xref: /linux/drivers/ufs/core/ufshcd.c (revision 9e6d33937b42ca4867af3b341e5d09abca4a2746)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Universal Flash Storage Host controller driver Core
4  * Copyright (C) 2011-2013 Samsung India Software Operations
5  * Copyright (c) 2013-2016, The Linux Foundation. All rights reserved.
6  *
7  * Authors:
8  *	Santosh Yaraganavi <santosh.sy@samsung.com>
9  *	Vinayak Holikatti <h.vinayak@samsung.com>
10  */
11 
12 #include <linux/async.h>
13 #include <linux/devfreq.h>
14 #include <linux/nls.h>
15 #include <linux/of.h>
16 #include <linux/bitfield.h>
17 #include <linux/blk-pm.h>
18 #include <linux/blkdev.h>
19 #include <linux/clk.h>
20 #include <linux/delay.h>
21 #include <linux/interrupt.h>
22 #include <linux/module.h>
23 #include <linux/pm_opp.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/sched/clock.h>
26 #include <linux/iopoll.h>
27 #include <scsi/scsi_cmnd.h>
28 #include <scsi/scsi_dbg.h>
29 #include <scsi/scsi_driver.h>
30 #include <scsi/scsi_eh.h>
31 #include "ufshcd-priv.h"
32 #include <ufs/ufs_quirks.h>
33 #include <ufs/unipro.h>
34 #include "ufs-sysfs.h"
35 #include "ufs-debugfs.h"
36 #include "ufs-fault-injection.h"
37 #include "ufs_bsg.h"
38 #include "ufshcd-crypto.h"
39 #include <asm/unaligned.h>
40 
41 #define CREATE_TRACE_POINTS
42 #include <trace/events/ufs.h>
43 
44 #define UFSHCD_ENABLE_INTRS	(UTP_TRANSFER_REQ_COMPL |\
45 				 UTP_TASK_REQ_COMPL |\
46 				 UFSHCD_ERROR_MASK)
47 
48 #define UFSHCD_ENABLE_MCQ_INTRS	(UTP_TASK_REQ_COMPL |\
49 				 UFSHCD_ERROR_MASK |\
50 				 MCQ_CQ_EVENT_STATUS)
51 
52 
53 /* UIC command timeout, unit: ms */
54 #define UIC_CMD_TIMEOUT	500
55 
56 /* NOP OUT retries waiting for NOP IN response */
57 #define NOP_OUT_RETRIES    10
58 /* Timeout after 50 msecs if NOP OUT hangs without response */
59 #define NOP_OUT_TIMEOUT    50 /* msecs */
60 
61 /* Query request retries */
62 #define QUERY_REQ_RETRIES 3
63 /* Query request timeout */
64 #define QUERY_REQ_TIMEOUT 1500 /* 1.5 seconds */
65 
66 /* Advanced RPMB request timeout */
67 #define ADVANCED_RPMB_REQ_TIMEOUT  3000 /* 3 seconds */
68 
69 /* Task management command timeout */
70 #define TM_CMD_TIMEOUT	100 /* msecs */
71 
72 /* maximum number of retries for a general UIC command  */
73 #define UFS_UIC_COMMAND_RETRIES 3
74 
75 /* maximum number of link-startup retries */
76 #define DME_LINKSTARTUP_RETRIES 3
77 
78 /* maximum number of reset retries before giving up */
79 #define MAX_HOST_RESET_RETRIES 5
80 
81 /* Maximum number of error handler retries before giving up */
82 #define MAX_ERR_HANDLER_RETRIES 5
83 
84 /* Expose the flag value from utp_upiu_query.value */
85 #define MASK_QUERY_UPIU_FLAG_LOC 0xFF
86 
87 /* Interrupt aggregation default timeout, unit: 40us */
88 #define INT_AGGR_DEF_TO	0x02
89 
90 /* default delay of autosuspend: 2000 ms */
91 #define RPM_AUTOSUSPEND_DELAY_MS 2000
92 
93 /* Default delay of RPM device flush delayed work */
94 #define RPM_DEV_FLUSH_RECHECK_WORK_DELAY_MS 5000
95 
96 /* Default value of wait time before gating device ref clock */
97 #define UFSHCD_REF_CLK_GATING_WAIT_US 0xFF /* microsecs */
98 
99 /* Polling time to wait for fDeviceInit */
100 #define FDEVICEINIT_COMPL_TIMEOUT 1500 /* millisecs */
101 
102 /* Default RTC update every 10 seconds */
103 #define UFS_RTC_UPDATE_INTERVAL_MS (10 * MSEC_PER_SEC)
104 
105 /* UFSHC 4.0 compliant HC support this mode. */
106 static bool use_mcq_mode = true;
107 
108 static bool is_mcq_supported(struct ufs_hba *hba)
109 {
110 	return hba->mcq_sup && use_mcq_mode;
111 }
112 
113 module_param(use_mcq_mode, bool, 0644);
114 MODULE_PARM_DESC(use_mcq_mode, "Control MCQ mode for controllers starting from UFSHCI 4.0. 1 - enable MCQ, 0 - disable MCQ. MCQ is enabled by default");
115 
116 #define ufshcd_toggle_vreg(_dev, _vreg, _on)				\
117 	({                                                              \
118 		int _ret;                                               \
119 		if (_on)                                                \
120 			_ret = ufshcd_enable_vreg(_dev, _vreg);         \
121 		else                                                    \
122 			_ret = ufshcd_disable_vreg(_dev, _vreg);        \
123 		_ret;                                                   \
124 	})
125 
126 #define ufshcd_hex_dump(prefix_str, buf, len) do {                       \
127 	size_t __len = (len);                                            \
128 	print_hex_dump(KERN_ERR, prefix_str,                             \
129 		       __len > 4 ? DUMP_PREFIX_OFFSET : DUMP_PREFIX_NONE,\
130 		       16, 4, buf, __len, false);                        \
131 } while (0)
132 
133 int ufshcd_dump_regs(struct ufs_hba *hba, size_t offset, size_t len,
134 		     const char *prefix)
135 {
136 	u32 *regs;
137 	size_t pos;
138 
139 	if (offset % 4 != 0 || len % 4 != 0) /* keep readl happy */
140 		return -EINVAL;
141 
142 	regs = kzalloc(len, GFP_ATOMIC);
143 	if (!regs)
144 		return -ENOMEM;
145 
146 	for (pos = 0; pos < len; pos += 4) {
147 		if (offset == 0 &&
148 		    pos >= REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER &&
149 		    pos <= REG_UIC_ERROR_CODE_DME)
150 			continue;
151 		regs[pos / 4] = ufshcd_readl(hba, offset + pos);
152 	}
153 
154 	ufshcd_hex_dump(prefix, regs, len);
155 	kfree(regs);
156 
157 	return 0;
158 }
159 EXPORT_SYMBOL_GPL(ufshcd_dump_regs);
160 
161 enum {
162 	UFSHCD_MAX_CHANNEL	= 0,
163 	UFSHCD_MAX_ID		= 1,
164 	UFSHCD_CMD_PER_LUN	= 32 - UFSHCD_NUM_RESERVED,
165 	UFSHCD_CAN_QUEUE	= 32 - UFSHCD_NUM_RESERVED,
166 };
167 
168 static const char *const ufshcd_state_name[] = {
169 	[UFSHCD_STATE_RESET]			= "reset",
170 	[UFSHCD_STATE_OPERATIONAL]		= "operational",
171 	[UFSHCD_STATE_ERROR]			= "error",
172 	[UFSHCD_STATE_EH_SCHEDULED_FATAL]	= "eh_fatal",
173 	[UFSHCD_STATE_EH_SCHEDULED_NON_FATAL]	= "eh_non_fatal",
174 };
175 
176 /* UFSHCD error handling flags */
177 enum {
178 	UFSHCD_EH_IN_PROGRESS = (1 << 0),
179 };
180 
181 /* UFSHCD UIC layer error flags */
182 enum {
183 	UFSHCD_UIC_DL_PA_INIT_ERROR = (1 << 0), /* Data link layer error */
184 	UFSHCD_UIC_DL_NAC_RECEIVED_ERROR = (1 << 1), /* Data link layer error */
185 	UFSHCD_UIC_DL_TCx_REPLAY_ERROR = (1 << 2), /* Data link layer error */
186 	UFSHCD_UIC_NL_ERROR = (1 << 3), /* Network layer error */
187 	UFSHCD_UIC_TL_ERROR = (1 << 4), /* Transport Layer error */
188 	UFSHCD_UIC_DME_ERROR = (1 << 5), /* DME error */
189 	UFSHCD_UIC_PA_GENERIC_ERROR = (1 << 6), /* Generic PA error */
190 };
191 
192 #define ufshcd_set_eh_in_progress(h) \
193 	((h)->eh_flags |= UFSHCD_EH_IN_PROGRESS)
194 #define ufshcd_eh_in_progress(h) \
195 	((h)->eh_flags & UFSHCD_EH_IN_PROGRESS)
196 #define ufshcd_clear_eh_in_progress(h) \
197 	((h)->eh_flags &= ~UFSHCD_EH_IN_PROGRESS)
198 
199 const struct ufs_pm_lvl_states ufs_pm_lvl_states[] = {
200 	[UFS_PM_LVL_0] = {UFS_ACTIVE_PWR_MODE, UIC_LINK_ACTIVE_STATE},
201 	[UFS_PM_LVL_1] = {UFS_ACTIVE_PWR_MODE, UIC_LINK_HIBERN8_STATE},
202 	[UFS_PM_LVL_2] = {UFS_SLEEP_PWR_MODE, UIC_LINK_ACTIVE_STATE},
203 	[UFS_PM_LVL_3] = {UFS_SLEEP_PWR_MODE, UIC_LINK_HIBERN8_STATE},
204 	[UFS_PM_LVL_4] = {UFS_POWERDOWN_PWR_MODE, UIC_LINK_HIBERN8_STATE},
205 	[UFS_PM_LVL_5] = {UFS_POWERDOWN_PWR_MODE, UIC_LINK_OFF_STATE},
206 	/*
207 	 * For DeepSleep, the link is first put in hibern8 and then off.
208 	 * Leaving the link in hibern8 is not supported.
209 	 */
210 	[UFS_PM_LVL_6] = {UFS_DEEPSLEEP_PWR_MODE, UIC_LINK_OFF_STATE},
211 };
212 
213 static inline enum ufs_dev_pwr_mode
214 ufs_get_pm_lvl_to_dev_pwr_mode(enum ufs_pm_level lvl)
215 {
216 	return ufs_pm_lvl_states[lvl].dev_state;
217 }
218 
219 static inline enum uic_link_state
220 ufs_get_pm_lvl_to_link_pwr_state(enum ufs_pm_level lvl)
221 {
222 	return ufs_pm_lvl_states[lvl].link_state;
223 }
224 
225 static inline enum ufs_pm_level
226 ufs_get_desired_pm_lvl_for_dev_link_state(enum ufs_dev_pwr_mode dev_state,
227 					enum uic_link_state link_state)
228 {
229 	enum ufs_pm_level lvl;
230 
231 	for (lvl = UFS_PM_LVL_0; lvl < UFS_PM_LVL_MAX; lvl++) {
232 		if ((ufs_pm_lvl_states[lvl].dev_state == dev_state) &&
233 			(ufs_pm_lvl_states[lvl].link_state == link_state))
234 			return lvl;
235 	}
236 
237 	/* if no match found, return the level 0 */
238 	return UFS_PM_LVL_0;
239 }
240 
241 static bool ufshcd_is_ufs_dev_busy(struct ufs_hba *hba)
242 {
243 	return (hba->clk_gating.active_reqs || hba->outstanding_reqs || hba->outstanding_tasks ||
244 		hba->active_uic_cmd || hba->uic_async_done);
245 }
246 
247 static const struct ufs_dev_quirk ufs_fixups[] = {
248 	/* UFS cards deviations table */
249 	{ .wmanufacturerid = UFS_VENDOR_MICRON,
250 	  .model = UFS_ANY_MODEL,
251 	  .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM },
252 	{ .wmanufacturerid = UFS_VENDOR_SAMSUNG,
253 	  .model = UFS_ANY_MODEL,
254 	  .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM |
255 		   UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE |
256 		   UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS },
257 	{ .wmanufacturerid = UFS_VENDOR_SKHYNIX,
258 	  .model = UFS_ANY_MODEL,
259 	  .quirk = UFS_DEVICE_QUIRK_HOST_PA_SAVECONFIGTIME },
260 	{ .wmanufacturerid = UFS_VENDOR_SKHYNIX,
261 	  .model = "hB8aL1" /*H28U62301AMR*/,
262 	  .quirk = UFS_DEVICE_QUIRK_HOST_VS_DEBUGSAVECONFIGTIME },
263 	{ .wmanufacturerid = UFS_VENDOR_TOSHIBA,
264 	  .model = UFS_ANY_MODEL,
265 	  .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM },
266 	{ .wmanufacturerid = UFS_VENDOR_TOSHIBA,
267 	  .model = "THGLF2G9C8KBADG",
268 	  .quirk = UFS_DEVICE_QUIRK_PA_TACTIVATE },
269 	{ .wmanufacturerid = UFS_VENDOR_TOSHIBA,
270 	  .model = "THGLF2G9D8KBADG",
271 	  .quirk = UFS_DEVICE_QUIRK_PA_TACTIVATE },
272 	{}
273 };
274 
275 static irqreturn_t ufshcd_tmc_handler(struct ufs_hba *hba);
276 static void ufshcd_async_scan(void *data, async_cookie_t cookie);
277 static int ufshcd_reset_and_restore(struct ufs_hba *hba);
278 static int ufshcd_eh_host_reset_handler(struct scsi_cmnd *cmd);
279 static int ufshcd_clear_tm_cmd(struct ufs_hba *hba, int tag);
280 static void ufshcd_hba_exit(struct ufs_hba *hba);
281 static int ufshcd_probe_hba(struct ufs_hba *hba, bool init_dev_params);
282 static int ufshcd_setup_clocks(struct ufs_hba *hba, bool on);
283 static inline void ufshcd_add_delay_before_dme_cmd(struct ufs_hba *hba);
284 static int ufshcd_host_reset_and_restore(struct ufs_hba *hba);
285 static void ufshcd_resume_clkscaling(struct ufs_hba *hba);
286 static void ufshcd_suspend_clkscaling(struct ufs_hba *hba);
287 static int ufshcd_scale_clks(struct ufs_hba *hba, unsigned long freq,
288 			     bool scale_up);
289 static irqreturn_t ufshcd_intr(int irq, void *__hba);
290 static int ufshcd_change_power_mode(struct ufs_hba *hba,
291 			     struct ufs_pa_layer_attr *pwr_mode);
292 static int ufshcd_setup_hba_vreg(struct ufs_hba *hba, bool on);
293 static int ufshcd_setup_vreg(struct ufs_hba *hba, bool on);
294 static inline int ufshcd_config_vreg_hpm(struct ufs_hba *hba,
295 					 struct ufs_vreg *vreg);
296 static void ufshcd_wb_toggle_buf_flush_during_h8(struct ufs_hba *hba,
297 						 bool enable);
298 static void ufshcd_hba_vreg_set_lpm(struct ufs_hba *hba);
299 static void ufshcd_hba_vreg_set_hpm(struct ufs_hba *hba);
300 
301 void ufshcd_enable_irq(struct ufs_hba *hba)
302 {
303 	if (!hba->is_irq_enabled) {
304 		enable_irq(hba->irq);
305 		hba->is_irq_enabled = true;
306 	}
307 }
308 EXPORT_SYMBOL_GPL(ufshcd_enable_irq);
309 
310 void ufshcd_disable_irq(struct ufs_hba *hba)
311 {
312 	if (hba->is_irq_enabled) {
313 		disable_irq(hba->irq);
314 		hba->is_irq_enabled = false;
315 	}
316 }
317 EXPORT_SYMBOL_GPL(ufshcd_disable_irq);
318 
319 static void ufshcd_configure_wb(struct ufs_hba *hba)
320 {
321 	if (!ufshcd_is_wb_allowed(hba))
322 		return;
323 
324 	ufshcd_wb_toggle(hba, true);
325 
326 	ufshcd_wb_toggle_buf_flush_during_h8(hba, true);
327 
328 	if (ufshcd_is_wb_buf_flush_allowed(hba))
329 		ufshcd_wb_toggle_buf_flush(hba, true);
330 }
331 
332 static void ufshcd_scsi_unblock_requests(struct ufs_hba *hba)
333 {
334 	if (atomic_dec_and_test(&hba->scsi_block_reqs_cnt))
335 		scsi_unblock_requests(hba->host);
336 }
337 
338 static void ufshcd_scsi_block_requests(struct ufs_hba *hba)
339 {
340 	if (atomic_inc_return(&hba->scsi_block_reqs_cnt) == 1)
341 		scsi_block_requests(hba->host);
342 }
343 
344 static void ufshcd_add_cmd_upiu_trace(struct ufs_hba *hba, unsigned int tag,
345 				      enum ufs_trace_str_t str_t)
346 {
347 	struct utp_upiu_req *rq = hba->lrb[tag].ucd_req_ptr;
348 	struct utp_upiu_header *header;
349 
350 	if (!trace_ufshcd_upiu_enabled())
351 		return;
352 
353 	if (str_t == UFS_CMD_SEND)
354 		header = &rq->header;
355 	else
356 		header = &hba->lrb[tag].ucd_rsp_ptr->header;
357 
358 	trace_ufshcd_upiu(dev_name(hba->dev), str_t, header, &rq->sc.cdb,
359 			  UFS_TSF_CDB);
360 }
361 
362 static void ufshcd_add_query_upiu_trace(struct ufs_hba *hba,
363 					enum ufs_trace_str_t str_t,
364 					struct utp_upiu_req *rq_rsp)
365 {
366 	if (!trace_ufshcd_upiu_enabled())
367 		return;
368 
369 	trace_ufshcd_upiu(dev_name(hba->dev), str_t, &rq_rsp->header,
370 			  &rq_rsp->qr, UFS_TSF_OSF);
371 }
372 
373 static void ufshcd_add_tm_upiu_trace(struct ufs_hba *hba, unsigned int tag,
374 				     enum ufs_trace_str_t str_t)
375 {
376 	struct utp_task_req_desc *descp = &hba->utmrdl_base_addr[tag];
377 
378 	if (!trace_ufshcd_upiu_enabled())
379 		return;
380 
381 	if (str_t == UFS_TM_SEND)
382 		trace_ufshcd_upiu(dev_name(hba->dev), str_t,
383 				  &descp->upiu_req.req_header,
384 				  &descp->upiu_req.input_param1,
385 				  UFS_TSF_TM_INPUT);
386 	else
387 		trace_ufshcd_upiu(dev_name(hba->dev), str_t,
388 				  &descp->upiu_rsp.rsp_header,
389 				  &descp->upiu_rsp.output_param1,
390 				  UFS_TSF_TM_OUTPUT);
391 }
392 
393 static void ufshcd_add_uic_command_trace(struct ufs_hba *hba,
394 					 const struct uic_command *ucmd,
395 					 enum ufs_trace_str_t str_t)
396 {
397 	u32 cmd;
398 
399 	if (!trace_ufshcd_uic_command_enabled())
400 		return;
401 
402 	if (str_t == UFS_CMD_SEND)
403 		cmd = ucmd->command;
404 	else
405 		cmd = ufshcd_readl(hba, REG_UIC_COMMAND);
406 
407 	trace_ufshcd_uic_command(dev_name(hba->dev), str_t, cmd,
408 				 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_1),
409 				 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_2),
410 				 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_3));
411 }
412 
413 static void ufshcd_add_command_trace(struct ufs_hba *hba, unsigned int tag,
414 				     enum ufs_trace_str_t str_t)
415 {
416 	u64 lba = 0;
417 	u8 opcode = 0, group_id = 0;
418 	u32 doorbell = 0;
419 	u32 intr;
420 	int hwq_id = -1;
421 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
422 	struct scsi_cmnd *cmd = lrbp->cmd;
423 	struct request *rq = scsi_cmd_to_rq(cmd);
424 	int transfer_len = -1;
425 
426 	if (!cmd)
427 		return;
428 
429 	/* trace UPIU also */
430 	ufshcd_add_cmd_upiu_trace(hba, tag, str_t);
431 	if (!trace_ufshcd_command_enabled())
432 		return;
433 
434 	opcode = cmd->cmnd[0];
435 
436 	if (opcode == READ_10 || opcode == WRITE_10) {
437 		/*
438 		 * Currently we only fully trace read(10) and write(10) commands
439 		 */
440 		transfer_len =
441 		       be32_to_cpu(lrbp->ucd_req_ptr->sc.exp_data_transfer_len);
442 		lba = scsi_get_lba(cmd);
443 		if (opcode == WRITE_10)
444 			group_id = lrbp->cmd->cmnd[6];
445 	} else if (opcode == UNMAP) {
446 		/*
447 		 * The number of Bytes to be unmapped beginning with the lba.
448 		 */
449 		transfer_len = blk_rq_bytes(rq);
450 		lba = scsi_get_lba(cmd);
451 	}
452 
453 	intr = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
454 
455 	if (is_mcq_enabled(hba)) {
456 		struct ufs_hw_queue *hwq = ufshcd_mcq_req_to_hwq(hba, rq);
457 
458 		hwq_id = hwq->id;
459 	} else {
460 		doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
461 	}
462 	trace_ufshcd_command(cmd->device, str_t, tag, doorbell, hwq_id,
463 			     transfer_len, intr, lba, opcode, group_id);
464 }
465 
466 static void ufshcd_print_clk_freqs(struct ufs_hba *hba)
467 {
468 	struct ufs_clk_info *clki;
469 	struct list_head *head = &hba->clk_list_head;
470 
471 	if (list_empty(head))
472 		return;
473 
474 	list_for_each_entry(clki, head, list) {
475 		if (!IS_ERR_OR_NULL(clki->clk) && clki->min_freq &&
476 				clki->max_freq)
477 			dev_err(hba->dev, "clk: %s, rate: %u\n",
478 					clki->name, clki->curr_freq);
479 	}
480 }
481 
482 static void ufshcd_print_evt(struct ufs_hba *hba, u32 id,
483 			     const char *err_name)
484 {
485 	int i;
486 	bool found = false;
487 	const struct ufs_event_hist *e;
488 
489 	if (id >= UFS_EVT_CNT)
490 		return;
491 
492 	e = &hba->ufs_stats.event[id];
493 
494 	for (i = 0; i < UFS_EVENT_HIST_LENGTH; i++) {
495 		int p = (i + e->pos) % UFS_EVENT_HIST_LENGTH;
496 
497 		if (e->tstamp[p] == 0)
498 			continue;
499 		dev_err(hba->dev, "%s[%d] = 0x%x at %lld us\n", err_name, p,
500 			e->val[p], div_u64(e->tstamp[p], 1000));
501 		found = true;
502 	}
503 
504 	if (!found)
505 		dev_err(hba->dev, "No record of %s\n", err_name);
506 	else
507 		dev_err(hba->dev, "%s: total cnt=%llu\n", err_name, e->cnt);
508 }
509 
510 static void ufshcd_print_evt_hist(struct ufs_hba *hba)
511 {
512 	ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, "host_regs: ");
513 
514 	ufshcd_print_evt(hba, UFS_EVT_PA_ERR, "pa_err");
515 	ufshcd_print_evt(hba, UFS_EVT_DL_ERR, "dl_err");
516 	ufshcd_print_evt(hba, UFS_EVT_NL_ERR, "nl_err");
517 	ufshcd_print_evt(hba, UFS_EVT_TL_ERR, "tl_err");
518 	ufshcd_print_evt(hba, UFS_EVT_DME_ERR, "dme_err");
519 	ufshcd_print_evt(hba, UFS_EVT_AUTO_HIBERN8_ERR,
520 			 "auto_hibern8_err");
521 	ufshcd_print_evt(hba, UFS_EVT_FATAL_ERR, "fatal_err");
522 	ufshcd_print_evt(hba, UFS_EVT_LINK_STARTUP_FAIL,
523 			 "link_startup_fail");
524 	ufshcd_print_evt(hba, UFS_EVT_RESUME_ERR, "resume_fail");
525 	ufshcd_print_evt(hba, UFS_EVT_SUSPEND_ERR,
526 			 "suspend_fail");
527 	ufshcd_print_evt(hba, UFS_EVT_WL_RES_ERR, "wlun resume_fail");
528 	ufshcd_print_evt(hba, UFS_EVT_WL_SUSP_ERR,
529 			 "wlun suspend_fail");
530 	ufshcd_print_evt(hba, UFS_EVT_DEV_RESET, "dev_reset");
531 	ufshcd_print_evt(hba, UFS_EVT_HOST_RESET, "host_reset");
532 	ufshcd_print_evt(hba, UFS_EVT_ABORT, "task_abort");
533 
534 	ufshcd_vops_dbg_register_dump(hba);
535 }
536 
537 static
538 void ufshcd_print_tr(struct ufs_hba *hba, int tag, bool pr_prdt)
539 {
540 	const struct ufshcd_lrb *lrbp;
541 	int prdt_length;
542 
543 	lrbp = &hba->lrb[tag];
544 
545 	dev_err(hba->dev, "UPIU[%d] - issue time %lld us\n",
546 			tag, div_u64(lrbp->issue_time_stamp_local_clock, 1000));
547 	dev_err(hba->dev, "UPIU[%d] - complete time %lld us\n",
548 			tag, div_u64(lrbp->compl_time_stamp_local_clock, 1000));
549 	dev_err(hba->dev,
550 		"UPIU[%d] - Transfer Request Descriptor phys@0x%llx\n",
551 		tag, (u64)lrbp->utrd_dma_addr);
552 
553 	ufshcd_hex_dump("UPIU TRD: ", lrbp->utr_descriptor_ptr,
554 			sizeof(struct utp_transfer_req_desc));
555 	dev_err(hba->dev, "UPIU[%d] - Request UPIU phys@0x%llx\n", tag,
556 		(u64)lrbp->ucd_req_dma_addr);
557 	ufshcd_hex_dump("UPIU REQ: ", lrbp->ucd_req_ptr,
558 			sizeof(struct utp_upiu_req));
559 	dev_err(hba->dev, "UPIU[%d] - Response UPIU phys@0x%llx\n", tag,
560 		(u64)lrbp->ucd_rsp_dma_addr);
561 	ufshcd_hex_dump("UPIU RSP: ", lrbp->ucd_rsp_ptr,
562 			sizeof(struct utp_upiu_rsp));
563 
564 	prdt_length = le16_to_cpu(
565 		lrbp->utr_descriptor_ptr->prd_table_length);
566 	if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN)
567 		prdt_length /= ufshcd_sg_entry_size(hba);
568 
569 	dev_err(hba->dev,
570 		"UPIU[%d] - PRDT - %d entries  phys@0x%llx\n",
571 		tag, prdt_length,
572 		(u64)lrbp->ucd_prdt_dma_addr);
573 
574 	if (pr_prdt)
575 		ufshcd_hex_dump("UPIU PRDT: ", lrbp->ucd_prdt_ptr,
576 			ufshcd_sg_entry_size(hba) * prdt_length);
577 }
578 
579 static bool ufshcd_print_tr_iter(struct request *req, void *priv)
580 {
581 	struct scsi_device *sdev = req->q->queuedata;
582 	struct Scsi_Host *shost = sdev->host;
583 	struct ufs_hba *hba = shost_priv(shost);
584 
585 	ufshcd_print_tr(hba, req->tag, *(bool *)priv);
586 
587 	return true;
588 }
589 
590 /**
591  * ufshcd_print_trs_all - print trs for all started requests.
592  * @hba: per-adapter instance.
593  * @pr_prdt: need to print prdt or not.
594  */
595 static void ufshcd_print_trs_all(struct ufs_hba *hba, bool pr_prdt)
596 {
597 	blk_mq_tagset_busy_iter(&hba->host->tag_set, ufshcd_print_tr_iter, &pr_prdt);
598 }
599 
600 static void ufshcd_print_tmrs(struct ufs_hba *hba, unsigned long bitmap)
601 {
602 	int tag;
603 
604 	for_each_set_bit(tag, &bitmap, hba->nutmrs) {
605 		struct utp_task_req_desc *tmrdp = &hba->utmrdl_base_addr[tag];
606 
607 		dev_err(hba->dev, "TM[%d] - Task Management Header\n", tag);
608 		ufshcd_hex_dump("", tmrdp, sizeof(*tmrdp));
609 	}
610 }
611 
612 static void ufshcd_print_host_state(struct ufs_hba *hba)
613 {
614 	const struct scsi_device *sdev_ufs = hba->ufs_device_wlun;
615 
616 	dev_err(hba->dev, "UFS Host state=%d\n", hba->ufshcd_state);
617 	dev_err(hba->dev, "outstanding reqs=0x%lx tasks=0x%lx\n",
618 		hba->outstanding_reqs, hba->outstanding_tasks);
619 	dev_err(hba->dev, "saved_err=0x%x, saved_uic_err=0x%x\n",
620 		hba->saved_err, hba->saved_uic_err);
621 	dev_err(hba->dev, "Device power mode=%d, UIC link state=%d\n",
622 		hba->curr_dev_pwr_mode, hba->uic_link_state);
623 	dev_err(hba->dev, "PM in progress=%d, sys. suspended=%d\n",
624 		hba->pm_op_in_progress, hba->is_sys_suspended);
625 	dev_err(hba->dev, "Auto BKOPS=%d, Host self-block=%d\n",
626 		hba->auto_bkops_enabled, hba->host->host_self_blocked);
627 	dev_err(hba->dev, "Clk gate=%d\n", hba->clk_gating.state);
628 	dev_err(hba->dev,
629 		"last_hibern8_exit_tstamp at %lld us, hibern8_exit_cnt=%d\n",
630 		div_u64(hba->ufs_stats.last_hibern8_exit_tstamp, 1000),
631 		hba->ufs_stats.hibern8_exit_cnt);
632 	dev_err(hba->dev, "last intr at %lld us, last intr status=0x%x\n",
633 		div_u64(hba->ufs_stats.last_intr_ts, 1000),
634 		hba->ufs_stats.last_intr_status);
635 	dev_err(hba->dev, "error handling flags=0x%x, req. abort count=%d\n",
636 		hba->eh_flags, hba->req_abort_count);
637 	dev_err(hba->dev, "hba->ufs_version=0x%x, Host capabilities=0x%x, caps=0x%x\n",
638 		hba->ufs_version, hba->capabilities, hba->caps);
639 	dev_err(hba->dev, "quirks=0x%x, dev. quirks=0x%x\n", hba->quirks,
640 		hba->dev_quirks);
641 	if (sdev_ufs)
642 		dev_err(hba->dev, "UFS dev info: %.8s %.16s rev %.4s\n",
643 			sdev_ufs->vendor, sdev_ufs->model, sdev_ufs->rev);
644 
645 	ufshcd_print_clk_freqs(hba);
646 }
647 
648 /**
649  * ufshcd_print_pwr_info - print power params as saved in hba
650  * power info
651  * @hba: per-adapter instance
652  */
653 static void ufshcd_print_pwr_info(struct ufs_hba *hba)
654 {
655 	static const char * const names[] = {
656 		"INVALID MODE",
657 		"FAST MODE",
658 		"SLOW_MODE",
659 		"INVALID MODE",
660 		"FASTAUTO_MODE",
661 		"SLOWAUTO_MODE",
662 		"INVALID MODE",
663 	};
664 
665 	/*
666 	 * Using dev_dbg to avoid messages during runtime PM to avoid
667 	 * never-ending cycles of messages written back to storage by user space
668 	 * causing runtime resume, causing more messages and so on.
669 	 */
670 	dev_dbg(hba->dev, "%s:[RX, TX]: gear=[%d, %d], lane[%d, %d], pwr[%s, %s], rate = %d\n",
671 		 __func__,
672 		 hba->pwr_info.gear_rx, hba->pwr_info.gear_tx,
673 		 hba->pwr_info.lane_rx, hba->pwr_info.lane_tx,
674 		 names[hba->pwr_info.pwr_rx],
675 		 names[hba->pwr_info.pwr_tx],
676 		 hba->pwr_info.hs_rate);
677 }
678 
679 static void ufshcd_device_reset(struct ufs_hba *hba)
680 {
681 	int err;
682 
683 	err = ufshcd_vops_device_reset(hba);
684 
685 	if (!err) {
686 		ufshcd_set_ufs_dev_active(hba);
687 		if (ufshcd_is_wb_allowed(hba)) {
688 			hba->dev_info.wb_enabled = false;
689 			hba->dev_info.wb_buf_flush_enabled = false;
690 		}
691 		if (hba->dev_info.rtc_type == UFS_RTC_RELATIVE)
692 			hba->dev_info.rtc_time_baseline = 0;
693 	}
694 	if (err != -EOPNOTSUPP)
695 		ufshcd_update_evt_hist(hba, UFS_EVT_DEV_RESET, err);
696 }
697 
698 void ufshcd_delay_us(unsigned long us, unsigned long tolerance)
699 {
700 	if (!us)
701 		return;
702 
703 	if (us < 10)
704 		udelay(us);
705 	else
706 		usleep_range(us, us + tolerance);
707 }
708 EXPORT_SYMBOL_GPL(ufshcd_delay_us);
709 
710 /**
711  * ufshcd_wait_for_register - wait for register value to change
712  * @hba: per-adapter interface
713  * @reg: mmio register offset
714  * @mask: mask to apply to the read register value
715  * @val: value to wait for
716  * @interval_us: polling interval in microseconds
717  * @timeout_ms: timeout in milliseconds
718  *
719  * Return: -ETIMEDOUT on error, zero on success.
720  */
721 static int ufshcd_wait_for_register(struct ufs_hba *hba, u32 reg, u32 mask,
722 				u32 val, unsigned long interval_us,
723 				unsigned long timeout_ms)
724 {
725 	int err = 0;
726 	unsigned long timeout = jiffies + msecs_to_jiffies(timeout_ms);
727 
728 	/* ignore bits that we don't intend to wait on */
729 	val = val & mask;
730 
731 	while ((ufshcd_readl(hba, reg) & mask) != val) {
732 		usleep_range(interval_us, interval_us + 50);
733 		if (time_after(jiffies, timeout)) {
734 			if ((ufshcd_readl(hba, reg) & mask) != val)
735 				err = -ETIMEDOUT;
736 			break;
737 		}
738 	}
739 
740 	return err;
741 }
742 
743 /**
744  * ufshcd_get_intr_mask - Get the interrupt bit mask
745  * @hba: Pointer to adapter instance
746  *
747  * Return: interrupt bit mask per version
748  */
749 static inline u32 ufshcd_get_intr_mask(struct ufs_hba *hba)
750 {
751 	if (hba->ufs_version <= ufshci_version(2, 0))
752 		return INTERRUPT_MASK_ALL_VER_11;
753 
754 	return INTERRUPT_MASK_ALL_VER_21;
755 }
756 
757 /**
758  * ufshcd_get_ufs_version - Get the UFS version supported by the HBA
759  * @hba: Pointer to adapter instance
760  *
761  * Return: UFSHCI version supported by the controller
762  */
763 static inline u32 ufshcd_get_ufs_version(struct ufs_hba *hba)
764 {
765 	u32 ufshci_ver;
766 
767 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_UFS_HCI_VERSION)
768 		ufshci_ver = ufshcd_vops_get_ufs_hci_version(hba);
769 	else
770 		ufshci_ver = ufshcd_readl(hba, REG_UFS_VERSION);
771 
772 	/*
773 	 * UFSHCI v1.x uses a different version scheme, in order
774 	 * to allow the use of comparisons with the ufshci_version
775 	 * function, we convert it to the same scheme as ufs 2.0+.
776 	 */
777 	if (ufshci_ver & 0x00010000)
778 		return ufshci_version(1, ufshci_ver & 0x00000100);
779 
780 	return ufshci_ver;
781 }
782 
783 /**
784  * ufshcd_is_device_present - Check if any device connected to
785  *			      the host controller
786  * @hba: pointer to adapter instance
787  *
788  * Return: true if device present, false if no device detected
789  */
790 static inline bool ufshcd_is_device_present(struct ufs_hba *hba)
791 {
792 	return ufshcd_readl(hba, REG_CONTROLLER_STATUS) & DEVICE_PRESENT;
793 }
794 
795 /**
796  * ufshcd_get_tr_ocs - Get the UTRD Overall Command Status
797  * @lrbp: pointer to local command reference block
798  * @cqe: pointer to the completion queue entry
799  *
800  * This function is used to get the OCS field from UTRD
801  *
802  * Return: the OCS field in the UTRD.
803  */
804 static enum utp_ocs ufshcd_get_tr_ocs(struct ufshcd_lrb *lrbp,
805 				      struct cq_entry *cqe)
806 {
807 	if (cqe)
808 		return le32_to_cpu(cqe->status) & MASK_OCS;
809 
810 	return lrbp->utr_descriptor_ptr->header.ocs & MASK_OCS;
811 }
812 
813 /**
814  * ufshcd_utrl_clear() - Clear requests from the controller request list.
815  * @hba: per adapter instance
816  * @mask: mask with one bit set for each request to be cleared
817  */
818 static inline void ufshcd_utrl_clear(struct ufs_hba *hba, u32 mask)
819 {
820 	if (hba->quirks & UFSHCI_QUIRK_BROKEN_REQ_LIST_CLR)
821 		mask = ~mask;
822 	/*
823 	 * From the UFSHCI specification: "UTP Transfer Request List CLear
824 	 * Register (UTRLCLR): This field is bit significant. Each bit
825 	 * corresponds to a slot in the UTP Transfer Request List, where bit 0
826 	 * corresponds to request slot 0. A bit in this field is set to ‘0’
827 	 * by host software to indicate to the host controller that a transfer
828 	 * request slot is cleared. The host controller
829 	 * shall free up any resources associated to the request slot
830 	 * immediately, and shall set the associated bit in UTRLDBR to ‘0’. The
831 	 * host software indicates no change to request slots by setting the
832 	 * associated bits in this field to ‘1’. Bits in this field shall only
833 	 * be set ‘1’ or ‘0’ by host software when UTRLRSR is set to ‘1’."
834 	 */
835 	ufshcd_writel(hba, ~mask, REG_UTP_TRANSFER_REQ_LIST_CLEAR);
836 }
837 
838 /**
839  * ufshcd_utmrl_clear - Clear a bit in UTMRLCLR register
840  * @hba: per adapter instance
841  * @pos: position of the bit to be cleared
842  */
843 static inline void ufshcd_utmrl_clear(struct ufs_hba *hba, u32 pos)
844 {
845 	if (hba->quirks & UFSHCI_QUIRK_BROKEN_REQ_LIST_CLR)
846 		ufshcd_writel(hba, (1 << pos), REG_UTP_TASK_REQ_LIST_CLEAR);
847 	else
848 		ufshcd_writel(hba, ~(1 << pos), REG_UTP_TASK_REQ_LIST_CLEAR);
849 }
850 
851 /**
852  * ufshcd_get_lists_status - Check UCRDY, UTRLRDY and UTMRLRDY
853  * @reg: Register value of host controller status
854  *
855  * Return: 0 on success; a positive value if failed.
856  */
857 static inline int ufshcd_get_lists_status(u32 reg)
858 {
859 	return !((reg & UFSHCD_STATUS_READY) == UFSHCD_STATUS_READY);
860 }
861 
862 /**
863  * ufshcd_get_uic_cmd_result - Get the UIC command result
864  * @hba: Pointer to adapter instance
865  *
866  * This function gets the result of UIC command completion
867  *
868  * Return: 0 on success; non-zero value on error.
869  */
870 static inline int ufshcd_get_uic_cmd_result(struct ufs_hba *hba)
871 {
872 	return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_2) &
873 	       MASK_UIC_COMMAND_RESULT;
874 }
875 
876 /**
877  * ufshcd_get_dme_attr_val - Get the value of attribute returned by UIC command
878  * @hba: Pointer to adapter instance
879  *
880  * This function gets UIC command argument3
881  *
882  * Return: 0 on success; non-zero value on error.
883  */
884 static inline u32 ufshcd_get_dme_attr_val(struct ufs_hba *hba)
885 {
886 	return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_3);
887 }
888 
889 /**
890  * ufshcd_get_req_rsp - returns the TR response transaction type
891  * @ucd_rsp_ptr: pointer to response UPIU
892  *
893  * Return: UPIU type.
894  */
895 static inline enum upiu_response_transaction
896 ufshcd_get_req_rsp(struct utp_upiu_rsp *ucd_rsp_ptr)
897 {
898 	return ucd_rsp_ptr->header.transaction_code;
899 }
900 
901 /**
902  * ufshcd_is_exception_event - Check if the device raised an exception event
903  * @ucd_rsp_ptr: pointer to response UPIU
904  *
905  * The function checks if the device raised an exception event indicated in
906  * the Device Information field of response UPIU.
907  *
908  * Return: true if exception is raised, false otherwise.
909  */
910 static inline bool ufshcd_is_exception_event(struct utp_upiu_rsp *ucd_rsp_ptr)
911 {
912 	return ucd_rsp_ptr->header.device_information & 1;
913 }
914 
915 /**
916  * ufshcd_reset_intr_aggr - Reset interrupt aggregation values.
917  * @hba: per adapter instance
918  */
919 static inline void
920 ufshcd_reset_intr_aggr(struct ufs_hba *hba)
921 {
922 	ufshcd_writel(hba, INT_AGGR_ENABLE |
923 		      INT_AGGR_COUNTER_AND_TIMER_RESET,
924 		      REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
925 }
926 
927 /**
928  * ufshcd_config_intr_aggr - Configure interrupt aggregation values.
929  * @hba: per adapter instance
930  * @cnt: Interrupt aggregation counter threshold
931  * @tmout: Interrupt aggregation timeout value
932  */
933 static inline void
934 ufshcd_config_intr_aggr(struct ufs_hba *hba, u8 cnt, u8 tmout)
935 {
936 	ufshcd_writel(hba, INT_AGGR_ENABLE | INT_AGGR_PARAM_WRITE |
937 		      INT_AGGR_COUNTER_THLD_VAL(cnt) |
938 		      INT_AGGR_TIMEOUT_VAL(tmout),
939 		      REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
940 }
941 
942 /**
943  * ufshcd_disable_intr_aggr - Disables interrupt aggregation.
944  * @hba: per adapter instance
945  */
946 static inline void ufshcd_disable_intr_aggr(struct ufs_hba *hba)
947 {
948 	ufshcd_writel(hba, 0, REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
949 }
950 
951 /**
952  * ufshcd_enable_run_stop_reg - Enable run-stop registers,
953  *			When run-stop registers are set to 1, it indicates the
954  *			host controller that it can process the requests
955  * @hba: per adapter instance
956  */
957 static void ufshcd_enable_run_stop_reg(struct ufs_hba *hba)
958 {
959 	ufshcd_writel(hba, UTP_TASK_REQ_LIST_RUN_STOP_BIT,
960 		      REG_UTP_TASK_REQ_LIST_RUN_STOP);
961 	ufshcd_writel(hba, UTP_TRANSFER_REQ_LIST_RUN_STOP_BIT,
962 		      REG_UTP_TRANSFER_REQ_LIST_RUN_STOP);
963 }
964 
965 /**
966  * ufshcd_hba_start - Start controller initialization sequence
967  * @hba: per adapter instance
968  */
969 static inline void ufshcd_hba_start(struct ufs_hba *hba)
970 {
971 	u32 val = CONTROLLER_ENABLE;
972 
973 	if (ufshcd_crypto_enable(hba))
974 		val |= CRYPTO_GENERAL_ENABLE;
975 
976 	ufshcd_writel(hba, val, REG_CONTROLLER_ENABLE);
977 }
978 
979 /**
980  * ufshcd_is_hba_active - Get controller state
981  * @hba: per adapter instance
982  *
983  * Return: true if and only if the controller is active.
984  */
985 bool ufshcd_is_hba_active(struct ufs_hba *hba)
986 {
987 	return ufshcd_readl(hba, REG_CONTROLLER_ENABLE) & CONTROLLER_ENABLE;
988 }
989 EXPORT_SYMBOL_GPL(ufshcd_is_hba_active);
990 
991 /**
992  * ufshcd_pm_qos_init - initialize PM QoS request
993  * @hba: per adapter instance
994  */
995 void ufshcd_pm_qos_init(struct ufs_hba *hba)
996 {
997 
998 	if (hba->pm_qos_enabled)
999 		return;
1000 
1001 	cpu_latency_qos_add_request(&hba->pm_qos_req, PM_QOS_DEFAULT_VALUE);
1002 
1003 	if (cpu_latency_qos_request_active(&hba->pm_qos_req))
1004 		hba->pm_qos_enabled = true;
1005 }
1006 
1007 /**
1008  * ufshcd_pm_qos_exit - remove request from PM QoS
1009  * @hba: per adapter instance
1010  */
1011 void ufshcd_pm_qos_exit(struct ufs_hba *hba)
1012 {
1013 	if (!hba->pm_qos_enabled)
1014 		return;
1015 
1016 	cpu_latency_qos_remove_request(&hba->pm_qos_req);
1017 	hba->pm_qos_enabled = false;
1018 }
1019 
1020 /**
1021  * ufshcd_pm_qos_update - update PM QoS request
1022  * @hba: per adapter instance
1023  * @on: If True, vote for perf PM QoS mode otherwise power save mode
1024  */
1025 static void ufshcd_pm_qos_update(struct ufs_hba *hba, bool on)
1026 {
1027 	if (!hba->pm_qos_enabled)
1028 		return;
1029 
1030 	cpu_latency_qos_update_request(&hba->pm_qos_req, on ? 0 : PM_QOS_DEFAULT_VALUE);
1031 }
1032 
1033 /**
1034  * ufshcd_set_clk_freq - set UFS controller clock frequencies
1035  * @hba: per adapter instance
1036  * @scale_up: If True, set max possible frequency othewise set low frequency
1037  *
1038  * Return: 0 if successful; < 0 upon failure.
1039  */
1040 static int ufshcd_set_clk_freq(struct ufs_hba *hba, bool scale_up)
1041 {
1042 	int ret = 0;
1043 	struct ufs_clk_info *clki;
1044 	struct list_head *head = &hba->clk_list_head;
1045 
1046 	if (list_empty(head))
1047 		goto out;
1048 
1049 	list_for_each_entry(clki, head, list) {
1050 		if (!IS_ERR_OR_NULL(clki->clk)) {
1051 			if (scale_up && clki->max_freq) {
1052 				if (clki->curr_freq == clki->max_freq)
1053 					continue;
1054 
1055 				ret = clk_set_rate(clki->clk, clki->max_freq);
1056 				if (ret) {
1057 					dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
1058 						__func__, clki->name,
1059 						clki->max_freq, ret);
1060 					break;
1061 				}
1062 				trace_ufshcd_clk_scaling(dev_name(hba->dev),
1063 						"scaled up", clki->name,
1064 						clki->curr_freq,
1065 						clki->max_freq);
1066 
1067 				clki->curr_freq = clki->max_freq;
1068 
1069 			} else if (!scale_up && clki->min_freq) {
1070 				if (clki->curr_freq == clki->min_freq)
1071 					continue;
1072 
1073 				ret = clk_set_rate(clki->clk, clki->min_freq);
1074 				if (ret) {
1075 					dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
1076 						__func__, clki->name,
1077 						clki->min_freq, ret);
1078 					break;
1079 				}
1080 				trace_ufshcd_clk_scaling(dev_name(hba->dev),
1081 						"scaled down", clki->name,
1082 						clki->curr_freq,
1083 						clki->min_freq);
1084 				clki->curr_freq = clki->min_freq;
1085 			}
1086 		}
1087 		dev_dbg(hba->dev, "%s: clk: %s, rate: %lu\n", __func__,
1088 				clki->name, clk_get_rate(clki->clk));
1089 	}
1090 
1091 out:
1092 	return ret;
1093 }
1094 
1095 int ufshcd_opp_config_clks(struct device *dev, struct opp_table *opp_table,
1096 			   struct dev_pm_opp *opp, void *data,
1097 			   bool scaling_down)
1098 {
1099 	struct ufs_hba *hba = dev_get_drvdata(dev);
1100 	struct list_head *head = &hba->clk_list_head;
1101 	struct ufs_clk_info *clki;
1102 	unsigned long freq;
1103 	u8 idx = 0;
1104 	int ret;
1105 
1106 	list_for_each_entry(clki, head, list) {
1107 		if (!IS_ERR_OR_NULL(clki->clk)) {
1108 			freq = dev_pm_opp_get_freq_indexed(opp, idx++);
1109 
1110 			/* Do not set rate for clocks having frequency as 0 */
1111 			if (!freq)
1112 				continue;
1113 
1114 			ret = clk_set_rate(clki->clk, freq);
1115 			if (ret) {
1116 				dev_err(dev, "%s: %s clk set rate(%ldHz) failed, %d\n",
1117 					__func__, clki->name, freq, ret);
1118 				return ret;
1119 			}
1120 
1121 			trace_ufshcd_clk_scaling(dev_name(dev),
1122 				(scaling_down ? "scaled down" : "scaled up"),
1123 				clki->name, hba->clk_scaling.target_freq, freq);
1124 		}
1125 	}
1126 
1127 	return 0;
1128 }
1129 EXPORT_SYMBOL_GPL(ufshcd_opp_config_clks);
1130 
1131 static int ufshcd_opp_set_rate(struct ufs_hba *hba, unsigned long freq)
1132 {
1133 	struct dev_pm_opp *opp;
1134 	int ret;
1135 
1136 	opp = dev_pm_opp_find_freq_floor_indexed(hba->dev,
1137 						 &freq, 0);
1138 	if (IS_ERR(opp))
1139 		return PTR_ERR(opp);
1140 
1141 	ret = dev_pm_opp_set_opp(hba->dev, opp);
1142 	dev_pm_opp_put(opp);
1143 
1144 	return ret;
1145 }
1146 
1147 /**
1148  * ufshcd_scale_clks - scale up or scale down UFS controller clocks
1149  * @hba: per adapter instance
1150  * @freq: frequency to scale
1151  * @scale_up: True if scaling up and false if scaling down
1152  *
1153  * Return: 0 if successful; < 0 upon failure.
1154  */
1155 static int ufshcd_scale_clks(struct ufs_hba *hba, unsigned long freq,
1156 			     bool scale_up)
1157 {
1158 	int ret = 0;
1159 	ktime_t start = ktime_get();
1160 
1161 	ret = ufshcd_vops_clk_scale_notify(hba, scale_up, PRE_CHANGE);
1162 	if (ret)
1163 		goto out;
1164 
1165 	if (hba->use_pm_opp)
1166 		ret = ufshcd_opp_set_rate(hba, freq);
1167 	else
1168 		ret = ufshcd_set_clk_freq(hba, scale_up);
1169 	if (ret)
1170 		goto out;
1171 
1172 	ret = ufshcd_vops_clk_scale_notify(hba, scale_up, POST_CHANGE);
1173 	if (ret) {
1174 		if (hba->use_pm_opp)
1175 			ufshcd_opp_set_rate(hba,
1176 					    hba->devfreq->previous_freq);
1177 		else
1178 			ufshcd_set_clk_freq(hba, !scale_up);
1179 		goto out;
1180 	}
1181 
1182 	ufshcd_pm_qos_update(hba, scale_up);
1183 
1184 out:
1185 	trace_ufshcd_profile_clk_scaling(dev_name(hba->dev),
1186 			(scale_up ? "up" : "down"),
1187 			ktime_to_us(ktime_sub(ktime_get(), start)), ret);
1188 	return ret;
1189 }
1190 
1191 /**
1192  * ufshcd_is_devfreq_scaling_required - check if scaling is required or not
1193  * @hba: per adapter instance
1194  * @freq: frequency to scale
1195  * @scale_up: True if scaling up and false if scaling down
1196  *
1197  * Return: true if scaling is required, false otherwise.
1198  */
1199 static bool ufshcd_is_devfreq_scaling_required(struct ufs_hba *hba,
1200 					       unsigned long freq, bool scale_up)
1201 {
1202 	struct ufs_clk_info *clki;
1203 	struct list_head *head = &hba->clk_list_head;
1204 
1205 	if (list_empty(head))
1206 		return false;
1207 
1208 	if (hba->use_pm_opp)
1209 		return freq != hba->clk_scaling.target_freq;
1210 
1211 	list_for_each_entry(clki, head, list) {
1212 		if (!IS_ERR_OR_NULL(clki->clk)) {
1213 			if (scale_up && clki->max_freq) {
1214 				if (clki->curr_freq == clki->max_freq)
1215 					continue;
1216 				return true;
1217 			} else if (!scale_up && clki->min_freq) {
1218 				if (clki->curr_freq == clki->min_freq)
1219 					continue;
1220 				return true;
1221 			}
1222 		}
1223 	}
1224 
1225 	return false;
1226 }
1227 
1228 /*
1229  * Determine the number of pending commands by counting the bits in the SCSI
1230  * device budget maps. This approach has been selected because a bit is set in
1231  * the budget map before scsi_host_queue_ready() checks the host_self_blocked
1232  * flag. The host_self_blocked flag can be modified by calling
1233  * scsi_block_requests() or scsi_unblock_requests().
1234  */
1235 static u32 ufshcd_pending_cmds(struct ufs_hba *hba)
1236 {
1237 	const struct scsi_device *sdev;
1238 	u32 pending = 0;
1239 
1240 	lockdep_assert_held(hba->host->host_lock);
1241 	__shost_for_each_device(sdev, hba->host)
1242 		pending += sbitmap_weight(&sdev->budget_map);
1243 
1244 	return pending;
1245 }
1246 
1247 /*
1248  * Wait until all pending SCSI commands and TMFs have finished or the timeout
1249  * has expired.
1250  *
1251  * Return: 0 upon success; -EBUSY upon timeout.
1252  */
1253 static int ufshcd_wait_for_doorbell_clr(struct ufs_hba *hba,
1254 					u64 wait_timeout_us)
1255 {
1256 	unsigned long flags;
1257 	int ret = 0;
1258 	u32 tm_doorbell;
1259 	u32 tr_pending;
1260 	bool timeout = false, do_last_check = false;
1261 	ktime_t start;
1262 
1263 	ufshcd_hold(hba);
1264 	spin_lock_irqsave(hba->host->host_lock, flags);
1265 	/*
1266 	 * Wait for all the outstanding tasks/transfer requests.
1267 	 * Verify by checking the doorbell registers are clear.
1268 	 */
1269 	start = ktime_get();
1270 	do {
1271 		if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL) {
1272 			ret = -EBUSY;
1273 			goto out;
1274 		}
1275 
1276 		tm_doorbell = ufshcd_readl(hba, REG_UTP_TASK_REQ_DOOR_BELL);
1277 		tr_pending = ufshcd_pending_cmds(hba);
1278 		if (!tm_doorbell && !tr_pending) {
1279 			timeout = false;
1280 			break;
1281 		} else if (do_last_check) {
1282 			break;
1283 		}
1284 
1285 		spin_unlock_irqrestore(hba->host->host_lock, flags);
1286 		io_schedule_timeout(msecs_to_jiffies(20));
1287 		if (ktime_to_us(ktime_sub(ktime_get(), start)) >
1288 		    wait_timeout_us) {
1289 			timeout = true;
1290 			/*
1291 			 * We might have scheduled out for long time so make
1292 			 * sure to check if doorbells are cleared by this time
1293 			 * or not.
1294 			 */
1295 			do_last_check = true;
1296 		}
1297 		spin_lock_irqsave(hba->host->host_lock, flags);
1298 	} while (tm_doorbell || tr_pending);
1299 
1300 	if (timeout) {
1301 		dev_err(hba->dev,
1302 			"%s: timedout waiting for doorbell to clear (tm=0x%x, tr=0x%x)\n",
1303 			__func__, tm_doorbell, tr_pending);
1304 		ret = -EBUSY;
1305 	}
1306 out:
1307 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1308 	ufshcd_release(hba);
1309 	return ret;
1310 }
1311 
1312 /**
1313  * ufshcd_scale_gear - scale up/down UFS gear
1314  * @hba: per adapter instance
1315  * @scale_up: True for scaling up gear and false for scaling down
1316  *
1317  * Return: 0 for success; -EBUSY if scaling can't happen at this time;
1318  * non-zero for any other errors.
