk_scaling.target_freq;
1621 	} else {
1622 		struct list_head *clk_list = &hba->clk_list_head;
1623 		struct ufs_clk_info *clki;
1624 
1625 		clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1626 		stat->current_frequency = clki->curr_freq;
1627 	}
1628 
1629 	if (scaling->is_busy_started)
1630 		scaling->tot_busy_t += ktime_us_delta(curr_t,
1631 				scaling->busy_start_t);
1632 	stat->total_time = ktime_us_delta(curr_t, scaling->window_start_t);
1633 	stat->busy_time = scaling->tot_busy_t;
1634 start_window:
1635 	scaling->window_start_t = curr_t;
1636 	scaling->tot_busy_t = 0;
1637 
1638 	if (scaling->active_reqs) {
1639 		scaling->busy_start_t = curr_t;
1640 		scaling->is_busy_started = true;
1641 	} else {
1642 		scaling->busy_start_t = 0;
1643 		scaling->is_busy_started = false;
1644 	}
1645 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1646 	return 0;
1647 }
1648 
1649 static int ufshcd_devfreq_init(struct ufs_hba *hba)
1650 {
1651 	struct list_head *clk_list = &hba->clk_list_head;
1652 	struct ufs_clk_info *clki;
1653 	struct devfreq *devfreq;
1654 	int ret;
1655 
1656 	/* Skip devfreq if we don't have any clocks in the list */
1657 	if (list_empty(clk_list))
1658 		return 0;
1659 
1660 	if (!hba->use_pm_opp) {
1661 		clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1662 		dev_pm_opp_add(hba->dev, clki->min_freq, 0);
1663 		dev_pm_opp_add(hba->dev, clki->max_freq, 0);
1664 	}
1665 
1666 	ufshcd_vops_config_scaling_param(hba, &hba->vps->devfreq_profile,
1667 					 &hba->vps->ondemand_data);
1668 	devfreq = devfreq_add_device(hba->dev,
1669 			&hba->vps->devfreq_profile,
1670 			DEVFREQ_GOV_SIMPLE_ONDEMAND,
1671 			&hba->vps->ondemand_data);
1672 	if (IS_ERR(devfreq)) {
1673 		ret = PTR_ERR(devfreq);
1674 		dev_err(hba->dev, "Unable to register with devfreq %d\n", ret);
1675 
1676 		if (!hba->use_pm_opp) {
1677 			dev_pm_opp_remove(hba->dev, clki->min_freq);
1678 			dev_pm_opp_remove(hba->dev, clki->max_freq);
1679 		}
1680 		return ret;
1681 	}
1682 
1683 	hba->devfreq = devfreq;
1684 
1685 	return 0;
1686 }
1687 
1688 static void ufshcd_devfreq_remove(struct ufs_hba *hba)
1689 {
1690 	struct list_head *clk_list = &hba->clk_list_head;
1691 
1692 	if (!hba->devfreq)
1693 		return;
1694 
1695 	devfreq_remove_device(hba->devfreq);
1696 	hba->devfreq = NULL;
1697 
1698 	if (!hba->use_pm_opp) {
1699 		struct ufs_clk_info *clki;
1700 
1701 		clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1702 		dev_pm_opp_remove(hba->dev, clki->min_freq);
1703 		dev_pm_opp_remove(hba->dev, clki->max_freq);
1704 	}
1705 }
1706 
1707 static void ufshcd_suspend_clkscaling(struct ufs_hba *hba)
1708 {
1709 	unsigned long flags;
1710 	bool suspend = false;
1711 
1712 	cancel_work_sync(&hba->clk_scaling.suspend_work);
1713 	cancel_work_sync(&hba->clk_scaling.resume_work);
1714 
1715 	spin_lock_irqsave(hba->host->host_lock, flags);
1716 	if (!hba->clk_scaling.is_suspended) {
1717 		suspend = true;
1718 		hba->clk_scaling.is_suspended = true;
1719 		hba->clk_scaling.window_start_t = 0;
1720 	}
1721 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1722 
1723 	if (suspend)
1724 		devfreq_suspend_device(hba->devfreq);
1725 }
1726 
1727 static void ufshcd_resume_clkscaling(struct ufs_hba *hba)
1728 {
1729 	unsigned long flags;
1730 	bool resume = false;
1731 
1732 	spin_lock_irqsave(hba->host->host_lock, flags);
1733 	if (hba->clk_scaling.is_suspended) {
1734 		resume = true;
1735 		hba->clk_scaling.is_suspended = false;
1736 	}
1737 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1738 
1739 	if (resume)
1740 		devfreq_resume_device(hba->devfreq);
1741 }
1742 
1743 static ssize_t ufshcd_clkscale_enable_show(struct device *dev,
1744 		struct device_attribute *attr, char *buf)
1745 {
1746 	struct ufs_hba *hba = dev_get_drvdata(dev);
1747 
1748 	return sysfs_emit(buf, "%d\n", hba->clk_scaling.is_enabled);
1749 }
1750 
1751 static ssize_t ufshcd_clkscale_enable_store(struct device *dev,
1752 		struct device_attribute *attr, const char *buf, size_t count)
1753 {
1754 	struct ufs_hba *hba = dev_get_drvdata(dev);
1755 	u32 value;
1756 	int err = 0;
1757 
1758 	if (kstrtou32(buf, 0, &value))
1759 		return -EINVAL;
1760 
1761 	down(&hba->host_sem);
1762 	if (!ufshcd_is_user_access_allowed(hba)) {
1763 		err = -EBUSY;
1764 		goto out;
1765 	}
1766 
1767 	value = !!value;
1768 	if (value == hba->clk_scaling.is_enabled)
1769 		goto out;
1770 
1771 	ufshcd_rpm_get_sync(hba);
1772 	ufshcd_hold(hba);
1773 
1774 	hba->clk_scaling.is_enabled = value;
1775 
1776 	if (value) {
1777 		ufshcd_resume_clkscaling(hba);
1778 	} else {
1779 		ufshcd_suspend_clkscaling(hba);
1780 		err = ufshcd_devfreq_scale(hba, ULONG_MAX, true);
1781 		if (err)
1782 			dev_err(hba->dev, "%s: failed to scale clocks up %d\n",
1783 					__func__, err);
1784 	}
1785 
1786 	ufshcd_release(hba);
1787 	ufshcd_rpm_put_sync(hba);
1788 out:
1789 	up(&hba->host_sem);
1790 	return err ? err : count;
1791 }
1792 
1793 static void ufshcd_init_clk_scaling_sysfs(struct ufs_hba *hba)
1794 {
1795 	hba->clk_scaling.enable_attr.show = ufshcd_clkscale_enable_show;
1796 	hba->clk_scaling.enable_attr.store = ufshcd_clkscale_enable_store;
1797 	sysfs_attr_init(&hba->clk_scaling.enable_attr.attr);
1798 	hba->clk_scaling.enable_attr.attr.name = "clkscale_enable";
1799 	hba->clk_scaling.enable_attr.attr.mode = 0644;
1800 	if (device_create_file(hba->dev, &hba->clk_scaling.enable_attr))
1801 		dev_err(hba->dev, "Failed to create sysfs for clkscale_enable\n");
1802 }
1803 
1804 static void ufshcd_remove_clk_scaling_sysfs(struct ufs_hba *hba)
1805 {
1806 	if (hba->clk_scaling.enable_attr.attr.name)
1807 		device_remove_file(hba->dev, &hba->clk_scaling.enable_attr);
1808 }
1809 
1810 static void ufshcd_init_clk_scaling(struct ufs_hba *hba)
1811 {
1812 	char wq_name[sizeof("ufs_clkscaling_00")];
1813 
1814 	if (!ufshcd_is_clkscaling_supported(hba))
1815 		return;
1816 
1817 	if (!hba->clk_scaling.min_gear)
1818 		hba->clk_scaling.min_gear = UFS_HS_G1;
1819 
1820 	INIT_WORK(&hba->clk_scaling.suspend_work,
1821 		  ufshcd_clk_scaling_suspend_work);
1822 	INIT_WORK(&hba->clk_scaling.resume_work,
1823 		  ufshcd_clk_scaling_resume_work);
1824 
1825 	snprintf(wq_name, sizeof(wq_name), "ufs_clkscaling_%d",
1826 		 hba->host->host_no);
1827 	hba->clk_scaling.workq = create_singlethread_workqueue(wq_name);
1828 
1829 	hba->clk_scaling.is_initialized = true;
1830 }
1831 
1832 static void ufshcd_exit_clk_scaling(struct ufs_hba *hba)
1833 {
1834 	if (!hba->clk_scaling.is_initialized)
1835 		return;
1836 
1837 	ufshcd_remove_clk_scaling_sysfs(hba);
1838 	destroy_workqueue(hba->clk_scaling.workq);
1839 	ufshcd_devfreq_remove(hba);
1840 	hba->clk_scaling.is_initialized = false;
1841 }
1842 
1843 static void ufshcd_ungate_work(struct work_struct *work)
1844 {
1845 	int ret;
1846 	unsigned long flags;
1847 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1848 			clk_gating.ungate_work);
1849 
1850 	cancel_delayed_work_sync(&hba->clk_gating.gate_work);
1851 
1852 	spin_lock_irqsave(hba->host->host_lock, flags);
1853 	if (hba->clk_gating.state == CLKS_ON) {
1854 		spin_unlock_irqrestore(hba->host->host_lock, flags);
1855 		return;
1856 	}
1857 
1858 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1859 	ufshcd_hba_vreg_set_hpm(hba);
1860 	ufshcd_setup_clocks(hba, true);
1861 
1862 	ufshcd_enable_irq(hba);
1863 
1864 	/* Exit from hibern8 */
1865 	if (ufshcd_can_hibern8_during_gating(hba)) {
1866 		/* Prevent gating in this path */
1867 		hba->clk_gating.is_suspended = true;
1868 		if (ufshcd_is_link_hibern8(hba)) {
1869 			ret = ufshcd_uic_hibern8_exit(hba);
1870 			if (ret)
1871 				dev_err(hba->dev, "%s: hibern8 exit failed %d\n",
1872 					__func__, ret);
1873 			else
1874 				ufshcd_set_link_active(hba);
1875 		}
1876 		hba->clk_gating.is_suspended = false;
1877 	}
1878 }
1879 
1880 /**
1881  * ufshcd_hold - Enable clocks that were gated earlier due to ufshcd_release.
1882  * Also, exit from hibern8 mode and set the link as active.
1883  * @hba: per adapter instance
1884  */
1885 void ufshcd_hold(struct ufs_hba *hba)
1886 {
1887 	bool flush_result;
1888 	unsigned long flags;
1889 
1890 	if (!ufshcd_is_clkgating_allowed(hba) ||
1891 	    !hba->clk_gating.is_initialized)
1892 		return;
1893 	spin_lock_irqsave(hba->host->host_lock, flags);
1894 	hba->clk_gating.active_reqs++;
1895 
1896 start:
1897 	switch (hba->clk_gating.state) {
1898 	case CLKS_ON:
1899 		/*
1900 		 * Wait for the ungate work to complete if in progress.
1901 		 * Though the clocks may be in ON state, the link could
1902 		 * still be in hibner8 state if hibern8 is allowed
1903 		 * during clock gating.
1904 		 * Make sure we exit hibern8 state also in addition to
1905 		 * clocks being ON.
1906 		 */
1907 		if (ufshcd_can_hibern8_during_gating(hba) &&
1908 		    ufshcd_is_link_hibern8(hba)) {
1909 			spin_unlock_irqrestore(hba->host->host_lock, flags);
1910 			flush_result = flush_work(&hba->clk_gating.ungate_work);
1911 			if (hba->clk_gating.is_suspended && !flush_result)
1912 				return;
1913 			spin_lock_irqsave(hba->host->host_lock, flags);
1914 			goto start;
1915 		}
1916 		break;
1917 	case REQ_CLKS_OFF:
1918 		if (cancel_delayed_work(&hba->clk_gating.gate_work)) {
1919 			hba->clk_gating.state = CLKS_ON;
1920 			trace_ufshcd_clk_gating(dev_name(hba->dev),
1921 						hba->clk_gating.state);
1922 			break;
1923 		}
1924 		/*
1925 		 * If we are here, it means gating work is either done or
1926 		 * currently running. Hence, fall through to cancel gating
1927 		 * work and to enable clocks.
1928 		 */
1929 		fallthrough;
1930 	case CLKS_OFF:
1931 		hba->clk_gating.state = REQ_CLKS_ON;
1932 		trace_ufshcd_clk_gating(dev_name(hba->dev),
1933 					hba->clk_gating.state);
1934 		queue_work(hba->clk_gating.clk_gating_workq,
1935 			   &hba->clk_gating.ungate_work);
1936 		/*
1937 		 * fall through to check if we should wait for this
1938 		 * work to be done or not.
1939 		 */
1940 		fallthrough;
1941 	case REQ_CLKS_ON:
1942 		spin_unlock_irqrestore(hba->host->host_lock, flags);
1943 		flush_work(&hba->clk_gating.ungate_work);
1944 		/* Make sure state is CLKS_ON before returning */
1945 		spin_lock_irqsave(hba->host->host_lock, flags);
1946 		goto start;
1947 	default:
1948 		dev_err(hba->dev, "%s: clk gating is in invalid state %d\n",
1949 				__func__, hba->clk_gating.state);
1950 		break;
1951 	}
1952 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1953 }
1954 EXPORT_SYMBOL_GPL(ufshcd_hold);
1955 
1956 static void ufshcd_gate_work(struct work_struct *work)
1957 {
1958 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1959 			clk_gating.gate_work.work);
1960 	unsigned long flags;
1961 	int ret;
1962 
1963 	spin_lock_irqsave(hba->host->host_lock, flags);
1964 	/*
1965 	 * In case you are here to cancel this work the gating state
1966 	 * would be marked as REQ_CLKS_ON. In this case save time by
1967 	 * skipping the gating work and exit after changing the clock
1968 	 * state to CLKS_ON.
1969 	 */
1970 	if (hba->clk_gating.is_suspended ||
1971 		(hba->clk_gating.state != REQ_CLKS_OFF)) {
1972 		hba->clk_gating.state = CLKS_ON;
1973 		trace_ufshcd_clk_gating(dev_name(hba->dev),
1974 					hba->clk_gating.state);
1975 		goto rel_lock;
1976 	}
1977 
1978 	if (ufshcd_is_ufs_dev_busy(hba) || hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL)
1979 		goto rel_lock;
1980 
1981 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1982 
1983 	/* put the link into hibern8 mode before turning off clocks */
1984 	if (ufshcd_can_hibern8_during_gating(hba)) {
1985 		ret = ufshcd_uic_hibern8_enter(hba);
1986 		if (ret) {
1987 			hba->clk_gating.state = CLKS_ON;
1988 			dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
1989 					__func__, ret);
1990 			trace_ufshcd_clk_gating(dev_name(hba->dev),
1991 						hba->clk_gating.state);
1992 			goto out;
1993 		}
1994 		ufshcd_set_link_hibern8(hba);
1995 	}
1996 
1997 	ufshcd_disable_irq(hba);
1998 
1999 	ufshcd_setup_clocks(hba, false);
2000 
2001 	/* Put the host controller in low power mode if possible */
2002 	ufshcd_hba_vreg_set_lpm(hba);
2003 	/*
2004 	 * In case you are here to cancel this work the gating state
2005 	 * would be marked as REQ_CLKS_ON. In this case keep the state
2006 	 * as REQ_CLKS_ON which would anyway imply that clocks are off
2007 	 * and a request to turn them on is pending. By doing this way,
2008 	 * we keep the state machine in tact and this would ultimately
2009 	 * prevent from doing cancel work multiple times when there are
2010 	 * new requests arriving before the current cancel work is done.
2011 	 */
2012 	spin_lock_irqsave(hba->host->host_lock, flags);
2013 	if (hba->clk_gating.state == REQ_CLKS_OFF) {
2014 		hba->clk_gating.state = CLKS_OFF;
2015 		trace_ufshcd_clk_gating(dev_name(hba->dev),
2016 					hba->clk_gating.state);
2017 	}
2018 rel_lock:
2019 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2020 out:
2021 	return;
2022 }
2023 
2024 /* host lock must be held before calling this variant */
2025 static void __ufshcd_release(struct ufs_hba *hba)
2026 {
2027 	if (!ufshcd_is_clkgating_allowed(hba))
2028 		return;
2029 
2030 	hba->clk_gating.active_reqs--;
2031 
2032 	if (hba->clk_gating.active_reqs || hba->clk_gating.is_suspended ||
2033 	    hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL ||
2034 	    hba->outstanding_tasks || !hba->clk_gating.is_initialized ||
2035 	    hba->active_uic_cmd || hba->uic_async_done ||
2036 	    hba->clk_gating.state == CLKS_OFF)
2037 		return;
2038 
2039 	hba->clk_gating.state = REQ_CLKS_OFF;
2040 	trace_ufshcd_clk_gating(dev_name(hba->dev), hba->clk_gating.state);
2041 	queue_delayed_work(hba->clk_gating.clk_gating_workq,
2042 			   &hba->clk_gating.gate_work,
2043 			   msecs_to_jiffies(hba->clk_gating.delay_ms));
2044 }
2045 
2046 void ufshcd_release(struct ufs_hba *hba)
2047 {
2048 	unsigned long flags;
2049 
2050 	spin_lock_irqsave(hba->host->host_lock, flags);
2051 	__ufshcd_release(hba);
2052 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2053 }
2054 EXPORT_SYMBOL_GPL(ufshcd_release);
2055 
2056 static ssize_t ufshcd_clkgate_delay_show(struct device *dev,
2057 		struct device_attribute *attr, char *buf)
2058 {
2059 	struct ufs_hba *hba = dev_get_drvdata(dev);
2060 
2061 	return sysfs_emit(buf, "%lu\n", hba->clk_gating.delay_ms);
2062 }
2063 
2064 void ufshcd_clkgate_delay_set(struct device *dev, unsigned long value)
2065 {
2066 	struct ufs_hba *hba = dev_get_drvdata(dev);
2067 	unsigned long flags;
2068 
2069 	spin_lock_irqsave(hba->host->host_lock, flags);
2070 	hba->clk_gating.delay_ms = value;
2071 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2072 }
2073 EXPORT_SYMBOL_GPL(ufshcd_clkgate_delay_set);
2074 
2075 static ssize_t ufshcd_clkgate_delay_store(struct device *dev,
2076 		struct device_attribute *attr, const char *buf, size_t count)
2077 {
2078 	unsigned long value;
2079 
2080 	if (kstrtoul(buf, 0, &value))
2081 		return -EINVAL;
2082 
2083 	ufshcd_clkgate_delay_set(dev, value);
2084 	return count;
2085 }
2086 
2087 static ssize_t ufshcd_clkgate_enable_show(struct device *dev,
2088 		struct device_attribute *attr, char *buf)
2089 {
2090 	struct ufs_hba *hba = dev_get_drvdata(dev);
2091 
2092 	return sysfs_emit(buf, "%d\n", hba->clk_gating.is_enabled);
2093 }
2094 
2095 static ssize_t ufshcd_clkgate_enable_store(struct device *dev,
2096 		struct device_attribute *attr, const char *buf, size_t count)
2097 {
2098 	struct ufs_hba *hba = dev_get_drvdata(dev);
2099 	unsigned long flags;
2100 	u32 value;
2101 
2102 	if (kstrtou32(buf, 0, &value))
2103 		return -EINVAL;
2104 
2105 	value = !!value;
2106 
2107 	spin_lock_irqsave(hba->host->host_lock, flags);
2108 	if (value == hba->clk_gating.is_enabled)
2109 		goto out;
2110 
2111 	if (value)
2112 		__ufshcd_release(hba);
2113 	else
2114 		hba->clk_gating.active_reqs++;
2115 
2116 	hba->clk_gating.is_enabled = value;
2117 out:
2118 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2119 	return count;
2120 }
2121 
2122 static void ufshcd_init_clk_gating_sysfs(struct ufs_hba *hba)
2123 {
2124 	hba->clk_gating.delay_attr.show = ufshcd_clkgate_delay_show;
2125 	hba->clk_gating.delay_attr.store = ufshcd_clkgate_delay_store;
2126 	sysfs_attr_init(&hba->clk_gating.delay_attr.attr);
2127 	hba->clk_gating.delay_attr.attr.name = "clkgate_delay_ms";
2128 	hba->clk_gating.delay_attr.attr.mode = 0644;
2129 	if (device_create_file(hba->dev, &hba->clk_gating.delay_attr))
2130 		dev_err(hba->dev, "Failed to create sysfs for clkgate_delay\n");
2131 
2132 	hba->clk_gating.enable_attr.show = ufshcd_clkgate_enable_show;
2133 	hba->clk_gating.enable_attr.store = ufshcd_clkgate_enable_store;
2134 	sysfs_attr_init(&hba->clk_gating.enable_attr.attr);
2135 	hba->clk_gating.enable_attr.attr.name = "clkgate_enable";
2136 	hba->clk_gating.enable_attr.attr.mode = 0644;
2137 	if (device_create_file(hba->dev, &hba->clk_gating.enable_attr))
2138 		dev_err(hba->dev, "Failed to create sysfs for clkgate_enable\n");
2139 }
2140 
2141 static void ufshcd_remove_clk_gating_sysfs(struct ufs_hba *hba)
2142 {
2143 	if (hba->clk_gating.delay_attr.attr.name)
2144 		device_remove_file(hba->dev, &hba->clk_gating.delay_attr);
2145 	if (hba->clk_gating.enable_attr.attr.name)
2146 		device_remove_file(hba->dev, &hba->clk_gating.enable_attr);
2147 }
2148 
2149 static void ufshcd_init_clk_gating(struct ufs_hba *hba)
2150 {
2151 	char wq_name[sizeof("ufs_clk_gating_00")];
2152 
2153 	if (!ufshcd_is_clkgating_allowed(hba))
2154 		return;
2155 
2156 	hba->clk_gating.state = CLKS_ON;
2157 
2158 	hba->clk_gating.delay_ms = 150;
2159 	INIT_DELAYED_WORK(&hba->clk_gating.gate_work, ufshcd_gate_work);
2160 	INIT_WORK(&hba->clk_gating.ungate_work, ufshcd_ungate_work);
2161 
2162 	snprintf(wq_name, ARRAY_SIZE(wq_name), "ufs_clk_gating_%d",
2163 		 hba->host->host_no);
2164 	hba->clk_gating.clk_gating_workq = alloc_ordered_workqueue(wq_name,
2165 					WQ_MEM_RECLAIM | WQ_HIGHPRI);
2166 
2167 	ufshcd_init_clk_gating_sysfs(hba);
2168 
2169 	hba->clk_gating.is_enabled = true;
2170 	hba->clk_gating.is_initialized = true;
2171 }
2172 
2173 static void ufshcd_exit_clk_gating(struct ufs_hba *hba)
2174 {
2175 	if (!hba->clk_gating.is_initialized)
2176 		return;
2177 
2178 	ufshcd_remove_clk_gating_sysfs(hba);
2179 
2180 	/* Ungate the clock if necessary. */
2181 	ufshcd_hold(hba);
2182 	hba->clk_gating.is_initialized = false;
2183 	ufshcd_release(hba);
2184 
2185 	destroy_workqueue(hba->clk_gating.clk_gating_workq);
2186 }
2187 
2188 static void ufshcd_clk_scaling_start_busy(struct ufs_hba *hba)
2189 {
2190 	bool queue_resume_work = false;
2191 	ktime_t curr_t = ktime_get();
2192 	unsigned long flags;
2193 
2194 	if (!ufshcd_is_clkscaling_supported(hba))
2195 		return;
2196 
2197 	spin_lock_irqsave(hba->host->host_lock, flags);
2198 	if (!hba->clk_scaling.active_reqs++)
2199 		queue_resume_work = true;
2200 
2201 	if (!hba->clk_scaling.is_enabled || hba->pm_op_in_progress) {
2202 		spin_unlock_irqrestore(hba->host->host_lock, flags);
2203 		return;
2204 	}
2205 
2206 	if (queue_resume_work)
2207 		queue_work(hba->clk_scaling.workq,
2208 			   &hba->clk_scaling.resume_work);
2209 
2210 	if (!hba->clk_scaling.window_start_t) {
2211 		hba->clk_scaling.window_start_t = curr_t;
2212 		hba->clk_scaling.tot_busy_t = 0;
2213 		hba->clk_scaling.is_busy_started = false;
2214 	}
2215 
2216 	if (!hba->clk_scaling.is_busy_started) {
2217 		hba->clk_scaling.busy_start_t = curr_t;
2218 		hba->clk_scaling.is_busy_started = true;
2219 	}
2220 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2221 }
2222 
2223 static void ufshcd_clk_scaling_update_busy(struct ufs_hba *hba)
2224 {
2225 	struct ufs_clk_scaling *scaling = &hba->clk_scaling;
2226 	unsigned long flags;
2227 
2228 	if (!ufshcd_is_clkscaling_supported(hba))
2229 		return;
2230 
2231 	spin_lock_irqsave(hba->host->host_lock, flags);
2232 	hba->clk_scaling.active_reqs--;
2233 	if (!scaling->active_reqs && scaling->is_busy_started) {
2234 		scaling->tot_busy_t += ktime_to_us(ktime_sub(ktime_get(),
2235 					scaling->busy_start_t));
2236 		scaling->busy_start_t = 0;
2237 		scaling->is_busy_started = false;
2238 	}
2239 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2240 }
2241 
2242 static inline int ufshcd_monitor_opcode2dir(u8 opcode)
2243 {
2244 	if (opcode == READ_6 || opcode == READ_10 || opcode == READ_16)
2245 		return READ;
2246 	else if (opcode == WRITE_6 || opcode == WRITE_10 || opcode == WRITE_16)
2247 		return WRITE;
2248 	else
2249 		return -EINVAL;
2250 }
2251 
2252 static inline bool ufshcd_should_inform_monitor(struct ufs_hba *hba,
2253 						struct ufshcd_lrb *lrbp)
2254 {
2255 	const struct ufs_hba_monitor *m = &hba->monitor;
2256 
2257 	return (m->enabled && lrbp && lrbp->cmd &&
2258 		(!m->chunk_size || m->chunk_size == lrbp->cmd->sdb.length) &&
2259 		ktime_before(hba->monitor.enabled_ts, lrbp->issue_time_stamp));
2260 }
2261 
2262 static void ufshcd_start_monitor(struct ufs_hba *hba,
2263 				 const struct ufshcd_lrb *lrbp)
2264 {
2265 	int dir = ufshcd_monitor_opcode2dir(*lrbp->cmd->cmnd);
2266 	unsigned long flags;
2267 
2268 	spin_lock_irqsave(hba->host->host_lock, flags);
2269 	if (dir >= 0 && hba->monitor.nr_queued[dir]++ == 0)
2270 		hba->monitor.busy_start_ts[dir] = ktime_get();
2271 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2272 }
2273 
2274 static void ufshcd_update_monitor(struct ufs_hba *hba, const struct ufshcd_lrb *lrbp)
2275 {
2276 	int dir = ufshcd_monitor_opcode2dir(*lrbp->cmd->cmnd);
2277 	unsigned long flags;
2278 
2279 	spin_lock_irqsave(hba->host->host_lock, flags);
2280 	if (dir >= 0 && hba->monitor.nr_queued[dir] > 0) {
2281 		const struct request *req = scsi_cmd_to_rq(lrbp->cmd);
2282 		struct ufs_hba_monitor *m = &hba->monitor;
2283 		ktime_t now, inc, lat;
2284 
2285 		now = lrbp->compl_time_stamp;
2286 		inc = ktime_sub(now, m->busy_start_ts[dir]);
2287 		m->total_busy[dir] = ktime_add(m->total_busy[dir], inc);
2288 		m->nr_sec_rw[dir] += blk_rq_sectors(req);
2289 
2290 		/* Update latencies */
2291 		m->nr_req[dir]++;
2292 		lat = ktime_sub(now, lrbp->issue_time_stamp);
2293 		m->lat_sum[dir] += lat;
2294 		if (m->lat_max[dir] < lat || !m->lat_max[dir])
2295 			m->lat_max[dir] = lat;
2296 		if (m->lat_min[dir] > lat || !m->lat_min[dir])
2297 			m->lat_min[dir] = lat;
2298 
2299 		m->nr_queued[dir]--;
2300 		/* Push forward the busy start of monitor */
2301 		m->busy_start_ts[dir] = now;
2302 	}
2303 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2304 }
2305 
2306 /**
2307  * ufshcd_send_command - Send SCSI or device management commands
2308  * @hba: per adapter instance
2309  * @task_tag: Task tag of the command
2310  * @hwq: pointer to hardware queue instance
2311  */
2312 static inline
2313 void ufshcd_send_command(struct ufs_hba *hba, unsigned int task_tag,
2314 			 struct ufs_hw_queue *hwq)
2315 {
2316 	struct ufshcd_lrb *lrbp = &hba->lrb[task_tag];
2317 	unsigned long flags;
2318 
2319 	lrbp->issue_time_stamp = ktime_get();
2320 	lrbp->issue_time_stamp_local_clock = local_clock();
2321 	lrbp->compl_time_stamp = ktime_set(0, 0);
2322 	lrbp->compl_time_stamp_local_clock = 0;
2323 	ufshcd_add_command_trace(hba, task_tag, UFS_CMD_SEND);
2324 	if (lrbp->cmd)
2325 		ufshcd_clk_scaling_start_busy(hba);
2326 	if (unlikely(ufshcd_should_inform_monitor(hba, lrbp)))
2327 		ufshcd_start_monitor(hba, lrbp);
2328 
2329 	if (is_mcq_enabled(hba)) {
2330 		int utrd_size = sizeof(struct utp_transfer_req_desc);
2331 		struct utp_transfer_req_desc *src = lrbp->utr_descriptor_ptr;
2332 		struct utp_transfer_req_desc *dest;
2333 
2334 		spin_lock(&hwq->sq_lock);
2335 		dest = hwq->sqe_base_addr + hwq->sq_tail_slot;
2336 		memcpy(dest, src, utrd_size);
2337 		ufshcd_inc_sq_tail(hwq);
2338 		spin_unlock(&hwq->sq_lock);
2339 	} else {
2340 		spin_lock_irqsave(&hba->outstanding_lock, flags);
2341 		if (hba->vops && hba->vops->setup_xfer_req)
2342 			hba->vops->setup_xfer_req(hba, lrbp->task_tag,
2343 						  !!lrbp->cmd);
2344 		__set_bit(lrbp->task_tag, &hba->outstanding_reqs);
2345 		ufshcd_writel(hba, 1 << lrbp->task_tag,
2346 			      REG_UTP_TRANSFER_REQ_DOOR_BELL);
2347 		spin_unlock_irqrestore(&hba->outstanding_lock, flags);
2348 	}
2349 }
2350 
2351 /**
2352  * ufshcd_copy_sense_data - Copy sense data in case of check condition
2353  * @lrbp: pointer to local reference block
2354  */
2355 static inline void ufshcd_copy_sense_data(struct ufshcd_lrb *lrbp)
2356 {
2357 	u8 *const sense_buffer = lrbp->cmd->sense_buffer;
2358 	u16 resp_len;
2359 	int len;
2360 
2361 	resp_len = be16_to_cpu(lrbp->ucd_rsp_ptr->header.data_segment_length);
2362 	if (sense_buffer && resp_len) {
2363 		int len_to_copy;
2364 
2365 		len = be16_to_cpu(lrbp->ucd_rsp_ptr->sr.sense_data_len);
2366 		len_to_copy = min_t(int, UFS_SENSE_SIZE, len);
2367 
2368 		memcpy(sense_buffer, lrbp->ucd_rsp_ptr->sr.sense_data,
2369 		       len_to_copy);
2370 	}
2371 }
2372 
2373 /**
2374  * ufshcd_copy_query_response() - Copy the Query Response and the data
2375  * descriptor
2376  * @hba: per adapter instance
2377  * @lrbp: pointer to local reference block
2378  *
2379  * Return: 0 upon success; < 0 upon failure.
2380  */
2381 static
2382 int ufshcd_copy_query_response(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2383 {
2384 	struct ufs_query_res *query_res = &hba->dev_cmd.query.response;
2385 
2386 	memcpy(&query_res->upiu_res, &lrbp->ucd_rsp_ptr->qr, QUERY_OSF_SIZE);
2387 
2388 	/* Get the descriptor */
2389 	if (hba->dev_cmd.query.descriptor &&
2390 	    lrbp->ucd_rsp_ptr->qr.opcode == UPIU_QUERY_OPCODE_READ_DESC) {
2391 		u8 *descp = (u8 *)lrbp->ucd_rsp_ptr +
2392 				GENERAL_UPIU_REQUEST_SIZE;
2393 		u16 resp_len;
2394 		u16 buf_len;
2395 
2396 		/* data segment length */
2397 		resp_len = be16_to_cpu(lrbp->ucd_rsp_ptr->header
2398 				       .data_segment_length);
2399 		buf_len = be16_to_cpu(
2400 				hba->dev_cmd.query.request.upiu_req.length);
2401 		if (likely(buf_len >= resp_len)) {
2402 			memcpy(hba->dev_cmd.query.descriptor, descp, resp_len);
2403 		} else {
2404 			dev_warn(hba->dev,
2405 				 "%s: rsp size %d is bigger than buffer size %d",
2406 				 __func__, resp_len, buf_len);
2407 			return -EINVAL;
2408 		}
2409 	}
2410 
2411 	return 0;
2412 }
2413 
2414 /**
2415  * ufshcd_hba_capabilities - Read controller capabilities
2416  * @hba: per adapter instance
2417  *
2418  * Return: 0 on success, negative on error.
2419  */
2420 static inline int ufshcd_hba_capabilities(struct ufs_hba *hba)
2421 {
2422 	int err;
2423 
2424 	hba->capabilities = ufshcd_readl(hba, REG_CONTROLLER_CAPABILITIES);
2425 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_64BIT_ADDRESS)
2426 		hba->capabilities &= ~MASK_64_ADDRESSING_SUPPORT;
2427 
2428 	/* nutrs and nutmrs are 0 based values */
2429 	hba->nutrs = (hba->capabilities & MASK_TRANSFER_REQUESTS_SLOTS) + 1;
2430 	hba->nutmrs =
2431 	((hba->capabilities & MASK_TASK_MANAGEMENT_REQUEST_SLOTS) >> 16) + 1;
2432 	hba->reserved_slot = hba->nutrs - 1;
2433 
2434 	/* Read crypto capabilities */
2435 	err = ufshcd_hba_init_crypto_capabilities(hba);
2436 	if (err) {
2437 		dev_err(hba->dev, "crypto setup failed\n");
2438 		return err;
2439 	}
2440 
2441 	hba->mcq_sup = FIELD_GET(MASK_MCQ_SUPPORT, hba->capabilities);
2442 	if (!hba->mcq_sup)
2443 		return 0;
2444 
2445 	hba->mcq_capabilities = ufshcd_readl(hba, REG_MCQCAP);
2446 	hba->ext_iid_sup = FIELD_GET(MASK_EXT_IID_SUPPORT,
2447 				     hba->mcq_capabilities);
2448 
2449 	return 0;
2450 }
2451 
2452 /**
2453  * ufshcd_ready_for_uic_cmd - Check if controller is ready
2454  *                            to accept UIC commands
2455  * @hba: per adapter instance
2456  *
2457  * Return: true on success, else false.
2458  */
2459 static inline bool ufshcd_ready_for_uic_cmd(struct ufs_hba *hba)
2460 {
2461 	u32 val;
2462 	int ret = read_poll_timeout(ufshcd_readl, val, val & UIC_COMMAND_READY,
2463 				    500, UIC_CMD_TIMEOUT * 1000, false, hba,
2464 				    REG_CONTROLLER_STATUS);
2465 	return ret == 0;
2466 }
2467 
2468 /**
2469  * ufshcd_get_upmcrs - Get the power mode change request status
2470  * @hba: Pointer to adapter instance
2471  *
2472  * This function gets the UPMCRS field of HCS register
2473  *
2474  * Return: value of UPMCRS field.
2475  */
2476 static inline u8 ufshcd_get_upmcrs(struct ufs_hba *hba)
2477 {
2478 	return (ufshcd_readl(hba, REG_CONTROLLER_STATUS) >> 8) & 0x7;
2479 }
2480 
2481 /**
2482  * ufshcd_dispatch_uic_cmd - Dispatch an UIC command to the Unipro layer
2483  * @hba: per adapter instance
2484  * @uic_cmd: UIC command
2485  */
2486 static inline void
2487 ufshcd_dispatch_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2488 {
2489 	lockdep_assert_held(&hba->uic_cmd_mutex);
2490 
2491 	WARN_ON(hba->active_uic_cmd);
2492 
2493 	hba->active_uic_cmd = uic_cmd;
2494 
2495 	/* Write Args */
2496 	ufshcd_writel(hba, uic_cmd->argument1, REG_UIC_COMMAND_ARG_1);
2497 	ufshcd_writel(hba, uic_cmd->argument2, REG_UIC_COMMAND_ARG_2);
2498 	ufshcd_writel(hba, uic_cmd->argument3, REG_UIC_COMMAND_ARG_3);
2499 
2500 	ufshcd_add_uic_command_trace(hba, uic_cmd, UFS_CMD_SEND);
2501 
2502 	/* Write UIC Cmd */
2503 	ufshcd_writel(hba, uic_cmd->command & COMMAND_OPCODE_MASK,
2504 		      REG_UIC_COMMAND);
2505 }
2506 
2507 /**
2508  * ufshcd_wait_for_uic_cmd - Wait for completion of an UIC command
2509  * @hba: per adapter instance
2510  * @uic_cmd: UIC command
2511  *
2512  * Return: 0 only if success.
2513  */
2514 static int
2515 ufshcd_wait_for_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2516 {
2517 	int ret;
2518 	unsigned long flags;
2519 
2520 	lockdep_assert_held(&hba->uic_cmd_mutex);
2521 
2522 	if (wait_for_completion_timeout(&uic_cmd->done,
2523 					msecs_to_jiffies(UIC_CMD_TIMEOUT))) {
2524 		ret = uic_cmd->argument2 & MASK_UIC_COMMAND_RESULT;
2525 	} else {
2526 		ret = -ETIMEDOUT;
2527 		dev_err(hba->dev,
2528 			"uic cmd 0x%x with arg3 0x%x completion timeout\n",
2529 			uic_cmd->command, uic_cmd->argument3);
2530 
2531 		if (!uic_cmd->cmd_active) {
2532 			dev_err(hba->dev, "%s: UIC cmd has been completed, return the result\n",
2533 				__func__);
2534 			ret = uic_cmd->argument2 & MASK_UIC_COMMAND_RESULT;
2535 		}
2536 	}
2537 
2538 	spin_lock_irqsave(hba->host->host_lock, flags);
2539 	hba->active_uic_cmd = NULL;
2540 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2541 
2542 	return ret;
2543 }
2544 
2545 /**
2546  * __ufshcd_send_uic_cmd - Send UIC commands and retrieve the result
2547  * @hba: per adapter instance
2548  * @uic_cmd: UIC command
2549  * @completion: initialize the completion only if this is set to true
2550  *
2551  * Return: 0 only if success.
2552  */
2553 static int
2554 __ufshcd_send_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd,
2555 		      bool completion)
2556 {
2557 	lockdep_assert_held(&hba->uic_cmd_mutex);
2558 
2559 	if (!ufshcd_ready_for_uic_cmd(hba)) {
2560 		dev_err(hba->dev,
2561 			"Controller not ready to accept UIC commands\n");
2562 		return -EIO;
2563 	}
2564 
2565 	if (completion)
2566 		init_completion(&uic_cmd->done);
2567 
2568 	uic_cmd->cmd_active = 1;
2569 	ufshcd_dispatch_uic_cmd(hba, uic_cmd);
2570 
2571 	return 0;
2572 }
2573 
2574 /**
2575  * ufshcd_send_uic_cmd - Send UIC commands and retrieve the result
2576  * @hba: per adapter instance
2577  * @uic_cmd: UIC command
2578  *
2579  * Return: 0 only if success.
2580  */
2581 int ufshcd_send_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2582 {
2583 	int ret;
2584 
2585 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_UIC_CMD)
2586 		return 0;
2587 
2588 	ufshcd_hold(hba);
2589 	mutex_lock(&hba->uic_cmd_mutex);
2590 	ufshcd_add_delay_before_dme_cmd(hba);
2591 
2592 	ret = __ufshcd_send_uic_cmd(hba, uic_cmd, true);
2593 	if (!ret)
2594 		ret = ufshcd_wait_for_uic_cmd(hba, uic_cmd);
2595 
2596 	mutex_unlock(&hba->uic_cmd_mutex);
2597 
2598 	ufshcd_release(hba);
2599 	return ret;
2600 }
2601 
2602 /**
2603  * ufshcd_sgl_to_prdt - SG list to PRTD (Physical Region Description Table, 4DW format)
2604  * @hba:	per-adapter instance
2605  * @lrbp:	pointer to local reference block
2606  * @sg_entries:	The number of sg lists actually used
2607  * @sg_list:	Pointer to SG list
2608  */
2609 static void ufshcd_sgl_to_prdt(struct ufs_hba *hba, struct ufshcd_lrb *lrbp, int sg_entries,
2610 			       struct scatterlist *sg_list)
2611 {
2612 	struct ufshcd_sg_entry *prd;
2613 	struct scatterlist *sg;
2614 	int i;
2615 
2616 	if (sg_entries) {
2617 
2618 		if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN)
2619 			lrbp->utr_descriptor_ptr->prd_table_length =
2620 				cpu_to_le16(sg_entries * ufshcd_sg_entry_size(hba));
2621 		else
2622 			lrbp->utr_descriptor_ptr->prd_table_length = cpu_to_le16(sg_entries);
2623 
2624 		prd = lrbp->ucd_prdt_ptr;
2625 
2626 		for_each_sg(sg_list, sg, sg_entries, i) {
2627 			const unsigned int len = sg_dma_len(sg);
2628 
2629 			/*
2630 			 * From the UFSHCI spec: "Data Byte Count (DBC): A '0'
2631 			 * based value that indicates the length, in bytes, of
2632 			 * the data block. A maximum of length of 256KB may
2633 			 * exist for any entry. Bits 1:0 of this field shall be
2634 			 * 11b to indicate Dword granularity. A value of '3'
2635 			 * indicates 4 bytes, '7' indicates 8 bytes, etc."
2636 			 */
2637 			WARN_ONCE(len > SZ_256K, "len = %#x\n", len);
2638 			prd->size = cpu_to_le32(len - 1);
2639 			prd->addr = cpu_to_le64(sg->dma_address);
2640 			prd->reserved = 0;
2641 			prd = (void *)prd + ufshcd_sg_entry_size(hba);
2642 		}
2643 	} else {
2644 		lrbp->utr_descriptor_ptr->prd_table_length = 0;
2645 	}
2646 }
2647 
2648 /**
2649  * ufshcd_map_sg - Map scatter-gather list to prdt
2650  * @hba: per adapter instance
2651  * @lrbp: pointer to local reference block
2652  *
2653  * Return: 0 in case of success, non-zero value in case of failure.
2654  */
2655 static int ufshcd_map_sg(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2656 {
2657 	struct scsi_cmnd *cmd = lrbp->cmd;
2658 	int sg_segments = scsi_dma_map(cmd);
2659 
2660 	if (sg_segments < 0)
2661 		return sg_segments;
2662 
2663 	ufshcd_sgl_to_prdt(hba, lrbp, sg_segments, scsi_sglist(cmd));
2664 
2665 	return 0;
2666 }
2667 
2668 /**
2669  * ufshcd_enable_intr - enable interrupts
2670  * @hba: per adapter instance
2671  * @intrs: interrupt bits
2672  */
2673 static void ufshcd_enable_intr(struct ufs_hba *hba, u32 intrs)
2674 {
2675 	u32 set = ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
2676 
2677 	if (hba->ufs_version == ufshci_version(1, 0)) {
2678 		u32 rw;
2679 		rw = set & INTERRUPT_MASK_RW_VER_10;
2680 		set = rw | ((set ^ intrs) & intrs);
2681 	} else {
2682 		set |= intrs;
2683 	}
2684 
2685 	ufshcd_writel(hba, set, REG_INTERRUPT_ENABLE);
2686 }
2687 
2688 /**
2689  * ufshcd_disable_intr - disable interrupts
2690  * @hba: per adapter instance
2691  * @intrs: interrupt bits
2692  */
2693 static void ufshcd_disable_intr(struct ufs_hba *hba, u32 intrs)
2694 {
2695 	u32 set = ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
2696 
2697 	if (hba->ufs_version == ufshci_version(1, 0)) {
2698 		u32 rw;
2699 		rw = (set & INTERRUPT_MASK_RW_VER_10) &
2700 			~(intrs & INTERRUPT_MASK_RW_VER_10);
2701 		set = rw | ((set & intrs) & ~INTERRUPT_MASK_RW_VER_10);
2702 
2703 	} else {
2704 		set &= ~intrs;
2705 	}
2706 
2707 	ufshcd_writel(hba, set, REG_INTERRUPT_ENABLE);
2708 }
2709 
2710 /**
2711  * ufshcd_prepare_req_desc_hdr - Fill UTP Transfer request descriptor header according to request
2712  * descriptor according to request
2713  * @lrbp: pointer to local reference block
2714  * @upiu_flags: flags required in the header
2715  * @cmd_dir: requests data direction
2716  * @ehs_length: Total EHS Length (in 32‐bytes units of all Extra Header Segments)
2717  */
2718 static void ufshcd_prepare_req_desc_hdr(struct ufshcd_lrb *lrbp, u8 *upiu_flags,
2719 					enum dma_data_direction cmd_dir, int ehs_length)
2720 {
2721 	struct utp_transfer_req_desc *req_desc = lrbp->utr_descriptor_ptr;
2722 	struct request_desc_header *h = &req_desc->header;
2723 	enum utp_data_direction data_direction;
2724 
2725 	*h = (typeof(*h)){ };
2726 
2727 	if (cmd_dir == DMA_FROM_DEVICE) {
2728 		data_direction = UTP_DEVICE_TO_HOST;
2729 		*upiu_flags = UPIU_CMD_FLAGS_READ;
2730 	} else if (cmd_dir == DMA_TO_DEVICE) {
2731 		data_direction = UTP_HOST_TO_DEVICE;
2732 		*upiu_flags = UPIU_CMD_FLAGS_WRITE;
2733 	} else {
2734 		data_direction = UTP_NO_DATA_TRANSFER;
2735 		*upiu_flags = UPIU_CMD_FLAGS_NONE;
2736 	}
2737 
2738 	h->command_type = lrbp->command_type;
2739 	h->data_direction = data_direction;
2740 	h->ehs_length = ehs_length;
2741 
2742 	if (lrbp->intr_cmd)
2743 		h->interrupt = 1;
2744 
2745 	/* Prepare crypto related dwords */
2746 	ufshcd_prepare_req_desc_hdr_crypto(lrbp, h);
2747 
2748 	/*
2749 	 * assigning invalid value for command status. Controller
2750 	 * updates OCS on command completion, with the command
2751 	 * status
2752 	 */
2753 	h->ocs = OCS_INVALID_COMMAND_STATUS;
2754 
2755 	req_desc->prd_table_length = 0;
2756 }
2757 
2758 /**
2759  * ufshcd_prepare_utp_scsi_cmd_upiu() - fills the utp_transfer_req_desc,
2760  * for scsi commands
2761  * @lrbp: local reference block pointer
2762  * @upiu_flags: flags
2763  */
2764 static
2765 void ufshcd_prepare_utp_scsi_cmd_upiu(struct ufshcd_lrb *lrbp, u8 upiu_flags)
2766 {
2767 	struct scsi_cmnd *cmd = lrbp->cmd;
2768 	struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2769 	unsigned short cdb_len;
2770 
2771 	ucd_req_ptr->header = (struct utp_upiu_header){
2772 		.transaction_code = UPIU_TRANSACTION_COMMAND,
2773 		.flags = upiu_flags,
2774 		.lun = lrbp->lun,
2775 		.task_tag = lrbp->task_tag,
2776 		.command_set_type = UPIU_COMMAND_SET_TYPE_SCSI,
2777 	};
2778 
2779 	WARN_ON_ONCE(ucd_req_ptr->header.task_tag != lrbp->task_tag);
2780 
2781 	ucd_req_ptr->sc.exp_data_transfer_len = cpu_to_be32(cmd->sdb.length);
2782 
2783 	cdb_len = min_t(unsigned short, cmd->cmd_len, UFS_CDB_SIZE);
2784 	memset(ucd_req_ptr->sc.cdb, 0, UFS_CDB_SIZE);
2785 	memcpy(ucd_req_ptr->sc.cdb, cmd->cmnd, cdb_len);
2786 
2787 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2788 }
2789 
2790 /**
2791  * ufshcd_prepare_utp_query_req_upiu() - fill the utp_transfer_req_desc for query request
2792  * @hba: UFS hba
2793  * @lrbp: local reference block pointer
2794  * @upiu_flags: flags
2795  */
2796 static void ufshcd_prepare_utp_query_req_upiu(struct ufs_hba *hba,
2797 				struct ufshcd_lrb *lrbp, u8 upiu_flags)
2798 {
2799 	struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2800 	struct ufs_query *query = &hba->dev_cmd.query;
2801 	u16 len = be16_to_cpu(query->request.upiu_req.length);
2802 
2803 	/* Query request header */
2804 	ucd_req_ptr->header = (struct utp_upiu_header){
2805 		.transaction_code = UPIU_TRANSACTION_QUERY_REQ,
2806 		.flags = upiu_flags,
2807 		.lun = lrbp->lun,
2808 		.task_tag = lrbp->task_tag,
2809 		.query_function = query->request.query_func,
2810 		/* Data segment length only need for WRITE_DESC */
2811 		.data_segment_length =
2812 			query->request.upiu_req.opcode ==
2813 					UPIU_QUERY_OPCODE_WRITE_DESC ?
2814 				cpu_to_be16(len) :
2815 				0,
2816 	};
2817 
2818 	/* Copy the Query Request buffer as is */
2819 	memcpy(&ucd_req_ptr->qr, &query->request.upiu_req,
2820 			QUERY_OSF_SIZE);
2821 
2822 	/* Copy the Descriptor */
2823 	if (query->request.upiu_req.opcode == UPIU_QUERY_OPCODE_WRITE_DESC)
2824 		memcpy(ucd_req_ptr + 1, query->descriptor, len);
2825 
2826 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2827 }
2828 
2829 static inline void ufshcd_prepare_utp_nop_upiu(struct ufshcd_lrb *lrbp)
2830 {
2831 	struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2832 
2833 	memset(ucd_req_ptr, 0, sizeof(struct utp_upiu_req));
2834 
2835 	ucd_req_ptr->header = (struct utp_upiu_header){
2836 		.transaction_code = UPIU_TRANSACTION_NOP_OUT,
2837 		.task_tag = lrbp->task_tag,
2838 	};
2839 
2840 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2841 }
2842 
2843 /**
2844  * ufshcd_compose_devman_upiu - UFS Protocol Information Unit(UPIU)
2845  *			     for Device Management Purposes
2846  * @hba: per adapter instance
2847  * @lrbp: pointer to local reference block
2848  *
2849  * Return: 0 upon success; < 0 upon failure.
