xref: /linux/drivers/ufs/core/ufshcd.c (revision de37677ef17d2a90fe99ea8f492e5c221d5bb627)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Universal Flash Storage Host controller driver Core
4  * Copyright (C) 2011-2013 Samsung India Software Operations
5  * Copyright (c) 2013-2016, The Linux Foundation. All rights reserved.
6  *
7  * Authors:
8  *	Santosh Yaraganavi <santosh.sy@samsung.com>
9  *	Vinayak Holikatti <h.vinayak@samsung.com>
10  */
11 
12 #include <linux/async.h>
13 #include <linux/devfreq.h>
14 #include <linux/nls.h>
15 #include <linux/of.h>
16 #include <linux/bitfield.h>
17 #include <linux/blk-pm.h>
18 #include <linux/blkdev.h>
19 #include <linux/clk.h>
20 #include <linux/delay.h>
21 #include <linux/interrupt.h>
22 #include <linux/module.h>
23 #include <linux/pm_opp.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/sched/clock.h>
26 #include <linux/iopoll.h>
27 #include <scsi/scsi_cmnd.h>
28 #include <scsi/scsi_dbg.h>
29 #include <scsi/scsi_driver.h>
30 #include <scsi/scsi_eh.h>
31 #include "ufshcd-priv.h"
32 #include <ufs/ufs_quirks.h>
33 #include <ufs/unipro.h>
34 #include "ufs-sysfs.h"
35 #include "ufs-debugfs.h"
36 #include "ufs-fault-injection.h"
37 #include "ufs_bsg.h"
38 #include "ufshcd-crypto.h"
39 #include <asm/unaligned.h>
40 
41 #define CREATE_TRACE_POINTS
42 #include <trace/events/ufs.h>
43 
44 #define UFSHCD_ENABLE_INTRS	(UTP_TRANSFER_REQ_COMPL |\
45 				 UTP_TASK_REQ_COMPL |\
46 				 UFSHCD_ERROR_MASK)
47 
48 #define UFSHCD_ENABLE_MCQ_INTRS	(UTP_TASK_REQ_COMPL |\
49 				 UFSHCD_ERROR_MASK |\
50 				 MCQ_CQ_EVENT_STATUS)
51 
52 
53 /* UIC command timeout, unit: ms */
54 #define UIC_CMD_TIMEOUT	500
55 
56 /* NOP OUT retries waiting for NOP IN response */
57 #define NOP_OUT_RETRIES    10
58 /* Timeout after 50 msecs if NOP OUT hangs without response */
59 #define NOP_OUT_TIMEOUT    50 /* msecs */
60 
61 /* Query request retries */
62 #define QUERY_REQ_RETRIES 3
63 /* Query request timeout */
64 #define QUERY_REQ_TIMEOUT 1500 /* 1.5 seconds */
65 
66 /* Advanced RPMB request timeout */
67 #define ADVANCED_RPMB_REQ_TIMEOUT  3000 /* 3 seconds */
68 
69 /* Task management command timeout */
70 #define TM_CMD_TIMEOUT	100 /* msecs */
71 
72 /* maximum number of retries for a general UIC command  */
73 #define UFS_UIC_COMMAND_RETRIES 3
74 
75 /* maximum number of link-startup retries */
76 #define DME_LINKSTARTUP_RETRIES 3
77 
78 /* maximum number of reset retries before giving up */
79 #define MAX_HOST_RESET_RETRIES 5
80 
81 /* Maximum number of error handler retries before giving up */
82 #define MAX_ERR_HANDLER_RETRIES 5
83 
84 /* Expose the flag value from utp_upiu_query.value */
85 #define MASK_QUERY_UPIU_FLAG_LOC 0xFF
86 
87 /* Interrupt aggregation default timeout, unit: 40us */
88 #define INT_AGGR_DEF_TO	0x02
89 
90 /* default delay of autosuspend: 2000 ms */
91 #define RPM_AUTOSUSPEND_DELAY_MS 2000
92 
93 /* Default delay of RPM device flush delayed work */
94 #define RPM_DEV_FLUSH_RECHECK_WORK_DELAY_MS 5000
95 
96 /* Default value of wait time before gating device ref clock */
97 #define UFSHCD_REF_CLK_GATING_WAIT_US 0xFF /* microsecs */
98 
99 /* Polling time to wait for fDeviceInit */
100 #define FDEVICEINIT_COMPL_TIMEOUT 1500 /* millisecs */
101 
102 /* Default RTC update every 10 seconds */
103 #define UFS_RTC_UPDATE_INTERVAL_MS (10 * MSEC_PER_SEC)
104 
105 /* UFSHC 4.0 compliant HC support this mode. */
106 static bool use_mcq_mode = true;
107 
108 static bool is_mcq_supported(struct ufs_hba *hba)
109 {
110 	return hba->mcq_sup && use_mcq_mode;
111 }
112 
113 module_param(use_mcq_mode, bool, 0644);
114 MODULE_PARM_DESC(use_mcq_mode, "Control MCQ mode for controllers starting from UFSHCI 4.0. 1 - enable MCQ, 0 - disable MCQ. MCQ is enabled by default");
115 
116 #define ufshcd_toggle_vreg(_dev, _vreg, _on)				\
117 	({                                                              \
118 		int _ret;                                               \
119 		if (_on)                                                \
120 			_ret = ufshcd_enable_vreg(_dev, _vreg);         \
121 		else                                                    \
122 			_ret = ufshcd_disable_vreg(_dev, _vreg);        \
123 		_ret;                                                   \
124 	})
125 
126 #define ufshcd_hex_dump(prefix_str, buf, len) do {                       \
127 	size_t __len = (len);                                            \
128 	print_hex_dump(KERN_ERR, prefix_str,                             \
129 		       __len > 4 ? DUMP_PREFIX_OFFSET : DUMP_PREFIX_NONE,\
130 		       16, 4, buf, __len, false);                        \
131 } while (0)
132 
133 int ufshcd_dump_regs(struct ufs_hba *hba, size_t offset, size_t len,
134 		     const char *prefix)
135 {
136 	u32 *regs;
137 	size_t pos;
138 
139 	if (offset % 4 != 0 || len % 4 != 0) /* keep readl happy */
140 		return -EINVAL;
141 
142 	regs = kzalloc(len, GFP_ATOMIC);
143 	if (!regs)
144 		return -ENOMEM;
145 
146 	for (pos = 0; pos < len; pos += 4) {
147 		if (offset == 0 &&
148 		    pos >= REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER &&
149 		    pos <= REG_UIC_ERROR_CODE_DME)
150 			continue;
151 		regs[pos / 4] = ufshcd_readl(hba, offset + pos);
152 	}
153 
154 	ufshcd_hex_dump(prefix, regs, len);
155 	kfree(regs);
156 
157 	return 0;
158 }
159 EXPORT_SYMBOL_GPL(ufshcd_dump_regs);
160 
161 enum {
162 	UFSHCD_MAX_CHANNEL	= 0,
163 	UFSHCD_MAX_ID		= 1,
164 	UFSHCD_CMD_PER_LUN	= 32 - UFSHCD_NUM_RESERVED,
165 	UFSHCD_CAN_QUEUE	= 32 - UFSHCD_NUM_RESERVED,
166 };
167 
168 static const char *const ufshcd_state_name[] = {
169 	[UFSHCD_STATE_RESET]			= "reset",
170 	[UFSHCD_STATE_OPERATIONAL]		= "operational",
171 	[UFSHCD_STATE_ERROR]			= "error",
172 	[UFSHCD_STATE_EH_SCHEDULED_FATAL]	= "eh_fatal",
173 	[UFSHCD_STATE_EH_SCHEDULED_NON_FATAL]	= "eh_non_fatal",
174 };
175 
176 /* UFSHCD error handling flags */
177 enum {
178 	UFSHCD_EH_IN_PROGRESS = (1 << 0),
179 };
180 
181 /* UFSHCD UIC layer error flags */
182 enum {
183 	UFSHCD_UIC_DL_PA_INIT_ERROR = (1 << 0), /* Data link layer error */
184 	UFSHCD_UIC_DL_NAC_RECEIVED_ERROR = (1 << 1), /* Data link layer error */
185 	UFSHCD_UIC_DL_TCx_REPLAY_ERROR = (1 << 2), /* Data link layer error */
186 	UFSHCD_UIC_NL_ERROR = (1 << 3), /* Network layer error */
187 	UFSHCD_UIC_TL_ERROR = (1 << 4), /* Transport Layer error */
188 	UFSHCD_UIC_DME_ERROR = (1 << 5), /* DME error */
189 	UFSHCD_UIC_PA_GENERIC_ERROR = (1 << 6), /* Generic PA error */
190 };
191 
192 #define ufshcd_set_eh_in_progress(h) \
193 	((h)->eh_flags |= UFSHCD_EH_IN_PROGRESS)
194 #define ufshcd_eh_in_progress(h) \
195 	((h)->eh_flags & UFSHCD_EH_IN_PROGRESS)
196 #define ufshcd_clear_eh_in_progress(h) \
197 	((h)->eh_flags &= ~UFSHCD_EH_IN_PROGRESS)
198 
199 const struct ufs_pm_lvl_states ufs_pm_lvl_states[] = {
200 	[UFS_PM_LVL_0] = {UFS_ACTIVE_PWR_MODE, UIC_LINK_ACTIVE_STATE},
201 	[UFS_PM_LVL_1] = {UFS_ACTIVE_PWR_MODE, UIC_LINK_HIBERN8_STATE},
202 	[UFS_PM_LVL_2] = {UFS_SLEEP_PWR_MODE, UIC_LINK_ACTIVE_STATE},
203 	[UFS_PM_LVL_3] = {UFS_SLEEP_PWR_MODE, UIC_LINK_HIBERN8_STATE},
204 	[UFS_PM_LVL_4] = {UFS_POWERDOWN_PWR_MODE, UIC_LINK_HIBERN8_STATE},
205 	[UFS_PM_LVL_5] = {UFS_POWERDOWN_PWR_MODE, UIC_LINK_OFF_STATE},
206 	/*
207 	 * For DeepSleep, the link is first put in hibern8 and then off.
208 	 * Leaving the link in hibern8 is not supported.
209 	 */
210 	[UFS_PM_LVL_6] = {UFS_DEEPSLEEP_PWR_MODE, UIC_LINK_OFF_STATE},
211 };
212 
213 static inline enum ufs_dev_pwr_mode
214 ufs_get_pm_lvl_to_dev_pwr_mode(enum ufs_pm_level lvl)
215 {
216 	return ufs_pm_lvl_states[lvl].dev_state;
217 }
218 
219 static inline enum uic_link_state
220 ufs_get_pm_lvl_to_link_pwr_state(enum ufs_pm_level lvl)
221 {
222 	return ufs_pm_lvl_states[lvl].link_state;
223 }
224 
225 static inline enum ufs_pm_level
226 ufs_get_desired_pm_lvl_for_dev_link_state(enum ufs_dev_pwr_mode dev_state,
227 					enum uic_link_state link_state)
228 {
229 	enum ufs_pm_level lvl;
230 
231 	for (lvl = UFS_PM_LVL_0; lvl < UFS_PM_LVL_MAX; lvl++) {
232 		if ((ufs_pm_lvl_states[lvl].dev_state == dev_state) &&
233 			(ufs_pm_lvl_states[lvl].link_state == link_state))
234 			return lvl;
235 	}
236 
237 	/* if no match found, return the level 0 */
238 	return UFS_PM_LVL_0;
239 }
240 
241 static bool ufshcd_is_ufs_dev_busy(struct ufs_hba *hba)
242 {
243 	return (hba->clk_gating.active_reqs || hba->outstanding_reqs || hba->outstanding_tasks ||
244 		hba->active_uic_cmd || hba->uic_async_done);
245 }
246 
247 static const struct ufs_dev_quirk ufs_fixups[] = {
248 	/* UFS cards deviations table */
249 	{ .wmanufacturerid = UFS_VENDOR_MICRON,
250 	  .model = UFS_ANY_MODEL,
251 	  .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM },
252 	{ .wmanufacturerid = UFS_VENDOR_SAMSUNG,
253 	  .model = UFS_ANY_MODEL,
254 	  .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM |
255 		   UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE |
256 		   UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS },
257 	{ .wmanufacturerid = UFS_VENDOR_SKHYNIX,
258 	  .model = UFS_ANY_MODEL,
259 	  .quirk = UFS_DEVICE_QUIRK_HOST_PA_SAVECONFIGTIME },
260 	{ .wmanufacturerid = UFS_VENDOR_SKHYNIX,
261 	  .model = "hB8aL1" /*H28U62301AMR*/,
262 	  .quirk = UFS_DEVICE_QUIRK_HOST_VS_DEBUGSAVECONFIGTIME },
263 	{ .wmanufacturerid = UFS_VENDOR_TOSHIBA,
264 	  .model = UFS_ANY_MODEL,
265 	  .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM },
266 	{ .wmanufacturerid = UFS_VENDOR_TOSHIBA,
267 	  .model = "THGLF2G9C8KBADG",
268 	  .quirk = UFS_DEVICE_QUIRK_PA_TACTIVATE },
269 	{ .wmanufacturerid = UFS_VENDOR_TOSHIBA,
270 	  .model = "THGLF2G9D8KBADG",
271 	  .quirk = UFS_DEVICE_QUIRK_PA_TACTIVATE },
272 	{}
273 };
274 
275 static irqreturn_t ufshcd_tmc_handler(struct ufs_hba *hba);
276 static void ufshcd_async_scan(void *data, async_cookie_t cookie);
277 static int ufshcd_reset_and_restore(struct ufs_hba *hba);
278 static int ufshcd_eh_host_reset_handler(struct scsi_cmnd *cmd);
279 static int ufshcd_clear_tm_cmd(struct ufs_hba *hba, int tag);
280 static void ufshcd_hba_exit(struct ufs_hba *hba);
281 static int ufshcd_probe_hba(struct ufs_hba *hba, bool init_dev_params);
282 static int ufshcd_setup_clocks(struct ufs_hba *hba, bool on);
283 static inline void ufshcd_add_delay_before_dme_cmd(struct ufs_hba *hba);
284 static int ufshcd_host_reset_and_restore(struct ufs_hba *hba);
285 static void ufshcd_resume_clkscaling(struct ufs_hba *hba);
286 static void ufshcd_suspend_clkscaling(struct ufs_hba *hba);
287 static int ufshcd_scale_clks(struct ufs_hba *hba, unsigned long freq,
288 			     bool scale_up);
289 static irqreturn_t ufshcd_intr(int irq, void *__hba);
290 static int ufshcd_change_power_mode(struct ufs_hba *hba,
291 			     struct ufs_pa_layer_attr *pwr_mode);
292 static int ufshcd_setup_hba_vreg(struct ufs_hba *hba, bool on);
293 static int ufshcd_setup_vreg(struct ufs_hba *hba, bool on);
294 static inline int ufshcd_config_vreg_hpm(struct ufs_hba *hba,
295 					 struct ufs_vreg *vreg);
296 static void ufshcd_wb_toggle_buf_flush_during_h8(struct ufs_hba *hba,
297 						 bool enable);
298 static void ufshcd_hba_vreg_set_lpm(struct ufs_hba *hba);
299 static void ufshcd_hba_vreg_set_hpm(struct ufs_hba *hba);
300 
301 void ufshcd_enable_irq(struct ufs_hba *hba)
302 {
303 	if (!hba->is_irq_enabled) {
304 		enable_irq(hba->irq);
305 		hba->is_irq_enabled = true;
306 	}
307 }
308 EXPORT_SYMBOL_GPL(ufshcd_enable_irq);
309 
310 void ufshcd_disable_irq(struct ufs_hba *hba)
311 {
312 	if (hba->is_irq_enabled) {
313 		disable_irq(hba->irq);
314 		hba->is_irq_enabled = false;
315 	}
316 }
317 EXPORT_SYMBOL_GPL(ufshcd_disable_irq);
318 
319 static void ufshcd_configure_wb(struct ufs_hba *hba)
320 {
321 	if (!ufshcd_is_wb_allowed(hba))
322 		return;
323 
324 	ufshcd_wb_toggle(hba, true);
325 
326 	ufshcd_wb_toggle_buf_flush_during_h8(hba, true);
327 
328 	if (ufshcd_is_wb_buf_flush_allowed(hba))
329 		ufshcd_wb_toggle_buf_flush(hba, true);
330 }
331 
332 static void ufshcd_scsi_unblock_requests(struct ufs_hba *hba)
333 {
334 	if (atomic_dec_and_test(&hba->scsi_block_reqs_cnt))
335 		scsi_unblock_requests(hba->host);
336 }
337 
338 static void ufshcd_scsi_block_requests(struct ufs_hba *hba)
339 {
340 	if (atomic_inc_return(&hba->scsi_block_reqs_cnt) == 1)
341 		scsi_block_requests(hba->host);
342 }
343 
344 static void ufshcd_add_cmd_upiu_trace(struct ufs_hba *hba, unsigned int tag,
345 				      enum ufs_trace_str_t str_t)
346 {
347 	struct utp_upiu_req *rq = hba->lrb[tag].ucd_req_ptr;
348 	struct utp_upiu_header *header;
349 
350 	if (!trace_ufshcd_upiu_enabled())
351 		return;
352 
353 	if (str_t == UFS_CMD_SEND)
354 		header = &rq->header;
355 	else
356 		header = &hba->lrb[tag].ucd_rsp_ptr->header;
357 
358 	trace_ufshcd_upiu(dev_name(hba->dev), str_t, header, &rq->sc.cdb,
359 			  UFS_TSF_CDB);
360 }
361 
362 static void ufshcd_add_query_upiu_trace(struct ufs_hba *hba,
363 					enum ufs_trace_str_t str_t,
364 					struct utp_upiu_req *rq_rsp)
365 {
366 	if (!trace_ufshcd_upiu_enabled())
367 		return;
368 
369 	trace_ufshcd_upiu(dev_name(hba->dev), str_t, &rq_rsp->header,
370 			  &rq_rsp->qr, UFS_TSF_OSF);
371 }
372 
373 static void ufshcd_add_tm_upiu_trace(struct ufs_hba *hba, unsigned int tag,
374 				     enum ufs_trace_str_t str_t)
375 {
376 	struct utp_task_req_desc *descp = &hba->utmrdl_base_addr[tag];
377 
378 	if (!trace_ufshcd_upiu_enabled())
379 		return;
380 
381 	if (str_t == UFS_TM_SEND)
382 		trace_ufshcd_upiu(dev_name(hba->dev), str_t,
383 				  &descp->upiu_req.req_header,
384 				  &descp->upiu_req.input_param1,
385 				  UFS_TSF_TM_INPUT);
386 	else
387 		trace_ufshcd_upiu(dev_name(hba->dev), str_t,
388 				  &descp->upiu_rsp.rsp_header,
389 				  &descp->upiu_rsp.output_param1,
390 				  UFS_TSF_TM_OUTPUT);
391 }
392 
393 static void ufshcd_add_uic_command_trace(struct ufs_hba *hba,
394 					 const struct uic_command *ucmd,
395 					 enum ufs_trace_str_t str_t)
396 {
397 	u32 cmd;
398 
399 	if (!trace_ufshcd_uic_command_enabled())
400 		return;
401 
402 	if (str_t == UFS_CMD_SEND)
403 		cmd = ucmd->command;
404 	else
405 		cmd = ufshcd_readl(hba, REG_UIC_COMMAND);
406 
407 	trace_ufshcd_uic_command(dev_name(hba->dev), str_t, cmd,
408 				 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_1),
409 				 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_2),
410 				 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_3));
411 }
412 
413 static void ufshcd_add_command_trace(struct ufs_hba *hba, unsigned int tag,
414 				     enum ufs_trace_str_t str_t)
415 {
416 	u64 lba = 0;
417 	u8 opcode = 0, group_id = 0;
418 	u32 doorbell = 0;
419 	u32 intr;
420 	int hwq_id = -1;
421 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
422 	struct scsi_cmnd *cmd = lrbp->cmd;
423 	struct request *rq = scsi_cmd_to_rq(cmd);
424 	int transfer_len = -1;
425 
426 	if (!cmd)
427 		return;
428 
429 	/* trace UPIU also */
430 	ufshcd_add_cmd_upiu_trace(hba, tag, str_t);
431 	if (!trace_ufshcd_command_enabled())
432 		return;
433 
434 	opcode = cmd->cmnd[0];
435 
436 	if (opcode == READ_10 || opcode == WRITE_10) {
437 		/*
438 		 * Currently we only fully trace read(10) and write(10) commands
439 		 */
440 		transfer_len =
441 		       be32_to_cpu(lrbp->ucd_req_ptr->sc.exp_data_transfer_len);
442 		lba = scsi_get_lba(cmd);
443 		if (opcode == WRITE_10)
444 			group_id = lrbp->cmd->cmnd[6];
445 	} else if (opcode == UNMAP) {
446 		/*
447 		 * The number of Bytes to be unmapped beginning with the lba.
448 		 */
449 		transfer_len = blk_rq_bytes(rq);
450 		lba = scsi_get_lba(cmd);
451 	}
452 
453 	intr = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
454 
455 	if (is_mcq_enabled(hba)) {
456 		struct ufs_hw_queue *hwq = ufshcd_mcq_req_to_hwq(hba, rq);
457 
458 		hwq_id = hwq->id;
459 	} else {
460 		doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
461 	}
462 	trace_ufshcd_command(cmd->device, str_t, tag, doorbell, hwq_id,
463 			     transfer_len, intr, lba, opcode, group_id);
464 }
465 
466 static void ufshcd_print_clk_freqs(struct ufs_hba *hba)
467 {
468 	struct ufs_clk_info *clki;
469 	struct list_head *head = &hba->clk_list_head;
470 
471 	if (list_empty(head))
472 		return;
473 
474 	list_for_each_entry(clki, head, list) {
475 		if (!IS_ERR_OR_NULL(clki->clk) && clki->min_freq &&
476 				clki->max_freq)
477 			dev_err(hba->dev, "clk: %s, rate: %u\n",
478 					clki->name, clki->curr_freq);
479 	}
480 }
481 
482 static void ufshcd_print_evt(struct ufs_hba *hba, u32 id,
483 			     const char *err_name)
484 {
485 	int i;
486 	bool found = false;
487 	const struct ufs_event_hist *e;
488 
489 	if (id >= UFS_EVT_CNT)
490 		return;
491 
492 	e = &hba->ufs_stats.event[id];
493 
494 	for (i = 0; i < UFS_EVENT_HIST_LENGTH; i++) {
495 		int p = (i + e->pos) % UFS_EVENT_HIST_LENGTH;
496 
497 		if (e->tstamp[p] == 0)
498 			continue;
499 		dev_err(hba->dev, "%s[%d] = 0x%x at %lld us\n", err_name, p,
500 			e->val[p], div_u64(e->tstamp[p], 1000));
501 		found = true;
502 	}
503 
504 	if (!found)
505 		dev_err(hba->dev, "No record of %s\n", err_name);
506 	else
507 		dev_err(hba->dev, "%s: total cnt=%llu\n", err_name, e->cnt);
508 }
509 
510 static void ufshcd_print_evt_hist(struct ufs_hba *hba)
511 {
512 	ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, "host_regs: ");
513 
514 	ufshcd_print_evt(hba, UFS_EVT_PA_ERR, "pa_err");
515 	ufshcd_print_evt(hba, UFS_EVT_DL_ERR, "dl_err");
516 	ufshcd_print_evt(hba, UFS_EVT_NL_ERR, "nl_err");
517 	ufshcd_print_evt(hba, UFS_EVT_TL_ERR, "tl_err");
518 	ufshcd_print_evt(hba, UFS_EVT_DME_ERR, "dme_err");
519 	ufshcd_print_evt(hba, UFS_EVT_AUTO_HIBERN8_ERR,
520 			 "auto_hibern8_err");
521 	ufshcd_print_evt(hba, UFS_EVT_FATAL_ERR, "fatal_err");
522 	ufshcd_print_evt(hba, UFS_EVT_LINK_STARTUP_FAIL,
523 			 "link_startup_fail");
524 	ufshcd_print_evt(hba, UFS_EVT_RESUME_ERR, "resume_fail");
525 	ufshcd_print_evt(hba, UFS_EVT_SUSPEND_ERR,
526 			 "suspend_fail");
527 	ufshcd_print_evt(hba, UFS_EVT_WL_RES_ERR, "wlun resume_fail");
528 	ufshcd_print_evt(hba, UFS_EVT_WL_SUSP_ERR,
529 			 "wlun suspend_fail");
530 	ufshcd_print_evt(hba, UFS_EVT_DEV_RESET, "dev_reset");
531 	ufshcd_print_evt(hba, UFS_EVT_HOST_RESET, "host_reset");
532 	ufshcd_print_evt(hba, UFS_EVT_ABORT, "task_abort");
533 
534 	ufshcd_vops_dbg_register_dump(hba);
535 }
536 
537 static
538 void ufshcd_print_tr(struct ufs_hba *hba, int tag, bool pr_prdt)
539 {
540 	const struct ufshcd_lrb *lrbp;
541 	int prdt_length;
542 
543 	lrbp = &hba->lrb[tag];
544 
545 	dev_err(hba->dev, "UPIU[%d] - issue time %lld us\n",
546 			tag, div_u64(lrbp->issue_time_stamp_local_clock, 1000));
547 	dev_err(hba->dev, "UPIU[%d] - complete time %lld us\n",
548 			tag, div_u64(lrbp->compl_time_stamp_local_clock, 1000));
549 	dev_err(hba->dev,
550 		"UPIU[%d] - Transfer Request Descriptor phys@0x%llx\n",
551 		tag, (u64)lrbp->utrd_dma_addr);
552 
553 	ufshcd_hex_dump("UPIU TRD: ", lrbp->utr_descriptor_ptr,
554 			sizeof(struct utp_transfer_req_desc));
555 	dev_err(hba->dev, "UPIU[%d] - Request UPIU phys@0x%llx\n", tag,
556 		(u64)lrbp->ucd_req_dma_addr);
557 	ufshcd_hex_dump("UPIU REQ: ", lrbp->ucd_req_ptr,
558 			sizeof(struct utp_upiu_req));
559 	dev_err(hba->dev, "UPIU[%d] - Response UPIU phys@0x%llx\n", tag,
560 		(u64)lrbp->ucd_rsp_dma_addr);
561 	ufshcd_hex_dump("UPIU RSP: ", lrbp->ucd_rsp_ptr,
562 			sizeof(struct utp_upiu_rsp));
563 
564 	prdt_length = le16_to_cpu(
565 		lrbp->utr_descriptor_ptr->prd_table_length);
566 	if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN)
567 		prdt_length /= ufshcd_sg_entry_size(hba);
568 
569 	dev_err(hba->dev,
570 		"UPIU[%d] - PRDT - %d entries  phys@0x%llx\n",
571 		tag, prdt_length,
572 		(u64)lrbp->ucd_prdt_dma_addr);
573 
574 	if (pr_prdt)
575 		ufshcd_hex_dump("UPIU PRDT: ", lrbp->ucd_prdt_ptr,
576 			ufshcd_sg_entry_size(hba) * prdt_length);
577 }
578 
579 static bool ufshcd_print_tr_iter(struct request *req, void *priv)
580 {
581 	struct scsi_device *sdev = req->q->queuedata;
582 	struct Scsi_Host *shost = sdev->host;
583 	struct ufs_hba *hba = shost_priv(shost);
584 
585 	ufshcd_print_tr(hba, req->tag, *(bool *)priv);
586 
587 	return true;
588 }
589 
590 /**
591  * ufshcd_print_trs_all - print trs for all started requests.
592  * @hba: per-adapter instance.
593  * @pr_prdt: need to print prdt or not.
594  */
595 static void ufshcd_print_trs_all(struct ufs_hba *hba, bool pr_prdt)
596 {
597 	blk_mq_tagset_busy_iter(&hba->host->tag_set, ufshcd_print_tr_iter, &pr_prdt);
598 }
599 
600 static void ufshcd_print_tmrs(struct ufs_hba *hba, unsigned long bitmap)
601 {
602 	int tag;
603 
604 	for_each_set_bit(tag, &bitmap, hba->nutmrs) {
605 		struct utp_task_req_desc *tmrdp = &hba->utmrdl_base_addr[tag];
606 
607 		dev_err(hba->dev, "TM[%d] - Task Management Header\n", tag);
608 		ufshcd_hex_dump("", tmrdp, sizeof(*tmrdp));
609 	}
610 }
611 
612 static void ufshcd_print_host_state(struct ufs_hba *hba)
613 {
614 	const struct scsi_device *sdev_ufs = hba->ufs_device_wlun;
615 
616 	dev_err(hba->dev, "UFS Host state=%d\n", hba->ufshcd_state);
617 	dev_err(hba->dev, "outstanding reqs=0x%lx tasks=0x%lx\n",
618 		hba->outstanding_reqs, hba->outstanding_tasks);
619 	dev_err(hba->dev, "saved_err=0x%x, saved_uic_err=0x%x\n",
620 		hba->saved_err, hba->saved_uic_err);
621 	dev_err(hba->dev, "Device power mode=%d, UIC link state=%d\n",
622 		hba->curr_dev_pwr_mode, hba->uic_link_state);
623 	dev_err(hba->dev, "PM in progress=%d, sys. suspended=%d\n",
624 		hba->pm_op_in_progress, hba->is_sys_suspended);
625 	dev_err(hba->dev, "Auto BKOPS=%d, Host self-block=%d\n",
626 		hba->auto_bkops_enabled, hba->host->host_self_blocked);
627 	dev_err(hba->dev, "Clk gate=%d\n", hba->clk_gating.state);
628 	dev_err(hba->dev,
629 		"last_hibern8_exit_tstamp at %lld us, hibern8_exit_cnt=%d\n",
630 		div_u64(hba->ufs_stats.last_hibern8_exit_tstamp, 1000),
631 		hba->ufs_stats.hibern8_exit_cnt);
632 	dev_err(hba->dev, "last intr at %lld us, last intr status=0x%x\n",
633 		div_u64(hba->ufs_stats.last_intr_ts, 1000),
634 		hba->ufs_stats.last_intr_status);
635 	dev_err(hba->dev, "error handling flags=0x%x, req. abort count=%d\n",
636 		hba->eh_flags, hba->req_abort_count);
637 	dev_err(hba->dev, "hba->ufs_version=0x%x, Host capabilities=0x%x, caps=0x%x\n",
638 		hba->ufs_version, hba->capabilities, hba->caps);
639 	dev_err(hba->dev, "quirks=0x%x, dev. quirks=0x%x\n", hba->quirks,
640 		hba->dev_quirks);
641 	if (sdev_ufs)
642 		dev_err(hba->dev, "UFS dev info: %.8s %.16s rev %.4s\n",
643 			sdev_ufs->vendor, sdev_ufs->model, sdev_ufs->rev);
644 
645 	ufshcd_print_clk_freqs(hba);
646 }
647 
648 /**
649  * ufshcd_print_pwr_info - print power params as saved in hba
650  * power info
651  * @hba: per-adapter instance
652  */
653 static void ufshcd_print_pwr_info(struct ufs_hba *hba)
654 {
655 	static const char * const names[] = {
656 		"INVALID MODE",
657 		"FAST MODE",
658 		"SLOW_MODE",
659 		"INVALID MODE",
660 		"FASTAUTO_MODE",
661 		"SLOWAUTO_MODE",
662 		"INVALID MODE",
663 	};
664 
665 	/*
666 	 * Using dev_dbg to avoid messages during runtime PM to avoid
667 	 * never-ending cycles of messages written back to storage by user space
668 	 * causing runtime resume, causing more messages and so on.
669 	 */
670 	dev_dbg(hba->dev, "%s:[RX, TX]: gear=[%d, %d], lane[%d, %d], pwr[%s, %s], rate = %d\n",
671 		 __func__,
672 		 hba->pwr_info.gear_rx, hba->pwr_info.gear_tx,
673 		 hba->pwr_info.lane_rx, hba->pwr_info.lane_tx,
674 		 names[hba->pwr_info.pwr_rx],
675 		 names[hba->pwr_info.pwr_tx],
676 		 hba->pwr_info.hs_rate);
677 }
678 
679 static void ufshcd_device_reset(struct ufs_hba *hba)
680 {
681 	int err;
682 
683 	err = ufshcd_vops_device_reset(hba);
684 
685 	if (!err) {
686 		ufshcd_set_ufs_dev_active(hba);
687 		if (ufshcd_is_wb_allowed(hba)) {
688 			hba->dev_info.wb_enabled = false;
689 			hba->dev_info.wb_buf_flush_enabled = false;
690 		}
691 		if (hba->dev_info.rtc_type == UFS_RTC_RELATIVE)
692 			hba->dev_info.rtc_time_baseline = 0;
693 	}
694 	if (err != -EOPNOTSUPP)
695 		ufshcd_update_evt_hist(hba, UFS_EVT_DEV_RESET, err);
696 }
697 
698 void ufshcd_delay_us(unsigned long us, unsigned long tolerance)
699 {
700 	if (!us)
701 		return;
702 
703 	if (us < 10)
704 		udelay(us);
705 	else
706 		usleep_range(us, us + tolerance);
707 }
708 EXPORT_SYMBOL_GPL(ufshcd_delay_us);
709 
710 /**
711  * ufshcd_wait_for_register - wait for register value to change
712  * @hba: per-adapter interface
713  * @reg: mmio register offset
714  * @mask: mask to apply to the read register value
715  * @val: value to wait for
716  * @interval_us: polling interval in microseconds
717  * @timeout_ms: timeout in milliseconds
718  *
719  * Return: -ETIMEDOUT on error, zero on success.
720  */
721 static int ufshcd_wait_for_register(struct ufs_hba *hba, u32 reg, u32 mask,
722 				u32 val, unsigned long interval_us,
723 				unsigned long timeout_ms)
724 {
725 	int err = 0;
726 	unsigned long timeout = jiffies + msecs_to_jiffies(timeout_ms);
727 
728 	/* ignore bits that we don't intend to wait on */
729 	val = val & mask;
730 
731 	while ((ufshcd_readl(hba, reg) & mask) != val) {
732 		usleep_range(interval_us, interval_us + 50);
733 		if (time_after(jiffies, timeout)) {
734 			if ((ufshcd_readl(hba, reg) & mask) != val)
735 				err = -ETIMEDOUT;
736 			break;
737 		}
738 	}
739 
740 	return err;
741 }
742 
743 /**
744  * ufshcd_get_intr_mask - Get the interrupt bit mask
745  * @hba: Pointer to adapter instance
746  *
747  * Return: interrupt bit mask per version
748  */
749 static inline u32 ufshcd_get_intr_mask(struct ufs_hba *hba)
750 {
751 	if (hba->ufs_version <= ufshci_version(2, 0))
752 		return INTERRUPT_MASK_ALL_VER_11;
753 
754 	return INTERRUPT_MASK_ALL_VER_21;
755 }
756 
757 /**
758  * ufshcd_get_ufs_version - Get the UFS version supported by the HBA
759  * @hba: Pointer to adapter instance
760  *
761  * Return: UFSHCI version supported by the controller
762  */
763 static inline u32 ufshcd_get_ufs_version(struct ufs_hba *hba)
764 {
765 	u32 ufshci_ver;
766 
767 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_UFS_HCI_VERSION)
768 		ufshci_ver = ufshcd_vops_get_ufs_hci_version(hba);
769 	else
770 		ufshci_ver = ufshcd_readl(hba, REG_UFS_VERSION);
771 
772 	/*
773 	 * UFSHCI v1.x uses a different version scheme, in order
774 	 * to allow the use of comparisons with the ufshci_version
775 	 * function, we convert it to the same scheme as ufs 2.0+.
776 	 */
777 	if (ufshci_ver & 0x00010000)
778 		return ufshci_version(1, ufshci_ver & 0x00000100);
779 
780 	return ufshci_ver;
781 }
782 
783 /**
784  * ufshcd_is_device_present - Check if any device connected to
785  *			      the host controller
786  * @hba: pointer to adapter instance
787  *
788  * Return: true if device present, false if no device detected
789  */
790 static inline bool ufshcd_is_device_present(struct ufs_hba *hba)
791 {
792 	return ufshcd_readl(hba, REG_CONTROLLER_STATUS) & DEVICE_PRESENT;
793 }
794 
795 /**
796  * ufshcd_get_tr_ocs - Get the UTRD Overall Command Status
797  * @lrbp: pointer to local command reference block
798  * @cqe: pointer to the completion queue entry
799  *
800  * This function is used to get the OCS field from UTRD
801  *
802  * Return: the OCS field in the UTRD.
803  */
804 static enum utp_ocs ufshcd_get_tr_ocs(struct ufshcd_lrb *lrbp,
805 				      struct cq_entry *cqe)
806 {
807 	if (cqe)
808 		return le32_to_cpu(cqe->status) & MASK_OCS;
809 
810 	return lrbp->utr_descriptor_ptr->header.ocs & MASK_OCS;
811 }
812 
813 /**
814  * ufshcd_utrl_clear() - Clear requests from the controller request list.
815  * @hba: per adapter instance
816  * @mask: mask with one bit set for each request to be cleared
817  */
818 static inline void ufshcd_utrl_clear(struct ufs_hba *hba, u32 mask)
819 {
820 	if (hba->quirks & UFSHCI_QUIRK_BROKEN_REQ_LIST_CLR)
821 		mask = ~mask;
822 	/*
823 	 * From the UFSHCI specification: "UTP Transfer Request List CLear
824 	 * Register (UTRLCLR): This field is bit significant. Each bit
825 	 * corresponds to a slot in the UTP Transfer Request List, where bit 0
826 	 * corresponds to request slot 0. A bit in this field is set to ‘0’
827 	 * by host software to indicate to the host controller that a transfer
828 	 * request slot is cleared. The host controller
829 	 * shall free up any resources associated to the request slot
830 	 * immediately, and shall set the associated bit in UTRLDBR to ‘0’. The
831 	 * host software indicates no change to request slots by setting the
832 	 * associated bits in this field to ‘1’. Bits in this field shall only
833 	 * be set ‘1’ or ‘0’ by host software when UTRLRSR is set to ‘1’."
834 	 */
835 	ufshcd_writel(hba, ~mask, REG_UTP_TRANSFER_REQ_LIST_CLEAR);
836 }
837 
838 /**
839  * ufshcd_utmrl_clear - Clear a bit in UTMRLCLR register
840  * @hba: per adapter instance
841  * @pos: position of the bit to be cleared
842  */
843 static inline void ufshcd_utmrl_clear(struct ufs_hba *hba, u32 pos)
844 {
845 	if (hba->quirks & UFSHCI_QUIRK_BROKEN_REQ_LIST_CLR)
846 		ufshcd_writel(hba, (1 << pos), REG_UTP_TASK_REQ_LIST_CLEAR);
847 	else
848 		ufshcd_writel(hba, ~(1 << pos), REG_UTP_TASK_REQ_LIST_CLEAR);
849 }
850 
851 /**
852  * ufshcd_get_lists_status - Check UCRDY, UTRLRDY and UTMRLRDY
853  * @reg: Register value of host controller status
854  *
855  * Return: 0 on success; a positive value if failed.
856  */
857 static inline int ufshcd_get_lists_status(u32 reg)
858 {
859 	return !((reg & UFSHCD_STATUS_READY) == UFSHCD_STATUS_READY);
860 }
861 
862 /**
863  * ufshcd_get_uic_cmd_result - Get the UIC command result
864  * @hba: Pointer to adapter instance
865  *
866  * This function gets the result of UIC command completion
867  *
868  * Return: 0 on success; non-zero value on error.
869  */
870 static inline int ufshcd_get_uic_cmd_result(struct ufs_hba *hba)
871 {
872 	return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_2) &
873 	       MASK_UIC_COMMAND_RESULT;
874 }
875 
876 /**
877  * ufshcd_get_dme_attr_val - Get the value of attribute returned by UIC command
878  * @hba: Pointer to adapter instance
879  *
880  * This function gets UIC command argument3
881  *
882  * Return: 0 on success; non-zero value on error.
883  */
884 static inline u32 ufshcd_get_dme_attr_val(struct ufs_hba *hba)
885 {
886 	return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_3);
887 }
888 
889 /**
890  * ufshcd_get_req_rsp - returns the TR response transaction type
891  * @ucd_rsp_ptr: pointer to response UPIU
892  *
893  * Return: UPIU type.
894  */
895 static inline enum upiu_response_transaction
896 ufshcd_get_req_rsp(struct utp_upiu_rsp *ucd_rsp_ptr)
897 {
898 	return ucd_rsp_ptr->header.transaction_code;
899 }
900 
901 /**
902  * ufshcd_is_exception_event - Check if the device raised an exception event
903  * @ucd_rsp_ptr: pointer to response UPIU
904  *
905  * The function checks if the device raised an exception event indicated in
906  * the Device Information field of response UPIU.
907  *
908  * Return: true if exception is raised, false otherwise.
909  */
910 static inline bool ufshcd_is_exception_event(struct utp_upiu_rsp *ucd_rsp_ptr)
911 {
912 	return ucd_rsp_ptr->header.device_information & 1;
913 }
914 
915 /**
916  * ufshcd_reset_intr_aggr - Reset interrupt aggregation values.
917  * @hba: per adapter instance
918  */
919 static inline void
920 ufshcd_reset_intr_aggr(struct ufs_hba *hba)
921 {
922 	ufshcd_writel(hba, INT_AGGR_ENABLE |
923 		      INT_AGGR_COUNTER_AND_TIMER_RESET,
924 		      REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
925 }
926 
927 /**
928  * ufshcd_config_intr_aggr - Configure interrupt aggregation values.
929  * @hba: per adapter instance
930  * @cnt: Interrupt aggregation counter threshold
931  * @tmout: Interrupt aggregation timeout value
932  */
933 static inline void
934 ufshcd_config_intr_aggr(struct ufs_hba *hba, u8 cnt, u8 tmout)
935 {
936 	ufshcd_writel(hba, INT_AGGR_ENABLE | INT_AGGR_PARAM_WRITE |
937 		      INT_AGGR_COUNTER_THLD_VAL(cnt) |
938 		      INT_AGGR_TIMEOUT_VAL(tmout),
939 		      REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
940 }
941 
942 /**
943  * ufshcd_disable_intr_aggr - Disables interrupt aggregation.
944  * @hba: per adapter instance
945  */
946 static inline void ufshcd_disable_intr_aggr(struct ufs_hba *hba)
947 {
948 	ufshcd_writel(hba, 0, REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
949 }
950 
951 /**
952  * ufshcd_enable_run_stop_reg - Enable run-stop registers,
953  *			When run-stop registers are set to 1, it indicates the
954  *			host controller that it can process the requests
955  * @hba: per adapter instance
956  */
957 static void ufshcd_enable_run_stop_reg(struct ufs_hba *hba)
958 {
959 	ufshcd_writel(hba, UTP_TASK_REQ_LIST_RUN_STOP_BIT,
960 		      REG_UTP_TASK_REQ_LIST_RUN_STOP);
961 	ufshcd_writel(hba, UTP_TRANSFER_REQ_LIST_RUN_STOP_BIT,
962 		      REG_UTP_TRANSFER_REQ_LIST_RUN_STOP);
963 }
964 
965 /**
966  * ufshcd_hba_start - Start controller initialization sequence
967  * @hba: per adapter instance
968  */
969 static inline void ufshcd_hba_start(struct ufs_hba *hba)
970 {
971 	u32 val = CONTROLLER_ENABLE;
972 
973 	if (ufshcd_crypto_enable(hba))
974 		val |= CRYPTO_GENERAL_ENABLE;
975 
976 	ufshcd_writel(hba, val, REG_CONTROLLER_ENABLE);
977 }
978 
979 /**
980  * ufshcd_is_hba_active - Get controller state
981  * @hba: per adapter instance
982  *
983  * Return: true if and only if the controller is active.
984  */
985 bool ufshcd_is_hba_active(struct ufs_hba *hba)
986 {
987 	return ufshcd_readl(hba, REG_CONTROLLER_ENABLE) & CONTROLLER_ENABLE;
988 }
989 EXPORT_SYMBOL_GPL(ufshcd_is_hba_active);
990 
991 /**
992  * ufshcd_pm_qos_init - initialize PM QoS request
993  * @hba: per adapter instance
994  */
995 void ufshcd_pm_qos_init(struct ufs_hba *hba)
996 {
997 
998 	if (hba->pm_qos_enabled)
999 		return;
1000 
1001 	cpu_latency_qos_add_request(&hba->pm_qos_req, PM_QOS_DEFAULT_VALUE);
1002 
1003 	if (cpu_latency_qos_request_active(&hba->pm_qos_req))
1004 		hba->pm_qos_enabled = true;
1005 }
1006 
1007 /**
1008  * ufshcd_pm_qos_exit - remove request from PM QoS
1009  * @hba: per adapter instance
1010  */
1011 void ufshcd_pm_qos_exit(struct ufs_hba *hba)
1012 {
1013 	if (!hba->pm_qos_enabled)
1014 		return;
1015 
1016 	cpu_latency_qos_remove_request(&hba->pm_qos_req);
1017 	hba->pm_qos_enabled = false;
1018 }
1019 
1020 /**
1021  * ufshcd_pm_qos_update - update PM QoS request
1022  * @hba: per adapter instance
1023  * @on: If True, vote for perf PM QoS mode otherwise power save mode
1024  */
1025 static void ufshcd_pm_qos_update(struct ufs_hba *hba, bool on)
1026 {
1027 	if (!hba->pm_qos_enabled)
1028 		return;
1029 
1030 	cpu_latency_qos_update_request(&hba->pm_qos_req, on ? 0 : PM_QOS_DEFAULT_VALUE);
1031 }
1032 
1033 /**
1034  * ufshcd_set_clk_freq - set UFS controller clock frequencies
1035  * @hba: per adapter instance
1036  * @scale_up: If True, set max possible frequency othewise set low frequency
1037  *
1038  * Return: 0 if successful; < 0 upon failure.
1039  */
1040 static int ufshcd_set_clk_freq(struct ufs_hba *hba, bool scale_up)
1041 {
1042 	int ret = 0;
1043 	struct ufs_clk_info *clki;
1044 	struct list_head *head = &hba->clk_list_head;
1045 
1046 	if (list_empty(head))
1047 		goto out;
1048 
1049 	list_for_each_entry(clki, head, list) {
1050 		if (!IS_ERR_OR_NULL(clki->clk)) {
1051 			if (scale_up && clki->max_freq) {
1052 				if (clki->curr_freq == clki->max_freq)
1053 					continue;
1054 
1055 				ret = clk_set_rate(clki->clk, clki->max_freq);
1056 				if (ret) {
1057 					dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
1058 						__func__, clki->name,
1059 						clki->max_freq, ret);
1060 					break;
1061 				}
1062 				trace_ufshcd_clk_scaling(dev_name(hba->dev),
1063 						"scaled up", clki->name,
1064 						clki->curr_freq,
1065 						clki->max_freq);
1066 
1067 				clki->curr_freq = clki->max_freq;
1068 
1069 			} else if (!scale_up && clki->min_freq) {
1070 				if (clki->curr_freq == clki->min_freq)
1071 					continue;
1072 
1073 				ret = clk_set_rate(clki->clk, clki->min_freq);
1074 				if (ret) {
1075 					dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
1076 						__func__, clki->name,
1077 						clki->min_freq, ret);
1078 					break;
1079 				}
1080 				trace_ufshcd_clk_scaling(dev_name(hba->dev),
1081 						"scaled down", clki->name,
1082 						clki->curr_freq,
1083 						clki->min_freq);
1084 				clki->curr_freq = clki->min_freq;
1085 			}
1086 		}
1087 		dev_dbg(hba->dev, "%s: clk: %s, rate: %lu\n", __func__,
1088 				clki->name, clk_get_rate(clki->clk));
1089 	}
1090 
1091 out:
1092 	return ret;
1093 }
1094 
1095 int ufshcd_opp_config_clks(struct device *dev, struct opp_table *opp_table,
1096 			   struct dev_pm_opp *opp, void *data,
1097 			   bool scaling_down)
1098 {
1099 	struct ufs_hba *hba = dev_get_drvdata(dev);
1100 	struct list_head *head = &hba->clk_list_head;
1101 	struct ufs_clk_info *clki;
1102 	unsigned long freq;
1103 	u8 idx = 0;
1104 	int ret;
1105 
1106 	list_for_each_entry(clki, head, list) {
1107 		if (!IS_ERR_OR_NULL(clki->clk)) {
1108 			freq = dev_pm_opp_get_freq_indexed(opp, idx++);
1109 
1110 			/* Do not set rate for clocks having frequency as 0 */
1111 			if (!freq)
1112 				continue;
1113 
1114 			ret = clk_set_rate(clki->clk, freq);
1115 			if (ret) {
1116 				dev_err(dev, "%s: %s clk set rate(%ldHz) failed, %d\n",
1117 					__func__, clki->name, freq, ret);
1118 				return ret;
1119 			}
1120 
1121 			trace_ufshcd_clk_scaling(dev_name(dev),
1122 				(scaling_down ? "scaled down" : "scaled up"),
1123 				clki->name, hba->clk_scaling.target_freq, freq);
1124 		}
1125 	}
1126 
1127 	return 0;
1128 }
1129 EXPORT_SYMBOL_GPL(ufshcd_opp_config_clks);
1130 
1131 static int ufshcd_opp_set_rate(struct ufs_hba *hba, unsigned long freq)
1132 {
1133 	struct dev_pm_opp *opp;
1134 	int ret;
1135 
1136 	opp = dev_pm_opp_find_freq_floor_indexed(hba->dev,
1137 						 &freq, 0);
1138 	if (IS_ERR(opp))
1139 		return PTR_ERR(opp);
1140 
1141 	ret = dev_pm_opp_set_opp(hba->dev, opp);
1142 	dev_pm_opp_put(opp);
1143 
1144 	return ret;
1145 }
1146 
1147 /**
1148  * ufshcd_scale_clks - scale up or scale down UFS controller clocks
1149  * @hba: per adapter instance
1150  * @freq: frequency to scale
1151  * @scale_up: True if scaling up and false if scaling down
1152  *
1153  * Return: 0 if successful; < 0 upon failure.
1154  */
1155 static int ufshcd_scale_clks(struct ufs_hba *hba, unsigned long freq,
1156 			     bool scale_up)
1157 {
1158 	int ret = 0;
1159 	ktime_t start = ktime_get();
1160 
1161 	ret = ufshcd_vops_clk_scale_notify(hba, scale_up, PRE_CHANGE);
1162 	if (ret)
1163 		goto out;
1164 
1165 	if (hba->use_pm_opp)
1166 		ret = ufshcd_opp_set_rate(hba, freq);
1167 	else
1168 		ret = ufshcd_set_clk_freq(hba, scale_up);
1169 	if (ret)
1170 		goto out;
1171 
1172 	ret = ufshcd_vops_clk_scale_notify(hba, scale_up, POST_CHANGE);
1173 	if (ret) {
1174 		if (hba->use_pm_opp)
1175 			ufshcd_opp_set_rate(hba,
1176 					    hba->devfreq->previous_freq);
1177 		else
1178 			ufshcd_set_clk_freq(hba, !scale_up);
1179 		goto out;
1180 	}
1181 
1182 	ufshcd_pm_qos_update(hba, scale_up);
1183 
1184 out:
1185 	trace_ufshcd_profile_clk_scaling(dev_name(hba->dev),
1186 			(scale_up ? "up" : "down"),
1187 			ktime_to_us(ktime_sub(ktime_get(), start)), ret);
1188 	return ret;
1189 }
1190 
1191 /**
1192  * ufshcd_is_devfreq_scaling_required - check if scaling is required or not
1193  * @hba: per adapter instance
1194  * @freq: frequency to scale
1195  * @scale_up: True if scaling up and false if scaling down
1196  *
1197  * Return: true if scaling is required, false otherwise.
1198  */
1199 static bool ufshcd_is_devfreq_scaling_required(struct ufs_hba *hba,
1200 					       unsigned long freq, bool scale_up)
1201 {
1202 	struct ufs_clk_info *clki;
1203 	struct list_head *head = &hba->clk_list_head;
1204 
1205 	if (list_empty(head))
1206 		return false;
1207 
1208 	if (hba->use_pm_opp)
1209 		return freq != hba->clk_scaling.target_freq;
1210 
1211 	list_for_each_entry(clki, head, list) {
1212 		if (!IS_ERR_OR_NULL(clki->clk)) {
1213 			if (scale_up && clki->max_freq) {
1214 				if (clki->curr_freq == clki->max_freq)
1215 					continue;
1216 				return true;
1217 			} else if (!scale_up && clki->min_freq) {
1218 				if (clki->curr_freq == clki->min_freq)
1219 					continue;
1220 				return true;
1221 			}
1222 		}
1223 	}
1224 
1225 	return false;
1226 }
1227 
1228 /*
1229  * Determine the number of pending commands by counting the bits in the SCSI
1230  * device budget maps. This approach has been selected because a bit is set in
1231  * the budget map before scsi_host_queue_ready() checks the host_self_blocked
1232  * flag. The host_self_blocked flag can be modified by calling
1233  * scsi_block_requests() or scsi_unblock_requests().
1234  */
1235 static u32 ufshcd_pending_cmds(struct ufs_hba *hba)
1236 {
1237 	const struct scsi_device *sdev;
1238 	u32 pending = 0;
1239 
1240 	lockdep_assert_held(hba->host->host_lock);
1241 	__shost_for_each_device(sdev, hba->host)
1242 		pending += sbitmap_weight(&sdev->budget_map);
1243 
1244 	return pending;
1245 }
1246 
1247 /*
1248  * Wait until all pending SCSI commands and TMFs have finished or the timeout
1249  * has expired.
1250  *
1251  * Return: 0 upon success; -EBUSY upon timeout.
1252  */
1253 static int ufshcd_wait_for_doorbell_clr(struct ufs_hba *hba,
1254 					u64 wait_timeout_us)
1255 {
1256 	unsigned long flags;
1257 	int ret = 0;
1258 	u32 tm_doorbell;
1259 	u32 tr_pending;
1260 	bool timeout = false, do_last_check = false;
1261 	ktime_t start;
1262 
1263 	ufshcd_hold(hba);
1264 	spin_lock_irqsave(hba->host->host_lock, flags);
1265 	/*
1266 	 * Wait for all the outstanding tasks/transfer requests.
1267 	 * Verify by checking the doorbell registers are clear.
1268 	 */
1269 	start = ktime_get();
1270 	do {
1271 		if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL) {
1272 			ret = -EBUSY;
1273 			goto out;
1274 		}
1275 
1276 		tm_doorbell = ufshcd_readl(hba, REG_UTP_TASK_REQ_DOOR_BELL);
1277 		tr_pending = ufshcd_pending_cmds(hba);
1278 		if (!tm_doorbell && !tr_pending) {
1279 			timeout = false;
1280 			break;
1281 		} else if (do_last_check) {
1282 			break;
1283 		}
1284 
1285 		spin_unlock_irqrestore(hba->host->host_lock, flags);
1286 		io_schedule_timeout(msecs_to_jiffies(20));
1287 		if (ktime_to_us(ktime_sub(ktime_get(), start)) >
1288 		    wait_timeout_us) {
1289 			timeout = true;
1290 			/*
1291 			 * We might have scheduled out for long time so make
1292 			 * sure to check if doorbells are cleared by this time
1293 			 * or not.
