xref: /linux/drivers/ufs/core/ufshcd.c (revision 72e979225ed2e9427396e317d33050bcf50ad899)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Universal Flash Storage Host controller driver Core
4  * Copyright (C) 2011-2013 Samsung India Software Operations
5  * Copyright (c) 2013-2016, The Linux Foundation. All rights reserved.
6  *
7  * Authors:
8  *	Santosh Yaraganavi <santosh.sy@samsung.com>
9  *	Vinayak Holikatti <h.vinayak@samsung.com>
10  */
11 
12 #include <linux/async.h>
13 #include <linux/devfreq.h>
14 #include <linux/nls.h>
15 #include <linux/of.h>
16 #include <linux/bitfield.h>
17 #include <linux/blk-pm.h>
18 #include <linux/blkdev.h>
19 #include <linux/clk.h>
20 #include <linux/delay.h>
21 #include <linux/interrupt.h>
22 #include <linux/module.h>
23 #include <linux/pm_opp.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/sched/clock.h>
26 #include <linux/iopoll.h>
27 #include <scsi/scsi_cmnd.h>
28 #include <scsi/scsi_dbg.h>
29 #include <scsi/scsi_driver.h>
30 #include <scsi/scsi_eh.h>
31 #include "ufshcd-priv.h"
32 #include <ufs/ufs_quirks.h>
33 #include <ufs/unipro.h>
34 #include "ufs-sysfs.h"
35 #include "ufs-debugfs.h"
36 #include "ufs-fault-injection.h"
37 #include "ufs_bsg.h"
38 #include "ufshcd-crypto.h"
39 #include <asm/unaligned.h>
40 
41 #define CREATE_TRACE_POINTS
42 #include "ufs_trace.h"
43 
44 #define UFSHCD_ENABLE_INTRS	(UTP_TRANSFER_REQ_COMPL |\
45 				 UTP_TASK_REQ_COMPL |\
46 				 UFSHCD_ERROR_MASK)
47 
48 #define UFSHCD_ENABLE_MCQ_INTRS	(UTP_TASK_REQ_COMPL |\
49 				 UFSHCD_ERROR_MASK |\
50 				 MCQ_CQ_EVENT_STATUS)
51 
52 
53 /* UIC command timeout, unit: ms */
54 enum {
55 	UIC_CMD_TIMEOUT_DEFAULT	= 500,
56 	UIC_CMD_TIMEOUT_MAX	= 2000,
57 };
58 /* NOP OUT retries waiting for NOP IN response */
59 #define NOP_OUT_RETRIES    10
60 /* Timeout after 50 msecs if NOP OUT hangs without response */
61 #define NOP_OUT_TIMEOUT    50 /* msecs */
62 
63 /* Query request retries */
64 #define QUERY_REQ_RETRIES 3
65 /* Query request timeout */
66 #define QUERY_REQ_TIMEOUT 1500 /* 1.5 seconds */
67 
68 /* Advanced RPMB request timeout */
69 #define ADVANCED_RPMB_REQ_TIMEOUT  3000 /* 3 seconds */
70 
71 /* Task management command timeout */
72 #define TM_CMD_TIMEOUT	100 /* msecs */
73 
74 /* maximum number of retries for a general UIC command  */
75 #define UFS_UIC_COMMAND_RETRIES 3
76 
77 /* maximum number of link-startup retries */
78 #define DME_LINKSTARTUP_RETRIES 3
79 
80 /* maximum number of reset retries before giving up */
81 #define MAX_HOST_RESET_RETRIES 5
82 
83 /* Maximum number of error handler retries before giving up */
84 #define MAX_ERR_HANDLER_RETRIES 5
85 
86 /* Expose the flag value from utp_upiu_query.value */
87 #define MASK_QUERY_UPIU_FLAG_LOC 0xFF
88 
89 /* Interrupt aggregation default timeout, unit: 40us */
90 #define INT_AGGR_DEF_TO	0x02
91 
92 /* default delay of autosuspend: 2000 ms */
93 #define RPM_AUTOSUSPEND_DELAY_MS 2000
94 
95 /* Default delay of RPM device flush delayed work */
96 #define RPM_DEV_FLUSH_RECHECK_WORK_DELAY_MS 5000
97 
98 /* Default value of wait time before gating device ref clock */
99 #define UFSHCD_REF_CLK_GATING_WAIT_US 0xFF /* microsecs */
100 
101 /* Polling time to wait for fDeviceInit */
102 #define FDEVICEINIT_COMPL_TIMEOUT 1500 /* millisecs */
103 
104 /* Default RTC update every 10 seconds */
105 #define UFS_RTC_UPDATE_INTERVAL_MS (10 * MSEC_PER_SEC)
106 
107 /* bMaxNumOfRTT is equal to two after device manufacturing */
108 #define DEFAULT_MAX_NUM_RTT 2
109 
110 /* UFSHC 4.0 compliant HC support this mode. */
111 static bool use_mcq_mode = true;
112 
113 static bool is_mcq_supported(struct ufs_hba *hba)
114 {
115 	return hba->mcq_sup && use_mcq_mode;
116 }
117 
118 module_param(use_mcq_mode, bool, 0644);
119 MODULE_PARM_DESC(use_mcq_mode, "Control MCQ mode for controllers starting from UFSHCI 4.0. 1 - enable MCQ, 0 - disable MCQ. MCQ is enabled by default");
120 
121 static unsigned int uic_cmd_timeout = UIC_CMD_TIMEOUT_DEFAULT;
122 
123 static int uic_cmd_timeout_set(const char *val, const struct kernel_param *kp)
124 {
125 	return param_set_uint_minmax(val, kp, UIC_CMD_TIMEOUT_DEFAULT,
126 				     UIC_CMD_TIMEOUT_MAX);
127 }
128 
129 static const struct kernel_param_ops uic_cmd_timeout_ops = {
130 	.set = uic_cmd_timeout_set,
131 	.get = param_get_uint,
132 };
133 
134 module_param_cb(uic_cmd_timeout, &uic_cmd_timeout_ops, &uic_cmd_timeout, 0644);
135 MODULE_PARM_DESC(uic_cmd_timeout,
136 		 "UFS UIC command timeout in milliseconds. Defaults to 500ms. Supported values range from 500ms to 2 seconds inclusively");
137 
138 #define ufshcd_toggle_vreg(_dev, _vreg, _on)				\
139 	({                                                              \
140 		int _ret;                                               \
141 		if (_on)                                                \
142 			_ret = ufshcd_enable_vreg(_dev, _vreg);         \
143 		else                                                    \
144 			_ret = ufshcd_disable_vreg(_dev, _vreg);        \
145 		_ret;                                                   \
146 	})
147 
148 #define ufshcd_hex_dump(prefix_str, buf, len) do {                       \
149 	size_t __len = (len);                                            \
150 	print_hex_dump(KERN_ERR, prefix_str,                             \
151 		       __len > 4 ? DUMP_PREFIX_OFFSET : DUMP_PREFIX_NONE,\
152 		       16, 4, buf, __len, false);                        \
153 } while (0)
154 
155 int ufshcd_dump_regs(struct ufs_hba *hba, size_t offset, size_t len,
156 		     const char *prefix)
157 {
158 	u32 *regs;
159 	size_t pos;
160 
161 	if (offset % 4 != 0 || len % 4 != 0) /* keep readl happy */
162 		return -EINVAL;
163 
164 	regs = kzalloc(len, GFP_ATOMIC);
165 	if (!regs)
166 		return -ENOMEM;
167 
168 	for (pos = 0; pos < len; pos += 4) {
169 		if (offset == 0 &&
170 		    pos >= REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER &&
171 		    pos <= REG_UIC_ERROR_CODE_DME)
172 			continue;
173 		regs[pos / 4] = ufshcd_readl(hba, offset + pos);
174 	}
175 
176 	ufshcd_hex_dump(prefix, regs, len);
177 	kfree(regs);
178 
179 	return 0;
180 }
181 EXPORT_SYMBOL_GPL(ufshcd_dump_regs);
182 
183 enum {
184 	UFSHCD_MAX_CHANNEL	= 0,
185 	UFSHCD_MAX_ID		= 1,
186 };
187 
188 static const char *const ufshcd_state_name[] = {
189 	[UFSHCD_STATE_RESET]			= "reset",
190 	[UFSHCD_STATE_OPERATIONAL]		= "operational",
191 	[UFSHCD_STATE_ERROR]			= "error",
192 	[UFSHCD_STATE_EH_SCHEDULED_FATAL]	= "eh_fatal",
193 	[UFSHCD_STATE_EH_SCHEDULED_NON_FATAL]	= "eh_non_fatal",
194 };
195 
196 /* UFSHCD error handling flags */
197 enum {
198 	UFSHCD_EH_IN_PROGRESS = (1 << 0),
199 };
200 
201 /* UFSHCD UIC layer error flags */
202 enum {
203 	UFSHCD_UIC_DL_PA_INIT_ERROR = (1 << 0), /* Data link layer error */
204 	UFSHCD_UIC_DL_NAC_RECEIVED_ERROR = (1 << 1), /* Data link layer error */
205 	UFSHCD_UIC_DL_TCx_REPLAY_ERROR = (1 << 2), /* Data link layer error */
206 	UFSHCD_UIC_NL_ERROR = (1 << 3), /* Network layer error */
207 	UFSHCD_UIC_TL_ERROR = (1 << 4), /* Transport Layer error */
208 	UFSHCD_UIC_DME_ERROR = (1 << 5), /* DME error */
209 	UFSHCD_UIC_PA_GENERIC_ERROR = (1 << 6), /* Generic PA error */
210 };
211 
212 #define ufshcd_set_eh_in_progress(h) \
213 	((h)->eh_flags |= UFSHCD_EH_IN_PROGRESS)
214 #define ufshcd_eh_in_progress(h) \
215 	((h)->eh_flags & UFSHCD_EH_IN_PROGRESS)
216 #define ufshcd_clear_eh_in_progress(h) \
217 	((h)->eh_flags &= ~UFSHCD_EH_IN_PROGRESS)
218 
219 const struct ufs_pm_lvl_states ufs_pm_lvl_states[] = {
220 	[UFS_PM_LVL_0] = {UFS_ACTIVE_PWR_MODE, UIC_LINK_ACTIVE_STATE},
221 	[UFS_PM_LVL_1] = {UFS_ACTIVE_PWR_MODE, UIC_LINK_HIBERN8_STATE},
222 	[UFS_PM_LVL_2] = {UFS_SLEEP_PWR_MODE, UIC_LINK_ACTIVE_STATE},
223 	[UFS_PM_LVL_3] = {UFS_SLEEP_PWR_MODE, UIC_LINK_HIBERN8_STATE},
224 	[UFS_PM_LVL_4] = {UFS_POWERDOWN_PWR_MODE, UIC_LINK_HIBERN8_STATE},
225 	[UFS_PM_LVL_5] = {UFS_POWERDOWN_PWR_MODE, UIC_LINK_OFF_STATE},
226 	/*
227 	 * For DeepSleep, the link is first put in hibern8 and then off.
228 	 * Leaving the link in hibern8 is not supported.
229 	 */
230 	[UFS_PM_LVL_6] = {UFS_DEEPSLEEP_PWR_MODE, UIC_LINK_OFF_STATE},
231 };
232 
233 static inline enum ufs_dev_pwr_mode
234 ufs_get_pm_lvl_to_dev_pwr_mode(enum ufs_pm_level lvl)
235 {
236 	return ufs_pm_lvl_states[lvl].dev_state;
237 }
238 
239 static inline enum uic_link_state
240 ufs_get_pm_lvl_to_link_pwr_state(enum ufs_pm_level lvl)
241 {
242 	return ufs_pm_lvl_states[lvl].link_state;
243 }
244 
245 static inline enum ufs_pm_level
246 ufs_get_desired_pm_lvl_for_dev_link_state(enum ufs_dev_pwr_mode dev_state,
247 					enum uic_link_state link_state)
248 {
249 	enum ufs_pm_level lvl;
250 
251 	for (lvl = UFS_PM_LVL_0; lvl < UFS_PM_LVL_MAX; lvl++) {
252 		if ((ufs_pm_lvl_states[lvl].dev_state == dev_state) &&
253 			(ufs_pm_lvl_states[lvl].link_state == link_state))
254 			return lvl;
255 	}
256 
257 	/* if no match found, return the level 0 */
258 	return UFS_PM_LVL_0;
259 }
260 
261 static bool ufshcd_is_ufs_dev_busy(struct ufs_hba *hba)
262 {
263 	return (hba->clk_gating.active_reqs || hba->outstanding_reqs || hba->outstanding_tasks ||
264 		hba->active_uic_cmd || hba->uic_async_done);
265 }
266 
267 static const struct ufs_dev_quirk ufs_fixups[] = {
268 	/* UFS cards deviations table */
269 	{ .wmanufacturerid = UFS_VENDOR_MICRON,
270 	  .model = UFS_ANY_MODEL,
271 	  .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM },
272 	{ .wmanufacturerid = UFS_VENDOR_SAMSUNG,
273 	  .model = UFS_ANY_MODEL,
274 	  .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM |
275 		   UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE |
276 		   UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS },
277 	{ .wmanufacturerid = UFS_VENDOR_SKHYNIX,
278 	  .model = UFS_ANY_MODEL,
279 	  .quirk = UFS_DEVICE_QUIRK_HOST_PA_SAVECONFIGTIME },
280 	{ .wmanufacturerid = UFS_VENDOR_SKHYNIX,
281 	  .model = "hB8aL1" /*H28U62301AMR*/,
282 	  .quirk = UFS_DEVICE_QUIRK_HOST_VS_DEBUGSAVECONFIGTIME },
283 	{ .wmanufacturerid = UFS_VENDOR_TOSHIBA,
284 	  .model = UFS_ANY_MODEL,
285 	  .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM },
286 	{ .wmanufacturerid = UFS_VENDOR_TOSHIBA,
287 	  .model = "THGLF2G9C8KBADG",
288 	  .quirk = UFS_DEVICE_QUIRK_PA_TACTIVATE },
289 	{ .wmanufacturerid = UFS_VENDOR_TOSHIBA,
290 	  .model = "THGLF2G9D8KBADG",
291 	  .quirk = UFS_DEVICE_QUIRK_PA_TACTIVATE },
292 	{}
293 };
294 
295 static irqreturn_t ufshcd_tmc_handler(struct ufs_hba *hba);
296 static void ufshcd_async_scan(void *data, async_cookie_t cookie);
297 static int ufshcd_reset_and_restore(struct ufs_hba *hba);
298 static int ufshcd_eh_host_reset_handler(struct scsi_cmnd *cmd);
299 static int ufshcd_clear_tm_cmd(struct ufs_hba *hba, int tag);
300 static void ufshcd_hba_exit(struct ufs_hba *hba);
301 static int ufshcd_device_init(struct ufs_hba *hba, bool init_dev_params);
302 static int ufshcd_probe_hba(struct ufs_hba *hba, bool init_dev_params);
303 static int ufshcd_setup_clocks(struct ufs_hba *hba, bool on);
304 static inline void ufshcd_add_delay_before_dme_cmd(struct ufs_hba *hba);
305 static int ufshcd_host_reset_and_restore(struct ufs_hba *hba);
306 static void ufshcd_resume_clkscaling(struct ufs_hba *hba);
307 static void ufshcd_suspend_clkscaling(struct ufs_hba *hba);
308 static int ufshcd_scale_clks(struct ufs_hba *hba, unsigned long freq,
309 			     bool scale_up);
310 static irqreturn_t ufshcd_intr(int irq, void *__hba);
311 static int ufshcd_change_power_mode(struct ufs_hba *hba,
312 			     struct ufs_pa_layer_attr *pwr_mode);
313 static int ufshcd_setup_hba_vreg(struct ufs_hba *hba, bool on);
314 static int ufshcd_setup_vreg(struct ufs_hba *hba, bool on);
315 static inline int ufshcd_config_vreg_hpm(struct ufs_hba *hba,
316 					 struct ufs_vreg *vreg);
317 static void ufshcd_wb_toggle_buf_flush_during_h8(struct ufs_hba *hba,
318 						 bool enable);
319 static void ufshcd_hba_vreg_set_lpm(struct ufs_hba *hba);
320 static void ufshcd_hba_vreg_set_hpm(struct ufs_hba *hba);
321 
322 void ufshcd_enable_irq(struct ufs_hba *hba)
323 {
324 	if (!hba->is_irq_enabled) {
325 		enable_irq(hba->irq);
326 		hba->is_irq_enabled = true;
327 	}
328 }
329 EXPORT_SYMBOL_GPL(ufshcd_enable_irq);
330 
331 void ufshcd_disable_irq(struct ufs_hba *hba)
332 {
333 	if (hba->is_irq_enabled) {
334 		disable_irq(hba->irq);
335 		hba->is_irq_enabled = false;
336 	}
337 }
338 EXPORT_SYMBOL_GPL(ufshcd_disable_irq);
339 
340 static void ufshcd_configure_wb(struct ufs_hba *hba)
341 {
342 	if (!ufshcd_is_wb_allowed(hba))
343 		return;
344 
345 	ufshcd_wb_toggle(hba, true);
346 
347 	ufshcd_wb_toggle_buf_flush_during_h8(hba, true);
348 
349 	if (ufshcd_is_wb_buf_flush_allowed(hba))
350 		ufshcd_wb_toggle_buf_flush(hba, true);
351 }
352 
353 static void ufshcd_add_cmd_upiu_trace(struct ufs_hba *hba, unsigned int tag,
354 				      enum ufs_trace_str_t str_t)
355 {
356 	struct utp_upiu_req *rq = hba->lrb[tag].ucd_req_ptr;
357 	struct utp_upiu_header *header;
358 
359 	if (!trace_ufshcd_upiu_enabled())
360 		return;
361 
362 	if (str_t == UFS_CMD_SEND)
363 		header = &rq->header;
364 	else
365 		header = &hba->lrb[tag].ucd_rsp_ptr->header;
366 
367 	trace_ufshcd_upiu(dev_name(hba->dev), str_t, header, &rq->sc.cdb,
368 			  UFS_TSF_CDB);
369 }
370 
371 static void ufshcd_add_query_upiu_trace(struct ufs_hba *hba,
372 					enum ufs_trace_str_t str_t,
373 					struct utp_upiu_req *rq_rsp)
374 {
375 	if (!trace_ufshcd_upiu_enabled())
376 		return;
377 
378 	trace_ufshcd_upiu(dev_name(hba->dev), str_t, &rq_rsp->header,
379 			  &rq_rsp->qr, UFS_TSF_OSF);
380 }
381 
382 static void ufshcd_add_tm_upiu_trace(struct ufs_hba *hba, unsigned int tag,
383 				     enum ufs_trace_str_t str_t)
384 {
385 	struct utp_task_req_desc *descp = &hba->utmrdl_base_addr[tag];
386 
387 	if (!trace_ufshcd_upiu_enabled())
388 		return;
389 
390 	if (str_t == UFS_TM_SEND)
391 		trace_ufshcd_upiu(dev_name(hba->dev), str_t,
392 				  &descp->upiu_req.req_header,
393 				  &descp->upiu_req.input_param1,
394 				  UFS_TSF_TM_INPUT);
395 	else
396 		trace_ufshcd_upiu(dev_name(hba->dev), str_t,
397 				  &descp->upiu_rsp.rsp_header,
398 				  &descp->upiu_rsp.output_param1,
399 				  UFS_TSF_TM_OUTPUT);
400 }
401 
402 static void ufshcd_add_uic_command_trace(struct ufs_hba *hba,
403 					 const struct uic_command *ucmd,
404 					 enum ufs_trace_str_t str_t)
405 {
406 	u32 cmd;
407 
408 	if (!trace_ufshcd_uic_command_enabled())
409 		return;
410 
411 	if (str_t == UFS_CMD_SEND)
412 		cmd = ucmd->command;
413 	else
414 		cmd = ufshcd_readl(hba, REG_UIC_COMMAND);
415 
416 	trace_ufshcd_uic_command(dev_name(hba->dev), str_t, cmd,
417 				 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_1),
418 				 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_2),
419 				 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_3));
420 }
421 
422 static void ufshcd_add_command_trace(struct ufs_hba *hba, unsigned int tag,
423 				     enum ufs_trace_str_t str_t)
424 {
425 	u64 lba = 0;
426 	u8 opcode = 0, group_id = 0;
427 	u32 doorbell = 0;
428 	u32 intr;
429 	int hwq_id = -1;
430 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
431 	struct scsi_cmnd *cmd = lrbp->cmd;
432 	struct request *rq = scsi_cmd_to_rq(cmd);
433 	int transfer_len = -1;
434 
435 	if (!cmd)
436 		return;
437 
438 	/* trace UPIU also */
439 	ufshcd_add_cmd_upiu_trace(hba, tag, str_t);
440 	if (!trace_ufshcd_command_enabled())
441 		return;
442 
443 	opcode = cmd->cmnd[0];
444 
445 	if (opcode == READ_10 || opcode == WRITE_10) {
446 		/*
447 		 * Currently we only fully trace read(10) and write(10) commands
448 		 */
449 		transfer_len =
450 		       be32_to_cpu(lrbp->ucd_req_ptr->sc.exp_data_transfer_len);
451 		lba = scsi_get_lba(cmd);
452 		if (opcode == WRITE_10)
453 			group_id = lrbp->cmd->cmnd[6];
454 	} else if (opcode == UNMAP) {
455 		/*
456 		 * The number of Bytes to be unmapped beginning with the lba.
457 		 */
458 		transfer_len = blk_rq_bytes(rq);
459 		lba = scsi_get_lba(cmd);
460 	}
461 
462 	intr = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
463 
464 	if (hba->mcq_enabled) {
465 		struct ufs_hw_queue *hwq = ufshcd_mcq_req_to_hwq(hba, rq);
466 
467 		hwq_id = hwq->id;
468 	} else {
469 		doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
470 	}
471 	trace_ufshcd_command(cmd->device, str_t, tag, doorbell, hwq_id,
472 			     transfer_len, intr, lba, opcode, group_id);
473 }
474 
475 static void ufshcd_print_clk_freqs(struct ufs_hba *hba)
476 {
477 	struct ufs_clk_info *clki;
478 	struct list_head *head = &hba->clk_list_head;
479 
480 	if (list_empty(head))
481 		return;
482 
483 	list_for_each_entry(clki, head, list) {
484 		if (!IS_ERR_OR_NULL(clki->clk) && clki->min_freq &&
485 				clki->max_freq)
486 			dev_err(hba->dev, "clk: %s, rate: %u\n",
487 					clki->name, clki->curr_freq);
488 	}
489 }
490 
491 static void ufshcd_print_evt(struct ufs_hba *hba, u32 id,
492 			     const char *err_name)
493 {
494 	int i;
495 	bool found = false;
496 	const struct ufs_event_hist *e;
497 
498 	if (id >= UFS_EVT_CNT)
499 		return;
500 
501 	e = &hba->ufs_stats.event[id];
502 
503 	for (i = 0; i < UFS_EVENT_HIST_LENGTH; i++) {
504 		int p = (i + e->pos) % UFS_EVENT_HIST_LENGTH;
505 
506 		if (e->tstamp[p] == 0)
507 			continue;
508 		dev_err(hba->dev, "%s[%d] = 0x%x at %lld us\n", err_name, p,
509 			e->val[p], div_u64(e->tstamp[p], 1000));
510 		found = true;
511 	}
512 
513 	if (!found)
514 		dev_err(hba->dev, "No record of %s\n", err_name);
515 	else
516 		dev_err(hba->dev, "%s: total cnt=%llu\n", err_name, e->cnt);
517 }
518 
519 static void ufshcd_print_evt_hist(struct ufs_hba *hba)
520 {
521 	ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, "host_regs: ");
522 
523 	ufshcd_print_evt(hba, UFS_EVT_PA_ERR, "pa_err");
524 	ufshcd_print_evt(hba, UFS_EVT_DL_ERR, "dl_err");
525 	ufshcd_print_evt(hba, UFS_EVT_NL_ERR, "nl_err");
526 	ufshcd_print_evt(hba, UFS_EVT_TL_ERR, "tl_err");
527 	ufshcd_print_evt(hba, UFS_EVT_DME_ERR, "dme_err");
528 	ufshcd_print_evt(hba, UFS_EVT_AUTO_HIBERN8_ERR,
529 			 "auto_hibern8_err");
530 	ufshcd_print_evt(hba, UFS_EVT_FATAL_ERR, "fatal_err");
531 	ufshcd_print_evt(hba, UFS_EVT_LINK_STARTUP_FAIL,
532 			 "link_startup_fail");
533 	ufshcd_print_evt(hba, UFS_EVT_RESUME_ERR, "resume_fail");
534 	ufshcd_print_evt(hba, UFS_EVT_SUSPEND_ERR,
535 			 "suspend_fail");
536 	ufshcd_print_evt(hba, UFS_EVT_WL_RES_ERR, "wlun resume_fail");
537 	ufshcd_print_evt(hba, UFS_EVT_WL_SUSP_ERR,
538 			 "wlun suspend_fail");
539 	ufshcd_print_evt(hba, UFS_EVT_DEV_RESET, "dev_reset");
540 	ufshcd_print_evt(hba, UFS_EVT_HOST_RESET, "host_reset");
541 	ufshcd_print_evt(hba, UFS_EVT_ABORT, "task_abort");
542 
543 	ufshcd_vops_dbg_register_dump(hba);
544 }
545 
546 static
547 void ufshcd_print_tr(struct ufs_hba *hba, int tag, bool pr_prdt)
548 {
549 	const struct ufshcd_lrb *lrbp;
550 	int prdt_length;
551 
552 	lrbp = &hba->lrb[tag];
553 
554 	dev_err(hba->dev, "UPIU[%d] - issue time %lld us\n",
555 			tag, div_u64(lrbp->issue_time_stamp_local_clock, 1000));
556 	dev_err(hba->dev, "UPIU[%d] - complete time %lld us\n",
557 			tag, div_u64(lrbp->compl_time_stamp_local_clock, 1000));
558 	dev_err(hba->dev,
559 		"UPIU[%d] - Transfer Request Descriptor phys@0x%llx\n",
560 		tag, (u64)lrbp->utrd_dma_addr);
561 
562 	ufshcd_hex_dump("UPIU TRD: ", lrbp->utr_descriptor_ptr,
563 			sizeof(struct utp_transfer_req_desc));
564 	dev_err(hba->dev, "UPIU[%d] - Request UPIU phys@0x%llx\n", tag,
565 		(u64)lrbp->ucd_req_dma_addr);
566 	ufshcd_hex_dump("UPIU REQ: ", lrbp->ucd_req_ptr,
567 			sizeof(struct utp_upiu_req));
568 	dev_err(hba->dev, "UPIU[%d] - Response UPIU phys@0x%llx\n", tag,
569 		(u64)lrbp->ucd_rsp_dma_addr);
570 	ufshcd_hex_dump("UPIU RSP: ", lrbp->ucd_rsp_ptr,
571 			sizeof(struct utp_upiu_rsp));
572 
573 	prdt_length = le16_to_cpu(
574 		lrbp->utr_descriptor_ptr->prd_table_length);
575 	if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN)
576 		prdt_length /= ufshcd_sg_entry_size(hba);
577 
578 	dev_err(hba->dev,
579 		"UPIU[%d] - PRDT - %d entries  phys@0x%llx\n",
580 		tag, prdt_length,
581 		(u64)lrbp->ucd_prdt_dma_addr);
582 
583 	if (pr_prdt)
584 		ufshcd_hex_dump("UPIU PRDT: ", lrbp->ucd_prdt_ptr,
585 			ufshcd_sg_entry_size(hba) * prdt_length);
586 }
587 
588 static bool ufshcd_print_tr_iter(struct request *req, void *priv)
589 {
590 	struct scsi_device *sdev = req->q->queuedata;
591 	struct Scsi_Host *shost = sdev->host;
592 	struct ufs_hba *hba = shost_priv(shost);
593 
594 	ufshcd_print_tr(hba, req->tag, *(bool *)priv);
595 
596 	return true;
597 }
598 
599 /**
600  * ufshcd_print_trs_all - print trs for all started requests.
601  * @hba: per-adapter instance.
602  * @pr_prdt: need to print prdt or not.
603  */
604 static void ufshcd_print_trs_all(struct ufs_hba *hba, bool pr_prdt)
605 {
606 	blk_mq_tagset_busy_iter(&hba->host->tag_set, ufshcd_print_tr_iter, &pr_prdt);
607 }
608 
609 static void ufshcd_print_tmrs(struct ufs_hba *hba, unsigned long bitmap)
610 {
611 	int tag;
612 
613 	for_each_set_bit(tag, &bitmap, hba->nutmrs) {
614 		struct utp_task_req_desc *tmrdp = &hba->utmrdl_base_addr[tag];
615 
616 		dev_err(hba->dev, "TM[%d] - Task Management Header\n", tag);
617 		ufshcd_hex_dump("", tmrdp, sizeof(*tmrdp));
618 	}
619 }
620 
621 static void ufshcd_print_host_state(struct ufs_hba *hba)
622 {
623 	const struct scsi_device *sdev_ufs = hba->ufs_device_wlun;
624 
625 	dev_err(hba->dev, "UFS Host state=%d\n", hba->ufshcd_state);
626 	dev_err(hba->dev, "outstanding reqs=0x%lx tasks=0x%lx\n",
627 		hba->outstanding_reqs, hba->outstanding_tasks);
628 	dev_err(hba->dev, "saved_err=0x%x, saved_uic_err=0x%x\n",
629 		hba->saved_err, hba->saved_uic_err);
630 	dev_err(hba->dev, "Device power mode=%d, UIC link state=%d\n",
631 		hba->curr_dev_pwr_mode, hba->uic_link_state);
632 	dev_err(hba->dev, "PM in progress=%d, sys. suspended=%d\n",
633 		hba->pm_op_in_progress, hba->is_sys_suspended);
634 	dev_err(hba->dev, "Auto BKOPS=%d, Host self-block=%d\n",
635 		hba->auto_bkops_enabled, hba->host->host_self_blocked);
636 	dev_err(hba->dev, "Clk gate=%d\n", hba->clk_gating.state);
637 	dev_err(hba->dev,
638 		"last_hibern8_exit_tstamp at %lld us, hibern8_exit_cnt=%d\n",
639 		div_u64(hba->ufs_stats.last_hibern8_exit_tstamp, 1000),
640 		hba->ufs_stats.hibern8_exit_cnt);
641 	dev_err(hba->dev, "last intr at %lld us, last intr status=0x%x\n",
642 		div_u64(hba->ufs_stats.last_intr_ts, 1000),
643 		hba->ufs_stats.last_intr_status);
644 	dev_err(hba->dev, "error handling flags=0x%x, req. abort count=%d\n",
645 		hba->eh_flags, hba->req_abort_count);
646 	dev_err(hba->dev, "hba->ufs_version=0x%x, Host capabilities=0x%x, caps=0x%x\n",
647 		hba->ufs_version, hba->capabilities, hba->caps);
648 	dev_err(hba->dev, "quirks=0x%x, dev. quirks=0x%x\n", hba->quirks,
649 		hba->dev_quirks);
650 	if (sdev_ufs)
651 		dev_err(hba->dev, "UFS dev info: %.8s %.16s rev %.4s\n",
652 			sdev_ufs->vendor, sdev_ufs->model, sdev_ufs->rev);
653 
654 	ufshcd_print_clk_freqs(hba);
655 }
656 
657 /**
658  * ufshcd_print_pwr_info - print power params as saved in hba
659  * power info
660  * @hba: per-adapter instance
661  */
662 static void ufshcd_print_pwr_info(struct ufs_hba *hba)
663 {
664 	static const char * const names[] = {
665 		"INVALID MODE",
666 		"FAST MODE",
667 		"SLOW_MODE",
668 		"INVALID MODE",
669 		"FASTAUTO_MODE",
670 		"SLOWAUTO_MODE",
671 		"INVALID MODE",
672 	};
673 
674 	/*
675 	 * Using dev_dbg to avoid messages during runtime PM to avoid
676 	 * never-ending cycles of messages written back to storage by user space
677 	 * causing runtime resume, causing more messages and so on.
678 	 */
679 	dev_dbg(hba->dev, "%s:[RX, TX]: gear=[%d, %d], lane[%d, %d], pwr[%s, %s], rate = %d\n",
680 		 __func__,
681 		 hba->pwr_info.gear_rx, hba->pwr_info.gear_tx,
682 		 hba->pwr_info.lane_rx, hba->pwr_info.lane_tx,
683 		 names[hba->pwr_info.pwr_rx],
684 		 names[hba->pwr_info.pwr_tx],
685 		 hba->pwr_info.hs_rate);
686 }
687 
688 static void ufshcd_device_reset(struct ufs_hba *hba)
689 {
690 	int err;
691 
692 	err = ufshcd_vops_device_reset(hba);
693 
694 	if (!err) {
695 		ufshcd_set_ufs_dev_active(hba);
696 		if (ufshcd_is_wb_allowed(hba)) {
697 			hba->dev_info.wb_enabled = false;
698 			hba->dev_info.wb_buf_flush_enabled = false;
699 		}
700 		if (hba->dev_info.rtc_type == UFS_RTC_RELATIVE)
701 			hba->dev_info.rtc_time_baseline = 0;
702 	}
703 	if (err != -EOPNOTSUPP)
704 		ufshcd_update_evt_hist(hba, UFS_EVT_DEV_RESET, err);
705 }
706 
707 void ufshcd_delay_us(unsigned long us, unsigned long tolerance)
708 {
709 	if (!us)
710 		return;
711 
712 	if (us < 10)
713 		udelay(us);
714 	else
715 		usleep_range(us, us + tolerance);
716 }
717 EXPORT_SYMBOL_GPL(ufshcd_delay_us);
718 
719 /**
720  * ufshcd_wait_for_register - wait for register value to change
721  * @hba: per-adapter interface
722  * @reg: mmio register offset
723  * @mask: mask to apply to the read register value
724  * @val: value to wait for
725  * @interval_us: polling interval in microseconds
726  * @timeout_ms: timeout in milliseconds
727  *
728  * Return: -ETIMEDOUT on error, zero on success.
729  */
730 static int ufshcd_wait_for_register(struct ufs_hba *hba, u32 reg, u32 mask,
731 				    u32 val, unsigned long interval_us,
732 				    unsigned long timeout_ms)
733 {
734 	u32 v;
735 
736 	val &= mask; /* ignore bits that we don't intend to wait on */
737 
738 	return read_poll_timeout(ufshcd_readl, v, (v & mask) == val,
739 				 interval_us, timeout_ms * 1000, false, hba, reg);
740 }
741 
742 /**
743  * ufshcd_get_intr_mask - Get the interrupt bit mask
744  * @hba: Pointer to adapter instance
745  *
746  * Return: interrupt bit mask per version
747  */
748 static inline u32 ufshcd_get_intr_mask(struct ufs_hba *hba)
749 {
750 	if (hba->ufs_version <= ufshci_version(2, 0))
751 		return INTERRUPT_MASK_ALL_VER_11;
752 
753 	return INTERRUPT_MASK_ALL_VER_21;
754 }
755 
756 /**
757  * ufshcd_get_ufs_version - Get the UFS version supported by the HBA
758  * @hba: Pointer to adapter instance
759  *
760  * Return: UFSHCI version supported by the controller
761  */
762 static inline u32 ufshcd_get_ufs_version(struct ufs_hba *hba)
763 {
764 	u32 ufshci_ver;
765 
766 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_UFS_HCI_VERSION)
767 		ufshci_ver = ufshcd_vops_get_ufs_hci_version(hba);
768 	else
769 		ufshci_ver = ufshcd_readl(hba, REG_UFS_VERSION);
770 
771 	/*
772 	 * UFSHCI v1.x uses a different version scheme, in order
773 	 * to allow the use of comparisons with the ufshci_version
774 	 * function, we convert it to the same scheme as ufs 2.0+.
775 	 */
776 	if (ufshci_ver & 0x00010000)
777 		return ufshci_version(1, ufshci_ver & 0x00000100);
778 
779 	return ufshci_ver;
780 }
781 
782 /**
783  * ufshcd_is_device_present - Check if any device connected to
784  *			      the host controller
785  * @hba: pointer to adapter instance
786  *
787  * Return: true if device present, false if no device detected
788  */
789 static inline bool ufshcd_is_device_present(struct ufs_hba *hba)
790 {
791 	return ufshcd_readl(hba, REG_CONTROLLER_STATUS) & DEVICE_PRESENT;
792 }
793 
794 /**
795  * ufshcd_get_tr_ocs - Get the UTRD Overall Command Status
796  * @lrbp: pointer to local command reference block
797  * @cqe: pointer to the completion queue entry
798  *
799  * This function is used to get the OCS field from UTRD
800  *
801  * Return: the OCS field in the UTRD.
802  */
803 static enum utp_ocs ufshcd_get_tr_ocs(struct ufshcd_lrb *lrbp,
804 				      struct cq_entry *cqe)
805 {
806 	if (cqe)
807 		return le32_to_cpu(cqe->status) & MASK_OCS;
808 
809 	return lrbp->utr_descriptor_ptr->header.ocs & MASK_OCS;
810 }
811 
812 /**
813  * ufshcd_utrl_clear() - Clear requests from the controller request list.
814  * @hba: per adapter instance
815  * @mask: mask with one bit set for each request to be cleared
816  */
817 static inline void ufshcd_utrl_clear(struct ufs_hba *hba, u32 mask)
818 {
819 	if (hba->quirks & UFSHCI_QUIRK_BROKEN_REQ_LIST_CLR)
820 		mask = ~mask;
821 	/*
822 	 * From the UFSHCI specification: "UTP Transfer Request List CLear
823 	 * Register (UTRLCLR): This field is bit significant. Each bit
824 	 * corresponds to a slot in the UTP Transfer Request List, where bit 0
825 	 * corresponds to request slot 0. A bit in this field is set to ‘0’
826 	 * by host software to indicate to the host controller that a transfer
827 	 * request slot is cleared. The host controller
828 	 * shall free up any resources associated to the request slot
829 	 * immediately, and shall set the associated bit in UTRLDBR to ‘0’. The
830 	 * host software indicates no change to request slots by setting the
831 	 * associated bits in this field to ‘1’. Bits in this field shall only
832 	 * be set ‘1’ or ‘0’ by host software when UTRLRSR is set to ‘1’."
833 	 */
834 	ufshcd_writel(hba, ~mask, REG_UTP_TRANSFER_REQ_LIST_CLEAR);
835 }
836 
837 /**
838  * ufshcd_utmrl_clear - Clear a bit in UTMRLCLR register
839  * @hba: per adapter instance
840  * @pos: position of the bit to be cleared
841  */
842 static inline void ufshcd_utmrl_clear(struct ufs_hba *hba, u32 pos)
843 {
844 	if (hba->quirks & UFSHCI_QUIRK_BROKEN_REQ_LIST_CLR)
845 		ufshcd_writel(hba, (1 << pos), REG_UTP_TASK_REQ_LIST_CLEAR);
846 	else
847 		ufshcd_writel(hba, ~(1 << pos), REG_UTP_TASK_REQ_LIST_CLEAR);
848 }
849 
850 /**
851  * ufshcd_get_lists_status - Check UCRDY, UTRLRDY and UTMRLRDY
852  * @reg: Register value of host controller status
853  *
854  * Return: 0 on success; a positive value if failed.
855  */
856 static inline int ufshcd_get_lists_status(u32 reg)
857 {
858 	return !((reg & UFSHCD_STATUS_READY) == UFSHCD_STATUS_READY);
859 }
860 
861 /**
862  * ufshcd_get_uic_cmd_result - Get the UIC command result
863  * @hba: Pointer to adapter instance
864  *
865  * This function gets the result of UIC command completion
866  *
867  * Return: 0 on success; non-zero value on error.
868  */
869 static inline int ufshcd_get_uic_cmd_result(struct ufs_hba *hba)
870 {
871 	return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_2) &
872 	       MASK_UIC_COMMAND_RESULT;
873 }
874 
875 /**
876  * ufshcd_get_dme_attr_val - Get the value of attribute returned by UIC command
877  * @hba: Pointer to adapter instance
878  *
879  * This function gets UIC command argument3
880  *
881  * Return: 0 on success; non-zero value on error.
882  */
883 static inline u32 ufshcd_get_dme_attr_val(struct ufs_hba *hba)
884 {
885 	return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_3);
886 }
887 
888 /**
889  * ufshcd_get_req_rsp - returns the TR response transaction type
890  * @ucd_rsp_ptr: pointer to response UPIU
891  *
892  * Return: UPIU type.
893  */
894 static inline enum upiu_response_transaction
895 ufshcd_get_req_rsp(struct utp_upiu_rsp *ucd_rsp_ptr)
896 {
897 	return ucd_rsp_ptr->header.transaction_code;
898 }
899 
900 /**
901  * ufshcd_is_exception_event - Check if the device raised an exception event
902  * @ucd_rsp_ptr: pointer to response UPIU
903  *
904  * The function checks if the device raised an exception event indicated in
905  * the Device Information field of response UPIU.
906  *
907  * Return: true if exception is raised, false otherwise.
908  */
909 static inline bool ufshcd_is_exception_event(struct utp_upiu_rsp *ucd_rsp_ptr)
910 {
911 	return ucd_rsp_ptr->header.device_information & 1;
912 }
913 
914 /**
915  * ufshcd_reset_intr_aggr - Reset interrupt aggregation values.
916  * @hba: per adapter instance
917  */
918 static inline void
919 ufshcd_reset_intr_aggr(struct ufs_hba *hba)
920 {
921 	ufshcd_writel(hba, INT_AGGR_ENABLE |
922 		      INT_AGGR_COUNTER_AND_TIMER_RESET,
923 		      REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
924 }
925 
926 /**
927  * ufshcd_config_intr_aggr - Configure interrupt aggregation values.
928  * @hba: per adapter instance
929  * @cnt: Interrupt aggregation counter threshold
930  * @tmout: Interrupt aggregation timeout value
931  */
932 static inline void
933 ufshcd_config_intr_aggr(struct ufs_hba *hba, u8 cnt, u8 tmout)
934 {
935 	ufshcd_writel(hba, INT_AGGR_ENABLE | INT_AGGR_PARAM_WRITE |
936 		      INT_AGGR_COUNTER_THLD_VAL(cnt) |
937 		      INT_AGGR_TIMEOUT_VAL(tmout),
938 		      REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
939 }
940 
941 /**
942  * ufshcd_disable_intr_aggr - Disables interrupt aggregation.
943  * @hba: per adapter instance
944  */
945 static inline void ufshcd_disable_intr_aggr(struct ufs_hba *hba)
946 {
947 	ufshcd_writel(hba, 0, REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
948 }
949 
950 /**
951  * ufshcd_enable_run_stop_reg - Enable run-stop registers,
952  *			When run-stop registers are set to 1, it indicates the
953  *			host controller that it can process the requests
954  * @hba: per adapter instance
955  */
956 static void ufshcd_enable_run_stop_reg(struct ufs_hba *hba)
957 {
958 	ufshcd_writel(hba, UTP_TASK_REQ_LIST_RUN_STOP_BIT,
959 		      REG_UTP_TASK_REQ_LIST_RUN_STOP);
960 	ufshcd_writel(hba, UTP_TRANSFER_REQ_LIST_RUN_STOP_BIT,
961 		      REG_UTP_TRANSFER_REQ_LIST_RUN_STOP);
962 }
963 
964 /**
965  * ufshcd_hba_start - Start controller initialization sequence
966  * @hba: per adapter instance
967  */
968 static inline void ufshcd_hba_start(struct ufs_hba *hba)
969 {
970 	u32 val = CONTROLLER_ENABLE;
971 
972 	if (ufshcd_crypto_enable(hba))
973 		val |= CRYPTO_GENERAL_ENABLE;
974 
975 	ufshcd_writel(hba, val, REG_CONTROLLER_ENABLE);
976 }
977 
978 /**
979  * ufshcd_is_hba_active - Get controller state
980  * @hba: per adapter instance
981  *
982  * Return: true if and only if the controller is active.
983  */
984 bool ufshcd_is_hba_active(struct ufs_hba *hba)
985 {
986 	return ufshcd_readl(hba, REG_CONTROLLER_ENABLE) & CONTROLLER_ENABLE;
987 }
988 EXPORT_SYMBOL_GPL(ufshcd_is_hba_active);
989 
990 /**
991  * ufshcd_pm_qos_init - initialize PM QoS request
992  * @hba: per adapter instance
993  */
994 void ufshcd_pm_qos_init(struct ufs_hba *hba)
995 {
996 
997 	if (hba->pm_qos_enabled)
998 		return;
999 
1000 	cpu_latency_qos_add_request(&hba->pm_qos_req, PM_QOS_DEFAULT_VALUE);
1001 
1002 	if (cpu_latency_qos_request_active(&hba->pm_qos_req))
1003 		hba->pm_qos_enabled = true;
1004 }
1005 
1006 /**
1007  * ufshcd_pm_qos_exit - remove request from PM QoS
1008  * @hba: per adapter instance
1009  */
1010 void ufshcd_pm_qos_exit(struct ufs_hba *hba)
1011 {
1012 	if (!hba->pm_qos_enabled)
1013 		return;
1014 
1015 	cpu_latency_qos_remove_request(&hba->pm_qos_req);
1016 	hba->pm_qos_enabled = false;
1017 }
1018 
1019 /**
1020  * ufshcd_pm_qos_update - update PM QoS request
1021  * @hba: per adapter instance
1022  * @on: If True, vote for perf PM QoS mode otherwise power save mode
1023  */
1024 static void ufshcd_pm_qos_update(struct ufs_hba *hba, bool on)
1025 {
1026 	if (!hba->pm_qos_enabled)
1027 		return;
1028 
1029 	cpu_latency_qos_update_request(&hba->pm_qos_req, on ? 0 : PM_QOS_DEFAULT_VALUE);
1030 }
1031 
1032 /**
1033  * ufshcd_set_clk_freq - set UFS controller clock frequencies
1034  * @hba: per adapter instance
1035  * @scale_up: If True, set max possible frequency othewise set low frequency
1036  *
1037  * Return: 0 if successful; < 0 upon failure.
1038  */
1039 static int ufshcd_set_clk_freq(struct ufs_hba *hba, bool scale_up)
1040 {
1041 	int ret = 0;
1042 	struct ufs_clk_info *clki;
1043 	struct list_head *head = &hba->clk_list_head;
1044 
1045 	if (list_empty(head))
1046 		goto out;
1047 
1048 	list_for_each_entry(clki, head, list) {
1049 		if (!IS_ERR_OR_NULL(clki->clk)) {
1050 			if (scale_up && clki->max_freq) {
1051 				if (clki->curr_freq == clki->max_freq)
1052 					continue;
1053 
1054 				ret = clk_set_rate(clki->clk, clki->max_freq);
1055 				if (ret) {
1056 					dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
1057 						__func__, clki->name,
1058 						clki->max_freq, ret);
1059 					break;
1060 				}
1061 				trace_ufshcd_clk_scaling(dev_name(hba->dev),
1062 						"scaled up", clki->name,
1063 						clki->curr_freq,
1064 						clki->max_freq);
1065 
1066 				clki->curr_freq = clki->max_freq;
1067 
1068 			} else if (!scale_up && clki->min_freq) {
1069 				if (clki->curr_freq == clki->min_freq)
1070 					continue;
1071 
1072 				ret = clk_set_rate(clki->clk, clki->min_freq);
1073 				if (ret) {
1074 					dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
1075 						__func__, clki->name,
1076 						clki->min_freq, ret);
1077 					break;
1078 				}
1079 				trace_ufshcd_clk_scaling(dev_name(hba->dev),
1080 						"scaled down", clki->name,
1081 						clki->curr_freq,
1082 						clki->min_freq);
1083 				clki->curr_freq = clki->min_freq;
1084 			}
1085 		}
1086 		dev_dbg(hba->dev, "%s: clk: %s, rate: %lu\n", __func__,
1087 				clki->name, clk_get_rate(clki->clk));
1088 	}
1089 
1090 out:
1091 	return ret;
1092 }
1093 
1094 int ufshcd_opp_config_clks(struct device *dev, struct opp_table *opp_table,
1095 			   struct dev_pm_opp *opp, void *data,
1096 			   bool scaling_down)
1097 {
1098 	struct ufs_hba *hba = dev_get_drvdata(dev);
1099 	struct list_head *head = &hba->clk_list_head;
1100 	struct ufs_clk_info *clki;
1101 	unsigned long freq;
1102 	u8 idx = 0;
1103 	int ret;
1104 
1105 	list_for_each_entry(clki, head, list) {
1106 		if (!IS_ERR_OR_NULL(clki->clk)) {
1107 			freq = dev_pm_opp_get_freq_indexed(opp, idx++);
1108 
1109 			/* Do not set rate for clocks having frequency as 0 */
1110 			if (!freq)
1111 				continue;
1112 
1113 			ret = clk_set_rate(clki->clk, freq);
1114 			if (ret) {
1115 				dev_err(dev, "%s: %s clk set rate(%ldHz) failed, %d\n",
1116 					__func__, clki->name, freq, ret);
1117 				return ret;
1118 			}
1119 
1120 			trace_ufshcd_clk_scaling(dev_name(dev),
1121 				(scaling_down ? "scaled down" : "scaled up"),
1122 				clki->name, hba->clk_scaling.target_freq, freq);
1123 		}
1124 	}
1125 
1126 	return 0;
1127 }
1128 EXPORT_SYMBOL_GPL(ufshcd_opp_config_clks);
1129 
1130 static int ufshcd_opp_set_rate(struct ufs_hba *hba, unsigned long freq)
1131 {
1132 	struct dev_pm_opp *opp;
1133 	int ret;
1134 
1135 	opp = dev_pm_opp_find_freq_floor_indexed(hba->dev,
1136 						 &freq, 0);
1137 	if (IS_ERR(opp))
1138 		return PTR_ERR(opp);
1139 
1140 	ret = dev_pm_opp_set_opp(hba->dev, opp);
1141 	dev_pm_opp_put(opp);
1142 
1143 	return ret;
1144 }
1145 
1146 /**
1147  * ufshcd_scale_clks - scale up or scale down UFS controller clocks
1148  * @hba: per adapter instance
1149  * @freq: frequency to scale
1150  * @scale_up: True if scaling up and false if scaling down
1151  *
1152  * Return: 0 if successful; < 0 upon failure.
1153  */
1154 static int ufshcd_scale_clks(struct ufs_hba *hba, unsigned long freq,
1155 			     bool scale_up)
1156 {
1157 	int ret = 0;
1158 	ktime_t start = ktime_get();
1159 
1160 	ret = ufshcd_vops_clk_scale_notify(hba, scale_up, PRE_CHANGE);
1161 	if (ret)
1162 		goto out;
1163 
1164 	if (hba->use_pm_opp)
1165 		ret = ufshcd_opp_set_rate(hba, freq);
1166 	else
1167 		ret = ufshcd_set_clk_freq(hba, scale_up);
1168 	if (ret)
1169 		goto out;
1170 
1171 	ret = ufshcd_vops_clk_scale_notify(hba, scale_up, POST_CHANGE);
1172 	if (ret) {
1173 		if (hba->use_pm_opp)
1174 			ufshcd_opp_set_rate(hba,
1175 					    hba->devfreq->previous_freq);
1176 		else
1177 			ufshcd_set_clk_freq(hba, !scale_up);
1178 		goto out;
1179 	}
1180 
1181 	ufshcd_pm_qos_update(hba, scale_up);
1182 
1183 out:
1184 	trace_ufshcd_profile_clk_scaling(dev_name(hba->dev),
1185 			(scale_up ? "up" : "down"),
1186 			ktime_to_us(ktime_sub(ktime_get(), start)), ret);
1187 	return ret;
1188 }
1189 
1190 /**
1191  * ufshcd_is_devfreq_scaling_required - check if scaling is required or not
1192  * @hba: per adapter instance
1193  * @freq: frequency to scale
1194  * @scale_up: True if scaling up and false if scaling down
1195  *
1196  * Return: true if scaling is required, false otherwise.
1197  */
1198 static bool ufshcd_is_devfreq_scaling_required(struct ufs_hba *hba,
1199 					       unsigned long freq, bool scale_up)
1200 {
1201 	struct ufs_clk_info *clki;
1202 	struct list_head *head = &hba->clk_list_head;
1203 
1204 	if (list_empty(head))
1205 		return false;
1206 
1207 	if (hba->use_pm_opp)
1208 		return freq != hba->clk_scaling.target_freq;
1209 
1210 	list_for_each_entry(clki, head, list) {
1211 		if (!IS_ERR_OR_NULL(clki->clk)) {
1212 			if (scale_up && clki->max_freq) {
1213 				if (clki->curr_freq == clki->max_freq)
1214 					continue;
1215 				return true;
1216 			} else if (!scale_up && clki->min_freq) {
1217 				if (clki->curr_freq == clki->min_freq)
1218 					continue;
1219 				return true;
1220 			}
1221 		}
1222 	}
1223 
1224 	return false;
1225 }
1226 
1227 /*
1228  * Determine the number of pending commands by counting the bits in the SCSI
1229  * device budget maps. This approach has been selected because a bit is set in
1230  * the budget map before scsi_host_queue_ready() checks the host_self_blocked
1231  * flag. The host_self_blocked flag can be modified by calling
1232  * scsi_block_requests() or scsi_unblock_requests().
1233  */
1234 static u32 ufshcd_pending_cmds(struct ufs_hba *hba)
1235 {
1236 	const struct scsi_device *sdev;
1237 	unsigned long flags;
1238 	u32 pending = 0;
1239 
1240 	spin_lock_irqsave(hba->host->host_lock, flags);
1241 	__shost_for_each_device(sdev, hba->host)
1242 		pending += sbitmap_weight(&sdev->budget_map);
1243 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1244 
1245 	return pending;
1246 }
1247 
1248 /*
1249  * Wait until all pending SCSI commands and TMFs have finished or the timeout
1250  * has expired.
1251  *
1252  * Return: 0 upon success; -EBUSY upon timeout.
1253  */
1254 static int ufshcd_wait_for_doorbell_clr(struct ufs_hba *hba,
1255 					u64 wait_timeout_us)
1256 {
1257 	int ret = 0;
1258 	u32 tm_doorbell;
1259 	u32 tr_pending;
1260 	bool timeout = false, do_last_check = false;
1261 	ktime_t start;
1262 
1263 	ufshcd_hold(hba);
1264 	/*
1265 	 * Wait for all the outstanding tasks/transfer requests.
1266 	 * Verify by checking the doorbell registers are clear.
1267 	 */
1268 	start = ktime_get();
1269 	do {
1270 		if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL) {
1271 			ret = -EBUSY;
1272 			goto out;
1273 		}
1274 
1275 		tm_doorbell = ufshcd_readl(hba, REG_UTP_TASK_REQ_DOOR_BELL);
1276 		tr_pending = ufshcd_pending_cmds(hba);
1277 		if (!tm_doorbell && !tr_pending) {
1278 			timeout = false;
1279 			break;
1280 		} else if (do_last_check) {
1281 			break;
1282 		}
1283 
1284 		io_schedule_timeout(msecs_to_jiffies(20));
1285 		if (ktime_to_us(ktime_sub(ktime_get(), start)) >
1286 		    wait_timeout_us) {
1287 			timeout = true;
1288 			/*
1289 			 * We might have scheduled out for long time so make
1290 			 * sure to check if doorbells are cleared by this time
1291 			 * or not.
1292 			 */
1293 			do_last_check = true;
1294 		}
1295 	} while (tm_doorbell || tr_pending);
1296 
1297 	if (timeout) {
1298 		dev_err(hba->dev,
1299 			"%s: timedout waiting for doorbell to clear (tm=0x%x, tr=0x%x)\n",
1300 			__func__, tm_doorbell, tr_pending);
1301 		ret = -EBUSY;
1302 	}
1303 out:
1304 	ufshcd_release(hba);
1305 	return ret;
1306 }
1307 
1308 /**
1309  * ufshcd_scale_gear - scale up/down UFS gear
1310  * @hba: per adapter instance
1311  * @scale_up: True for scaling up gear and false for scaling down
1312  *
1313  * Return: 0 for success; -EBUSY if scaling can't happen at this time;
1314  * non-zero for any other errors.
