xref: /linux/drivers/ufs/core/ufshcd.c (revision 8faabc041a001140564f718dabe37753e88b37fa)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Universal Flash Storage Host controller driver Core
4  * Copyright (C) 2011-2013 Samsung India Software Operations
5  * Copyright (c) 2013-2016, The Linux Foundation. All rights reserved.
6  *
7  * Authors:
8  *	Santosh Yaraganavi <santosh.sy@samsung.com>
9  *	Vinayak Holikatti <h.vinayak@samsung.com>
10  */
11 
12 #include <linux/async.h>
13 #include <linux/devfreq.h>
14 #include <linux/nls.h>
15 #include <linux/of.h>
16 #include <linux/bitfield.h>
17 #include <linux/blk-pm.h>
18 #include <linux/blkdev.h>
19 #include <linux/clk.h>
20 #include <linux/delay.h>
21 #include <linux/interrupt.h>
22 #include <linux/module.h>
23 #include <linux/pm_opp.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/sched/clock.h>
26 #include <linux/iopoll.h>
27 #include <scsi/scsi_cmnd.h>
28 #include <scsi/scsi_dbg.h>
29 #include <scsi/scsi_driver.h>
30 #include <scsi/scsi_eh.h>
31 #include "ufshcd-priv.h"
32 #include <ufs/ufs_quirks.h>
33 #include <ufs/unipro.h>
34 #include "ufs-sysfs.h"
35 #include "ufs-debugfs.h"
36 #include "ufs-fault-injection.h"
37 #include "ufs_bsg.h"
38 #include "ufshcd-crypto.h"
39 #include <linux/unaligned.h>
40 
41 #define CREATE_TRACE_POINTS
42 #include "ufs_trace.h"
43 
44 #define UFSHCD_ENABLE_INTRS	(UTP_TRANSFER_REQ_COMPL |\
45 				 UTP_TASK_REQ_COMPL |\
46 				 UFSHCD_ERROR_MASK)
47 
48 #define UFSHCD_ENABLE_MCQ_INTRS	(UTP_TASK_REQ_COMPL |\
49 				 UFSHCD_ERROR_MASK |\
50 				 MCQ_CQ_EVENT_STATUS)
51 
52 
53 /* UIC command timeout, unit: ms */
54 enum {
55 	UIC_CMD_TIMEOUT_DEFAULT	= 500,
56 	UIC_CMD_TIMEOUT_MAX	= 2000,
57 };
58 /* NOP OUT retries waiting for NOP IN response */
59 #define NOP_OUT_RETRIES    10
60 /* Timeout after 50 msecs if NOP OUT hangs without response */
61 #define NOP_OUT_TIMEOUT    50 /* msecs */
62 
63 /* Query request retries */
64 #define QUERY_REQ_RETRIES 3
65 /* Query request timeout */
66 #define QUERY_REQ_TIMEOUT 1500 /* 1.5 seconds */
67 
68 /* Advanced RPMB request timeout */
69 #define ADVANCED_RPMB_REQ_TIMEOUT  3000 /* 3 seconds */
70 
71 /* Task management command timeout */
72 #define TM_CMD_TIMEOUT	100 /* msecs */
73 
74 /* maximum number of retries for a general UIC command  */
75 #define UFS_UIC_COMMAND_RETRIES 3
76 
77 /* maximum number of link-startup retries */
78 #define DME_LINKSTARTUP_RETRIES 3
79 
80 /* maximum number of reset retries before giving up */
81 #define MAX_HOST_RESET_RETRIES 5
82 
83 /* Maximum number of error handler retries before giving up */
84 #define MAX_ERR_HANDLER_RETRIES 5
85 
86 /* Expose the flag value from utp_upiu_query.value */
87 #define MASK_QUERY_UPIU_FLAG_LOC 0xFF
88 
89 /* Interrupt aggregation default timeout, unit: 40us */
90 #define INT_AGGR_DEF_TO	0x02
91 
92 /* default delay of autosuspend: 2000 ms */
93 #define RPM_AUTOSUSPEND_DELAY_MS 2000
94 
95 /* Default delay of RPM device flush delayed work */
96 #define RPM_DEV_FLUSH_RECHECK_WORK_DELAY_MS 5000
97 
98 /* Default value of wait time before gating device ref clock */
99 #define UFSHCD_REF_CLK_GATING_WAIT_US 0xFF /* microsecs */
100 
101 /* Polling time to wait for fDeviceInit */
102 #define FDEVICEINIT_COMPL_TIMEOUT 1500 /* millisecs */
103 
104 /* Default RTC update every 10 seconds */
105 #define UFS_RTC_UPDATE_INTERVAL_MS (10 * MSEC_PER_SEC)
106 
107 /* bMaxNumOfRTT is equal to two after device manufacturing */
108 #define DEFAULT_MAX_NUM_RTT 2
109 
110 /* UFSHC 4.0 compliant HC support this mode. */
111 static bool use_mcq_mode = true;
112 
113 static bool is_mcq_supported(struct ufs_hba *hba)
114 {
115 	return hba->mcq_sup && use_mcq_mode;
116 }
117 
118 module_param(use_mcq_mode, bool, 0644);
119 MODULE_PARM_DESC(use_mcq_mode, "Control MCQ mode for controllers starting from UFSHCI 4.0. 1 - enable MCQ, 0 - disable MCQ. MCQ is enabled by default");
120 
121 static unsigned int uic_cmd_timeout = UIC_CMD_TIMEOUT_DEFAULT;
122 
123 static int uic_cmd_timeout_set(const char *val, const struct kernel_param *kp)
124 {
125 	return param_set_uint_minmax(val, kp, UIC_CMD_TIMEOUT_DEFAULT,
126 				     UIC_CMD_TIMEOUT_MAX);
127 }
128 
129 static const struct kernel_param_ops uic_cmd_timeout_ops = {
130 	.set = uic_cmd_timeout_set,
131 	.get = param_get_uint,
132 };
133 
134 module_param_cb(uic_cmd_timeout, &uic_cmd_timeout_ops, &uic_cmd_timeout, 0644);
135 MODULE_PARM_DESC(uic_cmd_timeout,
136 		 "UFS UIC command timeout in milliseconds. Defaults to 500ms. Supported values range from 500ms to 2 seconds inclusively");
137 
138 #define ufshcd_toggle_vreg(_dev, _vreg, _on)				\
139 	({                                                              \
140 		int _ret;                                               \
141 		if (_on)                                                \
142 			_ret = ufshcd_enable_vreg(_dev, _vreg);         \
143 		else                                                    \
144 			_ret = ufshcd_disable_vreg(_dev, _vreg);        \
145 		_ret;                                                   \
146 	})
147 
148 #define ufshcd_hex_dump(prefix_str, buf, len) do {                       \
149 	size_t __len = (len);                                            \
150 	print_hex_dump(KERN_ERR, prefix_str,                             \
151 		       __len > 4 ? DUMP_PREFIX_OFFSET : DUMP_PREFIX_NONE,\
152 		       16, 4, buf, __len, false);                        \
153 } while (0)
154 
155 int ufshcd_dump_regs(struct ufs_hba *hba, size_t offset, size_t len,
156 		     const char *prefix)
157 {
158 	u32 *regs;
159 	size_t pos;
160 
161 	if (offset % 4 != 0 || len % 4 != 0) /* keep readl happy */
162 		return -EINVAL;
163 
164 	regs = kzalloc(len, GFP_ATOMIC);
165 	if (!regs)
166 		return -ENOMEM;
167 
168 	for (pos = 0; pos < len; pos += 4) {
169 		if (offset == 0 &&
170 		    pos >= REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER &&
171 		    pos <= REG_UIC_ERROR_CODE_DME)
172 			continue;
173 		regs[pos / 4] = ufshcd_readl(hba, offset + pos);
174 	}
175 
176 	ufshcd_hex_dump(prefix, regs, len);
177 	kfree(regs);
178 
179 	return 0;
180 }
181 EXPORT_SYMBOL_GPL(ufshcd_dump_regs);
182 
183 enum {
184 	UFSHCD_MAX_CHANNEL	= 0,
185 	UFSHCD_MAX_ID		= 1,
186 };
187 
188 static const char *const ufshcd_state_name[] = {
189 	[UFSHCD_STATE_RESET]			= "reset",
190 	[UFSHCD_STATE_OPERATIONAL]		= "operational",
191 	[UFSHCD_STATE_ERROR]			= "error",
192 	[UFSHCD_STATE_EH_SCHEDULED_FATAL]	= "eh_fatal",
193 	[UFSHCD_STATE_EH_SCHEDULED_NON_FATAL]	= "eh_non_fatal",
194 };
195 
196 /* UFSHCD error handling flags */
197 enum {
198 	UFSHCD_EH_IN_PROGRESS = (1 << 0),
199 };
200 
201 /* UFSHCD UIC layer error flags */
202 enum {
203 	UFSHCD_UIC_DL_PA_INIT_ERROR = (1 << 0), /* Data link layer error */
204 	UFSHCD_UIC_DL_NAC_RECEIVED_ERROR = (1 << 1), /* Data link layer error */
205 	UFSHCD_UIC_DL_TCx_REPLAY_ERROR = (1 << 2), /* Data link layer error */
206 	UFSHCD_UIC_NL_ERROR = (1 << 3), /* Network layer error */
207 	UFSHCD_UIC_TL_ERROR = (1 << 4), /* Transport Layer error */
208 	UFSHCD_UIC_DME_ERROR = (1 << 5), /* DME error */
209 	UFSHCD_UIC_PA_GENERIC_ERROR = (1 << 6), /* Generic PA error */
210 };
211 
212 #define ufshcd_set_eh_in_progress(h) \
213 	((h)->eh_flags |= UFSHCD_EH_IN_PROGRESS)
214 #define ufshcd_eh_in_progress(h) \
215 	((h)->eh_flags & UFSHCD_EH_IN_PROGRESS)
216 #define ufshcd_clear_eh_in_progress(h) \
217 	((h)->eh_flags &= ~UFSHCD_EH_IN_PROGRESS)
218 
219 const struct ufs_pm_lvl_states ufs_pm_lvl_states[] = {
220 	[UFS_PM_LVL_0] = {UFS_ACTIVE_PWR_MODE, UIC_LINK_ACTIVE_STATE},
221 	[UFS_PM_LVL_1] = {UFS_ACTIVE_PWR_MODE, UIC_LINK_HIBERN8_STATE},
222 	[UFS_PM_LVL_2] = {UFS_SLEEP_PWR_MODE, UIC_LINK_ACTIVE_STATE},
223 	[UFS_PM_LVL_3] = {UFS_SLEEP_PWR_MODE, UIC_LINK_HIBERN8_STATE},
224 	[UFS_PM_LVL_4] = {UFS_POWERDOWN_PWR_MODE, UIC_LINK_HIBERN8_STATE},
225 	[UFS_PM_LVL_5] = {UFS_POWERDOWN_PWR_MODE, UIC_LINK_OFF_STATE},
226 	/*
227 	 * For DeepSleep, the link is first put in hibern8 and then off.
228 	 * Leaving the link in hibern8 is not supported.
229 	 */
230 	[UFS_PM_LVL_6] = {UFS_DEEPSLEEP_PWR_MODE, UIC_LINK_OFF_STATE},
231 };
232 
233 static inline enum ufs_dev_pwr_mode
234 ufs_get_pm_lvl_to_dev_pwr_mode(enum ufs_pm_level lvl)
235 {
236 	return ufs_pm_lvl_states[lvl].dev_state;
237 }
238 
239 static inline enum uic_link_state
240 ufs_get_pm_lvl_to_link_pwr_state(enum ufs_pm_level lvl)
241 {
242 	return ufs_pm_lvl_states[lvl].link_state;
243 }
244 
245 static inline enum ufs_pm_level
246 ufs_get_desired_pm_lvl_for_dev_link_state(enum ufs_dev_pwr_mode dev_state,
247 					enum uic_link_state link_state)
248 {
249 	enum ufs_pm_level lvl;
250 
251 	for (lvl = UFS_PM_LVL_0; lvl < UFS_PM_LVL_MAX; lvl++) {
252 		if ((ufs_pm_lvl_states[lvl].dev_state == dev_state) &&
253 			(ufs_pm_lvl_states[lvl].link_state == link_state))
254 			return lvl;
255 	}
256 
257 	/* if no match found, return the level 0 */
258 	return UFS_PM_LVL_0;
259 }
260 
261 static bool ufshcd_is_ufs_dev_busy(struct ufs_hba *hba)
262 {
263 	return (hba->clk_gating.active_reqs || hba->outstanding_reqs || hba->outstanding_tasks ||
264 		hba->active_uic_cmd || hba->uic_async_done);
265 }
266 
267 static const struct ufs_dev_quirk ufs_fixups[] = {
268 	/* UFS cards deviations table */
269 	{ .wmanufacturerid = UFS_VENDOR_MICRON,
270 	  .model = UFS_ANY_MODEL,
271 	  .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM },
272 	{ .wmanufacturerid = UFS_VENDOR_SAMSUNG,
273 	  .model = UFS_ANY_MODEL,
274 	  .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM |
275 		   UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE |
276 		   UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS },
277 	{ .wmanufacturerid = UFS_VENDOR_SKHYNIX,
278 	  .model = UFS_ANY_MODEL,
279 	  .quirk = UFS_DEVICE_QUIRK_HOST_PA_SAVECONFIGTIME },
280 	{ .wmanufacturerid = UFS_VENDOR_SKHYNIX,
281 	  .model = "hB8aL1" /*H28U62301AMR*/,
282 	  .quirk = UFS_DEVICE_QUIRK_HOST_VS_DEBUGSAVECONFIGTIME },
283 	{ .wmanufacturerid = UFS_VENDOR_TOSHIBA,
284 	  .model = UFS_ANY_MODEL,
285 	  .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM },
286 	{ .wmanufacturerid = UFS_VENDOR_TOSHIBA,
287 	  .model = "THGLF2G9C8KBADG",
288 	  .quirk = UFS_DEVICE_QUIRK_PA_TACTIVATE },
289 	{ .wmanufacturerid = UFS_VENDOR_TOSHIBA,
290 	  .model = "THGLF2G9D8KBADG",
291 	  .quirk = UFS_DEVICE_QUIRK_PA_TACTIVATE },
292 	{}
293 };
294 
295 static irqreturn_t ufshcd_tmc_handler(struct ufs_hba *hba);
296 static void ufshcd_async_scan(void *data, async_cookie_t cookie);
297 static int ufshcd_reset_and_restore(struct ufs_hba *hba);
298 static int ufshcd_eh_host_reset_handler(struct scsi_cmnd *cmd);
299 static int ufshcd_clear_tm_cmd(struct ufs_hba *hba, int tag);
300 static void ufshcd_hba_exit(struct ufs_hba *hba);
301 static int ufshcd_device_init(struct ufs_hba *hba, bool init_dev_params);
302 static int ufshcd_probe_hba(struct ufs_hba *hba, bool init_dev_params);
303 static int ufshcd_setup_clocks(struct ufs_hba *hba, bool on);
304 static inline void ufshcd_add_delay_before_dme_cmd(struct ufs_hba *hba);
305 static int ufshcd_host_reset_and_restore(struct ufs_hba *hba);
306 static void ufshcd_resume_clkscaling(struct ufs_hba *hba);
307 static void ufshcd_suspend_clkscaling(struct ufs_hba *hba);
308 static int ufshcd_scale_clks(struct ufs_hba *hba, unsigned long freq,
309 			     bool scale_up);
310 static irqreturn_t ufshcd_intr(int irq, void *__hba);
311 static int ufshcd_change_power_mode(struct ufs_hba *hba,
312 			     struct ufs_pa_layer_attr *pwr_mode);
313 static int ufshcd_setup_hba_vreg(struct ufs_hba *hba, bool on);
314 static int ufshcd_setup_vreg(struct ufs_hba *hba, bool on);
315 static inline int ufshcd_config_vreg_hpm(struct ufs_hba *hba,
316 					 struct ufs_vreg *vreg);
317 static void ufshcd_wb_toggle_buf_flush_during_h8(struct ufs_hba *hba,
318 						 bool enable);
319 static void ufshcd_hba_vreg_set_lpm(struct ufs_hba *hba);
320 static void ufshcd_hba_vreg_set_hpm(struct ufs_hba *hba);
321 
322 void ufshcd_enable_irq(struct ufs_hba *hba)
323 {
324 	if (!hba->is_irq_enabled) {
325 		enable_irq(hba->irq);
326 		hba->is_irq_enabled = true;
327 	}
328 }
329 EXPORT_SYMBOL_GPL(ufshcd_enable_irq);
330 
331 void ufshcd_disable_irq(struct ufs_hba *hba)
332 {
333 	if (hba->is_irq_enabled) {
334 		disable_irq(hba->irq);
335 		hba->is_irq_enabled = false;
336 	}
337 }
338 EXPORT_SYMBOL_GPL(ufshcd_disable_irq);
339 
340 static void ufshcd_configure_wb(struct ufs_hba *hba)
341 {
342 	if (!ufshcd_is_wb_allowed(hba))
343 		return;
344 
345 	ufshcd_wb_toggle(hba, true);
346 
347 	ufshcd_wb_toggle_buf_flush_during_h8(hba, true);
348 
349 	if (ufshcd_is_wb_buf_flush_allowed(hba))
350 		ufshcd_wb_toggle_buf_flush(hba, true);
351 }
352 
353 static void ufshcd_add_cmd_upiu_trace(struct ufs_hba *hba, unsigned int tag,
354 				      enum ufs_trace_str_t str_t)
355 {
356 	struct utp_upiu_req *rq = hba->lrb[tag].ucd_req_ptr;
357 	struct utp_upiu_header *header;
358 
359 	if (!trace_ufshcd_upiu_enabled())
360 		return;
361 
362 	if (str_t == UFS_CMD_SEND)
363 		header = &rq->header;
364 	else
365 		header = &hba->lrb[tag].ucd_rsp_ptr->header;
366 
367 	trace_ufshcd_upiu(dev_name(hba->dev), str_t, header, &rq->sc.cdb,
368 			  UFS_TSF_CDB);
369 }
370 
371 static void ufshcd_add_query_upiu_trace(struct ufs_hba *hba,
372 					enum ufs_trace_str_t str_t,
373 					struct utp_upiu_req *rq_rsp)
374 {
375 	if (!trace_ufshcd_upiu_enabled())
376 		return;
377 
378 	trace_ufshcd_upiu(dev_name(hba->dev), str_t, &rq_rsp->header,
379 			  &rq_rsp->qr, UFS_TSF_OSF);
380 }
381 
382 static void ufshcd_add_tm_upiu_trace(struct ufs_hba *hba, unsigned int tag,
383 				     enum ufs_trace_str_t str_t)
384 {
385 	struct utp_task_req_desc *descp = &hba->utmrdl_base_addr[tag];
386 
387 	if (!trace_ufshcd_upiu_enabled())
388 		return;
389 
390 	if (str_t == UFS_TM_SEND)
391 		trace_ufshcd_upiu(dev_name(hba->dev), str_t,
392 				  &descp->upiu_req.req_header,
393 				  &descp->upiu_req.input_param1,
394 				  UFS_TSF_TM_INPUT);
395 	else
396 		trace_ufshcd_upiu(dev_name(hba->dev), str_t,
397 				  &descp->upiu_rsp.rsp_header,
398 				  &descp->upiu_rsp.output_param1,
399 				  UFS_TSF_TM_OUTPUT);
400 }
401 
402 static void ufshcd_add_uic_command_trace(struct ufs_hba *hba,
403 					 const struct uic_command *ucmd,
404 					 enum ufs_trace_str_t str_t)
405 {
406 	u32 cmd;
407 
408 	if (!trace_ufshcd_uic_command_enabled())
409 		return;
410 
411 	if (str_t == UFS_CMD_SEND)
412 		cmd = ucmd->command;
413 	else
414 		cmd = ufshcd_readl(hba, REG_UIC_COMMAND);
415 
416 	trace_ufshcd_uic_command(dev_name(hba->dev), str_t, cmd,
417 				 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_1),
418 				 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_2),
419 				 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_3));
420 }
421 
422 static void ufshcd_add_command_trace(struct ufs_hba *hba, unsigned int tag,
423 				     enum ufs_trace_str_t str_t)
424 {
425 	u64 lba = 0;
426 	u8 opcode = 0, group_id = 0;
427 	u32 doorbell = 0;
428 	u32 intr;
429 	int hwq_id = -1;
430 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
431 	struct scsi_cmnd *cmd = lrbp->cmd;
432 	struct request *rq = scsi_cmd_to_rq(cmd);
433 	int transfer_len = -1;
434 
435 	if (!cmd)
436 		return;
437 
438 	/* trace UPIU also */
439 	ufshcd_add_cmd_upiu_trace(hba, tag, str_t);
440 	if (!trace_ufshcd_command_enabled())
441 		return;
442 
443 	opcode = cmd->cmnd[0];
444 
445 	if (opcode == READ_10 || opcode == WRITE_10) {
446 		/*
447 		 * Currently we only fully trace read(10) and write(10) commands
448 		 */
449 		transfer_len =
450 		       be32_to_cpu(lrbp->ucd_req_ptr->sc.exp_data_transfer_len);
451 		lba = scsi_get_lba(cmd);
452 		if (opcode == WRITE_10)
453 			group_id = lrbp->cmd->cmnd[6];
454 	} else if (opcode == UNMAP) {
455 		/*
456 		 * The number of Bytes to be unmapped beginning with the lba.
457 		 */
458 		transfer_len = blk_rq_bytes(rq);
459 		lba = scsi_get_lba(cmd);
460 	}
461 
462 	intr = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
463 
464 	if (hba->mcq_enabled) {
465 		struct ufs_hw_queue *hwq = ufshcd_mcq_req_to_hwq(hba, rq);
466 
467 		hwq_id = hwq->id;
468 	} else {
469 		doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
470 	}
471 	trace_ufshcd_command(cmd->device, str_t, tag, doorbell, hwq_id,
472 			     transfer_len, intr, lba, opcode, group_id);
473 }
474 
475 static void ufshcd_print_clk_freqs(struct ufs_hba *hba)
476 {
477 	struct ufs_clk_info *clki;
478 	struct list_head *head = &hba->clk_list_head;
479 
480 	if (list_empty(head))
481 		return;
482 
483 	list_for_each_entry(clki, head, list) {
484 		if (!IS_ERR_OR_NULL(clki->clk) && clki->min_freq &&
485 				clki->max_freq)
486 			dev_err(hba->dev, "clk: %s, rate: %u\n",
487 					clki->name, clki->curr_freq);
488 	}
489 }
490 
491 static void ufshcd_print_evt(struct ufs_hba *hba, u32 id,
492 			     const char *err_name)
493 {
494 	int i;
495 	bool found = false;
496 	const struct ufs_event_hist *e;
497 
498 	if (id >= UFS_EVT_CNT)
499 		return;
500 
501 	e = &hba->ufs_stats.event[id];
502 
503 	for (i = 0; i < UFS_EVENT_HIST_LENGTH; i++) {
504 		int p = (i + e->pos) % UFS_EVENT_HIST_LENGTH;
505 
506 		if (e->tstamp[p] == 0)
507 			continue;
508 		dev_err(hba->dev, "%s[%d] = 0x%x at %lld us\n", err_name, p,
509 			e->val[p], div_u64(e->tstamp[p], 1000));
510 		found = true;
511 	}
512 
513 	if (!found)
514 		dev_err(hba->dev, "No record of %s\n", err_name);
515 	else
516 		dev_err(hba->dev, "%s: total cnt=%llu\n", err_name, e->cnt);
517 }
518 
519 static void ufshcd_print_evt_hist(struct ufs_hba *hba)
520 {
521 	ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, "host_regs: ");
522 
523 	ufshcd_print_evt(hba, UFS_EVT_PA_ERR, "pa_err");
524 	ufshcd_print_evt(hba, UFS_EVT_DL_ERR, "dl_err");
525 	ufshcd_print_evt(hba, UFS_EVT_NL_ERR, "nl_err");
526 	ufshcd_print_evt(hba, UFS_EVT_TL_ERR, "tl_err");
527 	ufshcd_print_evt(hba, UFS_EVT_DME_ERR, "dme_err");
528 	ufshcd_print_evt(hba, UFS_EVT_AUTO_HIBERN8_ERR,
529 			 "auto_hibern8_err");
530 	ufshcd_print_evt(hba, UFS_EVT_FATAL_ERR, "fatal_err");
531 	ufshcd_print_evt(hba, UFS_EVT_LINK_STARTUP_FAIL,
532 			 "link_startup_fail");
533 	ufshcd_print_evt(hba, UFS_EVT_RESUME_ERR, "resume_fail");
534 	ufshcd_print_evt(hba, UFS_EVT_SUSPEND_ERR,
535 			 "suspend_fail");
536 	ufshcd_print_evt(hba, UFS_EVT_WL_RES_ERR, "wlun resume_fail");
537 	ufshcd_print_evt(hba, UFS_EVT_WL_SUSP_ERR,
538 			 "wlun suspend_fail");
539 	ufshcd_print_evt(hba, UFS_EVT_DEV_RESET, "dev_reset");
540 	ufshcd_print_evt(hba, UFS_EVT_HOST_RESET, "host_reset");
541 	ufshcd_print_evt(hba, UFS_EVT_ABORT, "task_abort");
542 
543 	ufshcd_vops_dbg_register_dump(hba);
544 }
545 
546 static
547 void ufshcd_print_tr(struct ufs_hba *hba, int tag, bool pr_prdt)
548 {
549 	const struct ufshcd_lrb *lrbp;
550 	int prdt_length;
551 
552 	lrbp = &hba->lrb[tag];
553 
554 	dev_err(hba->dev, "UPIU[%d] - issue time %lld us\n",
555 			tag, div_u64(lrbp->issue_time_stamp_local_clock, 1000));
556 	dev_err(hba->dev, "UPIU[%d] - complete time %lld us\n",
557 			tag, div_u64(lrbp->compl_time_stamp_local_clock, 1000));
558 	dev_err(hba->dev,
559 		"UPIU[%d] - Transfer Request Descriptor phys@0x%llx\n",
560 		tag, (u64)lrbp->utrd_dma_addr);
561 
562 	ufshcd_hex_dump("UPIU TRD: ", lrbp->utr_descriptor_ptr,
563 			sizeof(struct utp_transfer_req_desc));
564 	dev_err(hba->dev, "UPIU[%d] - Request UPIU phys@0x%llx\n", tag,
565 		(u64)lrbp->ucd_req_dma_addr);
566 	ufshcd_hex_dump("UPIU REQ: ", lrbp->ucd_req_ptr,
567 			sizeof(struct utp_upiu_req));
568 	dev_err(hba->dev, "UPIU[%d] - Response UPIU phys@0x%llx\n", tag,
569 		(u64)lrbp->ucd_rsp_dma_addr);
570 	ufshcd_hex_dump("UPIU RSP: ", lrbp->ucd_rsp_ptr,
571 			sizeof(struct utp_upiu_rsp));
572 
573 	prdt_length = le16_to_cpu(
574 		lrbp->utr_descriptor_ptr->prd_table_length);
575 	if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN)
576 		prdt_length /= ufshcd_sg_entry_size(hba);
577 
578 	dev_err(hba->dev,
579 		"UPIU[%d] - PRDT - %d entries  phys@0x%llx\n",
580 		tag, prdt_length,
581 		(u64)lrbp->ucd_prdt_dma_addr);
582 
583 	if (pr_prdt)
584 		ufshcd_hex_dump("UPIU PRDT: ", lrbp->ucd_prdt_ptr,
585 			ufshcd_sg_entry_size(hba) * prdt_length);
586 }
587 
588 static bool ufshcd_print_tr_iter(struct request *req, void *priv)
589 {
590 	struct scsi_device *sdev = req->q->queuedata;
591 	struct Scsi_Host *shost = sdev->host;
592 	struct ufs_hba *hba = shost_priv(shost);
593 
594 	ufshcd_print_tr(hba, req->tag, *(bool *)priv);
595 
596 	return true;
597 }
598 
599 /**
600  * ufshcd_print_trs_all - print trs for all started requests.
601  * @hba: per-adapter instance.
602  * @pr_prdt: need to print prdt or not.
603  */
604 static void ufshcd_print_trs_all(struct ufs_hba *hba, bool pr_prdt)
605 {
606 	blk_mq_tagset_busy_iter(&hba->host->tag_set, ufshcd_print_tr_iter, &pr_prdt);
607 }
608 
609 static void ufshcd_print_tmrs(struct ufs_hba *hba, unsigned long bitmap)
610 {
611 	int tag;
612 
613 	for_each_set_bit(tag, &bitmap, hba->nutmrs) {
614 		struct utp_task_req_desc *tmrdp = &hba->utmrdl_base_addr[tag];
615 
616 		dev_err(hba->dev, "TM[%d] - Task Management Header\n", tag);
617 		ufshcd_hex_dump("", tmrdp, sizeof(*tmrdp));
618 	}
619 }
620 
621 static void ufshcd_print_host_state(struct ufs_hba *hba)
622 {
623 	const struct scsi_device *sdev_ufs = hba->ufs_device_wlun;
624 
625 	dev_err(hba->dev, "UFS Host state=%d\n", hba->ufshcd_state);
626 	dev_err(hba->dev, "outstanding reqs=0x%lx tasks=0x%lx\n",
627 		hba->outstanding_reqs, hba->outstanding_tasks);
628 	dev_err(hba->dev, "saved_err=0x%x, saved_uic_err=0x%x\n",
629 		hba->saved_err, hba->saved_uic_err);
630 	dev_err(hba->dev, "Device power mode=%d, UIC link state=%d\n",
631 		hba->curr_dev_pwr_mode, hba->uic_link_state);
632 	dev_err(hba->dev, "PM in progress=%d, sys. suspended=%d\n",
633 		hba->pm_op_in_progress, hba->is_sys_suspended);
634 	dev_err(hba->dev, "Auto BKOPS=%d, Host self-block=%d\n",
635 		hba->auto_bkops_enabled, hba->host->host_self_blocked);
636 	dev_err(hba->dev, "Clk gate=%d\n", hba->clk_gating.state);
637 	dev_err(hba->dev,
638 		"last_hibern8_exit_tstamp at %lld us, hibern8_exit_cnt=%d\n",
639 		div_u64(hba->ufs_stats.last_hibern8_exit_tstamp, 1000),
640 		hba->ufs_stats.hibern8_exit_cnt);
641 	dev_err(hba->dev, "last intr at %lld us, last intr status=0x%x\n",
642 		div_u64(hba->ufs_stats.last_intr_ts, 1000),
643 		hba->ufs_stats.last_intr_status);
644 	dev_err(hba->dev, "error handling flags=0x%x, req. abort count=%d\n",
645 		hba->eh_flags, hba->req_abort_count);
646 	dev_err(hba->dev, "hba->ufs_version=0x%x, Host capabilities=0x%x, caps=0x%x\n",
647 		hba->ufs_version, hba->capabilities, hba->caps);
648 	dev_err(hba->dev, "quirks=0x%x, dev. quirks=0x%x\n", hba->quirks,
649 		hba->dev_quirks);
650 	if (sdev_ufs)
651 		dev_err(hba->dev, "UFS dev info: %.8s %.16s rev %.4s\n",
652 			sdev_ufs->vendor, sdev_ufs->model, sdev_ufs->rev);
653 
654 	ufshcd_print_clk_freqs(hba);
655 }
656 
657 /**
658  * ufshcd_print_pwr_info - print power params as saved in hba
659  * power info
660  * @hba: per-adapter instance
661  */
662 static void ufshcd_print_pwr_info(struct ufs_hba *hba)
663 {
664 	static const char * const names[] = {
665 		"INVALID MODE",
666 		"FAST MODE",
667 		"SLOW_MODE",
668 		"INVALID MODE",
669 		"FASTAUTO_MODE",
670 		"SLOWAUTO_MODE",
671 		"INVALID MODE",
672 	};
673 
674 	/*
675 	 * Using dev_dbg to avoid messages during runtime PM to avoid
676 	 * never-ending cycles of messages written back to storage by user space
677 	 * causing runtime resume, causing more messages and so on.
678 	 */
679 	dev_dbg(hba->dev, "%s:[RX, TX]: gear=[%d, %d], lane[%d, %d], pwr[%s, %s], rate = %d\n",
680 		 __func__,
681 		 hba->pwr_info.gear_rx, hba->pwr_info.gear_tx,
682 		 hba->pwr_info.lane_rx, hba->pwr_info.lane_tx,
683 		 names[hba->pwr_info.pwr_rx],
684 		 names[hba->pwr_info.pwr_tx],
685 		 hba->pwr_info.hs_rate);
686 }
687 
688 static void ufshcd_device_reset(struct ufs_hba *hba)
689 {
690 	int err;
691 
692 	err = ufshcd_vops_device_reset(hba);
693 
694 	if (!err) {
695 		ufshcd_set_ufs_dev_active(hba);
696 		if (ufshcd_is_wb_allowed(hba)) {
697 			hba->dev_info.wb_enabled = false;
698 			hba->dev_info.wb_buf_flush_enabled = false;
699 		}
700 		if (hba->dev_info.rtc_type == UFS_RTC_RELATIVE)
701 			hba->dev_info.rtc_time_baseline = 0;
702 	}
703 	if (err != -EOPNOTSUPP)
704 		ufshcd_update_evt_hist(hba, UFS_EVT_DEV_RESET, err);
705 }
706 
707 void ufshcd_delay_us(unsigned long us, unsigned long tolerance)
708 {
709 	if (!us)
710 		return;
711 
712 	if (us < 10)
713 		udelay(us);
714 	else
715 		usleep_range(us, us + tolerance);
716 }
717 EXPORT_SYMBOL_GPL(ufshcd_delay_us);
718 
719 /**
720  * ufshcd_wait_for_register - wait for register value to change
721  * @hba: per-adapter interface
722  * @reg: mmio register offset
723  * @mask: mask to apply to the read register value
724  * @val: value to wait for
725  * @interval_us: polling interval in microseconds
726  * @timeout_ms: timeout in milliseconds
727  *
728  * Return: -ETIMEDOUT on error, zero on success.
729  */
730 static int ufshcd_wait_for_register(struct ufs_hba *hba, u32 reg, u32 mask,
731 				    u32 val, unsigned long interval_us,
732 				    unsigned long timeout_ms)
733 {
734 	u32 v;
735 
736 	val &= mask; /* ignore bits that we don't intend to wait on */
737 
738 	return read_poll_timeout(ufshcd_readl, v, (v & mask) == val,
739 				 interval_us, timeout_ms * 1000, false, hba, reg);
740 }
741 
742 /**
743  * ufshcd_get_intr_mask - Get the interrupt bit mask
744  * @hba: Pointer to adapter instance
745  *
746  * Return: interrupt bit mask per version
747  */
748 static inline u32 ufshcd_get_intr_mask(struct ufs_hba *hba)
749 {
750 	if (hba->ufs_version <= ufshci_version(2, 0))
751 		return INTERRUPT_MASK_ALL_VER_11;
752 
753 	return INTERRUPT_MASK_ALL_VER_21;
754 }
755 
756 /**
757  * ufshcd_get_ufs_version - Get the UFS version supported by the HBA
758  * @hba: Pointer to adapter instance
759  *
760  * Return: UFSHCI version supported by the controller
761  */
762 static inline u32 ufshcd_get_ufs_version(struct ufs_hba *hba)
763 {
764 	u32 ufshci_ver;
765 
766 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_UFS_HCI_VERSION)
767 		ufshci_ver = ufshcd_vops_get_ufs_hci_version(hba);
768 	else
769 		ufshci_ver = ufshcd_readl(hba, REG_UFS_VERSION);
770 
771 	/*
772 	 * UFSHCI v1.x uses a different version scheme, in order
773 	 * to allow the use of comparisons with the ufshci_version
774 	 * function, we convert it to the same scheme as ufs 2.0+.
775 	 */
776 	if (ufshci_ver & 0x00010000)
777 		return ufshci_version(1, ufshci_ver & 0x00000100);
778 
779 	return ufshci_ver;
780 }
781 
782 /**
783  * ufshcd_is_device_present - Check if any device connected to
784  *			      the host controller
785  * @hba: pointer to adapter instance
786  *
787  * Return: true if device present, false if no device detected
788  */
789 static inline bool ufshcd_is_device_present(struct ufs_hba *hba)
790 {
791 	return ufshcd_readl(hba, REG_CONTROLLER_STATUS) & DEVICE_PRESENT;
792 }
793 
794 /**
795  * ufshcd_get_tr_ocs - Get the UTRD Overall Command Status
796  * @lrbp: pointer to local command reference block
797  * @cqe: pointer to the completion queue entry
798  *
799  * This function is used to get the OCS field from UTRD
800  *
801  * Return: the OCS field in the UTRD.
802  */
803 static enum utp_ocs ufshcd_get_tr_ocs(struct ufshcd_lrb *lrbp,
804 				      struct cq_entry *cqe)
805 {
806 	if (cqe)
807 		return le32_to_cpu(cqe->status) & MASK_OCS;
808 
809 	return lrbp->utr_descriptor_ptr->header.ocs & MASK_OCS;
810 }
811 
812 /**
813  * ufshcd_utrl_clear() - Clear requests from the controller request list.
814  * @hba: per adapter instance
815  * @mask: mask with one bit set for each request to be cleared
816  */
817 static inline void ufshcd_utrl_clear(struct ufs_hba *hba, u32 mask)
818 {
819 	if (hba->quirks & UFSHCI_QUIRK_BROKEN_REQ_LIST_CLR)
820 		mask = ~mask;
821 	/*
822 	 * From the UFSHCI specification: "UTP Transfer Request List CLear
823 	 * Register (UTRLCLR): This field is bit significant. Each bit
824 	 * corresponds to a slot in the UTP Transfer Request List, where bit 0
825 	 * corresponds to request slot 0. A bit in this field is set to ‘0’
826 	 * by host software to indicate to the host controller that a transfer
827 	 * request slot is cleared. The host controller
828 	 * shall free up any resources associated to the request slot
829 	 * immediately, and shall set the associated bit in UTRLDBR to ‘0’. The
830 	 * host software indicates no change to request slots by setting the
831 	 * associated bits in this field to ‘1’. Bits in this field shall only
832 	 * be set ‘1’ or ‘0’ by host software when UTRLRSR is set to ‘1’."
833 	 */
834 	ufshcd_writel(hba, ~mask, REG_UTP_TRANSFER_REQ_LIST_CLEAR);
835 }
836 
837 /**
838  * ufshcd_utmrl_clear - Clear a bit in UTMRLCLR register
839  * @hba: per adapter instance
840  * @pos: position of the bit to be cleared
841  */
842 static inline void ufshcd_utmrl_clear(struct ufs_hba *hba, u32 pos)
843 {
844 	if (hba->quirks & UFSHCI_QUIRK_BROKEN_REQ_LIST_CLR)
845 		ufshcd_writel(hba, (1 << pos), REG_UTP_TASK_REQ_LIST_CLEAR);
846 	else
847 		ufshcd_writel(hba, ~(1 << pos), REG_UTP_TASK_REQ_LIST_CLEAR);
848 }
849 
850 /**
851  * ufshcd_get_lists_status - Check UCRDY, UTRLRDY and UTMRLRDY
852  * @reg: Register value of host controller status
853  *
854  * Return: 0 on success; a positive value if failed.
855  */
856 static inline int ufshcd_get_lists_status(u32 reg)
857 {
858 	return !((reg & UFSHCD_STATUS_READY) == UFSHCD_STATUS_READY);
859 }
860 
861 /**
862  * ufshcd_get_uic_cmd_result - Get the UIC command result
863  * @hba: Pointer to adapter instance
864  *
865  * This function gets the result of UIC command completion
866  *
867  * Return: 0 on success; non-zero value on error.
868  */
869 static inline int ufshcd_get_uic_cmd_result(struct ufs_hba *hba)
870 {
871 	return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_2) &
872 	       MASK_UIC_COMMAND_RESULT;
873 }
874 
875 /**
876  * ufshcd_get_dme_attr_val - Get the value of attribute returned by UIC command
877  * @hba: Pointer to adapter instance
878  *
879  * This function gets UIC command argument3
880  *
881  * Return: 0 on success; non-zero value on error.
882  */
883 static inline u32 ufshcd_get_dme_attr_val(struct ufs_hba *hba)
884 {
885 	return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_3);
886 }
887 
888 /**
889  * ufshcd_get_req_rsp - returns the TR response transaction type
890  * @ucd_rsp_ptr: pointer to response UPIU
891  *
892  * Return: UPIU type.
893  */
894 static inline enum upiu_response_transaction
895 ufshcd_get_req_rsp(struct utp_upiu_rsp *ucd_rsp_ptr)
896 {
897 	return ucd_rsp_ptr->header.transaction_code;
898 }
899 
900 /**
901  * ufshcd_is_exception_event - Check if the device raised an exception event
902  * @ucd_rsp_ptr: pointer to response UPIU
903  *
904  * The function checks if the device raised an exception event indicated in
905  * the Device Information field of response UPIU.
906  *
907  * Return: true if exception is raised, false otherwise.
908  */
909 static inline bool ufshcd_is_exception_event(struct utp_upiu_rsp *ucd_rsp_ptr)
910 {
911 	return ucd_rsp_ptr->header.device_information & 1;
912 }
913 
914 /**
915  * ufshcd_reset_intr_aggr - Reset interrupt aggregation values.
916  * @hba: per adapter instance
917  */
918 static inline void
919 ufshcd_reset_intr_aggr(struct ufs_hba *hba)
920 {
921 	ufshcd_writel(hba, INT_AGGR_ENABLE |
922 		      INT_AGGR_COUNTER_AND_TIMER_RESET,
923 		      REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
924 }
925 
926 /**
927  * ufshcd_config_intr_aggr - Configure interrupt aggregation values.
928  * @hba: per adapter instance
929  * @cnt: Interrupt aggregation counter threshold
930  * @tmout: Interrupt aggregation timeout value
931  */
932 static inline void
933 ufshcd_config_intr_aggr(struct ufs_hba *hba, u8 cnt, u8 tmout)
934 {
935 	ufshcd_writel(hba, INT_AGGR_ENABLE | INT_AGGR_PARAM_WRITE |
936 		      INT_AGGR_COUNTER_THLD_VAL(cnt) |
937 		      INT_AGGR_TIMEOUT_VAL(tmout),
938 		      REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
939 }
940 
941 /**
942  * ufshcd_disable_intr_aggr - Disables interrupt aggregation.
943  * @hba: per adapter instance
944  */
945 static inline void ufshcd_disable_intr_aggr(struct ufs_hba *hba)
946 {
947 	ufshcd_writel(hba, 0, REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
948 }
949 
950 /**
951  * ufshcd_enable_run_stop_reg - Enable run-stop registers,
952  *			When run-stop registers are set to 1, it indicates the
953  *			host controller that it can process the requests
954  * @hba: per adapter instance
955  */
956 static void ufshcd_enable_run_stop_reg(struct ufs_hba *hba)
957 {
958 	ufshcd_writel(hba, UTP_TASK_REQ_LIST_RUN_STOP_BIT,
959 		      REG_UTP_TASK_REQ_LIST_RUN_STOP);
960 	ufshcd_writel(hba, UTP_TRANSFER_REQ_LIST_RUN_STOP_BIT,
961 		      REG_UTP_TRANSFER_REQ_LIST_RUN_STOP);
962 }
963 
964 /**
965  * ufshcd_hba_start - Start controller initialization sequence
966  * @hba: per adapter instance
967  */
968 static inline void ufshcd_hba_start(struct ufs_hba *hba)
969 {
970 	u32 val = CONTROLLER_ENABLE;
971 
972 	if (ufshcd_crypto_enable(hba))
973 		val |= CRYPTO_GENERAL_ENABLE;
974 
975 	ufshcd_writel(hba, val, REG_CONTROLLER_ENABLE);
976 }
977 
978 /**
979  * ufshcd_is_hba_active - Get controller state
980  * @hba: per adapter instance
981  *
982  * Return: true if and only if the controller is active.
983  */
984 bool ufshcd_is_hba_active(struct ufs_hba *hba)
985 {
986 	return ufshcd_readl(hba, REG_CONTROLLER_ENABLE) & CONTROLLER_ENABLE;
987 }
988 EXPORT_SYMBOL_GPL(ufshcd_is_hba_active);
989 
990 /**
991  * ufshcd_pm_qos_init - initialize PM QoS request
992  * @hba: per adapter instance
993  */
994 void ufshcd_pm_qos_init(struct ufs_hba *hba)
995 {
996 
997 	if (hba->pm_qos_enabled)
998 		return;
999 
1000 	cpu_latency_qos_add_request(&hba->pm_qos_req, PM_QOS_DEFAULT_VALUE);
1001 
1002 	if (cpu_latency_qos_request_active(&hba->pm_qos_req))
1003 		hba->pm_qos_enabled = true;
1004 }
1005 
1006 /**
1007  * ufshcd_pm_qos_exit - remove request from PM QoS
1008  * @hba: per adapter instance
1009  */
1010 void ufshcd_pm_qos_exit(struct ufs_hba *hba)
1011 {
1012 	if (!hba->pm_qos_enabled)
1013 		return;
1014 
1015 	cpu_latency_qos_remove_request(&hba->pm_qos_req);
1016 	hba->pm_qos_enabled = false;
1017 }
1018 
1019 /**
1020  * ufshcd_pm_qos_update - update PM QoS request
1021  * @hba: per adapter instance
1022  * @on: If True, vote for perf PM QoS mode otherwise power save mode
1023  */
1024 static void ufshcd_pm_qos_update(struct ufs_hba *hba, bool on)
1025 {
1026 	if (!hba->pm_qos_enabled)
1027 		return;
1028 
1029 	cpu_latency_qos_update_request(&hba->pm_qos_req, on ? 0 : PM_QOS_DEFAULT_VALUE);
1030 }
1031 
1032 /**
1033  * ufshcd_set_clk_freq - set UFS controller clock frequencies
1034  * @hba: per adapter instance
1035  * @scale_up: If True, set max possible frequency othewise set low frequency
1036  *
1037  * Return: 0 if successful; < 0 upon failure.
1038  */
1039 static int ufshcd_set_clk_freq(struct ufs_hba *hba, bool scale_up)
1040 {
1041 	int ret = 0;
1042 	struct ufs_clk_info *clki;
1043 	struct list_head *head = &hba->clk_list_head;
1044 
1045 	if (list_empty(head))
1046 		goto out;
1047 
1048 	list_for_each_entry(clki, head, list) {
1049 		if (!IS_ERR_OR_NULL(clki->clk)) {
1050 			if (scale_up && clki->max_freq) {
1051 				if (clki->curr_freq == clki->max_freq)
1052 					continue;
1053 
1054 				ret = clk_set_rate(clki->clk, clki->max_freq);
1055 				if (ret) {
1056 					dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
1057 						__func__, clki->name,
1058 						clki->max_freq, ret);
1059 					break;
1060 				}
1061 				trace_ufshcd_clk_scaling(dev_name(hba->dev),
1062 						"scaled up", clki->name,
1063 						clki->curr_freq,
1064 						clki->max_freq);
1065 
1066 				clki->curr_freq = clki->max_freq;
1067 
1068 			} else if (!scale_up && clki->min_freq) {
1069 				if (clki->curr_freq == clki->min_freq)
1070 					continue;
1071 
1072 				ret = clk_set_rate(clki->clk, clki->min_freq);
1073 				if (ret) {
1074 					dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
1075 						__func__, clki->name,
1076 						clki->min_freq, ret);
1077 					break;
1078 				}
1079 				trace_ufshcd_clk_scaling(dev_name(hba->dev),
1080 						"scaled down", clki->name,
1081 						clki->curr_freq,
1082 						clki->min_freq);
1083 				clki->curr_freq = clki->min_freq;
1084 			}
1085 		}
1086 		dev_dbg(hba->dev, "%s: clk: %s, rate: %lu\n", __func__,
1087 				clki->name, clk_get_rate(clki->clk));
1088 	}
1089 
1090 out:
1091 	return ret;
1092 }
1093 
1094 int ufshcd_opp_config_clks(struct device *dev, struct opp_table *opp_table,
1095 			   struct dev_pm_opp *opp, void *data,
1096 			   bool scaling_down)
1097 {
1098 	struct ufs_hba *hba = dev_get_drvdata(dev);
1099 	struct list_head *head = &hba->clk_list_head;
1100 	struct ufs_clk_info *clki;
1101 	unsigned long freq;
1102 	u8 idx = 0;
1103 	int ret;
1104 
1105 	list_for_each_entry(clki, head, list) {
1106 		if (!IS_ERR_OR_NULL(clki->clk)) {
1107 			freq = dev_pm_opp_get_freq_indexed(opp, idx++);
1108 
1109 			/* Do not set rate for clocks having frequency as 0 */
1110 			if (!freq)
1111 				continue;
1112 
1113 			ret = clk_set_rate(clki->clk, freq);
1114 			if (ret) {
1115 				dev_err(dev, "%s: %s clk set rate(%ldHz) failed, %d\n",
1116 					__func__, clki->name, freq, ret);
1117 				return ret;
1118 			}
1119 
1120 			trace_ufshcd_clk_scaling(dev_name(dev),
1121 				(scaling_down ? "scaled down" : "scaled up"),
1122 				clki->name, hba->clk_scaling.target_freq, freq);
1123 		}
1124 	}
1125 
1126 	return 0;
1127 }
1128 EXPORT_SYMBOL_GPL(ufshcd_opp_config_clks);
1129 
1130 static int ufshcd_opp_set_rate(struct ufs_hba *hba, unsigned long freq)
1131 {
1132 	struct dev_pm_opp *opp;
1133 	int ret;
1134 
1135 	opp = dev_pm_opp_find_freq_floor_indexed(hba->dev,
1136 						 &freq, 0);
1137 	if (IS_ERR(opp))
1138 		return PTR_ERR(opp);
1139 
1140 	ret = dev_pm_opp_set_opp(hba->dev, opp);
1141 	dev_pm_opp_put(opp);
1142 
1143 	return ret;
1144 }
1145 
1146 /**
1147  * ufshcd_scale_clks - scale up or scale down UFS controller clocks
1148  * @hba: per adapter instance
1149  * @freq: frequency to scale
1150  * @scale_up: True if scaling up and false if scaling down
1151  *
1152  * Return: 0 if successful; < 0 upon failure.
1153  */
1154 static int ufshcd_scale_clks(struct ufs_hba *hba, unsigned long freq,
1155 			     bool scale_up)
1156 {
1157 	int ret = 0;
1158 	ktime_t start = ktime_get();
1159 
1160 	ret = ufshcd_vops_clk_scale_notify(hba, scale_up, PRE_CHANGE);
1161 	if (ret)
1162 		goto out;
1163 
1164 	if (hba->use_pm_opp)
1165 		ret = ufshcd_opp_set_rate(hba, freq);
1166 	else
1167 		ret = ufshcd_set_clk_freq(hba, scale_up);
1168 	if (ret)
1169 		goto out;
1170 
1171 	ret = ufshcd_vops_clk_scale_notify(hba, scale_up, POST_CHANGE);
1172 	if (ret) {
1173 		if (hba->use_pm_opp)
1174 			ufshcd_opp_set_rate(hba,
1175 					    hba->devfreq->previous_freq);
1176 		else
1177 			ufshcd_set_clk_freq(hba, !scale_up);
1178 		goto out;
1179 	}
1180 
1181 	ufshcd_pm_qos_update(hba, scale_up);
1182 
1183 out:
1184 	trace_ufshcd_profile_clk_scaling(dev_name(hba->dev),
1185 			(scale_up ? "up" : "down"),
1186 			ktime_to_us(ktime_sub(ktime_get(), start)), ret);
1187 	return ret;
1188 }
1189 
1190 /**
1191  * ufshcd_is_devfreq_scaling_required - check if scaling is required or not
1192  * @hba: per adapter instance
1193  * @freq: frequency to scale
1194  * @scale_up: True if scaling up and false if scaling down
1195  *
1196  * Return: true if scaling is required, false otherwise.
1197  */
1198 static bool ufshcd_is_devfreq_scaling_required(struct ufs_hba *hba,
1199 					       unsigned long freq, bool scale_up)
1200 {
1201 	struct ufs_clk_info *clki;
1202 	struct list_head *head = &hba->clk_list_head;
1203 
1204 	if (list_empty(head))
1205 		return false;
1206 
1207 	if (hba->use_pm_opp)
1208 		return freq != hba->clk_scaling.target_freq;
1209 
1210 	list_for_each_entry(clki, head, list) {
1211 		if (!IS_ERR_OR_NULL(clki->clk)) {
1212 			if (scale_up && clki->max_freq) {
1213 				if (clki->curr_freq == clki->max_freq)
1214 					continue;
1215 				return true;
1216 			} else if (!scale_up && clki->min_freq) {
1217 				if (clki->curr_freq == clki->min_freq)
1218 					continue;
1219 				return true;
1220 			}
1221 		}
1222 	}
1223 
1224 	return false;
1225 }
1226 
1227 /*
1228  * Determine the number of pending commands by counting the bits in the SCSI
1229  * device budget maps. This approach has been selected because a bit is set in
1230  * the budget map before scsi_host_queue_ready() checks the host_self_blocked
1231  * flag. The host_self_blocked flag can be modified by calling
1232  * scsi_block_requests() or scsi_unblock_requests().
1233  */
1234 static u32 ufshcd_pending_cmds(struct ufs_hba *hba)
1235 {
1236 	const struct scsi_device *sdev;
1237 	unsigned long flags;
1238 	u32 pending = 0;
1239 
1240 	spin_lock_irqsave(hba->host->host_lock, flags);
1241 	__shost_for_each_device(sdev, hba->host)
1242 		pending += sbitmap_weight(&sdev->budget_map);
1243 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1244 
1245 	return pending;
1246 }
1247 
1248 /*
1249  * Wait until all pending SCSI commands and TMFs have finished or the timeout
1250  * has expired.
1251  *
1252  * Return: 0 upon success; -EBUSY upon timeout.
1253  */
1254 static int ufshcd_wait_for_doorbell_clr(struct ufs_hba *hba,
1255 					u64 wait_timeout_us)
1256 {
1257 	int ret = 0;
1258 	u32 tm_doorbell;
1259 	u32 tr_pending;
1260 	bool timeout = false, do_last_check = false;
1261 	ktime_t start;
1262 
1263 	ufshcd_hold(hba);
1264 	/*
1265 	 * Wait for all the outstanding tasks/transfer requests.
1266 	 * Verify by checking the doorbell registers are clear.
1267 	 */
1268 	start = ktime_get();
1269 	do {
1270 		if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL) {
1271 			ret = -EBUSY;
1272 			goto out;
1273 		}
1274 
1275 		tm_doorbell = ufshcd_readl(hba, REG_UTP_TASK_REQ_DOOR_BELL);
1276 		tr_pending = ufshcd_pending_cmds(hba);
1277 		if (!tm_doorbell && !tr_pending) {
1278 			timeout = false;
1279 			break;
1280 		} else if (do_last_check) {
1281 			break;
1282 		}
1283 
1284 		io_schedule_timeout(msecs_to_jiffies(20));
1285 		if (ktime_to_us(ktime_sub(ktime_get(), start)) >
1286 		    wait_timeout_us) {
1287 			timeout = true;
1288 			/*
1289 			 * We might have scheduled out for long time so make
1290 			 * sure to check if doorbells are cleared by this time
1291 			 * or not.
1292 			 */
1293 			do_last_check = true;
1294 		}
1295 	} while (tm_doorbell || tr_pending);
1296 
1297 	if (timeout) {
1298 		dev_err(hba->dev,
1299 			"%s: timedout waiting for doorbell to clear (tm=0x%x, tr=0x%x)\n",
1300 			__func__, tm_doorbell, tr_pending);
1301 		ret = -EBUSY;
1302 	}
1303 out:
1304 	ufshcd_release(hba);
1305 	return ret;
1306 }
1307 
1308 /**
1309  * ufshcd_scale_gear - scale up/down UFS gear
1310  * @hba: per adapter instance
1311  * @scale_up: True for scaling up gear and false for scaling down
1312  *
1313  * Return: 0 for success; -EBUSY if scaling can't happen at this time;
1314  * non-zero for any other errors.