1294 			 */
1295 			do_last_check = true;
1296 		}
1297 		spin_lock_irqsave(hba->host->host_lock, flags);
1298 	} while (tm_doorbell || tr_pending);
1299 
1300 	if (timeout) {
1301 		dev_err(hba->dev,
1302 			"%s: timedout waiting for doorbell to clear (tm=0x%x, tr=0x%x)\n",
1303 			__func__, tm_doorbell, tr_pending);
1304 		ret = -EBUSY;
1305 	}
1306 out:
1307 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1308 	ufshcd_release(hba);
1309 	return ret;
1310 }
1311 
1312 /**
1313  * ufshcd_scale_gear - scale up/down UFS gear
1314  * @hba: per adapter instance
1315  * @scale_up: True for scaling up gear and false for scaling down
1316  *
1317  * Return: 0 for success; -EBUSY if scaling can't happen at this time;
1318  * non-zero for any other errors.
1319  */
1320 static int ufshcd_scale_gear(struct ufs_hba *hba, bool scale_up)
1321 {
1322 	int ret = 0;
1323 	struct ufs_pa_layer_attr new_pwr_info;
1324 
1325 	if (scale_up) {
1326 		memcpy(&new_pwr_info, &hba->clk_scaling.saved_pwr_info,
1327 		       sizeof(struct ufs_pa_layer_attr));
1328 	} else {
1329 		memcpy(&new_pwr_info, &hba->pwr_info,
1330 		       sizeof(struct ufs_pa_layer_attr));
1331 
1332 		if (hba->pwr_info.gear_tx > hba->clk_scaling.min_gear ||
1333 		    hba->pwr_info.gear_rx > hba->clk_scaling.min_gear) {
1334 			/* save the current power mode */
1335 			memcpy(&hba->clk_scaling.saved_pwr_info,
1336 				&hba->pwr_info,
1337 				sizeof(struct ufs_pa_layer_attr));
1338 
1339 			/* scale down gear */
1340 			new_pwr_info.gear_tx = hba->clk_scaling.min_gear;
1341 			new_pwr_info.gear_rx = hba->clk_scaling.min_gear;
1342 		}
1343 	}
1344 
1345 	/* check if the power mode needs to be changed or not? */
1346 	ret = ufshcd_config_pwr_mode(hba, &new_pwr_info);
1347 	if (ret)
1348 		dev_err(hba->dev, "%s: failed err %d, old gear: (tx %d rx %d), new gear: (tx %d rx %d)",
1349 			__func__, ret,
1350 			hba->pwr_info.gear_tx, hba->pwr_info.gear_rx,
1351 			new_pwr_info.gear_tx, new_pwr_info.gear_rx);
1352 
1353 	return ret;
1354 }
1355 
1356 /*
1357  * Wait until all pending SCSI commands and TMFs have finished or the timeout
1358  * has expired.
1359  *
1360  * Return: 0 upon success; -EBUSY upon timeout.
1361  */
1362 static int ufshcd_clock_scaling_prepare(struct ufs_hba *hba, u64 timeout_us)
1363 {
1364 	int ret = 0;
1365 	/*
1366 	 * make sure that there are no outstanding requests when
1367 	 * clock scaling is in progress
1368 	 */
1369 	ufshcd_scsi_block_requests(hba);
1370 	mutex_lock(&hba->wb_mutex);
1371 	down_write(&hba->clk_scaling_lock);
1372 
1373 	if (!hba->clk_scaling.is_allowed ||
1374 	    ufshcd_wait_for_doorbell_clr(hba, timeout_us)) {
1375 		ret = -EBUSY;
1376 		up_write(&hba->clk_scaling_lock);
1377 		mutex_unlock(&hba->wb_mutex);
1378 		ufshcd_scsi_unblock_requests(hba);
1379 		goto out;
1380 	}
1381 
1382 	/* let's not get into low power until clock scaling is completed */
1383 	ufshcd_hold(hba);
1384 
1385 out:
1386 	return ret;
1387 }
1388 
1389 static void ufshcd_clock_scaling_unprepare(struct ufs_hba *hba, int err, bool scale_up)
1390 {
1391 	up_write(&hba->clk_scaling_lock);
1392 
1393 	/* Enable Write Booster if we have scaled up else disable it */
1394 	if (ufshcd_enable_wb_if_scaling_up(hba) && !err)
1395 		ufshcd_wb_toggle(hba, scale_up);
1396 
1397 	mutex_unlock(&hba->wb_mutex);
1398 
1399 	ufshcd_scsi_unblock_requests(hba);
1400 	ufshcd_release(hba);
1401 }
1402 
1403 /**
1404  * ufshcd_devfreq_scale - scale up/down UFS clocks and gear
1405  * @hba: per adapter instance
1406  * @freq: frequency to scale
1407  * @scale_up: True for scaling up and false for scalin down
1408  *
1409  * Return: 0 for success; -EBUSY if scaling can't happen at this time; non-zero
1410  * for any other errors.
1411  */
1412 static int ufshcd_devfreq_scale(struct ufs_hba *hba, unsigned long freq,
1413 				bool scale_up)
1414 {
1415 	int ret = 0;
1416 
1417 	ret = ufshcd_clock_scaling_prepare(hba, 1 * USEC_PER_SEC);
1418 	if (ret)
1419 		return ret;
1420 
1421 	/* scale down the gear before scaling down clocks */
1422 	if (!scale_up) {
1423 		ret = ufshcd_scale_gear(hba, false);
1424 		if (ret)
1425 			goto out_unprepare;
1426 	}
1427 
1428 	ret = ufshcd_scale_clks(hba, freq, scale_up);
1429 	if (ret) {
1430 		if (!scale_up)
1431 			ufshcd_scale_gear(hba, true);
1432 		goto out_unprepare;
1433 	}
1434 
1435 	/* scale up the gear after scaling up clocks */
1436 	if (scale_up) {
1437 		ret = ufshcd_scale_gear(hba, true);
1438 		if (ret) {
1439 			ufshcd_scale_clks(hba, hba->devfreq->previous_freq,
1440 					  false);
1441 			goto out_unprepare;
1442 		}
1443 	}
1444 
1445 out_unprepare:
1446 	ufshcd_clock_scaling_unprepare(hba, ret, scale_up);
1447 	return ret;
1448 }
1449 
1450 static void ufshcd_clk_scaling_suspend_work(struct work_struct *work)
1451 {
1452 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1453 					   clk_scaling.suspend_work);
1454 	unsigned long irq_flags;
1455 
1456 	spin_lock_irqsave(hba->host->host_lock, irq_flags);
1457 	if (hba->clk_scaling.active_reqs || hba->clk_scaling.is_suspended) {
1458 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1459 		return;
1460 	}
1461 	hba->clk_scaling.is_suspended = true;
1462 	hba->clk_scaling.window_start_t = 0;
1463 	spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1464 
1465 	devfreq_suspend_device(hba->devfreq);
1466 }
1467 
1468 static void ufshcd_clk_scaling_resume_work(struct work_struct *work)
1469 {
1470 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1471 					   clk_scaling.resume_work);
1472 	unsigned long irq_flags;
1473 
1474 	spin_lock_irqsave(hba->host->host_lock, irq_flags);
1475 	if (!hba->clk_scaling.is_suspended) {
1476 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1477 		return;
1478 	}
1479 	hba->clk_scaling.is_suspended = false;
1480 	spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1481 
1482 	devfreq_resume_device(hba->devfreq);
1483 }
1484 
1485 static int ufshcd_devfreq_target(struct device *dev,
1486 				unsigned long *freq, u32 flags)
1487 {
1488 	int ret = 0;
1489 	struct ufs_hba *hba = dev_get_drvdata(dev);
1490 	ktime_t start;
1491 	bool scale_up = false, sched_clk_scaling_suspend_work = false;
1492 	struct list_head *clk_list = &hba->clk_list_head;
1493 	struct ufs_clk_info *clki;
1494 	unsigned long irq_flags;
1495 
1496 	if (!ufshcd_is_clkscaling_supported(hba))
1497 		return -EINVAL;
1498 
1499 	if (hba->use_pm_opp) {
1500 		struct dev_pm_opp *opp;
1501 
1502 		/* Get the recommended frequency from OPP framework */
1503 		opp = devfreq_recommended_opp(dev, freq, flags);
1504 		if (IS_ERR(opp))
1505 			return PTR_ERR(opp);
1506 
1507 		dev_pm_opp_put(opp);
1508 	} else {
1509 		/* Override with the closest supported frequency */
1510 		clki = list_first_entry(&hba->clk_list_head, struct ufs_clk_info,
1511 					list);
1512 		*freq =	(unsigned long) clk_round_rate(clki->clk, *freq);
1513 	}
1514 
1515 	spin_lock_irqsave(hba->host->host_lock, irq_flags);
1516 	if (ufshcd_eh_in_progress(hba)) {
1517 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1518 		return 0;
1519 	}
1520 
1521 	/* Skip scaling clock when clock scaling is suspended */
1522 	if (hba->clk_scaling.is_suspended) {
1523 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1524 		dev_warn(hba->dev, "clock scaling is suspended, skip");
1525 		return 0;
1526 	}
1527 
1528 	if (!hba->clk_scaling.active_reqs)
1529 		sched_clk_scaling_suspend_work = true;
1530 
1531 	if (list_empty(clk_list)) {
1532 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1533 		goto out;
1534 	}
1535 
1536 	/* Decide based on the target or rounded-off frequency and update */
1537 	if (hba->use_pm_opp)
1538 		scale_up = *freq > hba->clk_scaling.target_freq;
1539 	else
1540 		scale_up = *freq == clki->max_freq;
1541 
1542 	if (!hba->use_pm_opp && !scale_up)
1543 		*freq = clki->min_freq;
1544 
1545 	/* Update the frequency */
1546 	if (!ufshcd_is_devfreq_scaling_required(hba, *freq, scale_up)) {
1547 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1548 		ret = 0;
1549 		goto out; /* no state change required */
1550 	}
1551 	spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1552 
1553 	start = ktime_get();
1554 	ret = ufshcd_devfreq_scale(hba, *freq, scale_up);
1555 	if (!ret)
1556 		hba->clk_scaling.target_freq = *freq;
1557 
1558 	trace_ufshcd_profile_clk_scaling(dev_name(hba->dev),
1559 		(scale_up ? "up" : "down"),
1560 		ktime_to_us(ktime_sub(ktime_get(), start)), ret);
1561 
1562 out:
1563 	if (sched_clk_scaling_suspend_work && !scale_up)
1564 		queue_work(hba->clk_scaling.workq,
1565 			   &hba->clk_scaling.suspend_work);
1566 
1567 	return ret;
1568 }
1569 
1570 static int ufshcd_devfreq_get_dev_status(struct device *dev,
1571 		struct devfreq_dev_status *stat)
1572 {
1573 	struct ufs_hba *hba = dev_get_drvdata(dev);
1574 	struct ufs_clk_scaling *scaling = &hba->clk_scaling;
1575 	unsigned long flags;
1576 	ktime_t curr_t;
1577 
1578 	if (!ufshcd_is_clkscaling_supported(hba))
1579 		return -EINVAL;
1580 
1581 	memset(stat, 0, sizeof(*stat));
1582 
1583 	spin_lock_irqsave(hba->host->host_lock, flags);
1584 	curr_t = ktime_get();
1585 	if (!scaling->window_start_t)
1586 		goto start_window;
1587 
1588 	/*
1589 	 * If current frequency is 0, then the ondemand governor considers
1590 	 * there's no initial frequency set. And it always requests to set
1591 	 * to max. frequency.
1592 	 */
1593 	if (hba->use_pm_opp) {
1594 		stat->current_frequency = hba->clk_scaling.target_freq;
1595 	} else {
1596 		struct list_head *clk_list = &hba->clk_list_head;
1597 		struct ufs_clk_info *clki;
1598 
1599 		clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1600 		stat->current_frequency = clki->curr_freq;
1601 	}
1602 
1603 	if (scaling->is_busy_started)
1604 		scaling->tot_busy_t += ktime_us_delta(curr_t,
1605 				scaling->busy_start_t);
1606 	stat->total_time = ktime_us_delta(curr_t, scaling->window_start_t);
1607 	stat->busy_time = scaling->tot_busy_t;
1608 start_window:
1609 	scaling->window_start_t = curr_t;
1610 	scaling->tot_busy_t = 0;
1611 
1612 	if (scaling->active_reqs) {
1613 		scaling->busy_start_t = curr_t;
1614 		scaling->is_busy_started = true;
1615 	} else {
1616 		scaling->busy_start_t = 0;
1617 		scaling->is_busy_started = false;
1618 	}
1619 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1620 	return 0;
1621 }
1622 
1623 static int ufshcd_devfreq_init(struct ufs_hba *hba)
1624 {
1625 	struct list_head *clk_list = &hba->clk_list_head;
1626 	struct ufs_clk_info *clki;
1627 	struct devfreq *devfreq;
1628 	int ret;
1629 
1630 	/* Skip devfreq if we don't have any clocks in the list */
1631 	if (list_empty(clk_list))
1632 		return 0;
1633 
1634 	if (!hba->use_pm_opp) {
1635 		clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1636 		dev_pm_opp_add(hba->dev, clki->min_freq, 0);
1637 		dev_pm_opp_add(hba->dev, clki->max_freq, 0);
1638 	}
1639 
1640 	ufshcd_vops_config_scaling_param(hba, &hba->vps->devfreq_profile,
1641 					 &hba->vps->ondemand_data);
1642 	devfreq = devfreq_add_device(hba->dev,
1643 			&hba->vps->devfreq_profile,
1644 			DEVFREQ_GOV_SIMPLE_ONDEMAND,
1645 			&hba->vps->ondemand_data);
1646 	if (IS_ERR(devfreq)) {
1647 		ret = PTR_ERR(devfreq);
1648 		dev_err(hba->dev, "Unable to register with devfreq %d\n", ret);
1649 
1650 		if (!hba->use_pm_opp) {
1651 			dev_pm_opp_remove(hba->dev, clki->min_freq);
1652 			dev_pm_opp_remove(hba->dev, clki->max_freq);
1653 		}
1654 		return ret;
1655 	}
1656 
1657 	hba->devfreq = devfreq;
1658 
1659 	return 0;
1660 }
1661 
1662 static void ufshcd_devfreq_remove(struct ufs_hba *hba)
1663 {
1664 	struct list_head *clk_list = &hba->clk_list_head;
1665 
1666 	if (!hba->devfreq)
1667 		return;
1668 
1669 	devfreq_remove_device(hba->devfreq);
1670 	hba->devfreq = NULL;
1671 
1672 	if (!hba->use_pm_opp) {
1673 		struct ufs_clk_info *clki;
1674 
1675 		clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1676 		dev_pm_opp_remove(hba->dev, clki->min_freq);
1677 		dev_pm_opp_remove(hba->dev, clki->max_freq);
1678 	}
1679 }
1680 
1681 static void ufshcd_suspend_clkscaling(struct ufs_hba *hba)
1682 {
1683 	unsigned long flags;
1684 	bool suspend = false;
1685 
1686 	cancel_work_sync(&hba->clk_scaling.suspend_work);
1687 	cancel_work_sync(&hba->clk_scaling.resume_work);
1688 
1689 	spin_lock_irqsave(hba->host->host_lock, flags);
1690 	if (!hba->clk_scaling.is_suspended) {
1691 		suspend = true;
1692 		hba->clk_scaling.is_suspended = true;
1693 		hba->clk_scaling.window_start_t = 0;
1694 	}
1695 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1696 
1697 	if (suspend)
1698 		devfreq_suspend_device(hba->devfreq);
1699 }
1700 
1701 static void ufshcd_resume_clkscaling(struct ufs_hba *hba)
1702 {
1703 	unsigned long flags;
1704 	bool resume = false;
1705 
1706 	spin_lock_irqsave(hba->host->host_lock, flags);
1707 	if (hba->clk_scaling.is_suspended) {
1708 		resume = true;
1709 		hba->clk_scaling.is_suspended = false;
1710 	}
1711 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1712 
1713 	if (resume)
1714 		devfreq_resume_device(hba->devfreq);
1715 }
1716 
1717 static ssize_t ufshcd_clkscale_enable_show(struct device *dev,
1718 		struct device_attribute *attr, char *buf)
1719 {
1720 	struct ufs_hba *hba = dev_get_drvdata(dev);
1721 
1722 	return sysfs_emit(buf, "%d\n", hba->clk_scaling.is_enabled);
1723 }
1724 
1725 static ssize_t ufshcd_clkscale_enable_store(struct device *dev,
1726 		struct device_attribute *attr, const char *buf, size_t count)
1727 {
1728 	struct ufs_hba *hba = dev_get_drvdata(dev);
1729 	u32 value;
1730 	int err = 0;
1731 
1732 	if (kstrtou32(buf, 0, &value))
1733 		return -EINVAL;
1734 
1735 	down(&hba->host_sem);
1736 	if (!ufshcd_is_user_access_allowed(hba)) {
1737 		err = -EBUSY;
1738 		goto out;
1739 	}
1740 
1741 	value = !!value;
1742 	if (value == hba->clk_scaling.is_enabled)
1743 		goto out;
1744 
1745 	ufshcd_rpm_get_sync(hba);
1746 	ufshcd_hold(hba);
1747 
1748 	hba->clk_scaling.is_enabled = value;
1749 
1750 	if (value) {
1751 		ufshcd_resume_clkscaling(hba);
1752 	} else {
1753 		ufshcd_suspend_clkscaling(hba);
1754 		err = ufshcd_devfreq_scale(hba, ULONG_MAX, true);
1755 		if (err)
1756 			dev_err(hba->dev, "%s: failed to scale clocks up %d\n",
1757 					__func__, err);
1758 	}
1759 
1760 	ufshcd_release(hba);
1761 	ufshcd_rpm_put_sync(hba);
1762 out:
1763 	up(&hba->host_sem);
1764 	return err ? err : count;
1765 }
1766 
1767 static void ufshcd_init_clk_scaling_sysfs(struct ufs_hba *hba)
1768 {
1769 	hba->clk_scaling.enable_attr.show = ufshcd_clkscale_enable_show;
1770 	hba->clk_scaling.enable_attr.store = ufshcd_clkscale_enable_store;
1771 	sysfs_attr_init(&hba->clk_scaling.enable_attr.attr);
1772 	hba->clk_scaling.enable_attr.attr.name = "clkscale_enable";
1773 	hba->clk_scaling.enable_attr.attr.mode = 0644;
1774 	if (device_create_file(hba->dev, &hba->clk_scaling.enable_attr))
1775 		dev_err(hba->dev, "Failed to create sysfs for clkscale_enable\n");
1776 }
1777 
1778 static void ufshcd_remove_clk_scaling_sysfs(struct ufs_hba *hba)
1779 {
1780 	if (hba->clk_scaling.enable_attr.attr.name)
1781 		device_remove_file(hba->dev, &hba->clk_scaling.enable_attr);
1782 }
1783 
1784 static void ufshcd_init_clk_scaling(struct ufs_hba *hba)
1785 {
1786 	char wq_name[sizeof("ufs_clkscaling_00")];
1787 
1788 	if (!ufshcd_is_clkscaling_supported(hba))
1789 		return;
1790 
1791 	if (!hba->clk_scaling.min_gear)
1792 		hba->clk_scaling.min_gear = UFS_HS_G1;
1793 
1794 	INIT_WORK(&hba->clk_scaling.suspend_work,
1795 		  ufshcd_clk_scaling_suspend_work);
1796 	INIT_WORK(&hba->clk_scaling.resume_work,
1797 		  ufshcd_clk_scaling_resume_work);
1798 
1799 	snprintf(wq_name, sizeof(wq_name), "ufs_clkscaling_%d",
1800 		 hba->host->host_no);
1801 	hba->clk_scaling.workq = create_singlethread_workqueue(wq_name);
1802 
1803 	hba->clk_scaling.is_initialized = true;
1804 }
1805 
1806 static void ufshcd_exit_clk_scaling(struct ufs_hba *hba)
1807 {
1808 	if (!hba->clk_scaling.is_initialized)
1809 		return;
1810 
1811 	ufshcd_remove_clk_scaling_sysfs(hba);
1812 	destroy_workqueue(hba->clk_scaling.workq);
1813 	ufshcd_devfreq_remove(hba);
1814 	hba->clk_scaling.is_initialized = false;
1815 }
1816 
1817 static void ufshcd_ungate_work(struct work_struct *work)
1818 {
1819 	int ret;
1820 	unsigned long flags;
1821 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1822 			clk_gating.ungate_work);
1823 
1824 	cancel_delayed_work_sync(&hba->clk_gating.gate_work);
1825 
1826 	spin_lock_irqsave(hba->host->host_lock, flags);
1827 	if (hba->clk_gating.state == CLKS_ON) {
1828 		spin_unlock_irqrestore(hba->host->host_lock, flags);
1829 		return;
1830 	}
1831 
1832 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1833 	ufshcd_hba_vreg_set_hpm(hba);
1834 	ufshcd_setup_clocks(hba, true);
1835 
1836 	ufshcd_enable_irq(hba);
1837 
1838 	/* Exit from hibern8 */
1839 	if (ufshcd_can_hibern8_during_gating(hba)) {
1840 		/* Prevent gating in this path */
1841 		hba->clk_gating.is_suspended = true;
1842 		if (ufshcd_is_link_hibern8(hba)) {
1843 			ret = ufshcd_uic_hibern8_exit(hba);
1844 			if (ret)
1845 				dev_err(hba->dev, "%s: hibern8 exit failed %d\n",
1846 					__func__, ret);
1847 			else
1848 				ufshcd_set_link_active(hba);
1849 		}
1850 		hba->clk_gating.is_suspended = false;
1851 	}
1852 }
1853 
1854 /**
1855  * ufshcd_hold - Enable clocks that were gated earlier due to ufshcd_release.
1856  * Also, exit from hibern8 mode and set the link as active.
1857  * @hba: per adapter instance
1858  */
1859 void ufshcd_hold(struct ufs_hba *hba)
1860 {
1861 	bool flush_result;
1862 	unsigned long flags;
1863 
1864 	if (!ufshcd_is_clkgating_allowed(hba) ||
1865 	    !hba->clk_gating.is_initialized)
1866 		return;
1867 	spin_lock_irqsave(hba->host->host_lock, flags);
1868 	hba->clk_gating.active_reqs++;
1869 
1870 start:
1871 	switch (hba->clk_gating.state) {
1872 	case CLKS_ON:
1873 		/*
1874 		 * Wait for the ungate work to complete if in progress.
1875 		 * Though the clocks may be in ON state, the link could
1876 		 * still be in hibner8 state if hibern8 is allowed
1877 		 * during clock gating.
1878 		 * Make sure we exit hibern8 state also in addition to
1879 		 * clocks being ON.
1880 		 */
1881 		if (ufshcd_can_hibern8_during_gating(hba) &&
1882 		    ufshcd_is_link_hibern8(hba)) {
1883 			spin_unlock_irqrestore(hba->host->host_lock, flags);
1884 			flush_result = flush_work(&hba->clk_gating.ungate_work);
1885 			if (hba->clk_gating.is_suspended && !flush_result)
1886 				return;
1887 			spin_lock_irqsave(hba->host->host_lock, flags);
1888 			goto start;
1889 		}
1890 		break;
1891 	case REQ_CLKS_OFF:
1892 		if (cancel_delayed_work(&hba->clk_gating.gate_work)) {
1893 			hba->clk_gating.state = CLKS_ON;
1894 			trace_ufshcd_clk_gating(dev_name(hba->dev),
1895 						hba->clk_gating.state);
1896 			break;
1897 		}
1898 		/*
1899 		 * If we are here, it means gating work is either done or
1900 		 * currently running. Hence, fall through to cancel gating
1901 		 * work and to enable clocks.
1902 		 */
1903 		fallthrough;
1904 	case CLKS_OFF:
1905 		hba->clk_gating.state = REQ_CLKS_ON;
1906 		trace_ufshcd_clk_gating(dev_name(hba->dev),
1907 					hba->clk_gating.state);
1908 		queue_work(hba->clk_gating.clk_gating_workq,
1909 			   &hba->clk_gating.ungate_work);
1910 		/*
1911 		 * fall through to check if we should wait for this
1912 		 * work to be done or not.
1913 		 */
1914 		fallthrough;
1915 	case REQ_CLKS_ON:
1916 		spin_unlock_irqrestore(hba->host->host_lock, flags);
1917 		flush_work(&hba->clk_gating.ungate_work);
1918 		/* Make sure state is CLKS_ON before returning */
1919 		spin_lock_irqsave(hba->host->host_lock, flags);
1920 		goto start;
1921 	default:
1922 		dev_err(hba->dev, "%s: clk gating is in invalid state %d\n",
1923 				__func__, hba->clk_gating.state);
1924 		break;
1925 	}
1926 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1927 }
1928 EXPORT_SYMBOL_GPL(ufshcd_hold);
1929 
1930 static void ufshcd_gate_work(struct work_struct *work)
1931 {
1932 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1933 			clk_gating.gate_work.work);
1934 	unsigned long flags;
1935 	int ret;
1936 
1937 	spin_lock_irqsave(hba->host->host_lock, flags);
1938 	/*
1939 	 * In case you are here to cancel this work the gating state
1940 	 * would be marked as REQ_CLKS_ON. In this case save time by
1941 	 * skipping the gating work and exit after changing the clock
1942 	 * state to CLKS_ON.
1943 	 */
1944 	if (hba->clk_gating.is_suspended ||
1945 		(hba->clk_gating.state != REQ_CLKS_OFF)) {
1946 		hba->clk_gating.state = CLKS_ON;
1947 		trace_ufshcd_clk_gating(dev_name(hba->dev),
1948 					hba->clk_gating.state);
1949 		goto rel_lock;
1950 	}
1951 
1952 	if (ufshcd_is_ufs_dev_busy(hba) || hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL)
1953 		goto rel_lock;
1954 
1955 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1956 
1957 	/* put the link into hibern8 mode before turning off clocks */
1958 	if (ufshcd_can_hibern8_during_gating(hba)) {
1959 		ret = ufshcd_uic_hibern8_enter(hba);
1960 		if (ret) {
1961 			hba->clk_gating.state = CLKS_ON;
1962 			dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
1963 					__func__, ret);
1964 			trace_ufshcd_clk_gating(dev_name(hba->dev),
1965 						hba->clk_gating.state);
1966 			goto out;
1967 		}
1968 		ufshcd_set_link_hibern8(hba);
1969 	}
1970 
1971 	ufshcd_disable_irq(hba);
1972 
1973 	ufshcd_setup_clocks(hba, false);
1974 
1975 	/* Put the host controller in low power mode if possible */
1976 	ufshcd_hba_vreg_set_lpm(hba);
1977 	/*
1978 	 * In case you are here to cancel this work the gating state
1979 	 * would be marked as REQ_CLKS_ON. In this case keep the state
1980 	 * as REQ_CLKS_ON which would anyway imply that clocks are off
1981 	 * and a request to turn them on is pending. By doing this way,
1982 	 * we keep the state machine in tact and this would ultimately
1983 	 * prevent from doing cancel work multiple times when there are
1984 	 * new requests arriving before the current cancel work is done.
1985 	 */
1986 	spin_lock_irqsave(hba->host->host_lock, flags);
1987 	if (hba->clk_gating.state == REQ_CLKS_OFF) {
1988 		hba->clk_gating.state = CLKS_OFF;
1989 		trace_ufshcd_clk_gating(dev_name(hba->dev),
1990 					hba->clk_gating.state);
1991 	}
1992 rel_lock:
1993 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1994 out:
1995 	return;
1996 }
1997 
1998 /* host lock must be held before calling this variant */
1999 static void __ufshcd_release(struct ufs_hba *hba)
2000 {
2001 	if (!ufshcd_is_clkgating_allowed(hba))
2002 		return;
2003 
2004 	hba->clk_gating.active_reqs--;
2005 
2006 	if (hba->clk_gating.active_reqs || hba->clk_gating.is_suspended ||
2007 	    hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL ||
2008 	    hba->outstanding_tasks || !hba->clk_gating.is_initialized ||
2009 	    hba->active_uic_cmd || hba->uic_async_done ||
2010 	    hba->clk_gating.state == CLKS_OFF)
2011 		return;
2012 
2013 	hba->clk_gating.state = REQ_CLKS_OFF;
2014 	trace_ufshcd_clk_gating(dev_name(hba->dev), hba->clk_gating.state);
2015 	queue_delayed_work(hba->clk_gating.clk_gating_workq,
2016 			   &hba->clk_gating.gate_work,
2017 			   msecs_to_jiffies(hba->clk_gating.delay_ms));
2018 }
2019 
2020 void ufshcd_release(struct ufs_hba *hba)
2021 {
2022 	unsigned long flags;
2023 
2024 	spin_lock_irqsave(hba->host->host_lock, flags);
2025 	__ufshcd_release(hba);
2026 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2027 }
2028 EXPORT_SYMBOL_GPL(ufshcd_release);
2029 
2030 static ssize_t ufshcd_clkgate_delay_show(struct device *dev,
2031 		struct device_attribute *attr, char *buf)
2032 {
2033 	struct ufs_hba *hba = dev_get_drvdata(dev);
2034 
2035 	return sysfs_emit(buf, "%lu\n", hba->clk_gating.delay_ms);
2036 }
2037 
2038 void ufshcd_clkgate_delay_set(struct device *dev, unsigned long value)
2039 {
2040 	struct ufs_hba *hba = dev_get_drvdata(dev);
2041 	unsigned long flags;
2042 
2043 	spin_lock_irqsave(hba->host->host_lock, flags);
2044 	hba->clk_gating.delay_ms = value;
2045 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2046 }
2047 EXPORT_SYMBOL_GPL(ufshcd_clkgate_delay_set);
2048 
2049 static ssize_t ufshcd_clkgate_delay_store(struct device *dev,
2050 		struct device_attribute *attr, const char *buf, size_t count)
2051 {
2052 	unsigned long value;
2053 
2054 	if (kstrtoul(buf, 0, &value))
2055 		return -EINVAL;
2056 
2057 	ufshcd_clkgate_delay_set(dev, value);
2058 	return count;
2059 }
2060 
2061 static ssize_t ufshcd_clkgate_enable_show(struct device *dev,
2062 		struct device_attribute *attr, char *buf)
2063 {
2064 	struct ufs_hba *hba = dev_get_drvdata(dev);
2065 
2066 	return sysfs_emit(buf, "%d\n", hba->clk_gating.is_enabled);
2067 }
2068 
2069 static ssize_t ufshcd_clkgate_enable_store(struct device *dev,
2070 		struct device_attribute *attr, const char *buf, size_t count)
2071 {
2072 	struct ufs_hba *hba = dev_get_drvdata(dev);
2073 	unsigned long flags;
2074 	u32 value;
2075 
2076 	if (kstrtou32(buf, 0, &value))
2077 		return -EINVAL;
2078 
2079 	value = !!value;
2080 
2081 	spin_lock_irqsave(hba->host->host_lock, flags);
2082 	if (value == hba->clk_gating.is_enabled)
2083 		goto out;
2084 
2085 	if (value)
2086 		__ufshcd_release(hba);
2087 	else
2088 		hba->clk_gating.active_reqs++;
2089 
2090 	hba->clk_gating.is_enabled = value;
2091 out:
2092 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2093 	return count;
2094 }
2095 
2096 static void ufshcd_init_clk_gating_sysfs(struct ufs_hba *hba)
2097 {
2098 	hba->clk_gating.delay_attr.show = ufshcd_clkgate_delay_show;
2099 	hba->clk_gating.delay_attr.store = ufshcd_clkgate_delay_store;
2100 	sysfs_attr_init(&hba->clk_gating.delay_attr.attr);
2101 	hba->clk_gating.delay_attr.attr.name = "clkgate_delay_ms";
2102 	hba->clk_gating.delay_attr.attr.mode = 0644;
2103 	if (device_create_file(hba->dev, &hba->clk_gating.delay_attr))
2104 		dev_err(hba->dev, "Failed to create sysfs for clkgate_delay\n");
2105 
2106 	hba->clk_gating.enable_attr.show = ufshcd_clkgate_enable_show;
2107 	hba->clk_gating.enable_attr.store = ufshcd_clkgate_enable_store;
2108 	sysfs_attr_init(&hba->clk_gating.enable_attr.attr);
2109 	hba->clk_gating.enable_attr.attr.name = "clkgate_enable";
2110 	hba->clk_gating.enable_attr.attr.mode = 0644;
2111 	if (device_create_file(hba->dev, &hba->clk_gating.enable_attr))
2112 		dev_err(hba->dev, "Failed to create sysfs for clkgate_enable\n");
2113 }
2114 
2115 static void ufshcd_remove_clk_gating_sysfs(struct ufs_hba *hba)
2116 {
2117 	if (hba->clk_gating.delay_attr.attr.name)
2118 		device_remove_file(hba->dev, &hba->clk_gating.delay_attr);
2119 	if (hba->clk_gating.enable_attr.attr.name)
2120 		device_remove_file(hba->dev, &hba->clk_gating.enable_attr);
2121 }
2122 
2123 static void ufshcd_init_clk_gating(struct ufs_hba *hba)
2124 {
2125 	char wq_name[sizeof("ufs_clk_gating_00")];
2126 
2127 	if (!ufshcd_is_clkgating_allowed(hba))
2128 		return;
2129 
2130 	hba->clk_gating.state = CLKS_ON;
2131 
2132 	hba->clk_gating.delay_ms = 150;
2133 	INIT_DELAYED_WORK(&hba->clk_gating.gate_work, ufshcd_gate_work);
2134 	INIT_WORK(&hba->clk_gating.ungate_work, ufshcd_ungate_work);
2135 
2136 	snprintf(wq_name, ARRAY_SIZE(wq_name), "ufs_clk_gating_%d",
2137 		 hba->host->host_no);
2138 	hba->clk_gating.clk_gating_workq = alloc_ordered_workqueue(wq_name,
2139 					WQ_MEM_RECLAIM | WQ_HIGHPRI);
2140 
2141 	ufshcd_init_clk_gating_sysfs(hba);
2142 
2143 	hba->clk_gating.is_enabled = true;
2144 	hba->clk_gating.is_initialized = true;
2145 }
2146 
2147 static void ufshcd_exit_clk_gating(struct ufs_hba *hba)
2148 {
2149 	if (!hba->clk_gating.is_initialized)
2150 		return;
2151 
2152 	ufshcd_remove_clk_gating_sysfs(hba);
2153 
2154 	/* Ungate the clock if necessary. */
2155 	ufshcd_hold(hba);
2156 	hba->clk_gating.is_initialized = false;
2157 	ufshcd_release(hba);
2158 
2159 	destroy_workqueue(hba->clk_gating.clk_gating_workq);
2160 }
2161 
2162 static void ufshcd_clk_scaling_start_busy(struct ufs_hba *hba)
2163 {
2164 	bool queue_resume_work = false;
2165 	ktime_t curr_t = ktime_get();
2166 	unsigned long flags;
2167 
2168 	if (!ufshcd_is_clkscaling_supported(hba))
2169 		return;
2170 
2171 	spin_lock_irqsave(hba->host->host_lock, flags);
2172 	if (!hba->clk_scaling.active_reqs++)
2173 		queue_resume_work = true;
2174 
2175 	if (!hba->clk_scaling.is_enabled || hba->pm_op_in_progress) {
2176 		spin_unlock_irqrestore(hba->host->host_lock, flags);
2177 		return;
2178 	}
2179 
2180 	if (queue_resume_work)
2181 		queue_work(hba->clk_scaling.workq,
2182 			   &hba->clk_scaling.resume_work);
2183 
2184 	if (!hba->clk_scaling.window_start_t) {
2185 		hba->clk_scaling.window_start_t = curr_t;
2186 		hba->clk_scaling.tot_busy_t = 0;
2187 		hba->clk_scaling.is_busy_started = false;
2188 	}
2189 
2190 	if (!hba->clk_scaling.is_busy_started) {
2191 		hba->clk_scaling.busy_start_t = curr_t;
2192 		hba->clk_scaling.is_busy_started = true;
2193 	}
2194 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2195 }
2196 
2197 static void ufshcd_clk_scaling_update_busy(struct ufs_hba *hba)
2198 {
2199 	struct ufs_clk_scaling *scaling = &hba->clk_scaling;
2200 	unsigned long flags;
2201 
2202 	if (!ufshcd_is_clkscaling_supported(hba))
2203 		return;
2204 
2205 	spin_lock_irqsave(hba->host->host_lock, flags);
2206 	hba->clk_scaling.active_reqs--;
2207 	if (!scaling->active_reqs && scaling->is_busy_started) {
2208 		scaling->tot_busy_t += ktime_to_us(ktime_sub(ktime_get(),
2209 					scaling->busy_start_t));
2210 		scaling->busy_start_t = 0;
2211 		scaling->is_busy_started = false;
2212 	}
2213 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2214 }
2215 
2216 static inline int ufshcd_monitor_opcode2dir(u8 opcode)
2217 {
2218 	if (opcode == READ_6 || opcode == READ_10 || opcode == READ_16)
2219 		return READ;
2220 	else if (opcode == WRITE_6 || opcode == WRITE_10 || opcode == WRITE_16)
2221 		return WRITE;
2222 	else
2223 		return -EINVAL;
2224 }
2225 
2226 static inline bool ufshcd_should_inform_monitor(struct ufs_hba *hba,
2227 						struct ufshcd_lrb *lrbp)
2228 {
2229 	const struct ufs_hba_monitor *m = &hba->monitor;
2230 
2231 	return (m->enabled && lrbp && lrbp->cmd &&
2232 		(!m->chunk_size || m->chunk_size == lrbp->cmd->sdb.length) &&
2233 		ktime_before(hba->monitor.enabled_ts, lrbp->issue_time_stamp));
2234 }
2235 
2236 static void ufshcd_start_monitor(struct ufs_hba *hba,
2237 				 const struct ufshcd_lrb *lrbp)
2238 {
2239 	int dir = ufshcd_monitor_opcode2dir(*lrbp->cmd->cmnd);
2240 	unsigned long flags;
2241 
2242 	spin_lock_irqsave(hba->host->host_lock, flags);
2243 	if (dir >= 0 && hba->monitor.nr_queued[dir]++ == 0)
2244 		hba->monitor.busy_start_ts[dir] = ktime_get();
2245 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2246 }
2247 
2248 static void ufshcd_update_monitor(struct ufs_hba *hba, const struct ufshcd_lrb *lrbp)
2249 {
2250 	int dir = ufshcd_monitor_opcode2dir(*lrbp->cmd->cmnd);
2251 	unsigned long flags;
2252 
2253 	spin_lock_irqsave(hba->host->host_lock, flags);
2254 	if (dir >= 0 && hba->monitor.nr_queued[dir] > 0) {
2255 		const struct request *req = scsi_cmd_to_rq(lrbp->cmd);
2256 		struct ufs_hba_monitor *m = &hba->monitor;
2257 		ktime_t now, inc, lat;
2258 
2259 		now = lrbp->compl_time_stamp;
2260 		inc = ktime_sub(now, m->busy_start_ts[dir]);
2261 		m->total_busy[dir] = ktime_add(m->total_busy[dir], inc);
2262 		m->nr_sec_rw[dir] += blk_rq_sectors(req);
2263 
2264 		/* Update latencies */
2265 		m->nr_req[dir]++;
2266 		lat = ktime_sub(now, lrbp->issue_time_stamp);
2267 		m->lat_sum[dir] += lat;
2268 		if (m->lat_max[dir] < lat || !m->lat_max[dir])
2269 			m->lat_max[dir] = lat;
2270 		if (m->lat_min[dir] > lat || !m->lat_min[dir])
2271 			m->lat_min[dir] = lat;
2272 
2273 		m->nr_queued[dir]--;
2274 		/* Push forward the busy start of monitor */
2275 		m->busy_start_ts[dir] = now;
2276 	}
2277 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2278 }
2279 
2280 /**
2281  * ufshcd_send_command - Send SCSI or device management commands
2282  * @hba: per adapter instance
2283  * @task_tag: Task tag of the command
2284  * @hwq: pointer to hardware queue instance
2285  */
2286 static inline
2287 void ufshcd_send_command(struct ufs_hba *hba, unsigned int task_tag,
2288 			 struct ufs_hw_queue *hwq)
2289 {
2290 	struct ufshcd_lrb *lrbp = &hba->lrb[task_tag];
2291 	unsigned long flags;
2292 
2293 	lrbp->issue_time_stamp = ktime_get();
2294 	lrbp->issue_time_stamp_local_clock = local_clock();
2295 	lrbp->compl_time_stamp = ktime_set(0, 0);
2296 	lrbp->compl_time_stamp_local_clock = 0;
2297 	ufshcd_add_command_trace(hba, task_tag, UFS_CMD_SEND);
2298 	if (lrbp->cmd)
2299 		ufshcd_clk_scaling_start_busy(hba);
2300 	if (unlikely(ufshcd_should_inform_monitor(hba, lrbp)))
2301 		ufshcd_start_monitor(hba, lrbp);
2302 
2303 	if (is_mcq_enabled(hba)) {
2304 		int utrd_size = sizeof(struct utp_transfer_req_desc);
2305 		struct utp_transfer_req_desc *src = lrbp->utr_descriptor_ptr;
2306 		struct utp_transfer_req_desc *dest;
2307 
2308 		spin_lock(&hwq->sq_lock);
2309 		dest = hwq->sqe_base_addr + hwq->sq_tail_slot;
2310 		memcpy(dest, src, utrd_size);
2311 		ufshcd_inc_sq_tail(hwq);
2312 		spin_unlock(&hwq->sq_lock);
2313 	} else {
2314 		spin_lock_irqsave(&hba->outstanding_lock, flags);
2315 		if (hba->vops && hba->vops->setup_xfer_req)
2316 			hba->vops->setup_xfer_req(hba, lrbp->task_tag,
2317 						  !!lrbp->cmd);
2318 		__set_bit(lrbp->task_tag, &hba->outstanding_reqs);
2319 		ufshcd_writel(hba, 1 << lrbp->task_tag,
2320 			      REG_UTP_TRANSFER_REQ_DOOR_BELL);
2321 		spin_unlock_irqrestore(&hba->outstanding_lock, flags);
2322 	}
2323 }
2324 
2325 /**
2326  * ufshcd_copy_sense_data - Copy sense data in case of check condition
2327  * @lrbp: pointer to local reference block
2328  */
2329 static inline void ufshcd_copy_sense_data(struct ufshcd_lrb *lrbp)
2330 {
2331 	u8 *const sense_buffer = lrbp->cmd->sense_buffer;
2332 	u16 resp_len;
2333 	int len;
2334 
2335 	resp_len = be16_to_cpu(lrbp->ucd_rsp_ptr->header.data_segment_length);
2336 	if (sense_buffer && resp_len) {
2337 		int len_to_copy;
2338 
2339 		len = be16_to_cpu(lrbp->ucd_rsp_ptr->sr.sense_data_len);
2340 		len_to_copy = min_t(int, UFS_SENSE_SIZE, len);
2341 
2342 		memcpy(sense_buffer, lrbp->ucd_rsp_ptr->sr.sense_data,
2343 		       len_to_copy);
2344 	}
2345 }
2346 
2347 /**
2348  * ufshcd_copy_query_response() - Copy the Query Response and the data
2349  * descriptor
2350  * @hba: per adapter instance
2351  * @lrbp: pointer to local reference block
2352  *
2353  * Return: 0 upon success; < 0 upon failure.
2354  */
2355 static
2356 int ufshcd_copy_query_response(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2357 {
2358 	struct ufs_query_res *query_res = &hba->dev_cmd.query.response;
2359 
2360 	memcpy(&query_res->upiu_res, &lrbp->ucd_rsp_ptr->qr, QUERY_OSF_SIZE);
2361 
2362 	/* Get the descriptor */
2363 	if (hba->dev_cmd.query.descriptor &&
2364 	    lrbp->ucd_rsp_ptr->qr.opcode == UPIU_QUERY_OPCODE_READ_DESC) {
2365 		u8 *descp = (u8 *)lrbp->ucd_rsp_ptr +
2366 				GENERAL_UPIU_REQUEST_SIZE;
2367 		u16 resp_len;
2368 		u16 buf_len;
2369 
2370 		/* data segment length */
2371 		resp_len = be16_to_cpu(lrbp->ucd_rsp_ptr->header
2372 				       .data_segment_length);
2373 		buf_len = be16_to_cpu(
2374 				hba->dev_cmd.query.request.upiu_req.length);
2375 		if (likely(buf_len >= resp_len)) {
2376 			memcpy(hba->dev_cmd.query.descriptor, descp, resp_len);
2377 		} else {
2378 			dev_warn(hba->dev,
2379 				 "%s: rsp size %d is bigger than buffer size %d",
2380 				 __func__, resp_len, buf_len);
2381 			return -EINVAL;
2382 		}
2383 	}
2384 
2385 	return 0;
2386 }
2387 
2388 /**
2389  * ufshcd_hba_capabilities - Read controller capabilities
2390  * @hba: per adapter instance
2391  *
2392  * Return: 0 on success, negative on error.
2393  */
2394 static inline int ufshcd_hba_capabilities(struct ufs_hba *hba)
2395 {
2396 	int err;
2397 
2398 	hba->capabilities = ufshcd_readl(hba, REG_CONTROLLER_CAPABILITIES);
2399 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_64BIT_ADDRESS)
2400 		hba->capabilities &= ~MASK_64_ADDRESSING_SUPPORT;
2401 
2402 	/* nutrs and nutmrs are 0 based values */
2403 	hba->nutrs = (hba->capabilities & MASK_TRANSFER_REQUESTS_SLOTS) + 1;
2404 	hba->nutmrs =
2405 	((hba->capabilities & MASK_TASK_MANAGEMENT_REQUEST_SLOTS) >> 16) + 1;
2406 	hba->reserved_slot = hba->nutrs - 1;
2407 
2408 	/* Read crypto capabilities */
2409 	err = ufshcd_hba_init_crypto_capabilities(hba);
2410 	if (err) {
2411 		dev_err(hba->dev, "crypto setup failed\n");
2412 		return err;
2413 	}
2414 
2415 	hba->mcq_sup = FIELD_GET(MASK_MCQ_SUPPORT, hba->capabilities);
2416 	if (!hba->mcq_sup)
2417 		return 0;
2418 
2419 	hba->mcq_capabilities = ufshcd_readl(hba, REG_MCQCAP);
2420 	hba->ext_iid_sup = FIELD_GET(MASK_EXT_IID_SUPPORT,
2421 				     hba->mcq_capabilities);
2422 
2423 	return 0;
2424 }
2425 
2426 /**
2427  * ufshcd_ready_for_uic_cmd - Check if controller is ready
2428  *                            to accept UIC commands
2429  * @hba: per adapter instance
2430  *
2431  * Return: true on success, else false.
2432  */
2433 static inline bool ufshcd_ready_for_uic_cmd(struct ufs_hba *hba)
2434 {
2435 	u32 val;
2436 	int ret = read_poll_timeout(ufshcd_readl, val, val & UIC_COMMAND_READY,
2437 				    500, UIC_CMD_TIMEOUT * 1000, false, hba,
2438 				    REG_CONTROLLER_STATUS);
2439 	return ret == 0;
2440 }
2441 
2442 /**
2443  * ufshcd_get_upmcrs - Get the power mode change request status
2444  * @hba: Pointer to adapter instance
2445  *
2446  * This function gets the UPMCRS field of HCS register
2447  *
2448  * Return: value of UPMCRS field.
2449  */
2450 static inline u8 ufshcd_get_upmcrs(struct ufs_hba *hba)
2451 {
2452 	return (ufshcd_readl(hba, REG_CONTROLLER_STATUS) >> 8) & 0x7;
2453 }
2454 
2455 /**
2456  * ufshcd_dispatch_uic_cmd - Dispatch an UIC command to the Unipro layer
2457  * @hba: per adapter instance
2458  * @uic_cmd: UIC command
2459  */
2460 static inline void
2461 ufshcd_dispatch_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2462 {
2463 	lockdep_assert_held(&hba->uic_cmd_mutex);
2464 
2465 	WARN_ON(hba->active_uic_cmd);
2466 
2467 	hba->active_uic_cmd = uic_cmd;
2468 
2469 	/* Write Args */
2470 	ufshcd_writel(hba, uic_cmd->argument1, REG_UIC_COMMAND_ARG_1);
2471 	ufshcd_writel(hba, uic_cmd->argument2, REG_UIC_COMMAND_ARG_2);
2472 	ufshcd_writel(hba, uic_cmd->argument3, REG_UIC_COMMAND_ARG_3);
2473 
2474 	ufshcd_add_uic_command_trace(hba, uic_cmd, UFS_CMD_SEND);
2475 
2476 	/* Write UIC Cmd */
2477 	ufshcd_writel(hba, uic_cmd->command & COMMAND_OPCODE_MASK,
2478 		      REG_UIC_COMMAND);
2479 }
2480 
2481 /**
2482  * ufshcd_wait_for_uic_cmd - Wait for completion of an UIC command
2483  * @hba: per adapter instance
2484  * @uic_cmd: UIC command
2485  *
2486  * Return: 0 only if success.
2487  */
2488 static int
2489 ufshcd_wait_for_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2490 {
2491 	int ret;
2492 	unsigned long flags;
2493 
2494 	lockdep_assert_held(&hba->uic_cmd_mutex);
2495 
2496 	if (wait_for_completion_timeout(&uic_cmd->done,
2497 					msecs_to_jiffies(UIC_CMD_TIMEOUT))) {
2498 		ret = uic_cmd->argument2 & MASK_UIC_COMMAND_RESULT;
2499 	} else {
2500 		ret = -ETIMEDOUT;
2501 		dev_err(hba->dev,
2502 			"uic cmd 0x%x with arg3 0x%x completion timeout\n",
2503 			uic_cmd->command, uic_cmd->argument3);
2504 
2505 		if (!uic_cmd->cmd_active) {
2506 			dev_err(hba->dev, "%s: UIC cmd has been completed, return the result\n",
2507 				__func__);
2508 			ret = uic_cmd->argument2 & MASK_UIC_COMMAND_RESULT;
2509 		}
2510 	}
2511 
2512 	spin_lock_irqsave(hba->host->host_lock, flags);
2513 	hba->active_uic_cmd = NULL;
2514 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2515 
2516 	return ret;
2517 }
2518 
2519 /**
2520  * __ufshcd_send_uic_cmd - Send UIC commands and retrieve the result
2521  * @hba: per adapter instance
2522  * @uic_cmd: UIC command
2523  * @completion: initialize the completion only if this is set to true
2524  *
2525  * Return: 0 only if success.
2526  */
2527 static int
2528 __ufshcd_send_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd,
2529 		      bool completion)
2530 {
2531 	lockdep_assert_held(&hba->uic_cmd_mutex);
2532 
2533 	if (!ufshcd_ready_for_uic_cmd(hba)) {
2534 		dev_err(hba->dev,
2535 			"Controller not ready to accept UIC commands\n");
2536 		return -EIO;
2537 	}
2538 
2539 	if (completion)
2540 		init_completion(&uic_cmd->done);
2541 
2542 	uic_cmd->cmd_active = 1;
2543 	ufshcd_dispatch_uic_cmd(hba, uic_cmd);
2544 
2545 	return 0;
2546 }
2547 
2548 /**
2549  * ufshcd_send_uic_cmd - Send UIC commands and retrieve the result
2550  * @hba: per adapter instance
2551  * @uic_cmd: UIC command
2552  *
2553  * Return: 0 only if success.
2554  */
2555 int ufshcd_send_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2556 {
2557 	int ret;
2558 
2559 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_UIC_CMD)
2560 		return 0;
2561 
2562 	ufshcd_hold(hba);
2563 	mutex_lock(&hba->uic_cmd_mutex);
2564 	ufshcd_add_delay_before_dme_cmd(hba);
2565 
2566 	ret = __ufshcd_send_uic_cmd(hba, uic_cmd, true);
2567 	if (!ret)
2568 		ret = ufshcd_wait_for_uic_cmd(hba, uic_cmd);
2569 
2570 	mutex_unlock(&hba->uic_cmd_mutex);
2571 
2572 	ufshcd_release(hba);
2573 	return ret;
2574 }
2575 
2576 /**
2577  * ufshcd_sgl_to_prdt - SG list to PRTD (Physical Region Description Table, 4DW format)
2578  * @hba:	per-adapter instance
2579  * @lrbp:	pointer to local reference block
2580  * @sg_entries:	The number of sg lists actually used
2581  * @sg_list:	Pointer to SG list
2582  */
2583 static void ufshcd_sgl_to_prdt(struct ufs_hba *hba, struct ufshcd_lrb *lrbp, int sg_entries,
2584 			       struct scatterlist *sg_list)
2585 {
2586 	struct ufshcd_sg_entry *prd;
2587 	struct scatterlist *sg;
2588 	int i;
2589 
2590 	if (sg_entries) {
2591 
2592 		if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN)
2593 			lrbp->utr_descriptor_ptr->prd_table_length =
2594 				cpu_to_le16(sg_entries * ufshcd_sg_entry_size(hba));
2595 		else
2596 			lrbp->utr_descriptor_ptr->prd_table_length = cpu_to_le16(sg_entries);
2597 
2598 		prd = lrbp->ucd_prdt_ptr;
2599 
2600 		for_each_sg(sg_list, sg, sg_entries, i) {
2601 			const unsigned int len = sg_dma_len(sg);
2602 
2603 			/*
2604 			 * From the UFSHCI spec: "Data Byte Count (DBC): A '0'
2605 			 * based value that indicates the length, in bytes, of
2606 			 * the data block. A maximum of length of 256KB may
2607 			 * exist for any entry. Bits 1:0 of this field shall be
2608 			 * 11b to indicate Dword granularity. A value of '3'
2609 			 * indicates 4 bytes, '7' indicates 8 bytes, etc."
2610 			 */
2611 			WARN_ONCE(len > SZ_256K, "len = %#x\n", len);
2612 			prd->size = cpu_to_le32(len - 1);
2613 			prd->addr = cpu_to_le64(sg->dma_address);
2614 			prd->reserved = 0;
2615 			prd = (void *)prd + ufshcd_sg_entry_size(hba);
2616 		}
2617 	} else {
2618 		lrbp->utr_descriptor_ptr->prd_table_length = 0;
2619 	}
2620 }
2621 
2622 /**
2623  * ufshcd_map_sg - Map scatter-gather list to prdt
2624  * @hba: per adapter instance
2625  * @lrbp: pointer to local reference block
2626  *
2627  * Return: 0 in case of success, non-zero value in case of failure.