1315  */
1316 static int ufshcd_scale_gear(struct ufs_hba *hba, bool scale_up)
1317 {
1318 	int ret = 0;
1319 	struct ufs_pa_layer_attr new_pwr_info;
1320 
1321 	if (scale_up) {
1322 		memcpy(&new_pwr_info, &hba->clk_scaling.saved_pwr_info,
1323 		       sizeof(struct ufs_pa_layer_attr));
1324 	} else {
1325 		memcpy(&new_pwr_info, &hba->pwr_info,
1326 		       sizeof(struct ufs_pa_layer_attr));
1327 
1328 		if (hba->pwr_info.gear_tx > hba->clk_scaling.min_gear ||
1329 		    hba->pwr_info.gear_rx > hba->clk_scaling.min_gear) {
1330 			/* save the current power mode */
1331 			memcpy(&hba->clk_scaling.saved_pwr_info,
1332 				&hba->pwr_info,
1333 				sizeof(struct ufs_pa_layer_attr));
1334 
1335 			/* scale down gear */
1336 			new_pwr_info.gear_tx = hba->clk_scaling.min_gear;
1337 			new_pwr_info.gear_rx = hba->clk_scaling.min_gear;
1338 		}
1339 	}
1340 
1341 	/* check if the power mode needs to be changed or not? */
1342 	ret = ufshcd_config_pwr_mode(hba, &new_pwr_info);
1343 	if (ret)
1344 		dev_err(hba->dev, "%s: failed err %d, old gear: (tx %d rx %d), new gear: (tx %d rx %d)",
1345 			__func__, ret,
1346 			hba->pwr_info.gear_tx, hba->pwr_info.gear_rx,
1347 			new_pwr_info.gear_tx, new_pwr_info.gear_rx);
1348 
1349 	return ret;
1350 }
1351 
1352 /*
1353  * Wait until all pending SCSI commands and TMFs have finished or the timeout
1354  * has expired.
1355  *
1356  * Return: 0 upon success; -EBUSY upon timeout.
1357  */
1358 static int ufshcd_clock_scaling_prepare(struct ufs_hba *hba, u64 timeout_us)
1359 {
1360 	int ret = 0;
1361 	/*
1362 	 * make sure that there are no outstanding requests when
1363 	 * clock scaling is in progress
1364 	 */
1365 	blk_mq_quiesce_tagset(&hba->host->tag_set);
1366 	mutex_lock(&hba->wb_mutex);
1367 	down_write(&hba->clk_scaling_lock);
1368 
1369 	if (!hba->clk_scaling.is_allowed ||
1370 	    ufshcd_wait_for_doorbell_clr(hba, timeout_us)) {
1371 		ret = -EBUSY;
1372 		up_write(&hba->clk_scaling_lock);
1373 		mutex_unlock(&hba->wb_mutex);
1374 		blk_mq_unquiesce_tagset(&hba->host->tag_set);
1375 		goto out;
1376 	}
1377 
1378 	/* let's not get into low power until clock scaling is completed */
1379 	ufshcd_hold(hba);
1380 
1381 out:
1382 	return ret;
1383 }
1384 
1385 static void ufshcd_clock_scaling_unprepare(struct ufs_hba *hba, int err, bool scale_up)
1386 {
1387 	up_write(&hba->clk_scaling_lock);
1388 
1389 	/* Enable Write Booster if we have scaled up else disable it */
1390 	if (ufshcd_enable_wb_if_scaling_up(hba) && !err)
1391 		ufshcd_wb_toggle(hba, scale_up);
1392 
1393 	mutex_unlock(&hba->wb_mutex);
1394 
1395 	blk_mq_unquiesce_tagset(&hba->host->tag_set);
1396 	ufshcd_release(hba);
1397 }
1398 
1399 /**
1400  * ufshcd_devfreq_scale - scale up/down UFS clocks and gear
1401  * @hba: per adapter instance
1402  * @freq: frequency to scale
1403  * @scale_up: True for scaling up and false for scalin down
1404  *
1405  * Return: 0 for success; -EBUSY if scaling can't happen at this time; non-zero
1406  * for any other errors.
1407  */
1408 static int ufshcd_devfreq_scale(struct ufs_hba *hba, unsigned long freq,
1409 				bool scale_up)
1410 {
1411 	int ret = 0;
1412 
1413 	ret = ufshcd_clock_scaling_prepare(hba, 1 * USEC_PER_SEC);
1414 	if (ret)
1415 		return ret;
1416 
1417 	/* scale down the gear before scaling down clocks */
1418 	if (!scale_up) {
1419 		ret = ufshcd_scale_gear(hba, false);
1420 		if (ret)
1421 			goto out_unprepare;
1422 	}
1423 
1424 	ret = ufshcd_scale_clks(hba, freq, scale_up);
1425 	if (ret) {
1426 		if (!scale_up)
1427 			ufshcd_scale_gear(hba, true);
1428 		goto out_unprepare;
1429 	}
1430 
1431 	/* scale up the gear after scaling up clocks */
1432 	if (scale_up) {
1433 		ret = ufshcd_scale_gear(hba, true);
1434 		if (ret) {
1435 			ufshcd_scale_clks(hba, hba->devfreq->previous_freq,
1436 					  false);
1437 			goto out_unprepare;
1438 		}
1439 	}
1440 
1441 out_unprepare:
1442 	ufshcd_clock_scaling_unprepare(hba, ret, scale_up);
1443 	return ret;
1444 }
1445 
1446 static void ufshcd_clk_scaling_suspend_work(struct work_struct *work)
1447 {
1448 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1449 					   clk_scaling.suspend_work);
1450 	unsigned long irq_flags;
1451 
1452 	spin_lock_irqsave(hba->host->host_lock, irq_flags);
1453 	if (hba->clk_scaling.active_reqs || hba->clk_scaling.is_suspended) {
1454 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1455 		return;
1456 	}
1457 	hba->clk_scaling.is_suspended = true;
1458 	hba->clk_scaling.window_start_t = 0;
1459 	spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1460 
1461 	devfreq_suspend_device(hba->devfreq);
1462 }
1463 
1464 static void ufshcd_clk_scaling_resume_work(struct work_struct *work)
1465 {
1466 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1467 					   clk_scaling.resume_work);
1468 	unsigned long irq_flags;
1469 
1470 	spin_lock_irqsave(hba->host->host_lock, irq_flags);
1471 	if (!hba->clk_scaling.is_suspended) {
1472 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1473 		return;
1474 	}
1475 	hba->clk_scaling.is_suspended = false;
1476 	spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1477 
1478 	devfreq_resume_device(hba->devfreq);
1479 }
1480 
1481 static int ufshcd_devfreq_target(struct device *dev,
1482 				unsigned long *freq, u32 flags)
1483 {
1484 	int ret = 0;
1485 	struct ufs_hba *hba = dev_get_drvdata(dev);
1486 	ktime_t start;
1487 	bool scale_up = false, sched_clk_scaling_suspend_work = false;
1488 	struct list_head *clk_list = &hba->clk_list_head;
1489 	struct ufs_clk_info *clki;
1490 	unsigned long irq_flags;
1491 
1492 	if (!ufshcd_is_clkscaling_supported(hba))
1493 		return -EINVAL;
1494 
1495 	if (hba->use_pm_opp) {
1496 		struct dev_pm_opp *opp;
1497 
1498 		/* Get the recommended frequency from OPP framework */
1499 		opp = devfreq_recommended_opp(dev, freq, flags);
1500 		if (IS_ERR(opp))
1501 			return PTR_ERR(opp);
1502 
1503 		dev_pm_opp_put(opp);
1504 	} else {
1505 		/* Override with the closest supported frequency */
1506 		clki = list_first_entry(&hba->clk_list_head, struct ufs_clk_info,
1507 					list);
1508 		*freq =	(unsigned long) clk_round_rate(clki->clk, *freq);
1509 	}
1510 
1511 	spin_lock_irqsave(hba->host->host_lock, irq_flags);
1512 	if (ufshcd_eh_in_progress(hba)) {
1513 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1514 		return 0;
1515 	}
1516 
1517 	/* Skip scaling clock when clock scaling is suspended */
1518 	if (hba->clk_scaling.is_suspended) {
1519 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1520 		dev_warn(hba->dev, "clock scaling is suspended, skip");
1521 		return 0;
1522 	}
1523 
1524 	if (!hba->clk_scaling.active_reqs)
1525 		sched_clk_scaling_suspend_work = true;
1526 
1527 	if (list_empty(clk_list)) {
1528 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1529 		goto out;
1530 	}
1531 
1532 	/* Decide based on the target or rounded-off frequency and update */
1533 	if (hba->use_pm_opp)
1534 		scale_up = *freq > hba->clk_scaling.target_freq;
1535 	else
1536 		scale_up = *freq == clki->max_freq;
1537 
1538 	if (!hba->use_pm_opp && !scale_up)
1539 		*freq = clki->min_freq;
1540 
1541 	/* Update the frequency */
1542 	if (!ufshcd_is_devfreq_scaling_required(hba, *freq, scale_up)) {
1543 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1544 		ret = 0;
1545 		goto out; /* no state change required */
1546 	}
1547 	spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1548 
1549 	start = ktime_get();
1550 	ret = ufshcd_devfreq_scale(hba, *freq, scale_up);
1551 	if (!ret)
1552 		hba->clk_scaling.target_freq = *freq;
1553 
1554 	trace_ufshcd_profile_clk_scaling(dev_name(hba->dev),
1555 		(scale_up ? "up" : "down"),
1556 		ktime_to_us(ktime_sub(ktime_get(), start)), ret);
1557 
1558 out:
1559 	if (sched_clk_scaling_suspend_work &&
1560 			(!scale_up || hba->clk_scaling.suspend_on_no_request))
1561 		queue_work(hba->clk_scaling.workq,
1562 			   &hba->clk_scaling.suspend_work);
1563 
1564 	return ret;
1565 }
1566 
1567 static int ufshcd_devfreq_get_dev_status(struct device *dev,
1568 		struct devfreq_dev_status *stat)
1569 {
1570 	struct ufs_hba *hba = dev_get_drvdata(dev);
1571 	struct ufs_clk_scaling *scaling = &hba->clk_scaling;
1572 	unsigned long flags;
1573 	ktime_t curr_t;
1574 
1575 	if (!ufshcd_is_clkscaling_supported(hba))
1576 		return -EINVAL;
1577 
1578 	memset(stat, 0, sizeof(*stat));
1579 
1580 	spin_lock_irqsave(hba->host->host_lock, flags);
1581 	curr_t = ktime_get();
1582 	if (!scaling->window_start_t)
1583 		goto start_window;
1584 
1585 	/*
1586 	 * If current frequency is 0, then the ondemand governor considers
1587 	 * there's no initial frequency set. And it always requests to set
1588 	 * to max. frequency.
1589 	 */
1590 	if (hba->use_pm_opp) {
1591 		stat->current_frequency = hba->clk_scaling.target_freq;
1592 	} else {
1593 		struct list_head *clk_list = &hba->clk_list_head;
1594 		struct ufs_clk_info *clki;
1595 
1596 		clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1597 		stat->current_frequency = clki->curr_freq;
1598 	}
1599 
1600 	if (scaling->is_busy_started)
1601 		scaling->tot_busy_t += ktime_us_delta(curr_t,
1602 				scaling->busy_start_t);
1603 	stat->total_time = ktime_us_delta(curr_t, scaling->window_start_t);
1604 	stat->busy_time = scaling->tot_busy_t;
1605 start_window:
1606 	scaling->window_start_t = curr_t;
1607 	scaling->tot_busy_t = 0;
1608 
1609 	if (scaling->active_reqs) {
1610 		scaling->busy_start_t = curr_t;
1611 		scaling->is_busy_started = true;
1612 	} else {
1613 		scaling->busy_start_t = 0;
1614 		scaling->is_busy_started = false;
1615 	}
1616 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1617 	return 0;
1618 }
1619 
1620 static int ufshcd_devfreq_init(struct ufs_hba *hba)
1621 {
1622 	struct list_head *clk_list = &hba->clk_list_head;
1623 	struct ufs_clk_info *clki;
1624 	struct devfreq *devfreq;
1625 	int ret;
1626 
1627 	/* Skip devfreq if we don't have any clocks in the list */
1628 	if (list_empty(clk_list))
1629 		return 0;
1630 
1631 	if (!hba->use_pm_opp) {
1632 		clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1633 		dev_pm_opp_add(hba->dev, clki->min_freq, 0);
1634 		dev_pm_opp_add(hba->dev, clki->max_freq, 0);
1635 	}
1636 
1637 	ufshcd_vops_config_scaling_param(hba, &hba->vps->devfreq_profile,
1638 					 &hba->vps->ondemand_data);
1639 	devfreq = devfreq_add_device(hba->dev,
1640 			&hba->vps->devfreq_profile,
1641 			DEVFREQ_GOV_SIMPLE_ONDEMAND,
1642 			&hba->vps->ondemand_data);
1643 	if (IS_ERR(devfreq)) {
1644 		ret = PTR_ERR(devfreq);
1645 		dev_err(hba->dev, "Unable to register with devfreq %d\n", ret);
1646 
1647 		if (!hba->use_pm_opp) {
1648 			dev_pm_opp_remove(hba->dev, clki->min_freq);
1649 			dev_pm_opp_remove(hba->dev, clki->max_freq);
1650 		}
1651 		return ret;
1652 	}
1653 
1654 	hba->devfreq = devfreq;
1655 
1656 	return 0;
1657 }
1658 
1659 static void ufshcd_devfreq_remove(struct ufs_hba *hba)
1660 {
1661 	struct list_head *clk_list = &hba->clk_list_head;
1662 
1663 	if (!hba->devfreq)
1664 		return;
1665 
1666 	devfreq_remove_device(hba->devfreq);
1667 	hba->devfreq = NULL;
1668 
1669 	if (!hba->use_pm_opp) {
1670 		struct ufs_clk_info *clki;
1671 
1672 		clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1673 		dev_pm_opp_remove(hba->dev, clki->min_freq);
1674 		dev_pm_opp_remove(hba->dev, clki->max_freq);
1675 	}
1676 }
1677 
1678 static void ufshcd_suspend_clkscaling(struct ufs_hba *hba)
1679 {
1680 	unsigned long flags;
1681 	bool suspend = false;
1682 
1683 	cancel_work_sync(&hba->clk_scaling.suspend_work);
1684 	cancel_work_sync(&hba->clk_scaling.resume_work);
1685 
1686 	spin_lock_irqsave(hba->host->host_lock, flags);
1687 	if (!hba->clk_scaling.is_suspended) {
1688 		suspend = true;
1689 		hba->clk_scaling.is_suspended = true;
1690 		hba->clk_scaling.window_start_t = 0;
1691 	}
1692 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1693 
1694 	if (suspend)
1695 		devfreq_suspend_device(hba->devfreq);
1696 }
1697 
1698 static void ufshcd_resume_clkscaling(struct ufs_hba *hba)
1699 {
1700 	unsigned long flags;
1701 	bool resume = false;
1702 
1703 	spin_lock_irqsave(hba->host->host_lock, flags);
1704 	if (hba->clk_scaling.is_suspended) {
1705 		resume = true;
1706 		hba->clk_scaling.is_suspended = false;
1707 	}
1708 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1709 
1710 	if (resume)
1711 		devfreq_resume_device(hba->devfreq);
1712 }
1713 
1714 static ssize_t ufshcd_clkscale_enable_show(struct device *dev,
1715 		struct device_attribute *attr, char *buf)
1716 {
1717 	struct ufs_hba *hba = dev_get_drvdata(dev);
1718 
1719 	return sysfs_emit(buf, "%d\n", hba->clk_scaling.is_enabled);
1720 }
1721 
1722 static ssize_t ufshcd_clkscale_enable_store(struct device *dev,
1723 		struct device_attribute *attr, const char *buf, size_t count)
1724 {
1725 	struct ufs_hba *hba = dev_get_drvdata(dev);
1726 	u32 value;
1727 	int err = 0;
1728 
1729 	if (kstrtou32(buf, 0, &value))
1730 		return -EINVAL;
1731 
1732 	down(&hba->host_sem);
1733 	if (!ufshcd_is_user_access_allowed(hba)) {
1734 		err = -EBUSY;
1735 		goto out;
1736 	}
1737 
1738 	value = !!value;
1739 	if (value == hba->clk_scaling.is_enabled)
1740 		goto out;
1741 
1742 	ufshcd_rpm_get_sync(hba);
1743 	ufshcd_hold(hba);
1744 
1745 	hba->clk_scaling.is_enabled = value;
1746 
1747 	if (value) {
1748 		ufshcd_resume_clkscaling(hba);
1749 	} else {
1750 		ufshcd_suspend_clkscaling(hba);
1751 		err = ufshcd_devfreq_scale(hba, ULONG_MAX, true);
1752 		if (err)
1753 			dev_err(hba->dev, "%s: failed to scale clocks up %d\n",
1754 					__func__, err);
1755 	}
1756 
1757 	ufshcd_release(hba);
1758 	ufshcd_rpm_put_sync(hba);
1759 out:
1760 	up(&hba->host_sem);
1761 	return err ? err : count;
1762 }
1763 
1764 static void ufshcd_init_clk_scaling_sysfs(struct ufs_hba *hba)
1765 {
1766 	hba->clk_scaling.enable_attr.show = ufshcd_clkscale_enable_show;
1767 	hba->clk_scaling.enable_attr.store = ufshcd_clkscale_enable_store;
1768 	sysfs_attr_init(&hba->clk_scaling.enable_attr.attr);
1769 	hba->clk_scaling.enable_attr.attr.name = "clkscale_enable";
1770 	hba->clk_scaling.enable_attr.attr.mode = 0644;
1771 	if (device_create_file(hba->dev, &hba->clk_scaling.enable_attr))
1772 		dev_err(hba->dev, "Failed to create sysfs for clkscale_enable\n");
1773 }
1774 
1775 static void ufshcd_remove_clk_scaling_sysfs(struct ufs_hba *hba)
1776 {
1777 	if (hba->clk_scaling.enable_attr.attr.name)
1778 		device_remove_file(hba->dev, &hba->clk_scaling.enable_attr);
1779 }
1780 
1781 static void ufshcd_init_clk_scaling(struct ufs_hba *hba)
1782 {
1783 	if (!ufshcd_is_clkscaling_supported(hba))
1784 		return;
1785 
1786 	if (!hba->clk_scaling.min_gear)
1787 		hba->clk_scaling.min_gear = UFS_HS_G1;
1788 
1789 	INIT_WORK(&hba->clk_scaling.suspend_work,
1790 		  ufshcd_clk_scaling_suspend_work);
1791 	INIT_WORK(&hba->clk_scaling.resume_work,
1792 		  ufshcd_clk_scaling_resume_work);
1793 
1794 	hba->clk_scaling.workq = alloc_ordered_workqueue(
1795 		"ufs_clkscaling_%d", WQ_MEM_RECLAIM, hba->host->host_no);
1796 
1797 	hba->clk_scaling.is_initialized = true;
1798 }
1799 
1800 static void ufshcd_exit_clk_scaling(struct ufs_hba *hba)
1801 {
1802 	if (!hba->clk_scaling.is_initialized)
1803 		return;
1804 
1805 	ufshcd_remove_clk_scaling_sysfs(hba);
1806 	destroy_workqueue(hba->clk_scaling.workq);
1807 	ufshcd_devfreq_remove(hba);
1808 	hba->clk_scaling.is_initialized = false;
1809 }
1810 
1811 static void ufshcd_ungate_work(struct work_struct *work)
1812 {
1813 	int ret;
1814 	unsigned long flags;
1815 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1816 			clk_gating.ungate_work);
1817 
1818 	cancel_delayed_work_sync(&hba->clk_gating.gate_work);
1819 
1820 	spin_lock_irqsave(hba->host->host_lock, flags);
1821 	if (hba->clk_gating.state == CLKS_ON) {
1822 		spin_unlock_irqrestore(hba->host->host_lock, flags);
1823 		return;
1824 	}
1825 
1826 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1827 	ufshcd_hba_vreg_set_hpm(hba);
1828 	ufshcd_setup_clocks(hba, true);
1829 
1830 	ufshcd_enable_irq(hba);
1831 
1832 	/* Exit from hibern8 */
1833 	if (ufshcd_can_hibern8_during_gating(hba)) {
1834 		/* Prevent gating in this path */
1835 		hba->clk_gating.is_suspended = true;
1836 		if (ufshcd_is_link_hibern8(hba)) {
1837 			ret = ufshcd_uic_hibern8_exit(hba);
1838 			if (ret)
1839 				dev_err(hba->dev, "%s: hibern8 exit failed %d\n",
1840 					__func__, ret);
1841 			else
1842 				ufshcd_set_link_active(hba);
1843 		}
1844 		hba->clk_gating.is_suspended = false;
1845 	}
1846 }
1847 
1848 /**
1849  * ufshcd_hold - Enable clocks that were gated earlier due to ufshcd_release.
1850  * Also, exit from hibern8 mode and set the link as active.
1851  * @hba: per adapter instance
1852  */
1853 void ufshcd_hold(struct ufs_hba *hba)
1854 {
1855 	bool flush_result;
1856 	unsigned long flags;
1857 
1858 	if (!ufshcd_is_clkgating_allowed(hba) ||
1859 	    !hba->clk_gating.is_initialized)
1860 		return;
1861 	spin_lock_irqsave(hba->host->host_lock, flags);
1862 	hba->clk_gating.active_reqs++;
1863 
1864 start:
1865 	switch (hba->clk_gating.state) {
1866 	case CLKS_ON:
1867 		/*
1868 		 * Wait for the ungate work to complete if in progress.
1869 		 * Though the clocks may be in ON state, the link could
1870 		 * still be in hibner8 state if hibern8 is allowed
1871 		 * during clock gating.
1872 		 * Make sure we exit hibern8 state also in addition to
1873 		 * clocks being ON.
1874 		 */
1875 		if (ufshcd_can_hibern8_during_gating(hba) &&
1876 		    ufshcd_is_link_hibern8(hba)) {
1877 			spin_unlock_irqrestore(hba->host->host_lock, flags);
1878 			flush_result = flush_work(&hba->clk_gating.ungate_work);
1879 			if (hba->clk_gating.is_suspended && !flush_result)
1880 				return;
1881 			spin_lock_irqsave(hba->host->host_lock, flags);
1882 			goto start;
1883 		}
1884 		break;
1885 	case REQ_CLKS_OFF:
1886 		if (cancel_delayed_work(&hba->clk_gating.gate_work)) {
1887 			hba->clk_gating.state = CLKS_ON;
1888 			trace_ufshcd_clk_gating(dev_name(hba->dev),
1889 						hba->clk_gating.state);
1890 			break;
1891 		}
1892 		/*
1893 		 * If we are here, it means gating work is either done or
1894 		 * currently running. Hence, fall through to cancel gating
1895 		 * work and to enable clocks.
1896 		 */
1897 		fallthrough;
1898 	case CLKS_OFF:
1899 		hba->clk_gating.state = REQ_CLKS_ON;
1900 		trace_ufshcd_clk_gating(dev_name(hba->dev),
1901 					hba->clk_gating.state);
1902 		queue_work(hba->clk_gating.clk_gating_workq,
1903 			   &hba->clk_gating.ungate_work);
1904 		/*
1905 		 * fall through to check if we should wait for this
1906 		 * work to be done or not.
1907 		 */
1908 		fallthrough;
1909 	case REQ_CLKS_ON:
1910 		spin_unlock_irqrestore(hba->host->host_lock, flags);
1911 		flush_work(&hba->clk_gating.ungate_work);
1912 		/* Make sure state is CLKS_ON before returning */
1913 		spin_lock_irqsave(hba->host->host_lock, flags);
1914 		goto start;
1915 	default:
1916 		dev_err(hba->dev, "%s: clk gating is in invalid state %d\n",
1917 				__func__, hba->clk_gating.state);
1918 		break;
1919 	}
1920 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1921 }
1922 EXPORT_SYMBOL_GPL(ufshcd_hold);
1923 
1924 static void ufshcd_gate_work(struct work_struct *work)
1925 {
1926 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1927 			clk_gating.gate_work.work);
1928 	unsigned long flags;
1929 	int ret;
1930 
1931 	spin_lock_irqsave(hba->host->host_lock, flags);
1932 	/*
1933 	 * In case you are here to cancel this work the gating state
1934 	 * would be marked as REQ_CLKS_ON. In this case save time by
1935 	 * skipping the gating work and exit after changing the clock
1936 	 * state to CLKS_ON.
1937 	 */
1938 	if (hba->clk_gating.is_suspended ||
1939 		(hba->clk_gating.state != REQ_CLKS_OFF)) {
1940 		hba->clk_gating.state = CLKS_ON;
1941 		trace_ufshcd_clk_gating(dev_name(hba->dev),
1942 					hba->clk_gating.state);
1943 		goto rel_lock;
1944 	}
1945 
1946 	if (ufshcd_is_ufs_dev_busy(hba) || hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL)
1947 		goto rel_lock;
1948 
1949 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1950 
1951 	/* put the link into hibern8 mode before turning off clocks */
1952 	if (ufshcd_can_hibern8_during_gating(hba)) {
1953 		ret = ufshcd_uic_hibern8_enter(hba);
1954 		if (ret) {
1955 			hba->clk_gating.state = CLKS_ON;
1956 			dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
1957 					__func__, ret);
1958 			trace_ufshcd_clk_gating(dev_name(hba->dev),
1959 						hba->clk_gating.state);
1960 			goto out;
1961 		}
1962 		ufshcd_set_link_hibern8(hba);
1963 	}
1964 
1965 	ufshcd_disable_irq(hba);
1966 
1967 	ufshcd_setup_clocks(hba, false);
1968 
1969 	/* Put the host controller in low power mode if possible */
1970 	ufshcd_hba_vreg_set_lpm(hba);
1971 	/*
1972 	 * In case you are here to cancel this work the gating state
1973 	 * would be marked as REQ_CLKS_ON. In this case keep the state
1974 	 * as REQ_CLKS_ON which would anyway imply that clocks are off
1975 	 * and a request to turn them on is pending. By doing this way,
1976 	 * we keep the state machine in tact and this would ultimately
1977 	 * prevent from doing cancel work multiple times when there are
1978 	 * new requests arriving before the current cancel work is done.
1979 	 */
1980 	spin_lock_irqsave(hba->host->host_lock, flags);
1981 	if (hba->clk_gating.state == REQ_CLKS_OFF) {
1982 		hba->clk_gating.state = CLKS_OFF;
1983 		trace_ufshcd_clk_gating(dev_name(hba->dev),
1984 					hba->clk_gating.state);
1985 	}
1986 rel_lock:
1987 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1988 out:
1989 	return;
1990 }
1991 
1992 /* host lock must be held before calling this variant */
1993 static void __ufshcd_release(struct ufs_hba *hba)
1994 {
1995 	if (!ufshcd_is_clkgating_allowed(hba))
1996 		return;
1997 
1998 	hba->clk_gating.active_reqs--;
1999 
2000 	if (hba->clk_gating.active_reqs || hba->clk_gating.is_suspended ||
2001 	    hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL ||
2002 	    hba->outstanding_tasks || !hba->clk_gating.is_initialized ||
2003 	    hba->active_uic_cmd || hba->uic_async_done ||
2004 	    hba->clk_gating.state == CLKS_OFF)
2005 		return;
2006 
2007 	hba->clk_gating.state = REQ_CLKS_OFF;
2008 	trace_ufshcd_clk_gating(dev_name(hba->dev), hba->clk_gating.state);
2009 	queue_delayed_work(hba->clk_gating.clk_gating_workq,
2010 			   &hba->clk_gating.gate_work,
2011 			   msecs_to_jiffies(hba->clk_gating.delay_ms));
2012 }
2013 
2014 void ufshcd_release(struct ufs_hba *hba)
2015 {
2016 	unsigned long flags;
2017 
2018 	spin_lock_irqsave(hba->host->host_lock, flags);
2019 	__ufshcd_release(hba);
2020 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2021 }
2022 EXPORT_SYMBOL_GPL(ufshcd_release);
2023 
2024 static ssize_t ufshcd_clkgate_delay_show(struct device *dev,
2025 		struct device_attribute *attr, char *buf)
2026 {
2027 	struct ufs_hba *hba = dev_get_drvdata(dev);
2028 
2029 	return sysfs_emit(buf, "%lu\n", hba->clk_gating.delay_ms);
2030 }
2031 
2032 void ufshcd_clkgate_delay_set(struct device *dev, unsigned long value)
2033 {
2034 	struct ufs_hba *hba = dev_get_drvdata(dev);
2035 	unsigned long flags;
2036 
2037 	spin_lock_irqsave(hba->host->host_lock, flags);
2038 	hba->clk_gating.delay_ms = value;
2039 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2040 }
2041 EXPORT_SYMBOL_GPL(ufshcd_clkgate_delay_set);
2042 
2043 static ssize_t ufshcd_clkgate_delay_store(struct device *dev,
2044 		struct device_attribute *attr, const char *buf, size_t count)
2045 {
2046 	unsigned long value;
2047 
2048 	if (kstrtoul(buf, 0, &value))
2049 		return -EINVAL;
2050 
2051 	ufshcd_clkgate_delay_set(dev, value);
2052 	return count;
2053 }
2054 
2055 static ssize_t ufshcd_clkgate_enable_show(struct device *dev,
2056 		struct device_attribute *attr, char *buf)
2057 {
2058 	struct ufs_hba *hba = dev_get_drvdata(dev);
2059 
2060 	return sysfs_emit(buf, "%d\n", hba->clk_gating.is_enabled);
2061 }
2062 
2063 static ssize_t ufshcd_clkgate_enable_store(struct device *dev,
2064 		struct device_attribute *attr, const char *buf, size_t count)
2065 {
2066 	struct ufs_hba *hba = dev_get_drvdata(dev);
2067 	unsigned long flags;
2068 	u32 value;
2069 
2070 	if (kstrtou32(buf, 0, &value))
2071 		return -EINVAL;
2072 
2073 	value = !!value;
2074 
2075 	spin_lock_irqsave(hba->host->host_lock, flags);
2076 	if (value == hba->clk_gating.is_enabled)
2077 		goto out;
2078 
2079 	if (value)
2080 		__ufshcd_release(hba);
2081 	else
2082 		hba->clk_gating.active_reqs++;
2083 
2084 	hba->clk_gating.is_enabled = value;
2085 out:
2086 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2087 	return count;
2088 }
2089 
2090 static void ufshcd_init_clk_gating_sysfs(struct ufs_hba *hba)
2091 {
2092 	hba->clk_gating.delay_attr.show = ufshcd_clkgate_delay_show;
2093 	hba->clk_gating.delay_attr.store = ufshcd_clkgate_delay_store;
2094 	sysfs_attr_init(&hba->clk_gating.delay_attr.attr);
2095 	hba->clk_gating.delay_attr.attr.name = "clkgate_delay_ms";
2096 	hba->clk_gating.delay_attr.attr.mode = 0644;
2097 	if (device_create_file(hba->dev, &hba->clk_gating.delay_attr))
2098 		dev_err(hba->dev, "Failed to create sysfs for clkgate_delay\n");
2099 
2100 	hba->clk_gating.enable_attr.show = ufshcd_clkgate_enable_show;
2101 	hba->clk_gating.enable_attr.store = ufshcd_clkgate_enable_store;
2102 	sysfs_attr_init(&hba->clk_gating.enable_attr.attr);
2103 	hba->clk_gating.enable_attr.attr.name = "clkgate_enable";
2104 	hba->clk_gating.enable_attr.attr.mode = 0644;
2105 	if (device_create_file(hba->dev, &hba->clk_gating.enable_attr))
2106 		dev_err(hba->dev, "Failed to create sysfs for clkgate_enable\n");
2107 }
2108 
2109 static void ufshcd_remove_clk_gating_sysfs(struct ufs_hba *hba)
2110 {
2111 	if (hba->clk_gating.delay_attr.attr.name)
2112 		device_remove_file(hba->dev, &hba->clk_gating.delay_attr);
2113 	if (hba->clk_gating.enable_attr.attr.name)
2114 		device_remove_file(hba->dev, &hba->clk_gating.enable_attr);
2115 }
2116 
2117 static void ufshcd_init_clk_gating(struct ufs_hba *hba)
2118 {
2119 	if (!ufshcd_is_clkgating_allowed(hba))
2120 		return;
2121 
2122 	hba->clk_gating.state = CLKS_ON;
2123 
2124 	hba->clk_gating.delay_ms = 150;
2125 	INIT_DELAYED_WORK(&hba->clk_gating.gate_work, ufshcd_gate_work);
2126 	INIT_WORK(&hba->clk_gating.ungate_work, ufshcd_ungate_work);
2127 
2128 	hba->clk_gating.clk_gating_workq = alloc_ordered_workqueue(
2129 		"ufs_clk_gating_%d", WQ_MEM_RECLAIM | WQ_HIGHPRI,
2130 		hba->host->host_no);
2131 
2132 	ufshcd_init_clk_gating_sysfs(hba);
2133 
2134 	hba->clk_gating.is_enabled = true;
2135 	hba->clk_gating.is_initialized = true;
2136 }
2137 
2138 static void ufshcd_exit_clk_gating(struct ufs_hba *hba)
2139 {
2140 	if (!hba->clk_gating.is_initialized)
2141 		return;
2142 
2143 	ufshcd_remove_clk_gating_sysfs(hba);
2144 
2145 	/* Ungate the clock if necessary. */
2146 	ufshcd_hold(hba);
2147 	hba->clk_gating.is_initialized = false;
2148 	ufshcd_release(hba);
2149 
2150 	destroy_workqueue(hba->clk_gating.clk_gating_workq);
2151 }
2152 
2153 static void ufshcd_clk_scaling_start_busy(struct ufs_hba *hba)
2154 {
2155 	bool queue_resume_work = false;
2156 	ktime_t curr_t = ktime_get();
2157 	unsigned long flags;
2158 
2159 	if (!ufshcd_is_clkscaling_supported(hba))
2160 		return;
2161 
2162 	spin_lock_irqsave(hba->host->host_lock, flags);
2163 	if (!hba->clk_scaling.active_reqs++)
2164 		queue_resume_work = true;
2165 
2166 	if (!hba->clk_scaling.is_enabled || hba->pm_op_in_progress) {
2167 		spin_unlock_irqrestore(hba->host->host_lock, flags);
2168 		return;
2169 	}
2170 
2171 	if (queue_resume_work)
2172 		queue_work(hba->clk_scaling.workq,
2173 			   &hba->clk_scaling.resume_work);
2174 
2175 	if (!hba->clk_scaling.window_start_t) {
2176 		hba->clk_scaling.window_start_t = curr_t;
2177 		hba->clk_scaling.tot_busy_t = 0;
2178 		hba->clk_scaling.is_busy_started = false;
2179 	}
2180 
2181 	if (!hba->clk_scaling.is_busy_started) {
2182 		hba->clk_scaling.busy_start_t = curr_t;
2183 		hba->clk_scaling.is_busy_started = true;
2184 	}
2185 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2186 }
2187 
2188 static void ufshcd_clk_scaling_update_busy(struct ufs_hba *hba)
2189 {
2190 	struct ufs_clk_scaling *scaling = &hba->clk_scaling;
2191 	unsigned long flags;
2192 
2193 	if (!ufshcd_is_clkscaling_supported(hba))
2194 		return;
2195 
2196 	spin_lock_irqsave(hba->host->host_lock, flags);
2197 	hba->clk_scaling.active_reqs--;
2198 	if (!scaling->active_reqs && scaling->is_busy_started) {
2199 		scaling->tot_busy_t += ktime_to_us(ktime_sub(ktime_get(),
2200 					scaling->busy_start_t));
2201 		scaling->busy_start_t = 0;
2202 		scaling->is_busy_started = false;
2203 	}
2204 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2205 }
2206 
2207 static inline int ufshcd_monitor_opcode2dir(u8 opcode)
2208 {
2209 	if (opcode == READ_6 || opcode == READ_10 || opcode == READ_16)
2210 		return READ;
2211 	else if (opcode == WRITE_6 || opcode == WRITE_10 || opcode == WRITE_16)
2212 		return WRITE;
2213 	else
2214 		return -EINVAL;
2215 }
2216 
2217 static inline bool ufshcd_should_inform_monitor(struct ufs_hba *hba,
2218 						struct ufshcd_lrb *lrbp)
2219 {
2220 	const struct ufs_hba_monitor *m = &hba->monitor;
2221 
2222 	return (m->enabled && lrbp && lrbp->cmd &&
2223 		(!m->chunk_size || m->chunk_size == lrbp->cmd->sdb.length) &&
2224 		ktime_before(hba->monitor.enabled_ts, lrbp->issue_time_stamp));
2225 }
2226 
2227 static void ufshcd_start_monitor(struct ufs_hba *hba,
2228 				 const struct ufshcd_lrb *lrbp)
2229 {
2230 	int dir = ufshcd_monitor_opcode2dir(*lrbp->cmd->cmnd);
2231 	unsigned long flags;
2232 
2233 	spin_lock_irqsave(hba->host->host_lock, flags);
2234 	if (dir >= 0 && hba->monitor.nr_queued[dir]++ == 0)
2235 		hba->monitor.busy_start_ts[dir] = ktime_get();
2236 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2237 }
2238 
2239 static void ufshcd_update_monitor(struct ufs_hba *hba, const struct ufshcd_lrb *lrbp)
2240 {
2241 	int dir = ufshcd_monitor_opcode2dir(*lrbp->cmd->cmnd);
2242 	unsigned long flags;
2243 
2244 	spin_lock_irqsave(hba->host->host_lock, flags);
2245 	if (dir >= 0 && hba->monitor.nr_queued[dir] > 0) {
2246 		const struct request *req = scsi_cmd_to_rq(lrbp->cmd);
2247 		struct ufs_hba_monitor *m = &hba->monitor;
2248 		ktime_t now, inc, lat;
2249 
2250 		now = lrbp->compl_time_stamp;
2251 		inc = ktime_sub(now, m->busy_start_ts[dir]);
2252 		m->total_busy[dir] = ktime_add(m->total_busy[dir], inc);
2253 		m->nr_sec_rw[dir] += blk_rq_sectors(req);
2254 
2255 		/* Update latencies */
2256 		m->nr_req[dir]++;
2257 		lat = ktime_sub(now, lrbp->issue_time_stamp);
2258 		m->lat_sum[dir] += lat;
2259 		if (m->lat_max[dir] < lat || !m->lat_max[dir])
2260 			m->lat_max[dir] = lat;
2261 		if (m->lat_min[dir] > lat || !m->lat_min[dir])
2262 			m->lat_min[dir] = lat;
2263 
2264 		m->nr_queued[dir]--;
2265 		/* Push forward the busy start of monitor */
2266 		m->busy_start_ts[dir] = now;
2267 	}
2268 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2269 }
2270 
2271 /**
2272  * ufshcd_send_command - Send SCSI or device management commands
2273  * @hba: per adapter instance
2274  * @task_tag: Task tag of the command
2275  * @hwq: pointer to hardware queue instance
2276  */
2277 static inline
2278 void ufshcd_send_command(struct ufs_hba *hba, unsigned int task_tag,
2279 			 struct ufs_hw_queue *hwq)
2280 {
2281 	struct ufshcd_lrb *lrbp = &hba->lrb[task_tag];
2282 	unsigned long flags;
2283 
2284 	lrbp->issue_time_stamp = ktime_get();
2285 	lrbp->issue_time_stamp_local_clock = local_clock();
2286 	lrbp->compl_time_stamp = ktime_set(0, 0);
2287 	lrbp->compl_time_stamp_local_clock = 0;
2288 	ufshcd_add_command_trace(hba, task_tag, UFS_CMD_SEND);
2289 	if (lrbp->cmd)
2290 		ufshcd_clk_scaling_start_busy(hba);
2291 	if (unlikely(ufshcd_should_inform_monitor(hba, lrbp)))
2292 		ufshcd_start_monitor(hba, lrbp);
2293 
2294 	if (hba->mcq_enabled) {
2295 		int utrd_size = sizeof(struct utp_transfer_req_desc);
2296 		struct utp_transfer_req_desc *src = lrbp->utr_descriptor_ptr;
2297 		struct utp_transfer_req_desc *dest;
2298 
2299 		spin_lock(&hwq->sq_lock);
2300 		dest = hwq->sqe_base_addr + hwq->sq_tail_slot;
2301 		memcpy(dest, src, utrd_size);
2302 		ufshcd_inc_sq_tail(hwq);
2303 		spin_unlock(&hwq->sq_lock);
2304 	} else {
2305 		spin_lock_irqsave(&hba->outstanding_lock, flags);
2306 		if (hba->vops && hba->vops->setup_xfer_req)
2307 			hba->vops->setup_xfer_req(hba, lrbp->task_tag,
2308 						  !!lrbp->cmd);
2309 		__set_bit(lrbp->task_tag, &hba->outstanding_reqs);
2310 		ufshcd_writel(hba, 1 << lrbp->task_tag,
2311 			      REG_UTP_TRANSFER_REQ_DOOR_BELL);
2312 		spin_unlock_irqrestore(&hba->outstanding_lock, flags);
2313 	}
2314 }
2315 
2316 /**
2317  * ufshcd_copy_sense_data - Copy sense data in case of check condition
2318  * @lrbp: pointer to local reference block
2319  */
2320 static inline void ufshcd_copy_sense_data(struct ufshcd_lrb *lrbp)
2321 {
2322 	u8 *const sense_buffer = lrbp->cmd->sense_buffer;
2323 	u16 resp_len;
2324 	int len;
2325 
2326 	resp_len = be16_to_cpu(lrbp->ucd_rsp_ptr->header.data_segment_length);
2327 	if (sense_buffer && resp_len) {
2328 		int len_to_copy;
2329 
2330 		len = be16_to_cpu(lrbp->ucd_rsp_ptr->sr.sense_data_len);
2331 		len_to_copy = min_t(int, UFS_SENSE_SIZE, len);
2332 
2333 		memcpy(sense_buffer, lrbp->ucd_rsp_ptr->sr.sense_data,
2334 		       len_to_copy);
2335 	}
2336 }
2337 
2338 /**
2339  * ufshcd_copy_query_response() - Copy the Query Response and the data
2340  * descriptor
2341  * @hba: per adapter instance
2342  * @lrbp: pointer to local reference block
2343  *
2344  * Return: 0 upon success; < 0 upon failure.
2345  */
2346 static
2347 int ufshcd_copy_query_response(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2348 {
2349 	struct ufs_query_res *query_res = &hba->dev_cmd.query.response;
2350 
2351 	memcpy(&query_res->upiu_res, &lrbp->ucd_rsp_ptr->qr, QUERY_OSF_SIZE);
2352 
2353 	/* Get the descriptor */
2354 	if (hba->dev_cmd.query.descriptor &&
2355 	    lrbp->ucd_rsp_ptr->qr.opcode == UPIU_QUERY_OPCODE_READ_DESC) {
2356 		u8 *descp = (u8 *)lrbp->ucd_rsp_ptr +
2357 				GENERAL_UPIU_REQUEST_SIZE;
2358 		u16 resp_len;
2359 		u16 buf_len;
2360 
2361 		/* data segment length */
2362 		resp_len = be16_to_cpu(lrbp->ucd_rsp_ptr->header
2363 				       .data_segment_length);
2364 		buf_len = be16_to_cpu(
2365 				hba->dev_cmd.query.request.upiu_req.length);
2366 		if (likely(buf_len >= resp_len)) {
2367 			memcpy(hba->dev_cmd.query.descriptor, descp, resp_len);
2368 		} else {
2369 			dev_warn(hba->dev,
2370 				 "%s: rsp size %d is bigger than buffer size %d",
2371 				 __func__, resp_len, buf_len);
2372 			return -EINVAL;
2373 		}
2374 	}
2375 
2376 	return 0;
2377 }
2378 
2379 /**
2380  * ufshcd_hba_capabilities - Read controller capabilities
2381  * @hba: per adapter instance
2382  *
2383  * Return: 0 on success, negative on error.
2384  */
2385 static inline int ufshcd_hba_capabilities(struct ufs_hba *hba)
2386 {
2387 	int err;
2388 
2389 	hba->capabilities = ufshcd_readl(hba, REG_CONTROLLER_CAPABILITIES);
2390 
2391 	/* nutrs and nutmrs are 0 based values */
2392 	hba->nutrs = (hba->capabilities & MASK_TRANSFER_REQUESTS_SLOTS_SDB) + 1;
2393 	hba->nutmrs =
2394 	((hba->capabilities & MASK_TASK_MANAGEMENT_REQUEST_SLOTS) >> 16) + 1;
2395 	hba->reserved_slot = hba->nutrs - 1;
2396 
2397 	hba->nortt = FIELD_GET(MASK_NUMBER_OUTSTANDING_RTT, hba->capabilities) + 1;
2398 
2399 	/* Read crypto capabilities */
2400 	err = ufshcd_hba_init_crypto_capabilities(hba);
2401 	if (err) {
2402 		dev_err(hba->dev, "crypto setup failed\n");
2403 		return err;
2404 	}
2405 
2406 	/*
2407 	 * The UFSHCI 3.0 specification does not define MCQ_SUPPORT and
2408 	 * LSDB_SUPPORT, but [31:29] as reserved bits with reset value 0s, which
2409 	 * means we can simply read values regardless of version.
2410 	 */
2411 	hba->mcq_sup = FIELD_GET(MASK_MCQ_SUPPORT, hba->capabilities);
2412 	/*
2413 	 * 0h: legacy single doorbell support is available
2414 	 * 1h: indicate that legacy single doorbell support has been removed
2415 	 */
2416 	if (!(hba->quirks & UFSHCD_QUIRK_BROKEN_LSDBS_CAP))
2417 		hba->lsdb_sup = !FIELD_GET(MASK_LSDB_SUPPORT, hba->capabilities);
2418 	else
2419 		hba->lsdb_sup = true;
2420 
2421 	if (!hba->mcq_sup)
2422 		return 0;
2423 
2424 	hba->mcq_capabilities = ufshcd_readl(hba, REG_MCQCAP);
2425 	hba->ext_iid_sup = FIELD_GET(MASK_EXT_IID_SUPPORT,
2426 				     hba->mcq_capabilities);
2427 
2428 	return 0;
2429 }
2430 
2431 /**
2432  * ufshcd_ready_for_uic_cmd - Check if controller is ready
2433  *                            to accept UIC commands
2434  * @hba: per adapter instance
2435  *
2436  * Return: true on success, else false.
2437  */
2438 static inline bool ufshcd_ready_for_uic_cmd(struct ufs_hba *hba)
2439 {
2440 	u32 val;
2441 	int ret = read_poll_timeout(ufshcd_readl, val, val & UIC_COMMAND_READY,
2442 				    500, uic_cmd_timeout * 1000, false, hba,
2443 				    REG_CONTROLLER_STATUS);
2444 	return ret == 0;
2445 }
2446 
2447 /**
2448  * ufshcd_get_upmcrs - Get the power mode change request status
2449  * @hba: Pointer to adapter instance
2450  *
2451  * This function gets the UPMCRS field of HCS register
2452  *
2453  * Return: value of UPMCRS field.
2454  */
2455 static inline u8 ufshcd_get_upmcrs(struct ufs_hba *hba)
2456 {
2457 	return (ufshcd_readl(hba, REG_CONTROLLER_STATUS) >> 8) & 0x7;
2458 }
2459 
2460 /**
2461  * ufshcd_dispatch_uic_cmd - Dispatch an UIC command to the Unipro layer
2462  * @hba: per adapter instance
2463  * @uic_cmd: UIC command
2464  */
2465 static inline void
2466 ufshcd_dispatch_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2467 {
2468 	lockdep_assert_held(&hba->uic_cmd_mutex);
2469 
2470 	WARN_ON(hba->active_uic_cmd);
2471 
2472 	hba->active_uic_cmd = uic_cmd;
2473 
2474 	/* Write Args */
2475 	ufshcd_writel(hba, uic_cmd->argument1, REG_UIC_COMMAND_ARG_1);
2476 	ufshcd_writel(hba, uic_cmd->argument2, REG_UIC_COMMAND_ARG_2);
2477 	ufshcd_writel(hba, uic_cmd->argument3, REG_UIC_COMMAND_ARG_3);
2478 
2479 	ufshcd_add_uic_command_trace(hba, uic_cmd, UFS_CMD_SEND);
2480 
2481 	/* Write UIC Cmd */
2482 	ufshcd_writel(hba, uic_cmd->command & COMMAND_OPCODE_MASK,
2483 		      REG_UIC_COMMAND);
2484 }
2485 
2486 /**
2487  * ufshcd_wait_for_uic_cmd - Wait for completion of an UIC command
2488  * @hba: per adapter instance
2489  * @uic_cmd: UIC command
2490  *
2491  * Return: 0 only if success.
2492  */
2493 static int
2494 ufshcd_wait_for_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2495 {
2496 	int ret;
2497 	unsigned long flags;
2498 
2499 	lockdep_assert_held(&hba->uic_cmd_mutex);
2500 
2501 	if (wait_for_completion_timeout(&uic_cmd->done,
2502 					msecs_to_jiffies(uic_cmd_timeout))) {
2503 		ret = uic_cmd->argument2 & MASK_UIC_COMMAND_RESULT;
2504 	} else {
2505 		ret = -ETIMEDOUT;
2506 		dev_err(hba->dev,
2507 			"uic cmd 0x%x with arg3 0x%x completion timeout\n",
2508 			uic_cmd->command, uic_cmd->argument3);
2509 
2510 		if (!uic_cmd->cmd_active) {
2511 			dev_err(hba->dev, "%s: UIC cmd has been completed, return the result\n",
2512 				__func__);
2513 			ret = uic_cmd->argument2 & MASK_UIC_COMMAND_RESULT;
2514 		}
2515 	}
2516 
2517 	spin_lock_irqsave(hba->host->host_lock, flags);
2518 	hba->active_uic_cmd = NULL;
2519 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2520 
2521 	return ret;
2522 }
2523 
2524 /**
2525  * __ufshcd_send_uic_cmd - Send UIC commands and retrieve the result
2526  * @hba: per adapter instance
2527  * @uic_cmd: UIC command
2528  *
2529  * Return: 0 only if success.
2530  */
2531 static int
2532 __ufshcd_send_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2533 {
2534 	lockdep_assert_held(&hba->uic_cmd_mutex);
2535 
2536 	if (!ufshcd_ready_for_uic_cmd(hba)) {
2537 		dev_err(hba->dev,
2538 			"Controller not ready to accept UIC commands\n");
2539 		return -EIO;
2540 	}
2541 
2542 	init_completion(&uic_cmd->done);
2543 
2544 	uic_cmd->cmd_active = 1;
2545 	ufshcd_dispatch_uic_cmd(hba, uic_cmd);
2546 
2547 	return 0;
2548 }
2549 
2550 /**
2551  * ufshcd_send_uic_cmd - Send UIC commands and retrieve the result
2552  * @hba: per adapter instance
2553  * @uic_cmd: UIC command
2554  *
2555  * Return: 0 only if success.
2556  */
2557 int ufshcd_send_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2558 {
2559 	int ret;
2560 
2561 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_UIC_CMD)
2562 		return 0;
2563 
2564 	ufshcd_hold(hba);
2565 	mutex_lock(&hba->uic_cmd_mutex);
2566 	ufshcd_add_delay_before_dme_cmd(hba);
2567 
2568 	ret = __ufshcd_send_uic_cmd(hba, uic_cmd);
2569 	if (!ret)
2570 		ret = ufshcd_wait_for_uic_cmd(hba, uic_cmd);
2571 
2572 	mutex_unlock(&hba->uic_cmd_mutex);
2573 
2574 	ufshcd_release(hba);
2575 	return ret;
2576 }
2577 
2578 /**
2579  * ufshcd_sgl_to_prdt - SG list to PRTD (Physical Region Description Table, 4DW format)
2580  * @hba:	per-adapter instance
2581  * @lrbp:	pointer to local reference block
2582  * @sg_entries:	The number of sg lists actually used
2583  * @sg_list:	Pointer to SG list
2584  */
2585 static void ufshcd_sgl_to_prdt(struct ufs_hba *hba, struct ufshcd_lrb *lrbp, int sg_entries,
2586 			       struct scatterlist *sg_list)
2587 {
2588 	struct ufshcd_sg_entry *prd;
2589 	struct scatterlist *sg;
2590 	int i;
2591 
2592 	if (sg_entries) {
2593 
2594 		if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN)
2595 			lrbp->utr_descriptor_ptr->prd_table_length =
2596 				cpu_to_le16(sg_entries * ufshcd_sg_entry_size(hba));
2597 		else
2598 			lrbp->utr_descriptor_ptr->prd_table_length = cpu_to_le16(sg_entries);
2599 
2600 		prd = lrbp->ucd_prdt_ptr;
2601 
2602 		for_each_sg(sg_list, sg, sg_entries, i) {
2603 			const unsigned int len = sg_dma_len(sg);
2604 
2605 			/*
2606 			 * From the UFSHCI spec: "Data Byte Count (DBC): A '0'
2607 			 * based value that indicates the length, in bytes, of
2608 			 * the data block. A maximum of length of 256KB may
2609 			 * exist for any entry. Bits 1:0 of this field shall be
2610 			 * 11b to indicate Dword granularity. A value of '3'
2611 			 * indicates 4 bytes, '7' indicates 8 bytes, etc."
2612 			 */
2613 			WARN_ONCE(len > SZ_256K, "len = %#x\n", len);
2614 			prd->size = cpu_to_le32(len - 1);
2615 			prd->addr = cpu_to_le64(sg->dma_address);
2616 			prd->reserved = 0;
2617 			prd = (void *)prd + ufshcd_sg_entry_size(hba);
2618 		}
2619 	} else {
2620 		lrbp->utr_descriptor_ptr->prd_table_length = 0;
2621 	}
2622 }
2623 
2624 /**
2625  * ufshcd_map_sg - Map scatter-gather list to prdt
2626  * @hba: per adapter instance
2627  * @lrbp: pointer to local reference block
2628  *
2629  * Return: 0 in case of success, non-zero value in case of failure.
