xref: /linux/drivers/ufs/core/ufshcd.c (revision 9ad8d22f2f3fad7a366c9772362795ef6d6a2d51)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Universal Flash Storage Host controller driver Core
4  * Copyright (C) 2011-2013 Samsung India Software Operations
5  * Copyright (c) 2013-2016, The Linux Foundation. All rights reserved.
6  *
7  * Authors:
8  *	Santosh Yaraganavi <santosh.sy@samsung.com>
9  *	Vinayak Holikatti <h.vinayak@samsung.com>
10  */
11 
12 #include <linux/async.h>
13 #include <linux/devfreq.h>
14 #include <linux/nls.h>
15 #include <linux/of.h>
16 #include <linux/bitfield.h>
17 #include <linux/blk-pm.h>
18 #include <linux/blkdev.h>
19 #include <linux/clk.h>
20 #include <linux/delay.h>
21 #include <linux/interrupt.h>
22 #include <linux/module.h>
23 #include <linux/pm_opp.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/sched/clock.h>
26 #include <linux/iopoll.h>
27 #include <scsi/scsi_cmnd.h>
28 #include <scsi/scsi_dbg.h>
29 #include <scsi/scsi_driver.h>
30 #include <scsi/scsi_eh.h>
31 #include "ufshcd-priv.h"
32 #include <ufs/ufs_quirks.h>
33 #include <ufs/unipro.h>
34 #include "ufs-sysfs.h"
35 #include "ufs-debugfs.h"
36 #include "ufs-fault-injection.h"
37 #include "ufs_bsg.h"
38 #include "ufshcd-crypto.h"
39 #include <linux/unaligned.h>
40 
41 #define CREATE_TRACE_POINTS
42 #include "ufs_trace.h"
43 
44 #define UFSHCD_ENABLE_INTRS	(UTP_TRANSFER_REQ_COMPL |\
45 				 UTP_TASK_REQ_COMPL |\
46 				 UFSHCD_ERROR_MASK)
47 
48 #define UFSHCD_ENABLE_MCQ_INTRS	(UTP_TASK_REQ_COMPL |\
49 				 UFSHCD_ERROR_MASK |\
50 				 MCQ_CQ_EVENT_STATUS)
51 
52 
53 /* UIC command timeout, unit: ms */
54 enum {
55 	UIC_CMD_TIMEOUT_DEFAULT	= 500,
56 	UIC_CMD_TIMEOUT_MAX	= 2000,
57 };
58 /* NOP OUT retries waiting for NOP IN response */
59 #define NOP_OUT_RETRIES    10
60 /* Timeout after 50 msecs if NOP OUT hangs without response */
61 #define NOP_OUT_TIMEOUT    50 /* msecs */
62 
63 /* Query request retries */
64 #define QUERY_REQ_RETRIES 3
65 /* Query request timeout */
66 #define QUERY_REQ_TIMEOUT 1500 /* 1.5 seconds */
67 
68 /* Advanced RPMB request timeout */
69 #define ADVANCED_RPMB_REQ_TIMEOUT  3000 /* 3 seconds */
70 
71 /* Task management command timeout */
72 #define TM_CMD_TIMEOUT	100 /* msecs */
73 
74 /* maximum number of retries for a general UIC command  */
75 #define UFS_UIC_COMMAND_RETRIES 3
76 
77 /* maximum number of link-startup retries */
78 #define DME_LINKSTARTUP_RETRIES 3
79 
80 /* maximum number of reset retries before giving up */
81 #define MAX_HOST_RESET_RETRIES 5
82 
83 /* Maximum number of error handler retries before giving up */
84 #define MAX_ERR_HANDLER_RETRIES 5
85 
86 /* Expose the flag value from utp_upiu_query.value */
87 #define MASK_QUERY_UPIU_FLAG_LOC 0xFF
88 
89 /* Interrupt aggregation default timeout, unit: 40us */
90 #define INT_AGGR_DEF_TO	0x02
91 
92 /* default delay of autosuspend: 2000 ms */
93 #define RPM_AUTOSUSPEND_DELAY_MS 2000
94 
95 /* Default delay of RPM device flush delayed work */
96 #define RPM_DEV_FLUSH_RECHECK_WORK_DELAY_MS 5000
97 
98 /* Default value of wait time before gating device ref clock */
99 #define UFSHCD_REF_CLK_GATING_WAIT_US 0xFF /* microsecs */
100 
101 /* Polling time to wait for fDeviceInit */
102 #define FDEVICEINIT_COMPL_TIMEOUT 1500 /* millisecs */
103 
104 /* Default RTC update every 10 seconds */
105 #define UFS_RTC_UPDATE_INTERVAL_MS (10 * MSEC_PER_SEC)
106 
107 /* bMaxNumOfRTT is equal to two after device manufacturing */
108 #define DEFAULT_MAX_NUM_RTT 2
109 
110 /* UFSHC 4.0 compliant HC support this mode. */
111 static bool use_mcq_mode = true;
112 
113 static bool is_mcq_supported(struct ufs_hba *hba)
114 {
115 	return hba->mcq_sup && use_mcq_mode;
116 }
117 
118 module_param(use_mcq_mode, bool, 0644);
119 MODULE_PARM_DESC(use_mcq_mode, "Control MCQ mode for controllers starting from UFSHCI 4.0. 1 - enable MCQ, 0 - disable MCQ. MCQ is enabled by default");
120 
121 static unsigned int uic_cmd_timeout = UIC_CMD_TIMEOUT_DEFAULT;
122 
123 static int uic_cmd_timeout_set(const char *val, const struct kernel_param *kp)
124 {
125 	return param_set_uint_minmax(val, kp, UIC_CMD_TIMEOUT_DEFAULT,
126 				     UIC_CMD_TIMEOUT_MAX);
127 }
128 
129 static const struct kernel_param_ops uic_cmd_timeout_ops = {
130 	.set = uic_cmd_timeout_set,
131 	.get = param_get_uint,
132 };
133 
134 module_param_cb(uic_cmd_timeout, &uic_cmd_timeout_ops, &uic_cmd_timeout, 0644);
135 MODULE_PARM_DESC(uic_cmd_timeout,
136 		 "UFS UIC command timeout in milliseconds. Defaults to 500ms. Supported values range from 500ms to 2 seconds inclusively");
137 
138 #define ufshcd_toggle_vreg(_dev, _vreg, _on)				\
139 	({                                                              \
140 		int _ret;                                               \
141 		if (_on)                                                \
142 			_ret = ufshcd_enable_vreg(_dev, _vreg);         \
143 		else                                                    \
144 			_ret = ufshcd_disable_vreg(_dev, _vreg);        \
145 		_ret;                                                   \
146 	})
147 
148 #define ufshcd_hex_dump(prefix_str, buf, len) do {                       \
149 	size_t __len = (len);                                            \
150 	print_hex_dump(KERN_ERR, prefix_str,                             \
151 		       __len > 4 ? DUMP_PREFIX_OFFSET : DUMP_PREFIX_NONE,\
152 		       16, 4, buf, __len, false);                        \
153 } while (0)
154 
155 int ufshcd_dump_regs(struct ufs_hba *hba, size_t offset, size_t len,
156 		     const char *prefix)
157 {
158 	u32 *regs;
159 	size_t pos;
160 
161 	if (offset % 4 != 0 || len % 4 != 0) /* keep readl happy */
162 		return -EINVAL;
163 
164 	regs = kzalloc(len, GFP_ATOMIC);
165 	if (!regs)
166 		return -ENOMEM;
167 
168 	for (pos = 0; pos < len; pos += 4) {
169 		if (offset == 0 &&
170 		    pos >= REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER &&
171 		    pos <= REG_UIC_ERROR_CODE_DME)
172 			continue;
173 		regs[pos / 4] = ufshcd_readl(hba, offset + pos);
174 	}
175 
176 	ufshcd_hex_dump(prefix, regs, len);
177 	kfree(regs);
178 
179 	return 0;
180 }
181 EXPORT_SYMBOL_GPL(ufshcd_dump_regs);
182 
183 enum {
184 	UFSHCD_MAX_CHANNEL	= 0,
185 	UFSHCD_MAX_ID		= 1,
186 };
187 
188 static const char *const ufshcd_state_name[] = {
189 	[UFSHCD_STATE_RESET]			= "reset",
190 	[UFSHCD_STATE_OPERATIONAL]		= "operational",
191 	[UFSHCD_STATE_ERROR]			= "error",
192 	[UFSHCD_STATE_EH_SCHEDULED_FATAL]	= "eh_fatal",
193 	[UFSHCD_STATE_EH_SCHEDULED_NON_FATAL]	= "eh_non_fatal",
194 };
195 
196 /* UFSHCD error handling flags */
197 enum {
198 	UFSHCD_EH_IN_PROGRESS = (1 << 0),
199 };
200 
201 /* UFSHCD UIC layer error flags */
202 enum {
203 	UFSHCD_UIC_DL_PA_INIT_ERROR = (1 << 0), /* Data link layer error */
204 	UFSHCD_UIC_DL_NAC_RECEIVED_ERROR = (1 << 1), /* Data link layer error */
205 	UFSHCD_UIC_DL_TCx_REPLAY_ERROR = (1 << 2), /* Data link layer error */
206 	UFSHCD_UIC_NL_ERROR = (1 << 3), /* Network layer error */
207 	UFSHCD_UIC_TL_ERROR = (1 << 4), /* Transport Layer error */
208 	UFSHCD_UIC_DME_ERROR = (1 << 5), /* DME error */
209 	UFSHCD_UIC_PA_GENERIC_ERROR = (1 << 6), /* Generic PA error */
210 };
211 
212 #define ufshcd_set_eh_in_progress(h) \
213 	((h)->eh_flags |= UFSHCD_EH_IN_PROGRESS)
214 #define ufshcd_eh_in_progress(h) \
215 	((h)->eh_flags & UFSHCD_EH_IN_PROGRESS)
216 #define ufshcd_clear_eh_in_progress(h) \
217 	((h)->eh_flags &= ~UFSHCD_EH_IN_PROGRESS)
218 
219 const struct ufs_pm_lvl_states ufs_pm_lvl_states[] = {
220 	[UFS_PM_LVL_0] = {UFS_ACTIVE_PWR_MODE, UIC_LINK_ACTIVE_STATE},
221 	[UFS_PM_LVL_1] = {UFS_ACTIVE_PWR_MODE, UIC_LINK_HIBERN8_STATE},
222 	[UFS_PM_LVL_2] = {UFS_SLEEP_PWR_MODE, UIC_LINK_ACTIVE_STATE},
223 	[UFS_PM_LVL_3] = {UFS_SLEEP_PWR_MODE, UIC_LINK_HIBERN8_STATE},
224 	[UFS_PM_LVL_4] = {UFS_POWERDOWN_PWR_MODE, UIC_LINK_HIBERN8_STATE},
225 	[UFS_PM_LVL_5] = {UFS_POWERDOWN_PWR_MODE, UIC_LINK_OFF_STATE},
226 	/*
227 	 * For DeepSleep, the link is first put in hibern8 and then off.
228 	 * Leaving the link in hibern8 is not supported.
229 	 */
230 	[UFS_PM_LVL_6] = {UFS_DEEPSLEEP_PWR_MODE, UIC_LINK_OFF_STATE},
231 };
232 
233 static inline enum ufs_dev_pwr_mode
234 ufs_get_pm_lvl_to_dev_pwr_mode(enum ufs_pm_level lvl)
235 {
236 	return ufs_pm_lvl_states[lvl].dev_state;
237 }
238 
239 static inline enum uic_link_state
240 ufs_get_pm_lvl_to_link_pwr_state(enum ufs_pm_level lvl)
241 {
242 	return ufs_pm_lvl_states[lvl].link_state;
243 }
244 
245 static inline enum ufs_pm_level
246 ufs_get_desired_pm_lvl_for_dev_link_state(enum ufs_dev_pwr_mode dev_state,
247 					enum uic_link_state link_state)
248 {
249 	enum ufs_pm_level lvl;
250 
251 	for (lvl = UFS_PM_LVL_0; lvl < UFS_PM_LVL_MAX; lvl++) {
252 		if ((ufs_pm_lvl_states[lvl].dev_state == dev_state) &&
253 			(ufs_pm_lvl_states[lvl].link_state == link_state))
254 			return lvl;
255 	}
256 
257 	/* if no match found, return the level 0 */
258 	return UFS_PM_LVL_0;
259 }
260 
261 static bool ufshcd_is_ufs_dev_busy(struct ufs_hba *hba)
262 {
263 	return (hba->clk_gating.active_reqs || hba->outstanding_reqs || hba->outstanding_tasks ||
264 		hba->active_uic_cmd || hba->uic_async_done);
265 }
266 
267 static const struct ufs_dev_quirk ufs_fixups[] = {
268 	/* UFS cards deviations table */
269 	{ .wmanufacturerid = UFS_VENDOR_MICRON,
270 	  .model = UFS_ANY_MODEL,
271 	  .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM },
272 	{ .wmanufacturerid = UFS_VENDOR_SAMSUNG,
273 	  .model = UFS_ANY_MODEL,
274 	  .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM |
275 		   UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE |
276 		   UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS },
277 	{ .wmanufacturerid = UFS_VENDOR_SKHYNIX,
278 	  .model = UFS_ANY_MODEL,
279 	  .quirk = UFS_DEVICE_QUIRK_HOST_PA_SAVECONFIGTIME },
280 	{ .wmanufacturerid = UFS_VENDOR_SKHYNIX,
281 	  .model = "hB8aL1" /*H28U62301AMR*/,
282 	  .quirk = UFS_DEVICE_QUIRK_HOST_VS_DEBUGSAVECONFIGTIME },
283 	{ .wmanufacturerid = UFS_VENDOR_TOSHIBA,
284 	  .model = UFS_ANY_MODEL,
285 	  .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM },
286 	{ .wmanufacturerid = UFS_VENDOR_TOSHIBA,
287 	  .model = "THGLF2G9C8KBADG",
288 	  .quirk = UFS_DEVICE_QUIRK_PA_TACTIVATE },
289 	{ .wmanufacturerid = UFS_VENDOR_TOSHIBA,
290 	  .model = "THGLF2G9D8KBADG",
291 	  .quirk = UFS_DEVICE_QUIRK_PA_TACTIVATE },
292 	{}
293 };
294 
295 static irqreturn_t ufshcd_tmc_handler(struct ufs_hba *hba);
296 static void ufshcd_async_scan(void *data, async_cookie_t cookie);
297 static int ufshcd_reset_and_restore(struct ufs_hba *hba);
298 static int ufshcd_eh_host_reset_handler(struct scsi_cmnd *cmd);
299 static int ufshcd_clear_tm_cmd(struct ufs_hba *hba, int tag);
300 static void ufshcd_hba_exit(struct ufs_hba *hba);
301 static int ufshcd_device_init(struct ufs_hba *hba, bool init_dev_params);
302 static int ufshcd_probe_hba(struct ufs_hba *hba, bool init_dev_params);
303 static int ufshcd_setup_clocks(struct ufs_hba *hba, bool on);
304 static inline void ufshcd_add_delay_before_dme_cmd(struct ufs_hba *hba);
305 static int ufshcd_host_reset_and_restore(struct ufs_hba *hba);
306 static void ufshcd_resume_clkscaling(struct ufs_hba *hba);
307 static void ufshcd_suspend_clkscaling(struct ufs_hba *hba);
308 static int ufshcd_scale_clks(struct ufs_hba *hba, unsigned long freq,
309 			     bool scale_up);
310 static irqreturn_t ufshcd_intr(int irq, void *__hba);
311 static int ufshcd_change_power_mode(struct ufs_hba *hba,
312 			     struct ufs_pa_layer_attr *pwr_mode);
313 static int ufshcd_setup_hba_vreg(struct ufs_hba *hba, bool on);
314 static int ufshcd_setup_vreg(struct ufs_hba *hba, bool on);
315 static inline int ufshcd_config_vreg_hpm(struct ufs_hba *hba,
316 					 struct ufs_vreg *vreg);
317 static void ufshcd_wb_toggle_buf_flush_during_h8(struct ufs_hba *hba,
318 						 bool enable);
319 static void ufshcd_hba_vreg_set_lpm(struct ufs_hba *hba);
320 static void ufshcd_hba_vreg_set_hpm(struct ufs_hba *hba);
321 
322 void ufshcd_enable_irq(struct ufs_hba *hba)
323 {
324 	if (!hba->is_irq_enabled) {
325 		enable_irq(hba->irq);
326 		hba->is_irq_enabled = true;
327 	}
328 }
329 EXPORT_SYMBOL_GPL(ufshcd_enable_irq);
330 
331 void ufshcd_disable_irq(struct ufs_hba *hba)
332 {
333 	if (hba->is_irq_enabled) {
334 		disable_irq(hba->irq);
335 		hba->is_irq_enabled = false;
336 	}
337 }
338 EXPORT_SYMBOL_GPL(ufshcd_disable_irq);
339 
340 static void ufshcd_configure_wb(struct ufs_hba *hba)
341 {
342 	if (!ufshcd_is_wb_allowed(hba))
343 		return;
344 
345 	ufshcd_wb_toggle(hba, true);
346 
347 	ufshcd_wb_toggle_buf_flush_during_h8(hba, true);
348 
349 	if (ufshcd_is_wb_buf_flush_allowed(hba))
350 		ufshcd_wb_toggle_buf_flush(hba, true);
351 }
352 
353 static void ufshcd_add_cmd_upiu_trace(struct ufs_hba *hba, unsigned int tag,
354 				      enum ufs_trace_str_t str_t)
355 {
356 	struct utp_upiu_req *rq = hba->lrb[tag].ucd_req_ptr;
357 	struct utp_upiu_header *header;
358 
359 	if (!trace_ufshcd_upiu_enabled())
360 		return;
361 
362 	if (str_t == UFS_CMD_SEND)
363 		header = &rq->header;
364 	else
365 		header = &hba->lrb[tag].ucd_rsp_ptr->header;
366 
367 	trace_ufshcd_upiu(dev_name(hba->dev), str_t, header, &rq->sc.cdb,
368 			  UFS_TSF_CDB);
369 }
370 
371 static void ufshcd_add_query_upiu_trace(struct ufs_hba *hba,
372 					enum ufs_trace_str_t str_t,
373 					struct utp_upiu_req *rq_rsp)
374 {
375 	if (!trace_ufshcd_upiu_enabled())
376 		return;
377 
378 	trace_ufshcd_upiu(dev_name(hba->dev), str_t, &rq_rsp->header,
379 			  &rq_rsp->qr, UFS_TSF_OSF);
380 }
381 
382 static void ufshcd_add_tm_upiu_trace(struct ufs_hba *hba, unsigned int tag,
383 				     enum ufs_trace_str_t str_t)
384 {
385 	struct utp_task_req_desc *descp = &hba->utmrdl_base_addr[tag];
386 
387 	if (!trace_ufshcd_upiu_enabled())
388 		return;
389 
390 	if (str_t == UFS_TM_SEND)
391 		trace_ufshcd_upiu(dev_name(hba->dev), str_t,
392 				  &descp->upiu_req.req_header,
393 				  &descp->upiu_req.input_param1,
394 				  UFS_TSF_TM_INPUT);
395 	else
396 		trace_ufshcd_upiu(dev_name(hba->dev), str_t,
397 				  &descp->upiu_rsp.rsp_header,
398 				  &descp->upiu_rsp.output_param1,
399 				  UFS_TSF_TM_OUTPUT);
400 }
401 
402 static void ufshcd_add_uic_command_trace(struct ufs_hba *hba,
403 					 const struct uic_command *ucmd,
404 					 enum ufs_trace_str_t str_t)
405 {
406 	u32 cmd;
407 
408 	if (!trace_ufshcd_uic_command_enabled())
409 		return;
410 
411 	if (str_t == UFS_CMD_SEND)
412 		cmd = ucmd->command;
413 	else
414 		cmd = ufshcd_readl(hba, REG_UIC_COMMAND);
415 
416 	trace_ufshcd_uic_command(dev_name(hba->dev), str_t, cmd,
417 				 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_1),
418 				 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_2),
419 				 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_3));
420 }
421 
422 static void ufshcd_add_command_trace(struct ufs_hba *hba, unsigned int tag,
423 				     enum ufs_trace_str_t str_t)
424 {
425 	u64 lba = 0;
426 	u8 opcode = 0, group_id = 0;
427 	u32 doorbell = 0;
428 	u32 intr;
429 	int hwq_id = -1;
430 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
431 	struct scsi_cmnd *cmd = lrbp->cmd;
432 	struct request *rq = scsi_cmd_to_rq(cmd);
433 	int transfer_len = -1;
434 
435 	if (!cmd)
436 		return;
437 
438 	/* trace UPIU also */
439 	ufshcd_add_cmd_upiu_trace(hba, tag, str_t);
440 	if (!trace_ufshcd_command_enabled())
441 		return;
442 
443 	opcode = cmd->cmnd[0];
444 
445 	if (opcode == READ_10 || opcode == WRITE_10) {
446 		/*
447 		 * Currently we only fully trace read(10) and write(10) commands
448 		 */
449 		transfer_len =
450 		       be32_to_cpu(lrbp->ucd_req_ptr->sc.exp_data_transfer_len);
451 		lba = scsi_get_lba(cmd);
452 		if (opcode == WRITE_10)
453 			group_id = lrbp->cmd->cmnd[6];
454 	} else if (opcode == UNMAP) {
455 		/*
456 		 * The number of Bytes to be unmapped beginning with the lba.
457 		 */
458 		transfer_len = blk_rq_bytes(rq);
459 		lba = scsi_get_lba(cmd);
460 	}
461 
462 	intr = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
463 
464 	if (hba->mcq_enabled) {
465 		struct ufs_hw_queue *hwq = ufshcd_mcq_req_to_hwq(hba, rq);
466 
467 		hwq_id = hwq->id;
468 	} else {
469 		doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
470 	}
471 	trace_ufshcd_command(cmd->device, str_t, tag, doorbell, hwq_id,
472 			     transfer_len, intr, lba, opcode, group_id);
473 }
474 
475 static void ufshcd_print_clk_freqs(struct ufs_hba *hba)
476 {
477 	struct ufs_clk_info *clki;
478 	struct list_head *head = &hba->clk_list_head;
479 
480 	if (list_empty(head))
481 		return;
482 
483 	list_for_each_entry(clki, head, list) {
484 		if (!IS_ERR_OR_NULL(clki->clk) && clki->min_freq &&
485 				clki->max_freq)
486 			dev_err(hba->dev, "clk: %s, rate: %u\n",
487 					clki->name, clki->curr_freq);
488 	}
489 }
490 
491 static void ufshcd_print_evt(struct ufs_hba *hba, u32 id,
492 			     const char *err_name)
493 {
494 	int i;
495 	bool found = false;
496 	const struct ufs_event_hist *e;
497 
498 	if (id >= UFS_EVT_CNT)
499 		return;
500 
501 	e = &hba->ufs_stats.event[id];
502 
503 	for (i = 0; i < UFS_EVENT_HIST_LENGTH; i++) {
504 		int p = (i + e->pos) % UFS_EVENT_HIST_LENGTH;
505 
506 		if (e->tstamp[p] == 0)
507 			continue;
508 		dev_err(hba->dev, "%s[%d] = 0x%x at %lld us\n", err_name, p,
509 			e->val[p], div_u64(e->tstamp[p], 1000));
510 		found = true;
511 	}
512 
513 	if (!found)
514 		dev_err(hba->dev, "No record of %s\n", err_name);
515 	else
516 		dev_err(hba->dev, "%s: total cnt=%llu\n", err_name, e->cnt);
517 }
518 
519 static void ufshcd_print_evt_hist(struct ufs_hba *hba)
520 {
521 	ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, "host_regs: ");
522 
523 	ufshcd_print_evt(hba, UFS_EVT_PA_ERR, "pa_err");
524 	ufshcd_print_evt(hba, UFS_EVT_DL_ERR, "dl_err");
525 	ufshcd_print_evt(hba, UFS_EVT_NL_ERR, "nl_err");
526 	ufshcd_print_evt(hba, UFS_EVT_TL_ERR, "tl_err");
527 	ufshcd_print_evt(hba, UFS_EVT_DME_ERR, "dme_err");
528 	ufshcd_print_evt(hba, UFS_EVT_AUTO_HIBERN8_ERR,
529 			 "auto_hibern8_err");
530 	ufshcd_print_evt(hba, UFS_EVT_FATAL_ERR, "fatal_err");
531 	ufshcd_print_evt(hba, UFS_EVT_LINK_STARTUP_FAIL,
532 			 "link_startup_fail");
533 	ufshcd_print_evt(hba, UFS_EVT_RESUME_ERR, "resume_fail");
534 	ufshcd_print_evt(hba, UFS_EVT_SUSPEND_ERR,
535 			 "suspend_fail");
536 	ufshcd_print_evt(hba, UFS_EVT_WL_RES_ERR, "wlun resume_fail");
537 	ufshcd_print_evt(hba, UFS_EVT_WL_SUSP_ERR,
538 			 "wlun suspend_fail");
539 	ufshcd_print_evt(hba, UFS_EVT_DEV_RESET, "dev_reset");
540 	ufshcd_print_evt(hba, UFS_EVT_HOST_RESET, "host_reset");
541 	ufshcd_print_evt(hba, UFS_EVT_ABORT, "task_abort");
542 
543 	ufshcd_vops_dbg_register_dump(hba);
544 }
545 
546 static
547 void ufshcd_print_tr(struct ufs_hba *hba, int tag, bool pr_prdt)
548 {
549 	const struct ufshcd_lrb *lrbp;
550 	int prdt_length;
551 
552 	lrbp = &hba->lrb[tag];
553 
554 	dev_err(hba->dev, "UPIU[%d] - issue time %lld us\n",
555 			tag, div_u64(lrbp->issue_time_stamp_local_clock, 1000));
556 	dev_err(hba->dev, "UPIU[%d] - complete time %lld us\n",
557 			tag, div_u64(lrbp->compl_time_stamp_local_clock, 1000));
558 	dev_err(hba->dev,
559 		"UPIU[%d] - Transfer Request Descriptor phys@0x%llx\n",
560 		tag, (u64)lrbp->utrd_dma_addr);
561 
562 	ufshcd_hex_dump("UPIU TRD: ", lrbp->utr_descriptor_ptr,
563 			sizeof(struct utp_transfer_req_desc));
564 	dev_err(hba->dev, "UPIU[%d] - Request UPIU phys@0x%llx\n", tag,
565 		(u64)lrbp->ucd_req_dma_addr);
566 	ufshcd_hex_dump("UPIU REQ: ", lrbp->ucd_req_ptr,
567 			sizeof(struct utp_upiu_req));
568 	dev_err(hba->dev, "UPIU[%d] - Response UPIU phys@0x%llx\n", tag,
569 		(u64)lrbp->ucd_rsp_dma_addr);
570 	ufshcd_hex_dump("UPIU RSP: ", lrbp->ucd_rsp_ptr,
571 			sizeof(struct utp_upiu_rsp));
572 
573 	prdt_length = le16_to_cpu(
574 		lrbp->utr_descriptor_ptr->prd_table_length);
575 	if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN)
576 		prdt_length /= ufshcd_sg_entry_size(hba);
577 
578 	dev_err(hba->dev,
579 		"UPIU[%d] - PRDT - %d entries  phys@0x%llx\n",
580 		tag, prdt_length,
581 		(u64)lrbp->ucd_prdt_dma_addr);
582 
583 	if (pr_prdt)
584 		ufshcd_hex_dump("UPIU PRDT: ", lrbp->ucd_prdt_ptr,
585 			ufshcd_sg_entry_size(hba) * prdt_length);
586 }
587 
588 static bool ufshcd_print_tr_iter(struct request *req, void *priv)
589 {
590 	struct scsi_device *sdev = req->q->queuedata;
591 	struct Scsi_Host *shost = sdev->host;
592 	struct ufs_hba *hba = shost_priv(shost);
593 
594 	ufshcd_print_tr(hba, req->tag, *(bool *)priv);
595 
596 	return true;
597 }
598 
599 /**
600  * ufshcd_print_trs_all - print trs for all started requests.
601  * @hba: per-adapter instance.
602  * @pr_prdt: need to print prdt or not.
603  */
604 static void ufshcd_print_trs_all(struct ufs_hba *hba, bool pr_prdt)
605 {
606 	blk_mq_tagset_busy_iter(&hba->host->tag_set, ufshcd_print_tr_iter, &pr_prdt);
607 }
608 
609 static void ufshcd_print_tmrs(struct ufs_hba *hba, unsigned long bitmap)
610 {
611 	int tag;
612 
613 	for_each_set_bit(tag, &bitmap, hba->nutmrs) {
614 		struct utp_task_req_desc *tmrdp = &hba->utmrdl_base_addr[tag];
615 
616 		dev_err(hba->dev, "TM[%d] - Task Management Header\n", tag);
617 		ufshcd_hex_dump("", tmrdp, sizeof(*tmrdp));
618 	}
619 }
620 
621 static void ufshcd_print_host_state(struct ufs_hba *hba)
622 {
623 	const struct scsi_device *sdev_ufs = hba->ufs_device_wlun;
624 
625 	dev_err(hba->dev, "UFS Host state=%d\n", hba->ufshcd_state);
626 	dev_err(hba->dev, "outstanding reqs=0x%lx tasks=0x%lx\n",
627 		hba->outstanding_reqs, hba->outstanding_tasks);
628 	dev_err(hba->dev, "saved_err=0x%x, saved_uic_err=0x%x\n",
629 		hba->saved_err, hba->saved_uic_err);
630 	dev_err(hba->dev, "Device power mode=%d, UIC link state=%d\n",
631 		hba->curr_dev_pwr_mode, hba->uic_link_state);
632 	dev_err(hba->dev, "PM in progress=%d, sys. suspended=%d\n",
633 		hba->pm_op_in_progress, hba->is_sys_suspended);
634 	dev_err(hba->dev, "Auto BKOPS=%d, Host self-block=%d\n",
635 		hba->auto_bkops_enabled, hba->host->host_self_blocked);
636 	dev_err(hba->dev, "Clk gate=%d\n", hba->clk_gating.state);
637 	dev_err(hba->dev,
638 		"last_hibern8_exit_tstamp at %lld us, hibern8_exit_cnt=%d\n",
639 		div_u64(hba->ufs_stats.last_hibern8_exit_tstamp, 1000),
640 		hba->ufs_stats.hibern8_exit_cnt);
641 	dev_err(hba->dev, "last intr at %lld us, last intr status=0x%x\n",
642 		div_u64(hba->ufs_stats.last_intr_ts, 1000),
643 		hba->ufs_stats.last_intr_status);
644 	dev_err(hba->dev, "error handling flags=0x%x, req. abort count=%d\n",
645 		hba->eh_flags, hba->req_abort_count);
646 	dev_err(hba->dev, "hba->ufs_version=0x%x, Host capabilities=0x%x, caps=0x%x\n",
647 		hba->ufs_version, hba->capabilities, hba->caps);
648 	dev_err(hba->dev, "quirks=0x%x, dev. quirks=0x%x\n", hba->quirks,
649 		hba->dev_quirks);
650 	if (sdev_ufs)
651 		dev_err(hba->dev, "UFS dev info: %.8s %.16s rev %.4s\n",
652 			sdev_ufs->vendor, sdev_ufs->model, sdev_ufs->rev);
653 
654 	ufshcd_print_clk_freqs(hba);
655 }
656 
657 /**
658  * ufshcd_print_pwr_info - print power params as saved in hba
659  * power info
660  * @hba: per-adapter instance
661  */
662 static void ufshcd_print_pwr_info(struct ufs_hba *hba)
663 {
664 	static const char * const names[] = {
665 		"INVALID MODE",
666 		"FAST MODE",
667 		"SLOW_MODE",
668 		"INVALID MODE",
669 		"FASTAUTO_MODE",
670 		"SLOWAUTO_MODE",
671 		"INVALID MODE",
672 	};
673 
674 	/*
675 	 * Using dev_dbg to avoid messages during runtime PM to avoid
676 	 * never-ending cycles of messages written back to storage by user space
677 	 * causing runtime resume, causing more messages and so on.
678 	 */
679 	dev_dbg(hba->dev, "%s:[RX, TX]: gear=[%d, %d], lane[%d, %d], pwr[%s, %s], rate = %d\n",
680 		 __func__,
681 		 hba->pwr_info.gear_rx, hba->pwr_info.gear_tx,
682 		 hba->pwr_info.lane_rx, hba->pwr_info.lane_tx,
683 		 names[hba->pwr_info.pwr_rx],
684 		 names[hba->pwr_info.pwr_tx],
685 		 hba->pwr_info.hs_rate);
686 }
687 
688 static void ufshcd_device_reset(struct ufs_hba *hba)
689 {
690 	int err;
691 
692 	err = ufshcd_vops_device_reset(hba);
693 
694 	if (!err) {
695 		ufshcd_set_ufs_dev_active(hba);
696 		if (ufshcd_is_wb_allowed(hba)) {
697 			hba->dev_info.wb_enabled = false;
698 			hba->dev_info.wb_buf_flush_enabled = false;
699 		}
700 		if (hba->dev_info.rtc_type == UFS_RTC_RELATIVE)
701 			hba->dev_info.rtc_time_baseline = 0;
702 	}
703 	if (err != -EOPNOTSUPP)
704 		ufshcd_update_evt_hist(hba, UFS_EVT_DEV_RESET, err);
705 }
706 
707 void ufshcd_delay_us(unsigned long us, unsigned long tolerance)
708 {
709 	if (!us)
710 		return;
711 
712 	if (us < 10)
713 		udelay(us);
714 	else
715 		usleep_range(us, us + tolerance);
716 }
717 EXPORT_SYMBOL_GPL(ufshcd_delay_us);
718 
719 /**
720  * ufshcd_wait_for_register - wait for register value to change
721  * @hba: per-adapter interface
722  * @reg: mmio register offset
723  * @mask: mask to apply to the read register value
724  * @val: value to wait for
725  * @interval_us: polling interval in microseconds
726  * @timeout_ms: timeout in milliseconds
727  *
728  * Return: -ETIMEDOUT on error, zero on success.
729  */
730 static int ufshcd_wait_for_register(struct ufs_hba *hba, u32 reg, u32 mask,
731 				    u32 val, unsigned long interval_us,
732 				    unsigned long timeout_ms)
733 {
734 	u32 v;
735 
736 	val &= mask; /* ignore bits that we don't intend to wait on */
737 
738 	return read_poll_timeout(ufshcd_readl, v, (v & mask) == val,
739 				 interval_us, timeout_ms * 1000, false, hba, reg);
740 }
741 
742 /**
743  * ufshcd_get_intr_mask - Get the interrupt bit mask
744  * @hba: Pointer to adapter instance
745  *
746  * Return: interrupt bit mask per version
747  */
748 static inline u32 ufshcd_get_intr_mask(struct ufs_hba *hba)
749 {
750 	if (hba->ufs_version <= ufshci_version(2, 0))
751 		return INTERRUPT_MASK_ALL_VER_11;
752 
753 	return INTERRUPT_MASK_ALL_VER_21;
754 }
755 
756 /**
757  * ufshcd_get_ufs_version - Get the UFS version supported by the HBA
758  * @hba: Pointer to adapter instance
759  *
760  * Return: UFSHCI version supported by the controller
761  */
762 static inline u32 ufshcd_get_ufs_version(struct ufs_hba *hba)
763 {
764 	u32 ufshci_ver;
765 
766 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_UFS_HCI_VERSION)
767 		ufshci_ver = ufshcd_vops_get_ufs_hci_version(hba);
768 	else
769 		ufshci_ver = ufshcd_readl(hba, REG_UFS_VERSION);
770 
771 	/*
772 	 * UFSHCI v1.x uses a different version scheme, in order
773 	 * to allow the use of comparisons with the ufshci_version
774 	 * function, we convert it to the same scheme as ufs 2.0+.
775 	 */
776 	if (ufshci_ver & 0x00010000)
777 		return ufshci_version(1, ufshci_ver & 0x00000100);
778 
779 	return ufshci_ver;
780 }
781 
782 /**
783  * ufshcd_is_device_present - Check if any device connected to
784  *			      the host controller
785  * @hba: pointer to adapter instance
786  *
787  * Return: true if device present, false if no device detected
788  */
789 static inline bool ufshcd_is_device_present(struct ufs_hba *hba)
790 {
791 	return ufshcd_readl(hba, REG_CONTROLLER_STATUS) & DEVICE_PRESENT;
792 }
793 
794 /**
795  * ufshcd_get_tr_ocs - Get the UTRD Overall Command Status
796  * @lrbp: pointer to local command reference block
797  * @cqe: pointer to the completion queue entry
798  *
799  * This function is used to get the OCS field from UTRD
800  *
801  * Return: the OCS field in the UTRD.
802  */
803 static enum utp_ocs ufshcd_get_tr_ocs(struct ufshcd_lrb *lrbp,
804 				      struct cq_entry *cqe)
805 {
806 	if (cqe)
807 		return le32_to_cpu(cqe->status) & MASK_OCS;
808 
809 	return lrbp->utr_descriptor_ptr->header.ocs & MASK_OCS;
810 }
811 
812 /**
813  * ufshcd_utrl_clear() - Clear requests from the controller request list.
814  * @hba: per adapter instance
815  * @mask: mask with one bit set for each request to be cleared
816  */
817 static inline void ufshcd_utrl_clear(struct ufs_hba *hba, u32 mask)
818 {
819 	if (hba->quirks & UFSHCI_QUIRK_BROKEN_REQ_LIST_CLR)
820 		mask = ~mask;
821 	/*
822 	 * From the UFSHCI specification: "UTP Transfer Request List CLear
823 	 * Register (UTRLCLR): This field is bit significant. Each bit
824 	 * corresponds to a slot in the UTP Transfer Request List, where bit 0
825 	 * corresponds to request slot 0. A bit in this field is set to ‘0’
826 	 * by host software to indicate to the host controller that a transfer
827 	 * request slot is cleared. The host controller
828 	 * shall free up any resources associated to the request slot
829 	 * immediately, and shall set the associated bit in UTRLDBR to ‘0’. The
830 	 * host software indicates no change to request slots by setting the
831 	 * associated bits in this field to ‘1’. Bits in this field shall only
832 	 * be set ‘1’ or ‘0’ by host software when UTRLRSR is set to ‘1’."
833 	 */
834 	ufshcd_writel(hba, ~mask, REG_UTP_TRANSFER_REQ_LIST_CLEAR);
835 }
836 
837 /**
838  * ufshcd_utmrl_clear - Clear a bit in UTMRLCLR register
839  * @hba: per adapter instance
840  * @pos: position of the bit to be cleared
841  */
842 static inline void ufshcd_utmrl_clear(struct ufs_hba *hba, u32 pos)
843 {
844 	if (hba->quirks & UFSHCI_QUIRK_BROKEN_REQ_LIST_CLR)
845 		ufshcd_writel(hba, (1 << pos), REG_UTP_TASK_REQ_LIST_CLEAR);
846 	else
847 		ufshcd_writel(hba, ~(1 << pos), REG_UTP_TASK_REQ_LIST_CLEAR);
848 }
849 
850 /**
851  * ufshcd_get_lists_status - Check UCRDY, UTRLRDY and UTMRLRDY
852  * @reg: Register value of host controller status
853  *
854  * Return: 0 on success; a positive value if failed.
855  */
856 static inline int ufshcd_get_lists_status(u32 reg)
857 {
858 	return !((reg & UFSHCD_STATUS_READY) == UFSHCD_STATUS_READY);
859 }
860 
861 /**
862  * ufshcd_get_uic_cmd_result - Get the UIC command result
863  * @hba: Pointer to adapter instance
864  *
865  * This function gets the result of UIC command completion
866  *
867  * Return: 0 on success; non-zero value on error.
868  */
869 static inline int ufshcd_get_uic_cmd_result(struct ufs_hba *hba)
870 {
871 	return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_2) &
872 	       MASK_UIC_COMMAND_RESULT;
873 }
874 
875 /**
876  * ufshcd_get_dme_attr_val - Get the value of attribute returned by UIC command
877  * @hba: Pointer to adapter instance
878  *
879  * This function gets UIC command argument3
880  *
881  * Return: 0 on success; non-zero value on error.
882  */
883 static inline u32 ufshcd_get_dme_attr_val(struct ufs_hba *hba)
884 {
885 	return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_3);
886 }
887 
888 /**
889  * ufshcd_get_req_rsp - returns the TR response transaction type
890  * @ucd_rsp_ptr: pointer to response UPIU
891  *
892  * Return: UPIU type.
893  */
894 static inline enum upiu_response_transaction
895 ufshcd_get_req_rsp(struct utp_upiu_rsp *ucd_rsp_ptr)
896 {
897 	return ucd_rsp_ptr->header.transaction_code;
898 }
899 
900 /**
901  * ufshcd_is_exception_event - Check if the device raised an exception event
902  * @ucd_rsp_ptr: pointer to response UPIU
903  *
904  * The function checks if the device raised an exception event indicated in
905  * the Device Information field of response UPIU.
906  *
907  * Return: true if exception is raised, false otherwise.
908  */
909 static inline bool ufshcd_is_exception_event(struct utp_upiu_rsp *ucd_rsp_ptr)
910 {
911 	return ucd_rsp_ptr->header.device_information & 1;
912 }
913 
914 /**
915  * ufshcd_reset_intr_aggr - Reset interrupt aggregation values.
916  * @hba: per adapter instance
917  */
918 static inline void
919 ufshcd_reset_intr_aggr(struct ufs_hba *hba)
920 {
921 	ufshcd_writel(hba, INT_AGGR_ENABLE |
922 		      INT_AGGR_COUNTER_AND_TIMER_RESET,
923 		      REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
924 }
925 
926 /**
927  * ufshcd_config_intr_aggr - Configure interrupt aggregation values.
928  * @hba: per adapter instance
929  * @cnt: Interrupt aggregation counter threshold
930  * @tmout: Interrupt aggregation timeout value
931  */
932 static inline void
933 ufshcd_config_intr_aggr(struct ufs_hba *hba, u8 cnt, u8 tmout)
934 {
935 	ufshcd_writel(hba, INT_AGGR_ENABLE | INT_AGGR_PARAM_WRITE |
936 		      INT_AGGR_COUNTER_THLD_VAL(cnt) |
937 		      INT_AGGR_TIMEOUT_VAL(tmout),
938 		      REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
939 }
940 
941 /**
942  * ufshcd_disable_intr_aggr - Disables interrupt aggregation.
943  * @hba: per adapter instance
944  */
945 static inline void ufshcd_disable_intr_aggr(struct ufs_hba *hba)
946 {
947 	ufshcd_writel(hba, 0, REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
948 }
949 
950 /**
951  * ufshcd_enable_run_stop_reg - Enable run-stop registers,
952  *			When run-stop registers are set to 1, it indicates the
953  *			host controller that it can process the requests
954  * @hba: per adapter instance
955  */
956 static void ufshcd_enable_run_stop_reg(struct ufs_hba *hba)
957 {
958 	ufshcd_writel(hba, UTP_TASK_REQ_LIST_RUN_STOP_BIT,
959 		      REG_UTP_TASK_REQ_LIST_RUN_STOP);
960 	ufshcd_writel(hba, UTP_TRANSFER_REQ_LIST_RUN_STOP_BIT,
961 		      REG_UTP_TRANSFER_REQ_LIST_RUN_STOP);
962 }
963 
964 /**
965  * ufshcd_hba_start - Start controller initialization sequence
966  * @hba: per adapter instance
967  */
968 static inline void ufshcd_hba_start(struct ufs_hba *hba)
969 {
970 	u32 val = CONTROLLER_ENABLE;
971 
972 	if (ufshcd_crypto_enable(hba))
973 		val |= CRYPTO_GENERAL_ENABLE;
974 
975 	ufshcd_writel(hba, val, REG_CONTROLLER_ENABLE);
976 }
977 
978 /**
979  * ufshcd_is_hba_active - Get controller state
980  * @hba: per adapter instance
981  *
982  * Return: true if and only if the controller is active.
983  */
984 bool ufshcd_is_hba_active(struct ufs_hba *hba)
985 {
986 	return ufshcd_readl(hba, REG_CONTROLLER_ENABLE) & CONTROLLER_ENABLE;
987 }
988 EXPORT_SYMBOL_GPL(ufshcd_is_hba_active);
989 
990 /**
991  * ufshcd_pm_qos_init - initialize PM QoS request
992  * @hba: per adapter instance
993  */
994 void ufshcd_pm_qos_init(struct ufs_hba *hba)
995 {
996 
997 	if (hba->pm_qos_enabled)
998 		return;
999 
1000 	cpu_latency_qos_add_request(&hba->pm_qos_req, PM_QOS_DEFAULT_VALUE);
1001 
1002 	if (cpu_latency_qos_request_active(&hba->pm_qos_req))
1003 		hba->pm_qos_enabled = true;
1004 }
1005 
1006 /**
1007  * ufshcd_pm_qos_exit - remove request from PM QoS
1008  * @hba: per adapter instance
1009  */
1010 void ufshcd_pm_qos_exit(struct ufs_hba *hba)
1011 {
1012 	if (!hba->pm_qos_enabled)
1013 		return;
1014 
1015 	cpu_latency_qos_remove_request(&hba->pm_qos_req);
1016 	hba->pm_qos_enabled = false;
1017 }
1018 
1019 /**
1020  * ufshcd_pm_qos_update - update PM QoS request
1021  * @hba: per adapter instance
1022  * @on: If True, vote for perf PM QoS mode otherwise power save mode
1023  */
1024 static void ufshcd_pm_qos_update(struct ufs_hba *hba, bool on)
1025 {
1026 	if (!hba->pm_qos_enabled)
1027 		return;
1028 
1029 	cpu_latency_qos_update_request(&hba->pm_qos_req, on ? 0 : PM_QOS_DEFAULT_VALUE);
1030 }
1031 
1032 /**
1033  * ufshcd_set_clk_freq - set UFS controller clock frequencies
1034  * @hba: per adapter instance
1035  * @scale_up: If True, set max possible frequency othewise set low frequency
1036  *
1037  * Return: 0 if successful; < 0 upon failure.
1038  */
1039 static int ufshcd_set_clk_freq(struct ufs_hba *hba, bool scale_up)
1040 {
1041 	int ret = 0;
1042 	struct ufs_clk_info *clki;
1043 	struct list_head *head = &hba->clk_list_head;
1044 
1045 	if (list_empty(head))
1046 		goto out;
1047 
1048 	list_for_each_entry(clki, head, list) {
1049 		if (!IS_ERR_OR_NULL(clki->clk)) {
1050 			if (scale_up && clki->max_freq) {
1051 				if (clki->curr_freq == clki->max_freq)
1052 					continue;
1053 
1054 				ret = clk_set_rate(clki->clk, clki->max_freq);
1055 				if (ret) {
1056 					dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
1057 						__func__, clki->name,
1058 						clki->max_freq, ret);
1059 					break;
1060 				}
1061 				trace_ufshcd_clk_scaling(dev_name(hba->dev),
1062 						"scaled up", clki->name,
1063 						clki->curr_freq,
1064 						clki->max_freq);
1065 
1066 				clki->curr_freq = clki->max_freq;
1067 
1068 			} else if (!scale_up && clki->min_freq) {
1069 				if (clki->curr_freq == clki->min_freq)
1070 					continue;
1071 
1072 				ret = clk_set_rate(clki->clk, clki->min_freq);
1073 				if (ret) {
1074 					dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
1075 						__func__, clki->name,
1076 						clki->min_freq, ret);
1077 					break;
1078 				}
1079 				trace_ufshcd_clk_scaling(dev_name(hba->dev),
1080 						"scaled down", clki->name,
1081 						clki->curr_freq,
1082 						clki->min_freq);
1083 				clki->curr_freq = clki->min_freq;
1084 			}
1085 		}
1086 		dev_dbg(hba->dev, "%s: clk: %s, rate: %lu\n", __func__,
1087 				clki->name, clk_get_rate(clki->clk));
1088 	}
1089 
1090 out:
1091 	return ret;
1092 }
1093 
1094 int ufshcd_opp_config_clks(struct device *dev, struct opp_table *opp_table,
1095 			   struct dev_pm_opp *opp, void *data,
1096 			   bool scaling_down)
1097 {
1098 	struct ufs_hba *hba = dev_get_drvdata(dev);
1099 	struct list_head *head = &hba->clk_list_head;
1100 	struct ufs_clk_info *clki;
1101 	unsigned long freq;
1102 	u8 idx = 0;
1103 	int ret;
1104 
1105 	list_for_each_entry(clki, head, list) {
1106 		if (!IS_ERR_OR_NULL(clki->clk)) {
1107 			freq = dev_pm_opp_get_freq_indexed(opp, idx++);
1108 
1109 			/* Do not set rate for clocks having frequency as 0 */
1110 			if (!freq)
1111 				continue;
1112 
1113 			ret = clk_set_rate(clki->clk, freq);
1114 			if (ret) {
1115 				dev_err(dev, "%s: %s clk set rate(%ldHz) failed, %d\n",
1116 					__func__, clki->name, freq, ret);
1117 				return ret;
1118 			}
1119 
1120 			trace_ufshcd_clk_scaling(dev_name(dev),
1121 				(scaling_down ? "scaled down" : "scaled up"),
1122 				clki->name, hba->clk_scaling.target_freq, freq);
1123 		}
1124 	}
1125 
1126 	return 0;
1127 }
1128 EXPORT_SYMBOL_GPL(ufshcd_opp_config_clks);
1129 
1130 static int ufshcd_opp_set_rate(struct ufs_hba *hba, unsigned long freq)
1131 {
1132 	struct dev_pm_opp *opp;
1133 	int ret;
1134 
1135 	opp = dev_pm_opp_find_freq_floor_indexed(hba->dev,
1136 						 &freq, 0);
1137 	if (IS_ERR(opp))
1138 		return PTR_ERR(opp);
1139 
1140 	ret = dev_pm_opp_set_opp(hba->dev, opp);
1141 	dev_pm_opp_put(opp);
1142 
1143 	return ret;
1144 }
1145 
1146 /**
1147  * ufshcd_scale_clks - scale up or scale down UFS controller clocks
1148  * @hba: per adapter instance
1149  * @freq: frequency to scale
1150  * @scale_up: True if scaling up and false if scaling down
1151  *
1152  * Return: 0 if successful; < 0 upon failure.
1153  */
1154 static int ufshcd_scale_clks(struct ufs_hba *hba, unsigned long freq,
1155 			     bool scale_up)
1156 {
1157 	int ret = 0;
1158 	ktime_t start = ktime_get();
1159 
1160 	ret = ufshcd_vops_clk_scale_notify(hba, scale_up, PRE_CHANGE);
1161 	if (ret)
1162 		goto out;
1163 
1164 	if (hba->use_pm_opp)
1165 		ret = ufshcd_opp_set_rate(hba, freq);
1166 	else
1167 		ret = ufshcd_set_clk_freq(hba, scale_up);
1168 	if (ret)
1169 		goto out;
1170 
1171 	ret = ufshcd_vops_clk_scale_notify(hba, scale_up, POST_CHANGE);
1172 	if (ret) {
1173 		if (hba->use_pm_opp)
1174 			ufshcd_opp_set_rate(hba,
1175 					    hba->devfreq->previous_freq);
1176 		else
1177 			ufshcd_set_clk_freq(hba, !scale_up);
1178 		goto out;
1179 	}
1180 
1181 	ufshcd_pm_qos_update(hba, scale_up);
1182 
1183 out:
1184 	trace_ufshcd_profile_clk_scaling(dev_name(hba->dev),
1185 			(scale_up ? "up" : "down"),
1186 			ktime_to_us(ktime_sub(ktime_get(), start)), ret);
1187 	return ret;
1188 }
1189 
1190 /**
1191  * ufshcd_is_devfreq_scaling_required - check if scaling is required or not
1192  * @hba: per adapter instance
1193  * @freq: frequency to scale
1194  * @scale_up: True if scaling up and false if scaling down
1195  *
1196  * Return: true if scaling is required, false otherwise.
1197  */
1198 static bool ufshcd_is_devfreq_scaling_required(struct ufs_hba *hba,
1199 					       unsigned long freq, bool scale_up)
1200 {
1201 	struct ufs_clk_info *clki;
1202 	struct list_head *head = &hba->clk_list_head;
1203 
1204 	if (list_empty(head))
1205 		return false;
1206 
1207 	if (hba->use_pm_opp)
1208 		return freq != hba->clk_scaling.target_freq;
1209 
1210 	list_for_each_entry(clki, head, list) {
1211 		if (!IS_ERR_OR_NULL(clki->clk)) {
1212 			if (scale_up && clki->max_freq) {
1213 				if (clki->curr_freq == clki->max_freq)
1214 					continue;
1215 				return true;
1216 			} else if (!scale_up && clki->min_freq) {
1217 				if (clki->curr_freq == clki->min_freq)
1218 					continue;
1219 				return true;
1220 			}
1221 		}
1222 	}
1223 
1224 	return false;
1225 }
1226 
1227 /*
1228  * Determine the number of pending commands by counting the bits in the SCSI
1229  * device budget maps. This approach has been selected because a bit is set in
1230  * the budget map before scsi_host_queue_ready() checks the host_self_blocked
1231  * flag. The host_self_blocked flag can be modified by calling
1232  * scsi_block_requests() or scsi_unblock_requests().
1233  */
1234 static u32 ufshcd_pending_cmds(struct ufs_hba *hba)
1235 {
1236 	const struct scsi_device *sdev;
1237 	unsigned long flags;
1238 	u32 pending = 0;
1239 
1240 	spin_lock_irqsave(hba->host->host_lock, flags);
1241 	__shost_for_each_device(sdev, hba->host)
1242 		pending += sbitmap_weight(&sdev->budget_map);
1243 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1244 
1245 	return pending;
1246 }
1247 
1248 /*
1249  * Wait until all pending SCSI commands and TMFs have finished or the timeout
1250  * has expired.
1251  *
1252  * Return: 0 upon success; -EBUSY upon timeout.
1253  */
1254 static int ufshcd_wait_for_doorbell_clr(struct ufs_hba *hba,
1255 					u64 wait_timeout_us)
1256 {
1257 	int ret = 0;
1258 	u32 tm_doorbell;
1259 	u32 tr_pending;
1260 	bool timeout = false, do_last_check = false;
1261 	ktime_t start;
1262 
1263 	ufshcd_hold(hba);
1264 	/*
1265 	 * Wait for all the outstanding tasks/transfer requests.
1266 	 * Verify by checking the doorbell registers are clear.
1267 	 */
1268 	start = ktime_get();
1269 	do {
1270 		if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL) {
1271 			ret = -EBUSY;
1272 			goto out;
1273 		}
1274 
1275 		tm_doorbell = ufshcd_readl(hba, REG_UTP_TASK_REQ_DOOR_BELL);
1276 		tr_pending = ufshcd_pending_cmds(hba);
1277 		if (!tm_doorbell && !tr_pending) {
1278 			timeout = false;
1279 			break;
1280 		} else if (do_last_check) {
1281 			break;
1282 		}
1283 
1284 		io_schedule_timeout(msecs_to_jiffies(20));
1285 		if (ktime_to_us(ktime_sub(ktime_get(), start)) >
1286 		    wait_timeout_us) {
1287 			timeout = true;
1288 			/*
1289 			 * We might have scheduled out for long time so make
1290 			 * sure to check if doorbells are cleared by this time
1291 			 * or not.
1292 			 */
1293 			do_last_check = true;
1294 		}
1295 	} while (tm_doorbell || tr_pending);
1296 
1297 	if (timeout) {
1298 		dev_err(hba->dev,
1299 			"%s: timedout waiting for doorbell to clear (tm=0x%x, tr=0x%x)\n",
1300 			__func__, tm_doorbell, tr_pending);
1301 		ret = -EBUSY;
1302 	}
1303 out:
1304 	ufshcd_release(hba);
1305 	return ret;
1306 }
1307 
1308 /**
1309  * ufshcd_scale_gear - scale up/down UFS gear
1310  * @hba: per adapter instance
1311  * @scale_up: True for scaling up gear and false for scaling down
1312  *
1313  * Return: 0 for success; -EBUSY if scaling can't happen at this time;
1314  * non-zero for any other errors.
