xref: /linux/drivers/ufs/core/ufshcd.c (revision 746680ec6696585e30db3e18c93a63df9cbec39c)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Universal Flash Storage Host controller driver Core
4  * Copyright (C) 2011-2013 Samsung India Software Operations
5  * Copyright (c) 2013-2016, The Linux Foundation. All rights reserved.
6  *
7  * Authors:
8  *	Santosh Yaraganavi <santosh.sy@samsung.com>
9  *	Vinayak Holikatti <h.vinayak@samsung.com>
10  */
11 
12 #include <linux/async.h>
13 #include <linux/devfreq.h>
14 #include <linux/nls.h>
15 #include <linux/of.h>
16 #include <linux/bitfield.h>
17 #include <linux/blk-pm.h>
18 #include <linux/blkdev.h>
19 #include <linux/clk.h>
20 #include <linux/delay.h>
21 #include <linux/interrupt.h>
22 #include <linux/module.h>
23 #include <linux/pm_opp.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/sched/clock.h>
26 #include <linux/iopoll.h>
27 #include <scsi/scsi_cmnd.h>
28 #include <scsi/scsi_dbg.h>
29 #include <scsi/scsi_driver.h>
30 #include <scsi/scsi_eh.h>
31 #include "ufshcd-priv.h"
32 #include <ufs/ufs_quirks.h>
33 #include <ufs/unipro.h>
34 #include "ufs-sysfs.h"
35 #include "ufs-debugfs.h"
36 #include "ufs-fault-injection.h"
37 #include "ufs_bsg.h"
38 #include "ufshcd-crypto.h"
39 #include <linux/unaligned.h>
40 
41 #define CREATE_TRACE_POINTS
42 #include "ufs_trace.h"
43 
44 #define UFSHCD_ENABLE_INTRS	(UTP_TRANSFER_REQ_COMPL |\
45 				 UTP_TASK_REQ_COMPL |\
46 				 UFSHCD_ERROR_MASK)
47 
48 #define UFSHCD_ENABLE_MCQ_INTRS	(UTP_TASK_REQ_COMPL |\
49 				 UFSHCD_ERROR_MASK |\
50 				 MCQ_CQ_EVENT_STATUS)
51 
52 
53 /* UIC command timeout, unit: ms */
54 enum {
55 	UIC_CMD_TIMEOUT_DEFAULT	= 500,
56 	UIC_CMD_TIMEOUT_MAX	= 5000,
57 };
58 /* NOP OUT retries waiting for NOP IN response */
59 #define NOP_OUT_RETRIES    10
60 /* Timeout after 50 msecs if NOP OUT hangs without response */
61 #define NOP_OUT_TIMEOUT    50 /* msecs */
62 
63 /* Query request retries */
64 #define QUERY_REQ_RETRIES 3
65 /* Query request timeout */
66 enum {
67 	QUERY_REQ_TIMEOUT_MIN     = 1,
68 	QUERY_REQ_TIMEOUT_DEFAULT = 1500,
69 	QUERY_REQ_TIMEOUT_MAX     = 30000
70 };
71 
72 /* Advanced RPMB request timeout */
73 #define ADVANCED_RPMB_REQ_TIMEOUT  3000 /* 3 seconds */
74 
75 /* Task management command timeout */
76 #define TM_CMD_TIMEOUT	100 /* msecs */
77 
78 /* maximum number of retries for a general UIC command  */
79 #define UFS_UIC_COMMAND_RETRIES 3
80 
81 /* maximum number of link-startup retries */
82 #define DME_LINKSTARTUP_RETRIES 3
83 
84 /* maximum number of reset retries before giving up */
85 #define MAX_HOST_RESET_RETRIES 5
86 
87 /* Maximum number of error handler retries before giving up */
88 #define MAX_ERR_HANDLER_RETRIES 5
89 
90 /* Expose the flag value from utp_upiu_query.value */
91 #define MASK_QUERY_UPIU_FLAG_LOC 0xFF
92 
93 /* Interrupt aggregation default timeout, unit: 40us */
94 #define INT_AGGR_DEF_TO	0x02
95 
96 /* default delay of autosuspend: 2000 ms */
97 #define RPM_AUTOSUSPEND_DELAY_MS 2000
98 
99 /* Default delay of RPM device flush delayed work */
100 #define RPM_DEV_FLUSH_RECHECK_WORK_DELAY_MS 5000
101 
102 /* Default value of wait time before gating device ref clock */
103 #define UFSHCD_REF_CLK_GATING_WAIT_US 0xFF /* microsecs */
104 
105 /* Polling time to wait for fDeviceInit */
106 #define FDEVICEINIT_COMPL_TIMEOUT 1500 /* millisecs */
107 
108 /* Default RTC update every 10 seconds */
109 #define UFS_RTC_UPDATE_INTERVAL_MS (10 * MSEC_PER_SEC)
110 
111 /* bMaxNumOfRTT is equal to two after device manufacturing */
112 #define DEFAULT_MAX_NUM_RTT 2
113 
114 /* UFSHC 4.0 compliant HC support this mode. */
115 static bool use_mcq_mode = true;
116 
117 static bool is_mcq_supported(struct ufs_hba *hba)
118 {
119 	return hba->mcq_sup && use_mcq_mode;
120 }
121 
122 module_param(use_mcq_mode, bool, 0644);
123 MODULE_PARM_DESC(use_mcq_mode, "Control MCQ mode for controllers starting from UFSHCI 4.0. 1 - enable MCQ, 0 - disable MCQ. MCQ is enabled by default");
124 
125 static unsigned int uic_cmd_timeout = UIC_CMD_TIMEOUT_DEFAULT;
126 
127 static int uic_cmd_timeout_set(const char *val, const struct kernel_param *kp)
128 {
129 	return param_set_uint_minmax(val, kp, UIC_CMD_TIMEOUT_DEFAULT,
130 				     UIC_CMD_TIMEOUT_MAX);
131 }
132 
133 static const struct kernel_param_ops uic_cmd_timeout_ops = {
134 	.set = uic_cmd_timeout_set,
135 	.get = param_get_uint,
136 };
137 
138 module_param_cb(uic_cmd_timeout, &uic_cmd_timeout_ops, &uic_cmd_timeout, 0644);
139 MODULE_PARM_DESC(uic_cmd_timeout,
140 		 "UFS UIC command timeout in milliseconds. Defaults to 500ms. Supported values range from 500ms to 5 seconds inclusively");
141 
142 static unsigned int dev_cmd_timeout = QUERY_REQ_TIMEOUT_DEFAULT;
143 
144 static int dev_cmd_timeout_set(const char *val, const struct kernel_param *kp)
145 {
146 	return param_set_uint_minmax(val, kp, QUERY_REQ_TIMEOUT_MIN,
147 				     QUERY_REQ_TIMEOUT_MAX);
148 }
149 
150 static const struct kernel_param_ops dev_cmd_timeout_ops = {
151 	.set = dev_cmd_timeout_set,
152 	.get = param_get_uint,
153 };
154 
155 module_param_cb(dev_cmd_timeout, &dev_cmd_timeout_ops, &dev_cmd_timeout, 0644);
156 MODULE_PARM_DESC(dev_cmd_timeout,
157 		 "UFS Device command timeout in milliseconds. Defaults to 1.5s. Supported values range from 1ms to 30 seconds inclusively");
158 
159 #define ufshcd_toggle_vreg(_dev, _vreg, _on)				\
160 	({                                                              \
161 		int _ret;                                               \
162 		if (_on)                                                \
163 			_ret = ufshcd_enable_vreg(_dev, _vreg);         \
164 		else                                                    \
165 			_ret = ufshcd_disable_vreg(_dev, _vreg);        \
166 		_ret;                                                   \
167 	})
168 
169 #define ufshcd_hex_dump(prefix_str, buf, len) do {                       \
170 	size_t __len = (len);                                            \
171 	print_hex_dump(KERN_ERR, prefix_str,                             \
172 		       __len > 4 ? DUMP_PREFIX_OFFSET : DUMP_PREFIX_NONE,\
173 		       16, 4, buf, __len, false);                        \
174 } while (0)
175 
176 int ufshcd_dump_regs(struct ufs_hba *hba, size_t offset, size_t len,
177 		     const char *prefix)
178 {
179 	u32 *regs;
180 	size_t pos;
181 
182 	if (offset % 4 != 0 || len % 4 != 0) /* keep readl happy */
183 		return -EINVAL;
184 
185 	regs = kzalloc(len, GFP_ATOMIC);
186 	if (!regs)
187 		return -ENOMEM;
188 
189 	for (pos = 0; pos < len; pos += 4) {
190 		if (offset == 0 &&
191 		    pos >= REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER &&
192 		    pos <= REG_UIC_ERROR_CODE_DME)
193 			continue;
194 		regs[pos / 4] = ufshcd_readl(hba, offset + pos);
195 	}
196 
197 	ufshcd_hex_dump(prefix, regs, len);
198 	kfree(regs);
199 
200 	return 0;
201 }
202 EXPORT_SYMBOL_GPL(ufshcd_dump_regs);
203 
204 enum {
205 	UFSHCD_MAX_CHANNEL	= 0,
206 	UFSHCD_MAX_ID		= 1,
207 };
208 
209 static const char *const ufshcd_state_name[] = {
210 	[UFSHCD_STATE_RESET]			= "reset",
211 	[UFSHCD_STATE_OPERATIONAL]		= "operational",
212 	[UFSHCD_STATE_ERROR]			= "error",
213 	[UFSHCD_STATE_EH_SCHEDULED_FATAL]	= "eh_fatal",
214 	[UFSHCD_STATE_EH_SCHEDULED_NON_FATAL]	= "eh_non_fatal",
215 };
216 
217 /* UFSHCD error handling flags */
218 enum {
219 	UFSHCD_EH_IN_PROGRESS = (1 << 0),
220 };
221 
222 /* UFSHCD UIC layer error flags */
223 enum {
224 	UFSHCD_UIC_DL_PA_INIT_ERROR = (1 << 0), /* Data link layer error */
225 	UFSHCD_UIC_DL_NAC_RECEIVED_ERROR = (1 << 1), /* Data link layer error */
226 	UFSHCD_UIC_DL_TCx_REPLAY_ERROR = (1 << 2), /* Data link layer error */
227 	UFSHCD_UIC_NL_ERROR = (1 << 3), /* Network layer error */
228 	UFSHCD_UIC_TL_ERROR = (1 << 4), /* Transport Layer error */
229 	UFSHCD_UIC_DME_ERROR = (1 << 5), /* DME error */
230 	UFSHCD_UIC_PA_GENERIC_ERROR = (1 << 6), /* Generic PA error */
231 };
232 
233 #define ufshcd_set_eh_in_progress(h) \
234 	((h)->eh_flags |= UFSHCD_EH_IN_PROGRESS)
235 #define ufshcd_eh_in_progress(h) \
236 	((h)->eh_flags & UFSHCD_EH_IN_PROGRESS)
237 #define ufshcd_clear_eh_in_progress(h) \
238 	((h)->eh_flags &= ~UFSHCD_EH_IN_PROGRESS)
239 
240 const struct ufs_pm_lvl_states ufs_pm_lvl_states[] = {
241 	[UFS_PM_LVL_0] = {UFS_ACTIVE_PWR_MODE, UIC_LINK_ACTIVE_STATE},
242 	[UFS_PM_LVL_1] = {UFS_ACTIVE_PWR_MODE, UIC_LINK_HIBERN8_STATE},
243 	[UFS_PM_LVL_2] = {UFS_SLEEP_PWR_MODE, UIC_LINK_ACTIVE_STATE},
244 	[UFS_PM_LVL_3] = {UFS_SLEEP_PWR_MODE, UIC_LINK_HIBERN8_STATE},
245 	[UFS_PM_LVL_4] = {UFS_POWERDOWN_PWR_MODE, UIC_LINK_HIBERN8_STATE},
246 	[UFS_PM_LVL_5] = {UFS_POWERDOWN_PWR_MODE, UIC_LINK_OFF_STATE},
247 	/*
248 	 * For DeepSleep, the link is first put in hibern8 and then off.
249 	 * Leaving the link in hibern8 is not supported.
250 	 */
251 	[UFS_PM_LVL_6] = {UFS_DEEPSLEEP_PWR_MODE, UIC_LINK_OFF_STATE},
252 };
253 
254 static inline enum ufs_dev_pwr_mode
255 ufs_get_pm_lvl_to_dev_pwr_mode(enum ufs_pm_level lvl)
256 {
257 	return ufs_pm_lvl_states[lvl].dev_state;
258 }
259 
260 static inline enum uic_link_state
261 ufs_get_pm_lvl_to_link_pwr_state(enum ufs_pm_level lvl)
262 {
263 	return ufs_pm_lvl_states[lvl].link_state;
264 }
265 
266 static inline enum ufs_pm_level
267 ufs_get_desired_pm_lvl_for_dev_link_state(enum ufs_dev_pwr_mode dev_state,
268 					enum uic_link_state link_state)
269 {
270 	enum ufs_pm_level lvl;
271 
272 	for (lvl = UFS_PM_LVL_0; lvl < UFS_PM_LVL_MAX; lvl++) {
273 		if ((ufs_pm_lvl_states[lvl].dev_state == dev_state) &&
274 			(ufs_pm_lvl_states[lvl].link_state == link_state))
275 			return lvl;
276 	}
277 
278 	/* if no match found, return the level 0 */
279 	return UFS_PM_LVL_0;
280 }
281 
282 static bool ufshcd_has_pending_tasks(struct ufs_hba *hba)
283 {
284 	return hba->outstanding_tasks || hba->active_uic_cmd ||
285 	       hba->uic_async_done;
286 }
287 
288 static bool ufshcd_is_ufs_dev_busy(struct ufs_hba *hba)
289 {
290 	return scsi_host_busy(hba->host) || ufshcd_has_pending_tasks(hba);
291 }
292 
293 static const struct ufs_dev_quirk ufs_fixups[] = {
294 	/* UFS cards deviations table */
295 	{ .wmanufacturerid = UFS_VENDOR_MICRON,
296 	  .model = UFS_ANY_MODEL,
297 	  .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM },
298 	{ .wmanufacturerid = UFS_VENDOR_SAMSUNG,
299 	  .model = UFS_ANY_MODEL,
300 	  .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM |
301 		   UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE |
302 		   UFS_DEVICE_QUIRK_PA_HIBER8TIME |
303 		   UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS },
304 	{ .wmanufacturerid = UFS_VENDOR_SKHYNIX,
305 	  .model = UFS_ANY_MODEL,
306 	  .quirk = UFS_DEVICE_QUIRK_HOST_PA_SAVECONFIGTIME },
307 	{ .wmanufacturerid = UFS_VENDOR_SKHYNIX,
308 	  .model = "hB8aL1" /*H28U62301AMR*/,
309 	  .quirk = UFS_DEVICE_QUIRK_HOST_VS_DEBUGSAVECONFIGTIME },
310 	{ .wmanufacturerid = UFS_VENDOR_TOSHIBA,
311 	  .model = UFS_ANY_MODEL,
312 	  .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM },
313 	{ .wmanufacturerid = UFS_VENDOR_TOSHIBA,
314 	  .model = "THGLF2G9C8KBADG",
315 	  .quirk = UFS_DEVICE_QUIRK_PA_TACTIVATE },
316 	{ .wmanufacturerid = UFS_VENDOR_TOSHIBA,
317 	  .model = "THGLF2G9D8KBADG",
318 	  .quirk = UFS_DEVICE_QUIRK_PA_TACTIVATE },
319 	{}
320 };
321 
322 static irqreturn_t ufshcd_tmc_handler(struct ufs_hba *hba);
323 static void ufshcd_async_scan(void *data, async_cookie_t cookie);
324 static int ufshcd_reset_and_restore(struct ufs_hba *hba);
325 static int ufshcd_eh_host_reset_handler(struct scsi_cmnd *cmd);
326 static int ufshcd_clear_tm_cmd(struct ufs_hba *hba, int tag);
327 static void ufshcd_hba_exit(struct ufs_hba *hba);
328 static int ufshcd_device_init(struct ufs_hba *hba, bool init_dev_params);
329 static int ufshcd_probe_hba(struct ufs_hba *hba, bool init_dev_params);
330 static int ufshcd_setup_clocks(struct ufs_hba *hba, bool on);
331 static inline void ufshcd_add_delay_before_dme_cmd(struct ufs_hba *hba);
332 static int ufshcd_host_reset_and_restore(struct ufs_hba *hba);
333 static void ufshcd_resume_clkscaling(struct ufs_hba *hba);
334 static void ufshcd_suspend_clkscaling(struct ufs_hba *hba);
335 static int ufshcd_scale_clks(struct ufs_hba *hba, unsigned long freq,
336 			     bool scale_up);
337 static irqreturn_t ufshcd_intr(int irq, void *__hba);
338 static int ufshcd_change_power_mode(struct ufs_hba *hba,
339 			     struct ufs_pa_layer_attr *pwr_mode);
340 static int ufshcd_setup_hba_vreg(struct ufs_hba *hba, bool on);
341 static int ufshcd_setup_vreg(struct ufs_hba *hba, bool on);
342 static inline int ufshcd_config_vreg_hpm(struct ufs_hba *hba,
343 					 struct ufs_vreg *vreg);
344 static void ufshcd_wb_toggle_buf_flush_during_h8(struct ufs_hba *hba,
345 						 bool enable);
346 static void ufshcd_hba_vreg_set_lpm(struct ufs_hba *hba);
347 static void ufshcd_hba_vreg_set_hpm(struct ufs_hba *hba);
348 
349 void ufshcd_enable_irq(struct ufs_hba *hba)
350 {
351 	if (!hba->is_irq_enabled) {
352 		enable_irq(hba->irq);
353 		hba->is_irq_enabled = true;
354 	}
355 }
356 EXPORT_SYMBOL_GPL(ufshcd_enable_irq);
357 
358 void ufshcd_disable_irq(struct ufs_hba *hba)
359 {
360 	if (hba->is_irq_enabled) {
361 		disable_irq(hba->irq);
362 		hba->is_irq_enabled = false;
363 	}
364 }
365 EXPORT_SYMBOL_GPL(ufshcd_disable_irq);
366 
367 /**
368  * ufshcd_enable_intr - enable interrupts
369  * @hba: per adapter instance
370  * @intrs: interrupt bits
371  */
372 static void ufshcd_enable_intr(struct ufs_hba *hba, u32 intrs)
373 {
374 	u32 old_val = ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
375 	u32 new_val = old_val | intrs;
376 
377 	if (new_val != old_val)
378 		ufshcd_writel(hba, new_val, REG_INTERRUPT_ENABLE);
379 }
380 
381 /**
382  * ufshcd_disable_intr - disable interrupts
383  * @hba: per adapter instance
384  * @intrs: interrupt bits
385  */
386 static void ufshcd_disable_intr(struct ufs_hba *hba, u32 intrs)
387 {
388 	u32 old_val = ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
389 	u32 new_val = old_val & ~intrs;
390 
391 	if (new_val != old_val)
392 		ufshcd_writel(hba, new_val, REG_INTERRUPT_ENABLE);
393 }
394 
395 static void ufshcd_configure_wb(struct ufs_hba *hba)
396 {
397 	if (!ufshcd_is_wb_allowed(hba))
398 		return;
399 
400 	ufshcd_wb_toggle(hba, true);
401 
402 	ufshcd_wb_toggle_buf_flush_during_h8(hba, true);
403 
404 	if (ufshcd_is_wb_buf_flush_allowed(hba))
405 		ufshcd_wb_toggle_buf_flush(hba, true);
406 }
407 
408 static void ufshcd_add_cmd_upiu_trace(struct ufs_hba *hba, unsigned int tag,
409 				      enum ufs_trace_str_t str_t)
410 {
411 	struct utp_upiu_req *rq = hba->lrb[tag].ucd_req_ptr;
412 	struct utp_upiu_header *header;
413 
414 	if (!trace_ufshcd_upiu_enabled())
415 		return;
416 
417 	if (str_t == UFS_CMD_SEND)
418 		header = &rq->header;
419 	else
420 		header = &hba->lrb[tag].ucd_rsp_ptr->header;
421 
422 	trace_ufshcd_upiu(hba, str_t, header, &rq->sc.cdb,
423 			  UFS_TSF_CDB);
424 }
425 
426 static void ufshcd_add_query_upiu_trace(struct ufs_hba *hba,
427 					enum ufs_trace_str_t str_t,
428 					struct utp_upiu_req *rq_rsp)
429 {
430 	if (!trace_ufshcd_upiu_enabled())
431 		return;
432 
433 	trace_ufshcd_upiu(hba, str_t, &rq_rsp->header,
434 			  &rq_rsp->qr, UFS_TSF_OSF);
435 }
436 
437 static void ufshcd_add_tm_upiu_trace(struct ufs_hba *hba, unsigned int tag,
438 				     enum ufs_trace_str_t str_t)
439 {
440 	struct utp_task_req_desc *descp = &hba->utmrdl_base_addr[tag];
441 
442 	if (!trace_ufshcd_upiu_enabled())
443 		return;
444 
445 	if (str_t == UFS_TM_SEND)
446 		trace_ufshcd_upiu(hba, str_t,
447 				  &descp->upiu_req.req_header,
448 				  &descp->upiu_req.input_param1,
449 				  UFS_TSF_TM_INPUT);
450 	else
451 		trace_ufshcd_upiu(hba, str_t,
452 				  &descp->upiu_rsp.rsp_header,
453 				  &descp->upiu_rsp.output_param1,
454 				  UFS_TSF_TM_OUTPUT);
455 }
456 
457 static void ufshcd_add_uic_command_trace(struct ufs_hba *hba,
458 					 const struct uic_command *ucmd,
459 					 enum ufs_trace_str_t str_t)
460 {
461 	u32 cmd;
462 
463 	if (!trace_ufshcd_uic_command_enabled())
464 		return;
465 
466 	if (str_t == UFS_CMD_SEND)
467 		cmd = ucmd->command;
468 	else
469 		cmd = ufshcd_readl(hba, REG_UIC_COMMAND);
470 
471 	trace_ufshcd_uic_command(hba, str_t, cmd,
472 				 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_1),
473 				 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_2),
474 				 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_3));
475 }
476 
477 static void ufshcd_add_command_trace(struct ufs_hba *hba, unsigned int tag,
478 				     enum ufs_trace_str_t str_t)
479 {
480 	u64 lba = 0;
481 	u8 opcode = 0, group_id = 0;
482 	u32 doorbell = 0;
483 	u32 intr;
484 	u32 hwq_id = 0;
485 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
486 	struct scsi_cmnd *cmd = lrbp->cmd;
487 	struct request *rq = scsi_cmd_to_rq(cmd);
488 	int transfer_len = -1;
489 
490 	if (!cmd)
491 		return;
492 
493 	/* trace UPIU also */
494 	ufshcd_add_cmd_upiu_trace(hba, tag, str_t);
495 	if (!trace_ufshcd_command_enabled())
496 		return;
497 
498 	opcode = cmd->cmnd[0];
499 
500 	if (opcode == READ_10 || opcode == WRITE_10) {
501 		/*
502 		 * Currently we only fully trace read(10) and write(10) commands
503 		 */
504 		transfer_len =
505 		       be32_to_cpu(lrbp->ucd_req_ptr->sc.exp_data_transfer_len);
506 		lba = scsi_get_lba(cmd);
507 		if (opcode == WRITE_10)
508 			group_id = lrbp->cmd->cmnd[6];
509 	} else if (opcode == UNMAP) {
510 		/*
511 		 * The number of Bytes to be unmapped beginning with the lba.
512 		 */
513 		transfer_len = blk_rq_bytes(rq);
514 		lba = scsi_get_lba(cmd);
515 	}
516 
517 	intr = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
518 
519 	if (hba->mcq_enabled) {
520 		struct ufs_hw_queue *hwq = ufshcd_mcq_req_to_hwq(hba, rq);
521 
522 		hwq_id = hwq->id;
523 	} else {
524 		doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
525 	}
526 	trace_ufshcd_command(cmd->device, hba, str_t, tag, doorbell, hwq_id,
527 			     transfer_len, intr, lba, opcode, group_id);
528 }
529 
530 static void ufshcd_print_clk_freqs(struct ufs_hba *hba)
531 {
532 	struct ufs_clk_info *clki;
533 	struct list_head *head = &hba->clk_list_head;
534 
535 	if (list_empty(head))
536 		return;
537 
538 	list_for_each_entry(clki, head, list) {
539 		if (!IS_ERR_OR_NULL(clki->clk) && clki->min_freq &&
540 				clki->max_freq)
541 			dev_err(hba->dev, "clk: %s, rate: %u\n",
542 					clki->name, clki->curr_freq);
543 	}
544 }
545 
546 static void ufshcd_print_evt(struct ufs_hba *hba, u32 id,
547 			     const char *err_name)
548 {
549 	int i;
550 	bool found = false;
551 	const struct ufs_event_hist *e;
552 
553 	if (id >= UFS_EVT_CNT)
554 		return;
555 
556 	e = &hba->ufs_stats.event[id];
557 
558 	for (i = 0; i < UFS_EVENT_HIST_LENGTH; i++) {
559 		int p = (i + e->pos) % UFS_EVENT_HIST_LENGTH;
560 
561 		if (e->tstamp[p] == 0)
562 			continue;
563 		dev_err(hba->dev, "%s[%d] = 0x%x at %lld us\n", err_name, p,
564 			e->val[p], div_u64(e->tstamp[p], 1000));
565 		found = true;
566 	}
567 
568 	if (!found)
569 		dev_err(hba->dev, "No record of %s\n", err_name);
570 	else
571 		dev_err(hba->dev, "%s: total cnt=%llu\n", err_name, e->cnt);
572 }
573 
574 static void ufshcd_print_evt_hist(struct ufs_hba *hba)
575 {
576 	ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, "host_regs: ");
577 
578 	ufshcd_print_evt(hba, UFS_EVT_PA_ERR, "pa_err");
579 	ufshcd_print_evt(hba, UFS_EVT_DL_ERR, "dl_err");
580 	ufshcd_print_evt(hba, UFS_EVT_NL_ERR, "nl_err");
581 	ufshcd_print_evt(hba, UFS_EVT_TL_ERR, "tl_err");
582 	ufshcd_print_evt(hba, UFS_EVT_DME_ERR, "dme_err");
583 	ufshcd_print_evt(hba, UFS_EVT_AUTO_HIBERN8_ERR,
584 			 "auto_hibern8_err");
585 	ufshcd_print_evt(hba, UFS_EVT_FATAL_ERR, "fatal_err");
586 	ufshcd_print_evt(hba, UFS_EVT_LINK_STARTUP_FAIL,
587 			 "link_startup_fail");
588 	ufshcd_print_evt(hba, UFS_EVT_RESUME_ERR, "resume_fail");
589 	ufshcd_print_evt(hba, UFS_EVT_SUSPEND_ERR,
590 			 "suspend_fail");
591 	ufshcd_print_evt(hba, UFS_EVT_WL_RES_ERR, "wlun resume_fail");
592 	ufshcd_print_evt(hba, UFS_EVT_WL_SUSP_ERR,
593 			 "wlun suspend_fail");
594 	ufshcd_print_evt(hba, UFS_EVT_DEV_RESET, "dev_reset");
595 	ufshcd_print_evt(hba, UFS_EVT_HOST_RESET, "host_reset");
596 	ufshcd_print_evt(hba, UFS_EVT_ABORT, "task_abort");
597 
598 	ufshcd_vops_dbg_register_dump(hba);
599 }
600 
601 static
602 void ufshcd_print_tr(struct ufs_hba *hba, int tag, bool pr_prdt)
603 {
604 	const struct ufshcd_lrb *lrbp;
605 	int prdt_length;
606 
607 	lrbp = &hba->lrb[tag];
608 
609 	dev_err(hba->dev, "UPIU[%d] - issue time %lld us\n",
610 			tag, div_u64(lrbp->issue_time_stamp_local_clock, 1000));
611 	dev_err(hba->dev, "UPIU[%d] - complete time %lld us\n",
612 			tag, div_u64(lrbp->compl_time_stamp_local_clock, 1000));
613 	dev_err(hba->dev,
614 		"UPIU[%d] - Transfer Request Descriptor phys@0x%llx\n",
615 		tag, (u64)lrbp->utrd_dma_addr);
616 
617 	ufshcd_hex_dump("UPIU TRD: ", lrbp->utr_descriptor_ptr,
618 			sizeof(struct utp_transfer_req_desc));
619 	dev_err(hba->dev, "UPIU[%d] - Request UPIU phys@0x%llx\n", tag,
620 		(u64)lrbp->ucd_req_dma_addr);
621 	ufshcd_hex_dump("UPIU REQ: ", lrbp->ucd_req_ptr,
622 			sizeof(struct utp_upiu_req));
623 	dev_err(hba->dev, "UPIU[%d] - Response UPIU phys@0x%llx\n", tag,
624 		(u64)lrbp->ucd_rsp_dma_addr);
625 	ufshcd_hex_dump("UPIU RSP: ", lrbp->ucd_rsp_ptr,
626 			sizeof(struct utp_upiu_rsp));
627 
628 	prdt_length = le16_to_cpu(
629 		lrbp->utr_descriptor_ptr->prd_table_length);
630 	if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN)
631 		prdt_length /= ufshcd_sg_entry_size(hba);
632 
633 	dev_err(hba->dev,
634 		"UPIU[%d] - PRDT - %d entries  phys@0x%llx\n",
635 		tag, prdt_length,
636 		(u64)lrbp->ucd_prdt_dma_addr);
637 
638 	if (pr_prdt)
639 		ufshcd_hex_dump("UPIU PRDT: ", lrbp->ucd_prdt_ptr,
640 			ufshcd_sg_entry_size(hba) * prdt_length);
641 }
642 
643 static bool ufshcd_print_tr_iter(struct request *req, void *priv)
644 {
645 	struct scsi_device *sdev = req->q->queuedata;
646 	struct Scsi_Host *shost = sdev->host;
647 	struct ufs_hba *hba = shost_priv(shost);
648 
649 	ufshcd_print_tr(hba, req->tag, *(bool *)priv);
650 
651 	return true;
652 }
653 
654 /**
655  * ufshcd_print_trs_all - print trs for all started requests.
656  * @hba: per-adapter instance.
657  * @pr_prdt: need to print prdt or not.
658  */
659 static void ufshcd_print_trs_all(struct ufs_hba *hba, bool pr_prdt)
660 {
661 	blk_mq_tagset_busy_iter(&hba->host->tag_set, ufshcd_print_tr_iter, &pr_prdt);
662 }
663 
664 static void ufshcd_print_tmrs(struct ufs_hba *hba, unsigned long bitmap)
665 {
666 	int tag;
667 
668 	for_each_set_bit(tag, &bitmap, hba->nutmrs) {
669 		struct utp_task_req_desc *tmrdp = &hba->utmrdl_base_addr[tag];
670 
671 		dev_err(hba->dev, "TM[%d] - Task Management Header\n", tag);
672 		ufshcd_hex_dump("", tmrdp, sizeof(*tmrdp));
673 	}
674 }
675 
676 static void ufshcd_print_host_state(struct ufs_hba *hba)
677 {
678 	const struct scsi_device *sdev_ufs = hba->ufs_device_wlun;
679 
680 	dev_err(hba->dev, "UFS Host state=%d\n", hba->ufshcd_state);
681 	dev_err(hba->dev, "%d outstanding reqs, tasks=0x%lx\n",
682 		scsi_host_busy(hba->host), hba->outstanding_tasks);
683 	dev_err(hba->dev, "saved_err=0x%x, saved_uic_err=0x%x\n",
684 		hba->saved_err, hba->saved_uic_err);
685 	dev_err(hba->dev, "Device power mode=%d, UIC link state=%d\n",
686 		hba->curr_dev_pwr_mode, hba->uic_link_state);
687 	dev_err(hba->dev, "PM in progress=%d, sys. suspended=%d\n",
688 		hba->pm_op_in_progress, hba->is_sys_suspended);
689 	dev_err(hba->dev, "Auto BKOPS=%d, Host self-block=%d\n",
690 		hba->auto_bkops_enabled, hba->host->host_self_blocked);
691 	dev_err(hba->dev, "Clk gate=%d\n", hba->clk_gating.state);
692 	dev_err(hba->dev,
693 		"last_hibern8_exit_tstamp at %lld us, hibern8_exit_cnt=%d\n",
694 		div_u64(hba->ufs_stats.last_hibern8_exit_tstamp, 1000),
695 		hba->ufs_stats.hibern8_exit_cnt);
696 	dev_err(hba->dev, "error handling flags=0x%x, req. abort count=%d\n",
697 		hba->eh_flags, hba->req_abort_count);
698 	dev_err(hba->dev, "hba->ufs_version=0x%x, Host capabilities=0x%x, caps=0x%x\n",
699 		hba->ufs_version, hba->capabilities, hba->caps);
700 	dev_err(hba->dev, "quirks=0x%x, dev. quirks=0x%x\n", hba->quirks,
701 		hba->dev_quirks);
702 	if (sdev_ufs)
703 		dev_err(hba->dev, "UFS dev info: %.8s %.16s rev %.4s\n",
704 			sdev_ufs->vendor, sdev_ufs->model, sdev_ufs->rev);
705 
706 	ufshcd_print_clk_freqs(hba);
707 }
708 
709 /**
710  * ufshcd_print_pwr_info - print power params as saved in hba
711  * power info
712  * @hba: per-adapter instance
713  */
714 static void ufshcd_print_pwr_info(struct ufs_hba *hba)
715 {
716 	static const char * const names[] = {
717 		"INVALID MODE",
718 		"FAST MODE",
719 		"SLOW_MODE",
720 		"INVALID MODE",
721 		"FASTAUTO_MODE",
722 		"SLOWAUTO_MODE",
723 		"INVALID MODE",
724 	};
725 
726 	/*
727 	 * Using dev_dbg to avoid messages during runtime PM to avoid
728 	 * never-ending cycles of messages written back to storage by user space
729 	 * causing runtime resume, causing more messages and so on.
730 	 */
731 	dev_dbg(hba->dev, "%s:[RX, TX]: gear=[%d, %d], lane[%d, %d], pwr[%s, %s], rate = %d\n",
732 		 __func__,
733 		 hba->pwr_info.gear_rx, hba->pwr_info.gear_tx,
734 		 hba->pwr_info.lane_rx, hba->pwr_info.lane_tx,
735 		 names[hba->pwr_info.pwr_rx],
736 		 names[hba->pwr_info.pwr_tx],
737 		 hba->pwr_info.hs_rate);
738 }
739 
740 static void ufshcd_device_reset(struct ufs_hba *hba)
741 {
742 	int err;
743 
744 	err = ufshcd_vops_device_reset(hba);
745 
746 	if (!err) {
747 		ufshcd_set_ufs_dev_active(hba);
748 		if (ufshcd_is_wb_allowed(hba)) {
749 			hba->dev_info.wb_enabled = false;
750 			hba->dev_info.wb_buf_flush_enabled = false;
751 		}
752 		if (hba->dev_info.rtc_type == UFS_RTC_RELATIVE)
753 			hba->dev_info.rtc_time_baseline = 0;
754 	}
755 	if (err != -EOPNOTSUPP)
756 		ufshcd_update_evt_hist(hba, UFS_EVT_DEV_RESET, err);
757 }
758 
759 void ufshcd_delay_us(unsigned long us, unsigned long tolerance)
760 {
761 	if (!us)
762 		return;
763 
764 	if (us < 10)
765 		udelay(us);
766 	else
767 		usleep_range(us, us + tolerance);
768 }
769 EXPORT_SYMBOL_GPL(ufshcd_delay_us);
770 
771 /**
772  * ufshcd_wait_for_register - wait for register value to change
773  * @hba: per-adapter interface
774  * @reg: mmio register offset
775  * @mask: mask to apply to the read register value
776  * @val: value to wait for
777  * @interval_us: polling interval in microseconds
778  * @timeout_ms: timeout in milliseconds
779  *
780  * Return: -ETIMEDOUT on error, zero on success.
781  */
782 static int ufshcd_wait_for_register(struct ufs_hba *hba, u32 reg, u32 mask,
783 				    u32 val, unsigned long interval_us,
784 				    unsigned long timeout_ms)
785 {
786 	u32 v;
787 
788 	val &= mask; /* ignore bits that we don't intend to wait on */
789 
790 	return read_poll_timeout(ufshcd_readl, v, (v & mask) == val,
791 				 interval_us, timeout_ms * 1000, false, hba, reg);
792 }
793 
794 /**
795  * ufshcd_get_intr_mask - Get the interrupt bit mask
796  * @hba: Pointer to adapter instance
797  *
798  * Return: interrupt bit mask per version
799  */
800 static inline u32 ufshcd_get_intr_mask(struct ufs_hba *hba)
801 {
802 	if (hba->ufs_version <= ufshci_version(2, 0))
803 		return INTERRUPT_MASK_ALL_VER_11;
804 
805 	return INTERRUPT_MASK_ALL_VER_21;
806 }
807 
808 /**
809  * ufshcd_get_ufs_version - Get the UFS version supported by the HBA
810  * @hba: Pointer to adapter instance
811  *
812  * Return: UFSHCI version supported by the controller
813  */
814 static inline u32 ufshcd_get_ufs_version(struct ufs_hba *hba)
815 {
816 	u32 ufshci_ver;
817 
818 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_UFS_HCI_VERSION)
819 		ufshci_ver = ufshcd_vops_get_ufs_hci_version(hba);
820 	else
821 		ufshci_ver = ufshcd_readl(hba, REG_UFS_VERSION);
822 
823 	/*
824 	 * UFSHCI v1.x uses a different version scheme, in order
825 	 * to allow the use of comparisons with the ufshci_version
826 	 * function, we convert it to the same scheme as ufs 2.0+.
827 	 */
828 	if (ufshci_ver & 0x00010000)
829 		return ufshci_version(1, ufshci_ver & 0x00000100);
830 
831 	return ufshci_ver;
832 }
833 
834 /**
835  * ufshcd_is_device_present - Check if any device connected to
836  *			      the host controller
837  * @hba: pointer to adapter instance
838  *
839  * Return: true if device present, false if no device detected
840  */
841 static inline bool ufshcd_is_device_present(struct ufs_hba *hba)
842 {
843 	return ufshcd_readl(hba, REG_CONTROLLER_STATUS) & DEVICE_PRESENT;
844 }
845 
846 /**
847  * ufshcd_get_tr_ocs - Get the UTRD Overall Command Status
848  * @lrbp: pointer to local command reference block
849  * @cqe: pointer to the completion queue entry
850  *
851  * This function is used to get the OCS field from UTRD
852  *
853  * Return: the OCS field in the UTRD.
854  */
855 static enum utp_ocs ufshcd_get_tr_ocs(struct ufshcd_lrb *lrbp,
856 				      struct cq_entry *cqe)
857 {
858 	if (cqe)
859 		return le32_to_cpu(cqe->status) & MASK_OCS;
860 
861 	return lrbp->utr_descriptor_ptr->header.ocs & MASK_OCS;
862 }
863 
864 /**
865  * ufshcd_utrl_clear() - Clear requests from the controller request list.
866  * @hba: per adapter instance
867  * @mask: mask with one bit set for each request to be cleared
868  */
869 static inline void ufshcd_utrl_clear(struct ufs_hba *hba, u32 mask)
870 {
871 	if (hba->quirks & UFSHCI_QUIRK_BROKEN_REQ_LIST_CLR)
872 		mask = ~mask;
873 	/*
874 	 * From the UFSHCI specification: "UTP Transfer Request List CLear
875 	 * Register (UTRLCLR): This field is bit significant. Each bit
876 	 * corresponds to a slot in the UTP Transfer Request List, where bit 0
877 	 * corresponds to request slot 0. A bit in this field is set to ‘0’
878 	 * by host software to indicate to the host controller that a transfer
879 	 * request slot is cleared. The host controller
880 	 * shall free up any resources associated to the request slot
881 	 * immediately, and shall set the associated bit in UTRLDBR to ‘0’. The
882 	 * host software indicates no change to request slots by setting the
883 	 * associated bits in this field to ‘1’. Bits in this field shall only
884 	 * be set ‘1’ or ‘0’ by host software when UTRLRSR is set to ‘1’."
885 	 */
886 	ufshcd_writel(hba, ~mask, REG_UTP_TRANSFER_REQ_LIST_CLEAR);
887 }
888 
889 /**
890  * ufshcd_utmrl_clear - Clear a bit in UTMRLCLR register
891  * @hba: per adapter instance
892  * @pos: position of the bit to be cleared
893  */
894 static inline void ufshcd_utmrl_clear(struct ufs_hba *hba, u32 pos)
895 {
896 	if (hba->quirks & UFSHCI_QUIRK_BROKEN_REQ_LIST_CLR)
897 		ufshcd_writel(hba, (1 << pos), REG_UTP_TASK_REQ_LIST_CLEAR);
898 	else
899 		ufshcd_writel(hba, ~(1 << pos), REG_UTP_TASK_REQ_LIST_CLEAR);
900 }
901 
902 /**
903  * ufshcd_get_lists_status - Check UCRDY, UTRLRDY and UTMRLRDY
904  * @reg: Register value of host controller status
905  *
906  * Return: 0 on success; a positive value if failed.
907  */
908 static inline int ufshcd_get_lists_status(u32 reg)
909 {
910 	return !((reg & UFSHCD_STATUS_READY) == UFSHCD_STATUS_READY);
911 }
912 
913 /**
914  * ufshcd_get_uic_cmd_result - Get the UIC command result
915  * @hba: Pointer to adapter instance
916  *
917  * This function gets the result of UIC command completion
918  *
919  * Return: 0 on success; non-zero value on error.
920  */
921 static inline int ufshcd_get_uic_cmd_result(struct ufs_hba *hba)
922 {
923 	return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_2) &
924 	       MASK_UIC_COMMAND_RESULT;
925 }
926 
927 /**
928  * ufshcd_get_dme_attr_val - Get the value of attribute returned by UIC command
929  * @hba: Pointer to adapter instance
930  *
931  * This function gets UIC command argument3
932  *
933  * Return: 0 on success; non-zero value on error.
934  */
935 static inline u32 ufshcd_get_dme_attr_val(struct ufs_hba *hba)
936 {
937 	return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_3);
938 }
939 
940 /**
941  * ufshcd_get_req_rsp - returns the TR response transaction type
942  * @ucd_rsp_ptr: pointer to response UPIU
943  *
944  * Return: UPIU type.
945  */
946 static inline enum upiu_response_transaction
947 ufshcd_get_req_rsp(struct utp_upiu_rsp *ucd_rsp_ptr)
948 {
949 	return ucd_rsp_ptr->header.transaction_code;
950 }
951 
952 /**
953  * ufshcd_is_exception_event - Check if the device raised an exception event
954  * @ucd_rsp_ptr: pointer to response UPIU
955  *
956  * The function checks if the device raised an exception event indicated in
957  * the Device Information field of response UPIU.
958  *
959  * Return: true if exception is raised, false otherwise.
960  */
961 static inline bool ufshcd_is_exception_event(struct utp_upiu_rsp *ucd_rsp_ptr)
962 {
963 	return ucd_rsp_ptr->header.device_information & 1;
964 }
965 
966 /**
967  * ufshcd_reset_intr_aggr - Reset interrupt aggregation values.
968  * @hba: per adapter instance
969  */
970 static inline void
971 ufshcd_reset_intr_aggr(struct ufs_hba *hba)
972 {
973 	ufshcd_writel(hba, INT_AGGR_ENABLE |
974 		      INT_AGGR_COUNTER_AND_TIMER_RESET,
975 		      REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
976 }
977 
978 /**
979  * ufshcd_config_intr_aggr - Configure interrupt aggregation values.
980  * @hba: per adapter instance
981  * @cnt: Interrupt aggregation counter threshold
982  * @tmout: Interrupt aggregation timeout value
983  */
984 static inline void
985 ufshcd_config_intr_aggr(struct ufs_hba *hba, u8 cnt, u8 tmout)
986 {
987 	ufshcd_writel(hba, INT_AGGR_ENABLE | INT_AGGR_PARAM_WRITE |
988 		      INT_AGGR_COUNTER_THLD_VAL(cnt) |
989 		      INT_AGGR_TIMEOUT_VAL(tmout),
990 		      REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
991 }
992 
993 /**
994  * ufshcd_disable_intr_aggr - Disables interrupt aggregation.
995  * @hba: per adapter instance
996  */
997 static inline void ufshcd_disable_intr_aggr(struct ufs_hba *hba)
998 {
999 	ufshcd_writel(hba, 0, REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
1000 }
1001 
1002 /**
1003  * ufshcd_enable_run_stop_reg - Enable run-stop registers,
1004  *			When run-stop registers are set to 1, it indicates the
1005  *			host controller that it can process the requests
1006  * @hba: per adapter instance
1007  */
1008 static void ufshcd_enable_run_stop_reg(struct ufs_hba *hba)
1009 {
1010 	ufshcd_writel(hba, UTP_TASK_REQ_LIST_RUN_STOP_BIT,
1011 		      REG_UTP_TASK_REQ_LIST_RUN_STOP);
1012 	ufshcd_writel(hba, UTP_TRANSFER_REQ_LIST_RUN_STOP_BIT,
1013 		      REG_UTP_TRANSFER_REQ_LIST_RUN_STOP);
1014 }
1015 
1016 /**
1017  * ufshcd_hba_start - Start controller initialization sequence
1018  * @hba: per adapter instance
1019  */
1020 static inline void ufshcd_hba_start(struct ufs_hba *hba)
1021 {
1022 	u32 val = CONTROLLER_ENABLE;
1023 
1024 	if (ufshcd_crypto_enable(hba))
1025 		val |= CRYPTO_GENERAL_ENABLE;
1026 
1027 	ufshcd_writel(hba, val, REG_CONTROLLER_ENABLE);
1028 }
1029 
1030 /**
1031  * ufshcd_is_hba_active - Get controller state
1032  * @hba: per adapter instance
1033  *
1034  * Return: true if and only if the controller is active.
1035  */
1036 bool ufshcd_is_hba_active(struct ufs_hba *hba)
1037 {
1038 	return ufshcd_readl(hba, REG_CONTROLLER_ENABLE) & CONTROLLER_ENABLE;
1039 }
1040 EXPORT_SYMBOL_GPL(ufshcd_is_hba_active);
1041 
1042 /**
1043  * ufshcd_pm_qos_init - initialize PM QoS request
1044  * @hba: per adapter instance
1045  */
1046 void ufshcd_pm_qos_init(struct ufs_hba *hba)
1047 {
1048 
1049 	if (hba->pm_qos_enabled)
1050 		return;
1051 
1052 	cpu_latency_qos_add_request(&hba->pm_qos_req, PM_QOS_DEFAULT_VALUE);
1053 
1054 	if (cpu_latency_qos_request_active(&hba->pm_qos_req))
1055 		hba->pm_qos_enabled = true;
1056 }
1057 
1058 /**
1059  * ufshcd_pm_qos_exit - remove request from PM QoS
1060  * @hba: per adapter instance
1061  */
1062 void ufshcd_pm_qos_exit(struct ufs_hba *hba)
1063 {
1064 	if (!hba->pm_qos_enabled)
1065 		return;
1066 
1067 	cpu_latency_qos_remove_request(&hba->pm_qos_req);
1068 	hba->pm_qos_enabled = false;
1069 }
1070 
1071 /**
1072  * ufshcd_pm_qos_update - update PM QoS request
1073  * @hba: per adapter instance
1074  * @on: If True, vote for perf PM QoS mode otherwise power save mode
1075  */
1076 static void ufshcd_pm_qos_update(struct ufs_hba *hba, bool on)
1077 {
1078 	if (!hba->pm_qos_enabled)
1079 		return;
1080 
1081 	cpu_latency_qos_update_request(&hba->pm_qos_req, on ? 0 : PM_QOS_DEFAULT_VALUE);
1082 }
1083 
1084 /**
1085  * ufshcd_set_clk_freq - set UFS controller clock frequencies
1086  * @hba: per adapter instance
1087  * @scale_up: If True, set max possible frequency othewise set low frequency
1088  *
1089  * Return: 0 if successful; < 0 upon failure.
1090  */
1091 static int ufshcd_set_clk_freq(struct ufs_hba *hba, bool scale_up)
1092 {
1093 	int ret = 0;
1094 	struct ufs_clk_info *clki;
1095 	struct list_head *head = &hba->clk_list_head;
1096 
1097 	if (list_empty(head))
1098 		goto out;
1099 
1100 	list_for_each_entry(clki, head, list) {
1101 		if (!IS_ERR_OR_NULL(clki->clk)) {
1102 			if (scale_up && clki->max_freq) {
1103 				if (clki->curr_freq == clki->max_freq)
1104 					continue;
1105 
1106 				ret = clk_set_rate(clki->clk, clki->max_freq);
1107 				if (ret) {
1108 					dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
1109 						__func__, clki->name,
1110 						clki->max_freq, ret);
1111 					break;
1112 				}
1113 				trace_ufshcd_clk_scaling(hba,
1114 						"scaled up", clki->name,
1115 						clki->curr_freq,
1116 						clki->max_freq);
1117 
1118 				clki->curr_freq = clki->max_freq;
1119 
1120 			} else if (!scale_up && clki->min_freq) {
1121 				if (clki->curr_freq == clki->min_freq)
1122 					continue;
1123 
1124 				ret = clk_set_rate(clki->clk, clki->min_freq);
1125 				if (ret) {
1126 					dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
1127 						__func__, clki->name,
1128 						clki->min_freq, ret);
1129 					break;
1130 				}
1131 				trace_ufshcd_clk_scaling(hba,
1132 						"scaled down", clki->name,
1133 						clki->curr_freq,
1134 						clki->min_freq);
1135 				clki->curr_freq = clki->min_freq;
1136 			}
1137 		}
1138 		dev_dbg(hba->dev, "%s: clk: %s, rate: %lu\n", __func__,
1139 				clki->name, clk_get_rate(clki->clk));
1140 	}
1141 
1142 out:
1143 	return ret;
1144 }
1145 
1146 int ufshcd_opp_config_clks(struct device *dev, struct opp_table *opp_table,
1147 			   struct dev_pm_opp *opp, void *data,
1148 			   bool scaling_down)
1149 {
1150 	struct ufs_hba *hba = dev_get_drvdata(dev);
1151 	struct list_head *head = &hba->clk_list_head;
1152 	struct ufs_clk_info *clki;
1153 	unsigned long freq;
1154 	u8 idx = 0;
1155 	int ret;
1156 
1157 	list_for_each_entry(clki, head, list) {
1158 		if (!IS_ERR_OR_NULL(clki->clk)) {
1159 			freq = dev_pm_opp_get_freq_indexed(opp, idx++);
1160 
1161 			/* Do not set rate for clocks having frequency as 0 */
1162 			if (!freq)
1163 				continue;
1164 
1165 			ret = clk_set_rate(clki->clk, freq);
1166 			if (ret) {
1167 				dev_err(dev, "%s: %s clk set rate(%ldHz) failed, %d\n",
1168 					__func__, clki->name, freq, ret);
1169 				return ret;
1170 			}
1171 
1172 			trace_ufshcd_clk_scaling(hba,
1173 				(scaling_down ? "scaled down" : "scaled up"),
1174 				clki->name, hba->clk_scaling.target_freq, freq);
1175 		}
1176 	}
1177 
1178 	return 0;
1179 }
1180 EXPORT_SYMBOL_GPL(ufshcd_opp_config_clks);
1181 
1182 static int ufshcd_opp_set_rate(struct ufs_hba *hba, unsigned long freq)
1183 {
1184 	struct dev_pm_opp *opp;
1185 	int ret;
1186 
1187 	opp = dev_pm_opp_find_freq_floor_indexed(hba->dev,
1188 						 &freq, 0);
1189 	if (IS_ERR(opp))
1190 		return PTR_ERR(opp);
1191 
1192 	ret = dev_pm_opp_set_opp(hba->dev, opp);
1193 	dev_pm_opp_put(opp);
1194 
1195 	return ret;
1196 }
1197 
1198 /**
1199  * ufshcd_scale_clks - scale up or scale down UFS controller clocks
1200  * @hba: per adapter instance
1201  * @freq: frequency to scale
1202  * @scale_up: True if scaling up and false if scaling down
1203  *
1204  * Return: 0 if successful; < 0 upon failure.
1205  */
1206 static int ufshcd_scale_clks(struct ufs_hba *hba, unsigned long freq,
1207 			     bool scale_up)
1208 {
1209 	int ret = 0;
1210 	ktime_t start = ktime_get();
1211 
1212 	ret = ufshcd_vops_clk_scale_notify(hba, scale_up, freq, PRE_CHANGE);
1213 	if (ret)
1214 		goto out;
1215 
1216 	if (hba->use_pm_opp)
1217 		ret = ufshcd_opp_set_rate(hba, freq);
1218 	else
1219 		ret = ufshcd_set_clk_freq(hba, scale_up);
1220 	if (ret)
1221 		goto out;
1222 
1223 	ret = ufshcd_vops_clk_scale_notify(hba, scale_up, freq, POST_CHANGE);
1224 	if (ret) {
1225 		if (hba->use_pm_opp)
1226 			ufshcd_opp_set_rate(hba,
1227 					    hba->devfreq->previous_freq);
1228 		else
1229 			ufshcd_set_clk_freq(hba, !scale_up);
1230 		goto out;
1231 	}
1232 
1233 	ufshcd_pm_qos_update(hba, scale_up);
1234 
1235 out:
1236 	trace_ufshcd_profile_clk_scaling(hba,
1237 			(scale_up ? "up" : "down"),
1238 			ktime_to_us(ktime_sub(ktime_get(), start)), ret);
1239 	return ret;
1240 }
1241 
1242 /**
1243  * ufshcd_is_devfreq_scaling_required - check if scaling is required or not
1244  * @hba: per adapter instance
1245  * @freq: frequency to scale
1246  * @scale_up: True if scaling up and false if scaling down
1247  *
1248  * Return: true if scaling is required, false otherwise.
1249  */
1250 static bool ufshcd_is_devfreq_scaling_required(struct ufs_hba *hba,
1251 					       unsigned long freq, bool scale_up)
1252 {
1253 	struct ufs_clk_info *clki;
1254 	struct list_head *head = &hba->clk_list_head;
1255 
1256 	if (list_empty(head))
1257 		return false;
1258 
1259 	if (hba->use_pm_opp)
1260 		return freq != hba->clk_scaling.target_freq;
1261 
1262 	list_for_each_entry(clki, head, list) {
1263 		if (!IS_ERR_OR_NULL(clki->clk)) {
1264 			if (scale_up && clki->max_freq) {
1265 				if (clki->curr_freq == clki->max_freq)
1266 					continue;
1267 				return true;
1268 			} else if (!scale_up && clki->min_freq) {
1269 				if (clki->curr_freq == clki->min_freq)
1270 					continue;
1271 				return true;
1272 			}
1273 		}
1274 	}
1275 
1276 	return false;
1277 }
1278 
1279 /*
1280  * Determine the number of pending commands by counting the bits in the SCSI
1281  * device budget maps. This approach has been selected because a bit is set in
1282  * the budget map before scsi_host_queue_ready() checks the host_self_blocked
1283  * flag. The host_self_blocked flag can be modified by calling
1284  * scsi_block_requests() or scsi_unblock_requests().
1285  */
1286 static u32 ufshcd_pending_cmds(struct ufs_hba *hba)
1287 {
1288 	const struct scsi_device *sdev;
1289 	unsigned long flags;
1290 	u32 pending = 0;
1291 
1292 	spin_lock_irqsave(hba->host->host_lock, flags);
1293 	__shost_for_each_device(sdev, hba->host)
1294 		pending += sbitmap_weight(&sdev->budget_map);
1295 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1296 
1297 	return pending;
1298 }
1299 
1300 /*
1301  * Wait until all pending SCSI commands and TMFs have finished or the timeout
1302  * has expired.
1303  *
1304  * Return: 0 upon success; -EBUSY upon timeout.
1305  */
1306 static int ufshcd_wait_for_doorbell_clr(struct ufs_hba *hba,
1307 					u64 wait_timeout_us)
1308 {
1309 	int ret = 0;
1310 	u32 tm_doorbell;
1311 	u32 tr_pending;
1312 	bool timeout = false, do_last_check = false;
1313 	ktime_t start;
1314 
1315 	ufshcd_hold(hba);
1316 	/*
1317 	 * Wait for all the outstanding tasks/transfer requests.
1318 	 * Verify by checking the doorbell registers are clear.
1319 	 */
1320 	start = ktime_get();
1321 	do {
1322 		if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL) {
1323 			ret = -EBUSY;
1324 			goto out;
1325 		}
1326 
1327 		tm_doorbell = ufshcd_readl(hba, REG_UTP_TASK_REQ_DOOR_BELL);
1328 		tr_pending = ufshcd_pending_cmds(hba);
1329 		if (!tm_doorbell && !tr_pending) {
1330 			timeout = false;
1331 			break;
1332 		} else if (do_last_check) {
1333 			break;
1334 		}
1335 
1336 		io_schedule_timeout(msecs_to_jiffies(20));
1337 		if (ktime_to_us(ktime_sub(ktime_get(), start)) >
1338 		    wait_timeout_us) {
1339 			timeout = true;
1340 			/*
1341 			 * We might have scheduled out for long time so make
1342 			 * sure to check if doorbells are cleared by this time
1343 			 * or not.