1319  */
1320 static int ufshcd_scale_gear(struct ufs_hba *hba, bool scale_up)
1321 {
1322 	int ret = 0;
1323 	struct ufs_pa_layer_attr new_pwr_info;
1324 
1325 	if (scale_up) {
1326 		memcpy(&new_pwr_info, &hba->clk_scaling.saved_pwr_info,
1327 		       sizeof(struct ufs_pa_layer_attr));
1328 	} else {
1329 		memcpy(&new_pwr_info, &hba->pwr_info,
1330 		       sizeof(struct ufs_pa_layer_attr));
1331 
1332 		if (hba->pwr_info.gear_tx > hba->clk_scaling.min_gear ||
1333 		    hba->pwr_info.gear_rx > hba->clk_scaling.min_gear) {
1334 			/* save the current power mode */
1335 			memcpy(&hba->clk_scaling.saved_pwr_info,
1336 				&hba->pwr_info,
1337 				sizeof(struct ufs_pa_layer_attr));
1338 
1339 			/* scale down gear */
1340 			new_pwr_info.gear_tx = hba->clk_scaling.min_gear;
1341 			new_pwr_info.gear_rx = hba->clk_scaling.min_gear;
1342 		}
1343 	}
1344 
1345 	/* check if the power mode needs to be changed or not? */
1346 	ret = ufshcd_config_pwr_mode(hba, &new_pwr_info);
1347 	if (ret)
1348 		dev_err(hba->dev, "%s: failed err %d, old gear: (tx %d rx %d), new gear: (tx %d rx %d)",
1349 			__func__, ret,
1350 			hba->pwr_info.gear_tx, hba->pwr_info.gear_rx,
1351 			new_pwr_info.gear_tx, new_pwr_info.gear_rx);
1352 
1353 	return ret;
1354 }
1355 
1356 /*
1357  * Wait until all pending SCSI commands and TMFs have finished or the timeout
1358  * has expired.
1359  *
1360  * Return: 0 upon success; -EBUSY upon timeout.
1361  */
1362 static int ufshcd_clock_scaling_prepare(struct ufs_hba *hba, u64 timeout_us)
1363 {
1364 	int ret = 0;
1365 	/*
1366 	 * make sure that there are no outstanding requests when
1367 	 * clock scaling is in progress
1368 	 */
1369 	blk_mq_quiesce_tagset(&hba->host->tag_set);
1370 	mutex_lock(&hba->wb_mutex);
1371 	down_write(&hba->clk_scaling_lock);
1372 
1373 	if (!hba->clk_scaling.is_allowed ||
1374 	    ufshcd_wait_for_doorbell_clr(hba, timeout_us)) {
1375 		ret = -EBUSY;
1376 		up_write(&hba->clk_scaling_lock);
1377 		mutex_unlock(&hba->wb_mutex);
1378 		blk_mq_unquiesce_tagset(&hba->host->tag_set);
1379 		goto out;
1380 	}
1381 
1382 	/* let's not get into low power until clock scaling is completed */
1383 	ufshcd_hold(hba);
1384 
1385 out:
1386 	return ret;
1387 }
1388 
1389 static void ufshcd_clock_scaling_unprepare(struct ufs_hba *hba, int err, bool scale_up)
1390 {
1391 	up_write(&hba->clk_scaling_lock);
1392 
1393 	/* Enable Write Booster if we have scaled up else disable it */
1394 	if (ufshcd_enable_wb_if_scaling_up(hba) && !err)
1395 		ufshcd_wb_toggle(hba, scale_up);
1396 
1397 	mutex_unlock(&hba->wb_mutex);
1398 
1399 	blk_mq_unquiesce_tagset(&hba->host->tag_set);
1400 	ufshcd_release(hba);
1401 }
1402 
1403 /**
1404  * ufshcd_devfreq_scale - scale up/down UFS clocks and gear
1405  * @hba: per adapter instance
1406  * @freq: frequency to scale
1407  * @scale_up: True for scaling up and false for scalin down
1408  *
1409  * Return: 0 for success; -EBUSY if scaling can't happen at this time; non-zero
1410  * for any other errors.
1411  */
1412 static int ufshcd_devfreq_scale(struct ufs_hba *hba, unsigned long freq,
1413 				bool scale_up)
1414 {
1415 	int ret = 0;
1416 
1417 	ret = ufshcd_clock_scaling_prepare(hba, 1 * USEC_PER_SEC);
1418 	if (ret)
1419 		return ret;
1420 
1421 	/* scale down the gear before scaling down clocks */
1422 	if (!scale_up) {
1423 		ret = ufshcd_scale_gear(hba, false);
1424 		if (ret)
1425 			goto out_unprepare;
1426 	}
1427 
1428 	ret = ufshcd_scale_clks(hba, freq, scale_up);
1429 	if (ret) {
1430 		if (!scale_up)
1431 			ufshcd_scale_gear(hba, true);
1432 		goto out_unprepare;
1433 	}
1434 
1435 	/* scale up the gear after scaling up clocks */
1436 	if (scale_up) {
1437 		ret = ufshcd_scale_gear(hba, true);
1438 		if (ret) {
1439 			ufshcd_scale_clks(hba, hba->devfreq->previous_freq,
1440 					  false);
1441 			goto out_unprepare;
1442 		}
1443 	}
1444 
1445 out_unprepare:
1446 	ufshcd_clock_scaling_unprepare(hba, ret, scale_up);
1447 	return ret;
1448 }
1449 
1450 static void ufshcd_clk_scaling_suspend_work(struct work_struct *work)
1451 {
1452 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1453 					   clk_scaling.suspend_work);
1454 	unsigned long irq_flags;
1455 
1456 	spin_lock_irqsave(hba->host->host_lock, irq_flags);
1457 	if (hba->clk_scaling.active_reqs || hba->clk_scaling.is_suspended) {
1458 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1459 		return;
1460 	}
1461 	hba->clk_scaling.is_suspended = true;
1462 	hba->clk_scaling.window_start_t = 0;
1463 	spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1464 
1465 	devfreq_suspend_device(hba->devfreq);
1466 }
1467 
1468 static void ufshcd_clk_scaling_resume_work(struct work_struct *work)
1469 {
1470 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1471 					   clk_scaling.resume_work);
1472 	unsigned long irq_flags;
1473 
1474 	spin_lock_irqsave(hba->host->host_lock, irq_flags);
1475 	if (!hba->clk_scaling.is_suspended) {
1476 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1477 		return;
1478 	}
1479 	hba->clk_scaling.is_suspended = false;
1480 	spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1481 
1482 	devfreq_resume_device(hba->devfreq);
1483 }
1484 
1485 static int ufshcd_devfreq_target(struct device *dev,
1486 				unsigned long *freq, u32 flags)
1487 {
1488 	int ret = 0;
1489 	struct ufs_hba *hba = dev_get_drvdata(dev);
1490 	ktime_t start;
1491 	bool scale_up = false, sched_clk_scaling_suspend_work = false;
1492 	struct list_head *clk_list = &hba->clk_list_head;
1493 	struct ufs_clk_info *clki;
1494 	unsigned long irq_flags;
1495 
1496 	if (!ufshcd_is_clkscaling_supported(hba))
1497 		return -EINVAL;
1498 
1499 	if (hba->use_pm_opp) {
1500 		struct dev_pm_opp *opp;
1501 
1502 		/* Get the recommended frequency from OPP framework */
1503 		opp = devfreq_recommended_opp(dev, freq, flags);
1504 		if (IS_ERR(opp))
1505 			return PTR_ERR(opp);
1506 
1507 		dev_pm_opp_put(opp);
1508 	} else {
1509 		/* Override with the closest supported frequency */
1510 		clki = list_first_entry(&hba->clk_list_head, struct ufs_clk_info,
1511 					list);
1512 		*freq =	(unsigned long) clk_round_rate(clki->clk, *freq);
1513 	}
1514 
1515 	spin_lock_irqsave(hba->host->host_lock, irq_flags);
1516 	if (ufshcd_eh_in_progress(hba)) {
1517 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1518 		return 0;
1519 	}
1520 
1521 	/* Skip scaling clock when clock scaling is suspended */
1522 	if (hba->clk_scaling.is_suspended) {
1523 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1524 		dev_warn(hba->dev, "clock scaling is suspended, skip");
1525 		return 0;
1526 	}
1527 
1528 	if (!hba->clk_scaling.active_reqs)
1529 		sched_clk_scaling_suspend_work = true;
1530 
1531 	if (list_empty(clk_list)) {
1532 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1533 		goto out;
1534 	}
1535 
1536 	/* Decide based on the target or rounded-off frequency and update */
1537 	if (hba->use_pm_opp)
1538 		scale_up = *freq > hba->clk_scaling.target_freq;
1539 	else
1540 		scale_up = *freq == clki->max_freq;
1541 
1542 	if (!hba->use_pm_opp && !scale_up)
1543 		*freq = clki->min_freq;
1544 
1545 	/* Update the frequency */
1546 	if (!ufshcd_is_devfreq_scaling_required(hba, *freq, scale_up)) {
1547 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1548 		ret = 0;
1549 		goto out; /* no state change required */
1550 	}
1551 	spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1552 
1553 	start = ktime_get();
1554 	ret = ufshcd_devfreq_scale(hba, *freq, scale_up);
1555 	if (!ret)
1556 		hba->clk_scaling.target_freq = *freq;
1557 
1558 	trace_ufshcd_profile_clk_scaling(dev_name(hba->dev),
1559 		(scale_up ? "up" : "down"),
1560 		ktime_to_us(ktime_sub(ktime_get(), start)), ret);
1561 
1562 out:
1563 	if (sched_clk_scaling_suspend_work && !scale_up)
1564 		queue_work(hba->clk_scaling.workq,
1565 			   &hba->clk_scaling.suspend_work);
1566 
1567 	return ret;
1568 }
1569 
1570 static int ufshcd_devfreq_get_dev_status(struct device *dev,
1571 		struct devfreq_dev_status *stat)
1572 {
1573 	struct ufs_hba *hba = dev_get_drvdata(dev);
1574 	struct ufs_clk_scaling *scaling = &hba->clk_scaling;
1575 	unsigned long flags;
1576 	ktime_t curr_t;
1577 
1578 	if (!ufshcd_is_clkscaling_supported(hba))
1579 		return -EINVAL;
1580 
1581 	memset(stat, 0, sizeof(*stat));
1582 
1583 	spin_lock_irqsave(hba->host->host_lock, flags);
1584 	curr_t = ktime_get();
1585 	if (!scaling->window_start_t)
1586 		goto start_window;
1587 
1588 	/*
1589 	 * If current frequency is 0, then the ondemand governor considers
1590 	 * there's no initial frequency set. And it always requests to set
1591 	 * to max. frequency.
1592 	 */
1593 	if (hba->use_pm_opp) {
1594 		stat->current_frequency = hba->clk_scaling.target_freq;
1595 	} else {
1596 		struct list_head *clk_list = &hba->clk_list_head;
1597 		struct ufs_clk_info *clki;
1598 
1599 		clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1600 		stat->current_frequency = clki->curr_freq;
1601 	}
1602 
1603 	if (scaling->is_busy_started)
1604 		scaling->tot_busy_t += ktime_us_delta(curr_t,
1605 				scaling->busy_start_t);
1606 	stat->total_time = ktime_us_delta(curr_t, scaling->window_start_t);
1607 	stat->busy_time = scaling->tot_busy_t;
1608 start_window:
1609 	scaling->window_start_t = curr_t;
1610 	scaling->tot_busy_t = 0;
1611 
1612 	if (scaling->active_reqs) {
1613 		scaling->busy_start_t = curr_t;
1614 		scaling->is_busy_started = true;
1615 	} else {
1616 		scaling->busy_start_t = 0;
1617 		scaling->is_busy_started = false;
1618 	}
1619 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1620 	return 0;
1621 }
1622 
1623 static int ufshcd_devfreq_init(struct ufs_hba *hba)
1624 {
1625 	struct list_head *clk_list = &hba->clk_list_head;
1626 	struct ufs_clk_info *clki;
1627 	struct devfreq *devfreq;
1628 	int ret;
1629 
1630 	/* Skip devfreq if we don't have any clocks in the list */
1631 	if (list_empty(clk_list))
1632 		return 0;
1633 
1634 	if (!hba->use_pm_opp) {
1635 		clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1636 		dev_pm_opp_add(hba->dev, clki->min_freq, 0);
1637 		dev_pm_opp_add(hba->dev, clki->max_freq, 0);
1638 	}
1639 
1640 	ufshcd_vops_config_scaling_param(hba, &hba->vps->devfreq_profile,
1641 					 &hba->vps->ondemand_data);
1642 	devfreq = devfreq_add_device(hba->dev,
1643 			&hba->vps->devfreq_profile,
1644 			DEVFREQ_GOV_SIMPLE_ONDEMAND,
1645 			&hba->vps->ondemand_data);
1646 	if (IS_ERR(devfreq)) {
1647 		ret = PTR_ERR(devfreq);
1648 		dev_err(hba->dev, "Unable to register with devfreq %d\n", ret);
1649 
1650 		if (!hba->use_pm_opp) {
1651 			dev_pm_opp_remove(hba->dev, clki->min_freq);
1652 			dev_pm_opp_remove(hba->dev, clki->max_freq);
1653 		}
1654 		return ret;
1655 	}
1656 
1657 	hba->devfreq = devfreq;
1658 
1659 	return 0;
1660 }
1661 
1662 static void ufshcd_devfreq_remove(struct ufs_hba *hba)
1663 {
1664 	struct list_head *clk_list = &hba->clk_list_head;
1665 
1666 	if (!hba->devfreq)
1667 		return;
1668 
1669 	devfreq_remove_device(hba->devfreq);
1670 	hba->devfreq = NULL;
1671 
1672 	if (!hba->use_pm_opp) {
1673 		struct ufs_clk_info *clki;
1674 
1675 		clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1676 		dev_pm_opp_remove(hba->dev, clki->min_freq);
1677 		dev_pm_opp_remove(hba->dev, clki->max_freq);
1678 	}
1679 }
1680 
1681 static void ufshcd_suspend_clkscaling(struct ufs_hba *hba)
1682 {
1683 	unsigned long flags;
1684 	bool suspend = false;
1685 
1686 	cancel_work_sync(&hba->clk_scaling.suspend_work);
1687 	cancel_work_sync(&hba->clk_scaling.resume_work);
1688 
1689 	spin_lock_irqsave(hba->host->host_lock, flags);
1690 	if (!hba->clk_scaling.is_suspended) {
1691 		suspend = true;
1692 		hba->clk_scaling.is_suspended = true;
1693 		hba->clk_scaling.window_start_t = 0;
1694 	}
1695 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1696 
1697 	if (suspend)
1698 		devfreq_suspend_device(hba->devfreq);
1699 }
1700 
1701 static void ufshcd_resume_clkscaling(struct ufs_hba *hba)
1702 {
1703 	unsigned long flags;
1704 	bool resume = false;
1705 
1706 	spin_lock_irqsave(hba->host->host_lock, flags);
1707 	if (hba->clk_scaling.is_suspended) {
1708 		resume = true;
1709 		hba->clk_scaling.is_suspended = false;
1710 	}
1711 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1712 
1713 	if (resume)
1714 		devfreq_resume_device(hba->devfreq);
1715 }
1716 
1717 static ssize_t ufshcd_clkscale_enable_show(struct device *dev,
1718 		struct device_attribute *attr, char *buf)
1719 {
1720 	struct ufs_hba *hba = dev_get_drvdata(dev);
1721 
1722 	return sysfs_emit(buf, "%d\n", hba->clk_scaling.is_enabled);
1723 }
1724 
1725 static ssize_t ufshcd_clkscale_enable_store(struct device *dev,
1726 		struct device_attribute *attr, const char *buf, size_t count)
1727 {
1728 	struct ufs_hba *hba = dev_get_drvdata(dev);
1729 	u32 value;
1730 	int err = 0;
1731 
1732 	if (kstrtou32(buf, 0, &value))
1733 		return -EINVAL;
1734 
1735 	down(&hba->host_sem);
1736 	if (!ufshcd_is_user_access_allowed(hba)) {
1737 		err = -EBUSY;
1738 		goto out;
1739 	}
1740 
1741 	value = !!value;
1742 	if (value == hba->clk_scaling.is_enabled)
1743 		goto out;
1744 
1745 	ufshcd_rpm_get_sync(hba);
1746 	ufshcd_hold(hba);
1747 
1748 	hba->clk_scaling.is_enabled = value;
1749 
1750 	if (value) {
1751 		ufshcd_resume_clkscaling(hba);
1752 	} else {
1753 		ufshcd_suspend_clkscaling(hba);
1754 		err = ufshcd_devfreq_scale(hba, ULONG_MAX, true);
1755 		if (err)
1756 			dev_err(hba->dev, "%s: failed to scale clocks up %d\n",
1757 					__func__, err);
1758 	}
1759 
1760 	ufshcd_release(hba);
1761 	ufshcd_rpm_put_sync(hba);
1762 out:
1763 	up(&hba->host_sem);
1764 	return err ? err : count;
1765 }
1766 
1767 static void ufshcd_init_clk_scaling_sysfs(struct ufs_hba *hba)
1768 {
1769 	hba->clk_scaling.enable_attr.show = ufshcd_clkscale_enable_show;
1770 	hba->clk_scaling.enable_attr.store = ufshcd_clkscale_enable_store;
1771 	sysfs_attr_init(&hba->clk_scaling.enable_attr.attr);
1772 	hba->clk_scaling.enable_attr.attr.name = "clkscale_enable";
1773 	hba->clk_scaling.enable_attr.attr.mode = 0644;
1774 	if (device_create_file(hba->dev, &hba->clk_scaling.enable_attr))
1775 		dev_err(hba->dev, "Failed to create sysfs for clkscale_enable\n");
1776 }
1777 
1778 static void ufshcd_remove_clk_scaling_sysfs(struct ufs_hba *hba)
1779 {
1780 	if (hba->clk_scaling.enable_attr.attr.name)
1781 		device_remove_file(hba->dev, &hba->clk_scaling.enable_attr);
1782 }
1783 
1784 static void ufshcd_init_clk_scaling(struct ufs_hba *hba)
1785 {
1786 	char wq_name[sizeof("ufs_clkscaling_00")];
1787 
1788 	if (!ufshcd_is_clkscaling_supported(hba))
1789 		return;
1790 
1791 	if (!hba->clk_scaling.min_gear)
1792 		hba->clk_scaling.min_gear = UFS_HS_G1;
1793 
1794 	INIT_WORK(&hba->clk_scaling.suspend_work,
1795 		  ufshcd_clk_scaling_suspend_work);
1796 	INIT_WORK(&hba->clk_scaling.resume_work,
1797 		  ufshcd_clk_scaling_resume_work);
1798 
1799 	snprintf(wq_name, sizeof(wq_name), "ufs_clkscaling_%d",
1800 		 hba->host->host_no);
1801 	hba->clk_scaling.workq = create_singlethread_workqueue(wq_name);
1802 
1803 	hba->clk_scaling.is_initialized = true;
1804 }
1805 
1806 static void ufshcd_exit_clk_scaling(struct ufs_hba *hba)
1807 {
1808 	if (!hba->clk_scaling.is_initialized)
1809 		return;
1810 
1811 	ufshcd_remove_clk_scaling_sysfs(hba);
1812 	destroy_workqueue(hba->clk_scaling.workq);
1813 	ufshcd_devfreq_remove(hba);
1814 	hba->clk_scaling.is_initialized = false;
1815 }
1816 
1817 static void ufshcd_ungate_work(struct work_struct *work)
1818 {
1819 	int ret;
1820 	unsigned long flags;
1821 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1822 			clk_gating.ungate_work);
1823 
1824 	cancel_delayed_work_sync(&hba->clk_gating.gate_work);
1825 
1826 	spin_lock_irqsave(hba->host->host_lock, flags);
1827 	if (hba->clk_gating.state == CLKS_ON) {
1828 		spin_unlock_irqrestore(hba->host->host_lock, flags);
1829 		return;
1830 	}
1831 
1832 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1833 	ufshcd_hba_vreg_set_hpm(hba);
1834 	ufshcd_setup_clocks(hba, true);
1835 
1836 	ufshcd_enable_irq(hba);
1837 
1838 	/* Exit from hibern8 */
1839 	if (ufshcd_can_hibern8_during_gating(hba)) {
1840 		/* Prevent gating in this path */
1841 		hba->clk_gating.is_suspended = true;
1842 		if (ufshcd_is_link_hibern8(hba)) {
1843 			ret = ufshcd_uic_hibern8_exit(hba);
1844 			if (ret)
1845 				dev_err(hba->dev, "%s: hibern8 exit failed %d\n",
1846 					__func__, ret);
1847 			else
1848 				ufshcd_set_link_active(hba);
1849 		}
1850 		hba->clk_gating.is_suspended = false;
1851 	}
1852 }
1853 
1854 /**
1855  * ufshcd_hold - Enable clocks that were gated earlier due to ufshcd_release.
1856  * Also, exit from hibern8 mode and set the link as active.
1857  * @hba: per adapter instance
1858  */
1859 void ufshcd_hold(struct ufs_hba *hba)
1860 {
1861 	bool flush_result;
1862 	unsigned long flags;
1863 
1864 	if (!ufshcd_is_clkgating_allowed(hba) ||
1865 	    !hba->clk_gating.is_initialized)
1866 		return;
1867 	spin_lock_irqsave(hba->host->host_lock, flags);
1868 	hba->clk_gating.active_reqs++;
1869 
1870 start:
1871 	switch (hba->clk_gating.state) {
1872 	case CLKS_ON:
1873 		/*
1874 		 * Wait for the ungate work to complete if in progress.
1875 		 * Though the clocks may be in ON state, the link could
1876 		 * still be in hibner8 state if hibern8 is allowed
1877 		 * during clock gating.
1878 		 * Make sure we exit hibern8 state also in addition to
1879 		 * clocks being ON.
1880 		 */
1881 		if (ufshcd_can_hibern8_during_gating(hba) &&
1882 		    ufshcd_is_link_hibern8(hba)) {
1883 			spin_unlock_irqrestore(hba->host->host_lock, flags);
1884 			flush_result = flush_work(&hba->clk_gating.ungate_work);
1885 			if (hba->clk_gating.is_suspended && !flush_result)
1886 				return;
1887 			spin_lock_irqsave(hba->host->host_lock, flags);
1888 			goto start;
1889 		}
1890 		break;
1891 	case REQ_CLKS_OFF:
1892 		if (cancel_delayed_work(&hba->clk_gating.gate_work)) {
1893 			hba->clk_gating.state = CLKS_ON;
1894 			trace_ufshcd_clk_gating(dev_name(hba->dev),
1895 						hba->clk_gating.state);
1896 			break;
1897 		}
1898 		/*
1899 		 * If we are here, it means gating work is either done or
1900 		 * currently running. Hence, fall through to cancel gating
1901 		 * work and to enable clocks.
1902 		 */
1903 		fallthrough;
1904 	case CLKS_OFF:
1905 		hba->clk_gating.state = REQ_CLKS_ON;
1906 		trace_ufshcd_clk_gating(dev_name(hba->dev),
1907 					hba->clk_gating.state);
1908 		queue_work(hba->clk_gating.clk_gating_workq,
1909 			   &hba->clk_gating.ungate_work);
1910 		/*
1911 		 * fall through to check if we should wait for this
1912 		 * work to be done or not.
1913 		 */
1914 		fallthrough;
1915 	case REQ_CLKS_ON:
1916 		spin_unlock_irqrestore(hba->host->host_lock, flags);
1917 		flush_work(&hba->clk_gating.ungate_work);
1918 		/* Make sure state is CLKS_ON before returning */
1919 		spin_lock_irqsave(hba->host->host_lock, flags);
1920 		goto start;
1921 	default:
1922 		dev_err(hba->dev, "%s: clk gating is in invalid state %d\n",
1923 				__func__, hba->clk_gating.state);
1924 		break;
1925 	}
1926 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1927 }
1928 EXPORT_SYMBOL_GPL(ufshcd_hold);
1929 
1930 static void ufshcd_gate_work(struct work_struct *work)
1931 {
1932 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1933 			clk_gating.gate_work.work);
1934 	unsigned long flags;
1935 	int ret;
1936 
1937 	spin_lock_irqsave(hba->host->host_lock, flags);
1938 	/*
1939 	 * In case you are here to cancel this work the gating state
1940 	 * would be marked as REQ_CLKS_ON. In this case save time by
1941 	 * skipping the gating work and exit after changing the clock
1942 	 * state to CLKS_ON.
1943 	 */
1944 	if (hba->clk_gating.is_suspended ||
1945 		(hba->clk_gating.state != REQ_CLKS_OFF)) {
1946 		hba->clk_gating.state = CLKS_ON;
1947 		trace_ufshcd_clk_gating(dev_name(hba->dev),
1948 					hba->clk_gating.state);
1949 		goto rel_lock;
1950 	}
1951 
1952 	if (ufshcd_is_ufs_dev_busy(hba) || hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL)
1953 		goto rel_lock;
1954 
1955 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1956 
1957 	/* put the link into hibern8 mode before turning off clocks */
1958 	if (ufshcd_can_hibern8_during_gating(hba)) {
1959 		ret = ufshcd_uic_hibern8_enter(hba);
1960 		if (ret) {
1961 			hba->clk_gating.state = CLKS_ON;
1962 			dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
1963 					__func__, ret);
1964 			trace_ufshcd_clk_gating(dev_name(hba->dev),
1965 						hba->clk_gating.state);
1966 			goto out;
1967 		}
1968 		ufshcd_set_link_hibern8(hba);
1969 	}
1970 
1971 	ufshcd_disable_irq(hba);
1972 
1973 	ufshcd_setup_clocks(hba, false);
1974 
1975 	/* Put the host controller in low power mode if possible */
1976 	ufshcd_hba_vreg_set_lpm(hba);
1977 	/*
1978 	 * In case you are here to cancel this work the gating state
1979 	 * would be marked as REQ_CLKS_ON. In this case keep the state
1980 	 * as REQ_CLKS_ON which would anyway imply that clocks are off
1981 	 * and a request to turn them on is pending. By doing this way,
1982 	 * we keep the state machine in tact and this would ultimately
1983 	 * prevent from doing cancel work multiple times when there are
1984 	 * new requests arriving before the current cancel work is done.
1985 	 */
1986 	spin_lock_irqsave(hba->host->host_lock, flags);
1987 	if (hba->clk_gating.state == REQ_CLKS_OFF) {
1988 		hba->clk_gating.state = CLKS_OFF;
1989 		trace_ufshcd_clk_gating(dev_name(hba->dev),
1990 					hba->clk_gating.state);
1991 	}
1992 rel_lock:
1993 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1994 out:
1995 	return;
1996 }
1997 
1998 /* host lock must be held before calling this variant */
1999 static void __ufshcd_release(struct ufs_hba *hba)
2000 {
2001 	if (!ufshcd_is_clkgating_allowed(hba))
2002 		return;
2003 
2004 	hba->clk_gating.active_reqs--;
2005 
2006 	if (hba->clk_gating.active_reqs || hba->clk_gating.is_suspended ||
2007 	    hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL ||
2008 	    hba->outstanding_tasks || !hba->clk_gating.is_initialized ||
2009 	    hba->active_uic_cmd || hba->uic_async_done ||
2010 	    hba->clk_gating.state == CLKS_OFF)
2011 		return;
2012 
2013 	hba->clk_gating.state = REQ_CLKS_OFF;
2014 	trace_ufshcd_clk_gating(dev_name(hba->dev), hba->clk_gating.state);
2015 	queue_delayed_work(hba->clk_gating.clk_gating_workq,
2016 			   &hba->clk_gating.gate_work,
2017 			   msecs_to_jiffies(hba->clk_gating.delay_ms));
2018 }
2019 
2020 void ufshcd_release(struct ufs_hba *hba)
2021 {
2022 	unsigned long flags;
2023 
2024 	spin_lock_irqsave(hba->host->host_lock, flags);
2025 	__ufshcd_release(hba);
2026 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2027 }
2028 EXPORT_SYMBOL_GPL(ufshcd_release);
2029 
2030 static ssize_t ufshcd_clkgate_delay_show(struct device *dev,
2031 		struct device_attribute *attr, char *buf)
2032 {
2033 	struct ufs_hba *hba = dev_get_drvdata(dev);
2034 
2035 	return sysfs_emit(buf, "%lu\n", hba->clk_gating.delay_ms);
2036 }
2037 
2038 void ufshcd_clkgate_delay_set(struct device *dev, unsigned long value)
2039 {
2040 	struct ufs_hba *hba = dev_get_drvdata(dev);
2041 	unsigned long flags;
2042 
2043 	spin_lock_irqsave(hba->host->host_lock, flags);
2044 	hba->clk_gating.delay_ms = value;
2045 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2046 }
2047 EXPORT_SYMBOL_GPL(ufshcd_clkgate_delay_set);
2048 
2049 static ssize_t ufshcd_clkgate_delay_store(struct device *dev,
2050 		struct device_attribute *attr, const char *buf, size_t count)
2051 {
2052 	unsigned long value;
2053 
2054 	if (kstrtoul(buf, 0, &value))
2055 		return -EINVAL;
2056 
2057 	ufshcd_clkgate_delay_set(dev, value);
2058 	return count;
2059 }
2060 
2061 static ssize_t ufshcd_clkgate_enable_show(struct device *dev,
2062 		struct device_attribute *attr, char *buf)
2063 {
2064 	struct ufs_hba *hba = dev_get_drvdata(dev);
2065 
2066 	return sysfs_emit(buf, "%d\n", hba->clk_gating.is_enabled);
2067 }
2068 
2069 static ssize_t ufshcd_clkgate_enable_store(struct device *dev,
2070 		struct device_attribute *attr, const char *buf, size_t count)
2071 {
2072 	struct ufs_hba *hba = dev_get_drvdata(dev);
2073 	unsigned long flags;
2074 	u32 value;
2075 
2076 	if (kstrtou32(buf, 0, &value))
2077 		return -EINVAL;
2078 
2079 	value = !!value;
2080 
2081 	spin_lock_irqsave(hba->host->host_lock, flags);
2082 	if (value == hba->clk_gating.is_enabled)
2083 		goto out;
2084 
2085 	if (value)
2086 		__ufshcd_release(hba);
2087 	else
2088 		hba->clk_gating.active_reqs++;
2089 
2090 	hba->clk_gating.is_enabled = value;
2091 out:
2092 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2093 	return count;
2094 }
2095 
2096 static void ufshcd_init_clk_gating_sysfs(struct ufs_hba *hba)
2097 {
2098 	hba->clk_gating.delay_attr.show = ufshcd_clkgate_delay_show;
2099 	hba->clk_gating.delay_attr.store = ufshcd_clkgate_delay_store;
2100 	sysfs_attr_init(&hba->clk_gating.delay_attr.attr);
2101 	hba->clk_gating.delay_attr.attr.name = "clkgate_delay_ms";
2102 	hba->clk_gating.delay_attr.attr.mode = 0644;
2103 	if (device_create_file(hba->dev, &hba->clk_gating.delay_attr))
2104 		dev_err(hba->dev, "Failed to create sysfs for clkgate_delay\n");
2105 
2106 	hba->clk_gating.enable_attr.show = ufshcd_clkgate_enable_show;
2107 	hba->clk_gating.enable_attr.store = ufshcd_clkgate_enable_store;
2108 	sysfs_attr_init(&hba->clk_gating.enable_attr.attr);
2109 	hba->clk_gating.enable_attr.attr.name = "clkgate_enable";
2110 	hba->clk_gating.enable_attr.attr.mode = 0644;
2111 	if (device_create_file(hba->dev, &hba->clk_gating.enable_attr))
2112 		dev_err(hba->dev, "Failed to create sysfs for clkgate_enable\n");
2113 }
2114 
2115 static void ufshcd_remove_clk_gating_sysfs(struct ufs_hba *hba)
2116 {
2117 	if (hba->clk_gating.delay_attr.attr.name)
2118 		device_remove_file(hba->dev, &hba->clk_gating.delay_attr);
2119 	if (hba->clk_gating.enable_attr.attr.name)
2120 		device_remove_file(hba->dev, &hba->clk_gating.enable_attr);
2121 }
2122 
2123 static void ufshcd_init_clk_gating(struct ufs_hba *hba)
2124 {
2125 	char wq_name[sizeof("ufs_clk_gating_00")];
2126 
2127 	if (!ufshcd_is_clkgating_allowed(hba))
2128 		return;
2129 
2130 	hba->clk_gating.state = CLKS_ON;
2131 
2132 	hba->clk_gating.delay_ms = 150;
2133 	INIT_DELAYED_WORK(&hba->clk_gating.gate_work, ufshcd_gate_work);
2134 	INIT_WORK(&hba->clk_gating.ungate_work, ufshcd_ungate_work);
2135 
2136 	snprintf(wq_name, ARRAY_SIZE(wq_name), "ufs_clk_gating_%d",
2137 		 hba->host->host_no);
2138 	hba->clk_gating.clk_gating_workq = alloc_ordered_workqueue(wq_name,
2139 					WQ_MEM_RECLAIM | WQ_HIGHPRI);
2140 
2141 	ufshcd_init_clk_gating_sysfs(hba);
2142 
2143 	hba->clk_gating.is_enabled = true;
2144 	hba->clk_gating.is_initialized = true;
2145 }
2146 
2147 static void ufshcd_exit_clk_gating(struct ufs_hba *hba)
2148 {
2149 	if (!hba->clk_gating.is_initialized)
2150 		return;
2151 
2152 	ufshcd_remove_clk_gating_sysfs(hba);
2153 
2154 	/* Ungate the clock if necessary. */
2155 	ufshcd_hold(hba);
2156 	hba->clk_gating.is_initialized = false;
2157 	ufshcd_release(hba);
2158 
2159 	destroy_workqueue(hba->clk_gating.clk_gating_workq);
2160 }
2161 
2162 static void ufshcd_clk_scaling_start_busy(struct ufs_hba *hba)
2163 {
2164 	bool queue_resume_work = false;
2165 	ktime_t curr_t = ktime_get();
2166 	unsigned long flags;
2167 
2168 	if (!ufshcd_is_clkscaling_supported(hba))
2169 		return;
2170 
2171 	spin_lock_irqsave(hba->host->host_lock, flags);
2172 	if (!hba->clk_scaling.active_reqs++)
2173 		queue_resume_work = true;
2174 
2175 	if (!hba->clk_scaling.is_enabled || hba->pm_op_in_progress) {
2176 		spin_unlock_irqrestore(hba->host->host_lock, flags);
2177 		return;
2178 	}
2179 
2180 	if (queue_resume_work)
2181 		queue_work(hba->clk_scaling.workq,
2182 			   &hba->clk_scaling.resume_work);
2183 
2184 	if (!hba->clk_scaling.window_start_t) {
2185 		hba->clk_scaling.window_start_t = curr_t;
2186 		hba->clk_scaling.tot_busy_t = 0;
2187 		hba->clk_scaling.is_busy_started = false;
2188 	}
2189 
2190 	if (!hba->clk_scaling.is_busy_started) {
2191 		hba->clk_scaling.busy_start_t = curr_t;
2192 		hba->clk_scaling.is_busy_started = true;
2193 	}
2194 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2195 }
2196 
2197 static void ufshcd_clk_scaling_update_busy(struct ufs_hba *hba)
2198 {
2199 	struct ufs_clk_scaling *scaling = &hba->clk_scaling;
2200 	unsigned long flags;
2201 
2202 	if (!ufshcd_is_clkscaling_supported(hba))
2203 		return;
2204 
2205 	spin_lock_irqsave(hba->host->host_lock, flags);
2206 	hba->clk_scaling.active_reqs--;
2207 	if (!scaling->active_reqs && scaling->is_busy_started) {
2208 		scaling->tot_busy_t += ktime_to_us(ktime_sub(ktime_get(),
2209 					scaling->busy_start_t));
2210 		scaling->busy_start_t = 0;
2211 		scaling->is_busy_started = false;
2212 	}
2213 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2214 }
2215 
2216 static inline int ufshcd_monitor_opcode2dir(u8 opcode)
2217 {
2218 	if (opcode == READ_6 || opcode == READ_10 || opcode == READ_16)
2219 		return READ;
2220 	else if (opcode == WRITE_6 || opcode == WRITE_10 || opcode == WRITE_16)
2221 		return WRITE;
2222 	else
2223 		return -EINVAL;
2224 }
2225 
2226 static inline bool ufshcd_should_inform_monitor(struct ufs_hba *hba,
2227 						struct ufshcd_lrb *lrbp)
2228 {
2229 	const struct ufs_hba_monitor *m = &hba->monitor;
2230 
2231 	return (m->enabled && lrbp && lrbp->cmd &&
2232 		(!m->chunk_size || m->chunk_size == lrbp->cmd->sdb.length) &&
2233 		ktime_before(hba->monitor.enabled_ts, lrbp->issue_time_stamp));
2234 }
2235 
2236 static void ufshcd_start_monitor(struct ufs_hba *hba,
2237 				 const struct ufshcd_lrb *lrbp)
2238 {
2239 	int dir = ufshcd_monitor_opcode2dir(*lrbp->cmd->cmnd);
2240 	unsigned long flags;
2241 
2242 	spin_lock_irqsave(hba->host->host_lock, flags);
2243 	if (dir >= 0 && hba->monitor.nr_queued[dir]++ == 0)
2244 		hba->monitor.busy_start_ts[dir] = ktime_get();
2245 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2246 }
2247 
2248 static void ufshcd_update_monitor(struct ufs_hba *hba, const struct ufshcd_lrb *lrbp)
2249 {
2250 	int dir = ufshcd_monitor_opcode2dir(*lrbp->cmd->cmnd);
2251 	unsigned long flags;
2252 
2253 	spin_lock_irqsave(hba->host->host_lock, flags);
2254 	if (dir >= 0 && hba->monitor.nr_queued[dir] > 0) {
2255 		const struct request *req = scsi_cmd_to_rq(lrbp->cmd);
2256 		struct ufs_hba_monitor *m = &hba->monitor;
2257 		ktime_t now, inc, lat;
2258 
2259 		now = lrbp->compl_time_stamp;
2260 		inc = ktime_sub(now, m->busy_start_ts[dir]);
2261 		m->total_busy[dir] = ktime_add(m->total_busy[dir], inc);
2262 		m->nr_sec_rw[dir] += blk_rq_sectors(req);
2263 
2264 		/* Update latencies */
2265 		m->nr_req[dir]++;
2266 		lat = ktime_sub(now, lrbp->issue_time_stamp);
2267 		m->lat_sum[dir] += lat;
2268 		if (m->lat_max[dir] < lat || !m->lat_max[dir])
2269 			m->lat_max[dir] = lat;
2270 		if (m->lat_min[dir] > lat || !m->lat_min[dir])
2271 			m->lat_min[dir] = lat;
2272 
2273 		m->nr_queued[dir]--;
2274 		/* Push forward the busy start of monitor */
2275 		m->busy_start_ts[dir] = now;
2276 	}
2277 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2278 }
2279 
2280 /**
2281  * ufshcd_send_command - Send SCSI or device management commands
2282  * @hba: per adapter instance
2283  * @task_tag: Task tag of the command
2284  * @hwq: pointer to hardware queue instance
2285  */
2286 static inline
2287 void ufshcd_send_command(struct ufs_hba *hba, unsigned int task_tag,
2288 			 struct ufs_hw_queue *hwq)
2289 {
2290 	struct ufshcd_lrb *lrbp = &hba->lrb[task_tag];
2291 	unsigned long flags;
2292 
2293 	lrbp->issue_time_stamp = ktime_get();
2294 	lrbp->issue_time_stamp_local_clock = local_clock();
2295 	lrbp->compl_time_stamp = ktime_set(0, 0);
2296 	lrbp->compl_time_stamp_local_clock = 0;
2297 	ufshcd_add_command_trace(hba, task_tag, UFS_CMD_SEND);
2298 	if (lrbp->cmd)
2299 		ufshcd_clk_scaling_start_busy(hba);
2300 	if (unlikely(ufshcd_should_inform_monitor(hba, lrbp)))
2301 		ufshcd_start_monitor(hba, lrbp);
2302 
2303 	if (is_mcq_enabled(hba)) {
2304 		int utrd_size = sizeof(struct utp_transfer_req_desc);
2305 		struct utp_transfer_req_desc *src = lrbp->utr_descriptor_ptr;
2306 		struct utp_transfer_req_desc *dest;
2307 
2308 		spin_lock(&hwq->sq_lock);
2309 		dest = hwq->sqe_base_addr + hwq->sq_tail_slot;
2310 		memcpy(dest, src, utrd_size);
2311 		ufshcd_inc_sq_tail(hwq);
2312 		spin_unlock(&hwq->sq_lock);
2313 	} else {
2314 		spin_lock_irqsave(&hba->outstanding_lock, flags);
2315 		if (hba->vops && hba->vops->setup_xfer_req)
2316 			hba->vops->setup_xfer_req(hba, lrbp->task_tag,
2317 						  !!lrbp->cmd);
2318 		__set_bit(lrbp->task_tag, &hba->outstanding_reqs);
2319 		ufshcd_writel(hba, 1 << lrbp->task_tag,
2320 			      REG_UTP_TRANSFER_REQ_DOOR_BELL);
2321 		spin_unlock_irqrestore(&hba->outstanding_lock, flags);
2322 	}
2323 }
2324 
2325 /**
2326  * ufshcd_copy_sense_data - Copy sense data in case of check condition
2327  * @lrbp: pointer to local reference block
2328  */
2329 static inline void ufshcd_copy_sense_data(struct ufshcd_lrb *lrbp)
2330 {
2331 	u8 *const sense_buffer = lrbp->cmd->sense_buffer;
2332 	u16 resp_len;
2333 	int len;
2334 
2335 	resp_len = be16_to_cpu(lrbp->ucd_rsp_ptr->header.data_segment_length);
2336 	if (sense_buffer && resp_len) {
2337 		int len_to_copy;
2338 
2339 		len = be16_to_cpu(lrbp->ucd_rsp_ptr->sr.sense_data_len);
2340 		len_to_copy = min_t(int, UFS_SENSE_SIZE, len);
2341 
2342 		memcpy(sense_buffer, lrbp->ucd_rsp_ptr->sr.sense_data,
2343 		       len_to_copy);
2344 	}
2345 }
2346 
2347 /**
2348  * ufshcd_copy_query_response() - Copy the Query Response and the data
2349  * descriptor
2350  * @hba: per adapter instance
2351  * @lrbp: pointer to local reference block
2352  *
2353  * Return: 0 upon success; < 0 upon failure.
2354  */
2355 static
2356 int ufshcd_copy_query_response(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2357 {
2358 	struct ufs_query_res *query_res = &hba->dev_cmd.query.response;
2359 
2360 	memcpy(&query_res->upiu_res, &lrbp->ucd_rsp_ptr->qr, QUERY_OSF_SIZE);
2361 
2362 	/* Get the descriptor */
2363 	if (hba->dev_cmd.query.descriptor &&
2364 	    lrbp->ucd_rsp_ptr->qr.opcode == UPIU_QUERY_OPCODE_READ_DESC) {
2365 		u8 *descp = (u8 *)lrbp->ucd_rsp_ptr +
2366 				GENERAL_UPIU_REQUEST_SIZE;
2367 		u16 resp_len;
2368 		u16 buf_len;
2369 
2370 		/* data segment length */
2371 		resp_len = be16_to_cpu(lrbp->ucd_rsp_ptr->header
2372 				       .data_segment_length);
2373 		buf_len = be16_to_cpu(
2374 				hba->dev_cmd.query.request.upiu_req.length);
2375 		if (likely(buf_len >= resp_len)) {
2376 			memcpy(hba->dev_cmd.query.descriptor, descp, resp_len);
2377 		} else {
2378 			dev_warn(hba->dev,
2379 				 "%s: rsp size %d is bigger than buffer size %d",
2380 				 __func__, resp_len, buf_len);
2381 			return -EINVAL;
2382 		}
2383 	}
2384 
2385 	return 0;
2386 }
2387 
2388 /**
2389  * ufshcd_hba_capabilities - Read controller capabilities
2390  * @hba: per adapter instance
2391  *
2392  * Return: 0 on success, negative on error.
2393  */
2394 static inline int ufshcd_hba_capabilities(struct ufs_hba *hba)
2395 {
2396 	int err;
2397 
2398 	hba->capabilities = ufshcd_readl(hba, REG_CONTROLLER_CAPABILITIES);
2399 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_64BIT_ADDRESS)
2400 		hba->capabilities &= ~MASK_64_ADDRESSING_SUPPORT;
2401 
2402 	/* nutrs and nutmrs are 0 based values */
2403 	hba->nutrs = (hba->capabilities & MASK_TRANSFER_REQUESTS_SLOTS) + 1;
2404 	hba->nutmrs =
2405 	((hba->capabilities & MASK_TASK_MANAGEMENT_REQUEST_SLOTS) >> 16) + 1;
2406 	hba->reserved_slot = hba->nutrs - 1;
2407 
2408 	/* Read crypto capabilities */
2409 	err = ufshcd_hba_init_crypto_capabilities(hba);
2410 	if (err) {
2411 		dev_err(hba->dev, "crypto setup failed\n");
2412 		return err;
2413 	}
2414 
2415 	hba->mcq_sup = FIELD_GET(MASK_MCQ_SUPPORT, hba->capabilities);
2416 	if (!hba->mcq_sup)
2417 		return 0;
2418 
2419 	hba->mcq_capabilities = ufshcd_readl(hba, REG_MCQCAP);
2420 	hba->ext_iid_sup = FIELD_GET(MASK_EXT_IID_SUPPORT,
2421 				     hba->mcq_capabilities);
2422 
2423 	return 0;
2424 }
2425 
2426 /**
2427  * ufshcd_ready_for_uic_cmd - Check if controller is ready
2428  *                            to accept UIC commands
2429  * @hba: per adapter instance
2430  *
2431  * Return: true on success, else false.
2432  */
2433 static inline bool ufshcd_ready_for_uic_cmd(struct ufs_hba *hba)
2434 {
2435 	u32 val;
2436 	int ret = read_poll_timeout(ufshcd_readl, val, val & UIC_COMMAND_READY,
2437 				    500, UIC_CMD_TIMEOUT * 1000, false, hba,
2438 				    REG_CONTROLLER_STATUS);
2439 	return ret == 0;
2440 }
2441 
2442 /**
2443  * ufshcd_get_upmcrs - Get the power mode change request status
2444  * @hba: Pointer to adapter instance
2445  *
2446  * This function gets the UPMCRS field of HCS register
2447  *
2448  * Return: value of UPMCRS field.
2449  */
2450 static inline u8 ufshcd_get_upmcrs(struct ufs_hba *hba)
2451 {
2452 	return (ufshcd_readl(hba, REG_CONTROLLER_STATUS) >> 8) & 0x7;
2453 }
2454 
2455 /**
2456  * ufshcd_dispatch_uic_cmd - Dispatch an UIC command to the Unipro layer
2457  * @hba: per adapter instance
2458  * @uic_cmd: UIC command
2459  */
2460 static inline void
2461 ufshcd_dispatch_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2462 {
2463 	lockdep_assert_held(&hba->uic_cmd_mutex);
2464 
2465 	WARN_ON(hba->active_uic_cmd);
2466 
2467 	hba->active_uic_cmd = uic_cmd;
2468 
2469 	/* Write Args */
2470 	ufshcd_writel(hba, uic_cmd->argument1, REG_UIC_COMMAND_ARG_1);
2471 	ufshcd_writel(hba, uic_cmd->argument2, REG_UIC_COMMAND_ARG_2);
2472 	ufshcd_writel(hba, uic_cmd->argument3, REG_UIC_COMMAND_ARG_3);
2473 
2474 	ufshcd_add_uic_command_trace(hba, uic_cmd, UFS_CMD_SEND);
2475 
2476 	/* Write UIC Cmd */
2477 	ufshcd_writel(hba, uic_cmd->command & COMMAND_OPCODE_MASK,
2478 		      REG_UIC_COMMAND);
2479 }
2480 
2481 /**
2482  * ufshcd_wait_for_uic_cmd - Wait for completion of an UIC command
2483  * @hba: per adapter instance
2484  * @uic_cmd: UIC command
2485  *
2486  * Return: 0 only if success.
2487  */
2488 static int
2489 ufshcd_wait_for_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2490 {
2491 	int ret;
2492 	unsigned long flags;
2493 
2494 	lockdep_assert_held(&hba->uic_cmd_mutex);
2495 
2496 	if (wait_for_completion_timeout(&uic_cmd->done,
2497 					msecs_to_jiffies(UIC_CMD_TIMEOUT))) {
2498 		ret = uic_cmd->argument2 & MASK_UIC_COMMAND_RESULT;
2499 	} else {
2500 		ret = -ETIMEDOUT;
2501 		dev_err(hba->dev,
2502 			"uic cmd 0x%x with arg3 0x%x completion timeout\n",
2503 			uic_cmd->command, uic_cmd->argument3);
2504 
2505 		if (!uic_cmd->cmd_active) {
2506 			dev_err(hba->dev, "%s: UIC cmd has been completed, return the result\n",
2507 				__func__);
2508 			ret = uic_cmd->argument2 & MASK_UIC_COMMAND_RESULT;
2509 		}
2510 	}
2511 
2512 	spin_lock_irqsave(hba->host->host_lock, flags);
2513 	hba->active_uic_cmd = NULL;
2514 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2515 
2516 	return ret;
2517 }
2518 
2519 /**
2520  * __ufshcd_send_uic_cmd - Send UIC commands and retrieve the result
2521  * @hba: per adapter instance
2522  * @uic_cmd: UIC command
2523  * @completion: initialize the completion only if this is set to true
2524  *
2525  * Return: 0 only if success.
2526  */
2527 static int
2528 __ufshcd_send_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd,
2529 		      bool completion)
2530 {
2531 	lockdep_assert_held(&hba->uic_cmd_mutex);
2532 
2533 	if (!ufshcd_ready_for_uic_cmd(hba)) {
2534 		dev_err(hba->dev,
2535 			"Controller not ready to accept UIC commands\n");
2536 		return -EIO;
2537 	}
2538 
2539 	if (completion)
2540 		init_completion(&uic_cmd->done);
2541 
2542 	uic_cmd->cmd_active = 1;
2543 	ufshcd_dispatch_uic_cmd(hba, uic_cmd);
2544 
2545 	return 0;
2546 }
2547 
2548 /**
2549  * ufshcd_send_uic_cmd - Send UIC commands and retrieve the result
2550  * @hba: per adapter instance
2551  * @uic_cmd: UIC command
2552  *
2553  * Return: 0 only if success.
2554  */
2555 int ufshcd_send_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2556 {
2557 	int ret;
2558 
2559 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_UIC_CMD)
2560 		return 0;
2561 
2562 	ufshcd_hold(hba);
2563 	mutex_lock(&hba->uic_cmd_mutex);
2564 	ufshcd_add_delay_before_dme_cmd(hba);
2565 
2566 	ret = __ufshcd_send_uic_cmd(hba, uic_cmd, true);
2567 	if (!ret)
2568 		ret = ufshcd_wait_for_uic_cmd(hba, uic_cmd);
2569 
2570 	mutex_unlock(&hba->uic_cmd_mutex);
2571 
2572 	ufshcd_release(hba);
2573 	return ret;
2574 }
2575 
2576 /**
2577  * ufshcd_sgl_to_prdt - SG list to PRTD (Physical Region Description Table, 4DW format)
2578  * @hba:	per-adapter instance
2579  * @lrbp:	pointer to local reference block
2580  * @sg_entries:	The number of sg lists actually used
2581  * @sg_list:	Pointer to SG list
2582  */
2583 static void ufshcd_sgl_to_prdt(struct ufs_hba *hba, struct ufshcd_lrb *lrbp, int sg_entries,
2584 			       struct scatterlist *sg_list)
2585 {
2586 	struct ufshcd_sg_entry *prd;
2587 	struct scatterlist *sg;
2588 	int i;
2589 
2590 	if (sg_entries) {
2591 
2592 		if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN)
2593 			lrbp->utr_descriptor_ptr->prd_table_length =
2594 				cpu_to_le16(sg_entries * ufshcd_sg_entry_size(hba));
2595 		else
2596 			lrbp->utr_descriptor_ptr->prd_table_length = cpu_to_le16(sg_entries);
2597 
2598 		prd = lrbp->ucd_prdt_ptr;
2599 
2600 		for_each_sg(sg_list, sg, sg_entries, i) {
2601 			const unsigned int len = sg_dma_len(sg);
2602 
2603 			/*
2604 			 * From the UFSHCI spec: "Data Byte Count (DBC): A '0'
2605 			 * based value that indicates the length, in bytes, of
2606 			 * the data block. A maximum of length of 256KB may
2607 			 * exist for any entry. Bits 1:0 of this field shall be
2608 			 * 11b to indicate Dword granularity. A value of '3'
2609 			 * indicates 4 bytes, '7' indicates 8 bytes, etc."
2610 			 */
2611 			WARN_ONCE(len > SZ_256K, "len = %#x\n", len);
2612 			prd->size = cpu_to_le32(len - 1);
2613 			prd->addr = cpu_to_le64(sg->dma_address);
2614 			prd->reserved = 0;
2615 			prd = (void *)prd + ufshcd_sg_entry_size(hba);
2616 		}
2617 	} else {
2618 		lrbp->utr_descriptor_ptr->prd_table_length = 0;
2619 	}
2620 }
2621 
2622 /**
2623  * ufshcd_map_sg - Map scatter-gather list to prdt
2624  * @hba: per adapter instance
2625  * @lrbp: pointer to local reference block
2626  *
2627  * Return: 0 in case of success, non-zero value in case of failure.