2628  */
2629 static int ufshcd_map_sg(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2630 {
2631 	struct scsi_cmnd *cmd = lrbp->cmd;
2632 	int sg_segments = scsi_dma_map(cmd);
2633 
2634 	if (sg_segments < 0)
2635 		return sg_segments;
2636 
2637 	ufshcd_sgl_to_prdt(hba, lrbp, sg_segments, scsi_sglist(cmd));
2638 
2639 	return 0;
2640 }
2641 
2642 /**
2643  * ufshcd_enable_intr - enable interrupts
2644  * @hba: per adapter instance
2645  * @intrs: interrupt bits
2646  */
2647 static void ufshcd_enable_intr(struct ufs_hba *hba, u32 intrs)
2648 {
2649 	u32 set = ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
2650 
2651 	set |= intrs;
2652 	ufshcd_writel(hba, set, REG_INTERRUPT_ENABLE);
2653 }
2654 
2655 /**
2656  * ufshcd_disable_intr - disable interrupts
2657  * @hba: per adapter instance
2658  * @intrs: interrupt bits
2659  */
2660 static void ufshcd_disable_intr(struct ufs_hba *hba, u32 intrs)
2661 {
2662 	u32 set = ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
2663 
2664 	set &= ~intrs;
2665 	ufshcd_writel(hba, set, REG_INTERRUPT_ENABLE);
2666 }
2667 
2668 /**
2669  * ufshcd_prepare_req_desc_hdr - Fill UTP Transfer request descriptor header according to request
2670  * descriptor according to request
2671  * @hba: per adapter instance
2672  * @lrbp: pointer to local reference block
2673  * @upiu_flags: flags required in the header
2674  * @cmd_dir: requests data direction
2675  * @ehs_length: Total EHS Length (in 32‐bytes units of all Extra Header Segments)
2676  */
2677 static void
2678 ufshcd_prepare_req_desc_hdr(struct ufs_hba *hba, struct ufshcd_lrb *lrbp,
2679 			    u8 *upiu_flags, enum dma_data_direction cmd_dir,
2680 			    int ehs_length)
2681 {
2682 	struct utp_transfer_req_desc *req_desc = lrbp->utr_descriptor_ptr;
2683 	struct request_desc_header *h = &req_desc->header;
2684 	enum utp_data_direction data_direction;
2685 
2686 	lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
2687 
2688 	*h = (typeof(*h)){ };
2689 
2690 	if (cmd_dir == DMA_FROM_DEVICE) {
2691 		data_direction = UTP_DEVICE_TO_HOST;
2692 		*upiu_flags = UPIU_CMD_FLAGS_READ;
2693 	} else if (cmd_dir == DMA_TO_DEVICE) {
2694 		data_direction = UTP_HOST_TO_DEVICE;
2695 		*upiu_flags = UPIU_CMD_FLAGS_WRITE;
2696 	} else {
2697 		data_direction = UTP_NO_DATA_TRANSFER;
2698 		*upiu_flags = UPIU_CMD_FLAGS_NONE;
2699 	}
2700 
2701 	h->command_type = lrbp->command_type;
2702 	h->data_direction = data_direction;
2703 	h->ehs_length = ehs_length;
2704 
2705 	if (lrbp->intr_cmd)
2706 		h->interrupt = 1;
2707 
2708 	/* Prepare crypto related dwords */
2709 	ufshcd_prepare_req_desc_hdr_crypto(lrbp, h);
2710 
2711 	/*
2712 	 * assigning invalid value for command status. Controller
2713 	 * updates OCS on command completion, with the command
2714 	 * status
2715 	 */
2716 	h->ocs = OCS_INVALID_COMMAND_STATUS;
2717 
2718 	req_desc->prd_table_length = 0;
2719 }
2720 
2721 /**
2722  * ufshcd_prepare_utp_scsi_cmd_upiu() - fills the utp_transfer_req_desc,
2723  * for scsi commands
2724  * @lrbp: local reference block pointer
2725  * @upiu_flags: flags
2726  */
2727 static
2728 void ufshcd_prepare_utp_scsi_cmd_upiu(struct ufshcd_lrb *lrbp, u8 upiu_flags)
2729 {
2730 	struct scsi_cmnd *cmd = lrbp->cmd;
2731 	struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2732 	unsigned short cdb_len;
2733 
2734 	ucd_req_ptr->header = (struct utp_upiu_header){
2735 		.transaction_code = UPIU_TRANSACTION_COMMAND,
2736 		.flags = upiu_flags,
2737 		.lun = lrbp->lun,
2738 		.task_tag = lrbp->task_tag,
2739 		.command_set_type = UPIU_COMMAND_SET_TYPE_SCSI,
2740 	};
2741 
2742 	WARN_ON_ONCE(ucd_req_ptr->header.task_tag != lrbp->task_tag);
2743 
2744 	ucd_req_ptr->sc.exp_data_transfer_len = cpu_to_be32(cmd->sdb.length);
2745 
2746 	cdb_len = min_t(unsigned short, cmd->cmd_len, UFS_CDB_SIZE);
2747 	memset(ucd_req_ptr->sc.cdb, 0, UFS_CDB_SIZE);
2748 	memcpy(ucd_req_ptr->sc.cdb, cmd->cmnd, cdb_len);
2749 
2750 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2751 }
2752 
2753 /**
2754  * ufshcd_prepare_utp_query_req_upiu() - fill the utp_transfer_req_desc for query request
2755  * @hba: UFS hba
2756  * @lrbp: local reference block pointer
2757  * @upiu_flags: flags
2758  */
2759 static void ufshcd_prepare_utp_query_req_upiu(struct ufs_hba *hba,
2760 				struct ufshcd_lrb *lrbp, u8 upiu_flags)
2761 {
2762 	struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2763 	struct ufs_query *query = &hba->dev_cmd.query;
2764 	u16 len = be16_to_cpu(query->request.upiu_req.length);
2765 
2766 	/* Query request header */
2767 	ucd_req_ptr->header = (struct utp_upiu_header){
2768 		.transaction_code = UPIU_TRANSACTION_QUERY_REQ,
2769 		.flags = upiu_flags,
2770 		.lun = lrbp->lun,
2771 		.task_tag = lrbp->task_tag,
2772 		.query_function = query->request.query_func,
2773 		/* Data segment length only need for WRITE_DESC */
2774 		.data_segment_length =
2775 			query->request.upiu_req.opcode ==
2776 					UPIU_QUERY_OPCODE_WRITE_DESC ?
2777 				cpu_to_be16(len) :
2778 				0,
2779 	};
2780 
2781 	/* Copy the Query Request buffer as is */
2782 	memcpy(&ucd_req_ptr->qr, &query->request.upiu_req,
2783 			QUERY_OSF_SIZE);
2784 
2785 	/* Copy the Descriptor */
2786 	if (query->request.upiu_req.opcode == UPIU_QUERY_OPCODE_WRITE_DESC)
2787 		memcpy(ucd_req_ptr + 1, query->descriptor, len);
2788 
2789 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2790 }
2791 
2792 static inline void ufshcd_prepare_utp_nop_upiu(struct ufshcd_lrb *lrbp)
2793 {
2794 	struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2795 
2796 	memset(ucd_req_ptr, 0, sizeof(struct utp_upiu_req));
2797 
2798 	ucd_req_ptr->header = (struct utp_upiu_header){
2799 		.transaction_code = UPIU_TRANSACTION_NOP_OUT,
2800 		.task_tag = lrbp->task_tag,
2801 	};
2802 
2803 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2804 }
2805 
2806 /**
2807  * ufshcd_compose_devman_upiu - UFS Protocol Information Unit(UPIU)
2808  *			     for Device Management Purposes
2809  * @hba: per adapter instance
2810  * @lrbp: pointer to local reference block
2811  *
2812  * Return: 0 upon success; < 0 upon failure.
2813  */
2814 static int ufshcd_compose_devman_upiu(struct ufs_hba *hba,
2815 				      struct ufshcd_lrb *lrbp)
2816 {
2817 	u8 upiu_flags;
2818 	int ret = 0;
2819 
2820 	ufshcd_prepare_req_desc_hdr(hba, lrbp, &upiu_flags, DMA_NONE, 0);
2821 
2822 	if (hba->dev_cmd.type == DEV_CMD_TYPE_QUERY)
2823 		ufshcd_prepare_utp_query_req_upiu(hba, lrbp, upiu_flags);
2824 	else if (hba->dev_cmd.type == DEV_CMD_TYPE_NOP)
2825 		ufshcd_prepare_utp_nop_upiu(lrbp);
2826 	else
2827 		ret = -EINVAL;
2828 
2829 	return ret;
2830 }
2831 
2832 /**
2833  * ufshcd_comp_scsi_upiu - UFS Protocol Information Unit(UPIU)
2834  *			   for SCSI Purposes
2835  * @hba: per adapter instance
2836  * @lrbp: pointer to local reference block
2837  */
2838 static void ufshcd_comp_scsi_upiu(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2839 {
2840 	struct request *rq = scsi_cmd_to_rq(lrbp->cmd);
2841 	unsigned int ioprio_class = IOPRIO_PRIO_CLASS(req_get_ioprio(rq));
2842 	u8 upiu_flags;
2843 
2844 	ufshcd_prepare_req_desc_hdr(hba, lrbp, &upiu_flags, lrbp->cmd->sc_data_direction, 0);
2845 	if (ioprio_class == IOPRIO_CLASS_RT)
2846 		upiu_flags |= UPIU_CMD_FLAGS_CP;
2847 	ufshcd_prepare_utp_scsi_cmd_upiu(lrbp, upiu_flags);
2848 }
2849 
2850 /**
2851  * ufshcd_upiu_wlun_to_scsi_wlun - maps UPIU W-LUN id to SCSI W-LUN ID
2852  * @upiu_wlun_id: UPIU W-LUN id
2853  *
2854  * Return: SCSI W-LUN id.
2855  */
2856 static inline u16 ufshcd_upiu_wlun_to_scsi_wlun(u8 upiu_wlun_id)
2857 {
2858 	return (upiu_wlun_id & ~UFS_UPIU_WLUN_ID) | SCSI_W_LUN_BASE;
2859 }
2860 
2861 static inline bool is_device_wlun(struct scsi_device *sdev)
2862 {
2863 	return sdev->lun ==
2864 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_UFS_DEVICE_WLUN);
2865 }
2866 
2867 /*
2868  * Associate the UFS controller queue with the default and poll HCTX types.
2869  * Initialize the mq_map[] arrays.
2870  */
2871 static void ufshcd_map_queues(struct Scsi_Host *shost)
2872 {
2873 	struct ufs_hba *hba = shost_priv(shost);
2874 	int i, queue_offset = 0;
2875 
2876 	if (!is_mcq_supported(hba)) {
2877 		hba->nr_queues[HCTX_TYPE_DEFAULT] = 1;
2878 		hba->nr_queues[HCTX_TYPE_READ] = 0;
2879 		hba->nr_queues[HCTX_TYPE_POLL] = 1;
2880 		hba->nr_hw_queues = 1;
2881 	}
2882 
2883 	for (i = 0; i < shost->nr_maps; i++) {
2884 		struct blk_mq_queue_map *map = &shost->tag_set.map[i];
2885 
2886 		map->nr_queues = hba->nr_queues[i];
2887 		if (!map->nr_queues)
2888 			continue;
2889 		map->queue_offset = queue_offset;
2890 		if (i == HCTX_TYPE_POLL && !is_mcq_supported(hba))
2891 			map->queue_offset = 0;
2892 
2893 		blk_mq_map_queues(map);
2894 		queue_offset += map->nr_queues;
2895 	}
2896 }
2897 
2898 static void ufshcd_init_lrb(struct ufs_hba *hba, struct ufshcd_lrb *lrb, int i)
2899 {
2900 	struct utp_transfer_cmd_desc *cmd_descp = (void *)hba->ucdl_base_addr +
2901 		i * ufshcd_get_ucd_size(hba);
2902 	struct utp_transfer_req_desc *utrdlp = hba->utrdl_base_addr;
2903 	dma_addr_t cmd_desc_element_addr = hba->ucdl_dma_addr +
2904 		i * ufshcd_get_ucd_size(hba);
2905 	u16 response_offset = offsetof(struct utp_transfer_cmd_desc,
2906 				       response_upiu);
2907 	u16 prdt_offset = offsetof(struct utp_transfer_cmd_desc, prd_table);
2908 
2909 	lrb->utr_descriptor_ptr = utrdlp + i;
2910 	lrb->utrd_dma_addr = hba->utrdl_dma_addr +
2911 		i * sizeof(struct utp_transfer_req_desc);
2912 	lrb->ucd_req_ptr = (struct utp_upiu_req *)cmd_descp->command_upiu;
2913 	lrb->ucd_req_dma_addr = cmd_desc_element_addr;
2914 	lrb->ucd_rsp_ptr = (struct utp_upiu_rsp *)cmd_descp->response_upiu;
2915 	lrb->ucd_rsp_dma_addr = cmd_desc_element_addr + response_offset;
2916 	lrb->ucd_prdt_ptr = (struct ufshcd_sg_entry *)cmd_descp->prd_table;
2917 	lrb->ucd_prdt_dma_addr = cmd_desc_element_addr + prdt_offset;
2918 }
2919 
2920 /**
2921  * ufshcd_queuecommand - main entry point for SCSI requests
2922  * @host: SCSI host pointer
2923  * @cmd: command from SCSI Midlayer
2924  *
2925  * Return: 0 for success, non-zero in case of failure.
2926  */
2927 static int ufshcd_queuecommand(struct Scsi_Host *host, struct scsi_cmnd *cmd)
2928 {
2929 	struct ufs_hba *hba = shost_priv(host);
2930 	int tag = scsi_cmd_to_rq(cmd)->tag;
2931 	struct ufshcd_lrb *lrbp;
2932 	int err = 0;
2933 	struct ufs_hw_queue *hwq = NULL;
2934 
2935 	switch (hba->ufshcd_state) {
2936 	case UFSHCD_STATE_OPERATIONAL:
2937 		break;
2938 	case UFSHCD_STATE_EH_SCHEDULED_NON_FATAL:
2939 		/*
2940 		 * SCSI error handler can call ->queuecommand() while UFS error
2941 		 * handler is in progress. Error interrupts could change the
2942 		 * state from UFSHCD_STATE_RESET to
2943 		 * UFSHCD_STATE_EH_SCHEDULED_NON_FATAL. Prevent requests
2944 		 * being issued in that case.
2945 		 */
2946 		if (ufshcd_eh_in_progress(hba)) {
2947 			err = SCSI_MLQUEUE_HOST_BUSY;
2948 			goto out;
2949 		}
2950 		break;
2951 	case UFSHCD_STATE_EH_SCHEDULED_FATAL:
2952 		/*
2953 		 * pm_runtime_get_sync() is used at error handling preparation
2954 		 * stage. If a scsi cmd, e.g. the SSU cmd, is sent from hba's
2955 		 * PM ops, it can never be finished if we let SCSI layer keep
2956 		 * retrying it, which gets err handler stuck forever. Neither
2957 		 * can we let the scsi cmd pass through, because UFS is in bad
2958 		 * state, the scsi cmd may eventually time out, which will get
2959 		 * err handler blocked for too long. So, just fail the scsi cmd
2960 		 * sent from PM ops, err handler can recover PM error anyways.
2961 		 */
2962 		if (hba->pm_op_in_progress) {
2963 			hba->force_reset = true;
2964 			set_host_byte(cmd, DID_BAD_TARGET);
2965 			scsi_done(cmd);
2966 			goto out;
2967 		}
2968 		fallthrough;
2969 	case UFSHCD_STATE_RESET:
2970 		err = SCSI_MLQUEUE_HOST_BUSY;
2971 		goto out;
2972 	case UFSHCD_STATE_ERROR:
2973 		set_host_byte(cmd, DID_ERROR);
2974 		scsi_done(cmd);
2975 		goto out;
2976 	}
2977 
2978 	hba->req_abort_count = 0;
2979 
2980 	ufshcd_hold(hba);
2981 
2982 	lrbp = &hba->lrb[tag];
2983 	lrbp->cmd = cmd;
2984 	lrbp->task_tag = tag;
2985 	lrbp->lun = ufshcd_scsi_to_upiu_lun(cmd->device->lun);
2986 	lrbp->intr_cmd = !ufshcd_is_intr_aggr_allowed(hba);
2987 
2988 	ufshcd_prepare_lrbp_crypto(scsi_cmd_to_rq(cmd), lrbp);
2989 
2990 	lrbp->req_abort_skip = false;
2991 
2992 	ufshcd_comp_scsi_upiu(hba, lrbp);
2993 
2994 	err = ufshcd_map_sg(hba, lrbp);
2995 	if (err) {
2996 		ufshcd_release(hba);
2997 		goto out;
2998 	}
2999 
3000 	if (is_mcq_enabled(hba))
3001 		hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(cmd));
3002 
3003 	ufshcd_send_command(hba, tag, hwq);
3004 
3005 out:
3006 	if (ufs_trigger_eh(hba)) {
3007 		unsigned long flags;
3008 
3009 		spin_lock_irqsave(hba->host->host_lock, flags);
3010 		ufshcd_schedule_eh_work(hba);
3011 		spin_unlock_irqrestore(hba->host->host_lock, flags);
3012 	}
3013 
3014 	return err;
3015 }
3016 
3017 static void ufshcd_setup_dev_cmd(struct ufs_hba *hba, struct ufshcd_lrb *lrbp,
3018 			     enum dev_cmd_type cmd_type, u8 lun, int tag)
3019 {
3020 	lrbp->cmd = NULL;
3021 	lrbp->task_tag = tag;
3022 	lrbp->lun = lun;
3023 	lrbp->intr_cmd = true; /* No interrupt aggregation */
3024 	ufshcd_prepare_lrbp_crypto(NULL, lrbp);
3025 	hba->dev_cmd.type = cmd_type;
3026 }
3027 
3028 static int ufshcd_compose_dev_cmd(struct ufs_hba *hba,
3029 		struct ufshcd_lrb *lrbp, enum dev_cmd_type cmd_type, int tag)
3030 {
3031 	ufshcd_setup_dev_cmd(hba, lrbp, cmd_type, 0, tag);
3032 
3033 	return ufshcd_compose_devman_upiu(hba, lrbp);
3034 }
3035 
3036 /*
3037  * Check with the block layer if the command is inflight
3038  * @cmd: command to check.
3039  *
3040  * Return: true if command is inflight; false if not.
3041  */
3042 bool ufshcd_cmd_inflight(struct scsi_cmnd *cmd)
3043 {
3044 	return cmd && blk_mq_rq_state(scsi_cmd_to_rq(cmd)) == MQ_RQ_IN_FLIGHT;
3045 }
3046 
3047 /*
3048  * Clear the pending command in the controller and wait until
3049  * the controller confirms that the command has been cleared.
3050  * @hba: per adapter instance
3051  * @task_tag: The tag number of the command to be cleared.
3052  */
3053 static int ufshcd_clear_cmd(struct ufs_hba *hba, u32 task_tag)
3054 {
3055 	u32 mask;
3056 	unsigned long flags;
3057 	int err;
3058 
3059 	if (is_mcq_enabled(hba)) {
3060 		/*
3061 		 * MCQ mode. Clean up the MCQ resources similar to
3062 		 * what the ufshcd_utrl_clear() does for SDB mode.
3063 		 */
3064 		err = ufshcd_mcq_sq_cleanup(hba, task_tag);
3065 		if (err) {
3066 			dev_err(hba->dev, "%s: failed tag=%d. err=%d\n",
3067 				__func__, task_tag, err);
3068 			return err;
3069 		}
3070 		return 0;
3071 	}
3072 
3073 	mask = 1U << task_tag;
3074 
3075 	/* clear outstanding transaction before retry */
3076 	spin_lock_irqsave(hba->host->host_lock, flags);
3077 	ufshcd_utrl_clear(hba, mask);
3078 	spin_unlock_irqrestore(hba->host->host_lock, flags);
3079 
3080 	/*
3081 	 * wait for h/w to clear corresponding bit in door-bell.
3082 	 * max. wait is 1 sec.
3083 	 */
3084 	return ufshcd_wait_for_register(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL,
3085 					mask, ~mask, 1000, 1000);
3086 }
3087 
3088 /**
3089  * ufshcd_dev_cmd_completion() - handles device management command responses
3090  * @hba: per adapter instance
3091  * @lrbp: pointer to local reference block
3092  *
3093  * Return: 0 upon success; < 0 upon failure.
3094  */
3095 static int
3096 ufshcd_dev_cmd_completion(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
3097 {
3098 	enum upiu_response_transaction resp;
3099 	int err = 0;
3100 
3101 	hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
3102 	resp = ufshcd_get_req_rsp(lrbp->ucd_rsp_ptr);
3103 
3104 	switch (resp) {
3105 	case UPIU_TRANSACTION_NOP_IN:
3106 		if (hba->dev_cmd.type != DEV_CMD_TYPE_NOP) {
3107 			err = -EINVAL;
3108 			dev_err(hba->dev, "%s: unexpected response %x\n",
3109 					__func__, resp);
3110 		}
3111 		break;
3112 	case UPIU_TRANSACTION_QUERY_RSP: {
3113 		u8 response = lrbp->ucd_rsp_ptr->header.response;
3114 
3115 		if (response == 0)
3116 			err = ufshcd_copy_query_response(hba, lrbp);
3117 		break;
3118 	}
3119 	case UPIU_TRANSACTION_REJECT_UPIU:
3120 		/* TODO: handle Reject UPIU Response */
3121 		err = -EPERM;
3122 		dev_err(hba->dev, "%s: Reject UPIU not fully implemented\n",
3123 				__func__);
3124 		break;
3125 	case UPIU_TRANSACTION_RESPONSE:
3126 		if (hba->dev_cmd.type != DEV_CMD_TYPE_RPMB) {
3127 			err = -EINVAL;
3128 			dev_err(hba->dev, "%s: unexpected response %x\n", __func__, resp);
3129 		}
3130 		break;
3131 	default:
3132 		err = -EINVAL;
3133 		dev_err(hba->dev, "%s: Invalid device management cmd response: %x\n",
3134 				__func__, resp);
3135 		break;
3136 	}
3137 
3138 	return err;
3139 }
3140 
3141 static int ufshcd_wait_for_dev_cmd(struct ufs_hba *hba,
3142 		struct ufshcd_lrb *lrbp, int max_timeout)
3143 {
3144 	unsigned long time_left = msecs_to_jiffies(max_timeout);
3145 	unsigned long flags;
3146 	bool pending;
3147 	int err;
3148 
3149 retry:
3150 	time_left = wait_for_completion_timeout(hba->dev_cmd.complete,
3151 						time_left);
3152 
3153 	if (likely(time_left)) {
3154 		/*
3155 		 * The completion handler called complete() and the caller of
3156 		 * this function still owns the @lrbp tag so the code below does
3157 		 * not trigger any race conditions.
3158 		 */
3159 		hba->dev_cmd.complete = NULL;
3160 		err = ufshcd_get_tr_ocs(lrbp, NULL);
3161 		if (!err)
3162 			err = ufshcd_dev_cmd_completion(hba, lrbp);
3163 	} else {
3164 		err = -ETIMEDOUT;
3165 		dev_dbg(hba->dev, "%s: dev_cmd request timedout, tag %d\n",
3166 			__func__, lrbp->task_tag);
3167 
3168 		/* MCQ mode */
3169 		if (is_mcq_enabled(hba)) {
3170 			err = ufshcd_clear_cmd(hba, lrbp->task_tag);
3171 			hba->dev_cmd.complete = NULL;
3172 			return err;
3173 		}
3174 
3175 		/* SDB mode */
3176 		if (ufshcd_clear_cmd(hba, lrbp->task_tag) == 0) {
3177 			/* successfully cleared the command, retry if needed */
3178 			err = -EAGAIN;
3179 			/*
3180 			 * Since clearing the command succeeded we also need to
3181 			 * clear the task tag bit from the outstanding_reqs
3182 			 * variable.
3183 			 */
3184 			spin_lock_irqsave(&hba->outstanding_lock, flags);
3185 			pending = test_bit(lrbp->task_tag,
3186 					   &hba->outstanding_reqs);
3187 			if (pending) {
3188 				hba->dev_cmd.complete = NULL;
3189 				__clear_bit(lrbp->task_tag,
3190 					    &hba->outstanding_reqs);
3191 			}
3192 			spin_unlock_irqrestore(&hba->outstanding_lock, flags);
3193 
3194 			if (!pending) {
3195 				/*
3196 				 * The completion handler ran while we tried to
3197 				 * clear the command.
3198 				 */
3199 				time_left = 1;
3200 				goto retry;
3201 			}
3202 		} else {
3203 			dev_err(hba->dev, "%s: failed to clear tag %d\n",
3204 				__func__, lrbp->task_tag);
3205 
3206 			spin_lock_irqsave(&hba->outstanding_lock, flags);
3207 			pending = test_bit(lrbp->task_tag,
3208 					   &hba->outstanding_reqs);
3209 			if (pending)
3210 				hba->dev_cmd.complete = NULL;
3211 			spin_unlock_irqrestore(&hba->outstanding_lock, flags);
3212 
3213 			if (!pending) {
3214 				/*
3215 				 * The completion handler ran while we tried to
3216 				 * clear the command.
3217 				 */
3218 				time_left = 1;
3219 				goto retry;
3220 			}
3221 		}
3222 	}
3223 
3224 	return err;
3225 }
3226 
3227 static void ufshcd_dev_man_lock(struct ufs_hba *hba)
3228 {
3229 	ufshcd_hold(hba);
3230 	mutex_lock(&hba->dev_cmd.lock);
3231 	down_read(&hba->clk_scaling_lock);
3232 }
3233 
3234 static void ufshcd_dev_man_unlock(struct ufs_hba *hba)
3235 {
3236 	up_read(&hba->clk_scaling_lock);
3237 	mutex_unlock(&hba->dev_cmd.lock);
3238 	ufshcd_release(hba);
3239 }
3240 
3241 static int ufshcd_issue_dev_cmd(struct ufs_hba *hba, struct ufshcd_lrb *lrbp,
3242 			  const u32 tag, int timeout)
3243 {
3244 	DECLARE_COMPLETION_ONSTACK(wait);
3245 	int err;
3246 
3247 	hba->dev_cmd.complete = &wait;
3248 
3249 	ufshcd_add_query_upiu_trace(hba, UFS_QUERY_SEND, lrbp->ucd_req_ptr);
3250 
3251 	ufshcd_send_command(hba, tag, hba->dev_cmd_queue);
3252 	err = ufshcd_wait_for_dev_cmd(hba, lrbp, timeout);
3253 
3254 	ufshcd_add_query_upiu_trace(hba, err ? UFS_QUERY_ERR : UFS_QUERY_COMP,
3255 				    (struct utp_upiu_req *)lrbp->ucd_rsp_ptr);
3256 
3257 	return err;
3258 }
3259 
3260 /**
3261  * ufshcd_exec_dev_cmd - API for sending device management requests
3262  * @hba: UFS hba
3263  * @cmd_type: specifies the type (NOP, Query...)
3264  * @timeout: timeout in milliseconds
3265  *
3266  * Return: 0 upon success; < 0 upon failure.
3267  *
3268  * NOTE: Since there is only one available tag for device management commands,
3269  * it is expected you hold the hba->dev_cmd.lock mutex.
3270  */
3271 static int ufshcd_exec_dev_cmd(struct ufs_hba *hba,
3272 		enum dev_cmd_type cmd_type, int timeout)
3273 {
3274 	const u32 tag = hba->reserved_slot;
3275 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
3276 	int err;
3277 
3278 	/* Protects use of hba->reserved_slot. */
3279 	lockdep_assert_held(&hba->dev_cmd.lock);
3280 
3281 	err = ufshcd_compose_dev_cmd(hba, lrbp, cmd_type, tag);
3282 	if (unlikely(err))
3283 		return err;
3284 
3285 	return ufshcd_issue_dev_cmd(hba, lrbp, tag, timeout);
3286 }
3287 
3288 /**
3289  * ufshcd_init_query() - init the query response and request parameters
3290  * @hba: per-adapter instance
3291  * @request: address of the request pointer to be initialized
3292  * @response: address of the response pointer to be initialized
3293  * @opcode: operation to perform
3294  * @idn: flag idn to access
3295  * @index: LU number to access
3296  * @selector: query/flag/descriptor further identification
3297  */
3298 static inline void ufshcd_init_query(struct ufs_hba *hba,
3299 		struct ufs_query_req **request, struct ufs_query_res **response,
3300 		enum query_opcode opcode, u8 idn, u8 index, u8 selector)
3301 {
3302 	*request = &hba->dev_cmd.query.request;
3303 	*response = &hba->dev_cmd.query.response;
3304 	memset(*request, 0, sizeof(struct ufs_query_req));
3305 	memset(*response, 0, sizeof(struct ufs_query_res));
3306 	(*request)->upiu_req.opcode = opcode;
3307 	(*request)->upiu_req.idn = idn;
3308 	(*request)->upiu_req.index = index;
3309 	(*request)->upiu_req.selector = selector;
3310 }
3311 
3312 static int ufshcd_query_flag_retry(struct ufs_hba *hba,
3313 	enum query_opcode opcode, enum flag_idn idn, u8 index, bool *flag_res)
3314 {
3315 	int ret;
3316 	int retries;
3317 
3318 	for (retries = 0; retries < QUERY_REQ_RETRIES; retries++) {
3319 		ret = ufshcd_query_flag(hba, opcode, idn, index, flag_res);
3320 		if (ret)
3321 			dev_dbg(hba->dev,
3322 				"%s: failed with error %d, retries %d\n",
3323 				__func__, ret, retries);
3324 		else
3325 			break;
3326 	}
3327 
3328 	if (ret)
3329 		dev_err(hba->dev,
3330 			"%s: query flag, opcode %d, idn %d, failed with error %d after %d retries\n",
3331 			__func__, opcode, idn, ret, retries);
3332 	return ret;
3333 }
3334 
3335 /**
3336  * ufshcd_query_flag() - API function for sending flag query requests
3337  * @hba: per-adapter instance
3338  * @opcode: flag query to perform
3339  * @idn: flag idn to access
3340  * @index: flag index to access
3341  * @flag_res: the flag value after the query request completes
3342  *
3343  * Return: 0 for success, non-zero in case of failure.
3344  */
3345 int ufshcd_query_flag(struct ufs_hba *hba, enum query_opcode opcode,
3346 			enum flag_idn idn, u8 index, bool *flag_res)
3347 {
3348 	struct ufs_query_req *request = NULL;
3349 	struct ufs_query_res *response = NULL;
3350 	int err, selector = 0;
3351 	int timeout = QUERY_REQ_TIMEOUT;
3352 
3353 	BUG_ON(!hba);
3354 
3355 	ufshcd_dev_man_lock(hba);
3356 
3357 	ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3358 			selector);
3359 
3360 	switch (opcode) {
3361 	case UPIU_QUERY_OPCODE_SET_FLAG:
3362 	case UPIU_QUERY_OPCODE_CLEAR_FLAG:
3363 	case UPIU_QUERY_OPCODE_TOGGLE_FLAG:
3364 		request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3365 		break;
3366 	case UPIU_QUERY_OPCODE_READ_FLAG:
3367 		request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3368 		if (!flag_res) {
3369 			/* No dummy reads */
3370 			dev_err(hba->dev, "%s: Invalid argument for read request\n",
3371 					__func__);
3372 			err = -EINVAL;
3373 			goto out_unlock;
3374 		}
3375 		break;
3376 	default:
3377 		dev_err(hba->dev,
3378 			"%s: Expected query flag opcode but got = %d\n",
3379 			__func__, opcode);
3380 		err = -EINVAL;
3381 		goto out_unlock;
3382 	}
3383 
3384 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, timeout);
3385 
3386 	if (err) {
3387 		dev_err(hba->dev,
3388 			"%s: Sending flag query for idn %d failed, err = %d\n",
3389 			__func__, idn, err);
3390 		goto out_unlock;
3391 	}
3392 
3393 	if (flag_res)
3394 		*flag_res = (be32_to_cpu(response->upiu_res.value) &
3395 				MASK_QUERY_UPIU_FLAG_LOC) & 0x1;
3396 
3397 out_unlock:
3398 	ufshcd_dev_man_unlock(hba);
3399 	return err;
3400 }
3401 
3402 /**
3403  * ufshcd_query_attr - API function for sending attribute requests
3404  * @hba: per-adapter instance
3405  * @opcode: attribute opcode
3406  * @idn: attribute idn to access
3407  * @index: index field
3408  * @selector: selector field
3409  * @attr_val: the attribute value after the query request completes
3410  *
3411  * Return: 0 for success, non-zero in case of failure.
3412 */
3413 int ufshcd_query_attr(struct ufs_hba *hba, enum query_opcode opcode,
3414 		      enum attr_idn idn, u8 index, u8 selector, u32 *attr_val)
3415 {
3416 	struct ufs_query_req *request = NULL;
3417 	struct ufs_query_res *response = NULL;
3418 	int err;
3419 
3420 	BUG_ON(!hba);
3421 
3422 	if (!attr_val) {
3423 		dev_err(hba->dev, "%s: attribute value required for opcode 0x%x\n",
3424 				__func__, opcode);
3425 		return -EINVAL;
3426 	}
3427 
3428 	ufshcd_dev_man_lock(hba);
3429 
3430 	ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3431 			selector);
3432 
3433 	switch (opcode) {
3434 	case UPIU_QUERY_OPCODE_WRITE_ATTR:
3435 		request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3436 		request->upiu_req.value = cpu_to_be32(*attr_val);
3437 		break;
3438 	case UPIU_QUERY_OPCODE_READ_ATTR:
3439 		request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3440 		break;
3441 	default:
3442 		dev_err(hba->dev, "%s: Expected query attr opcode but got = 0x%.2x\n",
3443 				__func__, opcode);
3444 		err = -EINVAL;
3445 		goto out_unlock;
3446 	}
3447 
3448 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT);
3449 
3450 	if (err) {
3451 		dev_err(hba->dev, "%s: opcode 0x%.2x for idn %d failed, index %d, err = %d\n",
3452 				__func__, opcode, idn, index, err);
3453 		goto out_unlock;
3454 	}
3455 
3456 	*attr_val = be32_to_cpu(response->upiu_res.value);
3457 
3458 out_unlock:
3459 	ufshcd_dev_man_unlock(hba);
3460 	return err;
3461 }
3462 
3463 /**
3464  * ufshcd_query_attr_retry() - API function for sending query
3465  * attribute with retries
3466  * @hba: per-adapter instance
3467  * @opcode: attribute opcode
3468  * @idn: attribute idn to access
3469  * @index: index field
3470  * @selector: selector field
3471  * @attr_val: the attribute value after the query request
3472  * completes
3473  *
3474  * Return: 0 for success, non-zero in case of failure.
3475 */
3476 int ufshcd_query_attr_retry(struct ufs_hba *hba,
3477 	enum query_opcode opcode, enum attr_idn idn, u8 index, u8 selector,
3478 	u32 *attr_val)
3479 {
3480 	int ret = 0;
3481 	u32 retries;
3482 
3483 	for (retries = QUERY_REQ_RETRIES; retries > 0; retries--) {
3484 		ret = ufshcd_query_attr(hba, opcode, idn, index,
3485 						selector, attr_val);
3486 		if (ret)
3487 			dev_dbg(hba->dev, "%s: failed with error %d, retries %d\n",
3488 				__func__, ret, retries);
3489 		else
3490 			break;
3491 	}
3492 
3493 	if (ret)
3494 		dev_err(hba->dev,
3495 			"%s: query attribute, idn %d, failed with error %d after %d retries\n",
3496 			__func__, idn, ret, QUERY_REQ_RETRIES);
3497 	return ret;
3498 }
3499 
3500 static int __ufshcd_query_descriptor(struct ufs_hba *hba,
3501 			enum query_opcode opcode, enum desc_idn idn, u8 index,
3502 			u8 selector, u8 *desc_buf, int *buf_len)
3503 {
3504 	struct ufs_query_req *request = NULL;
3505 	struct ufs_query_res *response = NULL;
3506 	int err;
3507 
3508 	BUG_ON(!hba);
3509 
3510 	if (!desc_buf) {
3511 		dev_err(hba->dev, "%s: descriptor buffer required for opcode 0x%x\n",
3512 				__func__, opcode);
3513 		return -EINVAL;
3514 	}
3515 
3516 	if (*buf_len < QUERY_DESC_MIN_SIZE || *buf_len > QUERY_DESC_MAX_SIZE) {
3517 		dev_err(hba->dev, "%s: descriptor buffer size (%d) is out of range\n",
3518 				__func__, *buf_len);
3519 		return -EINVAL;
3520 	}
3521 
3522 	ufshcd_dev_man_lock(hba);
3523 
3524 	ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3525 			selector);
3526 	hba->dev_cmd.query.descriptor = desc_buf;
3527 	request->upiu_req.length = cpu_to_be16(*buf_len);
3528 
3529 	switch (opcode) {
3530 	case UPIU_QUERY_OPCODE_WRITE_DESC:
3531 		request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3532 		break;
3533 	case UPIU_QUERY_OPCODE_READ_DESC:
3534 		request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3535 		break;
3536 	default:
3537 		dev_err(hba->dev,
3538 				"%s: Expected query descriptor opcode but got = 0x%.2x\n",
3539 				__func__, opcode);
3540 		err = -EINVAL;
3541 		goto out_unlock;
3542 	}
3543 
3544 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT);
3545 
3546 	if (err) {
3547 		dev_err(hba->dev, "%s: opcode 0x%.2x for idn %d failed, index %d, err = %d\n",
3548 				__func__, opcode, idn, index, err);
3549 		goto out_unlock;
3550 	}
3551 
3552 	*buf_len = be16_to_cpu(response->upiu_res.length);
3553 
3554 out_unlock:
3555 	hba->dev_cmd.query.descriptor = NULL;
3556 	ufshcd_dev_man_unlock(hba);
3557 	return err;
3558 }
3559 
3560 /**
3561  * ufshcd_query_descriptor_retry - API function for sending descriptor requests
3562  * @hba: per-adapter instance
3563  * @opcode: attribute opcode
3564  * @idn: attribute idn to access
3565  * @index: index field
3566  * @selector: selector field
3567  * @desc_buf: the buffer that contains the descriptor
3568  * @buf_len: length parameter passed to the device
3569  *
3570  * The buf_len parameter will contain, on return, the length parameter
3571  * received on the response.
3572  *
3573  * Return: 0 for success, non-zero in case of failure.
3574  */
3575 int ufshcd_query_descriptor_retry(struct ufs_hba *hba,
3576 				  enum query_opcode opcode,
3577 				  enum desc_idn idn, u8 index,
3578 				  u8 selector,
3579 				  u8 *desc_buf, int *buf_len)
3580 {
3581 	int err;
3582 	int retries;
3583 
3584 	for (retries = QUERY_REQ_RETRIES; retries > 0; retries--) {
3585 		err = __ufshcd_query_descriptor(hba, opcode, idn, index,
3586 						selector, desc_buf, buf_len);
3587 		if (!err || err == -EINVAL)
3588 			break;
3589 	}
3590 
3591 	return err;
3592 }
3593 
3594 /**
3595  * ufshcd_read_desc_param - read the specified descriptor parameter
3596  * @hba: Pointer to adapter instance
3597  * @desc_id: descriptor idn value
3598  * @desc_index: descriptor index
3599  * @param_offset: offset of the parameter to read
3600  * @param_read_buf: pointer to buffer where parameter would be read
3601  * @param_size: sizeof(param_read_buf)
3602  *
3603  * Return: 0 in case of success, non-zero otherwise.
3604  */
3605 int ufshcd_read_desc_param(struct ufs_hba *hba,
3606 			   enum desc_idn desc_id,
3607 			   int desc_index,
3608 			   u8 param_offset,
3609 			   u8 *param_read_buf,
3610 			   u8 param_size)
3611 {
3612 	int ret;
3613 	u8 *desc_buf;
3614 	int buff_len = QUERY_DESC_MAX_SIZE;
3615 	bool is_kmalloc = true;
3616 
3617 	/* Safety check */
3618 	if (desc_id >= QUERY_DESC_IDN_MAX || !param_size)
3619 		return -EINVAL;
3620 
3621 	/* Check whether we need temp memory */
3622 	if (param_offset != 0 || param_size < buff_len) {
3623 		desc_buf = kzalloc(buff_len, GFP_KERNEL);
3624 		if (!desc_buf)
3625 			return -ENOMEM;
3626 	} else {
3627 		desc_buf = param_read_buf;
3628 		is_kmalloc = false;
3629 	}
3630 
3631 	/* Request for full descriptor */
3632 	ret = ufshcd_query_descriptor_retry(hba, UPIU_QUERY_OPCODE_READ_DESC,
3633 					    desc_id, desc_index, 0,
3634 					    desc_buf, &buff_len);
3635 	if (ret) {
3636 		dev_err(hba->dev, "%s: Failed reading descriptor. desc_id %d, desc_index %d, param_offset %d, ret %d\n",
3637 			__func__, desc_id, desc_index, param_offset, ret);
3638 		goto out;
3639 	}
3640 
3641 	/* Update descriptor length */
3642 	buff_len = desc_buf[QUERY_DESC_LENGTH_OFFSET];
3643 
3644 	if (param_offset >= buff_len) {
3645 		dev_err(hba->dev, "%s: Invalid offset 0x%x in descriptor IDN 0x%x, length 0x%x\n",
3646 			__func__, param_offset, desc_id, buff_len);
3647 		ret = -EINVAL;
3648 		goto out;
3649 	}
3650 
3651 	/* Sanity check */
3652 	if (desc_buf[QUERY_DESC_DESC_TYPE_OFFSET] != desc_id) {
3653 		dev_err(hba->dev, "%s: invalid desc_id %d in descriptor header\n",
3654 			__func__, desc_buf[QUERY_DESC_DESC_TYPE_OFFSET]);
3655 		ret = -EINVAL;
3656 		goto out;
3657 	}
3658 
3659 	if (is_kmalloc) {
3660 		/* Make sure we don't copy more data than available */
3661 		if (param_offset >= buff_len)
3662 			ret = -EINVAL;
3663 		else
3664 			memcpy(param_read_buf, &desc_buf[param_offset],
3665 			       min_t(u32, param_size, buff_len - param_offset));
3666 	}
3667 out:
3668 	if (is_kmalloc)
3669 		kfree(desc_buf);
3670 	return ret;
3671 }
3672 
3673 /**
3674  * struct uc_string_id - unicode string
3675  *
3676  * @len: size of this descriptor inclusive
3677  * @type: descriptor type
3678  * @uc: unicode string character
3679  */
3680 struct uc_string_id {
3681 	u8 len;
3682 	u8 type;
3683 	wchar_t uc[];
3684 } __packed;
3685 
3686 /* replace non-printable or non-ASCII characters with spaces */
3687 static inline char ufshcd_remove_non_printable(u8 ch)
3688 {
3689 	return (ch >= 0x20 && ch <= 0x7e) ? ch : ' ';
3690 }
3691 
3692 /**
3693  * ufshcd_read_string_desc - read string descriptor
3694  * @hba: pointer to adapter instance
3695  * @desc_index: descriptor index
3696  * @buf: pointer to buffer where descriptor would be read,
3697  *       the caller should free the memory.
3698  * @ascii: if true convert from unicode to ascii characters
3699  *         null terminated string.
3700  *
3701  * Return:
3702  * *      string size on success.
3703  * *      -ENOMEM: on allocation failure
3704  * *      -EINVAL: on a wrong parameter
3705  */
3706 int ufshcd_read_string_desc(struct ufs_hba *hba, u8 desc_index,
3707 			    u8 **buf, bool ascii)
3708 {
3709 	struct uc_string_id *uc_str;
3710 	u8 *str;
3711 	int ret;
3712 
3713 	if (!buf)
3714 		return -EINVAL;
3715 
3716 	uc_str = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
3717 	if (!uc_str)
3718 		return -ENOMEM;
3719 
3720 	ret = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_STRING, desc_index, 0,
3721 				     (u8 *)uc_str, QUERY_DESC_MAX_SIZE);
3722 	if (ret < 0) {
3723 		dev_err(hba->dev, "Reading String Desc failed after %d retries. err = %d\n",
3724 			QUERY_REQ_RETRIES, ret);
3725 		str = NULL;
3726 		goto out;
3727 	}
3728 
3729 	if (uc_str->len <= QUERY_DESC_HDR_SIZE) {
3730 		dev_dbg(hba->dev, "String Desc is of zero length\n");
3731 		str = NULL;
3732 		ret = 0;
3733 		goto out;
3734 	}
3735 
3736 	if (ascii) {
3737 		ssize_t ascii_len;
3738 		int i;
3739 		/* remove header and divide by 2 to move from UTF16 to UTF8 */
3740 		ascii_len = (uc_str->len - QUERY_DESC_HDR_SIZE) / 2 + 1;
3741 		str = kzalloc(ascii_len, GFP_KERNEL);
3742 		if (!str) {
3743 			ret = -ENOMEM;
3744 			goto out;
3745 		}
3746 
3747 		/*
3748 		 * the descriptor contains string in UTF16 format
3749 		 * we need to convert to utf-8 so it can be displayed
3750 		 */
3751 		ret = utf16s_to_utf8s(uc_str->uc,
3752 				      uc_str->len - QUERY_DESC_HDR_SIZE,
3753 				      UTF16_BIG_ENDIAN, str, ascii_len - 1);
3754 
3755 		/* replace non-printable or non-ASCII characters with spaces */
3756 		for (i = 0; i < ret; i++)
3757 			str[i] = ufshcd_remove_non_printable(str[i]);
3758 
3759 		str[ret++] = '\0';
3760 
3761 	} else {
3762 		str = kmemdup(uc_str, uc_str->len, GFP_KERNEL);
3763 		if (!str) {
3764 			ret = -ENOMEM;
3765 			goto out;
3766 		}
3767 		ret = uc_str->len;
3768 	}
3769 out:
3770 	*buf = str;
3771 	kfree(uc_str);
3772 	return ret;
3773 }
3774 
3775 /**
3776  * ufshcd_read_unit_desc_param - read the specified unit descriptor parameter
3777  * @hba: Pointer to adapter instance
3778  * @lun: lun id
3779  * @param_offset: offset of the parameter to read
3780  * @param_read_buf: pointer to buffer where parameter would be read
3781  * @param_size: sizeof(param_read_buf)
3782  *
3783  * Return: 0 in case of success, non-zero otherwise.
3784  */
3785 static inline int ufshcd_read_unit_desc_param(struct ufs_hba *hba,
3786 					      int lun,
3787 					      enum unit_desc_param param_offset,
3788 					      u8 *param_read_buf,
3789 					      u32 param_size)
3790 {
3791 	/*
3792 	 * Unit descriptors are only available for general purpose LUs (LUN id
3793 	 * from 0 to 7) and RPMB Well known LU.
3794 	 */
3795 	if (!ufs_is_valid_unit_desc_lun(&hba->dev_info, lun))
3796 		return -EOPNOTSUPP;
3797 
3798 	return ufshcd_read_desc_param(hba, QUERY_DESC_IDN_UNIT, lun,
3799 				      param_offset, param_read_buf, param_size);
3800 }
3801 
3802 static int ufshcd_get_ref_clk_gating_wait(struct ufs_hba *hba)
3803 {
3804 	int err = 0;
3805 	u32 gating_wait = UFSHCD_REF_CLK_GATING_WAIT_US;
3806 
3807 	if (hba->dev_info.wspecversion >= 0x300) {
3808 		err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
3809 				QUERY_ATTR_IDN_REF_CLK_GATING_WAIT_TIME, 0, 0,
3810 				&gating_wait);
3811 		if (err)
3812 			dev_err(hba->dev, "Failed reading bRefClkGatingWait. err = %d, use default %uus\n",
3813 					 err, gating_wait);
3814 
3815 		if (gating_wait == 0) {
3816 			gating_wait = UFSHCD_REF_CLK_GATING_WAIT_US;
3817 			dev_err(hba->dev, "Undefined ref clk gating wait time, use default %uus\n",
3818 					 gating_wait);
3819 		}
3820 
3821 		hba->dev_info.clk_gating_wait_us = gating_wait;
3822 	}
3823 
3824 	return err;
3825 }
3826 
3827 /**
3828  * ufshcd_memory_alloc - allocate memory for host memory space data structures
3829  * @hba: per adapter instance
3830  *
3831  * 1. Allocate DMA memory for Command Descriptor array
3832  *	Each command descriptor consist of Command UPIU, Response UPIU and PRDT
3833  * 2. Allocate DMA memory for UTP Transfer Request Descriptor List (UTRDL).
3834  * 3. Allocate DMA memory for UTP Task Management Request Descriptor List
3835  *	(UTMRDL)
3836  * 4. Allocate memory for local reference block(lrb).
3837  *
3838  * Return: 0 for success, non-zero in case of failure.
3839  */
3840 static int ufshcd_memory_alloc(struct ufs_hba *hba)
3841 {
3842 	size_t utmrdl_size, utrdl_size, ucdl_size;
3843 
3844 	/* Allocate memory for UTP command descriptors */
3845 	ucdl_size = ufshcd_get_ucd_size(hba) * hba->nutrs;
3846 	hba->ucdl_base_addr = dmam_alloc_coherent(hba->dev,
3847 						  ucdl_size,
3848 						  &hba->ucdl_dma_addr,
3849 						  GFP_KERNEL);
3850 
3851 	/*
3852 	 * UFSHCI requires UTP command descriptor to be 128 byte aligned.
3853 	 */
3854 	if (!hba->ucdl_base_addr ||
3855 	    WARN_ON(hba->ucdl_dma_addr & (128 - 1))) {
3856 		dev_err(hba->dev,
3857 			"Command Descriptor Memory allocation failed\n");
3858 		goto out;
3859 	}
3860 
3861 	/*
3862 	 * Allocate memory for UTP Transfer descriptors
3863 	 * UFSHCI requires 1KB alignment of UTRD
3864 	 */
3865 	utrdl_size = (sizeof(struct utp_transfer_req_desc) * hba->nutrs);
3866 	hba->utrdl_base_addr = dmam_alloc_coherent(hba->dev,
3867 						   utrdl_size,
3868 						   &hba->utrdl_dma_addr,
3869 						   GFP_KERNEL);
3870 	if (!hba->utrdl_base_addr ||
3871 	    WARN_ON(hba->utrdl_dma_addr & (SZ_1K - 1))) {
3872 		dev_err(hba->dev,
3873 			"Transfer Descriptor Memory allocation failed\n");
3874 		goto out;
3875 	}
3876 
3877 	/*
3878 	 * Skip utmrdl allocation; it may have been
3879 	 * allocated during first pass and not released during
3880 	 * MCQ memory allocation.
3881 	 * See ufshcd_release_sdb_queue() and ufshcd_config_mcq()
3882 	 */
3883 	if (hba->utmrdl_base_addr)
3884 		goto skip_utmrdl;
3885 	/*
3886 	 * Allocate memory for UTP Task Management descriptors
3887 	 * UFSHCI requires 1KB alignment of UTMRD
3888 	 */
3889 	utmrdl_size = sizeof(struct utp_task_req_desc) * hba->nutmrs;
3890 	hba->utmrdl_base_addr = dmam_alloc_coherent(hba->dev,
3891 						    utmrdl_size,
3892 						    &hba->utmrdl_dma_addr,
3893 						    GFP_KERNEL);
3894 	if (!hba->utmrdl_base_addr ||
3895 	    WARN_ON(hba->utmrdl_dma_addr & (SZ_1K - 1))) {
3896 		dev_err(hba->dev,
3897 		"Task Management Descriptor Memory allocation failed\n");
3898 		goto out;
3899 	}
3900 
3901 skip_utmrdl:
3902 	/* Allocate memory for local reference block */
3903 	hba->lrb = devm_kcalloc(hba->dev,
3904 				hba->nutrs, sizeof(struct ufshcd_lrb),
3905 				GFP_KERNEL);
3906 	if (!hba->lrb) {
3907 		dev_err(hba->dev, "LRB Memory allocation failed\n");
3908 		goto out;
3909 	}
3910 	return 0;
3911 out:
3912 	return -ENOMEM;
3913 }
3914 
3915 /**
3916  * ufshcd_host_memory_configure - configure local reference block with
3917  *				memory offsets
3918  * @hba: per adapter instance
3919  *
3920  * Configure Host memory space
3921  * 1. Update Corresponding UTRD.UCDBA and UTRD.UCDBAU with UCD DMA
3922  * address.
3923  * 2. Update each UTRD with Response UPIU offset, Response UPIU length
3924  * and PRDT offset.
3925  * 3. Save the corresponding addresses of UTRD, UCD.CMD, UCD.RSP and UCD.PRDT
3926  * into local reference block.
3927  */
3928 static void ufshcd_host_memory_configure(struct ufs_hba *hba)
3929 {
3930 	struct utp_transfer_req_desc *utrdlp;
3931 	dma_addr_t cmd_desc_dma_addr;
3932 	dma_addr_t cmd_desc_element_addr;
3933 	u16 response_offset;
3934 	u16 prdt_offset;
3935 	int cmd_desc_size;
3936 	int i;
3937 
3938 	utrdlp = hba->utrdl_base_addr;
3939 
3940 	response_offset =
3941 		offsetof(struct utp_transfer_cmd_desc, response_upiu);
3942 	prdt_offset =
3943 		offsetof(struct utp_transfer_cmd_desc, prd_table);
3944 
3945 	cmd_desc_size = ufshcd_get_ucd_size(hba);
3946 	cmd_desc_dma_addr = hba->ucdl_dma_addr;
3947 
3948 	for (i = 0; i < hba->nutrs; i++) {
3949 		/* Configure UTRD with command descriptor base address */
3950 		cmd_desc_element_addr =
3951 				(cmd_desc_dma_addr + (cmd_desc_size * i));
3952 		utrdlp[i].command_desc_base_addr =
3953 				cpu_to_le64(cmd_desc_element_addr);
3954 
3955 		/* Response upiu and prdt offset should be in double words */
3956 		if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN) {
3957 			utrdlp[i].response_upiu_offset =
3958 				cpu_to_le16(response_offset);
3959 			utrdlp[i].prd_table_offset =
3960 				cpu_to_le16(prdt_offset);
3961 			utrdlp[i].response_upiu_length =
3962 				cpu_to_le16(ALIGNED_UPIU_SIZE);
3963 		} else {
3964 			utrdlp[i].response_upiu_offset =
3965 				cpu_to_le16(response_offset >> 2);
3966 			utrdlp[i].prd_table_offset =
3967 				cpu_to_le16(prdt_offset >> 2);
3968 			utrdlp[i].response_upiu_length =
3969 				cpu_to_le16(ALIGNED_UPIU_SIZE >> 2);
3970 		}
3971 
3972 		ufshcd_init_lrb(hba, &hba->lrb[i], i);
3973 	}
3974 }
3975 
3976 /**
3977  * ufshcd_dme_link_startup - Notify Unipro to perform link startup
3978  * @hba: per adapter instance
3979  *
3980  * UIC_CMD_DME_LINK_STARTUP command must be issued to Unipro layer,
3981  * in order to initialize the Unipro link startup procedure.
3982  * Once the Unipro links are up, the device connected to the controller
3983  * is detected.
3984  *
3985  * Return: 0 on success, non-zero value on failure.
3986  */
3987 static int ufshcd_dme_link_startup(struct ufs_hba *hba)
3988 {
3989 	struct uic_command uic_cmd = {0};
3990 	int ret;
3991 
3992 	uic_cmd.command = UIC_CMD_DME_LINK_STARTUP;
3993 
3994 	ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
3995 	if (ret)
3996 		dev_dbg(hba->dev,
3997 			"dme-link-startup: error code %d\n", ret);
3998 	return ret;
3999 }
4000 /**
4001  * ufshcd_dme_reset - UIC command for DME_RESET
4002  * @hba: per adapter instance
4003  *
4004  * DME_RESET command is issued in order to reset UniPro stack.
4005  * This function now deals with cold reset.
4006  *
4007  * Return: 0 on success, non-zero value on failure.
4008  */
4009 static int ufshcd_dme_reset(struct ufs_hba *hba)
4010 {
4011 	struct uic_command uic_cmd = {0};
4012 	int ret;
4013 
4014 	uic_cmd.command = UIC_CMD_DME_RESET;
4015 
4016 	ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4017 	if (ret)
4018 		dev_err(hba->dev,
4019 			"dme-reset: error code %d\n", ret);
4020 
4021 	return ret;
4022 }
4023 
4024 int ufshcd_dme_configure_adapt(struct ufs_hba *hba,
4025 			       int agreed_gear,
4026 			       int adapt_val)
4027 {
4028 	int ret;
4029 
4030 	if (agreed_gear < UFS_HS_G4)
4031 		adapt_val = PA_NO_ADAPT;
4032 
4033 	ret = ufshcd_dme_set(hba,
4034 			     UIC_ARG_MIB(PA_TXHSADAPTTYPE),
4035 			     adapt_val);
4036 	return ret;
4037 }
4038 EXPORT_SYMBOL_GPL(ufshcd_dme_configure_adapt);
4039 
4040 /**
4041  * ufshcd_dme_enable - UIC command for DME_ENABLE
4042  * @hba: per adapter instance
4043  *
4044  * DME_ENABLE command is issued in order to enable UniPro stack.
4045  *
4046  * Return: 0 on success, non-zero value on failure.