1344 			 */
1345 			do_last_check = true;
1346 		}
1347 	} while (tm_doorbell || tr_pending);
1348 
1349 	if (timeout) {
1350 		dev_err(hba->dev,
1351 			"%s: timedout waiting for doorbell to clear (tm=0x%x, tr=0x%x)\n",
1352 			__func__, tm_doorbell, tr_pending);
1353 		ret = -EBUSY;
1354 	}
1355 out:
1356 	ufshcd_release(hba);
1357 	return ret;
1358 }
1359 
1360 /**
1361  * ufshcd_scale_gear - scale up/down UFS gear
1362  * @hba: per adapter instance
1363  * @target_gear: target gear to scale to
1364  * @scale_up: True for scaling up gear and false for scaling down
1365  *
1366  * Return: 0 for success; -EBUSY if scaling can't happen at this time;
1367  * non-zero for any other errors.
1368  */
1369 static int ufshcd_scale_gear(struct ufs_hba *hba, u32 target_gear, bool scale_up)
1370 {
1371 	int ret = 0;
1372 	struct ufs_pa_layer_attr new_pwr_info;
1373 
1374 	if (target_gear) {
1375 		new_pwr_info = hba->pwr_info;
1376 		new_pwr_info.gear_tx = target_gear;
1377 		new_pwr_info.gear_rx = target_gear;
1378 
1379 		goto config_pwr_mode;
1380 	}
1381 
1382 	/* Legacy gear scaling, in case vops_freq_to_gear_speed() is not implemented */
1383 	if (scale_up) {
1384 		memcpy(&new_pwr_info, &hba->clk_scaling.saved_pwr_info,
1385 		       sizeof(struct ufs_pa_layer_attr));
1386 	} else {
1387 		memcpy(&new_pwr_info, &hba->pwr_info,
1388 		       sizeof(struct ufs_pa_layer_attr));
1389 
1390 		if (hba->pwr_info.gear_tx > hba->clk_scaling.min_gear ||
1391 		    hba->pwr_info.gear_rx > hba->clk_scaling.min_gear) {
1392 			/* save the current power mode */
1393 			memcpy(&hba->clk_scaling.saved_pwr_info,
1394 				&hba->pwr_info,
1395 				sizeof(struct ufs_pa_layer_attr));
1396 
1397 			/* scale down gear */
1398 			new_pwr_info.gear_tx = hba->clk_scaling.min_gear;
1399 			new_pwr_info.gear_rx = hba->clk_scaling.min_gear;
1400 		}
1401 	}
1402 
1403 config_pwr_mode:
1404 	/* check if the power mode needs to be changed or not? */
1405 	ret = ufshcd_config_pwr_mode(hba, &new_pwr_info);
1406 	if (ret)
1407 		dev_err(hba->dev, "%s: failed err %d, old gear: (tx %d rx %d), new gear: (tx %d rx %d)",
1408 			__func__, ret,
1409 			hba->pwr_info.gear_tx, hba->pwr_info.gear_rx,
1410 			new_pwr_info.gear_tx, new_pwr_info.gear_rx);
1411 
1412 	return ret;
1413 }
1414 
1415 /*
1416  * Wait until all pending SCSI commands and TMFs have finished or the timeout
1417  * has expired.
1418  *
1419  * Return: 0 upon success; -EBUSY upon timeout.
1420  */
1421 static int ufshcd_clock_scaling_prepare(struct ufs_hba *hba, u64 timeout_us)
1422 {
1423 	int ret = 0;
1424 	/*
1425 	 * make sure that there are no outstanding requests when
1426 	 * clock scaling is in progress
1427 	 */
1428 	mutex_lock(&hba->host->scan_mutex);
1429 	blk_mq_quiesce_tagset(&hba->host->tag_set);
1430 	mutex_lock(&hba->wb_mutex);
1431 	down_write(&hba->clk_scaling_lock);
1432 
1433 	if (!hba->clk_scaling.is_allowed ||
1434 	    ufshcd_wait_for_doorbell_clr(hba, timeout_us)) {
1435 		ret = -EBUSY;
1436 		up_write(&hba->clk_scaling_lock);
1437 		mutex_unlock(&hba->wb_mutex);
1438 		blk_mq_unquiesce_tagset(&hba->host->tag_set);
1439 		mutex_unlock(&hba->host->scan_mutex);
1440 		goto out;
1441 	}
1442 
1443 	/* let's not get into low power until clock scaling is completed */
1444 	ufshcd_hold(hba);
1445 
1446 out:
1447 	return ret;
1448 }
1449 
1450 static void ufshcd_clock_scaling_unprepare(struct ufs_hba *hba, int err)
1451 {
1452 	up_write(&hba->clk_scaling_lock);
1453 
1454 	/* Enable Write Booster if current gear requires it else disable it */
1455 	if (ufshcd_enable_wb_if_scaling_up(hba) && !err)
1456 		ufshcd_wb_toggle(hba, hba->pwr_info.gear_rx >= hba->clk_scaling.wb_gear);
1457 
1458 	mutex_unlock(&hba->wb_mutex);
1459 
1460 	blk_mq_unquiesce_tagset(&hba->host->tag_set);
1461 	mutex_unlock(&hba->host->scan_mutex);
1462 	ufshcd_release(hba);
1463 }
1464 
1465 /**
1466  * ufshcd_devfreq_scale - scale up/down UFS clocks and gear
1467  * @hba: per adapter instance
1468  * @freq: frequency to scale
1469  * @scale_up: True for scaling up and false for scalin down
1470  *
1471  * Return: 0 for success; -EBUSY if scaling can't happen at this time; non-zero
1472  * for any other errors.
1473  */
1474 static int ufshcd_devfreq_scale(struct ufs_hba *hba, unsigned long freq,
1475 				bool scale_up)
1476 {
1477 	u32 old_gear = hba->pwr_info.gear_rx;
1478 	u32 new_gear = 0;
1479 	int ret = 0;
1480 
1481 	new_gear = ufshcd_vops_freq_to_gear_speed(hba, freq);
1482 
1483 	ret = ufshcd_clock_scaling_prepare(hba, 1 * USEC_PER_SEC);
1484 	if (ret)
1485 		return ret;
1486 
1487 	/* scale down the gear before scaling down clocks */
1488 	if (!scale_up) {
1489 		ret = ufshcd_scale_gear(hba, new_gear, false);
1490 		if (ret)
1491 			goto out_unprepare;
1492 	}
1493 
1494 	ret = ufshcd_scale_clks(hba, freq, scale_up);
1495 	if (ret) {
1496 		if (!scale_up)
1497 			ufshcd_scale_gear(hba, old_gear, true);
1498 		goto out_unprepare;
1499 	}
1500 
1501 	/* scale up the gear after scaling up clocks */
1502 	if (scale_up) {
1503 		ret = ufshcd_scale_gear(hba, new_gear, true);
1504 		if (ret) {
1505 			ufshcd_scale_clks(hba, hba->devfreq->previous_freq,
1506 					  false);
1507 			goto out_unprepare;
1508 		}
1509 	}
1510 
1511 out_unprepare:
1512 	ufshcd_clock_scaling_unprepare(hba, ret);
1513 	return ret;
1514 }
1515 
1516 static void ufshcd_clk_scaling_suspend_work(struct work_struct *work)
1517 {
1518 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1519 					   clk_scaling.suspend_work);
1520 
1521 	scoped_guard(spinlock_irqsave, &hba->clk_scaling.lock)
1522 	{
1523 		if (hba->clk_scaling.active_reqs ||
1524 		    hba->clk_scaling.is_suspended)
1525 			return;
1526 
1527 		hba->clk_scaling.is_suspended = true;
1528 		hba->clk_scaling.window_start_t = 0;
1529 	}
1530 
1531 	devfreq_suspend_device(hba->devfreq);
1532 }
1533 
1534 static void ufshcd_clk_scaling_resume_work(struct work_struct *work)
1535 {
1536 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1537 					   clk_scaling.resume_work);
1538 
1539 	scoped_guard(spinlock_irqsave, &hba->clk_scaling.lock)
1540 	{
1541 		if (!hba->clk_scaling.is_suspended)
1542 			return;
1543 		hba->clk_scaling.is_suspended = false;
1544 	}
1545 
1546 	devfreq_resume_device(hba->devfreq);
1547 }
1548 
1549 static int ufshcd_devfreq_target(struct device *dev,
1550 				unsigned long *freq, u32 flags)
1551 {
1552 	int ret = 0;
1553 	struct ufs_hba *hba = dev_get_drvdata(dev);
1554 	ktime_t start;
1555 	bool scale_up = false, sched_clk_scaling_suspend_work = false;
1556 	struct list_head *clk_list = &hba->clk_list_head;
1557 	struct ufs_clk_info *clki;
1558 
1559 	if (!ufshcd_is_clkscaling_supported(hba))
1560 		return -EINVAL;
1561 
1562 	if (hba->use_pm_opp) {
1563 		struct dev_pm_opp *opp;
1564 
1565 		/* Get the recommended frequency from OPP framework */
1566 		opp = devfreq_recommended_opp(dev, freq, flags);
1567 		if (IS_ERR(opp))
1568 			return PTR_ERR(opp);
1569 
1570 		dev_pm_opp_put(opp);
1571 	} else {
1572 		/* Override with the closest supported frequency */
1573 		clki = list_first_entry(&hba->clk_list_head, struct ufs_clk_info,
1574 					list);
1575 		*freq =	(unsigned long) clk_round_rate(clki->clk, *freq);
1576 	}
1577 
1578 	scoped_guard(spinlock_irqsave, &hba->clk_scaling.lock)
1579 	{
1580 		if (ufshcd_eh_in_progress(hba))
1581 			return 0;
1582 
1583 		/* Skip scaling clock when clock scaling is suspended */
1584 		if (hba->clk_scaling.is_suspended) {
1585 			dev_warn(hba->dev, "clock scaling is suspended, skip");
1586 			return 0;
1587 		}
1588 
1589 		if (!hba->clk_scaling.active_reqs)
1590 			sched_clk_scaling_suspend_work = true;
1591 
1592 		if (list_empty(clk_list))
1593 			goto out;
1594 
1595 		/* Decide based on the target or rounded-off frequency and update */
1596 		if (hba->use_pm_opp)
1597 			scale_up = *freq > hba->clk_scaling.target_freq;
1598 		else
1599 			scale_up = *freq == clki->max_freq;
1600 
1601 		if (!hba->use_pm_opp && !scale_up)
1602 			*freq = clki->min_freq;
1603 
1604 		/* Update the frequency */
1605 		if (!ufshcd_is_devfreq_scaling_required(hba, *freq, scale_up)) {
1606 			ret = 0;
1607 			goto out; /* no state change required */
1608 		}
1609 	}
1610 
1611 	start = ktime_get();
1612 	ret = ufshcd_devfreq_scale(hba, *freq, scale_up);
1613 	if (!ret)
1614 		hba->clk_scaling.target_freq = *freq;
1615 
1616 	trace_ufshcd_profile_clk_scaling(hba,
1617 		(scale_up ? "up" : "down"),
1618 		ktime_to_us(ktime_sub(ktime_get(), start)), ret);
1619 
1620 out:
1621 	if (sched_clk_scaling_suspend_work &&
1622 			(!scale_up || hba->clk_scaling.suspend_on_no_request))
1623 		queue_work(hba->clk_scaling.workq,
1624 			   &hba->clk_scaling.suspend_work);
1625 
1626 	return ret;
1627 }
1628 
1629 static int ufshcd_devfreq_get_dev_status(struct device *dev,
1630 		struct devfreq_dev_status *stat)
1631 {
1632 	struct ufs_hba *hba = dev_get_drvdata(dev);
1633 	struct ufs_clk_scaling *scaling = &hba->clk_scaling;
1634 	ktime_t curr_t;
1635 
1636 	if (!ufshcd_is_clkscaling_supported(hba))
1637 		return -EINVAL;
1638 
1639 	memset(stat, 0, sizeof(*stat));
1640 
1641 	guard(spinlock_irqsave)(&hba->clk_scaling.lock);
1642 
1643 	curr_t = ktime_get();
1644 	if (!scaling->window_start_t)
1645 		goto start_window;
1646 
1647 	/*
1648 	 * If current frequency is 0, then the ondemand governor considers
1649 	 * there's no initial frequency set. And it always requests to set
1650 	 * to max. frequency.
1651 	 */
1652 	if (hba->use_pm_opp) {
1653 		stat->current_frequency = hba->clk_scaling.target_freq;
1654 	} else {
1655 		struct list_head *clk_list = &hba->clk_list_head;
1656 		struct ufs_clk_info *clki;
1657 
1658 		clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1659 		stat->current_frequency = clki->curr_freq;
1660 	}
1661 
1662 	if (scaling->is_busy_started)
1663 		scaling->tot_busy_t += ktime_us_delta(curr_t,
1664 				scaling->busy_start_t);
1665 	stat->total_time = ktime_us_delta(curr_t, scaling->window_start_t);
1666 	stat->busy_time = scaling->tot_busy_t;
1667 start_window:
1668 	scaling->window_start_t = curr_t;
1669 	scaling->tot_busy_t = 0;
1670 
1671 	if (scaling->active_reqs) {
1672 		scaling->busy_start_t = curr_t;
1673 		scaling->is_busy_started = true;
1674 	} else {
1675 		scaling->busy_start_t = 0;
1676 		scaling->is_busy_started = false;
1677 	}
1678 
1679 	return 0;
1680 }
1681 
1682 static int ufshcd_devfreq_init(struct ufs_hba *hba)
1683 {
1684 	struct list_head *clk_list = &hba->clk_list_head;
1685 	struct ufs_clk_info *clki;
1686 	struct devfreq *devfreq;
1687 	int ret;
1688 
1689 	/* Skip devfreq if we don't have any clocks in the list */
1690 	if (list_empty(clk_list))
1691 		return 0;
1692 
1693 	if (!hba->use_pm_opp) {
1694 		clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1695 		dev_pm_opp_add(hba->dev, clki->min_freq, 0);
1696 		dev_pm_opp_add(hba->dev, clki->max_freq, 0);
1697 	}
1698 
1699 	ufshcd_vops_config_scaling_param(hba, &hba->vps->devfreq_profile,
1700 					 &hba->vps->ondemand_data);
1701 	devfreq = devfreq_add_device(hba->dev,
1702 			&hba->vps->devfreq_profile,
1703 			DEVFREQ_GOV_SIMPLE_ONDEMAND,
1704 			&hba->vps->ondemand_data);
1705 	if (IS_ERR(devfreq)) {
1706 		ret = PTR_ERR(devfreq);
1707 		dev_err(hba->dev, "Unable to register with devfreq %d\n", ret);
1708 
1709 		if (!hba->use_pm_opp) {
1710 			dev_pm_opp_remove(hba->dev, clki->min_freq);
1711 			dev_pm_opp_remove(hba->dev, clki->max_freq);
1712 		}
1713 		return ret;
1714 	}
1715 
1716 	hba->devfreq = devfreq;
1717 
1718 	return 0;
1719 }
1720 
1721 static void ufshcd_devfreq_remove(struct ufs_hba *hba)
1722 {
1723 	struct list_head *clk_list = &hba->clk_list_head;
1724 
1725 	if (!hba->devfreq)
1726 		return;
1727 
1728 	devfreq_remove_device(hba->devfreq);
1729 	hba->devfreq = NULL;
1730 
1731 	if (!hba->use_pm_opp) {
1732 		struct ufs_clk_info *clki;
1733 
1734 		clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1735 		dev_pm_opp_remove(hba->dev, clki->min_freq);
1736 		dev_pm_opp_remove(hba->dev, clki->max_freq);
1737 	}
1738 }
1739 
1740 static void ufshcd_suspend_clkscaling(struct ufs_hba *hba)
1741 {
1742 	bool suspend = false;
1743 
1744 	cancel_work_sync(&hba->clk_scaling.suspend_work);
1745 	cancel_work_sync(&hba->clk_scaling.resume_work);
1746 
1747 	scoped_guard(spinlock_irqsave, &hba->clk_scaling.lock)
1748 	{
1749 		if (!hba->clk_scaling.is_suspended) {
1750 			suspend = true;
1751 			hba->clk_scaling.is_suspended = true;
1752 			hba->clk_scaling.window_start_t = 0;
1753 		}
1754 	}
1755 
1756 	if (suspend)
1757 		devfreq_suspend_device(hba->devfreq);
1758 }
1759 
1760 static void ufshcd_resume_clkscaling(struct ufs_hba *hba)
1761 {
1762 	bool resume = false;
1763 
1764 	scoped_guard(spinlock_irqsave, &hba->clk_scaling.lock)
1765 	{
1766 		if (hba->clk_scaling.is_suspended) {
1767 			resume = true;
1768 			hba->clk_scaling.is_suspended = false;
1769 		}
1770 	}
1771 
1772 	if (resume)
1773 		devfreq_resume_device(hba->devfreq);
1774 }
1775 
1776 static ssize_t ufshcd_clkscale_enable_show(struct device *dev,
1777 		struct device_attribute *attr, char *buf)
1778 {
1779 	struct ufs_hba *hba = dev_get_drvdata(dev);
1780 
1781 	return sysfs_emit(buf, "%d\n", hba->clk_scaling.is_enabled);
1782 }
1783 
1784 static ssize_t ufshcd_clkscale_enable_store(struct device *dev,
1785 		struct device_attribute *attr, const char *buf, size_t count)
1786 {
1787 	struct ufs_hba *hba = dev_get_drvdata(dev);
1788 	struct ufs_clk_info *clki;
1789 	unsigned long freq;
1790 	u32 value;
1791 	int err = 0;
1792 
1793 	if (kstrtou32(buf, 0, &value))
1794 		return -EINVAL;
1795 
1796 	down(&hba->host_sem);
1797 	if (!ufshcd_is_user_access_allowed(hba)) {
1798 		err = -EBUSY;
1799 		goto out;
1800 	}
1801 
1802 	value = !!value;
1803 	if (value == hba->clk_scaling.is_enabled)
1804 		goto out;
1805 
1806 	ufshcd_rpm_get_sync(hba);
1807 	ufshcd_hold(hba);
1808 
1809 	hba->clk_scaling.is_enabled = value;
1810 
1811 	if (value) {
1812 		ufshcd_resume_clkscaling(hba);
1813 		goto out_rel;
1814 	}
1815 
1816 	clki = list_first_entry(&hba->clk_list_head, struct ufs_clk_info, list);
1817 	freq = clki->max_freq;
1818 
1819 	ufshcd_suspend_clkscaling(hba);
1820 
1821 	if (!ufshcd_is_devfreq_scaling_required(hba, freq, true))
1822 		goto out_rel;
1823 
1824 	err = ufshcd_devfreq_scale(hba, freq, true);
1825 	if (err)
1826 		dev_err(hba->dev, "%s: failed to scale clocks up %d\n",
1827 				__func__, err);
1828 	else
1829 		hba->clk_scaling.target_freq = freq;
1830 
1831 out_rel:
1832 	ufshcd_release(hba);
1833 	ufshcd_rpm_put_sync(hba);
1834 out:
1835 	up(&hba->host_sem);
1836 	return err ? err : count;
1837 }
1838 
1839 static void ufshcd_init_clk_scaling_sysfs(struct ufs_hba *hba)
1840 {
1841 	hba->clk_scaling.enable_attr.show = ufshcd_clkscale_enable_show;
1842 	hba->clk_scaling.enable_attr.store = ufshcd_clkscale_enable_store;
1843 	sysfs_attr_init(&hba->clk_scaling.enable_attr.attr);
1844 	hba->clk_scaling.enable_attr.attr.name = "clkscale_enable";
1845 	hba->clk_scaling.enable_attr.attr.mode = 0644;
1846 	if (device_create_file(hba->dev, &hba->clk_scaling.enable_attr))
1847 		dev_err(hba->dev, "Failed to create sysfs for clkscale_enable\n");
1848 }
1849 
1850 static void ufshcd_remove_clk_scaling_sysfs(struct ufs_hba *hba)
1851 {
1852 	if (hba->clk_scaling.enable_attr.attr.name)
1853 		device_remove_file(hba->dev, &hba->clk_scaling.enable_attr);
1854 }
1855 
1856 static void ufshcd_init_clk_scaling(struct ufs_hba *hba)
1857 {
1858 	if (!ufshcd_is_clkscaling_supported(hba))
1859 		return;
1860 
1861 	if (!hba->clk_scaling.min_gear)
1862 		hba->clk_scaling.min_gear = UFS_HS_G1;
1863 
1864 	if (!hba->clk_scaling.wb_gear)
1865 		/* Use intermediate gear speed HS_G3 as the default wb_gear */
1866 		hba->clk_scaling.wb_gear = UFS_HS_G3;
1867 
1868 	INIT_WORK(&hba->clk_scaling.suspend_work,
1869 		  ufshcd_clk_scaling_suspend_work);
1870 	INIT_WORK(&hba->clk_scaling.resume_work,
1871 		  ufshcd_clk_scaling_resume_work);
1872 
1873 	spin_lock_init(&hba->clk_scaling.lock);
1874 
1875 	hba->clk_scaling.workq = alloc_ordered_workqueue(
1876 		"ufs_clkscaling_%d", WQ_MEM_RECLAIM, hba->host->host_no);
1877 
1878 	hba->clk_scaling.is_initialized = true;
1879 }
1880 
1881 static void ufshcd_exit_clk_scaling(struct ufs_hba *hba)
1882 {
1883 	if (!hba->clk_scaling.is_initialized)
1884 		return;
1885 
1886 	ufshcd_remove_clk_scaling_sysfs(hba);
1887 	destroy_workqueue(hba->clk_scaling.workq);
1888 	ufshcd_devfreq_remove(hba);
1889 	hba->clk_scaling.is_initialized = false;
1890 }
1891 
1892 static void ufshcd_ungate_work(struct work_struct *work)
1893 {
1894 	int ret;
1895 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1896 			clk_gating.ungate_work);
1897 
1898 	cancel_delayed_work_sync(&hba->clk_gating.gate_work);
1899 
1900 	scoped_guard(spinlock_irqsave, &hba->clk_gating.lock) {
1901 		if (hba->clk_gating.state == CLKS_ON)
1902 			return;
1903 	}
1904 
1905 	ufshcd_hba_vreg_set_hpm(hba);
1906 	ufshcd_setup_clocks(hba, true);
1907 
1908 	ufshcd_enable_irq(hba);
1909 
1910 	/* Exit from hibern8 */
1911 	if (ufshcd_can_hibern8_during_gating(hba)) {
1912 		/* Prevent gating in this path */
1913 		hba->clk_gating.is_suspended = true;
1914 		if (ufshcd_is_link_hibern8(hba)) {
1915 			ret = ufshcd_uic_hibern8_exit(hba);
1916 			if (ret)
1917 				dev_err(hba->dev, "%s: hibern8 exit failed %d\n",
1918 					__func__, ret);
1919 			else
1920 				ufshcd_set_link_active(hba);
1921 		}
1922 		hba->clk_gating.is_suspended = false;
1923 	}
1924 }
1925 
1926 /**
1927  * ufshcd_hold - Enable clocks that were gated earlier due to ufshcd_release.
1928  * Also, exit from hibern8 mode and set the link as active.
1929  * @hba: per adapter instance
1930  */
1931 void ufshcd_hold(struct ufs_hba *hba)
1932 {
1933 	bool flush_result;
1934 	unsigned long flags;
1935 
1936 	if (!ufshcd_is_clkgating_allowed(hba) ||
1937 	    !hba->clk_gating.is_initialized)
1938 		return;
1939 	spin_lock_irqsave(&hba->clk_gating.lock, flags);
1940 	hba->clk_gating.active_reqs++;
1941 
1942 start:
1943 	switch (hba->clk_gating.state) {
1944 	case CLKS_ON:
1945 		/*
1946 		 * Wait for the ungate work to complete if in progress.
1947 		 * Though the clocks may be in ON state, the link could
1948 		 * still be in hibner8 state if hibern8 is allowed
1949 		 * during clock gating.
1950 		 * Make sure we exit hibern8 state also in addition to
1951 		 * clocks being ON.
1952 		 */
1953 		if (ufshcd_can_hibern8_during_gating(hba) &&
1954 		    ufshcd_is_link_hibern8(hba)) {
1955 			spin_unlock_irqrestore(&hba->clk_gating.lock, flags);
1956 			flush_result = flush_work(&hba->clk_gating.ungate_work);
1957 			if (hba->clk_gating.is_suspended && !flush_result)
1958 				return;
1959 			spin_lock_irqsave(&hba->clk_gating.lock, flags);
1960 			goto start;
1961 		}
1962 		break;
1963 	case REQ_CLKS_OFF:
1964 		if (cancel_delayed_work(&hba->clk_gating.gate_work)) {
1965 			hba->clk_gating.state = CLKS_ON;
1966 			trace_ufshcd_clk_gating(hba,
1967 						hba->clk_gating.state);
1968 			break;
1969 		}
1970 		/*
1971 		 * If we are here, it means gating work is either done or
1972 		 * currently running. Hence, fall through to cancel gating
1973 		 * work and to enable clocks.
1974 		 */
1975 		fallthrough;
1976 	case CLKS_OFF:
1977 		hba->clk_gating.state = REQ_CLKS_ON;
1978 		trace_ufshcd_clk_gating(hba,
1979 					hba->clk_gating.state);
1980 		queue_work(hba->clk_gating.clk_gating_workq,
1981 			   &hba->clk_gating.ungate_work);
1982 		/*
1983 		 * fall through to check if we should wait for this
1984 		 * work to be done or not.
1985 		 */
1986 		fallthrough;
1987 	case REQ_CLKS_ON:
1988 		spin_unlock_irqrestore(&hba->clk_gating.lock, flags);
1989 		flush_work(&hba->clk_gating.ungate_work);
1990 		/* Make sure state is CLKS_ON before returning */
1991 		spin_lock_irqsave(&hba->clk_gating.lock, flags);
1992 		goto start;
1993 	default:
1994 		dev_err(hba->dev, "%s: clk gating is in invalid state %d\n",
1995 				__func__, hba->clk_gating.state);
1996 		break;
1997 	}
1998 	spin_unlock_irqrestore(&hba->clk_gating.lock, flags);
1999 }
2000 EXPORT_SYMBOL_GPL(ufshcd_hold);
2001 
2002 static void ufshcd_gate_work(struct work_struct *work)
2003 {
2004 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
2005 			clk_gating.gate_work.work);
2006 	int ret;
2007 
2008 	scoped_guard(spinlock_irqsave, &hba->clk_gating.lock) {
2009 		/*
2010 		 * In case you are here to cancel this work the gating state
2011 		 * would be marked as REQ_CLKS_ON. In this case save time by
2012 		 * skipping the gating work and exit after changing the clock
2013 		 * state to CLKS_ON.
2014 		 */
2015 		if (hba->clk_gating.is_suspended ||
2016 		    hba->clk_gating.state != REQ_CLKS_OFF) {
2017 			hba->clk_gating.state = CLKS_ON;
2018 			trace_ufshcd_clk_gating(hba,
2019 						hba->clk_gating.state);
2020 			return;
2021 		}
2022 
2023 		if (hba->clk_gating.active_reqs)
2024 			return;
2025 	}
2026 
2027 	scoped_guard(spinlock_irqsave, hba->host->host_lock) {
2028 		if (ufshcd_is_ufs_dev_busy(hba) ||
2029 		    hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL)
2030 			return;
2031 	}
2032 
2033 	/* put the link into hibern8 mode before turning off clocks */
2034 	if (ufshcd_can_hibern8_during_gating(hba)) {
2035 		ret = ufshcd_uic_hibern8_enter(hba);
2036 		if (ret) {
2037 			hba->clk_gating.state = CLKS_ON;
2038 			dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
2039 					__func__, ret);
2040 			trace_ufshcd_clk_gating(hba,
2041 						hba->clk_gating.state);
2042 			return;
2043 		}
2044 		ufshcd_set_link_hibern8(hba);
2045 	}
2046 
2047 	ufshcd_disable_irq(hba);
2048 
2049 	ufshcd_setup_clocks(hba, false);
2050 
2051 	/* Put the host controller in low power mode if possible */
2052 	ufshcd_hba_vreg_set_lpm(hba);
2053 	/*
2054 	 * In case you are here to cancel this work the gating state
2055 	 * would be marked as REQ_CLKS_ON. In this case keep the state
2056 	 * as REQ_CLKS_ON which would anyway imply that clocks are off
2057 	 * and a request to turn them on is pending. By doing this way,
2058 	 * we keep the state machine in tact and this would ultimately
2059 	 * prevent from doing cancel work multiple times when there are
2060 	 * new requests arriving before the current cancel work is done.
2061 	 */
2062 	guard(spinlock_irqsave)(&hba->clk_gating.lock);
2063 	if (hba->clk_gating.state == REQ_CLKS_OFF) {
2064 		hba->clk_gating.state = CLKS_OFF;
2065 		trace_ufshcd_clk_gating(hba,
2066 					hba->clk_gating.state);
2067 	}
2068 }
2069 
2070 static void __ufshcd_release(struct ufs_hba *hba)
2071 {
2072 	lockdep_assert_held(&hba->clk_gating.lock);
2073 
2074 	if (!ufshcd_is_clkgating_allowed(hba))
2075 		return;
2076 
2077 	hba->clk_gating.active_reqs--;
2078 
2079 	if (hba->clk_gating.active_reqs || hba->clk_gating.is_suspended ||
2080 	    !hba->clk_gating.is_initialized ||
2081 	    hba->clk_gating.state == CLKS_OFF)
2082 		return;
2083 
2084 	scoped_guard(spinlock_irqsave, hba->host->host_lock) {
2085 		if (ufshcd_has_pending_tasks(hba) ||
2086 		    hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL)
2087 			return;
2088 	}
2089 
2090 	hba->clk_gating.state = REQ_CLKS_OFF;
2091 	trace_ufshcd_clk_gating(hba, hba->clk_gating.state);
2092 	queue_delayed_work(hba->clk_gating.clk_gating_workq,
2093 			   &hba->clk_gating.gate_work,
2094 			   msecs_to_jiffies(hba->clk_gating.delay_ms));
2095 }
2096 
2097 void ufshcd_release(struct ufs_hba *hba)
2098 {
2099 	guard(spinlock_irqsave)(&hba->clk_gating.lock);
2100 	__ufshcd_release(hba);
2101 }
2102 EXPORT_SYMBOL_GPL(ufshcd_release);
2103 
2104 static ssize_t ufshcd_clkgate_delay_show(struct device *dev,
2105 		struct device_attribute *attr, char *buf)
2106 {
2107 	struct ufs_hba *hba = dev_get_drvdata(dev);
2108 
2109 	return sysfs_emit(buf, "%lu\n", hba->clk_gating.delay_ms);
2110 }
2111 
2112 void ufshcd_clkgate_delay_set(struct device *dev, unsigned long value)
2113 {
2114 	struct ufs_hba *hba = dev_get_drvdata(dev);
2115 
2116 	guard(spinlock_irqsave)(&hba->clk_gating.lock);
2117 	hba->clk_gating.delay_ms = value;
2118 }
2119 EXPORT_SYMBOL_GPL(ufshcd_clkgate_delay_set);
2120 
2121 static ssize_t ufshcd_clkgate_delay_store(struct device *dev,
2122 		struct device_attribute *attr, const char *buf, size_t count)
2123 {
2124 	unsigned long value;
2125 
2126 	if (kstrtoul(buf, 0, &value))
2127 		return -EINVAL;
2128 
2129 	ufshcd_clkgate_delay_set(dev, value);
2130 	return count;
2131 }
2132 
2133 static ssize_t ufshcd_clkgate_enable_show(struct device *dev,
2134 		struct device_attribute *attr, char *buf)
2135 {
2136 	struct ufs_hba *hba = dev_get_drvdata(dev);
2137 
2138 	return sysfs_emit(buf, "%d\n", hba->clk_gating.is_enabled);
2139 }
2140 
2141 static ssize_t ufshcd_clkgate_enable_store(struct device *dev,
2142 		struct device_attribute *attr, const char *buf, size_t count)
2143 {
2144 	struct ufs_hba *hba = dev_get_drvdata(dev);
2145 	u32 value;
2146 
2147 	if (kstrtou32(buf, 0, &value))
2148 		return -EINVAL;
2149 
2150 	value = !!value;
2151 
2152 	guard(spinlock_irqsave)(&hba->clk_gating.lock);
2153 
2154 	if (value == hba->clk_gating.is_enabled)
2155 		return count;
2156 
2157 	if (value)
2158 		__ufshcd_release(hba);
2159 	else
2160 		hba->clk_gating.active_reqs++;
2161 
2162 	hba->clk_gating.is_enabled = value;
2163 
2164 	return count;
2165 }
2166 
2167 static void ufshcd_init_clk_gating_sysfs(struct ufs_hba *hba)
2168 {
2169 	hba->clk_gating.delay_attr.show = ufshcd_clkgate_delay_show;
2170 	hba->clk_gating.delay_attr.store = ufshcd_clkgate_delay_store;
2171 	sysfs_attr_init(&hba->clk_gating.delay_attr.attr);
2172 	hba->clk_gating.delay_attr.attr.name = "clkgate_delay_ms";
2173 	hba->clk_gating.delay_attr.attr.mode = 0644;
2174 	if (device_create_file(hba->dev, &hba->clk_gating.delay_attr))
2175 		dev_err(hba->dev, "Failed to create sysfs for clkgate_delay\n");
2176 
2177 	hba->clk_gating.enable_attr.show = ufshcd_clkgate_enable_show;
2178 	hba->clk_gating.enable_attr.store = ufshcd_clkgate_enable_store;
2179 	sysfs_attr_init(&hba->clk_gating.enable_attr.attr);
2180 	hba->clk_gating.enable_attr.attr.name = "clkgate_enable";
2181 	hba->clk_gating.enable_attr.attr.mode = 0644;
2182 	if (device_create_file(hba->dev, &hba->clk_gating.enable_attr))
2183 		dev_err(hba->dev, "Failed to create sysfs for clkgate_enable\n");
2184 }
2185 
2186 static void ufshcd_remove_clk_gating_sysfs(struct ufs_hba *hba)
2187 {
2188 	if (hba->clk_gating.delay_attr.attr.name)
2189 		device_remove_file(hba->dev, &hba->clk_gating.delay_attr);
2190 	if (hba->clk_gating.enable_attr.attr.name)
2191 		device_remove_file(hba->dev, &hba->clk_gating.enable_attr);
2192 }
2193 
2194 static void ufshcd_init_clk_gating(struct ufs_hba *hba)
2195 {
2196 	if (!ufshcd_is_clkgating_allowed(hba))
2197 		return;
2198 
2199 	hba->clk_gating.state = CLKS_ON;
2200 
2201 	hba->clk_gating.delay_ms = 150;
2202 	INIT_DELAYED_WORK(&hba->clk_gating.gate_work, ufshcd_gate_work);
2203 	INIT_WORK(&hba->clk_gating.ungate_work, ufshcd_ungate_work);
2204 
2205 	hba->clk_gating.clk_gating_workq = alloc_ordered_workqueue(
2206 		"ufs_clk_gating_%d", WQ_MEM_RECLAIM | WQ_HIGHPRI,
2207 		hba->host->host_no);
2208 
2209 	ufshcd_init_clk_gating_sysfs(hba);
2210 
2211 	hba->clk_gating.is_enabled = true;
2212 	hba->clk_gating.is_initialized = true;
2213 }
2214 
2215 static void ufshcd_exit_clk_gating(struct ufs_hba *hba)
2216 {
2217 	if (!hba->clk_gating.is_initialized)
2218 		return;
2219 
2220 	ufshcd_remove_clk_gating_sysfs(hba);
2221 
2222 	/* Ungate the clock if necessary. */
2223 	ufshcd_hold(hba);
2224 	hba->clk_gating.is_initialized = false;
2225 	ufshcd_release(hba);
2226 
2227 	destroy_workqueue(hba->clk_gating.clk_gating_workq);
2228 }
2229 
2230 static void ufshcd_clk_scaling_start_busy(struct ufs_hba *hba)
2231 {
2232 	bool queue_resume_work = false;
2233 	ktime_t curr_t = ktime_get();
2234 
2235 	if (!ufshcd_is_clkscaling_supported(hba))
2236 		return;
2237 
2238 	guard(spinlock_irqsave)(&hba->clk_scaling.lock);
2239 
2240 	if (!hba->clk_scaling.active_reqs++)
2241 		queue_resume_work = true;
2242 
2243 	if (!hba->clk_scaling.is_enabled || hba->pm_op_in_progress)
2244 		return;
2245 
2246 	if (queue_resume_work)
2247 		queue_work(hba->clk_scaling.workq,
2248 			   &hba->clk_scaling.resume_work);
2249 
2250 	if (!hba->clk_scaling.window_start_t) {
2251 		hba->clk_scaling.window_start_t = curr_t;
2252 		hba->clk_scaling.tot_busy_t = 0;
2253 		hba->clk_scaling.is_busy_started = false;
2254 	}
2255 
2256 	if (!hba->clk_scaling.is_busy_started) {
2257 		hba->clk_scaling.busy_start_t = curr_t;
2258 		hba->clk_scaling.is_busy_started = true;
2259 	}
2260 }
2261 
2262 static void ufshcd_clk_scaling_update_busy(struct ufs_hba *hba)
2263 {
2264 	struct ufs_clk_scaling *scaling = &hba->clk_scaling;
2265 
2266 	if (!ufshcd_is_clkscaling_supported(hba))
2267 		return;
2268 
2269 	guard(spinlock_irqsave)(&hba->clk_scaling.lock);
2270 
2271 	hba->clk_scaling.active_reqs--;
2272 	if (!scaling->active_reqs && scaling->is_busy_started) {
2273 		scaling->tot_busy_t += ktime_to_us(ktime_sub(ktime_get(),
2274 					scaling->busy_start_t));
2275 		scaling->busy_start_t = 0;
2276 		scaling->is_busy_started = false;
2277 	}
2278 }
2279 
2280 static inline int ufshcd_monitor_opcode2dir(u8 opcode)
2281 {
2282 	if (opcode == READ_6 || opcode == READ_10 || opcode == READ_16)
2283 		return READ;
2284 	else if (opcode == WRITE_6 || opcode == WRITE_10 || opcode == WRITE_16)
2285 		return WRITE;
2286 	else
2287 		return -EINVAL;
2288 }
2289 
2290 static inline bool ufshcd_should_inform_monitor(struct ufs_hba *hba,
2291 						struct ufshcd_lrb *lrbp)
2292 {
2293 	const struct ufs_hba_monitor *m = &hba->monitor;
2294 
2295 	return (m->enabled && lrbp && lrbp->cmd &&
2296 		(!m->chunk_size || m->chunk_size == lrbp->cmd->sdb.length) &&
2297 		ktime_before(hba->monitor.enabled_ts, lrbp->issue_time_stamp));
2298 }
2299 
2300 static void ufshcd_start_monitor(struct ufs_hba *hba,
2301 				 const struct ufshcd_lrb *lrbp)
2302 {
2303 	int dir = ufshcd_monitor_opcode2dir(*lrbp->cmd->cmnd);
2304 	unsigned long flags;
2305 
2306 	spin_lock_irqsave(hba->host->host_lock, flags);
2307 	if (dir >= 0 && hba->monitor.nr_queued[dir]++ == 0)
2308 		hba->monitor.busy_start_ts[dir] = ktime_get();
2309 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2310 }
2311 
2312 static void ufshcd_update_monitor(struct ufs_hba *hba, const struct ufshcd_lrb *lrbp)
2313 {
2314 	int dir = ufshcd_monitor_opcode2dir(*lrbp->cmd->cmnd);
2315 	unsigned long flags;
2316 
2317 	spin_lock_irqsave(hba->host->host_lock, flags);
2318 	if (dir >= 0 && hba->monitor.nr_queued[dir] > 0) {
2319 		const struct request *req = scsi_cmd_to_rq(lrbp->cmd);
2320 		struct ufs_hba_monitor *m = &hba->monitor;
2321 		ktime_t now, inc, lat;
2322 
2323 		now = lrbp->compl_time_stamp;
2324 		inc = ktime_sub(now, m->busy_start_ts[dir]);
2325 		m->total_busy[dir] = ktime_add(m->total_busy[dir], inc);
2326 		m->nr_sec_rw[dir] += blk_rq_sectors(req);
2327 
2328 		/* Update latencies */
2329 		m->nr_req[dir]++;
2330 		lat = ktime_sub(now, lrbp->issue_time_stamp);
2331 		m->lat_sum[dir] += lat;
2332 		if (m->lat_max[dir] < lat || !m->lat_max[dir])
2333 			m->lat_max[dir] = lat;
2334 		if (m->lat_min[dir] > lat || !m->lat_min[dir])
2335 			m->lat_min[dir] = lat;
2336 
2337 		m->nr_queued[dir]--;
2338 		/* Push forward the busy start of monitor */
2339 		m->busy_start_ts[dir] = now;
2340 	}
2341 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2342 }
2343 
2344 /**
2345  * ufshcd_send_command - Send SCSI or device management commands
2346  * @hba: per adapter instance
2347  * @task_tag: Task tag of the command
2348  * @hwq: pointer to hardware queue instance
2349  */
2350 static inline
2351 void ufshcd_send_command(struct ufs_hba *hba, unsigned int task_tag,
2352 			 struct ufs_hw_queue *hwq)
2353 {
2354 	struct ufshcd_lrb *lrbp = &hba->lrb[task_tag];
2355 	unsigned long flags;
2356 
2357 	lrbp->issue_time_stamp = ktime_get();
2358 	lrbp->issue_time_stamp_local_clock = local_clock();
2359 	lrbp->compl_time_stamp = ktime_set(0, 0);
2360 	lrbp->compl_time_stamp_local_clock = 0;
2361 	ufshcd_add_command_trace(hba, task_tag, UFS_CMD_SEND);
2362 	if (lrbp->cmd)
2363 		ufshcd_clk_scaling_start_busy(hba);
2364 	if (unlikely(ufshcd_should_inform_monitor(hba, lrbp)))
2365 		ufshcd_start_monitor(hba, lrbp);
2366 
2367 	if (hba->mcq_enabled) {
2368 		int utrd_size = sizeof(struct utp_transfer_req_desc);
2369 		struct utp_transfer_req_desc *src = lrbp->utr_descriptor_ptr;
2370 		struct utp_transfer_req_desc *dest;
2371 
2372 		spin_lock(&hwq->sq_lock);
2373 		dest = hwq->sqe_base_addr + hwq->sq_tail_slot;
2374 		memcpy(dest, src, utrd_size);
2375 		ufshcd_inc_sq_tail(hwq);
2376 		spin_unlock(&hwq->sq_lock);
2377 	} else {
2378 		spin_lock_irqsave(&hba->outstanding_lock, flags);
2379 		if (hba->vops && hba->vops->setup_xfer_req)
2380 			hba->vops->setup_xfer_req(hba, lrbp->task_tag,
2381 						  !!lrbp->cmd);
2382 		__set_bit(lrbp->task_tag, &hba->outstanding_reqs);
2383 		ufshcd_writel(hba, 1 << lrbp->task_tag,
2384 			      REG_UTP_TRANSFER_REQ_DOOR_BELL);
2385 		spin_unlock_irqrestore(&hba->outstanding_lock, flags);
2386 	}
2387 }
2388 
2389 /**
2390  * ufshcd_copy_sense_data - Copy sense data in case of check condition
2391  * @lrbp: pointer to local reference block
2392  */
2393 static inline void ufshcd_copy_sense_data(struct ufshcd_lrb *lrbp)
2394 {
2395 	u8 *const sense_buffer = lrbp->cmd->sense_buffer;
2396 	u16 resp_len;
2397 	int len;
2398 
2399 	resp_len = be16_to_cpu(lrbp->ucd_rsp_ptr->header.data_segment_length);
2400 	if (sense_buffer && resp_len) {
2401 		int len_to_copy;
2402 
2403 		len = be16_to_cpu(lrbp->ucd_rsp_ptr->sr.sense_data_len);
2404 		len_to_copy = min_t(int, UFS_SENSE_SIZE, len);
2405 
2406 		memcpy(sense_buffer, lrbp->ucd_rsp_ptr->sr.sense_data,
2407 		       len_to_copy);
2408 	}
2409 }
2410 
2411 /**
2412  * ufshcd_copy_query_response() - Copy the Query Response and the data
2413  * descriptor
2414  * @hba: per adapter instance
2415  * @lrbp: pointer to local reference block
2416  *
2417  * Return: 0 upon success; < 0 upon failure.
2418  */
2419 static
2420 int ufshcd_copy_query_response(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2421 {
2422 	struct ufs_query_res *query_res = &hba->dev_cmd.query.response;
2423 
2424 	memcpy(&query_res->upiu_res, &lrbp->ucd_rsp_ptr->qr, QUERY_OSF_SIZE);
2425 
2426 	/* Get the descriptor */
2427 	if (hba->dev_cmd.query.descriptor &&
2428 	    lrbp->ucd_rsp_ptr->qr.opcode == UPIU_QUERY_OPCODE_READ_DESC) {
2429 		u8 *descp = (u8 *)lrbp->ucd_rsp_ptr +
2430 				GENERAL_UPIU_REQUEST_SIZE;
2431 		u16 resp_len;
2432 		u16 buf_len;
2433 
2434 		/* data segment length */
2435 		resp_len = be16_to_cpu(lrbp->ucd_rsp_ptr->header
2436 				       .data_segment_length);
2437 		buf_len = be16_to_cpu(
2438 				hba->dev_cmd.query.request.upiu_req.length);
2439 		if (likely(buf_len >= resp_len)) {
2440 			memcpy(hba->dev_cmd.query.descriptor, descp, resp_len);
2441 		} else {
2442 			dev_warn(hba->dev,
2443 				 "%s: rsp size %d is bigger than buffer size %d",
2444 				 __func__, resp_len, buf_len);
2445 			return -EINVAL;
2446 		}
2447 	}
2448 
2449 	return 0;
2450 }
2451 
2452 /**
2453  * ufshcd_hba_capabilities - Read controller capabilities
2454  * @hba: per adapter instance
2455  *
2456  * Return: 0 on success, negative on error.
2457  */
2458 static inline int ufshcd_hba_capabilities(struct ufs_hba *hba)
2459 {
2460 	int err;
2461 
2462 	hba->capabilities = ufshcd_readl(hba, REG_CONTROLLER_CAPABILITIES);
2463 
2464 	/* nutrs and nutmrs are 0 based values */
2465 	hba->nutrs = (hba->capabilities & MASK_TRANSFER_REQUESTS_SLOTS_SDB) + 1;
2466 	hba->nutmrs =
2467 	((hba->capabilities & MASK_TASK_MANAGEMENT_REQUEST_SLOTS) >> 16) + 1;
2468 	hba->reserved_slot = hba->nutrs - 1;
2469 
2470 	hba->nortt = FIELD_GET(MASK_NUMBER_OUTSTANDING_RTT, hba->capabilities) + 1;
2471 
2472 	/* Read crypto capabilities */
2473 	err = ufshcd_hba_init_crypto_capabilities(hba);
2474 	if (err) {
2475 		dev_err(hba->dev, "crypto setup failed\n");
2476 		return err;
2477 	}
2478 
2479 	/*
2480 	 * The UFSHCI 3.0 specification does not define MCQ_SUPPORT and
2481 	 * LSDB_SUPPORT, but [31:29] as reserved bits with reset value 0s, which
2482 	 * means we can simply read values regardless of version.
2483 	 */
2484 	hba->mcq_sup = FIELD_GET(MASK_MCQ_SUPPORT, hba->capabilities);
2485 	/*
2486 	 * 0h: legacy single doorbell support is available
2487 	 * 1h: indicate that legacy single doorbell support has been removed
2488 	 */
2489 	if (!(hba->quirks & UFSHCD_QUIRK_BROKEN_LSDBS_CAP))
2490 		hba->lsdb_sup = !FIELD_GET(MASK_LSDB_SUPPORT, hba->capabilities);
2491 	else
2492 		hba->lsdb_sup = true;
2493 
2494 	hba->mcq_capabilities = ufshcd_readl(hba, REG_MCQCAP);
2495 
2496 	return 0;
2497 }
2498 
2499 /**
2500  * ufshcd_ready_for_uic_cmd - Check if controller is ready
2501  *                            to accept UIC commands
2502  * @hba: per adapter instance
2503  *
2504  * Return: true on success, else false.
2505  */
2506 static inline bool ufshcd_ready_for_uic_cmd(struct ufs_hba *hba)
2507 {
2508 	u32 val;
2509 	int ret = read_poll_timeout(ufshcd_readl, val, val & UIC_COMMAND_READY,
2510 				    500, uic_cmd_timeout * 1000, false, hba,
2511 				    REG_CONTROLLER_STATUS);
2512 	return ret == 0;
2513 }
2514 
2515 /**
2516  * ufshcd_get_upmcrs - Get the power mode change request status
2517  * @hba: Pointer to adapter instance
2518  *
2519  * This function gets the UPMCRS field of HCS register
2520  *
2521  * Return: value of UPMCRS field.
2522  */
2523 static inline u8 ufshcd_get_upmcrs(struct ufs_hba *hba)
2524 {
2525 	return (ufshcd_readl(hba, REG_CONTROLLER_STATUS) >> 8) & 0x7;
2526 }
2527 
2528 /**
2529  * ufshcd_dispatch_uic_cmd - Dispatch an UIC command to the Unipro layer
2530  * @hba: per adapter instance
2531  * @uic_cmd: UIC command
2532  */
2533 static inline void
2534 ufshcd_dispatch_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2535 {
2536 	lockdep_assert_held(&hba->uic_cmd_mutex);
2537 
2538 	WARN_ON(hba->active_uic_cmd);
2539 
2540 	hba->active_uic_cmd = uic_cmd;
2541 
2542 	/* Write Args */
2543 	ufshcd_writel(hba, uic_cmd->argument1, REG_UIC_COMMAND_ARG_1);
2544 	ufshcd_writel(hba, uic_cmd->argument2, REG_UIC_COMMAND_ARG_2);
2545 	ufshcd_writel(hba, uic_cmd->argument3, REG_UIC_COMMAND_ARG_3);
2546 
2547 	ufshcd_add_uic_command_trace(hba, uic_cmd, UFS_CMD_SEND);
2548 
2549 	/* Write UIC Cmd */
2550 	ufshcd_writel(hba, uic_cmd->command & COMMAND_OPCODE_MASK,
2551 		      REG_UIC_COMMAND);
2552 }
2553 
2554 /**
2555  * ufshcd_wait_for_uic_cmd - Wait for completion of an UIC command
2556  * @hba: per adapter instance
2557  * @uic_cmd: UIC command
2558  *
2559  * Return: 0 only if success.
2560  */
2561 static int
2562 ufshcd_wait_for_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2563 {
2564 	int ret;
2565 	unsigned long flags;
2566 
2567 	lockdep_assert_held(&hba->uic_cmd_mutex);
2568 
2569 	if (wait_for_completion_timeout(&uic_cmd->done,
2570 					msecs_to_jiffies(uic_cmd_timeout))) {
2571 		ret = uic_cmd->argument2 & MASK_UIC_COMMAND_RESULT;
2572 	} else {
2573 		ret = -ETIMEDOUT;
2574 		dev_err(hba->dev,
2575 			"uic cmd 0x%x with arg3 0x%x completion timeout\n",
2576 			uic_cmd->command, uic_cmd->argument3);
2577 
2578 		if (!uic_cmd->cmd_active) {
2579 			dev_err(hba->dev, "%s: UIC cmd has been completed, return the result\n",
2580 				__func__);
2581 			ret = uic_cmd->argument2 & MASK_UIC_COMMAND_RESULT;
2582 		}
2583 	}
2584 
2585 	spin_lock_irqsave(hba->host->host_lock, flags);
2586 	hba->active_uic_cmd = NULL;
2587 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2588 
2589 	return ret;
2590 }
2591 
2592 /**
2593  * __ufshcd_send_uic_cmd - Send UIC commands and retrieve the result
2594  * @hba: per adapter instance
2595  * @uic_cmd: UIC command
2596  *
2597  * Return: 0 if successful; < 0 upon failure.
2598  */
2599 static int
2600 __ufshcd_send_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2601 {
2602 	lockdep_assert_held(&hba->uic_cmd_mutex);
2603 
2604 	if (!ufshcd_ready_for_uic_cmd(hba)) {
2605 		dev_err(hba->dev,
2606 			"Controller not ready to accept UIC commands\n");
2607 		return -EIO;
2608 	}
2609 
2610 	init_completion(&uic_cmd->done);
2611 
2612 	uic_cmd->cmd_active = 1;
2613 	ufshcd_dispatch_uic_cmd(hba, uic_cmd);
2614 
2615 	return 0;
2616 }
2617 
2618 /**
2619  * ufshcd_send_uic_cmd - Send UIC commands and retrieve the result
2620  * @hba: per adapter instance
2621  * @uic_cmd: UIC command
2622  *
2623  * Return: 0 only if success.
2624  */
2625 int ufshcd_send_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2626 {
2627 	unsigned long flags;
2628 	int ret;
2629 
2630 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_UIC_CMD)
2631 		return 0;
2632 
2633 	ufshcd_hold(hba);
2634 	mutex_lock(&hba->uic_cmd_mutex);
2635 	ufshcd_add_delay_before_dme_cmd(hba);
2636 
2637 	spin_lock_irqsave(hba->host->host_lock, flags);
2638 	ufshcd_enable_intr(hba, UIC_COMMAND_COMPL);
2639 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2640 
2641 	ret = __ufshcd_send_uic_cmd(hba, uic_cmd);
2642 	if (!ret)
2643 		ret = ufshcd_wait_for_uic_cmd(hba, uic_cmd);
2644 
2645 	mutex_unlock(&hba->uic_cmd_mutex);
2646 
2647 	ufshcd_release(hba);
2648 	return ret;
2649 }
2650 
2651 /**
2652  * ufshcd_sgl_to_prdt - SG list to PRTD (Physical Region Description Table, 4DW format)
2653  * @hba:	per-adapter instance
2654  * @lrbp:	pointer to local reference block
2655  * @sg_entries:	The number of sg lists actually used
2656  * @sg_list:	Pointer to SG list
2657  */
2658 static void ufshcd_sgl_to_prdt(struct ufs_hba *hba, struct ufshcd_lrb *lrbp, int sg_entries,
2659 			       struct scatterlist *sg_list)
2660 {
2661 	struct ufshcd_sg_entry *prd;
2662 	struct scatterlist *sg;
2663 	int i;
2664 
2665 	if (sg_entries) {
2666 
2667 		if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN)
2668 			lrbp->utr_descriptor_ptr->prd_table_length =
2669 				cpu_to_le16(sg_entries * ufshcd_sg_entry_size(hba));
2670 		else
2671 			lrbp->utr_descriptor_ptr->prd_table_length = cpu_to_le16(sg_entries);
2672 
2673 		prd = lrbp->ucd_prdt_ptr;
2674 
2675 		for_each_sg(sg_list, sg, sg_entries, i) {
2676 			const unsigned int len = sg_dma_len(sg);
2677 
2678 			/*
2679 			 * From the UFSHCI spec: "Data Byte Count (DBC): A '0'
2680 			 * based value that indicates the length, in bytes, of
2681 			 * the data block. A maximum of length of 256KB may
2682 			 * exist for any entry. Bits 1:0 of this field shall be
2683 			 * 11b to indicate Dword granularity. A value of '3'
2684 			 * indicates 4 bytes, '7' indicates 8 bytes, etc."
2685 			 */
2686 			WARN_ONCE(len > SZ_256K, "len = %#x\n", len);
2687 			prd->size = cpu_to_le32(len - 1);
2688 			prd->addr = cpu_to_le64(sg->dma_address);
2689 			prd->reserved = 0;
2690 			prd = (void *)prd + ufshcd_sg_entry_size(hba);
2691 		}
2692 	} else {
2693 		lrbp->utr_descriptor_ptr->prd_table_length = 0;
2694 	}
2695 }
2696 
2697 /**
2698  * ufshcd_map_sg - Map scatter-gather list to prdt
2699  * @hba: per adapter instance
2700  * @lrbp: pointer to local reference block
2701  *
2702  * Return: 0 in case of success, non-zero value in case of failure.