2628  */
2629 static int ufshcd_map_sg(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2630 {
2631 	struct scsi_cmnd *cmd = lrbp->cmd;
2632 	int sg_segments = scsi_dma_map(cmd);
2633 
2634 	if (sg_segments < 0)
2635 		return sg_segments;
2636 
2637 	ufshcd_sgl_to_prdt(hba, lrbp, sg_segments, scsi_sglist(cmd));
2638 
2639 	return 0;
2640 }
2641 
2642 /**
2643  * ufshcd_enable_intr - enable interrupts
2644  * @hba: per adapter instance
2645  * @intrs: interrupt bits
2646  */
2647 static void ufshcd_enable_intr(struct ufs_hba *hba, u32 intrs)
2648 {
2649 	u32 set = ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
2650 
2651 	set |= intrs;
2652 	ufshcd_writel(hba, set, REG_INTERRUPT_ENABLE);
2653 }
2654 
2655 /**
2656  * ufshcd_disable_intr - disable interrupts
2657  * @hba: per adapter instance
2658  * @intrs: interrupt bits
2659  */
2660 static void ufshcd_disable_intr(struct ufs_hba *hba, u32 intrs)
2661 {
2662 	u32 set = ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
2663 
2664 	set &= ~intrs;
2665 	ufshcd_writel(hba, set, REG_INTERRUPT_ENABLE);
2666 }
2667 
2668 /**
2669  * ufshcd_prepare_req_desc_hdr - Fill UTP Transfer request descriptor header according to request
2670  * descriptor according to request
2671  * @hba: per adapter instance
2672  * @lrbp: pointer to local reference block
2673  * @upiu_flags: flags required in the header
2674  * @cmd_dir: requests data direction
2675  * @ehs_length: Total EHS Length (in 32‐bytes units of all Extra Header Segments)
2676  */
2677 static void
2678 ufshcd_prepare_req_desc_hdr(struct ufs_hba *hba, struct ufshcd_lrb *lrbp,
2679 			    u8 *upiu_flags, enum dma_data_direction cmd_dir,
2680 			    int ehs_length)
2681 {
2682 	struct utp_transfer_req_desc *req_desc = lrbp->utr_descriptor_ptr;
2683 	struct request_desc_header *h = &req_desc->header;
2684 	enum utp_data_direction data_direction;
2685 
2686 	lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
2687 
2688 	*h = (typeof(*h)){ };
2689 
2690 	if (cmd_dir == DMA_FROM_DEVICE) {
2691 		data_direction = UTP_DEVICE_TO_HOST;
2692 		*upiu_flags = UPIU_CMD_FLAGS_READ;
2693 	} else if (cmd_dir == DMA_TO_DEVICE) {
2694 		data_direction = UTP_HOST_TO_DEVICE;
2695 		*upiu_flags = UPIU_CMD_FLAGS_WRITE;
2696 	} else {
2697 		data_direction = UTP_NO_DATA_TRANSFER;
2698 		*upiu_flags = UPIU_CMD_FLAGS_NONE;
2699 	}
2700 
2701 	h->command_type = lrbp->command_type;
2702 	h->data_direction = data_direction;
2703 	h->ehs_length = ehs_length;
2704 
2705 	if (lrbp->intr_cmd)
2706 		h->interrupt = 1;
2707 
2708 	/* Prepare crypto related dwords */
2709 	ufshcd_prepare_req_desc_hdr_crypto(lrbp, h);
2710 
2711 	/*
2712 	 * assigning invalid value for command status. Controller
2713 	 * updates OCS on command completion, with the command
2714 	 * status
2715 	 */
2716 	h->ocs = OCS_INVALID_COMMAND_STATUS;
2717 
2718 	req_desc->prd_table_length = 0;
2719 }
2720 
2721 /**
2722  * ufshcd_prepare_utp_scsi_cmd_upiu() - fills the utp_transfer_req_desc,
2723  * for scsi commands
2724  * @lrbp: local reference block pointer
2725  * @upiu_flags: flags
2726  */
2727 static
2728 void ufshcd_prepare_utp_scsi_cmd_upiu(struct ufshcd_lrb *lrbp, u8 upiu_flags)
2729 {
2730 	struct scsi_cmnd *cmd = lrbp->cmd;
2731 	struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2732 	unsigned short cdb_len;
2733 
2734 	ucd_req_ptr->header = (struct utp_upiu_header){
2735 		.transaction_code = UPIU_TRANSACTION_COMMAND,
2736 		.flags = upiu_flags,
2737 		.lun = lrbp->lun,
2738 		.task_tag = lrbp->task_tag,
2739 		.command_set_type = UPIU_COMMAND_SET_TYPE_SCSI,
2740 	};
2741 
2742 	WARN_ON_ONCE(ucd_req_ptr->header.task_tag != lrbp->task_tag);
2743 
2744 	ucd_req_ptr->sc.exp_data_transfer_len = cpu_to_be32(cmd->sdb.length);
2745 
2746 	cdb_len = min_t(unsigned short, cmd->cmd_len, UFS_CDB_SIZE);
2747 	memset(ucd_req_ptr->sc.cdb, 0, UFS_CDB_SIZE);
2748 	memcpy(ucd_req_ptr->sc.cdb, cmd->cmnd, cdb_len);
2749 
2750 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2751 }
2752 
2753 /**
2754  * ufshcd_prepare_utp_query_req_upiu() - fill the utp_transfer_req_desc for query request
2755  * @hba: UFS hba
2756  * @lrbp: local reference block pointer
2757  * @upiu_flags: flags
2758  */
2759 static void ufshcd_prepare_utp_query_req_upiu(struct ufs_hba *hba,
2760 				struct ufshcd_lrb *lrbp, u8 upiu_flags)
2761 {
2762 	struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2763 	struct ufs_query *query = &hba->dev_cmd.query;
2764 	u16 len = be16_to_cpu(query->request.upiu_req.length);
2765 
2766 	/* Query request header */
2767 	ucd_req_ptr->header = (struct utp_upiu_header){
2768 		.transaction_code = UPIU_TRANSACTION_QUERY_REQ,
2769 		.flags = upiu_flags,
2770 		.lun = lrbp->lun,
2771 		.task_tag = lrbp->task_tag,
2772 		.query_function = query->request.query_func,
2773 		/* Data segment length only need for WRITE_DESC */
2774 		.data_segment_length =
2775 			query->request.upiu_req.opcode ==
2776 					UPIU_QUERY_OPCODE_WRITE_DESC ?
2777 				cpu_to_be16(len) :
2778 				0,
2779 	};
2780 
2781 	/* Copy the Query Request buffer as is */
2782 	memcpy(&ucd_req_ptr->qr, &query->request.upiu_req,
2783 			QUERY_OSF_SIZE);
2784 
2785 	/* Copy the Descriptor */
2786 	if (query->request.upiu_req.opcode == UPIU_QUERY_OPCODE_WRITE_DESC)
2787 		memcpy(ucd_req_ptr + 1, query->descriptor, len);
2788 
2789 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2790 }
2791 
2792 static inline void ufshcd_prepare_utp_nop_upiu(struct ufshcd_lrb *lrbp)
2793 {
2794 	struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2795 
2796 	memset(ucd_req_ptr, 0, sizeof(struct utp_upiu_req));
2797 
2798 	ucd_req_ptr->header = (struct utp_upiu_header){
2799 		.transaction_code = UPIU_TRANSACTION_NOP_OUT,
2800 		.task_tag = lrbp->task_tag,
2801 	};
2802 
2803 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2804 }
2805 
2806 /**
2807  * ufshcd_compose_devman_upiu - UFS Protocol Information Unit(UPIU)
2808  *			     for Device Management Purposes
2809  * @hba: per adapter instance
2810  * @lrbp: pointer to local reference block
2811  *
2812  * Return: 0 upon success; < 0 upon failure.
2813  */
2814 static int ufshcd_compose_devman_upiu(struct ufs_hba *hba,
2815 				      struct ufshcd_lrb *lrbp)
2816 {
2817 	u8 upiu_flags;
2818 	int ret = 0;
2819 
2820 	ufshcd_prepare_req_desc_hdr(hba, lrbp, &upiu_flags, DMA_NONE, 0);
2821 
2822 	if (hba->dev_cmd.type == DEV_CMD_TYPE_QUERY)
2823 		ufshcd_prepare_utp_query_req_upiu(hba, lrbp, upiu_flags);
2824 	else if (hba->dev_cmd.type == DEV_CMD_TYPE_NOP)
2825 		ufshcd_prepare_utp_nop_upiu(lrbp);
2826 	else
2827 		ret = -EINVAL;
2828 
2829 	return ret;
2830 }
2831 
2832 /**
2833  * ufshcd_comp_scsi_upiu - UFS Protocol Information Unit(UPIU)
2834  *			   for SCSI Purposes
2835  * @hba: per adapter instance
2836  * @lrbp: pointer to local reference block
2837  */
2838 static void ufshcd_comp_scsi_upiu(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2839 {
2840 	struct request *rq = scsi_cmd_to_rq(lrbp->cmd);
2841 	unsigned int ioprio_class = IOPRIO_PRIO_CLASS(req_get_ioprio(rq));
2842 	u8 upiu_flags;
2843 
2844 	ufshcd_prepare_req_desc_hdr(hba, lrbp, &upiu_flags, lrbp->cmd->sc_data_direction, 0);
2845 	if (ioprio_class == IOPRIO_CLASS_RT)
2846 		upiu_flags |= UPIU_CMD_FLAGS_CP;
2847 	ufshcd_prepare_utp_scsi_cmd_upiu(lrbp, upiu_flags);
2848 }
2849 
2850 /**
2851  * ufshcd_upiu_wlun_to_scsi_wlun - maps UPIU W-LUN id to SCSI W-LUN ID
2852  * @upiu_wlun_id: UPIU W-LUN id
2853  *
2854  * Return: SCSI W-LUN id.
2855  */
2856 static inline u16 ufshcd_upiu_wlun_to_scsi_wlun(u8 upiu_wlun_id)
2857 {
2858 	return (upiu_wlun_id & ~UFS_UPIU_WLUN_ID) | SCSI_W_LUN_BASE;
2859 }
2860 
2861 static inline bool is_device_wlun(struct scsi_device *sdev)
2862 {
2863 	return sdev->lun ==
2864 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_UFS_DEVICE_WLUN);
2865 }
2866 
2867 /*
2868  * Associate the UFS controller queue with the default and poll HCTX types.
2869  * Initialize the mq_map[] arrays.
2870  */
2871 static void ufshcd_map_queues(struct Scsi_Host *shost)
2872 {
2873 	struct ufs_hba *hba = shost_priv(shost);
2874 	int i, queue_offset = 0;
2875 
2876 	if (!is_mcq_supported(hba)) {
2877 		hba->nr_queues[HCTX_TYPE_DEFAULT] = 1;
2878 		hba->nr_queues[HCTX_TYPE_READ] = 0;
2879 		hba->nr_queues[HCTX_TYPE_POLL] = 1;
2880 		hba->nr_hw_queues = 1;
2881 	}
2882 
2883 	for (i = 0; i < shost->nr_maps; i++) {
2884 		struct blk_mq_queue_map *map = &shost->tag_set.map[i];
2885 
2886 		map->nr_queues = hba->nr_queues[i];
2887 		if (!map->nr_queues)
2888 			continue;
2889 		map->queue_offset = queue_offset;
2890 		if (i == HCTX_TYPE_POLL && !is_mcq_supported(hba))
2891 			map->queue_offset = 0;
2892 
2893 		blk_mq_map_queues(map);
2894 		queue_offset += map->nr_queues;
2895 	}
2896 }
2897 
2898 static void ufshcd_init_lrb(struct ufs_hba *hba, struct ufshcd_lrb *lrb, int i)
2899 {
2900 	struct utp_transfer_cmd_desc *cmd_descp = (void *)hba->ucdl_base_addr +
2901 		i * ufshcd_get_ucd_size(hba);
2902 	struct utp_transfer_req_desc *utrdlp = hba->utrdl_base_addr;
2903 	dma_addr_t cmd_desc_element_addr = hba->ucdl_dma_addr +
2904 		i * ufshcd_get_ucd_size(hba);
2905 	u16 response_offset = offsetof(struct utp_transfer_cmd_desc,
2906 				       response_upiu);
2907 	u16 prdt_offset = offsetof(struct utp_transfer_cmd_desc, prd_table);
2908 
2909 	lrb->utr_descriptor_ptr = utrdlp + i;
2910 	lrb->utrd_dma_addr = hba->utrdl_dma_addr +
2911 		i * sizeof(struct utp_transfer_req_desc);
2912 	lrb->ucd_req_ptr = (struct utp_upiu_req *)cmd_descp->command_upiu;
2913 	lrb->ucd_req_dma_addr = cmd_desc_element_addr;
2914 	lrb->ucd_rsp_ptr = (struct utp_upiu_rsp *)cmd_descp->response_upiu;
2915 	lrb->ucd_rsp_dma_addr = cmd_desc_element_addr + response_offset;
2916 	lrb->ucd_prdt_ptr = (struct ufshcd_sg_entry *)cmd_descp->prd_table;
2917 	lrb->ucd_prdt_dma_addr = cmd_desc_element_addr + prdt_offset;
2918 }
2919 
2920 /**
2921  * ufshcd_queuecommand - main entry point for SCSI requests
2922  * @host: SCSI host pointer
2923  * @cmd: command from SCSI Midlayer
2924  *
2925  * Return: 0 for success, non-zero in case of failure.
2926  */
2927 static int ufshcd_queuecommand(struct Scsi_Host *host, struct scsi_cmnd *cmd)
2928 {
2929 	struct ufs_hba *hba = shost_priv(host);
2930 	int tag = scsi_cmd_to_rq(cmd)->tag;
2931 	struct ufshcd_lrb *lrbp;
2932 	int err = 0;
2933 	struct ufs_hw_queue *hwq = NULL;
2934 
2935 	switch (hba->ufshcd_state) {
2936 	case UFSHCD_STATE_OPERATIONAL:
2937 		break;
2938 	case UFSHCD_STATE_EH_SCHEDULED_NON_FATAL:
2939 		/*
2940 		 * SCSI error handler can call ->queuecommand() while UFS error
2941 		 * handler is in progress. Error interrupts could change the
2942 		 * state from UFSHCD_STATE_RESET to
2943 		 * UFSHCD_STATE_EH_SCHEDULED_NON_FATAL. Prevent requests
2944 		 * being issued in that case.
2945 		 */
2946 		if (ufshcd_eh_in_progress(hba)) {
2947 			err = SCSI_MLQUEUE_HOST_BUSY;
2948 			goto out;
2949 		}
2950 		break;
2951 	case UFSHCD_STATE_EH_SCHEDULED_FATAL:
2952 		/*
2953 		 * pm_runtime_get_sync() is used at error handling preparation
2954 		 * stage. If a scsi cmd, e.g. the SSU cmd, is sent from hba's
2955 		 * PM ops, it can never be finished if we let SCSI layer keep
2956 		 * retrying it, which gets err handler stuck forever. Neither
2957 		 * can we let the scsi cmd pass through, because UFS is in bad
2958 		 * state, the scsi cmd may eventually time out, which will get
2959 		 * err handler blocked for too long. So, just fail the scsi cmd
2960 		 * sent from PM ops, err handler can recover PM error anyways.
2961 		 */
2962 		if (hba->pm_op_in_progress) {
2963 			hba->force_reset = true;
2964 			set_host_byte(cmd, DID_BAD_TARGET);
2965 			scsi_done(cmd);
2966 			goto out;
2967 		}
2968 		fallthrough;
2969 	case UFSHCD_STATE_RESET:
2970 		err = SCSI_MLQUEUE_HOST_BUSY;
2971 		goto out;
2972 	case UFSHCD_STATE_ERROR:
2973 		set_host_byte(cmd, DID_ERROR);
2974 		scsi_done(cmd);
2975 		goto out;
2976 	}
2977 
2978 	hba->req_abort_count = 0;
2979 
2980 	ufshcd_hold(hba);
2981 
2982 	lrbp = &hba->lrb[tag];
2983 	lrbp->cmd = cmd;
2984 	lrbp->task_tag = tag;
2985 	lrbp->lun = ufshcd_scsi_to_upiu_lun(cmd->device->lun);
2986 	lrbp->intr_cmd = !ufshcd_is_intr_aggr_allowed(hba);
2987 
2988 	ufshcd_prepare_lrbp_crypto(scsi_cmd_to_rq(cmd), lrbp);
2989 
2990 	lrbp->req_abort_skip = false;
2991 
2992 	ufshcd_comp_scsi_upiu(hba, lrbp);
2993 
2994 	err = ufshcd_map_sg(hba, lrbp);
2995 	if (err) {
2996 		ufshcd_release(hba);
2997 		goto out;
2998 	}
2999 
3000 	if (is_mcq_enabled(hba))
3001 		hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(cmd));
3002 
3003 	ufshcd_send_command(hba, tag, hwq);
3004 
3005 out:
3006 	if (ufs_trigger_eh(hba)) {
3007 		unsigned long flags;
3008 
3009 		spin_lock_irqsave(hba->host->host_lock, flags);
3010 		ufshcd_schedule_eh_work(hba);
3011 		spin_unlock_irqrestore(hba->host->host_lock, flags);
3012 	}
3013 
3014 	return err;
3015 }
3016 
3017 static void ufshcd_setup_dev_cmd(struct ufs_hba *hba, struct ufshcd_lrb *lrbp,
3018 			     enum dev_cmd_type cmd_type, u8 lun, int tag)
3019 {
3020 	lrbp->cmd = NULL;
3021 	lrbp->task_tag = tag;
3022 	lrbp->lun = lun;
3023 	lrbp->intr_cmd = true; /* No interrupt aggregation */
3024 	ufshcd_prepare_lrbp_crypto(NULL, lrbp);
3025 	hba->dev_cmd.type = cmd_type;
3026 }
3027 
3028 static int ufshcd_compose_dev_cmd(struct ufs_hba *hba,
3029 		struct ufshcd_lrb *lrbp, enum dev_cmd_type cmd_type, int tag)
3030 {
3031 	ufshcd_setup_dev_cmd(hba, lrbp, cmd_type, 0, tag);
3032 
3033 	return ufshcd_compose_devman_upiu(hba, lrbp);
3034 }
3035 
3036 /*
3037  * Check with the block layer if the command is inflight
3038  * @cmd: command to check.
3039  *
3040  * Return: true if command is inflight; false if not.
3041  */
3042 bool ufshcd_cmd_inflight(struct scsi_cmnd *cmd)
3043 {
3044 	return cmd && blk_mq_rq_state(scsi_cmd_to_rq(cmd)) == MQ_RQ_IN_FLIGHT;
3045 }
3046 
3047 /*
3048  * Clear the pending command in the controller and wait until
3049  * the controller confirms that the command has been cleared.
3050  * @hba: per adapter instance
3051  * @task_tag: The tag number of the command to be cleared.
3052  */
3053 static int ufshcd_clear_cmd(struct ufs_hba *hba, u32 task_tag)
3054 {
3055 	u32 mask;
3056 	unsigned long flags;
3057 	int err;
3058 
3059 	if (is_mcq_enabled(hba)) {
3060 		/*
3061 		 * MCQ mode. Clean up the MCQ resources similar to
3062 		 * what the ufshcd_utrl_clear() does for SDB mode.
3063 		 */
3064 		err = ufshcd_mcq_sq_cleanup(hba, task_tag);
3065 		if (err) {
3066 			dev_err(hba->dev, "%s: failed tag=%d. err=%d\n",
3067 				__func__, task_tag, err);
3068 			return err;
3069 		}
3070 		return 0;
3071 	}
3072 
3073 	mask = 1U << task_tag;
3074 
3075 	/* clear outstanding transaction before retry */
3076 	spin_lock_irqsave(hba->host->host_lock, flags);
3077 	ufshcd_utrl_clear(hba, mask);
3078 	spin_unlock_irqrestore(hba->host->host_lock, flags);
3079 
3080 	/*
3081 	 * wait for h/w to clear corresponding bit in door-bell.
3082 	 * max. wait is 1 sec.
3083 	 */
3084 	return ufshcd_wait_for_register(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL,
3085 					mask, ~mask, 1000, 1000);
3086 }
3087 
3088 /**
3089  * ufshcd_dev_cmd_completion() - handles device management command responses
3090  * @hba: per adapter instance
3091  * @lrbp: pointer to local reference block
3092  *
3093  * Return: 0 upon success; < 0 upon failure.
3094  */
3095 static int
3096 ufshcd_dev_cmd_completion(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
3097 {
3098 	enum upiu_response_transaction resp;
3099 	int err = 0;
3100 
3101 	hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
3102 	resp = ufshcd_get_req_rsp(lrbp->ucd_rsp_ptr);
3103 
3104 	switch (resp) {
3105 	case UPIU_TRANSACTION_NOP_IN:
3106 		if (hba->dev_cmd.type != DEV_CMD_TYPE_NOP) {
3107 			err = -EINVAL;
3108 			dev_err(hba->dev, "%s: unexpected response %x\n",
3109 					__func__, resp);
3110 		}
3111 		break;
3112 	case UPIU_TRANSACTION_QUERY_RSP: {
3113 		u8 response = lrbp->ucd_rsp_ptr->header.response;
3114 
3115 		if (response == 0)
3116 			err = ufshcd_copy_query_response(hba, lrbp);
3117 		break;
3118 	}
3119 	case UPIU_TRANSACTION_REJECT_UPIU:
3120 		/* TODO: handle Reject UPIU Response */
3121 		err = -EPERM;
3122 		dev_err(hba->dev, "%s: Reject UPIU not fully implemented\n",
3123 				__func__);
3124 		break;
3125 	case UPIU_TRANSACTION_RESPONSE:
3126 		if (hba->dev_cmd.type != DEV_CMD_TYPE_RPMB) {
3127 			err = -EINVAL;
3128 			dev_err(hba->dev, "%s: unexpected response %x\n", __func__, resp);
3129 		}
3130 		break;
3131 	default:
3132 		err = -EINVAL;
3133 		dev_err(hba->dev, "%s: Invalid device management cmd response: %x\n",
3134 				__func__, resp);
3135 		break;
3136 	}
3137 
3138 	return err;
3139 }
3140 
3141 static int ufshcd_wait_for_dev_cmd(struct ufs_hba *hba,
3142 		struct ufshcd_lrb *lrbp, int max_timeout)
3143 {
3144 	unsigned long time_left = msecs_to_jiffies(max_timeout);
3145 	unsigned long flags;
3146 	bool pending;
3147 	int err;
3148 
3149 retry:
3150 	time_left = wait_for_completion_timeout(hba->dev_cmd.complete,
3151 						time_left);
3152 
3153 	if (likely(time_left)) {
3154 		/*
3155 		 * The completion handler called complete() and the caller of
3156 		 * this function still owns the @lrbp tag so the code below does
3157 		 * not trigger any race conditions.
3158 		 */
3159 		hba->dev_cmd.complete = NULL;
3160 		err = ufshcd_get_tr_ocs(lrbp, NULL);
3161 		if (!err)
3162 			err = ufshcd_dev_cmd_completion(hba, lrbp);
3163 	} else {
3164 		err = -ETIMEDOUT;
3165 		dev_dbg(hba->dev, "%s: dev_cmd request timedout, tag %d\n",
3166 			__func__, lrbp->task_tag);
3167 
3168 		/* MCQ mode */
3169 		if (is_mcq_enabled(hba)) {
3170 			/* successfully cleared the command, retry if needed */
3171 			if (ufshcd_clear_cmd(hba, lrbp->task_tag) == 0)
3172 				err = -EAGAIN;
3173 			hba->dev_cmd.complete = NULL;
3174 			return err;
3175 		}
3176 
3177 		/* SDB mode */
3178 		if (ufshcd_clear_cmd(hba, lrbp->task_tag) == 0) {
3179 			/* successfully cleared the command, retry if needed */
3180 			err = -EAGAIN;
3181 			/*
3182 			 * Since clearing the command succeeded we also need to
3183 			 * clear the task tag bit from the outstanding_reqs
3184 			 * variable.
3185 			 */
3186 			spin_lock_irqsave(&hba->outstanding_lock, flags);
3187 			pending = test_bit(lrbp->task_tag,
3188 					   &hba->outstanding_reqs);
3189 			if (pending) {
3190 				hba->dev_cmd.complete = NULL;
3191 				__clear_bit(lrbp->task_tag,
3192 					    &hba->outstanding_reqs);
3193 			}
3194 			spin_unlock_irqrestore(&hba->outstanding_lock, flags);
3195 
3196 			if (!pending) {
3197 				/*
3198 				 * The completion handler ran while we tried to
3199 				 * clear the command.
3200 				 */
3201 				time_left = 1;
3202 				goto retry;
3203 			}
3204 		} else {
3205 			dev_err(hba->dev, "%s: failed to clear tag %d\n",
3206 				__func__, lrbp->task_tag);
3207 
3208 			spin_lock_irqsave(&hba->outstanding_lock, flags);
3209 			pending = test_bit(lrbp->task_tag,
3210 					   &hba->outstanding_reqs);
3211 			if (pending)
3212 				hba->dev_cmd.complete = NULL;
3213 			spin_unlock_irqrestore(&hba->outstanding_lock, flags);
3214 
3215 			if (!pending) {
3216 				/*
3217 				 * The completion handler ran while we tried to
3218 				 * clear the command.
3219 				 */
3220 				time_left = 1;
3221 				goto retry;
3222 			}
3223 		}
3224 	}
3225 
3226 	return err;
3227 }
3228 
3229 static void ufshcd_dev_man_lock(struct ufs_hba *hba)
3230 {
3231 	ufshcd_hold(hba);
3232 	mutex_lock(&hba->dev_cmd.lock);
3233 	down_read(&hba->clk_scaling_lock);
3234 }
3235 
3236 static void ufshcd_dev_man_unlock(struct ufs_hba *hba)
3237 {
3238 	up_read(&hba->clk_scaling_lock);
3239 	mutex_unlock(&hba->dev_cmd.lock);
3240 	ufshcd_release(hba);
3241 }
3242 
3243 static int ufshcd_issue_dev_cmd(struct ufs_hba *hba, struct ufshcd_lrb *lrbp,
3244 			  const u32 tag, int timeout)
3245 {
3246 	DECLARE_COMPLETION_ONSTACK(wait);
3247 	int err;
3248 
3249 	hba->dev_cmd.complete = &wait;
3250 
3251 	ufshcd_add_query_upiu_trace(hba, UFS_QUERY_SEND, lrbp->ucd_req_ptr);
3252 
3253 	ufshcd_send_command(hba, tag, hba->dev_cmd_queue);
3254 	err = ufshcd_wait_for_dev_cmd(hba, lrbp, timeout);
3255 
3256 	ufshcd_add_query_upiu_trace(hba, err ? UFS_QUERY_ERR : UFS_QUERY_COMP,
3257 				    (struct utp_upiu_req *)lrbp->ucd_rsp_ptr);
3258 
3259 	return err;
3260 }
3261 
3262 /**
3263  * ufshcd_exec_dev_cmd - API for sending device management requests
3264  * @hba: UFS hba
3265  * @cmd_type: specifies the type (NOP, Query...)
3266  * @timeout: timeout in milliseconds
3267  *
3268  * Return: 0 upon success; < 0 upon failure.
3269  *
3270  * NOTE: Since there is only one available tag for device management commands,
3271  * it is expected you hold the hba->dev_cmd.lock mutex.
3272  */
3273 static int ufshcd_exec_dev_cmd(struct ufs_hba *hba,
3274 		enum dev_cmd_type cmd_type, int timeout)
3275 {
3276 	const u32 tag = hba->reserved_slot;
3277 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
3278 	int err;
3279 
3280 	/* Protects use of hba->reserved_slot. */
3281 	lockdep_assert_held(&hba->dev_cmd.lock);
3282 
3283 	err = ufshcd_compose_dev_cmd(hba, lrbp, cmd_type, tag);
3284 	if (unlikely(err))
3285 		return err;
3286 
3287 	return ufshcd_issue_dev_cmd(hba, lrbp, tag, timeout);
3288 }
3289 
3290 /**
3291  * ufshcd_init_query() - init the query response and request parameters
3292  * @hba: per-adapter instance
3293  * @request: address of the request pointer to be initialized
3294  * @response: address of the response pointer to be initialized
3295  * @opcode: operation to perform
3296  * @idn: flag idn to access
3297  * @index: LU number to access
3298  * @selector: query/flag/descriptor further identification
3299  */
3300 static inline void ufshcd_init_query(struct ufs_hba *hba,
3301 		struct ufs_query_req **request, struct ufs_query_res **response,
3302 		enum query_opcode opcode, u8 idn, u8 index, u8 selector)
3303 {
3304 	*request = &hba->dev_cmd.query.request;
3305 	*response = &hba->dev_cmd.query.response;
3306 	memset(*request, 0, sizeof(struct ufs_query_req));
3307 	memset(*response, 0, sizeof(struct ufs_query_res));
3308 	(*request)->upiu_req.opcode = opcode;
3309 	(*request)->upiu_req.idn = idn;
3310 	(*request)->upiu_req.index = index;
3311 	(*request)->upiu_req.selector = selector;
3312 }
3313 
3314 static int ufshcd_query_flag_retry(struct ufs_hba *hba,
3315 	enum query_opcode opcode, enum flag_idn idn, u8 index, bool *flag_res)
3316 {
3317 	int ret;
3318 	int retries;
3319 
3320 	for (retries = 0; retries < QUERY_REQ_RETRIES; retries++) {
3321 		ret = ufshcd_query_flag(hba, opcode, idn, index, flag_res);
3322 		if (ret)
3323 			dev_dbg(hba->dev,
3324 				"%s: failed with error %d, retries %d\n",
3325 				__func__, ret, retries);
3326 		else
3327 			break;
3328 	}
3329 
3330 	if (ret)
3331 		dev_err(hba->dev,
3332 			"%s: query flag, opcode %d, idn %d, failed with error %d after %d retries\n",
3333 			__func__, opcode, idn, ret, retries);
3334 	return ret;
3335 }
3336 
3337 /**
3338  * ufshcd_query_flag() - API function for sending flag query requests
3339  * @hba: per-adapter instance
3340  * @opcode: flag query to perform
3341  * @idn: flag idn to access
3342  * @index: flag index to access
3343  * @flag_res: the flag value after the query request completes
3344  *
3345  * Return: 0 for success, non-zero in case of failure.
3346  */
3347 int ufshcd_query_flag(struct ufs_hba *hba, enum query_opcode opcode,
3348 			enum flag_idn idn, u8 index, bool *flag_res)
3349 {
3350 	struct ufs_query_req *request = NULL;
3351 	struct ufs_query_res *response = NULL;
3352 	int err, selector = 0;
3353 	int timeout = QUERY_REQ_TIMEOUT;
3354 
3355 	BUG_ON(!hba);
3356 
3357 	ufshcd_dev_man_lock(hba);
3358 
3359 	ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3360 			selector);
3361 
3362 	switch (opcode) {
3363 	case UPIU_QUERY_OPCODE_SET_FLAG:
3364 	case UPIU_QUERY_OPCODE_CLEAR_FLAG:
3365 	case UPIU_QUERY_OPCODE_TOGGLE_FLAG:
3366 		request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3367 		break;
3368 	case UPIU_QUERY_OPCODE_READ_FLAG:
3369 		request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3370 		if (!flag_res) {
3371 			/* No dummy reads */
3372 			dev_err(hba->dev, "%s: Invalid argument for read request\n",
3373 					__func__);
3374 			err = -EINVAL;
3375 			goto out_unlock;
3376 		}
3377 		break;
3378 	default:
3379 		dev_err(hba->dev,
3380 			"%s: Expected query flag opcode but got = %d\n",
3381 			__func__, opcode);
3382 		err = -EINVAL;
3383 		goto out_unlock;
3384 	}
3385 
3386 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, timeout);
3387 
3388 	if (err) {
3389 		dev_err(hba->dev,
3390 			"%s: Sending flag query for idn %d failed, err = %d\n",
3391 			__func__, idn, err);
3392 		goto out_unlock;
3393 	}
3394 
3395 	if (flag_res)
3396 		*flag_res = (be32_to_cpu(response->upiu_res.value) &
3397 				MASK_QUERY_UPIU_FLAG_LOC) & 0x1;
3398 
3399 out_unlock:
3400 	ufshcd_dev_man_unlock(hba);
3401 	return err;
3402 }
3403 
3404 /**
3405  * ufshcd_query_attr - API function for sending attribute requests
3406  * @hba: per-adapter instance
3407  * @opcode: attribute opcode
3408  * @idn: attribute idn to access
3409  * @index: index field
3410  * @selector: selector field
3411  * @attr_val: the attribute value after the query request completes
3412  *
3413  * Return: 0 for success, non-zero in case of failure.
3414 */
3415 int ufshcd_query_attr(struct ufs_hba *hba, enum query_opcode opcode,
3416 		      enum attr_idn idn, u8 index, u8 selector, u32 *attr_val)
3417 {
3418 	struct ufs_query_req *request = NULL;
3419 	struct ufs_query_res *response = NULL;
3420 	int err;
3421 
3422 	BUG_ON(!hba);
3423 
3424 	if (!attr_val) {
3425 		dev_err(hba->dev, "%s: attribute value required for opcode 0x%x\n",
3426 				__func__, opcode);
3427 		return -EINVAL;
3428 	}
3429 
3430 	ufshcd_dev_man_lock(hba);
3431 
3432 	ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3433 			selector);
3434 
3435 	switch (opcode) {
3436 	case UPIU_QUERY_OPCODE_WRITE_ATTR:
3437 		request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3438 		request->upiu_req.value = cpu_to_be32(*attr_val);
3439 		break;
3440 	case UPIU_QUERY_OPCODE_READ_ATTR:
3441 		request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3442 		break;
3443 	default:
3444 		dev_err(hba->dev, "%s: Expected query attr opcode but got = 0x%.2x\n",
3445 				__func__, opcode);
3446 		err = -EINVAL;
3447 		goto out_unlock;
3448 	}
3449 
3450 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT);
3451 
3452 	if (err) {
3453 		dev_err(hba->dev, "%s: opcode 0x%.2x for idn %d failed, index %d, err = %d\n",
3454 				__func__, opcode, idn, index, err);
3455 		goto out_unlock;
3456 	}
3457 
3458 	*attr_val = be32_to_cpu(response->upiu_res.value);
3459 
3460 out_unlock:
3461 	ufshcd_dev_man_unlock(hba);
3462 	return err;
3463 }
3464 
3465 /**
3466  * ufshcd_query_attr_retry() - API function for sending query
3467  * attribute with retries
3468  * @hba: per-adapter instance
3469  * @opcode: attribute opcode
3470  * @idn: attribute idn to access
3471  * @index: index field
3472  * @selector: selector field
3473  * @attr_val: the attribute value after the query request
3474  * completes
3475  *
3476  * Return: 0 for success, non-zero in case of failure.
3477 */
3478 int ufshcd_query_attr_retry(struct ufs_hba *hba,
3479 	enum query_opcode opcode, enum attr_idn idn, u8 index, u8 selector,
3480 	u32 *attr_val)
3481 {
3482 	int ret = 0;
3483 	u32 retries;
3484 
3485 	for (retries = QUERY_REQ_RETRIES; retries > 0; retries--) {
3486 		ret = ufshcd_query_attr(hba, opcode, idn, index,
3487 						selector, attr_val);
3488 		if (ret)
3489 			dev_dbg(hba->dev, "%s: failed with error %d, retries %d\n",
3490 				__func__, ret, retries);
3491 		else
3492 			break;
3493 	}
3494 
3495 	if (ret)
3496 		dev_err(hba->dev,
3497 			"%s: query attribute, idn %d, failed with error %d after %d retries\n",
3498 			__func__, idn, ret, QUERY_REQ_RETRIES);
3499 	return ret;
3500 }
3501 
3502 static int __ufshcd_query_descriptor(struct ufs_hba *hba,
3503 			enum query_opcode opcode, enum desc_idn idn, u8 index,
3504 			u8 selector, u8 *desc_buf, int *buf_len)
3505 {
3506 	struct ufs_query_req *request = NULL;
3507 	struct ufs_query_res *response = NULL;
3508 	int err;
3509 
3510 	BUG_ON(!hba);
3511 
3512 	if (!desc_buf) {
3513 		dev_err(hba->dev, "%s: descriptor buffer required for opcode 0x%x\n",
3514 				__func__, opcode);
3515 		return -EINVAL;
3516 	}
3517 
3518 	if (*buf_len < QUERY_DESC_MIN_SIZE || *buf_len > QUERY_DESC_MAX_SIZE) {
3519 		dev_err(hba->dev, "%s: descriptor buffer size (%d) is out of range\n",
3520 				__func__, *buf_len);
3521 		return -EINVAL;
3522 	}
3523 
3524 	ufshcd_dev_man_lock(hba);
3525 
3526 	ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3527 			selector);
3528 	hba->dev_cmd.query.descriptor = desc_buf;
3529 	request->upiu_req.length = cpu_to_be16(*buf_len);
3530 
3531 	switch (opcode) {
3532 	case UPIU_QUERY_OPCODE_WRITE_DESC:
3533 		request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3534 		break;
3535 	case UPIU_QUERY_OPCODE_READ_DESC:
3536 		request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3537 		break;
3538 	default:
3539 		dev_err(hba->dev,
3540 				"%s: Expected query descriptor opcode but got = 0x%.2x\n",
3541 				__func__, opcode);
3542 		err = -EINVAL;
3543 		goto out_unlock;
3544 	}
3545 
3546 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT);
3547 
3548 	if (err) {
3549 		dev_err(hba->dev, "%s: opcode 0x%.2x for idn %d failed, index %d, err = %d\n",
3550 				__func__, opcode, idn, index, err);
3551 		goto out_unlock;
3552 	}
3553 
3554 	*buf_len = be16_to_cpu(response->upiu_res.length);
3555 
3556 out_unlock:
3557 	hba->dev_cmd.query.descriptor = NULL;
3558 	ufshcd_dev_man_unlock(hba);
3559 	return err;
3560 }
3561 
3562 /**
3563  * ufshcd_query_descriptor_retry - API function for sending descriptor requests
3564  * @hba: per-adapter instance
3565  * @opcode: attribute opcode
3566  * @idn: attribute idn to access
3567  * @index: index field
3568  * @selector: selector field
3569  * @desc_buf: the buffer that contains the descriptor
3570  * @buf_len: length parameter passed to the device
3571  *
3572  * The buf_len parameter will contain, on return, the length parameter
3573  * received on the response.
3574  *
3575  * Return: 0 for success, non-zero in case of failure.
3576  */
3577 int ufshcd_query_descriptor_retry(struct ufs_hba *hba,
3578 				  enum query_opcode opcode,
3579 				  enum desc_idn idn, u8 index,
3580 				  u8 selector,
3581 				  u8 *desc_buf, int *buf_len)
3582 {
3583 	int err;
3584 	int retries;
3585 
3586 	for (retries = QUERY_REQ_RETRIES; retries > 0; retries--) {
3587 		err = __ufshcd_query_descriptor(hba, opcode, idn, index,
3588 						selector, desc_buf, buf_len);
3589 		if (!err || err == -EINVAL)
3590 			break;
3591 	}
3592 
3593 	return err;
3594 }
3595 
3596 /**
3597  * ufshcd_read_desc_param - read the specified descriptor parameter
3598  * @hba: Pointer to adapter instance
3599  * @desc_id: descriptor idn value
3600  * @desc_index: descriptor index
3601  * @param_offset: offset of the parameter to read
3602  * @param_read_buf: pointer to buffer where parameter would be read
3603  * @param_size: sizeof(param_read_buf)
3604  *
3605  * Return: 0 in case of success, non-zero otherwise.
3606  */
3607 int ufshcd_read_desc_param(struct ufs_hba *hba,
3608 			   enum desc_idn desc_id,
3609 			   int desc_index,
3610 			   u8 param_offset,
3611 			   u8 *param_read_buf,
3612 			   u8 param_size)
3613 {
3614 	int ret;
3615 	u8 *desc_buf;
3616 	int buff_len = QUERY_DESC_MAX_SIZE;
3617 	bool is_kmalloc = true;
3618 
3619 	/* Safety check */
3620 	if (desc_id >= QUERY_DESC_IDN_MAX || !param_size)
3621 		return -EINVAL;
3622 
3623 	/* Check whether we need temp memory */
3624 	if (param_offset != 0 || param_size < buff_len) {
3625 		desc_buf = kzalloc(buff_len, GFP_KERNEL);
3626 		if (!desc_buf)
3627 			return -ENOMEM;
3628 	} else {
3629 		desc_buf = param_read_buf;
3630 		is_kmalloc = false;
3631 	}
3632 
3633 	/* Request for full descriptor */
3634 	ret = ufshcd_query_descriptor_retry(hba, UPIU_QUERY_OPCODE_READ_DESC,
3635 					    desc_id, desc_index, 0,
3636 					    desc_buf, &buff_len);
3637 	if (ret) {
3638 		dev_err(hba->dev, "%s: Failed reading descriptor. desc_id %d, desc_index %d, param_offset %d, ret %d\n",
3639 			__func__, desc_id, desc_index, param_offset, ret);
3640 		goto out;
3641 	}
3642 
3643 	/* Update descriptor length */
3644 	buff_len = desc_buf[QUERY_DESC_LENGTH_OFFSET];
3645 
3646 	if (param_offset >= buff_len) {
3647 		dev_err(hba->dev, "%s: Invalid offset 0x%x in descriptor IDN 0x%x, length 0x%x\n",
3648 			__func__, param_offset, desc_id, buff_len);
3649 		ret = -EINVAL;
3650 		goto out;
3651 	}
3652 
3653 	/* Sanity check */
3654 	if (desc_buf[QUERY_DESC_DESC_TYPE_OFFSET] != desc_id) {
3655 		dev_err(hba->dev, "%s: invalid desc_id %d in descriptor header\n",
3656 			__func__, desc_buf[QUERY_DESC_DESC_TYPE_OFFSET]);
3657 		ret = -EINVAL;
3658 		goto out;
3659 	}
3660 
3661 	if (is_kmalloc) {
3662 		/* Make sure we don't copy more data than available */
3663 		if (param_offset >= buff_len)
3664 			ret = -EINVAL;
3665 		else
3666 			memcpy(param_read_buf, &desc_buf[param_offset],
3667 			       min_t(u32, param_size, buff_len - param_offset));
3668 	}
3669 out:
3670 	if (is_kmalloc)
3671 		kfree(desc_buf);
3672 	return ret;
3673 }
3674 
3675 /**
3676  * struct uc_string_id - unicode string
3677  *
3678  * @len: size of this descriptor inclusive
3679  * @type: descriptor type
3680  * @uc: unicode string character
3681  */
3682 struct uc_string_id {
3683 	u8 len;
3684 	u8 type;
3685 	wchar_t uc[];
3686 } __packed;
3687 
3688 /* replace non-printable or non-ASCII characters with spaces */
3689 static inline char ufshcd_remove_non_printable(u8 ch)
3690 {
3691 	return (ch >= 0x20 && ch <= 0x7e) ? ch : ' ';
3692 }
3693 
3694 /**
3695  * ufshcd_read_string_desc - read string descriptor
3696  * @hba: pointer to adapter instance
3697  * @desc_index: descriptor index
3698  * @buf: pointer to buffer where descriptor would be read,
3699  *       the caller should free the memory.
3700  * @ascii: if true convert from unicode to ascii characters
3701  *         null terminated string.
3702  *
3703  * Return:
3704  * *      string size on success.
3705  * *      -ENOMEM: on allocation failure
3706  * *      -EINVAL: on a wrong parameter
3707  */
3708 int ufshcd_read_string_desc(struct ufs_hba *hba, u8 desc_index,
3709 			    u8 **buf, bool ascii)
3710 {
3711 	struct uc_string_id *uc_str;
3712 	u8 *str;
3713 	int ret;
3714 
3715 	if (!buf)
3716 		return -EINVAL;
3717 
3718 	uc_str = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
3719 	if (!uc_str)
3720 		return -ENOMEM;
3721 
3722 	ret = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_STRING, desc_index, 0,
3723 				     (u8 *)uc_str, QUERY_DESC_MAX_SIZE);
3724 	if (ret < 0) {
3725 		dev_err(hba->dev, "Reading String Desc failed after %d retries. err = %d\n",
3726 			QUERY_REQ_RETRIES, ret);
3727 		str = NULL;
3728 		goto out;
3729 	}
3730 
3731 	if (uc_str->len <= QUERY_DESC_HDR_SIZE) {
3732 		dev_dbg(hba->dev, "String Desc is of zero length\n");
3733 		str = NULL;
3734 		ret = 0;
3735 		goto out;
3736 	}
3737 
3738 	if (ascii) {
3739 		ssize_t ascii_len;
3740 		int i;
3741 		/* remove header and divide by 2 to move from UTF16 to UTF8 */
3742 		ascii_len = (uc_str->len - QUERY_DESC_HDR_SIZE) / 2 + 1;
3743 		str = kzalloc(ascii_len, GFP_KERNEL);
3744 		if (!str) {
3745 			ret = -ENOMEM;
3746 			goto out;
3747 		}
3748 
3749 		/*
3750 		 * the descriptor contains string in UTF16 format
3751 		 * we need to convert to utf-8 so it can be displayed
3752 		 */
3753 		ret = utf16s_to_utf8s(uc_str->uc,
3754 				      uc_str->len - QUERY_DESC_HDR_SIZE,
3755 				      UTF16_BIG_ENDIAN, str, ascii_len - 1);
3756 
3757 		/* replace non-printable or non-ASCII characters with spaces */
3758 		for (i = 0; i < ret; i++)
3759 			str[i] = ufshcd_remove_non_printable(str[i]);
3760 
3761 		str[ret++] = '\0';
3762 
3763 	} else {
3764 		str = kmemdup(uc_str, uc_str->len, GFP_KERNEL);
3765 		if (!str) {
3766 			ret = -ENOMEM;
3767 			goto out;
3768 		}
3769 		ret = uc_str->len;
3770 	}
3771 out:
3772 	*buf = str;
3773 	kfree(uc_str);
3774 	return ret;
3775 }
3776 
3777 /**
3778  * ufshcd_read_unit_desc_param - read the specified unit descriptor parameter
3779  * @hba: Pointer to adapter instance
3780  * @lun: lun id
3781  * @param_offset: offset of the parameter to read
3782  * @param_read_buf: pointer to buffer where parameter would be read
3783  * @param_size: sizeof(param_read_buf)
3784  *
3785  * Return: 0 in case of success, non-zero otherwise.
3786  */
3787 static inline int ufshcd_read_unit_desc_param(struct ufs_hba *hba,
3788 					      int lun,
3789 					      enum unit_desc_param param_offset,
3790 					      u8 *param_read_buf,
3791 					      u32 param_size)
3792 {
3793 	/*
3794 	 * Unit descriptors are only available for general purpose LUs (LUN id
3795 	 * from 0 to 7) and RPMB Well known LU.
3796 	 */
3797 	if (!ufs_is_valid_unit_desc_lun(&hba->dev_info, lun))
3798 		return -EOPNOTSUPP;
3799 
3800 	return ufshcd_read_desc_param(hba, QUERY_DESC_IDN_UNIT, lun,
3801 				      param_offset, param_read_buf, param_size);
3802 }
3803 
3804 static int ufshcd_get_ref_clk_gating_wait(struct ufs_hba *hba)
3805 {
3806 	int err = 0;
3807 	u32 gating_wait = UFSHCD_REF_CLK_GATING_WAIT_US;
3808 
3809 	if (hba->dev_info.wspecversion >= 0x300) {
3810 		err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
3811 				QUERY_ATTR_IDN_REF_CLK_GATING_WAIT_TIME, 0, 0,
3812 				&gating_wait);
3813 		if (err)
3814 			dev_err(hba->dev, "Failed reading bRefClkGatingWait. err = %d, use default %uus\n",
3815 					 err, gating_wait);
3816 
3817 		if (gating_wait == 0) {
3818 			gating_wait = UFSHCD_REF_CLK_GATING_WAIT_US;
3819 			dev_err(hba->dev, "Undefined ref clk gating wait time, use default %uus\n",
3820 					 gating_wait);
3821 		}
3822 
3823 		hba->dev_info.clk_gating_wait_us = gating_wait;
3824 	}
3825 
3826 	return err;
3827 }
3828 
3829 /**
3830  * ufshcd_memory_alloc - allocate memory for host memory space data structures
3831  * @hba: per adapter instance
3832  *
3833  * 1. Allocate DMA memory for Command Descriptor array
3834  *	Each command descriptor consist of Command UPIU, Response UPIU and PRDT
3835  * 2. Allocate DMA memory for UTP Transfer Request Descriptor List (UTRDL).
3836  * 3. Allocate DMA memory for UTP Task Management Request Descriptor List
3837  *	(UTMRDL)
3838  * 4. Allocate memory for local reference block(lrb).
3839  *
3840  * Return: 0 for success, non-zero in case of failure.
3841  */
3842 static int ufshcd_memory_alloc(struct ufs_hba *hba)
3843 {
3844 	size_t utmrdl_size, utrdl_size, ucdl_size;
3845 
3846 	/* Allocate memory for UTP command descriptors */
3847 	ucdl_size = ufshcd_get_ucd_size(hba) * hba->nutrs;
3848 	hba->ucdl_base_addr = dmam_alloc_coherent(hba->dev,
3849 						  ucdl_size,
3850 						  &hba->ucdl_dma_addr,
3851 						  GFP_KERNEL);
3852 
3853 	/*
3854 	 * UFSHCI requires UTP command descriptor to be 128 byte aligned.
3855 	 */
3856 	if (!hba->ucdl_base_addr ||
3857 	    WARN_ON(hba->ucdl_dma_addr & (128 - 1))) {
3858 		dev_err(hba->dev,
3859 			"Command Descriptor Memory allocation failed\n");
3860 		goto out;
3861 	}
3862 
3863 	/*
3864 	 * Allocate memory for UTP Transfer descriptors
3865 	 * UFSHCI requires 1KB alignment of UTRD
3866 	 */
3867 	utrdl_size = (sizeof(struct utp_transfer_req_desc) * hba->nutrs);
3868 	hba->utrdl_base_addr = dmam_alloc_coherent(hba->dev,
3869 						   utrdl_size,
3870 						   &hba->utrdl_dma_addr,
3871 						   GFP_KERNEL);
3872 	if (!hba->utrdl_base_addr ||
3873 	    WARN_ON(hba->utrdl_dma_addr & (SZ_1K - 1))) {
3874 		dev_err(hba->dev,
3875 			"Transfer Descriptor Memory allocation failed\n");
3876 		goto out;
3877 	}
3878 
3879 	/*
3880 	 * Skip utmrdl allocation; it may have been
3881 	 * allocated during first pass and not released during
3882 	 * MCQ memory allocation.
3883 	 * See ufshcd_release_sdb_queue() and ufshcd_config_mcq()
3884 	 */
3885 	if (hba->utmrdl_base_addr)
3886 		goto skip_utmrdl;
3887 	/*
3888 	 * Allocate memory for UTP Task Management descriptors
3889 	 * UFSHCI requires 1KB alignment of UTMRD
3890 	 */
3891 	utmrdl_size = sizeof(struct utp_task_req_desc) * hba->nutmrs;
3892 	hba->utmrdl_base_addr = dmam_alloc_coherent(hba->dev,
3893 						    utmrdl_size,
3894 						    &hba->utmrdl_dma_addr,
3895 						    GFP_KERNEL);
3896 	if (!hba->utmrdl_base_addr ||
3897 	    WARN_ON(hba->utmrdl_dma_addr & (SZ_1K - 1))) {
3898 		dev_err(hba->dev,
3899 		"Task Management Descriptor Memory allocation failed\n");
3900 		goto out;
3901 	}
3902 
3903 skip_utmrdl:
3904 	/* Allocate memory for local reference block */
3905 	hba->lrb = devm_kcalloc(hba->dev,
3906 				hba->nutrs, sizeof(struct ufshcd_lrb),
3907 				GFP_KERNEL);
3908 	if (!hba->lrb) {
3909 		dev_err(hba->dev, "LRB Memory allocation failed\n");
3910 		goto out;
3911 	}
3912 	return 0;
3913 out:
3914 	return -ENOMEM;
3915 }
3916 
3917 /**
3918  * ufshcd_host_memory_configure - configure local reference block with
3919  *				memory offsets
3920  * @hba: per adapter instance
3921  *
3922  * Configure Host memory space
3923  * 1. Update Corresponding UTRD.UCDBA and UTRD.UCDBAU with UCD DMA
3924  * address.
3925  * 2. Update each UTRD with Response UPIU offset, Response UPIU length
3926  * and PRDT offset.
3927  * 3. Save the corresponding addresses of UTRD, UCD.CMD, UCD.RSP and UCD.PRDT
3928  * into local reference block.
3929  */
3930 static void ufshcd_host_memory_configure(struct ufs_hba *hba)
3931 {
3932 	struct utp_transfer_req_desc *utrdlp;
3933 	dma_addr_t cmd_desc_dma_addr;
3934 	dma_addr_t cmd_desc_element_addr;
3935 	u16 response_offset;
3936 	u16 prdt_offset;
3937 	int cmd_desc_size;
3938 	int i;
3939 
3940 	utrdlp = hba->utrdl_base_addr;
3941 
3942 	response_offset =
3943 		offsetof(struct utp_transfer_cmd_desc, response_upiu);
3944 	prdt_offset =
3945 		offsetof(struct utp_transfer_cmd_desc, prd_table);
3946 
3947 	cmd_desc_size = ufshcd_get_ucd_size(hba);
3948 	cmd_desc_dma_addr = hba->ucdl_dma_addr;
3949 
3950 	for (i = 0; i < hba->nutrs; i++) {
3951 		/* Configure UTRD with command descriptor base address */
3952 		cmd_desc_element_addr =
3953 				(cmd_desc_dma_addr + (cmd_desc_size * i));
3954 		utrdlp[i].command_desc_base_addr =
3955 				cpu_to_le64(cmd_desc_element_addr);
3956 
3957 		/* Response upiu and prdt offset should be in double words */
3958 		if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN) {
3959 			utrdlp[i].response_upiu_offset =
3960 				cpu_to_le16(response_offset);
3961 			utrdlp[i].prd_table_offset =
3962 				cpu_to_le16(prdt_offset);
3963 			utrdlp[i].response_upiu_length =
3964 				cpu_to_le16(ALIGNED_UPIU_SIZE);
3965 		} else {
3966 			utrdlp[i].response_upiu_offset =
3967 				cpu_to_le16(response_offset >> 2);
3968 			utrdlp[i].prd_table_offset =
3969 				cpu_to_le16(prdt_offset >> 2);
3970 			utrdlp[i].response_upiu_length =
3971 				cpu_to_le16(ALIGNED_UPIU_SIZE >> 2);
3972 		}
3973 
3974 		ufshcd_init_lrb(hba, &hba->lrb[i], i);
3975 	}
3976 }
3977 
3978 /**
3979  * ufshcd_dme_link_startup - Notify Unipro to perform link startup
3980  * @hba: per adapter instance
3981  *
3982  * UIC_CMD_DME_LINK_STARTUP command must be issued to Unipro layer,
3983  * in order to initialize the Unipro link startup procedure.
3984  * Once the Unipro links are up, the device connected to the controller
3985  * is detected.
3986  *
3987  * Return: 0 on success, non-zero value on failure.
3988  */
3989 static int ufshcd_dme_link_startup(struct ufs_hba *hba)
3990 {
3991 	struct uic_command uic_cmd = {0};
3992 	int ret;
3993 
3994 	uic_cmd.command = UIC_CMD_DME_LINK_STARTUP;
3995 
3996 	ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
3997 	if (ret)
3998 		dev_dbg(hba->dev,
3999 			"dme-link-startup: error code %d\n", ret);
4000 	return ret;
4001 }
4002 /**
4003  * ufshcd_dme_reset - UIC command for DME_RESET
4004  * @hba: per adapter instance
4005  *
4006  * DME_RESET command is issued in order to reset UniPro stack.
4007  * This function now deals with cold reset.
4008  *
4009  * Return: 0 on success, non-zero value on failure.
4010  */
4011 static int ufshcd_dme_reset(struct ufs_hba *hba)
4012 {
4013 	struct uic_command uic_cmd = {0};
4014 	int ret;
4015 
4016 	uic_cmd.command = UIC_CMD_DME_RESET;
4017 
4018 	ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4019 	if (ret)
4020 		dev_err(hba->dev,
4021 			"dme-reset: error code %d\n", ret);
4022 
4023 	return ret;
4024 }
4025 
4026 int ufshcd_dme_configure_adapt(struct ufs_hba *hba,
4027 			       int agreed_gear,
4028 			       int adapt_val)
4029 {
4030 	int ret;
4031 
4032 	if (agreed_gear < UFS_HS_G4)
4033 		adapt_val = PA_NO_ADAPT;
4034 
4035 	ret = ufshcd_dme_set(hba,
4036 			     UIC_ARG_MIB(PA_TXHSADAPTTYPE),
4037 			     adapt_val);
4038 	return ret;
4039 }
4040 EXPORT_SYMBOL_GPL(ufshcd_dme_configure_adapt);
4041 
4042 /**
4043  * ufshcd_dme_enable - UIC command for DME_ENABLE
4044  * @hba: per adapter instance
4045  *
4046  * DME_ENABLE command is issued in order to enable UniPro stack.