1315  */
1316 static int ufshcd_scale_gear(struct ufs_hba *hba, bool scale_up)
1317 {
1318 	int ret = 0;
1319 	struct ufs_pa_layer_attr new_pwr_info;
1320 
1321 	if (scale_up) {
1322 		memcpy(&new_pwr_info, &hba->clk_scaling.saved_pwr_info,
1323 		       sizeof(struct ufs_pa_layer_attr));
1324 	} else {
1325 		memcpy(&new_pwr_info, &hba->pwr_info,
1326 		       sizeof(struct ufs_pa_layer_attr));
1327 
1328 		if (hba->pwr_info.gear_tx > hba->clk_scaling.min_gear ||
1329 		    hba->pwr_info.gear_rx > hba->clk_scaling.min_gear) {
1330 			/* save the current power mode */
1331 			memcpy(&hba->clk_scaling.saved_pwr_info,
1332 				&hba->pwr_info,
1333 				sizeof(struct ufs_pa_layer_attr));
1334 
1335 			/* scale down gear */
1336 			new_pwr_info.gear_tx = hba->clk_scaling.min_gear;
1337 			new_pwr_info.gear_rx = hba->clk_scaling.min_gear;
1338 		}
1339 	}
1340 
1341 	/* check if the power mode needs to be changed or not? */
1342 	ret = ufshcd_config_pwr_mode(hba, &new_pwr_info);
1343 	if (ret)
1344 		dev_err(hba->dev, "%s: failed err %d, old gear: (tx %d rx %d), new gear: (tx %d rx %d)",
1345 			__func__, ret,
1346 			hba->pwr_info.gear_tx, hba->pwr_info.gear_rx,
1347 			new_pwr_info.gear_tx, new_pwr_info.gear_rx);
1348 
1349 	return ret;
1350 }
1351 
1352 /*
1353  * Wait until all pending SCSI commands and TMFs have finished or the timeout
1354  * has expired.
1355  *
1356  * Return: 0 upon success; -EBUSY upon timeout.
1357  */
1358 static int ufshcd_clock_scaling_prepare(struct ufs_hba *hba, u64 timeout_us)
1359 {
1360 	int ret = 0;
1361 	/*
1362 	 * make sure that there are no outstanding requests when
1363 	 * clock scaling is in progress
1364 	 */
1365 	blk_mq_quiesce_tagset(&hba->host->tag_set);
1366 	mutex_lock(&hba->wb_mutex);
1367 	down_write(&hba->clk_scaling_lock);
1368 
1369 	if (!hba->clk_scaling.is_allowed ||
1370 	    ufshcd_wait_for_doorbell_clr(hba, timeout_us)) {
1371 		ret = -EBUSY;
1372 		up_write(&hba->clk_scaling_lock);
1373 		mutex_unlock(&hba->wb_mutex);
1374 		blk_mq_unquiesce_tagset(&hba->host->tag_set);
1375 		goto out;
1376 	}
1377 
1378 	/* let's not get into low power until clock scaling is completed */
1379 	ufshcd_hold(hba);
1380 
1381 out:
1382 	return ret;
1383 }
1384 
1385 static void ufshcd_clock_scaling_unprepare(struct ufs_hba *hba, int err, bool scale_up)
1386 {
1387 	up_write(&hba->clk_scaling_lock);
1388 
1389 	/* Enable Write Booster if we have scaled up else disable it */
1390 	if (ufshcd_enable_wb_if_scaling_up(hba) && !err)
1391 		ufshcd_wb_toggle(hba, scale_up);
1392 
1393 	mutex_unlock(&hba->wb_mutex);
1394 
1395 	blk_mq_unquiesce_tagset(&hba->host->tag_set);
1396 	ufshcd_release(hba);
1397 }
1398 
1399 /**
1400  * ufshcd_devfreq_scale - scale up/down UFS clocks and gear
1401  * @hba: per adapter instance
1402  * @freq: frequency to scale
1403  * @scale_up: True for scaling up and false for scalin down
1404  *
1405  * Return: 0 for success; -EBUSY if scaling can't happen at this time; non-zero
1406  * for any other errors.
1407  */
1408 static int ufshcd_devfreq_scale(struct ufs_hba *hba, unsigned long freq,
1409 				bool scale_up)
1410 {
1411 	int ret = 0;
1412 
1413 	ret = ufshcd_clock_scaling_prepare(hba, 1 * USEC_PER_SEC);
1414 	if (ret)
1415 		return ret;
1416 
1417 	/* scale down the gear before scaling down clocks */
1418 	if (!scale_up) {
1419 		ret = ufshcd_scale_gear(hba, false);
1420 		if (ret)
1421 			goto out_unprepare;
1422 	}
1423 
1424 	ret = ufshcd_scale_clks(hba, freq, scale_up);
1425 	if (ret) {
1426 		if (!scale_up)
1427 			ufshcd_scale_gear(hba, true);
1428 		goto out_unprepare;
1429 	}
1430 
1431 	/* scale up the gear after scaling up clocks */
1432 	if (scale_up) {
1433 		ret = ufshcd_scale_gear(hba, true);
1434 		if (ret) {
1435 			ufshcd_scale_clks(hba, hba->devfreq->previous_freq,
1436 					  false);
1437 			goto out_unprepare;
1438 		}
1439 	}
1440 
1441 out_unprepare:
1442 	ufshcd_clock_scaling_unprepare(hba, ret, scale_up);
1443 	return ret;
1444 }
1445 
1446 static void ufshcd_clk_scaling_suspend_work(struct work_struct *work)
1447 {
1448 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1449 					   clk_scaling.suspend_work);
1450 	unsigned long irq_flags;
1451 
1452 	spin_lock_irqsave(hba->host->host_lock, irq_flags);
1453 	if (hba->clk_scaling.active_reqs || hba->clk_scaling.is_suspended) {
1454 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1455 		return;
1456 	}
1457 	hba->clk_scaling.is_suspended = true;
1458 	hba->clk_scaling.window_start_t = 0;
1459 	spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1460 
1461 	devfreq_suspend_device(hba->devfreq);
1462 }
1463 
1464 static void ufshcd_clk_scaling_resume_work(struct work_struct *work)
1465 {
1466 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1467 					   clk_scaling.resume_work);
1468 	unsigned long irq_flags;
1469 
1470 	spin_lock_irqsave(hba->host->host_lock, irq_flags);
1471 	if (!hba->clk_scaling.is_suspended) {
1472 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1473 		return;
1474 	}
1475 	hba->clk_scaling.is_suspended = false;
1476 	spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1477 
1478 	devfreq_resume_device(hba->devfreq);
1479 }
1480 
1481 static int ufshcd_devfreq_target(struct device *dev,
1482 				unsigned long *freq, u32 flags)
1483 {
1484 	int ret = 0;
1485 	struct ufs_hba *hba = dev_get_drvdata(dev);
1486 	ktime_t start;
1487 	bool scale_up = false, sched_clk_scaling_suspend_work = false;
1488 	struct list_head *clk_list = &hba->clk_list_head;
1489 	struct ufs_clk_info *clki;
1490 	unsigned long irq_flags;
1491 
1492 	if (!ufshcd_is_clkscaling_supported(hba))
1493 		return -EINVAL;
1494 
1495 	if (hba->use_pm_opp) {
1496 		struct dev_pm_opp *opp;
1497 
1498 		/* Get the recommended frequency from OPP framework */
1499 		opp = devfreq_recommended_opp(dev, freq, flags);
1500 		if (IS_ERR(opp))
1501 			return PTR_ERR(opp);
1502 
1503 		dev_pm_opp_put(opp);
1504 	} else {
1505 		/* Override with the closest supported frequency */
1506 		clki = list_first_entry(&hba->clk_list_head, struct ufs_clk_info,
1507 					list);
1508 		*freq =	(unsigned long) clk_round_rate(clki->clk, *freq);
1509 	}
1510 
1511 	spin_lock_irqsave(hba->host->host_lock, irq_flags);
1512 	if (ufshcd_eh_in_progress(hba)) {
1513 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1514 		return 0;
1515 	}
1516 
1517 	/* Skip scaling clock when clock scaling is suspended */
1518 	if (hba->clk_scaling.is_suspended) {
1519 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1520 		dev_warn(hba->dev, "clock scaling is suspended, skip");
1521 		return 0;
1522 	}
1523 
1524 	if (!hba->clk_scaling.active_reqs)
1525 		sched_clk_scaling_suspend_work = true;
1526 
1527 	if (list_empty(clk_list)) {
1528 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1529 		goto out;
1530 	}
1531 
1532 	/* Decide based on the target or rounded-off frequency and update */
1533 	if (hba->use_pm_opp)
1534 		scale_up = *freq > hba->clk_scaling.target_freq;
1535 	else
1536 		scale_up = *freq == clki->max_freq;
1537 
1538 	if (!hba->use_pm_opp && !scale_up)
1539 		*freq = clki->min_freq;
1540 
1541 	/* Update the frequency */
1542 	if (!ufshcd_is_devfreq_scaling_required(hba, *freq, scale_up)) {
1543 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1544 		ret = 0;
1545 		goto out; /* no state change required */
1546 	}
1547 	spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1548 
1549 	start = ktime_get();
1550 	ret = ufshcd_devfreq_scale(hba, *freq, scale_up);
1551 	if (!ret)
1552 		hba->clk_scaling.target_freq = *freq;
1553 
1554 	trace_ufshcd_profile_clk_scaling(dev_name(hba->dev),
1555 		(scale_up ? "up" : "down"),
1556 		ktime_to_us(ktime_sub(ktime_get(), start)), ret);
1557 
1558 out:
1559 	if (sched_clk_scaling_suspend_work &&
1560 			(!scale_up || hba->clk_scaling.suspend_on_no_request))
1561 		queue_work(hba->clk_scaling.workq,
1562 			   &hba->clk_scaling.suspend_work);
1563 
1564 	return ret;
1565 }
1566 
1567 static int ufshcd_devfreq_get_dev_status(struct device *dev,
1568 		struct devfreq_dev_status *stat)
1569 {
1570 	struct ufs_hba *hba = dev_get_drvdata(dev);
1571 	struct ufs_clk_scaling *scaling = &hba->clk_scaling;
1572 	unsigned long flags;
1573 	ktime_t curr_t;
1574 
1575 	if (!ufshcd_is_clkscaling_supported(hba))
1576 		return -EINVAL;
1577 
1578 	memset(stat, 0, sizeof(*stat));
1579 
1580 	spin_lock_irqsave(hba->host->host_lock, flags);
1581 	curr_t = ktime_get();
1582 	if (!scaling->window_start_t)
1583 		goto start_window;
1584 
1585 	/*
1586 	 * If current frequency is 0, then the ondemand governor considers
1587 	 * there's no initial frequency set. And it always requests to set
1588 	 * to max. frequency.
1589 	 */
1590 	if (hba->use_pm_opp) {
1591 		stat->current_frequency = hba->clk_scaling.target_freq;
1592 	} else {
1593 		struct list_head *clk_list = &hba->clk_list_head;
1594 		struct ufs_clk_info *clki;
1595 
1596 		clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1597 		stat->current_frequency = clki->curr_freq;
1598 	}
1599 
1600 	if (scaling->is_busy_started)
1601 		scaling->tot_busy_t += ktime_us_delta(curr_t,
1602 				scaling->busy_start_t);
1603 	stat->total_time = ktime_us_delta(curr_t, scaling->window_start_t);
1604 	stat->busy_time = scaling->tot_busy_t;
1605 start_window:
1606 	scaling->window_start_t = curr_t;
1607 	scaling->tot_busy_t = 0;
1608 
1609 	if (scaling->active_reqs) {
1610 		scaling->busy_start_t = curr_t;
1611 		scaling->is_busy_started = true;
1612 	} else {
1613 		scaling->busy_start_t = 0;
1614 		scaling->is_busy_started = false;
1615 	}
1616 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1617 	return 0;
1618 }
1619 
1620 static int ufshcd_devfreq_init(struct ufs_hba *hba)
1621 {
1622 	struct list_head *clk_list = &hba->clk_list_head;
1623 	struct ufs_clk_info *clki;
1624 	struct devfreq *devfreq;
1625 	int ret;
1626 
1627 	/* Skip devfreq if we don't have any clocks in the list */
1628 	if (list_empty(clk_list))
1629 		return 0;
1630 
1631 	if (!hba->use_pm_opp) {
1632 		clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1633 		dev_pm_opp_add(hba->dev, clki->min_freq, 0);
1634 		dev_pm_opp_add(hba->dev, clki->max_freq, 0);
1635 	}
1636 
1637 	ufshcd_vops_config_scaling_param(hba, &hba->vps->devfreq_profile,
1638 					 &hba->vps->ondemand_data);
1639 	devfreq = devfreq_add_device(hba->dev,
1640 			&hba->vps->devfreq_profile,
1641 			DEVFREQ_GOV_SIMPLE_ONDEMAND,
1642 			&hba->vps->ondemand_data);
1643 	if (IS_ERR(devfreq)) {
1644 		ret = PTR_ERR(devfreq);
1645 		dev_err(hba->dev, "Unable to register with devfreq %d\n", ret);
1646 
1647 		if (!hba->use_pm_opp) {
1648 			dev_pm_opp_remove(hba->dev, clki->min_freq);
1649 			dev_pm_opp_remove(hba->dev, clki->max_freq);
1650 		}
1651 		return ret;
1652 	}
1653 
1654 	hba->devfreq = devfreq;
1655 
1656 	return 0;
1657 }
1658 
1659 static void ufshcd_devfreq_remove(struct ufs_hba *hba)
1660 {
1661 	struct list_head *clk_list = &hba->clk_list_head;
1662 
1663 	if (!hba->devfreq)
1664 		return;
1665 
1666 	devfreq_remove_device(hba->devfreq);
1667 	hba->devfreq = NULL;
1668 
1669 	if (!hba->use_pm_opp) {
1670 		struct ufs_clk_info *clki;
1671 
1672 		clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1673 		dev_pm_opp_remove(hba->dev, clki->min_freq);
1674 		dev_pm_opp_remove(hba->dev, clki->max_freq);
1675 	}
1676 }
1677 
1678 static void ufshcd_suspend_clkscaling(struct ufs_hba *hba)
1679 {
1680 	unsigned long flags;
1681 	bool suspend = false;
1682 
1683 	cancel_work_sync(&hba->clk_scaling.suspend_work);
1684 	cancel_work_sync(&hba->clk_scaling.resume_work);
1685 
1686 	spin_lock_irqsave(hba->host->host_lock, flags);
1687 	if (!hba->clk_scaling.is_suspended) {
1688 		suspend = true;
1689 		hba->clk_scaling.is_suspended = true;
1690 		hba->clk_scaling.window_start_t = 0;
1691 	}
1692 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1693 
1694 	if (suspend)
1695 		devfreq_suspend_device(hba->devfreq);
1696 }
1697 
1698 static void ufshcd_resume_clkscaling(struct ufs_hba *hba)
1699 {
1700 	unsigned long flags;
1701 	bool resume = false;
1702 
1703 	spin_lock_irqsave(hba->host->host_lock, flags);
1704 	if (hba->clk_scaling.is_suspended) {
1705 		resume = true;
1706 		hba->clk_scaling.is_suspended = false;
1707 	}
1708 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1709 
1710 	if (resume)
1711 		devfreq_resume_device(hba->devfreq);
1712 }
1713 
1714 static ssize_t ufshcd_clkscale_enable_show(struct device *dev,
1715 		struct device_attribute *attr, char *buf)
1716 {
1717 	struct ufs_hba *hba = dev_get_drvdata(dev);
1718 
1719 	return sysfs_emit(buf, "%d\n", hba->clk_scaling.is_enabled);
1720 }
1721 
1722 static ssize_t ufshcd_clkscale_enable_store(struct device *dev,
1723 		struct device_attribute *attr, const char *buf, size_t count)
1724 {
1725 	struct ufs_hba *hba = dev_get_drvdata(dev);
1726 	u32 value;
1727 	int err = 0;
1728 
1729 	if (kstrtou32(buf, 0, &value))
1730 		return -EINVAL;
1731 
1732 	down(&hba->host_sem);
1733 	if (!ufshcd_is_user_access_allowed(hba)) {
1734 		err = -EBUSY;
1735 		goto out;
1736 	}
1737 
1738 	value = !!value;
1739 	if (value == hba->clk_scaling.is_enabled)
1740 		goto out;
1741 
1742 	ufshcd_rpm_get_sync(hba);
1743 	ufshcd_hold(hba);
1744 
1745 	hba->clk_scaling.is_enabled = value;
1746 
1747 	if (value) {
1748 		ufshcd_resume_clkscaling(hba);
1749 	} else {
1750 		ufshcd_suspend_clkscaling(hba);
1751 		err = ufshcd_devfreq_scale(hba, ULONG_MAX, true);
1752 		if (err)
1753 			dev_err(hba->dev, "%s: failed to scale clocks up %d\n",
1754 					__func__, err);
1755 	}
1756 
1757 	ufshcd_release(hba);
1758 	ufshcd_rpm_put_sync(hba);
1759 out:
1760 	up(&hba->host_sem);
1761 	return err ? err : count;
1762 }
1763 
1764 static void ufshcd_init_clk_scaling_sysfs(struct ufs_hba *hba)
1765 {
1766 	hba->clk_scaling.enable_attr.show = ufshcd_clkscale_enable_show;
1767 	hba->clk_scaling.enable_attr.store = ufshcd_clkscale_enable_store;
1768 	sysfs_attr_init(&hba->clk_scaling.enable_attr.attr);
1769 	hba->clk_scaling.enable_attr.attr.name = "clkscale_enable";
1770 	hba->clk_scaling.enable_attr.attr.mode = 0644;
1771 	if (device_create_file(hba->dev, &hba->clk_scaling.enable_attr))
1772 		dev_err(hba->dev, "Failed to create sysfs for clkscale_enable\n");
1773 }
1774 
1775 static void ufshcd_remove_clk_scaling_sysfs(struct ufs_hba *hba)
1776 {
1777 	if (hba->clk_scaling.enable_attr.attr.name)
1778 		device_remove_file(hba->dev, &hba->clk_scaling.enable_attr);
1779 }
1780 
1781 static void ufshcd_init_clk_scaling(struct ufs_hba *hba)
1782 {
1783 	if (!ufshcd_is_clkscaling_supported(hba))
1784 		return;
1785 
1786 	if (!hba->clk_scaling.min_gear)
1787 		hba->clk_scaling.min_gear = UFS_HS_G1;
1788 
1789 	INIT_WORK(&hba->clk_scaling.suspend_work,
1790 		  ufshcd_clk_scaling_suspend_work);
1791 	INIT_WORK(&hba->clk_scaling.resume_work,
1792 		  ufshcd_clk_scaling_resume_work);
1793 
1794 	hba->clk_scaling.workq = alloc_ordered_workqueue(
1795 		"ufs_clkscaling_%d", WQ_MEM_RECLAIM, hba->host->host_no);
1796 
1797 	hba->clk_scaling.is_initialized = true;
1798 }
1799 
1800 static void ufshcd_exit_clk_scaling(struct ufs_hba *hba)
1801 {
1802 	if (!hba->clk_scaling.is_initialized)
1803 		return;
1804 
1805 	ufshcd_remove_clk_scaling_sysfs(hba);
1806 	destroy_workqueue(hba->clk_scaling.workq);
1807 	ufshcd_devfreq_remove(hba);
1808 	hba->clk_scaling.is_initialized = false;
1809 }
1810 
1811 static void ufshcd_ungate_work(struct work_struct *work)
1812 {
1813 	int ret;
1814 	unsigned long flags;
1815 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1816 			clk_gating.ungate_work);
1817 
1818 	cancel_delayed_work_sync(&hba->clk_gating.gate_work);
1819 
1820 	spin_lock_irqsave(hba->host->host_lock, flags);
1821 	if (hba->clk_gating.state == CLKS_ON) {
1822 		spin_unlock_irqrestore(hba->host->host_lock, flags);
1823 		return;
1824 	}
1825 
1826 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1827 	ufshcd_hba_vreg_set_hpm(hba);
1828 	ufshcd_setup_clocks(hba, true);
1829 
1830 	ufshcd_enable_irq(hba);
1831 
1832 	/* Exit from hibern8 */
1833 	if (ufshcd_can_hibern8_during_gating(hba)) {
1834 		/* Prevent gating in this path */
1835 		hba->clk_gating.is_suspended = true;
1836 		if (ufshcd_is_link_hibern8(hba)) {
1837 			ret = ufshcd_uic_hibern8_exit(hba);
1838 			if (ret)
1839 				dev_err(hba->dev, "%s: hibern8 exit failed %d\n",
1840 					__func__, ret);
1841 			else
1842 				ufshcd_set_link_active(hba);
1843 		}
1844 		hba->clk_gating.is_suspended = false;
1845 	}
1846 }
1847 
1848 /**
1849  * ufshcd_hold - Enable clocks that were gated earlier due to ufshcd_release.
1850  * Also, exit from hibern8 mode and set the link as active.
1851  * @hba: per adapter instance
1852  */
1853 void ufshcd_hold(struct ufs_hba *hba)
1854 {
1855 	bool flush_result;
1856 	unsigned long flags;
1857 
1858 	if (!ufshcd_is_clkgating_allowed(hba) ||
1859 	    !hba->clk_gating.is_initialized)
1860 		return;
1861 	spin_lock_irqsave(hba->host->host_lock, flags);
1862 	hba->clk_gating.active_reqs++;
1863 
1864 start:
1865 	switch (hba->clk_gating.state) {
1866 	case CLKS_ON:
1867 		/*
1868 		 * Wait for the ungate work to complete if in progress.
1869 		 * Though the clocks may be in ON state, the link could
1870 		 * still be in hibner8 state if hibern8 is allowed
1871 		 * during clock gating.
1872 		 * Make sure we exit hibern8 state also in addition to
1873 		 * clocks being ON.
1874 		 */
1875 		if (ufshcd_can_hibern8_during_gating(hba) &&
1876 		    ufshcd_is_link_hibern8(hba)) {
1877 			spin_unlock_irqrestore(hba->host->host_lock, flags);
1878 			flush_result = flush_work(&hba->clk_gating.ungate_work);
1879 			if (hba->clk_gating.is_suspended && !flush_result)
1880 				return;
1881 			spin_lock_irqsave(hba->host->host_lock, flags);
1882 			goto start;
1883 		}
1884 		break;
1885 	case REQ_CLKS_OFF:
1886 		if (cancel_delayed_work(&hba->clk_gating.gate_work)) {
1887 			hba->clk_gating.state = CLKS_ON;
1888 			trace_ufshcd_clk_gating(dev_name(hba->dev),
1889 						hba->clk_gating.state);
1890 			break;
1891 		}
1892 		/*
1893 		 * If we are here, it means gating work is either done or
1894 		 * currently running. Hence, fall through to cancel gating
1895 		 * work and to enable clocks.
1896 		 */
1897 		fallthrough;
1898 	case CLKS_OFF:
1899 		hba->clk_gating.state = REQ_CLKS_ON;
1900 		trace_ufshcd_clk_gating(dev_name(hba->dev),
1901 					hba->clk_gating.state);
1902 		queue_work(hba->clk_gating.clk_gating_workq,
1903 			   &hba->clk_gating.ungate_work);
1904 		/*
1905 		 * fall through to check if we should wait for this
1906 		 * work to be done or not.
1907 		 */
1908 		fallthrough;
1909 	case REQ_CLKS_ON:
1910 		spin_unlock_irqrestore(hba->host->host_lock, flags);
1911 		flush_work(&hba->clk_gating.ungate_work);
1912 		/* Make sure state is CLKS_ON before returning */
1913 		spin_lock_irqsave(hba->host->host_lock, flags);
1914 		goto start;
1915 	default:
1916 		dev_err(hba->dev, "%s: clk gating is in invalid state %d\n",
1917 				__func__, hba->clk_gating.state);
1918 		break;
1919 	}
1920 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1921 }
1922 EXPORT_SYMBOL_GPL(ufshcd_hold);
1923 
1924 static void ufshcd_gate_work(struct work_struct *work)
1925 {
1926 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1927 			clk_gating.gate_work.work);
1928 	unsigned long flags;
1929 	int ret;
1930 
1931 	spin_lock_irqsave(hba->host->host_lock, flags);
1932 	/*
1933 	 * In case you are here to cancel this work the gating state
1934 	 * would be marked as REQ_CLKS_ON. In this case save time by
1935 	 * skipping the gating work and exit after changing the clock
1936 	 * state to CLKS_ON.
1937 	 */
1938 	if (hba->clk_gating.is_suspended ||
1939 		(hba->clk_gating.state != REQ_CLKS_OFF)) {
1940 		hba->clk_gating.state = CLKS_ON;
1941 		trace_ufshcd_clk_gating(dev_name(hba->dev),
1942 					hba->clk_gating.state);
1943 		goto rel_lock;
1944 	}
1945 
1946 	if (ufshcd_is_ufs_dev_busy(hba) || hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL)
1947 		goto rel_lock;
1948 
1949 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1950 
1951 	/* put the link into hibern8 mode before turning off clocks */
1952 	if (ufshcd_can_hibern8_during_gating(hba)) {
1953 		ret = ufshcd_uic_hibern8_enter(hba);
1954 		if (ret) {
1955 			hba->clk_gating.state = CLKS_ON;
1956 			dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
1957 					__func__, ret);
1958 			trace_ufshcd_clk_gating(dev_name(hba->dev),
1959 						hba->clk_gating.state);
1960 			goto out;
1961 		}
1962 		ufshcd_set_link_hibern8(hba);
1963 	}
1964 
1965 	ufshcd_disable_irq(hba);
1966 
1967 	ufshcd_setup_clocks(hba, false);
1968 
1969 	/* Put the host controller in low power mode if possible */
1970 	ufshcd_hba_vreg_set_lpm(hba);
1971 	/*
1972 	 * In case you are here to cancel this work the gating state
1973 	 * would be marked as REQ_CLKS_ON. In this case keep the state
1974 	 * as REQ_CLKS_ON which would anyway imply that clocks are off
1975 	 * and a request to turn them on is pending. By doing this way,
1976 	 * we keep the state machine in tact and this would ultimately
1977 	 * prevent from doing cancel work multiple times when there are
1978 	 * new requests arriving before the current cancel work is done.
1979 	 */
1980 	spin_lock_irqsave(hba->host->host_lock, flags);
1981 	if (hba->clk_gating.state == REQ_CLKS_OFF) {
1982 		hba->clk_gating.state = CLKS_OFF;
1983 		trace_ufshcd_clk_gating(dev_name(hba->dev),
1984 					hba->clk_gating.state);
1985 	}
1986 rel_lock:
1987 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1988 out:
1989 	return;
1990 }
1991 
1992 /* host lock must be held before calling this variant */
1993 static void __ufshcd_release(struct ufs_hba *hba)
1994 {
1995 	if (!ufshcd_is_clkgating_allowed(hba))
1996 		return;
1997 
1998 	hba->clk_gating.active_reqs--;
1999 
2000 	if (hba->clk_gating.active_reqs || hba->clk_gating.is_suspended ||
2001 	    hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL ||
2002 	    hba->outstanding_tasks || !hba->clk_gating.is_initialized ||
2003 	    hba->active_uic_cmd || hba->uic_async_done ||
2004 	    hba->clk_gating.state == CLKS_OFF)
2005 		return;
2006 
2007 	hba->clk_gating.state = REQ_CLKS_OFF;
2008 	trace_ufshcd_clk_gating(dev_name(hba->dev), hba->clk_gating.state);
2009 	queue_delayed_work(hba->clk_gating.clk_gating_workq,
2010 			   &hba->clk_gating.gate_work,
2011 			   msecs_to_jiffies(hba->clk_gating.delay_ms));
2012 }
2013 
2014 void ufshcd_release(struct ufs_hba *hba)
2015 {
2016 	unsigned long flags;
2017 
2018 	spin_lock_irqsave(hba->host->host_lock, flags);
2019 	__ufshcd_release(hba);
2020 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2021 }
2022 EXPORT_SYMBOL_GPL(ufshcd_release);
2023 
2024 static ssize_t ufshcd_clkgate_delay_show(struct device *dev,
2025 		struct device_attribute *attr, char *buf)
2026 {
2027 	struct ufs_hba *hba = dev_get_drvdata(dev);
2028 
2029 	return sysfs_emit(buf, "%lu\n", hba->clk_gating.delay_ms);
2030 }
2031 
2032 void ufshcd_clkgate_delay_set(struct device *dev, unsigned long value)
2033 {
2034 	struct ufs_hba *hba = dev_get_drvdata(dev);
2035 	unsigned long flags;
2036 
2037 	spin_lock_irqsave(hba->host->host_lock, flags);
2038 	hba->clk_gating.delay_ms = value;
2039 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2040 }
2041 EXPORT_SYMBOL_GPL(ufshcd_clkgate_delay_set);
2042 
2043 static ssize_t ufshcd_clkgate_delay_store(struct device *dev,
2044 		struct device_attribute *attr, const char *buf, size_t count)
2045 {
2046 	unsigned long value;
2047 
2048 	if (kstrtoul(buf, 0, &value))
2049 		return -EINVAL;
2050 
2051 	ufshcd_clkgate_delay_set(dev, value);
2052 	return count;
2053 }
2054 
2055 static ssize_t ufshcd_clkgate_enable_show(struct device *dev,
2056 		struct device_attribute *attr, char *buf)
2057 {
2058 	struct ufs_hba *hba = dev_get_drvdata(dev);
2059 
2060 	return sysfs_emit(buf, "%d\n", hba->clk_gating.is_enabled);
2061 }
2062 
2063 static ssize_t ufshcd_clkgate_enable_store(struct device *dev,
2064 		struct device_attribute *attr, const char *buf, size_t count)
2065 {
2066 	struct ufs_hba *hba = dev_get_drvdata(dev);
2067 	unsigned long flags;
2068 	u32 value;
2069 
2070 	if (kstrtou32(buf, 0, &value))
2071 		return -EINVAL;
2072 
2073 	value = !!value;
2074 
2075 	spin_lock_irqsave(hba->host->host_lock, flags);
2076 	if (value == hba->clk_gating.is_enabled)
2077 		goto out;
2078 
2079 	if (value)
2080 		__ufshcd_release(hba);
2081 	else
2082 		hba->clk_gating.active_reqs++;
2083 
2084 	hba->clk_gating.is_enabled = value;
2085 out:
2086 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2087 	return count;
2088 }
2089 
2090 static void ufshcd_init_clk_gating_sysfs(struct ufs_hba *hba)
2091 {
2092 	hba->clk_gating.delay_attr.show = ufshcd_clkgate_delay_show;
2093 	hba->clk_gating.delay_attr.store = ufshcd_clkgate_delay_store;
2094 	sysfs_attr_init(&hba->clk_gating.delay_attr.attr);
2095 	hba->clk_gating.delay_attr.attr.name = "clkgate_delay_ms";
2096 	hba->clk_gating.delay_attr.attr.mode = 0644;
2097 	if (device_create_file(hba->dev, &hba->clk_gating.delay_attr))
2098 		dev_err(hba->dev, "Failed to create sysfs for clkgate_delay\n");
2099 
2100 	hba->clk_gating.enable_attr.show = ufshcd_clkgate_enable_show;
2101 	hba->clk_gating.enable_attr.store = ufshcd_clkgate_enable_store;
2102 	sysfs_attr_init(&hba->clk_gating.enable_attr.attr);
2103 	hba->clk_gating.enable_attr.attr.name = "clkgate_enable";
2104 	hba->clk_gating.enable_attr.attr.mode = 0644;
2105 	if (device_create_file(hba->dev, &hba->clk_gating.enable_attr))
2106 		dev_err(hba->dev, "Failed to create sysfs for clkgate_enable\n");
2107 }
2108 
2109 static void ufshcd_remove_clk_gating_sysfs(struct ufs_hba *hba)
2110 {
2111 	if (hba->clk_gating.delay_attr.attr.name)
2112 		device_remove_file(hba->dev, &hba->clk_gating.delay_attr);
2113 	if (hba->clk_gating.enable_attr.attr.name)
2114 		device_remove_file(hba->dev, &hba->clk_gating.enable_attr);
2115 }
2116 
2117 static void ufshcd_init_clk_gating(struct ufs_hba *hba)
2118 {
2119 	if (!ufshcd_is_clkgating_allowed(hba))
2120 		return;
2121 
2122 	hba->clk_gating.state = CLKS_ON;
2123 
2124 	hba->clk_gating.delay_ms = 150;
2125 	INIT_DELAYED_WORK(&hba->clk_gating.gate_work, ufshcd_gate_work);
2126 	INIT_WORK(&hba->clk_gating.ungate_work, ufshcd_ungate_work);
2127 
2128 	hba->clk_gating.clk_gating_workq = alloc_ordered_workqueue(
2129 		"ufs_clk_gating_%d", WQ_MEM_RECLAIM | WQ_HIGHPRI,
2130 		hba->host->host_no);
2131 
2132 	ufshcd_init_clk_gating_sysfs(hba);
2133 
2134 	hba->clk_gating.is_enabled = true;
2135 	hba->clk_gating.is_initialized = true;
2136 }
2137 
2138 static void ufshcd_exit_clk_gating(struct ufs_hba *hba)
2139 {
2140 	if (!hba->clk_gating.is_initialized)
2141 		return;
2142 
2143 	ufshcd_remove_clk_gating_sysfs(hba);
2144 
2145 	/* Ungate the clock if necessary. */
2146 	ufshcd_hold(hba);
2147 	hba->clk_gating.is_initialized = false;
2148 	ufshcd_release(hba);
2149 
2150 	destroy_workqueue(hba->clk_gating.clk_gating_workq);
2151 }
2152 
2153 static void ufshcd_clk_scaling_start_busy(struct ufs_hba *hba)
2154 {
2155 	bool queue_resume_work = false;
2156 	ktime_t curr_t = ktime_get();
2157 	unsigned long flags;
2158 
2159 	if (!ufshcd_is_clkscaling_supported(hba))
2160 		return;
2161 
2162 	spin_lock_irqsave(hba->host->host_lock, flags);
2163 	if (!hba->clk_scaling.active_reqs++)
2164 		queue_resume_work = true;
2165 
2166 	if (!hba->clk_scaling.is_enabled || hba->pm_op_in_progress) {
2167 		spin_unlock_irqrestore(hba->host->host_lock, flags);
2168 		return;
2169 	}
2170 
2171 	if (queue_resume_work)
2172 		queue_work(hba->clk_scaling.workq,
2173 			   &hba->clk_scaling.resume_work);
2174 
2175 	if (!hba->clk_scaling.window_start_t) {
2176 		hba->clk_scaling.window_start_t = curr_t;
2177 		hba->clk_scaling.tot_busy_t = 0;
2178 		hba->clk_scaling.is_busy_started = false;
2179 	}
2180 
2181 	if (!hba->clk_scaling.is_busy_started) {
2182 		hba->clk_scaling.busy_start_t = curr_t;
2183 		hba->clk_scaling.is_busy_started = true;
2184 	}
2185 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2186 }
2187 
2188 static void ufshcd_clk_scaling_update_busy(struct ufs_hba *hba)
2189 {
2190 	struct ufs_clk_scaling *scaling = &hba->clk_scaling;
2191 	unsigned long flags;
2192 
2193 	if (!ufshcd_is_clkscaling_supported(hba))
2194 		return;
2195 
2196 	spin_lock_irqsave(hba->host->host_lock, flags);
2197 	hba->clk_scaling.active_reqs--;
2198 	if (!scaling->active_reqs && scaling->is_busy_started) {
2199 		scaling->tot_busy_t += ktime_to_us(ktime_sub(ktime_get(),
2200 					scaling->busy_start_t));
2201 		scaling->busy_start_t = 0;
2202 		scaling->is_busy_started = false;
2203 	}
2204 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2205 }
2206 
2207 static inline int ufshcd_monitor_opcode2dir(u8 opcode)
2208 {
2209 	if (opcode == READ_6 || opcode == READ_10 || opcode == READ_16)
2210 		return READ;
2211 	else if (opcode == WRITE_6 || opcode == WRITE_10 || opcode == WRITE_16)
2212 		return WRITE;
2213 	else
2214 		return -EINVAL;
2215 }
2216 
2217 static inline bool ufshcd_should_inform_monitor(struct ufs_hba *hba,
2218 						struct ufshcd_lrb *lrbp)
2219 {
2220 	const struct ufs_hba_monitor *m = &hba->monitor;
2221 
2222 	return (m->enabled && lrbp && lrbp->cmd &&
2223 		(!m->chunk_size || m->chunk_size == lrbp->cmd->sdb.length) &&
2224 		ktime_before(hba->monitor.enabled_ts, lrbp->issue_time_stamp));
2225 }
2226 
2227 static void ufshcd_start_monitor(struct ufs_hba *hba,
2228 				 const struct ufshcd_lrb *lrbp)
2229 {
2230 	int dir = ufshcd_monitor_opcode2dir(*lrbp->cmd->cmnd);
2231 	unsigned long flags;
2232 
2233 	spin_lock_irqsave(hba->host->host_lock, flags);
2234 	if (dir >= 0 && hba->monitor.nr_queued[dir]++ == 0)
2235 		hba->monitor.busy_start_ts[dir] = ktime_get();
2236 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2237 }
2238 
2239 static void ufshcd_update_monitor(struct ufs_hba *hba, const struct ufshcd_lrb *lrbp)
2240 {
2241 	int dir = ufshcd_monitor_opcode2dir(*lrbp->cmd->cmnd);
2242 	unsigned long flags;
2243 
2244 	spin_lock_irqsave(hba->host->host_lock, flags);
2245 	if (dir >= 0 && hba->monitor.nr_queued[dir] > 0) {
2246 		const struct request *req = scsi_cmd_to_rq(lrbp->cmd);
2247 		struct ufs_hba_monitor *m = &hba->monitor;
2248 		ktime_t now, inc, lat;
2249 
2250 		now = lrbp->compl_time_stamp;
2251 		inc = ktime_sub(now, m->busy_start_ts[dir]);
2252 		m->total_busy[dir] = ktime_add(m->total_busy[dir], inc);
2253 		m->nr_sec_rw[dir] += blk_rq_sectors(req);
2254 
2255 		/* Update latencies */
2256 		m->nr_req[dir]++;
2257 		lat = ktime_sub(now, lrbp->issue_time_stamp);
2258 		m->lat_sum[dir] += lat;
2259 		if (m->lat_max[dir] < lat || !m->lat_max[dir])
2260 			m->lat_max[dir] = lat;
2261 		if (m->lat_min[dir] > lat || !m->lat_min[dir])
2262 			m->lat_min[dir] = lat;
2263 
2264 		m->nr_queued[dir]--;
2265 		/* Push forward the busy start of monitor */
2266 		m->busy_start_ts[dir] = now;
2267 	}
2268 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2269 }
2270 
2271 /**
2272  * ufshcd_send_command - Send SCSI or device management commands
2273  * @hba: per adapter instance
2274  * @task_tag: Task tag of the command
2275  * @hwq: pointer to hardware queue instance
2276  */
2277 static inline
2278 void ufshcd_send_command(struct ufs_hba *hba, unsigned int task_tag,
2279 			 struct ufs_hw_queue *hwq)
2280 {
2281 	struct ufshcd_lrb *lrbp = &hba->lrb[task_tag];
2282 	unsigned long flags;
2283 
2284 	lrbp->issue_time_stamp = ktime_get();
2285 	lrbp->issue_time_stamp_local_clock = local_clock();
2286 	lrbp->compl_time_stamp = ktime_set(0, 0);
2287 	lrbp->compl_time_stamp_local_clock = 0;
2288 	ufshcd_add_command_trace(hba, task_tag, UFS_CMD_SEND);
2289 	if (lrbp->cmd)
2290 		ufshcd_clk_scaling_start_busy(hba);
2291 	if (unlikely(ufshcd_should_inform_monitor(hba, lrbp)))
2292 		ufshcd_start_monitor(hba, lrbp);
2293 
2294 	if (hba->mcq_enabled) {
2295 		int utrd_size = sizeof(struct utp_transfer_req_desc);
2296 		struct utp_transfer_req_desc *src = lrbp->utr_descriptor_ptr;
2297 		struct utp_transfer_req_desc *dest;
2298 
2299 		spin_lock(&hwq->sq_lock);
2300 		dest = hwq->sqe_base_addr + hwq->sq_tail_slot;
2301 		memcpy(dest, src, utrd_size);
2302 		ufshcd_inc_sq_tail(hwq);
2303 		spin_unlock(&hwq->sq_lock);
2304 	} else {
2305 		spin_lock_irqsave(&hba->outstanding_lock, flags);
2306 		if (hba->vops && hba->vops->setup_xfer_req)
2307 			hba->vops->setup_xfer_req(hba, lrbp->task_tag,
2308 						  !!lrbp->cmd);
2309 		__set_bit(lrbp->task_tag, &hba->outstanding_reqs);
2310 		ufshcd_writel(hba, 1 << lrbp->task_tag,
2311 			      REG_UTP_TRANSFER_REQ_DOOR_BELL);
2312 		spin_unlock_irqrestore(&hba->outstanding_lock, flags);
2313 	}
2314 }
2315 
2316 /**
2317  * ufshcd_copy_sense_data - Copy sense data in case of check condition
2318  * @lrbp: pointer to local reference block
2319  */
2320 static inline void ufshcd_copy_sense_data(struct ufshcd_lrb *lrbp)
2321 {
2322 	u8 *const sense_buffer = lrbp->cmd->sense_buffer;
2323 	u16 resp_len;
2324 	int len;
2325 
2326 	resp_len = be16_to_cpu(lrbp->ucd_rsp_ptr->header.data_segment_length);
2327 	if (sense_buffer && resp_len) {
2328 		int len_to_copy;
2329 
2330 		len = be16_to_cpu(lrbp->ucd_rsp_ptr->sr.sense_data_len);
2331 		len_to_copy = min_t(int, UFS_SENSE_SIZE, len);
2332 
2333 		memcpy(sense_buffer, lrbp->ucd_rsp_ptr->sr.sense_data,
2334 		       len_to_copy);
2335 	}
2336 }
2337 
2338 /**
2339  * ufshcd_copy_query_response() - Copy the Query Response and the data
2340  * descriptor
2341  * @hba: per adapter instance
2342  * @lrbp: pointer to local reference block
2343  *
2344  * Return: 0 upon success; < 0 upon failure.
2345  */
2346 static
2347 int ufshcd_copy_query_response(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2348 {
2349 	struct ufs_query_res *query_res = &hba->dev_cmd.query.response;
2350 
2351 	memcpy(&query_res->upiu_res, &lrbp->ucd_rsp_ptr->qr, QUERY_OSF_SIZE);
2352 
2353 	/* Get the descriptor */
2354 	if (hba->dev_cmd.query.descriptor &&
2355 	    lrbp->ucd_rsp_ptr->qr.opcode == UPIU_QUERY_OPCODE_READ_DESC) {
2356 		u8 *descp = (u8 *)lrbp->ucd_rsp_ptr +
2357 				GENERAL_UPIU_REQUEST_SIZE;
2358 		u16 resp_len;
2359 		u16 buf_len;
2360 
2361 		/* data segment length */
2362 		resp_len = be16_to_cpu(lrbp->ucd_rsp_ptr->header
2363 				       .data_segment_length);
2364 		buf_len = be16_to_cpu(
2365 				hba->dev_cmd.query.request.upiu_req.length);
2366 		if (likely(buf_len >= resp_len)) {
2367 			memcpy(hba->dev_cmd.query.descriptor, descp, resp_len);
2368 		} else {
2369 			dev_warn(hba->dev,
2370 				 "%s: rsp size %d is bigger than buffer size %d",
2371 				 __func__, resp_len, buf_len);
2372 			return -EINVAL;
2373 		}
2374 	}
2375 
2376 	return 0;
2377 }
2378 
2379 /**
2380  * ufshcd_hba_capabilities - Read controller capabilities
2381  * @hba: per adapter instance
2382  *
2383  * Return: 0 on success, negative on error.
2384  */
2385 static inline int ufshcd_hba_capabilities(struct ufs_hba *hba)
2386 {
2387 	int err;
2388 
2389 	hba->capabilities = ufshcd_readl(hba, REG_CONTROLLER_CAPABILITIES);
2390 
2391 	/* nutrs and nutmrs are 0 based values */
2392 	hba->nutrs = (hba->capabilities & MASK_TRANSFER_REQUESTS_SLOTS_SDB) + 1;
2393 	hba->nutmrs =
2394 	((hba->capabilities & MASK_TASK_MANAGEMENT_REQUEST_SLOTS) >> 16) + 1;
2395 	hba->reserved_slot = hba->nutrs - 1;
2396 
2397 	hba->nortt = FIELD_GET(MASK_NUMBER_OUTSTANDING_RTT, hba->capabilities) + 1;
2398 
2399 	/* Read crypto capabilities */
2400 	err = ufshcd_hba_init_crypto_capabilities(hba);
2401 	if (err) {
2402 		dev_err(hba->dev, "crypto setup failed\n");
2403 		return err;
2404 	}
2405 
2406 	/*
2407 	 * The UFSHCI 3.0 specification does not define MCQ_SUPPORT and
2408 	 * LSDB_SUPPORT, but [31:29] as reserved bits with reset value 0s, which
2409 	 * means we can simply read values regardless of version.
2410 	 */
2411 	hba->mcq_sup = FIELD_GET(MASK_MCQ_SUPPORT, hba->capabilities);
2412 	/*
2413 	 * 0h: legacy single doorbell support is available
2414 	 * 1h: indicate that legacy single doorbell support has been removed
2415 	 */
2416 	if (!(hba->quirks & UFSHCD_QUIRK_BROKEN_LSDBS_CAP))
2417 		hba->lsdb_sup = !FIELD_GET(MASK_LSDB_SUPPORT, hba->capabilities);
2418 	else
2419 		hba->lsdb_sup = true;
2420 
2421 	if (!hba->mcq_sup)
2422 		return 0;
2423 
2424 	hba->mcq_capabilities = ufshcd_readl(hba, REG_MCQCAP);
2425 	hba->ext_iid_sup = FIELD_GET(MASK_EXT_IID_SUPPORT,
2426 				     hba->mcq_capabilities);
2427 
2428 	return 0;
2429 }
2430 
2431 /**
2432  * ufshcd_ready_for_uic_cmd - Check if controller is ready
2433  *                            to accept UIC commands
2434  * @hba: per adapter instance
2435  *
2436  * Return: true on success, else false.
2437  */
2438 static inline bool ufshcd_ready_for_uic_cmd(struct ufs_hba *hba)
2439 {
2440 	u32 val;
2441 	int ret = read_poll_timeout(ufshcd_readl, val, val & UIC_COMMAND_READY,
2442 				    500, uic_cmd_timeout * 1000, false, hba,
2443 				    REG_CONTROLLER_STATUS);
2444 	return ret == 0;
2445 }
2446 
2447 /**
2448  * ufshcd_get_upmcrs - Get the power mode change request status
2449  * @hba: Pointer to adapter instance
2450  *
2451  * This function gets the UPMCRS field of HCS register
2452  *
2453  * Return: value of UPMCRS field.
2454  */
2455 static inline u8 ufshcd_get_upmcrs(struct ufs_hba *hba)
2456 {
2457 	return (ufshcd_readl(hba, REG_CONTROLLER_STATUS) >> 8) & 0x7;
2458 }
2459 
2460 /**
2461  * ufshcd_dispatch_uic_cmd - Dispatch an UIC command to the Unipro layer
2462  * @hba: per adapter instance
2463  * @uic_cmd: UIC command
2464  */
2465 static inline void
2466 ufshcd_dispatch_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2467 {
2468 	lockdep_assert_held(&hba->uic_cmd_mutex);
2469 
2470 	WARN_ON(hba->active_uic_cmd);
2471 
2472 	hba->active_uic_cmd = uic_cmd;
2473 
2474 	/* Write Args */
2475 	ufshcd_writel(hba, uic_cmd->argument1, REG_UIC_COMMAND_ARG_1);
2476 	ufshcd_writel(hba, uic_cmd->argument2, REG_UIC_COMMAND_ARG_2);
2477 	ufshcd_writel(hba, uic_cmd->argument3, REG_UIC_COMMAND_ARG_3);
2478 
2479 	ufshcd_add_uic_command_trace(hba, uic_cmd, UFS_CMD_SEND);
2480 
2481 	/* Write UIC Cmd */
2482 	ufshcd_writel(hba, uic_cmd->command & COMMAND_OPCODE_MASK,
2483 		      REG_UIC_COMMAND);
2484 }
2485 
2486 /**
2487  * ufshcd_wait_for_uic_cmd - Wait for completion of an UIC command
2488  * @hba: per adapter instance
2489  * @uic_cmd: UIC command
2490  *
2491  * Return: 0 only if success.
2492  */
2493 static int
2494 ufshcd_wait_for_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2495 {
2496 	int ret;
2497 	unsigned long flags;
2498 
2499 	lockdep_assert_held(&hba->uic_cmd_mutex);
2500 
2501 	if (wait_for_completion_timeout(&uic_cmd->done,
2502 					msecs_to_jiffies(uic_cmd_timeout))) {
2503 		ret = uic_cmd->argument2 & MASK_UIC_COMMAND_RESULT;
2504 	} else {
2505 		ret = -ETIMEDOUT;
2506 		dev_err(hba->dev,
2507 			"uic cmd 0x%x with arg3 0x%x completion timeout\n",
2508 			uic_cmd->command, uic_cmd->argument3);
2509 
2510 		if (!uic_cmd->cmd_active) {
2511 			dev_err(hba->dev, "%s: UIC cmd has been completed, return the result\n",
2512 				__func__);
2513 			ret = uic_cmd->argument2 & MASK_UIC_COMMAND_RESULT;
2514 		}
2515 	}
2516 
2517 	spin_lock_irqsave(hba->host->host_lock, flags);
2518 	hba->active_uic_cmd = NULL;
2519 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2520 
2521 	return ret;
2522 }
2523 
2524 /**
2525  * __ufshcd_send_uic_cmd - Send UIC commands and retrieve the result
2526  * @hba: per adapter instance
2527  * @uic_cmd: UIC command
2528  *
2529  * Return: 0 only if success.
2530  */
2531 static int
2532 __ufshcd_send_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2533 {
2534 	lockdep_assert_held(&hba->uic_cmd_mutex);
2535 
2536 	if (!ufshcd_ready_for_uic_cmd(hba)) {
2537 		dev_err(hba->dev,
2538 			"Controller not ready to accept UIC commands\n");
2539 		return -EIO;
2540 	}
2541 
2542 	init_completion(&uic_cmd->done);
2543 
2544 	uic_cmd->cmd_active = 1;
2545 	ufshcd_dispatch_uic_cmd(hba, uic_cmd);
2546 
2547 	return 0;
2548 }
2549 
2550 /**
2551  * ufshcd_send_uic_cmd - Send UIC commands and retrieve the result
2552  * @hba: per adapter instance
2553  * @uic_cmd: UIC command
2554  *
2555  * Return: 0 only if success.
2556  */
2557 int ufshcd_send_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2558 {
2559 	int ret;
2560 
2561 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_UIC_CMD)
2562 		return 0;
2563 
2564 	ufshcd_hold(hba);
2565 	mutex_lock(&hba->uic_cmd_mutex);
2566 	ufshcd_add_delay_before_dme_cmd(hba);
2567 
2568 	ret = __ufshcd_send_uic_cmd(hba, uic_cmd);
2569 	if (!ret)
2570 		ret = ufshcd_wait_for_uic_cmd(hba, uic_cmd);
2571 
2572 	mutex_unlock(&hba->uic_cmd_mutex);
2573 
2574 	ufshcd_release(hba);
2575 	return ret;
2576 }
2577 
2578 /**
2579  * ufshcd_sgl_to_prdt - SG list to PRTD (Physical Region Description Table, 4DW format)
2580  * @hba:	per-adapter instance
2581  * @lrbp:	pointer to local reference block
2582  * @sg_entries:	The number of sg lists actually used
2583  * @sg_list:	Pointer to SG list
2584  */
2585 static void ufshcd_sgl_to_prdt(struct ufs_hba *hba, struct ufshcd_lrb *lrbp, int sg_entries,
2586 			       struct scatterlist *sg_list)
2587 {
2588 	struct ufshcd_sg_entry *prd;
2589 	struct scatterlist *sg;
2590 	int i;
2591 
2592 	if (sg_entries) {
2593 
2594 		if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN)
2595 			lrbp->utr_descriptor_ptr->prd_table_length =
2596 				cpu_to_le16(sg_entries * ufshcd_sg_entry_size(hba));
2597 		else
2598 			lrbp->utr_descriptor_ptr->prd_table_length = cpu_to_le16(sg_entries);
2599 
2600 		prd = lrbp->ucd_prdt_ptr;
2601 
2602 		for_each_sg(sg_list, sg, sg_entries, i) {
2603 			const unsigned int len = sg_dma_len(sg);
2604 
2605 			/*
2606 			 * From the UFSHCI spec: "Data Byte Count (DBC): A '0'
2607 			 * based value that indicates the length, in bytes, of
2608 			 * the data block. A maximum of length of 256KB may
2609 			 * exist for any entry. Bits 1:0 of this field shall be
2610 			 * 11b to indicate Dword granularity. A value of '3'
2611 			 * indicates 4 bytes, '7' indicates 8 bytes, etc."
2612 			 */
2613 			WARN_ONCE(len > SZ_256K, "len = %#x\n", len);
2614 			prd->size = cpu_to_le32(len - 1);
2615 			prd->addr = cpu_to_le64(sg->dma_address);
2616 			prd->reserved = 0;
2617 			prd = (void *)prd + ufshcd_sg_entry_size(hba);
2618 		}
2619 	} else {
2620 		lrbp->utr_descriptor_ptr->prd_table_length = 0;
2621 	}
2622 }
2623 
2624 /**
2625  * ufshcd_map_sg - Map scatter-gather list to prdt
2626  * @hba: per adapter instance
2627  * @lrbp: pointer to local reference block
2628  *
2629  * Return: 0 in case of success, non-zero value in case of failure.
