1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Universal Flash Storage Host controller driver Core 4 * Copyright (C) 2011-2013 Samsung India Software Operations 5 * Copyright (c) 2013-2016, The Linux Foundation. All rights reserved. 6 * 7 * Authors: 8 * Santosh Yaraganavi <santosh.sy@samsung.com> 9 * Vinayak Holikatti <h.vinayak@samsung.com> 10 */ 11 12 #include <linux/async.h> 13 #include <linux/devfreq.h> 14 #include <linux/nls.h> 15 #include <linux/of.h> 16 #include <linux/bitfield.h> 17 #include <linux/blk-pm.h> 18 #include <linux/blkdev.h> 19 #include <linux/clk.h> 20 #include <linux/delay.h> 21 #include <linux/interrupt.h> 22 #include <linux/module.h> 23 #include <linux/pm_opp.h> 24 #include <linux/regulator/consumer.h> 25 #include <linux/sched/clock.h> 26 #include <linux/iopoll.h> 27 #include <scsi/scsi_cmnd.h> 28 #include <scsi/scsi_dbg.h> 29 #include <scsi/scsi_driver.h> 30 #include <scsi/scsi_eh.h> 31 #include "ufshcd-priv.h" 32 #include <ufs/ufs_quirks.h> 33 #include <ufs/unipro.h> 34 #include "ufs-sysfs.h" 35 #include "ufs-debugfs.h" 36 #include "ufs-fault-injection.h" 37 #include "ufs_bsg.h" 38 #include "ufshcd-crypto.h" 39 #include <asm/unaligned.h> 40 41 #define CREATE_TRACE_POINTS 42 #include <trace/events/ufs.h> 43 44 #define UFSHCD_ENABLE_INTRS (UTP_TRANSFER_REQ_COMPL |\ 45 UTP_TASK_REQ_COMPL |\ 46 UFSHCD_ERROR_MASK) 47 48 #define UFSHCD_ENABLE_MCQ_INTRS (UTP_TASK_REQ_COMPL |\ 49 UFSHCD_ERROR_MASK |\ 50 MCQ_CQ_EVENT_STATUS) 51 52 53 /* UIC command timeout, unit: ms */ 54 #define UIC_CMD_TIMEOUT 500 55 56 /* NOP OUT retries waiting for NOP IN response */ 57 #define NOP_OUT_RETRIES 10 58 /* Timeout after 50 msecs if NOP OUT hangs without response */ 59 #define NOP_OUT_TIMEOUT 50 /* msecs */ 60 61 /* Query request retries */ 62 #define QUERY_REQ_RETRIES 3 63 /* Query request timeout */ 64 #define QUERY_REQ_TIMEOUT 1500 /* 1.5 seconds */ 65 66 /* Advanced RPMB request timeout */ 67 #define ADVANCED_RPMB_REQ_TIMEOUT 3000 /* 3 seconds */ 68 69 /* Task management command timeout */ 70 #define TM_CMD_TIMEOUT 100 /* msecs */ 71 72 /* maximum number of retries for a general UIC command */ 73 #define UFS_UIC_COMMAND_RETRIES 3 74 75 /* maximum number of link-startup retries */ 76 #define DME_LINKSTARTUP_RETRIES 3 77 78 /* maximum number of reset retries before giving up */ 79 #define MAX_HOST_RESET_RETRIES 5 80 81 /* Maximum number of error handler retries before giving up */ 82 #define MAX_ERR_HANDLER_RETRIES 5 83 84 /* Expose the flag value from utp_upiu_query.value */ 85 #define MASK_QUERY_UPIU_FLAG_LOC 0xFF 86 87 /* Interrupt aggregation default timeout, unit: 40us */ 88 #define INT_AGGR_DEF_TO 0x02 89 90 /* default delay of autosuspend: 2000 ms */ 91 #define RPM_AUTOSUSPEND_DELAY_MS 2000 92 93 /* Default delay of RPM device flush delayed work */ 94 #define RPM_DEV_FLUSH_RECHECK_WORK_DELAY_MS 5000 95 96 /* Default value of wait time before gating device ref clock */ 97 #define UFSHCD_REF_CLK_GATING_WAIT_US 0xFF /* microsecs */ 98 99 /* Polling time to wait for fDeviceInit */ 100 #define FDEVICEINIT_COMPL_TIMEOUT 1500 /* millisecs */ 101 102 /* Default RTC update every 10 seconds */ 103 #define UFS_RTC_UPDATE_INTERVAL_MS (10 * MSEC_PER_SEC) 104 105 /* bMaxNumOfRTT is equal to two after device manufacturing */ 106 #define DEFAULT_MAX_NUM_RTT 2 107 108 /* UFSHC 4.0 compliant HC support this mode. */ 109 static bool use_mcq_mode = true; 110 111 static bool is_mcq_supported(struct ufs_hba *hba) 112 { 113 return hba->mcq_sup && use_mcq_mode; 114 } 115 116 module_param(use_mcq_mode, bool, 0644); 117 MODULE_PARM_DESC(use_mcq_mode, "Control MCQ mode for controllers starting from UFSHCI 4.0. 1 - enable MCQ, 0 - disable MCQ. MCQ is enabled by default"); 118 119 #define ufshcd_toggle_vreg(_dev, _vreg, _on) \ 120 ({ \ 121 int _ret; \ 122 if (_on) \ 123 _ret = ufshcd_enable_vreg(_dev, _vreg); \ 124 else \ 125 _ret = ufshcd_disable_vreg(_dev, _vreg); \ 126 _ret; \ 127 }) 128 129 #define ufshcd_hex_dump(prefix_str, buf, len) do { \ 130 size_t __len = (len); \ 131 print_hex_dump(KERN_ERR, prefix_str, \ 132 __len > 4 ? DUMP_PREFIX_OFFSET : DUMP_PREFIX_NONE,\ 133 16, 4, buf, __len, false); \ 134 } while (0) 135 136 int ufshcd_dump_regs(struct ufs_hba *hba, size_t offset, size_t len, 137 const char *prefix) 138 { 139 u32 *regs; 140 size_t pos; 141 142 if (offset % 4 != 0 || len % 4 != 0) /* keep readl happy */ 143 return -EINVAL; 144 145 regs = kzalloc(len, GFP_ATOMIC); 146 if (!regs) 147 return -ENOMEM; 148 149 for (pos = 0; pos < len; pos += 4) { 150 if (offset == 0 && 151 pos >= REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER && 152 pos <= REG_UIC_ERROR_CODE_DME) 153 continue; 154 regs[pos / 4] = ufshcd_readl(hba, offset + pos); 155 } 156 157 ufshcd_hex_dump(prefix, regs, len); 158 kfree(regs); 159 160 return 0; 161 } 162 EXPORT_SYMBOL_GPL(ufshcd_dump_regs); 163 164 enum { 165 UFSHCD_MAX_CHANNEL = 0, 166 UFSHCD_MAX_ID = 1, 167 }; 168 169 static const char *const ufshcd_state_name[] = { 170 [UFSHCD_STATE_RESET] = "reset", 171 [UFSHCD_STATE_OPERATIONAL] = "operational", 172 [UFSHCD_STATE_ERROR] = "error", 173 [UFSHCD_STATE_EH_SCHEDULED_FATAL] = "eh_fatal", 174 [UFSHCD_STATE_EH_SCHEDULED_NON_FATAL] = "eh_non_fatal", 175 }; 176 177 /* UFSHCD error handling flags */ 178 enum { 179 UFSHCD_EH_IN_PROGRESS = (1 << 0), 180 }; 181 182 /* UFSHCD UIC layer error flags */ 183 enum { 184 UFSHCD_UIC_DL_PA_INIT_ERROR = (1 << 0), /* Data link layer error */ 185 UFSHCD_UIC_DL_NAC_RECEIVED_ERROR = (1 << 1), /* Data link layer error */ 186 UFSHCD_UIC_DL_TCx_REPLAY_ERROR = (1 << 2), /* Data link layer error */ 187 UFSHCD_UIC_NL_ERROR = (1 << 3), /* Network layer error */ 188 UFSHCD_UIC_TL_ERROR = (1 << 4), /* Transport Layer error */ 189 UFSHCD_UIC_DME_ERROR = (1 << 5), /* DME error */ 190 UFSHCD_UIC_PA_GENERIC_ERROR = (1 << 6), /* Generic PA error */ 191 }; 192 193 #define ufshcd_set_eh_in_progress(h) \ 194 ((h)->eh_flags |= UFSHCD_EH_IN_PROGRESS) 195 #define ufshcd_eh_in_progress(h) \ 196 ((h)->eh_flags & UFSHCD_EH_IN_PROGRESS) 197 #define ufshcd_clear_eh_in_progress(h) \ 198 ((h)->eh_flags &= ~UFSHCD_EH_IN_PROGRESS) 199 200 const struct ufs_pm_lvl_states ufs_pm_lvl_states[] = { 201 [UFS_PM_LVL_0] = {UFS_ACTIVE_PWR_MODE, UIC_LINK_ACTIVE_STATE}, 202 [UFS_PM_LVL_1] = {UFS_ACTIVE_PWR_MODE, UIC_LINK_HIBERN8_STATE}, 203 [UFS_PM_LVL_2] = {UFS_SLEEP_PWR_MODE, UIC_LINK_ACTIVE_STATE}, 204 [UFS_PM_LVL_3] = {UFS_SLEEP_PWR_MODE, UIC_LINK_HIBERN8_STATE}, 205 [UFS_PM_LVL_4] = {UFS_POWERDOWN_PWR_MODE, UIC_LINK_HIBERN8_STATE}, 206 [UFS_PM_LVL_5] = {UFS_POWERDOWN_PWR_MODE, UIC_LINK_OFF_STATE}, 207 /* 208 * For DeepSleep, the link is first put in hibern8 and then off. 209 * Leaving the link in hibern8 is not supported. 210 */ 211 [UFS_PM_LVL_6] = {UFS_DEEPSLEEP_PWR_MODE, UIC_LINK_OFF_STATE}, 212 }; 213 214 static inline enum ufs_dev_pwr_mode 215 ufs_get_pm_lvl_to_dev_pwr_mode(enum ufs_pm_level lvl) 216 { 217 return ufs_pm_lvl_states[lvl].dev_state; 218 } 219 220 static inline enum uic_link_state 221 ufs_get_pm_lvl_to_link_pwr_state(enum ufs_pm_level lvl) 222 { 223 return ufs_pm_lvl_states[lvl].link_state; 224 } 225 226 static inline enum ufs_pm_level 227 ufs_get_desired_pm_lvl_for_dev_link_state(enum ufs_dev_pwr_mode dev_state, 228 enum uic_link_state link_state) 229 { 230 enum ufs_pm_level lvl; 231 232 for (lvl = UFS_PM_LVL_0; lvl < UFS_PM_LVL_MAX; lvl++) { 233 if ((ufs_pm_lvl_states[lvl].dev_state == dev_state) && 234 (ufs_pm_lvl_states[lvl].link_state == link_state)) 235 return lvl; 236 } 237 238 /* if no match found, return the level 0 */ 239 return UFS_PM_LVL_0; 240 } 241 242 static bool ufshcd_is_ufs_dev_busy(struct ufs_hba *hba) 243 { 244 return (hba->clk_gating.active_reqs || hba->outstanding_reqs || hba->outstanding_tasks || 245 hba->active_uic_cmd || hba->uic_async_done); 246 } 247 248 static const struct ufs_dev_quirk ufs_fixups[] = { 249 /* UFS cards deviations table */ 250 { .wmanufacturerid = UFS_VENDOR_MICRON, 251 .model = UFS_ANY_MODEL, 252 .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM }, 253 { .wmanufacturerid = UFS_VENDOR_SAMSUNG, 254 .model = UFS_ANY_MODEL, 255 .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM | 256 UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE | 257 UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS }, 258 { .wmanufacturerid = UFS_VENDOR_SKHYNIX, 259 .model = UFS_ANY_MODEL, 260 .quirk = UFS_DEVICE_QUIRK_HOST_PA_SAVECONFIGTIME }, 261 { .wmanufacturerid = UFS_VENDOR_SKHYNIX, 262 .model = "hB8aL1" /*H28U62301AMR*/, 263 .quirk = UFS_DEVICE_QUIRK_HOST_VS_DEBUGSAVECONFIGTIME }, 264 { .wmanufacturerid = UFS_VENDOR_TOSHIBA, 265 .model = UFS_ANY_MODEL, 266 .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM }, 267 { .wmanufacturerid = UFS_VENDOR_TOSHIBA, 268 .model = "THGLF2G9C8KBADG", 269 .quirk = UFS_DEVICE_QUIRK_PA_TACTIVATE }, 270 { .wmanufacturerid = UFS_VENDOR_TOSHIBA, 271 .model = "THGLF2G9D8KBADG", 272 .quirk = UFS_DEVICE_QUIRK_PA_TACTIVATE }, 273 {} 274 }; 275 276 static irqreturn_t ufshcd_tmc_handler(struct ufs_hba *hba); 277 static void ufshcd_async_scan(void *data, async_cookie_t cookie); 278 static int ufshcd_reset_and_restore(struct ufs_hba *hba); 279 static int ufshcd_eh_host_reset_handler(struct scsi_cmnd *cmd); 280 static int ufshcd_clear_tm_cmd(struct ufs_hba *hba, int tag); 281 static void ufshcd_hba_exit(struct ufs_hba *hba); 282 static int ufshcd_probe_hba(struct ufs_hba *hba, bool init_dev_params); 283 static int ufshcd_setup_clocks(struct ufs_hba *hba, bool on); 284 static inline void ufshcd_add_delay_before_dme_cmd(struct ufs_hba *hba); 285 static int ufshcd_host_reset_and_restore(struct ufs_hba *hba); 286 static void ufshcd_resume_clkscaling(struct ufs_hba *hba); 287 static void ufshcd_suspend_clkscaling(struct ufs_hba *hba); 288 static int ufshcd_scale_clks(struct ufs_hba *hba, unsigned long freq, 289 bool scale_up); 290 static irqreturn_t ufshcd_intr(int irq, void *__hba); 291 static int ufshcd_change_power_mode(struct ufs_hba *hba, 292 struct ufs_pa_layer_attr *pwr_mode); 293 static int ufshcd_setup_hba_vreg(struct ufs_hba *hba, bool on); 294 static int ufshcd_setup_vreg(struct ufs_hba *hba, bool on); 295 static inline int ufshcd_config_vreg_hpm(struct ufs_hba *hba, 296 struct ufs_vreg *vreg); 297 static void ufshcd_wb_toggle_buf_flush_during_h8(struct ufs_hba *hba, 298 bool enable); 299 static void ufshcd_hba_vreg_set_lpm(struct ufs_hba *hba); 300 static void ufshcd_hba_vreg_set_hpm(struct ufs_hba *hba); 301 302 void ufshcd_enable_irq(struct ufs_hba *hba) 303 { 304 if (!hba->is_irq_enabled) { 305 enable_irq(hba->irq); 306 hba->is_irq_enabled = true; 307 } 308 } 309 EXPORT_SYMBOL_GPL(ufshcd_enable_irq); 310 311 void ufshcd_disable_irq(struct ufs_hba *hba) 312 { 313 if (hba->is_irq_enabled) { 314 disable_irq(hba->irq); 315 hba->is_irq_enabled = false; 316 } 317 } 318 EXPORT_SYMBOL_GPL(ufshcd_disable_irq); 319 320 static void ufshcd_configure_wb(struct ufs_hba *hba) 321 { 322 if (!ufshcd_is_wb_allowed(hba)) 323 return; 324 325 ufshcd_wb_toggle(hba, true); 326 327 ufshcd_wb_toggle_buf_flush_during_h8(hba, true); 328 329 if (ufshcd_is_wb_buf_flush_allowed(hba)) 330 ufshcd_wb_toggle_buf_flush(hba, true); 331 } 332 333 static void ufshcd_scsi_unblock_requests(struct ufs_hba *hba) 334 { 335 if (atomic_dec_and_test(&hba->scsi_block_reqs_cnt)) 336 scsi_unblock_requests(hba->host); 337 } 338 339 static void ufshcd_scsi_block_requests(struct ufs_hba *hba) 340 { 341 if (atomic_inc_return(&hba->scsi_block_reqs_cnt) == 1) 342 scsi_block_requests(hba->host); 343 } 344 345 static void ufshcd_add_cmd_upiu_trace(struct ufs_hba *hba, unsigned int tag, 346 enum ufs_trace_str_t str_t) 347 { 348 struct utp_upiu_req *rq = hba->lrb[tag].ucd_req_ptr; 349 struct utp_upiu_header *header; 350 351 if (!trace_ufshcd_upiu_enabled()) 352 return; 353 354 if (str_t == UFS_CMD_SEND) 355 header = &rq->header; 356 else 357 header = &hba->lrb[tag].ucd_rsp_ptr->header; 358 359 trace_ufshcd_upiu(dev_name(hba->dev), str_t, header, &rq->sc.cdb, 360 UFS_TSF_CDB); 361 } 362 363 static void ufshcd_add_query_upiu_trace(struct ufs_hba *hba, 364 enum ufs_trace_str_t str_t, 365 struct utp_upiu_req *rq_rsp) 366 { 367 if (!trace_ufshcd_upiu_enabled()) 368 return; 369 370 trace_ufshcd_upiu(dev_name(hba->dev), str_t, &rq_rsp->header, 371 &rq_rsp->qr, UFS_TSF_OSF); 372 } 373 374 static void ufshcd_add_tm_upiu_trace(struct ufs_hba *hba, unsigned int tag, 375 enum ufs_trace_str_t str_t) 376 { 377 struct utp_task_req_desc *descp = &hba->utmrdl_base_addr[tag]; 378 379 if (!trace_ufshcd_upiu_enabled()) 380 return; 381 382 if (str_t == UFS_TM_SEND) 383 trace_ufshcd_upiu(dev_name(hba->dev), str_t, 384 &descp->upiu_req.req_header, 385 &descp->upiu_req.input_param1, 386 UFS_TSF_TM_INPUT); 387 else 388 trace_ufshcd_upiu(dev_name(hba->dev), str_t, 389 &descp->upiu_rsp.rsp_header, 390 &descp->upiu_rsp.output_param1, 391 UFS_TSF_TM_OUTPUT); 392 } 393 394 static void ufshcd_add_uic_command_trace(struct ufs_hba *hba, 395 const struct uic_command *ucmd, 396 enum ufs_trace_str_t str_t) 397 { 398 u32 cmd; 399 400 if (!trace_ufshcd_uic_command_enabled()) 401 return; 402 403 if (str_t == UFS_CMD_SEND) 404 cmd = ucmd->command; 405 else 406 cmd = ufshcd_readl(hba, REG_UIC_COMMAND); 407 408 trace_ufshcd_uic_command(dev_name(hba->dev), str_t, cmd, 409 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_1), 410 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_2), 411 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_3)); 412 } 413 414 static void ufshcd_add_command_trace(struct ufs_hba *hba, unsigned int tag, 415 enum ufs_trace_str_t str_t) 416 { 417 u64 lba = 0; 418 u8 opcode = 0, group_id = 0; 419 u32 doorbell = 0; 420 u32 intr; 421 int hwq_id = -1; 422 struct ufshcd_lrb *lrbp = &hba->lrb[tag]; 423 struct scsi_cmnd *cmd = lrbp->cmd; 424 struct request *rq = scsi_cmd_to_rq(cmd); 425 int transfer_len = -1; 426 427 if (!cmd) 428 return; 429 430 /* trace UPIU also */ 431 ufshcd_add_cmd_upiu_trace(hba, tag, str_t); 432 if (!trace_ufshcd_command_enabled()) 433 return; 434 435 opcode = cmd->cmnd[0]; 436 437 if (opcode == READ_10 || opcode == WRITE_10) { 438 /* 439 * Currently we only fully trace read(10) and write(10) commands 440 */ 441 transfer_len = 442 be32_to_cpu(lrbp->ucd_req_ptr->sc.exp_data_transfer_len); 443 lba = scsi_get_lba(cmd); 444 if (opcode == WRITE_10) 445 group_id = lrbp->cmd->cmnd[6]; 446 } else if (opcode == UNMAP) { 447 /* 448 * The number of Bytes to be unmapped beginning with the lba. 449 */ 450 transfer_len = blk_rq_bytes(rq); 451 lba = scsi_get_lba(cmd); 452 } 453 454 intr = ufshcd_readl(hba, REG_INTERRUPT_STATUS); 455 456 if (hba->mcq_enabled) { 457 struct ufs_hw_queue *hwq = ufshcd_mcq_req_to_hwq(hba, rq); 458 459 hwq_id = hwq->id; 460 } else { 461 doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL); 462 } 463 trace_ufshcd_command(cmd->device, str_t, tag, doorbell, hwq_id, 464 transfer_len, intr, lba, opcode, group_id); 465 } 466 467 static void ufshcd_print_clk_freqs(struct ufs_hba *hba) 468 { 469 struct ufs_clk_info *clki; 470 struct list_head *head = &hba->clk_list_head; 471 472 if (list_empty(head)) 473 return; 474 475 list_for_each_entry(clki, head, list) { 476 if (!IS_ERR_OR_NULL(clki->clk) && clki->min_freq && 477 clki->max_freq) 478 dev_err(hba->dev, "clk: %s, rate: %u\n", 479 clki->name, clki->curr_freq); 480 } 481 } 482 483 static void ufshcd_print_evt(struct ufs_hba *hba, u32 id, 484 const char *err_name) 485 { 486 int i; 487 bool found = false; 488 const struct ufs_event_hist *e; 489 490 if (id >= UFS_EVT_CNT) 491 return; 492 493 e = &hba->ufs_stats.event[id]; 494 495 for (i = 0; i < UFS_EVENT_HIST_LENGTH; i++) { 496 int p = (i + e->pos) % UFS_EVENT_HIST_LENGTH; 497 498 if (e->tstamp[p] == 0) 499 continue; 500 dev_err(hba->dev, "%s[%d] = 0x%x at %lld us\n", err_name, p, 501 e->val[p], div_u64(e->tstamp[p], 1000)); 502 found = true; 503 } 504 505 if (!found) 506 dev_err(hba->dev, "No record of %s\n", err_name); 507 else 508 dev_err(hba->dev, "%s: total cnt=%llu\n", err_name, e->cnt); 509 } 510 511 static void ufshcd_print_evt_hist(struct ufs_hba *hba) 512 { 513 ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, "host_regs: "); 514 515 ufshcd_print_evt(hba, UFS_EVT_PA_ERR, "pa_err"); 516 ufshcd_print_evt(hba, UFS_EVT_DL_ERR, "dl_err"); 517 ufshcd_print_evt(hba, UFS_EVT_NL_ERR, "nl_err"); 518 ufshcd_print_evt(hba, UFS_EVT_TL_ERR, "tl_err"); 519 ufshcd_print_evt(hba, UFS_EVT_DME_ERR, "dme_err"); 520 ufshcd_print_evt(hba, UFS_EVT_AUTO_HIBERN8_ERR, 521 "auto_hibern8_err"); 522 ufshcd_print_evt(hba, UFS_EVT_FATAL_ERR, "fatal_err"); 523 ufshcd_print_evt(hba, UFS_EVT_LINK_STARTUP_FAIL, 524 "link_startup_fail"); 525 ufshcd_print_evt(hba, UFS_EVT_RESUME_ERR, "resume_fail"); 526 ufshcd_print_evt(hba, UFS_EVT_SUSPEND_ERR, 527 "suspend_fail"); 528 ufshcd_print_evt(hba, UFS_EVT_WL_RES_ERR, "wlun resume_fail"); 529 ufshcd_print_evt(hba, UFS_EVT_WL_SUSP_ERR, 530 "wlun suspend_fail"); 531 ufshcd_print_evt(hba, UFS_EVT_DEV_RESET, "dev_reset"); 532 ufshcd_print_evt(hba, UFS_EVT_HOST_RESET, "host_reset"); 533 ufshcd_print_evt(hba, UFS_EVT_ABORT, "task_abort"); 534 535 ufshcd_vops_dbg_register_dump(hba); 536 } 537 538 static 539 void ufshcd_print_tr(struct ufs_hba *hba, int tag, bool pr_prdt) 540 { 541 const struct ufshcd_lrb *lrbp; 542 int prdt_length; 543 544 lrbp = &hba->lrb[tag]; 545 546 dev_err(hba->dev, "UPIU[%d] - issue time %lld us\n", 547 tag, div_u64(lrbp->issue_time_stamp_local_clock, 1000)); 548 dev_err(hba->dev, "UPIU[%d] - complete time %lld us\n", 549 tag, div_u64(lrbp->compl_time_stamp_local_clock, 1000)); 550 dev_err(hba->dev, 551 "UPIU[%d] - Transfer Request Descriptor phys@0x%llx\n", 552 tag, (u64)lrbp->utrd_dma_addr); 553 554 ufshcd_hex_dump("UPIU TRD: ", lrbp->utr_descriptor_ptr, 555 sizeof(struct utp_transfer_req_desc)); 556 dev_err(hba->dev, "UPIU[%d] - Request UPIU phys@0x%llx\n", tag, 557 (u64)lrbp->ucd_req_dma_addr); 558 ufshcd_hex_dump("UPIU REQ: ", lrbp->ucd_req_ptr, 559 sizeof(struct utp_upiu_req)); 560 dev_err(hba->dev, "UPIU[%d] - Response UPIU phys@0x%llx\n", tag, 561 (u64)lrbp->ucd_rsp_dma_addr); 562 ufshcd_hex_dump("UPIU RSP: ", lrbp->ucd_rsp_ptr, 563 sizeof(struct utp_upiu_rsp)); 564 565 prdt_length = le16_to_cpu( 566 lrbp->utr_descriptor_ptr->prd_table_length); 567 if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN) 568 prdt_length /= ufshcd_sg_entry_size(hba); 569 570 dev_err(hba->dev, 571 "UPIU[%d] - PRDT - %d entries phys@0x%llx\n", 572 tag, prdt_length, 573 (u64)lrbp->ucd_prdt_dma_addr); 574 575 if (pr_prdt) 576 ufshcd_hex_dump("UPIU PRDT: ", lrbp->ucd_prdt_ptr, 577 ufshcd_sg_entry_size(hba) * prdt_length); 578 } 579 580 static bool ufshcd_print_tr_iter(struct request *req, void *priv) 581 { 582 struct scsi_device *sdev = req->q->queuedata; 583 struct Scsi_Host *shost = sdev->host; 584 struct ufs_hba *hba = shost_priv(shost); 585 586 ufshcd_print_tr(hba, req->tag, *(bool *)priv); 587 588 return true; 589 } 590 591 /** 592 * ufshcd_print_trs_all - print trs for all started requests. 593 * @hba: per-adapter instance. 594 * @pr_prdt: need to print prdt or not. 595 */ 596 static void ufshcd_print_trs_all(struct ufs_hba *hba, bool pr_prdt) 597 { 598 blk_mq_tagset_busy_iter(&hba->host->tag_set, ufshcd_print_tr_iter, &pr_prdt); 599 } 600 601 static void ufshcd_print_tmrs(struct ufs_hba *hba, unsigned long bitmap) 602 { 603 int tag; 604 605 for_each_set_bit(tag, &bitmap, hba->nutmrs) { 606 struct utp_task_req_desc *tmrdp = &hba->utmrdl_base_addr[tag]; 607 608 dev_err(hba->dev, "TM[%d] - Task Management Header\n", tag); 609 ufshcd_hex_dump("", tmrdp, sizeof(*tmrdp)); 610 } 611 } 612 613 static void ufshcd_print_host_state(struct ufs_hba *hba) 614 { 615 const struct scsi_device *sdev_ufs = hba->ufs_device_wlun; 616 617 dev_err(hba->dev, "UFS Host state=%d\n", hba->ufshcd_state); 618 dev_err(hba->dev, "outstanding reqs=0x%lx tasks=0x%lx\n", 619 hba->outstanding_reqs, hba->outstanding_tasks); 620 dev_err(hba->dev, "saved_err=0x%x, saved_uic_err=0x%x\n", 621 hba->saved_err, hba->saved_uic_err); 622 dev_err(hba->dev, "Device power mode=%d, UIC link state=%d\n", 623 hba->curr_dev_pwr_mode, hba->uic_link_state); 624 dev_err(hba->dev, "PM in progress=%d, sys. suspended=%d\n", 625 hba->pm_op_in_progress, hba->is_sys_suspended); 626 dev_err(hba->dev, "Auto BKOPS=%d, Host self-block=%d\n", 627 hba->auto_bkops_enabled, hba->host->host_self_blocked); 628 dev_err(hba->dev, "Clk gate=%d\n", hba->clk_gating.state); 629 dev_err(hba->dev, 630 "last_hibern8_exit_tstamp at %lld us, hibern8_exit_cnt=%d\n", 631 div_u64(hba->ufs_stats.last_hibern8_exit_tstamp, 1000), 632 hba->ufs_stats.hibern8_exit_cnt); 633 dev_err(hba->dev, "last intr at %lld us, last intr status=0x%x\n", 634 div_u64(hba->ufs_stats.last_intr_ts, 1000), 635 hba->ufs_stats.last_intr_status); 636 dev_err(hba->dev, "error handling flags=0x%x, req. abort count=%d\n", 637 hba->eh_flags, hba->req_abort_count); 638 dev_err(hba->dev, "hba->ufs_version=0x%x, Host capabilities=0x%x, caps=0x%x\n", 639 hba->ufs_version, hba->capabilities, hba->caps); 640 dev_err(hba->dev, "quirks=0x%x, dev. quirks=0x%x\n", hba->quirks, 641 hba->dev_quirks); 642 if (sdev_ufs) 643 dev_err(hba->dev, "UFS dev info: %.8s %.16s rev %.4s\n", 644 sdev_ufs->vendor, sdev_ufs->model, sdev_ufs->rev); 645 646 ufshcd_print_clk_freqs(hba); 647 } 648 649 /** 650 * ufshcd_print_pwr_info - print power params as saved in hba 651 * power info 652 * @hba: per-adapter instance 653 */ 654 static void ufshcd_print_pwr_info(struct ufs_hba *hba) 655 { 656 static const char * const names[] = { 657 "INVALID MODE", 658 "FAST MODE", 659 "SLOW_MODE", 660 "INVALID MODE", 661 "FASTAUTO_MODE", 662 "SLOWAUTO_MODE", 663 "INVALID MODE", 664 }; 665 666 /* 667 * Using dev_dbg to avoid messages during runtime PM to avoid 668 * never-ending cycles of messages written back to storage by user space 669 * causing runtime resume, causing more messages and so on. 670 */ 671 dev_dbg(hba->dev, "%s:[RX, TX]: gear=[%d, %d], lane[%d, %d], pwr[%s, %s], rate = %d\n", 672 __func__, 673 hba->pwr_info.gear_rx, hba->pwr_info.gear_tx, 674 hba->pwr_info.lane_rx, hba->pwr_info.lane_tx, 675 names[hba->pwr_info.pwr_rx], 676 names[hba->pwr_info.pwr_tx], 677 hba->pwr_info.hs_rate); 678 } 679 680 static void ufshcd_device_reset(struct ufs_hba *hba) 681 { 682 int err; 683 684 err = ufshcd_vops_device_reset(hba); 685 686 if (!err) { 687 ufshcd_set_ufs_dev_active(hba); 688 if (ufshcd_is_wb_allowed(hba)) { 689 hba->dev_info.wb_enabled = false; 690 hba->dev_info.wb_buf_flush_enabled = false; 691 } 692 if (hba->dev_info.rtc_type == UFS_RTC_RELATIVE) 693 hba->dev_info.rtc_time_baseline = 0; 694 } 695 if (err != -EOPNOTSUPP) 696 ufshcd_update_evt_hist(hba, UFS_EVT_DEV_RESET, err); 697 } 698 699 void ufshcd_delay_us(unsigned long us, unsigned long tolerance) 700 { 701 if (!us) 702 return; 703 704 if (us < 10) 705 udelay(us); 706 else 707 usleep_range(us, us + tolerance); 708 } 709 EXPORT_SYMBOL_GPL(ufshcd_delay_us); 710 711 /** 712 * ufshcd_wait_for_register - wait for register value to change 713 * @hba: per-adapter interface 714 * @reg: mmio register offset 715 * @mask: mask to apply to the read register value 716 * @val: value to wait for 717 * @interval_us: polling interval in microseconds 718 * @timeout_ms: timeout in milliseconds 719 * 720 * Return: -ETIMEDOUT on error, zero on success. 721 */ 722 static int ufshcd_wait_for_register(struct ufs_hba *hba, u32 reg, u32 mask, 723 u32 val, unsigned long interval_us, 724 unsigned long timeout_ms) 725 { 726 int err = 0; 727 unsigned long timeout = jiffies + msecs_to_jiffies(timeout_ms); 728 729 /* ignore bits that we don't intend to wait on */ 730 val = val & mask; 731 732 while ((ufshcd_readl(hba, reg) & mask) != val) { 733 usleep_range(interval_us, interval_us + 50); 734 if (time_after(jiffies, timeout)) { 735 if ((ufshcd_readl(hba, reg) & mask) != val) 736 err = -ETIMEDOUT; 737 break; 738 } 739 } 740 741 return err; 742 } 743 744 /** 745 * ufshcd_get_intr_mask - Get the interrupt bit mask 746 * @hba: Pointer to adapter instance 747 * 748 * Return: interrupt bit mask per version 749 */ 750 static inline u32 ufshcd_get_intr_mask(struct ufs_hba *hba) 751 { 752 if (hba->ufs_version <= ufshci_version(2, 0)) 753 return INTERRUPT_MASK_ALL_VER_11; 754 755 return INTERRUPT_MASK_ALL_VER_21; 756 } 757 758 /** 759 * ufshcd_get_ufs_version - Get the UFS version supported by the HBA 760 * @hba: Pointer to adapter instance 761 * 762 * Return: UFSHCI version supported by the controller 763 */ 764 static inline u32 ufshcd_get_ufs_version(struct ufs_hba *hba) 765 { 766 u32 ufshci_ver; 767 768 if (hba->quirks & UFSHCD_QUIRK_BROKEN_UFS_HCI_VERSION) 769 ufshci_ver = ufshcd_vops_get_ufs_hci_version(hba); 770 else 771 ufshci_ver = ufshcd_readl(hba, REG_UFS_VERSION); 772 773 /* 774 * UFSHCI v1.x uses a different version scheme, in order 775 * to allow the use of comparisons with the ufshci_version 776 * function, we convert it to the same scheme as ufs 2.0+. 777 */ 778 if (ufshci_ver & 0x00010000) 779 return ufshci_version(1, ufshci_ver & 0x00000100); 780 781 return ufshci_ver; 782 } 783 784 /** 785 * ufshcd_is_device_present - Check if any device connected to 786 * the host controller 787 * @hba: pointer to adapter instance 788 * 789 * Return: true if device present, false if no device detected 790 */ 791 static inline bool ufshcd_is_device_present(struct ufs_hba *hba) 792 { 793 return ufshcd_readl(hba, REG_CONTROLLER_STATUS) & DEVICE_PRESENT; 794 } 795 796 /** 797 * ufshcd_get_tr_ocs - Get the UTRD Overall Command Status 798 * @lrbp: pointer to local command reference block 799 * @cqe: pointer to the completion queue entry 800 * 801 * This function is used to get the OCS field from UTRD 802 * 803 * Return: the OCS field in the UTRD. 804 */ 805 static enum utp_ocs ufshcd_get_tr_ocs(struct ufshcd_lrb *lrbp, 806 struct cq_entry *cqe) 807 { 808 if (cqe) 809 return le32_to_cpu(cqe->status) & MASK_OCS; 810 811 return lrbp->utr_descriptor_ptr->header.ocs & MASK_OCS; 812 } 813 814 /** 815 * ufshcd_utrl_clear() - Clear requests from the controller request list. 816 * @hba: per adapter instance 817 * @mask: mask with one bit set for each request to be cleared 818 */ 819 static inline void ufshcd_utrl_clear(struct ufs_hba *hba, u32 mask) 820 { 821 if (hba->quirks & UFSHCI_QUIRK_BROKEN_REQ_LIST_CLR) 822 mask = ~mask; 823 /* 824 * From the UFSHCI specification: "UTP Transfer Request List CLear 825 * Register (UTRLCLR): This field is bit significant. Each bit 826 * corresponds to a slot in the UTP Transfer Request List, where bit 0 827 * corresponds to request slot 0. A bit in this field is set to ‘0’ 828 * by host software to indicate to the host controller that a transfer 829 * request slot is cleared. The host controller 830 * shall free up any resources associated to the request slot 831 * immediately, and shall set the associated bit in UTRLDBR to ‘0’. The 832 * host software indicates no change to request slots by setting the 833 * associated bits in this field to ‘1’. Bits in this field shall only 834 * be set ‘1’ or ‘0’ by host software when UTRLRSR is set to ‘1’." 835 */ 836 ufshcd_writel(hba, ~mask, REG_UTP_TRANSFER_REQ_LIST_CLEAR); 837 } 838 839 /** 840 * ufshcd_utmrl_clear - Clear a bit in UTMRLCLR register 841 * @hba: per adapter instance 842 * @pos: position of the bit to be cleared 843 */ 844 static inline void ufshcd_utmrl_clear(struct ufs_hba *hba, u32 pos) 845 { 846 if (hba->quirks & UFSHCI_QUIRK_BROKEN_REQ_LIST_CLR) 847 ufshcd_writel(hba, (1 << pos), REG_UTP_TASK_REQ_LIST_CLEAR); 848 else 849 ufshcd_writel(hba, ~(1 << pos), REG_UTP_TASK_REQ_LIST_CLEAR); 850 } 851 852 /** 853 * ufshcd_get_lists_status - Check UCRDY, UTRLRDY and UTMRLRDY 854 * @reg: Register value of host controller status 855 * 856 * Return: 0 on success; a positive value if failed. 857 */ 858 static inline int ufshcd_get_lists_status(u32 reg) 859 { 860 return !((reg & UFSHCD_STATUS_READY) == UFSHCD_STATUS_READY); 861 } 862 863 /** 864 * ufshcd_get_uic_cmd_result - Get the UIC command result 865 * @hba: Pointer to adapter instance 866 * 867 * This function gets the result of UIC command completion 868 * 869 * Return: 0 on success; non-zero value on error. 870 */ 871 static inline int ufshcd_get_uic_cmd_result(struct ufs_hba *hba) 872 { 873 return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_2) & 874 MASK_UIC_COMMAND_RESULT; 875 } 876 877 /** 878 * ufshcd_get_dme_attr_val - Get the value of attribute returned by UIC command 879 * @hba: Pointer to adapter instance 880 * 881 * This function gets UIC command argument3 882 * 883 * Return: 0 on success; non-zero value on error. 884 */ 885 static inline u32 ufshcd_get_dme_attr_val(struct ufs_hba *hba) 886 { 887 return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_3); 888 } 889 890 /** 891 * ufshcd_get_req_rsp - returns the TR response transaction type 892 * @ucd_rsp_ptr: pointer to response UPIU 893 * 894 * Return: UPIU type. 895 */ 896 static inline enum upiu_response_transaction 897 ufshcd_get_req_rsp(struct utp_upiu_rsp *ucd_rsp_ptr) 898 { 899 return ucd_rsp_ptr->header.transaction_code; 900 } 901 902 /** 903 * ufshcd_is_exception_event - Check if the device raised an exception event 904 * @ucd_rsp_ptr: pointer to response UPIU 905 * 906 * The function checks if the device raised an exception event indicated in 907 * the Device Information field of response UPIU. 908 * 909 * Return: true if exception is raised, false otherwise. 910 */ 911 static inline bool ufshcd_is_exception_event(struct utp_upiu_rsp *ucd_rsp_ptr) 912 { 913 return ucd_rsp_ptr->header.device_information & 1; 914 } 915 916 /** 917 * ufshcd_reset_intr_aggr - Reset interrupt aggregation values. 918 * @hba: per adapter instance 919 */ 920 static inline void 921 ufshcd_reset_intr_aggr(struct ufs_hba *hba) 922 { 923 ufshcd_writel(hba, INT_AGGR_ENABLE | 924 INT_AGGR_COUNTER_AND_TIMER_RESET, 925 REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL); 926 } 927 928 /** 929 * ufshcd_config_intr_aggr - Configure interrupt aggregation values. 930 * @hba: per adapter instance 931 * @cnt: Interrupt aggregation counter threshold 932 * @tmout: Interrupt aggregation timeout value 933 */ 934 static inline void 935 ufshcd_config_intr_aggr(struct ufs_hba *hba, u8 cnt, u8 tmout) 936 { 937 ufshcd_writel(hba, INT_AGGR_ENABLE | INT_AGGR_PARAM_WRITE | 938 INT_AGGR_COUNTER_THLD_VAL(cnt) | 939 INT_AGGR_TIMEOUT_VAL(tmout), 940 REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL); 941 } 942 943 /** 944 * ufshcd_disable_intr_aggr - Disables interrupt aggregation. 945 * @hba: per adapter instance 946 */ 947 static inline void ufshcd_disable_intr_aggr(struct ufs_hba *hba) 948 { 949 ufshcd_writel(hba, 0, REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL); 950 } 951 952 /** 953 * ufshcd_enable_run_stop_reg - Enable run-stop registers, 954 * When run-stop registers are set to 1, it indicates the 955 * host controller that it can process the requests 956 * @hba: per adapter instance 957 */ 958 static void ufshcd_enable_run_stop_reg(struct ufs_hba *hba) 959 { 960 ufshcd_writel(hba, UTP_TASK_REQ_LIST_RUN_STOP_BIT, 961 REG_UTP_TASK_REQ_LIST_RUN_STOP); 962 ufshcd_writel(hba, UTP_TRANSFER_REQ_LIST_RUN_STOP_BIT, 963 REG_UTP_TRANSFER_REQ_LIST_RUN_STOP); 964 } 965 966 /** 967 * ufshcd_hba_start - Start controller initialization sequence 968 * @hba: per adapter instance 969 */ 970 static inline void ufshcd_hba_start(struct ufs_hba *hba) 971 { 972 u32 val = CONTROLLER_ENABLE; 973 974 if (ufshcd_crypto_enable(hba)) 975 val |= CRYPTO_GENERAL_ENABLE; 976 977 ufshcd_writel(hba, val, REG_CONTROLLER_ENABLE); 978 } 979 980 /** 981 * ufshcd_is_hba_active - Get controller state 982 * @hba: per adapter instance 983 * 984 * Return: true if and only if the controller is active. 985 */ 986 bool ufshcd_is_hba_active(struct ufs_hba *hba) 987 { 988 return ufshcd_readl(hba, REG_CONTROLLER_ENABLE) & CONTROLLER_ENABLE; 989 } 990 EXPORT_SYMBOL_GPL(ufshcd_is_hba_active); 991 992 /** 993 * ufshcd_pm_qos_init - initialize PM QoS request 994 * @hba: per adapter instance 995 */ 996 void ufshcd_pm_qos_init(struct ufs_hba *hba) 997 { 998 999 if (hba->pm_qos_enabled) 1000 return; 1001 1002 cpu_latency_qos_add_request(&hba->pm_qos_req, PM_QOS_DEFAULT_VALUE); 1003 1004 if (cpu_latency_qos_request_active(&hba->pm_qos_req)) 1005 hba->pm_qos_enabled = true; 1006 } 1007 1008 /** 1009 * ufshcd_pm_qos_exit - remove request from PM QoS 1010 * @hba: per adapter instance 1011 */ 1012 void ufshcd_pm_qos_exit(struct ufs_hba *hba) 1013 { 1014 if (!hba->pm_qos_enabled) 1015 return; 1016 1017 cpu_latency_qos_remove_request(&hba->pm_qos_req); 1018 hba->pm_qos_enabled = false; 1019 } 1020 1021 /** 1022 * ufshcd_pm_qos_update - update PM QoS request 1023 * @hba: per adapter instance 1024 * @on: If True, vote for perf PM QoS mode otherwise power save mode 1025 */ 1026 static void ufshcd_pm_qos_update(struct ufs_hba *hba, bool on) 1027 { 1028 if (!hba->pm_qos_enabled) 1029 return; 1030 1031 cpu_latency_qos_update_request(&hba->pm_qos_req, on ? 0 : PM_QOS_DEFAULT_VALUE); 1032 } 1033 1034 /** 1035 * ufshcd_set_clk_freq - set UFS controller clock frequencies 1036 * @hba: per adapter instance 1037 * @scale_up: If True, set max possible frequency othewise set low frequency 1038 * 1039 * Return: 0 if successful; < 0 upon failure. 1040 */ 1041 static int ufshcd_set_clk_freq(struct ufs_hba *hba, bool scale_up) 1042 { 1043 int ret = 0; 1044 struct ufs_clk_info *clki; 1045 struct list_head *head = &hba->clk_list_head; 1046 1047 if (list_empty(head)) 1048 goto out; 1049 1050 list_for_each_entry(clki, head, list) { 1051 if (!IS_ERR_OR_NULL(clki->clk)) { 1052 if (scale_up && clki->max_freq) { 1053 if (clki->curr_freq == clki->max_freq) 1054 continue; 1055 1056 ret = clk_set_rate(clki->clk, clki->max_freq); 1057 if (ret) { 1058 dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n", 1059 __func__, clki->name, 1060 clki->max_freq, ret); 1061 break; 1062 } 1063 trace_ufshcd_clk_scaling(dev_name(hba->dev), 1064 "scaled up", clki->name, 1065 clki->curr_freq, 1066 clki->max_freq); 1067 1068 clki->curr_freq = clki->max_freq; 1069 1070 } else if (!scale_up && clki->min_freq) { 1071 if (clki->curr_freq == clki->min_freq) 1072 continue; 1073 1074 ret = clk_set_rate(clki->clk, clki->min_freq); 1075 if (ret) { 1076 dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n", 1077 __func__, clki->name, 1078 clki->min_freq, ret); 1079 break; 1080 } 1081 trace_ufshcd_clk_scaling(dev_name(hba->dev), 1082 "scaled down", clki->name, 1083 clki->curr_freq, 1084 clki->min_freq); 1085 clki->curr_freq = clki->min_freq; 1086 } 1087 } 1088 dev_dbg(hba->dev, "%s: clk: %s, rate: %lu\n", __func__, 1089 clki->name, clk_get_rate(clki->clk)); 1090 } 1091 1092 out: 1093 return ret; 1094 } 1095 1096 int ufshcd_opp_config_clks(struct device *dev, struct opp_table *opp_table, 1097 struct dev_pm_opp *opp, void *data, 1098 bool scaling_down) 1099 { 1100 struct ufs_hba *hba = dev_get_drvdata(dev); 1101 struct list_head *head = &hba->clk_list_head; 1102 struct ufs_clk_info *clki; 1103 unsigned long freq; 1104 u8 idx = 0; 1105 int ret; 1106 1107 list_for_each_entry(clki, head, list) { 1108 if (!IS_ERR_OR_NULL(clki->clk)) { 1109 freq = dev_pm_opp_get_freq_indexed(opp, idx++); 1110 1111 /* Do not set rate for clocks having frequency as 0 */ 1112 if (!freq) 1113 continue; 1114 1115 ret = clk_set_rate(clki->clk, freq); 1116 if (ret) { 1117 dev_err(dev, "%s: %s clk set rate(%ldHz) failed, %d\n", 1118 __func__, clki->name, freq, ret); 1119 return ret; 1120 } 1121 1122 trace_ufshcd_clk_scaling(dev_name(dev), 1123 (scaling_down ? "scaled down" : "scaled up"), 1124 clki->name, hba->clk_scaling.target_freq, freq); 1125 } 1126 } 1127 1128 return 0; 1129 } 1130 EXPORT_SYMBOL_GPL(ufshcd_opp_config_clks); 1131 1132 static int ufshcd_opp_set_rate(struct ufs_hba *hba, unsigned long freq) 1133 { 1134 struct dev_pm_opp *opp; 1135 int ret; 1136 1137 opp = dev_pm_opp_find_freq_floor_indexed(hba->dev, 1138 &freq, 0); 1139 if (IS_ERR(opp)) 1140 return PTR_ERR(opp); 1141 1142 ret = dev_pm_opp_set_opp(hba->dev, opp); 1143 dev_pm_opp_put(opp); 1144 1145 return ret; 1146 } 1147 1148 /** 1149 * ufshcd_scale_clks - scale up or scale down UFS controller clocks 1150 * @hba: per adapter instance 1151 * @freq: frequency to scale 1152 * @scale_up: True if scaling up and false if scaling down 1153 * 1154 * Return: 0 if successful; < 0 upon failure. 1155 */ 1156 static int ufshcd_scale_clks(struct ufs_hba *hba, unsigned long freq, 1157 bool scale_up) 1158 { 1159 int ret = 0; 1160 ktime_t start = ktime_get(); 1161 1162 ret = ufshcd_vops_clk_scale_notify(hba, scale_up, PRE_CHANGE); 1163 if (ret) 1164 goto out; 1165 1166 if (hba->use_pm_opp) 1167 ret = ufshcd_opp_set_rate(hba, freq); 1168 else 1169 ret = ufshcd_set_clk_freq(hba, scale_up); 1170 if (ret) 1171 goto out; 1172 1173 ret = ufshcd_vops_clk_scale_notify(hba, scale_up, POST_CHANGE); 1174 if (ret) { 1175 if (hba->use_pm_opp) 1176 ufshcd_opp_set_rate(hba, 1177 hba->devfreq->previous_freq); 1178 else 1179 ufshcd_set_clk_freq(hba, !scale_up); 1180 goto out; 1181 } 1182 1183 ufshcd_pm_qos_update(hba, scale_up); 1184 1185 out: 1186 trace_ufshcd_profile_clk_scaling(dev_name(hba->dev), 1187 (scale_up ? "up" : "down"), 1188 ktime_to_us(ktime_sub(ktime_get(), start)), ret); 1189 return ret; 1190 } 1191 1192 /** 1193 * ufshcd_is_devfreq_scaling_required - check if scaling is required or not 1194 * @hba: per adapter instance 1195 * @freq: frequency to scale 1196 * @scale_up: True if scaling up and false if scaling down 1197 * 1198 * Return: true if scaling is required, false otherwise. 1199 */ 1200 static bool ufshcd_is_devfreq_scaling_required(struct ufs_hba *hba, 1201 unsigned long freq, bool scale_up) 1202 { 1203 struct ufs_clk_info *clki; 1204 struct list_head *head = &hba->clk_list_head; 1205 1206 if (list_empty(head)) 1207 return false; 1208 1209 if (hba->use_pm_opp) 1210 return freq != hba->clk_scaling.target_freq; 1211 1212 list_for_each_entry(clki, head, list) { 1213 if (!IS_ERR_OR_NULL(clki->clk)) { 1214 if (scale_up && clki->max_freq) { 1215 if (clki->curr_freq == clki->max_freq) 1216 continue; 1217 return true; 1218 } else if (!scale_up && clki->min_freq) { 1219 if (clki->curr_freq == clki->min_freq) 1220 continue; 1221 return true; 1222 } 1223 } 1224 } 1225 1226 return false; 1227 } 1228 1229 /* 1230 * Determine the number of pending commands by counting the bits in the SCSI 1231 * device budget maps. This approach has been selected because a bit is set in 1232 * the budget map before scsi_host_queue_ready() checks the host_self_blocked 1233 * flag. The host_self_blocked flag can be modified by calling 1234 * scsi_block_requests() or scsi_unblock_requests(). 1235 */ 1236 static u32 ufshcd_pending_cmds(struct ufs_hba *hba) 1237 { 1238 const struct scsi_device *sdev; 1239 u32 pending = 0; 1240 1241 lockdep_assert_held(hba->host->host_lock); 1242 __shost_for_each_device(sdev, hba->host) 1243 pending += sbitmap_weight(&sdev->budget_map); 1244 1245 return pending; 1246 } 1247 1248 /* 1249 * Wait until all pending SCSI commands and TMFs have finished or the timeout 1250 * has expired. 1251 * 1252 * Return: 0 upon success; -EBUSY upon timeout. 1253 */ 1254 static int ufshcd_wait_for_doorbell_clr(struct ufs_hba *hba, 1255 u64 wait_timeout_us) 1256 { 1257 unsigned long flags; 1258 int ret = 0; 1259 u32 tm_doorbell; 1260 u32 tr_pending; 1261 bool timeout = false, do_last_check = false; 1262 ktime_t start; 1263 1264 ufshcd_hold(hba); 1265 spin_lock_irqsave(hba->host->host_lock, flags); 1266 /* 1267 * Wait for all the outstanding tasks/transfer requests. 1268 * Verify by checking the doorbell registers are clear. 1269 */ 1270 start = ktime_get(); 1271 do { 1272 if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL) { 1273 ret = -EBUSY; 1274 goto out; 1275 } 1276 1277 tm_doorbell = ufshcd_readl(hba, REG_UTP_TASK_REQ_DOOR_BELL); 1278 tr_pending = ufshcd_pending_cmds(hba); 1279 if (!tm_doorbell && !tr_pending) { 1280 timeout = false; 1281 break; 1282 } else if (do_last_check) { 1283 break; 1284 } 1285 1286 spin_unlock_irqrestore(hba->host->host_lock, flags); 1287 io_schedule_timeout(msecs_to_jiffies(20)); 1288 if (ktime_to_us(ktime_sub(ktime_get(), start)) > 1289 wait_timeout_us) { 1290 timeout = true; 1291 /* 1292 * We might have scheduled out for long time so make 1293 * sure to check if doorbells are cleared by this time 1294 * or not. 1295 */ 1296 do_last_check = true; 1297 } 1298 spin_lock_irqsave(hba->host->host_lock, flags); 1299 } while (tm_doorbell || tr_pending); 1300 1301 if (timeout) { 1302 dev_err(hba->dev, 1303 "%s: timedout waiting for doorbell to clear (tm=0x%x, tr=0x%x)\n", 1304 __func__, tm_doorbell, tr_pending); 1305 ret = -EBUSY; 1306 } 1307 out: 1308 spin_unlock_irqrestore(hba->host->host_lock, flags); 1309 ufshcd_release(hba); 1310 return ret; 1311 } 1312 1313 /** 1314 * ufshcd_scale_gear - scale up/down UFS gear 1315 * @hba: per adapter instance 1316 * @scale_up: True for scaling up gear and false for scaling down 1317 * 1318 * Return: 0 for success; -EBUSY if scaling can't happen at this time; 1319 * non-zero for any other errors. 1320 */ 1321 static int ufshcd_scale_gear(struct ufs_hba *hba, bool scale_up) 1322 { 1323 int ret = 0; 1324 struct ufs_pa_layer_attr new_pwr_info; 1325 1326 if (scale_up) { 1327 memcpy(&new_pwr_info, &hba->clk_scaling.saved_pwr_info, 1328 sizeof(struct ufs_pa_layer_attr)); 1329 } else { 1330 memcpy(&new_pwr_info, &hba->pwr_info, 1331 sizeof(struct ufs_pa_layer_attr)); 1332 1333 if (hba->pwr_info.gear_tx > hba->clk_scaling.min_gear || 1334 hba->pwr_info.gear_rx > hba->clk_scaling.min_gear) { 1335 /* save the current power mode */ 1336 memcpy(&hba->clk_scaling.saved_pwr_info, 1337 &hba->pwr_info, 1338 sizeof(struct ufs_pa_layer_attr)); 1339 1340 /* scale down gear */ 1341 new_pwr_info.gear_tx = hba->clk_scaling.min_gear; 1342 new_pwr_info.gear_rx = hba->clk_scaling.min_gear; 1343 } 1344 } 1345 1346 /* check if the power mode needs to be changed or not? */ 1347 ret = ufshcd_config_pwr_mode(hba, &new_pwr_info); 1348 if (ret) 1349 dev_err(hba->dev, "%s: failed err %d, old gear: (tx %d rx %d), new gear: (tx %d rx %d)", 1350 __func__, ret, 1351 hba->pwr_info.gear_tx, hba->pwr_info.gear_rx, 1352 new_pwr_info.gear_tx, new_pwr_info.gear_rx); 1353 1354 return ret; 1355 } 1356 1357 /* 1358 * Wait until all pending SCSI commands and TMFs have finished or the timeout 1359 * has expired. 