2630  */
2631 static int ufshcd_map_sg(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2632 {
2633 	struct scsi_cmnd *cmd = lrbp->cmd;
2634 	int sg_segments = scsi_dma_map(cmd);
2635 
2636 	if (sg_segments < 0)
2637 		return sg_segments;
2638 
2639 	ufshcd_sgl_to_prdt(hba, lrbp, sg_segments, scsi_sglist(cmd));
2640 
2641 	return ufshcd_crypto_fill_prdt(hba, lrbp);
2642 }
2643 
2644 /**
2645  * ufshcd_enable_intr - enable interrupts
2646  * @hba: per adapter instance
2647  * @intrs: interrupt bits
2648  */
2649 static void ufshcd_enable_intr(struct ufs_hba *hba, u32 intrs)
2650 {
2651 	u32 set = ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
2652 
2653 	set |= intrs;
2654 	ufshcd_writel(hba, set, REG_INTERRUPT_ENABLE);
2655 }
2656 
2657 /**
2658  * ufshcd_disable_intr - disable interrupts
2659  * @hba: per adapter instance
2660  * @intrs: interrupt bits
2661  */
2662 static void ufshcd_disable_intr(struct ufs_hba *hba, u32 intrs)
2663 {
2664 	u32 set = ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
2665 
2666 	set &= ~intrs;
2667 	ufshcd_writel(hba, set, REG_INTERRUPT_ENABLE);
2668 }
2669 
2670 /**
2671  * ufshcd_prepare_req_desc_hdr - Fill UTP Transfer request descriptor header according to request
2672  * descriptor according to request
2673  * @hba: per adapter instance
2674  * @lrbp: pointer to local reference block
2675  * @upiu_flags: flags required in the header
2676  * @cmd_dir: requests data direction
2677  * @ehs_length: Total EHS Length (in 32‐bytes units of all Extra Header Segments)
2678  */
2679 static void
2680 ufshcd_prepare_req_desc_hdr(struct ufs_hba *hba, struct ufshcd_lrb *lrbp,
2681 			    u8 *upiu_flags, enum dma_data_direction cmd_dir,
2682 			    int ehs_length)
2683 {
2684 	struct utp_transfer_req_desc *req_desc = lrbp->utr_descriptor_ptr;
2685 	struct request_desc_header *h = &req_desc->header;
2686 	enum utp_data_direction data_direction;
2687 
2688 	lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
2689 
2690 	*h = (typeof(*h)){ };
2691 
2692 	if (cmd_dir == DMA_FROM_DEVICE) {
2693 		data_direction = UTP_DEVICE_TO_HOST;
2694 		*upiu_flags = UPIU_CMD_FLAGS_READ;
2695 	} else if (cmd_dir == DMA_TO_DEVICE) {
2696 		data_direction = UTP_HOST_TO_DEVICE;
2697 		*upiu_flags = UPIU_CMD_FLAGS_WRITE;
2698 	} else {
2699 		data_direction = UTP_NO_DATA_TRANSFER;
2700 		*upiu_flags = UPIU_CMD_FLAGS_NONE;
2701 	}
2702 
2703 	h->command_type = lrbp->command_type;
2704 	h->data_direction = data_direction;
2705 	h->ehs_length = ehs_length;
2706 
2707 	if (lrbp->intr_cmd)
2708 		h->interrupt = 1;
2709 
2710 	/* Prepare crypto related dwords */
2711 	ufshcd_prepare_req_desc_hdr_crypto(lrbp, h);
2712 
2713 	/*
2714 	 * assigning invalid value for command status. Controller
2715 	 * updates OCS on command completion, with the command
2716 	 * status
2717 	 */
2718 	h->ocs = OCS_INVALID_COMMAND_STATUS;
2719 
2720 	req_desc->prd_table_length = 0;
2721 }
2722 
2723 /**
2724  * ufshcd_prepare_utp_scsi_cmd_upiu() - fills the utp_transfer_req_desc,
2725  * for scsi commands
2726  * @lrbp: local reference block pointer
2727  * @upiu_flags: flags
2728  */
2729 static
2730 void ufshcd_prepare_utp_scsi_cmd_upiu(struct ufshcd_lrb *lrbp, u8 upiu_flags)
2731 {
2732 	struct scsi_cmnd *cmd = lrbp->cmd;
2733 	struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2734 	unsigned short cdb_len;
2735 
2736 	ucd_req_ptr->header = (struct utp_upiu_header){
2737 		.transaction_code = UPIU_TRANSACTION_COMMAND,
2738 		.flags = upiu_flags,
2739 		.lun = lrbp->lun,
2740 		.task_tag = lrbp->task_tag,
2741 		.command_set_type = UPIU_COMMAND_SET_TYPE_SCSI,
2742 	};
2743 
2744 	WARN_ON_ONCE(ucd_req_ptr->header.task_tag != lrbp->task_tag);
2745 
2746 	ucd_req_ptr->sc.exp_data_transfer_len = cpu_to_be32(cmd->sdb.length);
2747 
2748 	cdb_len = min_t(unsigned short, cmd->cmd_len, UFS_CDB_SIZE);
2749 	memcpy(ucd_req_ptr->sc.cdb, cmd->cmnd, cdb_len);
2750 
2751 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2752 }
2753 
2754 /**
2755  * ufshcd_prepare_utp_query_req_upiu() - fill the utp_transfer_req_desc for query request
2756  * @hba: UFS hba
2757  * @lrbp: local reference block pointer
2758  * @upiu_flags: flags
2759  */
2760 static void ufshcd_prepare_utp_query_req_upiu(struct ufs_hba *hba,
2761 				struct ufshcd_lrb *lrbp, u8 upiu_flags)
2762 {
2763 	struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2764 	struct ufs_query *query = &hba->dev_cmd.query;
2765 	u16 len = be16_to_cpu(query->request.upiu_req.length);
2766 
2767 	/* Query request header */
2768 	ucd_req_ptr->header = (struct utp_upiu_header){
2769 		.transaction_code = UPIU_TRANSACTION_QUERY_REQ,
2770 		.flags = upiu_flags,
2771 		.lun = lrbp->lun,
2772 		.task_tag = lrbp->task_tag,
2773 		.query_function = query->request.query_func,
2774 		/* Data segment length only need for WRITE_DESC */
2775 		.data_segment_length =
2776 			query->request.upiu_req.opcode ==
2777 					UPIU_QUERY_OPCODE_WRITE_DESC ?
2778 				cpu_to_be16(len) :
2779 				0,
2780 	};
2781 
2782 	/* Copy the Query Request buffer as is */
2783 	memcpy(&ucd_req_ptr->qr, &query->request.upiu_req,
2784 			QUERY_OSF_SIZE);
2785 
2786 	/* Copy the Descriptor */
2787 	if (query->request.upiu_req.opcode == UPIU_QUERY_OPCODE_WRITE_DESC)
2788 		memcpy(ucd_req_ptr + 1, query->descriptor, len);
2789 
2790 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2791 }
2792 
2793 static inline void ufshcd_prepare_utp_nop_upiu(struct ufshcd_lrb *lrbp)
2794 {
2795 	struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2796 
2797 	memset(ucd_req_ptr, 0, sizeof(struct utp_upiu_req));
2798 
2799 	ucd_req_ptr->header = (struct utp_upiu_header){
2800 		.transaction_code = UPIU_TRANSACTION_NOP_OUT,
2801 		.task_tag = lrbp->task_tag,
2802 	};
2803 
2804 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2805 }
2806 
2807 /**
2808  * ufshcd_compose_devman_upiu - UFS Protocol Information Unit(UPIU)
2809  *			     for Device Management Purposes
2810  * @hba: per adapter instance
2811  * @lrbp: pointer to local reference block
2812  *
2813  * Return: 0 upon success; < 0 upon failure.
2814  */
2815 static int ufshcd_compose_devman_upiu(struct ufs_hba *hba,
2816 				      struct ufshcd_lrb *lrbp)
2817 {
2818 	u8 upiu_flags;
2819 	int ret = 0;
2820 
2821 	ufshcd_prepare_req_desc_hdr(hba, lrbp, &upiu_flags, DMA_NONE, 0);
2822 
2823 	if (hba->dev_cmd.type == DEV_CMD_TYPE_QUERY)
2824 		ufshcd_prepare_utp_query_req_upiu(hba, lrbp, upiu_flags);
2825 	else if (hba->dev_cmd.type == DEV_CMD_TYPE_NOP)
2826 		ufshcd_prepare_utp_nop_upiu(lrbp);
2827 	else
2828 		ret = -EINVAL;
2829 
2830 	return ret;
2831 }
2832 
2833 /**
2834  * ufshcd_comp_scsi_upiu - UFS Protocol Information Unit(UPIU)
2835  *			   for SCSI Purposes
2836  * @hba: per adapter instance
2837  * @lrbp: pointer to local reference block
2838  */
2839 static void ufshcd_comp_scsi_upiu(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2840 {
2841 	struct request *rq = scsi_cmd_to_rq(lrbp->cmd);
2842 	unsigned int ioprio_class = IOPRIO_PRIO_CLASS(req_get_ioprio(rq));
2843 	u8 upiu_flags;
2844 
2845 	ufshcd_prepare_req_desc_hdr(hba, lrbp, &upiu_flags, lrbp->cmd->sc_data_direction, 0);
2846 	if (ioprio_class == IOPRIO_CLASS_RT)
2847 		upiu_flags |= UPIU_CMD_FLAGS_CP;
2848 	ufshcd_prepare_utp_scsi_cmd_upiu(lrbp, upiu_flags);
2849 }
2850 
2851 static void __ufshcd_setup_cmd(struct ufshcd_lrb *lrbp, struct scsi_cmnd *cmd, u8 lun, int tag)
2852 {
2853 	memset(lrbp->ucd_req_ptr, 0, sizeof(*lrbp->ucd_req_ptr));
2854 
2855 	lrbp->cmd = cmd;
2856 	lrbp->task_tag = tag;
2857 	lrbp->lun = lun;
2858 	ufshcd_prepare_lrbp_crypto(cmd ? scsi_cmd_to_rq(cmd) : NULL, lrbp);
2859 }
2860 
2861 static void ufshcd_setup_scsi_cmd(struct ufs_hba *hba, struct ufshcd_lrb *lrbp,
2862 				  struct scsi_cmnd *cmd, u8 lun, int tag)
2863 {
2864 	__ufshcd_setup_cmd(lrbp, cmd, lun, tag);
2865 	lrbp->intr_cmd = !ufshcd_is_intr_aggr_allowed(hba);
2866 	lrbp->req_abort_skip = false;
2867 
2868 	ufshcd_comp_scsi_upiu(hba, lrbp);
2869 }
2870 
2871 /**
2872  * ufshcd_upiu_wlun_to_scsi_wlun - maps UPIU W-LUN id to SCSI W-LUN ID
2873  * @upiu_wlun_id: UPIU W-LUN id
2874  *
2875  * Return: SCSI W-LUN id.
2876  */
2877 static inline u16 ufshcd_upiu_wlun_to_scsi_wlun(u8 upiu_wlun_id)
2878 {
2879 	return (upiu_wlun_id & ~UFS_UPIU_WLUN_ID) | SCSI_W_LUN_BASE;
2880 }
2881 
2882 static inline bool is_device_wlun(struct scsi_device *sdev)
2883 {
2884 	return sdev->lun ==
2885 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_UFS_DEVICE_WLUN);
2886 }
2887 
2888 /*
2889  * Associate the UFS controller queue with the default and poll HCTX types.
2890  * Initialize the mq_map[] arrays.
2891  */
2892 static void ufshcd_map_queues(struct Scsi_Host *shost)
2893 {
2894 	struct ufs_hba *hba = shost_priv(shost);
2895 	int i, queue_offset = 0;
2896 
2897 	if (!is_mcq_supported(hba)) {
2898 		hba->nr_queues[HCTX_TYPE_DEFAULT] = 1;
2899 		hba->nr_queues[HCTX_TYPE_READ] = 0;
2900 		hba->nr_queues[HCTX_TYPE_POLL] = 1;
2901 		hba->nr_hw_queues = 1;
2902 	}
2903 
2904 	for (i = 0; i < shost->nr_maps; i++) {
2905 		struct blk_mq_queue_map *map = &shost->tag_set.map[i];
2906 
2907 		map->nr_queues = hba->nr_queues[i];
2908 		if (!map->nr_queues)
2909 			continue;
2910 		map->queue_offset = queue_offset;
2911 		if (i == HCTX_TYPE_POLL && !is_mcq_supported(hba))
2912 			map->queue_offset = 0;
2913 
2914 		blk_mq_map_queues(map);
2915 		queue_offset += map->nr_queues;
2916 	}
2917 }
2918 
2919 static void ufshcd_init_lrb(struct ufs_hba *hba, struct ufshcd_lrb *lrb, int i)
2920 {
2921 	struct utp_transfer_cmd_desc *cmd_descp = (void *)hba->ucdl_base_addr +
2922 		i * ufshcd_get_ucd_size(hba);
2923 	struct utp_transfer_req_desc *utrdlp = hba->utrdl_base_addr;
2924 	dma_addr_t cmd_desc_element_addr = hba->ucdl_dma_addr +
2925 		i * ufshcd_get_ucd_size(hba);
2926 	u16 response_offset = offsetof(struct utp_transfer_cmd_desc,
2927 				       response_upiu);
2928 	u16 prdt_offset = offsetof(struct utp_transfer_cmd_desc, prd_table);
2929 
2930 	lrb->utr_descriptor_ptr = utrdlp + i;
2931 	lrb->utrd_dma_addr = hba->utrdl_dma_addr +
2932 		i * sizeof(struct utp_transfer_req_desc);
2933 	lrb->ucd_req_ptr = (struct utp_upiu_req *)cmd_descp->command_upiu;
2934 	lrb->ucd_req_dma_addr = cmd_desc_element_addr;
2935 	lrb->ucd_rsp_ptr = (struct utp_upiu_rsp *)cmd_descp->response_upiu;
2936 	lrb->ucd_rsp_dma_addr = cmd_desc_element_addr + response_offset;
2937 	lrb->ucd_prdt_ptr = (struct ufshcd_sg_entry *)cmd_descp->prd_table;
2938 	lrb->ucd_prdt_dma_addr = cmd_desc_element_addr + prdt_offset;
2939 }
2940 
2941 /**
2942  * ufshcd_queuecommand - main entry point for SCSI requests
2943  * @host: SCSI host pointer
2944  * @cmd: command from SCSI Midlayer
2945  *
2946  * Return: 0 for success, non-zero in case of failure.
2947  */
2948 static int ufshcd_queuecommand(struct Scsi_Host *host, struct scsi_cmnd *cmd)
2949 {
2950 	struct ufs_hba *hba = shost_priv(host);
2951 	int tag = scsi_cmd_to_rq(cmd)->tag;
2952 	struct ufshcd_lrb *lrbp;
2953 	int err = 0;
2954 	struct ufs_hw_queue *hwq = NULL;
2955 
2956 	switch (hba->ufshcd_state) {
2957 	case UFSHCD_STATE_OPERATIONAL:
2958 		break;
2959 	case UFSHCD_STATE_EH_SCHEDULED_NON_FATAL:
2960 		/*
2961 		 * SCSI error handler can call ->queuecommand() while UFS error
2962 		 * handler is in progress. Error interrupts could change the
2963 		 * state from UFSHCD_STATE_RESET to
2964 		 * UFSHCD_STATE_EH_SCHEDULED_NON_FATAL. Prevent requests
2965 		 * being issued in that case.
2966 		 */
2967 		if (ufshcd_eh_in_progress(hba)) {
2968 			err = SCSI_MLQUEUE_HOST_BUSY;
2969 			goto out;
2970 		}
2971 		break;
2972 	case UFSHCD_STATE_EH_SCHEDULED_FATAL:
2973 		/*
2974 		 * pm_runtime_get_sync() is used at error handling preparation
2975 		 * stage. If a scsi cmd, e.g. the SSU cmd, is sent from hba's
2976 		 * PM ops, it can never be finished if we let SCSI layer keep
2977 		 * retrying it, which gets err handler stuck forever. Neither
2978 		 * can we let the scsi cmd pass through, because UFS is in bad
2979 		 * state, the scsi cmd may eventually time out, which will get
2980 		 * err handler blocked for too long. So, just fail the scsi cmd
2981 		 * sent from PM ops, err handler can recover PM error anyways.
2982 		 */
2983 		if (hba->pm_op_in_progress) {
2984 			hba->force_reset = true;
2985 			set_host_byte(cmd, DID_BAD_TARGET);
2986 			scsi_done(cmd);
2987 			goto out;
2988 		}
2989 		fallthrough;
2990 	case UFSHCD_STATE_RESET:
2991 		err = SCSI_MLQUEUE_HOST_BUSY;
2992 		goto out;
2993 	case UFSHCD_STATE_ERROR:
2994 		set_host_byte(cmd, DID_ERROR);
2995 		scsi_done(cmd);
2996 		goto out;
2997 	}
2998 
2999 	hba->req_abort_count = 0;
3000 
3001 	ufshcd_hold(hba);
3002 
3003 	lrbp = &hba->lrb[tag];
3004 
3005 	ufshcd_setup_scsi_cmd(hba, lrbp, cmd, ufshcd_scsi_to_upiu_lun(cmd->device->lun), tag);
3006 
3007 	err = ufshcd_map_sg(hba, lrbp);
3008 	if (err) {
3009 		ufshcd_release(hba);
3010 		goto out;
3011 	}
3012 
3013 	if (hba->mcq_enabled)
3014 		hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(cmd));
3015 
3016 	ufshcd_send_command(hba, tag, hwq);
3017 
3018 out:
3019 	if (ufs_trigger_eh(hba)) {
3020 		unsigned long flags;
3021 
3022 		spin_lock_irqsave(hba->host->host_lock, flags);
3023 		ufshcd_schedule_eh_work(hba);
3024 		spin_unlock_irqrestore(hba->host->host_lock, flags);
3025 	}
3026 
3027 	return err;
3028 }
3029 
3030 static void ufshcd_setup_dev_cmd(struct ufs_hba *hba, struct ufshcd_lrb *lrbp,
3031 			     enum dev_cmd_type cmd_type, u8 lun, int tag)
3032 {
3033 	__ufshcd_setup_cmd(lrbp, NULL, lun, tag);
3034 	lrbp->intr_cmd = true; /* No interrupt aggregation */
3035 	hba->dev_cmd.type = cmd_type;
3036 }
3037 
3038 static int ufshcd_compose_dev_cmd(struct ufs_hba *hba,
3039 		struct ufshcd_lrb *lrbp, enum dev_cmd_type cmd_type, int tag)
3040 {
3041 	ufshcd_setup_dev_cmd(hba, lrbp, cmd_type, 0, tag);
3042 
3043 	return ufshcd_compose_devman_upiu(hba, lrbp);
3044 }
3045 
3046 /*
3047  * Check with the block layer if the command is inflight
3048  * @cmd: command to check.
3049  *
3050  * Return: true if command is inflight; false if not.
3051  */
3052 bool ufshcd_cmd_inflight(struct scsi_cmnd *cmd)
3053 {
3054 	return cmd && blk_mq_rq_state(scsi_cmd_to_rq(cmd)) == MQ_RQ_IN_FLIGHT;
3055 }
3056 
3057 /*
3058  * Clear the pending command in the controller and wait until
3059  * the controller confirms that the command has been cleared.
3060  * @hba: per adapter instance
3061  * @task_tag: The tag number of the command to be cleared.
3062  */
3063 static int ufshcd_clear_cmd(struct ufs_hba *hba, u32 task_tag)
3064 {
3065 	u32 mask;
3066 	int err;
3067 
3068 	if (hba->mcq_enabled) {
3069 		/*
3070 		 * MCQ mode. Clean up the MCQ resources similar to
3071 		 * what the ufshcd_utrl_clear() does for SDB mode.
3072 		 */
3073 		err = ufshcd_mcq_sq_cleanup(hba, task_tag);
3074 		if (err) {
3075 			dev_err(hba->dev, "%s: failed tag=%d. err=%d\n",
3076 				__func__, task_tag, err);
3077 			return err;
3078 		}
3079 		return 0;
3080 	}
3081 
3082 	mask = 1U << task_tag;
3083 
3084 	/* clear outstanding transaction before retry */
3085 	ufshcd_utrl_clear(hba, mask);
3086 
3087 	/*
3088 	 * wait for h/w to clear corresponding bit in door-bell.
3089 	 * max. wait is 1 sec.
3090 	 */
3091 	return ufshcd_wait_for_register(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL,
3092 					mask, ~mask, 1000, 1000);
3093 }
3094 
3095 /**
3096  * ufshcd_dev_cmd_completion() - handles device management command responses
3097  * @hba: per adapter instance
3098  * @lrbp: pointer to local reference block
3099  *
3100  * Return: 0 upon success; < 0 upon failure.
3101  */
3102 static int
3103 ufshcd_dev_cmd_completion(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
3104 {
3105 	enum upiu_response_transaction resp;
3106 	int err = 0;
3107 
3108 	hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
3109 	resp = ufshcd_get_req_rsp(lrbp->ucd_rsp_ptr);
3110 
3111 	switch (resp) {
3112 	case UPIU_TRANSACTION_NOP_IN:
3113 		if (hba->dev_cmd.type != DEV_CMD_TYPE_NOP) {
3114 			err = -EINVAL;
3115 			dev_err(hba->dev, "%s: unexpected response %x\n",
3116 					__func__, resp);
3117 		}
3118 		break;
3119 	case UPIU_TRANSACTION_QUERY_RSP: {
3120 		u8 response = lrbp->ucd_rsp_ptr->header.response;
3121 
3122 		if (response == 0)
3123 			err = ufshcd_copy_query_response(hba, lrbp);
3124 		break;
3125 	}
3126 	case UPIU_TRANSACTION_REJECT_UPIU:
3127 		/* TODO: handle Reject UPIU Response */
3128 		err = -EPERM;
3129 		dev_err(hba->dev, "%s: Reject UPIU not fully implemented\n",
3130 				__func__);
3131 		break;
3132 	case UPIU_TRANSACTION_RESPONSE:
3133 		if (hba->dev_cmd.type != DEV_CMD_TYPE_RPMB) {
3134 			err = -EINVAL;
3135 			dev_err(hba->dev, "%s: unexpected response %x\n", __func__, resp);
3136 		}
3137 		break;
3138 	default:
3139 		err = -EINVAL;
3140 		dev_err(hba->dev, "%s: Invalid device management cmd response: %x\n",
3141 				__func__, resp);
3142 		break;
3143 	}
3144 
3145 	return err;
3146 }
3147 
3148 static int ufshcd_wait_for_dev_cmd(struct ufs_hba *hba,
3149 		struct ufshcd_lrb *lrbp, int max_timeout)
3150 {
3151 	unsigned long time_left = msecs_to_jiffies(max_timeout);
3152 	unsigned long flags;
3153 	bool pending;
3154 	int err;
3155 
3156 retry:
3157 	time_left = wait_for_completion_timeout(hba->dev_cmd.complete,
3158 						time_left);
3159 
3160 	if (likely(time_left)) {
3161 		/*
3162 		 * The completion handler called complete() and the caller of
3163 		 * this function still owns the @lrbp tag so the code below does
3164 		 * not trigger any race conditions.
3165 		 */
3166 		hba->dev_cmd.complete = NULL;
3167 		err = ufshcd_get_tr_ocs(lrbp, NULL);
3168 		if (!err)
3169 			err = ufshcd_dev_cmd_completion(hba, lrbp);
3170 	} else {
3171 		err = -ETIMEDOUT;
3172 		dev_dbg(hba->dev, "%s: dev_cmd request timedout, tag %d\n",
3173 			__func__, lrbp->task_tag);
3174 
3175 		/* MCQ mode */
3176 		if (hba->mcq_enabled) {
3177 			/* successfully cleared the command, retry if needed */
3178 			if (ufshcd_clear_cmd(hba, lrbp->task_tag) == 0)
3179 				err = -EAGAIN;
3180 			hba->dev_cmd.complete = NULL;
3181 			return err;
3182 		}
3183 
3184 		/* SDB mode */
3185 		if (ufshcd_clear_cmd(hba, lrbp->task_tag) == 0) {
3186 			/* successfully cleared the command, retry if needed */
3187 			err = -EAGAIN;
3188 			/*
3189 			 * Since clearing the command succeeded we also need to
3190 			 * clear the task tag bit from the outstanding_reqs
3191 			 * variable.
3192 			 */
3193 			spin_lock_irqsave(&hba->outstanding_lock, flags);
3194 			pending = test_bit(lrbp->task_tag,
3195 					   &hba->outstanding_reqs);
3196 			if (pending) {
3197 				hba->dev_cmd.complete = NULL;
3198 				__clear_bit(lrbp->task_tag,
3199 					    &hba->outstanding_reqs);
3200 			}
3201 			spin_unlock_irqrestore(&hba->outstanding_lock, flags);
3202 
3203 			if (!pending) {
3204 				/*
3205 				 * The completion handler ran while we tried to
3206 				 * clear the command.
3207 				 */
3208 				time_left = 1;
3209 				goto retry;
3210 			}
3211 		} else {
3212 			dev_err(hba->dev, "%s: failed to clear tag %d\n",
3213 				__func__, lrbp->task_tag);
3214 
3215 			spin_lock_irqsave(&hba->outstanding_lock, flags);
3216 			pending = test_bit(lrbp->task_tag,
3217 					   &hba->outstanding_reqs);
3218 			if (pending)
3219 				hba->dev_cmd.complete = NULL;
3220 			spin_unlock_irqrestore(&hba->outstanding_lock, flags);
3221 
3222 			if (!pending) {
3223 				/*
3224 				 * The completion handler ran while we tried to
3225 				 * clear the command.
3226 				 */
3227 				time_left = 1;
3228 				goto retry;
3229 			}
3230 		}
3231 	}
3232 
3233 	return err;
3234 }
3235 
3236 static void ufshcd_dev_man_lock(struct ufs_hba *hba)
3237 {
3238 	ufshcd_hold(hba);
3239 	mutex_lock(&hba->dev_cmd.lock);
3240 	down_read(&hba->clk_scaling_lock);
3241 }
3242 
3243 static void ufshcd_dev_man_unlock(struct ufs_hba *hba)
3244 {
3245 	up_read(&hba->clk_scaling_lock);
3246 	mutex_unlock(&hba->dev_cmd.lock);
3247 	ufshcd_release(hba);
3248 }
3249 
3250 static int ufshcd_issue_dev_cmd(struct ufs_hba *hba, struct ufshcd_lrb *lrbp,
3251 			  const u32 tag, int timeout)
3252 {
3253 	DECLARE_COMPLETION_ONSTACK(wait);
3254 	int err;
3255 
3256 	hba->dev_cmd.complete = &wait;
3257 
3258 	ufshcd_add_query_upiu_trace(hba, UFS_QUERY_SEND, lrbp->ucd_req_ptr);
3259 
3260 	ufshcd_send_command(hba, tag, hba->dev_cmd_queue);
3261 	err = ufshcd_wait_for_dev_cmd(hba, lrbp, timeout);
3262 
3263 	ufshcd_add_query_upiu_trace(hba, err ? UFS_QUERY_ERR : UFS_QUERY_COMP,
3264 				    (struct utp_upiu_req *)lrbp->ucd_rsp_ptr);
3265 
3266 	return err;
3267 }
3268 
3269 /**
3270  * ufshcd_exec_dev_cmd - API for sending device management requests
3271  * @hba: UFS hba
3272  * @cmd_type: specifies the type (NOP, Query...)
3273  * @timeout: timeout in milliseconds
3274  *
3275  * Return: 0 upon success; < 0 upon failure.
3276  *
3277  * NOTE: Since there is only one available tag for device management commands,
3278  * it is expected you hold the hba->dev_cmd.lock mutex.
3279  */
3280 static int ufshcd_exec_dev_cmd(struct ufs_hba *hba,
3281 		enum dev_cmd_type cmd_type, int timeout)
3282 {
3283 	const u32 tag = hba->reserved_slot;
3284 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
3285 	int err;
3286 
3287 	/* Protects use of hba->reserved_slot. */
3288 	lockdep_assert_held(&hba->dev_cmd.lock);
3289 
3290 	err = ufshcd_compose_dev_cmd(hba, lrbp, cmd_type, tag);
3291 	if (unlikely(err))
3292 		return err;
3293 
3294 	return ufshcd_issue_dev_cmd(hba, lrbp, tag, timeout);
3295 }
3296 
3297 /**
3298  * ufshcd_init_query() - init the query response and request parameters
3299  * @hba: per-adapter instance
3300  * @request: address of the request pointer to be initialized
3301  * @response: address of the response pointer to be initialized
3302  * @opcode: operation to perform
3303  * @idn: flag idn to access
3304  * @index: LU number to access
3305  * @selector: query/flag/descriptor further identification
3306  */
3307 static inline void ufshcd_init_query(struct ufs_hba *hba,
3308 		struct ufs_query_req **request, struct ufs_query_res **response,
3309 		enum query_opcode opcode, u8 idn, u8 index, u8 selector)
3310 {
3311 	*request = &hba->dev_cmd.query.request;
3312 	*response = &hba->dev_cmd.query.response;
3313 	memset(*request, 0, sizeof(struct ufs_query_req));
3314 	memset(*response, 0, sizeof(struct ufs_query_res));
3315 	(*request)->upiu_req.opcode = opcode;
3316 	(*request)->upiu_req.idn = idn;
3317 	(*request)->upiu_req.index = index;
3318 	(*request)->upiu_req.selector = selector;
3319 }
3320 
3321 static int ufshcd_query_flag_retry(struct ufs_hba *hba,
3322 	enum query_opcode opcode, enum flag_idn idn, u8 index, bool *flag_res)
3323 {
3324 	int ret;
3325 	int retries;
3326 
3327 	for (retries = 0; retries < QUERY_REQ_RETRIES; retries++) {
3328 		ret = ufshcd_query_flag(hba, opcode, idn, index, flag_res);
3329 		if (ret)
3330 			dev_dbg(hba->dev,
3331 				"%s: failed with error %d, retries %d\n",
3332 				__func__, ret, retries);
3333 		else
3334 			break;
3335 	}
3336 
3337 	if (ret)
3338 		dev_err(hba->dev,
3339 			"%s: query flag, opcode %d, idn %d, failed with error %d after %d retries\n",
3340 			__func__, opcode, idn, ret, retries);
3341 	return ret;
3342 }
3343 
3344 /**
3345  * ufshcd_query_flag() - API function for sending flag query requests
3346  * @hba: per-adapter instance
3347  * @opcode: flag query to perform
3348  * @idn: flag idn to access
3349  * @index: flag index to access
3350  * @flag_res: the flag value after the query request completes
3351  *
3352  * Return: 0 for success, non-zero in case of failure.
3353  */
3354 int ufshcd_query_flag(struct ufs_hba *hba, enum query_opcode opcode,
3355 			enum flag_idn idn, u8 index, bool *flag_res)
3356 {
3357 	struct ufs_query_req *request = NULL;
3358 	struct ufs_query_res *response = NULL;
3359 	int err, selector = 0;
3360 	int timeout = QUERY_REQ_TIMEOUT;
3361 
3362 	BUG_ON(!hba);
3363 
3364 	ufshcd_dev_man_lock(hba);
3365 
3366 	ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3367 			selector);
3368 
3369 	switch (opcode) {
3370 	case UPIU_QUERY_OPCODE_SET_FLAG:
3371 	case UPIU_QUERY_OPCODE_CLEAR_FLAG:
3372 	case UPIU_QUERY_OPCODE_TOGGLE_FLAG:
3373 		request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3374 		break;
3375 	case UPIU_QUERY_OPCODE_READ_FLAG:
3376 		request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3377 		if (!flag_res) {
3378 			/* No dummy reads */
3379 			dev_err(hba->dev, "%s: Invalid argument for read request\n",
3380 					__func__);
3381 			err = -EINVAL;
3382 			goto out_unlock;
3383 		}
3384 		break;
3385 	default:
3386 		dev_err(hba->dev,
3387 			"%s: Expected query flag opcode but got = %d\n",
3388 			__func__, opcode);
3389 		err = -EINVAL;
3390 		goto out_unlock;
3391 	}
3392 
3393 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, timeout);
3394 
3395 	if (err) {
3396 		dev_err(hba->dev,
3397 			"%s: Sending flag query for idn %d failed, err = %d\n",
3398 			__func__, idn, err);
3399 		goto out_unlock;
3400 	}
3401 
3402 	if (flag_res)
3403 		*flag_res = (be32_to_cpu(response->upiu_res.value) &
3404 				MASK_QUERY_UPIU_FLAG_LOC) & 0x1;
3405 
3406 out_unlock:
3407 	ufshcd_dev_man_unlock(hba);
3408 	return err;
3409 }
3410 
3411 /**
3412  * ufshcd_query_attr - API function for sending attribute requests
3413  * @hba: per-adapter instance
3414  * @opcode: attribute opcode
3415  * @idn: attribute idn to access
3416  * @index: index field
3417  * @selector: selector field
3418  * @attr_val: the attribute value after the query request completes
3419  *
3420  * Return: 0 for success, non-zero in case of failure.
3421 */
3422 int ufshcd_query_attr(struct ufs_hba *hba, enum query_opcode opcode,
3423 		      enum attr_idn idn, u8 index, u8 selector, u32 *attr_val)
3424 {
3425 	struct ufs_query_req *request = NULL;
3426 	struct ufs_query_res *response = NULL;
3427 	int err;
3428 
3429 	BUG_ON(!hba);
3430 
3431 	if (!attr_val) {
3432 		dev_err(hba->dev, "%s: attribute value required for opcode 0x%x\n",
3433 				__func__, opcode);
3434 		return -EINVAL;
3435 	}
3436 
3437 	ufshcd_dev_man_lock(hba);
3438 
3439 	ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3440 			selector);
3441 
3442 	switch (opcode) {
3443 	case UPIU_QUERY_OPCODE_WRITE_ATTR:
3444 		request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3445 		request->upiu_req.value = cpu_to_be32(*attr_val);
3446 		break;
3447 	case UPIU_QUERY_OPCODE_READ_ATTR:
3448 		request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3449 		break;
3450 	default:
3451 		dev_err(hba->dev, "%s: Expected query attr opcode but got = 0x%.2x\n",
3452 				__func__, opcode);
3453 		err = -EINVAL;
3454 		goto out_unlock;
3455 	}
3456 
3457 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT);
3458 
3459 	if (err) {
3460 		dev_err(hba->dev, "%s: opcode 0x%.2x for idn %d failed, index %d, err = %d\n",
3461 				__func__, opcode, idn, index, err);
3462 		goto out_unlock;
3463 	}
3464 
3465 	*attr_val = be32_to_cpu(response->upiu_res.value);
3466 
3467 out_unlock:
3468 	ufshcd_dev_man_unlock(hba);
3469 	return err;
3470 }
3471 
3472 /**
3473  * ufshcd_query_attr_retry() - API function for sending query
3474  * attribute with retries
3475  * @hba: per-adapter instance
3476  * @opcode: attribute opcode
3477  * @idn: attribute idn to access
3478  * @index: index field
3479  * @selector: selector field
3480  * @attr_val: the attribute value after the query request
3481  * completes
3482  *
3483  * Return: 0 for success, non-zero in case of failure.
3484 */
3485 int ufshcd_query_attr_retry(struct ufs_hba *hba,
3486 	enum query_opcode opcode, enum attr_idn idn, u8 index, u8 selector,
3487 	u32 *attr_val)
3488 {
3489 	int ret = 0;
3490 	u32 retries;
3491 
3492 	for (retries = QUERY_REQ_RETRIES; retries > 0; retries--) {
3493 		ret = ufshcd_query_attr(hba, opcode, idn, index,
3494 						selector, attr_val);
3495 		if (ret)
3496 			dev_dbg(hba->dev, "%s: failed with error %d, retries %d\n",
3497 				__func__, ret, retries);
3498 		else
3499 			break;
3500 	}
3501 
3502 	if (ret)
3503 		dev_err(hba->dev,
3504 			"%s: query attribute, idn %d, failed with error %d after %d retries\n",
3505 			__func__, idn, ret, QUERY_REQ_RETRIES);
3506 	return ret;
3507 }
3508 
3509 static int __ufshcd_query_descriptor(struct ufs_hba *hba,
3510 			enum query_opcode opcode, enum desc_idn idn, u8 index,
3511 			u8 selector, u8 *desc_buf, int *buf_len)
3512 {
3513 	struct ufs_query_req *request = NULL;
3514 	struct ufs_query_res *response = NULL;
3515 	int err;
3516 
3517 	BUG_ON(!hba);
3518 
3519 	if (!desc_buf) {
3520 		dev_err(hba->dev, "%s: descriptor buffer required for opcode 0x%x\n",
3521 				__func__, opcode);
3522 		return -EINVAL;
3523 	}
3524 
3525 	if (*buf_len < QUERY_DESC_MIN_SIZE || *buf_len > QUERY_DESC_MAX_SIZE) {
3526 		dev_err(hba->dev, "%s: descriptor buffer size (%d) is out of range\n",
3527 				__func__, *buf_len);
3528 		return -EINVAL;
3529 	}
3530 
3531 	ufshcd_dev_man_lock(hba);
3532 
3533 	ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3534 			selector);
3535 	hba->dev_cmd.query.descriptor = desc_buf;
3536 	request->upiu_req.length = cpu_to_be16(*buf_len);
3537 
3538 	switch (opcode) {
3539 	case UPIU_QUERY_OPCODE_WRITE_DESC:
3540 		request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3541 		break;
3542 	case UPIU_QUERY_OPCODE_READ_DESC:
3543 		request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3544 		break;
3545 	default:
3546 		dev_err(hba->dev,
3547 				"%s: Expected query descriptor opcode but got = 0x%.2x\n",
3548 				__func__, opcode);
3549 		err = -EINVAL;
3550 		goto out_unlock;
3551 	}
3552 
3553 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT);
3554 
3555 	if (err) {
3556 		dev_err(hba->dev, "%s: opcode 0x%.2x for idn %d failed, index %d, err = %d\n",
3557 				__func__, opcode, idn, index, err);
3558 		goto out_unlock;
3559 	}
3560 
3561 	*buf_len = be16_to_cpu(response->upiu_res.length);
3562 
3563 out_unlock:
3564 	hba->dev_cmd.query.descriptor = NULL;
3565 	ufshcd_dev_man_unlock(hba);
3566 	return err;
3567 }
3568 
3569 /**
3570  * ufshcd_query_descriptor_retry - API function for sending descriptor requests
3571  * @hba: per-adapter instance
3572  * @opcode: attribute opcode
3573  * @idn: attribute idn to access
3574  * @index: index field
3575  * @selector: selector field
3576  * @desc_buf: the buffer that contains the descriptor
3577  * @buf_len: length parameter passed to the device
3578  *
3579  * The buf_len parameter will contain, on return, the length parameter
3580  * received on the response.
3581  *
3582  * Return: 0 for success, non-zero in case of failure.
3583  */
3584 int ufshcd_query_descriptor_retry(struct ufs_hba *hba,
3585 				  enum query_opcode opcode,
3586 				  enum desc_idn idn, u8 index,
3587 				  u8 selector,
3588 				  u8 *desc_buf, int *buf_len)
3589 {
3590 	int err;
3591 	int retries;
3592 
3593 	for (retries = QUERY_REQ_RETRIES; retries > 0; retries--) {
3594 		err = __ufshcd_query_descriptor(hba, opcode, idn, index,
3595 						selector, desc_buf, buf_len);
3596 		if (!err || err == -EINVAL)
3597 			break;
3598 	}
3599 
3600 	return err;
3601 }
3602 
3603 /**
3604  * ufshcd_read_desc_param - read the specified descriptor parameter
3605  * @hba: Pointer to adapter instance
3606  * @desc_id: descriptor idn value
3607  * @desc_index: descriptor index
3608  * @param_offset: offset of the parameter to read
3609  * @param_read_buf: pointer to buffer where parameter would be read
3610  * @param_size: sizeof(param_read_buf)
3611  *
3612  * Return: 0 in case of success, non-zero otherwise.
3613  */
3614 int ufshcd_read_desc_param(struct ufs_hba *hba,
3615 			   enum desc_idn desc_id,
3616 			   int desc_index,
3617 			   u8 param_offset,
3618 			   u8 *param_read_buf,
3619 			   u8 param_size)
3620 {
3621 	int ret;
3622 	u8 *desc_buf;
3623 	int buff_len = QUERY_DESC_MAX_SIZE;
3624 	bool is_kmalloc = true;
3625 
3626 	/* Safety check */
3627 	if (desc_id >= QUERY_DESC_IDN_MAX || !param_size)
3628 		return -EINVAL;
3629 
3630 	/* Check whether we need temp memory */
3631 	if (param_offset != 0 || param_size < buff_len) {
3632 		desc_buf = kzalloc(buff_len, GFP_KERNEL);
3633 		if (!desc_buf)
3634 			return -ENOMEM;
3635 	} else {
3636 		desc_buf = param_read_buf;
3637 		is_kmalloc = false;
3638 	}
3639 
3640 	/* Request for full descriptor */
3641 	ret = ufshcd_query_descriptor_retry(hba, UPIU_QUERY_OPCODE_READ_DESC,
3642 					    desc_id, desc_index, 0,
3643 					    desc_buf, &buff_len);
3644 	if (ret) {
3645 		dev_err(hba->dev, "%s: Failed reading descriptor. desc_id %d, desc_index %d, param_offset %d, ret %d\n",
3646 			__func__, desc_id, desc_index, param_offset, ret);
3647 		goto out;
3648 	}
3649 
3650 	/* Update descriptor length */
3651 	buff_len = desc_buf[QUERY_DESC_LENGTH_OFFSET];
3652 
3653 	if (param_offset >= buff_len) {
3654 		dev_err(hba->dev, "%s: Invalid offset 0x%x in descriptor IDN 0x%x, length 0x%x\n",
3655 			__func__, param_offset, desc_id, buff_len);
3656 		ret = -EINVAL;
3657 		goto out;
3658 	}
3659 
3660 	/* Sanity check */
3661 	if (desc_buf[QUERY_DESC_DESC_TYPE_OFFSET] != desc_id) {
3662 		dev_err(hba->dev, "%s: invalid desc_id %d in descriptor header\n",
3663 			__func__, desc_buf[QUERY_DESC_DESC_TYPE_OFFSET]);
3664 		ret = -EINVAL;
3665 		goto out;
3666 	}
3667 
3668 	if (is_kmalloc) {
3669 		/* Make sure we don't copy more data than available */
3670 		if (param_offset >= buff_len)
3671 			ret = -EINVAL;
3672 		else
3673 			memcpy(param_read_buf, &desc_buf[param_offset],
3674 			       min_t(u32, param_size, buff_len - param_offset));
3675 	}
3676 out:
3677 	if (is_kmalloc)
3678 		kfree(desc_buf);
3679 	return ret;
3680 }
3681 
3682 /**
3683  * struct uc_string_id - unicode string
3684  *
3685  * @len: size of this descriptor inclusive
3686  * @type: descriptor type
3687  * @uc: unicode string character
3688  */
3689 struct uc_string_id {
3690 	u8 len;
3691 	u8 type;
3692 	wchar_t uc[];
3693 } __packed;
3694 
3695 /* replace non-printable or non-ASCII characters with spaces */
3696 static inline char ufshcd_remove_non_printable(u8 ch)
3697 {
3698 	return (ch >= 0x20 && ch <= 0x7e) ? ch : ' ';
3699 }
3700 
3701 /**
3702  * ufshcd_read_string_desc - read string descriptor
3703  * @hba: pointer to adapter instance
3704  * @desc_index: descriptor index
3705  * @buf: pointer to buffer where descriptor would be read,
3706  *       the caller should free the memory.
3707  * @ascii: if true convert from unicode to ascii characters
3708  *         null terminated string.
3709  *
3710  * Return:
3711  * *      string size on success.
3712  * *      -ENOMEM: on allocation failure
3713  * *      -EINVAL: on a wrong parameter
3714  */
3715 int ufshcd_read_string_desc(struct ufs_hba *hba, u8 desc_index,
3716 			    u8 **buf, bool ascii)
3717 {
3718 	struct uc_string_id *uc_str;
3719 	u8 *str;
3720 	int ret;
3721 
3722 	if (!buf)
3723 		return -EINVAL;
3724 
3725 	uc_str = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
3726 	if (!uc_str)
3727 		return -ENOMEM;
3728 
3729 	ret = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_STRING, desc_index, 0,
3730 				     (u8 *)uc_str, QUERY_DESC_MAX_SIZE);
3731 	if (ret < 0) {
3732 		dev_err(hba->dev, "Reading String Desc failed after %d retries. err = %d\n",
3733 			QUERY_REQ_RETRIES, ret);
3734 		str = NULL;
3735 		goto out;
3736 	}
3737 
3738 	if (uc_str->len <= QUERY_DESC_HDR_SIZE) {
3739 		dev_dbg(hba->dev, "String Desc is of zero length\n");
3740 		str = NULL;
3741 		ret = 0;
3742 		goto out;
3743 	}
3744 
3745 	if (ascii) {
3746 		ssize_t ascii_len;
3747 		int i;
3748 		/* remove header and divide by 2 to move from UTF16 to UTF8 */
3749 		ascii_len = (uc_str->len - QUERY_DESC_HDR_SIZE) / 2 + 1;
3750 		str = kzalloc(ascii_len, GFP_KERNEL);
3751 		if (!str) {
3752 			ret = -ENOMEM;
3753 			goto out;
3754 		}
3755 
3756 		/*
3757 		 * the descriptor contains string in UTF16 format
3758 		 * we need to convert to utf-8 so it can be displayed
3759 		 */
3760 		ret = utf16s_to_utf8s(uc_str->uc,
3761 				      uc_str->len - QUERY_DESC_HDR_SIZE,
3762 				      UTF16_BIG_ENDIAN, str, ascii_len - 1);
3763 
3764 		/* replace non-printable or non-ASCII characters with spaces */
3765 		for (i = 0; i < ret; i++)
3766 			str[i] = ufshcd_remove_non_printable(str[i]);
3767 
3768 		str[ret++] = '\0';
3769 
3770 	} else {
3771 		str = kmemdup(uc_str, uc_str->len, GFP_KERNEL);
3772 		if (!str) {
3773 			ret = -ENOMEM;
3774 			goto out;
3775 		}
3776 		ret = uc_str->len;
3777 	}
3778 out:
3779 	*buf = str;
3780 	kfree(uc_str);
3781 	return ret;
3782 }
3783 
3784 /**
3785  * ufshcd_read_unit_desc_param - read the specified unit descriptor parameter
3786  * @hba: Pointer to adapter instance
3787  * @lun: lun id
3788  * @param_offset: offset of the parameter to read
3789  * @param_read_buf: pointer to buffer where parameter would be read
3790  * @param_size: sizeof(param_read_buf)
3791  *
3792  * Return: 0 in case of success, non-zero otherwise.
3793  */
3794 static inline int ufshcd_read_unit_desc_param(struct ufs_hba *hba,
3795 					      int lun,
3796 					      enum unit_desc_param param_offset,
3797 					      u8 *param_read_buf,
3798 					      u32 param_size)
3799 {
3800 	/*
3801 	 * Unit descriptors are only available for general purpose LUs (LUN id
3802 	 * from 0 to 7) and RPMB Well known LU.
3803 	 */
3804 	if (!ufs_is_valid_unit_desc_lun(&hba->dev_info, lun))
3805 		return -EOPNOTSUPP;
3806 
3807 	return ufshcd_read_desc_param(hba, QUERY_DESC_IDN_UNIT, lun,
3808 				      param_offset, param_read_buf, param_size);
3809 }
3810 
3811 static int ufshcd_get_ref_clk_gating_wait(struct ufs_hba *hba)
3812 {
3813 	int err = 0;
3814 	u32 gating_wait = UFSHCD_REF_CLK_GATING_WAIT_US;
3815 
3816 	if (hba->dev_info.wspecversion >= 0x300) {
3817 		err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
3818 				QUERY_ATTR_IDN_REF_CLK_GATING_WAIT_TIME, 0, 0,
3819 				&gating_wait);
3820 		if (err)
3821 			dev_err(hba->dev, "Failed reading bRefClkGatingWait. err = %d, use default %uus\n",
3822 					 err, gating_wait);
3823 
3824 		if (gating_wait == 0) {
3825 			gating_wait = UFSHCD_REF_CLK_GATING_WAIT_US;
3826 			dev_err(hba->dev, "Undefined ref clk gating wait time, use default %uus\n",
3827 					 gating_wait);
3828 		}
3829 
3830 		hba->dev_info.clk_gating_wait_us = gating_wait;
3831 	}
3832 
3833 	return err;
3834 }
3835 
3836 /**
3837  * ufshcd_memory_alloc - allocate memory for host memory space data structures
3838  * @hba: per adapter instance
3839  *
3840  * 1. Allocate DMA memory for Command Descriptor array
3841  *	Each command descriptor consist of Command UPIU, Response UPIU and PRDT
3842  * 2. Allocate DMA memory for UTP Transfer Request Descriptor List (UTRDL).
3843  * 3. Allocate DMA memory for UTP Task Management Request Descriptor List
3844  *	(UTMRDL)
3845  * 4. Allocate memory for local reference block(lrb).
3846  *
3847  * Return: 0 for success, non-zero in case of failure.
3848  */
3849 static int ufshcd_memory_alloc(struct ufs_hba *hba)
3850 {
3851 	size_t utmrdl_size, utrdl_size, ucdl_size;
3852 
3853 	/* Allocate memory for UTP command descriptors */
3854 	ucdl_size = ufshcd_get_ucd_size(hba) * hba->nutrs;
3855 	hba->ucdl_base_addr = dmam_alloc_coherent(hba->dev,
3856 						  ucdl_size,
3857 						  &hba->ucdl_dma_addr,
3858 						  GFP_KERNEL);
3859 
3860 	/*
3861 	 * UFSHCI requires UTP command descriptor to be 128 byte aligned.
3862 	 */
3863 	if (!hba->ucdl_base_addr ||
3864 	    WARN_ON(hba->ucdl_dma_addr & (128 - 1))) {
3865 		dev_err(hba->dev,
3866 			"Command Descriptor Memory allocation failed\n");
3867 		goto out;
3868 	}
3869 
3870 	/*
3871 	 * Allocate memory for UTP Transfer descriptors
3872 	 * UFSHCI requires 1KB alignment of UTRD
3873 	 */
3874 	utrdl_size = (sizeof(struct utp_transfer_req_desc) * hba->nutrs);
3875 	hba->utrdl_base_addr = dmam_alloc_coherent(hba->dev,
3876 						   utrdl_size,
3877 						   &hba->utrdl_dma_addr,
3878 						   GFP_KERNEL);
3879 	if (!hba->utrdl_base_addr ||
3880 	    WARN_ON(hba->utrdl_dma_addr & (SZ_1K - 1))) {
3881 		dev_err(hba->dev,
3882 			"Transfer Descriptor Memory allocation failed\n");
3883 		goto out;
3884 	}
3885 
3886 	/*
3887 	 * Skip utmrdl allocation; it may have been
3888 	 * allocated during first pass and not released during
3889 	 * MCQ memory allocation.
3890 	 * See ufshcd_release_sdb_queue() and ufshcd_config_mcq()
3891 	 */
3892 	if (hba->utmrdl_base_addr)
3893 		goto skip_utmrdl;
3894 	/*
3895 	 * Allocate memory for UTP Task Management descriptors
3896 	 * UFSHCI requires 1KB alignment of UTMRD
3897 	 */
3898 	utmrdl_size = sizeof(struct utp_task_req_desc) * hba->nutmrs;
3899 	hba->utmrdl_base_addr = dmam_alloc_coherent(hba->dev,
3900 						    utmrdl_size,
3901 						    &hba->utmrdl_dma_addr,
3902 						    GFP_KERNEL);
3903 	if (!hba->utmrdl_base_addr ||
3904 	    WARN_ON(hba->utmrdl_dma_addr & (SZ_1K - 1))) {
3905 		dev_err(hba->dev,
3906 		"Task Management Descriptor Memory allocation failed\n");
3907 		goto out;
3908 	}
3909 
3910 skip_utmrdl:
3911 	/* Allocate memory for local reference block */
3912 	hba->lrb = devm_kcalloc(hba->dev,
3913 				hba->nutrs, sizeof(struct ufshcd_lrb),
3914 				GFP_KERNEL);
3915 	if (!hba->lrb) {
3916 		dev_err(hba->dev, "LRB Memory allocation failed\n");
3917 		goto out;
3918 	}
3919 	return 0;
3920 out:
3921 	return -ENOMEM;
3922 }
3923 
3924 /**
3925  * ufshcd_host_memory_configure - configure local reference block with
3926  *				memory offsets
3927  * @hba: per adapter instance
3928  *
3929  * Configure Host memory space
3930  * 1. Update Corresponding UTRD.UCDBA and UTRD.UCDBAU with UCD DMA
3931  * address.
3932  * 2. Update each UTRD with Response UPIU offset, Response UPIU length
3933  * and PRDT offset.
3934  * 3. Save the corresponding addresses of UTRD, UCD.CMD, UCD.RSP and UCD.PRDT
3935  * into local reference block.
3936  */
3937 static void ufshcd_host_memory_configure(struct ufs_hba *hba)
3938 {
3939 	struct utp_transfer_req_desc *utrdlp;
3940 	dma_addr_t cmd_desc_dma_addr;
3941 	dma_addr_t cmd_desc_element_addr;
3942 	u16 response_offset;
3943 	u16 prdt_offset;
3944 	int cmd_desc_size;
3945 	int i;
3946 
3947 	utrdlp = hba->utrdl_base_addr;
3948 
3949 	response_offset =
3950 		offsetof(struct utp_transfer_cmd_desc, response_upiu);
3951 	prdt_offset =
3952 		offsetof(struct utp_transfer_cmd_desc, prd_table);
3953 
3954 	cmd_desc_size = ufshcd_get_ucd_size(hba);
3955 	cmd_desc_dma_addr = hba->ucdl_dma_addr;
3956 
3957 	for (i = 0; i < hba->nutrs; i++) {
3958 		/* Configure UTRD with command descriptor base address */
3959 		cmd_desc_element_addr =
3960 				(cmd_desc_dma_addr + (cmd_desc_size * i));
3961 		utrdlp[i].command_desc_base_addr =
3962 				cpu_to_le64(cmd_desc_element_addr);
3963 
3964 		/* Response upiu and prdt offset should be in double words */
3965 		if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN) {
3966 			utrdlp[i].response_upiu_offset =
3967 				cpu_to_le16(response_offset);
3968 			utrdlp[i].prd_table_offset =
3969 				cpu_to_le16(prdt_offset);
3970 			utrdlp[i].response_upiu_length =
3971 				cpu_to_le16(ALIGNED_UPIU_SIZE);
3972 		} else {
3973 			utrdlp[i].response_upiu_offset =
3974 				cpu_to_le16(response_offset >> 2);
3975 			utrdlp[i].prd_table_offset =
3976 				cpu_to_le16(prdt_offset >> 2);
3977 			utrdlp[i].response_upiu_length =
3978 				cpu_to_le16(ALIGNED_UPIU_SIZE >> 2);
3979 		}
3980 
3981 		ufshcd_init_lrb(hba, &hba->lrb[i], i);
3982 	}
3983 }
3984 
3985 /**
3986  * ufshcd_dme_link_startup - Notify Unipro to perform link startup
3987  * @hba: per adapter instance
3988  *
3989  * UIC_CMD_DME_LINK_STARTUP command must be issued to Unipro layer,
3990  * in order to initialize the Unipro link startup procedure.
3991  * Once the Unipro links are up, the device connected to the controller
3992  * is detected.
3993  *
3994  * Return: 0 on success, non-zero value on failure.
3995  */
3996 static int ufshcd_dme_link_startup(struct ufs_hba *hba)
3997 {
3998 	struct uic_command uic_cmd = {
3999 		.command = UIC_CMD_DME_LINK_STARTUP,
4000 	};
4001 	int ret;
4002 
4003 	ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4004 	if (ret)
4005 		dev_dbg(hba->dev,
4006 			"dme-link-startup: error code %d\n", ret);
4007 	return ret;
4008 }
4009 /**
4010  * ufshcd_dme_reset - UIC command for DME_RESET
4011  * @hba: per adapter instance
4012  *
4013  * DME_RESET command is issued in order to reset UniPro stack.
4014  * This function now deals with cold reset.
4015  *
4016  * Return: 0 on success, non-zero value on failure.
4017  */
4018 static int ufshcd_dme_reset(struct ufs_hba *hba)
4019 {
4020 	struct uic_command uic_cmd = {
4021 		.command = UIC_CMD_DME_RESET,
4022 	};
4023 	int ret;
4024 
4025 	ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4026 	if (ret)
4027 		dev_err(hba->dev,
4028 			"dme-reset: error code %d\n", ret);
4029 
4030 	return ret;
4031 }
4032 
4033 int ufshcd_dme_configure_adapt(struct ufs_hba *hba,
4034 			       int agreed_gear,
4035 			       int adapt_val)
4036 {
4037 	int ret;
4038 
4039 	if (agreed_gear < UFS_HS_G4)
4040 		adapt_val = PA_NO_ADAPT;
4041 
4042 	ret = ufshcd_dme_set(hba,
4043 			     UIC_ARG_MIB(PA_TXHSADAPTTYPE),
4044 			     adapt_val);
4045 	return ret;
4046 }
4047 EXPORT_SYMBOL_GPL(ufshcd_dme_configure_adapt);
4048 
4049 /**
4050  * ufshcd_dme_enable - UIC command for DME_ENABLE
4051  * @hba: per adapter instance
4052  *
4053  * DME_ENABLE command is issued in order to enable UniPro stack.
4054  *
4055  * Return: 0 on success, non-zero value on failure.