1315  */
1316 static int ufshcd_scale_gear(struct ufs_hba *hba, bool scale_up)
1317 {
1318 	int ret = 0;
1319 	struct ufs_pa_layer_attr new_pwr_info;
1320 
1321 	if (scale_up) {
1322 		memcpy(&new_pwr_info, &hba->clk_scaling.saved_pwr_info,
1323 		       sizeof(struct ufs_pa_layer_attr));
1324 	} else {
1325 		memcpy(&new_pwr_info, &hba->pwr_info,
1326 		       sizeof(struct ufs_pa_layer_attr));
1327 
1328 		if (hba->pwr_info.gear_tx > hba->clk_scaling.min_gear ||
1329 		    hba->pwr_info.gear_rx > hba->clk_scaling.min_gear) {
1330 			/* save the current power mode */
1331 			memcpy(&hba->clk_scaling.saved_pwr_info,
1332 				&hba->pwr_info,
1333 				sizeof(struct ufs_pa_layer_attr));
1334 
1335 			/* scale down gear */
1336 			new_pwr_info.gear_tx = hba->clk_scaling.min_gear;
1337 			new_pwr_info.gear_rx = hba->clk_scaling.min_gear;
1338 		}
1339 	}
1340 
1341 	/* check if the power mode needs to be changed or not? */
1342 	ret = ufshcd_config_pwr_mode(hba, &new_pwr_info);
1343 	if (ret)
1344 		dev_err(hba->dev, "%s: failed err %d, old gear: (tx %d rx %d), new gear: (tx %d rx %d)",
1345 			__func__, ret,
1346 			hba->pwr_info.gear_tx, hba->pwr_info.gear_rx,
1347 			new_pwr_info.gear_tx, new_pwr_info.gear_rx);
1348 
1349 	return ret;
1350 }
1351 
1352 /*
1353  * Wait until all pending SCSI commands and TMFs have finished or the timeout
1354  * has expired.
1355  *
1356  * Return: 0 upon success; -EBUSY upon timeout.
1357  */
1358 static int ufshcd_clock_scaling_prepare(struct ufs_hba *hba, u64 timeout_us)
1359 {
1360 	int ret = 0;
1361 	/*
1362 	 * make sure that there are no outstanding requests when
1363 	 * clock scaling is in progress
1364 	 */
1365 	blk_mq_quiesce_tagset(&hba->host->tag_set);
1366 	mutex_lock(&hba->wb_mutex);
1367 	down_write(&hba->clk_scaling_lock);
1368 
1369 	if (!hba->clk_scaling.is_allowed ||
1370 	    ufshcd_wait_for_doorbell_clr(hba, timeout_us)) {
1371 		ret = -EBUSY;
1372 		up_write(&hba->clk_scaling_lock);
1373 		mutex_unlock(&hba->wb_mutex);
1374 		blk_mq_unquiesce_tagset(&hba->host->tag_set);
1375 		goto out;
1376 	}
1377 
1378 	/* let's not get into low power until clock scaling is completed */
1379 	ufshcd_hold(hba);
1380 
1381 out:
1382 	return ret;
1383 }
1384 
1385 static void ufshcd_clock_scaling_unprepare(struct ufs_hba *hba, int err, bool scale_up)
1386 {
1387 	up_write(&hba->clk_scaling_lock);
1388 
1389 	/* Enable Write Booster if we have scaled up else disable it */
1390 	if (ufshcd_enable_wb_if_scaling_up(hba) && !err)
1391 		ufshcd_wb_toggle(hba, scale_up);
1392 
1393 	mutex_unlock(&hba->wb_mutex);
1394 
1395 	blk_mq_unquiesce_tagset(&hba->host->tag_set);
1396 	ufshcd_release(hba);
1397 }
1398 
1399 /**
1400  * ufshcd_devfreq_scale - scale up/down UFS clocks and gear
1401  * @hba: per adapter instance
1402  * @freq: frequency to scale
1403  * @scale_up: True for scaling up and false for scalin down
1404  *
1405  * Return: 0 for success; -EBUSY if scaling can't happen at this time; non-zero
1406  * for any other errors.
1407  */
1408 static int ufshcd_devfreq_scale(struct ufs_hba *hba, unsigned long freq,
1409 				bool scale_up)
1410 {
1411 	int ret = 0;
1412 
1413 	ret = ufshcd_clock_scaling_prepare(hba, 1 * USEC_PER_SEC);
1414 	if (ret)
1415 		return ret;
1416 
1417 	/* scale down the gear before scaling down clocks */
1418 	if (!scale_up) {
1419 		ret = ufshcd_scale_gear(hba, false);
1420 		if (ret)
1421 			goto out_unprepare;
1422 	}
1423 
1424 	ret = ufshcd_scale_clks(hba, freq, scale_up);
1425 	if (ret) {
1426 		if (!scale_up)
1427 			ufshcd_scale_gear(hba, true);
1428 		goto out_unprepare;
1429 	}
1430 
1431 	/* scale up the gear after scaling up clocks */
1432 	if (scale_up) {
1433 		ret = ufshcd_scale_gear(hba, true);
1434 		if (ret) {
1435 			ufshcd_scale_clks(hba, hba->devfreq->previous_freq,
1436 					  false);
1437 			goto out_unprepare;
1438 		}
1439 	}
1440 
1441 out_unprepare:
1442 	ufshcd_clock_scaling_unprepare(hba, ret, scale_up);
1443 	return ret;
1444 }
1445 
1446 static void ufshcd_clk_scaling_suspend_work(struct work_struct *work)
1447 {
1448 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1449 					   clk_scaling.suspend_work);
1450 	unsigned long irq_flags;
1451 
1452 	spin_lock_irqsave(hba->host->host_lock, irq_flags);
1453 	if (hba->clk_scaling.active_reqs || hba->clk_scaling.is_suspended) {
1454 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1455 		return;
1456 	}
1457 	hba->clk_scaling.is_suspended = true;
1458 	hba->clk_scaling.window_start_t = 0;
1459 	spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1460 
1461 	devfreq_suspend_device(hba->devfreq);
1462 }
1463 
1464 static void ufshcd_clk_scaling_resume_work(struct work_struct *work)
1465 {
1466 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1467 					   clk_scaling.resume_work);
1468 	unsigned long irq_flags;
1469 
1470 	spin_lock_irqsave(hba->host->host_lock, irq_flags);
1471 	if (!hba->clk_scaling.is_suspended) {
1472 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1473 		return;
1474 	}
1475 	hba->clk_scaling.is_suspended = false;
1476 	spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1477 
1478 	devfreq_resume_device(hba->devfreq);
1479 }
1480 
1481 static int ufshcd_devfreq_target(struct device *dev,
1482 				unsigned long *freq, u32 flags)
1483 {
1484 	int ret = 0;
1485 	struct ufs_hba *hba = dev_get_drvdata(dev);
1486 	ktime_t start;
1487 	bool scale_up = false, sched_clk_scaling_suspend_work = false;
1488 	struct list_head *clk_list = &hba->clk_list_head;
1489 	struct ufs_clk_info *clki;
1490 	unsigned long irq_flags;
1491 
1492 	if (!ufshcd_is_clkscaling_supported(hba))
1493 		return -EINVAL;
1494 
1495 	if (hba->use_pm_opp) {
1496 		struct dev_pm_opp *opp;
1497 
1498 		/* Get the recommended frequency from OPP framework */
1499 		opp = devfreq_recommended_opp(dev, freq, flags);
1500 		if (IS_ERR(opp))
1501 			return PTR_ERR(opp);
1502 
1503 		dev_pm_opp_put(opp);
1504 	} else {
1505 		/* Override with the closest supported frequency */
1506 		clki = list_first_entry(&hba->clk_list_head, struct ufs_clk_info,
1507 					list);
1508 		*freq =	(unsigned long) clk_round_rate(clki->clk, *freq);
1509 	}
1510 
1511 	spin_lock_irqsave(hba->host->host_lock, irq_flags);
1512 	if (ufshcd_eh_in_progress(hba)) {
1513 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1514 		return 0;
1515 	}
1516 
1517 	/* Skip scaling clock when clock scaling is suspended */
1518 	if (hba->clk_scaling.is_suspended) {
1519 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1520 		dev_warn(hba->dev, "clock scaling is suspended, skip");
1521 		return 0;
1522 	}
1523 
1524 	if (!hba->clk_scaling.active_reqs)
1525 		sched_clk_scaling_suspend_work = true;
1526 
1527 	if (list_empty(clk_list)) {
1528 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1529 		goto out;
1530 	}
1531 
1532 	/* Decide based on the target or rounded-off frequency and update */
1533 	if (hba->use_pm_opp)
1534 		scale_up = *freq > hba->clk_scaling.target_freq;
1535 	else
1536 		scale_up = *freq == clki->max_freq;
1537 
1538 	if (!hba->use_pm_opp && !scale_up)
1539 		*freq = clki->min_freq;
1540 
1541 	/* Update the frequency */
1542 	if (!ufshcd_is_devfreq_scaling_required(hba, *freq, scale_up)) {
1543 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1544 		ret = 0;
1545 		goto out; /* no state change required */
1546 	}
1547 	spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1548 
1549 	start = ktime_get();
1550 	ret = ufshcd_devfreq_scale(hba, *freq, scale_up);
1551 	if (!ret)
1552 		hba->clk_scaling.target_freq = *freq;
1553 
1554 	trace_ufshcd_profile_clk_scaling(dev_name(hba->dev),
1555 		(scale_up ? "up" : "down"),
1556 		ktime_to_us(ktime_sub(ktime_get(), start)), ret);
1557 
1558 out:
1559 	if (sched_clk_scaling_suspend_work &&
1560 			(!scale_up || hba->clk_scaling.suspend_on_no_request))
1561 		queue_work(hba->clk_scaling.workq,
1562 			   &hba->clk_scaling.suspend_work);
1563 
1564 	return ret;
1565 }
1566 
1567 static int ufshcd_devfreq_get_dev_status(struct device *dev,
1568 		struct devfreq_dev_status *stat)
1569 {
1570 	struct ufs_hba *hba = dev_get_drvdata(dev);
1571 	struct ufs_clk_scaling *scaling = &hba->clk_scaling;
1572 	unsigned long flags;
1573 	ktime_t curr_t;
1574 
1575 	if (!ufshcd_is_clkscaling_supported(hba))
1576 		return -EINVAL;
1577 
1578 	memset(stat, 0, sizeof(*stat));
1579 
1580 	spin_lock_irqsave(hba->host->host_lock, flags);
1581 	curr_t = ktime_get();
1582 	if (!scaling->window_start_t)
1583 		goto start_window;
1584 
1585 	/*
1586 	 * If current frequency is 0, then the ondemand governor considers
1587 	 * there's no initial frequency set. And it always requests to set
1588 	 * to max. frequency.
1589 	 */
1590 	if (hba->use_pm_opp) {
1591 		stat->current_frequency = hba->clk_scaling.target_freq;
1592 	} else {
1593 		struct list_head *clk_list = &hba->clk_list_head;
1594 		struct ufs_clk_info *clki;
1595 
1596 		clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1597 		stat->current_frequency = clki->curr_freq;
1598 	}
1599 
1600 	if (scaling->is_busy_started)
1601 		scaling->tot_busy_t += ktime_us_delta(curr_t,
1602 				scaling->busy_start_t);
1603 	stat->total_time = ktime_us_delta(curr_t, scaling->window_start_t);
1604 	stat->busy_time = scaling->tot_busy_t;
1605 start_window:
1606 	scaling->window_start_t = curr_t;
1607 	scaling->tot_busy_t = 0;
1608 
1609 	if (scaling->active_reqs) {
1610 		scaling->busy_start_t = curr_t;
1611 		scaling->is_busy_started = true;
1612 	} else {
1613 		scaling->busy_start_t = 0;
1614 		scaling->is_busy_started = false;
1615 	}
1616 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1617 	return 0;
1618 }
1619 
1620 static int ufshcd_devfreq_init(struct ufs_hba *hba)
1621 {
1622 	struct list_head *clk_list = &hba->clk_list_head;
1623 	struct ufs_clk_info *clki;
1624 	struct devfreq *devfreq;
1625 	int ret;
1626 
1627 	/* Skip devfreq if we don't have any clocks in the list */
1628 	if (list_empty(clk_list))
1629 		return 0;
1630 
1631 	if (!hba->use_pm_opp) {
1632 		clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1633 		dev_pm_opp_add(hba->dev, clki->min_freq, 0);
1634 		dev_pm_opp_add(hba->dev, clki->max_freq, 0);
1635 	}
1636 
1637 	ufshcd_vops_config_scaling_param(hba, &hba->vps->devfreq_profile,
1638 					 &hba->vps->ondemand_data);
1639 	devfreq = devfreq_add_device(hba->dev,
1640 			&hba->vps->devfreq_profile,
1641 			DEVFREQ_GOV_SIMPLE_ONDEMAND,
1642 			&hba->vps->ondemand_data);
1643 	if (IS_ERR(devfreq)) {
1644 		ret = PTR_ERR(devfreq);
1645 		dev_err(hba->dev, "Unable to register with devfreq %d\n", ret);
1646 
1647 		if (!hba->use_pm_opp) {
1648 			dev_pm_opp_remove(hba->dev, clki->min_freq);
1649 			dev_pm_opp_remove(hba->dev, clki->max_freq);
1650 		}
1651 		return ret;
1652 	}
1653 
1654 	hba->devfreq = devfreq;
1655 
1656 	return 0;
1657 }
1658 
1659 static void ufshcd_devfreq_remove(struct ufs_hba *hba)
1660 {
1661 	struct list_head *clk_list = &hba->clk_list_head;
1662 
1663 	if (!hba->devfreq)
1664 		return;
1665 
1666 	devfreq_remove_device(hba->devfreq);
1667 	hba->devfreq = NULL;
1668 
1669 	if (!hba->use_pm_opp) {
1670 		struct ufs_clk_info *clki;
1671 
1672 		clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1673 		dev_pm_opp_remove(hba->dev, clki->min_freq);
1674 		dev_pm_opp_remove(hba->dev, clki->max_freq);
1675 	}
1676 }
1677 
1678 static void ufshcd_suspend_clkscaling(struct ufs_hba *hba)
1679 {
1680 	unsigned long flags;
1681 	bool suspend = false;
1682 
1683 	cancel_work_sync(&hba->clk_scaling.suspend_work);
1684 	cancel_work_sync(&hba->clk_scaling.resume_work);
1685 
1686 	spin_lock_irqsave(hba->host->host_lock, flags);
1687 	if (!hba->clk_scaling.is_suspended) {
1688 		suspend = true;
1689 		hba->clk_scaling.is_suspended = true;
1690 		hba->clk_scaling.window_start_t = 0;
1691 	}
1692 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1693 
1694 	if (suspend)
1695 		devfreq_suspend_device(hba->devfreq);
1696 }
1697 
1698 static void ufshcd_resume_clkscaling(struct ufs_hba *hba)
1699 {
1700 	unsigned long flags;
1701 	bool resume = false;
1702 
1703 	spin_lock_irqsave(hba->host->host_lock, flags);
1704 	if (hba->clk_scaling.is_suspended) {
1705 		resume = true;
1706 		hba->clk_scaling.is_suspended = false;
1707 	}
1708 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1709 
1710 	if (resume)
1711 		devfreq_resume_device(hba->devfreq);
1712 }
1713 
1714 static ssize_t ufshcd_clkscale_enable_show(struct device *dev,
1715 		struct device_attribute *attr, char *buf)
1716 {
1717 	struct ufs_hba *hba = dev_get_drvdata(dev);
1718 
1719 	return sysfs_emit(buf, "%d\n", hba->clk_scaling.is_enabled);
1720 }
1721 
1722 static ssize_t ufshcd_clkscale_enable_store(struct device *dev,
1723 		struct device_attribute *attr, const char *buf, size_t count)
1724 {
1725 	struct ufs_hba *hba = dev_get_drvdata(dev);
1726 	u32 value;
1727 	int err = 0;
1728 
1729 	if (kstrtou32(buf, 0, &value))
1730 		return -EINVAL;
1731 
1732 	down(&hba->host_sem);
1733 	if (!ufshcd_is_user_access_allowed(hba)) {
1734 		err = -EBUSY;
1735 		goto out;
1736 	}
1737 
1738 	value = !!value;
1739 	if (value == hba->clk_scaling.is_enabled)
1740 		goto out;
1741 
1742 	ufshcd_rpm_get_sync(hba);
1743 	ufshcd_hold(hba);
1744 
1745 	hba->clk_scaling.is_enabled = value;
1746 
1747 	if (value) {
1748 		ufshcd_resume_clkscaling(hba);
1749 	} else {
1750 		ufshcd_suspend_clkscaling(hba);
1751 		err = ufshcd_devfreq_scale(hba, ULONG_MAX, true);
1752 		if (err)
1753 			dev_err(hba->dev, "%s: failed to scale clocks up %d\n",
1754 					__func__, err);
1755 	}
1756 
1757 	ufshcd_release(hba);
1758 	ufshcd_rpm_put_sync(hba);
1759 out:
1760 	up(&hba->host_sem);
1761 	return err ? err : count;
1762 }
1763 
1764 static void ufshcd_init_clk_scaling_sysfs(struct ufs_hba *hba)
1765 {
1766 	hba->clk_scaling.enable_attr.show = ufshcd_clkscale_enable_show;
1767 	hba->clk_scaling.enable_attr.store = ufshcd_clkscale_enable_store;
1768 	sysfs_attr_init(&hba->clk_scaling.enable_attr.attr);
1769 	hba->clk_scaling.enable_attr.attr.name = "clkscale_enable";
1770 	hba->clk_scaling.enable_attr.attr.mode = 0644;
1771 	if (device_create_file(hba->dev, &hba->clk_scaling.enable_attr))
1772 		dev_err(hba->dev, "Failed to create sysfs for clkscale_enable\n");
1773 }
1774 
1775 static void ufshcd_remove_clk_scaling_sysfs(struct ufs_hba *hba)
1776 {
1777 	if (hba->clk_scaling.enable_attr.attr.name)
1778 		device_remove_file(hba->dev, &hba->clk_scaling.enable_attr);
1779 }
1780 
1781 static void ufshcd_init_clk_scaling(struct ufs_hba *hba)
1782 {
1783 	if (!ufshcd_is_clkscaling_supported(hba))
1784 		return;
1785 
1786 	if (!hba->clk_scaling.min_gear)
1787 		hba->clk_scaling.min_gear = UFS_HS_G1;
1788 
1789 	INIT_WORK(&hba->clk_scaling.suspend_work,
1790 		  ufshcd_clk_scaling_suspend_work);
1791 	INIT_WORK(&hba->clk_scaling.resume_work,
1792 		  ufshcd_clk_scaling_resume_work);
1793 
1794 	hba->clk_scaling.workq = alloc_ordered_workqueue(
1795 		"ufs_clkscaling_%d", WQ_MEM_RECLAIM, hba->host->host_no);
1796 
1797 	hba->clk_scaling.is_initialized = true;
1798 }
1799 
1800 static void ufshcd_exit_clk_scaling(struct ufs_hba *hba)
1801 {
1802 	if (!hba->clk_scaling.is_initialized)
1803 		return;
1804 
1805 	ufshcd_remove_clk_scaling_sysfs(hba);
1806 	destroy_workqueue(hba->clk_scaling.workq);
1807 	ufshcd_devfreq_remove(hba);
1808 	hba->clk_scaling.is_initialized = false;
1809 }
1810 
1811 static void ufshcd_ungate_work(struct work_struct *work)
1812 {
1813 	int ret;
1814 	unsigned long flags;
1815 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1816 			clk_gating.ungate_work);
1817 
1818 	cancel_delayed_work_sync(&hba->clk_gating.gate_work);
1819 
1820 	spin_lock_irqsave(hba->host->host_lock, flags);
1821 	if (hba->clk_gating.state == CLKS_ON) {
1822 		spin_unlock_irqrestore(hba->host->host_lock, flags);
1823 		return;
1824 	}
1825 
1826 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1827 	ufshcd_hba_vreg_set_hpm(hba);
1828 	ufshcd_setup_clocks(hba, true);
1829 
1830 	ufshcd_enable_irq(hba);
1831 
1832 	/* Exit from hibern8 */
1833 	if (ufshcd_can_hibern8_during_gating(hba)) {
1834 		/* Prevent gating in this path */
1835 		hba->clk_gating.is_suspended = true;
1836 		if (ufshcd_is_link_hibern8(hba)) {
1837 			ret = ufshcd_uic_hibern8_exit(hba);
1838 			if (ret)
1839 				dev_err(hba->dev, "%s: hibern8 exit failed %d\n",
1840 					__func__, ret);
1841 			else
1842 				ufshcd_set_link_active(hba);
1843 		}
1844 		hba->clk_gating.is_suspended = false;
1845 	}
1846 }
1847 
1848 /**
1849  * ufshcd_hold - Enable clocks that were gated earlier due to ufshcd_release.
1850  * Also, exit from hibern8 mode and set the link as active.
1851  * @hba: per adapter instance
1852  */
1853 void ufshcd_hold(struct ufs_hba *hba)
1854 {
1855 	bool flush_result;
1856 	unsigned long flags;
1857 
1858 	if (!ufshcd_is_clkgating_allowed(hba) ||
1859 	    !hba->clk_gating.is_initialized)
1860 		return;
1861 	spin_lock_irqsave(hba->host->host_lock, flags);
1862 	hba->clk_gating.active_reqs++;
1863 
1864 start:
1865 	switch (hba->clk_gating.state) {
1866 	case CLKS_ON:
1867 		/*
1868 		 * Wait for the ungate work to complete if in progress.
1869 		 * Though the clocks may be in ON state, the link could
1870 		 * still be in hibner8 state if hibern8 is allowed
1871 		 * during clock gating.
1872 		 * Make sure we exit hibern8 state also in addition to
1873 		 * clocks being ON.
1874 		 */
1875 		if (ufshcd_can_hibern8_during_gating(hba) &&
1876 		    ufshcd_is_link_hibern8(hba)) {
1877 			spin_unlock_irqrestore(hba->host->host_lock, flags);
1878 			flush_result = flush_work(&hba->clk_gating.ungate_work);
1879 			if (hba->clk_gating.is_suspended && !flush_result)
1880 				return;
1881 			spin_lock_irqsave(hba->host->host_lock, flags);
1882 			goto start;
1883 		}
1884 		break;
1885 	case REQ_CLKS_OFF:
1886 		if (cancel_delayed_work(&hba->clk_gating.gate_work)) {
1887 			hba->clk_gating.state = CLKS_ON;
1888 			trace_ufshcd_clk_gating(dev_name(hba->dev),
1889 						hba->clk_gating.state);
1890 			break;
1891 		}
1892 		/*
1893 		 * If we are here, it means gating work is either done or
1894 		 * currently running. Hence, fall through to cancel gating
1895 		 * work and to enable clocks.
1896 		 */
1897 		fallthrough;
1898 	case CLKS_OFF:
1899 		hba->clk_gating.state = REQ_CLKS_ON;
1900 		trace_ufshcd_clk_gating(dev_name(hba->dev),
1901 					hba->clk_gating.state);
1902 		queue_work(hba->clk_gating.clk_gating_workq,
1903 			   &hba->clk_gating.ungate_work);
1904 		/*
1905 		 * fall through to check if we should wait for this
1906 		 * work to be done or not.
1907 		 */
1908 		fallthrough;
1909 	case REQ_CLKS_ON:
1910 		spin_unlock_irqrestore(hba->host->host_lock, flags);
1911 		flush_work(&hba->clk_gating.ungate_work);
1912 		/* Make sure state is CLKS_ON before returning */
1913 		spin_lock_irqsave(hba->host->host_lock, flags);
1914 		goto start;
1915 	default:
1916 		dev_err(hba->dev, "%s: clk gating is in invalid state %d\n",
1917 				__func__, hba->clk_gating.state);
1918 		break;
1919 	}
1920 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1921 }
1922 EXPORT_SYMBOL_GPL(ufshcd_hold);
1923 
1924 static void ufshcd_gate_work(struct work_struct *work)
1925 {
1926 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1927 			clk_gating.gate_work.work);
1928 	unsigned long flags;
1929 	int ret;
1930 
1931 	spin_lock_irqsave(hba->host->host_lock, flags);
1932 	/*
1933 	 * In case you are here to cancel this work the gating state
1934 	 * would be marked as REQ_CLKS_ON. In this case save time by
1935 	 * skipping the gating work and exit after changing the clock
1936 	 * state to CLKS_ON.
1937 	 */
1938 	if (hba->clk_gating.is_suspended ||
1939 		(hba->clk_gating.state != REQ_CLKS_OFF)) {
1940 		hba->clk_gating.state = CLKS_ON;
1941 		trace_ufshcd_clk_gating(dev_name(hba->dev),
1942 					hba->clk_gating.state);
1943 		goto rel_lock;
1944 	}
1945 
1946 	if (ufshcd_is_ufs_dev_busy(hba) || hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL)
1947 		goto rel_lock;
1948 
1949 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1950 
1951 	/* put the link into hibern8 mode before turning off clocks */
1952 	if (ufshcd_can_hibern8_during_gating(hba)) {
1953 		ret = ufshcd_uic_hibern8_enter(hba);
1954 		if (ret) {
1955 			hba->clk_gating.state = CLKS_ON;
1956 			dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
1957 					__func__, ret);
1958 			trace_ufshcd_clk_gating(dev_name(hba->dev),
1959 						hba->clk_gating.state);
1960 			goto out;
1961 		}
1962 		ufshcd_set_link_hibern8(hba);
1963 	}
1964 
1965 	ufshcd_disable_irq(hba);
1966 
1967 	ufshcd_setup_clocks(hba, false);
1968 
1969 	/* Put the host controller in low power mode if possible */
1970 	ufshcd_hba_vreg_set_lpm(hba);
1971 	/*
1972 	 * In case you are here to cancel this work the gating state
1973 	 * would be marked as REQ_CLKS_ON. In this case keep the state
1974 	 * as REQ_CLKS_ON which would anyway imply that clocks are off
1975 	 * and a request to turn them on is pending. By doing this way,
1976 	 * we keep the state machine in tact and this would ultimately
1977 	 * prevent from doing cancel work multiple times when there are
1978 	 * new requests arriving before the current cancel work is done.
1979 	 */
1980 	spin_lock_irqsave(hba->host->host_lock, flags);
1981 	if (hba->clk_gating.state == REQ_CLKS_OFF) {
1982 		hba->clk_gating.state = CLKS_OFF;
1983 		trace_ufshcd_clk_gating(dev_name(hba->dev),
1984 					hba->clk_gating.state);
1985 	}
1986 rel_lock:
1987 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1988 out:
1989 	return;
1990 }
1991 
1992 /* host lock must be held before calling this variant */
1993 static void __ufshcd_release(struct ufs_hba *hba)
1994 {
1995 	if (!ufshcd_is_clkgating_allowed(hba))
1996 		return;
1997 
1998 	hba->clk_gating.active_reqs--;
1999 
2000 	if (hba->clk_gating.active_reqs || hba->clk_gating.is_suspended ||
2001 	    hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL ||
2002 	    hba->outstanding_tasks || !hba->clk_gating.is_initialized ||
2003 	    hba->active_uic_cmd || hba->uic_async_done ||
2004 	    hba->clk_gating.state == CLKS_OFF)
2005 		return;
2006 
2007 	hba->clk_gating.state = REQ_CLKS_OFF;
2008 	trace_ufshcd_clk_gating(dev_name(hba->dev), hba->clk_gating.state);
2009 	queue_delayed_work(hba->clk_gating.clk_gating_workq,
2010 			   &hba->clk_gating.gate_work,
2011 			   msecs_to_jiffies(hba->clk_gating.delay_ms));
2012 }
2013 
2014 void ufshcd_release(struct ufs_hba *hba)
2015 {
2016 	unsigned long flags;
2017 
2018 	spin_lock_irqsave(hba->host->host_lock, flags);
2019 	__ufshcd_release(hba);
2020 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2021 }
2022 EXPORT_SYMBOL_GPL(ufshcd_release);
2023 
2024 static ssize_t ufshcd_clkgate_delay_show(struct device *dev,
2025 		struct device_attribute *attr, char *buf)
2026 {
2027 	struct ufs_hba *hba = dev_get_drvdata(dev);
2028 
2029 	return sysfs_emit(buf, "%lu\n", hba->clk_gating.delay_ms);
2030 }
2031 
2032 void ufshcd_clkgate_delay_set(struct device *dev, unsigned long value)
2033 {
2034 	struct ufs_hba *hba = dev_get_drvdata(dev);
2035 	unsigned long flags;
2036 
2037 	spin_lock_irqsave(hba->host->host_lock, flags);
2038 	hba->clk_gating.delay_ms = value;
2039 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2040 }
2041 EXPORT_SYMBOL_GPL(ufshcd_clkgate_delay_set);
2042 
2043 static ssize_t ufshcd_clkgate_delay_store(struct device *dev,
2044 		struct device_attribute *attr, const char *buf, size_t count)
2045 {
2046 	unsigned long value;
2047 
2048 	if (kstrtoul(buf, 0, &value))
2049 		return -EINVAL;
2050 
2051 	ufshcd_clkgate_delay_set(dev, value);
2052 	return count;
2053 }
2054 
2055 static ssize_t ufshcd_clkgate_enable_show(struct device *dev,
2056 		struct device_attribute *attr, char *buf)
2057 {
2058 	struct ufs_hba *hba = dev_get_drvdata(dev);
2059 
2060 	return sysfs_emit(buf, "%d\n", hba->clk_gating.is_enabled);
2061 }
2062 
2063 static ssize_t ufshcd_clkgate_enable_store(struct device *dev,
2064 		struct device_attribute *attr, const char *buf, size_t count)
2065 {
2066 	struct ufs_hba *hba = dev_get_drvdata(dev);
2067 	unsigned long flags;
2068 	u32 value;
2069 
2070 	if (kstrtou32(buf, 0, &value))
2071 		return -EINVAL;
2072 
2073 	value = !!value;
2074 
2075 	spin_lock_irqsave(hba->host->host_lock, flags);
2076 	if (value == hba->clk_gating.is_enabled)
2077 		goto out;
2078 
2079 	if (value)
2080 		__ufshcd_release(hba);
2081 	else
2082 		hba->clk_gating.active_reqs++;
2083 
2084 	hba->clk_gating.is_enabled = value;
2085 out:
2086 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2087 	return count;
2088 }
2089 
2090 static void ufshcd_init_clk_gating_sysfs(struct ufs_hba *hba)
2091 {
2092 	hba->clk_gating.delay_attr.show = ufshcd_clkgate_delay_show;
2093 	hba->clk_gating.delay_attr.store = ufshcd_clkgate_delay_store;
2094 	sysfs_attr_init(&hba->clk_gating.delay_attr.attr);
2095 	hba->clk_gating.delay_attr.attr.name = "clkgate_delay_ms";
2096 	hba->clk_gating.delay_attr.attr.mode = 0644;
2097 	if (device_create_file(hba->dev, &hba->clk_gating.delay_attr))
2098 		dev_err(hba->dev, "Failed to create sysfs for clkgate_delay\n");
2099 
2100 	hba->clk_gating.enable_attr.show = ufshcd_clkgate_enable_show;
2101 	hba->clk_gating.enable_attr.store = ufshcd_clkgate_enable_store;
2102 	sysfs_attr_init(&hba->clk_gating.enable_attr.attr);
2103 	hba->clk_gating.enable_attr.attr.name = "clkgate_enable";
2104 	hba->clk_gating.enable_attr.attr.mode = 0644;
2105 	if (device_create_file(hba->dev, &hba->clk_gating.enable_attr))
2106 		dev_err(hba->dev, "Failed to create sysfs for clkgate_enable\n");
2107 }
2108 
2109 static void ufshcd_remove_clk_gating_sysfs(struct ufs_hba *hba)
2110 {
2111 	if (hba->clk_gating.delay_attr.attr.name)
2112 		device_remove_file(hba->dev, &hba->clk_gating.delay_attr);
2113 	if (hba->clk_gating.enable_attr.attr.name)
2114 		device_remove_file(hba->dev, &hba->clk_gating.enable_attr);
2115 }
2116 
2117 static void ufshcd_init_clk_gating(struct ufs_hba *hba)
2118 {
2119 	if (!ufshcd_is_clkgating_allowed(hba))
2120 		return;
2121 
2122 	hba->clk_gating.state = CLKS_ON;
2123 
2124 	hba->clk_gating.delay_ms = 150;
2125 	INIT_DELAYED_WORK(&hba->clk_gating.gate_work, ufshcd_gate_work);
2126 	INIT_WORK(&hba->clk_gating.ungate_work, ufshcd_ungate_work);
2127 
2128 	hba->clk_gating.clk_gating_workq = alloc_ordered_workqueue(
2129 		"ufs_clk_gating_%d", WQ_MEM_RECLAIM | WQ_HIGHPRI,
2130 		hba->host->host_no);
2131 
2132 	ufshcd_init_clk_gating_sysfs(hba);
2133 
2134 	hba->clk_gating.is_enabled = true;
2135 	hba->clk_gating.is_initialized = true;
2136 }
2137 
2138 static void ufshcd_exit_clk_gating(struct ufs_hba *hba)
2139 {
2140 	if (!hba->clk_gating.is_initialized)
2141 		return;
2142 
2143 	ufshcd_remove_clk_gating_sysfs(hba);
2144 
2145 	/* Ungate the clock if necessary. */
2146 	ufshcd_hold(hba);
2147 	hba->clk_gating.is_initialized = false;
2148 	ufshcd_release(hba);
2149 
2150 	destroy_workqueue(hba->clk_gating.clk_gating_workq);
2151 }
2152 
2153 static void ufshcd_clk_scaling_start_busy(struct ufs_hba *hba)
2154 {
2155 	bool queue_resume_work = false;
2156 	ktime_t curr_t = ktime_get();
2157 	unsigned long flags;
2158 
2159 	if (!ufshcd_is_clkscaling_supported(hba))
2160 		return;
2161 
2162 	spin_lock_irqsave(hba->host->host_lock, flags);
2163 	if (!hba->clk_scaling.active_reqs++)
2164 		queue_resume_work = true;
2165 
2166 	if (!hba->clk_scaling.is_enabled || hba->pm_op_in_progress) {
2167 		spin_unlock_irqrestore(hba->host->host_lock, flags);
2168 		return;
2169 	}
2170 
2171 	if (queue_resume_work)
2172 		queue_work(hba->clk_scaling.workq,
2173 			   &hba->clk_scaling.resume_work);
2174 
2175 	if (!hba->clk_scaling.window_start_t) {
2176 		hba->clk_scaling.window_start_t = curr_t;
2177 		hba->clk_scaling.tot_busy_t = 0;
2178 		hba->clk_scaling.is_busy_started = false;
2179 	}
2180 
2181 	if (!hba->clk_scaling.is_busy_started) {
2182 		hba->clk_scaling.busy_start_t = curr_t;
2183 		hba->clk_scaling.is_busy_started = true;
2184 	}
2185 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2186 }
2187 
2188 static void ufshcd_clk_scaling_update_busy(struct ufs_hba *hba)
2189 {
2190 	struct ufs_clk_scaling *scaling = &hba->clk_scaling;
2191 	unsigned long flags;
2192 
2193 	if (!ufshcd_is_clkscaling_supported(hba))
2194 		return;
2195 
2196 	spin_lock_irqsave(hba->host->host_lock, flags);
2197 	hba->clk_scaling.active_reqs--;
2198 	if (!scaling->active_reqs && scaling->is_busy_started) {
2199 		scaling->tot_busy_t += ktime_to_us(ktime_sub(ktime_get(),
2200 					scaling->busy_start_t));
2201 		scaling->busy_start_t = 0;
2202 		scaling->is_busy_started = false;
2203 	}
2204 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2205 }
2206 
2207 static inline int ufshcd_monitor_opcode2dir(u8 opcode)
2208 {
2209 	if (opcode == READ_6 || opcode == READ_10 || opcode == READ_16)
2210 		return READ;
2211 	else if (opcode == WRITE_6 || opcode == WRITE_10 || opcode == WRITE_16)
2212 		return WRITE;
2213 	else
2214 		return -EINVAL;
2215 }
2216 
2217 static inline bool ufshcd_should_inform_monitor(struct ufs_hba *hba,
2218 						struct ufshcd_lrb *lrbp)
2219 {
2220 	const struct ufs_hba_monitor *m = &hba->monitor;
2221 
2222 	return (m->enabled && lrbp && lrbp->cmd &&
2223 		(!m->chunk_size || m->chunk_size == lrbp->cmd->sdb.length) &&
2224 		ktime_before(hba->monitor.enabled_ts, lrbp->issue_time_stamp));
2225 }
2226 
2227 static void ufshcd_start_monitor(struct ufs_hba *hba,
2228 				 const struct ufshcd_lrb *lrbp)
2229 {
2230 	int dir = ufshcd_monitor_opcode2dir(*lrbp->cmd->cmnd);
2231 	unsigned long flags;
2232 
2233 	spin_lock_irqsave(hba->host->host_lock, flags);
2234 	if (dir >= 0 && hba->monitor.nr_queued[dir]++ == 0)
2235 		hba->monitor.busy_start_ts[dir] = ktime_get();
2236 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2237 }
2238 
2239 static void ufshcd_update_monitor(struct ufs_hba *hba, const struct ufshcd_lrb *lrbp)
2240 {
2241 	int dir = ufshcd_monitor_opcode2dir(*lrbp->cmd->cmnd);
2242 	unsigned long flags;
2243 
2244 	spin_lock_irqsave(hba->host->host_lock, flags);
2245 	if (dir >= 0 && hba->monitor.nr_queued[dir] > 0) {
2246 		const struct request *req = scsi_cmd_to_rq(lrbp->cmd);
2247 		struct ufs_hba_monitor *m = &hba->monitor;
2248 		ktime_t now, inc, lat;
2249 
2250 		now = lrbp->compl_time_stamp;
2251 		inc = ktime_sub(now, m->busy_start_ts[dir]);
2252 		m->total_busy[dir] = ktime_add(m->total_busy[dir], inc);
2253 		m->nr_sec_rw[dir] += blk_rq_sectors(req);
2254 
2255 		/* Update latencies */
2256 		m->nr_req[dir]++;
2257 		lat = ktime_sub(now, lrbp->issue_time_stamp);
2258 		m->lat_sum[dir] += lat;
2259 		if (m->lat_max[dir] < lat || !m->lat_max[dir])
2260 			m->lat_max[dir] = lat;
2261 		if (m->lat_min[dir] > lat || !m->lat_min[dir])
2262 			m->lat_min[dir] = lat;
2263 
2264 		m->nr_queued[dir]--;
2265 		/* Push forward the busy start of monitor */
2266 		m->busy_start_ts[dir] = now;
2267 	}
2268 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2269 }
2270 
2271 /**
2272  * ufshcd_send_command - Send SCSI or device management commands
2273  * @hba: per adapter instance
2274  * @task_tag: Task tag of the command
2275  * @hwq: pointer to hardware queue instance
2276  */
2277 static inline
2278 void ufshcd_send_command(struct ufs_hba *hba, unsigned int task_tag,
2279 			 struct ufs_hw_queue *hwq)
2280 {
2281 	struct ufshcd_lrb *lrbp = &hba->lrb[task_tag];
2282 	unsigned long flags;
2283 
2284 	lrbp->issue_time_stamp = ktime_get();
2285 	lrbp->issue_time_stamp_local_clock = local_clock();
2286 	lrbp->compl_time_stamp = ktime_set(0, 0);
2287 	lrbp->compl_time_stamp_local_clock = 0;
2288 	ufshcd_add_command_trace(hba, task_tag, UFS_CMD_SEND);
2289 	if (lrbp->cmd)
2290 		ufshcd_clk_scaling_start_busy(hba);
2291 	if (unlikely(ufshcd_should_inform_monitor(hba, lrbp)))
2292 		ufshcd_start_monitor(hba, lrbp);
2293 
2294 	if (hba->mcq_enabled) {
2295 		int utrd_size = sizeof(struct utp_transfer_req_desc);
2296 		struct utp_transfer_req_desc *src = lrbp->utr_descriptor_ptr;
2297 		struct utp_transfer_req_desc *dest;
2298 
2299 		spin_lock(&hwq->sq_lock);
2300 		dest = hwq->sqe_base_addr + hwq->sq_tail_slot;
2301 		memcpy(dest, src, utrd_size);
2302 		ufshcd_inc_sq_tail(hwq);
2303 		spin_unlock(&hwq->sq_lock);
2304 	} else {
2305 		spin_lock_irqsave(&hba->outstanding_lock, flags);
2306 		if (hba->vops && hba->vops->setup_xfer_req)
2307 			hba->vops->setup_xfer_req(hba, lrbp->task_tag,
2308 						  !!lrbp->cmd);
2309 		__set_bit(lrbp->task_tag, &hba->outstanding_reqs);
2310 		ufshcd_writel(hba, 1 << lrbp->task_tag,
2311 			      REG_UTP_TRANSFER_REQ_DOOR_BELL);
2312 		spin_unlock_irqrestore(&hba->outstanding_lock, flags);
2313 	}
2314 }
2315 
2316 /**
2317  * ufshcd_copy_sense_data - Copy sense data in case of check condition
2318  * @lrbp: pointer to local reference block
2319  */
2320 static inline void ufshcd_copy_sense_data(struct ufshcd_lrb *lrbp)
2321 {
2322 	u8 *const sense_buffer = lrbp->cmd->sense_buffer;
2323 	u16 resp_len;
2324 	int len;
2325 
2326 	resp_len = be16_to_cpu(lrbp->ucd_rsp_ptr->header.data_segment_length);
2327 	if (sense_buffer && resp_len) {
2328 		int len_to_copy;
2329 
2330 		len = be16_to_cpu(lrbp->ucd_rsp_ptr->sr.sense_data_len);
2331 		len_to_copy = min_t(int, UFS_SENSE_SIZE, len);
2332 
2333 		memcpy(sense_buffer, lrbp->ucd_rsp_ptr->sr.sense_data,
2334 		       len_to_copy);
2335 	}
2336 }
2337 
2338 /**
2339  * ufshcd_copy_query_response() - Copy the Query Response and the data
2340  * descriptor
2341  * @hba: per adapter instance
2342  * @lrbp: pointer to local reference block
2343  *
2344  * Return: 0 upon success; < 0 upon failure.
2345  */
2346 static
2347 int ufshcd_copy_query_response(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2348 {
2349 	struct ufs_query_res *query_res = &hba->dev_cmd.query.response;
2350 
2351 	memcpy(&query_res->upiu_res, &lrbp->ucd_rsp_ptr->qr, QUERY_OSF_SIZE);
2352 
2353 	/* Get the descriptor */
2354 	if (hba->dev_cmd.query.descriptor &&
2355 	    lrbp->ucd_rsp_ptr->qr.opcode == UPIU_QUERY_OPCODE_READ_DESC) {
2356 		u8 *descp = (u8 *)lrbp->ucd_rsp_ptr +
2357 				GENERAL_UPIU_REQUEST_SIZE;
2358 		u16 resp_len;
2359 		u16 buf_len;
2360 
2361 		/* data segment length */
2362 		resp_len = be16_to_cpu(lrbp->ucd_rsp_ptr->header
2363 				       .data_segment_length);
2364 		buf_len = be16_to_cpu(
2365 				hba->dev_cmd.query.request.upiu_req.length);
2366 		if (likely(buf_len >= resp_len)) {
2367 			memcpy(hba->dev_cmd.query.descriptor, descp, resp_len);
2368 		} else {
2369 			dev_warn(hba->dev,
2370 				 "%s: rsp size %d is bigger than buffer size %d",
2371 				 __func__, resp_len, buf_len);
2372 			return -EINVAL;
2373 		}
2374 	}
2375 
2376 	return 0;
2377 }
2378 
2379 /**
2380  * ufshcd_hba_capabilities - Read controller capabilities
2381  * @hba: per adapter instance
2382  *
2383  * Return: 0 on success, negative on error.
2384  */
2385 static inline int ufshcd_hba_capabilities(struct ufs_hba *hba)
2386 {
2387 	int err;
2388 
2389 	hba->capabilities = ufshcd_readl(hba, REG_CONTROLLER_CAPABILITIES);
2390 
2391 	/* nutrs and nutmrs are 0 based values */
2392 	hba->nutrs = (hba->capabilities & MASK_TRANSFER_REQUESTS_SLOTS_SDB) + 1;
2393 	hba->nutmrs =
2394 	((hba->capabilities & MASK_TASK_MANAGEMENT_REQUEST_SLOTS) >> 16) + 1;
2395 	hba->reserved_slot = hba->nutrs - 1;
2396 
2397 	hba->nortt = FIELD_GET(MASK_NUMBER_OUTSTANDING_RTT, hba->capabilities) + 1;
2398 
2399 	/* Read crypto capabilities */
2400 	err = ufshcd_hba_init_crypto_capabilities(hba);
2401 	if (err) {
2402 		dev_err(hba->dev, "crypto setup failed\n");
2403 		return err;
2404 	}
2405 
2406 	/*
2407 	 * The UFSHCI 3.0 specification does not define MCQ_SUPPORT and
2408 	 * LSDB_SUPPORT, but [31:29] as reserved bits with reset value 0s, which
2409 	 * means we can simply read values regardless of version.
2410 	 */
2411 	hba->mcq_sup = FIELD_GET(MASK_MCQ_SUPPORT, hba->capabilities);
2412 	/*
2413 	 * 0h: legacy single doorbell support is available
2414 	 * 1h: indicate that legacy single doorbell support has been removed
2415 	 */
2416 	if (!(hba->quirks & UFSHCD_QUIRK_BROKEN_LSDBS_CAP))
2417 		hba->lsdb_sup = !FIELD_GET(MASK_LSDB_SUPPORT, hba->capabilities);
2418 	else
2419 		hba->lsdb_sup = true;
2420 
2421 	if (!hba->mcq_sup)
2422 		return 0;
2423 
2424 	hba->mcq_capabilities = ufshcd_readl(hba, REG_MCQCAP);
2425 	hba->ext_iid_sup = FIELD_GET(MASK_EXT_IID_SUPPORT,
2426 				     hba->mcq_capabilities);
2427 
2428 	return 0;
2429 }
2430 
2431 /**
2432  * ufshcd_ready_for_uic_cmd - Check if controller is ready
2433  *                            to accept UIC commands
2434  * @hba: per adapter instance
2435  *
2436  * Return: true on success, else false.
2437  */
2438 static inline bool ufshcd_ready_for_uic_cmd(struct ufs_hba *hba)
2439 {
2440 	u32 val;
2441 	int ret = read_poll_timeout(ufshcd_readl, val, val & UIC_COMMAND_READY,
2442 				    500, uic_cmd_timeout * 1000, false, hba,
2443 				    REG_CONTROLLER_STATUS);
2444 	return ret == 0;
2445 }
2446 
2447 /**
2448  * ufshcd_get_upmcrs - Get the power mode change request status
2449  * @hba: Pointer to adapter instance
2450  *
2451  * This function gets the UPMCRS field of HCS register
2452  *
2453  * Return: value of UPMCRS field.
2454  */
2455 static inline u8 ufshcd_get_upmcrs(struct ufs_hba *hba)
2456 {
2457 	return (ufshcd_readl(hba, REG_CONTROLLER_STATUS) >> 8) & 0x7;
2458 }
2459 
2460 /**
2461  * ufshcd_dispatch_uic_cmd - Dispatch an UIC command to the Unipro layer
2462  * @hba: per adapter instance
2463  * @uic_cmd: UIC command
2464  */
2465 static inline void
2466 ufshcd_dispatch_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2467 {
2468 	lockdep_assert_held(&hba->uic_cmd_mutex);
2469 
2470 	WARN_ON(hba->active_uic_cmd);
2471 
2472 	hba->active_uic_cmd = uic_cmd;
2473 
2474 	/* Write Args */
2475 	ufshcd_writel(hba, uic_cmd->argument1, REG_UIC_COMMAND_ARG_1);
2476 	ufshcd_writel(hba, uic_cmd->argument2, REG_UIC_COMMAND_ARG_2);
2477 	ufshcd_writel(hba, uic_cmd->argument3, REG_UIC_COMMAND_ARG_3);
2478 
2479 	ufshcd_add_uic_command_trace(hba, uic_cmd, UFS_CMD_SEND);
2480 
2481 	/* Write UIC Cmd */
2482 	ufshcd_writel(hba, uic_cmd->command & COMMAND_OPCODE_MASK,
2483 		      REG_UIC_COMMAND);
2484 }
2485 
2486 /**
2487  * ufshcd_wait_for_uic_cmd - Wait for completion of an UIC command
2488  * @hba: per adapter instance
2489  * @uic_cmd: UIC command
2490  *
2491  * Return: 0 only if success.
2492  */
2493 static int
2494 ufshcd_wait_for_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2495 {
2496 	int ret;
2497 	unsigned long flags;
2498 
2499 	lockdep_assert_held(&hba->uic_cmd_mutex);
2500 
2501 	if (wait_for_completion_timeout(&uic_cmd->done,
2502 					msecs_to_jiffies(uic_cmd_timeout))) {
2503 		ret = uic_cmd->argument2 & MASK_UIC_COMMAND_RESULT;
2504 	} else {
2505 		ret = -ETIMEDOUT;
2506 		dev_err(hba->dev,
2507 			"uic cmd 0x%x with arg3 0x%x completion timeout\n",
2508 			uic_cmd->command, uic_cmd->argument3);
2509 
2510 		if (!uic_cmd->cmd_active) {
2511 			dev_err(hba->dev, "%s: UIC cmd has been completed, return the result\n",
2512 				__func__);
2513 			ret = uic_cmd->argument2 & MASK_UIC_COMMAND_RESULT;
2514 		}
2515 	}
2516 
2517 	spin_lock_irqsave(hba->host->host_lock, flags);
2518 	hba->active_uic_cmd = NULL;
2519 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2520 
2521 	return ret;
2522 }
2523 
2524 /**
2525  * __ufshcd_send_uic_cmd - Send UIC commands and retrieve the result
2526  * @hba: per adapter instance
2527  * @uic_cmd: UIC command
2528  *
2529  * Return: 0 only if success.
2530  */
2531 static int
2532 __ufshcd_send_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2533 {
2534 	lockdep_assert_held(&hba->uic_cmd_mutex);
2535 
2536 	if (!ufshcd_ready_for_uic_cmd(hba)) {
2537 		dev_err(hba->dev,
2538 			"Controller not ready to accept UIC commands\n");
2539 		return -EIO;
2540 	}
2541 
2542 	init_completion(&uic_cmd->done);
2543 
2544 	uic_cmd->cmd_active = 1;
2545 	ufshcd_dispatch_uic_cmd(hba, uic_cmd);
2546 
2547 	return 0;
2548 }
2549 
2550 /**
2551  * ufshcd_send_uic_cmd - Send UIC commands and retrieve the result
2552  * @hba: per adapter instance
2553  * @uic_cmd: UIC command
2554  *
2555  * Return: 0 only if success.
2556  */
2557 int ufshcd_send_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2558 {
2559 	int ret;
2560 
2561 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_UIC_CMD)
2562 		return 0;
2563 
2564 	ufshcd_hold(hba);
2565 	mutex_lock(&hba->uic_cmd_mutex);
2566 	ufshcd_add_delay_before_dme_cmd(hba);
2567 
2568 	ret = __ufshcd_send_uic_cmd(hba, uic_cmd);
2569 	if (!ret)
2570 		ret = ufshcd_wait_for_uic_cmd(hba, uic_cmd);
2571 
2572 	mutex_unlock(&hba->uic_cmd_mutex);
2573 
2574 	ufshcd_release(hba);
2575 	return ret;
2576 }
2577 
2578 /**
2579  * ufshcd_sgl_to_prdt - SG list to PRTD (Physical Region Description Table, 4DW format)
2580  * @hba:	per-adapter instance
2581  * @lrbp:	pointer to local reference block
2582  * @sg_entries:	The number of sg lists actually used
2583  * @sg_list:	Pointer to SG list
2584  */
2585 static void ufshcd_sgl_to_prdt(struct ufs_hba *hba, struct ufshcd_lrb *lrbp, int sg_entries,
2586 			       struct scatterlist *sg_list)
2587 {
2588 	struct ufshcd_sg_entry *prd;
2589 	struct scatterlist *sg;
2590 	int i;
2591 
2592 	if (sg_entries) {
2593 
2594 		if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN)
2595 			lrbp->utr_descriptor_ptr->prd_table_length =
2596 				cpu_to_le16(sg_entries * ufshcd_sg_entry_size(hba));
2597 		else
2598 			lrbp->utr_descriptor_ptr->prd_table_length = cpu_to_le16(sg_entries);
2599 
2600 		prd = lrbp->ucd_prdt_ptr;
2601 
2602 		for_each_sg(sg_list, sg, sg_entries, i) {
2603 			const unsigned int len = sg_dma_len(sg);
2604 
2605 			/*
2606 			 * From the UFSHCI spec: "Data Byte Count (DBC): A '0'
2607 			 * based value that indicates the length, in bytes, of
2608 			 * the data block. A maximum of length of 256KB may
2609 			 * exist for any entry. Bits 1:0 of this field shall be
2610 			 * 11b to indicate Dword granularity. A value of '3'
2611 			 * indicates 4 bytes, '7' indicates 8 bytes, etc."
2612 			 */
2613 			WARN_ONCE(len > SZ_256K, "len = %#x\n", len);
2614 			prd->size = cpu_to_le32(len - 1);
2615 			prd->addr = cpu_to_le64(sg->dma_address);
2616 			prd->reserved = 0;
2617 			prd = (void *)prd + ufshcd_sg_entry_size(hba);
2618 		}
2619 	} else {
2620 		lrbp->utr_descriptor_ptr->prd_table_length = 0;
2621 	}
2622 }
2623 
2624 /**
2625  * ufshcd_map_sg - Map scatter-gather list to prdt
2626  * @hba: per adapter instance
2627  * @lrbp: pointer to local reference block
2628  *
2629  * Return: 0 in case of success, non-zero value in case of failure.