1360 * 1361 * Return: 0 upon success; -EBUSY upon timeout. 1362 */ 1363 static int ufshcd_clock_scaling_prepare(struct ufs_hba *hba, u64 timeout_us) 1364 { 1365 int ret = 0; 1366 /* 1367 * make sure that there are no outstanding requests when 1368 * clock scaling is in progress 1369 */ 1370 blk_mq_quiesce_tagset(&hba->host->tag_set); 1371 mutex_lock(&hba->wb_mutex); 1372 down_write(&hba->clk_scaling_lock); 1373 1374 if (!hba->clk_scaling.is_allowed || 1375 ufshcd_wait_for_doorbell_clr(hba, timeout_us)) { 1376 ret = -EBUSY; 1377 up_write(&hba->clk_scaling_lock); 1378 mutex_unlock(&hba->wb_mutex); 1379 blk_mq_unquiesce_tagset(&hba->host->tag_set); 1380 goto out; 1381 } 1382 1383 /* let's not get into low power until clock scaling is completed */ 1384 ufshcd_hold(hba); 1385 1386 out: 1387 return ret; 1388 } 1389 1390 static void ufshcd_clock_scaling_unprepare(struct ufs_hba *hba, int err, bool scale_up) 1391 { 1392 up_write(&hba->clk_scaling_lock); 1393 1394 /* Enable Write Booster if we have scaled up else disable it */ 1395 if (ufshcd_enable_wb_if_scaling_up(hba) && !err) 1396 ufshcd_wb_toggle(hba, scale_up); 1397 1398 mutex_unlock(&hba->wb_mutex); 1399 1400 blk_mq_unquiesce_tagset(&hba->host->tag_set); 1401 ufshcd_release(hba); 1402 } 1403 1404 /** 1405 * ufshcd_devfreq_scale - scale up/down UFS clocks and gear 1406 * @hba: per adapter instance 1407 * @freq: frequency to scale 1408 * @scale_up: True for scaling up and false for scalin down 1409 * 1410 * Return: 0 for success; -EBUSY if scaling can't happen at this time; non-zero 1411 * for any other errors. 1412 */ 1413 static int ufshcd_devfreq_scale(struct ufs_hba *hba, unsigned long freq, 1414 bool scale_up) 1415 { 1416 int ret = 0; 1417 1418 ret = ufshcd_clock_scaling_prepare(hba, 1 * USEC_PER_SEC); 1419 if (ret) 1420 return ret; 1421 1422 /* scale down the gear before scaling down clocks */ 1423 if (!scale_up) { 1424 ret = ufshcd_scale_gear(hba, false); 1425 if (ret) 1426 goto out_unprepare; 1427 } 1428 1429 ret = ufshcd_scale_clks(hba, freq, scale_up); 1430 if (ret) { 1431 if (!scale_up) 1432 ufshcd_scale_gear(hba, true); 1433 goto out_unprepare; 1434 } 1435 1436 /* scale up the gear after scaling up clocks */ 1437 if (scale_up) { 1438 ret = ufshcd_scale_gear(hba, true); 1439 if (ret) { 1440 ufshcd_scale_clks(hba, hba->devfreq->previous_freq, 1441 false); 1442 goto out_unprepare; 1443 } 1444 } 1445 1446 out_unprepare: 1447 ufshcd_clock_scaling_unprepare(hba, ret, scale_up); 1448 return ret; 1449 } 1450 1451 static void ufshcd_clk_scaling_suspend_work(struct work_struct *work) 1452 { 1453 struct ufs_hba *hba = container_of(work, struct ufs_hba, 1454 clk_scaling.suspend_work); 1455 unsigned long irq_flags; 1456 1457 spin_lock_irqsave(hba->host->host_lock, irq_flags); 1458 if (hba->clk_scaling.active_reqs || hba->clk_scaling.is_suspended) { 1459 spin_unlock_irqrestore(hba->host->host_lock, irq_flags); 1460 return; 1461 } 1462 hba->clk_scaling.is_suspended = true; 1463 hba->clk_scaling.window_start_t = 0; 1464 spin_unlock_irqrestore(hba->host->host_lock, irq_flags); 1465 1466 devfreq_suspend_device(hba->devfreq); 1467 } 1468 1469 static void ufshcd_clk_scaling_resume_work(struct work_struct *work) 1470 { 1471 struct ufs_hba *hba = container_of(work, struct ufs_hba, 1472 clk_scaling.resume_work); 1473 unsigned long irq_flags; 1474 1475 spin_lock_irqsave(hba->host->host_lock, irq_flags); 1476 if (!hba->clk_scaling.is_suspended) { 1477 spin_unlock_irqrestore(hba->host->host_lock, irq_flags); 1478 return; 1479 } 1480 hba->clk_scaling.is_suspended = false; 1481 spin_unlock_irqrestore(hba->host->host_lock, irq_flags); 1482 1483 devfreq_resume_device(hba->devfreq); 1484 } 1485 1486 static int ufshcd_devfreq_target(struct device *dev, 1487 unsigned long *freq, u32 flags) 1488 { 1489 int ret = 0; 1490 struct ufs_hba *hba = dev_get_drvdata(dev); 1491 ktime_t start; 1492 bool scale_up = false, sched_clk_scaling_suspend_work = false; 1493 struct list_head *clk_list = &hba->clk_list_head; 1494 struct ufs_clk_info *clki; 1495 unsigned long irq_flags; 1496 1497 if (!ufshcd_is_clkscaling_supported(hba)) 1498 return -EINVAL; 1499 1500 if (hba->use_pm_opp) { 1501 struct dev_pm_opp *opp; 1502 1503 /* Get the recommended frequency from OPP framework */ 1504 opp = devfreq_recommended_opp(dev, freq, flags); 1505 if (IS_ERR(opp)) 1506 return PTR_ERR(opp); 1507 1508 dev_pm_opp_put(opp); 1509 } else { 1510 /* Override with the closest supported frequency */ 1511 clki = list_first_entry(&hba->clk_list_head, struct ufs_clk_info, 1512 list); 1513 *freq = (unsigned long) clk_round_rate(clki->clk, *freq); 1514 } 1515 1516 spin_lock_irqsave(hba->host->host_lock, irq_flags); 1517 if (ufshcd_eh_in_progress(hba)) { 1518 spin_unlock_irqrestore(hba->host->host_lock, irq_flags); 1519 return 0; 1520 } 1521 1522 /* Skip scaling clock when clock scaling is suspended */ 1523 if (hba->clk_scaling.is_suspended) { 1524 spin_unlock_irqrestore(hba->host->host_lock, irq_flags); 1525 dev_warn(hba->dev, "clock scaling is suspended, skip"); 1526 return 0; 1527 } 1528 1529 if (!hba->clk_scaling.active_reqs) 1530 sched_clk_scaling_suspend_work = true; 1531 1532 if (list_empty(clk_list)) { 1533 spin_unlock_irqrestore(hba->host->host_lock, irq_flags); 1534 goto out; 1535 } 1536 1537 /* Decide based on the target or rounded-off frequency and update */ 1538 if (hba->use_pm_opp) 1539 scale_up = *freq > hba->clk_scaling.target_freq; 1540 else 1541 scale_up = *freq == clki->max_freq; 1542 1543 if (!hba->use_pm_opp && !scale_up) 1544 *freq = clki->min_freq; 1545 1546 /* Update the frequency */ 1547 if (!ufshcd_is_devfreq_scaling_required(hba, *freq, scale_up)) { 1548 spin_unlock_irqrestore(hba->host->host_lock, irq_flags); 1549 ret = 0; 1550 goto out; /* no state change required */ 1551 } 1552 spin_unlock_irqrestore(hba->host->host_lock, irq_flags); 1553 1554 start = ktime_get(); 1555 ret = ufshcd_devfreq_scale(hba, *freq, scale_up); 1556 if (!ret) 1557 hba->clk_scaling.target_freq = *freq; 1558 1559 trace_ufshcd_profile_clk_scaling(dev_name(hba->dev), 1560 (scale_up ? "up" : "down"), 1561 ktime_to_us(ktime_sub(ktime_get(), start)), ret); 1562 1563 out: 1564 if (sched_clk_scaling_suspend_work && 1565 (!scale_up || hba->clk_scaling.suspend_on_no_request)) 1566 queue_work(hba->clk_scaling.workq, 1567 &hba->clk_scaling.suspend_work); 1568 1569 return ret; 1570 } 1571 1572 static int ufshcd_devfreq_get_dev_status(struct device *dev, 1573 struct devfreq_dev_status *stat) 1574 { 1575 struct ufs_hba *hba = dev_get_drvdata(dev); 1576 struct ufs_clk_scaling *scaling = &hba->clk_scaling; 1577 unsigned long flags; 1578 ktime_t curr_t; 1579 1580 if (!ufshcd_is_clkscaling_supported(hba)) 1581 return -EINVAL; 1582 1583 memset(stat, 0, sizeof(*stat)); 1584 1585 spin_lock_irqsave(hba->host->host_lock, flags); 1586 curr_t = ktime_get(); 1587 if (!scaling->window_start_t) 1588 goto start_window; 1589 1590 /* 1591 * If current frequency is 0, then the ondemand governor considers 1592 * there's no initial frequency set. And it always requests to set 1593 * to max. frequency. 1594 */ 1595 if (hba->use_pm_opp) { 1596 stat->current_frequency = hba->clk_scaling.target_freq; 1597 } else { 1598 struct list_head *clk_list = &hba->clk_list_head; 1599 struct ufs_clk_info *clki; 1600 1601 clki = list_first_entry(clk_list, struct ufs_clk_info, list); 1602 stat->current_frequency = clki->curr_freq; 1603 } 1604 1605 if (scaling->is_busy_started) 1606 scaling->tot_busy_t += ktime_us_delta(curr_t, 1607 scaling->busy_start_t); 1608 stat->total_time = ktime_us_delta(curr_t, scaling->window_start_t); 1609 stat->busy_time = scaling->tot_busy_t; 1610 start_window: 1611 scaling->window_start_t = curr_t; 1612 scaling->tot_busy_t = 0; 1613 1614 if (scaling->active_reqs) { 1615 scaling->busy_start_t = curr_t; 1616 scaling->is_busy_started = true; 1617 } else { 1618 scaling->busy_start_t = 0; 1619 scaling->is_busy_started = false; 1620 } 1621 spin_unlock_irqrestore(hba->host->host_lock, flags); 1622 return 0; 1623 } 1624 1625 static int ufshcd_devfreq_init(struct ufs_hba *hba) 1626 { 1627 struct list_head *clk_list = &hba->clk_list_head; 1628 struct ufs_clk_info *clki; 1629 struct devfreq *devfreq; 1630 int ret; 1631 1632 /* Skip devfreq if we don't have any clocks in the list */ 1633 if (list_empty(clk_list)) 1634 return 0; 1635 1636 if (!hba->use_pm_opp) { 1637 clki = list_first_entry(clk_list, struct ufs_clk_info, list); 1638 dev_pm_opp_add(hba->dev, clki->min_freq, 0); 1639 dev_pm_opp_add(hba->dev, clki->max_freq, 0); 1640 } 1641 1642 ufshcd_vops_config_scaling_param(hba, &hba->vps->devfreq_profile, 1643 &hba->vps->ondemand_data); 1644 devfreq = devfreq_add_device(hba->dev, 1645 &hba->vps->devfreq_profile, 1646 DEVFREQ_GOV_SIMPLE_ONDEMAND, 1647 &hba->vps->ondemand_data); 1648 if (IS_ERR(devfreq)) { 1649 ret = PTR_ERR(devfreq); 1650 dev_err(hba->dev, "Unable to register with devfreq %d\n", ret); 1651 1652 if (!hba->use_pm_opp) { 1653 dev_pm_opp_remove(hba->dev, clki->min_freq); 1654 dev_pm_opp_remove(hba->dev, clki->max_freq); 1655 } 1656 return ret; 1657 } 1658 1659 hba->devfreq = devfreq; 1660 1661 return 0; 1662 } 1663 1664 static void ufshcd_devfreq_remove(struct ufs_hba *hba) 1665 { 1666 struct list_head *clk_list = &hba->clk_list_head; 1667 1668 if (!hba->devfreq) 1669 return; 1670 1671 devfreq_remove_device(hba->devfreq); 1672 hba->devfreq = NULL; 1673 1674 if (!hba->use_pm_opp) { 1675 struct ufs_clk_info *clki; 1676 1677 clki = list_first_entry(clk_list, struct ufs_clk_info, list); 1678 dev_pm_opp_remove(hba->dev, clki->min_freq); 1679 dev_pm_opp_remove(hba->dev, clki->max_freq); 1680 } 1681 } 1682 1683 static void ufshcd_suspend_clkscaling(struct ufs_hba *hba) 1684 { 1685 unsigned long flags; 1686 bool suspend = false; 1687 1688 cancel_work_sync(&hba->clk_scaling.suspend_work); 1689 cancel_work_sync(&hba->clk_scaling.resume_work); 1690 1691 spin_lock_irqsave(hba->host->host_lock, flags); 1692 if (!hba->clk_scaling.is_suspended) { 1693 suspend = true; 1694 hba->clk_scaling.is_suspended = true; 1695 hba->clk_scaling.window_start_t = 0; 1696 } 1697 spin_unlock_irqrestore(hba->host->host_lock, flags); 1698 1699 if (suspend) 1700 devfreq_suspend_device(hba->devfreq); 1701 } 1702 1703 static void ufshcd_resume_clkscaling(struct ufs_hba *hba) 1704 { 1705 unsigned long flags; 1706 bool resume = false; 1707 1708 spin_lock_irqsave(hba->host->host_lock, flags); 1709 if (hba->clk_scaling.is_suspended) { 1710 resume = true; 1711 hba->clk_scaling.is_suspended = false; 1712 } 1713 spin_unlock_irqrestore(hba->host->host_lock, flags); 1714 1715 if (resume) 1716 devfreq_resume_device(hba->devfreq); 1717 } 1718 1719 static ssize_t ufshcd_clkscale_enable_show(struct device *dev, 1720 struct device_attribute *attr, char *buf) 1721 { 1722 struct ufs_hba *hba = dev_get_drvdata(dev); 1723 1724 return sysfs_emit(buf, "%d\n", hba->clk_scaling.is_enabled); 1725 } 1726 1727 static ssize_t ufshcd_clkscale_enable_store(struct device *dev, 1728 struct device_attribute *attr, const char *buf, size_t count) 1729 { 1730 struct ufs_hba *hba = dev_get_drvdata(dev); 1731 u32 value; 1732 int err = 0; 1733 1734 if (kstrtou32(buf, 0, &value)) 1735 return -EINVAL; 1736 1737 down(&hba->host_sem); 1738 if (!ufshcd_is_user_access_allowed(hba)) { 1739 err = -EBUSY; 1740 goto out; 1741 } 1742 1743 value = !!value; 1744 if (value == hba->clk_scaling.is_enabled) 1745 goto out; 1746 1747 ufshcd_rpm_get_sync(hba); 1748 ufshcd_hold(hba); 1749 1750 hba->clk_scaling.is_enabled = value; 1751 1752 if (value) { 1753 ufshcd_resume_clkscaling(hba); 1754 } else { 1755 ufshcd_suspend_clkscaling(hba); 1756 err = ufshcd_devfreq_scale(hba, ULONG_MAX, true); 1757 if (err) 1758 dev_err(hba->dev, "%s: failed to scale clocks up %d\n", 1759 __func__, err); 1760 } 1761 1762 ufshcd_release(hba); 1763 ufshcd_rpm_put_sync(hba); 1764 out: 1765 up(&hba->host_sem); 1766 return err ? err : count; 1767 } 1768 1769 static void ufshcd_init_clk_scaling_sysfs(struct ufs_hba *hba) 1770 { 1771 hba->clk_scaling.enable_attr.show = ufshcd_clkscale_enable_show; 1772 hba->clk_scaling.enable_attr.store = ufshcd_clkscale_enable_store; 1773 sysfs_attr_init(&hba->clk_scaling.enable_attr.attr); 1774 hba->clk_scaling.enable_attr.attr.name = "clkscale_enable"; 1775 hba->clk_scaling.enable_attr.attr.mode = 0644; 1776 if (device_create_file(hba->dev, &hba->clk_scaling.enable_attr)) 1777 dev_err(hba->dev, "Failed to create sysfs for clkscale_enable\n"); 1778 } 1779 1780 static void ufshcd_remove_clk_scaling_sysfs(struct ufs_hba *hba) 1781 { 1782 if (hba->clk_scaling.enable_attr.attr.name) 1783 device_remove_file(hba->dev, &hba->clk_scaling.enable_attr); 1784 } 1785 1786 static void ufshcd_init_clk_scaling(struct ufs_hba *hba) 1787 { 1788 char wq_name[sizeof("ufs_clkscaling_00")]; 1789 1790 if (!ufshcd_is_clkscaling_supported(hba)) 1791 return; 1792 1793 if (!hba->clk_scaling.min_gear) 1794 hba->clk_scaling.min_gear = UFS_HS_G1; 1795 1796 INIT_WORK(&hba->clk_scaling.suspend_work, 1797 ufshcd_clk_scaling_suspend_work); 1798 INIT_WORK(&hba->clk_scaling.resume_work, 1799 ufshcd_clk_scaling_resume_work); 1800 1801 snprintf(wq_name, sizeof(wq_name), "ufs_clkscaling_%d", 1802 hba->host->host_no); 1803 hba->clk_scaling.workq = create_singlethread_workqueue(wq_name); 1804 1805 hba->clk_scaling.is_initialized = true; 1806 } 1807 1808 static void ufshcd_exit_clk_scaling(struct ufs_hba *hba) 1809 { 1810 if (!hba->clk_scaling.is_initialized) 1811 return; 1812 1813 ufshcd_remove_clk_scaling_sysfs(hba); 1814 destroy_workqueue(hba->clk_scaling.workq); 1815 ufshcd_devfreq_remove(hba); 1816 hba->clk_scaling.is_initialized = false; 1817 } 1818 1819 static void ufshcd_ungate_work(struct work_struct *work) 1820 { 1821 int ret; 1822 unsigned long flags; 1823 struct ufs_hba *hba = container_of(work, struct ufs_hba, 1824 clk_gating.ungate_work); 1825 1826 cancel_delayed_work_sync(&hba->clk_gating.gate_work); 1827 1828 spin_lock_irqsave(hba->host->host_lock, flags); 1829 if (hba->clk_gating.state == CLKS_ON) { 1830 spin_unlock_irqrestore(hba->host->host_lock, flags); 1831 return; 1832 } 1833 1834 spin_unlock_irqrestore(hba->host->host_lock, flags); 1835 ufshcd_hba_vreg_set_hpm(hba); 1836 ufshcd_setup_clocks(hba, true); 1837 1838 ufshcd_enable_irq(hba); 1839 1840 /* Exit from hibern8 */ 1841 if (ufshcd_can_hibern8_during_gating(hba)) { 1842 /* Prevent gating in this path */ 1843 hba->clk_gating.is_suspended = true; 1844 if (ufshcd_is_link_hibern8(hba)) { 1845 ret = ufshcd_uic_hibern8_exit(hba); 1846 if (ret) 1847 dev_err(hba->dev, "%s: hibern8 exit failed %d\n", 1848 __func__, ret); 1849 else 1850 ufshcd_set_link_active(hba); 1851 } 1852 hba->clk_gating.is_suspended = false; 1853 } 1854 } 1855 1856 /** 1857 * ufshcd_hold - Enable clocks that were gated earlier due to ufshcd_release. 1858 * Also, exit from hibern8 mode and set the link as active. 1859 * @hba: per adapter instance 1860 */ 1861 void ufshcd_hold(struct ufs_hba *hba) 1862 { 1863 bool flush_result; 1864 unsigned long flags; 1865 1866 if (!ufshcd_is_clkgating_allowed(hba) || 1867 !hba->clk_gating.is_initialized) 1868 return; 1869 spin_lock_irqsave(hba->host->host_lock, flags); 1870 hba->clk_gating.active_reqs++; 1871 1872 start: 1873 switch (hba->clk_gating.state) { 1874 case CLKS_ON: 1875 /* 1876 * Wait for the ungate work to complete if in progress. 1877 * Though the clocks may be in ON state, the link could 1878 * still be in hibner8 state if hibern8 is allowed 1879 * during clock gating. 1880 * Make sure we exit hibern8 state also in addition to 1881 * clocks being ON. 1882 */ 1883 if (ufshcd_can_hibern8_during_gating(hba) && 1884 ufshcd_is_link_hibern8(hba)) { 1885 spin_unlock_irqrestore(hba->host->host_lock, flags); 1886 flush_result = flush_work(&hba->clk_gating.ungate_work); 1887 if (hba->clk_gating.is_suspended && !flush_result) 1888 return; 1889 spin_lock_irqsave(hba->host->host_lock, flags); 1890 goto start; 1891 } 1892 break; 1893 case REQ_CLKS_OFF: 1894 if (cancel_delayed_work(&hba->clk_gating.gate_work)) { 1895 hba->clk_gating.state = CLKS_ON; 1896 trace_ufshcd_clk_gating(dev_name(hba->dev), 1897 hba->clk_gating.state); 1898 break; 1899 } 1900 /* 1901 * If we are here, it means gating work is either done or 1902 * currently running. Hence, fall through to cancel gating 1903 * work and to enable clocks. 1904 */ 1905 fallthrough; 1906 case CLKS_OFF: 1907 hba->clk_gating.state = REQ_CLKS_ON; 1908 trace_ufshcd_clk_gating(dev_name(hba->dev), 1909 hba->clk_gating.state); 1910 queue_work(hba->clk_gating.clk_gating_workq, 1911 &hba->clk_gating.ungate_work); 1912 /* 1913 * fall through to check if we should wait for this 1914 * work to be done or not. 1915 */ 1916 fallthrough; 1917 case REQ_CLKS_ON: 1918 spin_unlock_irqrestore(hba->host->host_lock, flags); 1919 flush_work(&hba->clk_gating.ungate_work); 1920 /* Make sure state is CLKS_ON before returning */ 1921 spin_lock_irqsave(hba->host->host_lock, flags); 1922 goto start; 1923 default: 1924 dev_err(hba->dev, "%s: clk gating is in invalid state %d\n", 1925 __func__, hba->clk_gating.state); 1926 break; 1927 } 1928 spin_unlock_irqrestore(hba->host->host_lock, flags); 1929 } 1930 EXPORT_SYMBOL_GPL(ufshcd_hold); 1931 1932 static void ufshcd_gate_work(struct work_struct *work) 1933 { 1934 struct ufs_hba *hba = container_of(work, struct ufs_hba, 1935 clk_gating.gate_work.work); 1936 unsigned long flags; 1937 int ret; 1938 1939 spin_lock_irqsave(hba->host->host_lock, flags); 1940 /* 1941 * In case you are here to cancel this work the gating state 1942 * would be marked as REQ_CLKS_ON. In this case save time by 1943 * skipping the gating work and exit after changing the clock 1944 * state to CLKS_ON. 1945 */ 1946 if (hba->clk_gating.is_suspended || 1947 (hba->clk_gating.state != REQ_CLKS_OFF)) { 1948 hba->clk_gating.state = CLKS_ON; 1949 trace_ufshcd_clk_gating(dev_name(hba->dev), 1950 hba->clk_gating.state); 1951 goto rel_lock; 1952 } 1953 1954 if (ufshcd_is_ufs_dev_busy(hba) || hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL) 1955 goto rel_lock; 1956 1957 spin_unlock_irqrestore(hba->host->host_lock, flags); 1958 1959 /* put the link into hibern8 mode before turning off clocks */ 1960 if (ufshcd_can_hibern8_during_gating(hba)) { 1961 ret = ufshcd_uic_hibern8_enter(hba); 1962 if (ret) { 1963 hba->clk_gating.state = CLKS_ON; 1964 dev_err(hba->dev, "%s: hibern8 enter failed %d\n", 1965 __func__, ret); 1966 trace_ufshcd_clk_gating(dev_name(hba->dev), 1967 hba->clk_gating.state); 1968 goto out; 1969 } 1970 ufshcd_set_link_hibern8(hba); 1971 } 1972 1973 ufshcd_disable_irq(hba); 1974 1975 ufshcd_setup_clocks(hba, false); 1976 1977 /* Put the host controller in low power mode if possible */ 1978 ufshcd_hba_vreg_set_lpm(hba); 1979 /* 1980 * In case you are here to cancel this work the gating state 1981 * would be marked as REQ_CLKS_ON. In this case keep the state 1982 * as REQ_CLKS_ON which would anyway imply that clocks are off 1983 * and a request to turn them on is pending. By doing this way, 1984 * we keep the state machine in tact and this would ultimately 1985 * prevent from doing cancel work multiple times when there are 1986 * new requests arriving before the current cancel work is done. 1987 */ 1988 spin_lock_irqsave(hba->host->host_lock, flags); 1989 if (hba->clk_gating.state == REQ_CLKS_OFF) { 1990 hba->clk_gating.state = CLKS_OFF; 1991 trace_ufshcd_clk_gating(dev_name(hba->dev), 1992 hba->clk_gating.state); 1993 } 1994 rel_lock: 1995 spin_unlock_irqrestore(hba->host->host_lock, flags); 1996 out: 1997 return; 1998 } 1999 2000 /* host lock must be held before calling this variant */ 2001 static void __ufshcd_release(struct ufs_hba *hba) 2002 { 2003 if (!ufshcd_is_clkgating_allowed(hba)) 2004 return; 2005 2006 hba->clk_gating.active_reqs--; 2007 2008 if (hba->clk_gating.active_reqs || hba->clk_gating.is_suspended || 2009 hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL || 2010 hba->outstanding_tasks || !hba->clk_gating.is_initialized || 2011 hba->active_uic_cmd || hba->uic_async_done || 2012 hba->clk_gating.state == CLKS_OFF) 2013 return; 2014 2015 hba->clk_gating.state = REQ_CLKS_OFF; 2016 trace_ufshcd_clk_gating(dev_name(hba->dev), hba->clk_gating.state); 2017 queue_delayed_work(hba->clk_gating.clk_gating_workq, 2018 &hba->clk_gating.gate_work, 2019 msecs_to_jiffies(hba->clk_gating.delay_ms)); 2020 } 2021 2022 void ufshcd_release(struct ufs_hba *hba) 2023 { 2024 unsigned long flags; 2025 2026 spin_lock_irqsave(hba->host->host_lock, flags); 2027 __ufshcd_release(hba); 2028 spin_unlock_irqrestore(hba->host->host_lock, flags); 2029 } 2030 EXPORT_SYMBOL_GPL(ufshcd_release); 2031 2032 static ssize_t ufshcd_clkgate_delay_show(struct device *dev, 2033 struct device_attribute *attr, char *buf) 2034 { 2035 struct ufs_hba *hba = dev_get_drvdata(dev); 2036 2037 return sysfs_emit(buf, "%lu\n", hba->clk_gating.delay_ms); 2038 } 2039 2040 void ufshcd_clkgate_delay_set(struct device *dev, unsigned long value) 2041 { 2042 struct ufs_hba *hba = dev_get_drvdata(dev); 2043 unsigned long flags; 2044 2045 spin_lock_irqsave(hba->host->host_lock, flags); 2046 hba->clk_gating.delay_ms = value; 2047 spin_unlock_irqrestore(hba->host->host_lock, flags); 2048 } 2049 EXPORT_SYMBOL_GPL(ufshcd_clkgate_delay_set); 2050 2051 static ssize_t ufshcd_clkgate_delay_store(struct device *dev, 2052 struct device_attribute *attr, const char *buf, size_t count) 2053 { 2054 unsigned long value; 2055 2056 if (kstrtoul(buf, 0, &value)) 2057 return -EINVAL; 2058 2059 ufshcd_clkgate_delay_set(dev, value); 2060 return count; 2061 } 2062 2063 static ssize_t ufshcd_clkgate_enable_show(struct device *dev, 2064 struct device_attribute *attr, char *buf) 2065 { 2066 struct ufs_hba *hba = dev_get_drvdata(dev); 2067 2068 return sysfs_emit(buf, "%d\n", hba->clk_gating.is_enabled); 2069 } 2070 2071 static ssize_t ufshcd_clkgate_enable_store(struct device *dev, 2072 struct device_attribute *attr, const char *buf, size_t count) 2073 { 2074 struct ufs_hba *hba = dev_get_drvdata(dev); 2075 unsigned long flags; 2076 u32 value; 2077 2078 if (kstrtou32(buf, 0, &value)) 2079 return -EINVAL; 2080 2081 value = !!value; 2082 2083 spin_lock_irqsave(hba->host->host_lock, flags); 2084 if (value == hba->clk_gating.is_enabled) 2085 goto out; 2086 2087 if (value) 2088 __ufshcd_release(hba); 2089 else 2090 hba->clk_gating.active_reqs++; 2091 2092 hba->clk_gating.is_enabled = value; 2093 out: 2094 spin_unlock_irqrestore(hba->host->host_lock, flags); 2095 return count; 2096 } 2097 2098 static void ufshcd_init_clk_gating_sysfs(struct ufs_hba *hba) 2099 { 2100 hba->clk_gating.delay_attr.show = ufshcd_clkgate_delay_show; 2101 hba->clk_gating.delay_attr.store = ufshcd_clkgate_delay_store; 2102 sysfs_attr_init(&hba->clk_gating.delay_attr.attr); 2103 hba->clk_gating.delay_attr.attr.name = "clkgate_delay_ms"; 2104 hba->clk_gating.delay_attr.attr.mode = 0644; 2105 if (device_create_file(hba->dev, &hba->clk_gating.delay_attr)) 2106 dev_err(hba->dev, "Failed to create sysfs for clkgate_delay\n"); 2107 2108 hba->clk_gating.enable_attr.show = ufshcd_clkgate_enable_show; 2109 hba->clk_gating.enable_attr.store = ufshcd_clkgate_enable_store; 2110 sysfs_attr_init(&hba->clk_gating.enable_attr.attr); 2111 hba->clk_gating.enable_attr.attr.name = "clkgate_enable"; 2112 hba->clk_gating.enable_attr.attr.mode = 0644; 2113 if (device_create_file(hba->dev, &hba->clk_gating.enable_attr)) 2114 dev_err(hba->dev, "Failed to create sysfs for clkgate_enable\n"); 2115 } 2116 2117 static void ufshcd_remove_clk_gating_sysfs(struct ufs_hba *hba) 2118 { 2119 if (hba->clk_gating.delay_attr.attr.name) 2120 device_remove_file(hba->dev, &hba->clk_gating.delay_attr); 2121 if (hba->clk_gating.enable_attr.attr.name) 2122 device_remove_file(hba->dev, &hba->clk_gating.enable_attr); 2123 } 2124 2125 static void ufshcd_init_clk_gating(struct ufs_hba *hba) 2126 { 2127 char wq_name[sizeof("ufs_clk_gating_00")]; 2128 2129 if (!ufshcd_is_clkgating_allowed(hba)) 2130 return; 2131 2132 hba->clk_gating.state = CLKS_ON; 2133 2134 hba->clk_gating.delay_ms = 150; 2135 INIT_DELAYED_WORK(&hba->clk_gating.gate_work, ufshcd_gate_work); 2136 INIT_WORK(&hba->clk_gating.ungate_work, ufshcd_ungate_work); 2137 2138 snprintf(wq_name, ARRAY_SIZE(wq_name), "ufs_clk_gating_%d", 2139 hba->host->host_no); 2140 hba->clk_gating.clk_gating_workq = alloc_ordered_workqueue(wq_name, 2141 WQ_MEM_RECLAIM | WQ_HIGHPRI); 2142 2143 ufshcd_init_clk_gating_sysfs(hba); 2144 2145 hba->clk_gating.is_enabled = true; 2146 hba->clk_gating.is_initialized = true; 2147 } 2148 2149 static void ufshcd_exit_clk_gating(struct ufs_hba *hba) 2150 { 2151 if (!hba->clk_gating.is_initialized) 2152 return; 2153 2154 ufshcd_remove_clk_gating_sysfs(hba); 2155 2156 /* Ungate the clock if necessary. */ 2157 ufshcd_hold(hba); 2158 hba->clk_gating.is_initialized = false; 2159 ufshcd_release(hba); 2160 2161 destroy_workqueue(hba->clk_gating.clk_gating_workq); 2162 } 2163 2164 static void ufshcd_clk_scaling_start_busy(struct ufs_hba *hba) 2165 { 2166 bool queue_resume_work = false; 2167 ktime_t curr_t = ktime_get(); 2168 unsigned long flags; 2169 2170 if (!ufshcd_is_clkscaling_supported(hba)) 2171 return; 2172 2173 spin_lock_irqsave(hba->host->host_lock, flags); 2174 if (!hba->clk_scaling.active_reqs++) 2175 queue_resume_work = true; 2176 2177 if (!hba->clk_scaling.is_enabled || hba->pm_op_in_progress) { 2178 spin_unlock_irqrestore(hba->host->host_lock, flags); 2179 return; 2180 } 2181 2182 if (queue_resume_work) 2183 queue_work(hba->clk_scaling.workq, 2184 &hba->clk_scaling.resume_work); 2185 2186 if (!hba->clk_scaling.window_start_t) { 2187 hba->clk_scaling.window_start_t = curr_t; 2188 hba->clk_scaling.tot_busy_t = 0; 2189 hba->clk_scaling.is_busy_started = false; 2190 } 2191 2192 if (!hba->clk_scaling.is_busy_started) { 2193 hba->clk_scaling.busy_start_t = curr_t; 2194 hba->clk_scaling.is_busy_started = true; 2195 } 2196 spin_unlock_irqrestore(hba->host->host_lock, flags); 2197 } 2198 2199 static void ufshcd_clk_scaling_update_busy(struct ufs_hba *hba) 2200 { 2201 struct ufs_clk_scaling *scaling = &hba->clk_scaling; 2202 unsigned long flags; 2203 2204 if (!ufshcd_is_clkscaling_supported(hba)) 2205 return; 2206 2207 spin_lock_irqsave(hba->host->host_lock, flags); 2208 hba->clk_scaling.active_reqs--; 2209 if (!scaling->active_reqs && scaling->is_busy_started) { 2210 scaling->tot_busy_t += ktime_to_us(ktime_sub(ktime_get(), 2211 scaling->busy_start_t)); 2212 scaling->busy_start_t = 0; 2213 scaling->is_busy_started = false; 2214 } 2215 spin_unlock_irqrestore(hba->host->host_lock, flags); 2216 } 2217 2218 static inline int ufshcd_monitor_opcode2dir(u8 opcode) 2219 { 2220 if (opcode == READ_6 || opcode == READ_10 || opcode == READ_16) 2221 return READ; 2222 else if (opcode == WRITE_6 || opcode == WRITE_10 || opcode == WRITE_16) 2223 return WRITE; 2224 else 2225 return -EINVAL; 2226 } 2227 2228 static inline bool ufshcd_should_inform_monitor(struct ufs_hba *hba, 2229 struct ufshcd_lrb *lrbp) 2230 { 2231 const struct ufs_hba_monitor *m = &hba->monitor; 2232 2233 return (m->enabled && lrbp && lrbp->cmd && 2234 (!m->chunk_size || m->chunk_size == lrbp->cmd->sdb.length) && 2235 ktime_before(hba->monitor.enabled_ts, lrbp->issue_time_stamp)); 2236 } 2237 2238 static void ufshcd_start_monitor(struct ufs_hba *hba, 2239 const struct ufshcd_lrb *lrbp) 2240 { 2241 int dir = ufshcd_monitor_opcode2dir(*lrbp->cmd->cmnd); 2242 unsigned long flags; 2243 2244 spin_lock_irqsave(hba->host->host_lock, flags); 2245 if (dir >= 0 && hba->monitor.nr_queued[dir]++ == 0) 2246 hba->monitor.busy_start_ts[dir] = ktime_get(); 2247 spin_unlock_irqrestore(hba->host->host_lock, flags); 2248 } 2249 2250 static void ufshcd_update_monitor(struct ufs_hba *hba, const struct ufshcd_lrb *lrbp) 2251 { 2252 int dir = ufshcd_monitor_opcode2dir(*lrbp->cmd->cmnd); 2253 unsigned long flags; 2254 2255 spin_lock_irqsave(hba->host->host_lock, flags); 2256 if (dir >= 0 && hba->monitor.nr_queued[dir] > 0) { 2257 const struct request *req = scsi_cmd_to_rq(lrbp->cmd); 2258 struct ufs_hba_monitor *m = &hba->monitor; 2259 ktime_t now, inc, lat; 2260 2261 now = lrbp->compl_time_stamp; 2262 inc = ktime_sub(now, m->busy_start_ts[dir]); 2263 m->total_busy[dir] = ktime_add(m->total_busy[dir], inc); 2264 m->nr_sec_rw[dir] += blk_rq_sectors(req); 2265 2266 /* Update latencies */ 2267 m->nr_req[dir]++; 2268 lat = ktime_sub(now, lrbp->issue_time_stamp); 2269 m->lat_sum[dir] += lat; 2270 if (m->lat_max[dir] < lat || !m->lat_max[dir]) 2271 m->lat_max[dir] = lat; 2272 if (m->lat_min[dir] > lat || !m->lat_min[dir]) 2273 m->lat_min[dir] = lat; 2274 2275 m->nr_queued[dir]--; 2276 /* Push forward the busy start of monitor */ 2277 m->busy_start_ts[dir] = now; 2278 } 2279 spin_unlock_irqrestore(hba->host->host_lock, flags); 2280 } 2281 2282 /** 2283 * ufshcd_send_command - Send SCSI or device management commands 2284 * @hba: per adapter instance 2285 * @task_tag: Task tag of the command 2286 * @hwq: pointer to hardware queue instance 2287 */ 2288 static inline 2289 void ufshcd_send_command(struct ufs_hba *hba, unsigned int task_tag, 2290 struct ufs_hw_queue *hwq) 2291 { 2292 struct ufshcd_lrb *lrbp = &hba->lrb[task_tag]; 2293 unsigned long flags; 2294 2295 lrbp->issue_time_stamp = ktime_get(); 2296 lrbp->issue_time_stamp_local_clock = local_clock(); 2297 lrbp->compl_time_stamp = ktime_set(0, 0); 2298 lrbp->compl_time_stamp_local_clock = 0; 2299 ufshcd_add_command_trace(hba, task_tag, UFS_CMD_SEND); 2300 if (lrbp->cmd) 2301 ufshcd_clk_scaling_start_busy(hba); 2302 if (unlikely(ufshcd_should_inform_monitor(hba, lrbp))) 2303 ufshcd_start_monitor(hba, lrbp); 2304 2305 if (hba->mcq_enabled) { 2306 int utrd_size = sizeof(struct utp_transfer_req_desc); 2307 struct utp_transfer_req_desc *src = lrbp->utr_descriptor_ptr; 2308 struct utp_transfer_req_desc *dest; 2309 2310 spin_lock(&hwq->sq_lock); 2311 dest = hwq->sqe_base_addr + hwq->sq_tail_slot; 2312 memcpy(dest, src, utrd_size); 2313 ufshcd_inc_sq_tail(hwq); 2314 spin_unlock(&hwq->sq_lock); 2315 } else { 2316 spin_lock_irqsave(&hba->outstanding_lock, flags); 2317 if (hba->vops && hba->vops->setup_xfer_req) 2318 hba->vops->setup_xfer_req(hba, lrbp->task_tag, 2319 !!lrbp->cmd); 2320 __set_bit(lrbp->task_tag, &hba->outstanding_reqs); 2321 ufshcd_writel(hba, 1 << lrbp->task_tag, 2322 REG_UTP_TRANSFER_REQ_DOOR_BELL); 2323 spin_unlock_irqrestore(&hba->outstanding_lock, flags); 2324 } 2325 } 2326 2327 /** 2328 * ufshcd_copy_sense_data - Copy sense data in case of check condition 2329 * @lrbp: pointer to local reference block 2330 */ 2331 static inline void ufshcd_copy_sense_data(struct ufshcd_lrb *lrbp) 2332 { 2333 u8 *const sense_buffer = lrbp->cmd->sense_buffer; 2334 u16 resp_len; 2335 int len; 2336 2337 resp_len = be16_to_cpu(lrbp->ucd_rsp_ptr->header.data_segment_length); 2338 if (sense_buffer && resp_len) { 2339 int len_to_copy; 2340 2341 len = be16_to_cpu(lrbp->ucd_rsp_ptr->sr.sense_data_len); 2342 len_to_copy = min_t(int, UFS_SENSE_SIZE, len); 2343 2344 memcpy(sense_buffer, lrbp->ucd_rsp_ptr->sr.sense_data, 2345 len_to_copy); 2346 } 2347 } 2348 2349 /** 2350 * ufshcd_copy_query_response() - Copy the Query Response and the data 2351 * descriptor 2352 * @hba: per adapter instance 2353 * @lrbp: pointer to local reference block 2354 * 2355 * Return: 0 upon success; < 0 upon failure. 2356 */ 2357 static 2358 int ufshcd_copy_query_response(struct ufs_hba *hba, struct ufshcd_lrb *lrbp) 2359 { 2360 struct ufs_query_res *query_res = &hba->dev_cmd.query.response; 2361 2362 memcpy(&query_res->upiu_res, &lrbp->ucd_rsp_ptr->qr, QUERY_OSF_SIZE); 2363 2364 /* Get the descriptor */ 2365 if (hba->dev_cmd.query.descriptor && 2366 lrbp->ucd_rsp_ptr->qr.opcode == UPIU_QUERY_OPCODE_READ_DESC) { 2367 u8 *descp = (u8 *)lrbp->ucd_rsp_ptr + 2368 GENERAL_UPIU_REQUEST_SIZE; 2369 u16 resp_len; 2370 u16 buf_len; 2371 2372 /* data segment length */ 2373 resp_len = be16_to_cpu(lrbp->ucd_rsp_ptr->header 2374 .data_segment_length); 2375 buf_len = be16_to_cpu( 2376 hba->dev_cmd.query.request.upiu_req.length); 2377 if (likely(buf_len >= resp_len)) { 2378 memcpy(hba->dev_cmd.query.descriptor, descp, resp_len); 2379 } else { 2380 dev_warn(hba->dev, 2381 "%s: rsp size %d is bigger than buffer size %d", 2382 __func__, resp_len, buf_len); 2383 return -EINVAL; 2384 } 2385 } 2386 2387 return 0; 2388 } 2389 2390 /** 2391 * ufshcd_hba_capabilities - Read controller capabilities 2392 * @hba: per adapter instance 2393 * 2394 * Return: 0 on success, negative on error. 2395 */ 2396 static inline int ufshcd_hba_capabilities(struct ufs_hba *hba) 2397 { 2398 int err; 2399 2400 hba->capabilities = ufshcd_readl(hba, REG_CONTROLLER_CAPABILITIES); 2401 if (hba->quirks & UFSHCD_QUIRK_BROKEN_64BIT_ADDRESS) 2402 hba->capabilities &= ~MASK_64_ADDRESSING_SUPPORT; 2403 2404 /* nutrs and nutmrs are 0 based values */ 2405 hba->nutrs = (hba->capabilities & MASK_TRANSFER_REQUESTS_SLOTS_SDB) + 1; 2406 hba->nutmrs = 2407 ((hba->capabilities & MASK_TASK_MANAGEMENT_REQUEST_SLOTS) >> 16) + 1; 2408 hba->reserved_slot = hba->nutrs - 1; 2409 2410 hba->nortt = FIELD_GET(MASK_NUMBER_OUTSTANDING_RTT, hba->capabilities) + 1; 2411 2412 /* Read crypto capabilities */ 2413 err = ufshcd_hba_init_crypto_capabilities(hba); 2414 if (err) { 2415 dev_err(hba->dev, "crypto setup failed\n"); 2416 return err; 2417 } 2418 2419 /* 2420 * The UFSHCI 3.0 specification does not define MCQ_SUPPORT and 2421 * LSDB_SUPPORT, but [31:29] as reserved bits with reset value 0s, which 2422 * means we can simply read values regardless of version. 2423 */ 2424 hba->mcq_sup = FIELD_GET(MASK_MCQ_SUPPORT, hba->capabilities); 2425 /* 2426 * 0h: legacy single doorbell support is available 2427 * 1h: indicate that legacy single doorbell support has been removed 2428 */ 2429 hba->lsdb_sup = !FIELD_GET(MASK_LSDB_SUPPORT, hba->capabilities); 2430 if (!hba->mcq_sup) 2431 return 0; 2432 2433 hba->mcq_capabilities = ufshcd_readl(hba, REG_MCQCAP); 2434 hba->ext_iid_sup = FIELD_GET(MASK_EXT_IID_SUPPORT, 2435 hba->mcq_capabilities); 2436 2437 return 0; 2438 } 2439 2440 /** 2441 * ufshcd_ready_for_uic_cmd - Check if controller is ready 2442 * to accept UIC commands 2443 * @hba: per adapter instance 2444 * 2445 * Return: true on success, else false. 2446 */ 2447 static inline bool ufshcd_ready_for_uic_cmd(struct ufs_hba *hba) 2448 { 2449 u32 val; 2450 int ret = read_poll_timeout(ufshcd_readl, val, val & UIC_COMMAND_READY, 2451 500, UIC_CMD_TIMEOUT * 1000, false, hba, 2452 REG_CONTROLLER_STATUS); 2453 return ret == 0; 2454 } 2455 2456 /** 2457 * ufshcd_get_upmcrs - Get the power mode change request status 2458 * @hba: Pointer to adapter instance 2459 * 2460 * This function gets the UPMCRS field of HCS register 2461 * 2462 * Return: value of UPMCRS field. 2463 */ 2464 static inline u8 ufshcd_get_upmcrs(struct ufs_hba *hba) 2465 { 2466 return (ufshcd_readl(hba, REG_CONTROLLER_STATUS) >> 8) & 0x7; 2467 } 2468 2469 /** 2470 * ufshcd_dispatch_uic_cmd - Dispatch an UIC command to the Unipro layer 2471 * @hba: per adapter instance 2472 * @uic_cmd: UIC command 2473 */ 2474 static inline void 2475 ufshcd_dispatch_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd) 2476 { 2477 lockdep_assert_held(&hba->uic_cmd_mutex); 2478 2479 WARN_ON(hba->active_uic_cmd); 2480 2481 hba->active_uic_cmd = uic_cmd; 2482 2483 /* Write Args */ 2484 ufshcd_writel(hba, uic_cmd->argument1, REG_UIC_COMMAND_ARG_1); 2485 ufshcd_writel(hba, uic_cmd->argument2, REG_UIC_COMMAND_ARG_2); 2486 ufshcd_writel(hba, uic_cmd->argument3, REG_UIC_COMMAND_ARG_3); 2487 2488 ufshcd_add_uic_command_trace(hba, uic_cmd, UFS_CMD_SEND); 2489 2490 /* Write UIC Cmd */ 2491 ufshcd_writel(hba, uic_cmd->command & COMMAND_OPCODE_MASK, 2492 REG_UIC_COMMAND); 2493 } 2494 2495 /** 2496 * ufshcd_wait_for_uic_cmd - Wait for completion of an UIC command 2497 * @hba: per adapter instance 2498 * @uic_cmd: UIC command 2499 * 2500 * Return: 0 only if success. 2501 */ 2502 static int 2503 ufshcd_wait_for_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd) 2504 { 2505 int ret; 2506 unsigned long flags; 2507 2508 lockdep_assert_held(&hba->uic_cmd_mutex); 2509 2510 if (wait_for_completion_timeout(&uic_cmd->done, 2511 msecs_to_jiffies(UIC_CMD_TIMEOUT))) { 2512 ret = uic_cmd->argument2 & MASK_UIC_COMMAND_RESULT; 2513 } else { 2514 ret = -ETIMEDOUT; 2515 dev_err(hba->dev, 2516 "uic cmd 0x%x with arg3 0x%x completion timeout\n", 2517 uic_cmd->command, uic_cmd->argument3); 2518 2519 if (!uic_cmd->cmd_active) { 2520 dev_err(hba->dev, "%s: UIC cmd has been completed, return the result\n", 2521 __func__); 2522 ret = uic_cmd->argument2 & MASK_UIC_COMMAND_RESULT; 2523 } 2524 } 2525 2526 spin_lock_irqsave(hba->host->host_lock, flags); 2527 hba->active_uic_cmd = NULL; 2528 spin_unlock_irqrestore(hba->host->host_lock, flags); 2529 2530 return ret; 2531 } 2532 2533 /** 2534 * __ufshcd_send_uic_cmd - Send UIC commands and retrieve the result 2535 * @hba: per adapter instance 2536 * @uic_cmd: UIC command 2537 * @completion: initialize the completion only if this is set to true 2538 * 2539 * Return: 0 only if success. 2540 */ 2541 static int 2542 __ufshcd_send_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd, 2543 bool completion) 2544 { 2545 lockdep_assert_held(&hba->uic_cmd_mutex); 2546 2547 if (!ufshcd_ready_for_uic_cmd(hba)) { 2548 dev_err(hba->dev, 2549 "Controller not ready to accept UIC commands\n"); 2550 return -EIO; 2551 } 2552 2553 if (completion) 2554 init_completion(&uic_cmd->done); 2555 2556 uic_cmd->cmd_active = 1; 2557 ufshcd_dispatch_uic_cmd(hba, uic_cmd); 2558 2559 return 0; 2560 } 2561 2562 /** 2563 * ufshcd_send_uic_cmd - Send UIC commands and retrieve the result 2564 * @hba: per adapter instance 2565 * @uic_cmd: UIC command 2566 * 2567 * Return: 0 only if success. 2568 */ 2569 int ufshcd_send_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd) 2570 { 2571 int ret; 2572 2573 if (hba->quirks & UFSHCD_QUIRK_BROKEN_UIC_CMD) 2574 return 0; 2575 2576 ufshcd_hold(hba); 2577 mutex_lock(&hba->uic_cmd_mutex); 2578 ufshcd_add_delay_before_dme_cmd(hba); 2579 2580 ret = __ufshcd_send_uic_cmd(hba, uic_cmd, true); 2581 if (!ret) 2582 ret = ufshcd_wait_for_uic_cmd(hba, uic_cmd); 2583 2584 mutex_unlock(&hba->uic_cmd_mutex); 2585 2586 ufshcd_release(hba); 2587 return ret; 2588 } 2589 2590 /** 2591 * ufshcd_sgl_to_prdt - SG list to PRTD (Physical Region Description Table, 4DW format) 2592 * @hba: per-adapter instance 2593 * @lrbp: pointer to local reference block 2594 * @sg_entries: The number of sg lists actually used 2595 * @sg_list: Pointer to SG list 2596 */ 2597 static void ufshcd_sgl_to_prdt(struct ufs_hba *hba, struct ufshcd_lrb *lrbp, int sg_entries, 2598 struct scatterlist *sg_list) 2599 { 2600 struct ufshcd_sg_entry *prd; 2601 struct scatterlist *sg; 2602 int i; 2603 2604 if (sg_entries) { 2605 2606 if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN) 2607 lrbp->utr_descriptor_ptr->prd_table_length = 2608 cpu_to_le16(sg_entries * ufshcd_sg_entry_size(hba)); 2609 else 2610 lrbp->utr_descriptor_ptr->prd_table_length = cpu_to_le16(sg_entries); 2611 2612 prd = lrbp->ucd_prdt_ptr; 2613 2614 for_each_sg(sg_list, sg, sg_entries, i) { 2615 const unsigned int len = sg_dma_len(sg); 2616 2617 /* 2618 * From the UFSHCI spec: "Data Byte Count (DBC): A '0' 2619 * based value that indicates the length, in bytes, of 2620 * the data block. A maximum of length of 256KB may 2621 * exist for any entry. Bits 1:0 of this field shall be 2622 * 11b to indicate Dword granularity. A value of '3' 2623 * indicates 4 bytes, '7' indicates 8 bytes, etc." 2624 */ 2625 WARN_ONCE(len > SZ_256K, "len = %#x\n", len); 2626 prd->size = cpu_to_le32(len - 1); 2627 prd->addr = cpu_to_le64(sg->dma_address); 2628 prd->reserved = 0; 2629 prd = (void *)prd + ufshcd_sg_entry_size(hba); 2630 } 2631 } else { 2632 lrbp->utr_descriptor_ptr->prd_table_length = 0; 2633 } 2634 } 2635 2636 /** 2637 * ufshcd_map_sg - Map scatter-gather list to prdt 2638 * @hba: per adapter instance 2639 * @lrbp: pointer to local reference block 2640 * 2641 * Return: 0 in case of success, non-zero value in case of failure. 