2630  */
2631 static int ufshcd_map_sg(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2632 {
2633 	struct scsi_cmnd *cmd = lrbp->cmd;
2634 	int sg_segments = scsi_dma_map(cmd);
2635 
2636 	if (sg_segments < 0)
2637 		return sg_segments;
2638 
2639 	ufshcd_sgl_to_prdt(hba, lrbp, sg_segments, scsi_sglist(cmd));
2640 
2641 	return ufshcd_crypto_fill_prdt(hba, lrbp);
2642 }
2643 
2644 /**
2645  * ufshcd_enable_intr - enable interrupts
2646  * @hba: per adapter instance
2647  * @intrs: interrupt bits
2648  */
2649 static void ufshcd_enable_intr(struct ufs_hba *hba, u32 intrs)
2650 {
2651 	u32 set = ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
2652 
2653 	set |= intrs;
2654 	ufshcd_writel(hba, set, REG_INTERRUPT_ENABLE);
2655 }
2656 
2657 /**
2658  * ufshcd_disable_intr - disable interrupts
2659  * @hba: per adapter instance
2660  * @intrs: interrupt bits
2661  */
2662 static void ufshcd_disable_intr(struct ufs_hba *hba, u32 intrs)
2663 {
2664 	u32 set = ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
2665 
2666 	set &= ~intrs;
2667 	ufshcd_writel(hba, set, REG_INTERRUPT_ENABLE);
2668 }
2669 
2670 /**
2671  * ufshcd_prepare_req_desc_hdr - Fill UTP Transfer request descriptor header according to request
2672  * descriptor according to request
2673  * @hba: per adapter instance
2674  * @lrbp: pointer to local reference block
2675  * @upiu_flags: flags required in the header
2676  * @cmd_dir: requests data direction
2677  * @ehs_length: Total EHS Length (in 32‐bytes units of all Extra Header Segments)
2678  */
2679 static void
2680 ufshcd_prepare_req_desc_hdr(struct ufs_hba *hba, struct ufshcd_lrb *lrbp,
2681 			    u8 *upiu_flags, enum dma_data_direction cmd_dir,
2682 			    int ehs_length)
2683 {
2684 	struct utp_transfer_req_desc *req_desc = lrbp->utr_descriptor_ptr;
2685 	struct request_desc_header *h = &req_desc->header;
2686 	enum utp_data_direction data_direction;
2687 
2688 	lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
2689 
2690 	*h = (typeof(*h)){ };
2691 
2692 	if (cmd_dir == DMA_FROM_DEVICE) {
2693 		data_direction = UTP_DEVICE_TO_HOST;
2694 		*upiu_flags = UPIU_CMD_FLAGS_READ;
2695 	} else if (cmd_dir == DMA_TO_DEVICE) {
2696 		data_direction = UTP_HOST_TO_DEVICE;
2697 		*upiu_flags = UPIU_CMD_FLAGS_WRITE;
2698 	} else {
2699 		data_direction = UTP_NO_DATA_TRANSFER;
2700 		*upiu_flags = UPIU_CMD_FLAGS_NONE;
2701 	}
2702 
2703 	h->command_type = lrbp->command_type;
2704 	h->data_direction = data_direction;
2705 	h->ehs_length = ehs_length;
2706 
2707 	if (lrbp->intr_cmd)
2708 		h->interrupt = 1;
2709 
2710 	/* Prepare crypto related dwords */
2711 	ufshcd_prepare_req_desc_hdr_crypto(lrbp, h);
2712 
2713 	/*
2714 	 * assigning invalid value for command status. Controller
2715 	 * updates OCS on command completion, with the command
2716 	 * status
2717 	 */
2718 	h->ocs = OCS_INVALID_COMMAND_STATUS;
2719 
2720 	req_desc->prd_table_length = 0;
2721 }
2722 
2723 /**
2724  * ufshcd_prepare_utp_scsi_cmd_upiu() - fills the utp_transfer_req_desc,
2725  * for scsi commands
2726  * @lrbp: local reference block pointer
2727  * @upiu_flags: flags
2728  */
2729 static
2730 void ufshcd_prepare_utp_scsi_cmd_upiu(struct ufshcd_lrb *lrbp, u8 upiu_flags)
2731 {
2732 	struct scsi_cmnd *cmd = lrbp->cmd;
2733 	struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2734 	unsigned short cdb_len;
2735 
2736 	ucd_req_ptr->header = (struct utp_upiu_header){
2737 		.transaction_code = UPIU_TRANSACTION_COMMAND,
2738 		.flags = upiu_flags,
2739 		.lun = lrbp->lun,
2740 		.task_tag = lrbp->task_tag,
2741 		.command_set_type = UPIU_COMMAND_SET_TYPE_SCSI,
2742 	};
2743 
2744 	WARN_ON_ONCE(ucd_req_ptr->header.task_tag != lrbp->task_tag);
2745 
2746 	ucd_req_ptr->sc.exp_data_transfer_len = cpu_to_be32(cmd->sdb.length);
2747 
2748 	cdb_len = min_t(unsigned short, cmd->cmd_len, UFS_CDB_SIZE);
2749 	memcpy(ucd_req_ptr->sc.cdb, cmd->cmnd, cdb_len);
2750 
2751 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2752 }
2753 
2754 /**
2755  * ufshcd_prepare_utp_query_req_upiu() - fill the utp_transfer_req_desc for query request
2756  * @hba: UFS hba
2757  * @lrbp: local reference block pointer
2758  * @upiu_flags: flags
2759  */
2760 static void ufshcd_prepare_utp_query_req_upiu(struct ufs_hba *hba,
2761 				struct ufshcd_lrb *lrbp, u8 upiu_flags)
2762 {
2763 	struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2764 	struct ufs_query *query = &hba->dev_cmd.query;
2765 	u16 len = be16_to_cpu(query->request.upiu_req.length);
2766 
2767 	/* Query request header */
2768 	ucd_req_ptr->header = (struct utp_upiu_header){
2769 		.transaction_code = UPIU_TRANSACTION_QUERY_REQ,
2770 		.flags = upiu_flags,
2771 		.lun = lrbp->lun,
2772 		.task_tag = lrbp->task_tag,
2773 		.query_function = query->request.query_func,
2774 		/* Data segment length only need for WRITE_DESC */
2775 		.data_segment_length =
2776 			query->request.upiu_req.opcode ==
2777 					UPIU_QUERY_OPCODE_WRITE_DESC ?
2778 				cpu_to_be16(len) :
2779 				0,
2780 	};
2781 
2782 	/* Copy the Query Request buffer as is */
2783 	memcpy(&ucd_req_ptr->qr, &query->request.upiu_req,
2784 			QUERY_OSF_SIZE);
2785 
2786 	/* Copy the Descriptor */
2787 	if (query->request.upiu_req.opcode == UPIU_QUERY_OPCODE_WRITE_DESC)
2788 		memcpy(ucd_req_ptr + 1, query->descriptor, len);
2789 
2790 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2791 }
2792 
2793 static inline void ufshcd_prepare_utp_nop_upiu(struct ufshcd_lrb *lrbp)
2794 {
2795 	struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2796 
2797 	memset(ucd_req_ptr, 0, sizeof(struct utp_upiu_req));
2798 
2799 	ucd_req_ptr->header = (struct utp_upiu_header){
2800 		.transaction_code = UPIU_TRANSACTION_NOP_OUT,
2801 		.task_tag = lrbp->task_tag,
2802 	};
2803 
2804 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2805 }
2806 
2807 /**
2808  * ufshcd_compose_devman_upiu - UFS Protocol Information Unit(UPIU)
2809  *			     for Device Management Purposes
2810  * @hba: per adapter instance
2811  * @lrbp: pointer to local reference block
2812  *
2813  * Return: 0 upon success; < 0 upon failure.
2814  */
2815 static int ufshcd_compose_devman_upiu(struct ufs_hba *hba,
2816 				      struct ufshcd_lrb *lrbp)
2817 {
2818 	u8 upiu_flags;
2819 	int ret = 0;
2820 
2821 	ufshcd_prepare_req_desc_hdr(hba, lrbp, &upiu_flags, DMA_NONE, 0);
2822 
2823 	if (hba->dev_cmd.type == DEV_CMD_TYPE_QUERY)
2824 		ufshcd_prepare_utp_query_req_upiu(hba, lrbp, upiu_flags);
2825 	else if (hba->dev_cmd.type == DEV_CMD_TYPE_NOP)
2826 		ufshcd_prepare_utp_nop_upiu(lrbp);
2827 	else
2828 		ret = -EINVAL;
2829 
2830 	return ret;
2831 }
2832 
2833 /**
2834  * ufshcd_comp_scsi_upiu - UFS Protocol Information Unit(UPIU)
2835  *			   for SCSI Purposes
2836  * @hba: per adapter instance
2837  * @lrbp: pointer to local reference block
2838  */
2839 static void ufshcd_comp_scsi_upiu(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2840 {
2841 	struct request *rq = scsi_cmd_to_rq(lrbp->cmd);
2842 	unsigned int ioprio_class = IOPRIO_PRIO_CLASS(req_get_ioprio(rq));
2843 	u8 upiu_flags;
2844 
2845 	ufshcd_prepare_req_desc_hdr(hba, lrbp, &upiu_flags, lrbp->cmd->sc_data_direction, 0);
2846 	if (ioprio_class == IOPRIO_CLASS_RT)
2847 		upiu_flags |= UPIU_CMD_FLAGS_CP;
2848 	ufshcd_prepare_utp_scsi_cmd_upiu(lrbp, upiu_flags);
2849 }
2850 
2851 static void __ufshcd_setup_cmd(struct ufshcd_lrb *lrbp, struct scsi_cmnd *cmd, u8 lun, int tag)
2852 {
2853 	memset(lrbp->ucd_req_ptr, 0, sizeof(*lrbp->ucd_req_ptr));
2854 
2855 	lrbp->cmd = cmd;
2856 	lrbp->task_tag = tag;
2857 	lrbp->lun = lun;
2858 	ufshcd_prepare_lrbp_crypto(cmd ? scsi_cmd_to_rq(cmd) : NULL, lrbp);
2859 }
2860 
2861 static void ufshcd_setup_scsi_cmd(struct ufs_hba *hba, struct ufshcd_lrb *lrbp,
2862 				  struct scsi_cmnd *cmd, u8 lun, int tag)
2863 {
2864 	__ufshcd_setup_cmd(lrbp, cmd, lun, tag);
2865 	lrbp->intr_cmd = !ufshcd_is_intr_aggr_allowed(hba);
2866 	lrbp->req_abort_skip = false;
2867 
2868 	ufshcd_comp_scsi_upiu(hba, lrbp);
2869 }
2870 
2871 /**
2872  * ufshcd_upiu_wlun_to_scsi_wlun - maps UPIU W-LUN id to SCSI W-LUN ID
2873  * @upiu_wlun_id: UPIU W-LUN id
2874  *
2875  * Return: SCSI W-LUN id.
2876  */
2877 static inline u16 ufshcd_upiu_wlun_to_scsi_wlun(u8 upiu_wlun_id)
2878 {
2879 	return (upiu_wlun_id & ~UFS_UPIU_WLUN_ID) | SCSI_W_LUN_BASE;
2880 }
2881 
2882 static inline bool is_device_wlun(struct scsi_device *sdev)
2883 {
2884 	return sdev->lun ==
2885 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_UFS_DEVICE_WLUN);
2886 }
2887 
2888 /*
2889  * Associate the UFS controller queue with the default and poll HCTX types.
2890  * Initialize the mq_map[] arrays.
2891  */
2892 static void ufshcd_map_queues(struct Scsi_Host *shost)
2893 {
2894 	struct ufs_hba *hba = shost_priv(shost);
2895 	int i, queue_offset = 0;
2896 
2897 	if (!is_mcq_supported(hba)) {
2898 		hba->nr_queues[HCTX_TYPE_DEFAULT] = 1;
2899 		hba->nr_queues[HCTX_TYPE_READ] = 0;
2900 		hba->nr_queues[HCTX_TYPE_POLL] = 1;
2901 		hba->nr_hw_queues = 1;
2902 	}
2903 
2904 	for (i = 0; i < shost->nr_maps; i++) {
2905 		struct blk_mq_queue_map *map = &shost->tag_set.map[i];
2906 
2907 		map->nr_queues = hba->nr_queues[i];
2908 		if (!map->nr_queues)
2909 			continue;
2910 		map->queue_offset = queue_offset;
2911 		if (i == HCTX_TYPE_POLL && !is_mcq_supported(hba))
2912 			map->queue_offset = 0;
2913 
2914 		blk_mq_map_queues(map);
2915 		queue_offset += map->nr_queues;
2916 	}
2917 }
2918 
2919 static void ufshcd_init_lrb(struct ufs_hba *hba, struct ufshcd_lrb *lrb, int i)
2920 {
2921 	struct utp_transfer_cmd_desc *cmd_descp = (void *)hba->ucdl_base_addr +
2922 		i * ufshcd_get_ucd_size(hba);
2923 	struct utp_transfer_req_desc *utrdlp = hba->utrdl_base_addr;
2924 	dma_addr_t cmd_desc_element_addr = hba->ucdl_dma_addr +
2925 		i * ufshcd_get_ucd_size(hba);
2926 	u16 response_offset = le16_to_cpu(utrdlp[i].response_upiu_offset);
2927 	u16 prdt_offset = le16_to_cpu(utrdlp[i].prd_table_offset);
2928 
2929 	lrb->utr_descriptor_ptr = utrdlp + i;
2930 	lrb->utrd_dma_addr = hba->utrdl_dma_addr +
2931 		i * sizeof(struct utp_transfer_req_desc);
2932 	lrb->ucd_req_ptr = (struct utp_upiu_req *)cmd_descp->command_upiu;
2933 	lrb->ucd_req_dma_addr = cmd_desc_element_addr;
2934 	lrb->ucd_rsp_ptr = (struct utp_upiu_rsp *)cmd_descp->response_upiu;
2935 	lrb->ucd_rsp_dma_addr = cmd_desc_element_addr + response_offset;
2936 	lrb->ucd_prdt_ptr = (struct ufshcd_sg_entry *)cmd_descp->prd_table;
2937 	lrb->ucd_prdt_dma_addr = cmd_desc_element_addr + prdt_offset;
2938 }
2939 
2940 /**
2941  * ufshcd_queuecommand - main entry point for SCSI requests
2942  * @host: SCSI host pointer
2943  * @cmd: command from SCSI Midlayer
2944  *
2945  * Return: 0 for success, non-zero in case of failure.
2946  */
2947 static int ufshcd_queuecommand(struct Scsi_Host *host, struct scsi_cmnd *cmd)
2948 {
2949 	struct ufs_hba *hba = shost_priv(host);
2950 	int tag = scsi_cmd_to_rq(cmd)->tag;
2951 	struct ufshcd_lrb *lrbp;
2952 	int err = 0;
2953 	struct ufs_hw_queue *hwq = NULL;
2954 
2955 	switch (hba->ufshcd_state) {
2956 	case UFSHCD_STATE_OPERATIONAL:
2957 		break;
2958 	case UFSHCD_STATE_EH_SCHEDULED_NON_FATAL:
2959 		/*
2960 		 * SCSI error handler can call ->queuecommand() while UFS error
2961 		 * handler is in progress. Error interrupts could change the
2962 		 * state from UFSHCD_STATE_RESET to
2963 		 * UFSHCD_STATE_EH_SCHEDULED_NON_FATAL. Prevent requests
2964 		 * being issued in that case.
2965 		 */
2966 		if (ufshcd_eh_in_progress(hba)) {
2967 			err = SCSI_MLQUEUE_HOST_BUSY;
2968 			goto out;
2969 		}
2970 		break;
2971 	case UFSHCD_STATE_EH_SCHEDULED_FATAL:
2972 		/*
2973 		 * pm_runtime_get_sync() is used at error handling preparation
2974 		 * stage. If a scsi cmd, e.g. the SSU cmd, is sent from hba's
2975 		 * PM ops, it can never be finished if we let SCSI layer keep
2976 		 * retrying it, which gets err handler stuck forever. Neither
2977 		 * can we let the scsi cmd pass through, because UFS is in bad
2978 		 * state, the scsi cmd may eventually time out, which will get
2979 		 * err handler blocked for too long. So, just fail the scsi cmd
2980 		 * sent from PM ops, err handler can recover PM error anyways.
2981 		 */
2982 		if (hba->pm_op_in_progress) {
2983 			hba->force_reset = true;
2984 			set_host_byte(cmd, DID_BAD_TARGET);
2985 			scsi_done(cmd);
2986 			goto out;
2987 		}
2988 		fallthrough;
2989 	case UFSHCD_STATE_RESET:
2990 		err = SCSI_MLQUEUE_HOST_BUSY;
2991 		goto out;
2992 	case UFSHCD_STATE_ERROR:
2993 		set_host_byte(cmd, DID_ERROR);
2994 		scsi_done(cmd);
2995 		goto out;
2996 	}
2997 
2998 	hba->req_abort_count = 0;
2999 
3000 	ufshcd_hold(hba);
3001 
3002 	lrbp = &hba->lrb[tag];
3003 
3004 	ufshcd_setup_scsi_cmd(hba, lrbp, cmd, ufshcd_scsi_to_upiu_lun(cmd->device->lun), tag);
3005 
3006 	err = ufshcd_map_sg(hba, lrbp);
3007 	if (err) {
3008 		ufshcd_release(hba);
3009 		goto out;
3010 	}
3011 
3012 	if (hba->mcq_enabled)
3013 		hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(cmd));
3014 
3015 	ufshcd_send_command(hba, tag, hwq);
3016 
3017 out:
3018 	if (ufs_trigger_eh(hba)) {
3019 		unsigned long flags;
3020 
3021 		spin_lock_irqsave(hba->host->host_lock, flags);
3022 		ufshcd_schedule_eh_work(hba);
3023 		spin_unlock_irqrestore(hba->host->host_lock, flags);
3024 	}
3025 
3026 	return err;
3027 }
3028 
3029 static void ufshcd_setup_dev_cmd(struct ufs_hba *hba, struct ufshcd_lrb *lrbp,
3030 			     enum dev_cmd_type cmd_type, u8 lun, int tag)
3031 {
3032 	__ufshcd_setup_cmd(lrbp, NULL, lun, tag);
3033 	lrbp->intr_cmd = true; /* No interrupt aggregation */
3034 	hba->dev_cmd.type = cmd_type;
3035 }
3036 
3037 static int ufshcd_compose_dev_cmd(struct ufs_hba *hba,
3038 		struct ufshcd_lrb *lrbp, enum dev_cmd_type cmd_type, int tag)
3039 {
3040 	ufshcd_setup_dev_cmd(hba, lrbp, cmd_type, 0, tag);
3041 
3042 	return ufshcd_compose_devman_upiu(hba, lrbp);
3043 }
3044 
3045 /*
3046  * Check with the block layer if the command is inflight
3047  * @cmd: command to check.
3048  *
3049  * Return: true if command is inflight; false if not.
3050  */
3051 bool ufshcd_cmd_inflight(struct scsi_cmnd *cmd)
3052 {
3053 	return cmd && blk_mq_rq_state(scsi_cmd_to_rq(cmd)) == MQ_RQ_IN_FLIGHT;
3054 }
3055 
3056 /*
3057  * Clear the pending command in the controller and wait until
3058  * the controller confirms that the command has been cleared.
3059  * @hba: per adapter instance
3060  * @task_tag: The tag number of the command to be cleared.
3061  */
3062 static int ufshcd_clear_cmd(struct ufs_hba *hba, u32 task_tag)
3063 {
3064 	u32 mask;
3065 	int err;
3066 
3067 	if (hba->mcq_enabled) {
3068 		/*
3069 		 * MCQ mode. Clean up the MCQ resources similar to
3070 		 * what the ufshcd_utrl_clear() does for SDB mode.
3071 		 */
3072 		err = ufshcd_mcq_sq_cleanup(hba, task_tag);
3073 		if (err) {
3074 			dev_err(hba->dev, "%s: failed tag=%d. err=%d\n",
3075 				__func__, task_tag, err);
3076 			return err;
3077 		}
3078 		return 0;
3079 	}
3080 
3081 	mask = 1U << task_tag;
3082 
3083 	/* clear outstanding transaction before retry */
3084 	ufshcd_utrl_clear(hba, mask);
3085 
3086 	/*
3087 	 * wait for h/w to clear corresponding bit in door-bell.
3088 	 * max. wait is 1 sec.
3089 	 */
3090 	return ufshcd_wait_for_register(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL,
3091 					mask, ~mask, 1000, 1000);
3092 }
3093 
3094 /**
3095  * ufshcd_dev_cmd_completion() - handles device management command responses
3096  * @hba: per adapter instance
3097  * @lrbp: pointer to local reference block
3098  *
3099  * Return: 0 upon success; < 0 upon failure.
3100  */
3101 static int
3102 ufshcd_dev_cmd_completion(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
3103 {
3104 	enum upiu_response_transaction resp;
3105 	int err = 0;
3106 
3107 	hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
3108 	resp = ufshcd_get_req_rsp(lrbp->ucd_rsp_ptr);
3109 
3110 	switch (resp) {
3111 	case UPIU_TRANSACTION_NOP_IN:
3112 		if (hba->dev_cmd.type != DEV_CMD_TYPE_NOP) {
3113 			err = -EINVAL;
3114 			dev_err(hba->dev, "%s: unexpected response %x\n",
3115 					__func__, resp);
3116 		}
3117 		break;
3118 	case UPIU_TRANSACTION_QUERY_RSP: {
3119 		u8 response = lrbp->ucd_rsp_ptr->header.response;
3120 
3121 		if (response == 0)
3122 			err = ufshcd_copy_query_response(hba, lrbp);
3123 		break;
3124 	}
3125 	case UPIU_TRANSACTION_REJECT_UPIU:
3126 		/* TODO: handle Reject UPIU Response */
3127 		err = -EPERM;
3128 		dev_err(hba->dev, "%s: Reject UPIU not fully implemented\n",
3129 				__func__);
3130 		break;
3131 	case UPIU_TRANSACTION_RESPONSE:
3132 		if (hba->dev_cmd.type != DEV_CMD_TYPE_RPMB) {
3133 			err = -EINVAL;
3134 			dev_err(hba->dev, "%s: unexpected response %x\n", __func__, resp);
3135 		}
3136 		break;
3137 	default:
3138 		err = -EINVAL;
3139 		dev_err(hba->dev, "%s: Invalid device management cmd response: %x\n",
3140 				__func__, resp);
3141 		break;
3142 	}
3143 
3144 	return err;
3145 }
3146 
3147 static int ufshcd_wait_for_dev_cmd(struct ufs_hba *hba,
3148 		struct ufshcd_lrb *lrbp, int max_timeout)
3149 {
3150 	unsigned long time_left = msecs_to_jiffies(max_timeout);
3151 	unsigned long flags;
3152 	bool pending;
3153 	int err;
3154 
3155 retry:
3156 	time_left = wait_for_completion_timeout(hba->dev_cmd.complete,
3157 						time_left);
3158 
3159 	if (likely(time_left)) {
3160 		/*
3161 		 * The completion handler called complete() and the caller of
3162 		 * this function still owns the @lrbp tag so the code below does
3163 		 * not trigger any race conditions.
3164 		 */
3165 		hba->dev_cmd.complete = NULL;
3166 		err = ufshcd_get_tr_ocs(lrbp, NULL);
3167 		if (!err)
3168 			err = ufshcd_dev_cmd_completion(hba, lrbp);
3169 	} else {
3170 		err = -ETIMEDOUT;
3171 		dev_dbg(hba->dev, "%s: dev_cmd request timedout, tag %d\n",
3172 			__func__, lrbp->task_tag);
3173 
3174 		/* MCQ mode */
3175 		if (hba->mcq_enabled) {
3176 			/* successfully cleared the command, retry if needed */
3177 			if (ufshcd_clear_cmd(hba, lrbp->task_tag) == 0)
3178 				err = -EAGAIN;
3179 			hba->dev_cmd.complete = NULL;
3180 			return err;
3181 		}
3182 
3183 		/* SDB mode */
3184 		if (ufshcd_clear_cmd(hba, lrbp->task_tag) == 0) {
3185 			/* successfully cleared the command, retry if needed */
3186 			err = -EAGAIN;
3187 			/*
3188 			 * Since clearing the command succeeded we also need to
3189 			 * clear the task tag bit from the outstanding_reqs
3190 			 * variable.
3191 			 */
3192 			spin_lock_irqsave(&hba->outstanding_lock, flags);
3193 			pending = test_bit(lrbp->task_tag,
3194 					   &hba->outstanding_reqs);
3195 			if (pending) {
3196 				hba->dev_cmd.complete = NULL;
3197 				__clear_bit(lrbp->task_tag,
3198 					    &hba->outstanding_reqs);
3199 			}
3200 			spin_unlock_irqrestore(&hba->outstanding_lock, flags);
3201 
3202 			if (!pending) {
3203 				/*
3204 				 * The completion handler ran while we tried to
3205 				 * clear the command.
3206 				 */
3207 				time_left = 1;
3208 				goto retry;
3209 			}
3210 		} else {
3211 			dev_err(hba->dev, "%s: failed to clear tag %d\n",
3212 				__func__, lrbp->task_tag);
3213 
3214 			spin_lock_irqsave(&hba->outstanding_lock, flags);
3215 			pending = test_bit(lrbp->task_tag,
3216 					   &hba->outstanding_reqs);
3217 			if (pending)
3218 				hba->dev_cmd.complete = NULL;
3219 			spin_unlock_irqrestore(&hba->outstanding_lock, flags);
3220 
3221 			if (!pending) {
3222 				/*
3223 				 * The completion handler ran while we tried to
3224 				 * clear the command.
3225 				 */
3226 				time_left = 1;
3227 				goto retry;
3228 			}
3229 		}
3230 	}
3231 
3232 	return err;
3233 }
3234 
3235 static void ufshcd_dev_man_lock(struct ufs_hba *hba)
3236 {
3237 	ufshcd_hold(hba);
3238 	mutex_lock(&hba->dev_cmd.lock);
3239 	down_read(&hba->clk_scaling_lock);
3240 }
3241 
3242 static void ufshcd_dev_man_unlock(struct ufs_hba *hba)
3243 {
3244 	up_read(&hba->clk_scaling_lock);
3245 	mutex_unlock(&hba->dev_cmd.lock);
3246 	ufshcd_release(hba);
3247 }
3248 
3249 static int ufshcd_issue_dev_cmd(struct ufs_hba *hba, struct ufshcd_lrb *lrbp,
3250 			  const u32 tag, int timeout)
3251 {
3252 	DECLARE_COMPLETION_ONSTACK(wait);
3253 	int err;
3254 
3255 	hba->dev_cmd.complete = &wait;
3256 
3257 	ufshcd_add_query_upiu_trace(hba, UFS_QUERY_SEND, lrbp->ucd_req_ptr);
3258 
3259 	ufshcd_send_command(hba, tag, hba->dev_cmd_queue);
3260 	err = ufshcd_wait_for_dev_cmd(hba, lrbp, timeout);
3261 
3262 	ufshcd_add_query_upiu_trace(hba, err ? UFS_QUERY_ERR : UFS_QUERY_COMP,
3263 				    (struct utp_upiu_req *)lrbp->ucd_rsp_ptr);
3264 
3265 	return err;
3266 }
3267 
3268 /**
3269  * ufshcd_exec_dev_cmd - API for sending device management requests
3270  * @hba: UFS hba
3271  * @cmd_type: specifies the type (NOP, Query...)
3272  * @timeout: timeout in milliseconds
3273  *
3274  * Return: 0 upon success; < 0 upon failure.
3275  *
3276  * NOTE: Since there is only one available tag for device management commands,
3277  * it is expected you hold the hba->dev_cmd.lock mutex.
3278  */
3279 static int ufshcd_exec_dev_cmd(struct ufs_hba *hba,
3280 		enum dev_cmd_type cmd_type, int timeout)
3281 {
3282 	const u32 tag = hba->reserved_slot;
3283 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
3284 	int err;
3285 
3286 	/* Protects use of hba->reserved_slot. */
3287 	lockdep_assert_held(&hba->dev_cmd.lock);
3288 
3289 	err = ufshcd_compose_dev_cmd(hba, lrbp, cmd_type, tag);
3290 	if (unlikely(err))
3291 		return err;
3292 
3293 	return ufshcd_issue_dev_cmd(hba, lrbp, tag, timeout);
3294 }
3295 
3296 /**
3297  * ufshcd_init_query() - init the query response and request parameters
3298  * @hba: per-adapter instance
3299  * @request: address of the request pointer to be initialized
3300  * @response: address of the response pointer to be initialized
3301  * @opcode: operation to perform
3302  * @idn: flag idn to access
3303  * @index: LU number to access
3304  * @selector: query/flag/descriptor further identification
3305  */
3306 static inline void ufshcd_init_query(struct ufs_hba *hba,
3307 		struct ufs_query_req **request, struct ufs_query_res **response,
3308 		enum query_opcode opcode, u8 idn, u8 index, u8 selector)
3309 {
3310 	*request = &hba->dev_cmd.query.request;
3311 	*response = &hba->dev_cmd.query.response;
3312 	memset(*request, 0, sizeof(struct ufs_query_req));
3313 	memset(*response, 0, sizeof(struct ufs_query_res));
3314 	(*request)->upiu_req.opcode = opcode;
3315 	(*request)->upiu_req.idn = idn;
3316 	(*request)->upiu_req.index = index;
3317 	(*request)->upiu_req.selector = selector;
3318 }
3319 
3320 static int ufshcd_query_flag_retry(struct ufs_hba *hba,
3321 	enum query_opcode opcode, enum flag_idn idn, u8 index, bool *flag_res)
3322 {
3323 	int ret;
3324 	int retries;
3325 
3326 	for (retries = 0; retries < QUERY_REQ_RETRIES; retries++) {
3327 		ret = ufshcd_query_flag(hba, opcode, idn, index, flag_res);
3328 		if (ret)
3329 			dev_dbg(hba->dev,
3330 				"%s: failed with error %d, retries %d\n",
3331 				__func__, ret, retries);
3332 		else
3333 			break;
3334 	}
3335 
3336 	if (ret)
3337 		dev_err(hba->dev,
3338 			"%s: query flag, opcode %d, idn %d, failed with error %d after %d retries\n",
3339 			__func__, opcode, idn, ret, retries);
3340 	return ret;
3341 }
3342 
3343 /**
3344  * ufshcd_query_flag() - API function for sending flag query requests
3345  * @hba: per-adapter instance
3346  * @opcode: flag query to perform
3347  * @idn: flag idn to access
3348  * @index: flag index to access
3349  * @flag_res: the flag value after the query request completes
3350  *
3351  * Return: 0 for success, non-zero in case of failure.
3352  */
3353 int ufshcd_query_flag(struct ufs_hba *hba, enum query_opcode opcode,
3354 			enum flag_idn idn, u8 index, bool *flag_res)
3355 {
3356 	struct ufs_query_req *request = NULL;
3357 	struct ufs_query_res *response = NULL;
3358 	int err, selector = 0;
3359 	int timeout = QUERY_REQ_TIMEOUT;
3360 
3361 	BUG_ON(!hba);
3362 
3363 	ufshcd_dev_man_lock(hba);
3364 
3365 	ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3366 			selector);
3367 
3368 	switch (opcode) {
3369 	case UPIU_QUERY_OPCODE_SET_FLAG:
3370 	case UPIU_QUERY_OPCODE_CLEAR_FLAG:
3371 	case UPIU_QUERY_OPCODE_TOGGLE_FLAG:
3372 		request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3373 		break;
3374 	case UPIU_QUERY_OPCODE_READ_FLAG:
3375 		request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3376 		if (!flag_res) {
3377 			/* No dummy reads */
3378 			dev_err(hba->dev, "%s: Invalid argument for read request\n",
3379 					__func__);
3380 			err = -EINVAL;
3381 			goto out_unlock;
3382 		}
3383 		break;
3384 	default:
3385 		dev_err(hba->dev,
3386 			"%s: Expected query flag opcode but got = %d\n",
3387 			__func__, opcode);
3388 		err = -EINVAL;
3389 		goto out_unlock;
3390 	}
3391 
3392 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, timeout);
3393 
3394 	if (err) {
3395 		dev_err(hba->dev,
3396 			"%s: Sending flag query for idn %d failed, err = %d\n",
3397 			__func__, idn, err);
3398 		goto out_unlock;
3399 	}
3400 
3401 	if (flag_res)
3402 		*flag_res = (be32_to_cpu(response->upiu_res.value) &
3403 				MASK_QUERY_UPIU_FLAG_LOC) & 0x1;
3404 
3405 out_unlock:
3406 	ufshcd_dev_man_unlock(hba);
3407 	return err;
3408 }
3409 
3410 /**
3411  * ufshcd_query_attr - API function for sending attribute requests
3412  * @hba: per-adapter instance
3413  * @opcode: attribute opcode
3414  * @idn: attribute idn to access
3415  * @index: index field
3416  * @selector: selector field
3417  * @attr_val: the attribute value after the query request completes
3418  *
3419  * Return: 0 for success, non-zero in case of failure.
3420 */
3421 int ufshcd_query_attr(struct ufs_hba *hba, enum query_opcode opcode,
3422 		      enum attr_idn idn, u8 index, u8 selector, u32 *attr_val)
3423 {
3424 	struct ufs_query_req *request = NULL;
3425 	struct ufs_query_res *response = NULL;
3426 	int err;
3427 
3428 	BUG_ON(!hba);
3429 
3430 	if (!attr_val) {
3431 		dev_err(hba->dev, "%s: attribute value required for opcode 0x%x\n",
3432 				__func__, opcode);
3433 		return -EINVAL;
3434 	}
3435 
3436 	ufshcd_dev_man_lock(hba);
3437 
3438 	ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3439 			selector);
3440 
3441 	switch (opcode) {
3442 	case UPIU_QUERY_OPCODE_WRITE_ATTR:
3443 		request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3444 		request->upiu_req.value = cpu_to_be32(*attr_val);
3445 		break;
3446 	case UPIU_QUERY_OPCODE_READ_ATTR:
3447 		request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3448 		break;
3449 	default:
3450 		dev_err(hba->dev, "%s: Expected query attr opcode but got = 0x%.2x\n",
3451 				__func__, opcode);
3452 		err = -EINVAL;
3453 		goto out_unlock;
3454 	}
3455 
3456 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT);
3457 
3458 	if (err) {
3459 		dev_err(hba->dev, "%s: opcode 0x%.2x for idn %d failed, index %d, err = %d\n",
3460 				__func__, opcode, idn, index, err);
3461 		goto out_unlock;
3462 	}
3463 
3464 	*attr_val = be32_to_cpu(response->upiu_res.value);
3465 
3466 out_unlock:
3467 	ufshcd_dev_man_unlock(hba);
3468 	return err;
3469 }
3470 
3471 /**
3472  * ufshcd_query_attr_retry() - API function for sending query
3473  * attribute with retries
3474  * @hba: per-adapter instance
3475  * @opcode: attribute opcode
3476  * @idn: attribute idn to access
3477  * @index: index field
3478  * @selector: selector field
3479  * @attr_val: the attribute value after the query request
3480  * completes
3481  *
3482  * Return: 0 for success, non-zero in case of failure.
3483 */
3484 int ufshcd_query_attr_retry(struct ufs_hba *hba,
3485 	enum query_opcode opcode, enum attr_idn idn, u8 index, u8 selector,
3486 	u32 *attr_val)
3487 {
3488 	int ret = 0;
3489 	u32 retries;
3490 
3491 	for (retries = QUERY_REQ_RETRIES; retries > 0; retries--) {
3492 		ret = ufshcd_query_attr(hba, opcode, idn, index,
3493 						selector, attr_val);
3494 		if (ret)
3495 			dev_dbg(hba->dev, "%s: failed with error %d, retries %d\n",
3496 				__func__, ret, retries);
3497 		else
3498 			break;
3499 	}
3500 
3501 	if (ret)
3502 		dev_err(hba->dev,
3503 			"%s: query attribute, idn %d, failed with error %d after %d retries\n",
3504 			__func__, idn, ret, QUERY_REQ_RETRIES);
3505 	return ret;
3506 }
3507 
3508 static int __ufshcd_query_descriptor(struct ufs_hba *hba,
3509 			enum query_opcode opcode, enum desc_idn idn, u8 index,
3510 			u8 selector, u8 *desc_buf, int *buf_len)
3511 {
3512 	struct ufs_query_req *request = NULL;
3513 	struct ufs_query_res *response = NULL;
3514 	int err;
3515 
3516 	BUG_ON(!hba);
3517 
3518 	if (!desc_buf) {
3519 		dev_err(hba->dev, "%s: descriptor buffer required for opcode 0x%x\n",
3520 				__func__, opcode);
3521 		return -EINVAL;
3522 	}
3523 
3524 	if (*buf_len < QUERY_DESC_MIN_SIZE || *buf_len > QUERY_DESC_MAX_SIZE) {
3525 		dev_err(hba->dev, "%s: descriptor buffer size (%d) is out of range\n",
3526 				__func__, *buf_len);
3527 		return -EINVAL;
3528 	}
3529 
3530 	ufshcd_dev_man_lock(hba);
3531 
3532 	ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3533 			selector);
3534 	hba->dev_cmd.query.descriptor = desc_buf;
3535 	request->upiu_req.length = cpu_to_be16(*buf_len);
3536 
3537 	switch (opcode) {
3538 	case UPIU_QUERY_OPCODE_WRITE_DESC:
3539 		request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3540 		break;
3541 	case UPIU_QUERY_OPCODE_READ_DESC:
3542 		request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3543 		break;
3544 	default:
3545 		dev_err(hba->dev,
3546 				"%s: Expected query descriptor opcode but got = 0x%.2x\n",
3547 				__func__, opcode);
3548 		err = -EINVAL;
3549 		goto out_unlock;
3550 	}
3551 
3552 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT);
3553 
3554 	if (err) {
3555 		dev_err(hba->dev, "%s: opcode 0x%.2x for idn %d failed, index %d, err = %d\n",
3556 				__func__, opcode, idn, index, err);
3557 		goto out_unlock;
3558 	}
3559 
3560 	*buf_len = be16_to_cpu(response->upiu_res.length);
3561 
3562 out_unlock:
3563 	hba->dev_cmd.query.descriptor = NULL;
3564 	ufshcd_dev_man_unlock(hba);
3565 	return err;
3566 }
3567 
3568 /**
3569  * ufshcd_query_descriptor_retry - API function for sending descriptor requests
3570  * @hba: per-adapter instance
3571  * @opcode: attribute opcode
3572  * @idn: attribute idn to access
3573  * @index: index field
3574  * @selector: selector field
3575  * @desc_buf: the buffer that contains the descriptor
3576  * @buf_len: length parameter passed to the device
3577  *
3578  * The buf_len parameter will contain, on return, the length parameter
3579  * received on the response.
3580  *
3581  * Return: 0 for success, non-zero in case of failure.
3582  */
3583 int ufshcd_query_descriptor_retry(struct ufs_hba *hba,
3584 				  enum query_opcode opcode,
3585 				  enum desc_idn idn, u8 index,
3586 				  u8 selector,
3587 				  u8 *desc_buf, int *buf_len)
3588 {
3589 	int err;
3590 	int retries;
3591 
3592 	for (retries = QUERY_REQ_RETRIES; retries > 0; retries--) {
3593 		err = __ufshcd_query_descriptor(hba, opcode, idn, index,
3594 						selector, desc_buf, buf_len);
3595 		if (!err || err == -EINVAL)
3596 			break;
3597 	}
3598 
3599 	return err;
3600 }
3601 
3602 /**
3603  * ufshcd_read_desc_param - read the specified descriptor parameter
3604  * @hba: Pointer to adapter instance
3605  * @desc_id: descriptor idn value
3606  * @desc_index: descriptor index
3607  * @param_offset: offset of the parameter to read
3608  * @param_read_buf: pointer to buffer where parameter would be read
3609  * @param_size: sizeof(param_read_buf)
3610  *
3611  * Return: 0 in case of success, non-zero otherwise.
3612  */
3613 int ufshcd_read_desc_param(struct ufs_hba *hba,
3614 			   enum desc_idn desc_id,
3615 			   int desc_index,
3616 			   u8 param_offset,
3617 			   u8 *param_read_buf,
3618 			   u8 param_size)
3619 {
3620 	int ret;
3621 	u8 *desc_buf;
3622 	int buff_len = QUERY_DESC_MAX_SIZE;
3623 	bool is_kmalloc = true;
3624 
3625 	/* Safety check */
3626 	if (desc_id >= QUERY_DESC_IDN_MAX || !param_size)
3627 		return -EINVAL;
3628 
3629 	/* Check whether we need temp memory */
3630 	if (param_offset != 0 || param_size < buff_len) {
3631 		desc_buf = kzalloc(buff_len, GFP_KERNEL);
3632 		if (!desc_buf)
3633 			return -ENOMEM;
3634 	} else {
3635 		desc_buf = param_read_buf;
3636 		is_kmalloc = false;
3637 	}
3638 
3639 	/* Request for full descriptor */
3640 	ret = ufshcd_query_descriptor_retry(hba, UPIU_QUERY_OPCODE_READ_DESC,
3641 					    desc_id, desc_index, 0,
3642 					    desc_buf, &buff_len);
3643 	if (ret) {
3644 		dev_err(hba->dev, "%s: Failed reading descriptor. desc_id %d, desc_index %d, param_offset %d, ret %d\n",
3645 			__func__, desc_id, desc_index, param_offset, ret);
3646 		goto out;
3647 	}
3648 
3649 	/* Update descriptor length */
3650 	buff_len = desc_buf[QUERY_DESC_LENGTH_OFFSET];
3651 
3652 	if (param_offset >= buff_len) {
3653 		dev_err(hba->dev, "%s: Invalid offset 0x%x in descriptor IDN 0x%x, length 0x%x\n",
3654 			__func__, param_offset, desc_id, buff_len);
3655 		ret = -EINVAL;
3656 		goto out;
3657 	}
3658 
3659 	/* Sanity check */
3660 	if (desc_buf[QUERY_DESC_DESC_TYPE_OFFSET] != desc_id) {
3661 		dev_err(hba->dev, "%s: invalid desc_id %d in descriptor header\n",
3662 			__func__, desc_buf[QUERY_DESC_DESC_TYPE_OFFSET]);
3663 		ret = -EINVAL;
3664 		goto out;
3665 	}
3666 
3667 	if (is_kmalloc) {
3668 		/* Make sure we don't copy more data than available */
3669 		if (param_offset >= buff_len)
3670 			ret = -EINVAL;
3671 		else
3672 			memcpy(param_read_buf, &desc_buf[param_offset],
3673 			       min_t(u32, param_size, buff_len - param_offset));
3674 	}
3675 out:
3676 	if (is_kmalloc)
3677 		kfree(desc_buf);
3678 	return ret;
3679 }
3680 
3681 /**
3682  * struct uc_string_id - unicode string
3683  *
3684  * @len: size of this descriptor inclusive
3685  * @type: descriptor type
3686  * @uc: unicode string character
3687  */
3688 struct uc_string_id {
3689 	u8 len;
3690 	u8 type;
3691 	wchar_t uc[];
3692 } __packed;
3693 
3694 /* replace non-printable or non-ASCII characters with spaces */
3695 static inline char ufshcd_remove_non_printable(u8 ch)
3696 {
3697 	return (ch >= 0x20 && ch <= 0x7e) ? ch : ' ';
3698 }
3699 
3700 /**
3701  * ufshcd_read_string_desc - read string descriptor
3702  * @hba: pointer to adapter instance
3703  * @desc_index: descriptor index
3704  * @buf: pointer to buffer where descriptor would be read,
3705  *       the caller should free the memory.
3706  * @ascii: if true convert from unicode to ascii characters
3707  *         null terminated string.
3708  *
3709  * Return:
3710  * *      string size on success.
3711  * *      -ENOMEM: on allocation failure
3712  * *      -EINVAL: on a wrong parameter
3713  */
3714 int ufshcd_read_string_desc(struct ufs_hba *hba, u8 desc_index,
3715 			    u8 **buf, bool ascii)
3716 {
3717 	struct uc_string_id *uc_str;
3718 	u8 *str;
3719 	int ret;
3720 
3721 	if (!buf)
3722 		return -EINVAL;
3723 
3724 	uc_str = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
3725 	if (!uc_str)
3726 		return -ENOMEM;
3727 
3728 	ret = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_STRING, desc_index, 0,
3729 				     (u8 *)uc_str, QUERY_DESC_MAX_SIZE);
3730 	if (ret < 0) {
3731 		dev_err(hba->dev, "Reading String Desc failed after %d retries. err = %d\n",
3732 			QUERY_REQ_RETRIES, ret);
3733 		str = NULL;
3734 		goto out;
3735 	}
3736 
3737 	if (uc_str->len <= QUERY_DESC_HDR_SIZE) {
3738 		dev_dbg(hba->dev, "String Desc is of zero length\n");
3739 		str = NULL;
3740 		ret = 0;
3741 		goto out;
3742 	}
3743 
3744 	if (ascii) {
3745 		ssize_t ascii_len;
3746 		int i;
3747 		/* remove header and divide by 2 to move from UTF16 to UTF8 */
3748 		ascii_len = (uc_str->len - QUERY_DESC_HDR_SIZE) / 2 + 1;
3749 		str = kzalloc(ascii_len, GFP_KERNEL);
3750 		if (!str) {
3751 			ret = -ENOMEM;
3752 			goto out;
3753 		}
3754 
3755 		/*
3756 		 * the descriptor contains string in UTF16 format
3757 		 * we need to convert to utf-8 so it can be displayed
3758 		 */
3759 		ret = utf16s_to_utf8s(uc_str->uc,
3760 				      uc_str->len - QUERY_DESC_HDR_SIZE,
3761 				      UTF16_BIG_ENDIAN, str, ascii_len - 1);
3762 
3763 		/* replace non-printable or non-ASCII characters with spaces */
3764 		for (i = 0; i < ret; i++)
3765 			str[i] = ufshcd_remove_non_printable(str[i]);
3766 
3767 		str[ret++] = '\0';
3768 
3769 	} else {
3770 		str = kmemdup(uc_str, uc_str->len, GFP_KERNEL);
3771 		if (!str) {
3772 			ret = -ENOMEM;
3773 			goto out;
3774 		}
3775 		ret = uc_str->len;
3776 	}
3777 out:
3778 	*buf = str;
3779 	kfree(uc_str);
3780 	return ret;
3781 }
3782 
3783 /**
3784  * ufshcd_read_unit_desc_param - read the specified unit descriptor parameter
3785  * @hba: Pointer to adapter instance
3786  * @lun: lun id
3787  * @param_offset: offset of the parameter to read
3788  * @param_read_buf: pointer to buffer where parameter would be read
3789  * @param_size: sizeof(param_read_buf)
3790  *
3791  * Return: 0 in case of success, non-zero otherwise.
3792  */
3793 static inline int ufshcd_read_unit_desc_param(struct ufs_hba *hba,
3794 					      int lun,
3795 					      enum unit_desc_param param_offset,
3796 					      u8 *param_read_buf,
3797 					      u32 param_size)
3798 {
3799 	/*
3800 	 * Unit descriptors are only available for general purpose LUs (LUN id
3801 	 * from 0 to 7) and RPMB Well known LU.
3802 	 */
3803 	if (!ufs_is_valid_unit_desc_lun(&hba->dev_info, lun))
3804 		return -EOPNOTSUPP;
3805 
3806 	return ufshcd_read_desc_param(hba, QUERY_DESC_IDN_UNIT, lun,
3807 				      param_offset, param_read_buf, param_size);
3808 }
3809 
3810 static int ufshcd_get_ref_clk_gating_wait(struct ufs_hba *hba)
3811 {
3812 	int err = 0;
3813 	u32 gating_wait = UFSHCD_REF_CLK_GATING_WAIT_US;
3814 
3815 	if (hba->dev_info.wspecversion >= 0x300) {
3816 		err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
3817 				QUERY_ATTR_IDN_REF_CLK_GATING_WAIT_TIME, 0, 0,
3818 				&gating_wait);
3819 		if (err)
3820 			dev_err(hba->dev, "Failed reading bRefClkGatingWait. err = %d, use default %uus\n",
3821 					 err, gating_wait);
3822 
3823 		if (gating_wait == 0) {
3824 			gating_wait = UFSHCD_REF_CLK_GATING_WAIT_US;
3825 			dev_err(hba->dev, "Undefined ref clk gating wait time, use default %uus\n",
3826 					 gating_wait);
3827 		}
3828 
3829 		hba->dev_info.clk_gating_wait_us = gating_wait;
3830 	}
3831 
3832 	return err;
3833 }
3834 
3835 /**
3836  * ufshcd_memory_alloc - allocate memory for host memory space data structures
3837  * @hba: per adapter instance
3838  *
3839  * 1. Allocate DMA memory for Command Descriptor array
3840  *	Each command descriptor consist of Command UPIU, Response UPIU and PRDT
3841  * 2. Allocate DMA memory for UTP Transfer Request Descriptor List (UTRDL).
3842  * 3. Allocate DMA memory for UTP Task Management Request Descriptor List
3843  *	(UTMRDL)
3844  * 4. Allocate memory for local reference block(lrb).
3845  *
3846  * Return: 0 for success, non-zero in case of failure.
3847  */
3848 static int ufshcd_memory_alloc(struct ufs_hba *hba)
3849 {
3850 	size_t utmrdl_size, utrdl_size, ucdl_size;
3851 
3852 	/* Allocate memory for UTP command descriptors */
3853 	ucdl_size = ufshcd_get_ucd_size(hba) * hba->nutrs;
3854 	hba->ucdl_base_addr = dmam_alloc_coherent(hba->dev,
3855 						  ucdl_size,
3856 						  &hba->ucdl_dma_addr,
3857 						  GFP_KERNEL);
3858 
3859 	/*
3860 	 * UFSHCI requires UTP command descriptor to be 128 byte aligned.
3861 	 */
3862 	if (!hba->ucdl_base_addr ||
3863 	    WARN_ON(hba->ucdl_dma_addr & (128 - 1))) {
3864 		dev_err(hba->dev,
3865 			"Command Descriptor Memory allocation failed\n");
3866 		goto out;
3867 	}
3868 
3869 	/*
3870 	 * Allocate memory for UTP Transfer descriptors
3871 	 * UFSHCI requires 1KB alignment of UTRD
3872 	 */
3873 	utrdl_size = (sizeof(struct utp_transfer_req_desc) * hba->nutrs);
3874 	hba->utrdl_base_addr = dmam_alloc_coherent(hba->dev,
3875 						   utrdl_size,
3876 						   &hba->utrdl_dma_addr,
3877 						   GFP_KERNEL);
3878 	if (!hba->utrdl_base_addr ||
3879 	    WARN_ON(hba->utrdl_dma_addr & (SZ_1K - 1))) {
3880 		dev_err(hba->dev,
3881 			"Transfer Descriptor Memory allocation failed\n");
3882 		goto out;
3883 	}
3884 
3885 	/*
3886 	 * Skip utmrdl allocation; it may have been
3887 	 * allocated during first pass and not released during
3888 	 * MCQ memory allocation.
3889 	 * See ufshcd_release_sdb_queue() and ufshcd_config_mcq()
3890 	 */
3891 	if (hba->utmrdl_base_addr)
3892 		goto skip_utmrdl;
3893 	/*
3894 	 * Allocate memory for UTP Task Management descriptors
3895 	 * UFSHCI requires 1KB alignment of UTMRD
3896 	 */
3897 	utmrdl_size = sizeof(struct utp_task_req_desc) * hba->nutmrs;
3898 	hba->utmrdl_base_addr = dmam_alloc_coherent(hba->dev,
3899 						    utmrdl_size,
3900 						    &hba->utmrdl_dma_addr,
3901 						    GFP_KERNEL);
3902 	if (!hba->utmrdl_base_addr ||
3903 	    WARN_ON(hba->utmrdl_dma_addr & (SZ_1K - 1))) {
3904 		dev_err(hba->dev,
3905 		"Task Management Descriptor Memory allocation failed\n");
3906 		goto out;
3907 	}
3908 
3909 skip_utmrdl:
3910 	/* Allocate memory for local reference block */
3911 	hba->lrb = devm_kcalloc(hba->dev,
3912 				hba->nutrs, sizeof(struct ufshcd_lrb),
3913 				GFP_KERNEL);
3914 	if (!hba->lrb) {
3915 		dev_err(hba->dev, "LRB Memory allocation failed\n");
3916 		goto out;
3917 	}
3918 	return 0;
3919 out:
3920 	return -ENOMEM;
3921 }
3922 
3923 /**
3924  * ufshcd_host_memory_configure - configure local reference block with
3925  *				memory offsets
3926  * @hba: per adapter instance
3927  *
3928  * Configure Host memory space
3929  * 1. Update Corresponding UTRD.UCDBA and UTRD.UCDBAU with UCD DMA
3930  * address.
3931  * 2. Update each UTRD with Response UPIU offset, Response UPIU length
3932  * and PRDT offset.
3933  * 3. Save the corresponding addresses of UTRD, UCD.CMD, UCD.RSP and UCD.PRDT
3934  * into local reference block.
3935  */
3936 static void ufshcd_host_memory_configure(struct ufs_hba *hba)
3937 {
3938 	struct utp_transfer_req_desc *utrdlp;
3939 	dma_addr_t cmd_desc_dma_addr;
3940 	dma_addr_t cmd_desc_element_addr;
3941 	u16 response_offset;
3942 	u16 prdt_offset;
3943 	int cmd_desc_size;
3944 	int i;
3945 
3946 	utrdlp = hba->utrdl_base_addr;
3947 
3948 	response_offset =
3949 		offsetof(struct utp_transfer_cmd_desc, response_upiu);
3950 	prdt_offset =
3951 		offsetof(struct utp_transfer_cmd_desc, prd_table);
3952 
3953 	cmd_desc_size = ufshcd_get_ucd_size(hba);
3954 	cmd_desc_dma_addr = hba->ucdl_dma_addr;
3955 
3956 	for (i = 0; i < hba->nutrs; i++) {
3957 		/* Configure UTRD with command descriptor base address */
3958 		cmd_desc_element_addr =
3959 				(cmd_desc_dma_addr + (cmd_desc_size * i));
3960 		utrdlp[i].command_desc_base_addr =
3961 				cpu_to_le64(cmd_desc_element_addr);
3962 
3963 		/* Response upiu and prdt offset should be in double words */
3964 		if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN) {
3965 			utrdlp[i].response_upiu_offset =
3966 				cpu_to_le16(response_offset);
3967 			utrdlp[i].prd_table_offset =
3968 				cpu_to_le16(prdt_offset);
3969 			utrdlp[i].response_upiu_length =
3970 				cpu_to_le16(ALIGNED_UPIU_SIZE);
3971 		} else {
3972 			utrdlp[i].response_upiu_offset =
3973 				cpu_to_le16(response_offset >> 2);
3974 			utrdlp[i].prd_table_offset =
3975 				cpu_to_le16(prdt_offset >> 2);
3976 			utrdlp[i].response_upiu_length =
3977 				cpu_to_le16(ALIGNED_UPIU_SIZE >> 2);
3978 		}
3979 
3980 		ufshcd_init_lrb(hba, &hba->lrb[i], i);
3981 	}
3982 }
3983 
3984 /**
3985  * ufshcd_dme_link_startup - Notify Unipro to perform link startup
3986  * @hba: per adapter instance
3987  *
3988  * UIC_CMD_DME_LINK_STARTUP command must be issued to Unipro layer,
3989  * in order to initialize the Unipro link startup procedure.
3990  * Once the Unipro links are up, the device connected to the controller
3991  * is detected.
3992  *
3993  * Return: 0 on success, non-zero value on failure.
3994  */
3995 static int ufshcd_dme_link_startup(struct ufs_hba *hba)
3996 {
3997 	struct uic_command uic_cmd = {
3998 		.command = UIC_CMD_DME_LINK_STARTUP,
3999 	};
4000 	int ret;
4001 
4002 	ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4003 	if (ret)
4004 		dev_dbg(hba->dev,
4005 			"dme-link-startup: error code %d\n", ret);
4006 	return ret;
4007 }
4008 /**
4009  * ufshcd_dme_reset - UIC command for DME_RESET
4010  * @hba: per adapter instance
4011  *
4012  * DME_RESET command is issued in order to reset UniPro stack.
4013  * This function now deals with cold reset.
4014  *
4015  * Return: 0 on success, non-zero value on failure.
4016  */
4017 static int ufshcd_dme_reset(struct ufs_hba *hba)
4018 {
4019 	struct uic_command uic_cmd = {
4020 		.command = UIC_CMD_DME_RESET,
4021 	};
4022 	int ret;
4023 
4024 	ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4025 	if (ret)
4026 		dev_err(hba->dev,
4027 			"dme-reset: error code %d\n", ret);
4028 
4029 	return ret;
4030 }
4031 
4032 int ufshcd_dme_configure_adapt(struct ufs_hba *hba,
4033 			       int agreed_gear,
4034 			       int adapt_val)
4035 {
4036 	int ret;
4037 
4038 	if (agreed_gear < UFS_HS_G4)
4039 		adapt_val = PA_NO_ADAPT;
4040 
4041 	ret = ufshcd_dme_set(hba,
4042 			     UIC_ARG_MIB(PA_TXHSADAPTTYPE),
4043 			     adapt_val);
4044 	return ret;
4045 }
4046 EXPORT_SYMBOL_GPL(ufshcd_dme_configure_adapt);
4047 
4048 /**
4049  * ufshcd_dme_enable - UIC command for DME_ENABLE
4050  * @hba: per adapter instance
4051  *
4052  * DME_ENABLE command is issued in order to enable UniPro stack.
4053  *
4054  * Return: 0 on success, non-zero value on failure.