4047  *
4048  * Return: 0 on success, non-zero value on failure.
4049  */
4050 static int ufshcd_dme_enable(struct ufs_hba *hba)
4051 {
4052 	struct uic_command uic_cmd = {0};
4053 	int ret;
4054 
4055 	uic_cmd.command = UIC_CMD_DME_ENABLE;
4056 
4057 	ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4058 	if (ret)
4059 		dev_err(hba->dev,
4060 			"dme-enable: error code %d\n", ret);
4061 
4062 	return ret;
4063 }
4064 
4065 static inline void ufshcd_add_delay_before_dme_cmd(struct ufs_hba *hba)
4066 {
4067 	#define MIN_DELAY_BEFORE_DME_CMDS_US	1000
4068 	unsigned long min_sleep_time_us;
4069 
4070 	if (!(hba->quirks & UFSHCD_QUIRK_DELAY_BEFORE_DME_CMDS))
4071 		return;
4072 
4073 	/*
4074 	 * last_dme_cmd_tstamp will be 0 only for 1st call to
4075 	 * this function
4076 	 */
4077 	if (unlikely(!ktime_to_us(hba->last_dme_cmd_tstamp))) {
4078 		min_sleep_time_us = MIN_DELAY_BEFORE_DME_CMDS_US;
4079 	} else {
4080 		unsigned long delta =
4081 			(unsigned long) ktime_to_us(
4082 				ktime_sub(ktime_get(),
4083 				hba->last_dme_cmd_tstamp));
4084 
4085 		if (delta < MIN_DELAY_BEFORE_DME_CMDS_US)
4086 			min_sleep_time_us =
4087 				MIN_DELAY_BEFORE_DME_CMDS_US - delta;
4088 		else
4089 			return; /* no more delay required */
4090 	}
4091 
4092 	/* allow sleep for extra 50us if needed */
4093 	usleep_range(min_sleep_time_us, min_sleep_time_us + 50);
4094 }
4095 
4096 /**
4097  * ufshcd_dme_set_attr - UIC command for DME_SET, DME_PEER_SET
4098  * @hba: per adapter instance
4099  * @attr_sel: uic command argument1
4100  * @attr_set: attribute set type as uic command argument2
4101  * @mib_val: setting value as uic command argument3
4102  * @peer: indicate whether peer or local
4103  *
4104  * Return: 0 on success, non-zero value on failure.
4105  */
4106 int ufshcd_dme_set_attr(struct ufs_hba *hba, u32 attr_sel,
4107 			u8 attr_set, u32 mib_val, u8 peer)
4108 {
4109 	struct uic_command uic_cmd = {0};
4110 	static const char *const action[] = {
4111 		"dme-set",
4112 		"dme-peer-set"
4113 	};
4114 	const char *set = action[!!peer];
4115 	int ret;
4116 	int retries = UFS_UIC_COMMAND_RETRIES;
4117 
4118 	uic_cmd.command = peer ?
4119 		UIC_CMD_DME_PEER_SET : UIC_CMD_DME_SET;
4120 	uic_cmd.argument1 = attr_sel;
4121 	uic_cmd.argument2 = UIC_ARG_ATTR_TYPE(attr_set);
4122 	uic_cmd.argument3 = mib_val;
4123 
4124 	do {
4125 		/* for peer attributes we retry upon failure */
4126 		ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4127 		if (ret)
4128 			dev_dbg(hba->dev, "%s: attr-id 0x%x val 0x%x error code %d\n",
4129 				set, UIC_GET_ATTR_ID(attr_sel), mib_val, ret);
4130 	} while (ret && peer && --retries);
4131 
4132 	if (ret)
4133 		dev_err(hba->dev, "%s: attr-id 0x%x val 0x%x failed %d retries\n",
4134 			set, UIC_GET_ATTR_ID(attr_sel), mib_val,
4135 			UFS_UIC_COMMAND_RETRIES - retries);
4136 
4137 	return ret;
4138 }
4139 EXPORT_SYMBOL_GPL(ufshcd_dme_set_attr);
4140 
4141 /**
4142  * ufshcd_dme_get_attr - UIC command for DME_GET, DME_PEER_GET
4143  * @hba: per adapter instance
4144  * @attr_sel: uic command argument1
4145  * @mib_val: the value of the attribute as returned by the UIC command
4146  * @peer: indicate whether peer or local
4147  *
4148  * Return: 0 on success, non-zero value on failure.
4149  */
4150 int ufshcd_dme_get_attr(struct ufs_hba *hba, u32 attr_sel,
4151 			u32 *mib_val, u8 peer)
4152 {
4153 	struct uic_command uic_cmd = {0};
4154 	static const char *const action[] = {
4155 		"dme-get",
4156 		"dme-peer-get"
4157 	};
4158 	const char *get = action[!!peer];
4159 	int ret;
4160 	int retries = UFS_UIC_COMMAND_RETRIES;
4161 	struct ufs_pa_layer_attr orig_pwr_info;
4162 	struct ufs_pa_layer_attr temp_pwr_info;
4163 	bool pwr_mode_change = false;
4164 
4165 	if (peer && (hba->quirks & UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE)) {
4166 		orig_pwr_info = hba->pwr_info;
4167 		temp_pwr_info = orig_pwr_info;
4168 
4169 		if (orig_pwr_info.pwr_tx == FAST_MODE ||
4170 		    orig_pwr_info.pwr_rx == FAST_MODE) {
4171 			temp_pwr_info.pwr_tx = FASTAUTO_MODE;
4172 			temp_pwr_info.pwr_rx = FASTAUTO_MODE;
4173 			pwr_mode_change = true;
4174 		} else if (orig_pwr_info.pwr_tx == SLOW_MODE ||
4175 		    orig_pwr_info.pwr_rx == SLOW_MODE) {
4176 			temp_pwr_info.pwr_tx = SLOWAUTO_MODE;
4177 			temp_pwr_info.pwr_rx = SLOWAUTO_MODE;
4178 			pwr_mode_change = true;
4179 		}
4180 		if (pwr_mode_change) {
4181 			ret = ufshcd_change_power_mode(hba, &temp_pwr_info);
4182 			if (ret)
4183 				goto out;
4184 		}
4185 	}
4186 
4187 	uic_cmd.command = peer ?
4188 		UIC_CMD_DME_PEER_GET : UIC_CMD_DME_GET;
4189 	uic_cmd.argument1 = attr_sel;
4190 
4191 	do {
4192 		/* for peer attributes we retry upon failure */
4193 		ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4194 		if (ret)
4195 			dev_dbg(hba->dev, "%s: attr-id 0x%x error code %d\n",
4196 				get, UIC_GET_ATTR_ID(attr_sel), ret);
4197 	} while (ret && peer && --retries);
4198 
4199 	if (ret)
4200 		dev_err(hba->dev, "%s: attr-id 0x%x failed %d retries\n",
4201 			get, UIC_GET_ATTR_ID(attr_sel),
4202 			UFS_UIC_COMMAND_RETRIES - retries);
4203 
4204 	if (mib_val && !ret)
4205 		*mib_val = uic_cmd.argument3;
4206 
4207 	if (peer && (hba->quirks & UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE)
4208 	    && pwr_mode_change)
4209 		ufshcd_change_power_mode(hba, &orig_pwr_info);
4210 out:
4211 	return ret;
4212 }
4213 EXPORT_SYMBOL_GPL(ufshcd_dme_get_attr);
4214 
4215 /**
4216  * ufshcd_uic_pwr_ctrl - executes UIC commands (which affects the link power
4217  * state) and waits for it to take effect.
4218  *
4219  * @hba: per adapter instance
4220  * @cmd: UIC command to execute
4221  *
4222  * DME operations like DME_SET(PA_PWRMODE), DME_HIBERNATE_ENTER &
4223  * DME_HIBERNATE_EXIT commands take some time to take its effect on both host
4224  * and device UniPro link and hence it's final completion would be indicated by
4225  * dedicated status bits in Interrupt Status register (UPMS, UHES, UHXS) in
4226  * addition to normal UIC command completion Status (UCCS). This function only
4227  * returns after the relevant status bits indicate the completion.
4228  *
4229  * Return: 0 on success, non-zero value on failure.
4230  */
4231 static int ufshcd_uic_pwr_ctrl(struct ufs_hba *hba, struct uic_command *cmd)
4232 {
4233 	DECLARE_COMPLETION_ONSTACK(uic_async_done);
4234 	unsigned long flags;
4235 	u8 status;
4236 	int ret;
4237 	bool reenable_intr = false;
4238 
4239 	mutex_lock(&hba->uic_cmd_mutex);
4240 	ufshcd_add_delay_before_dme_cmd(hba);
4241 
4242 	spin_lock_irqsave(hba->host->host_lock, flags);
4243 	if (ufshcd_is_link_broken(hba)) {
4244 		ret = -ENOLINK;
4245 		goto out_unlock;
4246 	}
4247 	hba->uic_async_done = &uic_async_done;
4248 	if (ufshcd_readl(hba, REG_INTERRUPT_ENABLE) & UIC_COMMAND_COMPL) {
4249 		ufshcd_disable_intr(hba, UIC_COMMAND_COMPL);
4250 		/*
4251 		 * Make sure UIC command completion interrupt is disabled before
4252 		 * issuing UIC command.
4253 		 */
4254 		ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
4255 		reenable_intr = true;
4256 	}
4257 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4258 	ret = __ufshcd_send_uic_cmd(hba, cmd, false);
4259 	if (ret) {
4260 		dev_err(hba->dev,
4261 			"pwr ctrl cmd 0x%x with mode 0x%x uic error %d\n",
4262 			cmd->command, cmd->argument3, ret);
4263 		goto out;
4264 	}
4265 
4266 	if (!wait_for_completion_timeout(hba->uic_async_done,
4267 					 msecs_to_jiffies(UIC_CMD_TIMEOUT))) {
4268 		dev_err(hba->dev,
4269 			"pwr ctrl cmd 0x%x with mode 0x%x completion timeout\n",
4270 			cmd->command, cmd->argument3);
4271 
4272 		if (!cmd->cmd_active) {
4273 			dev_err(hba->dev, "%s: Power Mode Change operation has been completed, go check UPMCRS\n",
4274 				__func__);
4275 			goto check_upmcrs;
4276 		}
4277 
4278 		ret = -ETIMEDOUT;
4279 		goto out;
4280 	}
4281 
4282 check_upmcrs:
4283 	status = ufshcd_get_upmcrs(hba);
4284 	if (status != PWR_LOCAL) {
4285 		dev_err(hba->dev,
4286 			"pwr ctrl cmd 0x%x failed, host upmcrs:0x%x\n",
4287 			cmd->command, status);
4288 		ret = (status != PWR_OK) ? status : -1;
4289 	}
4290 out:
4291 	if (ret) {
4292 		ufshcd_print_host_state(hba);
4293 		ufshcd_print_pwr_info(hba);
4294 		ufshcd_print_evt_hist(hba);
4295 	}
4296 
4297 	spin_lock_irqsave(hba->host->host_lock, flags);
4298 	hba->active_uic_cmd = NULL;
4299 	hba->uic_async_done = NULL;
4300 	if (reenable_intr)
4301 		ufshcd_enable_intr(hba, UIC_COMMAND_COMPL);
4302 	if (ret) {
4303 		ufshcd_set_link_broken(hba);
4304 		ufshcd_schedule_eh_work(hba);
4305 	}
4306 out_unlock:
4307 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4308 	mutex_unlock(&hba->uic_cmd_mutex);
4309 
4310 	return ret;
4311 }
4312 
4313 /**
4314  * ufshcd_uic_change_pwr_mode - Perform the UIC power mode chage
4315  *				using DME_SET primitives.
4316  * @hba: per adapter instance
4317  * @mode: powr mode value
4318  *
4319  * Return: 0 on success, non-zero value on failure.
4320  */
4321 int ufshcd_uic_change_pwr_mode(struct ufs_hba *hba, u8 mode)
4322 {
4323 	struct uic_command uic_cmd = {0};
4324 	int ret;
4325 
4326 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_PA_RXHSUNTERMCAP) {
4327 		ret = ufshcd_dme_set(hba,
4328 				UIC_ARG_MIB_SEL(PA_RXHSUNTERMCAP, 0), 1);
4329 		if (ret) {
4330 			dev_err(hba->dev, "%s: failed to enable PA_RXHSUNTERMCAP ret %d\n",
4331 						__func__, ret);
4332 			goto out;
4333 		}
4334 	}
4335 
4336 	uic_cmd.command = UIC_CMD_DME_SET;
4337 	uic_cmd.argument1 = UIC_ARG_MIB(PA_PWRMODE);
4338 	uic_cmd.argument3 = mode;
4339 	ufshcd_hold(hba);
4340 	ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4341 	ufshcd_release(hba);
4342 
4343 out:
4344 	return ret;
4345 }
4346 EXPORT_SYMBOL_GPL(ufshcd_uic_change_pwr_mode);
4347 
4348 int ufshcd_link_recovery(struct ufs_hba *hba)
4349 {
4350 	int ret;
4351 	unsigned long flags;
4352 
4353 	spin_lock_irqsave(hba->host->host_lock, flags);
4354 	hba->ufshcd_state = UFSHCD_STATE_RESET;
4355 	ufshcd_set_eh_in_progress(hba);
4356 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4357 
4358 	/* Reset the attached device */
4359 	ufshcd_device_reset(hba);
4360 
4361 	ret = ufshcd_host_reset_and_restore(hba);
4362 
4363 	spin_lock_irqsave(hba->host->host_lock, flags);
4364 	if (ret)
4365 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
4366 	ufshcd_clear_eh_in_progress(hba);
4367 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4368 
4369 	if (ret)
4370 		dev_err(hba->dev, "%s: link recovery failed, err %d",
4371 			__func__, ret);
4372 
4373 	return ret;
4374 }
4375 EXPORT_SYMBOL_GPL(ufshcd_link_recovery);
4376 
4377 int ufshcd_uic_hibern8_enter(struct ufs_hba *hba)
4378 {
4379 	int ret;
4380 	struct uic_command uic_cmd = {0};
4381 	ktime_t start = ktime_get();
4382 
4383 	ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_ENTER, PRE_CHANGE);
4384 
4385 	uic_cmd.command = UIC_CMD_DME_HIBER_ENTER;
4386 	ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4387 	trace_ufshcd_profile_hibern8(dev_name(hba->dev), "enter",
4388 			     ktime_to_us(ktime_sub(ktime_get(), start)), ret);
4389 
4390 	if (ret)
4391 		dev_err(hba->dev, "%s: hibern8 enter failed. ret = %d\n",
4392 			__func__, ret);
4393 	else
4394 		ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_ENTER,
4395 								POST_CHANGE);
4396 
4397 	return ret;
4398 }
4399 EXPORT_SYMBOL_GPL(ufshcd_uic_hibern8_enter);
4400 
4401 int ufshcd_uic_hibern8_exit(struct ufs_hba *hba)
4402 {
4403 	struct uic_command uic_cmd = {0};
4404 	int ret;
4405 	ktime_t start = ktime_get();
4406 
4407 	ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_EXIT, PRE_CHANGE);
4408 
4409 	uic_cmd.command = UIC_CMD_DME_HIBER_EXIT;
4410 	ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4411 	trace_ufshcd_profile_hibern8(dev_name(hba->dev), "exit",
4412 			     ktime_to_us(ktime_sub(ktime_get(), start)), ret);
4413 
4414 	if (ret) {
4415 		dev_err(hba->dev, "%s: hibern8 exit failed. ret = %d\n",
4416 			__func__, ret);
4417 	} else {
4418 		ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_EXIT,
4419 								POST_CHANGE);
4420 		hba->ufs_stats.last_hibern8_exit_tstamp = local_clock();
4421 		hba->ufs_stats.hibern8_exit_cnt++;
4422 	}
4423 
4424 	return ret;
4425 }
4426 EXPORT_SYMBOL_GPL(ufshcd_uic_hibern8_exit);
4427 
4428 static void ufshcd_configure_auto_hibern8(struct ufs_hba *hba)
4429 {
4430 	if (!ufshcd_is_auto_hibern8_supported(hba))
4431 		return;
4432 
4433 	ufshcd_writel(hba, hba->ahit, REG_AUTO_HIBERNATE_IDLE_TIMER);
4434 }
4435 
4436 void ufshcd_auto_hibern8_update(struct ufs_hba *hba, u32 ahit)
4437 {
4438 	const u32 cur_ahit = READ_ONCE(hba->ahit);
4439 
4440 	if (!ufshcd_is_auto_hibern8_supported(hba) || cur_ahit == ahit)
4441 		return;
4442 
4443 	WRITE_ONCE(hba->ahit, ahit);
4444 	if (!pm_runtime_suspended(&hba->ufs_device_wlun->sdev_gendev)) {
4445 		ufshcd_rpm_get_sync(hba);
4446 		ufshcd_hold(hba);
4447 		ufshcd_configure_auto_hibern8(hba);
4448 		ufshcd_release(hba);
4449 		ufshcd_rpm_put_sync(hba);
4450 	}
4451 }
4452 EXPORT_SYMBOL_GPL(ufshcd_auto_hibern8_update);
4453 
4454  /**
4455  * ufshcd_init_pwr_info - setting the POR (power on reset)
4456  * values in hba power info
4457  * @hba: per-adapter instance
4458  */
4459 static void ufshcd_init_pwr_info(struct ufs_hba *hba)
4460 {
4461 	hba->pwr_info.gear_rx = UFS_PWM_G1;
4462 	hba->pwr_info.gear_tx = UFS_PWM_G1;
4463 	hba->pwr_info.lane_rx = UFS_LANE_1;
4464 	hba->pwr_info.lane_tx = UFS_LANE_1;
4465 	hba->pwr_info.pwr_rx = SLOWAUTO_MODE;
4466 	hba->pwr_info.pwr_tx = SLOWAUTO_MODE;
4467 	hba->pwr_info.hs_rate = 0;
4468 }
4469 
4470 /**
4471  * ufshcd_get_max_pwr_mode - reads the max power mode negotiated with device
4472  * @hba: per-adapter instance
4473  *
4474  * Return: 0 upon success; < 0 upon failure.
4475  */
4476 static int ufshcd_get_max_pwr_mode(struct ufs_hba *hba)
4477 {
4478 	struct ufs_pa_layer_attr *pwr_info = &hba->max_pwr_info.info;
4479 
4480 	if (hba->max_pwr_info.is_valid)
4481 		return 0;
4482 
4483 	if (hba->quirks & UFSHCD_QUIRK_HIBERN_FASTAUTO) {
4484 		pwr_info->pwr_tx = FASTAUTO_MODE;
4485 		pwr_info->pwr_rx = FASTAUTO_MODE;
4486 	} else {
4487 		pwr_info->pwr_tx = FAST_MODE;
4488 		pwr_info->pwr_rx = FAST_MODE;
4489 	}
4490 	pwr_info->hs_rate = PA_HS_MODE_B;
4491 
4492 	/* Get the connected lane count */
4493 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDRXDATALANES),
4494 			&pwr_info->lane_rx);
4495 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4496 			&pwr_info->lane_tx);
4497 
4498 	if (!pwr_info->lane_rx || !pwr_info->lane_tx) {
4499 		dev_err(hba->dev, "%s: invalid connected lanes value. rx=%d, tx=%d\n",
4500 				__func__,
4501 				pwr_info->lane_rx,
4502 				pwr_info->lane_tx);
4503 		return -EINVAL;
4504 	}
4505 
4506 	/*
4507 	 * First, get the maximum gears of HS speed.
4508 	 * If a zero value, it means there is no HSGEAR capability.
4509 	 * Then, get the maximum gears of PWM speed.
4510 	 */
4511 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_MAXRXHSGEAR), &pwr_info->gear_rx);
4512 	if (!pwr_info->gear_rx) {
4513 		ufshcd_dme_get(hba, UIC_ARG_MIB(PA_MAXRXPWMGEAR),
4514 				&pwr_info->gear_rx);
4515 		if (!pwr_info->gear_rx) {
4516 			dev_err(hba->dev, "%s: invalid max pwm rx gear read = %d\n",
4517 				__func__, pwr_info->gear_rx);
4518 			return -EINVAL;
4519 		}
4520 		pwr_info->pwr_rx = SLOW_MODE;
4521 	}
4522 
4523 	ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_MAXRXHSGEAR),
4524 			&pwr_info->gear_tx);
4525 	if (!pwr_info->gear_tx) {
4526 		ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_MAXRXPWMGEAR),
4527 				&pwr_info->gear_tx);
4528 		if (!pwr_info->gear_tx) {
4529 			dev_err(hba->dev, "%s: invalid max pwm tx gear read = %d\n",
4530 				__func__, pwr_info->gear_tx);
4531 			return -EINVAL;
4532 		}
4533 		pwr_info->pwr_tx = SLOW_MODE;
4534 	}
4535 
4536 	hba->max_pwr_info.is_valid = true;
4537 	return 0;
4538 }
4539 
4540 static int ufshcd_change_power_mode(struct ufs_hba *hba,
4541 			     struct ufs_pa_layer_attr *pwr_mode)
4542 {
4543 	int ret;
4544 
4545 	/* if already configured to the requested pwr_mode */
4546 	if (!hba->force_pmc &&
4547 	    pwr_mode->gear_rx == hba->pwr_info.gear_rx &&
4548 	    pwr_mode->gear_tx == hba->pwr_info.gear_tx &&
4549 	    pwr_mode->lane_rx == hba->pwr_info.lane_rx &&
4550 	    pwr_mode->lane_tx == hba->pwr_info.lane_tx &&
4551 	    pwr_mode->pwr_rx == hba->pwr_info.pwr_rx &&
4552 	    pwr_mode->pwr_tx == hba->pwr_info.pwr_tx &&
4553 	    pwr_mode->hs_rate == hba->pwr_info.hs_rate) {
4554 		dev_dbg(hba->dev, "%s: power already configured\n", __func__);
4555 		return 0;
4556 	}
4557 
4558 	/*
4559 	 * Configure attributes for power mode change with below.
4560 	 * - PA_RXGEAR, PA_ACTIVERXDATALANES, PA_RXTERMINATION,
4561 	 * - PA_TXGEAR, PA_ACTIVETXDATALANES, PA_TXTERMINATION,
4562 	 * - PA_HSSERIES
4563 	 */
4564 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXGEAR), pwr_mode->gear_rx);
4565 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVERXDATALANES),
4566 			pwr_mode->lane_rx);
4567 	if (pwr_mode->pwr_rx == FASTAUTO_MODE ||
4568 			pwr_mode->pwr_rx == FAST_MODE)
4569 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), true);
4570 	else
4571 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), false);
4572 
4573 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXGEAR), pwr_mode->gear_tx);
4574 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVETXDATALANES),
4575 			pwr_mode->lane_tx);
4576 	if (pwr_mode->pwr_tx == FASTAUTO_MODE ||
4577 			pwr_mode->pwr_tx == FAST_MODE)
4578 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), true);
4579 	else
4580 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), false);
4581 
4582 	if (pwr_mode->pwr_rx == FASTAUTO_MODE ||
4583 	    pwr_mode->pwr_tx == FASTAUTO_MODE ||
4584 	    pwr_mode->pwr_rx == FAST_MODE ||
4585 	    pwr_mode->pwr_tx == FAST_MODE)
4586 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_HSSERIES),
4587 						pwr_mode->hs_rate);
4588 
4589 	if (!(hba->quirks & UFSHCD_QUIRK_SKIP_DEF_UNIPRO_TIMEOUT_SETTING)) {
4590 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA0),
4591 				DL_FC0ProtectionTimeOutVal_Default);
4592 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA1),
4593 				DL_TC0ReplayTimeOutVal_Default);
4594 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA2),
4595 				DL_AFC0ReqTimeOutVal_Default);
4596 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA3),
4597 				DL_FC1ProtectionTimeOutVal_Default);
4598 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA4),
4599 				DL_TC1ReplayTimeOutVal_Default);
4600 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA5),
4601 				DL_AFC1ReqTimeOutVal_Default);
4602 
4603 		ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalFC0ProtectionTimeOutVal),
4604 				DL_FC0ProtectionTimeOutVal_Default);
4605 		ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalTC0ReplayTimeOutVal),
4606 				DL_TC0ReplayTimeOutVal_Default);
4607 		ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalAFC0ReqTimeOutVal),
4608 				DL_AFC0ReqTimeOutVal_Default);
4609 	}
4610 
4611 	ret = ufshcd_uic_change_pwr_mode(hba, pwr_mode->pwr_rx << 4
4612 			| pwr_mode->pwr_tx);
4613 
4614 	if (ret) {
4615 		dev_err(hba->dev,
4616 			"%s: power mode change failed %d\n", __func__, ret);
4617 	} else {
4618 		ufshcd_vops_pwr_change_notify(hba, POST_CHANGE, NULL,
4619 								pwr_mode);
4620 
4621 		memcpy(&hba->pwr_info, pwr_mode,
4622 			sizeof(struct ufs_pa_layer_attr));
4623 	}
4624 
4625 	return ret;
4626 }
4627 
4628 /**
4629  * ufshcd_config_pwr_mode - configure a new power mode
4630  * @hba: per-adapter instance
4631  * @desired_pwr_mode: desired power configuration
4632  *
4633  * Return: 0 upon success; < 0 upon failure.
4634  */
4635 int ufshcd_config_pwr_mode(struct ufs_hba *hba,
4636 		struct ufs_pa_layer_attr *desired_pwr_mode)
4637 {
4638 	struct ufs_pa_layer_attr final_params = { 0 };
4639 	int ret;
4640 
4641 	ret = ufshcd_vops_pwr_change_notify(hba, PRE_CHANGE,
4642 					desired_pwr_mode, &final_params);
4643 
4644 	if (ret)
4645 		memcpy(&final_params, desired_pwr_mode, sizeof(final_params));
4646 
4647 	ret = ufshcd_change_power_mode(hba, &final_params);
4648 
4649 	return ret;
4650 }
4651 EXPORT_SYMBOL_GPL(ufshcd_config_pwr_mode);
4652 
4653 /**
4654  * ufshcd_complete_dev_init() - checks device readiness
4655  * @hba: per-adapter instance
4656  *
4657  * Set fDeviceInit flag and poll until device toggles it.
4658  *
4659  * Return: 0 upon success; < 0 upon failure.
4660  */
4661 static int ufshcd_complete_dev_init(struct ufs_hba *hba)
4662 {
4663 	int err;
4664 	bool flag_res = true;
4665 	ktime_t timeout;
4666 
4667 	err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG,
4668 		QUERY_FLAG_IDN_FDEVICEINIT, 0, NULL);
4669 	if (err) {
4670 		dev_err(hba->dev,
4671 			"%s: setting fDeviceInit flag failed with error %d\n",
4672 			__func__, err);
4673 		goto out;
4674 	}
4675 
4676 	/* Poll fDeviceInit flag to be cleared */
4677 	timeout = ktime_add_ms(ktime_get(), FDEVICEINIT_COMPL_TIMEOUT);
4678 	do {
4679 		err = ufshcd_query_flag(hba, UPIU_QUERY_OPCODE_READ_FLAG,
4680 					QUERY_FLAG_IDN_FDEVICEINIT, 0, &flag_res);
4681 		if (!flag_res)
4682 			break;
4683 		usleep_range(500, 1000);
4684 	} while (ktime_before(ktime_get(), timeout));
4685 
4686 	if (err) {
4687 		dev_err(hba->dev,
4688 				"%s: reading fDeviceInit flag failed with error %d\n",
4689 				__func__, err);
4690 	} else if (flag_res) {
4691 		dev_err(hba->dev,
4692 				"%s: fDeviceInit was not cleared by the device\n",
4693 				__func__);
4694 		err = -EBUSY;
4695 	}
4696 out:
4697 	return err;
4698 }
4699 
4700 /**
4701  * ufshcd_make_hba_operational - Make UFS controller operational
4702  * @hba: per adapter instance
4703  *
4704  * To bring UFS host controller to operational state,
4705  * 1. Enable required interrupts
4706  * 2. Configure interrupt aggregation
4707  * 3. Program UTRL and UTMRL base address
4708  * 4. Configure run-stop-registers
4709  *
4710  * Return: 0 on success, non-zero value on failure.
4711  */
4712 int ufshcd_make_hba_operational(struct ufs_hba *hba)
4713 {
4714 	int err = 0;
4715 	u32 reg;
4716 
4717 	/* Enable required interrupts */
4718 	ufshcd_enable_intr(hba, UFSHCD_ENABLE_INTRS);
4719 
4720 	/* Configure interrupt aggregation */
4721 	if (ufshcd_is_intr_aggr_allowed(hba))
4722 		ufshcd_config_intr_aggr(hba, hba->nutrs - 1, INT_AGGR_DEF_TO);
4723 	else
4724 		ufshcd_disable_intr_aggr(hba);
4725 
4726 	/* Configure UTRL and UTMRL base address registers */
4727 	ufshcd_writel(hba, lower_32_bits(hba->utrdl_dma_addr),
4728 			REG_UTP_TRANSFER_REQ_LIST_BASE_L);
4729 	ufshcd_writel(hba, upper_32_bits(hba->utrdl_dma_addr),
4730 			REG_UTP_TRANSFER_REQ_LIST_BASE_H);
4731 	ufshcd_writel(hba, lower_32_bits(hba->utmrdl_dma_addr),
4732 			REG_UTP_TASK_REQ_LIST_BASE_L);
4733 	ufshcd_writel(hba, upper_32_bits(hba->utmrdl_dma_addr),
4734 			REG_UTP_TASK_REQ_LIST_BASE_H);
4735 
4736 	/*
4737 	 * UCRDY, UTMRLDY and UTRLRDY bits must be 1
4738 	 */
4739 	reg = ufshcd_readl(hba, REG_CONTROLLER_STATUS);
4740 	if (!(ufshcd_get_lists_status(reg))) {
4741 		ufshcd_enable_run_stop_reg(hba);
4742 	} else {
4743 		dev_err(hba->dev,
4744 			"Host controller not ready to process requests");
4745 		err = -EIO;
4746 	}
4747 
4748 	return err;
4749 }
4750 EXPORT_SYMBOL_GPL(ufshcd_make_hba_operational);
4751 
4752 /**
4753  * ufshcd_hba_stop - Send controller to reset state
4754  * @hba: per adapter instance
4755  */
4756 void ufshcd_hba_stop(struct ufs_hba *hba)
4757 {
4758 	unsigned long flags;
4759 	int err;
4760 
4761 	/*
4762 	 * Obtain the host lock to prevent that the controller is disabled
4763 	 * while the UFS interrupt handler is active on another CPU.
4764 	 */
4765 	spin_lock_irqsave(hba->host->host_lock, flags);
4766 	ufshcd_writel(hba, CONTROLLER_DISABLE,  REG_CONTROLLER_ENABLE);
4767 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4768 
4769 	err = ufshcd_wait_for_register(hba, REG_CONTROLLER_ENABLE,
4770 					CONTROLLER_ENABLE, CONTROLLER_DISABLE,
4771 					10, 1);
4772 	if (err)
4773 		dev_err(hba->dev, "%s: Controller disable failed\n", __func__);
4774 }
4775 EXPORT_SYMBOL_GPL(ufshcd_hba_stop);
4776 
4777 /**
4778  * ufshcd_hba_execute_hce - initialize the controller
4779  * @hba: per adapter instance
4780  *
4781  * The controller resets itself and controller firmware initialization
4782  * sequence kicks off. When controller is ready it will set
4783  * the Host Controller Enable bit to 1.
4784  *
4785  * Return: 0 on success, non-zero value on failure.
4786  */
4787 static int ufshcd_hba_execute_hce(struct ufs_hba *hba)
4788 {
4789 	int retry_outer = 3;
4790 	int retry_inner;
4791 
4792 start:
4793 	if (ufshcd_is_hba_active(hba))
4794 		/* change controller state to "reset state" */
4795 		ufshcd_hba_stop(hba);
4796 
4797 	/* UniPro link is disabled at this point */
4798 	ufshcd_set_link_off(hba);
4799 
4800 	ufshcd_vops_hce_enable_notify(hba, PRE_CHANGE);
4801 
4802 	/* start controller initialization sequence */
4803 	ufshcd_hba_start(hba);
4804 
4805 	/*
4806 	 * To initialize a UFS host controller HCE bit must be set to 1.
4807 	 * During initialization the HCE bit value changes from 1->0->1.
4808 	 * When the host controller completes initialization sequence
4809 	 * it sets the value of HCE bit to 1. The same HCE bit is read back
4810 	 * to check if the controller has completed initialization sequence.
4811 	 * So without this delay the value HCE = 1, set in the previous
4812 	 * instruction might be read back.
4813 	 * This delay can be changed based on the controller.
4814 	 */
4815 	ufshcd_delay_us(hba->vps->hba_enable_delay_us, 100);
4816 
4817 	/* wait for the host controller to complete initialization */
4818 	retry_inner = 50;
4819 	while (!ufshcd_is_hba_active(hba)) {
4820 		if (retry_inner) {
4821 			retry_inner--;
4822 		} else {
4823 			dev_err(hba->dev,
4824 				"Controller enable failed\n");
4825 			if (retry_outer) {
4826 				retry_outer--;
4827 				goto start;
4828 			}
4829 			return -EIO;
4830 		}
4831 		usleep_range(1000, 1100);
4832 	}
4833 
4834 	/* enable UIC related interrupts */
4835 	ufshcd_enable_intr(hba, UFSHCD_UIC_MASK);
4836 
4837 	ufshcd_vops_hce_enable_notify(hba, POST_CHANGE);
4838 
4839 	return 0;
4840 }
4841 
4842 int ufshcd_hba_enable(struct ufs_hba *hba)
4843 {
4844 	int ret;
4845 
4846 	if (hba->quirks & UFSHCI_QUIRK_BROKEN_HCE) {
4847 		ufshcd_set_link_off(hba);
4848 		ufshcd_vops_hce_enable_notify(hba, PRE_CHANGE);
4849 
4850 		/* enable UIC related interrupts */
4851 		ufshcd_enable_intr(hba, UFSHCD_UIC_MASK);
4852 		ret = ufshcd_dme_reset(hba);
4853 		if (ret) {
4854 			dev_err(hba->dev, "DME_RESET failed\n");
4855 			return ret;
4856 		}
4857 
4858 		ret = ufshcd_dme_enable(hba);
4859 		if (ret) {
4860 			dev_err(hba->dev, "Enabling DME failed\n");
4861 			return ret;
4862 		}
4863 
4864 		ufshcd_vops_hce_enable_notify(hba, POST_CHANGE);
4865 	} else {
4866 		ret = ufshcd_hba_execute_hce(hba);
4867 	}
4868 
4869 	return ret;
4870 }
4871 EXPORT_SYMBOL_GPL(ufshcd_hba_enable);
4872 
4873 static int ufshcd_disable_tx_lcc(struct ufs_hba *hba, bool peer)
4874 {
4875 	int tx_lanes = 0, i, err = 0;
4876 
4877 	if (!peer)
4878 		ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4879 			       &tx_lanes);
4880 	else
4881 		ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4882 				    &tx_lanes);
4883 	for (i = 0; i < tx_lanes; i++) {
4884 		if (!peer)
4885 			err = ufshcd_dme_set(hba,
4886 				UIC_ARG_MIB_SEL(TX_LCC_ENABLE,
4887 					UIC_ARG_MPHY_TX_GEN_SEL_INDEX(i)),
4888 					0);
4889 		else
4890 			err = ufshcd_dme_peer_set(hba,
4891 				UIC_ARG_MIB_SEL(TX_LCC_ENABLE,
4892 					UIC_ARG_MPHY_TX_GEN_SEL_INDEX(i)),
4893 					0);
4894 		if (err) {
4895 			dev_err(hba->dev, "%s: TX LCC Disable failed, peer = %d, lane = %d, err = %d",
4896 				__func__, peer, i, err);
4897 			break;
4898 		}
4899 	}
4900 
4901 	return err;
4902 }
4903 
4904 static inline int ufshcd_disable_device_tx_lcc(struct ufs_hba *hba)
4905 {
4906 	return ufshcd_disable_tx_lcc(hba, true);
4907 }
4908 
4909 void ufshcd_update_evt_hist(struct ufs_hba *hba, u32 id, u32 val)
4910 {
4911 	struct ufs_event_hist *e;
4912 
4913 	if (id >= UFS_EVT_CNT)
4914 		return;
4915 
4916 	e = &hba->ufs_stats.event[id];
4917 	e->val[e->pos] = val;
4918 	e->tstamp[e->pos] = local_clock();
4919 	e->cnt += 1;
4920 	e->pos = (e->pos + 1) % UFS_EVENT_HIST_LENGTH;
4921 
4922 	ufshcd_vops_event_notify(hba, id, &val);
4923 }
4924 EXPORT_SYMBOL_GPL(ufshcd_update_evt_hist);
4925 
4926 /**
4927  * ufshcd_link_startup - Initialize unipro link startup
4928  * @hba: per adapter instance
4929  *
4930  * Return: 0 for success, non-zero in case of failure.
4931  */
4932 static int ufshcd_link_startup(struct ufs_hba *hba)
4933 {
4934 	int ret;
4935 	int retries = DME_LINKSTARTUP_RETRIES;
4936 	bool link_startup_again = false;
4937 
4938 	/*
4939 	 * If UFS device isn't active then we will have to issue link startup
4940 	 * 2 times to make sure the device state move to active.
4941 	 */
4942 	if (!ufshcd_is_ufs_dev_active(hba))
4943 		link_startup_again = true;
4944 
4945 link_startup:
4946 	do {
4947 		ufshcd_vops_link_startup_notify(hba, PRE_CHANGE);
4948 
4949 		ret = ufshcd_dme_link_startup(hba);
4950 
4951 		/* check if device is detected by inter-connect layer */
4952 		if (!ret && !ufshcd_is_device_present(hba)) {
4953 			ufshcd_update_evt_hist(hba,
4954 					       UFS_EVT_LINK_STARTUP_FAIL,
4955 					       0);
4956 			dev_err(hba->dev, "%s: Device not present\n", __func__);
4957 			ret = -ENXIO;
4958 			goto out;
4959 		}
4960 
4961 		/*
4962 		 * DME link lost indication is only received when link is up,
4963 		 * but we can't be sure if the link is up until link startup
4964 		 * succeeds. So reset the local Uni-Pro and try again.
4965 		 */
4966 		if (ret && retries && ufshcd_hba_enable(hba)) {
4967 			ufshcd_update_evt_hist(hba,
4968 					       UFS_EVT_LINK_STARTUP_FAIL,
4969 					       (u32)ret);
4970 			goto out;
4971 		}
4972 	} while (ret && retries--);
4973 
4974 	if (ret) {
4975 		/* failed to get the link up... retire */
4976 		ufshcd_update_evt_hist(hba,
4977 				       UFS_EVT_LINK_STARTUP_FAIL,
4978 				       (u32)ret);
4979 		goto out;
4980 	}
4981 
4982 	if (link_startup_again) {
4983 		link_startup_again = false;
4984 		retries = DME_LINKSTARTUP_RETRIES;
4985 		goto link_startup;
4986 	}
4987 
4988 	/* Mark that link is up in PWM-G1, 1-lane, SLOW-AUTO mode */
4989 	ufshcd_init_pwr_info(hba);
4990 	ufshcd_print_pwr_info(hba);
4991 
4992 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_LCC) {
4993 		ret = ufshcd_disable_device_tx_lcc(hba);
4994 		if (ret)
4995 			goto out;
4996 	}
4997 
4998 	/* Include any host controller configuration via UIC commands */
4999 	ret = ufshcd_vops_link_startup_notify(hba, POST_CHANGE);
5000 	if (ret)
5001 		goto out;
5002 
5003 	/* Clear UECPA once due to LINERESET has happened during LINK_STARTUP */
5004 	ufshcd_readl(hba, REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER);
5005 	ret = ufshcd_make_hba_operational(hba);
5006 out:
5007 	if (ret) {
5008 		dev_err(hba->dev, "link startup failed %d\n", ret);
5009 		ufshcd_print_host_state(hba);
5010 		ufshcd_print_pwr_info(hba);
5011 		ufshcd_print_evt_hist(hba);
5012 	}
5013 	return ret;
5014 }
5015 
5016 /**
5017  * ufshcd_verify_dev_init() - Verify device initialization
5018  * @hba: per-adapter instance
5019  *
5020  * Send NOP OUT UPIU and wait for NOP IN response to check whether the
5021  * device Transport Protocol (UTP) layer is ready after a reset.
5022  * If the UTP layer at the device side is not initialized, it may
5023  * not respond with NOP IN UPIU within timeout of %NOP_OUT_TIMEOUT
5024  * and we retry sending NOP OUT for %NOP_OUT_RETRIES iterations.
5025  *
5026  * Return: 0 upon success; < 0 upon failure.
5027  */
5028 static int ufshcd_verify_dev_init(struct ufs_hba *hba)
5029 {
5030 	int err = 0;
5031 	int retries;
5032 
5033 	ufshcd_dev_man_lock(hba);
5034 
5035 	for (retries = NOP_OUT_RETRIES; retries > 0; retries--) {
5036 		err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_NOP,
5037 					  hba->nop_out_timeout);
5038 
5039 		if (!err || err == -ETIMEDOUT)
5040 			break;
5041 
5042 		dev_dbg(hba->dev, "%s: error %d retrying\n", __func__, err);
5043 	}
5044 
5045 	ufshcd_dev_man_unlock(hba);
5046 
5047 	if (err)
5048 		dev_err(hba->dev, "%s: NOP OUT failed %d\n", __func__, err);
5049 	return err;
5050 }
5051 
5052 /**
5053  * ufshcd_setup_links - associate link b/w device wlun and other luns
5054  * @sdev: pointer to SCSI device
5055  * @hba: pointer to ufs hba
5056  */
5057 static void ufshcd_setup_links(struct ufs_hba *hba, struct scsi_device *sdev)
5058 {
5059 	struct device_link *link;
5060 
5061 	/*
5062 	 * Device wlun is the supplier & rest of the luns are consumers.
5063 	 * This ensures that device wlun suspends after all other luns.
5064 	 */
5065 	if (hba->ufs_device_wlun) {
5066 		link = device_link_add(&sdev->sdev_gendev,
5067 				       &hba->ufs_device_wlun->sdev_gendev,
5068 				       DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE);
5069 		if (!link) {
5070 			dev_err(&sdev->sdev_gendev, "Failed establishing link - %s\n",
5071 				dev_name(&hba->ufs_device_wlun->sdev_gendev));
5072 			return;
5073 		}
5074 		hba->luns_avail--;
5075 		/* Ignore REPORT_LUN wlun probing */
5076 		if (hba->luns_avail == 1) {
5077 			ufshcd_rpm_put(hba);
5078 			return;
5079 		}
5080 	} else {
5081 		/*
5082 		 * Device wlun is probed. The assumption is that WLUNs are
5083 		 * scanned before other LUNs.
5084 		 */
5085 		hba->luns_avail--;
5086 	}
5087 }
5088 
5089 /**
5090  * ufshcd_lu_init - Initialize the relevant parameters of the LU
5091  * @hba: per-adapter instance
5092  * @sdev: pointer to SCSI device
5093  */
5094 static void ufshcd_lu_init(struct ufs_hba *hba, struct scsi_device *sdev)
5095 {
5096 	int len = QUERY_DESC_MAX_SIZE;
5097 	u8 lun = ufshcd_scsi_to_upiu_lun(sdev->lun);
5098 	u8 lun_qdepth = hba->nutrs;
5099 	u8 *desc_buf;
5100 	int ret;
5101 
5102 	desc_buf = kzalloc(len, GFP_KERNEL);
5103 	if (!desc_buf)
5104 		goto set_qdepth;
5105 
5106 	ret = ufshcd_read_unit_desc_param(hba, lun, 0, desc_buf, len);
5107 	if (ret < 0) {
5108 		if (ret == -EOPNOTSUPP)
5109 			/* If LU doesn't support unit descriptor, its queue depth is set to 1 */
5110 			lun_qdepth = 1;
5111 		kfree(desc_buf);
5112 		goto set_qdepth;
5113 	}
5114 
5115 	if (desc_buf[UNIT_DESC_PARAM_LU_Q_DEPTH]) {
5116 		/*
5117 		 * In per-LU queueing architecture, bLUQueueDepth will not be 0, then we will
5118 		 * use the smaller between UFSHCI CAP.NUTRS and UFS LU bLUQueueDepth
5119 		 */
5120 		lun_qdepth = min_t(int, desc_buf[UNIT_DESC_PARAM_LU_Q_DEPTH], hba->nutrs);
5121 	}
5122 	/*
5123 	 * According to UFS device specification, the write protection mode is only supported by
5124 	 * normal LU, not supported by WLUN.
5125 	 */
5126 	if (hba->dev_info.f_power_on_wp_en && lun < hba->dev_info.max_lu_supported &&
5127 	    !hba->dev_info.is_lu_power_on_wp &&
5128 	    desc_buf[UNIT_DESC_PARAM_LU_WR_PROTECT] == UFS_LU_POWER_ON_WP)
5129 		hba->dev_info.is_lu_power_on_wp = true;
5130 
5131 	/* In case of RPMB LU, check if advanced RPMB mode is enabled */
5132 	if (desc_buf[UNIT_DESC_PARAM_UNIT_INDEX] == UFS_UPIU_RPMB_WLUN &&
5133 	    desc_buf[RPMB_UNIT_DESC_PARAM_REGION_EN] & BIT(4))
5134 		hba->dev_info.b_advanced_rpmb_en = true;
5135 
5136 
5137 	kfree(desc_buf);
5138 set_qdepth:
5139 	/*
5140 	 * For WLUNs that don't support unit descriptor, queue depth is set to 1. For LUs whose
5141 	 * bLUQueueDepth == 0, the queue depth is set to a maximum value that host can queue.
5142 	 */
5143 	dev_dbg(hba->dev, "Set LU %x queue depth %d\n", lun, lun_qdepth);
5144 	scsi_change_queue_depth(sdev, lun_qdepth);
5145 }
5146 
5147 /**
5148  * ufshcd_slave_alloc - handle initial SCSI device configurations
5149  * @sdev: pointer to SCSI device
5150  *
5151  * Return: success.
5152  */
5153 static int ufshcd_slave_alloc(struct scsi_device *sdev)
5154 {
5155 	struct ufs_hba *hba;
5156 
5157 	hba = shost_priv(sdev->host);
5158 
5159 	/* Mode sense(6) is not supported by UFS, so use Mode sense(10) */
5160 	sdev->use_10_for_ms = 1;
5161 
5162 	/* DBD field should be set to 1 in mode sense(10) */
5163 	sdev->set_dbd_for_ms = 1;
5164 
5165 	/* allow SCSI layer to restart the device in case of errors */
5166 	sdev->allow_restart = 1;
5167 
5168 	/* REPORT SUPPORTED OPERATION CODES is not supported */
5169 	sdev->no_report_opcodes = 1;
5170 
5171 	/* WRITE_SAME command is not supported */
5172 	sdev->no_write_same = 1;
5173 
5174 	ufshcd_lu_init(hba, sdev);
5175 
5176 	ufshcd_setup_links(hba, sdev);
5177 
5178 	return 0;
5179 }
5180 
5181 /**
5182  * ufshcd_change_queue_depth - change queue depth
5183  * @sdev: pointer to SCSI device
5184  * @depth: required depth to set
5185  *
5186  * Change queue depth and make sure the max. limits are not crossed.
5187  *
5188  * Return: new queue depth.
5189  */
5190 static int ufshcd_change_queue_depth(struct scsi_device *sdev, int depth)
5191 {
5192 	return scsi_change_queue_depth(sdev, min(depth, sdev->host->can_queue));
5193 }
5194 
5195 /**
5196  * ufshcd_slave_configure - adjust SCSI device configurations
5197  * @sdev: pointer to SCSI device
5198  *
5199  * Return: 0 (success).
5200  */
5201 static int ufshcd_slave_configure(struct scsi_device *sdev)
5202 {
5203 	struct ufs_hba *hba = shost_priv(sdev->host);
5204 	struct request_queue *q = sdev->request_queue;
5205 
5206 	blk_queue_update_dma_pad(q, PRDT_DATA_BYTE_COUNT_PAD - 1);
5207 
5208 	/*
5209 	 * Block runtime-pm until all consumers are added.
5210 	 * Refer ufshcd_setup_links().
5211 	 */
5212 	if (is_device_wlun(sdev))
5213 		pm_runtime_get_noresume(&sdev->sdev_gendev);
5214 	else if (ufshcd_is_rpm_autosuspend_allowed(hba))
5215 		sdev->rpm_autosuspend = 1;
5216 	/*
5217 	 * Do not print messages during runtime PM to avoid never-ending cycles
5218 	 * of messages written back to storage by user space causing runtime
5219 	 * resume, causing more messages and so on.
5220 	 */
5221 	sdev->silence_suspend = 1;
5222 
5223 	ufshcd_crypto_register(hba, q);
5224 
5225 	return 0;
5226 }
5227 
5228 /**
5229  * ufshcd_slave_destroy - remove SCSI device configurations
5230  * @sdev: pointer to SCSI device
5231  */
5232 static void ufshcd_slave_destroy(struct scsi_device *sdev)
5233 {
5234 	struct ufs_hba *hba;
5235 	unsigned long flags;
5236 
5237 	hba = shost_priv(sdev->host);
5238 
5239 	/* Drop the reference as it won't be needed anymore */
5240 	if (ufshcd_scsi_to_upiu_lun(sdev->lun) == UFS_UPIU_UFS_DEVICE_WLUN) {
5241 		spin_lock_irqsave(hba->host->host_lock, flags);
5242 		hba->ufs_device_wlun = NULL;
5243 		spin_unlock_irqrestore(hba->host->host_lock, flags);
5244 	} else if (hba->ufs_device_wlun) {
5245 		struct device *supplier = NULL;
5246 
5247 		/* Ensure UFS Device WLUN exists and does not disappear */
5248 		spin_lock_irqsave(hba->host->host_lock, flags);
5249 		if (hba->ufs_device_wlun) {
5250 			supplier = &hba->ufs_device_wlun->sdev_gendev;
5251 			get_device(supplier);
5252 		}
5253 		spin_unlock_irqrestore(hba->host->host_lock, flags);
5254 
5255 		if (supplier) {
5256 			/*
5257 			 * If a LUN fails to probe (e.g. absent BOOT WLUN), the
5258 			 * device will not have been registered but can still
5259 			 * have a device link holding a reference to the device.
5260 			 */
5261 			device_link_remove(&sdev->sdev_gendev, supplier);
5262 			put_device(supplier);
5263 		}
5264 	}
5265 }
5266 
5267 /**
5268  * ufshcd_scsi_cmd_status - Update SCSI command result based on SCSI status
5269  * @lrbp: pointer to local reference block of completed command
5270  * @scsi_status: SCSI command status
5271  *
5272  * Return: value base on SCSI command status.
5273  */
5274 static inline int
5275 ufshcd_scsi_cmd_status(struct ufshcd_lrb *lrbp, int scsi_status)
5276 {
5277 	int result = 0;
5278 
5279 	switch (scsi_status) {
5280 	case SAM_STAT_CHECK_CONDITION:
5281 		ufshcd_copy_sense_data(lrbp);
5282 		fallthrough;
5283 	case SAM_STAT_GOOD:
5284 		result |= DID_OK << 16 | scsi_status;
5285 		break;
5286 	case SAM_STAT_TASK_SET_FULL:
5287 	case SAM_STAT_BUSY:
5288 	case SAM_STAT_TASK_ABORTED:
5289 		ufshcd_copy_sense_data(lrbp);
5290 		result |= scsi_status;
5291 		break;
5292 	default:
5293 		result |= DID_ERROR << 16;
5294 		break;
5295 	} /* end of switch */
5296 
5297 	return result;
5298 }
5299 
5300 /**
5301  * ufshcd_transfer_rsp_status - Get overall status of the response
5302  * @hba: per adapter instance
5303  * @lrbp: pointer to local reference block of completed command
5304  * @cqe: pointer to the completion queue entry
5305  *
5306  * Return: result of the command to notify SCSI midlayer.
5307  */
5308 static inline int
5309 ufshcd_transfer_rsp_status(struct ufs_hba *hba, struct ufshcd_lrb *lrbp,
5310 			   struct cq_entry *cqe)
5311 {
5312 	int result = 0;
5313 	int scsi_status;
5314 	enum utp_ocs ocs;
5315 	u8 upiu_flags;
5316 	u32 resid;
5317 
5318 	upiu_flags = lrbp->ucd_rsp_ptr->header.flags;
5319 	resid = be32_to_cpu(lrbp->ucd_rsp_ptr->sr.residual_transfer_count);
5320 	/*
5321 	 * Test !overflow instead of underflow to support UFS devices that do
5322 	 * not set either flag.
5323 	 */
5324 	if (resid && !(upiu_flags & UPIU_RSP_FLAG_OVERFLOW))
5325 		scsi_set_resid(lrbp->cmd, resid);
5326 
5327 	/* overall command status of utrd */
5328 	ocs = ufshcd_get_tr_ocs(lrbp, cqe);
5329 
5330 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_OCS_FATAL_ERROR) {
5331 		if (lrbp->ucd_rsp_ptr->header.response ||
5332 		    lrbp->ucd_rsp_ptr->header.status)
5333 			ocs = OCS_SUCCESS;
5334 	}
5335 
5336 	switch (ocs) {
5337 	case OCS_SUCCESS:
5338 		hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
5339 		switch (ufshcd_get_req_rsp(lrbp->ucd_rsp_ptr)) {
5340 		case UPIU_TRANSACTION_RESPONSE:
5341 			/*
5342 			 * get the result based on SCSI status response
5343 			 * to notify the SCSI midlayer of the command status
5344 			 */
5345 			scsi_status = lrbp->ucd_rsp_ptr->header.status;
5346 			result = ufshcd_scsi_cmd_status(lrbp, scsi_status);
5347 
5348 			/*
5349 			 * Currently we are only supporting BKOPs exception
5350 			 * events hence we can ignore BKOPs exception event
5351 			 * during power management callbacks. BKOPs exception
5352 			 * event is not expected to be raised in runtime suspend
5353 			 * callback as it allows the urgent bkops.
5354 			 * During system suspend, we are anyway forcefully
5355 			 * disabling the bkops and if urgent bkops is needed
5356 			 * it will be enabled on system resume. Long term
5357 			 * solution could be to abort the system suspend if
5358 			 * UFS device needs urgent BKOPs.