2630  */
2631 static int ufshcd_map_sg(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2632 {
2633 	struct scsi_cmnd *cmd = lrbp->cmd;
2634 	int sg_segments = scsi_dma_map(cmd);
2635 
2636 	if (sg_segments < 0)
2637 		return sg_segments;
2638 
2639 	ufshcd_sgl_to_prdt(hba, lrbp, sg_segments, scsi_sglist(cmd));
2640 
2641 	return ufshcd_crypto_fill_prdt(hba, lrbp);
2642 }
2643 
2644 /**
2645  * ufshcd_enable_intr - enable interrupts
2646  * @hba: per adapter instance
2647  * @intrs: interrupt bits
2648  */
2649 static void ufshcd_enable_intr(struct ufs_hba *hba, u32 intrs)
2650 {
2651 	u32 set = ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
2652 
2653 	set |= intrs;
2654 	ufshcd_writel(hba, set, REG_INTERRUPT_ENABLE);
2655 }
2656 
2657 /**
2658  * ufshcd_disable_intr - disable interrupts
2659  * @hba: per adapter instance
2660  * @intrs: interrupt bits
2661  */
2662 static void ufshcd_disable_intr(struct ufs_hba *hba, u32 intrs)
2663 {
2664 	u32 set = ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
2665 
2666 	set &= ~intrs;
2667 	ufshcd_writel(hba, set, REG_INTERRUPT_ENABLE);
2668 }
2669 
2670 /**
2671  * ufshcd_prepare_req_desc_hdr - Fill UTP Transfer request descriptor header according to request
2672  * descriptor according to request
2673  * @hba: per adapter instance
2674  * @lrbp: pointer to local reference block
2675  * @upiu_flags: flags required in the header
2676  * @cmd_dir: requests data direction
2677  * @ehs_length: Total EHS Length (in 32‐bytes units of all Extra Header Segments)
2678  */
2679 static void
2680 ufshcd_prepare_req_desc_hdr(struct ufs_hba *hba, struct ufshcd_lrb *lrbp,
2681 			    u8 *upiu_flags, enum dma_data_direction cmd_dir,
2682 			    int ehs_length)
2683 {
2684 	struct utp_transfer_req_desc *req_desc = lrbp->utr_descriptor_ptr;
2685 	struct request_desc_header *h = &req_desc->header;
2686 	enum utp_data_direction data_direction;
2687 
2688 	lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
2689 
2690 	*h = (typeof(*h)){ };
2691 
2692 	if (cmd_dir == DMA_FROM_DEVICE) {
2693 		data_direction = UTP_DEVICE_TO_HOST;
2694 		*upiu_flags = UPIU_CMD_FLAGS_READ;
2695 	} else if (cmd_dir == DMA_TO_DEVICE) {
2696 		data_direction = UTP_HOST_TO_DEVICE;
2697 		*upiu_flags = UPIU_CMD_FLAGS_WRITE;
2698 	} else {
2699 		data_direction = UTP_NO_DATA_TRANSFER;
2700 		*upiu_flags = UPIU_CMD_FLAGS_NONE;
2701 	}
2702 
2703 	h->command_type = lrbp->command_type;
2704 	h->data_direction = data_direction;
2705 	h->ehs_length = ehs_length;
2706 
2707 	if (lrbp->intr_cmd)
2708 		h->interrupt = 1;
2709 
2710 	/* Prepare crypto related dwords */
2711 	ufshcd_prepare_req_desc_hdr_crypto(lrbp, h);
2712 
2713 	/*
2714 	 * assigning invalid value for command status. Controller
2715 	 * updates OCS on command completion, with the command
2716 	 * status
2717 	 */
2718 	h->ocs = OCS_INVALID_COMMAND_STATUS;
2719 
2720 	req_desc->prd_table_length = 0;
2721 }
2722 
2723 /**
2724  * ufshcd_prepare_utp_scsi_cmd_upiu() - fills the utp_transfer_req_desc,
2725  * for scsi commands
2726  * @lrbp: local reference block pointer
2727  * @upiu_flags: flags
2728  */
2729 static
2730 void ufshcd_prepare_utp_scsi_cmd_upiu(struct ufshcd_lrb *lrbp, u8 upiu_flags)
2731 {
2732 	struct scsi_cmnd *cmd = lrbp->cmd;
2733 	struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2734 	unsigned short cdb_len;
2735 
2736 	ucd_req_ptr->header = (struct utp_upiu_header){
2737 		.transaction_code = UPIU_TRANSACTION_COMMAND,
2738 		.flags = upiu_flags,
2739 		.lun = lrbp->lun,
2740 		.task_tag = lrbp->task_tag,
2741 		.command_set_type = UPIU_COMMAND_SET_TYPE_SCSI,
2742 	};
2743 
2744 	WARN_ON_ONCE(ucd_req_ptr->header.task_tag != lrbp->task_tag);
2745 
2746 	ucd_req_ptr->sc.exp_data_transfer_len = cpu_to_be32(cmd->sdb.length);
2747 
2748 	cdb_len = min_t(unsigned short, cmd->cmd_len, UFS_CDB_SIZE);
2749 	memcpy(ucd_req_ptr->sc.cdb, cmd->cmnd, cdb_len);
2750 
2751 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2752 }
2753 
2754 /**
2755  * ufshcd_prepare_utp_query_req_upiu() - fill the utp_transfer_req_desc for query request
2756  * @hba: UFS hba
2757  * @lrbp: local reference block pointer
2758  * @upiu_flags: flags
2759  */
2760 static void ufshcd_prepare_utp_query_req_upiu(struct ufs_hba *hba,
2761 				struct ufshcd_lrb *lrbp, u8 upiu_flags)
2762 {
2763 	struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2764 	struct ufs_query *query = &hba->dev_cmd.query;
2765 	u16 len = be16_to_cpu(query->request.upiu_req.length);
2766 
2767 	/* Query request header */
2768 	ucd_req_ptr->header = (struct utp_upiu_header){
2769 		.transaction_code = UPIU_TRANSACTION_QUERY_REQ,
2770 		.flags = upiu_flags,
2771 		.lun = lrbp->lun,
2772 		.task_tag = lrbp->task_tag,
2773 		.query_function = query->request.query_func,
2774 		/* Data segment length only need for WRITE_DESC */
2775 		.data_segment_length =
2776 			query->request.upiu_req.opcode ==
2777 					UPIU_QUERY_OPCODE_WRITE_DESC ?
2778 				cpu_to_be16(len) :
2779 				0,
2780 	};
2781 
2782 	/* Copy the Query Request buffer as is */
2783 	memcpy(&ucd_req_ptr->qr, &query->request.upiu_req,
2784 			QUERY_OSF_SIZE);
2785 
2786 	/* Copy the Descriptor */
2787 	if (query->request.upiu_req.opcode == UPIU_QUERY_OPCODE_WRITE_DESC)
2788 		memcpy(ucd_req_ptr + 1, query->descriptor, len);
2789 
2790 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2791 }
2792 
2793 static inline void ufshcd_prepare_utp_nop_upiu(struct ufshcd_lrb *lrbp)
2794 {
2795 	struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2796 
2797 	memset(ucd_req_ptr, 0, sizeof(struct utp_upiu_req));
2798 
2799 	ucd_req_ptr->header = (struct utp_upiu_header){
2800 		.transaction_code = UPIU_TRANSACTION_NOP_OUT,
2801 		.task_tag = lrbp->task_tag,
2802 	};
2803 
2804 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2805 }
2806 
2807 /**
2808  * ufshcd_compose_devman_upiu - UFS Protocol Information Unit(UPIU)
2809  *			     for Device Management Purposes
2810  * @hba: per adapter instance
2811  * @lrbp: pointer to local reference block
2812  *
2813  * Return: 0 upon success; < 0 upon failure.
2814  */
2815 static int ufshcd_compose_devman_upiu(struct ufs_hba *hba,
2816 				      struct ufshcd_lrb *lrbp)
2817 {
2818 	u8 upiu_flags;
2819 	int ret = 0;
2820 
2821 	ufshcd_prepare_req_desc_hdr(hba, lrbp, &upiu_flags, DMA_NONE, 0);
2822 
2823 	if (hba->dev_cmd.type == DEV_CMD_TYPE_QUERY)
2824 		ufshcd_prepare_utp_query_req_upiu(hba, lrbp, upiu_flags);
2825 	else if (hba->dev_cmd.type == DEV_CMD_TYPE_NOP)
2826 		ufshcd_prepare_utp_nop_upiu(lrbp);
2827 	else
2828 		ret = -EINVAL;
2829 
2830 	return ret;
2831 }
2832 
2833 /**
2834  * ufshcd_comp_scsi_upiu - UFS Protocol Information Unit(UPIU)
2835  *			   for SCSI Purposes
2836  * @hba: per adapter instance
2837  * @lrbp: pointer to local reference block
2838  */
2839 static void ufshcd_comp_scsi_upiu(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2840 {
2841 	struct request *rq = scsi_cmd_to_rq(lrbp->cmd);
2842 	unsigned int ioprio_class = IOPRIO_PRIO_CLASS(req_get_ioprio(rq));
2843 	u8 upiu_flags;
2844 
2845 	ufshcd_prepare_req_desc_hdr(hba, lrbp, &upiu_flags, lrbp->cmd->sc_data_direction, 0);
2846 	if (ioprio_class == IOPRIO_CLASS_RT)
2847 		upiu_flags |= UPIU_CMD_FLAGS_CP;
2848 	ufshcd_prepare_utp_scsi_cmd_upiu(lrbp, upiu_flags);
2849 }
2850 
2851 static void __ufshcd_setup_cmd(struct ufshcd_lrb *lrbp, struct scsi_cmnd *cmd, u8 lun, int tag)
2852 {
2853 	memset(lrbp->ucd_req_ptr, 0, sizeof(*lrbp->ucd_req_ptr));
2854 
2855 	lrbp->cmd = cmd;
2856 	lrbp->task_tag = tag;
2857 	lrbp->lun = lun;
2858 	ufshcd_prepare_lrbp_crypto(cmd ? scsi_cmd_to_rq(cmd) : NULL, lrbp);
2859 }
2860 
2861 static void ufshcd_setup_scsi_cmd(struct ufs_hba *hba, struct ufshcd_lrb *lrbp,
2862 				  struct scsi_cmnd *cmd, u8 lun, int tag)
2863 {
2864 	__ufshcd_setup_cmd(lrbp, cmd, lun, tag);
2865 	lrbp->intr_cmd = !ufshcd_is_intr_aggr_allowed(hba);
2866 	lrbp->req_abort_skip = false;
2867 
2868 	ufshcd_comp_scsi_upiu(hba, lrbp);
2869 }
2870 
2871 /**
2872  * ufshcd_upiu_wlun_to_scsi_wlun - maps UPIU W-LUN id to SCSI W-LUN ID
2873  * @upiu_wlun_id: UPIU W-LUN id
2874  *
2875  * Return: SCSI W-LUN id.
2876  */
2877 static inline u16 ufshcd_upiu_wlun_to_scsi_wlun(u8 upiu_wlun_id)
2878 {
2879 	return (upiu_wlun_id & ~UFS_UPIU_WLUN_ID) | SCSI_W_LUN_BASE;
2880 }
2881 
2882 static inline bool is_device_wlun(struct scsi_device *sdev)
2883 {
2884 	return sdev->lun ==
2885 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_UFS_DEVICE_WLUN);
2886 }
2887 
2888 /*
2889  * Associate the UFS controller queue with the default and poll HCTX types.
2890  * Initialize the mq_map[] arrays.
2891  */
2892 static void ufshcd_map_queues(struct Scsi_Host *shost)
2893 {
2894 	struct ufs_hba *hba = shost_priv(shost);
2895 	int i, queue_offset = 0;
2896 
2897 	if (!is_mcq_supported(hba)) {
2898 		hba->nr_queues[HCTX_TYPE_DEFAULT] = 1;
2899 		hba->nr_queues[HCTX_TYPE_READ] = 0;
2900 		hba->nr_queues[HCTX_TYPE_POLL] = 1;
2901 		hba->nr_hw_queues = 1;
2902 	}
2903 
2904 	for (i = 0; i < shost->nr_maps; i++) {
2905 		struct blk_mq_queue_map *map = &shost->tag_set.map[i];
2906 
2907 		map->nr_queues = hba->nr_queues[i];
2908 		if (!map->nr_queues)
2909 			continue;
2910 		map->queue_offset = queue_offset;
2911 		if (i == HCTX_TYPE_POLL && !is_mcq_supported(hba))
2912 			map->queue_offset = 0;
2913 
2914 		blk_mq_map_queues(map);
2915 		queue_offset += map->nr_queues;
2916 	}
2917 }
2918 
2919 static void ufshcd_init_lrb(struct ufs_hba *hba, struct ufshcd_lrb *lrb, int i)
2920 {
2921 	struct utp_transfer_cmd_desc *cmd_descp = (void *)hba->ucdl_base_addr +
2922 		i * ufshcd_get_ucd_size(hba);
2923 	struct utp_transfer_req_desc *utrdlp = hba->utrdl_base_addr;
2924 	dma_addr_t cmd_desc_element_addr = hba->ucdl_dma_addr +
2925 		i * ufshcd_get_ucd_size(hba);
2926 	u16 response_offset = le16_to_cpu(utrdlp[i].response_upiu_offset);
2927 	u16 prdt_offset = le16_to_cpu(utrdlp[i].prd_table_offset);
2928 
2929 	lrb->utr_descriptor_ptr = utrdlp + i;
2930 	lrb->utrd_dma_addr = hba->utrdl_dma_addr +
2931 		i * sizeof(struct utp_transfer_req_desc);
2932 	lrb->ucd_req_ptr = (struct utp_upiu_req *)cmd_descp->command_upiu;
2933 	lrb->ucd_req_dma_addr = cmd_desc_element_addr;
2934 	lrb->ucd_rsp_ptr = (struct utp_upiu_rsp *)cmd_descp->response_upiu;
2935 	lrb->ucd_rsp_dma_addr = cmd_desc_element_addr + response_offset;
2936 	lrb->ucd_prdt_ptr = (struct ufshcd_sg_entry *)cmd_descp->prd_table;
2937 	lrb->ucd_prdt_dma_addr = cmd_desc_element_addr + prdt_offset;
2938 }
2939 
2940 /**
2941  * ufshcd_queuecommand - main entry point for SCSI requests
2942  * @host: SCSI host pointer
2943  * @cmd: command from SCSI Midlayer
2944  *
2945  * Return: 0 for success, non-zero in case of failure.
2946  */
2947 static int ufshcd_queuecommand(struct Scsi_Host *host, struct scsi_cmnd *cmd)
2948 {
2949 	struct ufs_hba *hba = shost_priv(host);
2950 	int tag = scsi_cmd_to_rq(cmd)->tag;
2951 	struct ufshcd_lrb *lrbp;
2952 	int err = 0;
2953 	struct ufs_hw_queue *hwq = NULL;
2954 
2955 	switch (hba->ufshcd_state) {
2956 	case UFSHCD_STATE_OPERATIONAL:
2957 		break;
2958 	case UFSHCD_STATE_EH_SCHEDULED_NON_FATAL:
2959 		/*
2960 		 * SCSI error handler can call ->queuecommand() while UFS error
2961 		 * handler is in progress. Error interrupts could change the
2962 		 * state from UFSHCD_STATE_RESET to
2963 		 * UFSHCD_STATE_EH_SCHEDULED_NON_FATAL. Prevent requests
2964 		 * being issued in that case.
2965 		 */
2966 		if (ufshcd_eh_in_progress(hba)) {
2967 			err = SCSI_MLQUEUE_HOST_BUSY;
2968 			goto out;
2969 		}
2970 		break;
2971 	case UFSHCD_STATE_EH_SCHEDULED_FATAL:
2972 		/*
2973 		 * pm_runtime_get_sync() is used at error handling preparation
2974 		 * stage. If a scsi cmd, e.g. the SSU cmd, is sent from hba's
2975 		 * PM ops, it can never be finished if we let SCSI layer keep
2976 		 * retrying it, which gets err handler stuck forever. Neither
2977 		 * can we let the scsi cmd pass through, because UFS is in bad
2978 		 * state, the scsi cmd may eventually time out, which will get
2979 		 * err handler blocked for too long. So, just fail the scsi cmd
2980 		 * sent from PM ops, err handler can recover PM error anyways.
2981 		 */
2982 		if (hba->pm_op_in_progress) {
2983 			hba->force_reset = true;
2984 			set_host_byte(cmd, DID_BAD_TARGET);
2985 			scsi_done(cmd);
2986 			goto out;
2987 		}
2988 		fallthrough;
2989 	case UFSHCD_STATE_RESET:
2990 		err = SCSI_MLQUEUE_HOST_BUSY;
2991 		goto out;
2992 	case UFSHCD_STATE_ERROR:
2993 		set_host_byte(cmd, DID_ERROR);
2994 		scsi_done(cmd);
2995 		goto out;
2996 	}
2997 
2998 	hba->req_abort_count = 0;
2999 
3000 	ufshcd_hold(hba);
3001 
3002 	lrbp = &hba->lrb[tag];
3003 
3004 	ufshcd_setup_scsi_cmd(hba, lrbp, cmd, ufshcd_scsi_to_upiu_lun(cmd->device->lun), tag);
3005 
3006 	err = ufshcd_map_sg(hba, lrbp);
3007 	if (err) {
3008 		ufshcd_release(hba);
3009 		goto out;
3010 	}
3011 
3012 	if (hba->mcq_enabled)
3013 		hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(cmd));
3014 
3015 	ufshcd_send_command(hba, tag, hwq);
3016 
3017 out:
3018 	if (ufs_trigger_eh(hba)) {
3019 		unsigned long flags;
3020 
3021 		spin_lock_irqsave(hba->host->host_lock, flags);
3022 		ufshcd_schedule_eh_work(hba);
3023 		spin_unlock_irqrestore(hba->host->host_lock, flags);
3024 	}
3025 
3026 	return err;
3027 }
3028 
3029 static void ufshcd_setup_dev_cmd(struct ufs_hba *hba, struct ufshcd_lrb *lrbp,
3030 			     enum dev_cmd_type cmd_type, u8 lun, int tag)
3031 {
3032 	__ufshcd_setup_cmd(lrbp, NULL, lun, tag);
3033 	lrbp->intr_cmd = true; /* No interrupt aggregation */
3034 	hba->dev_cmd.type = cmd_type;
3035 }
3036 
3037 static int ufshcd_compose_dev_cmd(struct ufs_hba *hba,
3038 		struct ufshcd_lrb *lrbp, enum dev_cmd_type cmd_type, int tag)
3039 {
3040 	ufshcd_setup_dev_cmd(hba, lrbp, cmd_type, 0, tag);
3041 
3042 	return ufshcd_compose_devman_upiu(hba, lrbp);
3043 }
3044 
3045 /*
3046  * Check with the block layer if the command is inflight
3047  * @cmd: command to check.
3048  *
3049  * Return: true if command is inflight; false if not.
3050  */
3051 bool ufshcd_cmd_inflight(struct scsi_cmnd *cmd)
3052 {
3053 	return cmd && blk_mq_rq_state(scsi_cmd_to_rq(cmd)) == MQ_RQ_IN_FLIGHT;
3054 }
3055 
3056 /*
3057  * Clear the pending command in the controller and wait until
3058  * the controller confirms that the command has been cleared.
3059  * @hba: per adapter instance
3060  * @task_tag: The tag number of the command to be cleared.
3061  */
3062 static int ufshcd_clear_cmd(struct ufs_hba *hba, u32 task_tag)
3063 {
3064 	u32 mask;
3065 	int err;
3066 
3067 	if (hba->mcq_enabled) {
3068 		/*
3069 		 * MCQ mode. Clean up the MCQ resources similar to
3070 		 * what the ufshcd_utrl_clear() does for SDB mode.
3071 		 */
3072 		err = ufshcd_mcq_sq_cleanup(hba, task_tag);
3073 		if (err) {
3074 			dev_err(hba->dev, "%s: failed tag=%d. err=%d\n",
3075 				__func__, task_tag, err);
3076 			return err;
3077 		}
3078 		return 0;
3079 	}
3080 
3081 	mask = 1U << task_tag;
3082 
3083 	/* clear outstanding transaction before retry */
3084 	ufshcd_utrl_clear(hba, mask);
3085 
3086 	/*
3087 	 * wait for h/w to clear corresponding bit in door-bell.
3088 	 * max. wait is 1 sec.
3089 	 */
3090 	return ufshcd_wait_for_register(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL,
3091 					mask, ~mask, 1000, 1000);
3092 }
3093 
3094 /**
3095  * ufshcd_dev_cmd_completion() - handles device management command responses
3096  * @hba: per adapter instance
3097  * @lrbp: pointer to local reference block
3098  *
3099  * Return: 0 upon success; < 0 upon failure.
3100  */
3101 static int
3102 ufshcd_dev_cmd_completion(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
3103 {
3104 	enum upiu_response_transaction resp;
3105 	int err = 0;
3106 
3107 	hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
3108 	resp = ufshcd_get_req_rsp(lrbp->ucd_rsp_ptr);
3109 
3110 	switch (resp) {
3111 	case UPIU_TRANSACTION_NOP_IN:
3112 		if (hba->dev_cmd.type != DEV_CMD_TYPE_NOP) {
3113 			err = -EINVAL;
3114 			dev_err(hba->dev, "%s: unexpected response %x\n",
3115 					__func__, resp);
3116 		}
3117 		break;
3118 	case UPIU_TRANSACTION_QUERY_RSP: {
3119 		u8 response = lrbp->ucd_rsp_ptr->header.response;
3120 
3121 		if (response == 0)
3122 			err = ufshcd_copy_query_response(hba, lrbp);
3123 		break;
3124 	}
3125 	case UPIU_TRANSACTION_REJECT_UPIU:
3126 		/* TODO: handle Reject UPIU Response */
3127 		err = -EPERM;
3128 		dev_err(hba->dev, "%s: Reject UPIU not fully implemented\n",
3129 				__func__);
3130 		break;
3131 	case UPIU_TRANSACTION_RESPONSE:
3132 		if (hba->dev_cmd.type != DEV_CMD_TYPE_RPMB) {
3133 			err = -EINVAL;
3134 			dev_err(hba->dev, "%s: unexpected response %x\n", __func__, resp);
3135 		}
3136 		break;
3137 	default:
3138 		err = -EINVAL;
3139 		dev_err(hba->dev, "%s: Invalid device management cmd response: %x\n",
3140 				__func__, resp);
3141 		break;
3142 	}
3143 
3144 	return err;
3145 }
3146 
3147 static int ufshcd_wait_for_dev_cmd(struct ufs_hba *hba,
3148 		struct ufshcd_lrb *lrbp, int max_timeout)
3149 {
3150 	unsigned long time_left = msecs_to_jiffies(max_timeout);
3151 	unsigned long flags;
3152 	bool pending;
3153 	int err;
3154 
3155 retry:
3156 	time_left = wait_for_completion_timeout(hba->dev_cmd.complete,
3157 						time_left);
3158 
3159 	if (likely(time_left)) {
3160 		/*
3161 		 * The completion handler called complete() and the caller of
3162 		 * this function still owns the @lrbp tag so the code below does
3163 		 * not trigger any race conditions.
3164 		 */
3165 		hba->dev_cmd.complete = NULL;
3166 		err = ufshcd_get_tr_ocs(lrbp, NULL);
3167 		if (!err)
3168 			err = ufshcd_dev_cmd_completion(hba, lrbp);
3169 	} else {
3170 		err = -ETIMEDOUT;
3171 		dev_dbg(hba->dev, "%s: dev_cmd request timedout, tag %d\n",
3172 			__func__, lrbp->task_tag);
3173 
3174 		/* MCQ mode */
3175 		if (hba->mcq_enabled) {
3176 			/* successfully cleared the command, retry if needed */
3177 			if (ufshcd_clear_cmd(hba, lrbp->task_tag) == 0)
3178 				err = -EAGAIN;
3179 			hba->dev_cmd.complete = NULL;
3180 			return err;
3181 		}
3182 
3183 		/* SDB mode */
3184 		if (ufshcd_clear_cmd(hba, lrbp->task_tag) == 0) {
3185 			/* successfully cleared the command, retry if needed */
3186 			err = -EAGAIN;
3187 			/*
3188 			 * Since clearing the command succeeded we also need to
3189 			 * clear the task tag bit from the outstanding_reqs
3190 			 * variable.
3191 			 */
3192 			spin_lock_irqsave(&hba->outstanding_lock, flags);
3193 			pending = test_bit(lrbp->task_tag,
3194 					   &hba->outstanding_reqs);
3195 			if (pending) {
3196 				hba->dev_cmd.complete = NULL;
3197 				__clear_bit(lrbp->task_tag,
3198 					    &hba->outstanding_reqs);
3199 			}
3200 			spin_unlock_irqrestore(&hba->outstanding_lock, flags);
3201 
3202 			if (!pending) {
3203 				/*
3204 				 * The completion handler ran while we tried to
3205 				 * clear the command.
3206 				 */
3207 				time_left = 1;
3208 				goto retry;
3209 			}
3210 		} else {
3211 			dev_err(hba->dev, "%s: failed to clear tag %d\n",
3212 				__func__, lrbp->task_tag);
3213 
3214 			spin_lock_irqsave(&hba->outstanding_lock, flags);
3215 			pending = test_bit(lrbp->task_tag,
3216 					   &hba->outstanding_reqs);
3217 			if (pending)
3218 				hba->dev_cmd.complete = NULL;
3219 			spin_unlock_irqrestore(&hba->outstanding_lock, flags);
3220 
3221 			if (!pending) {
3222 				/*
3223 				 * The completion handler ran while we tried to
3224 				 * clear the command.
3225 				 */
3226 				time_left = 1;
3227 				goto retry;
3228 			}
3229 		}
3230 	}
3231 
3232 	return err;
3233 }
3234 
3235 static void ufshcd_dev_man_lock(struct ufs_hba *hba)
3236 {
3237 	ufshcd_hold(hba);
3238 	mutex_lock(&hba->dev_cmd.lock);
3239 	down_read(&hba->clk_scaling_lock);
3240 }
3241 
3242 static void ufshcd_dev_man_unlock(struct ufs_hba *hba)
3243 {
3244 	up_read(&hba->clk_scaling_lock);
3245 	mutex_unlock(&hba->dev_cmd.lock);
3246 	ufshcd_release(hba);
3247 }
3248 
3249 static int ufshcd_issue_dev_cmd(struct ufs_hba *hba, struct ufshcd_lrb *lrbp,
3250 			  const u32 tag, int timeout)
3251 {
3252 	DECLARE_COMPLETION_ONSTACK(wait);
3253 	int err;
3254 
3255 	hba->dev_cmd.complete = &wait;
3256 
3257 	ufshcd_add_query_upiu_trace(hba, UFS_QUERY_SEND, lrbp->ucd_req_ptr);
3258 
3259 	ufshcd_send_command(hba, tag, hba->dev_cmd_queue);
3260 	err = ufshcd_wait_for_dev_cmd(hba, lrbp, timeout);
3261 
3262 	ufshcd_add_query_upiu_trace(hba, err ? UFS_QUERY_ERR : UFS_QUERY_COMP,
3263 				    (struct utp_upiu_req *)lrbp->ucd_rsp_ptr);
3264 
3265 	return err;
3266 }
3267 
3268 /**
3269  * ufshcd_exec_dev_cmd - API for sending device management requests
3270  * @hba: UFS hba
3271  * @cmd_type: specifies the type (NOP, Query...)
3272  * @timeout: timeout in milliseconds
3273  *
3274  * Return: 0 upon success; < 0 upon failure.
3275  *
3276  * NOTE: Since there is only one available tag for device management commands,
3277  * it is expected you hold the hba->dev_cmd.lock mutex.
3278  */
3279 static int ufshcd_exec_dev_cmd(struct ufs_hba *hba,
3280 		enum dev_cmd_type cmd_type, int timeout)
3281 {
3282 	const u32 tag = hba->reserved_slot;
3283 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
3284 	int err;
3285 
3286 	/* Protects use of hba->reserved_slot. */
3287 	lockdep_assert_held(&hba->dev_cmd.lock);
3288 
3289 	err = ufshcd_compose_dev_cmd(hba, lrbp, cmd_type, tag);
3290 	if (unlikely(err))
3291 		return err;
3292 
3293 	return ufshcd_issue_dev_cmd(hba, lrbp, tag, timeout);
3294 }
3295 
3296 /**
3297  * ufshcd_init_query() - init the query response and request parameters
3298  * @hba: per-adapter instance
3299  * @request: address of the request pointer to be initialized
3300  * @response: address of the response pointer to be initialized
3301  * @opcode: operation to perform
3302  * @idn: flag idn to access
3303  * @index: LU number to access
3304  * @selector: query/flag/descriptor further identification
3305  */
3306 static inline void ufshcd_init_query(struct ufs_hba *hba,
3307 		struct ufs_query_req **request, struct ufs_query_res **response,
3308 		enum query_opcode opcode, u8 idn, u8 index, u8 selector)
3309 {
3310 	*request = &hba->dev_cmd.query.request;
3311 	*response = &hba->dev_cmd.query.response;
3312 	memset(*request, 0, sizeof(struct ufs_query_req));
3313 	memset(*response, 0, sizeof(struct ufs_query_res));
3314 	(*request)->upiu_req.opcode = opcode;
3315 	(*request)->upiu_req.idn = idn;
3316 	(*request)->upiu_req.index = index;
3317 	(*request)->upiu_req.selector = selector;
3318 }
3319 
3320 static int ufshcd_query_flag_retry(struct ufs_hba *hba,
3321 	enum query_opcode opcode, enum flag_idn idn, u8 index, bool *flag_res)
3322 {
3323 	int ret;
3324 	int retries;
3325 
3326 	for (retries = 0; retries < QUERY_REQ_RETRIES; retries++) {
3327 		ret = ufshcd_query_flag(hba, opcode, idn, index, flag_res);
3328 		if (ret)
3329 			dev_dbg(hba->dev,
3330 				"%s: failed with error %d, retries %d\n",
3331 				__func__, ret, retries);
3332 		else
3333 			break;
3334 	}
3335 
3336 	if (ret)
3337 		dev_err(hba->dev,
3338 			"%s: query flag, opcode %d, idn %d, failed with error %d after %d retries\n",
3339 			__func__, opcode, idn, ret, retries);
3340 	return ret;
3341 }
3342 
3343 /**
3344  * ufshcd_query_flag() - API function for sending flag query requests
3345  * @hba: per-adapter instance
3346  * @opcode: flag query to perform
3347  * @idn: flag idn to access
3348  * @index: flag index to access
3349  * @flag_res: the flag value after the query request completes
3350  *
3351  * Return: 0 for success, non-zero in case of failure.
3352  */
3353 int ufshcd_query_flag(struct ufs_hba *hba, enum query_opcode opcode,
3354 			enum flag_idn idn, u8 index, bool *flag_res)
3355 {
3356 	struct ufs_query_req *request = NULL;
3357 	struct ufs_query_res *response = NULL;
3358 	int err, selector = 0;
3359 	int timeout = QUERY_REQ_TIMEOUT;
3360 
3361 	BUG_ON(!hba);
3362 
3363 	ufshcd_dev_man_lock(hba);
3364 
3365 	ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3366 			selector);
3367 
3368 	switch (opcode) {
3369 	case UPIU_QUERY_OPCODE_SET_FLAG:
3370 	case UPIU_QUERY_OPCODE_CLEAR_FLAG:
3371 	case UPIU_QUERY_OPCODE_TOGGLE_FLAG:
3372 		request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3373 		break;
3374 	case UPIU_QUERY_OPCODE_READ_FLAG:
3375 		request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3376 		if (!flag_res) {
3377 			/* No dummy reads */
3378 			dev_err(hba->dev, "%s: Invalid argument for read request\n",
3379 					__func__);
3380 			err = -EINVAL;
3381 			goto out_unlock;
3382 		}
3383 		break;
3384 	default:
3385 		dev_err(hba->dev,
3386 			"%s: Expected query flag opcode but got = %d\n",
3387 			__func__, opcode);
3388 		err = -EINVAL;
3389 		goto out_unlock;
3390 	}
3391 
3392 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, timeout);
3393 
3394 	if (err) {
3395 		dev_err(hba->dev,
3396 			"%s: Sending flag query for idn %d failed, err = %d\n",
3397 			__func__, idn, err);
3398 		goto out_unlock;
3399 	}
3400 
3401 	if (flag_res)
3402 		*flag_res = (be32_to_cpu(response->upiu_res.value) &
3403 				MASK_QUERY_UPIU_FLAG_LOC) & 0x1;
3404 
3405 out_unlock:
3406 	ufshcd_dev_man_unlock(hba);
3407 	return err;
3408 }
3409 
3410 /**
3411  * ufshcd_query_attr - API function for sending attribute requests
3412  * @hba: per-adapter instance
3413  * @opcode: attribute opcode
3414  * @idn: attribute idn to access
3415  * @index: index field
3416  * @selector: selector field
3417  * @attr_val: the attribute value after the query request completes
3418  *
3419  * Return: 0 for success, non-zero in case of failure.
3420 */
3421 int ufshcd_query_attr(struct ufs_hba *hba, enum query_opcode opcode,
3422 		      enum attr_idn idn, u8 index, u8 selector, u32 *attr_val)
3423 {
3424 	struct ufs_query_req *request = NULL;
3425 	struct ufs_query_res *response = NULL;
3426 	int err;
3427 
3428 	BUG_ON(!hba);
3429 
3430 	if (!attr_val) {
3431 		dev_err(hba->dev, "%s: attribute value required for opcode 0x%x\n",
3432 				__func__, opcode);
3433 		return -EINVAL;
3434 	}
3435 
3436 	ufshcd_dev_man_lock(hba);
3437 
3438 	ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3439 			selector);
3440 
3441 	switch (opcode) {
3442 	case UPIU_QUERY_OPCODE_WRITE_ATTR:
3443 		request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3444 		request->upiu_req.value = cpu_to_be32(*attr_val);
3445 		break;
3446 	case UPIU_QUERY_OPCODE_READ_ATTR:
3447 		request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3448 		break;
3449 	default:
3450 		dev_err(hba->dev, "%s: Expected query attr opcode but got = 0x%.2x\n",
3451 				__func__, opcode);
3452 		err = -EINVAL;
3453 		goto out_unlock;
3454 	}
3455 
3456 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT);
3457 
3458 	if (err) {
3459 		dev_err(hba->dev, "%s: opcode 0x%.2x for idn %d failed, index %d, err = %d\n",
3460 				__func__, opcode, idn, index, err);
3461 		goto out_unlock;
3462 	}
3463 
3464 	*attr_val = be32_to_cpu(response->upiu_res.value);
3465 
3466 out_unlock:
3467 	ufshcd_dev_man_unlock(hba);
3468 	return err;
3469 }
3470 
3471 /**
3472  * ufshcd_query_attr_retry() - API function for sending query
3473  * attribute with retries
3474  * @hba: per-adapter instance
3475  * @opcode: attribute opcode
3476  * @idn: attribute idn to access
3477  * @index: index field
3478  * @selector: selector field
3479  * @attr_val: the attribute value after the query request
3480  * completes
3481  *
3482  * Return: 0 for success, non-zero in case of failure.
3483 */
3484 int ufshcd_query_attr_retry(struct ufs_hba *hba,
3485 	enum query_opcode opcode, enum attr_idn idn, u8 index, u8 selector,
3486 	u32 *attr_val)
3487 {
3488 	int ret = 0;
3489 	u32 retries;
3490 
3491 	for (retries = QUERY_REQ_RETRIES; retries > 0; retries--) {
3492 		ret = ufshcd_query_attr(hba, opcode, idn, index,
3493 						selector, attr_val);
3494 		if (ret)
3495 			dev_dbg(hba->dev, "%s: failed with error %d, retries %d\n",
3496 				__func__, ret, retries);
3497 		else
3498 			break;
3499 	}
3500 
3501 	if (ret)
3502 		dev_err(hba->dev,
3503 			"%s: query attribute, idn %d, failed with error %d after %d retries\n",
3504 			__func__, idn, ret, QUERY_REQ_RETRIES);
3505 	return ret;
3506 }
3507 
3508 static int __ufshcd_query_descriptor(struct ufs_hba *hba,
3509 			enum query_opcode opcode, enum desc_idn idn, u8 index,
3510 			u8 selector, u8 *desc_buf, int *buf_len)
3511 {
3512 	struct ufs_query_req *request = NULL;
3513 	struct ufs_query_res *response = NULL;
3514 	int err;
3515 
3516 	BUG_ON(!hba);
3517 
3518 	if (!desc_buf) {
3519 		dev_err(hba->dev, "%s: descriptor buffer required for opcode 0x%x\n",
3520 				__func__, opcode);
3521 		return -EINVAL;
3522 	}
3523 
3524 	if (*buf_len < QUERY_DESC_MIN_SIZE || *buf_len > QUERY_DESC_MAX_SIZE) {
3525 		dev_err(hba->dev, "%s: descriptor buffer size (%d) is out of range\n",
3526 				__func__, *buf_len);
3527 		return -EINVAL;
3528 	}
3529 
3530 	ufshcd_dev_man_lock(hba);
3531 
3532 	ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3533 			selector);
3534 	hba->dev_cmd.query.descriptor = desc_buf;
3535 	request->upiu_req.length = cpu_to_be16(*buf_len);
3536 
3537 	switch (opcode) {
3538 	case UPIU_QUERY_OPCODE_WRITE_DESC:
3539 		request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3540 		break;
3541 	case UPIU_QUERY_OPCODE_READ_DESC:
3542 		request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3543 		break;
3544 	default:
3545 		dev_err(hba->dev,
3546 				"%s: Expected query descriptor opcode but got = 0x%.2x\n",
3547 				__func__, opcode);
3548 		err = -EINVAL;
3549 		goto out_unlock;
3550 	}
3551 
3552 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT);
3553 
3554 	if (err) {
3555 		dev_err(hba->dev, "%s: opcode 0x%.2x for idn %d failed, index %d, err = %d\n",
3556 				__func__, opcode, idn, index, err);
3557 		goto out_unlock;
3558 	}
3559 
3560 	*buf_len = be16_to_cpu(response->upiu_res.length);
3561 
3562 out_unlock:
3563 	hba->dev_cmd.query.descriptor = NULL;
3564 	ufshcd_dev_man_unlock(hba);
3565 	return err;
3566 }
3567 
3568 /**
3569  * ufshcd_query_descriptor_retry - API function for sending descriptor requests
3570  * @hba: per-adapter instance
3571  * @opcode: attribute opcode
3572  * @idn: attribute idn to access
3573  * @index: index field
3574  * @selector: selector field
3575  * @desc_buf: the buffer that contains the descriptor
3576  * @buf_len: length parameter passed to the device
3577  *
3578  * The buf_len parameter will contain, on return, the length parameter
3579  * received on the response.
3580  *
3581  * Return: 0 for success, non-zero in case of failure.
3582  */
3583 int ufshcd_query_descriptor_retry(struct ufs_hba *hba,
3584 				  enum query_opcode opcode,
3585 				  enum desc_idn idn, u8 index,
3586 				  u8 selector,
3587 				  u8 *desc_buf, int *buf_len)
3588 {
3589 	int err;
3590 	int retries;
3591 
3592 	for (retries = QUERY_REQ_RETRIES; retries > 0; retries--) {
3593 		err = __ufshcd_query_descriptor(hba, opcode, idn, index,
3594 						selector, desc_buf, buf_len);
3595 		if (!err || err == -EINVAL)
3596 			break;
3597 	}
3598 
3599 	return err;
3600 }
3601 
3602 /**
3603  * ufshcd_read_desc_param - read the specified descriptor parameter
3604  * @hba: Pointer to adapter instance
3605  * @desc_id: descriptor idn value
3606  * @desc_index: descriptor index
3607  * @param_offset: offset of the parameter to read
3608  * @param_read_buf: pointer to buffer where parameter would be read
3609  * @param_size: sizeof(param_read_buf)
3610  *
3611  * Return: 0 in case of success, non-zero otherwise.
3612  */
3613 int ufshcd_read_desc_param(struct ufs_hba *hba,
3614 			   enum desc_idn desc_id,
3615 			   int desc_index,
3616 			   u8 param_offset,
3617 			   u8 *param_read_buf,
3618 			   u8 param_size)
3619 {
3620 	int ret;
3621 	u8 *desc_buf;
3622 	int buff_len = QUERY_DESC_MAX_SIZE;
3623 	bool is_kmalloc = true;
3624 
3625 	/* Safety check */
3626 	if (desc_id >= QUERY_DESC_IDN_MAX || !param_size)
3627 		return -EINVAL;
3628 
3629 	/* Check whether we need temp memory */
3630 	if (param_offset != 0 || param_size < buff_len) {
3631 		desc_buf = kzalloc(buff_len, GFP_KERNEL);
3632 		if (!desc_buf)
3633 			return -ENOMEM;
3634 	} else {
3635 		desc_buf = param_read_buf;
3636 		is_kmalloc = false;
3637 	}
3638 
3639 	/* Request for full descriptor */
3640 	ret = ufshcd_query_descriptor_retry(hba, UPIU_QUERY_OPCODE_READ_DESC,
3641 					    desc_id, desc_index, 0,
3642 					    desc_buf, &buff_len);
3643 	if (ret) {
3644 		dev_err(hba->dev, "%s: Failed reading descriptor. desc_id %d, desc_index %d, param_offset %d, ret %d\n",
3645 			__func__, desc_id, desc_index, param_offset, ret);
3646 		goto out;
3647 	}
3648 
3649 	/* Update descriptor length */
3650 	buff_len = desc_buf[QUERY_DESC_LENGTH_OFFSET];
3651 
3652 	if (param_offset >= buff_len) {
3653 		dev_err(hba->dev, "%s: Invalid offset 0x%x in descriptor IDN 0x%x, length 0x%x\n",
3654 			__func__, param_offset, desc_id, buff_len);
3655 		ret = -EINVAL;
3656 		goto out;
3657 	}
3658 
3659 	/* Sanity check */
3660 	if (desc_buf[QUERY_DESC_DESC_TYPE_OFFSET] != desc_id) {
3661 		dev_err(hba->dev, "%s: invalid desc_id %d in descriptor header\n",
3662 			__func__, desc_buf[QUERY_DESC_DESC_TYPE_OFFSET]);
3663 		ret = -EINVAL;
3664 		goto out;
3665 	}
3666 
3667 	if (is_kmalloc) {
3668 		/* Make sure we don't copy more data than available */
3669 		if (param_offset >= buff_len)
3670 			ret = -EINVAL;
3671 		else
3672 			memcpy(param_read_buf, &desc_buf[param_offset],
3673 			       min_t(u32, param_size, buff_len - param_offset));
3674 	}
3675 out:
3676 	if (is_kmalloc)
3677 		kfree(desc_buf);
3678 	return ret;
3679 }
3680 
3681 /**
3682  * struct uc_string_id - unicode string
3683  *
3684  * @len: size of this descriptor inclusive
3685  * @type: descriptor type
3686  * @uc: unicode string character
3687  */
3688 struct uc_string_id {
3689 	u8 len;
3690 	u8 type;
3691 	wchar_t uc[];
3692 } __packed;
3693 
3694 /* replace non-printable or non-ASCII characters with spaces */
3695 static inline char ufshcd_remove_non_printable(u8 ch)
3696 {
3697 	return (ch >= 0x20 && ch <= 0x7e) ? ch : ' ';
3698 }
3699 
3700 /**
3701  * ufshcd_read_string_desc - read string descriptor
3702  * @hba: pointer to adapter instance
3703  * @desc_index: descriptor index
3704  * @buf: pointer to buffer where descriptor would be read,
3705  *       the caller should free the memory.
3706  * @ascii: if true convert from unicode to ascii characters
3707  *         null terminated string.
3708  *
3709  * Return:
3710  * *      string size on success.
3711  * *      -ENOMEM: on allocation failure
3712  * *      -EINVAL: on a wrong parameter
3713  */
3714 int ufshcd_read_string_desc(struct ufs_hba *hba, u8 desc_index,
3715 			    u8 **buf, bool ascii)
3716 {
3717 	struct uc_string_id *uc_str;
3718 	u8 *str;
3719 	int ret;
3720 
3721 	if (!buf)
3722 		return -EINVAL;
3723 
3724 	uc_str = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
3725 	if (!uc_str)
3726 		return -ENOMEM;
3727 
3728 	ret = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_STRING, desc_index, 0,
3729 				     (u8 *)uc_str, QUERY_DESC_MAX_SIZE);
3730 	if (ret < 0) {
3731 		dev_err(hba->dev, "Reading String Desc failed after %d retries. err = %d\n",
3732 			QUERY_REQ_RETRIES, ret);
3733 		str = NULL;
3734 		goto out;
3735 	}
3736 
3737 	if (uc_str->len <= QUERY_DESC_HDR_SIZE) {
3738 		dev_dbg(hba->dev, "String Desc is of zero length\n");
3739 		str = NULL;
3740 		ret = 0;
3741 		goto out;
3742 	}
3743 
3744 	if (ascii) {
3745 		ssize_t ascii_len;
3746 		int i;
3747 		/* remove header and divide by 2 to move from UTF16 to UTF8 */
3748 		ascii_len = (uc_str->len - QUERY_DESC_HDR_SIZE) / 2 + 1;
3749 		str = kzalloc(ascii_len, GFP_KERNEL);
3750 		if (!str) {
3751 			ret = -ENOMEM;
3752 			goto out;
3753 		}
3754 
3755 		/*
3756 		 * the descriptor contains string in UTF16 format
3757 		 * we need to convert to utf-8 so it can be displayed
3758 		 */
3759 		ret = utf16s_to_utf8s(uc_str->uc,
3760 				      uc_str->len - QUERY_DESC_HDR_SIZE,
3761 				      UTF16_BIG_ENDIAN, str, ascii_len - 1);
3762 
3763 		/* replace non-printable or non-ASCII characters with spaces */
3764 		for (i = 0; i < ret; i++)
3765 			str[i] = ufshcd_remove_non_printable(str[i]);
3766 
3767 		str[ret++] = '\0';
3768 
3769 	} else {
3770 		str = kmemdup(uc_str, uc_str->len, GFP_KERNEL);
3771 		if (!str) {
3772 			ret = -ENOMEM;
3773 			goto out;
3774 		}
3775 		ret = uc_str->len;
3776 	}
3777 out:
3778 	*buf = str;
3779 	kfree(uc_str);
3780 	return ret;
3781 }
3782 
3783 /**
3784  * ufshcd_read_unit_desc_param - read the specified unit descriptor parameter
3785  * @hba: Pointer to adapter instance
3786  * @lun: lun id
3787  * @param_offset: offset of the parameter to read
3788  * @param_read_buf: pointer to buffer where parameter would be read
3789  * @param_size: sizeof(param_read_buf)
3790  *
3791  * Return: 0 in case of success, non-zero otherwise.
3792  */
3793 static inline int ufshcd_read_unit_desc_param(struct ufs_hba *hba,
3794 					      int lun,
3795 					      enum unit_desc_param param_offset,
3796 					      u8 *param_read_buf,
3797 					      u32 param_size)
3798 {
3799 	/*
3800 	 * Unit descriptors are only available for general purpose LUs (LUN id
3801 	 * from 0 to 7) and RPMB Well known LU.
3802 	 */
3803 	if (!ufs_is_valid_unit_desc_lun(&hba->dev_info, lun))
3804 		return -EOPNOTSUPP;
3805 
3806 	return ufshcd_read_desc_param(hba, QUERY_DESC_IDN_UNIT, lun,
3807 				      param_offset, param_read_buf, param_size);
3808 }
3809 
3810 static int ufshcd_get_ref_clk_gating_wait(struct ufs_hba *hba)
3811 {
3812 	int err = 0;
3813 	u32 gating_wait = UFSHCD_REF_CLK_GATING_WAIT_US;
3814 
3815 	if (hba->dev_info.wspecversion >= 0x300) {
3816 		err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
3817 				QUERY_ATTR_IDN_REF_CLK_GATING_WAIT_TIME, 0, 0,
3818 				&gating_wait);
3819 		if (err)
3820 			dev_err(hba->dev, "Failed reading bRefClkGatingWait. err = %d, use default %uus\n",
3821 					 err, gating_wait);
3822 
3823 		if (gating_wait == 0) {
3824 			gating_wait = UFSHCD_REF_CLK_GATING_WAIT_US;
3825 			dev_err(hba->dev, "Undefined ref clk gating wait time, use default %uus\n",
3826 					 gating_wait);
3827 		}
3828 
3829 		hba->dev_info.clk_gating_wait_us = gating_wait;
3830 	}
3831 
3832 	return err;
3833 }
3834 
3835 /**
3836  * ufshcd_memory_alloc - allocate memory for host memory space data structures
3837  * @hba: per adapter instance
3838  *
3839  * 1. Allocate DMA memory for Command Descriptor array
3840  *	Each command descriptor consist of Command UPIU, Response UPIU and PRDT
3841  * 2. Allocate DMA memory for UTP Transfer Request Descriptor List (UTRDL).
3842  * 3. Allocate DMA memory for UTP Task Management Request Descriptor List
3843  *	(UTMRDL)
3844  * 4. Allocate memory for local reference block(lrb).
3845  *
3846  * Return: 0 for success, non-zero in case of failure.
3847  */
3848 static int ufshcd_memory_alloc(struct ufs_hba *hba)
3849 {
3850 	size_t utmrdl_size, utrdl_size, ucdl_size;
3851 
3852 	/* Allocate memory for UTP command descriptors */
3853 	ucdl_size = ufshcd_get_ucd_size(hba) * hba->nutrs;
3854 	hba->ucdl_base_addr = dmam_alloc_coherent(hba->dev,
3855 						  ucdl_size,
3856 						  &hba->ucdl_dma_addr,
3857 						  GFP_KERNEL);
3858 
3859 	/*
3860 	 * UFSHCI requires UTP command descriptor to be 128 byte aligned.
3861 	 */
3862 	if (!hba->ucdl_base_addr ||
3863 	    WARN_ON(hba->ucdl_dma_addr & (128 - 1))) {
3864 		dev_err(hba->dev,
3865 			"Command Descriptor Memory allocation failed\n");
3866 		goto out;
3867 	}
3868 
3869 	/*
3870 	 * Allocate memory for UTP Transfer descriptors
3871 	 * UFSHCI requires 1KB alignment of UTRD
3872 	 */
3873 	utrdl_size = (sizeof(struct utp_transfer_req_desc) * hba->nutrs);
3874 	hba->utrdl_base_addr = dmam_alloc_coherent(hba->dev,
3875 						   utrdl_size,
3876 						   &hba->utrdl_dma_addr,
3877 						   GFP_KERNEL);
3878 	if (!hba->utrdl_base_addr ||
3879 	    WARN_ON(hba->utrdl_dma_addr & (SZ_1K - 1))) {
3880 		dev_err(hba->dev,
3881 			"Transfer Descriptor Memory allocation failed\n");
3882 		goto out;
3883 	}
3884 
3885 	/*
3886 	 * Skip utmrdl allocation; it may have been
3887 	 * allocated during first pass and not released during
3888 	 * MCQ memory allocation.
3889 	 * See ufshcd_release_sdb_queue() and ufshcd_config_mcq()
3890 	 */
3891 	if (hba->utmrdl_base_addr)
3892 		goto skip_utmrdl;
3893 	/*
3894 	 * Allocate memory for UTP Task Management descriptors
3895 	 * UFSHCI requires 1KB alignment of UTMRD
3896 	 */
3897 	utmrdl_size = sizeof(struct utp_task_req_desc) * hba->nutmrs;
3898 	hba->utmrdl_base_addr = dmam_alloc_coherent(hba->dev,
3899 						    utmrdl_size,
3900 						    &hba->utmrdl_dma_addr,
3901 						    GFP_KERNEL);
3902 	if (!hba->utmrdl_base_addr ||
3903 	    WARN_ON(hba->utmrdl_dma_addr & (SZ_1K - 1))) {
3904 		dev_err(hba->dev,
3905 		"Task Management Descriptor Memory allocation failed\n");
3906 		goto out;
3907 	}
3908 
3909 skip_utmrdl:
3910 	/* Allocate memory for local reference block */
3911 	hba->lrb = devm_kcalloc(hba->dev,
3912 				hba->nutrs, sizeof(struct ufshcd_lrb),
3913 				GFP_KERNEL);
3914 	if (!hba->lrb) {
3915 		dev_err(hba->dev, "LRB Memory allocation failed\n");
3916 		goto out;
3917 	}
3918 	return 0;
3919 out:
3920 	return -ENOMEM;
3921 }
3922 
3923 /**
3924  * ufshcd_host_memory_configure - configure local reference block with
3925  *				memory offsets
3926  * @hba: per adapter instance
3927  *
3928  * Configure Host memory space
3929  * 1. Update Corresponding UTRD.UCDBA and UTRD.UCDBAU with UCD DMA
3930  * address.
3931  * 2. Update each UTRD with Response UPIU offset, Response UPIU length
3932  * and PRDT offset.
3933  * 3. Save the corresponding addresses of UTRD, UCD.CMD, UCD.RSP and UCD.PRDT
3934  * into local reference block.
3935  */
3936 static void ufshcd_host_memory_configure(struct ufs_hba *hba)
3937 {
3938 	struct utp_transfer_req_desc *utrdlp;
3939 	dma_addr_t cmd_desc_dma_addr;
3940 	dma_addr_t cmd_desc_element_addr;
3941 	u16 response_offset;
3942 	u16 prdt_offset;
3943 	int cmd_desc_size;
3944 	int i;
3945 
3946 	utrdlp = hba->utrdl_base_addr;
3947 
3948 	response_offset =
3949 		offsetof(struct utp_transfer_cmd_desc, response_upiu);
3950 	prdt_offset =
3951 		offsetof(struct utp_transfer_cmd_desc, prd_table);
3952 
3953 	cmd_desc_size = ufshcd_get_ucd_size(hba);
3954 	cmd_desc_dma_addr = hba->ucdl_dma_addr;
3955 
3956 	for (i = 0; i < hba->nutrs; i++) {
3957 		/* Configure UTRD with command descriptor base address */
3958 		cmd_desc_element_addr =
3959 				(cmd_desc_dma_addr + (cmd_desc_size * i));
3960 		utrdlp[i].command_desc_base_addr =
3961 				cpu_to_le64(cmd_desc_element_addr);
3962 
3963 		/* Response upiu and prdt offset should be in double words */
3964 		if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN) {
3965 			utrdlp[i].response_upiu_offset =
3966 				cpu_to_le16(response_offset);
3967 			utrdlp[i].prd_table_offset =
3968 				cpu_to_le16(prdt_offset);
3969 			utrdlp[i].response_upiu_length =
3970 				cpu_to_le16(ALIGNED_UPIU_SIZE);
3971 		} else {
3972 			utrdlp[i].response_upiu_offset =
3973 				cpu_to_le16(response_offset >> 2);
3974 			utrdlp[i].prd_table_offset =
3975 				cpu_to_le16(prdt_offset >> 2);
3976 			utrdlp[i].response_upiu_length =
3977 				cpu_to_le16(ALIGNED_UPIU_SIZE >> 2);
3978 		}
3979 
3980 		ufshcd_init_lrb(hba, &hba->lrb[i], i);
3981 	}
3982 }
3983 
3984 /**
3985  * ufshcd_dme_link_startup - Notify Unipro to perform link startup
3986  * @hba: per adapter instance
3987  *
3988  * UIC_CMD_DME_LINK_STARTUP command must be issued to Unipro layer,
3989  * in order to initialize the Unipro link startup procedure.
3990  * Once the Unipro links are up, the device connected to the controller
3991  * is detected.
3992  *
3993  * Return: 0 on success, non-zero value on failure.
3994  */
3995 static int ufshcd_dme_link_startup(struct ufs_hba *hba)
3996 {
3997 	struct uic_command uic_cmd = {
3998 		.command = UIC_CMD_DME_LINK_STARTUP,
3999 	};
4000 	int ret;
4001 
4002 	ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4003 	if (ret)
4004 		dev_dbg(hba->dev,
4005 			"dme-link-startup: error code %d\n", ret);
4006 	return ret;
4007 }
4008 /**
4009  * ufshcd_dme_reset - UIC command for DME_RESET
4010  * @hba: per adapter instance
4011  *
4012  * DME_RESET command is issued in order to reset UniPro stack.
4013  * This function now deals with cold reset.
4014  *
4015  * Return: 0 on success, non-zero value on failure.
4016  */
4017 static int ufshcd_dme_reset(struct ufs_hba *hba)
4018 {
4019 	struct uic_command uic_cmd = {
4020 		.command = UIC_CMD_DME_RESET,
4021 	};
4022 	int ret;
4023 
4024 	ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4025 	if (ret)
4026 		dev_err(hba->dev,
4027 			"dme-reset: error code %d\n", ret);
4028 
4029 	return ret;
4030 }
4031 
4032 int ufshcd_dme_configure_adapt(struct ufs_hba *hba,
4033 			       int agreed_gear,
4034 			       int adapt_val)
4035 {
4036 	int ret;
4037 
4038 	if (agreed_gear < UFS_HS_G4)
4039 		adapt_val = PA_NO_ADAPT;
4040 
4041 	ret = ufshcd_dme_set(hba,
4042 			     UIC_ARG_MIB(PA_TXHSADAPTTYPE),
4043 			     adapt_val);
4044 	return ret;
4045 }
4046 EXPORT_SYMBOL_GPL(ufshcd_dme_configure_adapt);
4047 
4048 /**
4049  * ufshcd_dme_enable - UIC command for DME_ENABLE
4050  * @hba: per adapter instance
4051  *
4052  * DME_ENABLE command is issued in order to enable UniPro stack.
4053  *
4054  * Return: 0 on success, non-zero value on failure.