4056  */
4057 static int ufshcd_dme_enable(struct ufs_hba *hba)
4058 {
4059 	struct uic_command uic_cmd = {
4060 		.command = UIC_CMD_DME_ENABLE,
4061 	};
4062 	int ret;
4063 
4064 	ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4065 	if (ret)
4066 		dev_err(hba->dev,
4067 			"dme-enable: error code %d\n", ret);
4068 
4069 	return ret;
4070 }
4071 
4072 static inline void ufshcd_add_delay_before_dme_cmd(struct ufs_hba *hba)
4073 {
4074 	#define MIN_DELAY_BEFORE_DME_CMDS_US	1000
4075 	unsigned long min_sleep_time_us;
4076 
4077 	if (!(hba->quirks & UFSHCD_QUIRK_DELAY_BEFORE_DME_CMDS))
4078 		return;
4079 
4080 	/*
4081 	 * last_dme_cmd_tstamp will be 0 only for 1st call to
4082 	 * this function
4083 	 */
4084 	if (unlikely(!ktime_to_us(hba->last_dme_cmd_tstamp))) {
4085 		min_sleep_time_us = MIN_DELAY_BEFORE_DME_CMDS_US;
4086 	} else {
4087 		unsigned long delta =
4088 			(unsigned long) ktime_to_us(
4089 				ktime_sub(ktime_get(),
4090 				hba->last_dme_cmd_tstamp));
4091 
4092 		if (delta < MIN_DELAY_BEFORE_DME_CMDS_US)
4093 			min_sleep_time_us =
4094 				MIN_DELAY_BEFORE_DME_CMDS_US - delta;
4095 		else
4096 			min_sleep_time_us = 0; /* no more delay required */
4097 	}
4098 
4099 	if (min_sleep_time_us > 0) {
4100 		/* allow sleep for extra 50us if needed */
4101 		usleep_range(min_sleep_time_us, min_sleep_time_us + 50);
4102 	}
4103 
4104 	/* update the last_dme_cmd_tstamp */
4105 	hba->last_dme_cmd_tstamp = ktime_get();
4106 }
4107 
4108 /**
4109  * ufshcd_dme_set_attr - UIC command for DME_SET, DME_PEER_SET
4110  * @hba: per adapter instance
4111  * @attr_sel: uic command argument1
4112  * @attr_set: attribute set type as uic command argument2
4113  * @mib_val: setting value as uic command argument3
4114  * @peer: indicate whether peer or local
4115  *
4116  * Return: 0 on success, non-zero value on failure.
4117  */
4118 int ufshcd_dme_set_attr(struct ufs_hba *hba, u32 attr_sel,
4119 			u8 attr_set, u32 mib_val, u8 peer)
4120 {
4121 	struct uic_command uic_cmd = {
4122 		.command = peer ? UIC_CMD_DME_PEER_SET : UIC_CMD_DME_SET,
4123 		.argument1 = attr_sel,
4124 		.argument2 = UIC_ARG_ATTR_TYPE(attr_set),
4125 		.argument3 = mib_val,
4126 	};
4127 	static const char *const action[] = {
4128 		"dme-set",
4129 		"dme-peer-set"
4130 	};
4131 	const char *set = action[!!peer];
4132 	int ret;
4133 	int retries = UFS_UIC_COMMAND_RETRIES;
4134 
4135 	do {
4136 		/* for peer attributes we retry upon failure */
4137 		ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4138 		if (ret)
4139 			dev_dbg(hba->dev, "%s: attr-id 0x%x val 0x%x error code %d\n",
4140 				set, UIC_GET_ATTR_ID(attr_sel), mib_val, ret);
4141 	} while (ret && peer && --retries);
4142 
4143 	if (ret)
4144 		dev_err(hba->dev, "%s: attr-id 0x%x val 0x%x failed %d retries\n",
4145 			set, UIC_GET_ATTR_ID(attr_sel), mib_val,
4146 			UFS_UIC_COMMAND_RETRIES - retries);
4147 
4148 	return ret;
4149 }
4150 EXPORT_SYMBOL_GPL(ufshcd_dme_set_attr);
4151 
4152 /**
4153  * ufshcd_dme_get_attr - UIC command for DME_GET, DME_PEER_GET
4154  * @hba: per adapter instance
4155  * @attr_sel: uic command argument1
4156  * @mib_val: the value of the attribute as returned by the UIC command
4157  * @peer: indicate whether peer or local
4158  *
4159  * Return: 0 on success, non-zero value on failure.
4160  */
4161 int ufshcd_dme_get_attr(struct ufs_hba *hba, u32 attr_sel,
4162 			u32 *mib_val, u8 peer)
4163 {
4164 	struct uic_command uic_cmd = {
4165 		.command = peer ? UIC_CMD_DME_PEER_GET : UIC_CMD_DME_GET,
4166 		.argument1 = attr_sel,
4167 	};
4168 	static const char *const action[] = {
4169 		"dme-get",
4170 		"dme-peer-get"
4171 	};
4172 	const char *get = action[!!peer];
4173 	int ret;
4174 	int retries = UFS_UIC_COMMAND_RETRIES;
4175 	struct ufs_pa_layer_attr orig_pwr_info;
4176 	struct ufs_pa_layer_attr temp_pwr_info;
4177 	bool pwr_mode_change = false;
4178 
4179 	if (peer && (hba->quirks & UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE)) {
4180 		orig_pwr_info = hba->pwr_info;
4181 		temp_pwr_info = orig_pwr_info;
4182 
4183 		if (orig_pwr_info.pwr_tx == FAST_MODE ||
4184 		    orig_pwr_info.pwr_rx == FAST_MODE) {
4185 			temp_pwr_info.pwr_tx = FASTAUTO_MODE;
4186 			temp_pwr_info.pwr_rx = FASTAUTO_MODE;
4187 			pwr_mode_change = true;
4188 		} else if (orig_pwr_info.pwr_tx == SLOW_MODE ||
4189 		    orig_pwr_info.pwr_rx == SLOW_MODE) {
4190 			temp_pwr_info.pwr_tx = SLOWAUTO_MODE;
4191 			temp_pwr_info.pwr_rx = SLOWAUTO_MODE;
4192 			pwr_mode_change = true;
4193 		}
4194 		if (pwr_mode_change) {
4195 			ret = ufshcd_change_power_mode(hba, &temp_pwr_info);
4196 			if (ret)
4197 				goto out;
4198 		}
4199 	}
4200 
4201 	do {
4202 		/* for peer attributes we retry upon failure */
4203 		ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4204 		if (ret)
4205 			dev_dbg(hba->dev, "%s: attr-id 0x%x error code %d\n",
4206 				get, UIC_GET_ATTR_ID(attr_sel), ret);
4207 	} while (ret && peer && --retries);
4208 
4209 	if (ret)
4210 		dev_err(hba->dev, "%s: attr-id 0x%x failed %d retries\n",
4211 			get, UIC_GET_ATTR_ID(attr_sel),
4212 			UFS_UIC_COMMAND_RETRIES - retries);
4213 
4214 	if (mib_val && !ret)
4215 		*mib_val = uic_cmd.argument3;
4216 
4217 	if (peer && (hba->quirks & UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE)
4218 	    && pwr_mode_change)
4219 		ufshcd_change_power_mode(hba, &orig_pwr_info);
4220 out:
4221 	return ret;
4222 }
4223 EXPORT_SYMBOL_GPL(ufshcd_dme_get_attr);
4224 
4225 /**
4226  * ufshcd_uic_pwr_ctrl - executes UIC commands (which affects the link power
4227  * state) and waits for it to take effect.
4228  *
4229  * @hba: per adapter instance
4230  * @cmd: UIC command to execute
4231  *
4232  * DME operations like DME_SET(PA_PWRMODE), DME_HIBERNATE_ENTER &
4233  * DME_HIBERNATE_EXIT commands take some time to take its effect on both host
4234  * and device UniPro link and hence it's final completion would be indicated by
4235  * dedicated status bits in Interrupt Status register (UPMS, UHES, UHXS) in
4236  * addition to normal UIC command completion Status (UCCS). This function only
4237  * returns after the relevant status bits indicate the completion.
4238  *
4239  * Return: 0 on success, non-zero value on failure.
4240  */
4241 static int ufshcd_uic_pwr_ctrl(struct ufs_hba *hba, struct uic_command *cmd)
4242 {
4243 	DECLARE_COMPLETION_ONSTACK(uic_async_done);
4244 	unsigned long flags;
4245 	u8 status;
4246 	int ret;
4247 	bool reenable_intr = false;
4248 
4249 	mutex_lock(&hba->uic_cmd_mutex);
4250 	ufshcd_add_delay_before_dme_cmd(hba);
4251 
4252 	spin_lock_irqsave(hba->host->host_lock, flags);
4253 	if (ufshcd_is_link_broken(hba)) {
4254 		ret = -ENOLINK;
4255 		goto out_unlock;
4256 	}
4257 	hba->uic_async_done = &uic_async_done;
4258 	if (ufshcd_readl(hba, REG_INTERRUPT_ENABLE) & UIC_COMMAND_COMPL) {
4259 		ufshcd_disable_intr(hba, UIC_COMMAND_COMPL);
4260 		/*
4261 		 * Make sure UIC command completion interrupt is disabled before
4262 		 * issuing UIC command.
4263 		 */
4264 		ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
4265 		reenable_intr = true;
4266 	}
4267 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4268 	ret = __ufshcd_send_uic_cmd(hba, cmd);
4269 	if (ret) {
4270 		dev_err(hba->dev,
4271 			"pwr ctrl cmd 0x%x with mode 0x%x uic error %d\n",
4272 			cmd->command, cmd->argument3, ret);
4273 		goto out;
4274 	}
4275 
4276 	if (!wait_for_completion_timeout(hba->uic_async_done,
4277 					 msecs_to_jiffies(uic_cmd_timeout))) {
4278 		dev_err(hba->dev,
4279 			"pwr ctrl cmd 0x%x with mode 0x%x completion timeout\n",
4280 			cmd->command, cmd->argument3);
4281 
4282 		if (!cmd->cmd_active) {
4283 			dev_err(hba->dev, "%s: Power Mode Change operation has been completed, go check UPMCRS\n",
4284 				__func__);
4285 			goto check_upmcrs;
4286 		}
4287 
4288 		ret = -ETIMEDOUT;
4289 		goto out;
4290 	}
4291 
4292 check_upmcrs:
4293 	status = ufshcd_get_upmcrs(hba);
4294 	if (status != PWR_LOCAL) {
4295 		dev_err(hba->dev,
4296 			"pwr ctrl cmd 0x%x failed, host upmcrs:0x%x\n",
4297 			cmd->command, status);
4298 		ret = (status != PWR_OK) ? status : -1;
4299 	}
4300 out:
4301 	if (ret) {
4302 		ufshcd_print_host_state(hba);
4303 		ufshcd_print_pwr_info(hba);
4304 		ufshcd_print_evt_hist(hba);
4305 	}
4306 
4307 	spin_lock_irqsave(hba->host->host_lock, flags);
4308 	hba->active_uic_cmd = NULL;
4309 	hba->uic_async_done = NULL;
4310 	if (reenable_intr)
4311 		ufshcd_enable_intr(hba, UIC_COMMAND_COMPL);
4312 	if (ret) {
4313 		ufshcd_set_link_broken(hba);
4314 		ufshcd_schedule_eh_work(hba);
4315 	}
4316 out_unlock:
4317 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4318 	mutex_unlock(&hba->uic_cmd_mutex);
4319 
4320 	return ret;
4321 }
4322 
4323 /**
4324  * ufshcd_uic_change_pwr_mode - Perform the UIC power mode chage
4325  *				using DME_SET primitives.
4326  * @hba: per adapter instance
4327  * @mode: powr mode value
4328  *
4329  * Return: 0 on success, non-zero value on failure.
4330  */
4331 int ufshcd_uic_change_pwr_mode(struct ufs_hba *hba, u8 mode)
4332 {
4333 	struct uic_command uic_cmd = {
4334 		.command = UIC_CMD_DME_SET,
4335 		.argument1 = UIC_ARG_MIB(PA_PWRMODE),
4336 		.argument3 = mode,
4337 	};
4338 	int ret;
4339 
4340 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_PA_RXHSUNTERMCAP) {
4341 		ret = ufshcd_dme_set(hba,
4342 				UIC_ARG_MIB_SEL(PA_RXHSUNTERMCAP, 0), 1);
4343 		if (ret) {
4344 			dev_err(hba->dev, "%s: failed to enable PA_RXHSUNTERMCAP ret %d\n",
4345 						__func__, ret);
4346 			goto out;
4347 		}
4348 	}
4349 
4350 	ufshcd_hold(hba);
4351 	ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4352 	ufshcd_release(hba);
4353 
4354 out:
4355 	return ret;
4356 }
4357 EXPORT_SYMBOL_GPL(ufshcd_uic_change_pwr_mode);
4358 
4359 int ufshcd_link_recovery(struct ufs_hba *hba)
4360 {
4361 	int ret;
4362 	unsigned long flags;
4363 
4364 	spin_lock_irqsave(hba->host->host_lock, flags);
4365 	hba->ufshcd_state = UFSHCD_STATE_RESET;
4366 	ufshcd_set_eh_in_progress(hba);
4367 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4368 
4369 	/* Reset the attached device */
4370 	ufshcd_device_reset(hba);
4371 
4372 	ret = ufshcd_host_reset_and_restore(hba);
4373 
4374 	spin_lock_irqsave(hba->host->host_lock, flags);
4375 	if (ret)
4376 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
4377 	ufshcd_clear_eh_in_progress(hba);
4378 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4379 
4380 	if (ret)
4381 		dev_err(hba->dev, "%s: link recovery failed, err %d",
4382 			__func__, ret);
4383 
4384 	return ret;
4385 }
4386 EXPORT_SYMBOL_GPL(ufshcd_link_recovery);
4387 
4388 int ufshcd_uic_hibern8_enter(struct ufs_hba *hba)
4389 {
4390 	struct uic_command uic_cmd = {
4391 		.command = UIC_CMD_DME_HIBER_ENTER,
4392 	};
4393 	ktime_t start = ktime_get();
4394 	int ret;
4395 
4396 	ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_ENTER, PRE_CHANGE);
4397 
4398 	ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4399 	trace_ufshcd_profile_hibern8(dev_name(hba->dev), "enter",
4400 			     ktime_to_us(ktime_sub(ktime_get(), start)), ret);
4401 
4402 	if (ret)
4403 		dev_err(hba->dev, "%s: hibern8 enter failed. ret = %d\n",
4404 			__func__, ret);
4405 	else
4406 		ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_ENTER,
4407 								POST_CHANGE);
4408 
4409 	return ret;
4410 }
4411 EXPORT_SYMBOL_GPL(ufshcd_uic_hibern8_enter);
4412 
4413 int ufshcd_uic_hibern8_exit(struct ufs_hba *hba)
4414 {
4415 	struct uic_command uic_cmd = {
4416 		.command = UIC_CMD_DME_HIBER_EXIT,
4417 	};
4418 	int ret;
4419 	ktime_t start = ktime_get();
4420 
4421 	ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_EXIT, PRE_CHANGE);
4422 
4423 	ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4424 	trace_ufshcd_profile_hibern8(dev_name(hba->dev), "exit",
4425 			     ktime_to_us(ktime_sub(ktime_get(), start)), ret);
4426 
4427 	if (ret) {
4428 		dev_err(hba->dev, "%s: hibern8 exit failed. ret = %d\n",
4429 			__func__, ret);
4430 	} else {
4431 		ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_EXIT,
4432 								POST_CHANGE);
4433 		hba->ufs_stats.last_hibern8_exit_tstamp = local_clock();
4434 		hba->ufs_stats.hibern8_exit_cnt++;
4435 	}
4436 
4437 	return ret;
4438 }
4439 EXPORT_SYMBOL_GPL(ufshcd_uic_hibern8_exit);
4440 
4441 static void ufshcd_configure_auto_hibern8(struct ufs_hba *hba)
4442 {
4443 	if (!ufshcd_is_auto_hibern8_supported(hba))
4444 		return;
4445 
4446 	ufshcd_writel(hba, hba->ahit, REG_AUTO_HIBERNATE_IDLE_TIMER);
4447 }
4448 
4449 void ufshcd_auto_hibern8_update(struct ufs_hba *hba, u32 ahit)
4450 {
4451 	const u32 cur_ahit = READ_ONCE(hba->ahit);
4452 
4453 	if (!ufshcd_is_auto_hibern8_supported(hba) || cur_ahit == ahit)
4454 		return;
4455 
4456 	WRITE_ONCE(hba->ahit, ahit);
4457 	if (!pm_runtime_suspended(&hba->ufs_device_wlun->sdev_gendev)) {
4458 		ufshcd_rpm_get_sync(hba);
4459 		ufshcd_hold(hba);
4460 		ufshcd_configure_auto_hibern8(hba);
4461 		ufshcd_release(hba);
4462 		ufshcd_rpm_put_sync(hba);
4463 	}
4464 }
4465 EXPORT_SYMBOL_GPL(ufshcd_auto_hibern8_update);
4466 
4467  /**
4468  * ufshcd_init_pwr_info - setting the POR (power on reset)
4469  * values in hba power info
4470  * @hba: per-adapter instance
4471  */
4472 static void ufshcd_init_pwr_info(struct ufs_hba *hba)
4473 {
4474 	hba->pwr_info.gear_rx = UFS_PWM_G1;
4475 	hba->pwr_info.gear_tx = UFS_PWM_G1;
4476 	hba->pwr_info.lane_rx = UFS_LANE_1;
4477 	hba->pwr_info.lane_tx = UFS_LANE_1;
4478 	hba->pwr_info.pwr_rx = SLOWAUTO_MODE;
4479 	hba->pwr_info.pwr_tx = SLOWAUTO_MODE;
4480 	hba->pwr_info.hs_rate = 0;
4481 }
4482 
4483 /**
4484  * ufshcd_get_max_pwr_mode - reads the max power mode negotiated with device
4485  * @hba: per-adapter instance
4486  *
4487  * Return: 0 upon success; < 0 upon failure.
4488  */
4489 static int ufshcd_get_max_pwr_mode(struct ufs_hba *hba)
4490 {
4491 	struct ufs_pa_layer_attr *pwr_info = &hba->max_pwr_info.info;
4492 
4493 	if (hba->max_pwr_info.is_valid)
4494 		return 0;
4495 
4496 	if (hba->quirks & UFSHCD_QUIRK_HIBERN_FASTAUTO) {
4497 		pwr_info->pwr_tx = FASTAUTO_MODE;
4498 		pwr_info->pwr_rx = FASTAUTO_MODE;
4499 	} else {
4500 		pwr_info->pwr_tx = FAST_MODE;
4501 		pwr_info->pwr_rx = FAST_MODE;
4502 	}
4503 	pwr_info->hs_rate = PA_HS_MODE_B;
4504 
4505 	/* Get the connected lane count */
4506 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDRXDATALANES),
4507 			&pwr_info->lane_rx);
4508 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4509 			&pwr_info->lane_tx);
4510 
4511 	if (!pwr_info->lane_rx || !pwr_info->lane_tx) {
4512 		dev_err(hba->dev, "%s: invalid connected lanes value. rx=%d, tx=%d\n",
4513 				__func__,
4514 				pwr_info->lane_rx,
4515 				pwr_info->lane_tx);
4516 		return -EINVAL;
4517 	}
4518 
4519 	if (pwr_info->lane_rx != pwr_info->lane_tx) {
4520 		dev_err(hba->dev, "%s: asymmetric connected lanes. rx=%d, tx=%d\n",
4521 			__func__,
4522 				pwr_info->lane_rx,
4523 				pwr_info->lane_tx);
4524 		return -EINVAL;
4525 	}
4526 
4527 	/*
4528 	 * First, get the maximum gears of HS speed.
4529 	 * If a zero value, it means there is no HSGEAR capability.
4530 	 * Then, get the maximum gears of PWM speed.
4531 	 */
4532 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_MAXRXHSGEAR), &pwr_info->gear_rx);
4533 	if (!pwr_info->gear_rx) {
4534 		ufshcd_dme_get(hba, UIC_ARG_MIB(PA_MAXRXPWMGEAR),
4535 				&pwr_info->gear_rx);
4536 		if (!pwr_info->gear_rx) {
4537 			dev_err(hba->dev, "%s: invalid max pwm rx gear read = %d\n",
4538 				__func__, pwr_info->gear_rx);
4539 			return -EINVAL;
4540 		}
4541 		pwr_info->pwr_rx = SLOW_MODE;
4542 	}
4543 
4544 	ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_MAXRXHSGEAR),
4545 			&pwr_info->gear_tx);
4546 	if (!pwr_info->gear_tx) {
4547 		ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_MAXRXPWMGEAR),
4548 				&pwr_info->gear_tx);
4549 		if (!pwr_info->gear_tx) {
4550 			dev_err(hba->dev, "%s: invalid max pwm tx gear read = %d\n",
4551 				__func__, pwr_info->gear_tx);
4552 			return -EINVAL;
4553 		}
4554 		pwr_info->pwr_tx = SLOW_MODE;
4555 	}
4556 
4557 	hba->max_pwr_info.is_valid = true;
4558 	return 0;
4559 }
4560 
4561 static int ufshcd_change_power_mode(struct ufs_hba *hba,
4562 			     struct ufs_pa_layer_attr *pwr_mode)
4563 {
4564 	int ret;
4565 
4566 	/* if already configured to the requested pwr_mode */
4567 	if (!hba->force_pmc &&
4568 	    pwr_mode->gear_rx == hba->pwr_info.gear_rx &&
4569 	    pwr_mode->gear_tx == hba->pwr_info.gear_tx &&
4570 	    pwr_mode->lane_rx == hba->pwr_info.lane_rx &&
4571 	    pwr_mode->lane_tx == hba->pwr_info.lane_tx &&
4572 	    pwr_mode->pwr_rx == hba->pwr_info.pwr_rx &&
4573 	    pwr_mode->pwr_tx == hba->pwr_info.pwr_tx &&
4574 	    pwr_mode->hs_rate == hba->pwr_info.hs_rate) {
4575 		dev_dbg(hba->dev, "%s: power already configured\n", __func__);
4576 		return 0;
4577 	}
4578 
4579 	/*
4580 	 * Configure attributes for power mode change with below.
4581 	 * - PA_RXGEAR, PA_ACTIVERXDATALANES, PA_RXTERMINATION,
4582 	 * - PA_TXGEAR, PA_ACTIVETXDATALANES, PA_TXTERMINATION,
4583 	 * - PA_HSSERIES
4584 	 */
4585 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXGEAR), pwr_mode->gear_rx);
4586 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVERXDATALANES),
4587 			pwr_mode->lane_rx);
4588 	if (pwr_mode->pwr_rx == FASTAUTO_MODE ||
4589 			pwr_mode->pwr_rx == FAST_MODE)
4590 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), true);
4591 	else
4592 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), false);
4593 
4594 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXGEAR), pwr_mode->gear_tx);
4595 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVETXDATALANES),
4596 			pwr_mode->lane_tx);
4597 	if (pwr_mode->pwr_tx == FASTAUTO_MODE ||
4598 			pwr_mode->pwr_tx == FAST_MODE)
4599 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), true);
4600 	else
4601 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), false);
4602 
4603 	if (pwr_mode->pwr_rx == FASTAUTO_MODE ||
4604 	    pwr_mode->pwr_tx == FASTAUTO_MODE ||
4605 	    pwr_mode->pwr_rx == FAST_MODE ||
4606 	    pwr_mode->pwr_tx == FAST_MODE)
4607 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_HSSERIES),
4608 						pwr_mode->hs_rate);
4609 
4610 	if (!(hba->quirks & UFSHCD_QUIRK_SKIP_DEF_UNIPRO_TIMEOUT_SETTING)) {
4611 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA0),
4612 				DL_FC0ProtectionTimeOutVal_Default);
4613 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA1),
4614 				DL_TC0ReplayTimeOutVal_Default);
4615 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA2),
4616 				DL_AFC0ReqTimeOutVal_Default);
4617 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA3),
4618 				DL_FC1ProtectionTimeOutVal_Default);
4619 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA4),
4620 				DL_TC1ReplayTimeOutVal_Default);
4621 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA5),
4622 				DL_AFC1ReqTimeOutVal_Default);
4623 
4624 		ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalFC0ProtectionTimeOutVal),
4625 				DL_FC0ProtectionTimeOutVal_Default);
4626 		ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalTC0ReplayTimeOutVal),
4627 				DL_TC0ReplayTimeOutVal_Default);
4628 		ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalAFC0ReqTimeOutVal),
4629 				DL_AFC0ReqTimeOutVal_Default);
4630 	}
4631 
4632 	ret = ufshcd_uic_change_pwr_mode(hba, pwr_mode->pwr_rx << 4
4633 			| pwr_mode->pwr_tx);
4634 
4635 	if (ret) {
4636 		dev_err(hba->dev,
4637 			"%s: power mode change failed %d\n", __func__, ret);
4638 	} else {
4639 		ufshcd_vops_pwr_change_notify(hba, POST_CHANGE, NULL,
4640 								pwr_mode);
4641 
4642 		memcpy(&hba->pwr_info, pwr_mode,
4643 			sizeof(struct ufs_pa_layer_attr));
4644 	}
4645 
4646 	return ret;
4647 }
4648 
4649 /**
4650  * ufshcd_config_pwr_mode - configure a new power mode
4651  * @hba: per-adapter instance
4652  * @desired_pwr_mode: desired power configuration
4653  *
4654  * Return: 0 upon success; < 0 upon failure.
4655  */
4656 int ufshcd_config_pwr_mode(struct ufs_hba *hba,
4657 		struct ufs_pa_layer_attr *desired_pwr_mode)
4658 {
4659 	struct ufs_pa_layer_attr final_params = { 0 };
4660 	int ret;
4661 
4662 	ret = ufshcd_vops_pwr_change_notify(hba, PRE_CHANGE,
4663 					desired_pwr_mode, &final_params);
4664 
4665 	if (ret)
4666 		memcpy(&final_params, desired_pwr_mode, sizeof(final_params));
4667 
4668 	ret = ufshcd_change_power_mode(hba, &final_params);
4669 
4670 	return ret;
4671 }
4672 EXPORT_SYMBOL_GPL(ufshcd_config_pwr_mode);
4673 
4674 /**
4675  * ufshcd_complete_dev_init() - checks device readiness
4676  * @hba: per-adapter instance
4677  *
4678  * Set fDeviceInit flag and poll until device toggles it.
4679  *
4680  * Return: 0 upon success; < 0 upon failure.
4681  */
4682 static int ufshcd_complete_dev_init(struct ufs_hba *hba)
4683 {
4684 	int err;
4685 	bool flag_res = true;
4686 	ktime_t timeout;
4687 
4688 	err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG,
4689 		QUERY_FLAG_IDN_FDEVICEINIT, 0, NULL);
4690 	if (err) {
4691 		dev_err(hba->dev,
4692 			"%s: setting fDeviceInit flag failed with error %d\n",
4693 			__func__, err);
4694 		goto out;
4695 	}
4696 
4697 	/* Poll fDeviceInit flag to be cleared */
4698 	timeout = ktime_add_ms(ktime_get(), FDEVICEINIT_COMPL_TIMEOUT);
4699 	do {
4700 		err = ufshcd_query_flag(hba, UPIU_QUERY_OPCODE_READ_FLAG,
4701 					QUERY_FLAG_IDN_FDEVICEINIT, 0, &flag_res);
4702 		if (!flag_res)
4703 			break;
4704 		usleep_range(500, 1000);
4705 	} while (ktime_before(ktime_get(), timeout));
4706 
4707 	if (err) {
4708 		dev_err(hba->dev,
4709 				"%s: reading fDeviceInit flag failed with error %d\n",
4710 				__func__, err);
4711 	} else if (flag_res) {
4712 		dev_err(hba->dev,
4713 				"%s: fDeviceInit was not cleared by the device\n",
4714 				__func__);
4715 		err = -EBUSY;
4716 	}
4717 out:
4718 	return err;
4719 }
4720 
4721 /**
4722  * ufshcd_make_hba_operational - Make UFS controller operational
4723  * @hba: per adapter instance
4724  *
4725  * To bring UFS host controller to operational state,
4726  * 1. Enable required interrupts
4727  * 2. Configure interrupt aggregation
4728  * 3. Program UTRL and UTMRL base address
4729  * 4. Configure run-stop-registers
4730  *
4731  * Return: 0 on success, non-zero value on failure.
4732  */
4733 int ufshcd_make_hba_operational(struct ufs_hba *hba)
4734 {
4735 	int err = 0;
4736 	u32 reg;
4737 
4738 	/* Enable required interrupts */
4739 	ufshcd_enable_intr(hba, UFSHCD_ENABLE_INTRS);
4740 
4741 	/* Configure interrupt aggregation */
4742 	if (ufshcd_is_intr_aggr_allowed(hba))
4743 		ufshcd_config_intr_aggr(hba, hba->nutrs - 1, INT_AGGR_DEF_TO);
4744 	else
4745 		ufshcd_disable_intr_aggr(hba);
4746 
4747 	/* Configure UTRL and UTMRL base address registers */
4748 	ufshcd_writel(hba, lower_32_bits(hba->utrdl_dma_addr),
4749 			REG_UTP_TRANSFER_REQ_LIST_BASE_L);
4750 	ufshcd_writel(hba, upper_32_bits(hba->utrdl_dma_addr),
4751 			REG_UTP_TRANSFER_REQ_LIST_BASE_H);
4752 	ufshcd_writel(hba, lower_32_bits(hba->utmrdl_dma_addr),
4753 			REG_UTP_TASK_REQ_LIST_BASE_L);
4754 	ufshcd_writel(hba, upper_32_bits(hba->utmrdl_dma_addr),
4755 			REG_UTP_TASK_REQ_LIST_BASE_H);
4756 
4757 	/*
4758 	 * UCRDY, UTMRLDY and UTRLRDY bits must be 1
4759 	 */
4760 	reg = ufshcd_readl(hba, REG_CONTROLLER_STATUS);
4761 	if (!(ufshcd_get_lists_status(reg))) {
4762 		ufshcd_enable_run_stop_reg(hba);
4763 	} else {
4764 		dev_err(hba->dev,
4765 			"Host controller not ready to process requests");
4766 		err = -EIO;
4767 	}
4768 
4769 	return err;
4770 }
4771 EXPORT_SYMBOL_GPL(ufshcd_make_hba_operational);
4772 
4773 /**
4774  * ufshcd_hba_stop - Send controller to reset state
4775  * @hba: per adapter instance
4776  */
4777 void ufshcd_hba_stop(struct ufs_hba *hba)
4778 {
4779 	unsigned long flags;
4780 	int err;
4781 
4782 	/*
4783 	 * Obtain the host lock to prevent that the controller is disabled
4784 	 * while the UFS interrupt handler is active on another CPU.
4785 	 */
4786 	spin_lock_irqsave(hba->host->host_lock, flags);
4787 	ufshcd_writel(hba, CONTROLLER_DISABLE,  REG_CONTROLLER_ENABLE);
4788 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4789 
4790 	err = ufshcd_wait_for_register(hba, REG_CONTROLLER_ENABLE,
4791 					CONTROLLER_ENABLE, CONTROLLER_DISABLE,
4792 					10, 1);
4793 	if (err)
4794 		dev_err(hba->dev, "%s: Controller disable failed\n", __func__);
4795 }
4796 EXPORT_SYMBOL_GPL(ufshcd_hba_stop);
4797 
4798 /**
4799  * ufshcd_hba_execute_hce - initialize the controller
4800  * @hba: per adapter instance
4801  *
4802  * The controller resets itself and controller firmware initialization
4803  * sequence kicks off. When controller is ready it will set
4804  * the Host Controller Enable bit to 1.
4805  *
4806  * Return: 0 on success, non-zero value on failure.
4807  */
4808 static int ufshcd_hba_execute_hce(struct ufs_hba *hba)
4809 {
4810 	int retry;
4811 
4812 	for (retry = 3; retry > 0; retry--) {
4813 		if (ufshcd_is_hba_active(hba))
4814 			/* change controller state to "reset state" */
4815 			ufshcd_hba_stop(hba);
4816 
4817 		/* UniPro link is disabled at this point */
4818 		ufshcd_set_link_off(hba);
4819 
4820 		ufshcd_vops_hce_enable_notify(hba, PRE_CHANGE);
4821 
4822 		/* start controller initialization sequence */
4823 		ufshcd_hba_start(hba);
4824 
4825 		/*
4826 		 * To initialize a UFS host controller HCE bit must be set to 1.
4827 		 * During initialization the HCE bit value changes from 1->0->1.
4828 		 * When the host controller completes initialization sequence
4829 		 * it sets the value of HCE bit to 1. The same HCE bit is read back
4830 		 * to check if the controller has completed initialization sequence.
4831 		 * So without this delay the value HCE = 1, set in the previous
4832 		 * instruction might be read back.
4833 		 * This delay can be changed based on the controller.
4834 		 */
4835 		ufshcd_delay_us(hba->vps->hba_enable_delay_us, 100);
4836 
4837 		/* wait for the host controller to complete initialization */
4838 		if (!ufshcd_wait_for_register(hba, REG_CONTROLLER_ENABLE, CONTROLLER_ENABLE,
4839 					      CONTROLLER_ENABLE, 1000, 50))
4840 			break;
4841 
4842 		dev_err(hba->dev, "Enabling the controller failed\n");
4843 	}
4844 
4845 	if (!retry)
4846 		return -EIO;
4847 
4848 	/* enable UIC related interrupts */
4849 	ufshcd_enable_intr(hba, UFSHCD_UIC_MASK);
4850 
4851 	ufshcd_vops_hce_enable_notify(hba, POST_CHANGE);
4852 
4853 	return 0;
4854 }
4855 
4856 int ufshcd_hba_enable(struct ufs_hba *hba)
4857 {
4858 	int ret;
4859 
4860 	if (hba->quirks & UFSHCI_QUIRK_BROKEN_HCE) {
4861 		ufshcd_set_link_off(hba);
4862 		ufshcd_vops_hce_enable_notify(hba, PRE_CHANGE);
4863 
4864 		/* enable UIC related interrupts */
4865 		ufshcd_enable_intr(hba, UFSHCD_UIC_MASK);
4866 		ret = ufshcd_dme_reset(hba);
4867 		if (ret) {
4868 			dev_err(hba->dev, "DME_RESET failed\n");
4869 			return ret;
4870 		}
4871 
4872 		ret = ufshcd_dme_enable(hba);
4873 		if (ret) {
4874 			dev_err(hba->dev, "Enabling DME failed\n");
4875 			return ret;
4876 		}
4877 
4878 		ufshcd_vops_hce_enable_notify(hba, POST_CHANGE);
4879 	} else {
4880 		ret = ufshcd_hba_execute_hce(hba);
4881 	}
4882 
4883 	return ret;
4884 }
4885 EXPORT_SYMBOL_GPL(ufshcd_hba_enable);
4886 
4887 static int ufshcd_disable_tx_lcc(struct ufs_hba *hba, bool peer)
4888 {
4889 	int tx_lanes = 0, i, err = 0;
4890 
4891 	if (!peer)
4892 		ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4893 			       &tx_lanes);
4894 	else
4895 		ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4896 				    &tx_lanes);
4897 	for (i = 0; i < tx_lanes; i++) {
4898 		if (!peer)
4899 			err = ufshcd_dme_set(hba,
4900 				UIC_ARG_MIB_SEL(TX_LCC_ENABLE,
4901 					UIC_ARG_MPHY_TX_GEN_SEL_INDEX(i)),
4902 					0);
4903 		else
4904 			err = ufshcd_dme_peer_set(hba,
4905 				UIC_ARG_MIB_SEL(TX_LCC_ENABLE,
4906 					UIC_ARG_MPHY_TX_GEN_SEL_INDEX(i)),
4907 					0);
4908 		if (err) {
4909 			dev_err(hba->dev, "%s: TX LCC Disable failed, peer = %d, lane = %d, err = %d",
4910 				__func__, peer, i, err);
4911 			break;
4912 		}
4913 	}
4914 
4915 	return err;
4916 }
4917 
4918 static inline int ufshcd_disable_device_tx_lcc(struct ufs_hba *hba)
4919 {
4920 	return ufshcd_disable_tx_lcc(hba, true);
4921 }
4922 
4923 void ufshcd_update_evt_hist(struct ufs_hba *hba, u32 id, u32 val)
4924 {
4925 	struct ufs_event_hist *e;
4926 
4927 	if (id >= UFS_EVT_CNT)
4928 		return;
4929 
4930 	e = &hba->ufs_stats.event[id];
4931 	e->val[e->pos] = val;
4932 	e->tstamp[e->pos] = local_clock();
4933 	e->cnt += 1;
4934 	e->pos = (e->pos + 1) % UFS_EVENT_HIST_LENGTH;
4935 
4936 	ufshcd_vops_event_notify(hba, id, &val);
4937 }
4938 EXPORT_SYMBOL_GPL(ufshcd_update_evt_hist);
4939 
4940 /**
4941  * ufshcd_link_startup - Initialize unipro link startup
4942  * @hba: per adapter instance
4943  *
4944  * Return: 0 for success, non-zero in case of failure.
4945  */
4946 static int ufshcd_link_startup(struct ufs_hba *hba)
4947 {
4948 	int ret;
4949 	int retries = DME_LINKSTARTUP_RETRIES;
4950 	bool link_startup_again = false;
4951 
4952 	/*
4953 	 * If UFS device isn't active then we will have to issue link startup
4954 	 * 2 times to make sure the device state move to active.
4955 	 */
4956 	if (!ufshcd_is_ufs_dev_active(hba))
4957 		link_startup_again = true;
4958 
4959 link_startup:
4960 	do {
4961 		ufshcd_vops_link_startup_notify(hba, PRE_CHANGE);
4962 
4963 		ret = ufshcd_dme_link_startup(hba);
4964 
4965 		/* check if device is detected by inter-connect layer */
4966 		if (!ret && !ufshcd_is_device_present(hba)) {
4967 			ufshcd_update_evt_hist(hba,
4968 					       UFS_EVT_LINK_STARTUP_FAIL,
4969 					       0);
4970 			dev_err(hba->dev, "%s: Device not present\n", __func__);
4971 			ret = -ENXIO;
4972 			goto out;
4973 		}
4974 
4975 		/*
4976 		 * DME link lost indication is only received when link is up,
4977 		 * but we can't be sure if the link is up until link startup
4978 		 * succeeds. So reset the local Uni-Pro and try again.
4979 		 */
4980 		if (ret && retries && ufshcd_hba_enable(hba)) {
4981 			ufshcd_update_evt_hist(hba,
4982 					       UFS_EVT_LINK_STARTUP_FAIL,
4983 					       (u32)ret);
4984 			goto out;
4985 		}
4986 	} while (ret && retries--);
4987 
4988 	if (ret) {
4989 		/* failed to get the link up... retire */
4990 		ufshcd_update_evt_hist(hba,
4991 				       UFS_EVT_LINK_STARTUP_FAIL,
4992 				       (u32)ret);
4993 		goto out;
4994 	}
4995 
4996 	if (link_startup_again) {
4997 		link_startup_again = false;
4998 		retries = DME_LINKSTARTUP_RETRIES;
4999 		goto link_startup;
5000 	}
5001 
5002 	/* Mark that link is up in PWM-G1, 1-lane, SLOW-AUTO mode */
5003 	ufshcd_init_pwr_info(hba);
5004 	ufshcd_print_pwr_info(hba);
5005 
5006 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_LCC) {
5007 		ret = ufshcd_disable_device_tx_lcc(hba);
5008 		if (ret)
5009 			goto out;
5010 	}
5011 
5012 	/* Include any host controller configuration via UIC commands */
5013 	ret = ufshcd_vops_link_startup_notify(hba, POST_CHANGE);
5014 	if (ret)
5015 		goto out;
5016 
5017 	/* Clear UECPA once due to LINERESET has happened during LINK_STARTUP */
5018 	ufshcd_readl(hba, REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER);
5019 	ret = ufshcd_make_hba_operational(hba);
5020 out:
5021 	if (ret) {
5022 		dev_err(hba->dev, "link startup failed %d\n", ret);
5023 		ufshcd_print_host_state(hba);
5024 		ufshcd_print_pwr_info(hba);
5025 		ufshcd_print_evt_hist(hba);
5026 	}
5027 	return ret;
5028 }
5029 
5030 /**
5031  * ufshcd_verify_dev_init() - Verify device initialization
5032  * @hba: per-adapter instance
5033  *
5034  * Send NOP OUT UPIU and wait for NOP IN response to check whether the
5035  * device Transport Protocol (UTP) layer is ready after a reset.
5036  * If the UTP layer at the device side is not initialized, it may
5037  * not respond with NOP IN UPIU within timeout of %NOP_OUT_TIMEOUT
5038  * and we retry sending NOP OUT for %NOP_OUT_RETRIES iterations.
5039  *
5040  * Return: 0 upon success; < 0 upon failure.
5041  */
5042 static int ufshcd_verify_dev_init(struct ufs_hba *hba)
5043 {
5044 	int err = 0;
5045 	int retries;
5046 
5047 	ufshcd_dev_man_lock(hba);
5048 
5049 	for (retries = NOP_OUT_RETRIES; retries > 0; retries--) {
5050 		err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_NOP,
5051 					  hba->nop_out_timeout);
5052 
5053 		if (!err || err == -ETIMEDOUT)
5054 			break;
5055 
5056 		dev_dbg(hba->dev, "%s: error %d retrying\n", __func__, err);
5057 	}
5058 
5059 	ufshcd_dev_man_unlock(hba);
5060 
5061 	if (err)
5062 		dev_err(hba->dev, "%s: NOP OUT failed %d\n", __func__, err);
5063 	return err;
5064 }
5065 
5066 /**
5067  * ufshcd_setup_links - associate link b/w device wlun and other luns
5068  * @sdev: pointer to SCSI device
5069  * @hba: pointer to ufs hba
5070  */
5071 static void ufshcd_setup_links(struct ufs_hba *hba, struct scsi_device *sdev)
5072 {
5073 	struct device_link *link;
5074 
5075 	/*
5076 	 * Device wlun is the supplier & rest of the luns are consumers.
5077 	 * This ensures that device wlun suspends after all other luns.
5078 	 */
5079 	if (hba->ufs_device_wlun) {
5080 		link = device_link_add(&sdev->sdev_gendev,
5081 				       &hba->ufs_device_wlun->sdev_gendev,
5082 				       DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE);
5083 		if (!link) {
5084 			dev_err(&sdev->sdev_gendev, "Failed establishing link - %s\n",
5085 				dev_name(&hba->ufs_device_wlun->sdev_gendev));
5086 			return;
5087 		}
5088 		hba->luns_avail--;
5089 		/* Ignore REPORT_LUN wlun probing */
5090 		if (hba->luns_avail == 1) {
5091 			ufshcd_rpm_put(hba);
5092 			return;
5093 		}
5094 	} else {
5095 		/*
5096 		 * Device wlun is probed. The assumption is that WLUNs are
5097 		 * scanned before other LUNs.
5098 		 */
5099 		hba->luns_avail--;
5100 	}
5101 }
5102 
5103 /**
5104  * ufshcd_lu_init - Initialize the relevant parameters of the LU
5105  * @hba: per-adapter instance
5106  * @sdev: pointer to SCSI device
5107  */
5108 static void ufshcd_lu_init(struct ufs_hba *hba, struct scsi_device *sdev)
5109 {
5110 	int len = QUERY_DESC_MAX_SIZE;
5111 	u8 lun = ufshcd_scsi_to_upiu_lun(sdev->lun);
5112 	u8 lun_qdepth = hba->nutrs;
5113 	u8 *desc_buf;
5114 	int ret;
5115 
5116 	desc_buf = kzalloc(len, GFP_KERNEL);
5117 	if (!desc_buf)
5118 		goto set_qdepth;
5119 
5120 	ret = ufshcd_read_unit_desc_param(hba, lun, 0, desc_buf, len);
5121 	if (ret < 0) {
5122 		if (ret == -EOPNOTSUPP)
5123 			/* If LU doesn't support unit descriptor, its queue depth is set to 1 */
5124 			lun_qdepth = 1;
5125 		kfree(desc_buf);
5126 		goto set_qdepth;
5127 	}
5128 
5129 	if (desc_buf[UNIT_DESC_PARAM_LU_Q_DEPTH]) {
5130 		/*
5131 		 * In per-LU queueing architecture, bLUQueueDepth will not be 0, then we will
5132 		 * use the smaller between UFSHCI CAP.NUTRS and UFS LU bLUQueueDepth
5133 		 */
5134 		lun_qdepth = min_t(int, desc_buf[UNIT_DESC_PARAM_LU_Q_DEPTH], hba->nutrs);
5135 	}
5136 	/*
5137 	 * According to UFS device specification, the write protection mode is only supported by
5138 	 * normal LU, not supported by WLUN.
5139 	 */
5140 	if (hba->dev_info.f_power_on_wp_en && lun < hba->dev_info.max_lu_supported &&
5141 	    !hba->dev_info.is_lu_power_on_wp &&
5142 	    desc_buf[UNIT_DESC_PARAM_LU_WR_PROTECT] == UFS_LU_POWER_ON_WP)
5143 		hba->dev_info.is_lu_power_on_wp = true;
5144 
5145 	/* In case of RPMB LU, check if advanced RPMB mode is enabled */
5146 	if (desc_buf[UNIT_DESC_PARAM_UNIT_INDEX] == UFS_UPIU_RPMB_WLUN &&
5147 	    desc_buf[RPMB_UNIT_DESC_PARAM_REGION_EN] & BIT(4))
5148 		hba->dev_info.b_advanced_rpmb_en = true;
5149 
5150 
5151 	kfree(desc_buf);
5152 set_qdepth:
5153 	/*
5154 	 * For WLUNs that don't support unit descriptor, queue depth is set to 1. For LUs whose
5155 	 * bLUQueueDepth == 0, the queue depth is set to a maximum value that host can queue.
5156 	 */
5157 	dev_dbg(hba->dev, "Set LU %x queue depth %d\n", lun, lun_qdepth);
5158 	scsi_change_queue_depth(sdev, lun_qdepth);
5159 }
5160 
5161 /**
5162  * ufshcd_slave_alloc - handle initial SCSI device configurations
5163  * @sdev: pointer to SCSI device
5164  *
5165  * Return: success.
5166  */
5167 static int ufshcd_slave_alloc(struct scsi_device *sdev)
5168 {
5169 	struct ufs_hba *hba;
5170 
5171 	hba = shost_priv(sdev->host);
5172 
5173 	/* Mode sense(6) is not supported by UFS, so use Mode sense(10) */
5174 	sdev->use_10_for_ms = 1;
5175 
5176 	/* DBD field should be set to 1 in mode sense(10) */
5177 	sdev->set_dbd_for_ms = 1;
5178 
5179 	/* allow SCSI layer to restart the device in case of errors */
5180 	sdev->allow_restart = 1;
5181 
5182 	/* REPORT SUPPORTED OPERATION CODES is not supported */
5183 	sdev->no_report_opcodes = 1;
5184 
5185 	/* WRITE_SAME command is not supported */
5186 	sdev->no_write_same = 1;
5187 
5188 	ufshcd_lu_init(hba, sdev);
5189 
5190 	ufshcd_setup_links(hba, sdev);
5191 
5192 	return 0;
5193 }
5194 
5195 /**
5196  * ufshcd_change_queue_depth - change queue depth
5197  * @sdev: pointer to SCSI device
5198  * @depth: required depth to set
5199  *
5200  * Change queue depth and make sure the max. limits are not crossed.
5201  *
5202  * Return: new queue depth.
5203  */
5204 static int ufshcd_change_queue_depth(struct scsi_device *sdev, int depth)
5205 {
5206 	return scsi_change_queue_depth(sdev, min(depth, sdev->host->can_queue));
5207 }
5208 
5209 /**
5210  * ufshcd_device_configure - adjust SCSI device configurations
5211  * @sdev: pointer to SCSI device
5212  * @lim: queue limits
5213  *
5214  * Return: 0 (success).
5215  */
5216 static int ufshcd_device_configure(struct scsi_device *sdev,
5217 		struct queue_limits *lim)
5218 {
5219 	struct ufs_hba *hba = shost_priv(sdev->host);
5220 	struct request_queue *q = sdev->request_queue;
5221 
5222 	lim->dma_pad_mask = PRDT_DATA_BYTE_COUNT_PAD - 1;
5223 
5224 	/*
5225 	 * Block runtime-pm until all consumers are added.
5226 	 * Refer ufshcd_setup_links().
5227 	 */
5228 	if (is_device_wlun(sdev))
5229 		pm_runtime_get_noresume(&sdev->sdev_gendev);
5230 	else if (ufshcd_is_rpm_autosuspend_allowed(hba))
5231 		sdev->rpm_autosuspend = 1;
5232 	/*
5233 	 * Do not print messages during runtime PM to avoid never-ending cycles
5234 	 * of messages written back to storage by user space causing runtime
5235 	 * resume, causing more messages and so on.
5236 	 */
5237 	sdev->silence_suspend = 1;
5238 
5239 	ufshcd_crypto_register(hba, q);
5240 
5241 	return 0;
5242 }
5243 
5244 /**
5245  * ufshcd_slave_destroy - remove SCSI device configurations
5246  * @sdev: pointer to SCSI device
5247  */
5248 static void ufshcd_slave_destroy(struct scsi_device *sdev)
5249 {
5250 	struct ufs_hba *hba;
5251 	unsigned long flags;
5252 
5253 	hba = shost_priv(sdev->host);
5254 
5255 	/* Drop the reference as it won't be needed anymore */
5256 	if (ufshcd_scsi_to_upiu_lun(sdev->lun) == UFS_UPIU_UFS_DEVICE_WLUN) {
5257 		spin_lock_irqsave(hba->host->host_lock, flags);
5258 		hba->ufs_device_wlun = NULL;
5259 		spin_unlock_irqrestore(hba->host->host_lock, flags);
5260 	} else if (hba->ufs_device_wlun) {
5261 		struct device *supplier = NULL;
5262 
5263 		/* Ensure UFS Device WLUN exists and does not disappear */
5264 		spin_lock_irqsave(hba->host->host_lock, flags);
5265 		if (hba->ufs_device_wlun) {
5266 			supplier = &hba->ufs_device_wlun->sdev_gendev;
5267 			get_device(supplier);
5268 		}
5269 		spin_unlock_irqrestore(hba->host->host_lock, flags);
5270 
5271 		if (supplier) {
5272 			/*
5273 			 * If a LUN fails to probe (e.g. absent BOOT WLUN), the
5274 			 * device will not have been registered but can still
5275 			 * have a device link holding a reference to the device.
5276 			 */
5277 			device_link_remove(&sdev->sdev_gendev, supplier);
5278 			put_device(supplier);
5279 		}
5280 	}
5281 }
5282 
5283 /**
5284  * ufshcd_scsi_cmd_status - Update SCSI command result based on SCSI status
5285  * @lrbp: pointer to local reference block of completed command
5286  * @scsi_status: SCSI command status
5287  *
5288  * Return: value base on SCSI command status.
5289  */
5290 static inline int
5291 ufshcd_scsi_cmd_status(struct ufshcd_lrb *lrbp, int scsi_status)
5292 {
5293 	int result = 0;
5294 
5295 	switch (scsi_status) {
5296 	case SAM_STAT_CHECK_CONDITION:
5297 		ufshcd_copy_sense_data(lrbp);
5298 		fallthrough;
5299 	case SAM_STAT_GOOD:
5300 		result |= DID_OK << 16 | scsi_status;
5301 		break;
5302 	case SAM_STAT_TASK_SET_FULL:
5303 	case SAM_STAT_BUSY:
5304 	case SAM_STAT_TASK_ABORTED:
5305 		ufshcd_copy_sense_data(lrbp);
5306 		result |= scsi_status;
5307 		break;
5308 	default:
5309 		result |= DID_ERROR << 16;
5310 		break;
5311 	} /* end of switch */
5312 
5313 	return result;
5314 }
5315 
5316 /**
5317  * ufshcd_transfer_rsp_status - Get overall status of the response
5318  * @hba: per adapter instance
5319  * @lrbp: pointer to local reference block of completed command
5320  * @cqe: pointer to the completion queue entry
5321  *
5322  * Return: result of the command to notify SCSI midlayer.
5323  */
5324 static inline int
5325 ufshcd_transfer_rsp_status(struct ufs_hba *hba, struct ufshcd_lrb *lrbp,
5326 			   struct cq_entry *cqe)
5327 {
5328 	int result = 0;
5329 	int scsi_status;
5330 	enum utp_ocs ocs;
5331 	u8 upiu_flags;
5332 	u32 resid;
5333 
5334 	upiu_flags = lrbp->ucd_rsp_ptr->header.flags;
5335 	resid = be32_to_cpu(lrbp->ucd_rsp_ptr->sr.residual_transfer_count);
5336 	/*
5337 	 * Test !overflow instead of underflow to support UFS devices that do
5338 	 * not set either flag.
5339 	 */
5340 	if (resid && !(upiu_flags & UPIU_RSP_FLAG_OVERFLOW))
5341 		scsi_set_resid(lrbp->cmd, resid);
5342 
5343 	/* overall command status of utrd */
5344 	ocs = ufshcd_get_tr_ocs(lrbp, cqe);
5345 
5346 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_OCS_FATAL_ERROR) {
5347 		if (lrbp->ucd_rsp_ptr->header.response ||
5348 		    lrbp->ucd_rsp_ptr->header.status)
5349 			ocs = OCS_SUCCESS;
5350 	}
5351 
5352 	switch (ocs) {
5353 	case OCS_SUCCESS:
5354 		hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
5355 		switch (ufshcd_get_req_rsp(lrbp->ucd_rsp_ptr)) {
5356 		case UPIU_TRANSACTION_RESPONSE:
5357 			/*
5358 			 * get the result based on SCSI status response
5359 			 * to notify the SCSI midlayer of the command status
5360 			 */
5361 			scsi_status = lrbp->ucd_rsp_ptr->header.status;
5362 			result = ufshcd_scsi_cmd_status(lrbp, scsi_status);
5363 
5364 			/*
5365 			 * Currently we are only supporting BKOPs exception
5366 			 * events hence we can ignore BKOPs exception event
5367 			 * during power management callbacks. BKOPs exception
5368 			 * event is not expected to be raised in runtime suspend
5369 			 * callback as it allows the urgent bkops.
5370 			 * During system suspend, we are anyway forcefully
5371 			 * disabling the bkops and if urgent bkops is needed
5372 			 * it will be enabled on system resume. Long term
5373 			 * solution could be to abort the system suspend if
5374 			 * UFS device needs urgent BKOPs.