2703  */
2704 static int ufshcd_map_sg(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2705 {
2706 	struct scsi_cmnd *cmd = lrbp->cmd;
2707 	int sg_segments = scsi_dma_map(cmd);
2708 
2709 	if (sg_segments < 0)
2710 		return sg_segments;
2711 
2712 	ufshcd_sgl_to_prdt(hba, lrbp, sg_segments, scsi_sglist(cmd));
2713 
2714 	return ufshcd_crypto_fill_prdt(hba, lrbp);
2715 }
2716 
2717 /**
2718  * ufshcd_prepare_req_desc_hdr - Fill UTP Transfer request descriptor header according to request
2719  * descriptor according to request
2720  * @hba: per adapter instance
2721  * @lrbp: pointer to local reference block
2722  * @upiu_flags: flags required in the header
2723  * @cmd_dir: requests data direction
2724  * @ehs_length: Total EHS Length (in 32‐bytes units of all Extra Header Segments)
2725  */
2726 static void
2727 ufshcd_prepare_req_desc_hdr(struct ufs_hba *hba, struct ufshcd_lrb *lrbp,
2728 			    u8 *upiu_flags, enum dma_data_direction cmd_dir,
2729 			    int ehs_length)
2730 {
2731 	struct utp_transfer_req_desc *req_desc = lrbp->utr_descriptor_ptr;
2732 	struct request_desc_header *h = &req_desc->header;
2733 	enum utp_data_direction data_direction;
2734 
2735 	lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
2736 
2737 	*h = (typeof(*h)){ };
2738 
2739 	if (cmd_dir == DMA_FROM_DEVICE) {
2740 		data_direction = UTP_DEVICE_TO_HOST;
2741 		*upiu_flags = UPIU_CMD_FLAGS_READ;
2742 	} else if (cmd_dir == DMA_TO_DEVICE) {
2743 		data_direction = UTP_HOST_TO_DEVICE;
2744 		*upiu_flags = UPIU_CMD_FLAGS_WRITE;
2745 	} else {
2746 		data_direction = UTP_NO_DATA_TRANSFER;
2747 		*upiu_flags = UPIU_CMD_FLAGS_NONE;
2748 	}
2749 
2750 	h->command_type = lrbp->command_type;
2751 	h->data_direction = data_direction;
2752 	h->ehs_length = ehs_length;
2753 
2754 	if (lrbp->intr_cmd)
2755 		h->interrupt = 1;
2756 
2757 	/* Prepare crypto related dwords */
2758 	ufshcd_prepare_req_desc_hdr_crypto(lrbp, h);
2759 
2760 	/*
2761 	 * assigning invalid value for command status. Controller
2762 	 * updates OCS on command completion, with the command
2763 	 * status
2764 	 */
2765 	h->ocs = OCS_INVALID_COMMAND_STATUS;
2766 
2767 	req_desc->prd_table_length = 0;
2768 }
2769 
2770 /**
2771  * ufshcd_prepare_utp_scsi_cmd_upiu() - fills the utp_transfer_req_desc,
2772  * for scsi commands
2773  * @lrbp: local reference block pointer
2774  * @upiu_flags: flags
2775  */
2776 static
2777 void ufshcd_prepare_utp_scsi_cmd_upiu(struct ufshcd_lrb *lrbp, u8 upiu_flags)
2778 {
2779 	struct scsi_cmnd *cmd = lrbp->cmd;
2780 	struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2781 	unsigned short cdb_len;
2782 
2783 	ucd_req_ptr->header = (struct utp_upiu_header){
2784 		.transaction_code = UPIU_TRANSACTION_COMMAND,
2785 		.flags = upiu_flags,
2786 		.lun = lrbp->lun,
2787 		.task_tag = lrbp->task_tag,
2788 		.command_set_type = UPIU_COMMAND_SET_TYPE_SCSI,
2789 	};
2790 
2791 	WARN_ON_ONCE(ucd_req_ptr->header.task_tag != lrbp->task_tag);
2792 
2793 	ucd_req_ptr->sc.exp_data_transfer_len = cpu_to_be32(cmd->sdb.length);
2794 
2795 	cdb_len = min_t(unsigned short, cmd->cmd_len, UFS_CDB_SIZE);
2796 	memcpy(ucd_req_ptr->sc.cdb, cmd->cmnd, cdb_len);
2797 
2798 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2799 }
2800 
2801 /**
2802  * ufshcd_prepare_utp_query_req_upiu() - fill the utp_transfer_req_desc for query request
2803  * @hba: UFS hba
2804  * @lrbp: local reference block pointer
2805  * @upiu_flags: flags
2806  */
2807 static void ufshcd_prepare_utp_query_req_upiu(struct ufs_hba *hba,
2808 				struct ufshcd_lrb *lrbp, u8 upiu_flags)
2809 {
2810 	struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2811 	struct ufs_query *query = &hba->dev_cmd.query;
2812 	u16 len = be16_to_cpu(query->request.upiu_req.length);
2813 
2814 	/* Query request header */
2815 	ucd_req_ptr->header = (struct utp_upiu_header){
2816 		.transaction_code = UPIU_TRANSACTION_QUERY_REQ,
2817 		.flags = upiu_flags,
2818 		.lun = lrbp->lun,
2819 		.task_tag = lrbp->task_tag,
2820 		.query_function = query->request.query_func,
2821 		/* Data segment length only need for WRITE_DESC */
2822 		.data_segment_length =
2823 			query->request.upiu_req.opcode ==
2824 					UPIU_QUERY_OPCODE_WRITE_DESC ?
2825 				cpu_to_be16(len) :
2826 				0,
2827 	};
2828 
2829 	/* Copy the Query Request buffer as is */
2830 	memcpy(&ucd_req_ptr->qr, &query->request.upiu_req,
2831 			QUERY_OSF_SIZE);
2832 
2833 	/* Copy the Descriptor */
2834 	if (query->request.upiu_req.opcode == UPIU_QUERY_OPCODE_WRITE_DESC)
2835 		memcpy(ucd_req_ptr + 1, query->descriptor, len);
2836 }
2837 
2838 static inline void ufshcd_prepare_utp_nop_upiu(struct ufshcd_lrb *lrbp)
2839 {
2840 	struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2841 
2842 	memset(ucd_req_ptr, 0, sizeof(struct utp_upiu_req));
2843 
2844 	ucd_req_ptr->header = (struct utp_upiu_header){
2845 		.transaction_code = UPIU_TRANSACTION_NOP_OUT,
2846 		.task_tag = lrbp->task_tag,
2847 	};
2848 }
2849 
2850 /**
2851  * ufshcd_compose_devman_upiu - UFS Protocol Information Unit(UPIU)
2852  *			     for Device Management Purposes
2853  * @hba: per adapter instance
2854  * @lrbp: pointer to local reference block
2855  *
2856  * Return: 0 upon success; < 0 upon failure.
2857  */
2858 static int ufshcd_compose_devman_upiu(struct ufs_hba *hba,
2859 				      struct ufshcd_lrb *lrbp)
2860 {
2861 	u8 upiu_flags;
2862 	int ret = 0;
2863 
2864 	ufshcd_prepare_req_desc_hdr(hba, lrbp, &upiu_flags, DMA_NONE, 0);
2865 
2866 	if (hba->dev_cmd.type == DEV_CMD_TYPE_QUERY)
2867 		ufshcd_prepare_utp_query_req_upiu(hba, lrbp, upiu_flags);
2868 	else if (hba->dev_cmd.type == DEV_CMD_TYPE_NOP)
2869 		ufshcd_prepare_utp_nop_upiu(lrbp);
2870 	else
2871 		ret = -EINVAL;
2872 
2873 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2874 
2875 	return ret;
2876 }
2877 
2878 /**
2879  * ufshcd_comp_scsi_upiu - UFS Protocol Information Unit(UPIU)
2880  *			   for SCSI Purposes
2881  * @hba: per adapter instance
2882  * @lrbp: pointer to local reference block
2883  */
2884 static void ufshcd_comp_scsi_upiu(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2885 {
2886 	struct request *rq = scsi_cmd_to_rq(lrbp->cmd);
2887 	unsigned int ioprio_class = IOPRIO_PRIO_CLASS(req_get_ioprio(rq));
2888 	u8 upiu_flags;
2889 
2890 	ufshcd_prepare_req_desc_hdr(hba, lrbp, &upiu_flags, lrbp->cmd->sc_data_direction, 0);
2891 	if (ioprio_class == IOPRIO_CLASS_RT)
2892 		upiu_flags |= UPIU_CMD_FLAGS_CP;
2893 	ufshcd_prepare_utp_scsi_cmd_upiu(lrbp, upiu_flags);
2894 }
2895 
2896 static void __ufshcd_setup_cmd(struct ufshcd_lrb *lrbp, struct scsi_cmnd *cmd, u8 lun, int tag)
2897 {
2898 	memset(lrbp->ucd_req_ptr, 0, sizeof(*lrbp->ucd_req_ptr));
2899 
2900 	lrbp->cmd = cmd;
2901 	lrbp->task_tag = tag;
2902 	lrbp->lun = lun;
2903 	ufshcd_prepare_lrbp_crypto(cmd ? scsi_cmd_to_rq(cmd) : NULL, lrbp);
2904 }
2905 
2906 static void ufshcd_setup_scsi_cmd(struct ufs_hba *hba, struct ufshcd_lrb *lrbp,
2907 				  struct scsi_cmnd *cmd, u8 lun, int tag)
2908 {
2909 	__ufshcd_setup_cmd(lrbp, cmd, lun, tag);
2910 	lrbp->intr_cmd = !ufshcd_is_intr_aggr_allowed(hba);
2911 	lrbp->req_abort_skip = false;
2912 
2913 	ufshcd_comp_scsi_upiu(hba, lrbp);
2914 }
2915 
2916 /**
2917  * ufshcd_upiu_wlun_to_scsi_wlun - maps UPIU W-LUN id to SCSI W-LUN ID
2918  * @upiu_wlun_id: UPIU W-LUN id
2919  *
2920  * Return: SCSI W-LUN id.
2921  */
2922 static inline u16 ufshcd_upiu_wlun_to_scsi_wlun(u8 upiu_wlun_id)
2923 {
2924 	return (upiu_wlun_id & ~UFS_UPIU_WLUN_ID) | SCSI_W_LUN_BASE;
2925 }
2926 
2927 static inline bool is_device_wlun(struct scsi_device *sdev)
2928 {
2929 	return sdev->lun ==
2930 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_UFS_DEVICE_WLUN);
2931 }
2932 
2933 /*
2934  * Associate the UFS controller queue with the default and poll HCTX types.
2935  * Initialize the mq_map[] arrays.
2936  */
2937 static void ufshcd_map_queues(struct Scsi_Host *shost)
2938 {
2939 	struct ufs_hba *hba = shost_priv(shost);
2940 	int i, queue_offset = 0;
2941 
2942 	if (!is_mcq_supported(hba)) {
2943 		hba->nr_queues[HCTX_TYPE_DEFAULT] = 1;
2944 		hba->nr_queues[HCTX_TYPE_READ] = 0;
2945 		hba->nr_queues[HCTX_TYPE_POLL] = 1;
2946 		hba->nr_hw_queues = 1;
2947 	}
2948 
2949 	for (i = 0; i < shost->nr_maps; i++) {
2950 		struct blk_mq_queue_map *map = &shost->tag_set.map[i];
2951 
2952 		map->nr_queues = hba->nr_queues[i];
2953 		if (!map->nr_queues)
2954 			continue;
2955 		map->queue_offset = queue_offset;
2956 		if (i == HCTX_TYPE_POLL && !is_mcq_supported(hba))
2957 			map->queue_offset = 0;
2958 
2959 		blk_mq_map_queues(map);
2960 		queue_offset += map->nr_queues;
2961 	}
2962 }
2963 
2964 static void ufshcd_init_lrb(struct ufs_hba *hba, struct ufshcd_lrb *lrb, int i)
2965 {
2966 	struct utp_transfer_cmd_desc *cmd_descp = (void *)hba->ucdl_base_addr +
2967 		i * ufshcd_get_ucd_size(hba);
2968 	struct utp_transfer_req_desc *utrdlp = hba->utrdl_base_addr;
2969 	dma_addr_t cmd_desc_element_addr = hba->ucdl_dma_addr +
2970 		i * ufshcd_get_ucd_size(hba);
2971 	u16 response_offset = le16_to_cpu(utrdlp[i].response_upiu_offset);
2972 	u16 prdt_offset = le16_to_cpu(utrdlp[i].prd_table_offset);
2973 
2974 	lrb->utr_descriptor_ptr = utrdlp + i;
2975 	lrb->utrd_dma_addr = hba->utrdl_dma_addr +
2976 		i * sizeof(struct utp_transfer_req_desc);
2977 	lrb->ucd_req_ptr = (struct utp_upiu_req *)cmd_descp->command_upiu;
2978 	lrb->ucd_req_dma_addr = cmd_desc_element_addr;
2979 	lrb->ucd_rsp_ptr = (struct utp_upiu_rsp *)cmd_descp->response_upiu;
2980 	lrb->ucd_rsp_dma_addr = cmd_desc_element_addr + response_offset;
2981 	lrb->ucd_prdt_ptr = (struct ufshcd_sg_entry *)cmd_descp->prd_table;
2982 	lrb->ucd_prdt_dma_addr = cmd_desc_element_addr + prdt_offset;
2983 }
2984 
2985 /**
2986  * ufshcd_queuecommand - main entry point for SCSI requests
2987  * @host: SCSI host pointer
2988  * @cmd: command from SCSI Midlayer
2989  *
2990  * Return: 0 for success, non-zero in case of failure.
2991  */
2992 static int ufshcd_queuecommand(struct Scsi_Host *host, struct scsi_cmnd *cmd)
2993 {
2994 	struct ufs_hba *hba = shost_priv(host);
2995 	int tag = scsi_cmd_to_rq(cmd)->tag;
2996 	struct ufshcd_lrb *lrbp;
2997 	int err = 0;
2998 	struct ufs_hw_queue *hwq = NULL;
2999 
3000 	switch (hba->ufshcd_state) {
3001 	case UFSHCD_STATE_OPERATIONAL:
3002 		break;
3003 	case UFSHCD_STATE_EH_SCHEDULED_NON_FATAL:
3004 		/*
3005 		 * SCSI error handler can call ->queuecommand() while UFS error
3006 		 * handler is in progress. Error interrupts could change the
3007 		 * state from UFSHCD_STATE_RESET to
3008 		 * UFSHCD_STATE_EH_SCHEDULED_NON_FATAL. Prevent requests
3009 		 * being issued in that case.
3010 		 */
3011 		if (ufshcd_eh_in_progress(hba)) {
3012 			err = SCSI_MLQUEUE_HOST_BUSY;
3013 			goto out;
3014 		}
3015 		break;
3016 	case UFSHCD_STATE_EH_SCHEDULED_FATAL:
3017 		/*
3018 		 * pm_runtime_get_sync() is used at error handling preparation
3019 		 * stage. If a scsi cmd, e.g. the SSU cmd, is sent from hba's
3020 		 * PM ops, it can never be finished if we let SCSI layer keep
3021 		 * retrying it, which gets err handler stuck forever. Neither
3022 		 * can we let the scsi cmd pass through, because UFS is in bad
3023 		 * state, the scsi cmd may eventually time out, which will get
3024 		 * err handler blocked for too long. So, just fail the scsi cmd
3025 		 * sent from PM ops, err handler can recover PM error anyways.
3026 		 */
3027 		if (hba->pm_op_in_progress) {
3028 			hba->force_reset = true;
3029 			set_host_byte(cmd, DID_BAD_TARGET);
3030 			scsi_done(cmd);
3031 			goto out;
3032 		}
3033 		fallthrough;
3034 	case UFSHCD_STATE_RESET:
3035 		err = SCSI_MLQUEUE_HOST_BUSY;
3036 		goto out;
3037 	case UFSHCD_STATE_ERROR:
3038 		set_host_byte(cmd, DID_ERROR);
3039 		scsi_done(cmd);
3040 		goto out;
3041 	}
3042 
3043 	hba->req_abort_count = 0;
3044 
3045 	ufshcd_hold(hba);
3046 
3047 	lrbp = &hba->lrb[tag];
3048 
3049 	ufshcd_setup_scsi_cmd(hba, lrbp, cmd, ufshcd_scsi_to_upiu_lun(cmd->device->lun), tag);
3050 
3051 	err = ufshcd_map_sg(hba, lrbp);
3052 	if (err) {
3053 		ufshcd_release(hba);
3054 		goto out;
3055 	}
3056 
3057 	if (hba->mcq_enabled)
3058 		hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(cmd));
3059 
3060 	ufshcd_send_command(hba, tag, hwq);
3061 
3062 out:
3063 	if (ufs_trigger_eh(hba)) {
3064 		unsigned long flags;
3065 
3066 		spin_lock_irqsave(hba->host->host_lock, flags);
3067 		ufshcd_schedule_eh_work(hba);
3068 		spin_unlock_irqrestore(hba->host->host_lock, flags);
3069 	}
3070 
3071 	return err;
3072 }
3073 
3074 static void ufshcd_setup_dev_cmd(struct ufs_hba *hba, struct ufshcd_lrb *lrbp,
3075 			     enum dev_cmd_type cmd_type, u8 lun, int tag)
3076 {
3077 	__ufshcd_setup_cmd(lrbp, NULL, lun, tag);
3078 	lrbp->intr_cmd = true; /* No interrupt aggregation */
3079 	hba->dev_cmd.type = cmd_type;
3080 }
3081 
3082 /*
3083  * Return: 0 upon success; < 0 upon failure.
3084  */
3085 static int ufshcd_compose_dev_cmd(struct ufs_hba *hba,
3086 		struct ufshcd_lrb *lrbp, enum dev_cmd_type cmd_type, int tag)
3087 {
3088 	ufshcd_setup_dev_cmd(hba, lrbp, cmd_type, 0, tag);
3089 
3090 	return ufshcd_compose_devman_upiu(hba, lrbp);
3091 }
3092 
3093 /*
3094  * Check with the block layer if the command is inflight
3095  * @cmd: command to check.
3096  *
3097  * Return: true if command is inflight; false if not.
3098  */
3099 bool ufshcd_cmd_inflight(struct scsi_cmnd *cmd)
3100 {
3101 	return cmd && blk_mq_rq_state(scsi_cmd_to_rq(cmd)) == MQ_RQ_IN_FLIGHT;
3102 }
3103 
3104 /*
3105  * Clear the pending command in the controller and wait until
3106  * the controller confirms that the command has been cleared.
3107  * @hba: per adapter instance
3108  * @task_tag: The tag number of the command to be cleared.
3109  */
3110 static int ufshcd_clear_cmd(struct ufs_hba *hba, u32 task_tag)
3111 {
3112 	u32 mask;
3113 	int err;
3114 
3115 	if (hba->mcq_enabled) {
3116 		/*
3117 		 * MCQ mode. Clean up the MCQ resources similar to
3118 		 * what the ufshcd_utrl_clear() does for SDB mode.
3119 		 */
3120 		err = ufshcd_mcq_sq_cleanup(hba, task_tag);
3121 		if (err) {
3122 			dev_err(hba->dev, "%s: failed tag=%d. err=%d\n",
3123 				__func__, task_tag, err);
3124 			return err;
3125 		}
3126 		return 0;
3127 	}
3128 
3129 	mask = 1U << task_tag;
3130 
3131 	/* clear outstanding transaction before retry */
3132 	ufshcd_utrl_clear(hba, mask);
3133 
3134 	/*
3135 	 * wait for h/w to clear corresponding bit in door-bell.
3136 	 * max. wait is 1 sec.
3137 	 */
3138 	return ufshcd_wait_for_register(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL,
3139 					mask, ~mask, 1000, 1000);
3140 }
3141 
3142 /**
3143  * ufshcd_dev_cmd_completion() - handles device management command responses
3144  * @hba: per adapter instance
3145  * @lrbp: pointer to local reference block
3146  *
3147  * Return: 0 upon success; < 0 upon failure.
3148  */
3149 static int
3150 ufshcd_dev_cmd_completion(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
3151 {
3152 	enum upiu_response_transaction resp;
3153 	int err = 0;
3154 
3155 	hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
3156 	resp = ufshcd_get_req_rsp(lrbp->ucd_rsp_ptr);
3157 
3158 	switch (resp) {
3159 	case UPIU_TRANSACTION_NOP_IN:
3160 		if (hba->dev_cmd.type != DEV_CMD_TYPE_NOP) {
3161 			err = -EINVAL;
3162 			dev_err(hba->dev, "%s: unexpected response %x\n",
3163 					__func__, resp);
3164 		}
3165 		break;
3166 	case UPIU_TRANSACTION_QUERY_RSP: {
3167 		u8 response = lrbp->ucd_rsp_ptr->header.response;
3168 
3169 		if (response == 0) {
3170 			err = ufshcd_copy_query_response(hba, lrbp);
3171 		} else {
3172 			err = -EINVAL;
3173 			dev_err(hba->dev, "%s: unexpected response in Query RSP: %x\n",
3174 					__func__, response);
3175 		}
3176 		break;
3177 	}
3178 	case UPIU_TRANSACTION_REJECT_UPIU:
3179 		/* TODO: handle Reject UPIU Response */
3180 		err = -EPERM;
3181 		dev_err(hba->dev, "%s: Reject UPIU not fully implemented\n",
3182 				__func__);
3183 		break;
3184 	case UPIU_TRANSACTION_RESPONSE:
3185 		if (hba->dev_cmd.type != DEV_CMD_TYPE_RPMB) {
3186 			err = -EINVAL;
3187 			dev_err(hba->dev, "%s: unexpected response %x\n", __func__, resp);
3188 		}
3189 		break;
3190 	default:
3191 		err = -EINVAL;
3192 		dev_err(hba->dev, "%s: Invalid device management cmd response: %x\n",
3193 				__func__, resp);
3194 		break;
3195 	}
3196 
3197 	WARN_ONCE(err > 0, "Incorrect return value %d > 0\n", err);
3198 	return err;
3199 }
3200 
3201 /*
3202  * Return: 0 upon success; < 0 upon failure.
3203  */
3204 static int ufshcd_wait_for_dev_cmd(struct ufs_hba *hba,
3205 		struct ufshcd_lrb *lrbp, int max_timeout)
3206 {
3207 	unsigned long time_left = msecs_to_jiffies(max_timeout);
3208 	unsigned long flags;
3209 	bool pending;
3210 	int err;
3211 
3212 retry:
3213 	time_left = wait_for_completion_timeout(&hba->dev_cmd.complete,
3214 						time_left);
3215 
3216 	if (likely(time_left)) {
3217 		err = ufshcd_get_tr_ocs(lrbp, NULL);
3218 		if (!err)
3219 			err = ufshcd_dev_cmd_completion(hba, lrbp);
3220 	} else {
3221 		err = -ETIMEDOUT;
3222 		dev_dbg(hba->dev, "%s: dev_cmd request timedout, tag %d\n",
3223 			__func__, lrbp->task_tag);
3224 
3225 		/* MCQ mode */
3226 		if (hba->mcq_enabled) {
3227 			/* successfully cleared the command, retry if needed */
3228 			if (ufshcd_clear_cmd(hba, lrbp->task_tag) == 0)
3229 				err = -EAGAIN;
3230 			return err;
3231 		}
3232 
3233 		/* SDB mode */
3234 		if (ufshcd_clear_cmd(hba, lrbp->task_tag) == 0) {
3235 			/* successfully cleared the command, retry if needed */
3236 			err = -EAGAIN;
3237 			/*
3238 			 * Since clearing the command succeeded we also need to
3239 			 * clear the task tag bit from the outstanding_reqs
3240 			 * variable.
3241 			 */
3242 			spin_lock_irqsave(&hba->outstanding_lock, flags);
3243 			pending = test_bit(lrbp->task_tag,
3244 					   &hba->outstanding_reqs);
3245 			if (pending)
3246 				__clear_bit(lrbp->task_tag,
3247 					    &hba->outstanding_reqs);
3248 			spin_unlock_irqrestore(&hba->outstanding_lock, flags);
3249 
3250 			if (!pending) {
3251 				/*
3252 				 * The completion handler ran while we tried to
3253 				 * clear the command.
3254 				 */
3255 				time_left = 1;
3256 				goto retry;
3257 			}
3258 		} else {
3259 			dev_err(hba->dev, "%s: failed to clear tag %d\n",
3260 				__func__, lrbp->task_tag);
3261 
3262 			spin_lock_irqsave(&hba->outstanding_lock, flags);
3263 			pending = test_bit(lrbp->task_tag,
3264 					   &hba->outstanding_reqs);
3265 			spin_unlock_irqrestore(&hba->outstanding_lock, flags);
3266 
3267 			if (!pending) {
3268 				/*
3269 				 * The completion handler ran while we tried to
3270 				 * clear the command.
3271 				 */
3272 				time_left = 1;
3273 				goto retry;
3274 			}
3275 		}
3276 	}
3277 
3278 	WARN_ONCE(err > 0, "Incorrect return value %d > 0\n", err);
3279 	return err;
3280 }
3281 
3282 static void ufshcd_dev_man_lock(struct ufs_hba *hba)
3283 {
3284 	ufshcd_hold(hba);
3285 	mutex_lock(&hba->dev_cmd.lock);
3286 	down_read(&hba->clk_scaling_lock);
3287 }
3288 
3289 static void ufshcd_dev_man_unlock(struct ufs_hba *hba)
3290 {
3291 	up_read(&hba->clk_scaling_lock);
3292 	mutex_unlock(&hba->dev_cmd.lock);
3293 	ufshcd_release(hba);
3294 }
3295 
3296 /*
3297  * Return: 0 upon success; < 0 upon failure.
3298  */
3299 static int ufshcd_issue_dev_cmd(struct ufs_hba *hba, struct ufshcd_lrb *lrbp,
3300 			  const u32 tag, int timeout)
3301 {
3302 	int err;
3303 
3304 	ufshcd_add_query_upiu_trace(hba, UFS_QUERY_SEND, lrbp->ucd_req_ptr);
3305 	ufshcd_send_command(hba, tag, hba->dev_cmd_queue);
3306 	err = ufshcd_wait_for_dev_cmd(hba, lrbp, timeout);
3307 
3308 	ufshcd_add_query_upiu_trace(hba, err ? UFS_QUERY_ERR : UFS_QUERY_COMP,
3309 				    (struct utp_upiu_req *)lrbp->ucd_rsp_ptr);
3310 
3311 	return err;
3312 }
3313 
3314 /**
3315  * ufshcd_exec_dev_cmd - API for sending device management requests
3316  * @hba: UFS hba
3317  * @cmd_type: specifies the type (NOP, Query...)
3318  * @timeout: timeout in milliseconds
3319  *
3320  * Return: 0 upon success; < 0 upon failure.
3321  *
3322  * NOTE: Since there is only one available tag for device management commands,
3323  * it is expected you hold the hba->dev_cmd.lock mutex.
3324  */
3325 static int ufshcd_exec_dev_cmd(struct ufs_hba *hba,
3326 		enum dev_cmd_type cmd_type, int timeout)
3327 {
3328 	const u32 tag = hba->reserved_slot;
3329 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
3330 	int err;
3331 
3332 	/* Protects use of hba->reserved_slot. */
3333 	lockdep_assert_held(&hba->dev_cmd.lock);
3334 
3335 	err = ufshcd_compose_dev_cmd(hba, lrbp, cmd_type, tag);
3336 	if (unlikely(err))
3337 		return err;
3338 
3339 	return ufshcd_issue_dev_cmd(hba, lrbp, tag, timeout);
3340 }
3341 
3342 /**
3343  * ufshcd_init_query() - init the query response and request parameters
3344  * @hba: per-adapter instance
3345  * @request: address of the request pointer to be initialized
3346  * @response: address of the response pointer to be initialized
3347  * @opcode: operation to perform
3348  * @idn: flag idn to access
3349  * @index: LU number to access
3350  * @selector: query/flag/descriptor further identification
3351  */
3352 static inline void ufshcd_init_query(struct ufs_hba *hba,
3353 		struct ufs_query_req **request, struct ufs_query_res **response,
3354 		enum query_opcode opcode, u8 idn, u8 index, u8 selector)
3355 {
3356 	*request = &hba->dev_cmd.query.request;
3357 	*response = &hba->dev_cmd.query.response;
3358 	memset(*request, 0, sizeof(struct ufs_query_req));
3359 	memset(*response, 0, sizeof(struct ufs_query_res));
3360 	(*request)->upiu_req.opcode = opcode;
3361 	(*request)->upiu_req.idn = idn;
3362 	(*request)->upiu_req.index = index;
3363 	(*request)->upiu_req.selector = selector;
3364 }
3365 
3366 static int ufshcd_query_flag_retry(struct ufs_hba *hba,
3367 	enum query_opcode opcode, enum flag_idn idn, u8 index, bool *flag_res)
3368 {
3369 	int ret;
3370 	int retries;
3371 
3372 	for (retries = 0; retries < QUERY_REQ_RETRIES; retries++) {
3373 		ret = ufshcd_query_flag(hba, opcode, idn, index, flag_res);
3374 		if (ret)
3375 			dev_dbg(hba->dev,
3376 				"%s: failed with error %d, retries %d\n",
3377 				__func__, ret, retries);
3378 		else
3379 			break;
3380 	}
3381 
3382 	if (ret)
3383 		dev_err(hba->dev,
3384 			"%s: query flag, opcode %d, idn %d, failed with error %d after %d retries\n",
3385 			__func__, opcode, idn, ret, retries);
3386 	WARN_ONCE(ret > 0, "Incorrect return value %d > 0\n", ret);
3387 	return ret;
3388 }
3389 
3390 /**
3391  * ufshcd_query_flag() - API function for sending flag query requests
3392  * @hba: per-adapter instance
3393  * @opcode: flag query to perform
3394  * @idn: flag idn to access
3395  * @index: flag index to access
3396  * @flag_res: the flag value after the query request completes
3397  *
3398  * Return: 0 for success; < 0 upon failure.
3399  */
3400 int ufshcd_query_flag(struct ufs_hba *hba, enum query_opcode opcode,
3401 			enum flag_idn idn, u8 index, bool *flag_res)
3402 {
3403 	struct ufs_query_req *request = NULL;
3404 	struct ufs_query_res *response = NULL;
3405 	int err, selector = 0;
3406 	int timeout = dev_cmd_timeout;
3407 
3408 	BUG_ON(!hba);
3409 
3410 	ufshcd_dev_man_lock(hba);
3411 
3412 	ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3413 			selector);
3414 
3415 	switch (opcode) {
3416 	case UPIU_QUERY_OPCODE_SET_FLAG:
3417 	case UPIU_QUERY_OPCODE_CLEAR_FLAG:
3418 	case UPIU_QUERY_OPCODE_TOGGLE_FLAG:
3419 		request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3420 		break;
3421 	case UPIU_QUERY_OPCODE_READ_FLAG:
3422 		request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3423 		if (!flag_res) {
3424 			/* No dummy reads */
3425 			dev_err(hba->dev, "%s: Invalid argument for read request\n",
3426 					__func__);
3427 			err = -EINVAL;
3428 			goto out_unlock;
3429 		}
3430 		break;
3431 	default:
3432 		dev_err(hba->dev,
3433 			"%s: Expected query flag opcode but got = %d\n",
3434 			__func__, opcode);
3435 		err = -EINVAL;
3436 		goto out_unlock;
3437 	}
3438 
3439 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, timeout);
3440 
3441 	if (err) {
3442 		dev_err(hba->dev,
3443 			"%s: Sending flag query for idn %d failed, err = %d\n",
3444 			__func__, idn, err);
3445 		goto out_unlock;
3446 	}
3447 
3448 	if (flag_res)
3449 		*flag_res = (be32_to_cpu(response->upiu_res.value) &
3450 				MASK_QUERY_UPIU_FLAG_LOC) & 0x1;
3451 
3452 out_unlock:
3453 	ufshcd_dev_man_unlock(hba);
3454 	WARN_ONCE(err > 0, "Incorrect return value %d > 0\n", err);
3455 	return err;
3456 }
3457 
3458 /**
3459  * ufshcd_query_attr - API function for sending attribute requests
3460  * @hba: per-adapter instance
3461  * @opcode: attribute opcode
3462  * @idn: attribute idn to access
3463  * @index: index field
3464  * @selector: selector field
3465  * @attr_val: the attribute value after the query request completes
3466  *
3467  * Return: 0 upon success; < 0 upon failure.
3468 */
3469 int ufshcd_query_attr(struct ufs_hba *hba, enum query_opcode opcode,
3470 		      enum attr_idn idn, u8 index, u8 selector, u32 *attr_val)
3471 {
3472 	struct ufs_query_req *request = NULL;
3473 	struct ufs_query_res *response = NULL;
3474 	int err;
3475 
3476 	BUG_ON(!hba);
3477 
3478 	if (!attr_val) {
3479 		dev_err(hba->dev, "%s: attribute value required for opcode 0x%x\n",
3480 				__func__, opcode);
3481 		return -EINVAL;
3482 	}
3483 
3484 	ufshcd_dev_man_lock(hba);
3485 
3486 	ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3487 			selector);
3488 
3489 	switch (opcode) {
3490 	case UPIU_QUERY_OPCODE_WRITE_ATTR:
3491 		request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3492 		request->upiu_req.value = cpu_to_be32(*attr_val);
3493 		break;
3494 	case UPIU_QUERY_OPCODE_READ_ATTR:
3495 		request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3496 		break;
3497 	default:
3498 		dev_err(hba->dev, "%s: Expected query attr opcode but got = 0x%.2x\n",
3499 				__func__, opcode);
3500 		err = -EINVAL;
3501 		goto out_unlock;
3502 	}
3503 
3504 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, dev_cmd_timeout);
3505 
3506 	if (err) {
3507 		dev_err(hba->dev, "%s: opcode 0x%.2x for idn %d failed, index %d, err = %d\n",
3508 				__func__, opcode, idn, index, err);
3509 		goto out_unlock;
3510 	}
3511 
3512 	*attr_val = be32_to_cpu(response->upiu_res.value);
3513 
3514 out_unlock:
3515 	ufshcd_dev_man_unlock(hba);
3516 	WARN_ONCE(err > 0, "Incorrect return value %d > 0\n", err);
3517 	return err;
3518 }
3519 
3520 /**
3521  * ufshcd_query_attr_retry() - API function for sending query
3522  * attribute with retries
3523  * @hba: per-adapter instance
3524  * @opcode: attribute opcode
3525  * @idn: attribute idn to access
3526  * @index: index field
3527  * @selector: selector field
3528  * @attr_val: the attribute value after the query request
3529  * completes
3530  *
3531  * Return: 0 for success; < 0 upon failure.
3532 */
3533 int ufshcd_query_attr_retry(struct ufs_hba *hba,
3534 	enum query_opcode opcode, enum attr_idn idn, u8 index, u8 selector,
3535 	u32 *attr_val)
3536 {
3537 	int ret = 0;
3538 	u32 retries;
3539 
3540 	for (retries = QUERY_REQ_RETRIES; retries > 0; retries--) {
3541 		ret = ufshcd_query_attr(hba, opcode, idn, index,
3542 						selector, attr_val);
3543 		if (ret)
3544 			dev_dbg(hba->dev, "%s: failed with error %d, retries %d\n",
3545 				__func__, ret, retries);
3546 		else
3547 			break;
3548 	}
3549 
3550 	if (ret)
3551 		dev_err(hba->dev,
3552 			"%s: query attribute, idn %d, failed with error %d after %d retries\n",
3553 			__func__, idn, ret, QUERY_REQ_RETRIES);
3554 	WARN_ONCE(ret > 0, "Incorrect return value %d > 0\n", ret);
3555 	return ret;
3556 }
3557 
3558 /*
3559  * Return: 0 if successful; < 0 upon failure.
3560  */
3561 static int __ufshcd_query_descriptor(struct ufs_hba *hba,
3562 			enum query_opcode opcode, enum desc_idn idn, u8 index,
3563 			u8 selector, u8 *desc_buf, int *buf_len)
3564 {
3565 	struct ufs_query_req *request = NULL;
3566 	struct ufs_query_res *response = NULL;
3567 	int err;
3568 
3569 	BUG_ON(!hba);
3570 
3571 	if (!desc_buf) {
3572 		dev_err(hba->dev, "%s: descriptor buffer required for opcode 0x%x\n",
3573 				__func__, opcode);
3574 		return -EINVAL;
3575 	}
3576 
3577 	if (*buf_len < QUERY_DESC_MIN_SIZE || *buf_len > QUERY_DESC_MAX_SIZE) {
3578 		dev_err(hba->dev, "%s: descriptor buffer size (%d) is out of range\n",
3579 				__func__, *buf_len);
3580 		return -EINVAL;
3581 	}
3582 
3583 	ufshcd_dev_man_lock(hba);
3584 
3585 	ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3586 			selector);
3587 	hba->dev_cmd.query.descriptor = desc_buf;
3588 	request->upiu_req.length = cpu_to_be16(*buf_len);
3589 
3590 	switch (opcode) {
3591 	case UPIU_QUERY_OPCODE_WRITE_DESC:
3592 		request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3593 		break;
3594 	case UPIU_QUERY_OPCODE_READ_DESC:
3595 		request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3596 		break;
3597 	default:
3598 		dev_err(hba->dev,
3599 				"%s: Expected query descriptor opcode but got = 0x%.2x\n",
3600 				__func__, opcode);
3601 		err = -EINVAL;
3602 		goto out_unlock;
3603 	}
3604 
3605 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, dev_cmd_timeout);
3606 
3607 	if (err) {
3608 		dev_err(hba->dev, "%s: opcode 0x%.2x for idn %d failed, index %d, err = %d\n",
3609 				__func__, opcode, idn, index, err);
3610 		goto out_unlock;
3611 	}
3612 
3613 	*buf_len = be16_to_cpu(response->upiu_res.length);
3614 
3615 out_unlock:
3616 	hba->dev_cmd.query.descriptor = NULL;
3617 	ufshcd_dev_man_unlock(hba);
3618 	WARN_ONCE(err > 0, "Incorrect return value %d > 0\n", err);
3619 	return err;
3620 }
3621 
3622 /**
3623  * ufshcd_query_descriptor_retry - API function for sending descriptor requests
3624  * @hba: per-adapter instance
3625  * @opcode: attribute opcode
3626  * @idn: attribute idn to access
3627  * @index: index field
3628  * @selector: selector field
3629  * @desc_buf: the buffer that contains the descriptor
3630  * @buf_len: length parameter passed to the device
3631  *
3632  * The buf_len parameter will contain, on return, the length parameter
3633  * received on the response.
3634  *
3635  * Return: 0 for success; < 0 upon failure.
3636  */
3637 int ufshcd_query_descriptor_retry(struct ufs_hba *hba,
3638 				  enum query_opcode opcode,
3639 				  enum desc_idn idn, u8 index,
3640 				  u8 selector,
3641 				  u8 *desc_buf, int *buf_len)
3642 {
3643 	int err;
3644 	int retries;
3645 
3646 	for (retries = QUERY_REQ_RETRIES; retries > 0; retries--) {
3647 		err = __ufshcd_query_descriptor(hba, opcode, idn, index,
3648 						selector, desc_buf, buf_len);
3649 		if (!err || err == -EINVAL)
3650 			break;
3651 	}
3652 
3653 	WARN_ONCE(err > 0, "Incorrect return value %d > 0\n", err);
3654 	return err;
3655 }
3656 
3657 /**
3658  * ufshcd_read_desc_param - read the specified descriptor parameter
3659  * @hba: Pointer to adapter instance
3660  * @desc_id: descriptor idn value
3661  * @desc_index: descriptor index
3662  * @param_offset: offset of the parameter to read
3663  * @param_read_buf: pointer to buffer where parameter would be read
3664  * @param_size: sizeof(param_read_buf)
3665  *
3666  * Return: 0 in case of success; < 0 upon failure.
3667  */
3668 int ufshcd_read_desc_param(struct ufs_hba *hba,
3669 			   enum desc_idn desc_id,
3670 			   int desc_index,
3671 			   u8 param_offset,
3672 			   u8 *param_read_buf,
3673 			   u8 param_size)
3674 {
3675 	int ret;
3676 	u8 *desc_buf;
3677 	int buff_len = QUERY_DESC_MAX_SIZE;
3678 	bool is_kmalloc = true;
3679 
3680 	/* Safety check */
3681 	if (desc_id >= QUERY_DESC_IDN_MAX || !param_size)
3682 		return -EINVAL;
3683 
3684 	/* Check whether we need temp memory */
3685 	if (param_offset != 0 || param_size < buff_len) {
3686 		desc_buf = kzalloc(buff_len, GFP_KERNEL);
3687 		if (!desc_buf)
3688 			return -ENOMEM;
3689 	} else {
3690 		desc_buf = param_read_buf;
3691 		is_kmalloc = false;
3692 	}
3693 
3694 	/* Request for full descriptor */
3695 	ret = ufshcd_query_descriptor_retry(hba, UPIU_QUERY_OPCODE_READ_DESC,
3696 					    desc_id, desc_index, 0,
3697 					    desc_buf, &buff_len);
3698 	if (ret) {
3699 		dev_err(hba->dev, "%s: Failed reading descriptor. desc_id %d, desc_index %d, param_offset %d, ret %d\n",
3700 			__func__, desc_id, desc_index, param_offset, ret);
3701 		goto out;
3702 	}
3703 
3704 	/* Update descriptor length */
3705 	buff_len = desc_buf[QUERY_DESC_LENGTH_OFFSET];
3706 
3707 	if (param_offset >= buff_len) {
3708 		dev_err(hba->dev, "%s: Invalid offset 0x%x in descriptor IDN 0x%x, length 0x%x\n",
3709 			__func__, param_offset, desc_id, buff_len);
3710 		ret = -EINVAL;
3711 		goto out;
3712 	}
3713 
3714 	/* Sanity check */
3715 	if (desc_buf[QUERY_DESC_DESC_TYPE_OFFSET] != desc_id) {
3716 		dev_err(hba->dev, "%s: invalid desc_id %d in descriptor header\n",
3717 			__func__, desc_buf[QUERY_DESC_DESC_TYPE_OFFSET]);
3718 		ret = -EINVAL;
3719 		goto out;
3720 	}
3721 
3722 	if (is_kmalloc) {
3723 		/* Make sure we don't copy more data than available */
3724 		if (param_offset >= buff_len)
3725 			ret = -EINVAL;
3726 		else
3727 			memcpy(param_read_buf, &desc_buf[param_offset],
3728 			       min_t(u32, param_size, buff_len - param_offset));
3729 	}
3730 out:
3731 	if (is_kmalloc)
3732 		kfree(desc_buf);
3733 	WARN_ONCE(ret > 0, "Incorrect return value %d > 0\n", ret);
3734 	return ret;
3735 }
3736 
3737 /**
3738  * struct uc_string_id - unicode string
3739  *
3740  * @len: size of this descriptor inclusive
3741  * @type: descriptor type
3742  * @uc: unicode string character
3743  */
3744 struct uc_string_id {
3745 	u8 len;
3746 	u8 type;
3747 	wchar_t uc[];
3748 } __packed;
3749 
3750 /* replace non-printable or non-ASCII characters with spaces */
3751 static inline char ufshcd_remove_non_printable(u8 ch)
3752 {
3753 	return (ch >= 0x20 && ch <= 0x7e) ? ch : ' ';
3754 }
3755 
3756 /**
3757  * ufshcd_read_string_desc - read string descriptor
3758  * @hba: pointer to adapter instance
3759  * @desc_index: descriptor index
3760  * @buf: pointer to buffer where descriptor would be read,
3761  *       the caller should free the memory.
3762  * @ascii: if true convert from unicode to ascii characters
3763  *         null terminated string.
3764  *
3765  * Return:
3766  * *      string size on success.
3767  * *      -ENOMEM: on allocation failure
3768  * *      -EINVAL: on a wrong parameter
3769  */
3770 int ufshcd_read_string_desc(struct ufs_hba *hba, u8 desc_index,
3771 			    u8 **buf, bool ascii)
3772 {
3773 	struct uc_string_id *uc_str;
3774 	u8 *str;
3775 	int ret;
3776 
3777 	if (!buf)
3778 		return -EINVAL;
3779 
3780 	uc_str = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
3781 	if (!uc_str)
3782 		return -ENOMEM;
3783 
3784 	ret = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_STRING, desc_index, 0,
3785 				     (u8 *)uc_str, QUERY_DESC_MAX_SIZE);
3786 	if (ret < 0) {
3787 		dev_err(hba->dev, "Reading String Desc failed after %d retries. err = %d\n",
3788 			QUERY_REQ_RETRIES, ret);
3789 		str = NULL;
3790 		goto out;
3791 	}
3792 
3793 	if (uc_str->len <= QUERY_DESC_HDR_SIZE) {
3794 		dev_dbg(hba->dev, "String Desc is of zero length\n");
3795 		str = NULL;
3796 		ret = 0;
3797 		goto out;
3798 	}
3799 
3800 	if (ascii) {
3801 		ssize_t ascii_len;
3802 		int i;
3803 		/* remove header and divide by 2 to move from UTF16 to UTF8 */
3804 		ascii_len = (uc_str->len - QUERY_DESC_HDR_SIZE) / 2 + 1;
3805 		str = kzalloc(ascii_len, GFP_KERNEL);
3806 		if (!str) {
3807 			ret = -ENOMEM;
3808 			goto out;
3809 		}
3810 
3811 		/*
3812 		 * the descriptor contains string in UTF16 format
3813 		 * we need to convert to utf-8 so it can be displayed
3814 		 */
3815 		ret = utf16s_to_utf8s(uc_str->uc,
3816 				      uc_str->len - QUERY_DESC_HDR_SIZE,
3817 				      UTF16_BIG_ENDIAN, str, ascii_len - 1);
3818 
3819 		/* replace non-printable or non-ASCII characters with spaces */
3820 		for (i = 0; i < ret; i++)
3821 			str[i] = ufshcd_remove_non_printable(str[i]);
3822 
3823 		str[ret++] = '\0';
3824 
3825 	} else {
3826 		str = kmemdup(uc_str, uc_str->len, GFP_KERNEL);
3827 		if (!str) {
3828 			ret = -ENOMEM;
3829 			goto out;
3830 		}
3831 		ret = uc_str->len;
3832 	}
3833 out:
3834 	*buf = str;
3835 	kfree(uc_str);
3836 	return ret;
3837 }
3838 
3839 /**
3840  * ufshcd_read_unit_desc_param - read the specified unit descriptor parameter
3841  * @hba: Pointer to adapter instance
3842  * @lun: lun id
3843  * @param_offset: offset of the parameter to read
3844  * @param_read_buf: pointer to buffer where parameter would be read
3845  * @param_size: sizeof(param_read_buf)
3846  *
3847  * Return: 0 in case of success; < 0 upon failure.
3848  */
3849 static inline int ufshcd_read_unit_desc_param(struct ufs_hba *hba,
3850 					      int lun,
3851 					      enum unit_desc_param param_offset,
3852 					      u8 *param_read_buf,
3853 					      u32 param_size)
3854 {
3855 	/*
3856 	 * Unit descriptors are only available for general purpose LUs (LUN id
3857 	 * from 0 to 7) and RPMB Well known LU.
3858 	 */
3859 	if (!ufs_is_valid_unit_desc_lun(&hba->dev_info, lun))
3860 		return -EOPNOTSUPP;
3861 
3862 	return ufshcd_read_desc_param(hba, QUERY_DESC_IDN_UNIT, lun,
3863 				      param_offset, param_read_buf, param_size);
3864 }
3865 
3866 static int ufshcd_get_ref_clk_gating_wait(struct ufs_hba *hba)
3867 {
3868 	int err = 0;
3869 	u32 gating_wait = UFSHCD_REF_CLK_GATING_WAIT_US;
3870 
3871 	if (hba->dev_info.wspecversion >= 0x300) {
3872 		err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
3873 				QUERY_ATTR_IDN_REF_CLK_GATING_WAIT_TIME, 0, 0,
3874 				&gating_wait);
3875 		if (err)
3876 			dev_err(hba->dev, "Failed reading bRefClkGatingWait. err = %d, use default %uus\n",
3877 					 err, gating_wait);
3878 
3879 		if (gating_wait == 0) {
3880 			gating_wait = UFSHCD_REF_CLK_GATING_WAIT_US;
3881 			dev_err(hba->dev, "Undefined ref clk gating wait time, use default %uus\n",
3882 					 gating_wait);
3883 		}
3884 
3885 		hba->dev_info.clk_gating_wait_us = gating_wait;
3886 	}
3887 
3888 	return err;
3889 }
3890 
3891 /**
3892  * ufshcd_memory_alloc - allocate memory for host memory space data structures
3893  * @hba: per adapter instance
3894  *
3895  * 1. Allocate DMA memory for Command Descriptor array
3896  *	Each command descriptor consist of Command UPIU, Response UPIU and PRDT
3897  * 2. Allocate DMA memory for UTP Transfer Request Descriptor List (UTRDL).
3898  * 3. Allocate DMA memory for UTP Task Management Request Descriptor List
3899  *	(UTMRDL)
3900  * 4. Allocate memory for local reference block(lrb).
3901  *
3902  * Return: 0 for success, non-zero in case of failure.
3903  */
3904 static int ufshcd_memory_alloc(struct ufs_hba *hba)
3905 {
3906 	size_t utmrdl_size, utrdl_size, ucdl_size;
3907 
3908 	/* Allocate memory for UTP command descriptors */
3909 	ucdl_size = ufshcd_get_ucd_size(hba) * hba->nutrs;
3910 	hba->ucdl_base_addr = dmam_alloc_coherent(hba->dev,
3911 						  ucdl_size,
3912 						  &hba->ucdl_dma_addr,
3913 						  GFP_KERNEL);
3914 
3915 	/*
3916 	 * UFSHCI requires UTP command descriptor to be 128 byte aligned.
3917 	 */
3918 	if (!hba->ucdl_base_addr ||
3919 	    WARN_ON(hba->ucdl_dma_addr & (128 - 1))) {
3920 		dev_err(hba->dev,
3921 			"Command Descriptor Memory allocation failed\n");
3922 		goto out;
3923 	}
3924 
3925 	/*
3926 	 * Allocate memory for UTP Transfer descriptors
3927 	 * UFSHCI requires 1KB alignment of UTRD
3928 	 */
3929 	utrdl_size = (sizeof(struct utp_transfer_req_desc) * hba->nutrs);
3930 	hba->utrdl_base_addr = dmam_alloc_coherent(hba->dev,
3931 						   utrdl_size,
3932 						   &hba->utrdl_dma_addr,
3933 						   GFP_KERNEL);
3934 	if (!hba->utrdl_base_addr ||
3935 	    WARN_ON(hba->utrdl_dma_addr & (SZ_1K - 1))) {
3936 		dev_err(hba->dev,
3937 			"Transfer Descriptor Memory allocation failed\n");
3938 		goto out;
3939 	}
3940 
3941 	/*
3942 	 * Skip utmrdl allocation; it may have been
3943 	 * allocated during first pass and not released during
3944 	 * MCQ memory allocation.
3945 	 * See ufshcd_release_sdb_queue() and ufshcd_config_mcq()
3946 	 */
3947 	if (hba->utmrdl_base_addr)
3948 		goto skip_utmrdl;
3949 	/*
3950 	 * Allocate memory for UTP Task Management descriptors
3951 	 * UFSHCI requires 1KB alignment of UTMRD
3952 	 */
3953 	utmrdl_size = sizeof(struct utp_task_req_desc) * hba->nutmrs;
3954 	hba->utmrdl_base_addr = dmam_alloc_coherent(hba->dev,
3955 						    utmrdl_size,
3956 						    &hba->utmrdl_dma_addr,
3957 						    GFP_KERNEL);
3958 	if (!hba->utmrdl_base_addr ||
3959 	    WARN_ON(hba->utmrdl_dma_addr & (SZ_1K - 1))) {
3960 		dev_err(hba->dev,
3961 		"Task Management Descriptor Memory allocation failed\n");
3962 		goto out;
3963 	}
3964 
3965 skip_utmrdl:
3966 	/* Allocate memory for local reference block */
3967 	hba->lrb = devm_kcalloc(hba->dev,
3968 				hba->nutrs, sizeof(struct ufshcd_lrb),
3969 				GFP_KERNEL);
3970 	if (!hba->lrb) {
3971 		dev_err(hba->dev, "LRB Memory allocation failed\n");
3972 		goto out;
3973 	}
3974 	return 0;
3975 out:
3976 	return -ENOMEM;
3977 }
3978 
3979 /**
3980  * ufshcd_host_memory_configure - configure local reference block with
3981  *				memory offsets
3982  * @hba: per adapter instance
3983  *
3984  * Configure Host memory space
3985  * 1. Update Corresponding UTRD.UCDBA and UTRD.UCDBAU with UCD DMA
3986  * address.
3987  * 2. Update each UTRD with Response UPIU offset, Response UPIU length
3988  * and PRDT offset.
3989  * 3. Save the corresponding addresses of UTRD, UCD.CMD, UCD.RSP and UCD.PRDT
3990  * into local reference block.
3991  */
3992 static void ufshcd_host_memory_configure(struct ufs_hba *hba)
3993 {
3994 	struct utp_transfer_req_desc *utrdlp;
3995 	dma_addr_t cmd_desc_dma_addr;
3996 	dma_addr_t cmd_desc_element_addr;
3997 	u16 response_offset;
3998 	u16 prdt_offset;
3999 	int cmd_desc_size;
4000 	int i;
4001 
4002 	utrdlp = hba->utrdl_base_addr;
4003 
4004 	response_offset =
4005 		offsetof(struct utp_transfer_cmd_desc, response_upiu);
4006 	prdt_offset =
4007 		offsetof(struct utp_transfer_cmd_desc, prd_table);
4008 
4009 	cmd_desc_size = ufshcd_get_ucd_size(hba);
4010 	cmd_desc_dma_addr = hba->ucdl_dma_addr;
4011 
4012 	for (i = 0; i < hba->nutrs; i++) {
4013 		/* Configure UTRD with command descriptor base address */
4014 		cmd_desc_element_addr =
4015 				(cmd_desc_dma_addr + (cmd_desc_size * i));
4016 		utrdlp[i].command_desc_base_addr =
4017 				cpu_to_le64(cmd_desc_element_addr);
4018 
4019 		/* Response upiu and prdt offset should be in double words */
4020 		if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN) {
4021 			utrdlp[i].response_upiu_offset =
4022 				cpu_to_le16(response_offset);
4023 			utrdlp[i].prd_table_offset =
4024 				cpu_to_le16(prdt_offset);
4025 			utrdlp[i].response_upiu_length =
4026 				cpu_to_le16(ALIGNED_UPIU_SIZE);
4027 		} else {
4028 			utrdlp[i].response_upiu_offset =
4029 				cpu_to_le16(response_offset >> 2);
4030 			utrdlp[i].prd_table_offset =
4031 				cpu_to_le16(prdt_offset >> 2);
4032 			utrdlp[i].response_upiu_length =
4033 				cpu_to_le16(ALIGNED_UPIU_SIZE >> 2);
4034 		}
4035 
4036 		ufshcd_init_lrb(hba, &hba->lrb[i], i);
4037 	}
4038 }
4039 
4040 /**
4041  * ufshcd_dme_link_startup - Notify Unipro to perform link startup
4042  * @hba: per adapter instance
4043  *
4044  * UIC_CMD_DME_LINK_STARTUP command must be issued to Unipro layer,
4045  * in order to initialize the Unipro link startup procedure.
4046  * Once the Unipro links are up, the device connected to the controller
4047  * is detected.
4048  *
4049  * Return: 0 on success, non-zero value on failure.
4050  */
4051 static int ufshcd_dme_link_startup(struct ufs_hba *hba)
4052 {
4053 	struct uic_command uic_cmd = {
4054 		.command = UIC_CMD_DME_LINK_STARTUP,
4055 	};
4056 	int ret;
4057 
4058 	ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4059 	if (ret)
4060 		dev_dbg(hba->dev,
4061 			"dme-link-startup: error code %d\n", ret);
4062 	return ret;
4063 }
4064 /**
4065  * ufshcd_dme_reset - UIC command for DME_RESET
4066  * @hba: per adapter instance
4067  *
4068  * DME_RESET command is issued in order to reset UniPro stack.
4069  * This function now deals with cold reset.
4070  *
4071  * Return: 0 on success, non-zero value on failure.
4072  */
4073 int ufshcd_dme_reset(struct ufs_hba *hba)
4074 {
4075 	struct uic_command uic_cmd = {
4076 		.command = UIC_CMD_DME_RESET,
4077 	};
4078 	int ret;
4079 
4080 	ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4081 	if (ret)
4082 		dev_err(hba->dev,
4083 			"dme-reset: error code %d\n", ret);
4084 
4085 	return ret;
4086 }
4087 EXPORT_SYMBOL_GPL(ufshcd_dme_reset);
4088 
4089 int ufshcd_dme_configure_adapt(struct ufs_hba *hba,
4090 			       int agreed_gear,
4091 			       int adapt_val)
4092 {
4093 	int ret;
4094 
4095 	if (agreed_gear < UFS_HS_G4)
4096 		adapt_val = PA_NO_ADAPT;
4097 
4098 	ret = ufshcd_dme_set(hba,
4099 			     UIC_ARG_MIB(PA_TXHSADAPTTYPE),
4100 			     adapt_val);
4101 	return ret;
4102 }
4103 EXPORT_SYMBOL_GPL(ufshcd_dme_configure_adapt);
4104 
4105 /**
4106  * ufshcd_dme_enable - UIC command for DME_ENABLE
4107  * @hba: per adapter instance
4108  *
4109  * DME_ENABLE command is issued in order to enable UniPro stack.
4110  *
4111  * Return: 0 on success, non-zero value on failure.