4055  */
4056 static int ufshcd_dme_enable(struct ufs_hba *hba)
4057 {
4058 	struct uic_command uic_cmd = {
4059 		.command = UIC_CMD_DME_ENABLE,
4060 	};
4061 	int ret;
4062 
4063 	ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4064 	if (ret)
4065 		dev_err(hba->dev,
4066 			"dme-enable: error code %d\n", ret);
4067 
4068 	return ret;
4069 }
4070 
4071 static inline void ufshcd_add_delay_before_dme_cmd(struct ufs_hba *hba)
4072 {
4073 	#define MIN_DELAY_BEFORE_DME_CMDS_US	1000
4074 	unsigned long min_sleep_time_us;
4075 
4076 	if (!(hba->quirks & UFSHCD_QUIRK_DELAY_BEFORE_DME_CMDS))
4077 		return;
4078 
4079 	/*
4080 	 * last_dme_cmd_tstamp will be 0 only for 1st call to
4081 	 * this function
4082 	 */
4083 	if (unlikely(!ktime_to_us(hba->last_dme_cmd_tstamp))) {
4084 		min_sleep_time_us = MIN_DELAY_BEFORE_DME_CMDS_US;
4085 	} else {
4086 		unsigned long delta =
4087 			(unsigned long) ktime_to_us(
4088 				ktime_sub(ktime_get(),
4089 				hba->last_dme_cmd_tstamp));
4090 
4091 		if (delta < MIN_DELAY_BEFORE_DME_CMDS_US)
4092 			min_sleep_time_us =
4093 				MIN_DELAY_BEFORE_DME_CMDS_US - delta;
4094 		else
4095 			min_sleep_time_us = 0; /* no more delay required */
4096 	}
4097 
4098 	if (min_sleep_time_us > 0) {
4099 		/* allow sleep for extra 50us if needed */
4100 		usleep_range(min_sleep_time_us, min_sleep_time_us + 50);
4101 	}
4102 
4103 	/* update the last_dme_cmd_tstamp */
4104 	hba->last_dme_cmd_tstamp = ktime_get();
4105 }
4106 
4107 /**
4108  * ufshcd_dme_set_attr - UIC command for DME_SET, DME_PEER_SET
4109  * @hba: per adapter instance
4110  * @attr_sel: uic command argument1
4111  * @attr_set: attribute set type as uic command argument2
4112  * @mib_val: setting value as uic command argument3
4113  * @peer: indicate whether peer or local
4114  *
4115  * Return: 0 on success, non-zero value on failure.
4116  */
4117 int ufshcd_dme_set_attr(struct ufs_hba *hba, u32 attr_sel,
4118 			u8 attr_set, u32 mib_val, u8 peer)
4119 {
4120 	struct uic_command uic_cmd = {
4121 		.command = peer ? UIC_CMD_DME_PEER_SET : UIC_CMD_DME_SET,
4122 		.argument1 = attr_sel,
4123 		.argument2 = UIC_ARG_ATTR_TYPE(attr_set),
4124 		.argument3 = mib_val,
4125 	};
4126 	static const char *const action[] = {
4127 		"dme-set",
4128 		"dme-peer-set"
4129 	};
4130 	const char *set = action[!!peer];
4131 	int ret;
4132 	int retries = UFS_UIC_COMMAND_RETRIES;
4133 
4134 	do {
4135 		/* for peer attributes we retry upon failure */
4136 		ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4137 		if (ret)
4138 			dev_dbg(hba->dev, "%s: attr-id 0x%x val 0x%x error code %d\n",
4139 				set, UIC_GET_ATTR_ID(attr_sel), mib_val, ret);
4140 	} while (ret && peer && --retries);
4141 
4142 	if (ret)
4143 		dev_err(hba->dev, "%s: attr-id 0x%x val 0x%x failed %d retries\n",
4144 			set, UIC_GET_ATTR_ID(attr_sel), mib_val,
4145 			UFS_UIC_COMMAND_RETRIES - retries);
4146 
4147 	return ret;
4148 }
4149 EXPORT_SYMBOL_GPL(ufshcd_dme_set_attr);
4150 
4151 /**
4152  * ufshcd_dme_get_attr - UIC command for DME_GET, DME_PEER_GET
4153  * @hba: per adapter instance
4154  * @attr_sel: uic command argument1
4155  * @mib_val: the value of the attribute as returned by the UIC command
4156  * @peer: indicate whether peer or local
4157  *
4158  * Return: 0 on success, non-zero value on failure.
4159  */
4160 int ufshcd_dme_get_attr(struct ufs_hba *hba, u32 attr_sel,
4161 			u32 *mib_val, u8 peer)
4162 {
4163 	struct uic_command uic_cmd = {
4164 		.command = peer ? UIC_CMD_DME_PEER_GET : UIC_CMD_DME_GET,
4165 		.argument1 = attr_sel,
4166 	};
4167 	static const char *const action[] = {
4168 		"dme-get",
4169 		"dme-peer-get"
4170 	};
4171 	const char *get = action[!!peer];
4172 	int ret;
4173 	int retries = UFS_UIC_COMMAND_RETRIES;
4174 	struct ufs_pa_layer_attr orig_pwr_info;
4175 	struct ufs_pa_layer_attr temp_pwr_info;
4176 	bool pwr_mode_change = false;
4177 
4178 	if (peer && (hba->quirks & UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE)) {
4179 		orig_pwr_info = hba->pwr_info;
4180 		temp_pwr_info = orig_pwr_info;
4181 
4182 		if (orig_pwr_info.pwr_tx == FAST_MODE ||
4183 		    orig_pwr_info.pwr_rx == FAST_MODE) {
4184 			temp_pwr_info.pwr_tx = FASTAUTO_MODE;
4185 			temp_pwr_info.pwr_rx = FASTAUTO_MODE;
4186 			pwr_mode_change = true;
4187 		} else if (orig_pwr_info.pwr_tx == SLOW_MODE ||
4188 		    orig_pwr_info.pwr_rx == SLOW_MODE) {
4189 			temp_pwr_info.pwr_tx = SLOWAUTO_MODE;
4190 			temp_pwr_info.pwr_rx = SLOWAUTO_MODE;
4191 			pwr_mode_change = true;
4192 		}
4193 		if (pwr_mode_change) {
4194 			ret = ufshcd_change_power_mode(hba, &temp_pwr_info);
4195 			if (ret)
4196 				goto out;
4197 		}
4198 	}
4199 
4200 	do {
4201 		/* for peer attributes we retry upon failure */
4202 		ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4203 		if (ret)
4204 			dev_dbg(hba->dev, "%s: attr-id 0x%x error code %d\n",
4205 				get, UIC_GET_ATTR_ID(attr_sel), ret);
4206 	} while (ret && peer && --retries);
4207 
4208 	if (ret)
4209 		dev_err(hba->dev, "%s: attr-id 0x%x failed %d retries\n",
4210 			get, UIC_GET_ATTR_ID(attr_sel),
4211 			UFS_UIC_COMMAND_RETRIES - retries);
4212 
4213 	if (mib_val && !ret)
4214 		*mib_val = uic_cmd.argument3;
4215 
4216 	if (peer && (hba->quirks & UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE)
4217 	    && pwr_mode_change)
4218 		ufshcd_change_power_mode(hba, &orig_pwr_info);
4219 out:
4220 	return ret;
4221 }
4222 EXPORT_SYMBOL_GPL(ufshcd_dme_get_attr);
4223 
4224 /**
4225  * ufshcd_uic_pwr_ctrl - executes UIC commands (which affects the link power
4226  * state) and waits for it to take effect.
4227  *
4228  * @hba: per adapter instance
4229  * @cmd: UIC command to execute
4230  *
4231  * DME operations like DME_SET(PA_PWRMODE), DME_HIBERNATE_ENTER &
4232  * DME_HIBERNATE_EXIT commands take some time to take its effect on both host
4233  * and device UniPro link and hence it's final completion would be indicated by
4234  * dedicated status bits in Interrupt Status register (UPMS, UHES, UHXS) in
4235  * addition to normal UIC command completion Status (UCCS). This function only
4236  * returns after the relevant status bits indicate the completion.
4237  *
4238  * Return: 0 on success, non-zero value on failure.
4239  */
4240 static int ufshcd_uic_pwr_ctrl(struct ufs_hba *hba, struct uic_command *cmd)
4241 {
4242 	DECLARE_COMPLETION_ONSTACK(uic_async_done);
4243 	unsigned long flags;
4244 	u8 status;
4245 	int ret;
4246 	bool reenable_intr = false;
4247 
4248 	mutex_lock(&hba->uic_cmd_mutex);
4249 	ufshcd_add_delay_before_dme_cmd(hba);
4250 
4251 	spin_lock_irqsave(hba->host->host_lock, flags);
4252 	if (ufshcd_is_link_broken(hba)) {
4253 		ret = -ENOLINK;
4254 		goto out_unlock;
4255 	}
4256 	hba->uic_async_done = &uic_async_done;
4257 	if (ufshcd_readl(hba, REG_INTERRUPT_ENABLE) & UIC_COMMAND_COMPL) {
4258 		ufshcd_disable_intr(hba, UIC_COMMAND_COMPL);
4259 		/*
4260 		 * Make sure UIC command completion interrupt is disabled before
4261 		 * issuing UIC command.
4262 		 */
4263 		ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
4264 		reenable_intr = true;
4265 	}
4266 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4267 	ret = __ufshcd_send_uic_cmd(hba, cmd);
4268 	if (ret) {
4269 		dev_err(hba->dev,
4270 			"pwr ctrl cmd 0x%x with mode 0x%x uic error %d\n",
4271 			cmd->command, cmd->argument3, ret);
4272 		goto out;
4273 	}
4274 
4275 	if (!wait_for_completion_timeout(hba->uic_async_done,
4276 					 msecs_to_jiffies(uic_cmd_timeout))) {
4277 		dev_err(hba->dev,
4278 			"pwr ctrl cmd 0x%x with mode 0x%x completion timeout\n",
4279 			cmd->command, cmd->argument3);
4280 
4281 		if (!cmd->cmd_active) {
4282 			dev_err(hba->dev, "%s: Power Mode Change operation has been completed, go check UPMCRS\n",
4283 				__func__);
4284 			goto check_upmcrs;
4285 		}
4286 
4287 		ret = -ETIMEDOUT;
4288 		goto out;
4289 	}
4290 
4291 check_upmcrs:
4292 	status = ufshcd_get_upmcrs(hba);
4293 	if (status != PWR_LOCAL) {
4294 		dev_err(hba->dev,
4295 			"pwr ctrl cmd 0x%x failed, host upmcrs:0x%x\n",
4296 			cmd->command, status);
4297 		ret = (status != PWR_OK) ? status : -1;
4298 	}
4299 out:
4300 	if (ret) {
4301 		ufshcd_print_host_state(hba);
4302 		ufshcd_print_pwr_info(hba);
4303 		ufshcd_print_evt_hist(hba);
4304 	}
4305 
4306 	spin_lock_irqsave(hba->host->host_lock, flags);
4307 	hba->active_uic_cmd = NULL;
4308 	hba->uic_async_done = NULL;
4309 	if (reenable_intr)
4310 		ufshcd_enable_intr(hba, UIC_COMMAND_COMPL);
4311 	if (ret) {
4312 		ufshcd_set_link_broken(hba);
4313 		ufshcd_schedule_eh_work(hba);
4314 	}
4315 out_unlock:
4316 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4317 	mutex_unlock(&hba->uic_cmd_mutex);
4318 
4319 	return ret;
4320 }
4321 
4322 /**
4323  * ufshcd_uic_change_pwr_mode - Perform the UIC power mode chage
4324  *				using DME_SET primitives.
4325  * @hba: per adapter instance
4326  * @mode: powr mode value
4327  *
4328  * Return: 0 on success, non-zero value on failure.
4329  */
4330 int ufshcd_uic_change_pwr_mode(struct ufs_hba *hba, u8 mode)
4331 {
4332 	struct uic_command uic_cmd = {
4333 		.command = UIC_CMD_DME_SET,
4334 		.argument1 = UIC_ARG_MIB(PA_PWRMODE),
4335 		.argument3 = mode,
4336 	};
4337 	int ret;
4338 
4339 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_PA_RXHSUNTERMCAP) {
4340 		ret = ufshcd_dme_set(hba,
4341 				UIC_ARG_MIB_SEL(PA_RXHSUNTERMCAP, 0), 1);
4342 		if (ret) {
4343 			dev_err(hba->dev, "%s: failed to enable PA_RXHSUNTERMCAP ret %d\n",
4344 						__func__, ret);
4345 			goto out;
4346 		}
4347 	}
4348 
4349 	ufshcd_hold(hba);
4350 	ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4351 	ufshcd_release(hba);
4352 
4353 out:
4354 	return ret;
4355 }
4356 EXPORT_SYMBOL_GPL(ufshcd_uic_change_pwr_mode);
4357 
4358 int ufshcd_link_recovery(struct ufs_hba *hba)
4359 {
4360 	int ret;
4361 	unsigned long flags;
4362 
4363 	spin_lock_irqsave(hba->host->host_lock, flags);
4364 	hba->ufshcd_state = UFSHCD_STATE_RESET;
4365 	ufshcd_set_eh_in_progress(hba);
4366 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4367 
4368 	/* Reset the attached device */
4369 	ufshcd_device_reset(hba);
4370 
4371 	ret = ufshcd_host_reset_and_restore(hba);
4372 
4373 	spin_lock_irqsave(hba->host->host_lock, flags);
4374 	if (ret)
4375 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
4376 	ufshcd_clear_eh_in_progress(hba);
4377 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4378 
4379 	if (ret)
4380 		dev_err(hba->dev, "%s: link recovery failed, err %d",
4381 			__func__, ret);
4382 
4383 	return ret;
4384 }
4385 EXPORT_SYMBOL_GPL(ufshcd_link_recovery);
4386 
4387 int ufshcd_uic_hibern8_enter(struct ufs_hba *hba)
4388 {
4389 	struct uic_command uic_cmd = {
4390 		.command = UIC_CMD_DME_HIBER_ENTER,
4391 	};
4392 	ktime_t start = ktime_get();
4393 	int ret;
4394 
4395 	ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_ENTER, PRE_CHANGE);
4396 
4397 	ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4398 	trace_ufshcd_profile_hibern8(dev_name(hba->dev), "enter",
4399 			     ktime_to_us(ktime_sub(ktime_get(), start)), ret);
4400 
4401 	if (ret)
4402 		dev_err(hba->dev, "%s: hibern8 enter failed. ret = %d\n",
4403 			__func__, ret);
4404 	else
4405 		ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_ENTER,
4406 								POST_CHANGE);
4407 
4408 	return ret;
4409 }
4410 EXPORT_SYMBOL_GPL(ufshcd_uic_hibern8_enter);
4411 
4412 int ufshcd_uic_hibern8_exit(struct ufs_hba *hba)
4413 {
4414 	struct uic_command uic_cmd = {
4415 		.command = UIC_CMD_DME_HIBER_EXIT,
4416 	};
4417 	int ret;
4418 	ktime_t start = ktime_get();
4419 
4420 	ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_EXIT, PRE_CHANGE);
4421 
4422 	ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4423 	trace_ufshcd_profile_hibern8(dev_name(hba->dev), "exit",
4424 			     ktime_to_us(ktime_sub(ktime_get(), start)), ret);
4425 
4426 	if (ret) {
4427 		dev_err(hba->dev, "%s: hibern8 exit failed. ret = %d\n",
4428 			__func__, ret);
4429 	} else {
4430 		ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_EXIT,
4431 								POST_CHANGE);
4432 		hba->ufs_stats.last_hibern8_exit_tstamp = local_clock();
4433 		hba->ufs_stats.hibern8_exit_cnt++;
4434 	}
4435 
4436 	return ret;
4437 }
4438 EXPORT_SYMBOL_GPL(ufshcd_uic_hibern8_exit);
4439 
4440 static void ufshcd_configure_auto_hibern8(struct ufs_hba *hba)
4441 {
4442 	if (!ufshcd_is_auto_hibern8_supported(hba))
4443 		return;
4444 
4445 	ufshcd_writel(hba, hba->ahit, REG_AUTO_HIBERNATE_IDLE_TIMER);
4446 }
4447 
4448 void ufshcd_auto_hibern8_update(struct ufs_hba *hba, u32 ahit)
4449 {
4450 	const u32 cur_ahit = READ_ONCE(hba->ahit);
4451 
4452 	if (!ufshcd_is_auto_hibern8_supported(hba) || cur_ahit == ahit)
4453 		return;
4454 
4455 	WRITE_ONCE(hba->ahit, ahit);
4456 	if (!pm_runtime_suspended(&hba->ufs_device_wlun->sdev_gendev)) {
4457 		ufshcd_rpm_get_sync(hba);
4458 		ufshcd_hold(hba);
4459 		ufshcd_configure_auto_hibern8(hba);
4460 		ufshcd_release(hba);
4461 		ufshcd_rpm_put_sync(hba);
4462 	}
4463 }
4464 EXPORT_SYMBOL_GPL(ufshcd_auto_hibern8_update);
4465 
4466  /**
4467  * ufshcd_init_pwr_info - setting the POR (power on reset)
4468  * values in hba power info
4469  * @hba: per-adapter instance
4470  */
4471 static void ufshcd_init_pwr_info(struct ufs_hba *hba)
4472 {
4473 	hba->pwr_info.gear_rx = UFS_PWM_G1;
4474 	hba->pwr_info.gear_tx = UFS_PWM_G1;
4475 	hba->pwr_info.lane_rx = UFS_LANE_1;
4476 	hba->pwr_info.lane_tx = UFS_LANE_1;
4477 	hba->pwr_info.pwr_rx = SLOWAUTO_MODE;
4478 	hba->pwr_info.pwr_tx = SLOWAUTO_MODE;
4479 	hba->pwr_info.hs_rate = 0;
4480 }
4481 
4482 /**
4483  * ufshcd_get_max_pwr_mode - reads the max power mode negotiated with device
4484  * @hba: per-adapter instance
4485  *
4486  * Return: 0 upon success; < 0 upon failure.
4487  */
4488 static int ufshcd_get_max_pwr_mode(struct ufs_hba *hba)
4489 {
4490 	struct ufs_pa_layer_attr *pwr_info = &hba->max_pwr_info.info;
4491 
4492 	if (hba->max_pwr_info.is_valid)
4493 		return 0;
4494 
4495 	if (hba->quirks & UFSHCD_QUIRK_HIBERN_FASTAUTO) {
4496 		pwr_info->pwr_tx = FASTAUTO_MODE;
4497 		pwr_info->pwr_rx = FASTAUTO_MODE;
4498 	} else {
4499 		pwr_info->pwr_tx = FAST_MODE;
4500 		pwr_info->pwr_rx = FAST_MODE;
4501 	}
4502 	pwr_info->hs_rate = PA_HS_MODE_B;
4503 
4504 	/* Get the connected lane count */
4505 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDRXDATALANES),
4506 			&pwr_info->lane_rx);
4507 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4508 			&pwr_info->lane_tx);
4509 
4510 	if (!pwr_info->lane_rx || !pwr_info->lane_tx) {
4511 		dev_err(hba->dev, "%s: invalid connected lanes value. rx=%d, tx=%d\n",
4512 				__func__,
4513 				pwr_info->lane_rx,
4514 				pwr_info->lane_tx);
4515 		return -EINVAL;
4516 	}
4517 
4518 	if (pwr_info->lane_rx != pwr_info->lane_tx) {
4519 		dev_err(hba->dev, "%s: asymmetric connected lanes. rx=%d, tx=%d\n",
4520 			__func__,
4521 				pwr_info->lane_rx,
4522 				pwr_info->lane_tx);
4523 		return -EINVAL;
4524 	}
4525 
4526 	/*
4527 	 * First, get the maximum gears of HS speed.
4528 	 * If a zero value, it means there is no HSGEAR capability.
4529 	 * Then, get the maximum gears of PWM speed.
4530 	 */
4531 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_MAXRXHSGEAR), &pwr_info->gear_rx);
4532 	if (!pwr_info->gear_rx) {
4533 		ufshcd_dme_get(hba, UIC_ARG_MIB(PA_MAXRXPWMGEAR),
4534 				&pwr_info->gear_rx);
4535 		if (!pwr_info->gear_rx) {
4536 			dev_err(hba->dev, "%s: invalid max pwm rx gear read = %d\n",
4537 				__func__, pwr_info->gear_rx);
4538 			return -EINVAL;
4539 		}
4540 		pwr_info->pwr_rx = SLOW_MODE;
4541 	}
4542 
4543 	ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_MAXRXHSGEAR),
4544 			&pwr_info->gear_tx);
4545 	if (!pwr_info->gear_tx) {
4546 		ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_MAXRXPWMGEAR),
4547 				&pwr_info->gear_tx);
4548 		if (!pwr_info->gear_tx) {
4549 			dev_err(hba->dev, "%s: invalid max pwm tx gear read = %d\n",
4550 				__func__, pwr_info->gear_tx);
4551 			return -EINVAL;
4552 		}
4553 		pwr_info->pwr_tx = SLOW_MODE;
4554 	}
4555 
4556 	hba->max_pwr_info.is_valid = true;
4557 	return 0;
4558 }
4559 
4560 static int ufshcd_change_power_mode(struct ufs_hba *hba,
4561 			     struct ufs_pa_layer_attr *pwr_mode)
4562 {
4563 	int ret;
4564 
4565 	/* if already configured to the requested pwr_mode */
4566 	if (!hba->force_pmc &&
4567 	    pwr_mode->gear_rx == hba->pwr_info.gear_rx &&
4568 	    pwr_mode->gear_tx == hba->pwr_info.gear_tx &&
4569 	    pwr_mode->lane_rx == hba->pwr_info.lane_rx &&
4570 	    pwr_mode->lane_tx == hba->pwr_info.lane_tx &&
4571 	    pwr_mode->pwr_rx == hba->pwr_info.pwr_rx &&
4572 	    pwr_mode->pwr_tx == hba->pwr_info.pwr_tx &&
4573 	    pwr_mode->hs_rate == hba->pwr_info.hs_rate) {
4574 		dev_dbg(hba->dev, "%s: power already configured\n", __func__);
4575 		return 0;
4576 	}
4577 
4578 	/*
4579 	 * Configure attributes for power mode change with below.
4580 	 * - PA_RXGEAR, PA_ACTIVERXDATALANES, PA_RXTERMINATION,
4581 	 * - PA_TXGEAR, PA_ACTIVETXDATALANES, PA_TXTERMINATION,
4582 	 * - PA_HSSERIES
4583 	 */
4584 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXGEAR), pwr_mode->gear_rx);
4585 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVERXDATALANES),
4586 			pwr_mode->lane_rx);
4587 	if (pwr_mode->pwr_rx == FASTAUTO_MODE ||
4588 			pwr_mode->pwr_rx == FAST_MODE)
4589 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), true);
4590 	else
4591 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), false);
4592 
4593 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXGEAR), pwr_mode->gear_tx);
4594 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVETXDATALANES),
4595 			pwr_mode->lane_tx);
4596 	if (pwr_mode->pwr_tx == FASTAUTO_MODE ||
4597 			pwr_mode->pwr_tx == FAST_MODE)
4598 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), true);
4599 	else
4600 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), false);
4601 
4602 	if (pwr_mode->pwr_rx == FASTAUTO_MODE ||
4603 	    pwr_mode->pwr_tx == FASTAUTO_MODE ||
4604 	    pwr_mode->pwr_rx == FAST_MODE ||
4605 	    pwr_mode->pwr_tx == FAST_MODE)
4606 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_HSSERIES),
4607 						pwr_mode->hs_rate);
4608 
4609 	if (!(hba->quirks & UFSHCD_QUIRK_SKIP_DEF_UNIPRO_TIMEOUT_SETTING)) {
4610 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA0),
4611 				DL_FC0ProtectionTimeOutVal_Default);
4612 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA1),
4613 				DL_TC0ReplayTimeOutVal_Default);
4614 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA2),
4615 				DL_AFC0ReqTimeOutVal_Default);
4616 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA3),
4617 				DL_FC1ProtectionTimeOutVal_Default);
4618 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA4),
4619 				DL_TC1ReplayTimeOutVal_Default);
4620 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA5),
4621 				DL_AFC1ReqTimeOutVal_Default);
4622 
4623 		ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalFC0ProtectionTimeOutVal),
4624 				DL_FC0ProtectionTimeOutVal_Default);
4625 		ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalTC0ReplayTimeOutVal),
4626 				DL_TC0ReplayTimeOutVal_Default);
4627 		ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalAFC0ReqTimeOutVal),
4628 				DL_AFC0ReqTimeOutVal_Default);
4629 	}
4630 
4631 	ret = ufshcd_uic_change_pwr_mode(hba, pwr_mode->pwr_rx << 4
4632 			| pwr_mode->pwr_tx);
4633 
4634 	if (ret) {
4635 		dev_err(hba->dev,
4636 			"%s: power mode change failed %d\n", __func__, ret);
4637 	} else {
4638 		ufshcd_vops_pwr_change_notify(hba, POST_CHANGE, NULL,
4639 								pwr_mode);
4640 
4641 		memcpy(&hba->pwr_info, pwr_mode,
4642 			sizeof(struct ufs_pa_layer_attr));
4643 	}
4644 
4645 	return ret;
4646 }
4647 
4648 /**
4649  * ufshcd_config_pwr_mode - configure a new power mode
4650  * @hba: per-adapter instance
4651  * @desired_pwr_mode: desired power configuration
4652  *
4653  * Return: 0 upon success; < 0 upon failure.
4654  */
4655 int ufshcd_config_pwr_mode(struct ufs_hba *hba,
4656 		struct ufs_pa_layer_attr *desired_pwr_mode)
4657 {
4658 	struct ufs_pa_layer_attr final_params = { 0 };
4659 	int ret;
4660 
4661 	ret = ufshcd_vops_pwr_change_notify(hba, PRE_CHANGE,
4662 					desired_pwr_mode, &final_params);
4663 
4664 	if (ret)
4665 		memcpy(&final_params, desired_pwr_mode, sizeof(final_params));
4666 
4667 	ret = ufshcd_change_power_mode(hba, &final_params);
4668 
4669 	return ret;
4670 }
4671 EXPORT_SYMBOL_GPL(ufshcd_config_pwr_mode);
4672 
4673 /**
4674  * ufshcd_complete_dev_init() - checks device readiness
4675  * @hba: per-adapter instance
4676  *
4677  * Set fDeviceInit flag and poll until device toggles it.
4678  *
4679  * Return: 0 upon success; < 0 upon failure.
4680  */
4681 static int ufshcd_complete_dev_init(struct ufs_hba *hba)
4682 {
4683 	int err;
4684 	bool flag_res = true;
4685 	ktime_t timeout;
4686 
4687 	err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG,
4688 		QUERY_FLAG_IDN_FDEVICEINIT, 0, NULL);
4689 	if (err) {
4690 		dev_err(hba->dev,
4691 			"%s: setting fDeviceInit flag failed with error %d\n",
4692 			__func__, err);
4693 		goto out;
4694 	}
4695 
4696 	/* Poll fDeviceInit flag to be cleared */
4697 	timeout = ktime_add_ms(ktime_get(), FDEVICEINIT_COMPL_TIMEOUT);
4698 	do {
4699 		err = ufshcd_query_flag(hba, UPIU_QUERY_OPCODE_READ_FLAG,
4700 					QUERY_FLAG_IDN_FDEVICEINIT, 0, &flag_res);
4701 		if (!flag_res)
4702 			break;
4703 		usleep_range(500, 1000);
4704 	} while (ktime_before(ktime_get(), timeout));
4705 
4706 	if (err) {
4707 		dev_err(hba->dev,
4708 				"%s: reading fDeviceInit flag failed with error %d\n",
4709 				__func__, err);
4710 	} else if (flag_res) {
4711 		dev_err(hba->dev,
4712 				"%s: fDeviceInit was not cleared by the device\n",
4713 				__func__);
4714 		err = -EBUSY;
4715 	}
4716 out:
4717 	return err;
4718 }
4719 
4720 /**
4721  * ufshcd_make_hba_operational - Make UFS controller operational
4722  * @hba: per adapter instance
4723  *
4724  * To bring UFS host controller to operational state,
4725  * 1. Enable required interrupts
4726  * 2. Configure interrupt aggregation
4727  * 3. Program UTRL and UTMRL base address
4728  * 4. Configure run-stop-registers
4729  *
4730  * Return: 0 on success, non-zero value on failure.
4731  */
4732 int ufshcd_make_hba_operational(struct ufs_hba *hba)
4733 {
4734 	int err = 0;
4735 	u32 reg;
4736 
4737 	/* Enable required interrupts */
4738 	ufshcd_enable_intr(hba, UFSHCD_ENABLE_INTRS);
4739 
4740 	/* Configure interrupt aggregation */
4741 	if (ufshcd_is_intr_aggr_allowed(hba))
4742 		ufshcd_config_intr_aggr(hba, hba->nutrs - 1, INT_AGGR_DEF_TO);
4743 	else
4744 		ufshcd_disable_intr_aggr(hba);
4745 
4746 	/* Configure UTRL and UTMRL base address registers */
4747 	ufshcd_writel(hba, lower_32_bits(hba->utrdl_dma_addr),
4748 			REG_UTP_TRANSFER_REQ_LIST_BASE_L);
4749 	ufshcd_writel(hba, upper_32_bits(hba->utrdl_dma_addr),
4750 			REG_UTP_TRANSFER_REQ_LIST_BASE_H);
4751 	ufshcd_writel(hba, lower_32_bits(hba->utmrdl_dma_addr),
4752 			REG_UTP_TASK_REQ_LIST_BASE_L);
4753 	ufshcd_writel(hba, upper_32_bits(hba->utmrdl_dma_addr),
4754 			REG_UTP_TASK_REQ_LIST_BASE_H);
4755 
4756 	/*
4757 	 * UCRDY, UTMRLDY and UTRLRDY bits must be 1
4758 	 */
4759 	reg = ufshcd_readl(hba, REG_CONTROLLER_STATUS);
4760 	if (!(ufshcd_get_lists_status(reg))) {
4761 		ufshcd_enable_run_stop_reg(hba);
4762 	} else {
4763 		dev_err(hba->dev,
4764 			"Host controller not ready to process requests");
4765 		err = -EIO;
4766 	}
4767 
4768 	return err;
4769 }
4770 EXPORT_SYMBOL_GPL(ufshcd_make_hba_operational);
4771 
4772 /**
4773  * ufshcd_hba_stop - Send controller to reset state
4774  * @hba: per adapter instance
4775  */
4776 void ufshcd_hba_stop(struct ufs_hba *hba)
4777 {
4778 	unsigned long flags;
4779 	int err;
4780 
4781 	/*
4782 	 * Obtain the host lock to prevent that the controller is disabled
4783 	 * while the UFS interrupt handler is active on another CPU.
4784 	 */
4785 	spin_lock_irqsave(hba->host->host_lock, flags);
4786 	ufshcd_writel(hba, CONTROLLER_DISABLE,  REG_CONTROLLER_ENABLE);
4787 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4788 
4789 	err = ufshcd_wait_for_register(hba, REG_CONTROLLER_ENABLE,
4790 					CONTROLLER_ENABLE, CONTROLLER_DISABLE,
4791 					10, 1);
4792 	if (err)
4793 		dev_err(hba->dev, "%s: Controller disable failed\n", __func__);
4794 }
4795 EXPORT_SYMBOL_GPL(ufshcd_hba_stop);
4796 
4797 /**
4798  * ufshcd_hba_execute_hce - initialize the controller
4799  * @hba: per adapter instance
4800  *
4801  * The controller resets itself and controller firmware initialization
4802  * sequence kicks off. When controller is ready it will set
4803  * the Host Controller Enable bit to 1.
4804  *
4805  * Return: 0 on success, non-zero value on failure.
4806  */
4807 static int ufshcd_hba_execute_hce(struct ufs_hba *hba)
4808 {
4809 	int retry;
4810 
4811 	for (retry = 3; retry > 0; retry--) {
4812 		if (ufshcd_is_hba_active(hba))
4813 			/* change controller state to "reset state" */
4814 			ufshcd_hba_stop(hba);
4815 
4816 		/* UniPro link is disabled at this point */
4817 		ufshcd_set_link_off(hba);
4818 
4819 		ufshcd_vops_hce_enable_notify(hba, PRE_CHANGE);
4820 
4821 		/* start controller initialization sequence */
4822 		ufshcd_hba_start(hba);
4823 
4824 		/*
4825 		 * To initialize a UFS host controller HCE bit must be set to 1.
4826 		 * During initialization the HCE bit value changes from 1->0->1.
4827 		 * When the host controller completes initialization sequence
4828 		 * it sets the value of HCE bit to 1. The same HCE bit is read back
4829 		 * to check if the controller has completed initialization sequence.
4830 		 * So without this delay the value HCE = 1, set in the previous
4831 		 * instruction might be read back.
4832 		 * This delay can be changed based on the controller.
4833 		 */
4834 		ufshcd_delay_us(hba->vps->hba_enable_delay_us, 100);
4835 
4836 		/* wait for the host controller to complete initialization */
4837 		if (!ufshcd_wait_for_register(hba, REG_CONTROLLER_ENABLE, CONTROLLER_ENABLE,
4838 					      CONTROLLER_ENABLE, 1000, 50))
4839 			break;
4840 
4841 		dev_err(hba->dev, "Enabling the controller failed\n");
4842 	}
4843 
4844 	if (!retry)
4845 		return -EIO;
4846 
4847 	/* enable UIC related interrupts */
4848 	ufshcd_enable_intr(hba, UFSHCD_UIC_MASK);
4849 
4850 	ufshcd_vops_hce_enable_notify(hba, POST_CHANGE);
4851 
4852 	return 0;
4853 }
4854 
4855 int ufshcd_hba_enable(struct ufs_hba *hba)
4856 {
4857 	int ret;
4858 
4859 	if (hba->quirks & UFSHCI_QUIRK_BROKEN_HCE) {
4860 		ufshcd_set_link_off(hba);
4861 		ufshcd_vops_hce_enable_notify(hba, PRE_CHANGE);
4862 
4863 		/* enable UIC related interrupts */
4864 		ufshcd_enable_intr(hba, UFSHCD_UIC_MASK);
4865 		ret = ufshcd_dme_reset(hba);
4866 		if (ret) {
4867 			dev_err(hba->dev, "DME_RESET failed\n");
4868 			return ret;
4869 		}
4870 
4871 		ret = ufshcd_dme_enable(hba);
4872 		if (ret) {
4873 			dev_err(hba->dev, "Enabling DME failed\n");
4874 			return ret;
4875 		}
4876 
4877 		ufshcd_vops_hce_enable_notify(hba, POST_CHANGE);
4878 	} else {
4879 		ret = ufshcd_hba_execute_hce(hba);
4880 	}
4881 
4882 	return ret;
4883 }
4884 EXPORT_SYMBOL_GPL(ufshcd_hba_enable);
4885 
4886 static int ufshcd_disable_tx_lcc(struct ufs_hba *hba, bool peer)
4887 {
4888 	int tx_lanes = 0, i, err = 0;
4889 
4890 	if (!peer)
4891 		ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4892 			       &tx_lanes);
4893 	else
4894 		ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4895 				    &tx_lanes);
4896 	for (i = 0; i < tx_lanes; i++) {
4897 		if (!peer)
4898 			err = ufshcd_dme_set(hba,
4899 				UIC_ARG_MIB_SEL(TX_LCC_ENABLE,
4900 					UIC_ARG_MPHY_TX_GEN_SEL_INDEX(i)),
4901 					0);
4902 		else
4903 			err = ufshcd_dme_peer_set(hba,
4904 				UIC_ARG_MIB_SEL(TX_LCC_ENABLE,
4905 					UIC_ARG_MPHY_TX_GEN_SEL_INDEX(i)),
4906 					0);
4907 		if (err) {
4908 			dev_err(hba->dev, "%s: TX LCC Disable failed, peer = %d, lane = %d, err = %d",
4909 				__func__, peer, i, err);
4910 			break;
4911 		}
4912 	}
4913 
4914 	return err;
4915 }
4916 
4917 static inline int ufshcd_disable_device_tx_lcc(struct ufs_hba *hba)
4918 {
4919 	return ufshcd_disable_tx_lcc(hba, true);
4920 }
4921 
4922 void ufshcd_update_evt_hist(struct ufs_hba *hba, u32 id, u32 val)
4923 {
4924 	struct ufs_event_hist *e;
4925 
4926 	if (id >= UFS_EVT_CNT)
4927 		return;
4928 
4929 	e = &hba->ufs_stats.event[id];
4930 	e->val[e->pos] = val;
4931 	e->tstamp[e->pos] = local_clock();
4932 	e->cnt += 1;
4933 	e->pos = (e->pos + 1) % UFS_EVENT_HIST_LENGTH;
4934 
4935 	ufshcd_vops_event_notify(hba, id, &val);
4936 }
4937 EXPORT_SYMBOL_GPL(ufshcd_update_evt_hist);
4938 
4939 /**
4940  * ufshcd_link_startup - Initialize unipro link startup
4941  * @hba: per adapter instance
4942  *
4943  * Return: 0 for success, non-zero in case of failure.
4944  */
4945 static int ufshcd_link_startup(struct ufs_hba *hba)
4946 {
4947 	int ret;
4948 	int retries = DME_LINKSTARTUP_RETRIES;
4949 	bool link_startup_again = false;
4950 
4951 	/*
4952 	 * If UFS device isn't active then we will have to issue link startup
4953 	 * 2 times to make sure the device state move to active.
4954 	 */
4955 	if (!ufshcd_is_ufs_dev_active(hba))
4956 		link_startup_again = true;
4957 
4958 link_startup:
4959 	do {
4960 		ufshcd_vops_link_startup_notify(hba, PRE_CHANGE);
4961 
4962 		ret = ufshcd_dme_link_startup(hba);
4963 
4964 		/* check if device is detected by inter-connect layer */
4965 		if (!ret && !ufshcd_is_device_present(hba)) {
4966 			ufshcd_update_evt_hist(hba,
4967 					       UFS_EVT_LINK_STARTUP_FAIL,
4968 					       0);
4969 			dev_err(hba->dev, "%s: Device not present\n", __func__);
4970 			ret = -ENXIO;
4971 			goto out;
4972 		}
4973 
4974 		/*
4975 		 * DME link lost indication is only received when link is up,
4976 		 * but we can't be sure if the link is up until link startup
4977 		 * succeeds. So reset the local Uni-Pro and try again.
4978 		 */
4979 		if (ret && retries && ufshcd_hba_enable(hba)) {
4980 			ufshcd_update_evt_hist(hba,
4981 					       UFS_EVT_LINK_STARTUP_FAIL,
4982 					       (u32)ret);
4983 			goto out;
4984 		}
4985 	} while (ret && retries--);
4986 
4987 	if (ret) {
4988 		/* failed to get the link up... retire */
4989 		ufshcd_update_evt_hist(hba,
4990 				       UFS_EVT_LINK_STARTUP_FAIL,
4991 				       (u32)ret);
4992 		goto out;
4993 	}
4994 
4995 	if (link_startup_again) {
4996 		link_startup_again = false;
4997 		retries = DME_LINKSTARTUP_RETRIES;
4998 		goto link_startup;
4999 	}
5000 
5001 	/* Mark that link is up in PWM-G1, 1-lane, SLOW-AUTO mode */
5002 	ufshcd_init_pwr_info(hba);
5003 	ufshcd_print_pwr_info(hba);
5004 
5005 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_LCC) {
5006 		ret = ufshcd_disable_device_tx_lcc(hba);
5007 		if (ret)
5008 			goto out;
5009 	}
5010 
5011 	/* Include any host controller configuration via UIC commands */
5012 	ret = ufshcd_vops_link_startup_notify(hba, POST_CHANGE);
5013 	if (ret)
5014 		goto out;
5015 
5016 	/* Clear UECPA once due to LINERESET has happened during LINK_STARTUP */
5017 	ufshcd_readl(hba, REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER);
5018 	ret = ufshcd_make_hba_operational(hba);
5019 out:
5020 	if (ret) {
5021 		dev_err(hba->dev, "link startup failed %d\n", ret);
5022 		ufshcd_print_host_state(hba);
5023 		ufshcd_print_pwr_info(hba);
5024 		ufshcd_print_evt_hist(hba);
5025 	}
5026 	return ret;
5027 }
5028 
5029 /**
5030  * ufshcd_verify_dev_init() - Verify device initialization
5031  * @hba: per-adapter instance
5032  *
5033  * Send NOP OUT UPIU and wait for NOP IN response to check whether the
5034  * device Transport Protocol (UTP) layer is ready after a reset.
5035  * If the UTP layer at the device side is not initialized, it may
5036  * not respond with NOP IN UPIU within timeout of %NOP_OUT_TIMEOUT
5037  * and we retry sending NOP OUT for %NOP_OUT_RETRIES iterations.
5038  *
5039  * Return: 0 upon success; < 0 upon failure.
5040  */
5041 static int ufshcd_verify_dev_init(struct ufs_hba *hba)
5042 {
5043 	int err = 0;
5044 	int retries;
5045 
5046 	ufshcd_dev_man_lock(hba);
5047 
5048 	for (retries = NOP_OUT_RETRIES; retries > 0; retries--) {
5049 		err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_NOP,
5050 					  hba->nop_out_timeout);
5051 
5052 		if (!err || err == -ETIMEDOUT)
5053 			break;
5054 
5055 		dev_dbg(hba->dev, "%s: error %d retrying\n", __func__, err);
5056 	}
5057 
5058 	ufshcd_dev_man_unlock(hba);
5059 
5060 	if (err)
5061 		dev_err(hba->dev, "%s: NOP OUT failed %d\n", __func__, err);
5062 	return err;
5063 }
5064 
5065 /**
5066  * ufshcd_setup_links - associate link b/w device wlun and other luns
5067  * @sdev: pointer to SCSI device
5068  * @hba: pointer to ufs hba
5069  */
5070 static void ufshcd_setup_links(struct ufs_hba *hba, struct scsi_device *sdev)
5071 {
5072 	struct device_link *link;
5073 
5074 	/*
5075 	 * Device wlun is the supplier & rest of the luns are consumers.
5076 	 * This ensures that device wlun suspends after all other luns.
5077 	 */
5078 	if (hba->ufs_device_wlun) {
5079 		link = device_link_add(&sdev->sdev_gendev,
5080 				       &hba->ufs_device_wlun->sdev_gendev,
5081 				       DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE);
5082 		if (!link) {
5083 			dev_err(&sdev->sdev_gendev, "Failed establishing link - %s\n",
5084 				dev_name(&hba->ufs_device_wlun->sdev_gendev));
5085 			return;
5086 		}
5087 		hba->luns_avail--;
5088 		/* Ignore REPORT_LUN wlun probing */
5089 		if (hba->luns_avail == 1) {
5090 			ufshcd_rpm_put(hba);
5091 			return;
5092 		}
5093 	} else {
5094 		/*
5095 		 * Device wlun is probed. The assumption is that WLUNs are
5096 		 * scanned before other LUNs.
5097 		 */
5098 		hba->luns_avail--;
5099 	}
5100 }
5101 
5102 /**
5103  * ufshcd_lu_init - Initialize the relevant parameters of the LU
5104  * @hba: per-adapter instance
5105  * @sdev: pointer to SCSI device
5106  */
5107 static void ufshcd_lu_init(struct ufs_hba *hba, struct scsi_device *sdev)
5108 {
5109 	int len = QUERY_DESC_MAX_SIZE;
5110 	u8 lun = ufshcd_scsi_to_upiu_lun(sdev->lun);
5111 	u8 lun_qdepth = hba->nutrs;
5112 	u8 *desc_buf;
5113 	int ret;
5114 
5115 	desc_buf = kzalloc(len, GFP_KERNEL);
5116 	if (!desc_buf)
5117 		goto set_qdepth;
5118 
5119 	ret = ufshcd_read_unit_desc_param(hba, lun, 0, desc_buf, len);
5120 	if (ret < 0) {
5121 		if (ret == -EOPNOTSUPP)
5122 			/* If LU doesn't support unit descriptor, its queue depth is set to 1 */
5123 			lun_qdepth = 1;
5124 		kfree(desc_buf);
5125 		goto set_qdepth;
5126 	}
5127 
5128 	if (desc_buf[UNIT_DESC_PARAM_LU_Q_DEPTH]) {
5129 		/*
5130 		 * In per-LU queueing architecture, bLUQueueDepth will not be 0, then we will
5131 		 * use the smaller between UFSHCI CAP.NUTRS and UFS LU bLUQueueDepth
5132 		 */
5133 		lun_qdepth = min_t(int, desc_buf[UNIT_DESC_PARAM_LU_Q_DEPTH], hba->nutrs);
5134 	}
5135 	/*
5136 	 * According to UFS device specification, the write protection mode is only supported by
5137 	 * normal LU, not supported by WLUN.
5138 	 */
5139 	if (hba->dev_info.f_power_on_wp_en && lun < hba->dev_info.max_lu_supported &&
5140 	    !hba->dev_info.is_lu_power_on_wp &&
5141 	    desc_buf[UNIT_DESC_PARAM_LU_WR_PROTECT] == UFS_LU_POWER_ON_WP)
5142 		hba->dev_info.is_lu_power_on_wp = true;
5143 
5144 	/* In case of RPMB LU, check if advanced RPMB mode is enabled */
5145 	if (desc_buf[UNIT_DESC_PARAM_UNIT_INDEX] == UFS_UPIU_RPMB_WLUN &&
5146 	    desc_buf[RPMB_UNIT_DESC_PARAM_REGION_EN] & BIT(4))
5147 		hba->dev_info.b_advanced_rpmb_en = true;
5148 
5149 
5150 	kfree(desc_buf);
5151 set_qdepth:
5152 	/*
5153 	 * For WLUNs that don't support unit descriptor, queue depth is set to 1. For LUs whose
5154 	 * bLUQueueDepth == 0, the queue depth is set to a maximum value that host can queue.
5155 	 */
5156 	dev_dbg(hba->dev, "Set LU %x queue depth %d\n", lun, lun_qdepth);
5157 	scsi_change_queue_depth(sdev, lun_qdepth);
5158 }
5159 
5160 /**
5161  * ufshcd_slave_alloc - handle initial SCSI device configurations
5162  * @sdev: pointer to SCSI device
5163  *
5164  * Return: success.
5165  */
5166 static int ufshcd_slave_alloc(struct scsi_device *sdev)
5167 {
5168 	struct ufs_hba *hba;
5169 
5170 	hba = shost_priv(sdev->host);
5171 
5172 	/* Mode sense(6) is not supported by UFS, so use Mode sense(10) */
5173 	sdev->use_10_for_ms = 1;
5174 
5175 	/* DBD field should be set to 1 in mode sense(10) */
5176 	sdev->set_dbd_for_ms = 1;
5177 
5178 	/* allow SCSI layer to restart the device in case of errors */
5179 	sdev->allow_restart = 1;
5180 
5181 	/* REPORT SUPPORTED OPERATION CODES is not supported */
5182 	sdev->no_report_opcodes = 1;
5183 
5184 	/* WRITE_SAME command is not supported */
5185 	sdev->no_write_same = 1;
5186 
5187 	ufshcd_lu_init(hba, sdev);
5188 
5189 	ufshcd_setup_links(hba, sdev);
5190 
5191 	return 0;
5192 }
5193 
5194 /**
5195  * ufshcd_change_queue_depth - change queue depth
5196  * @sdev: pointer to SCSI device
5197  * @depth: required depth to set
5198  *
5199  * Change queue depth and make sure the max. limits are not crossed.
5200  *
5201  * Return: new queue depth.
5202  */
5203 static int ufshcd_change_queue_depth(struct scsi_device *sdev, int depth)
5204 {
5205 	return scsi_change_queue_depth(sdev, min(depth, sdev->host->can_queue));
5206 }
5207 
5208 /**
5209  * ufshcd_device_configure - adjust SCSI device configurations
5210  * @sdev: pointer to SCSI device
5211  * @lim: queue limits
5212  *
5213  * Return: 0 (success).
5214  */
5215 static int ufshcd_device_configure(struct scsi_device *sdev,
5216 		struct queue_limits *lim)
5217 {
5218 	struct ufs_hba *hba = shost_priv(sdev->host);
5219 	struct request_queue *q = sdev->request_queue;
5220 
5221 	lim->dma_pad_mask = PRDT_DATA_BYTE_COUNT_PAD - 1;
5222 
5223 	/*
5224 	 * Block runtime-pm until all consumers are added.
5225 	 * Refer ufshcd_setup_links().
5226 	 */
5227 	if (is_device_wlun(sdev))
5228 		pm_runtime_get_noresume(&sdev->sdev_gendev);
5229 	else if (ufshcd_is_rpm_autosuspend_allowed(hba))
5230 		sdev->rpm_autosuspend = 1;
5231 	/*
5232 	 * Do not print messages during runtime PM to avoid never-ending cycles
5233 	 * of messages written back to storage by user space causing runtime
5234 	 * resume, causing more messages and so on.
5235 	 */
5236 	sdev->silence_suspend = 1;
5237 
5238 	if (hba->vops && hba->vops->config_scsi_dev)
5239 		hba->vops->config_scsi_dev(sdev);
5240 
5241 	ufshcd_crypto_register(hba, q);
5242 
5243 	return 0;
5244 }
5245 
5246 /**
5247  * ufshcd_slave_destroy - remove SCSI device configurations
5248  * @sdev: pointer to SCSI device
5249  */
5250 static void ufshcd_slave_destroy(struct scsi_device *sdev)
5251 {
5252 	struct ufs_hba *hba;
5253 	unsigned long flags;
5254 
5255 	hba = shost_priv(sdev->host);
5256 
5257 	/* Drop the reference as it won't be needed anymore */
5258 	if (ufshcd_scsi_to_upiu_lun(sdev->lun) == UFS_UPIU_UFS_DEVICE_WLUN) {
5259 		spin_lock_irqsave(hba->host->host_lock, flags);
5260 		hba->ufs_device_wlun = NULL;
5261 		spin_unlock_irqrestore(hba->host->host_lock, flags);
5262 	} else if (hba->ufs_device_wlun) {
5263 		struct device *supplier = NULL;
5264 
5265 		/* Ensure UFS Device WLUN exists and does not disappear */
5266 		spin_lock_irqsave(hba->host->host_lock, flags);
5267 		if (hba->ufs_device_wlun) {
5268 			supplier = &hba->ufs_device_wlun->sdev_gendev;
5269 			get_device(supplier);
5270 		}
5271 		spin_unlock_irqrestore(hba->host->host_lock, flags);
5272 
5273 		if (supplier) {
5274 			/*
5275 			 * If a LUN fails to probe (e.g. absent BOOT WLUN), the
5276 			 * device will not have been registered but can still
5277 			 * have a device link holding a reference to the device.
5278 			 */
5279 			device_link_remove(&sdev->sdev_gendev, supplier);
5280 			put_device(supplier);
5281 		}
5282 	}
5283 }
5284 
5285 /**
5286  * ufshcd_scsi_cmd_status - Update SCSI command result based on SCSI status
5287  * @lrbp: pointer to local reference block of completed command
5288  * @scsi_status: SCSI command status
5289  *
5290  * Return: value base on SCSI command status.
5291  */
5292 static inline int
5293 ufshcd_scsi_cmd_status(struct ufshcd_lrb *lrbp, int scsi_status)
5294 {
5295 	int result = 0;
5296 
5297 	switch (scsi_status) {
5298 	case SAM_STAT_CHECK_CONDITION:
5299 		ufshcd_copy_sense_data(lrbp);
5300 		fallthrough;
5301 	case SAM_STAT_GOOD:
5302 		result |= DID_OK << 16 | scsi_status;
5303 		break;
5304 	case SAM_STAT_TASK_SET_FULL:
5305 	case SAM_STAT_BUSY:
5306 	case SAM_STAT_TASK_ABORTED:
5307 		ufshcd_copy_sense_data(lrbp);
5308 		result |= scsi_status;
5309 		break;
5310 	default:
5311 		result |= DID_ERROR << 16;
5312 		break;
5313 	} /* end of switch */
5314 
5315 	return result;
5316 }
5317 
5318 /**
5319  * ufshcd_transfer_rsp_status - Get overall status of the response
5320  * @hba: per adapter instance
5321  * @lrbp: pointer to local reference block of completed command
5322  * @cqe: pointer to the completion queue entry
5323  *
5324  * Return: result of the command to notify SCSI midlayer.
5325  */
5326 static inline int
5327 ufshcd_transfer_rsp_status(struct ufs_hba *hba, struct ufshcd_lrb *lrbp,
5328 			   struct cq_entry *cqe)
5329 {
5330 	int result = 0;
5331 	int scsi_status;
5332 	enum utp_ocs ocs;
5333 	u8 upiu_flags;
5334 	u32 resid;
5335 
5336 	upiu_flags = lrbp->ucd_rsp_ptr->header.flags;
5337 	resid = be32_to_cpu(lrbp->ucd_rsp_ptr->sr.residual_transfer_count);
5338 	/*
5339 	 * Test !overflow instead of underflow to support UFS devices that do
5340 	 * not set either flag.
5341 	 */
5342 	if (resid && !(upiu_flags & UPIU_RSP_FLAG_OVERFLOW))
5343 		scsi_set_resid(lrbp->cmd, resid);
5344 
5345 	/* overall command status of utrd */
5346 	ocs = ufshcd_get_tr_ocs(lrbp, cqe);
5347 
5348 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_OCS_FATAL_ERROR) {
5349 		if (lrbp->ucd_rsp_ptr->header.response ||
5350 		    lrbp->ucd_rsp_ptr->header.status)
5351 			ocs = OCS_SUCCESS;
5352 	}
5353 
5354 	switch (ocs) {
5355 	case OCS_SUCCESS:
5356 		hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
5357 		switch (ufshcd_get_req_rsp(lrbp->ucd_rsp_ptr)) {
5358 		case UPIU_TRANSACTION_RESPONSE:
5359 			/*
5360 			 * get the result based on SCSI status response
5361 			 * to notify the SCSI midlayer of the command status
5362 			 */
5363 			scsi_status = lrbp->ucd_rsp_ptr->header.status;
5364 			result = ufshcd_scsi_cmd_status(lrbp, scsi_status);
5365 
5366 			/*
5367 			 * Currently we are only supporting BKOPs exception
5368 			 * events hence we can ignore BKOPs exception event
5369 			 * during power management callbacks. BKOPs exception
5370 			 * event is not expected to be raised in runtime suspend
5371 			 * callback as it allows the urgent bkops.
5372 			 * During system suspend, we are anyway forcefully
5373 			 * disabling the bkops and if urgent bkops is needed
5374 			 * it will be enabled on system resume. Long term
5375 			 * solution could be to abort the system suspend if
5376 			 * UFS device needs urgent BKOPs.