5375 			 */
5376 			if (!hba->pm_op_in_progress &&
5377 			    !ufshcd_eh_in_progress(hba) &&
5378 			    ufshcd_is_exception_event(lrbp->ucd_rsp_ptr))
5379 				/* Flushed in suspend */
5380 				schedule_work(&hba->eeh_work);
5381 			break;
5382 		case UPIU_TRANSACTION_REJECT_UPIU:
5383 			/* TODO: handle Reject UPIU Response */
5384 			result = DID_ERROR << 16;
5385 			dev_err(hba->dev,
5386 				"Reject UPIU not fully implemented\n");
5387 			break;
5388 		default:
5389 			dev_err(hba->dev,
5390 				"Unexpected request response code = %x\n",
5391 				result);
5392 			result = DID_ERROR << 16;
5393 			break;
5394 		}
5395 		break;
5396 	case OCS_ABORTED:
5397 		result |= DID_ABORT << 16;
5398 		break;
5399 	case OCS_INVALID_COMMAND_STATUS:
5400 		result |= DID_REQUEUE << 16;
5401 		break;
5402 	case OCS_INVALID_CMD_TABLE_ATTR:
5403 	case OCS_INVALID_PRDT_ATTR:
5404 	case OCS_MISMATCH_DATA_BUF_SIZE:
5405 	case OCS_MISMATCH_RESP_UPIU_SIZE:
5406 	case OCS_PEER_COMM_FAILURE:
5407 	case OCS_FATAL_ERROR:
5408 	case OCS_DEVICE_FATAL_ERROR:
5409 	case OCS_INVALID_CRYPTO_CONFIG:
5410 	case OCS_GENERAL_CRYPTO_ERROR:
5411 	default:
5412 		result |= DID_ERROR << 16;
5413 		dev_err(hba->dev,
5414 				"OCS error from controller = %x for tag %d\n",
5415 				ocs, lrbp->task_tag);
5416 		ufshcd_print_evt_hist(hba);
5417 		ufshcd_print_host_state(hba);
5418 		break;
5419 	} /* end of switch */
5420 
5421 	if ((host_byte(result) != DID_OK) &&
5422 	    (host_byte(result) != DID_REQUEUE) && !hba->silence_err_logs)
5423 		ufshcd_print_tr(hba, lrbp->task_tag, true);
5424 	return result;
5425 }
5426 
5427 static bool ufshcd_is_auto_hibern8_error(struct ufs_hba *hba,
5428 					 u32 intr_mask)
5429 {
5430 	if (!ufshcd_is_auto_hibern8_supported(hba) ||
5431 	    !ufshcd_is_auto_hibern8_enabled(hba))
5432 		return false;
5433 
5434 	if (!(intr_mask & UFSHCD_UIC_HIBERN8_MASK))
5435 		return false;
5436 
5437 	if (hba->active_uic_cmd &&
5438 	    (hba->active_uic_cmd->command == UIC_CMD_DME_HIBER_ENTER ||
5439 	    hba->active_uic_cmd->command == UIC_CMD_DME_HIBER_EXIT))
5440 		return false;
5441 
5442 	return true;
5443 }
5444 
5445 /**
5446  * ufshcd_uic_cmd_compl - handle completion of uic command
5447  * @hba: per adapter instance
5448  * @intr_status: interrupt status generated by the controller
5449  *
5450  * Return:
5451  *  IRQ_HANDLED - If interrupt is valid
5452  *  IRQ_NONE    - If invalid interrupt
5453  */
5454 static irqreturn_t ufshcd_uic_cmd_compl(struct ufs_hba *hba, u32 intr_status)
5455 {
5456 	irqreturn_t retval = IRQ_NONE;
5457 	struct uic_command *cmd;
5458 
5459 	spin_lock(hba->host->host_lock);
5460 	cmd = hba->active_uic_cmd;
5461 	if (WARN_ON_ONCE(!cmd))
5462 		goto unlock;
5463 
5464 	if (ufshcd_is_auto_hibern8_error(hba, intr_status))
5465 		hba->errors |= (UFSHCD_UIC_HIBERN8_MASK & intr_status);
5466 
5467 	if (intr_status & UIC_COMMAND_COMPL) {
5468 		cmd->argument2 |= ufshcd_get_uic_cmd_result(hba);
5469 		cmd->argument3 = ufshcd_get_dme_attr_val(hba);
5470 		if (!hba->uic_async_done)
5471 			cmd->cmd_active = 0;
5472 		complete(&cmd->done);
5473 		retval = IRQ_HANDLED;
5474 	}
5475 
5476 	if (intr_status & UFSHCD_UIC_PWR_MASK && hba->uic_async_done) {
5477 		cmd->cmd_active = 0;
5478 		complete(hba->uic_async_done);
5479 		retval = IRQ_HANDLED;
5480 	}
5481 
5482 	if (retval == IRQ_HANDLED)
5483 		ufshcd_add_uic_command_trace(hba, cmd, UFS_CMD_COMP);
5484 
5485 unlock:
5486 	spin_unlock(hba->host->host_lock);
5487 
5488 	return retval;
5489 }
5490 
5491 /* Release the resources allocated for processing a SCSI command. */
5492 void ufshcd_release_scsi_cmd(struct ufs_hba *hba,
5493 			     struct ufshcd_lrb *lrbp)
5494 {
5495 	struct scsi_cmnd *cmd = lrbp->cmd;
5496 
5497 	scsi_dma_unmap(cmd);
5498 	ufshcd_crypto_clear_prdt(hba, lrbp);
5499 	ufshcd_release(hba);
5500 	ufshcd_clk_scaling_update_busy(hba);
5501 }
5502 
5503 /**
5504  * ufshcd_compl_one_cqe - handle a completion queue entry
5505  * @hba: per adapter instance
5506  * @task_tag: the task tag of the request to be completed
5507  * @cqe: pointer to the completion queue entry
5508  */
5509 void ufshcd_compl_one_cqe(struct ufs_hba *hba, int task_tag,
5510 			  struct cq_entry *cqe)
5511 {
5512 	struct ufshcd_lrb *lrbp;
5513 	struct scsi_cmnd *cmd;
5514 	enum utp_ocs ocs;
5515 
5516 	lrbp = &hba->lrb[task_tag];
5517 	lrbp->compl_time_stamp = ktime_get();
5518 	cmd = lrbp->cmd;
5519 	if (cmd) {
5520 		if (unlikely(ufshcd_should_inform_monitor(hba, lrbp)))
5521 			ufshcd_update_monitor(hba, lrbp);
5522 		ufshcd_add_command_trace(hba, task_tag, UFS_CMD_COMP);
5523 		cmd->result = ufshcd_transfer_rsp_status(hba, lrbp, cqe);
5524 		ufshcd_release_scsi_cmd(hba, lrbp);
5525 		/* Do not touch lrbp after scsi done */
5526 		scsi_done(cmd);
5527 	} else if (hba->dev_cmd.complete) {
5528 		if (cqe) {
5529 			ocs = le32_to_cpu(cqe->status) & MASK_OCS;
5530 			lrbp->utr_descriptor_ptr->header.ocs = ocs;
5531 		}
5532 		complete(hba->dev_cmd.complete);
5533 	}
5534 }
5535 
5536 /**
5537  * __ufshcd_transfer_req_compl - handle SCSI and query command completion
5538  * @hba: per adapter instance
5539  * @completed_reqs: bitmask that indicates which requests to complete
5540  */
5541 static void __ufshcd_transfer_req_compl(struct ufs_hba *hba,
5542 					unsigned long completed_reqs)
5543 {
5544 	int tag;
5545 
5546 	for_each_set_bit(tag, &completed_reqs, hba->nutrs)
5547 		ufshcd_compl_one_cqe(hba, tag, NULL);
5548 }
5549 
5550 /* Any value that is not an existing queue number is fine for this constant. */
5551 enum {
5552 	UFSHCD_POLL_FROM_INTERRUPT_CONTEXT = -1
5553 };
5554 
5555 static void ufshcd_clear_polled(struct ufs_hba *hba,
5556 				unsigned long *completed_reqs)
5557 {
5558 	int tag;
5559 
5560 	for_each_set_bit(tag, completed_reqs, hba->nutrs) {
5561 		struct scsi_cmnd *cmd = hba->lrb[tag].cmd;
5562 
5563 		if (!cmd)
5564 			continue;
5565 		if (scsi_cmd_to_rq(cmd)->cmd_flags & REQ_POLLED)
5566 			__clear_bit(tag, completed_reqs);
5567 	}
5568 }
5569 
5570 /*
5571  * Return: > 0 if one or more commands have been completed or 0 if no
5572  * requests have been completed.
5573  */
5574 static int ufshcd_poll(struct Scsi_Host *shost, unsigned int queue_num)
5575 {
5576 	struct ufs_hba *hba = shost_priv(shost);
5577 	unsigned long completed_reqs, flags;
5578 	u32 tr_doorbell;
5579 	struct ufs_hw_queue *hwq;
5580 
5581 	if (hba->mcq_enabled) {
5582 		hwq = &hba->uhq[queue_num];
5583 
5584 		return ufshcd_mcq_poll_cqe_lock(hba, hwq);
5585 	}
5586 
5587 	spin_lock_irqsave(&hba->outstanding_lock, flags);
5588 	tr_doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
5589 	completed_reqs = ~tr_doorbell & hba->outstanding_reqs;
5590 	WARN_ONCE(completed_reqs & ~hba->outstanding_reqs,
5591 		  "completed: %#lx; outstanding: %#lx\n", completed_reqs,
5592 		  hba->outstanding_reqs);
5593 	if (queue_num == UFSHCD_POLL_FROM_INTERRUPT_CONTEXT) {
5594 		/* Do not complete polled requests from interrupt context. */
5595 		ufshcd_clear_polled(hba, &completed_reqs);
5596 	}
5597 	hba->outstanding_reqs &= ~completed_reqs;
5598 	spin_unlock_irqrestore(&hba->outstanding_lock, flags);
5599 
5600 	if (completed_reqs)
5601 		__ufshcd_transfer_req_compl(hba, completed_reqs);
5602 
5603 	return completed_reqs != 0;
5604 }
5605 
5606 /**
5607  * ufshcd_mcq_compl_pending_transfer - MCQ mode function. It is
5608  * invoked from the error handler context or ufshcd_host_reset_and_restore()
5609  * to complete the pending transfers and free the resources associated with
5610  * the scsi command.
5611  *
5612  * @hba: per adapter instance
5613  * @force_compl: This flag is set to true when invoked
5614  * from ufshcd_host_reset_and_restore() in which case it requires special
5615  * handling because the host controller has been reset by ufshcd_hba_stop().
5616  */
5617 static void ufshcd_mcq_compl_pending_transfer(struct ufs_hba *hba,
5618 					      bool force_compl)
5619 {
5620 	struct ufs_hw_queue *hwq;
5621 	struct ufshcd_lrb *lrbp;
5622 	struct scsi_cmnd *cmd;
5623 	unsigned long flags;
5624 	int tag;
5625 
5626 	for (tag = 0; tag < hba->nutrs; tag++) {
5627 		lrbp = &hba->lrb[tag];
5628 		cmd = lrbp->cmd;
5629 		if (!ufshcd_cmd_inflight(cmd) ||
5630 		    test_bit(SCMD_STATE_COMPLETE, &cmd->state))
5631 			continue;
5632 
5633 		hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(cmd));
5634 
5635 		if (force_compl) {
5636 			ufshcd_mcq_compl_all_cqes_lock(hba, hwq);
5637 			/*
5638 			 * For those cmds of which the cqes are not present
5639 			 * in the cq, complete them explicitly.
5640 			 */
5641 			spin_lock_irqsave(&hwq->cq_lock, flags);
5642 			if (cmd && !test_bit(SCMD_STATE_COMPLETE, &cmd->state)) {
5643 				set_host_byte(cmd, DID_REQUEUE);
5644 				ufshcd_release_scsi_cmd(hba, lrbp);
5645 				scsi_done(cmd);
5646 			}
5647 			spin_unlock_irqrestore(&hwq->cq_lock, flags);
5648 		} else {
5649 			ufshcd_mcq_poll_cqe_lock(hba, hwq);
5650 		}
5651 	}
5652 }
5653 
5654 /**
5655  * ufshcd_transfer_req_compl - handle SCSI and query command completion
5656  * @hba: per adapter instance
5657  *
5658  * Return:
5659  *  IRQ_HANDLED - If interrupt is valid
5660  *  IRQ_NONE    - If invalid interrupt
5661  */
5662 static irqreturn_t ufshcd_transfer_req_compl(struct ufs_hba *hba)
5663 {
5664 	/* Resetting interrupt aggregation counters first and reading the
5665 	 * DOOR_BELL afterward allows us to handle all the completed requests.
5666 	 * In order to prevent other interrupts starvation the DB is read once
5667 	 * after reset. The down side of this solution is the possibility of
5668 	 * false interrupt if device completes another request after resetting
5669 	 * aggregation and before reading the DB.
5670 	 */
5671 	if (ufshcd_is_intr_aggr_allowed(hba) &&
5672 	    !(hba->quirks & UFSHCI_QUIRK_SKIP_RESET_INTR_AGGR))
5673 		ufshcd_reset_intr_aggr(hba);
5674 
5675 	if (ufs_fail_completion(hba))
5676 		return IRQ_HANDLED;
5677 
5678 	/*
5679 	 * Ignore the ufshcd_poll() return value and return IRQ_HANDLED since we
5680 	 * do not want polling to trigger spurious interrupt complaints.
5681 	 */
5682 	ufshcd_poll(hba->host, UFSHCD_POLL_FROM_INTERRUPT_CONTEXT);
5683 
5684 	return IRQ_HANDLED;
5685 }
5686 
5687 int __ufshcd_write_ee_control(struct ufs_hba *hba, u32 ee_ctrl_mask)
5688 {
5689 	return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
5690 				       QUERY_ATTR_IDN_EE_CONTROL, 0, 0,
5691 				       &ee_ctrl_mask);
5692 }
5693 
5694 int ufshcd_write_ee_control(struct ufs_hba *hba)
5695 {
5696 	int err;
5697 
5698 	mutex_lock(&hba->ee_ctrl_mutex);
5699 	err = __ufshcd_write_ee_control(hba, hba->ee_ctrl_mask);
5700 	mutex_unlock(&hba->ee_ctrl_mutex);
5701 	if (err)
5702 		dev_err(hba->dev, "%s: failed to write ee control %d\n",
5703 			__func__, err);
5704 	return err;
5705 }
5706 
5707 int ufshcd_update_ee_control(struct ufs_hba *hba, u16 *mask,
5708 			     const u16 *other_mask, u16 set, u16 clr)
5709 {
5710 	u16 new_mask, ee_ctrl_mask;
5711 	int err = 0;
5712 
5713 	mutex_lock(&hba->ee_ctrl_mutex);
5714 	new_mask = (*mask & ~clr) | set;
5715 	ee_ctrl_mask = new_mask | *other_mask;
5716 	if (ee_ctrl_mask != hba->ee_ctrl_mask)
5717 		err = __ufshcd_write_ee_control(hba, ee_ctrl_mask);
5718 	/* Still need to update 'mask' even if 'ee_ctrl_mask' was unchanged */
5719 	if (!err) {
5720 		hba->ee_ctrl_mask = ee_ctrl_mask;
5721 		*mask = new_mask;
5722 	}
5723 	mutex_unlock(&hba->ee_ctrl_mutex);
5724 	return err;
5725 }
5726 
5727 /**
5728  * ufshcd_disable_ee - disable exception event
5729  * @hba: per-adapter instance
5730  * @mask: exception event to disable
5731  *
5732  * Disables exception event in the device so that the EVENT_ALERT
5733  * bit is not set.
5734  *
5735  * Return: zero on success, non-zero error value on failure.
5736  */
5737 static inline int ufshcd_disable_ee(struct ufs_hba *hba, u16 mask)
5738 {
5739 	return ufshcd_update_ee_drv_mask(hba, 0, mask);
5740 }
5741 
5742 /**
5743  * ufshcd_enable_ee - enable exception event
5744  * @hba: per-adapter instance
5745  * @mask: exception event to enable
5746  *
5747  * Enable corresponding exception event in the device to allow
5748  * device to alert host in critical scenarios.
5749  *
5750  * Return: zero on success, non-zero error value on failure.
5751  */
5752 static inline int ufshcd_enable_ee(struct ufs_hba *hba, u16 mask)
5753 {
5754 	return ufshcd_update_ee_drv_mask(hba, mask, 0);
5755 }
5756 
5757 /**
5758  * ufshcd_enable_auto_bkops - Allow device managed BKOPS
5759  * @hba: per-adapter instance
5760  *
5761  * Allow device to manage background operations on its own. Enabling
5762  * this might lead to inconsistent latencies during normal data transfers
5763  * as the device is allowed to manage its own way of handling background
5764  * operations.
5765  *
5766  * Return: zero on success, non-zero on failure.
5767  */
5768 static int ufshcd_enable_auto_bkops(struct ufs_hba *hba)
5769 {
5770 	int err = 0;
5771 
5772 	if (hba->auto_bkops_enabled)
5773 		goto out;
5774 
5775 	err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG,
5776 			QUERY_FLAG_IDN_BKOPS_EN, 0, NULL);
5777 	if (err) {
5778 		dev_err(hba->dev, "%s: failed to enable bkops %d\n",
5779 				__func__, err);
5780 		goto out;
5781 	}
5782 
5783 	hba->auto_bkops_enabled = true;
5784 	trace_ufshcd_auto_bkops_state(dev_name(hba->dev), "Enabled");
5785 
5786 	/* No need of URGENT_BKOPS exception from the device */
5787 	err = ufshcd_disable_ee(hba, MASK_EE_URGENT_BKOPS);
5788 	if (err)
5789 		dev_err(hba->dev, "%s: failed to disable exception event %d\n",
5790 				__func__, err);
5791 out:
5792 	return err;
5793 }
5794 
5795 /**
5796  * ufshcd_disable_auto_bkops - block device in doing background operations
5797  * @hba: per-adapter instance
5798  *
5799  * Disabling background operations improves command response latency but
5800  * has drawback of device moving into critical state where the device is
5801  * not-operable. Make sure to call ufshcd_enable_auto_bkops() whenever the
5802  * host is idle so that BKOPS are managed effectively without any negative
5803  * impacts.
5804  *
5805  * Return: zero on success, non-zero on failure.
5806  */
5807 static int ufshcd_disable_auto_bkops(struct ufs_hba *hba)
5808 {
5809 	int err = 0;
5810 
5811 	if (!hba->auto_bkops_enabled)
5812 		goto out;
5813 
5814 	/*
5815 	 * If host assisted BKOPs is to be enabled, make sure
5816 	 * urgent bkops exception is allowed.
5817 	 */
5818 	err = ufshcd_enable_ee(hba, MASK_EE_URGENT_BKOPS);
5819 	if (err) {
5820 		dev_err(hba->dev, "%s: failed to enable exception event %d\n",
5821 				__func__, err);
5822 		goto out;
5823 	}
5824 
5825 	err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_CLEAR_FLAG,
5826 			QUERY_FLAG_IDN_BKOPS_EN, 0, NULL);
5827 	if (err) {
5828 		dev_err(hba->dev, "%s: failed to disable bkops %d\n",
5829 				__func__, err);
5830 		ufshcd_disable_ee(hba, MASK_EE_URGENT_BKOPS);
5831 		goto out;
5832 	}
5833 
5834 	hba->auto_bkops_enabled = false;
5835 	trace_ufshcd_auto_bkops_state(dev_name(hba->dev), "Disabled");
5836 	hba->is_urgent_bkops_lvl_checked = false;
5837 out:
5838 	return err;
5839 }
5840 
5841 /**
5842  * ufshcd_force_reset_auto_bkops - force reset auto bkops state
5843  * @hba: per adapter instance
5844  *
5845  * After a device reset the device may toggle the BKOPS_EN flag
5846  * to default value. The s/w tracking variables should be updated
5847  * as well. This function would change the auto-bkops state based on
5848  * UFSHCD_CAP_KEEP_AUTO_BKOPS_ENABLED_EXCEPT_SUSPEND.
5849  */
5850 static void ufshcd_force_reset_auto_bkops(struct ufs_hba *hba)
5851 {
5852 	if (ufshcd_keep_autobkops_enabled_except_suspend(hba)) {
5853 		hba->auto_bkops_enabled = false;
5854 		hba->ee_ctrl_mask |= MASK_EE_URGENT_BKOPS;
5855 		ufshcd_enable_auto_bkops(hba);
5856 	} else {
5857 		hba->auto_bkops_enabled = true;
5858 		hba->ee_ctrl_mask &= ~MASK_EE_URGENT_BKOPS;
5859 		ufshcd_disable_auto_bkops(hba);
5860 	}
5861 	hba->urgent_bkops_lvl = BKOPS_STATUS_PERF_IMPACT;
5862 	hba->is_urgent_bkops_lvl_checked = false;
5863 }
5864 
5865 static inline int ufshcd_get_bkops_status(struct ufs_hba *hba, u32 *status)
5866 {
5867 	return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5868 			QUERY_ATTR_IDN_BKOPS_STATUS, 0, 0, status);
5869 }
5870 
5871 /**
5872  * ufshcd_bkops_ctrl - control the auto bkops based on current bkops status
5873  * @hba: per-adapter instance
5874  *
5875  * Read the bkops_status from the UFS device and Enable fBackgroundOpsEn
5876  * flag in the device to permit background operations if the device
5877  * bkops_status is greater than or equal to the "hba->urgent_bkops_lvl",
5878  * disable otherwise.
5879  *
5880  * Return: 0 for success, non-zero in case of failure.
5881  *
5882  * NOTE: Caller of this function can check the "hba->auto_bkops_enabled" flag
5883  * to know whether auto bkops is enabled or disabled after this function
5884  * returns control to it.
5885  */
5886 static int ufshcd_bkops_ctrl(struct ufs_hba *hba)
5887 {
5888 	enum bkops_status status = hba->urgent_bkops_lvl;
5889 	u32 curr_status = 0;
5890 	int err;
5891 
5892 	err = ufshcd_get_bkops_status(hba, &curr_status);
5893 	if (err) {
5894 		dev_err(hba->dev, "%s: failed to get BKOPS status %d\n",
5895 				__func__, err);
5896 		goto out;
5897 	} else if (curr_status > BKOPS_STATUS_MAX) {
5898 		dev_err(hba->dev, "%s: invalid BKOPS status %d\n",
5899 				__func__, curr_status);
5900 		err = -EINVAL;
5901 		goto out;
5902 	}
5903 
5904 	if (curr_status >= status)
5905 		err = ufshcd_enable_auto_bkops(hba);
5906 	else
5907 		err = ufshcd_disable_auto_bkops(hba);
5908 out:
5909 	return err;
5910 }
5911 
5912 static inline int ufshcd_get_ee_status(struct ufs_hba *hba, u32 *status)
5913 {
5914 	return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5915 			QUERY_ATTR_IDN_EE_STATUS, 0, 0, status);
5916 }
5917 
5918 static void ufshcd_bkops_exception_event_handler(struct ufs_hba *hba)
5919 {
5920 	int err;
5921 	u32 curr_status = 0;
5922 
5923 	if (hba->is_urgent_bkops_lvl_checked)
5924 		goto enable_auto_bkops;
5925 
5926 	err = ufshcd_get_bkops_status(hba, &curr_status);
5927 	if (err) {
5928 		dev_err(hba->dev, "%s: failed to get BKOPS status %d\n",
5929 				__func__, err);
5930 		goto out;
5931 	}
5932 
5933 	/*
5934 	 * We are seeing that some devices are raising the urgent bkops
5935 	 * exception events even when BKOPS status doesn't indicate performace
5936 	 * impacted or critical. Handle these device by determining their urgent
5937 	 * bkops status at runtime.
5938 	 */
5939 	if (curr_status < BKOPS_STATUS_PERF_IMPACT) {
5940 		dev_err(hba->dev, "%s: device raised urgent BKOPS exception for bkops status %d\n",
5941 				__func__, curr_status);
5942 		/* update the current status as the urgent bkops level */
5943 		hba->urgent_bkops_lvl = curr_status;
5944 		hba->is_urgent_bkops_lvl_checked = true;
5945 	}
5946 
5947 enable_auto_bkops:
5948 	err = ufshcd_enable_auto_bkops(hba);
5949 out:
5950 	if (err < 0)
5951 		dev_err(hba->dev, "%s: failed to handle urgent bkops %d\n",
5952 				__func__, err);
5953 }
5954 
5955 static void ufshcd_temp_exception_event_handler(struct ufs_hba *hba, u16 status)
5956 {
5957 	u32 value;
5958 
5959 	if (ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5960 				QUERY_ATTR_IDN_CASE_ROUGH_TEMP, 0, 0, &value))
5961 		return;
5962 
5963 	dev_info(hba->dev, "exception Tcase %d\n", value - 80);
5964 
5965 	ufs_hwmon_notify_event(hba, status & MASK_EE_URGENT_TEMP);
5966 
5967 	/*
5968 	 * A placeholder for the platform vendors to add whatever additional
5969 	 * steps required
5970 	 */
5971 }
5972 
5973 static int __ufshcd_wb_toggle(struct ufs_hba *hba, bool set, enum flag_idn idn)
5974 {
5975 	u8 index;
5976 	enum query_opcode opcode = set ? UPIU_QUERY_OPCODE_SET_FLAG :
5977 				   UPIU_QUERY_OPCODE_CLEAR_FLAG;
5978 
5979 	index = ufshcd_wb_get_query_index(hba);
5980 	return ufshcd_query_flag_retry(hba, opcode, idn, index, NULL);
5981 }
5982 
5983 int ufshcd_wb_toggle(struct ufs_hba *hba, bool enable)
5984 {
5985 	int ret;
5986 
5987 	if (!ufshcd_is_wb_allowed(hba) ||
5988 	    hba->dev_info.wb_enabled == enable)
5989 		return 0;
5990 
5991 	ret = __ufshcd_wb_toggle(hba, enable, QUERY_FLAG_IDN_WB_EN);
5992 	if (ret) {
5993 		dev_err(hba->dev, "%s: Write Booster %s failed %d\n",
5994 			__func__, enable ? "enabling" : "disabling", ret);
5995 		return ret;
5996 	}
5997 
5998 	hba->dev_info.wb_enabled = enable;
5999 	dev_dbg(hba->dev, "%s: Write Booster %s\n",
6000 			__func__, enable ? "enabled" : "disabled");
6001 
6002 	return ret;
6003 }
6004 
6005 static void ufshcd_wb_toggle_buf_flush_during_h8(struct ufs_hba *hba,
6006 						 bool enable)
6007 {
6008 	int ret;
6009 
6010 	ret = __ufshcd_wb_toggle(hba, enable,
6011 			QUERY_FLAG_IDN_WB_BUFF_FLUSH_DURING_HIBERN8);
6012 	if (ret) {
6013 		dev_err(hba->dev, "%s: WB-Buf Flush during H8 %s failed %d\n",
6014 			__func__, enable ? "enabling" : "disabling", ret);
6015 		return;
6016 	}
6017 	dev_dbg(hba->dev, "%s: WB-Buf Flush during H8 %s\n",
6018 			__func__, enable ? "enabled" : "disabled");
6019 }
6020 
6021 int ufshcd_wb_toggle_buf_flush(struct ufs_hba *hba, bool enable)
6022 {
6023 	int ret;
6024 
6025 	if (!ufshcd_is_wb_allowed(hba) ||
6026 	    hba->dev_info.wb_buf_flush_enabled == enable)
6027 		return 0;
6028 
6029 	ret = __ufshcd_wb_toggle(hba, enable, QUERY_FLAG_IDN_WB_BUFF_FLUSH_EN);
6030 	if (ret) {
6031 		dev_err(hba->dev, "%s: WB-Buf Flush %s failed %d\n",
6032 			__func__, enable ? "enabling" : "disabling", ret);
6033 		return ret;
6034 	}
6035 
6036 	hba->dev_info.wb_buf_flush_enabled = enable;
6037 	dev_dbg(hba->dev, "%s: WB-Buf Flush %s\n",
6038 			__func__, enable ? "enabled" : "disabled");
6039 
6040 	return ret;
6041 }
6042 
6043 static bool ufshcd_wb_presrv_usrspc_keep_vcc_on(struct ufs_hba *hba,
6044 						u32 avail_buf)
6045 {
6046 	u32 cur_buf;
6047 	int ret;
6048 	u8 index;
6049 
6050 	index = ufshcd_wb_get_query_index(hba);
6051 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
6052 					      QUERY_ATTR_IDN_CURR_WB_BUFF_SIZE,
6053 					      index, 0, &cur_buf);
6054 	if (ret) {
6055 		dev_err(hba->dev, "%s: dCurWriteBoosterBufferSize read failed %d\n",
6056 			__func__, ret);
6057 		return false;
6058 	}
6059 
6060 	if (!cur_buf) {
6061 		dev_info(hba->dev, "dCurWBBuf: %d WB disabled until free-space is available\n",
6062 			 cur_buf);
6063 		return false;
6064 	}
6065 	/* Let it continue to flush when available buffer exceeds threshold */
6066 	return avail_buf < hba->vps->wb_flush_threshold;
6067 }
6068 
6069 static void ufshcd_wb_force_disable(struct ufs_hba *hba)
6070 {
6071 	if (ufshcd_is_wb_buf_flush_allowed(hba))
6072 		ufshcd_wb_toggle_buf_flush(hba, false);
6073 
6074 	ufshcd_wb_toggle_buf_flush_during_h8(hba, false);
6075 	ufshcd_wb_toggle(hba, false);
6076 	hba->caps &= ~UFSHCD_CAP_WB_EN;
6077 
6078 	dev_info(hba->dev, "%s: WB force disabled\n", __func__);
6079 }
6080 
6081 static bool ufshcd_is_wb_buf_lifetime_available(struct ufs_hba *hba)
6082 {
6083 	u32 lifetime;
6084 	int ret;
6085 	u8 index;
6086 
6087 	index = ufshcd_wb_get_query_index(hba);
6088 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
6089 				      QUERY_ATTR_IDN_WB_BUFF_LIFE_TIME_EST,
6090 				      index, 0, &lifetime);
6091 	if (ret) {
6092 		dev_err(hba->dev,
6093 			"%s: bWriteBoosterBufferLifeTimeEst read failed %d\n",
6094 			__func__, ret);
6095 		return false;
6096 	}
6097 
6098 	if (lifetime == UFS_WB_EXCEED_LIFETIME) {
6099 		dev_err(hba->dev, "%s: WB buf lifetime is exhausted 0x%02X\n",
6100 			__func__, lifetime);
6101 		return false;
6102 	}
6103 
6104 	dev_dbg(hba->dev, "%s: WB buf lifetime is 0x%02X\n",
6105 		__func__, lifetime);
6106 
6107 	return true;
6108 }
6109 
6110 static bool ufshcd_wb_need_flush(struct ufs_hba *hba)
6111 {
6112 	int ret;
6113 	u32 avail_buf;
6114 	u8 index;
6115 
6116 	if (!ufshcd_is_wb_allowed(hba))
6117 		return false;
6118 
6119 	if (!ufshcd_is_wb_buf_lifetime_available(hba)) {
6120 		ufshcd_wb_force_disable(hba);
6121 		return false;
6122 	}
6123 
6124 	/*
6125 	 * The ufs device needs the vcc to be ON to flush.
6126 	 * With user-space reduction enabled, it's enough to enable flush
6127 	 * by checking only the available buffer. The threshold
6128 	 * defined here is > 90% full.
6129 	 * With user-space preserved enabled, the current-buffer
6130 	 * should be checked too because the wb buffer size can reduce
6131 	 * when disk tends to be full. This info is provided by current
6132 	 * buffer (dCurrentWriteBoosterBufferSize). There's no point in
6133 	 * keeping vcc on when current buffer is empty.
6134 	 */
6135 	index = ufshcd_wb_get_query_index(hba);
6136 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
6137 				      QUERY_ATTR_IDN_AVAIL_WB_BUFF_SIZE,
6138 				      index, 0, &avail_buf);
6139 	if (ret) {
6140 		dev_warn(hba->dev, "%s: dAvailableWriteBoosterBufferSize read failed %d\n",
6141 			 __func__, ret);
6142 		return false;
6143 	}
6144 
6145 	if (!hba->dev_info.b_presrv_uspc_en)
6146 		return avail_buf <= UFS_WB_BUF_REMAIN_PERCENT(10);
6147 
6148 	return ufshcd_wb_presrv_usrspc_keep_vcc_on(hba, avail_buf);
6149 }
6150 
6151 static void ufshcd_rpm_dev_flush_recheck_work(struct work_struct *work)
6152 {
6153 	struct ufs_hba *hba = container_of(to_delayed_work(work),
6154 					   struct ufs_hba,
6155 					   rpm_dev_flush_recheck_work);
6156 	/*
6157 	 * To prevent unnecessary VCC power drain after device finishes
6158 	 * WriteBooster buffer flush or Auto BKOPs, force runtime resume
6159 	 * after a certain delay to recheck the threshold by next runtime
6160 	 * suspend.
6161 	 */
6162 	ufshcd_rpm_get_sync(hba);
6163 	ufshcd_rpm_put_sync(hba);
6164 }
6165 
6166 /**
6167  * ufshcd_exception_event_handler - handle exceptions raised by device
6168  * @work: pointer to work data
6169  *
6170  * Read bExceptionEventStatus attribute from the device and handle the
6171  * exception event accordingly.
6172  */
6173 static void ufshcd_exception_event_handler(struct work_struct *work)
6174 {
6175 	struct ufs_hba *hba;
6176 	int err;
6177 	u32 status = 0;
6178 	hba = container_of(work, struct ufs_hba, eeh_work);
6179 
6180 	err = ufshcd_get_ee_status(hba, &status);
6181 	if (err) {
6182 		dev_err(hba->dev, "%s: failed to get exception status %d\n",
6183 				__func__, err);
6184 		return;
6185 	}
6186 
6187 	trace_ufshcd_exception_event(dev_name(hba->dev), status);
6188 
6189 	if (status & hba->ee_drv_mask & MASK_EE_URGENT_BKOPS)
6190 		ufshcd_bkops_exception_event_handler(hba);
6191 
6192 	if (status & hba->ee_drv_mask & MASK_EE_URGENT_TEMP)
6193 		ufshcd_temp_exception_event_handler(hba, status);
6194 
6195 	ufs_debugfs_exception_event(hba, status);
6196 }
6197 
6198 /* Complete requests that have door-bell cleared */
6199 static void ufshcd_complete_requests(struct ufs_hba *hba, bool force_compl)
6200 {
6201 	if (hba->mcq_enabled)
6202 		ufshcd_mcq_compl_pending_transfer(hba, force_compl);
6203 	else
6204 		ufshcd_transfer_req_compl(hba);
6205 
6206 	ufshcd_tmc_handler(hba);
6207 }
6208 
6209 /**
6210  * ufshcd_quirk_dl_nac_errors - This function checks if error handling is
6211  *				to recover from the DL NAC errors or not.
6212  * @hba: per-adapter instance
6213  *
6214  * Return: true if error handling is required, false otherwise.
6215  */
6216 static bool ufshcd_quirk_dl_nac_errors(struct ufs_hba *hba)
6217 {
6218 	unsigned long flags;
6219 	bool err_handling = true;
6220 
6221 	spin_lock_irqsave(hba->host->host_lock, flags);
6222 	/*
6223 	 * UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS only workaround the
6224 	 * device fatal error and/or DL NAC & REPLAY timeout errors.
6225 	 */
6226 	if (hba->saved_err & (CONTROLLER_FATAL_ERROR | SYSTEM_BUS_FATAL_ERROR))
6227 		goto out;
6228 
6229 	if ((hba->saved_err & DEVICE_FATAL_ERROR) ||
6230 	    ((hba->saved_err & UIC_ERROR) &&
6231 	     (hba->saved_uic_err & UFSHCD_UIC_DL_TCx_REPLAY_ERROR)))
6232 		goto out;
6233 
6234 	if ((hba->saved_err & UIC_ERROR) &&
6235 	    (hba->saved_uic_err & UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)) {
6236 		int err;
6237 		/*
6238 		 * wait for 50ms to see if we can get any other errors or not.
6239 		 */
6240 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6241 		msleep(50);
6242 		spin_lock_irqsave(hba->host->host_lock, flags);
6243 
6244 		/*
6245 		 * now check if we have got any other severe errors other than
6246 		 * DL NAC error?
6247 		 */
6248 		if ((hba->saved_err & INT_FATAL_ERRORS) ||
6249 		    ((hba->saved_err & UIC_ERROR) &&
6250 		    (hba->saved_uic_err & ~UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)))
6251 			goto out;
6252 
6253 		/*
6254 		 * As DL NAC is the only error received so far, send out NOP
6255 		 * command to confirm if link is still active or not.
6256 		 *   - If we don't get any response then do error recovery.
6257 		 *   - If we get response then clear the DL NAC error bit.
6258 		 */
6259 
6260 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6261 		err = ufshcd_verify_dev_init(hba);
6262 		spin_lock_irqsave(hba->host->host_lock, flags);
6263 
6264 		if (err)
6265 			goto out;
6266 
6267 		/* Link seems to be alive hence ignore the DL NAC errors */
6268 		if (hba->saved_uic_err == UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)
6269 			hba->saved_err &= ~UIC_ERROR;
6270 		/* clear NAC error */
6271 		hba->saved_uic_err &= ~UFSHCD_UIC_DL_NAC_RECEIVED_ERROR;
6272 		if (!hba->saved_uic_err)
6273 			err_handling = false;
6274 	}
6275 out:
6276 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6277 	return err_handling;
6278 }
6279 
6280 /* host lock must be held before calling this func */
6281 static inline bool ufshcd_is_saved_err_fatal(struct ufs_hba *hba)
6282 {
6283 	return (hba->saved_uic_err & UFSHCD_UIC_DL_PA_INIT_ERROR) ||
6284 	       (hba->saved_err & (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK));
6285 }
6286 
6287 void ufshcd_schedule_eh_work(struct ufs_hba *hba)
6288 {
6289 	lockdep_assert_held(hba->host->host_lock);
6290 
6291 	/* handle fatal errors only when link is not in error state */
6292 	if (hba->ufshcd_state != UFSHCD_STATE_ERROR) {
6293 		if (hba->force_reset || ufshcd_is_link_broken(hba) ||
6294 		    ufshcd_is_saved_err_fatal(hba))
6295 			hba->ufshcd_state = UFSHCD_STATE_EH_SCHEDULED_FATAL;
6296 		else
6297 			hba->ufshcd_state = UFSHCD_STATE_EH_SCHEDULED_NON_FATAL;
6298 		queue_work(hba->eh_wq, &hba->eh_work);
6299 	}
6300 }
6301 
6302 static void ufshcd_force_error_recovery(struct ufs_hba *hba)
6303 {
6304 	spin_lock_irq(hba->host->host_lock);
6305 	hba->force_reset = true;
6306 	ufshcd_schedule_eh_work(hba);
6307 	spin_unlock_irq(hba->host->host_lock);
6308 }
6309 
6310 static void ufshcd_clk_scaling_allow(struct ufs_hba *hba, bool allow)
6311 {
6312 	mutex_lock(&hba->wb_mutex);
6313 	down_write(&hba->clk_scaling_lock);
6314 	hba->clk_scaling.is_allowed = allow;
6315 	up_write(&hba->clk_scaling_lock);
6316 	mutex_unlock(&hba->wb_mutex);
6317 }
6318 
6319 static void ufshcd_clk_scaling_suspend(struct ufs_hba *hba, bool suspend)
6320 {
6321 	if (suspend) {
6322 		if (hba->clk_scaling.is_enabled)
6323 			ufshcd_suspend_clkscaling(hba);
6324 		ufshcd_clk_scaling_allow(hba, false);
6325 	} else {
6326 		ufshcd_clk_scaling_allow(hba, true);
6327 		if (hba->clk_scaling.is_enabled)
6328 			ufshcd_resume_clkscaling(hba);
6329 	}
6330 }
6331 
6332 static void ufshcd_err_handling_prepare(struct ufs_hba *hba)
6333 {
6334 	ufshcd_rpm_get_sync(hba);
6335 	if (pm_runtime_status_suspended(&hba->ufs_device_wlun->sdev_gendev) ||
6336 	    hba->is_sys_suspended) {
6337 		enum ufs_pm_op pm_op;
6338 
6339 		/*
6340 		 * Don't assume anything of resume, if
6341 		 * resume fails, irq and clocks can be OFF, and powers
6342 		 * can be OFF or in LPM.
6343 		 */
6344 		ufshcd_setup_hba_vreg(hba, true);
6345 		ufshcd_enable_irq(hba);
6346 		ufshcd_setup_vreg(hba, true);
6347 		ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq);
6348 		ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq2);
6349 		ufshcd_hold(hba);
6350 		if (!ufshcd_is_clkgating_allowed(hba))
6351 			ufshcd_setup_clocks(hba, true);
6352 		pm_op = hba->is_sys_suspended ? UFS_SYSTEM_PM : UFS_RUNTIME_PM;
6353 		ufshcd_vops_resume(hba, pm_op);
6354 	} else {
6355 		ufshcd_hold(hba);
6356 		if (ufshcd_is_clkscaling_supported(hba) &&
6357 		    hba->clk_scaling.is_enabled)
6358 			ufshcd_suspend_clkscaling(hba);
6359 		ufshcd_clk_scaling_allow(hba, false);
6360 	}
6361 	/* Wait for ongoing ufshcd_queuecommand() calls to finish. */
6362 	blk_mq_quiesce_tagset(&hba->host->tag_set);
6363 	cancel_work_sync(&hba->eeh_work);
6364 }
6365 
6366 static void ufshcd_err_handling_unprepare(struct ufs_hba *hba)
6367 {
6368 	blk_mq_unquiesce_tagset(&hba->host->tag_set);
6369 	ufshcd_release(hba);
6370 	if (ufshcd_is_clkscaling_supported(hba))
6371 		ufshcd_clk_scaling_suspend(hba, false);
6372 	ufshcd_rpm_put(hba);
6373 }
6374 
6375 static inline bool ufshcd_err_handling_should_stop(struct ufs_hba *hba)
6376 {
6377 	return (!hba->is_powered || hba->shutting_down ||
6378 		!hba->ufs_device_wlun ||
6379 		hba->ufshcd_state == UFSHCD_STATE_ERROR ||
6380 		(!(hba->saved_err || hba->saved_uic_err || hba->force_reset ||
6381 		   ufshcd_is_link_broken(hba))));
6382 }
6383 
6384 #ifdef CONFIG_PM
6385 static void ufshcd_recover_pm_error(struct ufs_hba *hba)
6386 {
6387 	struct Scsi_Host *shost = hba->host;
6388 	struct scsi_device *sdev;
6389 	struct request_queue *q;
6390 	int ret;
6391 
6392 	hba->is_sys_suspended = false;
6393 	/*
6394 	 * Set RPM status of wlun device to RPM_ACTIVE,
6395 	 * this also clears its runtime error.
6396 	 */
6397 	ret = pm_runtime_set_active(&hba->ufs_device_wlun->sdev_gendev);
6398 
6399 	/* hba device might have a runtime error otherwise */
6400 	if (ret)
6401 		ret = pm_runtime_set_active(hba->dev);
6402 	/*
6403 	 * If wlun device had runtime error, we also need to resume those
6404 	 * consumer scsi devices in case any of them has failed to be
6405 	 * resumed due to supplier runtime resume failure. This is to unblock
6406 	 * blk_queue_enter in case there are bios waiting inside it.
6407 	 */
6408 	if (!ret) {
6409 		shost_for_each_device(sdev, shost) {
6410 			q = sdev->request_queue;
6411 			if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
6412 				       q->rpm_status == RPM_SUSPENDING))
6413 				pm_request_resume(q->dev);
6414 		}
6415 	}
6416 }
6417 #else
6418 static inline void ufshcd_recover_pm_error(struct ufs_hba *hba)
6419 {
6420 }
6421 #endif
6422 
6423 static bool ufshcd_is_pwr_mode_restore_needed(struct ufs_hba *hba)
6424 {
6425 	struct ufs_pa_layer_attr *pwr_info = &hba->pwr_info;
6426 	u32 mode;
6427 
6428 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_PWRMODE), &mode);
6429 
6430 	if (pwr_info->pwr_rx != ((mode >> PWRMODE_RX_OFFSET) & PWRMODE_MASK))
6431 		return true;
6432 
6433 	if (pwr_info->pwr_tx != (mode & PWRMODE_MASK))
6434 		return true;
6435 
6436 	return false;
6437 }
6438 
6439 static bool ufshcd_abort_one(struct request *rq, void *priv)
6440 {
6441 	int *ret = priv;
6442 	u32 tag = rq->tag;
6443 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
6444 	struct scsi_device *sdev = cmd->device;
6445 	struct Scsi_Host *shost = sdev->host;
6446 	struct ufs_hba *hba = shost_priv(shost);
6447 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
6448 	struct ufs_hw_queue *hwq;
6449 	unsigned long flags;
6450 
6451 	*ret = ufshcd_try_to_abort_task(hba, tag);
6452 	dev_err(hba->dev, "Aborting tag %d / CDB %#02x %s\n", tag,
6453 		hba->lrb[tag].cmd ? hba->lrb[tag].cmd->cmnd[0] : -1,
6454 		*ret ? "failed" : "succeeded");
6455 
6456 	/* Release cmd in MCQ mode if abort succeeds */
6457 	if (hba->mcq_enabled && (*ret == 0)) {
6458 		hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(lrbp->cmd));
6459 		if (!hwq)
6460 			return 0;
6461 		spin_lock_irqsave(&hwq->cq_lock, flags);
6462 		if (ufshcd_cmd_inflight(lrbp->cmd))
6463 			ufshcd_release_scsi_cmd(hba, lrbp);
6464 		spin_unlock_irqrestore(&hwq->cq_lock, flags);
6465 	}
6466 
6467 	return *ret == 0;
6468 }
6469 
6470 /**
6471  * ufshcd_abort_all - Abort all pending commands.
6472  * @hba: Host bus adapter pointer.
6473  *
6474  * Return: true if and only if the host controller needs to be reset.
6475  */
6476 static bool ufshcd_abort_all(struct ufs_hba *hba)
6477 {
6478 	int tag, ret = 0;
6479 
6480 	blk_mq_tagset_busy_iter(&hba->host->tag_set, ufshcd_abort_one, &ret);
6481 	if (ret)
6482 		goto out;
6483 
6484 	/* Clear pending task management requests */
6485 	for_each_set_bit(tag, &hba->outstanding_tasks, hba->nutmrs) {
6486 		ret = ufshcd_clear_tm_cmd(hba, tag);
6487 		if (ret)
6488 			goto out;
6489 	}
6490 
6491 out:
6492 	/* Complete the requests that are cleared by s/w */
6493 	ufshcd_complete_requests(hba, false);
6494 
6495 	return ret != 0;
6496 }
6497 
6498 /**
6499  * ufshcd_err_handler - handle UFS errors that require s/w attention
6500  * @work: pointer to work structure
6501  */
6502 static void ufshcd_err_handler(struct work_struct *work)
6503 {
6504 	int retries = MAX_ERR_HANDLER_RETRIES;
6505 	struct ufs_hba *hba;
6506 	unsigned long flags;
6507 	bool needs_restore;
6508 	bool needs_reset;
6509 	int pmc_err;
6510 
6511 	hba = container_of(work, struct ufs_hba, eh_work);
6512 
6513 	dev_info(hba->dev,
6514 		 "%s started; HBA state %s; powered %d; shutting down %d; saved_err = %d; saved_uic_err = %d; force_reset = %d%s\n",
6515 		 __func__, ufshcd_state_name[hba->ufshcd_state],
6516 		 hba->is_powered, hba->shutting_down, hba->saved_err,
6517 		 hba->saved_uic_err, hba->force_reset,
6518 		 ufshcd_is_link_broken(hba) ? "; link is broken" : "");
6519 
6520 	down(&hba->host_sem);
6521 	spin_lock_irqsave(hba->host->host_lock, flags);
6522 	if (ufshcd_err_handling_should_stop(hba)) {
6523 		if (hba->ufshcd_state != UFSHCD_STATE_ERROR)
6524 			hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
6525 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6526 		up(&hba->host_sem);
6527 		return;
6528 	}
6529 	ufshcd_set_eh_in_progress(hba);
6530 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6531 	ufshcd_err_handling_prepare(hba);
6532 	/* Complete requests that have door-bell cleared by h/w */
6533 	ufshcd_complete_requests(hba, false);
6534 	spin_lock_irqsave(hba->host->host_lock, flags);
6535 again:
6536 	needs_restore = false;
6537 	needs_reset = false;
6538 
6539 	if (hba->ufshcd_state != UFSHCD_STATE_ERROR)
6540 		hba->ufshcd_state = UFSHCD_STATE_RESET;
6541 	/*
6542 	 * A full reset and restore might have happened after preparation
6543 	 * is finished, double check whether we should stop.
6544 	 */
6545 	if (ufshcd_err_handling_should_stop(hba))
6546 		goto skip_err_handling;
6547 
6548 	if ((hba->dev_quirks & UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS) &&
6549 	    !hba->force_reset) {
6550 		bool ret;
6551 
6552 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6553 		/* release the lock as ufshcd_quirk_dl_nac_errors() may sleep */
6554 		ret = ufshcd_quirk_dl_nac_errors(hba);
6555 		spin_lock_irqsave(hba->host->host_lock, flags);
6556 		if (!ret && ufshcd_err_handling_should_stop(hba))
6557 			goto skip_err_handling;
6558 	}
6559 
6560 	if ((hba->saved_err & (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK)) ||
6561 	    (hba->saved_uic_err &&
6562 	     (hba->saved_uic_err != UFSHCD_UIC_PA_GENERIC_ERROR))) {
6563 		bool pr_prdt = !!(hba->saved_err & SYSTEM_BUS_FATAL_ERROR);
6564 
6565 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6566 		ufshcd_print_host_state(hba);
6567 		ufshcd_print_pwr_info(hba);
6568 		ufshcd_print_evt_hist(hba);
6569 		ufshcd_print_tmrs(hba, hba->outstanding_tasks);
6570 		ufshcd_print_trs_all(hba, pr_prdt);
6571 		spin_lock_irqsave(hba->host->host_lock, flags);
6572 	}
6573 
6574 	/*
6575 	 * if host reset is required then skip clearing the pending
6576 	 * transfers forcefully because they will get cleared during
6577 	 * host reset and restore
6578 	 */
6579 	if (hba->force_reset || ufshcd_is_link_broken(hba) ||
6580 	    ufshcd_is_saved_err_fatal(hba) ||
6581 	    ((hba->saved_err & UIC_ERROR) &&
6582 	     (hba->saved_uic_err & (UFSHCD_UIC_DL_NAC_RECEIVED_ERROR |
6583 				    UFSHCD_UIC_DL_TCx_REPLAY_ERROR)))) {
6584 		needs_reset = true;
6585 		goto do_reset;
6586 	}
6587 
6588 	/*
6589 	 * If LINERESET was caught, UFS might have been put to PWM mode,
6590 	 * check if power mode restore is needed.
6591 	 */
6592 	if (hba->saved_uic_err & UFSHCD_UIC_PA_GENERIC_ERROR) {
6593 		hba->saved_uic_err &= ~UFSHCD_UIC_PA_GENERIC_ERROR;
6594 		if (!hba->saved_uic_err)
6595 			hba->saved_err &= ~UIC_ERROR;
6596 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6597 		if (ufshcd_is_pwr_mode_restore_needed(hba))
6598 			needs_restore = true;
6599 		spin_lock_irqsave(hba->host->host_lock, flags);
6600 		if (!hba->saved_err && !needs_restore)
6601 			goto skip_err_handling;
6602 	}
6603 
6604 	hba->silence_err_logs = true;
6605 	/* release lock as clear command might sleep */
6606 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6607 
6608 	needs_reset = ufshcd_abort_all(hba);
6609 
6610 	spin_lock_irqsave(hba->host->host_lock, flags);
6611 	hba->silence_err_logs = false;
6612 	if (needs_reset)
6613 		goto do_reset;
6614 
6615 	/*
6616 	 * After all reqs and tasks are cleared from doorbell,
6617 	 * now it is safe to retore power mode.
6618 	 */
6619 	if (needs_restore) {
6620 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6621 		/*
6622 		 * Hold the scaling lock just in case dev cmds
6623 		 * are sent via bsg and/or sysfs.
6624 		 */
6625 		down_write(&hba->clk_scaling_lock);
6626 		hba->force_pmc = true;
6627 		pmc_err = ufshcd_config_pwr_mode(hba, &(hba->pwr_info));
6628 		if (pmc_err) {
6629 			needs_reset = true;
6630 			dev_err(hba->dev, "%s: Failed to restore power mode, err = %d\n",
6631 					__func__, pmc_err);
6632 		}
6633 		hba->force_pmc = false;
6634 		ufshcd_print_pwr_info(hba);
6635 		up_write(&hba->clk_scaling_lock);
6636 		spin_lock_irqsave(hba->host->host_lock, flags);
6637 	}
6638 
6639 do_reset:
6640 	/* Fatal errors need reset */
6641 	if (needs_reset) {
6642 		int err;
6643 
6644 		hba->force_reset = false;
6645 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6646 		err = ufshcd_reset_and_restore(hba);
6647 		if (err)
6648 			dev_err(hba->dev, "%s: reset and restore failed with err %d\n",
6649 					__func__, err);
6650 		else
6651 			ufshcd_recover_pm_error(hba);
6652 		spin_lock_irqsave(hba->host->host_lock, flags);
6653 	}
6654 
6655 skip_err_handling:
6656 	if (!needs_reset) {
6657 		if (hba->ufshcd_state == UFSHCD_STATE_RESET)
6658 			hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
6659 		if (hba->saved_err || hba->saved_uic_err)
6660 			dev_err_ratelimited(hba->dev, "%s: exit: saved_err 0x%x saved_uic_err 0x%x",
6661 			    __func__, hba->saved_err, hba->saved_uic_err);
6662 	}
6663 	/* Exit in an operational state or dead */
6664 	if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL &&
6665 	    hba->ufshcd_state != UFSHCD_STATE_ERROR) {
6666 		if (--retries)
6667 			goto again;
6668 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
6669 	}
6670 	ufshcd_clear_eh_in_progress(hba);
6671 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6672 	ufshcd_err_handling_unprepare(hba);
6673 	up(&hba->host_sem);
6674 
6675 	dev_info(hba->dev, "%s finished; HBA state %s\n", __func__,
6676 		 ufshcd_state_name[hba->ufshcd_state]);
6677 }
6678 
6679 /**
6680  * ufshcd_update_uic_error - check and set fatal UIC error flags.
6681  * @hba: per-adapter instance
6682  *
6683  * Return:
6684  *  IRQ_HANDLED - If interrupt is valid
6685  *  IRQ_NONE    - If invalid interrupt
6686  */
6687 static irqreturn_t ufshcd_update_uic_error(struct ufs_hba *hba)
6688 {
6689 	u32 reg;
6690 	irqreturn_t retval = IRQ_NONE;
6691 
6692 	/* PHY layer error */
6693 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER);
6694 	if ((reg & UIC_PHY_ADAPTER_LAYER_ERROR) &&
6695 	    (reg & UIC_PHY_ADAPTER_LAYER_ERROR_CODE_MASK)) {
6696 		ufshcd_update_evt_hist(hba, UFS_EVT_PA_ERR, reg);
6697 		/*
6698 		 * To know whether this error is fatal or not, DB timeout
6699 		 * must be checked but this error is handled separately.
6700 		 */
6701 		if (reg & UIC_PHY_ADAPTER_LAYER_LANE_ERR_MASK)
6702 			dev_dbg(hba->dev, "%s: UIC Lane error reported\n",
6703 					__func__);
6704 
6705 		/* Got a LINERESET indication. */
6706 		if (reg & UIC_PHY_ADAPTER_LAYER_GENERIC_ERROR) {
6707 			struct uic_command *cmd = NULL;
6708 
6709 			hba->uic_error |= UFSHCD_UIC_PA_GENERIC_ERROR;
6710 			if (hba->uic_async_done && hba->active_uic_cmd)
6711 				cmd = hba->active_uic_cmd;
6712 			/*
6713 			 * Ignore the LINERESET during power mode change
6714 			 * operation via DME_SET command.