4112  */
4113 int ufshcd_dme_enable(struct ufs_hba *hba)
4114 {
4115 	struct uic_command uic_cmd = {
4116 		.command = UIC_CMD_DME_ENABLE,
4117 	};
4118 	int ret;
4119 
4120 	ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4121 	if (ret)
4122 		dev_err(hba->dev,
4123 			"dme-enable: error code %d\n", ret);
4124 
4125 	return ret;
4126 }
4127 EXPORT_SYMBOL_GPL(ufshcd_dme_enable);
4128 
4129 static inline void ufshcd_add_delay_before_dme_cmd(struct ufs_hba *hba)
4130 {
4131 	#define MIN_DELAY_BEFORE_DME_CMDS_US	1000
4132 	unsigned long min_sleep_time_us;
4133 
4134 	if (!(hba->quirks & UFSHCD_QUIRK_DELAY_BEFORE_DME_CMDS))
4135 		return;
4136 
4137 	/*
4138 	 * last_dme_cmd_tstamp will be 0 only for 1st call to
4139 	 * this function
4140 	 */
4141 	if (unlikely(!ktime_to_us(hba->last_dme_cmd_tstamp))) {
4142 		min_sleep_time_us = MIN_DELAY_BEFORE_DME_CMDS_US;
4143 	} else {
4144 		unsigned long delta =
4145 			(unsigned long) ktime_to_us(
4146 				ktime_sub(ktime_get(),
4147 				hba->last_dme_cmd_tstamp));
4148 
4149 		if (delta < MIN_DELAY_BEFORE_DME_CMDS_US)
4150 			min_sleep_time_us =
4151 				MIN_DELAY_BEFORE_DME_CMDS_US - delta;
4152 		else
4153 			min_sleep_time_us = 0; /* no more delay required */
4154 	}
4155 
4156 	if (min_sleep_time_us > 0) {
4157 		/* allow sleep for extra 50us if needed */
4158 		usleep_range(min_sleep_time_us, min_sleep_time_us + 50);
4159 	}
4160 
4161 	/* update the last_dme_cmd_tstamp */
4162 	hba->last_dme_cmd_tstamp = ktime_get();
4163 }
4164 
4165 /**
4166  * ufshcd_dme_set_attr - UIC command for DME_SET, DME_PEER_SET
4167  * @hba: per adapter instance
4168  * @attr_sel: uic command argument1
4169  * @attr_set: attribute set type as uic command argument2
4170  * @mib_val: setting value as uic command argument3
4171  * @peer: indicate whether peer or local
4172  *
4173  * Return: 0 on success, non-zero value on failure.
4174  */
4175 int ufshcd_dme_set_attr(struct ufs_hba *hba, u32 attr_sel,
4176 			u8 attr_set, u32 mib_val, u8 peer)
4177 {
4178 	struct uic_command uic_cmd = {
4179 		.command = peer ? UIC_CMD_DME_PEER_SET : UIC_CMD_DME_SET,
4180 		.argument1 = attr_sel,
4181 		.argument2 = UIC_ARG_ATTR_TYPE(attr_set),
4182 		.argument3 = mib_val,
4183 	};
4184 	static const char *const action[] = {
4185 		"dme-set",
4186 		"dme-peer-set"
4187 	};
4188 	const char *set = action[!!peer];
4189 	int ret;
4190 	int retries = UFS_UIC_COMMAND_RETRIES;
4191 
4192 	do {
4193 		/* for peer attributes we retry upon failure */
4194 		ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4195 		if (ret)
4196 			dev_dbg(hba->dev, "%s: attr-id 0x%x val 0x%x error code %d\n",
4197 				set, UIC_GET_ATTR_ID(attr_sel), mib_val, ret);
4198 	} while (ret && peer && --retries);
4199 
4200 	if (ret)
4201 		dev_err(hba->dev, "%s: attr-id 0x%x val 0x%x failed %d retries\n",
4202 			set, UIC_GET_ATTR_ID(attr_sel), mib_val,
4203 			UFS_UIC_COMMAND_RETRIES - retries);
4204 
4205 	return ret;
4206 }
4207 EXPORT_SYMBOL_GPL(ufshcd_dme_set_attr);
4208 
4209 /**
4210  * ufshcd_dme_get_attr - UIC command for DME_GET, DME_PEER_GET
4211  * @hba: per adapter instance
4212  * @attr_sel: uic command argument1
4213  * @mib_val: the value of the attribute as returned by the UIC command
4214  * @peer: indicate whether peer or local
4215  *
4216  * Return: 0 on success, non-zero value on failure.
4217  */
4218 int ufshcd_dme_get_attr(struct ufs_hba *hba, u32 attr_sel,
4219 			u32 *mib_val, u8 peer)
4220 {
4221 	struct uic_command uic_cmd = {
4222 		.command = peer ? UIC_CMD_DME_PEER_GET : UIC_CMD_DME_GET,
4223 		.argument1 = attr_sel,
4224 	};
4225 	static const char *const action[] = {
4226 		"dme-get",
4227 		"dme-peer-get"
4228 	};
4229 	const char *get = action[!!peer];
4230 	int ret;
4231 	int retries = UFS_UIC_COMMAND_RETRIES;
4232 	struct ufs_pa_layer_attr orig_pwr_info;
4233 	struct ufs_pa_layer_attr temp_pwr_info;
4234 	bool pwr_mode_change = false;
4235 
4236 	if (peer && (hba->quirks & UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE)) {
4237 		orig_pwr_info = hba->pwr_info;
4238 		temp_pwr_info = orig_pwr_info;
4239 
4240 		if (orig_pwr_info.pwr_tx == FAST_MODE ||
4241 		    orig_pwr_info.pwr_rx == FAST_MODE) {
4242 			temp_pwr_info.pwr_tx = FASTAUTO_MODE;
4243 			temp_pwr_info.pwr_rx = FASTAUTO_MODE;
4244 			pwr_mode_change = true;
4245 		} else if (orig_pwr_info.pwr_tx == SLOW_MODE ||
4246 		    orig_pwr_info.pwr_rx == SLOW_MODE) {
4247 			temp_pwr_info.pwr_tx = SLOWAUTO_MODE;
4248 			temp_pwr_info.pwr_rx = SLOWAUTO_MODE;
4249 			pwr_mode_change = true;
4250 		}
4251 		if (pwr_mode_change) {
4252 			ret = ufshcd_change_power_mode(hba, &temp_pwr_info);
4253 			if (ret)
4254 				goto out;
4255 		}
4256 	}
4257 
4258 	do {
4259 		/* for peer attributes we retry upon failure */
4260 		ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4261 		if (ret)
4262 			dev_dbg(hba->dev, "%s: attr-id 0x%x error code %d\n",
4263 				get, UIC_GET_ATTR_ID(attr_sel), ret);
4264 	} while (ret && peer && --retries);
4265 
4266 	if (ret)
4267 		dev_err(hba->dev, "%s: attr-id 0x%x failed %d retries\n",
4268 			get, UIC_GET_ATTR_ID(attr_sel),
4269 			UFS_UIC_COMMAND_RETRIES - retries);
4270 
4271 	if (mib_val && !ret)
4272 		*mib_val = uic_cmd.argument3;
4273 
4274 	if (peer && (hba->quirks & UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE)
4275 	    && pwr_mode_change)
4276 		ufshcd_change_power_mode(hba, &orig_pwr_info);
4277 out:
4278 	return ret;
4279 }
4280 EXPORT_SYMBOL_GPL(ufshcd_dme_get_attr);
4281 
4282 /**
4283  * ufshcd_dme_rmw - get modify set a DME attribute
4284  * @hba: per adapter instance
4285  * @mask: indicates which bits to clear from the value that has been read
4286  * @val: actual value to write
4287  * @attr: dme attribute
4288  */
4289 int ufshcd_dme_rmw(struct ufs_hba *hba, u32 mask,
4290 		   u32 val, u32 attr)
4291 {
4292 	u32 cfg = 0;
4293 	int err;
4294 
4295 	err = ufshcd_dme_get(hba, UIC_ARG_MIB(attr), &cfg);
4296 	if (err)
4297 		return err;
4298 
4299 	cfg &= ~mask;
4300 	cfg |= (val & mask);
4301 
4302 	return ufshcd_dme_set(hba, UIC_ARG_MIB(attr), cfg);
4303 }
4304 EXPORT_SYMBOL_GPL(ufshcd_dme_rmw);
4305 
4306 /**
4307  * ufshcd_uic_pwr_ctrl - executes UIC commands (which affects the link power
4308  * state) and waits for it to take effect.
4309  *
4310  * @hba: per adapter instance
4311  * @cmd: UIC command to execute
4312  *
4313  * DME operations like DME_SET(PA_PWRMODE), DME_HIBERNATE_ENTER &
4314  * DME_HIBERNATE_EXIT commands take some time to take its effect on both host
4315  * and device UniPro link and hence it's final completion would be indicated by
4316  * dedicated status bits in Interrupt Status register (UPMS, UHES, UHXS) in
4317  * addition to normal UIC command completion Status (UCCS). This function only
4318  * returns after the relevant status bits indicate the completion.
4319  *
4320  * Return: 0 on success, non-zero value on failure.
4321  */
4322 static int ufshcd_uic_pwr_ctrl(struct ufs_hba *hba, struct uic_command *cmd)
4323 {
4324 	DECLARE_COMPLETION_ONSTACK(uic_async_done);
4325 	unsigned long flags;
4326 	u8 status;
4327 	int ret;
4328 
4329 	mutex_lock(&hba->uic_cmd_mutex);
4330 	ufshcd_add_delay_before_dme_cmd(hba);
4331 
4332 	spin_lock_irqsave(hba->host->host_lock, flags);
4333 	if (ufshcd_is_link_broken(hba)) {
4334 		ret = -ENOLINK;
4335 		goto out_unlock;
4336 	}
4337 	hba->uic_async_done = &uic_async_done;
4338 	ufshcd_disable_intr(hba, UIC_COMMAND_COMPL);
4339 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4340 	ret = __ufshcd_send_uic_cmd(hba, cmd);
4341 	if (ret) {
4342 		dev_err(hba->dev,
4343 			"pwr ctrl cmd 0x%x with mode 0x%x uic error %d\n",
4344 			cmd->command, cmd->argument3, ret);
4345 		goto out;
4346 	}
4347 
4348 	if (!wait_for_completion_timeout(hba->uic_async_done,
4349 					 msecs_to_jiffies(uic_cmd_timeout))) {
4350 		dev_err(hba->dev,
4351 			"pwr ctrl cmd 0x%x with mode 0x%x completion timeout\n",
4352 			cmd->command, cmd->argument3);
4353 
4354 		if (!cmd->cmd_active) {
4355 			dev_err(hba->dev, "%s: Power Mode Change operation has been completed, go check UPMCRS\n",
4356 				__func__);
4357 			goto check_upmcrs;
4358 		}
4359 
4360 		ret = -ETIMEDOUT;
4361 		goto out;
4362 	}
4363 
4364 check_upmcrs:
4365 	status = ufshcd_get_upmcrs(hba);
4366 	if (status != PWR_LOCAL) {
4367 		dev_err(hba->dev,
4368 			"pwr ctrl cmd 0x%x failed, host upmcrs:0x%x\n",
4369 			cmd->command, status);
4370 		ret = (status != PWR_OK) ? status : -1;
4371 	}
4372 out:
4373 	if (ret) {
4374 		ufshcd_print_host_state(hba);
4375 		ufshcd_print_pwr_info(hba);
4376 		ufshcd_print_evt_hist(hba);
4377 	}
4378 
4379 	spin_lock_irqsave(hba->host->host_lock, flags);
4380 	hba->active_uic_cmd = NULL;
4381 	hba->uic_async_done = NULL;
4382 	if (ret && !hba->pm_op_in_progress) {
4383 		ufshcd_set_link_broken(hba);
4384 		ufshcd_schedule_eh_work(hba);
4385 	}
4386 out_unlock:
4387 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4388 	mutex_unlock(&hba->uic_cmd_mutex);
4389 
4390 	/*
4391 	 * If the h8 exit fails during the runtime resume process, it becomes
4392 	 * stuck and cannot be recovered through the error handler.  To fix
4393 	 * this, use link recovery instead of the error handler.
4394 	 */
4395 	if (ret && hba->pm_op_in_progress)
4396 		ret = ufshcd_link_recovery(hba);
4397 
4398 	return ret;
4399 }
4400 
4401 /**
4402  * ufshcd_send_bsg_uic_cmd - Send UIC commands requested via BSG layer and retrieve the result
4403  * @hba: per adapter instance
4404  * @uic_cmd: UIC command
4405  *
4406  * Return: 0 only if success.
4407  */
4408 int ufshcd_send_bsg_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
4409 {
4410 	int ret;
4411 
4412 	if (uic_cmd->argument1 != UIC_ARG_MIB(PA_PWRMODE) ||
4413 	    uic_cmd->command != UIC_CMD_DME_SET)
4414 		return ufshcd_send_uic_cmd(hba, uic_cmd);
4415 
4416 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_UIC_CMD)
4417 		return 0;
4418 
4419 	ufshcd_hold(hba);
4420 	ret = ufshcd_uic_pwr_ctrl(hba, uic_cmd);
4421 	ufshcd_release(hba);
4422 
4423 	return ret;
4424 }
4425 
4426 /**
4427  * ufshcd_uic_change_pwr_mode - Perform the UIC power mode chage
4428  *				using DME_SET primitives.
4429  * @hba: per adapter instance
4430  * @mode: powr mode value
4431  *
4432  * Return: 0 on success, non-zero value on failure.
4433  */
4434 int ufshcd_uic_change_pwr_mode(struct ufs_hba *hba, u8 mode)
4435 {
4436 	struct uic_command uic_cmd = {
4437 		.command = UIC_CMD_DME_SET,
4438 		.argument1 = UIC_ARG_MIB(PA_PWRMODE),
4439 		.argument3 = mode,
4440 	};
4441 	int ret;
4442 
4443 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_PA_RXHSUNTERMCAP) {
4444 		ret = ufshcd_dme_set(hba,
4445 				UIC_ARG_MIB_SEL(PA_RXHSUNTERMCAP, 0), 1);
4446 		if (ret) {
4447 			dev_err(hba->dev, "%s: failed to enable PA_RXHSUNTERMCAP ret %d\n",
4448 						__func__, ret);
4449 			goto out;
4450 		}
4451 	}
4452 
4453 	ufshcd_hold(hba);
4454 	ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4455 	ufshcd_release(hba);
4456 
4457 out:
4458 	return ret;
4459 }
4460 EXPORT_SYMBOL_GPL(ufshcd_uic_change_pwr_mode);
4461 
4462 int ufshcd_link_recovery(struct ufs_hba *hba)
4463 {
4464 	int ret;
4465 	unsigned long flags;
4466 
4467 	spin_lock_irqsave(hba->host->host_lock, flags);
4468 	hba->ufshcd_state = UFSHCD_STATE_RESET;
4469 	ufshcd_set_eh_in_progress(hba);
4470 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4471 
4472 	/* Reset the attached device */
4473 	ufshcd_device_reset(hba);
4474 
4475 	ret = ufshcd_host_reset_and_restore(hba);
4476 
4477 	spin_lock_irqsave(hba->host->host_lock, flags);
4478 	if (ret)
4479 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
4480 	ufshcd_clear_eh_in_progress(hba);
4481 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4482 
4483 	if (ret)
4484 		dev_err(hba->dev, "%s: link recovery failed, err %d",
4485 			__func__, ret);
4486 
4487 	return ret;
4488 }
4489 EXPORT_SYMBOL_GPL(ufshcd_link_recovery);
4490 
4491 int ufshcd_uic_hibern8_enter(struct ufs_hba *hba)
4492 {
4493 	struct uic_command uic_cmd = {
4494 		.command = UIC_CMD_DME_HIBER_ENTER,
4495 	};
4496 	ktime_t start = ktime_get();
4497 	int ret;
4498 
4499 	ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_ENTER, PRE_CHANGE);
4500 
4501 	ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4502 	trace_ufshcd_profile_hibern8(hba, "enter",
4503 			     ktime_to_us(ktime_sub(ktime_get(), start)), ret);
4504 
4505 	if (ret)
4506 		dev_err(hba->dev, "%s: hibern8 enter failed. ret = %d\n",
4507 			__func__, ret);
4508 	else
4509 		ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_ENTER,
4510 								POST_CHANGE);
4511 
4512 	return ret;
4513 }
4514 EXPORT_SYMBOL_GPL(ufshcd_uic_hibern8_enter);
4515 
4516 int ufshcd_uic_hibern8_exit(struct ufs_hba *hba)
4517 {
4518 	struct uic_command uic_cmd = {
4519 		.command = UIC_CMD_DME_HIBER_EXIT,
4520 	};
4521 	int ret;
4522 	ktime_t start = ktime_get();
4523 
4524 	ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_EXIT, PRE_CHANGE);
4525 
4526 	ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4527 	trace_ufshcd_profile_hibern8(hba, "exit",
4528 			     ktime_to_us(ktime_sub(ktime_get(), start)), ret);
4529 
4530 	if (ret) {
4531 		dev_err(hba->dev, "%s: hibern8 exit failed. ret = %d\n",
4532 			__func__, ret);
4533 	} else {
4534 		ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_EXIT,
4535 								POST_CHANGE);
4536 		hba->ufs_stats.last_hibern8_exit_tstamp = local_clock();
4537 		hba->ufs_stats.hibern8_exit_cnt++;
4538 	}
4539 
4540 	return ret;
4541 }
4542 EXPORT_SYMBOL_GPL(ufshcd_uic_hibern8_exit);
4543 
4544 static void ufshcd_configure_auto_hibern8(struct ufs_hba *hba)
4545 {
4546 	if (!ufshcd_is_auto_hibern8_supported(hba))
4547 		return;
4548 
4549 	ufshcd_writel(hba, hba->ahit, REG_AUTO_HIBERNATE_IDLE_TIMER);
4550 }
4551 
4552 void ufshcd_auto_hibern8_update(struct ufs_hba *hba, u32 ahit)
4553 {
4554 	const u32 cur_ahit = READ_ONCE(hba->ahit);
4555 
4556 	if (!ufshcd_is_auto_hibern8_supported(hba) || cur_ahit == ahit)
4557 		return;
4558 
4559 	WRITE_ONCE(hba->ahit, ahit);
4560 	if (!pm_runtime_suspended(&hba->ufs_device_wlun->sdev_gendev)) {
4561 		ufshcd_rpm_get_sync(hba);
4562 		ufshcd_hold(hba);
4563 		ufshcd_configure_auto_hibern8(hba);
4564 		ufshcd_release(hba);
4565 		ufshcd_rpm_put_sync(hba);
4566 	}
4567 }
4568 EXPORT_SYMBOL_GPL(ufshcd_auto_hibern8_update);
4569 
4570  /**
4571  * ufshcd_init_pwr_info - setting the POR (power on reset)
4572  * values in hba power info
4573  * @hba: per-adapter instance
4574  */
4575 static void ufshcd_init_pwr_info(struct ufs_hba *hba)
4576 {
4577 	hba->pwr_info.gear_rx = UFS_PWM_G1;
4578 	hba->pwr_info.gear_tx = UFS_PWM_G1;
4579 	hba->pwr_info.lane_rx = UFS_LANE_1;
4580 	hba->pwr_info.lane_tx = UFS_LANE_1;
4581 	hba->pwr_info.pwr_rx = SLOWAUTO_MODE;
4582 	hba->pwr_info.pwr_tx = SLOWAUTO_MODE;
4583 	hba->pwr_info.hs_rate = 0;
4584 }
4585 
4586 /**
4587  * ufshcd_get_max_pwr_mode - reads the max power mode negotiated with device
4588  * @hba: per-adapter instance
4589  *
4590  * Return: 0 upon success; < 0 upon failure.
4591  */
4592 static int ufshcd_get_max_pwr_mode(struct ufs_hba *hba)
4593 {
4594 	struct ufs_pa_layer_attr *pwr_info = &hba->max_pwr_info.info;
4595 
4596 	if (hba->max_pwr_info.is_valid)
4597 		return 0;
4598 
4599 	if (hba->quirks & UFSHCD_QUIRK_HIBERN_FASTAUTO) {
4600 		pwr_info->pwr_tx = FASTAUTO_MODE;
4601 		pwr_info->pwr_rx = FASTAUTO_MODE;
4602 	} else {
4603 		pwr_info->pwr_tx = FAST_MODE;
4604 		pwr_info->pwr_rx = FAST_MODE;
4605 	}
4606 	pwr_info->hs_rate = PA_HS_MODE_B;
4607 
4608 	/* Get the connected lane count */
4609 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDRXDATALANES),
4610 			&pwr_info->lane_rx);
4611 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4612 			&pwr_info->lane_tx);
4613 
4614 	if (!pwr_info->lane_rx || !pwr_info->lane_tx) {
4615 		dev_err(hba->dev, "%s: invalid connected lanes value. rx=%d, tx=%d\n",
4616 				__func__,
4617 				pwr_info->lane_rx,
4618 				pwr_info->lane_tx);
4619 		return -EINVAL;
4620 	}
4621 
4622 	if (pwr_info->lane_rx != pwr_info->lane_tx) {
4623 		dev_err(hba->dev, "%s: asymmetric connected lanes. rx=%d, tx=%d\n",
4624 			__func__,
4625 				pwr_info->lane_rx,
4626 				pwr_info->lane_tx);
4627 		return -EINVAL;
4628 	}
4629 
4630 	/*
4631 	 * First, get the maximum gears of HS speed.
4632 	 * If a zero value, it means there is no HSGEAR capability.
4633 	 * Then, get the maximum gears of PWM speed.
4634 	 */
4635 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_MAXRXHSGEAR), &pwr_info->gear_rx);
4636 	if (!pwr_info->gear_rx) {
4637 		ufshcd_dme_get(hba, UIC_ARG_MIB(PA_MAXRXPWMGEAR),
4638 				&pwr_info->gear_rx);
4639 		if (!pwr_info->gear_rx) {
4640 			dev_err(hba->dev, "%s: invalid max pwm rx gear read = %d\n",
4641 				__func__, pwr_info->gear_rx);
4642 			return -EINVAL;
4643 		}
4644 		pwr_info->pwr_rx = SLOW_MODE;
4645 	}
4646 
4647 	ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_MAXRXHSGEAR),
4648 			&pwr_info->gear_tx);
4649 	if (!pwr_info->gear_tx) {
4650 		ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_MAXRXPWMGEAR),
4651 				&pwr_info->gear_tx);
4652 		if (!pwr_info->gear_tx) {
4653 			dev_err(hba->dev, "%s: invalid max pwm tx gear read = %d\n",
4654 				__func__, pwr_info->gear_tx);
4655 			return -EINVAL;
4656 		}
4657 		pwr_info->pwr_tx = SLOW_MODE;
4658 	}
4659 
4660 	hba->max_pwr_info.is_valid = true;
4661 	return 0;
4662 }
4663 
4664 static int ufshcd_change_power_mode(struct ufs_hba *hba,
4665 			     struct ufs_pa_layer_attr *pwr_mode)
4666 {
4667 	int ret;
4668 
4669 	/* if already configured to the requested pwr_mode */
4670 	if (!hba->force_pmc &&
4671 	    pwr_mode->gear_rx == hba->pwr_info.gear_rx &&
4672 	    pwr_mode->gear_tx == hba->pwr_info.gear_tx &&
4673 	    pwr_mode->lane_rx == hba->pwr_info.lane_rx &&
4674 	    pwr_mode->lane_tx == hba->pwr_info.lane_tx &&
4675 	    pwr_mode->pwr_rx == hba->pwr_info.pwr_rx &&
4676 	    pwr_mode->pwr_tx == hba->pwr_info.pwr_tx &&
4677 	    pwr_mode->hs_rate == hba->pwr_info.hs_rate) {
4678 		dev_dbg(hba->dev, "%s: power already configured\n", __func__);
4679 		return 0;
4680 	}
4681 
4682 	/*
4683 	 * Configure attributes for power mode change with below.
4684 	 * - PA_RXGEAR, PA_ACTIVERXDATALANES, PA_RXTERMINATION,
4685 	 * - PA_TXGEAR, PA_ACTIVETXDATALANES, PA_TXTERMINATION,
4686 	 * - PA_HSSERIES
4687 	 */
4688 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXGEAR), pwr_mode->gear_rx);
4689 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVERXDATALANES),
4690 			pwr_mode->lane_rx);
4691 	if (pwr_mode->pwr_rx == FASTAUTO_MODE ||
4692 			pwr_mode->pwr_rx == FAST_MODE)
4693 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), true);
4694 	else
4695 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), false);
4696 
4697 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXGEAR), pwr_mode->gear_tx);
4698 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVETXDATALANES),
4699 			pwr_mode->lane_tx);
4700 	if (pwr_mode->pwr_tx == FASTAUTO_MODE ||
4701 			pwr_mode->pwr_tx == FAST_MODE)
4702 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), true);
4703 	else
4704 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), false);
4705 
4706 	if (pwr_mode->pwr_rx == FASTAUTO_MODE ||
4707 	    pwr_mode->pwr_tx == FASTAUTO_MODE ||
4708 	    pwr_mode->pwr_rx == FAST_MODE ||
4709 	    pwr_mode->pwr_tx == FAST_MODE)
4710 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_HSSERIES),
4711 						pwr_mode->hs_rate);
4712 
4713 	if (!(hba->quirks & UFSHCD_QUIRK_SKIP_DEF_UNIPRO_TIMEOUT_SETTING)) {
4714 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA0),
4715 				DL_FC0ProtectionTimeOutVal_Default);
4716 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA1),
4717 				DL_TC0ReplayTimeOutVal_Default);
4718 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA2),
4719 				DL_AFC0ReqTimeOutVal_Default);
4720 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA3),
4721 				DL_FC1ProtectionTimeOutVal_Default);
4722 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA4),
4723 				DL_TC1ReplayTimeOutVal_Default);
4724 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA5),
4725 				DL_AFC1ReqTimeOutVal_Default);
4726 
4727 		ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalFC0ProtectionTimeOutVal),
4728 				DL_FC0ProtectionTimeOutVal_Default);
4729 		ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalTC0ReplayTimeOutVal),
4730 				DL_TC0ReplayTimeOutVal_Default);
4731 		ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalAFC0ReqTimeOutVal),
4732 				DL_AFC0ReqTimeOutVal_Default);
4733 	}
4734 
4735 	ret = ufshcd_uic_change_pwr_mode(hba, pwr_mode->pwr_rx << 4
4736 			| pwr_mode->pwr_tx);
4737 
4738 	if (ret) {
4739 		dev_err(hba->dev,
4740 			"%s: power mode change failed %d\n", __func__, ret);
4741 	} else {
4742 		memcpy(&hba->pwr_info, pwr_mode,
4743 			sizeof(struct ufs_pa_layer_attr));
4744 	}
4745 
4746 	return ret;
4747 }
4748 
4749 /**
4750  * ufshcd_config_pwr_mode - configure a new power mode
4751  * @hba: per-adapter instance
4752  * @desired_pwr_mode: desired power configuration
4753  *
4754  * Return: 0 upon success; < 0 upon failure.
4755  */
4756 int ufshcd_config_pwr_mode(struct ufs_hba *hba,
4757 		struct ufs_pa_layer_attr *desired_pwr_mode)
4758 {
4759 	struct ufs_pa_layer_attr final_params = { 0 };
4760 	int ret;
4761 
4762 	ret = ufshcd_vops_pwr_change_notify(hba, PRE_CHANGE,
4763 					desired_pwr_mode, &final_params);
4764 
4765 	if (ret)
4766 		memcpy(&final_params, desired_pwr_mode, sizeof(final_params));
4767 
4768 	ret = ufshcd_change_power_mode(hba, &final_params);
4769 
4770 	if (!ret)
4771 		ufshcd_vops_pwr_change_notify(hba, POST_CHANGE, NULL,
4772 					&final_params);
4773 
4774 	return ret;
4775 }
4776 EXPORT_SYMBOL_GPL(ufshcd_config_pwr_mode);
4777 
4778 /**
4779  * ufshcd_complete_dev_init() - checks device readiness
4780  * @hba: per-adapter instance
4781  *
4782  * Set fDeviceInit flag and poll until device toggles it.
4783  *
4784  * Return: 0 upon success; < 0 upon failure.
4785  */
4786 static int ufshcd_complete_dev_init(struct ufs_hba *hba)
4787 {
4788 	int err;
4789 	bool flag_res = true;
4790 	ktime_t timeout;
4791 
4792 	err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG,
4793 		QUERY_FLAG_IDN_FDEVICEINIT, 0, NULL);
4794 	if (err) {
4795 		dev_err(hba->dev,
4796 			"%s: setting fDeviceInit flag failed with error %d\n",
4797 			__func__, err);
4798 		goto out;
4799 	}
4800 
4801 	/* Poll fDeviceInit flag to be cleared */
4802 	timeout = ktime_add_ms(ktime_get(), FDEVICEINIT_COMPL_TIMEOUT);
4803 	do {
4804 		err = ufshcd_query_flag(hba, UPIU_QUERY_OPCODE_READ_FLAG,
4805 					QUERY_FLAG_IDN_FDEVICEINIT, 0, &flag_res);
4806 		if (!flag_res)
4807 			break;
4808 		usleep_range(500, 1000);
4809 	} while (ktime_before(ktime_get(), timeout));
4810 
4811 	if (err) {
4812 		dev_err(hba->dev,
4813 				"%s: reading fDeviceInit flag failed with error %d\n",
4814 				__func__, err);
4815 	} else if (flag_res) {
4816 		dev_err(hba->dev,
4817 				"%s: fDeviceInit was not cleared by the device\n",
4818 				__func__);
4819 		err = -EBUSY;
4820 	}
4821 out:
4822 	return err;
4823 }
4824 
4825 /**
4826  * ufshcd_make_hba_operational - Make UFS controller operational
4827  * @hba: per adapter instance
4828  *
4829  * To bring UFS host controller to operational state,
4830  * 1. Enable required interrupts
4831  * 2. Configure interrupt aggregation
4832  * 3. Program UTRL and UTMRL base address
4833  * 4. Configure run-stop-registers
4834  *
4835  * Return: 0 if successful; < 0 upon failure.
4836  */
4837 int ufshcd_make_hba_operational(struct ufs_hba *hba)
4838 {
4839 	int err = 0;
4840 	u32 reg;
4841 
4842 	/* Enable required interrupts */
4843 	ufshcd_enable_intr(hba, UFSHCD_ENABLE_INTRS);
4844 
4845 	/* Configure interrupt aggregation */
4846 	if (ufshcd_is_intr_aggr_allowed(hba))
4847 		ufshcd_config_intr_aggr(hba, hba->nutrs - 1, INT_AGGR_DEF_TO);
4848 	else
4849 		ufshcd_disable_intr_aggr(hba);
4850 
4851 	/* Configure UTRL and UTMRL base address registers */
4852 	ufshcd_writel(hba, lower_32_bits(hba->utrdl_dma_addr),
4853 			REG_UTP_TRANSFER_REQ_LIST_BASE_L);
4854 	ufshcd_writel(hba, upper_32_bits(hba->utrdl_dma_addr),
4855 			REG_UTP_TRANSFER_REQ_LIST_BASE_H);
4856 	ufshcd_writel(hba, lower_32_bits(hba->utmrdl_dma_addr),
4857 			REG_UTP_TASK_REQ_LIST_BASE_L);
4858 	ufshcd_writel(hba, upper_32_bits(hba->utmrdl_dma_addr),
4859 			REG_UTP_TASK_REQ_LIST_BASE_H);
4860 
4861 	/*
4862 	 * UCRDY, UTMRLDY and UTRLRDY bits must be 1
4863 	 */
4864 	reg = ufshcd_readl(hba, REG_CONTROLLER_STATUS);
4865 	if (!(ufshcd_get_lists_status(reg))) {
4866 		ufshcd_enable_run_stop_reg(hba);
4867 	} else {
4868 		dev_err(hba->dev,
4869 			"Host controller not ready to process requests");
4870 		err = -EIO;
4871 	}
4872 
4873 	return err;
4874 }
4875 EXPORT_SYMBOL_GPL(ufshcd_make_hba_operational);
4876 
4877 /**
4878  * ufshcd_hba_stop - Send controller to reset state
4879  * @hba: per adapter instance
4880  */
4881 void ufshcd_hba_stop(struct ufs_hba *hba)
4882 {
4883 	int err;
4884 
4885 	ufshcd_disable_irq(hba);
4886 	ufshcd_writel(hba, CONTROLLER_DISABLE,  REG_CONTROLLER_ENABLE);
4887 	err = ufshcd_wait_for_register(hba, REG_CONTROLLER_ENABLE,
4888 					CONTROLLER_ENABLE, CONTROLLER_DISABLE,
4889 					10, 1);
4890 	ufshcd_enable_irq(hba);
4891 	if (err)
4892 		dev_err(hba->dev, "%s: Controller disable failed\n", __func__);
4893 }
4894 EXPORT_SYMBOL_GPL(ufshcd_hba_stop);
4895 
4896 /**
4897  * ufshcd_hba_execute_hce - initialize the controller
4898  * @hba: per adapter instance
4899  *
4900  * The controller resets itself and controller firmware initialization
4901  * sequence kicks off. When controller is ready it will set
4902  * the Host Controller Enable bit to 1.
4903  *
4904  * Return: 0 on success, non-zero value on failure.
4905  */
4906 static int ufshcd_hba_execute_hce(struct ufs_hba *hba)
4907 {
4908 	int retry;
4909 
4910 	for (retry = 3; retry > 0; retry--) {
4911 		if (ufshcd_is_hba_active(hba))
4912 			/* change controller state to "reset state" */
4913 			ufshcd_hba_stop(hba);
4914 
4915 		/* UniPro link is disabled at this point */
4916 		ufshcd_set_link_off(hba);
4917 
4918 		ufshcd_vops_hce_enable_notify(hba, PRE_CHANGE);
4919 
4920 		/* start controller initialization sequence */
4921 		ufshcd_hba_start(hba);
4922 
4923 		/*
4924 		 * To initialize a UFS host controller HCE bit must be set to 1.
4925 		 * During initialization the HCE bit value changes from 1->0->1.
4926 		 * When the host controller completes initialization sequence
4927 		 * it sets the value of HCE bit to 1. The same HCE bit is read back
4928 		 * to check if the controller has completed initialization sequence.
4929 		 * So without this delay the value HCE = 1, set in the previous
4930 		 * instruction might be read back.
4931 		 * This delay can be changed based on the controller.
4932 		 */
4933 		ufshcd_delay_us(hba->vps->hba_enable_delay_us, 100);
4934 
4935 		/* wait for the host controller to complete initialization */
4936 		if (!ufshcd_wait_for_register(hba, REG_CONTROLLER_ENABLE, CONTROLLER_ENABLE,
4937 					      CONTROLLER_ENABLE, 1000, 50))
4938 			break;
4939 
4940 		dev_err(hba->dev, "Enabling the controller failed\n");
4941 	}
4942 
4943 	if (!retry)
4944 		return -EIO;
4945 
4946 	/* enable UIC related interrupts */
4947 	ufshcd_enable_intr(hba, UFSHCD_UIC_MASK);
4948 
4949 	ufshcd_vops_hce_enable_notify(hba, POST_CHANGE);
4950 
4951 	return 0;
4952 }
4953 
4954 int ufshcd_hba_enable(struct ufs_hba *hba)
4955 {
4956 	int ret;
4957 
4958 	if (hba->quirks & UFSHCI_QUIRK_BROKEN_HCE) {
4959 		ufshcd_set_link_off(hba);
4960 		ufshcd_vops_hce_enable_notify(hba, PRE_CHANGE);
4961 
4962 		/* enable UIC related interrupts */
4963 		ufshcd_enable_intr(hba, UFSHCD_UIC_MASK);
4964 		ret = ufshcd_dme_reset(hba);
4965 		if (ret) {
4966 			dev_err(hba->dev, "DME_RESET failed\n");
4967 			return ret;
4968 		}
4969 
4970 		ret = ufshcd_dme_enable(hba);
4971 		if (ret) {
4972 			dev_err(hba->dev, "Enabling DME failed\n");
4973 			return ret;
4974 		}
4975 
4976 		ufshcd_vops_hce_enable_notify(hba, POST_CHANGE);
4977 	} else {
4978 		ret = ufshcd_hba_execute_hce(hba);
4979 	}
4980 
4981 	return ret;
4982 }
4983 EXPORT_SYMBOL_GPL(ufshcd_hba_enable);
4984 
4985 static int ufshcd_disable_tx_lcc(struct ufs_hba *hba, bool peer)
4986 {
4987 	int tx_lanes = 0, i, err = 0;
4988 
4989 	if (!peer)
4990 		ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4991 			       &tx_lanes);
4992 	else
4993 		ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4994 				    &tx_lanes);
4995 	for (i = 0; i < tx_lanes; i++) {
4996 		if (!peer)
4997 			err = ufshcd_dme_set(hba,
4998 				UIC_ARG_MIB_SEL(TX_LCC_ENABLE,
4999 					UIC_ARG_MPHY_TX_GEN_SEL_INDEX(i)),
5000 					0);
5001 		else
5002 			err = ufshcd_dme_peer_set(hba,
5003 				UIC_ARG_MIB_SEL(TX_LCC_ENABLE,
5004 					UIC_ARG_MPHY_TX_GEN_SEL_INDEX(i)),
5005 					0);
5006 		if (err) {
5007 			dev_err(hba->dev, "%s: TX LCC Disable failed, peer = %d, lane = %d, err = %d",
5008 				__func__, peer, i, err);
5009 			break;
5010 		}
5011 	}
5012 
5013 	return err;
5014 }
5015 
5016 static inline int ufshcd_disable_device_tx_lcc(struct ufs_hba *hba)
5017 {
5018 	return ufshcd_disable_tx_lcc(hba, true);
5019 }
5020 
5021 void ufshcd_update_evt_hist(struct ufs_hba *hba, u32 id, u32 val)
5022 {
5023 	struct ufs_event_hist *e;
5024 
5025 	if (id >= UFS_EVT_CNT)
5026 		return;
5027 
5028 	e = &hba->ufs_stats.event[id];
5029 	e->val[e->pos] = val;
5030 	e->tstamp[e->pos] = local_clock();
5031 	e->cnt += 1;
5032 	e->pos = (e->pos + 1) % UFS_EVENT_HIST_LENGTH;
5033 
5034 	ufshcd_vops_event_notify(hba, id, &val);
5035 }
5036 EXPORT_SYMBOL_GPL(ufshcd_update_evt_hist);
5037 
5038 /**
5039  * ufshcd_link_startup - Initialize unipro link startup
5040  * @hba: per adapter instance
5041  *
5042  * Return: 0 for success, non-zero in case of failure.
5043  */
5044 static int ufshcd_link_startup(struct ufs_hba *hba)
5045 {
5046 	int ret;
5047 	int retries = DME_LINKSTARTUP_RETRIES;
5048 	bool link_startup_again = false;
5049 
5050 	/*
5051 	 * If UFS device isn't active then we will have to issue link startup
5052 	 * 2 times to make sure the device state move to active.
5053 	 */
5054 	if (!ufshcd_is_ufs_dev_active(hba))
5055 		link_startup_again = true;
5056 
5057 link_startup:
5058 	do {
5059 		ufshcd_vops_link_startup_notify(hba, PRE_CHANGE);
5060 
5061 		ret = ufshcd_dme_link_startup(hba);
5062 
5063 		/* check if device is detected by inter-connect layer */
5064 		if (!ret && !ufshcd_is_device_present(hba)) {
5065 			ufshcd_update_evt_hist(hba,
5066 					       UFS_EVT_LINK_STARTUP_FAIL,
5067 					       0);
5068 			dev_err(hba->dev, "%s: Device not present\n", __func__);
5069 			ret = -ENXIO;
5070 			goto out;
5071 		}
5072 
5073 		/*
5074 		 * DME link lost indication is only received when link is up,
5075 		 * but we can't be sure if the link is up until link startup
5076 		 * succeeds. So reset the local Uni-Pro and try again.
5077 		 */
5078 		if (ret && retries && ufshcd_hba_enable(hba)) {
5079 			ufshcd_update_evt_hist(hba,
5080 					       UFS_EVT_LINK_STARTUP_FAIL,
5081 					       (u32)ret);
5082 			goto out;
5083 		}
5084 	} while (ret && retries--);
5085 
5086 	if (ret) {
5087 		/* failed to get the link up... retire */
5088 		ufshcd_update_evt_hist(hba,
5089 				       UFS_EVT_LINK_STARTUP_FAIL,
5090 				       (u32)ret);
5091 		goto out;
5092 	}
5093 
5094 	if (link_startup_again) {
5095 		link_startup_again = false;
5096 		retries = DME_LINKSTARTUP_RETRIES;
5097 		goto link_startup;
5098 	}
5099 
5100 	/* Mark that link is up in PWM-G1, 1-lane, SLOW-AUTO mode */
5101 	ufshcd_init_pwr_info(hba);
5102 	ufshcd_print_pwr_info(hba);
5103 
5104 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_LCC) {
5105 		ret = ufshcd_disable_device_tx_lcc(hba);
5106 		if (ret)
5107 			goto out;
5108 	}
5109 
5110 	/* Include any host controller configuration via UIC commands */
5111 	ret = ufshcd_vops_link_startup_notify(hba, POST_CHANGE);
5112 	if (ret)
5113 		goto out;
5114 
5115 	/* Clear UECPA once due to LINERESET has happened during LINK_STARTUP */
5116 	ufshcd_readl(hba, REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER);
5117 	ret = ufshcd_make_hba_operational(hba);
5118 out:
5119 	if (ret) {
5120 		dev_err(hba->dev, "link startup failed %d\n", ret);
5121 		ufshcd_print_host_state(hba);
5122 		ufshcd_print_pwr_info(hba);
5123 		ufshcd_print_evt_hist(hba);
5124 	}
5125 	return ret;
5126 }
5127 
5128 /**
5129  * ufshcd_verify_dev_init() - Verify device initialization
5130  * @hba: per-adapter instance
5131  *
5132  * Send NOP OUT UPIU and wait for NOP IN response to check whether the
5133  * device Transport Protocol (UTP) layer is ready after a reset.
5134  * If the UTP layer at the device side is not initialized, it may
5135  * not respond with NOP IN UPIU within timeout of %NOP_OUT_TIMEOUT
5136  * and we retry sending NOP OUT for %NOP_OUT_RETRIES iterations.
5137  *
5138  * Return: 0 upon success; < 0 upon failure.
5139  */
5140 static int ufshcd_verify_dev_init(struct ufs_hba *hba)
5141 {
5142 	int err = 0;
5143 	int retries;
5144 
5145 	ufshcd_dev_man_lock(hba);
5146 
5147 	for (retries = NOP_OUT_RETRIES; retries > 0; retries--) {
5148 		err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_NOP,
5149 					  hba->nop_out_timeout);
5150 
5151 		if (!err || err == -ETIMEDOUT)
5152 			break;
5153 
5154 		dev_dbg(hba->dev, "%s: error %d retrying\n", __func__, err);
5155 	}
5156 
5157 	ufshcd_dev_man_unlock(hba);
5158 
5159 	if (err)
5160 		dev_err(hba->dev, "%s: NOP OUT failed %d\n", __func__, err);
5161 	return err;
5162 }
5163 
5164 /**
5165  * ufshcd_setup_links - associate link b/w device wlun and other luns
5166  * @sdev: pointer to SCSI device
5167  * @hba: pointer to ufs hba
5168  */
5169 static void ufshcd_setup_links(struct ufs_hba *hba, struct scsi_device *sdev)
5170 {
5171 	struct device_link *link;
5172 
5173 	/*
5174 	 * Device wlun is the supplier & rest of the luns are consumers.
5175 	 * This ensures that device wlun suspends after all other luns.
5176 	 */
5177 	if (hba->ufs_device_wlun) {
5178 		link = device_link_add(&sdev->sdev_gendev,
5179 				       &hba->ufs_device_wlun->sdev_gendev,
5180 				       DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE);
5181 		if (!link) {
5182 			dev_err(&sdev->sdev_gendev, "Failed establishing link - %s\n",
5183 				dev_name(&hba->ufs_device_wlun->sdev_gendev));
5184 			return;
5185 		}
5186 		hba->luns_avail--;
5187 		/* Ignore REPORT_LUN wlun probing */
5188 		if (hba->luns_avail == 1) {
5189 			ufshcd_rpm_put(hba);
5190 			return;
5191 		}
5192 	} else {
5193 		/*
5194 		 * Device wlun is probed. The assumption is that WLUNs are
5195 		 * scanned before other LUNs.
5196 		 */
5197 		hba->luns_avail--;
5198 	}
5199 }
5200 
5201 /**
5202  * ufshcd_lu_init - Initialize the relevant parameters of the LU
5203  * @hba: per-adapter instance
5204  * @sdev: pointer to SCSI device
5205  */
5206 static void ufshcd_lu_init(struct ufs_hba *hba, struct scsi_device *sdev)
5207 {
5208 	int len = QUERY_DESC_MAX_SIZE;
5209 	u8 lun = ufshcd_scsi_to_upiu_lun(sdev->lun);
5210 	u8 lun_qdepth = hba->nutrs;
5211 	u8 *desc_buf;
5212 	int ret;
5213 
5214 	desc_buf = kzalloc(len, GFP_KERNEL);
5215 	if (!desc_buf)
5216 		goto set_qdepth;
5217 
5218 	ret = ufshcd_read_unit_desc_param(hba, lun, 0, desc_buf, len);
5219 	if (ret < 0) {
5220 		if (ret == -EOPNOTSUPP)
5221 			/* If LU doesn't support unit descriptor, its queue depth is set to 1 */
5222 			lun_qdepth = 1;
5223 		kfree(desc_buf);
5224 		goto set_qdepth;
5225 	}
5226 
5227 	if (desc_buf[UNIT_DESC_PARAM_LU_Q_DEPTH]) {
5228 		/*
5229 		 * In per-LU queueing architecture, bLUQueueDepth will not be 0, then we will
5230 		 * use the smaller between UFSHCI CAP.NUTRS and UFS LU bLUQueueDepth
5231 		 */
5232 		lun_qdepth = min_t(int, desc_buf[UNIT_DESC_PARAM_LU_Q_DEPTH], hba->nutrs);
5233 	}
5234 	/*
5235 	 * According to UFS device specification, the write protection mode is only supported by
5236 	 * normal LU, not supported by WLUN.
5237 	 */
5238 	if (hba->dev_info.f_power_on_wp_en && lun < hba->dev_info.max_lu_supported &&
5239 	    !hba->dev_info.is_lu_power_on_wp &&
5240 	    desc_buf[UNIT_DESC_PARAM_LU_WR_PROTECT] == UFS_LU_POWER_ON_WP)
5241 		hba->dev_info.is_lu_power_on_wp = true;
5242 
5243 	/* In case of RPMB LU, check if advanced RPMB mode is enabled */
5244 	if (desc_buf[UNIT_DESC_PARAM_UNIT_INDEX] == UFS_UPIU_RPMB_WLUN &&
5245 	    desc_buf[RPMB_UNIT_DESC_PARAM_REGION_EN] & BIT(4))
5246 		hba->dev_info.b_advanced_rpmb_en = true;
5247 
5248 
5249 	kfree(desc_buf);
5250 set_qdepth:
5251 	/*
5252 	 * For WLUNs that don't support unit descriptor, queue depth is set to 1. For LUs whose
5253 	 * bLUQueueDepth == 0, the queue depth is set to a maximum value that host can queue.
5254 	 */
5255 	dev_dbg(hba->dev, "Set LU %x queue depth %d\n", lun, lun_qdepth);
5256 	scsi_change_queue_depth(sdev, lun_qdepth);
5257 }
5258 
5259 /**
5260  * ufshcd_sdev_init - handle initial SCSI device configurations
5261  * @sdev: pointer to SCSI device
5262  *
5263  * Return: success.
5264  */
5265 static int ufshcd_sdev_init(struct scsi_device *sdev)
5266 {
5267 	struct ufs_hba *hba;
5268 
5269 	hba = shost_priv(sdev->host);
5270 
5271 	/* Mode sense(6) is not supported by UFS, so use Mode sense(10) */
5272 	sdev->use_10_for_ms = 1;
5273 
5274 	/* DBD field should be set to 1 in mode sense(10) */
5275 	sdev->set_dbd_for_ms = 1;
5276 
5277 	/* allow SCSI layer to restart the device in case of errors */
5278 	sdev->allow_restart = 1;
5279 
5280 	/* REPORT SUPPORTED OPERATION CODES is not supported */
5281 	sdev->no_report_opcodes = 1;
5282 
5283 	/* WRITE_SAME command is not supported */
5284 	sdev->no_write_same = 1;
5285 
5286 	ufshcd_lu_init(hba, sdev);
5287 
5288 	ufshcd_setup_links(hba, sdev);
5289 
5290 	return 0;
5291 }
5292 
5293 /**
5294  * ufshcd_change_queue_depth - change queue depth
5295  * @sdev: pointer to SCSI device
5296  * @depth: required depth to set
5297  *
5298  * Change queue depth and make sure the max. limits are not crossed.
5299  *
5300  * Return: new queue depth.
5301  */
5302 static int ufshcd_change_queue_depth(struct scsi_device *sdev, int depth)
5303 {
5304 	return scsi_change_queue_depth(sdev, min(depth, sdev->host->can_queue));
5305 }
5306 
5307 /**
5308  * ufshcd_sdev_configure - adjust SCSI device configurations
5309  * @sdev: pointer to SCSI device
5310  * @lim: queue limits
5311  *
5312  * Return: 0 (success).
5313  */
5314 static int ufshcd_sdev_configure(struct scsi_device *sdev,
5315 				 struct queue_limits *lim)
5316 {
5317 	struct ufs_hba *hba = shost_priv(sdev->host);
5318 	struct request_queue *q = sdev->request_queue;
5319 
5320 	lim->dma_pad_mask = PRDT_DATA_BYTE_COUNT_PAD - 1;
5321 
5322 	/*
5323 	 * Block runtime-pm until all consumers are added.
5324 	 * Refer ufshcd_setup_links().
5325 	 */
5326 	if (is_device_wlun(sdev))
5327 		pm_runtime_get_noresume(&sdev->sdev_gendev);
5328 	else if (ufshcd_is_rpm_autosuspend_allowed(hba))
5329 		sdev->rpm_autosuspend = 1;
5330 	/*
5331 	 * Do not print messages during runtime PM to avoid never-ending cycles
5332 	 * of messages written back to storage by user space causing runtime
5333 	 * resume, causing more messages and so on.
5334 	 */
5335 	sdev->silence_suspend = 1;
5336 
5337 	if (hba->vops && hba->vops->config_scsi_dev)
5338 		hba->vops->config_scsi_dev(sdev);
5339 
5340 	ufshcd_crypto_register(hba, q);
5341 
5342 	return 0;
5343 }
5344 
5345 /**
5346  * ufshcd_sdev_destroy - remove SCSI device configurations
5347  * @sdev: pointer to SCSI device
5348  */
5349 static void ufshcd_sdev_destroy(struct scsi_device *sdev)
5350 {
5351 	struct ufs_hba *hba;
5352 	unsigned long flags;
5353 
5354 	hba = shost_priv(sdev->host);
5355 
5356 	/* Drop the reference as it won't be needed anymore */
5357 	if (ufshcd_scsi_to_upiu_lun(sdev->lun) == UFS_UPIU_UFS_DEVICE_WLUN) {
5358 		spin_lock_irqsave(hba->host->host_lock, flags);
5359 		hba->ufs_device_wlun = NULL;
5360 		spin_unlock_irqrestore(hba->host->host_lock, flags);
5361 	} else if (hba->ufs_device_wlun) {
5362 		struct device *supplier = NULL;
5363 
5364 		/* Ensure UFS Device WLUN exists and does not disappear */
5365 		spin_lock_irqsave(hba->host->host_lock, flags);
5366 		if (hba->ufs_device_wlun) {
5367 			supplier = &hba->ufs_device_wlun->sdev_gendev;
5368 			get_device(supplier);
5369 		}
5370 		spin_unlock_irqrestore(hba->host->host_lock, flags);
5371 
5372 		if (supplier) {
5373 			/*
5374 			 * If a LUN fails to probe (e.g. absent BOOT WLUN), the
5375 			 * device will not have been registered but can still
5376 			 * have a device link holding a reference to the device.
5377 			 */
5378 			device_link_remove(&sdev->sdev_gendev, supplier);
5379 			put_device(supplier);
5380 		}
5381 	}
5382 }
5383 
5384 /**
5385  * ufshcd_scsi_cmd_status - Update SCSI command result based on SCSI status
5386  * @lrbp: pointer to local reference block of completed command
5387  * @scsi_status: SCSI command status
5388  *
5389  * Return: value base on SCSI command status.
5390  */
5391 static inline int
5392 ufshcd_scsi_cmd_status(struct ufshcd_lrb *lrbp, int scsi_status)
5393 {
5394 	int result = 0;
5395 
5396 	switch (scsi_status) {
5397 	case SAM_STAT_CHECK_CONDITION:
5398 		ufshcd_copy_sense_data(lrbp);
5399 		fallthrough;
5400 	case SAM_STAT_GOOD:
5401 		result |= DID_OK << 16 | scsi_status;
5402 		break;
5403 	case SAM_STAT_TASK_SET_FULL:
5404 	case SAM_STAT_BUSY:
5405 	case SAM_STAT_TASK_ABORTED:
5406 		ufshcd_copy_sense_data(lrbp);
5407 		result |= scsi_status;
5408 		break;
5409 	default:
5410 		result |= DID_ERROR << 16;
5411 		break;
5412 	} /* end of switch */
5413 
5414 	return result;
5415 }
5416 
5417 /**
5418  * ufshcd_transfer_rsp_status - Get overall status of the response
5419  * @hba: per adapter instance
5420  * @lrbp: pointer to local reference block of completed command
5421  * @cqe: pointer to the completion queue entry
5422  *
5423  * Return: result of the command to notify SCSI midlayer.
5424  */
5425 static inline int
5426 ufshcd_transfer_rsp_status(struct ufs_hba *hba, struct ufshcd_lrb *lrbp,
5427 			   struct cq_entry *cqe)
5428 {
5429 	int result = 0;
5430 	int scsi_status;
5431 	enum utp_ocs ocs;
5432 	u8 upiu_flags;
5433 	u32 resid;
5434 
5435 	upiu_flags = lrbp->ucd_rsp_ptr->header.flags;
5436 	resid = be32_to_cpu(lrbp->ucd_rsp_ptr->sr.residual_transfer_count);
5437 	/*
5438 	 * Test !overflow instead of underflow to support UFS devices that do
5439 	 * not set either flag.
5440 	 */
5441 	if (resid && !(upiu_flags & UPIU_RSP_FLAG_OVERFLOW))
5442 		scsi_set_resid(lrbp->cmd, resid);
5443 
5444 	/* overall command status of utrd */
5445 	ocs = ufshcd_get_tr_ocs(lrbp, cqe);
5446 
5447 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_OCS_FATAL_ERROR) {
5448 		if (lrbp->ucd_rsp_ptr->header.response ||
5449 		    lrbp->ucd_rsp_ptr->header.status)
5450 			ocs = OCS_SUCCESS;
5451 	}
5452 
5453 	switch (ocs) {
5454 	case OCS_SUCCESS:
5455 		hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
5456 		switch (ufshcd_get_req_rsp(lrbp->ucd_rsp_ptr)) {
5457 		case UPIU_TRANSACTION_RESPONSE:
5458 			/*
5459 			 * get the result based on SCSI status response
5460 			 * to notify the SCSI midlayer of the command status
5461 			 */
5462 			scsi_status = lrbp->ucd_rsp_ptr->header.status;
5463 			result = ufshcd_scsi_cmd_status(lrbp, scsi_status);
5464 
5465 			/*
5466 			 * Currently we are only supporting BKOPs exception
5467 			 * events hence we can ignore BKOPs exception event
5468 			 * during power management callbacks. BKOPs exception
5469 			 * event is not expected to be raised in runtime suspend
5470 			 * callback as it allows the urgent bkops.
5471 			 * During system suspend, we are anyway forcefully
5472 			 * disabling the bkops and if urgent bkops is needed
5473 			 * it will be enabled on system resume. Long term
5474 			 * solution could be to abort the system suspend if
5475 			 * UFS device needs urgent BKOPs.
