1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Universal Flash Storage Host controller driver Core 4 * Copyright (C) 2011-2013 Samsung India Software Operations 5 * Copyright (c) 2013-2016, The Linux Foundation. All rights reserved. 6 * 7 * Authors: 8 * Santosh Yaraganavi <santosh.sy@samsung.com> 9 * Vinayak Holikatti <h.vinayak@samsung.com> 10 */ 11 12 #include <linux/async.h> 13 #include <linux/devfreq.h> 14 #include <linux/nls.h> 15 #include <linux/of.h> 16 #include <linux/bitfield.h> 17 #include <linux/blk-pm.h> 18 #include <linux/blkdev.h> 19 #include <linux/clk.h> 20 #include <linux/delay.h> 21 #include <linux/interrupt.h> 22 #include <linux/module.h> 23 #include <linux/pm_opp.h> 24 #include <linux/regulator/consumer.h> 25 #include <linux/sched/clock.h> 26 #include <linux/iopoll.h> 27 #include <scsi/scsi_cmnd.h> 28 #include <scsi/scsi_dbg.h> 29 #include <scsi/scsi_driver.h> 30 #include <scsi/scsi_eh.h> 31 #include <scsi/scsi_tcq.h> 32 #include "ufshcd-priv.h" 33 #include <ufs/ufs_quirks.h> 34 #include <ufs/unipro.h> 35 #include "ufs-sysfs.h" 36 #include "ufs-debugfs.h" 37 #include "ufs-fault-injection.h" 38 #include "ufs_bsg.h" 39 #include "ufshcd-crypto.h" 40 #include <linux/unaligned.h> 41 42 #define CREATE_TRACE_POINTS 43 #include "ufs_trace.h" 44 45 #define UFSHCD_ENABLE_INTRS (UTP_TRANSFER_REQ_COMPL |\ 46 UTP_TASK_REQ_COMPL |\ 47 UFSHCD_ERROR_MASK) 48 49 /* UIC command timeout, unit: ms */ 50 enum { 51 UIC_CMD_TIMEOUT_DEFAULT = 500, 52 UIC_CMD_TIMEOUT_MAX = 5000, 53 }; 54 /* NOP OUT retries waiting for NOP IN response */ 55 #define NOP_OUT_RETRIES 10 56 /* Timeout after 50 msecs if NOP OUT hangs without response */ 57 #define NOP_OUT_TIMEOUT 50 /* msecs */ 58 59 /* Query request retries */ 60 #define QUERY_REQ_RETRIES 3 61 /* Query request timeout */ 62 enum { 63 QUERY_REQ_TIMEOUT_MIN = 1, 64 QUERY_REQ_TIMEOUT_DEFAULT = 1500, 65 QUERY_REQ_TIMEOUT_MAX = 30000 66 }; 67 68 /* Advanced RPMB request timeout */ 69 #define ADVANCED_RPMB_REQ_TIMEOUT 3000 /* 3 seconds */ 70 71 /* Task management command timeout */ 72 #define TM_CMD_TIMEOUT 100 /* msecs */ 73 74 /* maximum number of retries for a general UIC command */ 75 #define UFS_UIC_COMMAND_RETRIES 3 76 77 /* maximum number of link-startup retries */ 78 #define DME_LINKSTARTUP_RETRIES 3 79 80 /* maximum number of reset retries before giving up */ 81 #define MAX_HOST_RESET_RETRIES 5 82 83 /* Maximum number of error handler retries before giving up */ 84 #define MAX_ERR_HANDLER_RETRIES 5 85 86 /* Expose the flag value from utp_upiu_query.value */ 87 #define MASK_QUERY_UPIU_FLAG_LOC 0xFF 88 89 /* Interrupt aggregation default timeout, unit: 40us */ 90 #define INT_AGGR_DEF_TO 0x02 91 92 /* default delay of autosuspend: 2000 ms */ 93 #define RPM_AUTOSUSPEND_DELAY_MS 2000 94 95 /* Default delay of RPM device flush delayed work */ 96 #define RPM_DEV_FLUSH_RECHECK_WORK_DELAY_MS 5000 97 98 /* Default value of wait time before gating device ref clock */ 99 #define UFSHCD_REF_CLK_GATING_WAIT_US 0xFF /* microsecs */ 100 101 /* Polling time to wait for fDeviceInit */ 102 #define FDEVICEINIT_COMPL_TIMEOUT 1500 /* millisecs */ 103 104 /* Default RTC update every 10 seconds */ 105 #define UFS_RTC_UPDATE_INTERVAL_MS (10 * MSEC_PER_SEC) 106 107 /* bMaxNumOfRTT is equal to two after device manufacturing */ 108 #define DEFAULT_MAX_NUM_RTT 2 109 110 /* UFSHC 4.0 compliant HC support this mode. */ 111 static bool use_mcq_mode = true; 112 113 static bool is_mcq_supported(struct ufs_hba *hba) 114 { 115 return hba->mcq_sup && use_mcq_mode; 116 } 117 118 module_param(use_mcq_mode, bool, 0644); 119 MODULE_PARM_DESC(use_mcq_mode, "Control MCQ mode for controllers starting from UFSHCI 4.0. 1 - enable MCQ, 0 - disable MCQ. MCQ is enabled by default"); 120 121 static unsigned int uic_cmd_timeout = UIC_CMD_TIMEOUT_DEFAULT; 122 123 static int uic_cmd_timeout_set(const char *val, const struct kernel_param *kp) 124 { 125 return param_set_uint_minmax(val, kp, UIC_CMD_TIMEOUT_DEFAULT, 126 UIC_CMD_TIMEOUT_MAX); 127 } 128 129 static const struct kernel_param_ops uic_cmd_timeout_ops = { 130 .set = uic_cmd_timeout_set, 131 .get = param_get_uint, 132 }; 133 134 module_param_cb(uic_cmd_timeout, &uic_cmd_timeout_ops, &uic_cmd_timeout, 0644); 135 MODULE_PARM_DESC(uic_cmd_timeout, 136 "UFS UIC command timeout in milliseconds. Defaults to 500ms. Supported values range from 500ms to 5 seconds inclusively"); 137 138 static unsigned int dev_cmd_timeout = QUERY_REQ_TIMEOUT_DEFAULT; 139 140 static int dev_cmd_timeout_set(const char *val, const struct kernel_param *kp) 141 { 142 return param_set_uint_minmax(val, kp, QUERY_REQ_TIMEOUT_MIN, 143 QUERY_REQ_TIMEOUT_MAX); 144 } 145 146 static const struct kernel_param_ops dev_cmd_timeout_ops = { 147 .set = dev_cmd_timeout_set, 148 .get = param_get_uint, 149 }; 150 151 module_param_cb(dev_cmd_timeout, &dev_cmd_timeout_ops, &dev_cmd_timeout, 0644); 152 MODULE_PARM_DESC(dev_cmd_timeout, 153 "UFS Device command timeout in milliseconds. Defaults to 1.5s. Supported values range from 1ms to 30 seconds inclusively"); 154 155 #define ufshcd_toggle_vreg(_dev, _vreg, _on) \ 156 ({ \ 157 int _ret; \ 158 if (_on) \ 159 _ret = ufshcd_enable_vreg(_dev, _vreg); \ 160 else \ 161 _ret = ufshcd_disable_vreg(_dev, _vreg); \ 162 _ret; \ 163 }) 164 165 #define ufshcd_hex_dump(prefix_str, buf, len) do { \ 166 size_t __len = (len); \ 167 print_hex_dump(KERN_ERR, prefix_str, \ 168 __len > 4 ? DUMP_PREFIX_OFFSET : DUMP_PREFIX_NONE,\ 169 16, 4, buf, __len, false); \ 170 } while (0) 171 172 int ufshcd_dump_regs(struct ufs_hba *hba, size_t offset, size_t len, 173 const char *prefix) 174 { 175 u32 *regs; 176 size_t pos; 177 178 if (offset % 4 != 0 || len % 4 != 0) /* keep readl happy */ 179 return -EINVAL; 180 181 regs = kzalloc(len, GFP_ATOMIC); 182 if (!regs) 183 return -ENOMEM; 184 185 for (pos = 0; pos < len; pos += 4) { 186 if (offset == 0 && 187 pos >= REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER && 188 pos <= REG_UIC_ERROR_CODE_DME) 189 continue; 190 regs[pos / 4] = ufshcd_readl(hba, offset + pos); 191 } 192 193 ufshcd_hex_dump(prefix, regs, len); 194 kfree(regs); 195 196 return 0; 197 } 198 EXPORT_SYMBOL_GPL(ufshcd_dump_regs); 199 200 enum { 201 UFSHCD_MAX_CHANNEL = 0, 202 UFSHCD_MAX_ID = 1, 203 }; 204 205 static const char *const ufshcd_state_name[] = { 206 [UFSHCD_STATE_RESET] = "reset", 207 [UFSHCD_STATE_OPERATIONAL] = "operational", 208 [UFSHCD_STATE_ERROR] = "error", 209 [UFSHCD_STATE_EH_SCHEDULED_FATAL] = "eh_fatal", 210 [UFSHCD_STATE_EH_SCHEDULED_NON_FATAL] = "eh_non_fatal", 211 }; 212 213 /* UFSHCD error handling flags */ 214 enum { 215 UFSHCD_EH_IN_PROGRESS = (1 << 0), 216 }; 217 218 /* UFSHCD UIC layer error flags */ 219 enum { 220 UFSHCD_UIC_DL_PA_INIT_ERROR = (1 << 0), /* Data link layer error */ 221 UFSHCD_UIC_DL_NAC_RECEIVED_ERROR = (1 << 1), /* Data link layer error */ 222 UFSHCD_UIC_DL_TCx_REPLAY_ERROR = (1 << 2), /* Data link layer error */ 223 UFSHCD_UIC_NL_ERROR = (1 << 3), /* Network layer error */ 224 UFSHCD_UIC_TL_ERROR = (1 << 4), /* Transport Layer error */ 225 UFSHCD_UIC_DME_ERROR = (1 << 5), /* DME error */ 226 UFSHCD_UIC_PA_GENERIC_ERROR = (1 << 6), /* Generic PA error */ 227 }; 228 229 #define ufshcd_set_eh_in_progress(h) \ 230 ((h)->eh_flags |= UFSHCD_EH_IN_PROGRESS) 231 #define ufshcd_eh_in_progress(h) \ 232 ((h)->eh_flags & UFSHCD_EH_IN_PROGRESS) 233 #define ufshcd_clear_eh_in_progress(h) \ 234 ((h)->eh_flags &= ~UFSHCD_EH_IN_PROGRESS) 235 236 const struct ufs_pm_lvl_states ufs_pm_lvl_states[] = { 237 [UFS_PM_LVL_0] = {UFS_ACTIVE_PWR_MODE, UIC_LINK_ACTIVE_STATE}, 238 [UFS_PM_LVL_1] = {UFS_ACTIVE_PWR_MODE, UIC_LINK_HIBERN8_STATE}, 239 [UFS_PM_LVL_2] = {UFS_SLEEP_PWR_MODE, UIC_LINK_ACTIVE_STATE}, 240 [UFS_PM_LVL_3] = {UFS_SLEEP_PWR_MODE, UIC_LINK_HIBERN8_STATE}, 241 [UFS_PM_LVL_4] = {UFS_POWERDOWN_PWR_MODE, UIC_LINK_HIBERN8_STATE}, 242 [UFS_PM_LVL_5] = {UFS_POWERDOWN_PWR_MODE, UIC_LINK_OFF_STATE}, 243 /* 244 * For DeepSleep, the link is first put in hibern8 and then off. 245 * Leaving the link in hibern8 is not supported. 246 */ 247 [UFS_PM_LVL_6] = {UFS_DEEPSLEEP_PWR_MODE, UIC_LINK_OFF_STATE}, 248 }; 249 250 static inline enum ufs_dev_pwr_mode 251 ufs_get_pm_lvl_to_dev_pwr_mode(enum ufs_pm_level lvl) 252 { 253 return ufs_pm_lvl_states[lvl].dev_state; 254 } 255 256 static inline enum uic_link_state 257 ufs_get_pm_lvl_to_link_pwr_state(enum ufs_pm_level lvl) 258 { 259 return ufs_pm_lvl_states[lvl].link_state; 260 } 261 262 static inline enum ufs_pm_level 263 ufs_get_desired_pm_lvl_for_dev_link_state(enum ufs_dev_pwr_mode dev_state, 264 enum uic_link_state link_state) 265 { 266 enum ufs_pm_level lvl; 267 268 for (lvl = UFS_PM_LVL_0; lvl < UFS_PM_LVL_MAX; lvl++) { 269 if ((ufs_pm_lvl_states[lvl].dev_state == dev_state) && 270 (ufs_pm_lvl_states[lvl].link_state == link_state)) 271 return lvl; 272 } 273 274 /* if no match found, return the level 0 */ 275 return UFS_PM_LVL_0; 276 } 277 278 static bool ufshcd_has_pending_tasks(struct ufs_hba *hba) 279 { 280 return hba->outstanding_tasks || hba->active_uic_cmd || 281 hba->uic_async_done; 282 } 283 284 static bool ufshcd_is_ufs_dev_busy(struct ufs_hba *hba) 285 { 286 return scsi_host_busy(hba->host) || ufshcd_has_pending_tasks(hba); 287 } 288 289 static const struct ufs_dev_quirk ufs_fixups[] = { 290 /* UFS cards deviations table */ 291 { .wmanufacturerid = UFS_VENDOR_MICRON, 292 .model = UFS_ANY_MODEL, 293 .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM }, 294 { .wmanufacturerid = UFS_VENDOR_SAMSUNG, 295 .model = UFS_ANY_MODEL, 296 .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM | 297 UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE | 298 UFS_DEVICE_QUIRK_PA_HIBER8TIME | 299 UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS }, 300 { .wmanufacturerid = UFS_VENDOR_SKHYNIX, 301 .model = UFS_ANY_MODEL, 302 .quirk = UFS_DEVICE_QUIRK_HOST_PA_SAVECONFIGTIME }, 303 { .wmanufacturerid = UFS_VENDOR_SKHYNIX, 304 .model = "hB8aL1" /*H28U62301AMR*/, 305 .quirk = UFS_DEVICE_QUIRK_HOST_VS_DEBUGSAVECONFIGTIME }, 306 { .wmanufacturerid = UFS_VENDOR_TOSHIBA, 307 .model = UFS_ANY_MODEL, 308 .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM }, 309 { .wmanufacturerid = UFS_VENDOR_TOSHIBA, 310 .model = "THGLF2G9C8KBADG", 311 .quirk = UFS_DEVICE_QUIRK_PA_TACTIVATE }, 312 { .wmanufacturerid = UFS_VENDOR_TOSHIBA, 313 .model = "THGLF2G9D8KBADG", 314 .quirk = UFS_DEVICE_QUIRK_PA_TACTIVATE }, 315 { .wmanufacturerid = UFS_VENDOR_TOSHIBA, 316 .model = "THGJFJT1E45BATP", 317 .quirk = UFS_DEVICE_QUIRK_NO_TIMESTAMP_SUPPORT }, 318 {} 319 }; 320 321 static irqreturn_t ufshcd_tmc_handler(struct ufs_hba *hba); 322 static void ufshcd_async_scan(void *data, async_cookie_t cookie); 323 static int ufshcd_reset_and_restore(struct ufs_hba *hba); 324 static int ufshcd_eh_host_reset_handler(struct scsi_cmnd *cmd); 325 static int ufshcd_clear_tm_cmd(struct ufs_hba *hba, int tag); 326 static void ufshcd_hba_exit(struct ufs_hba *hba); 327 static int ufshcd_device_init(struct ufs_hba *hba, bool init_dev_params); 328 static int ufshcd_probe_hba(struct ufs_hba *hba, bool init_dev_params); 329 static int ufshcd_setup_clocks(struct ufs_hba *hba, bool on); 330 static inline void ufshcd_add_delay_before_dme_cmd(struct ufs_hba *hba); 331 static int ufshcd_host_reset_and_restore(struct ufs_hba *hba); 332 static void ufshcd_resume_clkscaling(struct ufs_hba *hba); 333 static void ufshcd_suspend_clkscaling(struct ufs_hba *hba); 334 static int ufshcd_scale_clks(struct ufs_hba *hba, unsigned long freq, 335 bool scale_up); 336 static irqreturn_t ufshcd_intr(int irq, void *__hba); 337 static int ufshcd_change_power_mode(struct ufs_hba *hba, 338 struct ufs_pa_layer_attr *pwr_mode); 339 static int ufshcd_setup_hba_vreg(struct ufs_hba *hba, bool on); 340 static int ufshcd_setup_vreg(struct ufs_hba *hba, bool on); 341 static inline int ufshcd_config_vreg_hpm(struct ufs_hba *hba, 342 struct ufs_vreg *vreg); 343 static void ufshcd_wb_toggle_buf_flush_during_h8(struct ufs_hba *hba, 344 bool enable); 345 static void ufshcd_hba_vreg_set_lpm(struct ufs_hba *hba); 346 static void ufshcd_hba_vreg_set_hpm(struct ufs_hba *hba); 347 348 void ufshcd_enable_irq(struct ufs_hba *hba) 349 { 350 if (!hba->is_irq_enabled) { 351 enable_irq(hba->irq); 352 hba->is_irq_enabled = true; 353 } 354 } 355 EXPORT_SYMBOL_GPL(ufshcd_enable_irq); 356 357 void ufshcd_disable_irq(struct ufs_hba *hba) 358 { 359 if (hba->is_irq_enabled) { 360 disable_irq(hba->irq); 361 hba->is_irq_enabled = false; 362 } 363 } 364 EXPORT_SYMBOL_GPL(ufshcd_disable_irq); 365 366 /** 367 * ufshcd_enable_intr - enable interrupts 368 * @hba: per adapter instance 369 * @intrs: interrupt bits 370 */ 371 void ufshcd_enable_intr(struct ufs_hba *hba, u32 intrs) 372 { 373 u32 old_val = ufshcd_readl(hba, REG_INTERRUPT_ENABLE); 374 u32 new_val = old_val | intrs; 375 376 if (new_val != old_val) 377 ufshcd_writel(hba, new_val, REG_INTERRUPT_ENABLE); 378 } 379 380 /** 381 * ufshcd_disable_intr - disable interrupts 382 * @hba: per adapter instance 383 * @intrs: interrupt bits 384 */ 385 static void ufshcd_disable_intr(struct ufs_hba *hba, u32 intrs) 386 { 387 u32 old_val = ufshcd_readl(hba, REG_INTERRUPT_ENABLE); 388 u32 new_val = old_val & ~intrs; 389 390 if (new_val != old_val) 391 ufshcd_writel(hba, new_val, REG_INTERRUPT_ENABLE); 392 } 393 394 static void ufshcd_configure_wb(struct ufs_hba *hba) 395 { 396 if (!ufshcd_is_wb_allowed(hba)) 397 return; 398 399 ufshcd_wb_toggle(hba, true); 400 401 ufshcd_wb_toggle_buf_flush_during_h8(hba, true); 402 403 if (ufshcd_is_wb_buf_flush_allowed(hba)) 404 ufshcd_wb_toggle_buf_flush(hba, true); 405 } 406 407 static void ufshcd_add_cmd_upiu_trace(struct ufs_hba *hba, 408 struct ufshcd_lrb *lrb, 409 enum ufs_trace_str_t str_t) 410 { 411 struct utp_upiu_req *rq = lrb->ucd_req_ptr; 412 struct utp_upiu_header *header; 413 414 if (!trace_ufshcd_upiu_enabled()) 415 return; 416 417 if (str_t == UFS_CMD_SEND) 418 header = &rq->header; 419 else 420 header = &lrb->ucd_rsp_ptr->header; 421 422 trace_ufshcd_upiu(hba, str_t, header, &rq->sc.cdb, 423 UFS_TSF_CDB); 424 } 425 426 static void ufshcd_add_query_upiu_trace(struct ufs_hba *hba, 427 enum ufs_trace_str_t str_t, 428 struct utp_upiu_req *rq_rsp) 429 { 430 if (!trace_ufshcd_upiu_enabled()) 431 return; 432 433 trace_ufshcd_upiu(hba, str_t, &rq_rsp->header, 434 &rq_rsp->qr, UFS_TSF_OSF); 435 } 436 437 static void ufshcd_add_tm_upiu_trace(struct ufs_hba *hba, unsigned int tag, 438 enum ufs_trace_str_t str_t) 439 { 440 struct utp_task_req_desc *descp = &hba->utmrdl_base_addr[tag]; 441 442 if (!trace_ufshcd_upiu_enabled()) 443 return; 444 445 if (str_t == UFS_TM_SEND) 446 trace_ufshcd_upiu(hba, str_t, 447 &descp->upiu_req.req_header, 448 &descp->upiu_req.input_param1, 449 UFS_TSF_TM_INPUT); 450 else 451 trace_ufshcd_upiu(hba, str_t, 452 &descp->upiu_rsp.rsp_header, 453 &descp->upiu_rsp.output_param1, 454 UFS_TSF_TM_OUTPUT); 455 } 456 457 static void ufshcd_add_uic_command_trace(struct ufs_hba *hba, 458 const struct uic_command *ucmd, 459 enum ufs_trace_str_t str_t) 460 { 461 u32 cmd; 462 463 if (!trace_ufshcd_uic_command_enabled()) 464 return; 465 466 if (str_t == UFS_CMD_SEND) 467 cmd = ucmd->command; 468 else 469 cmd = ufshcd_readl(hba, REG_UIC_COMMAND); 470 471 trace_ufshcd_uic_command(hba, str_t, cmd, 472 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_1), 473 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_2), 474 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_3)); 475 } 476 477 static void ufshcd_add_command_trace(struct ufs_hba *hba, struct scsi_cmnd *cmd, 478 enum ufs_trace_str_t str_t) 479 { 480 u64 lba = 0; 481 u8 opcode = 0, group_id = 0; 482 u32 doorbell = 0; 483 u32 intr; 484 u32 hwq_id = 0; 485 struct request *rq = scsi_cmd_to_rq(cmd); 486 unsigned int tag = rq->tag; 487 struct ufshcd_lrb *lrbp = scsi_cmd_priv(cmd); 488 int transfer_len = -1; 489 490 /* trace UPIU also */ 491 ufshcd_add_cmd_upiu_trace(hba, lrbp, str_t); 492 if (!trace_ufshcd_command_enabled()) 493 return; 494 495 opcode = cmd->cmnd[0]; 496 497 if (opcode == READ_10 || opcode == WRITE_10) { 498 /* 499 * Currently we only fully trace read(10) and write(10) commands 500 */ 501 transfer_len = 502 be32_to_cpu(lrbp->ucd_req_ptr->sc.exp_data_transfer_len); 503 lba = scsi_get_lba(cmd); 504 if (opcode == WRITE_10) 505 group_id = cmd->cmnd[6]; 506 } else if (opcode == UNMAP) { 507 /* 508 * The number of Bytes to be unmapped beginning with the lba. 509 */ 510 transfer_len = blk_rq_bytes(rq); 511 lba = scsi_get_lba(cmd); 512 } 513 514 intr = ufshcd_readl(hba, REG_INTERRUPT_STATUS); 515 516 if (hba->mcq_enabled) { 517 struct ufs_hw_queue *hwq = ufshcd_mcq_req_to_hwq(hba, rq); 518 519 hwq_id = hwq->id; 520 } else { 521 doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL); 522 } 523 trace_ufshcd_command(cmd->device, hba, str_t, tag, doorbell, hwq_id, 524 transfer_len, intr, lba, opcode, group_id); 525 } 526 527 static void ufshcd_print_clk_freqs(struct ufs_hba *hba) 528 { 529 struct ufs_clk_info *clki; 530 struct list_head *head = &hba->clk_list_head; 531 532 if (list_empty(head)) 533 return; 534 535 list_for_each_entry(clki, head, list) { 536 if (!IS_ERR_OR_NULL(clki->clk) && clki->min_freq && 537 clki->max_freq) 538 dev_err(hba->dev, "clk: %s, rate: %u\n", 539 clki->name, clki->curr_freq); 540 } 541 } 542 543 static void ufshcd_print_evt(struct ufs_hba *hba, u32 id, 544 const char *err_name) 545 { 546 int i; 547 bool found = false; 548 const struct ufs_event_hist *e; 549 550 if (id >= UFS_EVT_CNT) 551 return; 552 553 e = &hba->ufs_stats.event[id]; 554 555 for (i = 0; i < UFS_EVENT_HIST_LENGTH; i++) { 556 int p = (i + e->pos) % UFS_EVENT_HIST_LENGTH; 557 558 if (e->tstamp[p] == 0) 559 continue; 560 dev_err(hba->dev, "%s[%d] = 0x%x at %lld us\n", err_name, p, 561 e->val[p], div_u64(e->tstamp[p], 1000)); 562 found = true; 563 } 564 565 if (!found) 566 dev_err(hba->dev, "No record of %s\n", err_name); 567 else 568 dev_err(hba->dev, "%s: total cnt=%llu\n", err_name, e->cnt); 569 } 570 571 static void ufshcd_print_evt_hist(struct ufs_hba *hba) 572 { 573 ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, "host_regs: "); 574 575 ufshcd_print_evt(hba, UFS_EVT_PA_ERR, "pa_err"); 576 ufshcd_print_evt(hba, UFS_EVT_DL_ERR, "dl_err"); 577 ufshcd_print_evt(hba, UFS_EVT_NL_ERR, "nl_err"); 578 ufshcd_print_evt(hba, UFS_EVT_TL_ERR, "tl_err"); 579 ufshcd_print_evt(hba, UFS_EVT_DME_ERR, "dme_err"); 580 ufshcd_print_evt(hba, UFS_EVT_AUTO_HIBERN8_ERR, 581 "auto_hibern8_err"); 582 ufshcd_print_evt(hba, UFS_EVT_FATAL_ERR, "fatal_err"); 583 ufshcd_print_evt(hba, UFS_EVT_LINK_STARTUP_FAIL, 584 "link_startup_fail"); 585 ufshcd_print_evt(hba, UFS_EVT_RESUME_ERR, "resume_fail"); 586 ufshcd_print_evt(hba, UFS_EVT_SUSPEND_ERR, 587 "suspend_fail"); 588 ufshcd_print_evt(hba, UFS_EVT_WL_RES_ERR, "wlun resume_fail"); 589 ufshcd_print_evt(hba, UFS_EVT_WL_SUSP_ERR, 590 "wlun suspend_fail"); 591 ufshcd_print_evt(hba, UFS_EVT_DEV_RESET, "dev_reset"); 592 ufshcd_print_evt(hba, UFS_EVT_HOST_RESET, "host_reset"); 593 ufshcd_print_evt(hba, UFS_EVT_ABORT, "task_abort"); 594 595 ufshcd_vops_dbg_register_dump(hba); 596 } 597 598 static void ufshcd_print_tr(struct ufs_hba *hba, struct scsi_cmnd *cmd, 599 bool pr_prdt) 600 { 601 struct ufshcd_lrb *lrbp = scsi_cmd_priv(cmd); 602 const int tag = scsi_cmd_to_rq(cmd)->tag; 603 int prdt_length; 604 605 if (hba->monitor.enabled) { 606 dev_err(hba->dev, "UPIU[%d] - issue time %lld us\n", tag, 607 div_u64(lrbp->issue_time_stamp_local_clock, 1000)); 608 dev_err(hba->dev, "UPIU[%d] - complete time %lld us\n", tag, 609 div_u64(lrbp->compl_time_stamp_local_clock, 1000)); 610 } 611 dev_err(hba->dev, 612 "UPIU[%d] - Transfer Request Descriptor phys@0x%llx\n", 613 tag, (u64)lrbp->utrd_dma_addr); 614 615 ufshcd_hex_dump("UPIU TRD: ", lrbp->utr_descriptor_ptr, 616 sizeof(struct utp_transfer_req_desc)); 617 dev_err(hba->dev, "UPIU[%d] - Request UPIU phys@0x%llx\n", tag, 618 (u64)lrbp->ucd_req_dma_addr); 619 ufshcd_hex_dump("UPIU REQ: ", lrbp->ucd_req_ptr, 620 sizeof(struct utp_upiu_req)); 621 dev_err(hba->dev, "UPIU[%d] - Response UPIU phys@0x%llx\n", tag, 622 (u64)lrbp->ucd_rsp_dma_addr); 623 ufshcd_hex_dump("UPIU RSP: ", lrbp->ucd_rsp_ptr, 624 sizeof(struct utp_upiu_rsp)); 625 626 prdt_length = le16_to_cpu( 627 lrbp->utr_descriptor_ptr->prd_table_length); 628 if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN) 629 prdt_length /= ufshcd_sg_entry_size(hba); 630 631 dev_err(hba->dev, 632 "UPIU[%d] - PRDT - %d entries phys@0x%llx\n", 633 tag, prdt_length, 634 (u64)lrbp->ucd_prdt_dma_addr); 635 636 if (pr_prdt) 637 ufshcd_hex_dump("UPIU PRDT: ", lrbp->ucd_prdt_ptr, 638 ufshcd_sg_entry_size(hba) * prdt_length); 639 } 640 641 static bool ufshcd_print_tr_iter(struct request *req, void *priv) 642 { 643 struct scsi_device *sdev = req->q->queuedata; 644 struct Scsi_Host *shost = sdev->host; 645 struct ufs_hba *hba = shost_priv(shost); 646 647 if (!blk_mq_is_reserved_rq(req)) 648 ufshcd_print_tr(hba, blk_mq_rq_to_pdu(req), *(bool *)priv); 649 650 return true; 651 } 652 653 /** 654 * ufshcd_print_trs_all - print trs for all started requests. 655 * @hba: per-adapter instance. 656 * @pr_prdt: need to print prdt or not. 657 */ 658 static void ufshcd_print_trs_all(struct ufs_hba *hba, bool pr_prdt) 659 { 660 blk_mq_tagset_busy_iter(&hba->host->tag_set, ufshcd_print_tr_iter, &pr_prdt); 661 } 662 663 static void ufshcd_print_tmrs(struct ufs_hba *hba, unsigned long bitmap) 664 { 665 int tag; 666 667 for_each_set_bit(tag, &bitmap, hba->nutmrs) { 668 struct utp_task_req_desc *tmrdp = &hba->utmrdl_base_addr[tag]; 669 670 dev_err(hba->dev, "TM[%d] - Task Management Header\n", tag); 671 ufshcd_hex_dump("", tmrdp, sizeof(*tmrdp)); 672 } 673 } 674 675 static void ufshcd_print_host_state(struct ufs_hba *hba) 676 { 677 const struct scsi_device *sdev_ufs = hba->ufs_device_wlun; 678 679 dev_err(hba->dev, "UFS Host state=%d\n", hba->ufshcd_state); 680 dev_err(hba->dev, "%d outstanding reqs, tasks=0x%lx\n", 681 scsi_host_busy(hba->host), hba->outstanding_tasks); 682 dev_err(hba->dev, "saved_err=0x%x, saved_uic_err=0x%x\n", 683 hba->saved_err, hba->saved_uic_err); 684 dev_err(hba->dev, "Device power mode=%d, UIC link state=%d\n", 685 hba->curr_dev_pwr_mode, hba->uic_link_state); 686 dev_err(hba->dev, "PM in progress=%d, sys. suspended=%d\n", 687 hba->pm_op_in_progress, hba->is_sys_suspended); 688 dev_err(hba->dev, "Auto BKOPS=%d, Host self-block=%d\n", 689 hba->auto_bkops_enabled, hba->host->host_self_blocked); 690 dev_err(hba->dev, "Clk gate=%d\n", hba->clk_gating.state); 691 dev_err(hba->dev, 692 "last_hibern8_exit_tstamp at %lld us, hibern8_exit_cnt=%d\n", 693 div_u64(hba->ufs_stats.last_hibern8_exit_tstamp, 1000), 694 hba->ufs_stats.hibern8_exit_cnt); 695 dev_err(hba->dev, "error handling flags=0x%x, req. abort count=%d\n", 696 hba->eh_flags, hba->req_abort_count); 697 dev_err(hba->dev, "hba->ufs_version=0x%x, Host capabilities=0x%x, caps=0x%x\n", 698 hba->ufs_version, hba->capabilities, hba->caps); 699 dev_err(hba->dev, "quirks=0x%x, dev. quirks=0x%x\n", hba->quirks, 700 hba->dev_quirks); 701 if (sdev_ufs) 702 dev_err(hba->dev, "UFS dev info: %.8s %.16s rev %.4s\n", 703 sdev_ufs->vendor, sdev_ufs->model, sdev_ufs->rev); 704 705 ufshcd_print_clk_freqs(hba); 706 } 707 708 /** 709 * ufshcd_print_pwr_info - print power params as saved in hba 710 * power info 711 * @hba: per-adapter instance 712 */ 713 static void ufshcd_print_pwr_info(struct ufs_hba *hba) 714 { 715 static const char * const names[] = { 716 "INVALID MODE", 717 "FAST MODE", 718 "SLOW_MODE", 719 "INVALID MODE", 720 "FASTAUTO_MODE", 721 "SLOWAUTO_MODE", 722 "INVALID MODE", 723 }; 724 725 /* 726 * Using dev_dbg to avoid messages during runtime PM to avoid 727 * never-ending cycles of messages written back to storage by user space 728 * causing runtime resume, causing more messages and so on. 729 */ 730 dev_dbg(hba->dev, "%s:[RX, TX]: gear=[%d, %d], lane[%d, %d], pwr[%s, %s], rate = %d\n", 731 __func__, 732 hba->pwr_info.gear_rx, hba->pwr_info.gear_tx, 733 hba->pwr_info.lane_rx, hba->pwr_info.lane_tx, 734 names[hba->pwr_info.pwr_rx], 735 names[hba->pwr_info.pwr_tx], 736 hba->pwr_info.hs_rate); 737 } 738 739 static void ufshcd_device_reset(struct ufs_hba *hba) 740 { 741 int err; 742 743 err = ufshcd_vops_device_reset(hba); 744 745 if (!err) { 746 ufshcd_set_ufs_dev_active(hba); 747 if (ufshcd_is_wb_allowed(hba)) { 748 hba->dev_info.wb_enabled = false; 749 hba->dev_info.wb_buf_flush_enabled = false; 750 } 751 if (hba->dev_info.rtc_type == UFS_RTC_RELATIVE) 752 hba->dev_info.rtc_time_baseline = 0; 753 } 754 if (err != -EOPNOTSUPP) 755 ufshcd_update_evt_hist(hba, UFS_EVT_DEV_RESET, err); 756 } 757 758 void ufshcd_delay_us(unsigned long us, unsigned long tolerance) 759 { 760 if (!us) 761 return; 762 763 if (us < 10) 764 udelay(us); 765 else 766 usleep_range(us, us + tolerance); 767 } 768 EXPORT_SYMBOL_GPL(ufshcd_delay_us); 769 770 /** 771 * ufshcd_wait_for_register - wait for register value to change 772 * @hba: per-adapter interface 773 * @reg: mmio register offset 774 * @mask: mask to apply to the read register value 775 * @val: value to wait for 776 * @interval_us: polling interval in microseconds 777 * @timeout_ms: timeout in milliseconds 778 * 779 * Return: -ETIMEDOUT on error, zero on success. 780 */ 781 static int ufshcd_wait_for_register(struct ufs_hba *hba, u32 reg, u32 mask, 782 u32 val, unsigned long interval_us, 783 unsigned long timeout_ms) 784 { 785 u32 v; 786 787 val &= mask; /* ignore bits that we don't intend to wait on */ 788 789 return read_poll_timeout(ufshcd_readl, v, (v & mask) == val, 790 interval_us, timeout_ms * 1000, false, hba, reg); 791 } 792 793 /** 794 * ufshcd_get_intr_mask - Get the interrupt bit mask 795 * @hba: Pointer to adapter instance 796 * 797 * Return: interrupt bit mask per version 798 */ 799 static inline u32 ufshcd_get_intr_mask(struct ufs_hba *hba) 800 { 801 if (hba->ufs_version <= ufshci_version(2, 0)) 802 return INTERRUPT_MASK_ALL_VER_11; 803 804 return INTERRUPT_MASK_ALL_VER_21; 805 } 806 807 /** 808 * ufshcd_get_ufs_version - Get the UFS version supported by the HBA 809 * @hba: Pointer to adapter instance 810 * 811 * Return: UFSHCI version supported by the controller 812 */ 813 static inline u32 ufshcd_get_ufs_version(struct ufs_hba *hba) 814 { 815 u32 ufshci_ver; 816 817 if (hba->quirks & UFSHCD_QUIRK_BROKEN_UFS_HCI_VERSION) 818 ufshci_ver = ufshcd_vops_get_ufs_hci_version(hba); 819 else 820 ufshci_ver = ufshcd_readl(hba, REG_UFS_VERSION); 821 822 /* 823 * UFSHCI v1.x uses a different version scheme, in order 824 * to allow the use of comparisons with the ufshci_version 825 * function, we convert it to the same scheme as ufs 2.0+. 826 */ 827 if (ufshci_ver & 0x00010000) 828 return ufshci_version(1, ufshci_ver & 0x00000100); 829 830 return ufshci_ver; 831 } 832 833 /** 834 * ufshcd_is_device_present - Check if any device connected to 835 * the host controller 836 * @hba: pointer to adapter instance 837 * 838 * Return: true if device present, false if no device detected 839 */ 840 static inline bool ufshcd_is_device_present(struct ufs_hba *hba) 841 { 842 return ufshcd_readl(hba, REG_CONTROLLER_STATUS) & DEVICE_PRESENT; 843 } 844 845 /** 846 * ufshcd_get_tr_ocs - Get the UTRD Overall Command Status 847 * @lrbp: pointer to local command reference block 848 * @cqe: pointer to the completion queue entry 849 * 850 * This function is used to get the OCS field from UTRD 851 * 852 * Return: the OCS field in the UTRD. 853 */ 854 static enum utp_ocs ufshcd_get_tr_ocs(struct ufshcd_lrb *lrbp, 855 struct cq_entry *cqe) 856 { 857 if (cqe) 858 return cqe->overall_status & MASK_OCS; 859 860 return lrbp->utr_descriptor_ptr->header.ocs & MASK_OCS; 861 } 862 863 /** 864 * ufshcd_utrl_clear() - Clear requests from the controller request list. 865 * @hba: per adapter instance 866 * @mask: mask with one bit set for each request to be cleared 867 */ 868 static inline void ufshcd_utrl_clear(struct ufs_hba *hba, u32 mask) 869 { 870 if (hba->quirks & UFSHCI_QUIRK_BROKEN_REQ_LIST_CLR) 871 mask = ~mask; 872 /* 873 * From the UFSHCI specification: "UTP Transfer Request List CLear 874 * Register (UTRLCLR): This field is bit significant. Each bit 875 * corresponds to a slot in the UTP Transfer Request List, where bit 0 876 * corresponds to request slot 0. A bit in this field is set to ‘0’ 877 * by host software to indicate to the host controller that a transfer 878 * request slot is cleared. The host controller 879 * shall free up any resources associated to the request slot 880 * immediately, and shall set the associated bit in UTRLDBR to ‘0’. The 881 * host software indicates no change to request slots by setting the 882 * associated bits in this field to ‘1’. Bits in this field shall only 883 * be set ‘1’ or ‘0’ by host software when UTRLRSR is set to ‘1’." 884 */ 885 ufshcd_writel(hba, ~mask, REG_UTP_TRANSFER_REQ_LIST_CLEAR); 886 } 887 888 /** 889 * ufshcd_utmrl_clear - Clear a bit in UTMRLCLR register 890 * @hba: per adapter instance 891 * @pos: position of the bit to be cleared 892 */ 893 static inline void ufshcd_utmrl_clear(struct ufs_hba *hba, u32 pos) 894 { 895 if (hba->quirks & UFSHCI_QUIRK_BROKEN_REQ_LIST_CLR) 896 ufshcd_writel(hba, (1 << pos), REG_UTP_TASK_REQ_LIST_CLEAR); 897 else 898 ufshcd_writel(hba, ~(1 << pos), REG_UTP_TASK_REQ_LIST_CLEAR); 899 } 900 901 /** 902 * ufshcd_get_lists_status - Check UCRDY, UTRLRDY and UTMRLRDY 903 * @reg: Register value of host controller status 904 * 905 * Return: 0 on success; a positive value if failed. 906 */ 907 static inline int ufshcd_get_lists_status(u32 reg) 908 { 909 return !((reg & UFSHCD_STATUS_READY) == UFSHCD_STATUS_READY); 910 } 911 912 /** 913 * ufshcd_get_uic_cmd_result - Get the UIC command result 914 * @hba: Pointer to adapter instance 915 * 916 * This function gets the result of UIC command completion 917 * 918 * Return: 0 on success; non-zero value on error. 919 */ 920 static inline int ufshcd_get_uic_cmd_result(struct ufs_hba *hba) 921 { 922 return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_2) & 923 MASK_UIC_COMMAND_RESULT; 924 } 925 926 /** 927 * ufshcd_get_dme_attr_val - Get the value of attribute returned by UIC command 928 * @hba: Pointer to adapter instance 929 * 930 * This function gets UIC command argument3 931 * 932 * Return: 0 on success; non-zero value on error. 933 */ 934 static inline u32 ufshcd_get_dme_attr_val(struct ufs_hba *hba) 935 { 936 return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_3); 937 } 938 939 /** 940 * ufshcd_get_req_rsp - returns the TR response transaction type 941 * @ucd_rsp_ptr: pointer to response UPIU 942 * 943 * Return: UPIU type. 944 */ 945 static inline enum upiu_response_transaction 946 ufshcd_get_req_rsp(struct utp_upiu_rsp *ucd_rsp_ptr) 947 { 948 return ucd_rsp_ptr->header.transaction_code; 949 } 950 951 /** 952 * ufshcd_is_exception_event - Check if the device raised an exception event 953 * @ucd_rsp_ptr: pointer to response UPIU 954 * 955 * The function checks if the device raised an exception event indicated in 956 * the Device Information field of response UPIU. 957 * 958 * Return: true if exception is raised, false otherwise. 959 */ 960 static inline bool ufshcd_is_exception_event(struct utp_upiu_rsp *ucd_rsp_ptr) 961 { 962 return ucd_rsp_ptr->header.device_information & 1; 963 } 964 965 /** 966 * ufshcd_reset_intr_aggr - Reset interrupt aggregation values. 967 * @hba: per adapter instance 968 */ 969 static inline void 970 ufshcd_reset_intr_aggr(struct ufs_hba *hba) 971 { 972 ufshcd_writel(hba, INT_AGGR_ENABLE | 973 INT_AGGR_COUNTER_AND_TIMER_RESET, 974 REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL); 975 } 976 977 /** 978 * ufshcd_config_intr_aggr - Configure interrupt aggregation values. 979 * @hba: per adapter instance 980 * @cnt: Interrupt aggregation counter threshold 981 * @tmout: Interrupt aggregation timeout value 982 */ 983 static inline void 984 ufshcd_config_intr_aggr(struct ufs_hba *hba, u8 cnt, u8 tmout) 985 { 986 ufshcd_writel(hba, INT_AGGR_ENABLE | INT_AGGR_PARAM_WRITE | 987 INT_AGGR_COUNTER_THLD_VAL(cnt) | 988 INT_AGGR_TIMEOUT_VAL(tmout), 989 REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL); 990 } 991 992 /** 993 * ufshcd_disable_intr_aggr - Disables interrupt aggregation. 994 * @hba: per adapter instance 995 */ 996 static inline void ufshcd_disable_intr_aggr(struct ufs_hba *hba) 997 { 998 ufshcd_writel(hba, 0, REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL); 999 } 1000 1001 /** 1002 * ufshcd_enable_run_stop_reg - Enable run-stop registers, 1003 * When run-stop registers are set to 1, it indicates the 1004 * host controller that it can process the requests 1005 * @hba: per adapter instance 1006 */ 1007 static void ufshcd_enable_run_stop_reg(struct ufs_hba *hba) 1008 { 1009 ufshcd_writel(hba, UTP_TASK_REQ_LIST_RUN_STOP_BIT, 1010 REG_UTP_TASK_REQ_LIST_RUN_STOP); 1011 ufshcd_writel(hba, UTP_TRANSFER_REQ_LIST_RUN_STOP_BIT, 1012 REG_UTP_TRANSFER_REQ_LIST_RUN_STOP); 1013 } 1014 1015 /** 1016 * ufshcd_hba_start - Start controller initialization sequence 1017 * @hba: per adapter instance 1018 */ 1019 static inline void ufshcd_hba_start(struct ufs_hba *hba) 1020 { 1021 u32 val = CONTROLLER_ENABLE; 1022 1023 if (ufshcd_crypto_enable(hba)) 1024 val |= CRYPTO_GENERAL_ENABLE; 1025 1026 ufshcd_writel(hba, val, REG_CONTROLLER_ENABLE); 1027 } 1028 1029 /** 1030 * ufshcd_is_hba_active - Get controller state 1031 * @hba: per adapter instance 1032 * 1033 * Return: true if and only if the controller is active. 1034 */ 1035 bool ufshcd_is_hba_active(struct ufs_hba *hba) 1036 { 1037 return ufshcd_readl(hba, REG_CONTROLLER_ENABLE) & CONTROLLER_ENABLE; 1038 } 1039 EXPORT_SYMBOL_GPL(ufshcd_is_hba_active); 1040 1041 /** 1042 * ufshcd_pm_qos_init - initialize PM QoS request 1043 * @hba: per adapter instance 1044 */ 1045 void ufshcd_pm_qos_init(struct ufs_hba *hba) 1046 { 1047 guard(mutex)(&hba->pm_qos_mutex); 1048 1049 if (hba->pm_qos_enabled) 1050 return; 1051 1052 cpu_latency_qos_add_request(&hba->pm_qos_req, PM_QOS_DEFAULT_VALUE); 1053 1054 if (cpu_latency_qos_request_active(&hba->pm_qos_req)) 1055 hba->pm_qos_enabled = true; 1056 } 1057 1058 /** 1059 * ufshcd_pm_qos_exit - remove request from PM QoS 1060 * @hba: per adapter instance 1061 */ 1062 void ufshcd_pm_qos_exit(struct ufs_hba *hba) 1063 { 1064 guard(mutex)(&hba->pm_qos_mutex); 1065 1066 if (!hba->pm_qos_enabled) 1067 return; 1068 1069 cpu_latency_qos_remove_request(&hba->pm_qos_req); 1070 hba->pm_qos_enabled = false; 1071 } 1072 1073 /** 1074 * ufshcd_pm_qos_update - update PM QoS request 1075 * @hba: per adapter instance 1076 * @on: If True, vote for perf PM QoS mode otherwise power save mode 1077 */ 1078 void ufshcd_pm_qos_update(struct ufs_hba *hba, bool on) 1079 { 1080 guard(mutex)(&hba->pm_qos_mutex); 1081 1082 if (!hba->pm_qos_enabled) 1083 return; 1084 1085 cpu_latency_qos_update_request(&hba->pm_qos_req, on ? 0 : PM_QOS_DEFAULT_VALUE); 1086 } 1087 EXPORT_SYMBOL_GPL(ufshcd_pm_qos_update); 1088 1089 /** 1090 * ufshcd_set_clk_freq - set UFS controller clock frequencies 1091 * @hba: per adapter instance 1092 * @scale_up: If True, set max possible frequency othewise set low frequency 1093 * 1094 * Return: 0 if successful; < 0 upon failure. 1095 */ 1096 static int ufshcd_set_clk_freq(struct ufs_hba *hba, bool scale_up) 1097 { 1098 int ret = 0; 1099 struct ufs_clk_info *clki; 1100 struct list_head *head = &hba->clk_list_head; 1101 1102 if (list_empty(head)) 1103 goto out; 1104 1105 list_for_each_entry(clki, head, list) { 1106 if (!IS_ERR_OR_NULL(clki->clk)) { 1107 if (scale_up && clki->max_freq) { 1108 if (clki->curr_freq == clki->max_freq) 1109 continue; 1110 1111 ret = clk_set_rate(clki->clk, clki->max_freq); 1112 if (ret) { 1113 dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n", 1114 __func__, clki->name, 1115 clki->max_freq, ret); 1116 break; 1117 } 1118 trace_ufshcd_clk_scaling(hba, 1119 "scaled up", clki->name, 1120 clki->curr_freq, 1121 clki->max_freq); 1122 1123 clki->curr_freq = clki->max_freq; 1124 1125 } else if (!scale_up && clki->min_freq) { 1126 if (clki->curr_freq == clki->min_freq) 1127 continue; 1128 1129 ret = clk_set_rate(clki->clk, clki->min_freq); 1130 if (ret) { 1131 dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n", 1132 __func__, clki->name, 1133 clki->min_freq, ret); 1134 break; 1135 } 1136 trace_ufshcd_clk_scaling(hba, 1137 "scaled down", clki->name, 1138 clki->curr_freq, 1139 clki->min_freq); 1140 clki->curr_freq = clki->min_freq; 1141 } 1142 } 1143 dev_dbg(hba->dev, "%s: clk: %s, rate: %lu\n", __func__, 1144 clki->name, clk_get_rate(clki->clk)); 1145 } 1146 1147 out: 1148 return ret; 1149 } 1150 1151 int ufshcd_opp_config_clks(struct device *dev, struct opp_table *opp_table, 1152 struct dev_pm_opp *opp, void *data, 1153 bool scaling_down) 1154 { 1155 struct ufs_hba *hba = dev_get_drvdata(dev); 1156 struct list_head *head = &hba->clk_list_head; 1157 struct ufs_clk_info *clki; 1158 unsigned long freq; 1159 u8 idx = 0; 1160 int ret; 1161 1162 list_for_each_entry(clki, head, list) { 1163 if (!IS_ERR_OR_NULL(clki->clk)) { 1164 freq = dev_pm_opp_get_freq_indexed(opp, idx++); 1165 1166 /* Do not set rate for clocks having frequency as 0 */ 1167 if (!freq) 1168 continue; 1169 1170 ret = clk_set_rate(clki->clk, freq); 1171 if (ret) { 1172 dev_err(dev, "%s: %s clk set rate(%ldHz) failed, %d\n", 1173 __func__, clki->name, freq, ret); 1174 return ret; 1175 } 1176 1177 trace_ufshcd_clk_scaling(hba, 1178 (scaling_down ? "scaled down" : "scaled up"), 1179 clki->name, hba->clk_scaling.target_freq, freq); 1180 } 1181 } 1182 1183 return 0; 1184 } 1185 EXPORT_SYMBOL_GPL(ufshcd_opp_config_clks); 1186 1187 static int ufshcd_opp_set_rate(struct ufs_hba *hba, unsigned long freq) 1188 { 1189 struct dev_pm_opp *opp; 1190 int ret; 1191 1192 opp = dev_pm_opp_find_freq_floor_indexed(hba->dev, 1193 &freq, 0); 1194 if (IS_ERR(opp)) 1195 return PTR_ERR(opp); 1196 1197 ret = dev_pm_opp_set_opp(hba->dev, opp); 1198 dev_pm_opp_put(opp); 1199 1200 return ret; 1201 } 1202 1203 /** 1204 * ufshcd_scale_clks - scale up or scale down UFS controller clocks 1205 * @hba: per adapter instance 1206 * @freq: frequency to scale 1207 * @scale_up: True if scaling up and false if scaling down 1208 * 1209 * Return: 0 if successful; < 0 upon failure. 1210 */ 1211 static int ufshcd_scale_clks(struct ufs_hba *hba, unsigned long freq, 1212 bool scale_up) 1213 { 1214 int ret = 0; 1215 ktime_t start = ktime_get(); 1216 1217 ret = ufshcd_vops_clk_scale_notify(hba, scale_up, freq, PRE_CHANGE); 1218 if (ret) 1219 goto out; 1220 1221 if (hba->use_pm_opp) 1222 ret = ufshcd_opp_set_rate(hba, freq); 1223 else 1224 ret = ufshcd_set_clk_freq(hba, scale_up); 1225 if (ret) 1226 goto out; 1227 1228 ret = ufshcd_vops_clk_scale_notify(hba, scale_up, freq, POST_CHANGE); 1229 if (ret) { 1230 if (hba->use_pm_opp) 1231 ufshcd_opp_set_rate(hba, 1232 hba->devfreq->previous_freq); 1233 else 1234 ufshcd_set_clk_freq(hba, !scale_up); 1235 goto out; 1236 } 1237 1238 ufshcd_pm_qos_update(hba, scale_up); 1239 1240 out: 1241 trace_ufshcd_profile_clk_scaling(hba, 1242 (scale_up ? "up" : "down"), 1243 ktime_to_us(ktime_sub(ktime_get(), start)), ret); 1244 return ret; 1245 } 1246 1247 /** 1248 * ufshcd_is_devfreq_scaling_required - check if scaling is required or not 1249 * @hba: per adapter instance 1250 * @freq: frequency to scale 1251 * @scale_up: True if scaling up and false if scaling down 1252 * 1253 * Return: true if scaling is required, false otherwise. 1254 */ 1255 static bool ufshcd_is_devfreq_scaling_required(struct ufs_hba *hba, 1256 unsigned long freq, bool scale_up) 1257 { 1258 struct ufs_clk_info *clki; 1259 struct list_head *head = &hba->clk_list_head; 1260 1261 if (list_empty(head)) 1262 return false; 1263 1264 if (hba->use_pm_opp) 1265 return freq != hba->clk_scaling.target_freq; 1266 1267 list_for_each_entry(clki, head, list) { 1268 if (!IS_ERR_OR_NULL(clki->clk)) { 1269 if (scale_up && clki->max_freq) { 1270 if (clki->curr_freq == clki->max_freq) 1271 continue; 1272 return true; 1273 } else if (!scale_up && clki->min_freq) { 1274 if (clki->curr_freq == clki->min_freq) 1275 continue; 1276 return true; 1277 } 1278 } 1279 } 1280 1281 return false; 1282 } 1283 1284 /* 1285 * Determine the number of pending commands by counting the bits in the SCSI 1286 * device budget maps. This approach has been selected because a bit is set in 1287 * the budget map before scsi_host_queue_ready() checks the host_self_blocked 1288 * flag. The host_self_blocked flag can be modified by calling 1289 * scsi_block_requests() or scsi_unblock_requests(). 1290 */ 1291 static u32 ufshcd_pending_cmds(struct ufs_hba *hba) 1292 { 1293 struct scsi_device *sdev; 1294 unsigned long flags; 1295 u32 pending = 0; 1296 1297 spin_lock_irqsave(hba->host->host_lock, flags); 1298 __shost_for_each_device(sdev, hba->host) 1299 pending += scsi_device_busy(sdev); 1300 spin_unlock_irqrestore(hba->host->host_lock, flags); 1301 1302 return pending; 1303 } 1304 1305 /* 1306 * Wait until all pending SCSI commands and TMFs have finished or the timeout 1307 * has expired. 1308 * 1309 * Return: 0 upon success; -EBUSY upon timeout. 1310 */ 1311 static int ufshcd_wait_for_pending_cmds(struct ufs_hba *hba, 1312 u64 wait_timeout_us) 1313 { 1314 int ret = 0; 1315 u32 tm_doorbell; 1316 u32 tr_pending; 1317 bool timeout = false, do_last_check = false; 1318 ktime_t start; 1319 1320 ufshcd_hold(hba); 1321 /* 1322 * Wait for all the outstanding tasks/transfer requests. 1323 * Verify by checking the doorbell registers are clear. 1324 */ 1325 start = ktime_get(); 1326 do { 1327 if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL) { 1328 ret = -EBUSY; 1329 goto out; 1330 } 1331 1332 tm_doorbell = ufshcd_readl(hba, REG_UTP_TASK_REQ_DOOR_BELL); 1333 tr_pending = ufshcd_pending_cmds(hba); 1334 if (!tm_doorbell && !tr_pending) { 1335 timeout = false; 1336 break; 1337 } else if (do_last_check) { 1338 break; 1339 } 1340 1341 io_schedule_timeout(msecs_to_jiffies(20)); 1342 if (ktime_to_us(ktime_sub(ktime_get(), start)) > 1343 wait_timeout_us) { 1344 timeout = true; 1345 /* 1346 * We might have scheduled out for long time so make 1347 * sure to check if doorbells are cleared by this time 1348 * or not. 1349 */ 1350 do_last_check = true; 1351 } 1352 } while (tm_doorbell || tr_pending); 1353 1354 if (timeout) { 1355 dev_err(hba->dev, 1356 "%s: timedout waiting for doorbell to clear (tm=0x%x, tr=0x%x)\n", 1357 __func__, tm_doorbell, tr_pending); 1358 ret = -EBUSY; 1359 } 1360 out: 1361 ufshcd_release(hba); 1362 return ret; 1363 } 1364 1365 /** 1366 * ufshcd_scale_gear - scale up/down UFS gear 1367 * @hba: per adapter instance 1368 * @target_gear: target gear to scale to 1369 * @scale_up: True for scaling up gear and false for scaling down 1370 * 1371 * Return: 0 for success; -EBUSY if scaling can't happen at this time; 1372 * non-zero for any other errors. 