2642 */ 2643 static int ufshcd_map_sg(struct ufs_hba *hba, struct ufshcd_lrb *lrbp) 2644 { 2645 struct scsi_cmnd *cmd = lrbp->cmd; 2646 int sg_segments = scsi_dma_map(cmd); 2647 2648 if (sg_segments < 0) 2649 return sg_segments; 2650 2651 ufshcd_sgl_to_prdt(hba, lrbp, sg_segments, scsi_sglist(cmd)); 2652 2653 return ufshcd_crypto_fill_prdt(hba, lrbp); 2654 } 2655 2656 /** 2657 * ufshcd_enable_intr - enable interrupts 2658 * @hba: per adapter instance 2659 * @intrs: interrupt bits 2660 */ 2661 static void ufshcd_enable_intr(struct ufs_hba *hba, u32 intrs) 2662 { 2663 u32 set = ufshcd_readl(hba, REG_INTERRUPT_ENABLE); 2664 2665 set |= intrs; 2666 ufshcd_writel(hba, set, REG_INTERRUPT_ENABLE); 2667 } 2668 2669 /** 2670 * ufshcd_disable_intr - disable interrupts 2671 * @hba: per adapter instance 2672 * @intrs: interrupt bits 2673 */ 2674 static void ufshcd_disable_intr(struct ufs_hba *hba, u32 intrs) 2675 { 2676 u32 set = ufshcd_readl(hba, REG_INTERRUPT_ENABLE); 2677 2678 set &= ~intrs; 2679 ufshcd_writel(hba, set, REG_INTERRUPT_ENABLE); 2680 } 2681 2682 /** 2683 * ufshcd_prepare_req_desc_hdr - Fill UTP Transfer request descriptor header according to request 2684 * descriptor according to request 2685 * @hba: per adapter instance 2686 * @lrbp: pointer to local reference block 2687 * @upiu_flags: flags required in the header 2688 * @cmd_dir: requests data direction 2689 * @ehs_length: Total EHS Length (in 32‐bytes units of all Extra Header Segments) 2690 */ 2691 static void 2692 ufshcd_prepare_req_desc_hdr(struct ufs_hba *hba, struct ufshcd_lrb *lrbp, 2693 u8 *upiu_flags, enum dma_data_direction cmd_dir, 2694 int ehs_length) 2695 { 2696 struct utp_transfer_req_desc *req_desc = lrbp->utr_descriptor_ptr; 2697 struct request_desc_header *h = &req_desc->header; 2698 enum utp_data_direction data_direction; 2699 2700 lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE; 2701 2702 *h = (typeof(*h)){ }; 2703 2704 if (cmd_dir == DMA_FROM_DEVICE) { 2705 data_direction = UTP_DEVICE_TO_HOST; 2706 *upiu_flags = UPIU_CMD_FLAGS_READ; 2707 } else if (cmd_dir == DMA_TO_DEVICE) { 2708 data_direction = UTP_HOST_TO_DEVICE; 2709 *upiu_flags = UPIU_CMD_FLAGS_WRITE; 2710 } else { 2711 data_direction = UTP_NO_DATA_TRANSFER; 2712 *upiu_flags = UPIU_CMD_FLAGS_NONE; 2713 } 2714 2715 h->command_type = lrbp->command_type; 2716 h->data_direction = data_direction; 2717 h->ehs_length = ehs_length; 2718 2719 if (lrbp->intr_cmd) 2720 h->interrupt = 1; 2721 2722 /* Prepare crypto related dwords */ 2723 ufshcd_prepare_req_desc_hdr_crypto(lrbp, h); 2724 2725 /* 2726 * assigning invalid value for command status. Controller 2727 * updates OCS on command completion, with the command 2728 * status 2729 */ 2730 h->ocs = OCS_INVALID_COMMAND_STATUS; 2731 2732 req_desc->prd_table_length = 0; 2733 } 2734 2735 /** 2736 * ufshcd_prepare_utp_scsi_cmd_upiu() - fills the utp_transfer_req_desc, 2737 * for scsi commands 2738 * @lrbp: local reference block pointer 2739 * @upiu_flags: flags 2740 */ 2741 static 2742 void ufshcd_prepare_utp_scsi_cmd_upiu(struct ufshcd_lrb *lrbp, u8 upiu_flags) 2743 { 2744 struct scsi_cmnd *cmd = lrbp->cmd; 2745 struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr; 2746 unsigned short cdb_len; 2747 2748 ucd_req_ptr->header = (struct utp_upiu_header){ 2749 .transaction_code = UPIU_TRANSACTION_COMMAND, 2750 .flags = upiu_flags, 2751 .lun = lrbp->lun, 2752 .task_tag = lrbp->task_tag, 2753 .command_set_type = UPIU_COMMAND_SET_TYPE_SCSI, 2754 }; 2755 2756 WARN_ON_ONCE(ucd_req_ptr->header.task_tag != lrbp->task_tag); 2757 2758 ucd_req_ptr->sc.exp_data_transfer_len = cpu_to_be32(cmd->sdb.length); 2759 2760 cdb_len = min_t(unsigned short, cmd->cmd_len, UFS_CDB_SIZE); 2761 memset(ucd_req_ptr->sc.cdb, 0, UFS_CDB_SIZE); 2762 memcpy(ucd_req_ptr->sc.cdb, cmd->cmnd, cdb_len); 2763 2764 memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp)); 2765 } 2766 2767 /** 2768 * ufshcd_prepare_utp_query_req_upiu() - fill the utp_transfer_req_desc for query request 2769 * @hba: UFS hba 2770 * @lrbp: local reference block pointer 2771 * @upiu_flags: flags 2772 */ 2773 static void ufshcd_prepare_utp_query_req_upiu(struct ufs_hba *hba, 2774 struct ufshcd_lrb *lrbp, u8 upiu_flags) 2775 { 2776 struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr; 2777 struct ufs_query *query = &hba->dev_cmd.query; 2778 u16 len = be16_to_cpu(query->request.upiu_req.length); 2779 2780 /* Query request header */ 2781 ucd_req_ptr->header = (struct utp_upiu_header){ 2782 .transaction_code = UPIU_TRANSACTION_QUERY_REQ, 2783 .flags = upiu_flags, 2784 .lun = lrbp->lun, 2785 .task_tag = lrbp->task_tag, 2786 .query_function = query->request.query_func, 2787 /* Data segment length only need for WRITE_DESC */ 2788 .data_segment_length = 2789 query->request.upiu_req.opcode == 2790 UPIU_QUERY_OPCODE_WRITE_DESC ? 2791 cpu_to_be16(len) : 2792 0, 2793 }; 2794 2795 /* Copy the Query Request buffer as is */ 2796 memcpy(&ucd_req_ptr->qr, &query->request.upiu_req, 2797 QUERY_OSF_SIZE); 2798 2799 /* Copy the Descriptor */ 2800 if (query->request.upiu_req.opcode == UPIU_QUERY_OPCODE_WRITE_DESC) 2801 memcpy(ucd_req_ptr + 1, query->descriptor, len); 2802 2803 memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp)); 2804 } 2805 2806 static inline void ufshcd_prepare_utp_nop_upiu(struct ufshcd_lrb *lrbp) 2807 { 2808 struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr; 2809 2810 memset(ucd_req_ptr, 0, sizeof(struct utp_upiu_req)); 2811 2812 ucd_req_ptr->header = (struct utp_upiu_header){ 2813 .transaction_code = UPIU_TRANSACTION_NOP_OUT, 2814 .task_tag = lrbp->task_tag, 2815 }; 2816 2817 memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp)); 2818 } 2819 2820 /** 2821 * ufshcd_compose_devman_upiu - UFS Protocol Information Unit(UPIU) 2822 * for Device Management Purposes 2823 * @hba: per adapter instance 2824 * @lrbp: pointer to local reference block 2825 * 2826 * Return: 0 upon success; < 0 upon failure. 2827 */ 2828 static int ufshcd_compose_devman_upiu(struct ufs_hba *hba, 2829 struct ufshcd_lrb *lrbp) 2830 { 2831 u8 upiu_flags; 2832 int ret = 0; 2833 2834 ufshcd_prepare_req_desc_hdr(hba, lrbp, &upiu_flags, DMA_NONE, 0); 2835 2836 if (hba->dev_cmd.type == DEV_CMD_TYPE_QUERY) 2837 ufshcd_prepare_utp_query_req_upiu(hba, lrbp, upiu_flags); 2838 else if (hba->dev_cmd.type == DEV_CMD_TYPE_NOP) 2839 ufshcd_prepare_utp_nop_upiu(lrbp); 2840 else 2841 ret = -EINVAL; 2842 2843 return ret; 2844 } 2845 2846 /** 2847 * ufshcd_comp_scsi_upiu - UFS Protocol Information Unit(UPIU) 2848 * for SCSI Purposes 2849 * @hba: per adapter instance 2850 * @lrbp: pointer to local reference block 2851 */ 2852 static void ufshcd_comp_scsi_upiu(struct ufs_hba *hba, struct ufshcd_lrb *lrbp) 2853 { 2854 struct request *rq = scsi_cmd_to_rq(lrbp->cmd); 2855 unsigned int ioprio_class = IOPRIO_PRIO_CLASS(req_get_ioprio(rq)); 2856 u8 upiu_flags; 2857 2858 ufshcd_prepare_req_desc_hdr(hba, lrbp, &upiu_flags, lrbp->cmd->sc_data_direction, 0); 2859 if (ioprio_class == IOPRIO_CLASS_RT) 2860 upiu_flags |= UPIU_CMD_FLAGS_CP; 2861 ufshcd_prepare_utp_scsi_cmd_upiu(lrbp, upiu_flags); 2862 } 2863 2864 /** 2865 * ufshcd_upiu_wlun_to_scsi_wlun - maps UPIU W-LUN id to SCSI W-LUN ID 2866 * @upiu_wlun_id: UPIU W-LUN id 2867 * 2868 * Return: SCSI W-LUN id. 2869 */ 2870 static inline u16 ufshcd_upiu_wlun_to_scsi_wlun(u8 upiu_wlun_id) 2871 { 2872 return (upiu_wlun_id & ~UFS_UPIU_WLUN_ID) | SCSI_W_LUN_BASE; 2873 } 2874 2875 static inline bool is_device_wlun(struct scsi_device *sdev) 2876 { 2877 return sdev->lun == 2878 ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_UFS_DEVICE_WLUN); 2879 } 2880 2881 /* 2882 * Associate the UFS controller queue with the default and poll HCTX types. 2883 * Initialize the mq_map[] arrays. 2884 */ 2885 static void ufshcd_map_queues(struct Scsi_Host *shost) 2886 { 2887 struct ufs_hba *hba = shost_priv(shost); 2888 int i, queue_offset = 0; 2889 2890 if (!is_mcq_supported(hba)) { 2891 hba->nr_queues[HCTX_TYPE_DEFAULT] = 1; 2892 hba->nr_queues[HCTX_TYPE_READ] = 0; 2893 hba->nr_queues[HCTX_TYPE_POLL] = 1; 2894 hba->nr_hw_queues = 1; 2895 } 2896 2897 for (i = 0; i < shost->nr_maps; i++) { 2898 struct blk_mq_queue_map *map = &shost->tag_set.map[i]; 2899 2900 map->nr_queues = hba->nr_queues[i]; 2901 if (!map->nr_queues) 2902 continue; 2903 map->queue_offset = queue_offset; 2904 if (i == HCTX_TYPE_POLL && !is_mcq_supported(hba)) 2905 map->queue_offset = 0; 2906 2907 blk_mq_map_queues(map); 2908 queue_offset += map->nr_queues; 2909 } 2910 } 2911 2912 static void ufshcd_init_lrb(struct ufs_hba *hba, struct ufshcd_lrb *lrb, int i) 2913 { 2914 struct utp_transfer_cmd_desc *cmd_descp = (void *)hba->ucdl_base_addr + 2915 i * ufshcd_get_ucd_size(hba); 2916 struct utp_transfer_req_desc *utrdlp = hba->utrdl_base_addr; 2917 dma_addr_t cmd_desc_element_addr = hba->ucdl_dma_addr + 2918 i * ufshcd_get_ucd_size(hba); 2919 u16 response_offset = offsetof(struct utp_transfer_cmd_desc, 2920 response_upiu); 2921 u16 prdt_offset = offsetof(struct utp_transfer_cmd_desc, prd_table); 2922 2923 lrb->utr_descriptor_ptr = utrdlp + i; 2924 lrb->utrd_dma_addr = hba->utrdl_dma_addr + 2925 i * sizeof(struct utp_transfer_req_desc); 2926 lrb->ucd_req_ptr = (struct utp_upiu_req *)cmd_descp->command_upiu; 2927 lrb->ucd_req_dma_addr = cmd_desc_element_addr; 2928 lrb->ucd_rsp_ptr = (struct utp_upiu_rsp *)cmd_descp->response_upiu; 2929 lrb->ucd_rsp_dma_addr = cmd_desc_element_addr + response_offset; 2930 lrb->ucd_prdt_ptr = (struct ufshcd_sg_entry *)cmd_descp->prd_table; 2931 lrb->ucd_prdt_dma_addr = cmd_desc_element_addr + prdt_offset; 2932 } 2933 2934 /** 2935 * ufshcd_queuecommand - main entry point for SCSI requests 2936 * @host: SCSI host pointer 2937 * @cmd: command from SCSI Midlayer 2938 * 2939 * Return: 0 for success, non-zero in case of failure. 2940 */ 2941 static int ufshcd_queuecommand(struct Scsi_Host *host, struct scsi_cmnd *cmd) 2942 { 2943 struct ufs_hba *hba = shost_priv(host); 2944 int tag = scsi_cmd_to_rq(cmd)->tag; 2945 struct ufshcd_lrb *lrbp; 2946 int err = 0; 2947 struct ufs_hw_queue *hwq = NULL; 2948 2949 switch (hba->ufshcd_state) { 2950 case UFSHCD_STATE_OPERATIONAL: 2951 break; 2952 case UFSHCD_STATE_EH_SCHEDULED_NON_FATAL: 2953 /* 2954 * SCSI error handler can call ->queuecommand() while UFS error 2955 * handler is in progress. Error interrupts could change the 2956 * state from UFSHCD_STATE_RESET to 2957 * UFSHCD_STATE_EH_SCHEDULED_NON_FATAL. Prevent requests 2958 * being issued in that case. 2959 */ 2960 if (ufshcd_eh_in_progress(hba)) { 2961 err = SCSI_MLQUEUE_HOST_BUSY; 2962 goto out; 2963 } 2964 break; 2965 case UFSHCD_STATE_EH_SCHEDULED_FATAL: 2966 /* 2967 * pm_runtime_get_sync() is used at error handling preparation 2968 * stage. If a scsi cmd, e.g. the SSU cmd, is sent from hba's 2969 * PM ops, it can never be finished if we let SCSI layer keep 2970 * retrying it, which gets err handler stuck forever. Neither 2971 * can we let the scsi cmd pass through, because UFS is in bad 2972 * state, the scsi cmd may eventually time out, which will get 2973 * err handler blocked for too long. So, just fail the scsi cmd 2974 * sent from PM ops, err handler can recover PM error anyways. 2975 */ 2976 if (hba->pm_op_in_progress) { 2977 hba->force_reset = true; 2978 set_host_byte(cmd, DID_BAD_TARGET); 2979 scsi_done(cmd); 2980 goto out; 2981 } 2982 fallthrough; 2983 case UFSHCD_STATE_RESET: 2984 err = SCSI_MLQUEUE_HOST_BUSY; 2985 goto out; 2986 case UFSHCD_STATE_ERROR: 2987 set_host_byte(cmd, DID_ERROR); 2988 scsi_done(cmd); 2989 goto out; 2990 } 2991 2992 hba->req_abort_count = 0; 2993 2994 ufshcd_hold(hba); 2995 2996 lrbp = &hba->lrb[tag]; 2997 lrbp->cmd = cmd; 2998 lrbp->task_tag = tag; 2999 lrbp->lun = ufshcd_scsi_to_upiu_lun(cmd->device->lun); 3000 lrbp->intr_cmd = !ufshcd_is_intr_aggr_allowed(hba); 3001 3002 ufshcd_prepare_lrbp_crypto(scsi_cmd_to_rq(cmd), lrbp); 3003 3004 lrbp->req_abort_skip = false; 3005 3006 ufshcd_comp_scsi_upiu(hba, lrbp); 3007 3008 err = ufshcd_map_sg(hba, lrbp); 3009 if (err) { 3010 ufshcd_release(hba); 3011 goto out; 3012 } 3013 3014 if (hba->mcq_enabled) 3015 hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(cmd)); 3016 3017 ufshcd_send_command(hba, tag, hwq); 3018 3019 out: 3020 if (ufs_trigger_eh(hba)) { 3021 unsigned long flags; 3022 3023 spin_lock_irqsave(hba->host->host_lock, flags); 3024 ufshcd_schedule_eh_work(hba); 3025 spin_unlock_irqrestore(hba->host->host_lock, flags); 3026 } 3027 3028 return err; 3029 } 3030 3031 static void ufshcd_setup_dev_cmd(struct ufs_hba *hba, struct ufshcd_lrb *lrbp, 3032 enum dev_cmd_type cmd_type, u8 lun, int tag) 3033 { 3034 lrbp->cmd = NULL; 3035 lrbp->task_tag = tag; 3036 lrbp->lun = lun; 3037 lrbp->intr_cmd = true; /* No interrupt aggregation */ 3038 ufshcd_prepare_lrbp_crypto(NULL, lrbp); 3039 hba->dev_cmd.type = cmd_type; 3040 } 3041 3042 static int ufshcd_compose_dev_cmd(struct ufs_hba *hba, 3043 struct ufshcd_lrb *lrbp, enum dev_cmd_type cmd_type, int tag) 3044 { 3045 ufshcd_setup_dev_cmd(hba, lrbp, cmd_type, 0, tag); 3046 3047 return ufshcd_compose_devman_upiu(hba, lrbp); 3048 } 3049 3050 /* 3051 * Check with the block layer if the command is inflight 3052 * @cmd: command to check. 3053 * 3054 * Return: true if command is inflight; false if not. 3055 */ 3056 bool ufshcd_cmd_inflight(struct scsi_cmnd *cmd) 3057 { 3058 return cmd && blk_mq_rq_state(scsi_cmd_to_rq(cmd)) == MQ_RQ_IN_FLIGHT; 3059 } 3060 3061 /* 3062 * Clear the pending command in the controller and wait until 3063 * the controller confirms that the command has been cleared. 3064 * @hba: per adapter instance 3065 * @task_tag: The tag number of the command to be cleared. 3066 */ 3067 static int ufshcd_clear_cmd(struct ufs_hba *hba, u32 task_tag) 3068 { 3069 u32 mask; 3070 unsigned long flags; 3071 int err; 3072 3073 if (hba->mcq_enabled) { 3074 /* 3075 * MCQ mode. Clean up the MCQ resources similar to 3076 * what the ufshcd_utrl_clear() does for SDB mode. 3077 */ 3078 err = ufshcd_mcq_sq_cleanup(hba, task_tag); 3079 if (err) { 3080 dev_err(hba->dev, "%s: failed tag=%d. err=%d\n", 3081 __func__, task_tag, err); 3082 return err; 3083 } 3084 return 0; 3085 } 3086 3087 mask = 1U << task_tag; 3088 3089 /* clear outstanding transaction before retry */ 3090 spin_lock_irqsave(hba->host->host_lock, flags); 3091 ufshcd_utrl_clear(hba, mask); 3092 spin_unlock_irqrestore(hba->host->host_lock, flags); 3093 3094 /* 3095 * wait for h/w to clear corresponding bit in door-bell. 3096 * max. wait is 1 sec. 3097 */ 3098 return ufshcd_wait_for_register(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL, 3099 mask, ~mask, 1000, 1000); 3100 } 3101 3102 /** 3103 * ufshcd_dev_cmd_completion() - handles device management command responses 3104 * @hba: per adapter instance 3105 * @lrbp: pointer to local reference block 3106 * 3107 * Return: 0 upon success; < 0 upon failure. 3108 */ 3109 static int 3110 ufshcd_dev_cmd_completion(struct ufs_hba *hba, struct ufshcd_lrb *lrbp) 3111 { 3112 enum upiu_response_transaction resp; 3113 int err = 0; 3114 3115 hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0); 3116 resp = ufshcd_get_req_rsp(lrbp->ucd_rsp_ptr); 3117 3118 switch (resp) { 3119 case UPIU_TRANSACTION_NOP_IN: 3120 if (hba->dev_cmd.type != DEV_CMD_TYPE_NOP) { 3121 err = -EINVAL; 3122 dev_err(hba->dev, "%s: unexpected response %x\n", 3123 __func__, resp); 3124 } 3125 break; 3126 case UPIU_TRANSACTION_QUERY_RSP: { 3127 u8 response = lrbp->ucd_rsp_ptr->header.response; 3128 3129 if (response == 0) 3130 err = ufshcd_copy_query_response(hba, lrbp); 3131 break; 3132 } 3133 case UPIU_TRANSACTION_REJECT_UPIU: 3134 /* TODO: handle Reject UPIU Response */ 3135 err = -EPERM; 3136 dev_err(hba->dev, "%s: Reject UPIU not fully implemented\n", 3137 __func__); 3138 break; 3139 case UPIU_TRANSACTION_RESPONSE: 3140 if (hba->dev_cmd.type != DEV_CMD_TYPE_RPMB) { 3141 err = -EINVAL; 3142 dev_err(hba->dev, "%s: unexpected response %x\n", __func__, resp); 3143 } 3144 break; 3145 default: 3146 err = -EINVAL; 3147 dev_err(hba->dev, "%s: Invalid device management cmd response: %x\n", 3148 __func__, resp); 3149 break; 3150 } 3151 3152 return err; 3153 } 3154 3155 static int ufshcd_wait_for_dev_cmd(struct ufs_hba *hba, 3156 struct ufshcd_lrb *lrbp, int max_timeout) 3157 { 3158 unsigned long time_left = msecs_to_jiffies(max_timeout); 3159 unsigned long flags; 3160 bool pending; 3161 int err; 3162 3163 retry: 3164 time_left = wait_for_completion_timeout(hba->dev_cmd.complete, 3165 time_left); 3166 3167 if (likely(time_left)) { 3168 /* 3169 * The completion handler called complete() and the caller of 3170 * this function still owns the @lrbp tag so the code below does 3171 * not trigger any race conditions. 3172 */ 3173 hba->dev_cmd.complete = NULL; 3174 err = ufshcd_get_tr_ocs(lrbp, NULL); 3175 if (!err) 3176 err = ufshcd_dev_cmd_completion(hba, lrbp); 3177 } else { 3178 err = -ETIMEDOUT; 3179 dev_dbg(hba->dev, "%s: dev_cmd request timedout, tag %d\n", 3180 __func__, lrbp->task_tag); 3181 3182 /* MCQ mode */ 3183 if (hba->mcq_enabled) { 3184 /* successfully cleared the command, retry if needed */ 3185 if (ufshcd_clear_cmd(hba, lrbp->task_tag) == 0) 3186 err = -EAGAIN; 3187 hba->dev_cmd.complete = NULL; 3188 return err; 3189 } 3190 3191 /* SDB mode */ 3192 if (ufshcd_clear_cmd(hba, lrbp->task_tag) == 0) { 3193 /* successfully cleared the command, retry if needed */ 3194 err = -EAGAIN; 3195 /* 3196 * Since clearing the command succeeded we also need to 3197 * clear the task tag bit from the outstanding_reqs 3198 * variable. 3199 */ 3200 spin_lock_irqsave(&hba->outstanding_lock, flags); 3201 pending = test_bit(lrbp->task_tag, 3202 &hba->outstanding_reqs); 3203 if (pending) { 3204 hba->dev_cmd.complete = NULL; 3205 __clear_bit(lrbp->task_tag, 3206 &hba->outstanding_reqs); 3207 } 3208 spin_unlock_irqrestore(&hba->outstanding_lock, flags); 3209 3210 if (!pending) { 3211 /* 3212 * The completion handler ran while we tried to 3213 * clear the command. 3214 */ 3215 time_left = 1; 3216 goto retry; 3217 } 3218 } else { 3219 dev_err(hba->dev, "%s: failed to clear tag %d\n", 3220 __func__, lrbp->task_tag); 3221 3222 spin_lock_irqsave(&hba->outstanding_lock, flags); 3223 pending = test_bit(lrbp->task_tag, 3224 &hba->outstanding_reqs); 3225 if (pending) 3226 hba->dev_cmd.complete = NULL; 3227 spin_unlock_irqrestore(&hba->outstanding_lock, flags); 3228 3229 if (!pending) { 3230 /* 3231 * The completion handler ran while we tried to 3232 * clear the command. 3233 */ 3234 time_left = 1; 3235 goto retry; 3236 } 3237 } 3238 } 3239 3240 return err; 3241 } 3242 3243 static void ufshcd_dev_man_lock(struct ufs_hba *hba) 3244 { 3245 ufshcd_hold(hba); 3246 mutex_lock(&hba->dev_cmd.lock); 3247 down_read(&hba->clk_scaling_lock); 3248 } 3249 3250 static void ufshcd_dev_man_unlock(struct ufs_hba *hba) 3251 { 3252 up_read(&hba->clk_scaling_lock); 3253 mutex_unlock(&hba->dev_cmd.lock); 3254 ufshcd_release(hba); 3255 } 3256 3257 static int ufshcd_issue_dev_cmd(struct ufs_hba *hba, struct ufshcd_lrb *lrbp, 3258 const u32 tag, int timeout) 3259 { 3260 DECLARE_COMPLETION_ONSTACK(wait); 3261 int err; 3262 3263 hba->dev_cmd.complete = &wait; 3264 3265 ufshcd_add_query_upiu_trace(hba, UFS_QUERY_SEND, lrbp->ucd_req_ptr); 3266 3267 ufshcd_send_command(hba, tag, hba->dev_cmd_queue); 3268 err = ufshcd_wait_for_dev_cmd(hba, lrbp, timeout); 3269 3270 ufshcd_add_query_upiu_trace(hba, err ? UFS_QUERY_ERR : UFS_QUERY_COMP, 3271 (struct utp_upiu_req *)lrbp->ucd_rsp_ptr); 3272 3273 return err; 3274 } 3275 3276 /** 3277 * ufshcd_exec_dev_cmd - API for sending device management requests 3278 * @hba: UFS hba 3279 * @cmd_type: specifies the type (NOP, Query...) 3280 * @timeout: timeout in milliseconds 3281 * 3282 * Return: 0 upon success; < 0 upon failure. 3283 * 3284 * NOTE: Since there is only one available tag for device management commands, 3285 * it is expected you hold the hba->dev_cmd.lock mutex. 3286 */ 3287 static int ufshcd_exec_dev_cmd(struct ufs_hba *hba, 3288 enum dev_cmd_type cmd_type, int timeout) 3289 { 3290 const u32 tag = hba->reserved_slot; 3291 struct ufshcd_lrb *lrbp = &hba->lrb[tag]; 3292 int err; 3293 3294 /* Protects use of hba->reserved_slot. */ 3295 lockdep_assert_held(&hba->dev_cmd.lock); 3296 3297 err = ufshcd_compose_dev_cmd(hba, lrbp, cmd_type, tag); 3298 if (unlikely(err)) 3299 return err; 3300 3301 return ufshcd_issue_dev_cmd(hba, lrbp, tag, timeout); 3302 } 3303 3304 /** 3305 * ufshcd_init_query() - init the query response and request parameters 3306 * @hba: per-adapter instance 3307 * @request: address of the request pointer to be initialized 3308 * @response: address of the response pointer to be initialized 3309 * @opcode: operation to perform 3310 * @idn: flag idn to access 3311 * @index: LU number to access 3312 * @selector: query/flag/descriptor further identification 3313 */ 3314 static inline void ufshcd_init_query(struct ufs_hba *hba, 3315 struct ufs_query_req **request, struct ufs_query_res **response, 3316 enum query_opcode opcode, u8 idn, u8 index, u8 selector) 3317 { 3318 *request = &hba->dev_cmd.query.request; 3319 *response = &hba->dev_cmd.query.response; 3320 memset(*request, 0, sizeof(struct ufs_query_req)); 3321 memset(*response, 0, sizeof(struct ufs_query_res)); 3322 (*request)->upiu_req.opcode = opcode; 3323 (*request)->upiu_req.idn = idn; 3324 (*request)->upiu_req.index = index; 3325 (*request)->upiu_req.selector = selector; 3326 } 3327 3328 static int ufshcd_query_flag_retry(struct ufs_hba *hba, 3329 enum query_opcode opcode, enum flag_idn idn, u8 index, bool *flag_res) 3330 { 3331 int ret; 3332 int retries; 3333 3334 for (retries = 0; retries < QUERY_REQ_RETRIES; retries++) { 3335 ret = ufshcd_query_flag(hba, opcode, idn, index, flag_res); 3336 if (ret) 3337 dev_dbg(hba->dev, 3338 "%s: failed with error %d, retries %d\n", 3339 __func__, ret, retries); 3340 else 3341 break; 3342 } 3343 3344 if (ret) 3345 dev_err(hba->dev, 3346 "%s: query flag, opcode %d, idn %d, failed with error %d after %d retries\n", 3347 __func__, opcode, idn, ret, retries); 3348 return ret; 3349 } 3350 3351 /** 3352 * ufshcd_query_flag() - API function for sending flag query requests 3353 * @hba: per-adapter instance 3354 * @opcode: flag query to perform 3355 * @idn: flag idn to access 3356 * @index: flag index to access 3357 * @flag_res: the flag value after the query request completes 3358 * 3359 * Return: 0 for success, non-zero in case of failure. 3360 */ 3361 int ufshcd_query_flag(struct ufs_hba *hba, enum query_opcode opcode, 3362 enum flag_idn idn, u8 index, bool *flag_res) 3363 { 3364 struct ufs_query_req *request = NULL; 3365 struct ufs_query_res *response = NULL; 3366 int err, selector = 0; 3367 int timeout = QUERY_REQ_TIMEOUT; 3368 3369 BUG_ON(!hba); 3370 3371 ufshcd_dev_man_lock(hba); 3372 3373 ufshcd_init_query(hba, &request, &response, opcode, idn, index, 3374 selector); 3375 3376 switch (opcode) { 3377 case UPIU_QUERY_OPCODE_SET_FLAG: 3378 case UPIU_QUERY_OPCODE_CLEAR_FLAG: 3379 case UPIU_QUERY_OPCODE_TOGGLE_FLAG: 3380 request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST; 3381 break; 3382 case UPIU_QUERY_OPCODE_READ_FLAG: 3383 request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST; 3384 if (!flag_res) { 3385 /* No dummy reads */ 3386 dev_err(hba->dev, "%s: Invalid argument for read request\n", 3387 __func__); 3388 err = -EINVAL; 3389 goto out_unlock; 3390 } 3391 break; 3392 default: 3393 dev_err(hba->dev, 3394 "%s: Expected query flag opcode but got = %d\n", 3395 __func__, opcode); 3396 err = -EINVAL; 3397 goto out_unlock; 3398 } 3399 3400 err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, timeout); 3401 3402 if (err) { 3403 dev_err(hba->dev, 3404 "%s: Sending flag query for idn %d failed, err = %d\n", 3405 __func__, idn, err); 3406 goto out_unlock; 3407 } 3408 3409 if (flag_res) 3410 *flag_res = (be32_to_cpu(response->upiu_res.value) & 3411 MASK_QUERY_UPIU_FLAG_LOC) & 0x1; 3412 3413 out_unlock: 3414 ufshcd_dev_man_unlock(hba); 3415 return err; 3416 } 3417 3418 /** 3419 * ufshcd_query_attr - API function for sending attribute requests 3420 * @hba: per-adapter instance 3421 * @opcode: attribute opcode 3422 * @idn: attribute idn to access 3423 * @index: index field 3424 * @selector: selector field 3425 * @attr_val: the attribute value after the query request completes 3426 * 3427 * Return: 0 for success, non-zero in case of failure. 3428 */ 3429 int ufshcd_query_attr(struct ufs_hba *hba, enum query_opcode opcode, 3430 enum attr_idn idn, u8 index, u8 selector, u32 *attr_val) 3431 { 3432 struct ufs_query_req *request = NULL; 3433 struct ufs_query_res *response = NULL; 3434 int err; 3435 3436 BUG_ON(!hba); 3437 3438 if (!attr_val) { 3439 dev_err(hba->dev, "%s: attribute value required for opcode 0x%x\n", 3440 __func__, opcode); 3441 return -EINVAL; 3442 } 3443 3444 ufshcd_dev_man_lock(hba); 3445 3446 ufshcd_init_query(hba, &request, &response, opcode, idn, index, 3447 selector); 3448 3449 switch (opcode) { 3450 case UPIU_QUERY_OPCODE_WRITE_ATTR: 3451 request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST; 3452 request->upiu_req.value = cpu_to_be32(*attr_val); 3453 break; 3454 case UPIU_QUERY_OPCODE_READ_ATTR: 3455 request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST; 3456 break; 3457 default: 3458 dev_err(hba->dev, "%s: Expected query attr opcode but got = 0x%.2x\n", 3459 __func__, opcode); 3460 err = -EINVAL; 3461 goto out_unlock; 3462 } 3463 3464 err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT); 3465 3466 if (err) { 3467 dev_err(hba->dev, "%s: opcode 0x%.2x for idn %d failed, index %d, err = %d\n", 3468 __func__, opcode, idn, index, err); 3469 goto out_unlock; 3470 } 3471 3472 *attr_val = be32_to_cpu(response->upiu_res.value); 3473 3474 out_unlock: 3475 ufshcd_dev_man_unlock(hba); 3476 return err; 3477 } 3478 3479 /** 3480 * ufshcd_query_attr_retry() - API function for sending query 3481 * attribute with retries 3482 * @hba: per-adapter instance 3483 * @opcode: attribute opcode 3484 * @idn: attribute idn to access 3485 * @index: index field 3486 * @selector: selector field 3487 * @attr_val: the attribute value after the query request 3488 * completes 3489 * 3490 * Return: 0 for success, non-zero in case of failure. 3491 */ 3492 int ufshcd_query_attr_retry(struct ufs_hba *hba, 3493 enum query_opcode opcode, enum attr_idn idn, u8 index, u8 selector, 3494 u32 *attr_val) 3495 { 3496 int ret = 0; 3497 u32 retries; 3498 3499 for (retries = QUERY_REQ_RETRIES; retries > 0; retries--) { 3500 ret = ufshcd_query_attr(hba, opcode, idn, index, 3501 selector, attr_val); 3502 if (ret) 3503 dev_dbg(hba->dev, "%s: failed with error %d, retries %d\n", 3504 __func__, ret, retries); 3505 else 3506 break; 3507 } 3508 3509 if (ret) 3510 dev_err(hba->dev, 3511 "%s: query attribute, idn %d, failed with error %d after %d retries\n", 3512 __func__, idn, ret, QUERY_REQ_RETRIES); 3513 return ret; 3514 } 3515 3516 static int __ufshcd_query_descriptor(struct ufs_hba *hba, 3517 enum query_opcode opcode, enum desc_idn idn, u8 index, 3518 u8 selector, u8 *desc_buf, int *buf_len) 3519 { 3520 struct ufs_query_req *request = NULL; 3521 struct ufs_query_res *response = NULL; 3522 int err; 3523 3524 BUG_ON(!hba); 3525 3526 if (!desc_buf) { 3527 dev_err(hba->dev, "%s: descriptor buffer required for opcode 0x%x\n", 3528 __func__, opcode); 3529 return -EINVAL; 3530 } 3531 3532 if (*buf_len < QUERY_DESC_MIN_SIZE || *buf_len > QUERY_DESC_MAX_SIZE) { 3533 dev_err(hba->dev, "%s: descriptor buffer size (%d) is out of range\n", 3534 __func__, *buf_len); 3535 return -EINVAL; 3536 } 3537 3538 ufshcd_dev_man_lock(hba); 3539 3540 ufshcd_init_query(hba, &request, &response, opcode, idn, index, 3541 selector); 3542 hba->dev_cmd.query.descriptor = desc_buf; 3543 request->upiu_req.length = cpu_to_be16(*buf_len); 3544 3545 switch (opcode) { 3546 case UPIU_QUERY_OPCODE_WRITE_DESC: 3547 request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST; 3548 break; 3549 case UPIU_QUERY_OPCODE_READ_DESC: 3550 request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST; 3551 break; 3552 default: 3553 dev_err(hba->dev, 3554 "%s: Expected query descriptor opcode but got = 0x%.2x\n", 3555 __func__, opcode); 3556 err = -EINVAL; 3557 goto out_unlock; 3558 } 3559 3560 err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT); 3561 3562 if (err) { 3563 dev_err(hba->dev, "%s: opcode 0x%.2x for idn %d failed, index %d, err = %d\n", 3564 __func__, opcode, idn, index, err); 3565 goto out_unlock; 3566 } 3567 3568 *buf_len = be16_to_cpu(response->upiu_res.length); 3569 3570 out_unlock: 3571 hba->dev_cmd.query.descriptor = NULL; 3572 ufshcd_dev_man_unlock(hba); 3573 return err; 3574 } 3575 3576 /** 3577 * ufshcd_query_descriptor_retry - API function for sending descriptor requests 3578 * @hba: per-adapter instance 3579 * @opcode: attribute opcode 3580 * @idn: attribute idn to access 3581 * @index: index field 3582 * @selector: selector field 3583 * @desc_buf: the buffer that contains the descriptor 3584 * @buf_len: length parameter passed to the device 3585 * 3586 * The buf_len parameter will contain, on return, the length parameter 3587 * received on the response. 3588 * 3589 * Return: 0 for success, non-zero in case of failure. 3590 */ 3591 int ufshcd_query_descriptor_retry(struct ufs_hba *hba, 3592 enum query_opcode opcode, 3593 enum desc_idn idn, u8 index, 3594 u8 selector, 3595 u8 *desc_buf, int *buf_len) 3596 { 3597 int err; 3598 int retries; 3599 3600 for (retries = QUERY_REQ_RETRIES; retries > 0; retries--) { 3601 err = __ufshcd_query_descriptor(hba, opcode, idn, index, 3602 selector, desc_buf, buf_len); 3603 if (!err || err == -EINVAL) 3604 break; 3605 } 3606 3607 return err; 3608 } 3609 3610 /** 3611 * ufshcd_read_desc_param - read the specified descriptor parameter 3612 * @hba: Pointer to adapter instance 3613 * @desc_id: descriptor idn value 3614 * @desc_index: descriptor index 3615 * @param_offset: offset of the parameter to read 3616 * @param_read_buf: pointer to buffer where parameter would be read 3617 * @param_size: sizeof(param_read_buf) 3618 * 3619 * Return: 0 in case of success, non-zero otherwise. 3620 */ 3621 int ufshcd_read_desc_param(struct ufs_hba *hba, 3622 enum desc_idn desc_id, 3623 int desc_index, 3624 u8 param_offset, 3625 u8 *param_read_buf, 3626 u8 param_size) 3627 { 3628 int ret; 3629 u8 *desc_buf; 3630 int buff_len = QUERY_DESC_MAX_SIZE; 3631 bool is_kmalloc = true; 3632 3633 /* Safety check */ 3634 if (desc_id >= QUERY_DESC_IDN_MAX || !param_size) 3635 return -EINVAL; 3636 3637 /* Check whether we need temp memory */ 3638 if (param_offset != 0 || param_size < buff_len) { 3639 desc_buf = kzalloc(buff_len, GFP_KERNEL); 3640 if (!desc_buf) 3641 return -ENOMEM; 3642 } else { 3643 desc_buf = param_read_buf; 3644 is_kmalloc = false; 3645 } 3646 3647 /* Request for full descriptor */ 3648 ret = ufshcd_query_descriptor_retry(hba, UPIU_QUERY_OPCODE_READ_DESC, 3649 desc_id, desc_index, 0, 3650 desc_buf, &buff_len); 3651 if (ret) { 3652 dev_err(hba->dev, "%s: Failed reading descriptor. desc_id %d, desc_index %d, param_offset %d, ret %d\n", 3653 __func__, desc_id, desc_index, param_offset, ret); 3654 goto out; 3655 } 3656 3657 /* Update descriptor length */ 3658 buff_len = desc_buf[QUERY_DESC_LENGTH_OFFSET]; 3659 3660 if (param_offset >= buff_len) { 3661 dev_err(hba->dev, "%s: Invalid offset 0x%x in descriptor IDN 0x%x, length 0x%x\n", 3662 __func__, param_offset, desc_id, buff_len); 3663 ret = -EINVAL; 3664 goto out; 3665 } 3666 3667 /* Sanity check */ 3668 if (desc_buf[QUERY_DESC_DESC_TYPE_OFFSET] != desc_id) { 3669 dev_err(hba->dev, "%s: invalid desc_id %d in descriptor header\n", 3670 __func__, desc_buf[QUERY_DESC_DESC_TYPE_OFFSET]); 3671 ret = -EINVAL; 3672 goto out; 3673 } 3674 3675 if (is_kmalloc) { 3676 /* Make sure we don't copy more data than available */ 3677 if (param_offset >= buff_len) 3678 ret = -EINVAL; 3679 else 3680 memcpy(param_read_buf, &desc_buf[param_offset], 3681 min_t(u32, param_size, buff_len - param_offset)); 3682 } 3683 out: 3684 if (is_kmalloc) 3685 kfree(desc_buf); 3686 return ret; 3687 } 3688 3689 /** 3690 * struct uc_string_id - unicode string 3691 * 3692 * @len: size of this descriptor inclusive 3693 * @type: descriptor type 3694 * @uc: unicode string character 3695 */ 3696 struct uc_string_id { 3697 u8 len; 3698 u8 type; 3699 wchar_t uc[]; 3700 } __packed; 3701 3702 /* replace non-printable or non-ASCII characters with spaces */ 3703 static inline char ufshcd_remove_non_printable(u8 ch) 3704 { 3705 return (ch >= 0x20 && ch <= 0x7e) ? ch : ' '; 3706 } 3707 3708 /** 3709 * ufshcd_read_string_desc - read string descriptor 3710 * @hba: pointer to adapter instance 3711 * @desc_index: descriptor index 3712 * @buf: pointer to buffer where descriptor would be read, 3713 * the caller should free the memory. 3714 * @ascii: if true convert from unicode to ascii characters 3715 * null terminated string. 3716 * 3717 * Return: 3718 * * string size on success. 3719 * * -ENOMEM: on allocation failure 3720 * * -EINVAL: on a wrong parameter 3721 */ 3722 int ufshcd_read_string_desc(struct ufs_hba *hba, u8 desc_index, 3723 u8 **buf, bool ascii) 3724 { 3725 struct uc_string_id *uc_str; 3726 u8 *str; 3727 int ret; 3728 3729 if (!buf) 3730 return -EINVAL; 3731 3732 uc_str = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL); 3733 if (!uc_str) 3734 return -ENOMEM; 3735 3736 ret = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_STRING, desc_index, 0, 3737 (u8 *)uc_str, QUERY_DESC_MAX_SIZE); 3738 if (ret < 0) { 3739 dev_err(hba->dev, "Reading String Desc failed after %d retries. err = %d\n", 3740 QUERY_REQ_RETRIES, ret); 3741 str = NULL; 3742 goto out; 3743 } 3744 3745 if (uc_str->len <= QUERY_DESC_HDR_SIZE) { 3746 dev_dbg(hba->dev, "String Desc is of zero length\n"); 3747 str = NULL; 3748 ret = 0; 3749 goto out; 3750 } 3751 3752 if (ascii) { 3753 ssize_t ascii_len; 3754 int i; 3755 /* remove header and divide by 2 to move from UTF16 to UTF8 */ 3756 ascii_len = (uc_str->len - QUERY_DESC_HDR_SIZE) / 2 + 1; 3757 str = kzalloc(ascii_len, GFP_KERNEL); 3758 if (!str) { 3759 ret = -ENOMEM; 3760 goto out; 3761 } 3762 3763 /* 3764 * the descriptor contains string in UTF16 format 3765 * we need to convert to utf-8 so it can be displayed 3766 */ 3767 ret = utf16s_to_utf8s(uc_str->uc, 3768 uc_str->len - QUERY_DESC_HDR_SIZE, 3769 UTF16_BIG_ENDIAN, str, ascii_len - 1); 3770 3771 /* replace non-printable or non-ASCII characters with spaces */ 3772 for (i = 0; i < ret; i++) 3773 str[i] = ufshcd_remove_non_printable(str[i]); 3774 3775 str[ret++] = '\0'; 3776 3777 } else { 3778 str = kmemdup(uc_str, uc_str->len, GFP_KERNEL); 3779 if (!str) { 3780 ret = -ENOMEM; 3781 goto out; 3782 } 3783 ret = uc_str->len; 3784 } 3785 out: 3786 *buf = str; 3787 kfree(uc_str); 3788 return ret; 3789 } 3790 3791 /** 3792 * ufshcd_read_unit_desc_param - read the specified unit descriptor parameter 3793 * @hba: Pointer to adapter instance 3794 * @lun: lun id 3795 * @param_offset: offset of the parameter to read 3796 * @param_read_buf: pointer to buffer where parameter would be read 3797 * @param_size: sizeof(param_read_buf) 3798 * 3799 * Return: 0 in case of success, non-zero otherwise. 3800 */ 3801 static inline int ufshcd_read_unit_desc_param(struct ufs_hba *hba, 3802 int lun, 3803 enum unit_desc_param param_offset, 3804 u8 *param_read_buf, 3805 u32 param_size) 3806 { 3807 /* 3808 * Unit descriptors are only available for general purpose LUs (LUN id 3809 * from 0 to 7) and RPMB Well known LU. 3810 */ 3811 if (!ufs_is_valid_unit_desc_lun(&hba->dev_info, lun)) 3812 return -EOPNOTSUPP; 3813 3814 return ufshcd_read_desc_param(hba, QUERY_DESC_IDN_UNIT, lun, 3815 param_offset, param_read_buf, param_size); 3816 } 3817 3818 static int ufshcd_get_ref_clk_gating_wait(struct ufs_hba *hba) 3819 { 3820 int err = 0; 3821 u32 gating_wait = UFSHCD_REF_CLK_GATING_WAIT_US; 3822 3823 if (hba->dev_info.wspecversion >= 0x300) { 3824 err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR, 3825 QUERY_ATTR_IDN_REF_CLK_GATING_WAIT_TIME, 0, 0, 3826 &gating_wait); 3827 if (err) 3828 dev_err(hba->dev, "Failed reading bRefClkGatingWait. err = %d, use default %uus\n", 3829 err, gating_wait); 3830 3831 if (gating_wait == 0) { 3832 gating_wait = UFSHCD_REF_CLK_GATING_WAIT_US; 3833 dev_err(hba->dev, "Undefined ref clk gating wait time, use default %uus\n", 3834 gating_wait); 3835 } 3836 3837 hba->dev_info.clk_gating_wait_us = gating_wait; 3838 } 3839 3840 return err; 3841 } 3842 3843 /** 3844 * ufshcd_memory_alloc - allocate memory for host memory space data structures 3845 * @hba: per adapter instance 3846 * 3847 * 1. Allocate DMA memory for Command Descriptor array 3848 * Each command descriptor consist of Command UPIU, Response UPIU and PRDT 3849 * 2. Allocate DMA memory for UTP Transfer Request Descriptor List (UTRDL). 3850 * 3. Allocate DMA memory for UTP Task Management Request Descriptor List 3851 * (UTMRDL) 3852 * 4. Allocate memory for local reference block(lrb). 3853 * 3854 * Return: 0 for success, non-zero in case of failure. 3855 */ 3856 static int ufshcd_memory_alloc(struct ufs_hba *hba) 3857 { 3858 size_t utmrdl_size, utrdl_size, ucdl_size; 3859 3860 /* Allocate memory for UTP command descriptors */ 3861 ucdl_size = ufshcd_get_ucd_size(hba) * hba->nutrs; 3862 hba->ucdl_base_addr = dmam_alloc_coherent(hba->dev, 3863 ucdl_size, 3864 &hba->ucdl_dma_addr, 3865 GFP_KERNEL); 3866 3867 /* 3868 * UFSHCI requires UTP command descriptor to be 128 byte aligned. 3869 */ 3870 if (!hba->ucdl_base_addr || 3871 WARN_ON(hba->ucdl_dma_addr & (128 - 1))) { 3872 dev_err(hba->dev, 3873 "Command Descriptor Memory allocation failed\n"); 3874 goto out; 3875 } 3876 3877 /* 3878 * Allocate memory for UTP Transfer descriptors 3879 * UFSHCI requires 1KB alignment of UTRD 3880 */ 3881 utrdl_size = (sizeof(struct utp_transfer_req_desc) * hba->nutrs); 3882 hba->utrdl_base_addr = dmam_alloc_coherent(hba->dev, 3883 utrdl_size, 3884 &hba->utrdl_dma_addr, 3885 GFP_KERNEL); 3886 if (!hba->utrdl_base_addr || 3887 WARN_ON(hba->utrdl_dma_addr & (SZ_1K - 1))) { 3888 dev_err(hba->dev, 3889 "Transfer Descriptor Memory allocation failed\n"); 3890 goto out; 3891 } 3892 3893 /* 3894 * Skip utmrdl allocation; it may have been 3895 * allocated during first pass and not released during 3896 * MCQ memory allocation. 3897 * See ufshcd_release_sdb_queue() and ufshcd_config_mcq() 3898 */ 3899 if (hba->utmrdl_base_addr) 3900 goto skip_utmrdl; 3901 /* 3902 * Allocate memory for UTP Task Management descriptors 3903 * UFSHCI requires 1KB alignment of UTMRD 3904 */ 3905 utmrdl_size = sizeof(struct utp_task_req_desc) * hba->nutmrs; 3906 hba->utmrdl_base_addr = dmam_alloc_coherent(hba->dev, 3907 utmrdl_size, 3908 &hba->utmrdl_dma_addr, 3909 GFP_KERNEL); 3910 if (!hba->utmrdl_base_addr || 3911 WARN_ON(hba->utmrdl_dma_addr & (SZ_1K - 1))) { 3912 dev_err(hba->dev, 3913 "Task Management Descriptor Memory allocation failed\n"); 3914 goto out; 3915 } 3916 3917 skip_utmrdl: 3918 /* Allocate memory for local reference block */ 3919 hba->lrb = devm_kcalloc(hba->dev, 3920 hba->nutrs, sizeof(struct ufshcd_lrb), 3921 GFP_KERNEL); 3922 if (!hba->lrb) { 3923 dev_err(hba->dev, "LRB Memory allocation failed\n"); 3924 goto out; 3925 } 3926 return 0; 3927 out: 3928 return -ENOMEM; 3929 } 3930 3931 /** 3932 * ufshcd_host_memory_configure - configure local reference block with 3933 * memory offsets 3934 * @hba: per adapter instance 3935 * 3936 * Configure Host memory space 3937 * 1. Update Corresponding UTRD.UCDBA and UTRD.UCDBAU with UCD DMA 3938 * address. 3939 * 2. Update each UTRD with Response UPIU offset, Response UPIU length 3940 * and PRDT offset. 3941 * 3. Save the corresponding addresses of UTRD, UCD.CMD, UCD.RSP and UCD.PRDT 3942 * into local reference block. 3943 */ 3944 static void ufshcd_host_memory_configure(struct ufs_hba *hba) 3945 { 3946 struct utp_transfer_req_desc *utrdlp; 3947 dma_addr_t cmd_desc_dma_addr; 3948 dma_addr_t cmd_desc_element_addr; 3949 u16 response_offset; 3950 u16 prdt_offset; 3951 int cmd_desc_size; 3952 int i; 3953 3954 utrdlp = hba->utrdl_base_addr; 3955 3956 response_offset = 3957 offsetof(struct utp_transfer_cmd_desc, response_upiu); 3958 prdt_offset = 3959 offsetof(struct utp_transfer_cmd_desc, prd_table); 3960 3961 cmd_desc_size = ufshcd_get_ucd_size(hba); 3962 cmd_desc_dma_addr = hba->ucdl_dma_addr; 3963 3964 for (i = 0; i < hba->nutrs; i++) { 3965 /* Configure UTRD with command descriptor base address */ 3966 cmd_desc_element_addr = 3967 (cmd_desc_dma_addr + (cmd_desc_size * i)); 3968 utrdlp[i].command_desc_base_addr = 3969 cpu_to_le64(cmd_desc_element_addr); 3970 3971 /* Response upiu and prdt offset should be in double words */ 3972 if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN) { 3973 utrdlp[i].response_upiu_offset = 3974 cpu_to_le16(response_offset); 3975 utrdlp[i].prd_table_offset = 3976 cpu_to_le16(prdt_offset); 3977 utrdlp[i].response_upiu_length = 3978 cpu_to_le16(ALIGNED_UPIU_SIZE); 3979 } else { 3980 utrdlp[i].response_upiu_offset = 3981 cpu_to_le16(response_offset >> 2); 3982 utrdlp[i].prd_table_offset = 3983 cpu_to_le16(prdt_offset >> 2); 3984 utrdlp[i].response_upiu_length = 3985 cpu_to_le16(ALIGNED_UPIU_SIZE >> 2); 3986 } 3987 3988 ufshcd_init_lrb(hba, &hba->lrb[i], i); 3989 } 3990 } 3991 3992 /** 3993 * ufshcd_dme_link_startup - Notify Unipro to perform link startup 3994 * @hba: per adapter instance 3995 * 3996 * UIC_CMD_DME_LINK_STARTUP command must be issued to Unipro layer, 3997 * in order to initialize the Unipro link startup procedure. 3998 * Once the Unipro links are up, the device connected to the controller 3999 * is detected. 4000 * 4001 * Return: 0 on success, non-zero value on failure. 4002 */ 4003 static int ufshcd_dme_link_startup(struct ufs_hba *hba) 4004 { 4005 struct uic_command uic_cmd = { 4006 .command = UIC_CMD_DME_LINK_STARTUP, 4007 }; 4008 int ret; 4009 4010 ret = ufshcd_send_uic_cmd(hba, &uic_cmd); 4011 if (ret) 4012 dev_dbg(hba->dev, 4013 "dme-link-startup: error code %d\n", ret); 4014 return ret; 4015 } 4016 /** 4017 * ufshcd_dme_reset - UIC command for DME_RESET 4018 * @hba: per adapter instance 4019 * 4020 * DME_RESET command is issued in order to reset UniPro stack. 4021 * This function now deals with cold reset. 4022 * 4023 * Return: 0 on success, non-zero value on failure. 4024 */ 4025 static int ufshcd_dme_reset(struct ufs_hba *hba) 4026 { 4027 struct uic_command uic_cmd = { 4028 .command = UIC_CMD_DME_RESET, 4029 }; 4030 int ret; 4031 4032 ret = ufshcd_send_uic_cmd(hba, &uic_cmd); 4033 if (ret) 4034 dev_err(hba->dev, 4035 "dme-reset: error code %d\n", ret); 4036 4037 return ret; 4038 } 4039 4040 int ufshcd_dme_configure_adapt(struct ufs_hba *hba, 4041 int agreed_gear, 4042 int adapt_val) 4043 { 4044 int ret; 4045 4046 if (agreed_gear < UFS_HS_G4) 4047 adapt_val = PA_NO_ADAPT; 4048 4049 ret = ufshcd_dme_set(hba, 4050 UIC_ARG_MIB(PA_TXHSADAPTTYPE), 4051 adapt_val); 4052 return ret; 4053 } 4054 EXPORT_SYMBOL_GPL(ufshcd_dme_configure_adapt); 4055 4056 /** 4057 * ufshcd_dme_enable - UIC command for DME_ENABLE 4058 * @hba: per adapter instance 4059 * 4060 * DME_ENABLE command is issued in order to enable UniPro stack. 