2850  */
2851 static int ufshcd_compose_devman_upiu(struct ufs_hba *hba,
2852 				      struct ufshcd_lrb *lrbp)
2853 {
2854 	u8 upiu_flags;
2855 	int ret = 0;
2856 
2857 	if (hba->ufs_version <= ufshci_version(1, 1))
2858 		lrbp->command_type = UTP_CMD_TYPE_DEV_MANAGE;
2859 	else
2860 		lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
2861 
2862 	ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, DMA_NONE, 0);
2863 	if (hba->dev_cmd.type == DEV_CMD_TYPE_QUERY)
2864 		ufshcd_prepare_utp_query_req_upiu(hba, lrbp, upiu_flags);
2865 	else if (hba->dev_cmd.type == DEV_CMD_TYPE_NOP)
2866 		ufshcd_prepare_utp_nop_upiu(lrbp);
2867 	else
2868 		ret = -EINVAL;
2869 
2870 	return ret;
2871 }
2872 
2873 /**
2874  * ufshcd_comp_scsi_upiu - UFS Protocol Information Unit(UPIU)
2875  *			   for SCSI Purposes
2876  * @hba: per adapter instance
2877  * @lrbp: pointer to local reference block
2878  */
2879 static void ufshcd_comp_scsi_upiu(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2880 {
2881 	struct request *rq = scsi_cmd_to_rq(lrbp->cmd);
2882 	unsigned int ioprio_class = IOPRIO_PRIO_CLASS(req_get_ioprio(rq));
2883 	u8 upiu_flags;
2884 
2885 	if (hba->ufs_version <= ufshci_version(1, 1))
2886 		lrbp->command_type = UTP_CMD_TYPE_SCSI;
2887 	else
2888 		lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
2889 
2890 	ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags,
2891 				    lrbp->cmd->sc_data_direction, 0);
2892 	if (ioprio_class == IOPRIO_CLASS_RT)
2893 		upiu_flags |= UPIU_CMD_FLAGS_CP;
2894 	ufshcd_prepare_utp_scsi_cmd_upiu(lrbp, upiu_flags);
2895 }
2896 
2897 /**
2898  * ufshcd_upiu_wlun_to_scsi_wlun - maps UPIU W-LUN id to SCSI W-LUN ID
2899  * @upiu_wlun_id: UPIU W-LUN id
2900  *
2901  * Return: SCSI W-LUN id.
2902  */
2903 static inline u16 ufshcd_upiu_wlun_to_scsi_wlun(u8 upiu_wlun_id)
2904 {
2905 	return (upiu_wlun_id & ~UFS_UPIU_WLUN_ID) | SCSI_W_LUN_BASE;
2906 }
2907 
2908 static inline bool is_device_wlun(struct scsi_device *sdev)
2909 {
2910 	return sdev->lun ==
2911 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_UFS_DEVICE_WLUN);
2912 }
2913 
2914 /*
2915  * Associate the UFS controller queue with the default and poll HCTX types.
2916  * Initialize the mq_map[] arrays.
2917  */
2918 static void ufshcd_map_queues(struct Scsi_Host *shost)
2919 {
2920 	struct ufs_hba *hba = shost_priv(shost);
2921 	int i, queue_offset = 0;
2922 
2923 	if (!is_mcq_supported(hba)) {
2924 		hba->nr_queues[HCTX_TYPE_DEFAULT] = 1;
2925 		hba->nr_queues[HCTX_TYPE_READ] = 0;
2926 		hba->nr_queues[HCTX_TYPE_POLL] = 1;
2927 		hba->nr_hw_queues = 1;
2928 	}
2929 
2930 	for (i = 0; i < shost->nr_maps; i++) {
2931 		struct blk_mq_queue_map *map = &shost->tag_set.map[i];
2932 
2933 		map->nr_queues = hba->nr_queues[i];
2934 		if (!map->nr_queues)
2935 			continue;
2936 		map->queue_offset = queue_offset;
2937 		if (i == HCTX_TYPE_POLL && !is_mcq_supported(hba))
2938 			map->queue_offset = 0;
2939 
2940 		blk_mq_map_queues(map);
2941 		queue_offset += map->nr_queues;
2942 	}
2943 }
2944 
2945 static void ufshcd_init_lrb(struct ufs_hba *hba, struct ufshcd_lrb *lrb, int i)
2946 {
2947 	struct utp_transfer_cmd_desc *cmd_descp = (void *)hba->ucdl_base_addr +
2948 		i * ufshcd_get_ucd_size(hba);
2949 	struct utp_transfer_req_desc *utrdlp = hba->utrdl_base_addr;
2950 	dma_addr_t cmd_desc_element_addr = hba->ucdl_dma_addr +
2951 		i * ufshcd_get_ucd_size(hba);
2952 	u16 response_offset = offsetof(struct utp_transfer_cmd_desc,
2953 				       response_upiu);
2954 	u16 prdt_offset = offsetof(struct utp_transfer_cmd_desc, prd_table);
2955 
2956 	lrb->utr_descriptor_ptr = utrdlp + i;
2957 	lrb->utrd_dma_addr = hba->utrdl_dma_addr +
2958 		i * sizeof(struct utp_transfer_req_desc);
2959 	lrb->ucd_req_ptr = (struct utp_upiu_req *)cmd_descp->command_upiu;
2960 	lrb->ucd_req_dma_addr = cmd_desc_element_addr;
2961 	lrb->ucd_rsp_ptr = (struct utp_upiu_rsp *)cmd_descp->response_upiu;
2962 	lrb->ucd_rsp_dma_addr = cmd_desc_element_addr + response_offset;
2963 	lrb->ucd_prdt_ptr = (struct ufshcd_sg_entry *)cmd_descp->prd_table;
2964 	lrb->ucd_prdt_dma_addr = cmd_desc_element_addr + prdt_offset;
2965 }
2966 
2967 /**
2968  * ufshcd_queuecommand - main entry point for SCSI requests
2969  * @host: SCSI host pointer
2970  * @cmd: command from SCSI Midlayer
2971  *
2972  * Return: 0 for success, non-zero in case of failure.
2973  */
2974 static int ufshcd_queuecommand(struct Scsi_Host *host, struct scsi_cmnd *cmd)
2975 {
2976 	struct ufs_hba *hba = shost_priv(host);
2977 	int tag = scsi_cmd_to_rq(cmd)->tag;
2978 	struct ufshcd_lrb *lrbp;
2979 	int err = 0;
2980 	struct ufs_hw_queue *hwq = NULL;
2981 
2982 	switch (hba->ufshcd_state) {
2983 	case UFSHCD_STATE_OPERATIONAL:
2984 		break;
2985 	case UFSHCD_STATE_EH_SCHEDULED_NON_FATAL:
2986 		/*
2987 		 * SCSI error handler can call ->queuecommand() while UFS error
2988 		 * handler is in progress. Error interrupts could change the
2989 		 * state from UFSHCD_STATE_RESET to
2990 		 * UFSHCD_STATE_EH_SCHEDULED_NON_FATAL. Prevent requests
2991 		 * being issued in that case.
2992 		 */
2993 		if (ufshcd_eh_in_progress(hba)) {
2994 			err = SCSI_MLQUEUE_HOST_BUSY;
2995 			goto out;
2996 		}
2997 		break;
2998 	case UFSHCD_STATE_EH_SCHEDULED_FATAL:
2999 		/*
3000 		 * pm_runtime_get_sync() is used at error handling preparation
3001 		 * stage. If a scsi cmd, e.g. the SSU cmd, is sent from hba's
3002 		 * PM ops, it can never be finished if we let SCSI layer keep
3003 		 * retrying it, which gets err handler stuck forever. Neither
3004 		 * can we let the scsi cmd pass through, because UFS is in bad
3005 		 * state, the scsi cmd may eventually time out, which will get
3006 		 * err handler blocked for too long. So, just fail the scsi cmd
3007 		 * sent from PM ops, err handler can recover PM error anyways.
3008 		 */
3009 		if (hba->pm_op_in_progress) {
3010 			hba->force_reset = true;
3011 			set_host_byte(cmd, DID_BAD_TARGET);
3012 			scsi_done(cmd);
3013 			goto out;
3014 		}
3015 		fallthrough;
3016 	case UFSHCD_STATE_RESET:
3017 		err = SCSI_MLQUEUE_HOST_BUSY;
3018 		goto out;
3019 	case UFSHCD_STATE_ERROR:
3020 		set_host_byte(cmd, DID_ERROR);
3021 		scsi_done(cmd);
3022 		goto out;
3023 	}
3024 
3025 	hba->req_abort_count = 0;
3026 
3027 	ufshcd_hold(hba);
3028 
3029 	lrbp = &hba->lrb[tag];
3030 	lrbp->cmd = cmd;
3031 	lrbp->task_tag = tag;
3032 	lrbp->lun = ufshcd_scsi_to_upiu_lun(cmd->device->lun);
3033 	lrbp->intr_cmd = !ufshcd_is_intr_aggr_allowed(hba);
3034 
3035 	ufshcd_prepare_lrbp_crypto(scsi_cmd_to_rq(cmd), lrbp);
3036 
3037 	lrbp->req_abort_skip = false;
3038 
3039 	ufshcd_comp_scsi_upiu(hba, lrbp);
3040 
3041 	err = ufshcd_map_sg(hba, lrbp);
3042 	if (err) {
3043 		ufshcd_release(hba);
3044 		goto out;
3045 	}
3046 
3047 	if (is_mcq_enabled(hba))
3048 		hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(cmd));
3049 
3050 	ufshcd_send_command(hba, tag, hwq);
3051 
3052 out:
3053 	if (ufs_trigger_eh(hba)) {
3054 		unsigned long flags;
3055 
3056 		spin_lock_irqsave(hba->host->host_lock, flags);
3057 		ufshcd_schedule_eh_work(hba);
3058 		spin_unlock_irqrestore(hba->host->host_lock, flags);
3059 	}
3060 
3061 	return err;
3062 }
3063 
3064 static int ufshcd_compose_dev_cmd(struct ufs_hba *hba,
3065 		struct ufshcd_lrb *lrbp, enum dev_cmd_type cmd_type, int tag)
3066 {
3067 	lrbp->cmd = NULL;
3068 	lrbp->task_tag = tag;
3069 	lrbp->lun = 0; /* device management cmd is not specific to any LUN */
3070 	lrbp->intr_cmd = true; /* No interrupt aggregation */
3071 	ufshcd_prepare_lrbp_crypto(NULL, lrbp);
3072 	hba->dev_cmd.type = cmd_type;
3073 
3074 	return ufshcd_compose_devman_upiu(hba, lrbp);
3075 }
3076 
3077 /*
3078  * Check with the block layer if the command is inflight
3079  * @cmd: command to check.
3080  *
3081  * Return: true if command is inflight; false if not.
3082  */
3083 bool ufshcd_cmd_inflight(struct scsi_cmnd *cmd)
3084 {
3085 	struct request *rq;
3086 
3087 	if (!cmd)
3088 		return false;
3089 
3090 	rq = scsi_cmd_to_rq(cmd);
3091 	if (!blk_mq_request_started(rq))
3092 		return false;
3093 
3094 	return true;
3095 }
3096 
3097 /*
3098  * Clear the pending command in the controller and wait until
3099  * the controller confirms that the command has been cleared.
3100  * @hba: per adapter instance
3101  * @task_tag: The tag number of the command to be cleared.
3102  */
3103 static int ufshcd_clear_cmd(struct ufs_hba *hba, u32 task_tag)
3104 {
3105 	u32 mask;
3106 	unsigned long flags;
3107 	int err;
3108 
3109 	if (is_mcq_enabled(hba)) {
3110 		/*
3111 		 * MCQ mode. Clean up the MCQ resources similar to
3112 		 * what the ufshcd_utrl_clear() does for SDB mode.
3113 		 */
3114 		err = ufshcd_mcq_sq_cleanup(hba, task_tag);
3115 		if (err) {
3116 			dev_err(hba->dev, "%s: failed tag=%d. err=%d\n",
3117 				__func__, task_tag, err);
3118 			return err;
3119 		}
3120 		return 0;
3121 	}
3122 
3123 	mask = 1U << task_tag;
3124 
3125 	/* clear outstanding transaction before retry */
3126 	spin_lock_irqsave(hba->host->host_lock, flags);
3127 	ufshcd_utrl_clear(hba, mask);
3128 	spin_unlock_irqrestore(hba->host->host_lock, flags);
3129 
3130 	/*
3131 	 * wait for h/w to clear corresponding bit in door-bell.
3132 	 * max. wait is 1 sec.
3133 	 */
3134 	return ufshcd_wait_for_register(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL,
3135 					mask, ~mask, 1000, 1000);
3136 }
3137 
3138 /**
3139  * ufshcd_dev_cmd_completion() - handles device management command responses
3140  * @hba: per adapter instance
3141  * @lrbp: pointer to local reference block
3142  *
3143  * Return: 0 upon success; < 0 upon failure.
3144  */
3145 static int
3146 ufshcd_dev_cmd_completion(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
3147 {
3148 	enum upiu_response_transaction resp;
3149 	int err = 0;
3150 
3151 	hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
3152 	resp = ufshcd_get_req_rsp(lrbp->ucd_rsp_ptr);
3153 
3154 	switch (resp) {
3155 	case UPIU_TRANSACTION_NOP_IN:
3156 		if (hba->dev_cmd.type != DEV_CMD_TYPE_NOP) {
3157 			err = -EINVAL;
3158 			dev_err(hba->dev, "%s: unexpected response %x\n",
3159 					__func__, resp);
3160 		}
3161 		break;
3162 	case UPIU_TRANSACTION_QUERY_RSP: {
3163 		u8 response = lrbp->ucd_rsp_ptr->header.response;
3164 
3165 		if (response == 0)
3166 			err = ufshcd_copy_query_response(hba, lrbp);
3167 		break;
3168 	}
3169 	case UPIU_TRANSACTION_REJECT_UPIU:
3170 		/* TODO: handle Reject UPIU Response */
3171 		err = -EPERM;
3172 		dev_err(hba->dev, "%s: Reject UPIU not fully implemented\n",
3173 				__func__);
3174 		break;
3175 	case UPIU_TRANSACTION_RESPONSE:
3176 		if (hba->dev_cmd.type != DEV_CMD_TYPE_RPMB) {
3177 			err = -EINVAL;
3178 			dev_err(hba->dev, "%s: unexpected response %x\n", __func__, resp);
3179 		}
3180 		break;
3181 	default:
3182 		err = -EINVAL;
3183 		dev_err(hba->dev, "%s: Invalid device management cmd response: %x\n",
3184 				__func__, resp);
3185 		break;
3186 	}
3187 
3188 	return err;
3189 }
3190 
3191 static int ufshcd_wait_for_dev_cmd(struct ufs_hba *hba,
3192 		struct ufshcd_lrb *lrbp, int max_timeout)
3193 {
3194 	unsigned long time_left = msecs_to_jiffies(max_timeout);
3195 	unsigned long flags;
3196 	bool pending;
3197 	int err;
3198 
3199 retry:
3200 	time_left = wait_for_completion_timeout(hba->dev_cmd.complete,
3201 						time_left);
3202 
3203 	if (likely(time_left)) {
3204 		/*
3205 		 * The completion handler called complete() and the caller of
3206 		 * this function still owns the @lrbp tag so the code below does
3207 		 * not trigger any race conditions.
3208 		 */
3209 		hba->dev_cmd.complete = NULL;
3210 		err = ufshcd_get_tr_ocs(lrbp, NULL);
3211 		if (!err)
3212 			err = ufshcd_dev_cmd_completion(hba, lrbp);
3213 	} else {
3214 		err = -ETIMEDOUT;
3215 		dev_dbg(hba->dev, "%s: dev_cmd request timedout, tag %d\n",
3216 			__func__, lrbp->task_tag);
3217 
3218 		/* MCQ mode */
3219 		if (is_mcq_enabled(hba)) {
3220 			err = ufshcd_clear_cmd(hba, lrbp->task_tag);
3221 			hba->dev_cmd.complete = NULL;
3222 			return err;
3223 		}
3224 
3225 		/* SDB mode */
3226 		if (ufshcd_clear_cmd(hba, lrbp->task_tag) == 0) {
3227 			/* successfully cleared the command, retry if needed */
3228 			err = -EAGAIN;
3229 			/*
3230 			 * Since clearing the command succeeded we also need to
3231 			 * clear the task tag bit from the outstanding_reqs
3232 			 * variable.
3233 			 */
3234 			spin_lock_irqsave(&hba->outstanding_lock, flags);
3235 			pending = test_bit(lrbp->task_tag,
3236 					   &hba->outstanding_reqs);
3237 			if (pending) {
3238 				hba->dev_cmd.complete = NULL;
3239 				__clear_bit(lrbp->task_tag,
3240 					    &hba->outstanding_reqs);
3241 			}
3242 			spin_unlock_irqrestore(&hba->outstanding_lock, flags);
3243 
3244 			if (!pending) {
3245 				/*
3246 				 * The completion handler ran while we tried to
3247 				 * clear the command.
3248 				 */
3249 				time_left = 1;
3250 				goto retry;
3251 			}
3252 		} else {
3253 			dev_err(hba->dev, "%s: failed to clear tag %d\n",
3254 				__func__, lrbp->task_tag);
3255 
3256 			spin_lock_irqsave(&hba->outstanding_lock, flags);
3257 			pending = test_bit(lrbp->task_tag,
3258 					   &hba->outstanding_reqs);
3259 			if (pending)
3260 				hba->dev_cmd.complete = NULL;
3261 			spin_unlock_irqrestore(&hba->outstanding_lock, flags);
3262 
3263 			if (!pending) {
3264 				/*
3265 				 * The completion handler ran while we tried to
3266 				 * clear the command.
3267 				 */
3268 				time_left = 1;
3269 				goto retry;
3270 			}
3271 		}
3272 	}
3273 
3274 	return err;
3275 }
3276 
3277 /**
3278  * ufshcd_exec_dev_cmd - API for sending device management requests
3279  * @hba: UFS hba
3280  * @cmd_type: specifies the type (NOP, Query...)
3281  * @timeout: timeout in milliseconds
3282  *
3283  * Return: 0 upon success; < 0 upon failure.
3284  *
3285  * NOTE: Since there is only one available tag for device management commands,
3286  * it is expected you hold the hba->dev_cmd.lock mutex.
3287  */
3288 static int ufshcd_exec_dev_cmd(struct ufs_hba *hba,
3289 		enum dev_cmd_type cmd_type, int timeout)
3290 {
3291 	DECLARE_COMPLETION_ONSTACK(wait);
3292 	const u32 tag = hba->reserved_slot;
3293 	struct ufshcd_lrb *lrbp;
3294 	int err;
3295 
3296 	/* Protects use of hba->reserved_slot. */
3297 	lockdep_assert_held(&hba->dev_cmd.lock);
3298 
3299 	down_read(&hba->clk_scaling_lock);
3300 
3301 	lrbp = &hba->lrb[tag];
3302 	lrbp->cmd = NULL;
3303 	err = ufshcd_compose_dev_cmd(hba, lrbp, cmd_type, tag);
3304 	if (unlikely(err))
3305 		goto out;
3306 
3307 	hba->dev_cmd.complete = &wait;
3308 
3309 	ufshcd_add_query_upiu_trace(hba, UFS_QUERY_SEND, lrbp->ucd_req_ptr);
3310 
3311 	ufshcd_send_command(hba, tag, hba->dev_cmd_queue);
3312 	err = ufshcd_wait_for_dev_cmd(hba, lrbp, timeout);
3313 	ufshcd_add_query_upiu_trace(hba, err ? UFS_QUERY_ERR : UFS_QUERY_COMP,
3314 				    (struct utp_upiu_req *)lrbp->ucd_rsp_ptr);
3315 
3316 out:
3317 	up_read(&hba->clk_scaling_lock);
3318 	return err;
3319 }
3320 
3321 /**
3322  * ufshcd_init_query() - init the query response and request parameters
3323  * @hba: per-adapter instance
3324  * @request: address of the request pointer to be initialized
3325  * @response: address of the response pointer to be initialized
3326  * @opcode: operation to perform
3327  * @idn: flag idn to access
3328  * @index: LU number to access
3329  * @selector: query/flag/descriptor further identification
3330  */
3331 static inline void ufshcd_init_query(struct ufs_hba *hba,
3332 		struct ufs_query_req **request, struct ufs_query_res **response,
3333 		enum query_opcode opcode, u8 idn, u8 index, u8 selector)
3334 {
3335 	*request = &hba->dev_cmd.query.request;
3336 	*response = &hba->dev_cmd.query.response;
3337 	memset(*request, 0, sizeof(struct ufs_query_req));
3338 	memset(*response, 0, sizeof(struct ufs_query_res));
3339 	(*request)->upiu_req.opcode = opcode;
3340 	(*request)->upiu_req.idn = idn;
3341 	(*request)->upiu_req.index = index;
3342 	(*request)->upiu_req.selector = selector;
3343 }
3344 
3345 static int ufshcd_query_flag_retry(struct ufs_hba *hba,
3346 	enum query_opcode opcode, enum flag_idn idn, u8 index, bool *flag_res)
3347 {
3348 	int ret;
3349 	int retries;
3350 
3351 	for (retries = 0; retries < QUERY_REQ_RETRIES; retries++) {
3352 		ret = ufshcd_query_flag(hba, opcode, idn, index, flag_res);
3353 		if (ret)
3354 			dev_dbg(hba->dev,
3355 				"%s: failed with error %d, retries %d\n",
3356 				__func__, ret, retries);
3357 		else
3358 			break;
3359 	}
3360 
3361 	if (ret)
3362 		dev_err(hba->dev,
3363 			"%s: query flag, opcode %d, idn %d, failed with error %d after %d retries\n",
3364 			__func__, opcode, idn, ret, retries);
3365 	return ret;
3366 }
3367 
3368 /**
3369  * ufshcd_query_flag() - API function for sending flag query requests
3370  * @hba: per-adapter instance
3371  * @opcode: flag query to perform
3372  * @idn: flag idn to access
3373  * @index: flag index to access
3374  * @flag_res: the flag value after the query request completes
3375  *
3376  * Return: 0 for success, non-zero in case of failure.
3377  */
3378 int ufshcd_query_flag(struct ufs_hba *hba, enum query_opcode opcode,
3379 			enum flag_idn idn, u8 index, bool *flag_res)
3380 {
3381 	struct ufs_query_req *request = NULL;
3382 	struct ufs_query_res *response = NULL;
3383 	int err, selector = 0;
3384 	int timeout = QUERY_REQ_TIMEOUT;
3385 
3386 	BUG_ON(!hba);
3387 
3388 	ufshcd_hold(hba);
3389 	mutex_lock(&hba->dev_cmd.lock);
3390 	ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3391 			selector);
3392 
3393 	switch (opcode) {
3394 	case UPIU_QUERY_OPCODE_SET_FLAG:
3395 	case UPIU_QUERY_OPCODE_CLEAR_FLAG:
3396 	case UPIU_QUERY_OPCODE_TOGGLE_FLAG:
3397 		request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3398 		break;
3399 	case UPIU_QUERY_OPCODE_READ_FLAG:
3400 		request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3401 		if (!flag_res) {
3402 			/* No dummy reads */
3403 			dev_err(hba->dev, "%s: Invalid argument for read request\n",
3404 					__func__);
3405 			err = -EINVAL;
3406 			goto out_unlock;
3407 		}
3408 		break;
3409 	default:
3410 		dev_err(hba->dev,
3411 			"%s: Expected query flag opcode but got = %d\n",
3412 			__func__, opcode);
3413 		err = -EINVAL;
3414 		goto out_unlock;
3415 	}
3416 
3417 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, timeout);
3418 
3419 	if (err) {
3420 		dev_err(hba->dev,
3421 			"%s: Sending flag query for idn %d failed, err = %d\n",
3422 			__func__, idn, err);
3423 		goto out_unlock;
3424 	}
3425 
3426 	if (flag_res)
3427 		*flag_res = (be32_to_cpu(response->upiu_res.value) &
3428 				MASK_QUERY_UPIU_FLAG_LOC) & 0x1;
3429 
3430 out_unlock:
3431 	mutex_unlock(&hba->dev_cmd.lock);
3432 	ufshcd_release(hba);
3433 	return err;
3434 }
3435 
3436 /**
3437  * ufshcd_query_attr - API function for sending attribute requests
3438  * @hba: per-adapter instance
3439  * @opcode: attribute opcode
3440  * @idn: attribute idn to access
3441  * @index: index field
3442  * @selector: selector field
3443  * @attr_val: the attribute value after the query request completes
3444  *
3445  * Return: 0 for success, non-zero in case of failure.
3446 */
3447 int ufshcd_query_attr(struct ufs_hba *hba, enum query_opcode opcode,
3448 		      enum attr_idn idn, u8 index, u8 selector, u32 *attr_val)
3449 {
3450 	struct ufs_query_req *request = NULL;
3451 	struct ufs_query_res *response = NULL;
3452 	int err;
3453 
3454 	BUG_ON(!hba);
3455 
3456 	if (!attr_val) {
3457 		dev_err(hba->dev, "%s: attribute value required for opcode 0x%x\n",
3458 				__func__, opcode);
3459 		return -EINVAL;
3460 	}
3461 
3462 	ufshcd_hold(hba);
3463 
3464 	mutex_lock(&hba->dev_cmd.lock);
3465 	ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3466 			selector);
3467 
3468 	switch (opcode) {
3469 	case UPIU_QUERY_OPCODE_WRITE_ATTR:
3470 		request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3471 		request->upiu_req.value = cpu_to_be32(*attr_val);
3472 		break;
3473 	case UPIU_QUERY_OPCODE_READ_ATTR:
3474 		request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3475 		break;
3476 	default:
3477 		dev_err(hba->dev, "%s: Expected query attr opcode but got = 0x%.2x\n",
3478 				__func__, opcode);
3479 		err = -EINVAL;
3480 		goto out_unlock;
3481 	}
3482 
3483 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT);
3484 
3485 	if (err) {
3486 		dev_err(hba->dev, "%s: opcode 0x%.2x for idn %d failed, index %d, err = %d\n",
3487 				__func__, opcode, idn, index, err);
3488 		goto out_unlock;
3489 	}
3490 
3491 	*attr_val = be32_to_cpu(response->upiu_res.value);
3492 
3493 out_unlock:
3494 	mutex_unlock(&hba->dev_cmd.lock);
3495 	ufshcd_release(hba);
3496 	return err;
3497 }
3498 
3499 /**
3500  * ufshcd_query_attr_retry() - API function for sending query
3501  * attribute with retries
3502  * @hba: per-adapter instance
3503  * @opcode: attribute opcode
3504  * @idn: attribute idn to access
3505  * @index: index field
3506  * @selector: selector field
3507  * @attr_val: the attribute value after the query request
3508  * completes
3509  *
3510  * Return: 0 for success, non-zero in case of failure.
3511 */
3512 int ufshcd_query_attr_retry(struct ufs_hba *hba,
3513 	enum query_opcode opcode, enum attr_idn idn, u8 index, u8 selector,
3514 	u32 *attr_val)
3515 {
3516 	int ret = 0;
3517 	u32 retries;
3518 
3519 	for (retries = QUERY_REQ_RETRIES; retries > 0; retries--) {
3520 		ret = ufshcd_query_attr(hba, opcode, idn, index,
3521 						selector, attr_val);
3522 		if (ret)
3523 			dev_dbg(hba->dev, "%s: failed with error %d, retries %d\n",
3524 				__func__, ret, retries);
3525 		else
3526 			break;
3527 	}
3528 
3529 	if (ret)
3530 		dev_err(hba->dev,
3531 			"%s: query attribute, idn %d, failed with error %d after %d retries\n",
3532 			__func__, idn, ret, QUERY_REQ_RETRIES);
3533 	return ret;
3534 }
3535 
3536 static int __ufshcd_query_descriptor(struct ufs_hba *hba,
3537 			enum query_opcode opcode, enum desc_idn idn, u8 index,
3538 			u8 selector, u8 *desc_buf, int *buf_len)
3539 {
3540 	struct ufs_query_req *request = NULL;
3541 	struct ufs_query_res *response = NULL;
3542 	int err;
3543 
3544 	BUG_ON(!hba);
3545 
3546 	if (!desc_buf) {
3547 		dev_err(hba->dev, "%s: descriptor buffer required for opcode 0x%x\n",
3548 				__func__, opcode);
3549 		return -EINVAL;
3550 	}
3551 
3552 	if (*buf_len < QUERY_DESC_MIN_SIZE || *buf_len > QUERY_DESC_MAX_SIZE) {
3553 		dev_err(hba->dev, "%s: descriptor buffer size (%d) is out of range\n",
3554 				__func__, *buf_len);
3555 		return -EINVAL;
3556 	}
3557 
3558 	ufshcd_hold(hba);
3559 
3560 	mutex_lock(&hba->dev_cmd.lock);
3561 	ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3562 			selector);
3563 	hba->dev_cmd.query.descriptor = desc_buf;
3564 	request->upiu_req.length = cpu_to_be16(*buf_len);
3565 
3566 	switch (opcode) {
3567 	case UPIU_QUERY_OPCODE_WRITE_DESC:
3568 		request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3569 		break;
3570 	case UPIU_QUERY_OPCODE_READ_DESC:
3571 		request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3572 		break;
3573 	default:
3574 		dev_err(hba->dev,
3575 				"%s: Expected query descriptor opcode but got = 0x%.2x\n",
3576 				__func__, opcode);
3577 		err = -EINVAL;
3578 		goto out_unlock;
3579 	}
3580 
3581 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT);
3582 
3583 	if (err) {
3584 		dev_err(hba->dev, "%s: opcode 0x%.2x for idn %d failed, index %d, err = %d\n",
3585 				__func__, opcode, idn, index, err);
3586 		goto out_unlock;
3587 	}
3588 
3589 	*buf_len = be16_to_cpu(response->upiu_res.length);
3590 
3591 out_unlock:
3592 	hba->dev_cmd.query.descriptor = NULL;
3593 	mutex_unlock(&hba->dev_cmd.lock);
3594 	ufshcd_release(hba);
3595 	return err;
3596 }
3597 
3598 /**
3599  * ufshcd_query_descriptor_retry - API function for sending descriptor requests
3600  * @hba: per-adapter instance
3601  * @opcode: attribute opcode
3602  * @idn: attribute idn to access
3603  * @index: index field
3604  * @selector: selector field
3605  * @desc_buf: the buffer that contains the descriptor
3606  * @buf_len: length parameter passed to the device
3607  *
3608  * The buf_len parameter will contain, on return, the length parameter
3609  * received on the response.
3610  *
3611  * Return: 0 for success, non-zero in case of failure.
3612  */
3613 int ufshcd_query_descriptor_retry(struct ufs_hba *hba,
3614 				  enum query_opcode opcode,
3615 				  enum desc_idn idn, u8 index,
3616 				  u8 selector,
3617 				  u8 *desc_buf, int *buf_len)
3618 {
3619 	int err;
3620 	int retries;
3621 
3622 	for (retries = QUERY_REQ_RETRIES; retries > 0; retries--) {
3623 		err = __ufshcd_query_descriptor(hba, opcode, idn, index,
3624 						selector, desc_buf, buf_len);
3625 		if (!err || err == -EINVAL)
3626 			break;
3627 	}
3628 
3629 	return err;
3630 }
3631 
3632 /**
3633  * ufshcd_read_desc_param - read the specified descriptor parameter
3634  * @hba: Pointer to adapter instance
3635  * @desc_id: descriptor idn value
3636  * @desc_index: descriptor index
3637  * @param_offset: offset of the parameter to read
3638  * @param_read_buf: pointer to buffer where parameter would be read
3639  * @param_size: sizeof(param_read_buf)
3640  *
3641  * Return: 0 in case of success, non-zero otherwise.
3642  */
3643 int ufshcd_read_desc_param(struct ufs_hba *hba,
3644 			   enum desc_idn desc_id,
3645 			   int desc_index,
3646 			   u8 param_offset,
3647 			   u8 *param_read_buf,
3648 			   u8 param_size)
3649 {
3650 	int ret;
3651 	u8 *desc_buf;
3652 	int buff_len = QUERY_DESC_MAX_SIZE;
3653 	bool is_kmalloc = true;
3654 
3655 	/* Safety check */
3656 	if (desc_id >= QUERY_DESC_IDN_MAX || !param_size)
3657 		return -EINVAL;
3658 
3659 	/* Check whether we need temp memory */
3660 	if (param_offset != 0 || param_size < buff_len) {
3661 		desc_buf = kzalloc(buff_len, GFP_KERNEL);
3662 		if (!desc_buf)
3663 			return -ENOMEM;
3664 	} else {
3665 		desc_buf = param_read_buf;
3666 		is_kmalloc = false;
3667 	}
3668 
3669 	/* Request for full descriptor */
3670 	ret = ufshcd_query_descriptor_retry(hba, UPIU_QUERY_OPCODE_READ_DESC,
3671 					    desc_id, desc_index, 0,
3672 					    desc_buf, &buff_len);
3673 	if (ret) {
3674 		dev_err(hba->dev, "%s: Failed reading descriptor. desc_id %d, desc_index %d, param_offset %d, ret %d\n",
3675 			__func__, desc_id, desc_index, param_offset, ret);
3676 		goto out;
3677 	}
3678 
3679 	/* Update descriptor length */
3680 	buff_len = desc_buf[QUERY_DESC_LENGTH_OFFSET];
3681 
3682 	if (param_offset >= buff_len) {
3683 		dev_err(hba->dev, "%s: Invalid offset 0x%x in descriptor IDN 0x%x, length 0x%x\n",
3684 			__func__, param_offset, desc_id, buff_len);
3685 		ret = -EINVAL;
3686 		goto out;
3687 	}
3688 
3689 	/* Sanity check */
3690 	if (desc_buf[QUERY_DESC_DESC_TYPE_OFFSET] != desc_id) {
3691 		dev_err(hba->dev, "%s: invalid desc_id %d in descriptor header\n",
3692 			__func__, desc_buf[QUERY_DESC_DESC_TYPE_OFFSET]);
3693 		ret = -EINVAL;
3694 		goto out;
3695 	}
3696 
3697 	if (is_kmalloc) {
3698 		/* Make sure we don't copy more data than available */
3699 		if (param_offset >= buff_len)
3700 			ret = -EINVAL;
3701 		else
3702 			memcpy(param_read_buf, &desc_buf[param_offset],
3703 			       min_t(u32, param_size, buff_len - param_offset));
3704 	}
3705 out:
3706 	if (is_kmalloc)
3707 		kfree(desc_buf);
3708 	return ret;
3709 }
3710 
3711 /**
3712  * struct uc_string_id - unicode string
3713  *
3714  * @len: size of this descriptor inclusive
3715  * @type: descriptor type
3716  * @uc: unicode string character
3717  */
3718 struct uc_string_id {
3719 	u8 len;
3720 	u8 type;
3721 	wchar_t uc[];
3722 } __packed;
3723 
3724 /* replace non-printable or non-ASCII characters with spaces */
3725 static inline char ufshcd_remove_non_printable(u8 ch)
3726 {
3727 	return (ch >= 0x20 && ch <= 0x7e) ? ch : ' ';
3728 }
3729 
3730 /**
3731  * ufshcd_read_string_desc - read string descriptor
3732  * @hba: pointer to adapter instance
3733  * @desc_index: descriptor index
3734  * @buf: pointer to buffer where descriptor would be read,
3735  *       the caller should free the memory.
3736  * @ascii: if true convert from unicode to ascii characters
3737  *         null terminated string.
3738  *
3739  * Return:
3740  * *      string size on success.
3741  * *      -ENOMEM: on allocation failure
3742  * *      -EINVAL: on a wrong parameter
3743  */
3744 int ufshcd_read_string_desc(struct ufs_hba *hba, u8 desc_index,
3745 			    u8 **buf, bool ascii)
3746 {
3747 	struct uc_string_id *uc_str;
3748 	u8 *str;
3749 	int ret;
3750 
3751 	if (!buf)
3752 		return -EINVAL;
3753 
3754 	uc_str = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
3755 	if (!uc_str)
3756 		return -ENOMEM;
3757 
3758 	ret = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_STRING, desc_index, 0,
3759 				     (u8 *)uc_str, QUERY_DESC_MAX_SIZE);
3760 	if (ret < 0) {
3761 		dev_err(hba->dev, "Reading String Desc failed after %d retries. err = %d\n",
3762 			QUERY_REQ_RETRIES, ret);
3763 		str = NULL;
3764 		goto out;
3765 	}
3766 
3767 	if (uc_str->len <= QUERY_DESC_HDR_SIZE) {
3768 		dev_dbg(hba->dev, "String Desc is of zero length\n");
3769 		str = NULL;
3770 		ret = 0;
3771 		goto out;
3772 	}
3773 
3774 	if (ascii) {
3775 		ssize_t ascii_len;
3776 		int i;
3777 		/* remove header and divide by 2 to move from UTF16 to UTF8 */
3778 		ascii_len = (uc_str->len - QUERY_DESC_HDR_SIZE) / 2 + 1;
3779 		str = kzalloc(ascii_len, GFP_KERNEL);
3780 		if (!str) {
3781 			ret = -ENOMEM;
3782 			goto out;
3783 		}
3784 
3785 		/*
3786 		 * the descriptor contains string in UTF16 format
3787 		 * we need to convert to utf-8 so it can be displayed
3788 		 */
3789 		ret = utf16s_to_utf8s(uc_str->uc,
3790 				      uc_str->len - QUERY_DESC_HDR_SIZE,
3791 				      UTF16_BIG_ENDIAN, str, ascii_len - 1);
3792 
3793 		/* replace non-printable or non-ASCII characters with spaces */
3794 		for (i = 0; i < ret; i++)
3795 			str[i] = ufshcd_remove_non_printable(str[i]);
3796 
3797 		str[ret++] = '\0';
3798 
3799 	} else {
3800 		str = kmemdup(uc_str, uc_str->len, GFP_KERNEL);
3801 		if (!str) {
3802 			ret = -ENOMEM;
3803 			goto out;
3804 		}
3805 		ret = uc_str->len;
3806 	}
3807 out:
3808 	*buf = str;
3809 	kfree(uc_str);
3810 	return ret;
3811 }
3812 
3813 /**
3814  * ufshcd_read_unit_desc_param - read the specified unit descriptor parameter
3815  * @hba: Pointer to adapter instance
3816  * @lun: lun id
3817  * @param_offset: offset of the parameter to read
3818  * @param_read_buf: pointer to buffer where parameter would be read
3819  * @param_size: sizeof(param_read_buf)
3820  *
3821  * Return: 0 in case of success, non-zero otherwise.
3822  */
3823 static inline int ufshcd_read_unit_desc_param(struct ufs_hba *hba,
3824 					      int lun,
3825 					      enum unit_desc_param param_offset,
3826 					      u8 *param_read_buf,
3827 					      u32 param_size)
3828 {
3829 	/*
3830 	 * Unit descriptors are only available for general purpose LUs (LUN id
3831 	 * from 0 to 7) and RPMB Well known LU.
3832 	 */
3833 	if (!ufs_is_valid_unit_desc_lun(&hba->dev_info, lun))
3834 		return -EOPNOTSUPP;
3835 
3836 	return ufshcd_read_desc_param(hba, QUERY_DESC_IDN_UNIT, lun,
3837 				      param_offset, param_read_buf, param_size);
3838 }
3839 
3840 static int ufshcd_get_ref_clk_gating_wait(struct ufs_hba *hba)
3841 {
3842 	int err = 0;
3843 	u32 gating_wait = UFSHCD_REF_CLK_GATING_WAIT_US;
3844 
3845 	if (hba->dev_info.wspecversion >= 0x300) {
3846 		err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
3847 				QUERY_ATTR_IDN_REF_CLK_GATING_WAIT_TIME, 0, 0,
3848 				&gating_wait);
3849 		if (err)
3850 			dev_err(hba->dev, "Failed reading bRefClkGatingWait. err = %d, use default %uus\n",
3851 					 err, gating_wait);
3852 
3853 		if (gating_wait == 0) {
3854 			gating_wait = UFSHCD_REF_CLK_GATING_WAIT_US;
3855 			dev_err(hba->dev, "Undefined ref clk gating wait time, use default %uus\n",
3856 					 gating_wait);
3857 		}
3858 
3859 		hba->dev_info.clk_gating_wait_us = gating_wait;
3860 	}
3861 
3862 	return err;
3863 }
3864 
3865 /**
3866  * ufshcd_memory_alloc - allocate memory for host memory space data structures
3867  * @hba: per adapter instance
3868  *
3869  * 1. Allocate DMA memory for Command Descriptor array
3870  *	Each command descriptor consist of Command UPIU, Response UPIU and PRDT
3871  * 2. Allocate DMA memory for UTP Transfer Request Descriptor List (UTRDL).
3872  * 3. Allocate DMA memory for UTP Task Management Request Descriptor List
3873  *	(UTMRDL)
3874  * 4. Allocate memory for local reference block(lrb).
3875  *
3876  * Return: 0 for success, non-zero in case of failure.
3877  */
3878 static int ufshcd_memory_alloc(struct ufs_hba *hba)
3879 {
3880 	size_t utmrdl_size, utrdl_size, ucdl_size;
3881 
3882 	/* Allocate memory for UTP command descriptors */
3883 	ucdl_size = ufshcd_get_ucd_size(hba) * hba->nutrs;
3884 	hba->ucdl_base_addr = dmam_alloc_coherent(hba->dev,
3885 						  ucdl_size,
3886 						  &hba->ucdl_dma_addr,
3887 						  GFP_KERNEL);
3888 
3889 	/*
3890 	 * UFSHCI requires UTP command descriptor to be 128 byte aligned.
3891 	 */
3892 	if (!hba->ucdl_base_addr ||
3893 	    WARN_ON(hba->ucdl_dma_addr & (128 - 1))) {
3894 		dev_err(hba->dev,
3895 			"Command Descriptor Memory allocation failed\n");
3896 		goto out;
3897 	}
3898 
3899 	/*
3900 	 * Allocate memory for UTP Transfer descriptors
3901 	 * UFSHCI requires 1KB alignment of UTRD
3902 	 */
3903 	utrdl_size = (sizeof(struct utp_transfer_req_desc) * hba->nutrs);
3904 	hba->utrdl_base_addr = dmam_alloc_coherent(hba->dev,
3905 						   utrdl_size,
3906 						   &hba->utrdl_dma_addr,
3907 						   GFP_KERNEL);
3908 	if (!hba->utrdl_base_addr ||
3909 	    WARN_ON(hba->utrdl_dma_addr & (SZ_1K - 1))) {
3910 		dev_err(hba->dev,
3911 			"Transfer Descriptor Memory allocation failed\n");
3912 		goto out;
3913 	}
3914 
3915 	/*
3916 	 * Skip utmrdl allocation; it may have been
3917 	 * allocated during first pass and not released during
3918 	 * MCQ memory allocation.
3919 	 * See ufshcd_release_sdb_queue() and ufshcd_config_mcq()
3920 	 */
3921 	if (hba->utmrdl_base_addr)
3922 		goto skip_utmrdl;
3923 	/*
3924 	 * Allocate memory for UTP Task Management descriptors
3925 	 * UFSHCI requires 1KB alignment of UTMRD
3926 	 */
3927 	utmrdl_size = sizeof(struct utp_task_req_desc) * hba->nutmrs;
3928 	hba->utmrdl_base_addr = dmam_alloc_coherent(hba->dev,
3929 						    utmrdl_size,
3930 						    &hba->utmrdl_dma_addr,
3931 						    GFP_KERNEL);
3932 	if (!hba->utmrdl_base_addr ||
3933 	    WARN_ON(hba->utmrdl_dma_addr & (SZ_1K - 1))) {
3934 		dev_err(hba->dev,
3935 		"Task Management Descriptor Memory allocation failed\n");
3936 		goto out;
3937 	}
3938 
3939 skip_utmrdl:
3940 	/* Allocate memory for local reference block */
3941 	hba->lrb = devm_kcalloc(hba->dev,
3942 				hba->nutrs, sizeof(struct ufshcd_lrb),
3943 				GFP_KERNEL);
3944 	if (!hba->lrb) {
3945 		dev_err(hba->dev, "LRB Memory allocation failed\n");
3946 		goto out;
3947 	}
3948 	return 0;
3949 out:
3950 	return -ENOMEM;
3951 }
3952 
3953 /**
3954  * ufshcd_host_memory_configure - configure local reference block with
3955  *				memory offsets
3956  * @hba: per adapter instance
3957  *
3958  * Configure Host memory space
3959  * 1. Update Corresponding UTRD.UCDBA and UTRD.UCDBAU with UCD DMA
3960  * address.
3961  * 2. Update each UTRD with Response UPIU offset, Response UPIU length
3962  * and PRDT offset.
3963  * 3. Save the corresponding addresses of UTRD, UCD.CMD, UCD.RSP and UCD.PRDT
3964  * into local reference block.
