xref: /linux/drivers/ufs/core/ufshcd.c (revision 5b026e34120766408e76ba19a0e33a9dc996f9f0)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Universal Flash Storage Host controller driver Core
4  * Copyright (C) 2011-2013 Samsung India Software Operations
5  * Copyright (c) 2013-2016, The Linux Foundation. All rights reserved.
6  *
7  * Authors:
8  *	Santosh Yaraganavi <santosh.sy@samsung.com>
9  *	Vinayak Holikatti <h.vinayak@samsung.com>
10  */
11 
12 #include <linux/async.h>
13 #include <linux/devfreq.h>
14 #include <linux/nls.h>
15 #include <linux/of.h>
16 #include <linux/bitfield.h>
17 #include <linux/blk-pm.h>
18 #include <linux/blkdev.h>
19 #include <linux/clk.h>
20 #include <linux/delay.h>
21 #include <linux/interrupt.h>
22 #include <linux/module.h>
23 #include <linux/pm_opp.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/sched/clock.h>
26 #include <linux/iopoll.h>
27 #include <scsi/scsi_cmnd.h>
28 #include <scsi/scsi_dbg.h>
29 #include <scsi/scsi_driver.h>
30 #include <scsi/scsi_eh.h>
31 #include "ufshcd-priv.h"
32 #include <ufs/ufs_quirks.h>
33 #include <ufs/unipro.h>
34 #include "ufs-sysfs.h"
35 #include "ufs-debugfs.h"
36 #include "ufs-fault-injection.h"
37 #include "ufs_bsg.h"
38 #include "ufshcd-crypto.h"
39 #include <asm/unaligned.h>
40 
41 #define CREATE_TRACE_POINTS
42 #include <trace/events/ufs.h>
43 
44 #define UFSHCD_ENABLE_INTRS	(UTP_TRANSFER_REQ_COMPL |\
45 				 UTP_TASK_REQ_COMPL |\
46 				 UFSHCD_ERROR_MASK)
47 
48 #define UFSHCD_ENABLE_MCQ_INTRS	(UTP_TASK_REQ_COMPL |\
49 				 UFSHCD_ERROR_MASK |\
50 				 MCQ_CQ_EVENT_STATUS)
51 
52 
53 /* UIC command timeout, unit: ms */
54 #define UIC_CMD_TIMEOUT	500
55 
56 /* NOP OUT retries waiting for NOP IN response */
57 #define NOP_OUT_RETRIES    10
58 /* Timeout after 50 msecs if NOP OUT hangs without response */
59 #define NOP_OUT_TIMEOUT    50 /* msecs */
60 
61 /* Query request retries */
62 #define QUERY_REQ_RETRIES 3
63 /* Query request timeout */
64 #define QUERY_REQ_TIMEOUT 1500 /* 1.5 seconds */
65 
66 /* Advanced RPMB request timeout */
67 #define ADVANCED_RPMB_REQ_TIMEOUT  3000 /* 3 seconds */
68 
69 /* Task management command timeout */
70 #define TM_CMD_TIMEOUT	100 /* msecs */
71 
72 /* maximum number of retries for a general UIC command  */
73 #define UFS_UIC_COMMAND_RETRIES 3
74 
75 /* maximum number of link-startup retries */
76 #define DME_LINKSTARTUP_RETRIES 3
77 
78 /* maximum number of reset retries before giving up */
79 #define MAX_HOST_RESET_RETRIES 5
80 
81 /* Maximum number of error handler retries before giving up */
82 #define MAX_ERR_HANDLER_RETRIES 5
83 
84 /* Expose the flag value from utp_upiu_query.value */
85 #define MASK_QUERY_UPIU_FLAG_LOC 0xFF
86 
87 /* Interrupt aggregation default timeout, unit: 40us */
88 #define INT_AGGR_DEF_TO	0x02
89 
90 /* default delay of autosuspend: 2000 ms */
91 #define RPM_AUTOSUSPEND_DELAY_MS 2000
92 
93 /* Default delay of RPM device flush delayed work */
94 #define RPM_DEV_FLUSH_RECHECK_WORK_DELAY_MS 5000
95 
96 /* Default value of wait time before gating device ref clock */
97 #define UFSHCD_REF_CLK_GATING_WAIT_US 0xFF /* microsecs */
98 
99 /* Polling time to wait for fDeviceInit */
100 #define FDEVICEINIT_COMPL_TIMEOUT 1500 /* millisecs */
101 
102 /* Default RTC update every 10 seconds */
103 #define UFS_RTC_UPDATE_INTERVAL_MS (10 * MSEC_PER_SEC)
104 
105 /* UFSHC 4.0 compliant HC support this mode. */
106 static bool use_mcq_mode = true;
107 
108 static bool is_mcq_supported(struct ufs_hba *hba)
109 {
110 	return hba->mcq_sup && use_mcq_mode;
111 }
112 
113 module_param(use_mcq_mode, bool, 0644);
114 MODULE_PARM_DESC(use_mcq_mode, "Control MCQ mode for controllers starting from UFSHCI 4.0. 1 - enable MCQ, 0 - disable MCQ. MCQ is enabled by default");
115 
116 #define ufshcd_toggle_vreg(_dev, _vreg, _on)				\
117 	({                                                              \
118 		int _ret;                                               \
119 		if (_on)                                                \
120 			_ret = ufshcd_enable_vreg(_dev, _vreg);         \
121 		else                                                    \
122 			_ret = ufshcd_disable_vreg(_dev, _vreg);        \
123 		_ret;                                                   \
124 	})
125 
126 #define ufshcd_hex_dump(prefix_str, buf, len) do {                       \
127 	size_t __len = (len);                                            \
128 	print_hex_dump(KERN_ERR, prefix_str,                             \
129 		       __len > 4 ? DUMP_PREFIX_OFFSET : DUMP_PREFIX_NONE,\
130 		       16, 4, buf, __len, false);                        \
131 } while (0)
132 
133 int ufshcd_dump_regs(struct ufs_hba *hba, size_t offset, size_t len,
134 		     const char *prefix)
135 {
136 	u32 *regs;
137 	size_t pos;
138 
139 	if (offset % 4 != 0 || len % 4 != 0) /* keep readl happy */
140 		return -EINVAL;
141 
142 	regs = kzalloc(len, GFP_ATOMIC);
143 	if (!regs)
144 		return -ENOMEM;
145 
146 	for (pos = 0; pos < len; pos += 4) {
147 		if (offset == 0 &&
148 		    pos >= REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER &&
149 		    pos <= REG_UIC_ERROR_CODE_DME)
150 			continue;
151 		regs[pos / 4] = ufshcd_readl(hba, offset + pos);
152 	}
153 
154 	ufshcd_hex_dump(prefix, regs, len);
155 	kfree(regs);
156 
157 	return 0;
158 }
159 EXPORT_SYMBOL_GPL(ufshcd_dump_regs);
160 
161 enum {
162 	UFSHCD_MAX_CHANNEL	= 0,
163 	UFSHCD_MAX_ID		= 1,
164 	UFSHCD_CMD_PER_LUN	= 32 - UFSHCD_NUM_RESERVED,
165 	UFSHCD_CAN_QUEUE	= 32 - UFSHCD_NUM_RESERVED,
166 };
167 
168 static const char *const ufshcd_state_name[] = {
169 	[UFSHCD_STATE_RESET]			= "reset",
170 	[UFSHCD_STATE_OPERATIONAL]		= "operational",
171 	[UFSHCD_STATE_ERROR]			= "error",
172 	[UFSHCD_STATE_EH_SCHEDULED_FATAL]	= "eh_fatal",
173 	[UFSHCD_STATE_EH_SCHEDULED_NON_FATAL]	= "eh_non_fatal",
174 };
175 
176 /* UFSHCD error handling flags */
177 enum {
178 	UFSHCD_EH_IN_PROGRESS = (1 << 0),
179 };
180 
181 /* UFSHCD UIC layer error flags */
182 enum {
183 	UFSHCD_UIC_DL_PA_INIT_ERROR = (1 << 0), /* Data link layer error */
184 	UFSHCD_UIC_DL_NAC_RECEIVED_ERROR = (1 << 1), /* Data link layer error */
185 	UFSHCD_UIC_DL_TCx_REPLAY_ERROR = (1 << 2), /* Data link layer error */
186 	UFSHCD_UIC_NL_ERROR = (1 << 3), /* Network layer error */
187 	UFSHCD_UIC_TL_ERROR = (1 << 4), /* Transport Layer error */
188 	UFSHCD_UIC_DME_ERROR = (1 << 5), /* DME error */
189 	UFSHCD_UIC_PA_GENERIC_ERROR = (1 << 6), /* Generic PA error */
190 };
191 
192 #define ufshcd_set_eh_in_progress(h) \
193 	((h)->eh_flags |= UFSHCD_EH_IN_PROGRESS)
194 #define ufshcd_eh_in_progress(h) \
195 	((h)->eh_flags & UFSHCD_EH_IN_PROGRESS)
196 #define ufshcd_clear_eh_in_progress(h) \
197 	((h)->eh_flags &= ~UFSHCD_EH_IN_PROGRESS)
198 
199 const struct ufs_pm_lvl_states ufs_pm_lvl_states[] = {
200 	[UFS_PM_LVL_0] = {UFS_ACTIVE_PWR_MODE, UIC_LINK_ACTIVE_STATE},
201 	[UFS_PM_LVL_1] = {UFS_ACTIVE_PWR_MODE, UIC_LINK_HIBERN8_STATE},
202 	[UFS_PM_LVL_2] = {UFS_SLEEP_PWR_MODE, UIC_LINK_ACTIVE_STATE},
203 	[UFS_PM_LVL_3] = {UFS_SLEEP_PWR_MODE, UIC_LINK_HIBERN8_STATE},
204 	[UFS_PM_LVL_4] = {UFS_POWERDOWN_PWR_MODE, UIC_LINK_HIBERN8_STATE},
205 	[UFS_PM_LVL_5] = {UFS_POWERDOWN_PWR_MODE, UIC_LINK_OFF_STATE},
206 	/*
207 	 * For DeepSleep, the link is first put in hibern8 and then off.
208 	 * Leaving the link in hibern8 is not supported.
209 	 */
210 	[UFS_PM_LVL_6] = {UFS_DEEPSLEEP_PWR_MODE, UIC_LINK_OFF_STATE},
211 };
212 
213 static inline enum ufs_dev_pwr_mode
214 ufs_get_pm_lvl_to_dev_pwr_mode(enum ufs_pm_level lvl)
215 {
216 	return ufs_pm_lvl_states[lvl].dev_state;
217 }
218 
219 static inline enum uic_link_state
220 ufs_get_pm_lvl_to_link_pwr_state(enum ufs_pm_level lvl)
221 {
222 	return ufs_pm_lvl_states[lvl].link_state;
223 }
224 
225 static inline enum ufs_pm_level
226 ufs_get_desired_pm_lvl_for_dev_link_state(enum ufs_dev_pwr_mode dev_state,
227 					enum uic_link_state link_state)
228 {
229 	enum ufs_pm_level lvl;
230 
231 	for (lvl = UFS_PM_LVL_0; lvl < UFS_PM_LVL_MAX; lvl++) {
232 		if ((ufs_pm_lvl_states[lvl].dev_state == dev_state) &&
233 			(ufs_pm_lvl_states[lvl].link_state == link_state))
234 			return lvl;
235 	}
236 
237 	/* if no match found, return the level 0 */
238 	return UFS_PM_LVL_0;
239 }
240 
241 static bool ufshcd_is_ufs_dev_busy(struct ufs_hba *hba)
242 {
243 	return (hba->clk_gating.active_reqs || hba->outstanding_reqs || hba->outstanding_tasks ||
244 		hba->active_uic_cmd || hba->uic_async_done);
245 }
246 
247 static const struct ufs_dev_quirk ufs_fixups[] = {
248 	/* UFS cards deviations table */
249 	{ .wmanufacturerid = UFS_VENDOR_MICRON,
250 	  .model = UFS_ANY_MODEL,
251 	  .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM },
252 	{ .wmanufacturerid = UFS_VENDOR_SAMSUNG,
253 	  .model = UFS_ANY_MODEL,
254 	  .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM |
255 		   UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE |
256 		   UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS },
257 	{ .wmanufacturerid = UFS_VENDOR_SKHYNIX,
258 	  .model = UFS_ANY_MODEL,
259 	  .quirk = UFS_DEVICE_QUIRK_HOST_PA_SAVECONFIGTIME },
260 	{ .wmanufacturerid = UFS_VENDOR_SKHYNIX,
261 	  .model = "hB8aL1" /*H28U62301AMR*/,
262 	  .quirk = UFS_DEVICE_QUIRK_HOST_VS_DEBUGSAVECONFIGTIME },
263 	{ .wmanufacturerid = UFS_VENDOR_TOSHIBA,
264 	  .model = UFS_ANY_MODEL,
265 	  .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM },
266 	{ .wmanufacturerid = UFS_VENDOR_TOSHIBA,
267 	  .model = "THGLF2G9C8KBADG",
268 	  .quirk = UFS_DEVICE_QUIRK_PA_TACTIVATE },
269 	{ .wmanufacturerid = UFS_VENDOR_TOSHIBA,
270 	  .model = "THGLF2G9D8KBADG",
271 	  .quirk = UFS_DEVICE_QUIRK_PA_TACTIVATE },
272 	{}
273 };
274 
275 static irqreturn_t ufshcd_tmc_handler(struct ufs_hba *hba);
276 static void ufshcd_async_scan(void *data, async_cookie_t cookie);
277 static int ufshcd_reset_and_restore(struct ufs_hba *hba);
278 static int ufshcd_eh_host_reset_handler(struct scsi_cmnd *cmd);
279 static int ufshcd_clear_tm_cmd(struct ufs_hba *hba, int tag);
280 static void ufshcd_hba_exit(struct ufs_hba *hba);
281 static int ufshcd_probe_hba(struct ufs_hba *hba, bool init_dev_params);
282 static int ufshcd_setup_clocks(struct ufs_hba *hba, bool on);
283 static inline void ufshcd_add_delay_before_dme_cmd(struct ufs_hba *hba);
284 static int ufshcd_host_reset_and_restore(struct ufs_hba *hba);
285 static void ufshcd_resume_clkscaling(struct ufs_hba *hba);
286 static void ufshcd_suspend_clkscaling(struct ufs_hba *hba);
287 static int ufshcd_scale_clks(struct ufs_hba *hba, unsigned long freq,
288 			     bool scale_up);
289 static irqreturn_t ufshcd_intr(int irq, void *__hba);
290 static int ufshcd_change_power_mode(struct ufs_hba *hba,
291 			     struct ufs_pa_layer_attr *pwr_mode);
292 static int ufshcd_setup_hba_vreg(struct ufs_hba *hba, bool on);
293 static int ufshcd_setup_vreg(struct ufs_hba *hba, bool on);
294 static inline int ufshcd_config_vreg_hpm(struct ufs_hba *hba,
295 					 struct ufs_vreg *vreg);
296 static void ufshcd_wb_toggle_buf_flush_during_h8(struct ufs_hba *hba,
297 						 bool enable);
298 static void ufshcd_hba_vreg_set_lpm(struct ufs_hba *hba);
299 static void ufshcd_hba_vreg_set_hpm(struct ufs_hba *hba);
300 
301 void ufshcd_enable_irq(struct ufs_hba *hba)
302 {
303 	if (!hba->is_irq_enabled) {
304 		enable_irq(hba->irq);
305 		hba->is_irq_enabled = true;
306 	}
307 }
308 EXPORT_SYMBOL_GPL(ufshcd_enable_irq);
309 
310 void ufshcd_disable_irq(struct ufs_hba *hba)
311 {
312 	if (hba->is_irq_enabled) {
313 		disable_irq(hba->irq);
314 		hba->is_irq_enabled = false;
315 	}
316 }
317 EXPORT_SYMBOL_GPL(ufshcd_disable_irq);
318 
319 static void ufshcd_configure_wb(struct ufs_hba *hba)
320 {
321 	if (!ufshcd_is_wb_allowed(hba))
322 		return;
323 
324 	ufshcd_wb_toggle(hba, true);
325 
326 	ufshcd_wb_toggle_buf_flush_during_h8(hba, true);
327 
328 	if (ufshcd_is_wb_buf_flush_allowed(hba))
329 		ufshcd_wb_toggle_buf_flush(hba, true);
330 }
331 
332 static void ufshcd_scsi_unblock_requests(struct ufs_hba *hba)
333 {
334 	if (atomic_dec_and_test(&hba->scsi_block_reqs_cnt))
335 		scsi_unblock_requests(hba->host);
336 }
337 
338 static void ufshcd_scsi_block_requests(struct ufs_hba *hba)
339 {
340 	if (atomic_inc_return(&hba->scsi_block_reqs_cnt) == 1)
341 		scsi_block_requests(hba->host);
342 }
343 
344 static void ufshcd_add_cmd_upiu_trace(struct ufs_hba *hba, unsigned int tag,
345 				      enum ufs_trace_str_t str_t)
346 {
347 	struct utp_upiu_req *rq = hba->lrb[tag].ucd_req_ptr;
348 	struct utp_upiu_header *header;
349 
350 	if (!trace_ufshcd_upiu_enabled())
351 		return;
352 
353 	if (str_t == UFS_CMD_SEND)
354 		header = &rq->header;
355 	else
356 		header = &hba->lrb[tag].ucd_rsp_ptr->header;
357 
358 	trace_ufshcd_upiu(dev_name(hba->dev), str_t, header, &rq->sc.cdb,
359 			  UFS_TSF_CDB);
360 }
361 
362 static void ufshcd_add_query_upiu_trace(struct ufs_hba *hba,
363 					enum ufs_trace_str_t str_t,
364 					struct utp_upiu_req *rq_rsp)
365 {
366 	if (!trace_ufshcd_upiu_enabled())
367 		return;
368 
369 	trace_ufshcd_upiu(dev_name(hba->dev), str_t, &rq_rsp->header,
370 			  &rq_rsp->qr, UFS_TSF_OSF);
371 }
372 
373 static void ufshcd_add_tm_upiu_trace(struct ufs_hba *hba, unsigned int tag,
374 				     enum ufs_trace_str_t str_t)
375 {
376 	struct utp_task_req_desc *descp = &hba->utmrdl_base_addr[tag];
377 
378 	if (!trace_ufshcd_upiu_enabled())
379 		return;
380 
381 	if (str_t == UFS_TM_SEND)
382 		trace_ufshcd_upiu(dev_name(hba->dev), str_t,
383 				  &descp->upiu_req.req_header,
384 				  &descp->upiu_req.input_param1,
385 				  UFS_TSF_TM_INPUT);
386 	else
387 		trace_ufshcd_upiu(dev_name(hba->dev), str_t,
388 				  &descp->upiu_rsp.rsp_header,
389 				  &descp->upiu_rsp.output_param1,
390 				  UFS_TSF_TM_OUTPUT);
391 }
392 
393 static void ufshcd_add_uic_command_trace(struct ufs_hba *hba,
394 					 const struct uic_command *ucmd,
395 					 enum ufs_trace_str_t str_t)
396 {
397 	u32 cmd;
398 
399 	if (!trace_ufshcd_uic_command_enabled())
400 		return;
401 
402 	if (str_t == UFS_CMD_SEND)
403 		cmd = ucmd->command;
404 	else
405 		cmd = ufshcd_readl(hba, REG_UIC_COMMAND);
406 
407 	trace_ufshcd_uic_command(dev_name(hba->dev), str_t, cmd,
408 				 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_1),
409 				 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_2),
410 				 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_3));
411 }
412 
413 static void ufshcd_add_command_trace(struct ufs_hba *hba, unsigned int tag,
414 				     enum ufs_trace_str_t str_t)
415 {
416 	u64 lba = 0;
417 	u8 opcode = 0, group_id = 0;
418 	u32 doorbell = 0;
419 	u32 intr;
420 	int hwq_id = -1;
421 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
422 	struct scsi_cmnd *cmd = lrbp->cmd;
423 	struct request *rq = scsi_cmd_to_rq(cmd);
424 	int transfer_len = -1;
425 
426 	if (!cmd)
427 		return;
428 
429 	/* trace UPIU also */
430 	ufshcd_add_cmd_upiu_trace(hba, tag, str_t);
431 	if (!trace_ufshcd_command_enabled())
432 		return;
433 
434 	opcode = cmd->cmnd[0];
435 
436 	if (opcode == READ_10 || opcode == WRITE_10) {
437 		/*
438 		 * Currently we only fully trace read(10) and write(10) commands
439 		 */
440 		transfer_len =
441 		       be32_to_cpu(lrbp->ucd_req_ptr->sc.exp_data_transfer_len);
442 		lba = scsi_get_lba(cmd);
443 		if (opcode == WRITE_10)
444 			group_id = lrbp->cmd->cmnd[6];
445 	} else if (opcode == UNMAP) {
446 		/*
447 		 * The number of Bytes to be unmapped beginning with the lba.
448 		 */
449 		transfer_len = blk_rq_bytes(rq);
450 		lba = scsi_get_lba(cmd);
451 	}
452 
453 	intr = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
454 
455 	if (is_mcq_enabled(hba)) {
456 		struct ufs_hw_queue *hwq = ufshcd_mcq_req_to_hwq(hba, rq);
457 
458 		hwq_id = hwq->id;
459 	} else {
460 		doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
461 	}
462 	trace_ufshcd_command(cmd->device, str_t, tag, doorbell, hwq_id,
463 			     transfer_len, intr, lba, opcode, group_id);
464 }
465 
466 static void ufshcd_print_clk_freqs(struct ufs_hba *hba)
467 {
468 	struct ufs_clk_info *clki;
469 	struct list_head *head = &hba->clk_list_head;
470 
471 	if (list_empty(head))
472 		return;
473 
474 	list_for_each_entry(clki, head, list) {
475 		if (!IS_ERR_OR_NULL(clki->clk) && clki->min_freq &&
476 				clki->max_freq)
477 			dev_err(hba->dev, "clk: %s, rate: %u\n",
478 					clki->name, clki->curr_freq);
479 	}
480 }
481 
482 static void ufshcd_print_evt(struct ufs_hba *hba, u32 id,
483 			     const char *err_name)
484 {
485 	int i;
486 	bool found = false;
487 	const struct ufs_event_hist *e;
488 
489 	if (id >= UFS_EVT_CNT)
490 		return;
491 
492 	e = &hba->ufs_stats.event[id];
493 
494 	for (i = 0; i < UFS_EVENT_HIST_LENGTH; i++) {
495 		int p = (i + e->pos) % UFS_EVENT_HIST_LENGTH;
496 
497 		if (e->tstamp[p] == 0)
498 			continue;
499 		dev_err(hba->dev, "%s[%d] = 0x%x at %lld us\n", err_name, p,
500 			e->val[p], div_u64(e->tstamp[p], 1000));
501 		found = true;
502 	}
503 
504 	if (!found)
505 		dev_err(hba->dev, "No record of %s\n", err_name);
506 	else
507 		dev_err(hba->dev, "%s: total cnt=%llu\n", err_name, e->cnt);
508 }
509 
510 static void ufshcd_print_evt_hist(struct ufs_hba *hba)
511 {
512 	ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, "host_regs: ");
513 
514 	ufshcd_print_evt(hba, UFS_EVT_PA_ERR, "pa_err");
515 	ufshcd_print_evt(hba, UFS_EVT_DL_ERR, "dl_err");
516 	ufshcd_print_evt(hba, UFS_EVT_NL_ERR, "nl_err");
517 	ufshcd_print_evt(hba, UFS_EVT_TL_ERR, "tl_err");
518 	ufshcd_print_evt(hba, UFS_EVT_DME_ERR, "dme_err");
519 	ufshcd_print_evt(hba, UFS_EVT_AUTO_HIBERN8_ERR,
520 			 "auto_hibern8_err");
521 	ufshcd_print_evt(hba, UFS_EVT_FATAL_ERR, "fatal_err");
522 	ufshcd_print_evt(hba, UFS_EVT_LINK_STARTUP_FAIL,
523 			 "link_startup_fail");
524 	ufshcd_print_evt(hba, UFS_EVT_RESUME_ERR, "resume_fail");
525 	ufshcd_print_evt(hba, UFS_EVT_SUSPEND_ERR,
526 			 "suspend_fail");
527 	ufshcd_print_evt(hba, UFS_EVT_WL_RES_ERR, "wlun resume_fail");
528 	ufshcd_print_evt(hba, UFS_EVT_WL_SUSP_ERR,
529 			 "wlun suspend_fail");
530 	ufshcd_print_evt(hba, UFS_EVT_DEV_RESET, "dev_reset");
531 	ufshcd_print_evt(hba, UFS_EVT_HOST_RESET, "host_reset");
532 	ufshcd_print_evt(hba, UFS_EVT_ABORT, "task_abort");
533 
534 	ufshcd_vops_dbg_register_dump(hba);
535 }
536 
537 static
538 void ufshcd_print_tr(struct ufs_hba *hba, int tag, bool pr_prdt)
539 {
540 	const struct ufshcd_lrb *lrbp;
541 	int prdt_length;
542 
543 	lrbp = &hba->lrb[tag];
544 
545 	dev_err(hba->dev, "UPIU[%d] - issue time %lld us\n",
546 			tag, div_u64(lrbp->issue_time_stamp_local_clock, 1000));
547 	dev_err(hba->dev, "UPIU[%d] - complete time %lld us\n",
548 			tag, div_u64(lrbp->compl_time_stamp_local_clock, 1000));
549 	dev_err(hba->dev,
550 		"UPIU[%d] - Transfer Request Descriptor phys@0x%llx\n",
551 		tag, (u64)lrbp->utrd_dma_addr);
552 
553 	ufshcd_hex_dump("UPIU TRD: ", lrbp->utr_descriptor_ptr,
554 			sizeof(struct utp_transfer_req_desc));
555 	dev_err(hba->dev, "UPIU[%d] - Request UPIU phys@0x%llx\n", tag,
556 		(u64)lrbp->ucd_req_dma_addr);
557 	ufshcd_hex_dump("UPIU REQ: ", lrbp->ucd_req_ptr,
558 			sizeof(struct utp_upiu_req));
559 	dev_err(hba->dev, "UPIU[%d] - Response UPIU phys@0x%llx\n", tag,
560 		(u64)lrbp->ucd_rsp_dma_addr);
561 	ufshcd_hex_dump("UPIU RSP: ", lrbp->ucd_rsp_ptr,
562 			sizeof(struct utp_upiu_rsp));
563 
564 	prdt_length = le16_to_cpu(
565 		lrbp->utr_descriptor_ptr->prd_table_length);
566 	if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN)
567 		prdt_length /= ufshcd_sg_entry_size(hba);
568 
569 	dev_err(hba->dev,
570 		"UPIU[%d] - PRDT - %d entries  phys@0x%llx\n",
571 		tag, prdt_length,
572 		(u64)lrbp->ucd_prdt_dma_addr);
573 
574 	if (pr_prdt)
575 		ufshcd_hex_dump("UPIU PRDT: ", lrbp->ucd_prdt_ptr,
576 			ufshcd_sg_entry_size(hba) * prdt_length);
577 }
578 
579 static bool ufshcd_print_tr_iter(struct request *req, void *priv)
580 {
581 	struct scsi_device *sdev = req->q->queuedata;
582 	struct Scsi_Host *shost = sdev->host;
583 	struct ufs_hba *hba = shost_priv(shost);
584 
585 	ufshcd_print_tr(hba, req->tag, *(bool *)priv);
586 
587 	return true;
588 }
589 
590 /**
591  * ufshcd_print_trs_all - print trs for all started requests.
592  * @hba: per-adapter instance.
593  * @pr_prdt: need to print prdt or not.
594  */
595 static void ufshcd_print_trs_all(struct ufs_hba *hba, bool pr_prdt)
596 {
597 	blk_mq_tagset_busy_iter(&hba->host->tag_set, ufshcd_print_tr_iter, &pr_prdt);
598 }
599 
600 static void ufshcd_print_tmrs(struct ufs_hba *hba, unsigned long bitmap)
601 {
602 	int tag;
603 
604 	for_each_set_bit(tag, &bitmap, hba->nutmrs) {
605 		struct utp_task_req_desc *tmrdp = &hba->utmrdl_base_addr[tag];
606 
607 		dev_err(hba->dev, "TM[%d] - Task Management Header\n", tag);
608 		ufshcd_hex_dump("", tmrdp, sizeof(*tmrdp));
609 	}
610 }
611 
612 static void ufshcd_print_host_state(struct ufs_hba *hba)
613 {
614 	const struct scsi_device *sdev_ufs = hba->ufs_device_wlun;
615 
616 	dev_err(hba->dev, "UFS Host state=%d\n", hba->ufshcd_state);
617 	dev_err(hba->dev, "outstanding reqs=0x%lx tasks=0x%lx\n",
618 		hba->outstanding_reqs, hba->outstanding_tasks);
619 	dev_err(hba->dev, "saved_err=0x%x, saved_uic_err=0x%x\n",
620 		hba->saved_err, hba->saved_uic_err);
621 	dev_err(hba->dev, "Device power mode=%d, UIC link state=%d\n",
622 		hba->curr_dev_pwr_mode, hba->uic_link_state);
623 	dev_err(hba->dev, "PM in progress=%d, sys. suspended=%d\n",
624 		hba->pm_op_in_progress, hba->is_sys_suspended);
625 	dev_err(hba->dev, "Auto BKOPS=%d, Host self-block=%d\n",
626 		hba->auto_bkops_enabled, hba->host->host_self_blocked);
627 	dev_err(hba->dev, "Clk gate=%d\n", hba->clk_gating.state);
628 	dev_err(hba->dev,
629 		"last_hibern8_exit_tstamp at %lld us, hibern8_exit_cnt=%d\n",
630 		div_u64(hba->ufs_stats.last_hibern8_exit_tstamp, 1000),
631 		hba->ufs_stats.hibern8_exit_cnt);
632 	dev_err(hba->dev, "last intr at %lld us, last intr status=0x%x\n",
633 		div_u64(hba->ufs_stats.last_intr_ts, 1000),
634 		hba->ufs_stats.last_intr_status);
635 	dev_err(hba->dev, "error handling flags=0x%x, req. abort count=%d\n",
636 		hba->eh_flags, hba->req_abort_count);
637 	dev_err(hba->dev, "hba->ufs_version=0x%x, Host capabilities=0x%x, caps=0x%x\n",
638 		hba->ufs_version, hba->capabilities, hba->caps);
639 	dev_err(hba->dev, "quirks=0x%x, dev. quirks=0x%x\n", hba->quirks,
640 		hba->dev_quirks);
641 	if (sdev_ufs)
642 		dev_err(hba->dev, "UFS dev info: %.8s %.16s rev %.4s\n",
643 			sdev_ufs->vendor, sdev_ufs->model, sdev_ufs->rev);
644 
645 	ufshcd_print_clk_freqs(hba);
646 }
647 
648 /**
649  * ufshcd_print_pwr_info - print power params as saved in hba
650  * power info
651  * @hba: per-adapter instance
652  */
653 static void ufshcd_print_pwr_info(struct ufs_hba *hba)
654 {
655 	static const char * const names[] = {
656 		"INVALID MODE",
657 		"FAST MODE",
658 		"SLOW_MODE",
659 		"INVALID MODE",
660 		"FASTAUTO_MODE",
661 		"SLOWAUTO_MODE",
662 		"INVALID MODE",
663 	};
664 
665 	/*
666 	 * Using dev_dbg to avoid messages during runtime PM to avoid
667 	 * never-ending cycles of messages written back to storage by user space
668 	 * causing runtime resume, causing more messages and so on.
669 	 */
670 	dev_dbg(hba->dev, "%s:[RX, TX]: gear=[%d, %d], lane[%d, %d], pwr[%s, %s], rate = %d\n",
671 		 __func__,
672 		 hba->pwr_info.gear_rx, hba->pwr_info.gear_tx,
673 		 hba->pwr_info.lane_rx, hba->pwr_info.lane_tx,
674 		 names[hba->pwr_info.pwr_rx],
675 		 names[hba->pwr_info.pwr_tx],
676 		 hba->pwr_info.hs_rate);
677 }
678 
679 static void ufshcd_device_reset(struct ufs_hba *hba)
680 {
681 	int err;
682 
683 	err = ufshcd_vops_device_reset(hba);
684 
685 	if (!err) {
686 		ufshcd_set_ufs_dev_active(hba);
687 		if (ufshcd_is_wb_allowed(hba)) {
688 			hba->dev_info.wb_enabled = false;
689 			hba->dev_info.wb_buf_flush_enabled = false;
690 		}
691 		if (hba->dev_info.rtc_type == UFS_RTC_RELATIVE)
692 			hba->dev_info.rtc_time_baseline = 0;
693 	}
694 	if (err != -EOPNOTSUPP)
695 		ufshcd_update_evt_hist(hba, UFS_EVT_DEV_RESET, err);
696 }
697 
698 void ufshcd_delay_us(unsigned long us, unsigned long tolerance)
699 {
700 	if (!us)
701 		return;
702 
703 	if (us < 10)
704 		udelay(us);
705 	else
706 		usleep_range(us, us + tolerance);
707 }
708 EXPORT_SYMBOL_GPL(ufshcd_delay_us);
709 
710 /**
711  * ufshcd_wait_for_register - wait for register value to change
712  * @hba: per-adapter interface
713  * @reg: mmio register offset
714  * @mask: mask to apply to the read register value
715  * @val: value to wait for
716  * @interval_us: polling interval in microseconds
717  * @timeout_ms: timeout in milliseconds
718  *
719  * Return: -ETIMEDOUT on error, zero on success.
720  */
721 static int ufshcd_wait_for_register(struct ufs_hba *hba, u32 reg, u32 mask,
722 				u32 val, unsigned long interval_us,
723 				unsigned long timeout_ms)
724 {
725 	int err = 0;
726 	unsigned long timeout = jiffies + msecs_to_jiffies(timeout_ms);
727 
728 	/* ignore bits that we don't intend to wait on */
729 	val = val & mask;
730 
731 	while ((ufshcd_readl(hba, reg) & mask) != val) {
732 		usleep_range(interval_us, interval_us + 50);
733 		if (time_after(jiffies, timeout)) {
734 			if ((ufshcd_readl(hba, reg) & mask) != val)
735 				err = -ETIMEDOUT;
736 			break;
737 		}
738 	}
739 
740 	return err;
741 }
742 
743 /**
744  * ufshcd_get_intr_mask - Get the interrupt bit mask
745  * @hba: Pointer to adapter instance
746  *
747  * Return: interrupt bit mask per version
748  */
749 static inline u32 ufshcd_get_intr_mask(struct ufs_hba *hba)
750 {
751 	if (hba->ufs_version <= ufshci_version(2, 0))
752 		return INTERRUPT_MASK_ALL_VER_11;
753 
754 	return INTERRUPT_MASK_ALL_VER_21;
755 }
756 
757 /**
758  * ufshcd_get_ufs_version - Get the UFS version supported by the HBA
759  * @hba: Pointer to adapter instance
760  *
761  * Return: UFSHCI version supported by the controller
762  */
763 static inline u32 ufshcd_get_ufs_version(struct ufs_hba *hba)
764 {
765 	u32 ufshci_ver;
766 
767 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_UFS_HCI_VERSION)
768 		ufshci_ver = ufshcd_vops_get_ufs_hci_version(hba);
769 	else
770 		ufshci_ver = ufshcd_readl(hba, REG_UFS_VERSION);
771 
772 	/*
773 	 * UFSHCI v1.x uses a different version scheme, in order
774 	 * to allow the use of comparisons with the ufshci_version
775 	 * function, we convert it to the same scheme as ufs 2.0+.
776 	 */
777 	if (ufshci_ver & 0x00010000)
778 		return ufshci_version(1, ufshci_ver & 0x00000100);
779 
780 	return ufshci_ver;
781 }
782 
783 /**
784  * ufshcd_is_device_present - Check if any device connected to
785  *			      the host controller
786  * @hba: pointer to adapter instance
787  *
788  * Return: true if device present, false if no device detected
789  */
790 static inline bool ufshcd_is_device_present(struct ufs_hba *hba)
791 {
792 	return ufshcd_readl(hba, REG_CONTROLLER_STATUS) & DEVICE_PRESENT;
793 }
794 
795 /**
796  * ufshcd_get_tr_ocs - Get the UTRD Overall Command Status
797  * @lrbp: pointer to local command reference block
798  * @cqe: pointer to the completion queue entry
799  *
800  * This function is used to get the OCS field from UTRD
801  *
802  * Return: the OCS field in the UTRD.
803  */
804 static enum utp_ocs ufshcd_get_tr_ocs(struct ufshcd_lrb *lrbp,
805 				      struct cq_entry *cqe)
806 {
807 	if (cqe)
808 		return le32_to_cpu(cqe->status) & MASK_OCS;
809 
810 	return lrbp->utr_descriptor_ptr->header.ocs & MASK_OCS;
811 }
812 
813 /**
814  * ufshcd_utrl_clear() - Clear requests from the controller request list.
815  * @hba: per adapter instance
816  * @mask: mask with one bit set for each request to be cleared
817  */
818 static inline void ufshcd_utrl_clear(struct ufs_hba *hba, u32 mask)
819 {
820 	if (hba->quirks & UFSHCI_QUIRK_BROKEN_REQ_LIST_CLR)
821 		mask = ~mask;
822 	/*
823 	 * From the UFSHCI specification: "UTP Transfer Request List CLear
824 	 * Register (UTRLCLR): This field is bit significant. Each bit
825 	 * corresponds to a slot in the UTP Transfer Request List, where bit 0
826 	 * corresponds to request slot 0. A bit in this field is set to ‘0’
827 	 * by host software to indicate to the host controller that a transfer
828 	 * request slot is cleared. The host controller
829 	 * shall free up any resources associated to the request slot
830 	 * immediately, and shall set the associated bit in UTRLDBR to ‘0’. The
831 	 * host software indicates no change to request slots by setting the
832 	 * associated bits in this field to ‘1’. Bits in this field shall only
833 	 * be set ‘1’ or ‘0’ by host software when UTRLRSR is set to ‘1’."
834 	 */
835 	ufshcd_writel(hba, ~mask, REG_UTP_TRANSFER_REQ_LIST_CLEAR);
836 }
837 
838 /**
839  * ufshcd_utmrl_clear - Clear a bit in UTMRLCLR register
840  * @hba: per adapter instance
841  * @pos: position of the bit to be cleared
842  */
843 static inline void ufshcd_utmrl_clear(struct ufs_hba *hba, u32 pos)
844 {
845 	if (hba->quirks & UFSHCI_QUIRK_BROKEN_REQ_LIST_CLR)
846 		ufshcd_writel(hba, (1 << pos), REG_UTP_TASK_REQ_LIST_CLEAR);
847 	else
848 		ufshcd_writel(hba, ~(1 << pos), REG_UTP_TASK_REQ_LIST_CLEAR);
849 }
850 
851 /**
852  * ufshcd_get_lists_status - Check UCRDY, UTRLRDY and UTMRLRDY
853  * @reg: Register value of host controller status
854  *
855  * Return: 0 on success; a positive value if failed.
856  */
857 static inline int ufshcd_get_lists_status(u32 reg)
858 {
859 	return !((reg & UFSHCD_STATUS_READY) == UFSHCD_STATUS_READY);
860 }
861 
862 /**
863  * ufshcd_get_uic_cmd_result - Get the UIC command result
864  * @hba: Pointer to adapter instance
865  *
866  * This function gets the result of UIC command completion
867  *
868  * Return: 0 on success; non-zero value on error.
869  */
870 static inline int ufshcd_get_uic_cmd_result(struct ufs_hba *hba)
871 {
872 	return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_2) &
873 	       MASK_UIC_COMMAND_RESULT;
874 }
875 
876 /**
877  * ufshcd_get_dme_attr_val - Get the value of attribute returned by UIC command
878  * @hba: Pointer to adapter instance
879  *
880  * This function gets UIC command argument3
881  *
882  * Return: 0 on success; non-zero value on error.
883  */
884 static inline u32 ufshcd_get_dme_attr_val(struct ufs_hba *hba)
885 {
886 	return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_3);
887 }
888 
889 /**
890  * ufshcd_get_req_rsp - returns the TR response transaction type
891  * @ucd_rsp_ptr: pointer to response UPIU
892  *
893  * Return: UPIU type.
894  */
895 static inline enum upiu_response_transaction
896 ufshcd_get_req_rsp(struct utp_upiu_rsp *ucd_rsp_ptr)
897 {
898 	return ucd_rsp_ptr->header.transaction_code;
899 }
900 
901 /**
902  * ufshcd_is_exception_event - Check if the device raised an exception event
903  * @ucd_rsp_ptr: pointer to response UPIU
904  *
905  * The function checks if the device raised an exception event indicated in
906  * the Device Information field of response UPIU.
907  *
908  * Return: true if exception is raised, false otherwise.
909  */
910 static inline bool ufshcd_is_exception_event(struct utp_upiu_rsp *ucd_rsp_ptr)
911 {
912 	return ucd_rsp_ptr->header.device_information & 1;
913 }
914 
915 /**
916  * ufshcd_reset_intr_aggr - Reset interrupt aggregation values.
917  * @hba: per adapter instance
918  */
919 static inline void
920 ufshcd_reset_intr_aggr(struct ufs_hba *hba)
921 {
922 	ufshcd_writel(hba, INT_AGGR_ENABLE |
923 		      INT_AGGR_COUNTER_AND_TIMER_RESET,
924 		      REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
925 }
926 
927 /**
928  * ufshcd_config_intr_aggr - Configure interrupt aggregation values.
929  * @hba: per adapter instance
930  * @cnt: Interrupt aggregation counter threshold
931  * @tmout: Interrupt aggregation timeout value
932  */
933 static inline void
934 ufshcd_config_intr_aggr(struct ufs_hba *hba, u8 cnt, u8 tmout)
935 {
936 	ufshcd_writel(hba, INT_AGGR_ENABLE | INT_AGGR_PARAM_WRITE |
937 		      INT_AGGR_COUNTER_THLD_VAL(cnt) |
938 		      INT_AGGR_TIMEOUT_VAL(tmout),
939 		      REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
940 }
941 
942 /**
943  * ufshcd_disable_intr_aggr - Disables interrupt aggregation.
944  * @hba: per adapter instance
945  */
946 static inline void ufshcd_disable_intr_aggr(struct ufs_hba *hba)
947 {
948 	ufshcd_writel(hba, 0, REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
949 }
950 
951 /**
952  * ufshcd_enable_run_stop_reg - Enable run-stop registers,
953  *			When run-stop registers are set to 1, it indicates the
954  *			host controller that it can process the requests
955  * @hba: per adapter instance
956  */
957 static void ufshcd_enable_run_stop_reg(struct ufs_hba *hba)
958 {
959 	ufshcd_writel(hba, UTP_TASK_REQ_LIST_RUN_STOP_BIT,
960 		      REG_UTP_TASK_REQ_LIST_RUN_STOP);
961 	ufshcd_writel(hba, UTP_TRANSFER_REQ_LIST_RUN_STOP_BIT,
962 		      REG_UTP_TRANSFER_REQ_LIST_RUN_STOP);
963 }
964 
965 /**
966  * ufshcd_hba_start - Start controller initialization sequence
967  * @hba: per adapter instance
968  */
969 static inline void ufshcd_hba_start(struct ufs_hba *hba)
970 {
971 	u32 val = CONTROLLER_ENABLE;
972 
973 	if (ufshcd_crypto_enable(hba))
974 		val |= CRYPTO_GENERAL_ENABLE;
975 
976 	ufshcd_writel(hba, val, REG_CONTROLLER_ENABLE);
977 }
978 
979 /**
980  * ufshcd_is_hba_active - Get controller state
981  * @hba: per adapter instance
982  *
983  * Return: true if and only if the controller is active.