4061 * 4062 * Return: 0 on success, non-zero value on failure. 4063 */ 4064 static int ufshcd_dme_enable(struct ufs_hba *hba) 4065 { 4066 struct uic_command uic_cmd = { 4067 .command = UIC_CMD_DME_ENABLE, 4068 }; 4069 int ret; 4070 4071 ret = ufshcd_send_uic_cmd(hba, &uic_cmd); 4072 if (ret) 4073 dev_err(hba->dev, 4074 "dme-enable: error code %d\n", ret); 4075 4076 return ret; 4077 } 4078 4079 static inline void ufshcd_add_delay_before_dme_cmd(struct ufs_hba *hba) 4080 { 4081 #define MIN_DELAY_BEFORE_DME_CMDS_US 1000 4082 unsigned long min_sleep_time_us; 4083 4084 if (!(hba->quirks & UFSHCD_QUIRK_DELAY_BEFORE_DME_CMDS)) 4085 return; 4086 4087 /* 4088 * last_dme_cmd_tstamp will be 0 only for 1st call to 4089 * this function 4090 */ 4091 if (unlikely(!ktime_to_us(hba->last_dme_cmd_tstamp))) { 4092 min_sleep_time_us = MIN_DELAY_BEFORE_DME_CMDS_US; 4093 } else { 4094 unsigned long delta = 4095 (unsigned long) ktime_to_us( 4096 ktime_sub(ktime_get(), 4097 hba->last_dme_cmd_tstamp)); 4098 4099 if (delta < MIN_DELAY_BEFORE_DME_CMDS_US) 4100 min_sleep_time_us = 4101 MIN_DELAY_BEFORE_DME_CMDS_US - delta; 4102 else 4103 return; /* no more delay required */ 4104 } 4105 4106 /* allow sleep for extra 50us if needed */ 4107 usleep_range(min_sleep_time_us, min_sleep_time_us + 50); 4108 } 4109 4110 /** 4111 * ufshcd_dme_set_attr - UIC command for DME_SET, DME_PEER_SET 4112 * @hba: per adapter instance 4113 * @attr_sel: uic command argument1 4114 * @attr_set: attribute set type as uic command argument2 4115 * @mib_val: setting value as uic command argument3 4116 * @peer: indicate whether peer or local 4117 * 4118 * Return: 0 on success, non-zero value on failure. 4119 */ 4120 int ufshcd_dme_set_attr(struct ufs_hba *hba, u32 attr_sel, 4121 u8 attr_set, u32 mib_val, u8 peer) 4122 { 4123 struct uic_command uic_cmd = { 4124 .command = peer ? UIC_CMD_DME_PEER_SET : UIC_CMD_DME_SET, 4125 .argument1 = attr_sel, 4126 .argument2 = UIC_ARG_ATTR_TYPE(attr_set), 4127 .argument3 = mib_val, 4128 }; 4129 static const char *const action[] = { 4130 "dme-set", 4131 "dme-peer-set" 4132 }; 4133 const char *set = action[!!peer]; 4134 int ret; 4135 int retries = UFS_UIC_COMMAND_RETRIES; 4136 4137 do { 4138 /* for peer attributes we retry upon failure */ 4139 ret = ufshcd_send_uic_cmd(hba, &uic_cmd); 4140 if (ret) 4141 dev_dbg(hba->dev, "%s: attr-id 0x%x val 0x%x error code %d\n", 4142 set, UIC_GET_ATTR_ID(attr_sel), mib_val, ret); 4143 } while (ret && peer && --retries); 4144 4145 if (ret) 4146 dev_err(hba->dev, "%s: attr-id 0x%x val 0x%x failed %d retries\n", 4147 set, UIC_GET_ATTR_ID(attr_sel), mib_val, 4148 UFS_UIC_COMMAND_RETRIES - retries); 4149 4150 return ret; 4151 } 4152 EXPORT_SYMBOL_GPL(ufshcd_dme_set_attr); 4153 4154 /** 4155 * ufshcd_dme_get_attr - UIC command for DME_GET, DME_PEER_GET 4156 * @hba: per adapter instance 4157 * @attr_sel: uic command argument1 4158 * @mib_val: the value of the attribute as returned by the UIC command 4159 * @peer: indicate whether peer or local 4160 * 4161 * Return: 0 on success, non-zero value on failure. 4162 */ 4163 int ufshcd_dme_get_attr(struct ufs_hba *hba, u32 attr_sel, 4164 u32 *mib_val, u8 peer) 4165 { 4166 struct uic_command uic_cmd = { 4167 .command = peer ? UIC_CMD_DME_PEER_GET : UIC_CMD_DME_GET, 4168 .argument1 = attr_sel, 4169 }; 4170 static const char *const action[] = { 4171 "dme-get", 4172 "dme-peer-get" 4173 }; 4174 const char *get = action[!!peer]; 4175 int ret; 4176 int retries = UFS_UIC_COMMAND_RETRIES; 4177 struct ufs_pa_layer_attr orig_pwr_info; 4178 struct ufs_pa_layer_attr temp_pwr_info; 4179 bool pwr_mode_change = false; 4180 4181 if (peer && (hba->quirks & UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE)) { 4182 orig_pwr_info = hba->pwr_info; 4183 temp_pwr_info = orig_pwr_info; 4184 4185 if (orig_pwr_info.pwr_tx == FAST_MODE || 4186 orig_pwr_info.pwr_rx == FAST_MODE) { 4187 temp_pwr_info.pwr_tx = FASTAUTO_MODE; 4188 temp_pwr_info.pwr_rx = FASTAUTO_MODE; 4189 pwr_mode_change = true; 4190 } else if (orig_pwr_info.pwr_tx == SLOW_MODE || 4191 orig_pwr_info.pwr_rx == SLOW_MODE) { 4192 temp_pwr_info.pwr_tx = SLOWAUTO_MODE; 4193 temp_pwr_info.pwr_rx = SLOWAUTO_MODE; 4194 pwr_mode_change = true; 4195 } 4196 if (pwr_mode_change) { 4197 ret = ufshcd_change_power_mode(hba, &temp_pwr_info); 4198 if (ret) 4199 goto out; 4200 } 4201 } 4202 4203 do { 4204 /* for peer attributes we retry upon failure */ 4205 ret = ufshcd_send_uic_cmd(hba, &uic_cmd); 4206 if (ret) 4207 dev_dbg(hba->dev, "%s: attr-id 0x%x error code %d\n", 4208 get, UIC_GET_ATTR_ID(attr_sel), ret); 4209 } while (ret && peer && --retries); 4210 4211 if (ret) 4212 dev_err(hba->dev, "%s: attr-id 0x%x failed %d retries\n", 4213 get, UIC_GET_ATTR_ID(attr_sel), 4214 UFS_UIC_COMMAND_RETRIES - retries); 4215 4216 if (mib_val && !ret) 4217 *mib_val = uic_cmd.argument3; 4218 4219 if (peer && (hba->quirks & UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE) 4220 && pwr_mode_change) 4221 ufshcd_change_power_mode(hba, &orig_pwr_info); 4222 out: 4223 return ret; 4224 } 4225 EXPORT_SYMBOL_GPL(ufshcd_dme_get_attr); 4226 4227 /** 4228 * ufshcd_uic_pwr_ctrl - executes UIC commands (which affects the link power 4229 * state) and waits for it to take effect. 4230 * 4231 * @hba: per adapter instance 4232 * @cmd: UIC command to execute 4233 * 4234 * DME operations like DME_SET(PA_PWRMODE), DME_HIBERNATE_ENTER & 4235 * DME_HIBERNATE_EXIT commands take some time to take its effect on both host 4236 * and device UniPro link and hence it's final completion would be indicated by 4237 * dedicated status bits in Interrupt Status register (UPMS, UHES, UHXS) in 4238 * addition to normal UIC command completion Status (UCCS). This function only 4239 * returns after the relevant status bits indicate the completion. 4240 * 4241 * Return: 0 on success, non-zero value on failure. 4242 */ 4243 static int ufshcd_uic_pwr_ctrl(struct ufs_hba *hba, struct uic_command *cmd) 4244 { 4245 DECLARE_COMPLETION_ONSTACK(uic_async_done); 4246 unsigned long flags; 4247 u8 status; 4248 int ret; 4249 bool reenable_intr = false; 4250 4251 mutex_lock(&hba->uic_cmd_mutex); 4252 ufshcd_add_delay_before_dme_cmd(hba); 4253 4254 spin_lock_irqsave(hba->host->host_lock, flags); 4255 if (ufshcd_is_link_broken(hba)) { 4256 ret = -ENOLINK; 4257 goto out_unlock; 4258 } 4259 hba->uic_async_done = &uic_async_done; 4260 if (ufshcd_readl(hba, REG_INTERRUPT_ENABLE) & UIC_COMMAND_COMPL) { 4261 ufshcd_disable_intr(hba, UIC_COMMAND_COMPL); 4262 /* 4263 * Make sure UIC command completion interrupt is disabled before 4264 * issuing UIC command. 4265 */ 4266 ufshcd_readl(hba, REG_INTERRUPT_ENABLE); 4267 reenable_intr = true; 4268 } 4269 spin_unlock_irqrestore(hba->host->host_lock, flags); 4270 ret = __ufshcd_send_uic_cmd(hba, cmd, false); 4271 if (ret) { 4272 dev_err(hba->dev, 4273 "pwr ctrl cmd 0x%x with mode 0x%x uic error %d\n", 4274 cmd->command, cmd->argument3, ret); 4275 goto out; 4276 } 4277 4278 if (!wait_for_completion_timeout(hba->uic_async_done, 4279 msecs_to_jiffies(UIC_CMD_TIMEOUT))) { 4280 dev_err(hba->dev, 4281 "pwr ctrl cmd 0x%x with mode 0x%x completion timeout\n", 4282 cmd->command, cmd->argument3); 4283 4284 if (!cmd->cmd_active) { 4285 dev_err(hba->dev, "%s: Power Mode Change operation has been completed, go check UPMCRS\n", 4286 __func__); 4287 goto check_upmcrs; 4288 } 4289 4290 ret = -ETIMEDOUT; 4291 goto out; 4292 } 4293 4294 check_upmcrs: 4295 status = ufshcd_get_upmcrs(hba); 4296 if (status != PWR_LOCAL) { 4297 dev_err(hba->dev, 4298 "pwr ctrl cmd 0x%x failed, host upmcrs:0x%x\n", 4299 cmd->command, status); 4300 ret = (status != PWR_OK) ? status : -1; 4301 } 4302 out: 4303 if (ret) { 4304 ufshcd_print_host_state(hba); 4305 ufshcd_print_pwr_info(hba); 4306 ufshcd_print_evt_hist(hba); 4307 } 4308 4309 spin_lock_irqsave(hba->host->host_lock, flags); 4310 hba->active_uic_cmd = NULL; 4311 hba->uic_async_done = NULL; 4312 if (reenable_intr) 4313 ufshcd_enable_intr(hba, UIC_COMMAND_COMPL); 4314 if (ret) { 4315 ufshcd_set_link_broken(hba); 4316 ufshcd_schedule_eh_work(hba); 4317 } 4318 out_unlock: 4319 spin_unlock_irqrestore(hba->host->host_lock, flags); 4320 mutex_unlock(&hba->uic_cmd_mutex); 4321 4322 return ret; 4323 } 4324 4325 /** 4326 * ufshcd_uic_change_pwr_mode - Perform the UIC power mode chage 4327 * using DME_SET primitives. 4328 * @hba: per adapter instance 4329 * @mode: powr mode value 4330 * 4331 * Return: 0 on success, non-zero value on failure. 4332 */ 4333 int ufshcd_uic_change_pwr_mode(struct ufs_hba *hba, u8 mode) 4334 { 4335 struct uic_command uic_cmd = { 4336 .command = UIC_CMD_DME_SET, 4337 .argument1 = UIC_ARG_MIB(PA_PWRMODE), 4338 .argument3 = mode, 4339 }; 4340 int ret; 4341 4342 if (hba->quirks & UFSHCD_QUIRK_BROKEN_PA_RXHSUNTERMCAP) { 4343 ret = ufshcd_dme_set(hba, 4344 UIC_ARG_MIB_SEL(PA_RXHSUNTERMCAP, 0), 1); 4345 if (ret) { 4346 dev_err(hba->dev, "%s: failed to enable PA_RXHSUNTERMCAP ret %d\n", 4347 __func__, ret); 4348 goto out; 4349 } 4350 } 4351 4352 ufshcd_hold(hba); 4353 ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd); 4354 ufshcd_release(hba); 4355 4356 out: 4357 return ret; 4358 } 4359 EXPORT_SYMBOL_GPL(ufshcd_uic_change_pwr_mode); 4360 4361 int ufshcd_link_recovery(struct ufs_hba *hba) 4362 { 4363 int ret; 4364 unsigned long flags; 4365 4366 spin_lock_irqsave(hba->host->host_lock, flags); 4367 hba->ufshcd_state = UFSHCD_STATE_RESET; 4368 ufshcd_set_eh_in_progress(hba); 4369 spin_unlock_irqrestore(hba->host->host_lock, flags); 4370 4371 /* Reset the attached device */ 4372 ufshcd_device_reset(hba); 4373 4374 ret = ufshcd_host_reset_and_restore(hba); 4375 4376 spin_lock_irqsave(hba->host->host_lock, flags); 4377 if (ret) 4378 hba->ufshcd_state = UFSHCD_STATE_ERROR; 4379 ufshcd_clear_eh_in_progress(hba); 4380 spin_unlock_irqrestore(hba->host->host_lock, flags); 4381 4382 if (ret) 4383 dev_err(hba->dev, "%s: link recovery failed, err %d", 4384 __func__, ret); 4385 4386 return ret; 4387 } 4388 EXPORT_SYMBOL_GPL(ufshcd_link_recovery); 4389 4390 int ufshcd_uic_hibern8_enter(struct ufs_hba *hba) 4391 { 4392 struct uic_command uic_cmd = { 4393 .command = UIC_CMD_DME_HIBER_ENTER, 4394 }; 4395 ktime_t start = ktime_get(); 4396 int ret; 4397 4398 ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_ENTER, PRE_CHANGE); 4399 4400 ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd); 4401 trace_ufshcd_profile_hibern8(dev_name(hba->dev), "enter", 4402 ktime_to_us(ktime_sub(ktime_get(), start)), ret); 4403 4404 if (ret) 4405 dev_err(hba->dev, "%s: hibern8 enter failed. ret = %d\n", 4406 __func__, ret); 4407 else 4408 ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_ENTER, 4409 POST_CHANGE); 4410 4411 return ret; 4412 } 4413 EXPORT_SYMBOL_GPL(ufshcd_uic_hibern8_enter); 4414 4415 int ufshcd_uic_hibern8_exit(struct ufs_hba *hba) 4416 { 4417 struct uic_command uic_cmd = { 4418 .command = UIC_CMD_DME_HIBER_EXIT, 4419 }; 4420 int ret; 4421 ktime_t start = ktime_get(); 4422 4423 ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_EXIT, PRE_CHANGE); 4424 4425 ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd); 4426 trace_ufshcd_profile_hibern8(dev_name(hba->dev), "exit", 4427 ktime_to_us(ktime_sub(ktime_get(), start)), ret); 4428 4429 if (ret) { 4430 dev_err(hba->dev, "%s: hibern8 exit failed. ret = %d\n", 4431 __func__, ret); 4432 } else { 4433 ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_EXIT, 4434 POST_CHANGE); 4435 hba->ufs_stats.last_hibern8_exit_tstamp = local_clock(); 4436 hba->ufs_stats.hibern8_exit_cnt++; 4437 } 4438 4439 return ret; 4440 } 4441 EXPORT_SYMBOL_GPL(ufshcd_uic_hibern8_exit); 4442 4443 static void ufshcd_configure_auto_hibern8(struct ufs_hba *hba) 4444 { 4445 if (!ufshcd_is_auto_hibern8_supported(hba)) 4446 return; 4447 4448 ufshcd_writel(hba, hba->ahit, REG_AUTO_HIBERNATE_IDLE_TIMER); 4449 } 4450 4451 void ufshcd_auto_hibern8_update(struct ufs_hba *hba, u32 ahit) 4452 { 4453 const u32 cur_ahit = READ_ONCE(hba->ahit); 4454 4455 if (!ufshcd_is_auto_hibern8_supported(hba) || cur_ahit == ahit) 4456 return; 4457 4458 WRITE_ONCE(hba->ahit, ahit); 4459 if (!pm_runtime_suspended(&hba->ufs_device_wlun->sdev_gendev)) { 4460 ufshcd_rpm_get_sync(hba); 4461 ufshcd_hold(hba); 4462 ufshcd_configure_auto_hibern8(hba); 4463 ufshcd_release(hba); 4464 ufshcd_rpm_put_sync(hba); 4465 } 4466 } 4467 EXPORT_SYMBOL_GPL(ufshcd_auto_hibern8_update); 4468 4469 /** 4470 * ufshcd_init_pwr_info - setting the POR (power on reset) 4471 * values in hba power info 4472 * @hba: per-adapter instance 4473 */ 4474 static void ufshcd_init_pwr_info(struct ufs_hba *hba) 4475 { 4476 hba->pwr_info.gear_rx = UFS_PWM_G1; 4477 hba->pwr_info.gear_tx = UFS_PWM_G1; 4478 hba->pwr_info.lane_rx = UFS_LANE_1; 4479 hba->pwr_info.lane_tx = UFS_LANE_1; 4480 hba->pwr_info.pwr_rx = SLOWAUTO_MODE; 4481 hba->pwr_info.pwr_tx = SLOWAUTO_MODE; 4482 hba->pwr_info.hs_rate = 0; 4483 } 4484 4485 /** 4486 * ufshcd_get_max_pwr_mode - reads the max power mode negotiated with device 4487 * @hba: per-adapter instance 4488 * 4489 * Return: 0 upon success; < 0 upon failure. 4490 */ 4491 static int ufshcd_get_max_pwr_mode(struct ufs_hba *hba) 4492 { 4493 struct ufs_pa_layer_attr *pwr_info = &hba->max_pwr_info.info; 4494 4495 if (hba->max_pwr_info.is_valid) 4496 return 0; 4497 4498 if (hba->quirks & UFSHCD_QUIRK_HIBERN_FASTAUTO) { 4499 pwr_info->pwr_tx = FASTAUTO_MODE; 4500 pwr_info->pwr_rx = FASTAUTO_MODE; 4501 } else { 4502 pwr_info->pwr_tx = FAST_MODE; 4503 pwr_info->pwr_rx = FAST_MODE; 4504 } 4505 pwr_info->hs_rate = PA_HS_MODE_B; 4506 4507 /* Get the connected lane count */ 4508 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDRXDATALANES), 4509 &pwr_info->lane_rx); 4510 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES), 4511 &pwr_info->lane_tx); 4512 4513 if (!pwr_info->lane_rx || !pwr_info->lane_tx) { 4514 dev_err(hba->dev, "%s: invalid connected lanes value. rx=%d, tx=%d\n", 4515 __func__, 4516 pwr_info->lane_rx, 4517 pwr_info->lane_tx); 4518 return -EINVAL; 4519 } 4520 4521 /* 4522 * First, get the maximum gears of HS speed. 4523 * If a zero value, it means there is no HSGEAR capability. 4524 * Then, get the maximum gears of PWM speed. 4525 */ 4526 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_MAXRXHSGEAR), &pwr_info->gear_rx); 4527 if (!pwr_info->gear_rx) { 4528 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_MAXRXPWMGEAR), 4529 &pwr_info->gear_rx); 4530 if (!pwr_info->gear_rx) { 4531 dev_err(hba->dev, "%s: invalid max pwm rx gear read = %d\n", 4532 __func__, pwr_info->gear_rx); 4533 return -EINVAL; 4534 } 4535 pwr_info->pwr_rx = SLOW_MODE; 4536 } 4537 4538 ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_MAXRXHSGEAR), 4539 &pwr_info->gear_tx); 4540 if (!pwr_info->gear_tx) { 4541 ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_MAXRXPWMGEAR), 4542 &pwr_info->gear_tx); 4543 if (!pwr_info->gear_tx) { 4544 dev_err(hba->dev, "%s: invalid max pwm tx gear read = %d\n", 4545 __func__, pwr_info->gear_tx); 4546 return -EINVAL; 4547 } 4548 pwr_info->pwr_tx = SLOW_MODE; 4549 } 4550 4551 hba->max_pwr_info.is_valid = true; 4552 return 0; 4553 } 4554 4555 static int ufshcd_change_power_mode(struct ufs_hba *hba, 4556 struct ufs_pa_layer_attr *pwr_mode) 4557 { 4558 int ret; 4559 4560 /* if already configured to the requested pwr_mode */ 4561 if (!hba->force_pmc && 4562 pwr_mode->gear_rx == hba->pwr_info.gear_rx && 4563 pwr_mode->gear_tx == hba->pwr_info.gear_tx && 4564 pwr_mode->lane_rx == hba->pwr_info.lane_rx && 4565 pwr_mode->lane_tx == hba->pwr_info.lane_tx && 4566 pwr_mode->pwr_rx == hba->pwr_info.pwr_rx && 4567 pwr_mode->pwr_tx == hba->pwr_info.pwr_tx && 4568 pwr_mode->hs_rate == hba->pwr_info.hs_rate) { 4569 dev_dbg(hba->dev, "%s: power already configured\n", __func__); 4570 return 0; 4571 } 4572 4573 /* 4574 * Configure attributes for power mode change with below. 4575 * - PA_RXGEAR, PA_ACTIVERXDATALANES, PA_RXTERMINATION, 4576 * - PA_TXGEAR, PA_ACTIVETXDATALANES, PA_TXTERMINATION, 4577 * - PA_HSSERIES 4578 */ 4579 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXGEAR), pwr_mode->gear_rx); 4580 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVERXDATALANES), 4581 pwr_mode->lane_rx); 4582 if (pwr_mode->pwr_rx == FASTAUTO_MODE || 4583 pwr_mode->pwr_rx == FAST_MODE) 4584 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), true); 4585 else 4586 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), false); 4587 4588 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXGEAR), pwr_mode->gear_tx); 4589 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVETXDATALANES), 4590 pwr_mode->lane_tx); 4591 if (pwr_mode->pwr_tx == FASTAUTO_MODE || 4592 pwr_mode->pwr_tx == FAST_MODE) 4593 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), true); 4594 else 4595 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), false); 4596 4597 if (pwr_mode->pwr_rx == FASTAUTO_MODE || 4598 pwr_mode->pwr_tx == FASTAUTO_MODE || 4599 pwr_mode->pwr_rx == FAST_MODE || 4600 pwr_mode->pwr_tx == FAST_MODE) 4601 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_HSSERIES), 4602 pwr_mode->hs_rate); 4603 4604 if (!(hba->quirks & UFSHCD_QUIRK_SKIP_DEF_UNIPRO_TIMEOUT_SETTING)) { 4605 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA0), 4606 DL_FC0ProtectionTimeOutVal_Default); 4607 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA1), 4608 DL_TC0ReplayTimeOutVal_Default); 4609 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA2), 4610 DL_AFC0ReqTimeOutVal_Default); 4611 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA3), 4612 DL_FC1ProtectionTimeOutVal_Default); 4613 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA4), 4614 DL_TC1ReplayTimeOutVal_Default); 4615 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA5), 4616 DL_AFC1ReqTimeOutVal_Default); 4617 4618 ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalFC0ProtectionTimeOutVal), 4619 DL_FC0ProtectionTimeOutVal_Default); 4620 ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalTC0ReplayTimeOutVal), 4621 DL_TC0ReplayTimeOutVal_Default); 4622 ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalAFC0ReqTimeOutVal), 4623 DL_AFC0ReqTimeOutVal_Default); 4624 } 4625 4626 ret = ufshcd_uic_change_pwr_mode(hba, pwr_mode->pwr_rx << 4 4627 | pwr_mode->pwr_tx); 4628 4629 if (ret) { 4630 dev_err(hba->dev, 4631 "%s: power mode change failed %d\n", __func__, ret); 4632 } else { 4633 ufshcd_vops_pwr_change_notify(hba, POST_CHANGE, NULL, 4634 pwr_mode); 4635 4636 memcpy(&hba->pwr_info, pwr_mode, 4637 sizeof(struct ufs_pa_layer_attr)); 4638 } 4639 4640 return ret; 4641 } 4642 4643 /** 4644 * ufshcd_config_pwr_mode - configure a new power mode 4645 * @hba: per-adapter instance 4646 * @desired_pwr_mode: desired power configuration 4647 * 4648 * Return: 0 upon success; < 0 upon failure. 4649 */ 4650 int ufshcd_config_pwr_mode(struct ufs_hba *hba, 4651 struct ufs_pa_layer_attr *desired_pwr_mode) 4652 { 4653 struct ufs_pa_layer_attr final_params = { 0 }; 4654 int ret; 4655 4656 ret = ufshcd_vops_pwr_change_notify(hba, PRE_CHANGE, 4657 desired_pwr_mode, &final_params); 4658 4659 if (ret) 4660 memcpy(&final_params, desired_pwr_mode, sizeof(final_params)); 4661 4662 ret = ufshcd_change_power_mode(hba, &final_params); 4663 4664 return ret; 4665 } 4666 EXPORT_SYMBOL_GPL(ufshcd_config_pwr_mode); 4667 4668 /** 4669 * ufshcd_complete_dev_init() - checks device readiness 4670 * @hba: per-adapter instance 4671 * 4672 * Set fDeviceInit flag and poll until device toggles it. 4673 * 4674 * Return: 0 upon success; < 0 upon failure. 4675 */ 4676 static int ufshcd_complete_dev_init(struct ufs_hba *hba) 4677 { 4678 int err; 4679 bool flag_res = true; 4680 ktime_t timeout; 4681 4682 err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG, 4683 QUERY_FLAG_IDN_FDEVICEINIT, 0, NULL); 4684 if (err) { 4685 dev_err(hba->dev, 4686 "%s: setting fDeviceInit flag failed with error %d\n", 4687 __func__, err); 4688 goto out; 4689 } 4690 4691 /* Poll fDeviceInit flag to be cleared */ 4692 timeout = ktime_add_ms(ktime_get(), FDEVICEINIT_COMPL_TIMEOUT); 4693 do { 4694 err = ufshcd_query_flag(hba, UPIU_QUERY_OPCODE_READ_FLAG, 4695 QUERY_FLAG_IDN_FDEVICEINIT, 0, &flag_res); 4696 if (!flag_res) 4697 break; 4698 usleep_range(500, 1000); 4699 } while (ktime_before(ktime_get(), timeout)); 4700 4701 if (err) { 4702 dev_err(hba->dev, 4703 "%s: reading fDeviceInit flag failed with error %d\n", 4704 __func__, err); 4705 } else if (flag_res) { 4706 dev_err(hba->dev, 4707 "%s: fDeviceInit was not cleared by the device\n", 4708 __func__); 4709 err = -EBUSY; 4710 } 4711 out: 4712 return err; 4713 } 4714 4715 /** 4716 * ufshcd_make_hba_operational - Make UFS controller operational 4717 * @hba: per adapter instance 4718 * 4719 * To bring UFS host controller to operational state, 4720 * 1. Enable required interrupts 4721 * 2. Configure interrupt aggregation 4722 * 3. Program UTRL and UTMRL base address 4723 * 4. Configure run-stop-registers 4724 * 4725 * Return: 0 on success, non-zero value on failure. 4726 */ 4727 int ufshcd_make_hba_operational(struct ufs_hba *hba) 4728 { 4729 int err = 0; 4730 u32 reg; 4731 4732 /* Enable required interrupts */ 4733 ufshcd_enable_intr(hba, UFSHCD_ENABLE_INTRS); 4734 4735 /* Configure interrupt aggregation */ 4736 if (ufshcd_is_intr_aggr_allowed(hba)) 4737 ufshcd_config_intr_aggr(hba, hba->nutrs - 1, INT_AGGR_DEF_TO); 4738 else 4739 ufshcd_disable_intr_aggr(hba); 4740 4741 /* Configure UTRL and UTMRL base address registers */ 4742 ufshcd_writel(hba, lower_32_bits(hba->utrdl_dma_addr), 4743 REG_UTP_TRANSFER_REQ_LIST_BASE_L); 4744 ufshcd_writel(hba, upper_32_bits(hba->utrdl_dma_addr), 4745 REG_UTP_TRANSFER_REQ_LIST_BASE_H); 4746 ufshcd_writel(hba, lower_32_bits(hba->utmrdl_dma_addr), 4747 REG_UTP_TASK_REQ_LIST_BASE_L); 4748 ufshcd_writel(hba, upper_32_bits(hba->utmrdl_dma_addr), 4749 REG_UTP_TASK_REQ_LIST_BASE_H); 4750 4751 /* 4752 * UCRDY, UTMRLDY and UTRLRDY bits must be 1 4753 */ 4754 reg = ufshcd_readl(hba, REG_CONTROLLER_STATUS); 4755 if (!(ufshcd_get_lists_status(reg))) { 4756 ufshcd_enable_run_stop_reg(hba); 4757 } else { 4758 dev_err(hba->dev, 4759 "Host controller not ready to process requests"); 4760 err = -EIO; 4761 } 4762 4763 return err; 4764 } 4765 EXPORT_SYMBOL_GPL(ufshcd_make_hba_operational); 4766 4767 /** 4768 * ufshcd_hba_stop - Send controller to reset state 4769 * @hba: per adapter instance 4770 */ 4771 void ufshcd_hba_stop(struct ufs_hba *hba) 4772 { 4773 unsigned long flags; 4774 int err; 4775 4776 /* 4777 * Obtain the host lock to prevent that the controller is disabled 4778 * while the UFS interrupt handler is active on another CPU. 4779 */ 4780 spin_lock_irqsave(hba->host->host_lock, flags); 4781 ufshcd_writel(hba, CONTROLLER_DISABLE, REG_CONTROLLER_ENABLE); 4782 spin_unlock_irqrestore(hba->host->host_lock, flags); 4783 4784 err = ufshcd_wait_for_register(hba, REG_CONTROLLER_ENABLE, 4785 CONTROLLER_ENABLE, CONTROLLER_DISABLE, 4786 10, 1); 4787 if (err) 4788 dev_err(hba->dev, "%s: Controller disable failed\n", __func__); 4789 } 4790 EXPORT_SYMBOL_GPL(ufshcd_hba_stop); 4791 4792 /** 4793 * ufshcd_hba_execute_hce - initialize the controller 4794 * @hba: per adapter instance 4795 * 4796 * The controller resets itself and controller firmware initialization 4797 * sequence kicks off. When controller is ready it will set 4798 * the Host Controller Enable bit to 1. 4799 * 4800 * Return: 0 on success, non-zero value on failure. 4801 */ 4802 static int ufshcd_hba_execute_hce(struct ufs_hba *hba) 4803 { 4804 int retry_outer = 3; 4805 int retry_inner; 4806 4807 start: 4808 if (ufshcd_is_hba_active(hba)) 4809 /* change controller state to "reset state" */ 4810 ufshcd_hba_stop(hba); 4811 4812 /* UniPro link is disabled at this point */ 4813 ufshcd_set_link_off(hba); 4814 4815 ufshcd_vops_hce_enable_notify(hba, PRE_CHANGE); 4816 4817 /* start controller initialization sequence */ 4818 ufshcd_hba_start(hba); 4819 4820 /* 4821 * To initialize a UFS host controller HCE bit must be set to 1. 4822 * During initialization the HCE bit value changes from 1->0->1. 4823 * When the host controller completes initialization sequence 4824 * it sets the value of HCE bit to 1. The same HCE bit is read back 4825 * to check if the controller has completed initialization sequence. 4826 * So without this delay the value HCE = 1, set in the previous 4827 * instruction might be read back. 4828 * This delay can be changed based on the controller. 4829 */ 4830 ufshcd_delay_us(hba->vps->hba_enable_delay_us, 100); 4831 4832 /* wait for the host controller to complete initialization */ 4833 retry_inner = 50; 4834 while (!ufshcd_is_hba_active(hba)) { 4835 if (retry_inner) { 4836 retry_inner--; 4837 } else { 4838 dev_err(hba->dev, 4839 "Controller enable failed\n"); 4840 if (retry_outer) { 4841 retry_outer--; 4842 goto start; 4843 } 4844 return -EIO; 4845 } 4846 usleep_range(1000, 1100); 4847 } 4848 4849 /* enable UIC related interrupts */ 4850 ufshcd_enable_intr(hba, UFSHCD_UIC_MASK); 4851 4852 ufshcd_vops_hce_enable_notify(hba, POST_CHANGE); 4853 4854 return 0; 4855 } 4856 4857 int ufshcd_hba_enable(struct ufs_hba *hba) 4858 { 4859 int ret; 4860 4861 if (hba->quirks & UFSHCI_QUIRK_BROKEN_HCE) { 4862 ufshcd_set_link_off(hba); 4863 ufshcd_vops_hce_enable_notify(hba, PRE_CHANGE); 4864 4865 /* enable UIC related interrupts */ 4866 ufshcd_enable_intr(hba, UFSHCD_UIC_MASK); 4867 ret = ufshcd_dme_reset(hba); 4868 if (ret) { 4869 dev_err(hba->dev, "DME_RESET failed\n"); 4870 return ret; 4871 } 4872 4873 ret = ufshcd_dme_enable(hba); 4874 if (ret) { 4875 dev_err(hba->dev, "Enabling DME failed\n"); 4876 return ret; 4877 } 4878 4879 ufshcd_vops_hce_enable_notify(hba, POST_CHANGE); 4880 } else { 4881 ret = ufshcd_hba_execute_hce(hba); 4882 } 4883 4884 return ret; 4885 } 4886 EXPORT_SYMBOL_GPL(ufshcd_hba_enable); 4887 4888 static int ufshcd_disable_tx_lcc(struct ufs_hba *hba, bool peer) 4889 { 4890 int tx_lanes = 0, i, err = 0; 4891 4892 if (!peer) 4893 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES), 4894 &tx_lanes); 4895 else 4896 ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES), 4897 &tx_lanes); 4898 for (i = 0; i < tx_lanes; i++) { 4899 if (!peer) 4900 err = ufshcd_dme_set(hba, 4901 UIC_ARG_MIB_SEL(TX_LCC_ENABLE, 4902 UIC_ARG_MPHY_TX_GEN_SEL_INDEX(i)), 4903 0); 4904 else 4905 err = ufshcd_dme_peer_set(hba, 4906 UIC_ARG_MIB_SEL(TX_LCC_ENABLE, 4907 UIC_ARG_MPHY_TX_GEN_SEL_INDEX(i)), 4908 0); 4909 if (err) { 4910 dev_err(hba->dev, "%s: TX LCC Disable failed, peer = %d, lane = %d, err = %d", 4911 __func__, peer, i, err); 4912 break; 4913 } 4914 } 4915 4916 return err; 4917 } 4918 4919 static inline int ufshcd_disable_device_tx_lcc(struct ufs_hba *hba) 4920 { 4921 return ufshcd_disable_tx_lcc(hba, true); 4922 } 4923 4924 void ufshcd_update_evt_hist(struct ufs_hba *hba, u32 id, u32 val) 4925 { 4926 struct ufs_event_hist *e; 4927 4928 if (id >= UFS_EVT_CNT) 4929 return; 4930 4931 e = &hba->ufs_stats.event[id]; 4932 e->val[e->pos] = val; 4933 e->tstamp[e->pos] = local_clock(); 4934 e->cnt += 1; 4935 e->pos = (e->pos + 1) % UFS_EVENT_HIST_LENGTH; 4936 4937 ufshcd_vops_event_notify(hba, id, &val); 4938 } 4939 EXPORT_SYMBOL_GPL(ufshcd_update_evt_hist); 4940 4941 /** 4942 * ufshcd_link_startup - Initialize unipro link startup 4943 * @hba: per adapter instance 4944 * 4945 * Return: 0 for success, non-zero in case of failure. 4946 */ 4947 static int ufshcd_link_startup(struct ufs_hba *hba) 4948 { 4949 int ret; 4950 int retries = DME_LINKSTARTUP_RETRIES; 4951 bool link_startup_again = false; 4952 4953 /* 4954 * If UFS device isn't active then we will have to issue link startup 4955 * 2 times to make sure the device state move to active. 4956 */ 4957 if (!ufshcd_is_ufs_dev_active(hba)) 4958 link_startup_again = true; 4959 4960 link_startup: 4961 do { 4962 ufshcd_vops_link_startup_notify(hba, PRE_CHANGE); 4963 4964 ret = ufshcd_dme_link_startup(hba); 4965 4966 /* check if device is detected by inter-connect layer */ 4967 if (!ret && !ufshcd_is_device_present(hba)) { 4968 ufshcd_update_evt_hist(hba, 4969 UFS_EVT_LINK_STARTUP_FAIL, 4970 0); 4971 dev_err(hba->dev, "%s: Device not present\n", __func__); 4972 ret = -ENXIO; 4973 goto out; 4974 } 4975 4976 /* 4977 * DME link lost indication is only received when link is up, 4978 * but we can't be sure if the link is up until link startup 4979 * succeeds. So reset the local Uni-Pro and try again. 4980 */ 4981 if (ret && retries && ufshcd_hba_enable(hba)) { 4982 ufshcd_update_evt_hist(hba, 4983 UFS_EVT_LINK_STARTUP_FAIL, 4984 (u32)ret); 4985 goto out; 4986 } 4987 } while (ret && retries--); 4988 4989 if (ret) { 4990 /* failed to get the link up... retire */ 4991 ufshcd_update_evt_hist(hba, 4992 UFS_EVT_LINK_STARTUP_FAIL, 4993 (u32)ret); 4994 goto out; 4995 } 4996 4997 if (link_startup_again) { 4998 link_startup_again = false; 4999 retries = DME_LINKSTARTUP_RETRIES; 5000 goto link_startup; 5001 } 5002 5003 /* Mark that link is up in PWM-G1, 1-lane, SLOW-AUTO mode */ 5004 ufshcd_init_pwr_info(hba); 5005 ufshcd_print_pwr_info(hba); 5006 5007 if (hba->quirks & UFSHCD_QUIRK_BROKEN_LCC) { 5008 ret = ufshcd_disable_device_tx_lcc(hba); 5009 if (ret) 5010 goto out; 5011 } 5012 5013 /* Include any host controller configuration via UIC commands */ 5014 ret = ufshcd_vops_link_startup_notify(hba, POST_CHANGE); 5015 if (ret) 5016 goto out; 5017 5018 /* Clear UECPA once due to LINERESET has happened during LINK_STARTUP */ 5019 ufshcd_readl(hba, REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER); 5020 ret = ufshcd_make_hba_operational(hba); 5021 out: 5022 if (ret) { 5023 dev_err(hba->dev, "link startup failed %d\n", ret); 5024 ufshcd_print_host_state(hba); 5025 ufshcd_print_pwr_info(hba); 5026 ufshcd_print_evt_hist(hba); 5027 } 5028 return ret; 5029 } 5030 5031 /** 5032 * ufshcd_verify_dev_init() - Verify device initialization 5033 * @hba: per-adapter instance 5034 * 5035 * Send NOP OUT UPIU and wait for NOP IN response to check whether the 5036 * device Transport Protocol (UTP) layer is ready after a reset. 5037 * If the UTP layer at the device side is not initialized, it may 5038 * not respond with NOP IN UPIU within timeout of %NOP_OUT_TIMEOUT 5039 * and we retry sending NOP OUT for %NOP_OUT_RETRIES iterations. 5040 * 5041 * Return: 0 upon success; < 0 upon failure. 5042 */ 5043 static int ufshcd_verify_dev_init(struct ufs_hba *hba) 5044 { 5045 int err = 0; 5046 int retries; 5047 5048 ufshcd_dev_man_lock(hba); 5049 5050 for (retries = NOP_OUT_RETRIES; retries > 0; retries--) { 5051 err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_NOP, 5052 hba->nop_out_timeout); 5053 5054 if (!err || err == -ETIMEDOUT) 5055 break; 5056 5057 dev_dbg(hba->dev, "%s: error %d retrying\n", __func__, err); 5058 } 5059 5060 ufshcd_dev_man_unlock(hba); 5061 5062 if (err) 5063 dev_err(hba->dev, "%s: NOP OUT failed %d\n", __func__, err); 5064 return err; 5065 } 5066 5067 /** 5068 * ufshcd_setup_links - associate link b/w device wlun and other luns 5069 * @sdev: pointer to SCSI device 5070 * @hba: pointer to ufs hba 5071 */ 5072 static void ufshcd_setup_links(struct ufs_hba *hba, struct scsi_device *sdev) 5073 { 5074 struct device_link *link; 5075 5076 /* 5077 * Device wlun is the supplier & rest of the luns are consumers. 5078 * This ensures that device wlun suspends after all other luns. 5079 */ 5080 if (hba->ufs_device_wlun) { 5081 link = device_link_add(&sdev->sdev_gendev, 5082 &hba->ufs_device_wlun->sdev_gendev, 5083 DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE); 5084 if (!link) { 5085 dev_err(&sdev->sdev_gendev, "Failed establishing link - %s\n", 5086 dev_name(&hba->ufs_device_wlun->sdev_gendev)); 5087 return; 5088 } 5089 hba->luns_avail--; 5090 /* Ignore REPORT_LUN wlun probing */ 5091 if (hba->luns_avail == 1) { 5092 ufshcd_rpm_put(hba); 5093 return; 5094 } 5095 } else { 5096 /* 5097 * Device wlun is probed. The assumption is that WLUNs are 5098 * scanned before other LUNs. 5099 */ 5100 hba->luns_avail--; 5101 } 5102 } 5103 5104 /** 5105 * ufshcd_lu_init - Initialize the relevant parameters of the LU 5106 * @hba: per-adapter instance 5107 * @sdev: pointer to SCSI device 5108 */ 5109 static void ufshcd_lu_init(struct ufs_hba *hba, struct scsi_device *sdev) 5110 { 5111 int len = QUERY_DESC_MAX_SIZE; 5112 u8 lun = ufshcd_scsi_to_upiu_lun(sdev->lun); 5113 u8 lun_qdepth = hba->nutrs; 5114 u8 *desc_buf; 5115 int ret; 5116 5117 desc_buf = kzalloc(len, GFP_KERNEL); 5118 if (!desc_buf) 5119 goto set_qdepth; 5120 5121 ret = ufshcd_read_unit_desc_param(hba, lun, 0, desc_buf, len); 5122 if (ret < 0) { 5123 if (ret == -EOPNOTSUPP) 5124 /* If LU doesn't support unit descriptor, its queue depth is set to 1 */ 5125 lun_qdepth = 1; 5126 kfree(desc_buf); 5127 goto set_qdepth; 5128 } 5129 5130 if (desc_buf[UNIT_DESC_PARAM_LU_Q_DEPTH]) { 5131 /* 5132 * In per-LU queueing architecture, bLUQueueDepth will not be 0, then we will 5133 * use the smaller between UFSHCI CAP.NUTRS and UFS LU bLUQueueDepth 5134 */ 5135 lun_qdepth = min_t(int, desc_buf[UNIT_DESC_PARAM_LU_Q_DEPTH], hba->nutrs); 5136 } 5137 /* 5138 * According to UFS device specification, the write protection mode is only supported by 5139 * normal LU, not supported by WLUN. 5140 */ 5141 if (hba->dev_info.f_power_on_wp_en && lun < hba->dev_info.max_lu_supported && 5142 !hba->dev_info.is_lu_power_on_wp && 5143 desc_buf[UNIT_DESC_PARAM_LU_WR_PROTECT] == UFS_LU_POWER_ON_WP) 5144 hba->dev_info.is_lu_power_on_wp = true; 5145 5146 /* In case of RPMB LU, check if advanced RPMB mode is enabled */ 5147 if (desc_buf[UNIT_DESC_PARAM_UNIT_INDEX] == UFS_UPIU_RPMB_WLUN && 5148 desc_buf[RPMB_UNIT_DESC_PARAM_REGION_EN] & BIT(4)) 5149 hba->dev_info.b_advanced_rpmb_en = true; 5150 5151 5152 kfree(desc_buf); 5153 set_qdepth: 5154 /* 5155 * For WLUNs that don't support unit descriptor, queue depth is set to 1. For LUs whose 5156 * bLUQueueDepth == 0, the queue depth is set to a maximum value that host can queue. 5157 */ 5158 dev_dbg(hba->dev, "Set LU %x queue depth %d\n", lun, lun_qdepth); 5159 scsi_change_queue_depth(sdev, lun_qdepth); 5160 } 5161 5162 /** 5163 * ufshcd_slave_alloc - handle initial SCSI device configurations 5164 * @sdev: pointer to SCSI device 5165 * 5166 * Return: success. 5167 */ 5168 static int ufshcd_slave_alloc(struct scsi_device *sdev) 5169 { 5170 struct ufs_hba *hba; 5171 5172 hba = shost_priv(sdev->host); 5173 5174 /* Mode sense(6) is not supported by UFS, so use Mode sense(10) */ 5175 sdev->use_10_for_ms = 1; 5176 5177 /* DBD field should be set to 1 in mode sense(10) */ 5178 sdev->set_dbd_for_ms = 1; 5179 5180 /* allow SCSI layer to restart the device in case of errors */ 5181 sdev->allow_restart = 1; 5182 5183 /* REPORT SUPPORTED OPERATION CODES is not supported */ 5184 sdev->no_report_opcodes = 1; 5185 5186 /* WRITE_SAME command is not supported */ 5187 sdev->no_write_same = 1; 5188 5189 ufshcd_lu_init(hba, sdev); 5190 5191 ufshcd_setup_links(hba, sdev); 5192 5193 return 0; 5194 } 5195 5196 /** 5197 * ufshcd_change_queue_depth - change queue depth 5198 * @sdev: pointer to SCSI device 5199 * @depth: required depth to set 5200 * 5201 * Change queue depth and make sure the max. limits are not crossed. 5202 * 5203 * Return: new queue depth. 5204 */ 5205 static int ufshcd_change_queue_depth(struct scsi_device *sdev, int depth) 5206 { 5207 return scsi_change_queue_depth(sdev, min(depth, sdev->host->can_queue)); 5208 } 5209 5210 /** 5211 * ufshcd_device_configure - adjust SCSI device configurations 5212 * @sdev: pointer to SCSI device 5213 * @lim: queue limits 5214 * 5215 * Return: 0 (success). 5216 */ 5217 static int ufshcd_device_configure(struct scsi_device *sdev, 5218 struct queue_limits *lim) 5219 { 5220 struct ufs_hba *hba = shost_priv(sdev->host); 5221 struct request_queue *q = sdev->request_queue; 5222 5223 lim->dma_pad_mask = PRDT_DATA_BYTE_COUNT_PAD - 1; 5224 5225 /* 5226 * Block runtime-pm until all consumers are added. 5227 * Refer ufshcd_setup_links(). 5228 */ 5229 if (is_device_wlun(sdev)) 5230 pm_runtime_get_noresume(&sdev->sdev_gendev); 5231 else if (ufshcd_is_rpm_autosuspend_allowed(hba)) 5232 sdev->rpm_autosuspend = 1; 5233 /* 5234 * Do not print messages during runtime PM to avoid never-ending cycles 5235 * of messages written back to storage by user space causing runtime 5236 * resume, causing more messages and so on. 5237 */ 5238 sdev->silence_suspend = 1; 5239 5240 ufshcd_crypto_register(hba, q); 5241 5242 return 0; 5243 } 5244 5245 /** 5246 * ufshcd_slave_destroy - remove SCSI device configurations 5247 * @sdev: pointer to SCSI device 5248 */ 5249 static void ufshcd_slave_destroy(struct scsi_device *sdev) 5250 { 5251 struct ufs_hba *hba; 5252 unsigned long flags; 5253 5254 hba = shost_priv(sdev->host); 5255 5256 /* Drop the reference as it won't be needed anymore */ 5257 if (ufshcd_scsi_to_upiu_lun(sdev->lun) == UFS_UPIU_UFS_DEVICE_WLUN) { 5258 spin_lock_irqsave(hba->host->host_lock, flags); 5259 hba->ufs_device_wlun = NULL; 5260 spin_unlock_irqrestore(hba->host->host_lock, flags); 5261 } else if (hba->ufs_device_wlun) { 5262 struct device *supplier = NULL; 5263 5264 /* Ensure UFS Device WLUN exists and does not disappear */ 5265 spin_lock_irqsave(hba->host->host_lock, flags); 5266 if (hba->ufs_device_wlun) { 5267 supplier = &hba->ufs_device_wlun->sdev_gendev; 5268 get_device(supplier); 5269 } 5270 spin_unlock_irqrestore(hba->host->host_lock, flags); 5271 5272 if (supplier) { 5273 /* 5274 * If a LUN fails to probe (e.g. absent BOOT WLUN), the 5275 * device will not have been registered but can still 5276 * have a device link holding a reference to the device. 5277 */ 5278 device_link_remove(&sdev->sdev_gendev, supplier); 5279 put_device(supplier); 5280 } 5281 } 5282 } 5283 5284 /** 5285 * ufshcd_scsi_cmd_status - Update SCSI command result based on SCSI status 5286 * @lrbp: pointer to local reference block of completed command 5287 * @scsi_status: SCSI command status 5288 * 5289 * Return: value base on SCSI command status. 5290 */ 5291 static inline int 5292 ufshcd_scsi_cmd_status(struct ufshcd_lrb *lrbp, int scsi_status) 5293 { 5294 int result = 0; 5295 5296 switch (scsi_status) { 5297 case SAM_STAT_CHECK_CONDITION: 5298 ufshcd_copy_sense_data(lrbp); 5299 fallthrough; 5300 case SAM_STAT_GOOD: 5301 result |= DID_OK << 16 | scsi_status; 5302 break; 5303 case SAM_STAT_TASK_SET_FULL: 5304 case SAM_STAT_BUSY: 5305 case SAM_STAT_TASK_ABORTED: 5306 ufshcd_copy_sense_data(lrbp); 5307 result |= scsi_status; 5308 break; 5309 default: 5310 result |= DID_ERROR << 16; 5311 break; 5312 } /* end of switch */ 5313 5314 return result; 5315 } 5316 5317 /** 5318 * ufshcd_transfer_rsp_status - Get overall status of the response 5319 * @hba: per adapter instance 5320 * @lrbp: pointer to local reference block of completed command 5321 * @cqe: pointer to the completion queue entry 5322 * 5323 * Return: result of the command to notify SCSI midlayer. 5324 */ 5325 static inline int 5326 ufshcd_transfer_rsp_status(struct ufs_hba *hba, struct ufshcd_lrb *lrbp, 5327 struct cq_entry *cqe) 5328 { 5329 int result = 0; 5330 int scsi_status; 5331 enum utp_ocs ocs; 5332 u8 upiu_flags; 5333 u32 resid; 5334 5335 upiu_flags = lrbp->ucd_rsp_ptr->header.flags; 5336 resid = be32_to_cpu(lrbp->ucd_rsp_ptr->sr.residual_transfer_count); 5337 /* 5338 * Test !overflow instead of underflow to support UFS devices that do 5339 * not set either flag. 5340 */ 5341 if (resid && !(upiu_flags & UPIU_RSP_FLAG_OVERFLOW)) 5342 scsi_set_resid(lrbp->cmd, resid); 5343 5344 /* overall command status of utrd */ 5345 ocs = ufshcd_get_tr_ocs(lrbp, cqe); 5346 5347 if (hba->quirks & UFSHCD_QUIRK_BROKEN_OCS_FATAL_ERROR) { 5348 if (lrbp->ucd_rsp_ptr->header.response || 5349 lrbp->ucd_rsp_ptr->header.status) 5350 ocs = OCS_SUCCESS; 5351 } 5352 5353 switch (ocs) { 5354 case OCS_SUCCESS: 5355 hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0); 5356 switch (ufshcd_get_req_rsp(lrbp->ucd_rsp_ptr)) { 5357 case UPIU_TRANSACTION_RESPONSE: 5358 /* 5359 * get the result based on SCSI status response 5360 * to notify the SCSI midlayer of the command status 5361 */ 5362 scsi_status = lrbp->ucd_rsp_ptr->header.status; 5363 result = ufshcd_scsi_cmd_status(lrbp, scsi_status); 5364 5365 /* 5366 * Currently we are only supporting BKOPs exception 5367 * events hence we can ignore BKOPs exception event 5368 * during power management callbacks. BKOPs exception 5369 * event is not expected to be raised in runtime suspend 5370 * callback as it allows the urgent bkops. 5371 * During system suspend, we are anyway forcefully 5372 * disabling the bkops and if urgent bkops is needed 5373 * it will be enabled on system resume. Long term 5374 * solution could be to abort the system suspend if 5375 * UFS device needs urgent BKOPs. 