5377 			 */
5378 			if (!hba->pm_op_in_progress &&
5379 			    !ufshcd_eh_in_progress(hba) &&
5380 			    ufshcd_is_exception_event(lrbp->ucd_rsp_ptr))
5381 				/* Flushed in suspend */
5382 				schedule_work(&hba->eeh_work);
5383 			break;
5384 		case UPIU_TRANSACTION_REJECT_UPIU:
5385 			/* TODO: handle Reject UPIU Response */
5386 			result = DID_ERROR << 16;
5387 			dev_err(hba->dev,
5388 				"Reject UPIU not fully implemented\n");
5389 			break;
5390 		default:
5391 			dev_err(hba->dev,
5392 				"Unexpected request response code = %x\n",
5393 				result);
5394 			result = DID_ERROR << 16;
5395 			break;
5396 		}
5397 		break;
5398 	case OCS_ABORTED:
5399 	case OCS_INVALID_COMMAND_STATUS:
5400 		result |= DID_REQUEUE << 16;
5401 		dev_warn(hba->dev,
5402 				"OCS %s from controller for tag %d\n",
5403 				(ocs == OCS_ABORTED ? "aborted" : "invalid"),
5404 				lrbp->task_tag);
5405 		break;
5406 	case OCS_INVALID_CMD_TABLE_ATTR:
5407 	case OCS_INVALID_PRDT_ATTR:
5408 	case OCS_MISMATCH_DATA_BUF_SIZE:
5409 	case OCS_MISMATCH_RESP_UPIU_SIZE:
5410 	case OCS_PEER_COMM_FAILURE:
5411 	case OCS_FATAL_ERROR:
5412 	case OCS_DEVICE_FATAL_ERROR:
5413 	case OCS_INVALID_CRYPTO_CONFIG:
5414 	case OCS_GENERAL_CRYPTO_ERROR:
5415 	default:
5416 		result |= DID_ERROR << 16;
5417 		dev_err(hba->dev,
5418 				"OCS error from controller = %x for tag %d\n",
5419 				ocs, lrbp->task_tag);
5420 		ufshcd_print_evt_hist(hba);
5421 		ufshcd_print_host_state(hba);
5422 		break;
5423 	} /* end of switch */
5424 
5425 	if ((host_byte(result) != DID_OK) &&
5426 	    (host_byte(result) != DID_REQUEUE) && !hba->silence_err_logs)
5427 		ufshcd_print_tr(hba, lrbp->task_tag, true);
5428 	return result;
5429 }
5430 
5431 static bool ufshcd_is_auto_hibern8_error(struct ufs_hba *hba,
5432 					 u32 intr_mask)
5433 {
5434 	if (!ufshcd_is_auto_hibern8_supported(hba) ||
5435 	    !ufshcd_is_auto_hibern8_enabled(hba))
5436 		return false;
5437 
5438 	if (!(intr_mask & UFSHCD_UIC_HIBERN8_MASK))
5439 		return false;
5440 
5441 	if (hba->active_uic_cmd &&
5442 	    (hba->active_uic_cmd->command == UIC_CMD_DME_HIBER_ENTER ||
5443 	    hba->active_uic_cmd->command == UIC_CMD_DME_HIBER_EXIT))
5444 		return false;
5445 
5446 	return true;
5447 }
5448 
5449 /**
5450  * ufshcd_uic_cmd_compl - handle completion of uic command
5451  * @hba: per adapter instance
5452  * @intr_status: interrupt status generated by the controller
5453  *
5454  * Return:
5455  *  IRQ_HANDLED - If interrupt is valid
5456  *  IRQ_NONE    - If invalid interrupt
5457  */
5458 static irqreturn_t ufshcd_uic_cmd_compl(struct ufs_hba *hba, u32 intr_status)
5459 {
5460 	irqreturn_t retval = IRQ_NONE;
5461 	struct uic_command *cmd;
5462 
5463 	spin_lock(hba->host->host_lock);
5464 	cmd = hba->active_uic_cmd;
5465 	if (WARN_ON_ONCE(!cmd))
5466 		goto unlock;
5467 
5468 	if (ufshcd_is_auto_hibern8_error(hba, intr_status))
5469 		hba->errors |= (UFSHCD_UIC_HIBERN8_MASK & intr_status);
5470 
5471 	if (intr_status & UIC_COMMAND_COMPL) {
5472 		cmd->argument2 |= ufshcd_get_uic_cmd_result(hba);
5473 		cmd->argument3 = ufshcd_get_dme_attr_val(hba);
5474 		if (!hba->uic_async_done)
5475 			cmd->cmd_active = 0;
5476 		complete(&cmd->done);
5477 		retval = IRQ_HANDLED;
5478 	}
5479 
5480 	if (intr_status & UFSHCD_UIC_PWR_MASK && hba->uic_async_done) {
5481 		cmd->cmd_active = 0;
5482 		complete(hba->uic_async_done);
5483 		retval = IRQ_HANDLED;
5484 	}
5485 
5486 	if (retval == IRQ_HANDLED)
5487 		ufshcd_add_uic_command_trace(hba, cmd, UFS_CMD_COMP);
5488 
5489 unlock:
5490 	spin_unlock(hba->host->host_lock);
5491 
5492 	return retval;
5493 }
5494 
5495 /* Release the resources allocated for processing a SCSI command. */
5496 void ufshcd_release_scsi_cmd(struct ufs_hba *hba,
5497 			     struct ufshcd_lrb *lrbp)
5498 {
5499 	struct scsi_cmnd *cmd = lrbp->cmd;
5500 
5501 	scsi_dma_unmap(cmd);
5502 	ufshcd_crypto_clear_prdt(hba, lrbp);
5503 	ufshcd_release(hba);
5504 	ufshcd_clk_scaling_update_busy(hba);
5505 }
5506 
5507 /**
5508  * ufshcd_compl_one_cqe - handle a completion queue entry
5509  * @hba: per adapter instance
5510  * @task_tag: the task tag of the request to be completed
5511  * @cqe: pointer to the completion queue entry
5512  */
5513 void ufshcd_compl_one_cqe(struct ufs_hba *hba, int task_tag,
5514 			  struct cq_entry *cqe)
5515 {
5516 	struct ufshcd_lrb *lrbp;
5517 	struct scsi_cmnd *cmd;
5518 	enum utp_ocs ocs;
5519 
5520 	lrbp = &hba->lrb[task_tag];
5521 	lrbp->compl_time_stamp = ktime_get();
5522 	cmd = lrbp->cmd;
5523 	if (cmd) {
5524 		if (unlikely(ufshcd_should_inform_monitor(hba, lrbp)))
5525 			ufshcd_update_monitor(hba, lrbp);
5526 		ufshcd_add_command_trace(hba, task_tag, UFS_CMD_COMP);
5527 		cmd->result = ufshcd_transfer_rsp_status(hba, lrbp, cqe);
5528 		ufshcd_release_scsi_cmd(hba, lrbp);
5529 		/* Do not touch lrbp after scsi done */
5530 		scsi_done(cmd);
5531 	} else if (hba->dev_cmd.complete) {
5532 		if (cqe) {
5533 			ocs = le32_to_cpu(cqe->status) & MASK_OCS;
5534 			lrbp->utr_descriptor_ptr->header.ocs = ocs;
5535 		}
5536 		complete(hba->dev_cmd.complete);
5537 	}
5538 }
5539 
5540 /**
5541  * __ufshcd_transfer_req_compl - handle SCSI and query command completion
5542  * @hba: per adapter instance
5543  * @completed_reqs: bitmask that indicates which requests to complete
5544  */
5545 static void __ufshcd_transfer_req_compl(struct ufs_hba *hba,
5546 					unsigned long completed_reqs)
5547 {
5548 	int tag;
5549 
5550 	for_each_set_bit(tag, &completed_reqs, hba->nutrs)
5551 		ufshcd_compl_one_cqe(hba, tag, NULL);
5552 }
5553 
5554 /* Any value that is not an existing queue number is fine for this constant. */
5555 enum {
5556 	UFSHCD_POLL_FROM_INTERRUPT_CONTEXT = -1
5557 };
5558 
5559 static void ufshcd_clear_polled(struct ufs_hba *hba,
5560 				unsigned long *completed_reqs)
5561 {
5562 	int tag;
5563 
5564 	for_each_set_bit(tag, completed_reqs, hba->nutrs) {
5565 		struct scsi_cmnd *cmd = hba->lrb[tag].cmd;
5566 
5567 		if (!cmd)
5568 			continue;
5569 		if (scsi_cmd_to_rq(cmd)->cmd_flags & REQ_POLLED)
5570 			__clear_bit(tag, completed_reqs);
5571 	}
5572 }
5573 
5574 /*
5575  * Return: > 0 if one or more commands have been completed or 0 if no
5576  * requests have been completed.
5577  */
5578 static int ufshcd_poll(struct Scsi_Host *shost, unsigned int queue_num)
5579 {
5580 	struct ufs_hba *hba = shost_priv(shost);
5581 	unsigned long completed_reqs, flags;
5582 	u32 tr_doorbell;
5583 	struct ufs_hw_queue *hwq;
5584 
5585 	if (hba->mcq_enabled) {
5586 		hwq = &hba->uhq[queue_num];
5587 
5588 		return ufshcd_mcq_poll_cqe_lock(hba, hwq);
5589 	}
5590 
5591 	spin_lock_irqsave(&hba->outstanding_lock, flags);
5592 	tr_doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
5593 	completed_reqs = ~tr_doorbell & hba->outstanding_reqs;
5594 	WARN_ONCE(completed_reqs & ~hba->outstanding_reqs,
5595 		  "completed: %#lx; outstanding: %#lx\n", completed_reqs,
5596 		  hba->outstanding_reqs);
5597 	if (queue_num == UFSHCD_POLL_FROM_INTERRUPT_CONTEXT) {
5598 		/* Do not complete polled requests from interrupt context. */
5599 		ufshcd_clear_polled(hba, &completed_reqs);
5600 	}
5601 	hba->outstanding_reqs &= ~completed_reqs;
5602 	spin_unlock_irqrestore(&hba->outstanding_lock, flags);
5603 
5604 	if (completed_reqs)
5605 		__ufshcd_transfer_req_compl(hba, completed_reqs);
5606 
5607 	return completed_reqs != 0;
5608 }
5609 
5610 /**
5611  * ufshcd_mcq_compl_pending_transfer - MCQ mode function. It is
5612  * invoked from the error handler context or ufshcd_host_reset_and_restore()
5613  * to complete the pending transfers and free the resources associated with
5614  * the scsi command.
5615  *
5616  * @hba: per adapter instance
5617  * @force_compl: This flag is set to true when invoked
5618  * from ufshcd_host_reset_and_restore() in which case it requires special
5619  * handling because the host controller has been reset by ufshcd_hba_stop().
5620  */
5621 static void ufshcd_mcq_compl_pending_transfer(struct ufs_hba *hba,
5622 					      bool force_compl)
5623 {
5624 	struct ufs_hw_queue *hwq;
5625 	struct ufshcd_lrb *lrbp;
5626 	struct scsi_cmnd *cmd;
5627 	unsigned long flags;
5628 	int tag;
5629 
5630 	for (tag = 0; tag < hba->nutrs; tag++) {
5631 		lrbp = &hba->lrb[tag];
5632 		cmd = lrbp->cmd;
5633 		if (!ufshcd_cmd_inflight(cmd) ||
5634 		    test_bit(SCMD_STATE_COMPLETE, &cmd->state))
5635 			continue;
5636 
5637 		hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(cmd));
5638 
5639 		if (force_compl) {
5640 			ufshcd_mcq_compl_all_cqes_lock(hba, hwq);
5641 			/*
5642 			 * For those cmds of which the cqes are not present
5643 			 * in the cq, complete them explicitly.
5644 			 */
5645 			spin_lock_irqsave(&hwq->cq_lock, flags);
5646 			if (cmd && !test_bit(SCMD_STATE_COMPLETE, &cmd->state)) {
5647 				set_host_byte(cmd, DID_REQUEUE);
5648 				ufshcd_release_scsi_cmd(hba, lrbp);
5649 				scsi_done(cmd);
5650 			}
5651 			spin_unlock_irqrestore(&hwq->cq_lock, flags);
5652 		} else {
5653 			ufshcd_mcq_poll_cqe_lock(hba, hwq);
5654 		}
5655 	}
5656 }
5657 
5658 /**
5659  * ufshcd_transfer_req_compl - handle SCSI and query command completion
5660  * @hba: per adapter instance
5661  *
5662  * Return:
5663  *  IRQ_HANDLED - If interrupt is valid
5664  *  IRQ_NONE    - If invalid interrupt
5665  */
5666 static irqreturn_t ufshcd_transfer_req_compl(struct ufs_hba *hba)
5667 {
5668 	/* Resetting interrupt aggregation counters first and reading the
5669 	 * DOOR_BELL afterward allows us to handle all the completed requests.
5670 	 * In order to prevent other interrupts starvation the DB is read once
5671 	 * after reset. The down side of this solution is the possibility of
5672 	 * false interrupt if device completes another request after resetting
5673 	 * aggregation and before reading the DB.
5674 	 */
5675 	if (ufshcd_is_intr_aggr_allowed(hba) &&
5676 	    !(hba->quirks & UFSHCI_QUIRK_SKIP_RESET_INTR_AGGR))
5677 		ufshcd_reset_intr_aggr(hba);
5678 
5679 	if (ufs_fail_completion(hba))
5680 		return IRQ_HANDLED;
5681 
5682 	/*
5683 	 * Ignore the ufshcd_poll() return value and return IRQ_HANDLED since we
5684 	 * do not want polling to trigger spurious interrupt complaints.
5685 	 */
5686 	ufshcd_poll(hba->host, UFSHCD_POLL_FROM_INTERRUPT_CONTEXT);
5687 
5688 	return IRQ_HANDLED;
5689 }
5690 
5691 int __ufshcd_write_ee_control(struct ufs_hba *hba, u32 ee_ctrl_mask)
5692 {
5693 	return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
5694 				       QUERY_ATTR_IDN_EE_CONTROL, 0, 0,
5695 				       &ee_ctrl_mask);
5696 }
5697 
5698 int ufshcd_write_ee_control(struct ufs_hba *hba)
5699 {
5700 	int err;
5701 
5702 	mutex_lock(&hba->ee_ctrl_mutex);
5703 	err = __ufshcd_write_ee_control(hba, hba->ee_ctrl_mask);
5704 	mutex_unlock(&hba->ee_ctrl_mutex);
5705 	if (err)
5706 		dev_err(hba->dev, "%s: failed to write ee control %d\n",
5707 			__func__, err);
5708 	return err;
5709 }
5710 
5711 int ufshcd_update_ee_control(struct ufs_hba *hba, u16 *mask,
5712 			     const u16 *other_mask, u16 set, u16 clr)
5713 {
5714 	u16 new_mask, ee_ctrl_mask;
5715 	int err = 0;
5716 
5717 	mutex_lock(&hba->ee_ctrl_mutex);
5718 	new_mask = (*mask & ~clr) | set;
5719 	ee_ctrl_mask = new_mask | *other_mask;
5720 	if (ee_ctrl_mask != hba->ee_ctrl_mask)
5721 		err = __ufshcd_write_ee_control(hba, ee_ctrl_mask);
5722 	/* Still need to update 'mask' even if 'ee_ctrl_mask' was unchanged */
5723 	if (!err) {
5724 		hba->ee_ctrl_mask = ee_ctrl_mask;
5725 		*mask = new_mask;
5726 	}
5727 	mutex_unlock(&hba->ee_ctrl_mutex);
5728 	return err;
5729 }
5730 
5731 /**
5732  * ufshcd_disable_ee - disable exception event
5733  * @hba: per-adapter instance
5734  * @mask: exception event to disable
5735  *
5736  * Disables exception event in the device so that the EVENT_ALERT
5737  * bit is not set.
5738  *
5739  * Return: zero on success, non-zero error value on failure.
5740  */
5741 static inline int ufshcd_disable_ee(struct ufs_hba *hba, u16 mask)
5742 {
5743 	return ufshcd_update_ee_drv_mask(hba, 0, mask);
5744 }
5745 
5746 /**
5747  * ufshcd_enable_ee - enable exception event
5748  * @hba: per-adapter instance
5749  * @mask: exception event to enable
5750  *
5751  * Enable corresponding exception event in the device to allow
5752  * device to alert host in critical scenarios.
5753  *
5754  * Return: zero on success, non-zero error value on failure.
5755  */
5756 static inline int ufshcd_enable_ee(struct ufs_hba *hba, u16 mask)
5757 {
5758 	return ufshcd_update_ee_drv_mask(hba, mask, 0);
5759 }
5760 
5761 /**
5762  * ufshcd_enable_auto_bkops - Allow device managed BKOPS
5763  * @hba: per-adapter instance
5764  *
5765  * Allow device to manage background operations on its own. Enabling
5766  * this might lead to inconsistent latencies during normal data transfers
5767  * as the device is allowed to manage its own way of handling background
5768  * operations.
5769  *
5770  * Return: zero on success, non-zero on failure.
5771  */
5772 static int ufshcd_enable_auto_bkops(struct ufs_hba *hba)
5773 {
5774 	int err = 0;
5775 
5776 	if (hba->auto_bkops_enabled)
5777 		goto out;
5778 
5779 	err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG,
5780 			QUERY_FLAG_IDN_BKOPS_EN, 0, NULL);
5781 	if (err) {
5782 		dev_err(hba->dev, "%s: failed to enable bkops %d\n",
5783 				__func__, err);
5784 		goto out;
5785 	}
5786 
5787 	hba->auto_bkops_enabled = true;
5788 	trace_ufshcd_auto_bkops_state(dev_name(hba->dev), "Enabled");
5789 
5790 	/* No need of URGENT_BKOPS exception from the device */
5791 	err = ufshcd_disable_ee(hba, MASK_EE_URGENT_BKOPS);
5792 	if (err)
5793 		dev_err(hba->dev, "%s: failed to disable exception event %d\n",
5794 				__func__, err);
5795 out:
5796 	return err;
5797 }
5798 
5799 /**
5800  * ufshcd_disable_auto_bkops - block device in doing background operations
5801  * @hba: per-adapter instance
5802  *
5803  * Disabling background operations improves command response latency but
5804  * has drawback of device moving into critical state where the device is
5805  * not-operable. Make sure to call ufshcd_enable_auto_bkops() whenever the
5806  * host is idle so that BKOPS are managed effectively without any negative
5807  * impacts.
5808  *
5809  * Return: zero on success, non-zero on failure.
5810  */
5811 static int ufshcd_disable_auto_bkops(struct ufs_hba *hba)
5812 {
5813 	int err = 0;
5814 
5815 	if (!hba->auto_bkops_enabled)
5816 		goto out;
5817 
5818 	/*
5819 	 * If host assisted BKOPs is to be enabled, make sure
5820 	 * urgent bkops exception is allowed.
5821 	 */
5822 	err = ufshcd_enable_ee(hba, MASK_EE_URGENT_BKOPS);
5823 	if (err) {
5824 		dev_err(hba->dev, "%s: failed to enable exception event %d\n",
5825 				__func__, err);
5826 		goto out;
5827 	}
5828 
5829 	err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_CLEAR_FLAG,
5830 			QUERY_FLAG_IDN_BKOPS_EN, 0, NULL);
5831 	if (err) {
5832 		dev_err(hba->dev, "%s: failed to disable bkops %d\n",
5833 				__func__, err);
5834 		ufshcd_disable_ee(hba, MASK_EE_URGENT_BKOPS);
5835 		goto out;
5836 	}
5837 
5838 	hba->auto_bkops_enabled = false;
5839 	trace_ufshcd_auto_bkops_state(dev_name(hba->dev), "Disabled");
5840 	hba->is_urgent_bkops_lvl_checked = false;
5841 out:
5842 	return err;
5843 }
5844 
5845 /**
5846  * ufshcd_force_reset_auto_bkops - force reset auto bkops state
5847  * @hba: per adapter instance
5848  *
5849  * After a device reset the device may toggle the BKOPS_EN flag
5850  * to default value. The s/w tracking variables should be updated
5851  * as well. This function would change the auto-bkops state based on
5852  * UFSHCD_CAP_KEEP_AUTO_BKOPS_ENABLED_EXCEPT_SUSPEND.
5853  */
5854 static void ufshcd_force_reset_auto_bkops(struct ufs_hba *hba)
5855 {
5856 	if (ufshcd_keep_autobkops_enabled_except_suspend(hba)) {
5857 		hba->auto_bkops_enabled = false;
5858 		hba->ee_ctrl_mask |= MASK_EE_URGENT_BKOPS;
5859 		ufshcd_enable_auto_bkops(hba);
5860 	} else {
5861 		hba->auto_bkops_enabled = true;
5862 		hba->ee_ctrl_mask &= ~MASK_EE_URGENT_BKOPS;
5863 		ufshcd_disable_auto_bkops(hba);
5864 	}
5865 	hba->urgent_bkops_lvl = BKOPS_STATUS_PERF_IMPACT;
5866 	hba->is_urgent_bkops_lvl_checked = false;
5867 }
5868 
5869 static inline int ufshcd_get_bkops_status(struct ufs_hba *hba, u32 *status)
5870 {
5871 	return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5872 			QUERY_ATTR_IDN_BKOPS_STATUS, 0, 0, status);
5873 }
5874 
5875 /**
5876  * ufshcd_bkops_ctrl - control the auto bkops based on current bkops status
5877  * @hba: per-adapter instance
5878  *
5879  * Read the bkops_status from the UFS device and Enable fBackgroundOpsEn
5880  * flag in the device to permit background operations if the device
5881  * bkops_status is greater than or equal to the "hba->urgent_bkops_lvl",
5882  * disable otherwise.
5883  *
5884  * Return: 0 for success, non-zero in case of failure.
5885  *
5886  * NOTE: Caller of this function can check the "hba->auto_bkops_enabled" flag
5887  * to know whether auto bkops is enabled or disabled after this function
5888  * returns control to it.
5889  */
5890 static int ufshcd_bkops_ctrl(struct ufs_hba *hba)
5891 {
5892 	enum bkops_status status = hba->urgent_bkops_lvl;
5893 	u32 curr_status = 0;
5894 	int err;
5895 
5896 	err = ufshcd_get_bkops_status(hba, &curr_status);
5897 	if (err) {
5898 		dev_err(hba->dev, "%s: failed to get BKOPS status %d\n",
5899 				__func__, err);
5900 		goto out;
5901 	} else if (curr_status > BKOPS_STATUS_MAX) {
5902 		dev_err(hba->dev, "%s: invalid BKOPS status %d\n",
5903 				__func__, curr_status);
5904 		err = -EINVAL;
5905 		goto out;
5906 	}
5907 
5908 	if (curr_status >= status)
5909 		err = ufshcd_enable_auto_bkops(hba);
5910 	else
5911 		err = ufshcd_disable_auto_bkops(hba);
5912 out:
5913 	return err;
5914 }
5915 
5916 static inline int ufshcd_get_ee_status(struct ufs_hba *hba, u32 *status)
5917 {
5918 	return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5919 			QUERY_ATTR_IDN_EE_STATUS, 0, 0, status);
5920 }
5921 
5922 static void ufshcd_bkops_exception_event_handler(struct ufs_hba *hba)
5923 {
5924 	int err;
5925 	u32 curr_status = 0;
5926 
5927 	if (hba->is_urgent_bkops_lvl_checked)
5928 		goto enable_auto_bkops;
5929 
5930 	err = ufshcd_get_bkops_status(hba, &curr_status);
5931 	if (err) {
5932 		dev_err(hba->dev, "%s: failed to get BKOPS status %d\n",
5933 				__func__, err);
5934 		goto out;
5935 	}
5936 
5937 	/*
5938 	 * We are seeing that some devices are raising the urgent bkops
5939 	 * exception events even when BKOPS status doesn't indicate performace
5940 	 * impacted or critical. Handle these device by determining their urgent
5941 	 * bkops status at runtime.
5942 	 */
5943 	if (curr_status < BKOPS_STATUS_PERF_IMPACT) {
5944 		dev_err(hba->dev, "%s: device raised urgent BKOPS exception for bkops status %d\n",
5945 				__func__, curr_status);
5946 		/* update the current status as the urgent bkops level */
5947 		hba->urgent_bkops_lvl = curr_status;
5948 		hba->is_urgent_bkops_lvl_checked = true;
5949 	}
5950 
5951 enable_auto_bkops:
5952 	err = ufshcd_enable_auto_bkops(hba);
5953 out:
5954 	if (err < 0)
5955 		dev_err(hba->dev, "%s: failed to handle urgent bkops %d\n",
5956 				__func__, err);
5957 }
5958 
5959 static void ufshcd_temp_exception_event_handler(struct ufs_hba *hba, u16 status)
5960 {
5961 	u32 value;
5962 
5963 	if (ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5964 				QUERY_ATTR_IDN_CASE_ROUGH_TEMP, 0, 0, &value))
5965 		return;
5966 
5967 	dev_info(hba->dev, "exception Tcase %d\n", value - 80);
5968 
5969 	ufs_hwmon_notify_event(hba, status & MASK_EE_URGENT_TEMP);
5970 
5971 	/*
5972 	 * A placeholder for the platform vendors to add whatever additional
5973 	 * steps required
5974 	 */
5975 }
5976 
5977 static int __ufshcd_wb_toggle(struct ufs_hba *hba, bool set, enum flag_idn idn)
5978 {
5979 	u8 index;
5980 	enum query_opcode opcode = set ? UPIU_QUERY_OPCODE_SET_FLAG :
5981 				   UPIU_QUERY_OPCODE_CLEAR_FLAG;
5982 
5983 	index = ufshcd_wb_get_query_index(hba);
5984 	return ufshcd_query_flag_retry(hba, opcode, idn, index, NULL);
5985 }
5986 
5987 int ufshcd_wb_toggle(struct ufs_hba *hba, bool enable)
5988 {
5989 	int ret;
5990 
5991 	if (!ufshcd_is_wb_allowed(hba) ||
5992 	    hba->dev_info.wb_enabled == enable)
5993 		return 0;
5994 
5995 	ret = __ufshcd_wb_toggle(hba, enable, QUERY_FLAG_IDN_WB_EN);
5996 	if (ret) {
5997 		dev_err(hba->dev, "%s: Write Booster %s failed %d\n",
5998 			__func__, enable ? "enabling" : "disabling", ret);
5999 		return ret;
6000 	}
6001 
6002 	hba->dev_info.wb_enabled = enable;
6003 	dev_dbg(hba->dev, "%s: Write Booster %s\n",
6004 			__func__, enable ? "enabled" : "disabled");
6005 
6006 	return ret;
6007 }
6008 
6009 static void ufshcd_wb_toggle_buf_flush_during_h8(struct ufs_hba *hba,
6010 						 bool enable)
6011 {
6012 	int ret;
6013 
6014 	ret = __ufshcd_wb_toggle(hba, enable,
6015 			QUERY_FLAG_IDN_WB_BUFF_FLUSH_DURING_HIBERN8);
6016 	if (ret) {
6017 		dev_err(hba->dev, "%s: WB-Buf Flush during H8 %s failed %d\n",
6018 			__func__, enable ? "enabling" : "disabling", ret);
6019 		return;
6020 	}
6021 	dev_dbg(hba->dev, "%s: WB-Buf Flush during H8 %s\n",
6022 			__func__, enable ? "enabled" : "disabled");
6023 }
6024 
6025 int ufshcd_wb_toggle_buf_flush(struct ufs_hba *hba, bool enable)
6026 {
6027 	int ret;
6028 
6029 	if (!ufshcd_is_wb_allowed(hba) ||
6030 	    hba->dev_info.wb_buf_flush_enabled == enable)
6031 		return 0;
6032 
6033 	ret = __ufshcd_wb_toggle(hba, enable, QUERY_FLAG_IDN_WB_BUFF_FLUSH_EN);
6034 	if (ret) {
6035 		dev_err(hba->dev, "%s: WB-Buf Flush %s failed %d\n",
6036 			__func__, enable ? "enabling" : "disabling", ret);
6037 		return ret;
6038 	}
6039 
6040 	hba->dev_info.wb_buf_flush_enabled = enable;
6041 	dev_dbg(hba->dev, "%s: WB-Buf Flush %s\n",
6042 			__func__, enable ? "enabled" : "disabled");
6043 
6044 	return ret;
6045 }
6046 
6047 static bool ufshcd_wb_presrv_usrspc_keep_vcc_on(struct ufs_hba *hba,
6048 						u32 avail_buf)
6049 {
6050 	u32 cur_buf;
6051 	int ret;
6052 	u8 index;
6053 
6054 	index = ufshcd_wb_get_query_index(hba);
6055 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
6056 					      QUERY_ATTR_IDN_CURR_WB_BUFF_SIZE,
6057 					      index, 0, &cur_buf);
6058 	if (ret) {
6059 		dev_err(hba->dev, "%s: dCurWriteBoosterBufferSize read failed %d\n",
6060 			__func__, ret);
6061 		return false;
6062 	}
6063 
6064 	if (!cur_buf) {
6065 		dev_info(hba->dev, "dCurWBBuf: %d WB disabled until free-space is available\n",
6066 			 cur_buf);
6067 		return false;
6068 	}
6069 	/* Let it continue to flush when available buffer exceeds threshold */
6070 	return avail_buf < hba->vps->wb_flush_threshold;
6071 }
6072 
6073 static void ufshcd_wb_force_disable(struct ufs_hba *hba)
6074 {
6075 	if (ufshcd_is_wb_buf_flush_allowed(hba))
6076 		ufshcd_wb_toggle_buf_flush(hba, false);
6077 
6078 	ufshcd_wb_toggle_buf_flush_during_h8(hba, false);
6079 	ufshcd_wb_toggle(hba, false);
6080 	hba->caps &= ~UFSHCD_CAP_WB_EN;
6081 
6082 	dev_info(hba->dev, "%s: WB force disabled\n", __func__);
6083 }
6084 
6085 static bool ufshcd_is_wb_buf_lifetime_available(struct ufs_hba *hba)
6086 {
6087 	u32 lifetime;
6088 	int ret;
6089 	u8 index;
6090 
6091 	index = ufshcd_wb_get_query_index(hba);
6092 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
6093 				      QUERY_ATTR_IDN_WB_BUFF_LIFE_TIME_EST,
6094 				      index, 0, &lifetime);
6095 	if (ret) {
6096 		dev_err(hba->dev,
6097 			"%s: bWriteBoosterBufferLifeTimeEst read failed %d\n",
6098 			__func__, ret);
6099 		return false;
6100 	}
6101 
6102 	if (lifetime == UFS_WB_EXCEED_LIFETIME) {
6103 		dev_err(hba->dev, "%s: WB buf lifetime is exhausted 0x%02X\n",
6104 			__func__, lifetime);
6105 		return false;
6106 	}
6107 
6108 	dev_dbg(hba->dev, "%s: WB buf lifetime is 0x%02X\n",
6109 		__func__, lifetime);
6110 
6111 	return true;
6112 }
6113 
6114 static bool ufshcd_wb_need_flush(struct ufs_hba *hba)
6115 {
6116 	int ret;
6117 	u32 avail_buf;
6118 	u8 index;
6119 
6120 	if (!ufshcd_is_wb_allowed(hba))
6121 		return false;
6122 
6123 	if (!ufshcd_is_wb_buf_lifetime_available(hba)) {
6124 		ufshcd_wb_force_disable(hba);
6125 		return false;
6126 	}
6127 
6128 	/*
6129 	 * The ufs device needs the vcc to be ON to flush.
6130 	 * With user-space reduction enabled, it's enough to enable flush
6131 	 * by checking only the available buffer. The threshold
6132 	 * defined here is > 90% full.
6133 	 * With user-space preserved enabled, the current-buffer
6134 	 * should be checked too because the wb buffer size can reduce
6135 	 * when disk tends to be full. This info is provided by current
6136 	 * buffer (dCurrentWriteBoosterBufferSize). There's no point in
6137 	 * keeping vcc on when current buffer is empty.
6138 	 */
6139 	index = ufshcd_wb_get_query_index(hba);
6140 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
6141 				      QUERY_ATTR_IDN_AVAIL_WB_BUFF_SIZE,
6142 				      index, 0, &avail_buf);
6143 	if (ret) {
6144 		dev_warn(hba->dev, "%s: dAvailableWriteBoosterBufferSize read failed %d\n",
6145 			 __func__, ret);
6146 		return false;
6147 	}
6148 
6149 	if (!hba->dev_info.b_presrv_uspc_en)
6150 		return avail_buf <= UFS_WB_BUF_REMAIN_PERCENT(10);
6151 
6152 	return ufshcd_wb_presrv_usrspc_keep_vcc_on(hba, avail_buf);
6153 }
6154 
6155 static void ufshcd_rpm_dev_flush_recheck_work(struct work_struct *work)
6156 {
6157 	struct ufs_hba *hba = container_of(to_delayed_work(work),
6158 					   struct ufs_hba,
6159 					   rpm_dev_flush_recheck_work);
6160 	/*
6161 	 * To prevent unnecessary VCC power drain after device finishes
6162 	 * WriteBooster buffer flush or Auto BKOPs, force runtime resume
6163 	 * after a certain delay to recheck the threshold by next runtime
6164 	 * suspend.
6165 	 */
6166 	ufshcd_rpm_get_sync(hba);
6167 	ufshcd_rpm_put_sync(hba);
6168 }
6169 
6170 /**
6171  * ufshcd_exception_event_handler - handle exceptions raised by device
6172  * @work: pointer to work data
6173  *
6174  * Read bExceptionEventStatus attribute from the device and handle the
6175  * exception event accordingly.
6176  */
6177 static void ufshcd_exception_event_handler(struct work_struct *work)
6178 {
6179 	struct ufs_hba *hba;
6180 	int err;
6181 	u32 status = 0;
6182 	hba = container_of(work, struct ufs_hba, eeh_work);
6183 
6184 	err = ufshcd_get_ee_status(hba, &status);
6185 	if (err) {
6186 		dev_err(hba->dev, "%s: failed to get exception status %d\n",
6187 				__func__, err);
6188 		return;
6189 	}
6190 
6191 	trace_ufshcd_exception_event(dev_name(hba->dev), status);
6192 
6193 	if (status & hba->ee_drv_mask & MASK_EE_URGENT_BKOPS)
6194 		ufshcd_bkops_exception_event_handler(hba);
6195 
6196 	if (status & hba->ee_drv_mask & MASK_EE_URGENT_TEMP)
6197 		ufshcd_temp_exception_event_handler(hba, status);
6198 
6199 	ufs_debugfs_exception_event(hba, status);
6200 }
6201 
6202 /* Complete requests that have door-bell cleared */
6203 static void ufshcd_complete_requests(struct ufs_hba *hba, bool force_compl)
6204 {
6205 	if (hba->mcq_enabled)
6206 		ufshcd_mcq_compl_pending_transfer(hba, force_compl);
6207 	else
6208 		ufshcd_transfer_req_compl(hba);
6209 
6210 	ufshcd_tmc_handler(hba);
6211 }
6212 
6213 /**
6214  * ufshcd_quirk_dl_nac_errors - This function checks if error handling is
6215  *				to recover from the DL NAC errors or not.
6216  * @hba: per-adapter instance
6217  *
6218  * Return: true if error handling is required, false otherwise.
6219  */
6220 static bool ufshcd_quirk_dl_nac_errors(struct ufs_hba *hba)
6221 {
6222 	unsigned long flags;
6223 	bool err_handling = true;
6224 
6225 	spin_lock_irqsave(hba->host->host_lock, flags);
6226 	/*
6227 	 * UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS only workaround the
6228 	 * device fatal error and/or DL NAC & REPLAY timeout errors.
6229 	 */
6230 	if (hba->saved_err & (CONTROLLER_FATAL_ERROR | SYSTEM_BUS_FATAL_ERROR))
6231 		goto out;
6232 
6233 	if ((hba->saved_err & DEVICE_FATAL_ERROR) ||
6234 	    ((hba->saved_err & UIC_ERROR) &&
6235 	     (hba->saved_uic_err & UFSHCD_UIC_DL_TCx_REPLAY_ERROR)))
6236 		goto out;
6237 
6238 	if ((hba->saved_err & UIC_ERROR) &&
6239 	    (hba->saved_uic_err & UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)) {
6240 		int err;
6241 		/*
6242 		 * wait for 50ms to see if we can get any other errors or not.
6243 		 */
6244 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6245 		msleep(50);
6246 		spin_lock_irqsave(hba->host->host_lock, flags);
6247 
6248 		/*
6249 		 * now check if we have got any other severe errors other than
6250 		 * DL NAC error?
6251 		 */
6252 		if ((hba->saved_err & INT_FATAL_ERRORS) ||
6253 		    ((hba->saved_err & UIC_ERROR) &&
6254 		    (hba->saved_uic_err & ~UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)))
6255 			goto out;
6256 
6257 		/*
6258 		 * As DL NAC is the only error received so far, send out NOP
6259 		 * command to confirm if link is still active or not.
6260 		 *   - If we don't get any response then do error recovery.
6261 		 *   - If we get response then clear the DL NAC error bit.
6262 		 */
6263 
6264 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6265 		err = ufshcd_verify_dev_init(hba);
6266 		spin_lock_irqsave(hba->host->host_lock, flags);
6267 
6268 		if (err)
6269 			goto out;
6270 
6271 		/* Link seems to be alive hence ignore the DL NAC errors */
6272 		if (hba->saved_uic_err == UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)
6273 			hba->saved_err &= ~UIC_ERROR;
6274 		/* clear NAC error */
6275 		hba->saved_uic_err &= ~UFSHCD_UIC_DL_NAC_RECEIVED_ERROR;
6276 		if (!hba->saved_uic_err)
6277 			err_handling = false;
6278 	}
6279 out:
6280 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6281 	return err_handling;
6282 }
6283 
6284 /* host lock must be held before calling this func */
6285 static inline bool ufshcd_is_saved_err_fatal(struct ufs_hba *hba)
6286 {
6287 	return (hba->saved_uic_err & UFSHCD_UIC_DL_PA_INIT_ERROR) ||
6288 	       (hba->saved_err & (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK));
6289 }
6290 
6291 void ufshcd_schedule_eh_work(struct ufs_hba *hba)
6292 {
6293 	lockdep_assert_held(hba->host->host_lock);
6294 
6295 	/* handle fatal errors only when link is not in error state */
6296 	if (hba->ufshcd_state != UFSHCD_STATE_ERROR) {
6297 		if (hba->force_reset || ufshcd_is_link_broken(hba) ||
6298 		    ufshcd_is_saved_err_fatal(hba))
6299 			hba->ufshcd_state = UFSHCD_STATE_EH_SCHEDULED_FATAL;
6300 		else
6301 			hba->ufshcd_state = UFSHCD_STATE_EH_SCHEDULED_NON_FATAL;
6302 		queue_work(hba->eh_wq, &hba->eh_work);
6303 	}
6304 }
6305 
6306 static void ufshcd_force_error_recovery(struct ufs_hba *hba)
6307 {
6308 	spin_lock_irq(hba->host->host_lock);
6309 	hba->force_reset = true;
6310 	ufshcd_schedule_eh_work(hba);
6311 	spin_unlock_irq(hba->host->host_lock);
6312 }
6313 
6314 static void ufshcd_clk_scaling_allow(struct ufs_hba *hba, bool allow)
6315 {
6316 	mutex_lock(&hba->wb_mutex);
6317 	down_write(&hba->clk_scaling_lock);
6318 	hba->clk_scaling.is_allowed = allow;
6319 	up_write(&hba->clk_scaling_lock);
6320 	mutex_unlock(&hba->wb_mutex);
6321 }
6322 
6323 static void ufshcd_clk_scaling_suspend(struct ufs_hba *hba, bool suspend)
6324 {
6325 	if (suspend) {
6326 		if (hba->clk_scaling.is_enabled)
6327 			ufshcd_suspend_clkscaling(hba);
6328 		ufshcd_clk_scaling_allow(hba, false);
6329 	} else {
6330 		ufshcd_clk_scaling_allow(hba, true);
6331 		if (hba->clk_scaling.is_enabled)
6332 			ufshcd_resume_clkscaling(hba);
6333 	}
6334 }
6335 
6336 static void ufshcd_err_handling_prepare(struct ufs_hba *hba)
6337 {
6338 	ufshcd_rpm_get_sync(hba);
6339 	if (pm_runtime_status_suspended(&hba->ufs_device_wlun->sdev_gendev) ||
6340 	    hba->is_sys_suspended) {
6341 		enum ufs_pm_op pm_op;
6342 
6343 		/*
6344 		 * Don't assume anything of resume, if
6345 		 * resume fails, irq and clocks can be OFF, and powers
6346 		 * can be OFF or in LPM.
6347 		 */
6348 		ufshcd_setup_hba_vreg(hba, true);
6349 		ufshcd_enable_irq(hba);
6350 		ufshcd_setup_vreg(hba, true);
6351 		ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq);
6352 		ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq2);
6353 		ufshcd_hold(hba);
6354 		if (!ufshcd_is_clkgating_allowed(hba))
6355 			ufshcd_setup_clocks(hba, true);
6356 		pm_op = hba->is_sys_suspended ? UFS_SYSTEM_PM : UFS_RUNTIME_PM;
6357 		ufshcd_vops_resume(hba, pm_op);
6358 	} else {
6359 		ufshcd_hold(hba);
6360 		if (ufshcd_is_clkscaling_supported(hba) &&
6361 		    hba->clk_scaling.is_enabled)
6362 			ufshcd_suspend_clkscaling(hba);
6363 		ufshcd_clk_scaling_allow(hba, false);
6364 	}
6365 	/* Wait for ongoing ufshcd_queuecommand() calls to finish. */
6366 	blk_mq_quiesce_tagset(&hba->host->tag_set);
6367 	cancel_work_sync(&hba->eeh_work);
6368 }
6369 
6370 static void ufshcd_err_handling_unprepare(struct ufs_hba *hba)
6371 {
6372 	blk_mq_unquiesce_tagset(&hba->host->tag_set);
6373 	ufshcd_release(hba);
6374 	if (ufshcd_is_clkscaling_supported(hba))
6375 		ufshcd_clk_scaling_suspend(hba, false);
6376 	ufshcd_rpm_put(hba);
6377 }
6378 
6379 static inline bool ufshcd_err_handling_should_stop(struct ufs_hba *hba)
6380 {
6381 	return (!hba->is_powered || hba->shutting_down ||
6382 		!hba->ufs_device_wlun ||
6383 		hba->ufshcd_state == UFSHCD_STATE_ERROR ||
6384 		(!(hba->saved_err || hba->saved_uic_err || hba->force_reset ||
6385 		   ufshcd_is_link_broken(hba))));
6386 }
6387 
6388 #ifdef CONFIG_PM
6389 static void ufshcd_recover_pm_error(struct ufs_hba *hba)
6390 {
6391 	struct Scsi_Host *shost = hba->host;
6392 	struct scsi_device *sdev;
6393 	struct request_queue *q;
6394 	int ret;
6395 
6396 	hba->is_sys_suspended = false;
6397 	/*
6398 	 * Set RPM status of wlun device to RPM_ACTIVE,
6399 	 * this also clears its runtime error.
6400 	 */
6401 	ret = pm_runtime_set_active(&hba->ufs_device_wlun->sdev_gendev);
6402 
6403 	/* hba device might have a runtime error otherwise */
6404 	if (ret)
6405 		ret = pm_runtime_set_active(hba->dev);
6406 	/*
6407 	 * If wlun device had runtime error, we also need to resume those
6408 	 * consumer scsi devices in case any of them has failed to be
6409 	 * resumed due to supplier runtime resume failure. This is to unblock
6410 	 * blk_queue_enter in case there are bios waiting inside it.
6411 	 */
6412 	if (!ret) {
6413 		shost_for_each_device(sdev, shost) {
6414 			q = sdev->request_queue;
6415 			if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
6416 				       q->rpm_status == RPM_SUSPENDING))
6417 				pm_request_resume(q->dev);
6418 		}
6419 	}
6420 }
6421 #else
6422 static inline void ufshcd_recover_pm_error(struct ufs_hba *hba)
6423 {
6424 }
6425 #endif
6426 
6427 static bool ufshcd_is_pwr_mode_restore_needed(struct ufs_hba *hba)
6428 {
6429 	struct ufs_pa_layer_attr *pwr_info = &hba->pwr_info;
6430 	u32 mode;
6431 
6432 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_PWRMODE), &mode);
6433 
6434 	if (pwr_info->pwr_rx != ((mode >> PWRMODE_RX_OFFSET) & PWRMODE_MASK))
6435 		return true;
6436 
6437 	if (pwr_info->pwr_tx != (mode & PWRMODE_MASK))
6438 		return true;
6439 
6440 	return false;
6441 }
6442 
6443 static bool ufshcd_abort_one(struct request *rq, void *priv)
6444 {
6445 	int *ret = priv;
6446 	u32 tag = rq->tag;
6447 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
6448 	struct scsi_device *sdev = cmd->device;
6449 	struct Scsi_Host *shost = sdev->host;
6450 	struct ufs_hba *hba = shost_priv(shost);
6451 
6452 	*ret = ufshcd_try_to_abort_task(hba, tag);
6453 	dev_err(hba->dev, "Aborting tag %d / CDB %#02x %s\n", tag,
6454 		hba->lrb[tag].cmd ? hba->lrb[tag].cmd->cmnd[0] : -1,
6455 		*ret ? "failed" : "succeeded");
6456 
6457 	return *ret == 0;
6458 }
6459 
6460 /**
6461  * ufshcd_abort_all - Abort all pending commands.
6462  * @hba: Host bus adapter pointer.
6463  *
6464  * Return: true if and only if the host controller needs to be reset.
6465  */
6466 static bool ufshcd_abort_all(struct ufs_hba *hba)
6467 {
6468 	int tag, ret = 0;
6469 
6470 	blk_mq_tagset_busy_iter(&hba->host->tag_set, ufshcd_abort_one, &ret);
6471 	if (ret)
6472 		goto out;
6473 
6474 	/* Clear pending task management requests */
6475 	for_each_set_bit(tag, &hba->outstanding_tasks, hba->nutmrs) {
6476 		ret = ufshcd_clear_tm_cmd(hba, tag);
6477 		if (ret)
6478 			goto out;
6479 	}
6480 
6481 out:
6482 	/* Complete the requests that are cleared by s/w */
6483 	ufshcd_complete_requests(hba, false);
6484 
6485 	return ret != 0;
6486 }
6487 
6488 /**
6489  * ufshcd_err_handler - handle UFS errors that require s/w attention
6490  * @work: pointer to work structure
6491  */
6492 static void ufshcd_err_handler(struct work_struct *work)
6493 {
6494 	int retries = MAX_ERR_HANDLER_RETRIES;
6495 	struct ufs_hba *hba;
6496 	unsigned long flags;
6497 	bool needs_restore;
6498 	bool needs_reset;
6499 	int pmc_err;
6500 
6501 	hba = container_of(work, struct ufs_hba, eh_work);
6502 
6503 	dev_info(hba->dev,
6504 		 "%s started; HBA state %s; powered %d; shutting down %d; saved_err = %d; saved_uic_err = %d; force_reset = %d%s\n",
6505 		 __func__, ufshcd_state_name[hba->ufshcd_state],
6506 		 hba->is_powered, hba->shutting_down, hba->saved_err,
6507 		 hba->saved_uic_err, hba->force_reset,
6508 		 ufshcd_is_link_broken(hba) ? "; link is broken" : "");
6509 
6510 	down(&hba->host_sem);
6511 	spin_lock_irqsave(hba->host->host_lock, flags);
6512 	if (ufshcd_err_handling_should_stop(hba)) {
6513 		if (hba->ufshcd_state != UFSHCD_STATE_ERROR)
6514 			hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
6515 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6516 		up(&hba->host_sem);
6517 		return;
6518 	}
6519 	ufshcd_set_eh_in_progress(hba);
6520 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6521 	ufshcd_err_handling_prepare(hba);
6522 	/* Complete requests that have door-bell cleared by h/w */
6523 	ufshcd_complete_requests(hba, false);
6524 	spin_lock_irqsave(hba->host->host_lock, flags);
6525 again:
6526 	needs_restore = false;
6527 	needs_reset = false;
6528 
6529 	if (hba->ufshcd_state != UFSHCD_STATE_ERROR)
6530 		hba->ufshcd_state = UFSHCD_STATE_RESET;
6531 	/*
6532 	 * A full reset and restore might have happened after preparation
6533 	 * is finished, double check whether we should stop.
6534 	 */
6535 	if (ufshcd_err_handling_should_stop(hba))
6536 		goto skip_err_handling;
6537 
6538 	if ((hba->dev_quirks & UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS) &&
6539 	    !hba->force_reset) {
6540 		bool ret;
6541 
6542 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6543 		/* release the lock as ufshcd_quirk_dl_nac_errors() may sleep */
6544 		ret = ufshcd_quirk_dl_nac_errors(hba);
6545 		spin_lock_irqsave(hba->host->host_lock, flags);
6546 		if (!ret && ufshcd_err_handling_should_stop(hba))
6547 			goto skip_err_handling;
6548 	}
6549 
6550 	if ((hba->saved_err & (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK)) ||
6551 	    (hba->saved_uic_err &&
6552 	     (hba->saved_uic_err != UFSHCD_UIC_PA_GENERIC_ERROR))) {
6553 		bool pr_prdt = !!(hba->saved_err & SYSTEM_BUS_FATAL_ERROR);
6554 
6555 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6556 		ufshcd_print_host_state(hba);
6557 		ufshcd_print_pwr_info(hba);
6558 		ufshcd_print_evt_hist(hba);
6559 		ufshcd_print_tmrs(hba, hba->outstanding_tasks);
6560 		ufshcd_print_trs_all(hba, pr_prdt);
6561 		spin_lock_irqsave(hba->host->host_lock, flags);
6562 	}
6563 
6564 	/*
6565 	 * if host reset is required then skip clearing the pending
6566 	 * transfers forcefully because they will get cleared during
6567 	 * host reset and restore
6568 	 */
6569 	if (hba->force_reset || ufshcd_is_link_broken(hba) ||
6570 	    ufshcd_is_saved_err_fatal(hba) ||
6571 	    ((hba->saved_err & UIC_ERROR) &&
6572 	     (hba->saved_uic_err & (UFSHCD_UIC_DL_NAC_RECEIVED_ERROR |
6573 				    UFSHCD_UIC_DL_TCx_REPLAY_ERROR)))) {
6574 		needs_reset = true;
6575 		goto do_reset;
6576 	}
6577 
6578 	/*
6579 	 * If LINERESET was caught, UFS might have been put to PWM mode,
6580 	 * check if power mode restore is needed.
6581 	 */
6582 	if (hba->saved_uic_err & UFSHCD_UIC_PA_GENERIC_ERROR) {
6583 		hba->saved_uic_err &= ~UFSHCD_UIC_PA_GENERIC_ERROR;
6584 		if (!hba->saved_uic_err)
6585 			hba->saved_err &= ~UIC_ERROR;
6586 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6587 		if (ufshcd_is_pwr_mode_restore_needed(hba))
6588 			needs_restore = true;
6589 		spin_lock_irqsave(hba->host->host_lock, flags);
6590 		if (!hba->saved_err && !needs_restore)
6591 			goto skip_err_handling;
6592 	}
6593 
6594 	hba->silence_err_logs = true;
6595 	/* release lock as clear command might sleep */
6596 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6597 
6598 	needs_reset = ufshcd_abort_all(hba);
6599 
6600 	spin_lock_irqsave(hba->host->host_lock, flags);
6601 	hba->silence_err_logs = false;
6602 	if (needs_reset)
6603 		goto do_reset;
6604 
6605 	/*
6606 	 * After all reqs and tasks are cleared from doorbell,
6607 	 * now it is safe to retore power mode.
6608 	 */
6609 	if (needs_restore) {
6610 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6611 		/*
6612 		 * Hold the scaling lock just in case dev cmds
6613 		 * are sent via bsg and/or sysfs.
6614 		 */
6615 		down_write(&hba->clk_scaling_lock);
6616 		hba->force_pmc = true;
6617 		pmc_err = ufshcd_config_pwr_mode(hba, &(hba->pwr_info));
6618 		if (pmc_err) {
6619 			needs_reset = true;
6620 			dev_err(hba->dev, "%s: Failed to restore power mode, err = %d\n",
6621 					__func__, pmc_err);
6622 		}
6623 		hba->force_pmc = false;
6624 		ufshcd_print_pwr_info(hba);
6625 		up_write(&hba->clk_scaling_lock);
6626 		spin_lock_irqsave(hba->host->host_lock, flags);
6627 	}
6628 
6629 do_reset:
6630 	/* Fatal errors need reset */
6631 	if (needs_reset) {
6632 		int err;
6633 
6634 		hba->force_reset = false;
6635 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6636 		err = ufshcd_reset_and_restore(hba);
6637 		if (err)
6638 			dev_err(hba->dev, "%s: reset and restore failed with err %d\n",
6639 					__func__, err);
6640 		else
6641 			ufshcd_recover_pm_error(hba);
6642 		spin_lock_irqsave(hba->host->host_lock, flags);
6643 	}
6644 
6645 skip_err_handling:
6646 	if (!needs_reset) {
6647 		if (hba->ufshcd_state == UFSHCD_STATE_RESET)
6648 			hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
6649 		if (hba->saved_err || hba->saved_uic_err)
6650 			dev_err_ratelimited(hba->dev, "%s: exit: saved_err 0x%x saved_uic_err 0x%x",
6651 			    __func__, hba->saved_err, hba->saved_uic_err);
6652 	}
6653 	/* Exit in an operational state or dead */
6654 	if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL &&
6655 	    hba->ufshcd_state != UFSHCD_STATE_ERROR) {
6656 		if (--retries)
6657 			goto again;
6658 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
6659 	}
6660 	ufshcd_clear_eh_in_progress(hba);
6661 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6662 	ufshcd_err_handling_unprepare(hba);
6663 	up(&hba->host_sem);
6664 
6665 	dev_info(hba->dev, "%s finished; HBA state %s\n", __func__,
6666 		 ufshcd_state_name[hba->ufshcd_state]);
6667 }
6668 
6669 /**
6670  * ufshcd_update_uic_error - check and set fatal UIC error flags.
6671  * @hba: per-adapter instance
6672  *
6673  * Return:
6674  *  IRQ_HANDLED - If interrupt is valid
6675  *  IRQ_NONE    - If invalid interrupt
6676  */
6677 static irqreturn_t ufshcd_update_uic_error(struct ufs_hba *hba)
6678 {
6679 	u32 reg;
6680 	irqreturn_t retval = IRQ_NONE;
6681 
6682 	/* PHY layer error */
6683 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER);
6684 	if ((reg & UIC_PHY_ADAPTER_LAYER_ERROR) &&
6685 	    (reg & UIC_PHY_ADAPTER_LAYER_ERROR_CODE_MASK)) {
6686 		ufshcd_update_evt_hist(hba, UFS_EVT_PA_ERR, reg);
6687 		/*
6688 		 * To know whether this error is fatal or not, DB timeout
6689 		 * must be checked but this error is handled separately.
6690 		 */
6691 		if (reg & UIC_PHY_ADAPTER_LAYER_LANE_ERR_MASK)
6692 			dev_dbg(hba->dev, "%s: UIC Lane error reported\n",
6693 					__func__);
6694 
6695 		/* Got a LINERESET indication. */
6696 		if (reg & UIC_PHY_ADAPTER_LAYER_GENERIC_ERROR) {
6697 			struct uic_command *cmd = NULL;
6698 
6699 			hba->uic_error |= UFSHCD_UIC_PA_GENERIC_ERROR;
6700 			if (hba->uic_async_done && hba->active_uic_cmd)
6701 				cmd = hba->active_uic_cmd;
6702 			/*
6703 			 * Ignore the LINERESET during power mode change
6704 			 * operation via DME_SET command.
6705 			 */
6706 			if (cmd && (cmd->command == UIC_CMD_DME_SET))
6707 				hba->uic_error &= ~UFSHCD_UIC_PA_GENERIC_ERROR;
6708 		}
6709 		retval |= IRQ_HANDLED;
6710 	}
6711 
6712 	/* PA_INIT_ERROR is fatal and needs UIC reset */
6713 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_DATA_LINK_LAYER);
6714 	if ((reg & UIC_DATA_LINK_LAYER_ERROR) &&
6715 	    (reg & UIC_DATA_LINK_LAYER_ERROR_CODE_MASK)) {
6716 		ufshcd_update_evt_hist(hba, UFS_EVT_DL_ERR, reg);
6717 
6718 		if (reg & UIC_DATA_LINK_LAYER_ERROR_PA_INIT)
6719 			hba->uic_error |= UFSHCD_UIC_DL_PA_INIT_ERROR;
6720 		else if (hba->dev_quirks &
6721 				UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS) {
6722 			if (reg & UIC_DATA_LINK_LAYER_ERROR_NAC_RECEIVED)
6723 				hba->uic_error |=
6724 					UFSHCD_UIC_DL_NAC_RECEIVED_ERROR;
6725 			else if (reg & UIC_DATA_LINK_LAYER_ERROR_TCx_REPLAY_TIMEOUT)
6726 				hba->uic_error |= UFSHCD_UIC_DL_TCx_REPLAY_ERROR;
6727 		}
6728 		retval |= IRQ_HANDLED;
6729 	}
6730 
6731 	/* UIC NL/TL/DME errors needs software retry */
6732 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_NETWORK_LAYER);
6733 	if ((reg & UIC_NETWORK_LAYER_ERROR) &&
6734 	    (reg & UIC_NETWORK_LAYER_ERROR_CODE_MASK)) {
6735 		ufshcd_update_evt_hist(hba, UFS_EVT_NL_ERR, reg);
6736 		hba->uic_error |= UFSHCD_UIC_NL_ERROR;
6737 		retval |= IRQ_HANDLED;
6738 	}
6739 
6740 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_TRANSPORT_LAYER);
6741 	if ((reg & UIC_TRANSPORT_LAYER_ERROR) &&
6742 	    (reg & UIC_TRANSPORT_LAYER_ERROR_CODE_MASK)) {
6743 		ufshcd_update_evt_hist(hba, UFS_EVT_TL_ERR, reg);
6744 		hba->uic_error |= UFSHCD_UIC_TL_ERROR;
6745 		retval |= IRQ_HANDLED;
6746 	}
6747 
6748 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_DME);
6749 	if ((reg & UIC_DME_ERROR) &&
6750 	    (reg & UIC_DME_ERROR_CODE_MASK)) {
6751 		ufshcd_update_evt_hist(hba, UFS_EVT_DME_ERR, reg);
6752 		hba->uic_error |= UFSHCD_UIC_DME_ERROR;
6753 		retval |= IRQ_HANDLED;
6754 	}
6755 
6756 	dev_dbg(hba->dev, "%s: UIC error flags = 0x%08x\n",
6757 			__func__, hba->uic_error);
6758 	return retval;
6759 }
6760 
6761 /**
6762  * ufshcd_check_errors - Check for errors that need s/w attention
6763  * @hba: per-adapter instance
6764  * @intr_status: interrupt status generated by the controller
6765  *
6766  * Return:
6767  *  IRQ_HANDLED - If interrupt is valid
6768  *  IRQ_NONE    - If invalid interrupt
6769  */
6770 static irqreturn_t ufshcd_check_errors(struct ufs_hba *hba, u32 intr_status)
6771 {
6772 	bool queue_eh_work = false;
6773 	irqreturn_t retval = IRQ_NONE;
6774 
6775 	spin_lock(hba->host->host_lock);
6776 	hba->errors |= UFSHCD_ERROR_MASK & intr_status;
6777 
6778 	if (hba->errors & INT_FATAL_ERRORS) {
6779 		ufshcd_update_evt_hist(hba, UFS_EVT_FATAL_ERR,
6780 				       hba->errors);
6781 		queue_eh_work = true;
6782 	}
6783 
6784 	if (hba->errors & UIC_ERROR) {
6785 		hba->uic_error = 0;
6786 		retval = ufshcd_update_uic_error(hba);
6787 		if (hba->uic_error)
6788 			queue_eh_work = true;
6789 	}
6790 
6791 	if (hba->errors & UFSHCD_UIC_HIBERN8_MASK) {
6792 		dev_err(hba->dev,
6793 			"%s: Auto Hibern8 %s failed - status: 0x%08x, upmcrs: 0x%08x\n",
6794 			__func__, (hba->errors & UIC_HIBERNATE_ENTER) ?