4055  */
4056 static int ufshcd_dme_enable(struct ufs_hba *hba)
4057 {
4058 	struct uic_command uic_cmd = {
4059 		.command = UIC_CMD_DME_ENABLE,
4060 	};
4061 	int ret;
4062 
4063 	ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4064 	if (ret)
4065 		dev_err(hba->dev,
4066 			"dme-enable: error code %d\n", ret);
4067 
4068 	return ret;
4069 }
4070 
4071 static inline void ufshcd_add_delay_before_dme_cmd(struct ufs_hba *hba)
4072 {
4073 	#define MIN_DELAY_BEFORE_DME_CMDS_US	1000
4074 	unsigned long min_sleep_time_us;
4075 
4076 	if (!(hba->quirks & UFSHCD_QUIRK_DELAY_BEFORE_DME_CMDS))
4077 		return;
4078 
4079 	/*
4080 	 * last_dme_cmd_tstamp will be 0 only for 1st call to
4081 	 * this function
4082 	 */
4083 	if (unlikely(!ktime_to_us(hba->last_dme_cmd_tstamp))) {
4084 		min_sleep_time_us = MIN_DELAY_BEFORE_DME_CMDS_US;
4085 	} else {
4086 		unsigned long delta =
4087 			(unsigned long) ktime_to_us(
4088 				ktime_sub(ktime_get(),
4089 				hba->last_dme_cmd_tstamp));
4090 
4091 		if (delta < MIN_DELAY_BEFORE_DME_CMDS_US)
4092 			min_sleep_time_us =
4093 				MIN_DELAY_BEFORE_DME_CMDS_US - delta;
4094 		else
4095 			min_sleep_time_us = 0; /* no more delay required */
4096 	}
4097 
4098 	if (min_sleep_time_us > 0) {
4099 		/* allow sleep for extra 50us if needed */
4100 		usleep_range(min_sleep_time_us, min_sleep_time_us + 50);
4101 	}
4102 
4103 	/* update the last_dme_cmd_tstamp */
4104 	hba->last_dme_cmd_tstamp = ktime_get();
4105 }
4106 
4107 /**
4108  * ufshcd_dme_set_attr - UIC command for DME_SET, DME_PEER_SET
4109  * @hba: per adapter instance
4110  * @attr_sel: uic command argument1
4111  * @attr_set: attribute set type as uic command argument2
4112  * @mib_val: setting value as uic command argument3
4113  * @peer: indicate whether peer or local
4114  *
4115  * Return: 0 on success, non-zero value on failure.
4116  */
4117 int ufshcd_dme_set_attr(struct ufs_hba *hba, u32 attr_sel,
4118 			u8 attr_set, u32 mib_val, u8 peer)
4119 {
4120 	struct uic_command uic_cmd = {
4121 		.command = peer ? UIC_CMD_DME_PEER_SET : UIC_CMD_DME_SET,
4122 		.argument1 = attr_sel,
4123 		.argument2 = UIC_ARG_ATTR_TYPE(attr_set),
4124 		.argument3 = mib_val,
4125 	};
4126 	static const char *const action[] = {
4127 		"dme-set",
4128 		"dme-peer-set"
4129 	};
4130 	const char *set = action[!!peer];
4131 	int ret;
4132 	int retries = UFS_UIC_COMMAND_RETRIES;
4133 
4134 	do {
4135 		/* for peer attributes we retry upon failure */
4136 		ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4137 		if (ret)
4138 			dev_dbg(hba->dev, "%s: attr-id 0x%x val 0x%x error code %d\n",
4139 				set, UIC_GET_ATTR_ID(attr_sel), mib_val, ret);
4140 	} while (ret && peer && --retries);
4141 
4142 	if (ret)
4143 		dev_err(hba->dev, "%s: attr-id 0x%x val 0x%x failed %d retries\n",
4144 			set, UIC_GET_ATTR_ID(attr_sel), mib_val,
4145 			UFS_UIC_COMMAND_RETRIES - retries);
4146 
4147 	return ret;
4148 }
4149 EXPORT_SYMBOL_GPL(ufshcd_dme_set_attr);
4150 
4151 /**
4152  * ufshcd_dme_get_attr - UIC command for DME_GET, DME_PEER_GET
4153  * @hba: per adapter instance
4154  * @attr_sel: uic command argument1
4155  * @mib_val: the value of the attribute as returned by the UIC command
4156  * @peer: indicate whether peer or local
4157  *
4158  * Return: 0 on success, non-zero value on failure.
4159  */
4160 int ufshcd_dme_get_attr(struct ufs_hba *hba, u32 attr_sel,
4161 			u32 *mib_val, u8 peer)
4162 {
4163 	struct uic_command uic_cmd = {
4164 		.command = peer ? UIC_CMD_DME_PEER_GET : UIC_CMD_DME_GET,
4165 		.argument1 = attr_sel,
4166 	};
4167 	static const char *const action[] = {
4168 		"dme-get",
4169 		"dme-peer-get"
4170 	};
4171 	const char *get = action[!!peer];
4172 	int ret;
4173 	int retries = UFS_UIC_COMMAND_RETRIES;
4174 	struct ufs_pa_layer_attr orig_pwr_info;
4175 	struct ufs_pa_layer_attr temp_pwr_info;
4176 	bool pwr_mode_change = false;
4177 
4178 	if (peer && (hba->quirks & UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE)) {
4179 		orig_pwr_info = hba->pwr_info;
4180 		temp_pwr_info = orig_pwr_info;
4181 
4182 		if (orig_pwr_info.pwr_tx == FAST_MODE ||
4183 		    orig_pwr_info.pwr_rx == FAST_MODE) {
4184 			temp_pwr_info.pwr_tx = FASTAUTO_MODE;
4185 			temp_pwr_info.pwr_rx = FASTAUTO_MODE;
4186 			pwr_mode_change = true;
4187 		} else if (orig_pwr_info.pwr_tx == SLOW_MODE ||
4188 		    orig_pwr_info.pwr_rx == SLOW_MODE) {
4189 			temp_pwr_info.pwr_tx = SLOWAUTO_MODE;
4190 			temp_pwr_info.pwr_rx = SLOWAUTO_MODE;
4191 			pwr_mode_change = true;
4192 		}
4193 		if (pwr_mode_change) {
4194 			ret = ufshcd_change_power_mode(hba, &temp_pwr_info);
4195 			if (ret)
4196 				goto out;
4197 		}
4198 	}
4199 
4200 	do {
4201 		/* for peer attributes we retry upon failure */
4202 		ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4203 		if (ret)
4204 			dev_dbg(hba->dev, "%s: attr-id 0x%x error code %d\n",
4205 				get, UIC_GET_ATTR_ID(attr_sel), ret);
4206 	} while (ret && peer && --retries);
4207 
4208 	if (ret)
4209 		dev_err(hba->dev, "%s: attr-id 0x%x failed %d retries\n",
4210 			get, UIC_GET_ATTR_ID(attr_sel),
4211 			UFS_UIC_COMMAND_RETRIES - retries);
4212 
4213 	if (mib_val && !ret)
4214 		*mib_val = uic_cmd.argument3;
4215 
4216 	if (peer && (hba->quirks & UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE)
4217 	    && pwr_mode_change)
4218 		ufshcd_change_power_mode(hba, &orig_pwr_info);
4219 out:
4220 	return ret;
4221 }
4222 EXPORT_SYMBOL_GPL(ufshcd_dme_get_attr);
4223 
4224 /**
4225  * ufshcd_uic_pwr_ctrl - executes UIC commands (which affects the link power
4226  * state) and waits for it to take effect.
4227  *
4228  * @hba: per adapter instance
4229  * @cmd: UIC command to execute
4230  *
4231  * DME operations like DME_SET(PA_PWRMODE), DME_HIBERNATE_ENTER &
4232  * DME_HIBERNATE_EXIT commands take some time to take its effect on both host
4233  * and device UniPro link and hence it's final completion would be indicated by
4234  * dedicated status bits in Interrupt Status register (UPMS, UHES, UHXS) in
4235  * addition to normal UIC command completion Status (UCCS). This function only
4236  * returns after the relevant status bits indicate the completion.
4237  *
4238  * Return: 0 on success, non-zero value on failure.
4239  */
4240 static int ufshcd_uic_pwr_ctrl(struct ufs_hba *hba, struct uic_command *cmd)
4241 {
4242 	DECLARE_COMPLETION_ONSTACK(uic_async_done);
4243 	unsigned long flags;
4244 	u8 status;
4245 	int ret;
4246 	bool reenable_intr = false;
4247 
4248 	mutex_lock(&hba->uic_cmd_mutex);
4249 	ufshcd_add_delay_before_dme_cmd(hba);
4250 
4251 	spin_lock_irqsave(hba->host->host_lock, flags);
4252 	if (ufshcd_is_link_broken(hba)) {
4253 		ret = -ENOLINK;
4254 		goto out_unlock;
4255 	}
4256 	hba->uic_async_done = &uic_async_done;
4257 	if (ufshcd_readl(hba, REG_INTERRUPT_ENABLE) & UIC_COMMAND_COMPL) {
4258 		ufshcd_disable_intr(hba, UIC_COMMAND_COMPL);
4259 		/*
4260 		 * Make sure UIC command completion interrupt is disabled before
4261 		 * issuing UIC command.
4262 		 */
4263 		ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
4264 		reenable_intr = true;
4265 	}
4266 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4267 	ret = __ufshcd_send_uic_cmd(hba, cmd);
4268 	if (ret) {
4269 		dev_err(hba->dev,
4270 			"pwr ctrl cmd 0x%x with mode 0x%x uic error %d\n",
4271 			cmd->command, cmd->argument3, ret);
4272 		goto out;
4273 	}
4274 
4275 	if (!wait_for_completion_timeout(hba->uic_async_done,
4276 					 msecs_to_jiffies(uic_cmd_timeout))) {
4277 		dev_err(hba->dev,
4278 			"pwr ctrl cmd 0x%x with mode 0x%x completion timeout\n",
4279 			cmd->command, cmd->argument3);
4280 
4281 		if (!cmd->cmd_active) {
4282 			dev_err(hba->dev, "%s: Power Mode Change operation has been completed, go check UPMCRS\n",
4283 				__func__);
4284 			goto check_upmcrs;
4285 		}
4286 
4287 		ret = -ETIMEDOUT;
4288 		goto out;
4289 	}
4290 
4291 check_upmcrs:
4292 	status = ufshcd_get_upmcrs(hba);
4293 	if (status != PWR_LOCAL) {
4294 		dev_err(hba->dev,
4295 			"pwr ctrl cmd 0x%x failed, host upmcrs:0x%x\n",
4296 			cmd->command, status);
4297 		ret = (status != PWR_OK) ? status : -1;
4298 	}
4299 out:
4300 	if (ret) {
4301 		ufshcd_print_host_state(hba);
4302 		ufshcd_print_pwr_info(hba);
4303 		ufshcd_print_evt_hist(hba);
4304 	}
4305 
4306 	spin_lock_irqsave(hba->host->host_lock, flags);
4307 	hba->active_uic_cmd = NULL;
4308 	hba->uic_async_done = NULL;
4309 	if (reenable_intr)
4310 		ufshcd_enable_intr(hba, UIC_COMMAND_COMPL);
4311 	if (ret) {
4312 		ufshcd_set_link_broken(hba);
4313 		ufshcd_schedule_eh_work(hba);
4314 	}
4315 out_unlock:
4316 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4317 	mutex_unlock(&hba->uic_cmd_mutex);
4318 
4319 	return ret;
4320 }
4321 
4322 /**
4323  * ufshcd_send_bsg_uic_cmd - Send UIC commands requested via BSG layer and retrieve the result
4324  * @hba: per adapter instance
4325  * @uic_cmd: UIC command
4326  *
4327  * Return: 0 only if success.
4328  */
4329 int ufshcd_send_bsg_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
4330 {
4331 	int ret;
4332 
4333 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_UIC_CMD)
4334 		return 0;
4335 
4336 	ufshcd_hold(hba);
4337 
4338 	if (uic_cmd->argument1 == UIC_ARG_MIB(PA_PWRMODE) &&
4339 	    uic_cmd->command == UIC_CMD_DME_SET) {
4340 		ret = ufshcd_uic_pwr_ctrl(hba, uic_cmd);
4341 		goto out;
4342 	}
4343 
4344 	mutex_lock(&hba->uic_cmd_mutex);
4345 	ufshcd_add_delay_before_dme_cmd(hba);
4346 
4347 	ret = __ufshcd_send_uic_cmd(hba, uic_cmd);
4348 	if (!ret)
4349 		ret = ufshcd_wait_for_uic_cmd(hba, uic_cmd);
4350 
4351 	mutex_unlock(&hba->uic_cmd_mutex);
4352 
4353 out:
4354 	ufshcd_release(hba);
4355 	return ret;
4356 }
4357 
4358 /**
4359  * ufshcd_uic_change_pwr_mode - Perform the UIC power mode chage
4360  *				using DME_SET primitives.
4361  * @hba: per adapter instance
4362  * @mode: powr mode value
4363  *
4364  * Return: 0 on success, non-zero value on failure.
4365  */
4366 int ufshcd_uic_change_pwr_mode(struct ufs_hba *hba, u8 mode)
4367 {
4368 	struct uic_command uic_cmd = {
4369 		.command = UIC_CMD_DME_SET,
4370 		.argument1 = UIC_ARG_MIB(PA_PWRMODE),
4371 		.argument3 = mode,
4372 	};
4373 	int ret;
4374 
4375 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_PA_RXHSUNTERMCAP) {
4376 		ret = ufshcd_dme_set(hba,
4377 				UIC_ARG_MIB_SEL(PA_RXHSUNTERMCAP, 0), 1);
4378 		if (ret) {
4379 			dev_err(hba->dev, "%s: failed to enable PA_RXHSUNTERMCAP ret %d\n",
4380 						__func__, ret);
4381 			goto out;
4382 		}
4383 	}
4384 
4385 	ufshcd_hold(hba);
4386 	ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4387 	ufshcd_release(hba);
4388 
4389 out:
4390 	return ret;
4391 }
4392 EXPORT_SYMBOL_GPL(ufshcd_uic_change_pwr_mode);
4393 
4394 int ufshcd_link_recovery(struct ufs_hba *hba)
4395 {
4396 	int ret;
4397 	unsigned long flags;
4398 
4399 	spin_lock_irqsave(hba->host->host_lock, flags);
4400 	hba->ufshcd_state = UFSHCD_STATE_RESET;
4401 	ufshcd_set_eh_in_progress(hba);
4402 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4403 
4404 	/* Reset the attached device */
4405 	ufshcd_device_reset(hba);
4406 
4407 	ret = ufshcd_host_reset_and_restore(hba);
4408 
4409 	spin_lock_irqsave(hba->host->host_lock, flags);
4410 	if (ret)
4411 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
4412 	ufshcd_clear_eh_in_progress(hba);
4413 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4414 
4415 	if (ret)
4416 		dev_err(hba->dev, "%s: link recovery failed, err %d",
4417 			__func__, ret);
4418 
4419 	return ret;
4420 }
4421 EXPORT_SYMBOL_GPL(ufshcd_link_recovery);
4422 
4423 int ufshcd_uic_hibern8_enter(struct ufs_hba *hba)
4424 {
4425 	struct uic_command uic_cmd = {
4426 		.command = UIC_CMD_DME_HIBER_ENTER,
4427 	};
4428 	ktime_t start = ktime_get();
4429 	int ret;
4430 
4431 	ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_ENTER, PRE_CHANGE);
4432 
4433 	ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4434 	trace_ufshcd_profile_hibern8(dev_name(hba->dev), "enter",
4435 			     ktime_to_us(ktime_sub(ktime_get(), start)), ret);
4436 
4437 	if (ret)
4438 		dev_err(hba->dev, "%s: hibern8 enter failed. ret = %d\n",
4439 			__func__, ret);
4440 	else
4441 		ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_ENTER,
4442 								POST_CHANGE);
4443 
4444 	return ret;
4445 }
4446 EXPORT_SYMBOL_GPL(ufshcd_uic_hibern8_enter);
4447 
4448 int ufshcd_uic_hibern8_exit(struct ufs_hba *hba)
4449 {
4450 	struct uic_command uic_cmd = {
4451 		.command = UIC_CMD_DME_HIBER_EXIT,
4452 	};
4453 	int ret;
4454 	ktime_t start = ktime_get();
4455 
4456 	ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_EXIT, PRE_CHANGE);
4457 
4458 	ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4459 	trace_ufshcd_profile_hibern8(dev_name(hba->dev), "exit",
4460 			     ktime_to_us(ktime_sub(ktime_get(), start)), ret);
4461 
4462 	if (ret) {
4463 		dev_err(hba->dev, "%s: hibern8 exit failed. ret = %d\n",
4464 			__func__, ret);
4465 	} else {
4466 		ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_EXIT,
4467 								POST_CHANGE);
4468 		hba->ufs_stats.last_hibern8_exit_tstamp = local_clock();
4469 		hba->ufs_stats.hibern8_exit_cnt++;
4470 	}
4471 
4472 	return ret;
4473 }
4474 EXPORT_SYMBOL_GPL(ufshcd_uic_hibern8_exit);
4475 
4476 static void ufshcd_configure_auto_hibern8(struct ufs_hba *hba)
4477 {
4478 	if (!ufshcd_is_auto_hibern8_supported(hba))
4479 		return;
4480 
4481 	ufshcd_writel(hba, hba->ahit, REG_AUTO_HIBERNATE_IDLE_TIMER);
4482 }
4483 
4484 void ufshcd_auto_hibern8_update(struct ufs_hba *hba, u32 ahit)
4485 {
4486 	const u32 cur_ahit = READ_ONCE(hba->ahit);
4487 
4488 	if (!ufshcd_is_auto_hibern8_supported(hba) || cur_ahit == ahit)
4489 		return;
4490 
4491 	WRITE_ONCE(hba->ahit, ahit);
4492 	if (!pm_runtime_suspended(&hba->ufs_device_wlun->sdev_gendev)) {
4493 		ufshcd_rpm_get_sync(hba);
4494 		ufshcd_hold(hba);
4495 		ufshcd_configure_auto_hibern8(hba);
4496 		ufshcd_release(hba);
4497 		ufshcd_rpm_put_sync(hba);
4498 	}
4499 }
4500 EXPORT_SYMBOL_GPL(ufshcd_auto_hibern8_update);
4501 
4502  /**
4503  * ufshcd_init_pwr_info - setting the POR (power on reset)
4504  * values in hba power info
4505  * @hba: per-adapter instance
4506  */
4507 static void ufshcd_init_pwr_info(struct ufs_hba *hba)
4508 {
4509 	hba->pwr_info.gear_rx = UFS_PWM_G1;
4510 	hba->pwr_info.gear_tx = UFS_PWM_G1;
4511 	hba->pwr_info.lane_rx = UFS_LANE_1;
4512 	hba->pwr_info.lane_tx = UFS_LANE_1;
4513 	hba->pwr_info.pwr_rx = SLOWAUTO_MODE;
4514 	hba->pwr_info.pwr_tx = SLOWAUTO_MODE;
4515 	hba->pwr_info.hs_rate = 0;
4516 }
4517 
4518 /**
4519  * ufshcd_get_max_pwr_mode - reads the max power mode negotiated with device
4520  * @hba: per-adapter instance
4521  *
4522  * Return: 0 upon success; < 0 upon failure.
4523  */
4524 static int ufshcd_get_max_pwr_mode(struct ufs_hba *hba)
4525 {
4526 	struct ufs_pa_layer_attr *pwr_info = &hba->max_pwr_info.info;
4527 
4528 	if (hba->max_pwr_info.is_valid)
4529 		return 0;
4530 
4531 	if (hba->quirks & UFSHCD_QUIRK_HIBERN_FASTAUTO) {
4532 		pwr_info->pwr_tx = FASTAUTO_MODE;
4533 		pwr_info->pwr_rx = FASTAUTO_MODE;
4534 	} else {
4535 		pwr_info->pwr_tx = FAST_MODE;
4536 		pwr_info->pwr_rx = FAST_MODE;
4537 	}
4538 	pwr_info->hs_rate = PA_HS_MODE_B;
4539 
4540 	/* Get the connected lane count */
4541 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDRXDATALANES),
4542 			&pwr_info->lane_rx);
4543 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4544 			&pwr_info->lane_tx);
4545 
4546 	if (!pwr_info->lane_rx || !pwr_info->lane_tx) {
4547 		dev_err(hba->dev, "%s: invalid connected lanes value. rx=%d, tx=%d\n",
4548 				__func__,
4549 				pwr_info->lane_rx,
4550 				pwr_info->lane_tx);
4551 		return -EINVAL;
4552 	}
4553 
4554 	if (pwr_info->lane_rx != pwr_info->lane_tx) {
4555 		dev_err(hba->dev, "%s: asymmetric connected lanes. rx=%d, tx=%d\n",
4556 			__func__,
4557 				pwr_info->lane_rx,
4558 				pwr_info->lane_tx);
4559 		return -EINVAL;
4560 	}
4561 
4562 	/*
4563 	 * First, get the maximum gears of HS speed.
4564 	 * If a zero value, it means there is no HSGEAR capability.
4565 	 * Then, get the maximum gears of PWM speed.
4566 	 */
4567 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_MAXRXHSGEAR), &pwr_info->gear_rx);
4568 	if (!pwr_info->gear_rx) {
4569 		ufshcd_dme_get(hba, UIC_ARG_MIB(PA_MAXRXPWMGEAR),
4570 				&pwr_info->gear_rx);
4571 		if (!pwr_info->gear_rx) {
4572 			dev_err(hba->dev, "%s: invalid max pwm rx gear read = %d\n",
4573 				__func__, pwr_info->gear_rx);
4574 			return -EINVAL;
4575 		}
4576 		pwr_info->pwr_rx = SLOW_MODE;
4577 	}
4578 
4579 	ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_MAXRXHSGEAR),
4580 			&pwr_info->gear_tx);
4581 	if (!pwr_info->gear_tx) {
4582 		ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_MAXRXPWMGEAR),
4583 				&pwr_info->gear_tx);
4584 		if (!pwr_info->gear_tx) {
4585 			dev_err(hba->dev, "%s: invalid max pwm tx gear read = %d\n",
4586 				__func__, pwr_info->gear_tx);
4587 			return -EINVAL;
4588 		}
4589 		pwr_info->pwr_tx = SLOW_MODE;
4590 	}
4591 
4592 	hba->max_pwr_info.is_valid = true;
4593 	return 0;
4594 }
4595 
4596 static int ufshcd_change_power_mode(struct ufs_hba *hba,
4597 			     struct ufs_pa_layer_attr *pwr_mode)
4598 {
4599 	int ret;
4600 
4601 	/* if already configured to the requested pwr_mode */
4602 	if (!hba->force_pmc &&
4603 	    pwr_mode->gear_rx == hba->pwr_info.gear_rx &&
4604 	    pwr_mode->gear_tx == hba->pwr_info.gear_tx &&
4605 	    pwr_mode->lane_rx == hba->pwr_info.lane_rx &&
4606 	    pwr_mode->lane_tx == hba->pwr_info.lane_tx &&
4607 	    pwr_mode->pwr_rx == hba->pwr_info.pwr_rx &&
4608 	    pwr_mode->pwr_tx == hba->pwr_info.pwr_tx &&
4609 	    pwr_mode->hs_rate == hba->pwr_info.hs_rate) {
4610 		dev_dbg(hba->dev, "%s: power already configured\n", __func__);
4611 		return 0;
4612 	}
4613 
4614 	/*
4615 	 * Configure attributes for power mode change with below.
4616 	 * - PA_RXGEAR, PA_ACTIVERXDATALANES, PA_RXTERMINATION,
4617 	 * - PA_TXGEAR, PA_ACTIVETXDATALANES, PA_TXTERMINATION,
4618 	 * - PA_HSSERIES
4619 	 */
4620 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXGEAR), pwr_mode->gear_rx);
4621 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVERXDATALANES),
4622 			pwr_mode->lane_rx);
4623 	if (pwr_mode->pwr_rx == FASTAUTO_MODE ||
4624 			pwr_mode->pwr_rx == FAST_MODE)
4625 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), true);
4626 	else
4627 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), false);
4628 
4629 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXGEAR), pwr_mode->gear_tx);
4630 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVETXDATALANES),
4631 			pwr_mode->lane_tx);
4632 	if (pwr_mode->pwr_tx == FASTAUTO_MODE ||
4633 			pwr_mode->pwr_tx == FAST_MODE)
4634 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), true);
4635 	else
4636 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), false);
4637 
4638 	if (pwr_mode->pwr_rx == FASTAUTO_MODE ||
4639 	    pwr_mode->pwr_tx == FASTAUTO_MODE ||
4640 	    pwr_mode->pwr_rx == FAST_MODE ||
4641 	    pwr_mode->pwr_tx == FAST_MODE)
4642 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_HSSERIES),
4643 						pwr_mode->hs_rate);
4644 
4645 	if (!(hba->quirks & UFSHCD_QUIRK_SKIP_DEF_UNIPRO_TIMEOUT_SETTING)) {
4646 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA0),
4647 				DL_FC0ProtectionTimeOutVal_Default);
4648 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA1),
4649 				DL_TC0ReplayTimeOutVal_Default);
4650 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA2),
4651 				DL_AFC0ReqTimeOutVal_Default);
4652 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA3),
4653 				DL_FC1ProtectionTimeOutVal_Default);
4654 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA4),
4655 				DL_TC1ReplayTimeOutVal_Default);
4656 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA5),
4657 				DL_AFC1ReqTimeOutVal_Default);
4658 
4659 		ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalFC0ProtectionTimeOutVal),
4660 				DL_FC0ProtectionTimeOutVal_Default);
4661 		ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalTC0ReplayTimeOutVal),
4662 				DL_TC0ReplayTimeOutVal_Default);
4663 		ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalAFC0ReqTimeOutVal),
4664 				DL_AFC0ReqTimeOutVal_Default);
4665 	}
4666 
4667 	ret = ufshcd_uic_change_pwr_mode(hba, pwr_mode->pwr_rx << 4
4668 			| pwr_mode->pwr_tx);
4669 
4670 	if (ret) {
4671 		dev_err(hba->dev,
4672 			"%s: power mode change failed %d\n", __func__, ret);
4673 	} else {
4674 		memcpy(&hba->pwr_info, pwr_mode,
4675 			sizeof(struct ufs_pa_layer_attr));
4676 	}
4677 
4678 	return ret;
4679 }
4680 
4681 /**
4682  * ufshcd_config_pwr_mode - configure a new power mode
4683  * @hba: per-adapter instance
4684  * @desired_pwr_mode: desired power configuration
4685  *
4686  * Return: 0 upon success; < 0 upon failure.
4687  */
4688 int ufshcd_config_pwr_mode(struct ufs_hba *hba,
4689 		struct ufs_pa_layer_attr *desired_pwr_mode)
4690 {
4691 	struct ufs_pa_layer_attr final_params = { 0 };
4692 	int ret;
4693 
4694 	ret = ufshcd_vops_pwr_change_notify(hba, PRE_CHANGE,
4695 					desired_pwr_mode, &final_params);
4696 
4697 	if (ret)
4698 		memcpy(&final_params, desired_pwr_mode, sizeof(final_params));
4699 
4700 	ret = ufshcd_change_power_mode(hba, &final_params);
4701 
4702 	if (!ret)
4703 		ufshcd_vops_pwr_change_notify(hba, POST_CHANGE, NULL,
4704 					&final_params);
4705 
4706 	return ret;
4707 }
4708 EXPORT_SYMBOL_GPL(ufshcd_config_pwr_mode);
4709 
4710 /**
4711  * ufshcd_complete_dev_init() - checks device readiness
4712  * @hba: per-adapter instance
4713  *
4714  * Set fDeviceInit flag and poll until device toggles it.
4715  *
4716  * Return: 0 upon success; < 0 upon failure.
4717  */
4718 static int ufshcd_complete_dev_init(struct ufs_hba *hba)
4719 {
4720 	int err;
4721 	bool flag_res = true;
4722 	ktime_t timeout;
4723 
4724 	err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG,
4725 		QUERY_FLAG_IDN_FDEVICEINIT, 0, NULL);
4726 	if (err) {
4727 		dev_err(hba->dev,
4728 			"%s: setting fDeviceInit flag failed with error %d\n",
4729 			__func__, err);
4730 		goto out;
4731 	}
4732 
4733 	/* Poll fDeviceInit flag to be cleared */
4734 	timeout = ktime_add_ms(ktime_get(), FDEVICEINIT_COMPL_TIMEOUT);
4735 	do {
4736 		err = ufshcd_query_flag(hba, UPIU_QUERY_OPCODE_READ_FLAG,
4737 					QUERY_FLAG_IDN_FDEVICEINIT, 0, &flag_res);
4738 		if (!flag_res)
4739 			break;
4740 		usleep_range(500, 1000);
4741 	} while (ktime_before(ktime_get(), timeout));
4742 
4743 	if (err) {
4744 		dev_err(hba->dev,
4745 				"%s: reading fDeviceInit flag failed with error %d\n",
4746 				__func__, err);
4747 	} else if (flag_res) {
4748 		dev_err(hba->dev,
4749 				"%s: fDeviceInit was not cleared by the device\n",
4750 				__func__);
4751 		err = -EBUSY;
4752 	}
4753 out:
4754 	return err;
4755 }
4756 
4757 /**
4758  * ufshcd_make_hba_operational - Make UFS controller operational
4759  * @hba: per adapter instance
4760  *
4761  * To bring UFS host controller to operational state,
4762  * 1. Enable required interrupts
4763  * 2. Configure interrupt aggregation
4764  * 3. Program UTRL and UTMRL base address
4765  * 4. Configure run-stop-registers
4766  *
4767  * Return: 0 on success, non-zero value on failure.
4768  */
4769 int ufshcd_make_hba_operational(struct ufs_hba *hba)
4770 {
4771 	int err = 0;
4772 	u32 reg;
4773 
4774 	/* Enable required interrupts */
4775 	ufshcd_enable_intr(hba, UFSHCD_ENABLE_INTRS);
4776 
4777 	/* Configure interrupt aggregation */
4778 	if (ufshcd_is_intr_aggr_allowed(hba))
4779 		ufshcd_config_intr_aggr(hba, hba->nutrs - 1, INT_AGGR_DEF_TO);
4780 	else
4781 		ufshcd_disable_intr_aggr(hba);
4782 
4783 	/* Configure UTRL and UTMRL base address registers */
4784 	ufshcd_writel(hba, lower_32_bits(hba->utrdl_dma_addr),
4785 			REG_UTP_TRANSFER_REQ_LIST_BASE_L);
4786 	ufshcd_writel(hba, upper_32_bits(hba->utrdl_dma_addr),
4787 			REG_UTP_TRANSFER_REQ_LIST_BASE_H);
4788 	ufshcd_writel(hba, lower_32_bits(hba->utmrdl_dma_addr),
4789 			REG_UTP_TASK_REQ_LIST_BASE_L);
4790 	ufshcd_writel(hba, upper_32_bits(hba->utmrdl_dma_addr),
4791 			REG_UTP_TASK_REQ_LIST_BASE_H);
4792 
4793 	/*
4794 	 * UCRDY, UTMRLDY and UTRLRDY bits must be 1
4795 	 */
4796 	reg = ufshcd_readl(hba, REG_CONTROLLER_STATUS);
4797 	if (!(ufshcd_get_lists_status(reg))) {
4798 		ufshcd_enable_run_stop_reg(hba);
4799 	} else {
4800 		dev_err(hba->dev,
4801 			"Host controller not ready to process requests");
4802 		err = -EIO;
4803 	}
4804 
4805 	return err;
4806 }
4807 EXPORT_SYMBOL_GPL(ufshcd_make_hba_operational);
4808 
4809 /**
4810  * ufshcd_hba_stop - Send controller to reset state
4811  * @hba: per adapter instance
4812  */
4813 void ufshcd_hba_stop(struct ufs_hba *hba)
4814 {
4815 	unsigned long flags;
4816 	int err;
4817 
4818 	/*
4819 	 * Obtain the host lock to prevent that the controller is disabled
4820 	 * while the UFS interrupt handler is active on another CPU.
4821 	 */
4822 	spin_lock_irqsave(hba->host->host_lock, flags);
4823 	ufshcd_writel(hba, CONTROLLER_DISABLE,  REG_CONTROLLER_ENABLE);
4824 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4825 
4826 	err = ufshcd_wait_for_register(hba, REG_CONTROLLER_ENABLE,
4827 					CONTROLLER_ENABLE, CONTROLLER_DISABLE,
4828 					10, 1);
4829 	if (err)
4830 		dev_err(hba->dev, "%s: Controller disable failed\n", __func__);
4831 }
4832 EXPORT_SYMBOL_GPL(ufshcd_hba_stop);
4833 
4834 /**
4835  * ufshcd_hba_execute_hce - initialize the controller
4836  * @hba: per adapter instance
4837  *
4838  * The controller resets itself and controller firmware initialization
4839  * sequence kicks off. When controller is ready it will set
4840  * the Host Controller Enable bit to 1.
4841  *
4842  * Return: 0 on success, non-zero value on failure.
4843  */
4844 static int ufshcd_hba_execute_hce(struct ufs_hba *hba)
4845 {
4846 	int retry;
4847 
4848 	for (retry = 3; retry > 0; retry--) {
4849 		if (ufshcd_is_hba_active(hba))
4850 			/* change controller state to "reset state" */
4851 			ufshcd_hba_stop(hba);
4852 
4853 		/* UniPro link is disabled at this point */
4854 		ufshcd_set_link_off(hba);
4855 
4856 		ufshcd_vops_hce_enable_notify(hba, PRE_CHANGE);
4857 
4858 		/* start controller initialization sequence */
4859 		ufshcd_hba_start(hba);
4860 
4861 		/*
4862 		 * To initialize a UFS host controller HCE bit must be set to 1.
4863 		 * During initialization the HCE bit value changes from 1->0->1.
4864 		 * When the host controller completes initialization sequence
4865 		 * it sets the value of HCE bit to 1. The same HCE bit is read back
4866 		 * to check if the controller has completed initialization sequence.
4867 		 * So without this delay the value HCE = 1, set in the previous
4868 		 * instruction might be read back.
4869 		 * This delay can be changed based on the controller.
4870 		 */
4871 		ufshcd_delay_us(hba->vps->hba_enable_delay_us, 100);
4872 
4873 		/* wait for the host controller to complete initialization */
4874 		if (!ufshcd_wait_for_register(hba, REG_CONTROLLER_ENABLE, CONTROLLER_ENABLE,
4875 					      CONTROLLER_ENABLE, 1000, 50))
4876 			break;
4877 
4878 		dev_err(hba->dev, "Enabling the controller failed\n");
4879 	}
4880 
4881 	if (!retry)
4882 		return -EIO;
4883 
4884 	/* enable UIC related interrupts */
4885 	ufshcd_enable_intr(hba, UFSHCD_UIC_MASK);
4886 
4887 	ufshcd_vops_hce_enable_notify(hba, POST_CHANGE);
4888 
4889 	return 0;
4890 }
4891 
4892 int ufshcd_hba_enable(struct ufs_hba *hba)
4893 {
4894 	int ret;
4895 
4896 	if (hba->quirks & UFSHCI_QUIRK_BROKEN_HCE) {
4897 		ufshcd_set_link_off(hba);
4898 		ufshcd_vops_hce_enable_notify(hba, PRE_CHANGE);
4899 
4900 		/* enable UIC related interrupts */
4901 		ufshcd_enable_intr(hba, UFSHCD_UIC_MASK);
4902 		ret = ufshcd_dme_reset(hba);
4903 		if (ret) {
4904 			dev_err(hba->dev, "DME_RESET failed\n");
4905 			return ret;
4906 		}
4907 
4908 		ret = ufshcd_dme_enable(hba);
4909 		if (ret) {
4910 			dev_err(hba->dev, "Enabling DME failed\n");
4911 			return ret;
4912 		}
4913 
4914 		ufshcd_vops_hce_enable_notify(hba, POST_CHANGE);
4915 	} else {
4916 		ret = ufshcd_hba_execute_hce(hba);
4917 	}
4918 
4919 	return ret;
4920 }
4921 EXPORT_SYMBOL_GPL(ufshcd_hba_enable);
4922 
4923 static int ufshcd_disable_tx_lcc(struct ufs_hba *hba, bool peer)
4924 {
4925 	int tx_lanes = 0, i, err = 0;
4926 
4927 	if (!peer)
4928 		ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4929 			       &tx_lanes);
4930 	else
4931 		ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4932 				    &tx_lanes);
4933 	for (i = 0; i < tx_lanes; i++) {
4934 		if (!peer)
4935 			err = ufshcd_dme_set(hba,
4936 				UIC_ARG_MIB_SEL(TX_LCC_ENABLE,
4937 					UIC_ARG_MPHY_TX_GEN_SEL_INDEX(i)),
4938 					0);
4939 		else
4940 			err = ufshcd_dme_peer_set(hba,
4941 				UIC_ARG_MIB_SEL(TX_LCC_ENABLE,
4942 					UIC_ARG_MPHY_TX_GEN_SEL_INDEX(i)),
4943 					0);
4944 		if (err) {
4945 			dev_err(hba->dev, "%s: TX LCC Disable failed, peer = %d, lane = %d, err = %d",
4946 				__func__, peer, i, err);
4947 			break;
4948 		}
4949 	}
4950 
4951 	return err;
4952 }
4953 
4954 static inline int ufshcd_disable_device_tx_lcc(struct ufs_hba *hba)
4955 {
4956 	return ufshcd_disable_tx_lcc(hba, true);
4957 }
4958 
4959 void ufshcd_update_evt_hist(struct ufs_hba *hba, u32 id, u32 val)
4960 {
4961 	struct ufs_event_hist *e;
4962 
4963 	if (id >= UFS_EVT_CNT)
4964 		return;
4965 
4966 	e = &hba->ufs_stats.event[id];
4967 	e->val[e->pos] = val;
4968 	e->tstamp[e->pos] = local_clock();
4969 	e->cnt += 1;
4970 	e->pos = (e->pos + 1) % UFS_EVENT_HIST_LENGTH;
4971 
4972 	ufshcd_vops_event_notify(hba, id, &val);
4973 }
4974 EXPORT_SYMBOL_GPL(ufshcd_update_evt_hist);
4975 
4976 /**
4977  * ufshcd_link_startup - Initialize unipro link startup
4978  * @hba: per adapter instance
4979  *
4980  * Return: 0 for success, non-zero in case of failure.
4981  */
4982 static int ufshcd_link_startup(struct ufs_hba *hba)
4983 {
4984 	int ret;
4985 	int retries = DME_LINKSTARTUP_RETRIES;
4986 	bool link_startup_again = false;
4987 
4988 	/*
4989 	 * If UFS device isn't active then we will have to issue link startup
4990 	 * 2 times to make sure the device state move to active.
4991 	 */
4992 	if (!ufshcd_is_ufs_dev_active(hba))
4993 		link_startup_again = true;
4994 
4995 link_startup:
4996 	do {
4997 		ufshcd_vops_link_startup_notify(hba, PRE_CHANGE);
4998 
4999 		ret = ufshcd_dme_link_startup(hba);
5000 
5001 		/* check if device is detected by inter-connect layer */
5002 		if (!ret && !ufshcd_is_device_present(hba)) {
5003 			ufshcd_update_evt_hist(hba,
5004 					       UFS_EVT_LINK_STARTUP_FAIL,
5005 					       0);
5006 			dev_err(hba->dev, "%s: Device not present\n", __func__);
5007 			ret = -ENXIO;
5008 			goto out;
5009 		}
5010 
5011 		/*
5012 		 * DME link lost indication is only received when link is up,
5013 		 * but we can't be sure if the link is up until link startup
5014 		 * succeeds. So reset the local Uni-Pro and try again.
5015 		 */
5016 		if (ret && retries && ufshcd_hba_enable(hba)) {
5017 			ufshcd_update_evt_hist(hba,
5018 					       UFS_EVT_LINK_STARTUP_FAIL,
5019 					       (u32)ret);
5020 			goto out;
5021 		}
5022 	} while (ret && retries--);
5023 
5024 	if (ret) {
5025 		/* failed to get the link up... retire */
5026 		ufshcd_update_evt_hist(hba,
5027 				       UFS_EVT_LINK_STARTUP_FAIL,
5028 				       (u32)ret);
5029 		goto out;
5030 	}
5031 
5032 	if (link_startup_again) {
5033 		link_startup_again = false;
5034 		retries = DME_LINKSTARTUP_RETRIES;
5035 		goto link_startup;
5036 	}
5037 
5038 	/* Mark that link is up in PWM-G1, 1-lane, SLOW-AUTO mode */
5039 	ufshcd_init_pwr_info(hba);
5040 	ufshcd_print_pwr_info(hba);
5041 
5042 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_LCC) {
5043 		ret = ufshcd_disable_device_tx_lcc(hba);
5044 		if (ret)
5045 			goto out;
5046 	}
5047 
5048 	/* Include any host controller configuration via UIC commands */
5049 	ret = ufshcd_vops_link_startup_notify(hba, POST_CHANGE);
5050 	if (ret)
5051 		goto out;
5052 
5053 	/* Clear UECPA once due to LINERESET has happened during LINK_STARTUP */
5054 	ufshcd_readl(hba, REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER);
5055 	ret = ufshcd_make_hba_operational(hba);
5056 out:
5057 	if (ret) {
5058 		dev_err(hba->dev, "link startup failed %d\n", ret);
5059 		ufshcd_print_host_state(hba);
5060 		ufshcd_print_pwr_info(hba);
5061 		ufshcd_print_evt_hist(hba);
5062 	}
5063 	return ret;
5064 }
5065 
5066 /**
5067  * ufshcd_verify_dev_init() - Verify device initialization
5068  * @hba: per-adapter instance
5069  *
5070  * Send NOP OUT UPIU and wait for NOP IN response to check whether the
5071  * device Transport Protocol (UTP) layer is ready after a reset.
5072  * If the UTP layer at the device side is not initialized, it may
5073  * not respond with NOP IN UPIU within timeout of %NOP_OUT_TIMEOUT
5074  * and we retry sending NOP OUT for %NOP_OUT_RETRIES iterations.
5075  *
5076  * Return: 0 upon success; < 0 upon failure.
5077  */
5078 static int ufshcd_verify_dev_init(struct ufs_hba *hba)
5079 {
5080 	int err = 0;
5081 	int retries;
5082 
5083 	ufshcd_dev_man_lock(hba);
5084 
5085 	for (retries = NOP_OUT_RETRIES; retries > 0; retries--) {
5086 		err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_NOP,
5087 					  hba->nop_out_timeout);
5088 
5089 		if (!err || err == -ETIMEDOUT)
5090 			break;
5091 
5092 		dev_dbg(hba->dev, "%s: error %d retrying\n", __func__, err);
5093 	}
5094 
5095 	ufshcd_dev_man_unlock(hba);
5096 
5097 	if (err)
5098 		dev_err(hba->dev, "%s: NOP OUT failed %d\n", __func__, err);
5099 	return err;
5100 }
5101 
5102 /**
5103  * ufshcd_setup_links - associate link b/w device wlun and other luns
5104  * @sdev: pointer to SCSI device
5105  * @hba: pointer to ufs hba
5106  */
5107 static void ufshcd_setup_links(struct ufs_hba *hba, struct scsi_device *sdev)
5108 {
5109 	struct device_link *link;
5110 
5111 	/*
5112 	 * Device wlun is the supplier & rest of the luns are consumers.
5113 	 * This ensures that device wlun suspends after all other luns.
5114 	 */
5115 	if (hba->ufs_device_wlun) {
5116 		link = device_link_add(&sdev->sdev_gendev,
5117 				       &hba->ufs_device_wlun->sdev_gendev,
5118 				       DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE);
5119 		if (!link) {
5120 			dev_err(&sdev->sdev_gendev, "Failed establishing link - %s\n",
5121 				dev_name(&hba->ufs_device_wlun->sdev_gendev));
5122 			return;
5123 		}
5124 		hba->luns_avail--;
5125 		/* Ignore REPORT_LUN wlun probing */
5126 		if (hba->luns_avail == 1) {
5127 			ufshcd_rpm_put(hba);
5128 			return;
5129 		}
5130 	} else {
5131 		/*
5132 		 * Device wlun is probed. The assumption is that WLUNs are
5133 		 * scanned before other LUNs.
5134 		 */
5135 		hba->luns_avail--;
5136 	}
5137 }
5138 
5139 /**
5140  * ufshcd_lu_init - Initialize the relevant parameters of the LU
5141  * @hba: per-adapter instance
5142  * @sdev: pointer to SCSI device
5143  */
5144 static void ufshcd_lu_init(struct ufs_hba *hba, struct scsi_device *sdev)
5145 {
5146 	int len = QUERY_DESC_MAX_SIZE;
5147 	u8 lun = ufshcd_scsi_to_upiu_lun(sdev->lun);
5148 	u8 lun_qdepth = hba->nutrs;
5149 	u8 *desc_buf;
5150 	int ret;
5151 
5152 	desc_buf = kzalloc(len, GFP_KERNEL);
5153 	if (!desc_buf)
5154 		goto set_qdepth;
5155 
5156 	ret = ufshcd_read_unit_desc_param(hba, lun, 0, desc_buf, len);
5157 	if (ret < 0) {
5158 		if (ret == -EOPNOTSUPP)
5159 			/* If LU doesn't support unit descriptor, its queue depth is set to 1 */
5160 			lun_qdepth = 1;
5161 		kfree(desc_buf);
5162 		goto set_qdepth;
5163 	}
5164 
5165 	if (desc_buf[UNIT_DESC_PARAM_LU_Q_DEPTH]) {
5166 		/*
5167 		 * In per-LU queueing architecture, bLUQueueDepth will not be 0, then we will
5168 		 * use the smaller between UFSHCI CAP.NUTRS and UFS LU bLUQueueDepth
5169 		 */
5170 		lun_qdepth = min_t(int, desc_buf[UNIT_DESC_PARAM_LU_Q_DEPTH], hba->nutrs);
5171 	}
5172 	/*
5173 	 * According to UFS device specification, the write protection mode is only supported by
5174 	 * normal LU, not supported by WLUN.
5175 	 */
5176 	if (hba->dev_info.f_power_on_wp_en && lun < hba->dev_info.max_lu_supported &&
5177 	    !hba->dev_info.is_lu_power_on_wp &&
5178 	    desc_buf[UNIT_DESC_PARAM_LU_WR_PROTECT] == UFS_LU_POWER_ON_WP)
5179 		hba->dev_info.is_lu_power_on_wp = true;
5180 
5181 	/* In case of RPMB LU, check if advanced RPMB mode is enabled */
5182 	if (desc_buf[UNIT_DESC_PARAM_UNIT_INDEX] == UFS_UPIU_RPMB_WLUN &&
5183 	    desc_buf[RPMB_UNIT_DESC_PARAM_REGION_EN] & BIT(4))
5184 		hba->dev_info.b_advanced_rpmb_en = true;
5185 
5186 
5187 	kfree(desc_buf);
5188 set_qdepth:
5189 	/*
5190 	 * For WLUNs that don't support unit descriptor, queue depth is set to 1. For LUs whose
5191 	 * bLUQueueDepth == 0, the queue depth is set to a maximum value that host can queue.
5192 	 */
5193 	dev_dbg(hba->dev, "Set LU %x queue depth %d\n", lun, lun_qdepth);
5194 	scsi_change_queue_depth(sdev, lun_qdepth);
5195 }
5196 
5197 /**
5198  * ufshcd_slave_alloc - handle initial SCSI device configurations
5199  * @sdev: pointer to SCSI device
5200  *
5201  * Return: success.
5202  */
5203 static int ufshcd_slave_alloc(struct scsi_device *sdev)
5204 {
5205 	struct ufs_hba *hba;
5206 
5207 	hba = shost_priv(sdev->host);
5208 
5209 	/* Mode sense(6) is not supported by UFS, so use Mode sense(10) */
5210 	sdev->use_10_for_ms = 1;
5211 
5212 	/* DBD field should be set to 1 in mode sense(10) */
5213 	sdev->set_dbd_for_ms = 1;
5214 
5215 	/* allow SCSI layer to restart the device in case of errors */
5216 	sdev->allow_restart = 1;
5217 
5218 	/* REPORT SUPPORTED OPERATION CODES is not supported */
5219 	sdev->no_report_opcodes = 1;
5220 
5221 	/* WRITE_SAME command is not supported */
5222 	sdev->no_write_same = 1;
5223 
5224 	ufshcd_lu_init(hba, sdev);
5225 
5226 	ufshcd_setup_links(hba, sdev);
5227 
5228 	return 0;
5229 }
5230 
5231 /**
5232  * ufshcd_change_queue_depth - change queue depth
5233  * @sdev: pointer to SCSI device
5234  * @depth: required depth to set
5235  *
5236  * Change queue depth and make sure the max. limits are not crossed.
5237  *
5238  * Return: new queue depth.
5239  */
5240 static int ufshcd_change_queue_depth(struct scsi_device *sdev, int depth)
5241 {
5242 	return scsi_change_queue_depth(sdev, min(depth, sdev->host->can_queue));
5243 }
5244 
5245 /**
5246  * ufshcd_device_configure - adjust SCSI device configurations
5247  * @sdev: pointer to SCSI device
5248  * @lim: queue limits
5249  *
5250  * Return: 0 (success).
5251  */
5252 static int ufshcd_device_configure(struct scsi_device *sdev,
5253 		struct queue_limits *lim)
5254 {
5255 	struct ufs_hba *hba = shost_priv(sdev->host);
5256 	struct request_queue *q = sdev->request_queue;
5257 
5258 	lim->dma_pad_mask = PRDT_DATA_BYTE_COUNT_PAD - 1;
5259 
5260 	/*
5261 	 * Block runtime-pm until all consumers are added.
5262 	 * Refer ufshcd_setup_links().
5263 	 */
5264 	if (is_device_wlun(sdev))
5265 		pm_runtime_get_noresume(&sdev->sdev_gendev);
5266 	else if (ufshcd_is_rpm_autosuspend_allowed(hba))
5267 		sdev->rpm_autosuspend = 1;
5268 	/*
5269 	 * Do not print messages during runtime PM to avoid never-ending cycles
5270 	 * of messages written back to storage by user space causing runtime
5271 	 * resume, causing more messages and so on.
5272 	 */
5273 	sdev->silence_suspend = 1;
5274 
5275 	if (hba->vops && hba->vops->config_scsi_dev)
5276 		hba->vops->config_scsi_dev(sdev);
5277 
5278 	ufshcd_crypto_register(hba, q);
5279 
5280 	return 0;
5281 }
5282 
5283 /**
5284  * ufshcd_slave_destroy - remove SCSI device configurations
5285  * @sdev: pointer to SCSI device
5286  */
5287 static void ufshcd_slave_destroy(struct scsi_device *sdev)
5288 {
5289 	struct ufs_hba *hba;
5290 	unsigned long flags;
5291 
5292 	hba = shost_priv(sdev->host);
5293 
5294 	/* Drop the reference as it won't be needed anymore */
5295 	if (ufshcd_scsi_to_upiu_lun(sdev->lun) == UFS_UPIU_UFS_DEVICE_WLUN) {
5296 		spin_lock_irqsave(hba->host->host_lock, flags);
5297 		hba->ufs_device_wlun = NULL;
5298 		spin_unlock_irqrestore(hba->host->host_lock, flags);
5299 	} else if (hba->ufs_device_wlun) {
5300 		struct device *supplier = NULL;
5301 
5302 		/* Ensure UFS Device WLUN exists and does not disappear */
5303 		spin_lock_irqsave(hba->host->host_lock, flags);
5304 		if (hba->ufs_device_wlun) {
5305 			supplier = &hba->ufs_device_wlun->sdev_gendev;
5306 			get_device(supplier);
5307 		}
5308 		spin_unlock_irqrestore(hba->host->host_lock, flags);
5309 
5310 		if (supplier) {
5311 			/*
5312 			 * If a LUN fails to probe (e.g. absent BOOT WLUN), the
5313 			 * device will not have been registered but can still
5314 			 * have a device link holding a reference to the device.
5315 			 */
5316 			device_link_remove(&sdev->sdev_gendev, supplier);
5317 			put_device(supplier);
5318 		}
5319 	}
5320 }
5321 
5322 /**
5323  * ufshcd_scsi_cmd_status - Update SCSI command result based on SCSI status
5324  * @lrbp: pointer to local reference block of completed command
5325  * @scsi_status: SCSI command status
5326  *
5327  * Return: value base on SCSI command status.
5328  */
5329 static inline int
5330 ufshcd_scsi_cmd_status(struct ufshcd_lrb *lrbp, int scsi_status)
5331 {
5332 	int result = 0;
5333 
5334 	switch (scsi_status) {
5335 	case SAM_STAT_CHECK_CONDITION:
5336 		ufshcd_copy_sense_data(lrbp);
5337 		fallthrough;
5338 	case SAM_STAT_GOOD:
5339 		result |= DID_OK << 16 | scsi_status;
5340 		break;
5341 	case SAM_STAT_TASK_SET_FULL:
5342 	case SAM_STAT_BUSY:
5343 	case SAM_STAT_TASK_ABORTED:
5344 		ufshcd_copy_sense_data(lrbp);
5345 		result |= scsi_status;
5346 		break;
5347 	default:
5348 		result |= DID_ERROR << 16;
5349 		break;
5350 	} /* end of switch */
5351 
5352 	return result;
5353 }
5354 
5355 /**
5356  * ufshcd_transfer_rsp_status - Get overall status of the response
5357  * @hba: per adapter instance
5358  * @lrbp: pointer to local reference block of completed command
5359  * @cqe: pointer to the completion queue entry
5360  *
5361  * Return: result of the command to notify SCSI midlayer.
5362  */
5363 static inline int
5364 ufshcd_transfer_rsp_status(struct ufs_hba *hba, struct ufshcd_lrb *lrbp,
5365 			   struct cq_entry *cqe)
5366 {
5367 	int result = 0;
5368 	int scsi_status;
5369 	enum utp_ocs ocs;
5370 	u8 upiu_flags;
5371 	u32 resid;
5372 
5373 	upiu_flags = lrbp->ucd_rsp_ptr->header.flags;
5374 	resid = be32_to_cpu(lrbp->ucd_rsp_ptr->sr.residual_transfer_count);
5375 	/*
5376 	 * Test !overflow instead of underflow to support UFS devices that do
5377 	 * not set either flag.
5378 	 */
5379 	if (resid && !(upiu_flags & UPIU_RSP_FLAG_OVERFLOW))
5380 		scsi_set_resid(lrbp->cmd, resid);
5381 
5382 	/* overall command status of utrd */
5383 	ocs = ufshcd_get_tr_ocs(lrbp, cqe);
5384 
5385 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_OCS_FATAL_ERROR) {
5386 		if (lrbp->ucd_rsp_ptr->header.response ||
5387 		    lrbp->ucd_rsp_ptr->header.status)
5388 			ocs = OCS_SUCCESS;
5389 	}
5390 
5391 	switch (ocs) {
5392 	case OCS_SUCCESS:
5393 		hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
5394 		switch (ufshcd_get_req_rsp(lrbp->ucd_rsp_ptr)) {
5395 		case UPIU_TRANSACTION_RESPONSE:
5396 			/*
5397 			 * get the result based on SCSI status response
5398 			 * to notify the SCSI midlayer of the command status
5399 			 */
5400 			scsi_status = lrbp->ucd_rsp_ptr->header.status;
5401 			result = ufshcd_scsi_cmd_status(lrbp, scsi_status);
5402 
5403 			/*
5404 			 * Currently we are only supporting BKOPs exception
5405 			 * events hence we can ignore BKOPs exception event
5406 			 * during power management callbacks. BKOPs exception
5407 			 * event is not expected to be raised in runtime suspend
5408 			 * callback as it allows the urgent bkops.
5409 			 * During system suspend, we are anyway forcefully
5410 			 * disabling the bkops and if urgent bkops is needed
5411 			 * it will be enabled on system resume. Long term
5412 			 * solution could be to abort the system suspend if
5413 			 * UFS device needs urgent BKOPs.