5376 */ 5377 if (!hba->pm_op_in_progress && 5378 !ufshcd_eh_in_progress(hba) && 5379 ufshcd_is_exception_event(lrbp->ucd_rsp_ptr)) 5380 /* Flushed in suspend */ 5381 schedule_work(&hba->eeh_work); 5382 break; 5383 case UPIU_TRANSACTION_REJECT_UPIU: 5384 /* TODO: handle Reject UPIU Response */ 5385 result = DID_ERROR << 16; 5386 dev_err(hba->dev, 5387 "Reject UPIU not fully implemented\n"); 5388 break; 5389 default: 5390 dev_err(hba->dev, 5391 "Unexpected request response code = %x\n", 5392 result); 5393 result = DID_ERROR << 16; 5394 break; 5395 } 5396 break; 5397 case OCS_ABORTED: 5398 result |= DID_ABORT << 16; 5399 break; 5400 case OCS_INVALID_COMMAND_STATUS: 5401 result |= DID_REQUEUE << 16; 5402 break; 5403 case OCS_INVALID_CMD_TABLE_ATTR: 5404 case OCS_INVALID_PRDT_ATTR: 5405 case OCS_MISMATCH_DATA_BUF_SIZE: 5406 case OCS_MISMATCH_RESP_UPIU_SIZE: 5407 case OCS_PEER_COMM_FAILURE: 5408 case OCS_FATAL_ERROR: 5409 case OCS_DEVICE_FATAL_ERROR: 5410 case OCS_INVALID_CRYPTO_CONFIG: 5411 case OCS_GENERAL_CRYPTO_ERROR: 5412 default: 5413 result |= DID_ERROR << 16; 5414 dev_err(hba->dev, 5415 "OCS error from controller = %x for tag %d\n", 5416 ocs, lrbp->task_tag); 5417 ufshcd_print_evt_hist(hba); 5418 ufshcd_print_host_state(hba); 5419 break; 5420 } /* end of switch */ 5421 5422 if ((host_byte(result) != DID_OK) && 5423 (host_byte(result) != DID_REQUEUE) && !hba->silence_err_logs) 5424 ufshcd_print_tr(hba, lrbp->task_tag, true); 5425 return result; 5426 } 5427 5428 static bool ufshcd_is_auto_hibern8_error(struct ufs_hba *hba, 5429 u32 intr_mask) 5430 { 5431 if (!ufshcd_is_auto_hibern8_supported(hba) || 5432 !ufshcd_is_auto_hibern8_enabled(hba)) 5433 return false; 5434 5435 if (!(intr_mask & UFSHCD_UIC_HIBERN8_MASK)) 5436 return false; 5437 5438 if (hba->active_uic_cmd && 5439 (hba->active_uic_cmd->command == UIC_CMD_DME_HIBER_ENTER || 5440 hba->active_uic_cmd->command == UIC_CMD_DME_HIBER_EXIT)) 5441 return false; 5442 5443 return true; 5444 } 5445 5446 /** 5447 * ufshcd_uic_cmd_compl - handle completion of uic command 5448 * @hba: per adapter instance 5449 * @intr_status: interrupt status generated by the controller 5450 * 5451 * Return: 5452 * IRQ_HANDLED - If interrupt is valid 5453 * IRQ_NONE - If invalid interrupt 5454 */ 5455 static irqreturn_t ufshcd_uic_cmd_compl(struct ufs_hba *hba, u32 intr_status) 5456 { 5457 irqreturn_t retval = IRQ_NONE; 5458 5459 spin_lock(hba->host->host_lock); 5460 if (ufshcd_is_auto_hibern8_error(hba, intr_status)) 5461 hba->errors |= (UFSHCD_UIC_HIBERN8_MASK & intr_status); 5462 5463 if ((intr_status & UIC_COMMAND_COMPL) && hba->active_uic_cmd) { 5464 hba->active_uic_cmd->argument2 |= 5465 ufshcd_get_uic_cmd_result(hba); 5466 hba->active_uic_cmd->argument3 = 5467 ufshcd_get_dme_attr_val(hba); 5468 if (!hba->uic_async_done) 5469 hba->active_uic_cmd->cmd_active = 0; 5470 complete(&hba->active_uic_cmd->done); 5471 retval = IRQ_HANDLED; 5472 } 5473 5474 if ((intr_status & UFSHCD_UIC_PWR_MASK) && hba->uic_async_done) { 5475 hba->active_uic_cmd->cmd_active = 0; 5476 complete(hba->uic_async_done); 5477 retval = IRQ_HANDLED; 5478 } 5479 5480 if (retval == IRQ_HANDLED) 5481 ufshcd_add_uic_command_trace(hba, hba->active_uic_cmd, 5482 UFS_CMD_COMP); 5483 spin_unlock(hba->host->host_lock); 5484 return retval; 5485 } 5486 5487 /* Release the resources allocated for processing a SCSI command. */ 5488 void ufshcd_release_scsi_cmd(struct ufs_hba *hba, 5489 struct ufshcd_lrb *lrbp) 5490 { 5491 struct scsi_cmnd *cmd = lrbp->cmd; 5492 5493 scsi_dma_unmap(cmd); 5494 ufshcd_crypto_clear_prdt(hba, lrbp); 5495 ufshcd_release(hba); 5496 ufshcd_clk_scaling_update_busy(hba); 5497 } 5498 5499 /** 5500 * ufshcd_compl_one_cqe - handle a completion queue entry 5501 * @hba: per adapter instance 5502 * @task_tag: the task tag of the request to be completed 5503 * @cqe: pointer to the completion queue entry 5504 */ 5505 void ufshcd_compl_one_cqe(struct ufs_hba *hba, int task_tag, 5506 struct cq_entry *cqe) 5507 { 5508 struct ufshcd_lrb *lrbp; 5509 struct scsi_cmnd *cmd; 5510 enum utp_ocs ocs; 5511 5512 lrbp = &hba->lrb[task_tag]; 5513 lrbp->compl_time_stamp = ktime_get(); 5514 cmd = lrbp->cmd; 5515 if (cmd) { 5516 if (unlikely(ufshcd_should_inform_monitor(hba, lrbp))) 5517 ufshcd_update_monitor(hba, lrbp); 5518 ufshcd_add_command_trace(hba, task_tag, UFS_CMD_COMP); 5519 cmd->result = ufshcd_transfer_rsp_status(hba, lrbp, cqe); 5520 ufshcd_release_scsi_cmd(hba, lrbp); 5521 /* Do not touch lrbp after scsi done */ 5522 scsi_done(cmd); 5523 } else if (hba->dev_cmd.complete) { 5524 if (cqe) { 5525 ocs = le32_to_cpu(cqe->status) & MASK_OCS; 5526 lrbp->utr_descriptor_ptr->header.ocs = ocs; 5527 } 5528 complete(hba->dev_cmd.complete); 5529 } 5530 } 5531 5532 /** 5533 * __ufshcd_transfer_req_compl - handle SCSI and query command completion 5534 * @hba: per adapter instance 5535 * @completed_reqs: bitmask that indicates which requests to complete 5536 */ 5537 static void __ufshcd_transfer_req_compl(struct ufs_hba *hba, 5538 unsigned long completed_reqs) 5539 { 5540 int tag; 5541 5542 for_each_set_bit(tag, &completed_reqs, hba->nutrs) 5543 ufshcd_compl_one_cqe(hba, tag, NULL); 5544 } 5545 5546 /* Any value that is not an existing queue number is fine for this constant. */ 5547 enum { 5548 UFSHCD_POLL_FROM_INTERRUPT_CONTEXT = -1 5549 }; 5550 5551 static void ufshcd_clear_polled(struct ufs_hba *hba, 5552 unsigned long *completed_reqs) 5553 { 5554 int tag; 5555 5556 for_each_set_bit(tag, completed_reqs, hba->nutrs) { 5557 struct scsi_cmnd *cmd = hba->lrb[tag].cmd; 5558 5559 if (!cmd) 5560 continue; 5561 if (scsi_cmd_to_rq(cmd)->cmd_flags & REQ_POLLED) 5562 __clear_bit(tag, completed_reqs); 5563 } 5564 } 5565 5566 /* 5567 * Return: > 0 if one or more commands have been completed or 0 if no 5568 * requests have been completed. 5569 */ 5570 static int ufshcd_poll(struct Scsi_Host *shost, unsigned int queue_num) 5571 { 5572 struct ufs_hba *hba = shost_priv(shost); 5573 unsigned long completed_reqs, flags; 5574 u32 tr_doorbell; 5575 struct ufs_hw_queue *hwq; 5576 5577 if (hba->mcq_enabled) { 5578 hwq = &hba->uhq[queue_num]; 5579 5580 return ufshcd_mcq_poll_cqe_lock(hba, hwq); 5581 } 5582 5583 spin_lock_irqsave(&hba->outstanding_lock, flags); 5584 tr_doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL); 5585 completed_reqs = ~tr_doorbell & hba->outstanding_reqs; 5586 WARN_ONCE(completed_reqs & ~hba->outstanding_reqs, 5587 "completed: %#lx; outstanding: %#lx\n", completed_reqs, 5588 hba->outstanding_reqs); 5589 if (queue_num == UFSHCD_POLL_FROM_INTERRUPT_CONTEXT) { 5590 /* Do not complete polled requests from interrupt context. */ 5591 ufshcd_clear_polled(hba, &completed_reqs); 5592 } 5593 hba->outstanding_reqs &= ~completed_reqs; 5594 spin_unlock_irqrestore(&hba->outstanding_lock, flags); 5595 5596 if (completed_reqs) 5597 __ufshcd_transfer_req_compl(hba, completed_reqs); 5598 5599 return completed_reqs != 0; 5600 } 5601 5602 /** 5603 * ufshcd_mcq_compl_pending_transfer - MCQ mode function. It is 5604 * invoked from the error handler context or ufshcd_host_reset_and_restore() 5605 * to complete the pending transfers and free the resources associated with 5606 * the scsi command. 5607 * 5608 * @hba: per adapter instance 5609 * @force_compl: This flag is set to true when invoked 5610 * from ufshcd_host_reset_and_restore() in which case it requires special 5611 * handling because the host controller has been reset by ufshcd_hba_stop(). 5612 */ 5613 static void ufshcd_mcq_compl_pending_transfer(struct ufs_hba *hba, 5614 bool force_compl) 5615 { 5616 struct ufs_hw_queue *hwq; 5617 struct ufshcd_lrb *lrbp; 5618 struct scsi_cmnd *cmd; 5619 unsigned long flags; 5620 int tag; 5621 5622 for (tag = 0; tag < hba->nutrs; tag++) { 5623 lrbp = &hba->lrb[tag]; 5624 cmd = lrbp->cmd; 5625 if (!ufshcd_cmd_inflight(cmd) || 5626 test_bit(SCMD_STATE_COMPLETE, &cmd->state)) 5627 continue; 5628 5629 hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(cmd)); 5630 5631 if (force_compl) { 5632 ufshcd_mcq_compl_all_cqes_lock(hba, hwq); 5633 /* 5634 * For those cmds of which the cqes are not present 5635 * in the cq, complete them explicitly. 5636 */ 5637 spin_lock_irqsave(&hwq->cq_lock, flags); 5638 if (cmd && !test_bit(SCMD_STATE_COMPLETE, &cmd->state)) { 5639 set_host_byte(cmd, DID_REQUEUE); 5640 ufshcd_release_scsi_cmd(hba, lrbp); 5641 scsi_done(cmd); 5642 } 5643 spin_unlock_irqrestore(&hwq->cq_lock, flags); 5644 } else { 5645 ufshcd_mcq_poll_cqe_lock(hba, hwq); 5646 } 5647 } 5648 } 5649 5650 /** 5651 * ufshcd_transfer_req_compl - handle SCSI and query command completion 5652 * @hba: per adapter instance 5653 * 5654 * Return: 5655 * IRQ_HANDLED - If interrupt is valid 5656 * IRQ_NONE - If invalid interrupt 5657 */ 5658 static irqreturn_t ufshcd_transfer_req_compl(struct ufs_hba *hba) 5659 { 5660 /* Resetting interrupt aggregation counters first and reading the 5661 * DOOR_BELL afterward allows us to handle all the completed requests. 5662 * In order to prevent other interrupts starvation the DB is read once 5663 * after reset. The down side of this solution is the possibility of 5664 * false interrupt if device completes another request after resetting 5665 * aggregation and before reading the DB. 5666 */ 5667 if (ufshcd_is_intr_aggr_allowed(hba) && 5668 !(hba->quirks & UFSHCI_QUIRK_SKIP_RESET_INTR_AGGR)) 5669 ufshcd_reset_intr_aggr(hba); 5670 5671 if (ufs_fail_completion(hba)) 5672 return IRQ_HANDLED; 5673 5674 /* 5675 * Ignore the ufshcd_poll() return value and return IRQ_HANDLED since we 5676 * do not want polling to trigger spurious interrupt complaints. 5677 */ 5678 ufshcd_poll(hba->host, UFSHCD_POLL_FROM_INTERRUPT_CONTEXT); 5679 5680 return IRQ_HANDLED; 5681 } 5682 5683 int __ufshcd_write_ee_control(struct ufs_hba *hba, u32 ee_ctrl_mask) 5684 { 5685 return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR, 5686 QUERY_ATTR_IDN_EE_CONTROL, 0, 0, 5687 &ee_ctrl_mask); 5688 } 5689 5690 int ufshcd_write_ee_control(struct ufs_hba *hba) 5691 { 5692 int err; 5693 5694 mutex_lock(&hba->ee_ctrl_mutex); 5695 err = __ufshcd_write_ee_control(hba, hba->ee_ctrl_mask); 5696 mutex_unlock(&hba->ee_ctrl_mutex); 5697 if (err) 5698 dev_err(hba->dev, "%s: failed to write ee control %d\n", 5699 __func__, err); 5700 return err; 5701 } 5702 5703 int ufshcd_update_ee_control(struct ufs_hba *hba, u16 *mask, 5704 const u16 *other_mask, u16 set, u16 clr) 5705 { 5706 u16 new_mask, ee_ctrl_mask; 5707 int err = 0; 5708 5709 mutex_lock(&hba->ee_ctrl_mutex); 5710 new_mask = (*mask & ~clr) | set; 5711 ee_ctrl_mask = new_mask | *other_mask; 5712 if (ee_ctrl_mask != hba->ee_ctrl_mask) 5713 err = __ufshcd_write_ee_control(hba, ee_ctrl_mask); 5714 /* Still need to update 'mask' even if 'ee_ctrl_mask' was unchanged */ 5715 if (!err) { 5716 hba->ee_ctrl_mask = ee_ctrl_mask; 5717 *mask = new_mask; 5718 } 5719 mutex_unlock(&hba->ee_ctrl_mutex); 5720 return err; 5721 } 5722 5723 /** 5724 * ufshcd_disable_ee - disable exception event 5725 * @hba: per-adapter instance 5726 * @mask: exception event to disable 5727 * 5728 * Disables exception event in the device so that the EVENT_ALERT 5729 * bit is not set. 5730 * 5731 * Return: zero on success, non-zero error value on failure. 5732 */ 5733 static inline int ufshcd_disable_ee(struct ufs_hba *hba, u16 mask) 5734 { 5735 return ufshcd_update_ee_drv_mask(hba, 0, mask); 5736 } 5737 5738 /** 5739 * ufshcd_enable_ee - enable exception event 5740 * @hba: per-adapter instance 5741 * @mask: exception event to enable 5742 * 5743 * Enable corresponding exception event in the device to allow 5744 * device to alert host in critical scenarios. 5745 * 5746 * Return: zero on success, non-zero error value on failure. 5747 */ 5748 static inline int ufshcd_enable_ee(struct ufs_hba *hba, u16 mask) 5749 { 5750 return ufshcd_update_ee_drv_mask(hba, mask, 0); 5751 } 5752 5753 /** 5754 * ufshcd_enable_auto_bkops - Allow device managed BKOPS 5755 * @hba: per-adapter instance 5756 * 5757 * Allow device to manage background operations on its own. Enabling 5758 * this might lead to inconsistent latencies during normal data transfers 5759 * as the device is allowed to manage its own way of handling background 5760 * operations. 5761 * 5762 * Return: zero on success, non-zero on failure. 5763 */ 5764 static int ufshcd_enable_auto_bkops(struct ufs_hba *hba) 5765 { 5766 int err = 0; 5767 5768 if (hba->auto_bkops_enabled) 5769 goto out; 5770 5771 err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG, 5772 QUERY_FLAG_IDN_BKOPS_EN, 0, NULL); 5773 if (err) { 5774 dev_err(hba->dev, "%s: failed to enable bkops %d\n", 5775 __func__, err); 5776 goto out; 5777 } 5778 5779 hba->auto_bkops_enabled = true; 5780 trace_ufshcd_auto_bkops_state(dev_name(hba->dev), "Enabled"); 5781 5782 /* No need of URGENT_BKOPS exception from the device */ 5783 err = ufshcd_disable_ee(hba, MASK_EE_URGENT_BKOPS); 5784 if (err) 5785 dev_err(hba->dev, "%s: failed to disable exception event %d\n", 5786 __func__, err); 5787 out: 5788 return err; 5789 } 5790 5791 /** 5792 * ufshcd_disable_auto_bkops - block device in doing background operations 5793 * @hba: per-adapter instance 5794 * 5795 * Disabling background operations improves command response latency but 5796 * has drawback of device moving into critical state where the device is 5797 * not-operable. Make sure to call ufshcd_enable_auto_bkops() whenever the 5798 * host is idle so that BKOPS are managed effectively without any negative 5799 * impacts. 5800 * 5801 * Return: zero on success, non-zero on failure. 5802 */ 5803 static int ufshcd_disable_auto_bkops(struct ufs_hba *hba) 5804 { 5805 int err = 0; 5806 5807 if (!hba->auto_bkops_enabled) 5808 goto out; 5809 5810 /* 5811 * If host assisted BKOPs is to be enabled, make sure 5812 * urgent bkops exception is allowed. 5813 */ 5814 err = ufshcd_enable_ee(hba, MASK_EE_URGENT_BKOPS); 5815 if (err) { 5816 dev_err(hba->dev, "%s: failed to enable exception event %d\n", 5817 __func__, err); 5818 goto out; 5819 } 5820 5821 err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_CLEAR_FLAG, 5822 QUERY_FLAG_IDN_BKOPS_EN, 0, NULL); 5823 if (err) { 5824 dev_err(hba->dev, "%s: failed to disable bkops %d\n", 5825 __func__, err); 5826 ufshcd_disable_ee(hba, MASK_EE_URGENT_BKOPS); 5827 goto out; 5828 } 5829 5830 hba->auto_bkops_enabled = false; 5831 trace_ufshcd_auto_bkops_state(dev_name(hba->dev), "Disabled"); 5832 hba->is_urgent_bkops_lvl_checked = false; 5833 out: 5834 return err; 5835 } 5836 5837 /** 5838 * ufshcd_force_reset_auto_bkops - force reset auto bkops state 5839 * @hba: per adapter instance 5840 * 5841 * After a device reset the device may toggle the BKOPS_EN flag 5842 * to default value. The s/w tracking variables should be updated 5843 * as well. This function would change the auto-bkops state based on 5844 * UFSHCD_CAP_KEEP_AUTO_BKOPS_ENABLED_EXCEPT_SUSPEND. 5845 */ 5846 static void ufshcd_force_reset_auto_bkops(struct ufs_hba *hba) 5847 { 5848 if (ufshcd_keep_autobkops_enabled_except_suspend(hba)) { 5849 hba->auto_bkops_enabled = false; 5850 hba->ee_ctrl_mask |= MASK_EE_URGENT_BKOPS; 5851 ufshcd_enable_auto_bkops(hba); 5852 } else { 5853 hba->auto_bkops_enabled = true; 5854 hba->ee_ctrl_mask &= ~MASK_EE_URGENT_BKOPS; 5855 ufshcd_disable_auto_bkops(hba); 5856 } 5857 hba->urgent_bkops_lvl = BKOPS_STATUS_PERF_IMPACT; 5858 hba->is_urgent_bkops_lvl_checked = false; 5859 } 5860 5861 static inline int ufshcd_get_bkops_status(struct ufs_hba *hba, u32 *status) 5862 { 5863 return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR, 5864 QUERY_ATTR_IDN_BKOPS_STATUS, 0, 0, status); 5865 } 5866 5867 /** 5868 * ufshcd_bkops_ctrl - control the auto bkops based on current bkops status 5869 * @hba: per-adapter instance 5870 * @status: bkops_status value 5871 * 5872 * Read the bkops_status from the UFS device and Enable fBackgroundOpsEn 5873 * flag in the device to permit background operations if the device 5874 * bkops_status is greater than or equal to "status" argument passed to 5875 * this function, disable otherwise. 5876 * 5877 * Return: 0 for success, non-zero in case of failure. 5878 * 5879 * NOTE: Caller of this function can check the "hba->auto_bkops_enabled" flag 5880 * to know whether auto bkops is enabled or disabled after this function 5881 * returns control to it. 5882 */ 5883 static int ufshcd_bkops_ctrl(struct ufs_hba *hba, 5884 enum bkops_status status) 5885 { 5886 int err; 5887 u32 curr_status = 0; 5888 5889 err = ufshcd_get_bkops_status(hba, &curr_status); 5890 if (err) { 5891 dev_err(hba->dev, "%s: failed to get BKOPS status %d\n", 5892 __func__, err); 5893 goto out; 5894 } else if (curr_status > BKOPS_STATUS_MAX) { 5895 dev_err(hba->dev, "%s: invalid BKOPS status %d\n", 5896 __func__, curr_status); 5897 err = -EINVAL; 5898 goto out; 5899 } 5900 5901 if (curr_status >= status) 5902 err = ufshcd_enable_auto_bkops(hba); 5903 else 5904 err = ufshcd_disable_auto_bkops(hba); 5905 out: 5906 return err; 5907 } 5908 5909 /** 5910 * ufshcd_urgent_bkops - handle urgent bkops exception event 5911 * @hba: per-adapter instance 5912 * 5913 * Enable fBackgroundOpsEn flag in the device to permit background 5914 * operations. 5915 * 5916 * If BKOPs is enabled, this function returns 0, 1 if the bkops in not enabled 5917 * and negative error value for any other failure. 5918 * 5919 * Return: 0 upon success; < 0 upon failure. 5920 */ 5921 static int ufshcd_urgent_bkops(struct ufs_hba *hba) 5922 { 5923 return ufshcd_bkops_ctrl(hba, hba->urgent_bkops_lvl); 5924 } 5925 5926 static inline int ufshcd_get_ee_status(struct ufs_hba *hba, u32 *status) 5927 { 5928 return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR, 5929 QUERY_ATTR_IDN_EE_STATUS, 0, 0, status); 5930 } 5931 5932 static void ufshcd_bkops_exception_event_handler(struct ufs_hba *hba) 5933 { 5934 int err; 5935 u32 curr_status = 0; 5936 5937 if (hba->is_urgent_bkops_lvl_checked) 5938 goto enable_auto_bkops; 5939 5940 err = ufshcd_get_bkops_status(hba, &curr_status); 5941 if (err) { 5942 dev_err(hba->dev, "%s: failed to get BKOPS status %d\n", 5943 __func__, err); 5944 goto out; 5945 } 5946 5947 /* 5948 * We are seeing that some devices are raising the urgent bkops 5949 * exception events even when BKOPS status doesn't indicate performace 5950 * impacted or critical. Handle these device by determining their urgent 5951 * bkops status at runtime. 5952 */ 5953 if (curr_status < BKOPS_STATUS_PERF_IMPACT) { 5954 dev_err(hba->dev, "%s: device raised urgent BKOPS exception for bkops status %d\n", 5955 __func__, curr_status); 5956 /* update the current status as the urgent bkops level */ 5957 hba->urgent_bkops_lvl = curr_status; 5958 hba->is_urgent_bkops_lvl_checked = true; 5959 } 5960 5961 enable_auto_bkops: 5962 err = ufshcd_enable_auto_bkops(hba); 5963 out: 5964 if (err < 0) 5965 dev_err(hba->dev, "%s: failed to handle urgent bkops %d\n", 5966 __func__, err); 5967 } 5968 5969 static void ufshcd_temp_exception_event_handler(struct ufs_hba *hba, u16 status) 5970 { 5971 u32 value; 5972 5973 if (ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR, 5974 QUERY_ATTR_IDN_CASE_ROUGH_TEMP, 0, 0, &value)) 5975 return; 5976 5977 dev_info(hba->dev, "exception Tcase %d\n", value - 80); 5978 5979 ufs_hwmon_notify_event(hba, status & MASK_EE_URGENT_TEMP); 5980 5981 /* 5982 * A placeholder for the platform vendors to add whatever additional 5983 * steps required 5984 */ 5985 } 5986 5987 static int __ufshcd_wb_toggle(struct ufs_hba *hba, bool set, enum flag_idn idn) 5988 { 5989 u8 index; 5990 enum query_opcode opcode = set ? UPIU_QUERY_OPCODE_SET_FLAG : 5991 UPIU_QUERY_OPCODE_CLEAR_FLAG; 5992 5993 index = ufshcd_wb_get_query_index(hba); 5994 return ufshcd_query_flag_retry(hba, opcode, idn, index, NULL); 5995 } 5996 5997 int ufshcd_wb_toggle(struct ufs_hba *hba, bool enable) 5998 { 5999 int ret; 6000 6001 if (!ufshcd_is_wb_allowed(hba) || 6002 hba->dev_info.wb_enabled == enable) 6003 return 0; 6004 6005 ret = __ufshcd_wb_toggle(hba, enable, QUERY_FLAG_IDN_WB_EN); 6006 if (ret) { 6007 dev_err(hba->dev, "%s: Write Booster %s failed %d\n", 6008 __func__, enable ? "enabling" : "disabling", ret); 6009 return ret; 6010 } 6011 6012 hba->dev_info.wb_enabled = enable; 6013 dev_dbg(hba->dev, "%s: Write Booster %s\n", 6014 __func__, enable ? "enabled" : "disabled"); 6015 6016 return ret; 6017 } 6018 6019 static void ufshcd_wb_toggle_buf_flush_during_h8(struct ufs_hba *hba, 6020 bool enable) 6021 { 6022 int ret; 6023 6024 ret = __ufshcd_wb_toggle(hba, enable, 6025 QUERY_FLAG_IDN_WB_BUFF_FLUSH_DURING_HIBERN8); 6026 if (ret) { 6027 dev_err(hba->dev, "%s: WB-Buf Flush during H8 %s failed %d\n", 6028 __func__, enable ? "enabling" : "disabling", ret); 6029 return; 6030 } 6031 dev_dbg(hba->dev, "%s: WB-Buf Flush during H8 %s\n", 6032 __func__, enable ? "enabled" : "disabled"); 6033 } 6034 6035 int ufshcd_wb_toggle_buf_flush(struct ufs_hba *hba, bool enable) 6036 { 6037 int ret; 6038 6039 if (!ufshcd_is_wb_allowed(hba) || 6040 hba->dev_info.wb_buf_flush_enabled == enable) 6041 return 0; 6042 6043 ret = __ufshcd_wb_toggle(hba, enable, QUERY_FLAG_IDN_WB_BUFF_FLUSH_EN); 6044 if (ret) { 6045 dev_err(hba->dev, "%s: WB-Buf Flush %s failed %d\n", 6046 __func__, enable ? "enabling" : "disabling", ret); 6047 return ret; 6048 } 6049 6050 hba->dev_info.wb_buf_flush_enabled = enable; 6051 dev_dbg(hba->dev, "%s: WB-Buf Flush %s\n", 6052 __func__, enable ? "enabled" : "disabled"); 6053 6054 return ret; 6055 } 6056 6057 static bool ufshcd_wb_presrv_usrspc_keep_vcc_on(struct ufs_hba *hba, 6058 u32 avail_buf) 6059 { 6060 u32 cur_buf; 6061 int ret; 6062 u8 index; 6063 6064 index = ufshcd_wb_get_query_index(hba); 6065 ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR, 6066 QUERY_ATTR_IDN_CURR_WB_BUFF_SIZE, 6067 index, 0, &cur_buf); 6068 if (ret) { 6069 dev_err(hba->dev, "%s: dCurWriteBoosterBufferSize read failed %d\n", 6070 __func__, ret); 6071 return false; 6072 } 6073 6074 if (!cur_buf) { 6075 dev_info(hba->dev, "dCurWBBuf: %d WB disabled until free-space is available\n", 6076 cur_buf); 6077 return false; 6078 } 6079 /* Let it continue to flush when available buffer exceeds threshold */ 6080 return avail_buf < hba->vps->wb_flush_threshold; 6081 } 6082 6083 static void ufshcd_wb_force_disable(struct ufs_hba *hba) 6084 { 6085 if (ufshcd_is_wb_buf_flush_allowed(hba)) 6086 ufshcd_wb_toggle_buf_flush(hba, false); 6087 6088 ufshcd_wb_toggle_buf_flush_during_h8(hba, false); 6089 ufshcd_wb_toggle(hba, false); 6090 hba->caps &= ~UFSHCD_CAP_WB_EN; 6091 6092 dev_info(hba->dev, "%s: WB force disabled\n", __func__); 6093 } 6094 6095 static bool ufshcd_is_wb_buf_lifetime_available(struct ufs_hba *hba) 6096 { 6097 u32 lifetime; 6098 int ret; 6099 u8 index; 6100 6101 index = ufshcd_wb_get_query_index(hba); 6102 ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR, 6103 QUERY_ATTR_IDN_WB_BUFF_LIFE_TIME_EST, 6104 index, 0, &lifetime); 6105 if (ret) { 6106 dev_err(hba->dev, 6107 "%s: bWriteBoosterBufferLifeTimeEst read failed %d\n", 6108 __func__, ret); 6109 return false; 6110 } 6111 6112 if (lifetime == UFS_WB_EXCEED_LIFETIME) { 6113 dev_err(hba->dev, "%s: WB buf lifetime is exhausted 0x%02X\n", 6114 __func__, lifetime); 6115 return false; 6116 } 6117 6118 dev_dbg(hba->dev, "%s: WB buf lifetime is 0x%02X\n", 6119 __func__, lifetime); 6120 6121 return true; 6122 } 6123 6124 static bool ufshcd_wb_need_flush(struct ufs_hba *hba) 6125 { 6126 int ret; 6127 u32 avail_buf; 6128 u8 index; 6129 6130 if (!ufshcd_is_wb_allowed(hba)) 6131 return false; 6132 6133 if (!ufshcd_is_wb_buf_lifetime_available(hba)) { 6134 ufshcd_wb_force_disable(hba); 6135 return false; 6136 } 6137 6138 /* 6139 * The ufs device needs the vcc to be ON to flush. 6140 * With user-space reduction enabled, it's enough to enable flush 6141 * by checking only the available buffer. The threshold 6142 * defined here is > 90% full. 6143 * With user-space preserved enabled, the current-buffer 6144 * should be checked too because the wb buffer size can reduce 6145 * when disk tends to be full. This info is provided by current 6146 * buffer (dCurrentWriteBoosterBufferSize). There's no point in 6147 * keeping vcc on when current buffer is empty. 6148 */ 6149 index = ufshcd_wb_get_query_index(hba); 6150 ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR, 6151 QUERY_ATTR_IDN_AVAIL_WB_BUFF_SIZE, 6152 index, 0, &avail_buf); 6153 if (ret) { 6154 dev_warn(hba->dev, "%s: dAvailableWriteBoosterBufferSize read failed %d\n", 6155 __func__, ret); 6156 return false; 6157 } 6158 6159 if (!hba->dev_info.b_presrv_uspc_en) 6160 return avail_buf <= UFS_WB_BUF_REMAIN_PERCENT(10); 6161 6162 return ufshcd_wb_presrv_usrspc_keep_vcc_on(hba, avail_buf); 6163 } 6164 6165 static void ufshcd_rpm_dev_flush_recheck_work(struct work_struct *work) 6166 { 6167 struct ufs_hba *hba = container_of(to_delayed_work(work), 6168 struct ufs_hba, 6169 rpm_dev_flush_recheck_work); 6170 /* 6171 * To prevent unnecessary VCC power drain after device finishes 6172 * WriteBooster buffer flush or Auto BKOPs, force runtime resume 6173 * after a certain delay to recheck the threshold by next runtime 6174 * suspend. 6175 */ 6176 ufshcd_rpm_get_sync(hba); 6177 ufshcd_rpm_put_sync(hba); 6178 } 6179 6180 /** 6181 * ufshcd_exception_event_handler - handle exceptions raised by device 6182 * @work: pointer to work data 6183 * 6184 * Read bExceptionEventStatus attribute from the device and handle the 6185 * exception event accordingly. 6186 */ 6187 static void ufshcd_exception_event_handler(struct work_struct *work) 6188 { 6189 struct ufs_hba *hba; 6190 int err; 6191 u32 status = 0; 6192 hba = container_of(work, struct ufs_hba, eeh_work); 6193 6194 ufshcd_scsi_block_requests(hba); 6195 err = ufshcd_get_ee_status(hba, &status); 6196 if (err) { 6197 dev_err(hba->dev, "%s: failed to get exception status %d\n", 6198 __func__, err); 6199 goto out; 6200 } 6201 6202 trace_ufshcd_exception_event(dev_name(hba->dev), status); 6203 6204 if (status & hba->ee_drv_mask & MASK_EE_URGENT_BKOPS) 6205 ufshcd_bkops_exception_event_handler(hba); 6206 6207 if (status & hba->ee_drv_mask & MASK_EE_URGENT_TEMP) 6208 ufshcd_temp_exception_event_handler(hba, status); 6209 6210 ufs_debugfs_exception_event(hba, status); 6211 out: 6212 ufshcd_scsi_unblock_requests(hba); 6213 } 6214 6215 /* Complete requests that have door-bell cleared */ 6216 static void ufshcd_complete_requests(struct ufs_hba *hba, bool force_compl) 6217 { 6218 if (hba->mcq_enabled) 6219 ufshcd_mcq_compl_pending_transfer(hba, force_compl); 6220 else 6221 ufshcd_transfer_req_compl(hba); 6222 6223 ufshcd_tmc_handler(hba); 6224 } 6225 6226 /** 6227 * ufshcd_quirk_dl_nac_errors - This function checks if error handling is 6228 * to recover from the DL NAC errors or not. 6229 * @hba: per-adapter instance 6230 * 6231 * Return: true if error handling is required, false otherwise. 6232 */ 6233 static bool ufshcd_quirk_dl_nac_errors(struct ufs_hba *hba) 6234 { 6235 unsigned long flags; 6236 bool err_handling = true; 6237 6238 spin_lock_irqsave(hba->host->host_lock, flags); 6239 /* 6240 * UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS only workaround the 6241 * device fatal error and/or DL NAC & REPLAY timeout errors. 6242 */ 6243 if (hba->saved_err & (CONTROLLER_FATAL_ERROR | SYSTEM_BUS_FATAL_ERROR)) 6244 goto out; 6245 6246 if ((hba->saved_err & DEVICE_FATAL_ERROR) || 6247 ((hba->saved_err & UIC_ERROR) && 6248 (hba->saved_uic_err & UFSHCD_UIC_DL_TCx_REPLAY_ERROR))) 6249 goto out; 6250 6251 if ((hba->saved_err & UIC_ERROR) && 6252 (hba->saved_uic_err & UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)) { 6253 int err; 6254 /* 6255 * wait for 50ms to see if we can get any other errors or not. 6256 */ 6257 spin_unlock_irqrestore(hba->host->host_lock, flags); 6258 msleep(50); 6259 spin_lock_irqsave(hba->host->host_lock, flags); 6260 6261 /* 6262 * now check if we have got any other severe errors other than 6263 * DL NAC error? 6264 */ 6265 if ((hba->saved_err & INT_FATAL_ERRORS) || 6266 ((hba->saved_err & UIC_ERROR) && 6267 (hba->saved_uic_err & ~UFSHCD_UIC_DL_NAC_RECEIVED_ERROR))) 6268 goto out; 6269 6270 /* 6271 * As DL NAC is the only error received so far, send out NOP 6272 * command to confirm if link is still active or not. 6273 * - If we don't get any response then do error recovery. 6274 * - If we get response then clear the DL NAC error bit. 6275 */ 6276 6277 spin_unlock_irqrestore(hba->host->host_lock, flags); 6278 err = ufshcd_verify_dev_init(hba); 6279 spin_lock_irqsave(hba->host->host_lock, flags); 6280 6281 if (err) 6282 goto out; 6283 6284 /* Link seems to be alive hence ignore the DL NAC errors */ 6285 if (hba->saved_uic_err == UFSHCD_UIC_DL_NAC_RECEIVED_ERROR) 6286 hba->saved_err &= ~UIC_ERROR; 6287 /* clear NAC error */ 6288 hba->saved_uic_err &= ~UFSHCD_UIC_DL_NAC_RECEIVED_ERROR; 6289 if (!hba->saved_uic_err) 6290 err_handling = false; 6291 } 6292 out: 6293 spin_unlock_irqrestore(hba->host->host_lock, flags); 6294 return err_handling; 6295 } 6296 6297 /* host lock must be held before calling this func */ 6298 static inline bool ufshcd_is_saved_err_fatal(struct ufs_hba *hba) 6299 { 6300 return (hba->saved_uic_err & UFSHCD_UIC_DL_PA_INIT_ERROR) || 6301 (hba->saved_err & (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK)); 6302 } 6303 6304 void ufshcd_schedule_eh_work(struct ufs_hba *hba) 6305 { 6306 lockdep_assert_held(hba->host->host_lock); 6307 6308 /* handle fatal errors only when link is not in error state */ 6309 if (hba->ufshcd_state != UFSHCD_STATE_ERROR) { 6310 if (hba->force_reset || ufshcd_is_link_broken(hba) || 6311 ufshcd_is_saved_err_fatal(hba)) 6312 hba->ufshcd_state = UFSHCD_STATE_EH_SCHEDULED_FATAL; 6313 else 6314 hba->ufshcd_state = UFSHCD_STATE_EH_SCHEDULED_NON_FATAL; 6315 queue_work(hba->eh_wq, &hba->eh_work); 6316 } 6317 } 6318 6319 static void ufshcd_force_error_recovery(struct ufs_hba *hba) 6320 { 6321 spin_lock_irq(hba->host->host_lock); 6322 hba->force_reset = true; 6323 ufshcd_schedule_eh_work(hba); 6324 spin_unlock_irq(hba->host->host_lock); 6325 } 6326 6327 static void ufshcd_clk_scaling_allow(struct ufs_hba *hba, bool allow) 6328 { 6329 mutex_lock(&hba->wb_mutex); 6330 down_write(&hba->clk_scaling_lock); 6331 hba->clk_scaling.is_allowed = allow; 6332 up_write(&hba->clk_scaling_lock); 6333 mutex_unlock(&hba->wb_mutex); 6334 } 6335 6336 static void ufshcd_clk_scaling_suspend(struct ufs_hba *hba, bool suspend) 6337 { 6338 if (suspend) { 6339 if (hba->clk_scaling.is_enabled) 6340 ufshcd_suspend_clkscaling(hba); 6341 ufshcd_clk_scaling_allow(hba, false); 6342 } else { 6343 ufshcd_clk_scaling_allow(hba, true); 6344 if (hba->clk_scaling.is_enabled) 6345 ufshcd_resume_clkscaling(hba); 6346 } 6347 } 6348 6349 static void ufshcd_err_handling_prepare(struct ufs_hba *hba) 6350 { 6351 ufshcd_rpm_get_sync(hba); 6352 if (pm_runtime_status_suspended(&hba->ufs_device_wlun->sdev_gendev) || 6353 hba->is_sys_suspended) { 6354 enum ufs_pm_op pm_op; 6355 6356 /* 6357 * Don't assume anything of resume, if 6358 * resume fails, irq and clocks can be OFF, and powers 6359 * can be OFF or in LPM. 6360 */ 6361 ufshcd_setup_hba_vreg(hba, true); 6362 ufshcd_enable_irq(hba); 6363 ufshcd_setup_vreg(hba, true); 6364 ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq); 6365 ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq2); 6366 ufshcd_hold(hba); 6367 if (!ufshcd_is_clkgating_allowed(hba)) 6368 ufshcd_setup_clocks(hba, true); 6369 pm_op = hba->is_sys_suspended ? UFS_SYSTEM_PM : UFS_RUNTIME_PM; 6370 ufshcd_vops_resume(hba, pm_op); 6371 } else { 6372 ufshcd_hold(hba); 6373 if (ufshcd_is_clkscaling_supported(hba) && 6374 hba->clk_scaling.is_enabled) 6375 ufshcd_suspend_clkscaling(hba); 6376 ufshcd_clk_scaling_allow(hba, false); 6377 } 6378 ufshcd_scsi_block_requests(hba); 6379 /* Wait for ongoing ufshcd_queuecommand() calls to finish. */ 6380 blk_mq_wait_quiesce_done(&hba->host->tag_set); 6381 cancel_work_sync(&hba->eeh_work); 6382 } 6383 6384 static void ufshcd_err_handling_unprepare(struct ufs_hba *hba) 6385 { 6386 ufshcd_scsi_unblock_requests(hba); 6387 ufshcd_release(hba); 6388 if (ufshcd_is_clkscaling_supported(hba)) 6389 ufshcd_clk_scaling_suspend(hba, false); 6390 ufshcd_rpm_put(hba); 6391 } 6392 6393 static inline bool ufshcd_err_handling_should_stop(struct ufs_hba *hba) 6394 { 6395 return (!hba->is_powered || hba->shutting_down || 6396 !hba->ufs_device_wlun || 6397 hba->ufshcd_state == UFSHCD_STATE_ERROR || 6398 (!(hba->saved_err || hba->saved_uic_err || hba->force_reset || 6399 ufshcd_is_link_broken(hba)))); 6400 } 6401 6402 #ifdef CONFIG_PM 6403 static void ufshcd_recover_pm_error(struct ufs_hba *hba) 6404 { 6405 struct Scsi_Host *shost = hba->host; 6406 struct scsi_device *sdev; 6407 struct request_queue *q; 6408 int ret; 6409 6410 hba->is_sys_suspended = false; 6411 /* 6412 * Set RPM status of wlun device to RPM_ACTIVE, 6413 * this also clears its runtime error. 6414 */ 6415 ret = pm_runtime_set_active(&hba->ufs_device_wlun->sdev_gendev); 6416 6417 /* hba device might have a runtime error otherwise */ 6418 if (ret) 6419 ret = pm_runtime_set_active(hba->dev); 6420 /* 6421 * If wlun device had runtime error, we also need to resume those 6422 * consumer scsi devices in case any of them has failed to be 6423 * resumed due to supplier runtime resume failure. This is to unblock 6424 * blk_queue_enter in case there are bios waiting inside it. 6425 */ 6426 if (!ret) { 6427 shost_for_each_device(sdev, shost) { 6428 q = sdev->request_queue; 6429 if (q->dev && (q->rpm_status == RPM_SUSPENDED || 6430 q->rpm_status == RPM_SUSPENDING)) 6431 pm_request_resume(q->dev); 6432 } 6433 } 6434 } 6435 #else 6436 static inline void ufshcd_recover_pm_error(struct ufs_hba *hba) 6437 { 6438 } 6439 #endif 6440 6441 static bool ufshcd_is_pwr_mode_restore_needed(struct ufs_hba *hba) 6442 { 6443 struct ufs_pa_layer_attr *pwr_info = &hba->pwr_info; 6444 u32 mode; 6445 6446 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_PWRMODE), &mode); 6447 6448 if (pwr_info->pwr_rx != ((mode >> PWRMODE_RX_OFFSET) & PWRMODE_MASK)) 6449 return true; 6450 6451 if (pwr_info->pwr_tx != (mode & PWRMODE_MASK)) 6452 return true; 6453 6454 return false; 6455 } 6456 6457 static bool ufshcd_abort_one(struct request *rq, void *priv) 6458 { 6459 int *ret = priv; 6460 u32 tag = rq->tag; 6461 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 6462 struct scsi_device *sdev = cmd->device; 6463 struct Scsi_Host *shost = sdev->host; 6464 struct ufs_hba *hba = shost_priv(shost); 6465 struct ufshcd_lrb *lrbp = &hba->lrb[tag]; 6466 struct ufs_hw_queue *hwq; 6467 unsigned long flags; 6468 6469 *ret = ufshcd_try_to_abort_task(hba, tag); 6470 dev_err(hba->dev, "Aborting tag %d / CDB %#02x %s\n", tag, 6471 hba->lrb[tag].cmd ? hba->lrb[tag].cmd->cmnd[0] : -1, 6472 *ret ? "failed" : "succeeded"); 6473 6474 /* Release cmd in MCQ mode if abort succeeds */ 6475 if (hba->mcq_enabled && (*ret == 0)) { 6476 hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(lrbp->cmd)); 6477 if (!hwq) 6478 return 0; 6479 spin_lock_irqsave(&hwq->cq_lock, flags); 6480 if (ufshcd_cmd_inflight(lrbp->cmd)) 6481 ufshcd_release_scsi_cmd(hba, lrbp); 6482 spin_unlock_irqrestore(&hwq->cq_lock, flags); 6483 } 6484 6485 return *ret == 0; 6486 } 6487 6488 /** 6489 * ufshcd_abort_all - Abort all pending commands. 6490 * @hba: Host bus adapter pointer. 6491 * 6492 * Return: true if and only if the host controller needs to be reset. 6493 */ 6494 static bool ufshcd_abort_all(struct ufs_hba *hba) 6495 { 6496 int tag, ret = 0; 6497 6498 blk_mq_tagset_busy_iter(&hba->host->tag_set, ufshcd_abort_one, &ret); 6499 if (ret) 6500 goto out; 6501 6502 /* Clear pending task management requests */ 6503 for_each_set_bit(tag, &hba->outstanding_tasks, hba->nutmrs) { 6504 ret = ufshcd_clear_tm_cmd(hba, tag); 6505 if (ret) 6506 goto out; 6507 } 6508 6509 out: 6510 /* Complete the requests that are cleared by s/w */ 6511 ufshcd_complete_requests(hba, false); 6512 6513 return ret != 0; 6514 } 6515 6516 /** 6517 * ufshcd_err_handler - handle UFS errors that require s/w attention 6518 * @work: pointer to work structure 6519 */ 6520 static void ufshcd_err_handler(struct work_struct *work) 6521 { 6522 int retries = MAX_ERR_HANDLER_RETRIES; 6523 struct ufs_hba *hba; 6524 unsigned long flags; 6525 bool needs_restore; 6526 bool needs_reset; 6527 int pmc_err; 6528 6529 hba = container_of(work, struct ufs_hba, eh_work); 6530 6531 dev_info(hba->dev, 6532 "%s started; HBA state %s; powered %d; shutting down %d; saved_err = %d; saved_uic_err = %d; force_reset = %d%s\n", 6533 __func__, ufshcd_state_name[hba->ufshcd_state], 6534 hba->is_powered, hba->shutting_down, hba->saved_err, 6535 hba->saved_uic_err, hba->force_reset, 6536 ufshcd_is_link_broken(hba) ? "; link is broken" : ""); 6537 6538 down(&hba->host_sem); 6539 spin_lock_irqsave(hba->host->host_lock, flags); 6540 if (ufshcd_err_handling_should_stop(hba)) { 6541 if (hba->ufshcd_state != UFSHCD_STATE_ERROR) 6542 hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL; 6543 spin_unlock_irqrestore(hba->host->host_lock, flags); 6544 up(&hba->host_sem); 6545 return; 6546 } 6547 ufshcd_set_eh_in_progress(hba); 6548 spin_unlock_irqrestore(hba->host->host_lock, flags); 6549 ufshcd_err_handling_prepare(hba); 6550 /* Complete requests that have door-bell cleared by h/w */ 6551 ufshcd_complete_requests(hba, false); 6552 spin_lock_irqsave(hba->host->host_lock, flags); 6553 again: 6554 needs_restore = false; 6555 needs_reset = false; 6556 6557 if (hba->ufshcd_state != UFSHCD_STATE_ERROR) 6558 hba->ufshcd_state = UFSHCD_STATE_RESET; 6559 /* 6560 * A full reset and restore might have happened after preparation 6561 * is finished, double check whether we should stop. 6562 */ 6563 if (ufshcd_err_handling_should_stop(hba)) 6564 goto skip_err_handling; 6565 6566 if ((hba->dev_quirks & UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS) && 6567 !hba->force_reset) { 6568 bool ret; 6569 6570 spin_unlock_irqrestore(hba->host->host_lock, flags); 6571 /* release the lock as ufshcd_quirk_dl_nac_errors() may sleep */ 6572 ret = ufshcd_quirk_dl_nac_errors(hba); 6573 spin_lock_irqsave(hba->host->host_lock, flags); 6574 if (!ret && ufshcd_err_handling_should_stop(hba)) 6575 goto skip_err_handling; 6576 } 6577 6578 if ((hba->saved_err & (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK)) || 6579 (hba->saved_uic_err && 6580 (hba->saved_uic_err != UFSHCD_UIC_PA_GENERIC_ERROR))) { 6581 bool pr_prdt = !!(hba->saved_err & SYSTEM_BUS_FATAL_ERROR); 6582 6583 spin_unlock_irqrestore(hba->host->host_lock, flags); 6584 ufshcd_print_host_state(hba); 6585 ufshcd_print_pwr_info(hba); 6586 ufshcd_print_evt_hist(hba); 6587 ufshcd_print_tmrs(hba, hba->outstanding_tasks); 6588 ufshcd_print_trs_all(hba, pr_prdt); 6589 spin_lock_irqsave(hba->host->host_lock, flags); 6590 } 6591 6592 /* 6593 * if host reset is required then skip clearing the pending 6594 * transfers forcefully because they will get cleared during 6595 * host reset and restore 6596 */ 6597 if (hba->force_reset || ufshcd_is_link_broken(hba) || 6598 ufshcd_is_saved_err_fatal(hba) || 6599 ((hba->saved_err & UIC_ERROR) && 6600 (hba->saved_uic_err & (UFSHCD_UIC_DL_NAC_RECEIVED_ERROR | 6601 UFSHCD_UIC_DL_TCx_REPLAY_ERROR)))) { 6602 needs_reset = true; 6603 goto do_reset; 6604 } 6605 6606 /* 6607 * If LINERESET was caught, UFS might have been put to PWM mode, 6608 * check if power mode restore is needed. 6609 */ 6610 if (hba->saved_uic_err & UFSHCD_UIC_PA_GENERIC_ERROR) { 6611 hba->saved_uic_err &= ~UFSHCD_UIC_PA_GENERIC_ERROR; 6612 if (!hba->saved_uic_err) 6613 hba->saved_err &= ~UIC_ERROR; 6614 spin_unlock_irqrestore(hba->host->host_lock, flags); 6615 if (ufshcd_is_pwr_mode_restore_needed(hba)) 6616 needs_restore = true; 6617 spin_lock_irqsave(hba->host->host_lock, flags); 6618 if (!hba->saved_err && !needs_restore) 6619 goto skip_err_handling; 6620 } 6621 6622 hba->silence_err_logs = true; 6623 /* release lock as clear command might sleep */ 6624 spin_unlock_irqrestore(hba->host->host_lock, flags); 6625 6626 needs_reset = ufshcd_abort_all(hba); 6627 6628 spin_lock_irqsave(hba->host->host_lock, flags); 6629 hba->silence_err_logs = false; 6630 if (needs_reset) 6631 goto do_reset; 6632 6633 /* 6634 * After all reqs and tasks are cleared from doorbell, 6635 * now it is safe to retore power mode. 6636 */ 6637 if (needs_restore) { 6638 spin_unlock_irqrestore(hba->host->host_lock, flags); 6639 /* 6640 * Hold the scaling lock just in case dev cmds 6641 * are sent via bsg and/or sysfs. 6642 */ 6643 down_write(&hba->clk_scaling_lock); 6644 hba->force_pmc = true; 6645 pmc_err = ufshcd_config_pwr_mode(hba, &(hba->pwr_info)); 6646 if (pmc_err) { 6647 needs_reset = true; 6648 dev_err(hba->dev, "%s: Failed to restore power mode, err = %d\n", 6649 __func__, pmc_err); 6650 } 6651 hba->force_pmc = false; 6652 ufshcd_print_pwr_info(hba); 6653 up_write(&hba->clk_scaling_lock); 6654 spin_lock_irqsave(hba->host->host_lock, flags); 6655 } 6656 6657 do_reset: 6658 /* Fatal errors need reset */ 6659 if (needs_reset) { 6660 int err; 6661 6662 hba->force_reset = false; 6663 spin_unlock_irqrestore(hba->host->host_lock, flags); 6664 err = ufshcd_reset_and_restore(hba); 6665 if (err) 6666 dev_err(hba->dev, "%s: reset and restore failed with err %d\n", 6667 __func__, err); 6668 else 6669 ufshcd_recover_pm_error(hba); 6670 spin_lock_irqsave(hba->host->host_lock, flags); 6671 } 6672 6673 skip_err_handling: 6674 if (!needs_reset) { 6675 if (hba->ufshcd_state == UFSHCD_STATE_RESET) 6676 hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL; 6677 if (hba->saved_err || hba->saved_uic_err) 6678 dev_err_ratelimited(hba->dev, "%s: exit: saved_err 0x%x saved_uic_err 0x%x", 6679 __func__, hba->saved_err, hba->saved_uic_err); 6680 } 6681 /* Exit in an operational state or dead */ 6682 if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL && 6683 hba->ufshcd_state != UFSHCD_STATE_ERROR) { 6684 if (--retries) 6685 goto again; 6686 hba->ufshcd_state = UFSHCD_STATE_ERROR; 6687 } 6688 ufshcd_clear_eh_in_progress(hba); 6689 spin_unlock_irqrestore(hba->host->host_lock, flags); 6690 ufshcd_err_handling_unprepare(hba); 6691 up(&hba->host_sem); 6692 6693 dev_info(hba->dev, "%s finished; HBA state %s\n", __func__, 6694 ufshcd_state_name[hba->ufshcd_state]); 6695 } 6696 6697 /** 6698 * ufshcd_update_uic_error - check and set fatal UIC error flags. 