1373 */ 1374 static int ufshcd_scale_gear(struct ufs_hba *hba, u32 target_gear, bool scale_up) 1375 { 1376 int ret = 0; 1377 struct ufs_pa_layer_attr new_pwr_info; 1378 1379 if (target_gear) { 1380 new_pwr_info = hba->pwr_info; 1381 new_pwr_info.gear_tx = target_gear; 1382 new_pwr_info.gear_rx = target_gear; 1383 1384 goto config_pwr_mode; 1385 } 1386 1387 /* Legacy gear scaling, in case vops_freq_to_gear_speed() is not implemented */ 1388 if (scale_up) { 1389 memcpy(&new_pwr_info, &hba->clk_scaling.saved_pwr_info, 1390 sizeof(struct ufs_pa_layer_attr)); 1391 } else { 1392 memcpy(&new_pwr_info, &hba->pwr_info, 1393 sizeof(struct ufs_pa_layer_attr)); 1394 1395 if (hba->pwr_info.gear_tx > hba->clk_scaling.min_gear || 1396 hba->pwr_info.gear_rx > hba->clk_scaling.min_gear) { 1397 /* save the current power mode */ 1398 memcpy(&hba->clk_scaling.saved_pwr_info, 1399 &hba->pwr_info, 1400 sizeof(struct ufs_pa_layer_attr)); 1401 1402 /* scale down gear */ 1403 new_pwr_info.gear_tx = hba->clk_scaling.min_gear; 1404 new_pwr_info.gear_rx = hba->clk_scaling.min_gear; 1405 } 1406 } 1407 1408 config_pwr_mode: 1409 /* check if the power mode needs to be changed or not? */ 1410 ret = ufshcd_config_pwr_mode(hba, &new_pwr_info); 1411 if (ret) 1412 dev_err(hba->dev, "%s: failed err %d, old gear: (tx %d rx %d), new gear: (tx %d rx %d)", 1413 __func__, ret, 1414 hba->pwr_info.gear_tx, hba->pwr_info.gear_rx, 1415 new_pwr_info.gear_tx, new_pwr_info.gear_rx); 1416 1417 return ret; 1418 } 1419 1420 /* 1421 * Wait until all pending SCSI commands and TMFs have finished or the timeout 1422 * has expired. 1423 * 1424 * Return: 0 upon success; -EBUSY upon timeout. 1425 */ 1426 static int ufshcd_clock_scaling_prepare(struct ufs_hba *hba, u64 timeout_us) 1427 { 1428 int ret = 0; 1429 /* 1430 * make sure that there are no outstanding requests when 1431 * clock scaling is in progress 1432 */ 1433 mutex_lock(&hba->host->scan_mutex); 1434 blk_mq_quiesce_tagset(&hba->host->tag_set); 1435 mutex_lock(&hba->wb_mutex); 1436 down_write(&hba->clk_scaling_lock); 1437 1438 if (!hba->clk_scaling.is_allowed || 1439 ufshcd_wait_for_pending_cmds(hba, timeout_us)) { 1440 ret = -EBUSY; 1441 up_write(&hba->clk_scaling_lock); 1442 mutex_unlock(&hba->wb_mutex); 1443 blk_mq_unquiesce_tagset(&hba->host->tag_set); 1444 mutex_unlock(&hba->host->scan_mutex); 1445 goto out; 1446 } 1447 1448 /* let's not get into low power until clock scaling is completed */ 1449 ufshcd_hold(hba); 1450 1451 out: 1452 return ret; 1453 } 1454 1455 static void ufshcd_clock_scaling_unprepare(struct ufs_hba *hba, int err) 1456 { 1457 up_write(&hba->clk_scaling_lock); 1458 mutex_unlock(&hba->wb_mutex); 1459 blk_mq_unquiesce_tagset(&hba->host->tag_set); 1460 mutex_unlock(&hba->host->scan_mutex); 1461 1462 /* Enable Write Booster if current gear requires it else disable it */ 1463 if (ufshcd_enable_wb_if_scaling_up(hba) && !err) 1464 ufshcd_wb_toggle(hba, hba->pwr_info.gear_rx >= hba->clk_scaling.wb_gear); 1465 1466 ufshcd_release(hba); 1467 } 1468 1469 /** 1470 * ufshcd_devfreq_scale - scale up/down UFS clocks and gear 1471 * @hba: per adapter instance 1472 * @freq: frequency to scale 1473 * @scale_up: True for scaling up and false for scalin down 1474 * 1475 * Return: 0 for success; -EBUSY if scaling can't happen at this time; non-zero 1476 * for any other errors. 1477 */ 1478 static int ufshcd_devfreq_scale(struct ufs_hba *hba, unsigned long freq, 1479 bool scale_up) 1480 { 1481 u32 old_gear = hba->pwr_info.gear_rx; 1482 u32 new_gear = 0; 1483 int ret = 0; 1484 1485 new_gear = ufshcd_vops_freq_to_gear_speed(hba, freq); 1486 1487 ret = ufshcd_clock_scaling_prepare(hba, 1 * USEC_PER_SEC); 1488 if (ret) 1489 return ret; 1490 1491 /* scale down the gear before scaling down clocks */ 1492 if (!scale_up) { 1493 ret = ufshcd_scale_gear(hba, new_gear, false); 1494 if (ret) 1495 goto out_unprepare; 1496 } 1497 1498 ret = ufshcd_scale_clks(hba, freq, scale_up); 1499 if (ret) { 1500 if (!scale_up) 1501 ufshcd_scale_gear(hba, old_gear, true); 1502 goto out_unprepare; 1503 } 1504 1505 /* scale up the gear after scaling up clocks */ 1506 if (scale_up) { 1507 ret = ufshcd_scale_gear(hba, new_gear, true); 1508 if (ret) { 1509 ufshcd_scale_clks(hba, hba->devfreq->previous_freq, 1510 false); 1511 goto out_unprepare; 1512 } 1513 } 1514 1515 out_unprepare: 1516 ufshcd_clock_scaling_unprepare(hba, ret); 1517 return ret; 1518 } 1519 1520 static void ufshcd_clk_scaling_suspend_work(struct work_struct *work) 1521 { 1522 struct ufs_hba *hba = container_of(work, struct ufs_hba, 1523 clk_scaling.suspend_work); 1524 1525 scoped_guard(spinlock_irqsave, &hba->clk_scaling.lock) 1526 { 1527 if (hba->clk_scaling.active_reqs || 1528 hba->clk_scaling.is_suspended) 1529 return; 1530 1531 hba->clk_scaling.is_suspended = true; 1532 hba->clk_scaling.window_start_t = 0; 1533 } 1534 1535 devfreq_suspend_device(hba->devfreq); 1536 } 1537 1538 static void ufshcd_clk_scaling_resume_work(struct work_struct *work) 1539 { 1540 struct ufs_hba *hba = container_of(work, struct ufs_hba, 1541 clk_scaling.resume_work); 1542 1543 scoped_guard(spinlock_irqsave, &hba->clk_scaling.lock) 1544 { 1545 if (!hba->clk_scaling.is_suspended) 1546 return; 1547 hba->clk_scaling.is_suspended = false; 1548 } 1549 1550 devfreq_resume_device(hba->devfreq); 1551 } 1552 1553 static int ufshcd_devfreq_target(struct device *dev, 1554 unsigned long *freq, u32 flags) 1555 { 1556 int ret = 0; 1557 struct ufs_hba *hba = dev_get_drvdata(dev); 1558 ktime_t start; 1559 bool scale_up = false, sched_clk_scaling_suspend_work = false; 1560 struct list_head *clk_list = &hba->clk_list_head; 1561 struct ufs_clk_info *clki; 1562 1563 if (!ufshcd_is_clkscaling_supported(hba)) 1564 return -EINVAL; 1565 1566 if (hba->use_pm_opp) { 1567 struct dev_pm_opp *opp; 1568 1569 /* Get the recommended frequency from OPP framework */ 1570 opp = devfreq_recommended_opp(dev, freq, flags); 1571 if (IS_ERR(opp)) 1572 return PTR_ERR(opp); 1573 1574 dev_pm_opp_put(opp); 1575 } else { 1576 /* Override with the closest supported frequency */ 1577 clki = list_first_entry(&hba->clk_list_head, struct ufs_clk_info, 1578 list); 1579 *freq = (unsigned long) clk_round_rate(clki->clk, *freq); 1580 } 1581 1582 scoped_guard(spinlock_irqsave, &hba->clk_scaling.lock) 1583 { 1584 if (ufshcd_eh_in_progress(hba)) 1585 return 0; 1586 1587 /* Skip scaling clock when clock scaling is suspended */ 1588 if (hba->clk_scaling.is_suspended) { 1589 dev_warn(hba->dev, "clock scaling is suspended, skip"); 1590 return 0; 1591 } 1592 1593 if (!hba->clk_scaling.active_reqs) 1594 sched_clk_scaling_suspend_work = true; 1595 1596 if (list_empty(clk_list)) 1597 goto out; 1598 1599 /* Decide based on the target or rounded-off frequency and update */ 1600 if (hba->use_pm_opp) 1601 scale_up = *freq > hba->clk_scaling.target_freq; 1602 else 1603 scale_up = *freq == clki->max_freq; 1604 1605 if (!hba->use_pm_opp && !scale_up) 1606 *freq = clki->min_freq; 1607 1608 /* Update the frequency */ 1609 if (!ufshcd_is_devfreq_scaling_required(hba, *freq, scale_up)) { 1610 ret = 0; 1611 goto out; /* no state change required */ 1612 } 1613 } 1614 1615 start = ktime_get(); 1616 ret = ufshcd_devfreq_scale(hba, *freq, scale_up); 1617 if (!ret) 1618 hba->clk_scaling.target_freq = *freq; 1619 1620 trace_ufshcd_profile_clk_scaling(hba, 1621 (scale_up ? "up" : "down"), 1622 ktime_to_us(ktime_sub(ktime_get(), start)), ret); 1623 1624 out: 1625 if (sched_clk_scaling_suspend_work && 1626 (!scale_up || hba->clk_scaling.suspend_on_no_request)) 1627 queue_work(hba->clk_scaling.workq, 1628 &hba->clk_scaling.suspend_work); 1629 1630 return ret; 1631 } 1632 1633 static int ufshcd_devfreq_get_dev_status(struct device *dev, 1634 struct devfreq_dev_status *stat) 1635 { 1636 struct ufs_hba *hba = dev_get_drvdata(dev); 1637 struct ufs_clk_scaling *scaling = &hba->clk_scaling; 1638 ktime_t curr_t; 1639 1640 if (!ufshcd_is_clkscaling_supported(hba)) 1641 return -EINVAL; 1642 1643 memset(stat, 0, sizeof(*stat)); 1644 1645 guard(spinlock_irqsave)(&hba->clk_scaling.lock); 1646 1647 curr_t = ktime_get(); 1648 if (!scaling->window_start_t) 1649 goto start_window; 1650 1651 /* 1652 * If current frequency is 0, then the ondemand governor considers 1653 * there's no initial frequency set. And it always requests to set 1654 * to max. frequency. 1655 */ 1656 if (hba->use_pm_opp) { 1657 stat->current_frequency = hba->clk_scaling.target_freq; 1658 } else { 1659 struct list_head *clk_list = &hba->clk_list_head; 1660 struct ufs_clk_info *clki; 1661 1662 clki = list_first_entry(clk_list, struct ufs_clk_info, list); 1663 stat->current_frequency = clki->curr_freq; 1664 } 1665 1666 if (scaling->is_busy_started) 1667 scaling->tot_busy_t += ktime_us_delta(curr_t, 1668 scaling->busy_start_t); 1669 stat->total_time = ktime_us_delta(curr_t, scaling->window_start_t); 1670 stat->busy_time = scaling->tot_busy_t; 1671 start_window: 1672 scaling->window_start_t = curr_t; 1673 scaling->tot_busy_t = 0; 1674 1675 if (scaling->active_reqs) { 1676 scaling->busy_start_t = curr_t; 1677 scaling->is_busy_started = true; 1678 } else { 1679 scaling->busy_start_t = 0; 1680 scaling->is_busy_started = false; 1681 } 1682 1683 return 0; 1684 } 1685 1686 static int ufshcd_devfreq_init(struct ufs_hba *hba) 1687 { 1688 struct list_head *clk_list = &hba->clk_list_head; 1689 struct ufs_clk_info *clki; 1690 struct devfreq *devfreq; 1691 int ret; 1692 1693 /* Skip devfreq if we don't have any clocks in the list */ 1694 if (list_empty(clk_list)) 1695 return 0; 1696 1697 if (!hba->use_pm_opp) { 1698 clki = list_first_entry(clk_list, struct ufs_clk_info, list); 1699 dev_pm_opp_add(hba->dev, clki->min_freq, 0); 1700 dev_pm_opp_add(hba->dev, clki->max_freq, 0); 1701 } 1702 1703 ufshcd_vops_config_scaling_param(hba, &hba->vps->devfreq_profile, 1704 &hba->vps->ondemand_data); 1705 devfreq = devfreq_add_device(hba->dev, 1706 &hba->vps->devfreq_profile, 1707 DEVFREQ_GOV_SIMPLE_ONDEMAND, 1708 &hba->vps->ondemand_data); 1709 if (IS_ERR(devfreq)) { 1710 ret = PTR_ERR(devfreq); 1711 dev_err(hba->dev, "Unable to register with devfreq %d\n", ret); 1712 1713 if (!hba->use_pm_opp) { 1714 dev_pm_opp_remove(hba->dev, clki->min_freq); 1715 dev_pm_opp_remove(hba->dev, clki->max_freq); 1716 } 1717 return ret; 1718 } 1719 1720 hba->devfreq = devfreq; 1721 1722 return 0; 1723 } 1724 1725 static void ufshcd_devfreq_remove(struct ufs_hba *hba) 1726 { 1727 struct list_head *clk_list = &hba->clk_list_head; 1728 1729 if (!hba->devfreq) 1730 return; 1731 1732 devfreq_remove_device(hba->devfreq); 1733 hba->devfreq = NULL; 1734 1735 if (!hba->use_pm_opp) { 1736 struct ufs_clk_info *clki; 1737 1738 clki = list_first_entry(clk_list, struct ufs_clk_info, list); 1739 dev_pm_opp_remove(hba->dev, clki->min_freq); 1740 dev_pm_opp_remove(hba->dev, clki->max_freq); 1741 } 1742 } 1743 1744 static void ufshcd_suspend_clkscaling(struct ufs_hba *hba) 1745 { 1746 bool suspend = false; 1747 1748 cancel_work_sync(&hba->clk_scaling.suspend_work); 1749 cancel_work_sync(&hba->clk_scaling.resume_work); 1750 1751 scoped_guard(spinlock_irqsave, &hba->clk_scaling.lock) 1752 { 1753 if (!hba->clk_scaling.is_suspended) { 1754 suspend = true; 1755 hba->clk_scaling.is_suspended = true; 1756 hba->clk_scaling.window_start_t = 0; 1757 } 1758 } 1759 1760 if (suspend) 1761 devfreq_suspend_device(hba->devfreq); 1762 } 1763 1764 static void ufshcd_resume_clkscaling(struct ufs_hba *hba) 1765 { 1766 bool resume = false; 1767 1768 scoped_guard(spinlock_irqsave, &hba->clk_scaling.lock) 1769 { 1770 if (hba->clk_scaling.is_suspended) { 1771 resume = true; 1772 hba->clk_scaling.is_suspended = false; 1773 } 1774 } 1775 1776 if (resume) 1777 devfreq_resume_device(hba->devfreq); 1778 } 1779 1780 static ssize_t ufshcd_clkscale_enable_show(struct device *dev, 1781 struct device_attribute *attr, char *buf) 1782 { 1783 struct ufs_hba *hba = dev_get_drvdata(dev); 1784 1785 return sysfs_emit(buf, "%d\n", hba->clk_scaling.is_enabled); 1786 } 1787 1788 static ssize_t ufshcd_clkscale_enable_store(struct device *dev, 1789 struct device_attribute *attr, const char *buf, size_t count) 1790 { 1791 struct ufs_hba *hba = dev_get_drvdata(dev); 1792 struct ufs_clk_info *clki; 1793 unsigned long freq; 1794 u32 value; 1795 int err = 0; 1796 1797 if (kstrtou32(buf, 0, &value)) 1798 return -EINVAL; 1799 1800 down(&hba->host_sem); 1801 if (!ufshcd_is_user_access_allowed(hba)) { 1802 err = -EBUSY; 1803 goto out; 1804 } 1805 1806 value = !!value; 1807 if (value == hba->clk_scaling.is_enabled) 1808 goto out; 1809 1810 ufshcd_rpm_get_sync(hba); 1811 ufshcd_hold(hba); 1812 1813 hba->clk_scaling.is_enabled = value; 1814 1815 if (value) { 1816 ufshcd_resume_clkscaling(hba); 1817 goto out_rel; 1818 } 1819 1820 clki = list_first_entry(&hba->clk_list_head, struct ufs_clk_info, list); 1821 freq = clki->max_freq; 1822 1823 ufshcd_suspend_clkscaling(hba); 1824 1825 if (!ufshcd_is_devfreq_scaling_required(hba, freq, true)) 1826 goto out_rel; 1827 1828 err = ufshcd_devfreq_scale(hba, freq, true); 1829 if (err) 1830 dev_err(hba->dev, "%s: failed to scale clocks up %d\n", 1831 __func__, err); 1832 else 1833 hba->clk_scaling.target_freq = freq; 1834 1835 out_rel: 1836 ufshcd_release(hba); 1837 ufshcd_rpm_put_sync(hba); 1838 out: 1839 up(&hba->host_sem); 1840 return err ? err : count; 1841 } 1842 1843 static void ufshcd_init_clk_scaling_sysfs(struct ufs_hba *hba) 1844 { 1845 hba->clk_scaling.enable_attr.show = ufshcd_clkscale_enable_show; 1846 hba->clk_scaling.enable_attr.store = ufshcd_clkscale_enable_store; 1847 sysfs_attr_init(&hba->clk_scaling.enable_attr.attr); 1848 hba->clk_scaling.enable_attr.attr.name = "clkscale_enable"; 1849 hba->clk_scaling.enable_attr.attr.mode = 0644; 1850 if (device_create_file(hba->dev, &hba->clk_scaling.enable_attr)) 1851 dev_err(hba->dev, "Failed to create sysfs for clkscale_enable\n"); 1852 } 1853 1854 static void ufshcd_remove_clk_scaling_sysfs(struct ufs_hba *hba) 1855 { 1856 if (hba->clk_scaling.enable_attr.attr.name) 1857 device_remove_file(hba->dev, &hba->clk_scaling.enable_attr); 1858 } 1859 1860 static void ufshcd_init_clk_scaling(struct ufs_hba *hba) 1861 { 1862 if (!ufshcd_is_clkscaling_supported(hba)) 1863 return; 1864 1865 if (!hba->clk_scaling.min_gear) 1866 hba->clk_scaling.min_gear = UFS_HS_G1; 1867 1868 if (!hba->clk_scaling.wb_gear) 1869 /* Use intermediate gear speed HS_G3 as the default wb_gear */ 1870 hba->clk_scaling.wb_gear = UFS_HS_G3; 1871 1872 INIT_WORK(&hba->clk_scaling.suspend_work, 1873 ufshcd_clk_scaling_suspend_work); 1874 INIT_WORK(&hba->clk_scaling.resume_work, 1875 ufshcd_clk_scaling_resume_work); 1876 1877 spin_lock_init(&hba->clk_scaling.lock); 1878 1879 hba->clk_scaling.workq = alloc_ordered_workqueue( 1880 "ufs_clkscaling_%d", WQ_MEM_RECLAIM, hba->host->host_no); 1881 1882 hba->clk_scaling.is_initialized = true; 1883 } 1884 1885 static void ufshcd_exit_clk_scaling(struct ufs_hba *hba) 1886 { 1887 if (!hba->clk_scaling.is_initialized) 1888 return; 1889 1890 ufshcd_remove_clk_scaling_sysfs(hba); 1891 destroy_workqueue(hba->clk_scaling.workq); 1892 ufshcd_devfreq_remove(hba); 1893 hba->clk_scaling.is_initialized = false; 1894 } 1895 1896 static void ufshcd_ungate_work(struct work_struct *work) 1897 { 1898 int ret; 1899 struct ufs_hba *hba = container_of(work, struct ufs_hba, 1900 clk_gating.ungate_work); 1901 1902 cancel_delayed_work_sync(&hba->clk_gating.gate_work); 1903 1904 scoped_guard(spinlock_irqsave, &hba->clk_gating.lock) { 1905 if (hba->clk_gating.state == CLKS_ON) 1906 return; 1907 } 1908 1909 ufshcd_hba_vreg_set_hpm(hba); 1910 ufshcd_setup_clocks(hba, true); 1911 1912 ufshcd_enable_irq(hba); 1913 1914 /* Exit from hibern8 */ 1915 if (ufshcd_can_hibern8_during_gating(hba)) { 1916 /* Prevent gating in this path */ 1917 hba->clk_gating.is_suspended = true; 1918 if (ufshcd_is_link_hibern8(hba)) { 1919 ret = ufshcd_uic_hibern8_exit(hba); 1920 if (ret) 1921 dev_err(hba->dev, "%s: hibern8 exit failed %d\n", 1922 __func__, ret); 1923 else 1924 ufshcd_set_link_active(hba); 1925 } 1926 hba->clk_gating.is_suspended = false; 1927 } 1928 } 1929 1930 /** 1931 * ufshcd_hold - Enable clocks that were gated earlier due to ufshcd_release. 1932 * Also, exit from hibern8 mode and set the link as active. 1933 * @hba: per adapter instance 1934 */ 1935 void ufshcd_hold(struct ufs_hba *hba) 1936 { 1937 bool flush_result; 1938 unsigned long flags; 1939 1940 if (!ufshcd_is_clkgating_allowed(hba) || 1941 !hba->clk_gating.is_initialized) 1942 return; 1943 spin_lock_irqsave(&hba->clk_gating.lock, flags); 1944 hba->clk_gating.active_reqs++; 1945 1946 start: 1947 switch (hba->clk_gating.state) { 1948 case CLKS_ON: 1949 /* 1950 * Wait for the ungate work to complete if in progress. 1951 * Though the clocks may be in ON state, the link could 1952 * still be in hibner8 state if hibern8 is allowed 1953 * during clock gating. 1954 * Make sure we exit hibern8 state also in addition to 1955 * clocks being ON. 1956 */ 1957 if (ufshcd_can_hibern8_during_gating(hba) && 1958 ufshcd_is_link_hibern8(hba)) { 1959 spin_unlock_irqrestore(&hba->clk_gating.lock, flags); 1960 flush_result = flush_work(&hba->clk_gating.ungate_work); 1961 if (hba->clk_gating.is_suspended && !flush_result) 1962 return; 1963 spin_lock_irqsave(&hba->clk_gating.lock, flags); 1964 goto start; 1965 } 1966 break; 1967 case REQ_CLKS_OFF: 1968 if (cancel_delayed_work(&hba->clk_gating.gate_work)) { 1969 hba->clk_gating.state = CLKS_ON; 1970 trace_ufshcd_clk_gating(hba, 1971 hba->clk_gating.state); 1972 break; 1973 } 1974 /* 1975 * If we are here, it means gating work is either done or 1976 * currently running. Hence, fall through to cancel gating 1977 * work and to enable clocks. 1978 */ 1979 fallthrough; 1980 case CLKS_OFF: 1981 hba->clk_gating.state = REQ_CLKS_ON; 1982 trace_ufshcd_clk_gating(hba, 1983 hba->clk_gating.state); 1984 queue_work(hba->clk_gating.clk_gating_workq, 1985 &hba->clk_gating.ungate_work); 1986 /* 1987 * fall through to check if we should wait for this 1988 * work to be done or not. 1989 */ 1990 fallthrough; 1991 case REQ_CLKS_ON: 1992 spin_unlock_irqrestore(&hba->clk_gating.lock, flags); 1993 flush_work(&hba->clk_gating.ungate_work); 1994 /* Make sure state is CLKS_ON before returning */ 1995 spin_lock_irqsave(&hba->clk_gating.lock, flags); 1996 goto start; 1997 default: 1998 dev_err(hba->dev, "%s: clk gating is in invalid state %d\n", 1999 __func__, hba->clk_gating.state); 2000 break; 2001 } 2002 spin_unlock_irqrestore(&hba->clk_gating.lock, flags); 2003 } 2004 EXPORT_SYMBOL_GPL(ufshcd_hold); 2005 2006 static void ufshcd_gate_work(struct work_struct *work) 2007 { 2008 struct ufs_hba *hba = container_of(work, struct ufs_hba, 2009 clk_gating.gate_work.work); 2010 int ret; 2011 2012 scoped_guard(spinlock_irqsave, &hba->clk_gating.lock) { 2013 /* 2014 * In case you are here to cancel this work the gating state 2015 * would be marked as REQ_CLKS_ON. In this case save time by 2016 * skipping the gating work and exit after changing the clock 2017 * state to CLKS_ON. 2018 */ 2019 if (hba->clk_gating.is_suspended || 2020 hba->clk_gating.state != REQ_CLKS_OFF) { 2021 hba->clk_gating.state = CLKS_ON; 2022 trace_ufshcd_clk_gating(hba, 2023 hba->clk_gating.state); 2024 return; 2025 } 2026 2027 if (hba->clk_gating.active_reqs) 2028 return; 2029 } 2030 2031 scoped_guard(spinlock_irqsave, hba->host->host_lock) { 2032 if (ufshcd_is_ufs_dev_busy(hba) || 2033 hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL) 2034 return; 2035 } 2036 2037 /* put the link into hibern8 mode before turning off clocks */ 2038 if (ufshcd_can_hibern8_during_gating(hba)) { 2039 ret = ufshcd_uic_hibern8_enter(hba); 2040 if (ret) { 2041 hba->clk_gating.state = CLKS_ON; 2042 dev_err(hba->dev, "%s: hibern8 enter failed %d\n", 2043 __func__, ret); 2044 trace_ufshcd_clk_gating(hba, 2045 hba->clk_gating.state); 2046 return; 2047 } 2048 ufshcd_set_link_hibern8(hba); 2049 } 2050 2051 ufshcd_disable_irq(hba); 2052 2053 ufshcd_setup_clocks(hba, false); 2054 2055 /* Put the host controller in low power mode if possible */ 2056 ufshcd_hba_vreg_set_lpm(hba); 2057 /* 2058 * In case you are here to cancel this work the gating state 2059 * would be marked as REQ_CLKS_ON. In this case keep the state 2060 * as REQ_CLKS_ON which would anyway imply that clocks are off 2061 * and a request to turn them on is pending. By doing this way, 2062 * we keep the state machine in tact and this would ultimately 2063 * prevent from doing cancel work multiple times when there are 2064 * new requests arriving before the current cancel work is done. 2065 */ 2066 guard(spinlock_irqsave)(&hba->clk_gating.lock); 2067 if (hba->clk_gating.state == REQ_CLKS_OFF) { 2068 hba->clk_gating.state = CLKS_OFF; 2069 trace_ufshcd_clk_gating(hba, 2070 hba->clk_gating.state); 2071 } 2072 } 2073 2074 static void __ufshcd_release(struct ufs_hba *hba) 2075 { 2076 lockdep_assert_held(&hba->clk_gating.lock); 2077 2078 if (!ufshcd_is_clkgating_allowed(hba)) 2079 return; 2080 2081 hba->clk_gating.active_reqs--; 2082 2083 if (hba->clk_gating.active_reqs || hba->clk_gating.is_suspended || 2084 !hba->clk_gating.is_initialized || 2085 hba->clk_gating.state == CLKS_OFF) 2086 return; 2087 2088 scoped_guard(spinlock_irqsave, hba->host->host_lock) { 2089 if (ufshcd_has_pending_tasks(hba) || 2090 hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL) 2091 return; 2092 } 2093 2094 hba->clk_gating.state = REQ_CLKS_OFF; 2095 trace_ufshcd_clk_gating(hba, hba->clk_gating.state); 2096 queue_delayed_work(hba->clk_gating.clk_gating_workq, 2097 &hba->clk_gating.gate_work, 2098 msecs_to_jiffies(hba->clk_gating.delay_ms)); 2099 } 2100 2101 void ufshcd_release(struct ufs_hba *hba) 2102 { 2103 guard(spinlock_irqsave)(&hba->clk_gating.lock); 2104 __ufshcd_release(hba); 2105 } 2106 EXPORT_SYMBOL_GPL(ufshcd_release); 2107 2108 static ssize_t ufshcd_clkgate_delay_show(struct device *dev, 2109 struct device_attribute *attr, char *buf) 2110 { 2111 struct ufs_hba *hba = dev_get_drvdata(dev); 2112 2113 return sysfs_emit(buf, "%lu\n", hba->clk_gating.delay_ms); 2114 } 2115 2116 void ufshcd_clkgate_delay_set(struct device *dev, unsigned long value) 2117 { 2118 struct ufs_hba *hba = dev_get_drvdata(dev); 2119 2120 guard(spinlock_irqsave)(&hba->clk_gating.lock); 2121 hba->clk_gating.delay_ms = value; 2122 } 2123 EXPORT_SYMBOL_GPL(ufshcd_clkgate_delay_set); 2124 2125 static ssize_t ufshcd_clkgate_delay_store(struct device *dev, 2126 struct device_attribute *attr, const char *buf, size_t count) 2127 { 2128 unsigned long value; 2129 2130 if (kstrtoul(buf, 0, &value)) 2131 return -EINVAL; 2132 2133 ufshcd_clkgate_delay_set(dev, value); 2134 return count; 2135 } 2136 2137 static ssize_t ufshcd_clkgate_enable_show(struct device *dev, 2138 struct device_attribute *attr, char *buf) 2139 { 2140 struct ufs_hba *hba = dev_get_drvdata(dev); 2141 2142 return sysfs_emit(buf, "%d\n", hba->clk_gating.is_enabled); 2143 } 2144 2145 static ssize_t ufshcd_clkgate_enable_store(struct device *dev, 2146 struct device_attribute *attr, const char *buf, size_t count) 2147 { 2148 struct ufs_hba *hba = dev_get_drvdata(dev); 2149 u32 value; 2150 2151 if (kstrtou32(buf, 0, &value)) 2152 return -EINVAL; 2153 2154 value = !!value; 2155 2156 guard(spinlock_irqsave)(&hba->clk_gating.lock); 2157 2158 if (value == hba->clk_gating.is_enabled) 2159 return count; 2160 2161 if (value) 2162 __ufshcd_release(hba); 2163 else 2164 hba->clk_gating.active_reqs++; 2165 2166 hba->clk_gating.is_enabled = value; 2167 2168 return count; 2169 } 2170 2171 static void ufshcd_init_clk_gating_sysfs(struct ufs_hba *hba) 2172 { 2173 hba->clk_gating.delay_attr.show = ufshcd_clkgate_delay_show; 2174 hba->clk_gating.delay_attr.store = ufshcd_clkgate_delay_store; 2175 sysfs_attr_init(&hba->clk_gating.delay_attr.attr); 2176 hba->clk_gating.delay_attr.attr.name = "clkgate_delay_ms"; 2177 hba->clk_gating.delay_attr.attr.mode = 0644; 2178 if (device_create_file(hba->dev, &hba->clk_gating.delay_attr)) 2179 dev_err(hba->dev, "Failed to create sysfs for clkgate_delay\n"); 2180 2181 hba->clk_gating.enable_attr.show = ufshcd_clkgate_enable_show; 2182 hba->clk_gating.enable_attr.store = ufshcd_clkgate_enable_store; 2183 sysfs_attr_init(&hba->clk_gating.enable_attr.attr); 2184 hba->clk_gating.enable_attr.attr.name = "clkgate_enable"; 2185 hba->clk_gating.enable_attr.attr.mode = 0644; 2186 if (device_create_file(hba->dev, &hba->clk_gating.enable_attr)) 2187 dev_err(hba->dev, "Failed to create sysfs for clkgate_enable\n"); 2188 } 2189 2190 static void ufshcd_remove_clk_gating_sysfs(struct ufs_hba *hba) 2191 { 2192 if (hba->clk_gating.delay_attr.attr.name) 2193 device_remove_file(hba->dev, &hba->clk_gating.delay_attr); 2194 if (hba->clk_gating.enable_attr.attr.name) 2195 device_remove_file(hba->dev, &hba->clk_gating.enable_attr); 2196 } 2197 2198 static void ufshcd_init_clk_gating(struct ufs_hba *hba) 2199 { 2200 if (!ufshcd_is_clkgating_allowed(hba)) 2201 return; 2202 2203 hba->clk_gating.state = CLKS_ON; 2204 2205 hba->clk_gating.delay_ms = 150; 2206 INIT_DELAYED_WORK(&hba->clk_gating.gate_work, ufshcd_gate_work); 2207 INIT_WORK(&hba->clk_gating.ungate_work, ufshcd_ungate_work); 2208 2209 hba->clk_gating.clk_gating_workq = alloc_ordered_workqueue( 2210 "ufs_clk_gating_%d", WQ_MEM_RECLAIM | WQ_HIGHPRI, 2211 hba->host->host_no); 2212 2213 ufshcd_init_clk_gating_sysfs(hba); 2214 2215 hba->clk_gating.is_enabled = true; 2216 hba->clk_gating.is_initialized = true; 2217 } 2218 2219 static void ufshcd_exit_clk_gating(struct ufs_hba *hba) 2220 { 2221 if (!hba->clk_gating.is_initialized) 2222 return; 2223 2224 ufshcd_remove_clk_gating_sysfs(hba); 2225 2226 /* Ungate the clock if necessary. */ 2227 ufshcd_hold(hba); 2228 hba->clk_gating.is_initialized = false; 2229 ufshcd_release(hba); 2230 2231 destroy_workqueue(hba->clk_gating.clk_gating_workq); 2232 } 2233 2234 static void ufshcd_clk_scaling_start_busy(struct ufs_hba *hba) 2235 { 2236 bool queue_resume_work = false; 2237 ktime_t curr_t; 2238 2239 if (!ufshcd_is_clkscaling_supported(hba)) 2240 return; 2241 2242 curr_t = ktime_get(); 2243 2244 guard(spinlock_irqsave)(&hba->clk_scaling.lock); 2245 2246 if (!hba->clk_scaling.active_reqs++) 2247 queue_resume_work = true; 2248 2249 if (!hba->clk_scaling.is_enabled || hba->pm_op_in_progress) 2250 return; 2251 2252 if (queue_resume_work) 2253 queue_work(hba->clk_scaling.workq, 2254 &hba->clk_scaling.resume_work); 2255 2256 if (!hba->clk_scaling.window_start_t) { 2257 hba->clk_scaling.window_start_t = curr_t; 2258 hba->clk_scaling.tot_busy_t = 0; 2259 hba->clk_scaling.is_busy_started = false; 2260 } 2261 2262 if (!hba->clk_scaling.is_busy_started) { 2263 hba->clk_scaling.busy_start_t = curr_t; 2264 hba->clk_scaling.is_busy_started = true; 2265 } 2266 } 2267 2268 static void ufshcd_clk_scaling_update_busy(struct ufs_hba *hba) 2269 { 2270 struct ufs_clk_scaling *scaling = &hba->clk_scaling; 2271 2272 if (!ufshcd_is_clkscaling_supported(hba)) 2273 return; 2274 2275 guard(spinlock_irqsave)(&hba->clk_scaling.lock); 2276 2277 hba->clk_scaling.active_reqs--; 2278 if (!scaling->active_reqs && scaling->is_busy_started) { 2279 scaling->tot_busy_t += ktime_to_us(ktime_sub(ktime_get(), 2280 scaling->busy_start_t)); 2281 scaling->busy_start_t = 0; 2282 scaling->is_busy_started = false; 2283 } 2284 } 2285 2286 static inline int ufshcd_monitor_opcode2dir(u8 opcode) 2287 { 2288 if (opcode == READ_6 || opcode == READ_10 || opcode == READ_16) 2289 return READ; 2290 else if (opcode == WRITE_6 || opcode == WRITE_10 || opcode == WRITE_16) 2291 return WRITE; 2292 else 2293 return -EINVAL; 2294 } 2295 2296 /* Must only be called for SCSI commands. */ 2297 static inline bool ufshcd_should_inform_monitor(struct ufs_hba *hba, 2298 struct scsi_cmnd *cmd) 2299 { 2300 const struct ufs_hba_monitor *m = &hba->monitor; 2301 struct ufshcd_lrb *lrbp = scsi_cmd_priv(cmd); 2302 2303 return m->enabled && 2304 (!m->chunk_size || m->chunk_size == cmd->sdb.length) && 2305 ktime_before(hba->monitor.enabled_ts, lrbp->issue_time_stamp); 2306 } 2307 2308 static void ufshcd_start_monitor(struct ufs_hba *hba, struct scsi_cmnd *cmd) 2309 { 2310 int dir = ufshcd_monitor_opcode2dir(cmd->cmnd[0]); 2311 unsigned long flags; 2312 2313 spin_lock_irqsave(hba->host->host_lock, flags); 2314 if (dir >= 0 && hba->monitor.nr_queued[dir]++ == 0) 2315 hba->monitor.busy_start_ts[dir] = ktime_get(); 2316 spin_unlock_irqrestore(hba->host->host_lock, flags); 2317 } 2318 2319 static void ufshcd_update_monitor(struct ufs_hba *hba, struct scsi_cmnd *cmd) 2320 { 2321 struct request *req = scsi_cmd_to_rq(cmd); 2322 const struct ufshcd_lrb *lrbp = scsi_cmd_priv(cmd); 2323 int dir = ufshcd_monitor_opcode2dir(cmd->cmnd[0]); 2324 unsigned long flags; 2325 2326 spin_lock_irqsave(hba->host->host_lock, flags); 2327 if (dir >= 0 && hba->monitor.nr_queued[dir] > 0) { 2328 struct ufs_hba_monitor *m = &hba->monitor; 2329 ktime_t now, inc, lat; 2330 2331 now = lrbp->compl_time_stamp; 2332 inc = ktime_sub(now, m->busy_start_ts[dir]); 2333 m->total_busy[dir] = ktime_add(m->total_busy[dir], inc); 2334 m->nr_sec_rw[dir] += blk_rq_sectors(req); 2335 2336 /* Update latencies */ 2337 m->nr_req[dir]++; 2338 lat = ktime_sub(now, lrbp->issue_time_stamp); 2339 m->lat_sum[dir] += lat; 2340 if (m->lat_max[dir] < lat || !m->lat_max[dir]) 2341 m->lat_max[dir] = lat; 2342 if (m->lat_min[dir] > lat || !m->lat_min[dir]) 2343 m->lat_min[dir] = lat; 2344 2345 m->nr_queued[dir]--; 2346 /* Push forward the busy start of monitor */ 2347 m->busy_start_ts[dir] = now; 2348 } 2349 spin_unlock_irqrestore(hba->host->host_lock, flags); 2350 } 2351 2352 /* Returns %true for SCSI commands and %false for device management commands. */ 2353 static bool ufshcd_is_scsi_cmd(struct scsi_cmnd *cmd) 2354 { 2355 return !blk_mq_is_reserved_rq(scsi_cmd_to_rq(cmd)); 2356 } 2357 2358 /** 2359 * ufshcd_send_command - Send SCSI or device management commands 2360 * @hba: per adapter instance 2361 * @cmd: SCSI command or device management command pointer 2362 * @hwq: pointer to hardware queue instance 2363 */ 2364 static inline void ufshcd_send_command(struct ufs_hba *hba, 2365 struct scsi_cmnd *cmd, 2366 struct ufs_hw_queue *hwq) 2367 { 2368 struct ufshcd_lrb *lrbp = scsi_cmd_priv(cmd); 2369 const int tag = scsi_cmd_to_rq(cmd)->tag; 2370 unsigned long flags; 2371 2372 if (hba->monitor.enabled) { 2373 lrbp->issue_time_stamp = ktime_get(); 2374 lrbp->issue_time_stamp_local_clock = local_clock(); 2375 lrbp->compl_time_stamp = ktime_set(0, 0); 2376 lrbp->compl_time_stamp_local_clock = 0; 2377 } 2378 if (ufshcd_is_scsi_cmd(cmd)) { 2379 ufshcd_add_command_trace(hba, cmd, UFS_CMD_SEND); 2380 ufshcd_clk_scaling_start_busy(hba); 2381 if (unlikely(ufshcd_should_inform_monitor(hba, cmd))) 2382 ufshcd_start_monitor(hba, cmd); 2383 } 2384 2385 if (hba->mcq_enabled) { 2386 int utrd_size = sizeof(struct utp_transfer_req_desc); 2387 struct utp_transfer_req_desc *src = lrbp->utr_descriptor_ptr; 2388 struct utp_transfer_req_desc *dest; 2389 2390 spin_lock(&hwq->sq_lock); 2391 dest = hwq->sqe_base_addr + hwq->sq_tail_slot; 2392 memcpy(dest, src, utrd_size); 2393 ufshcd_inc_sq_tail(hwq); 2394 spin_unlock(&hwq->sq_lock); 2395 } else { 2396 spin_lock_irqsave(&hba->outstanding_lock, flags); 2397 if (hba->vops && hba->vops->setup_xfer_req) 2398 hba->vops->setup_xfer_req(hba, tag, 2399 ufshcd_is_scsi_cmd(cmd)); 2400 __set_bit(tag, &hba->outstanding_reqs); 2401 ufshcd_writel(hba, 1 << tag, REG_UTP_TRANSFER_REQ_DOOR_BELL); 2402 spin_unlock_irqrestore(&hba->outstanding_lock, flags); 2403 } 2404 } 2405 2406 /** 2407 * ufshcd_copy_sense_data - Copy sense data in case of check condition 2408 * @cmd: SCSI command 2409 */ 2410 static inline void ufshcd_copy_sense_data(struct scsi_cmnd *cmd) 2411 { 2412 struct ufshcd_lrb *lrbp = scsi_cmd_priv(cmd); 2413 u8 *const sense_buffer = cmd->sense_buffer; 2414 u16 resp_len; 2415 int len; 2416 2417 resp_len = be16_to_cpu(lrbp->ucd_rsp_ptr->header.data_segment_length); 2418 if (sense_buffer && resp_len) { 2419 int len_to_copy; 2420 2421 len = be16_to_cpu(lrbp->ucd_rsp_ptr->sr.sense_data_len); 2422 len_to_copy = min_t(int, UFS_SENSE_SIZE, len); 2423 2424 memcpy(sense_buffer, lrbp->ucd_rsp_ptr->sr.sense_data, 2425 len_to_copy); 2426 } 2427 } 2428 2429 /** 2430 * ufshcd_copy_query_response() - Copy the Query Response and the data 2431 * descriptor 2432 * @hba: per adapter instance 2433 * @lrbp: pointer to local reference block 2434 * 2435 * Return: 0 upon success; < 0 upon failure. 2436 */ 2437 static 2438 int ufshcd_copy_query_response(struct ufs_hba *hba, struct ufshcd_lrb *lrbp) 2439 { 2440 struct ufs_query_res *query_res = &hba->dev_cmd.query.response; 2441 2442 memcpy(&query_res->upiu_res, &lrbp->ucd_rsp_ptr->qr, QUERY_OSF_SIZE); 2443 2444 /* Get the descriptor */ 2445 if (hba->dev_cmd.query.descriptor && 2446 lrbp->ucd_rsp_ptr->qr.opcode == UPIU_QUERY_OPCODE_READ_DESC) { 2447 u8 *descp = (u8 *)lrbp->ucd_rsp_ptr + 2448 GENERAL_UPIU_REQUEST_SIZE; 2449 u16 resp_len; 2450 u16 buf_len; 2451 2452 /* data segment length */ 2453 resp_len = be16_to_cpu(lrbp->ucd_rsp_ptr->header 2454 .data_segment_length); 2455 buf_len = be16_to_cpu( 2456 hba->dev_cmd.query.request.upiu_req.length); 2457 if (likely(buf_len >= resp_len)) { 2458 memcpy(hba->dev_cmd.query.descriptor, descp, resp_len); 2459 } else { 2460 dev_warn(hba->dev, 2461 "%s: rsp size %d is bigger than buffer size %d", 2462 __func__, resp_len, buf_len); 2463 return -EINVAL; 2464 } 2465 } 2466 2467 return 0; 2468 } 2469 2470 /** 2471 * ufshcd_hba_capabilities - Read controller capabilities 2472 * @hba: per adapter instance 2473 * 2474 * Return: 0 on success, negative on error. 2475 */ 2476 static inline int ufshcd_hba_capabilities(struct ufs_hba *hba) 2477 { 2478 int err; 2479 2480 hba->capabilities = ufshcd_readl(hba, REG_CONTROLLER_CAPABILITIES); 2481 2482 /* nutrs and nutmrs are 0 based values */ 2483 hba->nutrs = (hba->capabilities & MASK_TRANSFER_REQUESTS_SLOTS_SDB) + 1; 2484 hba->nutmrs = 2485 ((hba->capabilities & MASK_TASK_MANAGEMENT_REQUEST_SLOTS) >> 16) + 1; 2486 2487 hba->nortt = FIELD_GET(MASK_NUMBER_OUTSTANDING_RTT, hba->capabilities) + 1; 2488 2489 /* Read crypto capabilities */ 2490 err = ufshcd_hba_init_crypto_capabilities(hba); 2491 if (err) { 2492 dev_err(hba->dev, "crypto setup failed\n"); 2493 return err; 2494 } 2495 2496 /* 2497 * The UFSHCI 3.0 specification does not define MCQ_SUPPORT and 2498 * LSDB_SUPPORT, but [31:29] as reserved bits with reset value 0s, which 2499 * means we can simply read values regardless of version. 2500 */ 2501 hba->mcq_sup = FIELD_GET(MASK_MCQ_SUPPORT, hba->capabilities); 2502 /* 2503 * 0h: legacy single doorbell support is available 2504 * 1h: indicate that legacy single doorbell support has been removed 2505 */ 2506 if (!(hba->quirks & UFSHCD_QUIRK_BROKEN_LSDBS_CAP)) 2507 hba->lsdb_sup = !FIELD_GET(MASK_LSDB_SUPPORT, hba->capabilities); 2508 else 2509 hba->lsdb_sup = true; 2510 2511 hba->mcq_capabilities = ufshcd_readl(hba, REG_MCQCAP); 2512 2513 return 0; 2514 } 2515 2516 /** 2517 * ufshcd_ready_for_uic_cmd - Check if controller is ready 2518 * to accept UIC commands 2519 * @hba: per adapter instance 2520 * 2521 * Return: true on success, else false. 2522 */ 2523 static inline bool ufshcd_ready_for_uic_cmd(struct ufs_hba *hba) 2524 { 2525 u32 val; 2526 int ret = read_poll_timeout(ufshcd_readl, val, val & UIC_COMMAND_READY, 2527 500, uic_cmd_timeout * 1000, false, hba, 2528 REG_CONTROLLER_STATUS); 2529 return ret == 0; 2530 } 2531 2532 /** 2533 * ufshcd_get_upmcrs - Get the power mode change request status 2534 * @hba: Pointer to adapter instance 2535 * 2536 * This function gets the UPMCRS field of HCS register 2537 * 2538 * Return: value of UPMCRS field. 2539 */ 2540 static inline u8 ufshcd_get_upmcrs(struct ufs_hba *hba) 2541 { 2542 return (ufshcd_readl(hba, REG_CONTROLLER_STATUS) >> 8) & 0x7; 2543 } 2544 2545 /** 2546 * ufshcd_dispatch_uic_cmd - Dispatch an UIC command to the Unipro layer 2547 * @hba: per adapter instance 2548 * @uic_cmd: UIC command 2549 */ 2550 static inline void 2551 ufshcd_dispatch_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd) 2552 { 2553 lockdep_assert_held(&hba->uic_cmd_mutex); 2554 2555 WARN_ON(hba->active_uic_cmd); 2556 2557 hba->active_uic_cmd = uic_cmd; 2558 2559 /* Write Args */ 2560 ufshcd_writel(hba, uic_cmd->argument1, REG_UIC_COMMAND_ARG_1); 2561 ufshcd_writel(hba, uic_cmd->argument2, REG_UIC_COMMAND_ARG_2); 2562 ufshcd_writel(hba, uic_cmd->argument3, REG_UIC_COMMAND_ARG_3); 2563 2564 ufshcd_add_uic_command_trace(hba, uic_cmd, UFS_CMD_SEND); 2565 2566 /* Write UIC Cmd */ 2567 ufshcd_writel(hba, uic_cmd->command & COMMAND_OPCODE_MASK, 2568 REG_UIC_COMMAND); 2569 } 2570 2571 /** 2572 * ufshcd_wait_for_uic_cmd - Wait for completion of an UIC command 2573 * @hba: per adapter instance 2574 * @uic_cmd: UIC command 2575 * 2576 * Return: 0 only if success. 2577 */ 2578 static int 2579 ufshcd_wait_for_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd) 2580 { 2581 int ret; 2582 unsigned long flags; 2583 2584 lockdep_assert_held(&hba->uic_cmd_mutex); 2585 2586 if (wait_for_completion_timeout(&uic_cmd->done, 2587 msecs_to_jiffies(uic_cmd_timeout))) { 2588 ret = uic_cmd->argument2 & MASK_UIC_COMMAND_RESULT; 2589 } else { 2590 ret = -ETIMEDOUT; 2591 dev_err(hba->dev, 2592 "uic cmd 0x%x with arg3 0x%x completion timeout\n", 2593 uic_cmd->command, uic_cmd->argument3); 2594 2595 if (!uic_cmd->cmd_active) { 2596 dev_err(hba->dev, "%s: UIC cmd has been completed, return the result\n", 2597 __func__); 2598 ret = uic_cmd->argument2 & MASK_UIC_COMMAND_RESULT; 2599 } 2600 } 2601 2602 spin_lock_irqsave(hba->host->host_lock, flags); 2603 hba->active_uic_cmd = NULL; 2604 spin_unlock_irqrestore(hba->host->host_lock, flags); 2605 2606 return ret; 2607 } 2608 2609 /** 2610 * __ufshcd_send_uic_cmd - Send UIC commands and retrieve the result 2611 * @hba: per adapter instance 2612 * @uic_cmd: UIC command 2613 * 2614 * Return: 0 if successful; < 0 upon failure. 2615 */ 2616 static int 2617 __ufshcd_send_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd) 2618 { 2619 lockdep_assert_held(&hba->uic_cmd_mutex); 2620 2621 if (!ufshcd_ready_for_uic_cmd(hba)) { 2622 dev_err(hba->dev, 2623 "Controller not ready to accept UIC commands\n"); 2624 return -EIO; 2625 } 2626 2627 init_completion(&uic_cmd->done); 2628 2629 uic_cmd->cmd_active = true; 2630 ufshcd_dispatch_uic_cmd(hba, uic_cmd); 2631 2632 return 0; 2633 } 2634 2635 /** 2636 * ufshcd_send_uic_cmd - Send UIC commands and retrieve the result 2637 * @hba: per adapter instance 2638 * @uic_cmd: UIC command 2639 * 2640 * Return: 0 only if success. 2641 */ 2642 int ufshcd_send_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd) 2643 { 2644 unsigned long flags; 2645 int ret; 2646 2647 if (hba->quirks & UFSHCD_QUIRK_BROKEN_UIC_CMD) 2648 return 0; 2649 2650 ufshcd_hold(hba); 2651 mutex_lock(&hba->uic_cmd_mutex); 2652 ufshcd_add_delay_before_dme_cmd(hba); 2653 2654 spin_lock_irqsave(hba->host->host_lock, flags); 2655 ufshcd_enable_intr(hba, UIC_COMMAND_COMPL); 2656 spin_unlock_irqrestore(hba->host->host_lock, flags); 2657 2658 ret = __ufshcd_send_uic_cmd(hba, uic_cmd); 2659 if (!ret) 2660 ret = ufshcd_wait_for_uic_cmd(hba, uic_cmd); 2661 2662 mutex_unlock(&hba->uic_cmd_mutex); 2663 2664 ufshcd_release(hba); 2665 return ret; 2666 } 2667 2668 /** 2669 * ufshcd_sgl_to_prdt - SG list to PRTD (Physical Region Description Table, 4DW format) 2670 * @hba: per-adapter instance 2671 * @lrbp: pointer to local reference block 2672 * @sg_entries: The number of sg lists actually used 2673 * @sg_list: Pointer to SG list 2674 */ 2675 static void ufshcd_sgl_to_prdt(struct ufs_hba *hba, struct ufshcd_lrb *lrbp, int sg_entries, 2676 struct scatterlist *sg_list) 2677 { 2678 struct ufshcd_sg_entry *prd; 2679 struct scatterlist *sg; 2680 int i; 2681 2682 if (sg_entries) { 2683 2684 if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN) 2685 lrbp->utr_descriptor_ptr->prd_table_length = 2686 cpu_to_le16(sg_entries * ufshcd_sg_entry_size(hba)); 2687 else 2688 lrbp->utr_descriptor_ptr->prd_table_length = cpu_to_le16(sg_entries); 2689 2690 prd = lrbp->ucd_prdt_ptr; 2691 2692 for_each_sg(sg_list, sg, sg_entries, i) { 2693 const unsigned int len = sg_dma_len(sg); 2694 2695 /* 2696 * From the UFSHCI spec: "Data Byte Count (DBC): A '0' 2697 * based value that indicates the length, in bytes, of 2698 * the data block. A maximum of length of 256KB may 2699 * exist for any entry. Bits 1:0 of this field shall be 2700 * 11b to indicate Dword granularity. A value of '3' 2701 * indicates 4 bytes, '7' indicates 8 bytes, etc." 2702 */ 2703 WARN_ONCE(len > SZ_256K, "len = %#x\n", len); 2704 prd->size = cpu_to_le32(len - 1); 2705 prd->addr = cpu_to_le64(sg->dma_address); 2706 prd->reserved = 0; 2707 prd = (void *)prd + ufshcd_sg_entry_size(hba); 2708 } 2709 } else { 2710 lrbp->utr_descriptor_ptr->prd_table_length = 0; 2711 } 2712 } 2713 2714 /** 2715 * ufshcd_map_sg - Map scatter-gather list to prdt 2716 * @hba: per adapter instance 2717 * @cmd: SCSI command 2718 * 2719 * Return: 0 in case of success, non-zero value in case of failure. 2720 */ 2721 static int ufshcd_map_sg(struct ufs_hba *hba, struct scsi_cmnd *cmd) 2722 { 2723 struct ufshcd_lrb *lrbp = scsi_cmd_priv(cmd); 2724 int sg_segments = scsi_dma_map(cmd); 2725 2726 if (sg_segments < 0) 2727 return sg_segments; 2728 2729 ufshcd_sgl_to_prdt(hba, lrbp, sg_segments, scsi_sglist(cmd)); 2730 2731 return ufshcd_crypto_fill_prdt(hba, cmd); 2732 } 2733 2734 /** 2735 * ufshcd_prepare_req_desc_hdr - Fill UTP Transfer request descriptor header according to request 2736 * descriptor according to request 2737 * @hba: per adapter instance 2738 * @lrbp: pointer to local reference block 2739 * @upiu_flags: flags required in the header 2740 * @cmd_dir: requests data direction 2741 * @ehs_length: Total EHS Length (in 32‐bytes units of all Extra Header Segments) 2742 */ 2743 static void 2744 ufshcd_prepare_req_desc_hdr(struct ufs_hba *hba, struct ufshcd_lrb *lrbp, 2745 u8 *upiu_flags, enum dma_data_direction cmd_dir, 2746 int ehs_length) 2747 { 2748 struct utp_transfer_req_desc *req_desc = lrbp->utr_descriptor_ptr; 2749 struct request_desc_header *h = &req_desc->header; 2750 enum utp_data_direction data_direction; 2751 2752 lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE; 2753 2754 *h = (typeof(*h)){ }; 2755 2756 if (cmd_dir == DMA_FROM_DEVICE) { 2757 data_direction = UTP_DEVICE_TO_HOST; 2758 *upiu_flags = UPIU_CMD_FLAGS_READ; 2759 } else if (cmd_dir == DMA_TO_DEVICE) { 2760 data_direction = UTP_HOST_TO_DEVICE; 2761 *upiu_flags = UPIU_CMD_FLAGS_WRITE; 2762 } else { 2763 data_direction = UTP_NO_DATA_TRANSFER; 2764 *upiu_flags = UPIU_CMD_FLAGS_NONE; 2765 } 2766 2767 h->command_type = lrbp->command_type; 2768 h->data_direction = data_direction; 2769 h->ehs_length = ehs_length; 2770 2771 if (lrbp->intr_cmd) 2772 h->interrupt = 1; 2773 2774 /* Prepare crypto related dwords */ 2775 ufshcd_prepare_req_desc_hdr_crypto(lrbp, h); 2776 2777 /* 2778 * assigning invalid value for command status. Controller 2779 * updates OCS on command completion, with the command 2780 * status 2781 */ 2782 h->ocs = OCS_INVALID_COMMAND_STATUS; 2783 2784 req_desc->prd_table_length = 0; 2785 } 2786 2787 /** 2788 * ufshcd_prepare_utp_scsi_cmd_upiu() - fills the utp_transfer_req_desc, 2789 * for scsi commands 2790 * @cmd: SCSI command 2791 * @upiu_flags: flags 2792 */ 2793 static void ufshcd_prepare_utp_scsi_cmd_upiu(struct scsi_cmnd *cmd, 2794 u8 upiu_flags) 2795 { 2796 struct ufshcd_lrb *lrbp = scsi_cmd_priv(cmd); 2797 const int tag = scsi_cmd_to_rq(cmd)->tag; 2798 struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr; 2799 unsigned short cdb_len; 2800 2801 ucd_req_ptr->header = (struct utp_upiu_header){ 2802 .transaction_code = UPIU_TRANSACTION_COMMAND, 2803 .flags = upiu_flags, 2804 .lun = lrbp->lun, 2805 .task_tag = tag, 2806 .command_set_type = UPIU_COMMAND_SET_TYPE_SCSI, 2807 }; 2808 2809 WARN_ON_ONCE(ucd_req_ptr->header.task_tag != tag); 2810 2811 ucd_req_ptr->sc.exp_data_transfer_len = cpu_to_be32(cmd->sdb.length); 2812 2813 cdb_len = min_t(unsigned short, cmd->cmd_len, UFS_CDB_SIZE); 2814 memcpy(ucd_req_ptr->sc.cdb, cmd->cmnd, cdb_len); 2815 2816 memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp)); 2817 } 2818 2819 /** 2820 * ufshcd_prepare_utp_query_req_upiu() - fill the utp_transfer_req_desc for query request 2821 * @hba: UFS hba 2822 * @cmd: SCSI command pointer 2823 * @upiu_flags: flags 2824 */ 2825 static void ufshcd_prepare_utp_query_req_upiu(struct ufs_hba *hba, 2826 struct scsi_cmnd *cmd, u8 upiu_flags) 2827 { 2828 struct ufshcd_lrb *lrbp = scsi_cmd_priv(cmd); 2829 struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr; 2830 const int tag = scsi_cmd_to_rq(cmd)->tag; 2831 struct ufs_query *query = &hba->dev_cmd.query; 2832 u16 len = be16_to_cpu(query->request.upiu_req.length); 2833 2834 /* Query request header */ 2835 ucd_req_ptr->header = (struct utp_upiu_header){ 2836 .transaction_code = UPIU_TRANSACTION_QUERY_REQ, 2837 .flags = upiu_flags, 2838 .lun = lrbp->lun, 2839 .task_tag = tag, 2840 .query_function = query->request.query_func, 2841 /* Data segment length only need for WRITE_DESC */ 2842 .data_segment_length = 2843 query->request.upiu_req.opcode == 2844 UPIU_QUERY_OPCODE_WRITE_DESC ? 