5414 			 */
5415 			if (!hba->pm_op_in_progress &&
5416 			    !ufshcd_eh_in_progress(hba) &&
5417 			    ufshcd_is_exception_event(lrbp->ucd_rsp_ptr))
5418 				/* Flushed in suspend */
5419 				schedule_work(&hba->eeh_work);
5420 			break;
5421 		case UPIU_TRANSACTION_REJECT_UPIU:
5422 			/* TODO: handle Reject UPIU Response */
5423 			result = DID_ERROR << 16;
5424 			dev_err(hba->dev,
5425 				"Reject UPIU not fully implemented\n");
5426 			break;
5427 		default:
5428 			dev_err(hba->dev,
5429 				"Unexpected request response code = %x\n",
5430 				result);
5431 			result = DID_ERROR << 16;
5432 			break;
5433 		}
5434 		break;
5435 	case OCS_ABORTED:
5436 	case OCS_INVALID_COMMAND_STATUS:
5437 		result |= DID_REQUEUE << 16;
5438 		dev_warn(hba->dev,
5439 				"OCS %s from controller for tag %d\n",
5440 				(ocs == OCS_ABORTED ? "aborted" : "invalid"),
5441 				lrbp->task_tag);
5442 		break;
5443 	case OCS_INVALID_CMD_TABLE_ATTR:
5444 	case OCS_INVALID_PRDT_ATTR:
5445 	case OCS_MISMATCH_DATA_BUF_SIZE:
5446 	case OCS_MISMATCH_RESP_UPIU_SIZE:
5447 	case OCS_PEER_COMM_FAILURE:
5448 	case OCS_FATAL_ERROR:
5449 	case OCS_DEVICE_FATAL_ERROR:
5450 	case OCS_INVALID_CRYPTO_CONFIG:
5451 	case OCS_GENERAL_CRYPTO_ERROR:
5452 	default:
5453 		result |= DID_ERROR << 16;
5454 		dev_err(hba->dev,
5455 				"OCS error from controller = %x for tag %d\n",
5456 				ocs, lrbp->task_tag);
5457 		ufshcd_print_evt_hist(hba);
5458 		ufshcd_print_host_state(hba);
5459 		break;
5460 	} /* end of switch */
5461 
5462 	if ((host_byte(result) != DID_OK) &&
5463 	    (host_byte(result) != DID_REQUEUE) && !hba->silence_err_logs)
5464 		ufshcd_print_tr(hba, lrbp->task_tag, true);
5465 	return result;
5466 }
5467 
5468 static bool ufshcd_is_auto_hibern8_error(struct ufs_hba *hba,
5469 					 u32 intr_mask)
5470 {
5471 	if (!ufshcd_is_auto_hibern8_supported(hba) ||
5472 	    !ufshcd_is_auto_hibern8_enabled(hba))
5473 		return false;
5474 
5475 	if (!(intr_mask & UFSHCD_UIC_HIBERN8_MASK))
5476 		return false;
5477 
5478 	if (hba->active_uic_cmd &&
5479 	    (hba->active_uic_cmd->command == UIC_CMD_DME_HIBER_ENTER ||
5480 	    hba->active_uic_cmd->command == UIC_CMD_DME_HIBER_EXIT))
5481 		return false;
5482 
5483 	return true;
5484 }
5485 
5486 /**
5487  * ufshcd_uic_cmd_compl - handle completion of uic command
5488  * @hba: per adapter instance
5489  * @intr_status: interrupt status generated by the controller
5490  *
5491  * Return:
5492  *  IRQ_HANDLED - If interrupt is valid
5493  *  IRQ_NONE    - If invalid interrupt
5494  */
5495 static irqreturn_t ufshcd_uic_cmd_compl(struct ufs_hba *hba, u32 intr_status)
5496 {
5497 	irqreturn_t retval = IRQ_NONE;
5498 	struct uic_command *cmd;
5499 
5500 	spin_lock(hba->host->host_lock);
5501 	cmd = hba->active_uic_cmd;
5502 	if (WARN_ON_ONCE(!cmd))
5503 		goto unlock;
5504 
5505 	if (ufshcd_is_auto_hibern8_error(hba, intr_status))
5506 		hba->errors |= (UFSHCD_UIC_HIBERN8_MASK & intr_status);
5507 
5508 	if (intr_status & UIC_COMMAND_COMPL) {
5509 		cmd->argument2 |= ufshcd_get_uic_cmd_result(hba);
5510 		cmd->argument3 = ufshcd_get_dme_attr_val(hba);
5511 		if (!hba->uic_async_done)
5512 			cmd->cmd_active = 0;
5513 		complete(&cmd->done);
5514 		retval = IRQ_HANDLED;
5515 	}
5516 
5517 	if (intr_status & UFSHCD_UIC_PWR_MASK && hba->uic_async_done) {
5518 		cmd->cmd_active = 0;
5519 		complete(hba->uic_async_done);
5520 		retval = IRQ_HANDLED;
5521 	}
5522 
5523 	if (retval == IRQ_HANDLED)
5524 		ufshcd_add_uic_command_trace(hba, cmd, UFS_CMD_COMP);
5525 
5526 unlock:
5527 	spin_unlock(hba->host->host_lock);
5528 
5529 	return retval;
5530 }
5531 
5532 /* Release the resources allocated for processing a SCSI command. */
5533 void ufshcd_release_scsi_cmd(struct ufs_hba *hba,
5534 			     struct ufshcd_lrb *lrbp)
5535 {
5536 	struct scsi_cmnd *cmd = lrbp->cmd;
5537 
5538 	scsi_dma_unmap(cmd);
5539 	ufshcd_crypto_clear_prdt(hba, lrbp);
5540 	ufshcd_release(hba);
5541 	ufshcd_clk_scaling_update_busy(hba);
5542 }
5543 
5544 /**
5545  * ufshcd_compl_one_cqe - handle a completion queue entry
5546  * @hba: per adapter instance
5547  * @task_tag: the task tag of the request to be completed
5548  * @cqe: pointer to the completion queue entry
5549  */
5550 void ufshcd_compl_one_cqe(struct ufs_hba *hba, int task_tag,
5551 			  struct cq_entry *cqe)
5552 {
5553 	struct ufshcd_lrb *lrbp;
5554 	struct scsi_cmnd *cmd;
5555 	enum utp_ocs ocs;
5556 
5557 	lrbp = &hba->lrb[task_tag];
5558 	lrbp->compl_time_stamp = ktime_get();
5559 	lrbp->compl_time_stamp_local_clock = local_clock();
5560 	cmd = lrbp->cmd;
5561 	if (cmd) {
5562 		if (unlikely(ufshcd_should_inform_monitor(hba, lrbp)))
5563 			ufshcd_update_monitor(hba, lrbp);
5564 		ufshcd_add_command_trace(hba, task_tag, UFS_CMD_COMP);
5565 		cmd->result = ufshcd_transfer_rsp_status(hba, lrbp, cqe);
5566 		ufshcd_release_scsi_cmd(hba, lrbp);
5567 		/* Do not touch lrbp after scsi done */
5568 		scsi_done(cmd);
5569 	} else if (hba->dev_cmd.complete) {
5570 		if (cqe) {
5571 			ocs = le32_to_cpu(cqe->status) & MASK_OCS;
5572 			lrbp->utr_descriptor_ptr->header.ocs = ocs;
5573 		}
5574 		complete(hba->dev_cmd.complete);
5575 	}
5576 }
5577 
5578 /**
5579  * __ufshcd_transfer_req_compl - handle SCSI and query command completion
5580  * @hba: per adapter instance
5581  * @completed_reqs: bitmask that indicates which requests to complete
5582  */
5583 static void __ufshcd_transfer_req_compl(struct ufs_hba *hba,
5584 					unsigned long completed_reqs)
5585 {
5586 	int tag;
5587 
5588 	for_each_set_bit(tag, &completed_reqs, hba->nutrs)
5589 		ufshcd_compl_one_cqe(hba, tag, NULL);
5590 }
5591 
5592 /* Any value that is not an existing queue number is fine for this constant. */
5593 enum {
5594 	UFSHCD_POLL_FROM_INTERRUPT_CONTEXT = -1
5595 };
5596 
5597 static void ufshcd_clear_polled(struct ufs_hba *hba,
5598 				unsigned long *completed_reqs)
5599 {
5600 	int tag;
5601 
5602 	for_each_set_bit(tag, completed_reqs, hba->nutrs) {
5603 		struct scsi_cmnd *cmd = hba->lrb[tag].cmd;
5604 
5605 		if (!cmd)
5606 			continue;
5607 		if (scsi_cmd_to_rq(cmd)->cmd_flags & REQ_POLLED)
5608 			__clear_bit(tag, completed_reqs);
5609 	}
5610 }
5611 
5612 /*
5613  * Return: > 0 if one or more commands have been completed or 0 if no
5614  * requests have been completed.
5615  */
5616 static int ufshcd_poll(struct Scsi_Host *shost, unsigned int queue_num)
5617 {
5618 	struct ufs_hba *hba = shost_priv(shost);
5619 	unsigned long completed_reqs, flags;
5620 	u32 tr_doorbell;
5621 	struct ufs_hw_queue *hwq;
5622 
5623 	if (hba->mcq_enabled) {
5624 		hwq = &hba->uhq[queue_num];
5625 
5626 		return ufshcd_mcq_poll_cqe_lock(hba, hwq);
5627 	}
5628 
5629 	spin_lock_irqsave(&hba->outstanding_lock, flags);
5630 	tr_doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
5631 	completed_reqs = ~tr_doorbell & hba->outstanding_reqs;
5632 	WARN_ONCE(completed_reqs & ~hba->outstanding_reqs,
5633 		  "completed: %#lx; outstanding: %#lx\n", completed_reqs,
5634 		  hba->outstanding_reqs);
5635 	if (queue_num == UFSHCD_POLL_FROM_INTERRUPT_CONTEXT) {
5636 		/* Do not complete polled requests from interrupt context. */
5637 		ufshcd_clear_polled(hba, &completed_reqs);
5638 	}
5639 	hba->outstanding_reqs &= ~completed_reqs;
5640 	spin_unlock_irqrestore(&hba->outstanding_lock, flags);
5641 
5642 	if (completed_reqs)
5643 		__ufshcd_transfer_req_compl(hba, completed_reqs);
5644 
5645 	return completed_reqs != 0;
5646 }
5647 
5648 /**
5649  * ufshcd_mcq_compl_pending_transfer - MCQ mode function. It is
5650  * invoked from the error handler context or ufshcd_host_reset_and_restore()
5651  * to complete the pending transfers and free the resources associated with
5652  * the scsi command.
5653  *
5654  * @hba: per adapter instance
5655  * @force_compl: This flag is set to true when invoked
5656  * from ufshcd_host_reset_and_restore() in which case it requires special
5657  * handling because the host controller has been reset by ufshcd_hba_stop().
5658  */
5659 static void ufshcd_mcq_compl_pending_transfer(struct ufs_hba *hba,
5660 					      bool force_compl)
5661 {
5662 	struct ufs_hw_queue *hwq;
5663 	struct ufshcd_lrb *lrbp;
5664 	struct scsi_cmnd *cmd;
5665 	unsigned long flags;
5666 	int tag;
5667 
5668 	for (tag = 0; tag < hba->nutrs; tag++) {
5669 		lrbp = &hba->lrb[tag];
5670 		cmd = lrbp->cmd;
5671 		if (!ufshcd_cmd_inflight(cmd) ||
5672 		    test_bit(SCMD_STATE_COMPLETE, &cmd->state))
5673 			continue;
5674 
5675 		hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(cmd));
5676 
5677 		if (force_compl) {
5678 			ufshcd_mcq_compl_all_cqes_lock(hba, hwq);
5679 			/*
5680 			 * For those cmds of which the cqes are not present
5681 			 * in the cq, complete them explicitly.
5682 			 */
5683 			spin_lock_irqsave(&hwq->cq_lock, flags);
5684 			if (cmd && !test_bit(SCMD_STATE_COMPLETE, &cmd->state)) {
5685 				set_host_byte(cmd, DID_REQUEUE);
5686 				ufshcd_release_scsi_cmd(hba, lrbp);
5687 				scsi_done(cmd);
5688 			}
5689 			spin_unlock_irqrestore(&hwq->cq_lock, flags);
5690 		} else {
5691 			ufshcd_mcq_poll_cqe_lock(hba, hwq);
5692 		}
5693 	}
5694 }
5695 
5696 /**
5697  * ufshcd_transfer_req_compl - handle SCSI and query command completion
5698  * @hba: per adapter instance
5699  *
5700  * Return:
5701  *  IRQ_HANDLED - If interrupt is valid
5702  *  IRQ_NONE    - If invalid interrupt
5703  */
5704 static irqreturn_t ufshcd_transfer_req_compl(struct ufs_hba *hba)
5705 {
5706 	/* Resetting interrupt aggregation counters first and reading the
5707 	 * DOOR_BELL afterward allows us to handle all the completed requests.
5708 	 * In order to prevent other interrupts starvation the DB is read once
5709 	 * after reset. The down side of this solution is the possibility of
5710 	 * false interrupt if device completes another request after resetting
5711 	 * aggregation and before reading the DB.
5712 	 */
5713 	if (ufshcd_is_intr_aggr_allowed(hba) &&
5714 	    !(hba->quirks & UFSHCI_QUIRK_SKIP_RESET_INTR_AGGR))
5715 		ufshcd_reset_intr_aggr(hba);
5716 
5717 	if (ufs_fail_completion(hba))
5718 		return IRQ_HANDLED;
5719 
5720 	/*
5721 	 * Ignore the ufshcd_poll() return value and return IRQ_HANDLED since we
5722 	 * do not want polling to trigger spurious interrupt complaints.
5723 	 */
5724 	ufshcd_poll(hba->host, UFSHCD_POLL_FROM_INTERRUPT_CONTEXT);
5725 
5726 	return IRQ_HANDLED;
5727 }
5728 
5729 int __ufshcd_write_ee_control(struct ufs_hba *hba, u32 ee_ctrl_mask)
5730 {
5731 	return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
5732 				       QUERY_ATTR_IDN_EE_CONTROL, 0, 0,
5733 				       &ee_ctrl_mask);
5734 }
5735 
5736 int ufshcd_write_ee_control(struct ufs_hba *hba)
5737 {
5738 	int err;
5739 
5740 	mutex_lock(&hba->ee_ctrl_mutex);
5741 	err = __ufshcd_write_ee_control(hba, hba->ee_ctrl_mask);
5742 	mutex_unlock(&hba->ee_ctrl_mutex);
5743 	if (err)
5744 		dev_err(hba->dev, "%s: failed to write ee control %d\n",
5745 			__func__, err);
5746 	return err;
5747 }
5748 
5749 int ufshcd_update_ee_control(struct ufs_hba *hba, u16 *mask,
5750 			     const u16 *other_mask, u16 set, u16 clr)
5751 {
5752 	u16 new_mask, ee_ctrl_mask;
5753 	int err = 0;
5754 
5755 	mutex_lock(&hba->ee_ctrl_mutex);
5756 	new_mask = (*mask & ~clr) | set;
5757 	ee_ctrl_mask = new_mask | *other_mask;
5758 	if (ee_ctrl_mask != hba->ee_ctrl_mask)
5759 		err = __ufshcd_write_ee_control(hba, ee_ctrl_mask);
5760 	/* Still need to update 'mask' even if 'ee_ctrl_mask' was unchanged */
5761 	if (!err) {
5762 		hba->ee_ctrl_mask = ee_ctrl_mask;
5763 		*mask = new_mask;
5764 	}
5765 	mutex_unlock(&hba->ee_ctrl_mutex);
5766 	return err;
5767 }
5768 
5769 /**
5770  * ufshcd_disable_ee - disable exception event
5771  * @hba: per-adapter instance
5772  * @mask: exception event to disable
5773  *
5774  * Disables exception event in the device so that the EVENT_ALERT
5775  * bit is not set.
5776  *
5777  * Return: zero on success, non-zero error value on failure.
5778  */
5779 static inline int ufshcd_disable_ee(struct ufs_hba *hba, u16 mask)
5780 {
5781 	return ufshcd_update_ee_drv_mask(hba, 0, mask);
5782 }
5783 
5784 /**
5785  * ufshcd_enable_ee - enable exception event
5786  * @hba: per-adapter instance
5787  * @mask: exception event to enable
5788  *
5789  * Enable corresponding exception event in the device to allow
5790  * device to alert host in critical scenarios.
5791  *
5792  * Return: zero on success, non-zero error value on failure.
5793  */
5794 static inline int ufshcd_enable_ee(struct ufs_hba *hba, u16 mask)
5795 {
5796 	return ufshcd_update_ee_drv_mask(hba, mask, 0);
5797 }
5798 
5799 /**
5800  * ufshcd_enable_auto_bkops - Allow device managed BKOPS
5801  * @hba: per-adapter instance
5802  *
5803  * Allow device to manage background operations on its own. Enabling
5804  * this might lead to inconsistent latencies during normal data transfers
5805  * as the device is allowed to manage its own way of handling background
5806  * operations.
5807  *
5808  * Return: zero on success, non-zero on failure.
5809  */
5810 static int ufshcd_enable_auto_bkops(struct ufs_hba *hba)
5811 {
5812 	int err = 0;
5813 
5814 	if (hba->auto_bkops_enabled)
5815 		goto out;
5816 
5817 	err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG,
5818 			QUERY_FLAG_IDN_BKOPS_EN, 0, NULL);
5819 	if (err) {
5820 		dev_err(hba->dev, "%s: failed to enable bkops %d\n",
5821 				__func__, err);
5822 		goto out;
5823 	}
5824 
5825 	hba->auto_bkops_enabled = true;
5826 	trace_ufshcd_auto_bkops_state(dev_name(hba->dev), "Enabled");
5827 
5828 	/* No need of URGENT_BKOPS exception from the device */
5829 	err = ufshcd_disable_ee(hba, MASK_EE_URGENT_BKOPS);
5830 	if (err)
5831 		dev_err(hba->dev, "%s: failed to disable exception event %d\n",
5832 				__func__, err);
5833 out:
5834 	return err;
5835 }
5836 
5837 /**
5838  * ufshcd_disable_auto_bkops - block device in doing background operations
5839  * @hba: per-adapter instance
5840  *
5841  * Disabling background operations improves command response latency but
5842  * has drawback of device moving into critical state where the device is
5843  * not-operable. Make sure to call ufshcd_enable_auto_bkops() whenever the
5844  * host is idle so that BKOPS are managed effectively without any negative
5845  * impacts.
5846  *
5847  * Return: zero on success, non-zero on failure.
5848  */
5849 static int ufshcd_disable_auto_bkops(struct ufs_hba *hba)
5850 {
5851 	int err = 0;
5852 
5853 	if (!hba->auto_bkops_enabled)
5854 		goto out;
5855 
5856 	/*
5857 	 * If host assisted BKOPs is to be enabled, make sure
5858 	 * urgent bkops exception is allowed.
5859 	 */
5860 	err = ufshcd_enable_ee(hba, MASK_EE_URGENT_BKOPS);
5861 	if (err) {
5862 		dev_err(hba->dev, "%s: failed to enable exception event %d\n",
5863 				__func__, err);
5864 		goto out;
5865 	}
5866 
5867 	err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_CLEAR_FLAG,
5868 			QUERY_FLAG_IDN_BKOPS_EN, 0, NULL);
5869 	if (err) {
5870 		dev_err(hba->dev, "%s: failed to disable bkops %d\n",
5871 				__func__, err);
5872 		ufshcd_disable_ee(hba, MASK_EE_URGENT_BKOPS);
5873 		goto out;
5874 	}
5875 
5876 	hba->auto_bkops_enabled = false;
5877 	trace_ufshcd_auto_bkops_state(dev_name(hba->dev), "Disabled");
5878 	hba->is_urgent_bkops_lvl_checked = false;
5879 out:
5880 	return err;
5881 }
5882 
5883 /**
5884  * ufshcd_force_reset_auto_bkops - force reset auto bkops state
5885  * @hba: per adapter instance
5886  *
5887  * After a device reset the device may toggle the BKOPS_EN flag
5888  * to default value. The s/w tracking variables should be updated
5889  * as well. This function would change the auto-bkops state based on
5890  * UFSHCD_CAP_KEEP_AUTO_BKOPS_ENABLED_EXCEPT_SUSPEND.
5891  */
5892 static void ufshcd_force_reset_auto_bkops(struct ufs_hba *hba)
5893 {
5894 	if (ufshcd_keep_autobkops_enabled_except_suspend(hba)) {
5895 		hba->auto_bkops_enabled = false;
5896 		hba->ee_ctrl_mask |= MASK_EE_URGENT_BKOPS;
5897 		ufshcd_enable_auto_bkops(hba);
5898 	} else {
5899 		hba->auto_bkops_enabled = true;
5900 		hba->ee_ctrl_mask &= ~MASK_EE_URGENT_BKOPS;
5901 		ufshcd_disable_auto_bkops(hba);
5902 	}
5903 	hba->urgent_bkops_lvl = BKOPS_STATUS_PERF_IMPACT;
5904 	hba->is_urgent_bkops_lvl_checked = false;
5905 }
5906 
5907 static inline int ufshcd_get_bkops_status(struct ufs_hba *hba, u32 *status)
5908 {
5909 	return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5910 			QUERY_ATTR_IDN_BKOPS_STATUS, 0, 0, status);
5911 }
5912 
5913 /**
5914  * ufshcd_bkops_ctrl - control the auto bkops based on current bkops status
5915  * @hba: per-adapter instance
5916  *
5917  * Read the bkops_status from the UFS device and Enable fBackgroundOpsEn
5918  * flag in the device to permit background operations if the device
5919  * bkops_status is greater than or equal to the "hba->urgent_bkops_lvl",
5920  * disable otherwise.
5921  *
5922  * Return: 0 for success, non-zero in case of failure.
5923  *
5924  * NOTE: Caller of this function can check the "hba->auto_bkops_enabled" flag
5925  * to know whether auto bkops is enabled or disabled after this function
5926  * returns control to it.
5927  */
5928 static int ufshcd_bkops_ctrl(struct ufs_hba *hba)
5929 {
5930 	enum bkops_status status = hba->urgent_bkops_lvl;
5931 	u32 curr_status = 0;
5932 	int err;
5933 
5934 	err = ufshcd_get_bkops_status(hba, &curr_status);
5935 	if (err) {
5936 		dev_err(hba->dev, "%s: failed to get BKOPS status %d\n",
5937 				__func__, err);
5938 		goto out;
5939 	} else if (curr_status > BKOPS_STATUS_MAX) {
5940 		dev_err(hba->dev, "%s: invalid BKOPS status %d\n",
5941 				__func__, curr_status);
5942 		err = -EINVAL;
5943 		goto out;
5944 	}
5945 
5946 	if (curr_status >= status)
5947 		err = ufshcd_enable_auto_bkops(hba);
5948 	else
5949 		err = ufshcd_disable_auto_bkops(hba);
5950 out:
5951 	return err;
5952 }
5953 
5954 static inline int ufshcd_get_ee_status(struct ufs_hba *hba, u32 *status)
5955 {
5956 	return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5957 			QUERY_ATTR_IDN_EE_STATUS, 0, 0, status);
5958 }
5959 
5960 static void ufshcd_bkops_exception_event_handler(struct ufs_hba *hba)
5961 {
5962 	int err;
5963 	u32 curr_status = 0;
5964 
5965 	if (hba->is_urgent_bkops_lvl_checked)
5966 		goto enable_auto_bkops;
5967 
5968 	err = ufshcd_get_bkops_status(hba, &curr_status);
5969 	if (err) {
5970 		dev_err(hba->dev, "%s: failed to get BKOPS status %d\n",
5971 				__func__, err);
5972 		goto out;
5973 	}
5974 
5975 	/*
5976 	 * We are seeing that some devices are raising the urgent bkops
5977 	 * exception events even when BKOPS status doesn't indicate performace
5978 	 * impacted or critical. Handle these device by determining their urgent
5979 	 * bkops status at runtime.
5980 	 */
5981 	if (curr_status < BKOPS_STATUS_PERF_IMPACT) {
5982 		dev_err(hba->dev, "%s: device raised urgent BKOPS exception for bkops status %d\n",
5983 				__func__, curr_status);
5984 		/* update the current status as the urgent bkops level */
5985 		hba->urgent_bkops_lvl = curr_status;
5986 		hba->is_urgent_bkops_lvl_checked = true;
5987 	}
5988 
5989 enable_auto_bkops:
5990 	err = ufshcd_enable_auto_bkops(hba);
5991 out:
5992 	if (err < 0)
5993 		dev_err(hba->dev, "%s: failed to handle urgent bkops %d\n",
5994 				__func__, err);
5995 }
5996 
5997 static void ufshcd_temp_exception_event_handler(struct ufs_hba *hba, u16 status)
5998 {
5999 	u32 value;
6000 
6001 	if (ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
6002 				QUERY_ATTR_IDN_CASE_ROUGH_TEMP, 0, 0, &value))
6003 		return;
6004 
6005 	dev_info(hba->dev, "exception Tcase %d\n", value - 80);
6006 
6007 	ufs_hwmon_notify_event(hba, status & MASK_EE_URGENT_TEMP);
6008 
6009 	/*
6010 	 * A placeholder for the platform vendors to add whatever additional
6011 	 * steps required
6012 	 */
6013 }
6014 
6015 static int __ufshcd_wb_toggle(struct ufs_hba *hba, bool set, enum flag_idn idn)
6016 {
6017 	u8 index;
6018 	enum query_opcode opcode = set ? UPIU_QUERY_OPCODE_SET_FLAG :
6019 				   UPIU_QUERY_OPCODE_CLEAR_FLAG;
6020 
6021 	index = ufshcd_wb_get_query_index(hba);
6022 	return ufshcd_query_flag_retry(hba, opcode, idn, index, NULL);
6023 }
6024 
6025 int ufshcd_wb_toggle(struct ufs_hba *hba, bool enable)
6026 {
6027 	int ret;
6028 
6029 	if (!ufshcd_is_wb_allowed(hba) ||
6030 	    hba->dev_info.wb_enabled == enable)
6031 		return 0;
6032 
6033 	ret = __ufshcd_wb_toggle(hba, enable, QUERY_FLAG_IDN_WB_EN);
6034 	if (ret) {
6035 		dev_err(hba->dev, "%s: Write Booster %s failed %d\n",
6036 			__func__, enable ? "enabling" : "disabling", ret);
6037 		return ret;
6038 	}
6039 
6040 	hba->dev_info.wb_enabled = enable;
6041 	dev_dbg(hba->dev, "%s: Write Booster %s\n",
6042 			__func__, enable ? "enabled" : "disabled");
6043 
6044 	return ret;
6045 }
6046 
6047 static void ufshcd_wb_toggle_buf_flush_during_h8(struct ufs_hba *hba,
6048 						 bool enable)
6049 {
6050 	int ret;
6051 
6052 	ret = __ufshcd_wb_toggle(hba, enable,
6053 			QUERY_FLAG_IDN_WB_BUFF_FLUSH_DURING_HIBERN8);
6054 	if (ret) {
6055 		dev_err(hba->dev, "%s: WB-Buf Flush during H8 %s failed %d\n",
6056 			__func__, enable ? "enabling" : "disabling", ret);
6057 		return;
6058 	}
6059 	dev_dbg(hba->dev, "%s: WB-Buf Flush during H8 %s\n",
6060 			__func__, enable ? "enabled" : "disabled");
6061 }
6062 
6063 int ufshcd_wb_toggle_buf_flush(struct ufs_hba *hba, bool enable)
6064 {
6065 	int ret;
6066 
6067 	if (!ufshcd_is_wb_allowed(hba) ||
6068 	    hba->dev_info.wb_buf_flush_enabled == enable)
6069 		return 0;
6070 
6071 	ret = __ufshcd_wb_toggle(hba, enable, QUERY_FLAG_IDN_WB_BUFF_FLUSH_EN);
6072 	if (ret) {
6073 		dev_err(hba->dev, "%s: WB-Buf Flush %s failed %d\n",
6074 			__func__, enable ? "enabling" : "disabling", ret);
6075 		return ret;
6076 	}
6077 
6078 	hba->dev_info.wb_buf_flush_enabled = enable;
6079 	dev_dbg(hba->dev, "%s: WB-Buf Flush %s\n",
6080 			__func__, enable ? "enabled" : "disabled");
6081 
6082 	return ret;
6083 }
6084 
6085 static bool ufshcd_wb_presrv_usrspc_keep_vcc_on(struct ufs_hba *hba,
6086 						u32 avail_buf)
6087 {
6088 	u32 cur_buf;
6089 	int ret;
6090 	u8 index;
6091 
6092 	index = ufshcd_wb_get_query_index(hba);
6093 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
6094 					      QUERY_ATTR_IDN_CURR_WB_BUFF_SIZE,
6095 					      index, 0, &cur_buf);
6096 	if (ret) {
6097 		dev_err(hba->dev, "%s: dCurWriteBoosterBufferSize read failed %d\n",
6098 			__func__, ret);
6099 		return false;
6100 	}
6101 
6102 	if (!cur_buf) {
6103 		dev_info(hba->dev, "dCurWBBuf: %d WB disabled until free-space is available\n",
6104 			 cur_buf);
6105 		return false;
6106 	}
6107 	/* Let it continue to flush when available buffer exceeds threshold */
6108 	return avail_buf < hba->vps->wb_flush_threshold;
6109 }
6110 
6111 static void ufshcd_wb_force_disable(struct ufs_hba *hba)
6112 {
6113 	if (ufshcd_is_wb_buf_flush_allowed(hba))
6114 		ufshcd_wb_toggle_buf_flush(hba, false);
6115 
6116 	ufshcd_wb_toggle_buf_flush_during_h8(hba, false);
6117 	ufshcd_wb_toggle(hba, false);
6118 	hba->caps &= ~UFSHCD_CAP_WB_EN;
6119 
6120 	dev_info(hba->dev, "%s: WB force disabled\n", __func__);
6121 }
6122 
6123 static bool ufshcd_is_wb_buf_lifetime_available(struct ufs_hba *hba)
6124 {
6125 	u32 lifetime;
6126 	int ret;
6127 	u8 index;
6128 
6129 	index = ufshcd_wb_get_query_index(hba);
6130 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
6131 				      QUERY_ATTR_IDN_WB_BUFF_LIFE_TIME_EST,
6132 				      index, 0, &lifetime);
6133 	if (ret) {
6134 		dev_err(hba->dev,
6135 			"%s: bWriteBoosterBufferLifeTimeEst read failed %d\n",
6136 			__func__, ret);
6137 		return false;
6138 	}
6139 
6140 	if (lifetime == UFS_WB_EXCEED_LIFETIME) {
6141 		dev_err(hba->dev, "%s: WB buf lifetime is exhausted 0x%02X\n",
6142 			__func__, lifetime);
6143 		return false;
6144 	}
6145 
6146 	dev_dbg(hba->dev, "%s: WB buf lifetime is 0x%02X\n",
6147 		__func__, lifetime);
6148 
6149 	return true;
6150 }
6151 
6152 static bool ufshcd_wb_need_flush(struct ufs_hba *hba)
6153 {
6154 	int ret;
6155 	u32 avail_buf;
6156 	u8 index;
6157 
6158 	if (!ufshcd_is_wb_allowed(hba))
6159 		return false;
6160 
6161 	if (!ufshcd_is_wb_buf_lifetime_available(hba)) {
6162 		ufshcd_wb_force_disable(hba);
6163 		return false;
6164 	}
6165 
6166 	/*
6167 	 * The ufs device needs the vcc to be ON to flush.
6168 	 * With user-space reduction enabled, it's enough to enable flush
6169 	 * by checking only the available buffer. The threshold
6170 	 * defined here is > 90% full.
6171 	 * With user-space preserved enabled, the current-buffer
6172 	 * should be checked too because the wb buffer size can reduce
6173 	 * when disk tends to be full. This info is provided by current
6174 	 * buffer (dCurrentWriteBoosterBufferSize). There's no point in
6175 	 * keeping vcc on when current buffer is empty.
6176 	 */
6177 	index = ufshcd_wb_get_query_index(hba);
6178 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
6179 				      QUERY_ATTR_IDN_AVAIL_WB_BUFF_SIZE,
6180 				      index, 0, &avail_buf);
6181 	if (ret) {
6182 		dev_warn(hba->dev, "%s: dAvailableWriteBoosterBufferSize read failed %d\n",
6183 			 __func__, ret);
6184 		return false;
6185 	}
6186 
6187 	if (!hba->dev_info.b_presrv_uspc_en)
6188 		return avail_buf <= UFS_WB_BUF_REMAIN_PERCENT(10);
6189 
6190 	return ufshcd_wb_presrv_usrspc_keep_vcc_on(hba, avail_buf);
6191 }
6192 
6193 static void ufshcd_rpm_dev_flush_recheck_work(struct work_struct *work)
6194 {
6195 	struct ufs_hba *hba = container_of(to_delayed_work(work),
6196 					   struct ufs_hba,
6197 					   rpm_dev_flush_recheck_work);
6198 	/*
6199 	 * To prevent unnecessary VCC power drain after device finishes
6200 	 * WriteBooster buffer flush or Auto BKOPs, force runtime resume
6201 	 * after a certain delay to recheck the threshold by next runtime
6202 	 * suspend.
6203 	 */
6204 	ufshcd_rpm_get_sync(hba);
6205 	ufshcd_rpm_put_sync(hba);
6206 }
6207 
6208 /**
6209  * ufshcd_exception_event_handler - handle exceptions raised by device
6210  * @work: pointer to work data
6211  *
6212  * Read bExceptionEventStatus attribute from the device and handle the
6213  * exception event accordingly.
6214  */
6215 static void ufshcd_exception_event_handler(struct work_struct *work)
6216 {
6217 	struct ufs_hba *hba;
6218 	int err;
6219 	u32 status = 0;
6220 	hba = container_of(work, struct ufs_hba, eeh_work);
6221 
6222 	err = ufshcd_get_ee_status(hba, &status);
6223 	if (err) {
6224 		dev_err(hba->dev, "%s: failed to get exception status %d\n",
6225 				__func__, err);
6226 		return;
6227 	}
6228 
6229 	trace_ufshcd_exception_event(dev_name(hba->dev), status);
6230 
6231 	if (status & hba->ee_drv_mask & MASK_EE_URGENT_BKOPS)
6232 		ufshcd_bkops_exception_event_handler(hba);
6233 
6234 	if (status & hba->ee_drv_mask & MASK_EE_URGENT_TEMP)
6235 		ufshcd_temp_exception_event_handler(hba, status);
6236 
6237 	ufs_debugfs_exception_event(hba, status);
6238 }
6239 
6240 /* Complete requests that have door-bell cleared */
6241 static void ufshcd_complete_requests(struct ufs_hba *hba, bool force_compl)
6242 {
6243 	if (hba->mcq_enabled)
6244 		ufshcd_mcq_compl_pending_transfer(hba, force_compl);
6245 	else
6246 		ufshcd_transfer_req_compl(hba);
6247 
6248 	ufshcd_tmc_handler(hba);
6249 }
6250 
6251 /**
6252  * ufshcd_quirk_dl_nac_errors - This function checks if error handling is
6253  *				to recover from the DL NAC errors or not.
6254  * @hba: per-adapter instance
6255  *
6256  * Return: true if error handling is required, false otherwise.
6257  */
6258 static bool ufshcd_quirk_dl_nac_errors(struct ufs_hba *hba)
6259 {
6260 	unsigned long flags;
6261 	bool err_handling = true;
6262 
6263 	spin_lock_irqsave(hba->host->host_lock, flags);
6264 	/*
6265 	 * UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS only workaround the
6266 	 * device fatal error and/or DL NAC & REPLAY timeout errors.
6267 	 */
6268 	if (hba->saved_err & (CONTROLLER_FATAL_ERROR | SYSTEM_BUS_FATAL_ERROR))
6269 		goto out;
6270 
6271 	if ((hba->saved_err & DEVICE_FATAL_ERROR) ||
6272 	    ((hba->saved_err & UIC_ERROR) &&
6273 	     (hba->saved_uic_err & UFSHCD_UIC_DL_TCx_REPLAY_ERROR)))
6274 		goto out;
6275 
6276 	if ((hba->saved_err & UIC_ERROR) &&
6277 	    (hba->saved_uic_err & UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)) {
6278 		int err;
6279 		/*
6280 		 * wait for 50ms to see if we can get any other errors or not.
6281 		 */
6282 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6283 		msleep(50);
6284 		spin_lock_irqsave(hba->host->host_lock, flags);
6285 
6286 		/*
6287 		 * now check if we have got any other severe errors other than
6288 		 * DL NAC error?
6289 		 */
6290 		if ((hba->saved_err & INT_FATAL_ERRORS) ||
6291 		    ((hba->saved_err & UIC_ERROR) &&
6292 		    (hba->saved_uic_err & ~UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)))
6293 			goto out;
6294 
6295 		/*
6296 		 * As DL NAC is the only error received so far, send out NOP
6297 		 * command to confirm if link is still active or not.
6298 		 *   - If we don't get any response then do error recovery.
6299 		 *   - If we get response then clear the DL NAC error bit.
6300 		 */
6301 
6302 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6303 		err = ufshcd_verify_dev_init(hba);
6304 		spin_lock_irqsave(hba->host->host_lock, flags);
6305 
6306 		if (err)
6307 			goto out;
6308 
6309 		/* Link seems to be alive hence ignore the DL NAC errors */
6310 		if (hba->saved_uic_err == UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)
6311 			hba->saved_err &= ~UIC_ERROR;
6312 		/* clear NAC error */
6313 		hba->saved_uic_err &= ~UFSHCD_UIC_DL_NAC_RECEIVED_ERROR;
6314 		if (!hba->saved_uic_err)
6315 			err_handling = false;
6316 	}
6317 out:
6318 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6319 	return err_handling;
6320 }
6321 
6322 /* host lock must be held before calling this func */
6323 static inline bool ufshcd_is_saved_err_fatal(struct ufs_hba *hba)
6324 {
6325 	return (hba->saved_uic_err & UFSHCD_UIC_DL_PA_INIT_ERROR) ||
6326 	       (hba->saved_err & (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK));
6327 }
6328 
6329 void ufshcd_schedule_eh_work(struct ufs_hba *hba)
6330 {
6331 	lockdep_assert_held(hba->host->host_lock);
6332 
6333 	/* handle fatal errors only when link is not in error state */
6334 	if (hba->ufshcd_state != UFSHCD_STATE_ERROR) {
6335 		if (hba->force_reset || ufshcd_is_link_broken(hba) ||
6336 		    ufshcd_is_saved_err_fatal(hba))
6337 			hba->ufshcd_state = UFSHCD_STATE_EH_SCHEDULED_FATAL;
6338 		else
6339 			hba->ufshcd_state = UFSHCD_STATE_EH_SCHEDULED_NON_FATAL;
6340 		queue_work(hba->eh_wq, &hba->eh_work);
6341 	}
6342 }
6343 
6344 static void ufshcd_force_error_recovery(struct ufs_hba *hba)
6345 {
6346 	spin_lock_irq(hba->host->host_lock);
6347 	hba->force_reset = true;
6348 	ufshcd_schedule_eh_work(hba);
6349 	spin_unlock_irq(hba->host->host_lock);
6350 }
6351 
6352 static void ufshcd_clk_scaling_allow(struct ufs_hba *hba, bool allow)
6353 {
6354 	mutex_lock(&hba->wb_mutex);
6355 	down_write(&hba->clk_scaling_lock);
6356 	hba->clk_scaling.is_allowed = allow;
6357 	up_write(&hba->clk_scaling_lock);
6358 	mutex_unlock(&hba->wb_mutex);
6359 }
6360 
6361 static void ufshcd_clk_scaling_suspend(struct ufs_hba *hba, bool suspend)
6362 {
6363 	if (suspend) {
6364 		if (hba->clk_scaling.is_enabled)
6365 			ufshcd_suspend_clkscaling(hba);
6366 		ufshcd_clk_scaling_allow(hba, false);
6367 	} else {
6368 		ufshcd_clk_scaling_allow(hba, true);
6369 		if (hba->clk_scaling.is_enabled)
6370 			ufshcd_resume_clkscaling(hba);
6371 	}
6372 }
6373 
6374 static void ufshcd_err_handling_prepare(struct ufs_hba *hba)
6375 {
6376 	ufshcd_rpm_get_sync(hba);
6377 	if (pm_runtime_status_suspended(&hba->ufs_device_wlun->sdev_gendev) ||
6378 	    hba->is_sys_suspended) {
6379 		enum ufs_pm_op pm_op;
6380 
6381 		/*
6382 		 * Don't assume anything of resume, if
6383 		 * resume fails, irq and clocks can be OFF, and powers
6384 		 * can be OFF or in LPM.
6385 		 */
6386 		ufshcd_setup_hba_vreg(hba, true);
6387 		ufshcd_enable_irq(hba);
6388 		ufshcd_setup_vreg(hba, true);
6389 		ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq);
6390 		ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq2);
6391 		ufshcd_hold(hba);
6392 		if (!ufshcd_is_clkgating_allowed(hba))
6393 			ufshcd_setup_clocks(hba, true);
6394 		pm_op = hba->is_sys_suspended ? UFS_SYSTEM_PM : UFS_RUNTIME_PM;
6395 		ufshcd_vops_resume(hba, pm_op);
6396 	} else {
6397 		ufshcd_hold(hba);
6398 		if (ufshcd_is_clkscaling_supported(hba) &&
6399 		    hba->clk_scaling.is_enabled)
6400 			ufshcd_suspend_clkscaling(hba);
6401 		ufshcd_clk_scaling_allow(hba, false);
6402 	}
6403 	/* Wait for ongoing ufshcd_queuecommand() calls to finish. */
6404 	blk_mq_quiesce_tagset(&hba->host->tag_set);
6405 	cancel_work_sync(&hba->eeh_work);
6406 }
6407 
6408 static void ufshcd_err_handling_unprepare(struct ufs_hba *hba)
6409 {
6410 	blk_mq_unquiesce_tagset(&hba->host->tag_set);
6411 	ufshcd_release(hba);
6412 	if (ufshcd_is_clkscaling_supported(hba))
6413 		ufshcd_clk_scaling_suspend(hba, false);
6414 	ufshcd_rpm_put(hba);
6415 }
6416 
6417 static inline bool ufshcd_err_handling_should_stop(struct ufs_hba *hba)
6418 {
6419 	return (!hba->is_powered || hba->shutting_down ||
6420 		!hba->ufs_device_wlun ||
6421 		hba->ufshcd_state == UFSHCD_STATE_ERROR ||
6422 		(!(hba->saved_err || hba->saved_uic_err || hba->force_reset ||
6423 		   ufshcd_is_link_broken(hba))));
6424 }
6425 
6426 #ifdef CONFIG_PM
6427 static void ufshcd_recover_pm_error(struct ufs_hba *hba)
6428 {
6429 	struct Scsi_Host *shost = hba->host;
6430 	struct scsi_device *sdev;
6431 	struct request_queue *q;
6432 	int ret;
6433 
6434 	hba->is_sys_suspended = false;
6435 	/*
6436 	 * Set RPM status of wlun device to RPM_ACTIVE,
6437 	 * this also clears its runtime error.
6438 	 */
6439 	ret = pm_runtime_set_active(&hba->ufs_device_wlun->sdev_gendev);
6440 
6441 	/* hba device might have a runtime error otherwise */
6442 	if (ret)
6443 		ret = pm_runtime_set_active(hba->dev);
6444 	/*
6445 	 * If wlun device had runtime error, we also need to resume those
6446 	 * consumer scsi devices in case any of them has failed to be
6447 	 * resumed due to supplier runtime resume failure. This is to unblock
6448 	 * blk_queue_enter in case there are bios waiting inside it.
6449 	 */
6450 	if (!ret) {
6451 		shost_for_each_device(sdev, shost) {
6452 			q = sdev->request_queue;
6453 			if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
6454 				       q->rpm_status == RPM_SUSPENDING))
6455 				pm_request_resume(q->dev);
6456 		}
6457 	}
6458 }
6459 #else
6460 static inline void ufshcd_recover_pm_error(struct ufs_hba *hba)
6461 {
6462 }
6463 #endif
6464 
6465 static bool ufshcd_is_pwr_mode_restore_needed(struct ufs_hba *hba)
6466 {
6467 	struct ufs_pa_layer_attr *pwr_info = &hba->pwr_info;
6468 	u32 mode;
6469 
6470 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_PWRMODE), &mode);
6471 
6472 	if (pwr_info->pwr_rx != ((mode >> PWRMODE_RX_OFFSET) & PWRMODE_MASK))
6473 		return true;
6474 
6475 	if (pwr_info->pwr_tx != (mode & PWRMODE_MASK))
6476 		return true;
6477 
6478 	return false;
6479 }
6480 
6481 static bool ufshcd_abort_one(struct request *rq, void *priv)
6482 {
6483 	int *ret = priv;
6484 	u32 tag = rq->tag;
6485 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
6486 	struct scsi_device *sdev = cmd->device;
6487 	struct Scsi_Host *shost = sdev->host;
6488 	struct ufs_hba *hba = shost_priv(shost);
6489 
6490 	*ret = ufshcd_try_to_abort_task(hba, tag);
6491 	dev_err(hba->dev, "Aborting tag %d / CDB %#02x %s\n", tag,
6492 		hba->lrb[tag].cmd ? hba->lrb[tag].cmd->cmnd[0] : -1,
6493 		*ret ? "failed" : "succeeded");
6494 
6495 	return *ret == 0;
6496 }
6497 
6498 /**
6499  * ufshcd_abort_all - Abort all pending commands.
6500  * @hba: Host bus adapter pointer.
6501  *
6502  * Return: true if and only if the host controller needs to be reset.
6503  */
6504 static bool ufshcd_abort_all(struct ufs_hba *hba)
6505 {
6506 	int tag, ret = 0;
6507 
6508 	blk_mq_tagset_busy_iter(&hba->host->tag_set, ufshcd_abort_one, &ret);
6509 	if (ret)
6510 		goto out;
6511 
6512 	/* Clear pending task management requests */
6513 	for_each_set_bit(tag, &hba->outstanding_tasks, hba->nutmrs) {
6514 		ret = ufshcd_clear_tm_cmd(hba, tag);
6515 		if (ret)
6516 			goto out;
6517 	}
6518 
6519 out:
6520 	/* Complete the requests that are cleared by s/w */
6521 	ufshcd_complete_requests(hba, false);
6522 
6523 	return ret != 0;
6524 }
6525 
6526 /**
6527  * ufshcd_err_handler - handle UFS errors that require s/w attention
6528  * @work: pointer to work structure
6529  */
6530 static void ufshcd_err_handler(struct work_struct *work)
6531 {
6532 	int retries = MAX_ERR_HANDLER_RETRIES;
6533 	struct ufs_hba *hba;
6534 	unsigned long flags;
6535 	bool needs_restore;
6536 	bool needs_reset;
6537 	int pmc_err;
6538 
6539 	hba = container_of(work, struct ufs_hba, eh_work);
6540 
6541 	dev_info(hba->dev,
6542 		 "%s started; HBA state %s; powered %d; shutting down %d; saved_err = %d; saved_uic_err = %d; force_reset = %d%s\n",
6543 		 __func__, ufshcd_state_name[hba->ufshcd_state],
6544 		 hba->is_powered, hba->shutting_down, hba->saved_err,
6545 		 hba->saved_uic_err, hba->force_reset,
6546 		 ufshcd_is_link_broken(hba) ? "; link is broken" : "");
6547 
6548 	down(&hba->host_sem);
6549 	spin_lock_irqsave(hba->host->host_lock, flags);
6550 	if (ufshcd_err_handling_should_stop(hba)) {
6551 		if (hba->ufshcd_state != UFSHCD_STATE_ERROR)
6552 			hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
6553 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6554 		up(&hba->host_sem);
6555 		return;
6556 	}
6557 	ufshcd_set_eh_in_progress(hba);
6558 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6559 	ufshcd_err_handling_prepare(hba);
6560 	/* Complete requests that have door-bell cleared by h/w */
6561 	ufshcd_complete_requests(hba, false);
6562 	spin_lock_irqsave(hba->host->host_lock, flags);
6563 again:
6564 	needs_restore = false;
6565 	needs_reset = false;
6566 
6567 	if (hba->ufshcd_state != UFSHCD_STATE_ERROR)
6568 		hba->ufshcd_state = UFSHCD_STATE_RESET;
6569 	/*
6570 	 * A full reset and restore might have happened after preparation
6571 	 * is finished, double check whether we should stop.
6572 	 */
6573 	if (ufshcd_err_handling_should_stop(hba))
6574 		goto skip_err_handling;
6575 
6576 	if ((hba->dev_quirks & UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS) &&
6577 	    !hba->force_reset) {
6578 		bool ret;
6579 
6580 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6581 		/* release the lock as ufshcd_quirk_dl_nac_errors() may sleep */
6582 		ret = ufshcd_quirk_dl_nac_errors(hba);
6583 		spin_lock_irqsave(hba->host->host_lock, flags);
6584 		if (!ret && ufshcd_err_handling_should_stop(hba))
6585 			goto skip_err_handling;
6586 	}
6587 
6588 	if ((hba->saved_err & (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK)) ||
6589 	    (hba->saved_uic_err &&
6590 	     (hba->saved_uic_err != UFSHCD_UIC_PA_GENERIC_ERROR))) {
6591 		bool pr_prdt = !!(hba->saved_err & SYSTEM_BUS_FATAL_ERROR);
6592 
6593 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6594 		ufshcd_print_host_state(hba);
6595 		ufshcd_print_pwr_info(hba);
6596 		ufshcd_print_evt_hist(hba);
6597 		ufshcd_print_tmrs(hba, hba->outstanding_tasks);
6598 		ufshcd_print_trs_all(hba, pr_prdt);
6599 		spin_lock_irqsave(hba->host->host_lock, flags);
6600 	}
6601 
6602 	/*
6603 	 * if host reset is required then skip clearing the pending
6604 	 * transfers forcefully because they will get cleared during
6605 	 * host reset and restore
6606 	 */
6607 	if (hba->force_reset || ufshcd_is_link_broken(hba) ||
6608 	    ufshcd_is_saved_err_fatal(hba) ||
6609 	    ((hba->saved_err & UIC_ERROR) &&
6610 	     (hba->saved_uic_err & (UFSHCD_UIC_DL_NAC_RECEIVED_ERROR |
6611 				    UFSHCD_UIC_DL_TCx_REPLAY_ERROR)))) {
6612 		needs_reset = true;
6613 		goto do_reset;
6614 	}
6615 
6616 	/*
6617 	 * If LINERESET was caught, UFS might have been put to PWM mode,
6618 	 * check if power mode restore is needed.
6619 	 */
6620 	if (hba->saved_uic_err & UFSHCD_UIC_PA_GENERIC_ERROR) {
6621 		hba->saved_uic_err &= ~UFSHCD_UIC_PA_GENERIC_ERROR;
6622 		if (!hba->saved_uic_err)
6623 			hba->saved_err &= ~UIC_ERROR;
6624 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6625 		if (ufshcd_is_pwr_mode_restore_needed(hba))
6626 			needs_restore = true;
6627 		spin_lock_irqsave(hba->host->host_lock, flags);
6628 		if (!hba->saved_err && !needs_restore)
6629 			goto skip_err_handling;
6630 	}
6631 
6632 	hba->silence_err_logs = true;
6633 	/* release lock as clear command might sleep */
6634 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6635 
6636 	needs_reset = ufshcd_abort_all(hba);
6637 
6638 	spin_lock_irqsave(hba->host->host_lock, flags);
6639 	hba->silence_err_logs = false;
6640 	if (needs_reset)
6641 		goto do_reset;
6642 
6643 	/*
6644 	 * After all reqs and tasks are cleared from doorbell,
6645 	 * now it is safe to retore power mode.
6646 	 */
6647 	if (needs_restore) {
6648 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6649 		/*
6650 		 * Hold the scaling lock just in case dev cmds
6651 		 * are sent via bsg and/or sysfs.
6652 		 */
6653 		down_write(&hba->clk_scaling_lock);
6654 		hba->force_pmc = true;
6655 		pmc_err = ufshcd_config_pwr_mode(hba, &(hba->pwr_info));
6656 		if (pmc_err) {
6657 			needs_reset = true;
6658 			dev_err(hba->dev, "%s: Failed to restore power mode, err = %d\n",
6659 					__func__, pmc_err);
6660 		}
6661 		hba->force_pmc = false;
6662 		ufshcd_print_pwr_info(hba);
6663 		up_write(&hba->clk_scaling_lock);
6664 		spin_lock_irqsave(hba->host->host_lock, flags);
6665 	}
6666 
6667 do_reset:
6668 	/* Fatal errors need reset */
6669 	if (needs_reset) {
6670 		int err;
6671 
6672 		hba->force_reset = false;
6673 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6674 		err = ufshcd_reset_and_restore(hba);
6675 		if (err)
6676 			dev_err(hba->dev, "%s: reset and restore failed with err %d\n",
6677 					__func__, err);
6678 		else
6679 			ufshcd_recover_pm_error(hba);
6680 		spin_lock_irqsave(hba->host->host_lock, flags);
6681 	}
6682 
6683 skip_err_handling:
6684 	if (!needs_reset) {
6685 		if (hba->ufshcd_state == UFSHCD_STATE_RESET)
6686 			hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
6687 		if (hba->saved_err || hba->saved_uic_err)
6688 			dev_err_ratelimited(hba->dev, "%s: exit: saved_err 0x%x saved_uic_err 0x%x",
6689 			    __func__, hba->saved_err, hba->saved_uic_err);
6690 	}
6691 	/* Exit in an operational state or dead */
6692 	if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL &&
6693 	    hba->ufshcd_state != UFSHCD_STATE_ERROR) {
6694 		if (--retries)
6695 			goto again;
6696 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
6697 	}
6698 	ufshcd_clear_eh_in_progress(hba);
6699 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6700 	ufshcd_err_handling_unprepare(hba);
6701 	up(&hba->host_sem);
6702 
6703 	dev_info(hba->dev, "%s finished; HBA state %s\n", __func__,
6704 		 ufshcd_state_name[hba->ufshcd_state]);
6705 }
6706 
6707 /**
6708  * ufshcd_update_uic_error - check and set fatal UIC error flags.
6709  * @hba: per-adapter instance
6710  *
6711  * Return:
6712  *  IRQ_HANDLED - If interrupt is valid
6713  *  IRQ_NONE    - If invalid interrupt
6714  */
6715 static irqreturn_t ufshcd_update_uic_error(struct ufs_hba *hba)
6716 {
6717 	u32 reg;
6718 	irqreturn_t retval = IRQ_NONE;
6719 
6720 	/* PHY layer error */
6721 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER);
6722 	if ((reg & UIC_PHY_ADAPTER_LAYER_ERROR) &&
6723 	    (reg & UIC_PHY_ADAPTER_LAYER_ERROR_CODE_MASK)) {
6724 		ufshcd_update_evt_hist(hba, UFS_EVT_PA_ERR, reg);
6725 		/*
6726 		 * To know whether this error is fatal or not, DB timeout
6727 		 * must be checked but this error is handled separately.
6728 		 */
6729 		if (reg & UIC_PHY_ADAPTER_LAYER_LANE_ERR_MASK)
6730 			dev_dbg(hba->dev, "%s: UIC Lane error reported\n",
6731 					__func__);
6732 
6733 		/* Got a LINERESET indication. */
6734 		if (reg & UIC_PHY_ADAPTER_LAYER_GENERIC_ERROR) {
6735 			struct uic_command *cmd = NULL;
6736 
6737 			hba->uic_error |= UFSHCD_UIC_PA_GENERIC_ERROR;
6738 			if (hba->uic_async_done && hba->active_uic_cmd)
6739 				cmd = hba->active_uic_cmd;
6740 			/*
6741 			 * Ignore the LINERESET during power mode change
6742 			 * operation via DME_SET command.