984  */
985 bool ufshcd_is_hba_active(struct ufs_hba *hba)
986 {
987 	return ufshcd_readl(hba, REG_CONTROLLER_ENABLE) & CONTROLLER_ENABLE;
988 }
989 EXPORT_SYMBOL_GPL(ufshcd_is_hba_active);
990 
991 /**
992  * ufshcd_pm_qos_init - initialize PM QoS request
993  * @hba: per adapter instance
994  */
995 void ufshcd_pm_qos_init(struct ufs_hba *hba)
996 {
997 
998 	if (hba->pm_qos_enabled)
999 		return;
1000 
1001 	cpu_latency_qos_add_request(&hba->pm_qos_req, PM_QOS_DEFAULT_VALUE);
1002 
1003 	if (cpu_latency_qos_request_active(&hba->pm_qos_req))
1004 		hba->pm_qos_enabled = true;
1005 }
1006 
1007 /**
1008  * ufshcd_pm_qos_exit - remove request from PM QoS
1009  * @hba: per adapter instance
1010  */
1011 void ufshcd_pm_qos_exit(struct ufs_hba *hba)
1012 {
1013 	if (!hba->pm_qos_enabled)
1014 		return;
1015 
1016 	cpu_latency_qos_remove_request(&hba->pm_qos_req);
1017 	hba->pm_qos_enabled = false;
1018 }
1019 
1020 /**
1021  * ufshcd_pm_qos_update - update PM QoS request
1022  * @hba: per adapter instance
1023  * @on: If True, vote for perf PM QoS mode otherwise power save mode
1024  */
1025 static void ufshcd_pm_qos_update(struct ufs_hba *hba, bool on)
1026 {
1027 	if (!hba->pm_qos_enabled)
1028 		return;
1029 
1030 	cpu_latency_qos_update_request(&hba->pm_qos_req, on ? 0 : PM_QOS_DEFAULT_VALUE);
1031 }
1032 
1033 /**
1034  * ufshcd_set_clk_freq - set UFS controller clock frequencies
1035  * @hba: per adapter instance
1036  * @scale_up: If True, set max possible frequency othewise set low frequency
1037  *
1038  * Return: 0 if successful; < 0 upon failure.
1039  */
1040 static int ufshcd_set_clk_freq(struct ufs_hba *hba, bool scale_up)
1041 {
1042 	int ret = 0;
1043 	struct ufs_clk_info *clki;
1044 	struct list_head *head = &hba->clk_list_head;
1045 
1046 	if (list_empty(head))
1047 		goto out;
1048 
1049 	list_for_each_entry(clki, head, list) {
1050 		if (!IS_ERR_OR_NULL(clki->clk)) {
1051 			if (scale_up && clki->max_freq) {
1052 				if (clki->curr_freq == clki->max_freq)
1053 					continue;
1054 
1055 				ret = clk_set_rate(clki->clk, clki->max_freq);
1056 				if (ret) {
1057 					dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
1058 						__func__, clki->name,
1059 						clki->max_freq, ret);
1060 					break;
1061 				}
1062 				trace_ufshcd_clk_scaling(dev_name(hba->dev),
1063 						"scaled up", clki->name,
1064 						clki->curr_freq,
1065 						clki->max_freq);
1066 
1067 				clki->curr_freq = clki->max_freq;
1068 
1069 			} else if (!scale_up && clki->min_freq) {
1070 				if (clki->curr_freq == clki->min_freq)
1071 					continue;
1072 
1073 				ret = clk_set_rate(clki->clk, clki->min_freq);
1074 				if (ret) {
1075 					dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
1076 						__func__, clki->name,
1077 						clki->min_freq, ret);
1078 					break;
1079 				}
1080 				trace_ufshcd_clk_scaling(dev_name(hba->dev),
1081 						"scaled down", clki->name,
1082 						clki->curr_freq,
1083 						clki->min_freq);
1084 				clki->curr_freq = clki->min_freq;
1085 			}
1086 		}
1087 		dev_dbg(hba->dev, "%s: clk: %s, rate: %lu\n", __func__,
1088 				clki->name, clk_get_rate(clki->clk));
1089 	}
1090 
1091 out:
1092 	return ret;
1093 }
1094 
1095 int ufshcd_opp_config_clks(struct device *dev, struct opp_table *opp_table,
1096 			   struct dev_pm_opp *opp, void *data,
1097 			   bool scaling_down)
1098 {
1099 	struct ufs_hba *hba = dev_get_drvdata(dev);
1100 	struct list_head *head = &hba->clk_list_head;
1101 	struct ufs_clk_info *clki;
1102 	unsigned long freq;
1103 	u8 idx = 0;
1104 	int ret;
1105 
1106 	list_for_each_entry(clki, head, list) {
1107 		if (!IS_ERR_OR_NULL(clki->clk)) {
1108 			freq = dev_pm_opp_get_freq_indexed(opp, idx++);
1109 
1110 			/* Do not set rate for clocks having frequency as 0 */
1111 			if (!freq)
1112 				continue;
1113 
1114 			ret = clk_set_rate(clki->clk, freq);
1115 			if (ret) {
1116 				dev_err(dev, "%s: %s clk set rate(%ldHz) failed, %d\n",
1117 					__func__, clki->name, freq, ret);
1118 				return ret;
1119 			}
1120 
1121 			trace_ufshcd_clk_scaling(dev_name(dev),
1122 				(scaling_down ? "scaled down" : "scaled up"),
1123 				clki->name, hba->clk_scaling.target_freq, freq);
1124 		}
1125 	}
1126 
1127 	return 0;
1128 }
1129 EXPORT_SYMBOL_GPL(ufshcd_opp_config_clks);
1130 
1131 static int ufshcd_opp_set_rate(struct ufs_hba *hba, unsigned long freq)
1132 {
1133 	struct dev_pm_opp *opp;
1134 	int ret;
1135 
1136 	opp = dev_pm_opp_find_freq_floor_indexed(hba->dev,
1137 						 &freq, 0);
1138 	if (IS_ERR(opp))
1139 		return PTR_ERR(opp);
1140 
1141 	ret = dev_pm_opp_set_opp(hba->dev, opp);
1142 	dev_pm_opp_put(opp);
1143 
1144 	return ret;
1145 }
1146 
1147 /**
1148  * ufshcd_scale_clks - scale up or scale down UFS controller clocks
1149  * @hba: per adapter instance
1150  * @freq: frequency to scale
1151  * @scale_up: True if scaling up and false if scaling down
1152  *
1153  * Return: 0 if successful; < 0 upon failure.
1154  */
1155 static int ufshcd_scale_clks(struct ufs_hba *hba, unsigned long freq,
1156 			     bool scale_up)
1157 {
1158 	int ret = 0;
1159 	ktime_t start = ktime_get();
1160 
1161 	ret = ufshcd_vops_clk_scale_notify(hba, scale_up, PRE_CHANGE);
1162 	if (ret)
1163 		goto out;
1164 
1165 	if (hba->use_pm_opp)
1166 		ret = ufshcd_opp_set_rate(hba, freq);
1167 	else
1168 		ret = ufshcd_set_clk_freq(hba, scale_up);
1169 	if (ret)
1170 		goto out;
1171 
1172 	ret = ufshcd_vops_clk_scale_notify(hba, scale_up, POST_CHANGE);
1173 	if (ret) {
1174 		if (hba->use_pm_opp)
1175 			ufshcd_opp_set_rate(hba,
1176 					    hba->devfreq->previous_freq);
1177 		else
1178 			ufshcd_set_clk_freq(hba, !scale_up);
1179 		goto out;
1180 	}
1181 
1182 	ufshcd_pm_qos_update(hba, scale_up);
1183 
1184 out:
1185 	trace_ufshcd_profile_clk_scaling(dev_name(hba->dev),
1186 			(scale_up ? "up" : "down"),
1187 			ktime_to_us(ktime_sub(ktime_get(), start)), ret);
1188 	return ret;
1189 }
1190 
1191 /**
1192  * ufshcd_is_devfreq_scaling_required - check if scaling is required or not
1193  * @hba: per adapter instance
1194  * @freq: frequency to scale
1195  * @scale_up: True if scaling up and false if scaling down
1196  *
1197  * Return: true if scaling is required, false otherwise.
1198  */
1199 static bool ufshcd_is_devfreq_scaling_required(struct ufs_hba *hba,
1200 					       unsigned long freq, bool scale_up)
1201 {
1202 	struct ufs_clk_info *clki;
1203 	struct list_head *head = &hba->clk_list_head;
1204 
1205 	if (list_empty(head))
1206 		return false;
1207 
1208 	if (hba->use_pm_opp)
1209 		return freq != hba->clk_scaling.target_freq;
1210 
1211 	list_for_each_entry(clki, head, list) {
1212 		if (!IS_ERR_OR_NULL(clki->clk)) {
1213 			if (scale_up && clki->max_freq) {
1214 				if (clki->curr_freq == clki->max_freq)
1215 					continue;
1216 				return true;
1217 			} else if (!scale_up && clki->min_freq) {
1218 				if (clki->curr_freq == clki->min_freq)
1219 					continue;
1220 				return true;
1221 			}
1222 		}
1223 	}
1224 
1225 	return false;
1226 }
1227 
1228 /*
1229  * Determine the number of pending commands by counting the bits in the SCSI
1230  * device budget maps. This approach has been selected because a bit is set in
1231  * the budget map before scsi_host_queue_ready() checks the host_self_blocked
1232  * flag. The host_self_blocked flag can be modified by calling
1233  * scsi_block_requests() or scsi_unblock_requests().
1234  */
1235 static u32 ufshcd_pending_cmds(struct ufs_hba *hba)
1236 {
1237 	const struct scsi_device *sdev;
1238 	u32 pending = 0;
1239 
1240 	lockdep_assert_held(hba->host->host_lock);
1241 	__shost_for_each_device(sdev, hba->host)
1242 		pending += sbitmap_weight(&sdev->budget_map);
1243 
1244 	return pending;
1245 }
1246 
1247 /*
1248  * Wait until all pending SCSI commands and TMFs have finished or the timeout
1249  * has expired.
1250  *
1251  * Return: 0 upon success; -EBUSY upon timeout.
1252  */
1253 static int ufshcd_wait_for_doorbell_clr(struct ufs_hba *hba,
1254 					u64 wait_timeout_us)
1255 {
1256 	unsigned long flags;
1257 	int ret = 0;
1258 	u32 tm_doorbell;
1259 	u32 tr_pending;
1260 	bool timeout = false, do_last_check = false;
1261 	ktime_t start;
1262 
1263 	ufshcd_hold(hba);
1264 	spin_lock_irqsave(hba->host->host_lock, flags);
1265 	/*
1266 	 * Wait for all the outstanding tasks/transfer requests.
1267 	 * Verify by checking the doorbell registers are clear.
1268 	 */
1269 	start = ktime_get();
1270 	do {
1271 		if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL) {
1272 			ret = -EBUSY;
1273 			goto out;
1274 		}
1275 
1276 		tm_doorbell = ufshcd_readl(hba, REG_UTP_TASK_REQ_DOOR_BELL);
1277 		tr_pending = ufshcd_pending_cmds(hba);
1278 		if (!tm_doorbell && !tr_pending) {
1279 			timeout = false;
1280 			break;
1281 		} else if (do_last_check) {
1282 			break;
1283 		}
1284 
1285 		spin_unlock_irqrestore(hba->host->host_lock, flags);
1286 		io_schedule_timeout(msecs_to_jiffies(20));
1287 		if (ktime_to_us(ktime_sub(ktime_get(), start)) >
1288 		    wait_timeout_us) {
1289 			timeout = true;
1290 			/*
1291 			 * We might have scheduled out for long time so make
1292 			 * sure to check if doorbells are cleared by this time
1293 			 * or not.
1294 			 */
1295 			do_last_check = true;
1296 		}
1297 		spin_lock_irqsave(hba->host->host_lock, flags);
1298 	} while (tm_doorbell || tr_pending);
1299 
1300 	if (timeout) {
1301 		dev_err(hba->dev,
1302 			"%s: timedout waiting for doorbell to clear (tm=0x%x, tr=0x%x)\n",
1303 			__func__, tm_doorbell, tr_pending);
1304 		ret = -EBUSY;
1305 	}
1306 out:
1307 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1308 	ufshcd_release(hba);
1309 	return ret;
1310 }
1311 
1312 /**
1313  * ufshcd_scale_gear - scale up/down UFS gear
1314  * @hba: per adapter instance
1315  * @scale_up: True for scaling up gear and false for scaling down
1316  *
1317  * Return: 0 for success; -EBUSY if scaling can't happen at this time;
1318  * non-zero for any other errors.
1319  */
1320 static int ufshcd_scale_gear(struct ufs_hba *hba, bool scale_up)
1321 {
1322 	int ret = 0;
1323 	struct ufs_pa_layer_attr new_pwr_info;
1324 
1325 	if (scale_up) {
1326 		memcpy(&new_pwr_info, &hba->clk_scaling.saved_pwr_info,
1327 		       sizeof(struct ufs_pa_layer_attr));
1328 	} else {
1329 		memcpy(&new_pwr_info, &hba->pwr_info,
1330 		       sizeof(struct ufs_pa_layer_attr));
1331 
1332 		if (hba->pwr_info.gear_tx > hba->clk_scaling.min_gear ||
1333 		    hba->pwr_info.gear_rx > hba->clk_scaling.min_gear) {
1334 			/* save the current power mode */
1335 			memcpy(&hba->clk_scaling.saved_pwr_info,
1336 				&hba->pwr_info,
1337 				sizeof(struct ufs_pa_layer_attr));
1338 
1339 			/* scale down gear */
1340 			new_pwr_info.gear_tx = hba->clk_scaling.min_gear;
1341 			new_pwr_info.gear_rx = hba->clk_scaling.min_gear;
1342 		}
1343 	}
1344 
1345 	/* check if the power mode needs to be changed or not? */
1346 	ret = ufshcd_config_pwr_mode(hba, &new_pwr_info);
1347 	if (ret)
1348 		dev_err(hba->dev, "%s: failed err %d, old gear: (tx %d rx %d), new gear: (tx %d rx %d)",
1349 			__func__, ret,
1350 			hba->pwr_info.gear_tx, hba->pwr_info.gear_rx,
1351 			new_pwr_info.gear_tx, new_pwr_info.gear_rx);
1352 
1353 	return ret;
1354 }
1355 
1356 /*
1357  * Wait until all pending SCSI commands and TMFs have finished or the timeout
1358  * has expired.
1359  *
1360  * Return: 0 upon success; -EBUSY upon timeout.
1361  */
1362 static int ufshcd_clock_scaling_prepare(struct ufs_hba *hba, u64 timeout_us)
1363 {
1364 	int ret = 0;
1365 	/*
1366 	 * make sure that there are no outstanding requests when
1367 	 * clock scaling is in progress
1368 	 */
1369 	ufshcd_scsi_block_requests(hba);
1370 	mutex_lock(&hba->wb_mutex);
1371 	down_write(&hba->clk_scaling_lock);
1372 
1373 	if (!hba->clk_scaling.is_allowed ||
1374 	    ufshcd_wait_for_doorbell_clr(hba, timeout_us)) {
1375 		ret = -EBUSY;
1376 		up_write(&hba->clk_scaling_lock);
1377 		mutex_unlock(&hba->wb_mutex);
1378 		ufshcd_scsi_unblock_requests(hba);
1379 		goto out;
1380 	}
1381 
1382 	/* let's not get into low power until clock scaling is completed */
1383 	ufshcd_hold(hba);
1384 
1385 out:
1386 	return ret;
1387 }
1388 
1389 static void ufshcd_clock_scaling_unprepare(struct ufs_hba *hba, int err, bool scale_up)
1390 {
1391 	up_write(&hba->clk_scaling_lock);
1392 
1393 	/* Enable Write Booster if we have scaled up else disable it */
1394 	if (ufshcd_enable_wb_if_scaling_up(hba) && !err)
1395 		ufshcd_wb_toggle(hba, scale_up);
1396 
1397 	mutex_unlock(&hba->wb_mutex);
1398 
1399 	ufshcd_scsi_unblock_requests(hba);
1400 	ufshcd_release(hba);
1401 }
1402 
1403 /**
1404  * ufshcd_devfreq_scale - scale up/down UFS clocks and gear
1405  * @hba: per adapter instance
1406  * @freq: frequency to scale
1407  * @scale_up: True for scaling up and false for scalin down
1408  *
1409  * Return: 0 for success; -EBUSY if scaling can't happen at this time; non-zero
1410  * for any other errors.
1411  */
1412 static int ufshcd_devfreq_scale(struct ufs_hba *hba, unsigned long freq,
1413 				bool scale_up)
1414 {
1415 	int ret = 0;
1416 
1417 	ret = ufshcd_clock_scaling_prepare(hba, 1 * USEC_PER_SEC);
1418 	if (ret)
1419 		return ret;
1420 
1421 	/* scale down the gear before scaling down clocks */
1422 	if (!scale_up) {
1423 		ret = ufshcd_scale_gear(hba, false);
1424 		if (ret)
1425 			goto out_unprepare;
1426 	}
1427 
1428 	ret = ufshcd_scale_clks(hba, freq, scale_up);
1429 	if (ret) {
1430 		if (!scale_up)
1431 			ufshcd_scale_gear(hba, true);
1432 		goto out_unprepare;
1433 	}
1434 
1435 	/* scale up the gear after scaling up clocks */
1436 	if (scale_up) {
1437 		ret = ufshcd_scale_gear(hba, true);
1438 		if (ret) {
1439 			ufshcd_scale_clks(hba, hba->devfreq->previous_freq,
1440 					  false);
1441 			goto out_unprepare;
1442 		}
1443 	}
1444 
1445 out_unprepare:
1446 	ufshcd_clock_scaling_unprepare(hba, ret, scale_up);
1447 	return ret;
1448 }
1449 
1450 static void ufshcd_clk_scaling_suspend_work(struct work_struct *work)
1451 {
1452 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1453 					   clk_scaling.suspend_work);
1454 	unsigned long irq_flags;
1455 
1456 	spin_lock_irqsave(hba->host->host_lock, irq_flags);
1457 	if (hba->clk_scaling.active_reqs || hba->clk_scaling.is_suspended) {
1458 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1459 		return;
1460 	}
1461 	hba->clk_scaling.is_suspended = true;
1462 	hba->clk_scaling.window_start_t = 0;
1463 	spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1464 
1465 	devfreq_suspend_device(hba->devfreq);
1466 }
1467 
1468 static void ufshcd_clk_scaling_resume_work(struct work_struct *work)
1469 {
1470 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1471 					   clk_scaling.resume_work);
1472 	unsigned long irq_flags;
1473 
1474 	spin_lock_irqsave(hba->host->host_lock, irq_flags);
1475 	if (!hba->clk_scaling.is_suspended) {
1476 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1477 		return;
1478 	}
1479 	hba->clk_scaling.is_suspended = false;
1480 	spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1481 
1482 	devfreq_resume_device(hba->devfreq);
1483 }
1484 
1485 static int ufshcd_devfreq_target(struct device *dev,
1486 				unsigned long *freq, u32 flags)
1487 {
1488 	int ret = 0;
1489 	struct ufs_hba *hba = dev_get_drvdata(dev);
1490 	ktime_t start;
1491 	bool scale_up = false, sched_clk_scaling_suspend_work = false;
1492 	struct list_head *clk_list = &hba->clk_list_head;
1493 	struct ufs_clk_info *clki;
1494 	unsigned long irq_flags;
1495 
1496 	if (!ufshcd_is_clkscaling_supported(hba))
1497 		return -EINVAL;
1498 
1499 	if (hba->use_pm_opp) {
1500 		struct dev_pm_opp *opp;
1501 
1502 		/* Get the recommended frequency from OPP framework */
1503 		opp = devfreq_recommended_opp(dev, freq, flags);
1504 		if (IS_ERR(opp))
1505 			return PTR_ERR(opp);
1506 
1507 		dev_pm_opp_put(opp);
1508 	} else {
1509 		/* Override with the closest supported frequency */
1510 		clki = list_first_entry(&hba->clk_list_head, struct ufs_clk_info,
1511 					list);
1512 		*freq =	(unsigned long) clk_round_rate(clki->clk, *freq);
1513 	}
1514 
1515 	spin_lock_irqsave(hba->host->host_lock, irq_flags);
1516 	if (ufshcd_eh_in_progress(hba)) {
1517 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1518 		return 0;
1519 	}
1520 
1521 	/* Skip scaling clock when clock scaling is suspended */
1522 	if (hba->clk_scaling.is_suspended) {
1523 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1524 		dev_warn(hba->dev, "clock scaling is suspended, skip");
1525 		return 0;
1526 	}
1527 
1528 	if (!hba->clk_scaling.active_reqs)
1529 		sched_clk_scaling_suspend_work = true;
1530 
1531 	if (list_empty(clk_list)) {
1532 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1533 		goto out;
1534 	}
1535 
1536 	/* Decide based on the target or rounded-off frequency and update */
1537 	if (hba->use_pm_opp)
1538 		scale_up = *freq > hba->clk_scaling.target_freq;
1539 	else
1540 		scale_up = *freq == clki->max_freq;
1541 
1542 	if (!hba->use_pm_opp && !scale_up)
1543 		*freq = clki->min_freq;
1544 
1545 	/* Update the frequency */
1546 	if (!ufshcd_is_devfreq_scaling_required(hba, *freq, scale_up)) {
1547 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1548 		ret = 0;
1549 		goto out; /* no state change required */
1550 	}
1551 	spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1552 
1553 	start = ktime_get();
1554 	ret = ufshcd_devfreq_scale(hba, *freq, scale_up);
1555 	if (!ret)
1556 		hba->clk_scaling.target_freq = *freq;
1557 
1558 	trace_ufshcd_profile_clk_scaling(dev_name(hba->dev),
1559 		(scale_up ? "up" : "down"),
1560 		ktime_to_us(ktime_sub(ktime_get(), start)), ret);
1561 
1562 out:
1563 	if (sched_clk_scaling_suspend_work && !scale_up)
1564 		queue_work(hba->clk_scaling.workq,
1565 			   &hba->clk_scaling.suspend_work);
1566 
1567 	return ret;
1568 }
1569 
1570 static int ufshcd_devfreq_get_dev_status(struct device *dev,
1571 		struct devfreq_dev_status *stat)
1572 {
1573 	struct ufs_hba *hba = dev_get_drvdata(dev);
1574 	struct ufs_clk_scaling *scaling = &hba->clk_scaling;
1575 	unsigned long flags;
1576 	ktime_t curr_t;
1577 
1578 	if (!ufshcd_is_clkscaling_supported(hba))
1579 		return -EINVAL;
1580 
1581 	memset(stat, 0, sizeof(*stat));
1582 
1583 	spin_lock_irqsave(hba->host->host_lock, flags);
1584 	curr_t = ktime_get();
1585 	if (!scaling->window_start_t)
1586 		goto start_window;
1587 
1588 	/*
1589 	 * If current frequency is 0, then the ondemand governor considers
1590 	 * there's no initial frequency set. And it always requests to set
1591 	 * to max. frequency.
1592 	 */
1593 	if (hba->use_pm_opp) {
1594 		stat->current_frequency = hba->clk_scaling.target_freq;
1595 	} else {
1596 		struct list_head *clk_list = &hba->clk_list_head;
1597 		struct ufs_clk_info *clki;
1598 
1599 		clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1600 		stat->current_frequency = clki->curr_freq;
1601 	}
1602 
1603 	if (scaling->is_busy_started)
1604 		scaling->tot_busy_t += ktime_us_delta(curr_t,
1605 				scaling->busy_start_t);
1606 	stat->total_time = ktime_us_delta(curr_t, scaling->window_start_t);
1607 	stat->busy_time = scaling->tot_busy_t;
1608 start_window:
1609 	scaling->window_start_t = curr_t;
1610 	scaling->tot_busy_t = 0;
1611 
1612 	if (scaling->active_reqs) {
1613 		scaling->busy_start_t = curr_t;
1614 		scaling->is_busy_started = true;
1615 	} else {
1616 		scaling->busy_start_t = 0;
1617 		scaling->is_busy_started = false;
1618 	}
1619 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1620 	return 0;
1621 }
1622 
1623 static int ufshcd_devfreq_init(struct ufs_hba *hba)
1624 {
1625 	struct list_head *clk_list = &hba->clk_list_head;
1626 	struct ufs_clk_info *clki;
1627 	struct devfreq *devfreq;
1628 	int ret;
1629 
1630 	/* Skip devfreq if we don't have any clocks in the list */
1631 	if (list_empty(clk_list))
1632 		return 0;
1633 
1634 	if (!hba->use_pm_opp) {
1635 		clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1636 		dev_pm_opp_add(hba->dev, clki->min_freq, 0);
1637 		dev_pm_opp_add(hba->dev, clki->max_freq, 0);
1638 	}
1639 
1640 	ufshcd_vops_config_scaling_param(hba, &hba->vps->devfreq_profile,
1641 					 &hba->vps->ondemand_data);
1642 	devfreq = devfreq_add_device(hba->dev,
1643 			&hba->vps->devfreq_profile,
1644 			DEVFREQ_GOV_SIMPLE_ONDEMAND,
1645 			&hba->vps->ondemand_data);
1646 	if (IS_ERR(devfreq)) {
1647 		ret = PTR_ERR(devfreq);
1648 		dev_err(hba->dev, "Unable to register with devfreq %d\n", ret);
1649 
1650 		if (!hba->use_pm_opp) {
1651 			dev_pm_opp_remove(hba->dev, clki->min_freq);
1652 			dev_pm_opp_remove(hba->dev, clki->max_freq);
1653 		}
1654 		return ret;
1655 	}
1656 
1657 	hba->devfreq = devfreq;
1658 
1659 	return 0;
1660 }
1661 
1662 static void ufshcd_devfreq_remove(struct ufs_hba *hba)
1663 {
1664 	struct list_head *clk_list = &hba->clk_list_head;
1665 
1666 	if (!hba->devfreq)
1667 		return;
1668 
1669 	devfreq_remove_device(hba->devfreq);
1670 	hba->devfreq = NULL;
1671 
1672 	if (!hba->use_pm_opp) {
1673 		struct ufs_clk_info *clki;
1674 
1675 		clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1676 		dev_pm_opp_remove(hba->dev, clki->min_freq);
1677 		dev_pm_opp_remove(hba->dev, clki->max_freq);
1678 	}
1679 }
1680 
1681 static void ufshcd_suspend_clkscaling(struct ufs_hba *hba)
1682 {
1683 	unsigned long flags;
1684 	bool suspend = false;
1685 
1686 	cancel_work_sync(&hba->clk_scaling.suspend_work);
1687 	cancel_work_sync(&hba->clk_scaling.resume_work);
1688 
1689 	spin_lock_irqsave(hba->host->host_lock, flags);
1690 	if (!hba->clk_scaling.is_suspended) {
1691 		suspend = true;
1692 		hba->clk_scaling.is_suspended = true;
1693 		hba->clk_scaling.window_start_t = 0;
1694 	}
1695 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1696 
1697 	if (suspend)
1698 		devfreq_suspend_device(hba->devfreq);
1699 }
1700 
1701 static void ufshcd_resume_clkscaling(struct ufs_hba *hba)
1702 {
1703 	unsigned long flags;
1704 	bool resume = false;
1705 
1706 	spin_lock_irqsave(hba->host->host_lock, flags);
1707 	if (hba->clk_scaling.is_suspended) {
1708 		resume = true;
1709 		hba->clk_scaling.is_suspended = false;
1710 	}
1711 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1712 
1713 	if (resume)
1714 		devfreq_resume_device(hba->devfreq);
1715 }
1716 
1717 static ssize_t ufshcd_clkscale_enable_show(struct device *dev,
1718 		struct device_attribute *attr, char *buf)
1719 {
1720 	struct ufs_hba *hba = dev_get_drvdata(dev);
1721 
1722 	return sysfs_emit(buf, "%d\n", hba->clk_scaling.is_enabled);
1723 }
1724 
1725 static ssize_t ufshcd_clkscale_enable_store(struct device *dev,
1726 		struct device_attribute *attr, const char *buf, size_t count)
1727 {
1728 	struct ufs_hba *hba = dev_get_drvdata(dev);
1729 	u32 value;
1730 	int err = 0;
1731 
1732 	if (kstrtou32(buf, 0, &value))
1733 		return -EINVAL;
1734 
1735 	down(&hba->host_sem);
1736 	if (!ufshcd_is_user_access_allowed(hba)) {
1737 		err = -EBUSY;
1738 		goto out;
1739 	}
1740 
1741 	value = !!value;
1742 	if (value == hba->clk_scaling.is_enabled)
1743 		goto out;
1744 
1745 	ufshcd_rpm_get_sync(hba);
1746 	ufshcd_hold(hba);
1747 
1748 	hba->clk_scaling.is_enabled = value;
1749 
1750 	if (value) {
1751 		ufshcd_resume_clkscaling(hba);
1752 	} else {
1753 		ufshcd_suspend_clkscaling(hba);
1754 		err = ufshcd_devfreq_scale(hba, ULONG_MAX, true);
1755 		if (err)
1756 			dev_err(hba->dev, "%s: failed to scale clocks up %d\n",
1757 					__func__, err);
1758 	}
1759 
1760 	ufshcd_release(hba);
1761 	ufshcd_rpm_put_sync(hba);
1762 out:
1763 	up(&hba->host_sem);
1764 	return err ? err : count;
1765 }
1766 
1767 static void ufshcd_init_clk_scaling_sysfs(struct ufs_hba *hba)
1768 {
1769 	hba->clk_scaling.enable_attr.show = ufshcd_clkscale_enable_show;
1770 	hba->clk_scaling.enable_attr.store = ufshcd_clkscale_enable_store;
1771 	sysfs_attr_init(&hba->clk_scaling.enable_attr.attr);
1772 	hba->clk_scaling.enable_attr.attr.name = "clkscale_enable";
1773 	hba->clk_scaling.enable_attr.attr.mode = 0644;
1774 	if (device_create_file(hba->dev, &hba->clk_scaling.enable_attr))
1775 		dev_err(hba->dev, "Failed to create sysfs for clkscale_enable\n");
1776 }
1777 
1778 static void ufshcd_remove_clk_scaling_sysfs(struct ufs_hba *hba)
1779 {
1780 	if (hba->clk_scaling.enable_attr.attr.name)
1781 		device_remove_file(hba->dev, &hba->clk_scaling.enable_attr);
1782 }
1783 
1784 static void ufshcd_init_clk_scaling(struct ufs_hba *hba)
1785 {
1786 	char wq_name[sizeof("ufs_clkscaling_00")];
1787 
1788 	if (!ufshcd_is_clkscaling_supported(hba))
1789 		return;
1790 
1791 	if (!hba->clk_scaling.min_gear)
1792 		hba->clk_scaling.min_gear = UFS_HS_G1;
1793 
1794 	INIT_WORK(&hba->clk_scaling.suspend_work,
1795 		  ufshcd_clk_scaling_suspend_work);
1796 	INIT_WORK(&hba->clk_scaling.resume_work,
1797 		  ufshcd_clk_scaling_resume_work);
1798 
1799 	snprintf(wq_name, sizeof(wq_name), "ufs_clkscaling_%d",
1800 		 hba->host->host_no);
1801 	hba->clk_scaling.workq = create_singlethread_workqueue(wq_name);
1802 
1803 	hba->clk_scaling.is_initialized = true;
1804 }
1805 
1806 static void ufshcd_exit_clk_scaling(struct ufs_hba *hba)
1807 {
1808 	if (!hba->clk_scaling.is_initialized)
1809 		return;
1810 
1811 	ufshcd_remove_clk_scaling_sysfs(hba);
1812 	destroy_workqueue(hba->clk_scaling.workq);
1813 	ufshcd_devfreq_remove(hba);
1814 	hba->clk_scaling.is_initialized = false;
1815 }
1816 
1817 static void ufshcd_ungate_work(struct work_struct *work)
1818 {
1819 	int ret;
1820 	unsigned long flags;
1821 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1822 			clk_gating.ungate_work);
1823 
1824 	cancel_delayed_work_sync(&hba->clk_gating.gate_work);
1825 
1826 	spin_lock_irqsave(hba->host->host_lock, flags);
1827 	if (hba->clk_gating.state == CLKS_ON) {
1828 		spin_unlock_irqrestore(hba->host->host_lock, flags);
1829 		return;
1830 	}
1831 
1832 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1833 	ufshcd_hba_vreg_set_hpm(hba);
1834 	ufshcd_setup_clocks(hba, true);
1835 
1836 	ufshcd_enable_irq(hba);
1837 
1838 	/* Exit from hibern8 */
1839 	if (ufshcd_can_hibern8_during_gating(hba)) {
1840 		/* Prevent gating in this path */
1841 		hba->clk_gating.is_suspended = true;
1842 		if (ufshcd_is_link_hibern8(hba)) {
1843 			ret = ufshcd_uic_hibern8_exit(hba);
1844 			if (ret)
1845 				dev_err(hba->dev, "%s: hibern8 exit failed %d\n",
1846 					__func__, ret);
1847 			else
1848 				ufshcd_set_link_active(hba);
1849 		}
1850 		hba->clk_gating.is_suspended = false;
1851 	}
1852 }
1853 
1854 /**
1855  * ufshcd_hold - Enable clocks that were gated earlier due to ufshcd_release.
1856  * Also, exit from hibern8 mode and set the link as active.
1857  * @hba: per adapter instance
1858  */
1859 void ufshcd_hold(struct ufs_hba *hba)
1860 {
1861 	bool flush_result;
1862 	unsigned long flags;
1863 
1864 	if (!ufshcd_is_clkgating_allowed(hba) ||
1865 	    !hba->clk_gating.is_initialized)
1866 		return;
1867 	spin_lock_irqsave(hba->host->host_lock, flags);
1868 	hba->clk_gating.active_reqs++;
1869 
1870 start:
1871 	switch (hba->clk_gating.state) {
1872 	case CLKS_ON:
1873 		/*
1874 		 * Wait for the ungate work to complete if in progress.
1875 		 * Though the clocks may be in ON state, the link could
1876 		 * still be in hibner8 state if hibern8 is allowed
1877 		 * during clock gating.
1878 		 * Make sure we exit hibern8 state also in addition to
1879 		 * clocks being ON.
1880 		 */
1881 		if (ufshcd_can_hibern8_during_gating(hba) &&
1882 		    ufshcd_is_link_hibern8(hba)) {
1883 			spin_unlock_irqrestore(hba->host->host_lock, flags);
1884 			flush_result = flush_work(&hba->clk_gating.ungate_work);
1885 			if (hba->clk_gating.is_suspended && !flush_result)
1886 				return;
1887 			spin_lock_irqsave(hba->host->host_lock, flags);
1888 			goto start;
1889 		}
1890 		break;
1891 	case REQ_CLKS_OFF:
1892 		if (cancel_delayed_work(&hba->clk_gating.gate_work)) {
1893 			hba->clk_gating.state = CLKS_ON;
1894 			trace_ufshcd_clk_gating(dev_name(hba->dev),
1895 						hba->clk_gating.state);
1896 			break;
1897 		}
1898 		/*
1899 		 * If we are here, it means gating work is either done or
1900 		 * currently running. Hence, fall through to cancel gating
1901 		 * work and to enable clocks.
1902 		 */
1903 		fallthrough;
1904 	case CLKS_OFF:
1905 		hba->clk_gating.state = REQ_CLKS_ON;
1906 		trace_ufshcd_clk_gating(dev_name(hba->dev),
1907 					hba->clk_gating.state);
1908 		queue_work(hba->clk_gating.clk_gating_workq,
1909 			   &hba->clk_gating.ungate_work);
1910 		/*
1911 		 * fall through to check if we should wait for this
1912 		 * work to be done or not.
1913 		 */
1914 		fallthrough;
1915 	case REQ_CLKS_ON:
1916 		spin_unlock_irqrestore(hba->host->host_lock, flags);
1917 		flush_work(&hba->clk_gating.ungate_work);
1918 		/* Make sure state is CLKS_ON before returning */
1919 		spin_lock_irqsave(hba->host->host_lock, flags);
1920 		goto start;
1921 	default:
1922 		dev_err(hba->dev, "%s: clk gating is in invalid state %d\n",
1923 				__func__, hba->clk_gating.state);
1924 		break;
1925 	}
1926 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1927 }
1928 EXPORT_SYMBOL_GPL(ufshcd_hold);
1929 
1930 static void ufshcd_gate_work(struct work_struct *work)
1931 {
1932 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1933 			clk_gating.gate_work.work);
1934 	unsigned long flags;
1935 	int ret;
1936 
1937 	spin_lock_irqsave(hba->host->host_lock, flags);
1938 	/*
1939 	 * In case you are here to cancel this work the gating state
1940 	 * would be marked as REQ_CLKS_ON. In this case save time by
1941 	 * skipping the gating work and exit after changing the clock
1942 	 * state to CLKS_ON.
1943 	 */
1944 	if (hba->clk_gating.is_suspended ||
1945 		(hba->clk_gating.state != REQ_CLKS_OFF)) {
1946 		hba->clk_gating.state = CLKS_ON;
1947 		trace_ufshcd_clk_gating(dev_name(hba->dev),
1948 					hba->clk_gating.state);
1949 		goto rel_lock;
1950 	}
1951 
1952 	if (ufshcd_is_ufs_dev_busy(hba) || hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL)
1953 		goto rel_lock;
1954 
1955 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1956 
1957 	/* put the link into hibern8 mode before turning off clocks */
1958 	if (ufshcd_can_hibern8_during_gating(hba)) {
1959 		ret = ufshcd_uic_hibern8_enter(hba);
1960 		if (ret) {
1961 			hba->clk_gating.state = CLKS_ON;
1962 			dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
1963 					__func__, ret);
1964 			trace_ufshcd_clk_gating(dev_name(hba->dev),
1965 						hba->clk_gating.state);
1966 			goto out;
1967 		}
1968 		ufshcd_set_link_hibern8(hba);
1969 	}
1970 
1971 	ufshcd_disable_irq(hba);
1972 
1973 	ufshcd_setup_clocks(hba, false);
1974 
1975 	/* Put the host controller in low power mode if possible */
1976 	ufshcd_hba_vreg_set_lpm(hba);
1977 	/*
1978 	 * In case you are here to cancel this work the gating state
1979 	 * would be marked as REQ_CLKS_ON. In this case keep the state
1980 	 * as REQ_CLKS_ON which would anyway imply that clocks are off
1981 	 * and a request to turn them on is pending. By doing this way,
1982 	 * we keep the state machine in tact and this would ultimately
1983 	 * prevent from doing cancel work multiple times when there are
1984 	 * new requests arriving before the current cancel work is done.