6715 			 */
6716 			if (cmd && (cmd->command == UIC_CMD_DME_SET))
6717 				hba->uic_error &= ~UFSHCD_UIC_PA_GENERIC_ERROR;
6718 		}
6719 		retval |= IRQ_HANDLED;
6720 	}
6721 
6722 	/* PA_INIT_ERROR is fatal and needs UIC reset */
6723 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_DATA_LINK_LAYER);
6724 	if ((reg & UIC_DATA_LINK_LAYER_ERROR) &&
6725 	    (reg & UIC_DATA_LINK_LAYER_ERROR_CODE_MASK)) {
6726 		ufshcd_update_evt_hist(hba, UFS_EVT_DL_ERR, reg);
6727 
6728 		if (reg & UIC_DATA_LINK_LAYER_ERROR_PA_INIT)
6729 			hba->uic_error |= UFSHCD_UIC_DL_PA_INIT_ERROR;
6730 		else if (hba->dev_quirks &
6731 				UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS) {
6732 			if (reg & UIC_DATA_LINK_LAYER_ERROR_NAC_RECEIVED)
6733 				hba->uic_error |=
6734 					UFSHCD_UIC_DL_NAC_RECEIVED_ERROR;
6735 			else if (reg & UIC_DATA_LINK_LAYER_ERROR_TCx_REPLAY_TIMEOUT)
6736 				hba->uic_error |= UFSHCD_UIC_DL_TCx_REPLAY_ERROR;
6737 		}
6738 		retval |= IRQ_HANDLED;
6739 	}
6740 
6741 	/* UIC NL/TL/DME errors needs software retry */
6742 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_NETWORK_LAYER);
6743 	if ((reg & UIC_NETWORK_LAYER_ERROR) &&
6744 	    (reg & UIC_NETWORK_LAYER_ERROR_CODE_MASK)) {
6745 		ufshcd_update_evt_hist(hba, UFS_EVT_NL_ERR, reg);
6746 		hba->uic_error |= UFSHCD_UIC_NL_ERROR;
6747 		retval |= IRQ_HANDLED;
6748 	}
6749 
6750 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_TRANSPORT_LAYER);
6751 	if ((reg & UIC_TRANSPORT_LAYER_ERROR) &&
6752 	    (reg & UIC_TRANSPORT_LAYER_ERROR_CODE_MASK)) {
6753 		ufshcd_update_evt_hist(hba, UFS_EVT_TL_ERR, reg);
6754 		hba->uic_error |= UFSHCD_UIC_TL_ERROR;
6755 		retval |= IRQ_HANDLED;
6756 	}
6757 
6758 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_DME);
6759 	if ((reg & UIC_DME_ERROR) &&
6760 	    (reg & UIC_DME_ERROR_CODE_MASK)) {
6761 		ufshcd_update_evt_hist(hba, UFS_EVT_DME_ERR, reg);
6762 		hba->uic_error |= UFSHCD_UIC_DME_ERROR;
6763 		retval |= IRQ_HANDLED;
6764 	}
6765 
6766 	dev_dbg(hba->dev, "%s: UIC error flags = 0x%08x\n",
6767 			__func__, hba->uic_error);
6768 	return retval;
6769 }
6770 
6771 /**
6772  * ufshcd_check_errors - Check for errors that need s/w attention
6773  * @hba: per-adapter instance
6774  * @intr_status: interrupt status generated by the controller
6775  *
6776  * Return:
6777  *  IRQ_HANDLED - If interrupt is valid
6778  *  IRQ_NONE    - If invalid interrupt
6779  */
6780 static irqreturn_t ufshcd_check_errors(struct ufs_hba *hba, u32 intr_status)
6781 {
6782 	bool queue_eh_work = false;
6783 	irqreturn_t retval = IRQ_NONE;
6784 
6785 	spin_lock(hba->host->host_lock);
6786 	hba->errors |= UFSHCD_ERROR_MASK & intr_status;
6787 
6788 	if (hba->errors & INT_FATAL_ERRORS) {
6789 		ufshcd_update_evt_hist(hba, UFS_EVT_FATAL_ERR,
6790 				       hba->errors);
6791 		queue_eh_work = true;
6792 	}
6793 
6794 	if (hba->errors & UIC_ERROR) {
6795 		hba->uic_error = 0;
6796 		retval = ufshcd_update_uic_error(hba);
6797 		if (hba->uic_error)
6798 			queue_eh_work = true;
6799 	}
6800 
6801 	if (hba->errors & UFSHCD_UIC_HIBERN8_MASK) {
6802 		dev_err(hba->dev,
6803 			"%s: Auto Hibern8 %s failed - status: 0x%08x, upmcrs: 0x%08x\n",
6804 			__func__, (hba->errors & UIC_HIBERNATE_ENTER) ?
6805 			"Enter" : "Exit",
6806 			hba->errors, ufshcd_get_upmcrs(hba));
6807 		ufshcd_update_evt_hist(hba, UFS_EVT_AUTO_HIBERN8_ERR,
6808 				       hba->errors);
6809 		ufshcd_set_link_broken(hba);
6810 		queue_eh_work = true;
6811 	}
6812 
6813 	if (queue_eh_work) {
6814 		/*
6815 		 * update the transfer error masks to sticky bits, let's do this
6816 		 * irrespective of current ufshcd_state.
6817 		 */
6818 		hba->saved_err |= hba->errors;
6819 		hba->saved_uic_err |= hba->uic_error;
6820 
6821 		/* dump controller state before resetting */
6822 		if ((hba->saved_err &
6823 		     (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK)) ||
6824 		    (hba->saved_uic_err &&
6825 		     (hba->saved_uic_err != UFSHCD_UIC_PA_GENERIC_ERROR))) {
6826 			dev_err(hba->dev, "%s: saved_err 0x%x saved_uic_err 0x%x\n",
6827 					__func__, hba->saved_err,
6828 					hba->saved_uic_err);
6829 			ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE,
6830 					 "host_regs: ");
6831 			ufshcd_print_pwr_info(hba);
6832 		}
6833 		ufshcd_schedule_eh_work(hba);
6834 		retval |= IRQ_HANDLED;
6835 	}
6836 	/*
6837 	 * if (!queue_eh_work) -
6838 	 * Other errors are either non-fatal where host recovers
6839 	 * itself without s/w intervention or errors that will be
6840 	 * handled by the SCSI core layer.
6841 	 */
6842 	hba->errors = 0;
6843 	hba->uic_error = 0;
6844 	spin_unlock(hba->host->host_lock);
6845 	return retval;
6846 }
6847 
6848 /**
6849  * ufshcd_tmc_handler - handle task management function completion
6850  * @hba: per adapter instance
6851  *
6852  * Return:
6853  *  IRQ_HANDLED - If interrupt is valid
6854  *  IRQ_NONE    - If invalid interrupt
6855  */
6856 static irqreturn_t ufshcd_tmc_handler(struct ufs_hba *hba)
6857 {
6858 	unsigned long flags, pending, issued;
6859 	irqreturn_t ret = IRQ_NONE;
6860 	int tag;
6861 
6862 	spin_lock_irqsave(hba->host->host_lock, flags);
6863 	pending = ufshcd_readl(hba, REG_UTP_TASK_REQ_DOOR_BELL);
6864 	issued = hba->outstanding_tasks & ~pending;
6865 	for_each_set_bit(tag, &issued, hba->nutmrs) {
6866 		struct request *req = hba->tmf_rqs[tag];
6867 		struct completion *c = req->end_io_data;
6868 
6869 		complete(c);
6870 		ret = IRQ_HANDLED;
6871 	}
6872 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6873 
6874 	return ret;
6875 }
6876 
6877 /**
6878  * ufshcd_handle_mcq_cq_events - handle MCQ completion queue events
6879  * @hba: per adapter instance
6880  *
6881  * Return: IRQ_HANDLED if interrupt is handled.
6882  */
6883 static irqreturn_t ufshcd_handle_mcq_cq_events(struct ufs_hba *hba)
6884 {
6885 	struct ufs_hw_queue *hwq;
6886 	unsigned long outstanding_cqs;
6887 	unsigned int nr_queues;
6888 	int i, ret;
6889 	u32 events;
6890 
6891 	ret = ufshcd_vops_get_outstanding_cqs(hba, &outstanding_cqs);
6892 	if (ret)
6893 		outstanding_cqs = (1U << hba->nr_hw_queues) - 1;
6894 
6895 	/* Exclude the poll queues */
6896 	nr_queues = hba->nr_hw_queues - hba->nr_queues[HCTX_TYPE_POLL];
6897 	for_each_set_bit(i, &outstanding_cqs, nr_queues) {
6898 		hwq = &hba->uhq[i];
6899 
6900 		events = ufshcd_mcq_read_cqis(hba, i);
6901 		if (events)
6902 			ufshcd_mcq_write_cqis(hba, events, i);
6903 
6904 		if (events & UFSHCD_MCQ_CQIS_TAIL_ENT_PUSH_STS)
6905 			ufshcd_mcq_poll_cqe_lock(hba, hwq);
6906 	}
6907 
6908 	return IRQ_HANDLED;
6909 }
6910 
6911 /**
6912  * ufshcd_sl_intr - Interrupt service routine
6913  * @hba: per adapter instance
6914  * @intr_status: contains interrupts generated by the controller
6915  *
6916  * Return:
6917  *  IRQ_HANDLED - If interrupt is valid
6918  *  IRQ_NONE    - If invalid interrupt
6919  */
6920 static irqreturn_t ufshcd_sl_intr(struct ufs_hba *hba, u32 intr_status)
6921 {
6922 	irqreturn_t retval = IRQ_NONE;
6923 
6924 	if (intr_status & UFSHCD_UIC_MASK)
6925 		retval |= ufshcd_uic_cmd_compl(hba, intr_status);
6926 
6927 	if (intr_status & UFSHCD_ERROR_MASK || hba->errors)
6928 		retval |= ufshcd_check_errors(hba, intr_status);
6929 
6930 	if (intr_status & UTP_TASK_REQ_COMPL)
6931 		retval |= ufshcd_tmc_handler(hba);
6932 
6933 	if (intr_status & UTP_TRANSFER_REQ_COMPL)
6934 		retval |= ufshcd_transfer_req_compl(hba);
6935 
6936 	if (intr_status & MCQ_CQ_EVENT_STATUS)
6937 		retval |= ufshcd_handle_mcq_cq_events(hba);
6938 
6939 	return retval;
6940 }
6941 
6942 /**
6943  * ufshcd_intr - Main interrupt service routine
6944  * @irq: irq number
6945  * @__hba: pointer to adapter instance
6946  *
6947  * Return:
6948  *  IRQ_HANDLED - If interrupt is valid
6949  *  IRQ_NONE    - If invalid interrupt
6950  */
6951 static irqreturn_t ufshcd_intr(int irq, void *__hba)
6952 {
6953 	u32 intr_status, enabled_intr_status = 0;
6954 	irqreturn_t retval = IRQ_NONE;
6955 	struct ufs_hba *hba = __hba;
6956 	int retries = hba->nutrs;
6957 
6958 	intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
6959 	hba->ufs_stats.last_intr_status = intr_status;
6960 	hba->ufs_stats.last_intr_ts = local_clock();
6961 
6962 	/*
6963 	 * There could be max of hba->nutrs reqs in flight and in worst case
6964 	 * if the reqs get finished 1 by 1 after the interrupt status is
6965 	 * read, make sure we handle them by checking the interrupt status
6966 	 * again in a loop until we process all of the reqs before returning.
6967 	 */
6968 	while (intr_status && retries--) {
6969 		enabled_intr_status =
6970 			intr_status & ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
6971 		ufshcd_writel(hba, intr_status, REG_INTERRUPT_STATUS);
6972 		if (enabled_intr_status)
6973 			retval |= ufshcd_sl_intr(hba, enabled_intr_status);
6974 
6975 		intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
6976 	}
6977 
6978 	if (enabled_intr_status && retval == IRQ_NONE &&
6979 	    (!(enabled_intr_status & UTP_TRANSFER_REQ_COMPL) ||
6980 	     hba->outstanding_reqs) && !ufshcd_eh_in_progress(hba)) {
6981 		dev_err(hba->dev, "%s: Unhandled interrupt 0x%08x (0x%08x, 0x%08x)\n",
6982 					__func__,
6983 					intr_status,
6984 					hba->ufs_stats.last_intr_status,
6985 					enabled_intr_status);
6986 		ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, "host_regs: ");
6987 	}
6988 
6989 	return retval;
6990 }
6991 
6992 static int ufshcd_clear_tm_cmd(struct ufs_hba *hba, int tag)
6993 {
6994 	int err = 0;
6995 	u32 mask = 1 << tag;
6996 
6997 	if (!test_bit(tag, &hba->outstanding_tasks))
6998 		goto out;
6999 
7000 	ufshcd_utmrl_clear(hba, tag);
7001 
7002 	/* poll for max. 1 sec to clear door bell register by h/w */
7003 	err = ufshcd_wait_for_register(hba,
7004 			REG_UTP_TASK_REQ_DOOR_BELL,
7005 			mask, 0, 1000, 1000);
7006 
7007 	dev_err(hba->dev, "Clearing task management function with tag %d %s\n",
7008 		tag, err < 0 ? "failed" : "succeeded");
7009 
7010 out:
7011 	return err;
7012 }
7013 
7014 static int __ufshcd_issue_tm_cmd(struct ufs_hba *hba,
7015 		struct utp_task_req_desc *treq, u8 tm_function)
7016 {
7017 	struct request_queue *q = hba->tmf_queue;
7018 	struct Scsi_Host *host = hba->host;
7019 	DECLARE_COMPLETION_ONSTACK(wait);
7020 	struct request *req;
7021 	unsigned long flags;
7022 	int task_tag, err;
7023 
7024 	/*
7025 	 * blk_mq_alloc_request() is used here only to get a free tag.
7026 	 */
7027 	req = blk_mq_alloc_request(q, REQ_OP_DRV_OUT, 0);
7028 	if (IS_ERR(req))
7029 		return PTR_ERR(req);
7030 
7031 	req->end_io_data = &wait;
7032 	ufshcd_hold(hba);
7033 
7034 	spin_lock_irqsave(host->host_lock, flags);
7035 
7036 	task_tag = req->tag;
7037 	hba->tmf_rqs[req->tag] = req;
7038 	treq->upiu_req.req_header.task_tag = task_tag;
7039 
7040 	memcpy(hba->utmrdl_base_addr + task_tag, treq, sizeof(*treq));
7041 	ufshcd_vops_setup_task_mgmt(hba, task_tag, tm_function);
7042 
7043 	__set_bit(task_tag, &hba->outstanding_tasks);
7044 
7045 	spin_unlock_irqrestore(host->host_lock, flags);
7046 
7047 	/* send command to the controller */
7048 	ufshcd_writel(hba, 1 << task_tag, REG_UTP_TASK_REQ_DOOR_BELL);
7049 
7050 	ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_SEND);
7051 
7052 	/* wait until the task management command is completed */
7053 	err = wait_for_completion_io_timeout(&wait,
7054 			msecs_to_jiffies(TM_CMD_TIMEOUT));
7055 	if (!err) {
7056 		ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_ERR);
7057 		dev_err(hba->dev, "%s: task management cmd 0x%.2x timed-out\n",
7058 				__func__, tm_function);
7059 		if (ufshcd_clear_tm_cmd(hba, task_tag))
7060 			dev_WARN(hba->dev, "%s: unable to clear tm cmd (slot %d) after timeout\n",
7061 					__func__, task_tag);
7062 		err = -ETIMEDOUT;
7063 	} else {
7064 		err = 0;
7065 		memcpy(treq, hba->utmrdl_base_addr + task_tag, sizeof(*treq));
7066 
7067 		ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_COMP);
7068 	}
7069 
7070 	spin_lock_irqsave(hba->host->host_lock, flags);
7071 	hba->tmf_rqs[req->tag] = NULL;
7072 	__clear_bit(task_tag, &hba->outstanding_tasks);
7073 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7074 
7075 	ufshcd_release(hba);
7076 	blk_mq_free_request(req);
7077 
7078 	return err;
7079 }
7080 
7081 /**
7082  * ufshcd_issue_tm_cmd - issues task management commands to controller
7083  * @hba: per adapter instance
7084  * @lun_id: LUN ID to which TM command is sent
7085  * @task_id: task ID to which the TM command is applicable
7086  * @tm_function: task management function opcode
7087  * @tm_response: task management service response return value
7088  *
7089  * Return: non-zero value on error, zero on success.
7090  */
7091 static int ufshcd_issue_tm_cmd(struct ufs_hba *hba, int lun_id, int task_id,
7092 		u8 tm_function, u8 *tm_response)
7093 {
7094 	struct utp_task_req_desc treq = { };
7095 	enum utp_ocs ocs_value;
7096 	int err;
7097 
7098 	/* Configure task request descriptor */
7099 	treq.header.interrupt = 1;
7100 	treq.header.ocs = OCS_INVALID_COMMAND_STATUS;
7101 
7102 	/* Configure task request UPIU */
7103 	treq.upiu_req.req_header.transaction_code = UPIU_TRANSACTION_TASK_REQ;
7104 	treq.upiu_req.req_header.lun = lun_id;
7105 	treq.upiu_req.req_header.tm_function = tm_function;
7106 
7107 	/*
7108 	 * The host shall provide the same value for LUN field in the basic
7109 	 * header and for Input Parameter.
7110 	 */
7111 	treq.upiu_req.input_param1 = cpu_to_be32(lun_id);
7112 	treq.upiu_req.input_param2 = cpu_to_be32(task_id);
7113 
7114 	err = __ufshcd_issue_tm_cmd(hba, &treq, tm_function);
7115 	if (err == -ETIMEDOUT)
7116 		return err;
7117 
7118 	ocs_value = treq.header.ocs & MASK_OCS;
7119 	if (ocs_value != OCS_SUCCESS)
7120 		dev_err(hba->dev, "%s: failed, ocs = 0x%x\n",
7121 				__func__, ocs_value);
7122 	else if (tm_response)
7123 		*tm_response = be32_to_cpu(treq.upiu_rsp.output_param1) &
7124 				MASK_TM_SERVICE_RESP;
7125 	return err;
7126 }
7127 
7128 /**
7129  * ufshcd_issue_devman_upiu_cmd - API for sending "utrd" type requests
7130  * @hba:	per-adapter instance
7131  * @req_upiu:	upiu request
7132  * @rsp_upiu:	upiu reply
7133  * @desc_buff:	pointer to descriptor buffer, NULL if NA
7134  * @buff_len:	descriptor size, 0 if NA
7135  * @cmd_type:	specifies the type (NOP, Query...)
7136  * @desc_op:	descriptor operation
7137  *
7138  * Those type of requests uses UTP Transfer Request Descriptor - utrd.
7139  * Therefore, it "rides" the device management infrastructure: uses its tag and
7140  * tasks work queues.
7141  *
7142  * Since there is only one available tag for device management commands,
7143  * the caller is expected to hold the hba->dev_cmd.lock mutex.
7144  *
7145  * Return: 0 upon success; < 0 upon failure.
7146  */
7147 static int ufshcd_issue_devman_upiu_cmd(struct ufs_hba *hba,
7148 					struct utp_upiu_req *req_upiu,
7149 					struct utp_upiu_req *rsp_upiu,
7150 					u8 *desc_buff, int *buff_len,
7151 					enum dev_cmd_type cmd_type,
7152 					enum query_opcode desc_op)
7153 {
7154 	const u32 tag = hba->reserved_slot;
7155 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
7156 	int err = 0;
7157 	u8 upiu_flags;
7158 
7159 	/* Protects use of hba->reserved_slot. */
7160 	lockdep_assert_held(&hba->dev_cmd.lock);
7161 
7162 	ufshcd_setup_dev_cmd(hba, lrbp, cmd_type, 0, tag);
7163 
7164 	ufshcd_prepare_req_desc_hdr(hba, lrbp, &upiu_flags, DMA_NONE, 0);
7165 
7166 	/* update the task tag in the request upiu */
7167 	req_upiu->header.task_tag = tag;
7168 
7169 	/* just copy the upiu request as it is */
7170 	memcpy(lrbp->ucd_req_ptr, req_upiu, sizeof(*lrbp->ucd_req_ptr));
7171 	if (desc_buff && desc_op == UPIU_QUERY_OPCODE_WRITE_DESC) {
7172 		/* The Data Segment Area is optional depending upon the query
7173 		 * function value. for WRITE DESCRIPTOR, the data segment
7174 		 * follows right after the tsf.
7175 		 */
7176 		memcpy(lrbp->ucd_req_ptr + 1, desc_buff, *buff_len);
7177 		*buff_len = 0;
7178 	}
7179 
7180 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
7181 
7182 	/*
7183 	 * ignore the returning value here - ufshcd_check_query_response is
7184 	 * bound to fail since dev_cmd.query and dev_cmd.type were left empty.
7185 	 * read the response directly ignoring all errors.
7186 	 */
7187 	ufshcd_issue_dev_cmd(hba, lrbp, tag, QUERY_REQ_TIMEOUT);
7188 
7189 	/* just copy the upiu response as it is */
7190 	memcpy(rsp_upiu, lrbp->ucd_rsp_ptr, sizeof(*rsp_upiu));
7191 	if (desc_buff && desc_op == UPIU_QUERY_OPCODE_READ_DESC) {
7192 		u8 *descp = (u8 *)lrbp->ucd_rsp_ptr + sizeof(*rsp_upiu);
7193 		u16 resp_len = be16_to_cpu(lrbp->ucd_rsp_ptr->header
7194 					   .data_segment_length);
7195 
7196 		if (*buff_len >= resp_len) {
7197 			memcpy(desc_buff, descp, resp_len);
7198 			*buff_len = resp_len;
7199 		} else {
7200 			dev_warn(hba->dev,
7201 				 "%s: rsp size %d is bigger than buffer size %d",
7202 				 __func__, resp_len, *buff_len);
7203 			*buff_len = 0;
7204 			err = -EINVAL;
7205 		}
7206 	}
7207 	ufshcd_add_query_upiu_trace(hba, err ? UFS_QUERY_ERR : UFS_QUERY_COMP,
7208 				    (struct utp_upiu_req *)lrbp->ucd_rsp_ptr);
7209 
7210 	return err;
7211 }
7212 
7213 /**
7214  * ufshcd_exec_raw_upiu_cmd - API function for sending raw upiu commands
7215  * @hba:	per-adapter instance
7216  * @req_upiu:	upiu request
7217  * @rsp_upiu:	upiu reply - only 8 DW as we do not support scsi commands
7218  * @msgcode:	message code, one of UPIU Transaction Codes Initiator to Target
7219  * @desc_buff:	pointer to descriptor buffer, NULL if NA
7220  * @buff_len:	descriptor size, 0 if NA
7221  * @desc_op:	descriptor operation
7222  *
7223  * Supports UTP Transfer requests (nop and query), and UTP Task
7224  * Management requests.
7225  * It is up to the caller to fill the upiu conent properly, as it will
7226  * be copied without any further input validations.
7227  *
7228  * Return: 0 upon success; < 0 upon failure.
7229  */
7230 int ufshcd_exec_raw_upiu_cmd(struct ufs_hba *hba,
7231 			     struct utp_upiu_req *req_upiu,
7232 			     struct utp_upiu_req *rsp_upiu,
7233 			     enum upiu_request_transaction msgcode,
7234 			     u8 *desc_buff, int *buff_len,
7235 			     enum query_opcode desc_op)
7236 {
7237 	int err;
7238 	enum dev_cmd_type cmd_type = DEV_CMD_TYPE_QUERY;
7239 	struct utp_task_req_desc treq = { };
7240 	enum utp_ocs ocs_value;
7241 	u8 tm_f = req_upiu->header.tm_function;
7242 
7243 	switch (msgcode) {
7244 	case UPIU_TRANSACTION_NOP_OUT:
7245 		cmd_type = DEV_CMD_TYPE_NOP;
7246 		fallthrough;
7247 	case UPIU_TRANSACTION_QUERY_REQ:
7248 		ufshcd_dev_man_lock(hba);
7249 		err = ufshcd_issue_devman_upiu_cmd(hba, req_upiu, rsp_upiu,
7250 						   desc_buff, buff_len,
7251 						   cmd_type, desc_op);
7252 		ufshcd_dev_man_unlock(hba);
7253 
7254 		break;
7255 	case UPIU_TRANSACTION_TASK_REQ:
7256 		treq.header.interrupt = 1;
7257 		treq.header.ocs = OCS_INVALID_COMMAND_STATUS;
7258 
7259 		memcpy(&treq.upiu_req, req_upiu, sizeof(*req_upiu));
7260 
7261 		err = __ufshcd_issue_tm_cmd(hba, &treq, tm_f);
7262 		if (err == -ETIMEDOUT)
7263 			break;
7264 
7265 		ocs_value = treq.header.ocs & MASK_OCS;
7266 		if (ocs_value != OCS_SUCCESS) {
7267 			dev_err(hba->dev, "%s: failed, ocs = 0x%x\n", __func__,
7268 				ocs_value);
7269 			break;
7270 		}
7271 
7272 		memcpy(rsp_upiu, &treq.upiu_rsp, sizeof(*rsp_upiu));
7273 
7274 		break;
7275 	default:
7276 		err = -EINVAL;
7277 
7278 		break;
7279 	}
7280 
7281 	return err;
7282 }
7283 
7284 /**
7285  * ufshcd_advanced_rpmb_req_handler - handle advanced RPMB request
7286  * @hba:	per adapter instance
7287  * @req_upiu:	upiu request
7288  * @rsp_upiu:	upiu reply
7289  * @req_ehs:	EHS field which contains Advanced RPMB Request Message
7290  * @rsp_ehs:	EHS field which returns Advanced RPMB Response Message
7291  * @sg_cnt:	The number of sg lists actually used
7292  * @sg_list:	Pointer to SG list when DATA IN/OUT UPIU is required in ARPMB operation
7293  * @dir:	DMA direction
7294  *
7295  * Return: zero on success, non-zero on failure.
7296  */
7297 int ufshcd_advanced_rpmb_req_handler(struct ufs_hba *hba, struct utp_upiu_req *req_upiu,
7298 			 struct utp_upiu_req *rsp_upiu, struct ufs_ehs *req_ehs,
7299 			 struct ufs_ehs *rsp_ehs, int sg_cnt, struct scatterlist *sg_list,
7300 			 enum dma_data_direction dir)
7301 {
7302 	const u32 tag = hba->reserved_slot;
7303 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
7304 	int err = 0;
7305 	int result;
7306 	u8 upiu_flags;
7307 	u8 *ehs_data;
7308 	u16 ehs_len;
7309 	int ehs = (hba->capabilities & MASK_EHSLUTRD_SUPPORTED) ? 2 : 0;
7310 
7311 	/* Protects use of hba->reserved_slot. */
7312 	ufshcd_dev_man_lock(hba);
7313 
7314 	ufshcd_setup_dev_cmd(hba, lrbp, DEV_CMD_TYPE_RPMB, UFS_UPIU_RPMB_WLUN, tag);
7315 
7316 	ufshcd_prepare_req_desc_hdr(hba, lrbp, &upiu_flags, DMA_NONE, ehs);
7317 
7318 	/* update the task tag */
7319 	req_upiu->header.task_tag = tag;
7320 
7321 	/* copy the UPIU(contains CDB) request as it is */
7322 	memcpy(lrbp->ucd_req_ptr, req_upiu, sizeof(*lrbp->ucd_req_ptr));
7323 	/* Copy EHS, starting with byte32, immediately after the CDB package */
7324 	memcpy(lrbp->ucd_req_ptr + 1, req_ehs, sizeof(*req_ehs));
7325 
7326 	if (dir != DMA_NONE && sg_list)
7327 		ufshcd_sgl_to_prdt(hba, lrbp, sg_cnt, sg_list);
7328 
7329 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
7330 
7331 	err = ufshcd_issue_dev_cmd(hba, lrbp, tag, ADVANCED_RPMB_REQ_TIMEOUT);
7332 
7333 	if (!err) {
7334 		/* Just copy the upiu response as it is */
7335 		memcpy(rsp_upiu, lrbp->ucd_rsp_ptr, sizeof(*rsp_upiu));
7336 		/* Get the response UPIU result */
7337 		result = (lrbp->ucd_rsp_ptr->header.response << 8) |
7338 			lrbp->ucd_rsp_ptr->header.status;
7339 
7340 		ehs_len = lrbp->ucd_rsp_ptr->header.ehs_length;
7341 		/*
7342 		 * Since the bLength in EHS indicates the total size of the EHS Header and EHS Data
7343 		 * in 32 Byte units, the value of the bLength Request/Response for Advanced RPMB
7344 		 * Message is 02h
7345 		 */
7346 		if (ehs_len == 2 && rsp_ehs) {
7347 			/*
7348 			 * ucd_rsp_ptr points to a buffer with a length of 512 bytes
7349 			 * (ALIGNED_UPIU_SIZE = 512), and the EHS data just starts from byte32
7350 			 */
7351 			ehs_data = (u8 *)lrbp->ucd_rsp_ptr + EHS_OFFSET_IN_RESPONSE;
7352 			memcpy(rsp_ehs, ehs_data, ehs_len * 32);
7353 		}
7354 	}
7355 
7356 	ufshcd_dev_man_unlock(hba);
7357 
7358 	return err ? : result;
7359 }
7360 
7361 /**
7362  * ufshcd_eh_device_reset_handler() - Reset a single logical unit.
7363  * @cmd: SCSI command pointer
7364  *
7365  * Return: SUCCESS or FAILED.
7366  */
7367 static int ufshcd_eh_device_reset_handler(struct scsi_cmnd *cmd)
7368 {
7369 	unsigned long flags, pending_reqs = 0, not_cleared = 0;
7370 	struct Scsi_Host *host;
7371 	struct ufs_hba *hba;
7372 	struct ufs_hw_queue *hwq;
7373 	struct ufshcd_lrb *lrbp;
7374 	u32 pos, not_cleared_mask = 0;
7375 	int err;
7376 	u8 resp = 0xF, lun;
7377 
7378 	host = cmd->device->host;
7379 	hba = shost_priv(host);
7380 
7381 	lun = ufshcd_scsi_to_upiu_lun(cmd->device->lun);
7382 	err = ufshcd_issue_tm_cmd(hba, lun, 0, UFS_LOGICAL_RESET, &resp);
7383 	if (err || resp != UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7384 		if (!err)
7385 			err = resp;
7386 		goto out;
7387 	}
7388 
7389 	if (hba->mcq_enabled) {
7390 		for (pos = 0; pos < hba->nutrs; pos++) {
7391 			lrbp = &hba->lrb[pos];
7392 			if (ufshcd_cmd_inflight(lrbp->cmd) &&
7393 			    lrbp->lun == lun) {
7394 				ufshcd_clear_cmd(hba, pos);
7395 				hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(lrbp->cmd));
7396 				ufshcd_mcq_poll_cqe_lock(hba, hwq);
7397 			}
7398 		}
7399 		err = 0;
7400 		goto out;
7401 	}
7402 
7403 	/* clear the commands that were pending for corresponding LUN */
7404 	spin_lock_irqsave(&hba->outstanding_lock, flags);
7405 	for_each_set_bit(pos, &hba->outstanding_reqs, hba->nutrs)
7406 		if (hba->lrb[pos].lun == lun)
7407 			__set_bit(pos, &pending_reqs);
7408 	hba->outstanding_reqs &= ~pending_reqs;
7409 	spin_unlock_irqrestore(&hba->outstanding_lock, flags);
7410 
7411 	for_each_set_bit(pos, &pending_reqs, hba->nutrs) {
7412 		if (ufshcd_clear_cmd(hba, pos) < 0) {
7413 			spin_lock_irqsave(&hba->outstanding_lock, flags);
7414 			not_cleared = 1U << pos &
7415 				ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
7416 			hba->outstanding_reqs |= not_cleared;
7417 			not_cleared_mask |= not_cleared;
7418 			spin_unlock_irqrestore(&hba->outstanding_lock, flags);
7419 
7420 			dev_err(hba->dev, "%s: failed to clear request %d\n",
7421 				__func__, pos);
7422 		}
7423 	}
7424 	__ufshcd_transfer_req_compl(hba, pending_reqs & ~not_cleared_mask);
7425 
7426 out:
7427 	hba->req_abort_count = 0;
7428 	ufshcd_update_evt_hist(hba, UFS_EVT_DEV_RESET, (u32)err);
7429 	if (!err) {
7430 		err = SUCCESS;
7431 	} else {
7432 		dev_err(hba->dev, "%s: failed with err %d\n", __func__, err);
7433 		err = FAILED;
7434 	}
7435 	return err;
7436 }
7437 
7438 static void ufshcd_set_req_abort_skip(struct ufs_hba *hba, unsigned long bitmap)
7439 {
7440 	struct ufshcd_lrb *lrbp;
7441 	int tag;
7442 
7443 	for_each_set_bit(tag, &bitmap, hba->nutrs) {
7444 		lrbp = &hba->lrb[tag];
7445 		lrbp->req_abort_skip = true;
7446 	}
7447 }
7448 
7449 /**
7450  * ufshcd_try_to_abort_task - abort a specific task
7451  * @hba: Pointer to adapter instance
7452  * @tag: Task tag/index to be aborted
7453  *
7454  * Abort the pending command in device by sending UFS_ABORT_TASK task management
7455  * command, and in host controller by clearing the door-bell register. There can
7456  * be race between controller sending the command to the device while abort is
7457  * issued. To avoid that, first issue UFS_QUERY_TASK to check if the command is
7458  * really issued and then try to abort it.
7459  *
7460  * Return: zero on success, non-zero on failure.
7461  */
7462 int ufshcd_try_to_abort_task(struct ufs_hba *hba, int tag)
7463 {
7464 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
7465 	int err;
7466 	int poll_cnt;
7467 	u8 resp = 0xF;
7468 
7469 	for (poll_cnt = 100; poll_cnt; poll_cnt--) {
7470 		err = ufshcd_issue_tm_cmd(hba, lrbp->lun, lrbp->task_tag,
7471 				UFS_QUERY_TASK, &resp);
7472 		if (!err && resp == UPIU_TASK_MANAGEMENT_FUNC_SUCCEEDED) {
7473 			/* cmd pending in the device */
7474 			dev_err(hba->dev, "%s: cmd pending in the device. tag = %d\n",
7475 				__func__, tag);
7476 			break;
7477 		} else if (!err && resp == UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7478 			/*
7479 			 * cmd not pending in the device, check if it is
7480 			 * in transition.
7481 			 */
7482 			dev_info(
7483 				hba->dev,
7484 				"%s: cmd with tag %d not pending in the device.\n",
7485 				__func__, tag);
7486 			if (!ufshcd_cmd_inflight(lrbp->cmd)) {
7487 				dev_info(hba->dev,
7488 					 "%s: cmd with tag=%d completed.\n",
7489 					 __func__, tag);
7490 				return 0;
7491 			}
7492 			usleep_range(100, 200);
7493 		} else {
7494 			dev_err(hba->dev,
7495 				"%s: no response from device. tag = %d, err %d\n",
7496 				__func__, tag, err);
7497 			return err ? : resp;
7498 		}
7499 	}
7500 
7501 	if (!poll_cnt)
7502 		return -EBUSY;
7503 
7504 	err = ufshcd_issue_tm_cmd(hba, lrbp->lun, lrbp->task_tag,
7505 			UFS_ABORT_TASK, &resp);
7506 	if (err || resp != UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7507 		if (!err) {
7508 			err = resp; /* service response error */
7509 			dev_err(hba->dev, "%s: issued. tag = %d, err %d\n",
7510 				__func__, tag, err);
7511 		}
7512 		return err;
7513 	}
7514 
7515 	err = ufshcd_clear_cmd(hba, tag);
7516 	if (err)
7517 		dev_err(hba->dev, "%s: Failed clearing cmd at tag %d, err %d\n",
7518 			__func__, tag, err);
7519 
7520 	return err;
7521 }
7522 
7523 /**
7524  * ufshcd_abort - scsi host template eh_abort_handler callback
7525  * @cmd: SCSI command pointer
7526  *
7527  * Return: SUCCESS or FAILED.
7528  */
7529 static int ufshcd_abort(struct scsi_cmnd *cmd)
7530 {
7531 	struct Scsi_Host *host = cmd->device->host;
7532 	struct ufs_hba *hba = shost_priv(host);
7533 	int tag = scsi_cmd_to_rq(cmd)->tag;
7534 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
7535 	unsigned long flags;
7536 	int err = FAILED;
7537 	bool outstanding;
7538 	u32 reg;
7539 
7540 	ufshcd_hold(hba);
7541 
7542 	if (!hba->mcq_enabled) {
7543 		reg = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
7544 		if (!test_bit(tag, &hba->outstanding_reqs)) {
7545 			/* If command is already aborted/completed, return FAILED. */
7546 			dev_err(hba->dev,
7547 				"%s: cmd at tag %d already completed, outstanding=0x%lx, doorbell=0x%x\n",
7548 				__func__, tag, hba->outstanding_reqs, reg);
7549 			goto release;
7550 		}
7551 	}
7552 
7553 	/* Print Transfer Request of aborted task */
7554 	dev_info(hba->dev, "%s: Device abort task at tag %d\n", __func__, tag);
7555 
7556 	/*
7557 	 * Print detailed info about aborted request.
7558 	 * As more than one request might get aborted at the same time,
7559 	 * print full information only for the first aborted request in order
7560 	 * to reduce repeated printouts. For other aborted requests only print
7561 	 * basic details.
7562 	 */
7563 	scsi_print_command(cmd);
7564 	if (!hba->req_abort_count) {
7565 		ufshcd_update_evt_hist(hba, UFS_EVT_ABORT, tag);
7566 		ufshcd_print_evt_hist(hba);
7567 		ufshcd_print_host_state(hba);
7568 		ufshcd_print_pwr_info(hba);
7569 		ufshcd_print_tr(hba, tag, true);
7570 	} else {
7571 		ufshcd_print_tr(hba, tag, false);
7572 	}
7573 	hba->req_abort_count++;
7574 
7575 	if (!hba->mcq_enabled && !(reg & (1 << tag))) {
7576 		/* only execute this code in single doorbell mode */
7577 		dev_err(hba->dev,
7578 		"%s: cmd was completed, but without a notifying intr, tag = %d",
7579 		__func__, tag);
7580 		__ufshcd_transfer_req_compl(hba, 1UL << tag);
7581 		goto release;
7582 	}
7583 
7584 	/*
7585 	 * Task abort to the device W-LUN is illegal. When this command
7586 	 * will fail, due to spec violation, scsi err handling next step
7587 	 * will be to send LU reset which, again, is a spec violation.
7588 	 * To avoid these unnecessary/illegal steps, first we clean up
7589 	 * the lrb taken by this cmd and re-set it in outstanding_reqs,
7590 	 * then queue the eh_work and bail.
7591 	 */
7592 	if (lrbp->lun == UFS_UPIU_UFS_DEVICE_WLUN) {
7593 		ufshcd_update_evt_hist(hba, UFS_EVT_ABORT, lrbp->lun);
7594 
7595 		spin_lock_irqsave(host->host_lock, flags);
7596 		hba->force_reset = true;
7597 		ufshcd_schedule_eh_work(hba);
7598 		spin_unlock_irqrestore(host->host_lock, flags);
7599 		goto release;
7600 	}
7601 
7602 	if (hba->mcq_enabled) {
7603 		/* MCQ mode. Branch off to handle abort for mcq mode */
7604 		err = ufshcd_mcq_abort(cmd);
7605 		goto release;
7606 	}
7607 
7608 	/* Skip task abort in case previous aborts failed and report failure */
7609 	if (lrbp->req_abort_skip) {
7610 		dev_err(hba->dev, "%s: skipping abort\n", __func__);
7611 		ufshcd_set_req_abort_skip(hba, hba->outstanding_reqs);
7612 		goto release;
7613 	}
7614 
7615 	err = ufshcd_try_to_abort_task(hba, tag);
7616 	if (err) {
7617 		dev_err(hba->dev, "%s: failed with err %d\n", __func__, err);
7618 		ufshcd_set_req_abort_skip(hba, hba->outstanding_reqs);
7619 		err = FAILED;
7620 		goto release;
7621 	}
7622 
7623 	/*
7624 	 * Clear the corresponding bit from outstanding_reqs since the command
7625 	 * has been aborted successfully.
7626 	 */
7627 	spin_lock_irqsave(&hba->outstanding_lock, flags);
7628 	outstanding = __test_and_clear_bit(tag, &hba->outstanding_reqs);
7629 	spin_unlock_irqrestore(&hba->outstanding_lock, flags);
7630 
7631 	if (outstanding)
7632 		ufshcd_release_scsi_cmd(hba, lrbp);
7633 
7634 	err = SUCCESS;
7635 
7636 release:
7637 	/* Matches the ufshcd_hold() call at the start of this function. */
7638 	ufshcd_release(hba);
7639 	return err;
7640 }
7641 
7642 /**
7643  * ufshcd_process_probe_result - Process the ufshcd_probe_hba() result.
7644  * @hba: UFS host controller instance.
7645  * @probe_start: time when the ufshcd_probe_hba() call started.
7646  * @ret: ufshcd_probe_hba() return value.
7647  */
7648 static void ufshcd_process_probe_result(struct ufs_hba *hba,
7649 					ktime_t probe_start, int ret)
7650 {
7651 	unsigned long flags;
7652 
7653 	spin_lock_irqsave(hba->host->host_lock, flags);
7654 	if (ret)
7655 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
7656 	else if (hba->ufshcd_state == UFSHCD_STATE_RESET)
7657 		hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
7658 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7659 
7660 	trace_ufshcd_init(dev_name(hba->dev), ret,
7661 			  ktime_to_us(ktime_sub(ktime_get(), probe_start)),
7662 			  hba->curr_dev_pwr_mode, hba->uic_link_state);
7663 }
7664 
7665 /**
7666  * ufshcd_host_reset_and_restore - reset and restore host controller
7667  * @hba: per-adapter instance
7668  *
7669  * Note that host controller reset may issue DME_RESET to
7670  * local and remote (device) Uni-Pro stack and the attributes
7671  * are reset to default state.
7672  *
7673  * Return: zero on success, non-zero on failure.
7674  */
7675 static int ufshcd_host_reset_and_restore(struct ufs_hba *hba)
7676 {
7677 	int err;
7678 
7679 	/*
7680 	 * Stop the host controller and complete the requests
7681 	 * cleared by h/w
7682 	 */
7683 	ufshcd_hba_stop(hba);
7684 	hba->silence_err_logs = true;
7685 	ufshcd_complete_requests(hba, true);
7686 	hba->silence_err_logs = false;
7687 
7688 	/* scale up clocks to max frequency before full reinitialization */
7689 	ufshcd_scale_clks(hba, ULONG_MAX, true);
7690 
7691 	err = ufshcd_hba_enable(hba);
7692 
7693 	/* Establish the link again and restore the device */
7694 	if (!err) {
7695 		ktime_t probe_start = ktime_get();
7696 
7697 		err = ufshcd_device_init(hba, /*init_dev_params=*/false);
7698 		if (!err)
7699 			err = ufshcd_probe_hba(hba, false);
7700 		ufshcd_process_probe_result(hba, probe_start, err);
7701 	}
7702 
7703 	if (err)
7704 		dev_err(hba->dev, "%s: Host init failed %d\n", __func__, err);
7705 	ufshcd_update_evt_hist(hba, UFS_EVT_HOST_RESET, (u32)err);
7706 	return err;
7707 }
7708 
7709 /**
7710  * ufshcd_reset_and_restore - reset and re-initialize host/device
7711  * @hba: per-adapter instance
7712  *
7713  * Reset and recover device, host and re-establish link. This
7714  * is helpful to recover the communication in fatal error conditions.
7715  *
7716  * Return: zero on success, non-zero on failure.
7717  */
7718 static int ufshcd_reset_and_restore(struct ufs_hba *hba)
7719 {
7720 	u32 saved_err = 0;
7721 	u32 saved_uic_err = 0;
7722 	int err = 0;
7723 	unsigned long flags;
7724 	int retries = MAX_HOST_RESET_RETRIES;
7725 
7726 	spin_lock_irqsave(hba->host->host_lock, flags);
7727 	do {
7728 		/*
7729 		 * This is a fresh start, cache and clear saved error first,
7730 		 * in case new error generated during reset and restore.
7731 		 */
7732 		saved_err |= hba->saved_err;
7733 		saved_uic_err |= hba->saved_uic_err;
7734 		hba->saved_err = 0;
7735 		hba->saved_uic_err = 0;
7736 		hba->force_reset = false;
7737 		hba->ufshcd_state = UFSHCD_STATE_RESET;
7738 		spin_unlock_irqrestore(hba->host->host_lock, flags);
7739 
7740 		/* Reset the attached device */
7741 		ufshcd_device_reset(hba);
7742 
7743 		err = ufshcd_host_reset_and_restore(hba);
7744 
7745 		spin_lock_irqsave(hba->host->host_lock, flags);
7746 		if (err)
7747 			continue;
7748 		/* Do not exit unless operational or dead */
7749 		if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL &&
7750 		    hba->ufshcd_state != UFSHCD_STATE_ERROR &&
7751 		    hba->ufshcd_state != UFSHCD_STATE_EH_SCHEDULED_NON_FATAL)
7752 			err = -EAGAIN;
7753 	} while (err && --retries);
7754 
7755 	/*
7756 	 * Inform scsi mid-layer that we did reset and allow to handle
7757 	 * Unit Attention properly.
7758 	 */
7759 	scsi_report_bus_reset(hba->host, 0);
7760 	if (err) {
7761 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
7762 		hba->saved_err |= saved_err;
7763 		hba->saved_uic_err |= saved_uic_err;
7764 	}
7765 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7766 
7767 	return err;
7768 }
7769 
7770 /**
7771  * ufshcd_eh_host_reset_handler - host reset handler registered to scsi layer
7772  * @cmd: SCSI command pointer
7773  *
7774  * Return: SUCCESS or FAILED.
7775  */
7776 static int ufshcd_eh_host_reset_handler(struct scsi_cmnd *cmd)
7777 {
7778 	int err = SUCCESS;
7779 	unsigned long flags;
7780 	struct ufs_hba *hba;
7781 
7782 	hba = shost_priv(cmd->device->host);
7783 
7784 	/*
7785 	 * If runtime PM sent SSU and got a timeout, scsi_error_handler is
7786 	 * stuck in this function waiting for flush_work(&hba->eh_work). And
7787 	 * ufshcd_err_handler(eh_work) is stuck waiting for runtime PM. Do
7788 	 * ufshcd_link_recovery instead of eh_work to prevent deadlock.
7789 	 */
7790 	if (hba->pm_op_in_progress) {
7791 		if (ufshcd_link_recovery(hba))
7792 			err = FAILED;
7793 
7794 		return err;
7795 	}
7796 
7797 	spin_lock_irqsave(hba->host->host_lock, flags);
7798 	hba->force_reset = true;
7799 	ufshcd_schedule_eh_work(hba);
7800 	dev_err(hba->dev, "%s: reset in progress - 1\n", __func__);
7801 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7802 
7803 	flush_work(&hba->eh_work);
7804 
7805 	spin_lock_irqsave(hba->host->host_lock, flags);
7806 	if (hba->ufshcd_state == UFSHCD_STATE_ERROR)
7807 		err = FAILED;
7808 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7809 
7810 	return err;
7811 }
7812 
7813 /**
7814  * ufshcd_get_max_icc_level - calculate the ICC level
7815  * @sup_curr_uA: max. current supported by the regulator
7816  * @start_scan: row at the desc table to start scan from
7817  * @buff: power descriptor buffer
7818  *
7819  * Return: calculated max ICC level for specific regulator.
7820  */
7821 static u32 ufshcd_get_max_icc_level(int sup_curr_uA, u32 start_scan,
7822 				    const char *buff)
7823 {
7824 	int i;
7825 	int curr_uA;
7826 	u16 data;
7827 	u16 unit;
7828 
7829 	for (i = start_scan; i >= 0; i--) {
7830 		data = get_unaligned_be16(&buff[2 * i]);
7831 		unit = (data & ATTR_ICC_LVL_UNIT_MASK) >>
7832 						ATTR_ICC_LVL_UNIT_OFFSET;
7833 		curr_uA = data & ATTR_ICC_LVL_VALUE_MASK;
7834 		switch (unit) {
7835 		case UFSHCD_NANO_AMP:
7836 			curr_uA = curr_uA / 1000;
7837 			break;
7838 		case UFSHCD_MILI_AMP:
7839 			curr_uA = curr_uA * 1000;
7840 			break;
7841 		case UFSHCD_AMP:
7842 			curr_uA = curr_uA * 1000 * 1000;
7843 			break;
7844 		case UFSHCD_MICRO_AMP:
7845 		default:
7846 			break;
7847 		}
7848 		if (sup_curr_uA >= curr_uA)
7849 			break;
7850 	}
7851 	if (i < 0) {
7852 		i = 0;
7853 		pr_err("%s: Couldn't find valid icc_level = %d", __func__, i);
7854 	}
7855 
7856 	return (u32)i;
7857 }
7858 
7859 /**
7860  * ufshcd_find_max_sup_active_icc_level - calculate the max ICC level
7861  * In case regulators are not initialized we'll return 0
7862  * @hba: per-adapter instance
7863  * @desc_buf: power descriptor buffer to extract ICC levels from.
7864  *
7865  * Return: calculated ICC level.
7866  */
7867 static u32 ufshcd_find_max_sup_active_icc_level(struct ufs_hba *hba,
7868 						const u8 *desc_buf)
7869 {
7870 	u32 icc_level = 0;
7871 
7872 	if (!hba->vreg_info.vcc || !hba->vreg_info.vccq ||
7873 						!hba->vreg_info.vccq2) {
7874 		/*
7875 		 * Using dev_dbg to avoid messages during runtime PM to avoid
7876 		 * never-ending cycles of messages written back to storage by
7877 		 * user space causing runtime resume, causing more messages and
7878 		 * so on.
7879 		 */
7880 		dev_dbg(hba->dev,
7881 			"%s: Regulator capability was not set, actvIccLevel=%d",
7882 							__func__, icc_level);
7883 		goto out;
7884 	}
7885 
7886 	if (hba->vreg_info.vcc->max_uA)
7887 		icc_level = ufshcd_get_max_icc_level(
7888 				hba->vreg_info.vcc->max_uA,
7889 				POWER_DESC_MAX_ACTV_ICC_LVLS - 1,
7890 				&desc_buf[PWR_DESC_ACTIVE_LVLS_VCC_0]);
7891 
7892 	if (hba->vreg_info.vccq->max_uA)
7893 		icc_level = ufshcd_get_max_icc_level(
7894 				hba->vreg_info.vccq->max_uA,
7895 				icc_level,
7896 				&desc_buf[PWR_DESC_ACTIVE_LVLS_VCCQ_0]);
7897 
7898 	if (hba->vreg_info.vccq2->max_uA)
7899 		icc_level = ufshcd_get_max_icc_level(
7900 				hba->vreg_info.vccq2->max_uA,
7901 				icc_level,
7902 				&desc_buf[PWR_DESC_ACTIVE_LVLS_VCCQ2_0]);
7903 out:
7904 	return icc_level;
7905 }
7906 
7907 static void ufshcd_set_active_icc_lvl(struct ufs_hba *hba)
7908 {
7909 	int ret;
7910 	u8 *desc_buf;
7911 	u32 icc_level;
7912 
7913 	desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
7914 	if (!desc_buf)
7915 		return;
7916 
7917 	ret = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_POWER, 0, 0,
7918 				     desc_buf, QUERY_DESC_MAX_SIZE);
7919 	if (ret) {
7920 		dev_err(hba->dev,
7921 			"%s: Failed reading power descriptor ret = %d",
7922 			__func__, ret);
7923 		goto out;
7924 	}
7925 
7926 	icc_level = ufshcd_find_max_sup_active_icc_level(hba, desc_buf);
7927 	dev_dbg(hba->dev, "%s: setting icc_level 0x%x", __func__, icc_level);
7928 
7929 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
7930 		QUERY_ATTR_IDN_ACTIVE_ICC_LVL, 0, 0, &icc_level);
7931 
7932 	if (ret)
7933 		dev_err(hba->dev,
7934 			"%s: Failed configuring bActiveICCLevel = %d ret = %d",
7935 			__func__, icc_level, ret);
7936 
7937 out:
7938 	kfree(desc_buf);
7939 }
7940 
7941 static inline void ufshcd_blk_pm_runtime_init(struct scsi_device *sdev)
7942 {
7943 	struct Scsi_Host *shost = sdev->host;
7944 
7945 	scsi_autopm_get_device(sdev);
7946 	blk_pm_runtime_init(sdev->request_queue, &sdev->sdev_gendev);
7947 	if (sdev->rpm_autosuspend)
7948 		pm_runtime_set_autosuspend_delay(&sdev->sdev_gendev,
7949 						 shost->rpm_autosuspend_delay);
7950 	scsi_autopm_put_device(sdev);
7951 }
7952 
7953 /**
7954  * ufshcd_scsi_add_wlus - Adds required W-LUs
7955  * @hba: per-adapter instance
7956  *
7957  * UFS device specification requires the UFS devices to support 4 well known
7958  * logical units:
7959  *	"REPORT_LUNS" (address: 01h)
7960  *	"UFS Device" (address: 50h)
7961  *	"RPMB" (address: 44h)
7962  *	"BOOT" (address: 30h)
7963  * UFS device's power management needs to be controlled by "POWER CONDITION"
7964  * field of SSU (START STOP UNIT) command. But this "power condition" field
7965  * will take effect only when its sent to "UFS device" well known logical unit
7966  * hence we require the scsi_device instance to represent this logical unit in
7967  * order for the UFS host driver to send the SSU command for power management.
7968  *
7969  * We also require the scsi_device instance for "RPMB" (Replay Protected Memory
7970  * Block) LU so user space process can control this LU. User space may also
7971  * want to have access to BOOT LU.
7972  *
7973  * This function adds scsi device instances for each of all well known LUs
7974  * (except "REPORT LUNS" LU).
7975  *
7976  * Return: zero on success (all required W-LUs are added successfully),
7977  * non-zero error value on failure (if failed to add any of the required W-LU).
7978  */
7979 static int ufshcd_scsi_add_wlus(struct ufs_hba *hba)
7980 {
7981 	int ret = 0;
7982 	struct scsi_device *sdev_boot, *sdev_rpmb;
7983 
7984 	hba->ufs_device_wlun = __scsi_add_device(hba->host, 0, 0,
7985 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_UFS_DEVICE_WLUN), NULL);
7986 	if (IS_ERR(hba->ufs_device_wlun)) {
7987 		ret = PTR_ERR(hba->ufs_device_wlun);
7988 		hba->ufs_device_wlun = NULL;
7989 		goto out;
7990 	}
7991 	scsi_device_put(hba->ufs_device_wlun);
7992 
7993 	sdev_rpmb = __scsi_add_device(hba->host, 0, 0,
7994 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_RPMB_WLUN), NULL);
7995 	if (IS_ERR(sdev_rpmb)) {
7996 		ret = PTR_ERR(sdev_rpmb);
7997 		goto remove_ufs_device_wlun;
7998 	}
7999 	ufshcd_blk_pm_runtime_init(sdev_rpmb);
8000 	scsi_device_put(sdev_rpmb);
8001 
8002 	sdev_boot = __scsi_add_device(hba->host, 0, 0,
8003 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_BOOT_WLUN), NULL);
8004 	if (IS_ERR(sdev_boot)) {
8005 		dev_err(hba->dev, "%s: BOOT WLUN not found\n", __func__);
8006 	} else {
8007 		ufshcd_blk_pm_runtime_init(sdev_boot);
8008 		scsi_device_put(sdev_boot);
8009 	}
8010 	goto out;
8011 
8012 remove_ufs_device_wlun:
8013 	scsi_remove_device(hba->ufs_device_wlun);
8014 out:
8015 	return ret;
8016 }
8017 
8018 static void ufshcd_wb_probe(struct ufs_hba *hba, const u8 *desc_buf)
8019 {
8020 	struct ufs_dev_info *dev_info = &hba->dev_info;
8021 	u8 lun;
8022 	u32 d_lu_wb_buf_alloc;
8023 	u32 ext_ufs_feature;
8024 
8025 	if (!ufshcd_is_wb_allowed(hba))
8026 		return;
8027 
8028 	/*
8029 	 * Probe WB only for UFS-2.2 and UFS-3.1 (and later) devices or
8030 	 * UFS devices with quirk UFS_DEVICE_QUIRK_SUPPORT_EXTENDED_FEATURES
8031 	 * enabled
8032 	 */
8033 	if (!(dev_info->wspecversion >= 0x310 ||
8034 	      dev_info->wspecversion == 0x220 ||
8035 	     (hba->dev_quirks & UFS_DEVICE_QUIRK_SUPPORT_EXTENDED_FEATURES)))
8036 		goto wb_disabled;
8037 
8038 	ext_ufs_feature = get_unaligned_be32(desc_buf +
8039 					DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
8040 
8041 	if (!(ext_ufs_feature & UFS_DEV_WRITE_BOOSTER_SUP))
8042 		goto wb_disabled;
8043 
8044 	/*
8045 	 * WB may be supported but not configured while provisioning. The spec
8046 	 * says, in dedicated wb buffer mode, a max of 1 lun would have wb
8047 	 * buffer configured.