6743 			 */
6744 			if (cmd && (cmd->command == UIC_CMD_DME_SET))
6745 				hba->uic_error &= ~UFSHCD_UIC_PA_GENERIC_ERROR;
6746 		}
6747 		retval |= IRQ_HANDLED;
6748 	}
6749 
6750 	/* PA_INIT_ERROR is fatal and needs UIC reset */
6751 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_DATA_LINK_LAYER);
6752 	if ((reg & UIC_DATA_LINK_LAYER_ERROR) &&
6753 	    (reg & UIC_DATA_LINK_LAYER_ERROR_CODE_MASK)) {
6754 		ufshcd_update_evt_hist(hba, UFS_EVT_DL_ERR, reg);
6755 
6756 		if (reg & UIC_DATA_LINK_LAYER_ERROR_PA_INIT)
6757 			hba->uic_error |= UFSHCD_UIC_DL_PA_INIT_ERROR;
6758 		else if (hba->dev_quirks &
6759 				UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS) {
6760 			if (reg & UIC_DATA_LINK_LAYER_ERROR_NAC_RECEIVED)
6761 				hba->uic_error |=
6762 					UFSHCD_UIC_DL_NAC_RECEIVED_ERROR;
6763 			else if (reg & UIC_DATA_LINK_LAYER_ERROR_TCx_REPLAY_TIMEOUT)
6764 				hba->uic_error |= UFSHCD_UIC_DL_TCx_REPLAY_ERROR;
6765 		}
6766 		retval |= IRQ_HANDLED;
6767 	}
6768 
6769 	/* UIC NL/TL/DME errors needs software retry */
6770 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_NETWORK_LAYER);
6771 	if ((reg & UIC_NETWORK_LAYER_ERROR) &&
6772 	    (reg & UIC_NETWORK_LAYER_ERROR_CODE_MASK)) {
6773 		ufshcd_update_evt_hist(hba, UFS_EVT_NL_ERR, reg);
6774 		hba->uic_error |= UFSHCD_UIC_NL_ERROR;
6775 		retval |= IRQ_HANDLED;
6776 	}
6777 
6778 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_TRANSPORT_LAYER);
6779 	if ((reg & UIC_TRANSPORT_LAYER_ERROR) &&
6780 	    (reg & UIC_TRANSPORT_LAYER_ERROR_CODE_MASK)) {
6781 		ufshcd_update_evt_hist(hba, UFS_EVT_TL_ERR, reg);
6782 		hba->uic_error |= UFSHCD_UIC_TL_ERROR;
6783 		retval |= IRQ_HANDLED;
6784 	}
6785 
6786 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_DME);
6787 	if ((reg & UIC_DME_ERROR) &&
6788 	    (reg & UIC_DME_ERROR_CODE_MASK)) {
6789 		ufshcd_update_evt_hist(hba, UFS_EVT_DME_ERR, reg);
6790 		hba->uic_error |= UFSHCD_UIC_DME_ERROR;
6791 		retval |= IRQ_HANDLED;
6792 	}
6793 
6794 	dev_dbg(hba->dev, "%s: UIC error flags = 0x%08x\n",
6795 			__func__, hba->uic_error);
6796 	return retval;
6797 }
6798 
6799 /**
6800  * ufshcd_check_errors - Check for errors that need s/w attention
6801  * @hba: per-adapter instance
6802  * @intr_status: interrupt status generated by the controller
6803  *
6804  * Return:
6805  *  IRQ_HANDLED - If interrupt is valid
6806  *  IRQ_NONE    - If invalid interrupt
6807  */
6808 static irqreturn_t ufshcd_check_errors(struct ufs_hba *hba, u32 intr_status)
6809 {
6810 	bool queue_eh_work = false;
6811 	irqreturn_t retval = IRQ_NONE;
6812 
6813 	spin_lock(hba->host->host_lock);
6814 	hba->errors |= UFSHCD_ERROR_MASK & intr_status;
6815 
6816 	if (hba->errors & INT_FATAL_ERRORS) {
6817 		ufshcd_update_evt_hist(hba, UFS_EVT_FATAL_ERR,
6818 				       hba->errors);
6819 		queue_eh_work = true;
6820 	}
6821 
6822 	if (hba->errors & UIC_ERROR) {
6823 		hba->uic_error = 0;
6824 		retval = ufshcd_update_uic_error(hba);
6825 		if (hba->uic_error)
6826 			queue_eh_work = true;
6827 	}
6828 
6829 	if (hba->errors & UFSHCD_UIC_HIBERN8_MASK) {
6830 		dev_err(hba->dev,
6831 			"%s: Auto Hibern8 %s failed - status: 0x%08x, upmcrs: 0x%08x\n",
6832 			__func__, (hba->errors & UIC_HIBERNATE_ENTER) ?
6833 			"Enter" : "Exit",
6834 			hba->errors, ufshcd_get_upmcrs(hba));
6835 		ufshcd_update_evt_hist(hba, UFS_EVT_AUTO_HIBERN8_ERR,
6836 				       hba->errors);
6837 		ufshcd_set_link_broken(hba);
6838 		queue_eh_work = true;
6839 	}
6840 
6841 	if (queue_eh_work) {
6842 		/*
6843 		 * update the transfer error masks to sticky bits, let's do this
6844 		 * irrespective of current ufshcd_state.
6845 		 */
6846 		hba->saved_err |= hba->errors;
6847 		hba->saved_uic_err |= hba->uic_error;
6848 
6849 		/* dump controller state before resetting */
6850 		if ((hba->saved_err &
6851 		     (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK)) ||
6852 		    (hba->saved_uic_err &&
6853 		     (hba->saved_uic_err != UFSHCD_UIC_PA_GENERIC_ERROR))) {
6854 			dev_err(hba->dev, "%s: saved_err 0x%x saved_uic_err 0x%x\n",
6855 					__func__, hba->saved_err,
6856 					hba->saved_uic_err);
6857 			ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE,
6858 					 "host_regs: ");
6859 			ufshcd_print_pwr_info(hba);
6860 		}
6861 		ufshcd_schedule_eh_work(hba);
6862 		retval |= IRQ_HANDLED;
6863 	}
6864 	/*
6865 	 * if (!queue_eh_work) -
6866 	 * Other errors are either non-fatal where host recovers
6867 	 * itself without s/w intervention or errors that will be
6868 	 * handled by the SCSI core layer.
6869 	 */
6870 	hba->errors = 0;
6871 	hba->uic_error = 0;
6872 	spin_unlock(hba->host->host_lock);
6873 	return retval;
6874 }
6875 
6876 /**
6877  * ufshcd_tmc_handler - handle task management function completion
6878  * @hba: per adapter instance
6879  *
6880  * Return:
6881  *  IRQ_HANDLED - If interrupt is valid
6882  *  IRQ_NONE    - If invalid interrupt
6883  */
6884 static irqreturn_t ufshcd_tmc_handler(struct ufs_hba *hba)
6885 {
6886 	unsigned long flags, pending, issued;
6887 	irqreturn_t ret = IRQ_NONE;
6888 	int tag;
6889 
6890 	spin_lock_irqsave(hba->host->host_lock, flags);
6891 	pending = ufshcd_readl(hba, REG_UTP_TASK_REQ_DOOR_BELL);
6892 	issued = hba->outstanding_tasks & ~pending;
6893 	for_each_set_bit(tag, &issued, hba->nutmrs) {
6894 		struct request *req = hba->tmf_rqs[tag];
6895 		struct completion *c = req->end_io_data;
6896 
6897 		complete(c);
6898 		ret = IRQ_HANDLED;
6899 	}
6900 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6901 
6902 	return ret;
6903 }
6904 
6905 /**
6906  * ufshcd_handle_mcq_cq_events - handle MCQ completion queue events
6907  * @hba: per adapter instance
6908  *
6909  * Return: IRQ_HANDLED if interrupt is handled.
6910  */
6911 static irqreturn_t ufshcd_handle_mcq_cq_events(struct ufs_hba *hba)
6912 {
6913 	struct ufs_hw_queue *hwq;
6914 	unsigned long outstanding_cqs;
6915 	unsigned int nr_queues;
6916 	int i, ret;
6917 	u32 events;
6918 
6919 	ret = ufshcd_vops_get_outstanding_cqs(hba, &outstanding_cqs);
6920 	if (ret)
6921 		outstanding_cqs = (1U << hba->nr_hw_queues) - 1;
6922 
6923 	/* Exclude the poll queues */
6924 	nr_queues = hba->nr_hw_queues - hba->nr_queues[HCTX_TYPE_POLL];
6925 	for_each_set_bit(i, &outstanding_cqs, nr_queues) {
6926 		hwq = &hba->uhq[i];
6927 
6928 		events = ufshcd_mcq_read_cqis(hba, i);
6929 		if (events)
6930 			ufshcd_mcq_write_cqis(hba, events, i);
6931 
6932 		if (events & UFSHCD_MCQ_CQIS_TAIL_ENT_PUSH_STS)
6933 			ufshcd_mcq_poll_cqe_lock(hba, hwq);
6934 	}
6935 
6936 	return IRQ_HANDLED;
6937 }
6938 
6939 /**
6940  * ufshcd_sl_intr - Interrupt service routine
6941  * @hba: per adapter instance
6942  * @intr_status: contains interrupts generated by the controller
6943  *
6944  * Return:
6945  *  IRQ_HANDLED - If interrupt is valid
6946  *  IRQ_NONE    - If invalid interrupt
6947  */
6948 static irqreturn_t ufshcd_sl_intr(struct ufs_hba *hba, u32 intr_status)
6949 {
6950 	irqreturn_t retval = IRQ_NONE;
6951 
6952 	if (intr_status & UFSHCD_UIC_MASK)
6953 		retval |= ufshcd_uic_cmd_compl(hba, intr_status);
6954 
6955 	if (intr_status & UFSHCD_ERROR_MASK || hba->errors)
6956 		retval |= ufshcd_check_errors(hba, intr_status);
6957 
6958 	if (intr_status & UTP_TASK_REQ_COMPL)
6959 		retval |= ufshcd_tmc_handler(hba);
6960 
6961 	if (intr_status & UTP_TRANSFER_REQ_COMPL)
6962 		retval |= ufshcd_transfer_req_compl(hba);
6963 
6964 	if (intr_status & MCQ_CQ_EVENT_STATUS)
6965 		retval |= ufshcd_handle_mcq_cq_events(hba);
6966 
6967 	return retval;
6968 }
6969 
6970 /**
6971  * ufshcd_intr - Main interrupt service routine
6972  * @irq: irq number
6973  * @__hba: pointer to adapter instance
6974  *
6975  * Return:
6976  *  IRQ_HANDLED - If interrupt is valid
6977  *  IRQ_NONE    - If invalid interrupt
6978  */
6979 static irqreturn_t ufshcd_intr(int irq, void *__hba)
6980 {
6981 	u32 intr_status, enabled_intr_status = 0;
6982 	irqreturn_t retval = IRQ_NONE;
6983 	struct ufs_hba *hba = __hba;
6984 	int retries = hba->nutrs;
6985 
6986 	intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
6987 	hba->ufs_stats.last_intr_status = intr_status;
6988 	hba->ufs_stats.last_intr_ts = local_clock();
6989 
6990 	/*
6991 	 * There could be max of hba->nutrs reqs in flight and in worst case
6992 	 * if the reqs get finished 1 by 1 after the interrupt status is
6993 	 * read, make sure we handle them by checking the interrupt status
6994 	 * again in a loop until we process all of the reqs before returning.
6995 	 */
6996 	while (intr_status && retries--) {
6997 		enabled_intr_status =
6998 			intr_status & ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
6999 		ufshcd_writel(hba, intr_status, REG_INTERRUPT_STATUS);
7000 		if (enabled_intr_status)
7001 			retval |= ufshcd_sl_intr(hba, enabled_intr_status);
7002 
7003 		intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
7004 	}
7005 
7006 	if (enabled_intr_status && retval == IRQ_NONE &&
7007 	    (!(enabled_intr_status & UTP_TRANSFER_REQ_COMPL) ||
7008 	     hba->outstanding_reqs) && !ufshcd_eh_in_progress(hba)) {
7009 		dev_err(hba->dev, "%s: Unhandled interrupt 0x%08x (0x%08x, 0x%08x)\n",
7010 					__func__,
7011 					intr_status,
7012 					hba->ufs_stats.last_intr_status,
7013 					enabled_intr_status);
7014 		ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, "host_regs: ");
7015 	}
7016 
7017 	return retval;
7018 }
7019 
7020 static int ufshcd_clear_tm_cmd(struct ufs_hba *hba, int tag)
7021 {
7022 	int err = 0;
7023 	u32 mask = 1 << tag;
7024 
7025 	if (!test_bit(tag, &hba->outstanding_tasks))
7026 		goto out;
7027 
7028 	ufshcd_utmrl_clear(hba, tag);
7029 
7030 	/* poll for max. 1 sec to clear door bell register by h/w */
7031 	err = ufshcd_wait_for_register(hba,
7032 			REG_UTP_TASK_REQ_DOOR_BELL,
7033 			mask, 0, 1000, 1000);
7034 
7035 	dev_err(hba->dev, "Clearing task management function with tag %d %s\n",
7036 		tag, err < 0 ? "failed" : "succeeded");
7037 
7038 out:
7039 	return err;
7040 }
7041 
7042 static int __ufshcd_issue_tm_cmd(struct ufs_hba *hba,
7043 		struct utp_task_req_desc *treq, u8 tm_function)
7044 {
7045 	struct request_queue *q = hba->tmf_queue;
7046 	struct Scsi_Host *host = hba->host;
7047 	DECLARE_COMPLETION_ONSTACK(wait);
7048 	struct request *req;
7049 	unsigned long flags;
7050 	int task_tag, err;
7051 
7052 	/*
7053 	 * blk_mq_alloc_request() is used here only to get a free tag.
7054 	 */
7055 	req = blk_mq_alloc_request(q, REQ_OP_DRV_OUT, 0);
7056 	if (IS_ERR(req))
7057 		return PTR_ERR(req);
7058 
7059 	req->end_io_data = &wait;
7060 	ufshcd_hold(hba);
7061 
7062 	spin_lock_irqsave(host->host_lock, flags);
7063 
7064 	task_tag = req->tag;
7065 	hba->tmf_rqs[req->tag] = req;
7066 	treq->upiu_req.req_header.task_tag = task_tag;
7067 
7068 	memcpy(hba->utmrdl_base_addr + task_tag, treq, sizeof(*treq));
7069 	ufshcd_vops_setup_task_mgmt(hba, task_tag, tm_function);
7070 
7071 	__set_bit(task_tag, &hba->outstanding_tasks);
7072 
7073 	spin_unlock_irqrestore(host->host_lock, flags);
7074 
7075 	/* send command to the controller */
7076 	ufshcd_writel(hba, 1 << task_tag, REG_UTP_TASK_REQ_DOOR_BELL);
7077 
7078 	ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_SEND);
7079 
7080 	/* wait until the task management command is completed */
7081 	err = wait_for_completion_io_timeout(&wait,
7082 			msecs_to_jiffies(TM_CMD_TIMEOUT));
7083 	if (!err) {
7084 		ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_ERR);
7085 		dev_err(hba->dev, "%s: task management cmd 0x%.2x timed-out\n",
7086 				__func__, tm_function);
7087 		if (ufshcd_clear_tm_cmd(hba, task_tag))
7088 			dev_WARN(hba->dev, "%s: unable to clear tm cmd (slot %d) after timeout\n",
7089 					__func__, task_tag);
7090 		err = -ETIMEDOUT;
7091 	} else {
7092 		err = 0;
7093 		memcpy(treq, hba->utmrdl_base_addr + task_tag, sizeof(*treq));
7094 
7095 		ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_COMP);
7096 	}
7097 
7098 	spin_lock_irqsave(hba->host->host_lock, flags);
7099 	hba->tmf_rqs[req->tag] = NULL;
7100 	__clear_bit(task_tag, &hba->outstanding_tasks);
7101 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7102 
7103 	ufshcd_release(hba);
7104 	blk_mq_free_request(req);
7105 
7106 	return err;
7107 }
7108 
7109 /**
7110  * ufshcd_issue_tm_cmd - issues task management commands to controller
7111  * @hba: per adapter instance
7112  * @lun_id: LUN ID to which TM command is sent
7113  * @task_id: task ID to which the TM command is applicable
7114  * @tm_function: task management function opcode
7115  * @tm_response: task management service response return value
7116  *
7117  * Return: non-zero value on error, zero on success.
7118  */
7119 static int ufshcd_issue_tm_cmd(struct ufs_hba *hba, int lun_id, int task_id,
7120 		u8 tm_function, u8 *tm_response)
7121 {
7122 	struct utp_task_req_desc treq = { };
7123 	enum utp_ocs ocs_value;
7124 	int err;
7125 
7126 	/* Configure task request descriptor */
7127 	treq.header.interrupt = 1;
7128 	treq.header.ocs = OCS_INVALID_COMMAND_STATUS;
7129 
7130 	/* Configure task request UPIU */
7131 	treq.upiu_req.req_header.transaction_code = UPIU_TRANSACTION_TASK_REQ;
7132 	treq.upiu_req.req_header.lun = lun_id;
7133 	treq.upiu_req.req_header.tm_function = tm_function;
7134 
7135 	/*
7136 	 * The host shall provide the same value for LUN field in the basic
7137 	 * header and for Input Parameter.
7138 	 */
7139 	treq.upiu_req.input_param1 = cpu_to_be32(lun_id);
7140 	treq.upiu_req.input_param2 = cpu_to_be32(task_id);
7141 
7142 	err = __ufshcd_issue_tm_cmd(hba, &treq, tm_function);
7143 	if (err == -ETIMEDOUT)
7144 		return err;
7145 
7146 	ocs_value = treq.header.ocs & MASK_OCS;
7147 	if (ocs_value != OCS_SUCCESS)
7148 		dev_err(hba->dev, "%s: failed, ocs = 0x%x\n",
7149 				__func__, ocs_value);
7150 	else if (tm_response)
7151 		*tm_response = be32_to_cpu(treq.upiu_rsp.output_param1) &
7152 				MASK_TM_SERVICE_RESP;
7153 	return err;
7154 }
7155 
7156 /**
7157  * ufshcd_issue_devman_upiu_cmd - API for sending "utrd" type requests
7158  * @hba:	per-adapter instance
7159  * @req_upiu:	upiu request
7160  * @rsp_upiu:	upiu reply
7161  * @desc_buff:	pointer to descriptor buffer, NULL if NA
7162  * @buff_len:	descriptor size, 0 if NA
7163  * @cmd_type:	specifies the type (NOP, Query...)
7164  * @desc_op:	descriptor operation
7165  *
7166  * Those type of requests uses UTP Transfer Request Descriptor - utrd.
7167  * Therefore, it "rides" the device management infrastructure: uses its tag and
7168  * tasks work queues.
7169  *
7170  * Since there is only one available tag for device management commands,
7171  * the caller is expected to hold the hba->dev_cmd.lock mutex.
7172  *
7173  * Return: 0 upon success; < 0 upon failure.
7174  */
7175 static int ufshcd_issue_devman_upiu_cmd(struct ufs_hba *hba,
7176 					struct utp_upiu_req *req_upiu,
7177 					struct utp_upiu_req *rsp_upiu,
7178 					u8 *desc_buff, int *buff_len,
7179 					enum dev_cmd_type cmd_type,
7180 					enum query_opcode desc_op)
7181 {
7182 	const u32 tag = hba->reserved_slot;
7183 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
7184 	int err = 0;
7185 	u8 upiu_flags;
7186 
7187 	/* Protects use of hba->reserved_slot. */
7188 	lockdep_assert_held(&hba->dev_cmd.lock);
7189 
7190 	ufshcd_setup_dev_cmd(hba, lrbp, cmd_type, 0, tag);
7191 
7192 	ufshcd_prepare_req_desc_hdr(hba, lrbp, &upiu_flags, DMA_NONE, 0);
7193 
7194 	/* update the task tag in the request upiu */
7195 	req_upiu->header.task_tag = tag;
7196 
7197 	/* just copy the upiu request as it is */
7198 	memcpy(lrbp->ucd_req_ptr, req_upiu, sizeof(*lrbp->ucd_req_ptr));
7199 	if (desc_buff && desc_op == UPIU_QUERY_OPCODE_WRITE_DESC) {
7200 		/* The Data Segment Area is optional depending upon the query
7201 		 * function value. for WRITE DESCRIPTOR, the data segment
7202 		 * follows right after the tsf.
7203 		 */
7204 		memcpy(lrbp->ucd_req_ptr + 1, desc_buff, *buff_len);
7205 		*buff_len = 0;
7206 	}
7207 
7208 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
7209 
7210 	/*
7211 	 * ignore the returning value here - ufshcd_check_query_response is
7212 	 * bound to fail since dev_cmd.query and dev_cmd.type were left empty.
7213 	 * read the response directly ignoring all errors.
7214 	 */
7215 	ufshcd_issue_dev_cmd(hba, lrbp, tag, QUERY_REQ_TIMEOUT);
7216 
7217 	/* just copy the upiu response as it is */
7218 	memcpy(rsp_upiu, lrbp->ucd_rsp_ptr, sizeof(*rsp_upiu));
7219 	if (desc_buff && desc_op == UPIU_QUERY_OPCODE_READ_DESC) {
7220 		u8 *descp = (u8 *)lrbp->ucd_rsp_ptr + sizeof(*rsp_upiu);
7221 		u16 resp_len = be16_to_cpu(lrbp->ucd_rsp_ptr->header
7222 					   .data_segment_length);
7223 
7224 		if (*buff_len >= resp_len) {
7225 			memcpy(desc_buff, descp, resp_len);
7226 			*buff_len = resp_len;
7227 		} else {
7228 			dev_warn(hba->dev,
7229 				 "%s: rsp size %d is bigger than buffer size %d",
7230 				 __func__, resp_len, *buff_len);
7231 			*buff_len = 0;
7232 			err = -EINVAL;
7233 		}
7234 	}
7235 	ufshcd_add_query_upiu_trace(hba, err ? UFS_QUERY_ERR : UFS_QUERY_COMP,
7236 				    (struct utp_upiu_req *)lrbp->ucd_rsp_ptr);
7237 
7238 	return err;
7239 }
7240 
7241 /**
7242  * ufshcd_exec_raw_upiu_cmd - API function for sending raw upiu commands
7243  * @hba:	per-adapter instance
7244  * @req_upiu:	upiu request
7245  * @rsp_upiu:	upiu reply - only 8 DW as we do not support scsi commands
7246  * @msgcode:	message code, one of UPIU Transaction Codes Initiator to Target
7247  * @desc_buff:	pointer to descriptor buffer, NULL if NA
7248  * @buff_len:	descriptor size, 0 if NA
7249  * @desc_op:	descriptor operation
7250  *
7251  * Supports UTP Transfer requests (nop and query), and UTP Task
7252  * Management requests.
7253  * It is up to the caller to fill the upiu conent properly, as it will
7254  * be copied without any further input validations.
7255  *
7256  * Return: 0 upon success; < 0 upon failure.
7257  */
7258 int ufshcd_exec_raw_upiu_cmd(struct ufs_hba *hba,
7259 			     struct utp_upiu_req *req_upiu,
7260 			     struct utp_upiu_req *rsp_upiu,
7261 			     enum upiu_request_transaction msgcode,
7262 			     u8 *desc_buff, int *buff_len,
7263 			     enum query_opcode desc_op)
7264 {
7265 	int err;
7266 	enum dev_cmd_type cmd_type = DEV_CMD_TYPE_QUERY;
7267 	struct utp_task_req_desc treq = { };
7268 	enum utp_ocs ocs_value;
7269 	u8 tm_f = req_upiu->header.tm_function;
7270 
7271 	switch (msgcode) {
7272 	case UPIU_TRANSACTION_NOP_OUT:
7273 		cmd_type = DEV_CMD_TYPE_NOP;
7274 		fallthrough;
7275 	case UPIU_TRANSACTION_QUERY_REQ:
7276 		ufshcd_dev_man_lock(hba);
7277 		err = ufshcd_issue_devman_upiu_cmd(hba, req_upiu, rsp_upiu,
7278 						   desc_buff, buff_len,
7279 						   cmd_type, desc_op);
7280 		ufshcd_dev_man_unlock(hba);
7281 
7282 		break;
7283 	case UPIU_TRANSACTION_TASK_REQ:
7284 		treq.header.interrupt = 1;
7285 		treq.header.ocs = OCS_INVALID_COMMAND_STATUS;
7286 
7287 		memcpy(&treq.upiu_req, req_upiu, sizeof(*req_upiu));
7288 
7289 		err = __ufshcd_issue_tm_cmd(hba, &treq, tm_f);
7290 		if (err == -ETIMEDOUT)
7291 			break;
7292 
7293 		ocs_value = treq.header.ocs & MASK_OCS;
7294 		if (ocs_value != OCS_SUCCESS) {
7295 			dev_err(hba->dev, "%s: failed, ocs = 0x%x\n", __func__,
7296 				ocs_value);
7297 			break;
7298 		}
7299 
7300 		memcpy(rsp_upiu, &treq.upiu_rsp, sizeof(*rsp_upiu));
7301 
7302 		break;
7303 	default:
7304 		err = -EINVAL;
7305 
7306 		break;
7307 	}
7308 
7309 	return err;
7310 }
7311 
7312 /**
7313  * ufshcd_advanced_rpmb_req_handler - handle advanced RPMB request
7314  * @hba:	per adapter instance
7315  * @req_upiu:	upiu request
7316  * @rsp_upiu:	upiu reply
7317  * @req_ehs:	EHS field which contains Advanced RPMB Request Message
7318  * @rsp_ehs:	EHS field which returns Advanced RPMB Response Message
7319  * @sg_cnt:	The number of sg lists actually used
7320  * @sg_list:	Pointer to SG list when DATA IN/OUT UPIU is required in ARPMB operation
7321  * @dir:	DMA direction
7322  *
7323  * Return: zero on success, non-zero on failure.
7324  */
7325 int ufshcd_advanced_rpmb_req_handler(struct ufs_hba *hba, struct utp_upiu_req *req_upiu,
7326 			 struct utp_upiu_req *rsp_upiu, struct ufs_ehs *req_ehs,
7327 			 struct ufs_ehs *rsp_ehs, int sg_cnt, struct scatterlist *sg_list,
7328 			 enum dma_data_direction dir)
7329 {
7330 	const u32 tag = hba->reserved_slot;
7331 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
7332 	int err = 0;
7333 	int result;
7334 	u8 upiu_flags;
7335 	u8 *ehs_data;
7336 	u16 ehs_len;
7337 	int ehs = (hba->capabilities & MASK_EHSLUTRD_SUPPORTED) ? 2 : 0;
7338 
7339 	/* Protects use of hba->reserved_slot. */
7340 	ufshcd_dev_man_lock(hba);
7341 
7342 	ufshcd_setup_dev_cmd(hba, lrbp, DEV_CMD_TYPE_RPMB, UFS_UPIU_RPMB_WLUN, tag);
7343 
7344 	ufshcd_prepare_req_desc_hdr(hba, lrbp, &upiu_flags, DMA_NONE, ehs);
7345 
7346 	/* update the task tag */
7347 	req_upiu->header.task_tag = tag;
7348 
7349 	/* copy the UPIU(contains CDB) request as it is */
7350 	memcpy(lrbp->ucd_req_ptr, req_upiu, sizeof(*lrbp->ucd_req_ptr));
7351 	/* Copy EHS, starting with byte32, immediately after the CDB package */
7352 	memcpy(lrbp->ucd_req_ptr + 1, req_ehs, sizeof(*req_ehs));
7353 
7354 	if (dir != DMA_NONE && sg_list)
7355 		ufshcd_sgl_to_prdt(hba, lrbp, sg_cnt, sg_list);
7356 
7357 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
7358 
7359 	err = ufshcd_issue_dev_cmd(hba, lrbp, tag, ADVANCED_RPMB_REQ_TIMEOUT);
7360 
7361 	if (!err) {
7362 		/* Just copy the upiu response as it is */
7363 		memcpy(rsp_upiu, lrbp->ucd_rsp_ptr, sizeof(*rsp_upiu));
7364 		/* Get the response UPIU result */
7365 		result = (lrbp->ucd_rsp_ptr->header.response << 8) |
7366 			lrbp->ucd_rsp_ptr->header.status;
7367 
7368 		ehs_len = lrbp->ucd_rsp_ptr->header.ehs_length;
7369 		/*
7370 		 * Since the bLength in EHS indicates the total size of the EHS Header and EHS Data
7371 		 * in 32 Byte units, the value of the bLength Request/Response for Advanced RPMB
7372 		 * Message is 02h
7373 		 */
7374 		if (ehs_len == 2 && rsp_ehs) {
7375 			/*
7376 			 * ucd_rsp_ptr points to a buffer with a length of 512 bytes
7377 			 * (ALIGNED_UPIU_SIZE = 512), and the EHS data just starts from byte32
7378 			 */
7379 			ehs_data = (u8 *)lrbp->ucd_rsp_ptr + EHS_OFFSET_IN_RESPONSE;
7380 			memcpy(rsp_ehs, ehs_data, ehs_len * 32);
7381 		}
7382 	}
7383 
7384 	ufshcd_dev_man_unlock(hba);
7385 
7386 	return err ? : result;
7387 }
7388 
7389 /**
7390  * ufshcd_eh_device_reset_handler() - Reset a single logical unit.
7391  * @cmd: SCSI command pointer
7392  *
7393  * Return: SUCCESS or FAILED.
7394  */
7395 static int ufshcd_eh_device_reset_handler(struct scsi_cmnd *cmd)
7396 {
7397 	unsigned long flags, pending_reqs = 0, not_cleared = 0;
7398 	struct Scsi_Host *host;
7399 	struct ufs_hba *hba;
7400 	struct ufs_hw_queue *hwq;
7401 	struct ufshcd_lrb *lrbp;
7402 	u32 pos, not_cleared_mask = 0;
7403 	int err;
7404 	u8 resp = 0xF, lun;
7405 
7406 	host = cmd->device->host;
7407 	hba = shost_priv(host);
7408 
7409 	lun = ufshcd_scsi_to_upiu_lun(cmd->device->lun);
7410 	err = ufshcd_issue_tm_cmd(hba, lun, 0, UFS_LOGICAL_RESET, &resp);
7411 	if (err || resp != UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7412 		if (!err)
7413 			err = resp;
7414 		goto out;
7415 	}
7416 
7417 	if (hba->mcq_enabled) {
7418 		for (pos = 0; pos < hba->nutrs; pos++) {
7419 			lrbp = &hba->lrb[pos];
7420 			if (ufshcd_cmd_inflight(lrbp->cmd) &&
7421 			    lrbp->lun == lun) {
7422 				ufshcd_clear_cmd(hba, pos);
7423 				hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(lrbp->cmd));
7424 				ufshcd_mcq_poll_cqe_lock(hba, hwq);
7425 			}
7426 		}
7427 		err = 0;
7428 		goto out;
7429 	}
7430 
7431 	/* clear the commands that were pending for corresponding LUN */
7432 	spin_lock_irqsave(&hba->outstanding_lock, flags);
7433 	for_each_set_bit(pos, &hba->outstanding_reqs, hba->nutrs)
7434 		if (hba->lrb[pos].lun == lun)
7435 			__set_bit(pos, &pending_reqs);
7436 	hba->outstanding_reqs &= ~pending_reqs;
7437 	spin_unlock_irqrestore(&hba->outstanding_lock, flags);
7438 
7439 	for_each_set_bit(pos, &pending_reqs, hba->nutrs) {
7440 		if (ufshcd_clear_cmd(hba, pos) < 0) {
7441 			spin_lock_irqsave(&hba->outstanding_lock, flags);
7442 			not_cleared = 1U << pos &
7443 				ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
7444 			hba->outstanding_reqs |= not_cleared;
7445 			not_cleared_mask |= not_cleared;
7446 			spin_unlock_irqrestore(&hba->outstanding_lock, flags);
7447 
7448 			dev_err(hba->dev, "%s: failed to clear request %d\n",
7449 				__func__, pos);
7450 		}
7451 	}
7452 	__ufshcd_transfer_req_compl(hba, pending_reqs & ~not_cleared_mask);
7453 
7454 out:
7455 	hba->req_abort_count = 0;
7456 	ufshcd_update_evt_hist(hba, UFS_EVT_DEV_RESET, (u32)err);
7457 	if (!err) {
7458 		err = SUCCESS;
7459 	} else {
7460 		dev_err(hba->dev, "%s: failed with err %d\n", __func__, err);
7461 		err = FAILED;
7462 	}
7463 	return err;
7464 }
7465 
7466 static void ufshcd_set_req_abort_skip(struct ufs_hba *hba, unsigned long bitmap)
7467 {
7468 	struct ufshcd_lrb *lrbp;
7469 	int tag;
7470 
7471 	for_each_set_bit(tag, &bitmap, hba->nutrs) {
7472 		lrbp = &hba->lrb[tag];
7473 		lrbp->req_abort_skip = true;
7474 	}
7475 }
7476 
7477 /**
7478  * ufshcd_try_to_abort_task - abort a specific task
7479  * @hba: Pointer to adapter instance
7480  * @tag: Task tag/index to be aborted
7481  *
7482  * Abort the pending command in device by sending UFS_ABORT_TASK task management
7483  * command, and in host controller by clearing the door-bell register. There can
7484  * be race between controller sending the command to the device while abort is
7485  * issued. To avoid that, first issue UFS_QUERY_TASK to check if the command is
7486  * really issued and then try to abort it.
7487  *
7488  * Return: zero on success, non-zero on failure.
7489  */
7490 int ufshcd_try_to_abort_task(struct ufs_hba *hba, int tag)
7491 {
7492 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
7493 	int err;
7494 	int poll_cnt;
7495 	u8 resp = 0xF;
7496 
7497 	for (poll_cnt = 100; poll_cnt; poll_cnt--) {
7498 		err = ufshcd_issue_tm_cmd(hba, lrbp->lun, lrbp->task_tag,
7499 				UFS_QUERY_TASK, &resp);
7500 		if (!err && resp == UPIU_TASK_MANAGEMENT_FUNC_SUCCEEDED) {
7501 			/* cmd pending in the device */
7502 			dev_err(hba->dev, "%s: cmd pending in the device. tag = %d\n",
7503 				__func__, tag);
7504 			break;
7505 		} else if (!err && resp == UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7506 			/*
7507 			 * cmd not pending in the device, check if it is
7508 			 * in transition.
7509 			 */
7510 			dev_info(
7511 				hba->dev,
7512 				"%s: cmd with tag %d not pending in the device.\n",
7513 				__func__, tag);
7514 			if (!ufshcd_cmd_inflight(lrbp->cmd)) {
7515 				dev_info(hba->dev,
7516 					 "%s: cmd with tag=%d completed.\n",
7517 					 __func__, tag);
7518 				return 0;
7519 			}
7520 			usleep_range(100, 200);
7521 		} else {
7522 			dev_err(hba->dev,
7523 				"%s: no response from device. tag = %d, err %d\n",
7524 				__func__, tag, err);
7525 			return err ? : resp;
7526 		}
7527 	}
7528 
7529 	if (!poll_cnt)
7530 		return -EBUSY;
7531 
7532 	err = ufshcd_issue_tm_cmd(hba, lrbp->lun, lrbp->task_tag,
7533 			UFS_ABORT_TASK, &resp);
7534 	if (err || resp != UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7535 		if (!err) {
7536 			err = resp; /* service response error */
7537 			dev_err(hba->dev, "%s: issued. tag = %d, err %d\n",
7538 				__func__, tag, err);
7539 		}
7540 		return err;
7541 	}
7542 
7543 	err = ufshcd_clear_cmd(hba, tag);
7544 	if (err)
7545 		dev_err(hba->dev, "%s: Failed clearing cmd at tag %d, err %d\n",
7546 			__func__, tag, err);
7547 
7548 	return err;
7549 }
7550 
7551 /**
7552  * ufshcd_abort - scsi host template eh_abort_handler callback
7553  * @cmd: SCSI command pointer
7554  *
7555  * Return: SUCCESS or FAILED.
7556  */
7557 static int ufshcd_abort(struct scsi_cmnd *cmd)
7558 {
7559 	struct Scsi_Host *host = cmd->device->host;
7560 	struct ufs_hba *hba = shost_priv(host);
7561 	int tag = scsi_cmd_to_rq(cmd)->tag;
7562 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
7563 	unsigned long flags;
7564 	int err = FAILED;
7565 	bool outstanding;
7566 	u32 reg;
7567 
7568 	ufshcd_hold(hba);
7569 
7570 	if (!hba->mcq_enabled) {
7571 		reg = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
7572 		if (!test_bit(tag, &hba->outstanding_reqs)) {
7573 			/* If command is already aborted/completed, return FAILED. */
7574 			dev_err(hba->dev,
7575 				"%s: cmd at tag %d already completed, outstanding=0x%lx, doorbell=0x%x\n",
7576 				__func__, tag, hba->outstanding_reqs, reg);
7577 			goto release;
7578 		}
7579 	}
7580 
7581 	/* Print Transfer Request of aborted task */
7582 	dev_info(hba->dev, "%s: Device abort task at tag %d\n", __func__, tag);
7583 
7584 	/*
7585 	 * Print detailed info about aborted request.
7586 	 * As more than one request might get aborted at the same time,
7587 	 * print full information only for the first aborted request in order
7588 	 * to reduce repeated printouts. For other aborted requests only print
7589 	 * basic details.
7590 	 */
7591 	scsi_print_command(cmd);
7592 	if (!hba->req_abort_count) {
7593 		ufshcd_update_evt_hist(hba, UFS_EVT_ABORT, tag);
7594 		ufshcd_print_evt_hist(hba);
7595 		ufshcd_print_host_state(hba);
7596 		ufshcd_print_pwr_info(hba);
7597 		ufshcd_print_tr(hba, tag, true);
7598 	} else {
7599 		ufshcd_print_tr(hba, tag, false);
7600 	}
7601 	hba->req_abort_count++;
7602 
7603 	if (!hba->mcq_enabled && !(reg & (1 << tag))) {
7604 		/* only execute this code in single doorbell mode */
7605 		dev_err(hba->dev,
7606 		"%s: cmd was completed, but without a notifying intr, tag = %d",
7607 		__func__, tag);
7608 		__ufshcd_transfer_req_compl(hba, 1UL << tag);
7609 		goto release;
7610 	}
7611 
7612 	/*
7613 	 * Task abort to the device W-LUN is illegal. When this command
7614 	 * will fail, due to spec violation, scsi err handling next step
7615 	 * will be to send LU reset which, again, is a spec violation.
7616 	 * To avoid these unnecessary/illegal steps, first we clean up
7617 	 * the lrb taken by this cmd and re-set it in outstanding_reqs,
7618 	 * then queue the eh_work and bail.
7619 	 */
7620 	if (lrbp->lun == UFS_UPIU_UFS_DEVICE_WLUN) {
7621 		ufshcd_update_evt_hist(hba, UFS_EVT_ABORT, lrbp->lun);
7622 
7623 		spin_lock_irqsave(host->host_lock, flags);
7624 		hba->force_reset = true;
7625 		ufshcd_schedule_eh_work(hba);
7626 		spin_unlock_irqrestore(host->host_lock, flags);
7627 		goto release;
7628 	}
7629 
7630 	if (hba->mcq_enabled) {
7631 		/* MCQ mode. Branch off to handle abort for mcq mode */
7632 		err = ufshcd_mcq_abort(cmd);
7633 		goto release;
7634 	}
7635 
7636 	/* Skip task abort in case previous aborts failed and report failure */
7637 	if (lrbp->req_abort_skip) {
7638 		dev_err(hba->dev, "%s: skipping abort\n", __func__);
7639 		ufshcd_set_req_abort_skip(hba, hba->outstanding_reqs);
7640 		goto release;
7641 	}
7642 
7643 	err = ufshcd_try_to_abort_task(hba, tag);
7644 	if (err) {
7645 		dev_err(hba->dev, "%s: failed with err %d\n", __func__, err);
7646 		ufshcd_set_req_abort_skip(hba, hba->outstanding_reqs);
7647 		err = FAILED;
7648 		goto release;
7649 	}
7650 
7651 	/*
7652 	 * Clear the corresponding bit from outstanding_reqs since the command
7653 	 * has been aborted successfully.
7654 	 */
7655 	spin_lock_irqsave(&hba->outstanding_lock, flags);
7656 	outstanding = __test_and_clear_bit(tag, &hba->outstanding_reqs);
7657 	spin_unlock_irqrestore(&hba->outstanding_lock, flags);
7658 
7659 	if (outstanding)
7660 		ufshcd_release_scsi_cmd(hba, lrbp);
7661 
7662 	err = SUCCESS;
7663 
7664 release:
7665 	/* Matches the ufshcd_hold() call at the start of this function. */
7666 	ufshcd_release(hba);
7667 	return err;
7668 }
7669 
7670 /**
7671  * ufshcd_process_probe_result - Process the ufshcd_probe_hba() result.
7672  * @hba: UFS host controller instance.
7673  * @probe_start: time when the ufshcd_probe_hba() call started.
7674  * @ret: ufshcd_probe_hba() return value.
7675  */
7676 static void ufshcd_process_probe_result(struct ufs_hba *hba,
7677 					ktime_t probe_start, int ret)
7678 {
7679 	unsigned long flags;
7680 
7681 	spin_lock_irqsave(hba->host->host_lock, flags);
7682 	if (ret)
7683 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
7684 	else if (hba->ufshcd_state == UFSHCD_STATE_RESET)
7685 		hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
7686 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7687 
7688 	trace_ufshcd_init(dev_name(hba->dev), ret,
7689 			  ktime_to_us(ktime_sub(ktime_get(), probe_start)),
7690 			  hba->curr_dev_pwr_mode, hba->uic_link_state);
7691 }
7692 
7693 /**
7694  * ufshcd_host_reset_and_restore - reset and restore host controller
7695  * @hba: per-adapter instance
7696  *
7697  * Note that host controller reset may issue DME_RESET to
7698  * local and remote (device) Uni-Pro stack and the attributes
7699  * are reset to default state.
7700  *
7701  * Return: zero on success, non-zero on failure.
7702  */
7703 static int ufshcd_host_reset_and_restore(struct ufs_hba *hba)
7704 {
7705 	int err;
7706 
7707 	/*
7708 	 * Stop the host controller and complete the requests
7709 	 * cleared by h/w
7710 	 */
7711 	ufshcd_hba_stop(hba);
7712 	hba->silence_err_logs = true;
7713 	ufshcd_complete_requests(hba, true);
7714 	hba->silence_err_logs = false;
7715 
7716 	/* scale up clocks to max frequency before full reinitialization */
7717 	ufshcd_scale_clks(hba, ULONG_MAX, true);
7718 
7719 	err = ufshcd_hba_enable(hba);
7720 
7721 	/* Establish the link again and restore the device */
7722 	if (!err) {
7723 		ktime_t probe_start = ktime_get();
7724 
7725 		err = ufshcd_device_init(hba, /*init_dev_params=*/false);
7726 		if (!err)
7727 			err = ufshcd_probe_hba(hba, false);
7728 		ufshcd_process_probe_result(hba, probe_start, err);
7729 	}
7730 
7731 	if (err)
7732 		dev_err(hba->dev, "%s: Host init failed %d\n", __func__, err);
7733 	ufshcd_update_evt_hist(hba, UFS_EVT_HOST_RESET, (u32)err);
7734 	return err;
7735 }
7736 
7737 /**
7738  * ufshcd_reset_and_restore - reset and re-initialize host/device
7739  * @hba: per-adapter instance
7740  *
7741  * Reset and recover device, host and re-establish link. This
7742  * is helpful to recover the communication in fatal error conditions.
7743  *
7744  * Return: zero on success, non-zero on failure.
7745  */
7746 static int ufshcd_reset_and_restore(struct ufs_hba *hba)
7747 {
7748 	u32 saved_err = 0;
7749 	u32 saved_uic_err = 0;
7750 	int err = 0;
7751 	unsigned long flags;
7752 	int retries = MAX_HOST_RESET_RETRIES;
7753 
7754 	spin_lock_irqsave(hba->host->host_lock, flags);
7755 	do {
7756 		/*
7757 		 * This is a fresh start, cache and clear saved error first,
7758 		 * in case new error generated during reset and restore.
7759 		 */
7760 		saved_err |= hba->saved_err;
7761 		saved_uic_err |= hba->saved_uic_err;
7762 		hba->saved_err = 0;
7763 		hba->saved_uic_err = 0;
7764 		hba->force_reset = false;
7765 		hba->ufshcd_state = UFSHCD_STATE_RESET;
7766 		spin_unlock_irqrestore(hba->host->host_lock, flags);
7767 
7768 		/* Reset the attached device */
7769 		ufshcd_device_reset(hba);
7770 
7771 		err = ufshcd_host_reset_and_restore(hba);
7772 
7773 		spin_lock_irqsave(hba->host->host_lock, flags);
7774 		if (err)
7775 			continue;
7776 		/* Do not exit unless operational or dead */
7777 		if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL &&
7778 		    hba->ufshcd_state != UFSHCD_STATE_ERROR &&
7779 		    hba->ufshcd_state != UFSHCD_STATE_EH_SCHEDULED_NON_FATAL)
7780 			err = -EAGAIN;
7781 	} while (err && --retries);
7782 
7783 	/*
7784 	 * Inform scsi mid-layer that we did reset and allow to handle
7785 	 * Unit Attention properly.
7786 	 */
7787 	scsi_report_bus_reset(hba->host, 0);
7788 	if (err) {
7789 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
7790 		hba->saved_err |= saved_err;
7791 		hba->saved_uic_err |= saved_uic_err;
7792 	}
7793 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7794 
7795 	return err;
7796 }
7797 
7798 /**
7799  * ufshcd_eh_host_reset_handler - host reset handler registered to scsi layer
7800  * @cmd: SCSI command pointer
7801  *
7802  * Return: SUCCESS or FAILED.
7803  */
7804 static int ufshcd_eh_host_reset_handler(struct scsi_cmnd *cmd)
7805 {
7806 	int err = SUCCESS;
7807 	unsigned long flags;
7808 	struct ufs_hba *hba;
7809 
7810 	hba = shost_priv(cmd->device->host);
7811 
7812 	/*
7813 	 * If runtime PM sent SSU and got a timeout, scsi_error_handler is
7814 	 * stuck in this function waiting for flush_work(&hba->eh_work). And
7815 	 * ufshcd_err_handler(eh_work) is stuck waiting for runtime PM. Do
7816 	 * ufshcd_link_recovery instead of eh_work to prevent deadlock.
7817 	 */
7818 	if (hba->pm_op_in_progress) {
7819 		if (ufshcd_link_recovery(hba))
7820 			err = FAILED;
7821 
7822 		return err;
7823 	}
7824 
7825 	spin_lock_irqsave(hba->host->host_lock, flags);
7826 	hba->force_reset = true;
7827 	ufshcd_schedule_eh_work(hba);
7828 	dev_err(hba->dev, "%s: reset in progress - 1\n", __func__);
7829 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7830 
7831 	flush_work(&hba->eh_work);
7832 
7833 	spin_lock_irqsave(hba->host->host_lock, flags);
7834 	if (hba->ufshcd_state == UFSHCD_STATE_ERROR)
7835 		err = FAILED;
7836 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7837 
7838 	return err;
7839 }
7840 
7841 /**
7842  * ufshcd_get_max_icc_level - calculate the ICC level
7843  * @sup_curr_uA: max. current supported by the regulator
7844  * @start_scan: row at the desc table to start scan from
7845  * @buff: power descriptor buffer
7846  *
7847  * Return: calculated max ICC level for specific regulator.
7848  */
7849 static u32 ufshcd_get_max_icc_level(int sup_curr_uA, u32 start_scan,
7850 				    const char *buff)
7851 {
7852 	int i;
7853 	int curr_uA;
7854 	u16 data;
7855 	u16 unit;
7856 
7857 	for (i = start_scan; i >= 0; i--) {
7858 		data = get_unaligned_be16(&buff[2 * i]);
7859 		unit = (data & ATTR_ICC_LVL_UNIT_MASK) >>
7860 						ATTR_ICC_LVL_UNIT_OFFSET;
7861 		curr_uA = data & ATTR_ICC_LVL_VALUE_MASK;
7862 		switch (unit) {
7863 		case UFSHCD_NANO_AMP:
7864 			curr_uA = curr_uA / 1000;
7865 			break;
7866 		case UFSHCD_MILI_AMP:
7867 			curr_uA = curr_uA * 1000;
7868 			break;
7869 		case UFSHCD_AMP:
7870 			curr_uA = curr_uA * 1000 * 1000;
7871 			break;
7872 		case UFSHCD_MICRO_AMP:
7873 		default:
7874 			break;
7875 		}
7876 		if (sup_curr_uA >= curr_uA)
7877 			break;
7878 	}
7879 	if (i < 0) {
7880 		i = 0;
7881 		pr_err("%s: Couldn't find valid icc_level = %d", __func__, i);
7882 	}
7883 
7884 	return (u32)i;
7885 }
7886 
7887 /**
7888  * ufshcd_find_max_sup_active_icc_level - calculate the max ICC level
7889  * In case regulators are not initialized we'll return 0
7890  * @hba: per-adapter instance
7891  * @desc_buf: power descriptor buffer to extract ICC levels from.
7892  *
7893  * Return: calculated ICC level.
7894  */
7895 static u32 ufshcd_find_max_sup_active_icc_level(struct ufs_hba *hba,
7896 						const u8 *desc_buf)
7897 {
7898 	u32 icc_level = 0;
7899 
7900 	if (!hba->vreg_info.vcc || !hba->vreg_info.vccq ||
7901 						!hba->vreg_info.vccq2) {
7902 		/*
7903 		 * Using dev_dbg to avoid messages during runtime PM to avoid
7904 		 * never-ending cycles of messages written back to storage by
7905 		 * user space causing runtime resume, causing more messages and
7906 		 * so on.
7907 		 */
7908 		dev_dbg(hba->dev,
7909 			"%s: Regulator capability was not set, actvIccLevel=%d",
7910 							__func__, icc_level);
7911 		goto out;
7912 	}
7913 
7914 	if (hba->vreg_info.vcc->max_uA)
7915 		icc_level = ufshcd_get_max_icc_level(
7916 				hba->vreg_info.vcc->max_uA,
7917 				POWER_DESC_MAX_ACTV_ICC_LVLS - 1,
7918 				&desc_buf[PWR_DESC_ACTIVE_LVLS_VCC_0]);
7919 
7920 	if (hba->vreg_info.vccq->max_uA)
7921 		icc_level = ufshcd_get_max_icc_level(
7922 				hba->vreg_info.vccq->max_uA,
7923 				icc_level,
7924 				&desc_buf[PWR_DESC_ACTIVE_LVLS_VCCQ_0]);
7925 
7926 	if (hba->vreg_info.vccq2->max_uA)
7927 		icc_level = ufshcd_get_max_icc_level(
7928 				hba->vreg_info.vccq2->max_uA,
7929 				icc_level,
7930 				&desc_buf[PWR_DESC_ACTIVE_LVLS_VCCQ2_0]);
7931 out:
7932 	return icc_level;
7933 }
7934 
7935 static void ufshcd_set_active_icc_lvl(struct ufs_hba *hba)
7936 {
7937 	int ret;
7938 	u8 *desc_buf;
7939 	u32 icc_level;
7940 
7941 	desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
7942 	if (!desc_buf)
7943 		return;
7944 
7945 	ret = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_POWER, 0, 0,
7946 				     desc_buf, QUERY_DESC_MAX_SIZE);
7947 	if (ret) {
7948 		dev_err(hba->dev,
7949 			"%s: Failed reading power descriptor ret = %d",
7950 			__func__, ret);
7951 		goto out;
7952 	}
7953 
7954 	icc_level = ufshcd_find_max_sup_active_icc_level(hba, desc_buf);
7955 	dev_dbg(hba->dev, "%s: setting icc_level 0x%x", __func__, icc_level);
7956 
7957 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
7958 		QUERY_ATTR_IDN_ACTIVE_ICC_LVL, 0, 0, &icc_level);
7959 
7960 	if (ret)
7961 		dev_err(hba->dev,
7962 			"%s: Failed configuring bActiveICCLevel = %d ret = %d",
7963 			__func__, icc_level, ret);
7964 
7965 out:
7966 	kfree(desc_buf);
7967 }
7968 
7969 static inline void ufshcd_blk_pm_runtime_init(struct scsi_device *sdev)
7970 {
7971 	struct Scsi_Host *shost = sdev->host;
7972 
7973 	scsi_autopm_get_device(sdev);
7974 	blk_pm_runtime_init(sdev->request_queue, &sdev->sdev_gendev);
7975 	if (sdev->rpm_autosuspend)
7976 		pm_runtime_set_autosuspend_delay(&sdev->sdev_gendev,
7977 						 shost->rpm_autosuspend_delay);
7978 	scsi_autopm_put_device(sdev);
7979 }
7980 
7981 /**
7982  * ufshcd_scsi_add_wlus - Adds required W-LUs
7983  * @hba: per-adapter instance
7984  *
7985  * UFS device specification requires the UFS devices to support 4 well known
7986  * logical units:
7987  *	"REPORT_LUNS" (address: 01h)
7988  *	"UFS Device" (address: 50h)
7989  *	"RPMB" (address: 44h)
7990  *	"BOOT" (address: 30h)
7991  * UFS device's power management needs to be controlled by "POWER CONDITION"
7992  * field of SSU (START STOP UNIT) command. But this "power condition" field
7993  * will take effect only when its sent to "UFS device" well known logical unit
7994  * hence we require the scsi_device instance to represent this logical unit in
7995  * order for the UFS host driver to send the SSU command for power management.
7996  *
7997  * We also require the scsi_device instance for "RPMB" (Replay Protected Memory
7998  * Block) LU so user space process can control this LU. User space may also
7999  * want to have access to BOOT LU.
8000  *
8001  * This function adds scsi device instances for each of all well known LUs
8002  * (except "REPORT LUNS" LU).
8003  *
8004  * Return: zero on success (all required W-LUs are added successfully),
8005  * non-zero error value on failure (if failed to add any of the required W-LU).
8006  */
8007 static int ufshcd_scsi_add_wlus(struct ufs_hba *hba)
8008 {
8009 	int ret = 0;
8010 	struct scsi_device *sdev_boot, *sdev_rpmb;
8011 
8012 	hba->ufs_device_wlun = __scsi_add_device(hba->host, 0, 0,
8013 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_UFS_DEVICE_WLUN), NULL);
8014 	if (IS_ERR(hba->ufs_device_wlun)) {
8015 		ret = PTR_ERR(hba->ufs_device_wlun);
8016 		hba->ufs_device_wlun = NULL;
8017 		goto out;
8018 	}
8019 	scsi_device_put(hba->ufs_device_wlun);
8020 
8021 	sdev_rpmb = __scsi_add_device(hba->host, 0, 0,
8022 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_RPMB_WLUN), NULL);
8023 	if (IS_ERR(sdev_rpmb)) {
8024 		ret = PTR_ERR(sdev_rpmb);
8025 		goto remove_ufs_device_wlun;
8026 	}
8027 	ufshcd_blk_pm_runtime_init(sdev_rpmb);
8028 	scsi_device_put(sdev_rpmb);
8029 
8030 	sdev_boot = __scsi_add_device(hba->host, 0, 0,
8031 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_BOOT_WLUN), NULL);
8032 	if (IS_ERR(sdev_boot)) {
8033 		dev_err(hba->dev, "%s: BOOT WLUN not found\n", __func__);
8034 	} else {
8035 		ufshcd_blk_pm_runtime_init(sdev_boot);
8036 		scsi_device_put(sdev_boot);
8037 	}
8038 	goto out;
8039 
8040 remove_ufs_device_wlun:
8041 	scsi_remove_device(hba->ufs_device_wlun);
8042 out:
8043 	return ret;
8044 }
8045 
8046 static void ufshcd_wb_probe(struct ufs_hba *hba, const u8 *desc_buf)
8047 {
8048 	struct ufs_dev_info *dev_info = &hba->dev_info;
8049 	u8 lun;
8050 	u32 d_lu_wb_buf_alloc;
8051 	u32 ext_ufs_feature;
8052 
8053 	if (!ufshcd_is_wb_allowed(hba))
8054 		return;
8055 
8056 	/*
8057 	 * Probe WB only for UFS-2.2 and UFS-3.1 (and later) devices or
8058 	 * UFS devices with quirk UFS_DEVICE_QUIRK_SUPPORT_EXTENDED_FEATURES
8059 	 * enabled
8060 	 */
8061 	if (!(dev_info->wspecversion >= 0x310 ||
8062 	      dev_info->wspecversion == 0x220 ||
8063 	     (hba->dev_quirks & UFS_DEVICE_QUIRK_SUPPORT_EXTENDED_FEATURES)))
8064 		goto wb_disabled;
8065 
8066 	ext_ufs_feature = get_unaligned_be32(desc_buf +
8067 					DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
8068 
8069 	if (!(ext_ufs_feature & UFS_DEV_WRITE_BOOSTER_SUP))
8070 		goto wb_disabled;
8071 
8072 	/*
8073 	 * WB may be supported but not configured while provisioning. The spec
8074 	 * says, in dedicated wb buffer mode, a max of 1 lun would have wb
8075 	 * buffer configured.