1985 	 */
1986 	spin_lock_irqsave(hba->host->host_lock, flags);
1987 	if (hba->clk_gating.state == REQ_CLKS_OFF) {
1988 		hba->clk_gating.state = CLKS_OFF;
1989 		trace_ufshcd_clk_gating(dev_name(hba->dev),
1990 					hba->clk_gating.state);
1991 	}
1992 rel_lock:
1993 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1994 out:
1995 	return;
1996 }
1997 
1998 /* host lock must be held before calling this variant */
1999 static void __ufshcd_release(struct ufs_hba *hba)
2000 {
2001 	if (!ufshcd_is_clkgating_allowed(hba))
2002 		return;
2003 
2004 	hba->clk_gating.active_reqs--;
2005 
2006 	if (hba->clk_gating.active_reqs || hba->clk_gating.is_suspended ||
2007 	    hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL ||
2008 	    hba->outstanding_tasks || !hba->clk_gating.is_initialized ||
2009 	    hba->active_uic_cmd || hba->uic_async_done ||
2010 	    hba->clk_gating.state == CLKS_OFF)
2011 		return;
2012 
2013 	hba->clk_gating.state = REQ_CLKS_OFF;
2014 	trace_ufshcd_clk_gating(dev_name(hba->dev), hba->clk_gating.state);
2015 	queue_delayed_work(hba->clk_gating.clk_gating_workq,
2016 			   &hba->clk_gating.gate_work,
2017 			   msecs_to_jiffies(hba->clk_gating.delay_ms));
2018 }
2019 
2020 void ufshcd_release(struct ufs_hba *hba)
2021 {
2022 	unsigned long flags;
2023 
2024 	spin_lock_irqsave(hba->host->host_lock, flags);
2025 	__ufshcd_release(hba);
2026 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2027 }
2028 EXPORT_SYMBOL_GPL(ufshcd_release);
2029 
2030 static ssize_t ufshcd_clkgate_delay_show(struct device *dev,
2031 		struct device_attribute *attr, char *buf)
2032 {
2033 	struct ufs_hba *hba = dev_get_drvdata(dev);
2034 
2035 	return sysfs_emit(buf, "%lu\n", hba->clk_gating.delay_ms);
2036 }
2037 
2038 void ufshcd_clkgate_delay_set(struct device *dev, unsigned long value)
2039 {
2040 	struct ufs_hba *hba = dev_get_drvdata(dev);
2041 	unsigned long flags;
2042 
2043 	spin_lock_irqsave(hba->host->host_lock, flags);
2044 	hba->clk_gating.delay_ms = value;
2045 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2046 }
2047 EXPORT_SYMBOL_GPL(ufshcd_clkgate_delay_set);
2048 
2049 static ssize_t ufshcd_clkgate_delay_store(struct device *dev,
2050 		struct device_attribute *attr, const char *buf, size_t count)
2051 {
2052 	unsigned long value;
2053 
2054 	if (kstrtoul(buf, 0, &value))
2055 		return -EINVAL;
2056 
2057 	ufshcd_clkgate_delay_set(dev, value);
2058 	return count;
2059 }
2060 
2061 static ssize_t ufshcd_clkgate_enable_show(struct device *dev,
2062 		struct device_attribute *attr, char *buf)
2063 {
2064 	struct ufs_hba *hba = dev_get_drvdata(dev);
2065 
2066 	return sysfs_emit(buf, "%d\n", hba->clk_gating.is_enabled);
2067 }
2068 
2069 static ssize_t ufshcd_clkgate_enable_store(struct device *dev,
2070 		struct device_attribute *attr, const char *buf, size_t count)
2071 {
2072 	struct ufs_hba *hba = dev_get_drvdata(dev);
2073 	unsigned long flags;
2074 	u32 value;
2075 
2076 	if (kstrtou32(buf, 0, &value))
2077 		return -EINVAL;
2078 
2079 	value = !!value;
2080 
2081 	spin_lock_irqsave(hba->host->host_lock, flags);
2082 	if (value == hba->clk_gating.is_enabled)
2083 		goto out;
2084 
2085 	if (value)
2086 		__ufshcd_release(hba);
2087 	else
2088 		hba->clk_gating.active_reqs++;
2089 
2090 	hba->clk_gating.is_enabled = value;
2091 out:
2092 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2093 	return count;
2094 }
2095 
2096 static void ufshcd_init_clk_gating_sysfs(struct ufs_hba *hba)
2097 {
2098 	hba->clk_gating.delay_attr.show = ufshcd_clkgate_delay_show;
2099 	hba->clk_gating.delay_attr.store = ufshcd_clkgate_delay_store;
2100 	sysfs_attr_init(&hba->clk_gating.delay_attr.attr);
2101 	hba->clk_gating.delay_attr.attr.name = "clkgate_delay_ms";
2102 	hba->clk_gating.delay_attr.attr.mode = 0644;
2103 	if (device_create_file(hba->dev, &hba->clk_gating.delay_attr))
2104 		dev_err(hba->dev, "Failed to create sysfs for clkgate_delay\n");
2105 
2106 	hba->clk_gating.enable_attr.show = ufshcd_clkgate_enable_show;
2107 	hba->clk_gating.enable_attr.store = ufshcd_clkgate_enable_store;
2108 	sysfs_attr_init(&hba->clk_gating.enable_attr.attr);
2109 	hba->clk_gating.enable_attr.attr.name = "clkgate_enable";
2110 	hba->clk_gating.enable_attr.attr.mode = 0644;
2111 	if (device_create_file(hba->dev, &hba->clk_gating.enable_attr))
2112 		dev_err(hba->dev, "Failed to create sysfs for clkgate_enable\n");
2113 }
2114 
2115 static void ufshcd_remove_clk_gating_sysfs(struct ufs_hba *hba)
2116 {
2117 	if (hba->clk_gating.delay_attr.attr.name)
2118 		device_remove_file(hba->dev, &hba->clk_gating.delay_attr);
2119 	if (hba->clk_gating.enable_attr.attr.name)
2120 		device_remove_file(hba->dev, &hba->clk_gating.enable_attr);
2121 }
2122 
2123 static void ufshcd_init_clk_gating(struct ufs_hba *hba)
2124 {
2125 	char wq_name[sizeof("ufs_clk_gating_00")];
2126 
2127 	if (!ufshcd_is_clkgating_allowed(hba))
2128 		return;
2129 
2130 	hba->clk_gating.state = CLKS_ON;
2131 
2132 	hba->clk_gating.delay_ms = 150;
2133 	INIT_DELAYED_WORK(&hba->clk_gating.gate_work, ufshcd_gate_work);
2134 	INIT_WORK(&hba->clk_gating.ungate_work, ufshcd_ungate_work);
2135 
2136 	snprintf(wq_name, ARRAY_SIZE(wq_name), "ufs_clk_gating_%d",
2137 		 hba->host->host_no);
2138 	hba->clk_gating.clk_gating_workq = alloc_ordered_workqueue(wq_name,
2139 					WQ_MEM_RECLAIM | WQ_HIGHPRI);
2140 
2141 	ufshcd_init_clk_gating_sysfs(hba);
2142 
2143 	hba->clk_gating.is_enabled = true;
2144 	hba->clk_gating.is_initialized = true;
2145 }
2146 
2147 static void ufshcd_exit_clk_gating(struct ufs_hba *hba)
2148 {
2149 	if (!hba->clk_gating.is_initialized)
2150 		return;
2151 
2152 	ufshcd_remove_clk_gating_sysfs(hba);
2153 
2154 	/* Ungate the clock if necessary. */
2155 	ufshcd_hold(hba);
2156 	hba->clk_gating.is_initialized = false;
2157 	ufshcd_release(hba);
2158 
2159 	destroy_workqueue(hba->clk_gating.clk_gating_workq);
2160 }
2161 
2162 static void ufshcd_clk_scaling_start_busy(struct ufs_hba *hba)
2163 {
2164 	bool queue_resume_work = false;
2165 	ktime_t curr_t = ktime_get();
2166 	unsigned long flags;
2167 
2168 	if (!ufshcd_is_clkscaling_supported(hba))
2169 		return;
2170 
2171 	spin_lock_irqsave(hba->host->host_lock, flags);
2172 	if (!hba->clk_scaling.active_reqs++)
2173 		queue_resume_work = true;
2174 
2175 	if (!hba->clk_scaling.is_enabled || hba->pm_op_in_progress) {
2176 		spin_unlock_irqrestore(hba->host->host_lock, flags);
2177 		return;
2178 	}
2179 
2180 	if (queue_resume_work)
2181 		queue_work(hba->clk_scaling.workq,
2182 			   &hba->clk_scaling.resume_work);
2183 
2184 	if (!hba->clk_scaling.window_start_t) {
2185 		hba->clk_scaling.window_start_t = curr_t;
2186 		hba->clk_scaling.tot_busy_t = 0;
2187 		hba->clk_scaling.is_busy_started = false;
2188 	}
2189 
2190 	if (!hba->clk_scaling.is_busy_started) {
2191 		hba->clk_scaling.busy_start_t = curr_t;
2192 		hba->clk_scaling.is_busy_started = true;
2193 	}
2194 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2195 }
2196 
2197 static void ufshcd_clk_scaling_update_busy(struct ufs_hba *hba)
2198 {
2199 	struct ufs_clk_scaling *scaling = &hba->clk_scaling;
2200 	unsigned long flags;
2201 
2202 	if (!ufshcd_is_clkscaling_supported(hba))
2203 		return;
2204 
2205 	spin_lock_irqsave(hba->host->host_lock, flags);
2206 	hba->clk_scaling.active_reqs--;
2207 	if (!scaling->active_reqs && scaling->is_busy_started) {
2208 		scaling->tot_busy_t += ktime_to_us(ktime_sub(ktime_get(),
2209 					scaling->busy_start_t));
2210 		scaling->busy_start_t = 0;
2211 		scaling->is_busy_started = false;
2212 	}
2213 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2214 }
2215 
2216 static inline int ufshcd_monitor_opcode2dir(u8 opcode)
2217 {
2218 	if (opcode == READ_6 || opcode == READ_10 || opcode == READ_16)
2219 		return READ;
2220 	else if (opcode == WRITE_6 || opcode == WRITE_10 || opcode == WRITE_16)
2221 		return WRITE;
2222 	else
2223 		return -EINVAL;
2224 }
2225 
2226 static inline bool ufshcd_should_inform_monitor(struct ufs_hba *hba,
2227 						struct ufshcd_lrb *lrbp)
2228 {
2229 	const struct ufs_hba_monitor *m = &hba->monitor;
2230 
2231 	return (m->enabled && lrbp && lrbp->cmd &&
2232 		(!m->chunk_size || m->chunk_size == lrbp->cmd->sdb.length) &&
2233 		ktime_before(hba->monitor.enabled_ts, lrbp->issue_time_stamp));
2234 }
2235 
2236 static void ufshcd_start_monitor(struct ufs_hba *hba,
2237 				 const struct ufshcd_lrb *lrbp)
2238 {
2239 	int dir = ufshcd_monitor_opcode2dir(*lrbp->cmd->cmnd);
2240 	unsigned long flags;
2241 
2242 	spin_lock_irqsave(hba->host->host_lock, flags);
2243 	if (dir >= 0 && hba->monitor.nr_queued[dir]++ == 0)
2244 		hba->monitor.busy_start_ts[dir] = ktime_get();
2245 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2246 }
2247 
2248 static void ufshcd_update_monitor(struct ufs_hba *hba, const struct ufshcd_lrb *lrbp)
2249 {
2250 	int dir = ufshcd_monitor_opcode2dir(*lrbp->cmd->cmnd);
2251 	unsigned long flags;
2252 
2253 	spin_lock_irqsave(hba->host->host_lock, flags);
2254 	if (dir >= 0 && hba->monitor.nr_queued[dir] > 0) {
2255 		const struct request *req = scsi_cmd_to_rq(lrbp->cmd);
2256 		struct ufs_hba_monitor *m = &hba->monitor;
2257 		ktime_t now, inc, lat;
2258 
2259 		now = lrbp->compl_time_stamp;
2260 		inc = ktime_sub(now, m->busy_start_ts[dir]);
2261 		m->total_busy[dir] = ktime_add(m->total_busy[dir], inc);
2262 		m->nr_sec_rw[dir] += blk_rq_sectors(req);
2263 
2264 		/* Update latencies */
2265 		m->nr_req[dir]++;
2266 		lat = ktime_sub(now, lrbp->issue_time_stamp);
2267 		m->lat_sum[dir] += lat;
2268 		if (m->lat_max[dir] < lat || !m->lat_max[dir])
2269 			m->lat_max[dir] = lat;
2270 		if (m->lat_min[dir] > lat || !m->lat_min[dir])
2271 			m->lat_min[dir] = lat;
2272 
2273 		m->nr_queued[dir]--;
2274 		/* Push forward the busy start of monitor */
2275 		m->busy_start_ts[dir] = now;
2276 	}
2277 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2278 }
2279 
2280 /**
2281  * ufshcd_send_command - Send SCSI or device management commands
2282  * @hba: per adapter instance
2283  * @task_tag: Task tag of the command
2284  * @hwq: pointer to hardware queue instance
2285  */
2286 static inline
2287 void ufshcd_send_command(struct ufs_hba *hba, unsigned int task_tag,
2288 			 struct ufs_hw_queue *hwq)
2289 {
2290 	struct ufshcd_lrb *lrbp = &hba->lrb[task_tag];
2291 	unsigned long flags;
2292 
2293 	lrbp->issue_time_stamp = ktime_get();
2294 	lrbp->issue_time_stamp_local_clock = local_clock();
2295 	lrbp->compl_time_stamp = ktime_set(0, 0);
2296 	lrbp->compl_time_stamp_local_clock = 0;
2297 	ufshcd_add_command_trace(hba, task_tag, UFS_CMD_SEND);
2298 	if (lrbp->cmd)
2299 		ufshcd_clk_scaling_start_busy(hba);
2300 	if (unlikely(ufshcd_should_inform_monitor(hba, lrbp)))
2301 		ufshcd_start_monitor(hba, lrbp);
2302 
2303 	if (is_mcq_enabled(hba)) {
2304 		int utrd_size = sizeof(struct utp_transfer_req_desc);
2305 		struct utp_transfer_req_desc *src = lrbp->utr_descriptor_ptr;
2306 		struct utp_transfer_req_desc *dest;
2307 
2308 		spin_lock(&hwq->sq_lock);
2309 		dest = hwq->sqe_base_addr + hwq->sq_tail_slot;
2310 		memcpy(dest, src, utrd_size);
2311 		ufshcd_inc_sq_tail(hwq);
2312 		spin_unlock(&hwq->sq_lock);
2313 	} else {
2314 		spin_lock_irqsave(&hba->outstanding_lock, flags);
2315 		if (hba->vops && hba->vops->setup_xfer_req)
2316 			hba->vops->setup_xfer_req(hba, lrbp->task_tag,
2317 						  !!lrbp->cmd);
2318 		__set_bit(lrbp->task_tag, &hba->outstanding_reqs);
2319 		ufshcd_writel(hba, 1 << lrbp->task_tag,
2320 			      REG_UTP_TRANSFER_REQ_DOOR_BELL);
2321 		spin_unlock_irqrestore(&hba->outstanding_lock, flags);
2322 	}
2323 }
2324 
2325 /**
2326  * ufshcd_copy_sense_data - Copy sense data in case of check condition
2327  * @lrbp: pointer to local reference block
2328  */
2329 static inline void ufshcd_copy_sense_data(struct ufshcd_lrb *lrbp)
2330 {
2331 	u8 *const sense_buffer = lrbp->cmd->sense_buffer;
2332 	u16 resp_len;
2333 	int len;
2334 
2335 	resp_len = be16_to_cpu(lrbp->ucd_rsp_ptr->header.data_segment_length);
2336 	if (sense_buffer && resp_len) {
2337 		int len_to_copy;
2338 
2339 		len = be16_to_cpu(lrbp->ucd_rsp_ptr->sr.sense_data_len);
2340 		len_to_copy = min_t(int, UFS_SENSE_SIZE, len);
2341 
2342 		memcpy(sense_buffer, lrbp->ucd_rsp_ptr->sr.sense_data,
2343 		       len_to_copy);
2344 	}
2345 }
2346 
2347 /**
2348  * ufshcd_copy_query_response() - Copy the Query Response and the data
2349  * descriptor
2350  * @hba: per adapter instance
2351  * @lrbp: pointer to local reference block
2352  *
2353  * Return: 0 upon success; < 0 upon failure.
2354  */
2355 static
2356 int ufshcd_copy_query_response(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2357 {
2358 	struct ufs_query_res *query_res = &hba->dev_cmd.query.response;
2359 
2360 	memcpy(&query_res->upiu_res, &lrbp->ucd_rsp_ptr->qr, QUERY_OSF_SIZE);
2361 
2362 	/* Get the descriptor */
2363 	if (hba->dev_cmd.query.descriptor &&
2364 	    lrbp->ucd_rsp_ptr->qr.opcode == UPIU_QUERY_OPCODE_READ_DESC) {
2365 		u8 *descp = (u8 *)lrbp->ucd_rsp_ptr +
2366 				GENERAL_UPIU_REQUEST_SIZE;
2367 		u16 resp_len;
2368 		u16 buf_len;
2369 
2370 		/* data segment length */
2371 		resp_len = be16_to_cpu(lrbp->ucd_rsp_ptr->header
2372 				       .data_segment_length);
2373 		buf_len = be16_to_cpu(
2374 				hba->dev_cmd.query.request.upiu_req.length);
2375 		if (likely(buf_len >= resp_len)) {
2376 			memcpy(hba->dev_cmd.query.descriptor, descp, resp_len);
2377 		} else {
2378 			dev_warn(hba->dev,
2379 				 "%s: rsp size %d is bigger than buffer size %d",
2380 				 __func__, resp_len, buf_len);
2381 			return -EINVAL;
2382 		}
2383 	}
2384 
2385 	return 0;
2386 }
2387 
2388 /**
2389  * ufshcd_hba_capabilities - Read controller capabilities
2390  * @hba: per adapter instance
2391  *
2392  * Return: 0 on success, negative on error.
2393  */
2394 static inline int ufshcd_hba_capabilities(struct ufs_hba *hba)
2395 {
2396 	int err;
2397 
2398 	hba->capabilities = ufshcd_readl(hba, REG_CONTROLLER_CAPABILITIES);
2399 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_64BIT_ADDRESS)
2400 		hba->capabilities &= ~MASK_64_ADDRESSING_SUPPORT;
2401 
2402 	/* nutrs and nutmrs are 0 based values */
2403 	hba->nutrs = (hba->capabilities & MASK_TRANSFER_REQUESTS_SLOTS) + 1;
2404 	hba->nutmrs =
2405 	((hba->capabilities & MASK_TASK_MANAGEMENT_REQUEST_SLOTS) >> 16) + 1;
2406 	hba->reserved_slot = hba->nutrs - 1;
2407 
2408 	/* Read crypto capabilities */
2409 	err = ufshcd_hba_init_crypto_capabilities(hba);
2410 	if (err) {
2411 		dev_err(hba->dev, "crypto setup failed\n");
2412 		return err;
2413 	}
2414 
2415 	hba->mcq_sup = FIELD_GET(MASK_MCQ_SUPPORT, hba->capabilities);
2416 	if (!hba->mcq_sup)
2417 		return 0;
2418 
2419 	hba->mcq_capabilities = ufshcd_readl(hba, REG_MCQCAP);
2420 	hba->ext_iid_sup = FIELD_GET(MASK_EXT_IID_SUPPORT,
2421 				     hba->mcq_capabilities);
2422 
2423 	return 0;
2424 }
2425 
2426 /**
2427  * ufshcd_ready_for_uic_cmd - Check if controller is ready
2428  *                            to accept UIC commands
2429  * @hba: per adapter instance
2430  *
2431  * Return: true on success, else false.
2432  */
2433 static inline bool ufshcd_ready_for_uic_cmd(struct ufs_hba *hba)
2434 {
2435 	u32 val;
2436 	int ret = read_poll_timeout(ufshcd_readl, val, val & UIC_COMMAND_READY,
2437 				    500, UIC_CMD_TIMEOUT * 1000, false, hba,
2438 				    REG_CONTROLLER_STATUS);
2439 	return ret == 0;
2440 }
2441 
2442 /**
2443  * ufshcd_get_upmcrs - Get the power mode change request status
2444  * @hba: Pointer to adapter instance
2445  *
2446  * This function gets the UPMCRS field of HCS register
2447  *
2448  * Return: value of UPMCRS field.
2449  */
2450 static inline u8 ufshcd_get_upmcrs(struct ufs_hba *hba)
2451 {
2452 	return (ufshcd_readl(hba, REG_CONTROLLER_STATUS) >> 8) & 0x7;
2453 }
2454 
2455 /**
2456  * ufshcd_dispatch_uic_cmd - Dispatch an UIC command to the Unipro layer
2457  * @hba: per adapter instance
2458  * @uic_cmd: UIC command
2459  */
2460 static inline void
2461 ufshcd_dispatch_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2462 {
2463 	lockdep_assert_held(&hba->uic_cmd_mutex);
2464 
2465 	WARN_ON(hba->active_uic_cmd);
2466 
2467 	hba->active_uic_cmd = uic_cmd;
2468 
2469 	/* Write Args */
2470 	ufshcd_writel(hba, uic_cmd->argument1, REG_UIC_COMMAND_ARG_1);
2471 	ufshcd_writel(hba, uic_cmd->argument2, REG_UIC_COMMAND_ARG_2);
2472 	ufshcd_writel(hba, uic_cmd->argument3, REG_UIC_COMMAND_ARG_3);
2473 
2474 	ufshcd_add_uic_command_trace(hba, uic_cmd, UFS_CMD_SEND);
2475 
2476 	/* Write UIC Cmd */
2477 	ufshcd_writel(hba, uic_cmd->command & COMMAND_OPCODE_MASK,
2478 		      REG_UIC_COMMAND);
2479 }
2480 
2481 /**
2482  * ufshcd_wait_for_uic_cmd - Wait for completion of an UIC command
2483  * @hba: per adapter instance
2484  * @uic_cmd: UIC command
2485  *
2486  * Return: 0 only if success.
2487  */
2488 static int
2489 ufshcd_wait_for_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2490 {
2491 	int ret;
2492 	unsigned long flags;
2493 
2494 	lockdep_assert_held(&hba->uic_cmd_mutex);
2495 
2496 	if (wait_for_completion_timeout(&uic_cmd->done,
2497 					msecs_to_jiffies(UIC_CMD_TIMEOUT))) {
2498 		ret = uic_cmd->argument2 & MASK_UIC_COMMAND_RESULT;
2499 	} else {
2500 		ret = -ETIMEDOUT;
2501 		dev_err(hba->dev,
2502 			"uic cmd 0x%x with arg3 0x%x completion timeout\n",
2503 			uic_cmd->command, uic_cmd->argument3);
2504 
2505 		if (!uic_cmd->cmd_active) {
2506 			dev_err(hba->dev, "%s: UIC cmd has been completed, return the result\n",
2507 				__func__);
2508 			ret = uic_cmd->argument2 & MASK_UIC_COMMAND_RESULT;
2509 		}
2510 	}
2511 
2512 	spin_lock_irqsave(hba->host->host_lock, flags);
2513 	hba->active_uic_cmd = NULL;
2514 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2515 
2516 	return ret;
2517 }
2518 
2519 /**
2520  * __ufshcd_send_uic_cmd - Send UIC commands and retrieve the result
2521  * @hba: per adapter instance
2522  * @uic_cmd: UIC command
2523  * @completion: initialize the completion only if this is set to true
2524  *
2525  * Return: 0 only if success.
2526  */
2527 static int
2528 __ufshcd_send_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd,
2529 		      bool completion)
2530 {
2531 	lockdep_assert_held(&hba->uic_cmd_mutex);
2532 
2533 	if (!ufshcd_ready_for_uic_cmd(hba)) {
2534 		dev_err(hba->dev,
2535 			"Controller not ready to accept UIC commands\n");
2536 		return -EIO;
2537 	}
2538 
2539 	if (completion)
2540 		init_completion(&uic_cmd->done);
2541 
2542 	uic_cmd->cmd_active = 1;
2543 	ufshcd_dispatch_uic_cmd(hba, uic_cmd);
2544 
2545 	return 0;
2546 }
2547 
2548 /**
2549  * ufshcd_send_uic_cmd - Send UIC commands and retrieve the result
2550  * @hba: per adapter instance
2551  * @uic_cmd: UIC command
2552  *
2553  * Return: 0 only if success.
2554  */
2555 int ufshcd_send_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2556 {
2557 	int ret;
2558 
2559 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_UIC_CMD)
2560 		return 0;
2561 
2562 	ufshcd_hold(hba);
2563 	mutex_lock(&hba->uic_cmd_mutex);
2564 	ufshcd_add_delay_before_dme_cmd(hba);
2565 
2566 	ret = __ufshcd_send_uic_cmd(hba, uic_cmd, true);
2567 	if (!ret)
2568 		ret = ufshcd_wait_for_uic_cmd(hba, uic_cmd);
2569 
2570 	mutex_unlock(&hba->uic_cmd_mutex);
2571 
2572 	ufshcd_release(hba);
2573 	return ret;
2574 }
2575 
2576 /**
2577  * ufshcd_sgl_to_prdt - SG list to PRTD (Physical Region Description Table, 4DW format)
2578  * @hba:	per-adapter instance
2579  * @lrbp:	pointer to local reference block
2580  * @sg_entries:	The number of sg lists actually used
2581  * @sg_list:	Pointer to SG list
2582  */
2583 static void ufshcd_sgl_to_prdt(struct ufs_hba *hba, struct ufshcd_lrb *lrbp, int sg_entries,
2584 			       struct scatterlist *sg_list)
2585 {
2586 	struct ufshcd_sg_entry *prd;
2587 	struct scatterlist *sg;
2588 	int i;
2589 
2590 	if (sg_entries) {
2591 
2592 		if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN)
2593 			lrbp->utr_descriptor_ptr->prd_table_length =
2594 				cpu_to_le16(sg_entries * ufshcd_sg_entry_size(hba));
2595 		else
2596 			lrbp->utr_descriptor_ptr->prd_table_length = cpu_to_le16(sg_entries);
2597 
2598 		prd = lrbp->ucd_prdt_ptr;
2599 
2600 		for_each_sg(sg_list, sg, sg_entries, i) {
2601 			const unsigned int len = sg_dma_len(sg);
2602 
2603 			/*
2604 			 * From the UFSHCI spec: "Data Byte Count (DBC): A '0'
2605 			 * based value that indicates the length, in bytes, of
2606 			 * the data block. A maximum of length of 256KB may
2607 			 * exist for any entry. Bits 1:0 of this field shall be
2608 			 * 11b to indicate Dword granularity. A value of '3'
2609 			 * indicates 4 bytes, '7' indicates 8 bytes, etc."
2610 			 */
2611 			WARN_ONCE(len > SZ_256K, "len = %#x\n", len);
2612 			prd->size = cpu_to_le32(len - 1);
2613 			prd->addr = cpu_to_le64(sg->dma_address);
2614 			prd->reserved = 0;
2615 			prd = (void *)prd + ufshcd_sg_entry_size(hba);
2616 		}
2617 	} else {
2618 		lrbp->utr_descriptor_ptr->prd_table_length = 0;
2619 	}
2620 }
2621 
2622 /**
2623  * ufshcd_map_sg - Map scatter-gather list to prdt
2624  * @hba: per adapter instance
2625  * @lrbp: pointer to local reference block
2626  *
2627  * Return: 0 in case of success, non-zero value in case of failure.
2628  */
2629 static int ufshcd_map_sg(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2630 {
2631 	struct scsi_cmnd *cmd = lrbp->cmd;
2632 	int sg_segments = scsi_dma_map(cmd);
2633 
2634 	if (sg_segments < 0)
2635 		return sg_segments;
2636 
2637 	ufshcd_sgl_to_prdt(hba, lrbp, sg_segments, scsi_sglist(cmd));
2638 
2639 	return 0;
2640 }
2641 
2642 /**
2643  * ufshcd_enable_intr - enable interrupts
2644  * @hba: per adapter instance
2645  * @intrs: interrupt bits
2646  */
2647 static void ufshcd_enable_intr(struct ufs_hba *hba, u32 intrs)
2648 {
2649 	u32 set = ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
2650 
2651 	set |= intrs;
2652 	ufshcd_writel(hba, set, REG_INTERRUPT_ENABLE);
2653 }
2654 
2655 /**
2656  * ufshcd_disable_intr - disable interrupts
2657  * @hba: per adapter instance
2658  * @intrs: interrupt bits
2659  */
2660 static void ufshcd_disable_intr(struct ufs_hba *hba, u32 intrs)
2661 {
2662 	u32 set = ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
2663 
2664 	set &= ~intrs;
2665 	ufshcd_writel(hba, set, REG_INTERRUPT_ENABLE);
2666 }
2667 
2668 /**
2669  * ufshcd_prepare_req_desc_hdr - Fill UTP Transfer request descriptor header according to request
2670  * descriptor according to request
2671  * @hba: per adapter instance
2672  * @lrbp: pointer to local reference block
2673  * @upiu_flags: flags required in the header
2674  * @cmd_dir: requests data direction
2675  * @ehs_length: Total EHS Length (in 32‐bytes units of all Extra Header Segments)
2676  */
2677 static void
2678 ufshcd_prepare_req_desc_hdr(struct ufs_hba *hba, struct ufshcd_lrb *lrbp,
2679 			    u8 *upiu_flags, enum dma_data_direction cmd_dir,
2680 			    int ehs_length)
2681 {
2682 	struct utp_transfer_req_desc *req_desc = lrbp->utr_descriptor_ptr;
2683 	struct request_desc_header *h = &req_desc->header;
2684 	enum utp_data_direction data_direction;
2685 
2686 	lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
2687 
2688 	*h = (typeof(*h)){ };
2689 
2690 	if (cmd_dir == DMA_FROM_DEVICE) {
2691 		data_direction = UTP_DEVICE_TO_HOST;
2692 		*upiu_flags = UPIU_CMD_FLAGS_READ;
2693 	} else if (cmd_dir == DMA_TO_DEVICE) {
2694 		data_direction = UTP_HOST_TO_DEVICE;
2695 		*upiu_flags = UPIU_CMD_FLAGS_WRITE;
2696 	} else {
2697 		data_direction = UTP_NO_DATA_TRANSFER;
2698 		*upiu_flags = UPIU_CMD_FLAGS_NONE;
2699 	}
2700 
2701 	h->command_type = lrbp->command_type;
2702 	h->data_direction = data_direction;
2703 	h->ehs_length = ehs_length;
2704 
2705 	if (lrbp->intr_cmd)
2706 		h->interrupt = 1;
2707 
2708 	/* Prepare crypto related dwords */
2709 	ufshcd_prepare_req_desc_hdr_crypto(lrbp, h);
2710 
2711 	/*
2712 	 * assigning invalid value for command status. Controller
2713 	 * updates OCS on command completion, with the command
2714 	 * status
2715 	 */
2716 	h->ocs = OCS_INVALID_COMMAND_STATUS;
2717 
2718 	req_desc->prd_table_length = 0;
2719 }
2720 
2721 /**
2722  * ufshcd_prepare_utp_scsi_cmd_upiu() - fills the utp_transfer_req_desc,
2723  * for scsi commands
2724  * @lrbp: local reference block pointer
2725  * @upiu_flags: flags
2726  */
2727 static
2728 void ufshcd_prepare_utp_scsi_cmd_upiu(struct ufshcd_lrb *lrbp, u8 upiu_flags)
2729 {
2730 	struct scsi_cmnd *cmd = lrbp->cmd;
2731 	struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2732 	unsigned short cdb_len;
2733 
2734 	ucd_req_ptr->header = (struct utp_upiu_header){
2735 		.transaction_code = UPIU_TRANSACTION_COMMAND,
2736 		.flags = upiu_flags,
2737 		.lun = lrbp->lun,
2738 		.task_tag = lrbp->task_tag,
2739 		.command_set_type = UPIU_COMMAND_SET_TYPE_SCSI,
2740 	};
2741 
2742 	WARN_ON_ONCE(ucd_req_ptr->header.task_tag != lrbp->task_tag);
2743 
2744 	ucd_req_ptr->sc.exp_data_transfer_len = cpu_to_be32(cmd->sdb.length);
2745 
2746 	cdb_len = min_t(unsigned short, cmd->cmd_len, UFS_CDB_SIZE);
2747 	memset(ucd_req_ptr->sc.cdb, 0, UFS_CDB_SIZE);
2748 	memcpy(ucd_req_ptr->sc.cdb, cmd->cmnd, cdb_len);
2749 
2750 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2751 }
2752 
2753 /**
2754  * ufshcd_prepare_utp_query_req_upiu() - fill the utp_transfer_req_desc for query request
2755  * @hba: UFS hba
2756  * @lrbp: local reference block pointer
2757  * @upiu_flags: flags
2758  */
2759 static void ufshcd_prepare_utp_query_req_upiu(struct ufs_hba *hba,
2760 				struct ufshcd_lrb *lrbp, u8 upiu_flags)
2761 {
2762 	struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2763 	struct ufs_query *query = &hba->dev_cmd.query;
2764 	u16 len = be16_to_cpu(query->request.upiu_req.length);
2765 
2766 	/* Query request header */
2767 	ucd_req_ptr->header = (struct utp_upiu_header){
2768 		.transaction_code = UPIU_TRANSACTION_QUERY_REQ,
2769 		.flags = upiu_flags,
2770 		.lun = lrbp->lun,
2771 		.task_tag = lrbp->task_tag,
2772 		.query_function = query->request.query_func,
2773 		/* Data segment length only need for WRITE_DESC */
2774 		.data_segment_length =
2775 			query->request.upiu_req.opcode ==
2776 					UPIU_QUERY_OPCODE_WRITE_DESC ?
2777 				cpu_to_be16(len) :
2778 				0,
2779 	};
2780 
2781 	/* Copy the Query Request buffer as is */
2782 	memcpy(&ucd_req_ptr->qr, &query->request.upiu_req,
2783 			QUERY_OSF_SIZE);
2784 
2785 	/* Copy the Descriptor */
2786 	if (query->request.upiu_req.opcode == UPIU_QUERY_OPCODE_WRITE_DESC)
2787 		memcpy(ucd_req_ptr + 1, query->descriptor, len);
2788 
2789 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2790 }
2791 
2792 static inline void ufshcd_prepare_utp_nop_upiu(struct ufshcd_lrb *lrbp)
2793 {
2794 	struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2795 
2796 	memset(ucd_req_ptr, 0, sizeof(struct utp_upiu_req));
2797 
2798 	ucd_req_ptr->header = (struct utp_upiu_header){
2799 		.transaction_code = UPIU_TRANSACTION_NOP_OUT,
2800 		.task_tag = lrbp->task_tag,
2801 	};
2802 
2803 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2804 }
2805 
2806 /**
2807  * ufshcd_compose_devman_upiu - UFS Protocol Information Unit(UPIU)
2808  *			     for Device Management Purposes
2809  * @hba: per adapter instance
2810  * @lrbp: pointer to local reference block
2811  *
2812  * Return: 0 upon success; < 0 upon failure.
2813  */
2814 static int ufshcd_compose_devman_upiu(struct ufs_hba *hba,
2815 				      struct ufshcd_lrb *lrbp)
2816 {
2817 	u8 upiu_flags;
2818 	int ret = 0;
2819 
2820 	ufshcd_prepare_req_desc_hdr(hba, lrbp, &upiu_flags, DMA_NONE, 0);
2821 
2822 	if (hba->dev_cmd.type == DEV_CMD_TYPE_QUERY)
2823 		ufshcd_prepare_utp_query_req_upiu(hba, lrbp, upiu_flags);
2824 	else if (hba->dev_cmd.type == DEV_CMD_TYPE_NOP)
2825 		ufshcd_prepare_utp_nop_upiu(lrbp);
2826 	else
2827 		ret = -EINVAL;
2828 
2829 	return ret;
2830 }
2831 
2832 /**
2833  * ufshcd_comp_scsi_upiu - UFS Protocol Information Unit(UPIU)
2834  *			   for SCSI Purposes
2835  * @hba: per adapter instance
2836  * @lrbp: pointer to local reference block
2837  */
2838 static void ufshcd_comp_scsi_upiu(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2839 {
2840 	struct request *rq = scsi_cmd_to_rq(lrbp->cmd);
2841 	unsigned int ioprio_class = IOPRIO_PRIO_CLASS(req_get_ioprio(rq));
2842 	u8 upiu_flags;
2843 
2844 	ufshcd_prepare_req_desc_hdr(hba, lrbp, &upiu_flags, lrbp->cmd->sc_data_direction, 0);
2845 	if (ioprio_class == IOPRIO_CLASS_RT)
2846 		upiu_flags |= UPIU_CMD_FLAGS_CP;
2847 	ufshcd_prepare_utp_scsi_cmd_upiu(lrbp, upiu_flags);
2848 }
2849 
2850 /**
2851  * ufshcd_upiu_wlun_to_scsi_wlun - maps UPIU W-LUN id to SCSI W-LUN ID
2852  * @upiu_wlun_id: UPIU W-LUN id
2853  *
2854  * Return: SCSI W-LUN id.
2855  */
2856 static inline u16 ufshcd_upiu_wlun_to_scsi_wlun(u8 upiu_wlun_id)
2857 {
2858 	return (upiu_wlun_id & ~UFS_UPIU_WLUN_ID) | SCSI_W_LUN_BASE;
2859 }
2860 
2861 static inline bool is_device_wlun(struct scsi_device *sdev)
2862 {
2863 	return sdev->lun ==
2864 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_UFS_DEVICE_WLUN);
2865 }
2866 
2867 /*
2868  * Associate the UFS controller queue with the default and poll HCTX types.
2869  * Initialize the mq_map[] arrays.
2870  */
2871 static void ufshcd_map_queues(struct Scsi_Host *shost)
2872 {
2873 	struct ufs_hba *hba = shost_priv(shost);
2874 	int i, queue_offset = 0;
2875 
2876 	if (!is_mcq_supported(hba)) {
2877 		hba->nr_queues[HCTX_TYPE_DEFAULT] = 1;
2878 		hba->nr_queues[HCTX_TYPE_READ] = 0;
2879 		hba->nr_queues[HCTX_TYPE_POLL] = 1;
2880 		hba->nr_hw_queues = 1;
2881 	}
2882 
2883 	for (i = 0; i < shost->nr_maps; i++) {
2884 		struct blk_mq_queue_map *map = &shost->tag_set.map[i];
2885 
2886 		map->nr_queues = hba->nr_queues[i];
2887 		if (!map->nr_queues)
2888 			continue;
2889 		map->queue_offset = queue_offset;
2890 		if (i == HCTX_TYPE_POLL && !is_mcq_supported(hba))
2891 			map->queue_offset = 0;
2892 
2893 		blk_mq_map_queues(map);
2894 		queue_offset += map->nr_queues;
2895 	}
2896 }
2897 
2898 static void ufshcd_init_lrb(struct ufs_hba *hba, struct ufshcd_lrb *lrb, int i)
2899 {
2900 	struct utp_transfer_cmd_desc *cmd_descp = (void *)hba->ucdl_base_addr +
2901 		i * ufshcd_get_ucd_size(hba);
2902 	struct utp_transfer_req_desc *utrdlp = hba->utrdl_base_addr;
2903 	dma_addr_t cmd_desc_element_addr = hba->ucdl_dma_addr +
2904 		i * ufshcd_get_ucd_size(hba);
2905 	u16 response_offset = offsetof(struct utp_transfer_cmd_desc,
2906 				       response_upiu);
2907 	u16 prdt_offset = offsetof(struct utp_transfer_cmd_desc, prd_table);
2908 
2909 	lrb->utr_descriptor_ptr = utrdlp + i;
2910 	lrb->utrd_dma_addr = hba->utrdl_dma_addr +
2911 		i * sizeof(struct utp_transfer_req_desc);
2912 	lrb->ucd_req_ptr = (struct utp_upiu_req *)cmd_descp->command_upiu;
2913 	lrb->ucd_req_dma_addr = cmd_desc_element_addr;
2914 	lrb->ucd_rsp_ptr = (struct utp_upiu_rsp *)cmd_descp->response_upiu;
2915 	lrb->ucd_rsp_dma_addr = cmd_desc_element_addr + response_offset;
2916 	lrb->ucd_prdt_ptr = (struct ufshcd_sg_entry *)cmd_descp->prd_table;
2917 	lrb->ucd_prdt_dma_addr = cmd_desc_element_addr + prdt_offset;
2918 }
2919 
2920 /**
2921  * ufshcd_queuecommand - main entry point for SCSI requests
2922  * @host: SCSI host pointer
2923  * @cmd: command from SCSI Midlayer
2924  *
2925  * Return: 0 for success, non-zero in case of failure.
2926  */
2927 static int ufshcd_queuecommand(struct Scsi_Host *host, struct scsi_cmnd *cmd)
2928 {
2929 	struct ufs_hba *hba = shost_priv(host);
2930 	int tag = scsi_cmd_to_rq(cmd)->tag;
2931 	struct ufshcd_lrb *lrbp;
2932 	int err = 0;
2933 	struct ufs_hw_queue *hwq = NULL;
2934 
2935 	switch (hba->ufshcd_state) {
2936 	case UFSHCD_STATE_OPERATIONAL:
2937 		break;
2938 	case UFSHCD_STATE_EH_SCHEDULED_NON_FATAL:
2939 		/*
2940 		 * SCSI error handler can call ->queuecommand() while UFS error
2941 		 * handler is in progress. Error interrupts could change the
2942 		 * state from UFSHCD_STATE_RESET to
2943 		 * UFSHCD_STATE_EH_SCHEDULED_NON_FATAL. Prevent requests
2944 		 * being issued in that case.
2945 		 */
2946 		if (ufshcd_eh_in_progress(hba)) {
2947 			err = SCSI_MLQUEUE_HOST_BUSY;
2948 			goto out;
2949 		}
2950 		break;
2951 	case UFSHCD_STATE_EH_SCHEDULED_FATAL:
2952 		/*
2953 		 * pm_runtime_get_sync() is used at error handling preparation
2954 		 * stage. If a scsi cmd, e.g. the SSU cmd, is sent from hba's
2955 		 * PM ops, it can never be finished if we let SCSI layer keep
2956 		 * retrying it, which gets err handler stuck forever. Neither
2957 		 * can we let the scsi cmd pass through, because UFS is in bad
2958 		 * state, the scsi cmd may eventually time out, which will get
2959 		 * err handler blocked for too long. So, just fail the scsi cmd
2960 		 * sent from PM ops, err handler can recover PM error anyways.
2961 		 */
2962 		if (hba->pm_op_in_progress) {
2963 			hba->force_reset = true;
2964 			set_host_byte(cmd, DID_BAD_TARGET);
2965 			scsi_done(cmd);
2966 			goto out;
2967 		}
2968 		fallthrough;
2969 	case UFSHCD_STATE_RESET:
2970 		err = SCSI_MLQUEUE_HOST_BUSY;
2971 		goto out;
2972 	case UFSHCD_STATE_ERROR:
2973 		set_host_byte(cmd, DID_ERROR);
2974 		scsi_done(cmd);
2975 		goto out;
2976 	}
2977 
2978 	hba->req_abort_count = 0;
2979 
2980 	ufshcd_hold(hba);
2981 
2982 	lrbp = &hba->lrb[tag];
2983 	lrbp->cmd = cmd;
2984 	lrbp->task_tag = tag;
2985 	lrbp->lun = ufshcd_scsi_to_upiu_lun(cmd->device->lun);
2986 	lrbp->intr_cmd = !ufshcd_is_intr_aggr_allowed(hba);
2987 
2988 	ufshcd_prepare_lrbp_crypto(scsi_cmd_to_rq(cmd), lrbp);
2989 
2990 	lrbp->req_abort_skip = false;
2991 
2992 	ufshcd_comp_scsi_upiu(hba, lrbp);
2993 
2994 	err = ufshcd_map_sg(hba, lrbp);
2995 	if (err) {
2996 		ufshcd_release(hba);
2997 		goto out;
2998 	}
2999 
3000 	if (is_mcq_enabled(hba))
3001 		hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(cmd));
3002 
3003 	ufshcd_send_command(hba, tag, hwq);
3004 
3005 out:
3006 	if (ufs_trigger_eh(hba)) {
3007 		unsigned long flags;
3008 
3009 		spin_lock_irqsave(hba->host->host_lock, flags);
3010 		ufshcd_schedule_eh_work(hba);
3011 		spin_unlock_irqrestore(hba->host->host_lock, flags);
3012 	}
3013 
3014 	return err;
3015 }
3016 
3017 static void ufshcd_setup_dev_cmd(struct ufs_hba *hba, struct ufshcd_lrb *lrbp,
3018 			     enum dev_cmd_type cmd_type, u8 lun, int tag)
3019 {
3020 	lrbp->cmd = NULL;
3021 	lrbp->task_tag = tag;
3022 	lrbp->lun = lun;
3023 	lrbp->intr_cmd = true; /* No interrupt aggregation */
3024 	ufshcd_prepare_lrbp_crypto(NULL, lrbp);
3025 	hba->dev_cmd.type = cmd_type;
3026 }
3027 
3028 static int ufshcd_compose_dev_cmd(struct ufs_hba *hba,
3029 		struct ufshcd_lrb *lrbp, enum dev_cmd_type cmd_type, int tag)
3030 {
3031 	ufshcd_setup_dev_cmd(hba, lrbp, cmd_type, 0, tag);
3032 
3033 	return ufshcd_compose_devman_upiu(hba, lrbp);
3034 }
3035 
3036 /*
3037  * Check with the block layer if the command is inflight
3038  * @cmd: command to check.
3039  *
3040  * Return: true if command is inflight; false if not.
3041  */
3042 bool ufshcd_cmd_inflight(struct scsi_cmnd *cmd)
3043 {
3044 	return cmd && blk_mq_rq_state(scsi_cmd_to_rq(cmd)) == MQ_RQ_IN_FLIGHT;
3045 }
3046 
3047 /*
3048  * Clear the pending command in the controller and wait until
3049  * the controller confirms that the command has been cleared.
3050  * @hba: per adapter instance
3051  * @task_tag: The tag number of the command to be cleared.
3052  */
3053 static int ufshcd_clear_cmd(struct ufs_hba *hba, u32 task_tag)
3054 {
3055 	u32 mask;
3056 	unsigned long flags;
3057 	int err;
3058 
3059 	if (is_mcq_enabled(hba)) {
3060 		/*
3061 		 * MCQ mode. Clean up the MCQ resources similar to
3062 		 * what the ufshcd_utrl_clear() does for SDB mode.
3063 		 */
3064 		err = ufshcd_mcq_sq_cleanup(hba, task_tag);
3065 		if (err) {
3066 			dev_err(hba->dev, "%s: failed tag=%d. err=%d\n",
3067 				__func__, task_tag, err);
3068 			return err;
3069 		}
3070 		return 0;
3071 	}
3072 
3073 	mask = 1U << task_tag;
3074 
3075 	/* clear outstanding transaction before retry */
3076 	spin_lock_irqsave(hba->host->host_lock, flags);
3077 	ufshcd_utrl_clear(hba, mask);
3078 	spin_unlock_irqrestore(hba->host->host_lock, flags);
3079 
3080 	/*
3081 	 * wait for h/w to clear corresponding bit in door-bell.
3082 	 * max. wait is 1 sec.
3083 	 */
3084 	return ufshcd_wait_for_register(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL,
3085 					mask, ~mask, 1000, 1000);
3086 }
3087 
3088 /**
3089  * ufshcd_dev_cmd_completion() - handles device management command responses
3090  * @hba: per adapter instance
3091  * @lrbp: pointer to local reference block
3092  *
3093  * Return: 0 upon success; < 0 upon failure.
3094  */
3095 static int
3096 ufshcd_dev_cmd_completion(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
3097 {
3098 	enum upiu_response_transaction resp;
3099 	int err = 0;
3100 
3101 	hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
3102 	resp = ufshcd_get_req_rsp(lrbp->ucd_rsp_ptr);
3103 
3104 	switch (resp) {
3105 	case UPIU_TRANSACTION_NOP_IN:
3106 		if (hba->dev_cmd.type != DEV_CMD_TYPE_NOP) {
3107 			err = -EINVAL;
3108 			dev_err(hba->dev, "%s: unexpected response %x\n",
3109 					__func__, resp);
3110 		}
3111 		break;
3112 	case UPIU_TRANSACTION_QUERY_RSP: {
3113 		u8 response = lrbp->ucd_rsp_ptr->header.response;
3114 
3115 		if (response == 0)
3116 			err = ufshcd_copy_query_response(hba, lrbp);
3117 		break;
3118 	}
3119 	case UPIU_TRANSACTION_REJECT_UPIU:
3120 		/* TODO: handle Reject UPIU Response */
3121 		err = -EPERM;
3122 		dev_err(hba->dev, "%s: Reject UPIU not fully implemented\n",
3123 				__func__);
3124 		break;
3125 	case UPIU_TRANSACTION_RESPONSE:
3126 		if (hba->dev_cmd.type != DEV_CMD_TYPE_RPMB) {
3127 			err = -EINVAL;
3128 			dev_err(hba->dev, "%s: unexpected response %x\n", __func__, resp);
3129 		}
3130 		break;
3131 	default:
3132 		err = -EINVAL;
3133 		dev_err(hba->dev, "%s: Invalid device management cmd response: %x\n",
3134 				__func__, resp);
3135 		break;
3136 	}
3137 
3138 	return err;
3139 }
3140 
3141 static int ufshcd_wait_for_dev_cmd(struct ufs_hba *hba,
3142 		struct ufshcd_lrb *lrbp, int max_timeout)
3143 {
3144 	unsigned long time_left = msecs_to_jiffies(max_timeout);
3145 	unsigned long flags;
3146 	bool pending;
3147 	int err;
3148 
3149 retry:
3150 	time_left = wait_for_completion_timeout(hba->dev_cmd.complete,
3151 						time_left);
3152 
3153 	if (likely(time_left)) {
3154 		/*
3155 		 * The completion handler called complete() and the caller of
3156 		 * this function still owns the @lrbp tag so the code below does
3157 		 * not trigger any race conditions.