8048 	 */
8049 	dev_info->wb_buffer_type = desc_buf[DEVICE_DESC_PARAM_WB_TYPE];
8050 
8051 	dev_info->b_presrv_uspc_en =
8052 		desc_buf[DEVICE_DESC_PARAM_WB_PRESRV_USRSPC_EN];
8053 
8054 	if (dev_info->wb_buffer_type == WB_BUF_MODE_SHARED) {
8055 		if (!get_unaligned_be32(desc_buf +
8056 				   DEVICE_DESC_PARAM_WB_SHARED_ALLOC_UNITS))
8057 			goto wb_disabled;
8058 	} else {
8059 		for (lun = 0; lun < UFS_UPIU_MAX_WB_LUN_ID; lun++) {
8060 			d_lu_wb_buf_alloc = 0;
8061 			ufshcd_read_unit_desc_param(hba,
8062 					lun,
8063 					UNIT_DESC_PARAM_WB_BUF_ALLOC_UNITS,
8064 					(u8 *)&d_lu_wb_buf_alloc,
8065 					sizeof(d_lu_wb_buf_alloc));
8066 			if (d_lu_wb_buf_alloc) {
8067 				dev_info->wb_dedicated_lu = lun;
8068 				break;
8069 			}
8070 		}
8071 
8072 		if (!d_lu_wb_buf_alloc)
8073 			goto wb_disabled;
8074 	}
8075 
8076 	if (!ufshcd_is_wb_buf_lifetime_available(hba))
8077 		goto wb_disabled;
8078 
8079 	return;
8080 
8081 wb_disabled:
8082 	hba->caps &= ~UFSHCD_CAP_WB_EN;
8083 }
8084 
8085 static void ufshcd_temp_notif_probe(struct ufs_hba *hba, const u8 *desc_buf)
8086 {
8087 	struct ufs_dev_info *dev_info = &hba->dev_info;
8088 	u32 ext_ufs_feature;
8089 	u8 mask = 0;
8090 
8091 	if (!(hba->caps & UFSHCD_CAP_TEMP_NOTIF) || dev_info->wspecversion < 0x300)
8092 		return;
8093 
8094 	ext_ufs_feature = get_unaligned_be32(desc_buf + DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
8095 
8096 	if (ext_ufs_feature & UFS_DEV_LOW_TEMP_NOTIF)
8097 		mask |= MASK_EE_TOO_LOW_TEMP;
8098 
8099 	if (ext_ufs_feature & UFS_DEV_HIGH_TEMP_NOTIF)
8100 		mask |= MASK_EE_TOO_HIGH_TEMP;
8101 
8102 	if (mask) {
8103 		ufshcd_enable_ee(hba, mask);
8104 		ufs_hwmon_probe(hba, mask);
8105 	}
8106 }
8107 
8108 static void ufshcd_ext_iid_probe(struct ufs_hba *hba, u8 *desc_buf)
8109 {
8110 	struct ufs_dev_info *dev_info = &hba->dev_info;
8111 	u32 ext_ufs_feature;
8112 	u32 ext_iid_en = 0;
8113 	int err;
8114 
8115 	/* Only UFS-4.0 and above may support EXT_IID */
8116 	if (dev_info->wspecversion < 0x400)
8117 		goto out;
8118 
8119 	ext_ufs_feature = get_unaligned_be32(desc_buf +
8120 				     DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
8121 	if (!(ext_ufs_feature & UFS_DEV_EXT_IID_SUP))
8122 		goto out;
8123 
8124 	err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
8125 				      QUERY_ATTR_IDN_EXT_IID_EN, 0, 0, &ext_iid_en);
8126 	if (err)
8127 		dev_err(hba->dev, "failed reading bEXTIIDEn. err = %d\n", err);
8128 
8129 out:
8130 	dev_info->b_ext_iid_en = ext_iid_en;
8131 }
8132 
8133 static void ufshcd_set_rtt(struct ufs_hba *hba)
8134 {
8135 	struct ufs_dev_info *dev_info = &hba->dev_info;
8136 	u32 rtt = 0;
8137 	u32 dev_rtt = 0;
8138 	int host_rtt_cap = hba->vops && hba->vops->max_num_rtt ?
8139 			   hba->vops->max_num_rtt : hba->nortt;
8140 
8141 	/* RTT override makes sense only for UFS-4.0 and above */
8142 	if (dev_info->wspecversion < 0x400)
8143 		return;
8144 
8145 	if (ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
8146 				    QUERY_ATTR_IDN_MAX_NUM_OF_RTT, 0, 0, &dev_rtt)) {
8147 		dev_err(hba->dev, "failed reading bMaxNumOfRTT\n");
8148 		return;
8149 	}
8150 
8151 	/* do not override if it was already written */
8152 	if (dev_rtt != DEFAULT_MAX_NUM_RTT)
8153 		return;
8154 
8155 	rtt = min_t(int, dev_info->rtt_cap, host_rtt_cap);
8156 
8157 	if (rtt == dev_rtt)
8158 		return;
8159 
8160 	if (ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
8161 				    QUERY_ATTR_IDN_MAX_NUM_OF_RTT, 0, 0, &rtt))
8162 		dev_err(hba->dev, "failed writing bMaxNumOfRTT\n");
8163 }
8164 
8165 void ufshcd_fixup_dev_quirks(struct ufs_hba *hba,
8166 			     const struct ufs_dev_quirk *fixups)
8167 {
8168 	const struct ufs_dev_quirk *f;
8169 	struct ufs_dev_info *dev_info = &hba->dev_info;
8170 
8171 	if (!fixups)
8172 		return;
8173 
8174 	for (f = fixups; f->quirk; f++) {
8175 		if ((f->wmanufacturerid == dev_info->wmanufacturerid ||
8176 		     f->wmanufacturerid == UFS_ANY_VENDOR) &&
8177 		     ((dev_info->model &&
8178 		       STR_PRFX_EQUAL(f->model, dev_info->model)) ||
8179 		      !strcmp(f->model, UFS_ANY_MODEL)))
8180 			hba->dev_quirks |= f->quirk;
8181 	}
8182 }
8183 EXPORT_SYMBOL_GPL(ufshcd_fixup_dev_quirks);
8184 
8185 static void ufs_fixup_device_setup(struct ufs_hba *hba)
8186 {
8187 	/* fix by general quirk table */
8188 	ufshcd_fixup_dev_quirks(hba, ufs_fixups);
8189 
8190 	/* allow vendors to fix quirks */
8191 	ufshcd_vops_fixup_dev_quirks(hba);
8192 }
8193 
8194 static void ufshcd_update_rtc(struct ufs_hba *hba)
8195 {
8196 	struct timespec64 ts64;
8197 	int err;
8198 	u32 val;
8199 
8200 	ktime_get_real_ts64(&ts64);
8201 
8202 	if (ts64.tv_sec < hba->dev_info.rtc_time_baseline) {
8203 		dev_warn_once(hba->dev, "%s: Current time precedes previous setting!\n", __func__);
8204 		return;
8205 	}
8206 
8207 	/*
8208 	 * The Absolute RTC mode has a 136-year limit, spanning from 2010 to 2146. If a time beyond
8209 	 * 2146 is required, it is recommended to choose the relative RTC mode.
8210 	 */
8211 	val = ts64.tv_sec - hba->dev_info.rtc_time_baseline;
8212 
8213 	/* Skip update RTC if RPM state is not RPM_ACTIVE */
8214 	if (ufshcd_rpm_get_if_active(hba) <= 0)
8215 		return;
8216 
8217 	err = ufshcd_query_attr(hba, UPIU_QUERY_OPCODE_WRITE_ATTR, QUERY_ATTR_IDN_SECONDS_PASSED,
8218 				0, 0, &val);
8219 	ufshcd_rpm_put_sync(hba);
8220 
8221 	if (err)
8222 		dev_err(hba->dev, "%s: Failed to update rtc %d\n", __func__, err);
8223 	else if (hba->dev_info.rtc_type == UFS_RTC_RELATIVE)
8224 		hba->dev_info.rtc_time_baseline = ts64.tv_sec;
8225 }
8226 
8227 static void ufshcd_rtc_work(struct work_struct *work)
8228 {
8229 	struct ufs_hba *hba;
8230 
8231 	hba = container_of(to_delayed_work(work), struct ufs_hba, ufs_rtc_update_work);
8232 
8233 	 /* Update RTC only when there are no requests in progress and UFSHCI is operational */
8234 	if (!ufshcd_is_ufs_dev_busy(hba) && hba->ufshcd_state == UFSHCD_STATE_OPERATIONAL)
8235 		ufshcd_update_rtc(hba);
8236 
8237 	if (ufshcd_is_ufs_dev_active(hba) && hba->dev_info.rtc_update_period)
8238 		schedule_delayed_work(&hba->ufs_rtc_update_work,
8239 				      msecs_to_jiffies(hba->dev_info.rtc_update_period));
8240 }
8241 
8242 static void ufs_init_rtc(struct ufs_hba *hba, u8 *desc_buf)
8243 {
8244 	u16 periodic_rtc_update = get_unaligned_be16(&desc_buf[DEVICE_DESC_PARAM_FRQ_RTC]);
8245 	struct ufs_dev_info *dev_info = &hba->dev_info;
8246 
8247 	if (periodic_rtc_update & UFS_RTC_TIME_BASELINE) {
8248 		dev_info->rtc_type = UFS_RTC_ABSOLUTE;
8249 
8250 		/*
8251 		 * The concept of measuring time in Linux as the number of seconds elapsed since
8252 		 * 00:00:00 UTC on January 1, 1970, and UFS ABS RTC is elapsed from January 1st
8253 		 * 2010 00:00, here we need to adjust ABS baseline.
8254 		 */
8255 		dev_info->rtc_time_baseline = mktime64(2010, 1, 1, 0, 0, 0) -
8256 							mktime64(1970, 1, 1, 0, 0, 0);
8257 	} else {
8258 		dev_info->rtc_type = UFS_RTC_RELATIVE;
8259 		dev_info->rtc_time_baseline = 0;
8260 	}
8261 
8262 	/*
8263 	 * We ignore TIME_PERIOD defined in wPeriodicRTCUpdate because Spec does not clearly state
8264 	 * how to calculate the specific update period for each time unit. And we disable periodic
8265 	 * RTC update work, let user configure by sysfs node according to specific circumstance.
8266 	 */
8267 	dev_info->rtc_update_period = 0;
8268 }
8269 
8270 static int ufs_get_device_desc(struct ufs_hba *hba)
8271 {
8272 	int err;
8273 	u8 model_index;
8274 	u8 *desc_buf;
8275 	struct ufs_dev_info *dev_info = &hba->dev_info;
8276 
8277 	desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
8278 	if (!desc_buf) {
8279 		err = -ENOMEM;
8280 		goto out;
8281 	}
8282 
8283 	err = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_DEVICE, 0, 0, desc_buf,
8284 				     QUERY_DESC_MAX_SIZE);
8285 	if (err) {
8286 		dev_err(hba->dev, "%s: Failed reading Device Desc. err = %d\n",
8287 			__func__, err);
8288 		goto out;
8289 	}
8290 
8291 	/*
8292 	 * getting vendor (manufacturerID) and Bank Index in big endian
8293 	 * format
8294 	 */
8295 	dev_info->wmanufacturerid = desc_buf[DEVICE_DESC_PARAM_MANF_ID] << 8 |
8296 				     desc_buf[DEVICE_DESC_PARAM_MANF_ID + 1];
8297 
8298 	/* getting Specification Version in big endian format */
8299 	dev_info->wspecversion = desc_buf[DEVICE_DESC_PARAM_SPEC_VER] << 8 |
8300 				      desc_buf[DEVICE_DESC_PARAM_SPEC_VER + 1];
8301 	dev_info->bqueuedepth = desc_buf[DEVICE_DESC_PARAM_Q_DPTH];
8302 
8303 	dev_info->rtt_cap = desc_buf[DEVICE_DESC_PARAM_RTT_CAP];
8304 
8305 	model_index = desc_buf[DEVICE_DESC_PARAM_PRDCT_NAME];
8306 
8307 	err = ufshcd_read_string_desc(hba, model_index,
8308 				      &dev_info->model, SD_ASCII_STD);
8309 	if (err < 0) {
8310 		dev_err(hba->dev, "%s: Failed reading Product Name. err = %d\n",
8311 			__func__, err);
8312 		goto out;
8313 	}
8314 
8315 	hba->luns_avail = desc_buf[DEVICE_DESC_PARAM_NUM_LU] +
8316 		desc_buf[DEVICE_DESC_PARAM_NUM_WLU];
8317 
8318 	ufs_fixup_device_setup(hba);
8319 
8320 	ufshcd_wb_probe(hba, desc_buf);
8321 
8322 	ufshcd_temp_notif_probe(hba, desc_buf);
8323 
8324 	ufs_init_rtc(hba, desc_buf);
8325 
8326 	if (hba->ext_iid_sup)
8327 		ufshcd_ext_iid_probe(hba, desc_buf);
8328 
8329 	/*
8330 	 * ufshcd_read_string_desc returns size of the string
8331 	 * reset the error value
8332 	 */
8333 	err = 0;
8334 
8335 out:
8336 	kfree(desc_buf);
8337 	return err;
8338 }
8339 
8340 static void ufs_put_device_desc(struct ufs_hba *hba)
8341 {
8342 	struct ufs_dev_info *dev_info = &hba->dev_info;
8343 
8344 	kfree(dev_info->model);
8345 	dev_info->model = NULL;
8346 }
8347 
8348 /**
8349  * ufshcd_quirk_tune_host_pa_tactivate - Ensures that host PA_TACTIVATE is
8350  * less than device PA_TACTIVATE time.
8351  * @hba: per-adapter instance
8352  *
8353  * Some UFS devices require host PA_TACTIVATE to be lower than device
8354  * PA_TACTIVATE, we need to enable UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE quirk
8355  * for such devices.
8356  *
8357  * Return: zero on success, non-zero error value on failure.
8358  */
8359 static int ufshcd_quirk_tune_host_pa_tactivate(struct ufs_hba *hba)
8360 {
8361 	int ret = 0;
8362 	u32 granularity, peer_granularity;
8363 	u32 pa_tactivate, peer_pa_tactivate;
8364 	u32 pa_tactivate_us, peer_pa_tactivate_us;
8365 	static const u8 gran_to_us_table[] = {1, 4, 8, 16, 32, 100};
8366 
8367 	ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_GRANULARITY),
8368 				  &granularity);
8369 	if (ret)
8370 		goto out;
8371 
8372 	ret = ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_GRANULARITY),
8373 				  &peer_granularity);
8374 	if (ret)
8375 		goto out;
8376 
8377 	if ((granularity < PA_GRANULARITY_MIN_VAL) ||
8378 	    (granularity > PA_GRANULARITY_MAX_VAL)) {
8379 		dev_err(hba->dev, "%s: invalid host PA_GRANULARITY %d",
8380 			__func__, granularity);
8381 		return -EINVAL;
8382 	}
8383 
8384 	if ((peer_granularity < PA_GRANULARITY_MIN_VAL) ||
8385 	    (peer_granularity > PA_GRANULARITY_MAX_VAL)) {
8386 		dev_err(hba->dev, "%s: invalid device PA_GRANULARITY %d",
8387 			__func__, peer_granularity);
8388 		return -EINVAL;
8389 	}
8390 
8391 	ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_TACTIVATE), &pa_tactivate);
8392 	if (ret)
8393 		goto out;
8394 
8395 	ret = ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_TACTIVATE),
8396 				  &peer_pa_tactivate);
8397 	if (ret)
8398 		goto out;
8399 
8400 	pa_tactivate_us = pa_tactivate * gran_to_us_table[granularity - 1];
8401 	peer_pa_tactivate_us = peer_pa_tactivate *
8402 			     gran_to_us_table[peer_granularity - 1];
8403 
8404 	if (pa_tactivate_us >= peer_pa_tactivate_us) {
8405 		u32 new_peer_pa_tactivate;
8406 
8407 		new_peer_pa_tactivate = pa_tactivate_us /
8408 				      gran_to_us_table[peer_granularity - 1];
8409 		new_peer_pa_tactivate++;
8410 		ret = ufshcd_dme_peer_set(hba, UIC_ARG_MIB(PA_TACTIVATE),
8411 					  new_peer_pa_tactivate);
8412 	}
8413 
8414 out:
8415 	return ret;
8416 }
8417 
8418 static void ufshcd_tune_unipro_params(struct ufs_hba *hba)
8419 {
8420 	ufshcd_vops_apply_dev_quirks(hba);
8421 
8422 	if (hba->dev_quirks & UFS_DEVICE_QUIRK_PA_TACTIVATE)
8423 		/* set 1ms timeout for PA_TACTIVATE */
8424 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TACTIVATE), 10);
8425 
8426 	if (hba->dev_quirks & UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE)
8427 		ufshcd_quirk_tune_host_pa_tactivate(hba);
8428 }
8429 
8430 static void ufshcd_clear_dbg_ufs_stats(struct ufs_hba *hba)
8431 {
8432 	hba->ufs_stats.hibern8_exit_cnt = 0;
8433 	hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
8434 	hba->req_abort_count = 0;
8435 }
8436 
8437 static int ufshcd_device_geo_params_init(struct ufs_hba *hba)
8438 {
8439 	int err;
8440 	u8 *desc_buf;
8441 
8442 	desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
8443 	if (!desc_buf) {
8444 		err = -ENOMEM;
8445 		goto out;
8446 	}
8447 
8448 	err = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_GEOMETRY, 0, 0,
8449 				     desc_buf, QUERY_DESC_MAX_SIZE);
8450 	if (err) {
8451 		dev_err(hba->dev, "%s: Failed reading Geometry Desc. err = %d\n",
8452 				__func__, err);
8453 		goto out;
8454 	}
8455 
8456 	if (desc_buf[GEOMETRY_DESC_PARAM_MAX_NUM_LUN] == 1)
8457 		hba->dev_info.max_lu_supported = 32;
8458 	else if (desc_buf[GEOMETRY_DESC_PARAM_MAX_NUM_LUN] == 0)
8459 		hba->dev_info.max_lu_supported = 8;
8460 
8461 out:
8462 	kfree(desc_buf);
8463 	return err;
8464 }
8465 
8466 struct ufs_ref_clk {
8467 	unsigned long freq_hz;
8468 	enum ufs_ref_clk_freq val;
8469 };
8470 
8471 static const struct ufs_ref_clk ufs_ref_clk_freqs[] = {
8472 	{19200000, REF_CLK_FREQ_19_2_MHZ},
8473 	{26000000, REF_CLK_FREQ_26_MHZ},
8474 	{38400000, REF_CLK_FREQ_38_4_MHZ},
8475 	{52000000, REF_CLK_FREQ_52_MHZ},
8476 	{0, REF_CLK_FREQ_INVAL},
8477 };
8478 
8479 static enum ufs_ref_clk_freq
8480 ufs_get_bref_clk_from_hz(unsigned long freq)
8481 {
8482 	int i;
8483 
8484 	for (i = 0; ufs_ref_clk_freqs[i].freq_hz; i++)
8485 		if (ufs_ref_clk_freqs[i].freq_hz == freq)
8486 			return ufs_ref_clk_freqs[i].val;
8487 
8488 	return REF_CLK_FREQ_INVAL;
8489 }
8490 
8491 void ufshcd_parse_dev_ref_clk_freq(struct ufs_hba *hba, struct clk *refclk)
8492 {
8493 	unsigned long freq;
8494 
8495 	freq = clk_get_rate(refclk);
8496 
8497 	hba->dev_ref_clk_freq =
8498 		ufs_get_bref_clk_from_hz(freq);
8499 
8500 	if (hba->dev_ref_clk_freq == REF_CLK_FREQ_INVAL)
8501 		dev_err(hba->dev,
8502 		"invalid ref_clk setting = %ld\n", freq);
8503 }
8504 
8505 static int ufshcd_set_dev_ref_clk(struct ufs_hba *hba)
8506 {
8507 	int err;
8508 	u32 ref_clk;
8509 	u32 freq = hba->dev_ref_clk_freq;
8510 
8511 	err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
8512 			QUERY_ATTR_IDN_REF_CLK_FREQ, 0, 0, &ref_clk);
8513 
8514 	if (err) {
8515 		dev_err(hba->dev, "failed reading bRefClkFreq. err = %d\n",
8516 			err);
8517 		goto out;
8518 	}
8519 
8520 	if (ref_clk == freq)
8521 		goto out; /* nothing to update */
8522 
8523 	err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
8524 			QUERY_ATTR_IDN_REF_CLK_FREQ, 0, 0, &freq);
8525 
8526 	if (err) {
8527 		dev_err(hba->dev, "bRefClkFreq setting to %lu Hz failed\n",
8528 			ufs_ref_clk_freqs[freq].freq_hz);
8529 		goto out;
8530 	}
8531 
8532 	dev_dbg(hba->dev, "bRefClkFreq setting to %lu Hz succeeded\n",
8533 			ufs_ref_clk_freqs[freq].freq_hz);
8534 
8535 out:
8536 	return err;
8537 }
8538 
8539 static int ufshcd_device_params_init(struct ufs_hba *hba)
8540 {
8541 	bool flag;
8542 	int ret;
8543 
8544 	/* Init UFS geometry descriptor related parameters */
8545 	ret = ufshcd_device_geo_params_init(hba);
8546 	if (ret)
8547 		goto out;
8548 
8549 	/* Check and apply UFS device quirks */
8550 	ret = ufs_get_device_desc(hba);
8551 	if (ret) {
8552 		dev_err(hba->dev, "%s: Failed getting device info. err = %d\n",
8553 			__func__, ret);
8554 		goto out;
8555 	}
8556 
8557 	ufshcd_set_rtt(hba);
8558 
8559 	ufshcd_get_ref_clk_gating_wait(hba);
8560 
8561 	if (!ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_READ_FLAG,
8562 			QUERY_FLAG_IDN_PWR_ON_WPE, 0, &flag))
8563 		hba->dev_info.f_power_on_wp_en = flag;
8564 
8565 	/* Probe maximum power mode co-supported by both UFS host and device */
8566 	if (ufshcd_get_max_pwr_mode(hba))
8567 		dev_err(hba->dev,
8568 			"%s: Failed getting max supported power mode\n",
8569 			__func__);
8570 out:
8571 	return ret;
8572 }
8573 
8574 static void ufshcd_set_timestamp_attr(struct ufs_hba *hba)
8575 {
8576 	int err;
8577 	struct ufs_query_req *request = NULL;
8578 	struct ufs_query_res *response = NULL;
8579 	struct ufs_dev_info *dev_info = &hba->dev_info;
8580 	struct utp_upiu_query_v4_0 *upiu_data;
8581 
8582 	if (dev_info->wspecversion < 0x400)
8583 		return;
8584 
8585 	ufshcd_dev_man_lock(hba);
8586 
8587 	ufshcd_init_query(hba, &request, &response,
8588 			  UPIU_QUERY_OPCODE_WRITE_ATTR,
8589 			  QUERY_ATTR_IDN_TIMESTAMP, 0, 0);
8590 
8591 	request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
8592 
8593 	upiu_data = (struct utp_upiu_query_v4_0 *)&request->upiu_req;
8594 
8595 	put_unaligned_be64(ktime_get_real_ns(), &upiu_data->osf3);
8596 
8597 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT);
8598 
8599 	if (err)
8600 		dev_err(hba->dev, "%s: failed to set timestamp %d\n",
8601 			__func__, err);
8602 
8603 	ufshcd_dev_man_unlock(hba);
8604 }
8605 
8606 /**
8607  * ufshcd_add_lus - probe and add UFS logical units
8608  * @hba: per-adapter instance
8609  *
8610  * Return: 0 upon success; < 0 upon failure.
8611  */
8612 static int ufshcd_add_lus(struct ufs_hba *hba)
8613 {
8614 	int ret;
8615 
8616 	/* Add required well known logical units to scsi mid layer */
8617 	ret = ufshcd_scsi_add_wlus(hba);
8618 	if (ret)
8619 		goto out;
8620 
8621 	/* Initialize devfreq after UFS device is detected */
8622 	if (ufshcd_is_clkscaling_supported(hba)) {
8623 		memcpy(&hba->clk_scaling.saved_pwr_info,
8624 			&hba->pwr_info,
8625 			sizeof(struct ufs_pa_layer_attr));
8626 		hba->clk_scaling.is_allowed = true;
8627 
8628 		ret = ufshcd_devfreq_init(hba);
8629 		if (ret)
8630 			goto out;
8631 
8632 		hba->clk_scaling.is_enabled = true;
8633 		ufshcd_init_clk_scaling_sysfs(hba);
8634 	}
8635 
8636 	ufs_bsg_probe(hba);
8637 	scsi_scan_host(hba->host);
8638 
8639 out:
8640 	return ret;
8641 }
8642 
8643 /* SDB - Single Doorbell */
8644 static void ufshcd_release_sdb_queue(struct ufs_hba *hba, int nutrs)
8645 {
8646 	size_t ucdl_size, utrdl_size;
8647 
8648 	ucdl_size = ufshcd_get_ucd_size(hba) * nutrs;
8649 	dmam_free_coherent(hba->dev, ucdl_size, hba->ucdl_base_addr,
8650 			   hba->ucdl_dma_addr);
8651 
8652 	utrdl_size = sizeof(struct utp_transfer_req_desc) * nutrs;
8653 	dmam_free_coherent(hba->dev, utrdl_size, hba->utrdl_base_addr,
8654 			   hba->utrdl_dma_addr);
8655 
8656 	devm_kfree(hba->dev, hba->lrb);
8657 }
8658 
8659 static int ufshcd_alloc_mcq(struct ufs_hba *hba)
8660 {
8661 	int ret;
8662 	int old_nutrs = hba->nutrs;
8663 
8664 	ret = ufshcd_mcq_decide_queue_depth(hba);
8665 	if (ret < 0)
8666 		return ret;
8667 
8668 	hba->nutrs = ret;
8669 	ret = ufshcd_mcq_init(hba);
8670 	if (ret)
8671 		goto err;
8672 
8673 	/*
8674 	 * Previously allocated memory for nutrs may not be enough in MCQ mode.
8675 	 * Number of supported tags in MCQ mode may be larger than SDB mode.
8676 	 */
8677 	if (hba->nutrs != old_nutrs) {
8678 		ufshcd_release_sdb_queue(hba, old_nutrs);
8679 		ret = ufshcd_memory_alloc(hba);
8680 		if (ret)
8681 			goto err;
8682 		ufshcd_host_memory_configure(hba);
8683 	}
8684 
8685 	ret = ufshcd_mcq_memory_alloc(hba);
8686 	if (ret)
8687 		goto err;
8688 
8689 	hba->host->can_queue = hba->nutrs - UFSHCD_NUM_RESERVED;
8690 	hba->reserved_slot = hba->nutrs - UFSHCD_NUM_RESERVED;
8691 
8692 	return 0;
8693 err:
8694 	hba->nutrs = old_nutrs;
8695 	return ret;
8696 }
8697 
8698 static void ufshcd_config_mcq(struct ufs_hba *hba)
8699 {
8700 	int ret;
8701 	u32 intrs;
8702 
8703 	ret = ufshcd_mcq_vops_config_esi(hba);
8704 	dev_info(hba->dev, "ESI %sconfigured\n", ret ? "is not " : "");
8705 
8706 	intrs = UFSHCD_ENABLE_MCQ_INTRS;
8707 	if (hba->quirks & UFSHCD_QUIRK_MCQ_BROKEN_INTR)
8708 		intrs &= ~MCQ_CQ_EVENT_STATUS;
8709 	ufshcd_enable_intr(hba, intrs);
8710 	ufshcd_mcq_make_queues_operational(hba);
8711 	ufshcd_mcq_config_mac(hba, hba->nutrs);
8712 
8713 	dev_info(hba->dev, "MCQ configured, nr_queues=%d, io_queues=%d, read_queue=%d, poll_queues=%d, queue_depth=%d\n",
8714 		 hba->nr_hw_queues, hba->nr_queues[HCTX_TYPE_DEFAULT],
8715 		 hba->nr_queues[HCTX_TYPE_READ], hba->nr_queues[HCTX_TYPE_POLL],
8716 		 hba->nutrs);
8717 }
8718 
8719 static int ufshcd_post_device_init(struct ufs_hba *hba)
8720 {
8721 	int ret;
8722 
8723 	ufshcd_tune_unipro_params(hba);
8724 
8725 	/* UFS device is also active now */
8726 	ufshcd_set_ufs_dev_active(hba);
8727 	ufshcd_force_reset_auto_bkops(hba);
8728 
8729 	ufshcd_set_timestamp_attr(hba);
8730 	schedule_delayed_work(&hba->ufs_rtc_update_work,
8731 			      msecs_to_jiffies(UFS_RTC_UPDATE_INTERVAL_MS));
8732 
8733 	if (!hba->max_pwr_info.is_valid)
8734 		return 0;
8735 
8736 	/*
8737 	 * Set the right value to bRefClkFreq before attempting to
8738 	 * switch to HS gears.
8739 	 */
8740 	if (hba->dev_ref_clk_freq != REF_CLK_FREQ_INVAL)
8741 		ufshcd_set_dev_ref_clk(hba);
8742 	/* Gear up to HS gear. */
8743 	ret = ufshcd_config_pwr_mode(hba, &hba->max_pwr_info.info);
8744 	if (ret) {
8745 		dev_err(hba->dev, "%s: Failed setting power mode, err = %d\n",
8746 			__func__, ret);
8747 		return ret;
8748 	}
8749 
8750 	return 0;
8751 }
8752 
8753 static int ufshcd_device_init(struct ufs_hba *hba, bool init_dev_params)
8754 {
8755 	int ret;
8756 
8757 	WARN_ON_ONCE(!hba->scsi_host_added);
8758 
8759 	hba->ufshcd_state = UFSHCD_STATE_RESET;
8760 
8761 	ret = ufshcd_link_startup(hba);
8762 	if (ret)
8763 		return ret;
8764 
8765 	if (hba->quirks & UFSHCD_QUIRK_SKIP_PH_CONFIGURATION)
8766 		return ret;
8767 
8768 	/* Debug counters initialization */
8769 	ufshcd_clear_dbg_ufs_stats(hba);
8770 
8771 	/* UniPro link is active now */
8772 	ufshcd_set_link_active(hba);
8773 
8774 	/* Reconfigure MCQ upon reset */
8775 	if (hba->mcq_enabled && !init_dev_params) {
8776 		ufshcd_config_mcq(hba);
8777 		ufshcd_mcq_enable(hba);
8778 	}
8779 
8780 	/* Verify device initialization by sending NOP OUT UPIU */
8781 	ret = ufshcd_verify_dev_init(hba);
8782 	if (ret)
8783 		return ret;
8784 
8785 	/* Initiate UFS initialization, and waiting until completion */
8786 	ret = ufshcd_complete_dev_init(hba);
8787 	if (ret)
8788 		return ret;
8789 
8790 	/*
8791 	 * Initialize UFS device parameters used by driver, these
8792 	 * parameters are associated with UFS descriptors.
8793 	 */
8794 	if (init_dev_params) {
8795 		ret = ufshcd_device_params_init(hba);
8796 		if (ret)
8797 			return ret;
8798 		if (is_mcq_supported(hba) &&
8799 		    hba->quirks & UFSHCD_QUIRK_REINIT_AFTER_MAX_GEAR_SWITCH) {
8800 			ufshcd_config_mcq(hba);
8801 			ufshcd_mcq_enable(hba);
8802 		}
8803 	}
8804 
8805 	return ufshcd_post_device_init(hba);
8806 }
8807 
8808 /**
8809  * ufshcd_probe_hba - probe hba to detect device and initialize it
8810  * @hba: per-adapter instance
8811  * @init_dev_params: whether or not to call ufshcd_device_params_init().
8812  *
8813  * Execute link-startup and verify device initialization
8814  *
8815  * Return: 0 upon success; < 0 upon failure.
8816  */
8817 static int ufshcd_probe_hba(struct ufs_hba *hba, bool init_dev_params)
8818 {
8819 	int ret;
8820 
8821 	if (!hba->pm_op_in_progress &&
8822 	    (hba->quirks & UFSHCD_QUIRK_REINIT_AFTER_MAX_GEAR_SWITCH)) {
8823 		/* Reset the device and controller before doing reinit */
8824 		ufshcd_device_reset(hba);
8825 		ufs_put_device_desc(hba);
8826 		ufshcd_hba_stop(hba);
8827 		ufshcd_vops_reinit_notify(hba);
8828 		ret = ufshcd_hba_enable(hba);
8829 		if (ret) {
8830 			dev_err(hba->dev, "Host controller enable failed\n");
8831 			ufshcd_print_evt_hist(hba);
8832 			ufshcd_print_host_state(hba);
8833 			return ret;
8834 		}
8835 
8836 		/* Reinit the device */
8837 		ret = ufshcd_device_init(hba, init_dev_params);
8838 		if (ret)
8839 			return ret;
8840 	}
8841 
8842 	ufshcd_print_pwr_info(hba);
8843 
8844 	/*
8845 	 * bActiveICCLevel is volatile for UFS device (as per latest v2.1 spec)
8846 	 * and for removable UFS card as well, hence always set the parameter.
8847 	 * Note: Error handler may issue the device reset hence resetting
8848 	 * bActiveICCLevel as well so it is always safe to set this here.
8849 	 */
8850 	ufshcd_set_active_icc_lvl(hba);
8851 
8852 	/* Enable UFS Write Booster if supported */
8853 	ufshcd_configure_wb(hba);
8854 
8855 	if (hba->ee_usr_mask)
8856 		ufshcd_write_ee_control(hba);
8857 	ufshcd_configure_auto_hibern8(hba);
8858 
8859 	return 0;
8860 }
8861 
8862 /**
8863  * ufshcd_async_scan - asynchronous execution for probing hba
8864  * @data: data pointer to pass to this function
8865  * @cookie: cookie data
8866  */
8867 static void ufshcd_async_scan(void *data, async_cookie_t cookie)
8868 {
8869 	struct ufs_hba *hba = (struct ufs_hba *)data;
8870 	ktime_t probe_start;
8871 	int ret;
8872 
8873 	down(&hba->host_sem);
8874 	/* Initialize hba, detect and initialize UFS device */
8875 	probe_start = ktime_get();
8876 	ret = ufshcd_probe_hba(hba, true);
8877 	ufshcd_process_probe_result(hba, probe_start, ret);
8878 	up(&hba->host_sem);
8879 	if (ret)
8880 		goto out;
8881 
8882 	/* Probe and add UFS logical units  */
8883 	ret = ufshcd_add_lus(hba);
8884 
8885 out:
8886 	pm_runtime_put_sync(hba->dev);
8887 
8888 	if (ret)
8889 		dev_err(hba->dev, "%s failed: %d\n", __func__, ret);
8890 }
8891 
8892 static enum scsi_timeout_action ufshcd_eh_timed_out(struct scsi_cmnd *scmd)
8893 {
8894 	struct ufs_hba *hba = shost_priv(scmd->device->host);
8895 
8896 	if (!hba->system_suspending) {
8897 		/* Activate the error handler in the SCSI core. */
8898 		return SCSI_EH_NOT_HANDLED;
8899 	}
8900 
8901 	/*
8902 	 * If we get here we know that no TMFs are outstanding and also that
8903 	 * the only pending command is a START STOP UNIT command. Handle the
8904 	 * timeout of that command directly to prevent a deadlock between
8905 	 * ufshcd_set_dev_pwr_mode() and ufshcd_err_handler().
8906 	 */
8907 	ufshcd_link_recovery(hba);
8908 	dev_info(hba->dev, "%s() finished; outstanding_tasks = %#lx.\n",
8909 		 __func__, hba->outstanding_tasks);
8910 
8911 	return hba->outstanding_reqs ? SCSI_EH_RESET_TIMER : SCSI_EH_DONE;
8912 }
8913 
8914 static const struct attribute_group *ufshcd_driver_groups[] = {
8915 	&ufs_sysfs_unit_descriptor_group,
8916 	&ufs_sysfs_lun_attributes_group,
8917 	NULL,
8918 };
8919 
8920 static struct ufs_hba_variant_params ufs_hba_vps = {
8921 	.hba_enable_delay_us		= 1000,
8922 	.wb_flush_threshold		= UFS_WB_BUF_REMAIN_PERCENT(40),
8923 	.devfreq_profile.polling_ms	= 100,
8924 	.devfreq_profile.target		= ufshcd_devfreq_target,
8925 	.devfreq_profile.get_dev_status	= ufshcd_devfreq_get_dev_status,
8926 	.ondemand_data.upthreshold	= 70,
8927 	.ondemand_data.downdifferential	= 5,
8928 };
8929 
8930 static const struct scsi_host_template ufshcd_driver_template = {
8931 	.module			= THIS_MODULE,
8932 	.name			= UFSHCD,
8933 	.proc_name		= UFSHCD,
8934 	.map_queues		= ufshcd_map_queues,
8935 	.queuecommand		= ufshcd_queuecommand,
8936 	.mq_poll		= ufshcd_poll,
8937 	.slave_alloc		= ufshcd_slave_alloc,
8938 	.device_configure	= ufshcd_device_configure,
8939 	.slave_destroy		= ufshcd_slave_destroy,
8940 	.change_queue_depth	= ufshcd_change_queue_depth,
8941 	.eh_abort_handler	= ufshcd_abort,
8942 	.eh_device_reset_handler = ufshcd_eh_device_reset_handler,
8943 	.eh_host_reset_handler   = ufshcd_eh_host_reset_handler,
8944 	.eh_timed_out		= ufshcd_eh_timed_out,
8945 	.this_id		= -1,
8946 	.sg_tablesize		= SG_ALL,
8947 	.max_segment_size	= PRDT_DATA_BYTE_COUNT_MAX,
8948 	.max_sectors		= SZ_1M / SECTOR_SIZE,
8949 	.max_host_blocked	= 1,
8950 	.track_queue_depth	= 1,
8951 	.skip_settle_delay	= 1,
8952 	.sdev_groups		= ufshcd_driver_groups,
8953 };
8954 
8955 static int ufshcd_config_vreg_load(struct device *dev, struct ufs_vreg *vreg,
8956 				   int ua)
8957 {
8958 	int ret;
8959 
8960 	if (!vreg)
8961 		return 0;
8962 
8963 	/*
8964 	 * "set_load" operation shall be required on those regulators
8965 	 * which specifically configured current limitation. Otherwise
8966 	 * zero max_uA may cause unexpected behavior when regulator is
8967 	 * enabled or set as high power mode.
8968 	 */
8969 	if (!vreg->max_uA)
8970 		return 0;
8971 
8972 	ret = regulator_set_load(vreg->reg, ua);
8973 	if (ret < 0) {
8974 		dev_err(dev, "%s: %s set load (ua=%d) failed, err=%d\n",
8975 				__func__, vreg->name, ua, ret);
8976 	}
8977 
8978 	return ret;
8979 }
8980 
8981 static inline int ufshcd_config_vreg_lpm(struct ufs_hba *hba,
8982 					 struct ufs_vreg *vreg)
8983 {
8984 	return ufshcd_config_vreg_load(hba->dev, vreg, UFS_VREG_LPM_LOAD_UA);
8985 }
8986 
8987 static inline int ufshcd_config_vreg_hpm(struct ufs_hba *hba,
8988 					 struct ufs_vreg *vreg)
8989 {
8990 	if (!vreg)
8991 		return 0;
8992 
8993 	return ufshcd_config_vreg_load(hba->dev, vreg, vreg->max_uA);
8994 }
8995 
8996 static int ufshcd_config_vreg(struct device *dev,
8997 		struct ufs_vreg *vreg, bool on)
8998 {
8999 	if (regulator_count_voltages(vreg->reg) <= 0)
9000 		return 0;
9001 
9002 	return ufshcd_config_vreg_load(dev, vreg, on ? vreg->max_uA : 0);
9003 }
9004 
9005 static int ufshcd_enable_vreg(struct device *dev, struct ufs_vreg *vreg)
9006 {
9007 	int ret = 0;
9008 
9009 	if (!vreg || vreg->enabled)
9010 		goto out;
9011 
9012 	ret = ufshcd_config_vreg(dev, vreg, true);
9013 	if (!ret)
9014 		ret = regulator_enable(vreg->reg);
9015 
9016 	if (!ret)
9017 		vreg->enabled = true;
9018 	else
9019 		dev_err(dev, "%s: %s enable failed, err=%d\n",
9020 				__func__, vreg->name, ret);
9021 out:
9022 	return ret;
9023 }
9024 
9025 static int ufshcd_disable_vreg(struct device *dev, struct ufs_vreg *vreg)
9026 {
9027 	int ret = 0;
9028 
9029 	if (!vreg || !vreg->enabled || vreg->always_on)
9030 		goto out;
9031 
9032 	ret = regulator_disable(vreg->reg);
9033 
9034 	if (!ret) {
9035 		/* ignore errors on applying disable config */
9036 		ufshcd_config_vreg(dev, vreg, false);
9037 		vreg->enabled = false;
9038 	} else {
9039 		dev_err(dev, "%s: %s disable failed, err=%d\n",
9040 				__func__, vreg->name, ret);
9041 	}
9042 out:
9043 	return ret;
9044 }
9045 
9046 static int ufshcd_setup_vreg(struct ufs_hba *hba, bool on)
9047 {
9048 	int ret = 0;
9049 	struct device *dev = hba->dev;
9050 	struct ufs_vreg_info *info = &hba->vreg_info;
9051 
9052 	ret = ufshcd_toggle_vreg(dev, info->vcc, on);
9053 	if (ret)
9054 		goto out;
9055 
9056 	ret = ufshcd_toggle_vreg(dev, info->vccq, on);
9057 	if (ret)
9058 		goto out;
9059 
9060 	ret = ufshcd_toggle_vreg(dev, info->vccq2, on);
9061 
9062 out:
9063 	if (ret) {
9064 		ufshcd_toggle_vreg(dev, info->vccq2, false);
9065 		ufshcd_toggle_vreg(dev, info->vccq, false);
9066 		ufshcd_toggle_vreg(dev, info->vcc, false);
9067 	}
9068 	return ret;
9069 }
9070 
9071 static int ufshcd_setup_hba_vreg(struct ufs_hba *hba, bool on)
9072 {
9073 	struct ufs_vreg_info *info = &hba->vreg_info;
9074 
9075 	return ufshcd_toggle_vreg(hba->dev, info->vdd_hba, on);
9076 }
9077 
9078 int ufshcd_get_vreg(struct device *dev, struct ufs_vreg *vreg)
9079 {
9080 	int ret = 0;
9081 
9082 	if (!vreg)
9083 		goto out;
9084 
9085 	vreg->reg = devm_regulator_get(dev, vreg->name);
9086 	if (IS_ERR(vreg->reg)) {
9087 		ret = PTR_ERR(vreg->reg);
9088 		dev_err(dev, "%s: %s get failed, err=%d\n",
9089 				__func__, vreg->name, ret);
9090 	}
9091 out:
9092 	return ret;
9093 }
9094 EXPORT_SYMBOL_GPL(ufshcd_get_vreg);
9095 
9096 static int ufshcd_init_vreg(struct ufs_hba *hba)
9097 {
9098 	int ret = 0;
9099 	struct device *dev = hba->dev;
9100 	struct ufs_vreg_info *info = &hba->vreg_info;
9101 
9102 	ret = ufshcd_get_vreg(dev, info->vcc);
9103 	if (ret)
9104 		goto out;
9105 
9106 	ret = ufshcd_get_vreg(dev, info->vccq);
9107 	if (!ret)
9108 		ret = ufshcd_get_vreg(dev, info->vccq2);
9109 out:
9110 	return ret;
9111 }
9112 
9113 static int ufshcd_init_hba_vreg(struct ufs_hba *hba)
9114 {
9115 	struct ufs_vreg_info *info = &hba->vreg_info;
9116 
9117 	return ufshcd_get_vreg(hba->dev, info->vdd_hba);
9118 }
9119 
9120 static int ufshcd_setup_clocks(struct ufs_hba *hba, bool on)
9121 {
9122 	int ret = 0;
9123 	struct ufs_clk_info *clki;
9124 	struct list_head *head = &hba->clk_list_head;
9125 	unsigned long flags;
9126 	ktime_t start = ktime_get();
9127 	bool clk_state_changed = false;
9128 
9129 	if (list_empty(head))
9130 		goto out;
9131 
9132 	ret = ufshcd_vops_setup_clocks(hba, on, PRE_CHANGE);
9133 	if (ret)
9134 		return ret;
9135 
9136 	list_for_each_entry(clki, head, list) {
9137 		if (!IS_ERR_OR_NULL(clki->clk)) {
9138 			/*
9139 			 * Don't disable clocks which are needed
9140 			 * to keep the link active.
9141 			 */
9142 			if (ufshcd_is_link_active(hba) &&
9143 			    clki->keep_link_active)
9144 				continue;
9145 
9146 			clk_state_changed = on ^ clki->enabled;
9147 			if (on && !clki->enabled) {
9148 				ret = clk_prepare_enable(clki->clk);
9149 				if (ret) {
9150 					dev_err(hba->dev, "%s: %s prepare enable failed, %d\n",
9151 						__func__, clki->name, ret);
9152 					goto out;
9153 				}
9154 			} else if (!on && clki->enabled) {
9155 				clk_disable_unprepare(clki->clk);
9156 			}
9157 			clki->enabled = on;
9158 			dev_dbg(hba->dev, "%s: clk: %s %sabled\n", __func__,
9159 					clki->name, on ? "en" : "dis");
9160 		}
9161 	}
9162 
9163 	ret = ufshcd_vops_setup_clocks(hba, on, POST_CHANGE);
9164 	if (ret)
9165 		return ret;
9166 
9167 	if (!ufshcd_is_clkscaling_supported(hba))
9168 		ufshcd_pm_qos_update(hba, on);
9169 out:
9170 	if (ret) {
9171 		list_for_each_entry(clki, head, list) {
9172 			if (!IS_ERR_OR_NULL(clki->clk) && clki->enabled)
9173 				clk_disable_unprepare(clki->clk);
9174 		}
9175 	} else if (!ret && on) {
9176 		spin_lock_irqsave(hba->host->host_lock, flags);
9177 		hba->clk_gating.state = CLKS_ON;
9178 		trace_ufshcd_clk_gating(dev_name(hba->dev),
9179 					hba->clk_gating.state);
9180 		spin_unlock_irqrestore(hba->host->host_lock, flags);
9181 	}
9182 
9183 	if (clk_state_changed)
9184 		trace_ufshcd_profile_clk_gating(dev_name(hba->dev),
9185 			(on ? "on" : "off"),
9186 			ktime_to_us(ktime_sub(ktime_get(), start)), ret);
9187 	return ret;
9188 }
9189 
9190 static enum ufs_ref_clk_freq ufshcd_parse_ref_clk_property(struct ufs_hba *hba)
9191 {
9192 	u32 freq;
9193 	int ret = device_property_read_u32(hba->dev, "ref-clk-freq", &freq);
9194 
9195 	if (ret) {
9196 		dev_dbg(hba->dev, "Cannot query 'ref-clk-freq' property = %d", ret);
9197 		return REF_CLK_FREQ_INVAL;
9198 	}
9199 
9200 	return ufs_get_bref_clk_from_hz(freq);
9201 }
9202 
9203 static int ufshcd_init_clocks(struct ufs_hba *hba)
9204 {
9205 	int ret = 0;
9206 	struct ufs_clk_info *clki;
9207 	struct device *dev = hba->dev;
9208 	struct list_head *head = &hba->clk_list_head;
9209 
9210 	if (list_empty(head))
9211 		goto out;
9212 
9213 	list_for_each_entry(clki, head, list) {
9214 		if (!clki->name)
9215 			continue;
9216 
9217 		clki->clk = devm_clk_get(dev, clki->name);
9218 		if (IS_ERR(clki->clk)) {
9219 			ret = PTR_ERR(clki->clk);
9220 			dev_err(dev, "%s: %s clk get failed, %d\n",
9221 					__func__, clki->name, ret);
9222 			goto out;
9223 		}
9224 
9225 		/*
9226 		 * Parse device ref clk freq as per device tree "ref_clk".
9227 		 * Default dev_ref_clk_freq is set to REF_CLK_FREQ_INVAL
9228 		 * in ufshcd_alloc_host().
9229 		 */
9230 		if (!strcmp(clki->name, "ref_clk"))
9231 			ufshcd_parse_dev_ref_clk_freq(hba, clki->clk);
9232 
9233 		if (clki->max_freq) {
9234 			ret = clk_set_rate(clki->clk, clki->max_freq);
9235 			if (ret) {
9236 				dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
9237 					__func__, clki->name,
9238 					clki->max_freq, ret);
9239 				goto out;
9240 			}
9241 			clki->curr_freq = clki->max_freq;
9242 		}
9243 		dev_dbg(dev, "%s: clk: %s, rate: %lu\n", __func__,
9244 				clki->name, clk_get_rate(clki->clk));
9245 	}
9246 
9247 	/* Set Max. frequency for all clocks */
9248 	if (hba->use_pm_opp) {
9249 		ret = ufshcd_opp_set_rate(hba, ULONG_MAX);
9250 		if (ret) {
9251 			dev_err(hba->dev, "%s: failed to set OPP: %d", __func__,
9252 				ret);
9253 			goto out;
9254 		}
9255 	}
9256 
9257 out:
9258 	return ret;
9259 }
9260 
9261 static int ufshcd_variant_hba_init(struct ufs_hba *hba)
9262 {
9263 	int err = 0;
9264 
9265 	if (!hba->vops)
9266 		goto out;
9267 
9268 	err = ufshcd_vops_init(hba);
9269 	if (err)
9270 		dev_err_probe(hba->dev, err,
9271 			      "%s: variant %s init failed with err %d\n",
9272 			      __func__, ufshcd_get_var_name(hba), err);
9273 out:
9274 	return err;
9275 }
9276 
9277 static void ufshcd_variant_hba_exit(struct ufs_hba *hba)
9278 {
9279 	if (!hba->vops)
9280 		return;
9281 
9282 	ufshcd_vops_exit(hba);
9283 }
9284 
9285 static int ufshcd_hba_init(struct ufs_hba *hba)
9286 {
9287 	int err;
9288 
9289 	/*
9290 	 * Handle host controller power separately from the UFS device power
9291 	 * rails as it will help controlling the UFS host controller power
9292 	 * collapse easily which is different than UFS device power collapse.
9293 	 * Also, enable the host controller power before we go ahead with rest
9294 	 * of the initialization here.
9295 	 */
9296 	err = ufshcd_init_hba_vreg(hba);
9297 	if (err)
9298 		goto out;
9299 
9300 	err = ufshcd_setup_hba_vreg(hba, true);
9301 	if (err)
9302 		goto out;
9303 
9304 	err = ufshcd_init_clocks(hba);
9305 	if (err)
9306 		goto out_disable_hba_vreg;
9307 
9308 	if (hba->dev_ref_clk_freq == REF_CLK_FREQ_INVAL)
9309 		hba->dev_ref_clk_freq = ufshcd_parse_ref_clk_property(hba);
9310 
9311 	err = ufshcd_setup_clocks(hba, true);
9312 	if (err)
9313 		goto out_disable_hba_vreg;
9314 
9315 	err = ufshcd_init_vreg(hba);
9316 	if (err)
9317 		goto out_disable_clks;
9318 
9319 	err = ufshcd_setup_vreg(hba, true);
9320 	if (err)
9321 		goto out_disable_clks;
9322 
9323 	err = ufshcd_variant_hba_init(hba);
9324 	if (err)
9325 		goto out_disable_vreg;
9326 
9327 	ufs_debugfs_hba_init(hba);
9328 	ufs_fault_inject_hba_init(hba);
9329 
9330 	hba->is_powered = true;
9331 	goto out;
9332 
9333 out_disable_vreg:
9334 	ufshcd_setup_vreg(hba, false);
9335 out_disable_clks:
9336 	ufshcd_setup_clocks(hba, false);
9337 out_disable_hba_vreg:
9338 	ufshcd_setup_hba_vreg(hba, false);
9339 out:
9340 	return err;
9341 }
9342 
9343 static void ufshcd_hba_exit(struct ufs_hba *hba)
9344 {
9345 	if (hba->is_powered) {
9346 		ufshcd_pm_qos_exit(hba);
9347 		ufshcd_exit_clk_scaling(hba);
9348 		ufshcd_exit_clk_gating(hba);
9349 		if (hba->eh_wq)
9350 			destroy_workqueue(hba->eh_wq);
9351 		ufs_debugfs_hba_exit(hba);
9352 		ufshcd_variant_hba_exit(hba);
9353 		ufshcd_setup_vreg(hba, false);
9354 		ufshcd_setup_clocks(hba, false);
9355 		ufshcd_setup_hba_vreg(hba, false);
9356 		hba->is_powered = false;
9357 		ufs_put_device_desc(hba);
9358 	}
9359 }
9360 
9361 static int ufshcd_execute_start_stop(struct scsi_device *sdev,
9362 				     enum ufs_dev_pwr_mode pwr_mode,
9363 				     struct scsi_sense_hdr *sshdr)
9364 {
9365 	const unsigned char cdb[6] = { START_STOP, 0, 0, 0, pwr_mode << 4, 0 };
9366 	struct scsi_failure failure_defs[] = {
9367 		{
9368 			.allowed = 2,
9369 			.result = SCMD_FAILURE_RESULT_ANY,
9370 		},
9371 	};
9372 	struct scsi_failures failures = {
9373 		.failure_definitions = failure_defs,
9374 	};
9375 	const struct scsi_exec_args args = {
9376 		.failures = &failures,
9377 		.sshdr = sshdr,
9378 		.req_flags = BLK_MQ_REQ_PM,
9379 		.scmd_flags = SCMD_FAIL_IF_RECOVERING,
9380 	};
9381 
9382 	return scsi_execute_cmd(sdev, cdb, REQ_OP_DRV_IN, /*buffer=*/NULL,
9383 			/*bufflen=*/0, /*timeout=*/10 * HZ, /*retries=*/0,
9384 			&args);
9385 }
9386 
9387 /**
9388  * ufshcd_set_dev_pwr_mode - sends START STOP UNIT command to set device
9389  *			     power mode
9390  * @hba: per adapter instance
9391  * @pwr_mode: device power mode to set
9392  *
9393  * Return: 0 if requested power mode is set successfully;
9394  *         < 0 if failed to set the requested power mode.
9395  */
9396 static int ufshcd_set_dev_pwr_mode(struct ufs_hba *hba,
9397 				     enum ufs_dev_pwr_mode pwr_mode)
9398 {
9399 	struct scsi_sense_hdr sshdr;
9400 	struct scsi_device *sdp;
9401 	unsigned long flags;
9402 	int ret;
9403 
9404 	spin_lock_irqsave(hba->host->host_lock, flags);
9405 	sdp = hba->ufs_device_wlun;
9406 	if (sdp && scsi_device_online(sdp))
9407 		ret = scsi_device_get(sdp);
9408 	else
9409 		ret = -ENODEV;
9410 	spin_unlock_irqrestore(hba->host->host_lock, flags);
9411 
9412 	if (ret)
9413 		return ret;
9414 
9415 	/*
9416 	 * If scsi commands fail, the scsi mid-layer schedules scsi error-
9417 	 * handling, which would wait for host to be resumed. Since we know
9418 	 * we are functional while we are here, skip host resume in error
9419 	 * handling context.
9420 	 */
9421 	hba->host->eh_noresume = 1;
9422 
9423 	/*
9424 	 * Current function would be generally called from the power management
9425 	 * callbacks hence set the RQF_PM flag so that it doesn't resume the
9426 	 * already suspended childs.
9427 	 */
9428 	ret = ufshcd_execute_start_stop(sdp, pwr_mode, &sshdr);
9429 	if (ret) {
9430 		sdev_printk(KERN_WARNING, sdp,
9431 			    "START_STOP failed for power mode: %d, result %x\n",
9432 			    pwr_mode, ret);
9433 		if (ret > 0) {
9434 			if (scsi_sense_valid(&sshdr))
9435 				scsi_print_sense_hdr(sdp, NULL, &sshdr);
9436 			ret = -EIO;
9437 		}
9438 	} else {
9439 		hba->curr_dev_pwr_mode = pwr_mode;
9440 	}
9441 
9442 	scsi_device_put(sdp);
9443 	hba->host->eh_noresume = 0;
9444 	return ret;
9445 }
9446 
9447 static int ufshcd_link_state_transition(struct ufs_hba *hba,
9448 					enum uic_link_state req_link_state,
9449 					bool check_for_bkops)
9450 {
9451 	int ret = 0;
9452 
9453 	if (req_link_state == hba->uic_link_state)
9454 		return 0;
9455 
9456 	if (req_link_state == UIC_LINK_HIBERN8_STATE) {
9457 		ret = ufshcd_uic_hibern8_enter(hba);
9458 		if (!ret) {
9459 			ufshcd_set_link_hibern8(hba);
9460 		} else {
9461 			dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
9462 					__func__, ret);
9463 			goto out;
9464 		}
9465 	}
9466 	/*
9467 	 * If autobkops is enabled, link can't be turned off because
9468 	 * turning off the link would also turn off the device, except in the
9469 	 * case of DeepSleep where the device is expected to remain powered.