2845 cpu_to_be16(len) : 2846 0, 2847 }; 2848 2849 /* Copy the Query Request buffer as is */ 2850 memcpy(&ucd_req_ptr->qr, &query->request.upiu_req, 2851 QUERY_OSF_SIZE); 2852 2853 /* Copy the Descriptor */ 2854 if (query->request.upiu_req.opcode == UPIU_QUERY_OPCODE_WRITE_DESC) 2855 memcpy(ucd_req_ptr + 1, query->descriptor, len); 2856 } 2857 2858 static inline void ufshcd_prepare_utp_nop_upiu(struct scsi_cmnd *cmd) 2859 { 2860 struct ufshcd_lrb *lrbp = scsi_cmd_priv(cmd); 2861 struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr; 2862 const int tag = scsi_cmd_to_rq(cmd)->tag; 2863 2864 memset(ucd_req_ptr, 0, sizeof(struct utp_upiu_req)); 2865 2866 ucd_req_ptr->header = (struct utp_upiu_header){ 2867 .transaction_code = UPIU_TRANSACTION_NOP_OUT, 2868 .task_tag = tag, 2869 }; 2870 } 2871 2872 /** 2873 * ufshcd_compose_devman_upiu - UFS Protocol Information Unit(UPIU) 2874 * for Device Management Purposes 2875 * @hba: per adapter instance 2876 * @cmd: SCSI command pointer 2877 * 2878 * Return: 0 upon success; < 0 upon failure. 2879 */ 2880 static int ufshcd_compose_devman_upiu(struct ufs_hba *hba, 2881 struct scsi_cmnd *cmd) 2882 { 2883 struct ufshcd_lrb *lrbp = scsi_cmd_priv(cmd); 2884 u8 upiu_flags; 2885 int ret = 0; 2886 2887 ufshcd_prepare_req_desc_hdr(hba, lrbp, &upiu_flags, DMA_NONE, 0); 2888 2889 if (hba->dev_cmd.type == DEV_CMD_TYPE_QUERY) 2890 ufshcd_prepare_utp_query_req_upiu(hba, cmd, upiu_flags); 2891 else if (hba->dev_cmd.type == DEV_CMD_TYPE_NOP) 2892 ufshcd_prepare_utp_nop_upiu(cmd); 2893 else 2894 ret = -EINVAL; 2895 2896 memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp)); 2897 2898 return ret; 2899 } 2900 2901 /** 2902 * ufshcd_comp_scsi_upiu - UFS Protocol Information Unit(UPIU) 2903 * for SCSI Purposes 2904 * @hba: per adapter instance 2905 * @cmd: SCSI command 2906 */ 2907 static void ufshcd_comp_scsi_upiu(struct ufs_hba *hba, struct scsi_cmnd *cmd) 2908 { 2909 struct ufshcd_lrb *lrbp = scsi_cmd_priv(cmd); 2910 struct request *rq = scsi_cmd_to_rq(cmd); 2911 unsigned int ioprio_class = IOPRIO_PRIO_CLASS(req_get_ioprio(rq)); 2912 u8 upiu_flags; 2913 2914 ufshcd_prepare_req_desc_hdr(hba, lrbp, &upiu_flags, 2915 cmd->sc_data_direction, 0); 2916 if (ioprio_class == IOPRIO_CLASS_RT) 2917 upiu_flags |= UPIU_CMD_FLAGS_CP; 2918 ufshcd_prepare_utp_scsi_cmd_upiu(cmd, upiu_flags); 2919 } 2920 2921 static void ufshcd_init_lrb(struct ufs_hba *hba, struct scsi_cmnd *cmd) 2922 { 2923 const int i = scsi_cmd_to_rq(cmd)->tag; 2924 struct utp_transfer_cmd_desc *cmd_descp = 2925 (void *)hba->ucdl_base_addr + i * ufshcd_get_ucd_size(hba); 2926 struct utp_transfer_req_desc *utrdlp = hba->utrdl_base_addr; 2927 dma_addr_t cmd_desc_element_addr = 2928 hba->ucdl_dma_addr + i * ufshcd_get_ucd_size(hba); 2929 u16 response_offset = le16_to_cpu(utrdlp[i].response_upiu_offset); 2930 u16 prdt_offset = le16_to_cpu(utrdlp[i].prd_table_offset); 2931 struct ufshcd_lrb *lrb = scsi_cmd_priv(cmd); 2932 2933 lrb->utr_descriptor_ptr = utrdlp + i; 2934 lrb->utrd_dma_addr = 2935 hba->utrdl_dma_addr + i * sizeof(struct utp_transfer_req_desc); 2936 lrb->ucd_req_ptr = (struct utp_upiu_req *)cmd_descp->command_upiu; 2937 lrb->ucd_req_dma_addr = cmd_desc_element_addr; 2938 lrb->ucd_rsp_ptr = (struct utp_upiu_rsp *)cmd_descp->response_upiu; 2939 lrb->ucd_rsp_dma_addr = cmd_desc_element_addr + response_offset; 2940 lrb->ucd_prdt_ptr = (struct ufshcd_sg_entry *)cmd_descp->prd_table; 2941 lrb->ucd_prdt_dma_addr = cmd_desc_element_addr + prdt_offset; 2942 } 2943 2944 static void __ufshcd_setup_cmd(struct ufs_hba *hba, struct scsi_cmnd *cmd, 2945 u8 lun, int tag) 2946 { 2947 struct ufshcd_lrb *lrbp = scsi_cmd_priv(cmd); 2948 2949 ufshcd_init_lrb(hba, cmd); 2950 2951 memset(lrbp->ucd_req_ptr, 0, sizeof(*lrbp->ucd_req_ptr)); 2952 2953 lrbp->lun = lun; 2954 ufshcd_prepare_lrbp_crypto(ufshcd_is_scsi_cmd(cmd) ? 2955 scsi_cmd_to_rq(cmd) : NULL, lrbp); 2956 } 2957 2958 static void ufshcd_setup_scsi_cmd(struct ufs_hba *hba, struct scsi_cmnd *cmd, 2959 u8 lun, int tag) 2960 { 2961 struct ufshcd_lrb *lrbp = scsi_cmd_priv(cmd); 2962 2963 __ufshcd_setup_cmd(hba, cmd, lun, tag); 2964 lrbp->intr_cmd = !ufshcd_is_intr_aggr_allowed(hba); 2965 lrbp->req_abort_skip = false; 2966 2967 ufshcd_comp_scsi_upiu(hba, cmd); 2968 } 2969 2970 /** 2971 * ufshcd_upiu_wlun_to_scsi_wlun - maps UPIU W-LUN id to SCSI W-LUN ID 2972 * @upiu_wlun_id: UPIU W-LUN id 2973 * 2974 * Return: SCSI W-LUN id. 2975 */ 2976 static inline u16 ufshcd_upiu_wlun_to_scsi_wlun(u8 upiu_wlun_id) 2977 { 2978 return (upiu_wlun_id & ~UFS_UPIU_WLUN_ID) | SCSI_W_LUN_BASE; 2979 } 2980 2981 static inline bool is_device_wlun(struct scsi_device *sdev) 2982 { 2983 return sdev->lun == 2984 ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_UFS_DEVICE_WLUN); 2985 } 2986 2987 /* 2988 * Associate the UFS controller queue with the default and poll HCTX types. 2989 * Initialize the mq_map[] arrays. 2990 */ 2991 static void ufshcd_map_queues(struct Scsi_Host *shost) 2992 { 2993 struct ufs_hba *hba = shost_priv(shost); 2994 int i, queue_offset = 0; 2995 2996 if (!is_mcq_supported(hba)) { 2997 hba->nr_queues[HCTX_TYPE_DEFAULT] = 1; 2998 hba->nr_queues[HCTX_TYPE_READ] = 0; 2999 hba->nr_queues[HCTX_TYPE_POLL] = 1; 3000 hba->nr_hw_queues = 1; 3001 } 3002 3003 for (i = 0; i < shost->nr_maps; i++) { 3004 struct blk_mq_queue_map *map = &shost->tag_set.map[i]; 3005 3006 map->nr_queues = hba->nr_queues[i]; 3007 if (!map->nr_queues) 3008 continue; 3009 map->queue_offset = queue_offset; 3010 if (i == HCTX_TYPE_POLL && !is_mcq_supported(hba)) 3011 map->queue_offset = 0; 3012 3013 blk_mq_map_queues(map); 3014 queue_offset += map->nr_queues; 3015 } 3016 } 3017 3018 /* 3019 * The only purpose of this function is to make the SCSI core skip the memset() 3020 * call for the private command data. 3021 */ 3022 static int ufshcd_init_cmd_priv(struct Scsi_Host *host, struct scsi_cmnd *cmd) 3023 { 3024 return 0; 3025 } 3026 3027 /** 3028 * ufshcd_queuecommand - main entry point for SCSI requests 3029 * @host: SCSI host pointer 3030 * @cmd: command from SCSI Midlayer 3031 * 3032 * Return: 0 for success, non-zero in case of failure. 3033 */ 3034 static int ufshcd_queuecommand(struct Scsi_Host *host, struct scsi_cmnd *cmd) 3035 { 3036 struct ufs_hba *hba = shost_priv(host); 3037 int tag = scsi_cmd_to_rq(cmd)->tag; 3038 int err = 0; 3039 struct ufs_hw_queue *hwq = NULL; 3040 3041 switch (hba->ufshcd_state) { 3042 case UFSHCD_STATE_OPERATIONAL: 3043 break; 3044 case UFSHCD_STATE_EH_SCHEDULED_NON_FATAL: 3045 /* 3046 * SCSI error handler can call ->queuecommand() while UFS error 3047 * handler is in progress. Error interrupts could change the 3048 * state from UFSHCD_STATE_RESET to 3049 * UFSHCD_STATE_EH_SCHEDULED_NON_FATAL. Prevent requests 3050 * being issued in that case. 3051 */ 3052 if (ufshcd_eh_in_progress(hba)) { 3053 err = SCSI_MLQUEUE_HOST_BUSY; 3054 goto out; 3055 } 3056 break; 3057 case UFSHCD_STATE_EH_SCHEDULED_FATAL: 3058 /* 3059 * pm_runtime_get_sync() is used at error handling preparation 3060 * stage. If a scsi cmd, e.g. the SSU cmd, is sent from hba's 3061 * PM ops, it can never be finished if we let SCSI layer keep 3062 * retrying it, which gets err handler stuck forever. Neither 3063 * can we let the scsi cmd pass through, because UFS is in bad 3064 * state, the scsi cmd may eventually time out, which will get 3065 * err handler blocked for too long. So, just fail the scsi cmd 3066 * sent from PM ops, err handler can recover PM error anyways. 3067 */ 3068 if (hba->pm_op_in_progress) { 3069 hba->force_reset = true; 3070 set_host_byte(cmd, DID_BAD_TARGET); 3071 scsi_done(cmd); 3072 goto out; 3073 } 3074 fallthrough; 3075 case UFSHCD_STATE_RESET: 3076 err = SCSI_MLQUEUE_HOST_BUSY; 3077 goto out; 3078 case UFSHCD_STATE_ERROR: 3079 set_host_byte(cmd, DID_ERROR); 3080 scsi_done(cmd); 3081 goto out; 3082 } 3083 3084 hba->req_abort_count = 0; 3085 3086 ufshcd_hold(hba); 3087 3088 ufshcd_setup_scsi_cmd(hba, cmd, 3089 ufshcd_scsi_to_upiu_lun(cmd->device->lun), tag); 3090 3091 err = ufshcd_map_sg(hba, cmd); 3092 if (err) { 3093 ufshcd_release(hba); 3094 goto out; 3095 } 3096 3097 if (hba->mcq_enabled) 3098 hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(cmd)); 3099 3100 ufshcd_send_command(hba, cmd, hwq); 3101 3102 out: 3103 if (ufs_trigger_eh(hba)) { 3104 unsigned long flags; 3105 3106 spin_lock_irqsave(hba->host->host_lock, flags); 3107 ufshcd_schedule_eh_work(hba); 3108 spin_unlock_irqrestore(hba->host->host_lock, flags); 3109 } 3110 3111 return err; 3112 } 3113 3114 static int ufshcd_queue_reserved_command(struct Scsi_Host *host, 3115 struct scsi_cmnd *cmd) 3116 { 3117 struct ufshcd_lrb *lrbp = scsi_cmd_priv(cmd); 3118 struct request *rq = scsi_cmd_to_rq(cmd); 3119 struct ufs_hba *hba = shost_priv(host); 3120 struct ufs_hw_queue *hwq = 3121 hba->mcq_enabled ? ufshcd_mcq_req_to_hwq(hba, rq) : NULL; 3122 3123 ufshcd_add_query_upiu_trace(hba, UFS_QUERY_SEND, lrbp->ucd_req_ptr); 3124 ufshcd_send_command(hba, cmd, hwq); 3125 return 0; 3126 } 3127 3128 static void ufshcd_setup_dev_cmd(struct ufs_hba *hba, struct scsi_cmnd *cmd, 3129 enum dev_cmd_type cmd_type, u8 lun, int tag) 3130 { 3131 struct ufshcd_lrb *lrbp = scsi_cmd_priv(cmd); 3132 3133 __ufshcd_setup_cmd(hba, cmd, lun, tag); 3134 lrbp->intr_cmd = true; /* No interrupt aggregation */ 3135 hba->dev_cmd.type = cmd_type; 3136 } 3137 3138 /* 3139 * Return: 0 upon success; < 0 upon failure. 3140 */ 3141 static int ufshcd_compose_dev_cmd(struct ufs_hba *hba, struct scsi_cmnd *cmd, 3142 enum dev_cmd_type cmd_type, int tag) 3143 { 3144 ufshcd_setup_dev_cmd(hba, cmd, cmd_type, 0, tag); 3145 3146 return ufshcd_compose_devman_upiu(hba, cmd); 3147 } 3148 3149 /* 3150 * Check with the block layer if the command is inflight 3151 * @cmd: command to check. 3152 * 3153 * Return: true if command is inflight; false if not. 3154 */ 3155 bool ufshcd_cmd_inflight(struct scsi_cmnd *cmd) 3156 { 3157 return cmd && blk_mq_rq_state(scsi_cmd_to_rq(cmd)) == MQ_RQ_IN_FLIGHT; 3158 } 3159 3160 /* 3161 * Clear the pending command in the controller and wait until 3162 * the controller confirms that the command has been cleared. 3163 * @hba: per adapter instance 3164 * @task_tag: The tag number of the command to be cleared. 3165 */ 3166 static int ufshcd_clear_cmd(struct ufs_hba *hba, u32 task_tag) 3167 { 3168 u32 mask; 3169 int err; 3170 3171 if (hba->mcq_enabled) { 3172 /* 3173 * MCQ mode. Clean up the MCQ resources similar to 3174 * what the ufshcd_utrl_clear() does for SDB mode. 3175 */ 3176 err = ufshcd_mcq_sq_cleanup(hba, task_tag); 3177 if (err) { 3178 dev_err(hba->dev, "%s: failed tag=%d. err=%d\n", 3179 __func__, task_tag, err); 3180 return err; 3181 } 3182 return 0; 3183 } 3184 3185 mask = 1U << task_tag; 3186 3187 /* clear outstanding transaction before retry */ 3188 ufshcd_utrl_clear(hba, mask); 3189 3190 /* 3191 * wait for h/w to clear corresponding bit in door-bell. 3192 * max. wait is 1 sec. 3193 */ 3194 return ufshcd_wait_for_register(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL, 3195 mask, ~mask, 1000, 1000); 3196 } 3197 3198 /** 3199 * ufshcd_dev_cmd_completion() - handles device management command responses 3200 * @hba: per adapter instance 3201 * @lrbp: pointer to local reference block 3202 * 3203 * Return: 0 upon success; < 0 upon failure. 3204 */ 3205 static int 3206 ufshcd_dev_cmd_completion(struct ufs_hba *hba, struct ufshcd_lrb *lrbp) 3207 { 3208 enum upiu_response_transaction resp; 3209 int err = 0; 3210 3211 hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0); 3212 resp = ufshcd_get_req_rsp(lrbp->ucd_rsp_ptr); 3213 3214 switch (resp) { 3215 case UPIU_TRANSACTION_NOP_IN: 3216 if (hba->dev_cmd.type != DEV_CMD_TYPE_NOP) { 3217 err = -EINVAL; 3218 dev_err(hba->dev, "%s: unexpected response %x\n", 3219 __func__, resp); 3220 } 3221 break; 3222 case UPIU_TRANSACTION_QUERY_RSP: { 3223 u8 response = lrbp->ucd_rsp_ptr->header.response; 3224 3225 if (response == 0) { 3226 err = ufshcd_copy_query_response(hba, lrbp); 3227 } else { 3228 err = -EINVAL; 3229 dev_err(hba->dev, "%s: unexpected response in Query RSP: %x\n", 3230 __func__, response); 3231 } 3232 break; 3233 } 3234 case UPIU_TRANSACTION_REJECT_UPIU: 3235 /* TODO: handle Reject UPIU Response */ 3236 err = -EPERM; 3237 dev_err(hba->dev, "%s: Reject UPIU not fully implemented\n", 3238 __func__); 3239 break; 3240 case UPIU_TRANSACTION_RESPONSE: 3241 if (hba->dev_cmd.type != DEV_CMD_TYPE_RPMB) { 3242 err = -EINVAL; 3243 dev_err(hba->dev, "%s: unexpected response %x\n", __func__, resp); 3244 } 3245 break; 3246 default: 3247 err = -EINVAL; 3248 dev_err(hba->dev, "%s: Invalid device management cmd response: %x\n", 3249 __func__, resp); 3250 break; 3251 } 3252 3253 WARN_ONCE(err > 0, "Incorrect return value %d > 0\n", err); 3254 return err; 3255 } 3256 3257 static void ufshcd_dev_man_lock(struct ufs_hba *hba) 3258 { 3259 ufshcd_hold(hba); 3260 mutex_lock(&hba->dev_cmd.lock); 3261 down_read(&hba->clk_scaling_lock); 3262 } 3263 3264 static void ufshcd_dev_man_unlock(struct ufs_hba *hba) 3265 { 3266 up_read(&hba->clk_scaling_lock); 3267 mutex_unlock(&hba->dev_cmd.lock); 3268 ufshcd_release(hba); 3269 } 3270 3271 static struct scsi_cmnd *ufshcd_get_dev_mgmt_cmd(struct ufs_hba *hba) 3272 { 3273 /* 3274 * The caller must hold this lock to guarantee that the NOWAIT 3275 * allocation will succeed. 3276 */ 3277 lockdep_assert_held(&hba->dev_cmd.lock); 3278 3279 return scsi_get_internal_cmd( 3280 hba->host->pseudo_sdev, DMA_TO_DEVICE, 3281 BLK_MQ_REQ_RESERVED | BLK_MQ_REQ_NOWAIT); 3282 } 3283 3284 static void ufshcd_put_dev_mgmt_cmd(struct scsi_cmnd *cmd) 3285 { 3286 scsi_put_internal_cmd(cmd); 3287 } 3288 3289 /* 3290 * Return: 0 upon success; > 0 in case the UFS device reported an OCS error; 3291 * < 0 if another error occurred. 3292 */ 3293 static int ufshcd_issue_dev_cmd(struct ufs_hba *hba, struct scsi_cmnd *cmd, 3294 const u32 tag, int timeout) 3295 { 3296 struct ufshcd_lrb *lrbp = scsi_cmd_priv(cmd); 3297 struct request *rq = scsi_cmd_to_rq(cmd); 3298 blk_status_t sts; 3299 3300 rq->timeout = timeout; 3301 sts = blk_execute_rq(rq, true); 3302 if (sts != BLK_STS_OK) 3303 return blk_status_to_errno(sts); 3304 return lrbp->utr_descriptor_ptr->header.ocs; 3305 } 3306 3307 /** 3308 * ufshcd_exec_dev_cmd - API for sending device management requests 3309 * @hba: UFS hba 3310 * @cmd_type: specifies the type (NOP, Query...) 3311 * @timeout: timeout in milliseconds 3312 * 3313 * Return: 0 upon success; > 0 in case the UFS device reported an OCS error; 3314 * < 0 if another error occurred. 3315 * 3316 * NOTE: Since there is only one available tag for device management commands, 3317 * it is expected you hold the hba->dev_cmd.lock mutex. 3318 */ 3319 static int ufshcd_exec_dev_cmd(struct ufs_hba *hba, 3320 enum dev_cmd_type cmd_type, int timeout) 3321 { 3322 struct scsi_cmnd *cmd = ufshcd_get_dev_mgmt_cmd(hba); 3323 struct ufshcd_lrb *lrbp = scsi_cmd_priv(cmd); 3324 u32 tag; 3325 int err; 3326 3327 /* Protects use of hba->dev_cmd. */ 3328 lockdep_assert_held(&hba->dev_cmd.lock); 3329 3330 if (WARN_ON_ONCE(!cmd)) 3331 return -ENOMEM; 3332 3333 tag = scsi_cmd_to_rq(cmd)->tag; 3334 3335 err = ufshcd_compose_dev_cmd(hba, cmd, cmd_type, tag); 3336 if (unlikely(err)) 3337 goto out; 3338 3339 err = ufshcd_issue_dev_cmd(hba, cmd, tag, timeout); 3340 if (err == 0) 3341 err = ufshcd_dev_cmd_completion(hba, lrbp); 3342 3343 out: 3344 ufshcd_put_dev_mgmt_cmd(cmd); 3345 3346 return err; 3347 } 3348 3349 /** 3350 * ufshcd_init_query() - init the query response and request parameters 3351 * @hba: per-adapter instance 3352 * @request: address of the request pointer to be initialized 3353 * @response: address of the response pointer to be initialized 3354 * @opcode: operation to perform 3355 * @idn: flag idn to access 3356 * @index: LU number to access 3357 * @selector: query/flag/descriptor further identification 3358 */ 3359 static inline void ufshcd_init_query(struct ufs_hba *hba, 3360 struct ufs_query_req **request, struct ufs_query_res **response, 3361 enum query_opcode opcode, u8 idn, u8 index, u8 selector) 3362 { 3363 *request = &hba->dev_cmd.query.request; 3364 *response = &hba->dev_cmd.query.response; 3365 memset(*request, 0, sizeof(struct ufs_query_req)); 3366 memset(*response, 0, sizeof(struct ufs_query_res)); 3367 (*request)->upiu_req.opcode = opcode; 3368 (*request)->upiu_req.idn = idn; 3369 (*request)->upiu_req.index = index; 3370 (*request)->upiu_req.selector = selector; 3371 } 3372 3373 /* 3374 * Return: 0 upon success; > 0 in case the UFS device reported an OCS error; 3375 * < 0 if another error occurred. 3376 */ 3377 static int ufshcd_query_flag_retry(struct ufs_hba *hba, 3378 enum query_opcode opcode, enum flag_idn idn, u8 index, bool *flag_res) 3379 { 3380 int ret; 3381 int retries; 3382 3383 for (retries = 0; retries < QUERY_REQ_RETRIES; retries++) { 3384 ret = ufshcd_query_flag(hba, opcode, idn, index, flag_res); 3385 if (ret) 3386 dev_dbg(hba->dev, 3387 "%s: failed with error %d, retries %d\n", 3388 __func__, ret, retries); 3389 else 3390 break; 3391 } 3392 3393 if (ret) 3394 dev_err(hba->dev, 3395 "%s: query flag, opcode %d, idn %d, failed with error %d after %d retries\n", 3396 __func__, opcode, idn, ret, retries); 3397 return ret; 3398 } 3399 3400 /** 3401 * ufshcd_query_flag() - API function for sending flag query requests 3402 * @hba: per-adapter instance 3403 * @opcode: flag query to perform 3404 * @idn: flag idn to access 3405 * @index: flag index to access 3406 * @flag_res: the flag value after the query request completes 3407 * 3408 * Return: 0 upon success; > 0 in case the UFS device reported an OCS error; 3409 * < 0 if another error occurred. 3410 */ 3411 int ufshcd_query_flag(struct ufs_hba *hba, enum query_opcode opcode, 3412 enum flag_idn idn, u8 index, bool *flag_res) 3413 { 3414 struct ufs_query_req *request = NULL; 3415 struct ufs_query_res *response = NULL; 3416 int err, selector = 0; 3417 int timeout = dev_cmd_timeout; 3418 3419 BUG_ON(!hba); 3420 3421 ufshcd_dev_man_lock(hba); 3422 3423 ufshcd_init_query(hba, &request, &response, opcode, idn, index, 3424 selector); 3425 3426 switch (opcode) { 3427 case UPIU_QUERY_OPCODE_SET_FLAG: 3428 case UPIU_QUERY_OPCODE_CLEAR_FLAG: 3429 case UPIU_QUERY_OPCODE_TOGGLE_FLAG: 3430 request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST; 3431 break; 3432 case UPIU_QUERY_OPCODE_READ_FLAG: 3433 request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST; 3434 if (!flag_res) { 3435 /* No dummy reads */ 3436 dev_err(hba->dev, "%s: Invalid argument for read request\n", 3437 __func__); 3438 err = -EINVAL; 3439 goto out_unlock; 3440 } 3441 break; 3442 default: 3443 dev_err(hba->dev, 3444 "%s: Expected query flag opcode but got = %d\n", 3445 __func__, opcode); 3446 err = -EINVAL; 3447 goto out_unlock; 3448 } 3449 3450 err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, timeout); 3451 3452 if (err) { 3453 dev_err(hba->dev, 3454 "%s: Sending flag query for idn %d failed, err = %d\n", 3455 __func__, idn, err); 3456 goto out_unlock; 3457 } 3458 3459 if (flag_res) 3460 *flag_res = (be32_to_cpu(response->upiu_res.value) & 3461 MASK_QUERY_UPIU_FLAG_LOC) & 0x1; 3462 3463 out_unlock: 3464 ufshcd_dev_man_unlock(hba); 3465 return err; 3466 } 3467 3468 /** 3469 * ufshcd_query_attr - API function for sending attribute requests 3470 * @hba: per-adapter instance 3471 * @opcode: attribute opcode 3472 * @idn: attribute idn to access 3473 * @index: index field 3474 * @selector: selector field 3475 * @attr_val: the attribute value after the query request completes 3476 * 3477 * Return: 0 upon success; > 0 in case the UFS device reported an OCS error; 3478 * < 0 if another error occurred. 3479 */ 3480 int ufshcd_query_attr(struct ufs_hba *hba, enum query_opcode opcode, 3481 enum attr_idn idn, u8 index, u8 selector, u32 *attr_val) 3482 { 3483 struct ufs_query_req *request = NULL; 3484 struct ufs_query_res *response = NULL; 3485 int err; 3486 3487 BUG_ON(!hba); 3488 3489 if (!attr_val) { 3490 dev_err(hba->dev, "%s: attribute value required for opcode 0x%x\n", 3491 __func__, opcode); 3492 return -EINVAL; 3493 } 3494 3495 ufshcd_dev_man_lock(hba); 3496 3497 ufshcd_init_query(hba, &request, &response, opcode, idn, index, 3498 selector); 3499 3500 switch (opcode) { 3501 case UPIU_QUERY_OPCODE_WRITE_ATTR: 3502 request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST; 3503 request->upiu_req.value = cpu_to_be32(*attr_val); 3504 break; 3505 case UPIU_QUERY_OPCODE_READ_ATTR: 3506 request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST; 3507 break; 3508 default: 3509 dev_err(hba->dev, "%s: Expected query attr opcode but got = 0x%.2x\n", 3510 __func__, opcode); 3511 err = -EINVAL; 3512 goto out_unlock; 3513 } 3514 3515 err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, dev_cmd_timeout); 3516 3517 if (err) { 3518 dev_err(hba->dev, "%s: opcode 0x%.2x for idn %d failed, index %d, err = %d\n", 3519 __func__, opcode, idn, index, err); 3520 goto out_unlock; 3521 } 3522 3523 *attr_val = be32_to_cpu(response->upiu_res.value); 3524 3525 out_unlock: 3526 ufshcd_dev_man_unlock(hba); 3527 return err; 3528 } 3529 3530 /** 3531 * ufshcd_query_attr_retry() - API function for sending query 3532 * attribute with retries 3533 * @hba: per-adapter instance 3534 * @opcode: attribute opcode 3535 * @idn: attribute idn to access 3536 * @index: index field 3537 * @selector: selector field 3538 * @attr_val: the attribute value after the query request 3539 * completes 3540 * 3541 * Return: 0 upon success; > 0 in case the UFS device reported an OCS error; 3542 * < 0 if another error occurred. 3543 */ 3544 int ufshcd_query_attr_retry(struct ufs_hba *hba, 3545 enum query_opcode opcode, enum attr_idn idn, u8 index, u8 selector, 3546 u32 *attr_val) 3547 { 3548 int ret = 0; 3549 u32 retries; 3550 3551 for (retries = QUERY_REQ_RETRIES; retries > 0; retries--) { 3552 ret = ufshcd_query_attr(hba, opcode, idn, index, 3553 selector, attr_val); 3554 if (ret) 3555 dev_dbg(hba->dev, "%s: failed with error %d, retries %d\n", 3556 __func__, ret, retries); 3557 else 3558 break; 3559 } 3560 3561 if (ret) 3562 dev_err(hba->dev, 3563 "%s: query attribute, idn %d, failed with error %d after %d retries\n", 3564 __func__, idn, ret, QUERY_REQ_RETRIES); 3565 return ret; 3566 } 3567 3568 /* 3569 * Return: 0 upon success; > 0 in case the UFS device reported an OCS error; 3570 * < 0 if another error occurred. 3571 */ 3572 static int __ufshcd_query_descriptor(struct ufs_hba *hba, 3573 enum query_opcode opcode, enum desc_idn idn, u8 index, 3574 u8 selector, u8 *desc_buf, int *buf_len) 3575 { 3576 struct ufs_query_req *request = NULL; 3577 struct ufs_query_res *response = NULL; 3578 int err; 3579 3580 BUG_ON(!hba); 3581 3582 if (!desc_buf) { 3583 dev_err(hba->dev, "%s: descriptor buffer required for opcode 0x%x\n", 3584 __func__, opcode); 3585 return -EINVAL; 3586 } 3587 3588 if (*buf_len < QUERY_DESC_MIN_SIZE || *buf_len > QUERY_DESC_MAX_SIZE) { 3589 dev_err(hba->dev, "%s: descriptor buffer size (%d) is out of range\n", 3590 __func__, *buf_len); 3591 return -EINVAL; 3592 } 3593 3594 ufshcd_dev_man_lock(hba); 3595 3596 ufshcd_init_query(hba, &request, &response, opcode, idn, index, 3597 selector); 3598 hba->dev_cmd.query.descriptor = desc_buf; 3599 request->upiu_req.length = cpu_to_be16(*buf_len); 3600 3601 switch (opcode) { 3602 case UPIU_QUERY_OPCODE_WRITE_DESC: 3603 request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST; 3604 break; 3605 case UPIU_QUERY_OPCODE_READ_DESC: 3606 request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST; 3607 break; 3608 default: 3609 dev_err(hba->dev, 3610 "%s: Expected query descriptor opcode but got = 0x%.2x\n", 3611 __func__, opcode); 3612 err = -EINVAL; 3613 goto out_unlock; 3614 } 3615 3616 err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, dev_cmd_timeout); 3617 3618 if (err) { 3619 dev_err(hba->dev, "%s: opcode 0x%.2x for idn %d failed, index %d, err = %d\n", 3620 __func__, opcode, idn, index, err); 3621 goto out_unlock; 3622 } 3623 3624 *buf_len = be16_to_cpu(response->upiu_res.length); 3625 3626 out_unlock: 3627 hba->dev_cmd.query.descriptor = NULL; 3628 ufshcd_dev_man_unlock(hba); 3629 return err; 3630 } 3631 3632 /** 3633 * ufshcd_query_descriptor_retry - API function for sending descriptor requests 3634 * @hba: per-adapter instance 3635 * @opcode: attribute opcode 3636 * @idn: attribute idn to access 3637 * @index: index field 3638 * @selector: selector field 3639 * @desc_buf: the buffer that contains the descriptor 3640 * @buf_len: length parameter passed to the device 3641 * 3642 * The buf_len parameter will contain, on return, the length parameter 3643 * received on the response. 3644 * 3645 * Return: 0 upon success; > 0 in case the UFS device reported an OCS error; 3646 * < 0 if another error occurred. 3647 */ 3648 int ufshcd_query_descriptor_retry(struct ufs_hba *hba, 3649 enum query_opcode opcode, 3650 enum desc_idn idn, u8 index, 3651 u8 selector, 3652 u8 *desc_buf, int *buf_len) 3653 { 3654 int err; 3655 int retries; 3656 3657 for (retries = QUERY_REQ_RETRIES; retries > 0; retries--) { 3658 err = __ufshcd_query_descriptor(hba, opcode, idn, index, 3659 selector, desc_buf, buf_len); 3660 if (!err || err == -EINVAL) 3661 break; 3662 } 3663 3664 return err; 3665 } 3666 3667 /** 3668 * ufshcd_read_desc_param - read the specified descriptor parameter 3669 * @hba: Pointer to adapter instance 3670 * @desc_id: descriptor idn value 3671 * @desc_index: descriptor index 3672 * @param_offset: offset of the parameter to read 3673 * @param_read_buf: pointer to buffer where parameter would be read 3674 * @param_size: sizeof(param_read_buf) 3675 * 3676 * Return: 0 upon success; > 0 in case the UFS device reported an OCS error; 3677 * < 0 if another error occurred. 3678 */ 3679 int ufshcd_read_desc_param(struct ufs_hba *hba, 3680 enum desc_idn desc_id, 3681 int desc_index, 3682 u8 param_offset, 3683 u8 *param_read_buf, 3684 u8 param_size) 3685 { 3686 int ret; 3687 u8 *desc_buf; 3688 int buff_len = QUERY_DESC_MAX_SIZE; 3689 bool is_kmalloc = true; 3690 3691 /* Safety check */ 3692 if (desc_id >= QUERY_DESC_IDN_MAX || !param_size) 3693 return -EINVAL; 3694 3695 /* Check whether we need temp memory */ 3696 if (param_offset != 0 || param_size < buff_len) { 3697 desc_buf = kzalloc(buff_len, GFP_KERNEL); 3698 if (!desc_buf) 3699 return -ENOMEM; 3700 } else { 3701 desc_buf = param_read_buf; 3702 is_kmalloc = false; 3703 } 3704 3705 /* Request for full descriptor */ 3706 ret = ufshcd_query_descriptor_retry(hba, UPIU_QUERY_OPCODE_READ_DESC, 3707 desc_id, desc_index, 0, 3708 desc_buf, &buff_len); 3709 if (ret) { 3710 dev_err(hba->dev, "%s: Failed reading descriptor. desc_id %d, desc_index %d, param_offset %d, ret %d\n", 3711 __func__, desc_id, desc_index, param_offset, ret); 3712 goto out; 3713 } 3714 3715 /* Update descriptor length */ 3716 buff_len = desc_buf[QUERY_DESC_LENGTH_OFFSET]; 3717 3718 if (param_offset >= buff_len) { 3719 dev_err(hba->dev, "%s: Invalid offset 0x%x in descriptor IDN 0x%x, length 0x%x\n", 3720 __func__, param_offset, desc_id, buff_len); 3721 ret = -EINVAL; 3722 goto out; 3723 } 3724 3725 /* Sanity check */ 3726 if (desc_buf[QUERY_DESC_DESC_TYPE_OFFSET] != desc_id) { 3727 dev_err(hba->dev, "%s: invalid desc_id %d in descriptor header\n", 3728 __func__, desc_buf[QUERY_DESC_DESC_TYPE_OFFSET]); 3729 ret = -EINVAL; 3730 goto out; 3731 } 3732 3733 if (is_kmalloc) { 3734 /* Make sure we don't copy more data than available */ 3735 if (param_offset >= buff_len) 3736 ret = -EINVAL; 3737 else 3738 memcpy(param_read_buf, &desc_buf[param_offset], 3739 min_t(u32, param_size, buff_len - param_offset)); 3740 } 3741 out: 3742 if (is_kmalloc) 3743 kfree(desc_buf); 3744 return ret; 3745 } 3746 3747 /** 3748 * struct uc_string_id - unicode string 3749 * 3750 * @len: size of this descriptor inclusive 3751 * @type: descriptor type 3752 * @uc: unicode string character 3753 */ 3754 struct uc_string_id { 3755 u8 len; 3756 u8 type; 3757 wchar_t uc[]; 3758 } __packed; 3759 3760 /* replace non-printable or non-ASCII characters with spaces */ 3761 static inline char ufshcd_remove_non_printable(u8 ch) 3762 { 3763 return (ch >= 0x20 && ch <= 0x7e) ? ch : ' '; 3764 } 3765 3766 /** 3767 * ufshcd_read_string_desc - read string descriptor 3768 * @hba: pointer to adapter instance 3769 * @desc_index: descriptor index 3770 * @buf: pointer to buffer where descriptor would be read, 3771 * the caller should free the memory. 3772 * @fmt: if %SD_ASCII_STD, convert from UTF-16 to ASCII 3773 * 3774 * Return: 3775 * * string size on success. 3776 * * -ENOMEM: on allocation failure 3777 * * -EINVAL: on a wrong parameter 3778 */ 3779 int ufshcd_read_string_desc(struct ufs_hba *hba, u8 desc_index, u8 **buf, enum ufs_descr_fmt fmt) 3780 { 3781 struct uc_string_id *uc_str; 3782 u8 *str; 3783 int ret; 3784 3785 if (!buf) 3786 return -EINVAL; 3787 3788 uc_str = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL); 3789 if (!uc_str) 3790 return -ENOMEM; 3791 3792 ret = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_STRING, desc_index, 0, 3793 (u8 *)uc_str, QUERY_DESC_MAX_SIZE); 3794 if (ret < 0) { 3795 dev_err(hba->dev, "Reading String Desc failed after %d retries. err = %d\n", 3796 QUERY_REQ_RETRIES, ret); 3797 str = NULL; 3798 goto out; 3799 } 3800 3801 if (uc_str->len <= QUERY_DESC_HDR_SIZE) { 3802 dev_dbg(hba->dev, "String Desc is of zero length\n"); 3803 str = NULL; 3804 ret = 0; 3805 goto out; 3806 } 3807 3808 if (fmt == SD_ASCII_STD) { 3809 ssize_t ascii_len; 3810 int i; 3811 /* remove header and divide by 2 to move from UTF16 to UTF8 */ 3812 ascii_len = (uc_str->len - QUERY_DESC_HDR_SIZE) / 2 + 1; 3813 str = kzalloc(ascii_len, GFP_KERNEL); 3814 if (!str) { 3815 ret = -ENOMEM; 3816 goto out; 3817 } 3818 3819 /* 3820 * the descriptor contains string in UTF16 format 3821 * we need to convert to utf-8 so it can be displayed 3822 */ 3823 ret = utf16s_to_utf8s(uc_str->uc, 3824 uc_str->len - QUERY_DESC_HDR_SIZE, 3825 UTF16_BIG_ENDIAN, str, ascii_len - 1); 3826 3827 /* replace non-printable or non-ASCII characters with spaces */ 3828 for (i = 0; i < ret; i++) 3829 str[i] = ufshcd_remove_non_printable(str[i]); 3830 3831 str[ret++] = '\0'; 3832 3833 } else { 3834 str = kmemdup(uc_str->uc, uc_str->len, GFP_KERNEL); 3835 if (!str) { 3836 ret = -ENOMEM; 3837 goto out; 3838 } 3839 ret = uc_str->len; 3840 } 3841 out: 3842 *buf = str; 3843 kfree(uc_str); 3844 return ret; 3845 } 3846 3847 /** 3848 * ufshcd_read_unit_desc_param - read the specified unit descriptor parameter 3849 * @hba: Pointer to adapter instance 3850 * @lun: lun id 3851 * @param_offset: offset of the parameter to read 3852 * @param_read_buf: pointer to buffer where parameter would be read 3853 * @param_size: sizeof(param_read_buf) 3854 * 3855 * Return: 0 in case of success; < 0 upon failure. 3856 */ 3857 static inline int ufshcd_read_unit_desc_param(struct ufs_hba *hba, 3858 int lun, 3859 enum unit_desc_param param_offset, 3860 u8 *param_read_buf, 3861 u32 param_size) 3862 { 3863 /* 3864 * Unit descriptors are only available for general purpose LUs (LUN id 3865 * from 0 to 7) and RPMB Well known LU. 3866 */ 3867 if (!ufs_is_valid_unit_desc_lun(&hba->dev_info, lun)) 3868 return -EOPNOTSUPP; 3869 3870 return ufshcd_read_desc_param(hba, QUERY_DESC_IDN_UNIT, lun, 3871 param_offset, param_read_buf, param_size); 3872 } 3873 3874 static int ufshcd_get_ref_clk_gating_wait(struct ufs_hba *hba) 3875 { 3876 int err = 0; 3877 u32 gating_wait = UFSHCD_REF_CLK_GATING_WAIT_US; 3878 3879 if (hba->dev_info.wspecversion >= 0x300) { 3880 err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR, 3881 QUERY_ATTR_IDN_REF_CLK_GATING_WAIT_TIME, 0, 0, 3882 &gating_wait); 3883 if (err) 3884 dev_err(hba->dev, "Failed reading bRefClkGatingWait. err = %d, use default %uus\n", 3885 err, gating_wait); 3886 3887 if (gating_wait == 0) { 3888 gating_wait = UFSHCD_REF_CLK_GATING_WAIT_US; 3889 dev_err(hba->dev, "Undefined ref clk gating wait time, use default %uus\n", 3890 gating_wait); 3891 } 3892 3893 hba->dev_info.clk_gating_wait_us = gating_wait; 3894 } 3895 3896 return err; 3897 } 3898 3899 /** 3900 * ufshcd_memory_alloc - allocate memory for host memory space data structures 3901 * @hba: per adapter instance 3902 * 3903 * 1. Allocate DMA memory for Command Descriptor array 3904 * Each command descriptor consist of Command UPIU, Response UPIU and PRDT 3905 * 2. Allocate DMA memory for UTP Transfer Request Descriptor List (UTRDL). 3906 * 3. Allocate DMA memory for UTP Task Management Request Descriptor List 3907 * (UTMRDL) 3908 * 4. Allocate memory for local reference block(lrb). 3909 * 3910 * Return: 0 for success, non-zero in case of failure. 3911 */ 3912 static int ufshcd_memory_alloc(struct ufs_hba *hba) 3913 { 3914 size_t utmrdl_size, utrdl_size, ucdl_size; 3915 3916 /* Allocate memory for UTP command descriptors */ 3917 ucdl_size = ufshcd_get_ucd_size(hba) * hba->nutrs; 3918 hba->ucdl_base_addr = dmam_alloc_coherent(hba->dev, 3919 ucdl_size, 3920 &hba->ucdl_dma_addr, 3921 GFP_KERNEL); 3922 3923 /* 3924 * UFSHCI requires UTP command descriptor to be 128 byte aligned. 3925 */ 3926 if (!hba->ucdl_base_addr || 3927 WARN_ON(hba->ucdl_dma_addr & (128 - 1))) { 3928 dev_err(hba->dev, 3929 "Command Descriptor Memory allocation failed\n"); 3930 goto out; 3931 } 3932 3933 /* 3934 * Allocate memory for UTP Transfer descriptors 3935 * UFSHCI requires 1KB alignment of UTRD 3936 */ 3937 utrdl_size = (sizeof(struct utp_transfer_req_desc) * hba->nutrs); 3938 hba->utrdl_base_addr = dmam_alloc_coherent(hba->dev, 3939 utrdl_size, 3940 &hba->utrdl_dma_addr, 3941 GFP_KERNEL); 3942 if (!hba->utrdl_base_addr || 3943 WARN_ON(hba->utrdl_dma_addr & (SZ_1K - 1))) { 3944 dev_err(hba->dev, 3945 "Transfer Descriptor Memory allocation failed\n"); 3946 goto out; 3947 } 3948 3949 /* 3950 * Skip utmrdl allocation; it may have been 3951 * allocated during first pass and not released during 3952 * MCQ memory allocation. 3953 * See ufshcd_release_sdb_queue() and ufshcd_config_mcq() 3954 */ 3955 if (hba->utmrdl_base_addr) 3956 goto skip_utmrdl; 3957 /* 3958 * Allocate memory for UTP Task Management descriptors 3959 * UFSHCI requires 1KB alignment of UTMRD 3960 */ 3961 utmrdl_size = sizeof(struct utp_task_req_desc) * hba->nutmrs; 3962 hba->utmrdl_base_addr = dmam_alloc_coherent(hba->dev, 3963 utmrdl_size, 3964 &hba->utmrdl_dma_addr, 3965 GFP_KERNEL); 3966 if (!hba->utmrdl_base_addr || 3967 WARN_ON(hba->utmrdl_dma_addr & (SZ_1K - 1))) { 3968 dev_err(hba->dev, 3969 "Task Management Descriptor Memory allocation failed\n"); 3970 goto out; 3971 } 3972 3973 skip_utmrdl: 3974 return 0; 3975 out: 3976 return -ENOMEM; 3977 } 3978 3979 /** 3980 * ufshcd_host_memory_configure - configure local reference block with 3981 * memory offsets 3982 * @hba: per adapter instance 3983 * 3984 * Configure Host memory space 3985 * 1. Update Corresponding UTRD.UCDBA and UTRD.UCDBAU with UCD DMA 3986 * address. 3987 * 2. Update each UTRD with Response UPIU offset, Response UPIU length 3988 * and PRDT offset. 3989 * 3. Save the corresponding addresses of UTRD, UCD.CMD, UCD.RSP and UCD.PRDT 3990 * into local reference block. 3991 */ 3992 static void ufshcd_host_memory_configure(struct ufs_hba *hba) 3993 { 3994 struct utp_transfer_req_desc *utrdlp; 3995 dma_addr_t cmd_desc_dma_addr; 3996 dma_addr_t cmd_desc_element_addr; 3997 u16 response_offset; 3998 u16 prdt_offset; 3999 int cmd_desc_size; 4000 int i; 4001 4002 utrdlp = hba->utrdl_base_addr; 4003 4004 response_offset = 4005 offsetof(struct utp_transfer_cmd_desc, response_upiu); 4006 prdt_offset = 4007 offsetof(struct utp_transfer_cmd_desc, prd_table); 4008 4009 cmd_desc_size = ufshcd_get_ucd_size(hba); 4010 cmd_desc_dma_addr = hba->ucdl_dma_addr; 4011 4012 for (i = 0; i < hba->nutrs; i++) { 4013 /* Configure UTRD with command descriptor base address */ 4014 cmd_desc_element_addr = 4015 (cmd_desc_dma_addr + (cmd_desc_size * i)); 4016 utrdlp[i].command_desc_base_addr = 4017 cpu_to_le64(cmd_desc_element_addr); 4018 4019 /* Response upiu and prdt offset should be in double words */ 4020 if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN) { 4021 utrdlp[i].response_upiu_offset = 4022 cpu_to_le16(response_offset); 4023 utrdlp[i].prd_table_offset = 4024 cpu_to_le16(prdt_offset); 4025 utrdlp[i].response_upiu_length = 4026 cpu_to_le16(ALIGNED_UPIU_SIZE); 4027 } else { 4028 utrdlp[i].response_upiu_offset = 4029 cpu_to_le16(response_offset >> 2); 4030 utrdlp[i].prd_table_offset = 4031 cpu_to_le16(prdt_offset >> 2); 4032 utrdlp[i].response_upiu_length = 4033 cpu_to_le16(ALIGNED_UPIU_SIZE >> 2); 4034 } 4035 } 4036 } 4037 4038 /** 4039 * ufshcd_dme_link_startup - Notify Unipro to perform link startup 4040 * @hba: per adapter instance 4041 * 4042 * UIC_CMD_DME_LINK_STARTUP command must be issued to Unipro layer, 4043 * in order to initialize the Unipro link startup procedure. 4044 * Once the Unipro links are up, the device connected to the controller 4045 * is detected. 4046 * 4047 * Return: 0 on success, non-zero value on failure. 4048 */ 4049 static int ufshcd_dme_link_startup(struct ufs_hba *hba) 4050 { 4051 struct uic_command uic_cmd = { 4052 .command = UIC_CMD_DME_LINK_STARTUP, 4053 }; 4054 int ret; 4055 4056 ret = ufshcd_send_uic_cmd(hba, &uic_cmd); 4057 if (ret) 4058 dev_dbg(hba->dev, 4059 "dme-link-startup: error code %d\n", ret); 4060 return ret; 4061 } 4062 /** 4063 * ufshcd_dme_reset - UIC command for DME_RESET 4064 * @hba: per adapter instance 4065 * 4066 * DME_RESET command is issued in order to reset UniPro stack. 4067 * This function now deals with cold reset. 4068 * 4069 * Return: 0 on success, non-zero value on failure. 4070 */ 4071 int ufshcd_dme_reset(struct ufs_hba *hba) 4072 { 4073 struct uic_command uic_cmd = { 4074 .command = UIC_CMD_DME_RESET, 4075 }; 4076 int ret; 4077 4078 ret = ufshcd_send_uic_cmd(hba, &uic_cmd); 4079 if (ret) 4080 dev_err(hba->dev, 4081 "dme-reset: error code %d\n", ret); 4082 4083 return ret; 4084 } 4085 EXPORT_SYMBOL_GPL(ufshcd_dme_reset); 4086 4087 int ufshcd_dme_configure_adapt(struct ufs_hba *hba, 4088 int agreed_gear, 4089 int adapt_val) 4090 { 4091 int ret; 4092 4093 if (agreed_gear < UFS_HS_G4) 4094 adapt_val = PA_NO_ADAPT; 4095 4096 ret = ufshcd_dme_set(hba, 4097 UIC_ARG_MIB(PA_TXHSADAPTTYPE), 4098 adapt_val); 4099 return ret; 4100 } 4101 EXPORT_SYMBOL_GPL(ufshcd_dme_configure_adapt); 4102 4103 /** 4104 * ufshcd_dme_enable - UIC command for DME_ENABLE 4105 * @hba: per adapter instance 4106 * 4107 * DME_ENABLE command is issued in order to enable UniPro stack. 4108 * 4109 * Return: 0 on success, non-zero value on failure. 4110 */ 4111 int ufshcd_dme_enable(struct ufs_hba *hba) 4112 { 4113 struct uic_command uic_cmd = { 4114 .command = UIC_CMD_DME_ENABLE, 4115 }; 4116 int ret; 4117 4118 ret = ufshcd_send_uic_cmd(hba, &uic_cmd); 4119 if (ret) 4120 dev_err(hba->dev, 4121 "dme-enable: error code %d\n", ret); 4122 4123 return ret; 4124 } 4125 EXPORT_SYMBOL_GPL(ufshcd_dme_enable); 4126 4127 static inline void ufshcd_add_delay_before_dme_cmd(struct ufs_hba *hba) 4128 { 4129 #define MIN_DELAY_BEFORE_DME_CMDS_US 1000 4130 unsigned long min_sleep_time_us; 4131 4132 if (!(hba->quirks & UFSHCD_QUIRK_DELAY_BEFORE_DME_CMDS)) 4133 return; 4134 4135 /* 4136 * last_dme_cmd_tstamp will be 0 only for 1st call to 4137 * this function 4138 */ 4139 if (unlikely(!ktime_to_us(hba->last_dme_cmd_tstamp))) { 4140 min_sleep_time_us = MIN_DELAY_BEFORE_DME_CMDS_US; 4141 } else { 4142 unsigned long delta = 4143 (unsigned long) ktime_to_us( 4144 ktime_sub(ktime_get(), 4145 hba->last_dme_cmd_tstamp)); 4146 4147 if (delta < MIN_DELAY_BEFORE_DME_CMDS_US) 4148 min_sleep_time_us = 4149 MIN_DELAY_BEFORE_DME_CMDS_US - delta; 4150 else 4151 min_sleep_time_us = 0; /* no more delay required */ 4152 } 4153 4154 if (min_sleep_time_us > 0) { 4155 /* allow sleep for extra 50us if needed */ 4156 usleep_range(min_sleep_time_us, min_sleep_time_us + 50); 4157 } 4158 4159 /* update the last_dme_cmd_tstamp */ 4160 hba->last_dme_cmd_tstamp = ktime_get(); 4161 } 4162 4163 /** 4164 * ufshcd_dme_set_attr - UIC command for DME_SET, DME_PEER_SET 4165 * @hba: per adapter instance 4166 * @attr_sel: uic command argument1 4167 * @attr_set: attribute set type as uic command argument2 4168 * @mib_val: setting value as uic command argument3 4169 * @peer: indicate whether peer or local 4170 * 4171 * Return: 0 on success, non-zero value on failure. 4172 */ 4173 int ufshcd_dme_set_attr(struct ufs_hba *hba, u32 attr_sel, 4174 u8 attr_set, u32 mib_val, u8 peer) 4175 { 4176 struct uic_command uic_cmd = { 4177 .command = peer ? UIC_CMD_DME_PEER_SET : UIC_CMD_DME_SET, 4178 .argument1 = attr_sel, 4179 .argument2 = UIC_ARG_ATTR_TYPE(attr_set), 4180 .argument3 = mib_val, 4181 }; 4182 static const char *const action[] = { 4183 "dme-set", 4184 "dme-peer-set" 4185 }; 4186 const char *set = action[!!peer]; 4187 int ret; 4188 int retries = UFS_UIC_COMMAND_RETRIES; 4189 4190 do { 4191 /* for peer attributes we retry upon failure */ 4192 ret = ufshcd_send_uic_cmd(hba, &uic_cmd); 4193 if (ret) 4194 dev_dbg(hba->dev, "%s: attr-id 0x%x val 0x%x error code %d\n", 4195 set, UIC_GET_ATTR_ID(attr_sel), mib_val, ret); 4196 } while (ret && peer && --retries); 4197 4198 if (ret) 4199 dev_err(hba->dev, "%s: attr-id 0x%x val 0x%x failed %d retries\n", 4200 set, UIC_GET_ATTR_ID(attr_sel), mib_val, 4201 UFS_UIC_COMMAND_RETRIES - retries); 4202 4203 return ret; 4204 } 4205 EXPORT_SYMBOL_GPL(ufshcd_dme_set_attr); 4206 4207 /** 4208 * ufshcd_dme_get_attr - UIC command for DME_GET, DME_PEER_GET 4209 * @hba: per adapter instance 4210 * @attr_sel: uic command argument1 4211 * @mib_val: the value of the attribute as returned by the UIC command 4212 * @peer: indicate whether peer or local 4213 * 4214 * Return: 0 on success, non-zero value on failure. 