6795 			"Enter" : "Exit",
6796 			hba->errors, ufshcd_get_upmcrs(hba));
6797 		ufshcd_update_evt_hist(hba, UFS_EVT_AUTO_HIBERN8_ERR,
6798 				       hba->errors);
6799 		ufshcd_set_link_broken(hba);
6800 		queue_eh_work = true;
6801 	}
6802 
6803 	if (queue_eh_work) {
6804 		/*
6805 		 * update the transfer error masks to sticky bits, let's do this
6806 		 * irrespective of current ufshcd_state.
6807 		 */
6808 		hba->saved_err |= hba->errors;
6809 		hba->saved_uic_err |= hba->uic_error;
6810 
6811 		/* dump controller state before resetting */
6812 		if ((hba->saved_err &
6813 		     (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK)) ||
6814 		    (hba->saved_uic_err &&
6815 		     (hba->saved_uic_err != UFSHCD_UIC_PA_GENERIC_ERROR))) {
6816 			dev_err(hba->dev, "%s: saved_err 0x%x saved_uic_err 0x%x\n",
6817 					__func__, hba->saved_err,
6818 					hba->saved_uic_err);
6819 			ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE,
6820 					 "host_regs: ");
6821 			ufshcd_print_pwr_info(hba);
6822 		}
6823 		ufshcd_schedule_eh_work(hba);
6824 		retval |= IRQ_HANDLED;
6825 	}
6826 	/*
6827 	 * if (!queue_eh_work) -
6828 	 * Other errors are either non-fatal where host recovers
6829 	 * itself without s/w intervention or errors that will be
6830 	 * handled by the SCSI core layer.
6831 	 */
6832 	hba->errors = 0;
6833 	hba->uic_error = 0;
6834 	spin_unlock(hba->host->host_lock);
6835 	return retval;
6836 }
6837 
6838 /**
6839  * ufshcd_tmc_handler - handle task management function completion
6840  * @hba: per adapter instance
6841  *
6842  * Return:
6843  *  IRQ_HANDLED - If interrupt is valid
6844  *  IRQ_NONE    - If invalid interrupt
6845  */
6846 static irqreturn_t ufshcd_tmc_handler(struct ufs_hba *hba)
6847 {
6848 	unsigned long flags, pending, issued;
6849 	irqreturn_t ret = IRQ_NONE;
6850 	int tag;
6851 
6852 	spin_lock_irqsave(hba->host->host_lock, flags);
6853 	pending = ufshcd_readl(hba, REG_UTP_TASK_REQ_DOOR_BELL);
6854 	issued = hba->outstanding_tasks & ~pending;
6855 	for_each_set_bit(tag, &issued, hba->nutmrs) {
6856 		struct request *req = hba->tmf_rqs[tag];
6857 		struct completion *c = req->end_io_data;
6858 
6859 		complete(c);
6860 		ret = IRQ_HANDLED;
6861 	}
6862 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6863 
6864 	return ret;
6865 }
6866 
6867 /**
6868  * ufshcd_handle_mcq_cq_events - handle MCQ completion queue events
6869  * @hba: per adapter instance
6870  *
6871  * Return: IRQ_HANDLED if interrupt is handled.
6872  */
6873 static irqreturn_t ufshcd_handle_mcq_cq_events(struct ufs_hba *hba)
6874 {
6875 	struct ufs_hw_queue *hwq;
6876 	unsigned long outstanding_cqs;
6877 	unsigned int nr_queues;
6878 	int i, ret;
6879 	u32 events;
6880 
6881 	ret = ufshcd_vops_get_outstanding_cqs(hba, &outstanding_cqs);
6882 	if (ret)
6883 		outstanding_cqs = (1U << hba->nr_hw_queues) - 1;
6884 
6885 	/* Exclude the poll queues */
6886 	nr_queues = hba->nr_hw_queues - hba->nr_queues[HCTX_TYPE_POLL];
6887 	for_each_set_bit(i, &outstanding_cqs, nr_queues) {
6888 		hwq = &hba->uhq[i];
6889 
6890 		events = ufshcd_mcq_read_cqis(hba, i);
6891 		if (events)
6892 			ufshcd_mcq_write_cqis(hba, events, i);
6893 
6894 		if (events & UFSHCD_MCQ_CQIS_TAIL_ENT_PUSH_STS)
6895 			ufshcd_mcq_poll_cqe_lock(hba, hwq);
6896 	}
6897 
6898 	return IRQ_HANDLED;
6899 }
6900 
6901 /**
6902  * ufshcd_sl_intr - Interrupt service routine
6903  * @hba: per adapter instance
6904  * @intr_status: contains interrupts generated by the controller
6905  *
6906  * Return:
6907  *  IRQ_HANDLED - If interrupt is valid
6908  *  IRQ_NONE    - If invalid interrupt
6909  */
6910 static irqreturn_t ufshcd_sl_intr(struct ufs_hba *hba, u32 intr_status)
6911 {
6912 	irqreturn_t retval = IRQ_NONE;
6913 
6914 	if (intr_status & UFSHCD_UIC_MASK)
6915 		retval |= ufshcd_uic_cmd_compl(hba, intr_status);
6916 
6917 	if (intr_status & UFSHCD_ERROR_MASK || hba->errors)
6918 		retval |= ufshcd_check_errors(hba, intr_status);
6919 
6920 	if (intr_status & UTP_TASK_REQ_COMPL)
6921 		retval |= ufshcd_tmc_handler(hba);
6922 
6923 	if (intr_status & UTP_TRANSFER_REQ_COMPL)
6924 		retval |= ufshcd_transfer_req_compl(hba);
6925 
6926 	if (intr_status & MCQ_CQ_EVENT_STATUS)
6927 		retval |= ufshcd_handle_mcq_cq_events(hba);
6928 
6929 	return retval;
6930 }
6931 
6932 /**
6933  * ufshcd_intr - Main interrupt service routine
6934  * @irq: irq number
6935  * @__hba: pointer to adapter instance
6936  *
6937  * Return:
6938  *  IRQ_HANDLED - If interrupt is valid
6939  *  IRQ_NONE    - If invalid interrupt
6940  */
6941 static irqreturn_t ufshcd_intr(int irq, void *__hba)
6942 {
6943 	u32 intr_status, enabled_intr_status = 0;
6944 	irqreturn_t retval = IRQ_NONE;
6945 	struct ufs_hba *hba = __hba;
6946 	int retries = hba->nutrs;
6947 
6948 	intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
6949 	hba->ufs_stats.last_intr_status = intr_status;
6950 	hba->ufs_stats.last_intr_ts = local_clock();
6951 
6952 	/*
6953 	 * There could be max of hba->nutrs reqs in flight and in worst case
6954 	 * if the reqs get finished 1 by 1 after the interrupt status is
6955 	 * read, make sure we handle them by checking the interrupt status
6956 	 * again in a loop until we process all of the reqs before returning.
6957 	 */
6958 	while (intr_status && retries--) {
6959 		enabled_intr_status =
6960 			intr_status & ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
6961 		ufshcd_writel(hba, intr_status, REG_INTERRUPT_STATUS);
6962 		if (enabled_intr_status)
6963 			retval |= ufshcd_sl_intr(hba, enabled_intr_status);
6964 
6965 		intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
6966 	}
6967 
6968 	if (enabled_intr_status && retval == IRQ_NONE &&
6969 	    (!(enabled_intr_status & UTP_TRANSFER_REQ_COMPL) ||
6970 	     hba->outstanding_reqs) && !ufshcd_eh_in_progress(hba)) {
6971 		dev_err(hba->dev, "%s: Unhandled interrupt 0x%08x (0x%08x, 0x%08x)\n",
6972 					__func__,
6973 					intr_status,
6974 					hba->ufs_stats.last_intr_status,
6975 					enabled_intr_status);
6976 		ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, "host_regs: ");
6977 	}
6978 
6979 	return retval;
6980 }
6981 
6982 static int ufshcd_clear_tm_cmd(struct ufs_hba *hba, int tag)
6983 {
6984 	int err = 0;
6985 	u32 mask = 1 << tag;
6986 
6987 	if (!test_bit(tag, &hba->outstanding_tasks))
6988 		goto out;
6989 
6990 	ufshcd_utmrl_clear(hba, tag);
6991 
6992 	/* poll for max. 1 sec to clear door bell register by h/w */
6993 	err = ufshcd_wait_for_register(hba,
6994 			REG_UTP_TASK_REQ_DOOR_BELL,
6995 			mask, 0, 1000, 1000);
6996 
6997 	dev_err(hba->dev, "Clearing task management function with tag %d %s\n",
6998 		tag, err < 0 ? "failed" : "succeeded");
6999 
7000 out:
7001 	return err;
7002 }
7003 
7004 static int __ufshcd_issue_tm_cmd(struct ufs_hba *hba,
7005 		struct utp_task_req_desc *treq, u8 tm_function)
7006 {
7007 	struct request_queue *q = hba->tmf_queue;
7008 	struct Scsi_Host *host = hba->host;
7009 	DECLARE_COMPLETION_ONSTACK(wait);
7010 	struct request *req;
7011 	unsigned long flags;
7012 	int task_tag, err;
7013 
7014 	/*
7015 	 * blk_mq_alloc_request() is used here only to get a free tag.
7016 	 */
7017 	req = blk_mq_alloc_request(q, REQ_OP_DRV_OUT, 0);
7018 	if (IS_ERR(req))
7019 		return PTR_ERR(req);
7020 
7021 	req->end_io_data = &wait;
7022 	ufshcd_hold(hba);
7023 
7024 	spin_lock_irqsave(host->host_lock, flags);
7025 
7026 	task_tag = req->tag;
7027 	hba->tmf_rqs[req->tag] = req;
7028 	treq->upiu_req.req_header.task_tag = task_tag;
7029 
7030 	memcpy(hba->utmrdl_base_addr + task_tag, treq, sizeof(*treq));
7031 	ufshcd_vops_setup_task_mgmt(hba, task_tag, tm_function);
7032 
7033 	__set_bit(task_tag, &hba->outstanding_tasks);
7034 
7035 	spin_unlock_irqrestore(host->host_lock, flags);
7036 
7037 	/* send command to the controller */
7038 	ufshcd_writel(hba, 1 << task_tag, REG_UTP_TASK_REQ_DOOR_BELL);
7039 
7040 	ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_SEND);
7041 
7042 	/* wait until the task management command is completed */
7043 	err = wait_for_completion_io_timeout(&wait,
7044 			msecs_to_jiffies(TM_CMD_TIMEOUT));
7045 	if (!err) {
7046 		ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_ERR);
7047 		dev_err(hba->dev, "%s: task management cmd 0x%.2x timed-out\n",
7048 				__func__, tm_function);
7049 		if (ufshcd_clear_tm_cmd(hba, task_tag))
7050 			dev_WARN(hba->dev, "%s: unable to clear tm cmd (slot %d) after timeout\n",
7051 					__func__, task_tag);
7052 		err = -ETIMEDOUT;
7053 	} else {
7054 		err = 0;
7055 		memcpy(treq, hba->utmrdl_base_addr + task_tag, sizeof(*treq));
7056 
7057 		ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_COMP);
7058 	}
7059 
7060 	spin_lock_irqsave(hba->host->host_lock, flags);
7061 	hba->tmf_rqs[req->tag] = NULL;
7062 	__clear_bit(task_tag, &hba->outstanding_tasks);
7063 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7064 
7065 	ufshcd_release(hba);
7066 	blk_mq_free_request(req);
7067 
7068 	return err;
7069 }
7070 
7071 /**
7072  * ufshcd_issue_tm_cmd - issues task management commands to controller
7073  * @hba: per adapter instance
7074  * @lun_id: LUN ID to which TM command is sent
7075  * @task_id: task ID to which the TM command is applicable
7076  * @tm_function: task management function opcode
7077  * @tm_response: task management service response return value
7078  *
7079  * Return: non-zero value on error, zero on success.
7080  */
7081 static int ufshcd_issue_tm_cmd(struct ufs_hba *hba, int lun_id, int task_id,
7082 		u8 tm_function, u8 *tm_response)
7083 {
7084 	struct utp_task_req_desc treq = { };
7085 	enum utp_ocs ocs_value;
7086 	int err;
7087 
7088 	/* Configure task request descriptor */
7089 	treq.header.interrupt = 1;
7090 	treq.header.ocs = OCS_INVALID_COMMAND_STATUS;
7091 
7092 	/* Configure task request UPIU */
7093 	treq.upiu_req.req_header.transaction_code = UPIU_TRANSACTION_TASK_REQ;
7094 	treq.upiu_req.req_header.lun = lun_id;
7095 	treq.upiu_req.req_header.tm_function = tm_function;
7096 
7097 	/*
7098 	 * The host shall provide the same value for LUN field in the basic
7099 	 * header and for Input Parameter.
7100 	 */
7101 	treq.upiu_req.input_param1 = cpu_to_be32(lun_id);
7102 	treq.upiu_req.input_param2 = cpu_to_be32(task_id);
7103 
7104 	err = __ufshcd_issue_tm_cmd(hba, &treq, tm_function);
7105 	if (err == -ETIMEDOUT)
7106 		return err;
7107 
7108 	ocs_value = treq.header.ocs & MASK_OCS;
7109 	if (ocs_value != OCS_SUCCESS)
7110 		dev_err(hba->dev, "%s: failed, ocs = 0x%x\n",
7111 				__func__, ocs_value);
7112 	else if (tm_response)
7113 		*tm_response = be32_to_cpu(treq.upiu_rsp.output_param1) &
7114 				MASK_TM_SERVICE_RESP;
7115 	return err;
7116 }
7117 
7118 /**
7119  * ufshcd_issue_devman_upiu_cmd - API for sending "utrd" type requests
7120  * @hba:	per-adapter instance
7121  * @req_upiu:	upiu request
7122  * @rsp_upiu:	upiu reply
7123  * @desc_buff:	pointer to descriptor buffer, NULL if NA
7124  * @buff_len:	descriptor size, 0 if NA
7125  * @cmd_type:	specifies the type (NOP, Query...)
7126  * @desc_op:	descriptor operation
7127  *
7128  * Those type of requests uses UTP Transfer Request Descriptor - utrd.
7129  * Therefore, it "rides" the device management infrastructure: uses its tag and
7130  * tasks work queues.
7131  *
7132  * Since there is only one available tag for device management commands,
7133  * the caller is expected to hold the hba->dev_cmd.lock mutex.
7134  *
7135  * Return: 0 upon success; < 0 upon failure.
7136  */
7137 static int ufshcd_issue_devman_upiu_cmd(struct ufs_hba *hba,
7138 					struct utp_upiu_req *req_upiu,
7139 					struct utp_upiu_req *rsp_upiu,
7140 					u8 *desc_buff, int *buff_len,
7141 					enum dev_cmd_type cmd_type,
7142 					enum query_opcode desc_op)
7143 {
7144 	const u32 tag = hba->reserved_slot;
7145 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
7146 	int err = 0;
7147 	u8 upiu_flags;
7148 
7149 	/* Protects use of hba->reserved_slot. */
7150 	lockdep_assert_held(&hba->dev_cmd.lock);
7151 
7152 	ufshcd_setup_dev_cmd(hba, lrbp, cmd_type, 0, tag);
7153 
7154 	ufshcd_prepare_req_desc_hdr(hba, lrbp, &upiu_flags, DMA_NONE, 0);
7155 
7156 	/* update the task tag in the request upiu */
7157 	req_upiu->header.task_tag = tag;
7158 
7159 	/* just copy the upiu request as it is */
7160 	memcpy(lrbp->ucd_req_ptr, req_upiu, sizeof(*lrbp->ucd_req_ptr));
7161 	if (desc_buff && desc_op == UPIU_QUERY_OPCODE_WRITE_DESC) {
7162 		/* The Data Segment Area is optional depending upon the query
7163 		 * function value. for WRITE DESCRIPTOR, the data segment
7164 		 * follows right after the tsf.
7165 		 */
7166 		memcpy(lrbp->ucd_req_ptr + 1, desc_buff, *buff_len);
7167 		*buff_len = 0;
7168 	}
7169 
7170 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
7171 
7172 	/*
7173 	 * ignore the returning value here - ufshcd_check_query_response is
7174 	 * bound to fail since dev_cmd.query and dev_cmd.type were left empty.
7175 	 * read the response directly ignoring all errors.
7176 	 */
7177 	ufshcd_issue_dev_cmd(hba, lrbp, tag, QUERY_REQ_TIMEOUT);
7178 
7179 	/* just copy the upiu response as it is */
7180 	memcpy(rsp_upiu, lrbp->ucd_rsp_ptr, sizeof(*rsp_upiu));
7181 	if (desc_buff && desc_op == UPIU_QUERY_OPCODE_READ_DESC) {
7182 		u8 *descp = (u8 *)lrbp->ucd_rsp_ptr + sizeof(*rsp_upiu);
7183 		u16 resp_len = be16_to_cpu(lrbp->ucd_rsp_ptr->header
7184 					   .data_segment_length);
7185 
7186 		if (*buff_len >= resp_len) {
7187 			memcpy(desc_buff, descp, resp_len);
7188 			*buff_len = resp_len;
7189 		} else {
7190 			dev_warn(hba->dev,
7191 				 "%s: rsp size %d is bigger than buffer size %d",
7192 				 __func__, resp_len, *buff_len);
7193 			*buff_len = 0;
7194 			err = -EINVAL;
7195 		}
7196 	}
7197 	ufshcd_add_query_upiu_trace(hba, err ? UFS_QUERY_ERR : UFS_QUERY_COMP,
7198 				    (struct utp_upiu_req *)lrbp->ucd_rsp_ptr);
7199 
7200 	return err;
7201 }
7202 
7203 /**
7204  * ufshcd_exec_raw_upiu_cmd - API function for sending raw upiu commands
7205  * @hba:	per-adapter instance
7206  * @req_upiu:	upiu request
7207  * @rsp_upiu:	upiu reply - only 8 DW as we do not support scsi commands
7208  * @msgcode:	message code, one of UPIU Transaction Codes Initiator to Target
7209  * @desc_buff:	pointer to descriptor buffer, NULL if NA
7210  * @buff_len:	descriptor size, 0 if NA
7211  * @desc_op:	descriptor operation
7212  *
7213  * Supports UTP Transfer requests (nop and query), and UTP Task
7214  * Management requests.
7215  * It is up to the caller to fill the upiu conent properly, as it will
7216  * be copied without any further input validations.
7217  *
7218  * Return: 0 upon success; < 0 upon failure.
7219  */
7220 int ufshcd_exec_raw_upiu_cmd(struct ufs_hba *hba,
7221 			     struct utp_upiu_req *req_upiu,
7222 			     struct utp_upiu_req *rsp_upiu,
7223 			     enum upiu_request_transaction msgcode,
7224 			     u8 *desc_buff, int *buff_len,
7225 			     enum query_opcode desc_op)
7226 {
7227 	int err;
7228 	enum dev_cmd_type cmd_type = DEV_CMD_TYPE_QUERY;
7229 	struct utp_task_req_desc treq = { };
7230 	enum utp_ocs ocs_value;
7231 	u8 tm_f = req_upiu->header.tm_function;
7232 
7233 	switch (msgcode) {
7234 	case UPIU_TRANSACTION_NOP_OUT:
7235 		cmd_type = DEV_CMD_TYPE_NOP;
7236 		fallthrough;
7237 	case UPIU_TRANSACTION_QUERY_REQ:
7238 		ufshcd_dev_man_lock(hba);
7239 		err = ufshcd_issue_devman_upiu_cmd(hba, req_upiu, rsp_upiu,
7240 						   desc_buff, buff_len,
7241 						   cmd_type, desc_op);
7242 		ufshcd_dev_man_unlock(hba);
7243 
7244 		break;
7245 	case UPIU_TRANSACTION_TASK_REQ:
7246 		treq.header.interrupt = 1;
7247 		treq.header.ocs = OCS_INVALID_COMMAND_STATUS;
7248 
7249 		memcpy(&treq.upiu_req, req_upiu, sizeof(*req_upiu));
7250 
7251 		err = __ufshcd_issue_tm_cmd(hba, &treq, tm_f);
7252 		if (err == -ETIMEDOUT)
7253 			break;
7254 
7255 		ocs_value = treq.header.ocs & MASK_OCS;
7256 		if (ocs_value != OCS_SUCCESS) {
7257 			dev_err(hba->dev, "%s: failed, ocs = 0x%x\n", __func__,
7258 				ocs_value);
7259 			break;
7260 		}
7261 
7262 		memcpy(rsp_upiu, &treq.upiu_rsp, sizeof(*rsp_upiu));
7263 
7264 		break;
7265 	default:
7266 		err = -EINVAL;
7267 
7268 		break;
7269 	}
7270 
7271 	return err;
7272 }
7273 
7274 /**
7275  * ufshcd_advanced_rpmb_req_handler - handle advanced RPMB request
7276  * @hba:	per adapter instance
7277  * @req_upiu:	upiu request
7278  * @rsp_upiu:	upiu reply
7279  * @req_ehs:	EHS field which contains Advanced RPMB Request Message
7280  * @rsp_ehs:	EHS field which returns Advanced RPMB Response Message
7281  * @sg_cnt:	The number of sg lists actually used
7282  * @sg_list:	Pointer to SG list when DATA IN/OUT UPIU is required in ARPMB operation
7283  * @dir:	DMA direction
7284  *
7285  * Return: zero on success, non-zero on failure.
7286  */
7287 int ufshcd_advanced_rpmb_req_handler(struct ufs_hba *hba, struct utp_upiu_req *req_upiu,
7288 			 struct utp_upiu_req *rsp_upiu, struct ufs_ehs *req_ehs,
7289 			 struct ufs_ehs *rsp_ehs, int sg_cnt, struct scatterlist *sg_list,
7290 			 enum dma_data_direction dir)
7291 {
7292 	const u32 tag = hba->reserved_slot;
7293 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
7294 	int err = 0;
7295 	int result;
7296 	u8 upiu_flags;
7297 	u8 *ehs_data;
7298 	u16 ehs_len;
7299 	int ehs = (hba->capabilities & MASK_EHSLUTRD_SUPPORTED) ? 2 : 0;
7300 
7301 	/* Protects use of hba->reserved_slot. */
7302 	ufshcd_dev_man_lock(hba);
7303 
7304 	ufshcd_setup_dev_cmd(hba, lrbp, DEV_CMD_TYPE_RPMB, UFS_UPIU_RPMB_WLUN, tag);
7305 
7306 	ufshcd_prepare_req_desc_hdr(hba, lrbp, &upiu_flags, DMA_NONE, ehs);
7307 
7308 	/* update the task tag */
7309 	req_upiu->header.task_tag = tag;
7310 
7311 	/* copy the UPIU(contains CDB) request as it is */
7312 	memcpy(lrbp->ucd_req_ptr, req_upiu, sizeof(*lrbp->ucd_req_ptr));
7313 	/* Copy EHS, starting with byte32, immediately after the CDB package */
7314 	memcpy(lrbp->ucd_req_ptr + 1, req_ehs, sizeof(*req_ehs));
7315 
7316 	if (dir != DMA_NONE && sg_list)
7317 		ufshcd_sgl_to_prdt(hba, lrbp, sg_cnt, sg_list);
7318 
7319 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
7320 
7321 	err = ufshcd_issue_dev_cmd(hba, lrbp, tag, ADVANCED_RPMB_REQ_TIMEOUT);
7322 
7323 	if (!err) {
7324 		/* Just copy the upiu response as it is */
7325 		memcpy(rsp_upiu, lrbp->ucd_rsp_ptr, sizeof(*rsp_upiu));
7326 		/* Get the response UPIU result */
7327 		result = (lrbp->ucd_rsp_ptr->header.response << 8) |
7328 			lrbp->ucd_rsp_ptr->header.status;
7329 
7330 		ehs_len = lrbp->ucd_rsp_ptr->header.ehs_length;
7331 		/*
7332 		 * Since the bLength in EHS indicates the total size of the EHS Header and EHS Data
7333 		 * in 32 Byte units, the value of the bLength Request/Response for Advanced RPMB
7334 		 * Message is 02h
7335 		 */
7336 		if (ehs_len == 2 && rsp_ehs) {
7337 			/*
7338 			 * ucd_rsp_ptr points to a buffer with a length of 512 bytes
7339 			 * (ALIGNED_UPIU_SIZE = 512), and the EHS data just starts from byte32
7340 			 */
7341 			ehs_data = (u8 *)lrbp->ucd_rsp_ptr + EHS_OFFSET_IN_RESPONSE;
7342 			memcpy(rsp_ehs, ehs_data, ehs_len * 32);
7343 		}
7344 	}
7345 
7346 	ufshcd_dev_man_unlock(hba);
7347 
7348 	return err ? : result;
7349 }
7350 
7351 /**
7352  * ufshcd_eh_device_reset_handler() - Reset a single logical unit.
7353  * @cmd: SCSI command pointer
7354  *
7355  * Return: SUCCESS or FAILED.
7356  */
7357 static int ufshcd_eh_device_reset_handler(struct scsi_cmnd *cmd)
7358 {
7359 	unsigned long flags, pending_reqs = 0, not_cleared = 0;
7360 	struct Scsi_Host *host;
7361 	struct ufs_hba *hba;
7362 	struct ufs_hw_queue *hwq;
7363 	struct ufshcd_lrb *lrbp;
7364 	u32 pos, not_cleared_mask = 0;
7365 	int err;
7366 	u8 resp = 0xF, lun;
7367 
7368 	host = cmd->device->host;
7369 	hba = shost_priv(host);
7370 
7371 	lun = ufshcd_scsi_to_upiu_lun(cmd->device->lun);
7372 	err = ufshcd_issue_tm_cmd(hba, lun, 0, UFS_LOGICAL_RESET, &resp);
7373 	if (err || resp != UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7374 		if (!err)
7375 			err = resp;
7376 		goto out;
7377 	}
7378 
7379 	if (hba->mcq_enabled) {
7380 		for (pos = 0; pos < hba->nutrs; pos++) {
7381 			lrbp = &hba->lrb[pos];
7382 			if (ufshcd_cmd_inflight(lrbp->cmd) &&
7383 			    lrbp->lun == lun) {
7384 				ufshcd_clear_cmd(hba, pos);
7385 				hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(lrbp->cmd));
7386 				ufshcd_mcq_poll_cqe_lock(hba, hwq);
7387 			}
7388 		}
7389 		err = 0;
7390 		goto out;
7391 	}
7392 
7393 	/* clear the commands that were pending for corresponding LUN */
7394 	spin_lock_irqsave(&hba->outstanding_lock, flags);
7395 	for_each_set_bit(pos, &hba->outstanding_reqs, hba->nutrs)
7396 		if (hba->lrb[pos].lun == lun)
7397 			__set_bit(pos, &pending_reqs);
7398 	hba->outstanding_reqs &= ~pending_reqs;
7399 	spin_unlock_irqrestore(&hba->outstanding_lock, flags);
7400 
7401 	for_each_set_bit(pos, &pending_reqs, hba->nutrs) {
7402 		if (ufshcd_clear_cmd(hba, pos) < 0) {
7403 			spin_lock_irqsave(&hba->outstanding_lock, flags);
7404 			not_cleared = 1U << pos &
7405 				ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
7406 			hba->outstanding_reqs |= not_cleared;
7407 			not_cleared_mask |= not_cleared;
7408 			spin_unlock_irqrestore(&hba->outstanding_lock, flags);
7409 
7410 			dev_err(hba->dev, "%s: failed to clear request %d\n",
7411 				__func__, pos);
7412 		}
7413 	}
7414 	__ufshcd_transfer_req_compl(hba, pending_reqs & ~not_cleared_mask);
7415 
7416 out:
7417 	hba->req_abort_count = 0;
7418 	ufshcd_update_evt_hist(hba, UFS_EVT_DEV_RESET, (u32)err);
7419 	if (!err) {
7420 		err = SUCCESS;
7421 	} else {
7422 		dev_err(hba->dev, "%s: failed with err %d\n", __func__, err);
7423 		err = FAILED;
7424 	}
7425 	return err;
7426 }
7427 
7428 static void ufshcd_set_req_abort_skip(struct ufs_hba *hba, unsigned long bitmap)
7429 {
7430 	struct ufshcd_lrb *lrbp;
7431 	int tag;
7432 
7433 	for_each_set_bit(tag, &bitmap, hba->nutrs) {
7434 		lrbp = &hba->lrb[tag];
7435 		lrbp->req_abort_skip = true;
7436 	}
7437 }
7438 
7439 /**
7440  * ufshcd_try_to_abort_task - abort a specific task
7441  * @hba: Pointer to adapter instance
7442  * @tag: Task tag/index to be aborted
7443  *
7444  * Abort the pending command in device by sending UFS_ABORT_TASK task management
7445  * command, and in host controller by clearing the door-bell register. There can
7446  * be race between controller sending the command to the device while abort is
7447  * issued. To avoid that, first issue UFS_QUERY_TASK to check if the command is
7448  * really issued and then try to abort it.
7449  *
7450  * Return: zero on success, non-zero on failure.
7451  */
7452 int ufshcd_try_to_abort_task(struct ufs_hba *hba, int tag)
7453 {
7454 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
7455 	int err;
7456 	int poll_cnt;
7457 	u8 resp = 0xF;
7458 
7459 	for (poll_cnt = 100; poll_cnt; poll_cnt--) {
7460 		err = ufshcd_issue_tm_cmd(hba, lrbp->lun, lrbp->task_tag,
7461 				UFS_QUERY_TASK, &resp);
7462 		if (!err && resp == UPIU_TASK_MANAGEMENT_FUNC_SUCCEEDED) {
7463 			/* cmd pending in the device */
7464 			dev_err(hba->dev, "%s: cmd pending in the device. tag = %d\n",
7465 				__func__, tag);
7466 			break;
7467 		} else if (!err && resp == UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7468 			/*
7469 			 * cmd not pending in the device, check if it is
7470 			 * in transition.
7471 			 */
7472 			dev_info(
7473 				hba->dev,
7474 				"%s: cmd with tag %d not pending in the device.\n",
7475 				__func__, tag);
7476 			if (!ufshcd_cmd_inflight(lrbp->cmd)) {
7477 				dev_info(hba->dev,
7478 					 "%s: cmd with tag=%d completed.\n",
7479 					 __func__, tag);
7480 				return 0;
7481 			}
7482 			usleep_range(100, 200);
7483 		} else {
7484 			dev_err(hba->dev,
7485 				"%s: no response from device. tag = %d, err %d\n",
7486 				__func__, tag, err);
7487 			return err ? : resp;
7488 		}
7489 	}
7490 
7491 	if (!poll_cnt)
7492 		return -EBUSY;
7493 
7494 	err = ufshcd_issue_tm_cmd(hba, lrbp->lun, lrbp->task_tag,
7495 			UFS_ABORT_TASK, &resp);
7496 	if (err || resp != UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7497 		if (!err) {
7498 			err = resp; /* service response error */
7499 			dev_err(hba->dev, "%s: issued. tag = %d, err %d\n",
7500 				__func__, tag, err);
7501 		}
7502 		return err;
7503 	}
7504 
7505 	err = ufshcd_clear_cmd(hba, tag);
7506 	if (err)
7507 		dev_err(hba->dev, "%s: Failed clearing cmd at tag %d, err %d\n",
7508 			__func__, tag, err);
7509 
7510 	return err;
7511 }
7512 
7513 /**
7514  * ufshcd_abort - scsi host template eh_abort_handler callback
7515  * @cmd: SCSI command pointer
7516  *
7517  * Return: SUCCESS or FAILED.
7518  */
7519 static int ufshcd_abort(struct scsi_cmnd *cmd)
7520 {
7521 	struct Scsi_Host *host = cmd->device->host;
7522 	struct ufs_hba *hba = shost_priv(host);
7523 	int tag = scsi_cmd_to_rq(cmd)->tag;
7524 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
7525 	unsigned long flags;
7526 	int err = FAILED;
7527 	bool outstanding;
7528 	u32 reg;
7529 
7530 	ufshcd_hold(hba);
7531 
7532 	if (!hba->mcq_enabled) {
7533 		reg = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
7534 		if (!test_bit(tag, &hba->outstanding_reqs)) {
7535 			/* If command is already aborted/completed, return FAILED. */
7536 			dev_err(hba->dev,
7537 				"%s: cmd at tag %d already completed, outstanding=0x%lx, doorbell=0x%x\n",
7538 				__func__, tag, hba->outstanding_reqs, reg);
7539 			goto release;
7540 		}
7541 	}
7542 
7543 	/* Print Transfer Request of aborted task */
7544 	dev_info(hba->dev, "%s: Device abort task at tag %d\n", __func__, tag);
7545 
7546 	/*
7547 	 * Print detailed info about aborted request.
7548 	 * As more than one request might get aborted at the same time,
7549 	 * print full information only for the first aborted request in order
7550 	 * to reduce repeated printouts. For other aborted requests only print
7551 	 * basic details.
7552 	 */
7553 	scsi_print_command(cmd);
7554 	if (!hba->req_abort_count) {
7555 		ufshcd_update_evt_hist(hba, UFS_EVT_ABORT, tag);
7556 		ufshcd_print_evt_hist(hba);
7557 		ufshcd_print_host_state(hba);
7558 		ufshcd_print_pwr_info(hba);
7559 		ufshcd_print_tr(hba, tag, true);
7560 	} else {
7561 		ufshcd_print_tr(hba, tag, false);
7562 	}
7563 	hba->req_abort_count++;
7564 
7565 	if (!hba->mcq_enabled && !(reg & (1 << tag))) {
7566 		/* only execute this code in single doorbell mode */
7567 		dev_err(hba->dev,
7568 		"%s: cmd was completed, but without a notifying intr, tag = %d",
7569 		__func__, tag);
7570 		__ufshcd_transfer_req_compl(hba, 1UL << tag);
7571 		goto release;
7572 	}
7573 
7574 	/*
7575 	 * Task abort to the device W-LUN is illegal. When this command
7576 	 * will fail, due to spec violation, scsi err handling next step
7577 	 * will be to send LU reset which, again, is a spec violation.
7578 	 * To avoid these unnecessary/illegal steps, first we clean up
7579 	 * the lrb taken by this cmd and re-set it in outstanding_reqs,
7580 	 * then queue the eh_work and bail.
7581 	 */
7582 	if (lrbp->lun == UFS_UPIU_UFS_DEVICE_WLUN) {
7583 		ufshcd_update_evt_hist(hba, UFS_EVT_ABORT, lrbp->lun);
7584 
7585 		spin_lock_irqsave(host->host_lock, flags);
7586 		hba->force_reset = true;
7587 		ufshcd_schedule_eh_work(hba);
7588 		spin_unlock_irqrestore(host->host_lock, flags);
7589 		goto release;
7590 	}
7591 
7592 	if (hba->mcq_enabled) {
7593 		/* MCQ mode. Branch off to handle abort for mcq mode */
7594 		err = ufshcd_mcq_abort(cmd);
7595 		goto release;
7596 	}
7597 
7598 	/* Skip task abort in case previous aborts failed and report failure */
7599 	if (lrbp->req_abort_skip) {
7600 		dev_err(hba->dev, "%s: skipping abort\n", __func__);
7601 		ufshcd_set_req_abort_skip(hba, hba->outstanding_reqs);
7602 		goto release;
7603 	}
7604 
7605 	err = ufshcd_try_to_abort_task(hba, tag);
7606 	if (err) {
7607 		dev_err(hba->dev, "%s: failed with err %d\n", __func__, err);
7608 		ufshcd_set_req_abort_skip(hba, hba->outstanding_reqs);
7609 		err = FAILED;
7610 		goto release;
7611 	}
7612 
7613 	/*
7614 	 * Clear the corresponding bit from outstanding_reqs since the command
7615 	 * has been aborted successfully.
7616 	 */
7617 	spin_lock_irqsave(&hba->outstanding_lock, flags);
7618 	outstanding = __test_and_clear_bit(tag, &hba->outstanding_reqs);
7619 	spin_unlock_irqrestore(&hba->outstanding_lock, flags);
7620 
7621 	if (outstanding)
7622 		ufshcd_release_scsi_cmd(hba, lrbp);
7623 
7624 	err = SUCCESS;
7625 
7626 release:
7627 	/* Matches the ufshcd_hold() call at the start of this function. */
7628 	ufshcd_release(hba);
7629 	return err;
7630 }
7631 
7632 /**
7633  * ufshcd_process_probe_result - Process the ufshcd_probe_hba() result.
7634  * @hba: UFS host controller instance.
7635  * @probe_start: time when the ufshcd_probe_hba() call started.
7636  * @ret: ufshcd_probe_hba() return value.
7637  */
7638 static void ufshcd_process_probe_result(struct ufs_hba *hba,
7639 					ktime_t probe_start, int ret)
7640 {
7641 	unsigned long flags;
7642 
7643 	spin_lock_irqsave(hba->host->host_lock, flags);
7644 	if (ret)
7645 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
7646 	else if (hba->ufshcd_state == UFSHCD_STATE_RESET)
7647 		hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
7648 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7649 
7650 	trace_ufshcd_init(dev_name(hba->dev), ret,
7651 			  ktime_to_us(ktime_sub(ktime_get(), probe_start)),
7652 			  hba->curr_dev_pwr_mode, hba->uic_link_state);
7653 }
7654 
7655 /**
7656  * ufshcd_host_reset_and_restore - reset and restore host controller
7657  * @hba: per-adapter instance
7658  *
7659  * Note that host controller reset may issue DME_RESET to
7660  * local and remote (device) Uni-Pro stack and the attributes
7661  * are reset to default state.
7662  *
7663  * Return: zero on success, non-zero on failure.
7664  */
7665 static int ufshcd_host_reset_and_restore(struct ufs_hba *hba)
7666 {
7667 	int err;
7668 
7669 	/*
7670 	 * Stop the host controller and complete the requests
7671 	 * cleared by h/w
7672 	 */
7673 	ufshcd_hba_stop(hba);
7674 	hba->silence_err_logs = true;
7675 	ufshcd_complete_requests(hba, true);
7676 	hba->silence_err_logs = false;
7677 
7678 	/* scale up clocks to max frequency before full reinitialization */
7679 	ufshcd_scale_clks(hba, ULONG_MAX, true);
7680 
7681 	err = ufshcd_hba_enable(hba);
7682 
7683 	/* Establish the link again and restore the device */
7684 	if (!err) {
7685 		ktime_t probe_start = ktime_get();
7686 
7687 		err = ufshcd_device_init(hba, /*init_dev_params=*/false);
7688 		if (!err)
7689 			err = ufshcd_probe_hba(hba, false);
7690 		ufshcd_process_probe_result(hba, probe_start, err);
7691 	}
7692 
7693 	if (err)
7694 		dev_err(hba->dev, "%s: Host init failed %d\n", __func__, err);
7695 	ufshcd_update_evt_hist(hba, UFS_EVT_HOST_RESET, (u32)err);
7696 	return err;
7697 }
7698 
7699 /**
7700  * ufshcd_reset_and_restore - reset and re-initialize host/device
7701  * @hba: per-adapter instance
7702  *
7703  * Reset and recover device, host and re-establish link. This
7704  * is helpful to recover the communication in fatal error conditions.
7705  *
7706  * Return: zero on success, non-zero on failure.
7707  */
7708 static int ufshcd_reset_and_restore(struct ufs_hba *hba)
7709 {
7710 	u32 saved_err = 0;
7711 	u32 saved_uic_err = 0;
7712 	int err = 0;
7713 	unsigned long flags;
7714 	int retries = MAX_HOST_RESET_RETRIES;
7715 
7716 	spin_lock_irqsave(hba->host->host_lock, flags);
7717 	do {
7718 		/*
7719 		 * This is a fresh start, cache and clear saved error first,
7720 		 * in case new error generated during reset and restore.
7721 		 */
7722 		saved_err |= hba->saved_err;
7723 		saved_uic_err |= hba->saved_uic_err;
7724 		hba->saved_err = 0;
7725 		hba->saved_uic_err = 0;
7726 		hba->force_reset = false;
7727 		hba->ufshcd_state = UFSHCD_STATE_RESET;
7728 		spin_unlock_irqrestore(hba->host->host_lock, flags);
7729 
7730 		/* Reset the attached device */
7731 		ufshcd_device_reset(hba);
7732 
7733 		err = ufshcd_host_reset_and_restore(hba);
7734 
7735 		spin_lock_irqsave(hba->host->host_lock, flags);
7736 		if (err)
7737 			continue;
7738 		/* Do not exit unless operational or dead */
7739 		if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL &&
7740 		    hba->ufshcd_state != UFSHCD_STATE_ERROR &&
7741 		    hba->ufshcd_state != UFSHCD_STATE_EH_SCHEDULED_NON_FATAL)
7742 			err = -EAGAIN;
7743 	} while (err && --retries);
7744 
7745 	/*
7746 	 * Inform scsi mid-layer that we did reset and allow to handle
7747 	 * Unit Attention properly.
7748 	 */
7749 	scsi_report_bus_reset(hba->host, 0);
7750 	if (err) {
7751 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
7752 		hba->saved_err |= saved_err;
7753 		hba->saved_uic_err |= saved_uic_err;
7754 	}
7755 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7756 
7757 	return err;
7758 }
7759 
7760 /**
7761  * ufshcd_eh_host_reset_handler - host reset handler registered to scsi layer
7762  * @cmd: SCSI command pointer
7763  *
7764  * Return: SUCCESS or FAILED.
7765  */
7766 static int ufshcd_eh_host_reset_handler(struct scsi_cmnd *cmd)
7767 {
7768 	int err = SUCCESS;
7769 	unsigned long flags;
7770 	struct ufs_hba *hba;
7771 
7772 	hba = shost_priv(cmd->device->host);
7773 
7774 	/*
7775 	 * If runtime PM sent SSU and got a timeout, scsi_error_handler is
7776 	 * stuck in this function waiting for flush_work(&hba->eh_work). And
7777 	 * ufshcd_err_handler(eh_work) is stuck waiting for runtime PM. Do
7778 	 * ufshcd_link_recovery instead of eh_work to prevent deadlock.
7779 	 */
7780 	if (hba->pm_op_in_progress) {
7781 		if (ufshcd_link_recovery(hba))
7782 			err = FAILED;
7783 
7784 		return err;
7785 	}
7786 
7787 	spin_lock_irqsave(hba->host->host_lock, flags);
7788 	hba->force_reset = true;
7789 	ufshcd_schedule_eh_work(hba);
7790 	dev_err(hba->dev, "%s: reset in progress - 1\n", __func__);
7791 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7792 
7793 	flush_work(&hba->eh_work);
7794 
7795 	spin_lock_irqsave(hba->host->host_lock, flags);
7796 	if (hba->ufshcd_state == UFSHCD_STATE_ERROR)
7797 		err = FAILED;
7798 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7799 
7800 	return err;
7801 }
7802 
7803 /**
7804  * ufshcd_get_max_icc_level - calculate the ICC level
7805  * @sup_curr_uA: max. current supported by the regulator
7806  * @start_scan: row at the desc table to start scan from
7807  * @buff: power descriptor buffer
7808  *
7809  * Return: calculated max ICC level for specific regulator.
7810  */
7811 static u32 ufshcd_get_max_icc_level(int sup_curr_uA, u32 start_scan,
7812 				    const char *buff)
7813 {
7814 	int i;
7815 	int curr_uA;
7816 	u16 data;
7817 	u16 unit;
7818 
7819 	for (i = start_scan; i >= 0; i--) {
7820 		data = get_unaligned_be16(&buff[2 * i]);
7821 		unit = (data & ATTR_ICC_LVL_UNIT_MASK) >>
7822 						ATTR_ICC_LVL_UNIT_OFFSET;
7823 		curr_uA = data & ATTR_ICC_LVL_VALUE_MASK;
7824 		switch (unit) {
7825 		case UFSHCD_NANO_AMP:
7826 			curr_uA = curr_uA / 1000;
7827 			break;
7828 		case UFSHCD_MILI_AMP:
7829 			curr_uA = curr_uA * 1000;
7830 			break;
7831 		case UFSHCD_AMP:
7832 			curr_uA = curr_uA * 1000 * 1000;
7833 			break;
7834 		case UFSHCD_MICRO_AMP:
7835 		default:
7836 			break;
7837 		}
7838 		if (sup_curr_uA >= curr_uA)
7839 			break;
7840 	}
7841 	if (i < 0) {
7842 		i = 0;
7843 		pr_err("%s: Couldn't find valid icc_level = %d", __func__, i);
7844 	}
7845 
7846 	return (u32)i;
7847 }
7848 
7849 /**
7850  * ufshcd_find_max_sup_active_icc_level - calculate the max ICC level
7851  * In case regulators are not initialized we'll return 0
7852  * @hba: per-adapter instance
7853  * @desc_buf: power descriptor buffer to extract ICC levels from.
7854  *
7855  * Return: calculated ICC level.
7856  */
7857 static u32 ufshcd_find_max_sup_active_icc_level(struct ufs_hba *hba,
7858 						const u8 *desc_buf)
7859 {
7860 	u32 icc_level = 0;
7861 
7862 	if (!hba->vreg_info.vcc || !hba->vreg_info.vccq ||
7863 						!hba->vreg_info.vccq2) {
7864 		/*
7865 		 * Using dev_dbg to avoid messages during runtime PM to avoid
7866 		 * never-ending cycles of messages written back to storage by
7867 		 * user space causing runtime resume, causing more messages and
7868 		 * so on.
7869 		 */
7870 		dev_dbg(hba->dev,
7871 			"%s: Regulator capability was not set, actvIccLevel=%d",
7872 							__func__, icc_level);
7873 		goto out;
7874 	}
7875 
7876 	if (hba->vreg_info.vcc->max_uA)
7877 		icc_level = ufshcd_get_max_icc_level(
7878 				hba->vreg_info.vcc->max_uA,
7879 				POWER_DESC_MAX_ACTV_ICC_LVLS - 1,
7880 				&desc_buf[PWR_DESC_ACTIVE_LVLS_VCC_0]);
7881 
7882 	if (hba->vreg_info.vccq->max_uA)
7883 		icc_level = ufshcd_get_max_icc_level(
7884 				hba->vreg_info.vccq->max_uA,
7885 				icc_level,
7886 				&desc_buf[PWR_DESC_ACTIVE_LVLS_VCCQ_0]);
7887 
7888 	if (hba->vreg_info.vccq2->max_uA)
7889 		icc_level = ufshcd_get_max_icc_level(
7890 				hba->vreg_info.vccq2->max_uA,
7891 				icc_level,
7892 				&desc_buf[PWR_DESC_ACTIVE_LVLS_VCCQ2_0]);
7893 out:
7894 	return icc_level;
7895 }
7896 
7897 static void ufshcd_set_active_icc_lvl(struct ufs_hba *hba)
7898 {
7899 	int ret;
7900 	u8 *desc_buf;
7901 	u32 icc_level;
7902 
7903 	desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
7904 	if (!desc_buf)
7905 		return;
7906 
7907 	ret = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_POWER, 0, 0,
7908 				     desc_buf, QUERY_DESC_MAX_SIZE);
7909 	if (ret) {
7910 		dev_err(hba->dev,
7911 			"%s: Failed reading power descriptor ret = %d",
7912 			__func__, ret);
7913 		goto out;
7914 	}
7915 
7916 	icc_level = ufshcd_find_max_sup_active_icc_level(hba, desc_buf);
7917 	dev_dbg(hba->dev, "%s: setting icc_level 0x%x", __func__, icc_level);
7918 
7919 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
7920 		QUERY_ATTR_IDN_ACTIVE_ICC_LVL, 0, 0, &icc_level);
7921 
7922 	if (ret)
7923 		dev_err(hba->dev,
7924 			"%s: Failed configuring bActiveICCLevel = %d ret = %d",
7925 			__func__, icc_level, ret);
7926 
7927 out:
7928 	kfree(desc_buf);
7929 }
7930 
7931 static inline void ufshcd_blk_pm_runtime_init(struct scsi_device *sdev)
7932 {
7933 	struct Scsi_Host *shost = sdev->host;
7934 
7935 	scsi_autopm_get_device(sdev);
7936 	blk_pm_runtime_init(sdev->request_queue, &sdev->sdev_gendev);
7937 	if (sdev->rpm_autosuspend)
7938 		pm_runtime_set_autosuspend_delay(&sdev->sdev_gendev,
7939 						 shost->rpm_autosuspend_delay);
7940 	scsi_autopm_put_device(sdev);
7941 }
7942 
7943 /**
7944  * ufshcd_scsi_add_wlus - Adds required W-LUs
7945  * @hba: per-adapter instance
7946  *
7947  * UFS device specification requires the UFS devices to support 4 well known
7948  * logical units:
7949  *	"REPORT_LUNS" (address: 01h)
7950  *	"UFS Device" (address: 50h)
7951  *	"RPMB" (address: 44h)
7952  *	"BOOT" (address: 30h)
7953  * UFS device's power management needs to be controlled by "POWER CONDITION"
7954  * field of SSU (START STOP UNIT) command. But this "power condition" field
7955  * will take effect only when its sent to "UFS device" well known logical unit
7956  * hence we require the scsi_device instance to represent this logical unit in
7957  * order for the UFS host driver to send the SSU command for power management.
7958  *
7959  * We also require the scsi_device instance for "RPMB" (Replay Protected Memory
7960  * Block) LU so user space process can control this LU. User space may also
7961  * want to have access to BOOT LU.
7962  *
7963  * This function adds scsi device instances for each of all well known LUs
7964  * (except "REPORT LUNS" LU).
7965  *
7966  * Return: zero on success (all required W-LUs are added successfully),
7967  * non-zero error value on failure (if failed to add any of the required W-LU).
7968  */
7969 static int ufshcd_scsi_add_wlus(struct ufs_hba *hba)
7970 {
7971 	int ret = 0;
7972 	struct scsi_device *sdev_boot, *sdev_rpmb;
7973 
7974 	hba->ufs_device_wlun = __scsi_add_device(hba->host, 0, 0,
7975 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_UFS_DEVICE_WLUN), NULL);
7976 	if (IS_ERR(hba->ufs_device_wlun)) {
7977 		ret = PTR_ERR(hba->ufs_device_wlun);
7978 		hba->ufs_device_wlun = NULL;
7979 		goto out;
7980 	}
7981 	scsi_device_put(hba->ufs_device_wlun);
7982 
7983 	sdev_rpmb = __scsi_add_device(hba->host, 0, 0,
7984 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_RPMB_WLUN), NULL);
7985 	if (IS_ERR(sdev_rpmb)) {
7986 		ret = PTR_ERR(sdev_rpmb);
7987 		goto remove_ufs_device_wlun;
7988 	}
7989 	ufshcd_blk_pm_runtime_init(sdev_rpmb);
7990 	scsi_device_put(sdev_rpmb);
7991 
7992 	sdev_boot = __scsi_add_device(hba->host, 0, 0,
7993 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_BOOT_WLUN), NULL);
7994 	if (IS_ERR(sdev_boot)) {
7995 		dev_err(hba->dev, "%s: BOOT WLUN not found\n", __func__);
7996 	} else {
7997 		ufshcd_blk_pm_runtime_init(sdev_boot);
7998 		scsi_device_put(sdev_boot);
7999 	}
8000 	goto out;
8001 
8002 remove_ufs_device_wlun:
8003 	scsi_remove_device(hba->ufs_device_wlun);
8004 out:
8005 	return ret;
8006 }
8007 
8008 static void ufshcd_wb_probe(struct ufs_hba *hba, const u8 *desc_buf)
8009 {
8010 	struct ufs_dev_info *dev_info = &hba->dev_info;
8011 	u8 lun;
8012 	u32 d_lu_wb_buf_alloc;
8013 	u32 ext_ufs_feature;
8014 
8015 	if (!ufshcd_is_wb_allowed(hba))
8016 		return;
8017 
8018 	/*
8019 	 * Probe WB only for UFS-2.2 and UFS-3.1 (and later) devices or
8020 	 * UFS devices with quirk UFS_DEVICE_QUIRK_SUPPORT_EXTENDED_FEATURES
8021 	 * enabled
8022 	 */
8023 	if (!(dev_info->wspecversion >= 0x310 ||
8024 	      dev_info->wspecversion == 0x220 ||
8025 	     (hba->dev_quirks & UFS_DEVICE_QUIRK_SUPPORT_EXTENDED_FEATURES)))
8026 		goto wb_disabled;
8027 
8028 	ext_ufs_feature = get_unaligned_be32(desc_buf +
8029 					DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
8030 
8031 	if (!(ext_ufs_feature & UFS_DEV_WRITE_BOOSTER_SUP))
8032 		goto wb_disabled;
8033 
8034 	/*
8035 	 * WB may be supported but not configured while provisioning. The spec
8036 	 * says, in dedicated wb buffer mode, a max of 1 lun would have wb
8037 	 * buffer configured.