4047  */
4048 static int ufshcd_dme_enable(struct ufs_hba *hba)
4049 {
4050 	struct uic_command uic_cmd = {0};
4051 	int ret;
4052 
4053 	uic_cmd.command = UIC_CMD_DME_ENABLE;
4054 
4055 	ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4056 	if (ret)
4057 		dev_err(hba->dev,
4058 			"dme-enable: error code %d\n", ret);
4059 
4060 	return ret;
4061 }
4062 
4063 static inline void ufshcd_add_delay_before_dme_cmd(struct ufs_hba *hba)
4064 {
4065 	#define MIN_DELAY_BEFORE_DME_CMDS_US	1000
4066 	unsigned long min_sleep_time_us;
4067 
4068 	if (!(hba->quirks & UFSHCD_QUIRK_DELAY_BEFORE_DME_CMDS))
4069 		return;
4070 
4071 	/*
4072 	 * last_dme_cmd_tstamp will be 0 only for 1st call to
4073 	 * this function
4074 	 */
4075 	if (unlikely(!ktime_to_us(hba->last_dme_cmd_tstamp))) {
4076 		min_sleep_time_us = MIN_DELAY_BEFORE_DME_CMDS_US;
4077 	} else {
4078 		unsigned long delta =
4079 			(unsigned long) ktime_to_us(
4080 				ktime_sub(ktime_get(),
4081 				hba->last_dme_cmd_tstamp));
4082 
4083 		if (delta < MIN_DELAY_BEFORE_DME_CMDS_US)
4084 			min_sleep_time_us =
4085 				MIN_DELAY_BEFORE_DME_CMDS_US - delta;
4086 		else
4087 			return; /* no more delay required */
4088 	}
4089 
4090 	/* allow sleep for extra 50us if needed */
4091 	usleep_range(min_sleep_time_us, min_sleep_time_us + 50);
4092 }
4093 
4094 /**
4095  * ufshcd_dme_set_attr - UIC command for DME_SET, DME_PEER_SET
4096  * @hba: per adapter instance
4097  * @attr_sel: uic command argument1
4098  * @attr_set: attribute set type as uic command argument2
4099  * @mib_val: setting value as uic command argument3
4100  * @peer: indicate whether peer or local
4101  *
4102  * Return: 0 on success, non-zero value on failure.
4103  */
4104 int ufshcd_dme_set_attr(struct ufs_hba *hba, u32 attr_sel,
4105 			u8 attr_set, u32 mib_val, u8 peer)
4106 {
4107 	struct uic_command uic_cmd = {0};
4108 	static const char *const action[] = {
4109 		"dme-set",
4110 		"dme-peer-set"
4111 	};
4112 	const char *set = action[!!peer];
4113 	int ret;
4114 	int retries = UFS_UIC_COMMAND_RETRIES;
4115 
4116 	uic_cmd.command = peer ?
4117 		UIC_CMD_DME_PEER_SET : UIC_CMD_DME_SET;
4118 	uic_cmd.argument1 = attr_sel;
4119 	uic_cmd.argument2 = UIC_ARG_ATTR_TYPE(attr_set);
4120 	uic_cmd.argument3 = mib_val;
4121 
4122 	do {
4123 		/* for peer attributes we retry upon failure */
4124 		ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4125 		if (ret)
4126 			dev_dbg(hba->dev, "%s: attr-id 0x%x val 0x%x error code %d\n",
4127 				set, UIC_GET_ATTR_ID(attr_sel), mib_val, ret);
4128 	} while (ret && peer && --retries);
4129 
4130 	if (ret)
4131 		dev_err(hba->dev, "%s: attr-id 0x%x val 0x%x failed %d retries\n",
4132 			set, UIC_GET_ATTR_ID(attr_sel), mib_val,
4133 			UFS_UIC_COMMAND_RETRIES - retries);
4134 
4135 	return ret;
4136 }
4137 EXPORT_SYMBOL_GPL(ufshcd_dme_set_attr);
4138 
4139 /**
4140  * ufshcd_dme_get_attr - UIC command for DME_GET, DME_PEER_GET
4141  * @hba: per adapter instance
4142  * @attr_sel: uic command argument1
4143  * @mib_val: the value of the attribute as returned by the UIC command
4144  * @peer: indicate whether peer or local
4145  *
4146  * Return: 0 on success, non-zero value on failure.
4147  */
4148 int ufshcd_dme_get_attr(struct ufs_hba *hba, u32 attr_sel,
4149 			u32 *mib_val, u8 peer)
4150 {
4151 	struct uic_command uic_cmd = {0};
4152 	static const char *const action[] = {
4153 		"dme-get",
4154 		"dme-peer-get"
4155 	};
4156 	const char *get = action[!!peer];
4157 	int ret;
4158 	int retries = UFS_UIC_COMMAND_RETRIES;
4159 	struct ufs_pa_layer_attr orig_pwr_info;
4160 	struct ufs_pa_layer_attr temp_pwr_info;
4161 	bool pwr_mode_change = false;
4162 
4163 	if (peer && (hba->quirks & UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE)) {
4164 		orig_pwr_info = hba->pwr_info;
4165 		temp_pwr_info = orig_pwr_info;
4166 
4167 		if (orig_pwr_info.pwr_tx == FAST_MODE ||
4168 		    orig_pwr_info.pwr_rx == FAST_MODE) {
4169 			temp_pwr_info.pwr_tx = FASTAUTO_MODE;
4170 			temp_pwr_info.pwr_rx = FASTAUTO_MODE;
4171 			pwr_mode_change = true;
4172 		} else if (orig_pwr_info.pwr_tx == SLOW_MODE ||
4173 		    orig_pwr_info.pwr_rx == SLOW_MODE) {
4174 			temp_pwr_info.pwr_tx = SLOWAUTO_MODE;
4175 			temp_pwr_info.pwr_rx = SLOWAUTO_MODE;
4176 			pwr_mode_change = true;
4177 		}
4178 		if (pwr_mode_change) {
4179 			ret = ufshcd_change_power_mode(hba, &temp_pwr_info);
4180 			if (ret)
4181 				goto out;
4182 		}
4183 	}
4184 
4185 	uic_cmd.command = peer ?
4186 		UIC_CMD_DME_PEER_GET : UIC_CMD_DME_GET;
4187 	uic_cmd.argument1 = attr_sel;
4188 
4189 	do {
4190 		/* for peer attributes we retry upon failure */
4191 		ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4192 		if (ret)
4193 			dev_dbg(hba->dev, "%s: attr-id 0x%x error code %d\n",
4194 				get, UIC_GET_ATTR_ID(attr_sel), ret);
4195 	} while (ret && peer && --retries);
4196 
4197 	if (ret)
4198 		dev_err(hba->dev, "%s: attr-id 0x%x failed %d retries\n",
4199 			get, UIC_GET_ATTR_ID(attr_sel),
4200 			UFS_UIC_COMMAND_RETRIES - retries);
4201 
4202 	if (mib_val && !ret)
4203 		*mib_val = uic_cmd.argument3;
4204 
4205 	if (peer && (hba->quirks & UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE)
4206 	    && pwr_mode_change)
4207 		ufshcd_change_power_mode(hba, &orig_pwr_info);
4208 out:
4209 	return ret;
4210 }
4211 EXPORT_SYMBOL_GPL(ufshcd_dme_get_attr);
4212 
4213 /**
4214  * ufshcd_uic_pwr_ctrl - executes UIC commands (which affects the link power
4215  * state) and waits for it to take effect.
4216  *
4217  * @hba: per adapter instance
4218  * @cmd: UIC command to execute
4219  *
4220  * DME operations like DME_SET(PA_PWRMODE), DME_HIBERNATE_ENTER &
4221  * DME_HIBERNATE_EXIT commands take some time to take its effect on both host
4222  * and device UniPro link and hence it's final completion would be indicated by
4223  * dedicated status bits in Interrupt Status register (UPMS, UHES, UHXS) in
4224  * addition to normal UIC command completion Status (UCCS). This function only
4225  * returns after the relevant status bits indicate the completion.
4226  *
4227  * Return: 0 on success, non-zero value on failure.
4228  */
4229 static int ufshcd_uic_pwr_ctrl(struct ufs_hba *hba, struct uic_command *cmd)
4230 {
4231 	DECLARE_COMPLETION_ONSTACK(uic_async_done);
4232 	unsigned long flags;
4233 	u8 status;
4234 	int ret;
4235 	bool reenable_intr = false;
4236 
4237 	mutex_lock(&hba->uic_cmd_mutex);
4238 	ufshcd_add_delay_before_dme_cmd(hba);
4239 
4240 	spin_lock_irqsave(hba->host->host_lock, flags);
4241 	if (ufshcd_is_link_broken(hba)) {
4242 		ret = -ENOLINK;
4243 		goto out_unlock;
4244 	}
4245 	hba->uic_async_done = &uic_async_done;
4246 	if (ufshcd_readl(hba, REG_INTERRUPT_ENABLE) & UIC_COMMAND_COMPL) {
4247 		ufshcd_disable_intr(hba, UIC_COMMAND_COMPL);
4248 		/*
4249 		 * Make sure UIC command completion interrupt is disabled before
4250 		 * issuing UIC command.
4251 		 */
4252 		ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
4253 		reenable_intr = true;
4254 	}
4255 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4256 	ret = __ufshcd_send_uic_cmd(hba, cmd, false);
4257 	if (ret) {
4258 		dev_err(hba->dev,
4259 			"pwr ctrl cmd 0x%x with mode 0x%x uic error %d\n",
4260 			cmd->command, cmd->argument3, ret);
4261 		goto out;
4262 	}
4263 
4264 	if (!wait_for_completion_timeout(hba->uic_async_done,
4265 					 msecs_to_jiffies(UIC_CMD_TIMEOUT))) {
4266 		dev_err(hba->dev,
4267 			"pwr ctrl cmd 0x%x with mode 0x%x completion timeout\n",
4268 			cmd->command, cmd->argument3);
4269 
4270 		if (!cmd->cmd_active) {
4271 			dev_err(hba->dev, "%s: Power Mode Change operation has been completed, go check UPMCRS\n",
4272 				__func__);
4273 			goto check_upmcrs;
4274 		}
4275 
4276 		ret = -ETIMEDOUT;
4277 		goto out;
4278 	}
4279 
4280 check_upmcrs:
4281 	status = ufshcd_get_upmcrs(hba);
4282 	if (status != PWR_LOCAL) {
4283 		dev_err(hba->dev,
4284 			"pwr ctrl cmd 0x%x failed, host upmcrs:0x%x\n",
4285 			cmd->command, status);
4286 		ret = (status != PWR_OK) ? status : -1;
4287 	}
4288 out:
4289 	if (ret) {
4290 		ufshcd_print_host_state(hba);
4291 		ufshcd_print_pwr_info(hba);
4292 		ufshcd_print_evt_hist(hba);
4293 	}
4294 
4295 	spin_lock_irqsave(hba->host->host_lock, flags);
4296 	hba->active_uic_cmd = NULL;
4297 	hba->uic_async_done = NULL;
4298 	if (reenable_intr)
4299 		ufshcd_enable_intr(hba, UIC_COMMAND_COMPL);
4300 	if (ret) {
4301 		ufshcd_set_link_broken(hba);
4302 		ufshcd_schedule_eh_work(hba);
4303 	}
4304 out_unlock:
4305 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4306 	mutex_unlock(&hba->uic_cmd_mutex);
4307 
4308 	return ret;
4309 }
4310 
4311 /**
4312  * ufshcd_uic_change_pwr_mode - Perform the UIC power mode chage
4313  *				using DME_SET primitives.
4314  * @hba: per adapter instance
4315  * @mode: powr mode value
4316  *
4317  * Return: 0 on success, non-zero value on failure.
4318  */
4319 int ufshcd_uic_change_pwr_mode(struct ufs_hba *hba, u8 mode)
4320 {
4321 	struct uic_command uic_cmd = {0};
4322 	int ret;
4323 
4324 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_PA_RXHSUNTERMCAP) {
4325 		ret = ufshcd_dme_set(hba,
4326 				UIC_ARG_MIB_SEL(PA_RXHSUNTERMCAP, 0), 1);
4327 		if (ret) {
4328 			dev_err(hba->dev, "%s: failed to enable PA_RXHSUNTERMCAP ret %d\n",
4329 						__func__, ret);
4330 			goto out;
4331 		}
4332 	}
4333 
4334 	uic_cmd.command = UIC_CMD_DME_SET;
4335 	uic_cmd.argument1 = UIC_ARG_MIB(PA_PWRMODE);
4336 	uic_cmd.argument3 = mode;
4337 	ufshcd_hold(hba);
4338 	ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4339 	ufshcd_release(hba);
4340 
4341 out:
4342 	return ret;
4343 }
4344 EXPORT_SYMBOL_GPL(ufshcd_uic_change_pwr_mode);
4345 
4346 int ufshcd_link_recovery(struct ufs_hba *hba)
4347 {
4348 	int ret;
4349 	unsigned long flags;
4350 
4351 	spin_lock_irqsave(hba->host->host_lock, flags);
4352 	hba->ufshcd_state = UFSHCD_STATE_RESET;
4353 	ufshcd_set_eh_in_progress(hba);
4354 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4355 
4356 	/* Reset the attached device */
4357 	ufshcd_device_reset(hba);
4358 
4359 	ret = ufshcd_host_reset_and_restore(hba);
4360 
4361 	spin_lock_irqsave(hba->host->host_lock, flags);
4362 	if (ret)
4363 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
4364 	ufshcd_clear_eh_in_progress(hba);
4365 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4366 
4367 	if (ret)
4368 		dev_err(hba->dev, "%s: link recovery failed, err %d",
4369 			__func__, ret);
4370 
4371 	return ret;
4372 }
4373 EXPORT_SYMBOL_GPL(ufshcd_link_recovery);
4374 
4375 int ufshcd_uic_hibern8_enter(struct ufs_hba *hba)
4376 {
4377 	int ret;
4378 	struct uic_command uic_cmd = {0};
4379 	ktime_t start = ktime_get();
4380 
4381 	ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_ENTER, PRE_CHANGE);
4382 
4383 	uic_cmd.command = UIC_CMD_DME_HIBER_ENTER;
4384 	ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4385 	trace_ufshcd_profile_hibern8(dev_name(hba->dev), "enter",
4386 			     ktime_to_us(ktime_sub(ktime_get(), start)), ret);
4387 
4388 	if (ret)
4389 		dev_err(hba->dev, "%s: hibern8 enter failed. ret = %d\n",
4390 			__func__, ret);
4391 	else
4392 		ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_ENTER,
4393 								POST_CHANGE);
4394 
4395 	return ret;
4396 }
4397 EXPORT_SYMBOL_GPL(ufshcd_uic_hibern8_enter);
4398 
4399 int ufshcd_uic_hibern8_exit(struct ufs_hba *hba)
4400 {
4401 	struct uic_command uic_cmd = {0};
4402 	int ret;
4403 	ktime_t start = ktime_get();
4404 
4405 	ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_EXIT, PRE_CHANGE);
4406 
4407 	uic_cmd.command = UIC_CMD_DME_HIBER_EXIT;
4408 	ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4409 	trace_ufshcd_profile_hibern8(dev_name(hba->dev), "exit",
4410 			     ktime_to_us(ktime_sub(ktime_get(), start)), ret);
4411 
4412 	if (ret) {
4413 		dev_err(hba->dev, "%s: hibern8 exit failed. ret = %d\n",
4414 			__func__, ret);
4415 	} else {
4416 		ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_EXIT,
4417 								POST_CHANGE);
4418 		hba->ufs_stats.last_hibern8_exit_tstamp = local_clock();
4419 		hba->ufs_stats.hibern8_exit_cnt++;
4420 	}
4421 
4422 	return ret;
4423 }
4424 EXPORT_SYMBOL_GPL(ufshcd_uic_hibern8_exit);
4425 
4426 static void ufshcd_configure_auto_hibern8(struct ufs_hba *hba)
4427 {
4428 	if (!ufshcd_is_auto_hibern8_supported(hba))
4429 		return;
4430 
4431 	ufshcd_writel(hba, hba->ahit, REG_AUTO_HIBERNATE_IDLE_TIMER);
4432 }
4433 
4434 void ufshcd_auto_hibern8_update(struct ufs_hba *hba, u32 ahit)
4435 {
4436 	const u32 cur_ahit = READ_ONCE(hba->ahit);
4437 
4438 	if (!ufshcd_is_auto_hibern8_supported(hba) || cur_ahit == ahit)
4439 		return;
4440 
4441 	WRITE_ONCE(hba->ahit, ahit);
4442 	if (!pm_runtime_suspended(&hba->ufs_device_wlun->sdev_gendev)) {
4443 		ufshcd_rpm_get_sync(hba);
4444 		ufshcd_hold(hba);
4445 		ufshcd_configure_auto_hibern8(hba);
4446 		ufshcd_release(hba);
4447 		ufshcd_rpm_put_sync(hba);
4448 	}
4449 }
4450 EXPORT_SYMBOL_GPL(ufshcd_auto_hibern8_update);
4451 
4452  /**
4453  * ufshcd_init_pwr_info - setting the POR (power on reset)
4454  * values in hba power info
4455  * @hba: per-adapter instance
4456  */
4457 static void ufshcd_init_pwr_info(struct ufs_hba *hba)
4458 {
4459 	hba->pwr_info.gear_rx = UFS_PWM_G1;
4460 	hba->pwr_info.gear_tx = UFS_PWM_G1;
4461 	hba->pwr_info.lane_rx = UFS_LANE_1;
4462 	hba->pwr_info.lane_tx = UFS_LANE_1;
4463 	hba->pwr_info.pwr_rx = SLOWAUTO_MODE;
4464 	hba->pwr_info.pwr_tx = SLOWAUTO_MODE;
4465 	hba->pwr_info.hs_rate = 0;
4466 }
4467 
4468 /**
4469  * ufshcd_get_max_pwr_mode - reads the max power mode negotiated with device
4470  * @hba: per-adapter instance
4471  *
4472  * Return: 0 upon success; < 0 upon failure.
4473  */
4474 static int ufshcd_get_max_pwr_mode(struct ufs_hba *hba)
4475 {
4476 	struct ufs_pa_layer_attr *pwr_info = &hba->max_pwr_info.info;
4477 
4478 	if (hba->max_pwr_info.is_valid)
4479 		return 0;
4480 
4481 	if (hba->quirks & UFSHCD_QUIRK_HIBERN_FASTAUTO) {
4482 		pwr_info->pwr_tx = FASTAUTO_MODE;
4483 		pwr_info->pwr_rx = FASTAUTO_MODE;
4484 	} else {
4485 		pwr_info->pwr_tx = FAST_MODE;
4486 		pwr_info->pwr_rx = FAST_MODE;
4487 	}
4488 	pwr_info->hs_rate = PA_HS_MODE_B;
4489 
4490 	/* Get the connected lane count */
4491 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDRXDATALANES),
4492 			&pwr_info->lane_rx);
4493 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4494 			&pwr_info->lane_tx);
4495 
4496 	if (!pwr_info->lane_rx || !pwr_info->lane_tx) {
4497 		dev_err(hba->dev, "%s: invalid connected lanes value. rx=%d, tx=%d\n",
4498 				__func__,
4499 				pwr_info->lane_rx,
4500 				pwr_info->lane_tx);
4501 		return -EINVAL;
4502 	}
4503 
4504 	/*
4505 	 * First, get the maximum gears of HS speed.
4506 	 * If a zero value, it means there is no HSGEAR capability.
4507 	 * Then, get the maximum gears of PWM speed.
4508 	 */
4509 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_MAXRXHSGEAR), &pwr_info->gear_rx);
4510 	if (!pwr_info->gear_rx) {
4511 		ufshcd_dme_get(hba, UIC_ARG_MIB(PA_MAXRXPWMGEAR),
4512 				&pwr_info->gear_rx);
4513 		if (!pwr_info->gear_rx) {
4514 			dev_err(hba->dev, "%s: invalid max pwm rx gear read = %d\n",
4515 				__func__, pwr_info->gear_rx);
4516 			return -EINVAL;
4517 		}
4518 		pwr_info->pwr_rx = SLOW_MODE;
4519 	}
4520 
4521 	ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_MAXRXHSGEAR),
4522 			&pwr_info->gear_tx);
4523 	if (!pwr_info->gear_tx) {
4524 		ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_MAXRXPWMGEAR),
4525 				&pwr_info->gear_tx);
4526 		if (!pwr_info->gear_tx) {
4527 			dev_err(hba->dev, "%s: invalid max pwm tx gear read = %d\n",
4528 				__func__, pwr_info->gear_tx);
4529 			return -EINVAL;
4530 		}
4531 		pwr_info->pwr_tx = SLOW_MODE;
4532 	}
4533 
4534 	hba->max_pwr_info.is_valid = true;
4535 	return 0;
4536 }
4537 
4538 static int ufshcd_change_power_mode(struct ufs_hba *hba,
4539 			     struct ufs_pa_layer_attr *pwr_mode)
4540 {
4541 	int ret;
4542 
4543 	/* if already configured to the requested pwr_mode */
4544 	if (!hba->force_pmc &&
4545 	    pwr_mode->gear_rx == hba->pwr_info.gear_rx &&
4546 	    pwr_mode->gear_tx == hba->pwr_info.gear_tx &&
4547 	    pwr_mode->lane_rx == hba->pwr_info.lane_rx &&
4548 	    pwr_mode->lane_tx == hba->pwr_info.lane_tx &&
4549 	    pwr_mode->pwr_rx == hba->pwr_info.pwr_rx &&
4550 	    pwr_mode->pwr_tx == hba->pwr_info.pwr_tx &&
4551 	    pwr_mode->hs_rate == hba->pwr_info.hs_rate) {
4552 		dev_dbg(hba->dev, "%s: power already configured\n", __func__);
4553 		return 0;
4554 	}
4555 
4556 	/*
4557 	 * Configure attributes for power mode change with below.
4558 	 * - PA_RXGEAR, PA_ACTIVERXDATALANES, PA_RXTERMINATION,
4559 	 * - PA_TXGEAR, PA_ACTIVETXDATALANES, PA_TXTERMINATION,
4560 	 * - PA_HSSERIES
4561 	 */
4562 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXGEAR), pwr_mode->gear_rx);
4563 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVERXDATALANES),
4564 			pwr_mode->lane_rx);
4565 	if (pwr_mode->pwr_rx == FASTAUTO_MODE ||
4566 			pwr_mode->pwr_rx == FAST_MODE)
4567 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), true);
4568 	else
4569 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), false);
4570 
4571 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXGEAR), pwr_mode->gear_tx);
4572 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVETXDATALANES),
4573 			pwr_mode->lane_tx);
4574 	if (pwr_mode->pwr_tx == FASTAUTO_MODE ||
4575 			pwr_mode->pwr_tx == FAST_MODE)
4576 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), true);
4577 	else
4578 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), false);
4579 
4580 	if (pwr_mode->pwr_rx == FASTAUTO_MODE ||
4581 	    pwr_mode->pwr_tx == FASTAUTO_MODE ||
4582 	    pwr_mode->pwr_rx == FAST_MODE ||
4583 	    pwr_mode->pwr_tx == FAST_MODE)
4584 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_HSSERIES),
4585 						pwr_mode->hs_rate);
4586 
4587 	if (!(hba->quirks & UFSHCD_QUIRK_SKIP_DEF_UNIPRO_TIMEOUT_SETTING)) {
4588 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA0),
4589 				DL_FC0ProtectionTimeOutVal_Default);
4590 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA1),
4591 				DL_TC0ReplayTimeOutVal_Default);
4592 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA2),
4593 				DL_AFC0ReqTimeOutVal_Default);
4594 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA3),
4595 				DL_FC1ProtectionTimeOutVal_Default);
4596 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA4),
4597 				DL_TC1ReplayTimeOutVal_Default);
4598 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA5),
4599 				DL_AFC1ReqTimeOutVal_Default);
4600 
4601 		ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalFC0ProtectionTimeOutVal),
4602 				DL_FC0ProtectionTimeOutVal_Default);
4603 		ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalTC0ReplayTimeOutVal),
4604 				DL_TC0ReplayTimeOutVal_Default);
4605 		ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalAFC0ReqTimeOutVal),
4606 				DL_AFC0ReqTimeOutVal_Default);
4607 	}
4608 
4609 	ret = ufshcd_uic_change_pwr_mode(hba, pwr_mode->pwr_rx << 4
4610 			| pwr_mode->pwr_tx);
4611 
4612 	if (ret) {
4613 		dev_err(hba->dev,
4614 			"%s: power mode change failed %d\n", __func__, ret);
4615 	} else {
4616 		ufshcd_vops_pwr_change_notify(hba, POST_CHANGE, NULL,
4617 								pwr_mode);
4618 
4619 		memcpy(&hba->pwr_info, pwr_mode,
4620 			sizeof(struct ufs_pa_layer_attr));
4621 	}
4622 
4623 	return ret;
4624 }
4625 
4626 /**
4627  * ufshcd_config_pwr_mode - configure a new power mode
4628  * @hba: per-adapter instance
4629  * @desired_pwr_mode: desired power configuration
4630  *
4631  * Return: 0 upon success; < 0 upon failure.
4632  */
4633 int ufshcd_config_pwr_mode(struct ufs_hba *hba,
4634 		struct ufs_pa_layer_attr *desired_pwr_mode)
4635 {
4636 	struct ufs_pa_layer_attr final_params = { 0 };
4637 	int ret;
4638 
4639 	ret = ufshcd_vops_pwr_change_notify(hba, PRE_CHANGE,
4640 					desired_pwr_mode, &final_params);
4641 
4642 	if (ret)
4643 		memcpy(&final_params, desired_pwr_mode, sizeof(final_params));
4644 
4645 	ret = ufshcd_change_power_mode(hba, &final_params);
4646 
4647 	return ret;
4648 }
4649 EXPORT_SYMBOL_GPL(ufshcd_config_pwr_mode);
4650 
4651 /**
4652  * ufshcd_complete_dev_init() - checks device readiness
4653  * @hba: per-adapter instance
4654  *
4655  * Set fDeviceInit flag and poll until device toggles it.
4656  *
4657  * Return: 0 upon success; < 0 upon failure.
4658  */
4659 static int ufshcd_complete_dev_init(struct ufs_hba *hba)
4660 {
4661 	int err;
4662 	bool flag_res = true;
4663 	ktime_t timeout;
4664 
4665 	err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG,
4666 		QUERY_FLAG_IDN_FDEVICEINIT, 0, NULL);
4667 	if (err) {
4668 		dev_err(hba->dev,
4669 			"%s: setting fDeviceInit flag failed with error %d\n",
4670 			__func__, err);
4671 		goto out;
4672 	}
4673 
4674 	/* Poll fDeviceInit flag to be cleared */
4675 	timeout = ktime_add_ms(ktime_get(), FDEVICEINIT_COMPL_TIMEOUT);
4676 	do {
4677 		err = ufshcd_query_flag(hba, UPIU_QUERY_OPCODE_READ_FLAG,
4678 					QUERY_FLAG_IDN_FDEVICEINIT, 0, &flag_res);
4679 		if (!flag_res)
4680 			break;
4681 		usleep_range(500, 1000);
4682 	} while (ktime_before(ktime_get(), timeout));
4683 
4684 	if (err) {
4685 		dev_err(hba->dev,
4686 				"%s: reading fDeviceInit flag failed with error %d\n",
4687 				__func__, err);
4688 	} else if (flag_res) {
4689 		dev_err(hba->dev,
4690 				"%s: fDeviceInit was not cleared by the device\n",
4691 				__func__);
4692 		err = -EBUSY;
4693 	}
4694 out:
4695 	return err;
4696 }
4697 
4698 /**
4699  * ufshcd_make_hba_operational - Make UFS controller operational
4700  * @hba: per adapter instance
4701  *
4702  * To bring UFS host controller to operational state,
4703  * 1. Enable required interrupts
4704  * 2. Configure interrupt aggregation
4705  * 3. Program UTRL and UTMRL base address
4706  * 4. Configure run-stop-registers
4707  *
4708  * Return: 0 on success, non-zero value on failure.
4709  */
4710 int ufshcd_make_hba_operational(struct ufs_hba *hba)
4711 {
4712 	int err = 0;
4713 	u32 reg;
4714 
4715 	/* Enable required interrupts */
4716 	ufshcd_enable_intr(hba, UFSHCD_ENABLE_INTRS);
4717 
4718 	/* Configure interrupt aggregation */
4719 	if (ufshcd_is_intr_aggr_allowed(hba))
4720 		ufshcd_config_intr_aggr(hba, hba->nutrs - 1, INT_AGGR_DEF_TO);
4721 	else
4722 		ufshcd_disable_intr_aggr(hba);
4723 
4724 	/* Configure UTRL and UTMRL base address registers */
4725 	ufshcd_writel(hba, lower_32_bits(hba->utrdl_dma_addr),
4726 			REG_UTP_TRANSFER_REQ_LIST_BASE_L);
4727 	ufshcd_writel(hba, upper_32_bits(hba->utrdl_dma_addr),
4728 			REG_UTP_TRANSFER_REQ_LIST_BASE_H);
4729 	ufshcd_writel(hba, lower_32_bits(hba->utmrdl_dma_addr),
4730 			REG_UTP_TASK_REQ_LIST_BASE_L);
4731 	ufshcd_writel(hba, upper_32_bits(hba->utmrdl_dma_addr),
4732 			REG_UTP_TASK_REQ_LIST_BASE_H);
4733 
4734 	/*
4735 	 * UCRDY, UTMRLDY and UTRLRDY bits must be 1
4736 	 */
4737 	reg = ufshcd_readl(hba, REG_CONTROLLER_STATUS);
4738 	if (!(ufshcd_get_lists_status(reg))) {
4739 		ufshcd_enable_run_stop_reg(hba);
4740 	} else {
4741 		dev_err(hba->dev,
4742 			"Host controller not ready to process requests");
4743 		err = -EIO;
4744 	}
4745 
4746 	return err;
4747 }
4748 EXPORT_SYMBOL_GPL(ufshcd_make_hba_operational);
4749 
4750 /**
4751  * ufshcd_hba_stop - Send controller to reset state
4752  * @hba: per adapter instance
4753  */
4754 void ufshcd_hba_stop(struct ufs_hba *hba)
4755 {
4756 	unsigned long flags;
4757 	int err;
4758 
4759 	/*
4760 	 * Obtain the host lock to prevent that the controller is disabled
4761 	 * while the UFS interrupt handler is active on another CPU.
4762 	 */
4763 	spin_lock_irqsave(hba->host->host_lock, flags);
4764 	ufshcd_writel(hba, CONTROLLER_DISABLE,  REG_CONTROLLER_ENABLE);
4765 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4766 
4767 	err = ufshcd_wait_for_register(hba, REG_CONTROLLER_ENABLE,
4768 					CONTROLLER_ENABLE, CONTROLLER_DISABLE,
4769 					10, 1);
4770 	if (err)
4771 		dev_err(hba->dev, "%s: Controller disable failed\n", __func__);
4772 }
4773 EXPORT_SYMBOL_GPL(ufshcd_hba_stop);
4774 
4775 /**
4776  * ufshcd_hba_execute_hce - initialize the controller
4777  * @hba: per adapter instance
4778  *
4779  * The controller resets itself and controller firmware initialization
4780  * sequence kicks off. When controller is ready it will set
4781  * the Host Controller Enable bit to 1.
4782  *
4783  * Return: 0 on success, non-zero value on failure.
4784  */
4785 static int ufshcd_hba_execute_hce(struct ufs_hba *hba)
4786 {
4787 	int retry_outer = 3;
4788 	int retry_inner;
4789 
4790 start:
4791 	if (ufshcd_is_hba_active(hba))
4792 		/* change controller state to "reset state" */
4793 		ufshcd_hba_stop(hba);
4794 
4795 	/* UniPro link is disabled at this point */
4796 	ufshcd_set_link_off(hba);
4797 
4798 	ufshcd_vops_hce_enable_notify(hba, PRE_CHANGE);
4799 
4800 	/* start controller initialization sequence */
4801 	ufshcd_hba_start(hba);
4802 
4803 	/*
4804 	 * To initialize a UFS host controller HCE bit must be set to 1.
4805 	 * During initialization the HCE bit value changes from 1->0->1.
4806 	 * When the host controller completes initialization sequence
4807 	 * it sets the value of HCE bit to 1. The same HCE bit is read back
4808 	 * to check if the controller has completed initialization sequence.
4809 	 * So without this delay the value HCE = 1, set in the previous
4810 	 * instruction might be read back.
4811 	 * This delay can be changed based on the controller.
4812 	 */
4813 	ufshcd_delay_us(hba->vps->hba_enable_delay_us, 100);
4814 
4815 	/* wait for the host controller to complete initialization */
4816 	retry_inner = 50;
4817 	while (!ufshcd_is_hba_active(hba)) {
4818 		if (retry_inner) {
4819 			retry_inner--;
4820 		} else {
4821 			dev_err(hba->dev,
4822 				"Controller enable failed\n");
4823 			if (retry_outer) {
4824 				retry_outer--;
4825 				goto start;
4826 			}
4827 			return -EIO;
4828 		}
4829 		usleep_range(1000, 1100);
4830 	}
4831 
4832 	/* enable UIC related interrupts */
4833 	ufshcd_enable_intr(hba, UFSHCD_UIC_MASK);
4834 
4835 	ufshcd_vops_hce_enable_notify(hba, POST_CHANGE);
4836 
4837 	return 0;
4838 }
4839 
4840 int ufshcd_hba_enable(struct ufs_hba *hba)
4841 {
4842 	int ret;
4843 
4844 	if (hba->quirks & UFSHCI_QUIRK_BROKEN_HCE) {
4845 		ufshcd_set_link_off(hba);
4846 		ufshcd_vops_hce_enable_notify(hba, PRE_CHANGE);
4847 
4848 		/* enable UIC related interrupts */
4849 		ufshcd_enable_intr(hba, UFSHCD_UIC_MASK);
4850 		ret = ufshcd_dme_reset(hba);
4851 		if (ret) {
4852 			dev_err(hba->dev, "DME_RESET failed\n");
4853 			return ret;
4854 		}
4855 
4856 		ret = ufshcd_dme_enable(hba);
4857 		if (ret) {
4858 			dev_err(hba->dev, "Enabling DME failed\n");
4859 			return ret;
4860 		}
4861 
4862 		ufshcd_vops_hce_enable_notify(hba, POST_CHANGE);
4863 	} else {
4864 		ret = ufshcd_hba_execute_hce(hba);
4865 	}
4866 
4867 	return ret;
4868 }
4869 EXPORT_SYMBOL_GPL(ufshcd_hba_enable);
4870 
4871 static int ufshcd_disable_tx_lcc(struct ufs_hba *hba, bool peer)
4872 {
4873 	int tx_lanes = 0, i, err = 0;
4874 
4875 	if (!peer)
4876 		ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4877 			       &tx_lanes);
4878 	else
4879 		ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4880 				    &tx_lanes);
4881 	for (i = 0; i < tx_lanes; i++) {
4882 		if (!peer)
4883 			err = ufshcd_dme_set(hba,
4884 				UIC_ARG_MIB_SEL(TX_LCC_ENABLE,
4885 					UIC_ARG_MPHY_TX_GEN_SEL_INDEX(i)),
4886 					0);
4887 		else
4888 			err = ufshcd_dme_peer_set(hba,
4889 				UIC_ARG_MIB_SEL(TX_LCC_ENABLE,
4890 					UIC_ARG_MPHY_TX_GEN_SEL_INDEX(i)),
4891 					0);
4892 		if (err) {
4893 			dev_err(hba->dev, "%s: TX LCC Disable failed, peer = %d, lane = %d, err = %d",
4894 				__func__, peer, i, err);
4895 			break;
4896 		}
4897 	}
4898 
4899 	return err;
4900 }
4901 
4902 static inline int ufshcd_disable_device_tx_lcc(struct ufs_hba *hba)
4903 {
4904 	return ufshcd_disable_tx_lcc(hba, true);
4905 }
4906 
4907 void ufshcd_update_evt_hist(struct ufs_hba *hba, u32 id, u32 val)
4908 {
4909 	struct ufs_event_hist *e;
4910 
4911 	if (id >= UFS_EVT_CNT)
4912 		return;
4913 
4914 	e = &hba->ufs_stats.event[id];
4915 	e->val[e->pos] = val;
4916 	e->tstamp[e->pos] = local_clock();
4917 	e->cnt += 1;
4918 	e->pos = (e->pos + 1) % UFS_EVENT_HIST_LENGTH;
4919 
4920 	ufshcd_vops_event_notify(hba, id, &val);
4921 }
4922 EXPORT_SYMBOL_GPL(ufshcd_update_evt_hist);
4923 
4924 /**
4925  * ufshcd_link_startup - Initialize unipro link startup
4926  * @hba: per adapter instance
4927  *
4928  * Return: 0 for success, non-zero in case of failure.
4929  */
4930 static int ufshcd_link_startup(struct ufs_hba *hba)
4931 {
4932 	int ret;
4933 	int retries = DME_LINKSTARTUP_RETRIES;
4934 	bool link_startup_again = false;
4935 
4936 	/*
4937 	 * If UFS device isn't active then we will have to issue link startup
4938 	 * 2 times to make sure the device state move to active.
4939 	 */
4940 	if (!ufshcd_is_ufs_dev_active(hba))
4941 		link_startup_again = true;
4942 
4943 link_startup:
4944 	do {
4945 		ufshcd_vops_link_startup_notify(hba, PRE_CHANGE);
4946 
4947 		ret = ufshcd_dme_link_startup(hba);
4948 
4949 		/* check if device is detected by inter-connect layer */
4950 		if (!ret && !ufshcd_is_device_present(hba)) {
4951 			ufshcd_update_evt_hist(hba,
4952 					       UFS_EVT_LINK_STARTUP_FAIL,
4953 					       0);
4954 			dev_err(hba->dev, "%s: Device not present\n", __func__);
4955 			ret = -ENXIO;
4956 			goto out;
4957 		}
4958 
4959 		/*
4960 		 * DME link lost indication is only received when link is up,
4961 		 * but we can't be sure if the link is up until link startup
4962 		 * succeeds. So reset the local Uni-Pro and try again.
4963 		 */
4964 		if (ret && retries && ufshcd_hba_enable(hba)) {
4965 			ufshcd_update_evt_hist(hba,
4966 					       UFS_EVT_LINK_STARTUP_FAIL,
4967 					       (u32)ret);
4968 			goto out;
4969 		}
4970 	} while (ret && retries--);
4971 
4972 	if (ret) {
4973 		/* failed to get the link up... retire */
4974 		ufshcd_update_evt_hist(hba,
4975 				       UFS_EVT_LINK_STARTUP_FAIL,
4976 				       (u32)ret);
4977 		goto out;
4978 	}
4979 
4980 	if (link_startup_again) {
4981 		link_startup_again = false;
4982 		retries = DME_LINKSTARTUP_RETRIES;
4983 		goto link_startup;
4984 	}
4985 
4986 	/* Mark that link is up in PWM-G1, 1-lane, SLOW-AUTO mode */
4987 	ufshcd_init_pwr_info(hba);
4988 	ufshcd_print_pwr_info(hba);
4989 
4990 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_LCC) {
4991 		ret = ufshcd_disable_device_tx_lcc(hba);
4992 		if (ret)
4993 			goto out;
4994 	}
4995 
4996 	/* Include any host controller configuration via UIC commands */
4997 	ret = ufshcd_vops_link_startup_notify(hba, POST_CHANGE);
4998 	if (ret)
4999 		goto out;
5000 
5001 	/* Clear UECPA once due to LINERESET has happened during LINK_STARTUP */
5002 	ufshcd_readl(hba, REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER);
5003 	ret = ufshcd_make_hba_operational(hba);
5004 out:
5005 	if (ret) {
5006 		dev_err(hba->dev, "link startup failed %d\n", ret);
5007 		ufshcd_print_host_state(hba);
5008 		ufshcd_print_pwr_info(hba);
5009 		ufshcd_print_evt_hist(hba);
5010 	}
5011 	return ret;
5012 }
5013 
5014 /**
5015  * ufshcd_verify_dev_init() - Verify device initialization
5016  * @hba: per-adapter instance
5017  *
5018  * Send NOP OUT UPIU and wait for NOP IN response to check whether the
5019  * device Transport Protocol (UTP) layer is ready after a reset.
5020  * If the UTP layer at the device side is not initialized, it may
5021  * not respond with NOP IN UPIU within timeout of %NOP_OUT_TIMEOUT
5022  * and we retry sending NOP OUT for %NOP_OUT_RETRIES iterations.
5023  *
5024  * Return: 0 upon success; < 0 upon failure.
5025  */
5026 static int ufshcd_verify_dev_init(struct ufs_hba *hba)
5027 {
5028 	int err = 0;
5029 	int retries;
5030 
5031 	ufshcd_dev_man_lock(hba);
5032 
5033 	for (retries = NOP_OUT_RETRIES; retries > 0; retries--) {
5034 		err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_NOP,
5035 					  hba->nop_out_timeout);
5036 
5037 		if (!err || err == -ETIMEDOUT)
5038 			break;
5039 
5040 		dev_dbg(hba->dev, "%s: error %d retrying\n", __func__, err);
5041 	}
5042 
5043 	ufshcd_dev_man_unlock(hba);
5044 
5045 	if (err)
5046 		dev_err(hba->dev, "%s: NOP OUT failed %d\n", __func__, err);
5047 	return err;
5048 }
5049 
5050 /**
5051  * ufshcd_setup_links - associate link b/w device wlun and other luns
5052  * @sdev: pointer to SCSI device
5053  * @hba: pointer to ufs hba
5054  */
5055 static void ufshcd_setup_links(struct ufs_hba *hba, struct scsi_device *sdev)
5056 {
5057 	struct device_link *link;
5058 
5059 	/*
5060 	 * Device wlun is the supplier & rest of the luns are consumers.
5061 	 * This ensures that device wlun suspends after all other luns.
5062 	 */
5063 	if (hba->ufs_device_wlun) {
5064 		link = device_link_add(&sdev->sdev_gendev,
5065 				       &hba->ufs_device_wlun->sdev_gendev,
5066 				       DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE);
5067 		if (!link) {
5068 			dev_err(&sdev->sdev_gendev, "Failed establishing link - %s\n",
5069 				dev_name(&hba->ufs_device_wlun->sdev_gendev));
5070 			return;
5071 		}
5072 		hba->luns_avail--;
5073 		/* Ignore REPORT_LUN wlun probing */
5074 		if (hba->luns_avail == 1) {
5075 			ufshcd_rpm_put(hba);
5076 			return;
5077 		}
5078 	} else {
5079 		/*
5080 		 * Device wlun is probed. The assumption is that WLUNs are
5081 		 * scanned before other LUNs.
5082 		 */
5083 		hba->luns_avail--;
5084 	}
5085 }
5086 
5087 /**
5088  * ufshcd_lu_init - Initialize the relevant parameters of the LU
5089  * @hba: per-adapter instance
5090  * @sdev: pointer to SCSI device
5091  */
5092 static void ufshcd_lu_init(struct ufs_hba *hba, struct scsi_device *sdev)
5093 {
5094 	int len = QUERY_DESC_MAX_SIZE;
5095 	u8 lun = ufshcd_scsi_to_upiu_lun(sdev->lun);
5096 	u8 lun_qdepth = hba->nutrs;
5097 	u8 *desc_buf;
5098 	int ret;
5099 
5100 	desc_buf = kzalloc(len, GFP_KERNEL);
5101 	if (!desc_buf)
5102 		goto set_qdepth;
5103 
5104 	ret = ufshcd_read_unit_desc_param(hba, lun, 0, desc_buf, len);
5105 	if (ret < 0) {
5106 		if (ret == -EOPNOTSUPP)
5107 			/* If LU doesn't support unit descriptor, its queue depth is set to 1 */
5108 			lun_qdepth = 1;
5109 		kfree(desc_buf);
5110 		goto set_qdepth;
5111 	}
5112 
5113 	if (desc_buf[UNIT_DESC_PARAM_LU_Q_DEPTH]) {
5114 		/*
5115 		 * In per-LU queueing architecture, bLUQueueDepth will not be 0, then we will
5116 		 * use the smaller between UFSHCI CAP.NUTRS and UFS LU bLUQueueDepth
5117 		 */
5118 		lun_qdepth = min_t(int, desc_buf[UNIT_DESC_PARAM_LU_Q_DEPTH], hba->nutrs);
5119 	}
5120 	/*
5121 	 * According to UFS device specification, the write protection mode is only supported by
5122 	 * normal LU, not supported by WLUN.
5123 	 */
5124 	if (hba->dev_info.f_power_on_wp_en && lun < hba->dev_info.max_lu_supported &&
5125 	    !hba->dev_info.is_lu_power_on_wp &&
5126 	    desc_buf[UNIT_DESC_PARAM_LU_WR_PROTECT] == UFS_LU_POWER_ON_WP)
5127 		hba->dev_info.is_lu_power_on_wp = true;
5128 
5129 	/* In case of RPMB LU, check if advanced RPMB mode is enabled */
5130 	if (desc_buf[UNIT_DESC_PARAM_UNIT_INDEX] == UFS_UPIU_RPMB_WLUN &&
5131 	    desc_buf[RPMB_UNIT_DESC_PARAM_REGION_EN] & BIT(4))
5132 		hba->dev_info.b_advanced_rpmb_en = true;
5133 
5134 
5135 	kfree(desc_buf);
5136 set_qdepth:
5137 	/*
5138 	 * For WLUNs that don't support unit descriptor, queue depth is set to 1. For LUs whose
5139 	 * bLUQueueDepth == 0, the queue depth is set to a maximum value that host can queue.
5140 	 */
5141 	dev_dbg(hba->dev, "Set LU %x queue depth %d\n", lun, lun_qdepth);
5142 	scsi_change_queue_depth(sdev, lun_qdepth);
5143 }
5144 
5145 /**
5146  * ufshcd_slave_alloc - handle initial SCSI device configurations
5147  * @sdev: pointer to SCSI device
5148  *
5149  * Return: success.
5150  */
5151 static int ufshcd_slave_alloc(struct scsi_device *sdev)
5152 {
5153 	struct ufs_hba *hba;
5154 
5155 	hba = shost_priv(sdev->host);
5156 
5157 	/* Mode sense(6) is not supported by UFS, so use Mode sense(10) */
5158 	sdev->use_10_for_ms = 1;
5159 
5160 	/* DBD field should be set to 1 in mode sense(10) */
5161 	sdev->set_dbd_for_ms = 1;
5162 
5163 	/* allow SCSI layer to restart the device in case of errors */
5164 	sdev->allow_restart = 1;
5165 
5166 	/* REPORT SUPPORTED OPERATION CODES is not supported */
5167 	sdev->no_report_opcodes = 1;
5168 
5169 	/* WRITE_SAME command is not supported */
5170 	sdev->no_write_same = 1;
5171 
5172 	ufshcd_lu_init(hba, sdev);
5173 
5174 	ufshcd_setup_links(hba, sdev);
5175 
5176 	return 0;
5177 }
5178 
5179 /**
5180  * ufshcd_change_queue_depth - change queue depth
5181  * @sdev: pointer to SCSI device
5182  * @depth: required depth to set
5183  *
5184  * Change queue depth and make sure the max. limits are not crossed.
5185  *
5186  * Return: new queue depth.
5187  */
5188 static int ufshcd_change_queue_depth(struct scsi_device *sdev, int depth)
5189 {
5190 	return scsi_change_queue_depth(sdev, min(depth, sdev->host->can_queue));
5191 }
5192 
5193 /**
5194  * ufshcd_slave_configure - adjust SCSI device configurations
5195  * @sdev: pointer to SCSI device
5196  *
5197  * Return: 0 (success).
5198  */
5199 static int ufshcd_slave_configure(struct scsi_device *sdev)
5200 {
5201 	struct ufs_hba *hba = shost_priv(sdev->host);
5202 	struct request_queue *q = sdev->request_queue;
5203 
5204 	blk_queue_update_dma_pad(q, PRDT_DATA_BYTE_COUNT_PAD - 1);
5205 
5206 	/*
5207 	 * Block runtime-pm until all consumers are added.
5208 	 * Refer ufshcd_setup_links().
5209 	 */
5210 	if (is_device_wlun(sdev))
5211 		pm_runtime_get_noresume(&sdev->sdev_gendev);
5212 	else if (ufshcd_is_rpm_autosuspend_allowed(hba))
5213 		sdev->rpm_autosuspend = 1;
5214 	/*
5215 	 * Do not print messages during runtime PM to avoid never-ending cycles
5216 	 * of messages written back to storage by user space causing runtime
5217 	 * resume, causing more messages and so on.
5218 	 */
5219 	sdev->silence_suspend = 1;
5220 
5221 	ufshcd_crypto_register(hba, q);
5222 
5223 	return 0;
5224 }
5225 
5226 /**
5227  * ufshcd_slave_destroy - remove SCSI device configurations
5228  * @sdev: pointer to SCSI device
5229  */
5230 static void ufshcd_slave_destroy(struct scsi_device *sdev)
5231 {
5232 	struct ufs_hba *hba;
5233 	unsigned long flags;
5234 
5235 	hba = shost_priv(sdev->host);
5236 
5237 	/* Drop the reference as it won't be needed anymore */
5238 	if (ufshcd_scsi_to_upiu_lun(sdev->lun) == UFS_UPIU_UFS_DEVICE_WLUN) {
5239 		spin_lock_irqsave(hba->host->host_lock, flags);
5240 		hba->ufs_device_wlun = NULL;
5241 		spin_unlock_irqrestore(hba->host->host_lock, flags);
5242 	} else if (hba->ufs_device_wlun) {
5243 		struct device *supplier = NULL;
5244 
5245 		/* Ensure UFS Device WLUN exists and does not disappear */
5246 		spin_lock_irqsave(hba->host->host_lock, flags);
5247 		if (hba->ufs_device_wlun) {
5248 			supplier = &hba->ufs_device_wlun->sdev_gendev;
5249 			get_device(supplier);
5250 		}
5251 		spin_unlock_irqrestore(hba->host->host_lock, flags);
5252 
5253 		if (supplier) {
5254 			/*
5255 			 * If a LUN fails to probe (e.g. absent BOOT WLUN), the
5256 			 * device will not have been registered but can still
5257 			 * have a device link holding a reference to the device.
5258 			 */
5259 			device_link_remove(&sdev->sdev_gendev, supplier);
5260 			put_device(supplier);
5261 		}
5262 	}
5263 }
5264 
5265 /**
5266  * ufshcd_scsi_cmd_status - Update SCSI command result based on SCSI status
5267  * @lrbp: pointer to local reference block of completed command
5268  * @scsi_status: SCSI command status
5269  *
5270  * Return: value base on SCSI command status.
5271  */
5272 static inline int
5273 ufshcd_scsi_cmd_status(struct ufshcd_lrb *lrbp, int scsi_status)
5274 {
5275 	int result = 0;
5276 
5277 	switch (scsi_status) {
5278 	case SAM_STAT_CHECK_CONDITION:
5279 		ufshcd_copy_sense_data(lrbp);
5280 		fallthrough;
5281 	case SAM_STAT_GOOD:
5282 		result |= DID_OK << 16 | scsi_status;
5283 		break;
5284 	case SAM_STAT_TASK_SET_FULL:
5285 	case SAM_STAT_BUSY:
5286 	case SAM_STAT_TASK_ABORTED:
5287 		ufshcd_copy_sense_data(lrbp);
5288 		result |= scsi_status;
5289 		break;
5290 	default:
5291 		result |= DID_ERROR << 16;
5292 		break;
5293 	} /* end of switch */
5294 
5295 	return result;
5296 }
5297 
5298 /**
5299  * ufshcd_transfer_rsp_status - Get overall status of the response
5300  * @hba: per adapter instance
5301  * @lrbp: pointer to local reference block of completed command
5302  * @cqe: pointer to the completion queue entry
5303  *
5304  * Return: result of the command to notify SCSI midlayer.
5305  */
5306 static inline int
5307 ufshcd_transfer_rsp_status(struct ufs_hba *hba, struct ufshcd_lrb *lrbp,
5308 			   struct cq_entry *cqe)
5309 {
5310 	int result = 0;
5311 	int scsi_status;
5312 	enum utp_ocs ocs;
5313 	u8 upiu_flags;
5314 	u32 resid;
5315 
5316 	upiu_flags = lrbp->ucd_rsp_ptr->header.flags;
5317 	resid = be32_to_cpu(lrbp->ucd_rsp_ptr->sr.residual_transfer_count);
5318 	/*
5319 	 * Test !overflow instead of underflow to support UFS devices that do
5320 	 * not set either flag.
5321 	 */
5322 	if (resid && !(upiu_flags & UPIU_RSP_FLAG_OVERFLOW))
5323 		scsi_set_resid(lrbp->cmd, resid);
5324 
5325 	/* overall command status of utrd */
5326 	ocs = ufshcd_get_tr_ocs(lrbp, cqe);
5327 
5328 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_OCS_FATAL_ERROR) {
5329 		if (lrbp->ucd_rsp_ptr->header.response ||
5330 		    lrbp->ucd_rsp_ptr->header.status)
5331 			ocs = OCS_SUCCESS;
5332 	}
5333 
5334 	switch (ocs) {
5335 	case OCS_SUCCESS:
5336 		hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
5337 		switch (ufshcd_get_req_rsp(lrbp->ucd_rsp_ptr)) {
5338 		case UPIU_TRANSACTION_RESPONSE:
5339 			/*
5340 			 * get the result based on SCSI status response
5341 			 * to notify the SCSI midlayer of the command status
5342 			 */
5343 			scsi_status = lrbp->ucd_rsp_ptr->header.status;
5344 			result = ufshcd_scsi_cmd_status(lrbp, scsi_status);
5345 
5346 			/*
5347 			 * Currently we are only supporting BKOPs exception
5348 			 * events hence we can ignore BKOPs exception event
5349 			 * during power management callbacks. BKOPs exception
5350 			 * event is not expected to be raised in runtime suspend
5351 			 * callback as it allows the urgent bkops.
5352 			 * During system suspend, we are anyway forcefully
5353 			 * disabling the bkops and if urgent bkops is needed
5354 			 * it will be enabled on system resume. Long term
5355 			 * solution could be to abort the system suspend if
5356 			 * UFS device needs urgent BKOPs.