3158 		 */
3159 		hba->dev_cmd.complete = NULL;
3160 		err = ufshcd_get_tr_ocs(lrbp, NULL);
3161 		if (!err)
3162 			err = ufshcd_dev_cmd_completion(hba, lrbp);
3163 	} else {
3164 		err = -ETIMEDOUT;
3165 		dev_dbg(hba->dev, "%s: dev_cmd request timedout, tag %d\n",
3166 			__func__, lrbp->task_tag);
3167 
3168 		/* MCQ mode */
3169 		if (is_mcq_enabled(hba)) {
3170 			/* successfully cleared the command, retry if needed */
3171 			if (ufshcd_clear_cmd(hba, lrbp->task_tag) == 0)
3172 				err = -EAGAIN;
3173 			hba->dev_cmd.complete = NULL;
3174 			return err;
3175 		}
3176 
3177 		/* SDB mode */
3178 		if (ufshcd_clear_cmd(hba, lrbp->task_tag) == 0) {
3179 			/* successfully cleared the command, retry if needed */
3180 			err = -EAGAIN;
3181 			/*
3182 			 * Since clearing the command succeeded we also need to
3183 			 * clear the task tag bit from the outstanding_reqs
3184 			 * variable.
3185 			 */
3186 			spin_lock_irqsave(&hba->outstanding_lock, flags);
3187 			pending = test_bit(lrbp->task_tag,
3188 					   &hba->outstanding_reqs);
3189 			if (pending) {
3190 				hba->dev_cmd.complete = NULL;
3191 				__clear_bit(lrbp->task_tag,
3192 					    &hba->outstanding_reqs);
3193 			}
3194 			spin_unlock_irqrestore(&hba->outstanding_lock, flags);
3195 
3196 			if (!pending) {
3197 				/*
3198 				 * The completion handler ran while we tried to
3199 				 * clear the command.
3200 				 */
3201 				time_left = 1;
3202 				goto retry;
3203 			}
3204 		} else {
3205 			dev_err(hba->dev, "%s: failed to clear tag %d\n",
3206 				__func__, lrbp->task_tag);
3207 
3208 			spin_lock_irqsave(&hba->outstanding_lock, flags);
3209 			pending = test_bit(lrbp->task_tag,
3210 					   &hba->outstanding_reqs);
3211 			if (pending)
3212 				hba->dev_cmd.complete = NULL;
3213 			spin_unlock_irqrestore(&hba->outstanding_lock, flags);
3214 
3215 			if (!pending) {
3216 				/*
3217 				 * The completion handler ran while we tried to
3218 				 * clear the command.
3219 				 */
3220 				time_left = 1;
3221 				goto retry;
3222 			}
3223 		}
3224 	}
3225 
3226 	return err;
3227 }
3228 
3229 static void ufshcd_dev_man_lock(struct ufs_hba *hba)
3230 {
3231 	ufshcd_hold(hba);
3232 	mutex_lock(&hba->dev_cmd.lock);
3233 	down_read(&hba->clk_scaling_lock);
3234 }
3235 
3236 static void ufshcd_dev_man_unlock(struct ufs_hba *hba)
3237 {
3238 	up_read(&hba->clk_scaling_lock);
3239 	mutex_unlock(&hba->dev_cmd.lock);
3240 	ufshcd_release(hba);
3241 }
3242 
3243 static int ufshcd_issue_dev_cmd(struct ufs_hba *hba, struct ufshcd_lrb *lrbp,
3244 			  const u32 tag, int timeout)
3245 {
3246 	DECLARE_COMPLETION_ONSTACK(wait);
3247 	int err;
3248 
3249 	hba->dev_cmd.complete = &wait;
3250 
3251 	ufshcd_add_query_upiu_trace(hba, UFS_QUERY_SEND, lrbp->ucd_req_ptr);
3252 
3253 	ufshcd_send_command(hba, tag, hba->dev_cmd_queue);
3254 	err = ufshcd_wait_for_dev_cmd(hba, lrbp, timeout);
3255 
3256 	ufshcd_add_query_upiu_trace(hba, err ? UFS_QUERY_ERR : UFS_QUERY_COMP,
3257 				    (struct utp_upiu_req *)lrbp->ucd_rsp_ptr);
3258 
3259 	return err;
3260 }
3261 
3262 /**
3263  * ufshcd_exec_dev_cmd - API for sending device management requests
3264  * @hba: UFS hba
3265  * @cmd_type: specifies the type (NOP, Query...)
3266  * @timeout: timeout in milliseconds
3267  *
3268  * Return: 0 upon success; < 0 upon failure.
3269  *
3270  * NOTE: Since there is only one available tag for device management commands,
3271  * it is expected you hold the hba->dev_cmd.lock mutex.
3272  */
3273 static int ufshcd_exec_dev_cmd(struct ufs_hba *hba,
3274 		enum dev_cmd_type cmd_type, int timeout)
3275 {
3276 	const u32 tag = hba->reserved_slot;
3277 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
3278 	int err;
3279 
3280 	/* Protects use of hba->reserved_slot. */
3281 	lockdep_assert_held(&hba->dev_cmd.lock);
3282 
3283 	err = ufshcd_compose_dev_cmd(hba, lrbp, cmd_type, tag);
3284 	if (unlikely(err))
3285 		return err;
3286 
3287 	return ufshcd_issue_dev_cmd(hba, lrbp, tag, timeout);
3288 }
3289 
3290 /**
3291  * ufshcd_init_query() - init the query response and request parameters
3292  * @hba: per-adapter instance
3293  * @request: address of the request pointer to be initialized
3294  * @response: address of the response pointer to be initialized
3295  * @opcode: operation to perform
3296  * @idn: flag idn to access
3297  * @index: LU number to access
3298  * @selector: query/flag/descriptor further identification
3299  */
3300 static inline void ufshcd_init_query(struct ufs_hba *hba,
3301 		struct ufs_query_req **request, struct ufs_query_res **response,
3302 		enum query_opcode opcode, u8 idn, u8 index, u8 selector)
3303 {
3304 	*request = &hba->dev_cmd.query.request;
3305 	*response = &hba->dev_cmd.query.response;
3306 	memset(*request, 0, sizeof(struct ufs_query_req));
3307 	memset(*response, 0, sizeof(struct ufs_query_res));
3308 	(*request)->upiu_req.opcode = opcode;
3309 	(*request)->upiu_req.idn = idn;
3310 	(*request)->upiu_req.index = index;
3311 	(*request)->upiu_req.selector = selector;
3312 }
3313 
3314 static int ufshcd_query_flag_retry(struct ufs_hba *hba,
3315 	enum query_opcode opcode, enum flag_idn idn, u8 index, bool *flag_res)
3316 {
3317 	int ret;
3318 	int retries;
3319 
3320 	for (retries = 0; retries < QUERY_REQ_RETRIES; retries++) {
3321 		ret = ufshcd_query_flag(hba, opcode, idn, index, flag_res);
3322 		if (ret)
3323 			dev_dbg(hba->dev,
3324 				"%s: failed with error %d, retries %d\n",
3325 				__func__, ret, retries);
3326 		else
3327 			break;
3328 	}
3329 
3330 	if (ret)
3331 		dev_err(hba->dev,
3332 			"%s: query flag, opcode %d, idn %d, failed with error %d after %d retries\n",
3333 			__func__, opcode, idn, ret, retries);
3334 	return ret;
3335 }
3336 
3337 /**
3338  * ufshcd_query_flag() - API function for sending flag query requests
3339  * @hba: per-adapter instance
3340  * @opcode: flag query to perform
3341  * @idn: flag idn to access
3342  * @index: flag index to access
3343  * @flag_res: the flag value after the query request completes
3344  *
3345  * Return: 0 for success, non-zero in case of failure.
3346  */
3347 int ufshcd_query_flag(struct ufs_hba *hba, enum query_opcode opcode,
3348 			enum flag_idn idn, u8 index, bool *flag_res)
3349 {
3350 	struct ufs_query_req *request = NULL;
3351 	struct ufs_query_res *response = NULL;
3352 	int err, selector = 0;
3353 	int timeout = QUERY_REQ_TIMEOUT;
3354 
3355 	BUG_ON(!hba);
3356 
3357 	ufshcd_dev_man_lock(hba);
3358 
3359 	ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3360 			selector);
3361 
3362 	switch (opcode) {
3363 	case UPIU_QUERY_OPCODE_SET_FLAG:
3364 	case UPIU_QUERY_OPCODE_CLEAR_FLAG:
3365 	case UPIU_QUERY_OPCODE_TOGGLE_FLAG:
3366 		request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3367 		break;
3368 	case UPIU_QUERY_OPCODE_READ_FLAG:
3369 		request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3370 		if (!flag_res) {
3371 			/* No dummy reads */
3372 			dev_err(hba->dev, "%s: Invalid argument for read request\n",
3373 					__func__);
3374 			err = -EINVAL;
3375 			goto out_unlock;
3376 		}
3377 		break;
3378 	default:
3379 		dev_err(hba->dev,
3380 			"%s: Expected query flag opcode but got = %d\n",
3381 			__func__, opcode);
3382 		err = -EINVAL;
3383 		goto out_unlock;
3384 	}
3385 
3386 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, timeout);
3387 
3388 	if (err) {
3389 		dev_err(hba->dev,
3390 			"%s: Sending flag query for idn %d failed, err = %d\n",
3391 			__func__, idn, err);
3392 		goto out_unlock;
3393 	}
3394 
3395 	if (flag_res)
3396 		*flag_res = (be32_to_cpu(response->upiu_res.value) &
3397 				MASK_QUERY_UPIU_FLAG_LOC) & 0x1;
3398 
3399 out_unlock:
3400 	ufshcd_dev_man_unlock(hba);
3401 	return err;
3402 }
3403 
3404 /**
3405  * ufshcd_query_attr - API function for sending attribute requests
3406  * @hba: per-adapter instance
3407  * @opcode: attribute opcode
3408  * @idn: attribute idn to access
3409  * @index: index field
3410  * @selector: selector field
3411  * @attr_val: the attribute value after the query request completes
3412  *
3413  * Return: 0 for success, non-zero in case of failure.
3414 */
3415 int ufshcd_query_attr(struct ufs_hba *hba, enum query_opcode opcode,
3416 		      enum attr_idn idn, u8 index, u8 selector, u32 *attr_val)
3417 {
3418 	struct ufs_query_req *request = NULL;
3419 	struct ufs_query_res *response = NULL;
3420 	int err;
3421 
3422 	BUG_ON(!hba);
3423 
3424 	if (!attr_val) {
3425 		dev_err(hba->dev, "%s: attribute value required for opcode 0x%x\n",
3426 				__func__, opcode);
3427 		return -EINVAL;
3428 	}
3429 
3430 	ufshcd_dev_man_lock(hba);
3431 
3432 	ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3433 			selector);
3434 
3435 	switch (opcode) {
3436 	case UPIU_QUERY_OPCODE_WRITE_ATTR:
3437 		request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3438 		request->upiu_req.value = cpu_to_be32(*attr_val);
3439 		break;
3440 	case UPIU_QUERY_OPCODE_READ_ATTR:
3441 		request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3442 		break;
3443 	default:
3444 		dev_err(hba->dev, "%s: Expected query attr opcode but got = 0x%.2x\n",
3445 				__func__, opcode);
3446 		err = -EINVAL;
3447 		goto out_unlock;
3448 	}
3449 
3450 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT);
3451 
3452 	if (err) {
3453 		dev_err(hba->dev, "%s: opcode 0x%.2x for idn %d failed, index %d, err = %d\n",
3454 				__func__, opcode, idn, index, err);
3455 		goto out_unlock;
3456 	}
3457 
3458 	*attr_val = be32_to_cpu(response->upiu_res.value);
3459 
3460 out_unlock:
3461 	ufshcd_dev_man_unlock(hba);
3462 	return err;
3463 }
3464 
3465 /**
3466  * ufshcd_query_attr_retry() - API function for sending query
3467  * attribute with retries
3468  * @hba: per-adapter instance
3469  * @opcode: attribute opcode
3470  * @idn: attribute idn to access
3471  * @index: index field
3472  * @selector: selector field
3473  * @attr_val: the attribute value after the query request
3474  * completes
3475  *
3476  * Return: 0 for success, non-zero in case of failure.
3477 */
3478 int ufshcd_query_attr_retry(struct ufs_hba *hba,
3479 	enum query_opcode opcode, enum attr_idn idn, u8 index, u8 selector,
3480 	u32 *attr_val)
3481 {
3482 	int ret = 0;
3483 	u32 retries;
3484 
3485 	for (retries = QUERY_REQ_RETRIES; retries > 0; retries--) {
3486 		ret = ufshcd_query_attr(hba, opcode, idn, index,
3487 						selector, attr_val);
3488 		if (ret)
3489 			dev_dbg(hba->dev, "%s: failed with error %d, retries %d\n",
3490 				__func__, ret, retries);
3491 		else
3492 			break;
3493 	}
3494 
3495 	if (ret)
3496 		dev_err(hba->dev,
3497 			"%s: query attribute, idn %d, failed with error %d after %d retries\n",
3498 			__func__, idn, ret, QUERY_REQ_RETRIES);
3499 	return ret;
3500 }
3501 
3502 static int __ufshcd_query_descriptor(struct ufs_hba *hba,
3503 			enum query_opcode opcode, enum desc_idn idn, u8 index,
3504 			u8 selector, u8 *desc_buf, int *buf_len)
3505 {
3506 	struct ufs_query_req *request = NULL;
3507 	struct ufs_query_res *response = NULL;
3508 	int err;
3509 
3510 	BUG_ON(!hba);
3511 
3512 	if (!desc_buf) {
3513 		dev_err(hba->dev, "%s: descriptor buffer required for opcode 0x%x\n",
3514 				__func__, opcode);
3515 		return -EINVAL;
3516 	}
3517 
3518 	if (*buf_len < QUERY_DESC_MIN_SIZE || *buf_len > QUERY_DESC_MAX_SIZE) {
3519 		dev_err(hba->dev, "%s: descriptor buffer size (%d) is out of range\n",
3520 				__func__, *buf_len);
3521 		return -EINVAL;
3522 	}
3523 
3524 	ufshcd_dev_man_lock(hba);
3525 
3526 	ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3527 			selector);
3528 	hba->dev_cmd.query.descriptor = desc_buf;
3529 	request->upiu_req.length = cpu_to_be16(*buf_len);
3530 
3531 	switch (opcode) {
3532 	case UPIU_QUERY_OPCODE_WRITE_DESC:
3533 		request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3534 		break;
3535 	case UPIU_QUERY_OPCODE_READ_DESC:
3536 		request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3537 		break;
3538 	default:
3539 		dev_err(hba->dev,
3540 				"%s: Expected query descriptor opcode but got = 0x%.2x\n",
3541 				__func__, opcode);
3542 		err = -EINVAL;
3543 		goto out_unlock;
3544 	}
3545 
3546 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT);
3547 
3548 	if (err) {
3549 		dev_err(hba->dev, "%s: opcode 0x%.2x for idn %d failed, index %d, err = %d\n",
3550 				__func__, opcode, idn, index, err);
3551 		goto out_unlock;
3552 	}
3553 
3554 	*buf_len = be16_to_cpu(response->upiu_res.length);
3555 
3556 out_unlock:
3557 	hba->dev_cmd.query.descriptor = NULL;
3558 	ufshcd_dev_man_unlock(hba);
3559 	return err;
3560 }
3561 
3562 /**
3563  * ufshcd_query_descriptor_retry - API function for sending descriptor requests
3564  * @hba: per-adapter instance
3565  * @opcode: attribute opcode
3566  * @idn: attribute idn to access
3567  * @index: index field
3568  * @selector: selector field
3569  * @desc_buf: the buffer that contains the descriptor
3570  * @buf_len: length parameter passed to the device
3571  *
3572  * The buf_len parameter will contain, on return, the length parameter
3573  * received on the response.
3574  *
3575  * Return: 0 for success, non-zero in case of failure.
3576  */
3577 int ufshcd_query_descriptor_retry(struct ufs_hba *hba,
3578 				  enum query_opcode opcode,
3579 				  enum desc_idn idn, u8 index,
3580 				  u8 selector,
3581 				  u8 *desc_buf, int *buf_len)
3582 {
3583 	int err;
3584 	int retries;
3585 
3586 	for (retries = QUERY_REQ_RETRIES; retries > 0; retries--) {
3587 		err = __ufshcd_query_descriptor(hba, opcode, idn, index,
3588 						selector, desc_buf, buf_len);
3589 		if (!err || err == -EINVAL)
3590 			break;
3591 	}
3592 
3593 	return err;
3594 }
3595 
3596 /**
3597  * ufshcd_read_desc_param - read the specified descriptor parameter
3598  * @hba: Pointer to adapter instance
3599  * @desc_id: descriptor idn value
3600  * @desc_index: descriptor index
3601  * @param_offset: offset of the parameter to read
3602  * @param_read_buf: pointer to buffer where parameter would be read
3603  * @param_size: sizeof(param_read_buf)
3604  *
3605  * Return: 0 in case of success, non-zero otherwise.
3606  */
3607 int ufshcd_read_desc_param(struct ufs_hba *hba,
3608 			   enum desc_idn desc_id,
3609 			   int desc_index,
3610 			   u8 param_offset,
3611 			   u8 *param_read_buf,
3612 			   u8 param_size)
3613 {
3614 	int ret;
3615 	u8 *desc_buf;
3616 	int buff_len = QUERY_DESC_MAX_SIZE;
3617 	bool is_kmalloc = true;
3618 
3619 	/* Safety check */
3620 	if (desc_id >= QUERY_DESC_IDN_MAX || !param_size)
3621 		return -EINVAL;
3622 
3623 	/* Check whether we need temp memory */
3624 	if (param_offset != 0 || param_size < buff_len) {
3625 		desc_buf = kzalloc(buff_len, GFP_KERNEL);
3626 		if (!desc_buf)
3627 			return -ENOMEM;
3628 	} else {
3629 		desc_buf = param_read_buf;
3630 		is_kmalloc = false;
3631 	}
3632 
3633 	/* Request for full descriptor */
3634 	ret = ufshcd_query_descriptor_retry(hba, UPIU_QUERY_OPCODE_READ_DESC,
3635 					    desc_id, desc_index, 0,
3636 					    desc_buf, &buff_len);
3637 	if (ret) {
3638 		dev_err(hba->dev, "%s: Failed reading descriptor. desc_id %d, desc_index %d, param_offset %d, ret %d\n",
3639 			__func__, desc_id, desc_index, param_offset, ret);
3640 		goto out;
3641 	}
3642 
3643 	/* Update descriptor length */
3644 	buff_len = desc_buf[QUERY_DESC_LENGTH_OFFSET];
3645 
3646 	if (param_offset >= buff_len) {
3647 		dev_err(hba->dev, "%s: Invalid offset 0x%x in descriptor IDN 0x%x, length 0x%x\n",
3648 			__func__, param_offset, desc_id, buff_len);
3649 		ret = -EINVAL;
3650 		goto out;
3651 	}
3652 
3653 	/* Sanity check */
3654 	if (desc_buf[QUERY_DESC_DESC_TYPE_OFFSET] != desc_id) {
3655 		dev_err(hba->dev, "%s: invalid desc_id %d in descriptor header\n",
3656 			__func__, desc_buf[QUERY_DESC_DESC_TYPE_OFFSET]);
3657 		ret = -EINVAL;
3658 		goto out;
3659 	}
3660 
3661 	if (is_kmalloc) {
3662 		/* Make sure we don't copy more data than available */
3663 		if (param_offset >= buff_len)
3664 			ret = -EINVAL;
3665 		else
3666 			memcpy(param_read_buf, &desc_buf[param_offset],
3667 			       min_t(u32, param_size, buff_len - param_offset));
3668 	}
3669 out:
3670 	if (is_kmalloc)
3671 		kfree(desc_buf);
3672 	return ret;
3673 }
3674 
3675 /**
3676  * struct uc_string_id - unicode string
3677  *
3678  * @len: size of this descriptor inclusive
3679  * @type: descriptor type
3680  * @uc: unicode string character
3681  */
3682 struct uc_string_id {
3683 	u8 len;
3684 	u8 type;
3685 	wchar_t uc[];
3686 } __packed;
3687 
3688 /* replace non-printable or non-ASCII characters with spaces */
3689 static inline char ufshcd_remove_non_printable(u8 ch)
3690 {
3691 	return (ch >= 0x20 && ch <= 0x7e) ? ch : ' ';
3692 }
3693 
3694 /**
3695  * ufshcd_read_string_desc - read string descriptor
3696  * @hba: pointer to adapter instance
3697  * @desc_index: descriptor index
3698  * @buf: pointer to buffer where descriptor would be read,
3699  *       the caller should free the memory.
3700  * @ascii: if true convert from unicode to ascii characters
3701  *         null terminated string.
3702  *
3703  * Return:
3704  * *      string size on success.
3705  * *      -ENOMEM: on allocation failure
3706  * *      -EINVAL: on a wrong parameter
3707  */
3708 int ufshcd_read_string_desc(struct ufs_hba *hba, u8 desc_index,
3709 			    u8 **buf, bool ascii)
3710 {
3711 	struct uc_string_id *uc_str;
3712 	u8 *str;
3713 	int ret;
3714 
3715 	if (!buf)
3716 		return -EINVAL;
3717 
3718 	uc_str = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
3719 	if (!uc_str)
3720 		return -ENOMEM;
3721 
3722 	ret = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_STRING, desc_index, 0,
3723 				     (u8 *)uc_str, QUERY_DESC_MAX_SIZE);
3724 	if (ret < 0) {
3725 		dev_err(hba->dev, "Reading String Desc failed after %d retries. err = %d\n",
3726 			QUERY_REQ_RETRIES, ret);
3727 		str = NULL;
3728 		goto out;
3729 	}
3730 
3731 	if (uc_str->len <= QUERY_DESC_HDR_SIZE) {
3732 		dev_dbg(hba->dev, "String Desc is of zero length\n");
3733 		str = NULL;
3734 		ret = 0;
3735 		goto out;
3736 	}
3737 
3738 	if (ascii) {
3739 		ssize_t ascii_len;
3740 		int i;
3741 		/* remove header and divide by 2 to move from UTF16 to UTF8 */
3742 		ascii_len = (uc_str->len - QUERY_DESC_HDR_SIZE) / 2 + 1;
3743 		str = kzalloc(ascii_len, GFP_KERNEL);
3744 		if (!str) {
3745 			ret = -ENOMEM;
3746 			goto out;
3747 		}
3748 
3749 		/*
3750 		 * the descriptor contains string in UTF16 format
3751 		 * we need to convert to utf-8 so it can be displayed
3752 		 */
3753 		ret = utf16s_to_utf8s(uc_str->uc,
3754 				      uc_str->len - QUERY_DESC_HDR_SIZE,
3755 				      UTF16_BIG_ENDIAN, str, ascii_len - 1);
3756 
3757 		/* replace non-printable or non-ASCII characters with spaces */
3758 		for (i = 0; i < ret; i++)
3759 			str[i] = ufshcd_remove_non_printable(str[i]);
3760 
3761 		str[ret++] = '\0';
3762 
3763 	} else {
3764 		str = kmemdup(uc_str, uc_str->len, GFP_KERNEL);
3765 		if (!str) {
3766 			ret = -ENOMEM;
3767 			goto out;
3768 		}
3769 		ret = uc_str->len;
3770 	}
3771 out:
3772 	*buf = str;
3773 	kfree(uc_str);
3774 	return ret;
3775 }
3776 
3777 /**
3778  * ufshcd_read_unit_desc_param - read the specified unit descriptor parameter
3779  * @hba: Pointer to adapter instance
3780  * @lun: lun id
3781  * @param_offset: offset of the parameter to read
3782  * @param_read_buf: pointer to buffer where parameter would be read
3783  * @param_size: sizeof(param_read_buf)
3784  *
3785  * Return: 0 in case of success, non-zero otherwise.
3786  */
3787 static inline int ufshcd_read_unit_desc_param(struct ufs_hba *hba,
3788 					      int lun,
3789 					      enum unit_desc_param param_offset,
3790 					      u8 *param_read_buf,
3791 					      u32 param_size)
3792 {
3793 	/*
3794 	 * Unit descriptors are only available for general purpose LUs (LUN id
3795 	 * from 0 to 7) and RPMB Well known LU.
3796 	 */
3797 	if (!ufs_is_valid_unit_desc_lun(&hba->dev_info, lun))
3798 		return -EOPNOTSUPP;
3799 
3800 	return ufshcd_read_desc_param(hba, QUERY_DESC_IDN_UNIT, lun,
3801 				      param_offset, param_read_buf, param_size);
3802 }
3803 
3804 static int ufshcd_get_ref_clk_gating_wait(struct ufs_hba *hba)
3805 {
3806 	int err = 0;
3807 	u32 gating_wait = UFSHCD_REF_CLK_GATING_WAIT_US;
3808 
3809 	if (hba->dev_info.wspecversion >= 0x300) {
3810 		err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
3811 				QUERY_ATTR_IDN_REF_CLK_GATING_WAIT_TIME, 0, 0,
3812 				&gating_wait);
3813 		if (err)
3814 			dev_err(hba->dev, "Failed reading bRefClkGatingWait. err = %d, use default %uus\n",
3815 					 err, gating_wait);
3816 
3817 		if (gating_wait == 0) {
3818 			gating_wait = UFSHCD_REF_CLK_GATING_WAIT_US;
3819 			dev_err(hba->dev, "Undefined ref clk gating wait time, use default %uus\n",
3820 					 gating_wait);
3821 		}
3822 
3823 		hba->dev_info.clk_gating_wait_us = gating_wait;
3824 	}
3825 
3826 	return err;
3827 }
3828 
3829 /**
3830  * ufshcd_memory_alloc - allocate memory for host memory space data structures
3831  * @hba: per adapter instance
3832  *
3833  * 1. Allocate DMA memory for Command Descriptor array
3834  *	Each command descriptor consist of Command UPIU, Response UPIU and PRDT
3835  * 2. Allocate DMA memory for UTP Transfer Request Descriptor List (UTRDL).
3836  * 3. Allocate DMA memory for UTP Task Management Request Descriptor List
3837  *	(UTMRDL)
3838  * 4. Allocate memory for local reference block(lrb).
3839  *
3840  * Return: 0 for success, non-zero in case of failure.
3841  */
3842 static int ufshcd_memory_alloc(struct ufs_hba *hba)
3843 {
3844 	size_t utmrdl_size, utrdl_size, ucdl_size;
3845 
3846 	/* Allocate memory for UTP command descriptors */
3847 	ucdl_size = ufshcd_get_ucd_size(hba) * hba->nutrs;
3848 	hba->ucdl_base_addr = dmam_alloc_coherent(hba->dev,
3849 						  ucdl_size,
3850 						  &hba->ucdl_dma_addr,
3851 						  GFP_KERNEL);
3852 
3853 	/*
3854 	 * UFSHCI requires UTP command descriptor to be 128 byte aligned.
3855 	 */
3856 	if (!hba->ucdl_base_addr ||
3857 	    WARN_ON(hba->ucdl_dma_addr & (128 - 1))) {
3858 		dev_err(hba->dev,
3859 			"Command Descriptor Memory allocation failed\n");
3860 		goto out;
3861 	}
3862 
3863 	/*
3864 	 * Allocate memory for UTP Transfer descriptors
3865 	 * UFSHCI requires 1KB alignment of UTRD
3866 	 */
3867 	utrdl_size = (sizeof(struct utp_transfer_req_desc) * hba->nutrs);
3868 	hba->utrdl_base_addr = dmam_alloc_coherent(hba->dev,
3869 						   utrdl_size,
3870 						   &hba->utrdl_dma_addr,
3871 						   GFP_KERNEL);
3872 	if (!hba->utrdl_base_addr ||
3873 	    WARN_ON(hba->utrdl_dma_addr & (SZ_1K - 1))) {
3874 		dev_err(hba->dev,
3875 			"Transfer Descriptor Memory allocation failed\n");
3876 		goto out;
3877 	}
3878 
3879 	/*
3880 	 * Skip utmrdl allocation; it may have been
3881 	 * allocated during first pass and not released during
3882 	 * MCQ memory allocation.
3883 	 * See ufshcd_release_sdb_queue() and ufshcd_config_mcq()
3884 	 */
3885 	if (hba->utmrdl_base_addr)
3886 		goto skip_utmrdl;
3887 	/*
3888 	 * Allocate memory for UTP Task Management descriptors
3889 	 * UFSHCI requires 1KB alignment of UTMRD
3890 	 */
3891 	utmrdl_size = sizeof(struct utp_task_req_desc) * hba->nutmrs;
3892 	hba->utmrdl_base_addr = dmam_alloc_coherent(hba->dev,
3893 						    utmrdl_size,
3894 						    &hba->utmrdl_dma_addr,
3895 						    GFP_KERNEL);
3896 	if (!hba->utmrdl_base_addr ||
3897 	    WARN_ON(hba->utmrdl_dma_addr & (SZ_1K - 1))) {
3898 		dev_err(hba->dev,
3899 		"Task Management Descriptor Memory allocation failed\n");
3900 		goto out;
3901 	}
3902 
3903 skip_utmrdl:
3904 	/* Allocate memory for local reference block */
3905 	hba->lrb = devm_kcalloc(hba->dev,
3906 				hba->nutrs, sizeof(struct ufshcd_lrb),
3907 				GFP_KERNEL);
3908 	if (!hba->lrb) {
3909 		dev_err(hba->dev, "LRB Memory allocation failed\n");
3910 		goto out;
3911 	}
3912 	return 0;
3913 out:
3914 	return -ENOMEM;
3915 }
3916 
3917 /**
3918  * ufshcd_host_memory_configure - configure local reference block with
3919  *				memory offsets
3920  * @hba: per adapter instance
3921  *
3922  * Configure Host memory space
3923  * 1. Update Corresponding UTRD.UCDBA and UTRD.UCDBAU with UCD DMA
3924  * address.
3925  * 2. Update each UTRD with Response UPIU offset, Response UPIU length
3926  * and PRDT offset.
3927  * 3. Save the corresponding addresses of UTRD, UCD.CMD, UCD.RSP and UCD.PRDT
3928  * into local reference block.
3929  */
3930 static void ufshcd_host_memory_configure(struct ufs_hba *hba)
3931 {
3932 	struct utp_transfer_req_desc *utrdlp;
3933 	dma_addr_t cmd_desc_dma_addr;
3934 	dma_addr_t cmd_desc_element_addr;
3935 	u16 response_offset;
3936 	u16 prdt_offset;
3937 	int cmd_desc_size;
3938 	int i;
3939 
3940 	utrdlp = hba->utrdl_base_addr;
3941 
3942 	response_offset =
3943 		offsetof(struct utp_transfer_cmd_desc, response_upiu);
3944 	prdt_offset =
3945 		offsetof(struct utp_transfer_cmd_desc, prd_table);
3946 
3947 	cmd_desc_size = ufshcd_get_ucd_size(hba);
3948 	cmd_desc_dma_addr = hba->ucdl_dma_addr;
3949 
3950 	for (i = 0; i < hba->nutrs; i++) {
3951 		/* Configure UTRD with command descriptor base address */
3952 		cmd_desc_element_addr =
3953 				(cmd_desc_dma_addr + (cmd_desc_size * i));
3954 		utrdlp[i].command_desc_base_addr =
3955 				cpu_to_le64(cmd_desc_element_addr);
3956 
3957 		/* Response upiu and prdt offset should be in double words */
3958 		if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN) {
3959 			utrdlp[i].response_upiu_offset =
3960 				cpu_to_le16(response_offset);
3961 			utrdlp[i].prd_table_offset =
3962 				cpu_to_le16(prdt_offset);
3963 			utrdlp[i].response_upiu_length =
3964 				cpu_to_le16(ALIGNED_UPIU_SIZE);
3965 		} else {
3966 			utrdlp[i].response_upiu_offset =
3967 				cpu_to_le16(response_offset >> 2);
3968 			utrdlp[i].prd_table_offset =
3969 				cpu_to_le16(prdt_offset >> 2);
3970 			utrdlp[i].response_upiu_length =
3971 				cpu_to_le16(ALIGNED_UPIU_SIZE >> 2);
3972 		}
3973 
3974 		ufshcd_init_lrb(hba, &hba->lrb[i], i);
3975 	}
3976 }
3977 
3978 /**
3979  * ufshcd_dme_link_startup - Notify Unipro to perform link startup
3980  * @hba: per adapter instance
3981  *
3982  * UIC_CMD_DME_LINK_STARTUP command must be issued to Unipro layer,
3983  * in order to initialize the Unipro link startup procedure.
3984  * Once the Unipro links are up, the device connected to the controller
3985  * is detected.
3986  *
3987  * Return: 0 on success, non-zero value on failure.
3988  */
3989 static int ufshcd_dme_link_startup(struct ufs_hba *hba)
3990 {
3991 	struct uic_command uic_cmd = {0};
3992 	int ret;
3993 
3994 	uic_cmd.command = UIC_CMD_DME_LINK_STARTUP;
3995 
3996 	ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
3997 	if (ret)
3998 		dev_dbg(hba->dev,
3999 			"dme-link-startup: error code %d\n", ret);
4000 	return ret;
4001 }
4002 /**
4003  * ufshcd_dme_reset - UIC command for DME_RESET
4004  * @hba: per adapter instance
4005  *
4006  * DME_RESET command is issued in order to reset UniPro stack.
4007  * This function now deals with cold reset.
4008  *
4009  * Return: 0 on success, non-zero value on failure.
4010  */
4011 static int ufshcd_dme_reset(struct ufs_hba *hba)
4012 {
4013 	struct uic_command uic_cmd = {0};
4014 	int ret;
4015 
4016 	uic_cmd.command = UIC_CMD_DME_RESET;
4017 
4018 	ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4019 	if (ret)
4020 		dev_err(hba->dev,
4021 			"dme-reset: error code %d\n", ret);
4022 
4023 	return ret;
4024 }
4025 
4026 int ufshcd_dme_configure_adapt(struct ufs_hba *hba,
4027 			       int agreed_gear,
4028 			       int adapt_val)
4029 {
4030 	int ret;
4031 
4032 	if (agreed_gear < UFS_HS_G4)
4033 		adapt_val = PA_NO_ADAPT;
4034 
4035 	ret = ufshcd_dme_set(hba,
4036 			     UIC_ARG_MIB(PA_TXHSADAPTTYPE),
4037 			     adapt_val);
4038 	return ret;
4039 }
4040 EXPORT_SYMBOL_GPL(ufshcd_dme_configure_adapt);
4041 
4042 /**
4043  * ufshcd_dme_enable - UIC command for DME_ENABLE
4044  * @hba: per adapter instance
4045  *
4046  * DME_ENABLE command is issued in order to enable UniPro stack.
4047  *
4048  * Return: 0 on success, non-zero value on failure.
4049  */
4050 static int ufshcd_dme_enable(struct ufs_hba *hba)
4051 {
4052 	struct uic_command uic_cmd = {0};
4053 	int ret;
4054 
4055 	uic_cmd.command = UIC_CMD_DME_ENABLE;
4056 
4057 	ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4058 	if (ret)
4059 		dev_err(hba->dev,
4060 			"dme-enable: error code %d\n", ret);
4061 
4062 	return ret;
4063 }
4064 
4065 static inline void ufshcd_add_delay_before_dme_cmd(struct ufs_hba *hba)
4066 {
4067 	#define MIN_DELAY_BEFORE_DME_CMDS_US	1000
4068 	unsigned long min_sleep_time_us;
4069 
4070 	if (!(hba->quirks & UFSHCD_QUIRK_DELAY_BEFORE_DME_CMDS))
4071 		return;
4072 
4073 	/*
4074 	 * last_dme_cmd_tstamp will be 0 only for 1st call to
4075 	 * this function
4076 	 */
4077 	if (unlikely(!ktime_to_us(hba->last_dme_cmd_tstamp))) {
4078 		min_sleep_time_us = MIN_DELAY_BEFORE_DME_CMDS_US;
4079 	} else {
4080 		unsigned long delta =
4081 			(unsigned long) ktime_to_us(
4082 				ktime_sub(ktime_get(),
4083 				hba->last_dme_cmd_tstamp));
4084 
4085 		if (delta < MIN_DELAY_BEFORE_DME_CMDS_US)
4086 			min_sleep_time_us =
4087 				MIN_DELAY_BEFORE_DME_CMDS_US - delta;
4088 		else
4089 			return; /* no more delay required */
4090 	}
4091 
4092 	/* allow sleep for extra 50us if needed */
4093 	usleep_range(min_sleep_time_us, min_sleep_time_us + 50);
4094 }
4095 
4096 /**
4097  * ufshcd_dme_set_attr - UIC command for DME_SET, DME_PEER_SET
4098  * @hba: per adapter instance
4099  * @attr_sel: uic command argument1
4100  * @attr_set: attribute set type as uic command argument2
4101  * @mib_val: setting value as uic command argument3
4102  * @peer: indicate whether peer or local
4103  *
4104  * Return: 0 on success, non-zero value on failure.
4105  */
4106 int ufshcd_dme_set_attr(struct ufs_hba *hba, u32 attr_sel,
4107 			u8 attr_set, u32 mib_val, u8 peer)
4108 {
4109 	struct uic_command uic_cmd = {0};
4110 	static const char *const action[] = {
4111 		"dme-set",
4112 		"dme-peer-set"
4113 	};
4114 	const char *set = action[!!peer];
4115 	int ret;
4116 	int retries = UFS_UIC_COMMAND_RETRIES;
4117 
4118 	uic_cmd.command = peer ?
4119 		UIC_CMD_DME_PEER_SET : UIC_CMD_DME_SET;
4120 	uic_cmd.argument1 = attr_sel;
4121 	uic_cmd.argument2 = UIC_ARG_ATTR_TYPE(attr_set);
4122 	uic_cmd.argument3 = mib_val;
4123 
4124 	do {
4125 		/* for peer attributes we retry upon failure */
4126 		ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4127 		if (ret)
4128 			dev_dbg(hba->dev, "%s: attr-id 0x%x val 0x%x error code %d\n",
4129 				set, UIC_GET_ATTR_ID(attr_sel), mib_val, ret);
4130 	} while (ret && peer && --retries);
4131 
4132 	if (ret)
4133 		dev_err(hba->dev, "%s: attr-id 0x%x val 0x%x failed %d retries\n",
4134 			set, UIC_GET_ATTR_ID(attr_sel), mib_val,
4135 			UFS_UIC_COMMAND_RETRIES - retries);
4136 
4137 	return ret;
4138 }
4139 EXPORT_SYMBOL_GPL(ufshcd_dme_set_attr);
4140 
4141 /**
4142  * ufshcd_dme_get_attr - UIC command for DME_GET, DME_PEER_GET
4143  * @hba: per adapter instance
4144  * @attr_sel: uic command argument1
4145  * @mib_val: the value of the attribute as returned by the UIC command
4146  * @peer: indicate whether peer or local
4147  *
4148  * Return: 0 on success, non-zero value on failure.
4149  */
4150 int ufshcd_dme_get_attr(struct ufs_hba *hba, u32 attr_sel,
4151 			u32 *mib_val, u8 peer)
4152 {
4153 	struct uic_command uic_cmd = {0};
4154 	static const char *const action[] = {
4155 		"dme-get",
4156 		"dme-peer-get"
4157 	};
4158 	const char *get = action[!!peer];
4159 	int ret;
4160 	int retries = UFS_UIC_COMMAND_RETRIES;
4161 	struct ufs_pa_layer_attr orig_pwr_info;
4162 	struct ufs_pa_layer_attr temp_pwr_info;
4163 	bool pwr_mode_change = false;
4164 
4165 	if (peer && (hba->quirks & UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE)) {
4166 		orig_pwr_info = hba->pwr_info;
4167 		temp_pwr_info = orig_pwr_info;
4168 
4169 		if (orig_pwr_info.pwr_tx == FAST_MODE ||
4170 		    orig_pwr_info.pwr_rx == FAST_MODE) {
4171 			temp_pwr_info.pwr_tx = FASTAUTO_MODE;
4172 			temp_pwr_info.pwr_rx = FASTAUTO_MODE;
4173 			pwr_mode_change = true;
4174 		} else if (orig_pwr_info.pwr_tx == SLOW_MODE ||
4175 		    orig_pwr_info.pwr_rx == SLOW_MODE) {
4176 			temp_pwr_info.pwr_tx = SLOWAUTO_MODE;
4177 			temp_pwr_info.pwr_rx = SLOWAUTO_MODE;
4178 			pwr_mode_change = true;
4179 		}
4180 		if (pwr_mode_change) {
4181 			ret = ufshcd_change_power_mode(hba, &temp_pwr_info);
4182 			if (ret)
4183 				goto out;
4184 		}
4185 	}
4186 
4187 	uic_cmd.command = peer ?
4188 		UIC_CMD_DME_PEER_GET : UIC_CMD_DME_GET;
4189 	uic_cmd.argument1 = attr_sel;
4190 
4191 	do {
4192 		/* for peer attributes we retry upon failure */
4193 		ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4194 		if (ret)
4195 			dev_dbg(hba->dev, "%s: attr-id 0x%x error code %d\n",
4196 				get, UIC_GET_ATTR_ID(attr_sel), ret);
4197 	} while (ret && peer && --retries);
4198 
4199 	if (ret)
4200 		dev_err(hba->dev, "%s: attr-id 0x%x failed %d retries\n",
4201 			get, UIC_GET_ATTR_ID(attr_sel),
4202 			UFS_UIC_COMMAND_RETRIES - retries);
4203 
4204 	if (mib_val && !ret)
4205 		*mib_val = uic_cmd.argument3;
4206 
4207 	if (peer && (hba->quirks & UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE)
4208 	    && pwr_mode_change)
4209 		ufshcd_change_power_mode(hba, &orig_pwr_info);
4210 out:
4211 	return ret;
4212 }
4213 EXPORT_SYMBOL_GPL(ufshcd_dme_get_attr);
4214 
4215 /**
4216  * ufshcd_uic_pwr_ctrl - executes UIC commands (which affects the link power
4217  * state) and waits for it to take effect.
4218  *
4219  * @hba: per adapter instance
4220  * @cmd: UIC command to execute
4221  *
4222  * DME operations like DME_SET(PA_PWRMODE), DME_HIBERNATE_ENTER &
4223  * DME_HIBERNATE_EXIT commands take some time to take its effect on both host
4224  * and device UniPro link and hence it's final completion would be indicated by
4225  * dedicated status bits in Interrupt Status register (UPMS, UHES, UHXS) in
4226  * addition to normal UIC command completion Status (UCCS). This function only
4227  * returns after the relevant status bits indicate the completion.
4228  *
4229  * Return: 0 on success, non-zero value on failure.
4230  */
4231 static int ufshcd_uic_pwr_ctrl(struct ufs_hba *hba, struct uic_command *cmd)
4232 {
4233 	DECLARE_COMPLETION_ONSTACK(uic_async_done);
4234 	unsigned long flags;
4235 	u8 status;
4236 	int ret;
4237 	bool reenable_intr = false;
4238 
4239 	mutex_lock(&hba->uic_cmd_mutex);
4240 	ufshcd_add_delay_before_dme_cmd(hba);
4241 
4242 	spin_lock_irqsave(hba->host->host_lock, flags);
4243 	if (ufshcd_is_link_broken(hba)) {
4244 		ret = -ENOLINK;
4245 		goto out_unlock;
4246 	}
4247 	hba->uic_async_done = &uic_async_done;
4248 	if (ufshcd_readl(hba, REG_INTERRUPT_ENABLE) & UIC_COMMAND_COMPL) {
4249 		ufshcd_disable_intr(hba, UIC_COMMAND_COMPL);
4250 		/*
4251 		 * Make sure UIC command completion interrupt is disabled before
4252 		 * issuing UIC command.