6699 * @hba: per-adapter instance 6700 * 6701 * Return: 6702 * IRQ_HANDLED - If interrupt is valid 6703 * IRQ_NONE - If invalid interrupt 6704 */ 6705 static irqreturn_t ufshcd_update_uic_error(struct ufs_hba *hba) 6706 { 6707 u32 reg; 6708 irqreturn_t retval = IRQ_NONE; 6709 6710 /* PHY layer error */ 6711 reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER); 6712 if ((reg & UIC_PHY_ADAPTER_LAYER_ERROR) && 6713 (reg & UIC_PHY_ADAPTER_LAYER_ERROR_CODE_MASK)) { 6714 ufshcd_update_evt_hist(hba, UFS_EVT_PA_ERR, reg); 6715 /* 6716 * To know whether this error is fatal or not, DB timeout 6717 * must be checked but this error is handled separately. 6718 */ 6719 if (reg & UIC_PHY_ADAPTER_LAYER_LANE_ERR_MASK) 6720 dev_dbg(hba->dev, "%s: UIC Lane error reported\n", 6721 __func__); 6722 6723 /* Got a LINERESET indication. */ 6724 if (reg & UIC_PHY_ADAPTER_LAYER_GENERIC_ERROR) { 6725 struct uic_command *cmd = NULL; 6726 6727 hba->uic_error |= UFSHCD_UIC_PA_GENERIC_ERROR; 6728 if (hba->uic_async_done && hba->active_uic_cmd) 6729 cmd = hba->active_uic_cmd; 6730 /* 6731 * Ignore the LINERESET during power mode change 6732 * operation via DME_SET command. 6733 */ 6734 if (cmd && (cmd->command == UIC_CMD_DME_SET)) 6735 hba->uic_error &= ~UFSHCD_UIC_PA_GENERIC_ERROR; 6736 } 6737 retval |= IRQ_HANDLED; 6738 } 6739 6740 /* PA_INIT_ERROR is fatal and needs UIC reset */ 6741 reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_DATA_LINK_LAYER); 6742 if ((reg & UIC_DATA_LINK_LAYER_ERROR) && 6743 (reg & UIC_DATA_LINK_LAYER_ERROR_CODE_MASK)) { 6744 ufshcd_update_evt_hist(hba, UFS_EVT_DL_ERR, reg); 6745 6746 if (reg & UIC_DATA_LINK_LAYER_ERROR_PA_INIT) 6747 hba->uic_error |= UFSHCD_UIC_DL_PA_INIT_ERROR; 6748 else if (hba->dev_quirks & 6749 UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS) { 6750 if (reg & UIC_DATA_LINK_LAYER_ERROR_NAC_RECEIVED) 6751 hba->uic_error |= 6752 UFSHCD_UIC_DL_NAC_RECEIVED_ERROR; 6753 else if (reg & UIC_DATA_LINK_LAYER_ERROR_TCx_REPLAY_TIMEOUT) 6754 hba->uic_error |= UFSHCD_UIC_DL_TCx_REPLAY_ERROR; 6755 } 6756 retval |= IRQ_HANDLED; 6757 } 6758 6759 /* UIC NL/TL/DME errors needs software retry */ 6760 reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_NETWORK_LAYER); 6761 if ((reg & UIC_NETWORK_LAYER_ERROR) && 6762 (reg & UIC_NETWORK_LAYER_ERROR_CODE_MASK)) { 6763 ufshcd_update_evt_hist(hba, UFS_EVT_NL_ERR, reg); 6764 hba->uic_error |= UFSHCD_UIC_NL_ERROR; 6765 retval |= IRQ_HANDLED; 6766 } 6767 6768 reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_TRANSPORT_LAYER); 6769 if ((reg & UIC_TRANSPORT_LAYER_ERROR) && 6770 (reg & UIC_TRANSPORT_LAYER_ERROR_CODE_MASK)) { 6771 ufshcd_update_evt_hist(hba, UFS_EVT_TL_ERR, reg); 6772 hba->uic_error |= UFSHCD_UIC_TL_ERROR; 6773 retval |= IRQ_HANDLED; 6774 } 6775 6776 reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_DME); 6777 if ((reg & UIC_DME_ERROR) && 6778 (reg & UIC_DME_ERROR_CODE_MASK)) { 6779 ufshcd_update_evt_hist(hba, UFS_EVT_DME_ERR, reg); 6780 hba->uic_error |= UFSHCD_UIC_DME_ERROR; 6781 retval |= IRQ_HANDLED; 6782 } 6783 6784 dev_dbg(hba->dev, "%s: UIC error flags = 0x%08x\n", 6785 __func__, hba->uic_error); 6786 return retval; 6787 } 6788 6789 /** 6790 * ufshcd_check_errors - Check for errors that need s/w attention 6791 * @hba: per-adapter instance 6792 * @intr_status: interrupt status generated by the controller 6793 * 6794 * Return: 6795 * IRQ_HANDLED - If interrupt is valid 6796 * IRQ_NONE - If invalid interrupt 6797 */ 6798 static irqreturn_t ufshcd_check_errors(struct ufs_hba *hba, u32 intr_status) 6799 { 6800 bool queue_eh_work = false; 6801 irqreturn_t retval = IRQ_NONE; 6802 6803 spin_lock(hba->host->host_lock); 6804 hba->errors |= UFSHCD_ERROR_MASK & intr_status; 6805 6806 if (hba->errors & INT_FATAL_ERRORS) { 6807 ufshcd_update_evt_hist(hba, UFS_EVT_FATAL_ERR, 6808 hba->errors); 6809 queue_eh_work = true; 6810 } 6811 6812 if (hba->errors & UIC_ERROR) { 6813 hba->uic_error = 0; 6814 retval = ufshcd_update_uic_error(hba); 6815 if (hba->uic_error) 6816 queue_eh_work = true; 6817 } 6818 6819 if (hba->errors & UFSHCD_UIC_HIBERN8_MASK) { 6820 dev_err(hba->dev, 6821 "%s: Auto Hibern8 %s failed - status: 0x%08x, upmcrs: 0x%08x\n", 6822 __func__, (hba->errors & UIC_HIBERNATE_ENTER) ? 6823 "Enter" : "Exit", 6824 hba->errors, ufshcd_get_upmcrs(hba)); 6825 ufshcd_update_evt_hist(hba, UFS_EVT_AUTO_HIBERN8_ERR, 6826 hba->errors); 6827 ufshcd_set_link_broken(hba); 6828 queue_eh_work = true; 6829 } 6830 6831 if (queue_eh_work) { 6832 /* 6833 * update the transfer error masks to sticky bits, let's do this 6834 * irrespective of current ufshcd_state. 6835 */ 6836 hba->saved_err |= hba->errors; 6837 hba->saved_uic_err |= hba->uic_error; 6838 6839 /* dump controller state before resetting */ 6840 if ((hba->saved_err & 6841 (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK)) || 6842 (hba->saved_uic_err && 6843 (hba->saved_uic_err != UFSHCD_UIC_PA_GENERIC_ERROR))) { 6844 dev_err(hba->dev, "%s: saved_err 0x%x saved_uic_err 0x%x\n", 6845 __func__, hba->saved_err, 6846 hba->saved_uic_err); 6847 ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, 6848 "host_regs: "); 6849 ufshcd_print_pwr_info(hba); 6850 } 6851 ufshcd_schedule_eh_work(hba); 6852 retval |= IRQ_HANDLED; 6853 } 6854 /* 6855 * if (!queue_eh_work) - 6856 * Other errors are either non-fatal where host recovers 6857 * itself without s/w intervention or errors that will be 6858 * handled by the SCSI core layer. 6859 */ 6860 hba->errors = 0; 6861 hba->uic_error = 0; 6862 spin_unlock(hba->host->host_lock); 6863 return retval; 6864 } 6865 6866 /** 6867 * ufshcd_tmc_handler - handle task management function completion 6868 * @hba: per adapter instance 6869 * 6870 * Return: 6871 * IRQ_HANDLED - If interrupt is valid 6872 * IRQ_NONE - If invalid interrupt 6873 */ 6874 static irqreturn_t ufshcd_tmc_handler(struct ufs_hba *hba) 6875 { 6876 unsigned long flags, pending, issued; 6877 irqreturn_t ret = IRQ_NONE; 6878 int tag; 6879 6880 spin_lock_irqsave(hba->host->host_lock, flags); 6881 pending = ufshcd_readl(hba, REG_UTP_TASK_REQ_DOOR_BELL); 6882 issued = hba->outstanding_tasks & ~pending; 6883 for_each_set_bit(tag, &issued, hba->nutmrs) { 6884 struct request *req = hba->tmf_rqs[tag]; 6885 struct completion *c = req->end_io_data; 6886 6887 complete(c); 6888 ret = IRQ_HANDLED; 6889 } 6890 spin_unlock_irqrestore(hba->host->host_lock, flags); 6891 6892 return ret; 6893 } 6894 6895 /** 6896 * ufshcd_handle_mcq_cq_events - handle MCQ completion queue events 6897 * @hba: per adapter instance 6898 * 6899 * Return: IRQ_HANDLED if interrupt is handled. 6900 */ 6901 static irqreturn_t ufshcd_handle_mcq_cq_events(struct ufs_hba *hba) 6902 { 6903 struct ufs_hw_queue *hwq; 6904 unsigned long outstanding_cqs; 6905 unsigned int nr_queues; 6906 int i, ret; 6907 u32 events; 6908 6909 ret = ufshcd_vops_get_outstanding_cqs(hba, &outstanding_cqs); 6910 if (ret) 6911 outstanding_cqs = (1U << hba->nr_hw_queues) - 1; 6912 6913 /* Exclude the poll queues */ 6914 nr_queues = hba->nr_hw_queues - hba->nr_queues[HCTX_TYPE_POLL]; 6915 for_each_set_bit(i, &outstanding_cqs, nr_queues) { 6916 hwq = &hba->uhq[i]; 6917 6918 events = ufshcd_mcq_read_cqis(hba, i); 6919 if (events) 6920 ufshcd_mcq_write_cqis(hba, events, i); 6921 6922 if (events & UFSHCD_MCQ_CQIS_TAIL_ENT_PUSH_STS) 6923 ufshcd_mcq_poll_cqe_lock(hba, hwq); 6924 } 6925 6926 return IRQ_HANDLED; 6927 } 6928 6929 /** 6930 * ufshcd_sl_intr - Interrupt service routine 6931 * @hba: per adapter instance 6932 * @intr_status: contains interrupts generated by the controller 6933 * 6934 * Return: 6935 * IRQ_HANDLED - If interrupt is valid 6936 * IRQ_NONE - If invalid interrupt 6937 */ 6938 static irqreturn_t ufshcd_sl_intr(struct ufs_hba *hba, u32 intr_status) 6939 { 6940 irqreturn_t retval = IRQ_NONE; 6941 6942 if (intr_status & UFSHCD_UIC_MASK) 6943 retval |= ufshcd_uic_cmd_compl(hba, intr_status); 6944 6945 if (intr_status & UFSHCD_ERROR_MASK || hba->errors) 6946 retval |= ufshcd_check_errors(hba, intr_status); 6947 6948 if (intr_status & UTP_TASK_REQ_COMPL) 6949 retval |= ufshcd_tmc_handler(hba); 6950 6951 if (intr_status & UTP_TRANSFER_REQ_COMPL) 6952 retval |= ufshcd_transfer_req_compl(hba); 6953 6954 if (intr_status & MCQ_CQ_EVENT_STATUS) 6955 retval |= ufshcd_handle_mcq_cq_events(hba); 6956 6957 return retval; 6958 } 6959 6960 /** 6961 * ufshcd_intr - Main interrupt service routine 6962 * @irq: irq number 6963 * @__hba: pointer to adapter instance 6964 * 6965 * Return: 6966 * IRQ_HANDLED - If interrupt is valid 6967 * IRQ_NONE - If invalid interrupt 6968 */ 6969 static irqreturn_t ufshcd_intr(int irq, void *__hba) 6970 { 6971 u32 intr_status, enabled_intr_status = 0; 6972 irqreturn_t retval = IRQ_NONE; 6973 struct ufs_hba *hba = __hba; 6974 int retries = hba->nutrs; 6975 6976 intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS); 6977 hba->ufs_stats.last_intr_status = intr_status; 6978 hba->ufs_stats.last_intr_ts = local_clock(); 6979 6980 /* 6981 * There could be max of hba->nutrs reqs in flight and in worst case 6982 * if the reqs get finished 1 by 1 after the interrupt status is 6983 * read, make sure we handle them by checking the interrupt status 6984 * again in a loop until we process all of the reqs before returning. 6985 */ 6986 while (intr_status && retries--) { 6987 enabled_intr_status = 6988 intr_status & ufshcd_readl(hba, REG_INTERRUPT_ENABLE); 6989 ufshcd_writel(hba, intr_status, REG_INTERRUPT_STATUS); 6990 if (enabled_intr_status) 6991 retval |= ufshcd_sl_intr(hba, enabled_intr_status); 6992 6993 intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS); 6994 } 6995 6996 if (enabled_intr_status && retval == IRQ_NONE && 6997 (!(enabled_intr_status & UTP_TRANSFER_REQ_COMPL) || 6998 hba->outstanding_reqs) && !ufshcd_eh_in_progress(hba)) { 6999 dev_err(hba->dev, "%s: Unhandled interrupt 0x%08x (0x%08x, 0x%08x)\n", 7000 __func__, 7001 intr_status, 7002 hba->ufs_stats.last_intr_status, 7003 enabled_intr_status); 7004 ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, "host_regs: "); 7005 } 7006 7007 return retval; 7008 } 7009 7010 static int ufshcd_clear_tm_cmd(struct ufs_hba *hba, int tag) 7011 { 7012 int err = 0; 7013 u32 mask = 1 << tag; 7014 unsigned long flags; 7015 7016 if (!test_bit(tag, &hba->outstanding_tasks)) 7017 goto out; 7018 7019 spin_lock_irqsave(hba->host->host_lock, flags); 7020 ufshcd_utmrl_clear(hba, tag); 7021 spin_unlock_irqrestore(hba->host->host_lock, flags); 7022 7023 /* poll for max. 1 sec to clear door bell register by h/w */ 7024 err = ufshcd_wait_for_register(hba, 7025 REG_UTP_TASK_REQ_DOOR_BELL, 7026 mask, 0, 1000, 1000); 7027 7028 dev_err(hba->dev, "Clearing task management function with tag %d %s\n", 7029 tag, err < 0 ? "failed" : "succeeded"); 7030 7031 out: 7032 return err; 7033 } 7034 7035 static int __ufshcd_issue_tm_cmd(struct ufs_hba *hba, 7036 struct utp_task_req_desc *treq, u8 tm_function) 7037 { 7038 struct request_queue *q = hba->tmf_queue; 7039 struct Scsi_Host *host = hba->host; 7040 DECLARE_COMPLETION_ONSTACK(wait); 7041 struct request *req; 7042 unsigned long flags; 7043 int task_tag, err; 7044 7045 /* 7046 * blk_mq_alloc_request() is used here only to get a free tag. 7047 */ 7048 req = blk_mq_alloc_request(q, REQ_OP_DRV_OUT, 0); 7049 if (IS_ERR(req)) 7050 return PTR_ERR(req); 7051 7052 req->end_io_data = &wait; 7053 ufshcd_hold(hba); 7054 7055 spin_lock_irqsave(host->host_lock, flags); 7056 7057 task_tag = req->tag; 7058 hba->tmf_rqs[req->tag] = req; 7059 treq->upiu_req.req_header.task_tag = task_tag; 7060 7061 memcpy(hba->utmrdl_base_addr + task_tag, treq, sizeof(*treq)); 7062 ufshcd_vops_setup_task_mgmt(hba, task_tag, tm_function); 7063 7064 /* send command to the controller */ 7065 __set_bit(task_tag, &hba->outstanding_tasks); 7066 ufshcd_writel(hba, 1 << task_tag, REG_UTP_TASK_REQ_DOOR_BELL); 7067 7068 spin_unlock_irqrestore(host->host_lock, flags); 7069 7070 ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_SEND); 7071 7072 /* wait until the task management command is completed */ 7073 err = wait_for_completion_io_timeout(&wait, 7074 msecs_to_jiffies(TM_CMD_TIMEOUT)); 7075 if (!err) { 7076 ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_ERR); 7077 dev_err(hba->dev, "%s: task management cmd 0x%.2x timed-out\n", 7078 __func__, tm_function); 7079 if (ufshcd_clear_tm_cmd(hba, task_tag)) 7080 dev_WARN(hba->dev, "%s: unable to clear tm cmd (slot %d) after timeout\n", 7081 __func__, task_tag); 7082 err = -ETIMEDOUT; 7083 } else { 7084 err = 0; 7085 memcpy(treq, hba->utmrdl_base_addr + task_tag, sizeof(*treq)); 7086 7087 ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_COMP); 7088 } 7089 7090 spin_lock_irqsave(hba->host->host_lock, flags); 7091 hba->tmf_rqs[req->tag] = NULL; 7092 __clear_bit(task_tag, &hba->outstanding_tasks); 7093 spin_unlock_irqrestore(hba->host->host_lock, flags); 7094 7095 ufshcd_release(hba); 7096 blk_mq_free_request(req); 7097 7098 return err; 7099 } 7100 7101 /** 7102 * ufshcd_issue_tm_cmd - issues task management commands to controller 7103 * @hba: per adapter instance 7104 * @lun_id: LUN ID to which TM command is sent 7105 * @task_id: task ID to which the TM command is applicable 7106 * @tm_function: task management function opcode 7107 * @tm_response: task management service response return value 7108 * 7109 * Return: non-zero value on error, zero on success. 7110 */ 7111 static int ufshcd_issue_tm_cmd(struct ufs_hba *hba, int lun_id, int task_id, 7112 u8 tm_function, u8 *tm_response) 7113 { 7114 struct utp_task_req_desc treq = { }; 7115 enum utp_ocs ocs_value; 7116 int err; 7117 7118 /* Configure task request descriptor */ 7119 treq.header.interrupt = 1; 7120 treq.header.ocs = OCS_INVALID_COMMAND_STATUS; 7121 7122 /* Configure task request UPIU */ 7123 treq.upiu_req.req_header.transaction_code = UPIU_TRANSACTION_TASK_REQ; 7124 treq.upiu_req.req_header.lun = lun_id; 7125 treq.upiu_req.req_header.tm_function = tm_function; 7126 7127 /* 7128 * The host shall provide the same value for LUN field in the basic 7129 * header and for Input Parameter. 7130 */ 7131 treq.upiu_req.input_param1 = cpu_to_be32(lun_id); 7132 treq.upiu_req.input_param2 = cpu_to_be32(task_id); 7133 7134 err = __ufshcd_issue_tm_cmd(hba, &treq, tm_function); 7135 if (err == -ETIMEDOUT) 7136 return err; 7137 7138 ocs_value = treq.header.ocs & MASK_OCS; 7139 if (ocs_value != OCS_SUCCESS) 7140 dev_err(hba->dev, "%s: failed, ocs = 0x%x\n", 7141 __func__, ocs_value); 7142 else if (tm_response) 7143 *tm_response = be32_to_cpu(treq.upiu_rsp.output_param1) & 7144 MASK_TM_SERVICE_RESP; 7145 return err; 7146 } 7147 7148 /** 7149 * ufshcd_issue_devman_upiu_cmd - API for sending "utrd" type requests 7150 * @hba: per-adapter instance 7151 * @req_upiu: upiu request 7152 * @rsp_upiu: upiu reply 7153 * @desc_buff: pointer to descriptor buffer, NULL if NA 7154 * @buff_len: descriptor size, 0 if NA 7155 * @cmd_type: specifies the type (NOP, Query...) 7156 * @desc_op: descriptor operation 7157 * 7158 * Those type of requests uses UTP Transfer Request Descriptor - utrd. 7159 * Therefore, it "rides" the device management infrastructure: uses its tag and 7160 * tasks work queues. 7161 * 7162 * Since there is only one available tag for device management commands, 7163 * the caller is expected to hold the hba->dev_cmd.lock mutex. 7164 * 7165 * Return: 0 upon success; < 0 upon failure. 7166 */ 7167 static int ufshcd_issue_devman_upiu_cmd(struct ufs_hba *hba, 7168 struct utp_upiu_req *req_upiu, 7169 struct utp_upiu_req *rsp_upiu, 7170 u8 *desc_buff, int *buff_len, 7171 enum dev_cmd_type cmd_type, 7172 enum query_opcode desc_op) 7173 { 7174 const u32 tag = hba->reserved_slot; 7175 struct ufshcd_lrb *lrbp = &hba->lrb[tag]; 7176 int err = 0; 7177 u8 upiu_flags; 7178 7179 /* Protects use of hba->reserved_slot. */ 7180 lockdep_assert_held(&hba->dev_cmd.lock); 7181 7182 ufshcd_setup_dev_cmd(hba, lrbp, cmd_type, 0, tag); 7183 7184 ufshcd_prepare_req_desc_hdr(hba, lrbp, &upiu_flags, DMA_NONE, 0); 7185 7186 /* update the task tag in the request upiu */ 7187 req_upiu->header.task_tag = tag; 7188 7189 /* just copy the upiu request as it is */ 7190 memcpy(lrbp->ucd_req_ptr, req_upiu, sizeof(*lrbp->ucd_req_ptr)); 7191 if (desc_buff && desc_op == UPIU_QUERY_OPCODE_WRITE_DESC) { 7192 /* The Data Segment Area is optional depending upon the query 7193 * function value. for WRITE DESCRIPTOR, the data segment 7194 * follows right after the tsf. 7195 */ 7196 memcpy(lrbp->ucd_req_ptr + 1, desc_buff, *buff_len); 7197 *buff_len = 0; 7198 } 7199 7200 memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp)); 7201 7202 /* 7203 * ignore the returning value here - ufshcd_check_query_response is 7204 * bound to fail since dev_cmd.query and dev_cmd.type were left empty. 7205 * read the response directly ignoring all errors. 7206 */ 7207 ufshcd_issue_dev_cmd(hba, lrbp, tag, QUERY_REQ_TIMEOUT); 7208 7209 /* just copy the upiu response as it is */ 7210 memcpy(rsp_upiu, lrbp->ucd_rsp_ptr, sizeof(*rsp_upiu)); 7211 if (desc_buff && desc_op == UPIU_QUERY_OPCODE_READ_DESC) { 7212 u8 *descp = (u8 *)lrbp->ucd_rsp_ptr + sizeof(*rsp_upiu); 7213 u16 resp_len = be16_to_cpu(lrbp->ucd_rsp_ptr->header 7214 .data_segment_length); 7215 7216 if (*buff_len >= resp_len) { 7217 memcpy(desc_buff, descp, resp_len); 7218 *buff_len = resp_len; 7219 } else { 7220 dev_warn(hba->dev, 7221 "%s: rsp size %d is bigger than buffer size %d", 7222 __func__, resp_len, *buff_len); 7223 *buff_len = 0; 7224 err = -EINVAL; 7225 } 7226 } 7227 ufshcd_add_query_upiu_trace(hba, err ? UFS_QUERY_ERR : UFS_QUERY_COMP, 7228 (struct utp_upiu_req *)lrbp->ucd_rsp_ptr); 7229 7230 return err; 7231 } 7232 7233 /** 7234 * ufshcd_exec_raw_upiu_cmd - API function for sending raw upiu commands 7235 * @hba: per-adapter instance 7236 * @req_upiu: upiu request 7237 * @rsp_upiu: upiu reply - only 8 DW as we do not support scsi commands 7238 * @msgcode: message code, one of UPIU Transaction Codes Initiator to Target 7239 * @desc_buff: pointer to descriptor buffer, NULL if NA 7240 * @buff_len: descriptor size, 0 if NA 7241 * @desc_op: descriptor operation 7242 * 7243 * Supports UTP Transfer requests (nop and query), and UTP Task 7244 * Management requests. 7245 * It is up to the caller to fill the upiu conent properly, as it will 7246 * be copied without any further input validations. 7247 * 7248 * Return: 0 upon success; < 0 upon failure. 7249 */ 7250 int ufshcd_exec_raw_upiu_cmd(struct ufs_hba *hba, 7251 struct utp_upiu_req *req_upiu, 7252 struct utp_upiu_req *rsp_upiu, 7253 enum upiu_request_transaction msgcode, 7254 u8 *desc_buff, int *buff_len, 7255 enum query_opcode desc_op) 7256 { 7257 int err; 7258 enum dev_cmd_type cmd_type = DEV_CMD_TYPE_QUERY; 7259 struct utp_task_req_desc treq = { }; 7260 enum utp_ocs ocs_value; 7261 u8 tm_f = req_upiu->header.tm_function; 7262 7263 switch (msgcode) { 7264 case UPIU_TRANSACTION_NOP_OUT: 7265 cmd_type = DEV_CMD_TYPE_NOP; 7266 fallthrough; 7267 case UPIU_TRANSACTION_QUERY_REQ: 7268 ufshcd_dev_man_lock(hba); 7269 err = ufshcd_issue_devman_upiu_cmd(hba, req_upiu, rsp_upiu, 7270 desc_buff, buff_len, 7271 cmd_type, desc_op); 7272 ufshcd_dev_man_unlock(hba); 7273 7274 break; 7275 case UPIU_TRANSACTION_TASK_REQ: 7276 treq.header.interrupt = 1; 7277 treq.header.ocs = OCS_INVALID_COMMAND_STATUS; 7278 7279 memcpy(&treq.upiu_req, req_upiu, sizeof(*req_upiu)); 7280 7281 err = __ufshcd_issue_tm_cmd(hba, &treq, tm_f); 7282 if (err == -ETIMEDOUT) 7283 break; 7284 7285 ocs_value = treq.header.ocs & MASK_OCS; 7286 if (ocs_value != OCS_SUCCESS) { 7287 dev_err(hba->dev, "%s: failed, ocs = 0x%x\n", __func__, 7288 ocs_value); 7289 break; 7290 } 7291 7292 memcpy(rsp_upiu, &treq.upiu_rsp, sizeof(*rsp_upiu)); 7293 7294 break; 7295 default: 7296 err = -EINVAL; 7297 7298 break; 7299 } 7300 7301 return err; 7302 } 7303 7304 /** 7305 * ufshcd_advanced_rpmb_req_handler - handle advanced RPMB request 7306 * @hba: per adapter instance 7307 * @req_upiu: upiu request 7308 * @rsp_upiu: upiu reply 7309 * @req_ehs: EHS field which contains Advanced RPMB Request Message 7310 * @rsp_ehs: EHS field which returns Advanced RPMB Response Message 7311 * @sg_cnt: The number of sg lists actually used 7312 * @sg_list: Pointer to SG list when DATA IN/OUT UPIU is required in ARPMB operation 7313 * @dir: DMA direction 7314 * 7315 * Return: zero on success, non-zero on failure. 7316 */ 7317 int ufshcd_advanced_rpmb_req_handler(struct ufs_hba *hba, struct utp_upiu_req *req_upiu, 7318 struct utp_upiu_req *rsp_upiu, struct ufs_ehs *req_ehs, 7319 struct ufs_ehs *rsp_ehs, int sg_cnt, struct scatterlist *sg_list, 7320 enum dma_data_direction dir) 7321 { 7322 const u32 tag = hba->reserved_slot; 7323 struct ufshcd_lrb *lrbp = &hba->lrb[tag]; 7324 int err = 0; 7325 int result; 7326 u8 upiu_flags; 7327 u8 *ehs_data; 7328 u16 ehs_len; 7329 int ehs = (hba->capabilities & MASK_EHSLUTRD_SUPPORTED) ? 2 : 0; 7330 7331 /* Protects use of hba->reserved_slot. */ 7332 ufshcd_dev_man_lock(hba); 7333 7334 ufshcd_setup_dev_cmd(hba, lrbp, DEV_CMD_TYPE_RPMB, UFS_UPIU_RPMB_WLUN, tag); 7335 7336 ufshcd_prepare_req_desc_hdr(hba, lrbp, &upiu_flags, DMA_NONE, ehs); 7337 7338 /* update the task tag */ 7339 req_upiu->header.task_tag = tag; 7340 7341 /* copy the UPIU(contains CDB) request as it is */ 7342 memcpy(lrbp->ucd_req_ptr, req_upiu, sizeof(*lrbp->ucd_req_ptr)); 7343 /* Copy EHS, starting with byte32, immediately after the CDB package */ 7344 memcpy(lrbp->ucd_req_ptr + 1, req_ehs, sizeof(*req_ehs)); 7345 7346 if (dir != DMA_NONE && sg_list) 7347 ufshcd_sgl_to_prdt(hba, lrbp, sg_cnt, sg_list); 7348 7349 memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp)); 7350 7351 err = ufshcd_issue_dev_cmd(hba, lrbp, tag, ADVANCED_RPMB_REQ_TIMEOUT); 7352 7353 if (!err) { 7354 /* Just copy the upiu response as it is */ 7355 memcpy(rsp_upiu, lrbp->ucd_rsp_ptr, sizeof(*rsp_upiu)); 7356 /* Get the response UPIU result */ 7357 result = (lrbp->ucd_rsp_ptr->header.response << 8) | 7358 lrbp->ucd_rsp_ptr->header.status; 7359 7360 ehs_len = lrbp->ucd_rsp_ptr->header.ehs_length; 7361 /* 7362 * Since the bLength in EHS indicates the total size of the EHS Header and EHS Data 7363 * in 32 Byte units, the value of the bLength Request/Response for Advanced RPMB 7364 * Message is 02h 7365 */ 7366 if (ehs_len == 2 && rsp_ehs) { 7367 /* 7368 * ucd_rsp_ptr points to a buffer with a length of 512 bytes 7369 * (ALIGNED_UPIU_SIZE = 512), and the EHS data just starts from byte32 7370 */ 7371 ehs_data = (u8 *)lrbp->ucd_rsp_ptr + EHS_OFFSET_IN_RESPONSE; 7372 memcpy(rsp_ehs, ehs_data, ehs_len * 32); 7373 } 7374 } 7375 7376 ufshcd_dev_man_unlock(hba); 7377 7378 return err ? : result; 7379 } 7380 7381 /** 7382 * ufshcd_eh_device_reset_handler() - Reset a single logical unit. 7383 * @cmd: SCSI command pointer 7384 * 7385 * Return: SUCCESS or FAILED. 7386 */ 7387 static int ufshcd_eh_device_reset_handler(struct scsi_cmnd *cmd) 7388 { 7389 unsigned long flags, pending_reqs = 0, not_cleared = 0; 7390 struct Scsi_Host *host; 7391 struct ufs_hba *hba; 7392 struct ufs_hw_queue *hwq; 7393 struct ufshcd_lrb *lrbp; 7394 u32 pos, not_cleared_mask = 0; 7395 int err; 7396 u8 resp = 0xF, lun; 7397 7398 host = cmd->device->host; 7399 hba = shost_priv(host); 7400 7401 lun = ufshcd_scsi_to_upiu_lun(cmd->device->lun); 7402 err = ufshcd_issue_tm_cmd(hba, lun, 0, UFS_LOGICAL_RESET, &resp); 7403 if (err || resp != UPIU_TASK_MANAGEMENT_FUNC_COMPL) { 7404 if (!err) 7405 err = resp; 7406 goto out; 7407 } 7408 7409 if (hba->mcq_enabled) { 7410 for (pos = 0; pos < hba->nutrs; pos++) { 7411 lrbp = &hba->lrb[pos]; 7412 if (ufshcd_cmd_inflight(lrbp->cmd) && 7413 lrbp->lun == lun) { 7414 ufshcd_clear_cmd(hba, pos); 7415 hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(lrbp->cmd)); 7416 ufshcd_mcq_poll_cqe_lock(hba, hwq); 7417 } 7418 } 7419 err = 0; 7420 goto out; 7421 } 7422 7423 /* clear the commands that were pending for corresponding LUN */ 7424 spin_lock_irqsave(&hba->outstanding_lock, flags); 7425 for_each_set_bit(pos, &hba->outstanding_reqs, hba->nutrs) 7426 if (hba->lrb[pos].lun == lun) 7427 __set_bit(pos, &pending_reqs); 7428 hba->outstanding_reqs &= ~pending_reqs; 7429 spin_unlock_irqrestore(&hba->outstanding_lock, flags); 7430 7431 for_each_set_bit(pos, &pending_reqs, hba->nutrs) { 7432 if (ufshcd_clear_cmd(hba, pos) < 0) { 7433 spin_lock_irqsave(&hba->outstanding_lock, flags); 7434 not_cleared = 1U << pos & 7435 ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL); 7436 hba->outstanding_reqs |= not_cleared; 7437 not_cleared_mask |= not_cleared; 7438 spin_unlock_irqrestore(&hba->outstanding_lock, flags); 7439 7440 dev_err(hba->dev, "%s: failed to clear request %d\n", 7441 __func__, pos); 7442 } 7443 } 7444 __ufshcd_transfer_req_compl(hba, pending_reqs & ~not_cleared_mask); 7445 7446 out: 7447 hba->req_abort_count = 0; 7448 ufshcd_update_evt_hist(hba, UFS_EVT_DEV_RESET, (u32)err); 7449 if (!err) { 7450 err = SUCCESS; 7451 } else { 7452 dev_err(hba->dev, "%s: failed with err %d\n", __func__, err); 7453 err = FAILED; 7454 } 7455 return err; 7456 } 7457 7458 static void ufshcd_set_req_abort_skip(struct ufs_hba *hba, unsigned long bitmap) 7459 { 7460 struct ufshcd_lrb *lrbp; 7461 int tag; 7462 7463 for_each_set_bit(tag, &bitmap, hba->nutrs) { 7464 lrbp = &hba->lrb[tag]; 7465 lrbp->req_abort_skip = true; 7466 } 7467 } 7468 7469 /** 7470 * ufshcd_try_to_abort_task - abort a specific task 7471 * @hba: Pointer to adapter instance 7472 * @tag: Task tag/index to be aborted 7473 * 7474 * Abort the pending command in device by sending UFS_ABORT_TASK task management 7475 * command, and in host controller by clearing the door-bell register. There can 7476 * be race between controller sending the command to the device while abort is 7477 * issued. To avoid that, first issue UFS_QUERY_TASK to check if the command is 7478 * really issued and then try to abort it. 7479 * 7480 * Return: zero on success, non-zero on failure. 7481 */ 7482 int ufshcd_try_to_abort_task(struct ufs_hba *hba, int tag) 7483 { 7484 struct ufshcd_lrb *lrbp = &hba->lrb[tag]; 7485 int err = 0; 7486 int poll_cnt; 7487 u8 resp = 0xF; 7488 u32 reg; 7489 7490 for (poll_cnt = 100; poll_cnt; poll_cnt--) { 7491 err = ufshcd_issue_tm_cmd(hba, lrbp->lun, lrbp->task_tag, 7492 UFS_QUERY_TASK, &resp); 7493 if (!err && resp == UPIU_TASK_MANAGEMENT_FUNC_SUCCEEDED) { 7494 /* cmd pending in the device */ 7495 dev_err(hba->dev, "%s: cmd pending in the device. tag = %d\n", 7496 __func__, tag); 7497 break; 7498 } else if (!err && resp == UPIU_TASK_MANAGEMENT_FUNC_COMPL) { 7499 /* 7500 * cmd not pending in the device, check if it is 7501 * in transition. 7502 */ 7503 dev_err(hba->dev, "%s: cmd at tag %d not pending in the device.\n", 7504 __func__, tag); 7505 if (hba->mcq_enabled) { 7506 /* MCQ mode */ 7507 if (ufshcd_cmd_inflight(lrbp->cmd)) { 7508 /* sleep for max. 200us same delay as in SDB mode */ 7509 usleep_range(100, 200); 7510 continue; 7511 } 7512 /* command completed already */ 7513 dev_err(hba->dev, "%s: cmd at tag=%d is cleared.\n", 7514 __func__, tag); 7515 goto out; 7516 } 7517 7518 /* Single Doorbell Mode */ 7519 reg = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL); 7520 if (reg & (1 << tag)) { 7521 /* sleep for max. 200us to stabilize */ 7522 usleep_range(100, 200); 7523 continue; 7524 } 7525 /* command completed already */ 7526 dev_err(hba->dev, "%s: cmd at tag %d successfully cleared from DB.\n", 7527 __func__, tag); 7528 goto out; 7529 } else { 7530 dev_err(hba->dev, 7531 "%s: no response from device. tag = %d, err %d\n", 7532 __func__, tag, err); 7533 if (!err) 7534 err = resp; /* service response error */ 7535 goto out; 7536 } 7537 } 7538 7539 if (!poll_cnt) { 7540 err = -EBUSY; 7541 goto out; 7542 } 7543 7544 err = ufshcd_issue_tm_cmd(hba, lrbp->lun, lrbp->task_tag, 7545 UFS_ABORT_TASK, &resp); 7546 if (err || resp != UPIU_TASK_MANAGEMENT_FUNC_COMPL) { 7547 if (!err) { 7548 err = resp; /* service response error */ 7549 dev_err(hba->dev, "%s: issued. tag = %d, err %d\n", 7550 __func__, tag, err); 7551 } 7552 goto out; 7553 } 7554 7555 err = ufshcd_clear_cmd(hba, tag); 7556 if (err) 7557 dev_err(hba->dev, "%s: Failed clearing cmd at tag %d, err %d\n", 7558 __func__, tag, err); 7559 7560 out: 7561 return err; 7562 } 7563 7564 /** 7565 * ufshcd_abort - scsi host template eh_abort_handler callback 7566 * @cmd: SCSI command pointer 7567 * 7568 * Return: SUCCESS or FAILED. 7569 */ 7570 static int ufshcd_abort(struct scsi_cmnd *cmd) 7571 { 7572 struct Scsi_Host *host = cmd->device->host; 7573 struct ufs_hba *hba = shost_priv(host); 7574 int tag = scsi_cmd_to_rq(cmd)->tag; 7575 struct ufshcd_lrb *lrbp = &hba->lrb[tag]; 7576 unsigned long flags; 7577 int err = FAILED; 7578 bool outstanding; 7579 u32 reg; 7580 7581 ufshcd_hold(hba); 7582 7583 if (!hba->mcq_enabled) { 7584 reg = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL); 7585 if (!test_bit(tag, &hba->outstanding_reqs)) { 7586 /* If command is already aborted/completed, return FAILED. */ 7587 dev_err(hba->dev, 7588 "%s: cmd at tag %d already completed, outstanding=0x%lx, doorbell=0x%x\n", 7589 __func__, tag, hba->outstanding_reqs, reg); 7590 goto release; 7591 } 7592 } 7593 7594 /* Print Transfer Request of aborted task */ 7595 dev_info(hba->dev, "%s: Device abort task at tag %d\n", __func__, tag); 7596 7597 /* 7598 * Print detailed info about aborted request. 7599 * As more than one request might get aborted at the same time, 7600 * print full information only for the first aborted request in order 7601 * to reduce repeated printouts. For other aborted requests only print 7602 * basic details. 7603 */ 7604 scsi_print_command(cmd); 7605 if (!hba->req_abort_count) { 7606 ufshcd_update_evt_hist(hba, UFS_EVT_ABORT, tag); 7607 ufshcd_print_evt_hist(hba); 7608 ufshcd_print_host_state(hba); 7609 ufshcd_print_pwr_info(hba); 7610 ufshcd_print_tr(hba, tag, true); 7611 } else { 7612 ufshcd_print_tr(hba, tag, false); 7613 } 7614 hba->req_abort_count++; 7615 7616 if (!hba->mcq_enabled && !(reg & (1 << tag))) { 7617 /* only execute this code in single doorbell mode */ 7618 dev_err(hba->dev, 7619 "%s: cmd was completed, but without a notifying intr, tag = %d", 7620 __func__, tag); 7621 __ufshcd_transfer_req_compl(hba, 1UL << tag); 7622 goto release; 7623 } 7624 7625 /* 7626 * Task abort to the device W-LUN is illegal. When this command 7627 * will fail, due to spec violation, scsi err handling next step 7628 * will be to send LU reset which, again, is a spec violation. 7629 * To avoid these unnecessary/illegal steps, first we clean up 7630 * the lrb taken by this cmd and re-set it in outstanding_reqs, 7631 * then queue the eh_work and bail. 7632 */ 7633 if (lrbp->lun == UFS_UPIU_UFS_DEVICE_WLUN) { 7634 ufshcd_update_evt_hist(hba, UFS_EVT_ABORT, lrbp->lun); 7635 7636 spin_lock_irqsave(host->host_lock, flags); 7637 hba->force_reset = true; 7638 ufshcd_schedule_eh_work(hba); 7639 spin_unlock_irqrestore(host->host_lock, flags); 7640 goto release; 7641 } 7642 7643 if (hba->mcq_enabled) { 7644 /* MCQ mode. Branch off to handle abort for mcq mode */ 7645 err = ufshcd_mcq_abort(cmd); 7646 goto release; 7647 } 7648 7649 /* Skip task abort in case previous aborts failed and report failure */ 7650 if (lrbp->req_abort_skip) { 7651 dev_err(hba->dev, "%s: skipping abort\n", __func__); 7652 ufshcd_set_req_abort_skip(hba, hba->outstanding_reqs); 7653 goto release; 7654 } 7655 7656 err = ufshcd_try_to_abort_task(hba, tag); 7657 if (err) { 7658 dev_err(hba->dev, "%s: failed with err %d\n", __func__, err); 7659 ufshcd_set_req_abort_skip(hba, hba->outstanding_reqs); 7660 err = FAILED; 7661 goto release; 7662 } 7663 7664 /* 7665 * Clear the corresponding bit from outstanding_reqs since the command 7666 * has been aborted successfully. 7667 */ 7668 spin_lock_irqsave(&hba->outstanding_lock, flags); 7669 outstanding = __test_and_clear_bit(tag, &hba->outstanding_reqs); 7670 spin_unlock_irqrestore(&hba->outstanding_lock, flags); 7671 7672 if (outstanding) 7673 ufshcd_release_scsi_cmd(hba, lrbp); 7674 7675 err = SUCCESS; 7676 7677 release: 7678 /* Matches the ufshcd_hold() call at the start of this function. */ 7679 ufshcd_release(hba); 7680 return err; 7681 } 7682 7683 /** 7684 * ufshcd_host_reset_and_restore - reset and restore host controller 7685 * @hba: per-adapter instance 7686 * 7687 * Note that host controller reset may issue DME_RESET to 7688 * local and remote (device) Uni-Pro stack and the attributes 7689 * are reset to default state. 7690 * 7691 * Return: zero on success, non-zero on failure. 7692 */ 7693 static int ufshcd_host_reset_and_restore(struct ufs_hba *hba) 7694 { 7695 int err; 7696 7697 /* 7698 * Stop the host controller and complete the requests 7699 * cleared by h/w 7700 */ 7701 ufshcd_hba_stop(hba); 7702 hba->silence_err_logs = true; 7703 ufshcd_complete_requests(hba, true); 7704 hba->silence_err_logs = false; 7705 7706 /* scale up clocks to max frequency before full reinitialization */ 7707 ufshcd_scale_clks(hba, ULONG_MAX, true); 7708 7709 err = ufshcd_hba_enable(hba); 7710 7711 /* Establish the link again and restore the device */ 7712 if (!err) 7713 err = ufshcd_probe_hba(hba, false); 7714 7715 if (err) 7716 dev_err(hba->dev, "%s: Host init failed %d\n", __func__, err); 7717 ufshcd_update_evt_hist(hba, UFS_EVT_HOST_RESET, (u32)err); 7718 return err; 7719 } 7720 7721 /** 7722 * ufshcd_reset_and_restore - reset and re-initialize host/device 7723 * @hba: per-adapter instance 7724 * 7725 * Reset and recover device, host and re-establish link. This 7726 * is helpful to recover the communication in fatal error conditions. 7727 * 7728 * Return: zero on success, non-zero on failure. 7729 */ 7730 static int ufshcd_reset_and_restore(struct ufs_hba *hba) 7731 { 7732 u32 saved_err = 0; 7733 u32 saved_uic_err = 0; 7734 int err = 0; 7735 unsigned long flags; 7736 int retries = MAX_HOST_RESET_RETRIES; 7737 7738 spin_lock_irqsave(hba->host->host_lock, flags); 7739 do { 7740 /* 7741 * This is a fresh start, cache and clear saved error first, 7742 * in case new error generated during reset and restore. 7743 */ 7744 saved_err |= hba->saved_err; 7745 saved_uic_err |= hba->saved_uic_err; 7746 hba->saved_err = 0; 7747 hba->saved_uic_err = 0; 7748 hba->force_reset = false; 7749 hba->ufshcd_state = UFSHCD_STATE_RESET; 7750 spin_unlock_irqrestore(hba->host->host_lock, flags); 7751 7752 /* Reset the attached device */ 7753 ufshcd_device_reset(hba); 7754 7755 err = ufshcd_host_reset_and_restore(hba); 7756 7757 spin_lock_irqsave(hba->host->host_lock, flags); 7758 if (err) 7759 continue; 7760 /* Do not exit unless operational or dead */ 7761 if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL && 7762 hba->ufshcd_state != UFSHCD_STATE_ERROR && 7763 hba->ufshcd_state != UFSHCD_STATE_EH_SCHEDULED_NON_FATAL) 7764 err = -EAGAIN; 7765 } while (err && --retries); 7766 7767 /* 7768 * Inform scsi mid-layer that we did reset and allow to handle 7769 * Unit Attention properly. 7770 */ 7771 scsi_report_bus_reset(hba->host, 0); 7772 if (err) { 7773 hba->ufshcd_state = UFSHCD_STATE_ERROR; 7774 hba->saved_err |= saved_err; 7775 hba->saved_uic_err |= saved_uic_err; 7776 } 7777 spin_unlock_irqrestore(hba->host->host_lock, flags); 7778 7779 return err; 7780 } 7781 7782 /** 7783 * ufshcd_eh_host_reset_handler - host reset handler registered to scsi layer 7784 * @cmd: SCSI command pointer 7785 * 7786 * Return: SUCCESS or FAILED. 7787 */ 7788 static int ufshcd_eh_host_reset_handler(struct scsi_cmnd *cmd) 7789 { 7790 int err = SUCCESS; 7791 unsigned long flags; 7792 struct ufs_hba *hba; 7793 7794 hba = shost_priv(cmd->device->host); 7795 7796 /* 7797 * If runtime PM sent SSU and got a timeout, scsi_error_handler is 7798 * stuck in this function waiting for flush_work(&hba->eh_work). And 7799 * ufshcd_err_handler(eh_work) is stuck waiting for runtime PM. Do 7800 * ufshcd_link_recovery instead of eh_work to prevent deadlock. 7801 */ 7802 if (hba->pm_op_in_progress) { 7803 if (ufshcd_link_recovery(hba)) 7804 err = FAILED; 7805 7806 return err; 7807 } 7808 7809 spin_lock_irqsave(hba->host->host_lock, flags); 7810 hba->force_reset = true; 7811 ufshcd_schedule_eh_work(hba); 7812 dev_err(hba->dev, "%s: reset in progress - 1\n", __func__); 7813 spin_unlock_irqrestore(hba->host->host_lock, flags); 7814 7815 flush_work(&hba->eh_work); 7816 7817 spin_lock_irqsave(hba->host->host_lock, flags); 7818 if (hba->ufshcd_state == UFSHCD_STATE_ERROR) 7819 err = FAILED; 7820 spin_unlock_irqrestore(hba->host->host_lock, flags); 7821 7822 return err; 7823 } 7824 7825 /** 7826 * ufshcd_get_max_icc_level - calculate the ICC level 7827 * @sup_curr_uA: max. current supported by the regulator 7828 * @start_scan: row at the desc table to start scan from 7829 * @buff: power descriptor buffer 7830 * 7831 * Return: calculated max ICC level for specific regulator. 7832 */ 7833 static u32 ufshcd_get_max_icc_level(int sup_curr_uA, u32 start_scan, 7834 const char *buff) 7835 { 7836 int i; 7837 int curr_uA; 7838 u16 data; 7839 u16 unit; 7840 7841 for (i = start_scan; i >= 0; i--) { 7842 data = get_unaligned_be16(&buff[2 * i]); 7843 unit = (data & ATTR_ICC_LVL_UNIT_MASK) >> 7844 ATTR_ICC_LVL_UNIT_OFFSET; 7845 curr_uA = data & ATTR_ICC_LVL_VALUE_MASK; 7846 switch (unit) { 7847 case UFSHCD_NANO_AMP: 7848 curr_uA = curr_uA / 1000; 7849 break; 7850 case UFSHCD_MILI_AMP: 7851 curr_uA = curr_uA * 1000; 7852 break; 7853 case UFSHCD_AMP: 7854 curr_uA = curr_uA * 1000 * 1000; 7855 break; 7856 case UFSHCD_MICRO_AMP: 7857 default: 7858 break; 7859 } 7860 if (sup_curr_uA >= curr_uA) 7861 break; 7862 } 7863 if (i < 0) { 7864 i = 0; 7865 pr_err("%s: Couldn't find valid icc_level = %d", __func__, i); 7866 } 7867 7868 return (u32)i; 7869 } 7870 7871 /** 7872 * ufshcd_find_max_sup_active_icc_level - calculate the max ICC level 7873 * In case regulators are not initialized we'll return 0 7874 * @hba: per-adapter instance 7875 * @desc_buf: power descriptor buffer to extract ICC levels from. 7876 * 7877 * Return: calculated ICC level. 7878 */ 7879 static u32 ufshcd_find_max_sup_active_icc_level(struct ufs_hba *hba, 7880 const u8 *desc_buf) 7881 { 7882 u32 icc_level = 0; 7883 7884 if (!hba->vreg_info.vcc || !hba->vreg_info.vccq || 7885 !hba->vreg_info.vccq2) { 7886 /* 7887 * Using dev_dbg to avoid messages during runtime PM to avoid 7888 * never-ending cycles of messages written back to storage by 7889 * user space causing runtime resume, causing more messages and 7890 * so on. 7891 */ 7892 dev_dbg(hba->dev, 7893 "%s: Regulator capability was not set, actvIccLevel=%d", 7894 __func__, icc_level); 7895 goto out; 7896 } 7897 7898 if (hba->vreg_info.vcc->max_uA) 7899 icc_level = ufshcd_get_max_icc_level( 7900 hba->vreg_info.vcc->max_uA, 7901 POWER_DESC_MAX_ACTV_ICC_LVLS - 1, 7902 &desc_buf[PWR_DESC_ACTIVE_LVLS_VCC_0]); 7903 7904 if (hba->vreg_info.vccq->max_uA) 7905 icc_level = ufshcd_get_max_icc_level( 7906 hba->vreg_info.vccq->max_uA, 7907 icc_level, 7908 &desc_buf[PWR_DESC_ACTIVE_LVLS_VCCQ_0]); 7909 7910 if (hba->vreg_info.vccq2->max_uA) 7911 icc_level = ufshcd_get_max_icc_level( 7912 hba->vreg_info.vccq2->max_uA, 7913 icc_level, 7914 &desc_buf[PWR_DESC_ACTIVE_LVLS_VCCQ2_0]); 7915 out: 7916 return icc_level; 7917 } 7918 7919 static void ufshcd_set_active_icc_lvl(struct ufs_hba *hba) 7920 { 7921 int ret; 7922 u8 *desc_buf; 7923 u32 icc_level; 7924 7925 desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL); 7926 if (!desc_buf) 7927 return; 7928 7929 ret = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_POWER, 0, 0, 7930 desc_buf, QUERY_DESC_MAX_SIZE); 7931 if (ret) { 7932 dev_err(hba->dev, 7933 "%s: Failed reading power descriptor ret = %d", 7934 __func__, ret); 7935 goto out; 7936 } 7937 7938 icc_level = ufshcd_find_max_sup_active_icc_level(hba, desc_buf); 7939 dev_dbg(hba->dev, "%s: setting icc_level 0x%x", __func__, icc_level); 7940 7941 ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR, 7942 QUERY_ATTR_IDN_ACTIVE_ICC_LVL, 0, 0, &icc_level); 7943 7944 if (ret) 7945 dev_err(hba->dev, 7946 "%s: Failed configuring bActiveICCLevel = %d ret = %d", 7947 __func__, icc_level, ret); 7948 7949 out: 7950 kfree(desc_buf); 7951 } 7952 7953 static inline void ufshcd_blk_pm_runtime_init(struct scsi_device *sdev) 7954 { 7955 struct Scsi_Host *shost = sdev->host; 7956 7957 scsi_autopm_get_device(sdev); 7958 blk_pm_runtime_init(sdev->request_queue, &sdev->sdev_gendev); 7959 if (sdev->rpm_autosuspend) 7960 pm_runtime_set_autosuspend_delay(&sdev->sdev_gendev, 7961 shost->rpm_autosuspend_delay); 7962 scsi_autopm_put_device(sdev); 7963 } 7964 7965 /** 7966 * ufshcd_scsi_add_wlus - Adds required W-LUs 7967 * @hba: per-adapter instance 7968 * 7969 * UFS device specification requires the UFS devices to support 4 well known 7970 * logical units: 7971 * "REPORT_LUNS" (address: 01h) 7972 * "UFS Device" (address: 50h) 7973 * "RPMB" (address: 44h) 7974 * "BOOT" (address: 30h) 7975 * UFS device's power management needs to be controlled by "POWER CONDITION" 7976 * field of SSU (START STOP UNIT) command. But this "power condition" field 7977 * will take effect only when its sent to "UFS device" well known logical unit 7978 * hence we require the scsi_device instance to represent this logical unit in 7979 * order for the UFS host driver to send the SSU command for power management. 7980 * 7981 * We also require the scsi_device instance for "RPMB" (Replay Protected Memory 7982 * Block) LU so user space process can control this LU. User space may also 7983 * want to have access to BOOT LU. 7984 * 7985 * This function adds scsi device instances for each of all well known LUs 7986 * (except "REPORT LUNS" LU). 7987 * 7988 * Return: zero on success (all required W-LUs are added successfully), 7989 * non-zero error value on failure (if failed to add any of the required W-LU). 