4215 */ 4216 int ufshcd_dme_get_attr(struct ufs_hba *hba, u32 attr_sel, 4217 u32 *mib_val, u8 peer) 4218 { 4219 struct uic_command uic_cmd = { 4220 .command = peer ? UIC_CMD_DME_PEER_GET : UIC_CMD_DME_GET, 4221 .argument1 = attr_sel, 4222 }; 4223 static const char *const action[] = { 4224 "dme-get", 4225 "dme-peer-get" 4226 }; 4227 const char *get = action[!!peer]; 4228 int ret; 4229 int retries = UFS_UIC_COMMAND_RETRIES; 4230 struct ufs_pa_layer_attr orig_pwr_info; 4231 struct ufs_pa_layer_attr temp_pwr_info; 4232 bool pwr_mode_change = false; 4233 4234 if (peer && (hba->quirks & UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE)) { 4235 orig_pwr_info = hba->pwr_info; 4236 temp_pwr_info = orig_pwr_info; 4237 4238 if (orig_pwr_info.pwr_tx == FAST_MODE || 4239 orig_pwr_info.pwr_rx == FAST_MODE) { 4240 temp_pwr_info.pwr_tx = FASTAUTO_MODE; 4241 temp_pwr_info.pwr_rx = FASTAUTO_MODE; 4242 pwr_mode_change = true; 4243 } else if (orig_pwr_info.pwr_tx == SLOW_MODE || 4244 orig_pwr_info.pwr_rx == SLOW_MODE) { 4245 temp_pwr_info.pwr_tx = SLOWAUTO_MODE; 4246 temp_pwr_info.pwr_rx = SLOWAUTO_MODE; 4247 pwr_mode_change = true; 4248 } 4249 if (pwr_mode_change) { 4250 ret = ufshcd_change_power_mode(hba, &temp_pwr_info); 4251 if (ret) 4252 goto out; 4253 } 4254 } 4255 4256 do { 4257 /* for peer attributes we retry upon failure */ 4258 ret = ufshcd_send_uic_cmd(hba, &uic_cmd); 4259 if (ret) 4260 dev_dbg(hba->dev, "%s: attr-id 0x%x error code %d\n", 4261 get, UIC_GET_ATTR_ID(attr_sel), ret); 4262 } while (ret && peer && --retries); 4263 4264 if (ret) 4265 dev_err(hba->dev, "%s: attr-id 0x%x failed %d retries\n", 4266 get, UIC_GET_ATTR_ID(attr_sel), 4267 UFS_UIC_COMMAND_RETRIES - retries); 4268 4269 if (mib_val) 4270 *mib_val = ret == 0 ? uic_cmd.argument3 : 0; 4271 4272 if (peer && (hba->quirks & UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE) 4273 && pwr_mode_change) 4274 ufshcd_change_power_mode(hba, &orig_pwr_info); 4275 out: 4276 return ret; 4277 } 4278 EXPORT_SYMBOL_GPL(ufshcd_dme_get_attr); 4279 4280 /** 4281 * ufshcd_dme_rmw - get modify set a DME attribute 4282 * @hba: per adapter instance 4283 * @mask: indicates which bits to clear from the value that has been read 4284 * @val: actual value to write 4285 * @attr: dme attribute 4286 */ 4287 int ufshcd_dme_rmw(struct ufs_hba *hba, u32 mask, 4288 u32 val, u32 attr) 4289 { 4290 u32 cfg = 0; 4291 int err; 4292 4293 err = ufshcd_dme_get(hba, UIC_ARG_MIB(attr), &cfg); 4294 if (err) 4295 return err; 4296 4297 cfg &= ~mask; 4298 cfg |= (val & mask); 4299 4300 return ufshcd_dme_set(hba, UIC_ARG_MIB(attr), cfg); 4301 } 4302 EXPORT_SYMBOL_GPL(ufshcd_dme_rmw); 4303 4304 /** 4305 * ufshcd_uic_pwr_ctrl - executes UIC commands (which affects the link power 4306 * state) and waits for it to take effect. 4307 * 4308 * @hba: per adapter instance 4309 * @cmd: UIC command to execute 4310 * 4311 * DME operations like DME_SET(PA_PWRMODE), DME_HIBERNATE_ENTER & 4312 * DME_HIBERNATE_EXIT commands take some time to take its effect on both host 4313 * and device UniPro link and hence it's final completion would be indicated by 4314 * dedicated status bits in Interrupt Status register (UPMS, UHES, UHXS) in 4315 * addition to normal UIC command completion Status (UCCS). This function only 4316 * returns after the relevant status bits indicate the completion. 4317 * 4318 * Return: 0 on success, non-zero value on failure. 4319 */ 4320 static int ufshcd_uic_pwr_ctrl(struct ufs_hba *hba, struct uic_command *cmd) 4321 { 4322 DECLARE_COMPLETION_ONSTACK(uic_async_done); 4323 unsigned long flags; 4324 u8 status; 4325 int ret; 4326 4327 mutex_lock(&hba->uic_cmd_mutex); 4328 ufshcd_add_delay_before_dme_cmd(hba); 4329 4330 spin_lock_irqsave(hba->host->host_lock, flags); 4331 if (ufshcd_is_link_broken(hba)) { 4332 ret = -ENOLINK; 4333 goto out_unlock; 4334 } 4335 hba->uic_async_done = &uic_async_done; 4336 ufshcd_disable_intr(hba, UIC_COMMAND_COMPL); 4337 spin_unlock_irqrestore(hba->host->host_lock, flags); 4338 ret = __ufshcd_send_uic_cmd(hba, cmd); 4339 if (ret) { 4340 dev_err(hba->dev, 4341 "pwr ctrl cmd 0x%x with mode 0x%x uic error %d\n", 4342 cmd->command, cmd->argument3, ret); 4343 goto out; 4344 } 4345 4346 if (!wait_for_completion_timeout(hba->uic_async_done, 4347 msecs_to_jiffies(uic_cmd_timeout))) { 4348 dev_err(hba->dev, 4349 "pwr ctrl cmd 0x%x with mode 0x%x completion timeout\n", 4350 cmd->command, cmd->argument3); 4351 4352 if (!cmd->cmd_active) { 4353 dev_err(hba->dev, "%s: Power Mode Change operation has been completed, go check UPMCRS\n", 4354 __func__); 4355 goto check_upmcrs; 4356 } 4357 4358 ret = -ETIMEDOUT; 4359 goto out; 4360 } 4361 4362 check_upmcrs: 4363 status = ufshcd_get_upmcrs(hba); 4364 if (status != PWR_LOCAL) { 4365 dev_err(hba->dev, 4366 "pwr ctrl cmd 0x%x failed, host upmcrs:0x%x\n", 4367 cmd->command, status); 4368 ret = (status != PWR_OK) ? status : -1; 4369 } 4370 out: 4371 if (ret) { 4372 ufshcd_print_host_state(hba); 4373 ufshcd_print_pwr_info(hba); 4374 ufshcd_print_evt_hist(hba); 4375 } 4376 4377 spin_lock_irqsave(hba->host->host_lock, flags); 4378 hba->active_uic_cmd = NULL; 4379 hba->uic_async_done = NULL; 4380 if (ret && !hba->pm_op_in_progress) { 4381 ufshcd_set_link_broken(hba); 4382 ufshcd_schedule_eh_work(hba); 4383 } 4384 out_unlock: 4385 spin_unlock_irqrestore(hba->host->host_lock, flags); 4386 mutex_unlock(&hba->uic_cmd_mutex); 4387 4388 /* 4389 * If the h8 exit fails during the runtime resume process, it becomes 4390 * stuck and cannot be recovered through the error handler. To fix 4391 * this, use link recovery instead of the error handler. 4392 */ 4393 if (ret && hba->pm_op_in_progress) 4394 ret = ufshcd_link_recovery(hba); 4395 4396 return ret; 4397 } 4398 4399 /** 4400 * ufshcd_send_bsg_uic_cmd - Send UIC commands requested via BSG layer and retrieve the result 4401 * @hba: per adapter instance 4402 * @uic_cmd: UIC command 4403 * 4404 * Return: 0 only if success. 4405 */ 4406 int ufshcd_send_bsg_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd) 4407 { 4408 int ret; 4409 4410 if (uic_cmd->argument1 != UIC_ARG_MIB(PA_PWRMODE) || 4411 uic_cmd->command != UIC_CMD_DME_SET) 4412 return ufshcd_send_uic_cmd(hba, uic_cmd); 4413 4414 if (hba->quirks & UFSHCD_QUIRK_BROKEN_UIC_CMD) 4415 return 0; 4416 4417 ufshcd_hold(hba); 4418 ret = ufshcd_uic_pwr_ctrl(hba, uic_cmd); 4419 ufshcd_release(hba); 4420 4421 return ret; 4422 } 4423 4424 /** 4425 * ufshcd_uic_change_pwr_mode - Perform the UIC power mode chage 4426 * using DME_SET primitives. 4427 * @hba: per adapter instance 4428 * @mode: powr mode value 4429 * 4430 * Return: 0 on success, non-zero value on failure. 4431 */ 4432 int ufshcd_uic_change_pwr_mode(struct ufs_hba *hba, u8 mode) 4433 { 4434 struct uic_command uic_cmd = { 4435 .command = UIC_CMD_DME_SET, 4436 .argument1 = UIC_ARG_MIB(PA_PWRMODE), 4437 .argument3 = mode, 4438 }; 4439 int ret; 4440 4441 if (hba->quirks & UFSHCD_QUIRK_BROKEN_PA_RXHSUNTERMCAP) { 4442 ret = ufshcd_dme_set(hba, 4443 UIC_ARG_MIB_SEL(PA_RXHSUNTERMCAP, 0), 1); 4444 if (ret) { 4445 dev_err(hba->dev, "%s: failed to enable PA_RXHSUNTERMCAP ret %d\n", 4446 __func__, ret); 4447 goto out; 4448 } 4449 } 4450 4451 ufshcd_hold(hba); 4452 ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd); 4453 ufshcd_release(hba); 4454 4455 out: 4456 return ret; 4457 } 4458 EXPORT_SYMBOL_GPL(ufshcd_uic_change_pwr_mode); 4459 4460 int ufshcd_link_recovery(struct ufs_hba *hba) 4461 { 4462 int ret; 4463 unsigned long flags; 4464 4465 spin_lock_irqsave(hba->host->host_lock, flags); 4466 hba->ufshcd_state = UFSHCD_STATE_RESET; 4467 ufshcd_set_eh_in_progress(hba); 4468 spin_unlock_irqrestore(hba->host->host_lock, flags); 4469 4470 /* Reset the attached device */ 4471 ufshcd_device_reset(hba); 4472 4473 ret = ufshcd_host_reset_and_restore(hba); 4474 4475 spin_lock_irqsave(hba->host->host_lock, flags); 4476 if (ret) 4477 hba->ufshcd_state = UFSHCD_STATE_ERROR; 4478 ufshcd_clear_eh_in_progress(hba); 4479 spin_unlock_irqrestore(hba->host->host_lock, flags); 4480 4481 if (ret) 4482 dev_err(hba->dev, "%s: link recovery failed, err %d", 4483 __func__, ret); 4484 4485 return ret; 4486 } 4487 EXPORT_SYMBOL_GPL(ufshcd_link_recovery); 4488 4489 int ufshcd_uic_hibern8_enter(struct ufs_hba *hba) 4490 { 4491 struct uic_command uic_cmd = { 4492 .command = UIC_CMD_DME_HIBER_ENTER, 4493 }; 4494 ktime_t start = ktime_get(); 4495 int ret; 4496 4497 ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_ENTER, PRE_CHANGE); 4498 4499 ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd); 4500 trace_ufshcd_profile_hibern8(hba, "enter", 4501 ktime_to_us(ktime_sub(ktime_get(), start)), ret); 4502 4503 if (ret) 4504 dev_err(hba->dev, "%s: hibern8 enter failed. ret = %d\n", 4505 __func__, ret); 4506 else 4507 ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_ENTER, 4508 POST_CHANGE); 4509 4510 return ret; 4511 } 4512 EXPORT_SYMBOL_GPL(ufshcd_uic_hibern8_enter); 4513 4514 int ufshcd_uic_hibern8_exit(struct ufs_hba *hba) 4515 { 4516 struct uic_command uic_cmd = { 4517 .command = UIC_CMD_DME_HIBER_EXIT, 4518 }; 4519 int ret; 4520 ktime_t start = ktime_get(); 4521 4522 ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_EXIT, PRE_CHANGE); 4523 4524 ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd); 4525 trace_ufshcd_profile_hibern8(hba, "exit", 4526 ktime_to_us(ktime_sub(ktime_get(), start)), ret); 4527 4528 if (ret) { 4529 dev_err(hba->dev, "%s: hibern8 exit failed. ret = %d\n", 4530 __func__, ret); 4531 } else { 4532 ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_EXIT, 4533 POST_CHANGE); 4534 hba->ufs_stats.last_hibern8_exit_tstamp = local_clock(); 4535 hba->ufs_stats.hibern8_exit_cnt++; 4536 } 4537 4538 return ret; 4539 } 4540 EXPORT_SYMBOL_GPL(ufshcd_uic_hibern8_exit); 4541 4542 static void ufshcd_configure_auto_hibern8(struct ufs_hba *hba) 4543 { 4544 if (!ufshcd_is_auto_hibern8_supported(hba)) 4545 return; 4546 4547 ufshcd_writel(hba, hba->ahit, REG_AUTO_HIBERNATE_IDLE_TIMER); 4548 } 4549 4550 void ufshcd_auto_hibern8_update(struct ufs_hba *hba, u32 ahit) 4551 { 4552 const u32 cur_ahit = READ_ONCE(hba->ahit); 4553 4554 if (!ufshcd_is_auto_hibern8_supported(hba) || cur_ahit == ahit) 4555 return; 4556 4557 WRITE_ONCE(hba->ahit, ahit); 4558 if (!pm_runtime_suspended(&hba->ufs_device_wlun->sdev_gendev)) { 4559 ufshcd_rpm_get_sync(hba); 4560 ufshcd_hold(hba); 4561 ufshcd_configure_auto_hibern8(hba); 4562 ufshcd_release(hba); 4563 ufshcd_rpm_put_sync(hba); 4564 } 4565 } 4566 EXPORT_SYMBOL_GPL(ufshcd_auto_hibern8_update); 4567 4568 /** 4569 * ufshcd_init_pwr_info - setting the POR (power on reset) 4570 * values in hba power info 4571 * @hba: per-adapter instance 4572 */ 4573 static void ufshcd_init_pwr_info(struct ufs_hba *hba) 4574 { 4575 hba->pwr_info.gear_rx = UFS_PWM_G1; 4576 hba->pwr_info.gear_tx = UFS_PWM_G1; 4577 hba->pwr_info.lane_rx = UFS_LANE_1; 4578 hba->pwr_info.lane_tx = UFS_LANE_1; 4579 hba->pwr_info.pwr_rx = SLOWAUTO_MODE; 4580 hba->pwr_info.pwr_tx = SLOWAUTO_MODE; 4581 hba->pwr_info.hs_rate = 0; 4582 } 4583 4584 /** 4585 * ufshcd_get_max_pwr_mode - reads the max power mode negotiated with device 4586 * @hba: per-adapter instance 4587 * 4588 * Return: 0 upon success; < 0 upon failure. 4589 */ 4590 static int ufshcd_get_max_pwr_mode(struct ufs_hba *hba) 4591 { 4592 struct ufs_pa_layer_attr *pwr_info = &hba->max_pwr_info.info; 4593 4594 if (hba->max_pwr_info.is_valid) 4595 return 0; 4596 4597 if (hba->quirks & UFSHCD_QUIRK_HIBERN_FASTAUTO) { 4598 pwr_info->pwr_tx = FASTAUTO_MODE; 4599 pwr_info->pwr_rx = FASTAUTO_MODE; 4600 } else { 4601 pwr_info->pwr_tx = FAST_MODE; 4602 pwr_info->pwr_rx = FAST_MODE; 4603 } 4604 pwr_info->hs_rate = PA_HS_MODE_B; 4605 4606 /* Get the connected lane count */ 4607 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDRXDATALANES), 4608 &pwr_info->lane_rx); 4609 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES), 4610 &pwr_info->lane_tx); 4611 4612 if (!pwr_info->lane_rx || !pwr_info->lane_tx) { 4613 dev_err(hba->dev, "%s: invalid connected lanes value. rx=%d, tx=%d\n", 4614 __func__, 4615 pwr_info->lane_rx, 4616 pwr_info->lane_tx); 4617 return -EINVAL; 4618 } 4619 4620 if (pwr_info->lane_rx != pwr_info->lane_tx) { 4621 dev_err(hba->dev, "%s: asymmetric connected lanes. rx=%d, tx=%d\n", 4622 __func__, 4623 pwr_info->lane_rx, 4624 pwr_info->lane_tx); 4625 return -EINVAL; 4626 } 4627 4628 /* 4629 * First, get the maximum gears of HS speed. 4630 * If a zero value, it means there is no HSGEAR capability. 4631 * Then, get the maximum gears of PWM speed. 4632 */ 4633 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_MAXRXHSGEAR), &pwr_info->gear_rx); 4634 if (!pwr_info->gear_rx) { 4635 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_MAXRXPWMGEAR), 4636 &pwr_info->gear_rx); 4637 if (!pwr_info->gear_rx) { 4638 dev_err(hba->dev, "%s: invalid max pwm rx gear read = %d\n", 4639 __func__, pwr_info->gear_rx); 4640 return -EINVAL; 4641 } 4642 pwr_info->pwr_rx = SLOW_MODE; 4643 } 4644 4645 ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_MAXRXHSGEAR), 4646 &pwr_info->gear_tx); 4647 if (!pwr_info->gear_tx) { 4648 ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_MAXRXPWMGEAR), 4649 &pwr_info->gear_tx); 4650 if (!pwr_info->gear_tx) { 4651 dev_err(hba->dev, "%s: invalid max pwm tx gear read = %d\n", 4652 __func__, pwr_info->gear_tx); 4653 return -EINVAL; 4654 } 4655 pwr_info->pwr_tx = SLOW_MODE; 4656 } 4657 4658 hba->max_pwr_info.is_valid = true; 4659 return 0; 4660 } 4661 4662 static int ufshcd_change_power_mode(struct ufs_hba *hba, 4663 struct ufs_pa_layer_attr *pwr_mode) 4664 { 4665 int ret; 4666 4667 /* if already configured to the requested pwr_mode */ 4668 if (!hba->force_pmc && 4669 pwr_mode->gear_rx == hba->pwr_info.gear_rx && 4670 pwr_mode->gear_tx == hba->pwr_info.gear_tx && 4671 pwr_mode->lane_rx == hba->pwr_info.lane_rx && 4672 pwr_mode->lane_tx == hba->pwr_info.lane_tx && 4673 pwr_mode->pwr_rx == hba->pwr_info.pwr_rx && 4674 pwr_mode->pwr_tx == hba->pwr_info.pwr_tx && 4675 pwr_mode->hs_rate == hba->pwr_info.hs_rate) { 4676 dev_dbg(hba->dev, "%s: power already configured\n", __func__); 4677 return 0; 4678 } 4679 4680 /* 4681 * Configure attributes for power mode change with below. 4682 * - PA_RXGEAR, PA_ACTIVERXDATALANES, PA_RXTERMINATION, 4683 * - PA_TXGEAR, PA_ACTIVETXDATALANES, PA_TXTERMINATION, 4684 * - PA_HSSERIES 4685 */ 4686 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXGEAR), pwr_mode->gear_rx); 4687 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVERXDATALANES), 4688 pwr_mode->lane_rx); 4689 if (pwr_mode->pwr_rx == FASTAUTO_MODE || 4690 pwr_mode->pwr_rx == FAST_MODE) 4691 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), true); 4692 else 4693 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), false); 4694 4695 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXGEAR), pwr_mode->gear_tx); 4696 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVETXDATALANES), 4697 pwr_mode->lane_tx); 4698 if (pwr_mode->pwr_tx == FASTAUTO_MODE || 4699 pwr_mode->pwr_tx == FAST_MODE) 4700 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), true); 4701 else 4702 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), false); 4703 4704 if (pwr_mode->pwr_rx == FASTAUTO_MODE || 4705 pwr_mode->pwr_tx == FASTAUTO_MODE || 4706 pwr_mode->pwr_rx == FAST_MODE || 4707 pwr_mode->pwr_tx == FAST_MODE) 4708 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_HSSERIES), 4709 pwr_mode->hs_rate); 4710 4711 if (!(hba->quirks & UFSHCD_QUIRK_SKIP_DEF_UNIPRO_TIMEOUT_SETTING)) { 4712 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA0), 4713 DL_FC0ProtectionTimeOutVal_Default); 4714 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA1), 4715 DL_TC0ReplayTimeOutVal_Default); 4716 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA2), 4717 DL_AFC0ReqTimeOutVal_Default); 4718 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA3), 4719 DL_FC1ProtectionTimeOutVal_Default); 4720 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA4), 4721 DL_TC1ReplayTimeOutVal_Default); 4722 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA5), 4723 DL_AFC1ReqTimeOutVal_Default); 4724 4725 ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalFC0ProtectionTimeOutVal), 4726 DL_FC0ProtectionTimeOutVal_Default); 4727 ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalTC0ReplayTimeOutVal), 4728 DL_TC0ReplayTimeOutVal_Default); 4729 ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalAFC0ReqTimeOutVal), 4730 DL_AFC0ReqTimeOutVal_Default); 4731 } 4732 4733 ret = ufshcd_uic_change_pwr_mode(hba, pwr_mode->pwr_rx << 4 4734 | pwr_mode->pwr_tx); 4735 4736 if (ret) { 4737 dev_err(hba->dev, 4738 "%s: power mode change failed %d\n", __func__, ret); 4739 } else { 4740 memcpy(&hba->pwr_info, pwr_mode, 4741 sizeof(struct ufs_pa_layer_attr)); 4742 } 4743 4744 return ret; 4745 } 4746 4747 /** 4748 * ufshcd_config_pwr_mode - configure a new power mode 4749 * @hba: per-adapter instance 4750 * @desired_pwr_mode: desired power configuration 4751 * 4752 * Return: 0 upon success; < 0 upon failure. 4753 */ 4754 int ufshcd_config_pwr_mode(struct ufs_hba *hba, 4755 struct ufs_pa_layer_attr *desired_pwr_mode) 4756 { 4757 struct ufs_pa_layer_attr final_params = { 0 }; 4758 int ret; 4759 4760 ret = ufshcd_vops_pwr_change_notify(hba, PRE_CHANGE, 4761 desired_pwr_mode, &final_params); 4762 4763 if (ret) 4764 memcpy(&final_params, desired_pwr_mode, sizeof(final_params)); 4765 4766 ret = ufshcd_change_power_mode(hba, &final_params); 4767 4768 if (!ret) 4769 ufshcd_vops_pwr_change_notify(hba, POST_CHANGE, NULL, 4770 &final_params); 4771 4772 return ret; 4773 } 4774 EXPORT_SYMBOL_GPL(ufshcd_config_pwr_mode); 4775 4776 /** 4777 * ufshcd_complete_dev_init() - checks device readiness 4778 * @hba: per-adapter instance 4779 * 4780 * Set fDeviceInit flag and poll until device toggles it. 4781 * 4782 * Return: 0 upon success; > 0 in case the UFS device reported an OCS error; 4783 * < 0 if another error occurred. 4784 */ 4785 static int ufshcd_complete_dev_init(struct ufs_hba *hba) 4786 { 4787 int err; 4788 bool flag_res = true; 4789 ktime_t timeout; 4790 4791 err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG, 4792 QUERY_FLAG_IDN_FDEVICEINIT, 0, NULL); 4793 if (err) { 4794 dev_err(hba->dev, 4795 "%s: setting fDeviceInit flag failed with error %d\n", 4796 __func__, err); 4797 goto out; 4798 } 4799 4800 /* Poll fDeviceInit flag to be cleared */ 4801 timeout = ktime_add_ms(ktime_get(), FDEVICEINIT_COMPL_TIMEOUT); 4802 do { 4803 err = ufshcd_query_flag(hba, UPIU_QUERY_OPCODE_READ_FLAG, 4804 QUERY_FLAG_IDN_FDEVICEINIT, 0, &flag_res); 4805 if (!flag_res) 4806 break; 4807 usleep_range(500, 1000); 4808 } while (ktime_before(ktime_get(), timeout)); 4809 4810 if (err) { 4811 dev_err(hba->dev, 4812 "%s: reading fDeviceInit flag failed with error %d\n", 4813 __func__, err); 4814 } else if (flag_res) { 4815 dev_err(hba->dev, 4816 "%s: fDeviceInit was not cleared by the device\n", 4817 __func__); 4818 err = -EBUSY; 4819 } 4820 out: 4821 return err; 4822 } 4823 4824 /** 4825 * ufshcd_make_hba_operational - Make UFS controller operational 4826 * @hba: per adapter instance 4827 * 4828 * To bring UFS host controller to operational state, 4829 * 1. Enable required interrupts 4830 * 2. Configure interrupt aggregation 4831 * 3. Program UTRL and UTMRL base address 4832 * 4. Configure run-stop-registers 4833 * 4834 * Return: 0 if successful; < 0 upon failure. 4835 */ 4836 int ufshcd_make_hba_operational(struct ufs_hba *hba) 4837 { 4838 int err = 0; 4839 u32 reg; 4840 4841 /* Enable required interrupts */ 4842 ufshcd_enable_intr(hba, UFSHCD_ENABLE_INTRS); 4843 4844 /* Configure interrupt aggregation */ 4845 if (ufshcd_is_intr_aggr_allowed(hba)) 4846 ufshcd_config_intr_aggr(hba, hba->nutrs - 1, INT_AGGR_DEF_TO); 4847 else 4848 ufshcd_disable_intr_aggr(hba); 4849 4850 /* Configure UTRL and UTMRL base address registers */ 4851 ufshcd_writel(hba, lower_32_bits(hba->utrdl_dma_addr), 4852 REG_UTP_TRANSFER_REQ_LIST_BASE_L); 4853 ufshcd_writel(hba, upper_32_bits(hba->utrdl_dma_addr), 4854 REG_UTP_TRANSFER_REQ_LIST_BASE_H); 4855 ufshcd_writel(hba, lower_32_bits(hba->utmrdl_dma_addr), 4856 REG_UTP_TASK_REQ_LIST_BASE_L); 4857 ufshcd_writel(hba, upper_32_bits(hba->utmrdl_dma_addr), 4858 REG_UTP_TASK_REQ_LIST_BASE_H); 4859 4860 /* 4861 * UCRDY, UTMRLDY and UTRLRDY bits must be 1 4862 */ 4863 reg = ufshcd_readl(hba, REG_CONTROLLER_STATUS); 4864 if (!(ufshcd_get_lists_status(reg))) { 4865 ufshcd_enable_run_stop_reg(hba); 4866 } else { 4867 dev_err(hba->dev, 4868 "Host controller not ready to process requests"); 4869 err = -EIO; 4870 } 4871 4872 return err; 4873 } 4874 EXPORT_SYMBOL_GPL(ufshcd_make_hba_operational); 4875 4876 /** 4877 * ufshcd_hba_stop - Send controller to reset state 4878 * @hba: per adapter instance 4879 */ 4880 void ufshcd_hba_stop(struct ufs_hba *hba) 4881 { 4882 int err; 4883 4884 ufshcd_disable_irq(hba); 4885 ufshcd_writel(hba, CONTROLLER_DISABLE, REG_CONTROLLER_ENABLE); 4886 err = ufshcd_wait_for_register(hba, REG_CONTROLLER_ENABLE, 4887 CONTROLLER_ENABLE, CONTROLLER_DISABLE, 4888 10, 1); 4889 ufshcd_enable_irq(hba); 4890 if (err) 4891 dev_err(hba->dev, "%s: Controller disable failed\n", __func__); 4892 } 4893 EXPORT_SYMBOL_GPL(ufshcd_hba_stop); 4894 4895 /** 4896 * ufshcd_hba_execute_hce - initialize the controller 4897 * @hba: per adapter instance 4898 * 4899 * The controller resets itself and controller firmware initialization 4900 * sequence kicks off. When controller is ready it will set 4901 * the Host Controller Enable bit to 1. 4902 * 4903 * Return: 0 on success, non-zero value on failure. 4904 */ 4905 static int ufshcd_hba_execute_hce(struct ufs_hba *hba) 4906 { 4907 int retry; 4908 4909 for (retry = 3; retry > 0; retry--) { 4910 if (ufshcd_is_hba_active(hba)) 4911 /* change controller state to "reset state" */ 4912 ufshcd_hba_stop(hba); 4913 4914 /* UniPro link is disabled at this point */ 4915 ufshcd_set_link_off(hba); 4916 4917 ufshcd_vops_hce_enable_notify(hba, PRE_CHANGE); 4918 4919 /* start controller initialization sequence */ 4920 ufshcd_hba_start(hba); 4921 4922 /* 4923 * To initialize a UFS host controller HCE bit must be set to 1. 4924 * During initialization the HCE bit value changes from 1->0->1. 4925 * When the host controller completes initialization sequence 4926 * it sets the value of HCE bit to 1. The same HCE bit is read back 4927 * to check if the controller has completed initialization sequence. 4928 * So without this delay the value HCE = 1, set in the previous 4929 * instruction might be read back. 4930 * This delay can be changed based on the controller. 4931 */ 4932 ufshcd_delay_us(hba->vps->hba_enable_delay_us, 100); 4933 4934 /* wait for the host controller to complete initialization */ 4935 if (!ufshcd_wait_for_register(hba, REG_CONTROLLER_ENABLE, CONTROLLER_ENABLE, 4936 CONTROLLER_ENABLE, 1000, 50)) 4937 break; 4938 4939 dev_err(hba->dev, "Enabling the controller failed\n"); 4940 } 4941 4942 if (!retry) 4943 return -EIO; 4944 4945 /* enable UIC related interrupts */ 4946 ufshcd_enable_intr(hba, UFSHCD_UIC_MASK); 4947 4948 ufshcd_vops_hce_enable_notify(hba, POST_CHANGE); 4949 4950 return 0; 4951 } 4952 4953 int ufshcd_hba_enable(struct ufs_hba *hba) 4954 { 4955 int ret; 4956 4957 if (hba->quirks & UFSHCI_QUIRK_BROKEN_HCE) { 4958 ufshcd_set_link_off(hba); 4959 ufshcd_vops_hce_enable_notify(hba, PRE_CHANGE); 4960 4961 /* enable UIC related interrupts */ 4962 ufshcd_enable_intr(hba, UFSHCD_UIC_MASK); 4963 ret = ufshcd_dme_reset(hba); 4964 if (ret) { 4965 dev_err(hba->dev, "DME_RESET failed\n"); 4966 return ret; 4967 } 4968 4969 ret = ufshcd_dme_enable(hba); 4970 if (ret) { 4971 dev_err(hba->dev, "Enabling DME failed\n"); 4972 return ret; 4973 } 4974 4975 ufshcd_vops_hce_enable_notify(hba, POST_CHANGE); 4976 } else { 4977 ret = ufshcd_hba_execute_hce(hba); 4978 } 4979 4980 return ret; 4981 } 4982 EXPORT_SYMBOL_GPL(ufshcd_hba_enable); 4983 4984 static int ufshcd_disable_tx_lcc(struct ufs_hba *hba, bool peer) 4985 { 4986 int tx_lanes, i, err = 0; 4987 4988 if (!peer) 4989 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES), 4990 &tx_lanes); 4991 else 4992 ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES), 4993 &tx_lanes); 4994 for (i = 0; i < tx_lanes; i++) { 4995 if (!peer) 4996 err = ufshcd_dme_set(hba, 4997 UIC_ARG_MIB_SEL(TX_LCC_ENABLE, 4998 UIC_ARG_MPHY_TX_GEN_SEL_INDEX(i)), 4999 0); 5000 else 5001 err = ufshcd_dme_peer_set(hba, 5002 UIC_ARG_MIB_SEL(TX_LCC_ENABLE, 5003 UIC_ARG_MPHY_TX_GEN_SEL_INDEX(i)), 5004 0); 5005 if (err) { 5006 dev_err(hba->dev, "%s: TX LCC Disable failed, peer = %d, lane = %d, err = %d", 5007 __func__, peer, i, err); 5008 break; 5009 } 5010 } 5011 5012 return err; 5013 } 5014 5015 static inline int ufshcd_disable_device_tx_lcc(struct ufs_hba *hba) 5016 { 5017 return ufshcd_disable_tx_lcc(hba, true); 5018 } 5019 5020 void ufshcd_update_evt_hist(struct ufs_hba *hba, u32 id, u32 val) 5021 { 5022 struct ufs_event_hist *e; 5023 5024 if (id >= UFS_EVT_CNT) 5025 return; 5026 5027 e = &hba->ufs_stats.event[id]; 5028 e->val[e->pos] = val; 5029 e->tstamp[e->pos] = local_clock(); 5030 e->cnt += 1; 5031 e->pos = (e->pos + 1) % UFS_EVENT_HIST_LENGTH; 5032 5033 ufshcd_vops_event_notify(hba, id, &val); 5034 } 5035 EXPORT_SYMBOL_GPL(ufshcd_update_evt_hist); 5036 5037 /** 5038 * ufshcd_link_startup - Initialize unipro link startup 5039 * @hba: per adapter instance 5040 * 5041 * Return: 0 for success, non-zero in case of failure. 5042 */ 5043 static int ufshcd_link_startup(struct ufs_hba *hba) 5044 { 5045 int ret; 5046 int retries = DME_LINKSTARTUP_RETRIES; 5047 bool link_startup_again = false; 5048 5049 /* 5050 * If UFS device isn't active then we will have to issue link startup 5051 * 2 times to make sure the device state move to active. 5052 */ 5053 if (!(hba->quirks & UFSHCD_QUIRK_PERFORM_LINK_STARTUP_ONCE) && 5054 !ufshcd_is_ufs_dev_active(hba)) 5055 link_startup_again = true; 5056 5057 link_startup: 5058 do { 5059 ufshcd_vops_link_startup_notify(hba, PRE_CHANGE); 5060 5061 ret = ufshcd_dme_link_startup(hba); 5062 5063 /* check if device is detected by inter-connect layer */ 5064 if (!ret && !ufshcd_is_device_present(hba)) { 5065 ufshcd_update_evt_hist(hba, 5066 UFS_EVT_LINK_STARTUP_FAIL, 5067 0); 5068 dev_err(hba->dev, "%s: Device not present\n", __func__); 5069 ret = -ENXIO; 5070 goto out; 5071 } 5072 5073 /* 5074 * DME link lost indication is only received when link is up, 5075 * but we can't be sure if the link is up until link startup 5076 * succeeds. So reset the local Uni-Pro and try again. 5077 */ 5078 if (ret && retries && ufshcd_hba_enable(hba)) { 5079 ufshcd_update_evt_hist(hba, 5080 UFS_EVT_LINK_STARTUP_FAIL, 5081 (u32)ret); 5082 goto out; 5083 } 5084 } while (ret && retries--); 5085 5086 if (ret) { 5087 /* failed to get the link up... retire */ 5088 ufshcd_update_evt_hist(hba, 5089 UFS_EVT_LINK_STARTUP_FAIL, 5090 (u32)ret); 5091 goto out; 5092 } 5093 5094 if (link_startup_again) { 5095 link_startup_again = false; 5096 retries = DME_LINKSTARTUP_RETRIES; 5097 goto link_startup; 5098 } 5099 5100 /* Mark that link is up in PWM-G1, 1-lane, SLOW-AUTO mode */ 5101 ufshcd_init_pwr_info(hba); 5102 ufshcd_print_pwr_info(hba); 5103 5104 if (hba->quirks & UFSHCD_QUIRK_BROKEN_LCC) { 5105 ret = ufshcd_disable_device_tx_lcc(hba); 5106 if (ret) 5107 goto out; 5108 } 5109 5110 /* Include any host controller configuration via UIC commands */ 5111 ret = ufshcd_vops_link_startup_notify(hba, POST_CHANGE); 5112 if (ret) 5113 goto out; 5114 5115 /* Clear UECPA once due to LINERESET has happened during LINK_STARTUP */ 5116 ufshcd_readl(hba, REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER); 5117 ret = ufshcd_make_hba_operational(hba); 5118 out: 5119 if (ret) 5120 dev_err(hba->dev, "link startup failed %d\n", ret); 5121 return ret; 5122 } 5123 5124 /** 5125 * ufshcd_verify_dev_init() - Verify device initialization 5126 * @hba: per-adapter instance 5127 * 5128 * Send NOP OUT UPIU and wait for NOP IN response to check whether the 5129 * device Transport Protocol (UTP) layer is ready after a reset. 5130 * If the UTP layer at the device side is not initialized, it may 5131 * not respond with NOP IN UPIU within timeout of %NOP_OUT_TIMEOUT 5132 * and we retry sending NOP OUT for %NOP_OUT_RETRIES iterations. 5133 * 5134 * Return: 0 upon success; > 0 in case the UFS device reported an OCS error; 5135 * < 0 if another error occurred. 5136 */ 5137 static int ufshcd_verify_dev_init(struct ufs_hba *hba) 5138 { 5139 int err = 0; 5140 int retries; 5141 5142 ufshcd_dev_man_lock(hba); 5143 5144 for (retries = NOP_OUT_RETRIES; retries > 0; retries--) { 5145 err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_NOP, 5146 hba->nop_out_timeout); 5147 5148 if (!err || err == -ETIMEDOUT) 5149 break; 5150 5151 dev_dbg(hba->dev, "%s: error %d retrying\n", __func__, err); 5152 } 5153 5154 ufshcd_dev_man_unlock(hba); 5155 5156 if (err) 5157 dev_err(hba->dev, "%s: NOP OUT failed %d\n", __func__, err); 5158 return err; 5159 } 5160 5161 /** 5162 * ufshcd_setup_links - associate link b/w device wlun and other luns 5163 * @sdev: pointer to SCSI device 5164 * @hba: pointer to ufs hba 5165 */ 5166 static void ufshcd_setup_links(struct ufs_hba *hba, struct scsi_device *sdev) 5167 { 5168 struct device_link *link; 5169 5170 /* 5171 * Device wlun is the supplier & rest of the luns are consumers. 5172 * This ensures that device wlun suspends after all other luns. 5173 */ 5174 if (hba->ufs_device_wlun) { 5175 link = device_link_add(&sdev->sdev_gendev, 5176 &hba->ufs_device_wlun->sdev_gendev, 5177 DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE); 5178 if (!link) { 5179 dev_err(&sdev->sdev_gendev, "Failed establishing link - %s\n", 5180 dev_name(&hba->ufs_device_wlun->sdev_gendev)); 5181 return; 5182 } 5183 hba->luns_avail--; 5184 /* Ignore REPORT_LUN wlun probing */ 5185 if (hba->luns_avail == 1) { 5186 ufshcd_rpm_put(hba); 5187 return; 5188 } 5189 } else { 5190 /* 5191 * Device wlun is probed. The assumption is that WLUNs are 5192 * scanned before other LUNs. 5193 */ 5194 hba->luns_avail--; 5195 } 5196 } 5197 5198 /** 5199 * ufshcd_lu_init - Initialize the relevant parameters of the LU 5200 * @hba: per-adapter instance 5201 * @sdev: pointer to SCSI device 5202 */ 5203 static void ufshcd_lu_init(struct ufs_hba *hba, struct scsi_device *sdev) 5204 { 5205 int len = QUERY_DESC_MAX_SIZE; 5206 u8 lun = ufshcd_scsi_to_upiu_lun(sdev->lun); 5207 u8 lun_qdepth = hba->nutrs; 5208 u8 *desc_buf; 5209 int ret; 5210 5211 desc_buf = kzalloc(len, GFP_KERNEL); 5212 if (!desc_buf) 5213 goto set_qdepth; 5214 5215 ret = ufshcd_read_unit_desc_param(hba, lun, 0, desc_buf, len); 5216 if (ret < 0) { 5217 if (ret == -EOPNOTSUPP) 5218 /* If LU doesn't support unit descriptor, its queue depth is set to 1 */ 5219 lun_qdepth = 1; 5220 kfree(desc_buf); 5221 goto set_qdepth; 5222 } 5223 5224 if (desc_buf[UNIT_DESC_PARAM_LU_Q_DEPTH]) { 5225 /* 5226 * In per-LU queueing architecture, bLUQueueDepth will not be 0, then we will 5227 * use the smaller between UFSHCI CAP.NUTRS and UFS LU bLUQueueDepth 5228 */ 5229 lun_qdepth = min_t(int, desc_buf[UNIT_DESC_PARAM_LU_Q_DEPTH], hba->nutrs); 5230 } 5231 /* 5232 * According to UFS device specification, the write protection mode is only supported by 5233 * normal LU, not supported by WLUN. 5234 */ 5235 if (hba->dev_info.f_power_on_wp_en && lun < hba->dev_info.max_lu_supported && 5236 !hba->dev_info.is_lu_power_on_wp && 5237 desc_buf[UNIT_DESC_PARAM_LU_WR_PROTECT] == UFS_LU_POWER_ON_WP) 5238 hba->dev_info.is_lu_power_on_wp = true; 5239 5240 /* In case of RPMB LU, check if advanced RPMB mode is enabled, and get region size */ 5241 if (desc_buf[UNIT_DESC_PARAM_UNIT_INDEX] == UFS_UPIU_RPMB_WLUN) { 5242 if (desc_buf[RPMB_UNIT_DESC_PARAM_REGION_EN] & BIT(4)) 5243 hba->dev_info.b_advanced_rpmb_en = true; 5244 hba->dev_info.rpmb_region_size[0] = desc_buf[RPMB_UNIT_DESC_PARAM_REGION0_SIZE]; 5245 hba->dev_info.rpmb_region_size[1] = desc_buf[RPMB_UNIT_DESC_PARAM_REGION1_SIZE]; 5246 hba->dev_info.rpmb_region_size[2] = desc_buf[RPMB_UNIT_DESC_PARAM_REGION2_SIZE]; 5247 hba->dev_info.rpmb_region_size[3] = desc_buf[RPMB_UNIT_DESC_PARAM_REGION3_SIZE]; 5248 } 5249 5250 5251 kfree(desc_buf); 5252 set_qdepth: 5253 /* 5254 * For WLUNs that don't support unit descriptor, queue depth is set to 1. For LUs whose 5255 * bLUQueueDepth == 0, the queue depth is set to a maximum value that host can queue. 5256 */ 5257 dev_dbg(hba->dev, "Set LU %x queue depth %d\n", lun, lun_qdepth); 5258 scsi_change_queue_depth(sdev, lun_qdepth); 5259 } 5260 5261 /** 5262 * ufshcd_sdev_init - handle initial SCSI device configurations 5263 * @sdev: pointer to SCSI device 5264 * 5265 * Return: success. 5266 */ 5267 static int ufshcd_sdev_init(struct scsi_device *sdev) 5268 { 5269 struct ufs_hba *hba; 5270 5271 hba = shost_priv(sdev->host); 5272 5273 /* Mode sense(6) is not supported by UFS, so use Mode sense(10) */ 5274 sdev->use_10_for_ms = 1; 5275 5276 /* DBD field should be set to 1 in mode sense(10) */ 5277 sdev->set_dbd_for_ms = 1; 5278 5279 /* allow SCSI layer to restart the device in case of errors */ 5280 sdev->allow_restart = 1; 5281 5282 /* REPORT SUPPORTED OPERATION CODES is not supported */ 5283 sdev->no_report_opcodes = 1; 5284 5285 /* WRITE_SAME command is not supported */ 5286 sdev->no_write_same = 1; 5287 5288 ufshcd_lu_init(hba, sdev); 5289 5290 ufshcd_setup_links(hba, sdev); 5291 5292 return 0; 5293 } 5294 5295 /** 5296 * ufshcd_change_queue_depth - change queue depth 5297 * @sdev: pointer to SCSI device 5298 * @depth: required depth to set 5299 * 5300 * Change queue depth and make sure the max. limits are not crossed. 5301 * 5302 * Return: new queue depth. 5303 */ 5304 static int ufshcd_change_queue_depth(struct scsi_device *sdev, int depth) 5305 { 5306 return scsi_change_queue_depth(sdev, min(depth, sdev->host->can_queue)); 5307 } 5308 5309 /** 5310 * ufshcd_sdev_configure - adjust SCSI device configurations 5311 * @sdev: pointer to SCSI device 5312 * @lim: queue limits 5313 * 5314 * Return: 0 (success). 5315 */ 5316 static int ufshcd_sdev_configure(struct scsi_device *sdev, 5317 struct queue_limits *lim) 5318 { 5319 struct ufs_hba *hba = shost_priv(sdev->host); 5320 struct request_queue *q = sdev->request_queue; 5321 5322 lim->dma_pad_mask = PRDT_DATA_BYTE_COUNT_PAD - 1; 5323 5324 /* 5325 * Block runtime-pm until all consumers are added. 5326 * Refer ufshcd_setup_links(). 5327 */ 5328 if (is_device_wlun(sdev)) 5329 pm_runtime_get_noresume(&sdev->sdev_gendev); 5330 else if (ufshcd_is_rpm_autosuspend_allowed(hba)) 5331 sdev->rpm_autosuspend = 1; 5332 /* 5333 * Do not print messages during runtime PM to avoid never-ending cycles 5334 * of messages written back to storage by user space causing runtime 5335 * resume, causing more messages and so on. 5336 */ 5337 sdev->silence_suspend = 1; 5338 5339 if (hba->vops && hba->vops->config_scsi_dev) 5340 hba->vops->config_scsi_dev(sdev); 5341 5342 ufshcd_crypto_register(hba, q); 5343 5344 return 0; 5345 } 5346 5347 /** 5348 * ufshcd_sdev_destroy - remove SCSI device configurations 5349 * @sdev: pointer to SCSI device 5350 */ 5351 static void ufshcd_sdev_destroy(struct scsi_device *sdev) 5352 { 5353 struct ufs_hba *hba; 5354 unsigned long flags; 5355 5356 hba = shost_priv(sdev->host); 5357 5358 /* Drop the reference as it won't be needed anymore */ 5359 if (ufshcd_scsi_to_upiu_lun(sdev->lun) == UFS_UPIU_UFS_DEVICE_WLUN) { 5360 spin_lock_irqsave(hba->host->host_lock, flags); 5361 hba->ufs_device_wlun = NULL; 5362 spin_unlock_irqrestore(hba->host->host_lock, flags); 5363 } else if (hba->ufs_device_wlun) { 5364 struct device *supplier = NULL; 5365 5366 /* Ensure UFS Device WLUN exists and does not disappear */ 5367 spin_lock_irqsave(hba->host->host_lock, flags); 5368 if (hba->ufs_device_wlun) { 5369 supplier = &hba->ufs_device_wlun->sdev_gendev; 5370 get_device(supplier); 5371 } 5372 spin_unlock_irqrestore(hba->host->host_lock, flags); 5373 5374 if (supplier) { 5375 /* 5376 * If a LUN fails to probe (e.g. absent BOOT WLUN), the 5377 * device will not have been registered but can still 5378 * have a device link holding a reference to the device. 5379 */ 5380 device_link_remove(&sdev->sdev_gendev, supplier); 5381 put_device(supplier); 5382 } 5383 } 5384 } 5385 5386 /** 5387 * ufshcd_scsi_cmd_status - Update SCSI command result based on SCSI status 5388 * @cmd: SCSI command 5389 * @scsi_status: SCSI command status 5390 * 5391 * Return: value base on SCSI command status. 5392 */ 5393 static inline int ufshcd_scsi_cmd_status(struct scsi_cmnd *cmd, int scsi_status) 5394 { 5395 int result = 0; 5396 5397 switch (scsi_status) { 5398 case SAM_STAT_CHECK_CONDITION: 5399 ufshcd_copy_sense_data(cmd); 5400 fallthrough; 5401 case SAM_STAT_GOOD: 5402 result |= DID_OK << 16 | scsi_status; 5403 break; 5404 case SAM_STAT_TASK_SET_FULL: 5405 case SAM_STAT_BUSY: 5406 case SAM_STAT_TASK_ABORTED: 5407 ufshcd_copy_sense_data(cmd); 5408 result |= scsi_status; 5409 break; 5410 default: 5411 result |= DID_ERROR << 16; 5412 break; 5413 } /* end of switch */ 5414 5415 return result; 5416 } 5417 5418 /** 5419 * ufshcd_transfer_rsp_status - Get overall status of the response 5420 * @hba: per adapter instance 5421 * @cmd: SCSI command 5422 * @cqe: pointer to the completion queue entry 5423 * 5424 * Return: result of the command to notify SCSI midlayer. 5425 */ 5426 static inline int ufshcd_transfer_rsp_status(struct ufs_hba *hba, 5427 struct scsi_cmnd *cmd, 5428 struct cq_entry *cqe) 5429 { 5430 struct ufshcd_lrb *lrbp = scsi_cmd_priv(cmd); 5431 const int tag = scsi_cmd_to_rq(cmd)->tag; 5432 int result = 0; 5433 int scsi_status; 5434 enum utp_ocs ocs; 5435 u8 upiu_flags; 5436 u32 resid; 5437 5438 upiu_flags = lrbp->ucd_rsp_ptr->header.flags; 5439 resid = be32_to_cpu(lrbp->ucd_rsp_ptr->sr.residual_transfer_count); 5440 /* 5441 * Test !overflow instead of underflow to support UFS devices that do 5442 * not set either flag. 5443 */ 5444 if (resid && !(upiu_flags & UPIU_RSP_FLAG_OVERFLOW)) 5445 scsi_set_resid(cmd, resid); 5446 5447 /* overall command status of utrd */ 5448 ocs = ufshcd_get_tr_ocs(lrbp, cqe); 5449 5450 if (hba->quirks & UFSHCD_QUIRK_BROKEN_OCS_FATAL_ERROR) { 5451 if (lrbp->ucd_rsp_ptr->header.response || 5452 lrbp->ucd_rsp_ptr->header.status) 5453 ocs = OCS_SUCCESS; 5454 } 5455 5456 switch (ocs) { 5457 case OCS_SUCCESS: 5458 hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0); 5459 switch (ufshcd_get_req_rsp(lrbp->ucd_rsp_ptr)) { 5460 case UPIU_TRANSACTION_RESPONSE: 5461 /* 5462 * get the result based on SCSI status response 5463 * to notify the SCSI midlayer of the command status 5464 */ 5465 scsi_status = lrbp->ucd_rsp_ptr->header.status; 5466 result = ufshcd_scsi_cmd_status(cmd, scsi_status); 5467 5468 /* 5469 * Currently we are only supporting BKOPs exception 5470 * events hence we can ignore BKOPs exception event 5471 * during power management callbacks. BKOPs exception 5472 * event is not expected to be raised in runtime suspend 5473 * callback as it allows the urgent bkops. 5474 * During system suspend, we are anyway forcefully 5475 * disabling the bkops and if urgent bkops is needed 5476 * it will be enabled on system resume. Long term 5477 * solution could be to abort the system suspend if 5478 * UFS device needs urgent BKOPs. 5479 */ 5480 if (!hba->pm_op_in_progress && 5481 !ufshcd_eh_in_progress(hba) && 5482 ufshcd_is_exception_event(lrbp->ucd_rsp_ptr)) 5483 /* Flushed in suspend */ 5484 schedule_work(&hba->eeh_work); 5485 break; 5486 case UPIU_TRANSACTION_REJECT_UPIU: 5487 /* TODO: handle Reject UPIU Response */ 5488 result = DID_ERROR << 16; 5489 dev_err(hba->dev, 5490 "Reject UPIU not fully implemented\n"); 5491 break; 5492 default: 5493 dev_err(hba->dev, 5494 "Unexpected request response code = %x\n", 5495 result); 5496 result = DID_ERROR << 16; 5497 break; 5498 } 5499 break; 5500 case OCS_ABORTED: 5501 case OCS_INVALID_COMMAND_STATUS: 5502 result |= DID_REQUEUE << 16; 5503 dev_warn(hba->dev, "OCS %s from controller for tag %d\n", 5504 ocs == OCS_ABORTED ? "aborted" : "invalid", tag); 5505 break; 5506 case OCS_INVALID_CMD_TABLE_ATTR: 5507 case OCS_INVALID_PRDT_ATTR: 5508 case OCS_MISMATCH_DATA_BUF_SIZE: 5509 case OCS_MISMATCH_RESP_UPIU_SIZE: 5510 case OCS_PEER_COMM_FAILURE: 5511 case OCS_FATAL_ERROR: 5512 case OCS_DEVICE_FATAL_ERROR: 5513 case OCS_INVALID_CRYPTO_CONFIG: 5514 case OCS_GENERAL_CRYPTO_ERROR: 5515 default: 5516 result |= DID_ERROR << 16; 5517 dev_err(hba->dev, "OCS error from controller = %x for tag %d\n", 5518 ocs, tag); 5519 ufshcd_print_evt_hist(hba); 5520 ufshcd_print_host_state(hba); 5521 break; 5522 } /* end of switch */ 5523 5524 if ((host_byte(result) != DID_OK) && 5525 (host_byte(result) != DID_REQUEUE) && !hba->silence_err_logs) { 5526 if (cqe) 5527 ufshcd_hex_dump("UPIU CQE: ", cqe, sizeof(struct cq_entry)); 5528 ufshcd_print_tr(hba, cmd, true); 5529 } 5530 return result; 5531 } 5532 5533 static bool ufshcd_is_auto_hibern8_error(struct ufs_hba *hba, 5534 u32 intr_mask) 5535 { 5536 if (!ufshcd_is_auto_hibern8_supported(hba) || 5537 !ufshcd_is_auto_hibern8_enabled(hba)) 5538 return false; 5539 5540 if (!(intr_mask & UFSHCD_UIC_HIBERN8_MASK)) 5541 return false; 5542 5543 if (hba->active_uic_cmd && 5544 (hba->active_uic_cmd->command == UIC_CMD_DME_HIBER_ENTER || 5545 hba->active_uic_cmd->command == UIC_CMD_DME_HIBER_EXIT)) 5546 return false; 5547 5548 return true; 5549 } 5550 5551 /** 5552 * ufshcd_uic_cmd_compl - handle completion of uic command 5553 * @hba: per adapter instance 5554 * @intr_status: interrupt status generated by the controller 5555 * 5556 * Return: 5557 * IRQ_HANDLED - If interrupt is valid 5558 * IRQ_NONE - If invalid interrupt 5559 */ 5560 static irqreturn_t ufshcd_uic_cmd_compl(struct ufs_hba *hba, u32 intr_status) 5561 { 5562 irqreturn_t retval = IRQ_NONE; 5563 struct uic_command *cmd; 5564 5565 guard(spinlock_irqsave)(hba->host->host_lock); 5566 cmd = hba->active_uic_cmd; 5567 if (!cmd) 5568 return retval; 5569 5570 if (ufshcd_is_auto_hibern8_error(hba, intr_status)) 5571 hba->errors |= (UFSHCD_UIC_HIBERN8_MASK & intr_status); 5572 5573 if (intr_status & UIC_COMMAND_COMPL) { 5574 cmd->argument2 |= ufshcd_get_uic_cmd_result(hba); 5575 cmd->argument3 = ufshcd_get_dme_attr_val(hba); 5576 if (!hba->uic_async_done) 5577 cmd->cmd_active = false; 5578 complete(&cmd->done); 5579 retval = IRQ_HANDLED; 5580 } 5581 5582 if (intr_status & UFSHCD_UIC_PWR_MASK && hba->uic_async_done) { 5583 cmd->cmd_active = false; 5584 complete(hba->uic_async_done); 5585 retval = IRQ_HANDLED; 5586 } 5587 5588 if (retval == IRQ_HANDLED) 5589 ufshcd_add_uic_command_trace(hba, cmd, UFS_CMD_COMP); 5590 5591 return retval; 5592 } 5593 5594 /* Release the resources allocated for processing a SCSI command. */ 5595 void ufshcd_release_scsi_cmd(struct ufs_hba *hba, struct scsi_cmnd *cmd) 5596 { 5597 scsi_dma_unmap(cmd); 5598 ufshcd_crypto_clear_prdt(hba, cmd); 5599 ufshcd_release(hba); 5600 ufshcd_clk_scaling_update_busy(hba); 5601 } 5602 5603 /** 5604 * ufshcd_compl_one_cqe - handle a completion queue entry 5605 * @hba: per adapter instance 5606 * @task_tag: the task tag of the request to be completed 5607 * @cqe: pointer to the completion queue entry 5608 */ 5609 void ufshcd_compl_one_cqe(struct ufs_hba *hba, int task_tag, 5610 struct cq_entry *cqe) 5611 { 5612 struct scsi_cmnd *cmd = ufshcd_tag_to_cmd(hba, task_tag); 5613 struct ufshcd_lrb *lrbp = scsi_cmd_priv(cmd); 5614 enum utp_ocs ocs; 5615 5616 if (WARN_ONCE(!cmd, "cqe->command_desc_base_addr = %#llx\n", 5617 le64_to_cpu(cqe->command_desc_base_addr))) 5618 return; 5619 5620 if (hba->monitor.enabled) { 5621 lrbp->compl_time_stamp = ktime_get(); 5622 lrbp->compl_time_stamp_local_clock = local_clock(); 5623 } 5624 if (ufshcd_is_scsi_cmd(cmd)) { 5625 if (unlikely(ufshcd_should_inform_monitor(hba, cmd))) 5626 ufshcd_update_monitor(hba, cmd); 5627 ufshcd_add_command_trace(hba, cmd, UFS_CMD_COMP); 5628 cmd->result = ufshcd_transfer_rsp_status(hba, cmd, cqe); 5629 ufshcd_release_scsi_cmd(hba, cmd); 5630 } else { 5631 if (cqe) { 5632 ocs = cqe->overall_status & MASK_OCS; 5633 lrbp->utr_descriptor_ptr->header.ocs = ocs; 5634 } else { 5635 ocs = lrbp->utr_descriptor_ptr->header.ocs; 5636 } 5637 ufshcd_add_query_upiu_trace( 5638 hba, 5639 ocs == OCS_SUCCESS ? UFS_QUERY_COMP : UFS_QUERY_ERR, 5640 (struct utp_upiu_req *)lrbp->ucd_rsp_ptr); 5641 cmd->result = 0; 5642 } 5643 /* Do not touch lrbp after scsi_done() has been called. */ 5644 scsi_done(cmd); 5645 } 5646 5647 /** 5648 * __ufshcd_transfer_req_compl - handle SCSI and query command completion 5649 * @hba: per adapter instance 5650 * @completed_reqs: bitmask that indicates which requests to complete 5651 */ 5652 static void __ufshcd_transfer_req_compl(struct ufs_hba *hba, 5653 unsigned long completed_reqs) 5654 { 5655 int tag; 5656 5657 for_each_set_bit(tag, &completed_reqs, hba->nutrs) 5658 ufshcd_compl_one_cqe(hba, tag, NULL); 5659 } 5660 5661 /* Any value that is not an existing queue number is fine for this constant. */ 5662 enum { 5663 UFSHCD_POLL_FROM_INTERRUPT_CONTEXT = -1 5664 }; 5665 5666 static void ufshcd_clear_polled(struct ufs_hba *hba, 5667 unsigned long *completed_reqs) 5668 { 5669 int tag; 5670 5671 for_each_set_bit(tag, completed_reqs, hba->nutrs) { 5672 struct scsi_cmnd *cmd = scsi_host_find_tag(hba->host, tag); 5673 5674 if (!cmd) 5675 continue; 5676 if (scsi_cmd_to_rq(cmd)->cmd_flags & REQ_POLLED) 5677 __clear_bit(tag, completed_reqs); 5678 } 5679 } 5680 5681 /* 5682 * Return: > 0 if one or more commands have been completed or 0 if no 5683 * requests have been completed. 