4253 		 */
4254 		ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
4255 		reenable_intr = true;
4256 	}
4257 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4258 	ret = __ufshcd_send_uic_cmd(hba, cmd, false);
4259 	if (ret) {
4260 		dev_err(hba->dev,
4261 			"pwr ctrl cmd 0x%x with mode 0x%x uic error %d\n",
4262 			cmd->command, cmd->argument3, ret);
4263 		goto out;
4264 	}
4265 
4266 	if (!wait_for_completion_timeout(hba->uic_async_done,
4267 					 msecs_to_jiffies(UIC_CMD_TIMEOUT))) {
4268 		dev_err(hba->dev,
4269 			"pwr ctrl cmd 0x%x with mode 0x%x completion timeout\n",
4270 			cmd->command, cmd->argument3);
4271 
4272 		if (!cmd->cmd_active) {
4273 			dev_err(hba->dev, "%s: Power Mode Change operation has been completed, go check UPMCRS\n",
4274 				__func__);
4275 			goto check_upmcrs;
4276 		}
4277 
4278 		ret = -ETIMEDOUT;
4279 		goto out;
4280 	}
4281 
4282 check_upmcrs:
4283 	status = ufshcd_get_upmcrs(hba);
4284 	if (status != PWR_LOCAL) {
4285 		dev_err(hba->dev,
4286 			"pwr ctrl cmd 0x%x failed, host upmcrs:0x%x\n",
4287 			cmd->command, status);
4288 		ret = (status != PWR_OK) ? status : -1;
4289 	}
4290 out:
4291 	if (ret) {
4292 		ufshcd_print_host_state(hba);
4293 		ufshcd_print_pwr_info(hba);
4294 		ufshcd_print_evt_hist(hba);
4295 	}
4296 
4297 	spin_lock_irqsave(hba->host->host_lock, flags);
4298 	hba->active_uic_cmd = NULL;
4299 	hba->uic_async_done = NULL;
4300 	if (reenable_intr)
4301 		ufshcd_enable_intr(hba, UIC_COMMAND_COMPL);
4302 	if (ret) {
4303 		ufshcd_set_link_broken(hba);
4304 		ufshcd_schedule_eh_work(hba);
4305 	}
4306 out_unlock:
4307 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4308 	mutex_unlock(&hba->uic_cmd_mutex);
4309 
4310 	return ret;
4311 }
4312 
4313 /**
4314  * ufshcd_uic_change_pwr_mode - Perform the UIC power mode chage
4315  *				using DME_SET primitives.
4316  * @hba: per adapter instance
4317  * @mode: powr mode value
4318  *
4319  * Return: 0 on success, non-zero value on failure.
4320  */
4321 int ufshcd_uic_change_pwr_mode(struct ufs_hba *hba, u8 mode)
4322 {
4323 	struct uic_command uic_cmd = {0};
4324 	int ret;
4325 
4326 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_PA_RXHSUNTERMCAP) {
4327 		ret = ufshcd_dme_set(hba,
4328 				UIC_ARG_MIB_SEL(PA_RXHSUNTERMCAP, 0), 1);
4329 		if (ret) {
4330 			dev_err(hba->dev, "%s: failed to enable PA_RXHSUNTERMCAP ret %d\n",
4331 						__func__, ret);
4332 			goto out;
4333 		}
4334 	}
4335 
4336 	uic_cmd.command = UIC_CMD_DME_SET;
4337 	uic_cmd.argument1 = UIC_ARG_MIB(PA_PWRMODE);
4338 	uic_cmd.argument3 = mode;
4339 	ufshcd_hold(hba);
4340 	ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4341 	ufshcd_release(hba);
4342 
4343 out:
4344 	return ret;
4345 }
4346 EXPORT_SYMBOL_GPL(ufshcd_uic_change_pwr_mode);
4347 
4348 int ufshcd_link_recovery(struct ufs_hba *hba)
4349 {
4350 	int ret;
4351 	unsigned long flags;
4352 
4353 	spin_lock_irqsave(hba->host->host_lock, flags);
4354 	hba->ufshcd_state = UFSHCD_STATE_RESET;
4355 	ufshcd_set_eh_in_progress(hba);
4356 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4357 
4358 	/* Reset the attached device */
4359 	ufshcd_device_reset(hba);
4360 
4361 	ret = ufshcd_host_reset_and_restore(hba);
4362 
4363 	spin_lock_irqsave(hba->host->host_lock, flags);
4364 	if (ret)
4365 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
4366 	ufshcd_clear_eh_in_progress(hba);
4367 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4368 
4369 	if (ret)
4370 		dev_err(hba->dev, "%s: link recovery failed, err %d",
4371 			__func__, ret);
4372 
4373 	return ret;
4374 }
4375 EXPORT_SYMBOL_GPL(ufshcd_link_recovery);
4376 
4377 int ufshcd_uic_hibern8_enter(struct ufs_hba *hba)
4378 {
4379 	int ret;
4380 	struct uic_command uic_cmd = {0};
4381 	ktime_t start = ktime_get();
4382 
4383 	ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_ENTER, PRE_CHANGE);
4384 
4385 	uic_cmd.command = UIC_CMD_DME_HIBER_ENTER;
4386 	ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4387 	trace_ufshcd_profile_hibern8(dev_name(hba->dev), "enter",
4388 			     ktime_to_us(ktime_sub(ktime_get(), start)), ret);
4389 
4390 	if (ret)
4391 		dev_err(hba->dev, "%s: hibern8 enter failed. ret = %d\n",
4392 			__func__, ret);
4393 	else
4394 		ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_ENTER,
4395 								POST_CHANGE);
4396 
4397 	return ret;
4398 }
4399 EXPORT_SYMBOL_GPL(ufshcd_uic_hibern8_enter);
4400 
4401 int ufshcd_uic_hibern8_exit(struct ufs_hba *hba)
4402 {
4403 	struct uic_command uic_cmd = {0};
4404 	int ret;
4405 	ktime_t start = ktime_get();
4406 
4407 	ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_EXIT, PRE_CHANGE);
4408 
4409 	uic_cmd.command = UIC_CMD_DME_HIBER_EXIT;
4410 	ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4411 	trace_ufshcd_profile_hibern8(dev_name(hba->dev), "exit",
4412 			     ktime_to_us(ktime_sub(ktime_get(), start)), ret);
4413 
4414 	if (ret) {
4415 		dev_err(hba->dev, "%s: hibern8 exit failed. ret = %d\n",
4416 			__func__, ret);
4417 	} else {
4418 		ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_EXIT,
4419 								POST_CHANGE);
4420 		hba->ufs_stats.last_hibern8_exit_tstamp = local_clock();
4421 		hba->ufs_stats.hibern8_exit_cnt++;
4422 	}
4423 
4424 	return ret;
4425 }
4426 EXPORT_SYMBOL_GPL(ufshcd_uic_hibern8_exit);
4427 
4428 static void ufshcd_configure_auto_hibern8(struct ufs_hba *hba)
4429 {
4430 	if (!ufshcd_is_auto_hibern8_supported(hba))
4431 		return;
4432 
4433 	ufshcd_writel(hba, hba->ahit, REG_AUTO_HIBERNATE_IDLE_TIMER);
4434 }
4435 
4436 void ufshcd_auto_hibern8_update(struct ufs_hba *hba, u32 ahit)
4437 {
4438 	const u32 cur_ahit = READ_ONCE(hba->ahit);
4439 
4440 	if (!ufshcd_is_auto_hibern8_supported(hba) || cur_ahit == ahit)
4441 		return;
4442 
4443 	WRITE_ONCE(hba->ahit, ahit);
4444 	if (!pm_runtime_suspended(&hba->ufs_device_wlun->sdev_gendev)) {
4445 		ufshcd_rpm_get_sync(hba);
4446 		ufshcd_hold(hba);
4447 		ufshcd_configure_auto_hibern8(hba);
4448 		ufshcd_release(hba);
4449 		ufshcd_rpm_put_sync(hba);
4450 	}
4451 }
4452 EXPORT_SYMBOL_GPL(ufshcd_auto_hibern8_update);
4453 
4454  /**
4455  * ufshcd_init_pwr_info - setting the POR (power on reset)
4456  * values in hba power info
4457  * @hba: per-adapter instance
4458  */
4459 static void ufshcd_init_pwr_info(struct ufs_hba *hba)
4460 {
4461 	hba->pwr_info.gear_rx = UFS_PWM_G1;
4462 	hba->pwr_info.gear_tx = UFS_PWM_G1;
4463 	hba->pwr_info.lane_rx = UFS_LANE_1;
4464 	hba->pwr_info.lane_tx = UFS_LANE_1;
4465 	hba->pwr_info.pwr_rx = SLOWAUTO_MODE;
4466 	hba->pwr_info.pwr_tx = SLOWAUTO_MODE;
4467 	hba->pwr_info.hs_rate = 0;
4468 }
4469 
4470 /**
4471  * ufshcd_get_max_pwr_mode - reads the max power mode negotiated with device
4472  * @hba: per-adapter instance
4473  *
4474  * Return: 0 upon success; < 0 upon failure.
4475  */
4476 static int ufshcd_get_max_pwr_mode(struct ufs_hba *hba)
4477 {
4478 	struct ufs_pa_layer_attr *pwr_info = &hba->max_pwr_info.info;
4479 
4480 	if (hba->max_pwr_info.is_valid)
4481 		return 0;
4482 
4483 	if (hba->quirks & UFSHCD_QUIRK_HIBERN_FASTAUTO) {
4484 		pwr_info->pwr_tx = FASTAUTO_MODE;
4485 		pwr_info->pwr_rx = FASTAUTO_MODE;
4486 	} else {
4487 		pwr_info->pwr_tx = FAST_MODE;
4488 		pwr_info->pwr_rx = FAST_MODE;
4489 	}
4490 	pwr_info->hs_rate = PA_HS_MODE_B;
4491 
4492 	/* Get the connected lane count */
4493 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDRXDATALANES),
4494 			&pwr_info->lane_rx);
4495 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4496 			&pwr_info->lane_tx);
4497 
4498 	if (!pwr_info->lane_rx || !pwr_info->lane_tx) {
4499 		dev_err(hba->dev, "%s: invalid connected lanes value. rx=%d, tx=%d\n",
4500 				__func__,
4501 				pwr_info->lane_rx,
4502 				pwr_info->lane_tx);
4503 		return -EINVAL;
4504 	}
4505 
4506 	/*
4507 	 * First, get the maximum gears of HS speed.
4508 	 * If a zero value, it means there is no HSGEAR capability.
4509 	 * Then, get the maximum gears of PWM speed.
4510 	 */
4511 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_MAXRXHSGEAR), &pwr_info->gear_rx);
4512 	if (!pwr_info->gear_rx) {
4513 		ufshcd_dme_get(hba, UIC_ARG_MIB(PA_MAXRXPWMGEAR),
4514 				&pwr_info->gear_rx);
4515 		if (!pwr_info->gear_rx) {
4516 			dev_err(hba->dev, "%s: invalid max pwm rx gear read = %d\n",
4517 				__func__, pwr_info->gear_rx);
4518 			return -EINVAL;
4519 		}
4520 		pwr_info->pwr_rx = SLOW_MODE;
4521 	}
4522 
4523 	ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_MAXRXHSGEAR),
4524 			&pwr_info->gear_tx);
4525 	if (!pwr_info->gear_tx) {
4526 		ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_MAXRXPWMGEAR),
4527 				&pwr_info->gear_tx);
4528 		if (!pwr_info->gear_tx) {
4529 			dev_err(hba->dev, "%s: invalid max pwm tx gear read = %d\n",
4530 				__func__, pwr_info->gear_tx);
4531 			return -EINVAL;
4532 		}
4533 		pwr_info->pwr_tx = SLOW_MODE;
4534 	}
4535 
4536 	hba->max_pwr_info.is_valid = true;
4537 	return 0;
4538 }
4539 
4540 static int ufshcd_change_power_mode(struct ufs_hba *hba,
4541 			     struct ufs_pa_layer_attr *pwr_mode)
4542 {
4543 	int ret;
4544 
4545 	/* if already configured to the requested pwr_mode */
4546 	if (!hba->force_pmc &&
4547 	    pwr_mode->gear_rx == hba->pwr_info.gear_rx &&
4548 	    pwr_mode->gear_tx == hba->pwr_info.gear_tx &&
4549 	    pwr_mode->lane_rx == hba->pwr_info.lane_rx &&
4550 	    pwr_mode->lane_tx == hba->pwr_info.lane_tx &&
4551 	    pwr_mode->pwr_rx == hba->pwr_info.pwr_rx &&
4552 	    pwr_mode->pwr_tx == hba->pwr_info.pwr_tx &&
4553 	    pwr_mode->hs_rate == hba->pwr_info.hs_rate) {
4554 		dev_dbg(hba->dev, "%s: power already configured\n", __func__);
4555 		return 0;
4556 	}
4557 
4558 	/*
4559 	 * Configure attributes for power mode change with below.
4560 	 * - PA_RXGEAR, PA_ACTIVERXDATALANES, PA_RXTERMINATION,
4561 	 * - PA_TXGEAR, PA_ACTIVETXDATALANES, PA_TXTERMINATION,
4562 	 * - PA_HSSERIES
4563 	 */
4564 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXGEAR), pwr_mode->gear_rx);
4565 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVERXDATALANES),
4566 			pwr_mode->lane_rx);
4567 	if (pwr_mode->pwr_rx == FASTAUTO_MODE ||
4568 			pwr_mode->pwr_rx == FAST_MODE)
4569 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), true);
4570 	else
4571 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), false);
4572 
4573 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXGEAR), pwr_mode->gear_tx);
4574 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVETXDATALANES),
4575 			pwr_mode->lane_tx);
4576 	if (pwr_mode->pwr_tx == FASTAUTO_MODE ||
4577 			pwr_mode->pwr_tx == FAST_MODE)
4578 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), true);
4579 	else
4580 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), false);
4581 
4582 	if (pwr_mode->pwr_rx == FASTAUTO_MODE ||
4583 	    pwr_mode->pwr_tx == FASTAUTO_MODE ||
4584 	    pwr_mode->pwr_rx == FAST_MODE ||
4585 	    pwr_mode->pwr_tx == FAST_MODE)
4586 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_HSSERIES),
4587 						pwr_mode->hs_rate);
4588 
4589 	if (!(hba->quirks & UFSHCD_QUIRK_SKIP_DEF_UNIPRO_TIMEOUT_SETTING)) {
4590 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA0),
4591 				DL_FC0ProtectionTimeOutVal_Default);
4592 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA1),
4593 				DL_TC0ReplayTimeOutVal_Default);
4594 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA2),
4595 				DL_AFC0ReqTimeOutVal_Default);
4596 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA3),
4597 				DL_FC1ProtectionTimeOutVal_Default);
4598 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA4),
4599 				DL_TC1ReplayTimeOutVal_Default);
4600 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA5),
4601 				DL_AFC1ReqTimeOutVal_Default);
4602 
4603 		ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalFC0ProtectionTimeOutVal),
4604 				DL_FC0ProtectionTimeOutVal_Default);
4605 		ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalTC0ReplayTimeOutVal),
4606 				DL_TC0ReplayTimeOutVal_Default);
4607 		ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalAFC0ReqTimeOutVal),
4608 				DL_AFC0ReqTimeOutVal_Default);
4609 	}
4610 
4611 	ret = ufshcd_uic_change_pwr_mode(hba, pwr_mode->pwr_rx << 4
4612 			| pwr_mode->pwr_tx);
4613 
4614 	if (ret) {
4615 		dev_err(hba->dev,
4616 			"%s: power mode change failed %d\n", __func__, ret);
4617 	} else {
4618 		ufshcd_vops_pwr_change_notify(hba, POST_CHANGE, NULL,
4619 								pwr_mode);
4620 
4621 		memcpy(&hba->pwr_info, pwr_mode,
4622 			sizeof(struct ufs_pa_layer_attr));
4623 	}
4624 
4625 	return ret;
4626 }
4627 
4628 /**
4629  * ufshcd_config_pwr_mode - configure a new power mode
4630  * @hba: per-adapter instance
4631  * @desired_pwr_mode: desired power configuration
4632  *
4633  * Return: 0 upon success; < 0 upon failure.
4634  */
4635 int ufshcd_config_pwr_mode(struct ufs_hba *hba,
4636 		struct ufs_pa_layer_attr *desired_pwr_mode)
4637 {
4638 	struct ufs_pa_layer_attr final_params = { 0 };
4639 	int ret;
4640 
4641 	ret = ufshcd_vops_pwr_change_notify(hba, PRE_CHANGE,
4642 					desired_pwr_mode, &final_params);
4643 
4644 	if (ret)
4645 		memcpy(&final_params, desired_pwr_mode, sizeof(final_params));
4646 
4647 	ret = ufshcd_change_power_mode(hba, &final_params);
4648 
4649 	return ret;
4650 }
4651 EXPORT_SYMBOL_GPL(ufshcd_config_pwr_mode);
4652 
4653 /**
4654  * ufshcd_complete_dev_init() - checks device readiness
4655  * @hba: per-adapter instance
4656  *
4657  * Set fDeviceInit flag and poll until device toggles it.
4658  *
4659  * Return: 0 upon success; < 0 upon failure.
4660  */
4661 static int ufshcd_complete_dev_init(struct ufs_hba *hba)
4662 {
4663 	int err;
4664 	bool flag_res = true;
4665 	ktime_t timeout;
4666 
4667 	err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG,
4668 		QUERY_FLAG_IDN_FDEVICEINIT, 0, NULL);
4669 	if (err) {
4670 		dev_err(hba->dev,
4671 			"%s: setting fDeviceInit flag failed with error %d\n",
4672 			__func__, err);
4673 		goto out;
4674 	}
4675 
4676 	/* Poll fDeviceInit flag to be cleared */
4677 	timeout = ktime_add_ms(ktime_get(), FDEVICEINIT_COMPL_TIMEOUT);
4678 	do {
4679 		err = ufshcd_query_flag(hba, UPIU_QUERY_OPCODE_READ_FLAG,
4680 					QUERY_FLAG_IDN_FDEVICEINIT, 0, &flag_res);
4681 		if (!flag_res)
4682 			break;
4683 		usleep_range(500, 1000);
4684 	} while (ktime_before(ktime_get(), timeout));
4685 
4686 	if (err) {
4687 		dev_err(hba->dev,
4688 				"%s: reading fDeviceInit flag failed with error %d\n",
4689 				__func__, err);
4690 	} else if (flag_res) {
4691 		dev_err(hba->dev,
4692 				"%s: fDeviceInit was not cleared by the device\n",
4693 				__func__);
4694 		err = -EBUSY;
4695 	}
4696 out:
4697 	return err;
4698 }
4699 
4700 /**
4701  * ufshcd_make_hba_operational - Make UFS controller operational
4702  * @hba: per adapter instance
4703  *
4704  * To bring UFS host controller to operational state,
4705  * 1. Enable required interrupts
4706  * 2. Configure interrupt aggregation
4707  * 3. Program UTRL and UTMRL base address
4708  * 4. Configure run-stop-registers
4709  *
4710  * Return: 0 on success, non-zero value on failure.
4711  */
4712 int ufshcd_make_hba_operational(struct ufs_hba *hba)
4713 {
4714 	int err = 0;
4715 	u32 reg;
4716 
4717 	/* Enable required interrupts */
4718 	ufshcd_enable_intr(hba, UFSHCD_ENABLE_INTRS);
4719 
4720 	/* Configure interrupt aggregation */
4721 	if (ufshcd_is_intr_aggr_allowed(hba))
4722 		ufshcd_config_intr_aggr(hba, hba->nutrs - 1, INT_AGGR_DEF_TO);
4723 	else
4724 		ufshcd_disable_intr_aggr(hba);
4725 
4726 	/* Configure UTRL and UTMRL base address registers */
4727 	ufshcd_writel(hba, lower_32_bits(hba->utrdl_dma_addr),
4728 			REG_UTP_TRANSFER_REQ_LIST_BASE_L);
4729 	ufshcd_writel(hba, upper_32_bits(hba->utrdl_dma_addr),
4730 			REG_UTP_TRANSFER_REQ_LIST_BASE_H);
4731 	ufshcd_writel(hba, lower_32_bits(hba->utmrdl_dma_addr),
4732 			REG_UTP_TASK_REQ_LIST_BASE_L);
4733 	ufshcd_writel(hba, upper_32_bits(hba->utmrdl_dma_addr),
4734 			REG_UTP_TASK_REQ_LIST_BASE_H);
4735 
4736 	/*
4737 	 * UCRDY, UTMRLDY and UTRLRDY bits must be 1
4738 	 */
4739 	reg = ufshcd_readl(hba, REG_CONTROLLER_STATUS);
4740 	if (!(ufshcd_get_lists_status(reg))) {
4741 		ufshcd_enable_run_stop_reg(hba);
4742 	} else {
4743 		dev_err(hba->dev,
4744 			"Host controller not ready to process requests");
4745 		err = -EIO;
4746 	}
4747 
4748 	return err;
4749 }
4750 EXPORT_SYMBOL_GPL(ufshcd_make_hba_operational);
4751 
4752 /**
4753  * ufshcd_hba_stop - Send controller to reset state
4754  * @hba: per adapter instance
4755  */
4756 void ufshcd_hba_stop(struct ufs_hba *hba)
4757 {
4758 	unsigned long flags;
4759 	int err;
4760 
4761 	/*
4762 	 * Obtain the host lock to prevent that the controller is disabled
4763 	 * while the UFS interrupt handler is active on another CPU.
4764 	 */
4765 	spin_lock_irqsave(hba->host->host_lock, flags);
4766 	ufshcd_writel(hba, CONTROLLER_DISABLE,  REG_CONTROLLER_ENABLE);
4767 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4768 
4769 	err = ufshcd_wait_for_register(hba, REG_CONTROLLER_ENABLE,
4770 					CONTROLLER_ENABLE, CONTROLLER_DISABLE,
4771 					10, 1);
4772 	if (err)
4773 		dev_err(hba->dev, "%s: Controller disable failed\n", __func__);
4774 }
4775 EXPORT_SYMBOL_GPL(ufshcd_hba_stop);
4776 
4777 /**
4778  * ufshcd_hba_execute_hce - initialize the controller
4779  * @hba: per adapter instance
4780  *
4781  * The controller resets itself and controller firmware initialization
4782  * sequence kicks off. When controller is ready it will set
4783  * the Host Controller Enable bit to 1.
4784  *
4785  * Return: 0 on success, non-zero value on failure.
4786  */
4787 static int ufshcd_hba_execute_hce(struct ufs_hba *hba)
4788 {
4789 	int retry_outer = 3;
4790 	int retry_inner;
4791 
4792 start:
4793 	if (ufshcd_is_hba_active(hba))
4794 		/* change controller state to "reset state" */
4795 		ufshcd_hba_stop(hba);
4796 
4797 	/* UniPro link is disabled at this point */
4798 	ufshcd_set_link_off(hba);
4799 
4800 	ufshcd_vops_hce_enable_notify(hba, PRE_CHANGE);
4801 
4802 	/* start controller initialization sequence */
4803 	ufshcd_hba_start(hba);
4804 
4805 	/*
4806 	 * To initialize a UFS host controller HCE bit must be set to 1.
4807 	 * During initialization the HCE bit value changes from 1->0->1.
4808 	 * When the host controller completes initialization sequence
4809 	 * it sets the value of HCE bit to 1. The same HCE bit is read back
4810 	 * to check if the controller has completed initialization sequence.
4811 	 * So without this delay the value HCE = 1, set in the previous
4812 	 * instruction might be read back.
4813 	 * This delay can be changed based on the controller.
4814 	 */
4815 	ufshcd_delay_us(hba->vps->hba_enable_delay_us, 100);
4816 
4817 	/* wait for the host controller to complete initialization */
4818 	retry_inner = 50;
4819 	while (!ufshcd_is_hba_active(hba)) {
4820 		if (retry_inner) {
4821 			retry_inner--;
4822 		} else {
4823 			dev_err(hba->dev,
4824 				"Controller enable failed\n");
4825 			if (retry_outer) {
4826 				retry_outer--;
4827 				goto start;
4828 			}
4829 			return -EIO;
4830 		}
4831 		usleep_range(1000, 1100);
4832 	}
4833 
4834 	/* enable UIC related interrupts */
4835 	ufshcd_enable_intr(hba, UFSHCD_UIC_MASK);
4836 
4837 	ufshcd_vops_hce_enable_notify(hba, POST_CHANGE);
4838 
4839 	return 0;
4840 }
4841 
4842 int ufshcd_hba_enable(struct ufs_hba *hba)
4843 {
4844 	int ret;
4845 
4846 	if (hba->quirks & UFSHCI_QUIRK_BROKEN_HCE) {
4847 		ufshcd_set_link_off(hba);
4848 		ufshcd_vops_hce_enable_notify(hba, PRE_CHANGE);
4849 
4850 		/* enable UIC related interrupts */
4851 		ufshcd_enable_intr(hba, UFSHCD_UIC_MASK);
4852 		ret = ufshcd_dme_reset(hba);
4853 		if (ret) {
4854 			dev_err(hba->dev, "DME_RESET failed\n");
4855 			return ret;
4856 		}
4857 
4858 		ret = ufshcd_dme_enable(hba);
4859 		if (ret) {
4860 			dev_err(hba->dev, "Enabling DME failed\n");
4861 			return ret;
4862 		}
4863 
4864 		ufshcd_vops_hce_enable_notify(hba, POST_CHANGE);
4865 	} else {
4866 		ret = ufshcd_hba_execute_hce(hba);
4867 	}
4868 
4869 	return ret;
4870 }
4871 EXPORT_SYMBOL_GPL(ufshcd_hba_enable);
4872 
4873 static int ufshcd_disable_tx_lcc(struct ufs_hba *hba, bool peer)
4874 {
4875 	int tx_lanes = 0, i, err = 0;
4876 
4877 	if (!peer)
4878 		ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4879 			       &tx_lanes);
4880 	else
4881 		ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4882 				    &tx_lanes);
4883 	for (i = 0; i < tx_lanes; i++) {
4884 		if (!peer)
4885 			err = ufshcd_dme_set(hba,
4886 				UIC_ARG_MIB_SEL(TX_LCC_ENABLE,
4887 					UIC_ARG_MPHY_TX_GEN_SEL_INDEX(i)),
4888 					0);
4889 		else
4890 			err = ufshcd_dme_peer_set(hba,
4891 				UIC_ARG_MIB_SEL(TX_LCC_ENABLE,
4892 					UIC_ARG_MPHY_TX_GEN_SEL_INDEX(i)),
4893 					0);
4894 		if (err) {
4895 			dev_err(hba->dev, "%s: TX LCC Disable failed, peer = %d, lane = %d, err = %d",
4896 				__func__, peer, i, err);
4897 			break;
4898 		}
4899 	}
4900 
4901 	return err;
4902 }
4903 
4904 static inline int ufshcd_disable_device_tx_lcc(struct ufs_hba *hba)
4905 {
4906 	return ufshcd_disable_tx_lcc(hba, true);
4907 }
4908 
4909 void ufshcd_update_evt_hist(struct ufs_hba *hba, u32 id, u32 val)
4910 {
4911 	struct ufs_event_hist *e;
4912 
4913 	if (id >= UFS_EVT_CNT)
4914 		return;
4915 
4916 	e = &hba->ufs_stats.event[id];
4917 	e->val[e->pos] = val;
4918 	e->tstamp[e->pos] = local_clock();
4919 	e->cnt += 1;
4920 	e->pos = (e->pos + 1) % UFS_EVENT_HIST_LENGTH;
4921 
4922 	ufshcd_vops_event_notify(hba, id, &val);
4923 }
4924 EXPORT_SYMBOL_GPL(ufshcd_update_evt_hist);
4925 
4926 /**
4927  * ufshcd_link_startup - Initialize unipro link startup
4928  * @hba: per adapter instance
4929  *
4930  * Return: 0 for success, non-zero in case of failure.
4931  */
4932 static int ufshcd_link_startup(struct ufs_hba *hba)
4933 {
4934 	int ret;
4935 	int retries = DME_LINKSTARTUP_RETRIES;
4936 	bool link_startup_again = false;
4937 
4938 	/*
4939 	 * If UFS device isn't active then we will have to issue link startup
4940 	 * 2 times to make sure the device state move to active.
4941 	 */
4942 	if (!ufshcd_is_ufs_dev_active(hba))
4943 		link_startup_again = true;
4944 
4945 link_startup:
4946 	do {
4947 		ufshcd_vops_link_startup_notify(hba, PRE_CHANGE);
4948 
4949 		ret = ufshcd_dme_link_startup(hba);
4950 
4951 		/* check if device is detected by inter-connect layer */
4952 		if (!ret && !ufshcd_is_device_present(hba)) {
4953 			ufshcd_update_evt_hist(hba,
4954 					       UFS_EVT_LINK_STARTUP_FAIL,
4955 					       0);
4956 			dev_err(hba->dev, "%s: Device not present\n", __func__);
4957 			ret = -ENXIO;
4958 			goto out;
4959 		}
4960 
4961 		/*
4962 		 * DME link lost indication is only received when link is up,
4963 		 * but we can't be sure if the link is up until link startup
4964 		 * succeeds. So reset the local Uni-Pro and try again.
4965 		 */
4966 		if (ret && retries && ufshcd_hba_enable(hba)) {
4967 			ufshcd_update_evt_hist(hba,
4968 					       UFS_EVT_LINK_STARTUP_FAIL,
4969 					       (u32)ret);
4970 			goto out;
4971 		}
4972 	} while (ret && retries--);
4973 
4974 	if (ret) {
4975 		/* failed to get the link up... retire */
4976 		ufshcd_update_evt_hist(hba,
4977 				       UFS_EVT_LINK_STARTUP_FAIL,
4978 				       (u32)ret);
4979 		goto out;
4980 	}
4981 
4982 	if (link_startup_again) {
4983 		link_startup_again = false;
4984 		retries = DME_LINKSTARTUP_RETRIES;
4985 		goto link_startup;
4986 	}
4987 
4988 	/* Mark that link is up in PWM-G1, 1-lane, SLOW-AUTO mode */
4989 	ufshcd_init_pwr_info(hba);
4990 	ufshcd_print_pwr_info(hba);
4991 
4992 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_LCC) {
4993 		ret = ufshcd_disable_device_tx_lcc(hba);
4994 		if (ret)
4995 			goto out;
4996 	}
4997 
4998 	/* Include any host controller configuration via UIC commands */
4999 	ret = ufshcd_vops_link_startup_notify(hba, POST_CHANGE);
5000 	if (ret)
5001 		goto out;
5002 
5003 	/* Clear UECPA once due to LINERESET has happened during LINK_STARTUP */
5004 	ufshcd_readl(hba, REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER);
5005 	ret = ufshcd_make_hba_operational(hba);
5006 out:
5007 	if (ret) {
5008 		dev_err(hba->dev, "link startup failed %d\n", ret);
5009 		ufshcd_print_host_state(hba);
5010 		ufshcd_print_pwr_info(hba);
5011 		ufshcd_print_evt_hist(hba);
5012 	}
5013 	return ret;
5014 }
5015 
5016 /**
5017  * ufshcd_verify_dev_init() - Verify device initialization
5018  * @hba: per-adapter instance
5019  *
5020  * Send NOP OUT UPIU and wait for NOP IN response to check whether the
5021  * device Transport Protocol (UTP) layer is ready after a reset.
5022  * If the UTP layer at the device side is not initialized, it may
5023  * not respond with NOP IN UPIU within timeout of %NOP_OUT_TIMEOUT
5024  * and we retry sending NOP OUT for %NOP_OUT_RETRIES iterations.
5025  *
5026  * Return: 0 upon success; < 0 upon failure.
5027  */
5028 static int ufshcd_verify_dev_init(struct ufs_hba *hba)
5029 {
5030 	int err = 0;
5031 	int retries;
5032 
5033 	ufshcd_dev_man_lock(hba);
5034 
5035 	for (retries = NOP_OUT_RETRIES; retries > 0; retries--) {
5036 		err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_NOP,
5037 					  hba->nop_out_timeout);
5038 
5039 		if (!err || err == -ETIMEDOUT)
5040 			break;
5041 
5042 		dev_dbg(hba->dev, "%s: error %d retrying\n", __func__, err);
5043 	}
5044 
5045 	ufshcd_dev_man_unlock(hba);
5046 
5047 	if (err)
5048 		dev_err(hba->dev, "%s: NOP OUT failed %d\n", __func__, err);
5049 	return err;
5050 }
5051 
5052 /**
5053  * ufshcd_setup_links - associate link b/w device wlun and other luns
5054  * @sdev: pointer to SCSI device
5055  * @hba: pointer to ufs hba
5056  */
5057 static void ufshcd_setup_links(struct ufs_hba *hba, struct scsi_device *sdev)
5058 {
5059 	struct device_link *link;
5060 
5061 	/*
5062 	 * Device wlun is the supplier & rest of the luns are consumers.
5063 	 * This ensures that device wlun suspends after all other luns.
5064 	 */
5065 	if (hba->ufs_device_wlun) {
5066 		link = device_link_add(&sdev->sdev_gendev,
5067 				       &hba->ufs_device_wlun->sdev_gendev,
5068 				       DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE);
5069 		if (!link) {
5070 			dev_err(&sdev->sdev_gendev, "Failed establishing link - %s\n",
5071 				dev_name(&hba->ufs_device_wlun->sdev_gendev));
5072 			return;
5073 		}
5074 		hba->luns_avail--;
5075 		/* Ignore REPORT_LUN wlun probing */
5076 		if (hba->luns_avail == 1) {
5077 			ufshcd_rpm_put(hba);
5078 			return;
5079 		}
5080 	} else {
5081 		/*
5082 		 * Device wlun is probed. The assumption is that WLUNs are
5083 		 * scanned before other LUNs.
5084 		 */
5085 		hba->luns_avail--;
5086 	}
5087 }
5088 
5089 /**
5090  * ufshcd_lu_init - Initialize the relevant parameters of the LU
5091  * @hba: per-adapter instance
5092  * @sdev: pointer to SCSI device
5093  */
5094 static void ufshcd_lu_init(struct ufs_hba *hba, struct scsi_device *sdev)
5095 {
5096 	int len = QUERY_DESC_MAX_SIZE;
5097 	u8 lun = ufshcd_scsi_to_upiu_lun(sdev->lun);
5098 	u8 lun_qdepth = hba->nutrs;
5099 	u8 *desc_buf;
5100 	int ret;
5101 
5102 	desc_buf = kzalloc(len, GFP_KERNEL);
5103 	if (!desc_buf)
5104 		goto set_qdepth;
5105 
5106 	ret = ufshcd_read_unit_desc_param(hba, lun, 0, desc_buf, len);
5107 	if (ret < 0) {
5108 		if (ret == -EOPNOTSUPP)
5109 			/* If LU doesn't support unit descriptor, its queue depth is set to 1 */
5110 			lun_qdepth = 1;
5111 		kfree(desc_buf);
5112 		goto set_qdepth;
5113 	}
5114 
5115 	if (desc_buf[UNIT_DESC_PARAM_LU_Q_DEPTH]) {
5116 		/*
5117 		 * In per-LU queueing architecture, bLUQueueDepth will not be 0, then we will
5118 		 * use the smaller between UFSHCI CAP.NUTRS and UFS LU bLUQueueDepth
5119 		 */
5120 		lun_qdepth = min_t(int, desc_buf[UNIT_DESC_PARAM_LU_Q_DEPTH], hba->nutrs);
5121 	}
5122 	/*
5123 	 * According to UFS device specification, the write protection mode is only supported by
5124 	 * normal LU, not supported by WLUN.
5125 	 */
5126 	if (hba->dev_info.f_power_on_wp_en && lun < hba->dev_info.max_lu_supported &&
5127 	    !hba->dev_info.is_lu_power_on_wp &&
5128 	    desc_buf[UNIT_DESC_PARAM_LU_WR_PROTECT] == UFS_LU_POWER_ON_WP)
5129 		hba->dev_info.is_lu_power_on_wp = true;
5130 
5131 	/* In case of RPMB LU, check if advanced RPMB mode is enabled */
5132 	if (desc_buf[UNIT_DESC_PARAM_UNIT_INDEX] == UFS_UPIU_RPMB_WLUN &&
5133 	    desc_buf[RPMB_UNIT_DESC_PARAM_REGION_EN] & BIT(4))
5134 		hba->dev_info.b_advanced_rpmb_en = true;
5135 
5136 
5137 	kfree(desc_buf);
5138 set_qdepth:
5139 	/*
5140 	 * For WLUNs that don't support unit descriptor, queue depth is set to 1. For LUs whose
5141 	 * bLUQueueDepth == 0, the queue depth is set to a maximum value that host can queue.
5142 	 */
5143 	dev_dbg(hba->dev, "Set LU %x queue depth %d\n", lun, lun_qdepth);
5144 	scsi_change_queue_depth(sdev, lun_qdepth);
5145 }
5146 
5147 /**
5148  * ufshcd_slave_alloc - handle initial SCSI device configurations
5149  * @sdev: pointer to SCSI device
5150  *
5151  * Return: success.
5152  */
5153 static int ufshcd_slave_alloc(struct scsi_device *sdev)
5154 {
5155 	struct ufs_hba *hba;
5156 
5157 	hba = shost_priv(sdev->host);
5158 
5159 	/* Mode sense(6) is not supported by UFS, so use Mode sense(10) */
5160 	sdev->use_10_for_ms = 1;
5161 
5162 	/* DBD field should be set to 1 in mode sense(10) */
5163 	sdev->set_dbd_for_ms = 1;
5164 
5165 	/* allow SCSI layer to restart the device in case of errors */
5166 	sdev->allow_restart = 1;
5167 
5168 	/* REPORT SUPPORTED OPERATION CODES is not supported */
5169 	sdev->no_report_opcodes = 1;
5170 
5171 	/* WRITE_SAME command is not supported */
5172 	sdev->no_write_same = 1;
5173 
5174 	ufshcd_lu_init(hba, sdev);
5175 
5176 	ufshcd_setup_links(hba, sdev);
5177 
5178 	return 0;
5179 }
5180 
5181 /**
5182  * ufshcd_change_queue_depth - change queue depth
5183  * @sdev: pointer to SCSI device
5184  * @depth: required depth to set
5185  *
5186  * Change queue depth and make sure the max. limits are not crossed.
5187  *
5188  * Return: new queue depth.
5189  */
5190 static int ufshcd_change_queue_depth(struct scsi_device *sdev, int depth)
5191 {
5192 	return scsi_change_queue_depth(sdev, min(depth, sdev->host->can_queue));
5193 }
5194 
5195 /**
5196  * ufshcd_device_configure - adjust SCSI device configurations
5197  * @sdev: pointer to SCSI device
5198  * @lim: queue limits
5199  *
5200  * Return: 0 (success).
5201  */
5202 static int ufshcd_device_configure(struct scsi_device *sdev,
5203 		struct queue_limits *lim)
5204 {
5205 	struct ufs_hba *hba = shost_priv(sdev->host);
5206 	struct request_queue *q = sdev->request_queue;
5207 
5208 	lim->dma_pad_mask = PRDT_DATA_BYTE_COUNT_PAD - 1;
5209 
5210 	/*
5211 	 * Block runtime-pm until all consumers are added.
5212 	 * Refer ufshcd_setup_links().
5213 	 */
5214 	if (is_device_wlun(sdev))
5215 		pm_runtime_get_noresume(&sdev->sdev_gendev);
5216 	else if (ufshcd_is_rpm_autosuspend_allowed(hba))
5217 		sdev->rpm_autosuspend = 1;
5218 	/*
5219 	 * Do not print messages during runtime PM to avoid never-ending cycles
5220 	 * of messages written back to storage by user space causing runtime
5221 	 * resume, causing more messages and so on.
5222 	 */
5223 	sdev->silence_suspend = 1;
5224 
5225 	ufshcd_crypto_register(hba, q);
5226 
5227 	return 0;
5228 }
5229 
5230 /**
5231  * ufshcd_slave_destroy - remove SCSI device configurations
5232  * @sdev: pointer to SCSI device
5233  */
5234 static void ufshcd_slave_destroy(struct scsi_device *sdev)
5235 {
5236 	struct ufs_hba *hba;
5237 	unsigned long flags;
5238 
5239 	hba = shost_priv(sdev->host);
5240 
5241 	/* Drop the reference as it won't be needed anymore */
5242 	if (ufshcd_scsi_to_upiu_lun(sdev->lun) == UFS_UPIU_UFS_DEVICE_WLUN) {
5243 		spin_lock_irqsave(hba->host->host_lock, flags);
5244 		hba->ufs_device_wlun = NULL;
5245 		spin_unlock_irqrestore(hba->host->host_lock, flags);
5246 	} else if (hba->ufs_device_wlun) {
5247 		struct device *supplier = NULL;
5248 
5249 		/* Ensure UFS Device WLUN exists and does not disappear */
5250 		spin_lock_irqsave(hba->host->host_lock, flags);
5251 		if (hba->ufs_device_wlun) {
5252 			supplier = &hba->ufs_device_wlun->sdev_gendev;
5253 			get_device(supplier);
5254 		}
5255 		spin_unlock_irqrestore(hba->host->host_lock, flags);
5256 
5257 		if (supplier) {
5258 			/*
5259 			 * If a LUN fails to probe (e.g. absent BOOT WLUN), the
5260 			 * device will not have been registered but can still
5261 			 * have a device link holding a reference to the device.
5262 			 */
5263 			device_link_remove(&sdev->sdev_gendev, supplier);
5264 			put_device(supplier);
5265 		}
5266 	}
5267 }
5268 
5269 /**
5270  * ufshcd_scsi_cmd_status - Update SCSI command result based on SCSI status
5271  * @lrbp: pointer to local reference block of completed command
5272  * @scsi_status: SCSI command status
5273  *
5274  * Return: value base on SCSI command status.
5275  */
5276 static inline int
5277 ufshcd_scsi_cmd_status(struct ufshcd_lrb *lrbp, int scsi_status)
5278 {
5279 	int result = 0;
5280 
5281 	switch (scsi_status) {
5282 	case SAM_STAT_CHECK_CONDITION:
5283 		ufshcd_copy_sense_data(lrbp);
5284 		fallthrough;
5285 	case SAM_STAT_GOOD:
5286 		result |= DID_OK << 16 | scsi_status;
5287 		break;
5288 	case SAM_STAT_TASK_SET_FULL:
5289 	case SAM_STAT_BUSY:
5290 	case SAM_STAT_TASK_ABORTED:
5291 		ufshcd_copy_sense_data(lrbp);
5292 		result |= scsi_status;
5293 		break;
5294 	default:
5295 		result |= DID_ERROR << 16;
5296 		break;
5297 	} /* end of switch */
5298 
5299 	return result;
5300 }
5301 
5302 /**
5303  * ufshcd_transfer_rsp_status - Get overall status of the response
5304  * @hba: per adapter instance
5305  * @lrbp: pointer to local reference block of completed command
5306  * @cqe: pointer to the completion queue entry
5307  *
5308  * Return: result of the command to notify SCSI midlayer.
5309  */
5310 static inline int
5311 ufshcd_transfer_rsp_status(struct ufs_hba *hba, struct ufshcd_lrb *lrbp,
5312 			   struct cq_entry *cqe)
5313 {
5314 	int result = 0;
5315 	int scsi_status;
5316 	enum utp_ocs ocs;
5317 	u8 upiu_flags;
5318 	u32 resid;
5319 
5320 	upiu_flags = lrbp->ucd_rsp_ptr->header.flags;
5321 	resid = be32_to_cpu(lrbp->ucd_rsp_ptr->sr.residual_transfer_count);
5322 	/*
5323 	 * Test !overflow instead of underflow to support UFS devices that do
5324 	 * not set either flag.