7990 */ 7991 static int ufshcd_scsi_add_wlus(struct ufs_hba *hba) 7992 { 7993 int ret = 0; 7994 struct scsi_device *sdev_boot, *sdev_rpmb; 7995 7996 hba->ufs_device_wlun = __scsi_add_device(hba->host, 0, 0, 7997 ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_UFS_DEVICE_WLUN), NULL); 7998 if (IS_ERR(hba->ufs_device_wlun)) { 7999 ret = PTR_ERR(hba->ufs_device_wlun); 8000 hba->ufs_device_wlun = NULL; 8001 goto out; 8002 } 8003 scsi_device_put(hba->ufs_device_wlun); 8004 8005 sdev_rpmb = __scsi_add_device(hba->host, 0, 0, 8006 ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_RPMB_WLUN), NULL); 8007 if (IS_ERR(sdev_rpmb)) { 8008 ret = PTR_ERR(sdev_rpmb); 8009 goto remove_ufs_device_wlun; 8010 } 8011 ufshcd_blk_pm_runtime_init(sdev_rpmb); 8012 scsi_device_put(sdev_rpmb); 8013 8014 sdev_boot = __scsi_add_device(hba->host, 0, 0, 8015 ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_BOOT_WLUN), NULL); 8016 if (IS_ERR(sdev_boot)) { 8017 dev_err(hba->dev, "%s: BOOT WLUN not found\n", __func__); 8018 } else { 8019 ufshcd_blk_pm_runtime_init(sdev_boot); 8020 scsi_device_put(sdev_boot); 8021 } 8022 goto out; 8023 8024 remove_ufs_device_wlun: 8025 scsi_remove_device(hba->ufs_device_wlun); 8026 out: 8027 return ret; 8028 } 8029 8030 static void ufshcd_wb_probe(struct ufs_hba *hba, const u8 *desc_buf) 8031 { 8032 struct ufs_dev_info *dev_info = &hba->dev_info; 8033 u8 lun; 8034 u32 d_lu_wb_buf_alloc; 8035 u32 ext_ufs_feature; 8036 8037 if (!ufshcd_is_wb_allowed(hba)) 8038 return; 8039 8040 /* 8041 * Probe WB only for UFS-2.2 and UFS-3.1 (and later) devices or 8042 * UFS devices with quirk UFS_DEVICE_QUIRK_SUPPORT_EXTENDED_FEATURES 8043 * enabled 8044 */ 8045 if (!(dev_info->wspecversion >= 0x310 || 8046 dev_info->wspecversion == 0x220 || 8047 (hba->dev_quirks & UFS_DEVICE_QUIRK_SUPPORT_EXTENDED_FEATURES))) 8048 goto wb_disabled; 8049 8050 ext_ufs_feature = get_unaligned_be32(desc_buf + 8051 DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP); 8052 8053 if (!(ext_ufs_feature & UFS_DEV_WRITE_BOOSTER_SUP)) 8054 goto wb_disabled; 8055 8056 /* 8057 * WB may be supported but not configured while provisioning. The spec 8058 * says, in dedicated wb buffer mode, a max of 1 lun would have wb 8059 * buffer configured. 8060 */ 8061 dev_info->wb_buffer_type = desc_buf[DEVICE_DESC_PARAM_WB_TYPE]; 8062 8063 dev_info->b_presrv_uspc_en = 8064 desc_buf[DEVICE_DESC_PARAM_WB_PRESRV_USRSPC_EN]; 8065 8066 if (dev_info->wb_buffer_type == WB_BUF_MODE_SHARED) { 8067 if (!get_unaligned_be32(desc_buf + 8068 DEVICE_DESC_PARAM_WB_SHARED_ALLOC_UNITS)) 8069 goto wb_disabled; 8070 } else { 8071 for (lun = 0; lun < UFS_UPIU_MAX_WB_LUN_ID; lun++) { 8072 d_lu_wb_buf_alloc = 0; 8073 ufshcd_read_unit_desc_param(hba, 8074 lun, 8075 UNIT_DESC_PARAM_WB_BUF_ALLOC_UNITS, 8076 (u8 *)&d_lu_wb_buf_alloc, 8077 sizeof(d_lu_wb_buf_alloc)); 8078 if (d_lu_wb_buf_alloc) { 8079 dev_info->wb_dedicated_lu = lun; 8080 break; 8081 } 8082 } 8083 8084 if (!d_lu_wb_buf_alloc) 8085 goto wb_disabled; 8086 } 8087 8088 if (!ufshcd_is_wb_buf_lifetime_available(hba)) 8089 goto wb_disabled; 8090 8091 return; 8092 8093 wb_disabled: 8094 hba->caps &= ~UFSHCD_CAP_WB_EN; 8095 } 8096 8097 static void ufshcd_temp_notif_probe(struct ufs_hba *hba, const u8 *desc_buf) 8098 { 8099 struct ufs_dev_info *dev_info = &hba->dev_info; 8100 u32 ext_ufs_feature; 8101 u8 mask = 0; 8102 8103 if (!(hba->caps & UFSHCD_CAP_TEMP_NOTIF) || dev_info->wspecversion < 0x300) 8104 return; 8105 8106 ext_ufs_feature = get_unaligned_be32(desc_buf + DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP); 8107 8108 if (ext_ufs_feature & UFS_DEV_LOW_TEMP_NOTIF) 8109 mask |= MASK_EE_TOO_LOW_TEMP; 8110 8111 if (ext_ufs_feature & UFS_DEV_HIGH_TEMP_NOTIF) 8112 mask |= MASK_EE_TOO_HIGH_TEMP; 8113 8114 if (mask) { 8115 ufshcd_enable_ee(hba, mask); 8116 ufs_hwmon_probe(hba, mask); 8117 } 8118 } 8119 8120 static void ufshcd_ext_iid_probe(struct ufs_hba *hba, u8 *desc_buf) 8121 { 8122 struct ufs_dev_info *dev_info = &hba->dev_info; 8123 u32 ext_ufs_feature; 8124 u32 ext_iid_en = 0; 8125 int err; 8126 8127 /* Only UFS-4.0 and above may support EXT_IID */ 8128 if (dev_info->wspecversion < 0x400) 8129 goto out; 8130 8131 ext_ufs_feature = get_unaligned_be32(desc_buf + 8132 DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP); 8133 if (!(ext_ufs_feature & UFS_DEV_EXT_IID_SUP)) 8134 goto out; 8135 8136 err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR, 8137 QUERY_ATTR_IDN_EXT_IID_EN, 0, 0, &ext_iid_en); 8138 if (err) 8139 dev_err(hba->dev, "failed reading bEXTIIDEn. err = %d\n", err); 8140 8141 out: 8142 dev_info->b_ext_iid_en = ext_iid_en; 8143 } 8144 8145 static void ufshcd_set_rtt(struct ufs_hba *hba) 8146 { 8147 struct ufs_dev_info *dev_info = &hba->dev_info; 8148 u32 rtt = 0; 8149 u32 dev_rtt = 0; 8150 int host_rtt_cap = hba->vops && hba->vops->max_num_rtt ? 8151 hba->vops->max_num_rtt : hba->nortt; 8152 8153 /* RTT override makes sense only for UFS-4.0 and above */ 8154 if (dev_info->wspecversion < 0x400) 8155 return; 8156 8157 if (ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR, 8158 QUERY_ATTR_IDN_MAX_NUM_OF_RTT, 0, 0, &dev_rtt)) { 8159 dev_err(hba->dev, "failed reading bMaxNumOfRTT\n"); 8160 return; 8161 } 8162 8163 /* do not override if it was already written */ 8164 if (dev_rtt != DEFAULT_MAX_NUM_RTT) 8165 return; 8166 8167 rtt = min_t(int, dev_info->rtt_cap, host_rtt_cap); 8168 8169 if (rtt == dev_rtt) 8170 return; 8171 8172 if (ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR, 8173 QUERY_ATTR_IDN_MAX_NUM_OF_RTT, 0, 0, &rtt)) 8174 dev_err(hba->dev, "failed writing bMaxNumOfRTT\n"); 8175 } 8176 8177 void ufshcd_fixup_dev_quirks(struct ufs_hba *hba, 8178 const struct ufs_dev_quirk *fixups) 8179 { 8180 const struct ufs_dev_quirk *f; 8181 struct ufs_dev_info *dev_info = &hba->dev_info; 8182 8183 if (!fixups) 8184 return; 8185 8186 for (f = fixups; f->quirk; f++) { 8187 if ((f->wmanufacturerid == dev_info->wmanufacturerid || 8188 f->wmanufacturerid == UFS_ANY_VENDOR) && 8189 ((dev_info->model && 8190 STR_PRFX_EQUAL(f->model, dev_info->model)) || 8191 !strcmp(f->model, UFS_ANY_MODEL))) 8192 hba->dev_quirks |= f->quirk; 8193 } 8194 } 8195 EXPORT_SYMBOL_GPL(ufshcd_fixup_dev_quirks); 8196 8197 static void ufs_fixup_device_setup(struct ufs_hba *hba) 8198 { 8199 /* fix by general quirk table */ 8200 ufshcd_fixup_dev_quirks(hba, ufs_fixups); 8201 8202 /* allow vendors to fix quirks */ 8203 ufshcd_vops_fixup_dev_quirks(hba); 8204 } 8205 8206 static void ufshcd_update_rtc(struct ufs_hba *hba) 8207 { 8208 struct timespec64 ts64; 8209 int err; 8210 u32 val; 8211 8212 ktime_get_real_ts64(&ts64); 8213 8214 if (ts64.tv_sec < hba->dev_info.rtc_time_baseline) { 8215 dev_warn_once(hba->dev, "%s: Current time precedes previous setting!\n", __func__); 8216 return; 8217 } 8218 8219 /* 8220 * The Absolute RTC mode has a 136-year limit, spanning from 2010 to 2146. If a time beyond 8221 * 2146 is required, it is recommended to choose the relative RTC mode. 8222 */ 8223 val = ts64.tv_sec - hba->dev_info.rtc_time_baseline; 8224 8225 /* Skip update RTC if RPM state is not RPM_ACTIVE */ 8226 if (ufshcd_rpm_get_if_active(hba) <= 0) 8227 return; 8228 8229 err = ufshcd_query_attr(hba, UPIU_QUERY_OPCODE_WRITE_ATTR, QUERY_ATTR_IDN_SECONDS_PASSED, 8230 0, 0, &val); 8231 ufshcd_rpm_put_sync(hba); 8232 8233 if (err) 8234 dev_err(hba->dev, "%s: Failed to update rtc %d\n", __func__, err); 8235 else if (hba->dev_info.rtc_type == UFS_RTC_RELATIVE) 8236 hba->dev_info.rtc_time_baseline = ts64.tv_sec; 8237 } 8238 8239 static void ufshcd_rtc_work(struct work_struct *work) 8240 { 8241 struct ufs_hba *hba; 8242 8243 hba = container_of(to_delayed_work(work), struct ufs_hba, ufs_rtc_update_work); 8244 8245 /* Update RTC only when there are no requests in progress and UFSHCI is operational */ 8246 if (!ufshcd_is_ufs_dev_busy(hba) && hba->ufshcd_state == UFSHCD_STATE_OPERATIONAL) 8247 ufshcd_update_rtc(hba); 8248 8249 if (ufshcd_is_ufs_dev_active(hba) && hba->dev_info.rtc_update_period) 8250 schedule_delayed_work(&hba->ufs_rtc_update_work, 8251 msecs_to_jiffies(hba->dev_info.rtc_update_period)); 8252 } 8253 8254 static void ufs_init_rtc(struct ufs_hba *hba, u8 *desc_buf) 8255 { 8256 u16 periodic_rtc_update = get_unaligned_be16(&desc_buf[DEVICE_DESC_PARAM_FRQ_RTC]); 8257 struct ufs_dev_info *dev_info = &hba->dev_info; 8258 8259 if (periodic_rtc_update & UFS_RTC_TIME_BASELINE) { 8260 dev_info->rtc_type = UFS_RTC_ABSOLUTE; 8261 8262 /* 8263 * The concept of measuring time in Linux as the number of seconds elapsed since 8264 * 00:00:00 UTC on January 1, 1970, and UFS ABS RTC is elapsed from January 1st 8265 * 2010 00:00, here we need to adjust ABS baseline. 8266 */ 8267 dev_info->rtc_time_baseline = mktime64(2010, 1, 1, 0, 0, 0) - 8268 mktime64(1970, 1, 1, 0, 0, 0); 8269 } else { 8270 dev_info->rtc_type = UFS_RTC_RELATIVE; 8271 dev_info->rtc_time_baseline = 0; 8272 } 8273 8274 /* 8275 * We ignore TIME_PERIOD defined in wPeriodicRTCUpdate because Spec does not clearly state 8276 * how to calculate the specific update period for each time unit. And we disable periodic 8277 * RTC update work, let user configure by sysfs node according to specific circumstance. 8278 */ 8279 dev_info->rtc_update_period = 0; 8280 } 8281 8282 static int ufs_get_device_desc(struct ufs_hba *hba) 8283 { 8284 int err; 8285 u8 model_index; 8286 u8 *desc_buf; 8287 struct ufs_dev_info *dev_info = &hba->dev_info; 8288 8289 desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL); 8290 if (!desc_buf) { 8291 err = -ENOMEM; 8292 goto out; 8293 } 8294 8295 err = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_DEVICE, 0, 0, desc_buf, 8296 QUERY_DESC_MAX_SIZE); 8297 if (err) { 8298 dev_err(hba->dev, "%s: Failed reading Device Desc. err = %d\n", 8299 __func__, err); 8300 goto out; 8301 } 8302 8303 /* 8304 * getting vendor (manufacturerID) and Bank Index in big endian 8305 * format 8306 */ 8307 dev_info->wmanufacturerid = desc_buf[DEVICE_DESC_PARAM_MANF_ID] << 8 | 8308 desc_buf[DEVICE_DESC_PARAM_MANF_ID + 1]; 8309 8310 /* getting Specification Version in big endian format */ 8311 dev_info->wspecversion = desc_buf[DEVICE_DESC_PARAM_SPEC_VER] << 8 | 8312 desc_buf[DEVICE_DESC_PARAM_SPEC_VER + 1]; 8313 dev_info->bqueuedepth = desc_buf[DEVICE_DESC_PARAM_Q_DPTH]; 8314 8315 dev_info->rtt_cap = desc_buf[DEVICE_DESC_PARAM_RTT_CAP]; 8316 8317 model_index = desc_buf[DEVICE_DESC_PARAM_PRDCT_NAME]; 8318 8319 err = ufshcd_read_string_desc(hba, model_index, 8320 &dev_info->model, SD_ASCII_STD); 8321 if (err < 0) { 8322 dev_err(hba->dev, "%s: Failed reading Product Name. err = %d\n", 8323 __func__, err); 8324 goto out; 8325 } 8326 8327 hba->luns_avail = desc_buf[DEVICE_DESC_PARAM_NUM_LU] + 8328 desc_buf[DEVICE_DESC_PARAM_NUM_WLU]; 8329 8330 ufs_fixup_device_setup(hba); 8331 8332 ufshcd_wb_probe(hba, desc_buf); 8333 8334 ufshcd_temp_notif_probe(hba, desc_buf); 8335 8336 ufs_init_rtc(hba, desc_buf); 8337 8338 if (hba->ext_iid_sup) 8339 ufshcd_ext_iid_probe(hba, desc_buf); 8340 8341 /* 8342 * ufshcd_read_string_desc returns size of the string 8343 * reset the error value 8344 */ 8345 err = 0; 8346 8347 out: 8348 kfree(desc_buf); 8349 return err; 8350 } 8351 8352 static void ufs_put_device_desc(struct ufs_hba *hba) 8353 { 8354 struct ufs_dev_info *dev_info = &hba->dev_info; 8355 8356 kfree(dev_info->model); 8357 dev_info->model = NULL; 8358 } 8359 8360 /** 8361 * ufshcd_quirk_tune_host_pa_tactivate - Ensures that host PA_TACTIVATE is 8362 * less than device PA_TACTIVATE time. 8363 * @hba: per-adapter instance 8364 * 8365 * Some UFS devices require host PA_TACTIVATE to be lower than device 8366 * PA_TACTIVATE, we need to enable UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE quirk 8367 * for such devices. 8368 * 8369 * Return: zero on success, non-zero error value on failure. 8370 */ 8371 static int ufshcd_quirk_tune_host_pa_tactivate(struct ufs_hba *hba) 8372 { 8373 int ret = 0; 8374 u32 granularity, peer_granularity; 8375 u32 pa_tactivate, peer_pa_tactivate; 8376 u32 pa_tactivate_us, peer_pa_tactivate_us; 8377 static const u8 gran_to_us_table[] = {1, 4, 8, 16, 32, 100}; 8378 8379 ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_GRANULARITY), 8380 &granularity); 8381 if (ret) 8382 goto out; 8383 8384 ret = ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_GRANULARITY), 8385 &peer_granularity); 8386 if (ret) 8387 goto out; 8388 8389 if ((granularity < PA_GRANULARITY_MIN_VAL) || 8390 (granularity > PA_GRANULARITY_MAX_VAL)) { 8391 dev_err(hba->dev, "%s: invalid host PA_GRANULARITY %d", 8392 __func__, granularity); 8393 return -EINVAL; 8394 } 8395 8396 if ((peer_granularity < PA_GRANULARITY_MIN_VAL) || 8397 (peer_granularity > PA_GRANULARITY_MAX_VAL)) { 8398 dev_err(hba->dev, "%s: invalid device PA_GRANULARITY %d", 8399 __func__, peer_granularity); 8400 return -EINVAL; 8401 } 8402 8403 ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_TACTIVATE), &pa_tactivate); 8404 if (ret) 8405 goto out; 8406 8407 ret = ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_TACTIVATE), 8408 &peer_pa_tactivate); 8409 if (ret) 8410 goto out; 8411 8412 pa_tactivate_us = pa_tactivate * gran_to_us_table[granularity - 1]; 8413 peer_pa_tactivate_us = peer_pa_tactivate * 8414 gran_to_us_table[peer_granularity - 1]; 8415 8416 if (pa_tactivate_us >= peer_pa_tactivate_us) { 8417 u32 new_peer_pa_tactivate; 8418 8419 new_peer_pa_tactivate = pa_tactivate_us / 8420 gran_to_us_table[peer_granularity - 1]; 8421 new_peer_pa_tactivate++; 8422 ret = ufshcd_dme_peer_set(hba, UIC_ARG_MIB(PA_TACTIVATE), 8423 new_peer_pa_tactivate); 8424 } 8425 8426 out: 8427 return ret; 8428 } 8429 8430 static void ufshcd_tune_unipro_params(struct ufs_hba *hba) 8431 { 8432 ufshcd_vops_apply_dev_quirks(hba); 8433 8434 if (hba->dev_quirks & UFS_DEVICE_QUIRK_PA_TACTIVATE) 8435 /* set 1ms timeout for PA_TACTIVATE */ 8436 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TACTIVATE), 10); 8437 8438 if (hba->dev_quirks & UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE) 8439 ufshcd_quirk_tune_host_pa_tactivate(hba); 8440 } 8441 8442 static void ufshcd_clear_dbg_ufs_stats(struct ufs_hba *hba) 8443 { 8444 hba->ufs_stats.hibern8_exit_cnt = 0; 8445 hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0); 8446 hba->req_abort_count = 0; 8447 } 8448 8449 static int ufshcd_device_geo_params_init(struct ufs_hba *hba) 8450 { 8451 int err; 8452 u8 *desc_buf; 8453 8454 desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL); 8455 if (!desc_buf) { 8456 err = -ENOMEM; 8457 goto out; 8458 } 8459 8460 err = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_GEOMETRY, 0, 0, 8461 desc_buf, QUERY_DESC_MAX_SIZE); 8462 if (err) { 8463 dev_err(hba->dev, "%s: Failed reading Geometry Desc. err = %d\n", 8464 __func__, err); 8465 goto out; 8466 } 8467 8468 if (desc_buf[GEOMETRY_DESC_PARAM_MAX_NUM_LUN] == 1) 8469 hba->dev_info.max_lu_supported = 32; 8470 else if (desc_buf[GEOMETRY_DESC_PARAM_MAX_NUM_LUN] == 0) 8471 hba->dev_info.max_lu_supported = 8; 8472 8473 out: 8474 kfree(desc_buf); 8475 return err; 8476 } 8477 8478 struct ufs_ref_clk { 8479 unsigned long freq_hz; 8480 enum ufs_ref_clk_freq val; 8481 }; 8482 8483 static const struct ufs_ref_clk ufs_ref_clk_freqs[] = { 8484 {19200000, REF_CLK_FREQ_19_2_MHZ}, 8485 {26000000, REF_CLK_FREQ_26_MHZ}, 8486 {38400000, REF_CLK_FREQ_38_4_MHZ}, 8487 {52000000, REF_CLK_FREQ_52_MHZ}, 8488 {0, REF_CLK_FREQ_INVAL}, 8489 }; 8490 8491 static enum ufs_ref_clk_freq 8492 ufs_get_bref_clk_from_hz(unsigned long freq) 8493 { 8494 int i; 8495 8496 for (i = 0; ufs_ref_clk_freqs[i].freq_hz; i++) 8497 if (ufs_ref_clk_freqs[i].freq_hz == freq) 8498 return ufs_ref_clk_freqs[i].val; 8499 8500 return REF_CLK_FREQ_INVAL; 8501 } 8502 8503 void ufshcd_parse_dev_ref_clk_freq(struct ufs_hba *hba, struct clk *refclk) 8504 { 8505 unsigned long freq; 8506 8507 freq = clk_get_rate(refclk); 8508 8509 hba->dev_ref_clk_freq = 8510 ufs_get_bref_clk_from_hz(freq); 8511 8512 if (hba->dev_ref_clk_freq == REF_CLK_FREQ_INVAL) 8513 dev_err(hba->dev, 8514 "invalid ref_clk setting = %ld\n", freq); 8515 } 8516 8517 static int ufshcd_set_dev_ref_clk(struct ufs_hba *hba) 8518 { 8519 int err; 8520 u32 ref_clk; 8521 u32 freq = hba->dev_ref_clk_freq; 8522 8523 err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR, 8524 QUERY_ATTR_IDN_REF_CLK_FREQ, 0, 0, &ref_clk); 8525 8526 if (err) { 8527 dev_err(hba->dev, "failed reading bRefClkFreq. err = %d\n", 8528 err); 8529 goto out; 8530 } 8531 8532 if (ref_clk == freq) 8533 goto out; /* nothing to update */ 8534 8535 err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR, 8536 QUERY_ATTR_IDN_REF_CLK_FREQ, 0, 0, &freq); 8537 8538 if (err) { 8539 dev_err(hba->dev, "bRefClkFreq setting to %lu Hz failed\n", 8540 ufs_ref_clk_freqs[freq].freq_hz); 8541 goto out; 8542 } 8543 8544 dev_dbg(hba->dev, "bRefClkFreq setting to %lu Hz succeeded\n", 8545 ufs_ref_clk_freqs[freq].freq_hz); 8546 8547 out: 8548 return err; 8549 } 8550 8551 static int ufshcd_device_params_init(struct ufs_hba *hba) 8552 { 8553 bool flag; 8554 int ret; 8555 8556 /* Init UFS geometry descriptor related parameters */ 8557 ret = ufshcd_device_geo_params_init(hba); 8558 if (ret) 8559 goto out; 8560 8561 /* Check and apply UFS device quirks */ 8562 ret = ufs_get_device_desc(hba); 8563 if (ret) { 8564 dev_err(hba->dev, "%s: Failed getting device info. err = %d\n", 8565 __func__, ret); 8566 goto out; 8567 } 8568 8569 ufshcd_set_rtt(hba); 8570 8571 ufshcd_get_ref_clk_gating_wait(hba); 8572 8573 if (!ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_READ_FLAG, 8574 QUERY_FLAG_IDN_PWR_ON_WPE, 0, &flag)) 8575 hba->dev_info.f_power_on_wp_en = flag; 8576 8577 /* Probe maximum power mode co-supported by both UFS host and device */ 8578 if (ufshcd_get_max_pwr_mode(hba)) 8579 dev_err(hba->dev, 8580 "%s: Failed getting max supported power mode\n", 8581 __func__); 8582 out: 8583 return ret; 8584 } 8585 8586 static void ufshcd_set_timestamp_attr(struct ufs_hba *hba) 8587 { 8588 int err; 8589 struct ufs_query_req *request = NULL; 8590 struct ufs_query_res *response = NULL; 8591 struct ufs_dev_info *dev_info = &hba->dev_info; 8592 struct utp_upiu_query_v4_0 *upiu_data; 8593 8594 if (dev_info->wspecversion < 0x400) 8595 return; 8596 8597 ufshcd_dev_man_lock(hba); 8598 8599 ufshcd_init_query(hba, &request, &response, 8600 UPIU_QUERY_OPCODE_WRITE_ATTR, 8601 QUERY_ATTR_IDN_TIMESTAMP, 0, 0); 8602 8603 request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST; 8604 8605 upiu_data = (struct utp_upiu_query_v4_0 *)&request->upiu_req; 8606 8607 put_unaligned_be64(ktime_get_real_ns(), &upiu_data->osf3); 8608 8609 err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT); 8610 8611 if (err) 8612 dev_err(hba->dev, "%s: failed to set timestamp %d\n", 8613 __func__, err); 8614 8615 ufshcd_dev_man_unlock(hba); 8616 } 8617 8618 /** 8619 * ufshcd_add_lus - probe and add UFS logical units 8620 * @hba: per-adapter instance 8621 * 8622 * Return: 0 upon success; < 0 upon failure. 8623 */ 8624 static int ufshcd_add_lus(struct ufs_hba *hba) 8625 { 8626 int ret; 8627 8628 /* Add required well known logical units to scsi mid layer */ 8629 ret = ufshcd_scsi_add_wlus(hba); 8630 if (ret) 8631 goto out; 8632 8633 /* Initialize devfreq after UFS device is detected */ 8634 if (ufshcd_is_clkscaling_supported(hba)) { 8635 memcpy(&hba->clk_scaling.saved_pwr_info, 8636 &hba->pwr_info, 8637 sizeof(struct ufs_pa_layer_attr)); 8638 hba->clk_scaling.is_allowed = true; 8639 8640 ret = ufshcd_devfreq_init(hba); 8641 if (ret) 8642 goto out; 8643 8644 hba->clk_scaling.is_enabled = true; 8645 ufshcd_init_clk_scaling_sysfs(hba); 8646 } 8647 8648 ufs_bsg_probe(hba); 8649 scsi_scan_host(hba->host); 8650 8651 out: 8652 return ret; 8653 } 8654 8655 /* SDB - Single Doorbell */ 8656 static void ufshcd_release_sdb_queue(struct ufs_hba *hba, int nutrs) 8657 { 8658 size_t ucdl_size, utrdl_size; 8659 8660 ucdl_size = ufshcd_get_ucd_size(hba) * nutrs; 8661 dmam_free_coherent(hba->dev, ucdl_size, hba->ucdl_base_addr, 8662 hba->ucdl_dma_addr); 8663 8664 utrdl_size = sizeof(struct utp_transfer_req_desc) * nutrs; 8665 dmam_free_coherent(hba->dev, utrdl_size, hba->utrdl_base_addr, 8666 hba->utrdl_dma_addr); 8667 8668 devm_kfree(hba->dev, hba->lrb); 8669 } 8670 8671 static int ufshcd_alloc_mcq(struct ufs_hba *hba) 8672 { 8673 int ret; 8674 int old_nutrs = hba->nutrs; 8675 8676 ret = ufshcd_mcq_decide_queue_depth(hba); 8677 if (ret < 0) 8678 return ret; 8679 8680 hba->nutrs = ret; 8681 ret = ufshcd_mcq_init(hba); 8682 if (ret) 8683 goto err; 8684 8685 /* 8686 * Previously allocated memory for nutrs may not be enough in MCQ mode. 8687 * Number of supported tags in MCQ mode may be larger than SDB mode. 8688 */ 8689 if (hba->nutrs != old_nutrs) { 8690 ufshcd_release_sdb_queue(hba, old_nutrs); 8691 ret = ufshcd_memory_alloc(hba); 8692 if (ret) 8693 goto err; 8694 ufshcd_host_memory_configure(hba); 8695 } 8696 8697 ret = ufshcd_mcq_memory_alloc(hba); 8698 if (ret) 8699 goto err; 8700 8701 hba->host->can_queue = hba->nutrs - UFSHCD_NUM_RESERVED; 8702 hba->reserved_slot = hba->nutrs - UFSHCD_NUM_RESERVED; 8703 8704 return 0; 8705 err: 8706 hba->nutrs = old_nutrs; 8707 return ret; 8708 } 8709 8710 static void ufshcd_config_mcq(struct ufs_hba *hba) 8711 { 8712 int ret; 8713 u32 intrs; 8714 8715 ret = ufshcd_mcq_vops_config_esi(hba); 8716 dev_info(hba->dev, "ESI %sconfigured\n", ret ? "is not " : ""); 8717 8718 intrs = UFSHCD_ENABLE_MCQ_INTRS; 8719 if (hba->quirks & UFSHCD_QUIRK_MCQ_BROKEN_INTR) 8720 intrs &= ~MCQ_CQ_EVENT_STATUS; 8721 ufshcd_enable_intr(hba, intrs); 8722 ufshcd_mcq_make_queues_operational(hba); 8723 ufshcd_mcq_config_mac(hba, hba->nutrs); 8724 8725 dev_info(hba->dev, "MCQ configured, nr_queues=%d, io_queues=%d, read_queue=%d, poll_queues=%d, queue_depth=%d\n", 8726 hba->nr_hw_queues, hba->nr_queues[HCTX_TYPE_DEFAULT], 8727 hba->nr_queues[HCTX_TYPE_READ], hba->nr_queues[HCTX_TYPE_POLL], 8728 hba->nutrs); 8729 } 8730 8731 static int ufshcd_device_init(struct ufs_hba *hba, bool init_dev_params) 8732 { 8733 int ret; 8734 struct Scsi_Host *host = hba->host; 8735 8736 hba->ufshcd_state = UFSHCD_STATE_RESET; 8737 8738 ret = ufshcd_link_startup(hba); 8739 if (ret) 8740 return ret; 8741 8742 if (hba->quirks & UFSHCD_QUIRK_SKIP_PH_CONFIGURATION) 8743 return ret; 8744 8745 /* Debug counters initialization */ 8746 ufshcd_clear_dbg_ufs_stats(hba); 8747 8748 /* UniPro link is active now */ 8749 ufshcd_set_link_active(hba); 8750 8751 /* Reconfigure MCQ upon reset */ 8752 if (hba->mcq_enabled && !init_dev_params) { 8753 ufshcd_config_mcq(hba); 8754 ufshcd_mcq_enable(hba); 8755 } 8756 8757 /* Verify device initialization by sending NOP OUT UPIU */ 8758 ret = ufshcd_verify_dev_init(hba); 8759 if (ret) 8760 return ret; 8761 8762 /* Initiate UFS initialization, and waiting until completion */ 8763 ret = ufshcd_complete_dev_init(hba); 8764 if (ret) 8765 return ret; 8766 8767 /* 8768 * Initialize UFS device parameters used by driver, these 8769 * parameters are associated with UFS descriptors. 8770 */ 8771 if (init_dev_params) { 8772 ret = ufshcd_device_params_init(hba); 8773 if (ret) 8774 return ret; 8775 if (is_mcq_supported(hba) && !hba->scsi_host_added) { 8776 ufshcd_mcq_enable(hba); 8777 ret = ufshcd_alloc_mcq(hba); 8778 if (!ret) { 8779 ufshcd_config_mcq(hba); 8780 } else { 8781 /* Continue with SDB mode */ 8782 ufshcd_mcq_disable(hba); 8783 use_mcq_mode = false; 8784 dev_err(hba->dev, "MCQ mode is disabled, err=%d\n", 8785 ret); 8786 } 8787 ret = scsi_add_host(host, hba->dev); 8788 if (ret) { 8789 dev_err(hba->dev, "scsi_add_host failed\n"); 8790 return ret; 8791 } 8792 hba->scsi_host_added = true; 8793 } else if (is_mcq_supported(hba)) { 8794 /* UFSHCD_QUIRK_REINIT_AFTER_MAX_GEAR_SWITCH is set */ 8795 ufshcd_config_mcq(hba); 8796 ufshcd_mcq_enable(hba); 8797 } 8798 } 8799 8800 ufshcd_tune_unipro_params(hba); 8801 8802 /* UFS device is also active now */ 8803 ufshcd_set_ufs_dev_active(hba); 8804 ufshcd_force_reset_auto_bkops(hba); 8805 8806 ufshcd_set_timestamp_attr(hba); 8807 schedule_delayed_work(&hba->ufs_rtc_update_work, 8808 msecs_to_jiffies(UFS_RTC_UPDATE_INTERVAL_MS)); 8809 8810 /* Gear up to HS gear if supported */ 8811 if (hba->max_pwr_info.is_valid) { 8812 /* 8813 * Set the right value to bRefClkFreq before attempting to 8814 * switch to HS gears. 8815 */ 8816 if (hba->dev_ref_clk_freq != REF_CLK_FREQ_INVAL) 8817 ufshcd_set_dev_ref_clk(hba); 8818 ret = ufshcd_config_pwr_mode(hba, &hba->max_pwr_info.info); 8819 if (ret) { 8820 dev_err(hba->dev, "%s: Failed setting power mode, err = %d\n", 8821 __func__, ret); 8822 return ret; 8823 } 8824 } 8825 8826 return 0; 8827 } 8828 8829 /** 8830 * ufshcd_probe_hba - probe hba to detect device and initialize it 8831 * @hba: per-adapter instance 8832 * @init_dev_params: whether or not to call ufshcd_device_params_init(). 8833 * 8834 * Execute link-startup and verify device initialization 8835 * 8836 * Return: 0 upon success; < 0 upon failure. 8837 */ 8838 static int ufshcd_probe_hba(struct ufs_hba *hba, bool init_dev_params) 8839 { 8840 ktime_t start = ktime_get(); 8841 unsigned long flags; 8842 int ret; 8843 8844 ret = ufshcd_device_init(hba, init_dev_params); 8845 if (ret) 8846 goto out; 8847 8848 if (!hba->pm_op_in_progress && 8849 (hba->quirks & UFSHCD_QUIRK_REINIT_AFTER_MAX_GEAR_SWITCH)) { 8850 /* Reset the device and controller before doing reinit */ 8851 ufshcd_device_reset(hba); 8852 ufs_put_device_desc(hba); 8853 ufshcd_hba_stop(hba); 8854 ufshcd_vops_reinit_notify(hba); 8855 ret = ufshcd_hba_enable(hba); 8856 if (ret) { 8857 dev_err(hba->dev, "Host controller enable failed\n"); 8858 ufshcd_print_evt_hist(hba); 8859 ufshcd_print_host_state(hba); 8860 goto out; 8861 } 8862 8863 /* Reinit the device */ 8864 ret = ufshcd_device_init(hba, init_dev_params); 8865 if (ret) 8866 goto out; 8867 } 8868 8869 ufshcd_print_pwr_info(hba); 8870 8871 /* 8872 * bActiveICCLevel is volatile for UFS device (as per latest v2.1 spec) 8873 * and for removable UFS card as well, hence always set the parameter. 8874 * Note: Error handler may issue the device reset hence resetting 8875 * bActiveICCLevel as well so it is always safe to set this here. 8876 */ 8877 ufshcd_set_active_icc_lvl(hba); 8878 8879 /* Enable UFS Write Booster if supported */ 8880 ufshcd_configure_wb(hba); 8881 8882 if (hba->ee_usr_mask) 8883 ufshcd_write_ee_control(hba); 8884 ufshcd_configure_auto_hibern8(hba); 8885 8886 out: 8887 spin_lock_irqsave(hba->host->host_lock, flags); 8888 if (ret) 8889 hba->ufshcd_state = UFSHCD_STATE_ERROR; 8890 else if (hba->ufshcd_state == UFSHCD_STATE_RESET) 8891 hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL; 8892 spin_unlock_irqrestore(hba->host->host_lock, flags); 8893 8894 trace_ufshcd_init(dev_name(hba->dev), ret, 8895 ktime_to_us(ktime_sub(ktime_get(), start)), 8896 hba->curr_dev_pwr_mode, hba->uic_link_state); 8897 return ret; 8898 } 8899 8900 /** 8901 * ufshcd_async_scan - asynchronous execution for probing hba 8902 * @data: data pointer to pass to this function 8903 * @cookie: cookie data 8904 */ 8905 static void ufshcd_async_scan(void *data, async_cookie_t cookie) 8906 { 8907 struct ufs_hba *hba = (struct ufs_hba *)data; 8908 int ret; 8909 8910 down(&hba->host_sem); 8911 /* Initialize hba, detect and initialize UFS device */ 8912 ret = ufshcd_probe_hba(hba, true); 8913 up(&hba->host_sem); 8914 if (ret) 8915 goto out; 8916 8917 /* Probe and add UFS logical units */ 8918 ret = ufshcd_add_lus(hba); 8919 8920 out: 8921 pm_runtime_put_sync(hba->dev); 8922 8923 if (ret) 8924 dev_err(hba->dev, "%s failed: %d\n", __func__, ret); 8925 } 8926 8927 static enum scsi_timeout_action ufshcd_eh_timed_out(struct scsi_cmnd *scmd) 8928 { 8929 struct ufs_hba *hba = shost_priv(scmd->device->host); 8930 8931 if (!hba->system_suspending) { 8932 /* Activate the error handler in the SCSI core. */ 8933 return SCSI_EH_NOT_HANDLED; 8934 } 8935 8936 /* 8937 * If we get here we know that no TMFs are outstanding and also that 8938 * the only pending command is a START STOP UNIT command. Handle the 8939 * timeout of that command directly to prevent a deadlock between 8940 * ufshcd_set_dev_pwr_mode() and ufshcd_err_handler(). 8941 */ 8942 ufshcd_link_recovery(hba); 8943 dev_info(hba->dev, "%s() finished; outstanding_tasks = %#lx.\n", 8944 __func__, hba->outstanding_tasks); 8945 8946 return hba->outstanding_reqs ? SCSI_EH_RESET_TIMER : SCSI_EH_DONE; 8947 } 8948 8949 static const struct attribute_group *ufshcd_driver_groups[] = { 8950 &ufs_sysfs_unit_descriptor_group, 8951 &ufs_sysfs_lun_attributes_group, 8952 NULL, 8953 }; 8954 8955 static struct ufs_hba_variant_params ufs_hba_vps = { 8956 .hba_enable_delay_us = 1000, 8957 .wb_flush_threshold = UFS_WB_BUF_REMAIN_PERCENT(40), 8958 .devfreq_profile.polling_ms = 100, 8959 .devfreq_profile.target = ufshcd_devfreq_target, 8960 .devfreq_profile.get_dev_status = ufshcd_devfreq_get_dev_status, 8961 .ondemand_data.upthreshold = 70, 8962 .ondemand_data.downdifferential = 5, 8963 }; 8964 8965 static const struct scsi_host_template ufshcd_driver_template = { 8966 .module = THIS_MODULE, 8967 .name = UFSHCD, 8968 .proc_name = UFSHCD, 8969 .map_queues = ufshcd_map_queues, 8970 .queuecommand = ufshcd_queuecommand, 8971 .mq_poll = ufshcd_poll, 8972 .slave_alloc = ufshcd_slave_alloc, 8973 .device_configure = ufshcd_device_configure, 8974 .slave_destroy = ufshcd_slave_destroy, 8975 .change_queue_depth = ufshcd_change_queue_depth, 8976 .eh_abort_handler = ufshcd_abort, 8977 .eh_device_reset_handler = ufshcd_eh_device_reset_handler, 8978 .eh_host_reset_handler = ufshcd_eh_host_reset_handler, 8979 .eh_timed_out = ufshcd_eh_timed_out, 8980 .this_id = -1, 8981 .sg_tablesize = SG_ALL, 8982 .max_segment_size = PRDT_DATA_BYTE_COUNT_MAX, 8983 .max_sectors = SZ_1M / SECTOR_SIZE, 8984 .max_host_blocked = 1, 8985 .track_queue_depth = 1, 8986 .skip_settle_delay = 1, 8987 .sdev_groups = ufshcd_driver_groups, 8988 }; 8989 8990 static int ufshcd_config_vreg_load(struct device *dev, struct ufs_vreg *vreg, 8991 int ua) 8992 { 8993 int ret; 8994 8995 if (!vreg) 8996 return 0; 8997 8998 /* 8999 * "set_load" operation shall be required on those regulators 9000 * which specifically configured current limitation. Otherwise 9001 * zero max_uA may cause unexpected behavior when regulator is 9002 * enabled or set as high power mode. 9003 */ 9004 if (!vreg->max_uA) 9005 return 0; 9006 9007 ret = regulator_set_load(vreg->reg, ua); 9008 if (ret < 0) { 9009 dev_err(dev, "%s: %s set load (ua=%d) failed, err=%d\n", 9010 __func__, vreg->name, ua, ret); 9011 } 9012 9013 return ret; 9014 } 9015 9016 static inline int ufshcd_config_vreg_lpm(struct ufs_hba *hba, 9017 struct ufs_vreg *vreg) 9018 { 9019 return ufshcd_config_vreg_load(hba->dev, vreg, UFS_VREG_LPM_LOAD_UA); 9020 } 9021 9022 static inline int ufshcd_config_vreg_hpm(struct ufs_hba *hba, 9023 struct ufs_vreg *vreg) 9024 { 9025 if (!vreg) 9026 return 0; 9027 9028 return ufshcd_config_vreg_load(hba->dev, vreg, vreg->max_uA); 9029 } 9030 9031 static int ufshcd_config_vreg(struct device *dev, 9032 struct ufs_vreg *vreg, bool on) 9033 { 9034 if (regulator_count_voltages(vreg->reg) <= 0) 9035 return 0; 9036 9037 return ufshcd_config_vreg_load(dev, vreg, on ? vreg->max_uA : 0); 9038 } 9039 9040 static int ufshcd_enable_vreg(struct device *dev, struct ufs_vreg *vreg) 9041 { 9042 int ret = 0; 9043 9044 if (!vreg || vreg->enabled) 9045 goto out; 9046 9047 ret = ufshcd_config_vreg(dev, vreg, true); 9048 if (!ret) 9049 ret = regulator_enable(vreg->reg); 9050 9051 if (!ret) 9052 vreg->enabled = true; 9053 else 9054 dev_err(dev, "%s: %s enable failed, err=%d\n", 9055 __func__, vreg->name, ret); 9056 out: 9057 return ret; 9058 } 9059 9060 static int ufshcd_disable_vreg(struct device *dev, struct ufs_vreg *vreg) 9061 { 9062 int ret = 0; 9063 9064 if (!vreg || !vreg->enabled || vreg->always_on) 9065 goto out; 9066 9067 ret = regulator_disable(vreg->reg); 9068 9069 if (!ret) { 9070 /* ignore errors on applying disable config */ 9071 ufshcd_config_vreg(dev, vreg, false); 9072 vreg->enabled = false; 9073 } else { 9074 dev_err(dev, "%s: %s disable failed, err=%d\n", 9075 __func__, vreg->name, ret); 9076 } 9077 out: 9078 return ret; 9079 } 9080 9081 static int ufshcd_setup_vreg(struct ufs_hba *hba, bool on) 9082 { 9083 int ret = 0; 9084 struct device *dev = hba->dev; 9085 struct ufs_vreg_info *info = &hba->vreg_info; 9086 9087 ret = ufshcd_toggle_vreg(dev, info->vcc, on); 9088 if (ret) 9089 goto out; 9090 9091 ret = ufshcd_toggle_vreg(dev, info->vccq, on); 9092 if (ret) 9093 goto out; 9094 9095 ret = ufshcd_toggle_vreg(dev, info->vccq2, on); 9096 9097 out: 9098 if (ret) { 9099 ufshcd_toggle_vreg(dev, info->vccq2, false); 9100 ufshcd_toggle_vreg(dev, info->vccq, false); 9101 ufshcd_toggle_vreg(dev, info->vcc, false); 9102 } 9103 return ret; 9104 } 9105 9106 static int ufshcd_setup_hba_vreg(struct ufs_hba *hba, bool on) 9107 { 9108 struct ufs_vreg_info *info = &hba->vreg_info; 9109 9110 return ufshcd_toggle_vreg(hba->dev, info->vdd_hba, on); 9111 } 9112 9113 int ufshcd_get_vreg(struct device *dev, struct ufs_vreg *vreg) 9114 { 9115 int ret = 0; 9116 9117 if (!vreg) 9118 goto out; 9119 9120 vreg->reg = devm_regulator_get(dev, vreg->name); 9121 if (IS_ERR(vreg->reg)) { 9122 ret = PTR_ERR(vreg->reg); 9123 dev_err(dev, "%s: %s get failed, err=%d\n", 9124 __func__, vreg->name, ret); 9125 } 9126 out: 9127 return ret; 9128 } 9129 EXPORT_SYMBOL_GPL(ufshcd_get_vreg); 9130 9131 static int ufshcd_init_vreg(struct ufs_hba *hba) 9132 { 9133 int ret = 0; 9134 struct device *dev = hba->dev; 9135 struct ufs_vreg_info *info = &hba->vreg_info; 9136 9137 ret = ufshcd_get_vreg(dev, info->vcc); 9138 if (ret) 9139 goto out; 9140 9141 ret = ufshcd_get_vreg(dev, info->vccq); 9142 if (!ret) 9143 ret = ufshcd_get_vreg(dev, info->vccq2); 9144 out: 9145 return ret; 9146 } 9147 9148 static int ufshcd_init_hba_vreg(struct ufs_hba *hba) 9149 { 9150 struct ufs_vreg_info *info = &hba->vreg_info; 9151 9152 return ufshcd_get_vreg(hba->dev, info->vdd_hba); 9153 } 9154 9155 static int ufshcd_setup_clocks(struct ufs_hba *hba, bool on) 9156 { 9157 int ret = 0; 9158 struct ufs_clk_info *clki; 9159 struct list_head *head = &hba->clk_list_head; 9160 unsigned long flags; 9161 ktime_t start = ktime_get(); 9162 bool clk_state_changed = false; 9163 9164 if (list_empty(head)) 9165 goto out; 9166 9167 ret = ufshcd_vops_setup_clocks(hba, on, PRE_CHANGE); 9168 if (ret) 9169 return ret; 9170 9171 list_for_each_entry(clki, head, list) { 9172 if (!IS_ERR_OR_NULL(clki->clk)) { 9173 /* 9174 * Don't disable clocks which are needed 9175 * to keep the link active. 9176 */ 9177 if (ufshcd_is_link_active(hba) && 9178 clki->keep_link_active) 9179 continue; 9180 9181 clk_state_changed = on ^ clki->enabled; 9182 if (on && !clki->enabled) { 9183 ret = clk_prepare_enable(clki->clk); 9184 if (ret) { 9185 dev_err(hba->dev, "%s: %s prepare enable failed, %d\n", 9186 __func__, clki->name, ret); 9187 goto out; 9188 } 9189 } else if (!on && clki->enabled) { 9190 clk_disable_unprepare(clki->clk); 9191 } 9192 clki->enabled = on; 9193 dev_dbg(hba->dev, "%s: clk: %s %sabled\n", __func__, 9194 clki->name, on ? "en" : "dis"); 9195 } 9196 } 9197 9198 ret = ufshcd_vops_setup_clocks(hba, on, POST_CHANGE); 9199 if (ret) 9200 return ret; 9201 9202 if (!ufshcd_is_clkscaling_supported(hba)) 9203 ufshcd_pm_qos_update(hba, on); 9204 out: 9205 if (ret) { 9206 list_for_each_entry(clki, head, list) { 9207 if (!IS_ERR_OR_NULL(clki->clk) && clki->enabled) 9208 clk_disable_unprepare(clki->clk); 9209 } 9210 } else if (!ret && on) { 9211 spin_lock_irqsave(hba->host->host_lock, flags); 9212 hba->clk_gating.state = CLKS_ON; 9213 trace_ufshcd_clk_gating(dev_name(hba->dev), 9214 hba->clk_gating.state); 9215 spin_unlock_irqrestore(hba->host->host_lock, flags); 9216 } 9217 9218 if (clk_state_changed) 9219 trace_ufshcd_profile_clk_gating(dev_name(hba->dev), 9220 (on ? "on" : "off"), 9221 ktime_to_us(ktime_sub(ktime_get(), start)), ret); 9222 return ret; 9223 } 9224 9225 static enum ufs_ref_clk_freq ufshcd_parse_ref_clk_property(struct ufs_hba *hba) 9226 { 9227 u32 freq; 9228 int ret = device_property_read_u32(hba->dev, "ref-clk-freq", &freq); 9229 9230 if (ret) { 9231 dev_dbg(hba->dev, "Cannot query 'ref-clk-freq' property = %d", ret); 9232 return REF_CLK_FREQ_INVAL; 9233 } 9234 9235 return ufs_get_bref_clk_from_hz(freq); 9236 } 9237 9238 static int ufshcd_init_clocks(struct ufs_hba *hba) 9239 { 9240 int ret = 0; 9241 struct ufs_clk_info *clki; 9242 struct device *dev = hba->dev; 9243 struct list_head *head = &hba->clk_list_head; 9244 9245 if (list_empty(head)) 9246 goto out; 9247 9248 list_for_each_entry(clki, head, list) { 9249 if (!clki->name) 9250 continue; 9251 9252 clki->clk = devm_clk_get(dev, clki->name); 9253 if (IS_ERR(clki->clk)) { 9254 ret = PTR_ERR(clki->clk); 9255 dev_err(dev, "%s: %s clk get failed, %d\n", 9256 __func__, clki->name, ret); 9257 goto out; 9258 } 9259 9260 /* 9261 * Parse device ref clk freq as per device tree "ref_clk". 9262 * Default dev_ref_clk_freq is set to REF_CLK_FREQ_INVAL 9263 * in ufshcd_alloc_host(). 9264 */ 9265 if (!strcmp(clki->name, "ref_clk")) 9266 ufshcd_parse_dev_ref_clk_freq(hba, clki->clk); 9267 9268 if (clki->max_freq) { 9269 ret = clk_set_rate(clki->clk, clki->max_freq); 9270 if (ret) { 9271 dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n", 9272 __func__, clki->name, 9273 clki->max_freq, ret); 9274 goto out; 9275 } 9276 clki->curr_freq = clki->max_freq; 9277 } 9278 dev_dbg(dev, "%s: clk: %s, rate: %lu\n", __func__, 9279 clki->name, clk_get_rate(clki->clk)); 9280 } 9281 9282 /* Set Max. frequency for all clocks */ 9283 if (hba->use_pm_opp) { 9284 ret = ufshcd_opp_set_rate(hba, ULONG_MAX); 9285 if (ret) { 9286 dev_err(hba->dev, "%s: failed to set OPP: %d", __func__, 9287 ret); 9288 goto out; 9289 } 9290 } 9291 9292 out: 9293 return ret; 9294 } 9295 9296 static int ufshcd_variant_hba_init(struct ufs_hba *hba) 9297 { 9298 int err = 0; 9299 9300 if (!hba->vops) 9301 goto out; 9302 9303 err = ufshcd_vops_init(hba); 9304 if (err) 9305 dev_err_probe(hba->dev, err, 9306 "%s: variant %s init failed with err %d\n", 9307 __func__, ufshcd_get_var_name(hba), err); 9308 out: 9309 return err; 9310 } 9311 9312 static void ufshcd_variant_hba_exit(struct ufs_hba *hba) 9313 { 9314 if (!hba->vops) 9315 return; 9316 9317 ufshcd_vops_exit(hba); 9318 } 9319 9320 static int ufshcd_hba_init(struct ufs_hba *hba) 9321 { 9322 int err; 9323 9324 /* 9325 * Handle host controller power separately from the UFS device power 9326 * rails as it will help controlling the UFS host controller power 9327 * collapse easily which is different than UFS device power collapse. 9328 * Also, enable the host controller power before we go ahead with rest 9329 * of the initialization here. 9330 */ 9331 err = ufshcd_init_hba_vreg(hba); 9332 if (err) 9333 goto out; 9334 9335 err = ufshcd_setup_hba_vreg(hba, true); 9336 if (err) 9337 goto out; 9338 9339 err = ufshcd_init_clocks(hba); 9340 if (err) 9341 goto out_disable_hba_vreg; 9342 9343 if (hba->dev_ref_clk_freq == REF_CLK_FREQ_INVAL) 9344 hba->dev_ref_clk_freq = ufshcd_parse_ref_clk_property(hba); 9345 9346 err = ufshcd_setup_clocks(hba, true); 9347 if (err) 9348 goto out_disable_hba_vreg; 9349 9350 err = ufshcd_init_vreg(hba); 9351 if (err) 9352 goto out_disable_clks; 9353 9354 err = ufshcd_setup_vreg(hba, true); 9355 if (err) 9356 goto out_disable_clks; 9357 9358 err = ufshcd_variant_hba_init(hba); 9359 if (err) 9360 goto out_disable_vreg; 9361 9362 ufs_debugfs_hba_init(hba); 9363 ufs_fault_inject_hba_init(hba); 9364 9365 hba->is_powered = true; 9366 goto out; 9367 9368 out_disable_vreg: 9369 ufshcd_setup_vreg(hba, false); 9370 out_disable_clks: 9371 ufshcd_setup_clocks(hba, false); 9372 out_disable_hba_vreg: 9373 ufshcd_setup_hba_vreg(hba, false); 9374 out: 9375 return err; 9376 } 9377 9378 static void ufshcd_hba_exit(struct ufs_hba *hba) 9379 { 9380 if (hba->is_powered) { 9381 ufshcd_pm_qos_exit(hba); 9382 ufshcd_exit_clk_scaling(hba); 9383 ufshcd_exit_clk_gating(hba); 9384 if (hba->eh_wq) 9385 destroy_workqueue(hba->eh_wq); 9386 ufs_debugfs_hba_exit(hba); 9387 ufshcd_variant_hba_exit(hba); 9388 ufshcd_setup_vreg(hba, false); 9389 ufshcd_setup_clocks(hba, false); 9390 ufshcd_setup_hba_vreg(hba, false); 9391 hba->is_powered = false; 9392 ufs_put_device_desc(hba); 9393 } 9394 } 9395 9396 static int ufshcd_execute_start_stop(struct scsi_device *sdev, 9397 enum ufs_dev_pwr_mode pwr_mode, 9398 struct scsi_sense_hdr *sshdr) 9399 { 9400 const unsigned char cdb[6] = { START_STOP, 0, 0, 0, pwr_mode << 4, 0 }; 9401 struct scsi_failure failure_defs[] = { 9402 { 9403 .allowed = 2, 9404 .result = SCMD_FAILURE_RESULT_ANY, 9405 }, 9406 }; 9407 struct scsi_failures failures = { 9408 .failure_definitions = failure_defs, 9409 }; 9410 const struct scsi_exec_args args = { 9411 .failures = &failures, 9412 .sshdr = sshdr, 9413 .req_flags = BLK_MQ_REQ_PM, 9414 .scmd_flags = SCMD_FAIL_IF_RECOVERING, 9415 }; 9416 9417 return scsi_execute_cmd(sdev, cdb, REQ_OP_DRV_IN, /*buffer=*/NULL, 9418 /*bufflen=*/0, /*timeout=*/10 * HZ, /*retries=*/0, 9419 &args); 9420 } 9421 9422 /** 9423 * ufshcd_set_dev_pwr_mode - sends START STOP UNIT command to set device 9424 * power mode 9425 * @hba: per adapter instance 9426 * @pwr_mode: device power mode to set 9427 * 9428 * Return: 0 if requested power mode is set successfully; 9429 * < 0 if failed to set the requested power mode. 9430 */ 9431 static int ufshcd_set_dev_pwr_mode(struct ufs_hba *hba, 9432 enum ufs_dev_pwr_mode pwr_mode) 9433 { 9434 struct scsi_sense_hdr sshdr; 9435 struct scsi_device *sdp; 9436 unsigned long flags; 9437 int ret; 9438 9439 spin_lock_irqsave(hba->host->host_lock, flags); 9440 sdp = hba->ufs_device_wlun; 9441 if (sdp && scsi_device_online(sdp)) 9442 ret = scsi_device_get(sdp); 9443 else 9444 ret = -ENODEV; 9445 spin_unlock_irqrestore(hba->host->host_lock, flags); 9446 9447 if (ret) 9448 return ret; 9449 9450 /* 9451 * If scsi commands fail, the scsi mid-layer schedules scsi error- 9452 * handling, which would wait for host to be resumed. Since we know 9453 * we are functional while we are here, skip host resume in error 9454 * handling context. 