8038 	 */
8039 	dev_info->wb_buffer_type = desc_buf[DEVICE_DESC_PARAM_WB_TYPE];
8040 
8041 	dev_info->b_presrv_uspc_en =
8042 		desc_buf[DEVICE_DESC_PARAM_WB_PRESRV_USRSPC_EN];
8043 
8044 	if (dev_info->wb_buffer_type == WB_BUF_MODE_SHARED) {
8045 		if (!get_unaligned_be32(desc_buf +
8046 				   DEVICE_DESC_PARAM_WB_SHARED_ALLOC_UNITS))
8047 			goto wb_disabled;
8048 	} else {
8049 		for (lun = 0; lun < UFS_UPIU_MAX_WB_LUN_ID; lun++) {
8050 			d_lu_wb_buf_alloc = 0;
8051 			ufshcd_read_unit_desc_param(hba,
8052 					lun,
8053 					UNIT_DESC_PARAM_WB_BUF_ALLOC_UNITS,
8054 					(u8 *)&d_lu_wb_buf_alloc,
8055 					sizeof(d_lu_wb_buf_alloc));
8056 			if (d_lu_wb_buf_alloc) {
8057 				dev_info->wb_dedicated_lu = lun;
8058 				break;
8059 			}
8060 		}
8061 
8062 		if (!d_lu_wb_buf_alloc)
8063 			goto wb_disabled;
8064 	}
8065 
8066 	if (!ufshcd_is_wb_buf_lifetime_available(hba))
8067 		goto wb_disabled;
8068 
8069 	return;
8070 
8071 wb_disabled:
8072 	hba->caps &= ~UFSHCD_CAP_WB_EN;
8073 }
8074 
8075 static void ufshcd_temp_notif_probe(struct ufs_hba *hba, const u8 *desc_buf)
8076 {
8077 	struct ufs_dev_info *dev_info = &hba->dev_info;
8078 	u32 ext_ufs_feature;
8079 	u8 mask = 0;
8080 
8081 	if (!(hba->caps & UFSHCD_CAP_TEMP_NOTIF) || dev_info->wspecversion < 0x300)
8082 		return;
8083 
8084 	ext_ufs_feature = get_unaligned_be32(desc_buf + DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
8085 
8086 	if (ext_ufs_feature & UFS_DEV_LOW_TEMP_NOTIF)
8087 		mask |= MASK_EE_TOO_LOW_TEMP;
8088 
8089 	if (ext_ufs_feature & UFS_DEV_HIGH_TEMP_NOTIF)
8090 		mask |= MASK_EE_TOO_HIGH_TEMP;
8091 
8092 	if (mask) {
8093 		ufshcd_enable_ee(hba, mask);
8094 		ufs_hwmon_probe(hba, mask);
8095 	}
8096 }
8097 
8098 static void ufshcd_ext_iid_probe(struct ufs_hba *hba, u8 *desc_buf)
8099 {
8100 	struct ufs_dev_info *dev_info = &hba->dev_info;
8101 	u32 ext_ufs_feature;
8102 	u32 ext_iid_en = 0;
8103 	int err;
8104 
8105 	/* Only UFS-4.0 and above may support EXT_IID */
8106 	if (dev_info->wspecversion < 0x400)
8107 		goto out;
8108 
8109 	ext_ufs_feature = get_unaligned_be32(desc_buf +
8110 				     DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
8111 	if (!(ext_ufs_feature & UFS_DEV_EXT_IID_SUP))
8112 		goto out;
8113 
8114 	err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
8115 				      QUERY_ATTR_IDN_EXT_IID_EN, 0, 0, &ext_iid_en);
8116 	if (err)
8117 		dev_err(hba->dev, "failed reading bEXTIIDEn. err = %d\n", err);
8118 
8119 out:
8120 	dev_info->b_ext_iid_en = ext_iid_en;
8121 }
8122 
8123 static void ufshcd_set_rtt(struct ufs_hba *hba)
8124 {
8125 	struct ufs_dev_info *dev_info = &hba->dev_info;
8126 	u32 rtt = 0;
8127 	u32 dev_rtt = 0;
8128 	int host_rtt_cap = hba->vops && hba->vops->max_num_rtt ?
8129 			   hba->vops->max_num_rtt : hba->nortt;
8130 
8131 	/* RTT override makes sense only for UFS-4.0 and above */
8132 	if (dev_info->wspecversion < 0x400)
8133 		return;
8134 
8135 	if (ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
8136 				    QUERY_ATTR_IDN_MAX_NUM_OF_RTT, 0, 0, &dev_rtt)) {
8137 		dev_err(hba->dev, "failed reading bMaxNumOfRTT\n");
8138 		return;
8139 	}
8140 
8141 	/* do not override if it was already written */
8142 	if (dev_rtt != DEFAULT_MAX_NUM_RTT)
8143 		return;
8144 
8145 	rtt = min_t(int, dev_info->rtt_cap, host_rtt_cap);
8146 
8147 	if (rtt == dev_rtt)
8148 		return;
8149 
8150 	if (ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
8151 				    QUERY_ATTR_IDN_MAX_NUM_OF_RTT, 0, 0, &rtt))
8152 		dev_err(hba->dev, "failed writing bMaxNumOfRTT\n");
8153 }
8154 
8155 void ufshcd_fixup_dev_quirks(struct ufs_hba *hba,
8156 			     const struct ufs_dev_quirk *fixups)
8157 {
8158 	const struct ufs_dev_quirk *f;
8159 	struct ufs_dev_info *dev_info = &hba->dev_info;
8160 
8161 	if (!fixups)
8162 		return;
8163 
8164 	for (f = fixups; f->quirk; f++) {
8165 		if ((f->wmanufacturerid == dev_info->wmanufacturerid ||
8166 		     f->wmanufacturerid == UFS_ANY_VENDOR) &&
8167 		     ((dev_info->model &&
8168 		       STR_PRFX_EQUAL(f->model, dev_info->model)) ||
8169 		      !strcmp(f->model, UFS_ANY_MODEL)))
8170 			hba->dev_quirks |= f->quirk;
8171 	}
8172 }
8173 EXPORT_SYMBOL_GPL(ufshcd_fixup_dev_quirks);
8174 
8175 static void ufs_fixup_device_setup(struct ufs_hba *hba)
8176 {
8177 	/* fix by general quirk table */
8178 	ufshcd_fixup_dev_quirks(hba, ufs_fixups);
8179 
8180 	/* allow vendors to fix quirks */
8181 	ufshcd_vops_fixup_dev_quirks(hba);
8182 }
8183 
8184 static void ufshcd_update_rtc(struct ufs_hba *hba)
8185 {
8186 	struct timespec64 ts64;
8187 	int err;
8188 	u32 val;
8189 
8190 	ktime_get_real_ts64(&ts64);
8191 
8192 	if (ts64.tv_sec < hba->dev_info.rtc_time_baseline) {
8193 		dev_warn_once(hba->dev, "%s: Current time precedes previous setting!\n", __func__);
8194 		return;
8195 	}
8196 
8197 	/*
8198 	 * The Absolute RTC mode has a 136-year limit, spanning from 2010 to 2146. If a time beyond
8199 	 * 2146 is required, it is recommended to choose the relative RTC mode.
8200 	 */
8201 	val = ts64.tv_sec - hba->dev_info.rtc_time_baseline;
8202 
8203 	/* Skip update RTC if RPM state is not RPM_ACTIVE */
8204 	if (ufshcd_rpm_get_if_active(hba) <= 0)
8205 		return;
8206 
8207 	err = ufshcd_query_attr(hba, UPIU_QUERY_OPCODE_WRITE_ATTR, QUERY_ATTR_IDN_SECONDS_PASSED,
8208 				0, 0, &val);
8209 	ufshcd_rpm_put(hba);
8210 
8211 	if (err)
8212 		dev_err(hba->dev, "%s: Failed to update rtc %d\n", __func__, err);
8213 	else if (hba->dev_info.rtc_type == UFS_RTC_RELATIVE)
8214 		hba->dev_info.rtc_time_baseline = ts64.tv_sec;
8215 }
8216 
8217 static void ufshcd_rtc_work(struct work_struct *work)
8218 {
8219 	struct ufs_hba *hba;
8220 
8221 	hba = container_of(to_delayed_work(work), struct ufs_hba, ufs_rtc_update_work);
8222 
8223 	 /* Update RTC only when there are no requests in progress and UFSHCI is operational */
8224 	if (!ufshcd_is_ufs_dev_busy(hba) && hba->ufshcd_state == UFSHCD_STATE_OPERATIONAL)
8225 		ufshcd_update_rtc(hba);
8226 
8227 	if (ufshcd_is_ufs_dev_active(hba) && hba->dev_info.rtc_update_period)
8228 		schedule_delayed_work(&hba->ufs_rtc_update_work,
8229 				      msecs_to_jiffies(hba->dev_info.rtc_update_period));
8230 }
8231 
8232 static void ufs_init_rtc(struct ufs_hba *hba, u8 *desc_buf)
8233 {
8234 	u16 periodic_rtc_update = get_unaligned_be16(&desc_buf[DEVICE_DESC_PARAM_FRQ_RTC]);
8235 	struct ufs_dev_info *dev_info = &hba->dev_info;
8236 
8237 	if (periodic_rtc_update & UFS_RTC_TIME_BASELINE) {
8238 		dev_info->rtc_type = UFS_RTC_ABSOLUTE;
8239 
8240 		/*
8241 		 * The concept of measuring time in Linux as the number of seconds elapsed since
8242 		 * 00:00:00 UTC on January 1, 1970, and UFS ABS RTC is elapsed from January 1st
8243 		 * 2010 00:00, here we need to adjust ABS baseline.
8244 		 */
8245 		dev_info->rtc_time_baseline = mktime64(2010, 1, 1, 0, 0, 0) -
8246 							mktime64(1970, 1, 1, 0, 0, 0);
8247 	} else {
8248 		dev_info->rtc_type = UFS_RTC_RELATIVE;
8249 		dev_info->rtc_time_baseline = 0;
8250 	}
8251 
8252 	/*
8253 	 * We ignore TIME_PERIOD defined in wPeriodicRTCUpdate because Spec does not clearly state
8254 	 * how to calculate the specific update period for each time unit. And we disable periodic
8255 	 * RTC update work, let user configure by sysfs node according to specific circumstance.
8256 	 */
8257 	dev_info->rtc_update_period = 0;
8258 }
8259 
8260 static int ufs_get_device_desc(struct ufs_hba *hba)
8261 {
8262 	int err;
8263 	u8 model_index;
8264 	u8 *desc_buf;
8265 	struct ufs_dev_info *dev_info = &hba->dev_info;
8266 
8267 	desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
8268 	if (!desc_buf) {
8269 		err = -ENOMEM;
8270 		goto out;
8271 	}
8272 
8273 	err = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_DEVICE, 0, 0, desc_buf,
8274 				     QUERY_DESC_MAX_SIZE);
8275 	if (err) {
8276 		dev_err(hba->dev, "%s: Failed reading Device Desc. err = %d\n",
8277 			__func__, err);
8278 		goto out;
8279 	}
8280 
8281 	/*
8282 	 * getting vendor (manufacturerID) and Bank Index in big endian
8283 	 * format
8284 	 */
8285 	dev_info->wmanufacturerid = desc_buf[DEVICE_DESC_PARAM_MANF_ID] << 8 |
8286 				     desc_buf[DEVICE_DESC_PARAM_MANF_ID + 1];
8287 
8288 	/* getting Specification Version in big endian format */
8289 	dev_info->wspecversion = desc_buf[DEVICE_DESC_PARAM_SPEC_VER] << 8 |
8290 				      desc_buf[DEVICE_DESC_PARAM_SPEC_VER + 1];
8291 	dev_info->bqueuedepth = desc_buf[DEVICE_DESC_PARAM_Q_DPTH];
8292 
8293 	dev_info->rtt_cap = desc_buf[DEVICE_DESC_PARAM_RTT_CAP];
8294 
8295 	model_index = desc_buf[DEVICE_DESC_PARAM_PRDCT_NAME];
8296 
8297 	err = ufshcd_read_string_desc(hba, model_index,
8298 				      &dev_info->model, SD_ASCII_STD);
8299 	if (err < 0) {
8300 		dev_err(hba->dev, "%s: Failed reading Product Name. err = %d\n",
8301 			__func__, err);
8302 		goto out;
8303 	}
8304 
8305 	hba->luns_avail = desc_buf[DEVICE_DESC_PARAM_NUM_LU] +
8306 		desc_buf[DEVICE_DESC_PARAM_NUM_WLU];
8307 
8308 	ufs_fixup_device_setup(hba);
8309 
8310 	ufshcd_wb_probe(hba, desc_buf);
8311 
8312 	ufshcd_temp_notif_probe(hba, desc_buf);
8313 
8314 	ufs_init_rtc(hba, desc_buf);
8315 
8316 	if (hba->ext_iid_sup)
8317 		ufshcd_ext_iid_probe(hba, desc_buf);
8318 
8319 	/*
8320 	 * ufshcd_read_string_desc returns size of the string
8321 	 * reset the error value
8322 	 */
8323 	err = 0;
8324 
8325 out:
8326 	kfree(desc_buf);
8327 	return err;
8328 }
8329 
8330 static void ufs_put_device_desc(struct ufs_hba *hba)
8331 {
8332 	struct ufs_dev_info *dev_info = &hba->dev_info;
8333 
8334 	kfree(dev_info->model);
8335 	dev_info->model = NULL;
8336 }
8337 
8338 /**
8339  * ufshcd_quirk_tune_host_pa_tactivate - Ensures that host PA_TACTIVATE is
8340  * less than device PA_TACTIVATE time.
8341  * @hba: per-adapter instance
8342  *
8343  * Some UFS devices require host PA_TACTIVATE to be lower than device
8344  * PA_TACTIVATE, we need to enable UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE quirk
8345  * for such devices.
8346  *
8347  * Return: zero on success, non-zero error value on failure.
8348  */
8349 static int ufshcd_quirk_tune_host_pa_tactivate(struct ufs_hba *hba)
8350 {
8351 	int ret = 0;
8352 	u32 granularity, peer_granularity;
8353 	u32 pa_tactivate, peer_pa_tactivate;
8354 	u32 pa_tactivate_us, peer_pa_tactivate_us;
8355 	static const u8 gran_to_us_table[] = {1, 4, 8, 16, 32, 100};
8356 
8357 	ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_GRANULARITY),
8358 				  &granularity);
8359 	if (ret)
8360 		goto out;
8361 
8362 	ret = ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_GRANULARITY),
8363 				  &peer_granularity);
8364 	if (ret)
8365 		goto out;
8366 
8367 	if ((granularity < PA_GRANULARITY_MIN_VAL) ||
8368 	    (granularity > PA_GRANULARITY_MAX_VAL)) {
8369 		dev_err(hba->dev, "%s: invalid host PA_GRANULARITY %d",
8370 			__func__, granularity);
8371 		return -EINVAL;
8372 	}
8373 
8374 	if ((peer_granularity < PA_GRANULARITY_MIN_VAL) ||
8375 	    (peer_granularity > PA_GRANULARITY_MAX_VAL)) {
8376 		dev_err(hba->dev, "%s: invalid device PA_GRANULARITY %d",
8377 			__func__, peer_granularity);
8378 		return -EINVAL;
8379 	}
8380 
8381 	ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_TACTIVATE), &pa_tactivate);
8382 	if (ret)
8383 		goto out;
8384 
8385 	ret = ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_TACTIVATE),
8386 				  &peer_pa_tactivate);
8387 	if (ret)
8388 		goto out;
8389 
8390 	pa_tactivate_us = pa_tactivate * gran_to_us_table[granularity - 1];
8391 	peer_pa_tactivate_us = peer_pa_tactivate *
8392 			     gran_to_us_table[peer_granularity - 1];
8393 
8394 	if (pa_tactivate_us >= peer_pa_tactivate_us) {
8395 		u32 new_peer_pa_tactivate;
8396 
8397 		new_peer_pa_tactivate = pa_tactivate_us /
8398 				      gran_to_us_table[peer_granularity - 1];
8399 		new_peer_pa_tactivate++;
8400 		ret = ufshcd_dme_peer_set(hba, UIC_ARG_MIB(PA_TACTIVATE),
8401 					  new_peer_pa_tactivate);
8402 	}
8403 
8404 out:
8405 	return ret;
8406 }
8407 
8408 static void ufshcd_tune_unipro_params(struct ufs_hba *hba)
8409 {
8410 	ufshcd_vops_apply_dev_quirks(hba);
8411 
8412 	if (hba->dev_quirks & UFS_DEVICE_QUIRK_PA_TACTIVATE)
8413 		/* set 1ms timeout for PA_TACTIVATE */
8414 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TACTIVATE), 10);
8415 
8416 	if (hba->dev_quirks & UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE)
8417 		ufshcd_quirk_tune_host_pa_tactivate(hba);
8418 }
8419 
8420 static void ufshcd_clear_dbg_ufs_stats(struct ufs_hba *hba)
8421 {
8422 	hba->ufs_stats.hibern8_exit_cnt = 0;
8423 	hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
8424 	hba->req_abort_count = 0;
8425 }
8426 
8427 static int ufshcd_device_geo_params_init(struct ufs_hba *hba)
8428 {
8429 	int err;
8430 	u8 *desc_buf;
8431 
8432 	desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
8433 	if (!desc_buf) {
8434 		err = -ENOMEM;
8435 		goto out;
8436 	}
8437 
8438 	err = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_GEOMETRY, 0, 0,
8439 				     desc_buf, QUERY_DESC_MAX_SIZE);
8440 	if (err) {
8441 		dev_err(hba->dev, "%s: Failed reading Geometry Desc. err = %d\n",
8442 				__func__, err);
8443 		goto out;
8444 	}
8445 
8446 	if (desc_buf[GEOMETRY_DESC_PARAM_MAX_NUM_LUN] == 1)
8447 		hba->dev_info.max_lu_supported = 32;
8448 	else if (desc_buf[GEOMETRY_DESC_PARAM_MAX_NUM_LUN] == 0)
8449 		hba->dev_info.max_lu_supported = 8;
8450 
8451 out:
8452 	kfree(desc_buf);
8453 	return err;
8454 }
8455 
8456 struct ufs_ref_clk {
8457 	unsigned long freq_hz;
8458 	enum ufs_ref_clk_freq val;
8459 };
8460 
8461 static const struct ufs_ref_clk ufs_ref_clk_freqs[] = {
8462 	{19200000, REF_CLK_FREQ_19_2_MHZ},
8463 	{26000000, REF_CLK_FREQ_26_MHZ},
8464 	{38400000, REF_CLK_FREQ_38_4_MHZ},
8465 	{52000000, REF_CLK_FREQ_52_MHZ},
8466 	{0, REF_CLK_FREQ_INVAL},
8467 };
8468 
8469 static enum ufs_ref_clk_freq
8470 ufs_get_bref_clk_from_hz(unsigned long freq)
8471 {
8472 	int i;
8473 
8474 	for (i = 0; ufs_ref_clk_freqs[i].freq_hz; i++)
8475 		if (ufs_ref_clk_freqs[i].freq_hz == freq)
8476 			return ufs_ref_clk_freqs[i].val;
8477 
8478 	return REF_CLK_FREQ_INVAL;
8479 }
8480 
8481 void ufshcd_parse_dev_ref_clk_freq(struct ufs_hba *hba, struct clk *refclk)
8482 {
8483 	unsigned long freq;
8484 
8485 	freq = clk_get_rate(refclk);
8486 
8487 	hba->dev_ref_clk_freq =
8488 		ufs_get_bref_clk_from_hz(freq);
8489 
8490 	if (hba->dev_ref_clk_freq == REF_CLK_FREQ_INVAL)
8491 		dev_err(hba->dev,
8492 		"invalid ref_clk setting = %ld\n", freq);
8493 }
8494 
8495 static int ufshcd_set_dev_ref_clk(struct ufs_hba *hba)
8496 {
8497 	int err;
8498 	u32 ref_clk;
8499 	u32 freq = hba->dev_ref_clk_freq;
8500 
8501 	err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
8502 			QUERY_ATTR_IDN_REF_CLK_FREQ, 0, 0, &ref_clk);
8503 
8504 	if (err) {
8505 		dev_err(hba->dev, "failed reading bRefClkFreq. err = %d\n",
8506 			err);
8507 		goto out;
8508 	}
8509 
8510 	if (ref_clk == freq)
8511 		goto out; /* nothing to update */
8512 
8513 	err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
8514 			QUERY_ATTR_IDN_REF_CLK_FREQ, 0, 0, &freq);
8515 
8516 	if (err) {
8517 		dev_err(hba->dev, "bRefClkFreq setting to %lu Hz failed\n",
8518 			ufs_ref_clk_freqs[freq].freq_hz);
8519 		goto out;
8520 	}
8521 
8522 	dev_dbg(hba->dev, "bRefClkFreq setting to %lu Hz succeeded\n",
8523 			ufs_ref_clk_freqs[freq].freq_hz);
8524 
8525 out:
8526 	return err;
8527 }
8528 
8529 static int ufshcd_device_params_init(struct ufs_hba *hba)
8530 {
8531 	bool flag;
8532 	int ret;
8533 
8534 	/* Init UFS geometry descriptor related parameters */
8535 	ret = ufshcd_device_geo_params_init(hba);
8536 	if (ret)
8537 		goto out;
8538 
8539 	/* Check and apply UFS device quirks */
8540 	ret = ufs_get_device_desc(hba);
8541 	if (ret) {
8542 		dev_err(hba->dev, "%s: Failed getting device info. err = %d\n",
8543 			__func__, ret);
8544 		goto out;
8545 	}
8546 
8547 	ufshcd_set_rtt(hba);
8548 
8549 	ufshcd_get_ref_clk_gating_wait(hba);
8550 
8551 	if (!ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_READ_FLAG,
8552 			QUERY_FLAG_IDN_PWR_ON_WPE, 0, &flag))
8553 		hba->dev_info.f_power_on_wp_en = flag;
8554 
8555 	/* Probe maximum power mode co-supported by both UFS host and device */
8556 	if (ufshcd_get_max_pwr_mode(hba))
8557 		dev_err(hba->dev,
8558 			"%s: Failed getting max supported power mode\n",
8559 			__func__);
8560 out:
8561 	return ret;
8562 }
8563 
8564 static void ufshcd_set_timestamp_attr(struct ufs_hba *hba)
8565 {
8566 	int err;
8567 	struct ufs_query_req *request = NULL;
8568 	struct ufs_query_res *response = NULL;
8569 	struct ufs_dev_info *dev_info = &hba->dev_info;
8570 	struct utp_upiu_query_v4_0 *upiu_data;
8571 
8572 	if (dev_info->wspecversion < 0x400)
8573 		return;
8574 
8575 	ufshcd_dev_man_lock(hba);
8576 
8577 	ufshcd_init_query(hba, &request, &response,
8578 			  UPIU_QUERY_OPCODE_WRITE_ATTR,
8579 			  QUERY_ATTR_IDN_TIMESTAMP, 0, 0);
8580 
8581 	request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
8582 
8583 	upiu_data = (struct utp_upiu_query_v4_0 *)&request->upiu_req;
8584 
8585 	put_unaligned_be64(ktime_get_real_ns(), &upiu_data->osf3);
8586 
8587 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT);
8588 
8589 	if (err)
8590 		dev_err(hba->dev, "%s: failed to set timestamp %d\n",
8591 			__func__, err);
8592 
8593 	ufshcd_dev_man_unlock(hba);
8594 }
8595 
8596 /**
8597  * ufshcd_add_lus - probe and add UFS logical units
8598  * @hba: per-adapter instance
8599  *
8600  * Return: 0 upon success; < 0 upon failure.
8601  */
8602 static int ufshcd_add_lus(struct ufs_hba *hba)
8603 {
8604 	int ret;
8605 
8606 	/* Add required well known logical units to scsi mid layer */
8607 	ret = ufshcd_scsi_add_wlus(hba);
8608 	if (ret)
8609 		goto out;
8610 
8611 	/* Initialize devfreq after UFS device is detected */
8612 	if (ufshcd_is_clkscaling_supported(hba)) {
8613 		memcpy(&hba->clk_scaling.saved_pwr_info,
8614 			&hba->pwr_info,
8615 			sizeof(struct ufs_pa_layer_attr));
8616 		hba->clk_scaling.is_allowed = true;
8617 
8618 		ret = ufshcd_devfreq_init(hba);
8619 		if (ret)
8620 			goto out;
8621 
8622 		hba->clk_scaling.is_enabled = true;
8623 		ufshcd_init_clk_scaling_sysfs(hba);
8624 	}
8625 
8626 	/*
8627 	 * The RTC update code accesses the hba->ufs_device_wlun->sdev_gendev
8628 	 * pointer and hence must only be started after the WLUN pointer has
8629 	 * been initialized by ufshcd_scsi_add_wlus().
8630 	 */
8631 	schedule_delayed_work(&hba->ufs_rtc_update_work,
8632 			      msecs_to_jiffies(UFS_RTC_UPDATE_INTERVAL_MS));
8633 
8634 	ufs_bsg_probe(hba);
8635 	scsi_scan_host(hba->host);
8636 
8637 out:
8638 	return ret;
8639 }
8640 
8641 /* SDB - Single Doorbell */
8642 static void ufshcd_release_sdb_queue(struct ufs_hba *hba, int nutrs)
8643 {
8644 	size_t ucdl_size, utrdl_size;
8645 
8646 	ucdl_size = ufshcd_get_ucd_size(hba) * nutrs;
8647 	dmam_free_coherent(hba->dev, ucdl_size, hba->ucdl_base_addr,
8648 			   hba->ucdl_dma_addr);
8649 
8650 	utrdl_size = sizeof(struct utp_transfer_req_desc) * nutrs;
8651 	dmam_free_coherent(hba->dev, utrdl_size, hba->utrdl_base_addr,
8652 			   hba->utrdl_dma_addr);
8653 
8654 	devm_kfree(hba->dev, hba->lrb);
8655 }
8656 
8657 static int ufshcd_alloc_mcq(struct ufs_hba *hba)
8658 {
8659 	int ret;
8660 	int old_nutrs = hba->nutrs;
8661 
8662 	ret = ufshcd_mcq_decide_queue_depth(hba);
8663 	if (ret < 0)
8664 		return ret;
8665 
8666 	hba->nutrs = ret;
8667 	ret = ufshcd_mcq_init(hba);
8668 	if (ret)
8669 		goto err;
8670 
8671 	/*
8672 	 * Previously allocated memory for nutrs may not be enough in MCQ mode.
8673 	 * Number of supported tags in MCQ mode may be larger than SDB mode.
8674 	 */
8675 	if (hba->nutrs != old_nutrs) {
8676 		ufshcd_release_sdb_queue(hba, old_nutrs);
8677 		ret = ufshcd_memory_alloc(hba);
8678 		if (ret)
8679 			goto err;
8680 		ufshcd_host_memory_configure(hba);
8681 	}
8682 
8683 	ret = ufshcd_mcq_memory_alloc(hba);
8684 	if (ret)
8685 		goto err;
8686 
8687 	hba->host->can_queue = hba->nutrs - UFSHCD_NUM_RESERVED;
8688 	hba->reserved_slot = hba->nutrs - UFSHCD_NUM_RESERVED;
8689 
8690 	return 0;
8691 err:
8692 	hba->nutrs = old_nutrs;
8693 	return ret;
8694 }
8695 
8696 static void ufshcd_config_mcq(struct ufs_hba *hba)
8697 {
8698 	int ret;
8699 	u32 intrs;
8700 
8701 	ret = ufshcd_mcq_vops_config_esi(hba);
8702 	dev_info(hba->dev, "ESI %sconfigured\n", ret ? "is not " : "");
8703 
8704 	intrs = UFSHCD_ENABLE_MCQ_INTRS;
8705 	if (hba->quirks & UFSHCD_QUIRK_MCQ_BROKEN_INTR)
8706 		intrs &= ~MCQ_CQ_EVENT_STATUS;
8707 	ufshcd_enable_intr(hba, intrs);
8708 	ufshcd_mcq_make_queues_operational(hba);
8709 	ufshcd_mcq_config_mac(hba, hba->nutrs);
8710 
8711 	dev_info(hba->dev, "MCQ configured, nr_queues=%d, io_queues=%d, read_queue=%d, poll_queues=%d, queue_depth=%d\n",
8712 		 hba->nr_hw_queues, hba->nr_queues[HCTX_TYPE_DEFAULT],
8713 		 hba->nr_queues[HCTX_TYPE_READ], hba->nr_queues[HCTX_TYPE_POLL],
8714 		 hba->nutrs);
8715 }
8716 
8717 static int ufshcd_post_device_init(struct ufs_hba *hba)
8718 {
8719 	int ret;
8720 
8721 	ufshcd_tune_unipro_params(hba);
8722 
8723 	/* UFS device is also active now */
8724 	ufshcd_set_ufs_dev_active(hba);
8725 	ufshcd_force_reset_auto_bkops(hba);
8726 
8727 	ufshcd_set_timestamp_attr(hba);
8728 
8729 	if (!hba->max_pwr_info.is_valid)
8730 		return 0;
8731 
8732 	/*
8733 	 * Set the right value to bRefClkFreq before attempting to
8734 	 * switch to HS gears.
8735 	 */
8736 	if (hba->dev_ref_clk_freq != REF_CLK_FREQ_INVAL)
8737 		ufshcd_set_dev_ref_clk(hba);
8738 	/* Gear up to HS gear. */
8739 	ret = ufshcd_config_pwr_mode(hba, &hba->max_pwr_info.info);
8740 	if (ret) {
8741 		dev_err(hba->dev, "%s: Failed setting power mode, err = %d\n",
8742 			__func__, ret);
8743 		return ret;
8744 	}
8745 
8746 	return 0;
8747 }
8748 
8749 static int ufshcd_device_init(struct ufs_hba *hba, bool init_dev_params)
8750 {
8751 	int ret;
8752 
8753 	WARN_ON_ONCE(!hba->scsi_host_added);
8754 
8755 	hba->ufshcd_state = UFSHCD_STATE_RESET;
8756 
8757 	ret = ufshcd_link_startup(hba);
8758 	if (ret)
8759 		return ret;
8760 
8761 	if (hba->quirks & UFSHCD_QUIRK_SKIP_PH_CONFIGURATION)
8762 		return ret;
8763 
8764 	/* Debug counters initialization */
8765 	ufshcd_clear_dbg_ufs_stats(hba);
8766 
8767 	/* UniPro link is active now */
8768 	ufshcd_set_link_active(hba);
8769 
8770 	/* Reconfigure MCQ upon reset */
8771 	if (hba->mcq_enabled && !init_dev_params) {
8772 		ufshcd_config_mcq(hba);
8773 		ufshcd_mcq_enable(hba);
8774 	}
8775 
8776 	/* Verify device initialization by sending NOP OUT UPIU */
8777 	ret = ufshcd_verify_dev_init(hba);
8778 	if (ret)
8779 		return ret;
8780 
8781 	/* Initiate UFS initialization, and waiting until completion */
8782 	ret = ufshcd_complete_dev_init(hba);
8783 	if (ret)
8784 		return ret;
8785 
8786 	/*
8787 	 * Initialize UFS device parameters used by driver, these
8788 	 * parameters are associated with UFS descriptors.
8789 	 */
8790 	if (init_dev_params) {
8791 		ret = ufshcd_device_params_init(hba);
8792 		if (ret)
8793 			return ret;
8794 		if (is_mcq_supported(hba) &&
8795 		    hba->quirks & UFSHCD_QUIRK_REINIT_AFTER_MAX_GEAR_SWITCH) {
8796 			ufshcd_config_mcq(hba);
8797 			ufshcd_mcq_enable(hba);
8798 		}
8799 	}
8800 
8801 	return ufshcd_post_device_init(hba);
8802 }
8803 
8804 /**
8805  * ufshcd_probe_hba - probe hba to detect device and initialize it
8806  * @hba: per-adapter instance
8807  * @init_dev_params: whether or not to call ufshcd_device_params_init().
8808  *
8809  * Execute link-startup and verify device initialization
8810  *
8811  * Return: 0 upon success; < 0 upon failure.
8812  */
8813 static int ufshcd_probe_hba(struct ufs_hba *hba, bool init_dev_params)
8814 {
8815 	int ret;
8816 
8817 	if (!hba->pm_op_in_progress &&
8818 	    (hba->quirks & UFSHCD_QUIRK_REINIT_AFTER_MAX_GEAR_SWITCH)) {
8819 		/* Reset the device and controller before doing reinit */
8820 		ufshcd_device_reset(hba);
8821 		ufs_put_device_desc(hba);
8822 		ufshcd_hba_stop(hba);
8823 		ufshcd_vops_reinit_notify(hba);
8824 		ret = ufshcd_hba_enable(hba);
8825 		if (ret) {
8826 			dev_err(hba->dev, "Host controller enable failed\n");
8827 			ufshcd_print_evt_hist(hba);
8828 			ufshcd_print_host_state(hba);
8829 			return ret;
8830 		}
8831 
8832 		/* Reinit the device */
8833 		ret = ufshcd_device_init(hba, init_dev_params);
8834 		if (ret)
8835 			return ret;
8836 	}
8837 
8838 	ufshcd_print_pwr_info(hba);
8839 
8840 	/*
8841 	 * bActiveICCLevel is volatile for UFS device (as per latest v2.1 spec)
8842 	 * and for removable UFS card as well, hence always set the parameter.
8843 	 * Note: Error handler may issue the device reset hence resetting
8844 	 * bActiveICCLevel as well so it is always safe to set this here.
8845 	 */
8846 	ufshcd_set_active_icc_lvl(hba);
8847 
8848 	/* Enable UFS Write Booster if supported */
8849 	ufshcd_configure_wb(hba);
8850 
8851 	if (hba->ee_usr_mask)
8852 		ufshcd_write_ee_control(hba);
8853 	ufshcd_configure_auto_hibern8(hba);
8854 
8855 	return 0;
8856 }
8857 
8858 /**
8859  * ufshcd_async_scan - asynchronous execution for probing hba
8860  * @data: data pointer to pass to this function
8861  * @cookie: cookie data
8862  */
8863 static void ufshcd_async_scan(void *data, async_cookie_t cookie)
8864 {
8865 	struct ufs_hba *hba = (struct ufs_hba *)data;
8866 	ktime_t probe_start;
8867 	int ret;
8868 
8869 	down(&hba->host_sem);
8870 	/* Initialize hba, detect and initialize UFS device */
8871 	probe_start = ktime_get();
8872 	ret = ufshcd_probe_hba(hba, true);
8873 	ufshcd_process_probe_result(hba, probe_start, ret);
8874 	up(&hba->host_sem);
8875 	if (ret)
8876 		goto out;
8877 
8878 	/* Probe and add UFS logical units  */
8879 	ret = ufshcd_add_lus(hba);
8880 
8881 out:
8882 	pm_runtime_put_sync(hba->dev);
8883 
8884 	if (ret)
8885 		dev_err(hba->dev, "%s failed: %d\n", __func__, ret);
8886 }
8887 
8888 static enum scsi_timeout_action ufshcd_eh_timed_out(struct scsi_cmnd *scmd)
8889 {
8890 	struct ufs_hba *hba = shost_priv(scmd->device->host);
8891 
8892 	if (!hba->system_suspending) {
8893 		/* Activate the error handler in the SCSI core. */
8894 		return SCSI_EH_NOT_HANDLED;
8895 	}
8896 
8897 	/*
8898 	 * If we get here we know that no TMFs are outstanding and also that
8899 	 * the only pending command is a START STOP UNIT command. Handle the
8900 	 * timeout of that command directly to prevent a deadlock between
8901 	 * ufshcd_set_dev_pwr_mode() and ufshcd_err_handler().
8902 	 */
8903 	ufshcd_link_recovery(hba);
8904 	dev_info(hba->dev, "%s() finished; outstanding_tasks = %#lx.\n",
8905 		 __func__, hba->outstanding_tasks);
8906 
8907 	return hba->outstanding_reqs ? SCSI_EH_RESET_TIMER : SCSI_EH_DONE;
8908 }
8909 
8910 static const struct attribute_group *ufshcd_driver_groups[] = {
8911 	&ufs_sysfs_unit_descriptor_group,
8912 	&ufs_sysfs_lun_attributes_group,
8913 	NULL,
8914 };
8915 
8916 static struct ufs_hba_variant_params ufs_hba_vps = {
8917 	.hba_enable_delay_us		= 1000,
8918 	.wb_flush_threshold		= UFS_WB_BUF_REMAIN_PERCENT(40),
8919 	.devfreq_profile.polling_ms	= 100,
8920 	.devfreq_profile.target		= ufshcd_devfreq_target,
8921 	.devfreq_profile.get_dev_status	= ufshcd_devfreq_get_dev_status,
8922 	.ondemand_data.upthreshold	= 70,
8923 	.ondemand_data.downdifferential	= 5,
8924 };
8925 
8926 static const struct scsi_host_template ufshcd_driver_template = {
8927 	.module			= THIS_MODULE,
8928 	.name			= UFSHCD,
8929 	.proc_name		= UFSHCD,
8930 	.map_queues		= ufshcd_map_queues,
8931 	.queuecommand		= ufshcd_queuecommand,
8932 	.mq_poll		= ufshcd_poll,
8933 	.slave_alloc		= ufshcd_slave_alloc,
8934 	.device_configure	= ufshcd_device_configure,
8935 	.slave_destroy		= ufshcd_slave_destroy,
8936 	.change_queue_depth	= ufshcd_change_queue_depth,
8937 	.eh_abort_handler	= ufshcd_abort,
8938 	.eh_device_reset_handler = ufshcd_eh_device_reset_handler,
8939 	.eh_host_reset_handler   = ufshcd_eh_host_reset_handler,
8940 	.eh_timed_out		= ufshcd_eh_timed_out,
8941 	.this_id		= -1,
8942 	.sg_tablesize		= SG_ALL,
8943 	.max_segment_size	= PRDT_DATA_BYTE_COUNT_MAX,
8944 	.max_sectors		= SZ_1M / SECTOR_SIZE,
8945 	.max_host_blocked	= 1,
8946 	.track_queue_depth	= 1,
8947 	.skip_settle_delay	= 1,
8948 	.sdev_groups		= ufshcd_driver_groups,
8949 };
8950 
8951 static int ufshcd_config_vreg_load(struct device *dev, struct ufs_vreg *vreg,
8952 				   int ua)
8953 {
8954 	int ret;
8955 
8956 	if (!vreg)
8957 		return 0;
8958 
8959 	/*
8960 	 * "set_load" operation shall be required on those regulators
8961 	 * which specifically configured current limitation. Otherwise
8962 	 * zero max_uA may cause unexpected behavior when regulator is
8963 	 * enabled or set as high power mode.
8964 	 */
8965 	if (!vreg->max_uA)
8966 		return 0;
8967 
8968 	ret = regulator_set_load(vreg->reg, ua);
8969 	if (ret < 0) {
8970 		dev_err(dev, "%s: %s set load (ua=%d) failed, err=%d\n",
8971 				__func__, vreg->name, ua, ret);
8972 	}
8973 
8974 	return ret;
8975 }
8976 
8977 static inline int ufshcd_config_vreg_lpm(struct ufs_hba *hba,
8978 					 struct ufs_vreg *vreg)
8979 {
8980 	return ufshcd_config_vreg_load(hba->dev, vreg, UFS_VREG_LPM_LOAD_UA);
8981 }
8982 
8983 static inline int ufshcd_config_vreg_hpm(struct ufs_hba *hba,
8984 					 struct ufs_vreg *vreg)
8985 {
8986 	if (!vreg)
8987 		return 0;
8988 
8989 	return ufshcd_config_vreg_load(hba->dev, vreg, vreg->max_uA);
8990 }
8991 
8992 static int ufshcd_config_vreg(struct device *dev,
8993 		struct ufs_vreg *vreg, bool on)
8994 {
8995 	if (regulator_count_voltages(vreg->reg) <= 0)
8996 		return 0;
8997 
8998 	return ufshcd_config_vreg_load(dev, vreg, on ? vreg->max_uA : 0);
8999 }
9000 
9001 static int ufshcd_enable_vreg(struct device *dev, struct ufs_vreg *vreg)
9002 {
9003 	int ret = 0;
9004 
9005 	if (!vreg || vreg->enabled)
9006 		goto out;
9007 
9008 	ret = ufshcd_config_vreg(dev, vreg, true);
9009 	if (!ret)
9010 		ret = regulator_enable(vreg->reg);
9011 
9012 	if (!ret)
9013 		vreg->enabled = true;
9014 	else
9015 		dev_err(dev, "%s: %s enable failed, err=%d\n",
9016 				__func__, vreg->name, ret);
9017 out:
9018 	return ret;
9019 }
9020 
9021 static int ufshcd_disable_vreg(struct device *dev, struct ufs_vreg *vreg)
9022 {
9023 	int ret = 0;
9024 
9025 	if (!vreg || !vreg->enabled || vreg->always_on)
9026 		goto out;
9027 
9028 	ret = regulator_disable(vreg->reg);
9029 
9030 	if (!ret) {
9031 		/* ignore errors on applying disable config */
9032 		ufshcd_config_vreg(dev, vreg, false);
9033 		vreg->enabled = false;
9034 	} else {
9035 		dev_err(dev, "%s: %s disable failed, err=%d\n",
9036 				__func__, vreg->name, ret);
9037 	}
9038 out:
9039 	return ret;
9040 }
9041 
9042 static int ufshcd_setup_vreg(struct ufs_hba *hba, bool on)
9043 {
9044 	int ret = 0;
9045 	struct device *dev = hba->dev;
9046 	struct ufs_vreg_info *info = &hba->vreg_info;
9047 
9048 	ret = ufshcd_toggle_vreg(dev, info->vcc, on);
9049 	if (ret)
9050 		goto out;
9051 
9052 	ret = ufshcd_toggle_vreg(dev, info->vccq, on);
9053 	if (ret)
9054 		goto out;
9055 
9056 	ret = ufshcd_toggle_vreg(dev, info->vccq2, on);
9057 
9058 out:
9059 	if (ret) {
9060 		ufshcd_toggle_vreg(dev, info->vccq2, false);
9061 		ufshcd_toggle_vreg(dev, info->vccq, false);
9062 		ufshcd_toggle_vreg(dev, info->vcc, false);
9063 	}
9064 	return ret;
9065 }
9066 
9067 static int ufshcd_setup_hba_vreg(struct ufs_hba *hba, bool on)
9068 {
9069 	struct ufs_vreg_info *info = &hba->vreg_info;
9070 
9071 	return ufshcd_toggle_vreg(hba->dev, info->vdd_hba, on);
9072 }
9073 
9074 int ufshcd_get_vreg(struct device *dev, struct ufs_vreg *vreg)
9075 {
9076 	int ret = 0;
9077 
9078 	if (!vreg)
9079 		goto out;
9080 
9081 	vreg->reg = devm_regulator_get(dev, vreg->name);
9082 	if (IS_ERR(vreg->reg)) {
9083 		ret = PTR_ERR(vreg->reg);
9084 		dev_err(dev, "%s: %s get failed, err=%d\n",
9085 				__func__, vreg->name, ret);
9086 	}
9087 out:
9088 	return ret;
9089 }
9090 EXPORT_SYMBOL_GPL(ufshcd_get_vreg);
9091 
9092 static int ufshcd_init_vreg(struct ufs_hba *hba)
9093 {
9094 	int ret = 0;
9095 	struct device *dev = hba->dev;
9096 	struct ufs_vreg_info *info = &hba->vreg_info;
9097 
9098 	ret = ufshcd_get_vreg(dev, info->vcc);
9099 	if (ret)
9100 		goto out;
9101 
9102 	ret = ufshcd_get_vreg(dev, info->vccq);
9103 	if (!ret)
9104 		ret = ufshcd_get_vreg(dev, info->vccq2);
9105 out:
9106 	return ret;
9107 }
9108 
9109 static int ufshcd_init_hba_vreg(struct ufs_hba *hba)
9110 {
9111 	struct ufs_vreg_info *info = &hba->vreg_info;
9112 
9113 	return ufshcd_get_vreg(hba->dev, info->vdd_hba);
9114 }
9115 
9116 static int ufshcd_setup_clocks(struct ufs_hba *hba, bool on)
9117 {
9118 	int ret = 0;
9119 	struct ufs_clk_info *clki;
9120 	struct list_head *head = &hba->clk_list_head;
9121 	unsigned long flags;
9122 	ktime_t start = ktime_get();
9123 	bool clk_state_changed = false;
9124 
9125 	if (list_empty(head))
9126 		goto out;
9127 
9128 	ret = ufshcd_vops_setup_clocks(hba, on, PRE_CHANGE);
9129 	if (ret)
9130 		return ret;
9131 
9132 	list_for_each_entry(clki, head, list) {
9133 		if (!IS_ERR_OR_NULL(clki->clk)) {
9134 			/*
9135 			 * Don't disable clocks which are needed
9136 			 * to keep the link active.
9137 			 */
9138 			if (ufshcd_is_link_active(hba) &&
9139 			    clki->keep_link_active)
9140 				continue;
9141 
9142 			clk_state_changed = on ^ clki->enabled;
9143 			if (on && !clki->enabled) {
9144 				ret = clk_prepare_enable(clki->clk);
9145 				if (ret) {
9146 					dev_err(hba->dev, "%s: %s prepare enable failed, %d\n",
9147 						__func__, clki->name, ret);
9148 					goto out;
9149 				}
9150 			} else if (!on && clki->enabled) {
9151 				clk_disable_unprepare(clki->clk);
9152 			}
9153 			clki->enabled = on;
9154 			dev_dbg(hba->dev, "%s: clk: %s %sabled\n", __func__,
9155 					clki->name, on ? "en" : "dis");
9156 		}
9157 	}
9158 
9159 	ret = ufshcd_vops_setup_clocks(hba, on, POST_CHANGE);
9160 	if (ret)
9161 		return ret;
9162 
9163 	if (!ufshcd_is_clkscaling_supported(hba))
9164 		ufshcd_pm_qos_update(hba, on);
9165 out:
9166 	if (ret) {
9167 		list_for_each_entry(clki, head, list) {
9168 			if (!IS_ERR_OR_NULL(clki->clk) && clki->enabled)
9169 				clk_disable_unprepare(clki->clk);
9170 		}
9171 	} else if (!ret && on) {
9172 		spin_lock_irqsave(hba->host->host_lock, flags);
9173 		hba->clk_gating.state = CLKS_ON;
9174 		trace_ufshcd_clk_gating(dev_name(hba->dev),
9175 					hba->clk_gating.state);
9176 		spin_unlock_irqrestore(hba->host->host_lock, flags);
9177 	}
9178 
9179 	if (clk_state_changed)
9180 		trace_ufshcd_profile_clk_gating(dev_name(hba->dev),
9181 			(on ? "on" : "off"),
9182 			ktime_to_us(ktime_sub(ktime_get(), start)), ret);
9183 	return ret;
9184 }
9185 
9186 static enum ufs_ref_clk_freq ufshcd_parse_ref_clk_property(struct ufs_hba *hba)
9187 {
9188 	u32 freq;
9189 	int ret = device_property_read_u32(hba->dev, "ref-clk-freq", &freq);
9190 
9191 	if (ret) {
9192 		dev_dbg(hba->dev, "Cannot query 'ref-clk-freq' property = %d", ret);
9193 		return REF_CLK_FREQ_INVAL;
9194 	}
9195 
9196 	return ufs_get_bref_clk_from_hz(freq);
9197 }
9198 
9199 static int ufshcd_init_clocks(struct ufs_hba *hba)
9200 {
9201 	int ret = 0;
9202 	struct ufs_clk_info *clki;
9203 	struct device *dev = hba->dev;
9204 	struct list_head *head = &hba->clk_list_head;
9205 
9206 	if (list_empty(head))
9207 		goto out;
9208 
9209 	list_for_each_entry(clki, head, list) {
9210 		if (!clki->name)
9211 			continue;
9212 
9213 		clki->clk = devm_clk_get(dev, clki->name);
9214 		if (IS_ERR(clki->clk)) {
9215 			ret = PTR_ERR(clki->clk);
9216 			dev_err(dev, "%s: %s clk get failed, %d\n",
9217 					__func__, clki->name, ret);
9218 			goto out;
9219 		}
9220 
9221 		/*
9222 		 * Parse device ref clk freq as per device tree "ref_clk".
9223 		 * Default dev_ref_clk_freq is set to REF_CLK_FREQ_INVAL
9224 		 * in ufshcd_alloc_host().
9225 		 */
9226 		if (!strcmp(clki->name, "ref_clk"))
9227 			ufshcd_parse_dev_ref_clk_freq(hba, clki->clk);
9228 
9229 		if (clki->max_freq) {
9230 			ret = clk_set_rate(clki->clk, clki->max_freq);
9231 			if (ret) {
9232 				dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
9233 					__func__, clki->name,
9234 					clki->max_freq, ret);
9235 				goto out;
9236 			}
9237 			clki->curr_freq = clki->max_freq;
9238 		}
9239 		dev_dbg(dev, "%s: clk: %s, rate: %lu\n", __func__,
9240 				clki->name, clk_get_rate(clki->clk));
9241 	}
9242 
9243 	/* Set Max. frequency for all clocks */
9244 	if (hba->use_pm_opp) {
9245 		ret = ufshcd_opp_set_rate(hba, ULONG_MAX);
9246 		if (ret) {
9247 			dev_err(hba->dev, "%s: failed to set OPP: %d", __func__,
9248 				ret);
9249 			goto out;
9250 		}
9251 	}
9252 
9253 out:
9254 	return ret;
9255 }
9256 
9257 static int ufshcd_variant_hba_init(struct ufs_hba *hba)
9258 {
9259 	int err = 0;
9260 
9261 	if (!hba->vops)
9262 		goto out;
9263 
9264 	err = ufshcd_vops_init(hba);
9265 	if (err)
9266 		dev_err_probe(hba->dev, err,
9267 			      "%s: variant %s init failed with err %d\n",
9268 			      __func__, ufshcd_get_var_name(hba), err);
9269 out:
9270 	return err;
9271 }
9272 
9273 static void ufshcd_variant_hba_exit(struct ufs_hba *hba)
9274 {
9275 	if (!hba->vops)
9276 		return;
9277 
9278 	ufshcd_vops_exit(hba);
9279 }
9280 
9281 static int ufshcd_hba_init(struct ufs_hba *hba)
9282 {
9283 	int err;
9284 
9285 	/*
9286 	 * Handle host controller power separately from the UFS device power
9287 	 * rails as it will help controlling the UFS host controller power
9288 	 * collapse easily which is different than UFS device power collapse.
9289 	 * Also, enable the host controller power before we go ahead with rest
9290 	 * of the initialization here.
9291 	 */
9292 	err = ufshcd_init_hba_vreg(hba);
9293 	if (err)
9294 		goto out;
9295 
9296 	err = ufshcd_setup_hba_vreg(hba, true);
9297 	if (err)
9298 		goto out;
9299 
9300 	err = ufshcd_init_clocks(hba);
9301 	if (err)
9302 		goto out_disable_hba_vreg;
9303 
9304 	if (hba->dev_ref_clk_freq == REF_CLK_FREQ_INVAL)
9305 		hba->dev_ref_clk_freq = ufshcd_parse_ref_clk_property(hba);
9306 
9307 	err = ufshcd_setup_clocks(hba, true);
9308 	if (err)
9309 		goto out_disable_hba_vreg;
9310 
9311 	err = ufshcd_init_vreg(hba);
9312 	if (err)
9313 		goto out_disable_clks;
9314 
9315 	err = ufshcd_setup_vreg(hba, true);
9316 	if (err)
9317 		goto out_disable_clks;
9318 
9319 	err = ufshcd_variant_hba_init(hba);
9320 	if (err)
9321 		goto out_disable_vreg;
9322 
9323 	ufs_debugfs_hba_init(hba);
9324 	ufs_fault_inject_hba_init(hba);
9325 
9326 	hba->is_powered = true;
9327 	goto out;
9328 
9329 out_disable_vreg:
9330 	ufshcd_setup_vreg(hba, false);
9331 out_disable_clks:
9332 	ufshcd_setup_clocks(hba, false);
9333 out_disable_hba_vreg:
9334 	ufshcd_setup_hba_vreg(hba, false);
9335 out:
9336 	return err;
9337 }
9338 
9339 static void ufshcd_hba_exit(struct ufs_hba *hba)
9340 {
9341 	if (hba->is_powered) {
9342 		ufshcd_pm_qos_exit(hba);
9343 		ufshcd_exit_clk_scaling(hba);
9344 		ufshcd_exit_clk_gating(hba);
9345 		if (hba->eh_wq)
9346 			destroy_workqueue(hba->eh_wq);
9347 		ufs_debugfs_hba_exit(hba);
9348 		ufshcd_variant_hba_exit(hba);
9349 		ufshcd_setup_vreg(hba, false);
9350 		ufshcd_setup_clocks(hba, false);
9351 		ufshcd_setup_hba_vreg(hba, false);
9352 		hba->is_powered = false;
9353 		ufs_put_device_desc(hba);
9354 	}
9355 }
9356 
9357 static int ufshcd_execute_start_stop(struct scsi_device *sdev,
9358 				     enum ufs_dev_pwr_mode pwr_mode,
9359 				     struct scsi_sense_hdr *sshdr)
9360 {
9361 	const unsigned char cdb[6] = { START_STOP, 0, 0, 0, pwr_mode << 4, 0 };
9362 	struct scsi_failure failure_defs[] = {
9363 		{
9364 			.allowed = 2,
9365 			.result = SCMD_FAILURE_RESULT_ANY,
9366 		},
9367 	};
9368 	struct scsi_failures failures = {
9369 		.failure_definitions = failure_defs,
9370 	};
9371 	const struct scsi_exec_args args = {
9372 		.failures = &failures,
9373 		.sshdr = sshdr,
9374 		.req_flags = BLK_MQ_REQ_PM,
9375 		.scmd_flags = SCMD_FAIL_IF_RECOVERING,
9376 	};
9377 
9378 	return scsi_execute_cmd(sdev, cdb, REQ_OP_DRV_IN, /*buffer=*/NULL,
9379 			/*bufflen=*/0, /*timeout=*/10 * HZ, /*retries=*/0,
9380 			&args);
9381 }
9382 
9383 /**
9384  * ufshcd_set_dev_pwr_mode - sends START STOP UNIT command to set device
9385  *			     power mode
9386  * @hba: per adapter instance
9387  * @pwr_mode: device power mode to set
9388  *
9389  * Return: 0 if requested power mode is set successfully;
9390  *         < 0 if failed to set the requested power mode.
9391  */
9392 static int ufshcd_set_dev_pwr_mode(struct ufs_hba *hba,
9393 				     enum ufs_dev_pwr_mode pwr_mode)
9394 {
9395 	struct scsi_sense_hdr sshdr;
9396 	struct scsi_device *sdp;
9397 	unsigned long flags;
9398 	int ret;
9399 
9400 	spin_lock_irqsave(hba->host->host_lock, flags);
9401 	sdp = hba->ufs_device_wlun;
9402 	if (sdp && scsi_device_online(sdp))
9403 		ret = scsi_device_get(sdp);
9404 	else
9405 		ret = -ENODEV;
9406 	spin_unlock_irqrestore(hba->host->host_lock, flags);
9407 
9408 	if (ret)
9409 		return ret;
9410 
9411 	/*
9412 	 * If scsi commands fail, the scsi mid-layer schedules scsi error-
9413 	 * handling, which would wait for host to be resumed. Since we know
9414 	 * we are functional while we are here, skip host resume in error
9415 	 * handling context.
9416 	 */
9417 	hba->host->eh_noresume = 1;
9418 
9419 	/*
9420 	 * Current function would be generally called from the power management
9421 	 * callbacks hence set the RQF_PM flag so that it doesn't resume the
9422 	 * already suspended childs.
9423 	 */
9424 	ret = ufshcd_execute_start_stop(sdp, pwr_mode, &sshdr);
9425 	if (ret) {
9426 		sdev_printk(KERN_WARNING, sdp,
9427 			    "START_STOP failed for power mode: %d, result %x\n",
9428 			    pwr_mode, ret);
9429 		if (ret > 0) {
9430 			if (scsi_sense_valid(&sshdr))
9431 				scsi_print_sense_hdr(sdp, NULL, &sshdr);
9432 			ret = -EIO;
9433 		}
9434 	} else {
9435 		hba->curr_dev_pwr_mode = pwr_mode;
9436 	}
9437 
9438 	scsi_device_put(sdp);
9439 	hba->host->eh_noresume = 0;
9440 	return ret;
9441 }
9442 
9443 static int ufshcd_link_state_transition(struct ufs_hba *hba,
9444 					enum uic_link_state req_link_state,
9445 					bool check_for_bkops)
9446 {
9447 	int ret = 0;
9448 
9449 	if (req_link_state == hba->uic_link_state)
9450 		return 0;
9451 
9452 	if (req_link_state == UIC_LINK_HIBERN8_STATE) {
9453 		ret = ufshcd_uic_hibern8_enter(hba);
9454 		if (!ret) {
9455 			ufshcd_set_link_hibern8(hba);
9456 		} else {
9457 			dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
9458 					__func__, ret);
9459 			goto out;
9460 		}
9461 	}
9462 	/*
9463 	 * If autobkops is enabled, link can't be turned off because
9464 	 * turning off the link would also turn off the device, except in the
9465 	 * case of DeepSleep where the device is expected to remain powered.