5357 			 */
5358 			if (!hba->pm_op_in_progress &&
5359 			    !ufshcd_eh_in_progress(hba) &&
5360 			    ufshcd_is_exception_event(lrbp->ucd_rsp_ptr))
5361 				/* Flushed in suspend */
5362 				schedule_work(&hba->eeh_work);
5363 			break;
5364 		case UPIU_TRANSACTION_REJECT_UPIU:
5365 			/* TODO: handle Reject UPIU Response */
5366 			result = DID_ERROR << 16;
5367 			dev_err(hba->dev,
5368 				"Reject UPIU not fully implemented\n");
5369 			break;
5370 		default:
5371 			dev_err(hba->dev,
5372 				"Unexpected request response code = %x\n",
5373 				result);
5374 			result = DID_ERROR << 16;
5375 			break;
5376 		}
5377 		break;
5378 	case OCS_ABORTED:
5379 		result |= DID_ABORT << 16;
5380 		break;
5381 	case OCS_INVALID_COMMAND_STATUS:
5382 		result |= DID_REQUEUE << 16;
5383 		break;
5384 	case OCS_INVALID_CMD_TABLE_ATTR:
5385 	case OCS_INVALID_PRDT_ATTR:
5386 	case OCS_MISMATCH_DATA_BUF_SIZE:
5387 	case OCS_MISMATCH_RESP_UPIU_SIZE:
5388 	case OCS_PEER_COMM_FAILURE:
5389 	case OCS_FATAL_ERROR:
5390 	case OCS_DEVICE_FATAL_ERROR:
5391 	case OCS_INVALID_CRYPTO_CONFIG:
5392 	case OCS_GENERAL_CRYPTO_ERROR:
5393 	default:
5394 		result |= DID_ERROR << 16;
5395 		dev_err(hba->dev,
5396 				"OCS error from controller = %x for tag %d\n",
5397 				ocs, lrbp->task_tag);
5398 		ufshcd_print_evt_hist(hba);
5399 		ufshcd_print_host_state(hba);
5400 		break;
5401 	} /* end of switch */
5402 
5403 	if ((host_byte(result) != DID_OK) &&
5404 	    (host_byte(result) != DID_REQUEUE) && !hba->silence_err_logs)
5405 		ufshcd_print_tr(hba, lrbp->task_tag, true);
5406 	return result;
5407 }
5408 
5409 static bool ufshcd_is_auto_hibern8_error(struct ufs_hba *hba,
5410 					 u32 intr_mask)
5411 {
5412 	if (!ufshcd_is_auto_hibern8_supported(hba) ||
5413 	    !ufshcd_is_auto_hibern8_enabled(hba))
5414 		return false;
5415 
5416 	if (!(intr_mask & UFSHCD_UIC_HIBERN8_MASK))
5417 		return false;
5418 
5419 	if (hba->active_uic_cmd &&
5420 	    (hba->active_uic_cmd->command == UIC_CMD_DME_HIBER_ENTER ||
5421 	    hba->active_uic_cmd->command == UIC_CMD_DME_HIBER_EXIT))
5422 		return false;
5423 
5424 	return true;
5425 }
5426 
5427 /**
5428  * ufshcd_uic_cmd_compl - handle completion of uic command
5429  * @hba: per adapter instance
5430  * @intr_status: interrupt status generated by the controller
5431  *
5432  * Return:
5433  *  IRQ_HANDLED - If interrupt is valid
5434  *  IRQ_NONE    - If invalid interrupt
5435  */
5436 static irqreturn_t ufshcd_uic_cmd_compl(struct ufs_hba *hba, u32 intr_status)
5437 {
5438 	irqreturn_t retval = IRQ_NONE;
5439 
5440 	spin_lock(hba->host->host_lock);
5441 	if (ufshcd_is_auto_hibern8_error(hba, intr_status))
5442 		hba->errors |= (UFSHCD_UIC_HIBERN8_MASK & intr_status);
5443 
5444 	if ((intr_status & UIC_COMMAND_COMPL) && hba->active_uic_cmd) {
5445 		hba->active_uic_cmd->argument2 |=
5446 			ufshcd_get_uic_cmd_result(hba);
5447 		hba->active_uic_cmd->argument3 =
5448 			ufshcd_get_dme_attr_val(hba);
5449 		if (!hba->uic_async_done)
5450 			hba->active_uic_cmd->cmd_active = 0;
5451 		complete(&hba->active_uic_cmd->done);
5452 		retval = IRQ_HANDLED;
5453 	}
5454 
5455 	if ((intr_status & UFSHCD_UIC_PWR_MASK) && hba->uic_async_done) {
5456 		hba->active_uic_cmd->cmd_active = 0;
5457 		complete(hba->uic_async_done);
5458 		retval = IRQ_HANDLED;
5459 	}
5460 
5461 	if (retval == IRQ_HANDLED)
5462 		ufshcd_add_uic_command_trace(hba, hba->active_uic_cmd,
5463 					     UFS_CMD_COMP);
5464 	spin_unlock(hba->host->host_lock);
5465 	return retval;
5466 }
5467 
5468 /* Release the resources allocated for processing a SCSI command. */
5469 void ufshcd_release_scsi_cmd(struct ufs_hba *hba,
5470 			     struct ufshcd_lrb *lrbp)
5471 {
5472 	struct scsi_cmnd *cmd = lrbp->cmd;
5473 
5474 	scsi_dma_unmap(cmd);
5475 	ufshcd_release(hba);
5476 	ufshcd_clk_scaling_update_busy(hba);
5477 }
5478 
5479 /**
5480  * ufshcd_compl_one_cqe - handle a completion queue entry
5481  * @hba: per adapter instance
5482  * @task_tag: the task tag of the request to be completed
5483  * @cqe: pointer to the completion queue entry
5484  */
5485 void ufshcd_compl_one_cqe(struct ufs_hba *hba, int task_tag,
5486 			  struct cq_entry *cqe)
5487 {
5488 	struct ufshcd_lrb *lrbp;
5489 	struct scsi_cmnd *cmd;
5490 	enum utp_ocs ocs;
5491 
5492 	lrbp = &hba->lrb[task_tag];
5493 	lrbp->compl_time_stamp = ktime_get();
5494 	cmd = lrbp->cmd;
5495 	if (cmd) {
5496 		if (unlikely(ufshcd_should_inform_monitor(hba, lrbp)))
5497 			ufshcd_update_monitor(hba, lrbp);
5498 		ufshcd_add_command_trace(hba, task_tag, UFS_CMD_COMP);
5499 		cmd->result = ufshcd_transfer_rsp_status(hba, lrbp, cqe);
5500 		ufshcd_release_scsi_cmd(hba, lrbp);
5501 		/* Do not touch lrbp after scsi done */
5502 		scsi_done(cmd);
5503 	} else if (hba->dev_cmd.complete) {
5504 		if (cqe) {
5505 			ocs = le32_to_cpu(cqe->status) & MASK_OCS;
5506 			lrbp->utr_descriptor_ptr->header.ocs = ocs;
5507 		}
5508 		complete(hba->dev_cmd.complete);
5509 	}
5510 }
5511 
5512 /**
5513  * __ufshcd_transfer_req_compl - handle SCSI and query command completion
5514  * @hba: per adapter instance
5515  * @completed_reqs: bitmask that indicates which requests to complete
5516  */
5517 static void __ufshcd_transfer_req_compl(struct ufs_hba *hba,
5518 					unsigned long completed_reqs)
5519 {
5520 	int tag;
5521 
5522 	for_each_set_bit(tag, &completed_reqs, hba->nutrs)
5523 		ufshcd_compl_one_cqe(hba, tag, NULL);
5524 }
5525 
5526 /* Any value that is not an existing queue number is fine for this constant. */
5527 enum {
5528 	UFSHCD_POLL_FROM_INTERRUPT_CONTEXT = -1
5529 };
5530 
5531 static void ufshcd_clear_polled(struct ufs_hba *hba,
5532 				unsigned long *completed_reqs)
5533 {
5534 	int tag;
5535 
5536 	for_each_set_bit(tag, completed_reqs, hba->nutrs) {
5537 		struct scsi_cmnd *cmd = hba->lrb[tag].cmd;
5538 
5539 		if (!cmd)
5540 			continue;
5541 		if (scsi_cmd_to_rq(cmd)->cmd_flags & REQ_POLLED)
5542 			__clear_bit(tag, completed_reqs);
5543 	}
5544 }
5545 
5546 /*
5547  * Return: > 0 if one or more commands have been completed or 0 if no
5548  * requests have been completed.
5549  */
5550 static int ufshcd_poll(struct Scsi_Host *shost, unsigned int queue_num)
5551 {
5552 	struct ufs_hba *hba = shost_priv(shost);
5553 	unsigned long completed_reqs, flags;
5554 	u32 tr_doorbell;
5555 	struct ufs_hw_queue *hwq;
5556 
5557 	if (is_mcq_enabled(hba)) {
5558 		hwq = &hba->uhq[queue_num];
5559 
5560 		return ufshcd_mcq_poll_cqe_lock(hba, hwq);
5561 	}
5562 
5563 	spin_lock_irqsave(&hba->outstanding_lock, flags);
5564 	tr_doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
5565 	completed_reqs = ~tr_doorbell & hba->outstanding_reqs;
5566 	WARN_ONCE(completed_reqs & ~hba->outstanding_reqs,
5567 		  "completed: %#lx; outstanding: %#lx\n", completed_reqs,
5568 		  hba->outstanding_reqs);
5569 	if (queue_num == UFSHCD_POLL_FROM_INTERRUPT_CONTEXT) {
5570 		/* Do not complete polled requests from interrupt context. */
5571 		ufshcd_clear_polled(hba, &completed_reqs);
5572 	}
5573 	hba->outstanding_reqs &= ~completed_reqs;
5574 	spin_unlock_irqrestore(&hba->outstanding_lock, flags);
5575 
5576 	if (completed_reqs)
5577 		__ufshcd_transfer_req_compl(hba, completed_reqs);
5578 
5579 	return completed_reqs != 0;
5580 }
5581 
5582 /**
5583  * ufshcd_mcq_compl_pending_transfer - MCQ mode function. It is
5584  * invoked from the error handler context or ufshcd_host_reset_and_restore()
5585  * to complete the pending transfers and free the resources associated with
5586  * the scsi command.
5587  *
5588  * @hba: per adapter instance
5589  * @force_compl: This flag is set to true when invoked
5590  * from ufshcd_host_reset_and_restore() in which case it requires special
5591  * handling because the host controller has been reset by ufshcd_hba_stop().
5592  */
5593 static void ufshcd_mcq_compl_pending_transfer(struct ufs_hba *hba,
5594 					      bool force_compl)
5595 {
5596 	struct ufs_hw_queue *hwq;
5597 	struct ufshcd_lrb *lrbp;
5598 	struct scsi_cmnd *cmd;
5599 	unsigned long flags;
5600 	int tag;
5601 
5602 	for (tag = 0; tag < hba->nutrs; tag++) {
5603 		lrbp = &hba->lrb[tag];
5604 		cmd = lrbp->cmd;
5605 		if (!ufshcd_cmd_inflight(cmd) ||
5606 		    test_bit(SCMD_STATE_COMPLETE, &cmd->state))
5607 			continue;
5608 
5609 		hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(cmd));
5610 
5611 		if (force_compl) {
5612 			ufshcd_mcq_compl_all_cqes_lock(hba, hwq);
5613 			/*
5614 			 * For those cmds of which the cqes are not present
5615 			 * in the cq, complete them explicitly.
5616 			 */
5617 			spin_lock_irqsave(&hwq->cq_lock, flags);
5618 			if (cmd && !test_bit(SCMD_STATE_COMPLETE, &cmd->state)) {
5619 				set_host_byte(cmd, DID_REQUEUE);
5620 				ufshcd_release_scsi_cmd(hba, lrbp);
5621 				scsi_done(cmd);
5622 			}
5623 			spin_unlock_irqrestore(&hwq->cq_lock, flags);
5624 		} else {
5625 			ufshcd_mcq_poll_cqe_lock(hba, hwq);
5626 		}
5627 	}
5628 }
5629 
5630 /**
5631  * ufshcd_transfer_req_compl - handle SCSI and query command completion
5632  * @hba: per adapter instance
5633  *
5634  * Return:
5635  *  IRQ_HANDLED - If interrupt is valid
5636  *  IRQ_NONE    - If invalid interrupt
5637  */
5638 static irqreturn_t ufshcd_transfer_req_compl(struct ufs_hba *hba)
5639 {
5640 	/* Resetting interrupt aggregation counters first and reading the
5641 	 * DOOR_BELL afterward allows us to handle all the completed requests.
5642 	 * In order to prevent other interrupts starvation the DB is read once
5643 	 * after reset. The down side of this solution is the possibility of
5644 	 * false interrupt if device completes another request after resetting
5645 	 * aggregation and before reading the DB.
5646 	 */
5647 	if (ufshcd_is_intr_aggr_allowed(hba) &&
5648 	    !(hba->quirks & UFSHCI_QUIRK_SKIP_RESET_INTR_AGGR))
5649 		ufshcd_reset_intr_aggr(hba);
5650 
5651 	if (ufs_fail_completion(hba))
5652 		return IRQ_HANDLED;
5653 
5654 	/*
5655 	 * Ignore the ufshcd_poll() return value and return IRQ_HANDLED since we
5656 	 * do not want polling to trigger spurious interrupt complaints.
5657 	 */
5658 	ufshcd_poll(hba->host, UFSHCD_POLL_FROM_INTERRUPT_CONTEXT);
5659 
5660 	return IRQ_HANDLED;
5661 }
5662 
5663 int __ufshcd_write_ee_control(struct ufs_hba *hba, u32 ee_ctrl_mask)
5664 {
5665 	return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
5666 				       QUERY_ATTR_IDN_EE_CONTROL, 0, 0,
5667 				       &ee_ctrl_mask);
5668 }
5669 
5670 int ufshcd_write_ee_control(struct ufs_hba *hba)
5671 {
5672 	int err;
5673 
5674 	mutex_lock(&hba->ee_ctrl_mutex);
5675 	err = __ufshcd_write_ee_control(hba, hba->ee_ctrl_mask);
5676 	mutex_unlock(&hba->ee_ctrl_mutex);
5677 	if (err)
5678 		dev_err(hba->dev, "%s: failed to write ee control %d\n",
5679 			__func__, err);
5680 	return err;
5681 }
5682 
5683 int ufshcd_update_ee_control(struct ufs_hba *hba, u16 *mask,
5684 			     const u16 *other_mask, u16 set, u16 clr)
5685 {
5686 	u16 new_mask, ee_ctrl_mask;
5687 	int err = 0;
5688 
5689 	mutex_lock(&hba->ee_ctrl_mutex);
5690 	new_mask = (*mask & ~clr) | set;
5691 	ee_ctrl_mask = new_mask | *other_mask;
5692 	if (ee_ctrl_mask != hba->ee_ctrl_mask)
5693 		err = __ufshcd_write_ee_control(hba, ee_ctrl_mask);
5694 	/* Still need to update 'mask' even if 'ee_ctrl_mask' was unchanged */
5695 	if (!err) {
5696 		hba->ee_ctrl_mask = ee_ctrl_mask;
5697 		*mask = new_mask;
5698 	}
5699 	mutex_unlock(&hba->ee_ctrl_mutex);
5700 	return err;
5701 }
5702 
5703 /**
5704  * ufshcd_disable_ee - disable exception event
5705  * @hba: per-adapter instance
5706  * @mask: exception event to disable
5707  *
5708  * Disables exception event in the device so that the EVENT_ALERT
5709  * bit is not set.
5710  *
5711  * Return: zero on success, non-zero error value on failure.
5712  */
5713 static inline int ufshcd_disable_ee(struct ufs_hba *hba, u16 mask)
5714 {
5715 	return ufshcd_update_ee_drv_mask(hba, 0, mask);
5716 }
5717 
5718 /**
5719  * ufshcd_enable_ee - enable exception event
5720  * @hba: per-adapter instance
5721  * @mask: exception event to enable
5722  *
5723  * Enable corresponding exception event in the device to allow
5724  * device to alert host in critical scenarios.
5725  *
5726  * Return: zero on success, non-zero error value on failure.
5727  */
5728 static inline int ufshcd_enable_ee(struct ufs_hba *hba, u16 mask)
5729 {
5730 	return ufshcd_update_ee_drv_mask(hba, mask, 0);
5731 }
5732 
5733 /**
5734  * ufshcd_enable_auto_bkops - Allow device managed BKOPS
5735  * @hba: per-adapter instance
5736  *
5737  * Allow device to manage background operations on its own. Enabling
5738  * this might lead to inconsistent latencies during normal data transfers
5739  * as the device is allowed to manage its own way of handling background
5740  * operations.
5741  *
5742  * Return: zero on success, non-zero on failure.
5743  */
5744 static int ufshcd_enable_auto_bkops(struct ufs_hba *hba)
5745 {
5746 	int err = 0;
5747 
5748 	if (hba->auto_bkops_enabled)
5749 		goto out;
5750 
5751 	err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG,
5752 			QUERY_FLAG_IDN_BKOPS_EN, 0, NULL);
5753 	if (err) {
5754 		dev_err(hba->dev, "%s: failed to enable bkops %d\n",
5755 				__func__, err);
5756 		goto out;
5757 	}
5758 
5759 	hba->auto_bkops_enabled = true;
5760 	trace_ufshcd_auto_bkops_state(dev_name(hba->dev), "Enabled");
5761 
5762 	/* No need of URGENT_BKOPS exception from the device */
5763 	err = ufshcd_disable_ee(hba, MASK_EE_URGENT_BKOPS);
5764 	if (err)
5765 		dev_err(hba->dev, "%s: failed to disable exception event %d\n",
5766 				__func__, err);
5767 out:
5768 	return err;
5769 }
5770 
5771 /**
5772  * ufshcd_disable_auto_bkops - block device in doing background operations
5773  * @hba: per-adapter instance
5774  *
5775  * Disabling background operations improves command response latency but
5776  * has drawback of device moving into critical state where the device is
5777  * not-operable. Make sure to call ufshcd_enable_auto_bkops() whenever the
5778  * host is idle so that BKOPS are managed effectively without any negative
5779  * impacts.
5780  *
5781  * Return: zero on success, non-zero on failure.
5782  */
5783 static int ufshcd_disable_auto_bkops(struct ufs_hba *hba)
5784 {
5785 	int err = 0;
5786 
5787 	if (!hba->auto_bkops_enabled)
5788 		goto out;
5789 
5790 	/*
5791 	 * If host assisted BKOPs is to be enabled, make sure
5792 	 * urgent bkops exception is allowed.
5793 	 */
5794 	err = ufshcd_enable_ee(hba, MASK_EE_URGENT_BKOPS);
5795 	if (err) {
5796 		dev_err(hba->dev, "%s: failed to enable exception event %d\n",
5797 				__func__, err);
5798 		goto out;
5799 	}
5800 
5801 	err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_CLEAR_FLAG,
5802 			QUERY_FLAG_IDN_BKOPS_EN, 0, NULL);
5803 	if (err) {
5804 		dev_err(hba->dev, "%s: failed to disable bkops %d\n",
5805 				__func__, err);
5806 		ufshcd_disable_ee(hba, MASK_EE_URGENT_BKOPS);
5807 		goto out;
5808 	}
5809 
5810 	hba->auto_bkops_enabled = false;
5811 	trace_ufshcd_auto_bkops_state(dev_name(hba->dev), "Disabled");
5812 	hba->is_urgent_bkops_lvl_checked = false;
5813 out:
5814 	return err;
5815 }
5816 
5817 /**
5818  * ufshcd_force_reset_auto_bkops - force reset auto bkops state
5819  * @hba: per adapter instance
5820  *
5821  * After a device reset the device may toggle the BKOPS_EN flag
5822  * to default value. The s/w tracking variables should be updated
5823  * as well. This function would change the auto-bkops state based on
5824  * UFSHCD_CAP_KEEP_AUTO_BKOPS_ENABLED_EXCEPT_SUSPEND.
5825  */
5826 static void ufshcd_force_reset_auto_bkops(struct ufs_hba *hba)
5827 {
5828 	if (ufshcd_keep_autobkops_enabled_except_suspend(hba)) {
5829 		hba->auto_bkops_enabled = false;
5830 		hba->ee_ctrl_mask |= MASK_EE_URGENT_BKOPS;
5831 		ufshcd_enable_auto_bkops(hba);
5832 	} else {
5833 		hba->auto_bkops_enabled = true;
5834 		hba->ee_ctrl_mask &= ~MASK_EE_URGENT_BKOPS;
5835 		ufshcd_disable_auto_bkops(hba);
5836 	}
5837 	hba->urgent_bkops_lvl = BKOPS_STATUS_PERF_IMPACT;
5838 	hba->is_urgent_bkops_lvl_checked = false;
5839 }
5840 
5841 static inline int ufshcd_get_bkops_status(struct ufs_hba *hba, u32 *status)
5842 {
5843 	return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5844 			QUERY_ATTR_IDN_BKOPS_STATUS, 0, 0, status);
5845 }
5846 
5847 /**
5848  * ufshcd_bkops_ctrl - control the auto bkops based on current bkops status
5849  * @hba: per-adapter instance
5850  * @status: bkops_status value
5851  *
5852  * Read the bkops_status from the UFS device and Enable fBackgroundOpsEn
5853  * flag in the device to permit background operations if the device
5854  * bkops_status is greater than or equal to "status" argument passed to
5855  * this function, disable otherwise.
5856  *
5857  * Return: 0 for success, non-zero in case of failure.
5858  *
5859  * NOTE: Caller of this function can check the "hba->auto_bkops_enabled" flag
5860  * to know whether auto bkops is enabled or disabled after this function
5861  * returns control to it.
5862  */
5863 static int ufshcd_bkops_ctrl(struct ufs_hba *hba,
5864 			     enum bkops_status status)
5865 {
5866 	int err;
5867 	u32 curr_status = 0;
5868 
5869 	err = ufshcd_get_bkops_status(hba, &curr_status);
5870 	if (err) {
5871 		dev_err(hba->dev, "%s: failed to get BKOPS status %d\n",
5872 				__func__, err);
5873 		goto out;
5874 	} else if (curr_status > BKOPS_STATUS_MAX) {
5875 		dev_err(hba->dev, "%s: invalid BKOPS status %d\n",
5876 				__func__, curr_status);
5877 		err = -EINVAL;
5878 		goto out;
5879 	}
5880 
5881 	if (curr_status >= status)
5882 		err = ufshcd_enable_auto_bkops(hba);
5883 	else
5884 		err = ufshcd_disable_auto_bkops(hba);
5885 out:
5886 	return err;
5887 }
5888 
5889 /**
5890  * ufshcd_urgent_bkops - handle urgent bkops exception event
5891  * @hba: per-adapter instance
5892  *
5893  * Enable fBackgroundOpsEn flag in the device to permit background
5894  * operations.
5895  *
5896  * If BKOPs is enabled, this function returns 0, 1 if the bkops in not enabled
5897  * and negative error value for any other failure.
5898  *
5899  * Return: 0 upon success; < 0 upon failure.
5900  */
5901 static int ufshcd_urgent_bkops(struct ufs_hba *hba)
5902 {
5903 	return ufshcd_bkops_ctrl(hba, hba->urgent_bkops_lvl);
5904 }
5905 
5906 static inline int ufshcd_get_ee_status(struct ufs_hba *hba, u32 *status)
5907 {
5908 	return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5909 			QUERY_ATTR_IDN_EE_STATUS, 0, 0, status);
5910 }
5911 
5912 static void ufshcd_bkops_exception_event_handler(struct ufs_hba *hba)
5913 {
5914 	int err;
5915 	u32 curr_status = 0;
5916 
5917 	if (hba->is_urgent_bkops_lvl_checked)
5918 		goto enable_auto_bkops;
5919 
5920 	err = ufshcd_get_bkops_status(hba, &curr_status);
5921 	if (err) {
5922 		dev_err(hba->dev, "%s: failed to get BKOPS status %d\n",
5923 				__func__, err);
5924 		goto out;
5925 	}
5926 
5927 	/*
5928 	 * We are seeing that some devices are raising the urgent bkops
5929 	 * exception events even when BKOPS status doesn't indicate performace
5930 	 * impacted or critical. Handle these device by determining their urgent
5931 	 * bkops status at runtime.
5932 	 */
5933 	if (curr_status < BKOPS_STATUS_PERF_IMPACT) {
5934 		dev_err(hba->dev, "%s: device raised urgent BKOPS exception for bkops status %d\n",
5935 				__func__, curr_status);
5936 		/* update the current status as the urgent bkops level */
5937 		hba->urgent_bkops_lvl = curr_status;
5938 		hba->is_urgent_bkops_lvl_checked = true;
5939 	}
5940 
5941 enable_auto_bkops:
5942 	err = ufshcd_enable_auto_bkops(hba);
5943 out:
5944 	if (err < 0)
5945 		dev_err(hba->dev, "%s: failed to handle urgent bkops %d\n",
5946 				__func__, err);
5947 }
5948 
5949 static void ufshcd_temp_exception_event_handler(struct ufs_hba *hba, u16 status)
5950 {
5951 	u32 value;
5952 
5953 	if (ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5954 				QUERY_ATTR_IDN_CASE_ROUGH_TEMP, 0, 0, &value))
5955 		return;
5956 
5957 	dev_info(hba->dev, "exception Tcase %d\n", value - 80);
5958 
5959 	ufs_hwmon_notify_event(hba, status & MASK_EE_URGENT_TEMP);
5960 
5961 	/*
5962 	 * A placeholder for the platform vendors to add whatever additional
5963 	 * steps required
5964 	 */
5965 }
5966 
5967 static int __ufshcd_wb_toggle(struct ufs_hba *hba, bool set, enum flag_idn idn)
5968 {
5969 	u8 index;
5970 	enum query_opcode opcode = set ? UPIU_QUERY_OPCODE_SET_FLAG :
5971 				   UPIU_QUERY_OPCODE_CLEAR_FLAG;
5972 
5973 	index = ufshcd_wb_get_query_index(hba);
5974 	return ufshcd_query_flag_retry(hba, opcode, idn, index, NULL);
5975 }
5976 
5977 int ufshcd_wb_toggle(struct ufs_hba *hba, bool enable)
5978 {
5979 	int ret;
5980 
5981 	if (!ufshcd_is_wb_allowed(hba) ||
5982 	    hba->dev_info.wb_enabled == enable)
5983 		return 0;
5984 
5985 	ret = __ufshcd_wb_toggle(hba, enable, QUERY_FLAG_IDN_WB_EN);
5986 	if (ret) {
5987 		dev_err(hba->dev, "%s: Write Booster %s failed %d\n",
5988 			__func__, enable ? "enabling" : "disabling", ret);
5989 		return ret;
5990 	}
5991 
5992 	hba->dev_info.wb_enabled = enable;
5993 	dev_dbg(hba->dev, "%s: Write Booster %s\n",
5994 			__func__, enable ? "enabled" : "disabled");
5995 
5996 	return ret;
5997 }
5998 
5999 static void ufshcd_wb_toggle_buf_flush_during_h8(struct ufs_hba *hba,
6000 						 bool enable)
6001 {
6002 	int ret;
6003 
6004 	ret = __ufshcd_wb_toggle(hba, enable,
6005 			QUERY_FLAG_IDN_WB_BUFF_FLUSH_DURING_HIBERN8);
6006 	if (ret) {
6007 		dev_err(hba->dev, "%s: WB-Buf Flush during H8 %s failed %d\n",
6008 			__func__, enable ? "enabling" : "disabling", ret);
6009 		return;
6010 	}
6011 	dev_dbg(hba->dev, "%s: WB-Buf Flush during H8 %s\n",
6012 			__func__, enable ? "enabled" : "disabled");
6013 }
6014 
6015 int ufshcd_wb_toggle_buf_flush(struct ufs_hba *hba, bool enable)
6016 {
6017 	int ret;
6018 
6019 	if (!ufshcd_is_wb_allowed(hba) ||
6020 	    hba->dev_info.wb_buf_flush_enabled == enable)
6021 		return 0;
6022 
6023 	ret = __ufshcd_wb_toggle(hba, enable, QUERY_FLAG_IDN_WB_BUFF_FLUSH_EN);
6024 	if (ret) {
6025 		dev_err(hba->dev, "%s: WB-Buf Flush %s failed %d\n",
6026 			__func__, enable ? "enabling" : "disabling", ret);
6027 		return ret;
6028 	}
6029 
6030 	hba->dev_info.wb_buf_flush_enabled = enable;
6031 	dev_dbg(hba->dev, "%s: WB-Buf Flush %s\n",
6032 			__func__, enable ? "enabled" : "disabled");
6033 
6034 	return ret;
6035 }
6036 
6037 static bool ufshcd_wb_presrv_usrspc_keep_vcc_on(struct ufs_hba *hba,
6038 						u32 avail_buf)
6039 {
6040 	u32 cur_buf;
6041 	int ret;
6042 	u8 index;
6043 
6044 	index = ufshcd_wb_get_query_index(hba);
6045 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
6046 					      QUERY_ATTR_IDN_CURR_WB_BUFF_SIZE,
6047 					      index, 0, &cur_buf);
6048 	if (ret) {
6049 		dev_err(hba->dev, "%s: dCurWriteBoosterBufferSize read failed %d\n",
6050 			__func__, ret);
6051 		return false;
6052 	}
6053 
6054 	if (!cur_buf) {
6055 		dev_info(hba->dev, "dCurWBBuf: %d WB disabled until free-space is available\n",
6056 			 cur_buf);
6057 		return false;
6058 	}
6059 	/* Let it continue to flush when available buffer exceeds threshold */
6060 	return avail_buf < hba->vps->wb_flush_threshold;
6061 }
6062 
6063 static void ufshcd_wb_force_disable(struct ufs_hba *hba)
6064 {
6065 	if (ufshcd_is_wb_buf_flush_allowed(hba))
6066 		ufshcd_wb_toggle_buf_flush(hba, false);
6067 
6068 	ufshcd_wb_toggle_buf_flush_during_h8(hba, false);
6069 	ufshcd_wb_toggle(hba, false);
6070 	hba->caps &= ~UFSHCD_CAP_WB_EN;
6071 
6072 	dev_info(hba->dev, "%s: WB force disabled\n", __func__);
6073 }
6074 
6075 static bool ufshcd_is_wb_buf_lifetime_available(struct ufs_hba *hba)
6076 {
6077 	u32 lifetime;
6078 	int ret;
6079 	u8 index;
6080 
6081 	index = ufshcd_wb_get_query_index(hba);
6082 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
6083 				      QUERY_ATTR_IDN_WB_BUFF_LIFE_TIME_EST,
6084 				      index, 0, &lifetime);
6085 	if (ret) {
6086 		dev_err(hba->dev,
6087 			"%s: bWriteBoosterBufferLifeTimeEst read failed %d\n",
6088 			__func__, ret);
6089 		return false;
6090 	}
6091 
6092 	if (lifetime == UFS_WB_EXCEED_LIFETIME) {
6093 		dev_err(hba->dev, "%s: WB buf lifetime is exhausted 0x%02X\n",
6094 			__func__, lifetime);
6095 		return false;
6096 	}
6097 
6098 	dev_dbg(hba->dev, "%s: WB buf lifetime is 0x%02X\n",
6099 		__func__, lifetime);
6100 
6101 	return true;
6102 }
6103 
6104 static bool ufshcd_wb_need_flush(struct ufs_hba *hba)
6105 {
6106 	int ret;
6107 	u32 avail_buf;
6108 	u8 index;
6109 
6110 	if (!ufshcd_is_wb_allowed(hba))
6111 		return false;
6112 
6113 	if (!ufshcd_is_wb_buf_lifetime_available(hba)) {
6114 		ufshcd_wb_force_disable(hba);
6115 		return false;
6116 	}
6117 
6118 	/*
6119 	 * The ufs device needs the vcc to be ON to flush.
6120 	 * With user-space reduction enabled, it's enough to enable flush
6121 	 * by checking only the available buffer. The threshold
6122 	 * defined here is > 90% full.
6123 	 * With user-space preserved enabled, the current-buffer
6124 	 * should be checked too because the wb buffer size can reduce
6125 	 * when disk tends to be full. This info is provided by current
6126 	 * buffer (dCurrentWriteBoosterBufferSize). There's no point in
6127 	 * keeping vcc on when current buffer is empty.
6128 	 */
6129 	index = ufshcd_wb_get_query_index(hba);
6130 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
6131 				      QUERY_ATTR_IDN_AVAIL_WB_BUFF_SIZE,
6132 				      index, 0, &avail_buf);
6133 	if (ret) {
6134 		dev_warn(hba->dev, "%s: dAvailableWriteBoosterBufferSize read failed %d\n",
6135 			 __func__, ret);
6136 		return false;
6137 	}
6138 
6139 	if (!hba->dev_info.b_presrv_uspc_en)
6140 		return avail_buf <= UFS_WB_BUF_REMAIN_PERCENT(10);
6141 
6142 	return ufshcd_wb_presrv_usrspc_keep_vcc_on(hba, avail_buf);
6143 }
6144 
6145 static void ufshcd_rpm_dev_flush_recheck_work(struct work_struct *work)
6146 {
6147 	struct ufs_hba *hba = container_of(to_delayed_work(work),
6148 					   struct ufs_hba,
6149 					   rpm_dev_flush_recheck_work);
6150 	/*
6151 	 * To prevent unnecessary VCC power drain after device finishes
6152 	 * WriteBooster buffer flush or Auto BKOPs, force runtime resume
6153 	 * after a certain delay to recheck the threshold by next runtime
6154 	 * suspend.
6155 	 */
6156 	ufshcd_rpm_get_sync(hba);
6157 	ufshcd_rpm_put_sync(hba);
6158 }
6159 
6160 /**
6161  * ufshcd_exception_event_handler - handle exceptions raised by device
6162  * @work: pointer to work data
6163  *
6164  * Read bExceptionEventStatus attribute from the device and handle the
6165  * exception event accordingly.
6166  */
6167 static void ufshcd_exception_event_handler(struct work_struct *work)
6168 {
6169 	struct ufs_hba *hba;
6170 	int err;
6171 	u32 status = 0;
6172 	hba = container_of(work, struct ufs_hba, eeh_work);
6173 
6174 	ufshcd_scsi_block_requests(hba);
6175 	err = ufshcd_get_ee_status(hba, &status);
6176 	if (err) {
6177 		dev_err(hba->dev, "%s: failed to get exception status %d\n",
6178 				__func__, err);
6179 		goto out;
6180 	}
6181 
6182 	trace_ufshcd_exception_event(dev_name(hba->dev), status);
6183 
6184 	if (status & hba->ee_drv_mask & MASK_EE_URGENT_BKOPS)
6185 		ufshcd_bkops_exception_event_handler(hba);
6186 
6187 	if (status & hba->ee_drv_mask & MASK_EE_URGENT_TEMP)
6188 		ufshcd_temp_exception_event_handler(hba, status);
6189 
6190 	ufs_debugfs_exception_event(hba, status);
6191 out:
6192 	ufshcd_scsi_unblock_requests(hba);
6193 }
6194 
6195 /* Complete requests that have door-bell cleared */
6196 static void ufshcd_complete_requests(struct ufs_hba *hba, bool force_compl)
6197 {
6198 	if (is_mcq_enabled(hba))
6199 		ufshcd_mcq_compl_pending_transfer(hba, force_compl);
6200 	else
6201 		ufshcd_transfer_req_compl(hba);
6202 
6203 	ufshcd_tmc_handler(hba);
6204 }
6205 
6206 /**
6207  * ufshcd_quirk_dl_nac_errors - This function checks if error handling is
6208  *				to recover from the DL NAC errors or not.
6209  * @hba: per-adapter instance
6210  *
6211  * Return: true if error handling is required, false otherwise.
6212  */
6213 static bool ufshcd_quirk_dl_nac_errors(struct ufs_hba *hba)
6214 {
6215 	unsigned long flags;
6216 	bool err_handling = true;
6217 
6218 	spin_lock_irqsave(hba->host->host_lock, flags);
6219 	/*
6220 	 * UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS only workaround the
6221 	 * device fatal error and/or DL NAC & REPLAY timeout errors.
6222 	 */
6223 	if (hba->saved_err & (CONTROLLER_FATAL_ERROR | SYSTEM_BUS_FATAL_ERROR))
6224 		goto out;
6225 
6226 	if ((hba->saved_err & DEVICE_FATAL_ERROR) ||
6227 	    ((hba->saved_err & UIC_ERROR) &&
6228 	     (hba->saved_uic_err & UFSHCD_UIC_DL_TCx_REPLAY_ERROR)))
6229 		goto out;
6230 
6231 	if ((hba->saved_err & UIC_ERROR) &&
6232 	    (hba->saved_uic_err & UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)) {
6233 		int err;
6234 		/*
6235 		 * wait for 50ms to see if we can get any other errors or not.
6236 		 */
6237 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6238 		msleep(50);
6239 		spin_lock_irqsave(hba->host->host_lock, flags);
6240 
6241 		/*
6242 		 * now check if we have got any other severe errors other than
6243 		 * DL NAC error?
6244 		 */
6245 		if ((hba->saved_err & INT_FATAL_ERRORS) ||
6246 		    ((hba->saved_err & UIC_ERROR) &&
6247 		    (hba->saved_uic_err & ~UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)))
6248 			goto out;
6249 
6250 		/*
6251 		 * As DL NAC is the only error received so far, send out NOP
6252 		 * command to confirm if link is still active or not.
6253 		 *   - If we don't get any response then do error recovery.
6254 		 *   - If we get response then clear the DL NAC error bit.
6255 		 */
6256 
6257 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6258 		err = ufshcd_verify_dev_init(hba);
6259 		spin_lock_irqsave(hba->host->host_lock, flags);
6260 
6261 		if (err)
6262 			goto out;
6263 
6264 		/* Link seems to be alive hence ignore the DL NAC errors */
6265 		if (hba->saved_uic_err == UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)
6266 			hba->saved_err &= ~UIC_ERROR;
6267 		/* clear NAC error */
6268 		hba->saved_uic_err &= ~UFSHCD_UIC_DL_NAC_RECEIVED_ERROR;
6269 		if (!hba->saved_uic_err)
6270 			err_handling = false;
6271 	}
6272 out:
6273 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6274 	return err_handling;
6275 }
6276 
6277 /* host lock must be held before calling this func */
6278 static inline bool ufshcd_is_saved_err_fatal(struct ufs_hba *hba)
6279 {
6280 	return (hba->saved_uic_err & UFSHCD_UIC_DL_PA_INIT_ERROR) ||
6281 	       (hba->saved_err & (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK));
6282 }
6283 
6284 void ufshcd_schedule_eh_work(struct ufs_hba *hba)
6285 {
6286 	lockdep_assert_held(hba->host->host_lock);
6287 
6288 	/* handle fatal errors only when link is not in error state */
6289 	if (hba->ufshcd_state != UFSHCD_STATE_ERROR) {
6290 		if (hba->force_reset || ufshcd_is_link_broken(hba) ||
6291 		    ufshcd_is_saved_err_fatal(hba))
6292 			hba->ufshcd_state = UFSHCD_STATE_EH_SCHEDULED_FATAL;
6293 		else
6294 			hba->ufshcd_state = UFSHCD_STATE_EH_SCHEDULED_NON_FATAL;
6295 		queue_work(hba->eh_wq, &hba->eh_work);
6296 	}
6297 }
6298 
6299 static void ufshcd_force_error_recovery(struct ufs_hba *hba)
6300 {
6301 	spin_lock_irq(hba->host->host_lock);
6302 	hba->force_reset = true;
6303 	ufshcd_schedule_eh_work(hba);
6304 	spin_unlock_irq(hba->host->host_lock);
6305 }
6306 
6307 static void ufshcd_clk_scaling_allow(struct ufs_hba *hba, bool allow)
6308 {
6309 	mutex_lock(&hba->wb_mutex);
6310 	down_write(&hba->clk_scaling_lock);
6311 	hba->clk_scaling.is_allowed = allow;
6312 	up_write(&hba->clk_scaling_lock);
6313 	mutex_unlock(&hba->wb_mutex);
6314 }
6315 
6316 static void ufshcd_clk_scaling_suspend(struct ufs_hba *hba, bool suspend)
6317 {
6318 	if (suspend) {
6319 		if (hba->clk_scaling.is_enabled)
6320 			ufshcd_suspend_clkscaling(hba);
6321 		ufshcd_clk_scaling_allow(hba, false);
6322 	} else {
6323 		ufshcd_clk_scaling_allow(hba, true);
6324 		if (hba->clk_scaling.is_enabled)
6325 			ufshcd_resume_clkscaling(hba);
6326 	}
6327 }
6328 
6329 static void ufshcd_err_handling_prepare(struct ufs_hba *hba)
6330 {
6331 	ufshcd_rpm_get_sync(hba);
6332 	if (pm_runtime_status_suspended(&hba->ufs_device_wlun->sdev_gendev) ||
6333 	    hba->is_sys_suspended) {
6334 		enum ufs_pm_op pm_op;
6335 
6336 		/*
6337 		 * Don't assume anything of resume, if
6338 		 * resume fails, irq and clocks can be OFF, and powers
6339 		 * can be OFF or in LPM.
6340 		 */
6341 		ufshcd_setup_hba_vreg(hba, true);
6342 		ufshcd_enable_irq(hba);
6343 		ufshcd_setup_vreg(hba, true);
6344 		ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq);
6345 		ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq2);
6346 		ufshcd_hold(hba);
6347 		if (!ufshcd_is_clkgating_allowed(hba))
6348 			ufshcd_setup_clocks(hba, true);
6349 		pm_op = hba->is_sys_suspended ? UFS_SYSTEM_PM : UFS_RUNTIME_PM;
6350 		ufshcd_vops_resume(hba, pm_op);
6351 	} else {
6352 		ufshcd_hold(hba);
6353 		if (ufshcd_is_clkscaling_supported(hba) &&
6354 		    hba->clk_scaling.is_enabled)
6355 			ufshcd_suspend_clkscaling(hba);
6356 		ufshcd_clk_scaling_allow(hba, false);
6357 	}
6358 	ufshcd_scsi_block_requests(hba);
6359 	/* Wait for ongoing ufshcd_queuecommand() calls to finish. */
6360 	blk_mq_wait_quiesce_done(&hba->host->tag_set);
6361 	cancel_work_sync(&hba->eeh_work);
6362 }
6363 
6364 static void ufshcd_err_handling_unprepare(struct ufs_hba *hba)
6365 {
6366 	ufshcd_scsi_unblock_requests(hba);
6367 	ufshcd_release(hba);
6368 	if (ufshcd_is_clkscaling_supported(hba))
6369 		ufshcd_clk_scaling_suspend(hba, false);
6370 	ufshcd_rpm_put(hba);
6371 }
6372 
6373 static inline bool ufshcd_err_handling_should_stop(struct ufs_hba *hba)
6374 {
6375 	return (!hba->is_powered || hba->shutting_down ||
6376 		!hba->ufs_device_wlun ||
6377 		hba->ufshcd_state == UFSHCD_STATE_ERROR ||
6378 		(!(hba->saved_err || hba->saved_uic_err || hba->force_reset ||
6379 		   ufshcd_is_link_broken(hba))));
6380 }
6381 
6382 #ifdef CONFIG_PM
6383 static void ufshcd_recover_pm_error(struct ufs_hba *hba)
6384 {
6385 	struct Scsi_Host *shost = hba->host;
6386 	struct scsi_device *sdev;
6387 	struct request_queue *q;
6388 	int ret;
6389 
6390 	hba->is_sys_suspended = false;
6391 	/*
6392 	 * Set RPM status of wlun device to RPM_ACTIVE,
6393 	 * this also clears its runtime error.
6394 	 */
6395 	ret = pm_runtime_set_active(&hba->ufs_device_wlun->sdev_gendev);
6396 
6397 	/* hba device might have a runtime error otherwise */
6398 	if (ret)
6399 		ret = pm_runtime_set_active(hba->dev);
6400 	/*
6401 	 * If wlun device had runtime error, we also need to resume those
6402 	 * consumer scsi devices in case any of them has failed to be
6403 	 * resumed due to supplier runtime resume failure. This is to unblock
6404 	 * blk_queue_enter in case there are bios waiting inside it.
6405 	 */
6406 	if (!ret) {
6407 		shost_for_each_device(sdev, shost) {
6408 			q = sdev->request_queue;
6409 			if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
6410 				       q->rpm_status == RPM_SUSPENDING))
6411 				pm_request_resume(q->dev);
6412 		}
6413 	}
6414 }
6415 #else
6416 static inline void ufshcd_recover_pm_error(struct ufs_hba *hba)
6417 {
6418 }
6419 #endif
6420 
6421 static bool ufshcd_is_pwr_mode_restore_needed(struct ufs_hba *hba)
6422 {
6423 	struct ufs_pa_layer_attr *pwr_info = &hba->pwr_info;
6424 	u32 mode;
6425 
6426 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_PWRMODE), &mode);
6427 
6428 	if (pwr_info->pwr_rx != ((mode >> PWRMODE_RX_OFFSET) & PWRMODE_MASK))
6429 		return true;
6430 
6431 	if (pwr_info->pwr_tx != (mode & PWRMODE_MASK))
6432 		return true;
6433 
6434 	return false;
6435 }
6436 
6437 static bool ufshcd_abort_one(struct request *rq, void *priv)
6438 {
6439 	int *ret = priv;
6440 	u32 tag = rq->tag;
6441 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
6442 	struct scsi_device *sdev = cmd->device;
6443 	struct Scsi_Host *shost = sdev->host;
6444 	struct ufs_hba *hba = shost_priv(shost);
6445 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
6446 	struct ufs_hw_queue *hwq;
6447 	unsigned long flags;
6448 
6449 	*ret = ufshcd_try_to_abort_task(hba, tag);
6450 	dev_err(hba->dev, "Aborting tag %d / CDB %#02x %s\n", tag,
6451 		hba->lrb[tag].cmd ? hba->lrb[tag].cmd->cmnd[0] : -1,
6452 		*ret ? "failed" : "succeeded");
6453 
6454 	/* Release cmd in MCQ mode if abort succeeds */
6455 	if (is_mcq_enabled(hba) && (*ret == 0)) {
6456 		hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(lrbp->cmd));
6457 		spin_lock_irqsave(&hwq->cq_lock, flags);
6458 		if (ufshcd_cmd_inflight(lrbp->cmd))
6459 			ufshcd_release_scsi_cmd(hba, lrbp);
6460 		spin_unlock_irqrestore(&hwq->cq_lock, flags);
6461 	}
6462 
6463 	return *ret == 0;
6464 }
6465 
6466 /**
6467  * ufshcd_abort_all - Abort all pending commands.
6468  * @hba: Host bus adapter pointer.
6469  *
6470  * Return: true if and only if the host controller needs to be reset.
6471  */
6472 static bool ufshcd_abort_all(struct ufs_hba *hba)
6473 {
6474 	int tag, ret = 0;
6475 
6476 	blk_mq_tagset_busy_iter(&hba->host->tag_set, ufshcd_abort_one, &ret);
6477 	if (ret)
6478 		goto out;
6479 
6480 	/* Clear pending task management requests */
6481 	for_each_set_bit(tag, &hba->outstanding_tasks, hba->nutmrs) {
6482 		ret = ufshcd_clear_tm_cmd(hba, tag);
6483 		if (ret)
6484 			goto out;
6485 	}
6486 
6487 out:
6488 	/* Complete the requests that are cleared by s/w */
6489 	ufshcd_complete_requests(hba, false);
6490 
6491 	return ret != 0;
6492 }
6493 
6494 /**
6495  * ufshcd_err_handler - handle UFS errors that require s/w attention
6496  * @work: pointer to work structure
6497  */
6498 static void ufshcd_err_handler(struct work_struct *work)
6499 {
6500 	int retries = MAX_ERR_HANDLER_RETRIES;
6501 	struct ufs_hba *hba;
6502 	unsigned long flags;
6503 	bool needs_restore;
6504 	bool needs_reset;
6505 	int pmc_err;
6506 
6507 	hba = container_of(work, struct ufs_hba, eh_work);
6508 
6509 	dev_info(hba->dev,
6510 		 "%s started; HBA state %s; powered %d; shutting down %d; saved_err = %d; saved_uic_err = %d; force_reset = %d%s\n",
6511 		 __func__, ufshcd_state_name[hba->ufshcd_state],
6512 		 hba->is_powered, hba->shutting_down, hba->saved_err,
6513 		 hba->saved_uic_err, hba->force_reset,
6514 		 ufshcd_is_link_broken(hba) ? "; link is broken" : "");
6515 
6516 	down(&hba->host_sem);
6517 	spin_lock_irqsave(hba->host->host_lock, flags);
6518 	if (ufshcd_err_handling_should_stop(hba)) {
6519 		if (hba->ufshcd_state != UFSHCD_STATE_ERROR)
6520 			hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
6521 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6522 		up(&hba->host_sem);
6523 		return;
6524 	}
6525 	ufshcd_set_eh_in_progress(hba);
6526 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6527 	ufshcd_err_handling_prepare(hba);
6528 	/* Complete requests that have door-bell cleared by h/w */
6529 	ufshcd_complete_requests(hba, false);
6530 	spin_lock_irqsave(hba->host->host_lock, flags);
6531 again:
6532 	needs_restore = false;
6533 	needs_reset = false;
6534 
6535 	if (hba->ufshcd_state != UFSHCD_STATE_ERROR)
6536 		hba->ufshcd_state = UFSHCD_STATE_RESET;
6537 	/*
6538 	 * A full reset and restore might have happened after preparation
6539 	 * is finished, double check whether we should stop.
6540 	 */
6541 	if (ufshcd_err_handling_should_stop(hba))
6542 		goto skip_err_handling;
6543 
6544 	if (hba->dev_quirks & UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS) {
6545 		bool ret;
6546 
6547 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6548 		/* release the lock as ufshcd_quirk_dl_nac_errors() may sleep */
6549 		ret = ufshcd_quirk_dl_nac_errors(hba);
6550 		spin_lock_irqsave(hba->host->host_lock, flags);
6551 		if (!ret && ufshcd_err_handling_should_stop(hba))
6552 			goto skip_err_handling;
6553 	}
6554 
6555 	if ((hba->saved_err & (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK)) ||
6556 	    (hba->saved_uic_err &&
6557 	     (hba->saved_uic_err != UFSHCD_UIC_PA_GENERIC_ERROR))) {
6558 		bool pr_prdt = !!(hba->saved_err & SYSTEM_BUS_FATAL_ERROR);
6559 
6560 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6561 		ufshcd_print_host_state(hba);
6562 		ufshcd_print_pwr_info(hba);
6563 		ufshcd_print_evt_hist(hba);
6564 		ufshcd_print_tmrs(hba, hba->outstanding_tasks);
6565 		ufshcd_print_trs_all(hba, pr_prdt);
6566 		spin_lock_irqsave(hba->host->host_lock, flags);
6567 	}
6568 
6569 	/*
6570 	 * if host reset is required then skip clearing the pending
6571 	 * transfers forcefully because they will get cleared during
6572 	 * host reset and restore
6573 	 */
6574 	if (hba->force_reset || ufshcd_is_link_broken(hba) ||
6575 	    ufshcd_is_saved_err_fatal(hba) ||
6576 	    ((hba->saved_err & UIC_ERROR) &&
6577 	     (hba->saved_uic_err & (UFSHCD_UIC_DL_NAC_RECEIVED_ERROR |
6578 				    UFSHCD_UIC_DL_TCx_REPLAY_ERROR)))) {
6579 		needs_reset = true;
6580 		goto do_reset;
6581 	}
6582 
6583 	/*
6584 	 * If LINERESET was caught, UFS might have been put to PWM mode,
6585 	 * check if power mode restore is needed.
6586 	 */
6587 	if (hba->saved_uic_err & UFSHCD_UIC_PA_GENERIC_ERROR) {
6588 		hba->saved_uic_err &= ~UFSHCD_UIC_PA_GENERIC_ERROR;
6589 		if (!hba->saved_uic_err)
6590 			hba->saved_err &= ~UIC_ERROR;
6591 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6592 		if (ufshcd_is_pwr_mode_restore_needed(hba))
6593 			needs_restore = true;
6594 		spin_lock_irqsave(hba->host->host_lock, flags);
6595 		if (!hba->saved_err && !needs_restore)
6596 			goto skip_err_handling;
6597 	}
6598 
6599 	hba->silence_err_logs = true;
6600 	/* release lock as clear command might sleep */
6601 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6602 
6603 	needs_reset = ufshcd_abort_all(hba);
6604 
6605 	spin_lock_irqsave(hba->host->host_lock, flags);
6606 	hba->silence_err_logs = false;
6607 	if (needs_reset)
6608 		goto do_reset;
6609 
6610 	/*
6611 	 * After all reqs and tasks are cleared from doorbell,
6612 	 * now it is safe to retore power mode.
6613 	 */
6614 	if (needs_restore) {
6615 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6616 		/*
6617 		 * Hold the scaling lock just in case dev cmds
6618 		 * are sent via bsg and/or sysfs.
6619 		 */
6620 		down_write(&hba->clk_scaling_lock);
6621 		hba->force_pmc = true;
6622 		pmc_err = ufshcd_config_pwr_mode(hba, &(hba->pwr_info));
6623 		if (pmc_err) {
6624 			needs_reset = true;
6625 			dev_err(hba->dev, "%s: Failed to restore power mode, err = %d\n",
6626 					__func__, pmc_err);
6627 		}
6628 		hba->force_pmc = false;
6629 		ufshcd_print_pwr_info(hba);
6630 		up_write(&hba->clk_scaling_lock);
6631 		spin_lock_irqsave(hba->host->host_lock, flags);
6632 	}
6633 
6634 do_reset:
6635 	/* Fatal errors need reset */
6636 	if (needs_reset) {
6637 		int err;
6638 
6639 		hba->force_reset = false;
6640 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6641 		err = ufshcd_reset_and_restore(hba);
6642 		if (err)
6643 			dev_err(hba->dev, "%s: reset and restore failed with err %d\n",
6644 					__func__, err);
6645 		else
6646 			ufshcd_recover_pm_error(hba);
6647 		spin_lock_irqsave(hba->host->host_lock, flags);
6648 	}
6649 
6650 skip_err_handling:
6651 	if (!needs_reset) {
6652 		if (hba->ufshcd_state == UFSHCD_STATE_RESET)
6653 			hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
6654 		if (hba->saved_err || hba->saved_uic_err)
6655 			dev_err_ratelimited(hba->dev, "%s: exit: saved_err 0x%x saved_uic_err 0x%x",
6656 			    __func__, hba->saved_err, hba->saved_uic_err);
6657 	}
6658 	/* Exit in an operational state or dead */
6659 	if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL &&
6660 	    hba->ufshcd_state != UFSHCD_STATE_ERROR) {
6661 		if (--retries)
6662 			goto again;
6663 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
6664 	}
6665 	ufshcd_clear_eh_in_progress(hba);
6666 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6667 	ufshcd_err_handling_unprepare(hba);
6668 	up(&hba->host_sem);
6669 
6670 	dev_info(hba->dev, "%s finished; HBA state %s\n", __func__,
6671 		 ufshcd_state_name[hba->ufshcd_state]);
6672 }
6673 
6674 /**
6675  * ufshcd_update_uic_error - check and set fatal UIC error flags.
6676  * @hba: per-adapter instance
6677  *
6678  * Return:
6679  *  IRQ_HANDLED - If interrupt is valid
6680  *  IRQ_NONE    - If invalid interrupt
6681  */
6682 static irqreturn_t ufshcd_update_uic_error(struct ufs_hba *hba)
6683 {
6684 	u32 reg;
6685 	irqreturn_t retval = IRQ_NONE;
6686 
6687 	/* PHY layer error */
6688 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER);
6689 	if ((reg & UIC_PHY_ADAPTER_LAYER_ERROR) &&
6690 	    (reg & UIC_PHY_ADAPTER_LAYER_ERROR_CODE_MASK)) {
6691 		ufshcd_update_evt_hist(hba, UFS_EVT_PA_ERR, reg);
6692 		/*
6693 		 * To know whether this error is fatal or not, DB timeout
6694 		 * must be checked but this error is handled separately.
6695 		 */
6696 		if (reg & UIC_PHY_ADAPTER_LAYER_LANE_ERR_MASK)
6697 			dev_dbg(hba->dev, "%s: UIC Lane error reported\n",
6698 					__func__);
6699 
6700 		/* Got a LINERESET indication. */
6701 		if (reg & UIC_PHY_ADAPTER_LAYER_GENERIC_ERROR) {
6702 			struct uic_command *cmd = NULL;
6703 
6704 			hba->uic_error |= UFSHCD_UIC_PA_GENERIC_ERROR;
6705 			if (hba->uic_async_done && hba->active_uic_cmd)
6706 				cmd = hba->active_uic_cmd;
6707 			/*
6708 			 * Ignore the LINERESET during power mode change
6709 			 * operation via DME_SET command.