3965  */
3966 static void ufshcd_host_memory_configure(struct ufs_hba *hba)
3967 {
3968 	struct utp_transfer_req_desc *utrdlp;
3969 	dma_addr_t cmd_desc_dma_addr;
3970 	dma_addr_t cmd_desc_element_addr;
3971 	u16 response_offset;
3972 	u16 prdt_offset;
3973 	int cmd_desc_size;
3974 	int i;
3975 
3976 	utrdlp = hba->utrdl_base_addr;
3977 
3978 	response_offset =
3979 		offsetof(struct utp_transfer_cmd_desc, response_upiu);
3980 	prdt_offset =
3981 		offsetof(struct utp_transfer_cmd_desc, prd_table);
3982 
3983 	cmd_desc_size = ufshcd_get_ucd_size(hba);
3984 	cmd_desc_dma_addr = hba->ucdl_dma_addr;
3985 
3986 	for (i = 0; i < hba->nutrs; i++) {
3987 		/* Configure UTRD with command descriptor base address */
3988 		cmd_desc_element_addr =
3989 				(cmd_desc_dma_addr + (cmd_desc_size * i));
3990 		utrdlp[i].command_desc_base_addr =
3991 				cpu_to_le64(cmd_desc_element_addr);
3992 
3993 		/* Response upiu and prdt offset should be in double words */
3994 		if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN) {
3995 			utrdlp[i].response_upiu_offset =
3996 				cpu_to_le16(response_offset);
3997 			utrdlp[i].prd_table_offset =
3998 				cpu_to_le16(prdt_offset);
3999 			utrdlp[i].response_upiu_length =
4000 				cpu_to_le16(ALIGNED_UPIU_SIZE);
4001 		} else {
4002 			utrdlp[i].response_upiu_offset =
4003 				cpu_to_le16(response_offset >> 2);
4004 			utrdlp[i].prd_table_offset =
4005 				cpu_to_le16(prdt_offset >> 2);
4006 			utrdlp[i].response_upiu_length =
4007 				cpu_to_le16(ALIGNED_UPIU_SIZE >> 2);
4008 		}
4009 
4010 		ufshcd_init_lrb(hba, &hba->lrb[i], i);
4011 	}
4012 }
4013 
4014 /**
4015  * ufshcd_dme_link_startup - Notify Unipro to perform link startup
4016  * @hba: per adapter instance
4017  *
4018  * UIC_CMD_DME_LINK_STARTUP command must be issued to Unipro layer,
4019  * in order to initialize the Unipro link startup procedure.
4020  * Once the Unipro links are up, the device connected to the controller
4021  * is detected.
4022  *
4023  * Return: 0 on success, non-zero value on failure.
4024  */
4025 static int ufshcd_dme_link_startup(struct ufs_hba *hba)
4026 {
4027 	struct uic_command uic_cmd = {0};
4028 	int ret;
4029 
4030 	uic_cmd.command = UIC_CMD_DME_LINK_STARTUP;
4031 
4032 	ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4033 	if (ret)
4034 		dev_dbg(hba->dev,
4035 			"dme-link-startup: error code %d\n", ret);
4036 	return ret;
4037 }
4038 /**
4039  * ufshcd_dme_reset - UIC command for DME_RESET
4040  * @hba: per adapter instance
4041  *
4042  * DME_RESET command is issued in order to reset UniPro stack.
4043  * This function now deals with cold reset.
4044  *
4045  * Return: 0 on success, non-zero value on failure.
4046  */
4047 static int ufshcd_dme_reset(struct ufs_hba *hba)
4048 {
4049 	struct uic_command uic_cmd = {0};
4050 	int ret;
4051 
4052 	uic_cmd.command = UIC_CMD_DME_RESET;
4053 
4054 	ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4055 	if (ret)
4056 		dev_err(hba->dev,
4057 			"dme-reset: error code %d\n", ret);
4058 
4059 	return ret;
4060 }
4061 
4062 int ufshcd_dme_configure_adapt(struct ufs_hba *hba,
4063 			       int agreed_gear,
4064 			       int adapt_val)
4065 {
4066 	int ret;
4067 
4068 	if (agreed_gear < UFS_HS_G4)
4069 		adapt_val = PA_NO_ADAPT;
4070 
4071 	ret = ufshcd_dme_set(hba,
4072 			     UIC_ARG_MIB(PA_TXHSADAPTTYPE),
4073 			     adapt_val);
4074 	return ret;
4075 }
4076 EXPORT_SYMBOL_GPL(ufshcd_dme_configure_adapt);
4077 
4078 /**
4079  * ufshcd_dme_enable - UIC command for DME_ENABLE
4080  * @hba: per adapter instance
4081  *
4082  * DME_ENABLE command is issued in order to enable UniPro stack.
4083  *
4084  * Return: 0 on success, non-zero value on failure.
4085  */
4086 static int ufshcd_dme_enable(struct ufs_hba *hba)
4087 {
4088 	struct uic_command uic_cmd = {0};
4089 	int ret;
4090 
4091 	uic_cmd.command = UIC_CMD_DME_ENABLE;
4092 
4093 	ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4094 	if (ret)
4095 		dev_err(hba->dev,
4096 			"dme-enable: error code %d\n", ret);
4097 
4098 	return ret;
4099 }
4100 
4101 static inline void ufshcd_add_delay_before_dme_cmd(struct ufs_hba *hba)
4102 {
4103 	#define MIN_DELAY_BEFORE_DME_CMDS_US	1000
4104 	unsigned long min_sleep_time_us;
4105 
4106 	if (!(hba->quirks & UFSHCD_QUIRK_DELAY_BEFORE_DME_CMDS))
4107 		return;
4108 
4109 	/*
4110 	 * last_dme_cmd_tstamp will be 0 only for 1st call to
4111 	 * this function
4112 	 */
4113 	if (unlikely(!ktime_to_us(hba->last_dme_cmd_tstamp))) {
4114 		min_sleep_time_us = MIN_DELAY_BEFORE_DME_CMDS_US;
4115 	} else {
4116 		unsigned long delta =
4117 			(unsigned long) ktime_to_us(
4118 				ktime_sub(ktime_get(),
4119 				hba->last_dme_cmd_tstamp));
4120 
4121 		if (delta < MIN_DELAY_BEFORE_DME_CMDS_US)
4122 			min_sleep_time_us =
4123 				MIN_DELAY_BEFORE_DME_CMDS_US - delta;
4124 		else
4125 			return; /* no more delay required */
4126 	}
4127 
4128 	/* allow sleep for extra 50us if needed */
4129 	usleep_range(min_sleep_time_us, min_sleep_time_us + 50);
4130 }
4131 
4132 /**
4133  * ufshcd_dme_set_attr - UIC command for DME_SET, DME_PEER_SET
4134  * @hba: per adapter instance
4135  * @attr_sel: uic command argument1
4136  * @attr_set: attribute set type as uic command argument2
4137  * @mib_val: setting value as uic command argument3
4138  * @peer: indicate whether peer or local
4139  *
4140  * Return: 0 on success, non-zero value on failure.
4141  */
4142 int ufshcd_dme_set_attr(struct ufs_hba *hba, u32 attr_sel,
4143 			u8 attr_set, u32 mib_val, u8 peer)
4144 {
4145 	struct uic_command uic_cmd = {0};
4146 	static const char *const action[] = {
4147 		"dme-set",
4148 		"dme-peer-set"
4149 	};
4150 	const char *set = action[!!peer];
4151 	int ret;
4152 	int retries = UFS_UIC_COMMAND_RETRIES;
4153 
4154 	uic_cmd.command = peer ?
4155 		UIC_CMD_DME_PEER_SET : UIC_CMD_DME_SET;
4156 	uic_cmd.argument1 = attr_sel;
4157 	uic_cmd.argument2 = UIC_ARG_ATTR_TYPE(attr_set);
4158 	uic_cmd.argument3 = mib_val;
4159 
4160 	do {
4161 		/* for peer attributes we retry upon failure */
4162 		ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4163 		if (ret)
4164 			dev_dbg(hba->dev, "%s: attr-id 0x%x val 0x%x error code %d\n",
4165 				set, UIC_GET_ATTR_ID(attr_sel), mib_val, ret);
4166 	} while (ret && peer && --retries);
4167 
4168 	if (ret)
4169 		dev_err(hba->dev, "%s: attr-id 0x%x val 0x%x failed %d retries\n",
4170 			set, UIC_GET_ATTR_ID(attr_sel), mib_val,
4171 			UFS_UIC_COMMAND_RETRIES - retries);
4172 
4173 	return ret;
4174 }
4175 EXPORT_SYMBOL_GPL(ufshcd_dme_set_attr);
4176 
4177 /**
4178  * ufshcd_dme_get_attr - UIC command for DME_GET, DME_PEER_GET
4179  * @hba: per adapter instance
4180  * @attr_sel: uic command argument1
4181  * @mib_val: the value of the attribute as returned by the UIC command
4182  * @peer: indicate whether peer or local
4183  *
4184  * Return: 0 on success, non-zero value on failure.
4185  */
4186 int ufshcd_dme_get_attr(struct ufs_hba *hba, u32 attr_sel,
4187 			u32 *mib_val, u8 peer)
4188 {
4189 	struct uic_command uic_cmd = {0};
4190 	static const char *const action[] = {
4191 		"dme-get",
4192 		"dme-peer-get"
4193 	};
4194 	const char *get = action[!!peer];
4195 	int ret;
4196 	int retries = UFS_UIC_COMMAND_RETRIES;
4197 	struct ufs_pa_layer_attr orig_pwr_info;
4198 	struct ufs_pa_layer_attr temp_pwr_info;
4199 	bool pwr_mode_change = false;
4200 
4201 	if (peer && (hba->quirks & UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE)) {
4202 		orig_pwr_info = hba->pwr_info;
4203 		temp_pwr_info = orig_pwr_info;
4204 
4205 		if (orig_pwr_info.pwr_tx == FAST_MODE ||
4206 		    orig_pwr_info.pwr_rx == FAST_MODE) {
4207 			temp_pwr_info.pwr_tx = FASTAUTO_MODE;
4208 			temp_pwr_info.pwr_rx = FASTAUTO_MODE;
4209 			pwr_mode_change = true;
4210 		} else if (orig_pwr_info.pwr_tx == SLOW_MODE ||
4211 		    orig_pwr_info.pwr_rx == SLOW_MODE) {
4212 			temp_pwr_info.pwr_tx = SLOWAUTO_MODE;
4213 			temp_pwr_info.pwr_rx = SLOWAUTO_MODE;
4214 			pwr_mode_change = true;
4215 		}
4216 		if (pwr_mode_change) {
4217 			ret = ufshcd_change_power_mode(hba, &temp_pwr_info);
4218 			if (ret)
4219 				goto out;
4220 		}
4221 	}
4222 
4223 	uic_cmd.command = peer ?
4224 		UIC_CMD_DME_PEER_GET : UIC_CMD_DME_GET;
4225 	uic_cmd.argument1 = attr_sel;
4226 
4227 	do {
4228 		/* for peer attributes we retry upon failure */
4229 		ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4230 		if (ret)
4231 			dev_dbg(hba->dev, "%s: attr-id 0x%x error code %d\n",
4232 				get, UIC_GET_ATTR_ID(attr_sel), ret);
4233 	} while (ret && peer && --retries);
4234 
4235 	if (ret)
4236 		dev_err(hba->dev, "%s: attr-id 0x%x failed %d retries\n",
4237 			get, UIC_GET_ATTR_ID(attr_sel),
4238 			UFS_UIC_COMMAND_RETRIES - retries);
4239 
4240 	if (mib_val && !ret)
4241 		*mib_val = uic_cmd.argument3;
4242 
4243 	if (peer && (hba->quirks & UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE)
4244 	    && pwr_mode_change)
4245 		ufshcd_change_power_mode(hba, &orig_pwr_info);
4246 out:
4247 	return ret;
4248 }
4249 EXPORT_SYMBOL_GPL(ufshcd_dme_get_attr);
4250 
4251 /**
4252  * ufshcd_uic_pwr_ctrl - executes UIC commands (which affects the link power
4253  * state) and waits for it to take effect.
4254  *
4255  * @hba: per adapter instance
4256  * @cmd: UIC command to execute
4257  *
4258  * DME operations like DME_SET(PA_PWRMODE), DME_HIBERNATE_ENTER &
4259  * DME_HIBERNATE_EXIT commands take some time to take its effect on both host
4260  * and device UniPro link and hence it's final completion would be indicated by
4261  * dedicated status bits in Interrupt Status register (UPMS, UHES, UHXS) in
4262  * addition to normal UIC command completion Status (UCCS). This function only
4263  * returns after the relevant status bits indicate the completion.
4264  *
4265  * Return: 0 on success, non-zero value on failure.
4266  */
4267 static int ufshcd_uic_pwr_ctrl(struct ufs_hba *hba, struct uic_command *cmd)
4268 {
4269 	DECLARE_COMPLETION_ONSTACK(uic_async_done);
4270 	unsigned long flags;
4271 	u8 status;
4272 	int ret;
4273 	bool reenable_intr = false;
4274 
4275 	mutex_lock(&hba->uic_cmd_mutex);
4276 	ufshcd_add_delay_before_dme_cmd(hba);
4277 
4278 	spin_lock_irqsave(hba->host->host_lock, flags);
4279 	if (ufshcd_is_link_broken(hba)) {
4280 		ret = -ENOLINK;
4281 		goto out_unlock;
4282 	}
4283 	hba->uic_async_done = &uic_async_done;
4284 	if (ufshcd_readl(hba, REG_INTERRUPT_ENABLE) & UIC_COMMAND_COMPL) {
4285 		ufshcd_disable_intr(hba, UIC_COMMAND_COMPL);
4286 		/*
4287 		 * Make sure UIC command completion interrupt is disabled before
4288 		 * issuing UIC command.
4289 		 */
4290 		wmb();
4291 		reenable_intr = true;
4292 	}
4293 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4294 	ret = __ufshcd_send_uic_cmd(hba, cmd, false);
4295 	if (ret) {
4296 		dev_err(hba->dev,
4297 			"pwr ctrl cmd 0x%x with mode 0x%x uic error %d\n",
4298 			cmd->command, cmd->argument3, ret);
4299 		goto out;
4300 	}
4301 
4302 	if (!wait_for_completion_timeout(hba->uic_async_done,
4303 					 msecs_to_jiffies(UIC_CMD_TIMEOUT))) {
4304 		dev_err(hba->dev,
4305 			"pwr ctrl cmd 0x%x with mode 0x%x completion timeout\n",
4306 			cmd->command, cmd->argument3);
4307 
4308 		if (!cmd->cmd_active) {
4309 			dev_err(hba->dev, "%s: Power Mode Change operation has been completed, go check UPMCRS\n",
4310 				__func__);
4311 			goto check_upmcrs;
4312 		}
4313 
4314 		ret = -ETIMEDOUT;
4315 		goto out;
4316 	}
4317 
4318 check_upmcrs:
4319 	status = ufshcd_get_upmcrs(hba);
4320 	if (status != PWR_LOCAL) {
4321 		dev_err(hba->dev,
4322 			"pwr ctrl cmd 0x%x failed, host upmcrs:0x%x\n",
4323 			cmd->command, status);
4324 		ret = (status != PWR_OK) ? status : -1;
4325 	}
4326 out:
4327 	if (ret) {
4328 		ufshcd_print_host_state(hba);
4329 		ufshcd_print_pwr_info(hba);
4330 		ufshcd_print_evt_hist(hba);
4331 	}
4332 
4333 	spin_lock_irqsave(hba->host->host_lock, flags);
4334 	hba->active_uic_cmd = NULL;
4335 	hba->uic_async_done = NULL;
4336 	if (reenable_intr)
4337 		ufshcd_enable_intr(hba, UIC_COMMAND_COMPL);
4338 	if (ret) {
4339 		ufshcd_set_link_broken(hba);
4340 		ufshcd_schedule_eh_work(hba);
4341 	}
4342 out_unlock:
4343 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4344 	mutex_unlock(&hba->uic_cmd_mutex);
4345 
4346 	return ret;
4347 }
4348 
4349 /**
4350  * ufshcd_uic_change_pwr_mode - Perform the UIC power mode chage
4351  *				using DME_SET primitives.
4352  * @hba: per adapter instance
4353  * @mode: powr mode value
4354  *
4355  * Return: 0 on success, non-zero value on failure.
4356  */
4357 int ufshcd_uic_change_pwr_mode(struct ufs_hba *hba, u8 mode)
4358 {
4359 	struct uic_command uic_cmd = {0};
4360 	int ret;
4361 
4362 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_PA_RXHSUNTERMCAP) {
4363 		ret = ufshcd_dme_set(hba,
4364 				UIC_ARG_MIB_SEL(PA_RXHSUNTERMCAP, 0), 1);
4365 		if (ret) {
4366 			dev_err(hba->dev, "%s: failed to enable PA_RXHSUNTERMCAP ret %d\n",
4367 						__func__, ret);
4368 			goto out;
4369 		}
4370 	}
4371 
4372 	uic_cmd.command = UIC_CMD_DME_SET;
4373 	uic_cmd.argument1 = UIC_ARG_MIB(PA_PWRMODE);
4374 	uic_cmd.argument3 = mode;
4375 	ufshcd_hold(hba);
4376 	ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4377 	ufshcd_release(hba);
4378 
4379 out:
4380 	return ret;
4381 }
4382 EXPORT_SYMBOL_GPL(ufshcd_uic_change_pwr_mode);
4383 
4384 int ufshcd_link_recovery(struct ufs_hba *hba)
4385 {
4386 	int ret;
4387 	unsigned long flags;
4388 
4389 	spin_lock_irqsave(hba->host->host_lock, flags);
4390 	hba->ufshcd_state = UFSHCD_STATE_RESET;
4391 	ufshcd_set_eh_in_progress(hba);
4392 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4393 
4394 	/* Reset the attached device */
4395 	ufshcd_device_reset(hba);
4396 
4397 	ret = ufshcd_host_reset_and_restore(hba);
4398 
4399 	spin_lock_irqsave(hba->host->host_lock, flags);
4400 	if (ret)
4401 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
4402 	ufshcd_clear_eh_in_progress(hba);
4403 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4404 
4405 	if (ret)
4406 		dev_err(hba->dev, "%s: link recovery failed, err %d",
4407 			__func__, ret);
4408 
4409 	return ret;
4410 }
4411 EXPORT_SYMBOL_GPL(ufshcd_link_recovery);
4412 
4413 int ufshcd_uic_hibern8_enter(struct ufs_hba *hba)
4414 {
4415 	int ret;
4416 	struct uic_command uic_cmd = {0};
4417 	ktime_t start = ktime_get();
4418 
4419 	ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_ENTER, PRE_CHANGE);
4420 
4421 	uic_cmd.command = UIC_CMD_DME_HIBER_ENTER;
4422 	ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4423 	trace_ufshcd_profile_hibern8(dev_name(hba->dev), "enter",
4424 			     ktime_to_us(ktime_sub(ktime_get(), start)), ret);
4425 
4426 	if (ret)
4427 		dev_err(hba->dev, "%s: hibern8 enter failed. ret = %d\n",
4428 			__func__, ret);
4429 	else
4430 		ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_ENTER,
4431 								POST_CHANGE);
4432 
4433 	return ret;
4434 }
4435 EXPORT_SYMBOL_GPL(ufshcd_uic_hibern8_enter);
4436 
4437 int ufshcd_uic_hibern8_exit(struct ufs_hba *hba)
4438 {
4439 	struct uic_command uic_cmd = {0};
4440 	int ret;
4441 	ktime_t start = ktime_get();
4442 
4443 	ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_EXIT, PRE_CHANGE);
4444 
4445 	uic_cmd.command = UIC_CMD_DME_HIBER_EXIT;
4446 	ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4447 	trace_ufshcd_profile_hibern8(dev_name(hba->dev), "exit",
4448 			     ktime_to_us(ktime_sub(ktime_get(), start)), ret);
4449 
4450 	if (ret) {
4451 		dev_err(hba->dev, "%s: hibern8 exit failed. ret = %d\n",
4452 			__func__, ret);
4453 	} else {
4454 		ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_EXIT,
4455 								POST_CHANGE);
4456 		hba->ufs_stats.last_hibern8_exit_tstamp = local_clock();
4457 		hba->ufs_stats.hibern8_exit_cnt++;
4458 	}
4459 
4460 	return ret;
4461 }
4462 EXPORT_SYMBOL_GPL(ufshcd_uic_hibern8_exit);
4463 
4464 static void ufshcd_configure_auto_hibern8(struct ufs_hba *hba)
4465 {
4466 	if (!ufshcd_is_auto_hibern8_supported(hba))
4467 		return;
4468 
4469 	ufshcd_writel(hba, hba->ahit, REG_AUTO_HIBERNATE_IDLE_TIMER);
4470 }
4471 
4472 void ufshcd_auto_hibern8_update(struct ufs_hba *hba, u32 ahit)
4473 {
4474 	const u32 cur_ahit = READ_ONCE(hba->ahit);
4475 
4476 	if (!ufshcd_is_auto_hibern8_supported(hba) || cur_ahit == ahit)
4477 		return;
4478 
4479 	WRITE_ONCE(hba->ahit, ahit);
4480 	if (!pm_runtime_suspended(&hba->ufs_device_wlun->sdev_gendev)) {
4481 		ufshcd_rpm_get_sync(hba);
4482 		ufshcd_hold(hba);
4483 		ufshcd_configure_auto_hibern8(hba);
4484 		ufshcd_release(hba);
4485 		ufshcd_rpm_put_sync(hba);
4486 	}
4487 }
4488 EXPORT_SYMBOL_GPL(ufshcd_auto_hibern8_update);
4489 
4490  /**
4491  * ufshcd_init_pwr_info - setting the POR (power on reset)
4492  * values in hba power info
4493  * @hba: per-adapter instance
4494  */
4495 static void ufshcd_init_pwr_info(struct ufs_hba *hba)
4496 {
4497 	hba->pwr_info.gear_rx = UFS_PWM_G1;
4498 	hba->pwr_info.gear_tx = UFS_PWM_G1;
4499 	hba->pwr_info.lane_rx = UFS_LANE_1;
4500 	hba->pwr_info.lane_tx = UFS_LANE_1;
4501 	hba->pwr_info.pwr_rx = SLOWAUTO_MODE;
4502 	hba->pwr_info.pwr_tx = SLOWAUTO_MODE;
4503 	hba->pwr_info.hs_rate = 0;
4504 }
4505 
4506 /**
4507  * ufshcd_get_max_pwr_mode - reads the max power mode negotiated with device
4508  * @hba: per-adapter instance
4509  *
4510  * Return: 0 upon success; < 0 upon failure.
4511  */
4512 static int ufshcd_get_max_pwr_mode(struct ufs_hba *hba)
4513 {
4514 	struct ufs_pa_layer_attr *pwr_info = &hba->max_pwr_info.info;
4515 
4516 	if (hba->max_pwr_info.is_valid)
4517 		return 0;
4518 
4519 	if (hba->quirks & UFSHCD_QUIRK_HIBERN_FASTAUTO) {
4520 		pwr_info->pwr_tx = FASTAUTO_MODE;
4521 		pwr_info->pwr_rx = FASTAUTO_MODE;
4522 	} else {
4523 		pwr_info->pwr_tx = FAST_MODE;
4524 		pwr_info->pwr_rx = FAST_MODE;
4525 	}
4526 	pwr_info->hs_rate = PA_HS_MODE_B;
4527 
4528 	/* Get the connected lane count */
4529 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDRXDATALANES),
4530 			&pwr_info->lane_rx);
4531 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4532 			&pwr_info->lane_tx);
4533 
4534 	if (!pwr_info->lane_rx || !pwr_info->lane_tx) {
4535 		dev_err(hba->dev, "%s: invalid connected lanes value. rx=%d, tx=%d\n",
4536 				__func__,
4537 				pwr_info->lane_rx,
4538 				pwr_info->lane_tx);
4539 		return -EINVAL;
4540 	}
4541 
4542 	/*
4543 	 * First, get the maximum gears of HS speed.
4544 	 * If a zero value, it means there is no HSGEAR capability.
4545 	 * Then, get the maximum gears of PWM speed.
4546 	 */
4547 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_MAXRXHSGEAR), &pwr_info->gear_rx);
4548 	if (!pwr_info->gear_rx) {
4549 		ufshcd_dme_get(hba, UIC_ARG_MIB(PA_MAXRXPWMGEAR),
4550 				&pwr_info->gear_rx);
4551 		if (!pwr_info->gear_rx) {
4552 			dev_err(hba->dev, "%s: invalid max pwm rx gear read = %d\n",
4553 				__func__, pwr_info->gear_rx);
4554 			return -EINVAL;
4555 		}
4556 		pwr_info->pwr_rx = SLOW_MODE;
4557 	}
4558 
4559 	ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_MAXRXHSGEAR),
4560 			&pwr_info->gear_tx);
4561 	if (!pwr_info->gear_tx) {
4562 		ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_MAXRXPWMGEAR),
4563 				&pwr_info->gear_tx);
4564 		if (!pwr_info->gear_tx) {
4565 			dev_err(hba->dev, "%s: invalid max pwm tx gear read = %d\n",
4566 				__func__, pwr_info->gear_tx);
4567 			return -EINVAL;
4568 		}
4569 		pwr_info->pwr_tx = SLOW_MODE;
4570 	}
4571 
4572 	hba->max_pwr_info.is_valid = true;
4573 	return 0;
4574 }
4575 
4576 static int ufshcd_change_power_mode(struct ufs_hba *hba,
4577 			     struct ufs_pa_layer_attr *pwr_mode)
4578 {
4579 	int ret;
4580 
4581 	/* if already configured to the requested pwr_mode */
4582 	if (!hba->force_pmc &&
4583 	    pwr_mode->gear_rx == hba->pwr_info.gear_rx &&
4584 	    pwr_mode->gear_tx == hba->pwr_info.gear_tx &&
4585 	    pwr_mode->lane_rx == hba->pwr_info.lane_rx &&
4586 	    pwr_mode->lane_tx == hba->pwr_info.lane_tx &&
4587 	    pwr_mode->pwr_rx == hba->pwr_info.pwr_rx &&
4588 	    pwr_mode->pwr_tx == hba->pwr_info.pwr_tx &&
4589 	    pwr_mode->hs_rate == hba->pwr_info.hs_rate) {
4590 		dev_dbg(hba->dev, "%s: power already configured\n", __func__);
4591 		return 0;
4592 	}
4593 
4594 	/*
4595 	 * Configure attributes for power mode change with below.
4596 	 * - PA_RXGEAR, PA_ACTIVERXDATALANES, PA_RXTERMINATION,
4597 	 * - PA_TXGEAR, PA_ACTIVETXDATALANES, PA_TXTERMINATION,
4598 	 * - PA_HSSERIES
4599 	 */
4600 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXGEAR), pwr_mode->gear_rx);
4601 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVERXDATALANES),
4602 			pwr_mode->lane_rx);
4603 	if (pwr_mode->pwr_rx == FASTAUTO_MODE ||
4604 			pwr_mode->pwr_rx == FAST_MODE)
4605 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), true);
4606 	else
4607 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), false);
4608 
4609 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXGEAR), pwr_mode->gear_tx);
4610 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVETXDATALANES),
4611 			pwr_mode->lane_tx);
4612 	if (pwr_mode->pwr_tx == FASTAUTO_MODE ||
4613 			pwr_mode->pwr_tx == FAST_MODE)
4614 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), true);
4615 	else
4616 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), false);
4617 
4618 	if (pwr_mode->pwr_rx == FASTAUTO_MODE ||
4619 	    pwr_mode->pwr_tx == FASTAUTO_MODE ||
4620 	    pwr_mode->pwr_rx == FAST_MODE ||
4621 	    pwr_mode->pwr_tx == FAST_MODE)
4622 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_HSSERIES),
4623 						pwr_mode->hs_rate);
4624 
4625 	if (!(hba->quirks & UFSHCD_QUIRK_SKIP_DEF_UNIPRO_TIMEOUT_SETTING)) {
4626 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA0),
4627 				DL_FC0ProtectionTimeOutVal_Default);
4628 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA1),
4629 				DL_TC0ReplayTimeOutVal_Default);
4630 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA2),
4631 				DL_AFC0ReqTimeOutVal_Default);
4632 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA3),
4633 				DL_FC1ProtectionTimeOutVal_Default);
4634 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA4),
4635 				DL_TC1ReplayTimeOutVal_Default);
4636 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA5),
4637 				DL_AFC1ReqTimeOutVal_Default);
4638 
4639 		ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalFC0ProtectionTimeOutVal),
4640 				DL_FC0ProtectionTimeOutVal_Default);
4641 		ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalTC0ReplayTimeOutVal),
4642 				DL_TC0ReplayTimeOutVal_Default);
4643 		ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalAFC0ReqTimeOutVal),
4644 				DL_AFC0ReqTimeOutVal_Default);
4645 	}
4646 
4647 	ret = ufshcd_uic_change_pwr_mode(hba, pwr_mode->pwr_rx << 4
4648 			| pwr_mode->pwr_tx);
4649 
4650 	if (ret) {
4651 		dev_err(hba->dev,
4652 			"%s: power mode change failed %d\n", __func__, ret);
4653 	} else {
4654 		ufshcd_vops_pwr_change_notify(hba, POST_CHANGE, NULL,
4655 								pwr_mode);
4656 
4657 		memcpy(&hba->pwr_info, pwr_mode,
4658 			sizeof(struct ufs_pa_layer_attr));
4659 	}
4660 
4661 	return ret;
4662 }
4663 
4664 /**
4665  * ufshcd_config_pwr_mode - configure a new power mode
4666  * @hba: per-adapter instance
4667  * @desired_pwr_mode: desired power configuration
4668  *
4669  * Return: 0 upon success; < 0 upon failure.
4670  */
4671 int ufshcd_config_pwr_mode(struct ufs_hba *hba,
4672 		struct ufs_pa_layer_attr *desired_pwr_mode)
4673 {
4674 	struct ufs_pa_layer_attr final_params = { 0 };
4675 	int ret;
4676 
4677 	ret = ufshcd_vops_pwr_change_notify(hba, PRE_CHANGE,
4678 					desired_pwr_mode, &final_params);
4679 
4680 	if (ret)
4681 		memcpy(&final_params, desired_pwr_mode, sizeof(final_params));
4682 
4683 	ret = ufshcd_change_power_mode(hba, &final_params);
4684 
4685 	return ret;
4686 }
4687 EXPORT_SYMBOL_GPL(ufshcd_config_pwr_mode);
4688 
4689 /**
4690  * ufshcd_complete_dev_init() - checks device readiness
4691  * @hba: per-adapter instance
4692  *
4693  * Set fDeviceInit flag and poll until device toggles it.
4694  *
4695  * Return: 0 upon success; < 0 upon failure.
4696  */
4697 static int ufshcd_complete_dev_init(struct ufs_hba *hba)
4698 {
4699 	int err;
4700 	bool flag_res = true;
4701 	ktime_t timeout;
4702 
4703 	err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG,
4704 		QUERY_FLAG_IDN_FDEVICEINIT, 0, NULL);
4705 	if (err) {
4706 		dev_err(hba->dev,
4707 			"%s: setting fDeviceInit flag failed with error %d\n",
4708 			__func__, err);
4709 		goto out;
4710 	}
4711 
4712 	/* Poll fDeviceInit flag to be cleared */
4713 	timeout = ktime_add_ms(ktime_get(), FDEVICEINIT_COMPL_TIMEOUT);
4714 	do {
4715 		err = ufshcd_query_flag(hba, UPIU_QUERY_OPCODE_READ_FLAG,
4716 					QUERY_FLAG_IDN_FDEVICEINIT, 0, &flag_res);
4717 		if (!flag_res)
4718 			break;
4719 		usleep_range(500, 1000);
4720 	} while (ktime_before(ktime_get(), timeout));
4721 
4722 	if (err) {
4723 		dev_err(hba->dev,
4724 				"%s: reading fDeviceInit flag failed with error %d\n",
4725 				__func__, err);
4726 	} else if (flag_res) {
4727 		dev_err(hba->dev,
4728 				"%s: fDeviceInit was not cleared by the device\n",
4729 				__func__);
4730 		err = -EBUSY;
4731 	}
4732 out:
4733 	return err;
4734 }
4735 
4736 /**
4737  * ufshcd_make_hba_operational - Make UFS controller operational
4738  * @hba: per adapter instance
4739  *
4740  * To bring UFS host controller to operational state,
4741  * 1. Enable required interrupts
4742  * 2. Configure interrupt aggregation
4743  * 3. Program UTRL and UTMRL base address
4744  * 4. Configure run-stop-registers
4745  *
4746  * Return: 0 on success, non-zero value on failure.
4747  */
4748 int ufshcd_make_hba_operational(struct ufs_hba *hba)
4749 {
4750 	int err = 0;
4751 	u32 reg;
4752 
4753 	/* Enable required interrupts */
4754 	ufshcd_enable_intr(hba, UFSHCD_ENABLE_INTRS);
4755 
4756 	/* Configure interrupt aggregation */
4757 	if (ufshcd_is_intr_aggr_allowed(hba))
4758 		ufshcd_config_intr_aggr(hba, hba->nutrs - 1, INT_AGGR_DEF_TO);
4759 	else
4760 		ufshcd_disable_intr_aggr(hba);
4761 
4762 	/* Configure UTRL and UTMRL base address registers */
4763 	ufshcd_writel(hba, lower_32_bits(hba->utrdl_dma_addr),
4764 			REG_UTP_TRANSFER_REQ_LIST_BASE_L);
4765 	ufshcd_writel(hba, upper_32_bits(hba->utrdl_dma_addr),
4766 			REG_UTP_TRANSFER_REQ_LIST_BASE_H);
4767 	ufshcd_writel(hba, lower_32_bits(hba->utmrdl_dma_addr),
4768 			REG_UTP_TASK_REQ_LIST_BASE_L);
4769 	ufshcd_writel(hba, upper_32_bits(hba->utmrdl_dma_addr),
4770 			REG_UTP_TASK_REQ_LIST_BASE_H);
4771 
4772 	/*
4773 	 * Make sure base address and interrupt setup are updated before
4774 	 * enabling the run/stop registers below.
4775 	 */
4776 	wmb();
4777 
4778 	/*
4779 	 * UCRDY, UTMRLDY and UTRLRDY bits must be 1
4780 	 */
4781 	reg = ufshcd_readl(hba, REG_CONTROLLER_STATUS);
4782 	if (!(ufshcd_get_lists_status(reg))) {
4783 		ufshcd_enable_run_stop_reg(hba);
4784 	} else {
4785 		dev_err(hba->dev,
4786 			"Host controller not ready to process requests");
4787 		err = -EIO;
4788 	}
4789 
4790 	return err;
4791 }
4792 EXPORT_SYMBOL_GPL(ufshcd_make_hba_operational);
4793 
4794 /**
4795  * ufshcd_hba_stop - Send controller to reset state
4796  * @hba: per adapter instance
4797  */
4798 void ufshcd_hba_stop(struct ufs_hba *hba)
4799 {
4800 	unsigned long flags;
4801 	int err;
4802 
4803 	/*
4804 	 * Obtain the host lock to prevent that the controller is disabled
4805 	 * while the UFS interrupt handler is active on another CPU.
4806 	 */
4807 	spin_lock_irqsave(hba->host->host_lock, flags);
4808 	ufshcd_writel(hba, CONTROLLER_DISABLE,  REG_CONTROLLER_ENABLE);
4809 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4810 
4811 	err = ufshcd_wait_for_register(hba, REG_CONTROLLER_ENABLE,
4812 					CONTROLLER_ENABLE, CONTROLLER_DISABLE,
4813 					10, 1);
4814 	if (err)
4815 		dev_err(hba->dev, "%s: Controller disable failed\n", __func__);
4816 }
4817 EXPORT_SYMBOL_GPL(ufshcd_hba_stop);
4818 
4819 /**
4820  * ufshcd_hba_execute_hce - initialize the controller
4821  * @hba: per adapter instance
4822  *
4823  * The controller resets itself and controller firmware initialization
4824  * sequence kicks off. When controller is ready it will set
4825  * the Host Controller Enable bit to 1.
4826  *
4827  * Return: 0 on success, non-zero value on failure.
4828  */
4829 static int ufshcd_hba_execute_hce(struct ufs_hba *hba)
4830 {
4831 	int retry_outer = 3;
4832 	int retry_inner;
4833 
4834 start:
4835 	if (ufshcd_is_hba_active(hba))
4836 		/* change controller state to "reset state" */
4837 		ufshcd_hba_stop(hba);
4838 
4839 	/* UniPro link is disabled at this point */
4840 	ufshcd_set_link_off(hba);
4841 
4842 	ufshcd_vops_hce_enable_notify(hba, PRE_CHANGE);
4843 
4844 	/* start controller initialization sequence */
4845 	ufshcd_hba_start(hba);
4846 
4847 	/*
4848 	 * To initialize a UFS host controller HCE bit must be set to 1.
4849 	 * During initialization the HCE bit value changes from 1->0->1.
4850 	 * When the host controller completes initialization sequence
4851 	 * it sets the value of HCE bit to 1. The same HCE bit is read back
4852 	 * to check if the controller has completed initialization sequence.
4853 	 * So without this delay the value HCE = 1, set in the previous
4854 	 * instruction might be read back.
4855 	 * This delay can be changed based on the controller.
4856 	 */
4857 	ufshcd_delay_us(hba->vps->hba_enable_delay_us, 100);
4858 
4859 	/* wait for the host controller to complete initialization */
4860 	retry_inner = 50;
4861 	while (!ufshcd_is_hba_active(hba)) {
4862 		if (retry_inner) {
4863 			retry_inner--;
4864 		} else {
4865 			dev_err(hba->dev,
4866 				"Controller enable failed\n");
4867 			if (retry_outer) {
4868 				retry_outer--;
4869 				goto start;
4870 			}
4871 			return -EIO;
4872 		}
4873 		usleep_range(1000, 1100);
4874 	}
4875 
4876 	/* enable UIC related interrupts */
4877 	ufshcd_enable_intr(hba, UFSHCD_UIC_MASK);
4878 
4879 	ufshcd_vops_hce_enable_notify(hba, POST_CHANGE);
4880 
4881 	return 0;
4882 }
4883 
4884 int ufshcd_hba_enable(struct ufs_hba *hba)
4885 {
4886 	int ret;
4887 
4888 	if (hba->quirks & UFSHCI_QUIRK_BROKEN_HCE) {
4889 		ufshcd_set_link_off(hba);
4890 		ufshcd_vops_hce_enable_notify(hba, PRE_CHANGE);
4891 
4892 		/* enable UIC related interrupts */
4893 		ufshcd_enable_intr(hba, UFSHCD_UIC_MASK);
4894 		ret = ufshcd_dme_reset(hba);
4895 		if (ret) {
4896 			dev_err(hba->dev, "DME_RESET failed\n");
4897 			return ret;
4898 		}
4899 
4900 		ret = ufshcd_dme_enable(hba);
4901 		if (ret) {
4902 			dev_err(hba->dev, "Enabling DME failed\n");
4903 			return ret;
4904 		}
4905 
4906 		ufshcd_vops_hce_enable_notify(hba, POST_CHANGE);
4907 	} else {
4908 		ret = ufshcd_hba_execute_hce(hba);
4909 	}
4910 
4911 	return ret;
4912 }
4913 EXPORT_SYMBOL_GPL(ufshcd_hba_enable);
4914 
4915 static int ufshcd_disable_tx_lcc(struct ufs_hba *hba, bool peer)
4916 {
4917 	int tx_lanes = 0, i, err = 0;
4918 
4919 	if (!peer)
4920 		ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4921 			       &tx_lanes);
4922 	else
4923 		ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4924 				    &tx_lanes);
4925 	for (i = 0; i < tx_lanes; i++) {
4926 		if (!peer)
4927 			err = ufshcd_dme_set(hba,
4928 				UIC_ARG_MIB_SEL(TX_LCC_ENABLE,
4929 					UIC_ARG_MPHY_TX_GEN_SEL_INDEX(i)),
4930 					0);
4931 		else
4932 			err = ufshcd_dme_peer_set(hba,
4933 				UIC_ARG_MIB_SEL(TX_LCC_ENABLE,
4934 					UIC_ARG_MPHY_TX_GEN_SEL_INDEX(i)),
4935 					0);
4936 		if (err) {
4937 			dev_err(hba->dev, "%s: TX LCC Disable failed, peer = %d, lane = %d, err = %d",
4938 				__func__, peer, i, err);
4939 			break;
4940 		}
4941 	}
4942 
4943 	return err;
4944 }
4945 
4946 static inline int ufshcd_disable_device_tx_lcc(struct ufs_hba *hba)
4947 {
4948 	return ufshcd_disable_tx_lcc(hba, true);
4949 }
4950 
4951 void ufshcd_update_evt_hist(struct ufs_hba *hba, u32 id, u32 val)
4952 {
4953 	struct ufs_event_hist *e;
4954 
4955 	if (id >= UFS_EVT_CNT)
4956 		return;
4957 
4958 	e = &hba->ufs_stats.event[id];
4959 	e->val[e->pos] = val;
4960 	e->tstamp[e->pos] = local_clock();
4961 	e->cnt += 1;
4962 	e->pos = (e->pos + 1) % UFS_EVENT_HIST_LENGTH;
4963 
4964 	ufshcd_vops_event_notify(hba, id, &val);
4965 }
4966 EXPORT_SYMBOL_GPL(ufshcd_update_evt_hist);
4967 
4968 /**
4969  * ufshcd_link_startup - Initialize unipro link startup
4970  * @hba: per adapter instance
4971  *
4972  * Return: 0 for success, non-zero in case of failure.
4973  */
4974 static int ufshcd_link_startup(struct ufs_hba *hba)
4975 {
4976 	int ret;
4977 	int retries = DME_LINKSTARTUP_RETRIES;
4978 	bool link_startup_again = false;
4979 
4980 	/*
4981 	 * If UFS device isn't active then we will have to issue link startup
4982 	 * 2 times to make sure the device state move to active.
4983 	 */
4984 	if (!ufshcd_is_ufs_dev_active(hba))
4985 		link_startup_again = true;
4986 
4987 link_startup:
4988 	do {
4989 		ufshcd_vops_link_startup_notify(hba, PRE_CHANGE);
4990 
4991 		ret = ufshcd_dme_link_startup(hba);
4992 
4993 		/* check if device is detected by inter-connect layer */
4994 		if (!ret && !ufshcd_is_device_present(hba)) {
4995 			ufshcd_update_evt_hist(hba,
4996 					       UFS_EVT_LINK_STARTUP_FAIL,
4997 					       0);
4998 			dev_err(hba->dev, "%s: Device not present\n", __func__);
4999 			ret = -ENXIO;
5000 			goto out;
5001 		}
5002 
5003 		/*
5004 		 * DME link lost indication is only received when link is up,
5005 		 * but we can't be sure if the link is up until link startup
5006 		 * succeeds. So reset the local Uni-Pro and try again.
5007 		 */
5008 		if (ret && retries && ufshcd_hba_enable(hba)) {
5009 			ufshcd_update_evt_hist(hba,
5010 					       UFS_EVT_LINK_STARTUP_FAIL,
5011 					       (u32)ret);
5012 			goto out;
5013 		}
5014 	} while (ret && retries--);
5015 
5016 	if (ret) {
5017 		/* failed to get the link up... retire */
5018 		ufshcd_update_evt_hist(hba,
5019 				       UFS_EVT_LINK_STARTUP_FAIL,
5020 				       (u32)ret);
5021 		goto out;
5022 	}
5023 
5024 	if (link_startup_again) {
5025 		link_startup_again = false;
5026 		retries = DME_LINKSTARTUP_RETRIES;
5027 		goto link_startup;
5028 	}
5029 
5030 	/* Mark that link is up in PWM-G1, 1-lane, SLOW-AUTO mode */
5031 	ufshcd_init_pwr_info(hba);
5032 	ufshcd_print_pwr_info(hba);
5033 
5034 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_LCC) {
5035 		ret = ufshcd_disable_device_tx_lcc(hba);
5036 		if (ret)
5037 			goto out;
5038 	}
5039 
5040 	/* Include any host controller configuration via UIC commands */
5041 	ret = ufshcd_vops_link_startup_notify(hba, POST_CHANGE);
5042 	if (ret)
5043 		goto out;
5044 
5045 	/* Clear UECPA once due to LINERESET has happened during LINK_STARTUP */
5046 	ufshcd_readl(hba, REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER);
5047 	ret = ufshcd_make_hba_operational(hba);
5048 out:
5049 	if (ret) {
5050 		dev_err(hba->dev, "link startup failed %d\n", ret);
5051 		ufshcd_print_host_state(hba);
5052 		ufshcd_print_pwr_info(hba);
5053 		ufshcd_print_evt_hist(hba);
5054 	}
5055 	return ret;
5056 }
5057 
5058 /**
5059  * ufshcd_verify_dev_init() - Verify device initialization
5060  * @hba: per-adapter instance
5061  *
5062  * Send NOP OUT UPIU and wait for NOP IN response to check whether the
5063  * device Transport Protocol (UTP) layer is ready after a reset.
5064  * If the UTP layer at the device side is not initialized, it may
5065  * not respond with NOP IN UPIU within timeout of %NOP_OUT_TIMEOUT
5066  * and we retry sending NOP OUT for %NOP_OUT_RETRIES iterations.
5067  *
5068  * Return: 0 upon success; < 0 upon failure.
5069  */
5070 static int ufshcd_verify_dev_init(struct ufs_hba *hba)
5071 {
5072 	int err = 0;
5073 	int retries;
5074 
5075 	ufshcd_hold(hba);
5076 	mutex_lock(&hba->dev_cmd.lock);
5077 	for (retries = NOP_OUT_RETRIES; retries > 0; retries--) {
5078 		err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_NOP,
5079 					  hba->nop_out_timeout);
5080 
5081 		if (!err || err == -ETIMEDOUT)
5082 			break;
5083 
5084 		dev_dbg(hba->dev, "%s: error %d retrying\n", __func__, err);
5085 	}
5086 	mutex_unlock(&hba->dev_cmd.lock);
5087 	ufshcd_release(hba);
5088 
5089 	if (err)
5090 		dev_err(hba->dev, "%s: NOP OUT failed %d\n", __func__, err);
5091 	return err;
5092 }
5093 
5094 /**
5095  * ufshcd_setup_links - associate link b/w device wlun and other luns
5096  * @sdev: pointer to SCSI device
5097  * @hba: pointer to ufs hba
5098  */
5099 static void ufshcd_setup_links(struct ufs_hba *hba, struct scsi_device *sdev)
5100 {
5101 	struct device_link *link;
5102 
5103 	/*
5104 	 * Device wlun is the supplier & rest of the luns are consumers.
5105 	 * This ensures that device wlun suspends after all other luns.
5106 	 */
5107 	if (hba->ufs_device_wlun) {
5108 		link = device_link_add(&sdev->sdev_gendev,
5109 				       &hba->ufs_device_wlun->sdev_gendev,
5110 				       DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE);
5111 		if (!link) {
5112 			dev_err(&sdev->sdev_gendev, "Failed establishing link - %s\n",
5113 				dev_name(&hba->ufs_device_wlun->sdev_gendev));
5114 			return;
5115 		}
5116 		hba->luns_avail--;
5117 		/* Ignore REPORT_LUN wlun probing */
5118 		if (hba->luns_avail == 1) {
5119 			ufshcd_rpm_put(hba);
5120 			return;
5121 		}
5122 	} else {
5123 		/*
5124 		 * Device wlun is probed. The assumption is that WLUNs are
5125 		 * scanned before other LUNs.
5126 		 */
5127 		hba->luns_avail--;
5128 	}
5129 }
5130 
5131 /**
5132  * ufshcd_lu_init - Initialize the relevant parameters of the LU
5133  * @hba: per-adapter instance
5134  * @sdev: pointer to SCSI device
5135  */
5136 static void ufshcd_lu_init(struct ufs_hba *hba, struct scsi_device *sdev)
5137 {
5138 	int len = QUERY_DESC_MAX_SIZE;
5139 	u8 lun = ufshcd_scsi_to_upiu_lun(sdev->lun);
5140 	u8 lun_qdepth = hba->nutrs;
5141 	u8 *desc_buf;
5142 	int ret;
5143 
5144 	desc_buf = kzalloc(len, GFP_KERNEL);
5145 	if (!desc_buf)
5146 		goto set_qdepth;
5147 
5148 	ret = ufshcd_read_unit_desc_param(hba, lun, 0, desc_buf, len);
5149 	if (ret < 0) {
5150 		if (ret == -EOPNOTSUPP)
5151 			/* If LU doesn't support unit descriptor, its queue depth is set to 1 */
5152 			lun_qdepth = 1;
5153 		kfree(desc_buf);
5154 		goto set_qdepth;
5155 	}
5156 
5157 	if (desc_buf[UNIT_DESC_PARAM_LU_Q_DEPTH]) {
5158 		/*
5159 		 * In per-LU queueing architecture, bLUQueueDepth will not be 0, then we will
5160 		 * use the smaller between UFSHCI CAP.NUTRS and UFS LU bLUQueueDepth
5161 		 */
5162 		lun_qdepth = min_t(int, desc_buf[UNIT_DESC_PARAM_LU_Q_DEPTH], hba->nutrs);
5163 	}
5164 	/*
5165 	 * According to UFS device specification, the write protection mode is only supported by
5166 	 * normal LU, not supported by WLUN.