9470 	 */
9471 	else if ((req_link_state == UIC_LINK_OFF_STATE) &&
9472 		 (!check_for_bkops || !hba->auto_bkops_enabled)) {
9473 		/*
9474 		 * Let's make sure that link is in low power mode, we are doing
9475 		 * this currently by putting the link in Hibern8. Otherway to
9476 		 * put the link in low power mode is to send the DME end point
9477 		 * to device and then send the DME reset command to local
9478 		 * unipro. But putting the link in hibern8 is much faster.
9479 		 *
9480 		 * Note also that putting the link in Hibern8 is a requirement
9481 		 * for entering DeepSleep.
9482 		 */
9483 		ret = ufshcd_uic_hibern8_enter(hba);
9484 		if (ret) {
9485 			dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
9486 					__func__, ret);
9487 			goto out;
9488 		}
9489 		/*
9490 		 * Change controller state to "reset state" which
9491 		 * should also put the link in off/reset state
9492 		 */
9493 		ufshcd_hba_stop(hba);
9494 		/*
9495 		 * TODO: Check if we need any delay to make sure that
9496 		 * controller is reset
9497 		 */
9498 		ufshcd_set_link_off(hba);
9499 	}
9500 
9501 out:
9502 	return ret;
9503 }
9504 
9505 static void ufshcd_vreg_set_lpm(struct ufs_hba *hba)
9506 {
9507 	bool vcc_off = false;
9508 
9509 	/*
9510 	 * It seems some UFS devices may keep drawing more than sleep current
9511 	 * (atleast for 500us) from UFS rails (especially from VCCQ rail).
9512 	 * To avoid this situation, add 2ms delay before putting these UFS
9513 	 * rails in LPM mode.
9514 	 */
9515 	if (!ufshcd_is_link_active(hba) &&
9516 	    hba->dev_quirks & UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM)
9517 		usleep_range(2000, 2100);
9518 
9519 	/*
9520 	 * If UFS device is either in UFS_Sleep turn off VCC rail to save some
9521 	 * power.
9522 	 *
9523 	 * If UFS device and link is in OFF state, all power supplies (VCC,
9524 	 * VCCQ, VCCQ2) can be turned off if power on write protect is not
9525 	 * required. If UFS link is inactive (Hibern8 or OFF state) and device
9526 	 * is in sleep state, put VCCQ & VCCQ2 rails in LPM mode.
9527 	 *
9528 	 * Ignore the error returned by ufshcd_toggle_vreg() as device is anyway
9529 	 * in low power state which would save some power.
9530 	 *
9531 	 * If Write Booster is enabled and the device needs to flush the WB
9532 	 * buffer OR if bkops status is urgent for WB, keep Vcc on.
9533 	 */
9534 	if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba) &&
9535 	    !hba->dev_info.is_lu_power_on_wp) {
9536 		ufshcd_setup_vreg(hba, false);
9537 		vcc_off = true;
9538 	} else if (!ufshcd_is_ufs_dev_active(hba)) {
9539 		ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, false);
9540 		vcc_off = true;
9541 		if (ufshcd_is_link_hibern8(hba) || ufshcd_is_link_off(hba)) {
9542 			ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq);
9543 			ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq2);
9544 		}
9545 	}
9546 
9547 	/*
9548 	 * Some UFS devices require delay after VCC power rail is turned-off.
9549 	 */
9550 	if (vcc_off && hba->vreg_info.vcc &&
9551 		hba->dev_quirks & UFS_DEVICE_QUIRK_DELAY_AFTER_LPM)
9552 		usleep_range(5000, 5100);
9553 }
9554 
9555 #ifdef CONFIG_PM
9556 static int ufshcd_vreg_set_hpm(struct ufs_hba *hba)
9557 {
9558 	int ret = 0;
9559 
9560 	if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba) &&
9561 	    !hba->dev_info.is_lu_power_on_wp) {
9562 		ret = ufshcd_setup_vreg(hba, true);
9563 	} else if (!ufshcd_is_ufs_dev_active(hba)) {
9564 		if (!ufshcd_is_link_active(hba)) {
9565 			ret = ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq);
9566 			if (ret)
9567 				goto vcc_disable;
9568 			ret = ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq2);
9569 			if (ret)
9570 				goto vccq_lpm;
9571 		}
9572 		ret = ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, true);
9573 	}
9574 	goto out;
9575 
9576 vccq_lpm:
9577 	ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq);
9578 vcc_disable:
9579 	ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, false);
9580 out:
9581 	return ret;
9582 }
9583 #endif /* CONFIG_PM */
9584 
9585 static void ufshcd_hba_vreg_set_lpm(struct ufs_hba *hba)
9586 {
9587 	if (ufshcd_is_link_off(hba) || ufshcd_can_aggressive_pc(hba))
9588 		ufshcd_setup_hba_vreg(hba, false);
9589 }
9590 
9591 static void ufshcd_hba_vreg_set_hpm(struct ufs_hba *hba)
9592 {
9593 	if (ufshcd_is_link_off(hba) || ufshcd_can_aggressive_pc(hba))
9594 		ufshcd_setup_hba_vreg(hba, true);
9595 }
9596 
9597 static int __ufshcd_wl_suspend(struct ufs_hba *hba, enum ufs_pm_op pm_op)
9598 {
9599 	int ret = 0;
9600 	bool check_for_bkops;
9601 	enum ufs_pm_level pm_lvl;
9602 	enum ufs_dev_pwr_mode req_dev_pwr_mode;
9603 	enum uic_link_state req_link_state;
9604 
9605 	hba->pm_op_in_progress = true;
9606 	if (pm_op != UFS_SHUTDOWN_PM) {
9607 		pm_lvl = pm_op == UFS_RUNTIME_PM ?
9608 			 hba->rpm_lvl : hba->spm_lvl;
9609 		req_dev_pwr_mode = ufs_get_pm_lvl_to_dev_pwr_mode(pm_lvl);
9610 		req_link_state = ufs_get_pm_lvl_to_link_pwr_state(pm_lvl);
9611 	} else {
9612 		req_dev_pwr_mode = UFS_POWERDOWN_PWR_MODE;
9613 		req_link_state = UIC_LINK_OFF_STATE;
9614 	}
9615 
9616 	/*
9617 	 * If we can't transition into any of the low power modes
9618 	 * just gate the clocks.
9619 	 */
9620 	ufshcd_hold(hba);
9621 	hba->clk_gating.is_suspended = true;
9622 
9623 	if (ufshcd_is_clkscaling_supported(hba))
9624 		ufshcd_clk_scaling_suspend(hba, true);
9625 
9626 	if (req_dev_pwr_mode == UFS_ACTIVE_PWR_MODE &&
9627 			req_link_state == UIC_LINK_ACTIVE_STATE) {
9628 		goto vops_suspend;
9629 	}
9630 
9631 	if ((req_dev_pwr_mode == hba->curr_dev_pwr_mode) &&
9632 	    (req_link_state == hba->uic_link_state))
9633 		goto enable_scaling;
9634 
9635 	/* UFS device & link must be active before we enter in this function */
9636 	if (!ufshcd_is_ufs_dev_active(hba) || !ufshcd_is_link_active(hba)) {
9637 		/*  Wait err handler finish or trigger err recovery */
9638 		if (!ufshcd_eh_in_progress(hba))
9639 			ufshcd_force_error_recovery(hba);
9640 		ret = -EBUSY;
9641 		goto enable_scaling;
9642 	}
9643 
9644 	if (pm_op == UFS_RUNTIME_PM) {
9645 		if (ufshcd_can_autobkops_during_suspend(hba)) {
9646 			/*
9647 			 * The device is idle with no requests in the queue,
9648 			 * allow background operations if bkops status shows
9649 			 * that performance might be impacted.
9650 			 */
9651 			ret = ufshcd_bkops_ctrl(hba);
9652 			if (ret) {
9653 				/*
9654 				 * If return err in suspend flow, IO will hang.
9655 				 * Trigger error handler and break suspend for
9656 				 * error recovery.
9657 				 */
9658 				ufshcd_force_error_recovery(hba);
9659 				ret = -EBUSY;
9660 				goto enable_scaling;
9661 			}
9662 		} else {
9663 			/* make sure that auto bkops is disabled */
9664 			ufshcd_disable_auto_bkops(hba);
9665 		}
9666 		/*
9667 		 * If device needs to do BKOP or WB buffer flush during
9668 		 * Hibern8, keep device power mode as "active power mode"
9669 		 * and VCC supply.
9670 		 */
9671 		hba->dev_info.b_rpm_dev_flush_capable =
9672 			hba->auto_bkops_enabled ||
9673 			(((req_link_state == UIC_LINK_HIBERN8_STATE) ||
9674 			((req_link_state == UIC_LINK_ACTIVE_STATE) &&
9675 			ufshcd_is_auto_hibern8_enabled(hba))) &&
9676 			ufshcd_wb_need_flush(hba));
9677 	}
9678 
9679 	flush_work(&hba->eeh_work);
9680 
9681 	ret = ufshcd_vops_suspend(hba, pm_op, PRE_CHANGE);
9682 	if (ret)
9683 		goto enable_scaling;
9684 
9685 	if (req_dev_pwr_mode != hba->curr_dev_pwr_mode) {
9686 		if (pm_op != UFS_RUNTIME_PM)
9687 			/* ensure that bkops is disabled */
9688 			ufshcd_disable_auto_bkops(hba);
9689 
9690 		if (!hba->dev_info.b_rpm_dev_flush_capable) {
9691 			ret = ufshcd_set_dev_pwr_mode(hba, req_dev_pwr_mode);
9692 			if (ret && pm_op != UFS_SHUTDOWN_PM) {
9693 				/*
9694 				 * If return err in suspend flow, IO will hang.
9695 				 * Trigger error handler and break suspend for
9696 				 * error recovery.
9697 				 */
9698 				ufshcd_force_error_recovery(hba);
9699 				ret = -EBUSY;
9700 			}
9701 			if (ret)
9702 				goto enable_scaling;
9703 		}
9704 	}
9705 
9706 	/*
9707 	 * In the case of DeepSleep, the device is expected to remain powered
9708 	 * with the link off, so do not check for bkops.
9709 	 */
9710 	check_for_bkops = !ufshcd_is_ufs_dev_deepsleep(hba);
9711 	ret = ufshcd_link_state_transition(hba, req_link_state, check_for_bkops);
9712 	if (ret && pm_op != UFS_SHUTDOWN_PM) {
9713 		/*
9714 		 * If return err in suspend flow, IO will hang.
9715 		 * Trigger error handler and break suspend for
9716 		 * error recovery.
9717 		 */
9718 		ufshcd_force_error_recovery(hba);
9719 		ret = -EBUSY;
9720 	}
9721 	if (ret)
9722 		goto set_dev_active;
9723 
9724 vops_suspend:
9725 	/*
9726 	 * Call vendor specific suspend callback. As these callbacks may access
9727 	 * vendor specific host controller register space call them before the
9728 	 * host clocks are ON.
9729 	 */
9730 	ret = ufshcd_vops_suspend(hba, pm_op, POST_CHANGE);
9731 	if (ret)
9732 		goto set_link_active;
9733 
9734 	cancel_delayed_work_sync(&hba->ufs_rtc_update_work);
9735 	goto out;
9736 
9737 set_link_active:
9738 	/*
9739 	 * Device hardware reset is required to exit DeepSleep. Also, for
9740 	 * DeepSleep, the link is off so host reset and restore will be done
9741 	 * further below.
9742 	 */
9743 	if (ufshcd_is_ufs_dev_deepsleep(hba)) {
9744 		ufshcd_device_reset(hba);
9745 		WARN_ON(!ufshcd_is_link_off(hba));
9746 	}
9747 	if (ufshcd_is_link_hibern8(hba) && !ufshcd_uic_hibern8_exit(hba))
9748 		ufshcd_set_link_active(hba);
9749 	else if (ufshcd_is_link_off(hba))
9750 		ufshcd_host_reset_and_restore(hba);
9751 set_dev_active:
9752 	/* Can also get here needing to exit DeepSleep */
9753 	if (ufshcd_is_ufs_dev_deepsleep(hba)) {
9754 		ufshcd_device_reset(hba);
9755 		ufshcd_host_reset_and_restore(hba);
9756 	}
9757 	if (!ufshcd_set_dev_pwr_mode(hba, UFS_ACTIVE_PWR_MODE))
9758 		ufshcd_disable_auto_bkops(hba);
9759 enable_scaling:
9760 	if (ufshcd_is_clkscaling_supported(hba))
9761 		ufshcd_clk_scaling_suspend(hba, false);
9762 
9763 	hba->dev_info.b_rpm_dev_flush_capable = false;
9764 out:
9765 	if (hba->dev_info.b_rpm_dev_flush_capable) {
9766 		schedule_delayed_work(&hba->rpm_dev_flush_recheck_work,
9767 			msecs_to_jiffies(RPM_DEV_FLUSH_RECHECK_WORK_DELAY_MS));
9768 	}
9769 
9770 	if (ret) {
9771 		ufshcd_update_evt_hist(hba, UFS_EVT_WL_SUSP_ERR, (u32)ret);
9772 		hba->clk_gating.is_suspended = false;
9773 		ufshcd_release(hba);
9774 	}
9775 	hba->pm_op_in_progress = false;
9776 	return ret;
9777 }
9778 
9779 #ifdef CONFIG_PM
9780 static int __ufshcd_wl_resume(struct ufs_hba *hba, enum ufs_pm_op pm_op)
9781 {
9782 	int ret;
9783 	enum uic_link_state old_link_state = hba->uic_link_state;
9784 
9785 	hba->pm_op_in_progress = true;
9786 
9787 	/*
9788 	 * Call vendor specific resume callback. As these callbacks may access
9789 	 * vendor specific host controller register space call them when the
9790 	 * host clocks are ON.
9791 	 */
9792 	ret = ufshcd_vops_resume(hba, pm_op);
9793 	if (ret)
9794 		goto out;
9795 
9796 	/* For DeepSleep, the only supported option is to have the link off */
9797 	WARN_ON(ufshcd_is_ufs_dev_deepsleep(hba) && !ufshcd_is_link_off(hba));
9798 
9799 	if (ufshcd_is_link_hibern8(hba)) {
9800 		ret = ufshcd_uic_hibern8_exit(hba);
9801 		if (!ret) {
9802 			ufshcd_set_link_active(hba);
9803 		} else {
9804 			dev_err(hba->dev, "%s: hibern8 exit failed %d\n",
9805 					__func__, ret);
9806 			goto vendor_suspend;
9807 		}
9808 	} else if (ufshcd_is_link_off(hba)) {
9809 		/*
9810 		 * A full initialization of the host and the device is
9811 		 * required since the link was put to off during suspend.
9812 		 * Note, in the case of DeepSleep, the device will exit
9813 		 * DeepSleep due to device reset.
9814 		 */
9815 		ret = ufshcd_reset_and_restore(hba);
9816 		/*
9817 		 * ufshcd_reset_and_restore() should have already
9818 		 * set the link state as active
9819 		 */
9820 		if (ret || !ufshcd_is_link_active(hba))
9821 			goto vendor_suspend;
9822 	}
9823 
9824 	if (!ufshcd_is_ufs_dev_active(hba)) {
9825 		ret = ufshcd_set_dev_pwr_mode(hba, UFS_ACTIVE_PWR_MODE);
9826 		if (ret)
9827 			goto set_old_link_state;
9828 		ufshcd_set_timestamp_attr(hba);
9829 		schedule_delayed_work(&hba->ufs_rtc_update_work,
9830 				      msecs_to_jiffies(UFS_RTC_UPDATE_INTERVAL_MS));
9831 	}
9832 
9833 	if (ufshcd_keep_autobkops_enabled_except_suspend(hba))
9834 		ufshcd_enable_auto_bkops(hba);
9835 	else
9836 		/*
9837 		 * If BKOPs operations are urgently needed at this moment then
9838 		 * keep auto-bkops enabled or else disable it.
9839 		 */
9840 		ufshcd_bkops_ctrl(hba);
9841 
9842 	if (hba->ee_usr_mask)
9843 		ufshcd_write_ee_control(hba);
9844 
9845 	if (ufshcd_is_clkscaling_supported(hba))
9846 		ufshcd_clk_scaling_suspend(hba, false);
9847 
9848 	if (hba->dev_info.b_rpm_dev_flush_capable) {
9849 		hba->dev_info.b_rpm_dev_flush_capable = false;
9850 		cancel_delayed_work(&hba->rpm_dev_flush_recheck_work);
9851 	}
9852 
9853 	ufshcd_configure_auto_hibern8(hba);
9854 
9855 	goto out;
9856 
9857 set_old_link_state:
9858 	ufshcd_link_state_transition(hba, old_link_state, 0);
9859 vendor_suspend:
9860 	ufshcd_vops_suspend(hba, pm_op, PRE_CHANGE);
9861 	ufshcd_vops_suspend(hba, pm_op, POST_CHANGE);
9862 out:
9863 	if (ret)
9864 		ufshcd_update_evt_hist(hba, UFS_EVT_WL_RES_ERR, (u32)ret);
9865 	hba->clk_gating.is_suspended = false;
9866 	ufshcd_release(hba);
9867 	hba->pm_op_in_progress = false;
9868 	return ret;
9869 }
9870 
9871 static int ufshcd_wl_runtime_suspend(struct device *dev)
9872 {
9873 	struct scsi_device *sdev = to_scsi_device(dev);
9874 	struct ufs_hba *hba;
9875 	int ret;
9876 	ktime_t start = ktime_get();
9877 
9878 	hba = shost_priv(sdev->host);
9879 
9880 	ret = __ufshcd_wl_suspend(hba, UFS_RUNTIME_PM);
9881 	if (ret)
9882 		dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
9883 
9884 	trace_ufshcd_wl_runtime_suspend(dev_name(dev), ret,
9885 		ktime_to_us(ktime_sub(ktime_get(), start)),
9886 		hba->curr_dev_pwr_mode, hba->uic_link_state);
9887 
9888 	return ret;
9889 }
9890 
9891 static int ufshcd_wl_runtime_resume(struct device *dev)
9892 {
9893 	struct scsi_device *sdev = to_scsi_device(dev);
9894 	struct ufs_hba *hba;
9895 	int ret = 0;
9896 	ktime_t start = ktime_get();
9897 
9898 	hba = shost_priv(sdev->host);
9899 
9900 	ret = __ufshcd_wl_resume(hba, UFS_RUNTIME_PM);
9901 	if (ret)
9902 		dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
9903 
9904 	trace_ufshcd_wl_runtime_resume(dev_name(dev), ret,
9905 		ktime_to_us(ktime_sub(ktime_get(), start)),
9906 		hba->curr_dev_pwr_mode, hba->uic_link_state);
9907 
9908 	return ret;
9909 }
9910 #endif
9911 
9912 #ifdef CONFIG_PM_SLEEP
9913 static int ufshcd_wl_suspend(struct device *dev)
9914 {
9915 	struct scsi_device *sdev = to_scsi_device(dev);
9916 	struct ufs_hba *hba;
9917 	int ret = 0;
9918 	ktime_t start = ktime_get();
9919 
9920 	hba = shost_priv(sdev->host);
9921 	down(&hba->host_sem);
9922 	hba->system_suspending = true;
9923 
9924 	if (pm_runtime_suspended(dev))
9925 		goto out;
9926 
9927 	ret = __ufshcd_wl_suspend(hba, UFS_SYSTEM_PM);
9928 	if (ret) {
9929 		dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__,  ret);
9930 		up(&hba->host_sem);
9931 	}
9932 
9933 out:
9934 	if (!ret)
9935 		hba->is_sys_suspended = true;
9936 	trace_ufshcd_wl_suspend(dev_name(dev), ret,
9937 		ktime_to_us(ktime_sub(ktime_get(), start)),
9938 		hba->curr_dev_pwr_mode, hba->uic_link_state);
9939 
9940 	return ret;
9941 }
9942 
9943 static int ufshcd_wl_resume(struct device *dev)
9944 {
9945 	struct scsi_device *sdev = to_scsi_device(dev);
9946 	struct ufs_hba *hba;
9947 	int ret = 0;
9948 	ktime_t start = ktime_get();
9949 
9950 	hba = shost_priv(sdev->host);
9951 
9952 	if (pm_runtime_suspended(dev))
9953 		goto out;
9954 
9955 	ret = __ufshcd_wl_resume(hba, UFS_SYSTEM_PM);
9956 	if (ret)
9957 		dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
9958 out:
9959 	trace_ufshcd_wl_resume(dev_name(dev), ret,
9960 		ktime_to_us(ktime_sub(ktime_get(), start)),
9961 		hba->curr_dev_pwr_mode, hba->uic_link_state);
9962 	if (!ret)
9963 		hba->is_sys_suspended = false;
9964 	hba->system_suspending = false;
9965 	up(&hba->host_sem);
9966 	return ret;
9967 }
9968 #endif
9969 
9970 /**
9971  * ufshcd_suspend - helper function for suspend operations
9972  * @hba: per adapter instance
9973  *
9974  * This function will put disable irqs, turn off clocks
9975  * and set vreg and hba-vreg in lpm mode.
9976  *
9977  * Return: 0 upon success; < 0 upon failure.
9978  */
9979 static int ufshcd_suspend(struct ufs_hba *hba)
9980 {
9981 	int ret;
9982 
9983 	if (!hba->is_powered)
9984 		return 0;
9985 	/*
9986 	 * Disable the host irq as host controller as there won't be any
9987 	 * host controller transaction expected till resume.
9988 	 */
9989 	ufshcd_disable_irq(hba);
9990 	ret = ufshcd_setup_clocks(hba, false);
9991 	if (ret) {
9992 		ufshcd_enable_irq(hba);
9993 		return ret;
9994 	}
9995 	if (ufshcd_is_clkgating_allowed(hba)) {
9996 		hba->clk_gating.state = CLKS_OFF;
9997 		trace_ufshcd_clk_gating(dev_name(hba->dev),
9998 					hba->clk_gating.state);
9999 	}
10000 
10001 	ufshcd_vreg_set_lpm(hba);
10002 	/* Put the host controller in low power mode if possible */
10003 	ufshcd_hba_vreg_set_lpm(hba);
10004 	ufshcd_pm_qos_update(hba, false);
10005 	return ret;
10006 }
10007 
10008 #ifdef CONFIG_PM
10009 /**
10010  * ufshcd_resume - helper function for resume operations
10011  * @hba: per adapter instance
10012  *
10013  * This function basically turns on the regulators, clocks and
10014  * irqs of the hba.
10015  *
10016  * Return: 0 for success and non-zero for failure.
10017  */
10018 static int ufshcd_resume(struct ufs_hba *hba)
10019 {
10020 	int ret;
10021 
10022 	if (!hba->is_powered)
10023 		return 0;
10024 
10025 	ufshcd_hba_vreg_set_hpm(hba);
10026 	ret = ufshcd_vreg_set_hpm(hba);
10027 	if (ret)
10028 		goto out;
10029 
10030 	/* Make sure clocks are enabled before accessing controller */
10031 	ret = ufshcd_setup_clocks(hba, true);
10032 	if (ret)
10033 		goto disable_vreg;
10034 
10035 	/* enable the host irq as host controller would be active soon */
10036 	ufshcd_enable_irq(hba);
10037 
10038 	goto out;
10039 
10040 disable_vreg:
10041 	ufshcd_vreg_set_lpm(hba);
10042 out:
10043 	if (ret)
10044 		ufshcd_update_evt_hist(hba, UFS_EVT_RESUME_ERR, (u32)ret);
10045 	return ret;
10046 }
10047 #endif /* CONFIG_PM */
10048 
10049 #ifdef CONFIG_PM_SLEEP
10050 /**
10051  * ufshcd_system_suspend - system suspend callback
10052  * @dev: Device associated with the UFS controller.
10053  *
10054  * Executed before putting the system into a sleep state in which the contents
10055  * of main memory are preserved.
10056  *
10057  * Return: 0 for success and non-zero for failure.
10058  */
10059 int ufshcd_system_suspend(struct device *dev)
10060 {
10061 	struct ufs_hba *hba = dev_get_drvdata(dev);
10062 	int ret = 0;
10063 	ktime_t start = ktime_get();
10064 
10065 	if (pm_runtime_suspended(hba->dev))
10066 		goto out;
10067 
10068 	ret = ufshcd_suspend(hba);
10069 out:
10070 	trace_ufshcd_system_suspend(dev_name(hba->dev), ret,
10071 		ktime_to_us(ktime_sub(ktime_get(), start)),
10072 		hba->curr_dev_pwr_mode, hba->uic_link_state);
10073 	return ret;
10074 }
10075 EXPORT_SYMBOL(ufshcd_system_suspend);
10076 
10077 /**
10078  * ufshcd_system_resume - system resume callback
10079  * @dev: Device associated with the UFS controller.
10080  *
10081  * Executed after waking the system up from a sleep state in which the contents
10082  * of main memory were preserved.
10083  *
10084  * Return: 0 for success and non-zero for failure.
10085  */
10086 int ufshcd_system_resume(struct device *dev)
10087 {
10088 	struct ufs_hba *hba = dev_get_drvdata(dev);
10089 	ktime_t start = ktime_get();
10090 	int ret = 0;
10091 
10092 	if (pm_runtime_suspended(hba->dev))
10093 		goto out;
10094 
10095 	ret = ufshcd_resume(hba);
10096 
10097 out:
10098 	trace_ufshcd_system_resume(dev_name(hba->dev), ret,
10099 		ktime_to_us(ktime_sub(ktime_get(), start)),
10100 		hba->curr_dev_pwr_mode, hba->uic_link_state);
10101 
10102 	return ret;
10103 }
10104 EXPORT_SYMBOL(ufshcd_system_resume);
10105 #endif /* CONFIG_PM_SLEEP */
10106 
10107 #ifdef CONFIG_PM
10108 /**
10109  * ufshcd_runtime_suspend - runtime suspend callback
10110  * @dev: Device associated with the UFS controller.
10111  *
10112  * Check the description of ufshcd_suspend() function for more details.
10113  *
10114  * Return: 0 for success and non-zero for failure.
10115  */
10116 int ufshcd_runtime_suspend(struct device *dev)
10117 {
10118 	struct ufs_hba *hba = dev_get_drvdata(dev);
10119 	int ret;
10120 	ktime_t start = ktime_get();
10121 
10122 	ret = ufshcd_suspend(hba);
10123 
10124 	trace_ufshcd_runtime_suspend(dev_name(hba->dev), ret,
10125 		ktime_to_us(ktime_sub(ktime_get(), start)),
10126 		hba->curr_dev_pwr_mode, hba->uic_link_state);
10127 	return ret;
10128 }
10129 EXPORT_SYMBOL(ufshcd_runtime_suspend);
10130 
10131 /**
10132  * ufshcd_runtime_resume - runtime resume routine
10133  * @dev: Device associated with the UFS controller.
10134  *
10135  * This function basically brings controller
10136  * to active state. Following operations are done in this function:
10137  *
10138  * 1. Turn on all the controller related clocks
10139  * 2. Turn ON VCC rail
10140  *
10141  * Return: 0 upon success; < 0 upon failure.
10142  */
10143 int ufshcd_runtime_resume(struct device *dev)
10144 {
10145 	struct ufs_hba *hba = dev_get_drvdata(dev);
10146 	int ret;
10147 	ktime_t start = ktime_get();
10148 
10149 	ret = ufshcd_resume(hba);
10150 
10151 	trace_ufshcd_runtime_resume(dev_name(hba->dev), ret,
10152 		ktime_to_us(ktime_sub(ktime_get(), start)),
10153 		hba->curr_dev_pwr_mode, hba->uic_link_state);
10154 	return ret;
10155 }
10156 EXPORT_SYMBOL(ufshcd_runtime_resume);
10157 #endif /* CONFIG_PM */
10158 
10159 static void ufshcd_wl_shutdown(struct device *dev)
10160 {
10161 	struct scsi_device *sdev = to_scsi_device(dev);
10162 	struct ufs_hba *hba = shost_priv(sdev->host);
10163 
10164 	down(&hba->host_sem);
10165 	hba->shutting_down = true;
10166 	up(&hba->host_sem);
10167 
10168 	/* Turn on everything while shutting down */
10169 	ufshcd_rpm_get_sync(hba);
10170 	scsi_device_quiesce(sdev);
10171 	shost_for_each_device(sdev, hba->host) {
10172 		if (sdev == hba->ufs_device_wlun)
10173 			continue;
10174 		scsi_device_quiesce(sdev);
10175 	}
10176 	__ufshcd_wl_suspend(hba, UFS_SHUTDOWN_PM);
10177 
10178 	/*
10179 	 * Next, turn off the UFS controller and the UFS regulators. Disable
10180 	 * clocks.
10181 	 */
10182 	if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba))
10183 		ufshcd_suspend(hba);
10184 
10185 	hba->is_powered = false;
10186 }
10187 
10188 /**
10189  * ufshcd_remove - de-allocate SCSI host and host memory space
10190  *		data structure memory
10191  * @hba: per adapter instance
10192  */
10193 void ufshcd_remove(struct ufs_hba *hba)
10194 {
10195 	if (hba->ufs_device_wlun)
10196 		ufshcd_rpm_get_sync(hba);
10197 	ufs_hwmon_remove(hba);
10198 	ufs_bsg_remove(hba);
10199 	ufs_sysfs_remove_nodes(hba->dev);
10200 	blk_mq_destroy_queue(hba->tmf_queue);
10201 	blk_put_queue(hba->tmf_queue);
10202 	blk_mq_free_tag_set(&hba->tmf_tag_set);
10203 	if (hba->scsi_host_added)
10204 		scsi_remove_host(hba->host);
10205 	/* disable interrupts */
10206 	ufshcd_disable_intr(hba, hba->intr_mask);
10207 	ufshcd_hba_stop(hba);
10208 	ufshcd_hba_exit(hba);
10209 }
10210 EXPORT_SYMBOL_GPL(ufshcd_remove);
10211 
10212 #ifdef CONFIG_PM_SLEEP
10213 int ufshcd_system_freeze(struct device *dev)
10214 {
10215 
10216 	return ufshcd_system_suspend(dev);
10217 
10218 }
10219 EXPORT_SYMBOL_GPL(ufshcd_system_freeze);
10220 
10221 int ufshcd_system_restore(struct device *dev)
10222 {
10223 
10224 	struct ufs_hba *hba = dev_get_drvdata(dev);
10225 	int ret;
10226 
10227 	ret = ufshcd_system_resume(dev);
10228 	if (ret)
10229 		return ret;
10230 
10231 	/* Configure UTRL and UTMRL base address registers */
10232 	ufshcd_writel(hba, lower_32_bits(hba->utrdl_dma_addr),
10233 			REG_UTP_TRANSFER_REQ_LIST_BASE_L);
10234 	ufshcd_writel(hba, upper_32_bits(hba->utrdl_dma_addr),
10235 			REG_UTP_TRANSFER_REQ_LIST_BASE_H);
10236 	ufshcd_writel(hba, lower_32_bits(hba->utmrdl_dma_addr),
10237 			REG_UTP_TASK_REQ_LIST_BASE_L);
10238 	ufshcd_writel(hba, upper_32_bits(hba->utmrdl_dma_addr),
10239 			REG_UTP_TASK_REQ_LIST_BASE_H);
10240 	/*
10241 	 * Make sure that UTRL and UTMRL base address registers
10242 	 * are updated with the latest queue addresses. Only after
10243 	 * updating these addresses, we can queue the new commands.
10244 	 */
10245 	ufshcd_readl(hba, REG_UTP_TASK_REQ_LIST_BASE_H);
10246 
10247 	return 0;
10248 
10249 }
10250 EXPORT_SYMBOL_GPL(ufshcd_system_restore);
10251 
10252 int ufshcd_system_thaw(struct device *dev)
10253 {
10254 	return ufshcd_system_resume(dev);
10255 }
10256 EXPORT_SYMBOL_GPL(ufshcd_system_thaw);
10257 #endif /* CONFIG_PM_SLEEP  */
10258 
10259 /**
10260  * ufshcd_dealloc_host - deallocate Host Bus Adapter (HBA)
10261  * @hba: pointer to Host Bus Adapter (HBA)
10262  */
10263 void ufshcd_dealloc_host(struct ufs_hba *hba)
10264 {
10265 	scsi_host_put(hba->host);
10266 }
10267 EXPORT_SYMBOL_GPL(ufshcd_dealloc_host);
10268 
10269 /**
10270  * ufshcd_set_dma_mask - Set dma mask based on the controller
10271  *			 addressing capability
10272  * @hba: per adapter instance
10273  *
10274  * Return: 0 for success, non-zero for failure.
10275  */
10276 static int ufshcd_set_dma_mask(struct ufs_hba *hba)
10277 {
10278 	if (hba->vops && hba->vops->set_dma_mask)
10279 		return hba->vops->set_dma_mask(hba);
10280 	if (hba->capabilities & MASK_64_ADDRESSING_SUPPORT) {
10281 		if (!dma_set_mask_and_coherent(hba->dev, DMA_BIT_MASK(64)))
10282 			return 0;
10283 	}
10284 	return dma_set_mask_and_coherent(hba->dev, DMA_BIT_MASK(32));
10285 }
10286 
10287 /**
10288  * ufshcd_alloc_host - allocate Host Bus Adapter (HBA)
10289  * @dev: pointer to device handle
10290  * @hba_handle: driver private handle
10291  *
10292  * Return: 0 on success, non-zero value on failure.
10293  */
10294 int ufshcd_alloc_host(struct device *dev, struct ufs_hba **hba_handle)
10295 {
10296 	struct Scsi_Host *host;
10297 	struct ufs_hba *hba;
10298 	int err = 0;
10299 
10300 	if (!dev) {
10301 		dev_err(dev,
10302 		"Invalid memory reference for dev is NULL\n");
10303 		err = -ENODEV;
10304 		goto out_error;
10305 	}
10306 
10307 	host = scsi_host_alloc(&ufshcd_driver_template,
10308 				sizeof(struct ufs_hba));
10309 	if (!host) {
10310 		dev_err(dev, "scsi_host_alloc failed\n");
10311 		err = -ENOMEM;
10312 		goto out_error;
10313 	}
10314 	host->nr_maps = HCTX_TYPE_POLL + 1;
10315 	hba = shost_priv(host);
10316 	hba->host = host;
10317 	hba->dev = dev;
10318 	hba->dev_ref_clk_freq = REF_CLK_FREQ_INVAL;
10319 	hba->nop_out_timeout = NOP_OUT_TIMEOUT;
10320 	ufshcd_set_sg_entry_size(hba, sizeof(struct ufshcd_sg_entry));
10321 	INIT_LIST_HEAD(&hba->clk_list_head);
10322 	spin_lock_init(&hba->outstanding_lock);
10323 
10324 	*hba_handle = hba;
10325 
10326 out_error:
10327 	return err;
10328 }
10329 EXPORT_SYMBOL(ufshcd_alloc_host);
10330 
10331 /* This function exists because blk_mq_alloc_tag_set() requires this. */
10332 static blk_status_t ufshcd_queue_tmf(struct blk_mq_hw_ctx *hctx,
10333 				     const struct blk_mq_queue_data *qd)
10334 {
10335 	WARN_ON_ONCE(true);
10336 	return BLK_STS_NOTSUPP;
10337 }
10338 
10339 static const struct blk_mq_ops ufshcd_tmf_ops = {
10340 	.queue_rq = ufshcd_queue_tmf,
10341 };
10342 
10343 static int ufshcd_add_scsi_host(struct ufs_hba *hba)
10344 {
10345 	int err;
10346 
10347 	if (is_mcq_supported(hba)) {
10348 		ufshcd_mcq_enable(hba);
10349 		err = ufshcd_alloc_mcq(hba);
10350 		if (!err) {
10351 			ufshcd_config_mcq(hba);
10352 		} else {
10353 			/* Continue with SDB mode */
10354 			ufshcd_mcq_disable(hba);
10355 			use_mcq_mode = false;
10356 			dev_err(hba->dev, "MCQ mode is disabled, err=%d\n",
10357 				err);
10358 		}
10359 		err = scsi_add_host(hba->host, hba->dev);
10360 		if (err) {
10361 			dev_err(hba->dev, "scsi_add_host failed\n");
10362 			return err;
10363 		}
10364 		hba->scsi_host_added = true;
10365 	} else {
10366 		if (!hba->lsdb_sup) {
10367 			dev_err(hba->dev,
10368 				"%s: failed to initialize (legacy doorbell mode not supported)\n",
10369 				__func__);
10370 			return -EINVAL;
10371 		}
10372 		err = scsi_add_host(hba->host, hba->dev);
10373 		if (err) {
10374 			dev_err(hba->dev, "scsi_add_host failed\n");
10375 			return err;
10376 		}
10377 		hba->scsi_host_added = true;
10378 	}
10379 
10380 	hba->tmf_tag_set = (struct blk_mq_tag_set) {
10381 		.nr_hw_queues	= 1,
10382 		.queue_depth	= hba->nutmrs,
10383 		.ops		= &ufshcd_tmf_ops,
10384 		.flags		= BLK_MQ_F_NO_SCHED,
10385 	};
10386 	err = blk_mq_alloc_tag_set(&hba->tmf_tag_set);
10387 	if (err < 0)
10388 		goto remove_scsi_host;
10389 	hba->tmf_queue = blk_mq_alloc_queue(&hba->tmf_tag_set, NULL, NULL);
10390 	if (IS_ERR(hba->tmf_queue)) {
10391 		err = PTR_ERR(hba->tmf_queue);
10392 		goto free_tmf_tag_set;
10393 	}
10394 	hba->tmf_rqs = devm_kcalloc(hba->dev, hba->nutmrs,
10395 				    sizeof(*hba->tmf_rqs), GFP_KERNEL);
10396 	if (!hba->tmf_rqs) {
10397 		err = -ENOMEM;
10398 		goto free_tmf_queue;
10399 	}
10400 
10401 	return 0;
10402 
10403 free_tmf_queue:
10404 	blk_mq_destroy_queue(hba->tmf_queue);
10405 	blk_put_queue(hba->tmf_queue);
10406 
10407 free_tmf_tag_set:
10408 	blk_mq_free_tag_set(&hba->tmf_tag_set);
10409 
10410 remove_scsi_host:
10411 	if (hba->scsi_host_added)
10412 		scsi_remove_host(hba->host);
10413 
10414 	return err;
10415 }
10416 
10417 /**
10418  * ufshcd_init - Driver initialization routine
10419  * @hba: per-adapter instance
10420  * @mmio_base: base register address
10421  * @irq: Interrupt line of device
10422  *
10423  * Return: 0 on success, non-zero value on failure.
10424  */
10425 int ufshcd_init(struct ufs_hba *hba, void __iomem *mmio_base, unsigned int irq)
10426 {
10427 	int err;
10428 	struct Scsi_Host *host = hba->host;
10429 	struct device *dev = hba->dev;
10430 
10431 	/*
10432 	 * dev_set_drvdata() must be called before any callbacks are registered
10433 	 * that use dev_get_drvdata() (frequency scaling, clock scaling, hwmon,
10434 	 * sysfs).
10435 	 */
10436 	dev_set_drvdata(dev, hba);
10437 
10438 	if (!mmio_base) {
10439 		dev_err(hba->dev,
10440 		"Invalid memory reference for mmio_base is NULL\n");
10441 		err = -ENODEV;
10442 		goto out_error;
10443 	}
10444 
10445 	hba->mmio_base = mmio_base;
10446 	hba->irq = irq;
10447 	hba->vps = &ufs_hba_vps;
10448 
10449 	err = ufshcd_hba_init(hba);
10450 	if (err)
10451 		goto out_error;
10452 
10453 	/* Read capabilities registers */
10454 	err = ufshcd_hba_capabilities(hba);
10455 	if (err)
10456 		goto out_disable;
10457 
10458 	/* Get UFS version supported by the controller */
10459 	hba->ufs_version = ufshcd_get_ufs_version(hba);
10460 
10461 	/* Get Interrupt bit mask per version */
10462 	hba->intr_mask = ufshcd_get_intr_mask(hba);
10463 
10464 	err = ufshcd_set_dma_mask(hba);
10465 	if (err) {
10466 		dev_err(hba->dev, "set dma mask failed\n");
10467 		goto out_disable;
10468 	}
10469 
10470 	/* Allocate memory for host memory space */
10471 	err = ufshcd_memory_alloc(hba);
10472 	if (err) {
10473 		dev_err(hba->dev, "Memory allocation failed\n");
10474 		goto out_disable;
10475 	}
10476 
10477 	/* Configure LRB */
10478 	ufshcd_host_memory_configure(hba);
10479 
10480 	host->can_queue = hba->nutrs - UFSHCD_NUM_RESERVED;
10481 	host->cmd_per_lun = hba->nutrs - UFSHCD_NUM_RESERVED;
10482 	host->max_id = UFSHCD_MAX_ID;
10483 	host->max_lun = UFS_MAX_LUNS;
10484 	host->max_channel = UFSHCD_MAX_CHANNEL;
10485 	host->unique_id = host->host_no;
10486 	host->max_cmd_len = UFS_CDB_SIZE;
10487 	host->queuecommand_may_block = !!(hba->caps & UFSHCD_CAP_CLK_GATING);
10488 
10489 	/* Use default RPM delay if host not set */
10490 	if (host->rpm_autosuspend_delay == 0)
10491 		host->rpm_autosuspend_delay = RPM_AUTOSUSPEND_DELAY_MS;
10492 
10493 	hba->max_pwr_info.is_valid = false;
10494 
10495 	/* Initialize work queues */
10496 	hba->eh_wq = alloc_ordered_workqueue("ufs_eh_wq_%d", WQ_MEM_RECLAIM,
10497 					     hba->host->host_no);
10498 	if (!hba->eh_wq) {
10499 		dev_err(hba->dev, "%s: failed to create eh workqueue\n",
10500 			__func__);
10501 		err = -ENOMEM;
10502 		goto out_disable;
10503 	}
10504 	INIT_WORK(&hba->eh_work, ufshcd_err_handler);
10505 	INIT_WORK(&hba->eeh_work, ufshcd_exception_event_handler);
10506 
10507 	sema_init(&hba->host_sem, 1);
10508 
10509 	/* Initialize UIC command mutex */
10510 	mutex_init(&hba->uic_cmd_mutex);
10511 
10512 	/* Initialize mutex for device management commands */
10513 	mutex_init(&hba->dev_cmd.lock);
10514 
10515 	/* Initialize mutex for exception event control */
10516 	mutex_init(&hba->ee_ctrl_mutex);
10517 
10518 	mutex_init(&hba->wb_mutex);
10519 	init_rwsem(&hba->clk_scaling_lock);
10520 
10521 	ufshcd_init_clk_gating(hba);
10522 
10523 	ufshcd_init_clk_scaling(hba);
10524 
10525 	/*
10526 	 * In order to avoid any spurious interrupt immediately after
10527 	 * registering UFS controller interrupt handler, clear any pending UFS
10528 	 * interrupt status and disable all the UFS interrupts.
10529 	 */
10530 	ufshcd_writel(hba, ufshcd_readl(hba, REG_INTERRUPT_STATUS),
10531 		      REG_INTERRUPT_STATUS);
10532 	ufshcd_writel(hba, 0, REG_INTERRUPT_ENABLE);
10533 	/*
10534 	 * Make sure that UFS interrupts are disabled and any pending interrupt
10535 	 * status is cleared before registering UFS interrupt handler.
10536 	 */
10537 	ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
10538 
10539 	/* IRQ registration */
10540 	err = devm_request_irq(dev, irq, ufshcd_intr, IRQF_SHARED, UFSHCD, hba);
10541 	if (err) {
10542 		dev_err(hba->dev, "request irq failed\n");
10543 		goto out_disable;
10544 	} else {
10545 		hba->is_irq_enabled = true;
10546 	}
10547 
10548 	/* Reset the attached device */
10549 	ufshcd_device_reset(hba);
10550 
10551 	ufshcd_init_crypto(hba);
10552 
10553 	/* Host controller enable */
10554 	err = ufshcd_hba_enable(hba);
10555 	if (err) {
10556 		dev_err(hba->dev, "Host controller enable failed\n");
10557 		ufshcd_print_evt_hist(hba);
10558 		ufshcd_print_host_state(hba);
10559 		goto out_disable;
10560 	}
10561 
10562 	/*
10563 	 * Set the default power management level for runtime and system PM.
10564 	 * Default power saving mode is to keep UFS link in Hibern8 state
10565 	 * and UFS device in sleep state.
10566 	 */
10567 	hba->rpm_lvl = ufs_get_desired_pm_lvl_for_dev_link_state(
10568 						UFS_SLEEP_PWR_MODE,
10569 						UIC_LINK_HIBERN8_STATE);
10570 	hba->spm_lvl = ufs_get_desired_pm_lvl_for_dev_link_state(
10571 						UFS_SLEEP_PWR_MODE,
10572 						UIC_LINK_HIBERN8_STATE);
10573 
10574 	INIT_DELAYED_WORK(&hba->rpm_dev_flush_recheck_work, ufshcd_rpm_dev_flush_recheck_work);
10575 	INIT_DELAYED_WORK(&hba->ufs_rtc_update_work, ufshcd_rtc_work);
10576 
10577 	/* Set the default auto-hiberate idle timer value to 150 ms */
10578 	if (ufshcd_is_auto_hibern8_supported(hba) && !hba->ahit) {
10579 		hba->ahit = FIELD_PREP(UFSHCI_AHIBERN8_TIMER_MASK, 150) |
10580 			    FIELD_PREP(UFSHCI_AHIBERN8_SCALE_MASK, 3);
10581 	}
10582 
10583 	/* Hold auto suspend until async scan completes */
10584 	pm_runtime_get_sync(dev);
10585 
10586 	/*
10587 	 * We are assuming that device wasn't put in sleep/power-down
10588 	 * state exclusively during the boot stage before kernel.
10589 	 * This assumption helps avoid doing link startup twice during
10590 	 * ufshcd_probe_hba().
10591 	 */
10592 	ufshcd_set_ufs_dev_active(hba);
10593 
10594 	/* Initialize hba, detect and initialize UFS device */
10595 	ktime_t probe_start = ktime_get();
10596 
10597 	hba->ufshcd_state = UFSHCD_STATE_RESET;
10598 
10599 	err = ufshcd_link_startup(hba);
10600 	if (err)
10601 		goto out_disable;
10602 
10603 	if (hba->quirks & UFSHCD_QUIRK_SKIP_PH_CONFIGURATION)
10604 		goto initialized;
10605 
10606 	/* Debug counters initialization */
10607 	ufshcd_clear_dbg_ufs_stats(hba);
10608 
10609 	/* UniPro link is active now */
10610 	ufshcd_set_link_active(hba);
10611 
10612 	/* Verify device initialization by sending NOP OUT UPIU */
10613 	err = ufshcd_verify_dev_init(hba);
10614 	if (err)
10615 		goto out_disable;
10616 
10617 	/* Initiate UFS initialization, and waiting until completion */
10618 	err = ufshcd_complete_dev_init(hba);
10619 	if (err)
10620 		goto out_disable;
10621 
10622 	err = ufshcd_device_params_init(hba);
10623 	if (err)
10624 		goto out_disable;
10625 
10626 	err = ufshcd_post_device_init(hba);
10627 
10628 initialized:
10629 	ufshcd_process_probe_result(hba, probe_start, err);
10630 	if (err)
10631 		goto out_disable;
10632 
10633 	err = ufshcd_add_scsi_host(hba);
10634 	if (err)
10635 		goto out_disable;
10636 
10637 	async_schedule(ufshcd_async_scan, hba);
10638 	ufs_sysfs_add_nodes(hba->dev);
10639 
10640 	device_enable_async_suspend(dev);
10641 	ufshcd_pm_qos_init(hba);
10642 	return 0;
10643 
10644 out_disable:
10645 	hba->is_irq_enabled = false;
10646 	ufshcd_hba_exit(hba);
10647 out_error:
10648 	return err;
10649 }
10650 EXPORT_SYMBOL_GPL(ufshcd_init);
10651 
10652 void ufshcd_resume_complete(struct device *dev)
10653 {
10654 	struct ufs_hba *hba = dev_get_drvdata(dev);
10655 
10656 	if (hba->complete_put) {
10657 		ufshcd_rpm_put(hba);
10658 		hba->complete_put = false;
10659 	}
10660 }
10661 EXPORT_SYMBOL_GPL(ufshcd_resume_complete);
10662 
10663 static bool ufshcd_rpm_ok_for_spm(struct ufs_hba *hba)
10664 {
10665 	struct device *dev = &hba->ufs_device_wlun->sdev_gendev;
10666 	enum ufs_dev_pwr_mode dev_pwr_mode;
10667 	enum uic_link_state link_state;
10668 	unsigned long flags;
10669 	bool res;
10670 
10671 	spin_lock_irqsave(&dev->power.lock, flags);
10672 	dev_pwr_mode = ufs_get_pm_lvl_to_dev_pwr_mode(hba->spm_lvl);
10673 	link_state = ufs_get_pm_lvl_to_link_pwr_state(hba->spm_lvl);
10674 	res = pm_runtime_suspended(dev) &&
10675 	      hba->curr_dev_pwr_mode == dev_pwr_mode &&
10676 	      hba->uic_link_state == link_state &&
10677 	      !hba->dev_info.b_rpm_dev_flush_capable;
10678 	spin_unlock_irqrestore(&dev->power.lock, flags);
10679 
10680 	return res;
10681 }
10682 
10683 int __ufshcd_suspend_prepare(struct device *dev, bool rpm_ok_for_spm)
10684 {
10685 	struct ufs_hba *hba = dev_get_drvdata(dev);
10686 	int ret;
10687 
10688 	/*
10689 	 * SCSI assumes that runtime-pm and system-pm for scsi drivers
10690 	 * are same. And it doesn't wake up the device for system-suspend
10691 	 * if it's runtime suspended. But ufs doesn't follow that.
10692 	 * Refer ufshcd_resume_complete()
10693 	 */
10694 	if (hba->ufs_device_wlun) {
10695 		/* Prevent runtime suspend */
10696 		ufshcd_rpm_get_noresume(hba);
10697 		/*
10698 		 * Check if already runtime suspended in same state as system
10699 		 * suspend would be.
10700 		 */
10701 		if (!rpm_ok_for_spm || !ufshcd_rpm_ok_for_spm(hba)) {
10702 			/* RPM state is not ok for SPM, so runtime resume */
10703 			ret = ufshcd_rpm_resume(hba);
10704 			if (ret < 0 && ret != -EACCES) {
10705 				ufshcd_rpm_put(hba);
10706 				return ret;
10707 			}
10708 		}
10709 		hba->complete_put = true;
10710 	}
10711 	return 0;
10712 }
10713 EXPORT_SYMBOL_GPL(__ufshcd_suspend_prepare);
10714 
10715 int ufshcd_suspend_prepare(struct device *dev)
10716 {
10717 	return __ufshcd_suspend_prepare(dev, true);
10718 }
10719 EXPORT_SYMBOL_GPL(ufshcd_suspend_prepare);
10720 
10721 #ifdef CONFIG_PM_SLEEP
10722 static int ufshcd_wl_poweroff(struct device *dev)
10723 {
10724 	struct scsi_device *sdev = to_scsi_device(dev);
10725 	struct ufs_hba *hba = shost_priv(sdev->host);
10726 
10727 	__ufshcd_wl_suspend(hba, UFS_SHUTDOWN_PM);
10728 	return 0;
10729 }
10730 #endif
10731 
10732 static int ufshcd_wl_probe(struct device *dev)
10733 {
10734 	struct scsi_device *sdev = to_scsi_device(dev);
10735 
10736 	if (!is_device_wlun(sdev))
10737 		return -ENODEV;
10738 
10739 	blk_pm_runtime_init(sdev->request_queue, dev);
10740 	pm_runtime_set_autosuspend_delay(dev, 0);
10741 	pm_runtime_allow(dev);
10742 
10743 	return  0;
10744 }
10745 
10746 static int ufshcd_wl_remove(struct device *dev)
10747 {
10748 	pm_runtime_forbid(dev);
10749 	return 0;
10750 }
10751 
10752 static const struct dev_pm_ops ufshcd_wl_pm_ops = {
10753 #ifdef CONFIG_PM_SLEEP
10754 	.suspend = ufshcd_wl_suspend,
10755 	.resume = ufshcd_wl_resume,
10756 	.freeze = ufshcd_wl_suspend,
10757 	.thaw = ufshcd_wl_resume,
10758 	.poweroff = ufshcd_wl_poweroff,
10759 	.restore = ufshcd_wl_resume,
10760 #endif
10761 	SET_RUNTIME_PM_OPS(ufshcd_wl_runtime_suspend, ufshcd_wl_runtime_resume, NULL)
10762 };
10763 
10764 static void ufshcd_check_header_layout(void)
10765 {
10766 	/*
10767 	 * gcc compilers before version 10 cannot do constant-folding for
10768 	 * sub-byte bitfields. Hence skip the layout checks for gcc 9 and
10769 	 * before.
10770 	 */
10771 	if (IS_ENABLED(CONFIG_CC_IS_GCC) && CONFIG_GCC_VERSION < 100000)
10772 		return;
10773 
10774 	BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10775 				.cci = 3})[0] != 3);
10776 
10777 	BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10778 				.ehs_length = 2})[1] != 2);
10779 
10780 	BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10781 				.enable_crypto = 1})[2]
10782 		     != 0x80);
10783 
10784 	BUILD_BUG_ON((((u8 *)&(struct request_desc_header){
10785 					.command_type = 5,
10786 					.data_direction = 3,
10787 					.interrupt = 1,
10788 				})[3]) != ((5 << 4) | (3 << 1) | 1));
10789 
10790 	BUILD_BUG_ON(((__le32 *)&(struct request_desc_header){
10791 				.dunl = cpu_to_le32(0xdeadbeef)})[1] !=
10792 		cpu_to_le32(0xdeadbeef));
10793 
10794 	BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10795 				.ocs = 4})[8] != 4);
10796 
10797 	BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10798 				.cds = 5})[9] != 5);
10799 
10800 	BUILD_BUG_ON(((__le32 *)&(struct request_desc_header){
10801 				.dunu = cpu_to_le32(0xbadcafe)})[3] !=
10802 		cpu_to_le32(0xbadcafe));
10803 
10804 	BUILD_BUG_ON(((u8 *)&(struct utp_upiu_header){
10805 			     .iid = 0xf })[4] != 0xf0);
10806 
10807 	BUILD_BUG_ON(((u8 *)&(struct utp_upiu_header){
10808 			     .command_set_type = 0xf })[4] != 0xf);
10809 }
10810 
10811 /*
10812  * ufs_dev_wlun_template - describes ufs device wlun
10813  * ufs-device wlun - used to send pm commands
10814  * All luns are consumers of ufs-device wlun.
10815  *
10816  * Currently, no sd driver is present for wluns.
10817  * Hence the no specific pm operations are performed.
10818  * With ufs design, SSU should be sent to ufs-device wlun.
10819  * Hence register a scsi driver for ufs wluns only.
10820  */
10821 static struct scsi_driver ufs_dev_wlun_template = {
10822 	.gendrv = {
10823 		.name = "ufs_device_wlun",
10824 		.probe = ufshcd_wl_probe,
10825 		.remove = ufshcd_wl_remove,
10826 		.pm = &ufshcd_wl_pm_ops,
10827 		.shutdown = ufshcd_wl_shutdown,
10828 	},
10829 };
10830 
10831 static int __init ufshcd_core_init(void)
10832 {
10833 	int ret;
10834 
10835 	ufshcd_check_header_layout();
10836 
10837 	ufs_debugfs_init();
10838 
10839 	ret = scsi_register_driver(&ufs_dev_wlun_template.gendrv);
10840 	if (ret)
10841 		ufs_debugfs_exit();
10842 	return ret;
10843 }
10844 
10845 static void __exit ufshcd_core_exit(void)
10846 {
10847 	ufs_debugfs_exit();
10848 	scsi_unregister_driver(&ufs_dev_wlun_template.gendrv);
10849 }
10850 
10851 module_init(ufshcd_core_init);
10852 module_exit(ufshcd_core_exit);
10853 
10854 MODULE_AUTHOR("Santosh Yaragnavi <santosh.sy@samsung.com>");
10855 MODULE_AUTHOR("Vinayak Holikatti <h.vinayak@samsung.com>");
10856 MODULE_DESCRIPTION("Generic UFS host controller driver Core");
10857 MODULE_SOFTDEP("pre: governor_simpleondemand");
10858 MODULE_LICENSE("GPL");
10859