9455 */ 9456 hba->host->eh_noresume = 1; 9457 9458 /* 9459 * Current function would be generally called from the power management 9460 * callbacks hence set the RQF_PM flag so that it doesn't resume the 9461 * already suspended childs. 9462 */ 9463 ret = ufshcd_execute_start_stop(sdp, pwr_mode, &sshdr); 9464 if (ret) { 9465 sdev_printk(KERN_WARNING, sdp, 9466 "START_STOP failed for power mode: %d, result %x\n", 9467 pwr_mode, ret); 9468 if (ret > 0) { 9469 if (scsi_sense_valid(&sshdr)) 9470 scsi_print_sense_hdr(sdp, NULL, &sshdr); 9471 ret = -EIO; 9472 } 9473 } else { 9474 hba->curr_dev_pwr_mode = pwr_mode; 9475 } 9476 9477 scsi_device_put(sdp); 9478 hba->host->eh_noresume = 0; 9479 return ret; 9480 } 9481 9482 static int ufshcd_link_state_transition(struct ufs_hba *hba, 9483 enum uic_link_state req_link_state, 9484 bool check_for_bkops) 9485 { 9486 int ret = 0; 9487 9488 if (req_link_state == hba->uic_link_state) 9489 return 0; 9490 9491 if (req_link_state == UIC_LINK_HIBERN8_STATE) { 9492 ret = ufshcd_uic_hibern8_enter(hba); 9493 if (!ret) { 9494 ufshcd_set_link_hibern8(hba); 9495 } else { 9496 dev_err(hba->dev, "%s: hibern8 enter failed %d\n", 9497 __func__, ret); 9498 goto out; 9499 } 9500 } 9501 /* 9502 * If autobkops is enabled, link can't be turned off because 9503 * turning off the link would also turn off the device, except in the 9504 * case of DeepSleep where the device is expected to remain powered. 9505 */ 9506 else if ((req_link_state == UIC_LINK_OFF_STATE) && 9507 (!check_for_bkops || !hba->auto_bkops_enabled)) { 9508 /* 9509 * Let's make sure that link is in low power mode, we are doing 9510 * this currently by putting the link in Hibern8. Otherway to 9511 * put the link in low power mode is to send the DME end point 9512 * to device and then send the DME reset command to local 9513 * unipro. But putting the link in hibern8 is much faster. 9514 * 9515 * Note also that putting the link in Hibern8 is a requirement 9516 * for entering DeepSleep. 9517 */ 9518 ret = ufshcd_uic_hibern8_enter(hba); 9519 if (ret) { 9520 dev_err(hba->dev, "%s: hibern8 enter failed %d\n", 9521 __func__, ret); 9522 goto out; 9523 } 9524 /* 9525 * Change controller state to "reset state" which 9526 * should also put the link in off/reset state 9527 */ 9528 ufshcd_hba_stop(hba); 9529 /* 9530 * TODO: Check if we need any delay to make sure that 9531 * controller is reset 9532 */ 9533 ufshcd_set_link_off(hba); 9534 } 9535 9536 out: 9537 return ret; 9538 } 9539 9540 static void ufshcd_vreg_set_lpm(struct ufs_hba *hba) 9541 { 9542 bool vcc_off = false; 9543 9544 /* 9545 * It seems some UFS devices may keep drawing more than sleep current 9546 * (atleast for 500us) from UFS rails (especially from VCCQ rail). 9547 * To avoid this situation, add 2ms delay before putting these UFS 9548 * rails in LPM mode. 9549 */ 9550 if (!ufshcd_is_link_active(hba) && 9551 hba->dev_quirks & UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM) 9552 usleep_range(2000, 2100); 9553 9554 /* 9555 * If UFS device is either in UFS_Sleep turn off VCC rail to save some 9556 * power. 9557 * 9558 * If UFS device and link is in OFF state, all power supplies (VCC, 9559 * VCCQ, VCCQ2) can be turned off if power on write protect is not 9560 * required. If UFS link is inactive (Hibern8 or OFF state) and device 9561 * is in sleep state, put VCCQ & VCCQ2 rails in LPM mode. 9562 * 9563 * Ignore the error returned by ufshcd_toggle_vreg() as device is anyway 9564 * in low power state which would save some power. 9565 * 9566 * If Write Booster is enabled and the device needs to flush the WB 9567 * buffer OR if bkops status is urgent for WB, keep Vcc on. 9568 */ 9569 if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba) && 9570 !hba->dev_info.is_lu_power_on_wp) { 9571 ufshcd_setup_vreg(hba, false); 9572 vcc_off = true; 9573 } else if (!ufshcd_is_ufs_dev_active(hba)) { 9574 ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, false); 9575 vcc_off = true; 9576 if (ufshcd_is_link_hibern8(hba) || ufshcd_is_link_off(hba)) { 9577 ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq); 9578 ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq2); 9579 } 9580 } 9581 9582 /* 9583 * Some UFS devices require delay after VCC power rail is turned-off. 9584 */ 9585 if (vcc_off && hba->vreg_info.vcc && 9586 hba->dev_quirks & UFS_DEVICE_QUIRK_DELAY_AFTER_LPM) 9587 usleep_range(5000, 5100); 9588 } 9589 9590 #ifdef CONFIG_PM 9591 static int ufshcd_vreg_set_hpm(struct ufs_hba *hba) 9592 { 9593 int ret = 0; 9594 9595 if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba) && 9596 !hba->dev_info.is_lu_power_on_wp) { 9597 ret = ufshcd_setup_vreg(hba, true); 9598 } else if (!ufshcd_is_ufs_dev_active(hba)) { 9599 if (!ufshcd_is_link_active(hba)) { 9600 ret = ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq); 9601 if (ret) 9602 goto vcc_disable; 9603 ret = ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq2); 9604 if (ret) 9605 goto vccq_lpm; 9606 } 9607 ret = ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, true); 9608 } 9609 goto out; 9610 9611 vccq_lpm: 9612 ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq); 9613 vcc_disable: 9614 ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, false); 9615 out: 9616 return ret; 9617 } 9618 #endif /* CONFIG_PM */ 9619 9620 static void ufshcd_hba_vreg_set_lpm(struct ufs_hba *hba) 9621 { 9622 if (ufshcd_is_link_off(hba) || ufshcd_can_aggressive_pc(hba)) 9623 ufshcd_setup_hba_vreg(hba, false); 9624 } 9625 9626 static void ufshcd_hba_vreg_set_hpm(struct ufs_hba *hba) 9627 { 9628 if (ufshcd_is_link_off(hba) || ufshcd_can_aggressive_pc(hba)) 9629 ufshcd_setup_hba_vreg(hba, true); 9630 } 9631 9632 static int __ufshcd_wl_suspend(struct ufs_hba *hba, enum ufs_pm_op pm_op) 9633 { 9634 int ret = 0; 9635 bool check_for_bkops; 9636 enum ufs_pm_level pm_lvl; 9637 enum ufs_dev_pwr_mode req_dev_pwr_mode; 9638 enum uic_link_state req_link_state; 9639 9640 hba->pm_op_in_progress = true; 9641 if (pm_op != UFS_SHUTDOWN_PM) { 9642 pm_lvl = pm_op == UFS_RUNTIME_PM ? 9643 hba->rpm_lvl : hba->spm_lvl; 9644 req_dev_pwr_mode = ufs_get_pm_lvl_to_dev_pwr_mode(pm_lvl); 9645 req_link_state = ufs_get_pm_lvl_to_link_pwr_state(pm_lvl); 9646 } else { 9647 req_dev_pwr_mode = UFS_POWERDOWN_PWR_MODE; 9648 req_link_state = UIC_LINK_OFF_STATE; 9649 } 9650 9651 /* 9652 * If we can't transition into any of the low power modes 9653 * just gate the clocks. 9654 */ 9655 ufshcd_hold(hba); 9656 hba->clk_gating.is_suspended = true; 9657 9658 if (ufshcd_is_clkscaling_supported(hba)) 9659 ufshcd_clk_scaling_suspend(hba, true); 9660 9661 if (req_dev_pwr_mode == UFS_ACTIVE_PWR_MODE && 9662 req_link_state == UIC_LINK_ACTIVE_STATE) { 9663 goto vops_suspend; 9664 } 9665 9666 if ((req_dev_pwr_mode == hba->curr_dev_pwr_mode) && 9667 (req_link_state == hba->uic_link_state)) 9668 goto enable_scaling; 9669 9670 /* UFS device & link must be active before we enter in this function */ 9671 if (!ufshcd_is_ufs_dev_active(hba) || !ufshcd_is_link_active(hba)) { 9672 /* Wait err handler finish or trigger err recovery */ 9673 if (!ufshcd_eh_in_progress(hba)) 9674 ufshcd_force_error_recovery(hba); 9675 ret = -EBUSY; 9676 goto enable_scaling; 9677 } 9678 9679 if (pm_op == UFS_RUNTIME_PM) { 9680 if (ufshcd_can_autobkops_during_suspend(hba)) { 9681 /* 9682 * The device is idle with no requests in the queue, 9683 * allow background operations if bkops status shows 9684 * that performance might be impacted. 9685 */ 9686 ret = ufshcd_urgent_bkops(hba); 9687 if (ret) { 9688 /* 9689 * If return err in suspend flow, IO will hang. 9690 * Trigger error handler and break suspend for 9691 * error recovery. 9692 */ 9693 ufshcd_force_error_recovery(hba); 9694 ret = -EBUSY; 9695 goto enable_scaling; 9696 } 9697 } else { 9698 /* make sure that auto bkops is disabled */ 9699 ufshcd_disable_auto_bkops(hba); 9700 } 9701 /* 9702 * If device needs to do BKOP or WB buffer flush during 9703 * Hibern8, keep device power mode as "active power mode" 9704 * and VCC supply. 9705 */ 9706 hba->dev_info.b_rpm_dev_flush_capable = 9707 hba->auto_bkops_enabled || 9708 (((req_link_state == UIC_LINK_HIBERN8_STATE) || 9709 ((req_link_state == UIC_LINK_ACTIVE_STATE) && 9710 ufshcd_is_auto_hibern8_enabled(hba))) && 9711 ufshcd_wb_need_flush(hba)); 9712 } 9713 9714 flush_work(&hba->eeh_work); 9715 9716 ret = ufshcd_vops_suspend(hba, pm_op, PRE_CHANGE); 9717 if (ret) 9718 goto enable_scaling; 9719 9720 if (req_dev_pwr_mode != hba->curr_dev_pwr_mode) { 9721 if (pm_op != UFS_RUNTIME_PM) 9722 /* ensure that bkops is disabled */ 9723 ufshcd_disable_auto_bkops(hba); 9724 9725 if (!hba->dev_info.b_rpm_dev_flush_capable) { 9726 ret = ufshcd_set_dev_pwr_mode(hba, req_dev_pwr_mode); 9727 if (ret && pm_op != UFS_SHUTDOWN_PM) { 9728 /* 9729 * If return err in suspend flow, IO will hang. 9730 * Trigger error handler and break suspend for 9731 * error recovery. 9732 */ 9733 ufshcd_force_error_recovery(hba); 9734 ret = -EBUSY; 9735 } 9736 if (ret) 9737 goto enable_scaling; 9738 } 9739 } 9740 9741 /* 9742 * In the case of DeepSleep, the device is expected to remain powered 9743 * with the link off, so do not check for bkops. 9744 */ 9745 check_for_bkops = !ufshcd_is_ufs_dev_deepsleep(hba); 9746 ret = ufshcd_link_state_transition(hba, req_link_state, check_for_bkops); 9747 if (ret && pm_op != UFS_SHUTDOWN_PM) { 9748 /* 9749 * If return err in suspend flow, IO will hang. 9750 * Trigger error handler and break suspend for 9751 * error recovery. 9752 */ 9753 ufshcd_force_error_recovery(hba); 9754 ret = -EBUSY; 9755 } 9756 if (ret) 9757 goto set_dev_active; 9758 9759 vops_suspend: 9760 /* 9761 * Call vendor specific suspend callback. As these callbacks may access 9762 * vendor specific host controller register space call them before the 9763 * host clocks are ON. 9764 */ 9765 ret = ufshcd_vops_suspend(hba, pm_op, POST_CHANGE); 9766 if (ret) 9767 goto set_link_active; 9768 9769 cancel_delayed_work_sync(&hba->ufs_rtc_update_work); 9770 goto out; 9771 9772 set_link_active: 9773 /* 9774 * Device hardware reset is required to exit DeepSleep. Also, for 9775 * DeepSleep, the link is off so host reset and restore will be done 9776 * further below. 9777 */ 9778 if (ufshcd_is_ufs_dev_deepsleep(hba)) { 9779 ufshcd_device_reset(hba); 9780 WARN_ON(!ufshcd_is_link_off(hba)); 9781 } 9782 if (ufshcd_is_link_hibern8(hba) && !ufshcd_uic_hibern8_exit(hba)) 9783 ufshcd_set_link_active(hba); 9784 else if (ufshcd_is_link_off(hba)) 9785 ufshcd_host_reset_and_restore(hba); 9786 set_dev_active: 9787 /* Can also get here needing to exit DeepSleep */ 9788 if (ufshcd_is_ufs_dev_deepsleep(hba)) { 9789 ufshcd_device_reset(hba); 9790 ufshcd_host_reset_and_restore(hba); 9791 } 9792 if (!ufshcd_set_dev_pwr_mode(hba, UFS_ACTIVE_PWR_MODE)) 9793 ufshcd_disable_auto_bkops(hba); 9794 enable_scaling: 9795 if (ufshcd_is_clkscaling_supported(hba)) 9796 ufshcd_clk_scaling_suspend(hba, false); 9797 9798 hba->dev_info.b_rpm_dev_flush_capable = false; 9799 out: 9800 if (hba->dev_info.b_rpm_dev_flush_capable) { 9801 schedule_delayed_work(&hba->rpm_dev_flush_recheck_work, 9802 msecs_to_jiffies(RPM_DEV_FLUSH_RECHECK_WORK_DELAY_MS)); 9803 } 9804 9805 if (ret) { 9806 ufshcd_update_evt_hist(hba, UFS_EVT_WL_SUSP_ERR, (u32)ret); 9807 hba->clk_gating.is_suspended = false; 9808 ufshcd_release(hba); 9809 } 9810 hba->pm_op_in_progress = false; 9811 return ret; 9812 } 9813 9814 #ifdef CONFIG_PM 9815 static int __ufshcd_wl_resume(struct ufs_hba *hba, enum ufs_pm_op pm_op) 9816 { 9817 int ret; 9818 enum uic_link_state old_link_state = hba->uic_link_state; 9819 9820 hba->pm_op_in_progress = true; 9821 9822 /* 9823 * Call vendor specific resume callback. As these callbacks may access 9824 * vendor specific host controller register space call them when the 9825 * host clocks are ON. 9826 */ 9827 ret = ufshcd_vops_resume(hba, pm_op); 9828 if (ret) 9829 goto out; 9830 9831 /* For DeepSleep, the only supported option is to have the link off */ 9832 WARN_ON(ufshcd_is_ufs_dev_deepsleep(hba) && !ufshcd_is_link_off(hba)); 9833 9834 if (ufshcd_is_link_hibern8(hba)) { 9835 ret = ufshcd_uic_hibern8_exit(hba); 9836 if (!ret) { 9837 ufshcd_set_link_active(hba); 9838 } else { 9839 dev_err(hba->dev, "%s: hibern8 exit failed %d\n", 9840 __func__, ret); 9841 goto vendor_suspend; 9842 } 9843 } else if (ufshcd_is_link_off(hba)) { 9844 /* 9845 * A full initialization of the host and the device is 9846 * required since the link was put to off during suspend. 9847 * Note, in the case of DeepSleep, the device will exit 9848 * DeepSleep due to device reset. 9849 */ 9850 ret = ufshcd_reset_and_restore(hba); 9851 /* 9852 * ufshcd_reset_and_restore() should have already 9853 * set the link state as active 9854 */ 9855 if (ret || !ufshcd_is_link_active(hba)) 9856 goto vendor_suspend; 9857 } 9858 9859 if (!ufshcd_is_ufs_dev_active(hba)) { 9860 ret = ufshcd_set_dev_pwr_mode(hba, UFS_ACTIVE_PWR_MODE); 9861 if (ret) 9862 goto set_old_link_state; 9863 ufshcd_set_timestamp_attr(hba); 9864 schedule_delayed_work(&hba->ufs_rtc_update_work, 9865 msecs_to_jiffies(UFS_RTC_UPDATE_INTERVAL_MS)); 9866 } 9867 9868 if (ufshcd_keep_autobkops_enabled_except_suspend(hba)) 9869 ufshcd_enable_auto_bkops(hba); 9870 else 9871 /* 9872 * If BKOPs operations are urgently needed at this moment then 9873 * keep auto-bkops enabled or else disable it. 9874 */ 9875 ufshcd_urgent_bkops(hba); 9876 9877 if (hba->ee_usr_mask) 9878 ufshcd_write_ee_control(hba); 9879 9880 if (ufshcd_is_clkscaling_supported(hba)) 9881 ufshcd_clk_scaling_suspend(hba, false); 9882 9883 if (hba->dev_info.b_rpm_dev_flush_capable) { 9884 hba->dev_info.b_rpm_dev_flush_capable = false; 9885 cancel_delayed_work(&hba->rpm_dev_flush_recheck_work); 9886 } 9887 9888 ufshcd_configure_auto_hibern8(hba); 9889 9890 goto out; 9891 9892 set_old_link_state: 9893 ufshcd_link_state_transition(hba, old_link_state, 0); 9894 vendor_suspend: 9895 ufshcd_vops_suspend(hba, pm_op, PRE_CHANGE); 9896 ufshcd_vops_suspend(hba, pm_op, POST_CHANGE); 9897 out: 9898 if (ret) 9899 ufshcd_update_evt_hist(hba, UFS_EVT_WL_RES_ERR, (u32)ret); 9900 hba->clk_gating.is_suspended = false; 9901 ufshcd_release(hba); 9902 hba->pm_op_in_progress = false; 9903 return ret; 9904 } 9905 9906 static int ufshcd_wl_runtime_suspend(struct device *dev) 9907 { 9908 struct scsi_device *sdev = to_scsi_device(dev); 9909 struct ufs_hba *hba; 9910 int ret; 9911 ktime_t start = ktime_get(); 9912 9913 hba = shost_priv(sdev->host); 9914 9915 ret = __ufshcd_wl_suspend(hba, UFS_RUNTIME_PM); 9916 if (ret) 9917 dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret); 9918 9919 trace_ufshcd_wl_runtime_suspend(dev_name(dev), ret, 9920 ktime_to_us(ktime_sub(ktime_get(), start)), 9921 hba->curr_dev_pwr_mode, hba->uic_link_state); 9922 9923 return ret; 9924 } 9925 9926 static int ufshcd_wl_runtime_resume(struct device *dev) 9927 { 9928 struct scsi_device *sdev = to_scsi_device(dev); 9929 struct ufs_hba *hba; 9930 int ret = 0; 9931 ktime_t start = ktime_get(); 9932 9933 hba = shost_priv(sdev->host); 9934 9935 ret = __ufshcd_wl_resume(hba, UFS_RUNTIME_PM); 9936 if (ret) 9937 dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret); 9938 9939 trace_ufshcd_wl_runtime_resume(dev_name(dev), ret, 9940 ktime_to_us(ktime_sub(ktime_get(), start)), 9941 hba->curr_dev_pwr_mode, hba->uic_link_state); 9942 9943 return ret; 9944 } 9945 #endif 9946 9947 #ifdef CONFIG_PM_SLEEP 9948 static int ufshcd_wl_suspend(struct device *dev) 9949 { 9950 struct scsi_device *sdev = to_scsi_device(dev); 9951 struct ufs_hba *hba; 9952 int ret = 0; 9953 ktime_t start = ktime_get(); 9954 9955 hba = shost_priv(sdev->host); 9956 down(&hba->host_sem); 9957 hba->system_suspending = true; 9958 9959 if (pm_runtime_suspended(dev)) 9960 goto out; 9961 9962 ret = __ufshcd_wl_suspend(hba, UFS_SYSTEM_PM); 9963 if (ret) { 9964 dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret); 9965 up(&hba->host_sem); 9966 } 9967 9968 out: 9969 if (!ret) 9970 hba->is_sys_suspended = true; 9971 trace_ufshcd_wl_suspend(dev_name(dev), ret, 9972 ktime_to_us(ktime_sub(ktime_get(), start)), 9973 hba->curr_dev_pwr_mode, hba->uic_link_state); 9974 9975 return ret; 9976 } 9977 9978 static int ufshcd_wl_resume(struct device *dev) 9979 { 9980 struct scsi_device *sdev = to_scsi_device(dev); 9981 struct ufs_hba *hba; 9982 int ret = 0; 9983 ktime_t start = ktime_get(); 9984 9985 hba = shost_priv(sdev->host); 9986 9987 if (pm_runtime_suspended(dev)) 9988 goto out; 9989 9990 ret = __ufshcd_wl_resume(hba, UFS_SYSTEM_PM); 9991 if (ret) 9992 dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret); 9993 out: 9994 trace_ufshcd_wl_resume(dev_name(dev), ret, 9995 ktime_to_us(ktime_sub(ktime_get(), start)), 9996 hba->curr_dev_pwr_mode, hba->uic_link_state); 9997 if (!ret) 9998 hba->is_sys_suspended = false; 9999 hba->system_suspending = false; 10000 up(&hba->host_sem); 10001 return ret; 10002 } 10003 #endif 10004 10005 /** 10006 * ufshcd_suspend - helper function for suspend operations 10007 * @hba: per adapter instance 10008 * 10009 * This function will put disable irqs, turn off clocks 10010 * and set vreg and hba-vreg in lpm mode. 10011 * 10012 * Return: 0 upon success; < 0 upon failure. 10013 */ 10014 static int ufshcd_suspend(struct ufs_hba *hba) 10015 { 10016 int ret; 10017 10018 if (!hba->is_powered) 10019 return 0; 10020 /* 10021 * Disable the host irq as host controller as there won't be any 10022 * host controller transaction expected till resume. 10023 */ 10024 ufshcd_disable_irq(hba); 10025 ret = ufshcd_setup_clocks(hba, false); 10026 if (ret) { 10027 ufshcd_enable_irq(hba); 10028 return ret; 10029 } 10030 if (ufshcd_is_clkgating_allowed(hba)) { 10031 hba->clk_gating.state = CLKS_OFF; 10032 trace_ufshcd_clk_gating(dev_name(hba->dev), 10033 hba->clk_gating.state); 10034 } 10035 10036 ufshcd_vreg_set_lpm(hba); 10037 /* Put the host controller in low power mode if possible */ 10038 ufshcd_hba_vreg_set_lpm(hba); 10039 ufshcd_pm_qos_update(hba, false); 10040 return ret; 10041 } 10042 10043 #ifdef CONFIG_PM 10044 /** 10045 * ufshcd_resume - helper function for resume operations 10046 * @hba: per adapter instance 10047 * 10048 * This function basically turns on the regulators, clocks and 10049 * irqs of the hba. 10050 * 10051 * Return: 0 for success and non-zero for failure. 10052 */ 10053 static int ufshcd_resume(struct ufs_hba *hba) 10054 { 10055 int ret; 10056 10057 if (!hba->is_powered) 10058 return 0; 10059 10060 ufshcd_hba_vreg_set_hpm(hba); 10061 ret = ufshcd_vreg_set_hpm(hba); 10062 if (ret) 10063 goto out; 10064 10065 /* Make sure clocks are enabled before accessing controller */ 10066 ret = ufshcd_setup_clocks(hba, true); 10067 if (ret) 10068 goto disable_vreg; 10069 10070 /* enable the host irq as host controller would be active soon */ 10071 ufshcd_enable_irq(hba); 10072 10073 goto out; 10074 10075 disable_vreg: 10076 ufshcd_vreg_set_lpm(hba); 10077 out: 10078 if (ret) 10079 ufshcd_update_evt_hist(hba, UFS_EVT_RESUME_ERR, (u32)ret); 10080 return ret; 10081 } 10082 #endif /* CONFIG_PM */ 10083 10084 #ifdef CONFIG_PM_SLEEP 10085 /** 10086 * ufshcd_system_suspend - system suspend callback 10087 * @dev: Device associated with the UFS controller. 10088 * 10089 * Executed before putting the system into a sleep state in which the contents 10090 * of main memory are preserved. 10091 * 10092 * Return: 0 for success and non-zero for failure. 10093 */ 10094 int ufshcd_system_suspend(struct device *dev) 10095 { 10096 struct ufs_hba *hba = dev_get_drvdata(dev); 10097 int ret = 0; 10098 ktime_t start = ktime_get(); 10099 10100 if (pm_runtime_suspended(hba->dev)) 10101 goto out; 10102 10103 ret = ufshcd_suspend(hba); 10104 out: 10105 trace_ufshcd_system_suspend(dev_name(hba->dev), ret, 10106 ktime_to_us(ktime_sub(ktime_get(), start)), 10107 hba->curr_dev_pwr_mode, hba->uic_link_state); 10108 return ret; 10109 } 10110 EXPORT_SYMBOL(ufshcd_system_suspend); 10111 10112 /** 10113 * ufshcd_system_resume - system resume callback 10114 * @dev: Device associated with the UFS controller. 10115 * 10116 * Executed after waking the system up from a sleep state in which the contents 10117 * of main memory were preserved. 10118 * 10119 * Return: 0 for success and non-zero for failure. 10120 */ 10121 int ufshcd_system_resume(struct device *dev) 10122 { 10123 struct ufs_hba *hba = dev_get_drvdata(dev); 10124 ktime_t start = ktime_get(); 10125 int ret = 0; 10126 10127 if (pm_runtime_suspended(hba->dev)) 10128 goto out; 10129 10130 ret = ufshcd_resume(hba); 10131 10132 out: 10133 trace_ufshcd_system_resume(dev_name(hba->dev), ret, 10134 ktime_to_us(ktime_sub(ktime_get(), start)), 10135 hba->curr_dev_pwr_mode, hba->uic_link_state); 10136 10137 return ret; 10138 } 10139 EXPORT_SYMBOL(ufshcd_system_resume); 10140 #endif /* CONFIG_PM_SLEEP */ 10141 10142 #ifdef CONFIG_PM 10143 /** 10144 * ufshcd_runtime_suspend - runtime suspend callback 10145 * @dev: Device associated with the UFS controller. 10146 * 10147 * Check the description of ufshcd_suspend() function for more details. 10148 * 10149 * Return: 0 for success and non-zero for failure. 10150 */ 10151 int ufshcd_runtime_suspend(struct device *dev) 10152 { 10153 struct ufs_hba *hba = dev_get_drvdata(dev); 10154 int ret; 10155 ktime_t start = ktime_get(); 10156 10157 ret = ufshcd_suspend(hba); 10158 10159 trace_ufshcd_runtime_suspend(dev_name(hba->dev), ret, 10160 ktime_to_us(ktime_sub(ktime_get(), start)), 10161 hba->curr_dev_pwr_mode, hba->uic_link_state); 10162 return ret; 10163 } 10164 EXPORT_SYMBOL(ufshcd_runtime_suspend); 10165 10166 /** 10167 * ufshcd_runtime_resume - runtime resume routine 10168 * @dev: Device associated with the UFS controller. 10169 * 10170 * This function basically brings controller 10171 * to active state. Following operations are done in this function: 10172 * 10173 * 1. Turn on all the controller related clocks 10174 * 2. Turn ON VCC rail 10175 * 10176 * Return: 0 upon success; < 0 upon failure. 10177 */ 10178 int ufshcd_runtime_resume(struct device *dev) 10179 { 10180 struct ufs_hba *hba = dev_get_drvdata(dev); 10181 int ret; 10182 ktime_t start = ktime_get(); 10183 10184 ret = ufshcd_resume(hba); 10185 10186 trace_ufshcd_runtime_resume(dev_name(hba->dev), ret, 10187 ktime_to_us(ktime_sub(ktime_get(), start)), 10188 hba->curr_dev_pwr_mode, hba->uic_link_state); 10189 return ret; 10190 } 10191 EXPORT_SYMBOL(ufshcd_runtime_resume); 10192 #endif /* CONFIG_PM */ 10193 10194 static void ufshcd_wl_shutdown(struct device *dev) 10195 { 10196 struct scsi_device *sdev = to_scsi_device(dev); 10197 struct ufs_hba *hba = shost_priv(sdev->host); 10198 10199 down(&hba->host_sem); 10200 hba->shutting_down = true; 10201 up(&hba->host_sem); 10202 10203 /* Turn on everything while shutting down */ 10204 ufshcd_rpm_get_sync(hba); 10205 scsi_device_quiesce(sdev); 10206 shost_for_each_device(sdev, hba->host) { 10207 if (sdev == hba->ufs_device_wlun) 10208 continue; 10209 scsi_device_quiesce(sdev); 10210 } 10211 __ufshcd_wl_suspend(hba, UFS_SHUTDOWN_PM); 10212 10213 /* 10214 * Next, turn off the UFS controller and the UFS regulators. Disable 10215 * clocks. 10216 */ 10217 if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba)) 10218 ufshcd_suspend(hba); 10219 10220 hba->is_powered = false; 10221 } 10222 10223 /** 10224 * ufshcd_remove - de-allocate SCSI host and host memory space 10225 * data structure memory 10226 * @hba: per adapter instance 10227 */ 10228 void ufshcd_remove(struct ufs_hba *hba) 10229 { 10230 if (hba->ufs_device_wlun) 10231 ufshcd_rpm_get_sync(hba); 10232 ufs_hwmon_remove(hba); 10233 ufs_bsg_remove(hba); 10234 ufs_sysfs_remove_nodes(hba->dev); 10235 blk_mq_destroy_queue(hba->tmf_queue); 10236 blk_put_queue(hba->tmf_queue); 10237 blk_mq_free_tag_set(&hba->tmf_tag_set); 10238 if (hba->scsi_host_added) 10239 scsi_remove_host(hba->host); 10240 /* disable interrupts */ 10241 ufshcd_disable_intr(hba, hba->intr_mask); 10242 ufshcd_hba_stop(hba); 10243 ufshcd_hba_exit(hba); 10244 } 10245 EXPORT_SYMBOL_GPL(ufshcd_remove); 10246 10247 #ifdef CONFIG_PM_SLEEP 10248 int ufshcd_system_freeze(struct device *dev) 10249 { 10250 10251 return ufshcd_system_suspend(dev); 10252 10253 } 10254 EXPORT_SYMBOL_GPL(ufshcd_system_freeze); 10255 10256 int ufshcd_system_restore(struct device *dev) 10257 { 10258 10259 struct ufs_hba *hba = dev_get_drvdata(dev); 10260 int ret; 10261 10262 ret = ufshcd_system_resume(dev); 10263 if (ret) 10264 return ret; 10265 10266 /* Configure UTRL and UTMRL base address registers */ 10267 ufshcd_writel(hba, lower_32_bits(hba->utrdl_dma_addr), 10268 REG_UTP_TRANSFER_REQ_LIST_BASE_L); 10269 ufshcd_writel(hba, upper_32_bits(hba->utrdl_dma_addr), 10270 REG_UTP_TRANSFER_REQ_LIST_BASE_H); 10271 ufshcd_writel(hba, lower_32_bits(hba->utmrdl_dma_addr), 10272 REG_UTP_TASK_REQ_LIST_BASE_L); 10273 ufshcd_writel(hba, upper_32_bits(hba->utmrdl_dma_addr), 10274 REG_UTP_TASK_REQ_LIST_BASE_H); 10275 /* 10276 * Make sure that UTRL and UTMRL base address registers 10277 * are updated with the latest queue addresses. Only after 10278 * updating these addresses, we can queue the new commands. 10279 */ 10280 ufshcd_readl(hba, REG_UTP_TASK_REQ_LIST_BASE_H); 10281 10282 return 0; 10283 10284 } 10285 EXPORT_SYMBOL_GPL(ufshcd_system_restore); 10286 10287 int ufshcd_system_thaw(struct device *dev) 10288 { 10289 return ufshcd_system_resume(dev); 10290 } 10291 EXPORT_SYMBOL_GPL(ufshcd_system_thaw); 10292 #endif /* CONFIG_PM_SLEEP */ 10293 10294 /** 10295 * ufshcd_dealloc_host - deallocate Host Bus Adapter (HBA) 10296 * @hba: pointer to Host Bus Adapter (HBA) 10297 */ 10298 void ufshcd_dealloc_host(struct ufs_hba *hba) 10299 { 10300 scsi_host_put(hba->host); 10301 } 10302 EXPORT_SYMBOL_GPL(ufshcd_dealloc_host); 10303 10304 /** 10305 * ufshcd_set_dma_mask - Set dma mask based on the controller 10306 * addressing capability 10307 * @hba: per adapter instance 10308 * 10309 * Return: 0 for success, non-zero for failure. 10310 */ 10311 static int ufshcd_set_dma_mask(struct ufs_hba *hba) 10312 { 10313 if (hba->capabilities & MASK_64_ADDRESSING_SUPPORT) { 10314 if (!dma_set_mask_and_coherent(hba->dev, DMA_BIT_MASK(64))) 10315 return 0; 10316 } 10317 return dma_set_mask_and_coherent(hba->dev, DMA_BIT_MASK(32)); 10318 } 10319 10320 /** 10321 * ufshcd_alloc_host - allocate Host Bus Adapter (HBA) 10322 * @dev: pointer to device handle 10323 * @hba_handle: driver private handle 10324 * 10325 * Return: 0 on success, non-zero value on failure. 10326 */ 10327 int ufshcd_alloc_host(struct device *dev, struct ufs_hba **hba_handle) 10328 { 10329 struct Scsi_Host *host; 10330 struct ufs_hba *hba; 10331 int err = 0; 10332 10333 if (!dev) { 10334 dev_err(dev, 10335 "Invalid memory reference for dev is NULL\n"); 10336 err = -ENODEV; 10337 goto out_error; 10338 } 10339 10340 host = scsi_host_alloc(&ufshcd_driver_template, 10341 sizeof(struct ufs_hba)); 10342 if (!host) { 10343 dev_err(dev, "scsi_host_alloc failed\n"); 10344 err = -ENOMEM; 10345 goto out_error; 10346 } 10347 host->nr_maps = HCTX_TYPE_POLL + 1; 10348 hba = shost_priv(host); 10349 hba->host = host; 10350 hba->dev = dev; 10351 hba->dev_ref_clk_freq = REF_CLK_FREQ_INVAL; 10352 hba->nop_out_timeout = NOP_OUT_TIMEOUT; 10353 ufshcd_set_sg_entry_size(hba, sizeof(struct ufshcd_sg_entry)); 10354 INIT_LIST_HEAD(&hba->clk_list_head); 10355 spin_lock_init(&hba->outstanding_lock); 10356 10357 *hba_handle = hba; 10358 10359 out_error: 10360 return err; 10361 } 10362 EXPORT_SYMBOL(ufshcd_alloc_host); 10363 10364 /* This function exists because blk_mq_alloc_tag_set() requires this. */ 10365 static blk_status_t ufshcd_queue_tmf(struct blk_mq_hw_ctx *hctx, 10366 const struct blk_mq_queue_data *qd) 10367 { 10368 WARN_ON_ONCE(true); 10369 return BLK_STS_NOTSUPP; 10370 } 10371 10372 static const struct blk_mq_ops ufshcd_tmf_ops = { 10373 .queue_rq = ufshcd_queue_tmf, 10374 }; 10375 10376 /** 10377 * ufshcd_init - Driver initialization routine 10378 * @hba: per-adapter instance 10379 * @mmio_base: base register address 10380 * @irq: Interrupt line of device 10381 * 10382 * Return: 0 on success, non-zero value on failure. 10383 */ 10384 int ufshcd_init(struct ufs_hba *hba, void __iomem *mmio_base, unsigned int irq) 10385 { 10386 int err; 10387 struct Scsi_Host *host = hba->host; 10388 struct device *dev = hba->dev; 10389 char eh_wq_name[sizeof("ufs_eh_wq_00")]; 10390 10391 /* 10392 * dev_set_drvdata() must be called before any callbacks are registered 10393 * that use dev_get_drvdata() (frequency scaling, clock scaling, hwmon, 10394 * sysfs). 10395 */ 10396 dev_set_drvdata(dev, hba); 10397 10398 if (!mmio_base) { 10399 dev_err(hba->dev, 10400 "Invalid memory reference for mmio_base is NULL\n"); 10401 err = -ENODEV; 10402 goto out_error; 10403 } 10404 10405 hba->mmio_base = mmio_base; 10406 hba->irq = irq; 10407 hba->vps = &ufs_hba_vps; 10408 10409 err = ufshcd_hba_init(hba); 10410 if (err) 10411 goto out_error; 10412 10413 /* Read capabilities registers */ 10414 err = ufshcd_hba_capabilities(hba); 10415 if (err) 10416 goto out_disable; 10417 10418 /* Get UFS version supported by the controller */ 10419 hba->ufs_version = ufshcd_get_ufs_version(hba); 10420 10421 /* Get Interrupt bit mask per version */ 10422 hba->intr_mask = ufshcd_get_intr_mask(hba); 10423 10424 err = ufshcd_set_dma_mask(hba); 10425 if (err) { 10426 dev_err(hba->dev, "set dma mask failed\n"); 10427 goto out_disable; 10428 } 10429 10430 /* Allocate memory for host memory space */ 10431 err = ufshcd_memory_alloc(hba); 10432 if (err) { 10433 dev_err(hba->dev, "Memory allocation failed\n"); 10434 goto out_disable; 10435 } 10436 10437 /* Configure LRB */ 10438 ufshcd_host_memory_configure(hba); 10439 10440 host->can_queue = hba->nutrs - UFSHCD_NUM_RESERVED; 10441 host->cmd_per_lun = hba->nutrs - UFSHCD_NUM_RESERVED; 10442 host->max_id = UFSHCD_MAX_ID; 10443 host->max_lun = UFS_MAX_LUNS; 10444 host->max_channel = UFSHCD_MAX_CHANNEL; 10445 host->unique_id = host->host_no; 10446 host->max_cmd_len = UFS_CDB_SIZE; 10447 host->queuecommand_may_block = !!(hba->caps & UFSHCD_CAP_CLK_GATING); 10448 10449 /* Use default RPM delay if host not set */ 10450 if (host->rpm_autosuspend_delay == 0) 10451 host->rpm_autosuspend_delay = RPM_AUTOSUSPEND_DELAY_MS; 10452 10453 hba->max_pwr_info.is_valid = false; 10454 10455 /* Initialize work queues */ 10456 snprintf(eh_wq_name, sizeof(eh_wq_name), "ufs_eh_wq_%d", 10457 hba->host->host_no); 10458 hba->eh_wq = create_singlethread_workqueue(eh_wq_name); 10459 if (!hba->eh_wq) { 10460 dev_err(hba->dev, "%s: failed to create eh workqueue\n", 10461 __func__); 10462 err = -ENOMEM; 10463 goto out_disable; 10464 } 10465 INIT_WORK(&hba->eh_work, ufshcd_err_handler); 10466 INIT_WORK(&hba->eeh_work, ufshcd_exception_event_handler); 10467 10468 sema_init(&hba->host_sem, 1); 10469 10470 /* Initialize UIC command mutex */ 10471 mutex_init(&hba->uic_cmd_mutex); 10472 10473 /* Initialize mutex for device management commands */ 10474 mutex_init(&hba->dev_cmd.lock); 10475 10476 /* Initialize mutex for exception event control */ 10477 mutex_init(&hba->ee_ctrl_mutex); 10478 10479 mutex_init(&hba->wb_mutex); 10480 init_rwsem(&hba->clk_scaling_lock); 10481 10482 ufshcd_init_clk_gating(hba); 10483 10484 ufshcd_init_clk_scaling(hba); 10485 10486 /* 10487 * In order to avoid any spurious interrupt immediately after 10488 * registering UFS controller interrupt handler, clear any pending UFS 10489 * interrupt status and disable all the UFS interrupts. 10490 */ 10491 ufshcd_writel(hba, ufshcd_readl(hba, REG_INTERRUPT_STATUS), 10492 REG_INTERRUPT_STATUS); 10493 ufshcd_writel(hba, 0, REG_INTERRUPT_ENABLE); 10494 /* 10495 * Make sure that UFS interrupts are disabled and any pending interrupt 10496 * status is cleared before registering UFS interrupt handler. 10497 */ 10498 ufshcd_readl(hba, REG_INTERRUPT_ENABLE); 10499 10500 /* IRQ registration */ 10501 err = devm_request_irq(dev, irq, ufshcd_intr, IRQF_SHARED, UFSHCD, hba); 10502 if (err) { 10503 dev_err(hba->dev, "request irq failed\n"); 10504 goto out_disable; 10505 } else { 10506 hba->is_irq_enabled = true; 10507 } 10508 10509 if (!is_mcq_supported(hba)) { 10510 if (!hba->lsdb_sup) { 10511 dev_err(hba->dev, "%s: failed to initialize (legacy doorbell mode not supported)\n", 10512 __func__); 10513 err = -EINVAL; 10514 goto out_disable; 10515 } 10516 err = scsi_add_host(host, hba->dev); 10517 if (err) { 10518 dev_err(hba->dev, "scsi_add_host failed\n"); 10519 goto out_disable; 10520 } 10521 hba->scsi_host_added = true; 10522 } 10523 10524 hba->tmf_tag_set = (struct blk_mq_tag_set) { 10525 .nr_hw_queues = 1, 10526 .queue_depth = hba->nutmrs, 10527 .ops = &ufshcd_tmf_ops, 10528 .flags = BLK_MQ_F_NO_SCHED, 10529 }; 10530 err = blk_mq_alloc_tag_set(&hba->tmf_tag_set); 10531 if (err < 0) 10532 goto out_remove_scsi_host; 10533 hba->tmf_queue = blk_mq_alloc_queue(&hba->tmf_tag_set, NULL, NULL); 10534 if (IS_ERR(hba->tmf_queue)) { 10535 err = PTR_ERR(hba->tmf_queue); 10536 goto free_tmf_tag_set; 10537 } 10538 hba->tmf_rqs = devm_kcalloc(hba->dev, hba->nutmrs, 10539 sizeof(*hba->tmf_rqs), GFP_KERNEL); 10540 if (!hba->tmf_rqs) { 10541 err = -ENOMEM; 10542 goto free_tmf_queue; 10543 } 10544 10545 /* Reset the attached device */ 10546 ufshcd_device_reset(hba); 10547 10548 ufshcd_init_crypto(hba); 10549 10550 /* Host controller enable */ 10551 err = ufshcd_hba_enable(hba); 10552 if (err) { 10553 dev_err(hba->dev, "Host controller enable failed\n"); 10554 ufshcd_print_evt_hist(hba); 10555 ufshcd_print_host_state(hba); 10556 goto free_tmf_queue; 10557 } 10558 10559 /* 10560 * Set the default power management level for runtime and system PM. 10561 * Default power saving mode is to keep UFS link in Hibern8 state 10562 * and UFS device in sleep state. 10563 */ 10564 hba->rpm_lvl = ufs_get_desired_pm_lvl_for_dev_link_state( 10565 UFS_SLEEP_PWR_MODE, 10566 UIC_LINK_HIBERN8_STATE); 10567 hba->spm_lvl = ufs_get_desired_pm_lvl_for_dev_link_state( 10568 UFS_SLEEP_PWR_MODE, 10569 UIC_LINK_HIBERN8_STATE); 10570 10571 INIT_DELAYED_WORK(&hba->rpm_dev_flush_recheck_work, ufshcd_rpm_dev_flush_recheck_work); 10572 INIT_DELAYED_WORK(&hba->ufs_rtc_update_work, ufshcd_rtc_work); 10573 10574 /* Set the default auto-hiberate idle timer value to 150 ms */ 10575 if (ufshcd_is_auto_hibern8_supported(hba) && !hba->ahit) { 10576 hba->ahit = FIELD_PREP(UFSHCI_AHIBERN8_TIMER_MASK, 150) | 10577 FIELD_PREP(UFSHCI_AHIBERN8_SCALE_MASK, 3); 10578 } 10579 10580 /* Hold auto suspend until async scan completes */ 10581 pm_runtime_get_sync(dev); 10582 atomic_set(&hba->scsi_block_reqs_cnt, 0); 10583 /* 10584 * We are assuming that device wasn't put in sleep/power-down 10585 * state exclusively during the boot stage before kernel. 10586 * This assumption helps avoid doing link startup twice during 10587 * ufshcd_probe_hba(). 10588 */ 10589 ufshcd_set_ufs_dev_active(hba); 10590 10591 async_schedule(ufshcd_async_scan, hba); 10592 ufs_sysfs_add_nodes(hba->dev); 10593 10594 device_enable_async_suspend(dev); 10595 ufshcd_pm_qos_init(hba); 10596 return 0; 10597 10598 free_tmf_queue: 10599 blk_mq_destroy_queue(hba->tmf_queue); 10600 blk_put_queue(hba->tmf_queue); 10601 free_tmf_tag_set: 10602 blk_mq_free_tag_set(&hba->tmf_tag_set); 10603 out_remove_scsi_host: 10604 if (hba->scsi_host_added) 10605 scsi_remove_host(hba->host); 10606 out_disable: 10607 hba->is_irq_enabled = false; 10608 ufshcd_hba_exit(hba); 10609 out_error: 10610 return err; 10611 } 10612 EXPORT_SYMBOL_GPL(ufshcd_init); 10613 10614 void ufshcd_resume_complete(struct device *dev) 10615 { 10616 struct ufs_hba *hba = dev_get_drvdata(dev); 10617 10618 if (hba->complete_put) { 10619 ufshcd_rpm_put(hba); 10620 hba->complete_put = false; 10621 } 10622 } 10623 EXPORT_SYMBOL_GPL(ufshcd_resume_complete); 10624 10625 static bool ufshcd_rpm_ok_for_spm(struct ufs_hba *hba) 10626 { 10627 struct device *dev = &hba->ufs_device_wlun->sdev_gendev; 10628 enum ufs_dev_pwr_mode dev_pwr_mode; 10629 enum uic_link_state link_state; 10630 unsigned long flags; 10631 bool res; 10632 10633 spin_lock_irqsave(&dev->power.lock, flags); 10634 dev_pwr_mode = ufs_get_pm_lvl_to_dev_pwr_mode(hba->spm_lvl); 10635 link_state = ufs_get_pm_lvl_to_link_pwr_state(hba->spm_lvl); 10636 res = pm_runtime_suspended(dev) && 10637 hba->curr_dev_pwr_mode == dev_pwr_mode && 10638 hba->uic_link_state == link_state && 10639 !hba->dev_info.b_rpm_dev_flush_capable; 10640 spin_unlock_irqrestore(&dev->power.lock, flags); 10641 10642 return res; 10643 } 10644 10645 int __ufshcd_suspend_prepare(struct device *dev, bool rpm_ok_for_spm) 10646 { 10647 struct ufs_hba *hba = dev_get_drvdata(dev); 10648 int ret; 10649 10650 /* 10651 * SCSI assumes that runtime-pm and system-pm for scsi drivers 10652 * are same. And it doesn't wake up the device for system-suspend 10653 * if it's runtime suspended. But ufs doesn't follow that. 10654 * Refer ufshcd_resume_complete() 10655 */ 10656 if (hba->ufs_device_wlun) { 10657 /* Prevent runtime suspend */ 10658 ufshcd_rpm_get_noresume(hba); 10659 /* 10660 * Check if already runtime suspended in same state as system 10661 * suspend would be. 10662 */ 10663 if (!rpm_ok_for_spm || !ufshcd_rpm_ok_for_spm(hba)) { 10664 /* RPM state is not ok for SPM, so runtime resume */ 10665 ret = ufshcd_rpm_resume(hba); 10666 if (ret < 0 && ret != -EACCES) { 10667 ufshcd_rpm_put(hba); 10668 return ret; 10669 } 10670 } 10671 hba->complete_put = true; 10672 } 10673 return 0; 10674 } 10675 EXPORT_SYMBOL_GPL(__ufshcd_suspend_prepare); 10676 10677 int ufshcd_suspend_prepare(struct device *dev) 10678 { 10679 return __ufshcd_suspend_prepare(dev, true); 10680 } 10681 EXPORT_SYMBOL_GPL(ufshcd_suspend_prepare); 10682 10683 #ifdef CONFIG_PM_SLEEP 10684 static int ufshcd_wl_poweroff(struct device *dev) 10685 { 10686 struct scsi_device *sdev = to_scsi_device(dev); 10687 struct ufs_hba *hba = shost_priv(sdev->host); 10688 10689 __ufshcd_wl_suspend(hba, UFS_SHUTDOWN_PM); 10690 return 0; 10691 } 10692 #endif 10693 10694 static int ufshcd_wl_probe(struct device *dev) 10695 { 10696 struct scsi_device *sdev = to_scsi_device(dev); 10697 10698 if (!is_device_wlun(sdev)) 10699 return -ENODEV; 10700 10701 blk_pm_runtime_init(sdev->request_queue, dev); 10702 pm_runtime_set_autosuspend_delay(dev, 0); 10703 pm_runtime_allow(dev); 10704 10705 return 0; 10706 } 10707 10708 static int ufshcd_wl_remove(struct device *dev) 10709 { 10710 pm_runtime_forbid(dev); 10711 return 0; 10712 } 10713 10714 static const struct dev_pm_ops ufshcd_wl_pm_ops = { 10715 #ifdef CONFIG_PM_SLEEP 10716 .suspend = ufshcd_wl_suspend, 10717 .resume = ufshcd_wl_resume, 10718 .freeze = ufshcd_wl_suspend, 10719 .thaw = ufshcd_wl_resume, 10720 .poweroff = ufshcd_wl_poweroff, 10721 .restore = ufshcd_wl_resume, 10722 #endif 10723 SET_RUNTIME_PM_OPS(ufshcd_wl_runtime_suspend, ufshcd_wl_runtime_resume, NULL) 10724 }; 10725 10726 static void ufshcd_check_header_layout(void) 10727 { 10728 /* 10729 * gcc compilers before version 10 cannot do constant-folding for 10730 * sub-byte bitfields. Hence skip the layout checks for gcc 9 and 10731 * before. 10732 */ 10733 if (IS_ENABLED(CONFIG_CC_IS_GCC) && CONFIG_GCC_VERSION < 100000) 10734 return; 10735 10736 BUILD_BUG_ON(((u8 *)&(struct request_desc_header){ 10737 .cci = 3})[0] != 3); 10738 10739 BUILD_BUG_ON(((u8 *)&(struct request_desc_header){ 10740 .ehs_length = 2})[1] != 2); 10741 10742 BUILD_BUG_ON(((u8 *)&(struct request_desc_header){ 10743 .enable_crypto = 1})[2] 10744 != 0x80); 10745 10746 BUILD_BUG_ON((((u8 *)&(struct request_desc_header){ 10747 .command_type = 5, 10748 .data_direction = 3, 10749 .interrupt = 1, 10750 })[3]) != ((5 << 4) | (3 << 1) | 1)); 10751 10752 BUILD_BUG_ON(((__le32 *)&(struct request_desc_header){ 10753 .dunl = cpu_to_le32(0xdeadbeef)})[1] != 10754 cpu_to_le32(0xdeadbeef)); 10755 10756 BUILD_BUG_ON(((u8 *)&(struct request_desc_header){ 10757 .ocs = 4})[8] != 4); 10758 10759 BUILD_BUG_ON(((u8 *)&(struct request_desc_header){ 10760 .cds = 5})[9] != 5); 10761 10762 BUILD_BUG_ON(((__le32 *)&(struct request_desc_header){ 10763 .dunu = cpu_to_le32(0xbadcafe)})[3] != 10764 cpu_to_le32(0xbadcafe)); 10765 10766 BUILD_BUG_ON(((u8 *)&(struct utp_upiu_header){ 10767 .iid = 0xf })[4] != 0xf0); 10768 10769 BUILD_BUG_ON(((u8 *)&(struct utp_upiu_header){ 10770 .command_set_type = 0xf })[4] != 0xf); 10771 } 10772 10773 /* 10774 * ufs_dev_wlun_template - describes ufs device wlun 10775 * ufs-device wlun - used to send pm commands 10776 * All luns are consumers of ufs-device wlun. 10777 * 10778 * Currently, no sd driver is present for wluns. 10779 * Hence the no specific pm operations are performed. 10780 * With ufs design, SSU should be sent to ufs-device wlun. 10781 * Hence register a scsi driver for ufs wluns only. 10782 */ 10783 static struct scsi_driver ufs_dev_wlun_template = { 10784 .gendrv = { 10785 .name = "ufs_device_wlun", 10786 .probe = ufshcd_wl_probe, 10787 .remove = ufshcd_wl_remove, 10788 .pm = &ufshcd_wl_pm_ops, 10789 .shutdown = ufshcd_wl_shutdown, 10790 }, 10791 }; 10792 10793 static int __init ufshcd_core_init(void) 10794 { 10795 int ret; 10796 10797 ufshcd_check_header_layout(); 10798 10799 ufs_debugfs_init(); 10800 10801 ret = scsi_register_driver(&ufs_dev_wlun_template.gendrv); 10802 if (ret) 10803 ufs_debugfs_exit(); 10804 return ret; 10805 } 10806 10807 static void __exit ufshcd_core_exit(void) 10808 { 10809 ufs_debugfs_exit(); 10810 scsi_unregister_driver(&ufs_dev_wlun_template.gendrv); 10811 } 10812 10813 module_init(ufshcd_core_init); 10814 module_exit(ufshcd_core_exit); 10815 10816 MODULE_AUTHOR("Santosh Yaragnavi <santosh.sy@samsung.com>"); 10817 MODULE_AUTHOR("Vinayak Holikatti <h.vinayak@samsung.com>"); 10818 MODULE_DESCRIPTION("Generic UFS host controller driver Core"); 10819 MODULE_SOFTDEP("pre: governor_simpleondemand"); 10820 MODULE_LICENSE("GPL"); 10821