5167 	 */
5168 	if (hba->dev_info.f_power_on_wp_en && lun < hba->dev_info.max_lu_supported &&
5169 	    !hba->dev_info.is_lu_power_on_wp &&
5170 	    desc_buf[UNIT_DESC_PARAM_LU_WR_PROTECT] == UFS_LU_POWER_ON_WP)
5171 		hba->dev_info.is_lu_power_on_wp = true;
5172 
5173 	/* In case of RPMB LU, check if advanced RPMB mode is enabled */
5174 	if (desc_buf[UNIT_DESC_PARAM_UNIT_INDEX] == UFS_UPIU_RPMB_WLUN &&
5175 	    desc_buf[RPMB_UNIT_DESC_PARAM_REGION_EN] & BIT(4))
5176 		hba->dev_info.b_advanced_rpmb_en = true;
5177 
5178 
5179 	kfree(desc_buf);
5180 set_qdepth:
5181 	/*
5182 	 * For WLUNs that don't support unit descriptor, queue depth is set to 1. For LUs whose
5183 	 * bLUQueueDepth == 0, the queue depth is set to a maximum value that host can queue.
5184 	 */
5185 	dev_dbg(hba->dev, "Set LU %x queue depth %d\n", lun, lun_qdepth);
5186 	scsi_change_queue_depth(sdev, lun_qdepth);
5187 }
5188 
5189 /**
5190  * ufshcd_slave_alloc - handle initial SCSI device configurations
5191  * @sdev: pointer to SCSI device
5192  *
5193  * Return: success.
5194  */
5195 static int ufshcd_slave_alloc(struct scsi_device *sdev)
5196 {
5197 	struct ufs_hba *hba;
5198 
5199 	hba = shost_priv(sdev->host);
5200 
5201 	/* Mode sense(6) is not supported by UFS, so use Mode sense(10) */
5202 	sdev->use_10_for_ms = 1;
5203 
5204 	/* DBD field should be set to 1 in mode sense(10) */
5205 	sdev->set_dbd_for_ms = 1;
5206 
5207 	/* allow SCSI layer to restart the device in case of errors */
5208 	sdev->allow_restart = 1;
5209 
5210 	/* REPORT SUPPORTED OPERATION CODES is not supported */
5211 	sdev->no_report_opcodes = 1;
5212 
5213 	/* WRITE_SAME command is not supported */
5214 	sdev->no_write_same = 1;
5215 
5216 	ufshcd_lu_init(hba, sdev);
5217 
5218 	ufshcd_setup_links(hba, sdev);
5219 
5220 	return 0;
5221 }
5222 
5223 /**
5224  * ufshcd_change_queue_depth - change queue depth
5225  * @sdev: pointer to SCSI device
5226  * @depth: required depth to set
5227  *
5228  * Change queue depth and make sure the max. limits are not crossed.
5229  *
5230  * Return: new queue depth.
5231  */
5232 static int ufshcd_change_queue_depth(struct scsi_device *sdev, int depth)
5233 {
5234 	return scsi_change_queue_depth(sdev, min(depth, sdev->host->can_queue));
5235 }
5236 
5237 /**
5238  * ufshcd_slave_configure - adjust SCSI device configurations
5239  * @sdev: pointer to SCSI device
5240  *
5241  * Return: 0 (success).
5242  */
5243 static int ufshcd_slave_configure(struct scsi_device *sdev)
5244 {
5245 	struct ufs_hba *hba = shost_priv(sdev->host);
5246 	struct request_queue *q = sdev->request_queue;
5247 
5248 	blk_queue_update_dma_pad(q, PRDT_DATA_BYTE_COUNT_PAD - 1);
5249 
5250 	/*
5251 	 * Block runtime-pm until all consumers are added.
5252 	 * Refer ufshcd_setup_links().
5253 	 */
5254 	if (is_device_wlun(sdev))
5255 		pm_runtime_get_noresume(&sdev->sdev_gendev);
5256 	else if (ufshcd_is_rpm_autosuspend_allowed(hba))
5257 		sdev->rpm_autosuspend = 1;
5258 	/*
5259 	 * Do not print messages during runtime PM to avoid never-ending cycles
5260 	 * of messages written back to storage by user space causing runtime
5261 	 * resume, causing more messages and so on.
5262 	 */
5263 	sdev->silence_suspend = 1;
5264 
5265 	if (hba->vops && hba->vops->config_scsi_dev)
5266 		hba->vops->config_scsi_dev(sdev);
5267 
5268 	ufshcd_crypto_register(hba, q);
5269 
5270 	return 0;
5271 }
5272 
5273 /**
5274  * ufshcd_slave_destroy - remove SCSI device configurations
5275  * @sdev: pointer to SCSI device
5276  */
5277 static void ufshcd_slave_destroy(struct scsi_device *sdev)
5278 {
5279 	struct ufs_hba *hba;
5280 	unsigned long flags;
5281 
5282 	hba = shost_priv(sdev->host);
5283 
5284 	/* Drop the reference as it won't be needed anymore */
5285 	if (ufshcd_scsi_to_upiu_lun(sdev->lun) == UFS_UPIU_UFS_DEVICE_WLUN) {
5286 		spin_lock_irqsave(hba->host->host_lock, flags);
5287 		hba->ufs_device_wlun = NULL;
5288 		spin_unlock_irqrestore(hba->host->host_lock, flags);
5289 	} else if (hba->ufs_device_wlun) {
5290 		struct device *supplier = NULL;
5291 
5292 		/* Ensure UFS Device WLUN exists and does not disappear */
5293 		spin_lock_irqsave(hba->host->host_lock, flags);
5294 		if (hba->ufs_device_wlun) {
5295 			supplier = &hba->ufs_device_wlun->sdev_gendev;
5296 			get_device(supplier);
5297 		}
5298 		spin_unlock_irqrestore(hba->host->host_lock, flags);
5299 
5300 		if (supplier) {
5301 			/*
5302 			 * If a LUN fails to probe (e.g. absent BOOT WLUN), the
5303 			 * device will not have been registered but can still
5304 			 * have a device link holding a reference to the device.
5305 			 */
5306 			device_link_remove(&sdev->sdev_gendev, supplier);
5307 			put_device(supplier);
5308 		}
5309 	}
5310 }
5311 
5312 /**
5313  * ufshcd_scsi_cmd_status - Update SCSI command result based on SCSI status
5314  * @lrbp: pointer to local reference block of completed command
5315  * @scsi_status: SCSI command status
5316  *
5317  * Return: value base on SCSI command status.
5318  */
5319 static inline int
5320 ufshcd_scsi_cmd_status(struct ufshcd_lrb *lrbp, int scsi_status)
5321 {
5322 	int result = 0;
5323 
5324 	switch (scsi_status) {
5325 	case SAM_STAT_CHECK_CONDITION:
5326 		ufshcd_copy_sense_data(lrbp);
5327 		fallthrough;
5328 	case SAM_STAT_GOOD:
5329 		result |= DID_OK << 16 | scsi_status;
5330 		break;
5331 	case SAM_STAT_TASK_SET_FULL:
5332 	case SAM_STAT_BUSY:
5333 	case SAM_STAT_TASK_ABORTED:
5334 		ufshcd_copy_sense_data(lrbp);
5335 		result |= scsi_status;
5336 		break;
5337 	default:
5338 		result |= DID_ERROR << 16;
5339 		break;
5340 	} /* end of switch */
5341 
5342 	return result;
5343 }
5344 
5345 /**
5346  * ufshcd_transfer_rsp_status - Get overall status of the response
5347  * @hba: per adapter instance
5348  * @lrbp: pointer to local reference block of completed command
5349  * @cqe: pointer to the completion queue entry
5350  *
5351  * Return: result of the command to notify SCSI midlayer.
5352  */
5353 static inline int
5354 ufshcd_transfer_rsp_status(struct ufs_hba *hba, struct ufshcd_lrb *lrbp,
5355 			   struct cq_entry *cqe)
5356 {
5357 	int result = 0;
5358 	int scsi_status;
5359 	enum utp_ocs ocs;
5360 	u8 upiu_flags;
5361 	u32 resid;
5362 
5363 	upiu_flags = lrbp->ucd_rsp_ptr->header.flags;
5364 	resid = be32_to_cpu(lrbp->ucd_rsp_ptr->sr.residual_transfer_count);
5365 	/*
5366 	 * Test !overflow instead of underflow to support UFS devices that do
5367 	 * not set either flag.
5368 	 */
5369 	if (resid && !(upiu_flags & UPIU_RSP_FLAG_OVERFLOW))
5370 		scsi_set_resid(lrbp->cmd, resid);
5371 
5372 	/* overall command status of utrd */
5373 	ocs = ufshcd_get_tr_ocs(lrbp, cqe);
5374 
5375 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_OCS_FATAL_ERROR) {
5376 		if (lrbp->ucd_rsp_ptr->header.response ||
5377 		    lrbp->ucd_rsp_ptr->header.status)
5378 			ocs = OCS_SUCCESS;
5379 	}
5380 
5381 	switch (ocs) {
5382 	case OCS_SUCCESS:
5383 		hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
5384 		switch (ufshcd_get_req_rsp(lrbp->ucd_rsp_ptr)) {
5385 		case UPIU_TRANSACTION_RESPONSE:
5386 			/*
5387 			 * get the result based on SCSI status response
5388 			 * to notify the SCSI midlayer of the command status
5389 			 */
5390 			scsi_status = lrbp->ucd_rsp_ptr->header.status;
5391 			result = ufshcd_scsi_cmd_status(lrbp, scsi_status);
5392 
5393 			/*
5394 			 * Currently we are only supporting BKOPs exception
5395 			 * events hence we can ignore BKOPs exception event
5396 			 * during power management callbacks. BKOPs exception
5397 			 * event is not expected to be raised in runtime suspend
5398 			 * callback as it allows the urgent bkops.
5399 			 * During system suspend, we are anyway forcefully
5400 			 * disabling the bkops and if urgent bkops is needed
5401 			 * it will be enabled on system resume. Long term
5402 			 * solution could be to abort the system suspend if
5403 			 * UFS device needs urgent BKOPs.
5404 			 */
5405 			if (!hba->pm_op_in_progress &&
5406 			    !ufshcd_eh_in_progress(hba) &&
5407 			    ufshcd_is_exception_event(lrbp->ucd_rsp_ptr))
5408 				/* Flushed in suspend */
5409 				schedule_work(&hba->eeh_work);
5410 			break;
5411 		case UPIU_TRANSACTION_REJECT_UPIU:
5412 			/* TODO: handle Reject UPIU Response */
5413 			result = DID_ERROR << 16;
5414 			dev_err(hba->dev,
5415 				"Reject UPIU not fully implemented\n");
5416 			break;
5417 		default:
5418 			dev_err(hba->dev,
5419 				"Unexpected request response code = %x\n",
5420 				result);
5421 			result = DID_ERROR << 16;
5422 			break;
5423 		}
5424 		break;
5425 	case OCS_ABORTED:
5426 		result |= DID_ABORT << 16;
5427 		break;
5428 	case OCS_INVALID_COMMAND_STATUS:
5429 		result |= DID_REQUEUE << 16;
5430 		break;
5431 	case OCS_INVALID_CMD_TABLE_ATTR:
5432 	case OCS_INVALID_PRDT_ATTR:
5433 	case OCS_MISMATCH_DATA_BUF_SIZE:
5434 	case OCS_MISMATCH_RESP_UPIU_SIZE:
5435 	case OCS_PEER_COMM_FAILURE:
5436 	case OCS_FATAL_ERROR:
5437 	case OCS_DEVICE_FATAL_ERROR:
5438 	case OCS_INVALID_CRYPTO_CONFIG:
5439 	case OCS_GENERAL_CRYPTO_ERROR:
5440 	default:
5441 		result |= DID_ERROR << 16;
5442 		dev_err(hba->dev,
5443 				"OCS error from controller = %x for tag %d\n",
5444 				ocs, lrbp->task_tag);
5445 		ufshcd_print_evt_hist(hba);
5446 		ufshcd_print_host_state(hba);
5447 		break;
5448 	} /* end of switch */
5449 
5450 	if ((host_byte(result) != DID_OK) &&
5451 	    (host_byte(result) != DID_REQUEUE) && !hba->silence_err_logs)
5452 		ufshcd_print_tr(hba, lrbp->task_tag, true);
5453 	return result;
5454 }
5455 
5456 static bool ufshcd_is_auto_hibern8_error(struct ufs_hba *hba,
5457 					 u32 intr_mask)
5458 {
5459 	if (!ufshcd_is_auto_hibern8_supported(hba) ||
5460 	    !ufshcd_is_auto_hibern8_enabled(hba))
5461 		return false;
5462 
5463 	if (!(intr_mask & UFSHCD_UIC_HIBERN8_MASK))
5464 		return false;
5465 
5466 	if (hba->active_uic_cmd &&
5467 	    (hba->active_uic_cmd->command == UIC_CMD_DME_HIBER_ENTER ||
5468 	    hba->active_uic_cmd->command == UIC_CMD_DME_HIBER_EXIT))
5469 		return false;
5470 
5471 	return true;
5472 }
5473 
5474 /**
5475  * ufshcd_uic_cmd_compl - handle completion of uic command
5476  * @hba: per adapter instance
5477  * @intr_status: interrupt status generated by the controller
5478  *
5479  * Return:
5480  *  IRQ_HANDLED - If interrupt is valid
5481  *  IRQ_NONE    - If invalid interrupt
5482  */
5483 static irqreturn_t ufshcd_uic_cmd_compl(struct ufs_hba *hba, u32 intr_status)
5484 {
5485 	irqreturn_t retval = IRQ_NONE;
5486 
5487 	spin_lock(hba->host->host_lock);
5488 	if (ufshcd_is_auto_hibern8_error(hba, intr_status))
5489 		hba->errors |= (UFSHCD_UIC_HIBERN8_MASK & intr_status);
5490 
5491 	if ((intr_status & UIC_COMMAND_COMPL) && hba->active_uic_cmd) {
5492 		hba->active_uic_cmd->argument2 |=
5493 			ufshcd_get_uic_cmd_result(hba);
5494 		hba->active_uic_cmd->argument3 =
5495 			ufshcd_get_dme_attr_val(hba);
5496 		if (!hba->uic_async_done)
5497 			hba->active_uic_cmd->cmd_active = 0;
5498 		complete(&hba->active_uic_cmd->done);
5499 		retval = IRQ_HANDLED;
5500 	}
5501 
5502 	if ((intr_status & UFSHCD_UIC_PWR_MASK) && hba->uic_async_done) {
5503 		hba->active_uic_cmd->cmd_active = 0;
5504 		complete(hba->uic_async_done);
5505 		retval = IRQ_HANDLED;
5506 	}
5507 
5508 	if (retval == IRQ_HANDLED)
5509 		ufshcd_add_uic_command_trace(hba, hba->active_uic_cmd,
5510 					     UFS_CMD_COMP);
5511 	spin_unlock(hba->host->host_lock);
5512 	return retval;
5513 }
5514 
5515 /* Release the resources allocated for processing a SCSI command. */
5516 void ufshcd_release_scsi_cmd(struct ufs_hba *hba,
5517 			     struct ufshcd_lrb *lrbp)
5518 {
5519 	struct scsi_cmnd *cmd = lrbp->cmd;
5520 
5521 	scsi_dma_unmap(cmd);
5522 	ufshcd_release(hba);
5523 	ufshcd_clk_scaling_update_busy(hba);
5524 }
5525 
5526 /**
5527  * ufshcd_compl_one_cqe - handle a completion queue entry
5528  * @hba: per adapter instance
5529  * @task_tag: the task tag of the request to be completed
5530  * @cqe: pointer to the completion queue entry
5531  */
5532 void ufshcd_compl_one_cqe(struct ufs_hba *hba, int task_tag,
5533 			  struct cq_entry *cqe)
5534 {
5535 	struct ufshcd_lrb *lrbp;
5536 	struct scsi_cmnd *cmd;
5537 	enum utp_ocs ocs;
5538 
5539 	lrbp = &hba->lrb[task_tag];
5540 	lrbp->compl_time_stamp = ktime_get();
5541 	cmd = lrbp->cmd;
5542 	if (cmd) {
5543 		if (unlikely(ufshcd_should_inform_monitor(hba, lrbp)))
5544 			ufshcd_update_monitor(hba, lrbp);
5545 		ufshcd_add_command_trace(hba, task_tag, UFS_CMD_COMP);
5546 		cmd->result = ufshcd_transfer_rsp_status(hba, lrbp, cqe);
5547 		ufshcd_release_scsi_cmd(hba, lrbp);
5548 		/* Do not touch lrbp after scsi done */
5549 		scsi_done(cmd);
5550 	} else if (lrbp->command_type == UTP_CMD_TYPE_DEV_MANAGE ||
5551 		   lrbp->command_type == UTP_CMD_TYPE_UFS_STORAGE) {
5552 		if (hba->dev_cmd.complete) {
5553 			if (cqe) {
5554 				ocs = le32_to_cpu(cqe->status) & MASK_OCS;
5555 				lrbp->utr_descriptor_ptr->header.ocs = ocs;
5556 			}
5557 			complete(hba->dev_cmd.complete);
5558 		}
5559 	}
5560 }
5561 
5562 /**
5563  * __ufshcd_transfer_req_compl - handle SCSI and query command completion
5564  * @hba: per adapter instance
5565  * @completed_reqs: bitmask that indicates which requests to complete
5566  */
5567 static void __ufshcd_transfer_req_compl(struct ufs_hba *hba,
5568 					unsigned long completed_reqs)
5569 {
5570 	int tag;
5571 
5572 	for_each_set_bit(tag, &completed_reqs, hba->nutrs)
5573 		ufshcd_compl_one_cqe(hba, tag, NULL);
5574 }
5575 
5576 /* Any value that is not an existing queue number is fine for this constant. */
5577 enum {
5578 	UFSHCD_POLL_FROM_INTERRUPT_CONTEXT = -1
5579 };
5580 
5581 static void ufshcd_clear_polled(struct ufs_hba *hba,
5582 				unsigned long *completed_reqs)
5583 {
5584 	int tag;
5585 
5586 	for_each_set_bit(tag, completed_reqs, hba->nutrs) {
5587 		struct scsi_cmnd *cmd = hba->lrb[tag].cmd;
5588 
5589 		if (!cmd)
5590 			continue;
5591 		if (scsi_cmd_to_rq(cmd)->cmd_flags & REQ_POLLED)
5592 			__clear_bit(tag, completed_reqs);
5593 	}
5594 }
5595 
5596 /*
5597  * Return: > 0 if one or more commands have been completed or 0 if no
5598  * requests have been completed.
5599  */
5600 static int ufshcd_poll(struct Scsi_Host *shost, unsigned int queue_num)
5601 {
5602 	struct ufs_hba *hba = shost_priv(shost);
5603 	unsigned long completed_reqs, flags;
5604 	u32 tr_doorbell;
5605 	struct ufs_hw_queue *hwq;
5606 
5607 	if (is_mcq_enabled(hba)) {
5608 		hwq = &hba->uhq[queue_num];
5609 
5610 		return ufshcd_mcq_poll_cqe_lock(hba, hwq);
5611 	}
5612 
5613 	spin_lock_irqsave(&hba->outstanding_lock, flags);
5614 	tr_doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
5615 	completed_reqs = ~tr_doorbell & hba->outstanding_reqs;
5616 	WARN_ONCE(completed_reqs & ~hba->outstanding_reqs,
5617 		  "completed: %#lx; outstanding: %#lx\n", completed_reqs,
5618 		  hba->outstanding_reqs);
5619 	if (queue_num == UFSHCD_POLL_FROM_INTERRUPT_CONTEXT) {
5620 		/* Do not complete polled requests from interrupt context. */
5621 		ufshcd_clear_polled(hba, &completed_reqs);
5622 	}
5623 	hba->outstanding_reqs &= ~completed_reqs;
5624 	spin_unlock_irqrestore(&hba->outstanding_lock, flags);
5625 
5626 	if (completed_reqs)
5627 		__ufshcd_transfer_req_compl(hba, completed_reqs);
5628 
5629 	return completed_reqs != 0;
5630 }
5631 
5632 /**
5633  * ufshcd_mcq_compl_pending_transfer - MCQ mode function. It is
5634  * invoked from the error handler context or ufshcd_host_reset_and_restore()
5635  * to complete the pending transfers and free the resources associated with
5636  * the scsi command.
5637  *
5638  * @hba: per adapter instance
5639  * @force_compl: This flag is set to true when invoked
5640  * from ufshcd_host_reset_and_restore() in which case it requires special
5641  * handling because the host controller has been reset by ufshcd_hba_stop().
5642  */
5643 static void ufshcd_mcq_compl_pending_transfer(struct ufs_hba *hba,
5644 					      bool force_compl)
5645 {
5646 	struct ufs_hw_queue *hwq;
5647 	struct ufshcd_lrb *lrbp;
5648 	struct scsi_cmnd *cmd;
5649 	unsigned long flags;
5650 	int tag;
5651 
5652 	for (tag = 0; tag < hba->nutrs; tag++) {
5653 		lrbp = &hba->lrb[tag];
5654 		cmd = lrbp->cmd;
5655 		if (!ufshcd_cmd_inflight(cmd) ||
5656 		    test_bit(SCMD_STATE_COMPLETE, &cmd->state))
5657 			continue;
5658 
5659 		hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(cmd));
5660 
5661 		if (force_compl) {
5662 			ufshcd_mcq_compl_all_cqes_lock(hba, hwq);
5663 			/*
5664 			 * For those cmds of which the cqes are not present
5665 			 * in the cq, complete them explicitly.
5666 			 */
5667 			spin_lock_irqsave(&hwq->cq_lock, flags);
5668 			if (cmd && !test_bit(SCMD_STATE_COMPLETE, &cmd->state)) {
5669 				set_host_byte(cmd, DID_REQUEUE);
5670 				ufshcd_release_scsi_cmd(hba, lrbp);
5671 				scsi_done(cmd);
5672 			}
5673 			spin_unlock_irqrestore(&hwq->cq_lock, flags);
5674 		} else {
5675 			ufshcd_mcq_poll_cqe_lock(hba, hwq);
5676 		}
5677 	}
5678 }
5679 
5680 /**
5681  * ufshcd_transfer_req_compl - handle SCSI and query command completion
5682  * @hba: per adapter instance
5683  *
5684  * Return:
5685  *  IRQ_HANDLED - If interrupt is valid
5686  *  IRQ_NONE    - If invalid interrupt
5687  */
5688 static irqreturn_t ufshcd_transfer_req_compl(struct ufs_hba *hba)
5689 {
5690 	/* Resetting interrupt aggregation counters first and reading the
5691 	 * DOOR_BELL afterward allows us to handle all the completed requests.
5692 	 * In order to prevent other interrupts starvation the DB is read once
5693 	 * after reset. The down side of this solution is the possibility of
5694 	 * false interrupt if device completes another request after resetting
5695 	 * aggregation and before reading the DB.
5696 	 */
5697 	if (ufshcd_is_intr_aggr_allowed(hba) &&
5698 	    !(hba->quirks & UFSHCI_QUIRK_SKIP_RESET_INTR_AGGR))
5699 		ufshcd_reset_intr_aggr(hba);
5700 
5701 	if (ufs_fail_completion(hba))
5702 		return IRQ_HANDLED;
5703 
5704 	/*
5705 	 * Ignore the ufshcd_poll() return value and return IRQ_HANDLED since we
5706 	 * do not want polling to trigger spurious interrupt complaints.
5707 	 */
5708 	ufshcd_poll(hba->host, UFSHCD_POLL_FROM_INTERRUPT_CONTEXT);
5709 
5710 	return IRQ_HANDLED;
5711 }
5712 
5713 int __ufshcd_write_ee_control(struct ufs_hba *hba, u32 ee_ctrl_mask)
5714 {
5715 	return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
5716 				       QUERY_ATTR_IDN_EE_CONTROL, 0, 0,
5717 				       &ee_ctrl_mask);
5718 }
5719 
5720 int ufshcd_write_ee_control(struct ufs_hba *hba)
5721 {
5722 	int err;
5723 
5724 	mutex_lock(&hba->ee_ctrl_mutex);
5725 	err = __ufshcd_write_ee_control(hba, hba->ee_ctrl_mask);
5726 	mutex_unlock(&hba->ee_ctrl_mutex);
5727 	if (err)
5728 		dev_err(hba->dev, "%s: failed to write ee control %d\n",
5729 			__func__, err);
5730 	return err;
5731 }
5732 
5733 int ufshcd_update_ee_control(struct ufs_hba *hba, u16 *mask,
5734 			     const u16 *other_mask, u16 set, u16 clr)
5735 {
5736 	u16 new_mask, ee_ctrl_mask;
5737 	int err = 0;
5738 
5739 	mutex_lock(&hba->ee_ctrl_mutex);
5740 	new_mask = (*mask & ~clr) | set;
5741 	ee_ctrl_mask = new_mask | *other_mask;
5742 	if (ee_ctrl_mask != hba->ee_ctrl_mask)
5743 		err = __ufshcd_write_ee_control(hba, ee_ctrl_mask);
5744 	/* Still need to update 'mask' even if 'ee_ctrl_mask' was unchanged */
5745 	if (!err) {
5746 		hba->ee_ctrl_mask = ee_ctrl_mask;
5747 		*mask = new_mask;
5748 	}
5749 	mutex_unlock(&hba->ee_ctrl_mutex);
5750 	return err;
5751 }
5752 
5753 /**
5754  * ufshcd_disable_ee - disable exception event
5755  * @hba: per-adapter instance
5756  * @mask: exception event to disable
5757  *
5758  * Disables exception event in the device so that the EVENT_ALERT
5759  * bit is not set.
5760  *
5761  * Return: zero on success, non-zero error value on failure.
5762  */
5763 static inline int ufshcd_disable_ee(struct ufs_hba *hba, u16 mask)
5764 {
5765 	return ufshcd_update_ee_drv_mask(hba, 0, mask);
5766 }
5767 
5768 /**
5769  * ufshcd_enable_ee - enable exception event
5770  * @hba: per-adapter instance
5771  * @mask: exception event to enable
5772  *
5773  * Enable corresponding exception event in the device to allow
5774  * device to alert host in critical scenarios.
5775  *
5776  * Return: zero on success, non-zero error value on failure.
5777  */
5778 static inline int ufshcd_enable_ee(struct ufs_hba *hba, u16 mask)
5779 {
5780 	return ufshcd_update_ee_drv_mask(hba, mask, 0);
5781 }
5782 
5783 /**
5784  * ufshcd_enable_auto_bkops - Allow device managed BKOPS
5785  * @hba: per-adapter instance
5786  *
5787  * Allow device to manage background operations on its own. Enabling
5788  * this might lead to inconsistent latencies during normal data transfers
5789  * as the device is allowed to manage its own way of handling background
5790  * operations.
5791  *
5792  * Return: zero on success, non-zero on failure.
5793  */
5794 static int ufshcd_enable_auto_bkops(struct ufs_hba *hba)
5795 {
5796 	int err = 0;
5797 
5798 	if (hba->auto_bkops_enabled)
5799 		goto out;
5800 
5801 	err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG,
5802 			QUERY_FLAG_IDN_BKOPS_EN, 0, NULL);
5803 	if (err) {
5804 		dev_err(hba->dev, "%s: failed to enable bkops %d\n",
5805 				__func__, err);
5806 		goto out;
5807 	}
5808 
5809 	hba->auto_bkops_enabled = true;
5810 	trace_ufshcd_auto_bkops_state(dev_name(hba->dev), "Enabled");
5811 
5812 	/* No need of URGENT_BKOPS exception from the device */
5813 	err = ufshcd_disable_ee(hba, MASK_EE_URGENT_BKOPS);
5814 	if (err)
5815 		dev_err(hba->dev, "%s: failed to disable exception event %d\n",
5816 				__func__, err);
5817 out:
5818 	return err;
5819 }
5820 
5821 /**
5822  * ufshcd_disable_auto_bkops - block device in doing background operations
5823  * @hba: per-adapter instance
5824  *
5825  * Disabling background operations improves command response latency but
5826  * has drawback of device moving into critical state where the device is
5827  * not-operable. Make sure to call ufshcd_enable_auto_bkops() whenever the
5828  * host is idle so that BKOPS are managed effectively without any negative
5829  * impacts.
5830  *
5831  * Return: zero on success, non-zero on failure.
5832  */
5833 static int ufshcd_disable_auto_bkops(struct ufs_hba *hba)
5834 {
5835 	int err = 0;
5836 
5837 	if (!hba->auto_bkops_enabled)
5838 		goto out;
5839 
5840 	/*
5841 	 * If host assisted BKOPs is to be enabled, make sure
5842 	 * urgent bkops exception is allowed.
5843 	 */
5844 	err = ufshcd_enable_ee(hba, MASK_EE_URGENT_BKOPS);
5845 	if (err) {
5846 		dev_err(hba->dev, "%s: failed to enable exception event %d\n",
5847 				__func__, err);
5848 		goto out;
5849 	}
5850 
5851 	err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_CLEAR_FLAG,
5852 			QUERY_FLAG_IDN_BKOPS_EN, 0, NULL);
5853 	if (err) {
5854 		dev_err(hba->dev, "%s: failed to disable bkops %d\n",
5855 				__func__, err);
5856 		ufshcd_disable_ee(hba, MASK_EE_URGENT_BKOPS);
5857 		goto out;
5858 	}
5859 
5860 	hba->auto_bkops_enabled = false;
5861 	trace_ufshcd_auto_bkops_state(dev_name(hba->dev), "Disabled");
5862 	hba->is_urgent_bkops_lvl_checked = false;
5863 out:
5864 	return err;
5865 }
5866 
5867 /**
5868  * ufshcd_force_reset_auto_bkops - force reset auto bkops state
5869  * @hba: per adapter instance
5870  *
5871  * After a device reset the device may toggle the BKOPS_EN flag
5872  * to default value. The s/w tracking variables should be updated
5873  * as well. This function would change the auto-bkops state based on
5874  * UFSHCD_CAP_KEEP_AUTO_BKOPS_ENABLED_EXCEPT_SUSPEND.
5875  */
5876 static void ufshcd_force_reset_auto_bkops(struct ufs_hba *hba)
5877 {
5878 	if (ufshcd_keep_autobkops_enabled_except_suspend(hba)) {
5879 		hba->auto_bkops_enabled = false;
5880 		hba->ee_ctrl_mask |= MASK_EE_URGENT_BKOPS;
5881 		ufshcd_enable_auto_bkops(hba);
5882 	} else {
5883 		hba->auto_bkops_enabled = true;
5884 		hba->ee_ctrl_mask &= ~MASK_EE_URGENT_BKOPS;
5885 		ufshcd_disable_auto_bkops(hba);
5886 	}
5887 	hba->urgent_bkops_lvl = BKOPS_STATUS_PERF_IMPACT;
5888 	hba->is_urgent_bkops_lvl_checked = false;
5889 }
5890 
5891 static inline int ufshcd_get_bkops_status(struct ufs_hba *hba, u32 *status)
5892 {
5893 	return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5894 			QUERY_ATTR_IDN_BKOPS_STATUS, 0, 0, status);
5895 }
5896 
5897 /**
5898  * ufshcd_bkops_ctrl - control the auto bkops based on current bkops status
5899  * @hba: per-adapter instance
5900  * @status: bkops_status value
5901  *
5902  * Read the bkops_status from the UFS device and Enable fBackgroundOpsEn
5903  * flag in the device to permit background operations if the device
5904  * bkops_status is greater than or equal to "status" argument passed to
5905  * this function, disable otherwise.
5906  *
5907  * Return: 0 for success, non-zero in case of failure.
5908  *
5909  * NOTE: Caller of this function can check the "hba->auto_bkops_enabled" flag
5910  * to know whether auto bkops is enabled or disabled after this function
5911  * returns control to it.
5912  */
5913 static int ufshcd_bkops_ctrl(struct ufs_hba *hba,
5914 			     enum bkops_status status)
5915 {
5916 	int err;
5917 	u32 curr_status = 0;
5918 
5919 	err = ufshcd_get_bkops_status(hba, &curr_status);
5920 	if (err) {
5921 		dev_err(hba->dev, "%s: failed to get BKOPS status %d\n",
5922 				__func__, err);
5923 		goto out;
5924 	} else if (curr_status > BKOPS_STATUS_MAX) {
5925 		dev_err(hba->dev, "%s: invalid BKOPS status %d\n",
5926 				__func__, curr_status);
5927 		err = -EINVAL;
5928 		goto out;
5929 	}
5930 
5931 	if (curr_status >= status)
5932 		err = ufshcd_enable_auto_bkops(hba);
5933 	else
5934 		err = ufshcd_disable_auto_bkops(hba);
5935 out:
5936 	return err;
5937 }
5938 
5939 /**
5940  * ufshcd_urgent_bkops - handle urgent bkops exception event
5941  * @hba: per-adapter instance
5942  *
5943  * Enable fBackgroundOpsEn flag in the device to permit background
5944  * operations.
5945  *
5946  * If BKOPs is enabled, this function returns 0, 1 if the bkops in not enabled
5947  * and negative error value for any other failure.
5948  *
5949  * Return: 0 upon success; < 0 upon failure.
5950  */
5951 static int ufshcd_urgent_bkops(struct ufs_hba *hba)
5952 {
5953 	return ufshcd_bkops_ctrl(hba, hba->urgent_bkops_lvl);
5954 }
5955 
5956 static inline int ufshcd_get_ee_status(struct ufs_hba *hba, u32 *status)
5957 {
5958 	return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5959 			QUERY_ATTR_IDN_EE_STATUS, 0, 0, status);
5960 }
5961 
5962 static void ufshcd_bkops_exception_event_handler(struct ufs_hba *hba)
5963 {
5964 	int err;
5965 	u32 curr_status = 0;
5966 
5967 	if (hba->is_urgent_bkops_lvl_checked)
5968 		goto enable_auto_bkops;
5969 
5970 	err = ufshcd_get_bkops_status(hba, &curr_status);
5971 	if (err) {
5972 		dev_err(hba->dev, "%s: failed to get BKOPS status %d\n",
5973 				__func__, err);
5974 		goto out;
5975 	}
5976 
5977 	/*
5978 	 * We are seeing that some devices are raising the urgent bkops
5979 	 * exception events even when BKOPS status doesn't indicate performace
5980 	 * impacted or critical. Handle these device by determining their urgent
5981 	 * bkops status at runtime.
5982 	 */
5983 	if (curr_status < BKOPS_STATUS_PERF_IMPACT) {
5984 		dev_err(hba->dev, "%s: device raised urgent BKOPS exception for bkops status %d\n",
5985 				__func__, curr_status);
5986 		/* update the current status as the urgent bkops level */
5987 		hba->urgent_bkops_lvl = curr_status;
5988 		hba->is_urgent_bkops_lvl_checked = true;
5989 	}
5990 
5991 enable_auto_bkops:
5992 	err = ufshcd_enable_auto_bkops(hba);
5993 out:
5994 	if (err < 0)
5995 		dev_err(hba->dev, "%s: failed to handle urgent bkops %d\n",
5996 				__func__, err);
5997 }
5998 
5999 static void ufshcd_temp_exception_event_handler(struct ufs_hba *hba, u16 status)
6000 {
6001 	u32 value;
6002 
6003 	if (ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
6004 				QUERY_ATTR_IDN_CASE_ROUGH_TEMP, 0, 0, &value))
6005 		return;
6006 
6007 	dev_info(hba->dev, "exception Tcase %d\n", value - 80);
6008 
6009 	ufs_hwmon_notify_event(hba, status & MASK_EE_URGENT_TEMP);
6010 
6011 	/*
6012 	 * A placeholder for the platform vendors to add whatever additional
6013 	 * steps required
6014 	 */
6015 }
6016 
6017 static int __ufshcd_wb_toggle(struct ufs_hba *hba, bool set, enum flag_idn idn)
6018 {
6019 	u8 index;
6020 	enum query_opcode opcode = set ? UPIU_QUERY_OPCODE_SET_FLAG :
6021 				   UPIU_QUERY_OPCODE_CLEAR_FLAG;
6022 
6023 	index = ufshcd_wb_get_query_index(hba);
6024 	return ufshcd_query_flag_retry(hba, opcode, idn, index, NULL);
6025 }
6026 
6027 int ufshcd_wb_toggle(struct ufs_hba *hba, bool enable)
6028 {
6029 	int ret;
6030 
6031 	if (!ufshcd_is_wb_allowed(hba) ||
6032 	    hba->dev_info.wb_enabled == enable)
6033 		return 0;
6034 
6035 	ret = __ufshcd_wb_toggle(hba, enable, QUERY_FLAG_IDN_WB_EN);
6036 	if (ret) {
6037 		dev_err(hba->dev, "%s: Write Booster %s failed %d\n",
6038 			__func__, enable ? "enabling" : "disabling", ret);
6039 		return ret;
6040 	}
6041 
6042 	hba->dev_info.wb_enabled = enable;
6043 	dev_dbg(hba->dev, "%s: Write Booster %s\n",
6044 			__func__, enable ? "enabled" : "disabled");
6045 
6046 	return ret;
6047 }
6048 
6049 static void ufshcd_wb_toggle_buf_flush_during_h8(struct ufs_hba *hba,
6050 						 bool enable)
6051 {
6052 	int ret;
6053 
6054 	ret = __ufshcd_wb_toggle(hba, enable,
6055 			QUERY_FLAG_IDN_WB_BUFF_FLUSH_DURING_HIBERN8);
6056 	if (ret) {
6057 		dev_err(hba->dev, "%s: WB-Buf Flush during H8 %s failed %d\n",
6058 			__func__, enable ? "enabling" : "disabling", ret);
6059 		return;
6060 	}
6061 	dev_dbg(hba->dev, "%s: WB-Buf Flush during H8 %s\n",
6062 			__func__, enable ? "enabled" : "disabled");
6063 }
6064 
6065 int ufshcd_wb_toggle_buf_flush(struct ufs_hba *hba, bool enable)
6066 {
6067 	int ret;
6068 
6069 	if (!ufshcd_is_wb_allowed(hba) ||
6070 	    hba->dev_info.wb_buf_flush_enabled == enable)
6071 		return 0;
6072 
6073 	ret = __ufshcd_wb_toggle(hba, enable, QUERY_FLAG_IDN_WB_BUFF_FLUSH_EN);
6074 	if (ret) {
6075 		dev_err(hba->dev, "%s: WB-Buf Flush %s failed %d\n",
6076 			__func__, enable ? "enabling" : "disabling", ret);
6077 		return ret;
6078 	}
6079 
6080 	hba->dev_info.wb_buf_flush_enabled = enable;
6081 	dev_dbg(hba->dev, "%s: WB-Buf Flush %s\n",
6082 			__func__, enable ? "enabled" : "disabled");
6083 
6084 	return ret;
6085 }
6086 
6087 static bool ufshcd_wb_presrv_usrspc_keep_vcc_on(struct ufs_hba *hba,
6088 						u32 avail_buf)
6089 {
6090 	u32 cur_buf;
6091 	int ret;
6092 	u8 index;
6093 
6094 	index = ufshcd_wb_get_query_index(hba);
6095 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
6096 					      QUERY_ATTR_IDN_CURR_WB_BUFF_SIZE,
6097 					      index, 0, &cur_buf);
6098 	if (ret) {
6099 		dev_err(hba->dev, "%s: dCurWriteBoosterBufferSize read failed %d\n",
6100 			__func__, ret);
6101 		return false;
6102 	}
6103 
6104 	if (!cur_buf) {
6105 		dev_info(hba->dev, "dCurWBBuf: %d WB disabled until free-space is available\n",
6106 			 cur_buf);
6107 		return false;
6108 	}
6109 	/* Let it continue to flush when available buffer exceeds threshold */
6110 	return avail_buf < hba->vps->wb_flush_threshold;
6111 }
6112 
6113 static void ufshcd_wb_force_disable(struct ufs_hba *hba)
6114 {
6115 	if (ufshcd_is_wb_buf_flush_allowed(hba))
6116 		ufshcd_wb_toggle_buf_flush(hba, false);
6117 
6118 	ufshcd_wb_toggle_buf_flush_during_h8(hba, false);
6119 	ufshcd_wb_toggle(hba, false);
6120 	hba->caps &= ~UFSHCD_CAP_WB_EN;
6121 
6122 	dev_info(hba->dev, "%s: WB force disabled\n", __func__);
6123 }
6124 
6125 static bool ufshcd_is_wb_buf_lifetime_available(struct ufs_hba *hba)
6126 {
6127 	u32 lifetime;
6128 	int ret;
6129 	u8 index;
6130 
6131 	index = ufshcd_wb_get_query_index(hba);
6132 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
6133 				      QUERY_ATTR_IDN_WB_BUFF_LIFE_TIME_EST,
6134 				      index, 0, &lifetime);
6135 	if (ret) {
6136 		dev_err(hba->dev,
6137 			"%s: bWriteBoosterBufferLifeTimeEst read failed %d\n",
6138 			__func__, ret);
6139 		return false;
6140 	}
6141 
6142 	if (lifetime == UFS_WB_EXCEED_LIFETIME) {
6143 		dev_err(hba->dev, "%s: WB buf lifetime is exhausted 0x%02X\n",
6144 			__func__, lifetime);
6145 		return false;
6146 	}
6147 
6148 	dev_dbg(hba->dev, "%s: WB buf lifetime is 0x%02X\n",
6149 		__func__, lifetime);
6150 
6151 	return true;
6152 }
6153 
6154 static bool ufshcd_wb_need_flush(struct ufs_hba *hba)
6155 {
6156 	int ret;
6157 	u32 avail_buf;
6158 	u8 index;
6159 
6160 	if (!ufshcd_is_wb_allowed(hba))
6161 		return false;
6162 
6163 	if (!ufshcd_is_wb_buf_lifetime_available(hba)) {
6164 		ufshcd_wb_force_disable(hba);
6165 		return false;
6166 	}
6167 
6168 	/*
6169 	 * The ufs device needs the vcc to be ON to flush.
6170 	 * With user-space reduction enabled, it's enough to enable flush
6171 	 * by checking only the available buffer. The threshold
6172 	 * defined here is > 90% full.
6173 	 * With user-space preserved enabled, the current-buffer
6174 	 * should be checked too because the wb buffer size can reduce
6175 	 * when disk tends to be full. This info is provided by current
6176 	 * buffer (dCurrentWriteBoosterBufferSize). There's no point in
6177 	 * keeping vcc on when current buffer is empty.
6178 	 */
6179 	index = ufshcd_wb_get_query_index(hba);
6180 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
6181 				      QUERY_ATTR_IDN_AVAIL_WB_BUFF_SIZE,
6182 				      index, 0, &avail_buf);
6183 	if (ret) {
6184 		dev_warn(hba->dev, "%s: dAvailableWriteBoosterBufferSize read failed %d\n",
6185 			 __func__, ret);
6186 		return false;
6187 	}
6188 
6189 	if (!hba->dev_info.b_presrv_uspc_en)
6190 		return avail_buf <= UFS_WB_BUF_REMAIN_PERCENT(10);
6191 
6192 	return ufshcd_wb_presrv_usrspc_keep_vcc_on(hba, avail_buf);
6193 }
6194 
6195 static void ufshcd_rpm_dev_flush_recheck_work(struct work_struct *work)
6196 {
6197 	struct ufs_hba *hba = container_of(to_delayed_work(work),
6198 					   struct ufs_hba,
6199 					   rpm_dev_flush_recheck_work);
6200 	/*
6201 	 * To prevent unnecessary VCC power drain after device finishes
6202 	 * WriteBooster buffer flush or Auto BKOPs, force runtime resume
6203 	 * after a certain delay to recheck the threshold by next runtime
6204 	 * suspend.
6205 	 */
6206 	ufshcd_rpm_get_sync(hba);
6207 	ufshcd_rpm_put_sync(hba);
6208 }
6209 
6210 /**
6211  * ufshcd_exception_event_handler - handle exceptions raised by device
6212  * @work: pointer to work data
6213  *
6214  * Read bExceptionEventStatus attribute from the device and handle the
6215  * exception event accordingly.
6216  */
6217 static void ufshcd_exception_event_handler(struct work_struct *work)
6218 {
6219 	struct ufs_hba *hba;
6220 	int err;
6221 	u32 status = 0;
6222 	hba = container_of(work, struct ufs_hba, eeh_work);
6223 
6224 	ufshcd_scsi_block_requests(hba);
6225 	err = ufshcd_get_ee_status(hba, &status);
6226 	if (err) {
6227 		dev_err(hba->dev, "%s: failed to get exception status %d\n",
6228 				__func__, err);
6229 		goto out;
6230 	}
6231 
6232 	trace_ufshcd_exception_event(dev_name(hba->dev), status);
6233 
6234 	if (status & hba->ee_drv_mask & MASK_EE_URGENT_BKOPS)
6235 		ufshcd_bkops_exception_event_handler(hba);
6236 
6237 	if (status & hba->ee_drv_mask & MASK_EE_URGENT_TEMP)
6238 		ufshcd_temp_exception_event_handler(hba, status);
6239 
6240 	ufs_debugfs_exception_event(hba, status);
6241 out:
6242 	ufshcd_scsi_unblock_requests(hba);
6243 }
6244 
6245 /* Complete requests that have door-bell cleared */
6246 static void ufshcd_complete_requests(struct ufs_hba *hba, bool force_compl)
6247 {
6248 	if (is_mcq_enabled(hba))
6249 		ufshcd_mcq_compl_pending_transfer(hba, force_compl);
6250 	else
6251 		ufshcd_transfer_req_compl(hba);
6252 
6253 	ufshcd_tmc_handler(hba);
6254 }
6255 
6256 /**
6257  * ufshcd_quirk_dl_nac_errors - This function checks if error handling is
6258  *				to recover from the DL NAC errors or not.
6259  * @hba: per-adapter instance
6260  *
6261  * Return: true if error handling is required, false otherwise.
6262  */
6263 static bool ufshcd_quirk_dl_nac_errors(struct ufs_hba *hba)
6264 {
6265 	unsigned long flags;
6266 	bool err_handling = true;
6267 
6268 	spin_lock_irqsave(hba->host->host_lock, flags);
6269 	/*
6270 	 * UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS only workaround the
6271 	 * device fatal error and/or DL NAC & REPLAY timeout errors.
6272 	 */
6273 	if (hba->saved_err & (CONTROLLER_FATAL_ERROR | SYSTEM_BUS_FATAL_ERROR))
6274 		goto out;
6275 
6276 	if ((hba->saved_err & DEVICE_FATAL_ERROR) ||
6277 	    ((hba->saved_err & UIC_ERROR) &&
6278 	     (hba->saved_uic_err & UFSHCD_UIC_DL_TCx_REPLAY_ERROR)))
6279 		goto out;
6280 
6281 	if ((hba->saved_err & UIC_ERROR) &&
6282 	    (hba->saved_uic_err & UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)) {
6283 		int err;
6284 		/*
6285 		 * wait for 50ms to see if we can get any other errors or not.
6286 		 */
6287 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6288 		msleep(50);
6289 		spin_lock_irqsave(hba->host->host_lock, flags);
6290 
6291 		/*
6292 		 * now check if we have got any other severe errors other than
6293 		 * DL NAC error?
6294 		 */
6295 		if ((hba->saved_err & INT_FATAL_ERRORS) ||
6296 		    ((hba->saved_err & UIC_ERROR) &&
6297 		    (hba->saved_uic_err & ~UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)))
6298 			goto out;
6299 
6300 		/*
6301 		 * As DL NAC is the only error received so far, send out NOP
6302 		 * command to confirm if link is still active or not.
6303 		 *   - If we don't get any response then do error recovery.
6304 		 *   - If we get response then clear the DL NAC error bit.