8076 	 */
8077 	dev_info->wb_buffer_type = desc_buf[DEVICE_DESC_PARAM_WB_TYPE];
8078 
8079 	dev_info->b_presrv_uspc_en =
8080 		desc_buf[DEVICE_DESC_PARAM_WB_PRESRV_USRSPC_EN];
8081 
8082 	if (dev_info->wb_buffer_type == WB_BUF_MODE_SHARED) {
8083 		if (!get_unaligned_be32(desc_buf +
8084 				   DEVICE_DESC_PARAM_WB_SHARED_ALLOC_UNITS))
8085 			goto wb_disabled;
8086 	} else {
8087 		for (lun = 0; lun < UFS_UPIU_MAX_WB_LUN_ID; lun++) {
8088 			d_lu_wb_buf_alloc = 0;
8089 			ufshcd_read_unit_desc_param(hba,
8090 					lun,
8091 					UNIT_DESC_PARAM_WB_BUF_ALLOC_UNITS,
8092 					(u8 *)&d_lu_wb_buf_alloc,
8093 					sizeof(d_lu_wb_buf_alloc));
8094 			if (d_lu_wb_buf_alloc) {
8095 				dev_info->wb_dedicated_lu = lun;
8096 				break;
8097 			}
8098 		}
8099 
8100 		if (!d_lu_wb_buf_alloc)
8101 			goto wb_disabled;
8102 	}
8103 
8104 	if (!ufshcd_is_wb_buf_lifetime_available(hba))
8105 		goto wb_disabled;
8106 
8107 	return;
8108 
8109 wb_disabled:
8110 	hba->caps &= ~UFSHCD_CAP_WB_EN;
8111 }
8112 
8113 static void ufshcd_temp_notif_probe(struct ufs_hba *hba, const u8 *desc_buf)
8114 {
8115 	struct ufs_dev_info *dev_info = &hba->dev_info;
8116 	u32 ext_ufs_feature;
8117 	u8 mask = 0;
8118 
8119 	if (!(hba->caps & UFSHCD_CAP_TEMP_NOTIF) || dev_info->wspecversion < 0x300)
8120 		return;
8121 
8122 	ext_ufs_feature = get_unaligned_be32(desc_buf + DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
8123 
8124 	if (ext_ufs_feature & UFS_DEV_LOW_TEMP_NOTIF)
8125 		mask |= MASK_EE_TOO_LOW_TEMP;
8126 
8127 	if (ext_ufs_feature & UFS_DEV_HIGH_TEMP_NOTIF)
8128 		mask |= MASK_EE_TOO_HIGH_TEMP;
8129 
8130 	if (mask) {
8131 		ufshcd_enable_ee(hba, mask);
8132 		ufs_hwmon_probe(hba, mask);
8133 	}
8134 }
8135 
8136 static void ufshcd_ext_iid_probe(struct ufs_hba *hba, u8 *desc_buf)
8137 {
8138 	struct ufs_dev_info *dev_info = &hba->dev_info;
8139 	u32 ext_ufs_feature;
8140 	u32 ext_iid_en = 0;
8141 	int err;
8142 
8143 	/* Only UFS-4.0 and above may support EXT_IID */
8144 	if (dev_info->wspecversion < 0x400)
8145 		goto out;
8146 
8147 	ext_ufs_feature = get_unaligned_be32(desc_buf +
8148 				     DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
8149 	if (!(ext_ufs_feature & UFS_DEV_EXT_IID_SUP))
8150 		goto out;
8151 
8152 	err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
8153 				      QUERY_ATTR_IDN_EXT_IID_EN, 0, 0, &ext_iid_en);
8154 	if (err)
8155 		dev_err(hba->dev, "failed reading bEXTIIDEn. err = %d\n", err);
8156 
8157 out:
8158 	dev_info->b_ext_iid_en = ext_iid_en;
8159 }
8160 
8161 static void ufshcd_set_rtt(struct ufs_hba *hba)
8162 {
8163 	struct ufs_dev_info *dev_info = &hba->dev_info;
8164 	u32 rtt = 0;
8165 	u32 dev_rtt = 0;
8166 	int host_rtt_cap = hba->vops && hba->vops->max_num_rtt ?
8167 			   hba->vops->max_num_rtt : hba->nortt;
8168 
8169 	/* RTT override makes sense only for UFS-4.0 and above */
8170 	if (dev_info->wspecversion < 0x400)
8171 		return;
8172 
8173 	if (ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
8174 				    QUERY_ATTR_IDN_MAX_NUM_OF_RTT, 0, 0, &dev_rtt)) {
8175 		dev_err(hba->dev, "failed reading bMaxNumOfRTT\n");
8176 		return;
8177 	}
8178 
8179 	/* do not override if it was already written */
8180 	if (dev_rtt != DEFAULT_MAX_NUM_RTT)
8181 		return;
8182 
8183 	rtt = min_t(int, dev_info->rtt_cap, host_rtt_cap);
8184 
8185 	if (rtt == dev_rtt)
8186 		return;
8187 
8188 	if (ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
8189 				    QUERY_ATTR_IDN_MAX_NUM_OF_RTT, 0, 0, &rtt))
8190 		dev_err(hba->dev, "failed writing bMaxNumOfRTT\n");
8191 }
8192 
8193 void ufshcd_fixup_dev_quirks(struct ufs_hba *hba,
8194 			     const struct ufs_dev_quirk *fixups)
8195 {
8196 	const struct ufs_dev_quirk *f;
8197 	struct ufs_dev_info *dev_info = &hba->dev_info;
8198 
8199 	if (!fixups)
8200 		return;
8201 
8202 	for (f = fixups; f->quirk; f++) {
8203 		if ((f->wmanufacturerid == dev_info->wmanufacturerid ||
8204 		     f->wmanufacturerid == UFS_ANY_VENDOR) &&
8205 		     ((dev_info->model &&
8206 		       STR_PRFX_EQUAL(f->model, dev_info->model)) ||
8207 		      !strcmp(f->model, UFS_ANY_MODEL)))
8208 			hba->dev_quirks |= f->quirk;
8209 	}
8210 }
8211 EXPORT_SYMBOL_GPL(ufshcd_fixup_dev_quirks);
8212 
8213 static void ufs_fixup_device_setup(struct ufs_hba *hba)
8214 {
8215 	/* fix by general quirk table */
8216 	ufshcd_fixup_dev_quirks(hba, ufs_fixups);
8217 
8218 	/* allow vendors to fix quirks */
8219 	ufshcd_vops_fixup_dev_quirks(hba);
8220 }
8221 
8222 static void ufshcd_update_rtc(struct ufs_hba *hba)
8223 {
8224 	struct timespec64 ts64;
8225 	int err;
8226 	u32 val;
8227 
8228 	ktime_get_real_ts64(&ts64);
8229 
8230 	if (ts64.tv_sec < hba->dev_info.rtc_time_baseline) {
8231 		dev_warn_once(hba->dev, "%s: Current time precedes previous setting!\n", __func__);
8232 		return;
8233 	}
8234 
8235 	/*
8236 	 * The Absolute RTC mode has a 136-year limit, spanning from 2010 to 2146. If a time beyond
8237 	 * 2146 is required, it is recommended to choose the relative RTC mode.
8238 	 */
8239 	val = ts64.tv_sec - hba->dev_info.rtc_time_baseline;
8240 
8241 	/* Skip update RTC if RPM state is not RPM_ACTIVE */
8242 	if (ufshcd_rpm_get_if_active(hba) <= 0)
8243 		return;
8244 
8245 	err = ufshcd_query_attr(hba, UPIU_QUERY_OPCODE_WRITE_ATTR, QUERY_ATTR_IDN_SECONDS_PASSED,
8246 				0, 0, &val);
8247 	ufshcd_rpm_put(hba);
8248 
8249 	if (err)
8250 		dev_err(hba->dev, "%s: Failed to update rtc %d\n", __func__, err);
8251 	else if (hba->dev_info.rtc_type == UFS_RTC_RELATIVE)
8252 		hba->dev_info.rtc_time_baseline = ts64.tv_sec;
8253 }
8254 
8255 static void ufshcd_rtc_work(struct work_struct *work)
8256 {
8257 	struct ufs_hba *hba;
8258 
8259 	hba = container_of(to_delayed_work(work), struct ufs_hba, ufs_rtc_update_work);
8260 
8261 	 /* Update RTC only when there are no requests in progress and UFSHCI is operational */
8262 	if (!ufshcd_is_ufs_dev_busy(hba) && hba->ufshcd_state == UFSHCD_STATE_OPERATIONAL)
8263 		ufshcd_update_rtc(hba);
8264 
8265 	if (ufshcd_is_ufs_dev_active(hba) && hba->dev_info.rtc_update_period)
8266 		schedule_delayed_work(&hba->ufs_rtc_update_work,
8267 				      msecs_to_jiffies(hba->dev_info.rtc_update_period));
8268 }
8269 
8270 static void ufs_init_rtc(struct ufs_hba *hba, u8 *desc_buf)
8271 {
8272 	u16 periodic_rtc_update = get_unaligned_be16(&desc_buf[DEVICE_DESC_PARAM_FRQ_RTC]);
8273 	struct ufs_dev_info *dev_info = &hba->dev_info;
8274 
8275 	if (periodic_rtc_update & UFS_RTC_TIME_BASELINE) {
8276 		dev_info->rtc_type = UFS_RTC_ABSOLUTE;
8277 
8278 		/*
8279 		 * The concept of measuring time in Linux as the number of seconds elapsed since
8280 		 * 00:00:00 UTC on January 1, 1970, and UFS ABS RTC is elapsed from January 1st
8281 		 * 2010 00:00, here we need to adjust ABS baseline.
8282 		 */
8283 		dev_info->rtc_time_baseline = mktime64(2010, 1, 1, 0, 0, 0) -
8284 							mktime64(1970, 1, 1, 0, 0, 0);
8285 	} else {
8286 		dev_info->rtc_type = UFS_RTC_RELATIVE;
8287 		dev_info->rtc_time_baseline = 0;
8288 	}
8289 
8290 	/*
8291 	 * We ignore TIME_PERIOD defined in wPeriodicRTCUpdate because Spec does not clearly state
8292 	 * how to calculate the specific update period for each time unit. And we disable periodic
8293 	 * RTC update work, let user configure by sysfs node according to specific circumstance.
8294 	 */
8295 	dev_info->rtc_update_period = 0;
8296 }
8297 
8298 static int ufs_get_device_desc(struct ufs_hba *hba)
8299 {
8300 	int err;
8301 	u8 model_index;
8302 	u8 *desc_buf;
8303 	struct ufs_dev_info *dev_info = &hba->dev_info;
8304 
8305 	desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
8306 	if (!desc_buf) {
8307 		err = -ENOMEM;
8308 		goto out;
8309 	}
8310 
8311 	err = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_DEVICE, 0, 0, desc_buf,
8312 				     QUERY_DESC_MAX_SIZE);
8313 	if (err) {
8314 		dev_err(hba->dev, "%s: Failed reading Device Desc. err = %d\n",
8315 			__func__, err);
8316 		goto out;
8317 	}
8318 
8319 	/*
8320 	 * getting vendor (manufacturerID) and Bank Index in big endian
8321 	 * format
8322 	 */
8323 	dev_info->wmanufacturerid = desc_buf[DEVICE_DESC_PARAM_MANF_ID] << 8 |
8324 				     desc_buf[DEVICE_DESC_PARAM_MANF_ID + 1];
8325 
8326 	/* getting Specification Version in big endian format */
8327 	dev_info->wspecversion = desc_buf[DEVICE_DESC_PARAM_SPEC_VER] << 8 |
8328 				      desc_buf[DEVICE_DESC_PARAM_SPEC_VER + 1];
8329 	dev_info->bqueuedepth = desc_buf[DEVICE_DESC_PARAM_Q_DPTH];
8330 
8331 	dev_info->rtt_cap = desc_buf[DEVICE_DESC_PARAM_RTT_CAP];
8332 
8333 	model_index = desc_buf[DEVICE_DESC_PARAM_PRDCT_NAME];
8334 
8335 	err = ufshcd_read_string_desc(hba, model_index,
8336 				      &dev_info->model, SD_ASCII_STD);
8337 	if (err < 0) {
8338 		dev_err(hba->dev, "%s: Failed reading Product Name. err = %d\n",
8339 			__func__, err);
8340 		goto out;
8341 	}
8342 
8343 	hba->luns_avail = desc_buf[DEVICE_DESC_PARAM_NUM_LU] +
8344 		desc_buf[DEVICE_DESC_PARAM_NUM_WLU];
8345 
8346 	ufs_fixup_device_setup(hba);
8347 
8348 	ufshcd_wb_probe(hba, desc_buf);
8349 
8350 	ufshcd_temp_notif_probe(hba, desc_buf);
8351 
8352 	ufs_init_rtc(hba, desc_buf);
8353 
8354 	if (hba->ext_iid_sup)
8355 		ufshcd_ext_iid_probe(hba, desc_buf);
8356 
8357 	/*
8358 	 * ufshcd_read_string_desc returns size of the string
8359 	 * reset the error value
8360 	 */
8361 	err = 0;
8362 
8363 out:
8364 	kfree(desc_buf);
8365 	return err;
8366 }
8367 
8368 static void ufs_put_device_desc(struct ufs_hba *hba)
8369 {
8370 	struct ufs_dev_info *dev_info = &hba->dev_info;
8371 
8372 	kfree(dev_info->model);
8373 	dev_info->model = NULL;
8374 }
8375 
8376 /**
8377  * ufshcd_quirk_tune_host_pa_tactivate - Ensures that host PA_TACTIVATE is
8378  * less than device PA_TACTIVATE time.
8379  * @hba: per-adapter instance
8380  *
8381  * Some UFS devices require host PA_TACTIVATE to be lower than device
8382  * PA_TACTIVATE, we need to enable UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE quirk
8383  * for such devices.
8384  *
8385  * Return: zero on success, non-zero error value on failure.
8386  */
8387 static int ufshcd_quirk_tune_host_pa_tactivate(struct ufs_hba *hba)
8388 {
8389 	int ret = 0;
8390 	u32 granularity, peer_granularity;
8391 	u32 pa_tactivate, peer_pa_tactivate;
8392 	u32 pa_tactivate_us, peer_pa_tactivate_us;
8393 	static const u8 gran_to_us_table[] = {1, 4, 8, 16, 32, 100};
8394 
8395 	ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_GRANULARITY),
8396 				  &granularity);
8397 	if (ret)
8398 		goto out;
8399 
8400 	ret = ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_GRANULARITY),
8401 				  &peer_granularity);
8402 	if (ret)
8403 		goto out;
8404 
8405 	if ((granularity < PA_GRANULARITY_MIN_VAL) ||
8406 	    (granularity > PA_GRANULARITY_MAX_VAL)) {
8407 		dev_err(hba->dev, "%s: invalid host PA_GRANULARITY %d",
8408 			__func__, granularity);
8409 		return -EINVAL;
8410 	}
8411 
8412 	if ((peer_granularity < PA_GRANULARITY_MIN_VAL) ||
8413 	    (peer_granularity > PA_GRANULARITY_MAX_VAL)) {
8414 		dev_err(hba->dev, "%s: invalid device PA_GRANULARITY %d",
8415 			__func__, peer_granularity);
8416 		return -EINVAL;
8417 	}
8418 
8419 	ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_TACTIVATE), &pa_tactivate);
8420 	if (ret)
8421 		goto out;
8422 
8423 	ret = ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_TACTIVATE),
8424 				  &peer_pa_tactivate);
8425 	if (ret)
8426 		goto out;
8427 
8428 	pa_tactivate_us = pa_tactivate * gran_to_us_table[granularity - 1];
8429 	peer_pa_tactivate_us = peer_pa_tactivate *
8430 			     gran_to_us_table[peer_granularity - 1];
8431 
8432 	if (pa_tactivate_us >= peer_pa_tactivate_us) {
8433 		u32 new_peer_pa_tactivate;
8434 
8435 		new_peer_pa_tactivate = pa_tactivate_us /
8436 				      gran_to_us_table[peer_granularity - 1];
8437 		new_peer_pa_tactivate++;
8438 		ret = ufshcd_dme_peer_set(hba, UIC_ARG_MIB(PA_TACTIVATE),
8439 					  new_peer_pa_tactivate);
8440 	}
8441 
8442 out:
8443 	return ret;
8444 }
8445 
8446 static void ufshcd_tune_unipro_params(struct ufs_hba *hba)
8447 {
8448 	ufshcd_vops_apply_dev_quirks(hba);
8449 
8450 	if (hba->dev_quirks & UFS_DEVICE_QUIRK_PA_TACTIVATE)
8451 		/* set 1ms timeout for PA_TACTIVATE */
8452 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TACTIVATE), 10);
8453 
8454 	if (hba->dev_quirks & UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE)
8455 		ufshcd_quirk_tune_host_pa_tactivate(hba);
8456 }
8457 
8458 static void ufshcd_clear_dbg_ufs_stats(struct ufs_hba *hba)
8459 {
8460 	hba->ufs_stats.hibern8_exit_cnt = 0;
8461 	hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
8462 	hba->req_abort_count = 0;
8463 }
8464 
8465 static int ufshcd_device_geo_params_init(struct ufs_hba *hba)
8466 {
8467 	int err;
8468 	u8 *desc_buf;
8469 
8470 	desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
8471 	if (!desc_buf) {
8472 		err = -ENOMEM;
8473 		goto out;
8474 	}
8475 
8476 	err = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_GEOMETRY, 0, 0,
8477 				     desc_buf, QUERY_DESC_MAX_SIZE);
8478 	if (err) {
8479 		dev_err(hba->dev, "%s: Failed reading Geometry Desc. err = %d\n",
8480 				__func__, err);
8481 		goto out;
8482 	}
8483 
8484 	if (desc_buf[GEOMETRY_DESC_PARAM_MAX_NUM_LUN] == 1)
8485 		hba->dev_info.max_lu_supported = 32;
8486 	else if (desc_buf[GEOMETRY_DESC_PARAM_MAX_NUM_LUN] == 0)
8487 		hba->dev_info.max_lu_supported = 8;
8488 
8489 out:
8490 	kfree(desc_buf);
8491 	return err;
8492 }
8493 
8494 struct ufs_ref_clk {
8495 	unsigned long freq_hz;
8496 	enum ufs_ref_clk_freq val;
8497 };
8498 
8499 static const struct ufs_ref_clk ufs_ref_clk_freqs[] = {
8500 	{19200000, REF_CLK_FREQ_19_2_MHZ},
8501 	{26000000, REF_CLK_FREQ_26_MHZ},
8502 	{38400000, REF_CLK_FREQ_38_4_MHZ},
8503 	{52000000, REF_CLK_FREQ_52_MHZ},
8504 	{0, REF_CLK_FREQ_INVAL},
8505 };
8506 
8507 static enum ufs_ref_clk_freq
8508 ufs_get_bref_clk_from_hz(unsigned long freq)
8509 {
8510 	int i;
8511 
8512 	for (i = 0; ufs_ref_clk_freqs[i].freq_hz; i++)
8513 		if (ufs_ref_clk_freqs[i].freq_hz == freq)
8514 			return ufs_ref_clk_freqs[i].val;
8515 
8516 	return REF_CLK_FREQ_INVAL;
8517 }
8518 
8519 void ufshcd_parse_dev_ref_clk_freq(struct ufs_hba *hba, struct clk *refclk)
8520 {
8521 	unsigned long freq;
8522 
8523 	freq = clk_get_rate(refclk);
8524 
8525 	hba->dev_ref_clk_freq =
8526 		ufs_get_bref_clk_from_hz(freq);
8527 
8528 	if (hba->dev_ref_clk_freq == REF_CLK_FREQ_INVAL)
8529 		dev_err(hba->dev,
8530 		"invalid ref_clk setting = %ld\n", freq);
8531 }
8532 
8533 static int ufshcd_set_dev_ref_clk(struct ufs_hba *hba)
8534 {
8535 	int err;
8536 	u32 ref_clk;
8537 	u32 freq = hba->dev_ref_clk_freq;
8538 
8539 	err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
8540 			QUERY_ATTR_IDN_REF_CLK_FREQ, 0, 0, &ref_clk);
8541 
8542 	if (err) {
8543 		dev_err(hba->dev, "failed reading bRefClkFreq. err = %d\n",
8544 			err);
8545 		goto out;
8546 	}
8547 
8548 	if (ref_clk == freq)
8549 		goto out; /* nothing to update */
8550 
8551 	err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
8552 			QUERY_ATTR_IDN_REF_CLK_FREQ, 0, 0, &freq);
8553 
8554 	if (err) {
8555 		dev_err(hba->dev, "bRefClkFreq setting to %lu Hz failed\n",
8556 			ufs_ref_clk_freqs[freq].freq_hz);
8557 		goto out;
8558 	}
8559 
8560 	dev_dbg(hba->dev, "bRefClkFreq setting to %lu Hz succeeded\n",
8561 			ufs_ref_clk_freqs[freq].freq_hz);
8562 
8563 out:
8564 	return err;
8565 }
8566 
8567 static int ufshcd_device_params_init(struct ufs_hba *hba)
8568 {
8569 	bool flag;
8570 	int ret;
8571 
8572 	/* Init UFS geometry descriptor related parameters */
8573 	ret = ufshcd_device_geo_params_init(hba);
8574 	if (ret)
8575 		goto out;
8576 
8577 	/* Check and apply UFS device quirks */
8578 	ret = ufs_get_device_desc(hba);
8579 	if (ret) {
8580 		dev_err(hba->dev, "%s: Failed getting device info. err = %d\n",
8581 			__func__, ret);
8582 		goto out;
8583 	}
8584 
8585 	ufshcd_set_rtt(hba);
8586 
8587 	ufshcd_get_ref_clk_gating_wait(hba);
8588 
8589 	if (!ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_READ_FLAG,
8590 			QUERY_FLAG_IDN_PWR_ON_WPE, 0, &flag))
8591 		hba->dev_info.f_power_on_wp_en = flag;
8592 
8593 	/* Probe maximum power mode co-supported by both UFS host and device */
8594 	if (ufshcd_get_max_pwr_mode(hba))
8595 		dev_err(hba->dev,
8596 			"%s: Failed getting max supported power mode\n",
8597 			__func__);
8598 out:
8599 	return ret;
8600 }
8601 
8602 static void ufshcd_set_timestamp_attr(struct ufs_hba *hba)
8603 {
8604 	int err;
8605 	struct ufs_query_req *request = NULL;
8606 	struct ufs_query_res *response = NULL;
8607 	struct ufs_dev_info *dev_info = &hba->dev_info;
8608 	struct utp_upiu_query_v4_0 *upiu_data;
8609 
8610 	if (dev_info->wspecversion < 0x400)
8611 		return;
8612 
8613 	ufshcd_dev_man_lock(hba);
8614 
8615 	ufshcd_init_query(hba, &request, &response,
8616 			  UPIU_QUERY_OPCODE_WRITE_ATTR,
8617 			  QUERY_ATTR_IDN_TIMESTAMP, 0, 0);
8618 
8619 	request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
8620 
8621 	upiu_data = (struct utp_upiu_query_v4_0 *)&request->upiu_req;
8622 
8623 	put_unaligned_be64(ktime_get_real_ns(), &upiu_data->osf3);
8624 
8625 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT);
8626 
8627 	if (err)
8628 		dev_err(hba->dev, "%s: failed to set timestamp %d\n",
8629 			__func__, err);
8630 
8631 	ufshcd_dev_man_unlock(hba);
8632 }
8633 
8634 /**
8635  * ufshcd_add_lus - probe and add UFS logical units
8636  * @hba: per-adapter instance
8637  *
8638  * Return: 0 upon success; < 0 upon failure.
8639  */
8640 static int ufshcd_add_lus(struct ufs_hba *hba)
8641 {
8642 	int ret;
8643 
8644 	/* Add required well known logical units to scsi mid layer */
8645 	ret = ufshcd_scsi_add_wlus(hba);
8646 	if (ret)
8647 		goto out;
8648 
8649 	/* Initialize devfreq after UFS device is detected */
8650 	if (ufshcd_is_clkscaling_supported(hba)) {
8651 		memcpy(&hba->clk_scaling.saved_pwr_info,
8652 			&hba->pwr_info,
8653 			sizeof(struct ufs_pa_layer_attr));
8654 		hba->clk_scaling.is_allowed = true;
8655 
8656 		ret = ufshcd_devfreq_init(hba);
8657 		if (ret)
8658 			goto out;
8659 
8660 		hba->clk_scaling.is_enabled = true;
8661 		ufshcd_init_clk_scaling_sysfs(hba);
8662 	}
8663 
8664 	/*
8665 	 * The RTC update code accesses the hba->ufs_device_wlun->sdev_gendev
8666 	 * pointer and hence must only be started after the WLUN pointer has
8667 	 * been initialized by ufshcd_scsi_add_wlus().
8668 	 */
8669 	schedule_delayed_work(&hba->ufs_rtc_update_work,
8670 			      msecs_to_jiffies(UFS_RTC_UPDATE_INTERVAL_MS));
8671 
8672 	ufs_bsg_probe(hba);
8673 	scsi_scan_host(hba->host);
8674 
8675 out:
8676 	return ret;
8677 }
8678 
8679 /* SDB - Single Doorbell */
8680 static void ufshcd_release_sdb_queue(struct ufs_hba *hba, int nutrs)
8681 {
8682 	size_t ucdl_size, utrdl_size;
8683 
8684 	ucdl_size = ufshcd_get_ucd_size(hba) * nutrs;
8685 	dmam_free_coherent(hba->dev, ucdl_size, hba->ucdl_base_addr,
8686 			   hba->ucdl_dma_addr);
8687 
8688 	utrdl_size = sizeof(struct utp_transfer_req_desc) * nutrs;
8689 	dmam_free_coherent(hba->dev, utrdl_size, hba->utrdl_base_addr,
8690 			   hba->utrdl_dma_addr);
8691 
8692 	devm_kfree(hba->dev, hba->lrb);
8693 }
8694 
8695 static int ufshcd_alloc_mcq(struct ufs_hba *hba)
8696 {
8697 	int ret;
8698 	int old_nutrs = hba->nutrs;
8699 
8700 	ret = ufshcd_mcq_decide_queue_depth(hba);
8701 	if (ret < 0)
8702 		return ret;
8703 
8704 	hba->nutrs = ret;
8705 	ret = ufshcd_mcq_init(hba);
8706 	if (ret)
8707 		goto err;
8708 
8709 	/*
8710 	 * Previously allocated memory for nutrs may not be enough in MCQ mode.
8711 	 * Number of supported tags in MCQ mode may be larger than SDB mode.
8712 	 */
8713 	if (hba->nutrs != old_nutrs) {
8714 		ufshcd_release_sdb_queue(hba, old_nutrs);
8715 		ret = ufshcd_memory_alloc(hba);
8716 		if (ret)
8717 			goto err;
8718 		ufshcd_host_memory_configure(hba);
8719 	}
8720 
8721 	ret = ufshcd_mcq_memory_alloc(hba);
8722 	if (ret)
8723 		goto err;
8724 
8725 	hba->host->can_queue = hba->nutrs - UFSHCD_NUM_RESERVED;
8726 	hba->reserved_slot = hba->nutrs - UFSHCD_NUM_RESERVED;
8727 
8728 	return 0;
8729 err:
8730 	hba->nutrs = old_nutrs;
8731 	return ret;
8732 }
8733 
8734 static void ufshcd_config_mcq(struct ufs_hba *hba)
8735 {
8736 	int ret;
8737 	u32 intrs;
8738 
8739 	ret = ufshcd_mcq_vops_config_esi(hba);
8740 	dev_info(hba->dev, "ESI %sconfigured\n", ret ? "is not " : "");
8741 
8742 	intrs = UFSHCD_ENABLE_MCQ_INTRS;
8743 	if (hba->quirks & UFSHCD_QUIRK_MCQ_BROKEN_INTR)
8744 		intrs &= ~MCQ_CQ_EVENT_STATUS;
8745 	ufshcd_enable_intr(hba, intrs);
8746 	ufshcd_mcq_make_queues_operational(hba);
8747 	ufshcd_mcq_config_mac(hba, hba->nutrs);
8748 
8749 	dev_info(hba->dev, "MCQ configured, nr_queues=%d, io_queues=%d, read_queue=%d, poll_queues=%d, queue_depth=%d\n",
8750 		 hba->nr_hw_queues, hba->nr_queues[HCTX_TYPE_DEFAULT],
8751 		 hba->nr_queues[HCTX_TYPE_READ], hba->nr_queues[HCTX_TYPE_POLL],
8752 		 hba->nutrs);
8753 }
8754 
8755 static int ufshcd_post_device_init(struct ufs_hba *hba)
8756 {
8757 	int ret;
8758 
8759 	ufshcd_tune_unipro_params(hba);
8760 
8761 	/* UFS device is also active now */
8762 	ufshcd_set_ufs_dev_active(hba);
8763 	ufshcd_force_reset_auto_bkops(hba);
8764 
8765 	ufshcd_set_timestamp_attr(hba);
8766 
8767 	if (!hba->max_pwr_info.is_valid)
8768 		return 0;
8769 
8770 	/*
8771 	 * Set the right value to bRefClkFreq before attempting to
8772 	 * switch to HS gears.
8773 	 */
8774 	if (hba->dev_ref_clk_freq != REF_CLK_FREQ_INVAL)
8775 		ufshcd_set_dev_ref_clk(hba);
8776 	/* Gear up to HS gear. */
8777 	ret = ufshcd_config_pwr_mode(hba, &hba->max_pwr_info.info);
8778 	if (ret) {
8779 		dev_err(hba->dev, "%s: Failed setting power mode, err = %d\n",
8780 			__func__, ret);
8781 		return ret;
8782 	}
8783 
8784 	return 0;
8785 }
8786 
8787 static int ufshcd_device_init(struct ufs_hba *hba, bool init_dev_params)
8788 {
8789 	int ret;
8790 
8791 	WARN_ON_ONCE(!hba->scsi_host_added);
8792 
8793 	hba->ufshcd_state = UFSHCD_STATE_RESET;
8794 
8795 	ret = ufshcd_link_startup(hba);
8796 	if (ret)
8797 		return ret;
8798 
8799 	if (hba->quirks & UFSHCD_QUIRK_SKIP_PH_CONFIGURATION)
8800 		return ret;
8801 
8802 	/* Debug counters initialization */
8803 	ufshcd_clear_dbg_ufs_stats(hba);
8804 
8805 	/* UniPro link is active now */
8806 	ufshcd_set_link_active(hba);
8807 
8808 	/* Reconfigure MCQ upon reset */
8809 	if (hba->mcq_enabled && !init_dev_params) {
8810 		ufshcd_config_mcq(hba);
8811 		ufshcd_mcq_enable(hba);
8812 	}
8813 
8814 	/* Verify device initialization by sending NOP OUT UPIU */
8815 	ret = ufshcd_verify_dev_init(hba);
8816 	if (ret)
8817 		return ret;
8818 
8819 	/* Initiate UFS initialization, and waiting until completion */
8820 	ret = ufshcd_complete_dev_init(hba);
8821 	if (ret)
8822 		return ret;
8823 
8824 	/*
8825 	 * Initialize UFS device parameters used by driver, these
8826 	 * parameters are associated with UFS descriptors.
8827 	 */
8828 	if (init_dev_params) {
8829 		ret = ufshcd_device_params_init(hba);
8830 		if (ret)
8831 			return ret;
8832 		if (is_mcq_supported(hba) &&
8833 		    hba->quirks & UFSHCD_QUIRK_REINIT_AFTER_MAX_GEAR_SWITCH) {
8834 			ufshcd_config_mcq(hba);
8835 			ufshcd_mcq_enable(hba);
8836 		}
8837 	}
8838 
8839 	return ufshcd_post_device_init(hba);
8840 }
8841 
8842 /**
8843  * ufshcd_probe_hba - probe hba to detect device and initialize it
8844  * @hba: per-adapter instance
8845  * @init_dev_params: whether or not to call ufshcd_device_params_init().
8846  *
8847  * Execute link-startup and verify device initialization
8848  *
8849  * Return: 0 upon success; < 0 upon failure.
8850  */
8851 static int ufshcd_probe_hba(struct ufs_hba *hba, bool init_dev_params)
8852 {
8853 	int ret;
8854 
8855 	if (!hba->pm_op_in_progress &&
8856 	    (hba->quirks & UFSHCD_QUIRK_REINIT_AFTER_MAX_GEAR_SWITCH)) {
8857 		/* Reset the device and controller before doing reinit */
8858 		ufshcd_device_reset(hba);
8859 		ufs_put_device_desc(hba);
8860 		ufshcd_hba_stop(hba);
8861 		ufshcd_vops_reinit_notify(hba);
8862 		ret = ufshcd_hba_enable(hba);
8863 		if (ret) {
8864 			dev_err(hba->dev, "Host controller enable failed\n");
8865 			ufshcd_print_evt_hist(hba);
8866 			ufshcd_print_host_state(hba);
8867 			return ret;
8868 		}
8869 
8870 		/* Reinit the device */
8871 		ret = ufshcd_device_init(hba, init_dev_params);
8872 		if (ret)
8873 			return ret;
8874 	}
8875 
8876 	ufshcd_print_pwr_info(hba);
8877 
8878 	/*
8879 	 * bActiveICCLevel is volatile for UFS device (as per latest v2.1 spec)
8880 	 * and for removable UFS card as well, hence always set the parameter.
8881 	 * Note: Error handler may issue the device reset hence resetting
8882 	 * bActiveICCLevel as well so it is always safe to set this here.
8883 	 */
8884 	ufshcd_set_active_icc_lvl(hba);
8885 
8886 	/* Enable UFS Write Booster if supported */
8887 	ufshcd_configure_wb(hba);
8888 
8889 	if (hba->ee_usr_mask)
8890 		ufshcd_write_ee_control(hba);
8891 	ufshcd_configure_auto_hibern8(hba);
8892 
8893 	return 0;
8894 }
8895 
8896 /**
8897  * ufshcd_async_scan - asynchronous execution for probing hba
8898  * @data: data pointer to pass to this function
8899  * @cookie: cookie data
8900  */
8901 static void ufshcd_async_scan(void *data, async_cookie_t cookie)
8902 {
8903 	struct ufs_hba *hba = (struct ufs_hba *)data;
8904 	ktime_t probe_start;
8905 	int ret;
8906 
8907 	down(&hba->host_sem);
8908 	/* Initialize hba, detect and initialize UFS device */
8909 	probe_start = ktime_get();
8910 	ret = ufshcd_probe_hba(hba, true);
8911 	ufshcd_process_probe_result(hba, probe_start, ret);
8912 	up(&hba->host_sem);
8913 	if (ret)
8914 		goto out;
8915 
8916 	/* Probe and add UFS logical units  */
8917 	ret = ufshcd_add_lus(hba);
8918 
8919 out:
8920 	pm_runtime_put_sync(hba->dev);
8921 
8922 	if (ret)
8923 		dev_err(hba->dev, "%s failed: %d\n", __func__, ret);
8924 }
8925 
8926 static enum scsi_timeout_action ufshcd_eh_timed_out(struct scsi_cmnd *scmd)
8927 {
8928 	struct ufs_hba *hba = shost_priv(scmd->device->host);
8929 
8930 	if (!hba->system_suspending) {
8931 		/* Activate the error handler in the SCSI core. */
8932 		return SCSI_EH_NOT_HANDLED;
8933 	}
8934 
8935 	/*
8936 	 * If we get here we know that no TMFs are outstanding and also that
8937 	 * the only pending command is a START STOP UNIT command. Handle the
8938 	 * timeout of that command directly to prevent a deadlock between
8939 	 * ufshcd_set_dev_pwr_mode() and ufshcd_err_handler().
8940 	 */
8941 	ufshcd_link_recovery(hba);
8942 	dev_info(hba->dev, "%s() finished; outstanding_tasks = %#lx.\n",
8943 		 __func__, hba->outstanding_tasks);
8944 
8945 	return hba->outstanding_reqs ? SCSI_EH_RESET_TIMER : SCSI_EH_DONE;
8946 }
8947 
8948 static const struct attribute_group *ufshcd_driver_groups[] = {
8949 	&ufs_sysfs_unit_descriptor_group,
8950 	&ufs_sysfs_lun_attributes_group,
8951 	NULL,
8952 };
8953 
8954 static struct ufs_hba_variant_params ufs_hba_vps = {
8955 	.hba_enable_delay_us		= 1000,
8956 	.wb_flush_threshold		= UFS_WB_BUF_REMAIN_PERCENT(40),
8957 	.devfreq_profile.polling_ms	= 100,
8958 	.devfreq_profile.target		= ufshcd_devfreq_target,
8959 	.devfreq_profile.get_dev_status	= ufshcd_devfreq_get_dev_status,
8960 	.ondemand_data.upthreshold	= 70,
8961 	.ondemand_data.downdifferential	= 5,
8962 };
8963 
8964 static const struct scsi_host_template ufshcd_driver_template = {
8965 	.module			= THIS_MODULE,
8966 	.name			= UFSHCD,
8967 	.proc_name		= UFSHCD,
8968 	.map_queues		= ufshcd_map_queues,
8969 	.queuecommand		= ufshcd_queuecommand,
8970 	.mq_poll		= ufshcd_poll,
8971 	.slave_alloc		= ufshcd_slave_alloc,
8972 	.device_configure	= ufshcd_device_configure,
8973 	.slave_destroy		= ufshcd_slave_destroy,
8974 	.change_queue_depth	= ufshcd_change_queue_depth,
8975 	.eh_abort_handler	= ufshcd_abort,
8976 	.eh_device_reset_handler = ufshcd_eh_device_reset_handler,
8977 	.eh_host_reset_handler   = ufshcd_eh_host_reset_handler,
8978 	.eh_timed_out		= ufshcd_eh_timed_out,
8979 	.this_id		= -1,
8980 	.sg_tablesize		= SG_ALL,
8981 	.max_segment_size	= PRDT_DATA_BYTE_COUNT_MAX,
8982 	.max_sectors		= SZ_1M / SECTOR_SIZE,
8983 	.max_host_blocked	= 1,
8984 	.track_queue_depth	= 1,
8985 	.skip_settle_delay	= 1,
8986 	.sdev_groups		= ufshcd_driver_groups,
8987 };
8988 
8989 static int ufshcd_config_vreg_load(struct device *dev, struct ufs_vreg *vreg,
8990 				   int ua)
8991 {
8992 	int ret;
8993 
8994 	if (!vreg)
8995 		return 0;
8996 
8997 	/*
8998 	 * "set_load" operation shall be required on those regulators
8999 	 * which specifically configured current limitation. Otherwise
9000 	 * zero max_uA may cause unexpected behavior when regulator is
9001 	 * enabled or set as high power mode.
9002 	 */
9003 	if (!vreg->max_uA)
9004 		return 0;
9005 
9006 	ret = regulator_set_load(vreg->reg, ua);
9007 	if (ret < 0) {
9008 		dev_err(dev, "%s: %s set load (ua=%d) failed, err=%d\n",
9009 				__func__, vreg->name, ua, ret);
9010 	}
9011 
9012 	return ret;
9013 }
9014 
9015 static inline int ufshcd_config_vreg_lpm(struct ufs_hba *hba,
9016 					 struct ufs_vreg *vreg)
9017 {
9018 	return ufshcd_config_vreg_load(hba->dev, vreg, UFS_VREG_LPM_LOAD_UA);
9019 }
9020 
9021 static inline int ufshcd_config_vreg_hpm(struct ufs_hba *hba,
9022 					 struct ufs_vreg *vreg)
9023 {
9024 	if (!vreg)
9025 		return 0;
9026 
9027 	return ufshcd_config_vreg_load(hba->dev, vreg, vreg->max_uA);
9028 }
9029 
9030 static int ufshcd_config_vreg(struct device *dev,
9031 		struct ufs_vreg *vreg, bool on)
9032 {
9033 	if (regulator_count_voltages(vreg->reg) <= 0)
9034 		return 0;
9035 
9036 	return ufshcd_config_vreg_load(dev, vreg, on ? vreg->max_uA : 0);
9037 }
9038 
9039 static int ufshcd_enable_vreg(struct device *dev, struct ufs_vreg *vreg)
9040 {
9041 	int ret = 0;
9042 
9043 	if (!vreg || vreg->enabled)
9044 		goto out;
9045 
9046 	ret = ufshcd_config_vreg(dev, vreg, true);
9047 	if (!ret)
9048 		ret = regulator_enable(vreg->reg);
9049 
9050 	if (!ret)
9051 		vreg->enabled = true;
9052 	else
9053 		dev_err(dev, "%s: %s enable failed, err=%d\n",
9054 				__func__, vreg->name, ret);
9055 out:
9056 	return ret;
9057 }
9058 
9059 static int ufshcd_disable_vreg(struct device *dev, struct ufs_vreg *vreg)
9060 {
9061 	int ret = 0;
9062 
9063 	if (!vreg || !vreg->enabled || vreg->always_on)
9064 		goto out;
9065 
9066 	ret = regulator_disable(vreg->reg);
9067 
9068 	if (!ret) {
9069 		/* ignore errors on applying disable config */
9070 		ufshcd_config_vreg(dev, vreg, false);
9071 		vreg->enabled = false;
9072 	} else {
9073 		dev_err(dev, "%s: %s disable failed, err=%d\n",
9074 				__func__, vreg->name, ret);
9075 	}
9076 out:
9077 	return ret;
9078 }
9079 
9080 static int ufshcd_setup_vreg(struct ufs_hba *hba, bool on)
9081 {
9082 	int ret = 0;
9083 	struct device *dev = hba->dev;
9084 	struct ufs_vreg_info *info = &hba->vreg_info;
9085 
9086 	ret = ufshcd_toggle_vreg(dev, info->vcc, on);
9087 	if (ret)
9088 		goto out;
9089 
9090 	ret = ufshcd_toggle_vreg(dev, info->vccq, on);
9091 	if (ret)
9092 		goto out;
9093 
9094 	ret = ufshcd_toggle_vreg(dev, info->vccq2, on);
9095 
9096 out:
9097 	if (ret) {
9098 		ufshcd_toggle_vreg(dev, info->vccq2, false);
9099 		ufshcd_toggle_vreg(dev, info->vccq, false);
9100 		ufshcd_toggle_vreg(dev, info->vcc, false);
9101 	}
9102 	return ret;
9103 }
9104 
9105 static int ufshcd_setup_hba_vreg(struct ufs_hba *hba, bool on)
9106 {
9107 	struct ufs_vreg_info *info = &hba->vreg_info;
9108 
9109 	return ufshcd_toggle_vreg(hba->dev, info->vdd_hba, on);
9110 }
9111 
9112 int ufshcd_get_vreg(struct device *dev, struct ufs_vreg *vreg)
9113 {
9114 	int ret = 0;
9115 
9116 	if (!vreg)
9117 		goto out;
9118 
9119 	vreg->reg = devm_regulator_get(dev, vreg->name);
9120 	if (IS_ERR(vreg->reg)) {
9121 		ret = PTR_ERR(vreg->reg);
9122 		dev_err(dev, "%s: %s get failed, err=%d\n",
9123 				__func__, vreg->name, ret);
9124 	}
9125 out:
9126 	return ret;
9127 }
9128 EXPORT_SYMBOL_GPL(ufshcd_get_vreg);
9129 
9130 static int ufshcd_init_vreg(struct ufs_hba *hba)
9131 {
9132 	int ret = 0;
9133 	struct device *dev = hba->dev;
9134 	struct ufs_vreg_info *info = &hba->vreg_info;
9135 
9136 	ret = ufshcd_get_vreg(dev, info->vcc);
9137 	if (ret)
9138 		goto out;
9139 
9140 	ret = ufshcd_get_vreg(dev, info->vccq);
9141 	if (!ret)
9142 		ret = ufshcd_get_vreg(dev, info->vccq2);
9143 out:
9144 	return ret;
9145 }
9146 
9147 static int ufshcd_init_hba_vreg(struct ufs_hba *hba)
9148 {
9149 	struct ufs_vreg_info *info = &hba->vreg_info;
9150 
9151 	return ufshcd_get_vreg(hba->dev, info->vdd_hba);
9152 }
9153 
9154 static int ufshcd_setup_clocks(struct ufs_hba *hba, bool on)
9155 {
9156 	int ret = 0;
9157 	struct ufs_clk_info *clki;
9158 	struct list_head *head = &hba->clk_list_head;
9159 	unsigned long flags;
9160 	ktime_t start = ktime_get();
9161 	bool clk_state_changed = false;
9162 
9163 	if (list_empty(head))
9164 		goto out;
9165 
9166 	ret = ufshcd_vops_setup_clocks(hba, on, PRE_CHANGE);
9167 	if (ret)
9168 		return ret;
9169 
9170 	list_for_each_entry(clki, head, list) {
9171 		if (!IS_ERR_OR_NULL(clki->clk)) {
9172 			/*
9173 			 * Don't disable clocks which are needed
9174 			 * to keep the link active.
9175 			 */
9176 			if (ufshcd_is_link_active(hba) &&
9177 			    clki->keep_link_active)
9178 				continue;
9179 
9180 			clk_state_changed = on ^ clki->enabled;
9181 			if (on && !clki->enabled) {
9182 				ret = clk_prepare_enable(clki->clk);
9183 				if (ret) {
9184 					dev_err(hba->dev, "%s: %s prepare enable failed, %d\n",
9185 						__func__, clki->name, ret);
9186 					goto out;
9187 				}
9188 			} else if (!on && clki->enabled) {
9189 				clk_disable_unprepare(clki->clk);
9190 			}
9191 			clki->enabled = on;
9192 			dev_dbg(hba->dev, "%s: clk: %s %sabled\n", __func__,
9193 					clki->name, on ? "en" : "dis");
9194 		}
9195 	}
9196 
9197 	ret = ufshcd_vops_setup_clocks(hba, on, POST_CHANGE);
9198 	if (ret)
9199 		return ret;
9200 
9201 	if (!ufshcd_is_clkscaling_supported(hba))
9202 		ufshcd_pm_qos_update(hba, on);
9203 out:
9204 	if (ret) {
9205 		list_for_each_entry(clki, head, list) {
9206 			if (!IS_ERR_OR_NULL(clki->clk) && clki->enabled)
9207 				clk_disable_unprepare(clki->clk);
9208 		}
9209 	} else if (!ret && on) {
9210 		spin_lock_irqsave(hba->host->host_lock, flags);
9211 		hba->clk_gating.state = CLKS_ON;
9212 		trace_ufshcd_clk_gating(dev_name(hba->dev),
9213 					hba->clk_gating.state);
9214 		spin_unlock_irqrestore(hba->host->host_lock, flags);
9215 	}
9216 
9217 	if (clk_state_changed)
9218 		trace_ufshcd_profile_clk_gating(dev_name(hba->dev),
9219 			(on ? "on" : "off"),
9220 			ktime_to_us(ktime_sub(ktime_get(), start)), ret);
9221 	return ret;
9222 }
9223 
9224 static enum ufs_ref_clk_freq ufshcd_parse_ref_clk_property(struct ufs_hba *hba)
9225 {
9226 	u32 freq;
9227 	int ret = device_property_read_u32(hba->dev, "ref-clk-freq", &freq);
9228 
9229 	if (ret) {
9230 		dev_dbg(hba->dev, "Cannot query 'ref-clk-freq' property = %d", ret);
9231 		return REF_CLK_FREQ_INVAL;
9232 	}
9233 
9234 	return ufs_get_bref_clk_from_hz(freq);
9235 }
9236 
9237 static int ufshcd_init_clocks(struct ufs_hba *hba)
9238 {
9239 	int ret = 0;
9240 	struct ufs_clk_info *clki;
9241 	struct device *dev = hba->dev;
9242 	struct list_head *head = &hba->clk_list_head;
9243 
9244 	if (list_empty(head))
9245 		goto out;
9246 
9247 	list_for_each_entry(clki, head, list) {
9248 		if (!clki->name)
9249 			continue;
9250 
9251 		clki->clk = devm_clk_get(dev, clki->name);
9252 		if (IS_ERR(clki->clk)) {
9253 			ret = PTR_ERR(clki->clk);
9254 			dev_err(dev, "%s: %s clk get failed, %d\n",
9255 					__func__, clki->name, ret);
9256 			goto out;
9257 		}
9258 
9259 		/*
9260 		 * Parse device ref clk freq as per device tree "ref_clk".
9261 		 * Default dev_ref_clk_freq is set to REF_CLK_FREQ_INVAL
9262 		 * in ufshcd_alloc_host().
9263 		 */
9264 		if (!strcmp(clki->name, "ref_clk"))
9265 			ufshcd_parse_dev_ref_clk_freq(hba, clki->clk);
9266 
9267 		if (clki->max_freq) {
9268 			ret = clk_set_rate(clki->clk, clki->max_freq);
9269 			if (ret) {
9270 				dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
9271 					__func__, clki->name,
9272 					clki->max_freq, ret);
9273 				goto out;
9274 			}
9275 			clki->curr_freq = clki->max_freq;
9276 		}
9277 		dev_dbg(dev, "%s: clk: %s, rate: %lu\n", __func__,
9278 				clki->name, clk_get_rate(clki->clk));
9279 	}
9280 
9281 	/* Set Max. frequency for all clocks */
9282 	if (hba->use_pm_opp) {
9283 		ret = ufshcd_opp_set_rate(hba, ULONG_MAX);
9284 		if (ret) {
9285 			dev_err(hba->dev, "%s: failed to set OPP: %d", __func__,
9286 				ret);
9287 			goto out;
9288 		}
9289 	}
9290 
9291 out:
9292 	return ret;
9293 }
9294 
9295 static int ufshcd_variant_hba_init(struct ufs_hba *hba)
9296 {
9297 	int err = 0;
9298 
9299 	if (!hba->vops)
9300 		goto out;
9301 
9302 	err = ufshcd_vops_init(hba);
9303 	if (err)
9304 		dev_err_probe(hba->dev, err,
9305 			      "%s: variant %s init failed with err %d\n",
9306 			      __func__, ufshcd_get_var_name(hba), err);
9307 out:
9308 	return err;
9309 }
9310 
9311 static void ufshcd_variant_hba_exit(struct ufs_hba *hba)
9312 {
9313 	if (!hba->vops)
9314 		return;
9315 
9316 	ufshcd_vops_exit(hba);
9317 }
9318 
9319 static int ufshcd_hba_init(struct ufs_hba *hba)
9320 {
9321 	int err;
9322 
9323 	/*
9324 	 * Handle host controller power separately from the UFS device power
9325 	 * rails as it will help controlling the UFS host controller power
9326 	 * collapse easily which is different than UFS device power collapse.
9327 	 * Also, enable the host controller power before we go ahead with rest
9328 	 * of the initialization here.
9329 	 */
9330 	err = ufshcd_init_hba_vreg(hba);
9331 	if (err)
9332 		goto out;
9333 
9334 	err = ufshcd_setup_hba_vreg(hba, true);
9335 	if (err)
9336 		goto out;
9337 
9338 	err = ufshcd_init_clocks(hba);
9339 	if (err)
9340 		goto out_disable_hba_vreg;
9341 
9342 	if (hba->dev_ref_clk_freq == REF_CLK_FREQ_INVAL)
9343 		hba->dev_ref_clk_freq = ufshcd_parse_ref_clk_property(hba);
9344 
9345 	err = ufshcd_setup_clocks(hba, true);
9346 	if (err)
9347 		goto out_disable_hba_vreg;
9348 
9349 	err = ufshcd_init_vreg(hba);
9350 	if (err)
9351 		goto out_disable_clks;
9352 
9353 	err = ufshcd_setup_vreg(hba, true);
9354 	if (err)
9355 		goto out_disable_clks;
9356 
9357 	err = ufshcd_variant_hba_init(hba);
9358 	if (err)
9359 		goto out_disable_vreg;
9360 
9361 	ufs_debugfs_hba_init(hba);
9362 	ufs_fault_inject_hba_init(hba);
9363 
9364 	hba->is_powered = true;
9365 	goto out;
9366 
9367 out_disable_vreg:
9368 	ufshcd_setup_vreg(hba, false);
9369 out_disable_clks:
9370 	ufshcd_setup_clocks(hba, false);
9371 out_disable_hba_vreg:
9372 	ufshcd_setup_hba_vreg(hba, false);
9373 out:
9374 	return err;
9375 }
9376 
9377 static void ufshcd_hba_exit(struct ufs_hba *hba)
9378 {
9379 	if (hba->is_powered) {
9380 		ufshcd_pm_qos_exit(hba);
9381 		ufshcd_exit_clk_scaling(hba);
9382 		ufshcd_exit_clk_gating(hba);
9383 		if (hba->eh_wq)
9384 			destroy_workqueue(hba->eh_wq);
9385 		ufs_debugfs_hba_exit(hba);
9386 		ufshcd_variant_hba_exit(hba);
9387 		ufshcd_setup_vreg(hba, false);
9388 		ufshcd_setup_clocks(hba, false);
9389 		ufshcd_setup_hba_vreg(hba, false);
9390 		hba->is_powered = false;
9391 		ufs_put_device_desc(hba);
9392 	}
9393 }
9394 
9395 static int ufshcd_execute_start_stop(struct scsi_device *sdev,
9396 				     enum ufs_dev_pwr_mode pwr_mode,
9397 				     struct scsi_sense_hdr *sshdr)
9398 {
9399 	const unsigned char cdb[6] = { START_STOP, 0, 0, 0, pwr_mode << 4, 0 };
9400 	struct scsi_failure failure_defs[] = {
9401 		{
9402 			.allowed = 2,
9403 			.result = SCMD_FAILURE_RESULT_ANY,
9404 		},
9405 	};
9406 	struct scsi_failures failures = {
9407 		.failure_definitions = failure_defs,
9408 	};
9409 	const struct scsi_exec_args args = {
9410 		.failures = &failures,
9411 		.sshdr = sshdr,
9412 		.req_flags = BLK_MQ_REQ_PM,
9413 		.scmd_flags = SCMD_FAIL_IF_RECOVERING,
9414 	};
9415 
9416 	return scsi_execute_cmd(sdev, cdb, REQ_OP_DRV_IN, /*buffer=*/NULL,
9417 			/*bufflen=*/0, /*timeout=*/10 * HZ, /*retries=*/0,
9418 			&args);
9419 }
9420 
9421 /**
9422  * ufshcd_set_dev_pwr_mode - sends START STOP UNIT command to set device
9423  *			     power mode
9424  * @hba: per adapter instance
9425  * @pwr_mode: device power mode to set
9426  *
9427  * Return: 0 if requested power mode is set successfully;
9428  *         < 0 if failed to set the requested power mode.
9429  */
9430 static int ufshcd_set_dev_pwr_mode(struct ufs_hba *hba,
9431 				     enum ufs_dev_pwr_mode pwr_mode)
9432 {
9433 	struct scsi_sense_hdr sshdr;
9434 	struct scsi_device *sdp;
9435 	unsigned long flags;
9436 	int ret;
9437 
9438 	spin_lock_irqsave(hba->host->host_lock, flags);
9439 	sdp = hba->ufs_device_wlun;
9440 	if (sdp && scsi_device_online(sdp))
9441 		ret = scsi_device_get(sdp);
9442 	else
9443 		ret = -ENODEV;
9444 	spin_unlock_irqrestore(hba->host->host_lock, flags);
9445 
9446 	if (ret)
9447 		return ret;
9448 
9449 	/*
9450 	 * If scsi commands fail, the scsi mid-layer schedules scsi error-
9451 	 * handling, which would wait for host to be resumed. Since we know
9452 	 * we are functional while we are here, skip host resume in error
9453 	 * handling context.
9454 	 */
9455 	hba->host->eh_noresume = 1;
9456 
9457 	/*
9458 	 * Current function would be generally called from the power management
9459 	 * callbacks hence set the RQF_PM flag so that it doesn't resume the
9460 	 * already suspended childs.
9461 	 */
9462 	ret = ufshcd_execute_start_stop(sdp, pwr_mode, &sshdr);
9463 	if (ret) {
9464 		sdev_printk(KERN_WARNING, sdp,
9465 			    "START_STOP failed for power mode: %d, result %x\n",
9466 			    pwr_mode, ret);
9467 		if (ret > 0) {
9468 			if (scsi_sense_valid(&sshdr))
9469 				scsi_print_sense_hdr(sdp, NULL, &sshdr);
9470 			ret = -EIO;
9471 		}
9472 	} else {
9473 		hba->curr_dev_pwr_mode = pwr_mode;
9474 	}
9475 
9476 	scsi_device_put(sdp);
9477 	hba->host->eh_noresume = 0;
9478 	return ret;
9479 }
9480 
9481 static int ufshcd_link_state_transition(struct ufs_hba *hba,
9482 					enum uic_link_state req_link_state,
9483 					bool check_for_bkops)
9484 {
9485 	int ret = 0;
9486 
9487 	if (req_link_state == hba->uic_link_state)
9488 		return 0;
9489 
9490 	if (req_link_state == UIC_LINK_HIBERN8_STATE) {
9491 		ret = ufshcd_uic_hibern8_enter(hba);
9492 		if (!ret) {
9493 			ufshcd_set_link_hibern8(hba);
9494 		} else {
9495 			dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
9496 					__func__, ret);
9497 			goto out;
9498 		}
9499 	}
9500 	/*
9501 	 * If autobkops is enabled, link can't be turned off because
9502 	 * turning off the link would also turn off the device, except in the
9503 	 * case of DeepSleep where the device is expected to remain powered.