5684 */ 5685 static int ufshcd_poll(struct Scsi_Host *shost, unsigned int queue_num) 5686 { 5687 struct ufs_hba *hba = shost_priv(shost); 5688 unsigned long completed_reqs, flags; 5689 u32 tr_doorbell; 5690 struct ufs_hw_queue *hwq; 5691 5692 if (hba->mcq_enabled) { 5693 hwq = &hba->uhq[queue_num]; 5694 5695 return ufshcd_mcq_poll_cqe_lock(hba, hwq); 5696 } 5697 5698 spin_lock_irqsave(&hba->outstanding_lock, flags); 5699 tr_doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL); 5700 completed_reqs = ~tr_doorbell & hba->outstanding_reqs; 5701 WARN_ONCE(completed_reqs & ~hba->outstanding_reqs, 5702 "completed: %#lx; outstanding: %#lx\n", completed_reqs, 5703 hba->outstanding_reqs); 5704 if (queue_num == UFSHCD_POLL_FROM_INTERRUPT_CONTEXT) { 5705 /* Do not complete polled requests from interrupt context. */ 5706 ufshcd_clear_polled(hba, &completed_reqs); 5707 } 5708 hba->outstanding_reqs &= ~completed_reqs; 5709 spin_unlock_irqrestore(&hba->outstanding_lock, flags); 5710 5711 if (completed_reqs) 5712 __ufshcd_transfer_req_compl(hba, completed_reqs); 5713 5714 return completed_reqs != 0; 5715 } 5716 5717 static bool ufshcd_mcq_force_compl_one(struct request *rq, void *priv) 5718 { 5719 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 5720 struct scsi_device *sdev = rq->q->queuedata; 5721 struct Scsi_Host *shost = sdev->host; 5722 struct ufs_hba *hba = shost_priv(shost); 5723 struct ufs_hw_queue *hwq = ufshcd_mcq_req_to_hwq(hba, rq); 5724 5725 if (blk_mq_is_reserved_rq(rq) || !hwq) 5726 return true; 5727 5728 ufshcd_mcq_compl_all_cqes_lock(hba, hwq); 5729 5730 /* 5731 * For those cmds of which the cqes are not present in the cq, complete 5732 * them explicitly. 5733 */ 5734 scoped_guard(spinlock_irqsave, &hwq->cq_lock) { 5735 if (!test_bit(SCMD_STATE_COMPLETE, &cmd->state)) { 5736 set_host_byte(cmd, DID_REQUEUE); 5737 ufshcd_release_scsi_cmd(hba, cmd); 5738 scsi_done(cmd); 5739 } 5740 } 5741 5742 return true; 5743 } 5744 5745 static bool ufshcd_mcq_compl_one(struct request *rq, void *priv) 5746 { 5747 struct scsi_device *sdev = rq->q->queuedata; 5748 struct Scsi_Host *shost = sdev->host; 5749 struct ufs_hba *hba = shost_priv(shost); 5750 struct ufs_hw_queue *hwq = ufshcd_mcq_req_to_hwq(hba, rq); 5751 5752 if (!blk_mq_is_reserved_rq(rq) && hwq) 5753 ufshcd_mcq_poll_cqe_lock(hba, hwq); 5754 5755 return true; 5756 } 5757 5758 /** 5759 * ufshcd_mcq_compl_pending_transfer - MCQ mode function. It is 5760 * invoked from the error handler context or ufshcd_host_reset_and_restore() 5761 * to complete the pending transfers and free the resources associated with 5762 * the scsi command. 5763 * 5764 * @hba: per adapter instance 5765 * @force_compl: This flag is set to true when invoked 5766 * from ufshcd_host_reset_and_restore() in which case it requires special 5767 * handling because the host controller has been reset by ufshcd_hba_stop(). 5768 */ 5769 static void ufshcd_mcq_compl_pending_transfer(struct ufs_hba *hba, 5770 bool force_compl) 5771 { 5772 blk_mq_tagset_busy_iter(&hba->host->tag_set, 5773 force_compl ? ufshcd_mcq_force_compl_one : 5774 ufshcd_mcq_compl_one, 5775 NULL); 5776 } 5777 5778 /** 5779 * ufshcd_transfer_req_compl - handle SCSI and query command completion 5780 * @hba: per adapter instance 5781 * 5782 * Return: 5783 * IRQ_HANDLED - If interrupt is valid 5784 * IRQ_NONE - If invalid interrupt 5785 */ 5786 static irqreturn_t ufshcd_transfer_req_compl(struct ufs_hba *hba) 5787 { 5788 /* Resetting interrupt aggregation counters first and reading the 5789 * DOOR_BELL afterward allows us to handle all the completed requests. 5790 * In order to prevent other interrupts starvation the DB is read once 5791 * after reset. The down side of this solution is the possibility of 5792 * false interrupt if device completes another request after resetting 5793 * aggregation and before reading the DB. 5794 */ 5795 if (ufshcd_is_intr_aggr_allowed(hba) && 5796 !(hba->quirks & UFSHCI_QUIRK_SKIP_RESET_INTR_AGGR)) 5797 ufshcd_reset_intr_aggr(hba); 5798 5799 if (ufs_fail_completion(hba)) 5800 return IRQ_HANDLED; 5801 5802 /* 5803 * Ignore the ufshcd_poll() return value and return IRQ_HANDLED since we 5804 * do not want polling to trigger spurious interrupt complaints. 5805 */ 5806 ufshcd_poll(hba->host, UFSHCD_POLL_FROM_INTERRUPT_CONTEXT); 5807 5808 return IRQ_HANDLED; 5809 } 5810 5811 int __ufshcd_write_ee_control(struct ufs_hba *hba, u32 ee_ctrl_mask) 5812 { 5813 return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR, 5814 QUERY_ATTR_IDN_EE_CONTROL, 0, 0, 5815 &ee_ctrl_mask); 5816 } 5817 5818 int ufshcd_write_ee_control(struct ufs_hba *hba) 5819 { 5820 int err; 5821 5822 mutex_lock(&hba->ee_ctrl_mutex); 5823 err = __ufshcd_write_ee_control(hba, hba->ee_ctrl_mask); 5824 mutex_unlock(&hba->ee_ctrl_mutex); 5825 if (err) 5826 dev_err(hba->dev, "%s: failed to write ee control %d\n", 5827 __func__, err); 5828 return err; 5829 } 5830 5831 int ufshcd_update_ee_control(struct ufs_hba *hba, u16 *mask, 5832 const u16 *other_mask, u16 set, u16 clr) 5833 { 5834 u16 new_mask, ee_ctrl_mask; 5835 int err = 0; 5836 5837 mutex_lock(&hba->ee_ctrl_mutex); 5838 new_mask = (*mask & ~clr) | set; 5839 ee_ctrl_mask = new_mask | *other_mask; 5840 if (ee_ctrl_mask != hba->ee_ctrl_mask) 5841 err = __ufshcd_write_ee_control(hba, ee_ctrl_mask); 5842 /* Still need to update 'mask' even if 'ee_ctrl_mask' was unchanged */ 5843 if (!err) { 5844 hba->ee_ctrl_mask = ee_ctrl_mask; 5845 *mask = new_mask; 5846 } 5847 mutex_unlock(&hba->ee_ctrl_mutex); 5848 return err; 5849 } 5850 5851 /** 5852 * ufshcd_disable_ee - disable exception event 5853 * @hba: per-adapter instance 5854 * @mask: exception event to disable 5855 * 5856 * Disables exception event in the device so that the EVENT_ALERT 5857 * bit is not set. 5858 * 5859 * Return: zero on success, non-zero error value on failure. 5860 */ 5861 static inline int ufshcd_disable_ee(struct ufs_hba *hba, u16 mask) 5862 { 5863 return ufshcd_update_ee_drv_mask(hba, 0, mask); 5864 } 5865 5866 /** 5867 * ufshcd_enable_ee - enable exception event 5868 * @hba: per-adapter instance 5869 * @mask: exception event to enable 5870 * 5871 * Enable corresponding exception event in the device to allow 5872 * device to alert host in critical scenarios. 5873 * 5874 * Return: zero on success, non-zero error value on failure. 5875 */ 5876 static inline int ufshcd_enable_ee(struct ufs_hba *hba, u16 mask) 5877 { 5878 return ufshcd_update_ee_drv_mask(hba, mask, 0); 5879 } 5880 5881 /** 5882 * ufshcd_enable_auto_bkops - Allow device managed BKOPS 5883 * @hba: per-adapter instance 5884 * 5885 * Allow device to manage background operations on its own. Enabling 5886 * this might lead to inconsistent latencies during normal data transfers 5887 * as the device is allowed to manage its own way of handling background 5888 * operations. 5889 * 5890 * Return: 0 upon success; > 0 in case the UFS device reported an OCS error; 5891 * < 0 if another error occurred. 5892 */ 5893 static int ufshcd_enable_auto_bkops(struct ufs_hba *hba) 5894 { 5895 int err = 0; 5896 5897 if (hba->auto_bkops_enabled) 5898 goto out; 5899 5900 err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG, 5901 QUERY_FLAG_IDN_BKOPS_EN, 0, NULL); 5902 if (err) { 5903 dev_err(hba->dev, "%s: failed to enable bkops %d\n", 5904 __func__, err); 5905 goto out; 5906 } 5907 5908 hba->auto_bkops_enabled = true; 5909 trace_ufshcd_auto_bkops_state(hba, "Enabled"); 5910 5911 /* No need of URGENT_BKOPS exception from the device */ 5912 err = ufshcd_disable_ee(hba, MASK_EE_URGENT_BKOPS); 5913 if (err) 5914 dev_err(hba->dev, "%s: failed to disable exception event %d\n", 5915 __func__, err); 5916 out: 5917 return err; 5918 } 5919 5920 /** 5921 * ufshcd_disable_auto_bkops - block device in doing background operations 5922 * @hba: per-adapter instance 5923 * 5924 * Disabling background operations improves command response latency but 5925 * has drawback of device moving into critical state where the device is 5926 * not-operable. Make sure to call ufshcd_enable_auto_bkops() whenever the 5927 * host is idle so that BKOPS are managed effectively without any negative 5928 * impacts. 5929 * 5930 * Return: 0 upon success; > 0 in case the UFS device reported an OCS error; 5931 * < 0 if another error occurred. 5932 */ 5933 static int ufshcd_disable_auto_bkops(struct ufs_hba *hba) 5934 { 5935 int err = 0; 5936 5937 if (!hba->auto_bkops_enabled) 5938 goto out; 5939 5940 /* 5941 * If host assisted BKOPs is to be enabled, make sure 5942 * urgent bkops exception is allowed. 5943 */ 5944 err = ufshcd_enable_ee(hba, MASK_EE_URGENT_BKOPS); 5945 if (err) { 5946 dev_err(hba->dev, "%s: failed to enable exception event %d\n", 5947 __func__, err); 5948 goto out; 5949 } 5950 5951 err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_CLEAR_FLAG, 5952 QUERY_FLAG_IDN_BKOPS_EN, 0, NULL); 5953 if (err) { 5954 dev_err(hba->dev, "%s: failed to disable bkops %d\n", 5955 __func__, err); 5956 ufshcd_disable_ee(hba, MASK_EE_URGENT_BKOPS); 5957 goto out; 5958 } 5959 5960 hba->auto_bkops_enabled = false; 5961 trace_ufshcd_auto_bkops_state(hba, "Disabled"); 5962 hba->is_urgent_bkops_lvl_checked = false; 5963 out: 5964 return err; 5965 } 5966 5967 /** 5968 * ufshcd_force_reset_auto_bkops - force reset auto bkops state 5969 * @hba: per adapter instance 5970 * 5971 * After a device reset the device may toggle the BKOPS_EN flag 5972 * to default value. The s/w tracking variables should be updated 5973 * as well. This function would change the auto-bkops state based on 5974 * UFSHCD_CAP_KEEP_AUTO_BKOPS_ENABLED_EXCEPT_SUSPEND. 5975 */ 5976 static void ufshcd_force_reset_auto_bkops(struct ufs_hba *hba) 5977 { 5978 if (ufshcd_keep_autobkops_enabled_except_suspend(hba)) { 5979 hba->auto_bkops_enabled = false; 5980 hba->ee_ctrl_mask |= MASK_EE_URGENT_BKOPS; 5981 ufshcd_enable_auto_bkops(hba); 5982 } else { 5983 hba->auto_bkops_enabled = true; 5984 hba->ee_ctrl_mask &= ~MASK_EE_URGENT_BKOPS; 5985 ufshcd_disable_auto_bkops(hba); 5986 } 5987 hba->urgent_bkops_lvl = BKOPS_STATUS_PERF_IMPACT; 5988 hba->is_urgent_bkops_lvl_checked = false; 5989 } 5990 5991 static inline int ufshcd_get_bkops_status(struct ufs_hba *hba, u32 *status) 5992 { 5993 return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR, 5994 QUERY_ATTR_IDN_BKOPS_STATUS, 0, 0, status); 5995 } 5996 5997 /** 5998 * ufshcd_bkops_ctrl - control the auto bkops based on current bkops status 5999 * @hba: per-adapter instance 6000 * 6001 * Read the bkops_status from the UFS device and Enable fBackgroundOpsEn 6002 * flag in the device to permit background operations if the device 6003 * bkops_status is greater than or equal to the "hba->urgent_bkops_lvl", 6004 * disable otherwise. 6005 * 6006 * Return: 0 for success, non-zero in case of failure. 6007 * 6008 * NOTE: Caller of this function can check the "hba->auto_bkops_enabled" flag 6009 * to know whether auto bkops is enabled or disabled after this function 6010 * returns control to it. 6011 */ 6012 static int ufshcd_bkops_ctrl(struct ufs_hba *hba) 6013 { 6014 enum bkops_status status = hba->urgent_bkops_lvl; 6015 u32 curr_status = 0; 6016 int err; 6017 6018 err = ufshcd_get_bkops_status(hba, &curr_status); 6019 if (err) { 6020 dev_err(hba->dev, "%s: failed to get BKOPS status %d\n", 6021 __func__, err); 6022 goto out; 6023 } else if (curr_status > BKOPS_STATUS_MAX) { 6024 dev_err(hba->dev, "%s: invalid BKOPS status %d\n", 6025 __func__, curr_status); 6026 err = -EINVAL; 6027 goto out; 6028 } 6029 6030 if (curr_status >= status) 6031 err = ufshcd_enable_auto_bkops(hba); 6032 else 6033 err = ufshcd_disable_auto_bkops(hba); 6034 out: 6035 return err; 6036 } 6037 6038 static inline int ufshcd_get_ee_status(struct ufs_hba *hba, u32 *status) 6039 { 6040 return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR, 6041 QUERY_ATTR_IDN_EE_STATUS, 0, 0, status); 6042 } 6043 6044 static void ufshcd_bkops_exception_event_handler(struct ufs_hba *hba) 6045 { 6046 int err; 6047 u32 curr_status = 0; 6048 6049 if (hba->is_urgent_bkops_lvl_checked) 6050 goto enable_auto_bkops; 6051 6052 err = ufshcd_get_bkops_status(hba, &curr_status); 6053 if (err) { 6054 dev_err(hba->dev, "%s: failed to get BKOPS status %d\n", 6055 __func__, err); 6056 goto out; 6057 } 6058 6059 /* 6060 * We are seeing that some devices are raising the urgent bkops 6061 * exception events even when BKOPS status doesn't indicate performace 6062 * impacted or critical. Handle these device by determining their urgent 6063 * bkops status at runtime. 6064 */ 6065 if (curr_status < BKOPS_STATUS_PERF_IMPACT) { 6066 dev_err(hba->dev, "%s: device raised urgent BKOPS exception for bkops status %d\n", 6067 __func__, curr_status); 6068 /* update the current status as the urgent bkops level */ 6069 hba->urgent_bkops_lvl = curr_status; 6070 hba->is_urgent_bkops_lvl_checked = true; 6071 } 6072 6073 enable_auto_bkops: 6074 err = ufshcd_enable_auto_bkops(hba); 6075 out: 6076 if (err < 0) 6077 dev_err(hba->dev, "%s: failed to handle urgent bkops %d\n", 6078 __func__, err); 6079 } 6080 6081 /* 6082 * Return: 0 upon success; > 0 in case the UFS device reported an OCS error; 6083 * < 0 if another error occurred. 6084 */ 6085 int ufshcd_read_device_lvl_exception_id(struct ufs_hba *hba, u64 *exception_id) 6086 { 6087 struct utp_upiu_query_v4_0 *upiu_resp; 6088 struct ufs_query_req *request = NULL; 6089 struct ufs_query_res *response = NULL; 6090 int err; 6091 6092 if (hba->dev_info.wspecversion < 0x410) 6093 return -EOPNOTSUPP; 6094 6095 ufshcd_hold(hba); 6096 mutex_lock(&hba->dev_cmd.lock); 6097 6098 ufshcd_init_query(hba, &request, &response, 6099 UPIU_QUERY_OPCODE_READ_ATTR, 6100 QUERY_ATTR_IDN_DEV_LVL_EXCEPTION_ID, 0, 0); 6101 6102 request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST; 6103 6104 err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, dev_cmd_timeout); 6105 6106 if (err) { 6107 dev_err(hba->dev, "%s: failed to read device level exception %d\n", 6108 __func__, err); 6109 goto out; 6110 } 6111 6112 upiu_resp = (struct utp_upiu_query_v4_0 *)response; 6113 *exception_id = get_unaligned_be64(&upiu_resp->osf3); 6114 out: 6115 mutex_unlock(&hba->dev_cmd.lock); 6116 ufshcd_release(hba); 6117 6118 return err; 6119 } 6120 6121 static int __ufshcd_wb_toggle(struct ufs_hba *hba, bool set, enum flag_idn idn) 6122 { 6123 u8 index; 6124 enum query_opcode opcode = set ? UPIU_QUERY_OPCODE_SET_FLAG : 6125 UPIU_QUERY_OPCODE_CLEAR_FLAG; 6126 6127 index = ufshcd_wb_get_query_index(hba); 6128 return ufshcd_query_flag_retry(hba, opcode, idn, index, NULL); 6129 } 6130 6131 int ufshcd_wb_toggle(struct ufs_hba *hba, bool enable) 6132 { 6133 int ret; 6134 6135 if (!ufshcd_is_wb_allowed(hba) || 6136 hba->dev_info.wb_enabled == enable) 6137 return 0; 6138 6139 ret = __ufshcd_wb_toggle(hba, enable, QUERY_FLAG_IDN_WB_EN); 6140 if (ret) { 6141 dev_err(hba->dev, "%s: Write Booster %s failed %d\n", 6142 __func__, enable ? "enabling" : "disabling", ret); 6143 return ret; 6144 } 6145 6146 hba->dev_info.wb_enabled = enable; 6147 dev_dbg(hba->dev, "%s: Write Booster %s\n", 6148 __func__, enable ? "enabled" : "disabled"); 6149 6150 return ret; 6151 } 6152 6153 static void ufshcd_wb_toggle_buf_flush_during_h8(struct ufs_hba *hba, 6154 bool enable) 6155 { 6156 int ret; 6157 6158 ret = __ufshcd_wb_toggle(hba, enable, 6159 QUERY_FLAG_IDN_WB_BUFF_FLUSH_DURING_HIBERN8); 6160 if (ret) { 6161 dev_err(hba->dev, "%s: WB-Buf Flush during H8 %s failed %d\n", 6162 __func__, enable ? "enabling" : "disabling", ret); 6163 return; 6164 } 6165 dev_dbg(hba->dev, "%s: WB-Buf Flush during H8 %s\n", 6166 __func__, enable ? "enabled" : "disabled"); 6167 } 6168 6169 int ufshcd_wb_toggle_buf_flush(struct ufs_hba *hba, bool enable) 6170 { 6171 int ret; 6172 6173 if (!ufshcd_is_wb_allowed(hba) || 6174 hba->dev_info.wb_buf_flush_enabled == enable) 6175 return 0; 6176 6177 ret = __ufshcd_wb_toggle(hba, enable, QUERY_FLAG_IDN_WB_BUFF_FLUSH_EN); 6178 if (ret) { 6179 dev_err(hba->dev, "%s: WB-Buf Flush %s failed %d\n", 6180 __func__, enable ? "enabling" : "disabling", ret); 6181 return ret; 6182 } 6183 6184 hba->dev_info.wb_buf_flush_enabled = enable; 6185 dev_dbg(hba->dev, "%s: WB-Buf Flush %s\n", 6186 __func__, enable ? "enabled" : "disabled"); 6187 6188 return ret; 6189 } 6190 6191 int ufshcd_wb_set_resize_en(struct ufs_hba *hba, enum wb_resize_en en_mode) 6192 { 6193 int ret; 6194 u8 index; 6195 6196 index = ufshcd_wb_get_query_index(hba); 6197 ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR, 6198 QUERY_ATTR_IDN_WB_BUF_RESIZE_EN, index, 0, &en_mode); 6199 if (ret) 6200 dev_err(hba->dev, "%s: Enable WB buf resize operation failed %d\n", 6201 __func__, ret); 6202 6203 return ret; 6204 } 6205 6206 static bool ufshcd_wb_curr_buff_threshold_check(struct ufs_hba *hba, 6207 u32 avail_buf) 6208 { 6209 u32 cur_buf; 6210 int ret; 6211 u8 index; 6212 6213 index = ufshcd_wb_get_query_index(hba); 6214 ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR, 6215 QUERY_ATTR_IDN_CURR_WB_BUFF_SIZE, 6216 index, 0, &cur_buf); 6217 if (ret) { 6218 dev_err(hba->dev, "%s: dCurWriteBoosterBufferSize read failed %d\n", 6219 __func__, ret); 6220 return false; 6221 } 6222 6223 if (!cur_buf) { 6224 dev_info(hba->dev, "dCurWBBuf: %d WB disabled until free-space is available\n", 6225 cur_buf); 6226 return false; 6227 } 6228 /* Let it continue to flush when available buffer exceeds threshold */ 6229 return avail_buf < hba->vps->wb_flush_threshold; 6230 } 6231 6232 static void ufshcd_wb_force_disable(struct ufs_hba *hba) 6233 { 6234 if (ufshcd_is_wb_buf_flush_allowed(hba)) 6235 ufshcd_wb_toggle_buf_flush(hba, false); 6236 6237 ufshcd_wb_toggle_buf_flush_during_h8(hba, false); 6238 ufshcd_wb_toggle(hba, false); 6239 hba->caps &= ~UFSHCD_CAP_WB_EN; 6240 6241 dev_info(hba->dev, "%s: WB force disabled\n", __func__); 6242 } 6243 6244 static bool ufshcd_is_wb_buf_lifetime_available(struct ufs_hba *hba) 6245 { 6246 u32 lifetime; 6247 int ret; 6248 u8 index; 6249 6250 index = ufshcd_wb_get_query_index(hba); 6251 ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR, 6252 QUERY_ATTR_IDN_WB_BUFF_LIFE_TIME_EST, 6253 index, 0, &lifetime); 6254 if (ret) { 6255 dev_err(hba->dev, 6256 "%s: bWriteBoosterBufferLifeTimeEst read failed %d\n", 6257 __func__, ret); 6258 return false; 6259 } 6260 6261 if (lifetime == UFS_WB_EXCEED_LIFETIME) { 6262 dev_err(hba->dev, "%s: WB buf lifetime is exhausted 0x%02X\n", 6263 __func__, lifetime); 6264 return false; 6265 } 6266 6267 dev_dbg(hba->dev, "%s: WB buf lifetime is 0x%02X\n", 6268 __func__, lifetime); 6269 6270 return true; 6271 } 6272 6273 static bool ufshcd_wb_need_flush(struct ufs_hba *hba) 6274 { 6275 int ret; 6276 u32 avail_buf; 6277 u8 index; 6278 6279 if (!ufshcd_is_wb_allowed(hba)) 6280 return false; 6281 6282 if (!ufshcd_is_wb_buf_lifetime_available(hba)) { 6283 ufshcd_wb_force_disable(hba); 6284 return false; 6285 } 6286 6287 /* 6288 * With user-space reduction enabled, it's enough to enable flush 6289 * by checking only the available buffer. The threshold 6290 * defined here is > 90% full. 6291 * With user-space preserved enabled, the current-buffer 6292 * should be checked too because the wb buffer size can reduce 6293 * when disk tends to be full. This info is provided by current 6294 * buffer (dCurrentWriteBoosterBufferSize). 6295 */ 6296 index = ufshcd_wb_get_query_index(hba); 6297 ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR, 6298 QUERY_ATTR_IDN_AVAIL_WB_BUFF_SIZE, 6299 index, 0, &avail_buf); 6300 if (ret) { 6301 dev_warn(hba->dev, "%s: dAvailableWriteBoosterBufferSize read failed %d\n", 6302 __func__, ret); 6303 return false; 6304 } 6305 6306 if (!hba->dev_info.b_presrv_uspc_en) 6307 return avail_buf <= UFS_WB_BUF_REMAIN_PERCENT(10); 6308 6309 return ufshcd_wb_curr_buff_threshold_check(hba, avail_buf); 6310 } 6311 6312 static void ufshcd_rpm_dev_flush_recheck_work(struct work_struct *work) 6313 { 6314 struct ufs_hba *hba = container_of(to_delayed_work(work), 6315 struct ufs_hba, 6316 rpm_dev_flush_recheck_work); 6317 /* 6318 * To prevent unnecessary VCC power drain after device finishes 6319 * WriteBooster buffer flush or Auto BKOPs, force runtime resume 6320 * after a certain delay to recheck the threshold by next runtime 6321 * suspend. 6322 */ 6323 ufshcd_rpm_get_sync(hba); 6324 ufshcd_rpm_put_sync(hba); 6325 } 6326 6327 /** 6328 * ufshcd_exception_event_handler - handle exceptions raised by device 6329 * @work: pointer to work data 6330 * 6331 * Read bExceptionEventStatus attribute from the device and handle the 6332 * exception event accordingly. 6333 */ 6334 static void ufshcd_exception_event_handler(struct work_struct *work) 6335 { 6336 struct ufs_hba *hba; 6337 int err; 6338 u32 status = 0; 6339 hba = container_of(work, struct ufs_hba, eeh_work); 6340 6341 err = ufshcd_get_ee_status(hba, &status); 6342 if (err) { 6343 dev_err(hba->dev, "%s: failed to get exception status %d\n", 6344 __func__, err); 6345 return; 6346 } 6347 6348 trace_ufshcd_exception_event(hba, status); 6349 6350 if (status & hba->ee_drv_mask & MASK_EE_URGENT_BKOPS) 6351 ufshcd_bkops_exception_event_handler(hba); 6352 6353 if (status & hba->ee_drv_mask & MASK_EE_URGENT_TEMP) 6354 ufs_hwmon_notify_event(hba, status & MASK_EE_URGENT_TEMP); 6355 6356 if (status & hba->ee_drv_mask & MASK_EE_HEALTH_CRITICAL) { 6357 hba->critical_health_count++; 6358 sysfs_notify(&hba->dev->kobj, NULL, "critical_health"); 6359 } 6360 6361 if (status & hba->ee_drv_mask & MASK_EE_DEV_LVL_EXCEPTION) { 6362 atomic_inc(&hba->dev_lvl_exception_count); 6363 sysfs_notify(&hba->dev->kobj, NULL, "device_lvl_exception_count"); 6364 } 6365 6366 ufs_debugfs_exception_event(hba, status); 6367 } 6368 6369 /* Complete requests that have door-bell cleared */ 6370 static void ufshcd_complete_requests(struct ufs_hba *hba, bool force_compl) 6371 { 6372 if (hba->mcq_enabled) 6373 ufshcd_mcq_compl_pending_transfer(hba, force_compl); 6374 else 6375 ufshcd_transfer_req_compl(hba); 6376 6377 ufshcd_tmc_handler(hba); 6378 } 6379 6380 /** 6381 * ufshcd_quirk_dl_nac_errors - This function checks if error handling is 6382 * to recover from the DL NAC errors or not. 6383 * @hba: per-adapter instance 6384 * 6385 * Return: true if error handling is required, false otherwise. 6386 */ 6387 static bool ufshcd_quirk_dl_nac_errors(struct ufs_hba *hba) 6388 { 6389 unsigned long flags; 6390 bool err_handling = true; 6391 6392 spin_lock_irqsave(hba->host->host_lock, flags); 6393 /* 6394 * UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS only workaround the 6395 * device fatal error and/or DL NAC & REPLAY timeout errors. 6396 */ 6397 if (hba->saved_err & (CONTROLLER_FATAL_ERROR | SYSTEM_BUS_FATAL_ERROR)) 6398 goto out; 6399 6400 if ((hba->saved_err & DEVICE_FATAL_ERROR) || 6401 ((hba->saved_err & UIC_ERROR) && 6402 (hba->saved_uic_err & UFSHCD_UIC_DL_TCx_REPLAY_ERROR))) 6403 goto out; 6404 6405 if ((hba->saved_err & UIC_ERROR) && 6406 (hba->saved_uic_err & UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)) { 6407 int err; 6408 /* 6409 * wait for 50ms to see if we can get any other errors or not. 6410 */ 6411 spin_unlock_irqrestore(hba->host->host_lock, flags); 6412 msleep(50); 6413 spin_lock_irqsave(hba->host->host_lock, flags); 6414 6415 /* 6416 * now check if we have got any other severe errors other than 6417 * DL NAC error? 6418 */ 6419 if ((hba->saved_err & INT_FATAL_ERRORS) || 6420 ((hba->saved_err & UIC_ERROR) && 6421 (hba->saved_uic_err & ~UFSHCD_UIC_DL_NAC_RECEIVED_ERROR))) 6422 goto out; 6423 6424 /* 6425 * As DL NAC is the only error received so far, send out NOP 6426 * command to confirm if link is still active or not. 6427 * - If we don't get any response then do error recovery. 6428 * - If we get response then clear the DL NAC error bit. 6429 */ 6430 6431 spin_unlock_irqrestore(hba->host->host_lock, flags); 6432 err = ufshcd_verify_dev_init(hba); 6433 spin_lock_irqsave(hba->host->host_lock, flags); 6434 6435 if (err) 6436 goto out; 6437 6438 /* Link seems to be alive hence ignore the DL NAC errors */ 6439 if (hba->saved_uic_err == UFSHCD_UIC_DL_NAC_RECEIVED_ERROR) 6440 hba->saved_err &= ~UIC_ERROR; 6441 /* clear NAC error */ 6442 hba->saved_uic_err &= ~UFSHCD_UIC_DL_NAC_RECEIVED_ERROR; 6443 if (!hba->saved_uic_err) 6444 err_handling = false; 6445 } 6446 out: 6447 spin_unlock_irqrestore(hba->host->host_lock, flags); 6448 return err_handling; 6449 } 6450 6451 /* host lock must be held before calling this func */ 6452 static inline bool ufshcd_is_saved_err_fatal(struct ufs_hba *hba) 6453 { 6454 return (hba->saved_uic_err & UFSHCD_UIC_DL_PA_INIT_ERROR) || 6455 (hba->saved_err & (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK)); 6456 } 6457 6458 void ufshcd_schedule_eh_work(struct ufs_hba *hba) 6459 { 6460 lockdep_assert_held(hba->host->host_lock); 6461 6462 /* handle fatal errors only when link is not in error state */ 6463 if (hba->ufshcd_state != UFSHCD_STATE_ERROR) { 6464 if (hba->force_reset || ufshcd_is_link_broken(hba) || 6465 ufshcd_is_saved_err_fatal(hba)) 6466 hba->ufshcd_state = UFSHCD_STATE_EH_SCHEDULED_FATAL; 6467 else 6468 hba->ufshcd_state = UFSHCD_STATE_EH_SCHEDULED_NON_FATAL; 6469 queue_work(hba->eh_wq, &hba->eh_work); 6470 } 6471 } 6472 6473 void ufshcd_force_error_recovery(struct ufs_hba *hba) 6474 { 6475 spin_lock_irq(hba->host->host_lock); 6476 hba->force_reset = true; 6477 ufshcd_schedule_eh_work(hba); 6478 spin_unlock_irq(hba->host->host_lock); 6479 } 6480 EXPORT_SYMBOL_GPL(ufshcd_force_error_recovery); 6481 6482 static void ufshcd_clk_scaling_allow(struct ufs_hba *hba, bool allow) 6483 { 6484 mutex_lock(&hba->wb_mutex); 6485 down_write(&hba->clk_scaling_lock); 6486 hba->clk_scaling.is_allowed = allow; 6487 up_write(&hba->clk_scaling_lock); 6488 mutex_unlock(&hba->wb_mutex); 6489 } 6490 6491 static void ufshcd_clk_scaling_suspend(struct ufs_hba *hba, bool suspend) 6492 { 6493 if (suspend) { 6494 if (hba->clk_scaling.is_enabled) 6495 ufshcd_suspend_clkscaling(hba); 6496 ufshcd_clk_scaling_allow(hba, false); 6497 } else { 6498 ufshcd_clk_scaling_allow(hba, true); 6499 if (hba->clk_scaling.is_enabled) 6500 ufshcd_resume_clkscaling(hba); 6501 } 6502 } 6503 6504 static void ufshcd_err_handling_prepare(struct ufs_hba *hba) 6505 { 6506 /* 6507 * A WLUN resume failure could potentially lead to the HBA being 6508 * runtime suspended, so take an extra reference on hba->dev. 6509 */ 6510 pm_runtime_get_sync(hba->dev); 6511 ufshcd_rpm_get_sync(hba); 6512 if (pm_runtime_status_suspended(&hba->ufs_device_wlun->sdev_gendev) || 6513 hba->is_sys_suspended) { 6514 enum ufs_pm_op pm_op; 6515 6516 /* 6517 * Don't assume anything of resume, if 6518 * resume fails, irq and clocks can be OFF, and powers 6519 * can be OFF or in LPM. 6520 */ 6521 ufshcd_setup_hba_vreg(hba, true); 6522 ufshcd_enable_irq(hba); 6523 ufshcd_setup_vreg(hba, true); 6524 ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq); 6525 ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq2); 6526 ufshcd_hold(hba); 6527 if (!ufshcd_is_clkgating_allowed(hba)) 6528 ufshcd_setup_clocks(hba, true); 6529 pm_op = hba->is_sys_suspended ? UFS_SYSTEM_PM : UFS_RUNTIME_PM; 6530 ufshcd_vops_resume(hba, pm_op); 6531 } else { 6532 ufshcd_hold(hba); 6533 if (ufshcd_is_clkscaling_supported(hba) && 6534 hba->clk_scaling.is_enabled) 6535 ufshcd_suspend_clkscaling(hba); 6536 ufshcd_clk_scaling_allow(hba, false); 6537 } 6538 /* Wait for ongoing ufshcd_queuecommand() calls to finish. */ 6539 blk_mq_quiesce_tagset(&hba->host->tag_set); 6540 cancel_work_sync(&hba->eeh_work); 6541 } 6542 6543 static void ufshcd_err_handling_unprepare(struct ufs_hba *hba) 6544 { 6545 blk_mq_unquiesce_tagset(&hba->host->tag_set); 6546 ufshcd_release(hba); 6547 if (ufshcd_is_clkscaling_supported(hba)) 6548 ufshcd_clk_scaling_suspend(hba, false); 6549 ufshcd_rpm_put(hba); 6550 pm_runtime_put(hba->dev); 6551 } 6552 6553 static inline bool ufshcd_err_handling_should_stop(struct ufs_hba *hba) 6554 { 6555 return (!hba->is_powered || hba->shutting_down || 6556 !hba->ufs_device_wlun || 6557 hba->ufshcd_state == UFSHCD_STATE_ERROR || 6558 (!(hba->saved_err || hba->saved_uic_err || hba->force_reset || 6559 ufshcd_is_link_broken(hba)))); 6560 } 6561 6562 #ifdef CONFIG_PM 6563 static void ufshcd_recover_pm_error(struct ufs_hba *hba) 6564 { 6565 struct scsi_target *starget = hba->ufs_device_wlun->sdev_target; 6566 struct Scsi_Host *shost = hba->host; 6567 struct scsi_device *sdev; 6568 struct request_queue *q; 6569 bool resume_sdev_queues = false; 6570 6571 hba->is_sys_suspended = false; 6572 6573 /* 6574 * Ensure the parent's error status is cleared before proceeding 6575 * to the child, as the parent must be active to activate the child. 6576 */ 6577 if (hba->dev->power.runtime_error) { 6578 /* hba->dev has no functional parent thus simplily set RPM_ACTIVE */ 6579 pm_runtime_set_active(hba->dev); 6580 resume_sdev_queues = true; 6581 } 6582 6583 if (hba->ufs_device_wlun->sdev_gendev.power.runtime_error) { 6584 /* 6585 * starget, parent of wlun, might be suspended if wlun resume failed. 6586 * Make sure parent is resumed before set child (wlun) active. 6587 */ 6588 pm_runtime_get_sync(&starget->dev); 6589 pm_runtime_set_active(&hba->ufs_device_wlun->sdev_gendev); 6590 pm_runtime_put_sync(&starget->dev); 6591 resume_sdev_queues = true; 6592 } 6593 6594 /* 6595 * If wlun device had runtime error, we also need to resume those 6596 * consumer scsi devices in case any of them has failed to be 6597 * resumed due to supplier runtime resume failure. This is to unblock 6598 * blk_queue_enter in case there are bios waiting inside it. 6599 */ 6600 if (resume_sdev_queues) { 6601 shost_for_each_device(sdev, shost) { 6602 q = sdev->request_queue; 6603 if (q->dev && (q->rpm_status == RPM_SUSPENDED || 6604 q->rpm_status == RPM_SUSPENDING)) 6605 pm_request_resume(q->dev); 6606 } 6607 } 6608 } 6609 #else 6610 static inline void ufshcd_recover_pm_error(struct ufs_hba *hba) 6611 { 6612 } 6613 #endif 6614 6615 static bool ufshcd_is_pwr_mode_restore_needed(struct ufs_hba *hba) 6616 { 6617 struct ufs_pa_layer_attr *pwr_info = &hba->pwr_info; 6618 u32 mode; 6619 6620 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_PWRMODE), &mode); 6621 6622 if (pwr_info->pwr_rx != ((mode >> PWRMODE_RX_OFFSET) & PWRMODE_MASK)) 6623 return true; 6624 6625 if (pwr_info->pwr_tx != (mode & PWRMODE_MASK)) 6626 return true; 6627 6628 return false; 6629 } 6630 6631 static bool ufshcd_abort_one(struct request *rq, void *priv) 6632 { 6633 int *ret = priv; 6634 u32 tag = rq->tag; 6635 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 6636 struct scsi_device *sdev = cmd->device; 6637 struct Scsi_Host *shost = sdev->host; 6638 struct ufs_hba *hba = shost_priv(shost); 6639 6640 if (blk_mq_is_reserved_rq(rq)) 6641 return true; 6642 6643 *ret = ufshcd_try_to_abort_task(hba, tag); 6644 dev_err(hba->dev, "Aborting tag %d / CDB %#02x %s\n", tag, 6645 ufshcd_is_scsi_cmd(cmd) ? cmd->cmnd[0] : -1, 6646 *ret ? "failed" : "succeeded"); 6647 6648 return *ret == 0; 6649 } 6650 6651 /** 6652 * ufshcd_abort_all - Abort all pending commands. 6653 * @hba: Host bus adapter pointer. 6654 * 6655 * Return: true if and only if the host controller needs to be reset. 6656 */ 6657 static bool ufshcd_abort_all(struct ufs_hba *hba) 6658 { 6659 int tag, ret = 0; 6660 6661 blk_mq_tagset_busy_iter(&hba->host->tag_set, ufshcd_abort_one, &ret); 6662 if (ret) 6663 goto out; 6664 6665 /* Clear pending task management requests */ 6666 for_each_set_bit(tag, &hba->outstanding_tasks, hba->nutmrs) { 6667 ret = ufshcd_clear_tm_cmd(hba, tag); 6668 if (ret) 6669 goto out; 6670 } 6671 6672 out: 6673 /* Complete the requests that are cleared by s/w */ 6674 ufshcd_complete_requests(hba, false); 6675 6676 return ret != 0; 6677 } 6678 6679 /** 6680 * ufshcd_err_handler - handle UFS errors that require s/w attention 6681 * @work: pointer to work structure 6682 */ 6683 static void ufshcd_err_handler(struct work_struct *work) 6684 { 6685 int retries = MAX_ERR_HANDLER_RETRIES; 6686 struct ufs_hba *hba; 6687 unsigned long flags; 6688 bool needs_restore; 6689 bool needs_reset; 6690 int pmc_err; 6691 6692 hba = container_of(work, struct ufs_hba, eh_work); 6693 6694 dev_info(hba->dev, 6695 "%s started; HBA state %s; powered %d; shutting down %d; saved_err = 0x%x; saved_uic_err = 0x%x; force_reset = %d%s\n", 6696 __func__, ufshcd_state_name[hba->ufshcd_state], 6697 hba->is_powered, hba->shutting_down, hba->saved_err, 6698 hba->saved_uic_err, hba->force_reset, 6699 ufshcd_is_link_broken(hba) ? "; link is broken" : ""); 6700 6701 if (hba->ufs_device_wlun) { 6702 /* 6703 * Use ufshcd_rpm_get_noresume() here to safely perform link 6704 * recovery even if an error occurs during runtime suspend or 6705 * runtime resume. This avoids potential deadlocks that could 6706 * happen if we tried to resume the device while a PM operation 6707 * is already in progress. 6708 */ 6709 ufshcd_rpm_get_noresume(hba); 6710 if (hba->pm_op_in_progress) { 6711 ufshcd_link_recovery(hba); 6712 ufshcd_rpm_put(hba); 6713 return; 6714 } 6715 ufshcd_rpm_put(hba); 6716 } 6717 6718 down(&hba->host_sem); 6719 spin_lock_irqsave(hba->host->host_lock, flags); 6720 if (ufshcd_err_handling_should_stop(hba)) { 6721 if (hba->ufshcd_state != UFSHCD_STATE_ERROR) 6722 hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL; 6723 spin_unlock_irqrestore(hba->host->host_lock, flags); 6724 up(&hba->host_sem); 6725 return; 6726 } 6727 spin_unlock_irqrestore(hba->host->host_lock, flags); 6728 6729 ufshcd_err_handling_prepare(hba); 6730 6731 spin_lock_irqsave(hba->host->host_lock, flags); 6732 ufshcd_set_eh_in_progress(hba); 6733 spin_unlock_irqrestore(hba->host->host_lock, flags); 6734 6735 /* Complete requests that have door-bell cleared by h/w */ 6736 ufshcd_complete_requests(hba, false); 6737 spin_lock_irqsave(hba->host->host_lock, flags); 6738 again: 6739 needs_restore = false; 6740 needs_reset = false; 6741 6742 if (hba->ufshcd_state != UFSHCD_STATE_ERROR) 6743 hba->ufshcd_state = UFSHCD_STATE_RESET; 6744 /* 6745 * A full reset and restore might have happened after preparation 6746 * is finished, double check whether we should stop. 6747 */ 6748 if (ufshcd_err_handling_should_stop(hba)) 6749 goto skip_err_handling; 6750 6751 if ((hba->dev_quirks & UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS) && 6752 !hba->force_reset) { 6753 bool ret; 6754 6755 spin_unlock_irqrestore(hba->host->host_lock, flags); 6756 /* release the lock as ufshcd_quirk_dl_nac_errors() may sleep */ 6757 ret = ufshcd_quirk_dl_nac_errors(hba); 6758 spin_lock_irqsave(hba->host->host_lock, flags); 6759 if (!ret && ufshcd_err_handling_should_stop(hba)) 6760 goto skip_err_handling; 6761 } 6762 6763 if ((hba->saved_err & (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK)) || 6764 (hba->saved_uic_err && 6765 (hba->saved_uic_err != UFSHCD_UIC_PA_GENERIC_ERROR))) { 6766 bool pr_prdt = !!(hba->saved_err & SYSTEM_BUS_FATAL_ERROR); 6767 6768 spin_unlock_irqrestore(hba->host->host_lock, flags); 6769 ufshcd_print_host_state(hba); 6770 ufshcd_print_pwr_info(hba); 6771 ufshcd_print_evt_hist(hba); 6772 ufshcd_print_tmrs(hba, hba->outstanding_tasks); 6773 ufshcd_print_trs_all(hba, pr_prdt); 6774 spin_lock_irqsave(hba->host->host_lock, flags); 6775 } 6776 6777 /* 6778 * if host reset is required then skip clearing the pending 6779 * transfers forcefully because they will get cleared during 6780 * host reset and restore 6781 */ 6782 if (hba->force_reset || ufshcd_is_link_broken(hba) || 6783 ufshcd_is_saved_err_fatal(hba) || 6784 ((hba->saved_err & UIC_ERROR) && 6785 (hba->saved_uic_err & (UFSHCD_UIC_DL_NAC_RECEIVED_ERROR | 6786 UFSHCD_UIC_DL_TCx_REPLAY_ERROR)))) { 6787 needs_reset = true; 6788 goto do_reset; 6789 } 6790 6791 /* 6792 * If LINERESET was caught, UFS might have been put to PWM mode, 6793 * check if power mode restore is needed. 6794 */ 6795 if (hba->saved_uic_err & UFSHCD_UIC_PA_GENERIC_ERROR) { 6796 hba->saved_uic_err &= ~UFSHCD_UIC_PA_GENERIC_ERROR; 6797 if (!hba->saved_uic_err) 6798 hba->saved_err &= ~UIC_ERROR; 6799 spin_unlock_irqrestore(hba->host->host_lock, flags); 6800 if (ufshcd_is_pwr_mode_restore_needed(hba)) 6801 needs_restore = true; 6802 spin_lock_irqsave(hba->host->host_lock, flags); 6803 if (!hba->saved_err && !needs_restore) 6804 goto skip_err_handling; 6805 } 6806 6807 hba->silence_err_logs = true; 6808 /* release lock as clear command might sleep */ 6809 spin_unlock_irqrestore(hba->host->host_lock, flags); 6810 6811 needs_reset = ufshcd_abort_all(hba); 6812 6813 spin_lock_irqsave(hba->host->host_lock, flags); 6814 hba->silence_err_logs = false; 6815 if (needs_reset) 6816 goto do_reset; 6817 6818 /* 6819 * After all reqs and tasks are cleared from doorbell, 6820 * now it is safe to retore power mode. 6821 */ 6822 if (needs_restore) { 6823 spin_unlock_irqrestore(hba->host->host_lock, flags); 6824 /* 6825 * Hold the scaling lock just in case dev cmds 6826 * are sent via bsg and/or sysfs. 6827 */ 6828 down_write(&hba->clk_scaling_lock); 6829 hba->force_pmc = true; 6830 pmc_err = ufshcd_config_pwr_mode(hba, &(hba->pwr_info)); 6831 if (pmc_err) { 6832 needs_reset = true; 6833 dev_err(hba->dev, "%s: Failed to restore power mode, err = %d\n", 6834 __func__, pmc_err); 6835 } 6836 hba->force_pmc = false; 6837 ufshcd_print_pwr_info(hba); 6838 up_write(&hba->clk_scaling_lock); 6839 spin_lock_irqsave(hba->host->host_lock, flags); 6840 } 6841 6842 do_reset: 6843 /* Fatal errors need reset */ 6844 if (needs_reset) { 6845 int err; 6846 6847 hba->force_reset = false; 6848 spin_unlock_irqrestore(hba->host->host_lock, flags); 6849 err = ufshcd_reset_and_restore(hba); 6850 if (err) 6851 dev_err(hba->dev, "%s: reset and restore failed with err %d\n", 6852 __func__, err); 6853 else 6854 ufshcd_recover_pm_error(hba); 6855 spin_lock_irqsave(hba->host->host_lock, flags); 6856 } 6857 6858 skip_err_handling: 6859 if (!needs_reset) { 6860 if (hba->ufshcd_state == UFSHCD_STATE_RESET) 6861 hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL; 6862 if (hba->saved_err || hba->saved_uic_err) 6863 dev_err_ratelimited(hba->dev, "%s: exit: saved_err 0x%x saved_uic_err 0x%x", 6864 __func__, hba->saved_err, hba->saved_uic_err); 6865 } 6866 /* Exit in an operational state or dead */ 6867 if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL && 6868 hba->ufshcd_state != UFSHCD_STATE_ERROR) { 6869 if (--retries) 6870 goto again; 6871 hba->ufshcd_state = UFSHCD_STATE_ERROR; 6872 } 6873 ufshcd_clear_eh_in_progress(hba); 6874 spin_unlock_irqrestore(hba->host->host_lock, flags); 6875 ufshcd_err_handling_unprepare(hba); 6876 up(&hba->host_sem); 6877 6878 dev_info(hba->dev, "%s finished; HBA state %s\n", __func__, 6879 ufshcd_state_name[hba->ufshcd_state]); 6880 } 6881 6882 /** 6883 * ufshcd_update_uic_error - check and set fatal UIC error flags. 6884 * @hba: per-adapter instance 6885 * 6886 * Return: 6887 * IRQ_HANDLED - If interrupt is valid 6888 * IRQ_NONE - If invalid interrupt 6889 */ 6890 static irqreturn_t ufshcd_update_uic_error(struct ufs_hba *hba) 6891 { 6892 u32 reg; 6893 irqreturn_t retval = IRQ_NONE; 6894 6895 /* PHY layer error */ 6896 reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER); 6897 if ((reg & UIC_PHY_ADAPTER_LAYER_ERROR) && 6898 (reg & UIC_PHY_ADAPTER_LAYER_ERROR_CODE_MASK)) { 6899 ufshcd_update_evt_hist(hba, UFS_EVT_PA_ERR, reg); 6900 /* 6901 * To know whether this error is fatal or not, DB timeout 6902 * must be checked but this error is handled separately. 6903 */ 6904 if (reg & UIC_PHY_ADAPTER_LAYER_LANE_ERR_MASK) 6905 dev_dbg(hba->dev, "%s: UIC Lane error reported\n", 6906 __func__); 6907 6908 /* Got a LINERESET indication. */ 6909 if (reg & UIC_PHY_ADAPTER_LAYER_GENERIC_ERROR) { 6910 struct uic_command *cmd = NULL; 6911 6912 hba->uic_error |= UFSHCD_UIC_PA_GENERIC_ERROR; 6913 if (hba->uic_async_done && hba->active_uic_cmd) 6914 cmd = hba->active_uic_cmd; 6915 /* 6916 * Ignore the LINERESET during power mode change 6917 * operation via DME_SET command. 6918 */ 6919 if (cmd && (cmd->command == UIC_CMD_DME_SET)) 6920 hba->uic_error &= ~UFSHCD_UIC_PA_GENERIC_ERROR; 6921 } 6922 retval |= IRQ_HANDLED; 6923 } 6924 6925 /* PA_INIT_ERROR is fatal and needs UIC reset */ 6926 reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_DATA_LINK_LAYER); 6927 if ((reg & UIC_DATA_LINK_LAYER_ERROR) && 6928 (reg & UIC_DATA_LINK_LAYER_ERROR_CODE_MASK)) { 6929 ufshcd_update_evt_hist(hba, UFS_EVT_DL_ERR, reg); 6930 6931 if (reg & UIC_DATA_LINK_LAYER_ERROR_PA_INIT) 6932 hba->uic_error |= UFSHCD_UIC_DL_PA_INIT_ERROR; 6933 else if (hba->dev_quirks & 6934 UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS) { 6935 if (reg & UIC_DATA_LINK_LAYER_ERROR_NAC_RECEIVED) 6936 hba->uic_error |= 6937 UFSHCD_UIC_DL_NAC_RECEIVED_ERROR; 6938 else if (reg & UIC_DATA_LINK_LAYER_ERROR_TCx_REPLAY_TIMEOUT) 6939 hba->uic_error |= UFSHCD_UIC_DL_TCx_REPLAY_ERROR; 6940 } 6941 retval |= IRQ_HANDLED; 6942 } 6943 6944 /* UIC NL/TL/DME errors needs software retry */ 6945 reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_NETWORK_LAYER); 6946 if ((reg & UIC_NETWORK_LAYER_ERROR) && 6947 (reg & UIC_NETWORK_LAYER_ERROR_CODE_MASK)) { 6948 ufshcd_update_evt_hist(hba, UFS_EVT_NL_ERR, reg); 6949 hba->uic_error |= UFSHCD_UIC_NL_ERROR; 6950 retval |= IRQ_HANDLED; 6951 } 6952 6953 reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_TRANSPORT_LAYER); 6954 if ((reg & UIC_TRANSPORT_LAYER_ERROR) && 6955 (reg & UIC_TRANSPORT_LAYER_ERROR_CODE_MASK)) { 6956 ufshcd_update_evt_hist(hba, UFS_EVT_TL_ERR, reg); 6957 hba->uic_error |= UFSHCD_UIC_TL_ERROR; 6958 retval |= IRQ_HANDLED; 6959 } 6960 6961 reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_DME); 6962 if ((reg & UIC_DME_ERROR) && 6963 (reg & UIC_DME_ERROR_CODE_MASK)) { 6964 ufshcd_update_evt_hist(hba, UFS_EVT_DME_ERR, reg); 6965 hba->uic_error |= UFSHCD_UIC_DME_ERROR; 6966 retval |= IRQ_HANDLED; 6967 } 6968 6969 dev_dbg(hba->dev, "%s: UIC error flags = 0x%08x\n", 6970 __func__, hba->uic_error); 6971 return retval; 6972 } 6973 6974 /** 6975 * ufshcd_check_errors - Check for errors that need s/w attention 6976 * @hba: per-adapter instance 6977 * @intr_status: interrupt status generated by the controller 6978 * 6979 * Return: 6980 * IRQ_HANDLED - If interrupt is valid 6981 * IRQ_NONE - If invalid interrupt 6982 */ 6983 static irqreturn_t ufshcd_check_errors(struct ufs_hba *hba, u32 intr_status) 6984 { 6985 bool queue_eh_work = false; 6986 irqreturn_t retval = IRQ_NONE; 6987 6988 guard(spinlock_irqsave)(hba->host->host_lock); 6989 hba->errors |= UFSHCD_ERROR_MASK & intr_status; 6990 6991 if (hba->errors & INT_FATAL_ERRORS) { 6992 ufshcd_update_evt_hist(hba, UFS_EVT_FATAL_ERR, 6993 hba->errors); 6994 queue_eh_work = true; 6995 } 6996 6997 if (hba->errors & UIC_ERROR) { 6998 hba->uic_error = 0; 6999 retval = ufshcd_update_uic_error(hba); 7000 if (hba->uic_error) 7001 queue_eh_work = true; 7002 } 7003 7004 if (hba->errors & UFSHCD_UIC_HIBERN8_MASK) { 7005 dev_err(hba->dev, 7006 "%s: Auto Hibern8 %s failed - status: 0x%08x, upmcrs: 0x%08x\n", 7007 __func__, (hba->errors & UIC_HIBERNATE_ENTER) ? 