6305 		 */
6306 
6307 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6308 		err = ufshcd_verify_dev_init(hba);
6309 		spin_lock_irqsave(hba->host->host_lock, flags);
6310 
6311 		if (err)
6312 			goto out;
6313 
6314 		/* Link seems to be alive hence ignore the DL NAC errors */
6315 		if (hba->saved_uic_err == UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)
6316 			hba->saved_err &= ~UIC_ERROR;
6317 		/* clear NAC error */
6318 		hba->saved_uic_err &= ~UFSHCD_UIC_DL_NAC_RECEIVED_ERROR;
6319 		if (!hba->saved_uic_err)
6320 			err_handling = false;
6321 	}
6322 out:
6323 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6324 	return err_handling;
6325 }
6326 
6327 /* host lock must be held before calling this func */
6328 static inline bool ufshcd_is_saved_err_fatal(struct ufs_hba *hba)
6329 {
6330 	return (hba->saved_uic_err & UFSHCD_UIC_DL_PA_INIT_ERROR) ||
6331 	       (hba->saved_err & (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK));
6332 }
6333 
6334 void ufshcd_schedule_eh_work(struct ufs_hba *hba)
6335 {
6336 	lockdep_assert_held(hba->host->host_lock);
6337 
6338 	/* handle fatal errors only when link is not in error state */
6339 	if (hba->ufshcd_state != UFSHCD_STATE_ERROR) {
6340 		if (hba->force_reset || ufshcd_is_link_broken(hba) ||
6341 		    ufshcd_is_saved_err_fatal(hba))
6342 			hba->ufshcd_state = UFSHCD_STATE_EH_SCHEDULED_FATAL;
6343 		else
6344 			hba->ufshcd_state = UFSHCD_STATE_EH_SCHEDULED_NON_FATAL;
6345 		queue_work(hba->eh_wq, &hba->eh_work);
6346 	}
6347 }
6348 
6349 static void ufshcd_force_error_recovery(struct ufs_hba *hba)
6350 {
6351 	spin_lock_irq(hba->host->host_lock);
6352 	hba->force_reset = true;
6353 	ufshcd_schedule_eh_work(hba);
6354 	spin_unlock_irq(hba->host->host_lock);
6355 }
6356 
6357 static void ufshcd_clk_scaling_allow(struct ufs_hba *hba, bool allow)
6358 {
6359 	mutex_lock(&hba->wb_mutex);
6360 	down_write(&hba->clk_scaling_lock);
6361 	hba->clk_scaling.is_allowed = allow;
6362 	up_write(&hba->clk_scaling_lock);
6363 	mutex_unlock(&hba->wb_mutex);
6364 }
6365 
6366 static void ufshcd_clk_scaling_suspend(struct ufs_hba *hba, bool suspend)
6367 {
6368 	if (suspend) {
6369 		if (hba->clk_scaling.is_enabled)
6370 			ufshcd_suspend_clkscaling(hba);
6371 		ufshcd_clk_scaling_allow(hba, false);
6372 	} else {
6373 		ufshcd_clk_scaling_allow(hba, true);
6374 		if (hba->clk_scaling.is_enabled)
6375 			ufshcd_resume_clkscaling(hba);
6376 	}
6377 }
6378 
6379 static void ufshcd_err_handling_prepare(struct ufs_hba *hba)
6380 {
6381 	ufshcd_rpm_get_sync(hba);
6382 	if (pm_runtime_status_suspended(&hba->ufs_device_wlun->sdev_gendev) ||
6383 	    hba->is_sys_suspended) {
6384 		enum ufs_pm_op pm_op;
6385 
6386 		/*
6387 		 * Don't assume anything of resume, if
6388 		 * resume fails, irq and clocks can be OFF, and powers
6389 		 * can be OFF or in LPM.
6390 		 */
6391 		ufshcd_setup_hba_vreg(hba, true);
6392 		ufshcd_enable_irq(hba);
6393 		ufshcd_setup_vreg(hba, true);
6394 		ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq);
6395 		ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq2);
6396 		ufshcd_hold(hba);
6397 		if (!ufshcd_is_clkgating_allowed(hba))
6398 			ufshcd_setup_clocks(hba, true);
6399 		pm_op = hba->is_sys_suspended ? UFS_SYSTEM_PM : UFS_RUNTIME_PM;
6400 		ufshcd_vops_resume(hba, pm_op);
6401 	} else {
6402 		ufshcd_hold(hba);
6403 		if (ufshcd_is_clkscaling_supported(hba) &&
6404 		    hba->clk_scaling.is_enabled)
6405 			ufshcd_suspend_clkscaling(hba);
6406 		ufshcd_clk_scaling_allow(hba, false);
6407 	}
6408 	ufshcd_scsi_block_requests(hba);
6409 	/* Wait for ongoing ufshcd_queuecommand() calls to finish. */
6410 	blk_mq_wait_quiesce_done(&hba->host->tag_set);
6411 	cancel_work_sync(&hba->eeh_work);
6412 }
6413 
6414 static void ufshcd_err_handling_unprepare(struct ufs_hba *hba)
6415 {
6416 	ufshcd_scsi_unblock_requests(hba);
6417 	ufshcd_release(hba);
6418 	if (ufshcd_is_clkscaling_supported(hba))
6419 		ufshcd_clk_scaling_suspend(hba, false);
6420 	ufshcd_rpm_put(hba);
6421 }
6422 
6423 static inline bool ufshcd_err_handling_should_stop(struct ufs_hba *hba)
6424 {
6425 	return (!hba->is_powered || hba->shutting_down ||
6426 		!hba->ufs_device_wlun ||
6427 		hba->ufshcd_state == UFSHCD_STATE_ERROR ||
6428 		(!(hba->saved_err || hba->saved_uic_err || hba->force_reset ||
6429 		   ufshcd_is_link_broken(hba))));
6430 }
6431 
6432 #ifdef CONFIG_PM
6433 static void ufshcd_recover_pm_error(struct ufs_hba *hba)
6434 {
6435 	struct Scsi_Host *shost = hba->host;
6436 	struct scsi_device *sdev;
6437 	struct request_queue *q;
6438 	int ret;
6439 
6440 	hba->is_sys_suspended = false;
6441 	/*
6442 	 * Set RPM status of wlun device to RPM_ACTIVE,
6443 	 * this also clears its runtime error.
6444 	 */
6445 	ret = pm_runtime_set_active(&hba->ufs_device_wlun->sdev_gendev);
6446 
6447 	/* hba device might have a runtime error otherwise */
6448 	if (ret)
6449 		ret = pm_runtime_set_active(hba->dev);
6450 	/*
6451 	 * If wlun device had runtime error, we also need to resume those
6452 	 * consumer scsi devices in case any of them has failed to be
6453 	 * resumed due to supplier runtime resume failure. This is to unblock
6454 	 * blk_queue_enter in case there are bios waiting inside it.
6455 	 */
6456 	if (!ret) {
6457 		shost_for_each_device(sdev, shost) {
6458 			q = sdev->request_queue;
6459 			if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
6460 				       q->rpm_status == RPM_SUSPENDING))
6461 				pm_request_resume(q->dev);
6462 		}
6463 	}
6464 }
6465 #else
6466 static inline void ufshcd_recover_pm_error(struct ufs_hba *hba)
6467 {
6468 }
6469 #endif
6470 
6471 static bool ufshcd_is_pwr_mode_restore_needed(struct ufs_hba *hba)
6472 {
6473 	struct ufs_pa_layer_attr *pwr_info = &hba->pwr_info;
6474 	u32 mode;
6475 
6476 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_PWRMODE), &mode);
6477 
6478 	if (pwr_info->pwr_rx != ((mode >> PWRMODE_RX_OFFSET) & PWRMODE_MASK))
6479 		return true;
6480 
6481 	if (pwr_info->pwr_tx != (mode & PWRMODE_MASK))
6482 		return true;
6483 
6484 	return false;
6485 }
6486 
6487 static bool ufshcd_abort_one(struct request *rq, void *priv)
6488 {
6489 	int *ret = priv;
6490 	u32 tag = rq->tag;
6491 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
6492 	struct scsi_device *sdev = cmd->device;
6493 	struct Scsi_Host *shost = sdev->host;
6494 	struct ufs_hba *hba = shost_priv(shost);
6495 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
6496 	struct ufs_hw_queue *hwq;
6497 	unsigned long flags;
6498 
6499 	*ret = ufshcd_try_to_abort_task(hba, tag);
6500 	dev_err(hba->dev, "Aborting tag %d / CDB %#02x %s\n", tag,
6501 		hba->lrb[tag].cmd ? hba->lrb[tag].cmd->cmnd[0] : -1,
6502 		*ret ? "failed" : "succeeded");
6503 
6504 	/* Release cmd in MCQ mode if abort succeeds */
6505 	if (is_mcq_enabled(hba) && (*ret == 0)) {
6506 		hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(lrbp->cmd));
6507 		spin_lock_irqsave(&hwq->cq_lock, flags);
6508 		if (ufshcd_cmd_inflight(lrbp->cmd))
6509 			ufshcd_release_scsi_cmd(hba, lrbp);
6510 		spin_unlock_irqrestore(&hwq->cq_lock, flags);
6511 	}
6512 
6513 	return *ret == 0;
6514 }
6515 
6516 /**
6517  * ufshcd_abort_all - Abort all pending commands.
6518  * @hba: Host bus adapter pointer.
6519  *
6520  * Return: true if and only if the host controller needs to be reset.
6521  */
6522 static bool ufshcd_abort_all(struct ufs_hba *hba)
6523 {
6524 	int tag, ret = 0;
6525 
6526 	blk_mq_tagset_busy_iter(&hba->host->tag_set, ufshcd_abort_one, &ret);
6527 	if (ret)
6528 		goto out;
6529 
6530 	/* Clear pending task management requests */
6531 	for_each_set_bit(tag, &hba->outstanding_tasks, hba->nutmrs) {
6532 		ret = ufshcd_clear_tm_cmd(hba, tag);
6533 		if (ret)
6534 			goto out;
6535 	}
6536 
6537 out:
6538 	/* Complete the requests that are cleared by s/w */
6539 	ufshcd_complete_requests(hba, false);
6540 
6541 	return ret != 0;
6542 }
6543 
6544 /**
6545  * ufshcd_err_handler - handle UFS errors that require s/w attention
6546  * @work: pointer to work structure
6547  */
6548 static void ufshcd_err_handler(struct work_struct *work)
6549 {
6550 	int retries = MAX_ERR_HANDLER_RETRIES;
6551 	struct ufs_hba *hba;
6552 	unsigned long flags;
6553 	bool needs_restore;
6554 	bool needs_reset;
6555 	int pmc_err;
6556 
6557 	hba = container_of(work, struct ufs_hba, eh_work);
6558 
6559 	dev_info(hba->dev,
6560 		 "%s started; HBA state %s; powered %d; shutting down %d; saved_err = %d; saved_uic_err = %d; force_reset = %d%s\n",
6561 		 __func__, ufshcd_state_name[hba->ufshcd_state],
6562 		 hba->is_powered, hba->shutting_down, hba->saved_err,
6563 		 hba->saved_uic_err, hba->force_reset,
6564 		 ufshcd_is_link_broken(hba) ? "; link is broken" : "");
6565 
6566 	down(&hba->host_sem);
6567 	spin_lock_irqsave(hba->host->host_lock, flags);
6568 	if (ufshcd_err_handling_should_stop(hba)) {
6569 		if (hba->ufshcd_state != UFSHCD_STATE_ERROR)
6570 			hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
6571 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6572 		up(&hba->host_sem);
6573 		return;
6574 	}
6575 	ufshcd_set_eh_in_progress(hba);
6576 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6577 	ufshcd_err_handling_prepare(hba);
6578 	/* Complete requests that have door-bell cleared by h/w */
6579 	ufshcd_complete_requests(hba, false);
6580 	spin_lock_irqsave(hba->host->host_lock, flags);
6581 again:
6582 	needs_restore = false;
6583 	needs_reset = false;
6584 
6585 	if (hba->ufshcd_state != UFSHCD_STATE_ERROR)
6586 		hba->ufshcd_state = UFSHCD_STATE_RESET;
6587 	/*
6588 	 * A full reset and restore might have happened after preparation
6589 	 * is finished, double check whether we should stop.
6590 	 */
6591 	if (ufshcd_err_handling_should_stop(hba))
6592 		goto skip_err_handling;
6593 
6594 	if (hba->dev_quirks & UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS) {
6595 		bool ret;
6596 
6597 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6598 		/* release the lock as ufshcd_quirk_dl_nac_errors() may sleep */
6599 		ret = ufshcd_quirk_dl_nac_errors(hba);
6600 		spin_lock_irqsave(hba->host->host_lock, flags);
6601 		if (!ret && ufshcd_err_handling_should_stop(hba))
6602 			goto skip_err_handling;
6603 	}
6604 
6605 	if ((hba->saved_err & (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK)) ||
6606 	    (hba->saved_uic_err &&
6607 	     (hba->saved_uic_err != UFSHCD_UIC_PA_GENERIC_ERROR))) {
6608 		bool pr_prdt = !!(hba->saved_err & SYSTEM_BUS_FATAL_ERROR);
6609 
6610 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6611 		ufshcd_print_host_state(hba);
6612 		ufshcd_print_pwr_info(hba);
6613 		ufshcd_print_evt_hist(hba);
6614 		ufshcd_print_tmrs(hba, hba->outstanding_tasks);
6615 		ufshcd_print_trs_all(hba, pr_prdt);
6616 		spin_lock_irqsave(hba->host->host_lock, flags);
6617 	}
6618 
6619 	/*
6620 	 * if host reset is required then skip clearing the pending
6621 	 * transfers forcefully because they will get cleared during
6622 	 * host reset and restore
6623 	 */
6624 	if (hba->force_reset || ufshcd_is_link_broken(hba) ||
6625 	    ufshcd_is_saved_err_fatal(hba) ||
6626 	    ((hba->saved_err & UIC_ERROR) &&
6627 	     (hba->saved_uic_err & (UFSHCD_UIC_DL_NAC_RECEIVED_ERROR |
6628 				    UFSHCD_UIC_DL_TCx_REPLAY_ERROR)))) {
6629 		needs_reset = true;
6630 		goto do_reset;
6631 	}
6632 
6633 	/*
6634 	 * If LINERESET was caught, UFS might have been put to PWM mode,
6635 	 * check if power mode restore is needed.
6636 	 */
6637 	if (hba->saved_uic_err & UFSHCD_UIC_PA_GENERIC_ERROR) {
6638 		hba->saved_uic_err &= ~UFSHCD_UIC_PA_GENERIC_ERROR;
6639 		if (!hba->saved_uic_err)
6640 			hba->saved_err &= ~UIC_ERROR;
6641 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6642 		if (ufshcd_is_pwr_mode_restore_needed(hba))
6643 			needs_restore = true;
6644 		spin_lock_irqsave(hba->host->host_lock, flags);
6645 		if (!hba->saved_err && !needs_restore)
6646 			goto skip_err_handling;
6647 	}
6648 
6649 	hba->silence_err_logs = true;
6650 	/* release lock as clear command might sleep */
6651 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6652 
6653 	needs_reset = ufshcd_abort_all(hba);
6654 
6655 	spin_lock_irqsave(hba->host->host_lock, flags);
6656 	hba->silence_err_logs = false;
6657 	if (needs_reset)
6658 		goto do_reset;
6659 
6660 	/*
6661 	 * After all reqs and tasks are cleared from doorbell,
6662 	 * now it is safe to retore power mode.
6663 	 */
6664 	if (needs_restore) {
6665 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6666 		/*
6667 		 * Hold the scaling lock just in case dev cmds
6668 		 * are sent via bsg and/or sysfs.
6669 		 */
6670 		down_write(&hba->clk_scaling_lock);
6671 		hba->force_pmc = true;
6672 		pmc_err = ufshcd_config_pwr_mode(hba, &(hba->pwr_info));
6673 		if (pmc_err) {
6674 			needs_reset = true;
6675 			dev_err(hba->dev, "%s: Failed to restore power mode, err = %d\n",
6676 					__func__, pmc_err);
6677 		}
6678 		hba->force_pmc = false;
6679 		ufshcd_print_pwr_info(hba);
6680 		up_write(&hba->clk_scaling_lock);
6681 		spin_lock_irqsave(hba->host->host_lock, flags);
6682 	}
6683 
6684 do_reset:
6685 	/* Fatal errors need reset */
6686 	if (needs_reset) {
6687 		int err;
6688 
6689 		hba->force_reset = false;
6690 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6691 		err = ufshcd_reset_and_restore(hba);
6692 		if (err)
6693 			dev_err(hba->dev, "%s: reset and restore failed with err %d\n",
6694 					__func__, err);
6695 		else
6696 			ufshcd_recover_pm_error(hba);
6697 		spin_lock_irqsave(hba->host->host_lock, flags);
6698 	}
6699 
6700 skip_err_handling:
6701 	if (!needs_reset) {
6702 		if (hba->ufshcd_state == UFSHCD_STATE_RESET)
6703 			hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
6704 		if (hba->saved_err || hba->saved_uic_err)
6705 			dev_err_ratelimited(hba->dev, "%s: exit: saved_err 0x%x saved_uic_err 0x%x",
6706 			    __func__, hba->saved_err, hba->saved_uic_err);
6707 	}
6708 	/* Exit in an operational state or dead */
6709 	if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL &&
6710 	    hba->ufshcd_state != UFSHCD_STATE_ERROR) {
6711 		if (--retries)
6712 			goto again;
6713 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
6714 	}
6715 	ufshcd_clear_eh_in_progress(hba);
6716 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6717 	ufshcd_err_handling_unprepare(hba);
6718 	up(&hba->host_sem);
6719 
6720 	dev_info(hba->dev, "%s finished; HBA state %s\n", __func__,
6721 		 ufshcd_state_name[hba->ufshcd_state]);
6722 }
6723 
6724 /**
6725  * ufshcd_update_uic_error - check and set fatal UIC error flags.
6726  * @hba: per-adapter instance
6727  *
6728  * Return:
6729  *  IRQ_HANDLED - If interrupt is valid
6730  *  IRQ_NONE    - If invalid interrupt
6731  */
6732 static irqreturn_t ufshcd_update_uic_error(struct ufs_hba *hba)
6733 {
6734 	u32 reg;
6735 	irqreturn_t retval = IRQ_NONE;
6736 
6737 	/* PHY layer error */
6738 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER);
6739 	if ((reg & UIC_PHY_ADAPTER_LAYER_ERROR) &&
6740 	    (reg & UIC_PHY_ADAPTER_LAYER_ERROR_CODE_MASK)) {
6741 		ufshcd_update_evt_hist(hba, UFS_EVT_PA_ERR, reg);
6742 		/*
6743 		 * To know whether this error is fatal or not, DB timeout
6744 		 * must be checked but this error is handled separately.
6745 		 */
6746 		if (reg & UIC_PHY_ADAPTER_LAYER_LANE_ERR_MASK)
6747 			dev_dbg(hba->dev, "%s: UIC Lane error reported\n",
6748 					__func__);
6749 
6750 		/* Got a LINERESET indication. */
6751 		if (reg & UIC_PHY_ADAPTER_LAYER_GENERIC_ERROR) {
6752 			struct uic_command *cmd = NULL;
6753 
6754 			hba->uic_error |= UFSHCD_UIC_PA_GENERIC_ERROR;
6755 			if (hba->uic_async_done && hba->active_uic_cmd)
6756 				cmd = hba->active_uic_cmd;
6757 			/*
6758 			 * Ignore the LINERESET during power mode change
6759 			 * operation via DME_SET command.
6760 			 */
6761 			if (cmd && (cmd->command == UIC_CMD_DME_SET))
6762 				hba->uic_error &= ~UFSHCD_UIC_PA_GENERIC_ERROR;
6763 		}
6764 		retval |= IRQ_HANDLED;
6765 	}
6766 
6767 	/* PA_INIT_ERROR is fatal and needs UIC reset */
6768 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_DATA_LINK_LAYER);
6769 	if ((reg & UIC_DATA_LINK_LAYER_ERROR) &&
6770 	    (reg & UIC_DATA_LINK_LAYER_ERROR_CODE_MASK)) {
6771 		ufshcd_update_evt_hist(hba, UFS_EVT_DL_ERR, reg);
6772 
6773 		if (reg & UIC_DATA_LINK_LAYER_ERROR_PA_INIT)
6774 			hba->uic_error |= UFSHCD_UIC_DL_PA_INIT_ERROR;
6775 		else if (hba->dev_quirks &
6776 				UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS) {
6777 			if (reg & UIC_DATA_LINK_LAYER_ERROR_NAC_RECEIVED)
6778 				hba->uic_error |=
6779 					UFSHCD_UIC_DL_NAC_RECEIVED_ERROR;
6780 			else if (reg & UIC_DATA_LINK_LAYER_ERROR_TCx_REPLAY_TIMEOUT)
6781 				hba->uic_error |= UFSHCD_UIC_DL_TCx_REPLAY_ERROR;
6782 		}
6783 		retval |= IRQ_HANDLED;
6784 	}
6785 
6786 	/* UIC NL/TL/DME errors needs software retry */
6787 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_NETWORK_LAYER);
6788 	if ((reg & UIC_NETWORK_LAYER_ERROR) &&
6789 	    (reg & UIC_NETWORK_LAYER_ERROR_CODE_MASK)) {
6790 		ufshcd_update_evt_hist(hba, UFS_EVT_NL_ERR, reg);
6791 		hba->uic_error |= UFSHCD_UIC_NL_ERROR;
6792 		retval |= IRQ_HANDLED;
6793 	}
6794 
6795 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_TRANSPORT_LAYER);
6796 	if ((reg & UIC_TRANSPORT_LAYER_ERROR) &&
6797 	    (reg & UIC_TRANSPORT_LAYER_ERROR_CODE_MASK)) {
6798 		ufshcd_update_evt_hist(hba, UFS_EVT_TL_ERR, reg);
6799 		hba->uic_error |= UFSHCD_UIC_TL_ERROR;
6800 		retval |= IRQ_HANDLED;
6801 	}
6802 
6803 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_DME);
6804 	if ((reg & UIC_DME_ERROR) &&
6805 	    (reg & UIC_DME_ERROR_CODE_MASK)) {
6806 		ufshcd_update_evt_hist(hba, UFS_EVT_DME_ERR, reg);
6807 		hba->uic_error |= UFSHCD_UIC_DME_ERROR;
6808 		retval |= IRQ_HANDLED;
6809 	}
6810 
6811 	dev_dbg(hba->dev, "%s: UIC error flags = 0x%08x\n",
6812 			__func__, hba->uic_error);
6813 	return retval;
6814 }
6815 
6816 /**
6817  * ufshcd_check_errors - Check for errors that need s/w attention
6818  * @hba: per-adapter instance
6819  * @intr_status: interrupt status generated by the controller
6820  *
6821  * Return:
6822  *  IRQ_HANDLED - If interrupt is valid
6823  *  IRQ_NONE    - If invalid interrupt
6824  */
6825 static irqreturn_t ufshcd_check_errors(struct ufs_hba *hba, u32 intr_status)
6826 {
6827 	bool queue_eh_work = false;
6828 	irqreturn_t retval = IRQ_NONE;
6829 
6830 	spin_lock(hba->host->host_lock);
6831 	hba->errors |= UFSHCD_ERROR_MASK & intr_status;
6832 
6833 	if (hba->errors & INT_FATAL_ERRORS) {
6834 		ufshcd_update_evt_hist(hba, UFS_EVT_FATAL_ERR,
6835 				       hba->errors);
6836 		queue_eh_work = true;
6837 	}
6838 
6839 	if (hba->errors & UIC_ERROR) {
6840 		hba->uic_error = 0;
6841 		retval = ufshcd_update_uic_error(hba);
6842 		if (hba->uic_error)
6843 			queue_eh_work = true;
6844 	}
6845 
6846 	if (hba->errors & UFSHCD_UIC_HIBERN8_MASK) {
6847 		dev_err(hba->dev,
6848 			"%s: Auto Hibern8 %s failed - status: 0x%08x, upmcrs: 0x%08x\n",
6849 			__func__, (hba->errors & UIC_HIBERNATE_ENTER) ?
6850 			"Enter" : "Exit",
6851 			hba->errors, ufshcd_get_upmcrs(hba));
6852 		ufshcd_update_evt_hist(hba, UFS_EVT_AUTO_HIBERN8_ERR,
6853 				       hba->errors);
6854 		ufshcd_set_link_broken(hba);
6855 		queue_eh_work = true;
6856 	}
6857 
6858 	if (queue_eh_work) {
6859 		/*
6860 		 * update the transfer error masks to sticky bits, let's do this
6861 		 * irrespective of current ufshcd_state.
6862 		 */
6863 		hba->saved_err |= hba->errors;
6864 		hba->saved_uic_err |= hba->uic_error;
6865 
6866 		/* dump controller state before resetting */
6867 		if ((hba->saved_err &
6868 		     (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK)) ||
6869 		    (hba->saved_uic_err &&
6870 		     (hba->saved_uic_err != UFSHCD_UIC_PA_GENERIC_ERROR))) {
6871 			dev_err(hba->dev, "%s: saved_err 0x%x saved_uic_err 0x%x\n",
6872 					__func__, hba->saved_err,
6873 					hba->saved_uic_err);
6874 			ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE,
6875 					 "host_regs: ");
6876 			ufshcd_print_pwr_info(hba);
6877 		}
6878 		ufshcd_schedule_eh_work(hba);
6879 		retval |= IRQ_HANDLED;
6880 	}
6881 	/*
6882 	 * if (!queue_eh_work) -
6883 	 * Other errors are either non-fatal where host recovers
6884 	 * itself without s/w intervention or errors that will be
6885 	 * handled by the SCSI core layer.
6886 	 */
6887 	hba->errors = 0;
6888 	hba->uic_error = 0;
6889 	spin_unlock(hba->host->host_lock);
6890 	return retval;
6891 }
6892 
6893 /**
6894  * ufshcd_tmc_handler - handle task management function completion
6895  * @hba: per adapter instance
6896  *
6897  * Return:
6898  *  IRQ_HANDLED - If interrupt is valid
6899  *  IRQ_NONE    - If invalid interrupt
6900  */
6901 static irqreturn_t ufshcd_tmc_handler(struct ufs_hba *hba)
6902 {
6903 	unsigned long flags, pending, issued;
6904 	irqreturn_t ret = IRQ_NONE;
6905 	int tag;
6906 
6907 	spin_lock_irqsave(hba->host->host_lock, flags);
6908 	pending = ufshcd_readl(hba, REG_UTP_TASK_REQ_DOOR_BELL);
6909 	issued = hba->outstanding_tasks & ~pending;
6910 	for_each_set_bit(tag, &issued, hba->nutmrs) {
6911 		struct request *req = hba->tmf_rqs[tag];
6912 		struct completion *c = req->end_io_data;
6913 
6914 		complete(c);
6915 		ret = IRQ_HANDLED;
6916 	}
6917 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6918 
6919 	return ret;
6920 }
6921 
6922 /**
6923  * ufshcd_handle_mcq_cq_events - handle MCQ completion queue events
6924  * @hba: per adapter instance
6925  *
6926  * Return: IRQ_HANDLED if interrupt is handled.
6927  */
6928 static irqreturn_t ufshcd_handle_mcq_cq_events(struct ufs_hba *hba)
6929 {
6930 	struct ufs_hw_queue *hwq;
6931 	unsigned long outstanding_cqs;
6932 	unsigned int nr_queues;
6933 	int i, ret;
6934 	u32 events;
6935 
6936 	ret = ufshcd_vops_get_outstanding_cqs(hba, &outstanding_cqs);
6937 	if (ret)
6938 		outstanding_cqs = (1U << hba->nr_hw_queues) - 1;
6939 
6940 	/* Exclude the poll queues */
6941 	nr_queues = hba->nr_hw_queues - hba->nr_queues[HCTX_TYPE_POLL];
6942 	for_each_set_bit(i, &outstanding_cqs, nr_queues) {
6943 		hwq = &hba->uhq[i];
6944 
6945 		events = ufshcd_mcq_read_cqis(hba, i);
6946 		if (events)
6947 			ufshcd_mcq_write_cqis(hba, events, i);
6948 
6949 		if (events & UFSHCD_MCQ_CQIS_TAIL_ENT_PUSH_STS)
6950 			ufshcd_mcq_poll_cqe_lock(hba, hwq);
6951 	}
6952 
6953 	return IRQ_HANDLED;
6954 }
6955 
6956 /**
6957  * ufshcd_sl_intr - Interrupt service routine
6958  * @hba: per adapter instance
6959  * @intr_status: contains interrupts generated by the controller
6960  *
6961  * Return:
6962  *  IRQ_HANDLED - If interrupt is valid
6963  *  IRQ_NONE    - If invalid interrupt
6964  */
6965 static irqreturn_t ufshcd_sl_intr(struct ufs_hba *hba, u32 intr_status)
6966 {
6967 	irqreturn_t retval = IRQ_NONE;
6968 
6969 	if (intr_status & UFSHCD_UIC_MASK)
6970 		retval |= ufshcd_uic_cmd_compl(hba, intr_status);
6971 
6972 	if (intr_status & UFSHCD_ERROR_MASK || hba->errors)
6973 		retval |= ufshcd_check_errors(hba, intr_status);
6974 
6975 	if (intr_status & UTP_TASK_REQ_COMPL)
6976 		retval |= ufshcd_tmc_handler(hba);
6977 
6978 	if (intr_status & UTP_TRANSFER_REQ_COMPL)
6979 		retval |= ufshcd_transfer_req_compl(hba);
6980 
6981 	if (intr_status & MCQ_CQ_EVENT_STATUS)
6982 		retval |= ufshcd_handle_mcq_cq_events(hba);
6983 
6984 	return retval;
6985 }
6986 
6987 /**
6988  * ufshcd_intr - Main interrupt service routine
6989  * @irq: irq number
6990  * @__hba: pointer to adapter instance
6991  *
6992  * Return:
6993  *  IRQ_HANDLED - If interrupt is valid
6994  *  IRQ_NONE    - If invalid interrupt
6995  */
6996 static irqreturn_t ufshcd_intr(int irq, void *__hba)
6997 {
6998 	u32 intr_status, enabled_intr_status = 0;
6999 	irqreturn_t retval = IRQ_NONE;
7000 	struct ufs_hba *hba = __hba;
7001 	int retries = hba->nutrs;
7002 
7003 	intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
7004 	hba->ufs_stats.last_intr_status = intr_status;
7005 	hba->ufs_stats.last_intr_ts = local_clock();
7006 
7007 	/*
7008 	 * There could be max of hba->nutrs reqs in flight and in worst case
7009 	 * if the reqs get finished 1 by 1 after the interrupt status is
7010 	 * read, make sure we handle them by checking the interrupt status
7011 	 * again in a loop until we process all of the reqs before returning.
7012 	 */
7013 	while (intr_status && retries--) {
7014 		enabled_intr_status =
7015 			intr_status & ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
7016 		ufshcd_writel(hba, intr_status, REG_INTERRUPT_STATUS);
7017 		if (enabled_intr_status)
7018 			retval |= ufshcd_sl_intr(hba, enabled_intr_status);
7019 
7020 		intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
7021 	}
7022 
7023 	if (enabled_intr_status && retval == IRQ_NONE &&
7024 	    (!(enabled_intr_status & UTP_TRANSFER_REQ_COMPL) ||
7025 	     hba->outstanding_reqs) && !ufshcd_eh_in_progress(hba)) {
7026 		dev_err(hba->dev, "%s: Unhandled interrupt 0x%08x (0x%08x, 0x%08x)\n",
7027 					__func__,
7028 					intr_status,
7029 					hba->ufs_stats.last_intr_status,
7030 					enabled_intr_status);
7031 		ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, "host_regs: ");
7032 	}
7033 
7034 	return retval;
7035 }
7036 
7037 static int ufshcd_clear_tm_cmd(struct ufs_hba *hba, int tag)
7038 {
7039 	int err = 0;
7040 	u32 mask = 1 << tag;
7041 	unsigned long flags;
7042 
7043 	if (!test_bit(tag, &hba->outstanding_tasks))
7044 		goto out;
7045 
7046 	spin_lock_irqsave(hba->host->host_lock, flags);
7047 	ufshcd_utmrl_clear(hba, tag);
7048 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7049 
7050 	/* poll for max. 1 sec to clear door bell register by h/w */
7051 	err = ufshcd_wait_for_register(hba,
7052 			REG_UTP_TASK_REQ_DOOR_BELL,
7053 			mask, 0, 1000, 1000);
7054 
7055 	dev_err(hba->dev, "Clearing task management function with tag %d %s\n",
7056 		tag, err < 0 ? "failed" : "succeeded");
7057 
7058 out:
7059 	return err;
7060 }
7061 
7062 static int __ufshcd_issue_tm_cmd(struct ufs_hba *hba,
7063 		struct utp_task_req_desc *treq, u8 tm_function)
7064 {
7065 	struct request_queue *q = hba->tmf_queue;
7066 	struct Scsi_Host *host = hba->host;
7067 	DECLARE_COMPLETION_ONSTACK(wait);
7068 	struct request *req;
7069 	unsigned long flags;
7070 	int task_tag, err;
7071 
7072 	/*
7073 	 * blk_mq_alloc_request() is used here only to get a free tag.
7074 	 */
7075 	req = blk_mq_alloc_request(q, REQ_OP_DRV_OUT, 0);
7076 	if (IS_ERR(req))
7077 		return PTR_ERR(req);
7078 
7079 	req->end_io_data = &wait;
7080 	ufshcd_hold(hba);
7081 
7082 	spin_lock_irqsave(host->host_lock, flags);
7083 
7084 	task_tag = req->tag;
7085 	hba->tmf_rqs[req->tag] = req;
7086 	treq->upiu_req.req_header.task_tag = task_tag;
7087 
7088 	memcpy(hba->utmrdl_base_addr + task_tag, treq, sizeof(*treq));
7089 	ufshcd_vops_setup_task_mgmt(hba, task_tag, tm_function);
7090 
7091 	/* send command to the controller */
7092 	__set_bit(task_tag, &hba->outstanding_tasks);
7093 
7094 	ufshcd_writel(hba, 1 << task_tag, REG_UTP_TASK_REQ_DOOR_BELL);
7095 	/* Make sure that doorbell is committed immediately */
7096 	wmb();
7097 
7098 	spin_unlock_irqrestore(host->host_lock, flags);
7099 
7100 	ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_SEND);
7101 
7102 	/* wait until the task management command is completed */
7103 	err = wait_for_completion_io_timeout(&wait,
7104 			msecs_to_jiffies(TM_CMD_TIMEOUT));
7105 	if (!err) {
7106 		ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_ERR);
7107 		dev_err(hba->dev, "%s: task management cmd 0x%.2x timed-out\n",
7108 				__func__, tm_function);
7109 		if (ufshcd_clear_tm_cmd(hba, task_tag))
7110 			dev_WARN(hba->dev, "%s: unable to clear tm cmd (slot %d) after timeout\n",
7111 					__func__, task_tag);
7112 		err = -ETIMEDOUT;
7113 	} else {
7114 		err = 0;
7115 		memcpy(treq, hba->utmrdl_base_addr + task_tag, sizeof(*treq));
7116 
7117 		ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_COMP);
7118 	}
7119 
7120 	spin_lock_irqsave(hba->host->host_lock, flags);
7121 	hba->tmf_rqs[req->tag] = NULL;
7122 	__clear_bit(task_tag, &hba->outstanding_tasks);
7123 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7124 
7125 	ufshcd_release(hba);
7126 	blk_mq_free_request(req);
7127 
7128 	return err;
7129 }
7130 
7131 /**
7132  * ufshcd_issue_tm_cmd - issues task management commands to controller
7133  * @hba: per adapter instance
7134  * @lun_id: LUN ID to which TM command is sent
7135  * @task_id: task ID to which the TM command is applicable
7136  * @tm_function: task management function opcode
7137  * @tm_response: task management service response return value
7138  *
7139  * Return: non-zero value on error, zero on success.
7140  */
7141 static int ufshcd_issue_tm_cmd(struct ufs_hba *hba, int lun_id, int task_id,
7142 		u8 tm_function, u8 *tm_response)
7143 {
7144 	struct utp_task_req_desc treq = { };
7145 	enum utp_ocs ocs_value;
7146 	int err;
7147 
7148 	/* Configure task request descriptor */
7149 	treq.header.interrupt = 1;
7150 	treq.header.ocs = OCS_INVALID_COMMAND_STATUS;
7151 
7152 	/* Configure task request UPIU */
7153 	treq.upiu_req.req_header.transaction_code = UPIU_TRANSACTION_TASK_REQ;
7154 	treq.upiu_req.req_header.lun = lun_id;
7155 	treq.upiu_req.req_header.tm_function = tm_function;
7156 
7157 	/*
7158 	 * The host shall provide the same value for LUN field in the basic
7159 	 * header and for Input Parameter.
7160 	 */
7161 	treq.upiu_req.input_param1 = cpu_to_be32(lun_id);
7162 	treq.upiu_req.input_param2 = cpu_to_be32(task_id);
7163 
7164 	err = __ufshcd_issue_tm_cmd(hba, &treq, tm_function);
7165 	if (err == -ETIMEDOUT)
7166 		return err;
7167 
7168 	ocs_value = treq.header.ocs & MASK_OCS;
7169 	if (ocs_value != OCS_SUCCESS)
7170 		dev_err(hba->dev, "%s: failed, ocs = 0x%x\n",
7171 				__func__, ocs_value);
7172 	else if (tm_response)
7173 		*tm_response = be32_to_cpu(treq.upiu_rsp.output_param1) &
7174 				MASK_TM_SERVICE_RESP;
7175 	return err;
7176 }
7177 
7178 /**
7179  * ufshcd_issue_devman_upiu_cmd - API for sending "utrd" type requests
7180  * @hba:	per-adapter instance
7181  * @req_upiu:	upiu request
7182  * @rsp_upiu:	upiu reply
7183  * @desc_buff:	pointer to descriptor buffer, NULL if NA
7184  * @buff_len:	descriptor size, 0 if NA
7185  * @cmd_type:	specifies the type (NOP, Query...)
7186  * @desc_op:	descriptor operation
7187  *
7188  * Those type of requests uses UTP Transfer Request Descriptor - utrd.
7189  * Therefore, it "rides" the device management infrastructure: uses its tag and
7190  * tasks work queues.
7191  *
7192  * Since there is only one available tag for device management commands,
7193  * the caller is expected to hold the hba->dev_cmd.lock mutex.
7194  *
7195  * Return: 0 upon success; < 0 upon failure.
7196  */
7197 static int ufshcd_issue_devman_upiu_cmd(struct ufs_hba *hba,
7198 					struct utp_upiu_req *req_upiu,
7199 					struct utp_upiu_req *rsp_upiu,
7200 					u8 *desc_buff, int *buff_len,
7201 					enum dev_cmd_type cmd_type,
7202 					enum query_opcode desc_op)
7203 {
7204 	DECLARE_COMPLETION_ONSTACK(wait);
7205 	const u32 tag = hba->reserved_slot;
7206 	struct ufshcd_lrb *lrbp;
7207 	int err = 0;
7208 	u8 upiu_flags;
7209 
7210 	/* Protects use of hba->reserved_slot. */
7211 	lockdep_assert_held(&hba->dev_cmd.lock);
7212 
7213 	down_read(&hba->clk_scaling_lock);
7214 
7215 	lrbp = &hba->lrb[tag];
7216 	lrbp->cmd = NULL;
7217 	lrbp->task_tag = tag;
7218 	lrbp->lun = 0;
7219 	lrbp->intr_cmd = true;
7220 	ufshcd_prepare_lrbp_crypto(NULL, lrbp);
7221 	hba->dev_cmd.type = cmd_type;
7222 
7223 	if (hba->ufs_version <= ufshci_version(1, 1))
7224 		lrbp->command_type = UTP_CMD_TYPE_DEV_MANAGE;
7225 	else
7226 		lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
7227 
7228 	/* update the task tag in the request upiu */
7229 	req_upiu->header.task_tag = tag;
7230 
7231 	ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, DMA_NONE, 0);
7232 
7233 	/* just copy the upiu request as it is */
7234 	memcpy(lrbp->ucd_req_ptr, req_upiu, sizeof(*lrbp->ucd_req_ptr));
7235 	if (desc_buff && desc_op == UPIU_QUERY_OPCODE_WRITE_DESC) {
7236 		/* The Data Segment Area is optional depending upon the query
7237 		 * function value. for WRITE DESCRIPTOR, the data segment
7238 		 * follows right after the tsf.
7239 		 */
7240 		memcpy(lrbp->ucd_req_ptr + 1, desc_buff, *buff_len);
7241 		*buff_len = 0;
7242 	}
7243 
7244 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
7245 
7246 	hba->dev_cmd.complete = &wait;
7247 
7248 	ufshcd_add_query_upiu_trace(hba, UFS_QUERY_SEND, lrbp->ucd_req_ptr);
7249 
7250 	ufshcd_send_command(hba, tag, hba->dev_cmd_queue);
7251 	/*
7252 	 * ignore the returning value here - ufshcd_check_query_response is
7253 	 * bound to fail since dev_cmd.query and dev_cmd.type were left empty.
7254 	 * read the response directly ignoring all errors.
7255 	 */
7256 	ufshcd_wait_for_dev_cmd(hba, lrbp, QUERY_REQ_TIMEOUT);
7257 
7258 	/* just copy the upiu response as it is */
7259 	memcpy(rsp_upiu, lrbp->ucd_rsp_ptr, sizeof(*rsp_upiu));
7260 	if (desc_buff && desc_op == UPIU_QUERY_OPCODE_READ_DESC) {
7261 		u8 *descp = (u8 *)lrbp->ucd_rsp_ptr + sizeof(*rsp_upiu);
7262 		u16 resp_len = be16_to_cpu(lrbp->ucd_rsp_ptr->header
7263 					   .data_segment_length);
7264 
7265 		if (*buff_len >= resp_len) {
7266 			memcpy(desc_buff, descp, resp_len);
7267 			*buff_len = resp_len;
7268 		} else {
7269 			dev_warn(hba->dev,
7270 				 "%s: rsp size %d is bigger than buffer size %d",
7271 				 __func__, resp_len, *buff_len);
7272 			*buff_len = 0;
7273 			err = -EINVAL;
7274 		}
7275 	}
7276 	ufshcd_add_query_upiu_trace(hba, err ? UFS_QUERY_ERR : UFS_QUERY_COMP,
7277 				    (struct utp_upiu_req *)lrbp->ucd_rsp_ptr);
7278 
7279 	up_read(&hba->clk_scaling_lock);
7280 	return err;
7281 }
7282 
7283 /**
7284  * ufshcd_exec_raw_upiu_cmd - API function for sending raw upiu commands
7285  * @hba:	per-adapter instance
7286  * @req_upiu:	upiu request
7287  * @rsp_upiu:	upiu reply - only 8 DW as we do not support scsi commands
7288  * @msgcode:	message code, one of UPIU Transaction Codes Initiator to Target
7289  * @desc_buff:	pointer to descriptor buffer, NULL if NA
7290  * @buff_len:	descriptor size, 0 if NA
7291  * @desc_op:	descriptor operation
7292  *
7293  * Supports UTP Transfer requests (nop and query), and UTP Task
7294  * Management requests.
7295  * It is up to the caller to fill the upiu conent properly, as it will
7296  * be copied without any further input validations.
7297  *
7298  * Return: 0 upon success; < 0 upon failure.
7299  */
7300 int ufshcd_exec_raw_upiu_cmd(struct ufs_hba *hba,
7301 			     struct utp_upiu_req *req_upiu,
7302 			     struct utp_upiu_req *rsp_upiu,
7303 			     enum upiu_request_transaction msgcode,
7304 			     u8 *desc_buff, int *buff_len,
7305 			     enum query_opcode desc_op)
7306 {
7307 	int err;
7308 	enum dev_cmd_type cmd_type = DEV_CMD_TYPE_QUERY;
7309 	struct utp_task_req_desc treq = { };
7310 	enum utp_ocs ocs_value;
7311 	u8 tm_f = req_upiu->header.tm_function;
7312 
7313 	switch (msgcode) {
7314 	case UPIU_TRANSACTION_NOP_OUT:
7315 		cmd_type = DEV_CMD_TYPE_NOP;
7316 		fallthrough;
7317 	case UPIU_TRANSACTION_QUERY_REQ:
7318 		ufshcd_hold(hba);
7319 		mutex_lock(&hba->dev_cmd.lock);
7320 		err = ufshcd_issue_devman_upiu_cmd(hba, req_upiu, rsp_upiu,
7321 						   desc_buff, buff_len,
7322 						   cmd_type, desc_op);
7323 		mutex_unlock(&hba->dev_cmd.lock);
7324 		ufshcd_release(hba);
7325 
7326 		break;
7327 	case UPIU_TRANSACTION_TASK_REQ:
7328 		treq.header.interrupt = 1;
7329 		treq.header.ocs = OCS_INVALID_COMMAND_STATUS;
7330 
7331 		memcpy(&treq.upiu_req, req_upiu, sizeof(*req_upiu));
7332 
7333 		err = __ufshcd_issue_tm_cmd(hba, &treq, tm_f);
7334 		if (err == -ETIMEDOUT)
7335 			break;
7336 
7337 		ocs_value = treq.header.ocs & MASK_OCS;
7338 		if (ocs_value != OCS_SUCCESS) {
7339 			dev_err(hba->dev, "%s: failed, ocs = 0x%x\n", __func__,
7340 				ocs_value);
7341 			break;
7342 		}
7343 
7344 		memcpy(rsp_upiu, &treq.upiu_rsp, sizeof(*rsp_upiu));
7345 
7346 		break;
7347 	default:
7348 		err = -EINVAL;
7349 
7350 		break;
7351 	}
7352 
7353 	return err;
7354 }
7355 
7356 /**
7357  * ufshcd_advanced_rpmb_req_handler - handle advanced RPMB request
7358  * @hba:	per adapter instance
7359  * @req_upiu:	upiu request
7360  * @rsp_upiu:	upiu reply
7361  * @req_ehs:	EHS field which contains Advanced RPMB Request Message
7362  * @rsp_ehs:	EHS field which returns Advanced RPMB Response Message
7363  * @sg_cnt:	The number of sg lists actually used
7364  * @sg_list:	Pointer to SG list when DATA IN/OUT UPIU is required in ARPMB operation
7365  * @dir:	DMA direction
7366  *
7367  * Return: zero on success, non-zero on failure.
7368  */
7369 int ufshcd_advanced_rpmb_req_handler(struct ufs_hba *hba, struct utp_upiu_req *req_upiu,
7370 			 struct utp_upiu_req *rsp_upiu, struct ufs_ehs *req_ehs,
7371 			 struct ufs_ehs *rsp_ehs, int sg_cnt, struct scatterlist *sg_list,
7372 			 enum dma_data_direction dir)
7373 {
7374 	DECLARE_COMPLETION_ONSTACK(wait);
7375 	const u32 tag = hba->reserved_slot;
7376 	struct ufshcd_lrb *lrbp;
7377 	int err = 0;
7378 	int result;
7379 	u8 upiu_flags;
7380 	u8 *ehs_data;
7381 	u16 ehs_len;
7382 
7383 	/* Protects use of hba->reserved_slot. */
7384 	ufshcd_hold(hba);
7385 	mutex_lock(&hba->dev_cmd.lock);
7386 	down_read(&hba->clk_scaling_lock);
7387 
7388 	lrbp = &hba->lrb[tag];
7389 	lrbp->cmd = NULL;
7390 	lrbp->task_tag = tag;
7391 	lrbp->lun = UFS_UPIU_RPMB_WLUN;
7392 
7393 	lrbp->intr_cmd = true;
7394 	ufshcd_prepare_lrbp_crypto(NULL, lrbp);
7395 	hba->dev_cmd.type = DEV_CMD_TYPE_RPMB;
7396 
7397 	/* Advanced RPMB starts from UFS 4.0, so its command type is UTP_CMD_TYPE_UFS_STORAGE */
7398 	lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
7399 
7400 	/*
7401 	 * According to UFSHCI 4.0 specification page 24, if EHSLUTRDS is 0, host controller takes
7402 	 * EHS length from CMD UPIU, and SW driver use EHS Length field in CMD UPIU. if it is 1,
7403 	 * HW controller takes EHS length from UTRD.