5476 			 */
5477 			if (!hba->pm_op_in_progress &&
5478 			    !ufshcd_eh_in_progress(hba) &&
5479 			    ufshcd_is_exception_event(lrbp->ucd_rsp_ptr))
5480 				/* Flushed in suspend */
5481 				schedule_work(&hba->eeh_work);
5482 			break;
5483 		case UPIU_TRANSACTION_REJECT_UPIU:
5484 			/* TODO: handle Reject UPIU Response */
5485 			result = DID_ERROR << 16;
5486 			dev_err(hba->dev,
5487 				"Reject UPIU not fully implemented\n");
5488 			break;
5489 		default:
5490 			dev_err(hba->dev,
5491 				"Unexpected request response code = %x\n",
5492 				result);
5493 			result = DID_ERROR << 16;
5494 			break;
5495 		}
5496 		break;
5497 	case OCS_ABORTED:
5498 	case OCS_INVALID_COMMAND_STATUS:
5499 		result |= DID_REQUEUE << 16;
5500 		dev_warn(hba->dev,
5501 				"OCS %s from controller for tag %d\n",
5502 				(ocs == OCS_ABORTED ? "aborted" : "invalid"),
5503 				lrbp->task_tag);
5504 		break;
5505 	case OCS_INVALID_CMD_TABLE_ATTR:
5506 	case OCS_INVALID_PRDT_ATTR:
5507 	case OCS_MISMATCH_DATA_BUF_SIZE:
5508 	case OCS_MISMATCH_RESP_UPIU_SIZE:
5509 	case OCS_PEER_COMM_FAILURE:
5510 	case OCS_FATAL_ERROR:
5511 	case OCS_DEVICE_FATAL_ERROR:
5512 	case OCS_INVALID_CRYPTO_CONFIG:
5513 	case OCS_GENERAL_CRYPTO_ERROR:
5514 	default:
5515 		result |= DID_ERROR << 16;
5516 		dev_err(hba->dev,
5517 				"OCS error from controller = %x for tag %d\n",
5518 				ocs, lrbp->task_tag);
5519 		ufshcd_print_evt_hist(hba);
5520 		ufshcd_print_host_state(hba);
5521 		break;
5522 	} /* end of switch */
5523 
5524 	if ((host_byte(result) != DID_OK) &&
5525 	    (host_byte(result) != DID_REQUEUE) && !hba->silence_err_logs)
5526 		ufshcd_print_tr(hba, lrbp->task_tag, true);
5527 	return result;
5528 }
5529 
5530 static bool ufshcd_is_auto_hibern8_error(struct ufs_hba *hba,
5531 					 u32 intr_mask)
5532 {
5533 	if (!ufshcd_is_auto_hibern8_supported(hba) ||
5534 	    !ufshcd_is_auto_hibern8_enabled(hba))
5535 		return false;
5536 
5537 	if (!(intr_mask & UFSHCD_UIC_HIBERN8_MASK))
5538 		return false;
5539 
5540 	if (hba->active_uic_cmd &&
5541 	    (hba->active_uic_cmd->command == UIC_CMD_DME_HIBER_ENTER ||
5542 	    hba->active_uic_cmd->command == UIC_CMD_DME_HIBER_EXIT))
5543 		return false;
5544 
5545 	return true;
5546 }
5547 
5548 /**
5549  * ufshcd_uic_cmd_compl - handle completion of uic command
5550  * @hba: per adapter instance
5551  * @intr_status: interrupt status generated by the controller
5552  *
5553  * Return:
5554  *  IRQ_HANDLED - If interrupt is valid
5555  *  IRQ_NONE    - If invalid interrupt
5556  */
5557 static irqreturn_t ufshcd_uic_cmd_compl(struct ufs_hba *hba, u32 intr_status)
5558 {
5559 	irqreturn_t retval = IRQ_NONE;
5560 	struct uic_command *cmd;
5561 
5562 	spin_lock(hba->host->host_lock);
5563 	cmd = hba->active_uic_cmd;
5564 	if (WARN_ON_ONCE(!cmd))
5565 		goto unlock;
5566 
5567 	if (ufshcd_is_auto_hibern8_error(hba, intr_status))
5568 		hba->errors |= (UFSHCD_UIC_HIBERN8_MASK & intr_status);
5569 
5570 	if (intr_status & UIC_COMMAND_COMPL) {
5571 		cmd->argument2 |= ufshcd_get_uic_cmd_result(hba);
5572 		cmd->argument3 = ufshcd_get_dme_attr_val(hba);
5573 		if (!hba->uic_async_done)
5574 			cmd->cmd_active = 0;
5575 		complete(&cmd->done);
5576 		retval = IRQ_HANDLED;
5577 	}
5578 
5579 	if (intr_status & UFSHCD_UIC_PWR_MASK && hba->uic_async_done) {
5580 		cmd->cmd_active = 0;
5581 		complete(hba->uic_async_done);
5582 		retval = IRQ_HANDLED;
5583 	}
5584 
5585 	if (retval == IRQ_HANDLED)
5586 		ufshcd_add_uic_command_trace(hba, cmd, UFS_CMD_COMP);
5587 
5588 unlock:
5589 	spin_unlock(hba->host->host_lock);
5590 
5591 	return retval;
5592 }
5593 
5594 /* Release the resources allocated for processing a SCSI command. */
5595 void ufshcd_release_scsi_cmd(struct ufs_hba *hba,
5596 			     struct ufshcd_lrb *lrbp)
5597 {
5598 	struct scsi_cmnd *cmd = lrbp->cmd;
5599 
5600 	scsi_dma_unmap(cmd);
5601 	ufshcd_crypto_clear_prdt(hba, lrbp);
5602 	ufshcd_release(hba);
5603 	ufshcd_clk_scaling_update_busy(hba);
5604 }
5605 
5606 /**
5607  * ufshcd_compl_one_cqe - handle a completion queue entry
5608  * @hba: per adapter instance
5609  * @task_tag: the task tag of the request to be completed
5610  * @cqe: pointer to the completion queue entry
5611  */
5612 void ufshcd_compl_one_cqe(struct ufs_hba *hba, int task_tag,
5613 			  struct cq_entry *cqe)
5614 {
5615 	struct ufshcd_lrb *lrbp;
5616 	struct scsi_cmnd *cmd;
5617 	enum utp_ocs ocs;
5618 
5619 	lrbp = &hba->lrb[task_tag];
5620 	lrbp->compl_time_stamp = ktime_get();
5621 	lrbp->compl_time_stamp_local_clock = local_clock();
5622 	cmd = lrbp->cmd;
5623 	if (cmd) {
5624 		if (unlikely(ufshcd_should_inform_monitor(hba, lrbp)))
5625 			ufshcd_update_monitor(hba, lrbp);
5626 		ufshcd_add_command_trace(hba, task_tag, UFS_CMD_COMP);
5627 		cmd->result = ufshcd_transfer_rsp_status(hba, lrbp, cqe);
5628 		ufshcd_release_scsi_cmd(hba, lrbp);
5629 		/* Do not touch lrbp after scsi done */
5630 		scsi_done(cmd);
5631 	} else {
5632 		if (cqe) {
5633 			ocs = le32_to_cpu(cqe->status) & MASK_OCS;
5634 			lrbp->utr_descriptor_ptr->header.ocs = ocs;
5635 		}
5636 		complete(&hba->dev_cmd.complete);
5637 	}
5638 }
5639 
5640 /**
5641  * __ufshcd_transfer_req_compl - handle SCSI and query command completion
5642  * @hba: per adapter instance
5643  * @completed_reqs: bitmask that indicates which requests to complete
5644  */
5645 static void __ufshcd_transfer_req_compl(struct ufs_hba *hba,
5646 					unsigned long completed_reqs)
5647 {
5648 	int tag;
5649 
5650 	for_each_set_bit(tag, &completed_reqs, hba->nutrs)
5651 		ufshcd_compl_one_cqe(hba, tag, NULL);
5652 }
5653 
5654 /* Any value that is not an existing queue number is fine for this constant. */
5655 enum {
5656 	UFSHCD_POLL_FROM_INTERRUPT_CONTEXT = -1
5657 };
5658 
5659 static void ufshcd_clear_polled(struct ufs_hba *hba,
5660 				unsigned long *completed_reqs)
5661 {
5662 	int tag;
5663 
5664 	for_each_set_bit(tag, completed_reqs, hba->nutrs) {
5665 		struct scsi_cmnd *cmd = hba->lrb[tag].cmd;
5666 
5667 		if (!cmd)
5668 			continue;
5669 		if (scsi_cmd_to_rq(cmd)->cmd_flags & REQ_POLLED)
5670 			__clear_bit(tag, completed_reqs);
5671 	}
5672 }
5673 
5674 /*
5675  * Return: > 0 if one or more commands have been completed or 0 if no
5676  * requests have been completed.
5677  */
5678 static int ufshcd_poll(struct Scsi_Host *shost, unsigned int queue_num)
5679 {
5680 	struct ufs_hba *hba = shost_priv(shost);
5681 	unsigned long completed_reqs, flags;
5682 	u32 tr_doorbell;
5683 	struct ufs_hw_queue *hwq;
5684 
5685 	if (hba->mcq_enabled) {
5686 		hwq = &hba->uhq[queue_num];
5687 
5688 		return ufshcd_mcq_poll_cqe_lock(hba, hwq);
5689 	}
5690 
5691 	spin_lock_irqsave(&hba->outstanding_lock, flags);
5692 	tr_doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
5693 	completed_reqs = ~tr_doorbell & hba->outstanding_reqs;
5694 	WARN_ONCE(completed_reqs & ~hba->outstanding_reqs,
5695 		  "completed: %#lx; outstanding: %#lx\n", completed_reqs,
5696 		  hba->outstanding_reqs);
5697 	if (queue_num == UFSHCD_POLL_FROM_INTERRUPT_CONTEXT) {
5698 		/* Do not complete polled requests from interrupt context. */
5699 		ufshcd_clear_polled(hba, &completed_reqs);
5700 	}
5701 	hba->outstanding_reqs &= ~completed_reqs;
5702 	spin_unlock_irqrestore(&hba->outstanding_lock, flags);
5703 
5704 	if (completed_reqs)
5705 		__ufshcd_transfer_req_compl(hba, completed_reqs);
5706 
5707 	return completed_reqs != 0;
5708 }
5709 
5710 /**
5711  * ufshcd_mcq_compl_pending_transfer - MCQ mode function. It is
5712  * invoked from the error handler context or ufshcd_host_reset_and_restore()
5713  * to complete the pending transfers and free the resources associated with
5714  * the scsi command.
5715  *
5716  * @hba: per adapter instance
5717  * @force_compl: This flag is set to true when invoked
5718  * from ufshcd_host_reset_and_restore() in which case it requires special
5719  * handling because the host controller has been reset by ufshcd_hba_stop().
5720  */
5721 static void ufshcd_mcq_compl_pending_transfer(struct ufs_hba *hba,
5722 					      bool force_compl)
5723 {
5724 	struct ufs_hw_queue *hwq;
5725 	struct ufshcd_lrb *lrbp;
5726 	struct scsi_cmnd *cmd;
5727 	unsigned long flags;
5728 	int tag;
5729 
5730 	for (tag = 0; tag < hba->nutrs; tag++) {
5731 		lrbp = &hba->lrb[tag];
5732 		cmd = lrbp->cmd;
5733 		if (!ufshcd_cmd_inflight(cmd) ||
5734 		    test_bit(SCMD_STATE_COMPLETE, &cmd->state))
5735 			continue;
5736 
5737 		hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(cmd));
5738 		if (!hwq)
5739 			continue;
5740 
5741 		if (force_compl) {
5742 			ufshcd_mcq_compl_all_cqes_lock(hba, hwq);
5743 			/*
5744 			 * For those cmds of which the cqes are not present
5745 			 * in the cq, complete them explicitly.
5746 			 */
5747 			spin_lock_irqsave(&hwq->cq_lock, flags);
5748 			if (cmd && !test_bit(SCMD_STATE_COMPLETE, &cmd->state)) {
5749 				set_host_byte(cmd, DID_REQUEUE);
5750 				ufshcd_release_scsi_cmd(hba, lrbp);
5751 				scsi_done(cmd);
5752 			}
5753 			spin_unlock_irqrestore(&hwq->cq_lock, flags);
5754 		} else {
5755 			ufshcd_mcq_poll_cqe_lock(hba, hwq);
5756 		}
5757 	}
5758 }
5759 
5760 /**
5761  * ufshcd_transfer_req_compl - handle SCSI and query command completion
5762  * @hba: per adapter instance
5763  *
5764  * Return:
5765  *  IRQ_HANDLED - If interrupt is valid
5766  *  IRQ_NONE    - If invalid interrupt
5767  */
5768 static irqreturn_t ufshcd_transfer_req_compl(struct ufs_hba *hba)
5769 {
5770 	/* Resetting interrupt aggregation counters first and reading the
5771 	 * DOOR_BELL afterward allows us to handle all the completed requests.
5772 	 * In order to prevent other interrupts starvation the DB is read once
5773 	 * after reset. The down side of this solution is the possibility of
5774 	 * false interrupt if device completes another request after resetting
5775 	 * aggregation and before reading the DB.
5776 	 */
5777 	if (ufshcd_is_intr_aggr_allowed(hba) &&
5778 	    !(hba->quirks & UFSHCI_QUIRK_SKIP_RESET_INTR_AGGR))
5779 		ufshcd_reset_intr_aggr(hba);
5780 
5781 	if (ufs_fail_completion(hba))
5782 		return IRQ_HANDLED;
5783 
5784 	/*
5785 	 * Ignore the ufshcd_poll() return value and return IRQ_HANDLED since we
5786 	 * do not want polling to trigger spurious interrupt complaints.
5787 	 */
5788 	ufshcd_poll(hba->host, UFSHCD_POLL_FROM_INTERRUPT_CONTEXT);
5789 
5790 	return IRQ_HANDLED;
5791 }
5792 
5793 int __ufshcd_write_ee_control(struct ufs_hba *hba, u32 ee_ctrl_mask)
5794 {
5795 	return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
5796 				       QUERY_ATTR_IDN_EE_CONTROL, 0, 0,
5797 				       &ee_ctrl_mask);
5798 }
5799 
5800 int ufshcd_write_ee_control(struct ufs_hba *hba)
5801 {
5802 	int err;
5803 
5804 	mutex_lock(&hba->ee_ctrl_mutex);
5805 	err = __ufshcd_write_ee_control(hba, hba->ee_ctrl_mask);
5806 	mutex_unlock(&hba->ee_ctrl_mutex);
5807 	if (err)
5808 		dev_err(hba->dev, "%s: failed to write ee control %d\n",
5809 			__func__, err);
5810 	return err;
5811 }
5812 
5813 int ufshcd_update_ee_control(struct ufs_hba *hba, u16 *mask,
5814 			     const u16 *other_mask, u16 set, u16 clr)
5815 {
5816 	u16 new_mask, ee_ctrl_mask;
5817 	int err = 0;
5818 
5819 	mutex_lock(&hba->ee_ctrl_mutex);
5820 	new_mask = (*mask & ~clr) | set;
5821 	ee_ctrl_mask = new_mask | *other_mask;
5822 	if (ee_ctrl_mask != hba->ee_ctrl_mask)
5823 		err = __ufshcd_write_ee_control(hba, ee_ctrl_mask);
5824 	/* Still need to update 'mask' even if 'ee_ctrl_mask' was unchanged */
5825 	if (!err) {
5826 		hba->ee_ctrl_mask = ee_ctrl_mask;
5827 		*mask = new_mask;
5828 	}
5829 	mutex_unlock(&hba->ee_ctrl_mutex);
5830 	return err;
5831 }
5832 
5833 /**
5834  * ufshcd_disable_ee - disable exception event
5835  * @hba: per-adapter instance
5836  * @mask: exception event to disable
5837  *
5838  * Disables exception event in the device so that the EVENT_ALERT
5839  * bit is not set.
5840  *
5841  * Return: zero on success, non-zero error value on failure.
5842  */
5843 static inline int ufshcd_disable_ee(struct ufs_hba *hba, u16 mask)
5844 {
5845 	return ufshcd_update_ee_drv_mask(hba, 0, mask);
5846 }
5847 
5848 /**
5849  * ufshcd_enable_ee - enable exception event
5850  * @hba: per-adapter instance
5851  * @mask: exception event to enable
5852  *
5853  * Enable corresponding exception event in the device to allow
5854  * device to alert host in critical scenarios.
5855  *
5856  * Return: zero on success, non-zero error value on failure.
5857  */
5858 static inline int ufshcd_enable_ee(struct ufs_hba *hba, u16 mask)
5859 {
5860 	return ufshcd_update_ee_drv_mask(hba, mask, 0);
5861 }
5862 
5863 /**
5864  * ufshcd_enable_auto_bkops - Allow device managed BKOPS
5865  * @hba: per-adapter instance
5866  *
5867  * Allow device to manage background operations on its own. Enabling
5868  * this might lead to inconsistent latencies during normal data transfers
5869  * as the device is allowed to manage its own way of handling background
5870  * operations.
5871  *
5872  * Return: zero on success, non-zero on failure.
5873  */
5874 static int ufshcd_enable_auto_bkops(struct ufs_hba *hba)
5875 {
5876 	int err = 0;
5877 
5878 	if (hba->auto_bkops_enabled)
5879 		goto out;
5880 
5881 	err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG,
5882 			QUERY_FLAG_IDN_BKOPS_EN, 0, NULL);
5883 	if (err) {
5884 		dev_err(hba->dev, "%s: failed to enable bkops %d\n",
5885 				__func__, err);
5886 		goto out;
5887 	}
5888 
5889 	hba->auto_bkops_enabled = true;
5890 	trace_ufshcd_auto_bkops_state(hba, "Enabled");
5891 
5892 	/* No need of URGENT_BKOPS exception from the device */
5893 	err = ufshcd_disable_ee(hba, MASK_EE_URGENT_BKOPS);
5894 	if (err)
5895 		dev_err(hba->dev, "%s: failed to disable exception event %d\n",
5896 				__func__, err);
5897 out:
5898 	return err;
5899 }
5900 
5901 /**
5902  * ufshcd_disable_auto_bkops - block device in doing background operations
5903  * @hba: per-adapter instance
5904  *
5905  * Disabling background operations improves command response latency but
5906  * has drawback of device moving into critical state where the device is
5907  * not-operable. Make sure to call ufshcd_enable_auto_bkops() whenever the
5908  * host is idle so that BKOPS are managed effectively without any negative
5909  * impacts.
5910  *
5911  * Return: zero on success, non-zero on failure.
5912  */
5913 static int ufshcd_disable_auto_bkops(struct ufs_hba *hba)
5914 {
5915 	int err = 0;
5916 
5917 	if (!hba->auto_bkops_enabled)
5918 		goto out;
5919 
5920 	/*
5921 	 * If host assisted BKOPs is to be enabled, make sure
5922 	 * urgent bkops exception is allowed.
5923 	 */
5924 	err = ufshcd_enable_ee(hba, MASK_EE_URGENT_BKOPS);
5925 	if (err) {
5926 		dev_err(hba->dev, "%s: failed to enable exception event %d\n",
5927 				__func__, err);
5928 		goto out;
5929 	}
5930 
5931 	err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_CLEAR_FLAG,
5932 			QUERY_FLAG_IDN_BKOPS_EN, 0, NULL);
5933 	if (err) {
5934 		dev_err(hba->dev, "%s: failed to disable bkops %d\n",
5935 				__func__, err);
5936 		ufshcd_disable_ee(hba, MASK_EE_URGENT_BKOPS);
5937 		goto out;
5938 	}
5939 
5940 	hba->auto_bkops_enabled = false;
5941 	trace_ufshcd_auto_bkops_state(hba, "Disabled");
5942 	hba->is_urgent_bkops_lvl_checked = false;
5943 out:
5944 	return err;
5945 }
5946 
5947 /**
5948  * ufshcd_force_reset_auto_bkops - force reset auto bkops state
5949  * @hba: per adapter instance
5950  *
5951  * After a device reset the device may toggle the BKOPS_EN flag
5952  * to default value. The s/w tracking variables should be updated
5953  * as well. This function would change the auto-bkops state based on
5954  * UFSHCD_CAP_KEEP_AUTO_BKOPS_ENABLED_EXCEPT_SUSPEND.
5955  */
5956 static void ufshcd_force_reset_auto_bkops(struct ufs_hba *hba)
5957 {
5958 	if (ufshcd_keep_autobkops_enabled_except_suspend(hba)) {
5959 		hba->auto_bkops_enabled = false;
5960 		hba->ee_ctrl_mask |= MASK_EE_URGENT_BKOPS;
5961 		ufshcd_enable_auto_bkops(hba);
5962 	} else {
5963 		hba->auto_bkops_enabled = true;
5964 		hba->ee_ctrl_mask &= ~MASK_EE_URGENT_BKOPS;
5965 		ufshcd_disable_auto_bkops(hba);
5966 	}
5967 	hba->urgent_bkops_lvl = BKOPS_STATUS_PERF_IMPACT;
5968 	hba->is_urgent_bkops_lvl_checked = false;
5969 }
5970 
5971 static inline int ufshcd_get_bkops_status(struct ufs_hba *hba, u32 *status)
5972 {
5973 	return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5974 			QUERY_ATTR_IDN_BKOPS_STATUS, 0, 0, status);
5975 }
5976 
5977 /**
5978  * ufshcd_bkops_ctrl - control the auto bkops based on current bkops status
5979  * @hba: per-adapter instance
5980  *
5981  * Read the bkops_status from the UFS device and Enable fBackgroundOpsEn
5982  * flag in the device to permit background operations if the device
5983  * bkops_status is greater than or equal to the "hba->urgent_bkops_lvl",
5984  * disable otherwise.
5985  *
5986  * Return: 0 for success, non-zero in case of failure.
5987  *
5988  * NOTE: Caller of this function can check the "hba->auto_bkops_enabled" flag
5989  * to know whether auto bkops is enabled or disabled after this function
5990  * returns control to it.
5991  */
5992 static int ufshcd_bkops_ctrl(struct ufs_hba *hba)
5993 {
5994 	enum bkops_status status = hba->urgent_bkops_lvl;
5995 	u32 curr_status = 0;
5996 	int err;
5997 
5998 	err = ufshcd_get_bkops_status(hba, &curr_status);
5999 	if (err) {
6000 		dev_err(hba->dev, "%s: failed to get BKOPS status %d\n",
6001 				__func__, err);
6002 		goto out;
6003 	} else if (curr_status > BKOPS_STATUS_MAX) {
6004 		dev_err(hba->dev, "%s: invalid BKOPS status %d\n",
6005 				__func__, curr_status);
6006 		err = -EINVAL;
6007 		goto out;
6008 	}
6009 
6010 	if (curr_status >= status)
6011 		err = ufshcd_enable_auto_bkops(hba);
6012 	else
6013 		err = ufshcd_disable_auto_bkops(hba);
6014 out:
6015 	return err;
6016 }
6017 
6018 static inline int ufshcd_get_ee_status(struct ufs_hba *hba, u32 *status)
6019 {
6020 	return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
6021 			QUERY_ATTR_IDN_EE_STATUS, 0, 0, status);
6022 }
6023 
6024 static void ufshcd_bkops_exception_event_handler(struct ufs_hba *hba)
6025 {
6026 	int err;
6027 	u32 curr_status = 0;
6028 
6029 	if (hba->is_urgent_bkops_lvl_checked)
6030 		goto enable_auto_bkops;
6031 
6032 	err = ufshcd_get_bkops_status(hba, &curr_status);
6033 	if (err) {
6034 		dev_err(hba->dev, "%s: failed to get BKOPS status %d\n",
6035 				__func__, err);
6036 		goto out;
6037 	}
6038 
6039 	/*
6040 	 * We are seeing that some devices are raising the urgent bkops
6041 	 * exception events even when BKOPS status doesn't indicate performace
6042 	 * impacted or critical. Handle these device by determining their urgent
6043 	 * bkops status at runtime.
6044 	 */
6045 	if (curr_status < BKOPS_STATUS_PERF_IMPACT) {
6046 		dev_err(hba->dev, "%s: device raised urgent BKOPS exception for bkops status %d\n",
6047 				__func__, curr_status);
6048 		/* update the current status as the urgent bkops level */
6049 		hba->urgent_bkops_lvl = curr_status;
6050 		hba->is_urgent_bkops_lvl_checked = true;
6051 	}
6052 
6053 enable_auto_bkops:
6054 	err = ufshcd_enable_auto_bkops(hba);
6055 out:
6056 	if (err < 0)
6057 		dev_err(hba->dev, "%s: failed to handle urgent bkops %d\n",
6058 				__func__, err);
6059 }
6060 
6061 int ufshcd_read_device_lvl_exception_id(struct ufs_hba *hba, u64 *exception_id)
6062 {
6063 	struct utp_upiu_query_v4_0 *upiu_resp;
6064 	struct ufs_query_req *request = NULL;
6065 	struct ufs_query_res *response = NULL;
6066 	int err;
6067 
6068 	if (hba->dev_info.wspecversion < 0x410)
6069 		return -EOPNOTSUPP;
6070 
6071 	ufshcd_hold(hba);
6072 	mutex_lock(&hba->dev_cmd.lock);
6073 
6074 	ufshcd_init_query(hba, &request, &response,
6075 			  UPIU_QUERY_OPCODE_READ_ATTR,
6076 			  QUERY_ATTR_IDN_DEV_LVL_EXCEPTION_ID, 0, 0);
6077 
6078 	request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
6079 
6080 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, dev_cmd_timeout);
6081 
6082 	if (err) {
6083 		dev_err(hba->dev, "%s: failed to read device level exception %d\n",
6084 			__func__, err);
6085 		goto out;
6086 	}
6087 
6088 	upiu_resp = (struct utp_upiu_query_v4_0 *)response;
6089 	*exception_id = get_unaligned_be64(&upiu_resp->osf3);
6090 out:
6091 	mutex_unlock(&hba->dev_cmd.lock);
6092 	ufshcd_release(hba);
6093 
6094 	return err;
6095 }
6096 
6097 static int __ufshcd_wb_toggle(struct ufs_hba *hba, bool set, enum flag_idn idn)
6098 {
6099 	u8 index;
6100 	enum query_opcode opcode = set ? UPIU_QUERY_OPCODE_SET_FLAG :
6101 				   UPIU_QUERY_OPCODE_CLEAR_FLAG;
6102 
6103 	index = ufshcd_wb_get_query_index(hba);
6104 	return ufshcd_query_flag_retry(hba, opcode, idn, index, NULL);
6105 }
6106 
6107 int ufshcd_wb_toggle(struct ufs_hba *hba, bool enable)
6108 {
6109 	int ret;
6110 
6111 	if (!ufshcd_is_wb_allowed(hba) ||
6112 	    hba->dev_info.wb_enabled == enable)
6113 		return 0;
6114 
6115 	ret = __ufshcd_wb_toggle(hba, enable, QUERY_FLAG_IDN_WB_EN);
6116 	if (ret) {
6117 		dev_err(hba->dev, "%s: Write Booster %s failed %d\n",
6118 			__func__, enable ? "enabling" : "disabling", ret);
6119 		return ret;
6120 	}
6121 
6122 	hba->dev_info.wb_enabled = enable;
6123 	dev_dbg(hba->dev, "%s: Write Booster %s\n",
6124 			__func__, enable ? "enabled" : "disabled");
6125 
6126 	return ret;
6127 }
6128 
6129 static void ufshcd_wb_toggle_buf_flush_during_h8(struct ufs_hba *hba,
6130 						 bool enable)
6131 {
6132 	int ret;
6133 
6134 	ret = __ufshcd_wb_toggle(hba, enable,
6135 			QUERY_FLAG_IDN_WB_BUFF_FLUSH_DURING_HIBERN8);
6136 	if (ret) {
6137 		dev_err(hba->dev, "%s: WB-Buf Flush during H8 %s failed %d\n",
6138 			__func__, enable ? "enabling" : "disabling", ret);
6139 		return;
6140 	}
6141 	dev_dbg(hba->dev, "%s: WB-Buf Flush during H8 %s\n",
6142 			__func__, enable ? "enabled" : "disabled");
6143 }
6144 
6145 int ufshcd_wb_toggle_buf_flush(struct ufs_hba *hba, bool enable)
6146 {
6147 	int ret;
6148 
6149 	if (!ufshcd_is_wb_allowed(hba) ||
6150 	    hba->dev_info.wb_buf_flush_enabled == enable)
6151 		return 0;
6152 
6153 	ret = __ufshcd_wb_toggle(hba, enable, QUERY_FLAG_IDN_WB_BUFF_FLUSH_EN);
6154 	if (ret) {
6155 		dev_err(hba->dev, "%s: WB-Buf Flush %s failed %d\n",
6156 			__func__, enable ? "enabling" : "disabling", ret);
6157 		return ret;
6158 	}
6159 
6160 	hba->dev_info.wb_buf_flush_enabled = enable;
6161 	dev_dbg(hba->dev, "%s: WB-Buf Flush %s\n",
6162 			__func__, enable ? "enabled" : "disabled");
6163 
6164 	return ret;
6165 }
6166 
6167 int ufshcd_wb_set_resize_en(struct ufs_hba *hba, enum wb_resize_en en_mode)
6168 {
6169 	int ret;
6170 	u8 index;
6171 
6172 	index = ufshcd_wb_get_query_index(hba);
6173 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
6174 				QUERY_ATTR_IDN_WB_BUF_RESIZE_EN, index, 0, &en_mode);
6175 	if (ret)
6176 		dev_err(hba->dev, "%s: Enable WB buf resize operation failed %d\n",
6177 			__func__, ret);
6178 
6179 	return ret;
6180 }
6181 
6182 static bool ufshcd_wb_curr_buff_threshold_check(struct ufs_hba *hba,
6183 						u32 avail_buf)
6184 {
6185 	u32 cur_buf;
6186 	int ret;
6187 	u8 index;
6188 
6189 	index = ufshcd_wb_get_query_index(hba);
6190 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
6191 					      QUERY_ATTR_IDN_CURR_WB_BUFF_SIZE,
6192 					      index, 0, &cur_buf);
6193 	if (ret) {
6194 		dev_err(hba->dev, "%s: dCurWriteBoosterBufferSize read failed %d\n",
6195 			__func__, ret);
6196 		return false;
6197 	}
6198 
6199 	if (!cur_buf) {
6200 		dev_info(hba->dev, "dCurWBBuf: %d WB disabled until free-space is available\n",
6201 			 cur_buf);
6202 		return false;
6203 	}
6204 	/* Let it continue to flush when available buffer exceeds threshold */
6205 	return avail_buf < hba->vps->wb_flush_threshold;
6206 }
6207 
6208 static void ufshcd_wb_force_disable(struct ufs_hba *hba)
6209 {
6210 	if (ufshcd_is_wb_buf_flush_allowed(hba))
6211 		ufshcd_wb_toggle_buf_flush(hba, false);
6212 
6213 	ufshcd_wb_toggle_buf_flush_during_h8(hba, false);
6214 	ufshcd_wb_toggle(hba, false);
6215 	hba->caps &= ~UFSHCD_CAP_WB_EN;
6216 
6217 	dev_info(hba->dev, "%s: WB force disabled\n", __func__);
6218 }
6219 
6220 static bool ufshcd_is_wb_buf_lifetime_available(struct ufs_hba *hba)
6221 {
6222 	u32 lifetime;
6223 	int ret;
6224 	u8 index;
6225 
6226 	index = ufshcd_wb_get_query_index(hba);
6227 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
6228 				      QUERY_ATTR_IDN_WB_BUFF_LIFE_TIME_EST,
6229 				      index, 0, &lifetime);
6230 	if (ret) {
6231 		dev_err(hba->dev,
6232 			"%s: bWriteBoosterBufferLifeTimeEst read failed %d\n",
6233 			__func__, ret);
6234 		return false;
6235 	}
6236 
6237 	if (lifetime == UFS_WB_EXCEED_LIFETIME) {
6238 		dev_err(hba->dev, "%s: WB buf lifetime is exhausted 0x%02X\n",
6239 			__func__, lifetime);
6240 		return false;
6241 	}
6242 
6243 	dev_dbg(hba->dev, "%s: WB buf lifetime is 0x%02X\n",
6244 		__func__, lifetime);
6245 
6246 	return true;
6247 }
6248 
6249 static bool ufshcd_wb_need_flush(struct ufs_hba *hba)
6250 {
6251 	int ret;
6252 	u32 avail_buf;
6253 	u8 index;
6254 
6255 	if (!ufshcd_is_wb_allowed(hba))
6256 		return false;
6257 
6258 	if (!ufshcd_is_wb_buf_lifetime_available(hba)) {
6259 		ufshcd_wb_force_disable(hba);
6260 		return false;
6261 	}
6262 
6263 	/*
6264 	 * With user-space reduction enabled, it's enough to enable flush
6265 	 * by checking only the available buffer. The threshold
6266 	 * defined here is > 90% full.
6267 	 * With user-space preserved enabled, the current-buffer
6268 	 * should be checked too because the wb buffer size can reduce
6269 	 * when disk tends to be full. This info is provided by current
6270 	 * buffer (dCurrentWriteBoosterBufferSize).
6271 	 */
6272 	index = ufshcd_wb_get_query_index(hba);
6273 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
6274 				      QUERY_ATTR_IDN_AVAIL_WB_BUFF_SIZE,
6275 				      index, 0, &avail_buf);
6276 	if (ret) {
6277 		dev_warn(hba->dev, "%s: dAvailableWriteBoosterBufferSize read failed %d\n",
6278 			 __func__, ret);
6279 		return false;
6280 	}
6281 
6282 	if (!hba->dev_info.b_presrv_uspc_en)
6283 		return avail_buf <= UFS_WB_BUF_REMAIN_PERCENT(10);
6284 
6285 	return ufshcd_wb_curr_buff_threshold_check(hba, avail_buf);
6286 }
6287 
6288 static void ufshcd_rpm_dev_flush_recheck_work(struct work_struct *work)
6289 {
6290 	struct ufs_hba *hba = container_of(to_delayed_work(work),
6291 					   struct ufs_hba,
6292 					   rpm_dev_flush_recheck_work);
6293 	/*
6294 	 * To prevent unnecessary VCC power drain after device finishes
6295 	 * WriteBooster buffer flush or Auto BKOPs, force runtime resume
6296 	 * after a certain delay to recheck the threshold by next runtime
6297 	 * suspend.
6298 	 */
6299 	ufshcd_rpm_get_sync(hba);
6300 	ufshcd_rpm_put_sync(hba);
6301 }
6302 
6303 /**
6304  * ufshcd_exception_event_handler - handle exceptions raised by device
6305  * @work: pointer to work data
6306  *
6307  * Read bExceptionEventStatus attribute from the device and handle the
6308  * exception event accordingly.
6309  */
6310 static void ufshcd_exception_event_handler(struct work_struct *work)
6311 {
6312 	struct ufs_hba *hba;
6313 	int err;
6314 	u32 status = 0;
6315 	hba = container_of(work, struct ufs_hba, eeh_work);
6316 
6317 	err = ufshcd_get_ee_status(hba, &status);
6318 	if (err) {
6319 		dev_err(hba->dev, "%s: failed to get exception status %d\n",
6320 				__func__, err);
6321 		return;
6322 	}
6323 
6324 	trace_ufshcd_exception_event(hba, status);
6325 
6326 	if (status & hba->ee_drv_mask & MASK_EE_URGENT_BKOPS)
6327 		ufshcd_bkops_exception_event_handler(hba);
6328 
6329 	if (status & hba->ee_drv_mask & MASK_EE_URGENT_TEMP)
6330 		ufs_hwmon_notify_event(hba, status & MASK_EE_URGENT_TEMP);
6331 
6332 	if (status & hba->ee_drv_mask & MASK_EE_HEALTH_CRITICAL) {
6333 		hba->critical_health_count++;
6334 		sysfs_notify(&hba->dev->kobj, NULL, "critical_health");
6335 	}
6336 
6337 	if (status & hba->ee_drv_mask & MASK_EE_DEV_LVL_EXCEPTION) {
6338 		atomic_inc(&hba->dev_lvl_exception_count);
6339 		sysfs_notify(&hba->dev->kobj, NULL, "device_lvl_exception_count");
6340 	}
6341 
6342 	ufs_debugfs_exception_event(hba, status);
6343 }
6344 
6345 /* Complete requests that have door-bell cleared */
6346 static void ufshcd_complete_requests(struct ufs_hba *hba, bool force_compl)
6347 {
6348 	if (hba->mcq_enabled)
6349 		ufshcd_mcq_compl_pending_transfer(hba, force_compl);
6350 	else
6351 		ufshcd_transfer_req_compl(hba);
6352 
6353 	ufshcd_tmc_handler(hba);
6354 }
6355 
6356 /**
6357  * ufshcd_quirk_dl_nac_errors - This function checks if error handling is
6358  *				to recover from the DL NAC errors or not.
6359  * @hba: per-adapter instance
6360  *
6361  * Return: true if error handling is required, false otherwise.
6362  */
6363 static bool ufshcd_quirk_dl_nac_errors(struct ufs_hba *hba)
6364 {
6365 	unsigned long flags;
6366 	bool err_handling = true;
6367 
6368 	spin_lock_irqsave(hba->host->host_lock, flags);
6369 	/*
6370 	 * UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS only workaround the
6371 	 * device fatal error and/or DL NAC & REPLAY timeout errors.
6372 	 */
6373 	if (hba->saved_err & (CONTROLLER_FATAL_ERROR | SYSTEM_BUS_FATAL_ERROR))
6374 		goto out;
6375 
6376 	if ((hba->saved_err & DEVICE_FATAL_ERROR) ||
6377 	    ((hba->saved_err & UIC_ERROR) &&
6378 	     (hba->saved_uic_err & UFSHCD_UIC_DL_TCx_REPLAY_ERROR)))
6379 		goto out;
6380 
6381 	if ((hba->saved_err & UIC_ERROR) &&
6382 	    (hba->saved_uic_err & UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)) {
6383 		int err;
6384 		/*
6385 		 * wait for 50ms to see if we can get any other errors or not.
6386 		 */
6387 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6388 		msleep(50);
6389 		spin_lock_irqsave(hba->host->host_lock, flags);
6390 
6391 		/*
6392 		 * now check if we have got any other severe errors other than
6393 		 * DL NAC error?
6394 		 */
6395 		if ((hba->saved_err & INT_FATAL_ERRORS) ||
6396 		    ((hba->saved_err & UIC_ERROR) &&
6397 		    (hba->saved_uic_err & ~UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)))
6398 			goto out;
6399 
6400 		/*
6401 		 * As DL NAC is the only error received so far, send out NOP
6402 		 * command to confirm if link is still active or not.
6403 		 *   - If we don't get any response then do error recovery.
6404 		 *   - If we get response then clear the DL NAC error bit.
6405 		 */
6406 
6407 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6408 		err = ufshcd_verify_dev_init(hba);
6409 		spin_lock_irqsave(hba->host->host_lock, flags);
6410 
6411 		if (err)
6412 			goto out;
6413 
6414 		/* Link seems to be alive hence ignore the DL NAC errors */
6415 		if (hba->saved_uic_err == UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)
6416 			hba->saved_err &= ~UIC_ERROR;
6417 		/* clear NAC error */
6418 		hba->saved_uic_err &= ~UFSHCD_UIC_DL_NAC_RECEIVED_ERROR;
6419 		if (!hba->saved_uic_err)
6420 			err_handling = false;
6421 	}
6422 out:
6423 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6424 	return err_handling;
6425 }
6426 
6427 /* host lock must be held before calling this func */
6428 static inline bool ufshcd_is_saved_err_fatal(struct ufs_hba *hba)
6429 {
6430 	return (hba->saved_uic_err & UFSHCD_UIC_DL_PA_INIT_ERROR) ||
6431 	       (hba->saved_err & (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK));
6432 }
6433 
6434 void ufshcd_schedule_eh_work(struct ufs_hba *hba)
6435 {
6436 	lockdep_assert_held(hba->host->host_lock);
6437 
6438 	/* handle fatal errors only when link is not in error state */
6439 	if (hba->ufshcd_state != UFSHCD_STATE_ERROR) {
6440 		if (hba->force_reset || ufshcd_is_link_broken(hba) ||
6441 		    ufshcd_is_saved_err_fatal(hba))
6442 			hba->ufshcd_state = UFSHCD_STATE_EH_SCHEDULED_FATAL;
6443 		else
6444 			hba->ufshcd_state = UFSHCD_STATE_EH_SCHEDULED_NON_FATAL;
6445 		queue_work(hba->eh_wq, &hba->eh_work);
6446 	}
6447 }
6448 
6449 static void ufshcd_force_error_recovery(struct ufs_hba *hba)
6450 {
6451 	spin_lock_irq(hba->host->host_lock);
6452 	hba->force_reset = true;
6453 	ufshcd_schedule_eh_work(hba);
6454 	spin_unlock_irq(hba->host->host_lock);
6455 }
6456 
6457 static void ufshcd_clk_scaling_allow(struct ufs_hba *hba, bool allow)
6458 {
6459 	mutex_lock(&hba->wb_mutex);
6460 	down_write(&hba->clk_scaling_lock);
6461 	hba->clk_scaling.is_allowed = allow;
6462 	up_write(&hba->clk_scaling_lock);
6463 	mutex_unlock(&hba->wb_mutex);
6464 }
6465 
6466 static void ufshcd_clk_scaling_suspend(struct ufs_hba *hba, bool suspend)
6467 {
6468 	if (suspend) {
6469 		if (hba->clk_scaling.is_enabled)
6470 			ufshcd_suspend_clkscaling(hba);
6471 		ufshcd_clk_scaling_allow(hba, false);
6472 	} else {
6473 		ufshcd_clk_scaling_allow(hba, true);
6474 		if (hba->clk_scaling.is_enabled)
6475 			ufshcd_resume_clkscaling(hba);
6476 	}
6477 }
6478 
6479 static void ufshcd_err_handling_prepare(struct ufs_hba *hba)
6480 {
6481 	ufshcd_rpm_get_sync(hba);
6482 	if (pm_runtime_status_suspended(&hba->ufs_device_wlun->sdev_gendev) ||
6483 	    hba->is_sys_suspended) {
6484 		enum ufs_pm_op pm_op;
6485 
6486 		/*
6487 		 * Don't assume anything of resume, if
6488 		 * resume fails, irq and clocks can be OFF, and powers
6489 		 * can be OFF or in LPM.
6490 		 */
6491 		ufshcd_setup_hba_vreg(hba, true);
6492 		ufshcd_enable_irq(hba);
6493 		ufshcd_setup_vreg(hba, true);
6494 		ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq);
6495 		ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq2);
6496 		ufshcd_hold(hba);
6497 		if (!ufshcd_is_clkgating_allowed(hba))
6498 			ufshcd_setup_clocks(hba, true);
6499 		pm_op = hba->is_sys_suspended ? UFS_SYSTEM_PM : UFS_RUNTIME_PM;
6500 		ufshcd_vops_resume(hba, pm_op);
6501 	} else {
6502 		ufshcd_hold(hba);
6503 		if (ufshcd_is_clkscaling_supported(hba) &&
6504 		    hba->clk_scaling.is_enabled)
6505 			ufshcd_suspend_clkscaling(hba);
6506 		ufshcd_clk_scaling_allow(hba, false);
6507 	}
6508 	/* Wait for ongoing ufshcd_queuecommand() calls to finish. */
6509 	blk_mq_quiesce_tagset(&hba->host->tag_set);
6510 	cancel_work_sync(&hba->eeh_work);
6511 }
6512 
6513 static void ufshcd_err_handling_unprepare(struct ufs_hba *hba)
6514 {
6515 	blk_mq_unquiesce_tagset(&hba->host->tag_set);
6516 	ufshcd_release(hba);
6517 	if (ufshcd_is_clkscaling_supported(hba))
6518 		ufshcd_clk_scaling_suspend(hba, false);
6519 	ufshcd_rpm_put(hba);
6520 }
6521 
6522 static inline bool ufshcd_err_handling_should_stop(struct ufs_hba *hba)
6523 {
6524 	return (!hba->is_powered || hba->shutting_down ||
6525 		!hba->ufs_device_wlun ||
6526 		hba->ufshcd_state == UFSHCD_STATE_ERROR ||
6527 		(!(hba->saved_err || hba->saved_uic_err || hba->force_reset ||
6528 		   ufshcd_is_link_broken(hba))));
6529 }
6530 
6531 #ifdef CONFIG_PM
6532 static void ufshcd_recover_pm_error(struct ufs_hba *hba)
6533 {
6534 	struct Scsi_Host *shost = hba->host;
6535 	struct scsi_device *sdev;
6536 	struct request_queue *q;
6537 	int ret;
6538 
6539 	hba->is_sys_suspended = false;
6540 	/*
6541 	 * Set RPM status of wlun device to RPM_ACTIVE,
6542 	 * this also clears its runtime error.
6543 	 */
6544 	ret = pm_runtime_set_active(&hba->ufs_device_wlun->sdev_gendev);
6545 
6546 	/* hba device might have a runtime error otherwise */
6547 	if (ret)
6548 		ret = pm_runtime_set_active(hba->dev);
6549 	/*
6550 	 * If wlun device had runtime error, we also need to resume those
6551 	 * consumer scsi devices in case any of them has failed to be
6552 	 * resumed due to supplier runtime resume failure. This is to unblock
6553 	 * blk_queue_enter in case there are bios waiting inside it.
6554 	 */
6555 	if (!ret) {
6556 		shost_for_each_device(sdev, shost) {
6557 			q = sdev->request_queue;
6558 			if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
6559 				       q->rpm_status == RPM_SUSPENDING))
6560 				pm_request_resume(q->dev);
6561 		}
6562 	}
6563 }
6564 #else
6565 static inline void ufshcd_recover_pm_error(struct ufs_hba *hba)
6566 {
6567 }
6568 #endif
6569 
6570 static bool ufshcd_is_pwr_mode_restore_needed(struct ufs_hba *hba)
6571 {
6572 	struct ufs_pa_layer_attr *pwr_info = &hba->pwr_info;
6573 	u32 mode;
6574 
6575 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_PWRMODE), &mode);
6576 
6577 	if (pwr_info->pwr_rx != ((mode >> PWRMODE_RX_OFFSET) & PWRMODE_MASK))
6578 		return true;
6579 
6580 	if (pwr_info->pwr_tx != (mode & PWRMODE_MASK))
6581 		return true;
6582 
6583 	return false;
6584 }
6585 
6586 static bool ufshcd_abort_one(struct request *rq, void *priv)
6587 {
6588 	int *ret = priv;
6589 	u32 tag = rq->tag;
6590 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
6591 	struct scsi_device *sdev = cmd->device;
6592 	struct Scsi_Host *shost = sdev->host;
6593 	struct ufs_hba *hba = shost_priv(shost);
6594 
6595 	*ret = ufshcd_try_to_abort_task(hba, tag);
6596 	dev_err(hba->dev, "Aborting tag %d / CDB %#02x %s\n", tag,
6597 		hba->lrb[tag].cmd ? hba->lrb[tag].cmd->cmnd[0] : -1,
6598 		*ret ? "failed" : "succeeded");
6599 
6600 	return *ret == 0;
6601 }
6602 
6603 /**
6604  * ufshcd_abort_all - Abort all pending commands.
6605  * @hba: Host bus adapter pointer.
6606  *
6607  * Return: true if and only if the host controller needs to be reset.
6608  */
6609 static bool ufshcd_abort_all(struct ufs_hba *hba)
6610 {
6611 	int tag, ret = 0;
6612 
6613 	blk_mq_tagset_busy_iter(&hba->host->tag_set, ufshcd_abort_one, &ret);
6614 	if (ret)
6615 		goto out;
6616 
6617 	/* Clear pending task management requests */
6618 	for_each_set_bit(tag, &hba->outstanding_tasks, hba->nutmrs) {
6619 		ret = ufshcd_clear_tm_cmd(hba, tag);
6620 		if (ret)
6621 			goto out;
6622 	}
6623 
6624 out:
6625 	/* Complete the requests that are cleared by s/w */
6626 	ufshcd_complete_requests(hba, false);
6627 
6628 	return ret != 0;
6629 }
6630 
6631 /**
6632  * ufshcd_err_handler - handle UFS errors that require s/w attention
6633  * @work: pointer to work structure
6634  */
6635 static void ufshcd_err_handler(struct work_struct *work)
6636 {
6637 	int retries = MAX_ERR_HANDLER_RETRIES;
6638 	struct ufs_hba *hba;
6639 	unsigned long flags;
6640 	bool needs_restore;
6641 	bool needs_reset;
6642 	int pmc_err;
6643 
6644 	hba = container_of(work, struct ufs_hba, eh_work);
6645 
6646 	dev_info(hba->dev,
6647 		 "%s started; HBA state %s; powered %d; shutting down %d; saved_err = 0x%x; saved_uic_err = 0x%x; force_reset = %d%s\n",
6648 		 __func__, ufshcd_state_name[hba->ufshcd_state],
6649 		 hba->is_powered, hba->shutting_down, hba->saved_err,
6650 		 hba->saved_uic_err, hba->force_reset,
6651 		 ufshcd_is_link_broken(hba) ? "; link is broken" : "");
6652 
6653 	down(&hba->host_sem);
6654 	spin_lock_irqsave(hba->host->host_lock, flags);
6655 	if (ufshcd_err_handling_should_stop(hba)) {
6656 		if (hba->ufshcd_state != UFSHCD_STATE_ERROR)
6657 			hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
6658 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6659 		up(&hba->host_sem);
6660 		return;
6661 	}
6662 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6663 
6664 	ufshcd_err_handling_prepare(hba);
6665 
6666 	spin_lock_irqsave(hba->host->host_lock, flags);
6667 	ufshcd_set_eh_in_progress(hba);
6668 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6669 
6670 	/* Complete requests that have door-bell cleared by h/w */
6671 	ufshcd_complete_requests(hba, false);
6672 	spin_lock_irqsave(hba->host->host_lock, flags);
6673 again:
6674 	needs_restore = false;
6675 	needs_reset = false;
6676 
6677 	if (hba->ufshcd_state != UFSHCD_STATE_ERROR)
6678 		hba->ufshcd_state = UFSHCD_STATE_RESET;
6679 	/*
6680 	 * A full reset and restore might have happened after preparation
6681 	 * is finished, double check whether we should stop.
6682 	 */
6683 	if (ufshcd_err_handling_should_stop(hba))
6684 		goto skip_err_handling;
6685 
6686 	if ((hba->dev_quirks & UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS) &&
6687 	    !hba->force_reset) {
6688 		bool ret;
6689 
6690 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6691 		/* release the lock as ufshcd_quirk_dl_nac_errors() may sleep */
6692 		ret = ufshcd_quirk_dl_nac_errors(hba);
6693 		spin_lock_irqsave(hba->host->host_lock, flags);
6694 		if (!ret && ufshcd_err_handling_should_stop(hba))
6695 			goto skip_err_handling;
6696 	}
6697 
6698 	if ((hba->saved_err & (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK)) ||
6699 	    (hba->saved_uic_err &&
6700 	     (hba->saved_uic_err != UFSHCD_UIC_PA_GENERIC_ERROR))) {
6701 		bool pr_prdt = !!(hba->saved_err & SYSTEM_BUS_FATAL_ERROR);
6702 
6703 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6704 		ufshcd_print_host_state(hba);
6705 		ufshcd_print_pwr_info(hba);
6706 		ufshcd_print_evt_hist(hba);
6707 		ufshcd_print_tmrs(hba, hba->outstanding_tasks);
6708 		ufshcd_print_trs_all(hba, pr_prdt);
6709 		spin_lock_irqsave(hba->host->host_lock, flags);
6710 	}
6711 
6712 	/*
6713 	 * if host reset is required then skip clearing the pending
6714 	 * transfers forcefully because they will get cleared during
6715 	 * host reset and restore
6716 	 */
6717 	if (hba->force_reset || ufshcd_is_link_broken(hba) ||
6718 	    ufshcd_is_saved_err_fatal(hba) ||
6719 	    ((hba->saved_err & UIC_ERROR) &&
6720 	     (hba->saved_uic_err & (UFSHCD_UIC_DL_NAC_RECEIVED_ERROR |
6721 				    UFSHCD_UIC_DL_TCx_REPLAY_ERROR)))) {
6722 		needs_reset = true;
6723 		goto do_reset;
6724 	}
6725 
6726 	/*
6727 	 * If LINERESET was caught, UFS might have been put to PWM mode,
6728 	 * check if power mode restore is needed.
6729 	 */
6730 	if (hba->saved_uic_err & UFSHCD_UIC_PA_GENERIC_ERROR) {
6731 		hba->saved_uic_err &= ~UFSHCD_UIC_PA_GENERIC_ERROR;
6732 		if (!hba->saved_uic_err)
6733 			hba->saved_err &= ~UIC_ERROR;
6734 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6735 		if (ufshcd_is_pwr_mode_restore_needed(hba))
6736 			needs_restore = true;
6737 		spin_lock_irqsave(hba->host->host_lock, flags);
6738 		if (!hba->saved_err && !needs_restore)
6739 			goto skip_err_handling;
6740 	}
6741 
6742 	hba->silence_err_logs = true;
6743 	/* release lock as clear command might sleep */
6744 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6745 
6746 	needs_reset = ufshcd_abort_all(hba);
6747 
6748 	spin_lock_irqsave(hba->host->host_lock, flags);
6749 	hba->silence_err_logs = false;
6750 	if (needs_reset)
6751 		goto do_reset;
6752 
6753 	/*
6754 	 * After all reqs and tasks are cleared from doorbell,
6755 	 * now it is safe to retore power mode.
6756 	 */
6757 	if (needs_restore) {
6758 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6759 		/*
6760 		 * Hold the scaling lock just in case dev cmds
6761 		 * are sent via bsg and/or sysfs.
6762 		 */
6763 		down_write(&hba->clk_scaling_lock);
6764 		hba->force_pmc = true;
6765 		pmc_err = ufshcd_config_pwr_mode(hba, &(hba->pwr_info));
6766 		if (pmc_err) {
6767 			needs_reset = true;
6768 			dev_err(hba->dev, "%s: Failed to restore power mode, err = %d\n",
6769 					__func__, pmc_err);
6770 		}
6771 		hba->force_pmc = false;
6772 		ufshcd_print_pwr_info(hba);
6773 		up_write(&hba->clk_scaling_lock);
6774 		spin_lock_irqsave(hba->host->host_lock, flags);
6775 	}
6776 
6777 do_reset:
6778 	/* Fatal errors need reset */
6779 	if (needs_reset) {
6780 		int err;
6781 
6782 		hba->force_reset = false;
6783 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6784 		err = ufshcd_reset_and_restore(hba);
6785 		if (err)
6786 			dev_err(hba->dev, "%s: reset and restore failed with err %d\n",
6787 					__func__, err);
6788 		else
6789 			ufshcd_recover_pm_error(hba);
6790 		spin_lock_irqsave(hba->host->host_lock, flags);
6791 	}
6792 
6793 skip_err_handling:
6794 	if (!needs_reset) {
6795 		if (hba->ufshcd_state == UFSHCD_STATE_RESET)
6796 			hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
6797 		if (hba->saved_err || hba->saved_uic_err)
6798 			dev_err_ratelimited(hba->dev, "%s: exit: saved_err 0x%x saved_uic_err 0x%x",
6799 			    __func__, hba->saved_err, hba->saved_uic_err);
6800 	}
6801 	/* Exit in an operational state or dead */
6802 	if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL &&
6803 	    hba->ufshcd_state != UFSHCD_STATE_ERROR) {
6804 		if (--retries)
6805 			goto again;
6806 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
6807 	}
6808 	ufshcd_clear_eh_in_progress(hba);
6809 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6810 	ufshcd_err_handling_unprepare(hba);
6811 	up(&hba->host_sem);
6812 
6813 	dev_info(hba->dev, "%s finished; HBA state %s\n", __func__,
6814 		 ufshcd_state_name[hba->ufshcd_state]);
6815 }
6816 
6817 /**
6818  * ufshcd_update_uic_error - check and set fatal UIC error flags.
6819  * @hba: per-adapter instance
6820  *
6821  * Return:
6822  *  IRQ_HANDLED - If interrupt is valid
6823  *  IRQ_NONE    - If invalid interrupt
6824  */
6825 static irqreturn_t ufshcd_update_uic_error(struct ufs_hba *hba)
6826 {
6827 	u32 reg;
6828 	irqreturn_t retval = IRQ_NONE;
6829 
6830 	/* PHY layer error */
6831 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER);
6832 	if ((reg & UIC_PHY_ADAPTER_LAYER_ERROR) &&
6833 	    (reg & UIC_PHY_ADAPTER_LAYER_ERROR_CODE_MASK)) {
6834 		ufshcd_update_evt_hist(hba, UFS_EVT_PA_ERR, reg);
6835 		/*
6836 		 * To know whether this error is fatal or not, DB timeout
6837 		 * must be checked but this error is handled separately.
6838 		 */
6839 		if (reg & UIC_PHY_ADAPTER_LAYER_LANE_ERR_MASK)
6840 			dev_dbg(hba->dev, "%s: UIC Lane error reported\n",
6841 					__func__);
6842 
6843 		/* Got a LINERESET indication. */
6844 		if (reg & UIC_PHY_ADAPTER_LAYER_GENERIC_ERROR) {
6845 			struct uic_command *cmd = NULL;
6846 
6847 			hba->uic_error |= UFSHCD_UIC_PA_GENERIC_ERROR;
6848 			if (hba->uic_async_done && hba->active_uic_cmd)
6849 				cmd = hba->active_uic_cmd;
6850 			/*
6851 			 * Ignore the LINERESET during power mode change
6852 			 * operation via DME_SET command.