9504 	 */
9505 	else if ((req_link_state == UIC_LINK_OFF_STATE) &&
9506 		 (!check_for_bkops || !hba->auto_bkops_enabled)) {
9507 		/*
9508 		 * Let's make sure that link is in low power mode, we are doing
9509 		 * this currently by putting the link in Hibern8. Otherway to
9510 		 * put the link in low power mode is to send the DME end point
9511 		 * to device and then send the DME reset command to local
9512 		 * unipro. But putting the link in hibern8 is much faster.
9513 		 *
9514 		 * Note also that putting the link in Hibern8 is a requirement
9515 		 * for entering DeepSleep.
9516 		 */
9517 		ret = ufshcd_uic_hibern8_enter(hba);
9518 		if (ret) {
9519 			dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
9520 					__func__, ret);
9521 			goto out;
9522 		}
9523 		/*
9524 		 * Change controller state to "reset state" which
9525 		 * should also put the link in off/reset state
9526 		 */
9527 		ufshcd_hba_stop(hba);
9528 		/*
9529 		 * TODO: Check if we need any delay to make sure that
9530 		 * controller is reset
9531 		 */
9532 		ufshcd_set_link_off(hba);
9533 	}
9534 
9535 out:
9536 	return ret;
9537 }
9538 
9539 static void ufshcd_vreg_set_lpm(struct ufs_hba *hba)
9540 {
9541 	bool vcc_off = false;
9542 
9543 	/*
9544 	 * It seems some UFS devices may keep drawing more than sleep current
9545 	 * (atleast for 500us) from UFS rails (especially from VCCQ rail).
9546 	 * To avoid this situation, add 2ms delay before putting these UFS
9547 	 * rails in LPM mode.
9548 	 */
9549 	if (!ufshcd_is_link_active(hba) &&
9550 	    hba->dev_quirks & UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM)
9551 		usleep_range(2000, 2100);
9552 
9553 	/*
9554 	 * If UFS device is either in UFS_Sleep turn off VCC rail to save some
9555 	 * power.
9556 	 *
9557 	 * If UFS device and link is in OFF state, all power supplies (VCC,
9558 	 * VCCQ, VCCQ2) can be turned off if power on write protect is not
9559 	 * required. If UFS link is inactive (Hibern8 or OFF state) and device
9560 	 * is in sleep state, put VCCQ & VCCQ2 rails in LPM mode.
9561 	 *
9562 	 * Ignore the error returned by ufshcd_toggle_vreg() as device is anyway
9563 	 * in low power state which would save some power.
9564 	 *
9565 	 * If Write Booster is enabled and the device needs to flush the WB
9566 	 * buffer OR if bkops status is urgent for WB, keep Vcc on.
9567 	 */
9568 	if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba) &&
9569 	    !hba->dev_info.is_lu_power_on_wp) {
9570 		ufshcd_setup_vreg(hba, false);
9571 		vcc_off = true;
9572 	} else if (!ufshcd_is_ufs_dev_active(hba)) {
9573 		ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, false);
9574 		vcc_off = true;
9575 		if (ufshcd_is_link_hibern8(hba) || ufshcd_is_link_off(hba)) {
9576 			ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq);
9577 			ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq2);
9578 		}
9579 	}
9580 
9581 	/*
9582 	 * Some UFS devices require delay after VCC power rail is turned-off.
9583 	 */
9584 	if (vcc_off && hba->vreg_info.vcc &&
9585 		hba->dev_quirks & UFS_DEVICE_QUIRK_DELAY_AFTER_LPM)
9586 		usleep_range(5000, 5100);
9587 }
9588 
9589 #ifdef CONFIG_PM
9590 static int ufshcd_vreg_set_hpm(struct ufs_hba *hba)
9591 {
9592 	int ret = 0;
9593 
9594 	if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba) &&
9595 	    !hba->dev_info.is_lu_power_on_wp) {
9596 		ret = ufshcd_setup_vreg(hba, true);
9597 	} else if (!ufshcd_is_ufs_dev_active(hba)) {
9598 		if (!ufshcd_is_link_active(hba)) {
9599 			ret = ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq);
9600 			if (ret)
9601 				goto vcc_disable;
9602 			ret = ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq2);
9603 			if (ret)
9604 				goto vccq_lpm;
9605 		}
9606 		ret = ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, true);
9607 	}
9608 	goto out;
9609 
9610 vccq_lpm:
9611 	ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq);
9612 vcc_disable:
9613 	ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, false);
9614 out:
9615 	return ret;
9616 }
9617 #endif /* CONFIG_PM */
9618 
9619 static void ufshcd_hba_vreg_set_lpm(struct ufs_hba *hba)
9620 {
9621 	if (ufshcd_is_link_off(hba) || ufshcd_can_aggressive_pc(hba))
9622 		ufshcd_setup_hba_vreg(hba, false);
9623 }
9624 
9625 static void ufshcd_hba_vreg_set_hpm(struct ufs_hba *hba)
9626 {
9627 	if (ufshcd_is_link_off(hba) || ufshcd_can_aggressive_pc(hba))
9628 		ufshcd_setup_hba_vreg(hba, true);
9629 }
9630 
9631 static int __ufshcd_wl_suspend(struct ufs_hba *hba, enum ufs_pm_op pm_op)
9632 {
9633 	int ret = 0;
9634 	bool check_for_bkops;
9635 	enum ufs_pm_level pm_lvl;
9636 	enum ufs_dev_pwr_mode req_dev_pwr_mode;
9637 	enum uic_link_state req_link_state;
9638 
9639 	hba->pm_op_in_progress = true;
9640 	if (pm_op != UFS_SHUTDOWN_PM) {
9641 		pm_lvl = pm_op == UFS_RUNTIME_PM ?
9642 			 hba->rpm_lvl : hba->spm_lvl;
9643 		req_dev_pwr_mode = ufs_get_pm_lvl_to_dev_pwr_mode(pm_lvl);
9644 		req_link_state = ufs_get_pm_lvl_to_link_pwr_state(pm_lvl);
9645 	} else {
9646 		req_dev_pwr_mode = UFS_POWERDOWN_PWR_MODE;
9647 		req_link_state = UIC_LINK_OFF_STATE;
9648 	}
9649 
9650 	/*
9651 	 * If we can't transition into any of the low power modes
9652 	 * just gate the clocks.
9653 	 */
9654 	ufshcd_hold(hba);
9655 	hba->clk_gating.is_suspended = true;
9656 
9657 	if (ufshcd_is_clkscaling_supported(hba))
9658 		ufshcd_clk_scaling_suspend(hba, true);
9659 
9660 	if (req_dev_pwr_mode == UFS_ACTIVE_PWR_MODE &&
9661 			req_link_state == UIC_LINK_ACTIVE_STATE) {
9662 		goto vops_suspend;
9663 	}
9664 
9665 	if ((req_dev_pwr_mode == hba->curr_dev_pwr_mode) &&
9666 	    (req_link_state == hba->uic_link_state))
9667 		goto enable_scaling;
9668 
9669 	/* UFS device & link must be active before we enter in this function */
9670 	if (!ufshcd_is_ufs_dev_active(hba) || !ufshcd_is_link_active(hba)) {
9671 		/*  Wait err handler finish or trigger err recovery */
9672 		if (!ufshcd_eh_in_progress(hba))
9673 			ufshcd_force_error_recovery(hba);
9674 		ret = -EBUSY;
9675 		goto enable_scaling;
9676 	}
9677 
9678 	if (pm_op == UFS_RUNTIME_PM) {
9679 		if (ufshcd_can_autobkops_during_suspend(hba)) {
9680 			/*
9681 			 * The device is idle with no requests in the queue,
9682 			 * allow background operations if bkops status shows
9683 			 * that performance might be impacted.
9684 			 */
9685 			ret = ufshcd_bkops_ctrl(hba);
9686 			if (ret) {
9687 				/*
9688 				 * If return err in suspend flow, IO will hang.
9689 				 * Trigger error handler and break suspend for
9690 				 * error recovery.
9691 				 */
9692 				ufshcd_force_error_recovery(hba);
9693 				ret = -EBUSY;
9694 				goto enable_scaling;
9695 			}
9696 		} else {
9697 			/* make sure that auto bkops is disabled */
9698 			ufshcd_disable_auto_bkops(hba);
9699 		}
9700 		/*
9701 		 * If device needs to do BKOP or WB buffer flush during
9702 		 * Hibern8, keep device power mode as "active power mode"
9703 		 * and VCC supply.
9704 		 */
9705 		hba->dev_info.b_rpm_dev_flush_capable =
9706 			hba->auto_bkops_enabled ||
9707 			(((req_link_state == UIC_LINK_HIBERN8_STATE) ||
9708 			((req_link_state == UIC_LINK_ACTIVE_STATE) &&
9709 			ufshcd_is_auto_hibern8_enabled(hba))) &&
9710 			ufshcd_wb_need_flush(hba));
9711 	}
9712 
9713 	flush_work(&hba->eeh_work);
9714 
9715 	ret = ufshcd_vops_suspend(hba, pm_op, PRE_CHANGE);
9716 	if (ret)
9717 		goto enable_scaling;
9718 
9719 	if (req_dev_pwr_mode != hba->curr_dev_pwr_mode) {
9720 		if (pm_op != UFS_RUNTIME_PM)
9721 			/* ensure that bkops is disabled */
9722 			ufshcd_disable_auto_bkops(hba);
9723 
9724 		if (!hba->dev_info.b_rpm_dev_flush_capable) {
9725 			ret = ufshcd_set_dev_pwr_mode(hba, req_dev_pwr_mode);
9726 			if (ret && pm_op != UFS_SHUTDOWN_PM) {
9727 				/*
9728 				 * If return err in suspend flow, IO will hang.
9729 				 * Trigger error handler and break suspend for
9730 				 * error recovery.
9731 				 */
9732 				ufshcd_force_error_recovery(hba);
9733 				ret = -EBUSY;
9734 			}
9735 			if (ret)
9736 				goto enable_scaling;
9737 		}
9738 	}
9739 
9740 	/*
9741 	 * In the case of DeepSleep, the device is expected to remain powered
9742 	 * with the link off, so do not check for bkops.
9743 	 */
9744 	check_for_bkops = !ufshcd_is_ufs_dev_deepsleep(hba);
9745 	ret = ufshcd_link_state_transition(hba, req_link_state, check_for_bkops);
9746 	if (ret && pm_op != UFS_SHUTDOWN_PM) {
9747 		/*
9748 		 * If return err in suspend flow, IO will hang.
9749 		 * Trigger error handler and break suspend for
9750 		 * error recovery.
9751 		 */
9752 		ufshcd_force_error_recovery(hba);
9753 		ret = -EBUSY;
9754 	}
9755 	if (ret)
9756 		goto set_dev_active;
9757 
9758 vops_suspend:
9759 	/*
9760 	 * Call vendor specific suspend callback. As these callbacks may access
9761 	 * vendor specific host controller register space call them before the
9762 	 * host clocks are ON.
9763 	 */
9764 	ret = ufshcd_vops_suspend(hba, pm_op, POST_CHANGE);
9765 	if (ret)
9766 		goto set_link_active;
9767 
9768 	cancel_delayed_work_sync(&hba->ufs_rtc_update_work);
9769 	goto out;
9770 
9771 set_link_active:
9772 	/*
9773 	 * Device hardware reset is required to exit DeepSleep. Also, for
9774 	 * DeepSleep, the link is off so host reset and restore will be done
9775 	 * further below.
9776 	 */
9777 	if (ufshcd_is_ufs_dev_deepsleep(hba)) {
9778 		ufshcd_device_reset(hba);
9779 		WARN_ON(!ufshcd_is_link_off(hba));
9780 	}
9781 	if (ufshcd_is_link_hibern8(hba) && !ufshcd_uic_hibern8_exit(hba))
9782 		ufshcd_set_link_active(hba);
9783 	else if (ufshcd_is_link_off(hba))
9784 		ufshcd_host_reset_and_restore(hba);
9785 set_dev_active:
9786 	/* Can also get here needing to exit DeepSleep */
9787 	if (ufshcd_is_ufs_dev_deepsleep(hba)) {
9788 		ufshcd_device_reset(hba);
9789 		ufshcd_host_reset_and_restore(hba);
9790 	}
9791 	if (!ufshcd_set_dev_pwr_mode(hba, UFS_ACTIVE_PWR_MODE))
9792 		ufshcd_disable_auto_bkops(hba);
9793 enable_scaling:
9794 	if (ufshcd_is_clkscaling_supported(hba))
9795 		ufshcd_clk_scaling_suspend(hba, false);
9796 
9797 	hba->dev_info.b_rpm_dev_flush_capable = false;
9798 out:
9799 	if (hba->dev_info.b_rpm_dev_flush_capable) {
9800 		schedule_delayed_work(&hba->rpm_dev_flush_recheck_work,
9801 			msecs_to_jiffies(RPM_DEV_FLUSH_RECHECK_WORK_DELAY_MS));
9802 	}
9803 
9804 	if (ret) {
9805 		ufshcd_update_evt_hist(hba, UFS_EVT_WL_SUSP_ERR, (u32)ret);
9806 		hba->clk_gating.is_suspended = false;
9807 		ufshcd_release(hba);
9808 	}
9809 	hba->pm_op_in_progress = false;
9810 	return ret;
9811 }
9812 
9813 #ifdef CONFIG_PM
9814 static int __ufshcd_wl_resume(struct ufs_hba *hba, enum ufs_pm_op pm_op)
9815 {
9816 	int ret;
9817 	enum uic_link_state old_link_state = hba->uic_link_state;
9818 
9819 	hba->pm_op_in_progress = true;
9820 
9821 	/*
9822 	 * Call vendor specific resume callback. As these callbacks may access
9823 	 * vendor specific host controller register space call them when the
9824 	 * host clocks are ON.
9825 	 */
9826 	ret = ufshcd_vops_resume(hba, pm_op);
9827 	if (ret)
9828 		goto out;
9829 
9830 	/* For DeepSleep, the only supported option is to have the link off */
9831 	WARN_ON(ufshcd_is_ufs_dev_deepsleep(hba) && !ufshcd_is_link_off(hba));
9832 
9833 	if (ufshcd_is_link_hibern8(hba)) {
9834 		ret = ufshcd_uic_hibern8_exit(hba);
9835 		if (!ret) {
9836 			ufshcd_set_link_active(hba);
9837 		} else {
9838 			dev_err(hba->dev, "%s: hibern8 exit failed %d\n",
9839 					__func__, ret);
9840 			goto vendor_suspend;
9841 		}
9842 	} else if (ufshcd_is_link_off(hba)) {
9843 		/*
9844 		 * A full initialization of the host and the device is
9845 		 * required since the link was put to off during suspend.
9846 		 * Note, in the case of DeepSleep, the device will exit
9847 		 * DeepSleep due to device reset.
9848 		 */
9849 		ret = ufshcd_reset_and_restore(hba);
9850 		/*
9851 		 * ufshcd_reset_and_restore() should have already
9852 		 * set the link state as active
9853 		 */
9854 		if (ret || !ufshcd_is_link_active(hba))
9855 			goto vendor_suspend;
9856 	}
9857 
9858 	if (!ufshcd_is_ufs_dev_active(hba)) {
9859 		ret = ufshcd_set_dev_pwr_mode(hba, UFS_ACTIVE_PWR_MODE);
9860 		if (ret)
9861 			goto set_old_link_state;
9862 		ufshcd_set_timestamp_attr(hba);
9863 		schedule_delayed_work(&hba->ufs_rtc_update_work,
9864 				      msecs_to_jiffies(UFS_RTC_UPDATE_INTERVAL_MS));
9865 	}
9866 
9867 	if (ufshcd_keep_autobkops_enabled_except_suspend(hba))
9868 		ufshcd_enable_auto_bkops(hba);
9869 	else
9870 		/*
9871 		 * If BKOPs operations are urgently needed at this moment then
9872 		 * keep auto-bkops enabled or else disable it.
9873 		 */
9874 		ufshcd_bkops_ctrl(hba);
9875 
9876 	if (hba->ee_usr_mask)
9877 		ufshcd_write_ee_control(hba);
9878 
9879 	if (ufshcd_is_clkscaling_supported(hba))
9880 		ufshcd_clk_scaling_suspend(hba, false);
9881 
9882 	if (hba->dev_info.b_rpm_dev_flush_capable) {
9883 		hba->dev_info.b_rpm_dev_flush_capable = false;
9884 		cancel_delayed_work(&hba->rpm_dev_flush_recheck_work);
9885 	}
9886 
9887 	ufshcd_configure_auto_hibern8(hba);
9888 
9889 	goto out;
9890 
9891 set_old_link_state:
9892 	ufshcd_link_state_transition(hba, old_link_state, 0);
9893 vendor_suspend:
9894 	ufshcd_vops_suspend(hba, pm_op, PRE_CHANGE);
9895 	ufshcd_vops_suspend(hba, pm_op, POST_CHANGE);
9896 out:
9897 	if (ret)
9898 		ufshcd_update_evt_hist(hba, UFS_EVT_WL_RES_ERR, (u32)ret);
9899 	hba->clk_gating.is_suspended = false;
9900 	ufshcd_release(hba);
9901 	hba->pm_op_in_progress = false;
9902 	return ret;
9903 }
9904 
9905 static int ufshcd_wl_runtime_suspend(struct device *dev)
9906 {
9907 	struct scsi_device *sdev = to_scsi_device(dev);
9908 	struct ufs_hba *hba;
9909 	int ret;
9910 	ktime_t start = ktime_get();
9911 
9912 	hba = shost_priv(sdev->host);
9913 
9914 	ret = __ufshcd_wl_suspend(hba, UFS_RUNTIME_PM);
9915 	if (ret)
9916 		dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
9917 
9918 	trace_ufshcd_wl_runtime_suspend(dev_name(dev), ret,
9919 		ktime_to_us(ktime_sub(ktime_get(), start)),
9920 		hba->curr_dev_pwr_mode, hba->uic_link_state);
9921 
9922 	return ret;
9923 }
9924 
9925 static int ufshcd_wl_runtime_resume(struct device *dev)
9926 {
9927 	struct scsi_device *sdev = to_scsi_device(dev);
9928 	struct ufs_hba *hba;
9929 	int ret = 0;
9930 	ktime_t start = ktime_get();
9931 
9932 	hba = shost_priv(sdev->host);
9933 
9934 	ret = __ufshcd_wl_resume(hba, UFS_RUNTIME_PM);
9935 	if (ret)
9936 		dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
9937 
9938 	trace_ufshcd_wl_runtime_resume(dev_name(dev), ret,
9939 		ktime_to_us(ktime_sub(ktime_get(), start)),
9940 		hba->curr_dev_pwr_mode, hba->uic_link_state);
9941 
9942 	return ret;
9943 }
9944 #endif
9945 
9946 #ifdef CONFIG_PM_SLEEP
9947 static int ufshcd_wl_suspend(struct device *dev)
9948 {
9949 	struct scsi_device *sdev = to_scsi_device(dev);
9950 	struct ufs_hba *hba;
9951 	int ret = 0;
9952 	ktime_t start = ktime_get();
9953 
9954 	hba = shost_priv(sdev->host);
9955 	down(&hba->host_sem);
9956 	hba->system_suspending = true;
9957 
9958 	if (pm_runtime_suspended(dev))
9959 		goto out;
9960 
9961 	ret = __ufshcd_wl_suspend(hba, UFS_SYSTEM_PM);
9962 	if (ret) {
9963 		dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__,  ret);
9964 		up(&hba->host_sem);
9965 	}
9966 
9967 out:
9968 	if (!ret)
9969 		hba->is_sys_suspended = true;
9970 	trace_ufshcd_wl_suspend(dev_name(dev), ret,
9971 		ktime_to_us(ktime_sub(ktime_get(), start)),
9972 		hba->curr_dev_pwr_mode, hba->uic_link_state);
9973 
9974 	return ret;
9975 }
9976 
9977 static int ufshcd_wl_resume(struct device *dev)
9978 {
9979 	struct scsi_device *sdev = to_scsi_device(dev);
9980 	struct ufs_hba *hba;
9981 	int ret = 0;
9982 	ktime_t start = ktime_get();
9983 
9984 	hba = shost_priv(sdev->host);
9985 
9986 	if (pm_runtime_suspended(dev))
9987 		goto out;
9988 
9989 	ret = __ufshcd_wl_resume(hba, UFS_SYSTEM_PM);
9990 	if (ret)
9991 		dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
9992 out:
9993 	trace_ufshcd_wl_resume(dev_name(dev), ret,
9994 		ktime_to_us(ktime_sub(ktime_get(), start)),
9995 		hba->curr_dev_pwr_mode, hba->uic_link_state);
9996 	if (!ret)
9997 		hba->is_sys_suspended = false;
9998 	hba->system_suspending = false;
9999 	up(&hba->host_sem);
10000 	return ret;
10001 }
10002 #endif
10003 
10004 /**
10005  * ufshcd_suspend - helper function for suspend operations
10006  * @hba: per adapter instance
10007  *
10008  * This function will put disable irqs, turn off clocks
10009  * and set vreg and hba-vreg in lpm mode.
10010  *
10011  * Return: 0 upon success; < 0 upon failure.
10012  */
10013 static int ufshcd_suspend(struct ufs_hba *hba)
10014 {
10015 	int ret;
10016 
10017 	if (!hba->is_powered)
10018 		return 0;
10019 	/*
10020 	 * Disable the host irq as host controller as there won't be any
10021 	 * host controller transaction expected till resume.
10022 	 */
10023 	ufshcd_disable_irq(hba);
10024 	ret = ufshcd_setup_clocks(hba, false);
10025 	if (ret) {
10026 		ufshcd_enable_irq(hba);
10027 		return ret;
10028 	}
10029 	if (ufshcd_is_clkgating_allowed(hba)) {
10030 		hba->clk_gating.state = CLKS_OFF;
10031 		trace_ufshcd_clk_gating(dev_name(hba->dev),
10032 					hba->clk_gating.state);
10033 	}
10034 
10035 	ufshcd_vreg_set_lpm(hba);
10036 	/* Put the host controller in low power mode if possible */
10037 	ufshcd_hba_vreg_set_lpm(hba);
10038 	ufshcd_pm_qos_update(hba, false);
10039 	return ret;
10040 }
10041 
10042 #ifdef CONFIG_PM
10043 /**
10044  * ufshcd_resume - helper function for resume operations
10045  * @hba: per adapter instance
10046  *
10047  * This function basically turns on the regulators, clocks and
10048  * irqs of the hba.
10049  *
10050  * Return: 0 for success and non-zero for failure.
10051  */
10052 static int ufshcd_resume(struct ufs_hba *hba)
10053 {
10054 	int ret;
10055 
10056 	if (!hba->is_powered)
10057 		return 0;
10058 
10059 	ufshcd_hba_vreg_set_hpm(hba);
10060 	ret = ufshcd_vreg_set_hpm(hba);
10061 	if (ret)
10062 		goto out;
10063 
10064 	/* Make sure clocks are enabled before accessing controller */
10065 	ret = ufshcd_setup_clocks(hba, true);
10066 	if (ret)
10067 		goto disable_vreg;
10068 
10069 	/* enable the host irq as host controller would be active soon */
10070 	ufshcd_enable_irq(hba);
10071 
10072 	goto out;
10073 
10074 disable_vreg:
10075 	ufshcd_vreg_set_lpm(hba);
10076 out:
10077 	if (ret)
10078 		ufshcd_update_evt_hist(hba, UFS_EVT_RESUME_ERR, (u32)ret);
10079 	return ret;
10080 }
10081 #endif /* CONFIG_PM */
10082 
10083 #ifdef CONFIG_PM_SLEEP
10084 /**
10085  * ufshcd_system_suspend - system suspend callback
10086  * @dev: Device associated with the UFS controller.
10087  *
10088  * Executed before putting the system into a sleep state in which the contents
10089  * of main memory are preserved.
10090  *
10091  * Return: 0 for success and non-zero for failure.
10092  */
10093 int ufshcd_system_suspend(struct device *dev)
10094 {
10095 	struct ufs_hba *hba = dev_get_drvdata(dev);
10096 	int ret = 0;
10097 	ktime_t start = ktime_get();
10098 
10099 	if (pm_runtime_suspended(hba->dev))
10100 		goto out;
10101 
10102 	ret = ufshcd_suspend(hba);
10103 out:
10104 	trace_ufshcd_system_suspend(dev_name(hba->dev), ret,
10105 		ktime_to_us(ktime_sub(ktime_get(), start)),
10106 		hba->curr_dev_pwr_mode, hba->uic_link_state);
10107 	return ret;
10108 }
10109 EXPORT_SYMBOL(ufshcd_system_suspend);
10110 
10111 /**
10112  * ufshcd_system_resume - system resume callback
10113  * @dev: Device associated with the UFS controller.
10114  *
10115  * Executed after waking the system up from a sleep state in which the contents
10116  * of main memory were preserved.
10117  *
10118  * Return: 0 for success and non-zero for failure.
10119  */
10120 int ufshcd_system_resume(struct device *dev)
10121 {
10122 	struct ufs_hba *hba = dev_get_drvdata(dev);
10123 	ktime_t start = ktime_get();
10124 	int ret = 0;
10125 
10126 	if (pm_runtime_suspended(hba->dev))
10127 		goto out;
10128 
10129 	ret = ufshcd_resume(hba);
10130 
10131 out:
10132 	trace_ufshcd_system_resume(dev_name(hba->dev), ret,
10133 		ktime_to_us(ktime_sub(ktime_get(), start)),
10134 		hba->curr_dev_pwr_mode, hba->uic_link_state);
10135 
10136 	return ret;
10137 }
10138 EXPORT_SYMBOL(ufshcd_system_resume);
10139 #endif /* CONFIG_PM_SLEEP */
10140 
10141 #ifdef CONFIG_PM
10142 /**
10143  * ufshcd_runtime_suspend - runtime suspend callback
10144  * @dev: Device associated with the UFS controller.
10145  *
10146  * Check the description of ufshcd_suspend() function for more details.
10147  *
10148  * Return: 0 for success and non-zero for failure.
10149  */
10150 int ufshcd_runtime_suspend(struct device *dev)
10151 {
10152 	struct ufs_hba *hba = dev_get_drvdata(dev);
10153 	int ret;
10154 	ktime_t start = ktime_get();
10155 
10156 	ret = ufshcd_suspend(hba);
10157 
10158 	trace_ufshcd_runtime_suspend(dev_name(hba->dev), ret,
10159 		ktime_to_us(ktime_sub(ktime_get(), start)),
10160 		hba->curr_dev_pwr_mode, hba->uic_link_state);
10161 	return ret;
10162 }
10163 EXPORT_SYMBOL(ufshcd_runtime_suspend);
10164 
10165 /**
10166  * ufshcd_runtime_resume - runtime resume routine
10167  * @dev: Device associated with the UFS controller.
10168  *
10169  * This function basically brings controller
10170  * to active state. Following operations are done in this function:
10171  *
10172  * 1. Turn on all the controller related clocks
10173  * 2. Turn ON VCC rail
10174  *
10175  * Return: 0 upon success; < 0 upon failure.
10176  */
10177 int ufshcd_runtime_resume(struct device *dev)
10178 {
10179 	struct ufs_hba *hba = dev_get_drvdata(dev);
10180 	int ret;
10181 	ktime_t start = ktime_get();
10182 
10183 	ret = ufshcd_resume(hba);
10184 
10185 	trace_ufshcd_runtime_resume(dev_name(hba->dev), ret,
10186 		ktime_to_us(ktime_sub(ktime_get(), start)),
10187 		hba->curr_dev_pwr_mode, hba->uic_link_state);
10188 	return ret;
10189 }
10190 EXPORT_SYMBOL(ufshcd_runtime_resume);
10191 #endif /* CONFIG_PM */
10192 
10193 static void ufshcd_wl_shutdown(struct device *dev)
10194 {
10195 	struct scsi_device *sdev = to_scsi_device(dev);
10196 	struct ufs_hba *hba = shost_priv(sdev->host);
10197 
10198 	down(&hba->host_sem);
10199 	hba->shutting_down = true;
10200 	up(&hba->host_sem);
10201 
10202 	/* Turn on everything while shutting down */
10203 	ufshcd_rpm_get_sync(hba);
10204 	scsi_device_quiesce(sdev);
10205 	shost_for_each_device(sdev, hba->host) {
10206 		if (sdev == hba->ufs_device_wlun)
10207 			continue;
10208 		mutex_lock(&sdev->state_mutex);
10209 		scsi_device_set_state(sdev, SDEV_OFFLINE);
10210 		mutex_unlock(&sdev->state_mutex);
10211 	}
10212 	__ufshcd_wl_suspend(hba, UFS_SHUTDOWN_PM);
10213 
10214 	/*
10215 	 * Next, turn off the UFS controller and the UFS regulators. Disable
10216 	 * clocks.
10217 	 */
10218 	if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba))
10219 		ufshcd_suspend(hba);
10220 
10221 	hba->is_powered = false;
10222 }
10223 
10224 /**
10225  * ufshcd_remove - de-allocate SCSI host and host memory space
10226  *		data structure memory
10227  * @hba: per adapter instance
10228  */
10229 void ufshcd_remove(struct ufs_hba *hba)
10230 {
10231 	if (hba->ufs_device_wlun)
10232 		ufshcd_rpm_get_sync(hba);
10233 	ufs_hwmon_remove(hba);
10234 	ufs_bsg_remove(hba);
10235 	ufs_sysfs_remove_nodes(hba->dev);
10236 	cancel_delayed_work_sync(&hba->ufs_rtc_update_work);
10237 	blk_mq_destroy_queue(hba->tmf_queue);
10238 	blk_put_queue(hba->tmf_queue);
10239 	blk_mq_free_tag_set(&hba->tmf_tag_set);
10240 	if (hba->scsi_host_added)
10241 		scsi_remove_host(hba->host);
10242 	/* disable interrupts */
10243 	ufshcd_disable_intr(hba, hba->intr_mask);
10244 	ufshcd_hba_stop(hba);
10245 	ufshcd_hba_exit(hba);
10246 }
10247 EXPORT_SYMBOL_GPL(ufshcd_remove);
10248 
10249 #ifdef CONFIG_PM_SLEEP
10250 int ufshcd_system_freeze(struct device *dev)
10251 {
10252 
10253 	return ufshcd_system_suspend(dev);
10254 
10255 }
10256 EXPORT_SYMBOL_GPL(ufshcd_system_freeze);
10257 
10258 int ufshcd_system_restore(struct device *dev)
10259 {
10260 
10261 	struct ufs_hba *hba = dev_get_drvdata(dev);
10262 	int ret;
10263 
10264 	ret = ufshcd_system_resume(dev);
10265 	if (ret)
10266 		return ret;
10267 
10268 	/* Configure UTRL and UTMRL base address registers */
10269 	ufshcd_writel(hba, lower_32_bits(hba->utrdl_dma_addr),
10270 			REG_UTP_TRANSFER_REQ_LIST_BASE_L);
10271 	ufshcd_writel(hba, upper_32_bits(hba->utrdl_dma_addr),
10272 			REG_UTP_TRANSFER_REQ_LIST_BASE_H);
10273 	ufshcd_writel(hba, lower_32_bits(hba->utmrdl_dma_addr),
10274 			REG_UTP_TASK_REQ_LIST_BASE_L);
10275 	ufshcd_writel(hba, upper_32_bits(hba->utmrdl_dma_addr),
10276 			REG_UTP_TASK_REQ_LIST_BASE_H);
10277 	/*
10278 	 * Make sure that UTRL and UTMRL base address registers
10279 	 * are updated with the latest queue addresses. Only after
10280 	 * updating these addresses, we can queue the new commands.
10281 	 */
10282 	ufshcd_readl(hba, REG_UTP_TASK_REQ_LIST_BASE_H);
10283 
10284 	return 0;
10285 
10286 }
10287 EXPORT_SYMBOL_GPL(ufshcd_system_restore);
10288 
10289 int ufshcd_system_thaw(struct device *dev)
10290 {
10291 	return ufshcd_system_resume(dev);
10292 }
10293 EXPORT_SYMBOL_GPL(ufshcd_system_thaw);
10294 #endif /* CONFIG_PM_SLEEP  */
10295 
10296 /**
10297  * ufshcd_dealloc_host - deallocate Host Bus Adapter (HBA)
10298  * @hba: pointer to Host Bus Adapter (HBA)
10299  */
10300 void ufshcd_dealloc_host(struct ufs_hba *hba)
10301 {
10302 	scsi_host_put(hba->host);
10303 }
10304 EXPORT_SYMBOL_GPL(ufshcd_dealloc_host);
10305 
10306 /**
10307  * ufshcd_set_dma_mask - Set dma mask based on the controller
10308  *			 addressing capability
10309  * @hba: per adapter instance
10310  *
10311  * Return: 0 for success, non-zero for failure.
10312  */
10313 static int ufshcd_set_dma_mask(struct ufs_hba *hba)
10314 {
10315 	if (hba->vops && hba->vops->set_dma_mask)
10316 		return hba->vops->set_dma_mask(hba);
10317 	if (hba->capabilities & MASK_64_ADDRESSING_SUPPORT) {
10318 		if (!dma_set_mask_and_coherent(hba->dev, DMA_BIT_MASK(64)))
10319 			return 0;
10320 	}
10321 	return dma_set_mask_and_coherent(hba->dev, DMA_BIT_MASK(32));
10322 }
10323 
10324 /**
10325  * ufshcd_alloc_host - allocate Host Bus Adapter (HBA)
10326  * @dev: pointer to device handle
10327  * @hba_handle: driver private handle
10328  *
10329  * Return: 0 on success, non-zero value on failure.
10330  */
10331 int ufshcd_alloc_host(struct device *dev, struct ufs_hba **hba_handle)
10332 {
10333 	struct Scsi_Host *host;
10334 	struct ufs_hba *hba;
10335 	int err = 0;
10336 
10337 	if (!dev) {
10338 		dev_err(dev,
10339 		"Invalid memory reference for dev is NULL\n");
10340 		err = -ENODEV;
10341 		goto out_error;
10342 	}
10343 
10344 	host = scsi_host_alloc(&ufshcd_driver_template,
10345 				sizeof(struct ufs_hba));
10346 	if (!host) {
10347 		dev_err(dev, "scsi_host_alloc failed\n");
10348 		err = -ENOMEM;
10349 		goto out_error;
10350 	}
10351 	host->nr_maps = HCTX_TYPE_POLL + 1;
10352 	hba = shost_priv(host);
10353 	hba->host = host;
10354 	hba->dev = dev;
10355 	hba->dev_ref_clk_freq = REF_CLK_FREQ_INVAL;
10356 	hba->nop_out_timeout = NOP_OUT_TIMEOUT;
10357 	ufshcd_set_sg_entry_size(hba, sizeof(struct ufshcd_sg_entry));
10358 	INIT_LIST_HEAD(&hba->clk_list_head);
10359 	spin_lock_init(&hba->outstanding_lock);
10360 
10361 	*hba_handle = hba;
10362 
10363 out_error:
10364 	return err;
10365 }
10366 EXPORT_SYMBOL(ufshcd_alloc_host);
10367 
10368 /* This function exists because blk_mq_alloc_tag_set() requires this. */
10369 static blk_status_t ufshcd_queue_tmf(struct blk_mq_hw_ctx *hctx,
10370 				     const struct blk_mq_queue_data *qd)
10371 {
10372 	WARN_ON_ONCE(true);
10373 	return BLK_STS_NOTSUPP;
10374 }
10375 
10376 static const struct blk_mq_ops ufshcd_tmf_ops = {
10377 	.queue_rq = ufshcd_queue_tmf,
10378 };
10379 
10380 static int ufshcd_add_scsi_host(struct ufs_hba *hba)
10381 {
10382 	int err;
10383 
10384 	if (is_mcq_supported(hba)) {
10385 		ufshcd_mcq_enable(hba);
10386 		err = ufshcd_alloc_mcq(hba);
10387 		if (!err) {
10388 			ufshcd_config_mcq(hba);
10389 		} else {
10390 			/* Continue with SDB mode */
10391 			ufshcd_mcq_disable(hba);
10392 			use_mcq_mode = false;
10393 			dev_err(hba->dev, "MCQ mode is disabled, err=%d\n",
10394 				err);
10395 		}
10396 	}
10397 	if (!is_mcq_supported(hba) && !hba->lsdb_sup) {
10398 		dev_err(hba->dev,
10399 			"%s: failed to initialize (legacy doorbell mode not supported)\n",
10400 			__func__);
10401 		return -EINVAL;
10402 	}
10403 
10404 	err = scsi_add_host(hba->host, hba->dev);
10405 	if (err) {
10406 		dev_err(hba->dev, "scsi_add_host failed\n");
10407 		return err;
10408 	}
10409 	hba->scsi_host_added = true;
10410 
10411 	hba->tmf_tag_set = (struct blk_mq_tag_set) {
10412 		.nr_hw_queues	= 1,
10413 		.queue_depth	= hba->nutmrs,
10414 		.ops		= &ufshcd_tmf_ops,
10415 		.flags		= BLK_MQ_F_NO_SCHED,
10416 	};
10417 	err = blk_mq_alloc_tag_set(&hba->tmf_tag_set);
10418 	if (err < 0)
10419 		goto remove_scsi_host;
10420 	hba->tmf_queue = blk_mq_alloc_queue(&hba->tmf_tag_set, NULL, NULL);
10421 	if (IS_ERR(hba->tmf_queue)) {
10422 		err = PTR_ERR(hba->tmf_queue);
10423 		goto free_tmf_tag_set;
10424 	}
10425 	hba->tmf_rqs = devm_kcalloc(hba->dev, hba->nutmrs,
10426 				    sizeof(*hba->tmf_rqs), GFP_KERNEL);
10427 	if (!hba->tmf_rqs) {
10428 		err = -ENOMEM;
10429 		goto free_tmf_queue;
10430 	}
10431 
10432 	return 0;
10433 
10434 free_tmf_queue:
10435 	blk_mq_destroy_queue(hba->tmf_queue);
10436 	blk_put_queue(hba->tmf_queue);
10437 
10438 free_tmf_tag_set:
10439 	blk_mq_free_tag_set(&hba->tmf_tag_set);
10440 
10441 remove_scsi_host:
10442 	if (hba->scsi_host_added)
10443 		scsi_remove_host(hba->host);
10444 
10445 	return err;
10446 }
10447 
10448 /**
10449  * ufshcd_init - Driver initialization routine
10450  * @hba: per-adapter instance
10451  * @mmio_base: base register address
10452  * @irq: Interrupt line of device
10453  *
10454  * Return: 0 on success, non-zero value on failure.
10455  */
10456 int ufshcd_init(struct ufs_hba *hba, void __iomem *mmio_base, unsigned int irq)
10457 {
10458 	int err;
10459 	struct Scsi_Host *host = hba->host;
10460 	struct device *dev = hba->dev;
10461 
10462 	/*
10463 	 * dev_set_drvdata() must be called before any callbacks are registered
10464 	 * that use dev_get_drvdata() (frequency scaling, clock scaling, hwmon,
10465 	 * sysfs).
10466 	 */
10467 	dev_set_drvdata(dev, hba);
10468 
10469 	if (!mmio_base) {
10470 		dev_err(hba->dev,
10471 		"Invalid memory reference for mmio_base is NULL\n");
10472 		err = -ENODEV;
10473 		goto out_error;
10474 	}
10475 
10476 	hba->mmio_base = mmio_base;
10477 	hba->irq = irq;
10478 	hba->vps = &ufs_hba_vps;
10479 
10480 	err = ufshcd_hba_init(hba);
10481 	if (err)
10482 		goto out_error;
10483 
10484 	/* Read capabilities registers */
10485 	err = ufshcd_hba_capabilities(hba);
10486 	if (err)
10487 		goto out_disable;
10488 
10489 	/* Get UFS version supported by the controller */
10490 	hba->ufs_version = ufshcd_get_ufs_version(hba);
10491 
10492 	/* Get Interrupt bit mask per version */
10493 	hba->intr_mask = ufshcd_get_intr_mask(hba);
10494 
10495 	err = ufshcd_set_dma_mask(hba);
10496 	if (err) {
10497 		dev_err(hba->dev, "set dma mask failed\n");
10498 		goto out_disable;
10499 	}
10500 
10501 	/* Allocate memory for host memory space */
10502 	err = ufshcd_memory_alloc(hba);
10503 	if (err) {
10504 		dev_err(hba->dev, "Memory allocation failed\n");
10505 		goto out_disable;
10506 	}
10507 
10508 	/* Configure LRB */
10509 	ufshcd_host_memory_configure(hba);
10510 
10511 	host->can_queue = hba->nutrs - UFSHCD_NUM_RESERVED;
10512 	host->cmd_per_lun = hba->nutrs - UFSHCD_NUM_RESERVED;
10513 	host->max_id = UFSHCD_MAX_ID;
10514 	host->max_lun = UFS_MAX_LUNS;
10515 	host->max_channel = UFSHCD_MAX_CHANNEL;
10516 	host->unique_id = host->host_no;
10517 	host->max_cmd_len = UFS_CDB_SIZE;
10518 	host->queuecommand_may_block = !!(hba->caps & UFSHCD_CAP_CLK_GATING);
10519 
10520 	/* Use default RPM delay if host not set */
10521 	if (host->rpm_autosuspend_delay == 0)
10522 		host->rpm_autosuspend_delay = RPM_AUTOSUSPEND_DELAY_MS;
10523 
10524 	hba->max_pwr_info.is_valid = false;
10525 
10526 	/* Initialize work queues */
10527 	hba->eh_wq = alloc_ordered_workqueue("ufs_eh_wq_%d", WQ_MEM_RECLAIM,
10528 					     hba->host->host_no);
10529 	if (!hba->eh_wq) {
10530 		dev_err(hba->dev, "%s: failed to create eh workqueue\n",
10531 			__func__);
10532 		err = -ENOMEM;
10533 		goto out_disable;
10534 	}
10535 	INIT_WORK(&hba->eh_work, ufshcd_err_handler);
10536 	INIT_WORK(&hba->eeh_work, ufshcd_exception_event_handler);
10537 
10538 	sema_init(&hba->host_sem, 1);
10539 
10540 	/* Initialize UIC command mutex */
10541 	mutex_init(&hba->uic_cmd_mutex);
10542 
10543 	/* Initialize mutex for device management commands */
10544 	mutex_init(&hba->dev_cmd.lock);
10545 
10546 	/* Initialize mutex for exception event control */
10547 	mutex_init(&hba->ee_ctrl_mutex);
10548 
10549 	mutex_init(&hba->wb_mutex);
10550 	init_rwsem(&hba->clk_scaling_lock);
10551 
10552 	ufshcd_init_clk_gating(hba);
10553 
10554 	ufshcd_init_clk_scaling(hba);
10555 
10556 	/*
10557 	 * In order to avoid any spurious interrupt immediately after
10558 	 * registering UFS controller interrupt handler, clear any pending UFS
10559 	 * interrupt status and disable all the UFS interrupts.
10560 	 */
10561 	ufshcd_writel(hba, ufshcd_readl(hba, REG_INTERRUPT_STATUS),
10562 		      REG_INTERRUPT_STATUS);
10563 	ufshcd_writel(hba, 0, REG_INTERRUPT_ENABLE);
10564 	/*
10565 	 * Make sure that UFS interrupts are disabled and any pending interrupt
10566 	 * status is cleared before registering UFS interrupt handler.
10567 	 */
10568 	ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
10569 
10570 	/* IRQ registration */
10571 	err = devm_request_irq(dev, irq, ufshcd_intr, IRQF_SHARED, UFSHCD, hba);
10572 	if (err) {
10573 		dev_err(hba->dev, "request irq failed\n");
10574 		goto out_disable;
10575 	} else {
10576 		hba->is_irq_enabled = true;
10577 	}
10578 
10579 	/* Reset the attached device */
10580 	ufshcd_device_reset(hba);
10581 
10582 	ufshcd_init_crypto(hba);
10583 
10584 	/* Host controller enable */
10585 	err = ufshcd_hba_enable(hba);
10586 	if (err) {
10587 		dev_err(hba->dev, "Host controller enable failed\n");
10588 		ufshcd_print_evt_hist(hba);
10589 		ufshcd_print_host_state(hba);
10590 		goto out_disable;
10591 	}
10592 
10593 	/*
10594 	 * Set the default power management level for runtime and system PM.
10595 	 * Default power saving mode is to keep UFS link in Hibern8 state
10596 	 * and UFS device in sleep state.
10597 	 */
10598 	hba->rpm_lvl = ufs_get_desired_pm_lvl_for_dev_link_state(
10599 						UFS_SLEEP_PWR_MODE,
10600 						UIC_LINK_HIBERN8_STATE);
10601 	hba->spm_lvl = ufs_get_desired_pm_lvl_for_dev_link_state(
10602 						UFS_SLEEP_PWR_MODE,
10603 						UIC_LINK_HIBERN8_STATE);
10604 
10605 	INIT_DELAYED_WORK(&hba->rpm_dev_flush_recheck_work, ufshcd_rpm_dev_flush_recheck_work);
10606 	INIT_DELAYED_WORK(&hba->ufs_rtc_update_work, ufshcd_rtc_work);
10607 
10608 	/* Set the default auto-hiberate idle timer value to 150 ms */
10609 	if (ufshcd_is_auto_hibern8_supported(hba) && !hba->ahit) {
10610 		hba->ahit = FIELD_PREP(UFSHCI_AHIBERN8_TIMER_MASK, 150) |
10611 			    FIELD_PREP(UFSHCI_AHIBERN8_SCALE_MASK, 3);
10612 	}
10613 
10614 	/* Hold auto suspend until async scan completes */
10615 	pm_runtime_get_sync(dev);
10616 
10617 	/*
10618 	 * We are assuming that device wasn't put in sleep/power-down
10619 	 * state exclusively during the boot stage before kernel.
10620 	 * This assumption helps avoid doing link startup twice during
10621 	 * ufshcd_probe_hba().
10622 	 */
10623 	ufshcd_set_ufs_dev_active(hba);
10624 
10625 	/* Initialize hba, detect and initialize UFS device */
10626 	ktime_t probe_start = ktime_get();
10627 
10628 	hba->ufshcd_state = UFSHCD_STATE_RESET;
10629 
10630 	err = ufshcd_link_startup(hba);
10631 	if (err)
10632 		goto out_disable;
10633 
10634 	if (hba->quirks & UFSHCD_QUIRK_SKIP_PH_CONFIGURATION)
10635 		goto initialized;
10636 
10637 	/* Debug counters initialization */
10638 	ufshcd_clear_dbg_ufs_stats(hba);
10639 
10640 	/* UniPro link is active now */
10641 	ufshcd_set_link_active(hba);
10642 
10643 	/* Verify device initialization by sending NOP OUT UPIU */
10644 	err = ufshcd_verify_dev_init(hba);
10645 	if (err)
10646 		goto out_disable;
10647 
10648 	/* Initiate UFS initialization, and waiting until completion */
10649 	err = ufshcd_complete_dev_init(hba);
10650 	if (err)
10651 		goto out_disable;
10652 
10653 	err = ufshcd_device_params_init(hba);
10654 	if (err)
10655 		goto out_disable;
10656 
10657 	err = ufshcd_post_device_init(hba);
10658 
10659 initialized:
10660 	ufshcd_process_probe_result(hba, probe_start, err);
10661 	if (err)
10662 		goto out_disable;
10663 
10664 	err = ufshcd_add_scsi_host(hba);
10665 	if (err)
10666 		goto out_disable;
10667 
10668 	async_schedule(ufshcd_async_scan, hba);
10669 	ufs_sysfs_add_nodes(hba->dev);
10670 
10671 	device_enable_async_suspend(dev);
10672 	ufshcd_pm_qos_init(hba);
10673 	return 0;
10674 
10675 out_disable:
10676 	hba->is_irq_enabled = false;
10677 	ufshcd_hba_exit(hba);
10678 out_error:
10679 	return err;
10680 }
10681 EXPORT_SYMBOL_GPL(ufshcd_init);
10682 
10683 void ufshcd_resume_complete(struct device *dev)
10684 {
10685 	struct ufs_hba *hba = dev_get_drvdata(dev);
10686 
10687 	if (hba->complete_put) {
10688 		ufshcd_rpm_put(hba);
10689 		hba->complete_put = false;
10690 	}
10691 }
10692 EXPORT_SYMBOL_GPL(ufshcd_resume_complete);
10693 
10694 static bool ufshcd_rpm_ok_for_spm(struct ufs_hba *hba)
10695 {
10696 	struct device *dev = &hba->ufs_device_wlun->sdev_gendev;
10697 	enum ufs_dev_pwr_mode dev_pwr_mode;
10698 	enum uic_link_state link_state;
10699 	unsigned long flags;
10700 	bool res;
10701 
10702 	spin_lock_irqsave(&dev->power.lock, flags);
10703 	dev_pwr_mode = ufs_get_pm_lvl_to_dev_pwr_mode(hba->spm_lvl);
10704 	link_state = ufs_get_pm_lvl_to_link_pwr_state(hba->spm_lvl);
10705 	res = pm_runtime_suspended(dev) &&
10706 	      hba->curr_dev_pwr_mode == dev_pwr_mode &&
10707 	      hba->uic_link_state == link_state &&
10708 	      !hba->dev_info.b_rpm_dev_flush_capable;
10709 	spin_unlock_irqrestore(&dev->power.lock, flags);
10710 
10711 	return res;
10712 }
10713 
10714 int __ufshcd_suspend_prepare(struct device *dev, bool rpm_ok_for_spm)
10715 {
10716 	struct ufs_hba *hba = dev_get_drvdata(dev);
10717 	int ret;
10718 
10719 	/*
10720 	 * SCSI assumes that runtime-pm and system-pm for scsi drivers
10721 	 * are same. And it doesn't wake up the device for system-suspend
10722 	 * if it's runtime suspended. But ufs doesn't follow that.
10723 	 * Refer ufshcd_resume_complete()
10724 	 */
10725 	if (hba->ufs_device_wlun) {
10726 		/* Prevent runtime suspend */
10727 		ufshcd_rpm_get_noresume(hba);
10728 		/*
10729 		 * Check if already runtime suspended in same state as system
10730 		 * suspend would be.
10731 		 */
10732 		if (!rpm_ok_for_spm || !ufshcd_rpm_ok_for_spm(hba)) {
10733 			/* RPM state is not ok for SPM, so runtime resume */
10734 			ret = ufshcd_rpm_resume(hba);
10735 			if (ret < 0 && ret != -EACCES) {
10736 				ufshcd_rpm_put(hba);
10737 				return ret;
10738 			}
10739 		}
10740 		hba->complete_put = true;
10741 	}
10742 	return 0;
10743 }
10744 EXPORT_SYMBOL_GPL(__ufshcd_suspend_prepare);
10745 
10746 int ufshcd_suspend_prepare(struct device *dev)
10747 {
10748 	return __ufshcd_suspend_prepare(dev, true);
10749 }
10750 EXPORT_SYMBOL_GPL(ufshcd_suspend_prepare);
10751 
10752 #ifdef CONFIG_PM_SLEEP
10753 static int ufshcd_wl_poweroff(struct device *dev)
10754 {
10755 	struct scsi_device *sdev = to_scsi_device(dev);
10756 	struct ufs_hba *hba = shost_priv(sdev->host);
10757 
10758 	__ufshcd_wl_suspend(hba, UFS_SHUTDOWN_PM);
10759 	return 0;
10760 }
10761 #endif
10762 
10763 static int ufshcd_wl_probe(struct device *dev)
10764 {
10765 	struct scsi_device *sdev = to_scsi_device(dev);
10766 
10767 	if (!is_device_wlun(sdev))
10768 		return -ENODEV;
10769 
10770 	blk_pm_runtime_init(sdev->request_queue, dev);
10771 	pm_runtime_set_autosuspend_delay(dev, 0);
10772 	pm_runtime_allow(dev);
10773 
10774 	return  0;
10775 }
10776 
10777 static int ufshcd_wl_remove(struct device *dev)
10778 {
10779 	pm_runtime_forbid(dev);
10780 	return 0;
10781 }
10782 
10783 static const struct dev_pm_ops ufshcd_wl_pm_ops = {
10784 #ifdef CONFIG_PM_SLEEP
10785 	.suspend = ufshcd_wl_suspend,
10786 	.resume = ufshcd_wl_resume,
10787 	.freeze = ufshcd_wl_suspend,
10788 	.thaw = ufshcd_wl_resume,
10789 	.poweroff = ufshcd_wl_poweroff,
10790 	.restore = ufshcd_wl_resume,
10791 #endif
10792 	SET_RUNTIME_PM_OPS(ufshcd_wl_runtime_suspend, ufshcd_wl_runtime_resume, NULL)
10793 };
10794 
10795 static void ufshcd_check_header_layout(void)
10796 {
10797 	/*
10798 	 * gcc compilers before version 10 cannot do constant-folding for
10799 	 * sub-byte bitfields. Hence skip the layout checks for gcc 9 and
10800 	 * before.
10801 	 */
10802 	if (IS_ENABLED(CONFIG_CC_IS_GCC) && CONFIG_GCC_VERSION < 100000)
10803 		return;
10804 
10805 	BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10806 				.cci = 3})[0] != 3);
10807 
10808 	BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10809 				.ehs_length = 2})[1] != 2);
10810 
10811 	BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10812 				.enable_crypto = 1})[2]
10813 		     != 0x80);
10814 
10815 	BUILD_BUG_ON((((u8 *)&(struct request_desc_header){
10816 					.command_type = 5,
10817 					.data_direction = 3,
10818 					.interrupt = 1,
10819 				})[3]) != ((5 << 4) | (3 << 1) | 1));
10820 
10821 	BUILD_BUG_ON(((__le32 *)&(struct request_desc_header){
10822 				.dunl = cpu_to_le32(0xdeadbeef)})[1] !=
10823 		cpu_to_le32(0xdeadbeef));
10824 
10825 	BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10826 				.ocs = 4})[8] != 4);
10827 
10828 	BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10829 				.cds = 5})[9] != 5);
10830 
10831 	BUILD_BUG_ON(((__le32 *)&(struct request_desc_header){
10832 				.dunu = cpu_to_le32(0xbadcafe)})[3] !=
10833 		cpu_to_le32(0xbadcafe));
10834 
10835 	BUILD_BUG_ON(((u8 *)&(struct utp_upiu_header){
10836 			     .iid = 0xf })[4] != 0xf0);
10837 
10838 	BUILD_BUG_ON(((u8 *)&(struct utp_upiu_header){
10839 			     .command_set_type = 0xf })[4] != 0xf);
10840 }
10841 
10842 /*
10843  * ufs_dev_wlun_template - describes ufs device wlun
10844  * ufs-device wlun - used to send pm commands
10845  * All luns are consumers of ufs-device wlun.
10846  *
10847  * Currently, no sd driver is present for wluns.
10848  * Hence the no specific pm operations are performed.
10849  * With ufs design, SSU should be sent to ufs-device wlun.
10850  * Hence register a scsi driver for ufs wluns only.
10851  */
10852 static struct scsi_driver ufs_dev_wlun_template = {
10853 	.gendrv = {
10854 		.name = "ufs_device_wlun",
10855 		.probe = ufshcd_wl_probe,
10856 		.remove = ufshcd_wl_remove,
10857 		.pm = &ufshcd_wl_pm_ops,
10858 		.shutdown = ufshcd_wl_shutdown,
10859 	},
10860 };
10861 
10862 static int __init ufshcd_core_init(void)
10863 {
10864 	int ret;
10865 
10866 	ufshcd_check_header_layout();
10867 
10868 	ufs_debugfs_init();
10869 
10870 	ret = scsi_register_driver(&ufs_dev_wlun_template.gendrv);
10871 	if (ret)
10872 		ufs_debugfs_exit();
10873 	return ret;
10874 }
10875 
10876 static void __exit ufshcd_core_exit(void)
10877 {
10878 	ufs_debugfs_exit();
10879 	scsi_unregister_driver(&ufs_dev_wlun_template.gendrv);
10880 }
10881 
10882 module_init(ufshcd_core_init);
10883 module_exit(ufshcd_core_exit);
10884 
10885 MODULE_AUTHOR("Santosh Yaragnavi <santosh.sy@samsung.com>");
10886 MODULE_AUTHOR("Vinayak Holikatti <h.vinayak@samsung.com>");
10887 MODULE_DESCRIPTION("Generic UFS host controller driver Core");
10888 MODULE_SOFTDEP("pre: governor_simpleondemand");
10889 MODULE_LICENSE("GPL");
10890