5325 	 */
5326 	if (resid && !(upiu_flags & UPIU_RSP_FLAG_OVERFLOW))
5327 		scsi_set_resid(lrbp->cmd, resid);
5328 
5329 	/* overall command status of utrd */
5330 	ocs = ufshcd_get_tr_ocs(lrbp, cqe);
5331 
5332 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_OCS_FATAL_ERROR) {
5333 		if (lrbp->ucd_rsp_ptr->header.response ||
5334 		    lrbp->ucd_rsp_ptr->header.status)
5335 			ocs = OCS_SUCCESS;
5336 	}
5337 
5338 	switch (ocs) {
5339 	case OCS_SUCCESS:
5340 		hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
5341 		switch (ufshcd_get_req_rsp(lrbp->ucd_rsp_ptr)) {
5342 		case UPIU_TRANSACTION_RESPONSE:
5343 			/*
5344 			 * get the result based on SCSI status response
5345 			 * to notify the SCSI midlayer of the command status
5346 			 */
5347 			scsi_status = lrbp->ucd_rsp_ptr->header.status;
5348 			result = ufshcd_scsi_cmd_status(lrbp, scsi_status);
5349 
5350 			/*
5351 			 * Currently we are only supporting BKOPs exception
5352 			 * events hence we can ignore BKOPs exception event
5353 			 * during power management callbacks. BKOPs exception
5354 			 * event is not expected to be raised in runtime suspend
5355 			 * callback as it allows the urgent bkops.
5356 			 * During system suspend, we are anyway forcefully
5357 			 * disabling the bkops and if urgent bkops is needed
5358 			 * it will be enabled on system resume. Long term
5359 			 * solution could be to abort the system suspend if
5360 			 * UFS device needs urgent BKOPs.
5361 			 */
5362 			if (!hba->pm_op_in_progress &&
5363 			    !ufshcd_eh_in_progress(hba) &&
5364 			    ufshcd_is_exception_event(lrbp->ucd_rsp_ptr))
5365 				/* Flushed in suspend */
5366 				schedule_work(&hba->eeh_work);
5367 			break;
5368 		case UPIU_TRANSACTION_REJECT_UPIU:
5369 			/* TODO: handle Reject UPIU Response */
5370 			result = DID_ERROR << 16;
5371 			dev_err(hba->dev,
5372 				"Reject UPIU not fully implemented\n");
5373 			break;
5374 		default:
5375 			dev_err(hba->dev,
5376 				"Unexpected request response code = %x\n",
5377 				result);
5378 			result = DID_ERROR << 16;
5379 			break;
5380 		}
5381 		break;
5382 	case OCS_ABORTED:
5383 		result |= DID_ABORT << 16;
5384 		break;
5385 	case OCS_INVALID_COMMAND_STATUS:
5386 		result |= DID_REQUEUE << 16;
5387 		break;
5388 	case OCS_INVALID_CMD_TABLE_ATTR:
5389 	case OCS_INVALID_PRDT_ATTR:
5390 	case OCS_MISMATCH_DATA_BUF_SIZE:
5391 	case OCS_MISMATCH_RESP_UPIU_SIZE:
5392 	case OCS_PEER_COMM_FAILURE:
5393 	case OCS_FATAL_ERROR:
5394 	case OCS_DEVICE_FATAL_ERROR:
5395 	case OCS_INVALID_CRYPTO_CONFIG:
5396 	case OCS_GENERAL_CRYPTO_ERROR:
5397 	default:
5398 		result |= DID_ERROR << 16;
5399 		dev_err(hba->dev,
5400 				"OCS error from controller = %x for tag %d\n",
5401 				ocs, lrbp->task_tag);
5402 		ufshcd_print_evt_hist(hba);
5403 		ufshcd_print_host_state(hba);
5404 		break;
5405 	} /* end of switch */
5406 
5407 	if ((host_byte(result) != DID_OK) &&
5408 	    (host_byte(result) != DID_REQUEUE) && !hba->silence_err_logs)
5409 		ufshcd_print_tr(hba, lrbp->task_tag, true);
5410 	return result;
5411 }
5412 
5413 static bool ufshcd_is_auto_hibern8_error(struct ufs_hba *hba,
5414 					 u32 intr_mask)
5415 {
5416 	if (!ufshcd_is_auto_hibern8_supported(hba) ||
5417 	    !ufshcd_is_auto_hibern8_enabled(hba))
5418 		return false;
5419 
5420 	if (!(intr_mask & UFSHCD_UIC_HIBERN8_MASK))
5421 		return false;
5422 
5423 	if (hba->active_uic_cmd &&
5424 	    (hba->active_uic_cmd->command == UIC_CMD_DME_HIBER_ENTER ||
5425 	    hba->active_uic_cmd->command == UIC_CMD_DME_HIBER_EXIT))
5426 		return false;
5427 
5428 	return true;
5429 }
5430 
5431 /**
5432  * ufshcd_uic_cmd_compl - handle completion of uic command
5433  * @hba: per adapter instance
5434  * @intr_status: interrupt status generated by the controller
5435  *
5436  * Return:
5437  *  IRQ_HANDLED - If interrupt is valid
5438  *  IRQ_NONE    - If invalid interrupt
5439  */
5440 static irqreturn_t ufshcd_uic_cmd_compl(struct ufs_hba *hba, u32 intr_status)
5441 {
5442 	irqreturn_t retval = IRQ_NONE;
5443 
5444 	spin_lock(hba->host->host_lock);
5445 	if (ufshcd_is_auto_hibern8_error(hba, intr_status))
5446 		hba->errors |= (UFSHCD_UIC_HIBERN8_MASK & intr_status);
5447 
5448 	if ((intr_status & UIC_COMMAND_COMPL) && hba->active_uic_cmd) {
5449 		hba->active_uic_cmd->argument2 |=
5450 			ufshcd_get_uic_cmd_result(hba);
5451 		hba->active_uic_cmd->argument3 =
5452 			ufshcd_get_dme_attr_val(hba);
5453 		if (!hba->uic_async_done)
5454 			hba->active_uic_cmd->cmd_active = 0;
5455 		complete(&hba->active_uic_cmd->done);
5456 		retval = IRQ_HANDLED;
5457 	}
5458 
5459 	if ((intr_status & UFSHCD_UIC_PWR_MASK) && hba->uic_async_done) {
5460 		hba->active_uic_cmd->cmd_active = 0;
5461 		complete(hba->uic_async_done);
5462 		retval = IRQ_HANDLED;
5463 	}
5464 
5465 	if (retval == IRQ_HANDLED)
5466 		ufshcd_add_uic_command_trace(hba, hba->active_uic_cmd,
5467 					     UFS_CMD_COMP);
5468 	spin_unlock(hba->host->host_lock);
5469 	return retval;
5470 }
5471 
5472 /* Release the resources allocated for processing a SCSI command. */
5473 void ufshcd_release_scsi_cmd(struct ufs_hba *hba,
5474 			     struct ufshcd_lrb *lrbp)
5475 {
5476 	struct scsi_cmnd *cmd = lrbp->cmd;
5477 
5478 	scsi_dma_unmap(cmd);
5479 	ufshcd_release(hba);
5480 	ufshcd_clk_scaling_update_busy(hba);
5481 }
5482 
5483 /**
5484  * ufshcd_compl_one_cqe - handle a completion queue entry
5485  * @hba: per adapter instance
5486  * @task_tag: the task tag of the request to be completed
5487  * @cqe: pointer to the completion queue entry
5488  */
5489 void ufshcd_compl_one_cqe(struct ufs_hba *hba, int task_tag,
5490 			  struct cq_entry *cqe)
5491 {
5492 	struct ufshcd_lrb *lrbp;
5493 	struct scsi_cmnd *cmd;
5494 	enum utp_ocs ocs;
5495 
5496 	lrbp = &hba->lrb[task_tag];
5497 	lrbp->compl_time_stamp = ktime_get();
5498 	cmd = lrbp->cmd;
5499 	if (cmd) {
5500 		if (unlikely(ufshcd_should_inform_monitor(hba, lrbp)))
5501 			ufshcd_update_monitor(hba, lrbp);
5502 		ufshcd_add_command_trace(hba, task_tag, UFS_CMD_COMP);
5503 		cmd->result = ufshcd_transfer_rsp_status(hba, lrbp, cqe);
5504 		ufshcd_release_scsi_cmd(hba, lrbp);
5505 		/* Do not touch lrbp after scsi done */
5506 		scsi_done(cmd);
5507 	} else if (hba->dev_cmd.complete) {
5508 		if (cqe) {
5509 			ocs = le32_to_cpu(cqe->status) & MASK_OCS;
5510 			lrbp->utr_descriptor_ptr->header.ocs = ocs;
5511 		}
5512 		complete(hba->dev_cmd.complete);
5513 	}
5514 }
5515 
5516 /**
5517  * __ufshcd_transfer_req_compl - handle SCSI and query command completion
5518  * @hba: per adapter instance
5519  * @completed_reqs: bitmask that indicates which requests to complete
5520  */
5521 static void __ufshcd_transfer_req_compl(struct ufs_hba *hba,
5522 					unsigned long completed_reqs)
5523 {
5524 	int tag;
5525 
5526 	for_each_set_bit(tag, &completed_reqs, hba->nutrs)
5527 		ufshcd_compl_one_cqe(hba, tag, NULL);
5528 }
5529 
5530 /* Any value that is not an existing queue number is fine for this constant. */
5531 enum {
5532 	UFSHCD_POLL_FROM_INTERRUPT_CONTEXT = -1
5533 };
5534 
5535 static void ufshcd_clear_polled(struct ufs_hba *hba,
5536 				unsigned long *completed_reqs)
5537 {
5538 	int tag;
5539 
5540 	for_each_set_bit(tag, completed_reqs, hba->nutrs) {
5541 		struct scsi_cmnd *cmd = hba->lrb[tag].cmd;
5542 
5543 		if (!cmd)
5544 			continue;
5545 		if (scsi_cmd_to_rq(cmd)->cmd_flags & REQ_POLLED)
5546 			__clear_bit(tag, completed_reqs);
5547 	}
5548 }
5549 
5550 /*
5551  * Return: > 0 if one or more commands have been completed or 0 if no
5552  * requests have been completed.
5553  */
5554 static int ufshcd_poll(struct Scsi_Host *shost, unsigned int queue_num)
5555 {
5556 	struct ufs_hba *hba = shost_priv(shost);
5557 	unsigned long completed_reqs, flags;
5558 	u32 tr_doorbell;
5559 	struct ufs_hw_queue *hwq;
5560 
5561 	if (is_mcq_enabled(hba)) {
5562 		hwq = &hba->uhq[queue_num];
5563 
5564 		return ufshcd_mcq_poll_cqe_lock(hba, hwq);
5565 	}
5566 
5567 	spin_lock_irqsave(&hba->outstanding_lock, flags);
5568 	tr_doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
5569 	completed_reqs = ~tr_doorbell & hba->outstanding_reqs;
5570 	WARN_ONCE(completed_reqs & ~hba->outstanding_reqs,
5571 		  "completed: %#lx; outstanding: %#lx\n", completed_reqs,
5572 		  hba->outstanding_reqs);
5573 	if (queue_num == UFSHCD_POLL_FROM_INTERRUPT_CONTEXT) {
5574 		/* Do not complete polled requests from interrupt context. */
5575 		ufshcd_clear_polled(hba, &completed_reqs);
5576 	}
5577 	hba->outstanding_reqs &= ~completed_reqs;
5578 	spin_unlock_irqrestore(&hba->outstanding_lock, flags);
5579 
5580 	if (completed_reqs)
5581 		__ufshcd_transfer_req_compl(hba, completed_reqs);
5582 
5583 	return completed_reqs != 0;
5584 }
5585 
5586 /**
5587  * ufshcd_mcq_compl_pending_transfer - MCQ mode function. It is
5588  * invoked from the error handler context or ufshcd_host_reset_and_restore()
5589  * to complete the pending transfers and free the resources associated with
5590  * the scsi command.
5591  *
5592  * @hba: per adapter instance
5593  * @force_compl: This flag is set to true when invoked
5594  * from ufshcd_host_reset_and_restore() in which case it requires special
5595  * handling because the host controller has been reset by ufshcd_hba_stop().
5596  */
5597 static void ufshcd_mcq_compl_pending_transfer(struct ufs_hba *hba,
5598 					      bool force_compl)
5599 {
5600 	struct ufs_hw_queue *hwq;
5601 	struct ufshcd_lrb *lrbp;
5602 	struct scsi_cmnd *cmd;
5603 	unsigned long flags;
5604 	int tag;
5605 
5606 	for (tag = 0; tag < hba->nutrs; tag++) {
5607 		lrbp = &hba->lrb[tag];
5608 		cmd = lrbp->cmd;
5609 		if (!ufshcd_cmd_inflight(cmd) ||
5610 		    test_bit(SCMD_STATE_COMPLETE, &cmd->state))
5611 			continue;
5612 
5613 		hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(cmd));
5614 
5615 		if (force_compl) {
5616 			ufshcd_mcq_compl_all_cqes_lock(hba, hwq);
5617 			/*
5618 			 * For those cmds of which the cqes are not present
5619 			 * in the cq, complete them explicitly.
5620 			 */
5621 			spin_lock_irqsave(&hwq->cq_lock, flags);
5622 			if (cmd && !test_bit(SCMD_STATE_COMPLETE, &cmd->state)) {
5623 				set_host_byte(cmd, DID_REQUEUE);
5624 				ufshcd_release_scsi_cmd(hba, lrbp);
5625 				scsi_done(cmd);
5626 			}
5627 			spin_unlock_irqrestore(&hwq->cq_lock, flags);
5628 		} else {
5629 			ufshcd_mcq_poll_cqe_lock(hba, hwq);
5630 		}
5631 	}
5632 }
5633 
5634 /**
5635  * ufshcd_transfer_req_compl - handle SCSI and query command completion
5636  * @hba: per adapter instance
5637  *
5638  * Return:
5639  *  IRQ_HANDLED - If interrupt is valid
5640  *  IRQ_NONE    - If invalid interrupt
5641  */
5642 static irqreturn_t ufshcd_transfer_req_compl(struct ufs_hba *hba)
5643 {
5644 	/* Resetting interrupt aggregation counters first and reading the
5645 	 * DOOR_BELL afterward allows us to handle all the completed requests.
5646 	 * In order to prevent other interrupts starvation the DB is read once
5647 	 * after reset. The down side of this solution is the possibility of
5648 	 * false interrupt if device completes another request after resetting
5649 	 * aggregation and before reading the DB.
5650 	 */
5651 	if (ufshcd_is_intr_aggr_allowed(hba) &&
5652 	    !(hba->quirks & UFSHCI_QUIRK_SKIP_RESET_INTR_AGGR))
5653 		ufshcd_reset_intr_aggr(hba);
5654 
5655 	if (ufs_fail_completion(hba))
5656 		return IRQ_HANDLED;
5657 
5658 	/*
5659 	 * Ignore the ufshcd_poll() return value and return IRQ_HANDLED since we
5660 	 * do not want polling to trigger spurious interrupt complaints.
5661 	 */
5662 	ufshcd_poll(hba->host, UFSHCD_POLL_FROM_INTERRUPT_CONTEXT);
5663 
5664 	return IRQ_HANDLED;
5665 }
5666 
5667 int __ufshcd_write_ee_control(struct ufs_hba *hba, u32 ee_ctrl_mask)
5668 {
5669 	return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
5670 				       QUERY_ATTR_IDN_EE_CONTROL, 0, 0,
5671 				       &ee_ctrl_mask);
5672 }
5673 
5674 int ufshcd_write_ee_control(struct ufs_hba *hba)
5675 {
5676 	int err;
5677 
5678 	mutex_lock(&hba->ee_ctrl_mutex);
5679 	err = __ufshcd_write_ee_control(hba, hba->ee_ctrl_mask);
5680 	mutex_unlock(&hba->ee_ctrl_mutex);
5681 	if (err)
5682 		dev_err(hba->dev, "%s: failed to write ee control %d\n",
5683 			__func__, err);
5684 	return err;
5685 }
5686 
5687 int ufshcd_update_ee_control(struct ufs_hba *hba, u16 *mask,
5688 			     const u16 *other_mask, u16 set, u16 clr)
5689 {
5690 	u16 new_mask, ee_ctrl_mask;
5691 	int err = 0;
5692 
5693 	mutex_lock(&hba->ee_ctrl_mutex);
5694 	new_mask = (*mask & ~clr) | set;
5695 	ee_ctrl_mask = new_mask | *other_mask;
5696 	if (ee_ctrl_mask != hba->ee_ctrl_mask)
5697 		err = __ufshcd_write_ee_control(hba, ee_ctrl_mask);
5698 	/* Still need to update 'mask' even if 'ee_ctrl_mask' was unchanged */
5699 	if (!err) {
5700 		hba->ee_ctrl_mask = ee_ctrl_mask;
5701 		*mask = new_mask;
5702 	}
5703 	mutex_unlock(&hba->ee_ctrl_mutex);
5704 	return err;
5705 }
5706 
5707 /**
5708  * ufshcd_disable_ee - disable exception event
5709  * @hba: per-adapter instance
5710  * @mask: exception event to disable
5711  *
5712  * Disables exception event in the device so that the EVENT_ALERT
5713  * bit is not set.
5714  *
5715  * Return: zero on success, non-zero error value on failure.
5716  */
5717 static inline int ufshcd_disable_ee(struct ufs_hba *hba, u16 mask)
5718 {
5719 	return ufshcd_update_ee_drv_mask(hba, 0, mask);
5720 }
5721 
5722 /**
5723  * ufshcd_enable_ee - enable exception event
5724  * @hba: per-adapter instance
5725  * @mask: exception event to enable
5726  *
5727  * Enable corresponding exception event in the device to allow
5728  * device to alert host in critical scenarios.
5729  *
5730  * Return: zero on success, non-zero error value on failure.
5731  */
5732 static inline int ufshcd_enable_ee(struct ufs_hba *hba, u16 mask)
5733 {
5734 	return ufshcd_update_ee_drv_mask(hba, mask, 0);
5735 }
5736 
5737 /**
5738  * ufshcd_enable_auto_bkops - Allow device managed BKOPS
5739  * @hba: per-adapter instance
5740  *
5741  * Allow device to manage background operations on its own. Enabling
5742  * this might lead to inconsistent latencies during normal data transfers
5743  * as the device is allowed to manage its own way of handling background
5744  * operations.
5745  *
5746  * Return: zero on success, non-zero on failure.
5747  */
5748 static int ufshcd_enable_auto_bkops(struct ufs_hba *hba)
5749 {
5750 	int err = 0;
5751 
5752 	if (hba->auto_bkops_enabled)
5753 		goto out;
5754 
5755 	err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG,
5756 			QUERY_FLAG_IDN_BKOPS_EN, 0, NULL);
5757 	if (err) {
5758 		dev_err(hba->dev, "%s: failed to enable bkops %d\n",
5759 				__func__, err);
5760 		goto out;
5761 	}
5762 
5763 	hba->auto_bkops_enabled = true;
5764 	trace_ufshcd_auto_bkops_state(dev_name(hba->dev), "Enabled");
5765 
5766 	/* No need of URGENT_BKOPS exception from the device */
5767 	err = ufshcd_disable_ee(hba, MASK_EE_URGENT_BKOPS);
5768 	if (err)
5769 		dev_err(hba->dev, "%s: failed to disable exception event %d\n",
5770 				__func__, err);
5771 out:
5772 	return err;
5773 }
5774 
5775 /**
5776  * ufshcd_disable_auto_bkops - block device in doing background operations
5777  * @hba: per-adapter instance
5778  *
5779  * Disabling background operations improves command response latency but
5780  * has drawback of device moving into critical state where the device is
5781  * not-operable. Make sure to call ufshcd_enable_auto_bkops() whenever the
5782  * host is idle so that BKOPS are managed effectively without any negative
5783  * impacts.
5784  *
5785  * Return: zero on success, non-zero on failure.
5786  */
5787 static int ufshcd_disable_auto_bkops(struct ufs_hba *hba)
5788 {
5789 	int err = 0;
5790 
5791 	if (!hba->auto_bkops_enabled)
5792 		goto out;
5793 
5794 	/*
5795 	 * If host assisted BKOPs is to be enabled, make sure
5796 	 * urgent bkops exception is allowed.
5797 	 */
5798 	err = ufshcd_enable_ee(hba, MASK_EE_URGENT_BKOPS);
5799 	if (err) {
5800 		dev_err(hba->dev, "%s: failed to enable exception event %d\n",
5801 				__func__, err);
5802 		goto out;
5803 	}
5804 
5805 	err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_CLEAR_FLAG,
5806 			QUERY_FLAG_IDN_BKOPS_EN, 0, NULL);
5807 	if (err) {
5808 		dev_err(hba->dev, "%s: failed to disable bkops %d\n",
5809 				__func__, err);
5810 		ufshcd_disable_ee(hba, MASK_EE_URGENT_BKOPS);
5811 		goto out;
5812 	}
5813 
5814 	hba->auto_bkops_enabled = false;
5815 	trace_ufshcd_auto_bkops_state(dev_name(hba->dev), "Disabled");
5816 	hba->is_urgent_bkops_lvl_checked = false;
5817 out:
5818 	return err;
5819 }
5820 
5821 /**
5822  * ufshcd_force_reset_auto_bkops - force reset auto bkops state
5823  * @hba: per adapter instance
5824  *
5825  * After a device reset the device may toggle the BKOPS_EN flag
5826  * to default value. The s/w tracking variables should be updated
5827  * as well. This function would change the auto-bkops state based on
5828  * UFSHCD_CAP_KEEP_AUTO_BKOPS_ENABLED_EXCEPT_SUSPEND.
5829  */
5830 static void ufshcd_force_reset_auto_bkops(struct ufs_hba *hba)
5831 {
5832 	if (ufshcd_keep_autobkops_enabled_except_suspend(hba)) {
5833 		hba->auto_bkops_enabled = false;
5834 		hba->ee_ctrl_mask |= MASK_EE_URGENT_BKOPS;
5835 		ufshcd_enable_auto_bkops(hba);
5836 	} else {
5837 		hba->auto_bkops_enabled = true;
5838 		hba->ee_ctrl_mask &= ~MASK_EE_URGENT_BKOPS;
5839 		ufshcd_disable_auto_bkops(hba);
5840 	}
5841 	hba->urgent_bkops_lvl = BKOPS_STATUS_PERF_IMPACT;
5842 	hba->is_urgent_bkops_lvl_checked = false;
5843 }
5844 
5845 static inline int ufshcd_get_bkops_status(struct ufs_hba *hba, u32 *status)
5846 {
5847 	return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5848 			QUERY_ATTR_IDN_BKOPS_STATUS, 0, 0, status);
5849 }
5850 
5851 /**
5852  * ufshcd_bkops_ctrl - control the auto bkops based on current bkops status
5853  * @hba: per-adapter instance
5854  * @status: bkops_status value
5855  *
5856  * Read the bkops_status from the UFS device and Enable fBackgroundOpsEn
5857  * flag in the device to permit background operations if the device
5858  * bkops_status is greater than or equal to "status" argument passed to
5859  * this function, disable otherwise.
5860  *
5861  * Return: 0 for success, non-zero in case of failure.
5862  *
5863  * NOTE: Caller of this function can check the "hba->auto_bkops_enabled" flag
5864  * to know whether auto bkops is enabled or disabled after this function
5865  * returns control to it.
5866  */
5867 static int ufshcd_bkops_ctrl(struct ufs_hba *hba,
5868 			     enum bkops_status status)
5869 {
5870 	int err;
5871 	u32 curr_status = 0;
5872 
5873 	err = ufshcd_get_bkops_status(hba, &curr_status);
5874 	if (err) {
5875 		dev_err(hba->dev, "%s: failed to get BKOPS status %d\n",
5876 				__func__, err);
5877 		goto out;
5878 	} else if (curr_status > BKOPS_STATUS_MAX) {
5879 		dev_err(hba->dev, "%s: invalid BKOPS status %d\n",
5880 				__func__, curr_status);
5881 		err = -EINVAL;
5882 		goto out;
5883 	}
5884 
5885 	if (curr_status >= status)
5886 		err = ufshcd_enable_auto_bkops(hba);
5887 	else
5888 		err = ufshcd_disable_auto_bkops(hba);
5889 out:
5890 	return err;
5891 }
5892 
5893 /**
5894  * ufshcd_urgent_bkops - handle urgent bkops exception event
5895  * @hba: per-adapter instance
5896  *
5897  * Enable fBackgroundOpsEn flag in the device to permit background
5898  * operations.
5899  *
5900  * If BKOPs is enabled, this function returns 0, 1 if the bkops in not enabled
5901  * and negative error value for any other failure.
5902  *
5903  * Return: 0 upon success; < 0 upon failure.
5904  */
5905 static int ufshcd_urgent_bkops(struct ufs_hba *hba)
5906 {
5907 	return ufshcd_bkops_ctrl(hba, hba->urgent_bkops_lvl);
5908 }
5909 
5910 static inline int ufshcd_get_ee_status(struct ufs_hba *hba, u32 *status)
5911 {
5912 	return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5913 			QUERY_ATTR_IDN_EE_STATUS, 0, 0, status);
5914 }
5915 
5916 static void ufshcd_bkops_exception_event_handler(struct ufs_hba *hba)
5917 {
5918 	int err;
5919 	u32 curr_status = 0;
5920 
5921 	if (hba->is_urgent_bkops_lvl_checked)
5922 		goto enable_auto_bkops;
5923 
5924 	err = ufshcd_get_bkops_status(hba, &curr_status);
5925 	if (err) {
5926 		dev_err(hba->dev, "%s: failed to get BKOPS status %d\n",
5927 				__func__, err);
5928 		goto out;
5929 	}
5930 
5931 	/*
5932 	 * We are seeing that some devices are raising the urgent bkops
5933 	 * exception events even when BKOPS status doesn't indicate performace
5934 	 * impacted or critical. Handle these device by determining their urgent
5935 	 * bkops status at runtime.
5936 	 */
5937 	if (curr_status < BKOPS_STATUS_PERF_IMPACT) {
5938 		dev_err(hba->dev, "%s: device raised urgent BKOPS exception for bkops status %d\n",
5939 				__func__, curr_status);
5940 		/* update the current status as the urgent bkops level */
5941 		hba->urgent_bkops_lvl = curr_status;
5942 		hba->is_urgent_bkops_lvl_checked = true;
5943 	}
5944 
5945 enable_auto_bkops:
5946 	err = ufshcd_enable_auto_bkops(hba);
5947 out:
5948 	if (err < 0)
5949 		dev_err(hba->dev, "%s: failed to handle urgent bkops %d\n",
5950 				__func__, err);
5951 }
5952 
5953 static void ufshcd_temp_exception_event_handler(struct ufs_hba *hba, u16 status)
5954 {
5955 	u32 value;
5956 
5957 	if (ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5958 				QUERY_ATTR_IDN_CASE_ROUGH_TEMP, 0, 0, &value))
5959 		return;
5960 
5961 	dev_info(hba->dev, "exception Tcase %d\n", value - 80);
5962 
5963 	ufs_hwmon_notify_event(hba, status & MASK_EE_URGENT_TEMP);
5964 
5965 	/*
5966 	 * A placeholder for the platform vendors to add whatever additional
5967 	 * steps required
5968 	 */
5969 }
5970 
5971 static int __ufshcd_wb_toggle(struct ufs_hba *hba, bool set, enum flag_idn idn)
5972 {
5973 	u8 index;
5974 	enum query_opcode opcode = set ? UPIU_QUERY_OPCODE_SET_FLAG :
5975 				   UPIU_QUERY_OPCODE_CLEAR_FLAG;
5976 
5977 	index = ufshcd_wb_get_query_index(hba);
5978 	return ufshcd_query_flag_retry(hba, opcode, idn, index, NULL);
5979 }
5980 
5981 int ufshcd_wb_toggle(struct ufs_hba *hba, bool enable)
5982 {
5983 	int ret;
5984 
5985 	if (!ufshcd_is_wb_allowed(hba) ||
5986 	    hba->dev_info.wb_enabled == enable)
5987 		return 0;
5988 
5989 	ret = __ufshcd_wb_toggle(hba, enable, QUERY_FLAG_IDN_WB_EN);
5990 	if (ret) {
5991 		dev_err(hba->dev, "%s: Write Booster %s failed %d\n",
5992 			__func__, enable ? "enabling" : "disabling", ret);
5993 		return ret;
5994 	}
5995 
5996 	hba->dev_info.wb_enabled = enable;
5997 	dev_dbg(hba->dev, "%s: Write Booster %s\n",
5998 			__func__, enable ? "enabled" : "disabled");
5999 
6000 	return ret;
6001 }
6002 
6003 static void ufshcd_wb_toggle_buf_flush_during_h8(struct ufs_hba *hba,
6004 						 bool enable)
6005 {
6006 	int ret;
6007 
6008 	ret = __ufshcd_wb_toggle(hba, enable,
6009 			QUERY_FLAG_IDN_WB_BUFF_FLUSH_DURING_HIBERN8);
6010 	if (ret) {
6011 		dev_err(hba->dev, "%s: WB-Buf Flush during H8 %s failed %d\n",
6012 			__func__, enable ? "enabling" : "disabling", ret);
6013 		return;
6014 	}
6015 	dev_dbg(hba->dev, "%s: WB-Buf Flush during H8 %s\n",
6016 			__func__, enable ? "enabled" : "disabled");
6017 }
6018 
6019 int ufshcd_wb_toggle_buf_flush(struct ufs_hba *hba, bool enable)
6020 {
6021 	int ret;
6022 
6023 	if (!ufshcd_is_wb_allowed(hba) ||
6024 	    hba->dev_info.wb_buf_flush_enabled == enable)
6025 		return 0;
6026 
6027 	ret = __ufshcd_wb_toggle(hba, enable, QUERY_FLAG_IDN_WB_BUFF_FLUSH_EN);
6028 	if (ret) {
6029 		dev_err(hba->dev, "%s: WB-Buf Flush %s failed %d\n",
6030 			__func__, enable ? "enabling" : "disabling", ret);
6031 		return ret;
6032 	}
6033 
6034 	hba->dev_info.wb_buf_flush_enabled = enable;
6035 	dev_dbg(hba->dev, "%s: WB-Buf Flush %s\n",
6036 			__func__, enable ? "enabled" : "disabled");
6037 
6038 	return ret;
6039 }
6040 
6041 static bool ufshcd_wb_presrv_usrspc_keep_vcc_on(struct ufs_hba *hba,
6042 						u32 avail_buf)
6043 {
6044 	u32 cur_buf;
6045 	int ret;
6046 	u8 index;
6047 
6048 	index = ufshcd_wb_get_query_index(hba);
6049 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
6050 					      QUERY_ATTR_IDN_CURR_WB_BUFF_SIZE,
6051 					      index, 0, &cur_buf);
6052 	if (ret) {
6053 		dev_err(hba->dev, "%s: dCurWriteBoosterBufferSize read failed %d\n",
6054 			__func__, ret);
6055 		return false;
6056 	}
6057 
6058 	if (!cur_buf) {
6059 		dev_info(hba->dev, "dCurWBBuf: %d WB disabled until free-space is available\n",
6060 			 cur_buf);
6061 		return false;
6062 	}
6063 	/* Let it continue to flush when available buffer exceeds threshold */
6064 	return avail_buf < hba->vps->wb_flush_threshold;
6065 }
6066 
6067 static void ufshcd_wb_force_disable(struct ufs_hba *hba)
6068 {
6069 	if (ufshcd_is_wb_buf_flush_allowed(hba))
6070 		ufshcd_wb_toggle_buf_flush(hba, false);
6071 
6072 	ufshcd_wb_toggle_buf_flush_during_h8(hba, false);
6073 	ufshcd_wb_toggle(hba, false);
6074 	hba->caps &= ~UFSHCD_CAP_WB_EN;
6075 
6076 	dev_info(hba->dev, "%s: WB force disabled\n", __func__);
6077 }
6078 
6079 static bool ufshcd_is_wb_buf_lifetime_available(struct ufs_hba *hba)
6080 {
6081 	u32 lifetime;
6082 	int ret;
6083 	u8 index;
6084 
6085 	index = ufshcd_wb_get_query_index(hba);
6086 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
6087 				      QUERY_ATTR_IDN_WB_BUFF_LIFE_TIME_EST,
6088 				      index, 0, &lifetime);
6089 	if (ret) {
6090 		dev_err(hba->dev,
6091 			"%s: bWriteBoosterBufferLifeTimeEst read failed %d\n",
6092 			__func__, ret);
6093 		return false;
6094 	}
6095 
6096 	if (lifetime == UFS_WB_EXCEED_LIFETIME) {
6097 		dev_err(hba->dev, "%s: WB buf lifetime is exhausted 0x%02X\n",
6098 			__func__, lifetime);
6099 		return false;
6100 	}
6101 
6102 	dev_dbg(hba->dev, "%s: WB buf lifetime is 0x%02X\n",
6103 		__func__, lifetime);
6104 
6105 	return true;
6106 }
6107 
6108 static bool ufshcd_wb_need_flush(struct ufs_hba *hba)
6109 {
6110 	int ret;
6111 	u32 avail_buf;
6112 	u8 index;
6113 
6114 	if (!ufshcd_is_wb_allowed(hba))
6115 		return false;
6116 
6117 	if (!ufshcd_is_wb_buf_lifetime_available(hba)) {
6118 		ufshcd_wb_force_disable(hba);
6119 		return false;
6120 	}
6121 
6122 	/*
6123 	 * The ufs device needs the vcc to be ON to flush.
6124 	 * With user-space reduction enabled, it's enough to enable flush
6125 	 * by checking only the available buffer. The threshold
6126 	 * defined here is > 90% full.
6127 	 * With user-space preserved enabled, the current-buffer
6128 	 * should be checked too because the wb buffer size can reduce
6129 	 * when disk tends to be full. This info is provided by current
6130 	 * buffer (dCurrentWriteBoosterBufferSize). There's no point in
6131 	 * keeping vcc on when current buffer is empty.
6132 	 */
6133 	index = ufshcd_wb_get_query_index(hba);
6134 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
6135 				      QUERY_ATTR_IDN_AVAIL_WB_BUFF_SIZE,
6136 				      index, 0, &avail_buf);
6137 	if (ret) {
6138 		dev_warn(hba->dev, "%s: dAvailableWriteBoosterBufferSize read failed %d\n",
6139 			 __func__, ret);
6140 		return false;
6141 	}
6142 
6143 	if (!hba->dev_info.b_presrv_uspc_en)
6144 		return avail_buf <= UFS_WB_BUF_REMAIN_PERCENT(10);
6145 
6146 	return ufshcd_wb_presrv_usrspc_keep_vcc_on(hba, avail_buf);
6147 }
6148 
6149 static void ufshcd_rpm_dev_flush_recheck_work(struct work_struct *work)
6150 {
6151 	struct ufs_hba *hba = container_of(to_delayed_work(work),
6152 					   struct ufs_hba,
6153 					   rpm_dev_flush_recheck_work);
6154 	/*
6155 	 * To prevent unnecessary VCC power drain after device finishes
6156 	 * WriteBooster buffer flush or Auto BKOPs, force runtime resume
6157 	 * after a certain delay to recheck the threshold by next runtime
6158 	 * suspend.
6159 	 */
6160 	ufshcd_rpm_get_sync(hba);
6161 	ufshcd_rpm_put_sync(hba);
6162 }
6163 
6164 /**
6165  * ufshcd_exception_event_handler - handle exceptions raised by device
6166  * @work: pointer to work data
6167  *
6168  * Read bExceptionEventStatus attribute from the device and handle the
6169  * exception event accordingly.
6170  */
6171 static void ufshcd_exception_event_handler(struct work_struct *work)
6172 {
6173 	struct ufs_hba *hba;
6174 	int err;
6175 	u32 status = 0;
6176 	hba = container_of(work, struct ufs_hba, eeh_work);
6177 
6178 	ufshcd_scsi_block_requests(hba);
6179 	err = ufshcd_get_ee_status(hba, &status);
6180 	if (err) {
6181 		dev_err(hba->dev, "%s: failed to get exception status %d\n",
6182 				__func__, err);
6183 		goto out;
6184 	}
6185 
6186 	trace_ufshcd_exception_event(dev_name(hba->dev), status);
6187 
6188 	if (status & hba->ee_drv_mask & MASK_EE_URGENT_BKOPS)
6189 		ufshcd_bkops_exception_event_handler(hba);
6190 
6191 	if (status & hba->ee_drv_mask & MASK_EE_URGENT_TEMP)
6192 		ufshcd_temp_exception_event_handler(hba, status);
6193 
6194 	ufs_debugfs_exception_event(hba, status);
6195 out:
6196 	ufshcd_scsi_unblock_requests(hba);
6197 }
6198 
6199 /* Complete requests that have door-bell cleared */
6200 static void ufshcd_complete_requests(struct ufs_hba *hba, bool force_compl)
6201 {
6202 	if (is_mcq_enabled(hba))
6203 		ufshcd_mcq_compl_pending_transfer(hba, force_compl);
6204 	else
6205 		ufshcd_transfer_req_compl(hba);
6206 
6207 	ufshcd_tmc_handler(hba);
6208 }
6209 
6210 /**
6211  * ufshcd_quirk_dl_nac_errors - This function checks if error handling is
6212  *				to recover from the DL NAC errors or not.
6213  * @hba: per-adapter instance
6214  *
6215  * Return: true if error handling is required, false otherwise.
6216  */
6217 static bool ufshcd_quirk_dl_nac_errors(struct ufs_hba *hba)
6218 {
6219 	unsigned long flags;
6220 	bool err_handling = true;
6221 
6222 	spin_lock_irqsave(hba->host->host_lock, flags);
6223 	/*
6224 	 * UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS only workaround the
6225 	 * device fatal error and/or DL NAC & REPLAY timeout errors.
6226 	 */
6227 	if (hba->saved_err & (CONTROLLER_FATAL_ERROR | SYSTEM_BUS_FATAL_ERROR))
6228 		goto out;
6229 
6230 	if ((hba->saved_err & DEVICE_FATAL_ERROR) ||
6231 	    ((hba->saved_err & UIC_ERROR) &&
6232 	     (hba->saved_uic_err & UFSHCD_UIC_DL_TCx_REPLAY_ERROR)))
6233 		goto out;
6234 
6235 	if ((hba->saved_err & UIC_ERROR) &&
6236 	    (hba->saved_uic_err & UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)) {
6237 		int err;
6238 		/*
6239 		 * wait for 50ms to see if we can get any other errors or not.
6240 		 */
6241 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6242 		msleep(50);
6243 		spin_lock_irqsave(hba->host->host_lock, flags);
6244 
6245 		/*
6246 		 * now check if we have got any other severe errors other than
6247 		 * DL NAC error?
6248 		 */
6249 		if ((hba->saved_err & INT_FATAL_ERRORS) ||
6250 		    ((hba->saved_err & UIC_ERROR) &&
6251 		    (hba->saved_uic_err & ~UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)))
6252 			goto out;
6253 
6254 		/*
6255 		 * As DL NAC is the only error received so far, send out NOP
6256 		 * command to confirm if link is still active or not.
6257 		 *   - If we don't get any response then do error recovery.
6258 		 *   - If we get response then clear the DL NAC error bit.
6259 		 */
6260 
6261 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6262 		err = ufshcd_verify_dev_init(hba);
6263 		spin_lock_irqsave(hba->host->host_lock, flags);
6264 
6265 		if (err)
6266 			goto out;
6267 
6268 		/* Link seems to be alive hence ignore the DL NAC errors */
6269 		if (hba->saved_uic_err == UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)
6270 			hba->saved_err &= ~UIC_ERROR;
6271 		/* clear NAC error */
6272 		hba->saved_uic_err &= ~UFSHCD_UIC_DL_NAC_RECEIVED_ERROR;
6273 		if (!hba->saved_uic_err)
6274 			err_handling = false;
6275 	}
6276 out:
6277 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6278 	return err_handling;
6279 }
6280 
6281 /* host lock must be held before calling this func */
6282 static inline bool ufshcd_is_saved_err_fatal(struct ufs_hba *hba)
6283 {
6284 	return (hba->saved_uic_err & UFSHCD_UIC_DL_PA_INIT_ERROR) ||
6285 	       (hba->saved_err & (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK));
6286 }
6287 
6288 void ufshcd_schedule_eh_work(struct ufs_hba *hba)
6289 {
6290 	lockdep_assert_held(hba->host->host_lock);
6291 
6292 	/* handle fatal errors only when link is not in error state */
6293 	if (hba->ufshcd_state != UFSHCD_STATE_ERROR) {
6294 		if (hba->force_reset || ufshcd_is_link_broken(hba) ||
6295 		    ufshcd_is_saved_err_fatal(hba))
6296 			hba->ufshcd_state = UFSHCD_STATE_EH_SCHEDULED_FATAL;
6297 		else
6298 			hba->ufshcd_state = UFSHCD_STATE_EH_SCHEDULED_NON_FATAL;
6299 		queue_work(hba->eh_wq, &hba->eh_work);
6300 	}
6301 }
6302 
6303 static void ufshcd_force_error_recovery(struct ufs_hba *hba)
6304 {
6305 	spin_lock_irq(hba->host->host_lock);
6306 	hba->force_reset = true;
6307 	ufshcd_schedule_eh_work(hba);
6308 	spin_unlock_irq(hba->host->host_lock);
6309 }
6310 
6311 static void ufshcd_clk_scaling_allow(struct ufs_hba *hba, bool allow)
6312 {
6313 	mutex_lock(&hba->wb_mutex);
6314 	down_write(&hba->clk_scaling_lock);
6315 	hba->clk_scaling.is_allowed = allow;
6316 	up_write(&hba->clk_scaling_lock);
6317 	mutex_unlock(&hba->wb_mutex);
6318 }
6319 
6320 static void ufshcd_clk_scaling_suspend(struct ufs_hba *hba, bool suspend)
6321 {
6322 	if (suspend) {
6323 		if (hba->clk_scaling.is_enabled)
6324 			ufshcd_suspend_clkscaling(hba);
6325 		ufshcd_clk_scaling_allow(hba, false);
6326 	} else {
6327 		ufshcd_clk_scaling_allow(hba, true);
6328 		if (hba->clk_scaling.is_enabled)
6329 			ufshcd_resume_clkscaling(hba);
6330 	}
6331 }
6332 
6333 static void ufshcd_err_handling_prepare(struct ufs_hba *hba)
6334 {
6335 	ufshcd_rpm_get_sync(hba);
6336 	if (pm_runtime_status_suspended(&hba->ufs_device_wlun->sdev_gendev) ||
6337 	    hba->is_sys_suspended) {
6338 		enum ufs_pm_op pm_op;
6339 
6340 		/*
6341 		 * Don't assume anything of resume, if
6342 		 * resume fails, irq and clocks can be OFF, and powers
6343 		 * can be OFF or in LPM.
6344 		 */
6345 		ufshcd_setup_hba_vreg(hba, true);
6346 		ufshcd_enable_irq(hba);
6347 		ufshcd_setup_vreg(hba, true);
6348 		ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq);
6349 		ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq2);
6350 		ufshcd_hold(hba);
6351 		if (!ufshcd_is_clkgating_allowed(hba))
6352 			ufshcd_setup_clocks(hba, true);
6353 		pm_op = hba->is_sys_suspended ? UFS_SYSTEM_PM : UFS_RUNTIME_PM;
6354 		ufshcd_vops_resume(hba, pm_op);
6355 	} else {
6356 		ufshcd_hold(hba);
6357 		if (ufshcd_is_clkscaling_supported(hba) &&
6358 		    hba->clk_scaling.is_enabled)
6359 			ufshcd_suspend_clkscaling(hba);
6360 		ufshcd_clk_scaling_allow(hba, false);
6361 	}
6362 	ufshcd_scsi_block_requests(hba);
6363 	/* Wait for ongoing ufshcd_queuecommand() calls to finish. */
6364 	blk_mq_wait_quiesce_done(&hba->host->tag_set);
6365 	cancel_work_sync(&hba->eeh_work);
6366 }
6367 
6368 static void ufshcd_err_handling_unprepare(struct ufs_hba *hba)
6369 {
6370 	ufshcd_scsi_unblock_requests(hba);
6371 	ufshcd_release(hba);
6372 	if (ufshcd_is_clkscaling_supported(hba))
6373 		ufshcd_clk_scaling_suspend(hba, false);
6374 	ufshcd_rpm_put(hba);
6375 }
6376 
6377 static inline bool ufshcd_err_handling_should_stop(struct ufs_hba *hba)
6378 {
6379 	return (!hba->is_powered || hba->shutting_down ||
6380 		!hba->ufs_device_wlun ||
6381 		hba->ufshcd_state == UFSHCD_STATE_ERROR ||
6382 		(!(hba->saved_err || hba->saved_uic_err || hba->force_reset ||
6383 		   ufshcd_is_link_broken(hba))));
6384 }
6385 
6386 #ifdef CONFIG_PM
6387 static void ufshcd_recover_pm_error(struct ufs_hba *hba)
6388 {
6389 	struct Scsi_Host *shost = hba->host;
6390 	struct scsi_device *sdev;
6391 	struct request_queue *q;
6392 	int ret;
6393 
6394 	hba->is_sys_suspended = false;
6395 	/*
6396 	 * Set RPM status of wlun device to RPM_ACTIVE,
6397 	 * this also clears its runtime error.