7008 "Enter" : "Exit", 7009 hba->errors, ufshcd_get_upmcrs(hba)); 7010 ufshcd_update_evt_hist(hba, UFS_EVT_AUTO_HIBERN8_ERR, 7011 hba->errors); 7012 ufshcd_set_link_broken(hba); 7013 queue_eh_work = true; 7014 } 7015 7016 if (queue_eh_work) { 7017 /* 7018 * update the transfer error masks to sticky bits, let's do this 7019 * irrespective of current ufshcd_state. 7020 */ 7021 hba->saved_err |= hba->errors; 7022 hba->saved_uic_err |= hba->uic_error; 7023 7024 /* dump controller state before resetting */ 7025 if ((hba->saved_err & 7026 (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK)) || 7027 (hba->saved_uic_err && 7028 (hba->saved_uic_err != UFSHCD_UIC_PA_GENERIC_ERROR))) { 7029 dev_err(hba->dev, "%s: saved_err 0x%x saved_uic_err 0x%x\n", 7030 __func__, hba->saved_err, 7031 hba->saved_uic_err); 7032 ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, 7033 "host_regs: "); 7034 ufshcd_print_pwr_info(hba); 7035 } 7036 ufshcd_schedule_eh_work(hba); 7037 retval |= IRQ_HANDLED; 7038 } 7039 /* 7040 * if (!queue_eh_work) - 7041 * Other errors are either non-fatal where host recovers 7042 * itself without s/w intervention or errors that will be 7043 * handled by the SCSI core layer. 7044 */ 7045 hba->errors = 0; 7046 hba->uic_error = 0; 7047 7048 return retval; 7049 } 7050 7051 /** 7052 * ufshcd_tmc_handler - handle task management function completion 7053 * @hba: per adapter instance 7054 * 7055 * Return: 7056 * IRQ_HANDLED - If interrupt is valid 7057 * IRQ_NONE - If invalid interrupt 7058 */ 7059 static irqreturn_t ufshcd_tmc_handler(struct ufs_hba *hba) 7060 { 7061 unsigned long flags, pending, issued; 7062 irqreturn_t ret = IRQ_NONE; 7063 int tag; 7064 7065 spin_lock_irqsave(hba->host->host_lock, flags); 7066 pending = ufshcd_readl(hba, REG_UTP_TASK_REQ_DOOR_BELL); 7067 issued = hba->outstanding_tasks & ~pending; 7068 for_each_set_bit(tag, &issued, hba->nutmrs) { 7069 struct request *req = hba->tmf_rqs[tag]; 7070 struct completion *c = req->end_io_data; 7071 7072 complete(c); 7073 ret = IRQ_HANDLED; 7074 } 7075 spin_unlock_irqrestore(hba->host->host_lock, flags); 7076 7077 return ret; 7078 } 7079 7080 /** 7081 * ufshcd_handle_mcq_cq_events - handle MCQ completion queue events 7082 * @hba: per adapter instance 7083 * 7084 * Return: IRQ_HANDLED if interrupt is handled. 7085 */ 7086 static irqreturn_t ufshcd_handle_mcq_cq_events(struct ufs_hba *hba) 7087 { 7088 struct ufs_hw_queue *hwq; 7089 unsigned long outstanding_cqs; 7090 unsigned int nr_queues; 7091 int i, ret; 7092 u32 events; 7093 7094 ret = ufshcd_vops_get_outstanding_cqs(hba, &outstanding_cqs); 7095 if (ret) 7096 outstanding_cqs = (1U << hba->nr_hw_queues) - 1; 7097 7098 /* Exclude the poll queues */ 7099 nr_queues = hba->nr_hw_queues - hba->nr_queues[HCTX_TYPE_POLL]; 7100 for_each_set_bit(i, &outstanding_cqs, nr_queues) { 7101 hwq = &hba->uhq[i]; 7102 7103 events = ufshcd_mcq_read_cqis(hba, i); 7104 if (events) 7105 ufshcd_mcq_write_cqis(hba, events, i); 7106 7107 if (events & UFSHCD_MCQ_CQIS_TAIL_ENT_PUSH_STS) 7108 ufshcd_mcq_poll_cqe_lock(hba, hwq); 7109 } 7110 7111 return IRQ_HANDLED; 7112 } 7113 7114 /** 7115 * ufshcd_sl_intr - Interrupt service routine 7116 * @hba: per adapter instance 7117 * @intr_status: contains interrupts generated by the controller 7118 * 7119 * Return: 7120 * IRQ_HANDLED - If interrupt is valid 7121 * IRQ_NONE - If invalid interrupt 7122 */ 7123 static irqreturn_t ufshcd_sl_intr(struct ufs_hba *hba, u32 intr_status) 7124 { 7125 irqreturn_t retval = IRQ_NONE; 7126 7127 if (intr_status & UFSHCD_UIC_MASK) 7128 retval |= ufshcd_uic_cmd_compl(hba, intr_status); 7129 7130 if (intr_status & UFSHCD_ERROR_MASK || hba->errors) 7131 retval |= ufshcd_check_errors(hba, intr_status); 7132 7133 if (intr_status & UTP_TASK_REQ_COMPL) 7134 retval |= ufshcd_tmc_handler(hba); 7135 7136 if (intr_status & UTP_TRANSFER_REQ_COMPL) 7137 retval |= ufshcd_transfer_req_compl(hba); 7138 7139 if (intr_status & MCQ_CQ_EVENT_STATUS) 7140 retval |= ufshcd_handle_mcq_cq_events(hba); 7141 7142 return retval; 7143 } 7144 7145 /** 7146 * ufshcd_threaded_intr - Threaded interrupt service routine 7147 * @irq: irq number 7148 * @__hba: pointer to adapter instance 7149 * 7150 * Return: 7151 * IRQ_HANDLED - If interrupt is valid 7152 * IRQ_NONE - If invalid interrupt 7153 */ 7154 static irqreturn_t ufshcd_threaded_intr(int irq, void *__hba) 7155 { 7156 u32 last_intr_status, intr_status, enabled_intr_status = 0; 7157 irqreturn_t retval = IRQ_NONE; 7158 struct ufs_hba *hba = __hba; 7159 int retries = hba->nutrs; 7160 7161 last_intr_status = intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS); 7162 7163 /* 7164 * There could be max of hba->nutrs reqs in flight and in worst case 7165 * if the reqs get finished 1 by 1 after the interrupt status is 7166 * read, make sure we handle them by checking the interrupt status 7167 * again in a loop until we process all of the reqs before returning. 7168 */ 7169 while (intr_status && retries--) { 7170 enabled_intr_status = 7171 intr_status & ufshcd_readl(hba, REG_INTERRUPT_ENABLE); 7172 ufshcd_writel(hba, intr_status, REG_INTERRUPT_STATUS); 7173 if (enabled_intr_status) 7174 retval |= ufshcd_sl_intr(hba, enabled_intr_status); 7175 7176 intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS); 7177 } 7178 7179 if (enabled_intr_status && retval == IRQ_NONE && 7180 (!(enabled_intr_status & UTP_TRANSFER_REQ_COMPL) || 7181 hba->outstanding_reqs) && !ufshcd_eh_in_progress(hba)) { 7182 dev_err(hba->dev, "%s: Unhandled interrupt 0x%08x (0x%08x, 0x%08x)\n", 7183 __func__, 7184 intr_status, 7185 last_intr_status, 7186 enabled_intr_status); 7187 ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, "host_regs: "); 7188 } 7189 7190 return retval; 7191 } 7192 7193 /** 7194 * ufshcd_intr - Main interrupt service routine 7195 * @irq: irq number 7196 * @__hba: pointer to adapter instance 7197 * 7198 * Return: 7199 * IRQ_HANDLED - If interrupt is valid 7200 * IRQ_WAKE_THREAD - If handling is moved to threaded handled 7201 * IRQ_NONE - If invalid interrupt 7202 */ 7203 static irqreturn_t ufshcd_intr(int irq, void *__hba) 7204 { 7205 struct ufs_hba *hba = __hba; 7206 u32 intr_status, enabled_intr_status; 7207 7208 /* Move interrupt handling to thread when MCQ & ESI are not enabled */ 7209 if (!hba->mcq_enabled || !hba->mcq_esi_enabled) 7210 return IRQ_WAKE_THREAD; 7211 7212 intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS); 7213 enabled_intr_status = intr_status & ufshcd_readl(hba, REG_INTERRUPT_ENABLE); 7214 7215 ufshcd_writel(hba, intr_status, REG_INTERRUPT_STATUS); 7216 7217 /* Directly handle interrupts since MCQ ESI handlers does the hard job */ 7218 return ufshcd_sl_intr(hba, enabled_intr_status); 7219 } 7220 7221 static int ufshcd_clear_tm_cmd(struct ufs_hba *hba, int tag) 7222 { 7223 int err = 0; 7224 u32 mask = 1 << tag; 7225 7226 if (!test_bit(tag, &hba->outstanding_tasks)) 7227 goto out; 7228 7229 ufshcd_utmrl_clear(hba, tag); 7230 7231 /* poll for max. 1 sec to clear door bell register by h/w */ 7232 err = ufshcd_wait_for_register(hba, 7233 REG_UTP_TASK_REQ_DOOR_BELL, 7234 mask, 0, 1000, 1000); 7235 7236 dev_err(hba->dev, "Clearing task management function with tag %d %s\n", 7237 tag, err < 0 ? "failed" : "succeeded"); 7238 7239 out: 7240 return err; 7241 } 7242 7243 static int __ufshcd_issue_tm_cmd(struct ufs_hba *hba, 7244 struct utp_task_req_desc *treq, u8 tm_function) 7245 { 7246 struct request_queue *q = hba->tmf_queue; 7247 struct Scsi_Host *host = hba->host; 7248 DECLARE_COMPLETION_ONSTACK(wait); 7249 struct request *req; 7250 unsigned long flags; 7251 int task_tag, err; 7252 7253 /* 7254 * blk_mq_alloc_request() is used here only to get a free tag. 7255 */ 7256 req = blk_mq_alloc_request(q, REQ_OP_DRV_OUT, 0); 7257 if (IS_ERR(req)) 7258 return PTR_ERR(req); 7259 7260 req->end_io_data = &wait; 7261 ufshcd_hold(hba); 7262 7263 spin_lock_irqsave(host->host_lock, flags); 7264 7265 task_tag = req->tag; 7266 hba->tmf_rqs[req->tag] = req; 7267 treq->upiu_req.req_header.task_tag = task_tag; 7268 7269 memcpy(hba->utmrdl_base_addr + task_tag, treq, sizeof(*treq)); 7270 ufshcd_vops_setup_task_mgmt(hba, task_tag, tm_function); 7271 7272 __set_bit(task_tag, &hba->outstanding_tasks); 7273 7274 spin_unlock_irqrestore(host->host_lock, flags); 7275 7276 /* send command to the controller */ 7277 ufshcd_writel(hba, 1 << task_tag, REG_UTP_TASK_REQ_DOOR_BELL); 7278 7279 ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_SEND); 7280 7281 /* wait until the task management command is completed */ 7282 err = wait_for_completion_io_timeout(&wait, 7283 msecs_to_jiffies(TM_CMD_TIMEOUT)); 7284 if (!err) { 7285 ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_ERR); 7286 dev_err(hba->dev, "%s: task management cmd 0x%.2x timed-out\n", 7287 __func__, tm_function); 7288 if (ufshcd_clear_tm_cmd(hba, task_tag)) 7289 dev_WARN(hba->dev, "%s: unable to clear tm cmd (slot %d) after timeout\n", 7290 __func__, task_tag); 7291 err = -ETIMEDOUT; 7292 } else { 7293 err = 0; 7294 memcpy(treq, hba->utmrdl_base_addr + task_tag, sizeof(*treq)); 7295 7296 ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_COMP); 7297 } 7298 7299 spin_lock_irqsave(hba->host->host_lock, flags); 7300 hba->tmf_rqs[req->tag] = NULL; 7301 __clear_bit(task_tag, &hba->outstanding_tasks); 7302 spin_unlock_irqrestore(hba->host->host_lock, flags); 7303 7304 ufshcd_release(hba); 7305 blk_mq_free_request(req); 7306 7307 return err; 7308 } 7309 7310 /** 7311 * ufshcd_issue_tm_cmd - issues task management commands to controller 7312 * @hba: per adapter instance 7313 * @lun_id: LUN ID to which TM command is sent 7314 * @task_id: task ID to which the TM command is applicable 7315 * @tm_function: task management function opcode 7316 * @tm_response: task management service response return value 7317 * 7318 * Return: non-zero value on error, zero on success. 7319 */ 7320 static int ufshcd_issue_tm_cmd(struct ufs_hba *hba, int lun_id, int task_id, 7321 u8 tm_function, u8 *tm_response) 7322 { 7323 struct utp_task_req_desc treq = { }; 7324 enum utp_ocs ocs_value; 7325 int err; 7326 7327 /* Configure task request descriptor */ 7328 treq.header.interrupt = 1; 7329 treq.header.ocs = OCS_INVALID_COMMAND_STATUS; 7330 7331 /* Configure task request UPIU */ 7332 treq.upiu_req.req_header.transaction_code = UPIU_TRANSACTION_TASK_REQ; 7333 treq.upiu_req.req_header.lun = lun_id; 7334 treq.upiu_req.req_header.tm_function = tm_function; 7335 7336 /* 7337 * The host shall provide the same value for LUN field in the basic 7338 * header and for Input Parameter. 7339 */ 7340 treq.upiu_req.input_param1 = cpu_to_be32(lun_id); 7341 treq.upiu_req.input_param2 = cpu_to_be32(task_id); 7342 7343 err = __ufshcd_issue_tm_cmd(hba, &treq, tm_function); 7344 if (err == -ETIMEDOUT) 7345 return err; 7346 7347 ocs_value = treq.header.ocs & MASK_OCS; 7348 if (ocs_value != OCS_SUCCESS) 7349 dev_err(hba->dev, "%s: failed, ocs = 0x%x\n", 7350 __func__, ocs_value); 7351 else if (tm_response) 7352 *tm_response = be32_to_cpu(treq.upiu_rsp.output_param1) & 7353 MASK_TM_SERVICE_RESP; 7354 return err; 7355 } 7356 7357 /** 7358 * ufshcd_issue_devman_upiu_cmd - API for sending "utrd" type requests 7359 * @hba: per-adapter instance 7360 * @req_upiu: upiu request 7361 * @rsp_upiu: upiu reply 7362 * @desc_buff: pointer to descriptor buffer, NULL if NA 7363 * @buff_len: descriptor size, 0 if NA 7364 * @cmd_type: specifies the type (NOP, Query...) 7365 * @desc_op: descriptor operation 7366 * 7367 * Those type of requests uses UTP Transfer Request Descriptor - utrd. 7368 * Therefore, it "rides" the device management infrastructure: uses its tag and 7369 * tasks work queues. 7370 * 7371 * Since there is only one available tag for device management commands, 7372 * the caller is expected to hold the hba->dev_cmd.lock mutex. 7373 * 7374 * Return: 0 upon success; < 0 upon failure. 7375 */ 7376 static int ufshcd_issue_devman_upiu_cmd(struct ufs_hba *hba, 7377 struct utp_upiu_req *req_upiu, 7378 struct utp_upiu_req *rsp_upiu, 7379 u8 *desc_buff, int *buff_len, 7380 enum dev_cmd_type cmd_type, 7381 enum query_opcode desc_op) 7382 { 7383 struct scsi_cmnd *cmd = ufshcd_get_dev_mgmt_cmd(hba); 7384 struct ufshcd_lrb *lrbp = scsi_cmd_priv(cmd); 7385 u32 tag; 7386 int err = 0; 7387 u8 upiu_flags; 7388 7389 /* Protects use of hba->dev_cmd. */ 7390 lockdep_assert_held(&hba->dev_cmd.lock); 7391 7392 if (WARN_ON_ONCE(!cmd)) 7393 return -ENOMEM; 7394 7395 tag = scsi_cmd_to_rq(cmd)->tag; 7396 7397 ufshcd_setup_dev_cmd(hba, cmd, cmd_type, 0, tag); 7398 7399 ufshcd_prepare_req_desc_hdr(hba, lrbp, &upiu_flags, DMA_NONE, 0); 7400 7401 /* update the task tag in the request upiu */ 7402 req_upiu->header.task_tag = tag; 7403 7404 /* just copy the upiu request as it is */ 7405 memcpy(lrbp->ucd_req_ptr, req_upiu, sizeof(*lrbp->ucd_req_ptr)); 7406 if (desc_buff && desc_op == UPIU_QUERY_OPCODE_WRITE_DESC) { 7407 /* The Data Segment Area is optional depending upon the query 7408 * function value. for WRITE DESCRIPTOR, the data segment 7409 * follows right after the tsf. 7410 */ 7411 memcpy(lrbp->ucd_req_ptr + 1, desc_buff, *buff_len); 7412 *buff_len = 0; 7413 } 7414 7415 memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp)); 7416 7417 err = ufshcd_issue_dev_cmd(hba, cmd, tag, dev_cmd_timeout); 7418 if (err) 7419 goto put_dev_mgmt_cmd; 7420 7421 /* just copy the upiu response as it is */ 7422 memcpy(rsp_upiu, lrbp->ucd_rsp_ptr, sizeof(*rsp_upiu)); 7423 if (desc_buff && desc_op == UPIU_QUERY_OPCODE_READ_DESC) { 7424 u8 *descp = (u8 *)lrbp->ucd_rsp_ptr + sizeof(*rsp_upiu); 7425 u16 resp_len = be16_to_cpu(lrbp->ucd_rsp_ptr->header 7426 .data_segment_length); 7427 7428 if (*buff_len >= resp_len) { 7429 memcpy(desc_buff, descp, resp_len); 7430 *buff_len = resp_len; 7431 } else { 7432 dev_warn(hba->dev, 7433 "%s: rsp size %d is bigger than buffer size %d", 7434 __func__, resp_len, *buff_len); 7435 *buff_len = 0; 7436 err = -EINVAL; 7437 } 7438 } 7439 7440 put_dev_mgmt_cmd: 7441 ufshcd_put_dev_mgmt_cmd(cmd); 7442 7443 return err; 7444 } 7445 7446 /** 7447 * ufshcd_exec_raw_upiu_cmd - API function for sending raw upiu commands 7448 * @hba: per-adapter instance 7449 * @req_upiu: upiu request 7450 * @rsp_upiu: upiu reply - only 8 DW as we do not support scsi commands 7451 * @msgcode: message code, one of UPIU Transaction Codes Initiator to Target 7452 * @desc_buff: pointer to descriptor buffer, NULL if NA 7453 * @buff_len: descriptor size, 0 if NA 7454 * @desc_op: descriptor operation 7455 * 7456 * Supports UTP Transfer requests (nop and query), and UTP Task 7457 * Management requests. 7458 * It is up to the caller to fill the upiu conent properly, as it will 7459 * be copied without any further input validations. 7460 * 7461 * Return: 0 upon success; < 0 upon failure. 7462 */ 7463 int ufshcd_exec_raw_upiu_cmd(struct ufs_hba *hba, 7464 struct utp_upiu_req *req_upiu, 7465 struct utp_upiu_req *rsp_upiu, 7466 enum upiu_request_transaction msgcode, 7467 u8 *desc_buff, int *buff_len, 7468 enum query_opcode desc_op) 7469 { 7470 int err; 7471 enum dev_cmd_type cmd_type = DEV_CMD_TYPE_QUERY; 7472 struct utp_task_req_desc treq = { }; 7473 enum utp_ocs ocs_value; 7474 u8 tm_f = req_upiu->header.tm_function; 7475 7476 switch (msgcode) { 7477 case UPIU_TRANSACTION_NOP_OUT: 7478 cmd_type = DEV_CMD_TYPE_NOP; 7479 fallthrough; 7480 case UPIU_TRANSACTION_QUERY_REQ: 7481 ufshcd_dev_man_lock(hba); 7482 err = ufshcd_issue_devman_upiu_cmd(hba, req_upiu, rsp_upiu, 7483 desc_buff, buff_len, 7484 cmd_type, desc_op); 7485 ufshcd_dev_man_unlock(hba); 7486 7487 break; 7488 case UPIU_TRANSACTION_TASK_REQ: 7489 treq.header.interrupt = 1; 7490 treq.header.ocs = OCS_INVALID_COMMAND_STATUS; 7491 7492 memcpy(&treq.upiu_req, req_upiu, sizeof(*req_upiu)); 7493 7494 err = __ufshcd_issue_tm_cmd(hba, &treq, tm_f); 7495 if (err == -ETIMEDOUT) 7496 break; 7497 7498 ocs_value = treq.header.ocs & MASK_OCS; 7499 if (ocs_value != OCS_SUCCESS) { 7500 dev_err(hba->dev, "%s: failed, ocs = 0x%x\n", __func__, 7501 ocs_value); 7502 break; 7503 } 7504 7505 memcpy(rsp_upiu, &treq.upiu_rsp, sizeof(*rsp_upiu)); 7506 7507 break; 7508 default: 7509 err = -EINVAL; 7510 7511 break; 7512 } 7513 7514 return err; 7515 } 7516 7517 /** 7518 * ufshcd_advanced_rpmb_req_handler - handle advanced RPMB request 7519 * @hba: per adapter instance 7520 * @req_upiu: upiu request 7521 * @rsp_upiu: upiu reply 7522 * @req_ehs: EHS field which contains Advanced RPMB Request Message 7523 * @rsp_ehs: EHS field which returns Advanced RPMB Response Message 7524 * @sg_cnt: The number of sg lists actually used 7525 * @sg_list: Pointer to SG list when DATA IN/OUT UPIU is required in ARPMB operation 7526 * @dir: DMA direction 7527 * 7528 * Return: 0 upon success; > 0 in case the UFS device reported an OCS error; 7529 * < 0 if another error occurred. 7530 */ 7531 int ufshcd_advanced_rpmb_req_handler(struct ufs_hba *hba, struct utp_upiu_req *req_upiu, 7532 struct utp_upiu_req *rsp_upiu, struct ufs_ehs *req_ehs, 7533 struct ufs_ehs *rsp_ehs, int sg_cnt, struct scatterlist *sg_list, 7534 enum dma_data_direction dir) 7535 { 7536 struct scsi_cmnd *cmd; 7537 struct ufshcd_lrb *lrbp; 7538 u32 tag; 7539 int err = 0; 7540 int result; 7541 u8 upiu_flags; 7542 u8 *ehs_data; 7543 u16 ehs_len; 7544 int ehs = (hba->capabilities & MASK_EHSLUTRD_SUPPORTED) ? 2 : 0; 7545 7546 ufshcd_dev_man_lock(hba); 7547 7548 cmd = ufshcd_get_dev_mgmt_cmd(hba); 7549 7550 if (WARN_ON_ONCE(!cmd)) { 7551 err = -ENOMEM; 7552 goto unlock; 7553 } 7554 7555 lrbp = scsi_cmd_priv(cmd); 7556 tag = scsi_cmd_to_rq(cmd)->tag; 7557 7558 ufshcd_setup_dev_cmd(hba, cmd, DEV_CMD_TYPE_RPMB, UFS_UPIU_RPMB_WLUN, 7559 tag); 7560 7561 ufshcd_prepare_req_desc_hdr(hba, lrbp, &upiu_flags, DMA_NONE, ehs); 7562 7563 /* update the task tag */ 7564 req_upiu->header.task_tag = tag; 7565 7566 /* copy the UPIU(contains CDB) request as it is */ 7567 memcpy(lrbp->ucd_req_ptr, req_upiu, sizeof(*lrbp->ucd_req_ptr)); 7568 /* Copy EHS, starting with byte32, immediately after the CDB package */ 7569 memcpy(lrbp->ucd_req_ptr + 1, req_ehs, sizeof(*req_ehs)); 7570 7571 if (dir != DMA_NONE && sg_list) 7572 ufshcd_sgl_to_prdt(hba, lrbp, sg_cnt, sg_list); 7573 7574 memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp)); 7575 7576 err = ufshcd_issue_dev_cmd(hba, cmd, tag, ADVANCED_RPMB_REQ_TIMEOUT); 7577 if (err) 7578 goto put_dev_mgmt_cmd; 7579 7580 err = ufshcd_dev_cmd_completion(hba, lrbp); 7581 if (!err) { 7582 /* Just copy the upiu response as it is */ 7583 memcpy(rsp_upiu, lrbp->ucd_rsp_ptr, sizeof(*rsp_upiu)); 7584 /* Get the response UPIU result */ 7585 result = (lrbp->ucd_rsp_ptr->header.response << 8) | 7586 lrbp->ucd_rsp_ptr->header.status; 7587 7588 ehs_len = lrbp->ucd_rsp_ptr->header.ehs_length; 7589 /* 7590 * Since the bLength in EHS indicates the total size of the EHS Header and EHS Data 7591 * in 32 Byte units, the value of the bLength Request/Response for Advanced RPMB 7592 * Message is 02h 7593 */ 7594 if (ehs_len == 2 && rsp_ehs) { 7595 /* 7596 * ucd_rsp_ptr points to a buffer with a length of 512 bytes 7597 * (ALIGNED_UPIU_SIZE = 512), and the EHS data just starts from byte32 7598 */ 7599 ehs_data = (u8 *)lrbp->ucd_rsp_ptr + EHS_OFFSET_IN_RESPONSE; 7600 memcpy(rsp_ehs, ehs_data, ehs_len * 32); 7601 } 7602 } 7603 7604 put_dev_mgmt_cmd: 7605 ufshcd_put_dev_mgmt_cmd(cmd); 7606 7607 unlock: 7608 ufshcd_dev_man_unlock(hba); 7609 7610 return err ? : result; 7611 } 7612 7613 static bool ufshcd_clear_lu_cmds(struct request *req, void *priv) 7614 { 7615 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 7616 struct scsi_device *sdev = cmd->device; 7617 struct Scsi_Host *shost = sdev->host; 7618 struct ufs_hba *hba = shost_priv(shost); 7619 const u64 lun = *(u64 *)priv; 7620 const u32 tag = req->tag; 7621 7622 if (blk_mq_is_reserved_rq(req) || sdev->lun != lun) 7623 return true; 7624 7625 if (ufshcd_clear_cmd(hba, tag) < 0) { 7626 dev_err(hba->dev, "%s: failed to clear request %d\n", __func__, 7627 tag); 7628 return true; 7629 } 7630 7631 if (hba->mcq_enabled) { 7632 struct ufs_hw_queue *hwq = ufshcd_mcq_req_to_hwq(hba, req); 7633 7634 if (hwq) 7635 ufshcd_mcq_poll_cqe_lock(hba, hwq); 7636 return true; 7637 } 7638 7639 ufshcd_compl_one_cqe(hba, tag, NULL); 7640 return true; 7641 } 7642 7643 /** 7644 * ufshcd_eh_device_reset_handler() - Reset a single logical unit. 7645 * @cmd: SCSI command pointer 7646 * 7647 * Return: SUCCESS or FAILED. 7648 */ 7649 static int ufshcd_eh_device_reset_handler(struct scsi_cmnd *cmd) 7650 { 7651 struct Scsi_Host *host; 7652 struct ufs_hba *hba; 7653 int err; 7654 u8 resp = 0xF, lun; 7655 7656 host = cmd->device->host; 7657 hba = shost_priv(host); 7658 7659 lun = ufshcd_scsi_to_upiu_lun(cmd->device->lun); 7660 err = ufshcd_issue_tm_cmd(hba, lun, 0, UFS_LOGICAL_RESET, &resp); 7661 if (err) { 7662 } else if (resp != UPIU_TASK_MANAGEMENT_FUNC_COMPL) { 7663 err = resp; 7664 } else { 7665 /* clear the commands that were pending for corresponding LUN */ 7666 blk_mq_tagset_busy_iter(&hba->host->tag_set, 7667 ufshcd_clear_lu_cmds, 7668 &cmd->device->lun); 7669 } 7670 7671 hba->req_abort_count = 0; 7672 ufshcd_update_evt_hist(hba, UFS_EVT_DEV_RESET, (u32)err); 7673 if (!err) { 7674 err = SUCCESS; 7675 } else { 7676 dev_err(hba->dev, "%s: failed with err %d\n", __func__, err); 7677 err = FAILED; 7678 } 7679 return err; 7680 } 7681 7682 static void ufshcd_set_req_abort_skip(struct ufs_hba *hba, unsigned long bitmap) 7683 { 7684 int tag; 7685 7686 for_each_set_bit(tag, &bitmap, hba->nutrs) { 7687 struct scsi_cmnd *cmd = ufshcd_tag_to_cmd(hba, tag); 7688 struct ufshcd_lrb *lrbp = scsi_cmd_priv(cmd); 7689 7690 lrbp->req_abort_skip = true; 7691 } 7692 } 7693 7694 /** 7695 * ufshcd_try_to_abort_task - abort a specific task 7696 * @hba: Pointer to adapter instance 7697 * @tag: Tag of the task to be aborted 7698 * 7699 * Abort the pending command in device by sending UFS_ABORT_TASK task management 7700 * command, and in host controller by clearing the door-bell register. There can 7701 * be race between controller sending the command to the device while abort is 7702 * issued. To avoid that, first issue UFS_QUERY_TASK to check if the command is 7703 * really issued and then try to abort it. 7704 * 7705 * Return: zero on success, non-zero on failure. 7706 */ 7707 int ufshcd_try_to_abort_task(struct ufs_hba *hba, int tag) 7708 { 7709 struct scsi_cmnd *cmd = ufshcd_tag_to_cmd(hba, tag); 7710 struct ufshcd_lrb *lrbp = scsi_cmd_priv(cmd); 7711 int err; 7712 int poll_cnt; 7713 u8 resp = 0xF; 7714 7715 for (poll_cnt = 100; poll_cnt; poll_cnt--) { 7716 err = ufshcd_issue_tm_cmd(hba, lrbp->lun, tag, UFS_QUERY_TASK, 7717 &resp); 7718 if (!err && resp == UPIU_TASK_MANAGEMENT_FUNC_SUCCEEDED) { 7719 /* cmd pending in the device */ 7720 dev_err(hba->dev, "%s: cmd pending in the device. tag = %d\n", 7721 __func__, tag); 7722 break; 7723 } else if (!err && resp == UPIU_TASK_MANAGEMENT_FUNC_COMPL) { 7724 /* 7725 * cmd not pending in the device, check if it is 7726 * in transition. 7727 */ 7728 dev_info( 7729 hba->dev, 7730 "%s: cmd with tag %d not pending in the device.\n", 7731 __func__, tag); 7732 if (!ufshcd_cmd_inflight(cmd)) { 7733 dev_info(hba->dev, 7734 "%s: cmd with tag=%d completed.\n", 7735 __func__, tag); 7736 return 0; 7737 } 7738 usleep_range(100, 200); 7739 } else { 7740 dev_err(hba->dev, 7741 "%s: no response from device. tag = %d, err %d\n", 7742 __func__, tag, err); 7743 return err ? : resp; 7744 } 7745 } 7746 7747 if (!poll_cnt) 7748 return -EBUSY; 7749 7750 err = ufshcd_issue_tm_cmd(hba, lrbp->lun, tag, UFS_ABORT_TASK, &resp); 7751 if (err || resp != UPIU_TASK_MANAGEMENT_FUNC_COMPL) { 7752 if (!err) { 7753 err = resp; /* service response error */ 7754 dev_err(hba->dev, "%s: issued. tag = %d, err %d\n", 7755 __func__, tag, err); 7756 } 7757 return err; 7758 } 7759 7760 err = ufshcd_clear_cmd(hba, tag); 7761 if (err) 7762 dev_err(hba->dev, "%s: Failed clearing cmd at tag %d, err %d\n", 7763 __func__, tag, err); 7764 7765 return err; 7766 } 7767 7768 /** 7769 * ufshcd_abort - scsi host template eh_abort_handler callback 7770 * @cmd: SCSI command pointer 7771 * 7772 * Return: SUCCESS or FAILED. 7773 */ 7774 static int ufshcd_abort(struct scsi_cmnd *cmd) 7775 { 7776 struct Scsi_Host *host = cmd->device->host; 7777 struct ufs_hba *hba = shost_priv(host); 7778 struct request *rq = scsi_cmd_to_rq(cmd); 7779 int tag = rq->tag; 7780 struct ufshcd_lrb *lrbp = scsi_cmd_priv(cmd); 7781 unsigned long flags; 7782 int err = FAILED; 7783 bool outstanding; 7784 u32 reg; 7785 7786 ufshcd_hold(hba); 7787 7788 if (!hba->mcq_enabled) { 7789 reg = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL); 7790 if (!test_bit(tag, &hba->outstanding_reqs)) { 7791 /* If command is already aborted/completed, return FAILED. */ 7792 dev_err(hba->dev, 7793 "%s: cmd at tag %d already completed, outstanding=0x%lx, doorbell=0x%x\n", 7794 __func__, tag, hba->outstanding_reqs, reg); 7795 goto release; 7796 } 7797 } 7798 7799 /* Print Transfer Request of aborted task */ 7800 dev_info(hba->dev, "%s: Device abort task at tag %d\n", __func__, tag); 7801 7802 /* 7803 * Print detailed info about aborted request. 7804 * As more than one request might get aborted at the same time, 7805 * print full information only for the first aborted request in order 7806 * to reduce repeated printouts. For other aborted requests only print 7807 * basic details. 7808 */ 7809 if (ufshcd_is_scsi_cmd(cmd)) 7810 scsi_print_command(cmd); 7811 if (!hba->req_abort_count) { 7812 ufshcd_update_evt_hist(hba, UFS_EVT_ABORT, tag); 7813 ufshcd_print_evt_hist(hba); 7814 ufshcd_print_host_state(hba); 7815 ufshcd_print_pwr_info(hba); 7816 ufshcd_print_tr(hba, cmd, true); 7817 } else { 7818 ufshcd_print_tr(hba, cmd, false); 7819 } 7820 hba->req_abort_count++; 7821 7822 if (!hba->mcq_enabled && !(reg & (1 << tag))) { 7823 /* only execute this code in single doorbell mode */ 7824 dev_err(hba->dev, 7825 "%s: cmd was completed, but without a notifying intr, tag = %d", 7826 __func__, tag); 7827 __ufshcd_transfer_req_compl(hba, 1UL << tag); 7828 goto release; 7829 } 7830 7831 /* 7832 * Task abort to the device W-LUN is illegal. When this command 7833 * will fail, due to spec violation, scsi err handling next step 7834 * will be to send LU reset which, again, is a spec violation. 7835 * To avoid these unnecessary/illegal steps, first we clean up 7836 * the lrb taken by this cmd and re-set it in outstanding_reqs, 7837 * then queue the eh_work and bail. 7838 */ 7839 if (lrbp->lun == UFS_UPIU_UFS_DEVICE_WLUN) { 7840 ufshcd_update_evt_hist(hba, UFS_EVT_ABORT, lrbp->lun); 7841 7842 spin_lock_irqsave(host->host_lock, flags); 7843 hba->force_reset = true; 7844 ufshcd_schedule_eh_work(hba); 7845 spin_unlock_irqrestore(host->host_lock, flags); 7846 goto release; 7847 } 7848 7849 if (hba->mcq_enabled) { 7850 /* MCQ mode. Branch off to handle abort for mcq mode */ 7851 err = ufshcd_mcq_abort(cmd); 7852 goto release; 7853 } 7854 7855 /* Skip task abort in case previous aborts failed and report failure */ 7856 if (lrbp->req_abort_skip) { 7857 dev_err(hba->dev, "%s: skipping abort\n", __func__); 7858 ufshcd_set_req_abort_skip(hba, hba->outstanding_reqs); 7859 goto release; 7860 } 7861 7862 if (blk_mq_is_reserved_rq(rq)) 7863 err = ufshcd_clear_cmd(hba, tag); 7864 else 7865 err = ufshcd_try_to_abort_task(hba, tag); 7866 if (err) { 7867 dev_err(hba->dev, "%s: failed with err %d\n", __func__, err); 7868 ufshcd_set_req_abort_skip(hba, hba->outstanding_reqs); 7869 err = FAILED; 7870 goto release; 7871 } 7872 7873 /* 7874 * Clear the corresponding bit from outstanding_reqs since the command 7875 * has been aborted successfully. 7876 */ 7877 spin_lock_irqsave(&hba->outstanding_lock, flags); 7878 outstanding = __test_and_clear_bit(tag, &hba->outstanding_reqs); 7879 spin_unlock_irqrestore(&hba->outstanding_lock, flags); 7880 7881 if (outstanding) 7882 ufshcd_release_scsi_cmd(hba, cmd); 7883 7884 err = SUCCESS; 7885 7886 release: 7887 /* Matches the ufshcd_hold() call at the start of this function. */ 7888 ufshcd_release(hba); 7889 return err; 7890 } 7891 7892 /** 7893 * ufshcd_process_probe_result - Process the ufshcd_probe_hba() result. 7894 * @hba: UFS host controller instance. 7895 * @probe_start: time when the ufshcd_probe_hba() call started. 7896 * @ret: ufshcd_probe_hba() return value. 7897 */ 7898 static void ufshcd_process_probe_result(struct ufs_hba *hba, 7899 ktime_t probe_start, int ret) 7900 { 7901 unsigned long flags; 7902 7903 spin_lock_irqsave(hba->host->host_lock, flags); 7904 if (ret) 7905 hba->ufshcd_state = UFSHCD_STATE_ERROR; 7906 else if (hba->ufshcd_state == UFSHCD_STATE_RESET) 7907 hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL; 7908 spin_unlock_irqrestore(hba->host->host_lock, flags); 7909 7910 trace_ufshcd_init(hba, ret, 7911 ktime_to_us(ktime_sub(ktime_get(), probe_start)), 7912 hba->curr_dev_pwr_mode, hba->uic_link_state); 7913 } 7914 7915 /** 7916 * ufshcd_host_reset_and_restore - reset and restore host controller 7917 * @hba: per-adapter instance 7918 * 7919 * Note that host controller reset may issue DME_RESET to 7920 * local and remote (device) Uni-Pro stack and the attributes 7921 * are reset to default state. 7922 * 7923 * Return: zero on success, non-zero on failure. 7924 */ 7925 static int ufshcd_host_reset_and_restore(struct ufs_hba *hba) 7926 { 7927 int err; 7928 7929 /* 7930 * Stop the host controller and complete the requests 7931 * cleared by h/w 7932 */ 7933 ufshcd_hba_stop(hba); 7934 hba->silence_err_logs = true; 7935 ufshcd_complete_requests(hba, true); 7936 hba->silence_err_logs = false; 7937 7938 /* scale up clocks to max frequency before full reinitialization */ 7939 if (ufshcd_is_clkscaling_supported(hba)) 7940 ufshcd_scale_clks(hba, ULONG_MAX, true); 7941 7942 err = ufshcd_hba_enable(hba); 7943 7944 /* Establish the link again and restore the device */ 7945 if (!err) { 7946 ktime_t probe_start = ktime_get(); 7947 7948 err = ufshcd_device_init(hba, /*init_dev_params=*/false); 7949 if (!err) 7950 err = ufshcd_probe_hba(hba, false); 7951 ufshcd_process_probe_result(hba, probe_start, err); 7952 } 7953 7954 if (err) 7955 dev_err(hba->dev, "%s: Host init failed %d\n", __func__, err); 7956 ufshcd_update_evt_hist(hba, UFS_EVT_HOST_RESET, (u32)err); 7957 return err; 7958 } 7959 7960 /** 7961 * ufshcd_reset_and_restore - reset and re-initialize host/device 7962 * @hba: per-adapter instance 7963 * 7964 * Reset and recover device, host and re-establish link. This 7965 * is helpful to recover the communication in fatal error conditions. 7966 * 7967 * Return: zero on success, non-zero on failure. 7968 */ 7969 static int ufshcd_reset_and_restore(struct ufs_hba *hba) 7970 { 7971 u32 saved_err = 0; 7972 u32 saved_uic_err = 0; 7973 int err = 0; 7974 unsigned long flags; 7975 int retries = MAX_HOST_RESET_RETRIES; 7976 7977 spin_lock_irqsave(hba->host->host_lock, flags); 7978 do { 7979 /* 7980 * This is a fresh start, cache and clear saved error first, 7981 * in case new error generated during reset and restore. 7982 */ 7983 saved_err |= hba->saved_err; 7984 saved_uic_err |= hba->saved_uic_err; 7985 hba->saved_err = 0; 7986 hba->saved_uic_err = 0; 7987 hba->force_reset = false; 7988 hba->ufshcd_state = UFSHCD_STATE_RESET; 7989 spin_unlock_irqrestore(hba->host->host_lock, flags); 7990 7991 /* Reset the attached device */ 7992 ufshcd_device_reset(hba); 7993 7994 err = ufshcd_host_reset_and_restore(hba); 7995 7996 spin_lock_irqsave(hba->host->host_lock, flags); 7997 if (err) 7998 continue; 7999 /* Do not exit unless operational or dead */ 8000 if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL && 8001 hba->ufshcd_state != UFSHCD_STATE_ERROR && 8002 hba->ufshcd_state != UFSHCD_STATE_EH_SCHEDULED_NON_FATAL) 8003 err = -EAGAIN; 8004 } while (err && --retries); 8005 8006 /* 8007 * Inform scsi mid-layer that we did reset and allow to handle 8008 * Unit Attention properly. 8009 */ 8010 scsi_report_bus_reset(hba->host, 0); 8011 if (err) { 8012 hba->ufshcd_state = UFSHCD_STATE_ERROR; 8013 hba->saved_err |= saved_err; 8014 hba->saved_uic_err |= saved_uic_err; 8015 } 8016 spin_unlock_irqrestore(hba->host->host_lock, flags); 8017 8018 return err; 8019 } 8020 8021 /** 8022 * ufshcd_eh_host_reset_handler - host reset handler registered to scsi layer 8023 * @cmd: SCSI command pointer 8024 * 8025 * Return: SUCCESS or FAILED. 8026 */ 8027 static int ufshcd_eh_host_reset_handler(struct scsi_cmnd *cmd) 8028 { 8029 int err = SUCCESS; 8030 unsigned long flags; 8031 struct ufs_hba *hba; 8032 8033 hba = shost_priv(cmd->device->host); 8034 8035 /* 8036 * If runtime PM sent SSU and got a timeout, scsi_error_handler is 8037 * stuck in this function waiting for flush_work(&hba->eh_work). And 8038 * ufshcd_err_handler(eh_work) is stuck waiting for runtime PM. Do 8039 * ufshcd_link_recovery instead of eh_work to prevent deadlock. 8040 */ 8041 if (hba->pm_op_in_progress) { 8042 if (ufshcd_link_recovery(hba)) 8043 err = FAILED; 8044 8045 return err; 8046 } 8047 8048 spin_lock_irqsave(hba->host->host_lock, flags); 8049 hba->force_reset = true; 8050 ufshcd_schedule_eh_work(hba); 8051 dev_err(hba->dev, "%s: reset in progress - 1\n", __func__); 8052 spin_unlock_irqrestore(hba->host->host_lock, flags); 8053 8054 flush_work(&hba->eh_work); 8055 8056 spin_lock_irqsave(hba->host->host_lock, flags); 8057 if (hba->ufshcd_state == UFSHCD_STATE_ERROR) 8058 err = FAILED; 8059 spin_unlock_irqrestore(hba->host->host_lock, flags); 8060 8061 return err; 8062 } 8063 8064 /** 8065 * ufshcd_get_max_icc_level - calculate the ICC level 8066 * @sup_curr_uA: max. current supported by the regulator 8067 * @start_scan: row at the desc table to start scan from 8068 * @buff: power descriptor buffer 8069 * 8070 * Return: calculated max ICC level for specific regulator. 8071 */ 8072 static u32 ufshcd_get_max_icc_level(int sup_curr_uA, u32 start_scan, 8073 const char *buff) 8074 { 8075 int i; 8076 int curr_uA; 8077 u16 data; 8078 u16 unit; 8079 8080 for (i = start_scan; i >= 0; i--) { 8081 data = get_unaligned_be16(&buff[2 * i]); 8082 unit = (data & ATTR_ICC_LVL_UNIT_MASK) >> 8083 ATTR_ICC_LVL_UNIT_OFFSET; 8084 curr_uA = data & ATTR_ICC_LVL_VALUE_MASK; 8085 switch (unit) { 8086 case UFSHCD_NANO_AMP: 8087 curr_uA = curr_uA / 1000; 8088 break; 8089 case UFSHCD_MILI_AMP: 8090 curr_uA = curr_uA * 1000; 8091 break; 8092 case UFSHCD_AMP: 8093 curr_uA = curr_uA * 1000 * 1000; 8094 break; 8095 case UFSHCD_MICRO_AMP: 8096 default: 8097 break; 8098 } 8099 if (sup_curr_uA >= curr_uA) 8100 break; 8101 } 8102 if (i < 0) { 8103 i = 0; 8104 pr_err("%s: Couldn't find valid icc_level = %d", __func__, i); 8105 } 8106 8107 return (u32)i; 8108 } 8109 8110 /** 8111 * ufshcd_find_max_sup_active_icc_level - calculate the max ICC level 8112 * In case regulators are not initialized we'll return 0 8113 * @hba: per-adapter instance 8114 * @desc_buf: power descriptor buffer to extract ICC levels from. 8115 * 8116 * Return: calculated ICC level. 8117 */ 8118 static u32 ufshcd_find_max_sup_active_icc_level(struct ufs_hba *hba, 8119 const u8 *desc_buf) 8120 { 8121 u32 icc_level = 0; 8122 8123 if (!hba->vreg_info.vcc || !hba->vreg_info.vccq || 8124 !hba->vreg_info.vccq2) { 8125 /* 8126 * Using dev_dbg to avoid messages during runtime PM to avoid 8127 * never-ending cycles of messages written back to storage by 8128 * user space causing runtime resume, causing more messages and 8129 * so on. 8130 */ 8131 dev_dbg(hba->dev, 8132 "%s: Regulator capability was not set, actvIccLevel=%d", 8133 __func__, icc_level); 8134 goto out; 8135 } 8136 8137 if (hba->vreg_info.vcc->max_uA) 8138 icc_level = ufshcd_get_max_icc_level( 8139 hba->vreg_info.vcc->max_uA, 8140 POWER_DESC_MAX_ACTV_ICC_LVLS - 1, 8141 &desc_buf[PWR_DESC_ACTIVE_LVLS_VCC_0]); 8142 8143 if (hba->vreg_info.vccq->max_uA) 8144 icc_level = ufshcd_get_max_icc_level( 8145 hba->vreg_info.vccq->max_uA, 8146 icc_level, 8147 &desc_buf[PWR_DESC_ACTIVE_LVLS_VCCQ_0]); 8148 8149 if (hba->vreg_info.vccq2->max_uA) 8150 icc_level = ufshcd_get_max_icc_level( 8151 hba->vreg_info.vccq2->max_uA, 8152 icc_level, 8153 &desc_buf[PWR_DESC_ACTIVE_LVLS_VCCQ2_0]); 8154 out: 8155 return icc_level; 8156 } 8157 8158 static void ufshcd_set_active_icc_lvl(struct ufs_hba *hba) 8159 { 8160 int ret; 8161 u8 *desc_buf; 8162 u32 icc_level; 8163 8164 desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL); 8165 if (!desc_buf) 8166 return; 8167 8168 ret = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_POWER, 0, 0, 8169 desc_buf, QUERY_DESC_MAX_SIZE); 8170 if (ret) { 8171 dev_err(hba->dev, 8172 "%s: Failed reading power descriptor ret = %d", 8173 __func__, ret); 8174 goto out; 8175 } 8176 8177 icc_level = ufshcd_find_max_sup_active_icc_level(hba, desc_buf); 8178 dev_dbg(hba->dev, "%s: setting icc_level 0x%x", __func__, icc_level); 8179 8180 ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR, 8181 QUERY_ATTR_IDN_ACTIVE_ICC_LVL, 0, 0, &icc_level); 8182 8183 if (ret) 8184 dev_err(hba->dev, 8185 "%s: Failed configuring bActiveICCLevel = %d ret = %d", 8186 __func__, icc_level, ret); 8187 8188 out: 8189 kfree(desc_buf); 8190 } 8191 8192 static inline void ufshcd_blk_pm_runtime_init(struct scsi_device *sdev) 8193 { 8194 struct Scsi_Host *shost = sdev->host; 8195 8196 scsi_autopm_get_device(sdev); 8197 blk_pm_runtime_init(sdev->request_queue, &sdev->sdev_gendev); 8198 if (sdev->rpm_autosuspend) 8199 pm_runtime_set_autosuspend_delay(&sdev->sdev_gendev, 8200 shost->rpm_autosuspend_delay); 8201 scsi_autopm_put_device(sdev); 8202 } 8203 8204 /** 8205 * ufshcd_scsi_add_wlus - Adds required W-LUs 8206 * @hba: per-adapter instance 8207 * 8208 * UFS device specification requires the UFS devices to support 4 well known 8209 * logical units: 8210 * "REPORT_LUNS" (address: 01h) 8211 * "UFS Device" (address: 50h) 8212 * "RPMB" (address: 44h) 8213 * "BOOT" (address: 30h) 8214 * UFS device's power management needs to be controlled by "POWER CONDITION" 8215 * field of SSU (START STOP UNIT) command. But this "power condition" field 8216 * will take effect only when its sent to "UFS device" well known logical unit 8217 * hence we require the scsi_device instance to represent this logical unit in 8218 * order for the UFS host driver to send the SSU command for power management. 8219 * 8220 * We also require the scsi_device instance for "RPMB" (Replay Protected Memory 8221 * Block) LU so user space process can control this LU. User space may also 8222 * want to have access to BOOT LU. 8223 * 8224 * This function adds scsi device instances for each of all well known LUs 8225 * (except "REPORT LUNS" LU). 8226 * 8227 * Return: zero on success (all required W-LUs are added successfully), 8228 * non-zero error value on failure (if failed to add any of the required W-LU). 8229 */ 8230 static int ufshcd_scsi_add_wlus(struct ufs_hba *hba) 8231 { 8232 int ret = 0; 8233 struct scsi_device *sdev_boot, *sdev_rpmb; 8234 8235 hba->ufs_device_wlun = __scsi_add_device(hba->host, 0, 0, 8236 ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_UFS_DEVICE_WLUN), NULL); 8237 if (IS_ERR(hba->ufs_device_wlun)) { 8238 ret = PTR_ERR(hba->ufs_device_wlun); 8239 hba->ufs_device_wlun = NULL; 8240 goto out; 8241 } 8242 scsi_device_put(hba->ufs_device_wlun); 8243 8244 sdev_rpmb = __scsi_add_device(hba->host, 0, 0, 8245 ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_RPMB_WLUN), NULL); 8246 if (IS_ERR(sdev_rpmb)) { 8247 ret = PTR_ERR(sdev_rpmb); 8248 hba->ufs_rpmb_wlun = NULL; 8249 dev_err(hba->dev, "%s: RPMB WLUN not found\n", __func__); 8250 goto remove_ufs_device_wlun; 8251 } 8252 hba->ufs_rpmb_wlun = sdev_rpmb; 8253 ufshcd_blk_pm_runtime_init(sdev_rpmb); 8254 scsi_device_put(sdev_rpmb); 8255 8256 sdev_boot = __scsi_add_device(hba->host, 0, 0, 8257 ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_BOOT_WLUN), NULL); 8258 if (IS_ERR(sdev_boot)) { 8259 dev_err(hba->dev, "%s: BOOT WLUN not found\n", __func__); 8260 } else { 8261 ufshcd_blk_pm_runtime_init(sdev_boot); 8262 scsi_device_put(sdev_boot); 8263 } 8264 goto out; 8265 8266 remove_ufs_device_wlun: 8267 scsi_remove_device(hba->ufs_device_wlun); 8268 out: 8269 return ret; 8270 } 8271 8272 static void ufshcd_wb_probe(struct ufs_hba *hba, const u8 *desc_buf) 8273 { 8274 struct ufs_dev_info *dev_info = &hba->dev_info; 8275 u8 lun; 8276 u32 d_lu_wb_buf_alloc; 8277 u32 ext_ufs_feature; 8278 8279 if (!ufshcd_is_wb_allowed(hba)) 8280 return; 8281 8282 /* 8283 * Probe WB only for UFS-2.2 and UFS-3.1 (and later) devices or 8284 * UFS devices with quirk UFS_DEVICE_QUIRK_SUPPORT_EXTENDED_FEATURES 8285 * enabled 8286 */ 8287 if (!(dev_info->wspecversion >= 0x310 || 8288 dev_info->wspecversion == 0x220 || 8289 (hba->dev_quirks & UFS_DEVICE_QUIRK_SUPPORT_EXTENDED_FEATURES))) 8290 goto wb_disabled; 8291 8292 ext_ufs_feature = get_unaligned_be32(desc_buf + 8293 DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP); 8294 8295 if (!(ext_ufs_feature & UFS_DEV_WRITE_BOOSTER_SUP)) 8296 goto wb_disabled; 8297 8298 /* 8299 * WB may be supported but not configured while provisioning. The spec 8300 * says, in dedicated wb buffer mode, a max of 1 lun would have wb 8301 * buffer configured. 8302 */ 8303 dev_info->wb_buffer_type = desc_buf[DEVICE_DESC_PARAM_WB_TYPE]; 8304 8305 dev_info->ext_wb_sup = get_unaligned_be16(desc_buf + 8306 DEVICE_DESC_PARAM_EXT_WB_SUP); 8307 8308 dev_info->b_presrv_uspc_en = 8309 desc_buf[DEVICE_DESC_PARAM_WB_PRESRV_USRSPC_EN]; 8310 8311 if (dev_info->wb_buffer_type == WB_BUF_MODE_SHARED) { 8312 if (!get_unaligned_be32(desc_buf + 8313 DEVICE_DESC_PARAM_WB_SHARED_ALLOC_UNITS)) 8314 goto wb_disabled; 8315 } else { 8316 for (lun = 0; lun < UFS_UPIU_MAX_WB_LUN_ID; lun++) { 8317 d_lu_wb_buf_alloc = 0; 8318 ufshcd_read_unit_desc_param(hba, 8319 lun, 8320 UNIT_DESC_PARAM_WB_BUF_ALLOC_UNITS, 8321 (u8 *)&d_lu_wb_buf_alloc, 8322 sizeof(d_lu_wb_buf_alloc)); 8323 if (d_lu_wb_buf_alloc) { 8324 dev_info->wb_dedicated_lu = lun; 8325 break; 8326 } 8327 } 8328 8329 if (!d_lu_wb_buf_alloc) 8330 goto wb_disabled; 8331 } 8332 8333 if (!ufshcd_is_wb_buf_lifetime_available(hba)) 8334 goto wb_disabled; 8335 8336 return; 8337 8338 wb_disabled: 8339 hba->caps &= ~UFSHCD_CAP_WB_EN; 8340 } 8341 8342 static void ufshcd_temp_notif_probe(struct ufs_hba *hba, const u8 *desc_buf) 8343 { 8344 struct ufs_dev_info *dev_info = &hba->dev_info; 8345 u32 ext_ufs_feature; 8346 u8 mask = 0; 8347 8348 if (!