6853 			 */
6854 			if (cmd && (cmd->command == UIC_CMD_DME_SET))
6855 				hba->uic_error &= ~UFSHCD_UIC_PA_GENERIC_ERROR;
6856 		}
6857 		retval |= IRQ_HANDLED;
6858 	}
6859 
6860 	/* PA_INIT_ERROR is fatal and needs UIC reset */
6861 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_DATA_LINK_LAYER);
6862 	if ((reg & UIC_DATA_LINK_LAYER_ERROR) &&
6863 	    (reg & UIC_DATA_LINK_LAYER_ERROR_CODE_MASK)) {
6864 		ufshcd_update_evt_hist(hba, UFS_EVT_DL_ERR, reg);
6865 
6866 		if (reg & UIC_DATA_LINK_LAYER_ERROR_PA_INIT)
6867 			hba->uic_error |= UFSHCD_UIC_DL_PA_INIT_ERROR;
6868 		else if (hba->dev_quirks &
6869 				UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS) {
6870 			if (reg & UIC_DATA_LINK_LAYER_ERROR_NAC_RECEIVED)
6871 				hba->uic_error |=
6872 					UFSHCD_UIC_DL_NAC_RECEIVED_ERROR;
6873 			else if (reg & UIC_DATA_LINK_LAYER_ERROR_TCx_REPLAY_TIMEOUT)
6874 				hba->uic_error |= UFSHCD_UIC_DL_TCx_REPLAY_ERROR;
6875 		}
6876 		retval |= IRQ_HANDLED;
6877 	}
6878 
6879 	/* UIC NL/TL/DME errors needs software retry */
6880 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_NETWORK_LAYER);
6881 	if ((reg & UIC_NETWORK_LAYER_ERROR) &&
6882 	    (reg & UIC_NETWORK_LAYER_ERROR_CODE_MASK)) {
6883 		ufshcd_update_evt_hist(hba, UFS_EVT_NL_ERR, reg);
6884 		hba->uic_error |= UFSHCD_UIC_NL_ERROR;
6885 		retval |= IRQ_HANDLED;
6886 	}
6887 
6888 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_TRANSPORT_LAYER);
6889 	if ((reg & UIC_TRANSPORT_LAYER_ERROR) &&
6890 	    (reg & UIC_TRANSPORT_LAYER_ERROR_CODE_MASK)) {
6891 		ufshcd_update_evt_hist(hba, UFS_EVT_TL_ERR, reg);
6892 		hba->uic_error |= UFSHCD_UIC_TL_ERROR;
6893 		retval |= IRQ_HANDLED;
6894 	}
6895 
6896 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_DME);
6897 	if ((reg & UIC_DME_ERROR) &&
6898 	    (reg & UIC_DME_ERROR_CODE_MASK)) {
6899 		ufshcd_update_evt_hist(hba, UFS_EVT_DME_ERR, reg);
6900 		hba->uic_error |= UFSHCD_UIC_DME_ERROR;
6901 		retval |= IRQ_HANDLED;
6902 	}
6903 
6904 	dev_dbg(hba->dev, "%s: UIC error flags = 0x%08x\n",
6905 			__func__, hba->uic_error);
6906 	return retval;
6907 }
6908 
6909 /**
6910  * ufshcd_check_errors - Check for errors that need s/w attention
6911  * @hba: per-adapter instance
6912  * @intr_status: interrupt status generated by the controller
6913  *
6914  * Return:
6915  *  IRQ_HANDLED - If interrupt is valid
6916  *  IRQ_NONE    - If invalid interrupt
6917  */
6918 static irqreturn_t ufshcd_check_errors(struct ufs_hba *hba, u32 intr_status)
6919 {
6920 	bool queue_eh_work = false;
6921 	irqreturn_t retval = IRQ_NONE;
6922 
6923 	spin_lock(hba->host->host_lock);
6924 	hba->errors |= UFSHCD_ERROR_MASK & intr_status;
6925 
6926 	if (hba->errors & INT_FATAL_ERRORS) {
6927 		ufshcd_update_evt_hist(hba, UFS_EVT_FATAL_ERR,
6928 				       hba->errors);
6929 		queue_eh_work = true;
6930 	}
6931 
6932 	if (hba->errors & UIC_ERROR) {
6933 		hba->uic_error = 0;
6934 		retval = ufshcd_update_uic_error(hba);
6935 		if (hba->uic_error)
6936 			queue_eh_work = true;
6937 	}
6938 
6939 	if (hba->errors & UFSHCD_UIC_HIBERN8_MASK) {
6940 		dev_err(hba->dev,
6941 			"%s: Auto Hibern8 %s failed - status: 0x%08x, upmcrs: 0x%08x\n",
6942 			__func__, (hba->errors & UIC_HIBERNATE_ENTER) ?
6943 			"Enter" : "Exit",
6944 			hba->errors, ufshcd_get_upmcrs(hba));
6945 		ufshcd_update_evt_hist(hba, UFS_EVT_AUTO_HIBERN8_ERR,
6946 				       hba->errors);
6947 		ufshcd_set_link_broken(hba);
6948 		queue_eh_work = true;
6949 	}
6950 
6951 	if (queue_eh_work) {
6952 		/*
6953 		 * update the transfer error masks to sticky bits, let's do this
6954 		 * irrespective of current ufshcd_state.
6955 		 */
6956 		hba->saved_err |= hba->errors;
6957 		hba->saved_uic_err |= hba->uic_error;
6958 
6959 		/* dump controller state before resetting */
6960 		if ((hba->saved_err &
6961 		     (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK)) ||
6962 		    (hba->saved_uic_err &&
6963 		     (hba->saved_uic_err != UFSHCD_UIC_PA_GENERIC_ERROR))) {
6964 			dev_err(hba->dev, "%s: saved_err 0x%x saved_uic_err 0x%x\n",
6965 					__func__, hba->saved_err,
6966 					hba->saved_uic_err);
6967 			ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE,
6968 					 "host_regs: ");
6969 			ufshcd_print_pwr_info(hba);
6970 		}
6971 		ufshcd_schedule_eh_work(hba);
6972 		retval |= IRQ_HANDLED;
6973 	}
6974 	/*
6975 	 * if (!queue_eh_work) -
6976 	 * Other errors are either non-fatal where host recovers
6977 	 * itself without s/w intervention or errors that will be
6978 	 * handled by the SCSI core layer.
6979 	 */
6980 	hba->errors = 0;
6981 	hba->uic_error = 0;
6982 	spin_unlock(hba->host->host_lock);
6983 	return retval;
6984 }
6985 
6986 /**
6987  * ufshcd_tmc_handler - handle task management function completion
6988  * @hba: per adapter instance
6989  *
6990  * Return:
6991  *  IRQ_HANDLED - If interrupt is valid
6992  *  IRQ_NONE    - If invalid interrupt
6993  */
6994 static irqreturn_t ufshcd_tmc_handler(struct ufs_hba *hba)
6995 {
6996 	unsigned long flags, pending, issued;
6997 	irqreturn_t ret = IRQ_NONE;
6998 	int tag;
6999 
7000 	spin_lock_irqsave(hba->host->host_lock, flags);
7001 	pending = ufshcd_readl(hba, REG_UTP_TASK_REQ_DOOR_BELL);
7002 	issued = hba->outstanding_tasks & ~pending;
7003 	for_each_set_bit(tag, &issued, hba->nutmrs) {
7004 		struct request *req = hba->tmf_rqs[tag];
7005 		struct completion *c = req->end_io_data;
7006 
7007 		complete(c);
7008 		ret = IRQ_HANDLED;
7009 	}
7010 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7011 
7012 	return ret;
7013 }
7014 
7015 /**
7016  * ufshcd_handle_mcq_cq_events - handle MCQ completion queue events
7017  * @hba: per adapter instance
7018  *
7019  * Return: IRQ_HANDLED if interrupt is handled.
7020  */
7021 static irqreturn_t ufshcd_handle_mcq_cq_events(struct ufs_hba *hba)
7022 {
7023 	struct ufs_hw_queue *hwq;
7024 	unsigned long outstanding_cqs;
7025 	unsigned int nr_queues;
7026 	int i, ret;
7027 	u32 events;
7028 
7029 	ret = ufshcd_vops_get_outstanding_cqs(hba, &outstanding_cqs);
7030 	if (ret)
7031 		outstanding_cqs = (1U << hba->nr_hw_queues) - 1;
7032 
7033 	/* Exclude the poll queues */
7034 	nr_queues = hba->nr_hw_queues - hba->nr_queues[HCTX_TYPE_POLL];
7035 	for_each_set_bit(i, &outstanding_cqs, nr_queues) {
7036 		hwq = &hba->uhq[i];
7037 
7038 		events = ufshcd_mcq_read_cqis(hba, i);
7039 		if (events)
7040 			ufshcd_mcq_write_cqis(hba, events, i);
7041 
7042 		if (events & UFSHCD_MCQ_CQIS_TAIL_ENT_PUSH_STS)
7043 			ufshcd_mcq_poll_cqe_lock(hba, hwq);
7044 	}
7045 
7046 	return IRQ_HANDLED;
7047 }
7048 
7049 /**
7050  * ufshcd_sl_intr - Interrupt service routine
7051  * @hba: per adapter instance
7052  * @intr_status: contains interrupts generated by the controller
7053  *
7054  * Return:
7055  *  IRQ_HANDLED - If interrupt is valid
7056  *  IRQ_NONE    - If invalid interrupt
7057  */
7058 static irqreturn_t ufshcd_sl_intr(struct ufs_hba *hba, u32 intr_status)
7059 {
7060 	irqreturn_t retval = IRQ_NONE;
7061 
7062 	if (intr_status & UFSHCD_UIC_MASK)
7063 		retval |= ufshcd_uic_cmd_compl(hba, intr_status);
7064 
7065 	if (intr_status & UFSHCD_ERROR_MASK || hba->errors)
7066 		retval |= ufshcd_check_errors(hba, intr_status);
7067 
7068 	if (intr_status & UTP_TASK_REQ_COMPL)
7069 		retval |= ufshcd_tmc_handler(hba);
7070 
7071 	if (intr_status & UTP_TRANSFER_REQ_COMPL)
7072 		retval |= ufshcd_transfer_req_compl(hba);
7073 
7074 	if (intr_status & MCQ_CQ_EVENT_STATUS)
7075 		retval |= ufshcd_handle_mcq_cq_events(hba);
7076 
7077 	return retval;
7078 }
7079 
7080 /**
7081  * ufshcd_threaded_intr - Threaded interrupt service routine
7082  * @irq: irq number
7083  * @__hba: pointer to adapter instance
7084  *
7085  * Return:
7086  *  IRQ_HANDLED - If interrupt is valid
7087  *  IRQ_NONE    - If invalid interrupt
7088  */
7089 static irqreturn_t ufshcd_threaded_intr(int irq, void *__hba)
7090 {
7091 	u32 last_intr_status, intr_status, enabled_intr_status = 0;
7092 	irqreturn_t retval = IRQ_NONE;
7093 	struct ufs_hba *hba = __hba;
7094 	int retries = hba->nutrs;
7095 
7096 	last_intr_status = intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
7097 
7098 	/*
7099 	 * There could be max of hba->nutrs reqs in flight and in worst case
7100 	 * if the reqs get finished 1 by 1 after the interrupt status is
7101 	 * read, make sure we handle them by checking the interrupt status
7102 	 * again in a loop until we process all of the reqs before returning.
7103 	 */
7104 	while (intr_status && retries--) {
7105 		enabled_intr_status =
7106 			intr_status & ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
7107 		ufshcd_writel(hba, intr_status, REG_INTERRUPT_STATUS);
7108 		if (enabled_intr_status)
7109 			retval |= ufshcd_sl_intr(hba, enabled_intr_status);
7110 
7111 		intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
7112 	}
7113 
7114 	if (enabled_intr_status && retval == IRQ_NONE &&
7115 	    (!(enabled_intr_status & UTP_TRANSFER_REQ_COMPL) ||
7116 	     hba->outstanding_reqs) && !ufshcd_eh_in_progress(hba)) {
7117 		dev_err(hba->dev, "%s: Unhandled interrupt 0x%08x (0x%08x, 0x%08x)\n",
7118 					__func__,
7119 					intr_status,
7120 					last_intr_status,
7121 					enabled_intr_status);
7122 		ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, "host_regs: ");
7123 	}
7124 
7125 	return retval;
7126 }
7127 
7128 /**
7129  * ufshcd_intr - Main interrupt service routine
7130  * @irq: irq number
7131  * @__hba: pointer to adapter instance
7132  *
7133  * Return:
7134  *  IRQ_HANDLED     - If interrupt is valid
7135  *  IRQ_WAKE_THREAD - If handling is moved to threaded handled
7136  *  IRQ_NONE        - If invalid interrupt
7137  */
7138 static irqreturn_t ufshcd_intr(int irq, void *__hba)
7139 {
7140 	struct ufs_hba *hba = __hba;
7141 
7142 	/* Move interrupt handling to thread when MCQ & ESI are not enabled */
7143 	if (!hba->mcq_enabled || !hba->mcq_esi_enabled)
7144 		return IRQ_WAKE_THREAD;
7145 
7146 	/* Directly handle interrupts since MCQ ESI handlers does the hard job */
7147 	return ufshcd_sl_intr(hba, ufshcd_readl(hba, REG_INTERRUPT_STATUS) &
7148 				   ufshcd_readl(hba, REG_INTERRUPT_ENABLE));
7149 }
7150 
7151 static int ufshcd_clear_tm_cmd(struct ufs_hba *hba, int tag)
7152 {
7153 	int err = 0;
7154 	u32 mask = 1 << tag;
7155 
7156 	if (!test_bit(tag, &hba->outstanding_tasks))
7157 		goto out;
7158 
7159 	ufshcd_utmrl_clear(hba, tag);
7160 
7161 	/* poll for max. 1 sec to clear door bell register by h/w */
7162 	err = ufshcd_wait_for_register(hba,
7163 			REG_UTP_TASK_REQ_DOOR_BELL,
7164 			mask, 0, 1000, 1000);
7165 
7166 	dev_err(hba->dev, "Clearing task management function with tag %d %s\n",
7167 		tag, err < 0 ? "failed" : "succeeded");
7168 
7169 out:
7170 	return err;
7171 }
7172 
7173 static int __ufshcd_issue_tm_cmd(struct ufs_hba *hba,
7174 		struct utp_task_req_desc *treq, u8 tm_function)
7175 {
7176 	struct request_queue *q = hba->tmf_queue;
7177 	struct Scsi_Host *host = hba->host;
7178 	DECLARE_COMPLETION_ONSTACK(wait);
7179 	struct request *req;
7180 	unsigned long flags;
7181 	int task_tag, err;
7182 
7183 	/*
7184 	 * blk_mq_alloc_request() is used here only to get a free tag.
7185 	 */
7186 	req = blk_mq_alloc_request(q, REQ_OP_DRV_OUT, 0);
7187 	if (IS_ERR(req))
7188 		return PTR_ERR(req);
7189 
7190 	req->end_io_data = &wait;
7191 	ufshcd_hold(hba);
7192 
7193 	spin_lock_irqsave(host->host_lock, flags);
7194 
7195 	task_tag = req->tag;
7196 	hba->tmf_rqs[req->tag] = req;
7197 	treq->upiu_req.req_header.task_tag = task_tag;
7198 
7199 	memcpy(hba->utmrdl_base_addr + task_tag, treq, sizeof(*treq));
7200 	ufshcd_vops_setup_task_mgmt(hba, task_tag, tm_function);
7201 
7202 	__set_bit(task_tag, &hba->outstanding_tasks);
7203 
7204 	spin_unlock_irqrestore(host->host_lock, flags);
7205 
7206 	/* send command to the controller */
7207 	ufshcd_writel(hba, 1 << task_tag, REG_UTP_TASK_REQ_DOOR_BELL);
7208 
7209 	ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_SEND);
7210 
7211 	/* wait until the task management command is completed */
7212 	err = wait_for_completion_io_timeout(&wait,
7213 			msecs_to_jiffies(TM_CMD_TIMEOUT));
7214 	if (!err) {
7215 		ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_ERR);
7216 		dev_err(hba->dev, "%s: task management cmd 0x%.2x timed-out\n",
7217 				__func__, tm_function);
7218 		if (ufshcd_clear_tm_cmd(hba, task_tag))
7219 			dev_WARN(hba->dev, "%s: unable to clear tm cmd (slot %d) after timeout\n",
7220 					__func__, task_tag);
7221 		err = -ETIMEDOUT;
7222 	} else {
7223 		err = 0;
7224 		memcpy(treq, hba->utmrdl_base_addr + task_tag, sizeof(*treq));
7225 
7226 		ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_COMP);
7227 	}
7228 
7229 	spin_lock_irqsave(hba->host->host_lock, flags);
7230 	hba->tmf_rqs[req->tag] = NULL;
7231 	__clear_bit(task_tag, &hba->outstanding_tasks);
7232 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7233 
7234 	ufshcd_release(hba);
7235 	blk_mq_free_request(req);
7236 
7237 	return err;
7238 }
7239 
7240 /**
7241  * ufshcd_issue_tm_cmd - issues task management commands to controller
7242  * @hba: per adapter instance
7243  * @lun_id: LUN ID to which TM command is sent
7244  * @task_id: task ID to which the TM command is applicable
7245  * @tm_function: task management function opcode
7246  * @tm_response: task management service response return value
7247  *
7248  * Return: non-zero value on error, zero on success.
7249  */
7250 static int ufshcd_issue_tm_cmd(struct ufs_hba *hba, int lun_id, int task_id,
7251 		u8 tm_function, u8 *tm_response)
7252 {
7253 	struct utp_task_req_desc treq = { };
7254 	enum utp_ocs ocs_value;
7255 	int err;
7256 
7257 	/* Configure task request descriptor */
7258 	treq.header.interrupt = 1;
7259 	treq.header.ocs = OCS_INVALID_COMMAND_STATUS;
7260 
7261 	/* Configure task request UPIU */
7262 	treq.upiu_req.req_header.transaction_code = UPIU_TRANSACTION_TASK_REQ;
7263 	treq.upiu_req.req_header.lun = lun_id;
7264 	treq.upiu_req.req_header.tm_function = tm_function;
7265 
7266 	/*
7267 	 * The host shall provide the same value for LUN field in the basic
7268 	 * header and for Input Parameter.
7269 	 */
7270 	treq.upiu_req.input_param1 = cpu_to_be32(lun_id);
7271 	treq.upiu_req.input_param2 = cpu_to_be32(task_id);
7272 
7273 	err = __ufshcd_issue_tm_cmd(hba, &treq, tm_function);
7274 	if (err == -ETIMEDOUT)
7275 		return err;
7276 
7277 	ocs_value = treq.header.ocs & MASK_OCS;
7278 	if (ocs_value != OCS_SUCCESS)
7279 		dev_err(hba->dev, "%s: failed, ocs = 0x%x\n",
7280 				__func__, ocs_value);
7281 	else if (tm_response)
7282 		*tm_response = be32_to_cpu(treq.upiu_rsp.output_param1) &
7283 				MASK_TM_SERVICE_RESP;
7284 	return err;
7285 }
7286 
7287 /**
7288  * ufshcd_issue_devman_upiu_cmd - API for sending "utrd" type requests
7289  * @hba:	per-adapter instance
7290  * @req_upiu:	upiu request
7291  * @rsp_upiu:	upiu reply
7292  * @desc_buff:	pointer to descriptor buffer, NULL if NA
7293  * @buff_len:	descriptor size, 0 if NA
7294  * @cmd_type:	specifies the type (NOP, Query...)
7295  * @desc_op:	descriptor operation
7296  *
7297  * Those type of requests uses UTP Transfer Request Descriptor - utrd.
7298  * Therefore, it "rides" the device management infrastructure: uses its tag and
7299  * tasks work queues.
7300  *
7301  * Since there is only one available tag for device management commands,
7302  * the caller is expected to hold the hba->dev_cmd.lock mutex.
7303  *
7304  * Return: 0 upon success; < 0 upon failure.
7305  */
7306 static int ufshcd_issue_devman_upiu_cmd(struct ufs_hba *hba,
7307 					struct utp_upiu_req *req_upiu,
7308 					struct utp_upiu_req *rsp_upiu,
7309 					u8 *desc_buff, int *buff_len,
7310 					enum dev_cmd_type cmd_type,
7311 					enum query_opcode desc_op)
7312 {
7313 	const u32 tag = hba->reserved_slot;
7314 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
7315 	int err = 0;
7316 	u8 upiu_flags;
7317 
7318 	/* Protects use of hba->reserved_slot. */
7319 	lockdep_assert_held(&hba->dev_cmd.lock);
7320 
7321 	ufshcd_setup_dev_cmd(hba, lrbp, cmd_type, 0, tag);
7322 
7323 	ufshcd_prepare_req_desc_hdr(hba, lrbp, &upiu_flags, DMA_NONE, 0);
7324 
7325 	/* update the task tag in the request upiu */
7326 	req_upiu->header.task_tag = tag;
7327 
7328 	/* just copy the upiu request as it is */
7329 	memcpy(lrbp->ucd_req_ptr, req_upiu, sizeof(*lrbp->ucd_req_ptr));
7330 	if (desc_buff && desc_op == UPIU_QUERY_OPCODE_WRITE_DESC) {
7331 		/* The Data Segment Area is optional depending upon the query
7332 		 * function value. for WRITE DESCRIPTOR, the data segment
7333 		 * follows right after the tsf.
7334 		 */
7335 		memcpy(lrbp->ucd_req_ptr + 1, desc_buff, *buff_len);
7336 		*buff_len = 0;
7337 	}
7338 
7339 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
7340 
7341 	/*
7342 	 * ignore the returning value here - ufshcd_check_query_response is
7343 	 * bound to fail since dev_cmd.query and dev_cmd.type were left empty.
7344 	 * read the response directly ignoring all errors.
7345 	 */
7346 	ufshcd_issue_dev_cmd(hba, lrbp, tag, dev_cmd_timeout);
7347 
7348 	/* just copy the upiu response as it is */
7349 	memcpy(rsp_upiu, lrbp->ucd_rsp_ptr, sizeof(*rsp_upiu));
7350 	if (desc_buff && desc_op == UPIU_QUERY_OPCODE_READ_DESC) {
7351 		u8 *descp = (u8 *)lrbp->ucd_rsp_ptr + sizeof(*rsp_upiu);
7352 		u16 resp_len = be16_to_cpu(lrbp->ucd_rsp_ptr->header
7353 					   .data_segment_length);
7354 
7355 		if (*buff_len >= resp_len) {
7356 			memcpy(desc_buff, descp, resp_len);
7357 			*buff_len = resp_len;
7358 		} else {
7359 			dev_warn(hba->dev,
7360 				 "%s: rsp size %d is bigger than buffer size %d",
7361 				 __func__, resp_len, *buff_len);
7362 			*buff_len = 0;
7363 			err = -EINVAL;
7364 		}
7365 	}
7366 
7367 	return err;
7368 }
7369 
7370 /**
7371  * ufshcd_exec_raw_upiu_cmd - API function for sending raw upiu commands
7372  * @hba:	per-adapter instance
7373  * @req_upiu:	upiu request
7374  * @rsp_upiu:	upiu reply - only 8 DW as we do not support scsi commands
7375  * @msgcode:	message code, one of UPIU Transaction Codes Initiator to Target
7376  * @desc_buff:	pointer to descriptor buffer, NULL if NA
7377  * @buff_len:	descriptor size, 0 if NA
7378  * @desc_op:	descriptor operation
7379  *
7380  * Supports UTP Transfer requests (nop and query), and UTP Task
7381  * Management requests.
7382  * It is up to the caller to fill the upiu conent properly, as it will
7383  * be copied without any further input validations.
7384  *
7385  * Return: 0 upon success; < 0 upon failure.
7386  */
7387 int ufshcd_exec_raw_upiu_cmd(struct ufs_hba *hba,
7388 			     struct utp_upiu_req *req_upiu,
7389 			     struct utp_upiu_req *rsp_upiu,
7390 			     enum upiu_request_transaction msgcode,
7391 			     u8 *desc_buff, int *buff_len,
7392 			     enum query_opcode desc_op)
7393 {
7394 	int err;
7395 	enum dev_cmd_type cmd_type = DEV_CMD_TYPE_QUERY;
7396 	struct utp_task_req_desc treq = { };
7397 	enum utp_ocs ocs_value;
7398 	u8 tm_f = req_upiu->header.tm_function;
7399 
7400 	switch (msgcode) {
7401 	case UPIU_TRANSACTION_NOP_OUT:
7402 		cmd_type = DEV_CMD_TYPE_NOP;
7403 		fallthrough;
7404 	case UPIU_TRANSACTION_QUERY_REQ:
7405 		ufshcd_dev_man_lock(hba);
7406 		err = ufshcd_issue_devman_upiu_cmd(hba, req_upiu, rsp_upiu,
7407 						   desc_buff, buff_len,
7408 						   cmd_type, desc_op);
7409 		ufshcd_dev_man_unlock(hba);
7410 
7411 		break;
7412 	case UPIU_TRANSACTION_TASK_REQ:
7413 		treq.header.interrupt = 1;
7414 		treq.header.ocs = OCS_INVALID_COMMAND_STATUS;
7415 
7416 		memcpy(&treq.upiu_req, req_upiu, sizeof(*req_upiu));
7417 
7418 		err = __ufshcd_issue_tm_cmd(hba, &treq, tm_f);
7419 		if (err == -ETIMEDOUT)
7420 			break;
7421 
7422 		ocs_value = treq.header.ocs & MASK_OCS;
7423 		if (ocs_value != OCS_SUCCESS) {
7424 			dev_err(hba->dev, "%s: failed, ocs = 0x%x\n", __func__,
7425 				ocs_value);
7426 			break;
7427 		}
7428 
7429 		memcpy(rsp_upiu, &treq.upiu_rsp, sizeof(*rsp_upiu));
7430 
7431 		break;
7432 	default:
7433 		err = -EINVAL;
7434 
7435 		break;
7436 	}
7437 
7438 	return err;
7439 }
7440 
7441 /**
7442  * ufshcd_advanced_rpmb_req_handler - handle advanced RPMB request
7443  * @hba:	per adapter instance
7444  * @req_upiu:	upiu request
7445  * @rsp_upiu:	upiu reply
7446  * @req_ehs:	EHS field which contains Advanced RPMB Request Message
7447  * @rsp_ehs:	EHS field which returns Advanced RPMB Response Message
7448  * @sg_cnt:	The number of sg lists actually used
7449  * @sg_list:	Pointer to SG list when DATA IN/OUT UPIU is required in ARPMB operation
7450  * @dir:	DMA direction
7451  *
7452  * Return: zero on success, non-zero on failure.
7453  */
7454 int ufshcd_advanced_rpmb_req_handler(struct ufs_hba *hba, struct utp_upiu_req *req_upiu,
7455 			 struct utp_upiu_req *rsp_upiu, struct ufs_ehs *req_ehs,
7456 			 struct ufs_ehs *rsp_ehs, int sg_cnt, struct scatterlist *sg_list,
7457 			 enum dma_data_direction dir)
7458 {
7459 	const u32 tag = hba->reserved_slot;
7460 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
7461 	int err = 0;
7462 	int result;
7463 	u8 upiu_flags;
7464 	u8 *ehs_data;
7465 	u16 ehs_len;
7466 	int ehs = (hba->capabilities & MASK_EHSLUTRD_SUPPORTED) ? 2 : 0;
7467 
7468 	/* Protects use of hba->reserved_slot. */
7469 	ufshcd_dev_man_lock(hba);
7470 
7471 	ufshcd_setup_dev_cmd(hba, lrbp, DEV_CMD_TYPE_RPMB, UFS_UPIU_RPMB_WLUN, tag);
7472 
7473 	ufshcd_prepare_req_desc_hdr(hba, lrbp, &upiu_flags, DMA_NONE, ehs);
7474 
7475 	/* update the task tag */
7476 	req_upiu->header.task_tag = tag;
7477 
7478 	/* copy the UPIU(contains CDB) request as it is */
7479 	memcpy(lrbp->ucd_req_ptr, req_upiu, sizeof(*lrbp->ucd_req_ptr));
7480 	/* Copy EHS, starting with byte32, immediately after the CDB package */
7481 	memcpy(lrbp->ucd_req_ptr + 1, req_ehs, sizeof(*req_ehs));
7482 
7483 	if (dir != DMA_NONE && sg_list)
7484 		ufshcd_sgl_to_prdt(hba, lrbp, sg_cnt, sg_list);
7485 
7486 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
7487 
7488 	err = ufshcd_issue_dev_cmd(hba, lrbp, tag, ADVANCED_RPMB_REQ_TIMEOUT);
7489 
7490 	if (!err) {
7491 		/* Just copy the upiu response as it is */
7492 		memcpy(rsp_upiu, lrbp->ucd_rsp_ptr, sizeof(*rsp_upiu));
7493 		/* Get the response UPIU result */
7494 		result = (lrbp->ucd_rsp_ptr->header.response << 8) |
7495 			lrbp->ucd_rsp_ptr->header.status;
7496 
7497 		ehs_len = lrbp->ucd_rsp_ptr->header.ehs_length;
7498 		/*
7499 		 * Since the bLength in EHS indicates the total size of the EHS Header and EHS Data
7500 		 * in 32 Byte units, the value of the bLength Request/Response for Advanced RPMB
7501 		 * Message is 02h
7502 		 */
7503 		if (ehs_len == 2 && rsp_ehs) {
7504 			/*
7505 			 * ucd_rsp_ptr points to a buffer with a length of 512 bytes
7506 			 * (ALIGNED_UPIU_SIZE = 512), and the EHS data just starts from byte32
7507 			 */
7508 			ehs_data = (u8 *)lrbp->ucd_rsp_ptr + EHS_OFFSET_IN_RESPONSE;
7509 			memcpy(rsp_ehs, ehs_data, ehs_len * 32);
7510 		}
7511 	}
7512 
7513 	ufshcd_dev_man_unlock(hba);
7514 
7515 	return err ? : result;
7516 }
7517 
7518 /**
7519  * ufshcd_eh_device_reset_handler() - Reset a single logical unit.
7520  * @cmd: SCSI command pointer
7521  *
7522  * Return: SUCCESS or FAILED.
7523  */
7524 static int ufshcd_eh_device_reset_handler(struct scsi_cmnd *cmd)
7525 {
7526 	unsigned long flags, pending_reqs = 0, not_cleared = 0;
7527 	struct Scsi_Host *host;
7528 	struct ufs_hba *hba;
7529 	struct ufs_hw_queue *hwq;
7530 	struct ufshcd_lrb *lrbp;
7531 	u32 pos, not_cleared_mask = 0;
7532 	int err;
7533 	u8 resp = 0xF, lun;
7534 
7535 	host = cmd->device->host;
7536 	hba = shost_priv(host);
7537 
7538 	lun = ufshcd_scsi_to_upiu_lun(cmd->device->lun);
7539 	err = ufshcd_issue_tm_cmd(hba, lun, 0, UFS_LOGICAL_RESET, &resp);
7540 	if (err || resp != UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7541 		if (!err)
7542 			err = resp;
7543 		goto out;
7544 	}
7545 
7546 	if (hba->mcq_enabled) {
7547 		for (pos = 0; pos < hba->nutrs; pos++) {
7548 			lrbp = &hba->lrb[pos];
7549 			if (ufshcd_cmd_inflight(lrbp->cmd) &&
7550 			    lrbp->lun == lun) {
7551 				ufshcd_clear_cmd(hba, pos);
7552 				hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(lrbp->cmd));
7553 				ufshcd_mcq_poll_cqe_lock(hba, hwq);
7554 			}
7555 		}
7556 		err = 0;
7557 		goto out;
7558 	}
7559 
7560 	/* clear the commands that were pending for corresponding LUN */
7561 	spin_lock_irqsave(&hba->outstanding_lock, flags);
7562 	for_each_set_bit(pos, &hba->outstanding_reqs, hba->nutrs)
7563 		if (hba->lrb[pos].lun == lun)
7564 			__set_bit(pos, &pending_reqs);
7565 	hba->outstanding_reqs &= ~pending_reqs;
7566 	spin_unlock_irqrestore(&hba->outstanding_lock, flags);
7567 
7568 	for_each_set_bit(pos, &pending_reqs, hba->nutrs) {
7569 		if (ufshcd_clear_cmd(hba, pos) < 0) {
7570 			spin_lock_irqsave(&hba->outstanding_lock, flags);
7571 			not_cleared = 1U << pos &
7572 				ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
7573 			hba->outstanding_reqs |= not_cleared;
7574 			not_cleared_mask |= not_cleared;
7575 			spin_unlock_irqrestore(&hba->outstanding_lock, flags);
7576 
7577 			dev_err(hba->dev, "%s: failed to clear request %d\n",
7578 				__func__, pos);
7579 		}
7580 	}
7581 	__ufshcd_transfer_req_compl(hba, pending_reqs & ~not_cleared_mask);
7582 
7583 out:
7584 	hba->req_abort_count = 0;
7585 	ufshcd_update_evt_hist(hba, UFS_EVT_DEV_RESET, (u32)err);
7586 	if (!err) {
7587 		err = SUCCESS;
7588 	} else {
7589 		dev_err(hba->dev, "%s: failed with err %d\n", __func__, err);
7590 		err = FAILED;
7591 	}
7592 	return err;
7593 }
7594 
7595 static void ufshcd_set_req_abort_skip(struct ufs_hba *hba, unsigned long bitmap)
7596 {
7597 	struct ufshcd_lrb *lrbp;
7598 	int tag;
7599 
7600 	for_each_set_bit(tag, &bitmap, hba->nutrs) {
7601 		lrbp = &hba->lrb[tag];
7602 		lrbp->req_abort_skip = true;
7603 	}
7604 }
7605 
7606 /**
7607  * ufshcd_try_to_abort_task - abort a specific task
7608  * @hba: Pointer to adapter instance
7609  * @tag: Task tag/index to be aborted
7610  *
7611  * Abort the pending command in device by sending UFS_ABORT_TASK task management
7612  * command, and in host controller by clearing the door-bell register. There can
7613  * be race between controller sending the command to the device while abort is
7614  * issued. To avoid that, first issue UFS_QUERY_TASK to check if the command is
7615  * really issued and then try to abort it.
7616  *
7617  * Return: zero on success, non-zero on failure.
7618  */
7619 int ufshcd_try_to_abort_task(struct ufs_hba *hba, int tag)
7620 {
7621 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
7622 	int err;
7623 	int poll_cnt;
7624 	u8 resp = 0xF;
7625 
7626 	for (poll_cnt = 100; poll_cnt; poll_cnt--) {
7627 		err = ufshcd_issue_tm_cmd(hba, lrbp->lun, lrbp->task_tag,
7628 				UFS_QUERY_TASK, &resp);
7629 		if (!err && resp == UPIU_TASK_MANAGEMENT_FUNC_SUCCEEDED) {
7630 			/* cmd pending in the device */
7631 			dev_err(hba->dev, "%s: cmd pending in the device. tag = %d\n",
7632 				__func__, tag);
7633 			break;
7634 		} else if (!err && resp == UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7635 			/*
7636 			 * cmd not pending in the device, check if it is
7637 			 * in transition.
7638 			 */
7639 			dev_info(
7640 				hba->dev,
7641 				"%s: cmd with tag %d not pending in the device.\n",
7642 				__func__, tag);
7643 			if (!ufshcd_cmd_inflight(lrbp->cmd)) {
7644 				dev_info(hba->dev,
7645 					 "%s: cmd with tag=%d completed.\n",
7646 					 __func__, tag);
7647 				return 0;
7648 			}
7649 			usleep_range(100, 200);
7650 		} else {
7651 			dev_err(hba->dev,
7652 				"%s: no response from device. tag = %d, err %d\n",
7653 				__func__, tag, err);
7654 			return err ? : resp;
7655 		}
7656 	}
7657 
7658 	if (!poll_cnt)
7659 		return -EBUSY;
7660 
7661 	err = ufshcd_issue_tm_cmd(hba, lrbp->lun, lrbp->task_tag,
7662 			UFS_ABORT_TASK, &resp);
7663 	if (err || resp != UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7664 		if (!err) {
7665 			err = resp; /* service response error */
7666 			dev_err(hba->dev, "%s: issued. tag = %d, err %d\n",
7667 				__func__, tag, err);
7668 		}
7669 		return err;
7670 	}
7671 
7672 	err = ufshcd_clear_cmd(hba, tag);
7673 	if (err)
7674 		dev_err(hba->dev, "%s: Failed clearing cmd at tag %d, err %d\n",
7675 			__func__, tag, err);
7676 
7677 	return err;
7678 }
7679 
7680 /**
7681  * ufshcd_abort - scsi host template eh_abort_handler callback
7682  * @cmd: SCSI command pointer
7683  *
7684  * Return: SUCCESS or FAILED.
7685  */
7686 static int ufshcd_abort(struct scsi_cmnd *cmd)
7687 {
7688 	struct Scsi_Host *host = cmd->device->host;
7689 	struct ufs_hba *hba = shost_priv(host);
7690 	int tag = scsi_cmd_to_rq(cmd)->tag;
7691 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
7692 	unsigned long flags;
7693 	int err = FAILED;
7694 	bool outstanding;
7695 	u32 reg;
7696 
7697 	ufshcd_hold(hba);
7698 
7699 	if (!hba->mcq_enabled) {
7700 		reg = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
7701 		if (!test_bit(tag, &hba->outstanding_reqs)) {
7702 			/* If command is already aborted/completed, return FAILED. */
7703 			dev_err(hba->dev,
7704 				"%s: cmd at tag %d already completed, outstanding=0x%lx, doorbell=0x%x\n",
7705 				__func__, tag, hba->outstanding_reqs, reg);
7706 			goto release;
7707 		}
7708 	}
7709 
7710 	/* Print Transfer Request of aborted task */
7711 	dev_info(hba->dev, "%s: Device abort task at tag %d\n", __func__, tag);
7712 
7713 	/*
7714 	 * Print detailed info about aborted request.
7715 	 * As more than one request might get aborted at the same time,
7716 	 * print full information only for the first aborted request in order
7717 	 * to reduce repeated printouts. For other aborted requests only print
7718 	 * basic details.
7719 	 */
7720 	scsi_print_command(cmd);
7721 	if (!hba->req_abort_count) {
7722 		ufshcd_update_evt_hist(hba, UFS_EVT_ABORT, tag);
7723 		ufshcd_print_evt_hist(hba);
7724 		ufshcd_print_host_state(hba);
7725 		ufshcd_print_pwr_info(hba);
7726 		ufshcd_print_tr(hba, tag, true);
7727 	} else {
7728 		ufshcd_print_tr(hba, tag, false);
7729 	}
7730 	hba->req_abort_count++;
7731 
7732 	if (!hba->mcq_enabled && !(reg & (1 << tag))) {
7733 		/* only execute this code in single doorbell mode */
7734 		dev_err(hba->dev,
7735 		"%s: cmd was completed, but without a notifying intr, tag = %d",
7736 		__func__, tag);
7737 		__ufshcd_transfer_req_compl(hba, 1UL << tag);
7738 		goto release;
7739 	}
7740 
7741 	/*
7742 	 * Task abort to the device W-LUN is illegal. When this command
7743 	 * will fail, due to spec violation, scsi err handling next step
7744 	 * will be to send LU reset which, again, is a spec violation.
7745 	 * To avoid these unnecessary/illegal steps, first we clean up
7746 	 * the lrb taken by this cmd and re-set it in outstanding_reqs,
7747 	 * then queue the eh_work and bail.
7748 	 */
7749 	if (lrbp->lun == UFS_UPIU_UFS_DEVICE_WLUN) {
7750 		ufshcd_update_evt_hist(hba, UFS_EVT_ABORT, lrbp->lun);
7751 
7752 		spin_lock_irqsave(host->host_lock, flags);
7753 		hba->force_reset = true;
7754 		ufshcd_schedule_eh_work(hba);
7755 		spin_unlock_irqrestore(host->host_lock, flags);
7756 		goto release;
7757 	}
7758 
7759 	if (hba->mcq_enabled) {
7760 		/* MCQ mode. Branch off to handle abort for mcq mode */
7761 		err = ufshcd_mcq_abort(cmd);
7762 		goto release;
7763 	}
7764 
7765 	/* Skip task abort in case previous aborts failed and report failure */
7766 	if (lrbp->req_abort_skip) {
7767 		dev_err(hba->dev, "%s: skipping abort\n", __func__);
7768 		ufshcd_set_req_abort_skip(hba, hba->outstanding_reqs);
7769 		goto release;
7770 	}
7771 
7772 	err = ufshcd_try_to_abort_task(hba, tag);
7773 	if (err) {
7774 		dev_err(hba->dev, "%s: failed with err %d\n", __func__, err);
7775 		ufshcd_set_req_abort_skip(hba, hba->outstanding_reqs);
7776 		err = FAILED;
7777 		goto release;
7778 	}
7779 
7780 	/*
7781 	 * Clear the corresponding bit from outstanding_reqs since the command
7782 	 * has been aborted successfully.
7783 	 */
7784 	spin_lock_irqsave(&hba->outstanding_lock, flags);
7785 	outstanding = __test_and_clear_bit(tag, &hba->outstanding_reqs);
7786 	spin_unlock_irqrestore(&hba->outstanding_lock, flags);
7787 
7788 	if (outstanding)
7789 		ufshcd_release_scsi_cmd(hba, lrbp);
7790 
7791 	err = SUCCESS;
7792 
7793 release:
7794 	/* Matches the ufshcd_hold() call at the start of this function. */
7795 	ufshcd_release(hba);
7796 	return err;
7797 }
7798 
7799 /**
7800  * ufshcd_process_probe_result - Process the ufshcd_probe_hba() result.
7801  * @hba: UFS host controller instance.
7802  * @probe_start: time when the ufshcd_probe_hba() call started.
7803  * @ret: ufshcd_probe_hba() return value.
7804  */
7805 static void ufshcd_process_probe_result(struct ufs_hba *hba,
7806 					ktime_t probe_start, int ret)
7807 {
7808 	unsigned long flags;
7809 
7810 	spin_lock_irqsave(hba->host->host_lock, flags);
7811 	if (ret)
7812 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
7813 	else if (hba->ufshcd_state == UFSHCD_STATE_RESET)
7814 		hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
7815 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7816 
7817 	trace_ufshcd_init(hba, ret,
7818 			  ktime_to_us(ktime_sub(ktime_get(), probe_start)),
7819 			  hba->curr_dev_pwr_mode, hba->uic_link_state);
7820 }
7821 
7822 /**
7823  * ufshcd_host_reset_and_restore - reset and restore host controller
7824  * @hba: per-adapter instance
7825  *
7826  * Note that host controller reset may issue DME_RESET to
7827  * local and remote (device) Uni-Pro stack and the attributes
7828  * are reset to default state.
7829  *
7830  * Return: zero on success, non-zero on failure.
7831  */
7832 static int ufshcd_host_reset_and_restore(struct ufs_hba *hba)
7833 {
7834 	int err;
7835 
7836 	/*
7837 	 * Stop the host controller and complete the requests
7838 	 * cleared by h/w
7839 	 */
7840 	ufshcd_hba_stop(hba);
7841 	hba->silence_err_logs = true;
7842 	ufshcd_complete_requests(hba, true);
7843 	hba->silence_err_logs = false;
7844 
7845 	/* scale up clocks to max frequency before full reinitialization */
7846 	if (ufshcd_is_clkscaling_supported(hba))
7847 		ufshcd_scale_clks(hba, ULONG_MAX, true);
7848 
7849 	err = ufshcd_hba_enable(hba);
7850 
7851 	/* Establish the link again and restore the device */
7852 	if (!err) {
7853 		ktime_t probe_start = ktime_get();
7854 
7855 		err = ufshcd_device_init(hba, /*init_dev_params=*/false);
7856 		if (!err)
7857 			err = ufshcd_probe_hba(hba, false);
7858 		ufshcd_process_probe_result(hba, probe_start, err);
7859 	}
7860 
7861 	if (err)
7862 		dev_err(hba->dev, "%s: Host init failed %d\n", __func__, err);
7863 	ufshcd_update_evt_hist(hba, UFS_EVT_HOST_RESET, (u32)err);
7864 	return err;
7865 }
7866 
7867 /**
7868  * ufshcd_reset_and_restore - reset and re-initialize host/device
7869  * @hba: per-adapter instance
7870  *
7871  * Reset and recover device, host and re-establish link. This
7872  * is helpful to recover the communication in fatal error conditions.
7873  *
7874  * Return: zero on success, non-zero on failure.
7875  */
7876 static int ufshcd_reset_and_restore(struct ufs_hba *hba)
7877 {
7878 	u32 saved_err = 0;
7879 	u32 saved_uic_err = 0;
7880 	int err = 0;
7881 	unsigned long flags;
7882 	int retries = MAX_HOST_RESET_RETRIES;
7883 
7884 	spin_lock_irqsave(hba->host->host_lock, flags);
7885 	do {
7886 		/*
7887 		 * This is a fresh start, cache and clear saved error first,
7888 		 * in case new error generated during reset and restore.
7889 		 */
7890 		saved_err |= hba->saved_err;
7891 		saved_uic_err |= hba->saved_uic_err;
7892 		hba->saved_err = 0;
7893 		hba->saved_uic_err = 0;
7894 		hba->force_reset = false;
7895 		hba->ufshcd_state = UFSHCD_STATE_RESET;
7896 		spin_unlock_irqrestore(hba->host->host_lock, flags);
7897 
7898 		/* Reset the attached device */
7899 		ufshcd_device_reset(hba);
7900 
7901 		err = ufshcd_host_reset_and_restore(hba);
7902 
7903 		spin_lock_irqsave(hba->host->host_lock, flags);
7904 		if (err)
7905 			continue;
7906 		/* Do not exit unless operational or dead */
7907 		if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL &&
7908 		    hba->ufshcd_state != UFSHCD_STATE_ERROR &&
7909 		    hba->ufshcd_state != UFSHCD_STATE_EH_SCHEDULED_NON_FATAL)
7910 			err = -EAGAIN;
7911 	} while (err && --retries);
7912 
7913 	/*
7914 	 * Inform scsi mid-layer that we did reset and allow to handle
7915 	 * Unit Attention properly.
7916 	 */
7917 	scsi_report_bus_reset(hba->host, 0);
7918 	if (err) {
7919 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
7920 		hba->saved_err |= saved_err;
7921 		hba->saved_uic_err |= saved_uic_err;
7922 	}
7923 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7924 
7925 	return err;
7926 }
7927 
7928 /**
7929  * ufshcd_eh_host_reset_handler - host reset handler registered to scsi layer
7930  * @cmd: SCSI command pointer
7931  *
7932  * Return: SUCCESS or FAILED.
7933  */
7934 static int ufshcd_eh_host_reset_handler(struct scsi_cmnd *cmd)
7935 {
7936 	int err = SUCCESS;
7937 	unsigned long flags;
7938 	struct ufs_hba *hba;
7939 
7940 	hba = shost_priv(cmd->device->host);
7941 
7942 	/*
7943 	 * If runtime PM sent SSU and got a timeout, scsi_error_handler is
7944 	 * stuck in this function waiting for flush_work(&hba->eh_work). And
7945 	 * ufshcd_err_handler(eh_work) is stuck waiting for runtime PM. Do
7946 	 * ufshcd_link_recovery instead of eh_work to prevent deadlock.
7947 	 */
7948 	if (hba->pm_op_in_progress) {
7949 		if (ufshcd_link_recovery(hba))
7950 			err = FAILED;
7951 
7952 		return err;
7953 	}
7954 
7955 	spin_lock_irqsave(hba->host->host_lock, flags);
7956 	hba->force_reset = true;
7957 	ufshcd_schedule_eh_work(hba);
7958 	dev_err(hba->dev, "%s: reset in progress - 1\n", __func__);
7959 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7960 
7961 	flush_work(&hba->eh_work);
7962 
7963 	spin_lock_irqsave(hba->host->host_lock, flags);
7964 	if (hba->ufshcd_state == UFSHCD_STATE_ERROR)
7965 		err = FAILED;
7966 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7967 
7968 	return err;
7969 }
7970 
7971 /**
7972  * ufshcd_get_max_icc_level - calculate the ICC level
7973  * @sup_curr_uA: max. current supported by the regulator
7974  * @start_scan: row at the desc table to start scan from
7975  * @buff: power descriptor buffer
7976  *
7977  * Return: calculated max ICC level for specific regulator.
7978  */
7979 static u32 ufshcd_get_max_icc_level(int sup_curr_uA, u32 start_scan,
7980 				    const char *buff)
7981 {
7982 	int i;
7983 	int curr_uA;
7984 	u16 data;
7985 	u16 unit;
7986 
7987 	for (i = start_scan; i >= 0; i--) {
7988 		data = get_unaligned_be16(&buff[2 * i]);
7989 		unit = (data & ATTR_ICC_LVL_UNIT_MASK) >>
7990 						ATTR_ICC_LVL_UNIT_OFFSET;
7991 		curr_uA = data & ATTR_ICC_LVL_VALUE_MASK;
7992 		switch (unit) {
7993 		case UFSHCD_NANO_AMP:
7994 			curr_uA = curr_uA / 1000;
7995 			break;
7996 		case UFSHCD_MILI_AMP:
7997 			curr_uA = curr_uA * 1000;
7998 			break;
7999 		case UFSHCD_AMP:
8000 			curr_uA = curr_uA * 1000 * 1000;
8001 			break;
8002 		case UFSHCD_MICRO_AMP:
8003 		default:
8004 			break;
8005 		}
8006 		if (sup_curr_uA >= curr_uA)
8007 			break;
8008 	}
8009 	if (i < 0) {
8010 		i = 0;
8011 		pr_err("%s: Couldn't find valid icc_level = %d", __func__, i);
8012 	}
8013 
8014 	return (u32)i;
8015 }
8016 
8017 /**
8018  * ufshcd_find_max_sup_active_icc_level - calculate the max ICC level
8019  * In case regulators are not initialized we'll return 0
8020  * @hba: per-adapter instance
8021  * @desc_buf: power descriptor buffer to extract ICC levels from.
8022  *
8023  * Return: calculated ICC level.
8024  */
8025 static u32 ufshcd_find_max_sup_active_icc_level(struct ufs_hba *hba,
8026 						const u8 *desc_buf)
8027 {
8028 	u32 icc_level = 0;
8029 
8030 	if (!hba->vreg_info.vcc || !hba->vreg_info.vccq ||
8031 						!hba->vreg_info.vccq2) {
8032 		/*
8033 		 * Using dev_dbg to avoid messages during runtime PM to avoid
8034 		 * never-ending cycles of messages written back to storage by
8035 		 * user space causing runtime resume, causing more messages and
8036 		 * so on.
8037 		 */
8038 		dev_dbg(hba->dev,
8039 			"%s: Regulator capability was not set, actvIccLevel=%d",
8040 							__func__, icc_level);
8041 		goto out;
8042 	}
8043 
8044 	if (hba->vreg_info.vcc->max_uA)
8045 		icc_level = ufshcd_get_max_icc_level(
8046 				hba->vreg_info.vcc->max_uA,
8047 				POWER_DESC_MAX_ACTV_ICC_LVLS - 1,
8048 				&desc_buf[PWR_DESC_ACTIVE_LVLS_VCC_0]);
8049 
8050 	if (hba->vreg_info.vccq->max_uA)
8051 		icc_level = ufshcd_get_max_icc_level(
8052 				hba->vreg_info.vccq->max_uA,
8053 				icc_level,
8054 				&desc_buf[PWR_DESC_ACTIVE_LVLS_VCCQ_0]);
8055 
8056 	if (hba->vreg_info.vccq2->max_uA)
8057 		icc_level = ufshcd_get_max_icc_level(
8058 				hba->vreg_info.vccq2->max_uA,
8059 				icc_level,
8060 				&desc_buf[PWR_DESC_ACTIVE_LVLS_VCCQ2_0]);
8061 out:
8062 	return icc_level;
8063 }
8064 
8065 static void ufshcd_set_active_icc_lvl(struct ufs_hba *hba)
8066 {
8067 	int ret;
8068 	u8 *desc_buf;
8069 	u32 icc_level;
8070 
8071 	desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
8072 	if (!desc_buf)
8073 		return;
8074 
8075 	ret = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_POWER, 0, 0,
8076 				     desc_buf, QUERY_DESC_MAX_SIZE);
8077 	if (ret) {
8078 		dev_err(hba->dev,
8079 			"%s: Failed reading power descriptor ret = %d",
8080 			__func__, ret);
8081 		goto out;
8082 	}
8083 
8084 	icc_level = ufshcd_find_max_sup_active_icc_level(hba, desc_buf);
8085 	dev_dbg(hba->dev, "%s: setting icc_level 0x%x", __func__, icc_level);
8086 
8087 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
8088 		QUERY_ATTR_IDN_ACTIVE_ICC_LVL, 0, 0, &icc_level);
8089 
8090 	if (ret)
8091 		dev_err(hba->dev,
8092 			"%s: Failed configuring bActiveICCLevel = %d ret = %d",
8093 			__func__, icc_level, ret);
8094 
8095 out:
8096 	kfree(desc_buf);
8097 }
8098 
8099 static inline void ufshcd_blk_pm_runtime_init(struct scsi_device *sdev)
8100 {
8101 	struct Scsi_Host *shost = sdev->host;
8102 
8103 	scsi_autopm_get_device(sdev);
8104 	blk_pm_runtime_init(sdev->request_queue, &sdev->sdev_gendev);
8105 	if (sdev->rpm_autosuspend)
8106 		pm_runtime_set_autosuspend_delay(&sdev->sdev_gendev,
8107 						 shost->rpm_autosuspend_delay);
8108 	scsi_autopm_put_device(sdev);
8109 }
8110 
8111 /**
8112  * ufshcd_scsi_add_wlus - Adds required W-LUs
8113  * @hba: per-adapter instance
8114  *
8115  * UFS device specification requires the UFS devices to support 4 well known
8116  * logical units:
8117  *	"REPORT_LUNS" (address: 01h)
8118  *	"UFS Device" (address: 50h)
8119  *	"RPMB" (address: 44h)
8120  *	"BOOT" (address: 30h)
8121  * UFS device's power management needs to be controlled by "POWER CONDITION"
8122  * field of SSU (START STOP UNIT) command. But this "power condition" field
8123  * will take effect only when its sent to "UFS device" well known logical unit
8124  * hence we require the scsi_device instance to represent this logical unit in
8125  * order for the UFS host driver to send the SSU command for power management.
8126  *
8127  * We also require the scsi_device instance for "RPMB" (Replay Protected Memory
8128  * Block) LU so user space process can control this LU. User space may also
8129  * want to have access to BOOT LU.
8130  *
8131  * This function adds scsi device instances for each of all well known LUs
8132  * (except "REPORT LUNS" LU).
8133  *
8134  * Return: zero on success (all required W-LUs are added successfully),
8135  * non-zero error value on failure (if failed to add any of the required W-LU).
8136  */
8137 static int ufshcd_scsi_add_wlus(struct ufs_hba *hba)
8138 {
8139 	int ret = 0;
8140 	struct scsi_device *sdev_boot, *sdev_rpmb;
8141 
8142 	hba->ufs_device_wlun = __scsi_add_device(hba->host, 0, 0,
8143 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_UFS_DEVICE_WLUN), NULL);
8144 	if (IS_ERR(hba->ufs_device_wlun)) {
8145 		ret = PTR_ERR(hba->ufs_device_wlun);
8146 		hba->ufs_device_wlun = NULL;
8147 		goto out;
8148 	}
8149 	scsi_device_put(hba->ufs_device_wlun);
8150 
8151 	sdev_rpmb = __scsi_add_device(hba->host, 0, 0,
8152 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_RPMB_WLUN), NULL);
8153 	if (IS_ERR(sdev_rpmb)) {
8154 		ret = PTR_ERR(sdev_rpmb);
8155 		goto remove_ufs_device_wlun;
8156 	}
8157 	ufshcd_blk_pm_runtime_init(sdev_rpmb);
8158 	scsi_device_put(sdev_rpmb);
8159 
8160 	sdev_boot = __scsi_add_device(hba->host, 0, 0,
8161 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_BOOT_WLUN), NULL);
8162 	if (IS_ERR(sdev_boot)) {
8163 		dev_err(hba->dev, "%s: BOOT WLUN not found\n", __func__);
8164 	} else {
8165 		ufshcd_blk_pm_runtime_init(sdev_boot);
8166 		scsi_device_put(sdev_boot);
8167 	}
8168 	goto out;
8169 
8170 remove_ufs_device_wlun:
8171 	scsi_remove_device(hba->ufs_device_wlun);
8172 out:
8173 	return ret;
8174 }
8175 
8176 static void ufshcd_wb_probe(struct ufs_hba *hba, const u8 *desc_buf)
8177 {
8178 	struct ufs_dev_info *dev_info = &hba->dev_info;
8179 	u8 lun;
8180 	u32 d_lu_wb_buf_alloc;
8181 	u32 ext_ufs_feature;
8182 
8183 	if (!ufshcd_is_wb_allowed(hba))
8184 		return;
8185 
8186 	/*
8187 	 * Probe WB only for UFS-2.2 and UFS-3.1 (and later) devices or
8188 	 * UFS devices with quirk UFS_DEVICE_QUIRK_SUPPORT_EXTENDED_FEATURES
8189 	 * enabled
8190 	 */
8191 	if (!(dev_info->wspecversion >= 0x310 ||
8192 	      dev_info->wspecversion == 0x220 ||
8193 	     (hba->dev_quirks & UFS_DEVICE_QUIRK_SUPPORT_EXTENDED_FEATURES)))
8194 		goto wb_disabled;
8195 
8196 	ext_ufs_feature = get_unaligned_be32(desc_buf +
8197 					DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
8198 
8199 	if (!(ext_ufs_feature & UFS_DEV_WRITE_BOOSTER_SUP))
8200 		goto wb_disabled;
8201 
8202 	/*
8203 	 * WB may be supported but not configured while provisioning. The spec
8204 	 * says, in dedicated wb buffer mode, a max of 1 lun would have wb
8205 	 * buffer configured.