5359 			 */
5360 			if (!hba->pm_op_in_progress &&
5361 			    !ufshcd_eh_in_progress(hba) &&
5362 			    ufshcd_is_exception_event(lrbp->ucd_rsp_ptr))
5363 				/* Flushed in suspend */
5364 				schedule_work(&hba->eeh_work);
5365 			break;
5366 		case UPIU_TRANSACTION_REJECT_UPIU:
5367 			/* TODO: handle Reject UPIU Response */
5368 			result = DID_ERROR << 16;
5369 			dev_err(hba->dev,
5370 				"Reject UPIU not fully implemented\n");
5371 			break;
5372 		default:
5373 			dev_err(hba->dev,
5374 				"Unexpected request response code = %x\n",
5375 				result);
5376 			result = DID_ERROR << 16;
5377 			break;
5378 		}
5379 		break;
5380 	case OCS_ABORTED:
5381 		result |= DID_ABORT << 16;
5382 		break;
5383 	case OCS_INVALID_COMMAND_STATUS:
5384 		result |= DID_REQUEUE << 16;
5385 		break;
5386 	case OCS_INVALID_CMD_TABLE_ATTR:
5387 	case OCS_INVALID_PRDT_ATTR:
5388 	case OCS_MISMATCH_DATA_BUF_SIZE:
5389 	case OCS_MISMATCH_RESP_UPIU_SIZE:
5390 	case OCS_PEER_COMM_FAILURE:
5391 	case OCS_FATAL_ERROR:
5392 	case OCS_DEVICE_FATAL_ERROR:
5393 	case OCS_INVALID_CRYPTO_CONFIG:
5394 	case OCS_GENERAL_CRYPTO_ERROR:
5395 	default:
5396 		result |= DID_ERROR << 16;
5397 		dev_err(hba->dev,
5398 				"OCS error from controller = %x for tag %d\n",
5399 				ocs, lrbp->task_tag);
5400 		ufshcd_print_evt_hist(hba);
5401 		ufshcd_print_host_state(hba);
5402 		break;
5403 	} /* end of switch */
5404 
5405 	if ((host_byte(result) != DID_OK) &&
5406 	    (host_byte(result) != DID_REQUEUE) && !hba->silence_err_logs)
5407 		ufshcd_print_tr(hba, lrbp->task_tag, true);
5408 	return result;
5409 }
5410 
5411 static bool ufshcd_is_auto_hibern8_error(struct ufs_hba *hba,
5412 					 u32 intr_mask)
5413 {
5414 	if (!ufshcd_is_auto_hibern8_supported(hba) ||
5415 	    !ufshcd_is_auto_hibern8_enabled(hba))
5416 		return false;
5417 
5418 	if (!(intr_mask & UFSHCD_UIC_HIBERN8_MASK))
5419 		return false;
5420 
5421 	if (hba->active_uic_cmd &&
5422 	    (hba->active_uic_cmd->command == UIC_CMD_DME_HIBER_ENTER ||
5423 	    hba->active_uic_cmd->command == UIC_CMD_DME_HIBER_EXIT))
5424 		return false;
5425 
5426 	return true;
5427 }
5428 
5429 /**
5430  * ufshcd_uic_cmd_compl - handle completion of uic command
5431  * @hba: per adapter instance
5432  * @intr_status: interrupt status generated by the controller
5433  *
5434  * Return:
5435  *  IRQ_HANDLED - If interrupt is valid
5436  *  IRQ_NONE    - If invalid interrupt
5437  */
5438 static irqreturn_t ufshcd_uic_cmd_compl(struct ufs_hba *hba, u32 intr_status)
5439 {
5440 	irqreturn_t retval = IRQ_NONE;
5441 
5442 	spin_lock(hba->host->host_lock);
5443 	if (ufshcd_is_auto_hibern8_error(hba, intr_status))
5444 		hba->errors |= (UFSHCD_UIC_HIBERN8_MASK & intr_status);
5445 
5446 	if ((intr_status & UIC_COMMAND_COMPL) && hba->active_uic_cmd) {
5447 		hba->active_uic_cmd->argument2 |=
5448 			ufshcd_get_uic_cmd_result(hba);
5449 		hba->active_uic_cmd->argument3 =
5450 			ufshcd_get_dme_attr_val(hba);
5451 		if (!hba->uic_async_done)
5452 			hba->active_uic_cmd->cmd_active = 0;
5453 		complete(&hba->active_uic_cmd->done);
5454 		retval = IRQ_HANDLED;
5455 	}
5456 
5457 	if ((intr_status & UFSHCD_UIC_PWR_MASK) && hba->uic_async_done) {
5458 		hba->active_uic_cmd->cmd_active = 0;
5459 		complete(hba->uic_async_done);
5460 		retval = IRQ_HANDLED;
5461 	}
5462 
5463 	if (retval == IRQ_HANDLED)
5464 		ufshcd_add_uic_command_trace(hba, hba->active_uic_cmd,
5465 					     UFS_CMD_COMP);
5466 	spin_unlock(hba->host->host_lock);
5467 	return retval;
5468 }
5469 
5470 /* Release the resources allocated for processing a SCSI command. */
5471 void ufshcd_release_scsi_cmd(struct ufs_hba *hba,
5472 			     struct ufshcd_lrb *lrbp)
5473 {
5474 	struct scsi_cmnd *cmd = lrbp->cmd;
5475 
5476 	scsi_dma_unmap(cmd);
5477 	ufshcd_release(hba);
5478 	ufshcd_clk_scaling_update_busy(hba);
5479 }
5480 
5481 /**
5482  * ufshcd_compl_one_cqe - handle a completion queue entry
5483  * @hba: per adapter instance
5484  * @task_tag: the task tag of the request to be completed
5485  * @cqe: pointer to the completion queue entry
5486  */
5487 void ufshcd_compl_one_cqe(struct ufs_hba *hba, int task_tag,
5488 			  struct cq_entry *cqe)
5489 {
5490 	struct ufshcd_lrb *lrbp;
5491 	struct scsi_cmnd *cmd;
5492 	enum utp_ocs ocs;
5493 
5494 	lrbp = &hba->lrb[task_tag];
5495 	lrbp->compl_time_stamp = ktime_get();
5496 	cmd = lrbp->cmd;
5497 	if (cmd) {
5498 		if (unlikely(ufshcd_should_inform_monitor(hba, lrbp)))
5499 			ufshcd_update_monitor(hba, lrbp);
5500 		ufshcd_add_command_trace(hba, task_tag, UFS_CMD_COMP);
5501 		cmd->result = ufshcd_transfer_rsp_status(hba, lrbp, cqe);
5502 		ufshcd_release_scsi_cmd(hba, lrbp);
5503 		/* Do not touch lrbp after scsi done */
5504 		scsi_done(cmd);
5505 	} else if (hba->dev_cmd.complete) {
5506 		if (cqe) {
5507 			ocs = le32_to_cpu(cqe->status) & MASK_OCS;
5508 			lrbp->utr_descriptor_ptr->header.ocs = ocs;
5509 		}
5510 		complete(hba->dev_cmd.complete);
5511 	}
5512 }
5513 
5514 /**
5515  * __ufshcd_transfer_req_compl - handle SCSI and query command completion
5516  * @hba: per adapter instance
5517  * @completed_reqs: bitmask that indicates which requests to complete
5518  */
5519 static void __ufshcd_transfer_req_compl(struct ufs_hba *hba,
5520 					unsigned long completed_reqs)
5521 {
5522 	int tag;
5523 
5524 	for_each_set_bit(tag, &completed_reqs, hba->nutrs)
5525 		ufshcd_compl_one_cqe(hba, tag, NULL);
5526 }
5527 
5528 /* Any value that is not an existing queue number is fine for this constant. */
5529 enum {
5530 	UFSHCD_POLL_FROM_INTERRUPT_CONTEXT = -1
5531 };
5532 
5533 static void ufshcd_clear_polled(struct ufs_hba *hba,
5534 				unsigned long *completed_reqs)
5535 {
5536 	int tag;
5537 
5538 	for_each_set_bit(tag, completed_reqs, hba->nutrs) {
5539 		struct scsi_cmnd *cmd = hba->lrb[tag].cmd;
5540 
5541 		if (!cmd)
5542 			continue;
5543 		if (scsi_cmd_to_rq(cmd)->cmd_flags & REQ_POLLED)
5544 			__clear_bit(tag, completed_reqs);
5545 	}
5546 }
5547 
5548 /*
5549  * Return: > 0 if one or more commands have been completed or 0 if no
5550  * requests have been completed.
5551  */
5552 static int ufshcd_poll(struct Scsi_Host *shost, unsigned int queue_num)
5553 {
5554 	struct ufs_hba *hba = shost_priv(shost);
5555 	unsigned long completed_reqs, flags;
5556 	u32 tr_doorbell;
5557 	struct ufs_hw_queue *hwq;
5558 
5559 	if (is_mcq_enabled(hba)) {
5560 		hwq = &hba->uhq[queue_num];
5561 
5562 		return ufshcd_mcq_poll_cqe_lock(hba, hwq);
5563 	}
5564 
5565 	spin_lock_irqsave(&hba->outstanding_lock, flags);
5566 	tr_doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
5567 	completed_reqs = ~tr_doorbell & hba->outstanding_reqs;
5568 	WARN_ONCE(completed_reqs & ~hba->outstanding_reqs,
5569 		  "completed: %#lx; outstanding: %#lx\n", completed_reqs,
5570 		  hba->outstanding_reqs);
5571 	if (queue_num == UFSHCD_POLL_FROM_INTERRUPT_CONTEXT) {
5572 		/* Do not complete polled requests from interrupt context. */
5573 		ufshcd_clear_polled(hba, &completed_reqs);
5574 	}
5575 	hba->outstanding_reqs &= ~completed_reqs;
5576 	spin_unlock_irqrestore(&hba->outstanding_lock, flags);
5577 
5578 	if (completed_reqs)
5579 		__ufshcd_transfer_req_compl(hba, completed_reqs);
5580 
5581 	return completed_reqs != 0;
5582 }
5583 
5584 /**
5585  * ufshcd_mcq_compl_pending_transfer - MCQ mode function. It is
5586  * invoked from the error handler context or ufshcd_host_reset_and_restore()
5587  * to complete the pending transfers and free the resources associated with
5588  * the scsi command.
5589  *
5590  * @hba: per adapter instance
5591  * @force_compl: This flag is set to true when invoked
5592  * from ufshcd_host_reset_and_restore() in which case it requires special
5593  * handling because the host controller has been reset by ufshcd_hba_stop().
5594  */
5595 static void ufshcd_mcq_compl_pending_transfer(struct ufs_hba *hba,
5596 					      bool force_compl)
5597 {
5598 	struct ufs_hw_queue *hwq;
5599 	struct ufshcd_lrb *lrbp;
5600 	struct scsi_cmnd *cmd;
5601 	unsigned long flags;
5602 	int tag;
5603 
5604 	for (tag = 0; tag < hba->nutrs; tag++) {
5605 		lrbp = &hba->lrb[tag];
5606 		cmd = lrbp->cmd;
5607 		if (!ufshcd_cmd_inflight(cmd) ||
5608 		    test_bit(SCMD_STATE_COMPLETE, &cmd->state))
5609 			continue;
5610 
5611 		hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(cmd));
5612 
5613 		if (force_compl) {
5614 			ufshcd_mcq_compl_all_cqes_lock(hba, hwq);
5615 			/*
5616 			 * For those cmds of which the cqes are not present
5617 			 * in the cq, complete them explicitly.
5618 			 */
5619 			spin_lock_irqsave(&hwq->cq_lock, flags);
5620 			if (cmd && !test_bit(SCMD_STATE_COMPLETE, &cmd->state)) {
5621 				set_host_byte(cmd, DID_REQUEUE);
5622 				ufshcd_release_scsi_cmd(hba, lrbp);
5623 				scsi_done(cmd);
5624 			}
5625 			spin_unlock_irqrestore(&hwq->cq_lock, flags);
5626 		} else {
5627 			ufshcd_mcq_poll_cqe_lock(hba, hwq);
5628 		}
5629 	}
5630 }
5631 
5632 /**
5633  * ufshcd_transfer_req_compl - handle SCSI and query command completion
5634  * @hba: per adapter instance
5635  *
5636  * Return:
5637  *  IRQ_HANDLED - If interrupt is valid
5638  *  IRQ_NONE    - If invalid interrupt
5639  */
5640 static irqreturn_t ufshcd_transfer_req_compl(struct ufs_hba *hba)
5641 {
5642 	/* Resetting interrupt aggregation counters first and reading the
5643 	 * DOOR_BELL afterward allows us to handle all the completed requests.
5644 	 * In order to prevent other interrupts starvation the DB is read once
5645 	 * after reset. The down side of this solution is the possibility of
5646 	 * false interrupt if device completes another request after resetting
5647 	 * aggregation and before reading the DB.
5648 	 */
5649 	if (ufshcd_is_intr_aggr_allowed(hba) &&
5650 	    !(hba->quirks & UFSHCI_QUIRK_SKIP_RESET_INTR_AGGR))
5651 		ufshcd_reset_intr_aggr(hba);
5652 
5653 	if (ufs_fail_completion(hba))
5654 		return IRQ_HANDLED;
5655 
5656 	/*
5657 	 * Ignore the ufshcd_poll() return value and return IRQ_HANDLED since we
5658 	 * do not want polling to trigger spurious interrupt complaints.
5659 	 */
5660 	ufshcd_poll(hba->host, UFSHCD_POLL_FROM_INTERRUPT_CONTEXT);
5661 
5662 	return IRQ_HANDLED;
5663 }
5664 
5665 int __ufshcd_write_ee_control(struct ufs_hba *hba, u32 ee_ctrl_mask)
5666 {
5667 	return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
5668 				       QUERY_ATTR_IDN_EE_CONTROL, 0, 0,
5669 				       &ee_ctrl_mask);
5670 }
5671 
5672 int ufshcd_write_ee_control(struct ufs_hba *hba)
5673 {
5674 	int err;
5675 
5676 	mutex_lock(&hba->ee_ctrl_mutex);
5677 	err = __ufshcd_write_ee_control(hba, hba->ee_ctrl_mask);
5678 	mutex_unlock(&hba->ee_ctrl_mutex);
5679 	if (err)
5680 		dev_err(hba->dev, "%s: failed to write ee control %d\n",
5681 			__func__, err);
5682 	return err;
5683 }
5684 
5685 int ufshcd_update_ee_control(struct ufs_hba *hba, u16 *mask,
5686 			     const u16 *other_mask, u16 set, u16 clr)
5687 {
5688 	u16 new_mask, ee_ctrl_mask;
5689 	int err = 0;
5690 
5691 	mutex_lock(&hba->ee_ctrl_mutex);
5692 	new_mask = (*mask & ~clr) | set;
5693 	ee_ctrl_mask = new_mask | *other_mask;
5694 	if (ee_ctrl_mask != hba->ee_ctrl_mask)
5695 		err = __ufshcd_write_ee_control(hba, ee_ctrl_mask);
5696 	/* Still need to update 'mask' even if 'ee_ctrl_mask' was unchanged */
5697 	if (!err) {
5698 		hba->ee_ctrl_mask = ee_ctrl_mask;
5699 		*mask = new_mask;
5700 	}
5701 	mutex_unlock(&hba->ee_ctrl_mutex);
5702 	return err;
5703 }
5704 
5705 /**
5706  * ufshcd_disable_ee - disable exception event
5707  * @hba: per-adapter instance
5708  * @mask: exception event to disable
5709  *
5710  * Disables exception event in the device so that the EVENT_ALERT
5711  * bit is not set.
5712  *
5713  * Return: zero on success, non-zero error value on failure.
5714  */
5715 static inline int ufshcd_disable_ee(struct ufs_hba *hba, u16 mask)
5716 {
5717 	return ufshcd_update_ee_drv_mask(hba, 0, mask);
5718 }
5719 
5720 /**
5721  * ufshcd_enable_ee - enable exception event
5722  * @hba: per-adapter instance
5723  * @mask: exception event to enable
5724  *
5725  * Enable corresponding exception event in the device to allow
5726  * device to alert host in critical scenarios.
5727  *
5728  * Return: zero on success, non-zero error value on failure.
5729  */
5730 static inline int ufshcd_enable_ee(struct ufs_hba *hba, u16 mask)
5731 {
5732 	return ufshcd_update_ee_drv_mask(hba, mask, 0);
5733 }
5734 
5735 /**
5736  * ufshcd_enable_auto_bkops - Allow device managed BKOPS
5737  * @hba: per-adapter instance
5738  *
5739  * Allow device to manage background operations on its own. Enabling
5740  * this might lead to inconsistent latencies during normal data transfers
5741  * as the device is allowed to manage its own way of handling background
5742  * operations.
5743  *
5744  * Return: zero on success, non-zero on failure.
5745  */
5746 static int ufshcd_enable_auto_bkops(struct ufs_hba *hba)
5747 {
5748 	int err = 0;
5749 
5750 	if (hba->auto_bkops_enabled)
5751 		goto out;
5752 
5753 	err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG,
5754 			QUERY_FLAG_IDN_BKOPS_EN, 0, NULL);
5755 	if (err) {
5756 		dev_err(hba->dev, "%s: failed to enable bkops %d\n",
5757 				__func__, err);
5758 		goto out;
5759 	}
5760 
5761 	hba->auto_bkops_enabled = true;
5762 	trace_ufshcd_auto_bkops_state(dev_name(hba->dev), "Enabled");
5763 
5764 	/* No need of URGENT_BKOPS exception from the device */
5765 	err = ufshcd_disable_ee(hba, MASK_EE_URGENT_BKOPS);
5766 	if (err)
5767 		dev_err(hba->dev, "%s: failed to disable exception event %d\n",
5768 				__func__, err);
5769 out:
5770 	return err;
5771 }
5772 
5773 /**
5774  * ufshcd_disable_auto_bkops - block device in doing background operations
5775  * @hba: per-adapter instance
5776  *
5777  * Disabling background operations improves command response latency but
5778  * has drawback of device moving into critical state where the device is
5779  * not-operable. Make sure to call ufshcd_enable_auto_bkops() whenever the
5780  * host is idle so that BKOPS are managed effectively without any negative
5781  * impacts.
5782  *
5783  * Return: zero on success, non-zero on failure.
5784  */
5785 static int ufshcd_disable_auto_bkops(struct ufs_hba *hba)
5786 {
5787 	int err = 0;
5788 
5789 	if (!hba->auto_bkops_enabled)
5790 		goto out;
5791 
5792 	/*
5793 	 * If host assisted BKOPs is to be enabled, make sure
5794 	 * urgent bkops exception is allowed.
5795 	 */
5796 	err = ufshcd_enable_ee(hba, MASK_EE_URGENT_BKOPS);
5797 	if (err) {
5798 		dev_err(hba->dev, "%s: failed to enable exception event %d\n",
5799 				__func__, err);
5800 		goto out;
5801 	}
5802 
5803 	err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_CLEAR_FLAG,
5804 			QUERY_FLAG_IDN_BKOPS_EN, 0, NULL);
5805 	if (err) {
5806 		dev_err(hba->dev, "%s: failed to disable bkops %d\n",
5807 				__func__, err);
5808 		ufshcd_disable_ee(hba, MASK_EE_URGENT_BKOPS);
5809 		goto out;
5810 	}
5811 
5812 	hba->auto_bkops_enabled = false;
5813 	trace_ufshcd_auto_bkops_state(dev_name(hba->dev), "Disabled");
5814 	hba->is_urgent_bkops_lvl_checked = false;
5815 out:
5816 	return err;
5817 }
5818 
5819 /**
5820  * ufshcd_force_reset_auto_bkops - force reset auto bkops state
5821  * @hba: per adapter instance
5822  *
5823  * After a device reset the device may toggle the BKOPS_EN flag
5824  * to default value. The s/w tracking variables should be updated
5825  * as well. This function would change the auto-bkops state based on
5826  * UFSHCD_CAP_KEEP_AUTO_BKOPS_ENABLED_EXCEPT_SUSPEND.
5827  */
5828 static void ufshcd_force_reset_auto_bkops(struct ufs_hba *hba)
5829 {
5830 	if (ufshcd_keep_autobkops_enabled_except_suspend(hba)) {
5831 		hba->auto_bkops_enabled = false;
5832 		hba->ee_ctrl_mask |= MASK_EE_URGENT_BKOPS;
5833 		ufshcd_enable_auto_bkops(hba);
5834 	} else {
5835 		hba->auto_bkops_enabled = true;
5836 		hba->ee_ctrl_mask &= ~MASK_EE_URGENT_BKOPS;
5837 		ufshcd_disable_auto_bkops(hba);
5838 	}
5839 	hba->urgent_bkops_lvl = BKOPS_STATUS_PERF_IMPACT;
5840 	hba->is_urgent_bkops_lvl_checked = false;
5841 }
5842 
5843 static inline int ufshcd_get_bkops_status(struct ufs_hba *hba, u32 *status)
5844 {
5845 	return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5846 			QUERY_ATTR_IDN_BKOPS_STATUS, 0, 0, status);
5847 }
5848 
5849 /**
5850  * ufshcd_bkops_ctrl - control the auto bkops based on current bkops status
5851  * @hba: per-adapter instance
5852  * @status: bkops_status value
5853  *
5854  * Read the bkops_status from the UFS device and Enable fBackgroundOpsEn
5855  * flag in the device to permit background operations if the device
5856  * bkops_status is greater than or equal to "status" argument passed to
5857  * this function, disable otherwise.
5858  *
5859  * Return: 0 for success, non-zero in case of failure.
5860  *
5861  * NOTE: Caller of this function can check the "hba->auto_bkops_enabled" flag
5862  * to know whether auto bkops is enabled or disabled after this function
5863  * returns control to it.
5864  */
5865 static int ufshcd_bkops_ctrl(struct ufs_hba *hba,
5866 			     enum bkops_status status)
5867 {
5868 	int err;
5869 	u32 curr_status = 0;
5870 
5871 	err = ufshcd_get_bkops_status(hba, &curr_status);
5872 	if (err) {
5873 		dev_err(hba->dev, "%s: failed to get BKOPS status %d\n",
5874 				__func__, err);
5875 		goto out;
5876 	} else if (curr_status > BKOPS_STATUS_MAX) {
5877 		dev_err(hba->dev, "%s: invalid BKOPS status %d\n",
5878 				__func__, curr_status);
5879 		err = -EINVAL;
5880 		goto out;
5881 	}
5882 
5883 	if (curr_status >= status)
5884 		err = ufshcd_enable_auto_bkops(hba);
5885 	else
5886 		err = ufshcd_disable_auto_bkops(hba);
5887 out:
5888 	return err;
5889 }
5890 
5891 /**
5892  * ufshcd_urgent_bkops - handle urgent bkops exception event
5893  * @hba: per-adapter instance
5894  *
5895  * Enable fBackgroundOpsEn flag in the device to permit background
5896  * operations.
5897  *
5898  * If BKOPs is enabled, this function returns 0, 1 if the bkops in not enabled
5899  * and negative error value for any other failure.
5900  *
5901  * Return: 0 upon success; < 0 upon failure.
5902  */
5903 static int ufshcd_urgent_bkops(struct ufs_hba *hba)
5904 {
5905 	return ufshcd_bkops_ctrl(hba, hba->urgent_bkops_lvl);
5906 }
5907 
5908 static inline int ufshcd_get_ee_status(struct ufs_hba *hba, u32 *status)
5909 {
5910 	return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5911 			QUERY_ATTR_IDN_EE_STATUS, 0, 0, status);
5912 }
5913 
5914 static void ufshcd_bkops_exception_event_handler(struct ufs_hba *hba)
5915 {
5916 	int err;
5917 	u32 curr_status = 0;
5918 
5919 	if (hba->is_urgent_bkops_lvl_checked)
5920 		goto enable_auto_bkops;
5921 
5922 	err = ufshcd_get_bkops_status(hba, &curr_status);
5923 	if (err) {
5924 		dev_err(hba->dev, "%s: failed to get BKOPS status %d\n",
5925 				__func__, err);
5926 		goto out;
5927 	}
5928 
5929 	/*
5930 	 * We are seeing that some devices are raising the urgent bkops
5931 	 * exception events even when BKOPS status doesn't indicate performace
5932 	 * impacted or critical. Handle these device by determining their urgent
5933 	 * bkops status at runtime.
5934 	 */
5935 	if (curr_status < BKOPS_STATUS_PERF_IMPACT) {
5936 		dev_err(hba->dev, "%s: device raised urgent BKOPS exception for bkops status %d\n",
5937 				__func__, curr_status);
5938 		/* update the current status as the urgent bkops level */
5939 		hba->urgent_bkops_lvl = curr_status;
5940 		hba->is_urgent_bkops_lvl_checked = true;
5941 	}
5942 
5943 enable_auto_bkops:
5944 	err = ufshcd_enable_auto_bkops(hba);
5945 out:
5946 	if (err < 0)
5947 		dev_err(hba->dev, "%s: failed to handle urgent bkops %d\n",
5948 				__func__, err);
5949 }
5950 
5951 static void ufshcd_temp_exception_event_handler(struct ufs_hba *hba, u16 status)
5952 {
5953 	u32 value;
5954 
5955 	if (ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5956 				QUERY_ATTR_IDN_CASE_ROUGH_TEMP, 0, 0, &value))
5957 		return;
5958 
5959 	dev_info(hba->dev, "exception Tcase %d\n", value - 80);
5960 
5961 	ufs_hwmon_notify_event(hba, status & MASK_EE_URGENT_TEMP);
5962 
5963 	/*
5964 	 * A placeholder for the platform vendors to add whatever additional
5965 	 * steps required
5966 	 */
5967 }
5968 
5969 static int __ufshcd_wb_toggle(struct ufs_hba *hba, bool set, enum flag_idn idn)
5970 {
5971 	u8 index;
5972 	enum query_opcode opcode = set ? UPIU_QUERY_OPCODE_SET_FLAG :
5973 				   UPIU_QUERY_OPCODE_CLEAR_FLAG;
5974 
5975 	index = ufshcd_wb_get_query_index(hba);
5976 	return ufshcd_query_flag_retry(hba, opcode, idn, index, NULL);
5977 }
5978 
5979 int ufshcd_wb_toggle(struct ufs_hba *hba, bool enable)
5980 {
5981 	int ret;
5982 
5983 	if (!ufshcd_is_wb_allowed(hba) ||
5984 	    hba->dev_info.wb_enabled == enable)
5985 		return 0;
5986 
5987 	ret = __ufshcd_wb_toggle(hba, enable, QUERY_FLAG_IDN_WB_EN);
5988 	if (ret) {
5989 		dev_err(hba->dev, "%s: Write Booster %s failed %d\n",
5990 			__func__, enable ? "enabling" : "disabling", ret);
5991 		return ret;
5992 	}
5993 
5994 	hba->dev_info.wb_enabled = enable;
5995 	dev_dbg(hba->dev, "%s: Write Booster %s\n",
5996 			__func__, enable ? "enabled" : "disabled");
5997 
5998 	return ret;
5999 }
6000 
6001 static void ufshcd_wb_toggle_buf_flush_during_h8(struct ufs_hba *hba,
6002 						 bool enable)
6003 {
6004 	int ret;
6005 
6006 	ret = __ufshcd_wb_toggle(hba, enable,
6007 			QUERY_FLAG_IDN_WB_BUFF_FLUSH_DURING_HIBERN8);
6008 	if (ret) {
6009 		dev_err(hba->dev, "%s: WB-Buf Flush during H8 %s failed %d\n",
6010 			__func__, enable ? "enabling" : "disabling", ret);
6011 		return;
6012 	}
6013 	dev_dbg(hba->dev, "%s: WB-Buf Flush during H8 %s\n",
6014 			__func__, enable ? "enabled" : "disabled");
6015 }
6016 
6017 int ufshcd_wb_toggle_buf_flush(struct ufs_hba *hba, bool enable)
6018 {
6019 	int ret;
6020 
6021 	if (!ufshcd_is_wb_allowed(hba) ||
6022 	    hba->dev_info.wb_buf_flush_enabled == enable)
6023 		return 0;
6024 
6025 	ret = __ufshcd_wb_toggle(hba, enable, QUERY_FLAG_IDN_WB_BUFF_FLUSH_EN);
6026 	if (ret) {
6027 		dev_err(hba->dev, "%s: WB-Buf Flush %s failed %d\n",
6028 			__func__, enable ? "enabling" : "disabling", ret);
6029 		return ret;
6030 	}
6031 
6032 	hba->dev_info.wb_buf_flush_enabled = enable;
6033 	dev_dbg(hba->dev, "%s: WB-Buf Flush %s\n",
6034 			__func__, enable ? "enabled" : "disabled");
6035 
6036 	return ret;
6037 }
6038 
6039 static bool ufshcd_wb_presrv_usrspc_keep_vcc_on(struct ufs_hba *hba,
6040 						u32 avail_buf)
6041 {
6042 	u32 cur_buf;
6043 	int ret;
6044 	u8 index;
6045 
6046 	index = ufshcd_wb_get_query_index(hba);
6047 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
6048 					      QUERY_ATTR_IDN_CURR_WB_BUFF_SIZE,
6049 					      index, 0, &cur_buf);
6050 	if (ret) {
6051 		dev_err(hba->dev, "%s: dCurWriteBoosterBufferSize read failed %d\n",
6052 			__func__, ret);
6053 		return false;
6054 	}
6055 
6056 	if (!cur_buf) {
6057 		dev_info(hba->dev, "dCurWBBuf: %d WB disabled until free-space is available\n",
6058 			 cur_buf);
6059 		return false;
6060 	}
6061 	/* Let it continue to flush when available buffer exceeds threshold */
6062 	return avail_buf < hba->vps->wb_flush_threshold;
6063 }
6064 
6065 static void ufshcd_wb_force_disable(struct ufs_hba *hba)
6066 {
6067 	if (ufshcd_is_wb_buf_flush_allowed(hba))
6068 		ufshcd_wb_toggle_buf_flush(hba, false);
6069 
6070 	ufshcd_wb_toggle_buf_flush_during_h8(hba, false);
6071 	ufshcd_wb_toggle(hba, false);
6072 	hba->caps &= ~UFSHCD_CAP_WB_EN;
6073 
6074 	dev_info(hba->dev, "%s: WB force disabled\n", __func__);
6075 }
6076 
6077 static bool ufshcd_is_wb_buf_lifetime_available(struct ufs_hba *hba)
6078 {
6079 	u32 lifetime;
6080 	int ret;
6081 	u8 index;
6082 
6083 	index = ufshcd_wb_get_query_index(hba);
6084 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
6085 				      QUERY_ATTR_IDN_WB_BUFF_LIFE_TIME_EST,
6086 				      index, 0, &lifetime);
6087 	if (ret) {
6088 		dev_err(hba->dev,
6089 			"%s: bWriteBoosterBufferLifeTimeEst read failed %d\n",
6090 			__func__, ret);
6091 		return false;
6092 	}
6093 
6094 	if (lifetime == UFS_WB_EXCEED_LIFETIME) {
6095 		dev_err(hba->dev, "%s: WB buf lifetime is exhausted 0x%02X\n",
6096 			__func__, lifetime);
6097 		return false;
6098 	}
6099 
6100 	dev_dbg(hba->dev, "%s: WB buf lifetime is 0x%02X\n",
6101 		__func__, lifetime);
6102 
6103 	return true;
6104 }
6105 
6106 static bool ufshcd_wb_need_flush(struct ufs_hba *hba)
6107 {
6108 	int ret;
6109 	u32 avail_buf;
6110 	u8 index;
6111 
6112 	if (!ufshcd_is_wb_allowed(hba))
6113 		return false;
6114 
6115 	if (!ufshcd_is_wb_buf_lifetime_available(hba)) {
6116 		ufshcd_wb_force_disable(hba);
6117 		return false;
6118 	}
6119 
6120 	/*
6121 	 * The ufs device needs the vcc to be ON to flush.
6122 	 * With user-space reduction enabled, it's enough to enable flush
6123 	 * by checking only the available buffer. The threshold
6124 	 * defined here is > 90% full.
6125 	 * With user-space preserved enabled, the current-buffer
6126 	 * should be checked too because the wb buffer size can reduce
6127 	 * when disk tends to be full. This info is provided by current
6128 	 * buffer (dCurrentWriteBoosterBufferSize). There's no point in
6129 	 * keeping vcc on when current buffer is empty.
6130 	 */
6131 	index = ufshcd_wb_get_query_index(hba);
6132 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
6133 				      QUERY_ATTR_IDN_AVAIL_WB_BUFF_SIZE,
6134 				      index, 0, &avail_buf);
6135 	if (ret) {
6136 		dev_warn(hba->dev, "%s: dAvailableWriteBoosterBufferSize read failed %d\n",
6137 			 __func__, ret);
6138 		return false;
6139 	}
6140 
6141 	if (!hba->dev_info.b_presrv_uspc_en)
6142 		return avail_buf <= UFS_WB_BUF_REMAIN_PERCENT(10);
6143 
6144 	return ufshcd_wb_presrv_usrspc_keep_vcc_on(hba, avail_buf);
6145 }
6146 
6147 static void ufshcd_rpm_dev_flush_recheck_work(struct work_struct *work)
6148 {
6149 	struct ufs_hba *hba = container_of(to_delayed_work(work),
6150 					   struct ufs_hba,
6151 					   rpm_dev_flush_recheck_work);
6152 	/*
6153 	 * To prevent unnecessary VCC power drain after device finishes
6154 	 * WriteBooster buffer flush or Auto BKOPs, force runtime resume
6155 	 * after a certain delay to recheck the threshold by next runtime
6156 	 * suspend.
6157 	 */
6158 	ufshcd_rpm_get_sync(hba);
6159 	ufshcd_rpm_put_sync(hba);
6160 }
6161 
6162 /**
6163  * ufshcd_exception_event_handler - handle exceptions raised by device
6164  * @work: pointer to work data
6165  *
6166  * Read bExceptionEventStatus attribute from the device and handle the
6167  * exception event accordingly.
6168  */
6169 static void ufshcd_exception_event_handler(struct work_struct *work)
6170 {
6171 	struct ufs_hba *hba;
6172 	int err;
6173 	u32 status = 0;
6174 	hba = container_of(work, struct ufs_hba, eeh_work);
6175 
6176 	ufshcd_scsi_block_requests(hba);
6177 	err = ufshcd_get_ee_status(hba, &status);
6178 	if (err) {
6179 		dev_err(hba->dev, "%s: failed to get exception status %d\n",
6180 				__func__, err);
6181 		goto out;
6182 	}
6183 
6184 	trace_ufshcd_exception_event(dev_name(hba->dev), status);
6185 
6186 	if (status & hba->ee_drv_mask & MASK_EE_URGENT_BKOPS)
6187 		ufshcd_bkops_exception_event_handler(hba);
6188 
6189 	if (status & hba->ee_drv_mask & MASK_EE_URGENT_TEMP)
6190 		ufshcd_temp_exception_event_handler(hba, status);
6191 
6192 	ufs_debugfs_exception_event(hba, status);
6193 out:
6194 	ufshcd_scsi_unblock_requests(hba);
6195 }
6196 
6197 /* Complete requests that have door-bell cleared */
6198 static void ufshcd_complete_requests(struct ufs_hba *hba, bool force_compl)
6199 {
6200 	if (is_mcq_enabled(hba))
6201 		ufshcd_mcq_compl_pending_transfer(hba, force_compl);
6202 	else
6203 		ufshcd_transfer_req_compl(hba);
6204 
6205 	ufshcd_tmc_handler(hba);
6206 }
6207 
6208 /**
6209  * ufshcd_quirk_dl_nac_errors - This function checks if error handling is
6210  *				to recover from the DL NAC errors or not.
6211  * @hba: per-adapter instance
6212  *
6213  * Return: true if error handling is required, false otherwise.
6214  */
6215 static bool ufshcd_quirk_dl_nac_errors(struct ufs_hba *hba)
6216 {
6217 	unsigned long flags;
6218 	bool err_handling = true;
6219 
6220 	spin_lock_irqsave(hba->host->host_lock, flags);
6221 	/*
6222 	 * UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS only workaround the
6223 	 * device fatal error and/or DL NAC & REPLAY timeout errors.
6224 	 */
6225 	if (hba->saved_err & (CONTROLLER_FATAL_ERROR | SYSTEM_BUS_FATAL_ERROR))
6226 		goto out;
6227 
6228 	if ((hba->saved_err & DEVICE_FATAL_ERROR) ||
6229 	    ((hba->saved_err & UIC_ERROR) &&
6230 	     (hba->saved_uic_err & UFSHCD_UIC_DL_TCx_REPLAY_ERROR)))
6231 		goto out;
6232 
6233 	if ((hba->saved_err & UIC_ERROR) &&
6234 	    (hba->saved_uic_err & UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)) {
6235 		int err;
6236 		/*
6237 		 * wait for 50ms to see if we can get any other errors or not.
6238 		 */
6239 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6240 		msleep(50);
6241 		spin_lock_irqsave(hba->host->host_lock, flags);
6242 
6243 		/*
6244 		 * now check if we have got any other severe errors other than
6245 		 * DL NAC error?
6246 		 */
6247 		if ((hba->saved_err & INT_FATAL_ERRORS) ||
6248 		    ((hba->saved_err & UIC_ERROR) &&
6249 		    (hba->saved_uic_err & ~UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)))
6250 			goto out;
6251 
6252 		/*
6253 		 * As DL NAC is the only error received so far, send out NOP
6254 		 * command to confirm if link is still active or not.
6255 		 *   - If we don't get any response then do error recovery.
6256 		 *   - If we get response then clear the DL NAC error bit.
6257 		 */
6258 
6259 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6260 		err = ufshcd_verify_dev_init(hba);
6261 		spin_lock_irqsave(hba->host->host_lock, flags);
6262 
6263 		if (err)
6264 			goto out;
6265 
6266 		/* Link seems to be alive hence ignore the DL NAC errors */
6267 		if (hba->saved_uic_err == UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)
6268 			hba->saved_err &= ~UIC_ERROR;
6269 		/* clear NAC error */
6270 		hba->saved_uic_err &= ~UFSHCD_UIC_DL_NAC_RECEIVED_ERROR;
6271 		if (!hba->saved_uic_err)
6272 			err_handling = false;
6273 	}
6274 out:
6275 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6276 	return err_handling;
6277 }
6278 
6279 /* host lock must be held before calling this func */
6280 static inline bool ufshcd_is_saved_err_fatal(struct ufs_hba *hba)
6281 {
6282 	return (hba->saved_uic_err & UFSHCD_UIC_DL_PA_INIT_ERROR) ||
6283 	       (hba->saved_err & (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK));
6284 }
6285 
6286 void ufshcd_schedule_eh_work(struct ufs_hba *hba)
6287 {
6288 	lockdep_assert_held(hba->host->host_lock);
6289 
6290 	/* handle fatal errors only when link is not in error state */
6291 	if (hba->ufshcd_state != UFSHCD_STATE_ERROR) {
6292 		if (hba->force_reset || ufshcd_is_link_broken(hba) ||
6293 		    ufshcd_is_saved_err_fatal(hba))
6294 			hba->ufshcd_state = UFSHCD_STATE_EH_SCHEDULED_FATAL;
6295 		else
6296 			hba->ufshcd_state = UFSHCD_STATE_EH_SCHEDULED_NON_FATAL;
6297 		queue_work(hba->eh_wq, &hba->eh_work);
6298 	}
6299 }
6300 
6301 static void ufshcd_force_error_recovery(struct ufs_hba *hba)
6302 {
6303 	spin_lock_irq(hba->host->host_lock);
6304 	hba->force_reset = true;
6305 	ufshcd_schedule_eh_work(hba);
6306 	spin_unlock_irq(hba->host->host_lock);
6307 }
6308 
6309 static void ufshcd_clk_scaling_allow(struct ufs_hba *hba, bool allow)
6310 {
6311 	mutex_lock(&hba->wb_mutex);
6312 	down_write(&hba->clk_scaling_lock);
6313 	hba->clk_scaling.is_allowed = allow;
6314 	up_write(&hba->clk_scaling_lock);
6315 	mutex_unlock(&hba->wb_mutex);
6316 }
6317 
6318 static void ufshcd_clk_scaling_suspend(struct ufs_hba *hba, bool suspend)
6319 {
6320 	if (suspend) {
6321 		if (hba->clk_scaling.is_enabled)
6322 			ufshcd_suspend_clkscaling(hba);
6323 		ufshcd_clk_scaling_allow(hba, false);
6324 	} else {
6325 		ufshcd_clk_scaling_allow(hba, true);
6326 		if (hba->clk_scaling.is_enabled)
6327 			ufshcd_resume_clkscaling(hba);
6328 	}
6329 }
6330 
6331 static void ufshcd_err_handling_prepare(struct ufs_hba *hba)
6332 {
6333 	ufshcd_rpm_get_sync(hba);
6334 	if (pm_runtime_status_suspended(&hba->ufs_device_wlun->sdev_gendev) ||
6335 	    hba->is_sys_suspended) {
6336 		enum ufs_pm_op pm_op;
6337 
6338 		/*
6339 		 * Don't assume anything of resume, if
6340 		 * resume fails, irq and clocks can be OFF, and powers
6341 		 * can be OFF or in LPM.
6342 		 */
6343 		ufshcd_setup_hba_vreg(hba, true);
6344 		ufshcd_enable_irq(hba);
6345 		ufshcd_setup_vreg(hba, true);
6346 		ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq);
6347 		ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq2);
6348 		ufshcd_hold(hba);
6349 		if (!ufshcd_is_clkgating_allowed(hba))
6350 			ufshcd_setup_clocks(hba, true);
6351 		pm_op = hba->is_sys_suspended ? UFS_SYSTEM_PM : UFS_RUNTIME_PM;
6352 		ufshcd_vops_resume(hba, pm_op);
6353 	} else {
6354 		ufshcd_hold(hba);
6355 		if (ufshcd_is_clkscaling_supported(hba) &&
6356 		    hba->clk_scaling.is_enabled)
6357 			ufshcd_suspend_clkscaling(hba);
6358 		ufshcd_clk_scaling_allow(hba, false);
6359 	}
6360 	ufshcd_scsi_block_requests(hba);
6361 	/* Wait for ongoing ufshcd_queuecommand() calls to finish. */
6362 	blk_mq_wait_quiesce_done(&hba->host->tag_set);
6363 	cancel_work_sync(&hba->eeh_work);
6364 }
6365 
6366 static void ufshcd_err_handling_unprepare(struct ufs_hba *hba)
6367 {
6368 	ufshcd_scsi_unblock_requests(hba);
6369 	ufshcd_release(hba);
6370 	if (ufshcd_is_clkscaling_supported(hba))
6371 		ufshcd_clk_scaling_suspend(hba, false);
6372 	ufshcd_rpm_put(hba);
6373 }
6374 
6375 static inline bool ufshcd_err_handling_should_stop(struct ufs_hba *hba)
6376 {
6377 	return (!hba->is_powered || hba->shutting_down ||
6378 		!hba->ufs_device_wlun ||
6379 		hba->ufshcd_state == UFSHCD_STATE_ERROR ||
6380 		(!(hba->saved_err || hba->saved_uic_err || hba->force_reset ||
6381 		   ufshcd_is_link_broken(hba))));
6382 }
6383 
6384 #ifdef CONFIG_PM
6385 static void ufshcd_recover_pm_error(struct ufs_hba *hba)
6386 {
6387 	struct Scsi_Host *shost = hba->host;
6388 	struct scsi_device *sdev;
6389 	struct request_queue *q;
6390 	int ret;
6391 
6392 	hba->is_sys_suspended = false;
6393 	/*
6394 	 * Set RPM status of wlun device to RPM_ACTIVE,
6395 	 * this also clears its runtime error.
6396 	 */
6397 	ret = pm_runtime_set_active(&hba->ufs_device_wlun->sdev_gendev);
6398 
6399 	/* hba device might have a runtime error otherwise */
6400 	if (ret)
6401 		ret = pm_runtime_set_active(hba->dev);
6402 	/*
6403 	 * If wlun device had runtime error, we also need to resume those
6404 	 * consumer scsi devices in case any of them has failed to be
6405 	 * resumed due to supplier runtime resume failure. This is to unblock
6406 	 * blk_queue_enter in case there are bios waiting inside it.
6407 	 */
6408 	if (!ret) {
6409 		shost_for_each_device(sdev, shost) {
6410 			q = sdev->request_queue;
6411 			if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
6412 				       q->rpm_status == RPM_SUSPENDING))
6413 				pm_request_resume(q->dev);
6414 		}
6415 	}
6416 }
6417 #else
6418 static inline void ufshcd_recover_pm_error(struct ufs_hba *hba)
6419 {
6420 }
6421 #endif
6422 
6423 static bool ufshcd_is_pwr_mode_restore_needed(struct ufs_hba *hba)
6424 {
6425 	struct ufs_pa_layer_attr *pwr_info = &hba->pwr_info;
6426 	u32 mode;
6427 
6428 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_PWRMODE), &mode);
6429 
6430 	if (pwr_info->pwr_rx != ((mode >> PWRMODE_RX_OFFSET) & PWRMODE_MASK))
6431 		return true;
6432 
6433 	if (pwr_info->pwr_tx != (mode & PWRMODE_MASK))
6434 		return true;
6435 
6436 	return false;
6437 }
6438 
6439 static bool ufshcd_abort_one(struct request *rq, void *priv)
6440 {
6441 	int *ret = priv;
6442 	u32 tag = rq->tag;
6443 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
6444 	struct scsi_device *sdev = cmd->device;
6445 	struct Scsi_Host *shost = sdev->host;
6446 	struct ufs_hba *hba = shost_priv(shost);
6447 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
6448 	struct ufs_hw_queue *hwq;
6449 	unsigned long flags;
6450 
6451 	*ret = ufshcd_try_to_abort_task(hba, tag);
6452 	dev_err(hba->dev, "Aborting tag %d / CDB %#02x %s\n", tag,
6453 		hba->lrb[tag].cmd ? hba->lrb[tag].cmd->cmnd[0] : -1,
6454 		*ret ? "failed" : "succeeded");
6455 
6456 	/* Release cmd in MCQ mode if abort succeeds */
6457 	if (is_mcq_enabled(hba) && (*ret == 0)) {
6458 		hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(lrbp->cmd));
6459 		spin_lock_irqsave(&hwq->cq_lock, flags);
6460 		if (ufshcd_cmd_inflight(lrbp->cmd))
6461 			ufshcd_release_scsi_cmd(hba, lrbp);
6462 		spin_unlock_irqrestore(&hwq->cq_lock, flags);
6463 	}
6464 
6465 	return *ret == 0;
6466 }
6467 
6468 /**
6469  * ufshcd_abort_all - Abort all pending commands.
6470  * @hba: Host bus adapter pointer.
6471  *
6472  * Return: true if and only if the host controller needs to be reset.
6473  */
6474 static bool ufshcd_abort_all(struct ufs_hba *hba)
6475 {
6476 	int tag, ret = 0;
6477 
6478 	blk_mq_tagset_busy_iter(&hba->host->tag_set, ufshcd_abort_one, &ret);
6479 	if (ret)
6480 		goto out;
6481 
6482 	/* Clear pending task management requests */
6483 	for_each_set_bit(tag, &hba->outstanding_tasks, hba->nutmrs) {
6484 		ret = ufshcd_clear_tm_cmd(hba, tag);
6485 		if (ret)
6486 			goto out;
6487 	}
6488 
6489 out:
6490 	/* Complete the requests that are cleared by s/w */
6491 	ufshcd_complete_requests(hba, false);
6492 
6493 	return ret != 0;
6494 }
6495 
6496 /**
6497  * ufshcd_err_handler - handle UFS errors that require s/w attention
6498  * @work: pointer to work structure
6499  */
6500 static void ufshcd_err_handler(struct work_struct *work)
6501 {
6502 	int retries = MAX_ERR_HANDLER_RETRIES;
6503 	struct ufs_hba *hba;
6504 	unsigned long flags;
6505 	bool needs_restore;
6506 	bool needs_reset;
6507 	int pmc_err;
6508 
6509 	hba = container_of(work, struct ufs_hba, eh_work);
6510 
6511 	dev_info(hba->dev,
6512 		 "%s started; HBA state %s; powered %d; shutting down %d; saved_err = %d; saved_uic_err = %d; force_reset = %d%s\n",
6513 		 __func__, ufshcd_state_name[hba->ufshcd_state],
6514 		 hba->is_powered, hba->shutting_down, hba->saved_err,
6515 		 hba->saved_uic_err, hba->force_reset,
6516 		 ufshcd_is_link_broken(hba) ? "; link is broken" : "");
6517 
6518 	down(&hba->host_sem);
6519 	spin_lock_irqsave(hba->host->host_lock, flags);
6520 	if (ufshcd_err_handling_should_stop(hba)) {
6521 		if (hba->ufshcd_state != UFSHCD_STATE_ERROR)
6522 			hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
6523 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6524 		up(&hba->host_sem);
6525 		return;
6526 	}
6527 	ufshcd_set_eh_in_progress(hba);
6528 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6529 	ufshcd_err_handling_prepare(hba);
6530 	/* Complete requests that have door-bell cleared by h/w */
6531 	ufshcd_complete_requests(hba, false);
6532 	spin_lock_irqsave(hba->host->host_lock, flags);
6533 again:
6534 	needs_restore = false;
6535 	needs_reset = false;
6536 
6537 	if (hba->ufshcd_state != UFSHCD_STATE_ERROR)
6538 		hba->ufshcd_state = UFSHCD_STATE_RESET;
6539 	/*
6540 	 * A full reset and restore might have happened after preparation
6541 	 * is finished, double check whether we should stop.
6542 	 */
6543 	if (ufshcd_err_handling_should_stop(hba))
6544 		goto skip_err_handling;
6545 
6546 	if (hba->dev_quirks & UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS) {
6547 		bool ret;
6548 
6549 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6550 		/* release the lock as ufshcd_quirk_dl_nac_errors() may sleep */
6551 		ret = ufshcd_quirk_dl_nac_errors(hba);
6552 		spin_lock_irqsave(hba->host->host_lock, flags);
6553 		if (!ret && ufshcd_err_handling_should_stop(hba))
6554 			goto skip_err_handling;
6555 	}
6556 
6557 	if ((hba->saved_err & (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK)) ||
6558 	    (hba->saved_uic_err &&
6559 	     (hba->saved_uic_err != UFSHCD_UIC_PA_GENERIC_ERROR))) {
6560 		bool pr_prdt = !!(hba->saved_err & SYSTEM_BUS_FATAL_ERROR);
6561 
6562 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6563 		ufshcd_print_host_state(hba);
6564 		ufshcd_print_pwr_info(hba);
6565 		ufshcd_print_evt_hist(hba);
6566 		ufshcd_print_tmrs(hba, hba->outstanding_tasks);
6567 		ufshcd_print_trs_all(hba, pr_prdt);
6568 		spin_lock_irqsave(hba->host->host_lock, flags);
6569 	}
6570 
6571 	/*
6572 	 * if host reset is required then skip clearing the pending
6573 	 * transfers forcefully because they will get cleared during
6574 	 * host reset and restore
6575 	 */
6576 	if (hba->force_reset || ufshcd_is_link_broken(hba) ||
6577 	    ufshcd_is_saved_err_fatal(hba) ||
6578 	    ((hba->saved_err & UIC_ERROR) &&
6579 	     (hba->saved_uic_err & (UFSHCD_UIC_DL_NAC_RECEIVED_ERROR |
6580 				    UFSHCD_UIC_DL_TCx_REPLAY_ERROR)))) {
6581 		needs_reset = true;
6582 		goto do_reset;
6583 	}
6584 
6585 	/*
6586 	 * If LINERESET was caught, UFS might have been put to PWM mode,
6587 	 * check if power mode restore is needed.
6588 	 */
6589 	if (hba->saved_uic_err & UFSHCD_UIC_PA_GENERIC_ERROR) {
6590 		hba->saved_uic_err &= ~UFSHCD_UIC_PA_GENERIC_ERROR;
6591 		if (!hba->saved_uic_err)
6592 			hba->saved_err &= ~UIC_ERROR;
6593 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6594 		if (ufshcd_is_pwr_mode_restore_needed(hba))
6595 			needs_restore = true;
6596 		spin_lock_irqsave(hba->host->host_lock, flags);
6597 		if (!hba->saved_err && !needs_restore)
6598 			goto skip_err_handling;
6599 	}
6600 
6601 	hba->silence_err_logs = true;
6602 	/* release lock as clear command might sleep */
6603 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6604 
6605 	needs_reset = ufshcd_abort_all(hba);
6606 
6607 	spin_lock_irqsave(hba->host->host_lock, flags);
6608 	hba->silence_err_logs = false;
6609 	if (needs_reset)
6610 		goto do_reset;
6611 
6612 	/*
6613 	 * After all reqs and tasks are cleared from doorbell,
6614 	 * now it is safe to retore power mode.
6615 	 */
6616 	if (needs_restore) {
6617 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6618 		/*
6619 		 * Hold the scaling lock just in case dev cmds
6620 		 * are sent via bsg and/or sysfs.
6621 		 */
6622 		down_write(&hba->clk_scaling_lock);
6623 		hba->force_pmc = true;
6624 		pmc_err = ufshcd_config_pwr_mode(hba, &(hba->pwr_info));
6625 		if (pmc_err) {
6626 			needs_reset = true;
6627 			dev_err(hba->dev, "%s: Failed to restore power mode, err = %d\n",
6628 					__func__, pmc_err);
6629 		}
6630 		hba->force_pmc = false;
6631 		ufshcd_print_pwr_info(hba);
6632 		up_write(&hba->clk_scaling_lock);
6633 		spin_lock_irqsave(hba->host->host_lock, flags);
6634 	}
6635 
6636 do_reset:
6637 	/* Fatal errors need reset */
6638 	if (needs_reset) {
6639 		int err;
6640 
6641 		hba->force_reset = false;
6642 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6643 		err = ufshcd_reset_and_restore(hba);
6644 		if (err)
6645 			dev_err(hba->dev, "%s: reset and restore failed with err %d\n",
6646 					__func__, err);
6647 		else
6648 			ufshcd_recover_pm_error(hba);
6649 		spin_lock_irqsave(hba->host->host_lock, flags);
6650 	}
6651 
6652 skip_err_handling:
6653 	if (!needs_reset) {
6654 		if (hba->ufshcd_state == UFSHCD_STATE_RESET)
6655 			hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
6656 		if (hba->saved_err || hba->saved_uic_err)
6657 			dev_err_ratelimited(hba->dev, "%s: exit: saved_err 0x%x saved_uic_err 0x%x",
6658 			    __func__, hba->saved_err, hba->saved_uic_err);
6659 	}
6660 	/* Exit in an operational state or dead */
6661 	if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL &&
6662 	    hba->ufshcd_state != UFSHCD_STATE_ERROR) {
6663 		if (--retries)
6664 			goto again;
6665 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
6666 	}
6667 	ufshcd_clear_eh_in_progress(hba);
6668 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6669 	ufshcd_err_handling_unprepare(hba);
6670 	up(&hba->host_sem);
6671 
6672 	dev_info(hba->dev, "%s finished; HBA state %s\n", __func__,
6673 		 ufshcd_state_name[hba->ufshcd_state]);
6674 }
6675 
6676 /**
6677  * ufshcd_update_uic_error - check and set fatal UIC error flags.
6678  * @hba: per-adapter instance
6679  *
6680  * Return:
6681  *  IRQ_HANDLED - If interrupt is valid
6682  *  IRQ_NONE    - If invalid interrupt
6683  */
6684 static irqreturn_t ufshcd_update_uic_error(struct ufs_hba *hba)
6685 {
6686 	u32 reg;
6687 	irqreturn_t retval = IRQ_NONE;
6688 
6689 	/* PHY layer error */
6690 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER);
6691 	if ((reg & UIC_PHY_ADAPTER_LAYER_ERROR) &&
6692 	    (reg & UIC_PHY_ADAPTER_LAYER_ERROR_CODE_MASK)) {
6693 		ufshcd_update_evt_hist(hba, UFS_EVT_PA_ERR, reg);
6694 		/*
6695 		 * To know whether this error is fatal or not, DB timeout
6696 		 * must be checked but this error is handled separately.
6697 		 */
6698 		if (reg & UIC_PHY_ADAPTER_LAYER_LANE_ERR_MASK)
6699 			dev_dbg(hba->dev, "%s: UIC Lane error reported\n",
6700 					__func__);
6701 
6702 		/* Got a LINERESET indication. */
6703 		if (reg & UIC_PHY_ADAPTER_LAYER_GENERIC_ERROR) {
6704 			struct uic_command *cmd = NULL;
6705 
6706 			hba->uic_error |= UFSHCD_UIC_PA_GENERIC_ERROR;
6707 			if (hba->uic_async_done && hba->active_uic_cmd)
6708 				cmd = hba->active_uic_cmd;
6709 			/*
6710 			 * Ignore the LINERESET during power mode change
6711 			 * operation via DME_SET command.