6398 	 */
6399 	ret = pm_runtime_set_active(&hba->ufs_device_wlun->sdev_gendev);
6400 
6401 	/* hba device might have a runtime error otherwise */
6402 	if (ret)
6403 		ret = pm_runtime_set_active(hba->dev);
6404 	/*
6405 	 * If wlun device had runtime error, we also need to resume those
6406 	 * consumer scsi devices in case any of them has failed to be
6407 	 * resumed due to supplier runtime resume failure. This is to unblock
6408 	 * blk_queue_enter in case there are bios waiting inside it.
6409 	 */
6410 	if (!ret) {
6411 		shost_for_each_device(sdev, shost) {
6412 			q = sdev->request_queue;
6413 			if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
6414 				       q->rpm_status == RPM_SUSPENDING))
6415 				pm_request_resume(q->dev);
6416 		}
6417 	}
6418 }
6419 #else
6420 static inline void ufshcd_recover_pm_error(struct ufs_hba *hba)
6421 {
6422 }
6423 #endif
6424 
6425 static bool ufshcd_is_pwr_mode_restore_needed(struct ufs_hba *hba)
6426 {
6427 	struct ufs_pa_layer_attr *pwr_info = &hba->pwr_info;
6428 	u32 mode;
6429 
6430 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_PWRMODE), &mode);
6431 
6432 	if (pwr_info->pwr_rx != ((mode >> PWRMODE_RX_OFFSET) & PWRMODE_MASK))
6433 		return true;
6434 
6435 	if (pwr_info->pwr_tx != (mode & PWRMODE_MASK))
6436 		return true;
6437 
6438 	return false;
6439 }
6440 
6441 static bool ufshcd_abort_one(struct request *rq, void *priv)
6442 {
6443 	int *ret = priv;
6444 	u32 tag = rq->tag;
6445 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
6446 	struct scsi_device *sdev = cmd->device;
6447 	struct Scsi_Host *shost = sdev->host;
6448 	struct ufs_hba *hba = shost_priv(shost);
6449 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
6450 	struct ufs_hw_queue *hwq;
6451 	unsigned long flags;
6452 
6453 	*ret = ufshcd_try_to_abort_task(hba, tag);
6454 	dev_err(hba->dev, "Aborting tag %d / CDB %#02x %s\n", tag,
6455 		hba->lrb[tag].cmd ? hba->lrb[tag].cmd->cmnd[0] : -1,
6456 		*ret ? "failed" : "succeeded");
6457 
6458 	/* Release cmd in MCQ mode if abort succeeds */
6459 	if (is_mcq_enabled(hba) && (*ret == 0)) {
6460 		hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(lrbp->cmd));
6461 		spin_lock_irqsave(&hwq->cq_lock, flags);
6462 		if (ufshcd_cmd_inflight(lrbp->cmd))
6463 			ufshcd_release_scsi_cmd(hba, lrbp);
6464 		spin_unlock_irqrestore(&hwq->cq_lock, flags);
6465 	}
6466 
6467 	return *ret == 0;
6468 }
6469 
6470 /**
6471  * ufshcd_abort_all - Abort all pending commands.
6472  * @hba: Host bus adapter pointer.
6473  *
6474  * Return: true if and only if the host controller needs to be reset.
6475  */
6476 static bool ufshcd_abort_all(struct ufs_hba *hba)
6477 {
6478 	int tag, ret = 0;
6479 
6480 	blk_mq_tagset_busy_iter(&hba->host->tag_set, ufshcd_abort_one, &ret);
6481 	if (ret)
6482 		goto out;
6483 
6484 	/* Clear pending task management requests */
6485 	for_each_set_bit(tag, &hba->outstanding_tasks, hba->nutmrs) {
6486 		ret = ufshcd_clear_tm_cmd(hba, tag);
6487 		if (ret)
6488 			goto out;
6489 	}
6490 
6491 out:
6492 	/* Complete the requests that are cleared by s/w */
6493 	ufshcd_complete_requests(hba, false);
6494 
6495 	return ret != 0;
6496 }
6497 
6498 /**
6499  * ufshcd_err_handler - handle UFS errors that require s/w attention
6500  * @work: pointer to work structure
6501  */
6502 static void ufshcd_err_handler(struct work_struct *work)
6503 {
6504 	int retries = MAX_ERR_HANDLER_RETRIES;
6505 	struct ufs_hba *hba;
6506 	unsigned long flags;
6507 	bool needs_restore;
6508 	bool needs_reset;
6509 	int pmc_err;
6510 
6511 	hba = container_of(work, struct ufs_hba, eh_work);
6512 
6513 	dev_info(hba->dev,
6514 		 "%s started; HBA state %s; powered %d; shutting down %d; saved_err = %d; saved_uic_err = %d; force_reset = %d%s\n",
6515 		 __func__, ufshcd_state_name[hba->ufshcd_state],
6516 		 hba->is_powered, hba->shutting_down, hba->saved_err,
6517 		 hba->saved_uic_err, hba->force_reset,
6518 		 ufshcd_is_link_broken(hba) ? "; link is broken" : "");
6519 
6520 	down(&hba->host_sem);
6521 	spin_lock_irqsave(hba->host->host_lock, flags);
6522 	if (ufshcd_err_handling_should_stop(hba)) {
6523 		if (hba->ufshcd_state != UFSHCD_STATE_ERROR)
6524 			hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
6525 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6526 		up(&hba->host_sem);
6527 		return;
6528 	}
6529 	ufshcd_set_eh_in_progress(hba);
6530 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6531 	ufshcd_err_handling_prepare(hba);
6532 	/* Complete requests that have door-bell cleared by h/w */
6533 	ufshcd_complete_requests(hba, false);
6534 	spin_lock_irqsave(hba->host->host_lock, flags);
6535 again:
6536 	needs_restore = false;
6537 	needs_reset = false;
6538 
6539 	if (hba->ufshcd_state != UFSHCD_STATE_ERROR)
6540 		hba->ufshcd_state = UFSHCD_STATE_RESET;
6541 	/*
6542 	 * A full reset and restore might have happened after preparation
6543 	 * is finished, double check whether we should stop.
6544 	 */
6545 	if (ufshcd_err_handling_should_stop(hba))
6546 		goto skip_err_handling;
6547 
6548 	if (hba->dev_quirks & UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS) {
6549 		bool ret;
6550 
6551 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6552 		/* release the lock as ufshcd_quirk_dl_nac_errors() may sleep */
6553 		ret = ufshcd_quirk_dl_nac_errors(hba);
6554 		spin_lock_irqsave(hba->host->host_lock, flags);
6555 		if (!ret && ufshcd_err_handling_should_stop(hba))
6556 			goto skip_err_handling;
6557 	}
6558 
6559 	if ((hba->saved_err & (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK)) ||
6560 	    (hba->saved_uic_err &&
6561 	     (hba->saved_uic_err != UFSHCD_UIC_PA_GENERIC_ERROR))) {
6562 		bool pr_prdt = !!(hba->saved_err & SYSTEM_BUS_FATAL_ERROR);
6563 
6564 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6565 		ufshcd_print_host_state(hba);
6566 		ufshcd_print_pwr_info(hba);
6567 		ufshcd_print_evt_hist(hba);
6568 		ufshcd_print_tmrs(hba, hba->outstanding_tasks);
6569 		ufshcd_print_trs_all(hba, pr_prdt);
6570 		spin_lock_irqsave(hba->host->host_lock, flags);
6571 	}
6572 
6573 	/*
6574 	 * if host reset is required then skip clearing the pending
6575 	 * transfers forcefully because they will get cleared during
6576 	 * host reset and restore
6577 	 */
6578 	if (hba->force_reset || ufshcd_is_link_broken(hba) ||
6579 	    ufshcd_is_saved_err_fatal(hba) ||
6580 	    ((hba->saved_err & UIC_ERROR) &&
6581 	     (hba->saved_uic_err & (UFSHCD_UIC_DL_NAC_RECEIVED_ERROR |
6582 				    UFSHCD_UIC_DL_TCx_REPLAY_ERROR)))) {
6583 		needs_reset = true;
6584 		goto do_reset;
6585 	}
6586 
6587 	/*
6588 	 * If LINERESET was caught, UFS might have been put to PWM mode,
6589 	 * check if power mode restore is needed.
6590 	 */
6591 	if (hba->saved_uic_err & UFSHCD_UIC_PA_GENERIC_ERROR) {
6592 		hba->saved_uic_err &= ~UFSHCD_UIC_PA_GENERIC_ERROR;
6593 		if (!hba->saved_uic_err)
6594 			hba->saved_err &= ~UIC_ERROR;
6595 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6596 		if (ufshcd_is_pwr_mode_restore_needed(hba))
6597 			needs_restore = true;
6598 		spin_lock_irqsave(hba->host->host_lock, flags);
6599 		if (!hba->saved_err && !needs_restore)
6600 			goto skip_err_handling;
6601 	}
6602 
6603 	hba->silence_err_logs = true;
6604 	/* release lock as clear command might sleep */
6605 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6606 
6607 	needs_reset = ufshcd_abort_all(hba);
6608 
6609 	spin_lock_irqsave(hba->host->host_lock, flags);
6610 	hba->silence_err_logs = false;
6611 	if (needs_reset)
6612 		goto do_reset;
6613 
6614 	/*
6615 	 * After all reqs and tasks are cleared from doorbell,
6616 	 * now it is safe to retore power mode.
6617 	 */
6618 	if (needs_restore) {
6619 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6620 		/*
6621 		 * Hold the scaling lock just in case dev cmds
6622 		 * are sent via bsg and/or sysfs.
6623 		 */
6624 		down_write(&hba->clk_scaling_lock);
6625 		hba->force_pmc = true;
6626 		pmc_err = ufshcd_config_pwr_mode(hba, &(hba->pwr_info));
6627 		if (pmc_err) {
6628 			needs_reset = true;
6629 			dev_err(hba->dev, "%s: Failed to restore power mode, err = %d\n",
6630 					__func__, pmc_err);
6631 		}
6632 		hba->force_pmc = false;
6633 		ufshcd_print_pwr_info(hba);
6634 		up_write(&hba->clk_scaling_lock);
6635 		spin_lock_irqsave(hba->host->host_lock, flags);
6636 	}
6637 
6638 do_reset:
6639 	/* Fatal errors need reset */
6640 	if (needs_reset) {
6641 		int err;
6642 
6643 		hba->force_reset = false;
6644 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6645 		err = ufshcd_reset_and_restore(hba);
6646 		if (err)
6647 			dev_err(hba->dev, "%s: reset and restore failed with err %d\n",
6648 					__func__, err);
6649 		else
6650 			ufshcd_recover_pm_error(hba);
6651 		spin_lock_irqsave(hba->host->host_lock, flags);
6652 	}
6653 
6654 skip_err_handling:
6655 	if (!needs_reset) {
6656 		if (hba->ufshcd_state == UFSHCD_STATE_RESET)
6657 			hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
6658 		if (hba->saved_err || hba->saved_uic_err)
6659 			dev_err_ratelimited(hba->dev, "%s: exit: saved_err 0x%x saved_uic_err 0x%x",
6660 			    __func__, hba->saved_err, hba->saved_uic_err);
6661 	}
6662 	/* Exit in an operational state or dead */
6663 	if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL &&
6664 	    hba->ufshcd_state != UFSHCD_STATE_ERROR) {
6665 		if (--retries)
6666 			goto again;
6667 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
6668 	}
6669 	ufshcd_clear_eh_in_progress(hba);
6670 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6671 	ufshcd_err_handling_unprepare(hba);
6672 	up(&hba->host_sem);
6673 
6674 	dev_info(hba->dev, "%s finished; HBA state %s\n", __func__,
6675 		 ufshcd_state_name[hba->ufshcd_state]);
6676 }
6677 
6678 /**
6679  * ufshcd_update_uic_error - check and set fatal UIC error flags.
6680  * @hba: per-adapter instance
6681  *
6682  * Return:
6683  *  IRQ_HANDLED - If interrupt is valid
6684  *  IRQ_NONE    - If invalid interrupt
6685  */
6686 static irqreturn_t ufshcd_update_uic_error(struct ufs_hba *hba)
6687 {
6688 	u32 reg;
6689 	irqreturn_t retval = IRQ_NONE;
6690 
6691 	/* PHY layer error */
6692 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER);
6693 	if ((reg & UIC_PHY_ADAPTER_LAYER_ERROR) &&
6694 	    (reg & UIC_PHY_ADAPTER_LAYER_ERROR_CODE_MASK)) {
6695 		ufshcd_update_evt_hist(hba, UFS_EVT_PA_ERR, reg);
6696 		/*
6697 		 * To know whether this error is fatal or not, DB timeout
6698 		 * must be checked but this error is handled separately.
6699 		 */
6700 		if (reg & UIC_PHY_ADAPTER_LAYER_LANE_ERR_MASK)
6701 			dev_dbg(hba->dev, "%s: UIC Lane error reported\n",
6702 					__func__);
6703 
6704 		/* Got a LINERESET indication. */
6705 		if (reg & UIC_PHY_ADAPTER_LAYER_GENERIC_ERROR) {
6706 			struct uic_command *cmd = NULL;
6707 
6708 			hba->uic_error |= UFSHCD_UIC_PA_GENERIC_ERROR;
6709 			if (hba->uic_async_done && hba->active_uic_cmd)
6710 				cmd = hba->active_uic_cmd;
6711 			/*
6712 			 * Ignore the LINERESET during power mode change
6713 			 * operation via DME_SET command.
6714 			 */
6715 			if (cmd && (cmd->command == UIC_CMD_DME_SET))
6716 				hba->uic_error &= ~UFSHCD_UIC_PA_GENERIC_ERROR;
6717 		}
6718 		retval |= IRQ_HANDLED;
6719 	}
6720 
6721 	/* PA_INIT_ERROR is fatal and needs UIC reset */
6722 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_DATA_LINK_LAYER);
6723 	if ((reg & UIC_DATA_LINK_LAYER_ERROR) &&
6724 	    (reg & UIC_DATA_LINK_LAYER_ERROR_CODE_MASK)) {
6725 		ufshcd_update_evt_hist(hba, UFS_EVT_DL_ERR, reg);
6726 
6727 		if (reg & UIC_DATA_LINK_LAYER_ERROR_PA_INIT)
6728 			hba->uic_error |= UFSHCD_UIC_DL_PA_INIT_ERROR;
6729 		else if (hba->dev_quirks &
6730 				UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS) {
6731 			if (reg & UIC_DATA_LINK_LAYER_ERROR_NAC_RECEIVED)
6732 				hba->uic_error |=
6733 					UFSHCD_UIC_DL_NAC_RECEIVED_ERROR;
6734 			else if (reg & UIC_DATA_LINK_LAYER_ERROR_TCx_REPLAY_TIMEOUT)
6735 				hba->uic_error |= UFSHCD_UIC_DL_TCx_REPLAY_ERROR;
6736 		}
6737 		retval |= IRQ_HANDLED;
6738 	}
6739 
6740 	/* UIC NL/TL/DME errors needs software retry */
6741 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_NETWORK_LAYER);
6742 	if ((reg & UIC_NETWORK_LAYER_ERROR) &&
6743 	    (reg & UIC_NETWORK_LAYER_ERROR_CODE_MASK)) {
6744 		ufshcd_update_evt_hist(hba, UFS_EVT_NL_ERR, reg);
6745 		hba->uic_error |= UFSHCD_UIC_NL_ERROR;
6746 		retval |= IRQ_HANDLED;
6747 	}
6748 
6749 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_TRANSPORT_LAYER);
6750 	if ((reg & UIC_TRANSPORT_LAYER_ERROR) &&
6751 	    (reg & UIC_TRANSPORT_LAYER_ERROR_CODE_MASK)) {
6752 		ufshcd_update_evt_hist(hba, UFS_EVT_TL_ERR, reg);
6753 		hba->uic_error |= UFSHCD_UIC_TL_ERROR;
6754 		retval |= IRQ_HANDLED;
6755 	}
6756 
6757 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_DME);
6758 	if ((reg & UIC_DME_ERROR) &&
6759 	    (reg & UIC_DME_ERROR_CODE_MASK)) {
6760 		ufshcd_update_evt_hist(hba, UFS_EVT_DME_ERR, reg);
6761 		hba->uic_error |= UFSHCD_UIC_DME_ERROR;
6762 		retval |= IRQ_HANDLED;
6763 	}
6764 
6765 	dev_dbg(hba->dev, "%s: UIC error flags = 0x%08x\n",
6766 			__func__, hba->uic_error);
6767 	return retval;
6768 }
6769 
6770 /**
6771  * ufshcd_check_errors - Check for errors that need s/w attention
6772  * @hba: per-adapter instance
6773  * @intr_status: interrupt status generated by the controller
6774  *
6775  * Return:
6776  *  IRQ_HANDLED - If interrupt is valid
6777  *  IRQ_NONE    - If invalid interrupt
6778  */
6779 static irqreturn_t ufshcd_check_errors(struct ufs_hba *hba, u32 intr_status)
6780 {
6781 	bool queue_eh_work = false;
6782 	irqreturn_t retval = IRQ_NONE;
6783 
6784 	spin_lock(hba->host->host_lock);
6785 	hba->errors |= UFSHCD_ERROR_MASK & intr_status;
6786 
6787 	if (hba->errors & INT_FATAL_ERRORS) {
6788 		ufshcd_update_evt_hist(hba, UFS_EVT_FATAL_ERR,
6789 				       hba->errors);
6790 		queue_eh_work = true;
6791 	}
6792 
6793 	if (hba->errors & UIC_ERROR) {
6794 		hba->uic_error = 0;
6795 		retval = ufshcd_update_uic_error(hba);
6796 		if (hba->uic_error)
6797 			queue_eh_work = true;
6798 	}
6799 
6800 	if (hba->errors & UFSHCD_UIC_HIBERN8_MASK) {
6801 		dev_err(hba->dev,
6802 			"%s: Auto Hibern8 %s failed - status: 0x%08x, upmcrs: 0x%08x\n",
6803 			__func__, (hba->errors & UIC_HIBERNATE_ENTER) ?
6804 			"Enter" : "Exit",
6805 			hba->errors, ufshcd_get_upmcrs(hba));
6806 		ufshcd_update_evt_hist(hba, UFS_EVT_AUTO_HIBERN8_ERR,
6807 				       hba->errors);
6808 		ufshcd_set_link_broken(hba);
6809 		queue_eh_work = true;
6810 	}
6811 
6812 	if (queue_eh_work) {
6813 		/*
6814 		 * update the transfer error masks to sticky bits, let's do this
6815 		 * irrespective of current ufshcd_state.
6816 		 */
6817 		hba->saved_err |= hba->errors;
6818 		hba->saved_uic_err |= hba->uic_error;
6819 
6820 		/* dump controller state before resetting */
6821 		if ((hba->saved_err &
6822 		     (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK)) ||
6823 		    (hba->saved_uic_err &&
6824 		     (hba->saved_uic_err != UFSHCD_UIC_PA_GENERIC_ERROR))) {
6825 			dev_err(hba->dev, "%s: saved_err 0x%x saved_uic_err 0x%x\n",
6826 					__func__, hba->saved_err,
6827 					hba->saved_uic_err);
6828 			ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE,
6829 					 "host_regs: ");
6830 			ufshcd_print_pwr_info(hba);
6831 		}
6832 		ufshcd_schedule_eh_work(hba);
6833 		retval |= IRQ_HANDLED;
6834 	}
6835 	/*
6836 	 * if (!queue_eh_work) -
6837 	 * Other errors are either non-fatal where host recovers
6838 	 * itself without s/w intervention or errors that will be
6839 	 * handled by the SCSI core layer.
6840 	 */
6841 	hba->errors = 0;
6842 	hba->uic_error = 0;
6843 	spin_unlock(hba->host->host_lock);
6844 	return retval;
6845 }
6846 
6847 /**
6848  * ufshcd_tmc_handler - handle task management function completion
6849  * @hba: per adapter instance
6850  *
6851  * Return:
6852  *  IRQ_HANDLED - If interrupt is valid
6853  *  IRQ_NONE    - If invalid interrupt
6854  */
6855 static irqreturn_t ufshcd_tmc_handler(struct ufs_hba *hba)
6856 {
6857 	unsigned long flags, pending, issued;
6858 	irqreturn_t ret = IRQ_NONE;
6859 	int tag;
6860 
6861 	spin_lock_irqsave(hba->host->host_lock, flags);
6862 	pending = ufshcd_readl(hba, REG_UTP_TASK_REQ_DOOR_BELL);
6863 	issued = hba->outstanding_tasks & ~pending;
6864 	for_each_set_bit(tag, &issued, hba->nutmrs) {
6865 		struct request *req = hba->tmf_rqs[tag];
6866 		struct completion *c = req->end_io_data;
6867 
6868 		complete(c);
6869 		ret = IRQ_HANDLED;
6870 	}
6871 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6872 
6873 	return ret;
6874 }
6875 
6876 /**
6877  * ufshcd_handle_mcq_cq_events - handle MCQ completion queue events
6878  * @hba: per adapter instance
6879  *
6880  * Return: IRQ_HANDLED if interrupt is handled.
6881  */
6882 static irqreturn_t ufshcd_handle_mcq_cq_events(struct ufs_hba *hba)
6883 {
6884 	struct ufs_hw_queue *hwq;
6885 	unsigned long outstanding_cqs;
6886 	unsigned int nr_queues;
6887 	int i, ret;
6888 	u32 events;
6889 
6890 	ret = ufshcd_vops_get_outstanding_cqs(hba, &outstanding_cqs);
6891 	if (ret)
6892 		outstanding_cqs = (1U << hba->nr_hw_queues) - 1;
6893 
6894 	/* Exclude the poll queues */
6895 	nr_queues = hba->nr_hw_queues - hba->nr_queues[HCTX_TYPE_POLL];
6896 	for_each_set_bit(i, &outstanding_cqs, nr_queues) {
6897 		hwq = &hba->uhq[i];
6898 
6899 		events = ufshcd_mcq_read_cqis(hba, i);
6900 		if (events)
6901 			ufshcd_mcq_write_cqis(hba, events, i);
6902 
6903 		if (events & UFSHCD_MCQ_CQIS_TAIL_ENT_PUSH_STS)
6904 			ufshcd_mcq_poll_cqe_lock(hba, hwq);
6905 	}
6906 
6907 	return IRQ_HANDLED;
6908 }
6909 
6910 /**
6911  * ufshcd_sl_intr - Interrupt service routine
6912  * @hba: per adapter instance
6913  * @intr_status: contains interrupts generated by the controller
6914  *
6915  * Return:
6916  *  IRQ_HANDLED - If interrupt is valid
6917  *  IRQ_NONE    - If invalid interrupt
6918  */
6919 static irqreturn_t ufshcd_sl_intr(struct ufs_hba *hba, u32 intr_status)
6920 {
6921 	irqreturn_t retval = IRQ_NONE;
6922 
6923 	if (intr_status & UFSHCD_UIC_MASK)
6924 		retval |= ufshcd_uic_cmd_compl(hba, intr_status);
6925 
6926 	if (intr_status & UFSHCD_ERROR_MASK || hba->errors)
6927 		retval |= ufshcd_check_errors(hba, intr_status);
6928 
6929 	if (intr_status & UTP_TASK_REQ_COMPL)
6930 		retval |= ufshcd_tmc_handler(hba);
6931 
6932 	if (intr_status & UTP_TRANSFER_REQ_COMPL)
6933 		retval |= ufshcd_transfer_req_compl(hba);
6934 
6935 	if (intr_status & MCQ_CQ_EVENT_STATUS)
6936 		retval |= ufshcd_handle_mcq_cq_events(hba);
6937 
6938 	return retval;
6939 }
6940 
6941 /**
6942  * ufshcd_intr - Main interrupt service routine
6943  * @irq: irq number
6944  * @__hba: pointer to adapter instance
6945  *
6946  * Return:
6947  *  IRQ_HANDLED - If interrupt is valid
6948  *  IRQ_NONE    - If invalid interrupt
6949  */
6950 static irqreturn_t ufshcd_intr(int irq, void *__hba)
6951 {
6952 	u32 intr_status, enabled_intr_status = 0;
6953 	irqreturn_t retval = IRQ_NONE;
6954 	struct ufs_hba *hba = __hba;
6955 	int retries = hba->nutrs;
6956 
6957 	intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
6958 	hba->ufs_stats.last_intr_status = intr_status;
6959 	hba->ufs_stats.last_intr_ts = local_clock();
6960 
6961 	/*
6962 	 * There could be max of hba->nutrs reqs in flight and in worst case
6963 	 * if the reqs get finished 1 by 1 after the interrupt status is
6964 	 * read, make sure we handle them by checking the interrupt status
6965 	 * again in a loop until we process all of the reqs before returning.
6966 	 */
6967 	while (intr_status && retries--) {
6968 		enabled_intr_status =
6969 			intr_status & ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
6970 		ufshcd_writel(hba, intr_status, REG_INTERRUPT_STATUS);
6971 		if (enabled_intr_status)
6972 			retval |= ufshcd_sl_intr(hba, enabled_intr_status);
6973 
6974 		intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
6975 	}
6976 
6977 	if (enabled_intr_status && retval == IRQ_NONE &&
6978 	    (!(enabled_intr_status & UTP_TRANSFER_REQ_COMPL) ||
6979 	     hba->outstanding_reqs) && !ufshcd_eh_in_progress(hba)) {
6980 		dev_err(hba->dev, "%s: Unhandled interrupt 0x%08x (0x%08x, 0x%08x)\n",
6981 					__func__,
6982 					intr_status,
6983 					hba->ufs_stats.last_intr_status,
6984 					enabled_intr_status);
6985 		ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, "host_regs: ");
6986 	}
6987 
6988 	return retval;
6989 }
6990 
6991 static int ufshcd_clear_tm_cmd(struct ufs_hba *hba, int tag)
6992 {
6993 	int err = 0;
6994 	u32 mask = 1 << tag;
6995 	unsigned long flags;
6996 
6997 	if (!test_bit(tag, &hba->outstanding_tasks))
6998 		goto out;
6999 
7000 	spin_lock_irqsave(hba->host->host_lock, flags);
7001 	ufshcd_utmrl_clear(hba, tag);
7002 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7003 
7004 	/* poll for max. 1 sec to clear door bell register by h/w */
7005 	err = ufshcd_wait_for_register(hba,
7006 			REG_UTP_TASK_REQ_DOOR_BELL,
7007 			mask, 0, 1000, 1000);
7008 
7009 	dev_err(hba->dev, "Clearing task management function with tag %d %s\n",
7010 		tag, err < 0 ? "failed" : "succeeded");
7011 
7012 out:
7013 	return err;
7014 }
7015 
7016 static int __ufshcd_issue_tm_cmd(struct ufs_hba *hba,
7017 		struct utp_task_req_desc *treq, u8 tm_function)
7018 {
7019 	struct request_queue *q = hba->tmf_queue;
7020 	struct Scsi_Host *host = hba->host;
7021 	DECLARE_COMPLETION_ONSTACK(wait);
7022 	struct request *req;
7023 	unsigned long flags;
7024 	int task_tag, err;
7025 
7026 	/*
7027 	 * blk_mq_alloc_request() is used here only to get a free tag.
7028 	 */
7029 	req = blk_mq_alloc_request(q, REQ_OP_DRV_OUT, 0);
7030 	if (IS_ERR(req))
7031 		return PTR_ERR(req);
7032 
7033 	req->end_io_data = &wait;
7034 	ufshcd_hold(hba);
7035 
7036 	spin_lock_irqsave(host->host_lock, flags);
7037 
7038 	task_tag = req->tag;
7039 	hba->tmf_rqs[req->tag] = req;
7040 	treq->upiu_req.req_header.task_tag = task_tag;
7041 
7042 	memcpy(hba->utmrdl_base_addr + task_tag, treq, sizeof(*treq));
7043 	ufshcd_vops_setup_task_mgmt(hba, task_tag, tm_function);
7044 
7045 	/* send command to the controller */
7046 	__set_bit(task_tag, &hba->outstanding_tasks);
7047 	ufshcd_writel(hba, 1 << task_tag, REG_UTP_TASK_REQ_DOOR_BELL);
7048 
7049 	spin_unlock_irqrestore(host->host_lock, flags);
7050 
7051 	ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_SEND);
7052 
7053 	/* wait until the task management command is completed */
7054 	err = wait_for_completion_io_timeout(&wait,
7055 			msecs_to_jiffies(TM_CMD_TIMEOUT));
7056 	if (!err) {
7057 		ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_ERR);
7058 		dev_err(hba->dev, "%s: task management cmd 0x%.2x timed-out\n",
7059 				__func__, tm_function);
7060 		if (ufshcd_clear_tm_cmd(hba, task_tag))
7061 			dev_WARN(hba->dev, "%s: unable to clear tm cmd (slot %d) after timeout\n",
7062 					__func__, task_tag);
7063 		err = -ETIMEDOUT;
7064 	} else {
7065 		err = 0;
7066 		memcpy(treq, hba->utmrdl_base_addr + task_tag, sizeof(*treq));
7067 
7068 		ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_COMP);
7069 	}
7070 
7071 	spin_lock_irqsave(hba->host->host_lock, flags);
7072 	hba->tmf_rqs[req->tag] = NULL;
7073 	__clear_bit(task_tag, &hba->outstanding_tasks);
7074 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7075 
7076 	ufshcd_release(hba);
7077 	blk_mq_free_request(req);
7078 
7079 	return err;
7080 }
7081 
7082 /**
7083  * ufshcd_issue_tm_cmd - issues task management commands to controller
7084  * @hba: per adapter instance
7085  * @lun_id: LUN ID to which TM command is sent
7086  * @task_id: task ID to which the TM command is applicable
7087  * @tm_function: task management function opcode
7088  * @tm_response: task management service response return value
7089  *
7090  * Return: non-zero value on error, zero on success.
7091  */
7092 static int ufshcd_issue_tm_cmd(struct ufs_hba *hba, int lun_id, int task_id,
7093 		u8 tm_function, u8 *tm_response)
7094 {
7095 	struct utp_task_req_desc treq = { };
7096 	enum utp_ocs ocs_value;
7097 	int err;
7098 
7099 	/* Configure task request descriptor */
7100 	treq.header.interrupt = 1;
7101 	treq.header.ocs = OCS_INVALID_COMMAND_STATUS;
7102 
7103 	/* Configure task request UPIU */
7104 	treq.upiu_req.req_header.transaction_code = UPIU_TRANSACTION_TASK_REQ;
7105 	treq.upiu_req.req_header.lun = lun_id;
7106 	treq.upiu_req.req_header.tm_function = tm_function;
7107 
7108 	/*
7109 	 * The host shall provide the same value for LUN field in the basic
7110 	 * header and for Input Parameter.
7111 	 */
7112 	treq.upiu_req.input_param1 = cpu_to_be32(lun_id);
7113 	treq.upiu_req.input_param2 = cpu_to_be32(task_id);
7114 
7115 	err = __ufshcd_issue_tm_cmd(hba, &treq, tm_function);
7116 	if (err == -ETIMEDOUT)
7117 		return err;
7118 
7119 	ocs_value = treq.header.ocs & MASK_OCS;
7120 	if (ocs_value != OCS_SUCCESS)
7121 		dev_err(hba->dev, "%s: failed, ocs = 0x%x\n",
7122 				__func__, ocs_value);
7123 	else if (tm_response)
7124 		*tm_response = be32_to_cpu(treq.upiu_rsp.output_param1) &
7125 				MASK_TM_SERVICE_RESP;
7126 	return err;
7127 }
7128 
7129 /**
7130  * ufshcd_issue_devman_upiu_cmd - API for sending "utrd" type requests
7131  * @hba:	per-adapter instance
7132  * @req_upiu:	upiu request
7133  * @rsp_upiu:	upiu reply
7134  * @desc_buff:	pointer to descriptor buffer, NULL if NA
7135  * @buff_len:	descriptor size, 0 if NA
7136  * @cmd_type:	specifies the type (NOP, Query...)
7137  * @desc_op:	descriptor operation
7138  *
7139  * Those type of requests uses UTP Transfer Request Descriptor - utrd.
7140  * Therefore, it "rides" the device management infrastructure: uses its tag and
7141  * tasks work queues.
7142  *
7143  * Since there is only one available tag for device management commands,
7144  * the caller is expected to hold the hba->dev_cmd.lock mutex.
7145  *
7146  * Return: 0 upon success; < 0 upon failure.
7147  */
7148 static int ufshcd_issue_devman_upiu_cmd(struct ufs_hba *hba,
7149 					struct utp_upiu_req *req_upiu,
7150 					struct utp_upiu_req *rsp_upiu,
7151 					u8 *desc_buff, int *buff_len,
7152 					enum dev_cmd_type cmd_type,
7153 					enum query_opcode desc_op)
7154 {
7155 	const u32 tag = hba->reserved_slot;
7156 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
7157 	int err = 0;
7158 	u8 upiu_flags;
7159 
7160 	/* Protects use of hba->reserved_slot. */
7161 	lockdep_assert_held(&hba->dev_cmd.lock);
7162 
7163 	ufshcd_setup_dev_cmd(hba, lrbp, cmd_type, 0, tag);
7164 
7165 	ufshcd_prepare_req_desc_hdr(hba, lrbp, &upiu_flags, DMA_NONE, 0);
7166 
7167 	/* update the task tag in the request upiu */
7168 	req_upiu->header.task_tag = tag;
7169 
7170 	/* just copy the upiu request as it is */
7171 	memcpy(lrbp->ucd_req_ptr, req_upiu, sizeof(*lrbp->ucd_req_ptr));
7172 	if (desc_buff && desc_op == UPIU_QUERY_OPCODE_WRITE_DESC) {
7173 		/* The Data Segment Area is optional depending upon the query
7174 		 * function value. for WRITE DESCRIPTOR, the data segment
7175 		 * follows right after the tsf.
7176 		 */
7177 		memcpy(lrbp->ucd_req_ptr + 1, desc_buff, *buff_len);
7178 		*buff_len = 0;
7179 	}
7180 
7181 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
7182 
7183 	/*
7184 	 * ignore the returning value here - ufshcd_check_query_response is
7185 	 * bound to fail since dev_cmd.query and dev_cmd.type were left empty.
7186 	 * read the response directly ignoring all errors.
7187 	 */
7188 	ufshcd_issue_dev_cmd(hba, lrbp, tag, QUERY_REQ_TIMEOUT);
7189 
7190 	/* just copy the upiu response as it is */
7191 	memcpy(rsp_upiu, lrbp->ucd_rsp_ptr, sizeof(*rsp_upiu));
7192 	if (desc_buff && desc_op == UPIU_QUERY_OPCODE_READ_DESC) {
7193 		u8 *descp = (u8 *)lrbp->ucd_rsp_ptr + sizeof(*rsp_upiu);
7194 		u16 resp_len = be16_to_cpu(lrbp->ucd_rsp_ptr->header
7195 					   .data_segment_length);
7196 
7197 		if (*buff_len >= resp_len) {
7198 			memcpy(desc_buff, descp, resp_len);
7199 			*buff_len = resp_len;
7200 		} else {
7201 			dev_warn(hba->dev,
7202 				 "%s: rsp size %d is bigger than buffer size %d",
7203 				 __func__, resp_len, *buff_len);
7204 			*buff_len = 0;
7205 			err = -EINVAL;
7206 		}
7207 	}
7208 	ufshcd_add_query_upiu_trace(hba, err ? UFS_QUERY_ERR : UFS_QUERY_COMP,
7209 				    (struct utp_upiu_req *)lrbp->ucd_rsp_ptr);
7210 
7211 	return err;
7212 }
7213 
7214 /**
7215  * ufshcd_exec_raw_upiu_cmd - API function for sending raw upiu commands
7216  * @hba:	per-adapter instance
7217  * @req_upiu:	upiu request
7218  * @rsp_upiu:	upiu reply - only 8 DW as we do not support scsi commands
7219  * @msgcode:	message code, one of UPIU Transaction Codes Initiator to Target
7220  * @desc_buff:	pointer to descriptor buffer, NULL if NA
7221  * @buff_len:	descriptor size, 0 if NA
7222  * @desc_op:	descriptor operation
7223  *
7224  * Supports UTP Transfer requests (nop and query), and UTP Task
7225  * Management requests.
7226  * It is up to the caller to fill the upiu conent properly, as it will
7227  * be copied without any further input validations.
7228  *
7229  * Return: 0 upon success; < 0 upon failure.
7230  */
7231 int ufshcd_exec_raw_upiu_cmd(struct ufs_hba *hba,
7232 			     struct utp_upiu_req *req_upiu,
7233 			     struct utp_upiu_req *rsp_upiu,
7234 			     enum upiu_request_transaction msgcode,
7235 			     u8 *desc_buff, int *buff_len,
7236 			     enum query_opcode desc_op)
7237 {
7238 	int err;
7239 	enum dev_cmd_type cmd_type = DEV_CMD_TYPE_QUERY;
7240 	struct utp_task_req_desc treq = { };
7241 	enum utp_ocs ocs_value;
7242 	u8 tm_f = req_upiu->header.tm_function;
7243 
7244 	switch (msgcode) {
7245 	case UPIU_TRANSACTION_NOP_OUT:
7246 		cmd_type = DEV_CMD_TYPE_NOP;
7247 		fallthrough;
7248 	case UPIU_TRANSACTION_QUERY_REQ:
7249 		ufshcd_dev_man_lock(hba);
7250 		err = ufshcd_issue_devman_upiu_cmd(hba, req_upiu, rsp_upiu,
7251 						   desc_buff, buff_len,
7252 						   cmd_type, desc_op);
7253 		ufshcd_dev_man_unlock(hba);
7254 
7255 		break;
7256 	case UPIU_TRANSACTION_TASK_REQ:
7257 		treq.header.interrupt = 1;
7258 		treq.header.ocs = OCS_INVALID_COMMAND_STATUS;
7259 
7260 		memcpy(&treq.upiu_req, req_upiu, sizeof(*req_upiu));
7261 
7262 		err = __ufshcd_issue_tm_cmd(hba, &treq, tm_f);
7263 		if (err == -ETIMEDOUT)
7264 			break;
7265 
7266 		ocs_value = treq.header.ocs & MASK_OCS;
7267 		if (ocs_value != OCS_SUCCESS) {
7268 			dev_err(hba->dev, "%s: failed, ocs = 0x%x\n", __func__,
7269 				ocs_value);
7270 			break;
7271 		}
7272 
7273 		memcpy(rsp_upiu, &treq.upiu_rsp, sizeof(*rsp_upiu));
7274 
7275 		break;
7276 	default:
7277 		err = -EINVAL;
7278 
7279 		break;
7280 	}
7281 
7282 	return err;
7283 }
7284 
7285 /**
7286  * ufshcd_advanced_rpmb_req_handler - handle advanced RPMB request
7287  * @hba:	per adapter instance
7288  * @req_upiu:	upiu request
7289  * @rsp_upiu:	upiu reply
7290  * @req_ehs:	EHS field which contains Advanced RPMB Request Message
7291  * @rsp_ehs:	EHS field which returns Advanced RPMB Response Message
7292  * @sg_cnt:	The number of sg lists actually used
7293  * @sg_list:	Pointer to SG list when DATA IN/OUT UPIU is required in ARPMB operation
7294  * @dir:	DMA direction
7295  *
7296  * Return: zero on success, non-zero on failure.
7297  */
7298 int ufshcd_advanced_rpmb_req_handler(struct ufs_hba *hba, struct utp_upiu_req *req_upiu,
7299 			 struct utp_upiu_req *rsp_upiu, struct ufs_ehs *req_ehs,
7300 			 struct ufs_ehs *rsp_ehs, int sg_cnt, struct scatterlist *sg_list,
7301 			 enum dma_data_direction dir)
7302 {
7303 	const u32 tag = hba->reserved_slot;
7304 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
7305 	int err = 0;
7306 	int result;
7307 	u8 upiu_flags;
7308 	u8 *ehs_data;
7309 	u16 ehs_len;
7310 	int ehs = (hba->capabilities & MASK_EHSLUTRD_SUPPORTED) ? 2 : 0;
7311 
7312 	/* Protects use of hba->reserved_slot. */
7313 	ufshcd_dev_man_lock(hba);
7314 
7315 	ufshcd_setup_dev_cmd(hba, lrbp, DEV_CMD_TYPE_RPMB, UFS_UPIU_RPMB_WLUN, tag);
7316 
7317 	ufshcd_prepare_req_desc_hdr(hba, lrbp, &upiu_flags, DMA_NONE, ehs);
7318 
7319 	/* update the task tag */
7320 	req_upiu->header.task_tag = tag;
7321 
7322 	/* copy the UPIU(contains CDB) request as it is */
7323 	memcpy(lrbp->ucd_req_ptr, req_upiu, sizeof(*lrbp->ucd_req_ptr));
7324 	/* Copy EHS, starting with byte32, immediately after the CDB package */
7325 	memcpy(lrbp->ucd_req_ptr + 1, req_ehs, sizeof(*req_ehs));
7326 
7327 	if (dir != DMA_NONE && sg_list)
7328 		ufshcd_sgl_to_prdt(hba, lrbp, sg_cnt, sg_list);
7329 
7330 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
7331 
7332 	err = ufshcd_issue_dev_cmd(hba, lrbp, tag, ADVANCED_RPMB_REQ_TIMEOUT);
7333 
7334 	if (!err) {
7335 		/* Just copy the upiu response as it is */
7336 		memcpy(rsp_upiu, lrbp->ucd_rsp_ptr, sizeof(*rsp_upiu));
7337 		/* Get the response UPIU result */
7338 		result = (lrbp->ucd_rsp_ptr->header.response << 8) |
7339 			lrbp->ucd_rsp_ptr->header.status;
7340 
7341 		ehs_len = lrbp->ucd_rsp_ptr->header.ehs_length;
7342 		/*
7343 		 * Since the bLength in EHS indicates the total size of the EHS Header and EHS Data
7344 		 * in 32 Byte units, the value of the bLength Request/Response for Advanced RPMB
7345 		 * Message is 02h
7346 		 */
7347 		if (ehs_len == 2 && rsp_ehs) {
7348 			/*
7349 			 * ucd_rsp_ptr points to a buffer with a length of 512 bytes
7350 			 * (ALIGNED_UPIU_SIZE = 512), and the EHS data just starts from byte32
7351 			 */
7352 			ehs_data = (u8 *)lrbp->ucd_rsp_ptr + EHS_OFFSET_IN_RESPONSE;
7353 			memcpy(rsp_ehs, ehs_data, ehs_len * 32);
7354 		}
7355 	}
7356 
7357 	ufshcd_dev_man_unlock(hba);
7358 
7359 	return err ? : result;
7360 }
7361 
7362 /**
7363  * ufshcd_eh_device_reset_handler() - Reset a single logical unit.
7364  * @cmd: SCSI command pointer
7365  *
7366  * Return: SUCCESS or FAILED.