6710 			 */
6711 			if (cmd && (cmd->command == UIC_CMD_DME_SET))
6712 				hba->uic_error &= ~UFSHCD_UIC_PA_GENERIC_ERROR;
6713 		}
6714 		retval |= IRQ_HANDLED;
6715 	}
6716 
6717 	/* PA_INIT_ERROR is fatal and needs UIC reset */
6718 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_DATA_LINK_LAYER);
6719 	if ((reg & UIC_DATA_LINK_LAYER_ERROR) &&
6720 	    (reg & UIC_DATA_LINK_LAYER_ERROR_CODE_MASK)) {
6721 		ufshcd_update_evt_hist(hba, UFS_EVT_DL_ERR, reg);
6722 
6723 		if (reg & UIC_DATA_LINK_LAYER_ERROR_PA_INIT)
6724 			hba->uic_error |= UFSHCD_UIC_DL_PA_INIT_ERROR;
6725 		else if (hba->dev_quirks &
6726 				UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS) {
6727 			if (reg & UIC_DATA_LINK_LAYER_ERROR_NAC_RECEIVED)
6728 				hba->uic_error |=
6729 					UFSHCD_UIC_DL_NAC_RECEIVED_ERROR;
6730 			else if (reg & UIC_DATA_LINK_LAYER_ERROR_TCx_REPLAY_TIMEOUT)
6731 				hba->uic_error |= UFSHCD_UIC_DL_TCx_REPLAY_ERROR;
6732 		}
6733 		retval |= IRQ_HANDLED;
6734 	}
6735 
6736 	/* UIC NL/TL/DME errors needs software retry */
6737 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_NETWORK_LAYER);
6738 	if ((reg & UIC_NETWORK_LAYER_ERROR) &&
6739 	    (reg & UIC_NETWORK_LAYER_ERROR_CODE_MASK)) {
6740 		ufshcd_update_evt_hist(hba, UFS_EVT_NL_ERR, reg);
6741 		hba->uic_error |= UFSHCD_UIC_NL_ERROR;
6742 		retval |= IRQ_HANDLED;
6743 	}
6744 
6745 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_TRANSPORT_LAYER);
6746 	if ((reg & UIC_TRANSPORT_LAYER_ERROR) &&
6747 	    (reg & UIC_TRANSPORT_LAYER_ERROR_CODE_MASK)) {
6748 		ufshcd_update_evt_hist(hba, UFS_EVT_TL_ERR, reg);
6749 		hba->uic_error |= UFSHCD_UIC_TL_ERROR;
6750 		retval |= IRQ_HANDLED;
6751 	}
6752 
6753 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_DME);
6754 	if ((reg & UIC_DME_ERROR) &&
6755 	    (reg & UIC_DME_ERROR_CODE_MASK)) {
6756 		ufshcd_update_evt_hist(hba, UFS_EVT_DME_ERR, reg);
6757 		hba->uic_error |= UFSHCD_UIC_DME_ERROR;
6758 		retval |= IRQ_HANDLED;
6759 	}
6760 
6761 	dev_dbg(hba->dev, "%s: UIC error flags = 0x%08x\n",
6762 			__func__, hba->uic_error);
6763 	return retval;
6764 }
6765 
6766 /**
6767  * ufshcd_check_errors - Check for errors that need s/w attention
6768  * @hba: per-adapter instance
6769  * @intr_status: interrupt status generated by the controller
6770  *
6771  * Return:
6772  *  IRQ_HANDLED - If interrupt is valid
6773  *  IRQ_NONE    - If invalid interrupt
6774  */
6775 static irqreturn_t ufshcd_check_errors(struct ufs_hba *hba, u32 intr_status)
6776 {
6777 	bool queue_eh_work = false;
6778 	irqreturn_t retval = IRQ_NONE;
6779 
6780 	spin_lock(hba->host->host_lock);
6781 	hba->errors |= UFSHCD_ERROR_MASK & intr_status;
6782 
6783 	if (hba->errors & INT_FATAL_ERRORS) {
6784 		ufshcd_update_evt_hist(hba, UFS_EVT_FATAL_ERR,
6785 				       hba->errors);
6786 		queue_eh_work = true;
6787 	}
6788 
6789 	if (hba->errors & UIC_ERROR) {
6790 		hba->uic_error = 0;
6791 		retval = ufshcd_update_uic_error(hba);
6792 		if (hba->uic_error)
6793 			queue_eh_work = true;
6794 	}
6795 
6796 	if (hba->errors & UFSHCD_UIC_HIBERN8_MASK) {
6797 		dev_err(hba->dev,
6798 			"%s: Auto Hibern8 %s failed - status: 0x%08x, upmcrs: 0x%08x\n",
6799 			__func__, (hba->errors & UIC_HIBERNATE_ENTER) ?
6800 			"Enter" : "Exit",
6801 			hba->errors, ufshcd_get_upmcrs(hba));
6802 		ufshcd_update_evt_hist(hba, UFS_EVT_AUTO_HIBERN8_ERR,
6803 				       hba->errors);
6804 		ufshcd_set_link_broken(hba);
6805 		queue_eh_work = true;
6806 	}
6807 
6808 	if (queue_eh_work) {
6809 		/*
6810 		 * update the transfer error masks to sticky bits, let's do this
6811 		 * irrespective of current ufshcd_state.
6812 		 */
6813 		hba->saved_err |= hba->errors;
6814 		hba->saved_uic_err |= hba->uic_error;
6815 
6816 		/* dump controller state before resetting */
6817 		if ((hba->saved_err &
6818 		     (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK)) ||
6819 		    (hba->saved_uic_err &&
6820 		     (hba->saved_uic_err != UFSHCD_UIC_PA_GENERIC_ERROR))) {
6821 			dev_err(hba->dev, "%s: saved_err 0x%x saved_uic_err 0x%x\n",
6822 					__func__, hba->saved_err,
6823 					hba->saved_uic_err);
6824 			ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE,
6825 					 "host_regs: ");
6826 			ufshcd_print_pwr_info(hba);
6827 		}
6828 		ufshcd_schedule_eh_work(hba);
6829 		retval |= IRQ_HANDLED;
6830 	}
6831 	/*
6832 	 * if (!queue_eh_work) -
6833 	 * Other errors are either non-fatal where host recovers
6834 	 * itself without s/w intervention or errors that will be
6835 	 * handled by the SCSI core layer.
6836 	 */
6837 	hba->errors = 0;
6838 	hba->uic_error = 0;
6839 	spin_unlock(hba->host->host_lock);
6840 	return retval;
6841 }
6842 
6843 /**
6844  * ufshcd_tmc_handler - handle task management function completion
6845  * @hba: per adapter instance
6846  *
6847  * Return:
6848  *  IRQ_HANDLED - If interrupt is valid
6849  *  IRQ_NONE    - If invalid interrupt
6850  */
6851 static irqreturn_t ufshcd_tmc_handler(struct ufs_hba *hba)
6852 {
6853 	unsigned long flags, pending, issued;
6854 	irqreturn_t ret = IRQ_NONE;
6855 	int tag;
6856 
6857 	spin_lock_irqsave(hba->host->host_lock, flags);
6858 	pending = ufshcd_readl(hba, REG_UTP_TASK_REQ_DOOR_BELL);
6859 	issued = hba->outstanding_tasks & ~pending;
6860 	for_each_set_bit(tag, &issued, hba->nutmrs) {
6861 		struct request *req = hba->tmf_rqs[tag];
6862 		struct completion *c = req->end_io_data;
6863 
6864 		complete(c);
6865 		ret = IRQ_HANDLED;
6866 	}
6867 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6868 
6869 	return ret;
6870 }
6871 
6872 /**
6873  * ufshcd_handle_mcq_cq_events - handle MCQ completion queue events
6874  * @hba: per adapter instance
6875  *
6876  * Return: IRQ_HANDLED if interrupt is handled.
6877  */
6878 static irqreturn_t ufshcd_handle_mcq_cq_events(struct ufs_hba *hba)
6879 {
6880 	struct ufs_hw_queue *hwq;
6881 	unsigned long outstanding_cqs;
6882 	unsigned int nr_queues;
6883 	int i, ret;
6884 	u32 events;
6885 
6886 	ret = ufshcd_vops_get_outstanding_cqs(hba, &outstanding_cqs);
6887 	if (ret)
6888 		outstanding_cqs = (1U << hba->nr_hw_queues) - 1;
6889 
6890 	/* Exclude the poll queues */
6891 	nr_queues = hba->nr_hw_queues - hba->nr_queues[HCTX_TYPE_POLL];
6892 	for_each_set_bit(i, &outstanding_cqs, nr_queues) {
6893 		hwq = &hba->uhq[i];
6894 
6895 		events = ufshcd_mcq_read_cqis(hba, i);
6896 		if (events)
6897 			ufshcd_mcq_write_cqis(hba, events, i);
6898 
6899 		if (events & UFSHCD_MCQ_CQIS_TAIL_ENT_PUSH_STS)
6900 			ufshcd_mcq_poll_cqe_lock(hba, hwq);
6901 	}
6902 
6903 	return IRQ_HANDLED;
6904 }
6905 
6906 /**
6907  * ufshcd_sl_intr - Interrupt service routine
6908  * @hba: per adapter instance
6909  * @intr_status: contains interrupts generated by the controller
6910  *
6911  * Return:
6912  *  IRQ_HANDLED - If interrupt is valid
6913  *  IRQ_NONE    - If invalid interrupt
6914  */
6915 static irqreturn_t ufshcd_sl_intr(struct ufs_hba *hba, u32 intr_status)
6916 {
6917 	irqreturn_t retval = IRQ_NONE;
6918 
6919 	if (intr_status & UFSHCD_UIC_MASK)
6920 		retval |= ufshcd_uic_cmd_compl(hba, intr_status);
6921 
6922 	if (intr_status & UFSHCD_ERROR_MASK || hba->errors)
6923 		retval |= ufshcd_check_errors(hba, intr_status);
6924 
6925 	if (intr_status & UTP_TASK_REQ_COMPL)
6926 		retval |= ufshcd_tmc_handler(hba);
6927 
6928 	if (intr_status & UTP_TRANSFER_REQ_COMPL)
6929 		retval |= ufshcd_transfer_req_compl(hba);
6930 
6931 	if (intr_status & MCQ_CQ_EVENT_STATUS)
6932 		retval |= ufshcd_handle_mcq_cq_events(hba);
6933 
6934 	return retval;
6935 }
6936 
6937 /**
6938  * ufshcd_intr - Main interrupt service routine
6939  * @irq: irq number
6940  * @__hba: pointer to adapter instance
6941  *
6942  * Return:
6943  *  IRQ_HANDLED - If interrupt is valid
6944  *  IRQ_NONE    - If invalid interrupt
6945  */
6946 static irqreturn_t ufshcd_intr(int irq, void *__hba)
6947 {
6948 	u32 intr_status, enabled_intr_status = 0;
6949 	irqreturn_t retval = IRQ_NONE;
6950 	struct ufs_hba *hba = __hba;
6951 	int retries = hba->nutrs;
6952 
6953 	intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
6954 	hba->ufs_stats.last_intr_status = intr_status;
6955 	hba->ufs_stats.last_intr_ts = local_clock();
6956 
6957 	/*
6958 	 * There could be max of hba->nutrs reqs in flight and in worst case
6959 	 * if the reqs get finished 1 by 1 after the interrupt status is
6960 	 * read, make sure we handle them by checking the interrupt status
6961 	 * again in a loop until we process all of the reqs before returning.
6962 	 */
6963 	while (intr_status && retries--) {
6964 		enabled_intr_status =
6965 			intr_status & ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
6966 		ufshcd_writel(hba, intr_status, REG_INTERRUPT_STATUS);
6967 		if (enabled_intr_status)
6968 			retval |= ufshcd_sl_intr(hba, enabled_intr_status);
6969 
6970 		intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
6971 	}
6972 
6973 	if (enabled_intr_status && retval == IRQ_NONE &&
6974 	    (!(enabled_intr_status & UTP_TRANSFER_REQ_COMPL) ||
6975 	     hba->outstanding_reqs) && !ufshcd_eh_in_progress(hba)) {
6976 		dev_err(hba->dev, "%s: Unhandled interrupt 0x%08x (0x%08x, 0x%08x)\n",
6977 					__func__,
6978 					intr_status,
6979 					hba->ufs_stats.last_intr_status,
6980 					enabled_intr_status);
6981 		ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, "host_regs: ");
6982 	}
6983 
6984 	return retval;
6985 }
6986 
6987 static int ufshcd_clear_tm_cmd(struct ufs_hba *hba, int tag)
6988 {
6989 	int err = 0;
6990 	u32 mask = 1 << tag;
6991 	unsigned long flags;
6992 
6993 	if (!test_bit(tag, &hba->outstanding_tasks))
6994 		goto out;
6995 
6996 	spin_lock_irqsave(hba->host->host_lock, flags);
6997 	ufshcd_utmrl_clear(hba, tag);
6998 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6999 
7000 	/* poll for max. 1 sec to clear door bell register by h/w */
7001 	err = ufshcd_wait_for_register(hba,
7002 			REG_UTP_TASK_REQ_DOOR_BELL,
7003 			mask, 0, 1000, 1000);
7004 
7005 	dev_err(hba->dev, "Clearing task management function with tag %d %s\n",
7006 		tag, err < 0 ? "failed" : "succeeded");
7007 
7008 out:
7009 	return err;
7010 }
7011 
7012 static int __ufshcd_issue_tm_cmd(struct ufs_hba *hba,
7013 		struct utp_task_req_desc *treq, u8 tm_function)
7014 {
7015 	struct request_queue *q = hba->tmf_queue;
7016 	struct Scsi_Host *host = hba->host;
7017 	DECLARE_COMPLETION_ONSTACK(wait);
7018 	struct request *req;
7019 	unsigned long flags;
7020 	int task_tag, err;
7021 
7022 	/*
7023 	 * blk_mq_alloc_request() is used here only to get a free tag.
7024 	 */
7025 	req = blk_mq_alloc_request(q, REQ_OP_DRV_OUT, 0);
7026 	if (IS_ERR(req))
7027 		return PTR_ERR(req);
7028 
7029 	req->end_io_data = &wait;
7030 	ufshcd_hold(hba);
7031 
7032 	spin_lock_irqsave(host->host_lock, flags);
7033 
7034 	task_tag = req->tag;
7035 	hba->tmf_rqs[req->tag] = req;
7036 	treq->upiu_req.req_header.task_tag = task_tag;
7037 
7038 	memcpy(hba->utmrdl_base_addr + task_tag, treq, sizeof(*treq));
7039 	ufshcd_vops_setup_task_mgmt(hba, task_tag, tm_function);
7040 
7041 	/* send command to the controller */
7042 	__set_bit(task_tag, &hba->outstanding_tasks);
7043 	ufshcd_writel(hba, 1 << task_tag, REG_UTP_TASK_REQ_DOOR_BELL);
7044 
7045 	spin_unlock_irqrestore(host->host_lock, flags);
7046 
7047 	ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_SEND);
7048 
7049 	/* wait until the task management command is completed */
7050 	err = wait_for_completion_io_timeout(&wait,
7051 			msecs_to_jiffies(TM_CMD_TIMEOUT));
7052 	if (!err) {
7053 		ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_ERR);
7054 		dev_err(hba->dev, "%s: task management cmd 0x%.2x timed-out\n",
7055 				__func__, tm_function);
7056 		if (ufshcd_clear_tm_cmd(hba, task_tag))
7057 			dev_WARN(hba->dev, "%s: unable to clear tm cmd (slot %d) after timeout\n",
7058 					__func__, task_tag);
7059 		err = -ETIMEDOUT;
7060 	} else {
7061 		err = 0;
7062 		memcpy(treq, hba->utmrdl_base_addr + task_tag, sizeof(*treq));
7063 
7064 		ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_COMP);
7065 	}
7066 
7067 	spin_lock_irqsave(hba->host->host_lock, flags);
7068 	hba->tmf_rqs[req->tag] = NULL;
7069 	__clear_bit(task_tag, &hba->outstanding_tasks);
7070 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7071 
7072 	ufshcd_release(hba);
7073 	blk_mq_free_request(req);
7074 
7075 	return err;
7076 }
7077 
7078 /**
7079  * ufshcd_issue_tm_cmd - issues task management commands to controller
7080  * @hba: per adapter instance
7081  * @lun_id: LUN ID to which TM command is sent
7082  * @task_id: task ID to which the TM command is applicable
7083  * @tm_function: task management function opcode
7084  * @tm_response: task management service response return value
7085  *
7086  * Return: non-zero value on error, zero on success.
7087  */
7088 static int ufshcd_issue_tm_cmd(struct ufs_hba *hba, int lun_id, int task_id,
7089 		u8 tm_function, u8 *tm_response)
7090 {
7091 	struct utp_task_req_desc treq = { };
7092 	enum utp_ocs ocs_value;
7093 	int err;
7094 
7095 	/* Configure task request descriptor */
7096 	treq.header.interrupt = 1;
7097 	treq.header.ocs = OCS_INVALID_COMMAND_STATUS;
7098 
7099 	/* Configure task request UPIU */
7100 	treq.upiu_req.req_header.transaction_code = UPIU_TRANSACTION_TASK_REQ;
7101 	treq.upiu_req.req_header.lun = lun_id;
7102 	treq.upiu_req.req_header.tm_function = tm_function;
7103 
7104 	/*
7105 	 * The host shall provide the same value for LUN field in the basic
7106 	 * header and for Input Parameter.
7107 	 */
7108 	treq.upiu_req.input_param1 = cpu_to_be32(lun_id);
7109 	treq.upiu_req.input_param2 = cpu_to_be32(task_id);
7110 
7111 	err = __ufshcd_issue_tm_cmd(hba, &treq, tm_function);
7112 	if (err == -ETIMEDOUT)
7113 		return err;
7114 
7115 	ocs_value = treq.header.ocs & MASK_OCS;
7116 	if (ocs_value != OCS_SUCCESS)
7117 		dev_err(hba->dev, "%s: failed, ocs = 0x%x\n",
7118 				__func__, ocs_value);
7119 	else if (tm_response)
7120 		*tm_response = be32_to_cpu(treq.upiu_rsp.output_param1) &
7121 				MASK_TM_SERVICE_RESP;
7122 	return err;
7123 }
7124 
7125 /**
7126  * ufshcd_issue_devman_upiu_cmd - API for sending "utrd" type requests
7127  * @hba:	per-adapter instance
7128  * @req_upiu:	upiu request
7129  * @rsp_upiu:	upiu reply
7130  * @desc_buff:	pointer to descriptor buffer, NULL if NA
7131  * @buff_len:	descriptor size, 0 if NA
7132  * @cmd_type:	specifies the type (NOP, Query...)
7133  * @desc_op:	descriptor operation
7134  *
7135  * Those type of requests uses UTP Transfer Request Descriptor - utrd.
7136  * Therefore, it "rides" the device management infrastructure: uses its tag and
7137  * tasks work queues.
7138  *
7139  * Since there is only one available tag for device management commands,
7140  * the caller is expected to hold the hba->dev_cmd.lock mutex.
7141  *
7142  * Return: 0 upon success; < 0 upon failure.
7143  */
7144 static int ufshcd_issue_devman_upiu_cmd(struct ufs_hba *hba,
7145 					struct utp_upiu_req *req_upiu,
7146 					struct utp_upiu_req *rsp_upiu,
7147 					u8 *desc_buff, int *buff_len,
7148 					enum dev_cmd_type cmd_type,
7149 					enum query_opcode desc_op)
7150 {
7151 	const u32 tag = hba->reserved_slot;
7152 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
7153 	int err = 0;
7154 	u8 upiu_flags;
7155 
7156 	/* Protects use of hba->reserved_slot. */
7157 	lockdep_assert_held(&hba->dev_cmd.lock);
7158 
7159 	ufshcd_setup_dev_cmd(hba, lrbp, cmd_type, 0, tag);
7160 
7161 	ufshcd_prepare_req_desc_hdr(hba, lrbp, &upiu_flags, DMA_NONE, 0);
7162 
7163 	/* update the task tag in the request upiu */
7164 	req_upiu->header.task_tag = tag;
7165 
7166 	/* just copy the upiu request as it is */
7167 	memcpy(lrbp->ucd_req_ptr, req_upiu, sizeof(*lrbp->ucd_req_ptr));
7168 	if (desc_buff && desc_op == UPIU_QUERY_OPCODE_WRITE_DESC) {
7169 		/* The Data Segment Area is optional depending upon the query
7170 		 * function value. for WRITE DESCRIPTOR, the data segment
7171 		 * follows right after the tsf.
7172 		 */
7173 		memcpy(lrbp->ucd_req_ptr + 1, desc_buff, *buff_len);
7174 		*buff_len = 0;
7175 	}
7176 
7177 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
7178 
7179 	/*
7180 	 * ignore the returning value here - ufshcd_check_query_response is
7181 	 * bound to fail since dev_cmd.query and dev_cmd.type were left empty.
7182 	 * read the response directly ignoring all errors.
7183 	 */
7184 	ufshcd_issue_dev_cmd(hba, lrbp, tag, QUERY_REQ_TIMEOUT);
7185 
7186 	/* just copy the upiu response as it is */
7187 	memcpy(rsp_upiu, lrbp->ucd_rsp_ptr, sizeof(*rsp_upiu));
7188 	if (desc_buff && desc_op == UPIU_QUERY_OPCODE_READ_DESC) {
7189 		u8 *descp = (u8 *)lrbp->ucd_rsp_ptr + sizeof(*rsp_upiu);
7190 		u16 resp_len = be16_to_cpu(lrbp->ucd_rsp_ptr->header
7191 					   .data_segment_length);
7192 
7193 		if (*buff_len >= resp_len) {
7194 			memcpy(desc_buff, descp, resp_len);
7195 			*buff_len = resp_len;
7196 		} else {
7197 			dev_warn(hba->dev,
7198 				 "%s: rsp size %d is bigger than buffer size %d",
7199 				 __func__, resp_len, *buff_len);
7200 			*buff_len = 0;
7201 			err = -EINVAL;
7202 		}
7203 	}
7204 	ufshcd_add_query_upiu_trace(hba, err ? UFS_QUERY_ERR : UFS_QUERY_COMP,
7205 				    (struct utp_upiu_req *)lrbp->ucd_rsp_ptr);
7206 
7207 	return err;
7208 }
7209 
7210 /**
7211  * ufshcd_exec_raw_upiu_cmd - API function for sending raw upiu commands
7212  * @hba:	per-adapter instance
7213  * @req_upiu:	upiu request
7214  * @rsp_upiu:	upiu reply - only 8 DW as we do not support scsi commands
7215  * @msgcode:	message code, one of UPIU Transaction Codes Initiator to Target
7216  * @desc_buff:	pointer to descriptor buffer, NULL if NA
7217  * @buff_len:	descriptor size, 0 if NA
7218  * @desc_op:	descriptor operation
7219  *
7220  * Supports UTP Transfer requests (nop and query), and UTP Task
7221  * Management requests.
7222  * It is up to the caller to fill the upiu conent properly, as it will
7223  * be copied without any further input validations.
7224  *
7225  * Return: 0 upon success; < 0 upon failure.
7226  */
7227 int ufshcd_exec_raw_upiu_cmd(struct ufs_hba *hba,
7228 			     struct utp_upiu_req *req_upiu,
7229 			     struct utp_upiu_req *rsp_upiu,
7230 			     enum upiu_request_transaction msgcode,
7231 			     u8 *desc_buff, int *buff_len,
7232 			     enum query_opcode desc_op)
7233 {
7234 	int err;
7235 	enum dev_cmd_type cmd_type = DEV_CMD_TYPE_QUERY;
7236 	struct utp_task_req_desc treq = { };
7237 	enum utp_ocs ocs_value;
7238 	u8 tm_f = req_upiu->header.tm_function;
7239 
7240 	switch (msgcode) {
7241 	case UPIU_TRANSACTION_NOP_OUT:
7242 		cmd_type = DEV_CMD_TYPE_NOP;
7243 		fallthrough;
7244 	case UPIU_TRANSACTION_QUERY_REQ:
7245 		ufshcd_dev_man_lock(hba);
7246 		err = ufshcd_issue_devman_upiu_cmd(hba, req_upiu, rsp_upiu,
7247 						   desc_buff, buff_len,
7248 						   cmd_type, desc_op);
7249 		ufshcd_dev_man_unlock(hba);
7250 
7251 		break;
7252 	case UPIU_TRANSACTION_TASK_REQ:
7253 		treq.header.interrupt = 1;
7254 		treq.header.ocs = OCS_INVALID_COMMAND_STATUS;
7255 
7256 		memcpy(&treq.upiu_req, req_upiu, sizeof(*req_upiu));
7257 
7258 		err = __ufshcd_issue_tm_cmd(hba, &treq, tm_f);
7259 		if (err == -ETIMEDOUT)
7260 			break;
7261 
7262 		ocs_value = treq.header.ocs & MASK_OCS;
7263 		if (ocs_value != OCS_SUCCESS) {
7264 			dev_err(hba->dev, "%s: failed, ocs = 0x%x\n", __func__,
7265 				ocs_value);
7266 			break;
7267 		}
7268 
7269 		memcpy(rsp_upiu, &treq.upiu_rsp, sizeof(*rsp_upiu));
7270 
7271 		break;
7272 	default:
7273 		err = -EINVAL;
7274 
7275 		break;
7276 	}
7277 
7278 	return err;
7279 }
7280 
7281 /**
7282  * ufshcd_advanced_rpmb_req_handler - handle advanced RPMB request
7283  * @hba:	per adapter instance
7284  * @req_upiu:	upiu request
7285  * @rsp_upiu:	upiu reply
7286  * @req_ehs:	EHS field which contains Advanced RPMB Request Message
7287  * @rsp_ehs:	EHS field which returns Advanced RPMB Response Message
7288  * @sg_cnt:	The number of sg lists actually used
7289  * @sg_list:	Pointer to SG list when DATA IN/OUT UPIU is required in ARPMB operation
7290  * @dir:	DMA direction
7291  *
7292  * Return: zero on success, non-zero on failure.
7293  */
7294 int ufshcd_advanced_rpmb_req_handler(struct ufs_hba *hba, struct utp_upiu_req *req_upiu,
7295 			 struct utp_upiu_req *rsp_upiu, struct ufs_ehs *req_ehs,
7296 			 struct ufs_ehs *rsp_ehs, int sg_cnt, struct scatterlist *sg_list,
7297 			 enum dma_data_direction dir)
7298 {
7299 	const u32 tag = hba->reserved_slot;
7300 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
7301 	int err = 0;
7302 	int result;
7303 	u8 upiu_flags;
7304 	u8 *ehs_data;
7305 	u16 ehs_len;
7306 	int ehs = (hba->capabilities & MASK_EHSLUTRD_SUPPORTED) ? 2 : 0;
7307 
7308 	/* Protects use of hba->reserved_slot. */
7309 	ufshcd_dev_man_lock(hba);
7310 
7311 	ufshcd_setup_dev_cmd(hba, lrbp, DEV_CMD_TYPE_RPMB, UFS_UPIU_RPMB_WLUN, tag);
7312 
7313 	ufshcd_prepare_req_desc_hdr(hba, lrbp, &upiu_flags, DMA_NONE, ehs);
7314 
7315 	/* update the task tag */
7316 	req_upiu->header.task_tag = tag;
7317 
7318 	/* copy the UPIU(contains CDB) request as it is */
7319 	memcpy(lrbp->ucd_req_ptr, req_upiu, sizeof(*lrbp->ucd_req_ptr));
7320 	/* Copy EHS, starting with byte32, immediately after the CDB package */
7321 	memcpy(lrbp->ucd_req_ptr + 1, req_ehs, sizeof(*req_ehs));
7322 
7323 	if (dir != DMA_NONE && sg_list)
7324 		ufshcd_sgl_to_prdt(hba, lrbp, sg_cnt, sg_list);
7325 
7326 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
7327 
7328 	err = ufshcd_issue_dev_cmd(hba, lrbp, tag, ADVANCED_RPMB_REQ_TIMEOUT);
7329 
7330 	if (!err) {
7331 		/* Just copy the upiu response as it is */
7332 		memcpy(rsp_upiu, lrbp->ucd_rsp_ptr, sizeof(*rsp_upiu));
7333 		/* Get the response UPIU result */
7334 		result = (lrbp->ucd_rsp_ptr->header.response << 8) |
7335 			lrbp->ucd_rsp_ptr->header.status;
7336 
7337 		ehs_len = lrbp->ucd_rsp_ptr->header.ehs_length;
7338 		/*
7339 		 * Since the bLength in EHS indicates the total size of the EHS Header and EHS Data
7340 		 * in 32 Byte units, the value of the bLength Request/Response for Advanced RPMB
7341 		 * Message is 02h
7342 		 */
7343 		if (ehs_len == 2 && rsp_ehs) {
7344 			/*
7345 			 * ucd_rsp_ptr points to a buffer with a length of 512 bytes
7346 			 * (ALIGNED_UPIU_SIZE = 512), and the EHS data just starts from byte32
7347 			 */
7348 			ehs_data = (u8 *)lrbp->ucd_rsp_ptr + EHS_OFFSET_IN_RESPONSE;
7349 			memcpy(rsp_ehs, ehs_data, ehs_len * 32);
7350 		}
7351 	}
7352 
7353 	ufshcd_dev_man_unlock(hba);
7354 
7355 	return err ? : result;
7356 }
7357 
7358 /**
7359  * ufshcd_eh_device_reset_handler() - Reset a single logical unit.
7360  * @cmd: SCSI command pointer
7361  *
7362  * Return: SUCCESS or FAILED.
7363  */
7364 static int ufshcd_eh_device_reset_handler(struct scsi_cmnd *cmd)
7365 {
7366 	unsigned long flags, pending_reqs = 0, not_cleared = 0;
7367 	struct Scsi_Host *host;
7368 	struct ufs_hba *hba;
7369 	struct ufs_hw_queue *hwq;
7370 	struct ufshcd_lrb *lrbp;
7371 	u32 pos, not_cleared_mask = 0;
7372 	int err;
7373 	u8 resp = 0xF, lun;
7374 
7375 	host = cmd->device->host;
7376 	hba = shost_priv(host);
7377 
7378 	lun = ufshcd_scsi_to_upiu_lun(cmd->device->lun);
7379 	err = ufshcd_issue_tm_cmd(hba, lun, 0, UFS_LOGICAL_RESET, &resp);
7380 	if (err || resp != UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7381 		if (!err)
7382 			err = resp;
7383 		goto out;
7384 	}
7385 
7386 	if (is_mcq_enabled(hba)) {
7387 		for (pos = 0; pos < hba->nutrs; pos++) {
7388 			lrbp = &hba->lrb[pos];
7389 			if (ufshcd_cmd_inflight(lrbp->cmd) &&
7390 			    lrbp->lun == lun) {
7391 				ufshcd_clear_cmd(hba, pos);
7392 				hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(lrbp->cmd));
7393 				ufshcd_mcq_poll_cqe_lock(hba, hwq);
7394 			}
7395 		}
7396 		err = 0;
7397 		goto out;
7398 	}
7399 
7400 	/* clear the commands that were pending for corresponding LUN */
7401 	spin_lock_irqsave(&hba->outstanding_lock, flags);
7402 	for_each_set_bit(pos, &hba->outstanding_reqs, hba->nutrs)
7403 		if (hba->lrb[pos].lun == lun)
7404 			__set_bit(pos, &pending_reqs);
7405 	hba->outstanding_reqs &= ~pending_reqs;
7406 	spin_unlock_irqrestore(&hba->outstanding_lock, flags);
7407 
7408 	for_each_set_bit(pos, &pending_reqs, hba->nutrs) {
7409 		if (ufshcd_clear_cmd(hba, pos) < 0) {
7410 			spin_lock_irqsave(&hba->outstanding_lock, flags);
7411 			not_cleared = 1U << pos &
7412 				ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
7413 			hba->outstanding_reqs |= not_cleared;
7414 			not_cleared_mask |= not_cleared;
7415 			spin_unlock_irqrestore(&hba->outstanding_lock, flags);
7416 
7417 			dev_err(hba->dev, "%s: failed to clear request %d\n",
7418 				__func__, pos);
7419 		}
7420 	}
7421 	__ufshcd_transfer_req_compl(hba, pending_reqs & ~not_cleared_mask);
7422 
7423 out:
7424 	hba->req_abort_count = 0;
7425 	ufshcd_update_evt_hist(hba, UFS_EVT_DEV_RESET, (u32)err);
7426 	if (!err) {
7427 		err = SUCCESS;
7428 	} else {
7429 		dev_err(hba->dev, "%s: failed with err %d\n", __func__, err);
7430 		err = FAILED;
7431 	}
7432 	return err;
7433 }
7434 
7435 static void ufshcd_set_req_abort_skip(struct ufs_hba *hba, unsigned long bitmap)
7436 {
7437 	struct ufshcd_lrb *lrbp;
7438 	int tag;
7439 
7440 	for_each_set_bit(tag, &bitmap, hba->nutrs) {
7441 		lrbp = &hba->lrb[tag];
7442 		lrbp->req_abort_skip = true;
7443 	}
7444 }
7445 
7446 /**
7447  * ufshcd_try_to_abort_task - abort a specific task
7448  * @hba: Pointer to adapter instance
7449  * @tag: Task tag/index to be aborted
7450  *
7451  * Abort the pending command in device by sending UFS_ABORT_TASK task management
7452  * command, and in host controller by clearing the door-bell register. There can
7453  * be race between controller sending the command to the device while abort is
7454  * issued. To avoid that, first issue UFS_QUERY_TASK to check if the command is
7455  * really issued and then try to abort it.
7456  *
7457  * Return: zero on success, non-zero on failure.
7458  */
7459 int ufshcd_try_to_abort_task(struct ufs_hba *hba, int tag)
7460 {
7461 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
7462 	int err = 0;
7463 	int poll_cnt;
7464 	u8 resp = 0xF;
7465 	u32 reg;
7466 
7467 	for (poll_cnt = 100; poll_cnt; poll_cnt--) {
7468 		err = ufshcd_issue_tm_cmd(hba, lrbp->lun, lrbp->task_tag,
7469 				UFS_QUERY_TASK, &resp);
7470 		if (!err && resp == UPIU_TASK_MANAGEMENT_FUNC_SUCCEEDED) {
7471 			/* cmd pending in the device */
7472 			dev_err(hba->dev, "%s: cmd pending in the device. tag = %d\n",
7473 				__func__, tag);
7474 			break;
7475 		} else if (!err && resp == UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7476 			/*
7477 			 * cmd not pending in the device, check if it is
7478 			 * in transition.
7479 			 */
7480 			dev_err(hba->dev, "%s: cmd at tag %d not pending in the device.\n",
7481 				__func__, tag);
7482 			if (is_mcq_enabled(hba)) {
7483 				/* MCQ mode */
7484 				if (ufshcd_cmd_inflight(lrbp->cmd)) {
7485 					/* sleep for max. 200us same delay as in SDB mode */
7486 					usleep_range(100, 200);
7487 					continue;
7488 				}
7489 				/* command completed already */
7490 				dev_err(hba->dev, "%s: cmd at tag=%d is cleared.\n",
7491 					__func__, tag);
7492 				goto out;
7493 			}
7494 
7495 			/* Single Doorbell Mode */
7496 			reg = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
7497 			if (reg & (1 << tag)) {
7498 				/* sleep for max. 200us to stabilize */
7499 				usleep_range(100, 200);
7500 				continue;
7501 			}
7502 			/* command completed already */
7503 			dev_err(hba->dev, "%s: cmd at tag %d successfully cleared from DB.\n",
7504 				__func__, tag);
7505 			goto out;
7506 		} else {
7507 			dev_err(hba->dev,
7508 				"%s: no response from device. tag = %d, err %d\n",
7509 				__func__, tag, err);
7510 			if (!err)
7511 				err = resp; /* service response error */
7512 			goto out;
7513 		}
7514 	}
7515 
7516 	if (!poll_cnt) {
7517 		err = -EBUSY;
7518 		goto out;
7519 	}
7520 
7521 	err = ufshcd_issue_tm_cmd(hba, lrbp->lun, lrbp->task_tag,
7522 			UFS_ABORT_TASK, &resp);
7523 	if (err || resp != UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7524 		if (!err) {
7525 			err = resp; /* service response error */
7526 			dev_err(hba->dev, "%s: issued. tag = %d, err %d\n",
7527 				__func__, tag, err);
7528 		}
7529 		goto out;
7530 	}
7531 
7532 	err = ufshcd_clear_cmd(hba, tag);
7533 	if (err)
7534 		dev_err(hba->dev, "%s: Failed clearing cmd at tag %d, err %d\n",
7535 			__func__, tag, err);
7536 
7537 out:
7538 	return err;
7539 }
7540 
7541 /**
7542  * ufshcd_abort - scsi host template eh_abort_handler callback
7543  * @cmd: SCSI command pointer
7544  *
7545  * Return: SUCCESS or FAILED.
7546  */
7547 static int ufshcd_abort(struct scsi_cmnd *cmd)
7548 {
7549 	struct Scsi_Host *host = cmd->device->host;
7550 	struct ufs_hba *hba = shost_priv(host);
7551 	int tag = scsi_cmd_to_rq(cmd)->tag;
7552 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
7553 	unsigned long flags;
7554 	int err = FAILED;
7555 	bool outstanding;
7556 	u32 reg;
7557 
7558 	ufshcd_hold(hba);
7559 
7560 	if (!is_mcq_enabled(hba)) {
7561 		reg = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
7562 		if (!test_bit(tag, &hba->outstanding_reqs)) {
7563 			/* If command is already aborted/completed, return FAILED. */
7564 			dev_err(hba->dev,
7565 				"%s: cmd at tag %d already completed, outstanding=0x%lx, doorbell=0x%x\n",
7566 				__func__, tag, hba->outstanding_reqs, reg);
7567 			goto release;
7568 		}
7569 	}
7570 
7571 	/* Print Transfer Request of aborted task */
7572 	dev_info(hba->dev, "%s: Device abort task at tag %d\n", __func__, tag);
7573 
7574 	/*
7575 	 * Print detailed info about aborted request.
7576 	 * As more than one request might get aborted at the same time,
7577 	 * print full information only for the first aborted request in order
7578 	 * to reduce repeated printouts. For other aborted requests only print
7579 	 * basic details.
7580 	 */
7581 	scsi_print_command(cmd);
7582 	if (!hba->req_abort_count) {
7583 		ufshcd_update_evt_hist(hba, UFS_EVT_ABORT, tag);
7584 		ufshcd_print_evt_hist(hba);
7585 		ufshcd_print_host_state(hba);
7586 		ufshcd_print_pwr_info(hba);
7587 		ufshcd_print_tr(hba, tag, true);
7588 	} else {
7589 		ufshcd_print_tr(hba, tag, false);
7590 	}
7591 	hba->req_abort_count++;
7592 
7593 	if (!is_mcq_enabled(hba) && !(reg & (1 << tag))) {
7594 		/* only execute this code in single doorbell mode */
7595 		dev_err(hba->dev,
7596 		"%s: cmd was completed, but without a notifying intr, tag = %d",
7597 		__func__, tag);
7598 		__ufshcd_transfer_req_compl(hba, 1UL << tag);
7599 		goto release;
7600 	}
7601 
7602 	/*
7603 	 * Task abort to the device W-LUN is illegal. When this command
7604 	 * will fail, due to spec violation, scsi err handling next step
7605 	 * will be to send LU reset which, again, is a spec violation.
7606 	 * To avoid these unnecessary/illegal steps, first we clean up
7607 	 * the lrb taken by this cmd and re-set it in outstanding_reqs,
7608 	 * then queue the eh_work and bail.
7609 	 */
7610 	if (lrbp->lun == UFS_UPIU_UFS_DEVICE_WLUN) {
7611 		ufshcd_update_evt_hist(hba, UFS_EVT_ABORT, lrbp->lun);
7612 
7613 		spin_lock_irqsave(host->host_lock, flags);
7614 		hba->force_reset = true;
7615 		ufshcd_schedule_eh_work(hba);
7616 		spin_unlock_irqrestore(host->host_lock, flags);
7617 		goto release;
7618 	}
7619 
7620 	if (is_mcq_enabled(hba)) {
7621 		/* MCQ mode. Branch off to handle abort for mcq mode */
7622 		err = ufshcd_mcq_abort(cmd);
7623 		goto release;
7624 	}
7625 
7626 	/* Skip task abort in case previous aborts failed and report failure */
7627 	if (lrbp->req_abort_skip) {
7628 		dev_err(hba->dev, "%s: skipping abort\n", __func__);
7629 		ufshcd_set_req_abort_skip(hba, hba->outstanding_reqs);
7630 		goto release;
7631 	}
7632 
7633 	err = ufshcd_try_to_abort_task(hba, tag);
7634 	if (err) {
7635 		dev_err(hba->dev, "%s: failed with err %d\n", __func__, err);
7636 		ufshcd_set_req_abort_skip(hba, hba->outstanding_reqs);
7637 		err = FAILED;
7638 		goto release;
7639 	}
7640 
7641 	/*
7642 	 * Clear the corresponding bit from outstanding_reqs since the command
7643 	 * has been aborted successfully.
7644 	 */
7645 	spin_lock_irqsave(&hba->outstanding_lock, flags);
7646 	outstanding = __test_and_clear_bit(tag, &hba->outstanding_reqs);
7647 	spin_unlock_irqrestore(&hba->outstanding_lock, flags);
7648 
7649 	if (outstanding)
7650 		ufshcd_release_scsi_cmd(hba, lrbp);
7651 
7652 	err = SUCCESS;
7653 
7654 release:
7655 	/* Matches the ufshcd_hold() call at the start of this function. */
7656 	ufshcd_release(hba);
7657 	return err;
7658 }
7659 
7660 /**
7661  * ufshcd_host_reset_and_restore - reset and restore host controller
7662  * @hba: per-adapter instance
7663  *
7664  * Note that host controller reset may issue DME_RESET to
7665  * local and remote (device) Uni-Pro stack and the attributes
7666  * are reset to default state.
7667  *
7668  * Return: zero on success, non-zero on failure.
7669  */
7670 static int ufshcd_host_reset_and_restore(struct ufs_hba *hba)
7671 {
7672 	int err;
7673 
7674 	/*
7675 	 * Stop the host controller and complete the requests
7676 	 * cleared by h/w
7677 	 */
7678 	ufshcd_hba_stop(hba);
7679 	hba->silence_err_logs = true;
7680 	ufshcd_complete_requests(hba, true);
7681 	hba->silence_err_logs = false;
7682 
7683 	/* scale up clocks to max frequency before full reinitialization */
7684 	ufshcd_scale_clks(hba, ULONG_MAX, true);
7685 
7686 	err = ufshcd_hba_enable(hba);
7687 
7688 	/* Establish the link again and restore the device */
7689 	if (!err)
7690 		err = ufshcd_probe_hba(hba, false);
7691 
7692 	if (err)
7693 		dev_err(hba->dev, "%s: Host init failed %d\n", __func__, err);
7694 	ufshcd_update_evt_hist(hba, UFS_EVT_HOST_RESET, (u32)err);
7695 	return err;
7696 }
7697 
7698 /**
7699  * ufshcd_reset_and_restore - reset and re-initialize host/device
7700  * @hba: per-adapter instance
7701  *
7702  * Reset and recover device, host and re-establish link. This
7703  * is helpful to recover the communication in fatal error conditions.
7704  *
7705  * Return: zero on success, non-zero on failure.
7706  */
7707 static int ufshcd_reset_and_restore(struct ufs_hba *hba)
7708 {
7709 	u32 saved_err = 0;
7710 	u32 saved_uic_err = 0;
7711 	int err = 0;
7712 	unsigned long flags;
7713 	int retries = MAX_HOST_RESET_RETRIES;
7714 
7715 	spin_lock_irqsave(hba->host->host_lock, flags);
7716 	do {
7717 		/*
7718 		 * This is a fresh start, cache and clear saved error first,
7719 		 * in case new error generated during reset and restore.
7720 		 */
7721 		saved_err |= hba->saved_err;
7722 		saved_uic_err |= hba->saved_uic_err;
7723 		hba->saved_err = 0;
7724 		hba->saved_uic_err = 0;
7725 		hba->force_reset = false;
7726 		hba->ufshcd_state = UFSHCD_STATE_RESET;
7727 		spin_unlock_irqrestore(hba->host->host_lock, flags);
7728 
7729 		/* Reset the attached device */
7730 		ufshcd_device_reset(hba);
7731 
7732 		err = ufshcd_host_reset_and_restore(hba);
7733 
7734 		spin_lock_irqsave(hba->host->host_lock, flags);
7735 		if (err)
7736 			continue;
7737 		/* Do not exit unless operational or dead */
7738 		if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL &&
7739 		    hba->ufshcd_state != UFSHCD_STATE_ERROR &&
7740 		    hba->ufshcd_state != UFSHCD_STATE_EH_SCHEDULED_NON_FATAL)
7741 			err = -EAGAIN;
7742 	} while (err && --retries);
7743 
7744 	/*
7745 	 * Inform scsi mid-layer that we did reset and allow to handle
7746 	 * Unit Attention properly.
7747 	 */
7748 	scsi_report_bus_reset(hba->host, 0);
7749 	if (err) {
7750 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
7751 		hba->saved_err |= saved_err;
7752 		hba->saved_uic_err |= saved_uic_err;
7753 	}
7754 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7755 
7756 	return err;
7757 }
7758 
7759 /**
7760  * ufshcd_eh_host_reset_handler - host reset handler registered to scsi layer
7761  * @cmd: SCSI command pointer
7762  *
7763  * Return: SUCCESS or FAILED.
7764  */
7765 static int ufshcd_eh_host_reset_handler(struct scsi_cmnd *cmd)
7766 {
7767 	int err = SUCCESS;
7768 	unsigned long flags;
7769 	struct ufs_hba *hba;
7770 
7771 	hba = shost_priv(cmd->device->host);
7772 
7773 	/*
7774 	 * If runtime PM sent SSU and got a timeout, scsi_error_handler is
7775 	 * stuck in this function waiting for flush_work(&hba->eh_work). And
7776 	 * ufshcd_err_handler(eh_work) is stuck waiting for runtime PM. Do
7777 	 * ufshcd_link_recovery instead of eh_work to prevent deadlock.
7778 	 */
7779 	if (hba->pm_op_in_progress) {
7780 		if (ufshcd_link_recovery(hba))
7781 			err = FAILED;
7782 
7783 		return err;
7784 	}
7785 
7786 	spin_lock_irqsave(hba->host->host_lock, flags);
7787 	hba->force_reset = true;
7788 	ufshcd_schedule_eh_work(hba);
7789 	dev_err(hba->dev, "%s: reset in progress - 1\n", __func__);
7790 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7791 
7792 	flush_work(&hba->eh_work);
7793 
7794 	spin_lock_irqsave(hba->host->host_lock, flags);
7795 	if (hba->ufshcd_state == UFSHCD_STATE_ERROR)
7796 		err = FAILED;
7797 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7798 
7799 	return err;
7800 }
7801 
7802 /**
7803  * ufshcd_get_max_icc_level - calculate the ICC level
7804  * @sup_curr_uA: max. current supported by the regulator
7805  * @start_scan: row at the desc table to start scan from
7806  * @buff: power descriptor buffer
7807  *
7808  * Return: calculated max ICC level for specific regulator.
7809  */
7810 static u32 ufshcd_get_max_icc_level(int sup_curr_uA, u32 start_scan,
7811 				    const char *buff)
7812 {
7813 	int i;
7814 	int curr_uA;
7815 	u16 data;
7816 	u16 unit;
7817 
7818 	for (i = start_scan; i >= 0; i--) {
7819 		data = get_unaligned_be16(&buff[2 * i]);
7820 		unit = (data & ATTR_ICC_LVL_UNIT_MASK) >>
7821 						ATTR_ICC_LVL_UNIT_OFFSET;
7822 		curr_uA = data & ATTR_ICC_LVL_VALUE_MASK;
7823 		switch (unit) {
7824 		case UFSHCD_NANO_AMP:
7825 			curr_uA = curr_uA / 1000;
7826 			break;
7827 		case UFSHCD_MILI_AMP:
7828 			curr_uA = curr_uA * 1000;
7829 			break;
7830 		case UFSHCD_AMP:
7831 			curr_uA = curr_uA * 1000 * 1000;
7832 			break;
7833 		case UFSHCD_MICRO_AMP:
7834 		default:
7835 			break;
7836 		}
7837 		if (sup_curr_uA >= curr_uA)
7838 			break;
7839 	}
7840 	if (i < 0) {
7841 		i = 0;
7842 		pr_err("%s: Couldn't find valid icc_level = %d", __func__, i);
7843 	}
7844 
7845 	return (u32)i;
7846 }
7847 
7848 /**
7849  * ufshcd_find_max_sup_active_icc_level - calculate the max ICC level
7850  * In case regulators are not initialized we'll return 0
7851  * @hba: per-adapter instance
7852  * @desc_buf: power descriptor buffer to extract ICC levels from.
7853  *
7854  * Return: calculated ICC level.
7855  */
7856 static u32 ufshcd_find_max_sup_active_icc_level(struct ufs_hba *hba,
7857 						const u8 *desc_buf)
7858 {
7859 	u32 icc_level = 0;
7860 
7861 	if (!hba->vreg_info.vcc || !hba->vreg_info.vccq ||
7862 						!hba->vreg_info.vccq2) {
7863 		/*
7864 		 * Using dev_dbg to avoid messages during runtime PM to avoid
7865 		 * never-ending cycles of messages written back to storage by
7866 		 * user space causing runtime resume, causing more messages and
7867 		 * so on.
7868 		 */
7869 		dev_dbg(hba->dev,
7870 			"%s: Regulator capability was not set, actvIccLevel=%d",
7871 							__func__, icc_level);
7872 		goto out;
7873 	}
7874 
7875 	if (hba->vreg_info.vcc->max_uA)
7876 		icc_level = ufshcd_get_max_icc_level(
7877 				hba->vreg_info.vcc->max_uA,
7878 				POWER_DESC_MAX_ACTV_ICC_LVLS - 1,
7879 				&desc_buf[PWR_DESC_ACTIVE_LVLS_VCC_0]);
7880 
7881 	if (hba->vreg_info.vccq->max_uA)
7882 		icc_level = ufshcd_get_max_icc_level(
7883 				hba->vreg_info.vccq->max_uA,
7884 				icc_level,
7885 				&desc_buf[PWR_DESC_ACTIVE_LVLS_VCCQ_0]);
7886 
7887 	if (hba->vreg_info.vccq2->max_uA)
7888 		icc_level = ufshcd_get_max_icc_level(
7889 				hba->vreg_info.vccq2->max_uA,
7890 				icc_level,
7891 				&desc_buf[PWR_DESC_ACTIVE_LVLS_VCCQ2_0]);
7892 out:
7893 	return icc_level;
7894 }
7895 
7896 static void ufshcd_set_active_icc_lvl(struct ufs_hba *hba)
7897 {
7898 	int ret;
7899 	u8 *desc_buf;
7900 	u32 icc_level;
7901 
7902 	desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
7903 	if (!desc_buf)
7904 		return;
7905 
7906 	ret = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_POWER, 0, 0,
7907 				     desc_buf, QUERY_DESC_MAX_SIZE);
7908 	if (ret) {
7909 		dev_err(hba->dev,
7910 			"%s: Failed reading power descriptor ret = %d",
7911 			__func__, ret);
7912 		goto out;
7913 	}
7914 
7915 	icc_level = ufshcd_find_max_sup_active_icc_level(hba, desc_buf);
7916 	dev_dbg(hba->dev, "%s: setting icc_level 0x%x", __func__, icc_level);
7917 
7918 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
7919 		QUERY_ATTR_IDN_ACTIVE_ICC_LVL, 0, 0, &icc_level);
7920 
7921 	if (ret)
7922 		dev_err(hba->dev,
7923 			"%s: Failed configuring bActiveICCLevel = %d ret = %d",
7924 			__func__, icc_level, ret);
7925 
7926 out:
7927 	kfree(desc_buf);
7928 }
7929 
7930 static inline void ufshcd_blk_pm_runtime_init(struct scsi_device *sdev)
7931 {
7932 	struct Scsi_Host *shost = sdev->host;
7933 
7934 	scsi_autopm_get_device(sdev);
7935 	blk_pm_runtime_init(sdev->request_queue, &sdev->sdev_gendev);
7936 	if (sdev->rpm_autosuspend)
7937 		pm_runtime_set_autosuspend_delay(&sdev->sdev_gendev,
7938 						 shost->rpm_autosuspend_delay);
7939 	scsi_autopm_put_device(sdev);
7940 }
7941 
7942 /**
7943  * ufshcd_scsi_add_wlus - Adds required W-LUs
7944  * @hba: per-adapter instance
7945  *
7946  * UFS device specification requires the UFS devices to support 4 well known
7947  * logical units:
7948  *	"REPORT_LUNS" (address: 01h)
7949  *	"UFS Device" (address: 50h)
7950  *	"RPMB" (address: 44h)
7951  *	"BOOT" (address: 30h)
7952  * UFS device's power management needs to be controlled by "POWER CONDITION"
7953  * field of SSU (START STOP UNIT) command. But this "power condition" field
7954  * will take effect only when its sent to "UFS device" well known logical unit
7955  * hence we require the scsi_device instance to represent this logical unit in
7956  * order for the UFS host driver to send the SSU command for power management.
7957  *
7958  * We also require the scsi_device instance for "RPMB" (Replay Protected Memory
7959  * Block) LU so user space process can control this LU. User space may also
7960  * want to have access to BOOT LU.
7961  *
7962  * This function adds scsi device instances for each of all well known LUs
7963  * (except "REPORT LUNS" LU).
7964  *
7965  * Return: zero on success (all required W-LUs are added successfully),
7966  * non-zero error value on failure (if failed to add any of the required W-LU).
7967  */
7968 static int ufshcd_scsi_add_wlus(struct ufs_hba *hba)
7969 {
7970 	int ret = 0;
7971 	struct scsi_device *sdev_boot, *sdev_rpmb;
7972 
7973 	hba->ufs_device_wlun = __scsi_add_device(hba->host, 0, 0,
7974 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_UFS_DEVICE_WLUN), NULL);
7975 	if (IS_ERR(hba->ufs_device_wlun)) {
7976 		ret = PTR_ERR(hba->ufs_device_wlun);
7977 		hba->ufs_device_wlun = NULL;
7978 		goto out;
7979 	}
7980 	scsi_device_put(hba->ufs_device_wlun);
7981 
7982 	sdev_rpmb = __scsi_add_device(hba->host, 0, 0,
7983 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_RPMB_WLUN), NULL);
7984 	if (IS_ERR(sdev_rpmb)) {
7985 		ret = PTR_ERR(sdev_rpmb);
7986 		goto remove_ufs_device_wlun;
7987 	}
7988 	ufshcd_blk_pm_runtime_init(sdev_rpmb);
7989 	scsi_device_put(sdev_rpmb);
7990 
7991 	sdev_boot = __scsi_add_device(hba->host, 0, 0,
7992 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_BOOT_WLUN), NULL);
7993 	if (IS_ERR(sdev_boot)) {
7994 		dev_err(hba->dev, "%s: BOOT WLUN not found\n", __func__);
7995 	} else {
7996 		ufshcd_blk_pm_runtime_init(sdev_boot);
7997 		scsi_device_put(sdev_boot);
7998 	}
7999 	goto out;
8000 
8001 remove_ufs_device_wlun:
8002 	scsi_remove_device(hba->ufs_device_wlun);
8003 out:
8004 	return ret;
8005 }
8006 
8007 static void ufshcd_wb_probe(struct ufs_hba *hba, const u8 *desc_buf)
8008 {
8009 	struct ufs_dev_info *dev_info = &hba->dev_info;
8010 	u8 lun;
8011 	u32 d_lu_wb_buf_alloc;
8012 	u32 ext_ufs_feature;
8013 
8014 	if (!ufshcd_is_wb_allowed(hba))
8015 		return;
8016 
8017 	/*
8018 	 * Probe WB only for UFS-2.2 and UFS-3.1 (and later) devices or
8019 	 * UFS devices with quirk UFS_DEVICE_QUIRK_SUPPORT_EXTENDED_FEATURES
8020 	 * enabled
8021 	 */
8022 	if (!(dev_info->wspecversion >= 0x310 ||
8023 	      dev_info->wspecversion == 0x220 ||
8024 	     (hba->dev_quirks & UFS_DEVICE_QUIRK_SUPPORT_EXTENDED_FEATURES)))
8025 		goto wb_disabled;
8026 
8027 	ext_ufs_feature = get_unaligned_be32(desc_buf +
8028 					DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
8029 
8030 	if (!(ext_ufs_feature & UFS_DEV_WRITE_BOOSTER_SUP))
8031 		goto wb_disabled;
8032 
8033 	/*
8034 	 * WB may be supported but not configured while provisioning. The spec
8035 	 * says, in dedicated wb buffer mode, a max of 1 lun would have wb
8036 	 * buffer configured.