7404 	 */
7405 	if (hba->capabilities & MASK_EHSLUTRD_SUPPORTED)
7406 		ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, dir, 2);
7407 	else
7408 		ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, dir, 0);
7409 
7410 	/* update the task tag */
7411 	req_upiu->header.task_tag = tag;
7412 
7413 	/* copy the UPIU(contains CDB) request as it is */
7414 	memcpy(lrbp->ucd_req_ptr, req_upiu, sizeof(*lrbp->ucd_req_ptr));
7415 	/* Copy EHS, starting with byte32, immediately after the CDB package */
7416 	memcpy(lrbp->ucd_req_ptr + 1, req_ehs, sizeof(*req_ehs));
7417 
7418 	if (dir != DMA_NONE && sg_list)
7419 		ufshcd_sgl_to_prdt(hba, lrbp, sg_cnt, sg_list);
7420 
7421 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
7422 
7423 	hba->dev_cmd.complete = &wait;
7424 
7425 	ufshcd_send_command(hba, tag, hba->dev_cmd_queue);
7426 
7427 	err = ufshcd_wait_for_dev_cmd(hba, lrbp, ADVANCED_RPMB_REQ_TIMEOUT);
7428 
7429 	if (!err) {
7430 		/* Just copy the upiu response as it is */
7431 		memcpy(rsp_upiu, lrbp->ucd_rsp_ptr, sizeof(*rsp_upiu));
7432 		/* Get the response UPIU result */
7433 		result = (lrbp->ucd_rsp_ptr->header.response << 8) |
7434 			lrbp->ucd_rsp_ptr->header.status;
7435 
7436 		ehs_len = lrbp->ucd_rsp_ptr->header.ehs_length;
7437 		/*
7438 		 * Since the bLength in EHS indicates the total size of the EHS Header and EHS Data
7439 		 * in 32 Byte units, the value of the bLength Request/Response for Advanced RPMB
7440 		 * Message is 02h
7441 		 */
7442 		if (ehs_len == 2 && rsp_ehs) {
7443 			/*
7444 			 * ucd_rsp_ptr points to a buffer with a length of 512 bytes
7445 			 * (ALIGNED_UPIU_SIZE = 512), and the EHS data just starts from byte32
7446 			 */
7447 			ehs_data = (u8 *)lrbp->ucd_rsp_ptr + EHS_OFFSET_IN_RESPONSE;
7448 			memcpy(rsp_ehs, ehs_data, ehs_len * 32);
7449 		}
7450 	}
7451 
7452 	up_read(&hba->clk_scaling_lock);
7453 	mutex_unlock(&hba->dev_cmd.lock);
7454 	ufshcd_release(hba);
7455 	return err ? : result;
7456 }
7457 
7458 /**
7459  * ufshcd_eh_device_reset_handler() - Reset a single logical unit.
7460  * @cmd: SCSI command pointer
7461  *
7462  * Return: SUCCESS or FAILED.
7463  */
7464 static int ufshcd_eh_device_reset_handler(struct scsi_cmnd *cmd)
7465 {
7466 	unsigned long flags, pending_reqs = 0, not_cleared = 0;
7467 	struct Scsi_Host *host;
7468 	struct ufs_hba *hba;
7469 	struct ufs_hw_queue *hwq;
7470 	struct ufshcd_lrb *lrbp;
7471 	u32 pos, not_cleared_mask = 0;
7472 	int err;
7473 	u8 resp = 0xF, lun;
7474 
7475 	host = cmd->device->host;
7476 	hba = shost_priv(host);
7477 
7478 	lun = ufshcd_scsi_to_upiu_lun(cmd->device->lun);
7479 	err = ufshcd_issue_tm_cmd(hba, lun, 0, UFS_LOGICAL_RESET, &resp);
7480 	if (err || resp != UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7481 		if (!err)
7482 			err = resp;
7483 		goto out;
7484 	}
7485 
7486 	if (is_mcq_enabled(hba)) {
7487 		for (pos = 0; pos < hba->nutrs; pos++) {
7488 			lrbp = &hba->lrb[pos];
7489 			if (ufshcd_cmd_inflight(lrbp->cmd) &&
7490 			    lrbp->lun == lun) {
7491 				ufshcd_clear_cmd(hba, pos);
7492 				hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(lrbp->cmd));
7493 				ufshcd_mcq_poll_cqe_lock(hba, hwq);
7494 			}
7495 		}
7496 		err = 0;
7497 		goto out;
7498 	}
7499 
7500 	/* clear the commands that were pending for corresponding LUN */
7501 	spin_lock_irqsave(&hba->outstanding_lock, flags);
7502 	for_each_set_bit(pos, &hba->outstanding_reqs, hba->nutrs)
7503 		if (hba->lrb[pos].lun == lun)
7504 			__set_bit(pos, &pending_reqs);
7505 	hba->outstanding_reqs &= ~pending_reqs;
7506 	spin_unlock_irqrestore(&hba->outstanding_lock, flags);
7507 
7508 	for_each_set_bit(pos, &pending_reqs, hba->nutrs) {
7509 		if (ufshcd_clear_cmd(hba, pos) < 0) {
7510 			spin_lock_irqsave(&hba->outstanding_lock, flags);
7511 			not_cleared = 1U << pos &
7512 				ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
7513 			hba->outstanding_reqs |= not_cleared;
7514 			not_cleared_mask |= not_cleared;
7515 			spin_unlock_irqrestore(&hba->outstanding_lock, flags);
7516 
7517 			dev_err(hba->dev, "%s: failed to clear request %d\n",
7518 				__func__, pos);
7519 		}
7520 	}
7521 	__ufshcd_transfer_req_compl(hba, pending_reqs & ~not_cleared_mask);
7522 
7523 out:
7524 	hba->req_abort_count = 0;
7525 	ufshcd_update_evt_hist(hba, UFS_EVT_DEV_RESET, (u32)err);
7526 	if (!err) {
7527 		err = SUCCESS;
7528 	} else {
7529 		dev_err(hba->dev, "%s: failed with err %d\n", __func__, err);
7530 		err = FAILED;
7531 	}
7532 	return err;
7533 }
7534 
7535 static void ufshcd_set_req_abort_skip(struct ufs_hba *hba, unsigned long bitmap)
7536 {
7537 	struct ufshcd_lrb *lrbp;
7538 	int tag;
7539 
7540 	for_each_set_bit(tag, &bitmap, hba->nutrs) {
7541 		lrbp = &hba->lrb[tag];
7542 		lrbp->req_abort_skip = true;
7543 	}
7544 }
7545 
7546 /**
7547  * ufshcd_try_to_abort_task - abort a specific task
7548  * @hba: Pointer to adapter instance
7549  * @tag: Task tag/index to be aborted
7550  *
7551  * Abort the pending command in device by sending UFS_ABORT_TASK task management
7552  * command, and in host controller by clearing the door-bell register. There can
7553  * be race between controller sending the command to the device while abort is
7554  * issued. To avoid that, first issue UFS_QUERY_TASK to check if the command is
7555  * really issued and then try to abort it.
7556  *
7557  * Return: zero on success, non-zero on failure.
7558  */
7559 int ufshcd_try_to_abort_task(struct ufs_hba *hba, int tag)
7560 {
7561 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
7562 	int err = 0;
7563 	int poll_cnt;
7564 	u8 resp = 0xF;
7565 	u32 reg;
7566 
7567 	for (poll_cnt = 100; poll_cnt; poll_cnt--) {
7568 		err = ufshcd_issue_tm_cmd(hba, lrbp->lun, lrbp->task_tag,
7569 				UFS_QUERY_TASK, &resp);
7570 		if (!err && resp == UPIU_TASK_MANAGEMENT_FUNC_SUCCEEDED) {
7571 			/* cmd pending in the device */
7572 			dev_err(hba->dev, "%s: cmd pending in the device. tag = %d\n",
7573 				__func__, tag);
7574 			break;
7575 		} else if (!err && resp == UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7576 			/*
7577 			 * cmd not pending in the device, check if it is
7578 			 * in transition.
7579 			 */
7580 			dev_err(hba->dev, "%s: cmd at tag %d not pending in the device.\n",
7581 				__func__, tag);
7582 			if (is_mcq_enabled(hba)) {
7583 				/* MCQ mode */
7584 				if (ufshcd_cmd_inflight(lrbp->cmd)) {
7585 					/* sleep for max. 200us same delay as in SDB mode */
7586 					usleep_range(100, 200);
7587 					continue;
7588 				}
7589 				/* command completed already */
7590 				dev_err(hba->dev, "%s: cmd at tag=%d is cleared.\n",
7591 					__func__, tag);
7592 				goto out;
7593 			}
7594 
7595 			/* Single Doorbell Mode */
7596 			reg = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
7597 			if (reg & (1 << tag)) {
7598 				/* sleep for max. 200us to stabilize */
7599 				usleep_range(100, 200);
7600 				continue;
7601 			}
7602 			/* command completed already */
7603 			dev_err(hba->dev, "%s: cmd at tag %d successfully cleared from DB.\n",
7604 				__func__, tag);
7605 			goto out;
7606 		} else {
7607 			dev_err(hba->dev,
7608 				"%s: no response from device. tag = %d, err %d\n",
7609 				__func__, tag, err);
7610 			if (!err)
7611 				err = resp; /* service response error */
7612 			goto out;
7613 		}
7614 	}
7615 
7616 	if (!poll_cnt) {
7617 		err = -EBUSY;
7618 		goto out;
7619 	}
7620 
7621 	err = ufshcd_issue_tm_cmd(hba, lrbp->lun, lrbp->task_tag,
7622 			UFS_ABORT_TASK, &resp);
7623 	if (err || resp != UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7624 		if (!err) {
7625 			err = resp; /* service response error */
7626 			dev_err(hba->dev, "%s: issued. tag = %d, err %d\n",
7627 				__func__, tag, err);
7628 		}
7629 		goto out;
7630 	}
7631 
7632 	err = ufshcd_clear_cmd(hba, tag);
7633 	if (err)
7634 		dev_err(hba->dev, "%s: Failed clearing cmd at tag %d, err %d\n",
7635 			__func__, tag, err);
7636 
7637 out:
7638 	return err;
7639 }
7640 
7641 /**
7642  * ufshcd_abort - scsi host template eh_abort_handler callback
7643  * @cmd: SCSI command pointer
7644  *
7645  * Return: SUCCESS or FAILED.
7646  */
7647 static int ufshcd_abort(struct scsi_cmnd *cmd)
7648 {
7649 	struct Scsi_Host *host = cmd->device->host;
7650 	struct ufs_hba *hba = shost_priv(host);
7651 	int tag = scsi_cmd_to_rq(cmd)->tag;
7652 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
7653 	unsigned long flags;
7654 	int err = FAILED;
7655 	bool outstanding;
7656 	u32 reg;
7657 
7658 	ufshcd_hold(hba);
7659 
7660 	if (!is_mcq_enabled(hba)) {
7661 		reg = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
7662 		if (!test_bit(tag, &hba->outstanding_reqs)) {
7663 			/* If command is already aborted/completed, return FAILED. */
7664 			dev_err(hba->dev,
7665 				"%s: cmd at tag %d already completed, outstanding=0x%lx, doorbell=0x%x\n",
7666 				__func__, tag, hba->outstanding_reqs, reg);
7667 			goto release;
7668 		}
7669 	}
7670 
7671 	/* Print Transfer Request of aborted task */
7672 	dev_info(hba->dev, "%s: Device abort task at tag %d\n", __func__, tag);
7673 
7674 	/*
7675 	 * Print detailed info about aborted request.
7676 	 * As more than one request might get aborted at the same time,
7677 	 * print full information only for the first aborted request in order
7678 	 * to reduce repeated printouts. For other aborted requests only print
7679 	 * basic details.
7680 	 */
7681 	scsi_print_command(cmd);
7682 	if (!hba->req_abort_count) {
7683 		ufshcd_update_evt_hist(hba, UFS_EVT_ABORT, tag);
7684 		ufshcd_print_evt_hist(hba);
7685 		ufshcd_print_host_state(hba);
7686 		ufshcd_print_pwr_info(hba);
7687 		ufshcd_print_tr(hba, tag, true);
7688 	} else {
7689 		ufshcd_print_tr(hba, tag, false);
7690 	}
7691 	hba->req_abort_count++;
7692 
7693 	if (!is_mcq_enabled(hba) && !(reg & (1 << tag))) {
7694 		/* only execute this code in single doorbell mode */
7695 		dev_err(hba->dev,
7696 		"%s: cmd was completed, but without a notifying intr, tag = %d",
7697 		__func__, tag);
7698 		__ufshcd_transfer_req_compl(hba, 1UL << tag);
7699 		goto release;
7700 	}
7701 
7702 	/*
7703 	 * Task abort to the device W-LUN is illegal. When this command
7704 	 * will fail, due to spec violation, scsi err handling next step
7705 	 * will be to send LU reset which, again, is a spec violation.
7706 	 * To avoid these unnecessary/illegal steps, first we clean up
7707 	 * the lrb taken by this cmd and re-set it in outstanding_reqs,
7708 	 * then queue the eh_work and bail.
7709 	 */
7710 	if (lrbp->lun == UFS_UPIU_UFS_DEVICE_WLUN) {
7711 		ufshcd_update_evt_hist(hba, UFS_EVT_ABORT, lrbp->lun);
7712 
7713 		spin_lock_irqsave(host->host_lock, flags);
7714 		hba->force_reset = true;
7715 		ufshcd_schedule_eh_work(hba);
7716 		spin_unlock_irqrestore(host->host_lock, flags);
7717 		goto release;
7718 	}
7719 
7720 	if (is_mcq_enabled(hba)) {
7721 		/* MCQ mode. Branch off to handle abort for mcq mode */
7722 		err = ufshcd_mcq_abort(cmd);
7723 		goto release;
7724 	}
7725 
7726 	/* Skip task abort in case previous aborts failed and report failure */
7727 	if (lrbp->req_abort_skip) {
7728 		dev_err(hba->dev, "%s: skipping abort\n", __func__);
7729 		ufshcd_set_req_abort_skip(hba, hba->outstanding_reqs);
7730 		goto release;
7731 	}
7732 
7733 	err = ufshcd_try_to_abort_task(hba, tag);
7734 	if (err) {
7735 		dev_err(hba->dev, "%s: failed with err %d\n", __func__, err);
7736 		ufshcd_set_req_abort_skip(hba, hba->outstanding_reqs);
7737 		err = FAILED;
7738 		goto release;
7739 	}
7740 
7741 	/*
7742 	 * Clear the corresponding bit from outstanding_reqs since the command
7743 	 * has been aborted successfully.
7744 	 */
7745 	spin_lock_irqsave(&hba->outstanding_lock, flags);
7746 	outstanding = __test_and_clear_bit(tag, &hba->outstanding_reqs);
7747 	spin_unlock_irqrestore(&hba->outstanding_lock, flags);
7748 
7749 	if (outstanding)
7750 		ufshcd_release_scsi_cmd(hba, lrbp);
7751 
7752 	err = SUCCESS;
7753 
7754 release:
7755 	/* Matches the ufshcd_hold() call at the start of this function. */
7756 	ufshcd_release(hba);
7757 	return err;
7758 }
7759 
7760 /**
7761  * ufshcd_host_reset_and_restore - reset and restore host controller
7762  * @hba: per-adapter instance
7763  *
7764  * Note that host controller reset may issue DME_RESET to
7765  * local and remote (device) Uni-Pro stack and the attributes
7766  * are reset to default state.
7767  *
7768  * Return: zero on success, non-zero on failure.
7769  */
7770 static int ufshcd_host_reset_and_restore(struct ufs_hba *hba)
7771 {
7772 	int err;
7773 
7774 	/*
7775 	 * Stop the host controller and complete the requests
7776 	 * cleared by h/w
7777 	 */
7778 	ufshcd_hba_stop(hba);
7779 	hba->silence_err_logs = true;
7780 	ufshcd_complete_requests(hba, true);
7781 	hba->silence_err_logs = false;
7782 
7783 	/* scale up clocks to max frequency before full reinitialization */
7784 	ufshcd_scale_clks(hba, ULONG_MAX, true);
7785 
7786 	err = ufshcd_hba_enable(hba);
7787 
7788 	/* Establish the link again and restore the device */
7789 	if (!err)
7790 		err = ufshcd_probe_hba(hba, false);
7791 
7792 	if (err)
7793 		dev_err(hba->dev, "%s: Host init failed %d\n", __func__, err);
7794 	ufshcd_update_evt_hist(hba, UFS_EVT_HOST_RESET, (u32)err);
7795 	return err;
7796 }
7797 
7798 /**
7799  * ufshcd_reset_and_restore - reset and re-initialize host/device
7800  * @hba: per-adapter instance
7801  *
7802  * Reset and recover device, host and re-establish link. This
7803  * is helpful to recover the communication in fatal error conditions.
7804  *
7805  * Return: zero on success, non-zero on failure.
7806  */
7807 static int ufshcd_reset_and_restore(struct ufs_hba *hba)
7808 {
7809 	u32 saved_err = 0;
7810 	u32 saved_uic_err = 0;
7811 	int err = 0;
7812 	unsigned long flags;
7813 	int retries = MAX_HOST_RESET_RETRIES;
7814 
7815 	spin_lock_irqsave(hba->host->host_lock, flags);
7816 	do {
7817 		/*
7818 		 * This is a fresh start, cache and clear saved error first,
7819 		 * in case new error generated during reset and restore.
7820 		 */
7821 		saved_err |= hba->saved_err;
7822 		saved_uic_err |= hba->saved_uic_err;
7823 		hba->saved_err = 0;
7824 		hba->saved_uic_err = 0;
7825 		hba->force_reset = false;
7826 		hba->ufshcd_state = UFSHCD_STATE_RESET;
7827 		spin_unlock_irqrestore(hba->host->host_lock, flags);
7828 
7829 		/* Reset the attached device */
7830 		ufshcd_device_reset(hba);
7831 
7832 		err = ufshcd_host_reset_and_restore(hba);
7833 
7834 		spin_lock_irqsave(hba->host->host_lock, flags);
7835 		if (err)
7836 			continue;
7837 		/* Do not exit unless operational or dead */
7838 		if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL &&
7839 		    hba->ufshcd_state != UFSHCD_STATE_ERROR &&
7840 		    hba->ufshcd_state != UFSHCD_STATE_EH_SCHEDULED_NON_FATAL)
7841 			err = -EAGAIN;
7842 	} while (err && --retries);
7843 
7844 	/*
7845 	 * Inform scsi mid-layer that we did reset and allow to handle
7846 	 * Unit Attention properly.
7847 	 */
7848 	scsi_report_bus_reset(hba->host, 0);
7849 	if (err) {
7850 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
7851 		hba->saved_err |= saved_err;
7852 		hba->saved_uic_err |= saved_uic_err;
7853 	}
7854 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7855 
7856 	return err;
7857 }
7858 
7859 /**
7860  * ufshcd_eh_host_reset_handler - host reset handler registered to scsi layer
7861  * @cmd: SCSI command pointer
7862  *
7863  * Return: SUCCESS or FAILED.
7864  */
7865 static int ufshcd_eh_host_reset_handler(struct scsi_cmnd *cmd)
7866 {
7867 	int err = SUCCESS;
7868 	unsigned long flags;
7869 	struct ufs_hba *hba;
7870 
7871 	hba = shost_priv(cmd->device->host);
7872 
7873 	/*
7874 	 * If runtime PM sent SSU and got a timeout, scsi_error_handler is
7875 	 * stuck in this function waiting for flush_work(&hba->eh_work). And
7876 	 * ufshcd_err_handler(eh_work) is stuck waiting for runtime PM. Do
7877 	 * ufshcd_link_recovery instead of eh_work to prevent deadlock.
7878 	 */
7879 	if (hba->pm_op_in_progress) {
7880 		if (ufshcd_link_recovery(hba))
7881 			err = FAILED;
7882 
7883 		return err;
7884 	}
7885 
7886 	spin_lock_irqsave(hba->host->host_lock, flags);
7887 	hba->force_reset = true;
7888 	ufshcd_schedule_eh_work(hba);
7889 	dev_err(hba->dev, "%s: reset in progress - 1\n", __func__);
7890 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7891 
7892 	flush_work(&hba->eh_work);
7893 
7894 	spin_lock_irqsave(hba->host->host_lock, flags);
7895 	if (hba->ufshcd_state == UFSHCD_STATE_ERROR)
7896 		err = FAILED;
7897 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7898 
7899 	return err;
7900 }
7901 
7902 /**
7903  * ufshcd_get_max_icc_level - calculate the ICC level
7904  * @sup_curr_uA: max. current supported by the regulator
7905  * @start_scan: row at the desc table to start scan from
7906  * @buff: power descriptor buffer
7907  *
7908  * Return: calculated max ICC level for specific regulator.
7909  */
7910 static u32 ufshcd_get_max_icc_level(int sup_curr_uA, u32 start_scan,
7911 				    const char *buff)
7912 {
7913 	int i;
7914 	int curr_uA;
7915 	u16 data;
7916 	u16 unit;
7917 
7918 	for (i = start_scan; i >= 0; i--) {
7919 		data = get_unaligned_be16(&buff[2 * i]);
7920 		unit = (data & ATTR_ICC_LVL_UNIT_MASK) >>
7921 						ATTR_ICC_LVL_UNIT_OFFSET;
7922 		curr_uA = data & ATTR_ICC_LVL_VALUE_MASK;
7923 		switch (unit) {
7924 		case UFSHCD_NANO_AMP:
7925 			curr_uA = curr_uA / 1000;
7926 			break;
7927 		case UFSHCD_MILI_AMP:
7928 			curr_uA = curr_uA * 1000;
7929 			break;
7930 		case UFSHCD_AMP:
7931 			curr_uA = curr_uA * 1000 * 1000;
7932 			break;
7933 		case UFSHCD_MICRO_AMP:
7934 		default:
7935 			break;
7936 		}
7937 		if (sup_curr_uA >= curr_uA)
7938 			break;
7939 	}
7940 	if (i < 0) {
7941 		i = 0;
7942 		pr_err("%s: Couldn't find valid icc_level = %d", __func__, i);
7943 	}
7944 
7945 	return (u32)i;
7946 }
7947 
7948 /**
7949  * ufshcd_find_max_sup_active_icc_level - calculate the max ICC level
7950  * In case regulators are not initialized we'll return 0
7951  * @hba: per-adapter instance
7952  * @desc_buf: power descriptor buffer to extract ICC levels from.
7953  *
7954  * Return: calculated ICC level.
7955  */
7956 static u32 ufshcd_find_max_sup_active_icc_level(struct ufs_hba *hba,
7957 						const u8 *desc_buf)
7958 {
7959 	u32 icc_level = 0;
7960 
7961 	if (!hba->vreg_info.vcc || !hba->vreg_info.vccq ||
7962 						!hba->vreg_info.vccq2) {
7963 		/*
7964 		 * Using dev_dbg to avoid messages during runtime PM to avoid
7965 		 * never-ending cycles of messages written back to storage by
7966 		 * user space causing runtime resume, causing more messages and
7967 		 * so on.
7968 		 */
7969 		dev_dbg(hba->dev,
7970 			"%s: Regulator capability was not set, actvIccLevel=%d",
7971 							__func__, icc_level);
7972 		goto out;
7973 	}
7974 
7975 	if (hba->vreg_info.vcc->max_uA)
7976 		icc_level = ufshcd_get_max_icc_level(
7977 				hba->vreg_info.vcc->max_uA,
7978 				POWER_DESC_MAX_ACTV_ICC_LVLS - 1,
7979 				&desc_buf[PWR_DESC_ACTIVE_LVLS_VCC_0]);
7980 
7981 	if (hba->vreg_info.vccq->max_uA)
7982 		icc_level = ufshcd_get_max_icc_level(
7983 				hba->vreg_info.vccq->max_uA,
7984 				icc_level,
7985 				&desc_buf[PWR_DESC_ACTIVE_LVLS_VCCQ_0]);
7986 
7987 	if (hba->vreg_info.vccq2->max_uA)
7988 		icc_level = ufshcd_get_max_icc_level(
7989 				hba->vreg_info.vccq2->max_uA,
7990 				icc_level,
7991 				&desc_buf[PWR_DESC_ACTIVE_LVLS_VCCQ2_0]);
7992 out:
7993 	return icc_level;
7994 }
7995 
7996 static void ufshcd_set_active_icc_lvl(struct ufs_hba *hba)
7997 {
7998 	int ret;
7999 	u8 *desc_buf;
8000 	u32 icc_level;
8001 
8002 	desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
8003 	if (!desc_buf)
8004 		return;
8005 
8006 	ret = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_POWER, 0, 0,
8007 				     desc_buf, QUERY_DESC_MAX_SIZE);
8008 	if (ret) {
8009 		dev_err(hba->dev,
8010 			"%s: Failed reading power descriptor ret = %d",
8011 			__func__, ret);
8012 		goto out;
8013 	}
8014 
8015 	icc_level = ufshcd_find_max_sup_active_icc_level(hba, desc_buf);
8016 	dev_dbg(hba->dev, "%s: setting icc_level 0x%x", __func__, icc_level);
8017 
8018 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
8019 		QUERY_ATTR_IDN_ACTIVE_ICC_LVL, 0, 0, &icc_level);
8020 
8021 	if (ret)
8022 		dev_err(hba->dev,
8023 			"%s: Failed configuring bActiveICCLevel = %d ret = %d",
8024 			__func__, icc_level, ret);
8025 
8026 out:
8027 	kfree(desc_buf);
8028 }
8029 
8030 static inline void ufshcd_blk_pm_runtime_init(struct scsi_device *sdev)
8031 {
8032 	struct Scsi_Host *shost = sdev->host;
8033 
8034 	scsi_autopm_get_device(sdev);
8035 	blk_pm_runtime_init(sdev->request_queue, &sdev->sdev_gendev);
8036 	if (sdev->rpm_autosuspend)
8037 		pm_runtime_set_autosuspend_delay(&sdev->sdev_gendev,
8038 						 shost->rpm_autosuspend_delay);
8039 	scsi_autopm_put_device(sdev);
8040 }
8041 
8042 /**
8043  * ufshcd_scsi_add_wlus - Adds required W-LUs
8044  * @hba: per-adapter instance
8045  *
8046  * UFS device specification requires the UFS devices to support 4 well known
8047  * logical units:
8048  *	"REPORT_LUNS" (address: 01h)
8049  *	"UFS Device" (address: 50h)
8050  *	"RPMB" (address: 44h)
8051  *	"BOOT" (address: 30h)
8052  * UFS device's power management needs to be controlled by "POWER CONDITION"
8053  * field of SSU (START STOP UNIT) command. But this "power condition" field
8054  * will take effect only when its sent to "UFS device" well known logical unit
8055  * hence we require the scsi_device instance to represent this logical unit in
8056  * order for the UFS host driver to send the SSU command for power management.
8057  *
8058  * We also require the scsi_device instance for "RPMB" (Replay Protected Memory
8059  * Block) LU so user space process can control this LU. User space may also
8060  * want to have access to BOOT LU.
8061  *
8062  * This function adds scsi device instances for each of all well known LUs
8063  * (except "REPORT LUNS" LU).
8064  *
8065  * Return: zero on success (all required W-LUs are added successfully),
8066  * non-zero error value on failure (if failed to add any of the required W-LU).
8067  */
8068 static int ufshcd_scsi_add_wlus(struct ufs_hba *hba)
8069 {
8070 	int ret = 0;
8071 	struct scsi_device *sdev_boot, *sdev_rpmb;
8072 
8073 	hba->ufs_device_wlun = __scsi_add_device(hba->host, 0, 0,
8074 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_UFS_DEVICE_WLUN), NULL);
8075 	if (IS_ERR(hba->ufs_device_wlun)) {
8076 		ret = PTR_ERR(hba->ufs_device_wlun);
8077 		hba->ufs_device_wlun = NULL;
8078 		goto out;
8079 	}
8080 	scsi_device_put(hba->ufs_device_wlun);
8081 
8082 	sdev_rpmb = __scsi_add_device(hba->host, 0, 0,
8083 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_RPMB_WLUN), NULL);
8084 	if (IS_ERR(sdev_rpmb)) {
8085 		ret = PTR_ERR(sdev_rpmb);
8086 		goto remove_ufs_device_wlun;
8087 	}
8088 	ufshcd_blk_pm_runtime_init(sdev_rpmb);
8089 	scsi_device_put(sdev_rpmb);
8090 
8091 	sdev_boot = __scsi_add_device(hba->host, 0, 0,
8092 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_BOOT_WLUN), NULL);
8093 	if (IS_ERR(sdev_boot)) {
8094 		dev_err(hba->dev, "%s: BOOT WLUN not found\n", __func__);
8095 	} else {
8096 		ufshcd_blk_pm_runtime_init(sdev_boot);
8097 		scsi_device_put(sdev_boot);
8098 	}
8099 	goto out;
8100 
8101 remove_ufs_device_wlun:
8102 	scsi_remove_device(hba->ufs_device_wlun);
8103 out:
8104 	return ret;
8105 }
8106 
8107 static void ufshcd_wb_probe(struct ufs_hba *hba, const u8 *desc_buf)
8108 {
8109 	struct ufs_dev_info *dev_info = &hba->dev_info;
8110 	u8 lun;
8111 	u32 d_lu_wb_buf_alloc;
8112 	u32 ext_ufs_feature;
8113 
8114 	if (!ufshcd_is_wb_allowed(hba))
8115 		return;
8116 
8117 	/*
8118 	 * Probe WB only for UFS-2.2 and UFS-3.1 (and later) devices or
8119 	 * UFS devices with quirk UFS_DEVICE_QUIRK_SUPPORT_EXTENDED_FEATURES
8120 	 * enabled
8121 	 */
8122 	if (!(dev_info->wspecversion >= 0x310 ||
8123 	      dev_info->wspecversion == 0x220 ||
8124 	     (hba->dev_quirks & UFS_DEVICE_QUIRK_SUPPORT_EXTENDED_FEATURES)))
8125 		goto wb_disabled;
8126 
8127 	ext_ufs_feature = get_unaligned_be32(desc_buf +
8128 					DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
8129 
8130 	if (!(ext_ufs_feature & UFS_DEV_WRITE_BOOSTER_SUP))
8131 		goto wb_disabled;
8132 
8133 	/*
8134 	 * WB may be supported but not configured while provisioning. The spec
8135 	 * says, in dedicated wb buffer mode, a max of 1 lun would have wb
8136 	 * buffer configured.
8137 	 */
8138 	dev_info->wb_buffer_type = desc_buf[DEVICE_DESC_PARAM_WB_TYPE];
8139 
8140 	dev_info->b_presrv_uspc_en =
8141 		desc_buf[DEVICE_DESC_PARAM_WB_PRESRV_USRSPC_EN];
8142 
8143 	if (dev_info->wb_buffer_type == WB_BUF_MODE_SHARED) {
8144 		if (!get_unaligned_be32(desc_buf +
8145 				   DEVICE_DESC_PARAM_WB_SHARED_ALLOC_UNITS))
8146 			goto wb_disabled;
8147 	} else {
8148 		for (lun = 0; lun < UFS_UPIU_MAX_WB_LUN_ID; lun++) {
8149 			d_lu_wb_buf_alloc = 0;
8150 			ufshcd_read_unit_desc_param(hba,
8151 					lun,
8152 					UNIT_DESC_PARAM_WB_BUF_ALLOC_UNITS,
8153 					(u8 *)&d_lu_wb_buf_alloc,
8154 					sizeof(d_lu_wb_buf_alloc));
8155 			if (d_lu_wb_buf_alloc) {
8156 				dev_info->wb_dedicated_lu = lun;
8157 				break;
8158 			}
8159 		}
8160 
8161 		if (!d_lu_wb_buf_alloc)
8162 			goto wb_disabled;
8163 	}
8164 
8165 	if (!ufshcd_is_wb_buf_lifetime_available(hba))
8166 		goto wb_disabled;
8167 
8168 	return;
8169 
8170 wb_disabled:
8171 	hba->caps &= ~UFSHCD_CAP_WB_EN;
8172 }
8173 
8174 static void ufshcd_temp_notif_probe(struct ufs_hba *hba, const u8 *desc_buf)
8175 {
8176 	struct ufs_dev_info *dev_info = &hba->dev_info;
8177 	u32 ext_ufs_feature;
8178 	u8 mask = 0;
8179 
8180 	if (!(hba->caps & UFSHCD_CAP_TEMP_NOTIF) || dev_info->wspecversion < 0x300)
8181 		return;
8182 
8183 	ext_ufs_feature = get_unaligned_be32(desc_buf + DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
8184 
8185 	if (ext_ufs_feature & UFS_DEV_LOW_TEMP_NOTIF)
8186 		mask |= MASK_EE_TOO_LOW_TEMP;
8187 
8188 	if (ext_ufs_feature & UFS_DEV_HIGH_TEMP_NOTIF)
8189 		mask |= MASK_EE_TOO_HIGH_TEMP;
8190 
8191 	if (mask) {
8192 		ufshcd_enable_ee(hba, mask);
8193 		ufs_hwmon_probe(hba, mask);
8194 	}
8195 }
8196 
8197 static void ufshcd_ext_iid_probe(struct ufs_hba *hba, u8 *desc_buf)
8198 {
8199 	struct ufs_dev_info *dev_info = &hba->dev_info;
8200 	u32 ext_ufs_feature;
8201 	u32 ext_iid_en = 0;
8202 	int err;
8203 
8204 	/* Only UFS-4.0 and above may support EXT_IID */
8205 	if (dev_info->wspecversion < 0x400)
8206 		goto out;
8207 
8208 	ext_ufs_feature = get_unaligned_be32(desc_buf +
8209 				     DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
8210 	if (!(ext_ufs_feature & UFS_DEV_EXT_IID_SUP))
8211 		goto out;
8212 
8213 	err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
8214 				      QUERY_ATTR_IDN_EXT_IID_EN, 0, 0, &ext_iid_en);
8215 	if (err)
8216 		dev_err(hba->dev, "failed reading bEXTIIDEn. err = %d\n", err);
8217 
8218 out:
8219 	dev_info->b_ext_iid_en = ext_iid_en;
8220 }
8221 
8222 void ufshcd_fixup_dev_quirks(struct ufs_hba *hba,
8223 			     const struct ufs_dev_quirk *fixups)
8224 {
8225 	const struct ufs_dev_quirk *f;
8226 	struct ufs_dev_info *dev_info = &hba->dev_info;
8227 
8228 	if (!fixups)
8229 		return;
8230 
8231 	for (f = fixups; f->quirk; f++) {
8232 		if ((f->wmanufacturerid == dev_info->wmanufacturerid ||
8233 		     f->wmanufacturerid == UFS_ANY_VENDOR) &&
8234 		     ((dev_info->model &&
8235 		       STR_PRFX_EQUAL(f->model, dev_info->model)) ||
8236 		      !strcmp(f->model, UFS_ANY_MODEL)))
8237 			hba->dev_quirks |= f->quirk;
8238 	}
8239 }
8240 EXPORT_SYMBOL_GPL(ufshcd_fixup_dev_quirks);
8241 
8242 static void ufs_fixup_device_setup(struct ufs_hba *hba)
8243 {
8244 	/* fix by general quirk table */
8245 	ufshcd_fixup_dev_quirks(hba, ufs_fixups);
8246 
8247 	/* allow vendors to fix quirks */
8248 	ufshcd_vops_fixup_dev_quirks(hba);
8249 }
8250 
8251 static void ufshcd_update_rtc(struct ufs_hba *hba)
8252 {
8253 	struct timespec64 ts64;
8254 	int err;
8255 	u32 val;
8256 
8257 	ktime_get_real_ts64(&ts64);
8258 
8259 	if (ts64.tv_sec < hba->dev_info.rtc_time_baseline) {
8260 		dev_warn_once(hba->dev, "%s: Current time precedes previous setting!\n", __func__);
8261 		return;
8262 	}
8263 
8264 	/*
8265 	 * The Absolute RTC mode has a 136-year limit, spanning from 2010 to 2146. If a time beyond
8266 	 * 2146 is required, it is recommended to choose the relative RTC mode.
8267 	 */
8268 	val = ts64.tv_sec - hba->dev_info.rtc_time_baseline;
8269 
8270 	ufshcd_rpm_get_sync(hba);
8271 	err = ufshcd_query_attr(hba, UPIU_QUERY_OPCODE_WRITE_ATTR, QUERY_ATTR_IDN_SECONDS_PASSED,
8272 				0, 0, &val);
8273 	ufshcd_rpm_put_sync(hba);
8274 
8275 	if (err)
8276 		dev_err(hba->dev, "%s: Failed to update rtc %d\n", __func__, err);
8277 	else if (hba->dev_info.rtc_type == UFS_RTC_RELATIVE)
8278 		hba->dev_info.rtc_time_baseline = ts64.tv_sec;
8279 }
8280 
8281 static void ufshcd_rtc_work(struct work_struct *work)
8282 {
8283 	struct ufs_hba *hba;
8284 
8285 	hba = container_of(to_delayed_work(work), struct ufs_hba, ufs_rtc_update_work);
8286 
8287 	 /* Update RTC only when there are no requests in progress and UFSHCI is operational */
8288 	if (!ufshcd_is_ufs_dev_busy(hba) && hba->ufshcd_state == UFSHCD_STATE_OPERATIONAL)
8289 		ufshcd_update_rtc(hba);
8290 
8291 	if (ufshcd_is_ufs_dev_active(hba) && hba->dev_info.rtc_update_period)
8292 		schedule_delayed_work(&hba->ufs_rtc_update_work,
8293 				      msecs_to_jiffies(hba->dev_info.rtc_update_period));
8294 }
8295 
8296 static void ufs_init_rtc(struct ufs_hba *hba, u8 *desc_buf)
8297 {
8298 	u16 periodic_rtc_update = get_unaligned_be16(&desc_buf[DEVICE_DESC_PARAM_FRQ_RTC]);
8299 	struct ufs_dev_info *dev_info = &hba->dev_info;
8300 
8301 	if (periodic_rtc_update & UFS_RTC_TIME_BASELINE) {
8302 		dev_info->rtc_type = UFS_RTC_ABSOLUTE;
8303 
8304 		/*
8305 		 * The concept of measuring time in Linux as the number of seconds elapsed since
8306 		 * 00:00:00 UTC on January 1, 1970, and UFS ABS RTC is elapsed from January 1st
8307 		 * 2010 00:00, here we need to adjust ABS baseline.
8308 		 */
8309 		dev_info->rtc_time_baseline = mktime64(2010, 1, 1, 0, 0, 0) -
8310 							mktime64(1970, 1, 1, 0, 0, 0);
8311 	} else {
8312 		dev_info->rtc_type = UFS_RTC_RELATIVE;
8313 		dev_info->rtc_time_baseline = 0;
8314 	}
8315 
8316 	/*
8317 	 * We ignore TIME_PERIOD defined in wPeriodicRTCUpdate because Spec does not clearly state
8318 	 * how to calculate the specific update period for each time unit. And we disable periodic
8319 	 * RTC update work, let user configure by sysfs node according to specific circumstance.
8320 	 */
8321 	dev_info->rtc_update_period = 0;
8322 }
8323 
8324 static int ufs_get_device_desc(struct ufs_hba *hba)
8325 {
8326 	int err;
8327 	u8 model_index;
8328 	u8 *desc_buf;
8329 	struct ufs_dev_info *dev_info = &hba->dev_info;
8330 
8331 	desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
8332 	if (!desc_buf) {
8333 		err = -ENOMEM;
8334 		goto out;
8335 	}
8336 
8337 	err = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_DEVICE, 0, 0, desc_buf,
8338 				     QUERY_DESC_MAX_SIZE);
8339 	if (err) {
8340 		dev_err(hba->dev, "%s: Failed reading Device Desc. err = %d\n",
8341 			__func__, err);
8342 		goto out;
8343 	}
8344 
8345 	/*
8346 	 * getting vendor (manufacturerID) and Bank Index in big endian
8347 	 * format
8348 	 */
8349 	dev_info->wmanufacturerid = desc_buf[DEVICE_DESC_PARAM_MANF_ID] << 8 |
8350 				     desc_buf[DEVICE_DESC_PARAM_MANF_ID + 1];
8351 
8352 	/* getting Specification Version in big endian format */
8353 	dev_info->wspecversion = desc_buf[DEVICE_DESC_PARAM_SPEC_VER] << 8 |
8354 				      desc_buf[DEVICE_DESC_PARAM_SPEC_VER + 1];
8355 	dev_info->bqueuedepth = desc_buf[DEVICE_DESC_PARAM_Q_DPTH];
8356 
8357 	model_index = desc_buf[DEVICE_DESC_PARAM_PRDCT_NAME];
8358 
8359 	err = ufshcd_read_string_desc(hba, model_index,
8360 				      &dev_info->model, SD_ASCII_STD);
8361 	if (err < 0) {
8362 		dev_err(hba->dev, "%s: Failed reading Product Name. err = %d\n",
8363 			__func__, err);
8364 		goto out;
8365 	}
8366 
8367 	hba->luns_avail = desc_buf[DEVICE_DESC_PARAM_NUM_LU] +
8368 		desc_buf[DEVICE_DESC_PARAM_NUM_WLU];
8369 
8370 	ufs_fixup_device_setup(hba);
8371 
8372 	ufshcd_wb_probe(hba, desc_buf);
8373 
8374 	ufshcd_temp_notif_probe(hba, desc_buf);
8375 
8376 	ufs_init_rtc(hba, desc_buf);
8377 
8378 	if (hba->ext_iid_sup)
8379 		ufshcd_ext_iid_probe(hba, desc_buf);
8380 
8381 	/*
8382 	 * ufshcd_read_string_desc returns size of the string
8383 	 * reset the error value
8384 	 */
8385 	err = 0;
8386 
8387 out:
8388 	kfree(desc_buf);
8389 	return err;
8390 }
8391 
8392 static void ufs_put_device_desc(struct ufs_hba *hba)
8393 {
8394 	struct ufs_dev_info *dev_info = &hba->dev_info;
8395 
8396 	kfree(dev_info->model);
8397 	dev_info->model = NULL;
8398 }
8399 
8400 /**
8401  * ufshcd_tune_pa_tactivate - Tunes PA_TActivate of local UniPro
8402  * @hba: per-adapter instance
8403  *
8404  * PA_TActivate parameter can be tuned manually if UniPro version is less than
8405  * 1.61. PA_TActivate needs to be greater than or equal to peerM-PHY's
8406  * RX_MIN_ACTIVATETIME_CAPABILITY attribute. This optimal value can help reduce
8407  * the hibern8 exit latency.
8408  *
8409  * Return: zero on success, non-zero error value on failure.
8410  */
8411 static int ufshcd_tune_pa_tactivate(struct ufs_hba *hba)
8412 {
8413 	int ret = 0;
8414 	u32 peer_rx_min_activatetime = 0, tuned_pa_tactivate;
8415 
8416 	ret = ufshcd_dme_peer_get(hba,
8417 				  UIC_ARG_MIB_SEL(
8418 					RX_MIN_ACTIVATETIME_CAPABILITY,
8419 					UIC_ARG_MPHY_RX_GEN_SEL_INDEX(0)),
8420 				  &peer_rx_min_activatetime);
8421 	if (ret)
8422 		goto out;
8423 
8424 	/* make sure proper unit conversion is applied */
8425 	tuned_pa_tactivate =
8426 		((peer_rx_min_activatetime * RX_MIN_ACTIVATETIME_UNIT_US)
8427 		 / PA_TACTIVATE_TIME_UNIT_US);
8428 	ret = ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TACTIVATE),
8429 			     tuned_pa_tactivate);
8430 
8431 out:
8432 	return ret;
8433 }
8434 
8435 /**
8436  * ufshcd_tune_pa_hibern8time - Tunes PA_Hibern8Time of local UniPro
8437  * @hba: per-adapter instance
8438  *
8439  * PA_Hibern8Time parameter can be tuned manually if UniPro version is less than
8440  * 1.61. PA_Hibern8Time needs to be maximum of local M-PHY's
8441  * TX_HIBERN8TIME_CAPABILITY & peer M-PHY's RX_HIBERN8TIME_CAPABILITY.
8442  * This optimal value can help reduce the hibern8 exit latency.
8443  *
8444  * Return: zero on success, non-zero error value on failure.
8445  */
8446 static int ufshcd_tune_pa_hibern8time(struct ufs_hba *hba)
8447 {
8448 	int ret = 0;
8449 	u32 local_tx_hibern8_time_cap = 0, peer_rx_hibern8_time_cap = 0;
8450 	u32 max_hibern8_time, tuned_pa_hibern8time;
8451 
8452 	ret = ufshcd_dme_get(hba,
8453 			     UIC_ARG_MIB_SEL(TX_HIBERN8TIME_CAPABILITY,
8454 					UIC_ARG_MPHY_TX_GEN_SEL_INDEX(0)),
8455 				  &local_tx_hibern8_time_cap);
8456 	if (ret)
8457 		goto out;
8458 
8459 	ret = ufshcd_dme_peer_get(hba,
8460 				  UIC_ARG_MIB_SEL(RX_HIBERN8TIME_CAPABILITY,
8461 					UIC_ARG_MPHY_RX_GEN_SEL_INDEX(0)),
8462 				  &peer_rx_hibern8_time_cap);
8463 	if (ret)
8464 		goto out;
8465 
8466 	max_hibern8_time = max(local_tx_hibern8_time_cap,
8467 			       peer_rx_hibern8_time_cap);
8468 	/* make sure proper unit conversion is applied */
8469 	tuned_pa_hibern8time = ((max_hibern8_time * HIBERN8TIME_UNIT_US)
8470 				/ PA_HIBERN8_TIME_UNIT_US);
8471 	ret = ufshcd_dme_set(hba, UIC_ARG_MIB(PA_HIBERN8TIME),
8472 			     tuned_pa_hibern8time);
8473 out:
8474 	return ret;
8475 }
8476 
8477 /**
8478  * ufshcd_quirk_tune_host_pa_tactivate - Ensures that host PA_TACTIVATE is
8479  * less than device PA_TACTIVATE time.
8480  * @hba: per-adapter instance
8481  *
8482  * Some UFS devices require host PA_TACTIVATE to be lower than device
8483  * PA_TACTIVATE, we need to enable UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE quirk
8484  * for such devices.
8485  *
8486  * Return: zero on success, non-zero error value on failure.