(hba->caps & UFSHCD_CAP_TEMP_NOTIF) || dev_info->wspecversion < 0x300) 8349 return; 8350 8351 ext_ufs_feature = get_unaligned_be32(desc_buf + DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP); 8352 8353 if (ext_ufs_feature & UFS_DEV_LOW_TEMP_NOTIF) 8354 mask |= MASK_EE_TOO_LOW_TEMP; 8355 8356 if (ext_ufs_feature & UFS_DEV_HIGH_TEMP_NOTIF) 8357 mask |= MASK_EE_TOO_HIGH_TEMP; 8358 8359 if (mask) { 8360 ufshcd_enable_ee(hba, mask); 8361 ufs_hwmon_probe(hba, mask); 8362 } 8363 } 8364 8365 static void ufshcd_device_lvl_exception_probe(struct ufs_hba *hba, u8 *desc_buf) 8366 { 8367 u32 ext_ufs_feature; 8368 8369 if (hba->dev_info.wspecversion < 0x410) 8370 return; 8371 8372 ext_ufs_feature = get_unaligned_be32(desc_buf + 8373 DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP); 8374 if (!(ext_ufs_feature & UFS_DEV_LVL_EXCEPTION_SUP)) 8375 return; 8376 8377 atomic_set(&hba->dev_lvl_exception_count, 0); 8378 ufshcd_enable_ee(hba, MASK_EE_DEV_LVL_EXCEPTION); 8379 } 8380 8381 static void ufshcd_set_rtt(struct ufs_hba *hba) 8382 { 8383 struct ufs_dev_info *dev_info = &hba->dev_info; 8384 u32 rtt = 0; 8385 u32 dev_rtt = 0; 8386 int host_rtt_cap = hba->vops && hba->vops->max_num_rtt ? 8387 hba->vops->max_num_rtt : hba->nortt; 8388 8389 /* RTT override makes sense only for UFS-4.0 and above */ 8390 if (dev_info->wspecversion < 0x400) 8391 return; 8392 8393 if (ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR, 8394 QUERY_ATTR_IDN_MAX_NUM_OF_RTT, 0, 0, &dev_rtt)) { 8395 dev_err(hba->dev, "failed reading bMaxNumOfRTT\n"); 8396 return; 8397 } 8398 8399 /* do not override if it was already written */ 8400 if (dev_rtt != DEFAULT_MAX_NUM_RTT) 8401 return; 8402 8403 rtt = min_t(int, dev_info->rtt_cap, host_rtt_cap); 8404 8405 if (rtt == dev_rtt) 8406 return; 8407 8408 if (ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR, 8409 QUERY_ATTR_IDN_MAX_NUM_OF_RTT, 0, 0, &rtt)) 8410 dev_err(hba->dev, "failed writing bMaxNumOfRTT\n"); 8411 } 8412 8413 void ufshcd_fixup_dev_quirks(struct ufs_hba *hba, 8414 const struct ufs_dev_quirk *fixups) 8415 { 8416 const struct ufs_dev_quirk *f; 8417 struct ufs_dev_info *dev_info = &hba->dev_info; 8418 8419 if (!fixups) 8420 return; 8421 8422 for (f = fixups; f->quirk; f++) { 8423 if ((f->wmanufacturerid == dev_info->wmanufacturerid || 8424 f->wmanufacturerid == UFS_ANY_VENDOR) && 8425 ((dev_info->model && 8426 STR_PRFX_EQUAL(f->model, dev_info->model)) || 8427 !strcmp(f->model, UFS_ANY_MODEL))) 8428 hba->dev_quirks |= f->quirk; 8429 } 8430 } 8431 EXPORT_SYMBOL_GPL(ufshcd_fixup_dev_quirks); 8432 8433 static void ufs_fixup_device_setup(struct ufs_hba *hba) 8434 { 8435 /* fix by general quirk table */ 8436 ufshcd_fixup_dev_quirks(hba, ufs_fixups); 8437 8438 /* allow vendors to fix quirks */ 8439 ufshcd_vops_fixup_dev_quirks(hba); 8440 } 8441 8442 static void ufshcd_update_rtc(struct ufs_hba *hba) 8443 { 8444 struct timespec64 ts64; 8445 int err; 8446 u32 val; 8447 8448 ktime_get_real_ts64(&ts64); 8449 8450 if (ts64.tv_sec < hba->dev_info.rtc_time_baseline) { 8451 dev_warn_once(hba->dev, "%s: Current time precedes previous setting!\n", __func__); 8452 return; 8453 } 8454 8455 /* 8456 * The Absolute RTC mode has a 136-year limit, spanning from 2010 to 2146. If a time beyond 8457 * 2146 is required, it is recommended to choose the relative RTC mode. 8458 */ 8459 val = ts64.tv_sec - hba->dev_info.rtc_time_baseline; 8460 8461 /* Skip update RTC if RPM state is not RPM_ACTIVE */ 8462 if (ufshcd_rpm_get_if_active(hba) <= 0) 8463 return; 8464 8465 err = ufshcd_query_attr(hba, UPIU_QUERY_OPCODE_WRITE_ATTR, QUERY_ATTR_IDN_SECONDS_PASSED, 8466 0, 0, &val); 8467 ufshcd_rpm_put(hba); 8468 8469 if (err) 8470 dev_err(hba->dev, "%s: Failed to update rtc %d\n", __func__, err); 8471 else if (hba->dev_info.rtc_type == UFS_RTC_RELATIVE) 8472 hba->dev_info.rtc_time_baseline = ts64.tv_sec; 8473 } 8474 8475 static void ufshcd_rtc_work(struct work_struct *work) 8476 { 8477 struct ufs_hba *hba; 8478 8479 hba = container_of(to_delayed_work(work), struct ufs_hba, ufs_rtc_update_work); 8480 8481 /* Update RTC only when there are no requests in progress and UFSHCI is operational */ 8482 if (!ufshcd_is_ufs_dev_busy(hba) && 8483 hba->ufshcd_state == UFSHCD_STATE_OPERATIONAL && 8484 !hba->clk_gating.active_reqs) 8485 ufshcd_update_rtc(hba); 8486 8487 if (ufshcd_is_ufs_dev_active(hba) && hba->dev_info.rtc_update_period) 8488 schedule_delayed_work(&hba->ufs_rtc_update_work, 8489 msecs_to_jiffies(hba->dev_info.rtc_update_period)); 8490 } 8491 8492 static void ufs_init_rtc(struct ufs_hba *hba, u8 *desc_buf) 8493 { 8494 u16 periodic_rtc_update = get_unaligned_be16(&desc_buf[DEVICE_DESC_PARAM_FRQ_RTC]); 8495 struct ufs_dev_info *dev_info = &hba->dev_info; 8496 8497 if (periodic_rtc_update & UFS_RTC_TIME_BASELINE) { 8498 dev_info->rtc_type = UFS_RTC_ABSOLUTE; 8499 8500 /* 8501 * The concept of measuring time in Linux as the number of seconds elapsed since 8502 * 00:00:00 UTC on January 1, 1970, and UFS ABS RTC is elapsed from January 1st 8503 * 2010 00:00, here we need to adjust ABS baseline. 8504 */ 8505 dev_info->rtc_time_baseline = mktime64(2010, 1, 1, 0, 0, 0) - 8506 mktime64(1970, 1, 1, 0, 0, 0); 8507 } else { 8508 dev_info->rtc_type = UFS_RTC_RELATIVE; 8509 dev_info->rtc_time_baseline = 0; 8510 } 8511 8512 /* 8513 * We ignore TIME_PERIOD defined in wPeriodicRTCUpdate because Spec does not clearly state 8514 * how to calculate the specific update period for each time unit. And we disable periodic 8515 * RTC update work, let user configure by sysfs node according to specific circumstance. 8516 */ 8517 dev_info->rtc_update_period = 0; 8518 } 8519 8520 /** 8521 * ufshcd_create_device_id - Generate unique device identifier string 8522 * @hba: per-adapter instance 8523 * @desc_buf: device descriptor buffer 8524 * 8525 * Creates a unique device ID string combining manufacturer ID, spec version, 8526 * model name, serial number (as hex), device version, and manufacture date. 8527 * 8528 * Returns: Allocated device ID string on success, NULL on failure 8529 */ 8530 static char *ufshcd_create_device_id(struct ufs_hba *hba, u8 *desc_buf) 8531 { 8532 struct ufs_dev_info *dev_info = &hba->dev_info; 8533 u16 manufacture_date; 8534 u16 device_version; 8535 u8 *serial_number; 8536 char *serial_hex; 8537 char *device_id; 8538 u8 serial_index; 8539 int serial_len; 8540 int ret; 8541 8542 serial_index = desc_buf[DEVICE_DESC_PARAM_SN]; 8543 8544 ret = ufshcd_read_string_desc(hba, serial_index, &serial_number, SD_RAW); 8545 if (ret < 0) { 8546 dev_err(hba->dev, "Failed reading Serial Number. err = %d\n", ret); 8547 return NULL; 8548 } 8549 8550 device_version = get_unaligned_be16(&desc_buf[DEVICE_DESC_PARAM_DEV_VER]); 8551 manufacture_date = get_unaligned_be16(&desc_buf[DEVICE_DESC_PARAM_MANF_DATE]); 8552 8553 serial_len = ret; 8554 /* Allocate buffer for hex string: 2 chars per byte + null terminator */ 8555 serial_hex = kzalloc(serial_len * 2 + 1, GFP_KERNEL); 8556 if (!serial_hex) { 8557 kfree(serial_number); 8558 return NULL; 8559 } 8560 8561 bin2hex(serial_hex, serial_number, serial_len); 8562 8563 /* 8564 * Device ID format is ABI with secure world - do not change without firmware 8565 * coordination. 8566 */ 8567 device_id = kasprintf(GFP_KERNEL, "%04X-%04X-%s-%s-%04X-%04X", 8568 dev_info->wmanufacturerid, dev_info->wspecversion, 8569 dev_info->model, serial_hex, device_version, 8570 manufacture_date); 8571 8572 kfree(serial_hex); 8573 kfree(serial_number); 8574 8575 if (!device_id) 8576 dev_warn(hba->dev, "Failed to allocate unique device ID\n"); 8577 8578 return device_id; 8579 } 8580 8581 static int ufs_get_device_desc(struct ufs_hba *hba) 8582 { 8583 struct ufs_dev_info *dev_info = &hba->dev_info; 8584 struct Scsi_Host *shost = hba->host; 8585 int err; 8586 u8 model_index; 8587 u8 *desc_buf; 8588 8589 desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL); 8590 if (!desc_buf) { 8591 err = -ENOMEM; 8592 goto out; 8593 } 8594 8595 err = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_DEVICE, 0, 0, desc_buf, 8596 QUERY_DESC_MAX_SIZE); 8597 if (err) { 8598 dev_err(hba->dev, "%s: Failed reading Device Desc. err = %d\n", 8599 __func__, err); 8600 goto out; 8601 } 8602 8603 /* 8604 * getting vendor (manufacturerID) and Bank Index in big endian 8605 * format 8606 */ 8607 dev_info->wmanufacturerid = desc_buf[DEVICE_DESC_PARAM_MANF_ID] << 8 | 8608 desc_buf[DEVICE_DESC_PARAM_MANF_ID + 1]; 8609 8610 /* getting Specification Version in big endian format */ 8611 dev_info->wspecversion = desc_buf[DEVICE_DESC_PARAM_SPEC_VER] << 8 | 8612 desc_buf[DEVICE_DESC_PARAM_SPEC_VER + 1]; 8613 dev_info->bqueuedepth = desc_buf[DEVICE_DESC_PARAM_Q_DPTH]; 8614 8615 /* 8616 * According to the UFS standard, the UFS device queue depth 8617 * (bQueueDepth) must be in the range 1..255 if the shared queueing 8618 * architecture is supported. bQueueDepth is zero if the shared queueing 8619 * architecture is not supported. 8620 */ 8621 if (dev_info->bqueuedepth) 8622 shost->cmd_per_lun = min(hba->nutrs, dev_info->bqueuedepth) - 8623 UFSHCD_NUM_RESERVED; 8624 else 8625 shost->cmd_per_lun = shost->can_queue; 8626 8627 dev_info->rtt_cap = desc_buf[DEVICE_DESC_PARAM_RTT_CAP]; 8628 8629 dev_info->hid_sup = get_unaligned_be32(desc_buf + 8630 DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP) & 8631 UFS_DEV_HID_SUPPORT; 8632 8633 model_index = desc_buf[DEVICE_DESC_PARAM_PRDCT_NAME]; 8634 8635 err = ufshcd_read_string_desc(hba, model_index, 8636 &dev_info->model, SD_ASCII_STD); 8637 if (err < 0) { 8638 dev_err(hba->dev, "%s: Failed reading Product Name. err = %d\n", 8639 __func__, err); 8640 goto out; 8641 } 8642 8643 /* Generate unique device ID */ 8644 dev_info->device_id = ufshcd_create_device_id(hba, desc_buf); 8645 8646 hba->luns_avail = desc_buf[DEVICE_DESC_PARAM_NUM_LU] + 8647 desc_buf[DEVICE_DESC_PARAM_NUM_WLU]; 8648 8649 ufs_fixup_device_setup(hba); 8650 8651 ufshcd_wb_probe(hba, desc_buf); 8652 8653 ufshcd_temp_notif_probe(hba, desc_buf); 8654 8655 if (dev_info->wspecversion >= 0x410) { 8656 hba->critical_health_count = 0; 8657 ufshcd_enable_ee(hba, MASK_EE_HEALTH_CRITICAL); 8658 } 8659 8660 ufs_init_rtc(hba, desc_buf); 8661 8662 ufshcd_device_lvl_exception_probe(hba, desc_buf); 8663 8664 /* 8665 * ufshcd_read_string_desc returns size of the string 8666 * reset the error value 8667 */ 8668 err = 0; 8669 8670 out: 8671 kfree(desc_buf); 8672 return err; 8673 } 8674 8675 static void ufs_put_device_desc(struct ufs_hba *hba) 8676 { 8677 struct ufs_dev_info *dev_info = &hba->dev_info; 8678 8679 kfree(dev_info->model); 8680 dev_info->model = NULL; 8681 kfree(dev_info->device_id); 8682 dev_info->device_id = NULL; 8683 } 8684 8685 /** 8686 * ufshcd_quirk_tune_host_pa_tactivate - Ensures that host PA_TACTIVATE is 8687 * less than device PA_TACTIVATE time. 8688 * @hba: per-adapter instance 8689 * 8690 * Some UFS devices require host PA_TACTIVATE to be lower than device 8691 * PA_TACTIVATE, we need to enable UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE quirk 8692 * for such devices. 8693 * 8694 * Return: zero on success, non-zero error value on failure. 8695 */ 8696 static int ufshcd_quirk_tune_host_pa_tactivate(struct ufs_hba *hba) 8697 { 8698 int ret = 0; 8699 u32 granularity, peer_granularity; 8700 u32 pa_tactivate, peer_pa_tactivate; 8701 u32 pa_tactivate_us, peer_pa_tactivate_us; 8702 static const u8 gran_to_us_table[] = {1, 4, 8, 16, 32, 100}; 8703 8704 ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_GRANULARITY), 8705 &granularity); 8706 if (ret) 8707 goto out; 8708 8709 ret = ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_GRANULARITY), 8710 &peer_granularity); 8711 if (ret) 8712 goto out; 8713 8714 if ((granularity < PA_GRANULARITY_MIN_VAL) || 8715 (granularity > PA_GRANULARITY_MAX_VAL)) { 8716 dev_err(hba->dev, "%s: invalid host PA_GRANULARITY %d", 8717 __func__, granularity); 8718 return -EINVAL; 8719 } 8720 8721 if ((peer_granularity < PA_GRANULARITY_MIN_VAL) || 8722 (peer_granularity > PA_GRANULARITY_MAX_VAL)) { 8723 dev_err(hba->dev, "%s: invalid device PA_GRANULARITY %d", 8724 __func__, peer_granularity); 8725 return -EINVAL; 8726 } 8727 8728 ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_TACTIVATE), &pa_tactivate); 8729 if (ret) 8730 goto out; 8731 8732 ret = ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_TACTIVATE), 8733 &peer_pa_tactivate); 8734 if (ret) 8735 goto out; 8736 8737 pa_tactivate_us = pa_tactivate * gran_to_us_table[granularity - 1]; 8738 peer_pa_tactivate_us = peer_pa_tactivate * 8739 gran_to_us_table[peer_granularity - 1]; 8740 8741 if (pa_tactivate_us >= peer_pa_tactivate_us) { 8742 u32 new_peer_pa_tactivate; 8743 8744 new_peer_pa_tactivate = pa_tactivate_us / 8745 gran_to_us_table[peer_granularity - 1]; 8746 new_peer_pa_tactivate++; 8747 ret = ufshcd_dme_peer_set(hba, UIC_ARG_MIB(PA_TACTIVATE), 8748 new_peer_pa_tactivate); 8749 } 8750 8751 out: 8752 return ret; 8753 } 8754 8755 /** 8756 * ufshcd_quirk_override_pa_h8time - Ensures proper adjustment of PA_HIBERN8TIME. 8757 * @hba: per-adapter instance 8758 * 8759 * Some UFS devices require specific adjustments to the PA_HIBERN8TIME parameter 8760 * to ensure proper hibernation timing. This function retrieves the current 8761 * PA_HIBERN8TIME value and increments it by 100us. 8762 */ 8763 static void ufshcd_quirk_override_pa_h8time(struct ufs_hba *hba) 8764 { 8765 u32 pa_h8time; 8766 int ret; 8767 8768 ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_HIBERN8TIME), &pa_h8time); 8769 if (ret) { 8770 dev_err(hba->dev, "Failed to get PA_HIBERN8TIME: %d\n", ret); 8771 return; 8772 } 8773 8774 /* Increment by 1 to increase hibernation time by 100 µs */ 8775 ret = ufshcd_dme_set(hba, UIC_ARG_MIB(PA_HIBERN8TIME), pa_h8time + 1); 8776 if (ret) 8777 dev_err(hba->dev, "Failed updating PA_HIBERN8TIME: %d\n", ret); 8778 } 8779 8780 static void ufshcd_tune_unipro_params(struct ufs_hba *hba) 8781 { 8782 ufshcd_vops_apply_dev_quirks(hba); 8783 8784 if (hba->dev_quirks & UFS_DEVICE_QUIRK_PA_TACTIVATE) 8785 /* set 1ms timeout for PA_TACTIVATE */ 8786 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TACTIVATE), 10); 8787 8788 if (hba->dev_quirks & UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE) 8789 ufshcd_quirk_tune_host_pa_tactivate(hba); 8790 8791 if (hba->dev_quirks & UFS_DEVICE_QUIRK_PA_HIBER8TIME) 8792 ufshcd_quirk_override_pa_h8time(hba); 8793 } 8794 8795 static void ufshcd_clear_dbg_ufs_stats(struct ufs_hba *hba) 8796 { 8797 hba->ufs_stats.hibern8_exit_cnt = 0; 8798 hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0); 8799 hba->req_abort_count = 0; 8800 } 8801 8802 static int ufshcd_device_geo_params_init(struct ufs_hba *hba) 8803 { 8804 int err; 8805 u8 *desc_buf; 8806 8807 desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL); 8808 if (!desc_buf) { 8809 err = -ENOMEM; 8810 goto out; 8811 } 8812 8813 err = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_GEOMETRY, 0, 0, 8814 desc_buf, QUERY_DESC_MAX_SIZE); 8815 if (err) { 8816 dev_err(hba->dev, "%s: Failed reading Geometry Desc. err = %d\n", 8817 __func__, err); 8818 goto out; 8819 } 8820 8821 if (desc_buf[GEOMETRY_DESC_PARAM_MAX_NUM_LUN] == 1) 8822 hba->dev_info.max_lu_supported = 32; 8823 else if (desc_buf[GEOMETRY_DESC_PARAM_MAX_NUM_LUN] == 0) 8824 hba->dev_info.max_lu_supported = 8; 8825 8826 hba->dev_info.rpmb_io_size = desc_buf[GEOMETRY_DESC_PARAM_RPMB_RW_SIZE]; 8827 8828 out: 8829 kfree(desc_buf); 8830 return err; 8831 } 8832 8833 struct ufs_ref_clk { 8834 unsigned long freq_hz; 8835 enum ufs_ref_clk_freq val; 8836 }; 8837 8838 static const struct ufs_ref_clk ufs_ref_clk_freqs[] = { 8839 {19200000, REF_CLK_FREQ_19_2_MHZ}, 8840 {26000000, REF_CLK_FREQ_26_MHZ}, 8841 {38400000, REF_CLK_FREQ_38_4_MHZ}, 8842 {52000000, REF_CLK_FREQ_52_MHZ}, 8843 {0, REF_CLK_FREQ_INVAL}, 8844 }; 8845 8846 static enum ufs_ref_clk_freq 8847 ufs_get_bref_clk_from_hz(unsigned long freq) 8848 { 8849 int i; 8850 8851 for (i = 0; ufs_ref_clk_freqs[i].freq_hz; i++) 8852 if (ufs_ref_clk_freqs[i].freq_hz == freq) 8853 return ufs_ref_clk_freqs[i].val; 8854 8855 return REF_CLK_FREQ_INVAL; 8856 } 8857 8858 void ufshcd_parse_dev_ref_clk_freq(struct ufs_hba *hba, struct clk *refclk) 8859 { 8860 unsigned long freq; 8861 8862 freq = clk_get_rate(refclk); 8863 8864 hba->dev_ref_clk_freq = 8865 ufs_get_bref_clk_from_hz(freq); 8866 8867 if (hba->dev_ref_clk_freq == REF_CLK_FREQ_INVAL) 8868 dev_err(hba->dev, 8869 "invalid ref_clk setting = %ld\n", freq); 8870 } 8871 8872 static int ufshcd_set_dev_ref_clk(struct ufs_hba *hba) 8873 { 8874 int err; 8875 u32 ref_clk; 8876 u32 freq = hba->dev_ref_clk_freq; 8877 8878 err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR, 8879 QUERY_ATTR_IDN_REF_CLK_FREQ, 0, 0, &ref_clk); 8880 8881 if (err) { 8882 dev_err(hba->dev, "failed reading bRefClkFreq. err = %d\n", 8883 err); 8884 goto out; 8885 } 8886 8887 if (ref_clk == freq) 8888 goto out; /* nothing to update */ 8889 8890 err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR, 8891 QUERY_ATTR_IDN_REF_CLK_FREQ, 0, 0, &freq); 8892 8893 if (err) { 8894 dev_err(hba->dev, "bRefClkFreq setting to %lu Hz failed\n", 8895 ufs_ref_clk_freqs[freq].freq_hz); 8896 goto out; 8897 } 8898 8899 dev_dbg(hba->dev, "bRefClkFreq setting to %lu Hz succeeded\n", 8900 ufs_ref_clk_freqs[freq].freq_hz); 8901 8902 out: 8903 return err; 8904 } 8905 8906 static int ufshcd_device_params_init(struct ufs_hba *hba) 8907 { 8908 bool flag; 8909 int ret; 8910 8911 /* Init UFS geometry descriptor related parameters */ 8912 ret = ufshcd_device_geo_params_init(hba); 8913 if (ret) 8914 goto out; 8915 8916 /* Check and apply UFS device quirks */ 8917 ret = ufs_get_device_desc(hba); 8918 if (ret) { 8919 dev_err(hba->dev, "%s: Failed getting device info. err = %d\n", 8920 __func__, ret); 8921 goto out; 8922 } 8923 8924 ufshcd_set_rtt(hba); 8925 8926 ufshcd_get_ref_clk_gating_wait(hba); 8927 8928 if (!ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_READ_FLAG, 8929 QUERY_FLAG_IDN_PWR_ON_WPE, 0, &flag)) 8930 hba->dev_info.f_power_on_wp_en = flag; 8931 8932 /* Probe maximum power mode co-supported by both UFS host and device */ 8933 if (ufshcd_get_max_pwr_mode(hba)) 8934 dev_err(hba->dev, 8935 "%s: Failed getting max supported power mode\n", 8936 __func__); 8937 out: 8938 return ret; 8939 } 8940 8941 static void ufshcd_set_timestamp_attr(struct ufs_hba *hba) 8942 { 8943 int err; 8944 struct ufs_query_req *request = NULL; 8945 struct ufs_query_res *response = NULL; 8946 struct ufs_dev_info *dev_info = &hba->dev_info; 8947 struct utp_upiu_query_v4_0 *upiu_data; 8948 8949 if (dev_info->wspecversion < 0x400 || 8950 hba->dev_quirks & UFS_DEVICE_QUIRK_NO_TIMESTAMP_SUPPORT) 8951 return; 8952 8953 ufshcd_dev_man_lock(hba); 8954 8955 ufshcd_init_query(hba, &request, &response, 8956 UPIU_QUERY_OPCODE_WRITE_ATTR, 8957 QUERY_ATTR_IDN_TIMESTAMP, 0, 0); 8958 8959 request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST; 8960 8961 upiu_data = (struct utp_upiu_query_v4_0 *)&request->upiu_req; 8962 8963 put_unaligned_be64(ktime_get_real_ns(), &upiu_data->osf3); 8964 8965 err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, dev_cmd_timeout); 8966 8967 if (err) 8968 dev_err(hba->dev, "%s: failed to set timestamp %d\n", 8969 __func__, err); 8970 8971 ufshcd_dev_man_unlock(hba); 8972 } 8973 8974 /** 8975 * ufshcd_add_lus - probe and add UFS logical units 8976 * @hba: per-adapter instance 8977 * 8978 * Return: 0 upon success; < 0 upon failure. 8979 */ 8980 static int ufshcd_add_lus(struct ufs_hba *hba) 8981 { 8982 int ret; 8983 8984 /* Add required well known logical units to scsi mid layer */ 8985 ret = ufshcd_scsi_add_wlus(hba); 8986 if (ret) 8987 goto out; 8988 8989 /* Initialize devfreq after UFS device is detected */ 8990 if (ufshcd_is_clkscaling_supported(hba)) { 8991 memcpy(&hba->clk_scaling.saved_pwr_info, 8992 &hba->pwr_info, 8993 sizeof(struct ufs_pa_layer_attr)); 8994 hba->clk_scaling.is_allowed = true; 8995 8996 ret = ufshcd_devfreq_init(hba); 8997 if (ret) 8998 goto out; 8999 9000 hba->clk_scaling.is_enabled = true; 9001 ufshcd_init_clk_scaling_sysfs(hba); 9002 } 9003 9004 /* 9005 * The RTC update code accesses the hba->ufs_device_wlun->sdev_gendev 9006 * pointer and hence must only be started after the WLUN pointer has 9007 * been initialized by ufshcd_scsi_add_wlus(). 9008 */ 9009 schedule_delayed_work(&hba->ufs_rtc_update_work, 9010 msecs_to_jiffies(UFS_RTC_UPDATE_INTERVAL_MS)); 9011 9012 ufs_bsg_probe(hba); 9013 scsi_scan_host(hba->host); 9014 ufs_rpmb_probe(hba); 9015 9016 out: 9017 return ret; 9018 } 9019 9020 /* SDB - Single Doorbell */ 9021 static void ufshcd_release_sdb_queue(struct ufs_hba *hba, int nutrs) 9022 { 9023 size_t ucdl_size, utrdl_size; 9024 9025 ucdl_size = ufshcd_get_ucd_size(hba) * nutrs; 9026 dmam_free_coherent(hba->dev, ucdl_size, hba->ucdl_base_addr, 9027 hba->ucdl_dma_addr); 9028 9029 utrdl_size = sizeof(struct utp_transfer_req_desc) * nutrs; 9030 dmam_free_coherent(hba->dev, utrdl_size, hba->utrdl_base_addr, 9031 hba->utrdl_dma_addr); 9032 } 9033 9034 static int ufshcd_alloc_mcq(struct ufs_hba *hba) 9035 { 9036 int ret; 9037 int old_nutrs = hba->nutrs; 9038 9039 ret = ufshcd_get_hba_mac(hba); 9040 if (ret < 0) 9041 return ret; 9042 9043 hba->nutrs = ret; 9044 ret = ufshcd_mcq_init(hba); 9045 if (ret) 9046 goto err; 9047 9048 /* 9049 * Previously allocated memory for nutrs may not be enough in MCQ mode. 9050 * Number of supported tags in MCQ mode may be larger than SDB mode. 9051 */ 9052 if (hba->nutrs != old_nutrs) { 9053 ufshcd_release_sdb_queue(hba, old_nutrs); 9054 ret = ufshcd_memory_alloc(hba); 9055 if (ret) 9056 goto err; 9057 ufshcd_host_memory_configure(hba); 9058 } 9059 9060 ret = ufshcd_mcq_memory_alloc(hba); 9061 if (ret) 9062 goto err; 9063 9064 hba->host->can_queue = hba->nutrs - UFSHCD_NUM_RESERVED; 9065 9066 return 0; 9067 err: 9068 hba->nutrs = old_nutrs; 9069 return ret; 9070 } 9071 9072 static void ufshcd_config_mcq(struct ufs_hba *hba) 9073 { 9074 int ret; 9075 9076 ret = ufshcd_mcq_vops_config_esi(hba); 9077 hba->mcq_esi_enabled = !ret; 9078 dev_info(hba->dev, "ESI %sconfigured\n", ret ? "is not " : ""); 9079 9080 ufshcd_mcq_make_queues_operational(hba); 9081 ufshcd_mcq_config_mac(hba, hba->nutrs); 9082 9083 dev_info(hba->dev, "MCQ configured, nr_queues=%d, io_queues=%d, read_queue=%d, poll_queues=%d, queue_depth=%d\n", 9084 hba->nr_hw_queues, hba->nr_queues[HCTX_TYPE_DEFAULT], 9085 hba->nr_queues[HCTX_TYPE_READ], hba->nr_queues[HCTX_TYPE_POLL], 9086 hba->nutrs); 9087 } 9088 9089 static int ufshcd_post_device_init(struct ufs_hba *hba) 9090 { 9091 int ret; 9092 9093 ufshcd_tune_unipro_params(hba); 9094 9095 /* UFS device is also active now */ 9096 ufshcd_set_ufs_dev_active(hba); 9097 ufshcd_force_reset_auto_bkops(hba); 9098 9099 ufshcd_set_timestamp_attr(hba); 9100 9101 if (!hba->max_pwr_info.is_valid) 9102 return 0; 9103 9104 /* 9105 * Set the right value to bRefClkFreq before attempting to 9106 * switch to HS gears. 9107 */ 9108 if (hba->dev_ref_clk_freq != REF_CLK_FREQ_INVAL) 9109 ufshcd_set_dev_ref_clk(hba); 9110 /* Gear up to HS gear. */ 9111 ret = ufshcd_config_pwr_mode(hba, &hba->max_pwr_info.info); 9112 if (ret) { 9113 dev_err(hba->dev, "%s: Failed setting power mode, err = %d\n", 9114 __func__, ret); 9115 return ret; 9116 } 9117 9118 return 0; 9119 } 9120 9121 static int ufshcd_device_init(struct ufs_hba *hba, bool init_dev_params) 9122 { 9123 int ret; 9124 9125 WARN_ON_ONCE(!hba->scsi_host_added); 9126 9127 hba->ufshcd_state = UFSHCD_STATE_RESET; 9128 9129 ret = ufshcd_link_startup(hba); 9130 if (ret) 9131 return ret; 9132 9133 if (hba->quirks & UFSHCD_QUIRK_SKIP_PH_CONFIGURATION) 9134 return ret; 9135 9136 /* Debug counters initialization */ 9137 ufshcd_clear_dbg_ufs_stats(hba); 9138 9139 /* UniPro link is active now */ 9140 ufshcd_set_link_active(hba); 9141 9142 /* Reconfigure MCQ upon reset */ 9143 if (hba->mcq_enabled && !init_dev_params) { 9144 ufshcd_config_mcq(hba); 9145 ufshcd_mcq_enable(hba); 9146 } 9147 9148 /* Verify device initialization by sending NOP OUT UPIU */ 9149 ret = ufshcd_verify_dev_init(hba); 9150 if (ret) 9151 return ret; 9152 9153 /* Initiate UFS initialization, and waiting until completion */ 9154 ret = ufshcd_complete_dev_init(hba); 9155 if (ret) 9156 return ret; 9157 9158 /* 9159 * Initialize UFS device parameters used by driver, these 9160 * parameters are associated with UFS descriptors. 9161 */ 9162 if (init_dev_params) { 9163 ret = ufshcd_device_params_init(hba); 9164 if (ret) 9165 return ret; 9166 if (is_mcq_supported(hba) && 9167 hba->quirks & UFSHCD_QUIRK_REINIT_AFTER_MAX_GEAR_SWITCH) { 9168 ufshcd_config_mcq(hba); 9169 ufshcd_mcq_enable(hba); 9170 } 9171 } 9172 9173 return ufshcd_post_device_init(hba); 9174 } 9175 9176 /** 9177 * ufshcd_probe_hba - probe hba to detect device and initialize it 9178 * @hba: per-adapter instance 9179 * @init_dev_params: whether or not to call ufshcd_device_params_init(). 9180 * 9181 * Execute link-startup and verify device initialization 9182 * 9183 * Return: 0 upon success; < 0 upon failure. 9184 */ 9185 static int ufshcd_probe_hba(struct ufs_hba *hba, bool init_dev_params) 9186 { 9187 int ret; 9188 9189 if (!hba->pm_op_in_progress && 9190 (hba->quirks & UFSHCD_QUIRK_REINIT_AFTER_MAX_GEAR_SWITCH)) { 9191 /* Reset the device and controller before doing reinit */ 9192 ufshcd_device_reset(hba); 9193 ufs_put_device_desc(hba); 9194 ufshcd_hba_stop(hba); 9195 ret = ufshcd_hba_enable(hba); 9196 if (ret) { 9197 dev_err(hba->dev, "Host controller enable failed\n"); 9198 ufshcd_print_evt_hist(hba); 9199 ufshcd_print_host_state(hba); 9200 return ret; 9201 } 9202 9203 /* Reinit the device */ 9204 ret = ufshcd_device_init(hba, init_dev_params); 9205 if (ret) 9206 return ret; 9207 } 9208 9209 ufshcd_print_pwr_info(hba); 9210 9211 /* 9212 * bActiveICCLevel is volatile for UFS device (as per latest v2.1 spec) 9213 * and for removable UFS card as well, hence always set the parameter. 9214 * Note: Error handler may issue the device reset hence resetting 9215 * bActiveICCLevel as well so it is always safe to set this here. 9216 */ 9217 ufshcd_set_active_icc_lvl(hba); 9218 9219 /* Enable UFS Write Booster if supported */ 9220 ufshcd_configure_wb(hba); 9221 9222 if (hba->ee_usr_mask) 9223 ufshcd_write_ee_control(hba); 9224 ufshcd_configure_auto_hibern8(hba); 9225 9226 return 0; 9227 } 9228 9229 /** 9230 * ufshcd_async_scan - asynchronous execution for probing hba 9231 * @data: data pointer to pass to this function 9232 * @cookie: cookie data 9233 */ 9234 static void ufshcd_async_scan(void *data, async_cookie_t cookie) 9235 { 9236 struct ufs_hba *hba = (struct ufs_hba *)data; 9237 ktime_t probe_start; 9238 int ret; 9239 9240 down(&hba->host_sem); 9241 /* Initialize hba, detect and initialize UFS device */ 9242 probe_start = ktime_get(); 9243 ret = ufshcd_probe_hba(hba, true); 9244 ufshcd_process_probe_result(hba, probe_start, ret); 9245 up(&hba->host_sem); 9246 if (ret) 9247 goto out; 9248 9249 /* Probe and add UFS logical units */ 9250 ret = ufshcd_add_lus(hba); 9251 9252 out: 9253 pm_runtime_put_sync(hba->dev); 9254 9255 if (ret) 9256 dev_err(hba->dev, "%s failed: %d\n", __func__, ret); 9257 } 9258 9259 static enum scsi_timeout_action ufshcd_eh_timed_out(struct scsi_cmnd *scmd) 9260 { 9261 struct ufs_hba *hba = shost_priv(scmd->device->host); 9262 9263 if (!hba->system_suspending) { 9264 /* Activate the error handler in the SCSI core. */ 9265 return SCSI_EH_NOT_HANDLED; 9266 } 9267 9268 /* 9269 * If we get here we know that no TMFs are outstanding and also that 9270 * the only pending command is a START STOP UNIT command. Handle the 9271 * timeout of that command directly to prevent a deadlock between 9272 * ufshcd_set_dev_pwr_mode() and ufshcd_err_handler(). 9273 */ 9274 ufshcd_link_recovery(hba); 9275 dev_info(hba->dev, "%s() finished; outstanding_tasks = %#lx.\n", 9276 __func__, hba->outstanding_tasks); 9277 9278 return scsi_host_busy(hba->host) ? SCSI_EH_RESET_TIMER : SCSI_EH_DONE; 9279 } 9280 9281 static const struct attribute_group *ufshcd_driver_groups[] = { 9282 &ufs_sysfs_unit_descriptor_group, 9283 &ufs_sysfs_lun_attributes_group, 9284 NULL, 9285 }; 9286 9287 static struct ufs_hba_variant_params ufs_hba_vps = { 9288 .hba_enable_delay_us = 1000, 9289 .wb_flush_threshold = UFS_WB_BUF_REMAIN_PERCENT(40), 9290 .devfreq_profile.polling_ms = 100, 9291 .devfreq_profile.target = ufshcd_devfreq_target, 9292 .devfreq_profile.get_dev_status = ufshcd_devfreq_get_dev_status, 9293 .ondemand_data.upthreshold = 70, 9294 .ondemand_data.downdifferential = 5, 9295 }; 9296 9297 static const struct scsi_host_template ufshcd_driver_template = { 9298 .module = THIS_MODULE, 9299 .name = UFSHCD, 9300 .proc_name = UFSHCD, 9301 .map_queues = ufshcd_map_queues, 9302 .cmd_size = sizeof(struct ufshcd_lrb), 9303 .init_cmd_priv = ufshcd_init_cmd_priv, 9304 .queuecommand = ufshcd_queuecommand, 9305 .queue_reserved_command = ufshcd_queue_reserved_command, 9306 .nr_reserved_cmds = UFSHCD_NUM_RESERVED, 9307 .mq_poll = ufshcd_poll, 9308 .sdev_init = ufshcd_sdev_init, 9309 .sdev_configure = ufshcd_sdev_configure, 9310 .sdev_destroy = ufshcd_sdev_destroy, 9311 .change_queue_depth = ufshcd_change_queue_depth, 9312 .eh_abort_handler = ufshcd_abort, 9313 .eh_device_reset_handler = ufshcd_eh_device_reset_handler, 9314 .eh_host_reset_handler = ufshcd_eh_host_reset_handler, 9315 .eh_timed_out = ufshcd_eh_timed_out, 9316 .this_id = -1, 9317 .sg_tablesize = SG_ALL, 9318 .max_segment_size = PRDT_DATA_BYTE_COUNT_MAX, 9319 .max_sectors = SZ_1M / SECTOR_SIZE, 9320 .max_host_blocked = 1, 9321 .track_queue_depth = 1, 9322 .skip_settle_delay = 1, 9323 .sdev_groups = ufshcd_driver_groups, 9324 }; 9325 9326 static int ufshcd_config_vreg_load(struct device *dev, struct ufs_vreg *vreg, 9327 int ua) 9328 { 9329 int ret; 9330 9331 if (!vreg) 9332 return 0; 9333 9334 /* 9335 * "set_load" operation shall be required on those regulators 9336 * which specifically configured current limitation. Otherwise 9337 * zero max_uA may cause unexpected behavior when regulator is 9338 * enabled or set as high power mode. 9339 */ 9340 if (!vreg->max_uA) 9341 return 0; 9342 9343 ret = regulator_set_load(vreg->reg, ua); 9344 if (ret < 0) { 9345 dev_err(dev, "%s: %s set load (ua=%d) failed, err=%d\n", 9346 __func__, vreg->name, ua, ret); 9347 } 9348 9349 return ret; 9350 } 9351 9352 static inline int ufshcd_config_vreg_lpm(struct ufs_hba *hba, 9353 struct ufs_vreg *vreg) 9354 { 9355 return ufshcd_config_vreg_load(hba->dev, vreg, UFS_VREG_LPM_LOAD_UA); 9356 } 9357 9358 static inline int ufshcd_config_vreg_hpm(struct ufs_hba *hba, 9359 struct ufs_vreg *vreg) 9360 { 9361 if (!vreg) 9362 return 0; 9363 9364 return ufshcd_config_vreg_load(hba->dev, vreg, vreg->max_uA); 9365 } 9366 9367 static int ufshcd_config_vreg(struct device *dev, 9368 struct ufs_vreg *vreg, bool on) 9369 { 9370 if (regulator_count_voltages(vreg->reg) <= 0) 9371 return 0; 9372 9373 return ufshcd_config_vreg_load(dev, vreg, on ? vreg->max_uA : 0); 9374 } 9375 9376 static int ufshcd_enable_vreg(struct device *dev, struct ufs_vreg *vreg) 9377 { 9378 int ret = 0; 9379 9380 if (!vreg || vreg->enabled) 9381 goto out; 9382 9383 ret = ufshcd_config_vreg(dev, vreg, true); 9384 if (!ret) 9385 ret = regulator_enable(vreg->reg); 9386 9387 if (!ret) 9388 vreg->enabled = true; 9389 else 9390 dev_err(dev, "%s: %s enable failed, err=%d\n", 9391 __func__, vreg->name, ret); 9392 out: 9393 return ret; 9394 } 9395 9396 static int ufshcd_disable_vreg(struct device *dev, struct ufs_vreg *vreg) 9397 { 9398 int ret = 0; 9399 9400 if (!vreg || !vreg->enabled || vreg->always_on) 9401 goto out; 9402 9403 ret = regulator_disable(vreg->reg); 9404 9405 if (!ret) { 9406 /* ignore errors on applying disable config */ 9407 ufshcd_config_vreg(dev, vreg, false); 9408 vreg->enabled = false; 9409 } else { 9410 dev_err(dev, "%s: %s disable failed, err=%d\n", 9411 __func__, vreg->name, ret); 9412 } 9413 out: 9414 return ret; 9415 } 9416 9417 static int ufshcd_setup_vreg(struct ufs_hba *hba, bool on) 9418 { 9419 int ret = 0; 9420 struct device *dev = hba->dev; 9421 struct ufs_vreg_info *info = &hba->vreg_info; 9422 9423 ret = ufshcd_toggle_vreg(dev, info->vcc, on); 9424 if (ret) 9425 goto out; 9426 9427 ret = ufshcd_toggle_vreg(dev, info->vccq, on); 9428 if (ret) 9429 goto out; 9430 9431 ret = ufshcd_toggle_vreg(dev, info->vccq2, on); 9432 9433 out: 9434 if (ret) { 9435 ufshcd_toggle_vreg(dev, info->vccq2, false); 9436 ufshcd_toggle_vreg(dev, info->vccq, false); 9437 ufshcd_toggle_vreg(dev, info->vcc, false); 9438 } 9439 return ret; 9440 } 9441 9442 static int ufshcd_setup_hba_vreg(struct ufs_hba *hba, bool on) 9443 { 9444 struct ufs_vreg_info *info = &hba->vreg_info; 9445 9446 return ufshcd_toggle_vreg(hba->dev, info->vdd_hba, on); 9447 } 9448 9449 int ufshcd_get_vreg(struct device *dev, struct ufs_vreg *vreg) 9450 { 9451 int ret = 0; 9452 9453 if (!vreg) 9454 goto out; 9455 9456 vreg->reg = devm_regulator_get(dev, vreg->name); 9457 if (IS_ERR(vreg->reg)) { 9458 ret = PTR_ERR(vreg->reg); 9459 dev_err(dev, "%s: %s get failed, err=%d\n", 9460 __func__, vreg->name, ret); 9461 } 9462 out: 9463 return ret; 9464 } 9465 EXPORT_SYMBOL_GPL(ufshcd_get_vreg); 9466 9467 static int ufshcd_init_vreg(struct ufs_hba *hba) 9468 { 9469 int ret = 0; 9470 struct device *dev = hba->dev; 9471 struct ufs_vreg_info *info = &hba->vreg_info; 9472 9473 ret = ufshcd_get_vreg(dev, info->vcc); 9474 if (ret) 9475 goto out; 9476 9477 ret = ufshcd_get_vreg(dev, info->vccq); 9478 if (!ret) 9479 ret = ufshcd_get_vreg(dev, info->vccq2); 9480 out: 9481 return ret; 9482 } 9483 9484 static int ufshcd_init_hba_vreg(struct ufs_hba *hba) 9485 { 9486 struct ufs_vreg_info *info = &hba->vreg_info; 9487 9488 return ufshcd_get_vreg(hba->dev, info->vdd_hba); 9489 } 9490 9491 static int ufshcd_setup_clocks(struct ufs_hba *hba, bool on) 9492 { 9493 int ret = 0; 9494 struct ufs_clk_info *clki; 9495 struct list_head *head = &hba->clk_list_head; 9496 ktime_t start = ktime_get(); 9497 bool clk_state_changed = false; 9498 9499 if (list_empty(head)) 9500 goto out; 9501 9502 ret = ufshcd_vops_setup_clocks(hba, on, PRE_CHANGE); 9503 if (ret) 9504 return ret; 9505 9506 list_for_each_entry(clki, head, list) { 9507 if (!IS_ERR_OR_NULL(clki->clk)) { 9508 /* 9509 * Don't disable clocks which are needed 9510 * to keep the link active. 9511 */ 9512 if (ufshcd_is_link_active(hba) && 9513 clki->keep_link_active) 9514 continue; 9515 9516 clk_state_changed = on ^ clki->enabled; 9517 if (on && !clki->enabled) { 9518 ret = clk_prepare_enable(clki->clk); 9519 if (ret) { 9520 dev_err(hba->dev, "%s: %s prepare enable failed, %d\n", 9521 __func__, clki->name, ret); 9522 goto out; 9523 } 9524 } else if (!on && clki->enabled) { 9525 clk_disable_unprepare(clki->clk); 9526 } 9527 clki->enabled = on; 9528 dev_dbg(hba->dev, "%s: clk: %s %sabled\n", __func__, 9529 clki->name, on ? "en" : "dis"); 9530 } 9531 } 9532 9533 ret = ufshcd_vops_setup_clocks(hba, on, POST_CHANGE); 9534 if (ret) 9535 return ret; 9536 9537 if (!ufshcd_is_clkscaling_supported(hba)) 9538 ufshcd_pm_qos_update(hba, on); 9539 out: 9540 if (ret) { 9541 list_for_each_entry(clki, head, list) { 9542 if (!IS_ERR_OR_NULL(clki->clk) && clki->enabled) 9543 clk_disable_unprepare(clki->clk); 9544 } 9545 } else if (!ret && on && hba->clk_gating.is_initialized) { 9546 scoped_guard(spinlock_irqsave, &hba->clk_gating.lock) 9547 hba->clk_gating.state = CLKS_ON; 9548 trace_ufshcd_clk_gating(hba, 9549 hba->clk_gating.state); 9550 } 9551 9552 if (clk_state_changed) 9553 trace_ufshcd_profile_clk_gating(hba, 9554 (on ? "on" : "off"), 9555 ktime_to_us(ktime_sub(ktime_get(), start)), ret); 9556 return ret; 9557 } 9558 9559 static enum ufs_ref_clk_freq ufshcd_parse_ref_clk_property(struct ufs_hba *hba) 9560 { 9561 u32 freq; 9562 int ret = device_property_read_u32(hba->dev, "ref-clk-freq", &freq); 9563 9564 if (ret) { 9565 dev_dbg(hba->dev, "Cannot query 'ref-clk-freq' property = %d", ret); 9566 return REF_CLK_FREQ_INVAL; 9567 } 9568 9569 return ufs_get_bref_clk_from_hz(freq); 9570 } 9571 9572 static int ufshcd_init_clocks(struct ufs_hba *hba) 9573 { 9574 int ret = 0; 9575 struct ufs_clk_info *clki; 9576 struct device *dev = hba->dev; 9577 struct list_head *head = &hba->clk_list_head; 9578 9579 if (list_empty(head)) 9580 goto out; 9581 9582 list_for_each_entry(clki, head, list) { 9583 if (!clki->name) 9584 continue; 9585 9586 clki->clk = devm_clk_get(dev, clki->name); 9587 if (IS_ERR(clki->clk)) { 9588 ret = PTR_ERR(clki->clk); 9589 dev_err(dev, "%s: %s clk get failed, %d\n", 9590 __func__, clki->name, ret); 9591 goto out; 9592 } 9593 9594 /* 9595 * Parse device ref clk freq as per device tree "ref_clk". 9596 * Default dev_ref_clk_freq is set to REF_CLK_FREQ_INVAL 9597 * in ufshcd_alloc_host(). 9598 */ 9599 if (!strcmp(clki->name, "ref_clk")) 9600 ufshcd_parse_dev_ref_clk_freq(hba, clki->clk); 9601 9602 if (clki->max_freq) { 9603 ret = clk_set_rate(clki->clk, clki->max_freq); 9604 if (ret) { 9605 dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n", 9606 __func__, clki->name, 9607 clki->max_freq, ret); 9608 goto out; 9609 } 9610 clki->curr_freq = clki->max_freq; 9611 } 9612 dev_dbg(dev, "%s: clk: %s, rate: %lu\n", __func__, 9613 clki->name, clk_get_rate(clki->clk)); 9614 } 9615 9616 /* Set Max. frequency for all clocks */ 9617 if (hba->use_pm_opp) { 9618 ret = ufshcd_opp_set_rate(hba, ULONG_MAX); 9619 if (ret) { 9620 dev_err(hba->dev, "%s: failed to set OPP: %d", __func__, 9621 ret); 9622 goto out; 9623 } 9624 } 9625 9626 out: 9627 return ret; 9628 } 9629 9630 static int ufshcd_variant_hba_init(struct ufs_hba *hba) 9631 { 9632 int err = 0; 9633 9634 if (!hba->vops) 9635 goto out; 9636 9637 err = ufshcd_vops_init(hba); 9638 if (err) 9639 dev_err_probe(hba->dev, err, 9640 "%s: variant %s init failed with err %d\n", 9641 __func__, ufshcd_get_var_name(hba), err); 9642 out: 9643 return err; 9644 } 9645 9646 static void ufshcd_variant_hba_exit(struct ufs_hba *hba) 9647 { 9648 if (!hba->vops) 9649 return; 9650 9651 ufshcd_vops_exit(hba); 9652 } 9653 9654 static int ufshcd_hba_init(struct ufs_hba *hba) 9655 { 9656 int err; 9657 9658 /* 9659 * Handle host controller power separately from the UFS device power 9660 * rails as it will help controlling the UFS host controller power 9661 * collapse easily which is different than UFS device power collapse. 9662 * Also, enable the host controller power before we go ahead with rest 9663 * of the initialization here. 9664 */ 9665 err = ufshcd_init_hba_vreg(hba); 9666 if (err) 9667 goto out; 9668 9669 err = ufshcd_setup_hba_vreg(hba, true); 9670 if (err) 9671 goto out; 9672 9673 err = ufshcd_init_clocks(hba); 9674 if (err) 9675 goto out_disable_hba_vreg; 9676 9677 if (hba->dev_ref_clk_freq == REF_CLK_FREQ_INVAL) 9678 hba->dev_ref_clk_freq = ufshcd_parse_ref_clk_property(hba); 9679 9680 err = ufshcd_setup_clocks(hba, true); 9681 if (err) 9682 goto out_disable_hba_vreg; 9683 9684 err = ufshcd_init_vreg(hba); 9685 if (err) 9686 goto out_disable_clks; 9687 9688 err = ufshcd_setup_vreg(hba, true); 9689 if (err) 9690 goto out_disable_clks; 9691 9692 err = ufshcd_variant_hba_init(hba); 9693 if (err) 9694 goto out_disable_vreg; 9695 9696 ufs_debugfs_hba_init(hba); 9697 ufs_fault_inject_hba_init(hba); 9698 9699 hba->is_powered = true; 9700 goto out; 9701 9702 out_disable_vreg: 9703 ufshcd_setup_vreg(hba, false); 9704 out_disable_clks: 9705 ufshcd_setup_clocks(hba, false); 9706 out_disable_hba_vreg: 9707 ufshcd_setup_hba_vreg(hba, false); 9708 out: 9709 return err; 9710 } 9711 9712 static void ufshcd_hba_exit(struct ufs_hba *hba) 9713 { 9714 if (hba->is_powered) { 9715 ufshcd_pm_qos_exit(hba); 9716 ufshcd_exit_clk_scaling(hba); 9717 ufshcd_exit_clk_gating(hba); 9718 if (hba->eh_wq) 9719 destroy_workqueue(hba->eh_wq); 9720 ufs_debugfs_hba_exit(hba); 9721 ufshcd_variant_hba_exit(hba); 9722 ufshcd_setup_vreg(hba, false); 9723 ufshcd_setup_clocks(hba, false); 9724 ufshcd_setup_hba_vreg(hba, false); 9725 hba->is_powered = false; 9726 ufs_put_device_desc(hba); 9727 } 9728 } 9729 9730 static int ufshcd_execute_start_stop(struct scsi_device *sdev, 9731 enum ufs_dev_pwr_mode pwr_mode, 9732 struct scsi_sense_hdr *sshdr) 9733 { 9734 const unsigned char cdb[6] = { START_STOP, 0, 0, 0, pwr_mode << 4, 0 }; 9735 struct scsi_failure failure_defs[] = { 9736 { 9737 .allowed = 2, 9738 .result = SCMD_FAILURE_RESULT_ANY, 9739 }, 9740 }; 9741 struct scsi_failures failures = { 9742 .failure_definitions = failure_defs, 9743 }; 9744 const struct scsi_exec_args args = { 9745 .failures = &failures, 9746 .sshdr = sshdr, 9747 .req_flags = BLK_MQ_REQ_PM, 9748 .scmd_flags = SCMD_FAIL_IF_RECOVERING, 9749 }; 9750 9751 return scsi_execute_cmd(sdev, cdb, REQ_OP_DRV_IN, /*buffer=*/NULL, 9752 /*bufflen=*/0, /*timeout=*/10 * HZ, /*retries=*/0, 9753 &args); 9754 } 9755 9756 /** 9757 * ufshcd_set_dev_pwr_mode - sends START STOP UNIT command to set device 9758 * power mode 9759 * @hba: per adapter instance 9760 * @pwr_mode: device power mode to set 9761 * 9762 * Return: 0 if requested power mode is set successfully; 9763 * < 0 if failed to set the requested power mode. 9764 */ 9765 static int ufshcd_set_dev_pwr_mode(struct ufs_hba *hba, 9766 enum ufs_dev_pwr_mode pwr_mode) 9767 { 9768 struct scsi_sense_hdr sshdr; 9769 struct scsi_device *sdp; 9770 unsigned long flags; 9771 int ret; 9772 9773 spin_lock_irqsave(hba->host->host_lock, flags); 9774 sdp = hba->ufs_device_wlun; 9775 if (sdp && scsi_device_online(sdp)) 9776 ret = scsi_device_get(sdp); 9777 else 9778 ret = -ENODEV; 9779 spin_unlock_irqrestore(hba->host->host_lock, flags); 9780 9781 if (ret) 9782 return ret; 9783 9784 /* 9785 * If scsi commands fail, the scsi mid-layer schedules scsi error- 9786 * handling, which would wait for host to be resumed. Since we know 9787 * we are functional while we are here, skip host resume in error 9788 * handling context. 9789 */ 9790 hba->host->eh_noresume = 1; 9791 9792 /* 9793 * Current function would be generally called from the power management 9794 * callbacks hence set the RQF_PM flag so that it doesn't resume the 9795 * already suspended childs. 9796 */ 9797 ret = ufshcd_execute_start_stop(sdp, pwr_mode, &sshdr); 9798 if (ret) { 9799 sdev_printk(KERN_WARNING, sdp, 9800 "START_STOP failed for power mode: %d, result %x\n", 9801 pwr_mode, ret); 9802 if (ret > 0) { 9803 if (scsi_sense_valid(&sshdr)) 9804 scsi_print_sense_hdr(sdp, NULL, &sshdr); 9805 ret = -EIO; 9806 } 9807 } else { 9808 hba->curr_dev_pwr_mode = pwr_mode; 9809 } 9810 9811 scsi_device_put(sdp); 9812 hba->host->eh_noresume = 0; 9813 return ret; 9814 } 9815 9816 static int ufshcd_link_state_transition(struct ufs_hba *hba, 9817 enum uic_link_state req_link_state, 9818 bool check_for_bkops) 9819 { 9820 int ret = 0; 9821 9822 if (req_link_state == hba->uic_link_state) 9823 return 0; 9824 9825 if (req_link_state == UIC_LINK_HIBERN8_STATE) { 9826 ret = ufshcd_uic_hibern8_enter(hba); 9827 if (!ret) { 9828 ufshcd_set_link_hibern8(hba); 9829 } else { 9830 dev_err(hba->dev, "%s: hibern8 enter failed %d\n", 9831 __func__, ret); 9832 goto out; 9833 } 9834 } 9835 /* 9836 * If autobkops is enabled, link can't be turned off because 9837 * turning off the link would also turn off the device, except in the 9838 * case of DeepSleep where the device is expected to remain powered. 