8037 	 */
8038 	dev_info->wb_buffer_type = desc_buf[DEVICE_DESC_PARAM_WB_TYPE];
8039 
8040 	dev_info->b_presrv_uspc_en =
8041 		desc_buf[DEVICE_DESC_PARAM_WB_PRESRV_USRSPC_EN];
8042 
8043 	if (dev_info->wb_buffer_type == WB_BUF_MODE_SHARED) {
8044 		if (!get_unaligned_be32(desc_buf +
8045 				   DEVICE_DESC_PARAM_WB_SHARED_ALLOC_UNITS))
8046 			goto wb_disabled;
8047 	} else {
8048 		for (lun = 0; lun < UFS_UPIU_MAX_WB_LUN_ID; lun++) {
8049 			d_lu_wb_buf_alloc = 0;
8050 			ufshcd_read_unit_desc_param(hba,
8051 					lun,
8052 					UNIT_DESC_PARAM_WB_BUF_ALLOC_UNITS,
8053 					(u8 *)&d_lu_wb_buf_alloc,
8054 					sizeof(d_lu_wb_buf_alloc));
8055 			if (d_lu_wb_buf_alloc) {
8056 				dev_info->wb_dedicated_lu = lun;
8057 				break;
8058 			}
8059 		}
8060 
8061 		if (!d_lu_wb_buf_alloc)
8062 			goto wb_disabled;
8063 	}
8064 
8065 	if (!ufshcd_is_wb_buf_lifetime_available(hba))
8066 		goto wb_disabled;
8067 
8068 	return;
8069 
8070 wb_disabled:
8071 	hba->caps &= ~UFSHCD_CAP_WB_EN;
8072 }
8073 
8074 static void ufshcd_temp_notif_probe(struct ufs_hba *hba, const u8 *desc_buf)
8075 {
8076 	struct ufs_dev_info *dev_info = &hba->dev_info;
8077 	u32 ext_ufs_feature;
8078 	u8 mask = 0;
8079 
8080 	if (!(hba->caps & UFSHCD_CAP_TEMP_NOTIF) || dev_info->wspecversion < 0x300)
8081 		return;
8082 
8083 	ext_ufs_feature = get_unaligned_be32(desc_buf + DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
8084 
8085 	if (ext_ufs_feature & UFS_DEV_LOW_TEMP_NOTIF)
8086 		mask |= MASK_EE_TOO_LOW_TEMP;
8087 
8088 	if (ext_ufs_feature & UFS_DEV_HIGH_TEMP_NOTIF)
8089 		mask |= MASK_EE_TOO_HIGH_TEMP;
8090 
8091 	if (mask) {
8092 		ufshcd_enable_ee(hba, mask);
8093 		ufs_hwmon_probe(hba, mask);
8094 	}
8095 }
8096 
8097 static void ufshcd_ext_iid_probe(struct ufs_hba *hba, u8 *desc_buf)
8098 {
8099 	struct ufs_dev_info *dev_info = &hba->dev_info;
8100 	u32 ext_ufs_feature;
8101 	u32 ext_iid_en = 0;
8102 	int err;
8103 
8104 	/* Only UFS-4.0 and above may support EXT_IID */
8105 	if (dev_info->wspecversion < 0x400)
8106 		goto out;
8107 
8108 	ext_ufs_feature = get_unaligned_be32(desc_buf +
8109 				     DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
8110 	if (!(ext_ufs_feature & UFS_DEV_EXT_IID_SUP))
8111 		goto out;
8112 
8113 	err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
8114 				      QUERY_ATTR_IDN_EXT_IID_EN, 0, 0, &ext_iid_en);
8115 	if (err)
8116 		dev_err(hba->dev, "failed reading bEXTIIDEn. err = %d\n", err);
8117 
8118 out:
8119 	dev_info->b_ext_iid_en = ext_iid_en;
8120 }
8121 
8122 void ufshcd_fixup_dev_quirks(struct ufs_hba *hba,
8123 			     const struct ufs_dev_quirk *fixups)
8124 {
8125 	const struct ufs_dev_quirk *f;
8126 	struct ufs_dev_info *dev_info = &hba->dev_info;
8127 
8128 	if (!fixups)
8129 		return;
8130 
8131 	for (f = fixups; f->quirk; f++) {
8132 		if ((f->wmanufacturerid == dev_info->wmanufacturerid ||
8133 		     f->wmanufacturerid == UFS_ANY_VENDOR) &&
8134 		     ((dev_info->model &&
8135 		       STR_PRFX_EQUAL(f->model, dev_info->model)) ||
8136 		      !strcmp(f->model, UFS_ANY_MODEL)))
8137 			hba->dev_quirks |= f->quirk;
8138 	}
8139 }
8140 EXPORT_SYMBOL_GPL(ufshcd_fixup_dev_quirks);
8141 
8142 static void ufs_fixup_device_setup(struct ufs_hba *hba)
8143 {
8144 	/* fix by general quirk table */
8145 	ufshcd_fixup_dev_quirks(hba, ufs_fixups);
8146 
8147 	/* allow vendors to fix quirks */
8148 	ufshcd_vops_fixup_dev_quirks(hba);
8149 }
8150 
8151 static void ufshcd_update_rtc(struct ufs_hba *hba)
8152 {
8153 	struct timespec64 ts64;
8154 	int err;
8155 	u32 val;
8156 
8157 	ktime_get_real_ts64(&ts64);
8158 
8159 	if (ts64.tv_sec < hba->dev_info.rtc_time_baseline) {
8160 		dev_warn_once(hba->dev, "%s: Current time precedes previous setting!\n", __func__);
8161 		return;
8162 	}
8163 
8164 	/*
8165 	 * The Absolute RTC mode has a 136-year limit, spanning from 2010 to 2146. If a time beyond
8166 	 * 2146 is required, it is recommended to choose the relative RTC mode.
8167 	 */
8168 	val = ts64.tv_sec - hba->dev_info.rtc_time_baseline;
8169 
8170 	ufshcd_rpm_get_sync(hba);
8171 	err = ufshcd_query_attr(hba, UPIU_QUERY_OPCODE_WRITE_ATTR, QUERY_ATTR_IDN_SECONDS_PASSED,
8172 				0, 0, &val);
8173 	ufshcd_rpm_put_sync(hba);
8174 
8175 	if (err)
8176 		dev_err(hba->dev, "%s: Failed to update rtc %d\n", __func__, err);
8177 	else if (hba->dev_info.rtc_type == UFS_RTC_RELATIVE)
8178 		hba->dev_info.rtc_time_baseline = ts64.tv_sec;
8179 }
8180 
8181 static void ufshcd_rtc_work(struct work_struct *work)
8182 {
8183 	struct ufs_hba *hba;
8184 
8185 	hba = container_of(to_delayed_work(work), struct ufs_hba, ufs_rtc_update_work);
8186 
8187 	 /* Update RTC only when there are no requests in progress and UFSHCI is operational */
8188 	if (!ufshcd_is_ufs_dev_busy(hba) && hba->ufshcd_state == UFSHCD_STATE_OPERATIONAL)
8189 		ufshcd_update_rtc(hba);
8190 
8191 	if (ufshcd_is_ufs_dev_active(hba) && hba->dev_info.rtc_update_period)
8192 		schedule_delayed_work(&hba->ufs_rtc_update_work,
8193 				      msecs_to_jiffies(hba->dev_info.rtc_update_period));
8194 }
8195 
8196 static void ufs_init_rtc(struct ufs_hba *hba, u8 *desc_buf)
8197 {
8198 	u16 periodic_rtc_update = get_unaligned_be16(&desc_buf[DEVICE_DESC_PARAM_FRQ_RTC]);
8199 	struct ufs_dev_info *dev_info = &hba->dev_info;
8200 
8201 	if (periodic_rtc_update & UFS_RTC_TIME_BASELINE) {
8202 		dev_info->rtc_type = UFS_RTC_ABSOLUTE;
8203 
8204 		/*
8205 		 * The concept of measuring time in Linux as the number of seconds elapsed since
8206 		 * 00:00:00 UTC on January 1, 1970, and UFS ABS RTC is elapsed from January 1st
8207 		 * 2010 00:00, here we need to adjust ABS baseline.
8208 		 */
8209 		dev_info->rtc_time_baseline = mktime64(2010, 1, 1, 0, 0, 0) -
8210 							mktime64(1970, 1, 1, 0, 0, 0);
8211 	} else {
8212 		dev_info->rtc_type = UFS_RTC_RELATIVE;
8213 		dev_info->rtc_time_baseline = 0;
8214 	}
8215 
8216 	/*
8217 	 * We ignore TIME_PERIOD defined in wPeriodicRTCUpdate because Spec does not clearly state
8218 	 * how to calculate the specific update period for each time unit. And we disable periodic
8219 	 * RTC update work, let user configure by sysfs node according to specific circumstance.
8220 	 */
8221 	dev_info->rtc_update_period = 0;
8222 }
8223 
8224 static int ufs_get_device_desc(struct ufs_hba *hba)
8225 {
8226 	int err;
8227 	u8 model_index;
8228 	u8 *desc_buf;
8229 	struct ufs_dev_info *dev_info = &hba->dev_info;
8230 
8231 	desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
8232 	if (!desc_buf) {
8233 		err = -ENOMEM;
8234 		goto out;
8235 	}
8236 
8237 	err = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_DEVICE, 0, 0, desc_buf,
8238 				     QUERY_DESC_MAX_SIZE);
8239 	if (err) {
8240 		dev_err(hba->dev, "%s: Failed reading Device Desc. err = %d\n",
8241 			__func__, err);
8242 		goto out;
8243 	}
8244 
8245 	/*
8246 	 * getting vendor (manufacturerID) and Bank Index in big endian
8247 	 * format
8248 	 */
8249 	dev_info->wmanufacturerid = desc_buf[DEVICE_DESC_PARAM_MANF_ID] << 8 |
8250 				     desc_buf[DEVICE_DESC_PARAM_MANF_ID + 1];
8251 
8252 	/* getting Specification Version in big endian format */
8253 	dev_info->wspecversion = desc_buf[DEVICE_DESC_PARAM_SPEC_VER] << 8 |
8254 				      desc_buf[DEVICE_DESC_PARAM_SPEC_VER + 1];
8255 	dev_info->bqueuedepth = desc_buf[DEVICE_DESC_PARAM_Q_DPTH];
8256 
8257 	model_index = desc_buf[DEVICE_DESC_PARAM_PRDCT_NAME];
8258 
8259 	err = ufshcd_read_string_desc(hba, model_index,
8260 				      &dev_info->model, SD_ASCII_STD);
8261 	if (err < 0) {
8262 		dev_err(hba->dev, "%s: Failed reading Product Name. err = %d\n",
8263 			__func__, err);
8264 		goto out;
8265 	}
8266 
8267 	hba->luns_avail = desc_buf[DEVICE_DESC_PARAM_NUM_LU] +
8268 		desc_buf[DEVICE_DESC_PARAM_NUM_WLU];
8269 
8270 	ufs_fixup_device_setup(hba);
8271 
8272 	ufshcd_wb_probe(hba, desc_buf);
8273 
8274 	ufshcd_temp_notif_probe(hba, desc_buf);
8275 
8276 	ufs_init_rtc(hba, desc_buf);
8277 
8278 	if (hba->ext_iid_sup)
8279 		ufshcd_ext_iid_probe(hba, desc_buf);
8280 
8281 	/*
8282 	 * ufshcd_read_string_desc returns size of the string
8283 	 * reset the error value
8284 	 */
8285 	err = 0;
8286 
8287 out:
8288 	kfree(desc_buf);
8289 	return err;
8290 }
8291 
8292 static void ufs_put_device_desc(struct ufs_hba *hba)
8293 {
8294 	struct ufs_dev_info *dev_info = &hba->dev_info;
8295 
8296 	kfree(dev_info->model);
8297 	dev_info->model = NULL;
8298 }
8299 
8300 /**
8301  * ufshcd_quirk_tune_host_pa_tactivate - Ensures that host PA_TACTIVATE is
8302  * less than device PA_TACTIVATE time.
8303  * @hba: per-adapter instance
8304  *
8305  * Some UFS devices require host PA_TACTIVATE to be lower than device
8306  * PA_TACTIVATE, we need to enable UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE quirk
8307  * for such devices.
8308  *
8309  * Return: zero on success, non-zero error value on failure.
8310  */
8311 static int ufshcd_quirk_tune_host_pa_tactivate(struct ufs_hba *hba)
8312 {
8313 	int ret = 0;
8314 	u32 granularity, peer_granularity;
8315 	u32 pa_tactivate, peer_pa_tactivate;
8316 	u32 pa_tactivate_us, peer_pa_tactivate_us;
8317 	static const u8 gran_to_us_table[] = {1, 4, 8, 16, 32, 100};
8318 
8319 	ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_GRANULARITY),
8320 				  &granularity);
8321 	if (ret)
8322 		goto out;
8323 
8324 	ret = ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_GRANULARITY),
8325 				  &peer_granularity);
8326 	if (ret)
8327 		goto out;
8328 
8329 	if ((granularity < PA_GRANULARITY_MIN_VAL) ||
8330 	    (granularity > PA_GRANULARITY_MAX_VAL)) {
8331 		dev_err(hba->dev, "%s: invalid host PA_GRANULARITY %d",
8332 			__func__, granularity);
8333 		return -EINVAL;
8334 	}
8335 
8336 	if ((peer_granularity < PA_GRANULARITY_MIN_VAL) ||
8337 	    (peer_granularity > PA_GRANULARITY_MAX_VAL)) {
8338 		dev_err(hba->dev, "%s: invalid device PA_GRANULARITY %d",
8339 			__func__, peer_granularity);
8340 		return -EINVAL;
8341 	}
8342 
8343 	ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_TACTIVATE), &pa_tactivate);
8344 	if (ret)
8345 		goto out;
8346 
8347 	ret = ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_TACTIVATE),
8348 				  &peer_pa_tactivate);
8349 	if (ret)
8350 		goto out;
8351 
8352 	pa_tactivate_us = pa_tactivate * gran_to_us_table[granularity - 1];
8353 	peer_pa_tactivate_us = peer_pa_tactivate *
8354 			     gran_to_us_table[peer_granularity - 1];
8355 
8356 	if (pa_tactivate_us >= peer_pa_tactivate_us) {
8357 		u32 new_peer_pa_tactivate;
8358 
8359 		new_peer_pa_tactivate = pa_tactivate_us /
8360 				      gran_to_us_table[peer_granularity - 1];
8361 		new_peer_pa_tactivate++;
8362 		ret = ufshcd_dme_peer_set(hba, UIC_ARG_MIB(PA_TACTIVATE),
8363 					  new_peer_pa_tactivate);
8364 	}
8365 
8366 out:
8367 	return ret;
8368 }
8369 
8370 static void ufshcd_tune_unipro_params(struct ufs_hba *hba)
8371 {
8372 	ufshcd_vops_apply_dev_quirks(hba);
8373 
8374 	if (hba->dev_quirks & UFS_DEVICE_QUIRK_PA_TACTIVATE)
8375 		/* set 1ms timeout for PA_TACTIVATE */
8376 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TACTIVATE), 10);
8377 
8378 	if (hba->dev_quirks & UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE)
8379 		ufshcd_quirk_tune_host_pa_tactivate(hba);
8380 }
8381 
8382 static void ufshcd_clear_dbg_ufs_stats(struct ufs_hba *hba)
8383 {
8384 	hba->ufs_stats.hibern8_exit_cnt = 0;
8385 	hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
8386 	hba->req_abort_count = 0;
8387 }
8388 
8389 static int ufshcd_device_geo_params_init(struct ufs_hba *hba)
8390 {
8391 	int err;
8392 	u8 *desc_buf;
8393 
8394 	desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
8395 	if (!desc_buf) {
8396 		err = -ENOMEM;
8397 		goto out;
8398 	}
8399 
8400 	err = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_GEOMETRY, 0, 0,
8401 				     desc_buf, QUERY_DESC_MAX_SIZE);
8402 	if (err) {
8403 		dev_err(hba->dev, "%s: Failed reading Geometry Desc. err = %d\n",
8404 				__func__, err);
8405 		goto out;
8406 	}
8407 
8408 	if (desc_buf[GEOMETRY_DESC_PARAM_MAX_NUM_LUN] == 1)
8409 		hba->dev_info.max_lu_supported = 32;
8410 	else if (desc_buf[GEOMETRY_DESC_PARAM_MAX_NUM_LUN] == 0)
8411 		hba->dev_info.max_lu_supported = 8;
8412 
8413 out:
8414 	kfree(desc_buf);
8415 	return err;
8416 }
8417 
8418 struct ufs_ref_clk {
8419 	unsigned long freq_hz;
8420 	enum ufs_ref_clk_freq val;
8421 };
8422 
8423 static const struct ufs_ref_clk ufs_ref_clk_freqs[] = {
8424 	{19200000, REF_CLK_FREQ_19_2_MHZ},
8425 	{26000000, REF_CLK_FREQ_26_MHZ},
8426 	{38400000, REF_CLK_FREQ_38_4_MHZ},
8427 	{52000000, REF_CLK_FREQ_52_MHZ},
8428 	{0, REF_CLK_FREQ_INVAL},
8429 };
8430 
8431 static enum ufs_ref_clk_freq
8432 ufs_get_bref_clk_from_hz(unsigned long freq)
8433 {
8434 	int i;
8435 
8436 	for (i = 0; ufs_ref_clk_freqs[i].freq_hz; i++)
8437 		if (ufs_ref_clk_freqs[i].freq_hz == freq)
8438 			return ufs_ref_clk_freqs[i].val;
8439 
8440 	return REF_CLK_FREQ_INVAL;
8441 }
8442 
8443 void ufshcd_parse_dev_ref_clk_freq(struct ufs_hba *hba, struct clk *refclk)
8444 {
8445 	unsigned long freq;
8446 
8447 	freq = clk_get_rate(refclk);
8448 
8449 	hba->dev_ref_clk_freq =
8450 		ufs_get_bref_clk_from_hz(freq);
8451 
8452 	if (hba->dev_ref_clk_freq == REF_CLK_FREQ_INVAL)
8453 		dev_err(hba->dev,
8454 		"invalid ref_clk setting = %ld\n", freq);
8455 }
8456 
8457 static int ufshcd_set_dev_ref_clk(struct ufs_hba *hba)
8458 {
8459 	int err;
8460 	u32 ref_clk;
8461 	u32 freq = hba->dev_ref_clk_freq;
8462 
8463 	err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
8464 			QUERY_ATTR_IDN_REF_CLK_FREQ, 0, 0, &ref_clk);
8465 
8466 	if (err) {
8467 		dev_err(hba->dev, "failed reading bRefClkFreq. err = %d\n",
8468 			err);
8469 		goto out;
8470 	}
8471 
8472 	if (ref_clk == freq)
8473 		goto out; /* nothing to update */
8474 
8475 	err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
8476 			QUERY_ATTR_IDN_REF_CLK_FREQ, 0, 0, &freq);
8477 
8478 	if (err) {
8479 		dev_err(hba->dev, "bRefClkFreq setting to %lu Hz failed\n",
8480 			ufs_ref_clk_freqs[freq].freq_hz);
8481 		goto out;
8482 	}
8483 
8484 	dev_dbg(hba->dev, "bRefClkFreq setting to %lu Hz succeeded\n",
8485 			ufs_ref_clk_freqs[freq].freq_hz);
8486 
8487 out:
8488 	return err;
8489 }
8490 
8491 static int ufshcd_device_params_init(struct ufs_hba *hba)
8492 {
8493 	bool flag;
8494 	int ret;
8495 
8496 	/* Init UFS geometry descriptor related parameters */
8497 	ret = ufshcd_device_geo_params_init(hba);
8498 	if (ret)
8499 		goto out;
8500 
8501 	/* Check and apply UFS device quirks */
8502 	ret = ufs_get_device_desc(hba);
8503 	if (ret) {
8504 		dev_err(hba->dev, "%s: Failed getting device info. err = %d\n",
8505 			__func__, ret);
8506 		goto out;
8507 	}
8508 
8509 	ufshcd_get_ref_clk_gating_wait(hba);
8510 
8511 	if (!ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_READ_FLAG,
8512 			QUERY_FLAG_IDN_PWR_ON_WPE, 0, &flag))
8513 		hba->dev_info.f_power_on_wp_en = flag;
8514 
8515 	/* Probe maximum power mode co-supported by both UFS host and device */
8516 	if (ufshcd_get_max_pwr_mode(hba))
8517 		dev_err(hba->dev,
8518 			"%s: Failed getting max supported power mode\n",
8519 			__func__);
8520 out:
8521 	return ret;
8522 }
8523 
8524 static void ufshcd_set_timestamp_attr(struct ufs_hba *hba)
8525 {
8526 	int err;
8527 	struct ufs_query_req *request = NULL;
8528 	struct ufs_query_res *response = NULL;
8529 	struct ufs_dev_info *dev_info = &hba->dev_info;
8530 	struct utp_upiu_query_v4_0 *upiu_data;
8531 
8532 	if (dev_info->wspecversion < 0x400)
8533 		return;
8534 
8535 	ufshcd_dev_man_lock(hba);
8536 
8537 	ufshcd_init_query(hba, &request, &response,
8538 			  UPIU_QUERY_OPCODE_WRITE_ATTR,
8539 			  QUERY_ATTR_IDN_TIMESTAMP, 0, 0);
8540 
8541 	request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
8542 
8543 	upiu_data = (struct utp_upiu_query_v4_0 *)&request->upiu_req;
8544 
8545 	put_unaligned_be64(ktime_get_real_ns(), &upiu_data->osf3);
8546 
8547 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT);
8548 
8549 	if (err)
8550 		dev_err(hba->dev, "%s: failed to set timestamp %d\n",
8551 			__func__, err);
8552 
8553 	ufshcd_dev_man_unlock(hba);
8554 }
8555 
8556 /**
8557  * ufshcd_add_lus - probe and add UFS logical units
8558  * @hba: per-adapter instance
8559  *
8560  * Return: 0 upon success; < 0 upon failure.
8561  */
8562 static int ufshcd_add_lus(struct ufs_hba *hba)
8563 {
8564 	int ret;
8565 
8566 	/* Add required well known logical units to scsi mid layer */
8567 	ret = ufshcd_scsi_add_wlus(hba);
8568 	if (ret)
8569 		goto out;
8570 
8571 	/* Initialize devfreq after UFS device is detected */
8572 	if (ufshcd_is_clkscaling_supported(hba)) {
8573 		memcpy(&hba->clk_scaling.saved_pwr_info,
8574 			&hba->pwr_info,
8575 			sizeof(struct ufs_pa_layer_attr));
8576 		hba->clk_scaling.is_allowed = true;
8577 
8578 		ret = ufshcd_devfreq_init(hba);
8579 		if (ret)
8580 			goto out;
8581 
8582 		hba->clk_scaling.is_enabled = true;
8583 		ufshcd_init_clk_scaling_sysfs(hba);
8584 	}
8585 
8586 	ufs_bsg_probe(hba);
8587 	scsi_scan_host(hba->host);
8588 
8589 out:
8590 	return ret;
8591 }
8592 
8593 /* SDB - Single Doorbell */
8594 static void ufshcd_release_sdb_queue(struct ufs_hba *hba, int nutrs)
8595 {
8596 	size_t ucdl_size, utrdl_size;
8597 
8598 	ucdl_size = ufshcd_get_ucd_size(hba) * nutrs;
8599 	dmam_free_coherent(hba->dev, ucdl_size, hba->ucdl_base_addr,
8600 			   hba->ucdl_dma_addr);
8601 
8602 	utrdl_size = sizeof(struct utp_transfer_req_desc) * nutrs;
8603 	dmam_free_coherent(hba->dev, utrdl_size, hba->utrdl_base_addr,
8604 			   hba->utrdl_dma_addr);
8605 
8606 	devm_kfree(hba->dev, hba->lrb);
8607 }
8608 
8609 static int ufshcd_alloc_mcq(struct ufs_hba *hba)
8610 {
8611 	int ret;
8612 	int old_nutrs = hba->nutrs;
8613 
8614 	ret = ufshcd_mcq_decide_queue_depth(hba);
8615 	if (ret < 0)
8616 		return ret;
8617 
8618 	hba->nutrs = ret;
8619 	ret = ufshcd_mcq_init(hba);
8620 	if (ret)
8621 		goto err;
8622 
8623 	/*
8624 	 * Previously allocated memory for nutrs may not be enough in MCQ mode.
8625 	 * Number of supported tags in MCQ mode may be larger than SDB mode.
8626 	 */
8627 	if (hba->nutrs != old_nutrs) {
8628 		ufshcd_release_sdb_queue(hba, old_nutrs);
8629 		ret = ufshcd_memory_alloc(hba);
8630 		if (ret)
8631 			goto err;
8632 		ufshcd_host_memory_configure(hba);
8633 	}
8634 
8635 	ret = ufshcd_mcq_memory_alloc(hba);
8636 	if (ret)
8637 		goto err;
8638 
8639 	return 0;
8640 err:
8641 	hba->nutrs = old_nutrs;
8642 	return ret;
8643 }
8644 
8645 static void ufshcd_config_mcq(struct ufs_hba *hba)
8646 {
8647 	int ret;
8648 	u32 intrs;
8649 
8650 	ret = ufshcd_mcq_vops_config_esi(hba);
8651 	dev_info(hba->dev, "ESI %sconfigured\n", ret ? "is not " : "");
8652 
8653 	intrs = UFSHCD_ENABLE_MCQ_INTRS;
8654 	if (hba->quirks & UFSHCD_QUIRK_MCQ_BROKEN_INTR)
8655 		intrs &= ~MCQ_CQ_EVENT_STATUS;
8656 	ufshcd_enable_intr(hba, intrs);
8657 	ufshcd_mcq_make_queues_operational(hba);
8658 	ufshcd_mcq_config_mac(hba, hba->nutrs);
8659 
8660 	hba->host->can_queue = hba->nutrs - UFSHCD_NUM_RESERVED;
8661 	hba->reserved_slot = hba->nutrs - UFSHCD_NUM_RESERVED;
8662 
8663 	ufshcd_mcq_enable(hba);
8664 	hba->mcq_enabled = true;
8665 
8666 	dev_info(hba->dev, "MCQ configured, nr_queues=%d, io_queues=%d, read_queue=%d, poll_queues=%d, queue_depth=%d\n",
8667 		 hba->nr_hw_queues, hba->nr_queues[HCTX_TYPE_DEFAULT],
8668 		 hba->nr_queues[HCTX_TYPE_READ], hba->nr_queues[HCTX_TYPE_POLL],
8669 		 hba->nutrs);
8670 }
8671 
8672 static int ufshcd_device_init(struct ufs_hba *hba, bool init_dev_params)
8673 {
8674 	int ret;
8675 	struct Scsi_Host *host = hba->host;
8676 
8677 	hba->ufshcd_state = UFSHCD_STATE_RESET;
8678 
8679 	ret = ufshcd_link_startup(hba);
8680 	if (ret)
8681 		return ret;
8682 
8683 	if (hba->quirks & UFSHCD_QUIRK_SKIP_PH_CONFIGURATION)
8684 		return ret;
8685 
8686 	/* Debug counters initialization */
8687 	ufshcd_clear_dbg_ufs_stats(hba);
8688 
8689 	/* UniPro link is active now */
8690 	ufshcd_set_link_active(hba);
8691 
8692 	/* Reconfigure MCQ upon reset */
8693 	if (is_mcq_enabled(hba) && !init_dev_params)
8694 		ufshcd_config_mcq(hba);
8695 
8696 	/* Verify device initialization by sending NOP OUT UPIU */
8697 	ret = ufshcd_verify_dev_init(hba);
8698 	if (ret)
8699 		return ret;
8700 
8701 	/* Initiate UFS initialization, and waiting until completion */
8702 	ret = ufshcd_complete_dev_init(hba);
8703 	if (ret)
8704 		return ret;
8705 
8706 	/*
8707 	 * Initialize UFS device parameters used by driver, these
8708 	 * parameters are associated with UFS descriptors.
8709 	 */
8710 	if (init_dev_params) {
8711 		ret = ufshcd_device_params_init(hba);
8712 		if (ret)
8713 			return ret;
8714 		if (is_mcq_supported(hba) && !hba->scsi_host_added) {
8715 			ret = ufshcd_alloc_mcq(hba);
8716 			if (!ret) {
8717 				ufshcd_config_mcq(hba);
8718 			} else {
8719 				/* Continue with SDB mode */
8720 				use_mcq_mode = false;
8721 				dev_err(hba->dev, "MCQ mode is disabled, err=%d\n",
8722 					 ret);
8723 			}
8724 			ret = scsi_add_host(host, hba->dev);
8725 			if (ret) {
8726 				dev_err(hba->dev, "scsi_add_host failed\n");
8727 				return ret;
8728 			}
8729 			hba->scsi_host_added = true;
8730 		} else if (is_mcq_supported(hba)) {
8731 			/* UFSHCD_QUIRK_REINIT_AFTER_MAX_GEAR_SWITCH is set */
8732 			ufshcd_config_mcq(hba);
8733 		}
8734 	}
8735 
8736 	ufshcd_tune_unipro_params(hba);
8737 
8738 	/* UFS device is also active now */
8739 	ufshcd_set_ufs_dev_active(hba);
8740 	ufshcd_force_reset_auto_bkops(hba);
8741 
8742 	ufshcd_set_timestamp_attr(hba);
8743 	schedule_delayed_work(&hba->ufs_rtc_update_work,
8744 			      msecs_to_jiffies(UFS_RTC_UPDATE_INTERVAL_MS));
8745 
8746 	/* Gear up to HS gear if supported */
8747 	if (hba->max_pwr_info.is_valid) {
8748 		/*
8749 		 * Set the right value to bRefClkFreq before attempting to
8750 		 * switch to HS gears.
8751 		 */
8752 		if (hba->dev_ref_clk_freq != REF_CLK_FREQ_INVAL)
8753 			ufshcd_set_dev_ref_clk(hba);
8754 		ret = ufshcd_config_pwr_mode(hba, &hba->max_pwr_info.info);
8755 		if (ret) {
8756 			dev_err(hba->dev, "%s: Failed setting power mode, err = %d\n",
8757 					__func__, ret);
8758 			return ret;
8759 		}
8760 	}
8761 
8762 	return 0;
8763 }
8764 
8765 /**
8766  * ufshcd_probe_hba - probe hba to detect device and initialize it
8767  * @hba: per-adapter instance
8768  * @init_dev_params: whether or not to call ufshcd_device_params_init().
8769  *
8770  * Execute link-startup and verify device initialization
8771  *
8772  * Return: 0 upon success; < 0 upon failure.
8773  */
8774 static int ufshcd_probe_hba(struct ufs_hba *hba, bool init_dev_params)
8775 {
8776 	ktime_t start = ktime_get();
8777 	unsigned long flags;
8778 	int ret;
8779 
8780 	ret = ufshcd_device_init(hba, init_dev_params);
8781 	if (ret)
8782 		goto out;
8783 
8784 	if (!hba->pm_op_in_progress &&
8785 	    (hba->quirks & UFSHCD_QUIRK_REINIT_AFTER_MAX_GEAR_SWITCH)) {
8786 		/* Reset the device and controller before doing reinit */
8787 		ufshcd_device_reset(hba);
8788 		ufshcd_hba_stop(hba);
8789 		ufshcd_vops_reinit_notify(hba);
8790 		ret = ufshcd_hba_enable(hba);
8791 		if (ret) {
8792 			dev_err(hba->dev, "Host controller enable failed\n");
8793 			ufshcd_print_evt_hist(hba);
8794 			ufshcd_print_host_state(hba);
8795 			goto out;
8796 		}
8797 
8798 		/* Reinit the device */
8799 		ret = ufshcd_device_init(hba, init_dev_params);
8800 		if (ret)
8801 			goto out;
8802 	}
8803 
8804 	ufshcd_print_pwr_info(hba);
8805 
8806 	/*
8807 	 * bActiveICCLevel is volatile for UFS device (as per latest v2.1 spec)
8808 	 * and for removable UFS card as well, hence always set the parameter.
8809 	 * Note: Error handler may issue the device reset hence resetting
8810 	 * bActiveICCLevel as well so it is always safe to set this here.
8811 	 */
8812 	ufshcd_set_active_icc_lvl(hba);
8813 
8814 	/* Enable UFS Write Booster if supported */
8815 	ufshcd_configure_wb(hba);
8816 
8817 	if (hba->ee_usr_mask)
8818 		ufshcd_write_ee_control(hba);
8819 	ufshcd_configure_auto_hibern8(hba);
8820 
8821 out:
8822 	spin_lock_irqsave(hba->host->host_lock, flags);
8823 	if (ret)
8824 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
8825 	else if (hba->ufshcd_state == UFSHCD_STATE_RESET)
8826 		hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
8827 	spin_unlock_irqrestore(hba->host->host_lock, flags);
8828 
8829 	trace_ufshcd_init(dev_name(hba->dev), ret,
8830 		ktime_to_us(ktime_sub(ktime_get(), start)),
8831 		hba->curr_dev_pwr_mode, hba->uic_link_state);
8832 	return ret;
8833 }
8834 
8835 /**
8836  * ufshcd_async_scan - asynchronous execution for probing hba
8837  * @data: data pointer to pass to this function
8838  * @cookie: cookie data
8839  */
8840 static void ufshcd_async_scan(void *data, async_cookie_t cookie)
8841 {
8842 	struct ufs_hba *hba = (struct ufs_hba *)data;
8843 	int ret;
8844 
8845 	down(&hba->host_sem);
8846 	/* Initialize hba, detect and initialize UFS device */
8847 	ret = ufshcd_probe_hba(hba, true);
8848 	up(&hba->host_sem);
8849 	if (ret)
8850 		goto out;
8851 
8852 	/* Probe and add UFS logical units  */
8853 	ret = ufshcd_add_lus(hba);
8854 
8855 out:
8856 	pm_runtime_put_sync(hba->dev);
8857 
8858 	if (ret)
8859 		dev_err(hba->dev, "%s failed: %d\n", __func__, ret);
8860 }
8861 
8862 static enum scsi_timeout_action ufshcd_eh_timed_out(struct scsi_cmnd *scmd)
8863 {
8864 	struct ufs_hba *hba = shost_priv(scmd->device->host);
8865 
8866 	if (!hba->system_suspending) {
8867 		/* Activate the error handler in the SCSI core. */
8868 		return SCSI_EH_NOT_HANDLED;
8869 	}
8870 
8871 	/*
8872 	 * If we get here we know that no TMFs are outstanding and also that
8873 	 * the only pending command is a START STOP UNIT command. Handle the
8874 	 * timeout of that command directly to prevent a deadlock between
8875 	 * ufshcd_set_dev_pwr_mode() and ufshcd_err_handler().
8876 	 */
8877 	ufshcd_link_recovery(hba);
8878 	dev_info(hba->dev, "%s() finished; outstanding_tasks = %#lx.\n",
8879 		 __func__, hba->outstanding_tasks);
8880 
8881 	return hba->outstanding_reqs ? SCSI_EH_RESET_TIMER : SCSI_EH_DONE;
8882 }
8883 
8884 static const struct attribute_group *ufshcd_driver_groups[] = {
8885 	&ufs_sysfs_unit_descriptor_group,
8886 	&ufs_sysfs_lun_attributes_group,
8887 	NULL,
8888 };
8889 
8890 static struct ufs_hba_variant_params ufs_hba_vps = {
8891 	.hba_enable_delay_us		= 1000,
8892 	.wb_flush_threshold		= UFS_WB_BUF_REMAIN_PERCENT(40),
8893 	.devfreq_profile.polling_ms	= 100,
8894 	.devfreq_profile.target		= ufshcd_devfreq_target,
8895 	.devfreq_profile.get_dev_status	= ufshcd_devfreq_get_dev_status,
8896 	.ondemand_data.upthreshold	= 70,
8897 	.ondemand_data.downdifferential	= 5,
8898 };
8899 
8900 static const struct scsi_host_template ufshcd_driver_template = {
8901 	.module			= THIS_MODULE,
8902 	.name			= UFSHCD,
8903 	.proc_name		= UFSHCD,
8904 	.map_queues		= ufshcd_map_queues,
8905 	.queuecommand		= ufshcd_queuecommand,
8906 	.mq_poll		= ufshcd_poll,
8907 	.slave_alloc		= ufshcd_slave_alloc,
8908 	.slave_configure	= ufshcd_slave_configure,
8909 	.slave_destroy		= ufshcd_slave_destroy,
8910 	.change_queue_depth	= ufshcd_change_queue_depth,
8911 	.eh_abort_handler	= ufshcd_abort,
8912 	.eh_device_reset_handler = ufshcd_eh_device_reset_handler,
8913 	.eh_host_reset_handler   = ufshcd_eh_host_reset_handler,
8914 	.eh_timed_out		= ufshcd_eh_timed_out,
8915 	.this_id		= -1,
8916 	.sg_tablesize		= SG_ALL,
8917 	.cmd_per_lun		= UFSHCD_CMD_PER_LUN,
8918 	.can_queue		= UFSHCD_CAN_QUEUE,
8919 	.max_segment_size	= PRDT_DATA_BYTE_COUNT_MAX,
8920 	.max_sectors		= SZ_1M / SECTOR_SIZE,
8921 	.max_host_blocked	= 1,
8922 	.track_queue_depth	= 1,
8923 	.skip_settle_delay	= 1,
8924 	.sdev_groups		= ufshcd_driver_groups,
8925 };
8926 
8927 static int ufshcd_config_vreg_load(struct device *dev, struct ufs_vreg *vreg,
8928 				   int ua)
8929 {
8930 	int ret;
8931 
8932 	if (!vreg)
8933 		return 0;
8934 
8935 	/*
8936 	 * "set_load" operation shall be required on those regulators
8937 	 * which specifically configured current limitation. Otherwise
8938 	 * zero max_uA may cause unexpected behavior when regulator is
8939 	 * enabled or set as high power mode.
8940 	 */
8941 	if (!vreg->max_uA)
8942 		return 0;
8943 
8944 	ret = regulator_set_load(vreg->reg, ua);
8945 	if (ret < 0) {
8946 		dev_err(dev, "%s: %s set load (ua=%d) failed, err=%d\n",
8947 				__func__, vreg->name, ua, ret);
8948 	}
8949 
8950 	return ret;
8951 }
8952 
8953 static inline int ufshcd_config_vreg_lpm(struct ufs_hba *hba,
8954 					 struct ufs_vreg *vreg)
8955 {
8956 	return ufshcd_config_vreg_load(hba->dev, vreg, UFS_VREG_LPM_LOAD_UA);
8957 }
8958 
8959 static inline int ufshcd_config_vreg_hpm(struct ufs_hba *hba,
8960 					 struct ufs_vreg *vreg)
8961 {
8962 	if (!vreg)
8963 		return 0;
8964 
8965 	return ufshcd_config_vreg_load(hba->dev, vreg, vreg->max_uA);
8966 }
8967 
8968 static int ufshcd_config_vreg(struct device *dev,
8969 		struct ufs_vreg *vreg, bool on)
8970 {
8971 	if (regulator_count_voltages(vreg->reg) <= 0)
8972 		return 0;
8973 
8974 	return ufshcd_config_vreg_load(dev, vreg, on ? vreg->max_uA : 0);
8975 }
8976 
8977 static int ufshcd_enable_vreg(struct device *dev, struct ufs_vreg *vreg)
8978 {
8979 	int ret = 0;
8980 
8981 	if (!vreg || vreg->enabled)
8982 		goto out;
8983 
8984 	ret = ufshcd_config_vreg(dev, vreg, true);
8985 	if (!ret)
8986 		ret = regulator_enable(vreg->reg);
8987 
8988 	if (!ret)
8989 		vreg->enabled = true;
8990 	else
8991 		dev_err(dev, "%s: %s enable failed, err=%d\n",
8992 				__func__, vreg->name, ret);
8993 out:
8994 	return ret;
8995 }
8996 
8997 static int ufshcd_disable_vreg(struct device *dev, struct ufs_vreg *vreg)
8998 {
8999 	int ret = 0;
9000 
9001 	if (!vreg || !vreg->enabled || vreg->always_on)
9002 		goto out;
9003 
9004 	ret = regulator_disable(vreg->reg);
9005 
9006 	if (!ret) {
9007 		/* ignore errors on applying disable config */
9008 		ufshcd_config_vreg(dev, vreg, false);
9009 		vreg->enabled = false;
9010 	} else {
9011 		dev_err(dev, "%s: %s disable failed, err=%d\n",
9012 				__func__, vreg->name, ret);
9013 	}
9014 out:
9015 	return ret;
9016 }
9017 
9018 static int ufshcd_setup_vreg(struct ufs_hba *hba, bool on)
9019 {
9020 	int ret = 0;
9021 	struct device *dev = hba->dev;
9022 	struct ufs_vreg_info *info = &hba->vreg_info;
9023 
9024 	ret = ufshcd_toggle_vreg(dev, info->vcc, on);
9025 	if (ret)
9026 		goto out;
9027 
9028 	ret = ufshcd_toggle_vreg(dev, info->vccq, on);
9029 	if (ret)
9030 		goto out;
9031 
9032 	ret = ufshcd_toggle_vreg(dev, info->vccq2, on);
9033 
9034 out:
9035 	if (ret) {
9036 		ufshcd_toggle_vreg(dev, info->vccq2, false);
9037 		ufshcd_toggle_vreg(dev, info->vccq, false);
9038 		ufshcd_toggle_vreg(dev, info->vcc, false);
9039 	}
9040 	return ret;
9041 }
9042 
9043 static int ufshcd_setup_hba_vreg(struct ufs_hba *hba, bool on)
9044 {
9045 	struct ufs_vreg_info *info = &hba->vreg_info;
9046 
9047 	return ufshcd_toggle_vreg(hba->dev, info->vdd_hba, on);
9048 }
9049 
9050 int ufshcd_get_vreg(struct device *dev, struct ufs_vreg *vreg)
9051 {
9052 	int ret = 0;
9053 
9054 	if (!vreg)
9055 		goto out;
9056 
9057 	vreg->reg = devm_regulator_get(dev, vreg->name);
9058 	if (IS_ERR(vreg->reg)) {
9059 		ret = PTR_ERR(vreg->reg);
9060 		dev_err(dev, "%s: %s get failed, err=%d\n",
9061 				__func__, vreg->name, ret);
9062 	}
9063 out:
9064 	return ret;
9065 }
9066 EXPORT_SYMBOL_GPL(ufshcd_get_vreg);
9067 
9068 static int ufshcd_init_vreg(struct ufs_hba *hba)
9069 {
9070 	int ret = 0;
9071 	struct device *dev = hba->dev;
9072 	struct ufs_vreg_info *info = &hba->vreg_info;
9073 
9074 	ret = ufshcd_get_vreg(dev, info->vcc);
9075 	if (ret)
9076 		goto out;
9077 
9078 	ret = ufshcd_get_vreg(dev, info->vccq);
9079 	if (!ret)
9080 		ret = ufshcd_get_vreg(dev, info->vccq2);
9081 out:
9082 	return ret;
9083 }
9084 
9085 static int ufshcd_init_hba_vreg(struct ufs_hba *hba)
9086 {
9087 	struct ufs_vreg_info *info = &hba->vreg_info;
9088 
9089 	return ufshcd_get_vreg(hba->dev, info->vdd_hba);
9090 }
9091 
9092 static int ufshcd_setup_clocks(struct ufs_hba *hba, bool on)
9093 {
9094 	int ret = 0;
9095 	struct ufs_clk_info *clki;
9096 	struct list_head *head = &hba->clk_list_head;
9097 	unsigned long flags;
9098 	ktime_t start = ktime_get();
9099 	bool clk_state_changed = false;
9100 
9101 	if (list_empty(head))
9102 		goto out;
9103 
9104 	ret = ufshcd_vops_setup_clocks(hba, on, PRE_CHANGE);
9105 	if (ret)
9106 		return ret;
9107 
9108 	list_for_each_entry(clki, head, list) {
9109 		if (!IS_ERR_OR_NULL(clki->clk)) {
9110 			/*
9111 			 * Don't disable clocks which are needed
9112 			 * to keep the link active.
9113 			 */
9114 			if (ufshcd_is_link_active(hba) &&
9115 			    clki->keep_link_active)
9116 				continue;
9117 
9118 			clk_state_changed = on ^ clki->enabled;
9119 			if (on && !clki->enabled) {
9120 				ret = clk_prepare_enable(clki->clk);
9121 				if (ret) {
9122 					dev_err(hba->dev, "%s: %s prepare enable failed, %d\n",
9123 						__func__, clki->name, ret);
9124 					goto out;
9125 				}
9126 			} else if (!on && clki->enabled) {
9127 				clk_disable_unprepare(clki->clk);
9128 			}
9129 			clki->enabled = on;
9130 			dev_dbg(hba->dev, "%s: clk: %s %sabled\n", __func__,
9131 					clki->name, on ? "en" : "dis");
9132 		}
9133 	}
9134 
9135 	ret = ufshcd_vops_setup_clocks(hba, on, POST_CHANGE);
9136 	if (ret)
9137 		return ret;
9138 
9139 	if (!ufshcd_is_clkscaling_supported(hba))
9140 		ufshcd_pm_qos_update(hba, on);
9141 out:
9142 	if (ret) {
9143 		list_for_each_entry(clki, head, list) {
9144 			if (!IS_ERR_OR_NULL(clki->clk) && clki->enabled)
9145 				clk_disable_unprepare(clki->clk);
9146 		}
9147 	} else if (!ret && on) {
9148 		spin_lock_irqsave(hba->host->host_lock, flags);
9149 		hba->clk_gating.state = CLKS_ON;
9150 		trace_ufshcd_clk_gating(dev_name(hba->dev),
9151 					hba->clk_gating.state);
9152 		spin_unlock_irqrestore(hba->host->host_lock, flags);
9153 	}
9154 
9155 	if (clk_state_changed)
9156 		trace_ufshcd_profile_clk_gating(dev_name(hba->dev),
9157 			(on ? "on" : "off"),
9158 			ktime_to_us(ktime_sub(ktime_get(), start)), ret);
9159 	return ret;
9160 }
9161 
9162 static enum ufs_ref_clk_freq ufshcd_parse_ref_clk_property(struct ufs_hba *hba)
9163 {
9164 	u32 freq;
9165 	int ret = device_property_read_u32(hba->dev, "ref-clk-freq", &freq);
9166 
9167 	if (ret) {
9168 		dev_dbg(hba->dev, "Cannot query 'ref-clk-freq' property = %d", ret);
9169 		return REF_CLK_FREQ_INVAL;
9170 	}
9171 
9172 	return ufs_get_bref_clk_from_hz(freq);
9173 }
9174 
9175 static int ufshcd_init_clocks(struct ufs_hba *hba)
9176 {
9177 	int ret = 0;
9178 	struct ufs_clk_info *clki;
9179 	struct device *dev = hba->dev;
9180 	struct list_head *head = &hba->clk_list_head;
9181 
9182 	if (list_empty(head))
9183 		goto out;
9184 
9185 	list_for_each_entry(clki, head, list) {
9186 		if (!clki->name)
9187 			continue;
9188 
9189 		clki->clk = devm_clk_get(dev, clki->name);
9190 		if (IS_ERR(clki->clk)) {
9191 			ret = PTR_ERR(clki->clk);
9192 			dev_err(dev, "%s: %s clk get failed, %d\n",
9193 					__func__, clki->name, ret);
9194 			goto out;
9195 		}
9196 
9197 		/*
9198 		 * Parse device ref clk freq as per device tree "ref_clk".
9199 		 * Default dev_ref_clk_freq is set to REF_CLK_FREQ_INVAL
9200 		 * in ufshcd_alloc_host().
9201 		 */
9202 		if (!strcmp(clki->name, "ref_clk"))
9203 			ufshcd_parse_dev_ref_clk_freq(hba, clki->clk);
9204 
9205 		if (clki->max_freq) {
9206 			ret = clk_set_rate(clki->clk, clki->max_freq);
9207 			if (ret) {
9208 				dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
9209 					__func__, clki->name,
9210 					clki->max_freq, ret);
9211 				goto out;
9212 			}
9213 			clki->curr_freq = clki->max_freq;
9214 		}
9215 		dev_dbg(dev, "%s: clk: %s, rate: %lu\n", __func__,
9216 				clki->name, clk_get_rate(clki->clk));
9217 	}
9218 
9219 	/* Set Max. frequency for all clocks */
9220 	if (hba->use_pm_opp) {
9221 		ret = ufshcd_opp_set_rate(hba, ULONG_MAX);
9222 		if (ret) {
9223 			dev_err(hba->dev, "%s: failed to set OPP: %d", __func__,
9224 				ret);
9225 			goto out;
9226 		}
9227 	}
9228 
9229 out:
9230 	return ret;
9231 }
9232 
9233 static int ufshcd_variant_hba_init(struct ufs_hba *hba)
9234 {
9235 	int err = 0;
9236 
9237 	if (!hba->vops)
9238 		goto out;
9239 
9240 	err = ufshcd_vops_init(hba);
9241 	if (err)
9242 		dev_err_probe(hba->dev, err,
9243 			      "%s: variant %s init failed with err %d\n",
9244 			      __func__, ufshcd_get_var_name(hba), err);
9245 out:
9246 	return err;
9247 }
9248 
9249 static void ufshcd_variant_hba_exit(struct ufs_hba *hba)
9250 {
9251 	if (!hba->vops)
9252 		return;
9253 
9254 	ufshcd_vops_exit(hba);
9255 }
9256 
9257 static int ufshcd_hba_init(struct ufs_hba *hba)
9258 {
9259 	int err;
9260 
9261 	/*
9262 	 * Handle host controller power separately from the UFS device power
9263 	 * rails as it will help controlling the UFS host controller power
9264 	 * collapse easily which is different than UFS device power collapse.
9265 	 * Also, enable the host controller power before we go ahead with rest
9266 	 * of the initialization here.
9267 	 */
9268 	err = ufshcd_init_hba_vreg(hba);
9269 	if (err)
9270 		goto out;
9271 
9272 	err = ufshcd_setup_hba_vreg(hba, true);
9273 	if (err)
9274 		goto out;
9275 
9276 	err = ufshcd_init_clocks(hba);
9277 	if (err)
9278 		goto out_disable_hba_vreg;
9279 
9280 	if (hba->dev_ref_clk_freq == REF_CLK_FREQ_INVAL)
9281 		hba->dev_ref_clk_freq = ufshcd_parse_ref_clk_property(hba);
9282 
9283 	err = ufshcd_setup_clocks(hba, true);
9284 	if (err)
9285 		goto out_disable_hba_vreg;
9286 
9287 	err = ufshcd_init_vreg(hba);
9288 	if (err)
9289 		goto out_disable_clks;
9290 
9291 	err = ufshcd_setup_vreg(hba, true);
9292 	if (err)
9293 		goto out_disable_clks;
9294 
9295 	err = ufshcd_variant_hba_init(hba);
9296 	if (err)
9297 		goto out_disable_vreg;
9298 
9299 	ufs_debugfs_hba_init(hba);
9300 	ufs_fault_inject_hba_init(hba);
9301 
9302 	hba->is_powered = true;
9303 	goto out;
9304 
9305 out_disable_vreg:
9306 	ufshcd_setup_vreg(hba, false);
9307 out_disable_clks:
9308 	ufshcd_setup_clocks(hba, false);
9309 out_disable_hba_vreg:
9310 	ufshcd_setup_hba_vreg(hba, false);
9311 out:
9312 	return err;
9313 }
9314 
9315 static void ufshcd_hba_exit(struct ufs_hba *hba)
9316 {
9317 	if (hba->is_powered) {
9318 		ufshcd_pm_qos_exit(hba);
9319 		ufshcd_exit_clk_scaling(hba);
9320 		ufshcd_exit_clk_gating(hba);
9321 		if (hba->eh_wq)
9322 			destroy_workqueue(hba->eh_wq);
9323 		ufs_debugfs_hba_exit(hba);
9324 		ufshcd_variant_hba_exit(hba);
9325 		ufshcd_setup_vreg(hba, false);
9326 		ufshcd_setup_clocks(hba, false);
9327 		ufshcd_setup_hba_vreg(hba, false);
9328 		hba->is_powered = false;
9329 		ufs_put_device_desc(hba);
9330 	}
9331 }
9332 
9333 static int ufshcd_execute_start_stop(struct scsi_device *sdev,
9334 				     enum ufs_dev_pwr_mode pwr_mode,
9335 				     struct scsi_sense_hdr *sshdr)
9336 {
9337 	const unsigned char cdb[6] = { START_STOP, 0, 0, 0, pwr_mode << 4, 0 };
9338 	struct scsi_failure failure_defs[] = {
9339 		{
9340 			.allowed = 2,
9341 			.result = SCMD_FAILURE_RESULT_ANY,
9342 		},
9343 	};
9344 	struct scsi_failures failures = {
9345 		.failure_definitions = failure_defs,
9346 	};
9347 	const struct scsi_exec_args args = {
9348 		.failures = &failures,
9349 		.sshdr = sshdr,
9350 		.req_flags = BLK_MQ_REQ_PM,
9351 		.scmd_flags = SCMD_FAIL_IF_RECOVERING,
9352 	};
9353 
9354 	return scsi_execute_cmd(sdev, cdb, REQ_OP_DRV_IN, /*buffer=*/NULL,
9355 			/*bufflen=*/0, /*timeout=*/10 * HZ, /*retries=*/0,
9356 			&args);
9357 }
9358 
9359 /**
9360  * ufshcd_set_dev_pwr_mode - sends START STOP UNIT command to set device
9361  *			     power mode
9362  * @hba: per adapter instance
9363  * @pwr_mode: device power mode to set
9364  *
9365  * Return: 0 if requested power mode is set successfully;
9366  *         < 0 if failed to set the requested power mode.
9367  */
9368 static int ufshcd_set_dev_pwr_mode(struct ufs_hba *hba,
9369 				     enum ufs_dev_pwr_mode pwr_mode)
9370 {
9371 	struct scsi_sense_hdr sshdr;
9372 	struct scsi_device *sdp;
9373 	unsigned long flags;
9374 	int ret;
9375 
9376 	spin_lock_irqsave(hba->host->host_lock, flags);
9377 	sdp = hba->ufs_device_wlun;
9378 	if (sdp && scsi_device_online(sdp))
9379 		ret = scsi_device_get(sdp);
9380 	else
9381 		ret = -ENODEV;
9382 	spin_unlock_irqrestore(hba->host->host_lock, flags);
9383 
9384 	if (ret)
9385 		return ret;
9386 
9387 	/*
9388 	 * If scsi commands fail, the scsi mid-layer schedules scsi error-
9389 	 * handling, which would wait for host to be resumed. Since we know
9390 	 * we are functional while we are here, skip host resume in error
9391 	 * handling context.