8487  */
8488 static int ufshcd_quirk_tune_host_pa_tactivate(struct ufs_hba *hba)
8489 {
8490 	int ret = 0;
8491 	u32 granularity, peer_granularity;
8492 	u32 pa_tactivate, peer_pa_tactivate;
8493 	u32 pa_tactivate_us, peer_pa_tactivate_us;
8494 	static const u8 gran_to_us_table[] = {1, 4, 8, 16, 32, 100};
8495 
8496 	ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_GRANULARITY),
8497 				  &granularity);
8498 	if (ret)
8499 		goto out;
8500 
8501 	ret = ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_GRANULARITY),
8502 				  &peer_granularity);
8503 	if (ret)
8504 		goto out;
8505 
8506 	if ((granularity < PA_GRANULARITY_MIN_VAL) ||
8507 	    (granularity > PA_GRANULARITY_MAX_VAL)) {
8508 		dev_err(hba->dev, "%s: invalid host PA_GRANULARITY %d",
8509 			__func__, granularity);
8510 		return -EINVAL;
8511 	}
8512 
8513 	if ((peer_granularity < PA_GRANULARITY_MIN_VAL) ||
8514 	    (peer_granularity > PA_GRANULARITY_MAX_VAL)) {
8515 		dev_err(hba->dev, "%s: invalid device PA_GRANULARITY %d",
8516 			__func__, peer_granularity);
8517 		return -EINVAL;
8518 	}
8519 
8520 	ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_TACTIVATE), &pa_tactivate);
8521 	if (ret)
8522 		goto out;
8523 
8524 	ret = ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_TACTIVATE),
8525 				  &peer_pa_tactivate);
8526 	if (ret)
8527 		goto out;
8528 
8529 	pa_tactivate_us = pa_tactivate * gran_to_us_table[granularity - 1];
8530 	peer_pa_tactivate_us = peer_pa_tactivate *
8531 			     gran_to_us_table[peer_granularity - 1];
8532 
8533 	if (pa_tactivate_us >= peer_pa_tactivate_us) {
8534 		u32 new_peer_pa_tactivate;
8535 
8536 		new_peer_pa_tactivate = pa_tactivate_us /
8537 				      gran_to_us_table[peer_granularity - 1];
8538 		new_peer_pa_tactivate++;
8539 		ret = ufshcd_dme_peer_set(hba, UIC_ARG_MIB(PA_TACTIVATE),
8540 					  new_peer_pa_tactivate);
8541 	}
8542 
8543 out:
8544 	return ret;
8545 }
8546 
8547 static void ufshcd_tune_unipro_params(struct ufs_hba *hba)
8548 {
8549 	if (ufshcd_is_unipro_pa_params_tuning_req(hba)) {
8550 		ufshcd_tune_pa_tactivate(hba);
8551 		ufshcd_tune_pa_hibern8time(hba);
8552 	}
8553 
8554 	ufshcd_vops_apply_dev_quirks(hba);
8555 
8556 	if (hba->dev_quirks & UFS_DEVICE_QUIRK_PA_TACTIVATE)
8557 		/* set 1ms timeout for PA_TACTIVATE */
8558 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TACTIVATE), 10);
8559 
8560 	if (hba->dev_quirks & UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE)
8561 		ufshcd_quirk_tune_host_pa_tactivate(hba);
8562 }
8563 
8564 static void ufshcd_clear_dbg_ufs_stats(struct ufs_hba *hba)
8565 {
8566 	hba->ufs_stats.hibern8_exit_cnt = 0;
8567 	hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
8568 	hba->req_abort_count = 0;
8569 }
8570 
8571 static int ufshcd_device_geo_params_init(struct ufs_hba *hba)
8572 {
8573 	int err;
8574 	u8 *desc_buf;
8575 
8576 	desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
8577 	if (!desc_buf) {
8578 		err = -ENOMEM;
8579 		goto out;
8580 	}
8581 
8582 	err = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_GEOMETRY, 0, 0,
8583 				     desc_buf, QUERY_DESC_MAX_SIZE);
8584 	if (err) {
8585 		dev_err(hba->dev, "%s: Failed reading Geometry Desc. err = %d\n",
8586 				__func__, err);
8587 		goto out;
8588 	}
8589 
8590 	if (desc_buf[GEOMETRY_DESC_PARAM_MAX_NUM_LUN] == 1)
8591 		hba->dev_info.max_lu_supported = 32;
8592 	else if (desc_buf[GEOMETRY_DESC_PARAM_MAX_NUM_LUN] == 0)
8593 		hba->dev_info.max_lu_supported = 8;
8594 
8595 out:
8596 	kfree(desc_buf);
8597 	return err;
8598 }
8599 
8600 struct ufs_ref_clk {
8601 	unsigned long freq_hz;
8602 	enum ufs_ref_clk_freq val;
8603 };
8604 
8605 static const struct ufs_ref_clk ufs_ref_clk_freqs[] = {
8606 	{19200000, REF_CLK_FREQ_19_2_MHZ},
8607 	{26000000, REF_CLK_FREQ_26_MHZ},
8608 	{38400000, REF_CLK_FREQ_38_4_MHZ},
8609 	{52000000, REF_CLK_FREQ_52_MHZ},
8610 	{0, REF_CLK_FREQ_INVAL},
8611 };
8612 
8613 static enum ufs_ref_clk_freq
8614 ufs_get_bref_clk_from_hz(unsigned long freq)
8615 {
8616 	int i;
8617 
8618 	for (i = 0; ufs_ref_clk_freqs[i].freq_hz; i++)
8619 		if (ufs_ref_clk_freqs[i].freq_hz == freq)
8620 			return ufs_ref_clk_freqs[i].val;
8621 
8622 	return REF_CLK_FREQ_INVAL;
8623 }
8624 
8625 void ufshcd_parse_dev_ref_clk_freq(struct ufs_hba *hba, struct clk *refclk)
8626 {
8627 	unsigned long freq;
8628 
8629 	freq = clk_get_rate(refclk);
8630 
8631 	hba->dev_ref_clk_freq =
8632 		ufs_get_bref_clk_from_hz(freq);
8633 
8634 	if (hba->dev_ref_clk_freq == REF_CLK_FREQ_INVAL)
8635 		dev_err(hba->dev,
8636 		"invalid ref_clk setting = %ld\n", freq);
8637 }
8638 
8639 static int ufshcd_set_dev_ref_clk(struct ufs_hba *hba)
8640 {
8641 	int err;
8642 	u32 ref_clk;
8643 	u32 freq = hba->dev_ref_clk_freq;
8644 
8645 	err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
8646 			QUERY_ATTR_IDN_REF_CLK_FREQ, 0, 0, &ref_clk);
8647 
8648 	if (err) {
8649 		dev_err(hba->dev, "failed reading bRefClkFreq. err = %d\n",
8650 			err);
8651 		goto out;
8652 	}
8653 
8654 	if (ref_clk == freq)
8655 		goto out; /* nothing to update */
8656 
8657 	err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
8658 			QUERY_ATTR_IDN_REF_CLK_FREQ, 0, 0, &freq);
8659 
8660 	if (err) {
8661 		dev_err(hba->dev, "bRefClkFreq setting to %lu Hz failed\n",
8662 			ufs_ref_clk_freqs[freq].freq_hz);
8663 		goto out;
8664 	}
8665 
8666 	dev_dbg(hba->dev, "bRefClkFreq setting to %lu Hz succeeded\n",
8667 			ufs_ref_clk_freqs[freq].freq_hz);
8668 
8669 out:
8670 	return err;
8671 }
8672 
8673 static int ufshcd_device_params_init(struct ufs_hba *hba)
8674 {
8675 	bool flag;
8676 	int ret;
8677 
8678 	/* Init UFS geometry descriptor related parameters */
8679 	ret = ufshcd_device_geo_params_init(hba);
8680 	if (ret)
8681 		goto out;
8682 
8683 	/* Check and apply UFS device quirks */
8684 	ret = ufs_get_device_desc(hba);
8685 	if (ret) {
8686 		dev_err(hba->dev, "%s: Failed getting device info. err = %d\n",
8687 			__func__, ret);
8688 		goto out;
8689 	}
8690 
8691 	ufshcd_get_ref_clk_gating_wait(hba);
8692 
8693 	if (!ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_READ_FLAG,
8694 			QUERY_FLAG_IDN_PWR_ON_WPE, 0, &flag))
8695 		hba->dev_info.f_power_on_wp_en = flag;
8696 
8697 	/* Probe maximum power mode co-supported by both UFS host and device */
8698 	if (ufshcd_get_max_pwr_mode(hba))
8699 		dev_err(hba->dev,
8700 			"%s: Failed getting max supported power mode\n",
8701 			__func__);
8702 out:
8703 	return ret;
8704 }
8705 
8706 static void ufshcd_set_timestamp_attr(struct ufs_hba *hba)
8707 {
8708 	int err;
8709 	struct ufs_query_req *request = NULL;
8710 	struct ufs_query_res *response = NULL;
8711 	struct ufs_dev_info *dev_info = &hba->dev_info;
8712 	struct utp_upiu_query_v4_0 *upiu_data;
8713 
8714 	if (dev_info->wspecversion < 0x400)
8715 		return;
8716 
8717 	ufshcd_hold(hba);
8718 
8719 	mutex_lock(&hba->dev_cmd.lock);
8720 
8721 	ufshcd_init_query(hba, &request, &response,
8722 			  UPIU_QUERY_OPCODE_WRITE_ATTR,
8723 			  QUERY_ATTR_IDN_TIMESTAMP, 0, 0);
8724 
8725 	request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
8726 
8727 	upiu_data = (struct utp_upiu_query_v4_0 *)&request->upiu_req;
8728 
8729 	put_unaligned_be64(ktime_get_real_ns(), &upiu_data->osf3);
8730 
8731 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT);
8732 
8733 	if (err)
8734 		dev_err(hba->dev, "%s: failed to set timestamp %d\n",
8735 			__func__, err);
8736 
8737 	mutex_unlock(&hba->dev_cmd.lock);
8738 	ufshcd_release(hba);
8739 }
8740 
8741 /**
8742  * ufshcd_add_lus - probe and add UFS logical units
8743  * @hba: per-adapter instance
8744  *
8745  * Return: 0 upon success; < 0 upon failure.
8746  */
8747 static int ufshcd_add_lus(struct ufs_hba *hba)
8748 {
8749 	int ret;
8750 
8751 	/* Add required well known logical units to scsi mid layer */
8752 	ret = ufshcd_scsi_add_wlus(hba);
8753 	if (ret)
8754 		goto out;
8755 
8756 	/* Initialize devfreq after UFS device is detected */
8757 	if (ufshcd_is_clkscaling_supported(hba)) {
8758 		memcpy(&hba->clk_scaling.saved_pwr_info,
8759 			&hba->pwr_info,
8760 			sizeof(struct ufs_pa_layer_attr));
8761 		hba->clk_scaling.is_allowed = true;
8762 
8763 		ret = ufshcd_devfreq_init(hba);
8764 		if (ret)
8765 			goto out;
8766 
8767 		hba->clk_scaling.is_enabled = true;
8768 		ufshcd_init_clk_scaling_sysfs(hba);
8769 	}
8770 
8771 	ufs_bsg_probe(hba);
8772 	scsi_scan_host(hba->host);
8773 
8774 out:
8775 	return ret;
8776 }
8777 
8778 /* SDB - Single Doorbell */
8779 static void ufshcd_release_sdb_queue(struct ufs_hba *hba, int nutrs)
8780 {
8781 	size_t ucdl_size, utrdl_size;
8782 
8783 	ucdl_size = ufshcd_get_ucd_size(hba) * nutrs;
8784 	dmam_free_coherent(hba->dev, ucdl_size, hba->ucdl_base_addr,
8785 			   hba->ucdl_dma_addr);
8786 
8787 	utrdl_size = sizeof(struct utp_transfer_req_desc) * nutrs;
8788 	dmam_free_coherent(hba->dev, utrdl_size, hba->utrdl_base_addr,
8789 			   hba->utrdl_dma_addr);
8790 
8791 	devm_kfree(hba->dev, hba->lrb);
8792 }
8793 
8794 static int ufshcd_alloc_mcq(struct ufs_hba *hba)
8795 {
8796 	int ret;
8797 	int old_nutrs = hba->nutrs;
8798 
8799 	ret = ufshcd_mcq_decide_queue_depth(hba);
8800 	if (ret < 0)
8801 		return ret;
8802 
8803 	hba->nutrs = ret;
8804 	ret = ufshcd_mcq_init(hba);
8805 	if (ret)
8806 		goto err;
8807 
8808 	/*
8809 	 * Previously allocated memory for nutrs may not be enough in MCQ mode.
8810 	 * Number of supported tags in MCQ mode may be larger than SDB mode.
8811 	 */
8812 	if (hba->nutrs != old_nutrs) {
8813 		ufshcd_release_sdb_queue(hba, old_nutrs);
8814 		ret = ufshcd_memory_alloc(hba);
8815 		if (ret)
8816 			goto err;
8817 		ufshcd_host_memory_configure(hba);
8818 	}
8819 
8820 	ret = ufshcd_mcq_memory_alloc(hba);
8821 	if (ret)
8822 		goto err;
8823 
8824 	return 0;
8825 err:
8826 	hba->nutrs = old_nutrs;
8827 	return ret;
8828 }
8829 
8830 static void ufshcd_config_mcq(struct ufs_hba *hba)
8831 {
8832 	int ret;
8833 	u32 intrs;
8834 
8835 	ret = ufshcd_mcq_vops_config_esi(hba);
8836 	dev_info(hba->dev, "ESI %sconfigured\n", ret ? "is not " : "");
8837 
8838 	intrs = UFSHCD_ENABLE_MCQ_INTRS;
8839 	if (hba->quirks & UFSHCD_QUIRK_MCQ_BROKEN_INTR)
8840 		intrs &= ~MCQ_CQ_EVENT_STATUS;
8841 	ufshcd_enable_intr(hba, intrs);
8842 	ufshcd_mcq_make_queues_operational(hba);
8843 	ufshcd_mcq_config_mac(hba, hba->nutrs);
8844 
8845 	hba->host->can_queue = hba->nutrs - UFSHCD_NUM_RESERVED;
8846 	hba->reserved_slot = hba->nutrs - UFSHCD_NUM_RESERVED;
8847 
8848 	ufshcd_mcq_enable(hba);
8849 	hba->mcq_enabled = true;
8850 
8851 	dev_info(hba->dev, "MCQ configured, nr_queues=%d, io_queues=%d, read_queue=%d, poll_queues=%d, queue_depth=%d\n",
8852 		 hba->nr_hw_queues, hba->nr_queues[HCTX_TYPE_DEFAULT],
8853 		 hba->nr_queues[HCTX_TYPE_READ], hba->nr_queues[HCTX_TYPE_POLL],
8854 		 hba->nutrs);
8855 }
8856 
8857 static int ufshcd_device_init(struct ufs_hba *hba, bool init_dev_params)
8858 {
8859 	int ret;
8860 	struct Scsi_Host *host = hba->host;
8861 
8862 	hba->ufshcd_state = UFSHCD_STATE_RESET;
8863 
8864 	ret = ufshcd_link_startup(hba);
8865 	if (ret)
8866 		return ret;
8867 
8868 	if (hba->quirks & UFSHCD_QUIRK_SKIP_PH_CONFIGURATION)
8869 		return ret;
8870 
8871 	/* Debug counters initialization */
8872 	ufshcd_clear_dbg_ufs_stats(hba);
8873 
8874 	/* UniPro link is active now */
8875 	ufshcd_set_link_active(hba);
8876 
8877 	/* Reconfigure MCQ upon reset */
8878 	if (is_mcq_enabled(hba) && !init_dev_params)
8879 		ufshcd_config_mcq(hba);
8880 
8881 	/* Verify device initialization by sending NOP OUT UPIU */
8882 	ret = ufshcd_verify_dev_init(hba);
8883 	if (ret)
8884 		return ret;
8885 
8886 	/* Initiate UFS initialization, and waiting until completion */
8887 	ret = ufshcd_complete_dev_init(hba);
8888 	if (ret)
8889 		return ret;
8890 
8891 	/*
8892 	 * Initialize UFS device parameters used by driver, these
8893 	 * parameters are associated with UFS descriptors.
8894 	 */
8895 	if (init_dev_params) {
8896 		ret = ufshcd_device_params_init(hba);
8897 		if (ret)
8898 			return ret;
8899 		if (is_mcq_supported(hba) && !hba->scsi_host_added) {
8900 			ret = ufshcd_alloc_mcq(hba);
8901 			if (!ret) {
8902 				ufshcd_config_mcq(hba);
8903 			} else {
8904 				/* Continue with SDB mode */
8905 				use_mcq_mode = false;
8906 				dev_err(hba->dev, "MCQ mode is disabled, err=%d\n",
8907 					 ret);
8908 			}
8909 			ret = scsi_add_host(host, hba->dev);
8910 			if (ret) {
8911 				dev_err(hba->dev, "scsi_add_host failed\n");
8912 				return ret;
8913 			}
8914 			hba->scsi_host_added = true;
8915 		} else if (is_mcq_supported(hba)) {
8916 			/* UFSHCD_QUIRK_REINIT_AFTER_MAX_GEAR_SWITCH is set */
8917 			ufshcd_config_mcq(hba);
8918 		}
8919 	}
8920 
8921 	ufshcd_tune_unipro_params(hba);
8922 
8923 	/* UFS device is also active now */
8924 	ufshcd_set_ufs_dev_active(hba);
8925 	ufshcd_force_reset_auto_bkops(hba);
8926 
8927 	ufshcd_set_timestamp_attr(hba);
8928 	schedule_delayed_work(&hba->ufs_rtc_update_work,
8929 			      msecs_to_jiffies(UFS_RTC_UPDATE_INTERVAL_MS));
8930 
8931 	/* Gear up to HS gear if supported */
8932 	if (hba->max_pwr_info.is_valid) {
8933 		/*
8934 		 * Set the right value to bRefClkFreq before attempting to
8935 		 * switch to HS gears.
8936 		 */
8937 		if (hba->dev_ref_clk_freq != REF_CLK_FREQ_INVAL)
8938 			ufshcd_set_dev_ref_clk(hba);
8939 		ret = ufshcd_config_pwr_mode(hba, &hba->max_pwr_info.info);
8940 		if (ret) {
8941 			dev_err(hba->dev, "%s: Failed setting power mode, err = %d\n",
8942 					__func__, ret);
8943 			return ret;
8944 		}
8945 	}
8946 
8947 	return 0;
8948 }
8949 
8950 /**
8951  * ufshcd_probe_hba - probe hba to detect device and initialize it
8952  * @hba: per-adapter instance
8953  * @init_dev_params: whether or not to call ufshcd_device_params_init().
8954  *
8955  * Execute link-startup and verify device initialization
8956  *
8957  * Return: 0 upon success; < 0 upon failure.
8958  */
8959 static int ufshcd_probe_hba(struct ufs_hba *hba, bool init_dev_params)
8960 {
8961 	ktime_t start = ktime_get();
8962 	unsigned long flags;
8963 	int ret;
8964 
8965 	ret = ufshcd_device_init(hba, init_dev_params);
8966 	if (ret)
8967 		goto out;
8968 
8969 	if (!hba->pm_op_in_progress &&
8970 	    (hba->quirks & UFSHCD_QUIRK_REINIT_AFTER_MAX_GEAR_SWITCH)) {
8971 		/* Reset the device and controller before doing reinit */
8972 		ufshcd_device_reset(hba);
8973 		ufshcd_hba_stop(hba);
8974 		ufshcd_vops_reinit_notify(hba);
8975 		ret = ufshcd_hba_enable(hba);
8976 		if (ret) {
8977 			dev_err(hba->dev, "Host controller enable failed\n");
8978 			ufshcd_print_evt_hist(hba);
8979 			ufshcd_print_host_state(hba);
8980 			goto out;
8981 		}
8982 
8983 		/* Reinit the device */
8984 		ret = ufshcd_device_init(hba, init_dev_params);
8985 		if (ret)
8986 			goto out;
8987 	}
8988 
8989 	ufshcd_print_pwr_info(hba);
8990 
8991 	/*
8992 	 * bActiveICCLevel is volatile for UFS device (as per latest v2.1 spec)
8993 	 * and for removable UFS card as well, hence always set the parameter.
8994 	 * Note: Error handler may issue the device reset hence resetting
8995 	 * bActiveICCLevel as well so it is always safe to set this here.
8996 	 */
8997 	ufshcd_set_active_icc_lvl(hba);
8998 
8999 	/* Enable UFS Write Booster if supported */
9000 	ufshcd_configure_wb(hba);
9001 
9002 	if (hba->ee_usr_mask)
9003 		ufshcd_write_ee_control(hba);
9004 	ufshcd_configure_auto_hibern8(hba);
9005 
9006 out:
9007 	spin_lock_irqsave(hba->host->host_lock, flags);
9008 	if (ret)
9009 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
9010 	else if (hba->ufshcd_state == UFSHCD_STATE_RESET)
9011 		hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
9012 	spin_unlock_irqrestore(hba->host->host_lock, flags);
9013 
9014 	trace_ufshcd_init(dev_name(hba->dev), ret,
9015 		ktime_to_us(ktime_sub(ktime_get(), start)),
9016 		hba->curr_dev_pwr_mode, hba->uic_link_state);
9017 	return ret;
9018 }
9019 
9020 /**
9021  * ufshcd_async_scan - asynchronous execution for probing hba
9022  * @data: data pointer to pass to this function
9023  * @cookie: cookie data
9024  */
9025 static void ufshcd_async_scan(void *data, async_cookie_t cookie)
9026 {
9027 	struct ufs_hba *hba = (struct ufs_hba *)data;
9028 	int ret;
9029 
9030 	down(&hba->host_sem);
9031 	/* Initialize hba, detect and initialize UFS device */
9032 	ret = ufshcd_probe_hba(hba, true);
9033 	up(&hba->host_sem);
9034 	if (ret)
9035 		goto out;
9036 
9037 	/* Probe and add UFS logical units  */
9038 	ret = ufshcd_add_lus(hba);
9039 
9040 out:
9041 	pm_runtime_put_sync(hba->dev);
9042 
9043 	if (ret)
9044 		dev_err(hba->dev, "%s failed: %d\n", __func__, ret);
9045 }
9046 
9047 static enum scsi_timeout_action ufshcd_eh_timed_out(struct scsi_cmnd *scmd)
9048 {
9049 	struct ufs_hba *hba = shost_priv(scmd->device->host);
9050 
9051 	if (!hba->system_suspending) {
9052 		/* Activate the error handler in the SCSI core. */
9053 		return SCSI_EH_NOT_HANDLED;
9054 	}
9055 
9056 	/*
9057 	 * If we get here we know that no TMFs are outstanding and also that
9058 	 * the only pending command is a START STOP UNIT command. Handle the
9059 	 * timeout of that command directly to prevent a deadlock between
9060 	 * ufshcd_set_dev_pwr_mode() and ufshcd_err_handler().
9061 	 */
9062 	ufshcd_link_recovery(hba);
9063 	dev_info(hba->dev, "%s() finished; outstanding_tasks = %#lx.\n",
9064 		 __func__, hba->outstanding_tasks);
9065 
9066 	return hba->outstanding_reqs ? SCSI_EH_RESET_TIMER : SCSI_EH_DONE;
9067 }
9068 
9069 static const struct attribute_group *ufshcd_driver_groups[] = {
9070 	&ufs_sysfs_unit_descriptor_group,
9071 	&ufs_sysfs_lun_attributes_group,
9072 	NULL,
9073 };
9074 
9075 static struct ufs_hba_variant_params ufs_hba_vps = {
9076 	.hba_enable_delay_us		= 1000,
9077 	.wb_flush_threshold		= UFS_WB_BUF_REMAIN_PERCENT(40),
9078 	.devfreq_profile.polling_ms	= 100,
9079 	.devfreq_profile.target		= ufshcd_devfreq_target,
9080 	.devfreq_profile.get_dev_status	= ufshcd_devfreq_get_dev_status,
9081 	.ondemand_data.upthreshold	= 70,
9082 	.ondemand_data.downdifferential	= 5,
9083 };
9084 
9085 static const struct scsi_host_template ufshcd_driver_template = {
9086 	.module			= THIS_MODULE,
9087 	.name			= UFSHCD,
9088 	.proc_name		= UFSHCD,
9089 	.map_queues		= ufshcd_map_queues,
9090 	.queuecommand		= ufshcd_queuecommand,
9091 	.mq_poll		= ufshcd_poll,
9092 	.slave_alloc		= ufshcd_slave_alloc,
9093 	.slave_configure	= ufshcd_slave_configure,
9094 	.slave_destroy		= ufshcd_slave_destroy,
9095 	.change_queue_depth	= ufshcd_change_queue_depth,
9096 	.eh_abort_handler	= ufshcd_abort,
9097 	.eh_device_reset_handler = ufshcd_eh_device_reset_handler,
9098 	.eh_host_reset_handler   = ufshcd_eh_host_reset_handler,
9099 	.eh_timed_out		= ufshcd_eh_timed_out,
9100 	.this_id		= -1,
9101 	.sg_tablesize		= SG_ALL,
9102 	.cmd_per_lun		= UFSHCD_CMD_PER_LUN,
9103 	.can_queue		= UFSHCD_CAN_QUEUE,
9104 	.max_segment_size	= PRDT_DATA_BYTE_COUNT_MAX,
9105 	.max_sectors		= SZ_1M / SECTOR_SIZE,
9106 	.max_host_blocked	= 1,
9107 	.track_queue_depth	= 1,
9108 	.skip_settle_delay	= 1,
9109 	.sdev_groups		= ufshcd_driver_groups,
9110 };
9111 
9112 static int ufshcd_config_vreg_load(struct device *dev, struct ufs_vreg *vreg,
9113 				   int ua)
9114 {
9115 	int ret;
9116 
9117 	if (!vreg)
9118 		return 0;
9119 
9120 	/*
9121 	 * "set_load" operation shall be required on those regulators
9122 	 * which specifically configured current limitation. Otherwise
9123 	 * zero max_uA may cause unexpected behavior when regulator is
9124 	 * enabled or set as high power mode.
9125 	 */
9126 	if (!vreg->max_uA)
9127 		return 0;
9128 
9129 	ret = regulator_set_load(vreg->reg, ua);
9130 	if (ret < 0) {
9131 		dev_err(dev, "%s: %s set load (ua=%d) failed, err=%d\n",
9132 				__func__, vreg->name, ua, ret);
9133 	}
9134 
9135 	return ret;
9136 }
9137 
9138 static inline int ufshcd_config_vreg_lpm(struct ufs_hba *hba,
9139 					 struct ufs_vreg *vreg)
9140 {
9141 	return ufshcd_config_vreg_load(hba->dev, vreg, UFS_VREG_LPM_LOAD_UA);
9142 }
9143 
9144 static inline int ufshcd_config_vreg_hpm(struct ufs_hba *hba,
9145 					 struct ufs_vreg *vreg)
9146 {
9147 	if (!vreg)
9148 		return 0;
9149 
9150 	return ufshcd_config_vreg_load(hba->dev, vreg, vreg->max_uA);
9151 }
9152 
9153 static int ufshcd_config_vreg(struct device *dev,
9154 		struct ufs_vreg *vreg, bool on)
9155 {
9156 	if (regulator_count_voltages(vreg->reg) <= 0)
9157 		return 0;
9158 
9159 	return ufshcd_config_vreg_load(dev, vreg, on ? vreg->max_uA : 0);
9160 }
9161 
9162 static int ufshcd_enable_vreg(struct device *dev, struct ufs_vreg *vreg)
9163 {
9164 	int ret = 0;
9165 
9166 	if (!vreg || vreg->enabled)
9167 		goto out;
9168 
9169 	ret = ufshcd_config_vreg(dev, vreg, true);
9170 	if (!ret)
9171 		ret = regulator_enable(vreg->reg);
9172 
9173 	if (!ret)
9174 		vreg->enabled = true;
9175 	else
9176 		dev_err(dev, "%s: %s enable failed, err=%d\n",
9177 				__func__, vreg->name, ret);
9178 out:
9179 	return ret;
9180 }
9181 
9182 static int ufshcd_disable_vreg(struct device *dev, struct ufs_vreg *vreg)
9183 {
9184 	int ret = 0;
9185 
9186 	if (!vreg || !vreg->enabled || vreg->always_on)
9187 		goto out;
9188 
9189 	ret = regulator_disable(vreg->reg);
9190 
9191 	if (!ret) {
9192 		/* ignore errors on applying disable config */
9193 		ufshcd_config_vreg(dev, vreg, false);
9194 		vreg->enabled = false;
9195 	} else {
9196 		dev_err(dev, "%s: %s disable failed, err=%d\n",
9197 				__func__, vreg->name, ret);
9198 	}
9199 out:
9200 	return ret;
9201 }
9202 
9203 static int ufshcd_setup_vreg(struct ufs_hba *hba, bool on)
9204 {
9205 	int ret = 0;
9206 	struct device *dev = hba->dev;
9207 	struct ufs_vreg_info *info = &hba->vreg_info;
9208 
9209 	ret = ufshcd_toggle_vreg(dev, info->vcc, on);
9210 	if (ret)
9211 		goto out;
9212 
9213 	ret = ufshcd_toggle_vreg(dev, info->vccq, on);
9214 	if (ret)
9215 		goto out;
9216 
9217 	ret = ufshcd_toggle_vreg(dev, info->vccq2, on);
9218 
9219 out:
9220 	if (ret) {
9221 		ufshcd_toggle_vreg(dev, info->vccq2, false);
9222 		ufshcd_toggle_vreg(dev, info->vccq, false);
9223 		ufshcd_toggle_vreg(dev, info->vcc, false);
9224 	}
9225 	return ret;
9226 }
9227 
9228 static int ufshcd_setup_hba_vreg(struct ufs_hba *hba, bool on)
9229 {
9230 	struct ufs_vreg_info *info = &hba->vreg_info;
9231 
9232 	return ufshcd_toggle_vreg(hba->dev, info->vdd_hba, on);
9233 }
9234 
9235 int ufshcd_get_vreg(struct device *dev, struct ufs_vreg *vreg)
9236 {
9237 	int ret = 0;
9238 
9239 	if (!vreg)
9240 		goto out;
9241 
9242 	vreg->reg = devm_regulator_get(dev, vreg->name);
9243 	if (IS_ERR(vreg->reg)) {
9244 		ret = PTR_ERR(vreg->reg);
9245 		dev_err(dev, "%s: %s get failed, err=%d\n",
9246 				__func__, vreg->name, ret);
9247 	}
9248 out:
9249 	return ret;
9250 }
9251 EXPORT_SYMBOL_GPL(ufshcd_get_vreg);
9252 
9253 static int ufshcd_init_vreg(struct ufs_hba *hba)
9254 {
9255 	int ret = 0;
9256 	struct device *dev = hba->dev;
9257 	struct ufs_vreg_info *info = &hba->vreg_info;
9258 
9259 	ret = ufshcd_get_vreg(dev, info->vcc);
9260 	if (ret)
9261 		goto out;
9262 
9263 	ret = ufshcd_get_vreg(dev, info->vccq);
9264 	if (!ret)
9265 		ret = ufshcd_get_vreg(dev, info->vccq2);
9266 out:
9267 	return ret;
9268 }
9269 
9270 static int ufshcd_init_hba_vreg(struct ufs_hba *hba)
9271 {
9272 	struct ufs_vreg_info *info = &hba->vreg_info;
9273 
9274 	return ufshcd_get_vreg(hba->dev, info->vdd_hba);
9275 }
9276 
9277 static int ufshcd_setup_clocks(struct ufs_hba *hba, bool on)
9278 {
9279 	int ret = 0;
9280 	struct ufs_clk_info *clki;
9281 	struct list_head *head = &hba->clk_list_head;
9282 	unsigned long flags;
9283 	ktime_t start = ktime_get();
9284 	bool clk_state_changed = false;
9285 
9286 	if (list_empty(head))
9287 		goto out;
9288 
9289 	ret = ufshcd_vops_setup_clocks(hba, on, PRE_CHANGE);
9290 	if (ret)
9291 		return ret;
9292 
9293 	list_for_each_entry(clki, head, list) {
9294 		if (!IS_ERR_OR_NULL(clki->clk)) {
9295 			/*
9296 			 * Don't disable clocks which are needed
9297 			 * to keep the link active.
9298 			 */
9299 			if (ufshcd_is_link_active(hba) &&
9300 			    clki->keep_link_active)
9301 				continue;
9302 
9303 			clk_state_changed = on ^ clki->enabled;
9304 			if (on && !clki->enabled) {
9305 				ret = clk_prepare_enable(clki->clk);
9306 				if (ret) {
9307 					dev_err(hba->dev, "%s: %s prepare enable failed, %d\n",
9308 						__func__, clki->name, ret);
9309 					goto out;
9310 				}
9311 			} else if (!on && clki->enabled) {
9312 				clk_disable_unprepare(clki->clk);
9313 			}
9314 			clki->enabled = on;
9315 			dev_dbg(hba->dev, "%s: clk: %s %sabled\n", __func__,
9316 					clki->name, on ? "en" : "dis");
9317 		}
9318 	}
9319 
9320 	ret = ufshcd_vops_setup_clocks(hba, on, POST_CHANGE);
9321 	if (ret)
9322 		return ret;
9323 
9324 	if (!ufshcd_is_clkscaling_supported(hba))
9325 		ufshcd_pm_qos_update(hba, on);
9326 out:
9327 	if (ret) {
9328 		list_for_each_entry(clki, head, list) {
9329 			if (!IS_ERR_OR_NULL(clki->clk) && clki->enabled)
9330 				clk_disable_unprepare(clki->clk);
9331 		}
9332 	} else if (!ret && on) {
9333 		spin_lock_irqsave(hba->host->host_lock, flags);
9334 		hba->clk_gating.state = CLKS_ON;
9335 		trace_ufshcd_clk_gating(dev_name(hba->dev),
9336 					hba->clk_gating.state);
9337 		spin_unlock_irqrestore(hba->host->host_lock, flags);
9338 	}
9339 
9340 	if (clk_state_changed)
9341 		trace_ufshcd_profile_clk_gating(dev_name(hba->dev),
9342 			(on ? "on" : "off"),
9343 			ktime_to_us(ktime_sub(ktime_get(), start)), ret);
9344 	return ret;
9345 }
9346 
9347 static enum ufs_ref_clk_freq ufshcd_parse_ref_clk_property(struct ufs_hba *hba)
9348 {
9349 	u32 freq;
9350 	int ret = device_property_read_u32(hba->dev, "ref-clk-freq", &freq);
9351 
9352 	if (ret) {
9353 		dev_dbg(hba->dev, "Cannot query 'ref-clk-freq' property = %d", ret);
9354 		return REF_CLK_FREQ_INVAL;
9355 	}
9356 
9357 	return ufs_get_bref_clk_from_hz(freq);
9358 }
9359 
9360 static int ufshcd_init_clocks(struct ufs_hba *hba)
9361 {
9362 	int ret = 0;
9363 	struct ufs_clk_info *clki;
9364 	struct device *dev = hba->dev;
9365 	struct list_head *head = &hba->clk_list_head;
9366 
9367 	if (list_empty(head))
9368 		goto out;
9369 
9370 	list_for_each_entry(clki, head, list) {
9371 		if (!clki->name)
9372 			continue;
9373 
9374 		clki->clk = devm_clk_get(dev, clki->name);
9375 		if (IS_ERR(clki->clk)) {
9376 			ret = PTR_ERR(clki->clk);
9377 			dev_err(dev, "%s: %s clk get failed, %d\n",
9378 					__func__, clki->name, ret);
9379 			goto out;
9380 		}
9381 
9382 		/*
9383 		 * Parse device ref clk freq as per device tree "ref_clk".
9384 		 * Default dev_ref_clk_freq is set to REF_CLK_FREQ_INVAL
9385 		 * in ufshcd_alloc_host().
9386 		 */
9387 		if (!strcmp(clki->name, "ref_clk"))
9388 			ufshcd_parse_dev_ref_clk_freq(hba, clki->clk);
9389 
9390 		if (clki->max_freq) {
9391 			ret = clk_set_rate(clki->clk, clki->max_freq);
9392 			if (ret) {
9393 				dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
9394 					__func__, clki->name,
9395 					clki->max_freq, ret);
9396 				goto out;
9397 			}
9398 			clki->curr_freq = clki->max_freq;
9399 		}
9400 		dev_dbg(dev, "%s: clk: %s, rate: %lu\n", __func__,
9401 				clki->name, clk_get_rate(clki->clk));
9402 	}
9403 
9404 	/* Set Max. frequency for all clocks */
9405 	if (hba->use_pm_opp) {
9406 		ret = ufshcd_opp_set_rate(hba, ULONG_MAX);
9407 		if (ret) {
9408 			dev_err(hba->dev, "%s: failed to set OPP: %d", __func__,
9409 				ret);
9410 			goto out;
9411 		}
9412 	}
9413 
9414 out:
9415 	return ret;
9416 }
9417 
9418 static int ufshcd_variant_hba_init(struct ufs_hba *hba)
9419 {
9420 	int err = 0;
9421 
9422 	if (!hba->vops)
9423 		goto out;
9424 
9425 	err = ufshcd_vops_init(hba);
9426 	if (err)
9427 		dev_err_probe(hba->dev, err,
9428 			      "%s: variant %s init failed with err %d\n",
9429 			      __func__, ufshcd_get_var_name(hba), err);
9430 out:
9431 	return err;
9432 }
9433 
9434 static void ufshcd_variant_hba_exit(struct ufs_hba *hba)
9435 {
9436 	if (!hba->vops)
9437 		return;
9438 
9439 	ufshcd_vops_exit(hba);
9440 }
9441 
9442 static int ufshcd_hba_init(struct ufs_hba *hba)
9443 {
9444 	int err;
9445 
9446 	/*
9447 	 * Handle host controller power separately from the UFS device power
9448 	 * rails as it will help controlling the UFS host controller power
9449 	 * collapse easily which is different than UFS device power collapse.
9450 	 * Also, enable the host controller power before we go ahead with rest
9451 	 * of the initialization here.
9452 	 */
9453 	err = ufshcd_init_hba_vreg(hba);
9454 	if (err)
9455 		goto out;
9456 
9457 	err = ufshcd_setup_hba_vreg(hba, true);
9458 	if (err)
9459 		goto out;
9460 
9461 	err = ufshcd_init_clocks(hba);
9462 	if (err)
9463 		goto out_disable_hba_vreg;
9464 
9465 	if (hba->dev_ref_clk_freq == REF_CLK_FREQ_INVAL)
9466 		hba->dev_ref_clk_freq = ufshcd_parse_ref_clk_property(hba);
9467 
9468 	err = ufshcd_setup_clocks(hba, true);
9469 	if (err)
9470 		goto out_disable_hba_vreg;
9471 
9472 	err = ufshcd_init_vreg(hba);
9473 	if (err)
9474 		goto out_disable_clks;
9475 
9476 	err = ufshcd_setup_vreg(hba, true);
9477 	if (err)
9478 		goto out_disable_clks;
9479 
9480 	err = ufshcd_variant_hba_init(hba);
9481 	if (err)
9482 		goto out_disable_vreg;
9483 
9484 	ufs_debugfs_hba_init(hba);
9485 	ufs_fault_inject_hba_init(hba);
9486 
9487 	hba->is_powered = true;
9488 	goto out;
9489 
9490 out_disable_vreg:
9491 	ufshcd_setup_vreg(hba, false);
9492 out_disable_clks:
9493 	ufshcd_setup_clocks(hba, false);
9494 out_disable_hba_vreg:
9495 	ufshcd_setup_hba_vreg(hba, false);
9496 out:
9497 	return err;
9498 }
9499 
9500 static void ufshcd_hba_exit(struct ufs_hba *hba)
9501 {
9502 	if (hba->is_powered) {
9503 		ufshcd_pm_qos_exit(hba);
9504 		ufshcd_exit_clk_scaling(hba);
9505 		ufshcd_exit_clk_gating(hba);
9506 		if (hba->eh_wq)
9507 			destroy_workqueue(hba->eh_wq);
9508 		ufs_debugfs_hba_exit(hba);
9509 		ufshcd_variant_hba_exit(hba);
9510 		ufshcd_setup_vreg(hba, false);
9511 		ufshcd_setup_clocks(hba, false);
9512 		ufshcd_setup_hba_vreg(hba, false);
9513 		hba->is_powered = false;
9514 		ufs_put_device_desc(hba);
9515 	}
9516 }
9517 
9518 static int ufshcd_execute_start_stop(struct scsi_device *sdev,
9519 				     enum ufs_dev_pwr_mode pwr_mode,
9520 				     struct scsi_sense_hdr *sshdr)
9521 {
9522 	const unsigned char cdb[6] = { START_STOP, 0, 0, 0, pwr_mode << 4, 0 };
9523 	struct scsi_failure failure_defs[] = {
9524 		{
9525 			.allowed = 2,
9526 			.result = SCMD_FAILURE_RESULT_ANY,
9527 		},
9528 	};
9529 	struct scsi_failures failures = {
9530 		.failure_definitions = failure_defs,
9531 	};
9532 	const struct scsi_exec_args args = {
9533 		.failures = &failures,
9534 		.sshdr = sshdr,
9535 		.req_flags = BLK_MQ_REQ_PM,
9536 		.scmd_flags = SCMD_FAIL_IF_RECOVERING,
9537 	};
9538 
9539 	return scsi_execute_cmd(sdev, cdb, REQ_OP_DRV_IN, /*buffer=*/NULL,
9540 			/*bufflen=*/0, /*timeout=*/10 * HZ, /*retries=*/0,
9541 			&args);
9542 }
9543 
9544 /**
9545  * ufshcd_set_dev_pwr_mode - sends START STOP UNIT command to set device
9546  *			     power mode
9547  * @hba: per adapter instance
9548  * @pwr_mode: device power mode to set
9549  *
9550  * Return: 0 if requested power mode is set successfully;
9551  *         < 0 if failed to set the requested power mode.
9552  */
9553 static int ufshcd_set_dev_pwr_mode(struct ufs_hba *hba,
9554 				     enum ufs_dev_pwr_mode pwr_mode)
9555 {
9556 	struct scsi_sense_hdr sshdr;
9557 	struct scsi_device *sdp;
9558 	unsigned long flags;
9559 	int ret;
9560 
9561 	spin_lock_irqsave(hba->host->host_lock, flags);
9562 	sdp = hba->ufs_device_wlun;
9563 	if (sdp && scsi_device_online(sdp))
9564 		ret = scsi_device_get(sdp);
9565 	else
9566 		ret = -ENODEV;
9567 	spin_unlock_irqrestore(hba->host->host_lock, flags);
9568 
9569 	if (ret)
9570 		return ret;
9571 
9572 	/*
9573 	 * If scsi commands fail, the scsi mid-layer schedules scsi error-
9574 	 * handling, which would wait for host to be resumed. Since we know
9575 	 * we are functional while we are here, skip host resume in error
9576 	 * handling context.
9577 	 */
9578 	hba->host->eh_noresume = 1;
9579 
9580 	/*
9581 	 * Current function would be generally called from the power management
9582 	 * callbacks hence set the RQF_PM flag so that it doesn't resume the
9583 	 * already suspended childs.
9584 	 */
9585 	ret = ufshcd_execute_start_stop(sdp, pwr_mode, &sshdr);
9586 	if (ret) {
9587 		sdev_printk(KERN_WARNING, sdp,
9588 			    "START_STOP failed for power mode: %d, result %x\n",
9589 			    pwr_mode, ret);
9590 		if (ret > 0) {
9591 			if (scsi_sense_valid(&sshdr))
9592 				scsi_print_sense_hdr(sdp, NULL, &sshdr);
9593 			ret = -EIO;
9594 		}
9595 	} else {
9596 		hba->curr_dev_pwr_mode = pwr_mode;
9597 	}
9598 
9599 	scsi_device_put(sdp);
9600 	hba->host->eh_noresume = 0;
9601 	return ret;
9602 }
9603 
9604 static int ufshcd_link_state_transition(struct ufs_hba *hba,
9605 					enum uic_link_state req_link_state,
9606 					bool check_for_bkops)
9607 {
9608 	int ret = 0;
9609 
9610 	if (req_link_state == hba->uic_link_state)
9611 		return 0;
9612 
9613 	if (req_link_state == UIC_LINK_HIBERN8_STATE) {
9614 		ret = ufshcd_uic_hibern8_enter(hba);
9615 		if (!ret) {
9616 			ufshcd_set_link_hibern8(hba);
9617 		} else {
9618 			dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
9619 					__func__, ret);
9620 			goto out;
9621 		}
9622 	}
9623 	/*
9624 	 * If autobkops is enabled, link can't be turned off because
9625 	 * turning off the link would also turn off the device, except in the
9626 	 * case of DeepSleep where the device is expected to remain powered.
9627 	 */
9628 	else if ((req_link_state == UIC_LINK_OFF_STATE) &&
9629 		 (!check_for_bkops || !hba->auto_bkops_enabled)) {
9630 		/*
9631 		 * Let's make sure that link is in low power mode, we are doing
9632 		 * this currently by putting the link in Hibern8. Otherway to
9633 		 * put the link in low power mode is to send the DME end point
9634 		 * to device and then send the DME reset command to local
9635 		 * unipro. But putting the link in hibern8 is much faster.
9636 		 *
9637 		 * Note also that putting the link in Hibern8 is a requirement
9638 		 * for entering DeepSleep.
9639 		 */
9640 		ret = ufshcd_uic_hibern8_enter(hba);
9641 		if (ret) {
9642 			dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
9643 					__func__, ret);
9644 			goto out;
9645 		}
9646 		/*
9647 		 * Change controller state to "reset state" which
9648 		 * should also put the link in off/reset state
9649 		 */
9650 		ufshcd_hba_stop(hba);
9651 		/*
9652 		 * TODO: Check if we need any delay to make sure that
9653 		 * controller is reset
9654 		 */
9655 		ufshcd_set_link_off(hba);
9656 	}
9657 
9658 out:
9659 	return ret;
9660 }
9661 
9662 static void ufshcd_vreg_set_lpm(struct ufs_hba *hba)
9663 {
9664 	bool vcc_off = false;
9665 
9666 	/*
9667 	 * It seems some UFS devices may keep drawing more than sleep current
9668 	 * (atleast for 500us) from UFS rails (especially from VCCQ rail).
9669 	 * To avoid this situation, add 2ms delay before putting these UFS
9670 	 * rails in LPM mode.
9671 	 */
9672 	if (!ufshcd_is_link_active(hba) &&
9673 	    hba->dev_quirks & UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM)
9674 		usleep_range(2000, 2100);
9675 
9676 	/*
9677 	 * If UFS device is either in UFS_Sleep turn off VCC rail to save some
9678 	 * power.
9679 	 *
9680 	 * If UFS device and link is in OFF state, all power supplies (VCC,
9681 	 * VCCQ, VCCQ2) can be turned off if power on write protect is not
9682 	 * required. If UFS link is inactive (Hibern8 or OFF state) and device
9683 	 * is in sleep state, put VCCQ & VCCQ2 rails in LPM mode.
9684 	 *
9685 	 * Ignore the error returned by ufshcd_toggle_vreg() as device is anyway
9686 	 * in low power state which would save some power.
9687 	 *
9688 	 * If Write Booster is enabled and the device needs to flush the WB
9689 	 * buffer OR if bkops status is urgent for WB, keep Vcc on.
9690 	 */
9691 	if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba) &&
9692 	    !hba->dev_info.is_lu_power_on_wp) {
9693 		ufshcd_setup_vreg(hba, false);
9694 		vcc_off = true;
9695 	} else if (!ufshcd_is_ufs_dev_active(hba)) {
9696 		ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, false);
9697 		vcc_off = true;
9698 		if (ufshcd_is_link_hibern8(hba) || ufshcd_is_link_off(hba)) {
9699 			ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq);
9700 			ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq2);
9701 		}
9702 	}
9703 
9704 	/*
9705 	 * Some UFS devices require delay after VCC power rail is turned-off.
9706 	 */
9707 	if (vcc_off && hba->vreg_info.vcc &&
9708 		hba->dev_quirks & UFS_DEVICE_QUIRK_DELAY_AFTER_LPM)
9709 		usleep_range(5000, 5100);
9710 }
9711 
9712 #ifdef CONFIG_PM
9713 static int ufshcd_vreg_set_hpm(struct ufs_hba *hba)
9714 {
9715 	int ret = 0;
9716 
9717 	if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba) &&
9718 	    !hba->dev_info.is_lu_power_on_wp) {
9719 		ret = ufshcd_setup_vreg(hba, true);
9720 	} else if (!ufshcd_is_ufs_dev_active(hba)) {
9721 		if (!ufshcd_is_link_active(hba)) {
9722 			ret = ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq);
9723 			if (ret)
9724 				goto vcc_disable;
9725 			ret = ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq2);
9726 			if (ret)
9727 				goto vccq_lpm;
9728 		}
9729 		ret = ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, true);
9730 	}
9731 	goto out;
9732 
9733 vccq_lpm:
9734 	ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq);
9735 vcc_disable:
9736 	ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, false);
9737 out:
9738 	return ret;
9739 }
9740 #endif /* CONFIG_PM */
9741 
9742 static void ufshcd_hba_vreg_set_lpm(struct ufs_hba *hba)
9743 {
9744 	if (ufshcd_is_link_off(hba) || ufshcd_can_aggressive_pc(hba))
9745 		ufshcd_setup_hba_vreg(hba, false);
9746 }
9747 
9748 static void ufshcd_hba_vreg_set_hpm(struct ufs_hba *hba)
9749 {
9750 	if (ufshcd_is_link_off(hba) || ufshcd_can_aggressive_pc(hba))
9751 		ufshcd_setup_hba_vreg(hba, true);
9752 }
9753 
9754 static int __ufshcd_wl_suspend(struct ufs_hba *hba, enum ufs_pm_op pm_op)
9755 {
9756 	int ret = 0;
9757 	bool check_for_bkops;
9758 	enum ufs_pm_level pm_lvl;
9759 	enum ufs_dev_pwr_mode req_dev_pwr_mode;
9760 	enum uic_link_state req_link_state;
9761 
9762 	hba->pm_op_in_progress = true;
9763 	if (pm_op != UFS_SHUTDOWN_PM) {
9764 		pm_lvl = pm_op == UFS_RUNTIME_PM ?