6712 			 */
6713 			if (cmd && (cmd->command == UIC_CMD_DME_SET))
6714 				hba->uic_error &= ~UFSHCD_UIC_PA_GENERIC_ERROR;
6715 		}
6716 		retval |= IRQ_HANDLED;
6717 	}
6718 
6719 	/* PA_INIT_ERROR is fatal and needs UIC reset */
6720 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_DATA_LINK_LAYER);
6721 	if ((reg & UIC_DATA_LINK_LAYER_ERROR) &&
6722 	    (reg & UIC_DATA_LINK_LAYER_ERROR_CODE_MASK)) {
6723 		ufshcd_update_evt_hist(hba, UFS_EVT_DL_ERR, reg);
6724 
6725 		if (reg & UIC_DATA_LINK_LAYER_ERROR_PA_INIT)
6726 			hba->uic_error |= UFSHCD_UIC_DL_PA_INIT_ERROR;
6727 		else if (hba->dev_quirks &
6728 				UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS) {
6729 			if (reg & UIC_DATA_LINK_LAYER_ERROR_NAC_RECEIVED)
6730 				hba->uic_error |=
6731 					UFSHCD_UIC_DL_NAC_RECEIVED_ERROR;
6732 			else if (reg & UIC_DATA_LINK_LAYER_ERROR_TCx_REPLAY_TIMEOUT)
6733 				hba->uic_error |= UFSHCD_UIC_DL_TCx_REPLAY_ERROR;
6734 		}
6735 		retval |= IRQ_HANDLED;
6736 	}
6737 
6738 	/* UIC NL/TL/DME errors needs software retry */
6739 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_NETWORK_LAYER);
6740 	if ((reg & UIC_NETWORK_LAYER_ERROR) &&
6741 	    (reg & UIC_NETWORK_LAYER_ERROR_CODE_MASK)) {
6742 		ufshcd_update_evt_hist(hba, UFS_EVT_NL_ERR, reg);
6743 		hba->uic_error |= UFSHCD_UIC_NL_ERROR;
6744 		retval |= IRQ_HANDLED;
6745 	}
6746 
6747 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_TRANSPORT_LAYER);
6748 	if ((reg & UIC_TRANSPORT_LAYER_ERROR) &&
6749 	    (reg & UIC_TRANSPORT_LAYER_ERROR_CODE_MASK)) {
6750 		ufshcd_update_evt_hist(hba, UFS_EVT_TL_ERR, reg);
6751 		hba->uic_error |= UFSHCD_UIC_TL_ERROR;
6752 		retval |= IRQ_HANDLED;
6753 	}
6754 
6755 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_DME);
6756 	if ((reg & UIC_DME_ERROR) &&
6757 	    (reg & UIC_DME_ERROR_CODE_MASK)) {
6758 		ufshcd_update_evt_hist(hba, UFS_EVT_DME_ERR, reg);
6759 		hba->uic_error |= UFSHCD_UIC_DME_ERROR;
6760 		retval |= IRQ_HANDLED;
6761 	}
6762 
6763 	dev_dbg(hba->dev, "%s: UIC error flags = 0x%08x\n",
6764 			__func__, hba->uic_error);
6765 	return retval;
6766 }
6767 
6768 /**
6769  * ufshcd_check_errors - Check for errors that need s/w attention
6770  * @hba: per-adapter instance
6771  * @intr_status: interrupt status generated by the controller
6772  *
6773  * Return:
6774  *  IRQ_HANDLED - If interrupt is valid
6775  *  IRQ_NONE    - If invalid interrupt
6776  */
6777 static irqreturn_t ufshcd_check_errors(struct ufs_hba *hba, u32 intr_status)
6778 {
6779 	bool queue_eh_work = false;
6780 	irqreturn_t retval = IRQ_NONE;
6781 
6782 	spin_lock(hba->host->host_lock);
6783 	hba->errors |= UFSHCD_ERROR_MASK & intr_status;
6784 
6785 	if (hba->errors & INT_FATAL_ERRORS) {
6786 		ufshcd_update_evt_hist(hba, UFS_EVT_FATAL_ERR,
6787 				       hba->errors);
6788 		queue_eh_work = true;
6789 	}
6790 
6791 	if (hba->errors & UIC_ERROR) {
6792 		hba->uic_error = 0;
6793 		retval = ufshcd_update_uic_error(hba);
6794 		if (hba->uic_error)
6795 			queue_eh_work = true;
6796 	}
6797 
6798 	if (hba->errors & UFSHCD_UIC_HIBERN8_MASK) {
6799 		dev_err(hba->dev,
6800 			"%s: Auto Hibern8 %s failed - status: 0x%08x, upmcrs: 0x%08x\n",
6801 			__func__, (hba->errors & UIC_HIBERNATE_ENTER) ?
6802 			"Enter" : "Exit",
6803 			hba->errors, ufshcd_get_upmcrs(hba));
6804 		ufshcd_update_evt_hist(hba, UFS_EVT_AUTO_HIBERN8_ERR,
6805 				       hba->errors);
6806 		ufshcd_set_link_broken(hba);
6807 		queue_eh_work = true;
6808 	}
6809 
6810 	if (queue_eh_work) {
6811 		/*
6812 		 * update the transfer error masks to sticky bits, let's do this
6813 		 * irrespective of current ufshcd_state.
6814 		 */
6815 		hba->saved_err |= hba->errors;
6816 		hba->saved_uic_err |= hba->uic_error;
6817 
6818 		/* dump controller state before resetting */
6819 		if ((hba->saved_err &
6820 		     (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK)) ||
6821 		    (hba->saved_uic_err &&
6822 		     (hba->saved_uic_err != UFSHCD_UIC_PA_GENERIC_ERROR))) {
6823 			dev_err(hba->dev, "%s: saved_err 0x%x saved_uic_err 0x%x\n",
6824 					__func__, hba->saved_err,
6825 					hba->saved_uic_err);
6826 			ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE,
6827 					 "host_regs: ");
6828 			ufshcd_print_pwr_info(hba);
6829 		}
6830 		ufshcd_schedule_eh_work(hba);
6831 		retval |= IRQ_HANDLED;
6832 	}
6833 	/*
6834 	 * if (!queue_eh_work) -
6835 	 * Other errors are either non-fatal where host recovers
6836 	 * itself without s/w intervention or errors that will be
6837 	 * handled by the SCSI core layer.
6838 	 */
6839 	hba->errors = 0;
6840 	hba->uic_error = 0;
6841 	spin_unlock(hba->host->host_lock);
6842 	return retval;
6843 }
6844 
6845 /**
6846  * ufshcd_tmc_handler - handle task management function completion
6847  * @hba: per adapter instance
6848  *
6849  * Return:
6850  *  IRQ_HANDLED - If interrupt is valid
6851  *  IRQ_NONE    - If invalid interrupt
6852  */
6853 static irqreturn_t ufshcd_tmc_handler(struct ufs_hba *hba)
6854 {
6855 	unsigned long flags, pending, issued;
6856 	irqreturn_t ret = IRQ_NONE;
6857 	int tag;
6858 
6859 	spin_lock_irqsave(hba->host->host_lock, flags);
6860 	pending = ufshcd_readl(hba, REG_UTP_TASK_REQ_DOOR_BELL);
6861 	issued = hba->outstanding_tasks & ~pending;
6862 	for_each_set_bit(tag, &issued, hba->nutmrs) {
6863 		struct request *req = hba->tmf_rqs[tag];
6864 		struct completion *c = req->end_io_data;
6865 
6866 		complete(c);
6867 		ret = IRQ_HANDLED;
6868 	}
6869 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6870 
6871 	return ret;
6872 }
6873 
6874 /**
6875  * ufshcd_handle_mcq_cq_events - handle MCQ completion queue events
6876  * @hba: per adapter instance
6877  *
6878  * Return: IRQ_HANDLED if interrupt is handled.
6879  */
6880 static irqreturn_t ufshcd_handle_mcq_cq_events(struct ufs_hba *hba)
6881 {
6882 	struct ufs_hw_queue *hwq;
6883 	unsigned long outstanding_cqs;
6884 	unsigned int nr_queues;
6885 	int i, ret;
6886 	u32 events;
6887 
6888 	ret = ufshcd_vops_get_outstanding_cqs(hba, &outstanding_cqs);
6889 	if (ret)
6890 		outstanding_cqs = (1U << hba->nr_hw_queues) - 1;
6891 
6892 	/* Exclude the poll queues */
6893 	nr_queues = hba->nr_hw_queues - hba->nr_queues[HCTX_TYPE_POLL];
6894 	for_each_set_bit(i, &outstanding_cqs, nr_queues) {
6895 		hwq = &hba->uhq[i];
6896 
6897 		events = ufshcd_mcq_read_cqis(hba, i);
6898 		if (events)
6899 			ufshcd_mcq_write_cqis(hba, events, i);
6900 
6901 		if (events & UFSHCD_MCQ_CQIS_TAIL_ENT_PUSH_STS)
6902 			ufshcd_mcq_poll_cqe_lock(hba, hwq);
6903 	}
6904 
6905 	return IRQ_HANDLED;
6906 }
6907 
6908 /**
6909  * ufshcd_sl_intr - Interrupt service routine
6910  * @hba: per adapter instance
6911  * @intr_status: contains interrupts generated by the controller
6912  *
6913  * Return:
6914  *  IRQ_HANDLED - If interrupt is valid
6915  *  IRQ_NONE    - If invalid interrupt
6916  */
6917 static irqreturn_t ufshcd_sl_intr(struct ufs_hba *hba, u32 intr_status)
6918 {
6919 	irqreturn_t retval = IRQ_NONE;
6920 
6921 	if (intr_status & UFSHCD_UIC_MASK)
6922 		retval |= ufshcd_uic_cmd_compl(hba, intr_status);
6923 
6924 	if (intr_status & UFSHCD_ERROR_MASK || hba->errors)
6925 		retval |= ufshcd_check_errors(hba, intr_status);
6926 
6927 	if (intr_status & UTP_TASK_REQ_COMPL)
6928 		retval |= ufshcd_tmc_handler(hba);
6929 
6930 	if (intr_status & UTP_TRANSFER_REQ_COMPL)
6931 		retval |= ufshcd_transfer_req_compl(hba);
6932 
6933 	if (intr_status & MCQ_CQ_EVENT_STATUS)
6934 		retval |= ufshcd_handle_mcq_cq_events(hba);
6935 
6936 	return retval;
6937 }
6938 
6939 /**
6940  * ufshcd_intr - Main interrupt service routine
6941  * @irq: irq number
6942  * @__hba: pointer to adapter instance
6943  *
6944  * Return:
6945  *  IRQ_HANDLED - If interrupt is valid
6946  *  IRQ_NONE    - If invalid interrupt
6947  */
6948 static irqreturn_t ufshcd_intr(int irq, void *__hba)
6949 {
6950 	u32 intr_status, enabled_intr_status = 0;
6951 	irqreturn_t retval = IRQ_NONE;
6952 	struct ufs_hba *hba = __hba;
6953 	int retries = hba->nutrs;
6954 
6955 	intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
6956 	hba->ufs_stats.last_intr_status = intr_status;
6957 	hba->ufs_stats.last_intr_ts = local_clock();
6958 
6959 	/*
6960 	 * There could be max of hba->nutrs reqs in flight and in worst case
6961 	 * if the reqs get finished 1 by 1 after the interrupt status is
6962 	 * read, make sure we handle them by checking the interrupt status
6963 	 * again in a loop until we process all of the reqs before returning.
6964 	 */
6965 	while (intr_status && retries--) {
6966 		enabled_intr_status =
6967 			intr_status & ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
6968 		ufshcd_writel(hba, intr_status, REG_INTERRUPT_STATUS);
6969 		if (enabled_intr_status)
6970 			retval |= ufshcd_sl_intr(hba, enabled_intr_status);
6971 
6972 		intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
6973 	}
6974 
6975 	if (enabled_intr_status && retval == IRQ_NONE &&
6976 	    (!(enabled_intr_status & UTP_TRANSFER_REQ_COMPL) ||
6977 	     hba->outstanding_reqs) && !ufshcd_eh_in_progress(hba)) {
6978 		dev_err(hba->dev, "%s: Unhandled interrupt 0x%08x (0x%08x, 0x%08x)\n",
6979 					__func__,
6980 					intr_status,
6981 					hba->ufs_stats.last_intr_status,
6982 					enabled_intr_status);
6983 		ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, "host_regs: ");
6984 	}
6985 
6986 	return retval;
6987 }
6988 
6989 static int ufshcd_clear_tm_cmd(struct ufs_hba *hba, int tag)
6990 {
6991 	int err = 0;
6992 	u32 mask = 1 << tag;
6993 	unsigned long flags;
6994 
6995 	if (!test_bit(tag, &hba->outstanding_tasks))
6996 		goto out;
6997 
6998 	spin_lock_irqsave(hba->host->host_lock, flags);
6999 	ufshcd_utmrl_clear(hba, tag);
7000 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7001 
7002 	/* poll for max. 1 sec to clear door bell register by h/w */
7003 	err = ufshcd_wait_for_register(hba,
7004 			REG_UTP_TASK_REQ_DOOR_BELL,
7005 			mask, 0, 1000, 1000);
7006 
7007 	dev_err(hba->dev, "Clearing task management function with tag %d %s\n",
7008 		tag, err < 0 ? "failed" : "succeeded");
7009 
7010 out:
7011 	return err;
7012 }
7013 
7014 static int __ufshcd_issue_tm_cmd(struct ufs_hba *hba,
7015 		struct utp_task_req_desc *treq, u8 tm_function)
7016 {
7017 	struct request_queue *q = hba->tmf_queue;
7018 	struct Scsi_Host *host = hba->host;
7019 	DECLARE_COMPLETION_ONSTACK(wait);
7020 	struct request *req;
7021 	unsigned long flags;
7022 	int task_tag, err;
7023 
7024 	/*
7025 	 * blk_mq_alloc_request() is used here only to get a free tag.
7026 	 */
7027 	req = blk_mq_alloc_request(q, REQ_OP_DRV_OUT, 0);
7028 	if (IS_ERR(req))
7029 		return PTR_ERR(req);
7030 
7031 	req->end_io_data = &wait;
7032 	ufshcd_hold(hba);
7033 
7034 	spin_lock_irqsave(host->host_lock, flags);
7035 
7036 	task_tag = req->tag;
7037 	hba->tmf_rqs[req->tag] = req;
7038 	treq->upiu_req.req_header.task_tag = task_tag;
7039 
7040 	memcpy(hba->utmrdl_base_addr + task_tag, treq, sizeof(*treq));
7041 	ufshcd_vops_setup_task_mgmt(hba, task_tag, tm_function);
7042 
7043 	/* send command to the controller */
7044 	__set_bit(task_tag, &hba->outstanding_tasks);
7045 	ufshcd_writel(hba, 1 << task_tag, REG_UTP_TASK_REQ_DOOR_BELL);
7046 
7047 	spin_unlock_irqrestore(host->host_lock, flags);
7048 
7049 	ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_SEND);
7050 
7051 	/* wait until the task management command is completed */
7052 	err = wait_for_completion_io_timeout(&wait,
7053 			msecs_to_jiffies(TM_CMD_TIMEOUT));
7054 	if (!err) {
7055 		ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_ERR);
7056 		dev_err(hba->dev, "%s: task management cmd 0x%.2x timed-out\n",
7057 				__func__, tm_function);
7058 		if (ufshcd_clear_tm_cmd(hba, task_tag))
7059 			dev_WARN(hba->dev, "%s: unable to clear tm cmd (slot %d) after timeout\n",
7060 					__func__, task_tag);
7061 		err = -ETIMEDOUT;
7062 	} else {
7063 		err = 0;
7064 		memcpy(treq, hba->utmrdl_base_addr + task_tag, sizeof(*treq));
7065 
7066 		ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_COMP);
7067 	}
7068 
7069 	spin_lock_irqsave(hba->host->host_lock, flags);
7070 	hba->tmf_rqs[req->tag] = NULL;
7071 	__clear_bit(task_tag, &hba->outstanding_tasks);
7072 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7073 
7074 	ufshcd_release(hba);
7075 	blk_mq_free_request(req);
7076 
7077 	return err;
7078 }
7079 
7080 /**
7081  * ufshcd_issue_tm_cmd - issues task management commands to controller
7082  * @hba: per adapter instance
7083  * @lun_id: LUN ID to which TM command is sent
7084  * @task_id: task ID to which the TM command is applicable
7085  * @tm_function: task management function opcode
7086  * @tm_response: task management service response return value
7087  *
7088  * Return: non-zero value on error, zero on success.
7089  */
7090 static int ufshcd_issue_tm_cmd(struct ufs_hba *hba, int lun_id, int task_id,
7091 		u8 tm_function, u8 *tm_response)
7092 {
7093 	struct utp_task_req_desc treq = { };
7094 	enum utp_ocs ocs_value;
7095 	int err;
7096 
7097 	/* Configure task request descriptor */
7098 	treq.header.interrupt = 1;
7099 	treq.header.ocs = OCS_INVALID_COMMAND_STATUS;
7100 
7101 	/* Configure task request UPIU */
7102 	treq.upiu_req.req_header.transaction_code = UPIU_TRANSACTION_TASK_REQ;
7103 	treq.upiu_req.req_header.lun = lun_id;
7104 	treq.upiu_req.req_header.tm_function = tm_function;
7105 
7106 	/*
7107 	 * The host shall provide the same value for LUN field in the basic
7108 	 * header and for Input Parameter.
7109 	 */
7110 	treq.upiu_req.input_param1 = cpu_to_be32(lun_id);
7111 	treq.upiu_req.input_param2 = cpu_to_be32(task_id);
7112 
7113 	err = __ufshcd_issue_tm_cmd(hba, &treq, tm_function);
7114 	if (err == -ETIMEDOUT)
7115 		return err;
7116 
7117 	ocs_value = treq.header.ocs & MASK_OCS;
7118 	if (ocs_value != OCS_SUCCESS)
7119 		dev_err(hba->dev, "%s: failed, ocs = 0x%x\n",
7120 				__func__, ocs_value);
7121 	else if (tm_response)
7122 		*tm_response = be32_to_cpu(treq.upiu_rsp.output_param1) &
7123 				MASK_TM_SERVICE_RESP;
7124 	return err;
7125 }
7126 
7127 /**
7128  * ufshcd_issue_devman_upiu_cmd - API for sending "utrd" type requests
7129  * @hba:	per-adapter instance
7130  * @req_upiu:	upiu request
7131  * @rsp_upiu:	upiu reply
7132  * @desc_buff:	pointer to descriptor buffer, NULL if NA
7133  * @buff_len:	descriptor size, 0 if NA
7134  * @cmd_type:	specifies the type (NOP, Query...)
7135  * @desc_op:	descriptor operation
7136  *
7137  * Those type of requests uses UTP Transfer Request Descriptor - utrd.
7138  * Therefore, it "rides" the device management infrastructure: uses its tag and
7139  * tasks work queues.
7140  *
7141  * Since there is only one available tag for device management commands,
7142  * the caller is expected to hold the hba->dev_cmd.lock mutex.
7143  *
7144  * Return: 0 upon success; < 0 upon failure.
7145  */
7146 static int ufshcd_issue_devman_upiu_cmd(struct ufs_hba *hba,
7147 					struct utp_upiu_req *req_upiu,
7148 					struct utp_upiu_req *rsp_upiu,
7149 					u8 *desc_buff, int *buff_len,
7150 					enum dev_cmd_type cmd_type,
7151 					enum query_opcode desc_op)
7152 {
7153 	const u32 tag = hba->reserved_slot;
7154 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
7155 	int err = 0;
7156 	u8 upiu_flags;
7157 
7158 	/* Protects use of hba->reserved_slot. */
7159 	lockdep_assert_held(&hba->dev_cmd.lock);
7160 
7161 	ufshcd_setup_dev_cmd(hba, lrbp, cmd_type, 0, tag);
7162 
7163 	ufshcd_prepare_req_desc_hdr(hba, lrbp, &upiu_flags, DMA_NONE, 0);
7164 
7165 	/* update the task tag in the request upiu */
7166 	req_upiu->header.task_tag = tag;
7167 
7168 	/* just copy the upiu request as it is */
7169 	memcpy(lrbp->ucd_req_ptr, req_upiu, sizeof(*lrbp->ucd_req_ptr));
7170 	if (desc_buff && desc_op == UPIU_QUERY_OPCODE_WRITE_DESC) {
7171 		/* The Data Segment Area is optional depending upon the query
7172 		 * function value. for WRITE DESCRIPTOR, the data segment
7173 		 * follows right after the tsf.
7174 		 */
7175 		memcpy(lrbp->ucd_req_ptr + 1, desc_buff, *buff_len);
7176 		*buff_len = 0;
7177 	}
7178 
7179 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
7180 
7181 	/*
7182 	 * ignore the returning value here - ufshcd_check_query_response is
7183 	 * bound to fail since dev_cmd.query and dev_cmd.type were left empty.
7184 	 * read the response directly ignoring all errors.
7185 	 */
7186 	ufshcd_issue_dev_cmd(hba, lrbp, tag, QUERY_REQ_TIMEOUT);
7187 
7188 	/* just copy the upiu response as it is */
7189 	memcpy(rsp_upiu, lrbp->ucd_rsp_ptr, sizeof(*rsp_upiu));
7190 	if (desc_buff && desc_op == UPIU_QUERY_OPCODE_READ_DESC) {
7191 		u8 *descp = (u8 *)lrbp->ucd_rsp_ptr + sizeof(*rsp_upiu);
7192 		u16 resp_len = be16_to_cpu(lrbp->ucd_rsp_ptr->header
7193 					   .data_segment_length);
7194 
7195 		if (*buff_len >= resp_len) {
7196 			memcpy(desc_buff, descp, resp_len);
7197 			*buff_len = resp_len;
7198 		} else {
7199 			dev_warn(hba->dev,
7200 				 "%s: rsp size %d is bigger than buffer size %d",
7201 				 __func__, resp_len, *buff_len);
7202 			*buff_len = 0;
7203 			err = -EINVAL;
7204 		}
7205 	}
7206 	ufshcd_add_query_upiu_trace(hba, err ? UFS_QUERY_ERR : UFS_QUERY_COMP,
7207 				    (struct utp_upiu_req *)lrbp->ucd_rsp_ptr);
7208 
7209 	return err;
7210 }
7211 
7212 /**
7213  * ufshcd_exec_raw_upiu_cmd - API function for sending raw upiu commands
7214  * @hba:	per-adapter instance
7215  * @req_upiu:	upiu request
7216  * @rsp_upiu:	upiu reply - only 8 DW as we do not support scsi commands
7217  * @msgcode:	message code, one of UPIU Transaction Codes Initiator to Target
7218  * @desc_buff:	pointer to descriptor buffer, NULL if NA
7219  * @buff_len:	descriptor size, 0 if NA
7220  * @desc_op:	descriptor operation
7221  *
7222  * Supports UTP Transfer requests (nop and query), and UTP Task
7223  * Management requests.
7224  * It is up to the caller to fill the upiu conent properly, as it will
7225  * be copied without any further input validations.
7226  *
7227  * Return: 0 upon success; < 0 upon failure.
7228  */
7229 int ufshcd_exec_raw_upiu_cmd(struct ufs_hba *hba,
7230 			     struct utp_upiu_req *req_upiu,
7231 			     struct utp_upiu_req *rsp_upiu,
7232 			     enum upiu_request_transaction msgcode,
7233 			     u8 *desc_buff, int *buff_len,
7234 			     enum query_opcode desc_op)
7235 {
7236 	int err;
7237 	enum dev_cmd_type cmd_type = DEV_CMD_TYPE_QUERY;
7238 	struct utp_task_req_desc treq = { };
7239 	enum utp_ocs ocs_value;
7240 	u8 tm_f = req_upiu->header.tm_function;
7241 
7242 	switch (msgcode) {
7243 	case UPIU_TRANSACTION_NOP_OUT:
7244 		cmd_type = DEV_CMD_TYPE_NOP;
7245 		fallthrough;
7246 	case UPIU_TRANSACTION_QUERY_REQ:
7247 		ufshcd_dev_man_lock(hba);
7248 		err = ufshcd_issue_devman_upiu_cmd(hba, req_upiu, rsp_upiu,
7249 						   desc_buff, buff_len,
7250 						   cmd_type, desc_op);
7251 		ufshcd_dev_man_unlock(hba);
7252 
7253 		break;
7254 	case UPIU_TRANSACTION_TASK_REQ:
7255 		treq.header.interrupt = 1;
7256 		treq.header.ocs = OCS_INVALID_COMMAND_STATUS;
7257 
7258 		memcpy(&treq.upiu_req, req_upiu, sizeof(*req_upiu));
7259 
7260 		err = __ufshcd_issue_tm_cmd(hba, &treq, tm_f);
7261 		if (err == -ETIMEDOUT)
7262 			break;
7263 
7264 		ocs_value = treq.header.ocs & MASK_OCS;
7265 		if (ocs_value != OCS_SUCCESS) {
7266 			dev_err(hba->dev, "%s: failed, ocs = 0x%x\n", __func__,
7267 				ocs_value);
7268 			break;
7269 		}
7270 
7271 		memcpy(rsp_upiu, &treq.upiu_rsp, sizeof(*rsp_upiu));
7272 
7273 		break;
7274 	default:
7275 		err = -EINVAL;
7276 
7277 		break;
7278 	}
7279 
7280 	return err;
7281 }
7282 
7283 /**
7284  * ufshcd_advanced_rpmb_req_handler - handle advanced RPMB request
7285  * @hba:	per adapter instance
7286  * @req_upiu:	upiu request
7287  * @rsp_upiu:	upiu reply
7288  * @req_ehs:	EHS field which contains Advanced RPMB Request Message
7289  * @rsp_ehs:	EHS field which returns Advanced RPMB Response Message
7290  * @sg_cnt:	The number of sg lists actually used
7291  * @sg_list:	Pointer to SG list when DATA IN/OUT UPIU is required in ARPMB operation
7292  * @dir:	DMA direction
7293  *
7294  * Return: zero on success, non-zero on failure.
7295  */
7296 int ufshcd_advanced_rpmb_req_handler(struct ufs_hba *hba, struct utp_upiu_req *req_upiu,
7297 			 struct utp_upiu_req *rsp_upiu, struct ufs_ehs *req_ehs,
7298 			 struct ufs_ehs *rsp_ehs, int sg_cnt, struct scatterlist *sg_list,
7299 			 enum dma_data_direction dir)
7300 {
7301 	const u32 tag = hba->reserved_slot;
7302 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
7303 	int err = 0;
7304 	int result;
7305 	u8 upiu_flags;
7306 	u8 *ehs_data;
7307 	u16 ehs_len;
7308 	int ehs = (hba->capabilities & MASK_EHSLUTRD_SUPPORTED) ? 2 : 0;
7309 
7310 	/* Protects use of hba->reserved_slot. */
7311 	ufshcd_dev_man_lock(hba);
7312 
7313 	ufshcd_setup_dev_cmd(hba, lrbp, DEV_CMD_TYPE_RPMB, UFS_UPIU_RPMB_WLUN, tag);
7314 
7315 	ufshcd_prepare_req_desc_hdr(hba, lrbp, &upiu_flags, DMA_NONE, ehs);
7316 
7317 	/* update the task tag */
7318 	req_upiu->header.task_tag = tag;
7319 
7320 	/* copy the UPIU(contains CDB) request as it is */
7321 	memcpy(lrbp->ucd_req_ptr, req_upiu, sizeof(*lrbp->ucd_req_ptr));
7322 	/* Copy EHS, starting with byte32, immediately after the CDB package */
7323 	memcpy(lrbp->ucd_req_ptr + 1, req_ehs, sizeof(*req_ehs));
7324 
7325 	if (dir != DMA_NONE && sg_list)
7326 		ufshcd_sgl_to_prdt(hba, lrbp, sg_cnt, sg_list);
7327 
7328 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
7329 
7330 	err = ufshcd_issue_dev_cmd(hba, lrbp, tag, ADVANCED_RPMB_REQ_TIMEOUT);
7331 
7332 	if (!err) {
7333 		/* Just copy the upiu response as it is */
7334 		memcpy(rsp_upiu, lrbp->ucd_rsp_ptr, sizeof(*rsp_upiu));
7335 		/* Get the response UPIU result */
7336 		result = (lrbp->ucd_rsp_ptr->header.response << 8) |
7337 			lrbp->ucd_rsp_ptr->header.status;
7338 
7339 		ehs_len = lrbp->ucd_rsp_ptr->header.ehs_length;
7340 		/*
7341 		 * Since the bLength in EHS indicates the total size of the EHS Header and EHS Data
7342 		 * in 32 Byte units, the value of the bLength Request/Response for Advanced RPMB
7343 		 * Message is 02h
7344 		 */
7345 		if (ehs_len == 2 && rsp_ehs) {
7346 			/*
7347 			 * ucd_rsp_ptr points to a buffer with a length of 512 bytes
7348 			 * (ALIGNED_UPIU_SIZE = 512), and the EHS data just starts from byte32
7349 			 */
7350 			ehs_data = (u8 *)lrbp->ucd_rsp_ptr + EHS_OFFSET_IN_RESPONSE;
7351 			memcpy(rsp_ehs, ehs_data, ehs_len * 32);
7352 		}
7353 	}
7354 
7355 	ufshcd_dev_man_unlock(hba);
7356 
7357 	return err ? : result;
7358 }
7359 
7360 /**
7361  * ufshcd_eh_device_reset_handler() - Reset a single logical unit.
7362  * @cmd: SCSI command pointer
7363  *
7364  * Return: SUCCESS or FAILED.
7365  */
7366 static int ufshcd_eh_device_reset_handler(struct scsi_cmnd *cmd)
7367 {
7368 	unsigned long flags, pending_reqs = 0, not_cleared = 0;
7369 	struct Scsi_Host *host;
7370 	struct ufs_hba *hba;
7371 	struct ufs_hw_queue *hwq;
7372 	struct ufshcd_lrb *lrbp;
7373 	u32 pos, not_cleared_mask = 0;
7374 	int err;
7375 	u8 resp = 0xF, lun;
7376 
7377 	host = cmd->device->host;
7378 	hba = shost_priv(host);
7379 
7380 	lun = ufshcd_scsi_to_upiu_lun(cmd->device->lun);
7381 	err = ufshcd_issue_tm_cmd(hba, lun, 0, UFS_LOGICAL_RESET, &resp);
7382 	if (err || resp != UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7383 		if (!err)
7384 			err = resp;
7385 		goto out;
7386 	}
7387 
7388 	if (is_mcq_enabled(hba)) {
7389 		for (pos = 0; pos < hba->nutrs; pos++) {
7390 			lrbp = &hba->lrb[pos];
7391 			if (ufshcd_cmd_inflight(lrbp->cmd) &&
7392 			    lrbp->lun == lun) {
7393 				ufshcd_clear_cmd(hba, pos);
7394 				hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(lrbp->cmd));
7395 				ufshcd_mcq_poll_cqe_lock(hba, hwq);
7396 			}
7397 		}
7398 		err = 0;
7399 		goto out;
7400 	}
7401 
7402 	/* clear the commands that were pending for corresponding LUN */
7403 	spin_lock_irqsave(&hba->outstanding_lock, flags);
7404 	for_each_set_bit(pos, &hba->outstanding_reqs, hba->nutrs)
7405 		if (hba->lrb[pos].lun == lun)
7406 			__set_bit(pos, &pending_reqs);
7407 	hba->outstanding_reqs &= ~pending_reqs;
7408 	spin_unlock_irqrestore(&hba->outstanding_lock, flags);
7409 
7410 	for_each_set_bit(pos, &pending_reqs, hba->nutrs) {
7411 		if (ufshcd_clear_cmd(hba, pos) < 0) {
7412 			spin_lock_irqsave(&hba->outstanding_lock, flags);
7413 			not_cleared = 1U << pos &
7414 				ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
7415 			hba->outstanding_reqs |= not_cleared;
7416 			not_cleared_mask |= not_cleared;
7417 			spin_unlock_irqrestore(&hba->outstanding_lock, flags);
7418 
7419 			dev_err(hba->dev, "%s: failed to clear request %d\n",
7420 				__func__, pos);
7421 		}
7422 	}
7423 	__ufshcd_transfer_req_compl(hba, pending_reqs & ~not_cleared_mask);
7424 
7425 out:
7426 	hba->req_abort_count = 0;
7427 	ufshcd_update_evt_hist(hba, UFS_EVT_DEV_RESET, (u32)err);
7428 	if (!err) {
7429 		err = SUCCESS;
7430 	} else {
7431 		dev_err(hba->dev, "%s: failed with err %d\n", __func__, err);
7432 		err = FAILED;
7433 	}
7434 	return err;
7435 }
7436 
7437 static void ufshcd_set_req_abort_skip(struct ufs_hba *hba, unsigned long bitmap)
7438 {
7439 	struct ufshcd_lrb *lrbp;
7440 	int tag;
7441 
7442 	for_each_set_bit(tag, &bitmap, hba->nutrs) {
7443 		lrbp = &hba->lrb[tag];
7444 		lrbp->req_abort_skip = true;
7445 	}
7446 }
7447 
7448 /**
7449  * ufshcd_try_to_abort_task - abort a specific task
7450  * @hba: Pointer to adapter instance
7451  * @tag: Task tag/index to be aborted
7452  *
7453  * Abort the pending command in device by sending UFS_ABORT_TASK task management
7454  * command, and in host controller by clearing the door-bell register. There can
7455  * be race between controller sending the command to the device while abort is
7456  * issued. To avoid that, first issue UFS_QUERY_TASK to check if the command is
7457  * really issued and then try to abort it.
7458  *
7459  * Return: zero on success, non-zero on failure.
7460  */
7461 int ufshcd_try_to_abort_task(struct ufs_hba *hba, int tag)
7462 {
7463 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
7464 	int err = 0;
7465 	int poll_cnt;
7466 	u8 resp = 0xF;
7467 	u32 reg;
7468 
7469 	for (poll_cnt = 100; poll_cnt; poll_cnt--) {
7470 		err = ufshcd_issue_tm_cmd(hba, lrbp->lun, lrbp->task_tag,
7471 				UFS_QUERY_TASK, &resp);
7472 		if (!err && resp == UPIU_TASK_MANAGEMENT_FUNC_SUCCEEDED) {
7473 			/* cmd pending in the device */
7474 			dev_err(hba->dev, "%s: cmd pending in the device. tag = %d\n",
7475 				__func__, tag);
7476 			break;
7477 		} else if (!err && resp == UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7478 			/*
7479 			 * cmd not pending in the device, check if it is
7480 			 * in transition.
7481 			 */
7482 			dev_err(hba->dev, "%s: cmd at tag %d not pending in the device.\n",
7483 				__func__, tag);
7484 			if (is_mcq_enabled(hba)) {
7485 				/* MCQ mode */
7486 				if (ufshcd_cmd_inflight(lrbp->cmd)) {
7487 					/* sleep for max. 200us same delay as in SDB mode */
7488 					usleep_range(100, 200);
7489 					continue;
7490 				}
7491 				/* command completed already */
7492 				dev_err(hba->dev, "%s: cmd at tag=%d is cleared.\n",
7493 					__func__, tag);
7494 				goto out;
7495 			}
7496 
7497 			/* Single Doorbell Mode */
7498 			reg = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
7499 			if (reg & (1 << tag)) {
7500 				/* sleep for max. 200us to stabilize */
7501 				usleep_range(100, 200);
7502 				continue;
7503 			}
7504 			/* command completed already */
7505 			dev_err(hba->dev, "%s: cmd at tag %d successfully cleared from DB.\n",
7506 				__func__, tag);
7507 			goto out;
7508 		} else {
7509 			dev_err(hba->dev,
7510 				"%s: no response from device. tag = %d, err %d\n",
7511 				__func__, tag, err);
7512 			if (!err)
7513 				err = resp; /* service response error */
7514 			goto out;
7515 		}
7516 	}
7517 
7518 	if (!poll_cnt) {
7519 		err = -EBUSY;
7520 		goto out;
7521 	}
7522 
7523 	err = ufshcd_issue_tm_cmd(hba, lrbp->lun, lrbp->task_tag,
7524 			UFS_ABORT_TASK, &resp);
7525 	if (err || resp != UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7526 		if (!err) {
7527 			err = resp; /* service response error */
7528 			dev_err(hba->dev, "%s: issued. tag = %d, err %d\n",
7529 				__func__, tag, err);
7530 		}
7531 		goto out;
7532 	}
7533 
7534 	err = ufshcd_clear_cmd(hba, tag);
7535 	if (err)
7536 		dev_err(hba->dev, "%s: Failed clearing cmd at tag %d, err %d\n",
7537 			__func__, tag, err);
7538 
7539 out:
7540 	return err;
7541 }
7542 
7543 /**
7544  * ufshcd_abort - scsi host template eh_abort_handler callback
7545  * @cmd: SCSI command pointer
7546  *
7547  * Return: SUCCESS or FAILED.
7548  */
7549 static int ufshcd_abort(struct scsi_cmnd *cmd)
7550 {
7551 	struct Scsi_Host *host = cmd->device->host;
7552 	struct ufs_hba *hba = shost_priv(host);
7553 	int tag = scsi_cmd_to_rq(cmd)->tag;
7554 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
7555 	unsigned long flags;
7556 	int err = FAILED;
7557 	bool outstanding;
7558 	u32 reg;
7559 
7560 	ufshcd_hold(hba);
7561 
7562 	if (!is_mcq_enabled(hba)) {
7563 		reg = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
7564 		if (!test_bit(tag, &hba->outstanding_reqs)) {
7565 			/* If command is already aborted/completed, return FAILED. */
7566 			dev_err(hba->dev,
7567 				"%s: cmd at tag %d already completed, outstanding=0x%lx, doorbell=0x%x\n",
7568 				__func__, tag, hba->outstanding_reqs, reg);
7569 			goto release;
7570 		}
7571 	}
7572 
7573 	/* Print Transfer Request of aborted task */
7574 	dev_info(hba->dev, "%s: Device abort task at tag %d\n", __func__, tag);
7575 
7576 	/*
7577 	 * Print detailed info about aborted request.
7578 	 * As more than one request might get aborted at the same time,
7579 	 * print full information only for the first aborted request in order
7580 	 * to reduce repeated printouts. For other aborted requests only print
7581 	 * basic details.
7582 	 */
7583 	scsi_print_command(cmd);
7584 	if (!hba->req_abort_count) {
7585 		ufshcd_update_evt_hist(hba, UFS_EVT_ABORT, tag);
7586 		ufshcd_print_evt_hist(hba);
7587 		ufshcd_print_host_state(hba);
7588 		ufshcd_print_pwr_info(hba);
7589 		ufshcd_print_tr(hba, tag, true);
7590 	} else {
7591 		ufshcd_print_tr(hba, tag, false);
7592 	}
7593 	hba->req_abort_count++;
7594 
7595 	if (!is_mcq_enabled(hba) && !(reg & (1 << tag))) {
7596 		/* only execute this code in single doorbell mode */
7597 		dev_err(hba->dev,
7598 		"%s: cmd was completed, but without a notifying intr, tag = %d",
7599 		__func__, tag);
7600 		__ufshcd_transfer_req_compl(hba, 1UL << tag);
7601 		goto release;
7602 	}
7603 
7604 	/*
7605 	 * Task abort to the device W-LUN is illegal. When this command
7606 	 * will fail, due to spec violation, scsi err handling next step
7607 	 * will be to send LU reset which, again, is a spec violation.
7608 	 * To avoid these unnecessary/illegal steps, first we clean up
7609 	 * the lrb taken by this cmd and re-set it in outstanding_reqs,
7610 	 * then queue the eh_work and bail.
7611 	 */
7612 	if (lrbp->lun == UFS_UPIU_UFS_DEVICE_WLUN) {
7613 		ufshcd_update_evt_hist(hba, UFS_EVT_ABORT, lrbp->lun);
7614 
7615 		spin_lock_irqsave(host->host_lock, flags);
7616 		hba->force_reset = true;
7617 		ufshcd_schedule_eh_work(hba);
7618 		spin_unlock_irqrestore(host->host_lock, flags);
7619 		goto release;
7620 	}
7621 
7622 	if (is_mcq_enabled(hba)) {
7623 		/* MCQ mode. Branch off to handle abort for mcq mode */
7624 		err = ufshcd_mcq_abort(cmd);
7625 		goto release;
7626 	}
7627 
7628 	/* Skip task abort in case previous aborts failed and report failure */
7629 	if (lrbp->req_abort_skip) {
7630 		dev_err(hba->dev, "%s: skipping abort\n", __func__);
7631 		ufshcd_set_req_abort_skip(hba, hba->outstanding_reqs);
7632 		goto release;
7633 	}
7634 
7635 	err = ufshcd_try_to_abort_task(hba, tag);
7636 	if (err) {
7637 		dev_err(hba->dev, "%s: failed with err %d\n", __func__, err);
7638 		ufshcd_set_req_abort_skip(hba, hba->outstanding_reqs);
7639 		err = FAILED;
7640 		goto release;
7641 	}
7642 
7643 	/*
7644 	 * Clear the corresponding bit from outstanding_reqs since the command
7645 	 * has been aborted successfully.
7646 	 */
7647 	spin_lock_irqsave(&hba->outstanding_lock, flags);
7648 	outstanding = __test_and_clear_bit(tag, &hba->outstanding_reqs);
7649 	spin_unlock_irqrestore(&hba->outstanding_lock, flags);
7650 
7651 	if (outstanding)
7652 		ufshcd_release_scsi_cmd(hba, lrbp);
7653 
7654 	err = SUCCESS;
7655 
7656 release:
7657 	/* Matches the ufshcd_hold() call at the start of this function. */
7658 	ufshcd_release(hba);
7659 	return err;
7660 }
7661 
7662 /**
7663  * ufshcd_host_reset_and_restore - reset and restore host controller
7664  * @hba: per-adapter instance
7665  *
7666  * Note that host controller reset may issue DME_RESET to
7667  * local and remote (device) Uni-Pro stack and the attributes
7668  * are reset to default state.
7669  *
7670  * Return: zero on success, non-zero on failure.
7671  */
7672 static int ufshcd_host_reset_and_restore(struct ufs_hba *hba)
7673 {
7674 	int err;
7675 
7676 	/*
7677 	 * Stop the host controller and complete the requests
7678 	 * cleared by h/w
7679 	 */
7680 	ufshcd_hba_stop(hba);
7681 	hba->silence_err_logs = true;
7682 	ufshcd_complete_requests(hba, true);
7683 	hba->silence_err_logs = false;
7684 
7685 	/* scale up clocks to max frequency before full reinitialization */
7686 	ufshcd_scale_clks(hba, ULONG_MAX, true);
7687 
7688 	err = ufshcd_hba_enable(hba);
7689 
7690 	/* Establish the link again and restore the device */
7691 	if (!err)
7692 		err = ufshcd_probe_hba(hba, false);
7693 
7694 	if (err)
7695 		dev_err(hba->dev, "%s: Host init failed %d\n", __func__, err);
7696 	ufshcd_update_evt_hist(hba, UFS_EVT_HOST_RESET, (u32)err);
7697 	return err;
7698 }
7699 
7700 /**
7701  * ufshcd_reset_and_restore - reset and re-initialize host/device
7702  * @hba: per-adapter instance
7703  *
7704  * Reset and recover device, host and re-establish link. This
7705  * is helpful to recover the communication in fatal error conditions.
7706  *
7707  * Return: zero on success, non-zero on failure.
7708  */
7709 static int ufshcd_reset_and_restore(struct ufs_hba *hba)
7710 {
7711 	u32 saved_err = 0;
7712 	u32 saved_uic_err = 0;
7713 	int err = 0;
7714 	unsigned long flags;
7715 	int retries = MAX_HOST_RESET_RETRIES;
7716 
7717 	spin_lock_irqsave(hba->host->host_lock, flags);
7718 	do {
7719 		/*
7720 		 * This is a fresh start, cache and clear saved error first,
7721 		 * in case new error generated during reset and restore.
7722 		 */
7723 		saved_err |= hba->saved_err;
7724 		saved_uic_err |= hba->saved_uic_err;
7725 		hba->saved_err = 0;
7726 		hba->saved_uic_err = 0;
7727 		hba->force_reset = false;
7728 		hba->ufshcd_state = UFSHCD_STATE_RESET;
7729 		spin_unlock_irqrestore(hba->host->host_lock, flags);
7730 
7731 		/* Reset the attached device */
7732 		ufshcd_device_reset(hba);
7733 
7734 		err = ufshcd_host_reset_and_restore(hba);
7735 
7736 		spin_lock_irqsave(hba->host->host_lock, flags);
7737 		if (err)
7738 			continue;
7739 		/* Do not exit unless operational or dead */
7740 		if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL &&
7741 		    hba->ufshcd_state != UFSHCD_STATE_ERROR &&
7742 		    hba->ufshcd_state != UFSHCD_STATE_EH_SCHEDULED_NON_FATAL)
7743 			err = -EAGAIN;
7744 	} while (err && --retries);
7745 
7746 	/*
7747 	 * Inform scsi mid-layer that we did reset and allow to handle
7748 	 * Unit Attention properly.
7749 	 */
7750 	scsi_report_bus_reset(hba->host, 0);
7751 	if (err) {
7752 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
7753 		hba->saved_err |= saved_err;
7754 		hba->saved_uic_err |= saved_uic_err;
7755 	}
7756 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7757 
7758 	return err;
7759 }
7760 
7761 /**
7762  * ufshcd_eh_host_reset_handler - host reset handler registered to scsi layer
7763  * @cmd: SCSI command pointer
7764  *
7765  * Return: SUCCESS or FAILED.
7766  */
7767 static int ufshcd_eh_host_reset_handler(struct scsi_cmnd *cmd)
7768 {
7769 	int err = SUCCESS;
7770 	unsigned long flags;
7771 	struct ufs_hba *hba;
7772 
7773 	hba = shost_priv(cmd->device->host);
7774 
7775 	/*
7776 	 * If runtime PM sent SSU and got a timeout, scsi_error_handler is
7777 	 * stuck in this function waiting for flush_work(&hba->eh_work). And
7778 	 * ufshcd_err_handler(eh_work) is stuck waiting for runtime PM. Do
7779 	 * ufshcd_link_recovery instead of eh_work to prevent deadlock.
7780 	 */
7781 	if (hba->pm_op_in_progress) {
7782 		if (ufshcd_link_recovery(hba))
7783 			err = FAILED;
7784 
7785 		return err;
7786 	}
7787 
7788 	spin_lock_irqsave(hba->host->host_lock, flags);
7789 	hba->force_reset = true;
7790 	ufshcd_schedule_eh_work(hba);
7791 	dev_err(hba->dev, "%s: reset in progress - 1\n", __func__);
7792 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7793 
7794 	flush_work(&hba->eh_work);
7795 
7796 	spin_lock_irqsave(hba->host->host_lock, flags);
7797 	if (hba->ufshcd_state == UFSHCD_STATE_ERROR)
7798 		err = FAILED;
7799 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7800 
7801 	return err;
7802 }
7803 
7804 /**
7805  * ufshcd_get_max_icc_level - calculate the ICC level
7806  * @sup_curr_uA: max. current supported by the regulator
7807  * @start_scan: row at the desc table to start scan from
7808  * @buff: power descriptor buffer
7809  *
7810  * Return: calculated max ICC level for specific regulator.
7811  */
7812 static u32 ufshcd_get_max_icc_level(int sup_curr_uA, u32 start_scan,
7813 				    const char *buff)
7814 {
7815 	int i;
7816 	int curr_uA;
7817 	u16 data;
7818 	u16 unit;
7819 
7820 	for (i = start_scan; i >= 0; i--) {
7821 		data = get_unaligned_be16(&buff[2 * i]);
7822 		unit = (data & ATTR_ICC_LVL_UNIT_MASK) >>
7823 						ATTR_ICC_LVL_UNIT_OFFSET;
7824 		curr_uA = data & ATTR_ICC_LVL_VALUE_MASK;
7825 		switch (unit) {
7826 		case UFSHCD_NANO_AMP:
7827 			curr_uA = curr_uA / 1000;
7828 			break;
7829 		case UFSHCD_MILI_AMP:
7830 			curr_uA = curr_uA * 1000;
7831 			break;
7832 		case UFSHCD_AMP:
7833 			curr_uA = curr_uA * 1000 * 1000;
7834 			break;
7835 		case UFSHCD_MICRO_AMP:
7836 		default:
7837 			break;
7838 		}
7839 		if (sup_curr_uA >= curr_uA)
7840 			break;
7841 	}
7842 	if (i < 0) {
7843 		i = 0;
7844 		pr_err("%s: Couldn't find valid icc_level = %d", __func__, i);
7845 	}
7846 
7847 	return (u32)i;
7848 }
7849 
7850 /**
7851  * ufshcd_find_max_sup_active_icc_level - calculate the max ICC level
7852  * In case regulators are not initialized we'll return 0
7853  * @hba: per-adapter instance
7854  * @desc_buf: power descriptor buffer to extract ICC levels from.
7855  *
7856  * Return: calculated ICC level.
7857  */
7858 static u32 ufshcd_find_max_sup_active_icc_level(struct ufs_hba *hba,
7859 						const u8 *desc_buf)
7860 {
7861 	u32 icc_level = 0;
7862 
7863 	if (!hba->vreg_info.vcc || !hba->vreg_info.vccq ||
7864 						!hba->vreg_info.vccq2) {
7865 		/*
7866 		 * Using dev_dbg to avoid messages during runtime PM to avoid
7867 		 * never-ending cycles of messages written back to storage by
7868 		 * user space causing runtime resume, causing more messages and
7869 		 * so on.
7870 		 */
7871 		dev_dbg(hba->dev,
7872 			"%s: Regulator capability was not set, actvIccLevel=%d",
7873 							__func__, icc_level);
7874 		goto out;
7875 	}
7876 
7877 	if (hba->vreg_info.vcc->max_uA)
7878 		icc_level = ufshcd_get_max_icc_level(
7879 				hba->vreg_info.vcc->max_uA,
7880 				POWER_DESC_MAX_ACTV_ICC_LVLS - 1,
7881 				&desc_buf[PWR_DESC_ACTIVE_LVLS_VCC_0]);
7882 
7883 	if (hba->vreg_info.vccq->max_uA)
7884 		icc_level = ufshcd_get_max_icc_level(
7885 				hba->vreg_info.vccq->max_uA,
7886 				icc_level,
7887 				&desc_buf[PWR_DESC_ACTIVE_LVLS_VCCQ_0]);
7888 
7889 	if (hba->vreg_info.vccq2->max_uA)
7890 		icc_level = ufshcd_get_max_icc_level(
7891 				hba->vreg_info.vccq2->max_uA,
7892 				icc_level,
7893 				&desc_buf[PWR_DESC_ACTIVE_LVLS_VCCQ2_0]);
7894 out:
7895 	return icc_level;
7896 }
7897 
7898 static void ufshcd_set_active_icc_lvl(struct ufs_hba *hba)
7899 {
7900 	int ret;
7901 	u8 *desc_buf;
7902 	u32 icc_level;
7903 
7904 	desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
7905 	if (!desc_buf)
7906 		return;
7907 
7908 	ret = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_POWER, 0, 0,
7909 				     desc_buf, QUERY_DESC_MAX_SIZE);
7910 	if (ret) {
7911 		dev_err(hba->dev,
7912 			"%s: Failed reading power descriptor ret = %d",
7913 			__func__, ret);
7914 		goto out;
7915 	}
7916 
7917 	icc_level = ufshcd_find_max_sup_active_icc_level(hba, desc_buf);
7918 	dev_dbg(hba->dev, "%s: setting icc_level 0x%x", __func__, icc_level);
7919 
7920 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
7921 		QUERY_ATTR_IDN_ACTIVE_ICC_LVL, 0, 0, &icc_level);
7922 
7923 	if (ret)
7924 		dev_err(hba->dev,
7925 			"%s: Failed configuring bActiveICCLevel = %d ret = %d",
7926 			__func__, icc_level, ret);
7927 
7928 out:
7929 	kfree(desc_buf);
7930 }
7931 
7932 static inline void ufshcd_blk_pm_runtime_init(struct scsi_device *sdev)
7933 {
7934 	struct Scsi_Host *shost = sdev->host;
7935 
7936 	scsi_autopm_get_device(sdev);
7937 	blk_pm_runtime_init(sdev->request_queue, &sdev->sdev_gendev);
7938 	if (sdev->rpm_autosuspend)
7939 		pm_runtime_set_autosuspend_delay(&sdev->sdev_gendev,
7940 						 shost->rpm_autosuspend_delay);
7941 	scsi_autopm_put_device(sdev);
7942 }
7943 
7944 /**
7945  * ufshcd_scsi_add_wlus - Adds required W-LUs
7946  * @hba: per-adapter instance
7947  *
7948  * UFS device specification requires the UFS devices to support 4 well known
7949  * logical units:
7950  *	"REPORT_LUNS" (address: 01h)
7951  *	"UFS Device" (address: 50h)
7952  *	"RPMB" (address: 44h)
7953  *	"BOOT" (address: 30h)
7954  * UFS device's power management needs to be controlled by "POWER CONDITION"
7955  * field of SSU (START STOP UNIT) command. But this "power condition" field
7956  * will take effect only when its sent to "UFS device" well known logical unit
7957  * hence we require the scsi_device instance to represent this logical unit in
7958  * order for the UFS host driver to send the SSU command for power management.
7959  *
7960  * We also require the scsi_device instance for "RPMB" (Replay Protected Memory
7961  * Block) LU so user space process can control this LU. User space may also
7962  * want to have access to BOOT LU.
7963  *
7964  * This function adds scsi device instances for each of all well known LUs
7965  * (except "REPORT LUNS" LU).
7966  *
7967  * Return: zero on success (all required W-LUs are added successfully),
7968  * non-zero error value on failure (if failed to add any of the required W-LU).
7969  */
7970 static int ufshcd_scsi_add_wlus(struct ufs_hba *hba)
7971 {
7972 	int ret = 0;
7973 	struct scsi_device *sdev_boot, *sdev_rpmb;
7974 
7975 	hba->ufs_device_wlun = __scsi_add_device(hba->host, 0, 0,
7976 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_UFS_DEVICE_WLUN), NULL);
7977 	if (IS_ERR(hba->ufs_device_wlun)) {
7978 		ret = PTR_ERR(hba->ufs_device_wlun);
7979 		hba->ufs_device_wlun = NULL;
7980 		goto out;
7981 	}
7982 	scsi_device_put(hba->ufs_device_wlun);
7983 
7984 	sdev_rpmb = __scsi_add_device(hba->host, 0, 0,
7985 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_RPMB_WLUN), NULL);
7986 	if (IS_ERR(sdev_rpmb)) {
7987 		ret = PTR_ERR(sdev_rpmb);
7988 		goto remove_ufs_device_wlun;
7989 	}
7990 	ufshcd_blk_pm_runtime_init(sdev_rpmb);
7991 	scsi_device_put(sdev_rpmb);
7992 
7993 	sdev_boot = __scsi_add_device(hba->host, 0, 0,
7994 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_BOOT_WLUN), NULL);
7995 	if (IS_ERR(sdev_boot)) {
7996 		dev_err(hba->dev, "%s: BOOT WLUN not found\n", __func__);
7997 	} else {
7998 		ufshcd_blk_pm_runtime_init(sdev_boot);
7999 		scsi_device_put(sdev_boot);
8000 	}
8001 	goto out;
8002 
8003 remove_ufs_device_wlun:
8004 	scsi_remove_device(hba->ufs_device_wlun);
8005 out:
8006 	return ret;
8007 }
8008 
8009 static void ufshcd_wb_probe(struct ufs_hba *hba, const u8 *desc_buf)
8010 {
8011 	struct ufs_dev_info *dev_info = &hba->dev_info;
8012 	u8 lun;
8013 	u32 d_lu_wb_buf_alloc;
8014 	u32 ext_ufs_feature;
8015 
8016 	if (!ufshcd_is_wb_allowed(hba))
8017 		return;
8018 
8019 	/*
8020 	 * Probe WB only for UFS-2.2 and UFS-3.1 (and later) devices or
8021 	 * UFS devices with quirk UFS_DEVICE_QUIRK_SUPPORT_EXTENDED_FEATURES
8022 	 * enabled
8023 	 */
8024 	if (!(dev_info->wspecversion >= 0x310 ||
8025 	      dev_info->wspecversion == 0x220 ||
8026 	     (hba->dev_quirks & UFS_DEVICE_QUIRK_SUPPORT_EXTENDED_FEATURES)))
8027 		goto wb_disabled;
8028 
8029 	ext_ufs_feature = get_unaligned_be32(desc_buf +
8030 					DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
8031 
8032 	if (!(ext_ufs_feature & UFS_DEV_WRITE_BOOSTER_SUP))
8033 		goto wb_disabled;
8034 
8035 	/*
8036 	 * WB may be supported but not configured while provisioning. The spec
8037 	 * says, in dedicated wb buffer mode, a max of 1 lun would have wb
8038 	 * buffer configured.