9392 	 */
9393 	hba->host->eh_noresume = 1;
9394 
9395 	/*
9396 	 * Current function would be generally called from the power management
9397 	 * callbacks hence set the RQF_PM flag so that it doesn't resume the
9398 	 * already suspended childs.
9399 	 */
9400 	ret = ufshcd_execute_start_stop(sdp, pwr_mode, &sshdr);
9401 	if (ret) {
9402 		sdev_printk(KERN_WARNING, sdp,
9403 			    "START_STOP failed for power mode: %d, result %x\n",
9404 			    pwr_mode, ret);
9405 		if (ret > 0) {
9406 			if (scsi_sense_valid(&sshdr))
9407 				scsi_print_sense_hdr(sdp, NULL, &sshdr);
9408 			ret = -EIO;
9409 		}
9410 	} else {
9411 		hba->curr_dev_pwr_mode = pwr_mode;
9412 	}
9413 
9414 	scsi_device_put(sdp);
9415 	hba->host->eh_noresume = 0;
9416 	return ret;
9417 }
9418 
9419 static int ufshcd_link_state_transition(struct ufs_hba *hba,
9420 					enum uic_link_state req_link_state,
9421 					bool check_for_bkops)
9422 {
9423 	int ret = 0;
9424 
9425 	if (req_link_state == hba->uic_link_state)
9426 		return 0;
9427 
9428 	if (req_link_state == UIC_LINK_HIBERN8_STATE) {
9429 		ret = ufshcd_uic_hibern8_enter(hba);
9430 		if (!ret) {
9431 			ufshcd_set_link_hibern8(hba);
9432 		} else {
9433 			dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
9434 					__func__, ret);
9435 			goto out;
9436 		}
9437 	}
9438 	/*
9439 	 * If autobkops is enabled, link can't be turned off because
9440 	 * turning off the link would also turn off the device, except in the
9441 	 * case of DeepSleep where the device is expected to remain powered.
9442 	 */
9443 	else if ((req_link_state == UIC_LINK_OFF_STATE) &&
9444 		 (!check_for_bkops || !hba->auto_bkops_enabled)) {
9445 		/*
9446 		 * Let's make sure that link is in low power mode, we are doing
9447 		 * this currently by putting the link in Hibern8. Otherway to
9448 		 * put the link in low power mode is to send the DME end point
9449 		 * to device and then send the DME reset command to local
9450 		 * unipro. But putting the link in hibern8 is much faster.
9451 		 *
9452 		 * Note also that putting the link in Hibern8 is a requirement
9453 		 * for entering DeepSleep.
9454 		 */
9455 		ret = ufshcd_uic_hibern8_enter(hba);
9456 		if (ret) {
9457 			dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
9458 					__func__, ret);
9459 			goto out;
9460 		}
9461 		/*
9462 		 * Change controller state to "reset state" which
9463 		 * should also put the link in off/reset state
9464 		 */
9465 		ufshcd_hba_stop(hba);
9466 		/*
9467 		 * TODO: Check if we need any delay to make sure that
9468 		 * controller is reset
9469 		 */
9470 		ufshcd_set_link_off(hba);
9471 	}
9472 
9473 out:
9474 	return ret;
9475 }
9476 
9477 static void ufshcd_vreg_set_lpm(struct ufs_hba *hba)
9478 {
9479 	bool vcc_off = false;
9480 
9481 	/*
9482 	 * It seems some UFS devices may keep drawing more than sleep current
9483 	 * (atleast for 500us) from UFS rails (especially from VCCQ rail).
9484 	 * To avoid this situation, add 2ms delay before putting these UFS
9485 	 * rails in LPM mode.
9486 	 */
9487 	if (!ufshcd_is_link_active(hba) &&
9488 	    hba->dev_quirks & UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM)
9489 		usleep_range(2000, 2100);
9490 
9491 	/*
9492 	 * If UFS device is either in UFS_Sleep turn off VCC rail to save some
9493 	 * power.
9494 	 *
9495 	 * If UFS device and link is in OFF state, all power supplies (VCC,
9496 	 * VCCQ, VCCQ2) can be turned off if power on write protect is not
9497 	 * required. If UFS link is inactive (Hibern8 or OFF state) and device
9498 	 * is in sleep state, put VCCQ & VCCQ2 rails in LPM mode.
9499 	 *
9500 	 * Ignore the error returned by ufshcd_toggle_vreg() as device is anyway
9501 	 * in low power state which would save some power.
9502 	 *
9503 	 * If Write Booster is enabled and the device needs to flush the WB
9504 	 * buffer OR if bkops status is urgent for WB, keep Vcc on.
9505 	 */
9506 	if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba) &&
9507 	    !hba->dev_info.is_lu_power_on_wp) {
9508 		ufshcd_setup_vreg(hba, false);
9509 		vcc_off = true;
9510 	} else if (!ufshcd_is_ufs_dev_active(hba)) {
9511 		ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, false);
9512 		vcc_off = true;
9513 		if (ufshcd_is_link_hibern8(hba) || ufshcd_is_link_off(hba)) {
9514 			ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq);
9515 			ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq2);
9516 		}
9517 	}
9518 
9519 	/*
9520 	 * Some UFS devices require delay after VCC power rail is turned-off.
9521 	 */
9522 	if (vcc_off && hba->vreg_info.vcc &&
9523 		hba->dev_quirks & UFS_DEVICE_QUIRK_DELAY_AFTER_LPM)
9524 		usleep_range(5000, 5100);
9525 }
9526 
9527 #ifdef CONFIG_PM
9528 static int ufshcd_vreg_set_hpm(struct ufs_hba *hba)
9529 {
9530 	int ret = 0;
9531 
9532 	if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba) &&
9533 	    !hba->dev_info.is_lu_power_on_wp) {
9534 		ret = ufshcd_setup_vreg(hba, true);
9535 	} else if (!ufshcd_is_ufs_dev_active(hba)) {
9536 		if (!ufshcd_is_link_active(hba)) {
9537 			ret = ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq);
9538 			if (ret)
9539 				goto vcc_disable;
9540 			ret = ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq2);
9541 			if (ret)
9542 				goto vccq_lpm;
9543 		}
9544 		ret = ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, true);
9545 	}
9546 	goto out;
9547 
9548 vccq_lpm:
9549 	ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq);
9550 vcc_disable:
9551 	ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, false);
9552 out:
9553 	return ret;
9554 }
9555 #endif /* CONFIG_PM */
9556 
9557 static void ufshcd_hba_vreg_set_lpm(struct ufs_hba *hba)
9558 {
9559 	if (ufshcd_is_link_off(hba) || ufshcd_can_aggressive_pc(hba))
9560 		ufshcd_setup_hba_vreg(hba, false);
9561 }
9562 
9563 static void ufshcd_hba_vreg_set_hpm(struct ufs_hba *hba)
9564 {
9565 	if (ufshcd_is_link_off(hba) || ufshcd_can_aggressive_pc(hba))
9566 		ufshcd_setup_hba_vreg(hba, true);
9567 }
9568 
9569 static int __ufshcd_wl_suspend(struct ufs_hba *hba, enum ufs_pm_op pm_op)
9570 {
9571 	int ret = 0;
9572 	bool check_for_bkops;
9573 	enum ufs_pm_level pm_lvl;
9574 	enum ufs_dev_pwr_mode req_dev_pwr_mode;
9575 	enum uic_link_state req_link_state;
9576 
9577 	hba->pm_op_in_progress = true;
9578 	if (pm_op != UFS_SHUTDOWN_PM) {
9579 		pm_lvl = pm_op == UFS_RUNTIME_PM ?
9580 			 hba->rpm_lvl : hba->spm_lvl;
9581 		req_dev_pwr_mode = ufs_get_pm_lvl_to_dev_pwr_mode(pm_lvl);
9582 		req_link_state = ufs_get_pm_lvl_to_link_pwr_state(pm_lvl);
9583 	} else {
9584 		req_dev_pwr_mode = UFS_POWERDOWN_PWR_MODE;
9585 		req_link_state = UIC_LINK_OFF_STATE;
9586 	}
9587 
9588 	/*
9589 	 * If we can't transition into any of the low power modes
9590 	 * just gate the clocks.
9591 	 */
9592 	ufshcd_hold(hba);
9593 	hba->clk_gating.is_suspended = true;
9594 
9595 	if (ufshcd_is_clkscaling_supported(hba))
9596 		ufshcd_clk_scaling_suspend(hba, true);
9597 
9598 	if (req_dev_pwr_mode == UFS_ACTIVE_PWR_MODE &&
9599 			req_link_state == UIC_LINK_ACTIVE_STATE) {
9600 		goto vops_suspend;
9601 	}
9602 
9603 	if ((req_dev_pwr_mode == hba->curr_dev_pwr_mode) &&
9604 	    (req_link_state == hba->uic_link_state))
9605 		goto enable_scaling;
9606 
9607 	/* UFS device & link must be active before we enter in this function */
9608 	if (!ufshcd_is_ufs_dev_active(hba) || !ufshcd_is_link_active(hba)) {
9609 		ret = -EINVAL;
9610 		goto enable_scaling;
9611 	}
9612 
9613 	if (pm_op == UFS_RUNTIME_PM) {
9614 		if (ufshcd_can_autobkops_during_suspend(hba)) {
9615 			/*
9616 			 * The device is idle with no requests in the queue,
9617 			 * allow background operations if bkops status shows
9618 			 * that performance might be impacted.
9619 			 */
9620 			ret = ufshcd_urgent_bkops(hba);
9621 			if (ret) {
9622 				/*
9623 				 * If return err in suspend flow, IO will hang.
9624 				 * Trigger error handler and break suspend for
9625 				 * error recovery.
9626 				 */
9627 				ufshcd_force_error_recovery(hba);
9628 				ret = -EBUSY;
9629 				goto enable_scaling;
9630 			}
9631 		} else {
9632 			/* make sure that auto bkops is disabled */
9633 			ufshcd_disable_auto_bkops(hba);
9634 		}
9635 		/*
9636 		 * If device needs to do BKOP or WB buffer flush during
9637 		 * Hibern8, keep device power mode as "active power mode"
9638 		 * and VCC supply.
9639 		 */
9640 		hba->dev_info.b_rpm_dev_flush_capable =
9641 			hba->auto_bkops_enabled ||
9642 			(((req_link_state == UIC_LINK_HIBERN8_STATE) ||
9643 			((req_link_state == UIC_LINK_ACTIVE_STATE) &&
9644 			ufshcd_is_auto_hibern8_enabled(hba))) &&
9645 			ufshcd_wb_need_flush(hba));
9646 	}
9647 
9648 	flush_work(&hba->eeh_work);
9649 
9650 	ret = ufshcd_vops_suspend(hba, pm_op, PRE_CHANGE);
9651 	if (ret)
9652 		goto enable_scaling;
9653 
9654 	if (req_dev_pwr_mode != hba->curr_dev_pwr_mode) {
9655 		if (pm_op != UFS_RUNTIME_PM)
9656 			/* ensure that bkops is disabled */
9657 			ufshcd_disable_auto_bkops(hba);
9658 
9659 		if (!hba->dev_info.b_rpm_dev_flush_capable) {
9660 			ret = ufshcd_set_dev_pwr_mode(hba, req_dev_pwr_mode);
9661 			if (ret && pm_op != UFS_SHUTDOWN_PM) {
9662 				/*
9663 				 * If return err in suspend flow, IO will hang.
9664 				 * Trigger error handler and break suspend for
9665 				 * error recovery.
9666 				 */
9667 				ufshcd_force_error_recovery(hba);
9668 				ret = -EBUSY;
9669 			}
9670 			if (ret)
9671 				goto enable_scaling;
9672 		}
9673 	}
9674 
9675 	/*
9676 	 * In the case of DeepSleep, the device is expected to remain powered
9677 	 * with the link off, so do not check for bkops.
9678 	 */
9679 	check_for_bkops = !ufshcd_is_ufs_dev_deepsleep(hba);
9680 	ret = ufshcd_link_state_transition(hba, req_link_state, check_for_bkops);
9681 	if (ret && pm_op != UFS_SHUTDOWN_PM) {
9682 		/*
9683 		 * If return err in suspend flow, IO will hang.
9684 		 * Trigger error handler and break suspend for
9685 		 * error recovery.
9686 		 */
9687 		ufshcd_force_error_recovery(hba);
9688 		ret = -EBUSY;
9689 	}
9690 	if (ret)
9691 		goto set_dev_active;
9692 
9693 vops_suspend:
9694 	/*
9695 	 * Call vendor specific suspend callback. As these callbacks may access
9696 	 * vendor specific host controller register space call them before the
9697 	 * host clocks are ON.
9698 	 */
9699 	ret = ufshcd_vops_suspend(hba, pm_op, POST_CHANGE);
9700 	if (ret)
9701 		goto set_link_active;
9702 
9703 	cancel_delayed_work_sync(&hba->ufs_rtc_update_work);
9704 	goto out;
9705 
9706 set_link_active:
9707 	/*
9708 	 * Device hardware reset is required to exit DeepSleep. Also, for
9709 	 * DeepSleep, the link is off so host reset and restore will be done
9710 	 * further below.
9711 	 */
9712 	if (ufshcd_is_ufs_dev_deepsleep(hba)) {
9713 		ufshcd_device_reset(hba);
9714 		WARN_ON(!ufshcd_is_link_off(hba));
9715 	}
9716 	if (ufshcd_is_link_hibern8(hba) && !ufshcd_uic_hibern8_exit(hba))
9717 		ufshcd_set_link_active(hba);
9718 	else if (ufshcd_is_link_off(hba))
9719 		ufshcd_host_reset_and_restore(hba);
9720 set_dev_active:
9721 	/* Can also get here needing to exit DeepSleep */
9722 	if (ufshcd_is_ufs_dev_deepsleep(hba)) {
9723 		ufshcd_device_reset(hba);
9724 		ufshcd_host_reset_and_restore(hba);
9725 	}
9726 	if (!ufshcd_set_dev_pwr_mode(hba, UFS_ACTIVE_PWR_MODE))
9727 		ufshcd_disable_auto_bkops(hba);
9728 enable_scaling:
9729 	if (ufshcd_is_clkscaling_supported(hba))
9730 		ufshcd_clk_scaling_suspend(hba, false);
9731 
9732 	hba->dev_info.b_rpm_dev_flush_capable = false;
9733 out:
9734 	if (hba->dev_info.b_rpm_dev_flush_capable) {
9735 		schedule_delayed_work(&hba->rpm_dev_flush_recheck_work,
9736 			msecs_to_jiffies(RPM_DEV_FLUSH_RECHECK_WORK_DELAY_MS));
9737 	}
9738 
9739 	if (ret) {
9740 		ufshcd_update_evt_hist(hba, UFS_EVT_WL_SUSP_ERR, (u32)ret);
9741 		hba->clk_gating.is_suspended = false;
9742 		ufshcd_release(hba);
9743 	}
9744 	hba->pm_op_in_progress = false;
9745 	return ret;
9746 }
9747 
9748 #ifdef CONFIG_PM
9749 static int __ufshcd_wl_resume(struct ufs_hba *hba, enum ufs_pm_op pm_op)
9750 {
9751 	int ret;
9752 	enum uic_link_state old_link_state = hba->uic_link_state;
9753 
9754 	hba->pm_op_in_progress = true;
9755 
9756 	/*
9757 	 * Call vendor specific resume callback. As these callbacks may access
9758 	 * vendor specific host controller register space call them when the
9759 	 * host clocks are ON.
9760 	 */
9761 	ret = ufshcd_vops_resume(hba, pm_op);
9762 	if (ret)
9763 		goto out;
9764 
9765 	/* For DeepSleep, the only supported option is to have the link off */
9766 	WARN_ON(ufshcd_is_ufs_dev_deepsleep(hba) && !ufshcd_is_link_off(hba));
9767 
9768 	if (ufshcd_is_link_hibern8(hba)) {
9769 		ret = ufshcd_uic_hibern8_exit(hba);
9770 		if (!ret) {
9771 			ufshcd_set_link_active(hba);
9772 		} else {
9773 			dev_err(hba->dev, "%s: hibern8 exit failed %d\n",
9774 					__func__, ret);
9775 			goto vendor_suspend;
9776 		}
9777 	} else if (ufshcd_is_link_off(hba)) {
9778 		/*
9779 		 * A full initialization of the host and the device is
9780 		 * required since the link was put to off during suspend.
9781 		 * Note, in the case of DeepSleep, the device will exit
9782 		 * DeepSleep due to device reset.
9783 		 */
9784 		ret = ufshcd_reset_and_restore(hba);
9785 		/*
9786 		 * ufshcd_reset_and_restore() should have already
9787 		 * set the link state as active
9788 		 */
9789 		if (ret || !ufshcd_is_link_active(hba))
9790 			goto vendor_suspend;
9791 	}
9792 
9793 	if (!ufshcd_is_ufs_dev_active(hba)) {
9794 		ret = ufshcd_set_dev_pwr_mode(hba, UFS_ACTIVE_PWR_MODE);
9795 		if (ret)
9796 			goto set_old_link_state;
9797 		ufshcd_set_timestamp_attr(hba);
9798 		schedule_delayed_work(&hba->ufs_rtc_update_work,
9799 				      msecs_to_jiffies(UFS_RTC_UPDATE_INTERVAL_MS));
9800 	}
9801 
9802 	if (ufshcd_keep_autobkops_enabled_except_suspend(hba))
9803 		ufshcd_enable_auto_bkops(hba);
9804 	else
9805 		/*
9806 		 * If BKOPs operations are urgently needed at this moment then
9807 		 * keep auto-bkops enabled or else disable it.
9808 		 */
9809 		ufshcd_urgent_bkops(hba);
9810 
9811 	if (hba->ee_usr_mask)
9812 		ufshcd_write_ee_control(hba);
9813 
9814 	if (ufshcd_is_clkscaling_supported(hba))
9815 		ufshcd_clk_scaling_suspend(hba, false);
9816 
9817 	if (hba->dev_info.b_rpm_dev_flush_capable) {
9818 		hba->dev_info.b_rpm_dev_flush_capable = false;
9819 		cancel_delayed_work(&hba->rpm_dev_flush_recheck_work);
9820 	}
9821 
9822 	ufshcd_configure_auto_hibern8(hba);
9823 
9824 	goto out;
9825 
9826 set_old_link_state:
9827 	ufshcd_link_state_transition(hba, old_link_state, 0);
9828 vendor_suspend:
9829 	ufshcd_vops_suspend(hba, pm_op, PRE_CHANGE);
9830 	ufshcd_vops_suspend(hba, pm_op, POST_CHANGE);
9831 out:
9832 	if (ret)
9833 		ufshcd_update_evt_hist(hba, UFS_EVT_WL_RES_ERR, (u32)ret);
9834 	hba->clk_gating.is_suspended = false;
9835 	ufshcd_release(hba);
9836 	hba->pm_op_in_progress = false;
9837 	return ret;
9838 }
9839 
9840 static int ufshcd_wl_runtime_suspend(struct device *dev)
9841 {
9842 	struct scsi_device *sdev = to_scsi_device(dev);
9843 	struct ufs_hba *hba;
9844 	int ret;
9845 	ktime_t start = ktime_get();
9846 
9847 	hba = shost_priv(sdev->host);
9848 
9849 	ret = __ufshcd_wl_suspend(hba, UFS_RUNTIME_PM);
9850 	if (ret)
9851 		dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
9852 
9853 	trace_ufshcd_wl_runtime_suspend(dev_name(dev), ret,
9854 		ktime_to_us(ktime_sub(ktime_get(), start)),
9855 		hba->curr_dev_pwr_mode, hba->uic_link_state);
9856 
9857 	return ret;
9858 }
9859 
9860 static int ufshcd_wl_runtime_resume(struct device *dev)
9861 {
9862 	struct scsi_device *sdev = to_scsi_device(dev);
9863 	struct ufs_hba *hba;
9864 	int ret = 0;
9865 	ktime_t start = ktime_get();
9866 
9867 	hba = shost_priv(sdev->host);
9868 
9869 	ret = __ufshcd_wl_resume(hba, UFS_RUNTIME_PM);
9870 	if (ret)
9871 		dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
9872 
9873 	trace_ufshcd_wl_runtime_resume(dev_name(dev), ret,
9874 		ktime_to_us(ktime_sub(ktime_get(), start)),
9875 		hba->curr_dev_pwr_mode, hba->uic_link_state);
9876 
9877 	return ret;
9878 }
9879 #endif
9880 
9881 #ifdef CONFIG_PM_SLEEP
9882 static int ufshcd_wl_suspend(struct device *dev)
9883 {
9884 	struct scsi_device *sdev = to_scsi_device(dev);
9885 	struct ufs_hba *hba;
9886 	int ret = 0;
9887 	ktime_t start = ktime_get();
9888 
9889 	hba = shost_priv(sdev->host);
9890 	down(&hba->host_sem);
9891 	hba->system_suspending = true;
9892 
9893 	if (pm_runtime_suspended(dev))
9894 		goto out;
9895 
9896 	ret = __ufshcd_wl_suspend(hba, UFS_SYSTEM_PM);
9897 	if (ret) {
9898 		dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__,  ret);
9899 		up(&hba->host_sem);
9900 	}
9901 
9902 out:
9903 	if (!ret)
9904 		hba->is_sys_suspended = true;
9905 	trace_ufshcd_wl_suspend(dev_name(dev), ret,
9906 		ktime_to_us(ktime_sub(ktime_get(), start)),
9907 		hba->curr_dev_pwr_mode, hba->uic_link_state);
9908 
9909 	return ret;
9910 }
9911 
9912 static int ufshcd_wl_resume(struct device *dev)
9913 {
9914 	struct scsi_device *sdev = to_scsi_device(dev);
9915 	struct ufs_hba *hba;
9916 	int ret = 0;
9917 	ktime_t start = ktime_get();
9918 
9919 	hba = shost_priv(sdev->host);
9920 
9921 	if (pm_runtime_suspended(dev))
9922 		goto out;
9923 
9924 	ret = __ufshcd_wl_resume(hba, UFS_SYSTEM_PM);
9925 	if (ret)
9926 		dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
9927 out:
9928 	trace_ufshcd_wl_resume(dev_name(dev), ret,
9929 		ktime_to_us(ktime_sub(ktime_get(), start)),
9930 		hba->curr_dev_pwr_mode, hba->uic_link_state);
9931 	if (!ret)
9932 		hba->is_sys_suspended = false;
9933 	hba->system_suspending = false;
9934 	up(&hba->host_sem);
9935 	return ret;
9936 }
9937 #endif
9938 
9939 /**
9940  * ufshcd_suspend - helper function for suspend operations
9941  * @hba: per adapter instance
9942  *
9943  * This function will put disable irqs, turn off clocks
9944  * and set vreg and hba-vreg in lpm mode.
9945  *
9946  * Return: 0 upon success; < 0 upon failure.
9947  */
9948 static int ufshcd_suspend(struct ufs_hba *hba)
9949 {
9950 	int ret;
9951 
9952 	if (!hba->is_powered)
9953 		return 0;
9954 	/*
9955 	 * Disable the host irq as host controller as there won't be any
9956 	 * host controller transaction expected till resume.
9957 	 */
9958 	ufshcd_disable_irq(hba);
9959 	ret = ufshcd_setup_clocks(hba, false);
9960 	if (ret) {
9961 		ufshcd_enable_irq(hba);
9962 		return ret;
9963 	}
9964 	if (ufshcd_is_clkgating_allowed(hba)) {
9965 		hba->clk_gating.state = CLKS_OFF;
9966 		trace_ufshcd_clk_gating(dev_name(hba->dev),
9967 					hba->clk_gating.state);
9968 	}
9969 
9970 	ufshcd_vreg_set_lpm(hba);
9971 	/* Put the host controller in low power mode if possible */
9972 	ufshcd_hba_vreg_set_lpm(hba);
9973 	ufshcd_pm_qos_update(hba, false);
9974 	return ret;
9975 }
9976 
9977 #ifdef CONFIG_PM
9978 /**
9979  * ufshcd_resume - helper function for resume operations
9980  * @hba: per adapter instance
9981  *
9982  * This function basically turns on the regulators, clocks and
9983  * irqs of the hba.
9984  *
9985  * Return: 0 for success and non-zero for failure.
9986  */
9987 static int ufshcd_resume(struct ufs_hba *hba)
9988 {
9989 	int ret;
9990 
9991 	if (!hba->is_powered)
9992 		return 0;
9993 
9994 	ufshcd_hba_vreg_set_hpm(hba);
9995 	ret = ufshcd_vreg_set_hpm(hba);
9996 	if (ret)
9997 		goto out;
9998 
9999 	/* Make sure clocks are enabled before accessing controller */
10000 	ret = ufshcd_setup_clocks(hba, true);
10001 	if (ret)
10002 		goto disable_vreg;
10003 
10004 	/* enable the host irq as host controller would be active soon */
10005 	ufshcd_enable_irq(hba);
10006 
10007 	goto out;
10008 
10009 disable_vreg:
10010 	ufshcd_vreg_set_lpm(hba);
10011 out:
10012 	if (ret)
10013 		ufshcd_update_evt_hist(hba, UFS_EVT_RESUME_ERR, (u32)ret);
10014 	return ret;
10015 }
10016 #endif /* CONFIG_PM */
10017 
10018 #ifdef CONFIG_PM_SLEEP
10019 /**
10020  * ufshcd_system_suspend - system suspend callback
10021  * @dev: Device associated with the UFS controller.
10022  *
10023  * Executed before putting the system into a sleep state in which the contents
10024  * of main memory are preserved.
10025  *
10026  * Return: 0 for success and non-zero for failure.
10027  */
10028 int ufshcd_system_suspend(struct device *dev)
10029 {
10030 	struct ufs_hba *hba = dev_get_drvdata(dev);
10031 	int ret = 0;
10032 	ktime_t start = ktime_get();
10033 
10034 	if (pm_runtime_suspended(hba->dev))
10035 		goto out;
10036 
10037 	ret = ufshcd_suspend(hba);
10038 out:
10039 	trace_ufshcd_system_suspend(dev_name(hba->dev), ret,
10040 		ktime_to_us(ktime_sub(ktime_get(), start)),
10041 		hba->curr_dev_pwr_mode, hba->uic_link_state);
10042 	return ret;
10043 }
10044 EXPORT_SYMBOL(ufshcd_system_suspend);
10045 
10046 /**
10047  * ufshcd_system_resume - system resume callback
10048  * @dev: Device associated with the UFS controller.
10049  *
10050  * Executed after waking the system up from a sleep state in which the contents
10051  * of main memory were preserved.
10052  *
10053  * Return: 0 for success and non-zero for failure.
10054  */
10055 int ufshcd_system_resume(struct device *dev)
10056 {
10057 	struct ufs_hba *hba = dev_get_drvdata(dev);
10058 	ktime_t start = ktime_get();
10059 	int ret = 0;
10060 
10061 	if (pm_runtime_suspended(hba->dev))
10062 		goto out;
10063 
10064 	ret = ufshcd_resume(hba);
10065 
10066 out:
10067 	trace_ufshcd_system_resume(dev_name(hba->dev), ret,
10068 		ktime_to_us(ktime_sub(ktime_get(), start)),
10069 		hba->curr_dev_pwr_mode, hba->uic_link_state);
10070 
10071 	return ret;
10072 }
10073 EXPORT_SYMBOL(ufshcd_system_resume);
10074 #endif /* CONFIG_PM_SLEEP */
10075 
10076 #ifdef CONFIG_PM
10077 /**
10078  * ufshcd_runtime_suspend - runtime suspend callback
10079  * @dev: Device associated with the UFS controller.
10080  *
10081  * Check the description of ufshcd_suspend() function for more details.
10082  *
10083  * Return: 0 for success and non-zero for failure.
10084  */
10085 int ufshcd_runtime_suspend(struct device *dev)
10086 {
10087 	struct ufs_hba *hba = dev_get_drvdata(dev);
10088 	int ret;
10089 	ktime_t start = ktime_get();
10090 
10091 	ret = ufshcd_suspend(hba);
10092 
10093 	trace_ufshcd_runtime_suspend(dev_name(hba->dev), ret,
10094 		ktime_to_us(ktime_sub(ktime_get(), start)),
10095 		hba->curr_dev_pwr_mode, hba->uic_link_state);
10096 	return ret;
10097 }
10098 EXPORT_SYMBOL(ufshcd_runtime_suspend);
10099 
10100 /**
10101  * ufshcd_runtime_resume - runtime resume routine
10102  * @dev: Device associated with the UFS controller.
10103  *
10104  * This function basically brings controller
10105  * to active state. Following operations are done in this function:
10106  *
10107  * 1. Turn on all the controller related clocks
10108  * 2. Turn ON VCC rail
10109  *
10110  * Return: 0 upon success; < 0 upon failure.
10111  */
10112 int ufshcd_runtime_resume(struct device *dev)
10113 {
10114 	struct ufs_hba *hba = dev_get_drvdata(dev);
10115 	int ret;
10116 	ktime_t start = ktime_get();
10117 
10118 	ret = ufshcd_resume(hba);
10119 
10120 	trace_ufshcd_runtime_resume(dev_name(hba->dev), ret,
10121 		ktime_to_us(ktime_sub(ktime_get(), start)),
10122 		hba->curr_dev_pwr_mode, hba->uic_link_state);
10123 	return ret;
10124 }
10125 EXPORT_SYMBOL(ufshcd_runtime_resume);
10126 #endif /* CONFIG_PM */
10127 
10128 static void ufshcd_wl_shutdown(struct device *dev)
10129 {
10130 	struct scsi_device *sdev = to_scsi_device(dev);
10131 	struct ufs_hba *hba = shost_priv(sdev->host);
10132 
10133 	down(&hba->host_sem);
10134 	hba->shutting_down = true;
10135 	up(&hba->host_sem);
10136 
10137 	/* Turn on everything while shutting down */
10138 	ufshcd_rpm_get_sync(hba);
10139 	scsi_device_quiesce(sdev);
10140 	shost_for_each_device(sdev, hba->host) {
10141 		if (sdev == hba->ufs_device_wlun)
10142 			continue;
10143 		scsi_device_quiesce(sdev);
10144 	}
10145 	__ufshcd_wl_suspend(hba, UFS_SHUTDOWN_PM);
10146 
10147 	/*
10148 	 * Next, turn off the UFS controller and the UFS regulators. Disable
10149 	 * clocks.
10150 	 */
10151 	if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba))
10152 		ufshcd_suspend(hba);
10153 
10154 	hba->is_powered = false;
10155 }
10156 
10157 /**
10158  * ufshcd_remove - de-allocate SCSI host and host memory space
10159  *		data structure memory
10160  * @hba: per adapter instance
10161  */
10162 void ufshcd_remove(struct ufs_hba *hba)
10163 {
10164 	if (hba->ufs_device_wlun)
10165 		ufshcd_rpm_get_sync(hba);
10166 	ufs_hwmon_remove(hba);
10167 	ufs_bsg_remove(hba);
10168 	ufs_sysfs_remove_nodes(hba->dev);
10169 	blk_mq_destroy_queue(hba->tmf_queue);
10170 	blk_put_queue(hba->tmf_queue);
10171 	blk_mq_free_tag_set(&hba->tmf_tag_set);
10172 	scsi_remove_host(hba->host);
10173 	/* disable interrupts */
10174 	ufshcd_disable_intr(hba, hba->intr_mask);
10175 	ufshcd_hba_stop(hba);
10176 	ufshcd_hba_exit(hba);
10177 }
10178 EXPORT_SYMBOL_GPL(ufshcd_remove);
10179 
10180 #ifdef CONFIG_PM_SLEEP
10181 int ufshcd_system_freeze(struct device *dev)
10182 {
10183 
10184 	return ufshcd_system_suspend(dev);
10185 
10186 }
10187 EXPORT_SYMBOL_GPL(ufshcd_system_freeze);
10188 
10189 int ufshcd_system_restore(struct device *dev)
10190 {
10191 
10192 	struct ufs_hba *hba = dev_get_drvdata(dev);
10193 	int ret;
10194 
10195 	ret = ufshcd_system_resume(dev);
10196 	if (ret)
10197 		return ret;
10198 
10199 	/* Configure UTRL and UTMRL base address registers */
10200 	ufshcd_writel(hba, lower_32_bits(hba->utrdl_dma_addr),
10201 			REG_UTP_TRANSFER_REQ_LIST_BASE_L);
10202 	ufshcd_writel(hba, upper_32_bits(hba->utrdl_dma_addr),
10203 			REG_UTP_TRANSFER_REQ_LIST_BASE_H);
10204 	ufshcd_writel(hba, lower_32_bits(hba->utmrdl_dma_addr),
10205 			REG_UTP_TASK_REQ_LIST_BASE_L);
10206 	ufshcd_writel(hba, upper_32_bits(hba->utmrdl_dma_addr),
10207 			REG_UTP_TASK_REQ_LIST_BASE_H);
10208 	/*
10209 	 * Make sure that UTRL and UTMRL base address registers
10210 	 * are updated with the latest queue addresses. Only after
10211 	 * updating these addresses, we can queue the new commands.
10212 	 */
10213 	ufshcd_readl(hba, REG_UTP_TASK_REQ_LIST_BASE_H);
10214 
10215 	/* Resuming from hibernate, assume that link was OFF */
10216 	ufshcd_set_link_off(hba);
10217 
10218 	return 0;
10219 
10220 }
10221 EXPORT_SYMBOL_GPL(ufshcd_system_restore);
10222 
10223 int ufshcd_system_thaw(struct device *dev)
10224 {
10225 	return ufshcd_system_resume(dev);
10226 }
10227 EXPORT_SYMBOL_GPL(ufshcd_system_thaw);
10228 #endif /* CONFIG_PM_SLEEP  */
10229 
10230 /**
10231  * ufshcd_dealloc_host - deallocate Host Bus Adapter (HBA)
10232  * @hba: pointer to Host Bus Adapter (HBA)
10233  */
10234 void ufshcd_dealloc_host(struct ufs_hba *hba)
10235 {
10236 	scsi_host_put(hba->host);
10237 }
10238 EXPORT_SYMBOL_GPL(ufshcd_dealloc_host);
10239 
10240 /**
10241  * ufshcd_set_dma_mask - Set dma mask based on the controller
10242  *			 addressing capability
10243  * @hba: per adapter instance
10244  *
10245  * Return: 0 for success, non-zero for failure.
10246  */
10247 static int ufshcd_set_dma_mask(struct ufs_hba *hba)
10248 {
10249 	if (hba->capabilities & MASK_64_ADDRESSING_SUPPORT) {
10250 		if (!dma_set_mask_and_coherent(hba->dev, DMA_BIT_MASK(64)))
10251 			return 0;
10252 	}
10253 	return dma_set_mask_and_coherent(hba->dev, DMA_BIT_MASK(32));
10254 }
10255 
10256 /**
10257  * ufshcd_alloc_host - allocate Host Bus Adapter (HBA)
10258  * @dev: pointer to device handle
10259  * @hba_handle: driver private handle
10260  *
10261  * Return: 0 on success, non-zero value on failure.
10262  */
10263 int ufshcd_alloc_host(struct device *dev, struct ufs_hba **hba_handle)
10264 {
10265 	struct Scsi_Host *host;
10266 	struct ufs_hba *hba;
10267 	int err = 0;
10268 
10269 	if (!dev) {
10270 		dev_err(dev,
10271 		"Invalid memory reference for dev is NULL\n");
10272 		err = -ENODEV;
10273 		goto out_error;
10274 	}
10275 
10276 	host = scsi_host_alloc(&ufshcd_driver_template,
10277 				sizeof(struct ufs_hba));
10278 	if (!host) {
10279 		dev_err(dev, "scsi_host_alloc failed\n");
10280 		err = -ENOMEM;
10281 		goto out_error;
10282 	}
10283 	host->nr_maps = HCTX_TYPE_POLL + 1;
10284 	hba = shost_priv(host);
10285 	hba->host = host;
10286 	hba->dev = dev;
10287 	hba->dev_ref_clk_freq = REF_CLK_FREQ_INVAL;
10288 	hba->nop_out_timeout = NOP_OUT_TIMEOUT;
10289 	ufshcd_set_sg_entry_size(hba, sizeof(struct ufshcd_sg_entry));
10290 	INIT_LIST_HEAD(&hba->clk_list_head);
10291 	spin_lock_init(&hba->outstanding_lock);
10292 
10293 	*hba_handle = hba;
10294 
10295 out_error:
10296 	return err;
10297 }
10298 EXPORT_SYMBOL(ufshcd_alloc_host);
10299 
10300 /* This function exists because blk_mq_alloc_tag_set() requires this. */
10301 static blk_status_t ufshcd_queue_tmf(struct blk_mq_hw_ctx *hctx,
10302 				     const struct blk_mq_queue_data *qd)
10303 {
10304 	WARN_ON_ONCE(true);
10305 	return BLK_STS_NOTSUPP;
10306 }
10307 
10308 static const struct blk_mq_ops ufshcd_tmf_ops = {
10309 	.queue_rq = ufshcd_queue_tmf,
10310 };
10311 
10312 /**
10313  * ufshcd_init - Driver initialization routine
10314  * @hba: per-adapter instance
10315  * @mmio_base: base register address
10316  * @irq: Interrupt line of device
10317  *
10318  * Return: 0 on success, non-zero value on failure.
10319  */
10320 int ufshcd_init(struct ufs_hba *hba, void __iomem *mmio_base, unsigned int irq)
10321 {
10322 	int err;
10323 	struct Scsi_Host *host = hba->host;
10324 	struct device *dev = hba->dev;
10325 	char eh_wq_name[sizeof("ufs_eh_wq_00")];
10326 
10327 	/*
10328 	 * dev_set_drvdata() must be called before any callbacks are registered
10329 	 * that use dev_get_drvdata() (frequency scaling, clock scaling, hwmon,
10330 	 * sysfs).
10331 	 */
10332 	dev_set_drvdata(dev, hba);
10333 
10334 	if (!mmio_base) {
10335 		dev_err(hba->dev,
10336 		"Invalid memory reference for mmio_base is NULL\n");
10337 		err = -ENODEV;
10338 		goto out_error;
10339 	}
10340 
10341 	hba->mmio_base = mmio_base;
10342 	hba->irq = irq;
10343 	hba->vps = &ufs_hba_vps;
10344 
10345 	err = ufshcd_hba_init(hba);
10346 	if (err)
10347 		goto out_error;
10348 
10349 	/* Read capabilities registers */
10350 	err = ufshcd_hba_capabilities(hba);
10351 	if (err)
10352 		goto out_disable;
10353 
10354 	/* Get UFS version supported by the controller */
10355 	hba->ufs_version = ufshcd_get_ufs_version(hba);
10356 
10357 	/* Get Interrupt bit mask per version */
10358 	hba->intr_mask = ufshcd_get_intr_mask(hba);
10359 
10360 	err = ufshcd_set_dma_mask(hba);
10361 	if (err) {
10362 		dev_err(hba->dev, "set dma mask failed\n");
10363 		goto out_disable;
10364 	}
10365 
10366 	/* Allocate memory for host memory space */
10367 	err = ufshcd_memory_alloc(hba);
10368 	if (err) {
10369 		dev_err(hba->dev, "Memory allocation failed\n");
10370 		goto out_disable;
10371 	}
10372 
10373 	/* Configure LRB */
10374 	ufshcd_host_memory_configure(hba);
10375 
10376 	host->can_queue = hba->nutrs - UFSHCD_NUM_RESERVED;
10377 	host->cmd_per_lun = hba->nutrs - UFSHCD_NUM_RESERVED;
10378 	host->max_id = UFSHCD_MAX_ID;
10379 	host->max_lun = UFS_MAX_LUNS;
10380 	host->max_channel = UFSHCD_MAX_CHANNEL;
10381 	host->unique_id = host->host_no;
10382 	host->max_cmd_len = UFS_CDB_SIZE;
10383 	host->queuecommand_may_block = !!(hba->caps & UFSHCD_CAP_CLK_GATING);
10384 
10385 	/* Use default RPM delay if host not set */
10386 	if (host->rpm_autosuspend_delay == 0)
10387 		host->rpm_autosuspend_delay = RPM_AUTOSUSPEND_DELAY_MS;
10388 
10389 	hba->max_pwr_info.is_valid = false;
10390 
10391 	/* Initialize work queues */
10392 	snprintf(eh_wq_name, sizeof(eh_wq_name), "ufs_eh_wq_%d",
10393 		 hba->host->host_no);
10394 	hba->eh_wq = create_singlethread_workqueue(eh_wq_name);
10395 	if (!hba->eh_wq) {
10396 		dev_err(hba->dev, "%s: failed to create eh workqueue\n",
10397 			__func__);
10398 		err = -ENOMEM;
10399 		goto out_disable;
10400 	}
10401 	INIT_WORK(&hba->eh_work, ufshcd_err_handler);
10402 	INIT_WORK(&hba->eeh_work, ufshcd_exception_event_handler);
10403 
10404 	sema_init(&hba->host_sem, 1);
10405 
10406 	/* Initialize UIC command mutex */
10407 	mutex_init(&hba->uic_cmd_mutex);
10408 
10409 	/* Initialize mutex for device management commands */
10410 	mutex_init(&hba->dev_cmd.lock);
10411 
10412 	/* Initialize mutex for exception event control */
10413 	mutex_init(&hba->ee_ctrl_mutex);
10414 
10415 	mutex_init(&hba->wb_mutex);
10416 	init_rwsem(&hba->clk_scaling_lock);
10417 
10418 	ufshcd_init_clk_gating(hba);
10419 
10420 	ufshcd_init_clk_scaling(hba);
10421 
10422 	/*
10423 	 * In order to avoid any spurious interrupt immediately after
10424 	 * registering UFS controller interrupt handler, clear any pending UFS
10425 	 * interrupt status and disable all the UFS interrupts.
10426 	 */
10427 	ufshcd_writel(hba, ufshcd_readl(hba, REG_INTERRUPT_STATUS),
10428 		      REG_INTERRUPT_STATUS);
10429 	ufshcd_writel(hba, 0, REG_INTERRUPT_ENABLE);
10430 	/*
10431 	 * Make sure that UFS interrupts are disabled and any pending interrupt
10432 	 * status is cleared before registering UFS interrupt handler.
10433 	 */
10434 	ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
10435 
10436 	/* IRQ registration */
10437 	err = devm_request_irq(dev, irq, ufshcd_intr, IRQF_SHARED, UFSHCD, hba);
10438 	if (err) {
10439 		dev_err(hba->dev, "request irq failed\n");
10440 		goto out_disable;
10441 	} else {
10442 		hba->is_irq_enabled = true;
10443 	}
10444 
10445 	if (!is_mcq_supported(hba)) {
10446 		err = scsi_add_host(host, hba->dev);
10447 		if (err) {
10448 			dev_err(hba->dev, "scsi_add_host failed\n");
10449 			goto out_disable;
10450 		}
10451 	}
10452 
10453 	hba->tmf_tag_set = (struct blk_mq_tag_set) {
10454 		.nr_hw_queues	= 1,
10455 		.queue_depth	= hba->nutmrs,
10456 		.ops		= &ufshcd_tmf_ops,
10457 		.flags		= BLK_MQ_F_NO_SCHED,
10458 	};
10459 	err = blk_mq_alloc_tag_set(&hba->tmf_tag_set);
10460 	if (err < 0)
10461 		goto out_remove_scsi_host;
10462 	hba->tmf_queue = blk_mq_alloc_queue(&hba->tmf_tag_set, NULL, NULL);
10463 	if (IS_ERR(hba->tmf_queue)) {
10464 		err = PTR_ERR(hba->tmf_queue);
10465 		goto free_tmf_tag_set;
10466 	}
10467 	hba->tmf_rqs = devm_kcalloc(hba->dev, hba->nutmrs,
10468 				    sizeof(*hba->tmf_rqs), GFP_KERNEL);
10469 	if (!hba->tmf_rqs) {
10470 		err = -ENOMEM;
10471 		goto free_tmf_queue;
10472 	}
10473 
10474 	/* Reset the attached device */
10475 	ufshcd_device_reset(hba);
10476 
10477 	ufshcd_init_crypto(hba);
10478 
10479 	/* Host controller enable */
10480 	err = ufshcd_hba_enable(hba);
10481 	if (err) {
10482 		dev_err(hba->dev, "Host controller enable failed\n");
10483 		ufshcd_print_evt_hist(hba);
10484 		ufshcd_print_host_state(hba);
10485 		goto free_tmf_queue;
10486 	}
10487 
10488 	/*
10489 	 * Set the default power management level for runtime and system PM.
10490 	 * Default power saving mode is to keep UFS link in Hibern8 state
10491 	 * and UFS device in sleep state.
10492 	 */
10493 	hba->rpm_lvl = ufs_get_desired_pm_lvl_for_dev_link_state(
10494 						UFS_SLEEP_PWR_MODE,
10495 						UIC_LINK_HIBERN8_STATE);
10496 	hba->spm_lvl = ufs_get_desired_pm_lvl_for_dev_link_state(
10497 						UFS_SLEEP_PWR_MODE,
10498 						UIC_LINK_HIBERN8_STATE);
10499 
10500 	INIT_DELAYED_WORK(&hba->rpm_dev_flush_recheck_work, ufshcd_rpm_dev_flush_recheck_work);
10501 	INIT_DELAYED_WORK(&hba->ufs_rtc_update_work, ufshcd_rtc_work);
10502 
10503 	/* Set the default auto-hiberate idle timer value to 150 ms */
10504 	if (ufshcd_is_auto_hibern8_supported(hba) && !hba->ahit) {
10505 		hba->ahit = FIELD_PREP(UFSHCI_AHIBERN8_TIMER_MASK, 150) |
10506 			    FIELD_PREP(UFSHCI_AHIBERN8_SCALE_MASK, 3);
10507 	}
10508 
10509 	/* Hold auto suspend until async scan completes */
10510 	pm_runtime_get_sync(dev);
10511 	atomic_set(&hba->scsi_block_reqs_cnt, 0);
10512 	/*
10513 	 * We are assuming that device wasn't put in sleep/power-down
10514 	 * state exclusively during the boot stage before kernel.
10515 	 * This assumption helps avoid doing link startup twice during
10516 	 * ufshcd_probe_hba().
10517 	 */
10518 	ufshcd_set_ufs_dev_active(hba);
10519 
10520 	async_schedule(ufshcd_async_scan, hba);
10521 	ufs_sysfs_add_nodes(hba->dev);
10522 
10523 	device_enable_async_suspend(dev);
10524 	ufshcd_pm_qos_init(hba);
10525 	return 0;
10526 
10527 free_tmf_queue:
10528 	blk_mq_destroy_queue(hba->tmf_queue);
10529 	blk_put_queue(hba->tmf_queue);
10530 free_tmf_tag_set:
10531 	blk_mq_free_tag_set(&hba->tmf_tag_set);
10532 out_remove_scsi_host:
10533 	scsi_remove_host(hba->host);
10534 out_disable:
10535 	hba->is_irq_enabled = false;
10536 	ufshcd_hba_exit(hba);
10537 out_error:
10538 	return err;
10539 }
10540 EXPORT_SYMBOL_GPL(ufshcd_init);
10541 
10542 void ufshcd_resume_complete(struct device *dev)
10543 {
10544 	struct ufs_hba *hba = dev_get_drvdata(dev);
10545 
10546 	if (hba->complete_put) {
10547 		ufshcd_rpm_put(hba);
10548 		hba->complete_put = false;
10549 	}
10550 }
10551 EXPORT_SYMBOL_GPL(ufshcd_resume_complete);
10552 
10553 static bool ufshcd_rpm_ok_for_spm(struct ufs_hba *hba)
10554 {
10555 	struct device *dev = &hba->ufs_device_wlun->sdev_gendev;
10556 	enum ufs_dev_pwr_mode dev_pwr_mode;
10557 	enum uic_link_state link_state;
10558 	unsigned long flags;
10559 	bool res;
10560 
10561 	spin_lock_irqsave(&dev->power.lock, flags);
10562 	dev_pwr_mode = ufs_get_pm_lvl_to_dev_pwr_mode(hba->spm_lvl);
10563 	link_state = ufs_get_pm_lvl_to_link_pwr_state(hba->spm_lvl);
10564 	res = pm_runtime_suspended(dev) &&
10565 	      hba->curr_dev_pwr_mode == dev_pwr_mode &&
10566 	      hba->uic_link_state == link_state &&
10567 	      !hba->dev_info.b_rpm_dev_flush_capable;
10568 	spin_unlock_irqrestore(&dev->power.lock, flags);
10569 
10570 	return res;
10571 }
10572 
10573 int __ufshcd_suspend_prepare(struct device *dev, bool rpm_ok_for_spm)
10574 {
10575 	struct ufs_hba *hba = dev_get_drvdata(dev);
10576 	int ret;
10577 
10578 	/*
10579 	 * SCSI assumes that runtime-pm and system-pm for scsi drivers
10580 	 * are same. And it doesn't wake up the device for system-suspend
10581 	 * if it's runtime suspended. But ufs doesn't follow that.
10582 	 * Refer ufshcd_resume_complete()
10583 	 */
10584 	if (hba->ufs_device_wlun) {
10585 		/* Prevent runtime suspend */
10586 		ufshcd_rpm_get_noresume(hba);
10587 		/*
10588 		 * Check if already runtime suspended in same state as system
10589 		 * suspend would be.
10590 		 */
10591 		if (!rpm_ok_for_spm || !ufshcd_rpm_ok_for_spm(hba)) {
10592 			/* RPM state is not ok for SPM, so runtime resume */
10593 			ret = ufshcd_rpm_resume(hba);
10594 			if (ret < 0 && ret != -EACCES) {
10595 				ufshcd_rpm_put(hba);
10596 				return ret;
10597 			}
10598 		}
10599 		hba->complete_put = true;
10600 	}
10601 	return 0;
10602 }
10603 EXPORT_SYMBOL_GPL(__ufshcd_suspend_prepare);
10604 
10605 int ufshcd_suspend_prepare(struct device *dev)
10606 {
10607 	return __ufshcd_suspend_prepare(dev, true);
10608 }
10609 EXPORT_SYMBOL_GPL(ufshcd_suspend_prepare);
10610 
10611 #ifdef CONFIG_PM_SLEEP
10612 static int ufshcd_wl_poweroff(struct device *dev)
10613 {
10614 	struct scsi_device *sdev = to_scsi_device(dev);
10615 	struct ufs_hba *hba = shost_priv(sdev->host);
10616 
10617 	__ufshcd_wl_suspend(hba, UFS_SHUTDOWN_PM);
10618 	return 0;
10619 }
10620 #endif
10621 
10622 static int ufshcd_wl_probe(struct device *dev)
10623 {
10624 	struct scsi_device *sdev = to_scsi_device(dev);
10625 
10626 	if (!is_device_wlun(sdev))
10627 		return -ENODEV;
10628 
10629 	blk_pm_runtime_init(sdev->request_queue, dev);
10630 	pm_runtime_set_autosuspend_delay(dev, 0);
10631 	pm_runtime_allow(dev);
10632 
10633 	return  0;
10634 }
10635 
10636 static int ufshcd_wl_remove(struct device *dev)
10637 {
10638 	pm_runtime_forbid(dev);
10639 	return 0;
10640 }
10641 
10642 static const struct dev_pm_ops ufshcd_wl_pm_ops = {
10643 #ifdef CONFIG_PM_SLEEP
10644 	.suspend = ufshcd_wl_suspend,
10645 	.resume = ufshcd_wl_resume,
10646 	.freeze = ufshcd_wl_suspend,
10647 	.thaw = ufshcd_wl_resume,
10648 	.poweroff = ufshcd_wl_poweroff,
10649 	.restore = ufshcd_wl_resume,
10650 #endif
10651 	SET_RUNTIME_PM_OPS(ufshcd_wl_runtime_suspend, ufshcd_wl_runtime_resume, NULL)
10652 };
10653 
10654 static void ufshcd_check_header_layout(void)
10655 {
10656 	/*
10657 	 * gcc compilers before version 10 cannot do constant-folding for
10658 	 * sub-byte bitfields. Hence skip the layout checks for gcc 9 and
10659 	 * before.
10660 	 */
10661 	if (IS_ENABLED(CONFIG_CC_IS_GCC) && CONFIG_GCC_VERSION < 100000)
10662 		return;
10663 
10664 	BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10665 				.cci = 3})[0] != 3);
10666 
10667 	BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10668 				.ehs_length = 2})[1] != 2);
10669 
10670 	BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10671 				.enable_crypto = 1})[2]
10672 		     != 0x80);
10673 
10674 	BUILD_BUG_ON((((u8 *)&(struct request_desc_header){
10675 					.command_type = 5,
10676 					.data_direction = 3,
10677 					.interrupt = 1,
10678 				})[3]) != ((5 << 4) | (3 << 1) | 1));
10679 
10680 	BUILD_BUG_ON(((__le32 *)&(struct request_desc_header){
10681 				.dunl = cpu_to_le32(0xdeadbeef)})[1] !=
10682 		cpu_to_le32(0xdeadbeef));
10683 
10684 	BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10685 				.ocs = 4})[8] != 4);
10686 
10687 	BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10688 				.cds = 5})[9] != 5);
10689 
10690 	BUILD_BUG_ON(((__le32 *)&(struct request_desc_header){
10691 				.dunu = cpu_to_le32(0xbadcafe)})[3] !=
10692 		cpu_to_le32(0xbadcafe));
10693 
10694 	BUILD_BUG_ON(((u8 *)&(struct utp_upiu_header){
10695 			     .iid = 0xf })[4] != 0xf0);
10696 
10697 	BUILD_BUG_ON(((u8 *)&(struct utp_upiu_header){
10698 			     .command_set_type = 0xf })[4] != 0xf);
10699 }
10700 
10701 /*
10702  * ufs_dev_wlun_template - describes ufs device wlun
10703  * ufs-device wlun - used to send pm commands
10704  * All luns are consumers of ufs-device wlun.
10705  *
10706  * Currently, no sd driver is present for wluns.
10707  * Hence the no specific pm operations are performed.
10708  * With ufs design, SSU should be sent to ufs-device wlun.
10709  * Hence register a scsi driver for ufs wluns only.
10710  */
10711 static struct scsi_driver ufs_dev_wlun_template = {
10712 	.gendrv = {
10713 		.name = "ufs_device_wlun",
10714 		.probe = ufshcd_wl_probe,
10715 		.remove = ufshcd_wl_remove,
10716 		.pm = &ufshcd_wl_pm_ops,
10717 		.shutdown = ufshcd_wl_shutdown,
10718 	},
10719 };
10720 
10721 static int __init ufshcd_core_init(void)
10722 {
10723 	int ret;
10724 
10725 	ufshcd_check_header_layout();
10726 
10727 	ufs_debugfs_init();
10728 
10729 	ret = scsi_register_driver(&ufs_dev_wlun_template.gendrv);
10730 	if (ret)
10731 		ufs_debugfs_exit();
10732 	return ret;
10733 }
10734 
10735 static void __exit ufshcd_core_exit(void)
10736 {
10737 	ufs_debugfs_exit();
10738 	scsi_unregister_driver(&ufs_dev_wlun_template.gendrv);
10739 }
10740 
10741 module_init(ufshcd_core_init);
10742 module_exit(ufshcd_core_exit);
10743 
10744 MODULE_AUTHOR("Santosh Yaragnavi <santosh.sy@samsung.com>");
10745 MODULE_AUTHOR("Vinayak Holikatti <h.vinayak@samsung.com>");
10746 MODULE_DESCRIPTION("Generic UFS host controller driver Core");
10747 MODULE_SOFTDEP("pre: governor_simpleondemand");
10748 MODULE_LICENSE("GPL");
10749