9765 			 hba->rpm_lvl : hba->spm_lvl;
9766 		req_dev_pwr_mode = ufs_get_pm_lvl_to_dev_pwr_mode(pm_lvl);
9767 		req_link_state = ufs_get_pm_lvl_to_link_pwr_state(pm_lvl);
9768 	} else {
9769 		req_dev_pwr_mode = UFS_POWERDOWN_PWR_MODE;
9770 		req_link_state = UIC_LINK_OFF_STATE;
9771 	}
9772 
9773 	/*
9774 	 * If we can't transition into any of the low power modes
9775 	 * just gate the clocks.
9776 	 */
9777 	ufshcd_hold(hba);
9778 	hba->clk_gating.is_suspended = true;
9779 
9780 	if (ufshcd_is_clkscaling_supported(hba))
9781 		ufshcd_clk_scaling_suspend(hba, true);
9782 
9783 	if (req_dev_pwr_mode == UFS_ACTIVE_PWR_MODE &&
9784 			req_link_state == UIC_LINK_ACTIVE_STATE) {
9785 		goto vops_suspend;
9786 	}
9787 
9788 	if ((req_dev_pwr_mode == hba->curr_dev_pwr_mode) &&
9789 	    (req_link_state == hba->uic_link_state))
9790 		goto enable_scaling;
9791 
9792 	/* UFS device & link must be active before we enter in this function */
9793 	if (!ufshcd_is_ufs_dev_active(hba) || !ufshcd_is_link_active(hba)) {
9794 		ret = -EINVAL;
9795 		goto enable_scaling;
9796 	}
9797 
9798 	if (pm_op == UFS_RUNTIME_PM) {
9799 		if (ufshcd_can_autobkops_during_suspend(hba)) {
9800 			/*
9801 			 * The device is idle with no requests in the queue,
9802 			 * allow background operations if bkops status shows
9803 			 * that performance might be impacted.
9804 			 */
9805 			ret = ufshcd_urgent_bkops(hba);
9806 			if (ret) {
9807 				/*
9808 				 * If return err in suspend flow, IO will hang.
9809 				 * Trigger error handler and break suspend for
9810 				 * error recovery.
9811 				 */
9812 				ufshcd_force_error_recovery(hba);
9813 				ret = -EBUSY;
9814 				goto enable_scaling;
9815 			}
9816 		} else {
9817 			/* make sure that auto bkops is disabled */
9818 			ufshcd_disable_auto_bkops(hba);
9819 		}
9820 		/*
9821 		 * If device needs to do BKOP or WB buffer flush during
9822 		 * Hibern8, keep device power mode as "active power mode"
9823 		 * and VCC supply.
9824 		 */
9825 		hba->dev_info.b_rpm_dev_flush_capable =
9826 			hba->auto_bkops_enabled ||
9827 			(((req_link_state == UIC_LINK_HIBERN8_STATE) ||
9828 			((req_link_state == UIC_LINK_ACTIVE_STATE) &&
9829 			ufshcd_is_auto_hibern8_enabled(hba))) &&
9830 			ufshcd_wb_need_flush(hba));
9831 	}
9832 
9833 	flush_work(&hba->eeh_work);
9834 
9835 	ret = ufshcd_vops_suspend(hba, pm_op, PRE_CHANGE);
9836 	if (ret)
9837 		goto enable_scaling;
9838 
9839 	if (req_dev_pwr_mode != hba->curr_dev_pwr_mode) {
9840 		if (pm_op != UFS_RUNTIME_PM)
9841 			/* ensure that bkops is disabled */
9842 			ufshcd_disable_auto_bkops(hba);
9843 
9844 		if (!hba->dev_info.b_rpm_dev_flush_capable) {
9845 			ret = ufshcd_set_dev_pwr_mode(hba, req_dev_pwr_mode);
9846 			if (ret && pm_op != UFS_SHUTDOWN_PM) {
9847 				/*
9848 				 * If return err in suspend flow, IO will hang.
9849 				 * Trigger error handler and break suspend for
9850 				 * error recovery.
9851 				 */
9852 				ufshcd_force_error_recovery(hba);
9853 				ret = -EBUSY;
9854 			}
9855 			if (ret)
9856 				goto enable_scaling;
9857 		}
9858 	}
9859 
9860 	/*
9861 	 * In the case of DeepSleep, the device is expected to remain powered
9862 	 * with the link off, so do not check for bkops.
9863 	 */
9864 	check_for_bkops = !ufshcd_is_ufs_dev_deepsleep(hba);
9865 	ret = ufshcd_link_state_transition(hba, req_link_state, check_for_bkops);
9866 	if (ret && pm_op != UFS_SHUTDOWN_PM) {
9867 		/*
9868 		 * If return err in suspend flow, IO will hang.
9869 		 * Trigger error handler and break suspend for
9870 		 * error recovery.
9871 		 */
9872 		ufshcd_force_error_recovery(hba);
9873 		ret = -EBUSY;
9874 	}
9875 	if (ret)
9876 		goto set_dev_active;
9877 
9878 vops_suspend:
9879 	/*
9880 	 * Call vendor specific suspend callback. As these callbacks may access
9881 	 * vendor specific host controller register space call them before the
9882 	 * host clocks are ON.
9883 	 */
9884 	ret = ufshcd_vops_suspend(hba, pm_op, POST_CHANGE);
9885 	if (ret)
9886 		goto set_link_active;
9887 
9888 	cancel_delayed_work_sync(&hba->ufs_rtc_update_work);
9889 	goto out;
9890 
9891 set_link_active:
9892 	/*
9893 	 * Device hardware reset is required to exit DeepSleep. Also, for
9894 	 * DeepSleep, the link is off so host reset and restore will be done
9895 	 * further below.
9896 	 */
9897 	if (ufshcd_is_ufs_dev_deepsleep(hba)) {
9898 		ufshcd_device_reset(hba);
9899 		WARN_ON(!ufshcd_is_link_off(hba));
9900 	}
9901 	if (ufshcd_is_link_hibern8(hba) && !ufshcd_uic_hibern8_exit(hba))
9902 		ufshcd_set_link_active(hba);
9903 	else if (ufshcd_is_link_off(hba))
9904 		ufshcd_host_reset_and_restore(hba);
9905 set_dev_active:
9906 	/* Can also get here needing to exit DeepSleep */
9907 	if (ufshcd_is_ufs_dev_deepsleep(hba)) {
9908 		ufshcd_device_reset(hba);
9909 		ufshcd_host_reset_and_restore(hba);
9910 	}
9911 	if (!ufshcd_set_dev_pwr_mode(hba, UFS_ACTIVE_PWR_MODE))
9912 		ufshcd_disable_auto_bkops(hba);
9913 enable_scaling:
9914 	if (ufshcd_is_clkscaling_supported(hba))
9915 		ufshcd_clk_scaling_suspend(hba, false);
9916 
9917 	hba->dev_info.b_rpm_dev_flush_capable = false;
9918 out:
9919 	if (hba->dev_info.b_rpm_dev_flush_capable) {
9920 		schedule_delayed_work(&hba->rpm_dev_flush_recheck_work,
9921 			msecs_to_jiffies(RPM_DEV_FLUSH_RECHECK_WORK_DELAY_MS));
9922 	}
9923 
9924 	if (ret) {
9925 		ufshcd_update_evt_hist(hba, UFS_EVT_WL_SUSP_ERR, (u32)ret);
9926 		hba->clk_gating.is_suspended = false;
9927 		ufshcd_release(hba);
9928 	}
9929 	hba->pm_op_in_progress = false;
9930 	return ret;
9931 }
9932 
9933 #ifdef CONFIG_PM
9934 static int __ufshcd_wl_resume(struct ufs_hba *hba, enum ufs_pm_op pm_op)
9935 {
9936 	int ret;
9937 	enum uic_link_state old_link_state = hba->uic_link_state;
9938 
9939 	hba->pm_op_in_progress = true;
9940 
9941 	/*
9942 	 * Call vendor specific resume callback. As these callbacks may access
9943 	 * vendor specific host controller register space call them when the
9944 	 * host clocks are ON.
9945 	 */
9946 	ret = ufshcd_vops_resume(hba, pm_op);
9947 	if (ret)
9948 		goto out;
9949 
9950 	/* For DeepSleep, the only supported option is to have the link off */
9951 	WARN_ON(ufshcd_is_ufs_dev_deepsleep(hba) && !ufshcd_is_link_off(hba));
9952 
9953 	if (ufshcd_is_link_hibern8(hba)) {
9954 		ret = ufshcd_uic_hibern8_exit(hba);
9955 		if (!ret) {
9956 			ufshcd_set_link_active(hba);
9957 		} else {
9958 			dev_err(hba->dev, "%s: hibern8 exit failed %d\n",
9959 					__func__, ret);
9960 			goto vendor_suspend;
9961 		}
9962 	} else if (ufshcd_is_link_off(hba)) {
9963 		/*
9964 		 * A full initialization of the host and the device is
9965 		 * required since the link was put to off during suspend.
9966 		 * Note, in the case of DeepSleep, the device will exit
9967 		 * DeepSleep due to device reset.
9968 		 */
9969 		ret = ufshcd_reset_and_restore(hba);
9970 		/*
9971 		 * ufshcd_reset_and_restore() should have already
9972 		 * set the link state as active
9973 		 */
9974 		if (ret || !ufshcd_is_link_active(hba))
9975 			goto vendor_suspend;
9976 	}
9977 
9978 	if (!ufshcd_is_ufs_dev_active(hba)) {
9979 		ret = ufshcd_set_dev_pwr_mode(hba, UFS_ACTIVE_PWR_MODE);
9980 		if (ret)
9981 			goto set_old_link_state;
9982 		ufshcd_set_timestamp_attr(hba);
9983 		schedule_delayed_work(&hba->ufs_rtc_update_work,
9984 				      msecs_to_jiffies(UFS_RTC_UPDATE_INTERVAL_MS));
9985 	}
9986 
9987 	if (ufshcd_keep_autobkops_enabled_except_suspend(hba))
9988 		ufshcd_enable_auto_bkops(hba);
9989 	else
9990 		/*
9991 		 * If BKOPs operations are urgently needed at this moment then
9992 		 * keep auto-bkops enabled or else disable it.
9993 		 */
9994 		ufshcd_urgent_bkops(hba);
9995 
9996 	if (hba->ee_usr_mask)
9997 		ufshcd_write_ee_control(hba);
9998 
9999 	if (ufshcd_is_clkscaling_supported(hba))
10000 		ufshcd_clk_scaling_suspend(hba, false);
10001 
10002 	if (hba->dev_info.b_rpm_dev_flush_capable) {
10003 		hba->dev_info.b_rpm_dev_flush_capable = false;
10004 		cancel_delayed_work(&hba->rpm_dev_flush_recheck_work);
10005 	}
10006 
10007 	ufshcd_configure_auto_hibern8(hba);
10008 
10009 	goto out;
10010 
10011 set_old_link_state:
10012 	ufshcd_link_state_transition(hba, old_link_state, 0);
10013 vendor_suspend:
10014 	ufshcd_vops_suspend(hba, pm_op, PRE_CHANGE);
10015 	ufshcd_vops_suspend(hba, pm_op, POST_CHANGE);
10016 out:
10017 	if (ret)
10018 		ufshcd_update_evt_hist(hba, UFS_EVT_WL_RES_ERR, (u32)ret);
10019 	hba->clk_gating.is_suspended = false;
10020 	ufshcd_release(hba);
10021 	hba->pm_op_in_progress = false;
10022 	return ret;
10023 }
10024 
10025 static int ufshcd_wl_runtime_suspend(struct device *dev)
10026 {
10027 	struct scsi_device *sdev = to_scsi_device(dev);
10028 	struct ufs_hba *hba;
10029 	int ret;
10030 	ktime_t start = ktime_get();
10031 
10032 	hba = shost_priv(sdev->host);
10033 
10034 	ret = __ufshcd_wl_suspend(hba, UFS_RUNTIME_PM);
10035 	if (ret)
10036 		dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
10037 
10038 	trace_ufshcd_wl_runtime_suspend(dev_name(dev), ret,
10039 		ktime_to_us(ktime_sub(ktime_get(), start)),
10040 		hba->curr_dev_pwr_mode, hba->uic_link_state);
10041 
10042 	return ret;
10043 }
10044 
10045 static int ufshcd_wl_runtime_resume(struct device *dev)
10046 {
10047 	struct scsi_device *sdev = to_scsi_device(dev);
10048 	struct ufs_hba *hba;
10049 	int ret = 0;
10050 	ktime_t start = ktime_get();
10051 
10052 	hba = shost_priv(sdev->host);
10053 
10054 	ret = __ufshcd_wl_resume(hba, UFS_RUNTIME_PM);
10055 	if (ret)
10056 		dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
10057 
10058 	trace_ufshcd_wl_runtime_resume(dev_name(dev), ret,
10059 		ktime_to_us(ktime_sub(ktime_get(), start)),
10060 		hba->curr_dev_pwr_mode, hba->uic_link_state);
10061 
10062 	return ret;
10063 }
10064 #endif
10065 
10066 #ifdef CONFIG_PM_SLEEP
10067 static int ufshcd_wl_suspend(struct device *dev)
10068 {
10069 	struct scsi_device *sdev = to_scsi_device(dev);
10070 	struct ufs_hba *hba;
10071 	int ret = 0;
10072 	ktime_t start = ktime_get();
10073 
10074 	hba = shost_priv(sdev->host);
10075 	down(&hba->host_sem);
10076 	hba->system_suspending = true;
10077 
10078 	if (pm_runtime_suspended(dev))
10079 		goto out;
10080 
10081 	ret = __ufshcd_wl_suspend(hba, UFS_SYSTEM_PM);
10082 	if (ret) {
10083 		dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__,  ret);
10084 		up(&hba->host_sem);
10085 	}
10086 
10087 out:
10088 	if (!ret)
10089 		hba->is_sys_suspended = true;
10090 	trace_ufshcd_wl_suspend(dev_name(dev), ret,
10091 		ktime_to_us(ktime_sub(ktime_get(), start)),
10092 		hba->curr_dev_pwr_mode, hba->uic_link_state);
10093 
10094 	return ret;
10095 }
10096 
10097 static int ufshcd_wl_resume(struct device *dev)
10098 {
10099 	struct scsi_device *sdev = to_scsi_device(dev);
10100 	struct ufs_hba *hba;
10101 	int ret = 0;
10102 	ktime_t start = ktime_get();
10103 
10104 	hba = shost_priv(sdev->host);
10105 
10106 	if (pm_runtime_suspended(dev))
10107 		goto out;
10108 
10109 	ret = __ufshcd_wl_resume(hba, UFS_SYSTEM_PM);
10110 	if (ret)
10111 		dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
10112 out:
10113 	trace_ufshcd_wl_resume(dev_name(dev), ret,
10114 		ktime_to_us(ktime_sub(ktime_get(), start)),
10115 		hba->curr_dev_pwr_mode, hba->uic_link_state);
10116 	if (!ret)
10117 		hba->is_sys_suspended = false;
10118 	hba->system_suspending = false;
10119 	up(&hba->host_sem);
10120 	return ret;
10121 }
10122 #endif
10123 
10124 /**
10125  * ufshcd_suspend - helper function for suspend operations
10126  * @hba: per adapter instance
10127  *
10128  * This function will put disable irqs, turn off clocks
10129  * and set vreg and hba-vreg in lpm mode.
10130  *
10131  * Return: 0 upon success; < 0 upon failure.
10132  */
10133 static int ufshcd_suspend(struct ufs_hba *hba)
10134 {
10135 	int ret;
10136 
10137 	if (!hba->is_powered)
10138 		return 0;
10139 	/*
10140 	 * Disable the host irq as host controller as there won't be any
10141 	 * host controller transaction expected till resume.
10142 	 */
10143 	ufshcd_disable_irq(hba);
10144 	ret = ufshcd_setup_clocks(hba, false);
10145 	if (ret) {
10146 		ufshcd_enable_irq(hba);
10147 		return ret;
10148 	}
10149 	if (ufshcd_is_clkgating_allowed(hba)) {
10150 		hba->clk_gating.state = CLKS_OFF;
10151 		trace_ufshcd_clk_gating(dev_name(hba->dev),
10152 					hba->clk_gating.state);
10153 	}
10154 
10155 	ufshcd_vreg_set_lpm(hba);
10156 	/* Put the host controller in low power mode if possible */
10157 	ufshcd_hba_vreg_set_lpm(hba);
10158 	ufshcd_pm_qos_update(hba, false);
10159 	return ret;
10160 }
10161 
10162 #ifdef CONFIG_PM
10163 /**
10164  * ufshcd_resume - helper function for resume operations
10165  * @hba: per adapter instance
10166  *
10167  * This function basically turns on the regulators, clocks and
10168  * irqs of the hba.
10169  *
10170  * Return: 0 for success and non-zero for failure.
10171  */
10172 static int ufshcd_resume(struct ufs_hba *hba)
10173 {
10174 	int ret;
10175 
10176 	if (!hba->is_powered)
10177 		return 0;
10178 
10179 	ufshcd_hba_vreg_set_hpm(hba);
10180 	ret = ufshcd_vreg_set_hpm(hba);
10181 	if (ret)
10182 		goto out;
10183 
10184 	/* Make sure clocks are enabled before accessing controller */
10185 	ret = ufshcd_setup_clocks(hba, true);
10186 	if (ret)
10187 		goto disable_vreg;
10188 
10189 	/* enable the host irq as host controller would be active soon */
10190 	ufshcd_enable_irq(hba);
10191 
10192 	goto out;
10193 
10194 disable_vreg:
10195 	ufshcd_vreg_set_lpm(hba);
10196 out:
10197 	if (ret)
10198 		ufshcd_update_evt_hist(hba, UFS_EVT_RESUME_ERR, (u32)ret);
10199 	return ret;
10200 }
10201 #endif /* CONFIG_PM */
10202 
10203 #ifdef CONFIG_PM_SLEEP
10204 /**
10205  * ufshcd_system_suspend - system suspend callback
10206  * @dev: Device associated with the UFS controller.
10207  *
10208  * Executed before putting the system into a sleep state in which the contents
10209  * of main memory are preserved.
10210  *
10211  * Return: 0 for success and non-zero for failure.
10212  */
10213 int ufshcd_system_suspend(struct device *dev)
10214 {
10215 	struct ufs_hba *hba = dev_get_drvdata(dev);
10216 	int ret = 0;
10217 	ktime_t start = ktime_get();
10218 
10219 	if (pm_runtime_suspended(hba->dev))
10220 		goto out;
10221 
10222 	ret = ufshcd_suspend(hba);
10223 out:
10224 	trace_ufshcd_system_suspend(dev_name(hba->dev), ret,
10225 		ktime_to_us(ktime_sub(ktime_get(), start)),
10226 		hba->curr_dev_pwr_mode, hba->uic_link_state);
10227 	return ret;
10228 }
10229 EXPORT_SYMBOL(ufshcd_system_suspend);
10230 
10231 /**
10232  * ufshcd_system_resume - system resume callback
10233  * @dev: Device associated with the UFS controller.
10234  *
10235  * Executed after waking the system up from a sleep state in which the contents
10236  * of main memory were preserved.
10237  *
10238  * Return: 0 for success and non-zero for failure.
10239  */
10240 int ufshcd_system_resume(struct device *dev)
10241 {
10242 	struct ufs_hba *hba = dev_get_drvdata(dev);
10243 	ktime_t start = ktime_get();
10244 	int ret = 0;
10245 
10246 	if (pm_runtime_suspended(hba->dev))
10247 		goto out;
10248 
10249 	ret = ufshcd_resume(hba);
10250 
10251 out:
10252 	trace_ufshcd_system_resume(dev_name(hba->dev), ret,
10253 		ktime_to_us(ktime_sub(ktime_get(), start)),
10254 		hba->curr_dev_pwr_mode, hba->uic_link_state);
10255 
10256 	return ret;
10257 }
10258 EXPORT_SYMBOL(ufshcd_system_resume);
10259 #endif /* CONFIG_PM_SLEEP */
10260 
10261 #ifdef CONFIG_PM
10262 /**
10263  * ufshcd_runtime_suspend - runtime suspend callback
10264  * @dev: Device associated with the UFS controller.
10265  *
10266  * Check the description of ufshcd_suspend() function for more details.
10267  *
10268  * Return: 0 for success and non-zero for failure.
10269  */
10270 int ufshcd_runtime_suspend(struct device *dev)
10271 {
10272 	struct ufs_hba *hba = dev_get_drvdata(dev);
10273 	int ret;
10274 	ktime_t start = ktime_get();
10275 
10276 	ret = ufshcd_suspend(hba);
10277 
10278 	trace_ufshcd_runtime_suspend(dev_name(hba->dev), ret,
10279 		ktime_to_us(ktime_sub(ktime_get(), start)),
10280 		hba->curr_dev_pwr_mode, hba->uic_link_state);
10281 	return ret;
10282 }
10283 EXPORT_SYMBOL(ufshcd_runtime_suspend);
10284 
10285 /**
10286  * ufshcd_runtime_resume - runtime resume routine
10287  * @dev: Device associated with the UFS controller.
10288  *
10289  * This function basically brings controller
10290  * to active state. Following operations are done in this function:
10291  *
10292  * 1. Turn on all the controller related clocks
10293  * 2. Turn ON VCC rail
10294  *
10295  * Return: 0 upon success; < 0 upon failure.
10296  */
10297 int ufshcd_runtime_resume(struct device *dev)
10298 {
10299 	struct ufs_hba *hba = dev_get_drvdata(dev);
10300 	int ret;
10301 	ktime_t start = ktime_get();
10302 
10303 	ret = ufshcd_resume(hba);
10304 
10305 	trace_ufshcd_runtime_resume(dev_name(hba->dev), ret,
10306 		ktime_to_us(ktime_sub(ktime_get(), start)),
10307 		hba->curr_dev_pwr_mode, hba->uic_link_state);
10308 	return ret;
10309 }
10310 EXPORT_SYMBOL(ufshcd_runtime_resume);
10311 #endif /* CONFIG_PM */
10312 
10313 static void ufshcd_wl_shutdown(struct device *dev)
10314 {
10315 	struct scsi_device *sdev = to_scsi_device(dev);
10316 	struct ufs_hba *hba = shost_priv(sdev->host);
10317 
10318 	down(&hba->host_sem);
10319 	hba->shutting_down = true;
10320 	up(&hba->host_sem);
10321 
10322 	/* Turn on everything while shutting down */
10323 	ufshcd_rpm_get_sync(hba);
10324 	scsi_device_quiesce(sdev);
10325 	shost_for_each_device(sdev, hba->host) {
10326 		if (sdev == hba->ufs_device_wlun)
10327 			continue;
10328 		scsi_device_quiesce(sdev);
10329 	}
10330 	__ufshcd_wl_suspend(hba, UFS_SHUTDOWN_PM);
10331 
10332 	/*
10333 	 * Next, turn off the UFS controller and the UFS regulators. Disable
10334 	 * clocks.
10335 	 */
10336 	if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba))
10337 		ufshcd_suspend(hba);
10338 
10339 	hba->is_powered = false;
10340 }
10341 
10342 /**
10343  * ufshcd_remove - de-allocate SCSI host and host memory space
10344  *		data structure memory
10345  * @hba: per adapter instance
10346  */
10347 void ufshcd_remove(struct ufs_hba *hba)
10348 {
10349 	if (hba->ufs_device_wlun)
10350 		ufshcd_rpm_get_sync(hba);
10351 	ufs_hwmon_remove(hba);
10352 	ufs_bsg_remove(hba);
10353 	ufs_sysfs_remove_nodes(hba->dev);
10354 	blk_mq_destroy_queue(hba->tmf_queue);
10355 	blk_put_queue(hba->tmf_queue);
10356 	blk_mq_free_tag_set(&hba->tmf_tag_set);
10357 	scsi_remove_host(hba->host);
10358 	/* disable interrupts */
10359 	ufshcd_disable_intr(hba, hba->intr_mask);
10360 	ufshcd_hba_stop(hba);
10361 	ufshcd_hba_exit(hba);
10362 }
10363 EXPORT_SYMBOL_GPL(ufshcd_remove);
10364 
10365 #ifdef CONFIG_PM_SLEEP
10366 int ufshcd_system_freeze(struct device *dev)
10367 {
10368 
10369 	return ufshcd_system_suspend(dev);
10370 
10371 }
10372 EXPORT_SYMBOL_GPL(ufshcd_system_freeze);
10373 
10374 int ufshcd_system_restore(struct device *dev)
10375 {
10376 
10377 	struct ufs_hba *hba = dev_get_drvdata(dev);
10378 	int ret;
10379 
10380 	ret = ufshcd_system_resume(dev);
10381 	if (ret)
10382 		return ret;
10383 
10384 	/* Configure UTRL and UTMRL base address registers */
10385 	ufshcd_writel(hba, lower_32_bits(hba->utrdl_dma_addr),
10386 			REG_UTP_TRANSFER_REQ_LIST_BASE_L);
10387 	ufshcd_writel(hba, upper_32_bits(hba->utrdl_dma_addr),
10388 			REG_UTP_TRANSFER_REQ_LIST_BASE_H);
10389 	ufshcd_writel(hba, lower_32_bits(hba->utmrdl_dma_addr),
10390 			REG_UTP_TASK_REQ_LIST_BASE_L);
10391 	ufshcd_writel(hba, upper_32_bits(hba->utmrdl_dma_addr),
10392 			REG_UTP_TASK_REQ_LIST_BASE_H);
10393 	/*
10394 	 * Make sure that UTRL and UTMRL base address registers
10395 	 * are updated with the latest queue addresses. Only after
10396 	 * updating these addresses, we can queue the new commands.
10397 	 */
10398 	mb();
10399 
10400 	/* Resuming from hibernate, assume that link was OFF */
10401 	ufshcd_set_link_off(hba);
10402 
10403 	return 0;
10404 
10405 }
10406 EXPORT_SYMBOL_GPL(ufshcd_system_restore);
10407 
10408 int ufshcd_system_thaw(struct device *dev)
10409 {
10410 	return ufshcd_system_resume(dev);
10411 }
10412 EXPORT_SYMBOL_GPL(ufshcd_system_thaw);
10413 #endif /* CONFIG_PM_SLEEP  */
10414 
10415 /**
10416  * ufshcd_dealloc_host - deallocate Host Bus Adapter (HBA)
10417  * @hba: pointer to Host Bus Adapter (HBA)
10418  */
10419 void ufshcd_dealloc_host(struct ufs_hba *hba)
10420 {
10421 	scsi_host_put(hba->host);
10422 }
10423 EXPORT_SYMBOL_GPL(ufshcd_dealloc_host);
10424 
10425 /**
10426  * ufshcd_set_dma_mask - Set dma mask based on the controller
10427  *			 addressing capability
10428  * @hba: per adapter instance
10429  *
10430  * Return: 0 for success, non-zero for failure.
10431  */
10432 static int ufshcd_set_dma_mask(struct ufs_hba *hba)
10433 {
10434 	if (hba->capabilities & MASK_64_ADDRESSING_SUPPORT) {
10435 		if (!dma_set_mask_and_coherent(hba->dev, DMA_BIT_MASK(64)))
10436 			return 0;
10437 	}
10438 	return dma_set_mask_and_coherent(hba->dev, DMA_BIT_MASK(32));
10439 }
10440 
10441 /**
10442  * ufshcd_alloc_host - allocate Host Bus Adapter (HBA)
10443  * @dev: pointer to device handle
10444  * @hba_handle: driver private handle
10445  *
10446  * Return: 0 on success, non-zero value on failure.
10447  */
10448 int ufshcd_alloc_host(struct device *dev, struct ufs_hba **hba_handle)
10449 {
10450 	struct Scsi_Host *host;
10451 	struct ufs_hba *hba;
10452 	int err = 0;
10453 
10454 	if (!dev) {
10455 		dev_err(dev,
10456 		"Invalid memory reference for dev is NULL\n");
10457 		err = -ENODEV;
10458 		goto out_error;
10459 	}
10460 
10461 	host = scsi_host_alloc(&ufshcd_driver_template,
10462 				sizeof(struct ufs_hba));
10463 	if (!host) {
10464 		dev_err(dev, "scsi_host_alloc failed\n");
10465 		err = -ENOMEM;
10466 		goto out_error;
10467 	}
10468 	host->nr_maps = HCTX_TYPE_POLL + 1;
10469 	hba = shost_priv(host);
10470 	hba->host = host;
10471 	hba->dev = dev;
10472 	hba->dev_ref_clk_freq = REF_CLK_FREQ_INVAL;
10473 	hba->nop_out_timeout = NOP_OUT_TIMEOUT;
10474 	ufshcd_set_sg_entry_size(hba, sizeof(struct ufshcd_sg_entry));
10475 	INIT_LIST_HEAD(&hba->clk_list_head);
10476 	spin_lock_init(&hba->outstanding_lock);
10477 
10478 	*hba_handle = hba;
10479 
10480 out_error:
10481 	return err;
10482 }
10483 EXPORT_SYMBOL(ufshcd_alloc_host);
10484 
10485 /* This function exists because blk_mq_alloc_tag_set() requires this. */
10486 static blk_status_t ufshcd_queue_tmf(struct blk_mq_hw_ctx *hctx,
10487 				     const struct blk_mq_queue_data *qd)
10488 {
10489 	WARN_ON_ONCE(true);
10490 	return BLK_STS_NOTSUPP;
10491 }
10492 
10493 static const struct blk_mq_ops ufshcd_tmf_ops = {
10494 	.queue_rq = ufshcd_queue_tmf,
10495 };
10496 
10497 /**
10498  * ufshcd_init - Driver initialization routine
10499  * @hba: per-adapter instance
10500  * @mmio_base: base register address
10501  * @irq: Interrupt line of device
10502  *
10503  * Return: 0 on success, non-zero value on failure.
10504  */
10505 int ufshcd_init(struct ufs_hba *hba, void __iomem *mmio_base, unsigned int irq)
10506 {
10507 	int err;
10508 	struct Scsi_Host *host = hba->host;
10509 	struct device *dev = hba->dev;
10510 	char eh_wq_name[sizeof("ufs_eh_wq_00")];
10511 
10512 	/*
10513 	 * dev_set_drvdata() must be called before any callbacks are registered
10514 	 * that use dev_get_drvdata() (frequency scaling, clock scaling, hwmon,
10515 	 * sysfs).
10516 	 */
10517 	dev_set_drvdata(dev, hba);
10518 
10519 	if (!mmio_base) {
10520 		dev_err(hba->dev,
10521 		"Invalid memory reference for mmio_base is NULL\n");
10522 		err = -ENODEV;
10523 		goto out_error;
10524 	}
10525 
10526 	hba->mmio_base = mmio_base;
10527 	hba->irq = irq;
10528 	hba->vps = &ufs_hba_vps;
10529 
10530 	err = ufshcd_hba_init(hba);
10531 	if (err)
10532 		goto out_error;
10533 
10534 	/* Read capabilities registers */
10535 	err = ufshcd_hba_capabilities(hba);
10536 	if (err)
10537 		goto out_disable;
10538 
10539 	/* Get UFS version supported by the controller */
10540 	hba->ufs_version = ufshcd_get_ufs_version(hba);
10541 
10542 	/* Get Interrupt bit mask per version */
10543 	hba->intr_mask = ufshcd_get_intr_mask(hba);
10544 
10545 	err = ufshcd_set_dma_mask(hba);
10546 	if (err) {
10547 		dev_err(hba->dev, "set dma mask failed\n");
10548 		goto out_disable;
10549 	}
10550 
10551 	/* Allocate memory for host memory space */
10552 	err = ufshcd_memory_alloc(hba);
10553 	if (err) {
10554 		dev_err(hba->dev, "Memory allocation failed\n");
10555 		goto out_disable;
10556 	}
10557 
10558 	/* Configure LRB */
10559 	ufshcd_host_memory_configure(hba);
10560 
10561 	host->can_queue = hba->nutrs - UFSHCD_NUM_RESERVED;
10562 	host->cmd_per_lun = hba->nutrs - UFSHCD_NUM_RESERVED;
10563 	host->max_id = UFSHCD_MAX_ID;
10564 	host->max_lun = UFS_MAX_LUNS;
10565 	host->max_channel = UFSHCD_MAX_CHANNEL;
10566 	host->unique_id = host->host_no;
10567 	host->max_cmd_len = UFS_CDB_SIZE;
10568 	host->queuecommand_may_block = !!(hba->caps & UFSHCD_CAP_CLK_GATING);
10569 
10570 	/* Use default RPM delay if host not set */
10571 	if (host->rpm_autosuspend_delay == 0)
10572 		host->rpm_autosuspend_delay = RPM_AUTOSUSPEND_DELAY_MS;
10573 
10574 	hba->max_pwr_info.is_valid = false;
10575 
10576 	/* Initialize work queues */
10577 	snprintf(eh_wq_name, sizeof(eh_wq_name), "ufs_eh_wq_%d",
10578 		 hba->host->host_no);
10579 	hba->eh_wq = create_singlethread_workqueue(eh_wq_name);
10580 	if (!hba->eh_wq) {
10581 		dev_err(hba->dev, "%s: failed to create eh workqueue\n",
10582 			__func__);
10583 		err = -ENOMEM;
10584 		goto out_disable;
10585 	}
10586 	INIT_WORK(&hba->eh_work, ufshcd_err_handler);
10587 	INIT_WORK(&hba->eeh_work, ufshcd_exception_event_handler);
10588 
10589 	sema_init(&hba->host_sem, 1);
10590 
10591 	/* Initialize UIC command mutex */
10592 	mutex_init(&hba->uic_cmd_mutex);
10593 
10594 	/* Initialize mutex for device management commands */
10595 	mutex_init(&hba->dev_cmd.lock);
10596 
10597 	/* Initialize mutex for exception event control */
10598 	mutex_init(&hba->ee_ctrl_mutex);
10599 
10600 	mutex_init(&hba->wb_mutex);
10601 	init_rwsem(&hba->clk_scaling_lock);
10602 
10603 	ufshcd_init_clk_gating(hba);
10604 
10605 	ufshcd_init_clk_scaling(hba);
10606 
10607 	/*
10608 	 * In order to avoid any spurious interrupt immediately after
10609 	 * registering UFS controller interrupt handler, clear any pending UFS
10610 	 * interrupt status and disable all the UFS interrupts.
10611 	 */
10612 	ufshcd_writel(hba, ufshcd_readl(hba, REG_INTERRUPT_STATUS),
10613 		      REG_INTERRUPT_STATUS);
10614 	ufshcd_writel(hba, 0, REG_INTERRUPT_ENABLE);
10615 	/*
10616 	 * Make sure that UFS interrupts are disabled and any pending interrupt
10617 	 * status is cleared before registering UFS interrupt handler.
10618 	 */
10619 	mb();
10620 
10621 	/* IRQ registration */
10622 	err = devm_request_irq(dev, irq, ufshcd_intr, IRQF_SHARED, UFSHCD, hba);
10623 	if (err) {
10624 		dev_err(hba->dev, "request irq failed\n");
10625 		goto out_disable;
10626 	} else {
10627 		hba->is_irq_enabled = true;
10628 	}
10629 
10630 	if (!is_mcq_supported(hba)) {
10631 		err = scsi_add_host(host, hba->dev);
10632 		if (err) {
10633 			dev_err(hba->dev, "scsi_add_host failed\n");
10634 			goto out_disable;
10635 		}
10636 	}
10637 
10638 	hba->tmf_tag_set = (struct blk_mq_tag_set) {
10639 		.nr_hw_queues	= 1,
10640 		.queue_depth	= hba->nutmrs,
10641 		.ops		= &ufshcd_tmf_ops,
10642 		.flags		= BLK_MQ_F_NO_SCHED,
10643 	};
10644 	err = blk_mq_alloc_tag_set(&hba->tmf_tag_set);
10645 	if (err < 0)
10646 		goto out_remove_scsi_host;
10647 	hba->tmf_queue = blk_mq_alloc_queue(&hba->tmf_tag_set, NULL, NULL);
10648 	if (IS_ERR(hba->tmf_queue)) {
10649 		err = PTR_ERR(hba->tmf_queue);
10650 		goto free_tmf_tag_set;
10651 	}
10652 	hba->tmf_rqs = devm_kcalloc(hba->dev, hba->nutmrs,
10653 				    sizeof(*hba->tmf_rqs), GFP_KERNEL);
10654 	if (!hba->tmf_rqs) {
10655 		err = -ENOMEM;
10656 		goto free_tmf_queue;
10657 	}
10658 
10659 	/* Reset the attached device */
10660 	ufshcd_device_reset(hba);
10661 
10662 	ufshcd_init_crypto(hba);
10663 
10664 	/* Host controller enable */
10665 	err = ufshcd_hba_enable(hba);
10666 	if (err) {
10667 		dev_err(hba->dev, "Host controller enable failed\n");
10668 		ufshcd_print_evt_hist(hba);
10669 		ufshcd_print_host_state(hba);
10670 		goto free_tmf_queue;
10671 	}
10672 
10673 	/*
10674 	 * Set the default power management level for runtime and system PM.
10675 	 * Default power saving mode is to keep UFS link in Hibern8 state
10676 	 * and UFS device in sleep state.
10677 	 */
10678 	hba->rpm_lvl = ufs_get_desired_pm_lvl_for_dev_link_state(
10679 						UFS_SLEEP_PWR_MODE,
10680 						UIC_LINK_HIBERN8_STATE);
10681 	hba->spm_lvl = ufs_get_desired_pm_lvl_for_dev_link_state(
10682 						UFS_SLEEP_PWR_MODE,
10683 						UIC_LINK_HIBERN8_STATE);
10684 
10685 	INIT_DELAYED_WORK(&hba->rpm_dev_flush_recheck_work, ufshcd_rpm_dev_flush_recheck_work);
10686 	INIT_DELAYED_WORK(&hba->ufs_rtc_update_work, ufshcd_rtc_work);
10687 
10688 	/* Set the default auto-hiberate idle timer value to 150 ms */
10689 	if (ufshcd_is_auto_hibern8_supported(hba) && !hba->ahit) {
10690 		hba->ahit = FIELD_PREP(UFSHCI_AHIBERN8_TIMER_MASK, 150) |
10691 			    FIELD_PREP(UFSHCI_AHIBERN8_SCALE_MASK, 3);
10692 	}
10693 
10694 	/* Hold auto suspend until async scan completes */
10695 	pm_runtime_get_sync(dev);
10696 	atomic_set(&hba->scsi_block_reqs_cnt, 0);
10697 	/*
10698 	 * We are assuming that device wasn't put in sleep/power-down
10699 	 * state exclusively during the boot stage before kernel.
10700 	 * This assumption helps avoid doing link startup twice during
10701 	 * ufshcd_probe_hba().
10702 	 */
10703 	ufshcd_set_ufs_dev_active(hba);
10704 
10705 	async_schedule(ufshcd_async_scan, hba);
10706 	ufs_sysfs_add_nodes(hba->dev);
10707 
10708 	device_enable_async_suspend(dev);
10709 	ufshcd_pm_qos_init(hba);
10710 	return 0;
10711 
10712 free_tmf_queue:
10713 	blk_mq_destroy_queue(hba->tmf_queue);
10714 	blk_put_queue(hba->tmf_queue);
10715 free_tmf_tag_set:
10716 	blk_mq_free_tag_set(&hba->tmf_tag_set);
10717 out_remove_scsi_host:
10718 	scsi_remove_host(hba->host);
10719 out_disable:
10720 	hba->is_irq_enabled = false;
10721 	ufshcd_hba_exit(hba);
10722 out_error:
10723 	return err;
10724 }
10725 EXPORT_SYMBOL_GPL(ufshcd_init);
10726 
10727 void ufshcd_resume_complete(struct device *dev)
10728 {
10729 	struct ufs_hba *hba = dev_get_drvdata(dev);
10730 
10731 	if (hba->complete_put) {
10732 		ufshcd_rpm_put(hba);
10733 		hba->complete_put = false;
10734 	}
10735 }
10736 EXPORT_SYMBOL_GPL(ufshcd_resume_complete);
10737 
10738 static bool ufshcd_rpm_ok_for_spm(struct ufs_hba *hba)
10739 {
10740 	struct device *dev = &hba->ufs_device_wlun->sdev_gendev;
10741 	enum ufs_dev_pwr_mode dev_pwr_mode;
10742 	enum uic_link_state link_state;
10743 	unsigned long flags;
10744 	bool res;
10745 
10746 	spin_lock_irqsave(&dev->power.lock, flags);
10747 	dev_pwr_mode = ufs_get_pm_lvl_to_dev_pwr_mode(hba->spm_lvl);
10748 	link_state = ufs_get_pm_lvl_to_link_pwr_state(hba->spm_lvl);
10749 	res = pm_runtime_suspended(dev) &&
10750 	      hba->curr_dev_pwr_mode == dev_pwr_mode &&
10751 	      hba->uic_link_state == link_state &&
10752 	      !hba->dev_info.b_rpm_dev_flush_capable;
10753 	spin_unlock_irqrestore(&dev->power.lock, flags);
10754 
10755 	return res;
10756 }
10757 
10758 int __ufshcd_suspend_prepare(struct device *dev, bool rpm_ok_for_spm)
10759 {
10760 	struct ufs_hba *hba = dev_get_drvdata(dev);
10761 	int ret;
10762 
10763 	/*
10764 	 * SCSI assumes that runtime-pm and system-pm for scsi drivers
10765 	 * are same. And it doesn't wake up the device for system-suspend
10766 	 * if it's runtime suspended. But ufs doesn't follow that.
10767 	 * Refer ufshcd_resume_complete()
10768 	 */
10769 	if (hba->ufs_device_wlun) {
10770 		/* Prevent runtime suspend */
10771 		ufshcd_rpm_get_noresume(hba);
10772 		/*
10773 		 * Check if already runtime suspended in same state as system
10774 		 * suspend would be.
10775 		 */
10776 		if (!rpm_ok_for_spm || !ufshcd_rpm_ok_for_spm(hba)) {
10777 			/* RPM state is not ok for SPM, so runtime resume */
10778 			ret = ufshcd_rpm_resume(hba);
10779 			if (ret < 0 && ret != -EACCES) {
10780 				ufshcd_rpm_put(hba);
10781 				return ret;
10782 			}
10783 		}
10784 		hba->complete_put = true;
10785 	}
10786 	return 0;
10787 }
10788 EXPORT_SYMBOL_GPL(__ufshcd_suspend_prepare);
10789 
10790 int ufshcd_suspend_prepare(struct device *dev)
10791 {
10792 	return __ufshcd_suspend_prepare(dev, true);
10793 }
10794 EXPORT_SYMBOL_GPL(ufshcd_suspend_prepare);
10795 
10796 #ifdef CONFIG_PM_SLEEP
10797 static int ufshcd_wl_poweroff(struct device *dev)
10798 {
10799 	struct scsi_device *sdev = to_scsi_device(dev);
10800 	struct ufs_hba *hba = shost_priv(sdev->host);
10801 
10802 	__ufshcd_wl_suspend(hba, UFS_SHUTDOWN_PM);
10803 	return 0;
10804 }
10805 #endif
10806 
10807 static int ufshcd_wl_probe(struct device *dev)
10808 {
10809 	struct scsi_device *sdev = to_scsi_device(dev);
10810 
10811 	if (!is_device_wlun(sdev))
10812 		return -ENODEV;
10813 
10814 	blk_pm_runtime_init(sdev->request_queue, dev);
10815 	pm_runtime_set_autosuspend_delay(dev, 0);
10816 	pm_runtime_allow(dev);
10817 
10818 	return  0;
10819 }
10820 
10821 static int ufshcd_wl_remove(struct device *dev)
10822 {
10823 	pm_runtime_forbid(dev);
10824 	return 0;
10825 }
10826 
10827 static const struct dev_pm_ops ufshcd_wl_pm_ops = {
10828 #ifdef CONFIG_PM_SLEEP
10829 	.suspend = ufshcd_wl_suspend,
10830 	.resume = ufshcd_wl_resume,
10831 	.freeze = ufshcd_wl_suspend,
10832 	.thaw = ufshcd_wl_resume,
10833 	.poweroff = ufshcd_wl_poweroff,
10834 	.restore = ufshcd_wl_resume,
10835 #endif
10836 	SET_RUNTIME_PM_OPS(ufshcd_wl_runtime_suspend, ufshcd_wl_runtime_resume, NULL)
10837 };
10838 
10839 static void ufshcd_check_header_layout(void)
10840 {
10841 	/*
10842 	 * gcc compilers before version 10 cannot do constant-folding for
10843 	 * sub-byte bitfields. Hence skip the layout checks for gcc 9 and
10844 	 * before.
10845 	 */
10846 	if (IS_ENABLED(CONFIG_CC_IS_GCC) && CONFIG_GCC_VERSION < 100000)
10847 		return;
10848 
10849 	BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10850 				.cci = 3})[0] != 3);
10851 
10852 	BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10853 				.ehs_length = 2})[1] != 2);
10854 
10855 	BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10856 				.enable_crypto = 1})[2]
10857 		     != 0x80);
10858 
10859 	BUILD_BUG_ON((((u8 *)&(struct request_desc_header){
10860 					.command_type = 5,
10861 					.data_direction = 3,
10862 					.interrupt = 1,
10863 				})[3]) != ((5 << 4) | (3 << 1) | 1));
10864 
10865 	BUILD_BUG_ON(((__le32 *)&(struct request_desc_header){
10866 				.dunl = cpu_to_le32(0xdeadbeef)})[1] !=
10867 		cpu_to_le32(0xdeadbeef));
10868 
10869 	BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10870 				.ocs = 4})[8] != 4);
10871 
10872 	BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10873 				.cds = 5})[9] != 5);
10874 
10875 	BUILD_BUG_ON(((__le32 *)&(struct request_desc_header){
10876 				.dunu = cpu_to_le32(0xbadcafe)})[3] !=
10877 		cpu_to_le32(0xbadcafe));
10878 
10879 	BUILD_BUG_ON(((u8 *)&(struct utp_upiu_header){
10880 			     .iid = 0xf })[4] != 0xf0);
10881 
10882 	BUILD_BUG_ON(((u8 *)&(struct utp_upiu_header){
10883 			     .command_set_type = 0xf })[4] != 0xf);
10884 }
10885 
10886 /*
10887  * ufs_dev_wlun_template - describes ufs device wlun
10888  * ufs-device wlun - used to send pm commands
10889  * All luns are consumers of ufs-device wlun.
10890  *
10891  * Currently, no sd driver is present for wluns.
10892  * Hence the no specific pm operations are performed.
10893  * With ufs design, SSU should be sent to ufs-device wlun.
10894  * Hence register a scsi driver for ufs wluns only.
10895  */
10896 static struct scsi_driver ufs_dev_wlun_template = {
10897 	.gendrv = {
10898 		.name = "ufs_device_wlun",
10899 		.owner = THIS_MODULE,
10900 		.probe = ufshcd_wl_probe,
10901 		.remove = ufshcd_wl_remove,
10902 		.pm = &ufshcd_wl_pm_ops,
10903 		.shutdown = ufshcd_wl_shutdown,
10904 	},
10905 };
10906 
10907 static int __init ufshcd_core_init(void)
10908 {
10909 	int ret;
10910 
10911 	ufshcd_check_header_layout();
10912 
10913 	ufs_debugfs_init();
10914 
10915 	ret = scsi_register_driver(&ufs_dev_wlun_template.gendrv);
10916 	if (ret)
10917 		ufs_debugfs_exit();
10918 	return ret;
10919 }
10920 
10921 static void __exit ufshcd_core_exit(void)
10922 {
10923 	ufs_debugfs_exit();
10924 	scsi_unregister_driver(&ufs_dev_wlun_template.gendrv);
10925 }
10926 
10927 module_init(ufshcd_core_init);
10928 module_exit(ufshcd_core_exit);
10929 
10930 MODULE_AUTHOR("Santosh Yaragnavi <santosh.sy@samsung.com>");
10931 MODULE_AUTHOR("Vinayak Holikatti <h.vinayak@samsung.com>");
10932 MODULE_DESCRIPTION("Generic UFS host controller driver Core");
10933 MODULE_SOFTDEP("pre: governor_simpleondemand");
10934 MODULE_LICENSE("GPL");
10935