9466 	 */
9467 	else if ((req_link_state == UIC_LINK_OFF_STATE) &&
9468 		 (!check_for_bkops || !hba->auto_bkops_enabled)) {
9469 		/*
9470 		 * Let's make sure that link is in low power mode, we are doing
9471 		 * this currently by putting the link in Hibern8. Otherway to
9472 		 * put the link in low power mode is to send the DME end point
9473 		 * to device and then send the DME reset command to local
9474 		 * unipro. But putting the link in hibern8 is much faster.
9475 		 *
9476 		 * Note also that putting the link in Hibern8 is a requirement
9477 		 * for entering DeepSleep.
9478 		 */
9479 		ret = ufshcd_uic_hibern8_enter(hba);
9480 		if (ret) {
9481 			dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
9482 					__func__, ret);
9483 			goto out;
9484 		}
9485 		/*
9486 		 * Change controller state to "reset state" which
9487 		 * should also put the link in off/reset state
9488 		 */
9489 		ufshcd_hba_stop(hba);
9490 		/*
9491 		 * TODO: Check if we need any delay to make sure that
9492 		 * controller is reset
9493 		 */
9494 		ufshcd_set_link_off(hba);
9495 	}
9496 
9497 out:
9498 	return ret;
9499 }
9500 
9501 static void ufshcd_vreg_set_lpm(struct ufs_hba *hba)
9502 {
9503 	bool vcc_off = false;
9504 
9505 	/*
9506 	 * It seems some UFS devices may keep drawing more than sleep current
9507 	 * (atleast for 500us) from UFS rails (especially from VCCQ rail).
9508 	 * To avoid this situation, add 2ms delay before putting these UFS
9509 	 * rails in LPM mode.
9510 	 */
9511 	if (!ufshcd_is_link_active(hba) &&
9512 	    hba->dev_quirks & UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM)
9513 		usleep_range(2000, 2100);
9514 
9515 	/*
9516 	 * If UFS device is either in UFS_Sleep turn off VCC rail to save some
9517 	 * power.
9518 	 *
9519 	 * If UFS device and link is in OFF state, all power supplies (VCC,
9520 	 * VCCQ, VCCQ2) can be turned off if power on write protect is not
9521 	 * required. If UFS link is inactive (Hibern8 or OFF state) and device
9522 	 * is in sleep state, put VCCQ & VCCQ2 rails in LPM mode.
9523 	 *
9524 	 * Ignore the error returned by ufshcd_toggle_vreg() as device is anyway
9525 	 * in low power state which would save some power.
9526 	 *
9527 	 * If Write Booster is enabled and the device needs to flush the WB
9528 	 * buffer OR if bkops status is urgent for WB, keep Vcc on.
9529 	 */
9530 	if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba) &&
9531 	    !hba->dev_info.is_lu_power_on_wp) {
9532 		ufshcd_setup_vreg(hba, false);
9533 		vcc_off = true;
9534 	} else if (!ufshcd_is_ufs_dev_active(hba)) {
9535 		ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, false);
9536 		vcc_off = true;
9537 		if (ufshcd_is_link_hibern8(hba) || ufshcd_is_link_off(hba)) {
9538 			ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq);
9539 			ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq2);
9540 		}
9541 	}
9542 
9543 	/*
9544 	 * Some UFS devices require delay after VCC power rail is turned-off.
9545 	 */
9546 	if (vcc_off && hba->vreg_info.vcc &&
9547 		hba->dev_quirks & UFS_DEVICE_QUIRK_DELAY_AFTER_LPM)
9548 		usleep_range(5000, 5100);
9549 }
9550 
9551 #ifdef CONFIG_PM
9552 static int ufshcd_vreg_set_hpm(struct ufs_hba *hba)
9553 {
9554 	int ret = 0;
9555 
9556 	if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba) &&
9557 	    !hba->dev_info.is_lu_power_on_wp) {
9558 		ret = ufshcd_setup_vreg(hba, true);
9559 	} else if (!ufshcd_is_ufs_dev_active(hba)) {
9560 		if (!ufshcd_is_link_active(hba)) {
9561 			ret = ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq);
9562 			if (ret)
9563 				goto vcc_disable;
9564 			ret = ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq2);
9565 			if (ret)
9566 				goto vccq_lpm;
9567 		}
9568 		ret = ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, true);
9569 	}
9570 	goto out;
9571 
9572 vccq_lpm:
9573 	ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq);
9574 vcc_disable:
9575 	ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, false);
9576 out:
9577 	return ret;
9578 }
9579 #endif /* CONFIG_PM */
9580 
9581 static void ufshcd_hba_vreg_set_lpm(struct ufs_hba *hba)
9582 {
9583 	if (ufshcd_is_link_off(hba) || ufshcd_can_aggressive_pc(hba))
9584 		ufshcd_setup_hba_vreg(hba, false);
9585 }
9586 
9587 static void ufshcd_hba_vreg_set_hpm(struct ufs_hba *hba)
9588 {
9589 	if (ufshcd_is_link_off(hba) || ufshcd_can_aggressive_pc(hba))
9590 		ufshcd_setup_hba_vreg(hba, true);
9591 }
9592 
9593 static int __ufshcd_wl_suspend(struct ufs_hba *hba, enum ufs_pm_op pm_op)
9594 {
9595 	int ret = 0;
9596 	bool check_for_bkops;
9597 	enum ufs_pm_level pm_lvl;
9598 	enum ufs_dev_pwr_mode req_dev_pwr_mode;
9599 	enum uic_link_state req_link_state;
9600 
9601 	hba->pm_op_in_progress = true;
9602 	if (pm_op != UFS_SHUTDOWN_PM) {
9603 		pm_lvl = pm_op == UFS_RUNTIME_PM ?
9604 			 hba->rpm_lvl : hba->spm_lvl;
9605 		req_dev_pwr_mode = ufs_get_pm_lvl_to_dev_pwr_mode(pm_lvl);
9606 		req_link_state = ufs_get_pm_lvl_to_link_pwr_state(pm_lvl);
9607 	} else {
9608 		req_dev_pwr_mode = UFS_POWERDOWN_PWR_MODE;
9609 		req_link_state = UIC_LINK_OFF_STATE;
9610 	}
9611 
9612 	/*
9613 	 * If we can't transition into any of the low power modes
9614 	 * just gate the clocks.
9615 	 */
9616 	ufshcd_hold(hba);
9617 	hba->clk_gating.is_suspended = true;
9618 
9619 	if (ufshcd_is_clkscaling_supported(hba))
9620 		ufshcd_clk_scaling_suspend(hba, true);
9621 
9622 	if (req_dev_pwr_mode == UFS_ACTIVE_PWR_MODE &&
9623 			req_link_state == UIC_LINK_ACTIVE_STATE) {
9624 		goto vops_suspend;
9625 	}
9626 
9627 	if ((req_dev_pwr_mode == hba->curr_dev_pwr_mode) &&
9628 	    (req_link_state == hba->uic_link_state))
9629 		goto enable_scaling;
9630 
9631 	/* UFS device & link must be active before we enter in this function */
9632 	if (!ufshcd_is_ufs_dev_active(hba) || !ufshcd_is_link_active(hba)) {
9633 		/*  Wait err handler finish or trigger err recovery */
9634 		if (!ufshcd_eh_in_progress(hba))
9635 			ufshcd_force_error_recovery(hba);
9636 		ret = -EBUSY;
9637 		goto enable_scaling;
9638 	}
9639 
9640 	if (pm_op == UFS_RUNTIME_PM) {
9641 		if (ufshcd_can_autobkops_during_suspend(hba)) {
9642 			/*
9643 			 * The device is idle with no requests in the queue,
9644 			 * allow background operations if bkops status shows
9645 			 * that performance might be impacted.
9646 			 */
9647 			ret = ufshcd_bkops_ctrl(hba);
9648 			if (ret) {
9649 				/*
9650 				 * If return err in suspend flow, IO will hang.
9651 				 * Trigger error handler and break suspend for
9652 				 * error recovery.
9653 				 */
9654 				ufshcd_force_error_recovery(hba);
9655 				ret = -EBUSY;
9656 				goto enable_scaling;
9657 			}
9658 		} else {
9659 			/* make sure that auto bkops is disabled */
9660 			ufshcd_disable_auto_bkops(hba);
9661 		}
9662 		/*
9663 		 * If device needs to do BKOP or WB buffer flush during
9664 		 * Hibern8, keep device power mode as "active power mode"
9665 		 * and VCC supply.
9666 		 */
9667 		hba->dev_info.b_rpm_dev_flush_capable =
9668 			hba->auto_bkops_enabled ||
9669 			(((req_link_state == UIC_LINK_HIBERN8_STATE) ||
9670 			((req_link_state == UIC_LINK_ACTIVE_STATE) &&
9671 			ufshcd_is_auto_hibern8_enabled(hba))) &&
9672 			ufshcd_wb_need_flush(hba));
9673 	}
9674 
9675 	flush_work(&hba->eeh_work);
9676 
9677 	ret = ufshcd_vops_suspend(hba, pm_op, PRE_CHANGE);
9678 	if (ret)
9679 		goto enable_scaling;
9680 
9681 	if (req_dev_pwr_mode != hba->curr_dev_pwr_mode) {
9682 		if (pm_op != UFS_RUNTIME_PM)
9683 			/* ensure that bkops is disabled */
9684 			ufshcd_disable_auto_bkops(hba);
9685 
9686 		if (!hba->dev_info.b_rpm_dev_flush_capable) {
9687 			ret = ufshcd_set_dev_pwr_mode(hba, req_dev_pwr_mode);
9688 			if (ret && pm_op != UFS_SHUTDOWN_PM) {
9689 				/*
9690 				 * If return err in suspend flow, IO will hang.
9691 				 * Trigger error handler and break suspend for
9692 				 * error recovery.
9693 				 */
9694 				ufshcd_force_error_recovery(hba);
9695 				ret = -EBUSY;
9696 			}
9697 			if (ret)
9698 				goto enable_scaling;
9699 		}
9700 	}
9701 
9702 	/*
9703 	 * In the case of DeepSleep, the device is expected to remain powered
9704 	 * with the link off, so do not check for bkops.
9705 	 */
9706 	check_for_bkops = !ufshcd_is_ufs_dev_deepsleep(hba);
9707 	ret = ufshcd_link_state_transition(hba, req_link_state, check_for_bkops);
9708 	if (ret && pm_op != UFS_SHUTDOWN_PM) {
9709 		/*
9710 		 * If return err in suspend flow, IO will hang.
9711 		 * Trigger error handler and break suspend for
9712 		 * error recovery.
9713 		 */
9714 		ufshcd_force_error_recovery(hba);
9715 		ret = -EBUSY;
9716 	}
9717 	if (ret)
9718 		goto set_dev_active;
9719 
9720 vops_suspend:
9721 	/*
9722 	 * Call vendor specific suspend callback. As these callbacks may access
9723 	 * vendor specific host controller register space call them before the
9724 	 * host clocks are ON.
9725 	 */
9726 	ret = ufshcd_vops_suspend(hba, pm_op, POST_CHANGE);
9727 	if (ret)
9728 		goto set_link_active;
9729 
9730 	cancel_delayed_work_sync(&hba->ufs_rtc_update_work);
9731 	goto out;
9732 
9733 set_link_active:
9734 	/*
9735 	 * Device hardware reset is required to exit DeepSleep. Also, for
9736 	 * DeepSleep, the link is off so host reset and restore will be done
9737 	 * further below.
9738 	 */
9739 	if (ufshcd_is_ufs_dev_deepsleep(hba)) {
9740 		ufshcd_device_reset(hba);
9741 		WARN_ON(!ufshcd_is_link_off(hba));
9742 	}
9743 	if (ufshcd_is_link_hibern8(hba) && !ufshcd_uic_hibern8_exit(hba))
9744 		ufshcd_set_link_active(hba);
9745 	else if (ufshcd_is_link_off(hba))
9746 		ufshcd_host_reset_and_restore(hba);
9747 set_dev_active:
9748 	/* Can also get here needing to exit DeepSleep */
9749 	if (ufshcd_is_ufs_dev_deepsleep(hba)) {
9750 		ufshcd_device_reset(hba);
9751 		ufshcd_host_reset_and_restore(hba);
9752 	}
9753 	if (!ufshcd_set_dev_pwr_mode(hba, UFS_ACTIVE_PWR_MODE))
9754 		ufshcd_disable_auto_bkops(hba);
9755 enable_scaling:
9756 	if (ufshcd_is_clkscaling_supported(hba))
9757 		ufshcd_clk_scaling_suspend(hba, false);
9758 
9759 	hba->dev_info.b_rpm_dev_flush_capable = false;
9760 out:
9761 	if (hba->dev_info.b_rpm_dev_flush_capable) {
9762 		schedule_delayed_work(&hba->rpm_dev_flush_recheck_work,
9763 			msecs_to_jiffies(RPM_DEV_FLUSH_RECHECK_WORK_DELAY_MS));
9764 	}
9765 
9766 	if (ret) {
9767 		ufshcd_update_evt_hist(hba, UFS_EVT_WL_SUSP_ERR, (u32)ret);
9768 		hba->clk_gating.is_suspended = false;
9769 		ufshcd_release(hba);
9770 	}
9771 	hba->pm_op_in_progress = false;
9772 	return ret;
9773 }
9774 
9775 #ifdef CONFIG_PM
9776 static int __ufshcd_wl_resume(struct ufs_hba *hba, enum ufs_pm_op pm_op)
9777 {
9778 	int ret;
9779 	enum uic_link_state old_link_state = hba->uic_link_state;
9780 
9781 	hba->pm_op_in_progress = true;
9782 
9783 	/*
9784 	 * Call vendor specific resume callback. As these callbacks may access
9785 	 * vendor specific host controller register space call them when the
9786 	 * host clocks are ON.
9787 	 */
9788 	ret = ufshcd_vops_resume(hba, pm_op);
9789 	if (ret)
9790 		goto out;
9791 
9792 	/* For DeepSleep, the only supported option is to have the link off */
9793 	WARN_ON(ufshcd_is_ufs_dev_deepsleep(hba) && !ufshcd_is_link_off(hba));
9794 
9795 	if (ufshcd_is_link_hibern8(hba)) {
9796 		ret = ufshcd_uic_hibern8_exit(hba);
9797 		if (!ret) {
9798 			ufshcd_set_link_active(hba);
9799 		} else {
9800 			dev_err(hba->dev, "%s: hibern8 exit failed %d\n",
9801 					__func__, ret);
9802 			goto vendor_suspend;
9803 		}
9804 	} else if (ufshcd_is_link_off(hba)) {
9805 		/*
9806 		 * A full initialization of the host and the device is
9807 		 * required since the link was put to off during suspend.
9808 		 * Note, in the case of DeepSleep, the device will exit
9809 		 * DeepSleep due to device reset.
9810 		 */
9811 		ret = ufshcd_reset_and_restore(hba);
9812 		/*
9813 		 * ufshcd_reset_and_restore() should have already
9814 		 * set the link state as active
9815 		 */
9816 		if (ret || !ufshcd_is_link_active(hba))
9817 			goto vendor_suspend;
9818 	}
9819 
9820 	if (!ufshcd_is_ufs_dev_active(hba)) {
9821 		ret = ufshcd_set_dev_pwr_mode(hba, UFS_ACTIVE_PWR_MODE);
9822 		if (ret)
9823 			goto set_old_link_state;
9824 		ufshcd_set_timestamp_attr(hba);
9825 		schedule_delayed_work(&hba->ufs_rtc_update_work,
9826 				      msecs_to_jiffies(UFS_RTC_UPDATE_INTERVAL_MS));
9827 	}
9828 
9829 	if (ufshcd_keep_autobkops_enabled_except_suspend(hba))
9830 		ufshcd_enable_auto_bkops(hba);
9831 	else
9832 		/*
9833 		 * If BKOPs operations are urgently needed at this moment then
9834 		 * keep auto-bkops enabled or else disable it.
9835 		 */
9836 		ufshcd_bkops_ctrl(hba);
9837 
9838 	if (hba->ee_usr_mask)
9839 		ufshcd_write_ee_control(hba);
9840 
9841 	if (ufshcd_is_clkscaling_supported(hba))
9842 		ufshcd_clk_scaling_suspend(hba, false);
9843 
9844 	if (hba->dev_info.b_rpm_dev_flush_capable) {
9845 		hba->dev_info.b_rpm_dev_flush_capable = false;
9846 		cancel_delayed_work(&hba->rpm_dev_flush_recheck_work);
9847 	}
9848 
9849 	ufshcd_configure_auto_hibern8(hba);
9850 
9851 	goto out;
9852 
9853 set_old_link_state:
9854 	ufshcd_link_state_transition(hba, old_link_state, 0);
9855 vendor_suspend:
9856 	ufshcd_vops_suspend(hba, pm_op, PRE_CHANGE);
9857 	ufshcd_vops_suspend(hba, pm_op, POST_CHANGE);
9858 out:
9859 	if (ret)
9860 		ufshcd_update_evt_hist(hba, UFS_EVT_WL_RES_ERR, (u32)ret);
9861 	hba->clk_gating.is_suspended = false;
9862 	ufshcd_release(hba);
9863 	hba->pm_op_in_progress = false;
9864 	return ret;
9865 }
9866 
9867 static int ufshcd_wl_runtime_suspend(struct device *dev)
9868 {
9869 	struct scsi_device *sdev = to_scsi_device(dev);
9870 	struct ufs_hba *hba;
9871 	int ret;
9872 	ktime_t start = ktime_get();
9873 
9874 	hba = shost_priv(sdev->host);
9875 
9876 	ret = __ufshcd_wl_suspend(hba, UFS_RUNTIME_PM);
9877 	if (ret)
9878 		dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
9879 
9880 	trace_ufshcd_wl_runtime_suspend(dev_name(dev), ret,
9881 		ktime_to_us(ktime_sub(ktime_get(), start)),
9882 		hba->curr_dev_pwr_mode, hba->uic_link_state);
9883 
9884 	return ret;
9885 }
9886 
9887 static int ufshcd_wl_runtime_resume(struct device *dev)
9888 {
9889 	struct scsi_device *sdev = to_scsi_device(dev);
9890 	struct ufs_hba *hba;
9891 	int ret = 0;
9892 	ktime_t start = ktime_get();
9893 
9894 	hba = shost_priv(sdev->host);
9895 
9896 	ret = __ufshcd_wl_resume(hba, UFS_RUNTIME_PM);
9897 	if (ret)
9898 		dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
9899 
9900 	trace_ufshcd_wl_runtime_resume(dev_name(dev), ret,
9901 		ktime_to_us(ktime_sub(ktime_get(), start)),
9902 		hba->curr_dev_pwr_mode, hba->uic_link_state);
9903 
9904 	return ret;
9905 }
9906 #endif
9907 
9908 #ifdef CONFIG_PM_SLEEP
9909 static int ufshcd_wl_suspend(struct device *dev)
9910 {
9911 	struct scsi_device *sdev = to_scsi_device(dev);
9912 	struct ufs_hba *hba;
9913 	int ret = 0;
9914 	ktime_t start = ktime_get();
9915 
9916 	hba = shost_priv(sdev->host);
9917 	down(&hba->host_sem);
9918 	hba->system_suspending = true;
9919 
9920 	if (pm_runtime_suspended(dev))
9921 		goto out;
9922 
9923 	ret = __ufshcd_wl_suspend(hba, UFS_SYSTEM_PM);
9924 	if (ret) {
9925 		dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__,  ret);
9926 		up(&hba->host_sem);
9927 	}
9928 
9929 out:
9930 	if (!ret)
9931 		hba->is_sys_suspended = true;
9932 	trace_ufshcd_wl_suspend(dev_name(dev), ret,
9933 		ktime_to_us(ktime_sub(ktime_get(), start)),
9934 		hba->curr_dev_pwr_mode, hba->uic_link_state);
9935 
9936 	return ret;
9937 }
9938 
9939 static int ufshcd_wl_resume(struct device *dev)
9940 {
9941 	struct scsi_device *sdev = to_scsi_device(dev);
9942 	struct ufs_hba *hba;
9943 	int ret = 0;
9944 	ktime_t start = ktime_get();
9945 
9946 	hba = shost_priv(sdev->host);
9947 
9948 	if (pm_runtime_suspended(dev))
9949 		goto out;
9950 
9951 	ret = __ufshcd_wl_resume(hba, UFS_SYSTEM_PM);
9952 	if (ret)
9953 		dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
9954 out:
9955 	trace_ufshcd_wl_resume(dev_name(dev), ret,
9956 		ktime_to_us(ktime_sub(ktime_get(), start)),
9957 		hba->curr_dev_pwr_mode, hba->uic_link_state);
9958 	if (!ret)
9959 		hba->is_sys_suspended = false;
9960 	hba->system_suspending = false;
9961 	up(&hba->host_sem);
9962 	return ret;
9963 }
9964 #endif
9965 
9966 /**
9967  * ufshcd_suspend - helper function for suspend operations
9968  * @hba: per adapter instance
9969  *
9970  * This function will put disable irqs, turn off clocks
9971  * and set vreg and hba-vreg in lpm mode.
9972  *
9973  * Return: 0 upon success; < 0 upon failure.
9974  */
9975 static int ufshcd_suspend(struct ufs_hba *hba)
9976 {
9977 	int ret;
9978 
9979 	if (!hba->is_powered)
9980 		return 0;
9981 	/*
9982 	 * Disable the host irq as host controller as there won't be any
9983 	 * host controller transaction expected till resume.
9984 	 */
9985 	ufshcd_disable_irq(hba);
9986 	ret = ufshcd_setup_clocks(hba, false);
9987 	if (ret) {
9988 		ufshcd_enable_irq(hba);
9989 		return ret;
9990 	}
9991 	if (ufshcd_is_clkgating_allowed(hba)) {
9992 		hba->clk_gating.state = CLKS_OFF;
9993 		trace_ufshcd_clk_gating(dev_name(hba->dev),
9994 					hba->clk_gating.state);
9995 	}
9996 
9997 	ufshcd_vreg_set_lpm(hba);
9998 	/* Put the host controller in low power mode if possible */
9999 	ufshcd_hba_vreg_set_lpm(hba);
10000 	ufshcd_pm_qos_update(hba, false);
10001 	return ret;
10002 }
10003 
10004 #ifdef CONFIG_PM
10005 /**
10006  * ufshcd_resume - helper function for resume operations
10007  * @hba: per adapter instance
10008  *
10009  * This function basically turns on the regulators, clocks and
10010  * irqs of the hba.
10011  *
10012  * Return: 0 for success and non-zero for failure.
10013  */
10014 static int ufshcd_resume(struct ufs_hba *hba)
10015 {
10016 	int ret;
10017 
10018 	if (!hba->is_powered)
10019 		return 0;
10020 
10021 	ufshcd_hba_vreg_set_hpm(hba);
10022 	ret = ufshcd_vreg_set_hpm(hba);
10023 	if (ret)
10024 		goto out;
10025 
10026 	/* Make sure clocks are enabled before accessing controller */
10027 	ret = ufshcd_setup_clocks(hba, true);
10028 	if (ret)
10029 		goto disable_vreg;
10030 
10031 	/* enable the host irq as host controller would be active soon */
10032 	ufshcd_enable_irq(hba);
10033 
10034 	goto out;
10035 
10036 disable_vreg:
10037 	ufshcd_vreg_set_lpm(hba);
10038 out:
10039 	if (ret)
10040 		ufshcd_update_evt_hist(hba, UFS_EVT_RESUME_ERR, (u32)ret);
10041 	return ret;
10042 }
10043 #endif /* CONFIG_PM */
10044 
10045 #ifdef CONFIG_PM_SLEEP
10046 /**
10047  * ufshcd_system_suspend - system suspend callback
10048  * @dev: Device associated with the UFS controller.
10049  *
10050  * Executed before putting the system into a sleep state in which the contents
10051  * of main memory are preserved.
10052  *
10053  * Return: 0 for success and non-zero for failure.
10054  */
10055 int ufshcd_system_suspend(struct device *dev)
10056 {
10057 	struct ufs_hba *hba = dev_get_drvdata(dev);
10058 	int ret = 0;
10059 	ktime_t start = ktime_get();
10060 
10061 	if (pm_runtime_suspended(hba->dev))
10062 		goto out;
10063 
10064 	ret = ufshcd_suspend(hba);
10065 out:
10066 	trace_ufshcd_system_suspend(dev_name(hba->dev), ret,
10067 		ktime_to_us(ktime_sub(ktime_get(), start)),
10068 		hba->curr_dev_pwr_mode, hba->uic_link_state);
10069 	return ret;
10070 }
10071 EXPORT_SYMBOL(ufshcd_system_suspend);
10072 
10073 /**
10074  * ufshcd_system_resume - system resume callback
10075  * @dev: Device associated with the UFS controller.
10076  *
10077  * Executed after waking the system up from a sleep state in which the contents
10078  * of main memory were preserved.
10079  *
10080  * Return: 0 for success and non-zero for failure.
10081  */
10082 int ufshcd_system_resume(struct device *dev)
10083 {
10084 	struct ufs_hba *hba = dev_get_drvdata(dev);
10085 	ktime_t start = ktime_get();
10086 	int ret = 0;
10087 
10088 	if (pm_runtime_suspended(hba->dev))
10089 		goto out;
10090 
10091 	ret = ufshcd_resume(hba);
10092 
10093 out:
10094 	trace_ufshcd_system_resume(dev_name(hba->dev), ret,
10095 		ktime_to_us(ktime_sub(ktime_get(), start)),
10096 		hba->curr_dev_pwr_mode, hba->uic_link_state);
10097 
10098 	return ret;
10099 }
10100 EXPORT_SYMBOL(ufshcd_system_resume);
10101 #endif /* CONFIG_PM_SLEEP */
10102 
10103 #ifdef CONFIG_PM
10104 /**
10105  * ufshcd_runtime_suspend - runtime suspend callback
10106  * @dev: Device associated with the UFS controller.
10107  *
10108  * Check the description of ufshcd_suspend() function for more details.
10109  *
10110  * Return: 0 for success and non-zero for failure.
10111  */
10112 int ufshcd_runtime_suspend(struct device *dev)
10113 {
10114 	struct ufs_hba *hba = dev_get_drvdata(dev);
10115 	int ret;
10116 	ktime_t start = ktime_get();
10117 
10118 	ret = ufshcd_suspend(hba);
10119 
10120 	trace_ufshcd_runtime_suspend(dev_name(hba->dev), ret,
10121 		ktime_to_us(ktime_sub(ktime_get(), start)),
10122 		hba->curr_dev_pwr_mode, hba->uic_link_state);
10123 	return ret;
10124 }
10125 EXPORT_SYMBOL(ufshcd_runtime_suspend);
10126 
10127 /**
10128  * ufshcd_runtime_resume - runtime resume routine
10129  * @dev: Device associated with the UFS controller.
10130  *
10131  * This function basically brings controller
10132  * to active state. Following operations are done in this function:
10133  *
10134  * 1. Turn on all the controller related clocks
10135  * 2. Turn ON VCC rail
10136  *
10137  * Return: 0 upon success; < 0 upon failure.
10138  */
10139 int ufshcd_runtime_resume(struct device *dev)
10140 {
10141 	struct ufs_hba *hba = dev_get_drvdata(dev);
10142 	int ret;
10143 	ktime_t start = ktime_get();
10144 
10145 	ret = ufshcd_resume(hba);
10146 
10147 	trace_ufshcd_runtime_resume(dev_name(hba->dev), ret,
10148 		ktime_to_us(ktime_sub(ktime_get(), start)),
10149 		hba->curr_dev_pwr_mode, hba->uic_link_state);
10150 	return ret;
10151 }
10152 EXPORT_SYMBOL(ufshcd_runtime_resume);
10153 #endif /* CONFIG_PM */
10154 
10155 static void ufshcd_wl_shutdown(struct device *dev)
10156 {
10157 	struct scsi_device *sdev = to_scsi_device(dev);
10158 	struct ufs_hba *hba = shost_priv(sdev->host);
10159 
10160 	down(&hba->host_sem);
10161 	hba->shutting_down = true;
10162 	up(&hba->host_sem);
10163 
10164 	/* Turn on everything while shutting down */
10165 	ufshcd_rpm_get_sync(hba);
10166 	scsi_device_quiesce(sdev);
10167 	shost_for_each_device(sdev, hba->host) {
10168 		if (sdev == hba->ufs_device_wlun)
10169 			continue;
10170 		mutex_lock(&sdev->state_mutex);
10171 		scsi_device_set_state(sdev, SDEV_OFFLINE);
10172 		mutex_unlock(&sdev->state_mutex);
10173 	}
10174 	__ufshcd_wl_suspend(hba, UFS_SHUTDOWN_PM);
10175 
10176 	/*
10177 	 * Next, turn off the UFS controller and the UFS regulators. Disable
10178 	 * clocks.
10179 	 */
10180 	if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba))
10181 		ufshcd_suspend(hba);
10182 
10183 	hba->is_powered = false;
10184 }
10185 
10186 /**
10187  * ufshcd_remove - de-allocate SCSI host and host memory space
10188  *		data structure memory
10189  * @hba: per adapter instance
10190  */
10191 void ufshcd_remove(struct ufs_hba *hba)
10192 {
10193 	if (hba->ufs_device_wlun)
10194 		ufshcd_rpm_get_sync(hba);
10195 	ufs_hwmon_remove(hba);
10196 	ufs_bsg_remove(hba);
10197 	ufs_sysfs_remove_nodes(hba->dev);
10198 	blk_mq_destroy_queue(hba->tmf_queue);
10199 	blk_put_queue(hba->tmf_queue);
10200 	blk_mq_free_tag_set(&hba->tmf_tag_set);
10201 	if (hba->scsi_host_added)
10202 		scsi_remove_host(hba->host);
10203 	/* disable interrupts */
10204 	ufshcd_disable_intr(hba, hba->intr_mask);
10205 	ufshcd_hba_stop(hba);
10206 	ufshcd_hba_exit(hba);
10207 }
10208 EXPORT_SYMBOL_GPL(ufshcd_remove);
10209 
10210 #ifdef CONFIG_PM_SLEEP
10211 int ufshcd_system_freeze(struct device *dev)
10212 {
10213 
10214 	return ufshcd_system_suspend(dev);
10215 
10216 }
10217 EXPORT_SYMBOL_GPL(ufshcd_system_freeze);
10218 
10219 int ufshcd_system_restore(struct device *dev)
10220 {
10221 
10222 	struct ufs_hba *hba = dev_get_drvdata(dev);
10223 	int ret;
10224 
10225 	ret = ufshcd_system_resume(dev);
10226 	if (ret)
10227 		return ret;
10228 
10229 	/* Configure UTRL and UTMRL base address registers */
10230 	ufshcd_writel(hba, lower_32_bits(hba->utrdl_dma_addr),
10231 			REG_UTP_TRANSFER_REQ_LIST_BASE_L);
10232 	ufshcd_writel(hba, upper_32_bits(hba->utrdl_dma_addr),
10233 			REG_UTP_TRANSFER_REQ_LIST_BASE_H);
10234 	ufshcd_writel(hba, lower_32_bits(hba->utmrdl_dma_addr),
10235 			REG_UTP_TASK_REQ_LIST_BASE_L);
10236 	ufshcd_writel(hba, upper_32_bits(hba->utmrdl_dma_addr),
10237 			REG_UTP_TASK_REQ_LIST_BASE_H);
10238 	/*
10239 	 * Make sure that UTRL and UTMRL base address registers
10240 	 * are updated with the latest queue addresses. Only after
10241 	 * updating these addresses, we can queue the new commands.
10242 	 */
10243 	ufshcd_readl(hba, REG_UTP_TASK_REQ_LIST_BASE_H);
10244 
10245 	return 0;
10246 
10247 }
10248 EXPORT_SYMBOL_GPL(ufshcd_system_restore);
10249 
10250 int ufshcd_system_thaw(struct device *dev)
10251 {
10252 	return ufshcd_system_resume(dev);
10253 }
10254 EXPORT_SYMBOL_GPL(ufshcd_system_thaw);
10255 #endif /* CONFIG_PM_SLEEP  */
10256 
10257 /**
10258  * ufshcd_dealloc_host - deallocate Host Bus Adapter (HBA)
10259  * @hba: pointer to Host Bus Adapter (HBA)
10260  */
10261 void ufshcd_dealloc_host(struct ufs_hba *hba)
10262 {
10263 	scsi_host_put(hba->host);
10264 }
10265 EXPORT_SYMBOL_GPL(ufshcd_dealloc_host);
10266 
10267 /**
10268  * ufshcd_set_dma_mask - Set dma mask based on the controller
10269  *			 addressing capability
10270  * @hba: per adapter instance
10271  *
10272  * Return: 0 for success, non-zero for failure.
10273  */
10274 static int ufshcd_set_dma_mask(struct ufs_hba *hba)
10275 {
10276 	if (hba->vops && hba->vops->set_dma_mask)
10277 		return hba->vops->set_dma_mask(hba);
10278 	if (hba->capabilities & MASK_64_ADDRESSING_SUPPORT) {
10279 		if (!dma_set_mask_and_coherent(hba->dev, DMA_BIT_MASK(64)))
10280 			return 0;
10281 	}
10282 	return dma_set_mask_and_coherent(hba->dev, DMA_BIT_MASK(32));
10283 }
10284 
10285 /**
10286  * ufshcd_alloc_host - allocate Host Bus Adapter (HBA)
10287  * @dev: pointer to device handle
10288  * @hba_handle: driver private handle
10289  *
10290  * Return: 0 on success, non-zero value on failure.
10291  */
10292 int ufshcd_alloc_host(struct device *dev, struct ufs_hba **hba_handle)
10293 {
10294 	struct Scsi_Host *host;
10295 	struct ufs_hba *hba;
10296 	int err = 0;
10297 
10298 	if (!dev) {
10299 		dev_err(dev,
10300 		"Invalid memory reference for dev is NULL\n");
10301 		err = -ENODEV;
10302 		goto out_error;
10303 	}
10304 
10305 	host = scsi_host_alloc(&ufshcd_driver_template,
10306 				sizeof(struct ufs_hba));
10307 	if (!host) {
10308 		dev_err(dev, "scsi_host_alloc failed\n");
10309 		err = -ENOMEM;
10310 		goto out_error;
10311 	}
10312 	host->nr_maps = HCTX_TYPE_POLL + 1;
10313 	hba = shost_priv(host);
10314 	hba->host = host;
10315 	hba->dev = dev;
10316 	hba->dev_ref_clk_freq = REF_CLK_FREQ_INVAL;
10317 	hba->nop_out_timeout = NOP_OUT_TIMEOUT;
10318 	ufshcd_set_sg_entry_size(hba, sizeof(struct ufshcd_sg_entry));
10319 	INIT_LIST_HEAD(&hba->clk_list_head);
10320 	spin_lock_init(&hba->outstanding_lock);
10321 
10322 	*hba_handle = hba;
10323 
10324 out_error:
10325 	return err;
10326 }
10327 EXPORT_SYMBOL(ufshcd_alloc_host);
10328 
10329 /* This function exists because blk_mq_alloc_tag_set() requires this. */
10330 static blk_status_t ufshcd_queue_tmf(struct blk_mq_hw_ctx *hctx,
10331 				     const struct blk_mq_queue_data *qd)
10332 {
10333 	WARN_ON_ONCE(true);
10334 	return BLK_STS_NOTSUPP;
10335 }
10336 
10337 static const struct blk_mq_ops ufshcd_tmf_ops = {
10338 	.queue_rq = ufshcd_queue_tmf,
10339 };
10340 
10341 static int ufshcd_add_scsi_host(struct ufs_hba *hba)
10342 {
10343 	int err;
10344 
10345 	if (is_mcq_supported(hba)) {
10346 		ufshcd_mcq_enable(hba);
10347 		err = ufshcd_alloc_mcq(hba);
10348 		if (!err) {
10349 			ufshcd_config_mcq(hba);
10350 		} else {
10351 			/* Continue with SDB mode */
10352 			ufshcd_mcq_disable(hba);
10353 			use_mcq_mode = false;
10354 			dev_err(hba->dev, "MCQ mode is disabled, err=%d\n",
10355 				err);
10356 		}
10357 	}
10358 	if (!is_mcq_supported(hba) && !hba->lsdb_sup) {
10359 		dev_err(hba->dev,
10360 			"%s: failed to initialize (legacy doorbell mode not supported)\n",
10361 			__func__);
10362 		return -EINVAL;
10363 	}
10364 
10365 	err = scsi_add_host(hba->host, hba->dev);
10366 	if (err) {
10367 		dev_err(hba->dev, "scsi_add_host failed\n");
10368 		return err;
10369 	}
10370 	hba->scsi_host_added = true;
10371 
10372 	hba->tmf_tag_set = (struct blk_mq_tag_set) {
10373 		.nr_hw_queues	= 1,
10374 		.queue_depth	= hba->nutmrs,
10375 		.ops		= &ufshcd_tmf_ops,
10376 		.flags		= BLK_MQ_F_NO_SCHED,
10377 	};
10378 	err = blk_mq_alloc_tag_set(&hba->tmf_tag_set);
10379 	if (err < 0)
10380 		goto remove_scsi_host;
10381 	hba->tmf_queue = blk_mq_alloc_queue(&hba->tmf_tag_set, NULL, NULL);
10382 	if (IS_ERR(hba->tmf_queue)) {
10383 		err = PTR_ERR(hba->tmf_queue);
10384 		goto free_tmf_tag_set;
10385 	}
10386 	hba->tmf_rqs = devm_kcalloc(hba->dev, hba->nutmrs,
10387 				    sizeof(*hba->tmf_rqs), GFP_KERNEL);
10388 	if (!hba->tmf_rqs) {
10389 		err = -ENOMEM;
10390 		goto free_tmf_queue;
10391 	}
10392 
10393 	return 0;
10394 
10395 free_tmf_queue:
10396 	blk_mq_destroy_queue(hba->tmf_queue);
10397 	blk_put_queue(hba->tmf_queue);
10398 
10399 free_tmf_tag_set:
10400 	blk_mq_free_tag_set(&hba->tmf_tag_set);
10401 
10402 remove_scsi_host:
10403 	if (hba->scsi_host_added)
10404 		scsi_remove_host(hba->host);
10405 
10406 	return err;
10407 }
10408 
10409 /**
10410  * ufshcd_init - Driver initialization routine
10411  * @hba: per-adapter instance
10412  * @mmio_base: base register address
10413  * @irq: Interrupt line of device
10414  *
10415  * Return: 0 on success, non-zero value on failure.
10416  */
10417 int ufshcd_init(struct ufs_hba *hba, void __iomem *mmio_base, unsigned int irq)
10418 {
10419 	int err;
10420 	struct Scsi_Host *host = hba->host;
10421 	struct device *dev = hba->dev;
10422 
10423 	/*
10424 	 * dev_set_drvdata() must be called before any callbacks are registered
10425 	 * that use dev_get_drvdata() (frequency scaling, clock scaling, hwmon,
10426 	 * sysfs).
10427 	 */
10428 	dev_set_drvdata(dev, hba);
10429 
10430 	if (!mmio_base) {
10431 		dev_err(hba->dev,
10432 		"Invalid memory reference for mmio_base is NULL\n");
10433 		err = -ENODEV;
10434 		goto out_error;
10435 	}
10436 
10437 	hba->mmio_base = mmio_base;
10438 	hba->irq = irq;
10439 	hba->vps = &ufs_hba_vps;
10440 
10441 	err = ufshcd_hba_init(hba);
10442 	if (err)
10443 		goto out_error;
10444 
10445 	/* Read capabilities registers */
10446 	err = ufshcd_hba_capabilities(hba);
10447 	if (err)
10448 		goto out_disable;
10449 
10450 	/* Get UFS version supported by the controller */
10451 	hba->ufs_version = ufshcd_get_ufs_version(hba);
10452 
10453 	/* Get Interrupt bit mask per version */
10454 	hba->intr_mask = ufshcd_get_intr_mask(hba);
10455 
10456 	err = ufshcd_set_dma_mask(hba);
10457 	if (err) {
10458 		dev_err(hba->dev, "set dma mask failed\n");
10459 		goto out_disable;
10460 	}
10461 
10462 	/* Allocate memory for host memory space */
10463 	err = ufshcd_memory_alloc(hba);
10464 	if (err) {
10465 		dev_err(hba->dev, "Memory allocation failed\n");
10466 		goto out_disable;
10467 	}
10468 
10469 	/* Configure LRB */
10470 	ufshcd_host_memory_configure(hba);
10471 
10472 	host->can_queue = hba->nutrs - UFSHCD_NUM_RESERVED;
10473 	host->cmd_per_lun = hba->nutrs - UFSHCD_NUM_RESERVED;
10474 	host->max_id = UFSHCD_MAX_ID;
10475 	host->max_lun = UFS_MAX_LUNS;
10476 	host->max_channel = UFSHCD_MAX_CHANNEL;
10477 	host->unique_id = host->host_no;
10478 	host->max_cmd_len = UFS_CDB_SIZE;
10479 	host->queuecommand_may_block = !!(hba->caps & UFSHCD_CAP_CLK_GATING);
10480 
10481 	/* Use default RPM delay if host not set */
10482 	if (host->rpm_autosuspend_delay == 0)
10483 		host->rpm_autosuspend_delay = RPM_AUTOSUSPEND_DELAY_MS;
10484 
10485 	hba->max_pwr_info.is_valid = false;
10486 
10487 	/* Initialize work queues */
10488 	hba->eh_wq = alloc_ordered_workqueue("ufs_eh_wq_%d", WQ_MEM_RECLAIM,
10489 					     hba->host->host_no);
10490 	if (!hba->eh_wq) {
10491 		dev_err(hba->dev, "%s: failed to create eh workqueue\n",
10492 			__func__);
10493 		err = -ENOMEM;
10494 		goto out_disable;
10495 	}
10496 	INIT_WORK(&hba->eh_work, ufshcd_err_handler);
10497 	INIT_WORK(&hba->eeh_work, ufshcd_exception_event_handler);
10498 
10499 	sema_init(&hba->host_sem, 1);
10500 
10501 	/* Initialize UIC command mutex */
10502 	mutex_init(&hba->uic_cmd_mutex);
10503 
10504 	/* Initialize mutex for device management commands */
10505 	mutex_init(&hba->dev_cmd.lock);
10506 
10507 	/* Initialize mutex for exception event control */
10508 	mutex_init(&hba->ee_ctrl_mutex);
10509 
10510 	mutex_init(&hba->wb_mutex);
10511 	init_rwsem(&hba->clk_scaling_lock);
10512 
10513 	ufshcd_init_clk_gating(hba);
10514 
10515 	ufshcd_init_clk_scaling(hba);
10516 
10517 	/*
10518 	 * In order to avoid any spurious interrupt immediately after
10519 	 * registering UFS controller interrupt handler, clear any pending UFS
10520 	 * interrupt status and disable all the UFS interrupts.
10521 	 */
10522 	ufshcd_writel(hba, ufshcd_readl(hba, REG_INTERRUPT_STATUS),
10523 		      REG_INTERRUPT_STATUS);
10524 	ufshcd_writel(hba, 0, REG_INTERRUPT_ENABLE);
10525 	/*
10526 	 * Make sure that UFS interrupts are disabled and any pending interrupt
10527 	 * status is cleared before registering UFS interrupt handler.
10528 	 */
10529 	ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
10530 
10531 	/* IRQ registration */
10532 	err = devm_request_irq(dev, irq, ufshcd_intr, IRQF_SHARED, UFSHCD, hba);
10533 	if (err) {
10534 		dev_err(hba->dev, "request irq failed\n");
10535 		goto out_disable;
10536 	} else {
10537 		hba->is_irq_enabled = true;
10538 	}
10539 
10540 	/* Reset the attached device */
10541 	ufshcd_device_reset(hba);
10542 
10543 	ufshcd_init_crypto(hba);
10544 
10545 	/* Host controller enable */
10546 	err = ufshcd_hba_enable(hba);
10547 	if (err) {
10548 		dev_err(hba->dev, "Host controller enable failed\n");
10549 		ufshcd_print_evt_hist(hba);
10550 		ufshcd_print_host_state(hba);
10551 		goto out_disable;
10552 	}
10553 
10554 	/*
10555 	 * Set the default power management level for runtime and system PM.
10556 	 * Default power saving mode is to keep UFS link in Hibern8 state
10557 	 * and UFS device in sleep state.
10558 	 */
10559 	hba->rpm_lvl = ufs_get_desired_pm_lvl_for_dev_link_state(
10560 						UFS_SLEEP_PWR_MODE,
10561 						UIC_LINK_HIBERN8_STATE);
10562 	hba->spm_lvl = ufs_get_desired_pm_lvl_for_dev_link_state(
10563 						UFS_SLEEP_PWR_MODE,
10564 						UIC_LINK_HIBERN8_STATE);
10565 
10566 	INIT_DELAYED_WORK(&hba->rpm_dev_flush_recheck_work, ufshcd_rpm_dev_flush_recheck_work);
10567 	INIT_DELAYED_WORK(&hba->ufs_rtc_update_work, ufshcd_rtc_work);
10568 
10569 	/* Set the default auto-hiberate idle timer value to 150 ms */
10570 	if (ufshcd_is_auto_hibern8_supported(hba) && !hba->ahit) {
10571 		hba->ahit = FIELD_PREP(UFSHCI_AHIBERN8_TIMER_MASK, 150) |
10572 			    FIELD_PREP(UFSHCI_AHIBERN8_SCALE_MASK, 3);
10573 	}
10574 
10575 	/* Hold auto suspend until async scan completes */
10576 	pm_runtime_get_sync(dev);
10577 
10578 	/*
10579 	 * We are assuming that device wasn't put in sleep/power-down
10580 	 * state exclusively during the boot stage before kernel.
10581 	 * This assumption helps avoid doing link startup twice during
10582 	 * ufshcd_probe_hba().
10583 	 */
10584 	ufshcd_set_ufs_dev_active(hba);
10585 
10586 	/* Initialize hba, detect and initialize UFS device */
10587 	ktime_t probe_start = ktime_get();
10588 
10589 	hba->ufshcd_state = UFSHCD_STATE_RESET;
10590 
10591 	err = ufshcd_link_startup(hba);
10592 	if (err)
10593 		goto out_disable;
10594 
10595 	if (hba->quirks & UFSHCD_QUIRK_SKIP_PH_CONFIGURATION)
10596 		goto initialized;
10597 
10598 	/* Debug counters initialization */
10599 	ufshcd_clear_dbg_ufs_stats(hba);
10600 
10601 	/* UniPro link is active now */
10602 	ufshcd_set_link_active(hba);
10603 
10604 	/* Verify device initialization by sending NOP OUT UPIU */
10605 	err = ufshcd_verify_dev_init(hba);
10606 	if (err)
10607 		goto out_disable;
10608 
10609 	/* Initiate UFS initialization, and waiting until completion */
10610 	err = ufshcd_complete_dev_init(hba);
10611 	if (err)
10612 		goto out_disable;
10613 
10614 	err = ufshcd_device_params_init(hba);
10615 	if (err)
10616 		goto out_disable;
10617 
10618 	err = ufshcd_post_device_init(hba);
10619 
10620 initialized:
10621 	ufshcd_process_probe_result(hba, probe_start, err);
10622 	if (err)
10623 		goto out_disable;
10624 
10625 	err = ufshcd_add_scsi_host(hba);
10626 	if (err)
10627 		goto out_disable;
10628 
10629 	async_schedule(ufshcd_async_scan, hba);
10630 	ufs_sysfs_add_nodes(hba->dev);
10631 
10632 	device_enable_async_suspend(dev);
10633 	ufshcd_pm_qos_init(hba);
10634 	return 0;
10635 
10636 out_disable:
10637 	hba->is_irq_enabled = false;
10638 	ufshcd_hba_exit(hba);
10639 out_error:
10640 	return err;
10641 }
10642 EXPORT_SYMBOL_GPL(ufshcd_init);
10643 
10644 void ufshcd_resume_complete(struct device *dev)
10645 {
10646 	struct ufs_hba *hba = dev_get_drvdata(dev);
10647 
10648 	if (hba->complete_put) {
10649 		ufshcd_rpm_put(hba);
10650 		hba->complete_put = false;
10651 	}
10652 }
10653 EXPORT_SYMBOL_GPL(ufshcd_resume_complete);
10654 
10655 static bool ufshcd_rpm_ok_for_spm(struct ufs_hba *hba)
10656 {
10657 	struct device *dev = &hba->ufs_device_wlun->sdev_gendev;
10658 	enum ufs_dev_pwr_mode dev_pwr_mode;
10659 	enum uic_link_state link_state;
10660 	unsigned long flags;
10661 	bool res;
10662 
10663 	spin_lock_irqsave(&dev->power.lock, flags);
10664 	dev_pwr_mode = ufs_get_pm_lvl_to_dev_pwr_mode(hba->spm_lvl);
10665 	link_state = ufs_get_pm_lvl_to_link_pwr_state(hba->spm_lvl);
10666 	res = pm_runtime_suspended(dev) &&
10667 	      hba->curr_dev_pwr_mode == dev_pwr_mode &&
10668 	      hba->uic_link_state == link_state &&
10669 	      !hba->dev_info.b_rpm_dev_flush_capable;
10670 	spin_unlock_irqrestore(&dev->power.lock, flags);
10671 
10672 	return res;
10673 }
10674 
10675 int __ufshcd_suspend_prepare(struct device *dev, bool rpm_ok_for_spm)
10676 {
10677 	struct ufs_hba *hba = dev_get_drvdata(dev);
10678 	int ret;
10679 
10680 	/*
10681 	 * SCSI assumes that runtime-pm and system-pm for scsi drivers
10682 	 * are same. And it doesn't wake up the device for system-suspend
10683 	 * if it's runtime suspended. But ufs doesn't follow that.
10684 	 * Refer ufshcd_resume_complete()
10685 	 */
10686 	if (hba->ufs_device_wlun) {
10687 		/* Prevent runtime suspend */
10688 		ufshcd_rpm_get_noresume(hba);
10689 		/*
10690 		 * Check if already runtime suspended in same state as system
10691 		 * suspend would be.
10692 		 */
10693 		if (!rpm_ok_for_spm || !ufshcd_rpm_ok_for_spm(hba)) {
10694 			/* RPM state is not ok for SPM, so runtime resume */
10695 			ret = ufshcd_rpm_resume(hba);
10696 			if (ret < 0 && ret != -EACCES) {
10697 				ufshcd_rpm_put(hba);
10698 				return ret;
10699 			}
10700 		}
10701 		hba->complete_put = true;
10702 	}
10703 	return 0;
10704 }
10705 EXPORT_SYMBOL_GPL(__ufshcd_suspend_prepare);
10706 
10707 int ufshcd_suspend_prepare(struct device *dev)
10708 {
10709 	return __ufshcd_suspend_prepare(dev, true);
10710 }
10711 EXPORT_SYMBOL_GPL(ufshcd_suspend_prepare);
10712 
10713 #ifdef CONFIG_PM_SLEEP
10714 static int ufshcd_wl_poweroff(struct device *dev)
10715 {
10716 	struct scsi_device *sdev = to_scsi_device(dev);
10717 	struct ufs_hba *hba = shost_priv(sdev->host);
10718 
10719 	__ufshcd_wl_suspend(hba, UFS_SHUTDOWN_PM);
10720 	return 0;
10721 }
10722 #endif
10723 
10724 static int ufshcd_wl_probe(struct device *dev)
10725 {
10726 	struct scsi_device *sdev = to_scsi_device(dev);
10727 
10728 	if (!is_device_wlun(sdev))
10729 		return -ENODEV;
10730 
10731 	blk_pm_runtime_init(sdev->request_queue, dev);
10732 	pm_runtime_set_autosuspend_delay(dev, 0);
10733 	pm_runtime_allow(dev);
10734 
10735 	return  0;
10736 }
10737 
10738 static int ufshcd_wl_remove(struct device *dev)
10739 {
10740 	pm_runtime_forbid(dev);
10741 	return 0;
10742 }
10743 
10744 static const struct dev_pm_ops ufshcd_wl_pm_ops = {
10745 #ifdef CONFIG_PM_SLEEP
10746 	.suspend = ufshcd_wl_suspend,
10747 	.resume = ufshcd_wl_resume,
10748 	.freeze = ufshcd_wl_suspend,
10749 	.thaw = ufshcd_wl_resume,
10750 	.poweroff = ufshcd_wl_poweroff,
10751 	.restore = ufshcd_wl_resume,
10752 #endif
10753 	SET_RUNTIME_PM_OPS(ufshcd_wl_runtime_suspend, ufshcd_wl_runtime_resume, NULL)
10754 };
10755 
10756 static void ufshcd_check_header_layout(void)
10757 {
10758 	/*
10759 	 * gcc compilers before version 10 cannot do constant-folding for
10760 	 * sub-byte bitfields. Hence skip the layout checks for gcc 9 and
10761 	 * before.
10762 	 */
10763 	if (IS_ENABLED(CONFIG_CC_IS_GCC) && CONFIG_GCC_VERSION < 100000)
10764 		return;
10765 
10766 	BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10767 				.cci = 3})[0] != 3);
10768 
10769 	BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10770 				.ehs_length = 2})[1] != 2);
10771 
10772 	BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10773 				.enable_crypto = 1})[2]
10774 		     != 0x80);
10775 
10776 	BUILD_BUG_ON((((u8 *)&(struct request_desc_header){
10777 					.command_type = 5,
10778 					.data_direction = 3,
10779 					.interrupt = 1,
10780 				})[3]) != ((5 << 4) | (3 << 1) | 1));
10781 
10782 	BUILD_BUG_ON(((__le32 *)&(struct request_desc_header){
10783 				.dunl = cpu_to_le32(0xdeadbeef)})[1] !=
10784 		cpu_to_le32(0xdeadbeef));
10785 
10786 	BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10787 				.ocs = 4})[8] != 4);
10788 
10789 	BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10790 				.cds = 5})[9] != 5);
10791 
10792 	BUILD_BUG_ON(((__le32 *)&(struct request_desc_header){
10793 				.dunu = cpu_to_le32(0xbadcafe)})[3] !=
10794 		cpu_to_le32(0xbadcafe));
10795 
10796 	BUILD_BUG_ON(((u8 *)&(struct utp_upiu_header){
10797 			     .iid = 0xf })[4] != 0xf0);
10798 
10799 	BUILD_BUG_ON(((u8 *)&(struct utp_upiu_header){
10800 			     .command_set_type = 0xf })[4] != 0xf);
10801 }
10802 
10803 /*
10804  * ufs_dev_wlun_template - describes ufs device wlun
10805  * ufs-device wlun - used to send pm commands
10806  * All luns are consumers of ufs-device wlun.
10807  *
10808  * Currently, no sd driver is present for wluns.
10809  * Hence the no specific pm operations are performed.
10810  * With ufs design, SSU should be sent to ufs-device wlun.
10811  * Hence register a scsi driver for ufs wluns only.
10812  */
10813 static struct scsi_driver ufs_dev_wlun_template = {
10814 	.gendrv = {
10815 		.name = "ufs_device_wlun",
10816 		.probe = ufshcd_wl_probe,
10817 		.remove = ufshcd_wl_remove,
10818 		.pm = &ufshcd_wl_pm_ops,
10819 		.shutdown = ufshcd_wl_shutdown,
10820 	},
10821 };
10822 
10823 static int __init ufshcd_core_init(void)
10824 {
10825 	int ret;
10826 
10827 	ufshcd_check_header_layout();
10828 
10829 	ufs_debugfs_init();
10830 
10831 	ret = scsi_register_driver(&ufs_dev_wlun_template.gendrv);
10832 	if (ret)
10833 		ufs_debugfs_exit();
10834 	return ret;
10835 }
10836 
10837 static void __exit ufshcd_core_exit(void)
10838 {
10839 	ufs_debugfs_exit();
10840 	scsi_unregister_driver(&ufs_dev_wlun_template.gendrv);
10841 }
10842 
10843 module_init(ufshcd_core_init);
10844 module_exit(ufshcd_core_exit);
10845 
10846 MODULE_AUTHOR("Santosh Yaragnavi <santosh.sy@samsung.com>");
10847 MODULE_AUTHOR("Vinayak Holikatti <h.vinayak@samsung.com>");
10848 MODULE_DESCRIPTION("Generic UFS host controller driver Core");
10849 MODULE_SOFTDEP("pre: governor_simpleondemand");
10850 MODULE_LICENSE("GPL");
10851