8206 	 */
8207 	dev_info->wb_buffer_type = desc_buf[DEVICE_DESC_PARAM_WB_TYPE];
8208 
8209 	dev_info->ext_wb_sup =  get_unaligned_be16(desc_buf +
8210 						DEVICE_DESC_PARAM_EXT_WB_SUP);
8211 
8212 	dev_info->b_presrv_uspc_en =
8213 		desc_buf[DEVICE_DESC_PARAM_WB_PRESRV_USRSPC_EN];
8214 
8215 	if (dev_info->wb_buffer_type == WB_BUF_MODE_SHARED) {
8216 		if (!get_unaligned_be32(desc_buf +
8217 				   DEVICE_DESC_PARAM_WB_SHARED_ALLOC_UNITS))
8218 			goto wb_disabled;
8219 	} else {
8220 		for (lun = 0; lun < UFS_UPIU_MAX_WB_LUN_ID; lun++) {
8221 			d_lu_wb_buf_alloc = 0;
8222 			ufshcd_read_unit_desc_param(hba,
8223 					lun,
8224 					UNIT_DESC_PARAM_WB_BUF_ALLOC_UNITS,
8225 					(u8 *)&d_lu_wb_buf_alloc,
8226 					sizeof(d_lu_wb_buf_alloc));
8227 			if (d_lu_wb_buf_alloc) {
8228 				dev_info->wb_dedicated_lu = lun;
8229 				break;
8230 			}
8231 		}
8232 
8233 		if (!d_lu_wb_buf_alloc)
8234 			goto wb_disabled;
8235 	}
8236 
8237 	if (!ufshcd_is_wb_buf_lifetime_available(hba))
8238 		goto wb_disabled;
8239 
8240 	return;
8241 
8242 wb_disabled:
8243 	hba->caps &= ~UFSHCD_CAP_WB_EN;
8244 }
8245 
8246 static void ufshcd_temp_notif_probe(struct ufs_hba *hba, const u8 *desc_buf)
8247 {
8248 	struct ufs_dev_info *dev_info = &hba->dev_info;
8249 	u32 ext_ufs_feature;
8250 	u8 mask = 0;
8251 
8252 	if (!(hba->caps & UFSHCD_CAP_TEMP_NOTIF) || dev_info->wspecversion < 0x300)
8253 		return;
8254 
8255 	ext_ufs_feature = get_unaligned_be32(desc_buf + DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
8256 
8257 	if (ext_ufs_feature & UFS_DEV_LOW_TEMP_NOTIF)
8258 		mask |= MASK_EE_TOO_LOW_TEMP;
8259 
8260 	if (ext_ufs_feature & UFS_DEV_HIGH_TEMP_NOTIF)
8261 		mask |= MASK_EE_TOO_HIGH_TEMP;
8262 
8263 	if (mask) {
8264 		ufshcd_enable_ee(hba, mask);
8265 		ufs_hwmon_probe(hba, mask);
8266 	}
8267 }
8268 
8269 static void ufshcd_device_lvl_exception_probe(struct ufs_hba *hba, u8 *desc_buf)
8270 {
8271 	u32 ext_ufs_feature;
8272 
8273 	if (hba->dev_info.wspecversion < 0x410)
8274 		return;
8275 
8276 	ext_ufs_feature = get_unaligned_be32(desc_buf +
8277 				DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
8278 	if (!(ext_ufs_feature & UFS_DEV_LVL_EXCEPTION_SUP))
8279 		return;
8280 
8281 	atomic_set(&hba->dev_lvl_exception_count, 0);
8282 	ufshcd_enable_ee(hba, MASK_EE_DEV_LVL_EXCEPTION);
8283 }
8284 
8285 static void ufshcd_set_rtt(struct ufs_hba *hba)
8286 {
8287 	struct ufs_dev_info *dev_info = &hba->dev_info;
8288 	u32 rtt = 0;
8289 	u32 dev_rtt = 0;
8290 	int host_rtt_cap = hba->vops && hba->vops->max_num_rtt ?
8291 			   hba->vops->max_num_rtt : hba->nortt;
8292 
8293 	/* RTT override makes sense only for UFS-4.0 and above */
8294 	if (dev_info->wspecversion < 0x400)
8295 		return;
8296 
8297 	if (ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
8298 				    QUERY_ATTR_IDN_MAX_NUM_OF_RTT, 0, 0, &dev_rtt)) {
8299 		dev_err(hba->dev, "failed reading bMaxNumOfRTT\n");
8300 		return;
8301 	}
8302 
8303 	/* do not override if it was already written */
8304 	if (dev_rtt != DEFAULT_MAX_NUM_RTT)
8305 		return;
8306 
8307 	rtt = min_t(int, dev_info->rtt_cap, host_rtt_cap);
8308 
8309 	if (rtt == dev_rtt)
8310 		return;
8311 
8312 	if (ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
8313 				    QUERY_ATTR_IDN_MAX_NUM_OF_RTT, 0, 0, &rtt))
8314 		dev_err(hba->dev, "failed writing bMaxNumOfRTT\n");
8315 }
8316 
8317 void ufshcd_fixup_dev_quirks(struct ufs_hba *hba,
8318 			     const struct ufs_dev_quirk *fixups)
8319 {
8320 	const struct ufs_dev_quirk *f;
8321 	struct ufs_dev_info *dev_info = &hba->dev_info;
8322 
8323 	if (!fixups)
8324 		return;
8325 
8326 	for (f = fixups; f->quirk; f++) {
8327 		if ((f->wmanufacturerid == dev_info->wmanufacturerid ||
8328 		     f->wmanufacturerid == UFS_ANY_VENDOR) &&
8329 		     ((dev_info->model &&
8330 		       STR_PRFX_EQUAL(f->model, dev_info->model)) ||
8331 		      !strcmp(f->model, UFS_ANY_MODEL)))
8332 			hba->dev_quirks |= f->quirk;
8333 	}
8334 }
8335 EXPORT_SYMBOL_GPL(ufshcd_fixup_dev_quirks);
8336 
8337 static void ufs_fixup_device_setup(struct ufs_hba *hba)
8338 {
8339 	/* fix by general quirk table */
8340 	ufshcd_fixup_dev_quirks(hba, ufs_fixups);
8341 
8342 	/* allow vendors to fix quirks */
8343 	ufshcd_vops_fixup_dev_quirks(hba);
8344 }
8345 
8346 static void ufshcd_update_rtc(struct ufs_hba *hba)
8347 {
8348 	struct timespec64 ts64;
8349 	int err;
8350 	u32 val;
8351 
8352 	ktime_get_real_ts64(&ts64);
8353 
8354 	if (ts64.tv_sec < hba->dev_info.rtc_time_baseline) {
8355 		dev_warn_once(hba->dev, "%s: Current time precedes previous setting!\n", __func__);
8356 		return;
8357 	}
8358 
8359 	/*
8360 	 * The Absolute RTC mode has a 136-year limit, spanning from 2010 to 2146. If a time beyond
8361 	 * 2146 is required, it is recommended to choose the relative RTC mode.
8362 	 */
8363 	val = ts64.tv_sec - hba->dev_info.rtc_time_baseline;
8364 
8365 	/* Skip update RTC if RPM state is not RPM_ACTIVE */
8366 	if (ufshcd_rpm_get_if_active(hba) <= 0)
8367 		return;
8368 
8369 	err = ufshcd_query_attr(hba, UPIU_QUERY_OPCODE_WRITE_ATTR, QUERY_ATTR_IDN_SECONDS_PASSED,
8370 				0, 0, &val);
8371 	ufshcd_rpm_put(hba);
8372 
8373 	if (err)
8374 		dev_err(hba->dev, "%s: Failed to update rtc %d\n", __func__, err);
8375 	else if (hba->dev_info.rtc_type == UFS_RTC_RELATIVE)
8376 		hba->dev_info.rtc_time_baseline = ts64.tv_sec;
8377 }
8378 
8379 static void ufshcd_rtc_work(struct work_struct *work)
8380 {
8381 	struct ufs_hba *hba;
8382 
8383 	hba = container_of(to_delayed_work(work), struct ufs_hba, ufs_rtc_update_work);
8384 
8385 	 /* Update RTC only when there are no requests in progress and UFSHCI is operational */
8386 	if (!ufshcd_is_ufs_dev_busy(hba) &&
8387 	    hba->ufshcd_state == UFSHCD_STATE_OPERATIONAL &&
8388 	    !hba->clk_gating.active_reqs)
8389 		ufshcd_update_rtc(hba);
8390 
8391 	if (ufshcd_is_ufs_dev_active(hba) && hba->dev_info.rtc_update_period)
8392 		schedule_delayed_work(&hba->ufs_rtc_update_work,
8393 				      msecs_to_jiffies(hba->dev_info.rtc_update_period));
8394 }
8395 
8396 static void ufs_init_rtc(struct ufs_hba *hba, u8 *desc_buf)
8397 {
8398 	u16 periodic_rtc_update = get_unaligned_be16(&desc_buf[DEVICE_DESC_PARAM_FRQ_RTC]);
8399 	struct ufs_dev_info *dev_info = &hba->dev_info;
8400 
8401 	if (periodic_rtc_update & UFS_RTC_TIME_BASELINE) {
8402 		dev_info->rtc_type = UFS_RTC_ABSOLUTE;
8403 
8404 		/*
8405 		 * The concept of measuring time in Linux as the number of seconds elapsed since
8406 		 * 00:00:00 UTC on January 1, 1970, and UFS ABS RTC is elapsed from January 1st
8407 		 * 2010 00:00, here we need to adjust ABS baseline.
8408 		 */
8409 		dev_info->rtc_time_baseline = mktime64(2010, 1, 1, 0, 0, 0) -
8410 							mktime64(1970, 1, 1, 0, 0, 0);
8411 	} else {
8412 		dev_info->rtc_type = UFS_RTC_RELATIVE;
8413 		dev_info->rtc_time_baseline = 0;
8414 	}
8415 
8416 	/*
8417 	 * We ignore TIME_PERIOD defined in wPeriodicRTCUpdate because Spec does not clearly state
8418 	 * how to calculate the specific update period for each time unit. And we disable periodic
8419 	 * RTC update work, let user configure by sysfs node according to specific circumstance.
8420 	 */
8421 	dev_info->rtc_update_period = 0;
8422 }
8423 
8424 static int ufs_get_device_desc(struct ufs_hba *hba)
8425 {
8426 	int err;
8427 	u8 model_index;
8428 	u8 *desc_buf;
8429 	struct ufs_dev_info *dev_info = &hba->dev_info;
8430 
8431 	desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
8432 	if (!desc_buf) {
8433 		err = -ENOMEM;
8434 		goto out;
8435 	}
8436 
8437 	err = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_DEVICE, 0, 0, desc_buf,
8438 				     QUERY_DESC_MAX_SIZE);
8439 	if (err) {
8440 		dev_err(hba->dev, "%s: Failed reading Device Desc. err = %d\n",
8441 			__func__, err);
8442 		goto out;
8443 	}
8444 
8445 	/*
8446 	 * getting vendor (manufacturerID) and Bank Index in big endian
8447 	 * format
8448 	 */
8449 	dev_info->wmanufacturerid = desc_buf[DEVICE_DESC_PARAM_MANF_ID] << 8 |
8450 				     desc_buf[DEVICE_DESC_PARAM_MANF_ID + 1];
8451 
8452 	/* getting Specification Version in big endian format */
8453 	dev_info->wspecversion = desc_buf[DEVICE_DESC_PARAM_SPEC_VER] << 8 |
8454 				      desc_buf[DEVICE_DESC_PARAM_SPEC_VER + 1];
8455 	dev_info->bqueuedepth = desc_buf[DEVICE_DESC_PARAM_Q_DPTH];
8456 
8457 	dev_info->rtt_cap = desc_buf[DEVICE_DESC_PARAM_RTT_CAP];
8458 
8459 	dev_info->hid_sup = get_unaligned_be32(desc_buf +
8460 				DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP) &
8461 				UFS_DEV_HID_SUPPORT;
8462 
8463 	model_index = desc_buf[DEVICE_DESC_PARAM_PRDCT_NAME];
8464 
8465 	err = ufshcd_read_string_desc(hba, model_index,
8466 				      &dev_info->model, SD_ASCII_STD);
8467 	if (err < 0) {
8468 		dev_err(hba->dev, "%s: Failed reading Product Name. err = %d\n",
8469 			__func__, err);
8470 		goto out;
8471 	}
8472 
8473 	hba->luns_avail = desc_buf[DEVICE_DESC_PARAM_NUM_LU] +
8474 		desc_buf[DEVICE_DESC_PARAM_NUM_WLU];
8475 
8476 	ufs_fixup_device_setup(hba);
8477 
8478 	ufshcd_wb_probe(hba, desc_buf);
8479 
8480 	ufshcd_temp_notif_probe(hba, desc_buf);
8481 
8482 	if (dev_info->wspecversion >= 0x410) {
8483 		hba->critical_health_count = 0;
8484 		ufshcd_enable_ee(hba, MASK_EE_HEALTH_CRITICAL);
8485 	}
8486 
8487 	ufs_init_rtc(hba, desc_buf);
8488 
8489 	ufshcd_device_lvl_exception_probe(hba, desc_buf);
8490 
8491 	/*
8492 	 * ufshcd_read_string_desc returns size of the string
8493 	 * reset the error value
8494 	 */
8495 	err = 0;
8496 
8497 out:
8498 	kfree(desc_buf);
8499 	return err;
8500 }
8501 
8502 static void ufs_put_device_desc(struct ufs_hba *hba)
8503 {
8504 	struct ufs_dev_info *dev_info = &hba->dev_info;
8505 
8506 	kfree(dev_info->model);
8507 	dev_info->model = NULL;
8508 }
8509 
8510 /**
8511  * ufshcd_quirk_tune_host_pa_tactivate - Ensures that host PA_TACTIVATE is
8512  * less than device PA_TACTIVATE time.
8513  * @hba: per-adapter instance
8514  *
8515  * Some UFS devices require host PA_TACTIVATE to be lower than device
8516  * PA_TACTIVATE, we need to enable UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE quirk
8517  * for such devices.
8518  *
8519  * Return: zero on success, non-zero error value on failure.
8520  */
8521 static int ufshcd_quirk_tune_host_pa_tactivate(struct ufs_hba *hba)
8522 {
8523 	int ret = 0;
8524 	u32 granularity, peer_granularity;
8525 	u32 pa_tactivate, peer_pa_tactivate;
8526 	u32 pa_tactivate_us, peer_pa_tactivate_us;
8527 	static const u8 gran_to_us_table[] = {1, 4, 8, 16, 32, 100};
8528 
8529 	ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_GRANULARITY),
8530 				  &granularity);
8531 	if (ret)
8532 		goto out;
8533 
8534 	ret = ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_GRANULARITY),
8535 				  &peer_granularity);
8536 	if (ret)
8537 		goto out;
8538 
8539 	if ((granularity < PA_GRANULARITY_MIN_VAL) ||
8540 	    (granularity > PA_GRANULARITY_MAX_VAL)) {
8541 		dev_err(hba->dev, "%s: invalid host PA_GRANULARITY %d",
8542 			__func__, granularity);
8543 		return -EINVAL;
8544 	}
8545 
8546 	if ((peer_granularity < PA_GRANULARITY_MIN_VAL) ||
8547 	    (peer_granularity > PA_GRANULARITY_MAX_VAL)) {
8548 		dev_err(hba->dev, "%s: invalid device PA_GRANULARITY %d",
8549 			__func__, peer_granularity);
8550 		return -EINVAL;
8551 	}
8552 
8553 	ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_TACTIVATE), &pa_tactivate);
8554 	if (ret)
8555 		goto out;
8556 
8557 	ret = ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_TACTIVATE),
8558 				  &peer_pa_tactivate);
8559 	if (ret)
8560 		goto out;
8561 
8562 	pa_tactivate_us = pa_tactivate * gran_to_us_table[granularity - 1];
8563 	peer_pa_tactivate_us = peer_pa_tactivate *
8564 			     gran_to_us_table[peer_granularity - 1];
8565 
8566 	if (pa_tactivate_us >= peer_pa_tactivate_us) {
8567 		u32 new_peer_pa_tactivate;
8568 
8569 		new_peer_pa_tactivate = pa_tactivate_us /
8570 				      gran_to_us_table[peer_granularity - 1];
8571 		new_peer_pa_tactivate++;
8572 		ret = ufshcd_dme_peer_set(hba, UIC_ARG_MIB(PA_TACTIVATE),
8573 					  new_peer_pa_tactivate);
8574 	}
8575 
8576 out:
8577 	return ret;
8578 }
8579 
8580 /**
8581  * ufshcd_quirk_override_pa_h8time - Ensures proper adjustment of PA_HIBERN8TIME.
8582  * @hba: per-adapter instance
8583  *
8584  * Some UFS devices require specific adjustments to the PA_HIBERN8TIME parameter
8585  * to ensure proper hibernation timing. This function retrieves the current
8586  * PA_HIBERN8TIME value and increments it by 100us.
8587  */
8588 static void ufshcd_quirk_override_pa_h8time(struct ufs_hba *hba)
8589 {
8590 	u32 pa_h8time;
8591 	int ret;
8592 
8593 	ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_HIBERN8TIME), &pa_h8time);
8594 	if (ret) {
8595 		dev_err(hba->dev, "Failed to get PA_HIBERN8TIME: %d\n", ret);
8596 		return;
8597 	}
8598 
8599 	/* Increment by 1 to increase hibernation time by 100 µs */
8600 	ret = ufshcd_dme_set(hba, UIC_ARG_MIB(PA_HIBERN8TIME), pa_h8time + 1);
8601 	if (ret)
8602 		dev_err(hba->dev, "Failed updating PA_HIBERN8TIME: %d\n", ret);
8603 }
8604 
8605 static void ufshcd_tune_unipro_params(struct ufs_hba *hba)
8606 {
8607 	ufshcd_vops_apply_dev_quirks(hba);
8608 
8609 	if (hba->dev_quirks & UFS_DEVICE_QUIRK_PA_TACTIVATE)
8610 		/* set 1ms timeout for PA_TACTIVATE */
8611 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TACTIVATE), 10);
8612 
8613 	if (hba->dev_quirks & UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE)
8614 		ufshcd_quirk_tune_host_pa_tactivate(hba);
8615 
8616 	if (hba->dev_quirks & UFS_DEVICE_QUIRK_PA_HIBER8TIME)
8617 		ufshcd_quirk_override_pa_h8time(hba);
8618 }
8619 
8620 static void ufshcd_clear_dbg_ufs_stats(struct ufs_hba *hba)
8621 {
8622 	hba->ufs_stats.hibern8_exit_cnt = 0;
8623 	hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
8624 	hba->req_abort_count = 0;
8625 }
8626 
8627 static int ufshcd_device_geo_params_init(struct ufs_hba *hba)
8628 {
8629 	int err;
8630 	u8 *desc_buf;
8631 
8632 	desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
8633 	if (!desc_buf) {
8634 		err = -ENOMEM;
8635 		goto out;
8636 	}
8637 
8638 	err = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_GEOMETRY, 0, 0,
8639 				     desc_buf, QUERY_DESC_MAX_SIZE);
8640 	if (err) {
8641 		dev_err(hba->dev, "%s: Failed reading Geometry Desc. err = %d\n",
8642 				__func__, err);
8643 		goto out;
8644 	}
8645 
8646 	if (desc_buf[GEOMETRY_DESC_PARAM_MAX_NUM_LUN] == 1)
8647 		hba->dev_info.max_lu_supported = 32;
8648 	else if (desc_buf[GEOMETRY_DESC_PARAM_MAX_NUM_LUN] == 0)
8649 		hba->dev_info.max_lu_supported = 8;
8650 
8651 out:
8652 	kfree(desc_buf);
8653 	return err;
8654 }
8655 
8656 struct ufs_ref_clk {
8657 	unsigned long freq_hz;
8658 	enum ufs_ref_clk_freq val;
8659 };
8660 
8661 static const struct ufs_ref_clk ufs_ref_clk_freqs[] = {
8662 	{19200000, REF_CLK_FREQ_19_2_MHZ},
8663 	{26000000, REF_CLK_FREQ_26_MHZ},
8664 	{38400000, REF_CLK_FREQ_38_4_MHZ},
8665 	{52000000, REF_CLK_FREQ_52_MHZ},
8666 	{0, REF_CLK_FREQ_INVAL},
8667 };
8668 
8669 static enum ufs_ref_clk_freq
8670 ufs_get_bref_clk_from_hz(unsigned long freq)
8671 {
8672 	int i;
8673 
8674 	for (i = 0; ufs_ref_clk_freqs[i].freq_hz; i++)
8675 		if (ufs_ref_clk_freqs[i].freq_hz == freq)
8676 			return ufs_ref_clk_freqs[i].val;
8677 
8678 	return REF_CLK_FREQ_INVAL;
8679 }
8680 
8681 void ufshcd_parse_dev_ref_clk_freq(struct ufs_hba *hba, struct clk *refclk)
8682 {
8683 	unsigned long freq;
8684 
8685 	freq = clk_get_rate(refclk);
8686 
8687 	hba->dev_ref_clk_freq =
8688 		ufs_get_bref_clk_from_hz(freq);
8689 
8690 	if (hba->dev_ref_clk_freq == REF_CLK_FREQ_INVAL)
8691 		dev_err(hba->dev,
8692 		"invalid ref_clk setting = %ld\n", freq);
8693 }
8694 
8695 static int ufshcd_set_dev_ref_clk(struct ufs_hba *hba)
8696 {
8697 	int err;
8698 	u32 ref_clk;
8699 	u32 freq = hba->dev_ref_clk_freq;
8700 
8701 	err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
8702 			QUERY_ATTR_IDN_REF_CLK_FREQ, 0, 0, &ref_clk);
8703 
8704 	if (err) {
8705 		dev_err(hba->dev, "failed reading bRefClkFreq. err = %d\n",
8706 			err);
8707 		goto out;
8708 	}
8709 
8710 	if (ref_clk == freq)
8711 		goto out; /* nothing to update */
8712 
8713 	err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
8714 			QUERY_ATTR_IDN_REF_CLK_FREQ, 0, 0, &freq);
8715 
8716 	if (err) {
8717 		dev_err(hba->dev, "bRefClkFreq setting to %lu Hz failed\n",
8718 			ufs_ref_clk_freqs[freq].freq_hz);
8719 		goto out;
8720 	}
8721 
8722 	dev_dbg(hba->dev, "bRefClkFreq setting to %lu Hz succeeded\n",
8723 			ufs_ref_clk_freqs[freq].freq_hz);
8724 
8725 out:
8726 	return err;
8727 }
8728 
8729 static int ufshcd_device_params_init(struct ufs_hba *hba)
8730 {
8731 	bool flag;
8732 	int ret;
8733 
8734 	/* Init UFS geometry descriptor related parameters */
8735 	ret = ufshcd_device_geo_params_init(hba);
8736 	if (ret)
8737 		goto out;
8738 
8739 	/* Check and apply UFS device quirks */
8740 	ret = ufs_get_device_desc(hba);
8741 	if (ret) {
8742 		dev_err(hba->dev, "%s: Failed getting device info. err = %d\n",
8743 			__func__, ret);
8744 		goto out;
8745 	}
8746 
8747 	ufshcd_set_rtt(hba);
8748 
8749 	ufshcd_get_ref_clk_gating_wait(hba);
8750 
8751 	if (!ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_READ_FLAG,
8752 			QUERY_FLAG_IDN_PWR_ON_WPE, 0, &flag))
8753 		hba->dev_info.f_power_on_wp_en = flag;
8754 
8755 	/* Probe maximum power mode co-supported by both UFS host and device */
8756 	if (ufshcd_get_max_pwr_mode(hba))
8757 		dev_err(hba->dev,
8758 			"%s: Failed getting max supported power mode\n",
8759 			__func__);
8760 out:
8761 	return ret;
8762 }
8763 
8764 static void ufshcd_set_timestamp_attr(struct ufs_hba *hba)
8765 {
8766 	int err;
8767 	struct ufs_query_req *request = NULL;
8768 	struct ufs_query_res *response = NULL;
8769 	struct ufs_dev_info *dev_info = &hba->dev_info;
8770 	struct utp_upiu_query_v4_0 *upiu_data;
8771 
8772 	if (dev_info->wspecversion < 0x400)
8773 		return;
8774 
8775 	ufshcd_dev_man_lock(hba);
8776 
8777 	ufshcd_init_query(hba, &request, &response,
8778 			  UPIU_QUERY_OPCODE_WRITE_ATTR,
8779 			  QUERY_ATTR_IDN_TIMESTAMP, 0, 0);
8780 
8781 	request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
8782 
8783 	upiu_data = (struct utp_upiu_query_v4_0 *)&request->upiu_req;
8784 
8785 	put_unaligned_be64(ktime_get_real_ns(), &upiu_data->osf3);
8786 
8787 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, dev_cmd_timeout);
8788 
8789 	if (err)
8790 		dev_err(hba->dev, "%s: failed to set timestamp %d\n",
8791 			__func__, err);
8792 
8793 	ufshcd_dev_man_unlock(hba);
8794 }
8795 
8796 /**
8797  * ufshcd_add_lus - probe and add UFS logical units
8798  * @hba: per-adapter instance
8799  *
8800  * Return: 0 upon success; < 0 upon failure.
8801  */
8802 static int ufshcd_add_lus(struct ufs_hba *hba)
8803 {
8804 	int ret;
8805 
8806 	/* Add required well known logical units to scsi mid layer */
8807 	ret = ufshcd_scsi_add_wlus(hba);
8808 	if (ret)
8809 		goto out;
8810 
8811 	/* Initialize devfreq after UFS device is detected */
8812 	if (ufshcd_is_clkscaling_supported(hba)) {
8813 		memcpy(&hba->clk_scaling.saved_pwr_info,
8814 			&hba->pwr_info,
8815 			sizeof(struct ufs_pa_layer_attr));
8816 		hba->clk_scaling.is_allowed = true;
8817 
8818 		ret = ufshcd_devfreq_init(hba);
8819 		if (ret)
8820 			goto out;
8821 
8822 		hba->clk_scaling.is_enabled = true;
8823 		ufshcd_init_clk_scaling_sysfs(hba);
8824 	}
8825 
8826 	/*
8827 	 * The RTC update code accesses the hba->ufs_device_wlun->sdev_gendev
8828 	 * pointer and hence must only be started after the WLUN pointer has
8829 	 * been initialized by ufshcd_scsi_add_wlus().
8830 	 */
8831 	schedule_delayed_work(&hba->ufs_rtc_update_work,
8832 			      msecs_to_jiffies(UFS_RTC_UPDATE_INTERVAL_MS));
8833 
8834 	ufs_bsg_probe(hba);
8835 	scsi_scan_host(hba->host);
8836 
8837 out:
8838 	return ret;
8839 }
8840 
8841 /* SDB - Single Doorbell */
8842 static void ufshcd_release_sdb_queue(struct ufs_hba *hba, int nutrs)
8843 {
8844 	size_t ucdl_size, utrdl_size;
8845 
8846 	ucdl_size = ufshcd_get_ucd_size(hba) * nutrs;
8847 	dmam_free_coherent(hba->dev, ucdl_size, hba->ucdl_base_addr,
8848 			   hba->ucdl_dma_addr);
8849 
8850 	utrdl_size = sizeof(struct utp_transfer_req_desc) * nutrs;
8851 	dmam_free_coherent(hba->dev, utrdl_size, hba->utrdl_base_addr,
8852 			   hba->utrdl_dma_addr);
8853 
8854 	devm_kfree(hba->dev, hba->lrb);
8855 }
8856 
8857 static int ufshcd_alloc_mcq(struct ufs_hba *hba)
8858 {
8859 	int ret;
8860 	int old_nutrs = hba->nutrs;
8861 
8862 	ret = ufshcd_mcq_decide_queue_depth(hba);
8863 	if (ret < 0)
8864 		return ret;
8865 
8866 	hba->nutrs = ret;
8867 	ret = ufshcd_mcq_init(hba);
8868 	if (ret)
8869 		goto err;
8870 
8871 	/*
8872 	 * Previously allocated memory for nutrs may not be enough in MCQ mode.
8873 	 * Number of supported tags in MCQ mode may be larger than SDB mode.
8874 	 */
8875 	if (hba->nutrs != old_nutrs) {
8876 		ufshcd_release_sdb_queue(hba, old_nutrs);
8877 		ret = ufshcd_memory_alloc(hba);
8878 		if (ret)
8879 			goto err;
8880 		ufshcd_host_memory_configure(hba);
8881 	}
8882 
8883 	ret = ufshcd_mcq_memory_alloc(hba);
8884 	if (ret)
8885 		goto err;
8886 
8887 	hba->host->can_queue = hba->nutrs - UFSHCD_NUM_RESERVED;
8888 	hba->reserved_slot = hba->nutrs - UFSHCD_NUM_RESERVED;
8889 
8890 	return 0;
8891 err:
8892 	hba->nutrs = old_nutrs;
8893 	return ret;
8894 }
8895 
8896 static void ufshcd_config_mcq(struct ufs_hba *hba)
8897 {
8898 	int ret;
8899 	u32 intrs;
8900 
8901 	ret = ufshcd_mcq_vops_config_esi(hba);
8902 	hba->mcq_esi_enabled = !ret;
8903 	dev_info(hba->dev, "ESI %sconfigured\n", ret ? "is not " : "");
8904 
8905 	intrs = UFSHCD_ENABLE_MCQ_INTRS;
8906 	if (hba->quirks & UFSHCD_QUIRK_MCQ_BROKEN_INTR)
8907 		intrs &= ~MCQ_CQ_EVENT_STATUS;
8908 	ufshcd_enable_intr(hba, intrs);
8909 	ufshcd_mcq_make_queues_operational(hba);
8910 	ufshcd_mcq_config_mac(hba, hba->nutrs);
8911 
8912 	dev_info(hba->dev, "MCQ configured, nr_queues=%d, io_queues=%d, read_queue=%d, poll_queues=%d, queue_depth=%d\n",
8913 		 hba->nr_hw_queues, hba->nr_queues[HCTX_TYPE_DEFAULT],
8914 		 hba->nr_queues[HCTX_TYPE_READ], hba->nr_queues[HCTX_TYPE_POLL],
8915 		 hba->nutrs);
8916 }
8917 
8918 static int ufshcd_post_device_init(struct ufs_hba *hba)
8919 {
8920 	int ret;
8921 
8922 	ufshcd_tune_unipro_params(hba);
8923 
8924 	/* UFS device is also active now */
8925 	ufshcd_set_ufs_dev_active(hba);
8926 	ufshcd_force_reset_auto_bkops(hba);
8927 
8928 	ufshcd_set_timestamp_attr(hba);
8929 
8930 	if (!hba->max_pwr_info.is_valid)
8931 		return 0;
8932 
8933 	/*
8934 	 * Set the right value to bRefClkFreq before attempting to
8935 	 * switch to HS gears.
8936 	 */
8937 	if (hba->dev_ref_clk_freq != REF_CLK_FREQ_INVAL)
8938 		ufshcd_set_dev_ref_clk(hba);
8939 	/* Gear up to HS gear. */
8940 	ret = ufshcd_config_pwr_mode(hba, &hba->max_pwr_info.info);
8941 	if (ret) {
8942 		dev_err(hba->dev, "%s: Failed setting power mode, err = %d\n",
8943 			__func__, ret);
8944 		return ret;
8945 	}
8946 
8947 	return 0;
8948 }
8949 
8950 static int ufshcd_device_init(struct ufs_hba *hba, bool init_dev_params)
8951 {
8952 	int ret;
8953 
8954 	WARN_ON_ONCE(!hba->scsi_host_added);
8955 
8956 	hba->ufshcd_state = UFSHCD_STATE_RESET;
8957 
8958 	ret = ufshcd_link_startup(hba);
8959 	if (ret)
8960 		return ret;
8961 
8962 	if (hba->quirks & UFSHCD_QUIRK_SKIP_PH_CONFIGURATION)
8963 		return ret;
8964 
8965 	/* Debug counters initialization */
8966 	ufshcd_clear_dbg_ufs_stats(hba);
8967 
8968 	/* UniPro link is active now */
8969 	ufshcd_set_link_active(hba);
8970 
8971 	/* Reconfigure MCQ upon reset */
8972 	if (hba->mcq_enabled && !init_dev_params) {
8973 		ufshcd_config_mcq(hba);
8974 		ufshcd_mcq_enable(hba);
8975 	}
8976 
8977 	/* Verify device initialization by sending NOP OUT UPIU */
8978 	ret = ufshcd_verify_dev_init(hba);
8979 	if (ret)
8980 		return ret;
8981 
8982 	/* Initiate UFS initialization, and waiting until completion */
8983 	ret = ufshcd_complete_dev_init(hba);
8984 	if (ret)
8985 		return ret;
8986 
8987 	/*
8988 	 * Initialize UFS device parameters used by driver, these
8989 	 * parameters are associated with UFS descriptors.
8990 	 */
8991 	if (init_dev_params) {
8992 		ret = ufshcd_device_params_init(hba);
8993 		if (ret)
8994 			return ret;
8995 		if (is_mcq_supported(hba) &&
8996 		    hba->quirks & UFSHCD_QUIRK_REINIT_AFTER_MAX_GEAR_SWITCH) {
8997 			ufshcd_config_mcq(hba);
8998 			ufshcd_mcq_enable(hba);
8999 		}
9000 	}
9001 
9002 	return ufshcd_post_device_init(hba);
9003 }
9004 
9005 /**
9006  * ufshcd_probe_hba - probe hba to detect device and initialize it
9007  * @hba: per-adapter instance
9008  * @init_dev_params: whether or not to call ufshcd_device_params_init().
9009  *
9010  * Execute link-startup and verify device initialization
9011  *
9012  * Return: 0 upon success; < 0 upon failure.
9013  */
9014 static int ufshcd_probe_hba(struct ufs_hba *hba, bool init_dev_params)
9015 {
9016 	int ret;
9017 
9018 	if (!hba->pm_op_in_progress &&
9019 	    (hba->quirks & UFSHCD_QUIRK_REINIT_AFTER_MAX_GEAR_SWITCH)) {
9020 		/* Reset the device and controller before doing reinit */
9021 		ufshcd_device_reset(hba);
9022 		ufs_put_device_desc(hba);
9023 		ufshcd_hba_stop(hba);
9024 		ret = ufshcd_hba_enable(hba);
9025 		if (ret) {
9026 			dev_err(hba->dev, "Host controller enable failed\n");
9027 			ufshcd_print_evt_hist(hba);
9028 			ufshcd_print_host_state(hba);
9029 			return ret;
9030 		}
9031 
9032 		/* Reinit the device */
9033 		ret = ufshcd_device_init(hba, init_dev_params);
9034 		if (ret)
9035 			return ret;
9036 	}
9037 
9038 	ufshcd_print_pwr_info(hba);
9039 
9040 	/*
9041 	 * bActiveICCLevel is volatile for UFS device (as per latest v2.1 spec)
9042 	 * and for removable UFS card as well, hence always set the parameter.
9043 	 * Note: Error handler may issue the device reset hence resetting
9044 	 * bActiveICCLevel as well so it is always safe to set this here.
9045 	 */
9046 	ufshcd_set_active_icc_lvl(hba);
9047 
9048 	/* Enable UFS Write Booster if supported */
9049 	ufshcd_configure_wb(hba);
9050 
9051 	if (hba->ee_usr_mask)
9052 		ufshcd_write_ee_control(hba);
9053 	ufshcd_configure_auto_hibern8(hba);
9054 
9055 	return 0;
9056 }
9057 
9058 /**
9059  * ufshcd_async_scan - asynchronous execution for probing hba
9060  * @data: data pointer to pass to this function
9061  * @cookie: cookie data
9062  */
9063 static void ufshcd_async_scan(void *data, async_cookie_t cookie)
9064 {
9065 	struct ufs_hba *hba = (struct ufs_hba *)data;
9066 	ktime_t probe_start;
9067 	int ret;
9068 
9069 	down(&hba->host_sem);
9070 	/* Initialize hba, detect and initialize UFS device */
9071 	probe_start = ktime_get();
9072 	ret = ufshcd_probe_hba(hba, true);
9073 	ufshcd_process_probe_result(hba, probe_start, ret);
9074 	up(&hba->host_sem);
9075 	if (ret)
9076 		goto out;
9077 
9078 	/* Probe and add UFS logical units  */
9079 	ret = ufshcd_add_lus(hba);
9080 
9081 out:
9082 	pm_runtime_put_sync(hba->dev);
9083 
9084 	if (ret)
9085 		dev_err(hba->dev, "%s failed: %d\n", __func__, ret);
9086 }
9087 
9088 static enum scsi_timeout_action ufshcd_eh_timed_out(struct scsi_cmnd *scmd)
9089 {
9090 	struct ufs_hba *hba = shost_priv(scmd->device->host);
9091 
9092 	if (!hba->system_suspending) {
9093 		/* Activate the error handler in the SCSI core. */
9094 		return SCSI_EH_NOT_HANDLED;
9095 	}
9096 
9097 	/*
9098 	 * If we get here we know that no TMFs are outstanding and also that
9099 	 * the only pending command is a START STOP UNIT command. Handle the
9100 	 * timeout of that command directly to prevent a deadlock between
9101 	 * ufshcd_set_dev_pwr_mode() and ufshcd_err_handler().
9102 	 */
9103 	ufshcd_link_recovery(hba);
9104 	dev_info(hba->dev, "%s() finished; outstanding_tasks = %#lx.\n",
9105 		 __func__, hba->outstanding_tasks);
9106 
9107 	return scsi_host_busy(hba->host) ? SCSI_EH_RESET_TIMER : SCSI_EH_DONE;
9108 }
9109 
9110 static const struct attribute_group *ufshcd_driver_groups[] = {
9111 	&ufs_sysfs_unit_descriptor_group,
9112 	&ufs_sysfs_lun_attributes_group,
9113 	NULL,
9114 };
9115 
9116 static struct ufs_hba_variant_params ufs_hba_vps = {
9117 	.hba_enable_delay_us		= 1000,
9118 	.wb_flush_threshold		= UFS_WB_BUF_REMAIN_PERCENT(40),
9119 	.devfreq_profile.polling_ms	= 100,
9120 	.devfreq_profile.target		= ufshcd_devfreq_target,
9121 	.devfreq_profile.get_dev_status	= ufshcd_devfreq_get_dev_status,
9122 	.ondemand_data.upthreshold	= 70,
9123 	.ondemand_data.downdifferential	= 5,
9124 };
9125 
9126 static const struct scsi_host_template ufshcd_driver_template = {
9127 	.module			= THIS_MODULE,
9128 	.name			= UFSHCD,
9129 	.proc_name		= UFSHCD,
9130 	.map_queues		= ufshcd_map_queues,
9131 	.queuecommand		= ufshcd_queuecommand,
9132 	.mq_poll		= ufshcd_poll,
9133 	.sdev_init		= ufshcd_sdev_init,
9134 	.sdev_configure		= ufshcd_sdev_configure,
9135 	.sdev_destroy		= ufshcd_sdev_destroy,
9136 	.change_queue_depth	= ufshcd_change_queue_depth,
9137 	.eh_abort_handler	= ufshcd_abort,
9138 	.eh_device_reset_handler = ufshcd_eh_device_reset_handler,
9139 	.eh_host_reset_handler   = ufshcd_eh_host_reset_handler,
9140 	.eh_timed_out		= ufshcd_eh_timed_out,
9141 	.this_id		= -1,
9142 	.sg_tablesize		= SG_ALL,
9143 	.max_segment_size	= PRDT_DATA_BYTE_COUNT_MAX,
9144 	.max_sectors		= SZ_1M / SECTOR_SIZE,
9145 	.max_host_blocked	= 1,
9146 	.track_queue_depth	= 1,
9147 	.skip_settle_delay	= 1,
9148 	.sdev_groups		= ufshcd_driver_groups,
9149 };
9150 
9151 static int ufshcd_config_vreg_load(struct device *dev, struct ufs_vreg *vreg,
9152 				   int ua)
9153 {
9154 	int ret;
9155 
9156 	if (!vreg)
9157 		return 0;
9158 
9159 	/*
9160 	 * "set_load" operation shall be required on those regulators
9161 	 * which specifically configured current limitation. Otherwise
9162 	 * zero max_uA may cause unexpected behavior when regulator is
9163 	 * enabled or set as high power mode.
9164 	 */
9165 	if (!vreg->max_uA)
9166 		return 0;
9167 
9168 	ret = regulator_set_load(vreg->reg, ua);
9169 	if (ret < 0) {
9170 		dev_err(dev, "%s: %s set load (ua=%d) failed, err=%d\n",
9171 				__func__, vreg->name, ua, ret);
9172 	}
9173 
9174 	return ret;
9175 }
9176 
9177 static inline int ufshcd_config_vreg_lpm(struct ufs_hba *hba,
9178 					 struct ufs_vreg *vreg)
9179 {
9180 	return ufshcd_config_vreg_load(hba->dev, vreg, UFS_VREG_LPM_LOAD_UA);
9181 }
9182 
9183 static inline int ufshcd_config_vreg_hpm(struct ufs_hba *hba,
9184 					 struct ufs_vreg *vreg)
9185 {
9186 	if (!vreg)
9187 		return 0;
9188 
9189 	return ufshcd_config_vreg_load(hba->dev, vreg, vreg->max_uA);
9190 }
9191 
9192 static int ufshcd_config_vreg(struct device *dev,
9193 		struct ufs_vreg *vreg, bool on)
9194 {
9195 	if (regulator_count_voltages(vreg->reg) <= 0)
9196 		return 0;
9197 
9198 	return ufshcd_config_vreg_load(dev, vreg, on ? vreg->max_uA : 0);
9199 }
9200 
9201 static int ufshcd_enable_vreg(struct device *dev, struct ufs_vreg *vreg)
9202 {
9203 	int ret = 0;
9204 
9205 	if (!vreg || vreg->enabled)
9206 		goto out;
9207 
9208 	ret = ufshcd_config_vreg(dev, vreg, true);
9209 	if (!ret)
9210 		ret = regulator_enable(vreg->reg);
9211 
9212 	if (!ret)
9213 		vreg->enabled = true;
9214 	else
9215 		dev_err(dev, "%s: %s enable failed, err=%d\n",
9216 				__func__, vreg->name, ret);
9217 out:
9218 	return ret;
9219 }
9220 
9221 static int ufshcd_disable_vreg(struct device *dev, struct ufs_vreg *vreg)
9222 {
9223 	int ret = 0;
9224 
9225 	if (!vreg || !vreg->enabled || vreg->always_on)
9226 		goto out;
9227 
9228 	ret = regulator_disable(vreg->reg);
9229 
9230 	if (!ret) {
9231 		/* ignore errors on applying disable config */
9232 		ufshcd_config_vreg(dev, vreg, false);
9233 		vreg->enabled = false;
9234 	} else {
9235 		dev_err(dev, "%s: %s disable failed, err=%d\n",
9236 				__func__, vreg->name, ret);
9237 	}
9238 out:
9239 	return ret;
9240 }
9241 
9242 static int ufshcd_setup_vreg(struct ufs_hba *hba, bool on)
9243 {
9244 	int ret = 0;
9245 	struct device *dev = hba->dev;
9246 	struct ufs_vreg_info *info = &hba->vreg_info;
9247 
9248 	ret = ufshcd_toggle_vreg(dev, info->vcc, on);
9249 	if (ret)
9250 		goto out;
9251 
9252 	ret = ufshcd_toggle_vreg(dev, info->vccq, on);
9253 	if (ret)
9254 		goto out;
9255 
9256 	ret = ufshcd_toggle_vreg(dev, info->vccq2, on);
9257 
9258 out:
9259 	if (ret) {
9260 		ufshcd_toggle_vreg(dev, info->vccq2, false);
9261 		ufshcd_toggle_vreg(dev, info->vccq, false);
9262 		ufshcd_toggle_vreg(dev, info->vcc, false);
9263 	}
9264 	return ret;
9265 }
9266 
9267 static int ufshcd_setup_hba_vreg(struct ufs_hba *hba, bool on)
9268 {
9269 	struct ufs_vreg_info *info = &hba->vreg_info;
9270 
9271 	return ufshcd_toggle_vreg(hba->dev, info->vdd_hba, on);
9272 }
9273 
9274 int ufshcd_get_vreg(struct device *dev, struct ufs_vreg *vreg)
9275 {
9276 	int ret = 0;
9277 
9278 	if (!vreg)
9279 		goto out;
9280 
9281 	vreg->reg = devm_regulator_get(dev, vreg->name);
9282 	if (IS_ERR(vreg->reg)) {
9283 		ret = PTR_ERR(vreg->reg);
9284 		dev_err(dev, "%s: %s get failed, err=%d\n",
9285 				__func__, vreg->name, ret);
9286 	}
9287 out:
9288 	return ret;
9289 }
9290 EXPORT_SYMBOL_GPL(ufshcd_get_vreg);
9291 
9292 static int ufshcd_init_vreg(struct ufs_hba *hba)
9293 {
9294 	int ret = 0;
9295 	struct device *dev = hba->dev;
9296 	struct ufs_vreg_info *info = &hba->vreg_info;
9297 
9298 	ret = ufshcd_get_vreg(dev, info->vcc);
9299 	if (ret)
9300 		goto out;
9301 
9302 	ret = ufshcd_get_vreg(dev, info->vccq);
9303 	if (!ret)
9304 		ret = ufshcd_get_vreg(dev, info->vccq2);
9305 out:
9306 	return ret;
9307 }
9308 
9309 static int ufshcd_init_hba_vreg(struct ufs_hba *hba)
9310 {
9311 	struct ufs_vreg_info *info = &hba->vreg_info;
9312 
9313 	return ufshcd_get_vreg(hba->dev, info->vdd_hba);
9314 }
9315 
9316 static int ufshcd_setup_clocks(struct ufs_hba *hba, bool on)
9317 {
9318 	int ret = 0;
9319 	struct ufs_clk_info *clki;
9320 	struct list_head *head = &hba->clk_list_head;
9321 	ktime_t start = ktime_get();
9322 	bool clk_state_changed = false;
9323 
9324 	if (list_empty(head))
9325 		goto out;
9326 
9327 	ret = ufshcd_vops_setup_clocks(hba, on, PRE_CHANGE);
9328 	if (ret)
9329 		return ret;
9330 
9331 	list_for_each_entry(clki, head, list) {
9332 		if (!IS_ERR_OR_NULL(clki->clk)) {
9333 			/*
9334 			 * Don't disable clocks which are needed
9335 			 * to keep the link active.
9336 			 */
9337 			if (ufshcd_is_link_active(hba) &&
9338 			    clki->keep_link_active)
9339 				continue;
9340 
9341 			clk_state_changed = on ^ clki->enabled;
9342 			if (on && !clki->enabled) {
9343 				ret = clk_prepare_enable(clki->clk);
9344 				if (ret) {
9345 					dev_err(hba->dev, "%s: %s prepare enable failed, %d\n",
9346 						__func__, clki->name, ret);
9347 					goto out;
9348 				}
9349 			} else if (!on && clki->enabled) {
9350 				clk_disable_unprepare(clki->clk);
9351 			}
9352 			clki->enabled = on;
9353 			dev_dbg(hba->dev, "%s: clk: %s %sabled\n", __func__,
9354 					clki->name, on ? "en" : "dis");
9355 		}
9356 	}
9357 
9358 	ret = ufshcd_vops_setup_clocks(hba, on, POST_CHANGE);
9359 	if (ret)
9360 		return ret;
9361 
9362 	if (!ufshcd_is_clkscaling_supported(hba))
9363 		ufshcd_pm_qos_update(hba, on);
9364 out:
9365 	if (ret) {
9366 		list_for_each_entry(clki, head, list) {
9367 			if (!IS_ERR_OR_NULL(clki->clk) && clki->enabled)
9368 				clk_disable_unprepare(clki->clk);
9369 		}
9370 	} else if (!ret && on && hba->clk_gating.is_initialized) {
9371 		scoped_guard(spinlock_irqsave, &hba->clk_gating.lock)
9372 			hba->clk_gating.state = CLKS_ON;
9373 		trace_ufshcd_clk_gating(hba,
9374 					hba->clk_gating.state);
9375 	}
9376 
9377 	if (clk_state_changed)
9378 		trace_ufshcd_profile_clk_gating(hba,
9379 			(on ? "on" : "off"),
9380 			ktime_to_us(ktime_sub(ktime_get(), start)), ret);
9381 	return ret;
9382 }
9383 
9384 static enum ufs_ref_clk_freq ufshcd_parse_ref_clk_property(struct ufs_hba *hba)
9385 {
9386 	u32 freq;
9387 	int ret = device_property_read_u32(hba->dev, "ref-clk-freq", &freq);
9388 
9389 	if (ret) {
9390 		dev_dbg(hba->dev, "Cannot query 'ref-clk-freq' property = %d", ret);
9391 		return REF_CLK_FREQ_INVAL;
9392 	}
9393 
9394 	return ufs_get_bref_clk_from_hz(freq);
9395 }
9396 
9397 static int ufshcd_init_clocks(struct ufs_hba *hba)
9398 {
9399 	int ret = 0;
9400 	struct ufs_clk_info *clki;
9401 	struct device *dev = hba->dev;
9402 	struct list_head *head = &hba->clk_list_head;
9403 
9404 	if (list_empty(head))
9405 		goto out;
9406 
9407 	list_for_each_entry(clki, head, list) {
9408 		if (!clki->name)
9409 			continue;
9410 
9411 		clki->clk = devm_clk_get(dev, clki->name);
9412 		if (IS_ERR(clki->clk)) {
9413 			ret = PTR_ERR(clki->clk);
9414 			dev_err(dev, "%s: %s clk get failed, %d\n",
9415 					__func__, clki->name, ret);
9416 			goto out;
9417 		}
9418 
9419 		/*
9420 		 * Parse device ref clk freq as per device tree "ref_clk".
9421 		 * Default dev_ref_clk_freq is set to REF_CLK_FREQ_INVAL
9422 		 * in ufshcd_alloc_host().
9423 		 */
9424 		if (!strcmp(clki->name, "ref_clk"))
9425 			ufshcd_parse_dev_ref_clk_freq(hba, clki->clk);
9426 
9427 		if (clki->max_freq) {
9428 			ret = clk_set_rate(clki->clk, clki->max_freq);
9429 			if (ret) {
9430 				dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
9431 					__func__, clki->name,
9432 					clki->max_freq, ret);
9433 				goto out;
9434 			}
9435 			clki->curr_freq = clki->max_freq;
9436 		}
9437 		dev_dbg(dev, "%s: clk: %s, rate: %lu\n", __func__,
9438 				clki->name, clk_get_rate(clki->clk));
9439 	}
9440 
9441 	/* Set Max. frequency for all clocks */
9442 	if (hba->use_pm_opp) {
9443 		ret = ufshcd_opp_set_rate(hba, ULONG_MAX);
9444 		if (ret) {
9445 			dev_err(hba->dev, "%s: failed to set OPP: %d", __func__,
9446 				ret);
9447 			goto out;
9448 		}
9449 	}
9450 
9451 out:
9452 	return ret;
9453 }
9454 
9455 static int ufshcd_variant_hba_init(struct ufs_hba *hba)
9456 {
9457 	int err = 0;
9458 
9459 	if (!hba->vops)
9460 		goto out;
9461 
9462 	err = ufshcd_vops_init(hba);
9463 	if (err)
9464 		dev_err_probe(hba->dev, err,
9465 			      "%s: variant %s init failed with err %d\n",
9466 			      __func__, ufshcd_get_var_name(hba), err);
9467 out:
9468 	return err;
9469 }
9470 
9471 static void ufshcd_variant_hba_exit(struct ufs_hba *hba)
9472 {
9473 	if (!hba->vops)
9474 		return;
9475 
9476 	ufshcd_vops_exit(hba);
9477 }
9478 
9479 static int ufshcd_hba_init(struct ufs_hba *hba)
9480 {
9481 	int err;
9482 
9483 	/*
9484 	 * Handle host controller power separately from the UFS device power
9485 	 * rails as it will help controlling the UFS host controller power
9486 	 * collapse easily which is different than UFS device power collapse.
9487 	 * Also, enable the host controller power before we go ahead with rest
9488 	 * of the initialization here.
9489 	 */
9490 	err = ufshcd_init_hba_vreg(hba);
9491 	if (err)
9492 		goto out;
9493 
9494 	err = ufshcd_setup_hba_vreg(hba, true);
9495 	if (err)
9496 		goto out;
9497 
9498 	err = ufshcd_init_clocks(hba);
9499 	if (err)
9500 		goto out_disable_hba_vreg;
9501 
9502 	if (hba->dev_ref_clk_freq == REF_CLK_FREQ_INVAL)
9503 		hba->dev_ref_clk_freq = ufshcd_parse_ref_clk_property(hba);
9504 
9505 	err = ufshcd_setup_clocks(hba, true);
9506 	if (err)
9507 		goto out_disable_hba_vreg;
9508 
9509 	err = ufshcd_init_vreg(hba);
9510 	if (err)
9511 		goto out_disable_clks;
9512 
9513 	err = ufshcd_setup_vreg(hba, true);
9514 	if (err)
9515 		goto out_disable_clks;
9516 
9517 	err = ufshcd_variant_hba_init(hba);
9518 	if (err)
9519 		goto out_disable_vreg;
9520 
9521 	ufs_debugfs_hba_init(hba);
9522 	ufs_fault_inject_hba_init(hba);
9523 
9524 	hba->is_powered = true;
9525 	goto out;
9526 
9527 out_disable_vreg:
9528 	ufshcd_setup_vreg(hba, false);
9529 out_disable_clks:
9530 	ufshcd_setup_clocks(hba, false);
9531 out_disable_hba_vreg:
9532 	ufshcd_setup_hba_vreg(hba, false);
9533 out:
9534 	return err;
9535 }
9536 
9537 static void ufshcd_hba_exit(struct ufs_hba *hba)
9538 {
9539 	if (hba->is_powered) {
9540 		ufshcd_pm_qos_exit(hba);
9541 		ufshcd_exit_clk_scaling(hba);
9542 		ufshcd_exit_clk_gating(hba);
9543 		if (hba->eh_wq)
9544 			destroy_workqueue(hba->eh_wq);
9545 		ufs_debugfs_hba_exit(hba);
9546 		ufshcd_variant_hba_exit(hba);
9547 		ufshcd_setup_vreg(hba, false);
9548 		ufshcd_setup_clocks(hba, false);
9549 		ufshcd_setup_hba_vreg(hba, false);
9550 		hba->is_powered = false;
9551 		ufs_put_device_desc(hba);
9552 	}
9553 }
9554 
9555 static int ufshcd_execute_start_stop(struct scsi_device *sdev,
9556 				     enum ufs_dev_pwr_mode pwr_mode,
9557 				     struct scsi_sense_hdr *sshdr)
9558 {
9559 	const unsigned char cdb[6] = { START_STOP, 0, 0, 0, pwr_mode << 4, 0 };
9560 	struct scsi_failure failure_defs[] = {
9561 		{
9562 			.allowed = 2,
9563 			.result = SCMD_FAILURE_RESULT_ANY,
9564 		},
9565 	};
9566 	struct scsi_failures failures = {
9567 		.failure_definitions = failure_defs,
9568 	};
9569 	const struct scsi_exec_args args = {
9570 		.failures = &failures,
9571 		.sshdr = sshdr,
9572 		.req_flags = BLK_MQ_REQ_PM,
9573 		.scmd_flags = SCMD_FAIL_IF_RECOVERING,
9574 	};
9575 
9576 	return scsi_execute_cmd(sdev, cdb, REQ_OP_DRV_IN, /*buffer=*/NULL,
9577 			/*bufflen=*/0, /*timeout=*/10 * HZ, /*retries=*/0,
9578 			&args);
9579 }
9580 
9581 /**
9582  * ufshcd_set_dev_pwr_mode - sends START STOP UNIT command to set device
9583  *			     power mode
9584  * @hba: per adapter instance
9585  * @pwr_mode: device power mode to set
9586  *
9587  * Return: 0 if requested power mode is set successfully;
9588  *         < 0 if failed to set the requested power mode.
9589  */
9590 static int ufshcd_set_dev_pwr_mode(struct ufs_hba *hba,
9591 				     enum ufs_dev_pwr_mode pwr_mode)
9592 {
9593 	struct scsi_sense_hdr sshdr;
9594 	struct scsi_device *sdp;
9595 	unsigned long flags;
9596 	int ret;
9597 
9598 	spin_lock_irqsave(hba->host->host_lock, flags);
9599 	sdp = hba->ufs_device_wlun;
9600 	if (sdp && scsi_device_online(sdp))
9601 		ret = scsi_device_get(sdp);
9602 	else
9603 		ret = -ENODEV;
9604 	spin_unlock_irqrestore(hba->host->host_lock, flags);
9605 
9606 	if (ret)
9607 		return ret;
9608 
9609 	/*
9610 	 * If scsi commands fail, the scsi mid-layer schedules scsi error-
9611 	 * handling, which would wait for host to be resumed. Since we know
9612 	 * we are functional while we are here, skip host resume in error
9613 	 * handling context.
9614 	 */
9615 	hba->host->eh_noresume = 1;
9616 
9617 	/*
9618 	 * Current function would be generally called from the power management
9619 	 * callbacks hence set the RQF_PM flag so that it doesn't resume the
9620 	 * already suspended childs.
9621 	 */
9622 	ret = ufshcd_execute_start_stop(sdp, pwr_mode, &sshdr);
9623 	if (ret) {
9624 		sdev_printk(KERN_WARNING, sdp,
9625 			    "START_STOP failed for power mode: %d, result %x\n",
9626 			    pwr_mode, ret);
9627 		if (ret > 0) {
9628 			if (scsi_sense_valid(&sshdr))
9629 				scsi_print_sense_hdr(sdp, NULL, &sshdr);
9630 			ret = -EIO;
9631 		}
9632 	} else {
9633 		hba->curr_dev_pwr_mode = pwr_mode;
9634 	}
9635 
9636 	scsi_device_put(sdp);
9637 	hba->host->eh_noresume = 0;
9638 	return ret;
9639 }
9640 
9641 static int ufshcd_link_state_transition(struct ufs_hba *hba,
9642 					enum uic_link_state req_link_state,
9643 					bool check_for_bkops)
9644 {
9645 	int ret = 0;
9646 
9647 	if (req_link_state == hba->uic_link_state)
9648 		return 0;
9649 
9650 	if (req_link_state == UIC_LINK_HIBERN8_STATE) {
9651 		ret = ufshcd_uic_hibern8_enter(hba);
9652 		if (!ret) {
9653 			ufshcd_set_link_hibern8(hba);
9654 		} else {
9655 			dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
9656 					__func__, ret);
9657 			goto out;
9658 		}
9659 	}
9660 	/*
9661 	 * If autobkops is enabled, link can't be turned off because
9662 	 * turning off the link would also turn off the device, except in the
9663 	 * case of DeepSleep where the device is expected to remain powered.