8039 	 */
8040 	dev_info->wb_buffer_type = desc_buf[DEVICE_DESC_PARAM_WB_TYPE];
8041 
8042 	dev_info->b_presrv_uspc_en =
8043 		desc_buf[DEVICE_DESC_PARAM_WB_PRESRV_USRSPC_EN];
8044 
8045 	if (dev_info->wb_buffer_type == WB_BUF_MODE_SHARED) {
8046 		if (!get_unaligned_be32(desc_buf +
8047 				   DEVICE_DESC_PARAM_WB_SHARED_ALLOC_UNITS))
8048 			goto wb_disabled;
8049 	} else {
8050 		for (lun = 0; lun < UFS_UPIU_MAX_WB_LUN_ID; lun++) {
8051 			d_lu_wb_buf_alloc = 0;
8052 			ufshcd_read_unit_desc_param(hba,
8053 					lun,
8054 					UNIT_DESC_PARAM_WB_BUF_ALLOC_UNITS,
8055 					(u8 *)&d_lu_wb_buf_alloc,
8056 					sizeof(d_lu_wb_buf_alloc));
8057 			if (d_lu_wb_buf_alloc) {
8058 				dev_info->wb_dedicated_lu = lun;
8059 				break;
8060 			}
8061 		}
8062 
8063 		if (!d_lu_wb_buf_alloc)
8064 			goto wb_disabled;
8065 	}
8066 
8067 	if (!ufshcd_is_wb_buf_lifetime_available(hba))
8068 		goto wb_disabled;
8069 
8070 	return;
8071 
8072 wb_disabled:
8073 	hba->caps &= ~UFSHCD_CAP_WB_EN;
8074 }
8075 
8076 static void ufshcd_temp_notif_probe(struct ufs_hba *hba, const u8 *desc_buf)
8077 {
8078 	struct ufs_dev_info *dev_info = &hba->dev_info;
8079 	u32 ext_ufs_feature;
8080 	u8 mask = 0;
8081 
8082 	if (!(hba->caps & UFSHCD_CAP_TEMP_NOTIF) || dev_info->wspecversion < 0x300)
8083 		return;
8084 
8085 	ext_ufs_feature = get_unaligned_be32(desc_buf + DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
8086 
8087 	if (ext_ufs_feature & UFS_DEV_LOW_TEMP_NOTIF)
8088 		mask |= MASK_EE_TOO_LOW_TEMP;
8089 
8090 	if (ext_ufs_feature & UFS_DEV_HIGH_TEMP_NOTIF)
8091 		mask |= MASK_EE_TOO_HIGH_TEMP;
8092 
8093 	if (mask) {
8094 		ufshcd_enable_ee(hba, mask);
8095 		ufs_hwmon_probe(hba, mask);
8096 	}
8097 }
8098 
8099 static void ufshcd_ext_iid_probe(struct ufs_hba *hba, u8 *desc_buf)
8100 {
8101 	struct ufs_dev_info *dev_info = &hba->dev_info;
8102 	u32 ext_ufs_feature;
8103 	u32 ext_iid_en = 0;
8104 	int err;
8105 
8106 	/* Only UFS-4.0 and above may support EXT_IID */
8107 	if (dev_info->wspecversion < 0x400)
8108 		goto out;
8109 
8110 	ext_ufs_feature = get_unaligned_be32(desc_buf +
8111 				     DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
8112 	if (!(ext_ufs_feature & UFS_DEV_EXT_IID_SUP))
8113 		goto out;
8114 
8115 	err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
8116 				      QUERY_ATTR_IDN_EXT_IID_EN, 0, 0, &ext_iid_en);
8117 	if (err)
8118 		dev_err(hba->dev, "failed reading bEXTIIDEn. err = %d\n", err);
8119 
8120 out:
8121 	dev_info->b_ext_iid_en = ext_iid_en;
8122 }
8123 
8124 void ufshcd_fixup_dev_quirks(struct ufs_hba *hba,
8125 			     const struct ufs_dev_quirk *fixups)
8126 {
8127 	const struct ufs_dev_quirk *f;
8128 	struct ufs_dev_info *dev_info = &hba->dev_info;
8129 
8130 	if (!fixups)
8131 		return;
8132 
8133 	for (f = fixups; f->quirk; f++) {
8134 		if ((f->wmanufacturerid == dev_info->wmanufacturerid ||
8135 		     f->wmanufacturerid == UFS_ANY_VENDOR) &&
8136 		     ((dev_info->model &&
8137 		       STR_PRFX_EQUAL(f->model, dev_info->model)) ||
8138 		      !strcmp(f->model, UFS_ANY_MODEL)))
8139 			hba->dev_quirks |= f->quirk;
8140 	}
8141 }
8142 EXPORT_SYMBOL_GPL(ufshcd_fixup_dev_quirks);
8143 
8144 static void ufs_fixup_device_setup(struct ufs_hba *hba)
8145 {
8146 	/* fix by general quirk table */
8147 	ufshcd_fixup_dev_quirks(hba, ufs_fixups);
8148 
8149 	/* allow vendors to fix quirks */
8150 	ufshcd_vops_fixup_dev_quirks(hba);
8151 }
8152 
8153 static void ufshcd_update_rtc(struct ufs_hba *hba)
8154 {
8155 	struct timespec64 ts64;
8156 	int err;
8157 	u32 val;
8158 
8159 	ktime_get_real_ts64(&ts64);
8160 
8161 	if (ts64.tv_sec < hba->dev_info.rtc_time_baseline) {
8162 		dev_warn_once(hba->dev, "%s: Current time precedes previous setting!\n", __func__);
8163 		return;
8164 	}
8165 
8166 	/*
8167 	 * The Absolute RTC mode has a 136-year limit, spanning from 2010 to 2146. If a time beyond
8168 	 * 2146 is required, it is recommended to choose the relative RTC mode.
8169 	 */
8170 	val = ts64.tv_sec - hba->dev_info.rtc_time_baseline;
8171 
8172 	ufshcd_rpm_get_sync(hba);
8173 	err = ufshcd_query_attr(hba, UPIU_QUERY_OPCODE_WRITE_ATTR, QUERY_ATTR_IDN_SECONDS_PASSED,
8174 				0, 0, &val);
8175 	ufshcd_rpm_put_sync(hba);
8176 
8177 	if (err)
8178 		dev_err(hba->dev, "%s: Failed to update rtc %d\n", __func__, err);
8179 	else if (hba->dev_info.rtc_type == UFS_RTC_RELATIVE)
8180 		hba->dev_info.rtc_time_baseline = ts64.tv_sec;
8181 }
8182 
8183 static void ufshcd_rtc_work(struct work_struct *work)
8184 {
8185 	struct ufs_hba *hba;
8186 
8187 	hba = container_of(to_delayed_work(work), struct ufs_hba, ufs_rtc_update_work);
8188 
8189 	 /* Update RTC only when there are no requests in progress and UFSHCI is operational */
8190 	if (!ufshcd_is_ufs_dev_busy(hba) && hba->ufshcd_state == UFSHCD_STATE_OPERATIONAL)
8191 		ufshcd_update_rtc(hba);
8192 
8193 	if (ufshcd_is_ufs_dev_active(hba) && hba->dev_info.rtc_update_period)
8194 		schedule_delayed_work(&hba->ufs_rtc_update_work,
8195 				      msecs_to_jiffies(hba->dev_info.rtc_update_period));
8196 }
8197 
8198 static void ufs_init_rtc(struct ufs_hba *hba, u8 *desc_buf)
8199 {
8200 	u16 periodic_rtc_update = get_unaligned_be16(&desc_buf[DEVICE_DESC_PARAM_FRQ_RTC]);
8201 	struct ufs_dev_info *dev_info = &hba->dev_info;
8202 
8203 	if (periodic_rtc_update & UFS_RTC_TIME_BASELINE) {
8204 		dev_info->rtc_type = UFS_RTC_ABSOLUTE;
8205 
8206 		/*
8207 		 * The concept of measuring time in Linux as the number of seconds elapsed since
8208 		 * 00:00:00 UTC on January 1, 1970, and UFS ABS RTC is elapsed from January 1st
8209 		 * 2010 00:00, here we need to adjust ABS baseline.
8210 		 */
8211 		dev_info->rtc_time_baseline = mktime64(2010, 1, 1, 0, 0, 0) -
8212 							mktime64(1970, 1, 1, 0, 0, 0);
8213 	} else {
8214 		dev_info->rtc_type = UFS_RTC_RELATIVE;
8215 		dev_info->rtc_time_baseline = 0;
8216 	}
8217 
8218 	/*
8219 	 * We ignore TIME_PERIOD defined in wPeriodicRTCUpdate because Spec does not clearly state
8220 	 * how to calculate the specific update period for each time unit. And we disable periodic
8221 	 * RTC update work, let user configure by sysfs node according to specific circumstance.
8222 	 */
8223 	dev_info->rtc_update_period = 0;
8224 }
8225 
8226 static int ufs_get_device_desc(struct ufs_hba *hba)
8227 {
8228 	int err;
8229 	u8 model_index;
8230 	u8 *desc_buf;
8231 	struct ufs_dev_info *dev_info = &hba->dev_info;
8232 
8233 	desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
8234 	if (!desc_buf) {
8235 		err = -ENOMEM;
8236 		goto out;
8237 	}
8238 
8239 	err = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_DEVICE, 0, 0, desc_buf,
8240 				     QUERY_DESC_MAX_SIZE);
8241 	if (err) {
8242 		dev_err(hba->dev, "%s: Failed reading Device Desc. err = %d\n",
8243 			__func__, err);
8244 		goto out;
8245 	}
8246 
8247 	/*
8248 	 * getting vendor (manufacturerID) and Bank Index in big endian
8249 	 * format
8250 	 */
8251 	dev_info->wmanufacturerid = desc_buf[DEVICE_DESC_PARAM_MANF_ID] << 8 |
8252 				     desc_buf[DEVICE_DESC_PARAM_MANF_ID + 1];
8253 
8254 	/* getting Specification Version in big endian format */
8255 	dev_info->wspecversion = desc_buf[DEVICE_DESC_PARAM_SPEC_VER] << 8 |
8256 				      desc_buf[DEVICE_DESC_PARAM_SPEC_VER + 1];
8257 	dev_info->bqueuedepth = desc_buf[DEVICE_DESC_PARAM_Q_DPTH];
8258 
8259 	model_index = desc_buf[DEVICE_DESC_PARAM_PRDCT_NAME];
8260 
8261 	err = ufshcd_read_string_desc(hba, model_index,
8262 				      &dev_info->model, SD_ASCII_STD);
8263 	if (err < 0) {
8264 		dev_err(hba->dev, "%s: Failed reading Product Name. err = %d\n",
8265 			__func__, err);
8266 		goto out;
8267 	}
8268 
8269 	hba->luns_avail = desc_buf[DEVICE_DESC_PARAM_NUM_LU] +
8270 		desc_buf[DEVICE_DESC_PARAM_NUM_WLU];
8271 
8272 	ufs_fixup_device_setup(hba);
8273 
8274 	ufshcd_wb_probe(hba, desc_buf);
8275 
8276 	ufshcd_temp_notif_probe(hba, desc_buf);
8277 
8278 	ufs_init_rtc(hba, desc_buf);
8279 
8280 	if (hba->ext_iid_sup)
8281 		ufshcd_ext_iid_probe(hba, desc_buf);
8282 
8283 	/*
8284 	 * ufshcd_read_string_desc returns size of the string
8285 	 * reset the error value
8286 	 */
8287 	err = 0;
8288 
8289 out:
8290 	kfree(desc_buf);
8291 	return err;
8292 }
8293 
8294 static void ufs_put_device_desc(struct ufs_hba *hba)
8295 {
8296 	struct ufs_dev_info *dev_info = &hba->dev_info;
8297 
8298 	kfree(dev_info->model);
8299 	dev_info->model = NULL;
8300 }
8301 
8302 /**
8303  * ufshcd_quirk_tune_host_pa_tactivate - Ensures that host PA_TACTIVATE is
8304  * less than device PA_TACTIVATE time.
8305  * @hba: per-adapter instance
8306  *
8307  * Some UFS devices require host PA_TACTIVATE to be lower than device
8308  * PA_TACTIVATE, we need to enable UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE quirk
8309  * for such devices.
8310  *
8311  * Return: zero on success, non-zero error value on failure.
8312  */
8313 static int ufshcd_quirk_tune_host_pa_tactivate(struct ufs_hba *hba)
8314 {
8315 	int ret = 0;
8316 	u32 granularity, peer_granularity;
8317 	u32 pa_tactivate, peer_pa_tactivate;
8318 	u32 pa_tactivate_us, peer_pa_tactivate_us;
8319 	static const u8 gran_to_us_table[] = {1, 4, 8, 16, 32, 100};
8320 
8321 	ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_GRANULARITY),
8322 				  &granularity);
8323 	if (ret)
8324 		goto out;
8325 
8326 	ret = ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_GRANULARITY),
8327 				  &peer_granularity);
8328 	if (ret)
8329 		goto out;
8330 
8331 	if ((granularity < PA_GRANULARITY_MIN_VAL) ||
8332 	    (granularity > PA_GRANULARITY_MAX_VAL)) {
8333 		dev_err(hba->dev, "%s: invalid host PA_GRANULARITY %d",
8334 			__func__, granularity);
8335 		return -EINVAL;
8336 	}
8337 
8338 	if ((peer_granularity < PA_GRANULARITY_MIN_VAL) ||
8339 	    (peer_granularity > PA_GRANULARITY_MAX_VAL)) {
8340 		dev_err(hba->dev, "%s: invalid device PA_GRANULARITY %d",
8341 			__func__, peer_granularity);
8342 		return -EINVAL;
8343 	}
8344 
8345 	ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_TACTIVATE), &pa_tactivate);
8346 	if (ret)
8347 		goto out;
8348 
8349 	ret = ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_TACTIVATE),
8350 				  &peer_pa_tactivate);
8351 	if (ret)
8352 		goto out;
8353 
8354 	pa_tactivate_us = pa_tactivate * gran_to_us_table[granularity - 1];
8355 	peer_pa_tactivate_us = peer_pa_tactivate *
8356 			     gran_to_us_table[peer_granularity - 1];
8357 
8358 	if (pa_tactivate_us >= peer_pa_tactivate_us) {
8359 		u32 new_peer_pa_tactivate;
8360 
8361 		new_peer_pa_tactivate = pa_tactivate_us /
8362 				      gran_to_us_table[peer_granularity - 1];
8363 		new_peer_pa_tactivate++;
8364 		ret = ufshcd_dme_peer_set(hba, UIC_ARG_MIB(PA_TACTIVATE),
8365 					  new_peer_pa_tactivate);
8366 	}
8367 
8368 out:
8369 	return ret;
8370 }
8371 
8372 static void ufshcd_tune_unipro_params(struct ufs_hba *hba)
8373 {
8374 	ufshcd_vops_apply_dev_quirks(hba);
8375 
8376 	if (hba->dev_quirks & UFS_DEVICE_QUIRK_PA_TACTIVATE)
8377 		/* set 1ms timeout for PA_TACTIVATE */
8378 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TACTIVATE), 10);
8379 
8380 	if (hba->dev_quirks & UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE)
8381 		ufshcd_quirk_tune_host_pa_tactivate(hba);
8382 }
8383 
8384 static void ufshcd_clear_dbg_ufs_stats(struct ufs_hba *hba)
8385 {
8386 	hba->ufs_stats.hibern8_exit_cnt = 0;
8387 	hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
8388 	hba->req_abort_count = 0;
8389 }
8390 
8391 static int ufshcd_device_geo_params_init(struct ufs_hba *hba)
8392 {
8393 	int err;
8394 	u8 *desc_buf;
8395 
8396 	desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
8397 	if (!desc_buf) {
8398 		err = -ENOMEM;
8399 		goto out;
8400 	}
8401 
8402 	err = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_GEOMETRY, 0, 0,
8403 				     desc_buf, QUERY_DESC_MAX_SIZE);
8404 	if (err) {
8405 		dev_err(hba->dev, "%s: Failed reading Geometry Desc. err = %d\n",
8406 				__func__, err);
8407 		goto out;
8408 	}
8409 
8410 	if (desc_buf[GEOMETRY_DESC_PARAM_MAX_NUM_LUN] == 1)
8411 		hba->dev_info.max_lu_supported = 32;
8412 	else if (desc_buf[GEOMETRY_DESC_PARAM_MAX_NUM_LUN] == 0)
8413 		hba->dev_info.max_lu_supported = 8;
8414 
8415 out:
8416 	kfree(desc_buf);
8417 	return err;
8418 }
8419 
8420 struct ufs_ref_clk {
8421 	unsigned long freq_hz;
8422 	enum ufs_ref_clk_freq val;
8423 };
8424 
8425 static const struct ufs_ref_clk ufs_ref_clk_freqs[] = {
8426 	{19200000, REF_CLK_FREQ_19_2_MHZ},
8427 	{26000000, REF_CLK_FREQ_26_MHZ},
8428 	{38400000, REF_CLK_FREQ_38_4_MHZ},
8429 	{52000000, REF_CLK_FREQ_52_MHZ},
8430 	{0, REF_CLK_FREQ_INVAL},
8431 };
8432 
8433 static enum ufs_ref_clk_freq
8434 ufs_get_bref_clk_from_hz(unsigned long freq)
8435 {
8436 	int i;
8437 
8438 	for (i = 0; ufs_ref_clk_freqs[i].freq_hz; i++)
8439 		if (ufs_ref_clk_freqs[i].freq_hz == freq)
8440 			return ufs_ref_clk_freqs[i].val;
8441 
8442 	return REF_CLK_FREQ_INVAL;
8443 }
8444 
8445 void ufshcd_parse_dev_ref_clk_freq(struct ufs_hba *hba, struct clk *refclk)
8446 {
8447 	unsigned long freq;
8448 
8449 	freq = clk_get_rate(refclk);
8450 
8451 	hba->dev_ref_clk_freq =
8452 		ufs_get_bref_clk_from_hz(freq);
8453 
8454 	if (hba->dev_ref_clk_freq == REF_CLK_FREQ_INVAL)
8455 		dev_err(hba->dev,
8456 		"invalid ref_clk setting = %ld\n", freq);
8457 }
8458 
8459 static int ufshcd_set_dev_ref_clk(struct ufs_hba *hba)
8460 {
8461 	int err;
8462 	u32 ref_clk;
8463 	u32 freq = hba->dev_ref_clk_freq;
8464 
8465 	err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
8466 			QUERY_ATTR_IDN_REF_CLK_FREQ, 0, 0, &ref_clk);
8467 
8468 	if (err) {
8469 		dev_err(hba->dev, "failed reading bRefClkFreq. err = %d\n",
8470 			err);
8471 		goto out;
8472 	}
8473 
8474 	if (ref_clk == freq)
8475 		goto out; /* nothing to update */
8476 
8477 	err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
8478 			QUERY_ATTR_IDN_REF_CLK_FREQ, 0, 0, &freq);
8479 
8480 	if (err) {
8481 		dev_err(hba->dev, "bRefClkFreq setting to %lu Hz failed\n",
8482 			ufs_ref_clk_freqs[freq].freq_hz);
8483 		goto out;
8484 	}
8485 
8486 	dev_dbg(hba->dev, "bRefClkFreq setting to %lu Hz succeeded\n",
8487 			ufs_ref_clk_freqs[freq].freq_hz);
8488 
8489 out:
8490 	return err;
8491 }
8492 
8493 static int ufshcd_device_params_init(struct ufs_hba *hba)
8494 {
8495 	bool flag;
8496 	int ret;
8497 
8498 	/* Init UFS geometry descriptor related parameters */
8499 	ret = ufshcd_device_geo_params_init(hba);
8500 	if (ret)
8501 		goto out;
8502 
8503 	/* Check and apply UFS device quirks */
8504 	ret = ufs_get_device_desc(hba);
8505 	if (ret) {
8506 		dev_err(hba->dev, "%s: Failed getting device info. err = %d\n",
8507 			__func__, ret);
8508 		goto out;
8509 	}
8510 
8511 	ufshcd_get_ref_clk_gating_wait(hba);
8512 
8513 	if (!ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_READ_FLAG,
8514 			QUERY_FLAG_IDN_PWR_ON_WPE, 0, &flag))
8515 		hba->dev_info.f_power_on_wp_en = flag;
8516 
8517 	/* Probe maximum power mode co-supported by both UFS host and device */
8518 	if (ufshcd_get_max_pwr_mode(hba))
8519 		dev_err(hba->dev,
8520 			"%s: Failed getting max supported power mode\n",
8521 			__func__);
8522 out:
8523 	return ret;
8524 }
8525 
8526 static void ufshcd_set_timestamp_attr(struct ufs_hba *hba)
8527 {
8528 	int err;
8529 	struct ufs_query_req *request = NULL;
8530 	struct ufs_query_res *response = NULL;
8531 	struct ufs_dev_info *dev_info = &hba->dev_info;
8532 	struct utp_upiu_query_v4_0 *upiu_data;
8533 
8534 	if (dev_info->wspecversion < 0x400)
8535 		return;
8536 
8537 	ufshcd_dev_man_lock(hba);
8538 
8539 	ufshcd_init_query(hba, &request, &response,
8540 			  UPIU_QUERY_OPCODE_WRITE_ATTR,
8541 			  QUERY_ATTR_IDN_TIMESTAMP, 0, 0);
8542 
8543 	request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
8544 
8545 	upiu_data = (struct utp_upiu_query_v4_0 *)&request->upiu_req;
8546 
8547 	put_unaligned_be64(ktime_get_real_ns(), &upiu_data->osf3);
8548 
8549 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT);
8550 
8551 	if (err)
8552 		dev_err(hba->dev, "%s: failed to set timestamp %d\n",
8553 			__func__, err);
8554 
8555 	ufshcd_dev_man_unlock(hba);
8556 }
8557 
8558 /**
8559  * ufshcd_add_lus - probe and add UFS logical units
8560  * @hba: per-adapter instance
8561  *
8562  * Return: 0 upon success; < 0 upon failure.
8563  */
8564 static int ufshcd_add_lus(struct ufs_hba *hba)
8565 {
8566 	int ret;
8567 
8568 	/* Add required well known logical units to scsi mid layer */
8569 	ret = ufshcd_scsi_add_wlus(hba);
8570 	if (ret)
8571 		goto out;
8572 
8573 	/* Initialize devfreq after UFS device is detected */
8574 	if (ufshcd_is_clkscaling_supported(hba)) {
8575 		memcpy(&hba->clk_scaling.saved_pwr_info,
8576 			&hba->pwr_info,
8577 			sizeof(struct ufs_pa_layer_attr));
8578 		hba->clk_scaling.is_allowed = true;
8579 
8580 		ret = ufshcd_devfreq_init(hba);
8581 		if (ret)
8582 			goto out;
8583 
8584 		hba->clk_scaling.is_enabled = true;
8585 		ufshcd_init_clk_scaling_sysfs(hba);
8586 	}
8587 
8588 	ufs_bsg_probe(hba);
8589 	scsi_scan_host(hba->host);
8590 
8591 out:
8592 	return ret;
8593 }
8594 
8595 /* SDB - Single Doorbell */
8596 static void ufshcd_release_sdb_queue(struct ufs_hba *hba, int nutrs)
8597 {
8598 	size_t ucdl_size, utrdl_size;
8599 
8600 	ucdl_size = ufshcd_get_ucd_size(hba) * nutrs;
8601 	dmam_free_coherent(hba->dev, ucdl_size, hba->ucdl_base_addr,
8602 			   hba->ucdl_dma_addr);
8603 
8604 	utrdl_size = sizeof(struct utp_transfer_req_desc) * nutrs;
8605 	dmam_free_coherent(hba->dev, utrdl_size, hba->utrdl_base_addr,
8606 			   hba->utrdl_dma_addr);
8607 
8608 	devm_kfree(hba->dev, hba->lrb);
8609 }
8610 
8611 static int ufshcd_alloc_mcq(struct ufs_hba *hba)
8612 {
8613 	int ret;
8614 	int old_nutrs = hba->nutrs;
8615 
8616 	ret = ufshcd_mcq_decide_queue_depth(hba);
8617 	if (ret < 0)
8618 		return ret;
8619 
8620 	hba->nutrs = ret;
8621 	ret = ufshcd_mcq_init(hba);
8622 	if (ret)
8623 		goto err;
8624 
8625 	/*
8626 	 * Previously allocated memory for nutrs may not be enough in MCQ mode.
8627 	 * Number of supported tags in MCQ mode may be larger than SDB mode.
8628 	 */
8629 	if (hba->nutrs != old_nutrs) {
8630 		ufshcd_release_sdb_queue(hba, old_nutrs);
8631 		ret = ufshcd_memory_alloc(hba);
8632 		if (ret)
8633 			goto err;
8634 		ufshcd_host_memory_configure(hba);
8635 	}
8636 
8637 	ret = ufshcd_mcq_memory_alloc(hba);
8638 	if (ret)
8639 		goto err;
8640 
8641 	return 0;
8642 err:
8643 	hba->nutrs = old_nutrs;
8644 	return ret;
8645 }
8646 
8647 static void ufshcd_config_mcq(struct ufs_hba *hba)
8648 {
8649 	int ret;
8650 	u32 intrs;
8651 
8652 	ret = ufshcd_mcq_vops_config_esi(hba);
8653 	dev_info(hba->dev, "ESI %sconfigured\n", ret ? "is not " : "");
8654 
8655 	intrs = UFSHCD_ENABLE_MCQ_INTRS;
8656 	if (hba->quirks & UFSHCD_QUIRK_MCQ_BROKEN_INTR)
8657 		intrs &= ~MCQ_CQ_EVENT_STATUS;
8658 	ufshcd_enable_intr(hba, intrs);
8659 	ufshcd_mcq_make_queues_operational(hba);
8660 	ufshcd_mcq_config_mac(hba, hba->nutrs);
8661 
8662 	hba->host->can_queue = hba->nutrs - UFSHCD_NUM_RESERVED;
8663 	hba->reserved_slot = hba->nutrs - UFSHCD_NUM_RESERVED;
8664 
8665 	ufshcd_mcq_enable(hba);
8666 	hba->mcq_enabled = true;
8667 
8668 	dev_info(hba->dev, "MCQ configured, nr_queues=%d, io_queues=%d, read_queue=%d, poll_queues=%d, queue_depth=%d\n",
8669 		 hba->nr_hw_queues, hba->nr_queues[HCTX_TYPE_DEFAULT],
8670 		 hba->nr_queues[HCTX_TYPE_READ], hba->nr_queues[HCTX_TYPE_POLL],
8671 		 hba->nutrs);
8672 }
8673 
8674 static int ufshcd_device_init(struct ufs_hba *hba, bool init_dev_params)
8675 {
8676 	int ret;
8677 	struct Scsi_Host *host = hba->host;
8678 
8679 	hba->ufshcd_state = UFSHCD_STATE_RESET;
8680 
8681 	ret = ufshcd_link_startup(hba);
8682 	if (ret)
8683 		return ret;
8684 
8685 	if (hba->quirks & UFSHCD_QUIRK_SKIP_PH_CONFIGURATION)
8686 		return ret;
8687 
8688 	/* Debug counters initialization */
8689 	ufshcd_clear_dbg_ufs_stats(hba);
8690 
8691 	/* UniPro link is active now */
8692 	ufshcd_set_link_active(hba);
8693 
8694 	/* Reconfigure MCQ upon reset */
8695 	if (is_mcq_enabled(hba) && !init_dev_params)
8696 		ufshcd_config_mcq(hba);
8697 
8698 	/* Verify device initialization by sending NOP OUT UPIU */
8699 	ret = ufshcd_verify_dev_init(hba);
8700 	if (ret)
8701 		return ret;
8702 
8703 	/* Initiate UFS initialization, and waiting until completion */
8704 	ret = ufshcd_complete_dev_init(hba);
8705 	if (ret)
8706 		return ret;
8707 
8708 	/*
8709 	 * Initialize UFS device parameters used by driver, these
8710 	 * parameters are associated with UFS descriptors.
8711 	 */
8712 	if (init_dev_params) {
8713 		ret = ufshcd_device_params_init(hba);
8714 		if (ret)
8715 			return ret;
8716 		if (is_mcq_supported(hba) && !hba->scsi_host_added) {
8717 			ret = ufshcd_alloc_mcq(hba);
8718 			if (!ret) {
8719 				ufshcd_config_mcq(hba);
8720 			} else {
8721 				/* Continue with SDB mode */
8722 				use_mcq_mode = false;
8723 				dev_err(hba->dev, "MCQ mode is disabled, err=%d\n",
8724 					 ret);
8725 			}
8726 			ret = scsi_add_host(host, hba->dev);
8727 			if (ret) {
8728 				dev_err(hba->dev, "scsi_add_host failed\n");
8729 				return ret;
8730 			}
8731 			hba->scsi_host_added = true;
8732 		} else if (is_mcq_supported(hba)) {
8733 			/* UFSHCD_QUIRK_REINIT_AFTER_MAX_GEAR_SWITCH is set */
8734 			ufshcd_config_mcq(hba);
8735 		}
8736 	}
8737 
8738 	ufshcd_tune_unipro_params(hba);
8739 
8740 	/* UFS device is also active now */
8741 	ufshcd_set_ufs_dev_active(hba);
8742 	ufshcd_force_reset_auto_bkops(hba);
8743 
8744 	ufshcd_set_timestamp_attr(hba);
8745 	schedule_delayed_work(&hba->ufs_rtc_update_work,
8746 			      msecs_to_jiffies(UFS_RTC_UPDATE_INTERVAL_MS));
8747 
8748 	/* Gear up to HS gear if supported */
8749 	if (hba->max_pwr_info.is_valid) {
8750 		/*
8751 		 * Set the right value to bRefClkFreq before attempting to
8752 		 * switch to HS gears.
8753 		 */
8754 		if (hba->dev_ref_clk_freq != REF_CLK_FREQ_INVAL)
8755 			ufshcd_set_dev_ref_clk(hba);
8756 		ret = ufshcd_config_pwr_mode(hba, &hba->max_pwr_info.info);
8757 		if (ret) {
8758 			dev_err(hba->dev, "%s: Failed setting power mode, err = %d\n",
8759 					__func__, ret);
8760 			return ret;
8761 		}
8762 	}
8763 
8764 	return 0;
8765 }
8766 
8767 /**
8768  * ufshcd_probe_hba - probe hba to detect device and initialize it
8769  * @hba: per-adapter instance
8770  * @init_dev_params: whether or not to call ufshcd_device_params_init().
8771  *
8772  * Execute link-startup and verify device initialization
8773  *
8774  * Return: 0 upon success; < 0 upon failure.
8775  */
8776 static int ufshcd_probe_hba(struct ufs_hba *hba, bool init_dev_params)
8777 {
8778 	ktime_t start = ktime_get();
8779 	unsigned long flags;
8780 	int ret;
8781 
8782 	ret = ufshcd_device_init(hba, init_dev_params);
8783 	if (ret)
8784 		goto out;
8785 
8786 	if (!hba->pm_op_in_progress &&
8787 	    (hba->quirks & UFSHCD_QUIRK_REINIT_AFTER_MAX_GEAR_SWITCH)) {
8788 		/* Reset the device and controller before doing reinit */
8789 		ufshcd_device_reset(hba);
8790 		ufshcd_hba_stop(hba);
8791 		ufshcd_vops_reinit_notify(hba);
8792 		ret = ufshcd_hba_enable(hba);
8793 		if (ret) {
8794 			dev_err(hba->dev, "Host controller enable failed\n");
8795 			ufshcd_print_evt_hist(hba);
8796 			ufshcd_print_host_state(hba);
8797 			goto out;
8798 		}
8799 
8800 		/* Reinit the device */
8801 		ret = ufshcd_device_init(hba, init_dev_params);
8802 		if (ret)
8803 			goto out;
8804 	}
8805 
8806 	ufshcd_print_pwr_info(hba);
8807 
8808 	/*
8809 	 * bActiveICCLevel is volatile for UFS device (as per latest v2.1 spec)
8810 	 * and for removable UFS card as well, hence always set the parameter.
8811 	 * Note: Error handler may issue the device reset hence resetting
8812 	 * bActiveICCLevel as well so it is always safe to set this here.
8813 	 */
8814 	ufshcd_set_active_icc_lvl(hba);
8815 
8816 	/* Enable UFS Write Booster if supported */
8817 	ufshcd_configure_wb(hba);
8818 
8819 	if (hba->ee_usr_mask)
8820 		ufshcd_write_ee_control(hba);
8821 	ufshcd_configure_auto_hibern8(hba);
8822 
8823 out:
8824 	spin_lock_irqsave(hba->host->host_lock, flags);
8825 	if (ret)
8826 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
8827 	else if (hba->ufshcd_state == UFSHCD_STATE_RESET)
8828 		hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
8829 	spin_unlock_irqrestore(hba->host->host_lock, flags);
8830 
8831 	trace_ufshcd_init(dev_name(hba->dev), ret,
8832 		ktime_to_us(ktime_sub(ktime_get(), start)),
8833 		hba->curr_dev_pwr_mode, hba->uic_link_state);
8834 	return ret;
8835 }
8836 
8837 /**
8838  * ufshcd_async_scan - asynchronous execution for probing hba
8839  * @data: data pointer to pass to this function
8840  * @cookie: cookie data
8841  */
8842 static void ufshcd_async_scan(void *data, async_cookie_t cookie)
8843 {
8844 	struct ufs_hba *hba = (struct ufs_hba *)data;
8845 	int ret;
8846 
8847 	down(&hba->host_sem);
8848 	/* Initialize hba, detect and initialize UFS device */
8849 	ret = ufshcd_probe_hba(hba, true);
8850 	up(&hba->host_sem);
8851 	if (ret)
8852 		goto out;
8853 
8854 	/* Probe and add UFS logical units  */
8855 	ret = ufshcd_add_lus(hba);
8856 
8857 out:
8858 	pm_runtime_put_sync(hba->dev);
8859 
8860 	if (ret)
8861 		dev_err(hba->dev, "%s failed: %d\n", __func__, ret);
8862 }
8863 
8864 static enum scsi_timeout_action ufshcd_eh_timed_out(struct scsi_cmnd *scmd)
8865 {
8866 	struct ufs_hba *hba = shost_priv(scmd->device->host);
8867 
8868 	if (!hba->system_suspending) {
8869 		/* Activate the error handler in the SCSI core. */
8870 		return SCSI_EH_NOT_HANDLED;
8871 	}
8872 
8873 	/*
8874 	 * If we get here we know that no TMFs are outstanding and also that
8875 	 * the only pending command is a START STOP UNIT command. Handle the
8876 	 * timeout of that command directly to prevent a deadlock between
8877 	 * ufshcd_set_dev_pwr_mode() and ufshcd_err_handler().
8878 	 */
8879 	ufshcd_link_recovery(hba);
8880 	dev_info(hba->dev, "%s() finished; outstanding_tasks = %#lx.\n",
8881 		 __func__, hba->outstanding_tasks);
8882 
8883 	return hba->outstanding_reqs ? SCSI_EH_RESET_TIMER : SCSI_EH_DONE;
8884 }
8885 
8886 static const struct attribute_group *ufshcd_driver_groups[] = {
8887 	&ufs_sysfs_unit_descriptor_group,
8888 	&ufs_sysfs_lun_attributes_group,
8889 	NULL,
8890 };
8891 
8892 static struct ufs_hba_variant_params ufs_hba_vps = {
8893 	.hba_enable_delay_us		= 1000,
8894 	.wb_flush_threshold		= UFS_WB_BUF_REMAIN_PERCENT(40),
8895 	.devfreq_profile.polling_ms	= 100,
8896 	.devfreq_profile.target		= ufshcd_devfreq_target,
8897 	.devfreq_profile.get_dev_status	= ufshcd_devfreq_get_dev_status,
8898 	.ondemand_data.upthreshold	= 70,
8899 	.ondemand_data.downdifferential	= 5,
8900 };
8901 
8902 static const struct scsi_host_template ufshcd_driver_template = {
8903 	.module			= THIS_MODULE,
8904 	.name			= UFSHCD,
8905 	.proc_name		= UFSHCD,
8906 	.map_queues		= ufshcd_map_queues,
8907 	.queuecommand		= ufshcd_queuecommand,
8908 	.mq_poll		= ufshcd_poll,
8909 	.slave_alloc		= ufshcd_slave_alloc,
8910 	.slave_configure	= ufshcd_slave_configure,
8911 	.slave_destroy		= ufshcd_slave_destroy,
8912 	.change_queue_depth	= ufshcd_change_queue_depth,
8913 	.eh_abort_handler	= ufshcd_abort,
8914 	.eh_device_reset_handler = ufshcd_eh_device_reset_handler,
8915 	.eh_host_reset_handler   = ufshcd_eh_host_reset_handler,
8916 	.eh_timed_out		= ufshcd_eh_timed_out,
8917 	.this_id		= -1,
8918 	.sg_tablesize		= SG_ALL,
8919 	.cmd_per_lun		= UFSHCD_CMD_PER_LUN,
8920 	.can_queue		= UFSHCD_CAN_QUEUE,
8921 	.max_segment_size	= PRDT_DATA_BYTE_COUNT_MAX,
8922 	.max_sectors		= SZ_1M / SECTOR_SIZE,
8923 	.max_host_blocked	= 1,
8924 	.track_queue_depth	= 1,
8925 	.skip_settle_delay	= 1,
8926 	.sdev_groups		= ufshcd_driver_groups,
8927 };
8928 
8929 static int ufshcd_config_vreg_load(struct device *dev, struct ufs_vreg *vreg,
8930 				   int ua)
8931 {
8932 	int ret;
8933 
8934 	if (!vreg)
8935 		return 0;
8936 
8937 	/*
8938 	 * "set_load" operation shall be required on those regulators
8939 	 * which specifically configured current limitation. Otherwise
8940 	 * zero max_uA may cause unexpected behavior when regulator is
8941 	 * enabled or set as high power mode.
8942 	 */
8943 	if (!vreg->max_uA)
8944 		return 0;
8945 
8946 	ret = regulator_set_load(vreg->reg, ua);
8947 	if (ret < 0) {
8948 		dev_err(dev, "%s: %s set load (ua=%d) failed, err=%d\n",
8949 				__func__, vreg->name, ua, ret);
8950 	}
8951 
8952 	return ret;
8953 }
8954 
8955 static inline int ufshcd_config_vreg_lpm(struct ufs_hba *hba,
8956 					 struct ufs_vreg *vreg)
8957 {
8958 	return ufshcd_config_vreg_load(hba->dev, vreg, UFS_VREG_LPM_LOAD_UA);
8959 }
8960 
8961 static inline int ufshcd_config_vreg_hpm(struct ufs_hba *hba,
8962 					 struct ufs_vreg *vreg)
8963 {
8964 	if (!vreg)
8965 		return 0;
8966 
8967 	return ufshcd_config_vreg_load(hba->dev, vreg, vreg->max_uA);
8968 }
8969 
8970 static int ufshcd_config_vreg(struct device *dev,
8971 		struct ufs_vreg *vreg, bool on)
8972 {
8973 	if (regulator_count_voltages(vreg->reg) <= 0)
8974 		return 0;
8975 
8976 	return ufshcd_config_vreg_load(dev, vreg, on ? vreg->max_uA : 0);
8977 }
8978 
8979 static int ufshcd_enable_vreg(struct device *dev, struct ufs_vreg *vreg)
8980 {
8981 	int ret = 0;
8982 
8983 	if (!vreg || vreg->enabled)
8984 		goto out;
8985 
8986 	ret = ufshcd_config_vreg(dev, vreg, true);
8987 	if (!ret)
8988 		ret = regulator_enable(vreg->reg);
8989 
8990 	if (!ret)
8991 		vreg->enabled = true;
8992 	else
8993 		dev_err(dev, "%s: %s enable failed, err=%d\n",
8994 				__func__, vreg->name, ret);
8995 out:
8996 	return ret;
8997 }
8998 
8999 static int ufshcd_disable_vreg(struct device *dev, struct ufs_vreg *vreg)
9000 {
9001 	int ret = 0;
9002 
9003 	if (!vreg || !vreg->enabled || vreg->always_on)
9004 		goto out;
9005 
9006 	ret = regulator_disable(vreg->reg);
9007 
9008 	if (!ret) {
9009 		/* ignore errors on applying disable config */
9010 		ufshcd_config_vreg(dev, vreg, false);
9011 		vreg->enabled = false;
9012 	} else {
9013 		dev_err(dev, "%s: %s disable failed, err=%d\n",
9014 				__func__, vreg->name, ret);
9015 	}
9016 out:
9017 	return ret;
9018 }
9019 
9020 static int ufshcd_setup_vreg(struct ufs_hba *hba, bool on)
9021 {
9022 	int ret = 0;
9023 	struct device *dev = hba->dev;
9024 	struct ufs_vreg_info *info = &hba->vreg_info;
9025 
9026 	ret = ufshcd_toggle_vreg(dev, info->vcc, on);
9027 	if (ret)
9028 		goto out;
9029 
9030 	ret = ufshcd_toggle_vreg(dev, info->vccq, on);
9031 	if (ret)
9032 		goto out;
9033 
9034 	ret = ufshcd_toggle_vreg(dev, info->vccq2, on);
9035 
9036 out:
9037 	if (ret) {
9038 		ufshcd_toggle_vreg(dev, info->vccq2, false);
9039 		ufshcd_toggle_vreg(dev, info->vccq, false);
9040 		ufshcd_toggle_vreg(dev, info->vcc, false);
9041 	}
9042 	return ret;
9043 }
9044 
9045 static int ufshcd_setup_hba_vreg(struct ufs_hba *hba, bool on)
9046 {
9047 	struct ufs_vreg_info *info = &hba->vreg_info;
9048 
9049 	return ufshcd_toggle_vreg(hba->dev, info->vdd_hba, on);
9050 }
9051 
9052 int ufshcd_get_vreg(struct device *dev, struct ufs_vreg *vreg)
9053 {
9054 	int ret = 0;
9055 
9056 	if (!vreg)
9057 		goto out;
9058 
9059 	vreg->reg = devm_regulator_get(dev, vreg->name);
9060 	if (IS_ERR(vreg->reg)) {
9061 		ret = PTR_ERR(vreg->reg);
9062 		dev_err(dev, "%s: %s get failed, err=%d\n",
9063 				__func__, vreg->name, ret);
9064 	}
9065 out:
9066 	return ret;
9067 }
9068 EXPORT_SYMBOL_GPL(ufshcd_get_vreg);
9069 
9070 static int ufshcd_init_vreg(struct ufs_hba *hba)
9071 {
9072 	int ret = 0;
9073 	struct device *dev = hba->dev;
9074 	struct ufs_vreg_info *info = &hba->vreg_info;
9075 
9076 	ret = ufshcd_get_vreg(dev, info->vcc);
9077 	if (ret)
9078 		goto out;
9079 
9080 	ret = ufshcd_get_vreg(dev, info->vccq);
9081 	if (!ret)
9082 		ret = ufshcd_get_vreg(dev, info->vccq2);
9083 out:
9084 	return ret;
9085 }
9086 
9087 static int ufshcd_init_hba_vreg(struct ufs_hba *hba)
9088 {
9089 	struct ufs_vreg_info *info = &hba->vreg_info;
9090 
9091 	return ufshcd_get_vreg(hba->dev, info->vdd_hba);
9092 }
9093 
9094 static int ufshcd_setup_clocks(struct ufs_hba *hba, bool on)
9095 {
9096 	int ret = 0;
9097 	struct ufs_clk_info *clki;
9098 	struct list_head *head = &hba->clk_list_head;
9099 	unsigned long flags;
9100 	ktime_t start = ktime_get();
9101 	bool clk_state_changed = false;
9102 
9103 	if (list_empty(head))
9104 		goto out;
9105 
9106 	ret = ufshcd_vops_setup_clocks(hba, on, PRE_CHANGE);
9107 	if (ret)
9108 		return ret;
9109 
9110 	list_for_each_entry(clki, head, list) {
9111 		if (!IS_ERR_OR_NULL(clki->clk)) {
9112 			/*
9113 			 * Don't disable clocks which are needed
9114 			 * to keep the link active.
9115 			 */
9116 			if (ufshcd_is_link_active(hba) &&
9117 			    clki->keep_link_active)
9118 				continue;
9119 
9120 			clk_state_changed = on ^ clki->enabled;
9121 			if (on && !clki->enabled) {
9122 				ret = clk_prepare_enable(clki->clk);
9123 				if (ret) {
9124 					dev_err(hba->dev, "%s: %s prepare enable failed, %d\n",
9125 						__func__, clki->name, ret);
9126 					goto out;
9127 				}
9128 			} else if (!on && clki->enabled) {
9129 				clk_disable_unprepare(clki->clk);
9130 			}
9131 			clki->enabled = on;
9132 			dev_dbg(hba->dev, "%s: clk: %s %sabled\n", __func__,
9133 					clki->name, on ? "en" : "dis");
9134 		}
9135 	}
9136 
9137 	ret = ufshcd_vops_setup_clocks(hba, on, POST_CHANGE);
9138 	if (ret)
9139 		return ret;
9140 
9141 	if (!ufshcd_is_clkscaling_supported(hba))
9142 		ufshcd_pm_qos_update(hba, on);
9143 out:
9144 	if (ret) {
9145 		list_for_each_entry(clki, head, list) {
9146 			if (!IS_ERR_OR_NULL(clki->clk) && clki->enabled)
9147 				clk_disable_unprepare(clki->clk);
9148 		}
9149 	} else if (!ret && on) {
9150 		spin_lock_irqsave(hba->host->host_lock, flags);
9151 		hba->clk_gating.state = CLKS_ON;
9152 		trace_ufshcd_clk_gating(dev_name(hba->dev),
9153 					hba->clk_gating.state);
9154 		spin_unlock_irqrestore(hba->host->host_lock, flags);
9155 	}
9156 
9157 	if (clk_state_changed)
9158 		trace_ufshcd_profile_clk_gating(dev_name(hba->dev),
9159 			(on ? "on" : "off"),
9160 			ktime_to_us(ktime_sub(ktime_get(), start)), ret);
9161 	return ret;
9162 }
9163 
9164 static enum ufs_ref_clk_freq ufshcd_parse_ref_clk_property(struct ufs_hba *hba)
9165 {
9166 	u32 freq;
9167 	int ret = device_property_read_u32(hba->dev, "ref-clk-freq", &freq);
9168 
9169 	if (ret) {
9170 		dev_dbg(hba->dev, "Cannot query 'ref-clk-freq' property = %d", ret);
9171 		return REF_CLK_FREQ_INVAL;
9172 	}
9173 
9174 	return ufs_get_bref_clk_from_hz(freq);
9175 }
9176 
9177 static int ufshcd_init_clocks(struct ufs_hba *hba)
9178 {
9179 	int ret = 0;
9180 	struct ufs_clk_info *clki;
9181 	struct device *dev = hba->dev;
9182 	struct list_head *head = &hba->clk_list_head;
9183 
9184 	if (list_empty(head))
9185 		goto out;
9186 
9187 	list_for_each_entry(clki, head, list) {
9188 		if (!clki->name)
9189 			continue;
9190 
9191 		clki->clk = devm_clk_get(dev, clki->name);
9192 		if (IS_ERR(clki->clk)) {
9193 			ret = PTR_ERR(clki->clk);
9194 			dev_err(dev, "%s: %s clk get failed, %d\n",
9195 					__func__, clki->name, ret);
9196 			goto out;
9197 		}
9198 
9199 		/*
9200 		 * Parse device ref clk freq as per device tree "ref_clk".
9201 		 * Default dev_ref_clk_freq is set to REF_CLK_FREQ_INVAL
9202 		 * in ufshcd_alloc_host().
9203 		 */
9204 		if (!strcmp(clki->name, "ref_clk"))
9205 			ufshcd_parse_dev_ref_clk_freq(hba, clki->clk);
9206 
9207 		if (clki->max_freq) {
9208 			ret = clk_set_rate(clki->clk, clki->max_freq);
9209 			if (ret) {
9210 				dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
9211 					__func__, clki->name,
9212 					clki->max_freq, ret);
9213 				goto out;
9214 			}
9215 			clki->curr_freq = clki->max_freq;
9216 		}
9217 		dev_dbg(dev, "%s: clk: %s, rate: %lu\n", __func__,
9218 				clki->name, clk_get_rate(clki->clk));
9219 	}
9220 
9221 	/* Set Max. frequency for all clocks */
9222 	if (hba->use_pm_opp) {
9223 		ret = ufshcd_opp_set_rate(hba, ULONG_MAX);
9224 		if (ret) {
9225 			dev_err(hba->dev, "%s: failed to set OPP: %d", __func__,
9226 				ret);
9227 			goto out;
9228 		}
9229 	}
9230 
9231 out:
9232 	return ret;
9233 }
9234 
9235 static int ufshcd_variant_hba_init(struct ufs_hba *hba)
9236 {
9237 	int err = 0;
9238 
9239 	if (!hba->vops)
9240 		goto out;
9241 
9242 	err = ufshcd_vops_init(hba);
9243 	if (err)
9244 		dev_err_probe(hba->dev, err,
9245 			      "%s: variant %s init failed with err %d\n",
9246 			      __func__, ufshcd_get_var_name(hba), err);
9247 out:
9248 	return err;
9249 }
9250 
9251 static void ufshcd_variant_hba_exit(struct ufs_hba *hba)
9252 {
9253 	if (!hba->vops)
9254 		return;
9255 
9256 	ufshcd_vops_exit(hba);
9257 }
9258 
9259 static int ufshcd_hba_init(struct ufs_hba *hba)
9260 {
9261 	int err;
9262 
9263 	/*
9264 	 * Handle host controller power separately from the UFS device power
9265 	 * rails as it will help controlling the UFS host controller power
9266 	 * collapse easily which is different than UFS device power collapse.
9267 	 * Also, enable the host controller power before we go ahead with rest
9268 	 * of the initialization here.
9269 	 */
9270 	err = ufshcd_init_hba_vreg(hba);
9271 	if (err)
9272 		goto out;
9273 
9274 	err = ufshcd_setup_hba_vreg(hba, true);
9275 	if (err)
9276 		goto out;
9277 
9278 	err = ufshcd_init_clocks(hba);
9279 	if (err)
9280 		goto out_disable_hba_vreg;
9281 
9282 	if (hba->dev_ref_clk_freq == REF_CLK_FREQ_INVAL)
9283 		hba->dev_ref_clk_freq = ufshcd_parse_ref_clk_property(hba);
9284 
9285 	err = ufshcd_setup_clocks(hba, true);
9286 	if (err)
9287 		goto out_disable_hba_vreg;
9288 
9289 	err = ufshcd_init_vreg(hba);
9290 	if (err)
9291 		goto out_disable_clks;
9292 
9293 	err = ufshcd_setup_vreg(hba, true);
9294 	if (err)
9295 		goto out_disable_clks;
9296 
9297 	err = ufshcd_variant_hba_init(hba);
9298 	if (err)
9299 		goto out_disable_vreg;
9300 
9301 	ufs_debugfs_hba_init(hba);
9302 	ufs_fault_inject_hba_init(hba);
9303 
9304 	hba->is_powered = true;
9305 	goto out;
9306 
9307 out_disable_vreg:
9308 	ufshcd_setup_vreg(hba, false);
9309 out_disable_clks:
9310 	ufshcd_setup_clocks(hba, false);
9311 out_disable_hba_vreg:
9312 	ufshcd_setup_hba_vreg(hba, false);
9313 out:
9314 	return err;
9315 }
9316 
9317 static void ufshcd_hba_exit(struct ufs_hba *hba)
9318 {
9319 	if (hba->is_powered) {
9320 		ufshcd_pm_qos_exit(hba);
9321 		ufshcd_exit_clk_scaling(hba);
9322 		ufshcd_exit_clk_gating(hba);
9323 		if (hba->eh_wq)
9324 			destroy_workqueue(hba->eh_wq);
9325 		ufs_debugfs_hba_exit(hba);
9326 		ufshcd_variant_hba_exit(hba);
9327 		ufshcd_setup_vreg(hba, false);
9328 		ufshcd_setup_clocks(hba, false);
9329 		ufshcd_setup_hba_vreg(hba, false);
9330 		hba->is_powered = false;
9331 		ufs_put_device_desc(hba);
9332 	}
9333 }
9334 
9335 static int ufshcd_execute_start_stop(struct scsi_device *sdev,
9336 				     enum ufs_dev_pwr_mode pwr_mode,
9337 				     struct scsi_sense_hdr *sshdr)
9338 {
9339 	const unsigned char cdb[6] = { START_STOP, 0, 0, 0, pwr_mode << 4, 0 };
9340 	struct scsi_failure failure_defs[] = {
9341 		{
9342 			.allowed = 2,
9343 			.result = SCMD_FAILURE_RESULT_ANY,
9344 		},
9345 	};
9346 	struct scsi_failures failures = {
9347 		.failure_definitions = failure_defs,
9348 	};
9349 	const struct scsi_exec_args args = {
9350 		.failures = &failures,
9351 		.sshdr = sshdr,
9352 		.req_flags = BLK_MQ_REQ_PM,
9353 		.scmd_flags = SCMD_FAIL_IF_RECOVERING,
9354 	};
9355 
9356 	return scsi_execute_cmd(sdev, cdb, REQ_OP_DRV_IN, /*buffer=*/NULL,
9357 			/*bufflen=*/0, /*timeout=*/10 * HZ, /*retries=*/0,
9358 			&args);
9359 }
9360 
9361 /**
9362  * ufshcd_set_dev_pwr_mode - sends START STOP UNIT command to set device
9363  *			     power mode
9364  * @hba: per adapter instance
9365  * @pwr_mode: device power mode to set
9366  *
9367  * Return: 0 if requested power mode is set successfully;
9368  *         < 0 if failed to set the requested power mode.
9369  */
9370 static int ufshcd_set_dev_pwr_mode(struct ufs_hba *hba,
9371 				     enum ufs_dev_pwr_mode pwr_mode)
9372 {
9373 	struct scsi_sense_hdr sshdr;
9374 	struct scsi_device *sdp;
9375 	unsigned long flags;
9376 	int ret;
9377 
9378 	spin_lock_irqsave(hba->host->host_lock, flags);
9379 	sdp = hba->ufs_device_wlun;
9380 	if (sdp && scsi_device_online(sdp))
9381 		ret = scsi_device_get(sdp);
9382 	else
9383 		ret = -ENODEV;
9384 	spin_unlock_irqrestore(hba->host->host_lock, flags);
9385 
9386 	if (ret)
9387 		return ret;
9388 
9389 	/*
9390 	 * If scsi commands fail, the scsi mid-layer schedules scsi error-
9391 	 * handling, which would wait for host to be resumed. Since we know
9392 	 * we are functional while we are here, skip host resume in error
9393 	 * handling context.