9839 */ 9840 else if ((req_link_state == UIC_LINK_OFF_STATE) && 9841 (!check_for_bkops || !hba->auto_bkops_enabled)) { 9842 /* 9843 * Let's make sure that link is in low power mode, we are doing 9844 * this currently by putting the link in Hibern8. Otherway to 9845 * put the link in low power mode is to send the DME end point 9846 * to device and then send the DME reset command to local 9847 * unipro. But putting the link in hibern8 is much faster. 9848 * 9849 * Note also that putting the link in Hibern8 is a requirement 9850 * for entering DeepSleep. 9851 */ 9852 ret = ufshcd_uic_hibern8_enter(hba); 9853 if (ret) { 9854 dev_err(hba->dev, "%s: hibern8 enter failed %d\n", 9855 __func__, ret); 9856 goto out; 9857 } 9858 /* 9859 * Change controller state to "reset state" which 9860 * should also put the link in off/reset state 9861 */ 9862 ufshcd_hba_stop(hba); 9863 /* 9864 * TODO: Check if we need any delay to make sure that 9865 * controller is reset 9866 */ 9867 ufshcd_set_link_off(hba); 9868 } 9869 9870 out: 9871 return ret; 9872 } 9873 9874 static void ufshcd_vreg_set_lpm(struct ufs_hba *hba) 9875 { 9876 bool vcc_off = false; 9877 9878 /* 9879 * It seems some UFS devices may keep drawing more than sleep current 9880 * (atleast for 500us) from UFS rails (especially from VCCQ rail). 9881 * To avoid this situation, add 2ms delay before putting these UFS 9882 * rails in LPM mode. 9883 */ 9884 if (!ufshcd_is_link_active(hba) && 9885 hba->dev_quirks & UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM) 9886 usleep_range(2000, 2100); 9887 9888 /* 9889 * If UFS device is either in UFS_Sleep turn off VCC rail to save some 9890 * power. 9891 * 9892 * If UFS device and link is in OFF state, all power supplies (VCC, 9893 * VCCQ, VCCQ2) can be turned off if power on write protect is not 9894 * required. If UFS link is inactive (Hibern8 or OFF state) and device 9895 * is in sleep state, put VCCQ & VCCQ2 rails in LPM mode. 9896 * 9897 * Ignore the error returned by ufshcd_toggle_vreg() as device is anyway 9898 * in low power state which would save some power. 9899 * 9900 * If Write Booster is enabled and the device needs to flush the WB 9901 * buffer OR if bkops status is urgent for WB, keep Vcc on. 9902 */ 9903 if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba) && 9904 !hba->dev_info.is_lu_power_on_wp) { 9905 ufshcd_setup_vreg(hba, false); 9906 vcc_off = true; 9907 } else if (!ufshcd_is_ufs_dev_active(hba)) { 9908 ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, false); 9909 vcc_off = true; 9910 if (ufshcd_is_link_hibern8(hba) || ufshcd_is_link_off(hba)) { 9911 ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq); 9912 ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq2); 9913 } 9914 } 9915 9916 /* 9917 * All UFS devices require delay after VCC power rail is turned-off. 9918 */ 9919 if (vcc_off && hba->vreg_info.vcc && !hba->vreg_info.vcc->always_on) 9920 usleep_range(hba->vcc_off_delay_us, 9921 hba->vcc_off_delay_us + 100); 9922 } 9923 9924 #ifdef CONFIG_PM 9925 static int ufshcd_vreg_set_hpm(struct ufs_hba *hba) 9926 { 9927 int ret = 0; 9928 9929 if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba) && 9930 !hba->dev_info.is_lu_power_on_wp) { 9931 ret = ufshcd_setup_vreg(hba, true); 9932 } else if (!ufshcd_is_ufs_dev_active(hba)) { 9933 if (!ufshcd_is_link_active(hba)) { 9934 ret = ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq); 9935 if (ret) 9936 goto vcc_disable; 9937 ret = ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq2); 9938 if (ret) 9939 goto vccq_lpm; 9940 } 9941 ret = ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, true); 9942 } 9943 goto out; 9944 9945 vccq_lpm: 9946 ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq); 9947 vcc_disable: 9948 ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, false); 9949 out: 9950 return ret; 9951 } 9952 #endif /* CONFIG_PM */ 9953 9954 static void ufshcd_hba_vreg_set_lpm(struct ufs_hba *hba) 9955 { 9956 if (ufshcd_is_link_off(hba) || ufshcd_can_aggressive_pc(hba)) 9957 ufshcd_setup_hba_vreg(hba, false); 9958 } 9959 9960 static void ufshcd_hba_vreg_set_hpm(struct ufs_hba *hba) 9961 { 9962 if (ufshcd_is_link_off(hba) || ufshcd_can_aggressive_pc(hba)) 9963 ufshcd_setup_hba_vreg(hba, true); 9964 } 9965 9966 static int __ufshcd_wl_suspend(struct ufs_hba *hba, enum ufs_pm_op pm_op) 9967 { 9968 int ret = 0; 9969 bool check_for_bkops; 9970 enum ufs_pm_level pm_lvl; 9971 enum ufs_dev_pwr_mode req_dev_pwr_mode; 9972 enum uic_link_state req_link_state; 9973 9974 hba->pm_op_in_progress = true; 9975 if (pm_op != UFS_SHUTDOWN_PM) { 9976 pm_lvl = pm_op == UFS_RUNTIME_PM ? 9977 hba->rpm_lvl : hba->spm_lvl; 9978 req_dev_pwr_mode = ufs_get_pm_lvl_to_dev_pwr_mode(pm_lvl); 9979 req_link_state = ufs_get_pm_lvl_to_link_pwr_state(pm_lvl); 9980 } else { 9981 req_dev_pwr_mode = UFS_POWERDOWN_PWR_MODE; 9982 req_link_state = UIC_LINK_OFF_STATE; 9983 } 9984 9985 /* 9986 * If we can't transition into any of the low power modes 9987 * just gate the clocks. 9988 */ 9989 ufshcd_hold(hba); 9990 hba->clk_gating.is_suspended = true; 9991 9992 if (ufshcd_is_clkscaling_supported(hba)) 9993 ufshcd_clk_scaling_suspend(hba, true); 9994 9995 if (req_dev_pwr_mode == UFS_ACTIVE_PWR_MODE && 9996 req_link_state == UIC_LINK_ACTIVE_STATE) { 9997 goto vops_suspend; 9998 } 9999 10000 if ((req_dev_pwr_mode == hba->curr_dev_pwr_mode) && 10001 (req_link_state == hba->uic_link_state)) 10002 goto enable_scaling; 10003 10004 /* UFS device & link must be active before we enter in this function */ 10005 if (!ufshcd_is_ufs_dev_active(hba) || !ufshcd_is_link_active(hba)) { 10006 /* Wait err handler finish or trigger err recovery */ 10007 if (!ufshcd_eh_in_progress(hba)) 10008 ufshcd_force_error_recovery(hba); 10009 ret = -EBUSY; 10010 goto enable_scaling; 10011 } 10012 10013 if (pm_op == UFS_RUNTIME_PM) { 10014 if (ufshcd_can_autobkops_during_suspend(hba)) { 10015 /* 10016 * The device is idle with no requests in the queue, 10017 * allow background operations if bkops status shows 10018 * that performance might be impacted. 10019 */ 10020 ret = ufshcd_bkops_ctrl(hba); 10021 if (ret) { 10022 /* 10023 * If return err in suspend flow, IO will hang. 10024 * Trigger error handler and break suspend for 10025 * error recovery. 10026 */ 10027 ufshcd_force_error_recovery(hba); 10028 ret = -EBUSY; 10029 goto enable_scaling; 10030 } 10031 } else { 10032 /* make sure that auto bkops is disabled */ 10033 ufshcd_disable_auto_bkops(hba); 10034 } 10035 /* 10036 * If device needs to do BKOP or WB buffer flush during 10037 * Hibern8, keep device power mode as "active power mode" 10038 * and VCC supply. 10039 */ 10040 hba->dev_info.b_rpm_dev_flush_capable = 10041 hba->auto_bkops_enabled || 10042 (((req_link_state == UIC_LINK_HIBERN8_STATE) || 10043 ((req_link_state == UIC_LINK_ACTIVE_STATE) && 10044 ufshcd_is_auto_hibern8_enabled(hba))) && 10045 ufshcd_wb_need_flush(hba)); 10046 } 10047 10048 flush_work(&hba->eeh_work); 10049 10050 ret = ufshcd_vops_suspend(hba, pm_op, PRE_CHANGE); 10051 if (ret) 10052 goto enable_scaling; 10053 10054 if (req_dev_pwr_mode != hba->curr_dev_pwr_mode) { 10055 if (pm_op != UFS_RUNTIME_PM) 10056 /* ensure that bkops is disabled */ 10057 ufshcd_disable_auto_bkops(hba); 10058 10059 if (!hba->dev_info.b_rpm_dev_flush_capable) { 10060 ret = ufshcd_set_dev_pwr_mode(hba, req_dev_pwr_mode); 10061 if (ret && pm_op != UFS_SHUTDOWN_PM) { 10062 /* 10063 * If return err in suspend flow, IO will hang. 10064 * Trigger error handler and break suspend for 10065 * error recovery. 10066 */ 10067 ufshcd_force_error_recovery(hba); 10068 ret = -EBUSY; 10069 } 10070 if (ret) 10071 goto enable_scaling; 10072 } 10073 } 10074 10075 /* 10076 * In the case of DeepSleep, the device is expected to remain powered 10077 * with the link off, so do not check for bkops. 10078 */ 10079 check_for_bkops = !ufshcd_is_ufs_dev_deepsleep(hba); 10080 ret = ufshcd_link_state_transition(hba, req_link_state, check_for_bkops); 10081 if (ret && pm_op != UFS_SHUTDOWN_PM) { 10082 /* 10083 * If return err in suspend flow, IO will hang. 10084 * Trigger error handler and break suspend for 10085 * error recovery. 10086 */ 10087 ufshcd_force_error_recovery(hba); 10088 ret = -EBUSY; 10089 } 10090 if (ret) 10091 goto set_dev_active; 10092 10093 vops_suspend: 10094 /* 10095 * Call vendor specific suspend callback. As these callbacks may access 10096 * vendor specific host controller register space call them before the 10097 * host clocks are ON. 10098 */ 10099 ret = ufshcd_vops_suspend(hba, pm_op, POST_CHANGE); 10100 if (ret) 10101 goto set_link_active; 10102 10103 cancel_delayed_work_sync(&hba->ufs_rtc_update_work); 10104 goto out; 10105 10106 set_link_active: 10107 /* 10108 * Device hardware reset is required to exit DeepSleep. Also, for 10109 * DeepSleep, the link is off so host reset and restore will be done 10110 * further below. 10111 */ 10112 if (ufshcd_is_ufs_dev_deepsleep(hba)) { 10113 ufshcd_device_reset(hba); 10114 WARN_ON(!ufshcd_is_link_off(hba)); 10115 } 10116 if (ufshcd_is_link_hibern8(hba) && !ufshcd_uic_hibern8_exit(hba)) 10117 ufshcd_set_link_active(hba); 10118 else if (ufshcd_is_link_off(hba)) 10119 ufshcd_host_reset_and_restore(hba); 10120 set_dev_active: 10121 /* Can also get here needing to exit DeepSleep */ 10122 if (ufshcd_is_ufs_dev_deepsleep(hba)) { 10123 ufshcd_device_reset(hba); 10124 ufshcd_host_reset_and_restore(hba); 10125 } 10126 if (!ufshcd_set_dev_pwr_mode(hba, UFS_ACTIVE_PWR_MODE)) 10127 ufshcd_disable_auto_bkops(hba); 10128 enable_scaling: 10129 if (ufshcd_is_clkscaling_supported(hba)) 10130 ufshcd_clk_scaling_suspend(hba, false); 10131 10132 hba->dev_info.b_rpm_dev_flush_capable = false; 10133 out: 10134 if (hba->dev_info.b_rpm_dev_flush_capable) { 10135 schedule_delayed_work(&hba->rpm_dev_flush_recheck_work, 10136 msecs_to_jiffies(RPM_DEV_FLUSH_RECHECK_WORK_DELAY_MS)); 10137 } 10138 10139 if (ret) { 10140 ufshcd_update_evt_hist(hba, UFS_EVT_WL_SUSP_ERR, (u32)ret); 10141 hba->clk_gating.is_suspended = false; 10142 ufshcd_release(hba); 10143 } 10144 hba->pm_op_in_progress = false; 10145 return ret; 10146 } 10147 10148 #ifdef CONFIG_PM 10149 static int __ufshcd_wl_resume(struct ufs_hba *hba, enum ufs_pm_op pm_op) 10150 { 10151 int ret; 10152 enum uic_link_state old_link_state = hba->uic_link_state; 10153 10154 hba->pm_op_in_progress = true; 10155 10156 /* 10157 * Call vendor specific resume callback. As these callbacks may access 10158 * vendor specific host controller register space call them when the 10159 * host clocks are ON. 10160 */ 10161 ret = ufshcd_vops_resume(hba, pm_op); 10162 if (ret) 10163 goto out; 10164 10165 /* For DeepSleep, the only supported option is to have the link off */ 10166 WARN_ON(ufshcd_is_ufs_dev_deepsleep(hba) && !ufshcd_is_link_off(hba)); 10167 10168 if (ufshcd_is_link_hibern8(hba)) { 10169 ret = ufshcd_uic_hibern8_exit(hba); 10170 if (!ret) { 10171 ufshcd_set_link_active(hba); 10172 } else { 10173 dev_err(hba->dev, "%s: hibern8 exit failed %d\n", 10174 __func__, ret); 10175 goto vendor_suspend; 10176 } 10177 } else if (ufshcd_is_link_off(hba)) { 10178 /* 10179 * A full initialization of the host and the device is 10180 * required since the link was put to off during suspend. 10181 * Note, in the case of DeepSleep, the device will exit 10182 * DeepSleep due to device reset. 10183 */ 10184 ret = ufshcd_reset_and_restore(hba); 10185 /* 10186 * ufshcd_reset_and_restore() should have already 10187 * set the link state as active 10188 */ 10189 if (ret || !ufshcd_is_link_active(hba)) 10190 goto vendor_suspend; 10191 } 10192 10193 if (!ufshcd_is_ufs_dev_active(hba)) { 10194 ret = ufshcd_set_dev_pwr_mode(hba, UFS_ACTIVE_PWR_MODE); 10195 if (ret) 10196 goto set_old_link_state; 10197 ufshcd_set_timestamp_attr(hba); 10198 schedule_delayed_work(&hba->ufs_rtc_update_work, 10199 msecs_to_jiffies(UFS_RTC_UPDATE_INTERVAL_MS)); 10200 } 10201 10202 if (ufshcd_keep_autobkops_enabled_except_suspend(hba)) 10203 ufshcd_enable_auto_bkops(hba); 10204 else 10205 /* 10206 * If BKOPs operations are urgently needed at this moment then 10207 * keep auto-bkops enabled or else disable it. 10208 */ 10209 ufshcd_bkops_ctrl(hba); 10210 10211 if (hba->ee_usr_mask) 10212 ufshcd_write_ee_control(hba); 10213 10214 if (ufshcd_is_clkscaling_supported(hba)) 10215 ufshcd_clk_scaling_suspend(hba, false); 10216 10217 if (hba->dev_info.b_rpm_dev_flush_capable) { 10218 hba->dev_info.b_rpm_dev_flush_capable = false; 10219 cancel_delayed_work(&hba->rpm_dev_flush_recheck_work); 10220 } 10221 10222 ufshcd_configure_auto_hibern8(hba); 10223 10224 goto out; 10225 10226 set_old_link_state: 10227 ufshcd_link_state_transition(hba, old_link_state, 0); 10228 vendor_suspend: 10229 ufshcd_vops_suspend(hba, pm_op, PRE_CHANGE); 10230 ufshcd_vops_suspend(hba, pm_op, POST_CHANGE); 10231 out: 10232 if (ret) 10233 ufshcd_update_evt_hist(hba, UFS_EVT_WL_RES_ERR, (u32)ret); 10234 hba->clk_gating.is_suspended = false; 10235 ufshcd_release(hba); 10236 hba->pm_op_in_progress = false; 10237 return ret; 10238 } 10239 10240 static int ufshcd_wl_runtime_suspend(struct device *dev) 10241 { 10242 struct scsi_device *sdev = to_scsi_device(dev); 10243 struct ufs_hba *hba; 10244 int ret; 10245 ktime_t start = ktime_get(); 10246 10247 hba = shost_priv(sdev->host); 10248 10249 ret = __ufshcd_wl_suspend(hba, UFS_RUNTIME_PM); 10250 if (ret) 10251 dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret); 10252 10253 trace_ufshcd_wl_runtime_suspend(hba, ret, 10254 ktime_to_us(ktime_sub(ktime_get(), start)), 10255 hba->curr_dev_pwr_mode, hba->uic_link_state); 10256 10257 return ret; 10258 } 10259 10260 static int ufshcd_wl_runtime_resume(struct device *dev) 10261 { 10262 struct scsi_device *sdev = to_scsi_device(dev); 10263 struct ufs_hba *hba; 10264 int ret = 0; 10265 ktime_t start = ktime_get(); 10266 10267 hba = shost_priv(sdev->host); 10268 10269 ret = __ufshcd_wl_resume(hba, UFS_RUNTIME_PM); 10270 if (ret) 10271 dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret); 10272 10273 trace_ufshcd_wl_runtime_resume(hba, ret, 10274 ktime_to_us(ktime_sub(ktime_get(), start)), 10275 hba->curr_dev_pwr_mode, hba->uic_link_state); 10276 10277 return ret; 10278 } 10279 #endif 10280 10281 #ifdef CONFIG_PM_SLEEP 10282 static int ufshcd_wl_suspend(struct device *dev) 10283 { 10284 struct scsi_device *sdev = to_scsi_device(dev); 10285 struct ufs_hba *hba; 10286 int ret = 0; 10287 ktime_t start = ktime_get(); 10288 10289 hba = shost_priv(sdev->host); 10290 down(&hba->host_sem); 10291 hba->system_suspending = true; 10292 10293 if (pm_runtime_suspended(dev)) 10294 goto out; 10295 10296 ret = __ufshcd_wl_suspend(hba, UFS_SYSTEM_PM); 10297 if (ret) { 10298 dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret); 10299 up(&hba->host_sem); 10300 } 10301 10302 out: 10303 if (!ret) 10304 hba->is_sys_suspended = true; 10305 trace_ufshcd_wl_suspend(hba, ret, 10306 ktime_to_us(ktime_sub(ktime_get(), start)), 10307 hba->curr_dev_pwr_mode, hba->uic_link_state); 10308 10309 return ret; 10310 } 10311 10312 static int ufshcd_wl_resume(struct device *dev) 10313 { 10314 struct scsi_device *sdev = to_scsi_device(dev); 10315 struct ufs_hba *hba; 10316 int ret = 0; 10317 ktime_t start = ktime_get(); 10318 10319 hba = shost_priv(sdev->host); 10320 10321 if (pm_runtime_suspended(dev)) 10322 goto out; 10323 10324 ret = __ufshcd_wl_resume(hba, UFS_SYSTEM_PM); 10325 if (ret) 10326 dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret); 10327 out: 10328 trace_ufshcd_wl_resume(hba, ret, 10329 ktime_to_us(ktime_sub(ktime_get(), start)), 10330 hba->curr_dev_pwr_mode, hba->uic_link_state); 10331 if (!ret) 10332 hba->is_sys_suspended = false; 10333 hba->system_suspending = false; 10334 up(&hba->host_sem); 10335 return ret; 10336 } 10337 #endif 10338 10339 /** 10340 * ufshcd_suspend - helper function for suspend operations 10341 * @hba: per adapter instance 10342 * 10343 * This function will put disable irqs, turn off clocks 10344 * and set vreg and hba-vreg in lpm mode. 10345 * 10346 * Return: 0 upon success; < 0 upon failure. 10347 */ 10348 static int ufshcd_suspend(struct ufs_hba *hba) 10349 { 10350 int ret; 10351 10352 if (!hba->is_powered) 10353 return 0; 10354 /* 10355 * Disable the host irq as host controller as there won't be any 10356 * host controller transaction expected till resume. 10357 */ 10358 ufshcd_disable_irq(hba); 10359 ret = ufshcd_setup_clocks(hba, false); 10360 if (ret) { 10361 ufshcd_enable_irq(hba); 10362 return ret; 10363 } 10364 if (ufshcd_is_clkgating_allowed(hba)) { 10365 hba->clk_gating.state = CLKS_OFF; 10366 trace_ufshcd_clk_gating(hba, 10367 hba->clk_gating.state); 10368 } 10369 10370 ufshcd_vreg_set_lpm(hba); 10371 /* Put the host controller in low power mode if possible */ 10372 ufshcd_hba_vreg_set_lpm(hba); 10373 ufshcd_pm_qos_update(hba, false); 10374 return ret; 10375 } 10376 10377 #ifdef CONFIG_PM 10378 /** 10379 * ufshcd_resume - helper function for resume operations 10380 * @hba: per adapter instance 10381 * 10382 * This function basically turns on the regulators, clocks and 10383 * irqs of the hba. 10384 * 10385 * Return: 0 for success and non-zero for failure. 10386 */ 10387 static int ufshcd_resume(struct ufs_hba *hba) 10388 { 10389 int ret; 10390 10391 if (!hba->is_powered) 10392 return 0; 10393 10394 ufshcd_hba_vreg_set_hpm(hba); 10395 ret = ufshcd_vreg_set_hpm(hba); 10396 if (ret) 10397 goto out; 10398 10399 /* Make sure clocks are enabled before accessing controller */ 10400 ret = ufshcd_setup_clocks(hba, true); 10401 if (ret) 10402 goto disable_vreg; 10403 10404 /* enable the host irq as host controller would be active soon */ 10405 ufshcd_enable_irq(hba); 10406 10407 goto out; 10408 10409 disable_vreg: 10410 ufshcd_vreg_set_lpm(hba); 10411 out: 10412 if (ret) 10413 ufshcd_update_evt_hist(hba, UFS_EVT_RESUME_ERR, (u32)ret); 10414 return ret; 10415 } 10416 #endif /* CONFIG_PM */ 10417 10418 #ifdef CONFIG_PM_SLEEP 10419 /** 10420 * ufshcd_system_suspend - system suspend callback 10421 * @dev: Device associated with the UFS controller. 10422 * 10423 * Executed before putting the system into a sleep state in which the contents 10424 * of main memory are preserved. 10425 * 10426 * Return: 0 for success and non-zero for failure. 10427 */ 10428 int ufshcd_system_suspend(struct device *dev) 10429 { 10430 struct ufs_hba *hba = dev_get_drvdata(dev); 10431 int ret = 0; 10432 ktime_t start = ktime_get(); 10433 10434 if (pm_runtime_suspended(hba->dev)) 10435 goto out; 10436 10437 ret = ufshcd_suspend(hba); 10438 out: 10439 trace_ufshcd_system_suspend(hba, ret, 10440 ktime_to_us(ktime_sub(ktime_get(), start)), 10441 hba->curr_dev_pwr_mode, hba->uic_link_state); 10442 return ret; 10443 } 10444 EXPORT_SYMBOL(ufshcd_system_suspend); 10445 10446 /** 10447 * ufshcd_system_resume - system resume callback 10448 * @dev: Device associated with the UFS controller. 10449 * 10450 * Executed after waking the system up from a sleep state in which the contents 10451 * of main memory were preserved. 10452 * 10453 * Return: 0 for success and non-zero for failure. 10454 */ 10455 int ufshcd_system_resume(struct device *dev) 10456 { 10457 struct ufs_hba *hba = dev_get_drvdata(dev); 10458 ktime_t start = ktime_get(); 10459 int ret = 0; 10460 10461 if (pm_runtime_suspended(hba->dev)) 10462 goto out; 10463 10464 ret = ufshcd_resume(hba); 10465 10466 out: 10467 trace_ufshcd_system_resume(hba, ret, 10468 ktime_to_us(ktime_sub(ktime_get(), start)), 10469 hba->curr_dev_pwr_mode, hba->uic_link_state); 10470 10471 return ret; 10472 } 10473 EXPORT_SYMBOL(ufshcd_system_resume); 10474 #endif /* CONFIG_PM_SLEEP */ 10475 10476 #ifdef CONFIG_PM 10477 /** 10478 * ufshcd_runtime_suspend - runtime suspend callback 10479 * @dev: Device associated with the UFS controller. 10480 * 10481 * Check the description of ufshcd_suspend() function for more details. 10482 * 10483 * Return: 0 for success and non-zero for failure. 10484 */ 10485 int ufshcd_runtime_suspend(struct device *dev) 10486 { 10487 struct ufs_hba *hba = dev_get_drvdata(dev); 10488 int ret; 10489 ktime_t start = ktime_get(); 10490 10491 ret = ufshcd_suspend(hba); 10492 10493 trace_ufshcd_runtime_suspend(hba, ret, 10494 ktime_to_us(ktime_sub(ktime_get(), start)), 10495 hba->curr_dev_pwr_mode, hba->uic_link_state); 10496 return ret; 10497 } 10498 EXPORT_SYMBOL(ufshcd_runtime_suspend); 10499 10500 /** 10501 * ufshcd_runtime_resume - runtime resume routine 10502 * @dev: Device associated with the UFS controller. 10503 * 10504 * This function basically brings controller 10505 * to active state. Following operations are done in this function: 10506 * 10507 * 1. Turn on all the controller related clocks 10508 * 2. Turn ON VCC rail 10509 * 10510 * Return: 0 upon success; < 0 upon failure. 10511 */ 10512 int ufshcd_runtime_resume(struct device *dev) 10513 { 10514 struct ufs_hba *hba = dev_get_drvdata(dev); 10515 int ret; 10516 ktime_t start = ktime_get(); 10517 10518 ret = ufshcd_resume(hba); 10519 10520 trace_ufshcd_runtime_resume(hba, ret, 10521 ktime_to_us(ktime_sub(ktime_get(), start)), 10522 hba->curr_dev_pwr_mode, hba->uic_link_state); 10523 return ret; 10524 } 10525 EXPORT_SYMBOL(ufshcd_runtime_resume); 10526 #endif /* CONFIG_PM */ 10527 10528 static void ufshcd_wl_shutdown(struct device *dev) 10529 { 10530 struct scsi_device *sdev = to_scsi_device(dev); 10531 struct ufs_hba *hba = shost_priv(sdev->host); 10532 10533 down(&hba->host_sem); 10534 hba->shutting_down = true; 10535 up(&hba->host_sem); 10536 10537 /* Turn on everything while shutting down */ 10538 ufshcd_rpm_get_sync(hba); 10539 scsi_device_quiesce(sdev); 10540 shost_for_each_device(sdev, hba->host) { 10541 if (sdev == hba->ufs_device_wlun) 10542 continue; 10543 mutex_lock(&sdev->state_mutex); 10544 scsi_device_set_state(sdev, SDEV_OFFLINE); 10545 mutex_unlock(&sdev->state_mutex); 10546 } 10547 __ufshcd_wl_suspend(hba, UFS_SHUTDOWN_PM); 10548 10549 /* 10550 * Next, turn off the UFS controller and the UFS regulators. Disable 10551 * clocks. 10552 */ 10553 if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba)) 10554 ufshcd_suspend(hba); 10555 10556 hba->is_powered = false; 10557 } 10558 10559 /** 10560 * ufshcd_remove - de-allocate SCSI host and host memory space 10561 * data structure memory 10562 * @hba: per adapter instance 10563 */ 10564 void ufshcd_remove(struct ufs_hba *hba) 10565 { 10566 if (hba->ufs_device_wlun) 10567 ufshcd_rpm_get_sync(hba); 10568 ufs_hwmon_remove(hba); 10569 ufs_bsg_remove(hba); 10570 ufs_rpmb_remove(hba); 10571 ufs_sysfs_remove_nodes(hba->dev); 10572 cancel_delayed_work_sync(&hba->ufs_rtc_update_work); 10573 blk_mq_destroy_queue(hba->tmf_queue); 10574 blk_put_queue(hba->tmf_queue); 10575 blk_mq_free_tag_set(&hba->tmf_tag_set); 10576 if (hba->scsi_host_added) 10577 scsi_remove_host(hba->host); 10578 /* disable interrupts */ 10579 ufshcd_disable_intr(hba, hba->intr_mask); 10580 ufshcd_hba_stop(hba); 10581 ufshcd_hba_exit(hba); 10582 } 10583 EXPORT_SYMBOL_GPL(ufshcd_remove); 10584 10585 #ifdef CONFIG_PM_SLEEP 10586 int ufshcd_system_freeze(struct device *dev) 10587 { 10588 10589 return ufshcd_system_suspend(dev); 10590 10591 } 10592 EXPORT_SYMBOL_GPL(ufshcd_system_freeze); 10593 10594 int ufshcd_system_restore(struct device *dev) 10595 { 10596 10597 struct ufs_hba *hba = dev_get_drvdata(dev); 10598 int ret; 10599 10600 ret = ufshcd_system_resume(dev); 10601 if (ret) 10602 return ret; 10603 10604 /* Configure UTRL and UTMRL base address registers */ 10605 ufshcd_writel(hba, lower_32_bits(hba->utrdl_dma_addr), 10606 REG_UTP_TRANSFER_REQ_LIST_BASE_L); 10607 ufshcd_writel(hba, upper_32_bits(hba->utrdl_dma_addr), 10608 REG_UTP_TRANSFER_REQ_LIST_BASE_H); 10609 ufshcd_writel(hba, lower_32_bits(hba->utmrdl_dma_addr), 10610 REG_UTP_TASK_REQ_LIST_BASE_L); 10611 ufshcd_writel(hba, upper_32_bits(hba->utmrdl_dma_addr), 10612 REG_UTP_TASK_REQ_LIST_BASE_H); 10613 /* 10614 * Make sure that UTRL and UTMRL base address registers 10615 * are updated with the latest queue addresses. Only after 10616 * updating these addresses, we can queue the new commands. 10617 */ 10618 ufshcd_readl(hba, REG_UTP_TASK_REQ_LIST_BASE_H); 10619 10620 return 0; 10621 10622 } 10623 EXPORT_SYMBOL_GPL(ufshcd_system_restore); 10624 10625 int ufshcd_system_thaw(struct device *dev) 10626 { 10627 return ufshcd_system_resume(dev); 10628 } 10629 EXPORT_SYMBOL_GPL(ufshcd_system_thaw); 10630 #endif /* CONFIG_PM_SLEEP */ 10631 10632 /** 10633 * ufshcd_set_dma_mask - Set dma mask based on the controller 10634 * addressing capability 10635 * @hba: per adapter instance 10636 * 10637 * Return: 0 for success, non-zero for failure. 10638 */ 10639 static int ufshcd_set_dma_mask(struct ufs_hba *hba) 10640 { 10641 if (hba->vops && hba->vops->set_dma_mask) 10642 return hba->vops->set_dma_mask(hba); 10643 if (hba->capabilities & MASK_64_ADDRESSING_SUPPORT) { 10644 if (!dma_set_mask_and_coherent(hba->dev, DMA_BIT_MASK(64))) 10645 return 0; 10646 } 10647 return dma_set_mask_and_coherent(hba->dev, DMA_BIT_MASK(32)); 10648 } 10649 10650 /** 10651 * ufshcd_devres_release - devres cleanup handler, invoked during release of 10652 * hba->dev 10653 * @host: pointer to SCSI host 10654 */ 10655 static void ufshcd_devres_release(void *host) 10656 { 10657 scsi_host_put(host); 10658 } 10659 10660 /** 10661 * ufshcd_alloc_host - allocate Host Bus Adapter (HBA) 10662 * @dev: pointer to device handle 10663 * @hba_handle: driver private handle 10664 * 10665 * Return: 0 on success, non-zero value on failure. 10666 * 10667 * NOTE: There is no corresponding ufshcd_dealloc_host() because this function 10668 * keeps track of its allocations using devres and deallocates everything on 10669 * device removal automatically. 10670 */ 10671 int ufshcd_alloc_host(struct device *dev, struct ufs_hba **hba_handle) 10672 { 10673 struct Scsi_Host *host; 10674 struct ufs_hba *hba; 10675 int err = 0; 10676 10677 if (!dev) { 10678 dev_err(dev, 10679 "Invalid memory reference for dev is NULL\n"); 10680 err = -ENODEV; 10681 goto out_error; 10682 } 10683 10684 host = scsi_host_alloc(&ufshcd_driver_template, 10685 sizeof(struct ufs_hba)); 10686 if (!host) { 10687 dev_err(dev, "scsi_host_alloc failed\n"); 10688 err = -ENOMEM; 10689 goto out_error; 10690 } 10691 10692 err = devm_add_action_or_reset(dev, ufshcd_devres_release, 10693 host); 10694 if (err) 10695 return err; 10696 10697 host->nr_maps = HCTX_TYPE_POLL + 1; 10698 hba = shost_priv(host); 10699 hba->host = host; 10700 hba->dev = dev; 10701 hba->dev_ref_clk_freq = REF_CLK_FREQ_INVAL; 10702 hba->nop_out_timeout = NOP_OUT_TIMEOUT; 10703 ufshcd_set_sg_entry_size(hba, sizeof(struct ufshcd_sg_entry)); 10704 INIT_LIST_HEAD(&hba->clk_list_head); 10705 spin_lock_init(&hba->outstanding_lock); 10706 10707 *hba_handle = hba; 10708 10709 out_error: 10710 return err; 10711 } 10712 EXPORT_SYMBOL(ufshcd_alloc_host); 10713 10714 /* This function exists because blk_mq_alloc_tag_set() requires this. */ 10715 static blk_status_t ufshcd_queue_tmf(struct blk_mq_hw_ctx *hctx, 10716 const struct blk_mq_queue_data *qd) 10717 { 10718 WARN_ON_ONCE(true); 10719 return BLK_STS_NOTSUPP; 10720 } 10721 10722 static const struct blk_mq_ops ufshcd_tmf_ops = { 10723 .queue_rq = ufshcd_queue_tmf, 10724 }; 10725 10726 static int ufshcd_add_scsi_host(struct ufs_hba *hba) 10727 { 10728 int err; 10729 10730 WARN_ON_ONCE(!hba->host->can_queue); 10731 WARN_ON_ONCE(!hba->host->cmd_per_lun); 10732 10733 if (is_mcq_supported(hba)) { 10734 ufshcd_mcq_enable(hba); 10735 err = ufshcd_alloc_mcq(hba); 10736 if (!err) { 10737 ufshcd_config_mcq(hba); 10738 } else { 10739 /* Continue with SDB mode */ 10740 ufshcd_mcq_disable(hba); 10741 use_mcq_mode = false; 10742 dev_err(hba->dev, "MCQ mode is disabled, err=%d\n", 10743 err); 10744 } 10745 } 10746 if (!is_mcq_supported(hba) && !hba->lsdb_sup) { 10747 dev_err(hba->dev, 10748 "%s: failed to initialize (legacy doorbell mode not supported)\n", 10749 __func__); 10750 return -EINVAL; 10751 } 10752 10753 err = scsi_add_host(hba->host, hba->dev); 10754 if (err) { 10755 dev_err(hba->dev, "scsi_add_host failed\n"); 10756 return err; 10757 } 10758 hba->scsi_host_added = true; 10759 10760 hba->tmf_tag_set = (struct blk_mq_tag_set) { 10761 .nr_hw_queues = 1, 10762 .queue_depth = hba->nutmrs, 10763 .ops = &ufshcd_tmf_ops, 10764 }; 10765 err = blk_mq_alloc_tag_set(&hba->tmf_tag_set); 10766 if (err < 0) 10767 goto remove_scsi_host; 10768 hba->tmf_queue = blk_mq_alloc_queue(&hba->tmf_tag_set, NULL, NULL); 10769 if (IS_ERR(hba->tmf_queue)) { 10770 err = PTR_ERR(hba->tmf_queue); 10771 goto free_tmf_tag_set; 10772 } 10773 hba->tmf_rqs = devm_kcalloc(hba->dev, hba->nutmrs, 10774 sizeof(*hba->tmf_rqs), GFP_KERNEL); 10775 if (!hba->tmf_rqs) { 10776 err = -ENOMEM; 10777 goto free_tmf_queue; 10778 } 10779 10780 return 0; 10781 10782 free_tmf_queue: 10783 blk_mq_destroy_queue(hba->tmf_queue); 10784 blk_put_queue(hba->tmf_queue); 10785 10786 free_tmf_tag_set: 10787 blk_mq_free_tag_set(&hba->tmf_tag_set); 10788 10789 remove_scsi_host: 10790 if (hba->scsi_host_added) 10791 scsi_remove_host(hba->host); 10792 10793 return err; 10794 } 10795 10796 /** 10797 * ufshcd_init - Driver initialization routine 10798 * @hba: per-adapter instance 10799 * @mmio_base: base register address 10800 * @irq: Interrupt line of device 10801 * 10802 * Return: 0 on success; < 0 on failure. 10803 */ 10804 int ufshcd_init(struct ufs_hba *hba, void __iomem *mmio_base, unsigned int irq) 10805 { 10806 int err; 10807 struct Scsi_Host *host = hba->host; 10808 struct device *dev = hba->dev; 10809 10810 /* 10811 * dev_set_drvdata() must be called before any callbacks are registered 10812 * that use dev_get_drvdata() (frequency scaling, clock scaling, hwmon, 10813 * sysfs). 10814 */ 10815 dev_set_drvdata(dev, hba); 10816 10817 if (!mmio_base) { 10818 dev_err(hba->dev, 10819 "Invalid memory reference for mmio_base is NULL\n"); 10820 err = -ENODEV; 10821 goto out_error; 10822 } 10823 10824 hba->mmio_base = mmio_base; 10825 hba->irq = irq; 10826 hba->vps = &ufs_hba_vps; 10827 10828 /* 10829 * Initialize clk_gating.lock early since it is being used in 10830 * ufshcd_setup_clocks() 10831 */ 10832 spin_lock_init(&hba->clk_gating.lock); 10833 10834 /* Initialize mutex for PM QoS request synchronization */ 10835 mutex_init(&hba->pm_qos_mutex); 10836 10837 /* 10838 * Set the default power management level for runtime and system PM. 10839 * Host controller drivers can override them in their 10840 * 'ufs_hba_variant_ops::init' callback. 10841 * 10842 * Default power saving mode is to keep UFS link in Hibern8 state 10843 * and UFS device in sleep state. 10844 */ 10845 hba->rpm_lvl = ufs_get_desired_pm_lvl_for_dev_link_state( 10846 UFS_SLEEP_PWR_MODE, 10847 UIC_LINK_HIBERN8_STATE); 10848 hba->spm_lvl = ufs_get_desired_pm_lvl_for_dev_link_state( 10849 UFS_SLEEP_PWR_MODE, 10850 UIC_LINK_HIBERN8_STATE); 10851 10852 /* 10853 * Most ufs devices require 1ms delay after vcc is powered off before 10854 * it can be powered on again. Set the default to 2ms. The platform 10855 * drivers can override this setting as needed. 10856 */ 10857 hba->vcc_off_delay_us = 2000; 10858 10859 err = ufshcd_hba_init(hba); 10860 if (err) 10861 goto out_error; 10862 10863 /* Read capabilities registers */ 10864 err = ufshcd_hba_capabilities(hba); 10865 if (err) 10866 goto out_disable; 10867 10868 /* Get UFS version supported by the controller */ 10869 hba->ufs_version = ufshcd_get_ufs_version(hba); 10870 10871 /* Get Interrupt bit mask per version */ 10872 hba->intr_mask = ufshcd_get_intr_mask(hba); 10873 10874 err = ufshcd_set_dma_mask(hba); 10875 if (err) { 10876 dev_err(hba->dev, "set dma mask failed\n"); 10877 goto out_disable; 10878 } 10879 10880 /* Allocate memory for host memory space */ 10881 err = ufshcd_memory_alloc(hba); 10882 if (err) { 10883 dev_err(hba->dev, "Memory allocation failed\n"); 10884 goto out_disable; 10885 } 10886 10887 /* Configure LRB */ 10888 ufshcd_host_memory_configure(hba); 10889 10890 host->can_queue = hba->nutrs - UFSHCD_NUM_RESERVED; 10891 /* 10892 * Set the queue depth for WLUNs. ufs_get_device_desc() will increase 10893 * host->cmd_per_lun to a larger value. 10894 */ 10895 host->cmd_per_lun = 1; 10896 host->max_id = UFSHCD_MAX_ID; 10897 host->max_lun = UFS_MAX_LUNS; 10898 host->max_channel = UFSHCD_MAX_CHANNEL; 10899 host->unique_id = host->host_no; 10900 host->max_cmd_len = UFS_CDB_SIZE; 10901 host->queuecommand_may_block = !!(hba->caps & UFSHCD_CAP_CLK_GATING); 10902 10903 /* Use default RPM delay if host not set */ 10904 if (host->rpm_autosuspend_delay == 0) 10905 host->rpm_autosuspend_delay = RPM_AUTOSUSPEND_DELAY_MS; 10906 10907 hba->max_pwr_info.is_valid = false; 10908 10909 /* Initialize work queues */ 10910 hba->eh_wq = alloc_ordered_workqueue("ufs_eh_wq_%d", WQ_MEM_RECLAIM, 10911 hba->host->host_no); 10912 if (!hba->eh_wq) { 10913 dev_err(hba->dev, "%s: failed to create eh workqueue\n", 10914 __func__); 10915 err = -ENOMEM; 10916 goto out_disable; 10917 } 10918 INIT_WORK(&hba->eh_work, ufshcd_err_handler); 10919 INIT_WORK(&hba->eeh_work, ufshcd_exception_event_handler); 10920 10921 sema_init(&hba->host_sem, 1); 10922 10923 /* Initialize UIC command mutex */ 10924 mutex_init(&hba->uic_cmd_mutex); 10925 10926 /* Initialize mutex for device management commands */ 10927 mutex_init(&hba->dev_cmd.lock); 10928 10929 /* Initialize mutex for exception event control */ 10930 mutex_init(&hba->ee_ctrl_mutex); 10931 10932 mutex_init(&hba->wb_mutex); 10933 10934 init_rwsem(&hba->clk_scaling_lock); 10935 10936 ufshcd_init_clk_gating(hba); 10937 10938 ufshcd_init_clk_scaling(hba); 10939 10940 /* 10941 * In order to avoid any spurious interrupt immediately after 10942 * registering UFS controller interrupt handler, clear any pending UFS 10943 * interrupt status and disable all the UFS interrupts. 10944 */ 10945 ufshcd_writel(hba, ufshcd_readl(hba, REG_INTERRUPT_STATUS), 10946 REG_INTERRUPT_STATUS); 10947 ufshcd_writel(hba, 0, REG_INTERRUPT_ENABLE); 10948 /* 10949 * Make sure that UFS interrupts are disabled and any pending interrupt 10950 * status is cleared before registering UFS interrupt handler. 10951 */ 10952 ufshcd_readl(hba, REG_INTERRUPT_ENABLE); 10953 10954 /* IRQ registration */ 10955 err = devm_request_threaded_irq(dev, irq, ufshcd_intr, ufshcd_threaded_intr, 10956 IRQF_ONESHOT | IRQF_SHARED, UFSHCD, hba); 10957 if (err) { 10958 dev_err(hba->dev, "request irq failed\n"); 10959 goto out_disable; 10960 } else { 10961 hba->is_irq_enabled = true; 10962 } 10963 10964 /* Reset the attached device */ 10965 ufshcd_device_reset(hba); 10966 10967 ufshcd_init_crypto(hba); 10968 10969 /* Host controller enable */ 10970 err = ufshcd_hba_enable(hba); 10971 if (err) { 10972 dev_err(hba->dev, "Host controller enable failed\n"); 10973 ufshcd_print_evt_hist(hba); 10974 ufshcd_print_host_state(hba); 10975 goto out_disable; 10976 } 10977 10978 INIT_DELAYED_WORK(&hba->rpm_dev_flush_recheck_work, ufshcd_rpm_dev_flush_recheck_work); 10979 INIT_DELAYED_WORK(&hba->ufs_rtc_update_work, ufshcd_rtc_work); 10980 10981 /* Set the default auto-hiberate idle timer value to 150 ms */ 10982 if (ufshcd_is_auto_hibern8_supported(hba) && !hba->ahit) { 10983 hba->ahit = FIELD_PREP(UFSHCI_AHIBERN8_TIMER_MASK, 150) | 10984 FIELD_PREP(UFSHCI_AHIBERN8_SCALE_MASK, 3); 10985 } 10986 10987 err = ufshcd_add_scsi_host(hba); 10988 if (err) 10989 goto out_disable; 10990 10991 /* Hold auto suspend until async scan completes */ 10992 pm_runtime_get_sync(dev); 10993 10994 /* 10995 * We are assuming that device wasn't put in sleep/power-down 10996 * state exclusively during the boot stage before kernel. 10997 * This assumption helps avoid doing link startup twice during 10998 * ufshcd_probe_hba(). 10999 */ 11000 ufshcd_set_ufs_dev_active(hba); 11001 11002 /* Initialize hba, detect and initialize UFS device */ 11003 ktime_t probe_start = ktime_get(); 11004 11005 hba->ufshcd_state = UFSHCD_STATE_RESET; 11006 11007 err = ufshcd_link_startup(hba); 11008 if (err) 11009 goto out_disable; 11010 11011 if (hba->quirks & UFSHCD_QUIRK_SKIP_PH_CONFIGURATION) 11012 goto initialized; 11013 11014 /* Debug counters initialization */ 11015 ufshcd_clear_dbg_ufs_stats(hba); 11016 11017 /* UniPro link is active now */ 11018 ufshcd_set_link_active(hba); 11019 11020 /* Verify device initialization by sending NOP OUT UPIU */ 11021 err = ufshcd_verify_dev_init(hba); 11022 if (err) 11023 goto out_disable; 11024 11025 /* Initiate UFS initialization, and waiting until completion */ 11026 err = ufshcd_complete_dev_init(hba); 11027 if (err) 11028 goto out_disable; 11029 11030 err = ufshcd_device_params_init(hba); 11031 if (err) 11032 goto out_disable; 11033 11034 err = ufshcd_post_device_init(hba); 11035 11036 initialized: 11037 ufshcd_process_probe_result(hba, probe_start, err); 11038 if (err) 11039 goto out_disable; 11040 11041 ufs_sysfs_add_nodes(hba->dev); 11042 async_schedule(ufshcd_async_scan, hba); 11043 11044 device_enable_async_suspend(dev); 11045 ufshcd_pm_qos_init(hba); 11046 return 0; 11047 11048 out_disable: 11049 hba->is_irq_enabled = false; 11050 ufshcd_hba_exit(hba); 11051 out_error: 11052 return err > 0 ? -EIO : err; 11053 } 11054 EXPORT_SYMBOL_GPL(ufshcd_init); 11055 11056 void ufshcd_resume_complete(struct device *dev) 11057 { 11058 struct ufs_hba *hba = dev_get_drvdata(dev); 11059 11060 if (hba->complete_put) { 11061 ufshcd_rpm_put(hba); 11062 hba->complete_put = false; 11063 } 11064 } 11065 EXPORT_SYMBOL_GPL(ufshcd_resume_complete); 11066 11067 static bool ufshcd_rpm_ok_for_spm(struct ufs_hba *hba) 11068 { 11069 struct device *dev = &hba->ufs_device_wlun->sdev_gendev; 11070 enum ufs_dev_pwr_mode dev_pwr_mode; 11071 enum uic_link_state link_state; 11072 unsigned long flags; 11073 bool res; 11074 11075 spin_lock_irqsave(&dev->power.lock, flags); 11076 dev_pwr_mode = ufs_get_pm_lvl_to_dev_pwr_mode(hba->spm_lvl); 11077 link_state = ufs_get_pm_lvl_to_link_pwr_state(hba->spm_lvl); 11078 res = pm_runtime_suspended(dev) && 11079 hba->curr_dev_pwr_mode == dev_pwr_mode && 11080 hba->uic_link_state == link_state && 11081 !hba->dev_info.b_rpm_dev_flush_capable; 11082 spin_unlock_irqrestore(&dev->power.lock, flags); 11083 11084 return res; 11085 } 11086 11087 int __ufshcd_suspend_prepare(struct device *dev, bool rpm_ok_for_spm) 11088 { 11089 struct ufs_hba *hba = dev_get_drvdata(dev); 11090 int ret; 11091 11092 /* 11093 * SCSI assumes that runtime-pm and system-pm for scsi drivers 11094 * are same. And it doesn't wake up the device for system-suspend 11095 * if it's runtime suspended. But ufs doesn't follow that. 11096 * Refer ufshcd_resume_complete() 11097 */ 11098 if (hba->ufs_device_wlun) { 11099 /* Prevent runtime suspend */ 11100 ufshcd_rpm_get_noresume(hba); 11101 /* 11102 * Check if already runtime suspended in same state as system 11103 * suspend would be. 11104 */ 11105 if (!rpm_ok_for_spm || !ufshcd_rpm_ok_for_spm(hba)) { 11106 /* RPM state is not ok for SPM, so runtime resume */ 11107 ret = ufshcd_rpm_resume(hba); 11108 if (ret < 0 && ret != -EACCES) { 11109 ufshcd_rpm_put(hba); 11110 return ret; 11111 } 11112 } 11113 hba->complete_put = true; 11114 } 11115 return 0; 11116 } 11117 EXPORT_SYMBOL_GPL(__ufshcd_suspend_prepare); 11118 11119 int ufshcd_suspend_prepare(struct device *dev) 11120 { 11121 return __ufshcd_suspend_prepare(dev, true); 11122 } 11123 EXPORT_SYMBOL_GPL(ufshcd_suspend_prepare); 11124 11125 #ifdef CONFIG_PM_SLEEP 11126 static int ufshcd_wl_poweroff(struct device *dev) 11127 { 11128 struct scsi_device *sdev = to_scsi_device(dev); 11129 struct ufs_hba *hba = shost_priv(sdev->host); 11130 11131 __ufshcd_wl_suspend(hba, UFS_SHUTDOWN_PM); 11132 return 0; 11133 } 11134 #endif 11135 11136 static int ufshcd_wl_probe(struct device *dev) 11137 { 11138 struct scsi_device *sdev = to_scsi_device(dev); 11139 11140 if (!is_device_wlun(sdev)) 11141 return -ENODEV; 11142 11143 blk_pm_runtime_init(sdev->request_queue, dev); 11144 pm_runtime_set_autosuspend_delay(dev, 0); 11145 pm_runtime_allow(dev); 11146 11147 return 0; 11148 } 11149 11150 static int ufshcd_wl_remove(struct device *dev) 11151 { 11152 pm_runtime_forbid(dev); 11153 return 0; 11154 } 11155 11156 static const struct dev_pm_ops ufshcd_wl_pm_ops = { 11157 #ifdef CONFIG_PM_SLEEP 11158 .suspend = ufshcd_wl_suspend, 11159 .resume = ufshcd_wl_resume, 11160 .freeze = ufshcd_wl_suspend, 11161 .thaw = ufshcd_wl_resume, 11162 .poweroff = ufshcd_wl_poweroff, 11163 .restore = ufshcd_wl_resume, 11164 #endif 11165 SET_RUNTIME_PM_OPS(ufshcd_wl_runtime_suspend, ufshcd_wl_runtime_resume, NULL) 11166 }; 11167 11168 static void ufshcd_check_header_layout(void) 11169 { 11170 /* 11171 * gcc compilers before version 10 cannot do constant-folding for 11172 * sub-byte bitfields. Hence skip the layout checks for gcc 9 and 11173 * before. 11174 */ 11175 if (IS_ENABLED(CONFIG_CC_IS_GCC) && CONFIG_GCC_VERSION < 100000) 11176 return; 11177 11178 BUILD_BUG_ON(((u8 *)&(struct request_desc_header){ 11179 .cci = 3})[0] != 3); 11180 11181 BUILD_BUG_ON(((u8 *)&(struct request_desc_header){ 11182 .ehs_length = 2})[1] != 2); 11183 11184 BUILD_BUG_ON(((u8 *)&(struct request_desc_header){ 11185 .enable_crypto = 1})[2] 11186 != 0x80); 11187 11188 BUILD_BUG_ON((((u8 *)&(struct request_desc_header){ 11189 .command_type = 5, 11190 .data_direction = 3, 11191 .interrupt = 1, 11192 })[3]) != ((5 << 4) | (3 << 1) | 1)); 11193 11194 BUILD_BUG_ON(((__le32 *)&(struct request_desc_header){ 11195 .dunl = cpu_to_le32(0xdeadbeef)})[1] != 11196 cpu_to_le32(0xdeadbeef)); 11197 11198 BUILD_BUG_ON(((u8 *)&(struct request_desc_header){ 11199 .ocs = 4})[8] != 4); 11200 11201 BUILD_BUG_ON(((u8 *)&(struct request_desc_header){ 11202 .cds = 5})[9] != 5); 11203 11204 BUILD_BUG_ON(((__le32 *)&(struct request_desc_header){ 11205 .dunu = cpu_to_le32(0xbadcafe)})[3] != 11206 cpu_to_le32(0xbadcafe)); 11207 11208 BUILD_BUG_ON(((u8 *)&(struct utp_upiu_header){ 11209 .iid = 0xf })[4] != 0xf0); 11210 11211 BUILD_BUG_ON(((u8 *)&(struct utp_upiu_header){ 11212 .command_set_type = 0xf })[4] != 0xf); 11213 } 11214 11215 /* 11216 * ufs_dev_wlun_template - describes ufs device wlun 11217 * ufs-device wlun - used to send pm commands 11218 * All luns are consumers of ufs-device wlun. 11219 * 11220 * Currently, no sd driver is present for wluns. 11221 * Hence the no specific pm operations are performed. 11222 * With ufs design, SSU should be sent to ufs-device wlun. 11223 * Hence register a scsi driver for ufs wluns only. 11224 */ 11225 static struct scsi_driver ufs_dev_wlun_template = { 11226 .gendrv = { 11227 .name = "ufs_device_wlun", 11228 .probe = ufshcd_wl_probe, 11229 .remove = ufshcd_wl_remove, 11230 .pm = &ufshcd_wl_pm_ops, 11231 .shutdown = ufshcd_wl_shutdown, 11232 }, 11233 }; 11234 11235 static int __init ufshcd_core_init(void) 11236 { 11237 int ret; 11238 11239 ufshcd_check_header_layout(); 11240 11241 ufs_debugfs_init(); 11242 11243 ret = scsi_register_driver(&ufs_dev_wlun_template.gendrv); 11244 if (ret) 11245 ufs_debugfs_exit(); 11246 return ret; 11247 } 11248 11249 static void __exit ufshcd_core_exit(void) 11250 { 11251 ufs_debugfs_exit(); 11252 scsi_unregister_driver(&ufs_dev_wlun_template.gendrv); 11253 } 11254 11255 module_init(ufshcd_core_init); 11256 module_exit(ufshcd_core_exit); 11257 11258 MODULE_AUTHOR("Santosh Yaragnavi <santosh.sy@samsung.com>"); 11259 MODULE_AUTHOR("Vinayak Holikatti <h.vinayak@samsung.com>"); 11260 MODULE_DESCRIPTION("Generic UFS host controller driver Core"); 11261 MODULE_SOFTDEP("pre: governor_simpleondemand"); 11262 MODULE_LICENSE("GPL"); 11263