9664 	 */
9665 	else if ((req_link_state == UIC_LINK_OFF_STATE) &&
9666 		 (!check_for_bkops || !hba->auto_bkops_enabled)) {
9667 		/*
9668 		 * Let's make sure that link is in low power mode, we are doing
9669 		 * this currently by putting the link in Hibern8. Otherway to
9670 		 * put the link in low power mode is to send the DME end point
9671 		 * to device and then send the DME reset command to local
9672 		 * unipro. But putting the link in hibern8 is much faster.
9673 		 *
9674 		 * Note also that putting the link in Hibern8 is a requirement
9675 		 * for entering DeepSleep.
9676 		 */
9677 		ret = ufshcd_uic_hibern8_enter(hba);
9678 		if (ret) {
9679 			dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
9680 					__func__, ret);
9681 			goto out;
9682 		}
9683 		/*
9684 		 * Change controller state to "reset state" which
9685 		 * should also put the link in off/reset state
9686 		 */
9687 		ufshcd_hba_stop(hba);
9688 		/*
9689 		 * TODO: Check if we need any delay to make sure that
9690 		 * controller is reset
9691 		 */
9692 		ufshcd_set_link_off(hba);
9693 	}
9694 
9695 out:
9696 	return ret;
9697 }
9698 
9699 static void ufshcd_vreg_set_lpm(struct ufs_hba *hba)
9700 {
9701 	bool vcc_off = false;
9702 
9703 	/*
9704 	 * It seems some UFS devices may keep drawing more than sleep current
9705 	 * (atleast for 500us) from UFS rails (especially from VCCQ rail).
9706 	 * To avoid this situation, add 2ms delay before putting these UFS
9707 	 * rails in LPM mode.
9708 	 */
9709 	if (!ufshcd_is_link_active(hba) &&
9710 	    hba->dev_quirks & UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM)
9711 		usleep_range(2000, 2100);
9712 
9713 	/*
9714 	 * If UFS device is either in UFS_Sleep turn off VCC rail to save some
9715 	 * power.
9716 	 *
9717 	 * If UFS device and link is in OFF state, all power supplies (VCC,
9718 	 * VCCQ, VCCQ2) can be turned off if power on write protect is not
9719 	 * required. If UFS link is inactive (Hibern8 or OFF state) and device
9720 	 * is in sleep state, put VCCQ & VCCQ2 rails in LPM mode.
9721 	 *
9722 	 * Ignore the error returned by ufshcd_toggle_vreg() as device is anyway
9723 	 * in low power state which would save some power.
9724 	 *
9725 	 * If Write Booster is enabled and the device needs to flush the WB
9726 	 * buffer OR if bkops status is urgent for WB, keep Vcc on.
9727 	 */
9728 	if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba) &&
9729 	    !hba->dev_info.is_lu_power_on_wp) {
9730 		ufshcd_setup_vreg(hba, false);
9731 		vcc_off = true;
9732 	} else if (!ufshcd_is_ufs_dev_active(hba)) {
9733 		ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, false);
9734 		vcc_off = true;
9735 		if (ufshcd_is_link_hibern8(hba) || ufshcd_is_link_off(hba)) {
9736 			ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq);
9737 			ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq2);
9738 		}
9739 	}
9740 
9741 	/*
9742 	 * Some UFS devices require delay after VCC power rail is turned-off.
9743 	 */
9744 	if (vcc_off && hba->vreg_info.vcc &&
9745 		hba->dev_quirks & UFS_DEVICE_QUIRK_DELAY_AFTER_LPM)
9746 		usleep_range(5000, 5100);
9747 }
9748 
9749 #ifdef CONFIG_PM
9750 static int ufshcd_vreg_set_hpm(struct ufs_hba *hba)
9751 {
9752 	int ret = 0;
9753 
9754 	if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba) &&
9755 	    !hba->dev_info.is_lu_power_on_wp) {
9756 		ret = ufshcd_setup_vreg(hba, true);
9757 	} else if (!ufshcd_is_ufs_dev_active(hba)) {
9758 		if (!ufshcd_is_link_active(hba)) {
9759 			ret = ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq);
9760 			if (ret)
9761 				goto vcc_disable;
9762 			ret = ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq2);
9763 			if (ret)
9764 				goto vccq_lpm;
9765 		}
9766 		ret = ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, true);
9767 	}
9768 	goto out;
9769 
9770 vccq_lpm:
9771 	ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq);
9772 vcc_disable:
9773 	ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, false);
9774 out:
9775 	return ret;
9776 }
9777 #endif /* CONFIG_PM */
9778 
9779 static void ufshcd_hba_vreg_set_lpm(struct ufs_hba *hba)
9780 {
9781 	if (ufshcd_is_link_off(hba) || ufshcd_can_aggressive_pc(hba))
9782 		ufshcd_setup_hba_vreg(hba, false);
9783 }
9784 
9785 static void ufshcd_hba_vreg_set_hpm(struct ufs_hba *hba)
9786 {
9787 	if (ufshcd_is_link_off(hba) || ufshcd_can_aggressive_pc(hba))
9788 		ufshcd_setup_hba_vreg(hba, true);
9789 }
9790 
9791 static int __ufshcd_wl_suspend(struct ufs_hba *hba, enum ufs_pm_op pm_op)
9792 {
9793 	int ret = 0;
9794 	bool check_for_bkops;
9795 	enum ufs_pm_level pm_lvl;
9796 	enum ufs_dev_pwr_mode req_dev_pwr_mode;
9797 	enum uic_link_state req_link_state;
9798 
9799 	hba->pm_op_in_progress = true;
9800 	if (pm_op != UFS_SHUTDOWN_PM) {
9801 		pm_lvl = pm_op == UFS_RUNTIME_PM ?
9802 			 hba->rpm_lvl : hba->spm_lvl;
9803 		req_dev_pwr_mode = ufs_get_pm_lvl_to_dev_pwr_mode(pm_lvl);
9804 		req_link_state = ufs_get_pm_lvl_to_link_pwr_state(pm_lvl);
9805 	} else {
9806 		req_dev_pwr_mode = UFS_POWERDOWN_PWR_MODE;
9807 		req_link_state = UIC_LINK_OFF_STATE;
9808 	}
9809 
9810 	/*
9811 	 * If we can't transition into any of the low power modes
9812 	 * just gate the clocks.
9813 	 */
9814 	ufshcd_hold(hba);
9815 	hba->clk_gating.is_suspended = true;
9816 
9817 	if (ufshcd_is_clkscaling_supported(hba))
9818 		ufshcd_clk_scaling_suspend(hba, true);
9819 
9820 	if (req_dev_pwr_mode == UFS_ACTIVE_PWR_MODE &&
9821 			req_link_state == UIC_LINK_ACTIVE_STATE) {
9822 		goto vops_suspend;
9823 	}
9824 
9825 	if ((req_dev_pwr_mode == hba->curr_dev_pwr_mode) &&
9826 	    (req_link_state == hba->uic_link_state))
9827 		goto enable_scaling;
9828 
9829 	/* UFS device & link must be active before we enter in this function */
9830 	if (!ufshcd_is_ufs_dev_active(hba) || !ufshcd_is_link_active(hba)) {
9831 		/*  Wait err handler finish or trigger err recovery */
9832 		if (!ufshcd_eh_in_progress(hba))
9833 			ufshcd_force_error_recovery(hba);
9834 		ret = -EBUSY;
9835 		goto enable_scaling;
9836 	}
9837 
9838 	if (pm_op == UFS_RUNTIME_PM) {
9839 		if (ufshcd_can_autobkops_during_suspend(hba)) {
9840 			/*
9841 			 * The device is idle with no requests in the queue,
9842 			 * allow background operations if bkops status shows
9843 			 * that performance might be impacted.
9844 			 */
9845 			ret = ufshcd_bkops_ctrl(hba);
9846 			if (ret) {
9847 				/*
9848 				 * If return err in suspend flow, IO will hang.
9849 				 * Trigger error handler and break suspend for
9850 				 * error recovery.
9851 				 */
9852 				ufshcd_force_error_recovery(hba);
9853 				ret = -EBUSY;
9854 				goto enable_scaling;
9855 			}
9856 		} else {
9857 			/* make sure that auto bkops is disabled */
9858 			ufshcd_disable_auto_bkops(hba);
9859 		}
9860 		/*
9861 		 * If device needs to do BKOP or WB buffer flush during
9862 		 * Hibern8, keep device power mode as "active power mode"
9863 		 * and VCC supply.
9864 		 */
9865 		hba->dev_info.b_rpm_dev_flush_capable =
9866 			hba->auto_bkops_enabled ||
9867 			(((req_link_state == UIC_LINK_HIBERN8_STATE) ||
9868 			((req_link_state == UIC_LINK_ACTIVE_STATE) &&
9869 			ufshcd_is_auto_hibern8_enabled(hba))) &&
9870 			ufshcd_wb_need_flush(hba));
9871 	}
9872 
9873 	flush_work(&hba->eeh_work);
9874 
9875 	ret = ufshcd_vops_suspend(hba, pm_op, PRE_CHANGE);
9876 	if (ret)
9877 		goto enable_scaling;
9878 
9879 	if (req_dev_pwr_mode != hba->curr_dev_pwr_mode) {
9880 		if (pm_op != UFS_RUNTIME_PM)
9881 			/* ensure that bkops is disabled */
9882 			ufshcd_disable_auto_bkops(hba);
9883 
9884 		if (!hba->dev_info.b_rpm_dev_flush_capable) {
9885 			ret = ufshcd_set_dev_pwr_mode(hba, req_dev_pwr_mode);
9886 			if (ret && pm_op != UFS_SHUTDOWN_PM) {
9887 				/*
9888 				 * If return err in suspend flow, IO will hang.
9889 				 * Trigger error handler and break suspend for
9890 				 * error recovery.
9891 				 */
9892 				ufshcd_force_error_recovery(hba);
9893 				ret = -EBUSY;
9894 			}
9895 			if (ret)
9896 				goto enable_scaling;
9897 		}
9898 	}
9899 
9900 	/*
9901 	 * In the case of DeepSleep, the device is expected to remain powered
9902 	 * with the link off, so do not check for bkops.
9903 	 */
9904 	check_for_bkops = !ufshcd_is_ufs_dev_deepsleep(hba);
9905 	ret = ufshcd_link_state_transition(hba, req_link_state, check_for_bkops);
9906 	if (ret && pm_op != UFS_SHUTDOWN_PM) {
9907 		/*
9908 		 * If return err in suspend flow, IO will hang.
9909 		 * Trigger error handler and break suspend for
9910 		 * error recovery.
9911 		 */
9912 		ufshcd_force_error_recovery(hba);
9913 		ret = -EBUSY;
9914 	}
9915 	if (ret)
9916 		goto set_dev_active;
9917 
9918 vops_suspend:
9919 	/*
9920 	 * Call vendor specific suspend callback. As these callbacks may access
9921 	 * vendor specific host controller register space call them before the
9922 	 * host clocks are ON.
9923 	 */
9924 	ret = ufshcd_vops_suspend(hba, pm_op, POST_CHANGE);
9925 	if (ret)
9926 		goto set_link_active;
9927 
9928 	cancel_delayed_work_sync(&hba->ufs_rtc_update_work);
9929 	goto out;
9930 
9931 set_link_active:
9932 	/*
9933 	 * Device hardware reset is required to exit DeepSleep. Also, for
9934 	 * DeepSleep, the link is off so host reset and restore will be done
9935 	 * further below.
9936 	 */
9937 	if (ufshcd_is_ufs_dev_deepsleep(hba)) {
9938 		ufshcd_device_reset(hba);
9939 		WARN_ON(!ufshcd_is_link_off(hba));
9940 	}
9941 	if (ufshcd_is_link_hibern8(hba) && !ufshcd_uic_hibern8_exit(hba))
9942 		ufshcd_set_link_active(hba);
9943 	else if (ufshcd_is_link_off(hba))
9944 		ufshcd_host_reset_and_restore(hba);
9945 set_dev_active:
9946 	/* Can also get here needing to exit DeepSleep */
9947 	if (ufshcd_is_ufs_dev_deepsleep(hba)) {
9948 		ufshcd_device_reset(hba);
9949 		ufshcd_host_reset_and_restore(hba);
9950 	}
9951 	if (!ufshcd_set_dev_pwr_mode(hba, UFS_ACTIVE_PWR_MODE))
9952 		ufshcd_disable_auto_bkops(hba);
9953 enable_scaling:
9954 	if (ufshcd_is_clkscaling_supported(hba))
9955 		ufshcd_clk_scaling_suspend(hba, false);
9956 
9957 	hba->dev_info.b_rpm_dev_flush_capable = false;
9958 out:
9959 	if (hba->dev_info.b_rpm_dev_flush_capable) {
9960 		schedule_delayed_work(&hba->rpm_dev_flush_recheck_work,
9961 			msecs_to_jiffies(RPM_DEV_FLUSH_RECHECK_WORK_DELAY_MS));
9962 	}
9963 
9964 	if (ret) {
9965 		ufshcd_update_evt_hist(hba, UFS_EVT_WL_SUSP_ERR, (u32)ret);
9966 		hba->clk_gating.is_suspended = false;
9967 		ufshcd_release(hba);
9968 	}
9969 	hba->pm_op_in_progress = false;
9970 	return ret;
9971 }
9972 
9973 #ifdef CONFIG_PM
9974 static int __ufshcd_wl_resume(struct ufs_hba *hba, enum ufs_pm_op pm_op)
9975 {
9976 	int ret;
9977 	enum uic_link_state old_link_state = hba->uic_link_state;
9978 
9979 	hba->pm_op_in_progress = true;
9980 
9981 	/*
9982 	 * Call vendor specific resume callback. As these callbacks may access
9983 	 * vendor specific host controller register space call them when the
9984 	 * host clocks are ON.
9985 	 */
9986 	ret = ufshcd_vops_resume(hba, pm_op);
9987 	if (ret)
9988 		goto out;
9989 
9990 	/* For DeepSleep, the only supported option is to have the link off */
9991 	WARN_ON(ufshcd_is_ufs_dev_deepsleep(hba) && !ufshcd_is_link_off(hba));
9992 
9993 	if (ufshcd_is_link_hibern8(hba)) {
9994 		ret = ufshcd_uic_hibern8_exit(hba);
9995 		if (!ret) {
9996 			ufshcd_set_link_active(hba);
9997 		} else {
9998 			dev_err(hba->dev, "%s: hibern8 exit failed %d\n",
9999 					__func__, ret);
10000 			goto vendor_suspend;
10001 		}
10002 	} else if (ufshcd_is_link_off(hba)) {
10003 		/*
10004 		 * A full initialization of the host and the device is
10005 		 * required since the link was put to off during suspend.
10006 		 * Note, in the case of DeepSleep, the device will exit
10007 		 * DeepSleep due to device reset.
10008 		 */
10009 		ret = ufshcd_reset_and_restore(hba);
10010 		/*
10011 		 * ufshcd_reset_and_restore() should have already
10012 		 * set the link state as active
10013 		 */
10014 		if (ret || !ufshcd_is_link_active(hba))
10015 			goto vendor_suspend;
10016 	}
10017 
10018 	if (!ufshcd_is_ufs_dev_active(hba)) {
10019 		ret = ufshcd_set_dev_pwr_mode(hba, UFS_ACTIVE_PWR_MODE);
10020 		if (ret)
10021 			goto set_old_link_state;
10022 		ufshcd_set_timestamp_attr(hba);
10023 		schedule_delayed_work(&hba->ufs_rtc_update_work,
10024 				      msecs_to_jiffies(UFS_RTC_UPDATE_INTERVAL_MS));
10025 	}
10026 
10027 	if (ufshcd_keep_autobkops_enabled_except_suspend(hba))
10028 		ufshcd_enable_auto_bkops(hba);
10029 	else
10030 		/*
10031 		 * If BKOPs operations are urgently needed at this moment then
10032 		 * keep auto-bkops enabled or else disable it.
10033 		 */
10034 		ufshcd_bkops_ctrl(hba);
10035 
10036 	if (hba->ee_usr_mask)
10037 		ufshcd_write_ee_control(hba);
10038 
10039 	if (ufshcd_is_clkscaling_supported(hba))
10040 		ufshcd_clk_scaling_suspend(hba, false);
10041 
10042 	if (hba->dev_info.b_rpm_dev_flush_capable) {
10043 		hba->dev_info.b_rpm_dev_flush_capable = false;
10044 		cancel_delayed_work(&hba->rpm_dev_flush_recheck_work);
10045 	}
10046 
10047 	ufshcd_configure_auto_hibern8(hba);
10048 
10049 	goto out;
10050 
10051 set_old_link_state:
10052 	ufshcd_link_state_transition(hba, old_link_state, 0);
10053 vendor_suspend:
10054 	ufshcd_vops_suspend(hba, pm_op, PRE_CHANGE);
10055 	ufshcd_vops_suspend(hba, pm_op, POST_CHANGE);
10056 out:
10057 	if (ret)
10058 		ufshcd_update_evt_hist(hba, UFS_EVT_WL_RES_ERR, (u32)ret);
10059 	hba->clk_gating.is_suspended = false;
10060 	ufshcd_release(hba);
10061 	hba->pm_op_in_progress = false;
10062 	return ret;
10063 }
10064 
10065 static int ufshcd_wl_runtime_suspend(struct device *dev)
10066 {
10067 	struct scsi_device *sdev = to_scsi_device(dev);
10068 	struct ufs_hba *hba;
10069 	int ret;
10070 	ktime_t start = ktime_get();
10071 
10072 	hba = shost_priv(sdev->host);
10073 
10074 	ret = __ufshcd_wl_suspend(hba, UFS_RUNTIME_PM);
10075 	if (ret)
10076 		dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
10077 
10078 	trace_ufshcd_wl_runtime_suspend(hba, ret,
10079 		ktime_to_us(ktime_sub(ktime_get(), start)),
10080 		hba->curr_dev_pwr_mode, hba->uic_link_state);
10081 
10082 	return ret;
10083 }
10084 
10085 static int ufshcd_wl_runtime_resume(struct device *dev)
10086 {
10087 	struct scsi_device *sdev = to_scsi_device(dev);
10088 	struct ufs_hba *hba;
10089 	int ret = 0;
10090 	ktime_t start = ktime_get();
10091 
10092 	hba = shost_priv(sdev->host);
10093 
10094 	ret = __ufshcd_wl_resume(hba, UFS_RUNTIME_PM);
10095 	if (ret)
10096 		dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
10097 
10098 	trace_ufshcd_wl_runtime_resume(hba, ret,
10099 		ktime_to_us(ktime_sub(ktime_get(), start)),
10100 		hba->curr_dev_pwr_mode, hba->uic_link_state);
10101 
10102 	return ret;
10103 }
10104 #endif
10105 
10106 #ifdef CONFIG_PM_SLEEP
10107 static int ufshcd_wl_suspend(struct device *dev)
10108 {
10109 	struct scsi_device *sdev = to_scsi_device(dev);
10110 	struct ufs_hba *hba;
10111 	int ret = 0;
10112 	ktime_t start = ktime_get();
10113 
10114 	hba = shost_priv(sdev->host);
10115 	down(&hba->host_sem);
10116 	hba->system_suspending = true;
10117 
10118 	if (pm_runtime_suspended(dev))
10119 		goto out;
10120 
10121 	ret = __ufshcd_wl_suspend(hba, UFS_SYSTEM_PM);
10122 	if (ret) {
10123 		dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__,  ret);
10124 		up(&hba->host_sem);
10125 	}
10126 
10127 out:
10128 	if (!ret)
10129 		hba->is_sys_suspended = true;
10130 	trace_ufshcd_wl_suspend(hba, ret,
10131 		ktime_to_us(ktime_sub(ktime_get(), start)),
10132 		hba->curr_dev_pwr_mode, hba->uic_link_state);
10133 
10134 	return ret;
10135 }
10136 
10137 static int ufshcd_wl_resume(struct device *dev)
10138 {
10139 	struct scsi_device *sdev = to_scsi_device(dev);
10140 	struct ufs_hba *hba;
10141 	int ret = 0;
10142 	ktime_t start = ktime_get();
10143 
10144 	hba = shost_priv(sdev->host);
10145 
10146 	if (pm_runtime_suspended(dev))
10147 		goto out;
10148 
10149 	ret = __ufshcd_wl_resume(hba, UFS_SYSTEM_PM);
10150 	if (ret)
10151 		dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
10152 out:
10153 	trace_ufshcd_wl_resume(hba, ret,
10154 		ktime_to_us(ktime_sub(ktime_get(), start)),
10155 		hba->curr_dev_pwr_mode, hba->uic_link_state);
10156 	if (!ret)
10157 		hba->is_sys_suspended = false;
10158 	hba->system_suspending = false;
10159 	up(&hba->host_sem);
10160 	return ret;
10161 }
10162 #endif
10163 
10164 /**
10165  * ufshcd_suspend - helper function for suspend operations
10166  * @hba: per adapter instance
10167  *
10168  * This function will put disable irqs, turn off clocks
10169  * and set vreg and hba-vreg in lpm mode.
10170  *
10171  * Return: 0 upon success; < 0 upon failure.
10172  */
10173 static int ufshcd_suspend(struct ufs_hba *hba)
10174 {
10175 	int ret;
10176 
10177 	if (!hba->is_powered)
10178 		return 0;
10179 	/*
10180 	 * Disable the host irq as host controller as there won't be any
10181 	 * host controller transaction expected till resume.
10182 	 */
10183 	ufshcd_disable_irq(hba);
10184 	ret = ufshcd_setup_clocks(hba, false);
10185 	if (ret) {
10186 		ufshcd_enable_irq(hba);
10187 		return ret;
10188 	}
10189 	if (ufshcd_is_clkgating_allowed(hba)) {
10190 		hba->clk_gating.state = CLKS_OFF;
10191 		trace_ufshcd_clk_gating(hba,
10192 					hba->clk_gating.state);
10193 	}
10194 
10195 	ufshcd_vreg_set_lpm(hba);
10196 	/* Put the host controller in low power mode if possible */
10197 	ufshcd_hba_vreg_set_lpm(hba);
10198 	ufshcd_pm_qos_update(hba, false);
10199 	return ret;
10200 }
10201 
10202 #ifdef CONFIG_PM
10203 /**
10204  * ufshcd_resume - helper function for resume operations
10205  * @hba: per adapter instance
10206  *
10207  * This function basically turns on the regulators, clocks and
10208  * irqs of the hba.
10209  *
10210  * Return: 0 for success and non-zero for failure.
10211  */
10212 static int ufshcd_resume(struct ufs_hba *hba)
10213 {
10214 	int ret;
10215 
10216 	if (!hba->is_powered)
10217 		return 0;
10218 
10219 	ufshcd_hba_vreg_set_hpm(hba);
10220 	ret = ufshcd_vreg_set_hpm(hba);
10221 	if (ret)
10222 		goto out;
10223 
10224 	/* Make sure clocks are enabled before accessing controller */
10225 	ret = ufshcd_setup_clocks(hba, true);
10226 	if (ret)
10227 		goto disable_vreg;
10228 
10229 	/* enable the host irq as host controller would be active soon */
10230 	ufshcd_enable_irq(hba);
10231 
10232 	goto out;
10233 
10234 disable_vreg:
10235 	ufshcd_vreg_set_lpm(hba);
10236 out:
10237 	if (ret)
10238 		ufshcd_update_evt_hist(hba, UFS_EVT_RESUME_ERR, (u32)ret);
10239 	return ret;
10240 }
10241 #endif /* CONFIG_PM */
10242 
10243 #ifdef CONFIG_PM_SLEEP
10244 /**
10245  * ufshcd_system_suspend - system suspend callback
10246  * @dev: Device associated with the UFS controller.
10247  *
10248  * Executed before putting the system into a sleep state in which the contents
10249  * of main memory are preserved.
10250  *
10251  * Return: 0 for success and non-zero for failure.
10252  */
10253 int ufshcd_system_suspend(struct device *dev)
10254 {
10255 	struct ufs_hba *hba = dev_get_drvdata(dev);
10256 	int ret = 0;
10257 	ktime_t start = ktime_get();
10258 
10259 	if (pm_runtime_suspended(hba->dev))
10260 		goto out;
10261 
10262 	ret = ufshcd_suspend(hba);
10263 out:
10264 	trace_ufshcd_system_suspend(hba, ret,
10265 		ktime_to_us(ktime_sub(ktime_get(), start)),
10266 		hba->curr_dev_pwr_mode, hba->uic_link_state);
10267 	return ret;
10268 }
10269 EXPORT_SYMBOL(ufshcd_system_suspend);
10270 
10271 /**
10272  * ufshcd_system_resume - system resume callback
10273  * @dev: Device associated with the UFS controller.
10274  *
10275  * Executed after waking the system up from a sleep state in which the contents
10276  * of main memory were preserved.
10277  *
10278  * Return: 0 for success and non-zero for failure.
10279  */
10280 int ufshcd_system_resume(struct device *dev)
10281 {
10282 	struct ufs_hba *hba = dev_get_drvdata(dev);
10283 	ktime_t start = ktime_get();
10284 	int ret = 0;
10285 
10286 	if (pm_runtime_suspended(hba->dev))
10287 		goto out;
10288 
10289 	ret = ufshcd_resume(hba);
10290 
10291 out:
10292 	trace_ufshcd_system_resume(hba, ret,
10293 		ktime_to_us(ktime_sub(ktime_get(), start)),
10294 		hba->curr_dev_pwr_mode, hba->uic_link_state);
10295 
10296 	return ret;
10297 }
10298 EXPORT_SYMBOL(ufshcd_system_resume);
10299 #endif /* CONFIG_PM_SLEEP */
10300 
10301 #ifdef CONFIG_PM
10302 /**
10303  * ufshcd_runtime_suspend - runtime suspend callback
10304  * @dev: Device associated with the UFS controller.
10305  *
10306  * Check the description of ufshcd_suspend() function for more details.
10307  *
10308  * Return: 0 for success and non-zero for failure.
10309  */
10310 int ufshcd_runtime_suspend(struct device *dev)
10311 {
10312 	struct ufs_hba *hba = dev_get_drvdata(dev);
10313 	int ret;
10314 	ktime_t start = ktime_get();
10315 
10316 	ret = ufshcd_suspend(hba);
10317 
10318 	trace_ufshcd_runtime_suspend(hba, ret,
10319 		ktime_to_us(ktime_sub(ktime_get(), start)),
10320 		hba->curr_dev_pwr_mode, hba->uic_link_state);
10321 	return ret;
10322 }
10323 EXPORT_SYMBOL(ufshcd_runtime_suspend);
10324 
10325 /**
10326  * ufshcd_runtime_resume - runtime resume routine
10327  * @dev: Device associated with the UFS controller.
10328  *
10329  * This function basically brings controller
10330  * to active state. Following operations are done in this function:
10331  *
10332  * 1. Turn on all the controller related clocks
10333  * 2. Turn ON VCC rail
10334  *
10335  * Return: 0 upon success; < 0 upon failure.
10336  */
10337 int ufshcd_runtime_resume(struct device *dev)
10338 {
10339 	struct ufs_hba *hba = dev_get_drvdata(dev);
10340 	int ret;
10341 	ktime_t start = ktime_get();
10342 
10343 	ret = ufshcd_resume(hba);
10344 
10345 	trace_ufshcd_runtime_resume(hba, ret,
10346 		ktime_to_us(ktime_sub(ktime_get(), start)),
10347 		hba->curr_dev_pwr_mode, hba->uic_link_state);
10348 	return ret;
10349 }
10350 EXPORT_SYMBOL(ufshcd_runtime_resume);
10351 #endif /* CONFIG_PM */
10352 
10353 static void ufshcd_wl_shutdown(struct device *dev)
10354 {
10355 	struct scsi_device *sdev = to_scsi_device(dev);
10356 	struct ufs_hba *hba = shost_priv(sdev->host);
10357 
10358 	down(&hba->host_sem);
10359 	hba->shutting_down = true;
10360 	up(&hba->host_sem);
10361 
10362 	/* Turn on everything while shutting down */
10363 	ufshcd_rpm_get_sync(hba);
10364 	scsi_device_quiesce(sdev);
10365 	shost_for_each_device(sdev, hba->host) {
10366 		if (sdev == hba->ufs_device_wlun)
10367 			continue;
10368 		mutex_lock(&sdev->state_mutex);
10369 		scsi_device_set_state(sdev, SDEV_OFFLINE);
10370 		mutex_unlock(&sdev->state_mutex);
10371 	}
10372 	__ufshcd_wl_suspend(hba, UFS_SHUTDOWN_PM);
10373 
10374 	/*
10375 	 * Next, turn off the UFS controller and the UFS regulators. Disable
10376 	 * clocks.
10377 	 */
10378 	if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba))
10379 		ufshcd_suspend(hba);
10380 
10381 	hba->is_powered = false;
10382 }
10383 
10384 /**
10385  * ufshcd_remove - de-allocate SCSI host and host memory space
10386  *		data structure memory
10387  * @hba: per adapter instance
10388  */
10389 void ufshcd_remove(struct ufs_hba *hba)
10390 {
10391 	if (hba->ufs_device_wlun)
10392 		ufshcd_rpm_get_sync(hba);
10393 	ufs_hwmon_remove(hba);
10394 	ufs_bsg_remove(hba);
10395 	ufs_sysfs_remove_nodes(hba->dev);
10396 	cancel_delayed_work_sync(&hba->ufs_rtc_update_work);
10397 	blk_mq_destroy_queue(hba->tmf_queue);
10398 	blk_put_queue(hba->tmf_queue);
10399 	blk_mq_free_tag_set(&hba->tmf_tag_set);
10400 	if (hba->scsi_host_added)
10401 		scsi_remove_host(hba->host);
10402 	/* disable interrupts */
10403 	ufshcd_disable_intr(hba, hba->intr_mask);
10404 	ufshcd_hba_stop(hba);
10405 	ufshcd_hba_exit(hba);
10406 }
10407 EXPORT_SYMBOL_GPL(ufshcd_remove);
10408 
10409 #ifdef CONFIG_PM_SLEEP
10410 int ufshcd_system_freeze(struct device *dev)
10411 {
10412 
10413 	return ufshcd_system_suspend(dev);
10414 
10415 }
10416 EXPORT_SYMBOL_GPL(ufshcd_system_freeze);
10417 
10418 int ufshcd_system_restore(struct device *dev)
10419 {
10420 
10421 	struct ufs_hba *hba = dev_get_drvdata(dev);
10422 	int ret;
10423 
10424 	ret = ufshcd_system_resume(dev);
10425 	if (ret)
10426 		return ret;
10427 
10428 	/* Configure UTRL and UTMRL base address registers */
10429 	ufshcd_writel(hba, lower_32_bits(hba->utrdl_dma_addr),
10430 			REG_UTP_TRANSFER_REQ_LIST_BASE_L);
10431 	ufshcd_writel(hba, upper_32_bits(hba->utrdl_dma_addr),
10432 			REG_UTP_TRANSFER_REQ_LIST_BASE_H);
10433 	ufshcd_writel(hba, lower_32_bits(hba->utmrdl_dma_addr),
10434 			REG_UTP_TASK_REQ_LIST_BASE_L);
10435 	ufshcd_writel(hba, upper_32_bits(hba->utmrdl_dma_addr),
10436 			REG_UTP_TASK_REQ_LIST_BASE_H);
10437 	/*
10438 	 * Make sure that UTRL and UTMRL base address registers
10439 	 * are updated with the latest queue addresses. Only after
10440 	 * updating these addresses, we can queue the new commands.
10441 	 */
10442 	ufshcd_readl(hba, REG_UTP_TASK_REQ_LIST_BASE_H);
10443 
10444 	return 0;
10445 
10446 }
10447 EXPORT_SYMBOL_GPL(ufshcd_system_restore);
10448 
10449 int ufshcd_system_thaw(struct device *dev)
10450 {
10451 	return ufshcd_system_resume(dev);
10452 }
10453 EXPORT_SYMBOL_GPL(ufshcd_system_thaw);
10454 #endif /* CONFIG_PM_SLEEP  */
10455 
10456 /**
10457  * ufshcd_set_dma_mask - Set dma mask based on the controller
10458  *			 addressing capability
10459  * @hba: per adapter instance
10460  *
10461  * Return: 0 for success, non-zero for failure.
10462  */
10463 static int ufshcd_set_dma_mask(struct ufs_hba *hba)
10464 {
10465 	if (hba->vops && hba->vops->set_dma_mask)
10466 		return hba->vops->set_dma_mask(hba);
10467 	if (hba->capabilities & MASK_64_ADDRESSING_SUPPORT) {
10468 		if (!dma_set_mask_and_coherent(hba->dev, DMA_BIT_MASK(64)))
10469 			return 0;
10470 	}
10471 	return dma_set_mask_and_coherent(hba->dev, DMA_BIT_MASK(32));
10472 }
10473 
10474 /**
10475  * ufshcd_devres_release - devres cleanup handler, invoked during release of
10476  *			   hba->dev
10477  * @host: pointer to SCSI host
10478  */
10479 static void ufshcd_devres_release(void *host)
10480 {
10481 	scsi_host_put(host);
10482 }
10483 
10484 /**
10485  * ufshcd_alloc_host - allocate Host Bus Adapter (HBA)
10486  * @dev: pointer to device handle
10487  * @hba_handle: driver private handle
10488  *
10489  * Return: 0 on success, non-zero value on failure.
10490  *
10491  * NOTE: There is no corresponding ufshcd_dealloc_host() because this function
10492  * keeps track of its allocations using devres and deallocates everything on
10493  * device removal automatically.
10494  */
10495 int ufshcd_alloc_host(struct device *dev, struct ufs_hba **hba_handle)
10496 {
10497 	struct Scsi_Host *host;
10498 	struct ufs_hba *hba;
10499 	int err = 0;
10500 
10501 	if (!dev) {
10502 		dev_err(dev,
10503 		"Invalid memory reference for dev is NULL\n");
10504 		err = -ENODEV;
10505 		goto out_error;
10506 	}
10507 
10508 	host = scsi_host_alloc(&ufshcd_driver_template,
10509 				sizeof(struct ufs_hba));
10510 	if (!host) {
10511 		dev_err(dev, "scsi_host_alloc failed\n");
10512 		err = -ENOMEM;
10513 		goto out_error;
10514 	}
10515 
10516 	err = devm_add_action_or_reset(dev, ufshcd_devres_release,
10517 				       host);
10518 	if (err)
10519 		return dev_err_probe(dev, err,
10520 				     "failed to add ufshcd dealloc action\n");
10521 
10522 	host->nr_maps = HCTX_TYPE_POLL + 1;
10523 	hba = shost_priv(host);
10524 	hba->host = host;
10525 	hba->dev = dev;
10526 	hba->dev_ref_clk_freq = REF_CLK_FREQ_INVAL;
10527 	hba->nop_out_timeout = NOP_OUT_TIMEOUT;
10528 	ufshcd_set_sg_entry_size(hba, sizeof(struct ufshcd_sg_entry));
10529 	INIT_LIST_HEAD(&hba->clk_list_head);
10530 	spin_lock_init(&hba->outstanding_lock);
10531 
10532 	*hba_handle = hba;
10533 
10534 out_error:
10535 	return err;
10536 }
10537 EXPORT_SYMBOL(ufshcd_alloc_host);
10538 
10539 /* This function exists because blk_mq_alloc_tag_set() requires this. */
10540 static blk_status_t ufshcd_queue_tmf(struct blk_mq_hw_ctx *hctx,
10541 				     const struct blk_mq_queue_data *qd)
10542 {
10543 	WARN_ON_ONCE(true);
10544 	return BLK_STS_NOTSUPP;
10545 }
10546 
10547 static const struct blk_mq_ops ufshcd_tmf_ops = {
10548 	.queue_rq = ufshcd_queue_tmf,
10549 };
10550 
10551 static int ufshcd_add_scsi_host(struct ufs_hba *hba)
10552 {
10553 	int err;
10554 
10555 	if (is_mcq_supported(hba)) {
10556 		ufshcd_mcq_enable(hba);
10557 		err = ufshcd_alloc_mcq(hba);
10558 		if (!err) {
10559 			ufshcd_config_mcq(hba);
10560 		} else {
10561 			/* Continue with SDB mode */
10562 			ufshcd_mcq_disable(hba);
10563 			use_mcq_mode = false;
10564 			dev_err(hba->dev, "MCQ mode is disabled, err=%d\n",
10565 				err);
10566 		}
10567 	}
10568 	if (!is_mcq_supported(hba) && !hba->lsdb_sup) {
10569 		dev_err(hba->dev,
10570 			"%s: failed to initialize (legacy doorbell mode not supported)\n",
10571 			__func__);
10572 		return -EINVAL;
10573 	}
10574 
10575 	err = scsi_add_host(hba->host, hba->dev);
10576 	if (err) {
10577 		dev_err(hba->dev, "scsi_add_host failed\n");
10578 		return err;
10579 	}
10580 	hba->scsi_host_added = true;
10581 
10582 	hba->tmf_tag_set = (struct blk_mq_tag_set) {
10583 		.nr_hw_queues	= 1,
10584 		.queue_depth	= hba->nutmrs,
10585 		.ops		= &ufshcd_tmf_ops,
10586 	};
10587 	err = blk_mq_alloc_tag_set(&hba->tmf_tag_set);
10588 	if (err < 0)
10589 		goto remove_scsi_host;
10590 	hba->tmf_queue = blk_mq_alloc_queue(&hba->tmf_tag_set, NULL, NULL);
10591 	if (IS_ERR(hba->tmf_queue)) {
10592 		err = PTR_ERR(hba->tmf_queue);
10593 		goto free_tmf_tag_set;
10594 	}
10595 	hba->tmf_rqs = devm_kcalloc(hba->dev, hba->nutmrs,
10596 				    sizeof(*hba->tmf_rqs), GFP_KERNEL);
10597 	if (!hba->tmf_rqs) {
10598 		err = -ENOMEM;
10599 		goto free_tmf_queue;
10600 	}
10601 
10602 	return 0;
10603 
10604 free_tmf_queue:
10605 	blk_mq_destroy_queue(hba->tmf_queue);
10606 	blk_put_queue(hba->tmf_queue);
10607 
10608 free_tmf_tag_set:
10609 	blk_mq_free_tag_set(&hba->tmf_tag_set);
10610 
10611 remove_scsi_host:
10612 	if (hba->scsi_host_added)
10613 		scsi_remove_host(hba->host);
10614 
10615 	return err;
10616 }
10617 
10618 /**
10619  * ufshcd_init - Driver initialization routine
10620  * @hba: per-adapter instance
10621  * @mmio_base: base register address
10622  * @irq: Interrupt line of device
10623  *
10624  * Return: 0 on success, non-zero value on failure.
10625  */
10626 int ufshcd_init(struct ufs_hba *hba, void __iomem *mmio_base, unsigned int irq)
10627 {
10628 	int err;
10629 	struct Scsi_Host *host = hba->host;
10630 	struct device *dev = hba->dev;
10631 
10632 	/*
10633 	 * dev_set_drvdata() must be called before any callbacks are registered
10634 	 * that use dev_get_drvdata() (frequency scaling, clock scaling, hwmon,
10635 	 * sysfs).
10636 	 */
10637 	dev_set_drvdata(dev, hba);
10638 
10639 	if (!mmio_base) {
10640 		dev_err(hba->dev,
10641 		"Invalid memory reference for mmio_base is NULL\n");
10642 		err = -ENODEV;
10643 		goto out_error;
10644 	}
10645 
10646 	hba->mmio_base = mmio_base;
10647 	hba->irq = irq;
10648 	hba->vps = &ufs_hba_vps;
10649 
10650 	/*
10651 	 * Initialize clk_gating.lock early since it is being used in
10652 	 * ufshcd_setup_clocks()
10653 	 */
10654 	spin_lock_init(&hba->clk_gating.lock);
10655 
10656 	/*
10657 	 * Set the default power management level for runtime and system PM.
10658 	 * Host controller drivers can override them in their
10659 	 * 'ufs_hba_variant_ops::init' callback.
10660 	 *
10661 	 * Default power saving mode is to keep UFS link in Hibern8 state
10662 	 * and UFS device in sleep state.
10663 	 */
10664 	hba->rpm_lvl = ufs_get_desired_pm_lvl_for_dev_link_state(
10665 						UFS_SLEEP_PWR_MODE,
10666 						UIC_LINK_HIBERN8_STATE);
10667 	hba->spm_lvl = ufs_get_desired_pm_lvl_for_dev_link_state(
10668 						UFS_SLEEP_PWR_MODE,
10669 						UIC_LINK_HIBERN8_STATE);
10670 
10671 	init_completion(&hba->dev_cmd.complete);
10672 
10673 	err = ufshcd_hba_init(hba);
10674 	if (err)
10675 		goto out_error;
10676 
10677 	/* Read capabilities registers */
10678 	err = ufshcd_hba_capabilities(hba);
10679 	if (err)
10680 		goto out_disable;
10681 
10682 	/* Get UFS version supported by the controller */
10683 	hba->ufs_version = ufshcd_get_ufs_version(hba);
10684 
10685 	/* Get Interrupt bit mask per version */
10686 	hba->intr_mask = ufshcd_get_intr_mask(hba);
10687 
10688 	err = ufshcd_set_dma_mask(hba);
10689 	if (err) {
10690 		dev_err(hba->dev, "set dma mask failed\n");
10691 		goto out_disable;
10692 	}
10693 
10694 	/* Allocate memory for host memory space */
10695 	err = ufshcd_memory_alloc(hba);
10696 	if (err) {
10697 		dev_err(hba->dev, "Memory allocation failed\n");
10698 		goto out_disable;
10699 	}
10700 
10701 	/* Configure LRB */
10702 	ufshcd_host_memory_configure(hba);
10703 
10704 	host->can_queue = hba->nutrs - UFSHCD_NUM_RESERVED;
10705 	host->cmd_per_lun = hba->nutrs - UFSHCD_NUM_RESERVED;
10706 	host->max_id = UFSHCD_MAX_ID;
10707 	host->max_lun = UFS_MAX_LUNS;
10708 	host->max_channel = UFSHCD_MAX_CHANNEL;
10709 	host->unique_id = host->host_no;
10710 	host->max_cmd_len = UFS_CDB_SIZE;
10711 	host->queuecommand_may_block = !!(hba->caps & UFSHCD_CAP_CLK_GATING);
10712 
10713 	/* Use default RPM delay if host not set */
10714 	if (host->rpm_autosuspend_delay == 0)
10715 		host->rpm_autosuspend_delay = RPM_AUTOSUSPEND_DELAY_MS;
10716 
10717 	hba->max_pwr_info.is_valid = false;
10718 
10719 	/* Initialize work queues */
10720 	hba->eh_wq = alloc_ordered_workqueue("ufs_eh_wq_%d", WQ_MEM_RECLAIM,
10721 					     hba->host->host_no);
10722 	if (!hba->eh_wq) {
10723 		dev_err(hba->dev, "%s: failed to create eh workqueue\n",
10724 			__func__);
10725 		err = -ENOMEM;
10726 		goto out_disable;
10727 	}
10728 	INIT_WORK(&hba->eh_work, ufshcd_err_handler);
10729 	INIT_WORK(&hba->eeh_work, ufshcd_exception_event_handler);
10730 
10731 	sema_init(&hba->host_sem, 1);
10732 
10733 	/* Initialize UIC command mutex */
10734 	mutex_init(&hba->uic_cmd_mutex);
10735 
10736 	/* Initialize mutex for device management commands */
10737 	mutex_init(&hba->dev_cmd.lock);
10738 
10739 	/* Initialize mutex for exception event control */
10740 	mutex_init(&hba->ee_ctrl_mutex);
10741 
10742 	mutex_init(&hba->wb_mutex);
10743 	init_rwsem(&hba->clk_scaling_lock);
10744 
10745 	ufshcd_init_clk_gating(hba);
10746 
10747 	ufshcd_init_clk_scaling(hba);
10748 
10749 	/*
10750 	 * In order to avoid any spurious interrupt immediately after
10751 	 * registering UFS controller interrupt handler, clear any pending UFS
10752 	 * interrupt status and disable all the UFS interrupts.
10753 	 */
10754 	ufshcd_writel(hba, ufshcd_readl(hba, REG_INTERRUPT_STATUS),
10755 		      REG_INTERRUPT_STATUS);
10756 	ufshcd_writel(hba, 0, REG_INTERRUPT_ENABLE);
10757 	/*
10758 	 * Make sure that UFS interrupts are disabled and any pending interrupt
10759 	 * status is cleared before registering UFS interrupt handler.
10760 	 */
10761 	ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
10762 
10763 	/* IRQ registration */
10764 	err = devm_request_threaded_irq(dev, irq, ufshcd_intr, ufshcd_threaded_intr,
10765 					IRQF_ONESHOT | IRQF_SHARED, UFSHCD, hba);
10766 	if (err) {
10767 		dev_err(hba->dev, "request irq failed\n");
10768 		goto out_disable;
10769 	} else {
10770 		hba->is_irq_enabled = true;
10771 	}
10772 
10773 	/* Reset the attached device */
10774 	ufshcd_device_reset(hba);
10775 
10776 	ufshcd_init_crypto(hba);
10777 
10778 	/* Host controller enable */
10779 	err = ufshcd_hba_enable(hba);
10780 	if (err) {
10781 		dev_err(hba->dev, "Host controller enable failed\n");
10782 		ufshcd_print_evt_hist(hba);
10783 		ufshcd_print_host_state(hba);
10784 		goto out_disable;
10785 	}
10786 
10787 	INIT_DELAYED_WORK(&hba->rpm_dev_flush_recheck_work, ufshcd_rpm_dev_flush_recheck_work);
10788 	INIT_DELAYED_WORK(&hba->ufs_rtc_update_work, ufshcd_rtc_work);
10789 
10790 	/* Set the default auto-hiberate idle timer value to 150 ms */
10791 	if (ufshcd_is_auto_hibern8_supported(hba) && !hba->ahit) {
10792 		hba->ahit = FIELD_PREP(UFSHCI_AHIBERN8_TIMER_MASK, 150) |
10793 			    FIELD_PREP(UFSHCI_AHIBERN8_SCALE_MASK, 3);
10794 	}
10795 
10796 	/* Hold auto suspend until async scan completes */
10797 	pm_runtime_get_sync(dev);
10798 
10799 	/*
10800 	 * We are assuming that device wasn't put in sleep/power-down
10801 	 * state exclusively during the boot stage before kernel.
10802 	 * This assumption helps avoid doing link startup twice during
10803 	 * ufshcd_probe_hba().
10804 	 */
10805 	ufshcd_set_ufs_dev_active(hba);
10806 
10807 	/* Initialize hba, detect and initialize UFS device */
10808 	ktime_t probe_start = ktime_get();
10809 
10810 	hba->ufshcd_state = UFSHCD_STATE_RESET;
10811 
10812 	err = ufshcd_link_startup(hba);
10813 	if (err)
10814 		goto out_disable;
10815 
10816 	if (hba->quirks & UFSHCD_QUIRK_SKIP_PH_CONFIGURATION)
10817 		goto initialized;
10818 
10819 	/* Debug counters initialization */
10820 	ufshcd_clear_dbg_ufs_stats(hba);
10821 
10822 	/* UniPro link is active now */
10823 	ufshcd_set_link_active(hba);
10824 
10825 	/* Verify device initialization by sending NOP OUT UPIU */
10826 	err = ufshcd_verify_dev_init(hba);
10827 	if (err)
10828 		goto out_disable;
10829 
10830 	/* Initiate UFS initialization, and waiting until completion */
10831 	err = ufshcd_complete_dev_init(hba);
10832 	if (err)
10833 		goto out_disable;
10834 
10835 	err = ufshcd_device_params_init(hba);
10836 	if (err)
10837 		goto out_disable;
10838 
10839 	err = ufshcd_post_device_init(hba);
10840 
10841 initialized:
10842 	ufshcd_process_probe_result(hba, probe_start, err);
10843 	if (err)
10844 		goto out_disable;
10845 
10846 	err = ufshcd_add_scsi_host(hba);
10847 	if (err)
10848 		goto out_disable;
10849 
10850 	async_schedule(ufshcd_async_scan, hba);
10851 	ufs_sysfs_add_nodes(hba->dev);
10852 
10853 	device_enable_async_suspend(dev);
10854 	ufshcd_pm_qos_init(hba);
10855 	return 0;
10856 
10857 out_disable:
10858 	hba->is_irq_enabled = false;
10859 	ufshcd_hba_exit(hba);
10860 out_error:
10861 	return err;
10862 }
10863 EXPORT_SYMBOL_GPL(ufshcd_init);
10864 
10865 void ufshcd_resume_complete(struct device *dev)
10866 {
10867 	struct ufs_hba *hba = dev_get_drvdata(dev);
10868 
10869 	if (hba->complete_put) {
10870 		ufshcd_rpm_put(hba);
10871 		hba->complete_put = false;
10872 	}
10873 }
10874 EXPORT_SYMBOL_GPL(ufshcd_resume_complete);
10875 
10876 static bool ufshcd_rpm_ok_for_spm(struct ufs_hba *hba)
10877 {
10878 	struct device *dev = &hba->ufs_device_wlun->sdev_gendev;
10879 	enum ufs_dev_pwr_mode dev_pwr_mode;
10880 	enum uic_link_state link_state;
10881 	unsigned long flags;
10882 	bool res;
10883 
10884 	spin_lock_irqsave(&dev->power.lock, flags);
10885 	dev_pwr_mode = ufs_get_pm_lvl_to_dev_pwr_mode(hba->spm_lvl);
10886 	link_state = ufs_get_pm_lvl_to_link_pwr_state(hba->spm_lvl);
10887 	res = pm_runtime_suspended(dev) &&
10888 	      hba->curr_dev_pwr_mode == dev_pwr_mode &&
10889 	      hba->uic_link_state == link_state &&
10890 	      !hba->dev_info.b_rpm_dev_flush_capable;
10891 	spin_unlock_irqrestore(&dev->power.lock, flags);
10892 
10893 	return res;
10894 }
10895 
10896 int __ufshcd_suspend_prepare(struct device *dev, bool rpm_ok_for_spm)
10897 {
10898 	struct ufs_hba *hba = dev_get_drvdata(dev);
10899 	int ret;
10900 
10901 	/*
10902 	 * SCSI assumes that runtime-pm and system-pm for scsi drivers
10903 	 * are same. And it doesn't wake up the device for system-suspend
10904 	 * if it's runtime suspended. But ufs doesn't follow that.
10905 	 * Refer ufshcd_resume_complete()
10906 	 */
10907 	if (hba->ufs_device_wlun) {
10908 		/* Prevent runtime suspend */
10909 		ufshcd_rpm_get_noresume(hba);
10910 		/*
10911 		 * Check if already runtime suspended in same state as system
10912 		 * suspend would be.
10913 		 */
10914 		if (!rpm_ok_for_spm || !ufshcd_rpm_ok_for_spm(hba)) {
10915 			/* RPM state is not ok for SPM, so runtime resume */
10916 			ret = ufshcd_rpm_resume(hba);
10917 			if (ret < 0 && ret != -EACCES) {
10918 				ufshcd_rpm_put(hba);
10919 				return ret;
10920 			}
10921 		}
10922 		hba->complete_put = true;
10923 	}
10924 	return 0;
10925 }
10926 EXPORT_SYMBOL_GPL(__ufshcd_suspend_prepare);
10927 
10928 int ufshcd_suspend_prepare(struct device *dev)
10929 {
10930 	return __ufshcd_suspend_prepare(dev, true);
10931 }
10932 EXPORT_SYMBOL_GPL(ufshcd_suspend_prepare);
10933 
10934 #ifdef CONFIG_PM_SLEEP
10935 static int ufshcd_wl_poweroff(struct device *dev)
10936 {
10937 	struct scsi_device *sdev = to_scsi_device(dev);
10938 	struct ufs_hba *hba = shost_priv(sdev->host);
10939 
10940 	__ufshcd_wl_suspend(hba, UFS_SHUTDOWN_PM);
10941 	return 0;
10942 }
10943 #endif
10944 
10945 static int ufshcd_wl_probe(struct device *dev)
10946 {
10947 	struct scsi_device *sdev = to_scsi_device(dev);
10948 
10949 	if (!is_device_wlun(sdev))
10950 		return -ENODEV;
10951 
10952 	blk_pm_runtime_init(sdev->request_queue, dev);
10953 	pm_runtime_set_autosuspend_delay(dev, 0);
10954 	pm_runtime_allow(dev);
10955 
10956 	return  0;
10957 }
10958 
10959 static int ufshcd_wl_remove(struct device *dev)
10960 {
10961 	pm_runtime_forbid(dev);
10962 	return 0;
10963 }
10964 
10965 static const struct dev_pm_ops ufshcd_wl_pm_ops = {
10966 #ifdef CONFIG_PM_SLEEP
10967 	.suspend = ufshcd_wl_suspend,
10968 	.resume = ufshcd_wl_resume,
10969 	.freeze = ufshcd_wl_suspend,
10970 	.thaw = ufshcd_wl_resume,
10971 	.poweroff = ufshcd_wl_poweroff,
10972 	.restore = ufshcd_wl_resume,
10973 #endif
10974 	SET_RUNTIME_PM_OPS(ufshcd_wl_runtime_suspend, ufshcd_wl_runtime_resume, NULL)
10975 };
10976 
10977 static void ufshcd_check_header_layout(void)
10978 {
10979 	/*
10980 	 * gcc compilers before version 10 cannot do constant-folding for
10981 	 * sub-byte bitfields. Hence skip the layout checks for gcc 9 and
10982 	 * before.
10983 	 */
10984 	if (IS_ENABLED(CONFIG_CC_IS_GCC) && CONFIG_GCC_VERSION < 100000)
10985 		return;
10986 
10987 	BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10988 				.cci = 3})[0] != 3);
10989 
10990 	BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10991 				.ehs_length = 2})[1] != 2);
10992 
10993 	BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10994 				.enable_crypto = 1})[2]
10995 		     != 0x80);
10996 
10997 	BUILD_BUG_ON((((u8 *)&(struct request_desc_header){
10998 					.command_type = 5,
10999 					.data_direction = 3,
11000 					.interrupt = 1,
11001 				})[3]) != ((5 << 4) | (3 << 1) | 1));
11002 
11003 	BUILD_BUG_ON(((__le32 *)&(struct request_desc_header){
11004 				.dunl = cpu_to_le32(0xdeadbeef)})[1] !=
11005 		cpu_to_le32(0xdeadbeef));
11006 
11007 	BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
11008 				.ocs = 4})[8] != 4);
11009 
11010 	BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
11011 				.cds = 5})[9] != 5);
11012 
11013 	BUILD_BUG_ON(((__le32 *)&(struct request_desc_header){
11014 				.dunu = cpu_to_le32(0xbadcafe)})[3] !=
11015 		cpu_to_le32(0xbadcafe));
11016 
11017 	BUILD_BUG_ON(((u8 *)&(struct utp_upiu_header){
11018 			     .iid = 0xf })[4] != 0xf0);
11019 
11020 	BUILD_BUG_ON(((u8 *)&(struct utp_upiu_header){
11021 			     .command_set_type = 0xf })[4] != 0xf);
11022 }
11023 
11024 /*
11025  * ufs_dev_wlun_template - describes ufs device wlun
11026  * ufs-device wlun - used to send pm commands
11027  * All luns are consumers of ufs-device wlun.
11028  *
11029  * Currently, no sd driver is present for wluns.
11030  * Hence the no specific pm operations are performed.
11031  * With ufs design, SSU should be sent to ufs-device wlun.
11032  * Hence register a scsi driver for ufs wluns only.
11033  */
11034 static struct scsi_driver ufs_dev_wlun_template = {
11035 	.gendrv = {
11036 		.name = "ufs_device_wlun",
11037 		.probe = ufshcd_wl_probe,
11038 		.remove = ufshcd_wl_remove,
11039 		.pm = &ufshcd_wl_pm_ops,
11040 		.shutdown = ufshcd_wl_shutdown,
11041 	},
11042 };
11043 
11044 static int __init ufshcd_core_init(void)
11045 {
11046 	int ret;
11047 
11048 	ufshcd_check_header_layout();
11049 
11050 	ufs_debugfs_init();
11051 
11052 	ret = scsi_register_driver(&ufs_dev_wlun_template.gendrv);
11053 	if (ret)
11054 		ufs_debugfs_exit();
11055 	return ret;
11056 }
11057 
11058 static void __exit ufshcd_core_exit(void)
11059 {
11060 	ufs_debugfs_exit();
11061 	scsi_unregister_driver(&ufs_dev_wlun_template.gendrv);
11062 }
11063 
11064 module_init(ufshcd_core_init);
11065 module_exit(ufshcd_core_exit);
11066 
11067 MODULE_AUTHOR("Santosh Yaragnavi <santosh.sy@samsung.com>");
11068 MODULE_AUTHOR("Vinayak Holikatti <h.vinayak@samsung.com>");
11069 MODULE_DESCRIPTION("Generic UFS host controller driver Core");
11070 MODULE_SOFTDEP("pre: governor_simpleondemand");
11071 MODULE_LICENSE("GPL");
11072