9394 	 */
9395 	hba->host->eh_noresume = 1;
9396 
9397 	/*
9398 	 * Current function would be generally called from the power management
9399 	 * callbacks hence set the RQF_PM flag so that it doesn't resume the
9400 	 * already suspended childs.
9401 	 */
9402 	ret = ufshcd_execute_start_stop(sdp, pwr_mode, &sshdr);
9403 	if (ret) {
9404 		sdev_printk(KERN_WARNING, sdp,
9405 			    "START_STOP failed for power mode: %d, result %x\n",
9406 			    pwr_mode, ret);
9407 		if (ret > 0) {
9408 			if (scsi_sense_valid(&sshdr))
9409 				scsi_print_sense_hdr(sdp, NULL, &sshdr);
9410 			ret = -EIO;
9411 		}
9412 	} else {
9413 		hba->curr_dev_pwr_mode = pwr_mode;
9414 	}
9415 
9416 	scsi_device_put(sdp);
9417 	hba->host->eh_noresume = 0;
9418 	return ret;
9419 }
9420 
9421 static int ufshcd_link_state_transition(struct ufs_hba *hba,
9422 					enum uic_link_state req_link_state,
9423 					bool check_for_bkops)
9424 {
9425 	int ret = 0;
9426 
9427 	if (req_link_state == hba->uic_link_state)
9428 		return 0;
9429 
9430 	if (req_link_state == UIC_LINK_HIBERN8_STATE) {
9431 		ret = ufshcd_uic_hibern8_enter(hba);
9432 		if (!ret) {
9433 			ufshcd_set_link_hibern8(hba);
9434 		} else {
9435 			dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
9436 					__func__, ret);
9437 			goto out;
9438 		}
9439 	}
9440 	/*
9441 	 * If autobkops is enabled, link can't be turned off because
9442 	 * turning off the link would also turn off the device, except in the
9443 	 * case of DeepSleep where the device is expected to remain powered.
9444 	 */
9445 	else if ((req_link_state == UIC_LINK_OFF_STATE) &&
9446 		 (!check_for_bkops || !hba->auto_bkops_enabled)) {
9447 		/*
9448 		 * Let's make sure that link is in low power mode, we are doing
9449 		 * this currently by putting the link in Hibern8. Otherway to
9450 		 * put the link in low power mode is to send the DME end point
9451 		 * to device and then send the DME reset command to local
9452 		 * unipro. But putting the link in hibern8 is much faster.
9453 		 *
9454 		 * Note also that putting the link in Hibern8 is a requirement
9455 		 * for entering DeepSleep.
9456 		 */
9457 		ret = ufshcd_uic_hibern8_enter(hba);
9458 		if (ret) {
9459 			dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
9460 					__func__, ret);
9461 			goto out;
9462 		}
9463 		/*
9464 		 * Change controller state to "reset state" which
9465 		 * should also put the link in off/reset state
9466 		 */
9467 		ufshcd_hba_stop(hba);
9468 		/*
9469 		 * TODO: Check if we need any delay to make sure that
9470 		 * controller is reset
9471 		 */
9472 		ufshcd_set_link_off(hba);
9473 	}
9474 
9475 out:
9476 	return ret;
9477 }
9478 
9479 static void ufshcd_vreg_set_lpm(struct ufs_hba *hba)
9480 {
9481 	bool vcc_off = false;
9482 
9483 	/*
9484 	 * It seems some UFS devices may keep drawing more than sleep current
9485 	 * (atleast for 500us) from UFS rails (especially from VCCQ rail).
9486 	 * To avoid this situation, add 2ms delay before putting these UFS
9487 	 * rails in LPM mode.
9488 	 */
9489 	if (!ufshcd_is_link_active(hba) &&
9490 	    hba->dev_quirks & UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM)
9491 		usleep_range(2000, 2100);
9492 
9493 	/*
9494 	 * If UFS device is either in UFS_Sleep turn off VCC rail to save some
9495 	 * power.
9496 	 *
9497 	 * If UFS device and link is in OFF state, all power supplies (VCC,
9498 	 * VCCQ, VCCQ2) can be turned off if power on write protect is not
9499 	 * required. If UFS link is inactive (Hibern8 or OFF state) and device
9500 	 * is in sleep state, put VCCQ & VCCQ2 rails in LPM mode.
9501 	 *
9502 	 * Ignore the error returned by ufshcd_toggle_vreg() as device is anyway
9503 	 * in low power state which would save some power.
9504 	 *
9505 	 * If Write Booster is enabled and the device needs to flush the WB
9506 	 * buffer OR if bkops status is urgent for WB, keep Vcc on.
9507 	 */
9508 	if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba) &&
9509 	    !hba->dev_info.is_lu_power_on_wp) {
9510 		ufshcd_setup_vreg(hba, false);
9511 		vcc_off = true;
9512 	} else if (!ufshcd_is_ufs_dev_active(hba)) {
9513 		ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, false);
9514 		vcc_off = true;
9515 		if (ufshcd_is_link_hibern8(hba) || ufshcd_is_link_off(hba)) {
9516 			ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq);
9517 			ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq2);
9518 		}
9519 	}
9520 
9521 	/*
9522 	 * Some UFS devices require delay after VCC power rail is turned-off.
9523 	 */
9524 	if (vcc_off && hba->vreg_info.vcc &&
9525 		hba->dev_quirks & UFS_DEVICE_QUIRK_DELAY_AFTER_LPM)
9526 		usleep_range(5000, 5100);
9527 }
9528 
9529 #ifdef CONFIG_PM
9530 static int ufshcd_vreg_set_hpm(struct ufs_hba *hba)
9531 {
9532 	int ret = 0;
9533 
9534 	if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba) &&
9535 	    !hba->dev_info.is_lu_power_on_wp) {
9536 		ret = ufshcd_setup_vreg(hba, true);
9537 	} else if (!ufshcd_is_ufs_dev_active(hba)) {
9538 		if (!ufshcd_is_link_active(hba)) {
9539 			ret = ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq);
9540 			if (ret)
9541 				goto vcc_disable;
9542 			ret = ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq2);
9543 			if (ret)
9544 				goto vccq_lpm;
9545 		}
9546 		ret = ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, true);
9547 	}
9548 	goto out;
9549 
9550 vccq_lpm:
9551 	ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq);
9552 vcc_disable:
9553 	ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, false);
9554 out:
9555 	return ret;
9556 }
9557 #endif /* CONFIG_PM */
9558 
9559 static void ufshcd_hba_vreg_set_lpm(struct ufs_hba *hba)
9560 {
9561 	if (ufshcd_is_link_off(hba) || ufshcd_can_aggressive_pc(hba))
9562 		ufshcd_setup_hba_vreg(hba, false);
9563 }
9564 
9565 static void ufshcd_hba_vreg_set_hpm(struct ufs_hba *hba)
9566 {
9567 	if (ufshcd_is_link_off(hba) || ufshcd_can_aggressive_pc(hba))
9568 		ufshcd_setup_hba_vreg(hba, true);
9569 }
9570 
9571 static int __ufshcd_wl_suspend(struct ufs_hba *hba, enum ufs_pm_op pm_op)
9572 {
9573 	int ret = 0;
9574 	bool check_for_bkops;
9575 	enum ufs_pm_level pm_lvl;
9576 	enum ufs_dev_pwr_mode req_dev_pwr_mode;
9577 	enum uic_link_state req_link_state;
9578 
9579 	hba->pm_op_in_progress = true;
9580 	if (pm_op != UFS_SHUTDOWN_PM) {
9581 		pm_lvl = pm_op == UFS_RUNTIME_PM ?
9582 			 hba->rpm_lvl : hba->spm_lvl;
9583 		req_dev_pwr_mode = ufs_get_pm_lvl_to_dev_pwr_mode(pm_lvl);
9584 		req_link_state = ufs_get_pm_lvl_to_link_pwr_state(pm_lvl);
9585 	} else {
9586 		req_dev_pwr_mode = UFS_POWERDOWN_PWR_MODE;
9587 		req_link_state = UIC_LINK_OFF_STATE;
9588 	}
9589 
9590 	/*
9591 	 * If we can't transition into any of the low power modes
9592 	 * just gate the clocks.
9593 	 */
9594 	ufshcd_hold(hba);
9595 	hba->clk_gating.is_suspended = true;
9596 
9597 	if (ufshcd_is_clkscaling_supported(hba))
9598 		ufshcd_clk_scaling_suspend(hba, true);
9599 
9600 	if (req_dev_pwr_mode == UFS_ACTIVE_PWR_MODE &&
9601 			req_link_state == UIC_LINK_ACTIVE_STATE) {
9602 		goto vops_suspend;
9603 	}
9604 
9605 	if ((req_dev_pwr_mode == hba->curr_dev_pwr_mode) &&
9606 	    (req_link_state == hba->uic_link_state))
9607 		goto enable_scaling;
9608 
9609 	/* UFS device & link must be active before we enter in this function */
9610 	if (!ufshcd_is_ufs_dev_active(hba) || !ufshcd_is_link_active(hba)) {
9611 		/*  Wait err handler finish or trigger err recovery */
9612 		if (!ufshcd_eh_in_progress(hba))
9613 			ufshcd_force_error_recovery(hba);
9614 		ret = -EBUSY;
9615 		goto enable_scaling;
9616 	}
9617 
9618 	if (pm_op == UFS_RUNTIME_PM) {
9619 		if (ufshcd_can_autobkops_during_suspend(hba)) {
9620 			/*
9621 			 * The device is idle with no requests in the queue,
9622 			 * allow background operations if bkops status shows
9623 			 * that performance might be impacted.
9624 			 */
9625 			ret = ufshcd_urgent_bkops(hba);
9626 			if (ret) {
9627 				/*
9628 				 * If return err in suspend flow, IO will hang.
9629 				 * Trigger error handler and break suspend for
9630 				 * error recovery.
9631 				 */
9632 				ufshcd_force_error_recovery(hba);
9633 				ret = -EBUSY;
9634 				goto enable_scaling;
9635 			}
9636 		} else {
9637 			/* make sure that auto bkops is disabled */
9638 			ufshcd_disable_auto_bkops(hba);
9639 		}
9640 		/*
9641 		 * If device needs to do BKOP or WB buffer flush during
9642 		 * Hibern8, keep device power mode as "active power mode"
9643 		 * and VCC supply.
9644 		 */
9645 		hba->dev_info.b_rpm_dev_flush_capable =
9646 			hba->auto_bkops_enabled ||
9647 			(((req_link_state == UIC_LINK_HIBERN8_STATE) ||
9648 			((req_link_state == UIC_LINK_ACTIVE_STATE) &&
9649 			ufshcd_is_auto_hibern8_enabled(hba))) &&
9650 			ufshcd_wb_need_flush(hba));
9651 	}
9652 
9653 	flush_work(&hba->eeh_work);
9654 
9655 	ret = ufshcd_vops_suspend(hba, pm_op, PRE_CHANGE);
9656 	if (ret)
9657 		goto enable_scaling;
9658 
9659 	if (req_dev_pwr_mode != hba->curr_dev_pwr_mode) {
9660 		if (pm_op != UFS_RUNTIME_PM)
9661 			/* ensure that bkops is disabled */
9662 			ufshcd_disable_auto_bkops(hba);
9663 
9664 		if (!hba->dev_info.b_rpm_dev_flush_capable) {
9665 			ret = ufshcd_set_dev_pwr_mode(hba, req_dev_pwr_mode);
9666 			if (ret && pm_op != UFS_SHUTDOWN_PM) {
9667 				/*
9668 				 * If return err in suspend flow, IO will hang.
9669 				 * Trigger error handler and break suspend for
9670 				 * error recovery.
9671 				 */
9672 				ufshcd_force_error_recovery(hba);
9673 				ret = -EBUSY;
9674 			}
9675 			if (ret)
9676 				goto enable_scaling;
9677 		}
9678 	}
9679 
9680 	/*
9681 	 * In the case of DeepSleep, the device is expected to remain powered
9682 	 * with the link off, so do not check for bkops.
9683 	 */
9684 	check_for_bkops = !ufshcd_is_ufs_dev_deepsleep(hba);
9685 	ret = ufshcd_link_state_transition(hba, req_link_state, check_for_bkops);
9686 	if (ret && pm_op != UFS_SHUTDOWN_PM) {
9687 		/*
9688 		 * If return err in suspend flow, IO will hang.
9689 		 * Trigger error handler and break suspend for
9690 		 * error recovery.
9691 		 */
9692 		ufshcd_force_error_recovery(hba);
9693 		ret = -EBUSY;
9694 	}
9695 	if (ret)
9696 		goto set_dev_active;
9697 
9698 vops_suspend:
9699 	/*
9700 	 * Call vendor specific suspend callback. As these callbacks may access
9701 	 * vendor specific host controller register space call them before the
9702 	 * host clocks are ON.
9703 	 */
9704 	ret = ufshcd_vops_suspend(hba, pm_op, POST_CHANGE);
9705 	if (ret)
9706 		goto set_link_active;
9707 
9708 	cancel_delayed_work_sync(&hba->ufs_rtc_update_work);
9709 	goto out;
9710 
9711 set_link_active:
9712 	/*
9713 	 * Device hardware reset is required to exit DeepSleep. Also, for
9714 	 * DeepSleep, the link is off so host reset and restore will be done
9715 	 * further below.
9716 	 */
9717 	if (ufshcd_is_ufs_dev_deepsleep(hba)) {
9718 		ufshcd_device_reset(hba);
9719 		WARN_ON(!ufshcd_is_link_off(hba));
9720 	}
9721 	if (ufshcd_is_link_hibern8(hba) && !ufshcd_uic_hibern8_exit(hba))
9722 		ufshcd_set_link_active(hba);
9723 	else if (ufshcd_is_link_off(hba))
9724 		ufshcd_host_reset_and_restore(hba);
9725 set_dev_active:
9726 	/* Can also get here needing to exit DeepSleep */
9727 	if (ufshcd_is_ufs_dev_deepsleep(hba)) {
9728 		ufshcd_device_reset(hba);
9729 		ufshcd_host_reset_and_restore(hba);
9730 	}
9731 	if (!ufshcd_set_dev_pwr_mode(hba, UFS_ACTIVE_PWR_MODE))
9732 		ufshcd_disable_auto_bkops(hba);
9733 enable_scaling:
9734 	if (ufshcd_is_clkscaling_supported(hba))
9735 		ufshcd_clk_scaling_suspend(hba, false);
9736 
9737 	hba->dev_info.b_rpm_dev_flush_capable = false;
9738 out:
9739 	if (hba->dev_info.b_rpm_dev_flush_capable) {
9740 		schedule_delayed_work(&hba->rpm_dev_flush_recheck_work,
9741 			msecs_to_jiffies(RPM_DEV_FLUSH_RECHECK_WORK_DELAY_MS));
9742 	}
9743 
9744 	if (ret) {
9745 		ufshcd_update_evt_hist(hba, UFS_EVT_WL_SUSP_ERR, (u32)ret);
9746 		hba->clk_gating.is_suspended = false;
9747 		ufshcd_release(hba);
9748 	}
9749 	hba->pm_op_in_progress = false;
9750 	return ret;
9751 }
9752 
9753 #ifdef CONFIG_PM
9754 static int __ufshcd_wl_resume(struct ufs_hba *hba, enum ufs_pm_op pm_op)
9755 {
9756 	int ret;
9757 	enum uic_link_state old_link_state = hba->uic_link_state;
9758 
9759 	hba->pm_op_in_progress = true;
9760 
9761 	/*
9762 	 * Call vendor specific resume callback. As these callbacks may access
9763 	 * vendor specific host controller register space call them when the
9764 	 * host clocks are ON.
9765 	 */
9766 	ret = ufshcd_vops_resume(hba, pm_op);
9767 	if (ret)
9768 		goto out;
9769 
9770 	/* For DeepSleep, the only supported option is to have the link off */
9771 	WARN_ON(ufshcd_is_ufs_dev_deepsleep(hba) && !ufshcd_is_link_off(hba));
9772 
9773 	if (ufshcd_is_link_hibern8(hba)) {
9774 		ret = ufshcd_uic_hibern8_exit(hba);
9775 		if (!ret) {
9776 			ufshcd_set_link_active(hba);
9777 		} else {
9778 			dev_err(hba->dev, "%s: hibern8 exit failed %d\n",
9779 					__func__, ret);
9780 			goto vendor_suspend;
9781 		}
9782 	} else if (ufshcd_is_link_off(hba)) {
9783 		/*
9784 		 * A full initialization of the host and the device is
9785 		 * required since the link was put to off during suspend.
9786 		 * Note, in the case of DeepSleep, the device will exit
9787 		 * DeepSleep due to device reset.
9788 		 */
9789 		ret = ufshcd_reset_and_restore(hba);
9790 		/*
9791 		 * ufshcd_reset_and_restore() should have already
9792 		 * set the link state as active
9793 		 */
9794 		if (ret || !ufshcd_is_link_active(hba))
9795 			goto vendor_suspend;
9796 	}
9797 
9798 	if (!ufshcd_is_ufs_dev_active(hba)) {
9799 		ret = ufshcd_set_dev_pwr_mode(hba, UFS_ACTIVE_PWR_MODE);
9800 		if (ret)
9801 			goto set_old_link_state;
9802 		ufshcd_set_timestamp_attr(hba);
9803 		schedule_delayed_work(&hba->ufs_rtc_update_work,
9804 				      msecs_to_jiffies(UFS_RTC_UPDATE_INTERVAL_MS));
9805 	}
9806 
9807 	if (ufshcd_keep_autobkops_enabled_except_suspend(hba))
9808 		ufshcd_enable_auto_bkops(hba);
9809 	else
9810 		/*
9811 		 * If BKOPs operations are urgently needed at this moment then
9812 		 * keep auto-bkops enabled or else disable it.
9813 		 */
9814 		ufshcd_urgent_bkops(hba);
9815 
9816 	if (hba->ee_usr_mask)
9817 		ufshcd_write_ee_control(hba);
9818 
9819 	if (ufshcd_is_clkscaling_supported(hba))
9820 		ufshcd_clk_scaling_suspend(hba, false);
9821 
9822 	if (hba->dev_info.b_rpm_dev_flush_capable) {
9823 		hba->dev_info.b_rpm_dev_flush_capable = false;
9824 		cancel_delayed_work(&hba->rpm_dev_flush_recheck_work);
9825 	}
9826 
9827 	ufshcd_configure_auto_hibern8(hba);
9828 
9829 	goto out;
9830 
9831 set_old_link_state:
9832 	ufshcd_link_state_transition(hba, old_link_state, 0);
9833 vendor_suspend:
9834 	ufshcd_vops_suspend(hba, pm_op, PRE_CHANGE);
9835 	ufshcd_vops_suspend(hba, pm_op, POST_CHANGE);
9836 out:
9837 	if (ret)
9838 		ufshcd_update_evt_hist(hba, UFS_EVT_WL_RES_ERR, (u32)ret);
9839 	hba->clk_gating.is_suspended = false;
9840 	ufshcd_release(hba);
9841 	hba->pm_op_in_progress = false;
9842 	return ret;
9843 }
9844 
9845 static int ufshcd_wl_runtime_suspend(struct device *dev)
9846 {
9847 	struct scsi_device *sdev = to_scsi_device(dev);
9848 	struct ufs_hba *hba;
9849 	int ret;
9850 	ktime_t start = ktime_get();
9851 
9852 	hba = shost_priv(sdev->host);
9853 
9854 	ret = __ufshcd_wl_suspend(hba, UFS_RUNTIME_PM);
9855 	if (ret)
9856 		dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
9857 
9858 	trace_ufshcd_wl_runtime_suspend(dev_name(dev), ret,
9859 		ktime_to_us(ktime_sub(ktime_get(), start)),
9860 		hba->curr_dev_pwr_mode, hba->uic_link_state);
9861 
9862 	return ret;
9863 }
9864 
9865 static int ufshcd_wl_runtime_resume(struct device *dev)
9866 {
9867 	struct scsi_device *sdev = to_scsi_device(dev);
9868 	struct ufs_hba *hba;
9869 	int ret = 0;
9870 	ktime_t start = ktime_get();
9871 
9872 	hba = shost_priv(sdev->host);
9873 
9874 	ret = __ufshcd_wl_resume(hba, UFS_RUNTIME_PM);
9875 	if (ret)
9876 		dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
9877 
9878 	trace_ufshcd_wl_runtime_resume(dev_name(dev), ret,
9879 		ktime_to_us(ktime_sub(ktime_get(), start)),
9880 		hba->curr_dev_pwr_mode, hba->uic_link_state);
9881 
9882 	return ret;
9883 }
9884 #endif
9885 
9886 #ifdef CONFIG_PM_SLEEP
9887 static int ufshcd_wl_suspend(struct device *dev)
9888 {
9889 	struct scsi_device *sdev = to_scsi_device(dev);
9890 	struct ufs_hba *hba;
9891 	int ret = 0;
9892 	ktime_t start = ktime_get();
9893 
9894 	hba = shost_priv(sdev->host);
9895 	down(&hba->host_sem);
9896 	hba->system_suspending = true;
9897 
9898 	if (pm_runtime_suspended(dev))
9899 		goto out;
9900 
9901 	ret = __ufshcd_wl_suspend(hba, UFS_SYSTEM_PM);
9902 	if (ret) {
9903 		dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__,  ret);
9904 		up(&hba->host_sem);
9905 	}
9906 
9907 out:
9908 	if (!ret)
9909 		hba->is_sys_suspended = true;
9910 	trace_ufshcd_wl_suspend(dev_name(dev), ret,
9911 		ktime_to_us(ktime_sub(ktime_get(), start)),
9912 		hba->curr_dev_pwr_mode, hba->uic_link_state);
9913 
9914 	return ret;
9915 }
9916 
9917 static int ufshcd_wl_resume(struct device *dev)
9918 {
9919 	struct scsi_device *sdev = to_scsi_device(dev);
9920 	struct ufs_hba *hba;
9921 	int ret = 0;
9922 	ktime_t start = ktime_get();
9923 
9924 	hba = shost_priv(sdev->host);
9925 
9926 	if (pm_runtime_suspended(dev))
9927 		goto out;
9928 
9929 	ret = __ufshcd_wl_resume(hba, UFS_SYSTEM_PM);
9930 	if (ret)
9931 		dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
9932 out:
9933 	trace_ufshcd_wl_resume(dev_name(dev), ret,
9934 		ktime_to_us(ktime_sub(ktime_get(), start)),
9935 		hba->curr_dev_pwr_mode, hba->uic_link_state);
9936 	if (!ret)
9937 		hba->is_sys_suspended = false;
9938 	hba->system_suspending = false;
9939 	up(&hba->host_sem);
9940 	return ret;
9941 }
9942 #endif
9943 
9944 /**
9945  * ufshcd_suspend - helper function for suspend operations
9946  * @hba: per adapter instance
9947  *
9948  * This function will put disable irqs, turn off clocks
9949  * and set vreg and hba-vreg in lpm mode.
9950  *
9951  * Return: 0 upon success; < 0 upon failure.
9952  */
9953 static int ufshcd_suspend(struct ufs_hba *hba)
9954 {
9955 	int ret;
9956 
9957 	if (!hba->is_powered)
9958 		return 0;
9959 	/*
9960 	 * Disable the host irq as host controller as there won't be any
9961 	 * host controller transaction expected till resume.
9962 	 */
9963 	ufshcd_disable_irq(hba);
9964 	ret = ufshcd_setup_clocks(hba, false);
9965 	if (ret) {
9966 		ufshcd_enable_irq(hba);
9967 		return ret;
9968 	}
9969 	if (ufshcd_is_clkgating_allowed(hba)) {
9970 		hba->clk_gating.state = CLKS_OFF;
9971 		trace_ufshcd_clk_gating(dev_name(hba->dev),
9972 					hba->clk_gating.state);
9973 	}
9974 
9975 	ufshcd_vreg_set_lpm(hba);
9976 	/* Put the host controller in low power mode if possible */
9977 	ufshcd_hba_vreg_set_lpm(hba);
9978 	ufshcd_pm_qos_update(hba, false);
9979 	return ret;
9980 }
9981 
9982 #ifdef CONFIG_PM
9983 /**
9984  * ufshcd_resume - helper function for resume operations
9985  * @hba: per adapter instance
9986  *
9987  * This function basically turns on the regulators, clocks and
9988  * irqs of the hba.
9989  *
9990  * Return: 0 for success and non-zero for failure.
9991  */
9992 static int ufshcd_resume(struct ufs_hba *hba)
9993 {
9994 	int ret;
9995 
9996 	if (!hba->is_powered)
9997 		return 0;
9998 
9999 	ufshcd_hba_vreg_set_hpm(hba);
10000 	ret = ufshcd_vreg_set_hpm(hba);
10001 	if (ret)
10002 		goto out;
10003 
10004 	/* Make sure clocks are enabled before accessing controller */
10005 	ret = ufshcd_setup_clocks(hba, true);
10006 	if (ret)
10007 		goto disable_vreg;
10008 
10009 	/* enable the host irq as host controller would be active soon */
10010 	ufshcd_enable_irq(hba);
10011 
10012 	goto out;
10013 
10014 disable_vreg:
10015 	ufshcd_vreg_set_lpm(hba);
10016 out:
10017 	if (ret)
10018 		ufshcd_update_evt_hist(hba, UFS_EVT_RESUME_ERR, (u32)ret);
10019 	return ret;
10020 }
10021 #endif /* CONFIG_PM */
10022 
10023 #ifdef CONFIG_PM_SLEEP
10024 /**
10025  * ufshcd_system_suspend - system suspend callback
10026  * @dev: Device associated with the UFS controller.
10027  *
10028  * Executed before putting the system into a sleep state in which the contents
10029  * of main memory are preserved.
10030  *
10031  * Return: 0 for success and non-zero for failure.
10032  */
10033 int ufshcd_system_suspend(struct device *dev)
10034 {
10035 	struct ufs_hba *hba = dev_get_drvdata(dev);
10036 	int ret = 0;
10037 	ktime_t start = ktime_get();
10038 
10039 	if (pm_runtime_suspended(hba->dev))
10040 		goto out;
10041 
10042 	ret = ufshcd_suspend(hba);
10043 out:
10044 	trace_ufshcd_system_suspend(dev_name(hba->dev), ret,
10045 		ktime_to_us(ktime_sub(ktime_get(), start)),
10046 		hba->curr_dev_pwr_mode, hba->uic_link_state);
10047 	return ret;
10048 }
10049 EXPORT_SYMBOL(ufshcd_system_suspend);
10050 
10051 /**
10052  * ufshcd_system_resume - system resume callback
10053  * @dev: Device associated with the UFS controller.
10054  *
10055  * Executed after waking the system up from a sleep state in which the contents
10056  * of main memory were preserved.
10057  *
10058  * Return: 0 for success and non-zero for failure.
10059  */
10060 int ufshcd_system_resume(struct device *dev)
10061 {
10062 	struct ufs_hba *hba = dev_get_drvdata(dev);
10063 	ktime_t start = ktime_get();
10064 	int ret = 0;
10065 
10066 	if (pm_runtime_suspended(hba->dev))
10067 		goto out;
10068 
10069 	ret = ufshcd_resume(hba);
10070 
10071 out:
10072 	trace_ufshcd_system_resume(dev_name(hba->dev), ret,
10073 		ktime_to_us(ktime_sub(ktime_get(), start)),
10074 		hba->curr_dev_pwr_mode, hba->uic_link_state);
10075 
10076 	return ret;
10077 }
10078 EXPORT_SYMBOL(ufshcd_system_resume);
10079 #endif /* CONFIG_PM_SLEEP */
10080 
10081 #ifdef CONFIG_PM
10082 /**
10083  * ufshcd_runtime_suspend - runtime suspend callback
10084  * @dev: Device associated with the UFS controller.
10085  *
10086  * Check the description of ufshcd_suspend() function for more details.
10087  *
10088  * Return: 0 for success and non-zero for failure.
10089  */
10090 int ufshcd_runtime_suspend(struct device *dev)
10091 {
10092 	struct ufs_hba *hba = dev_get_drvdata(dev);
10093 	int ret;
10094 	ktime_t start = ktime_get();
10095 
10096 	ret = ufshcd_suspend(hba);
10097 
10098 	trace_ufshcd_runtime_suspend(dev_name(hba->dev), ret,
10099 		ktime_to_us(ktime_sub(ktime_get(), start)),
10100 		hba->curr_dev_pwr_mode, hba->uic_link_state);
10101 	return ret;
10102 }
10103 EXPORT_SYMBOL(ufshcd_runtime_suspend);
10104 
10105 /**
10106  * ufshcd_runtime_resume - runtime resume routine
10107  * @dev: Device associated with the UFS controller.
10108  *
10109  * This function basically brings controller
10110  * to active state. Following operations are done in this function:
10111  *
10112  * 1. Turn on all the controller related clocks
10113  * 2. Turn ON VCC rail
10114  *
10115  * Return: 0 upon success; < 0 upon failure.
10116  */
10117 int ufshcd_runtime_resume(struct device *dev)
10118 {
10119 	struct ufs_hba *hba = dev_get_drvdata(dev);
10120 	int ret;
10121 	ktime_t start = ktime_get();
10122 
10123 	ret = ufshcd_resume(hba);
10124 
10125 	trace_ufshcd_runtime_resume(dev_name(hba->dev), ret,
10126 		ktime_to_us(ktime_sub(ktime_get(), start)),
10127 		hba->curr_dev_pwr_mode, hba->uic_link_state);
10128 	return ret;
10129 }
10130 EXPORT_SYMBOL(ufshcd_runtime_resume);
10131 #endif /* CONFIG_PM */
10132 
10133 static void ufshcd_wl_shutdown(struct device *dev)
10134 {
10135 	struct scsi_device *sdev = to_scsi_device(dev);
10136 	struct ufs_hba *hba = shost_priv(sdev->host);
10137 
10138 	down(&hba->host_sem);
10139 	hba->shutting_down = true;
10140 	up(&hba->host_sem);
10141 
10142 	/* Turn on everything while shutting down */
10143 	ufshcd_rpm_get_sync(hba);
10144 	scsi_device_quiesce(sdev);
10145 	shost_for_each_device(sdev, hba->host) {
10146 		if (sdev == hba->ufs_device_wlun)
10147 			continue;
10148 		scsi_device_quiesce(sdev);
10149 	}
10150 	__ufshcd_wl_suspend(hba, UFS_SHUTDOWN_PM);
10151 
10152 	/*
10153 	 * Next, turn off the UFS controller and the UFS regulators. Disable
10154 	 * clocks.
10155 	 */
10156 	if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba))
10157 		ufshcd_suspend(hba);
10158 
10159 	hba->is_powered = false;
10160 }
10161 
10162 /**
10163  * ufshcd_remove - de-allocate SCSI host and host memory space
10164  *		data structure memory
10165  * @hba: per adapter instance
10166  */
10167 void ufshcd_remove(struct ufs_hba *hba)
10168 {
10169 	if (hba->ufs_device_wlun)
10170 		ufshcd_rpm_get_sync(hba);
10171 	ufs_hwmon_remove(hba);
10172 	ufs_bsg_remove(hba);
10173 	ufs_sysfs_remove_nodes(hba->dev);
10174 	blk_mq_destroy_queue(hba->tmf_queue);
10175 	blk_put_queue(hba->tmf_queue);
10176 	blk_mq_free_tag_set(&hba->tmf_tag_set);
10177 	scsi_remove_host(hba->host);
10178 	/* disable interrupts */
10179 	ufshcd_disable_intr(hba, hba->intr_mask);
10180 	ufshcd_hba_stop(hba);
10181 	ufshcd_hba_exit(hba);
10182 }
10183 EXPORT_SYMBOL_GPL(ufshcd_remove);
10184 
10185 #ifdef CONFIG_PM_SLEEP
10186 int ufshcd_system_freeze(struct device *dev)
10187 {
10188 
10189 	return ufshcd_system_suspend(dev);
10190 
10191 }
10192 EXPORT_SYMBOL_GPL(ufshcd_system_freeze);
10193 
10194 int ufshcd_system_restore(struct device *dev)
10195 {
10196 
10197 	struct ufs_hba *hba = dev_get_drvdata(dev);
10198 	int ret;
10199 
10200 	ret = ufshcd_system_resume(dev);
10201 	if (ret)
10202 		return ret;
10203 
10204 	/* Configure UTRL and UTMRL base address registers */
10205 	ufshcd_writel(hba, lower_32_bits(hba->utrdl_dma_addr),
10206 			REG_UTP_TRANSFER_REQ_LIST_BASE_L);
10207 	ufshcd_writel(hba, upper_32_bits(hba->utrdl_dma_addr),
10208 			REG_UTP_TRANSFER_REQ_LIST_BASE_H);
10209 	ufshcd_writel(hba, lower_32_bits(hba->utmrdl_dma_addr),
10210 			REG_UTP_TASK_REQ_LIST_BASE_L);
10211 	ufshcd_writel(hba, upper_32_bits(hba->utmrdl_dma_addr),
10212 			REG_UTP_TASK_REQ_LIST_BASE_H);
10213 	/*
10214 	 * Make sure that UTRL and UTMRL base address registers
10215 	 * are updated with the latest queue addresses. Only after
10216 	 * updating these addresses, we can queue the new commands.
10217 	 */
10218 	ufshcd_readl(hba, REG_UTP_TASK_REQ_LIST_BASE_H);
10219 
10220 	/* Resuming from hibernate, assume that link was OFF */
10221 	ufshcd_set_link_off(hba);
10222 
10223 	return 0;
10224 
10225 }
10226 EXPORT_SYMBOL_GPL(ufshcd_system_restore);
10227 
10228 int ufshcd_system_thaw(struct device *dev)
10229 {
10230 	return ufshcd_system_resume(dev);
10231 }
10232 EXPORT_SYMBOL_GPL(ufshcd_system_thaw);
10233 #endif /* CONFIG_PM_SLEEP  */
10234 
10235 /**
10236  * ufshcd_dealloc_host - deallocate Host Bus Adapter (HBA)
10237  * @hba: pointer to Host Bus Adapter (HBA)
10238  */
10239 void ufshcd_dealloc_host(struct ufs_hba *hba)
10240 {
10241 	scsi_host_put(hba->host);
10242 }
10243 EXPORT_SYMBOL_GPL(ufshcd_dealloc_host);
10244 
10245 /**
10246  * ufshcd_set_dma_mask - Set dma mask based on the controller
10247  *			 addressing capability
10248  * @hba: per adapter instance
10249  *
10250  * Return: 0 for success, non-zero for failure.
10251  */
10252 static int ufshcd_set_dma_mask(struct ufs_hba *hba)
10253 {
10254 	if (hba->capabilities & MASK_64_ADDRESSING_SUPPORT) {
10255 		if (!dma_set_mask_and_coherent(hba->dev, DMA_BIT_MASK(64)))
10256 			return 0;
10257 	}
10258 	return dma_set_mask_and_coherent(hba->dev, DMA_BIT_MASK(32));
10259 }
10260 
10261 /**
10262  * ufshcd_alloc_host - allocate Host Bus Adapter (HBA)
10263  * @dev: pointer to device handle
10264  * @hba_handle: driver private handle
10265  *
10266  * Return: 0 on success, non-zero value on failure.
10267  */
10268 int ufshcd_alloc_host(struct device *dev, struct ufs_hba **hba_handle)
10269 {
10270 	struct Scsi_Host *host;
10271 	struct ufs_hba *hba;
10272 	int err = 0;
10273 
10274 	if (!dev) {
10275 		dev_err(dev,
10276 		"Invalid memory reference for dev is NULL\n");
10277 		err = -ENODEV;
10278 		goto out_error;
10279 	}
10280 
10281 	host = scsi_host_alloc(&ufshcd_driver_template,
10282 				sizeof(struct ufs_hba));
10283 	if (!host) {
10284 		dev_err(dev, "scsi_host_alloc failed\n");
10285 		err = -ENOMEM;
10286 		goto out_error;
10287 	}
10288 	host->nr_maps = HCTX_TYPE_POLL + 1;
10289 	hba = shost_priv(host);
10290 	hba->host = host;
10291 	hba->dev = dev;
10292 	hba->dev_ref_clk_freq = REF_CLK_FREQ_INVAL;
10293 	hba->nop_out_timeout = NOP_OUT_TIMEOUT;
10294 	ufshcd_set_sg_entry_size(hba, sizeof(struct ufshcd_sg_entry));
10295 	INIT_LIST_HEAD(&hba->clk_list_head);
10296 	spin_lock_init(&hba->outstanding_lock);
10297 
10298 	*hba_handle = hba;
10299 
10300 out_error:
10301 	return err;
10302 }
10303 EXPORT_SYMBOL(ufshcd_alloc_host);
10304 
10305 /* This function exists because blk_mq_alloc_tag_set() requires this. */
10306 static blk_status_t ufshcd_queue_tmf(struct blk_mq_hw_ctx *hctx,
10307 				     const struct blk_mq_queue_data *qd)
10308 {
10309 	WARN_ON_ONCE(true);
10310 	return BLK_STS_NOTSUPP;
10311 }
10312 
10313 static const struct blk_mq_ops ufshcd_tmf_ops = {
10314 	.queue_rq = ufshcd_queue_tmf,
10315 };
10316 
10317 /**
10318  * ufshcd_init - Driver initialization routine
10319  * @hba: per-adapter instance
10320  * @mmio_base: base register address
10321  * @irq: Interrupt line of device
10322  *
10323  * Return: 0 on success, non-zero value on failure.
10324  */
10325 int ufshcd_init(struct ufs_hba *hba, void __iomem *mmio_base, unsigned int irq)
10326 {
10327 	int err;
10328 	struct Scsi_Host *host = hba->host;
10329 	struct device *dev = hba->dev;
10330 	char eh_wq_name[sizeof("ufs_eh_wq_00")];
10331 
10332 	/*
10333 	 * dev_set_drvdata() must be called before any callbacks are registered
10334 	 * that use dev_get_drvdata() (frequency scaling, clock scaling, hwmon,
10335 	 * sysfs).
10336 	 */
10337 	dev_set_drvdata(dev, hba);
10338 
10339 	if (!mmio_base) {
10340 		dev_err(hba->dev,
10341 		"Invalid memory reference for mmio_base is NULL\n");
10342 		err = -ENODEV;
10343 		goto out_error;
10344 	}
10345 
10346 	hba->mmio_base = mmio_base;
10347 	hba->irq = irq;
10348 	hba->vps = &ufs_hba_vps;
10349 
10350 	err = ufshcd_hba_init(hba);
10351 	if (err)
10352 		goto out_error;
10353 
10354 	/* Read capabilities registers */
10355 	err = ufshcd_hba_capabilities(hba);
10356 	if (err)
10357 		goto out_disable;
10358 
10359 	/* Get UFS version supported by the controller */
10360 	hba->ufs_version = ufshcd_get_ufs_version(hba);
10361 
10362 	/* Get Interrupt bit mask per version */
10363 	hba->intr_mask = ufshcd_get_intr_mask(hba);
10364 
10365 	err = ufshcd_set_dma_mask(hba);
10366 	if (err) {
10367 		dev_err(hba->dev, "set dma mask failed\n");
10368 		goto out_disable;
10369 	}
10370 
10371 	/* Allocate memory for host memory space */
10372 	err = ufshcd_memory_alloc(hba);
10373 	if (err) {
10374 		dev_err(hba->dev, "Memory allocation failed\n");
10375 		goto out_disable;
10376 	}
10377 
10378 	/* Configure LRB */
10379 	ufshcd_host_memory_configure(hba);
10380 
10381 	host->can_queue = hba->nutrs - UFSHCD_NUM_RESERVED;
10382 	host->cmd_per_lun = hba->nutrs - UFSHCD_NUM_RESERVED;
10383 	host->max_id = UFSHCD_MAX_ID;
10384 	host->max_lun = UFS_MAX_LUNS;
10385 	host->max_channel = UFSHCD_MAX_CHANNEL;
10386 	host->unique_id = host->host_no;
10387 	host->max_cmd_len = UFS_CDB_SIZE;
10388 	host->queuecommand_may_block = !!(hba->caps & UFSHCD_CAP_CLK_GATING);
10389 
10390 	/* Use default RPM delay if host not set */
10391 	if (host->rpm_autosuspend_delay == 0)
10392 		host->rpm_autosuspend_delay = RPM_AUTOSUSPEND_DELAY_MS;
10393 
10394 	hba->max_pwr_info.is_valid = false;
10395 
10396 	/* Initialize work queues */
10397 	snprintf(eh_wq_name, sizeof(eh_wq_name), "ufs_eh_wq_%d",
10398 		 hba->host->host_no);
10399 	hba->eh_wq = create_singlethread_workqueue(eh_wq_name);
10400 	if (!hba->eh_wq) {
10401 		dev_err(hba->dev, "%s: failed to create eh workqueue\n",
10402 			__func__);
10403 		err = -ENOMEM;
10404 		goto out_disable;
10405 	}
10406 	INIT_WORK(&hba->eh_work, ufshcd_err_handler);
10407 	INIT_WORK(&hba->eeh_work, ufshcd_exception_event_handler);
10408 
10409 	sema_init(&hba->host_sem, 1);
10410 
10411 	/* Initialize UIC command mutex */
10412 	mutex_init(&hba->uic_cmd_mutex);
10413 
10414 	/* Initialize mutex for device management commands */
10415 	mutex_init(&hba->dev_cmd.lock);
10416 
10417 	/* Initialize mutex for exception event control */
10418 	mutex_init(&hba->ee_ctrl_mutex);
10419 
10420 	mutex_init(&hba->wb_mutex);
10421 	init_rwsem(&hba->clk_scaling_lock);
10422 
10423 	ufshcd_init_clk_gating(hba);
10424 
10425 	ufshcd_init_clk_scaling(hba);
10426 
10427 	/*
10428 	 * In order to avoid any spurious interrupt immediately after
10429 	 * registering UFS controller interrupt handler, clear any pending UFS
10430 	 * interrupt status and disable all the UFS interrupts.
10431 	 */
10432 	ufshcd_writel(hba, ufshcd_readl(hba, REG_INTERRUPT_STATUS),
10433 		      REG_INTERRUPT_STATUS);
10434 	ufshcd_writel(hba, 0, REG_INTERRUPT_ENABLE);
10435 	/*
10436 	 * Make sure that UFS interrupts are disabled and any pending interrupt
10437 	 * status is cleared before registering UFS interrupt handler.
10438 	 */
10439 	ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
10440 
10441 	/* IRQ registration */
10442 	err = devm_request_irq(dev, irq, ufshcd_intr, IRQF_SHARED, UFSHCD, hba);
10443 	if (err) {
10444 		dev_err(hba->dev, "request irq failed\n");
10445 		goto out_disable;
10446 	} else {
10447 		hba->is_irq_enabled = true;
10448 	}
10449 
10450 	if (!is_mcq_supported(hba)) {
10451 		err = scsi_add_host(host, hba->dev);
10452 		if (err) {
10453 			dev_err(hba->dev, "scsi_add_host failed\n");
10454 			goto out_disable;
10455 		}
10456 	}
10457 
10458 	hba->tmf_tag_set = (struct blk_mq_tag_set) {
10459 		.nr_hw_queues	= 1,
10460 		.queue_depth	= hba->nutmrs,
10461 		.ops		= &ufshcd_tmf_ops,
10462 		.flags		= BLK_MQ_F_NO_SCHED,
10463 	};
10464 	err = blk_mq_alloc_tag_set(&hba->tmf_tag_set);
10465 	if (err < 0)
10466 		goto out_remove_scsi_host;
10467 	hba->tmf_queue = blk_mq_alloc_queue(&hba->tmf_tag_set, NULL, NULL);
10468 	if (IS_ERR(hba->tmf_queue)) {
10469 		err = PTR_ERR(hba->tmf_queue);
10470 		goto free_tmf_tag_set;
10471 	}
10472 	hba->tmf_rqs = devm_kcalloc(hba->dev, hba->nutmrs,
10473 				    sizeof(*hba->tmf_rqs), GFP_KERNEL);
10474 	if (!hba->tmf_rqs) {
10475 		err = -ENOMEM;
10476 		goto free_tmf_queue;
10477 	}
10478 
10479 	/* Reset the attached device */
10480 	ufshcd_device_reset(hba);
10481 
10482 	ufshcd_init_crypto(hba);
10483 
10484 	/* Host controller enable */
10485 	err = ufshcd_hba_enable(hba);
10486 	if (err) {
10487 		dev_err(hba->dev, "Host controller enable failed\n");
10488 		ufshcd_print_evt_hist(hba);
10489 		ufshcd_print_host_state(hba);
10490 		goto free_tmf_queue;
10491 	}
10492 
10493 	/*
10494 	 * Set the default power management level for runtime and system PM.
10495 	 * Default power saving mode is to keep UFS link in Hibern8 state
10496 	 * and UFS device in sleep state.
10497 	 */
10498 	hba->rpm_lvl = ufs_get_desired_pm_lvl_for_dev_link_state(
10499 						UFS_SLEEP_PWR_MODE,
10500 						UIC_LINK_HIBERN8_STATE);
10501 	hba->spm_lvl = ufs_get_desired_pm_lvl_for_dev_link_state(
10502 						UFS_SLEEP_PWR_MODE,
10503 						UIC_LINK_HIBERN8_STATE);
10504 
10505 	INIT_DELAYED_WORK(&hba->rpm_dev_flush_recheck_work, ufshcd_rpm_dev_flush_recheck_work);
10506 	INIT_DELAYED_WORK(&hba->ufs_rtc_update_work, ufshcd_rtc_work);
10507 
10508 	/* Set the default auto-hiberate idle timer value to 150 ms */
10509 	if (ufshcd_is_auto_hibern8_supported(hba) && !hba->ahit) {
10510 		hba->ahit = FIELD_PREP(UFSHCI_AHIBERN8_TIMER_MASK, 150) |
10511 			    FIELD_PREP(UFSHCI_AHIBERN8_SCALE_MASK, 3);
10512 	}
10513 
10514 	/* Hold auto suspend until async scan completes */
10515 	pm_runtime_get_sync(dev);
10516 	atomic_set(&hba->scsi_block_reqs_cnt, 0);
10517 	/*
10518 	 * We are assuming that device wasn't put in sleep/power-down
10519 	 * state exclusively during the boot stage before kernel.
10520 	 * This assumption helps avoid doing link startup twice during
10521 	 * ufshcd_probe_hba().
10522 	 */
10523 	ufshcd_set_ufs_dev_active(hba);
10524 
10525 	async_schedule(ufshcd_async_scan, hba);
10526 	ufs_sysfs_add_nodes(hba->dev);
10527 
10528 	device_enable_async_suspend(dev);
10529 	ufshcd_pm_qos_init(hba);
10530 	return 0;
10531 
10532 free_tmf_queue:
10533 	blk_mq_destroy_queue(hba->tmf_queue);
10534 	blk_put_queue(hba->tmf_queue);
10535 free_tmf_tag_set:
10536 	blk_mq_free_tag_set(&hba->tmf_tag_set);
10537 out_remove_scsi_host:
10538 	scsi_remove_host(hba->host);
10539 out_disable:
10540 	hba->is_irq_enabled = false;
10541 	ufshcd_hba_exit(hba);
10542 out_error:
10543 	return err;
10544 }
10545 EXPORT_SYMBOL_GPL(ufshcd_init);
10546 
10547 void ufshcd_resume_complete(struct device *dev)
10548 {
10549 	struct ufs_hba *hba = dev_get_drvdata(dev);
10550 
10551 	if (hba->complete_put) {
10552 		ufshcd_rpm_put(hba);
10553 		hba->complete_put = false;
10554 	}
10555 }
10556 EXPORT_SYMBOL_GPL(ufshcd_resume_complete);
10557 
10558 static bool ufshcd_rpm_ok_for_spm(struct ufs_hba *hba)
10559 {
10560 	struct device *dev = &hba->ufs_device_wlun->sdev_gendev;
10561 	enum ufs_dev_pwr_mode dev_pwr_mode;
10562 	enum uic_link_state link_state;
10563 	unsigned long flags;
10564 	bool res;
10565 
10566 	spin_lock_irqsave(&dev->power.lock, flags);
10567 	dev_pwr_mode = ufs_get_pm_lvl_to_dev_pwr_mode(hba->spm_lvl);
10568 	link_state = ufs_get_pm_lvl_to_link_pwr_state(hba->spm_lvl);
10569 	res = pm_runtime_suspended(dev) &&
10570 	      hba->curr_dev_pwr_mode == dev_pwr_mode &&
10571 	      hba->uic_link_state == link_state &&
10572 	      !hba->dev_info.b_rpm_dev_flush_capable;
10573 	spin_unlock_irqrestore(&dev->power.lock, flags);
10574 
10575 	return res;
10576 }
10577 
10578 int __ufshcd_suspend_prepare(struct device *dev, bool rpm_ok_for_spm)
10579 {
10580 	struct ufs_hba *hba = dev_get_drvdata(dev);
10581 	int ret;
10582 
10583 	/*
10584 	 * SCSI assumes that runtime-pm and system-pm for scsi drivers
10585 	 * are same. And it doesn't wake up the device for system-suspend
10586 	 * if it's runtime suspended. But ufs doesn't follow that.
10587 	 * Refer ufshcd_resume_complete()
10588 	 */
10589 	if (hba->ufs_device_wlun) {
10590 		/* Prevent runtime suspend */
10591 		ufshcd_rpm_get_noresume(hba);
10592 		/*
10593 		 * Check if already runtime suspended in same state as system
10594 		 * suspend would be.
10595 		 */
10596 		if (!rpm_ok_for_spm || !ufshcd_rpm_ok_for_spm(hba)) {
10597 			/* RPM state is not ok for SPM, so runtime resume */
10598 			ret = ufshcd_rpm_resume(hba);
10599 			if (ret < 0 && ret != -EACCES) {
10600 				ufshcd_rpm_put(hba);
10601 				return ret;
10602 			}
10603 		}
10604 		hba->complete_put = true;
10605 	}
10606 	return 0;
10607 }
10608 EXPORT_SYMBOL_GPL(__ufshcd_suspend_prepare);
10609 
10610 int ufshcd_suspend_prepare(struct device *dev)
10611 {
10612 	return __ufshcd_suspend_prepare(dev, true);
10613 }
10614 EXPORT_SYMBOL_GPL(ufshcd_suspend_prepare);
10615 
10616 #ifdef CONFIG_PM_SLEEP
10617 static int ufshcd_wl_poweroff(struct device *dev)
10618 {
10619 	struct scsi_device *sdev = to_scsi_device(dev);
10620 	struct ufs_hba *hba = shost_priv(sdev->host);
10621 
10622 	__ufshcd_wl_suspend(hba, UFS_SHUTDOWN_PM);
10623 	return 0;
10624 }
10625 #endif
10626 
10627 static int ufshcd_wl_probe(struct device *dev)
10628 {
10629 	struct scsi_device *sdev = to_scsi_device(dev);
10630 
10631 	if (!is_device_wlun(sdev))
10632 		return -ENODEV;
10633 
10634 	blk_pm_runtime_init(sdev->request_queue, dev);
10635 	pm_runtime_set_autosuspend_delay(dev, 0);
10636 	pm_runtime_allow(dev);
10637 
10638 	return  0;
10639 }
10640 
10641 static int ufshcd_wl_remove(struct device *dev)
10642 {
10643 	pm_runtime_forbid(dev);
10644 	return 0;
10645 }
10646 
10647 static const struct dev_pm_ops ufshcd_wl_pm_ops = {
10648 #ifdef CONFIG_PM_SLEEP
10649 	.suspend = ufshcd_wl_suspend,
10650 	.resume = ufshcd_wl_resume,
10651 	.freeze = ufshcd_wl_suspend,
10652 	.thaw = ufshcd_wl_resume,
10653 	.poweroff = ufshcd_wl_poweroff,
10654 	.restore = ufshcd_wl_resume,
10655 #endif
10656 	SET_RUNTIME_PM_OPS(ufshcd_wl_runtime_suspend, ufshcd_wl_runtime_resume, NULL)
10657 };
10658 
10659 static void ufshcd_check_header_layout(void)
10660 {
10661 	/*
10662 	 * gcc compilers before version 10 cannot do constant-folding for
10663 	 * sub-byte bitfields. Hence skip the layout checks for gcc 9 and
10664 	 * before.
10665 	 */
10666 	if (IS_ENABLED(CONFIG_CC_IS_GCC) && CONFIG_GCC_VERSION < 100000)
10667 		return;
10668 
10669 	BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10670 				.cci = 3})[0] != 3);
10671 
10672 	BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10673 				.ehs_length = 2})[1] != 2);
10674 
10675 	BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10676 				.enable_crypto = 1})[2]
10677 		     != 0x80);
10678 
10679 	BUILD_BUG_ON((((u8 *)&(struct request_desc_header){
10680 					.command_type = 5,
10681 					.data_direction = 3,
10682 					.interrupt = 1,
10683 				})[3]) != ((5 << 4) | (3 << 1) | 1));
10684 
10685 	BUILD_BUG_ON(((__le32 *)&(struct request_desc_header){
10686 				.dunl = cpu_to_le32(0xdeadbeef)})[1] !=
10687 		cpu_to_le32(0xdeadbeef));
10688 
10689 	BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10690 				.ocs = 4})[8] != 4);
10691 
10692 	BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10693 				.cds = 5})[9] != 5);
10694 
10695 	BUILD_BUG_ON(((__le32 *)&(struct request_desc_header){
10696 				.dunu = cpu_to_le32(0xbadcafe)})[3] !=
10697 		cpu_to_le32(0xbadcafe));
10698 
10699 	BUILD_BUG_ON(((u8 *)&(struct utp_upiu_header){
10700 			     .iid = 0xf })[4] != 0xf0);
10701 
10702 	BUILD_BUG_ON(((u8 *)&(struct utp_upiu_header){
10703 			     .command_set_type = 0xf })[4] != 0xf);
10704 }
10705 
10706 /*
10707  * ufs_dev_wlun_template - describes ufs device wlun
10708  * ufs-device wlun - used to send pm commands
10709  * All luns are consumers of ufs-device wlun.
10710  *
10711  * Currently, no sd driver is present for wluns.
10712  * Hence the no specific pm operations are performed.
10713  * With ufs design, SSU should be sent to ufs-device wlun.
10714  * Hence register a scsi driver for ufs wluns only.
10715  */
10716 static struct scsi_driver ufs_dev_wlun_template = {
10717 	.gendrv = {
10718 		.name = "ufs_device_wlun",
10719 		.probe = ufshcd_wl_probe,
10720 		.remove = ufshcd_wl_remove,
10721 		.pm = &ufshcd_wl_pm_ops,
10722 		.shutdown = ufshcd_wl_shutdown,
10723 	},
10724 };
10725 
10726 static int __init ufshcd_core_init(void)
10727 {
10728 	int ret;
10729 
10730 	ufshcd_check_header_layout();
10731 
10732 	ufs_debugfs_init();
10733 
10734 	ret = scsi_register_driver(&ufs_dev_wlun_template.gendrv);
10735 	if (ret)
10736 		ufs_debugfs_exit();
10737 	return ret;
10738 }
10739 
10740 static void __exit ufshcd_core_exit(void)
10741 {
10742 	ufs_debugfs_exit();
10743 	scsi_unregister_driver(&ufs_dev_wlun_template.gendrv);
10744 }
10745 
10746 module_init(ufshcd_core_init);
10747 module_exit(ufshcd_core_exit);
10748 
10749 MODULE_AUTHOR("Santosh Yaragnavi <santosh.sy@samsung.com>");
10750 MODULE_AUTHOR("Vinayak Holikatti <h.vinayak@samsung.com>");
10751 MODULE_DESCRIPTION("Generic UFS host controller driver Core");
10752 MODULE_SOFTDEP("pre: governor_simpleondemand");
10753 MODULE_LICENSE("GPL");
10754