7367  */
7368 static int ufshcd_eh_device_reset_handler(struct scsi_cmnd *cmd)
7369 {
7370 	unsigned long flags, pending_reqs = 0, not_cleared = 0;
7371 	struct Scsi_Host *host;
7372 	struct ufs_hba *hba;
7373 	struct ufs_hw_queue *hwq;
7374 	struct ufshcd_lrb *lrbp;
7375 	u32 pos, not_cleared_mask = 0;
7376 	int err;
7377 	u8 resp = 0xF, lun;
7378 
7379 	host = cmd->device->host;
7380 	hba = shost_priv(host);
7381 
7382 	lun = ufshcd_scsi_to_upiu_lun(cmd->device->lun);
7383 	err = ufshcd_issue_tm_cmd(hba, lun, 0, UFS_LOGICAL_RESET, &resp);
7384 	if (err || resp != UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7385 		if (!err)
7386 			err = resp;
7387 		goto out;
7388 	}
7389 
7390 	if (is_mcq_enabled(hba)) {
7391 		for (pos = 0; pos < hba->nutrs; pos++) {
7392 			lrbp = &hba->lrb[pos];
7393 			if (ufshcd_cmd_inflight(lrbp->cmd) &&
7394 			    lrbp->lun == lun) {
7395 				ufshcd_clear_cmd(hba, pos);
7396 				hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(lrbp->cmd));
7397 				ufshcd_mcq_poll_cqe_lock(hba, hwq);
7398 			}
7399 		}
7400 		err = 0;
7401 		goto out;
7402 	}
7403 
7404 	/* clear the commands that were pending for corresponding LUN */
7405 	spin_lock_irqsave(&hba->outstanding_lock, flags);
7406 	for_each_set_bit(pos, &hba->outstanding_reqs, hba->nutrs)
7407 		if (hba->lrb[pos].lun == lun)
7408 			__set_bit(pos, &pending_reqs);
7409 	hba->outstanding_reqs &= ~pending_reqs;
7410 	spin_unlock_irqrestore(&hba->outstanding_lock, flags);
7411 
7412 	for_each_set_bit(pos, &pending_reqs, hba->nutrs) {
7413 		if (ufshcd_clear_cmd(hba, pos) < 0) {
7414 			spin_lock_irqsave(&hba->outstanding_lock, flags);
7415 			not_cleared = 1U << pos &
7416 				ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
7417 			hba->outstanding_reqs |= not_cleared;
7418 			not_cleared_mask |= not_cleared;
7419 			spin_unlock_irqrestore(&hba->outstanding_lock, flags);
7420 
7421 			dev_err(hba->dev, "%s: failed to clear request %d\n",
7422 				__func__, pos);
7423 		}
7424 	}
7425 	__ufshcd_transfer_req_compl(hba, pending_reqs & ~not_cleared_mask);
7426 
7427 out:
7428 	hba->req_abort_count = 0;
7429 	ufshcd_update_evt_hist(hba, UFS_EVT_DEV_RESET, (u32)err);
7430 	if (!err) {
7431 		err = SUCCESS;
7432 	} else {
7433 		dev_err(hba->dev, "%s: failed with err %d\n", __func__, err);
7434 		err = FAILED;
7435 	}
7436 	return err;
7437 }
7438 
7439 static void ufshcd_set_req_abort_skip(struct ufs_hba *hba, unsigned long bitmap)
7440 {
7441 	struct ufshcd_lrb *lrbp;
7442 	int tag;
7443 
7444 	for_each_set_bit(tag, &bitmap, hba->nutrs) {
7445 		lrbp = &hba->lrb[tag];
7446 		lrbp->req_abort_skip = true;
7447 	}
7448 }
7449 
7450 /**
7451  * ufshcd_try_to_abort_task - abort a specific task
7452  * @hba: Pointer to adapter instance
7453  * @tag: Task tag/index to be aborted
7454  *
7455  * Abort the pending command in device by sending UFS_ABORT_TASK task management
7456  * command, and in host controller by clearing the door-bell register. There can
7457  * be race between controller sending the command to the device while abort is
7458  * issued. To avoid that, first issue UFS_QUERY_TASK to check if the command is
7459  * really issued and then try to abort it.
7460  *
7461  * Return: zero on success, non-zero on failure.
7462  */
7463 int ufshcd_try_to_abort_task(struct ufs_hba *hba, int tag)
7464 {
7465 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
7466 	int err = 0;
7467 	int poll_cnt;
7468 	u8 resp = 0xF;
7469 	u32 reg;
7470 
7471 	for (poll_cnt = 100; poll_cnt; poll_cnt--) {
7472 		err = ufshcd_issue_tm_cmd(hba, lrbp->lun, lrbp->task_tag,
7473 				UFS_QUERY_TASK, &resp);
7474 		if (!err && resp == UPIU_TASK_MANAGEMENT_FUNC_SUCCEEDED) {
7475 			/* cmd pending in the device */
7476 			dev_err(hba->dev, "%s: cmd pending in the device. tag = %d\n",
7477 				__func__, tag);
7478 			break;
7479 		} else if (!err && resp == UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7480 			/*
7481 			 * cmd not pending in the device, check if it is
7482 			 * in transition.
7483 			 */
7484 			dev_err(hba->dev, "%s: cmd at tag %d not pending in the device.\n",
7485 				__func__, tag);
7486 			if (is_mcq_enabled(hba)) {
7487 				/* MCQ mode */
7488 				if (ufshcd_cmd_inflight(lrbp->cmd)) {
7489 					/* sleep for max. 200us same delay as in SDB mode */
7490 					usleep_range(100, 200);
7491 					continue;
7492 				}
7493 				/* command completed already */
7494 				dev_err(hba->dev, "%s: cmd at tag=%d is cleared.\n",
7495 					__func__, tag);
7496 				goto out;
7497 			}
7498 
7499 			/* Single Doorbell Mode */
7500 			reg = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
7501 			if (reg & (1 << tag)) {
7502 				/* sleep for max. 200us to stabilize */
7503 				usleep_range(100, 200);
7504 				continue;
7505 			}
7506 			/* command completed already */
7507 			dev_err(hba->dev, "%s: cmd at tag %d successfully cleared from DB.\n",
7508 				__func__, tag);
7509 			goto out;
7510 		} else {
7511 			dev_err(hba->dev,
7512 				"%s: no response from device. tag = %d, err %d\n",
7513 				__func__, tag, err);
7514 			if (!err)
7515 				err = resp; /* service response error */
7516 			goto out;
7517 		}
7518 	}
7519 
7520 	if (!poll_cnt) {
7521 		err = -EBUSY;
7522 		goto out;
7523 	}
7524 
7525 	err = ufshcd_issue_tm_cmd(hba, lrbp->lun, lrbp->task_tag,
7526 			UFS_ABORT_TASK, &resp);
7527 	if (err || resp != UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7528 		if (!err) {
7529 			err = resp; /* service response error */
7530 			dev_err(hba->dev, "%s: issued. tag = %d, err %d\n",
7531 				__func__, tag, err);
7532 		}
7533 		goto out;
7534 	}
7535 
7536 	err = ufshcd_clear_cmd(hba, tag);
7537 	if (err)
7538 		dev_err(hba->dev, "%s: Failed clearing cmd at tag %d, err %d\n",
7539 			__func__, tag, err);
7540 
7541 out:
7542 	return err;
7543 }
7544 
7545 /**
7546  * ufshcd_abort - scsi host template eh_abort_handler callback
7547  * @cmd: SCSI command pointer
7548  *
7549  * Return: SUCCESS or FAILED.
7550  */
7551 static int ufshcd_abort(struct scsi_cmnd *cmd)
7552 {
7553 	struct Scsi_Host *host = cmd->device->host;
7554 	struct ufs_hba *hba = shost_priv(host);
7555 	int tag = scsi_cmd_to_rq(cmd)->tag;
7556 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
7557 	unsigned long flags;
7558 	int err = FAILED;
7559 	bool outstanding;
7560 	u32 reg;
7561 
7562 	ufshcd_hold(hba);
7563 
7564 	if (!is_mcq_enabled(hba)) {
7565 		reg = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
7566 		if (!test_bit(tag, &hba->outstanding_reqs)) {
7567 			/* If command is already aborted/completed, return FAILED. */
7568 			dev_err(hba->dev,
7569 				"%s: cmd at tag %d already completed, outstanding=0x%lx, doorbell=0x%x\n",
7570 				__func__, tag, hba->outstanding_reqs, reg);
7571 			goto release;
7572 		}
7573 	}
7574 
7575 	/* Print Transfer Request of aborted task */
7576 	dev_info(hba->dev, "%s: Device abort task at tag %d\n", __func__, tag);
7577 
7578 	/*
7579 	 * Print detailed info about aborted request.
7580 	 * As more than one request might get aborted at the same time,
7581 	 * print full information only for the first aborted request in order
7582 	 * to reduce repeated printouts. For other aborted requests only print
7583 	 * basic details.
7584 	 */
7585 	scsi_print_command(cmd);
7586 	if (!hba->req_abort_count) {
7587 		ufshcd_update_evt_hist(hba, UFS_EVT_ABORT, tag);
7588 		ufshcd_print_evt_hist(hba);
7589 		ufshcd_print_host_state(hba);
7590 		ufshcd_print_pwr_info(hba);
7591 		ufshcd_print_tr(hba, tag, true);
7592 	} else {
7593 		ufshcd_print_tr(hba, tag, false);
7594 	}
7595 	hba->req_abort_count++;
7596 
7597 	if (!is_mcq_enabled(hba) && !(reg & (1 << tag))) {
7598 		/* only execute this code in single doorbell mode */
7599 		dev_err(hba->dev,
7600 		"%s: cmd was completed, but without a notifying intr, tag = %d",
7601 		__func__, tag);
7602 		__ufshcd_transfer_req_compl(hba, 1UL << tag);
7603 		goto release;
7604 	}
7605 
7606 	/*
7607 	 * Task abort to the device W-LUN is illegal. When this command
7608 	 * will fail, due to spec violation, scsi err handling next step
7609 	 * will be to send LU reset which, again, is a spec violation.
7610 	 * To avoid these unnecessary/illegal steps, first we clean up
7611 	 * the lrb taken by this cmd and re-set it in outstanding_reqs,
7612 	 * then queue the eh_work and bail.
7613 	 */
7614 	if (lrbp->lun == UFS_UPIU_UFS_DEVICE_WLUN) {
7615 		ufshcd_update_evt_hist(hba, UFS_EVT_ABORT, lrbp->lun);
7616 
7617 		spin_lock_irqsave(host->host_lock, flags);
7618 		hba->force_reset = true;
7619 		ufshcd_schedule_eh_work(hba);
7620 		spin_unlock_irqrestore(host->host_lock, flags);
7621 		goto release;
7622 	}
7623 
7624 	if (is_mcq_enabled(hba)) {
7625 		/* MCQ mode. Branch off to handle abort for mcq mode */
7626 		err = ufshcd_mcq_abort(cmd);
7627 		goto release;
7628 	}
7629 
7630 	/* Skip task abort in case previous aborts failed and report failure */
7631 	if (lrbp->req_abort_skip) {
7632 		dev_err(hba->dev, "%s: skipping abort\n", __func__);
7633 		ufshcd_set_req_abort_skip(hba, hba->outstanding_reqs);
7634 		goto release;
7635 	}
7636 
7637 	err = ufshcd_try_to_abort_task(hba, tag);
7638 	if (err) {
7639 		dev_err(hba->dev, "%s: failed with err %d\n", __func__, err);
7640 		ufshcd_set_req_abort_skip(hba, hba->outstanding_reqs);
7641 		err = FAILED;
7642 		goto release;
7643 	}
7644 
7645 	/*
7646 	 * Clear the corresponding bit from outstanding_reqs since the command
7647 	 * has been aborted successfully.
7648 	 */
7649 	spin_lock_irqsave(&hba->outstanding_lock, flags);
7650 	outstanding = __test_and_clear_bit(tag, &hba->outstanding_reqs);
7651 	spin_unlock_irqrestore(&hba->outstanding_lock, flags);
7652 
7653 	if (outstanding)
7654 		ufshcd_release_scsi_cmd(hba, lrbp);
7655 
7656 	err = SUCCESS;
7657 
7658 release:
7659 	/* Matches the ufshcd_hold() call at the start of this function. */
7660 	ufshcd_release(hba);
7661 	return err;
7662 }
7663 
7664 /**
7665  * ufshcd_host_reset_and_restore - reset and restore host controller
7666  * @hba: per-adapter instance
7667  *
7668  * Note that host controller reset may issue DME_RESET to
7669  * local and remote (device) Uni-Pro stack and the attributes
7670  * are reset to default state.
7671  *
7672  * Return: zero on success, non-zero on failure.
7673  */
7674 static int ufshcd_host_reset_and_restore(struct ufs_hba *hba)
7675 {
7676 	int err;
7677 
7678 	/*
7679 	 * Stop the host controller and complete the requests
7680 	 * cleared by h/w
7681 	 */
7682 	ufshcd_hba_stop(hba);
7683 	hba->silence_err_logs = true;
7684 	ufshcd_complete_requests(hba, true);
7685 	hba->silence_err_logs = false;
7686 
7687 	/* scale up clocks to max frequency before full reinitialization */
7688 	ufshcd_scale_clks(hba, ULONG_MAX, true);
7689 
7690 	err = ufshcd_hba_enable(hba);
7691 
7692 	/* Establish the link again and restore the device */
7693 	if (!err)
7694 		err = ufshcd_probe_hba(hba, false);
7695 
7696 	if (err)
7697 		dev_err(hba->dev, "%s: Host init failed %d\n", __func__, err);
7698 	ufshcd_update_evt_hist(hba, UFS_EVT_HOST_RESET, (u32)err);
7699 	return err;
7700 }
7701 
7702 /**
7703  * ufshcd_reset_and_restore - reset and re-initialize host/device
7704  * @hba: per-adapter instance
7705  *
7706  * Reset and recover device, host and re-establish link. This
7707  * is helpful to recover the communication in fatal error conditions.
7708  *
7709  * Return: zero on success, non-zero on failure.
7710  */
7711 static int ufshcd_reset_and_restore(struct ufs_hba *hba)
7712 {
7713 	u32 saved_err = 0;
7714 	u32 saved_uic_err = 0;
7715 	int err = 0;
7716 	unsigned long flags;
7717 	int retries = MAX_HOST_RESET_RETRIES;
7718 
7719 	spin_lock_irqsave(hba->host->host_lock, flags);
7720 	do {
7721 		/*
7722 		 * This is a fresh start, cache and clear saved error first,
7723 		 * in case new error generated during reset and restore.
7724 		 */
7725 		saved_err |= hba->saved_err;
7726 		saved_uic_err |= hba->saved_uic_err;
7727 		hba->saved_err = 0;
7728 		hba->saved_uic_err = 0;
7729 		hba->force_reset = false;
7730 		hba->ufshcd_state = UFSHCD_STATE_RESET;
7731 		spin_unlock_irqrestore(hba->host->host_lock, flags);
7732 
7733 		/* Reset the attached device */
7734 		ufshcd_device_reset(hba);
7735 
7736 		err = ufshcd_host_reset_and_restore(hba);
7737 
7738 		spin_lock_irqsave(hba->host->host_lock, flags);
7739 		if (err)
7740 			continue;
7741 		/* Do not exit unless operational or dead */
7742 		if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL &&
7743 		    hba->ufshcd_state != UFSHCD_STATE_ERROR &&
7744 		    hba->ufshcd_state != UFSHCD_STATE_EH_SCHEDULED_NON_FATAL)
7745 			err = -EAGAIN;
7746 	} while (err && --retries);
7747 
7748 	/*
7749 	 * Inform scsi mid-layer that we did reset and allow to handle
7750 	 * Unit Attention properly.
7751 	 */
7752 	scsi_report_bus_reset(hba->host, 0);
7753 	if (err) {
7754 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
7755 		hba->saved_err |= saved_err;
7756 		hba->saved_uic_err |= saved_uic_err;
7757 	}
7758 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7759 
7760 	return err;
7761 }
7762 
7763 /**
7764  * ufshcd_eh_host_reset_handler - host reset handler registered to scsi layer
7765  * @cmd: SCSI command pointer
7766  *
7767  * Return: SUCCESS or FAILED.
7768  */
7769 static int ufshcd_eh_host_reset_handler(struct scsi_cmnd *cmd)
7770 {
7771 	int err = SUCCESS;
7772 	unsigned long flags;
7773 	struct ufs_hba *hba;
7774 
7775 	hba = shost_priv(cmd->device->host);
7776 
7777 	/*
7778 	 * If runtime PM sent SSU and got a timeout, scsi_error_handler is
7779 	 * stuck in this function waiting for flush_work(&hba->eh_work). And
7780 	 * ufshcd_err_handler(eh_work) is stuck waiting for runtime PM. Do
7781 	 * ufshcd_link_recovery instead of eh_work to prevent deadlock.
7782 	 */
7783 	if (hba->pm_op_in_progress) {
7784 		if (ufshcd_link_recovery(hba))
7785 			err = FAILED;
7786 
7787 		return err;
7788 	}
7789 
7790 	spin_lock_irqsave(hba->host->host_lock, flags);
7791 	hba->force_reset = true;
7792 	ufshcd_schedule_eh_work(hba);
7793 	dev_err(hba->dev, "%s: reset in progress - 1\n", __func__);
7794 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7795 
7796 	flush_work(&hba->eh_work);
7797 
7798 	spin_lock_irqsave(hba->host->host_lock, flags);
7799 	if (hba->ufshcd_state == UFSHCD_STATE_ERROR)
7800 		err = FAILED;
7801 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7802 
7803 	return err;
7804 }
7805 
7806 /**
7807  * ufshcd_get_max_icc_level - calculate the ICC level
7808  * @sup_curr_uA: max. current supported by the regulator
7809  * @start_scan: row at the desc table to start scan from
7810  * @buff: power descriptor buffer
7811  *
7812  * Return: calculated max ICC level for specific regulator.
7813  */
7814 static u32 ufshcd_get_max_icc_level(int sup_curr_uA, u32 start_scan,
7815 				    const char *buff)
7816 {
7817 	int i;
7818 	int curr_uA;
7819 	u16 data;
7820 	u16 unit;
7821 
7822 	for (i = start_scan; i >= 0; i--) {
7823 		data = get_unaligned_be16(&buff[2 * i]);
7824 		unit = (data & ATTR_ICC_LVL_UNIT_MASK) >>
7825 						ATTR_ICC_LVL_UNIT_OFFSET;
7826 		curr_uA = data & ATTR_ICC_LVL_VALUE_MASK;
7827 		switch (unit) {
7828 		case UFSHCD_NANO_AMP:
7829 			curr_uA = curr_uA / 1000;
7830 			break;
7831 		case UFSHCD_MILI_AMP:
7832 			curr_uA = curr_uA * 1000;
7833 			break;
7834 		case UFSHCD_AMP:
7835 			curr_uA = curr_uA * 1000 * 1000;
7836 			break;
7837 		case UFSHCD_MICRO_AMP:
7838 		default:
7839 			break;
7840 		}
7841 		if (sup_curr_uA >= curr_uA)
7842 			break;
7843 	}
7844 	if (i < 0) {
7845 		i = 0;
7846 		pr_err("%s: Couldn't find valid icc_level = %d", __func__, i);
7847 	}
7848 
7849 	return (u32)i;
7850 }
7851 
7852 /**
7853  * ufshcd_find_max_sup_active_icc_level - calculate the max ICC level
7854  * In case regulators are not initialized we'll return 0
7855  * @hba: per-adapter instance
7856  * @desc_buf: power descriptor buffer to extract ICC levels from.
7857  *
7858  * Return: calculated ICC level.
7859  */
7860 static u32 ufshcd_find_max_sup_active_icc_level(struct ufs_hba *hba,
7861 						const u8 *desc_buf)
7862 {
7863 	u32 icc_level = 0;
7864 
7865 	if (!hba->vreg_info.vcc || !hba->vreg_info.vccq ||
7866 						!hba->vreg_info.vccq2) {
7867 		/*
7868 		 * Using dev_dbg to avoid messages during runtime PM to avoid
7869 		 * never-ending cycles of messages written back to storage by
7870 		 * user space causing runtime resume, causing more messages and
7871 		 * so on.
7872 		 */
7873 		dev_dbg(hba->dev,
7874 			"%s: Regulator capability was not set, actvIccLevel=%d",
7875 							__func__, icc_level);
7876 		goto out;
7877 	}
7878 
7879 	if (hba->vreg_info.vcc->max_uA)
7880 		icc_level = ufshcd_get_max_icc_level(
7881 				hba->vreg_info.vcc->max_uA,
7882 				POWER_DESC_MAX_ACTV_ICC_LVLS - 1,
7883 				&desc_buf[PWR_DESC_ACTIVE_LVLS_VCC_0]);
7884 
7885 	if (hba->vreg_info.vccq->max_uA)
7886 		icc_level = ufshcd_get_max_icc_level(
7887 				hba->vreg_info.vccq->max_uA,
7888 				icc_level,
7889 				&desc_buf[PWR_DESC_ACTIVE_LVLS_VCCQ_0]);
7890 
7891 	if (hba->vreg_info.vccq2->max_uA)
7892 		icc_level = ufshcd_get_max_icc_level(
7893 				hba->vreg_info.vccq2->max_uA,
7894 				icc_level,
7895 				&desc_buf[PWR_DESC_ACTIVE_LVLS_VCCQ2_0]);
7896 out:
7897 	return icc_level;
7898 }
7899 
7900 static void ufshcd_set_active_icc_lvl(struct ufs_hba *hba)
7901 {
7902 	int ret;
7903 	u8 *desc_buf;
7904 	u32 icc_level;
7905 
7906 	desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
7907 	if (!desc_buf)
7908 		return;
7909 
7910 	ret = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_POWER, 0, 0,
7911 				     desc_buf, QUERY_DESC_MAX_SIZE);
7912 	if (ret) {
7913 		dev_err(hba->dev,
7914 			"%s: Failed reading power descriptor ret = %d",
7915 			__func__, ret);
7916 		goto out;
7917 	}
7918 
7919 	icc_level = ufshcd_find_max_sup_active_icc_level(hba, desc_buf);
7920 	dev_dbg(hba->dev, "%s: setting icc_level 0x%x", __func__, icc_level);
7921 
7922 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
7923 		QUERY_ATTR_IDN_ACTIVE_ICC_LVL, 0, 0, &icc_level);
7924 
7925 	if (ret)
7926 		dev_err(hba->dev,
7927 			"%s: Failed configuring bActiveICCLevel = %d ret = %d",
7928 			__func__, icc_level, ret);
7929 
7930 out:
7931 	kfree(desc_buf);
7932 }
7933 
7934 static inline void ufshcd_blk_pm_runtime_init(struct scsi_device *sdev)
7935 {
7936 	struct Scsi_Host *shost = sdev->host;
7937 
7938 	scsi_autopm_get_device(sdev);
7939 	blk_pm_runtime_init(sdev->request_queue, &sdev->sdev_gendev);
7940 	if (sdev->rpm_autosuspend)
7941 		pm_runtime_set_autosuspend_delay(&sdev->sdev_gendev,
7942 						 shost->rpm_autosuspend_delay);
7943 	scsi_autopm_put_device(sdev);
7944 }
7945 
7946 /**
7947  * ufshcd_scsi_add_wlus - Adds required W-LUs
7948  * @hba: per-adapter instance
7949  *
7950  * UFS device specification requires the UFS devices to support 4 well known
7951  * logical units:
7952  *	"REPORT_LUNS" (address: 01h)
7953  *	"UFS Device" (address: 50h)
7954  *	"RPMB" (address: 44h)
7955  *	"BOOT" (address: 30h)
7956  * UFS device's power management needs to be controlled by "POWER CONDITION"
7957  * field of SSU (START STOP UNIT) command. But this "power condition" field
7958  * will take effect only when its sent to "UFS device" well known logical unit
7959  * hence we require the scsi_device instance to represent this logical unit in
7960  * order for the UFS host driver to send the SSU command for power management.
7961  *
7962  * We also require the scsi_device instance for "RPMB" (Replay Protected Memory
7963  * Block) LU so user space process can control this LU. User space may also
7964  * want to have access to BOOT LU.
7965  *
7966  * This function adds scsi device instances for each of all well known LUs
7967  * (except "REPORT LUNS" LU).
7968  *
7969  * Return: zero on success (all required W-LUs are added successfully),
7970  * non-zero error value on failure (if failed to add any of the required W-LU).
7971  */
7972 static int ufshcd_scsi_add_wlus(struct ufs_hba *hba)
7973 {
7974 	int ret = 0;
7975 	struct scsi_device *sdev_boot, *sdev_rpmb;
7976 
7977 	hba->ufs_device_wlun = __scsi_add_device(hba->host, 0, 0,
7978 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_UFS_DEVICE_WLUN), NULL);
7979 	if (IS_ERR(hba->ufs_device_wlun)) {
7980 		ret = PTR_ERR(hba->ufs_device_wlun);
7981 		hba->ufs_device_wlun = NULL;
7982 		goto out;
7983 	}
7984 	scsi_device_put(hba->ufs_device_wlun);
7985 
7986 	sdev_rpmb = __scsi_add_device(hba->host, 0, 0,
7987 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_RPMB_WLUN), NULL);
7988 	if (IS_ERR(sdev_rpmb)) {
7989 		ret = PTR_ERR(sdev_rpmb);
7990 		goto remove_ufs_device_wlun;
7991 	}
7992 	ufshcd_blk_pm_runtime_init(sdev_rpmb);
7993 	scsi_device_put(sdev_rpmb);
7994 
7995 	sdev_boot = __scsi_add_device(hba->host, 0, 0,
7996 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_BOOT_WLUN), NULL);
7997 	if (IS_ERR(sdev_boot)) {
7998 		dev_err(hba->dev, "%s: BOOT WLUN not found\n", __func__);
7999 	} else {
8000 		ufshcd_blk_pm_runtime_init(sdev_boot);
8001 		scsi_device_put(sdev_boot);
8002 	}
8003 	goto out;
8004 
8005 remove_ufs_device_wlun:
8006 	scsi_remove_device(hba->ufs_device_wlun);
8007 out:
8008 	return ret;
8009 }
8010 
8011 static void ufshcd_wb_probe(struct ufs_hba *hba, const u8 *desc_buf)
8012 {
8013 	struct ufs_dev_info *dev_info = &hba->dev_info;
8014 	u8 lun;
8015 	u32 d_lu_wb_buf_alloc;
8016 	u32 ext_ufs_feature;
8017 
8018 	if (!ufshcd_is_wb_allowed(hba))
8019 		return;
8020 
8021 	/*
8022 	 * Probe WB only for UFS-2.2 and UFS-3.1 (and later) devices or
8023 	 * UFS devices with quirk UFS_DEVICE_QUIRK_SUPPORT_EXTENDED_FEATURES
8024 	 * enabled
8025 	 */
8026 	if (!(dev_info->wspecversion >= 0x310 ||
8027 	      dev_info->wspecversion == 0x220 ||
8028 	     (hba->dev_quirks & UFS_DEVICE_QUIRK_SUPPORT_EXTENDED_FEATURES)))
8029 		goto wb_disabled;
8030 
8031 	ext_ufs_feature = get_unaligned_be32(desc_buf +
8032 					DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
8033 
8034 	if (!(ext_ufs_feature & UFS_DEV_WRITE_BOOSTER_SUP))
8035 		goto wb_disabled;
8036 
8037 	/*
8038 	 * WB may be supported but not configured while provisioning. The spec
8039 	 * says, in dedicated wb buffer mode, a max of 1 lun would have wb
8040 	 * buffer configured.
8041 	 */
8042 	dev_info->wb_buffer_type = desc_buf[DEVICE_DESC_PARAM_WB_TYPE];
8043 
8044 	dev_info->b_presrv_uspc_en =
8045 		desc_buf[DEVICE_DESC_PARAM_WB_PRESRV_USRSPC_EN];
8046 
8047 	if (dev_info->wb_buffer_type == WB_BUF_MODE_SHARED) {
8048 		if (!get_unaligned_be32(desc_buf +
8049 				   DEVICE_DESC_PARAM_WB_SHARED_ALLOC_UNITS))
8050 			goto wb_disabled;
8051 	} else {
8052 		for (lun = 0; lun < UFS_UPIU_MAX_WB_LUN_ID; lun++) {
8053 			d_lu_wb_buf_alloc = 0;
8054 			ufshcd_read_unit_desc_param(hba,
8055 					lun,
8056 					UNIT_DESC_PARAM_WB_BUF_ALLOC_UNITS,
8057 					(u8 *)&d_lu_wb_buf_alloc,
8058 					sizeof(d_lu_wb_buf_alloc));
8059 			if (d_lu_wb_buf_alloc) {
8060 				dev_info->wb_dedicated_lu = lun;
8061 				break;
8062 			}
8063 		}
8064 
8065 		if (!d_lu_wb_buf_alloc)
8066 			goto wb_disabled;
8067 	}
8068 
8069 	if (!ufshcd_is_wb_buf_lifetime_available(hba))
8070 		goto wb_disabled;
8071 
8072 	return;
8073 
8074 wb_disabled:
8075 	hba->caps &= ~UFSHCD_CAP_WB_EN;
8076 }
8077 
8078 static void ufshcd_temp_notif_probe(struct ufs_hba *hba, const u8 *desc_buf)
8079 {
8080 	struct ufs_dev_info *dev_info = &hba->dev_info;
8081 	u32 ext_ufs_feature;
8082 	u8 mask = 0;
8083 
8084 	if (!(hba->caps & UFSHCD_CAP_TEMP_NOTIF) || dev_info->wspecversion < 0x300)
8085 		return;
8086 
8087 	ext_ufs_feature = get_unaligned_be32(desc_buf + DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
8088 
8089 	if (ext_ufs_feature & UFS_DEV_LOW_TEMP_NOTIF)
8090 		mask |= MASK_EE_TOO_LOW_TEMP;
8091 
8092 	if (ext_ufs_feature & UFS_DEV_HIGH_TEMP_NOTIF)
8093 		mask |= MASK_EE_TOO_HIGH_TEMP;
8094 
8095 	if (mask) {
8096 		ufshcd_enable_ee(hba, mask);
8097 		ufs_hwmon_probe(hba, mask);
8098 	}
8099 }
8100 
8101 static void ufshcd_ext_iid_probe(struct ufs_hba *hba, u8 *desc_buf)
8102 {
8103 	struct ufs_dev_info *dev_info = &hba->dev_info;
8104 	u32 ext_ufs_feature;
8105 	u32 ext_iid_en = 0;
8106 	int err;
8107 
8108 	/* Only UFS-4.0 and above may support EXT_IID */
8109 	if (dev_info->wspecversion < 0x400)
8110 		goto out;
8111 
8112 	ext_ufs_feature = get_unaligned_be32(desc_buf +
8113 				     DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
8114 	if (!(ext_ufs_feature & UFS_DEV_EXT_IID_SUP))
8115 		goto out;
8116 
8117 	err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
8118 				      QUERY_ATTR_IDN_EXT_IID_EN, 0, 0, &ext_iid_en);
8119 	if (err)
8120 		dev_err(hba->dev, "failed reading bEXTIIDEn. err = %d\n", err);
8121 
8122 out:
8123 	dev_info->b_ext_iid_en = ext_iid_en;
8124 }
8125 
8126 void ufshcd_fixup_dev_quirks(struct ufs_hba *hba,
8127 			     const struct ufs_dev_quirk *fixups)
8128 {
8129 	const struct ufs_dev_quirk *f;
8130 	struct ufs_dev_info *dev_info = &hba->dev_info;
8131 
8132 	if (!fixups)
8133 		return;
8134 
8135 	for (f = fixups; f->quirk; f++) {
8136 		if ((f->wmanufacturerid == dev_info->wmanufacturerid ||
8137 		     f->wmanufacturerid == UFS_ANY_VENDOR) &&
8138 		     ((dev_info->model &&
8139 		       STR_PRFX_EQUAL(f->model, dev_info->model)) ||
8140 		      !strcmp(f->model, UFS_ANY_MODEL)))
8141 			hba->dev_quirks |= f->quirk;
8142 	}
8143 }
8144 EXPORT_SYMBOL_GPL(ufshcd_fixup_dev_quirks);
8145 
8146 static void ufs_fixup_device_setup(struct ufs_hba *hba)
8147 {
8148 	/* fix by general quirk table */
8149 	ufshcd_fixup_dev_quirks(hba, ufs_fixups);
8150 
8151 	/* allow vendors to fix quirks */
8152 	ufshcd_vops_fixup_dev_quirks(hba);
8153 }
8154 
8155 static void ufshcd_update_rtc(struct ufs_hba *hba)
8156 {
8157 	struct timespec64 ts64;
8158 	int err;
8159 	u32 val;
8160 
8161 	ktime_get_real_ts64(&ts64);
8162 
8163 	if (ts64.tv_sec < hba->dev_info.rtc_time_baseline) {
8164 		dev_warn_once(hba->dev, "%s: Current time precedes previous setting!\n", __func__);
8165 		return;
8166 	}
8167 
8168 	/*
8169 	 * The Absolute RTC mode has a 136-year limit, spanning from 2010 to 2146. If a time beyond
8170 	 * 2146 is required, it is recommended to choose the relative RTC mode.
8171 	 */
8172 	val = ts64.tv_sec - hba->dev_info.rtc_time_baseline;
8173 
8174 	ufshcd_rpm_get_sync(hba);
8175 	err = ufshcd_query_attr(hba, UPIU_QUERY_OPCODE_WRITE_ATTR, QUERY_ATTR_IDN_SECONDS_PASSED,
8176 				0, 0, &val);
8177 	ufshcd_rpm_put_sync(hba);
8178 
8179 	if (err)
8180 		dev_err(hba->dev, "%s: Failed to update rtc %d\n", __func__, err);
8181 	else if (hba->dev_info.rtc_type == UFS_RTC_RELATIVE)
8182 		hba->dev_info.rtc_time_baseline = ts64.tv_sec;
8183 }
8184 
8185 static void ufshcd_rtc_work(struct work_struct *work)
8186 {
8187 	struct ufs_hba *hba;
8188 
8189 	hba = container_of(to_delayed_work(work), struct ufs_hba, ufs_rtc_update_work);
8190 
8191 	 /* Update RTC only when there are no requests in progress and UFSHCI is operational */
8192 	if (!ufshcd_is_ufs_dev_busy(hba) && hba->ufshcd_state == UFSHCD_STATE_OPERATIONAL)
8193 		ufshcd_update_rtc(hba);
8194 
8195 	if (ufshcd_is_ufs_dev_active(hba) && hba->dev_info.rtc_update_period)
8196 		schedule_delayed_work(&hba->ufs_rtc_update_work,
8197 				      msecs_to_jiffies(hba->dev_info.rtc_update_period));
8198 }
8199 
8200 static void ufs_init_rtc(struct ufs_hba *hba, u8 *desc_buf)
8201 {
8202 	u16 periodic_rtc_update = get_unaligned_be16(&desc_buf[DEVICE_DESC_PARAM_FRQ_RTC]);
8203 	struct ufs_dev_info *dev_info = &hba->dev_info;
8204 
8205 	if (periodic_rtc_update & UFS_RTC_TIME_BASELINE) {
8206 		dev_info->rtc_type = UFS_RTC_ABSOLUTE;
8207 
8208 		/*
8209 		 * The concept of measuring time in Linux as the number of seconds elapsed since
8210 		 * 00:00:00 UTC on January 1, 1970, and UFS ABS RTC is elapsed from January 1st
8211 		 * 2010 00:00, here we need to adjust ABS baseline.
8212 		 */
8213 		dev_info->rtc_time_baseline = mktime64(2010, 1, 1, 0, 0, 0) -
8214 							mktime64(1970, 1, 1, 0, 0, 0);
8215 	} else {
8216 		dev_info->rtc_type = UFS_RTC_RELATIVE;
8217 		dev_info->rtc_time_baseline = 0;
8218 	}
8219 
8220 	/*
8221 	 * We ignore TIME_PERIOD defined in wPeriodicRTCUpdate because Spec does not clearly state
8222 	 * how to calculate the specific update period for each time unit. And we disable periodic
8223 	 * RTC update work, let user configure by sysfs node according to specific circumstance.
8224 	 */
8225 	dev_info->rtc_update_period = 0;
8226 }
8227 
8228 static int ufs_get_device_desc(struct ufs_hba *hba)
8229 {
8230 	int err;
8231 	u8 model_index;
8232 	u8 *desc_buf;
8233 	struct ufs_dev_info *dev_info = &hba->dev_info;
8234 
8235 	desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
8236 	if (!desc_buf) {
8237 		err = -ENOMEM;
8238 		goto out;
8239 	}
8240 
8241 	err = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_DEVICE, 0, 0, desc_buf,
8242 				     QUERY_DESC_MAX_SIZE);
8243 	if (err) {
8244 		dev_err(hba->dev, "%s: Failed reading Device Desc. err = %d\n",
8245 			__func__, err);
8246 		goto out;
8247 	}
8248 
8249 	/*
8250 	 * getting vendor (manufacturerID) and Bank Index in big endian
8251 	 * format
8252 	 */
8253 	dev_info->wmanufacturerid = desc_buf[DEVICE_DESC_PARAM_MANF_ID] << 8 |
8254 				     desc_buf[DEVICE_DESC_PARAM_MANF_ID + 1];
8255 
8256 	/* getting Specification Version in big endian format */
8257 	dev_info->wspecversion = desc_buf[DEVICE_DESC_PARAM_SPEC_VER] << 8 |
8258 				      desc_buf[DEVICE_DESC_PARAM_SPEC_VER + 1];
8259 	dev_info->bqueuedepth = desc_buf[DEVICE_DESC_PARAM_Q_DPTH];
8260 
8261 	model_index = desc_buf[DEVICE_DESC_PARAM_PRDCT_NAME];
8262 
8263 	err = ufshcd_read_string_desc(hba, model_index,
8264 				      &dev_info->model, SD_ASCII_STD);
8265 	if (err < 0) {
8266 		dev_err(hba->dev, "%s: Failed reading Product Name. err = %d\n",
8267 			__func__, err);
8268 		goto out;
8269 	}
8270 
8271 	hba->luns_avail = desc_buf[DEVICE_DESC_PARAM_NUM_LU] +
8272 		desc_buf[DEVICE_DESC_PARAM_NUM_WLU];
8273 
8274 	ufs_fixup_device_setup(hba);
8275 
8276 	ufshcd_wb_probe(hba, desc_buf);
8277 
8278 	ufshcd_temp_notif_probe(hba, desc_buf);
8279 
8280 	ufs_init_rtc(hba, desc_buf);
8281 
8282 	if (hba->ext_iid_sup)
8283 		ufshcd_ext_iid_probe(hba, desc_buf);
8284 
8285 	/*
8286 	 * ufshcd_read_string_desc returns size of the string
8287 	 * reset the error value
8288 	 */
8289 	err = 0;
8290 
8291 out:
8292 	kfree(desc_buf);
8293 	return err;
8294 }
8295 
8296 static void ufs_put_device_desc(struct ufs_hba *hba)
8297 {
8298 	struct ufs_dev_info *dev_info = &hba->dev_info;
8299 
8300 	kfree(dev_info->model);
8301 	dev_info->model = NULL;
8302 }
8303 
8304 /**
8305  * ufshcd_quirk_tune_host_pa_tactivate - Ensures that host PA_TACTIVATE is
8306  * less than device PA_TACTIVATE time.
8307  * @hba: per-adapter instance
8308  *
8309  * Some UFS devices require host PA_TACTIVATE to be lower than device
8310  * PA_TACTIVATE, we need to enable UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE quirk
8311  * for such devices.
8312  *
8313  * Return: zero on success, non-zero error value on failure.
8314  */
8315 static int ufshcd_quirk_tune_host_pa_tactivate(struct ufs_hba *hba)
8316 {
8317 	int ret = 0;
8318 	u32 granularity, peer_granularity;
8319 	u32 pa_tactivate, peer_pa_tactivate;
8320 	u32 pa_tactivate_us, peer_pa_tactivate_us;
8321 	static const u8 gran_to_us_table[] = {1, 4, 8, 16, 32, 100};
8322 
8323 	ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_GRANULARITY),
8324 				  &granularity);
8325 	if (ret)
8326 		goto out;
8327 
8328 	ret = ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_GRANULARITY),
8329 				  &peer_granularity);
8330 	if (ret)
8331 		goto out;
8332 
8333 	if ((granularity < PA_GRANULARITY_MIN_VAL) ||
8334 	    (granularity > PA_GRANULARITY_MAX_VAL)) {
8335 		dev_err(hba->dev, "%s: invalid host PA_GRANULARITY %d",
8336 			__func__, granularity);
8337 		return -EINVAL;
8338 	}
8339 
8340 	if ((peer_granularity < PA_GRANULARITY_MIN_VAL) ||
8341 	    (peer_granularity > PA_GRANULARITY_MAX_VAL)) {
8342 		dev_err(hba->dev, "%s: invalid device PA_GRANULARITY %d",
8343 			__func__, peer_granularity);
8344 		return -EINVAL;
8345 	}
8346 
8347 	ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_TACTIVATE), &pa_tactivate);
8348 	if (ret)
8349 		goto out;
8350 
8351 	ret = ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_TACTIVATE),
8352 				  &peer_pa_tactivate);
8353 	if (ret)
8354 		goto out;
8355 
8356 	pa_tactivate_us = pa_tactivate * gran_to_us_table[granularity - 1];
8357 	peer_pa_tactivate_us = peer_pa_tactivate *
8358 			     gran_to_us_table[peer_granularity - 1];
8359 
8360 	if (pa_tactivate_us >= peer_pa_tactivate_us) {
8361 		u32 new_peer_pa_tactivate;
8362 
8363 		new_peer_pa_tactivate = pa_tactivate_us /
8364 				      gran_to_us_table[peer_granularity - 1];
8365 		new_peer_pa_tactivate++;
8366 		ret = ufshcd_dme_peer_set(hba, UIC_ARG_MIB(PA_TACTIVATE),
8367 					  new_peer_pa_tactivate);
8368 	}
8369 
8370 out:
8371 	return ret;
8372 }
8373 
8374 static void ufshcd_tune_unipro_params(struct ufs_hba *hba)
8375 {
8376 	ufshcd_vops_apply_dev_quirks(hba);
8377 
8378 	if (hba->dev_quirks & UFS_DEVICE_QUIRK_PA_TACTIVATE)
8379 		/* set 1ms timeout for PA_TACTIVATE */
8380 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TACTIVATE), 10);
8381 
8382 	if (hba->dev_quirks & UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE)
8383 		ufshcd_quirk_tune_host_pa_tactivate(hba);
8384 }
8385 
8386 static void ufshcd_clear_dbg_ufs_stats(struct ufs_hba *hba)
8387 {
8388 	hba->ufs_stats.hibern8_exit_cnt = 0;
8389 	hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
8390 	hba->req_abort_count = 0;
8391 }
8392 
8393 static int ufshcd_device_geo_params_init(struct ufs_hba *hba)
8394 {
8395 	int err;
8396 	u8 *desc_buf;
8397 
8398 	desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
8399 	if (!desc_buf) {
8400 		err = -ENOMEM;
8401 		goto out;
8402 	}
8403 
8404 	err = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_GEOMETRY, 0, 0,
8405 				     desc_buf, QUERY_DESC_MAX_SIZE);
8406 	if (err) {
8407 		dev_err(hba->dev, "%s: Failed reading Geometry Desc. err = %d\n",
8408 				__func__, err);
8409 		goto out;
8410 	}
8411 
8412 	if (desc_buf[GEOMETRY_DESC_PARAM_MAX_NUM_LUN] == 1)
8413 		hba->dev_info.max_lu_supported = 32;
8414 	else if (desc_buf[GEOMETRY_DESC_PARAM_MAX_NUM_LUN] == 0)
8415 		hba->dev_info.max_lu_supported = 8;
8416 
8417 out:
8418 	kfree(desc_buf);
8419 	return err;
8420 }
8421 
8422 struct ufs_ref_clk {
8423 	unsigned long freq_hz;
8424 	enum ufs_ref_clk_freq val;
8425 };
8426 
8427 static const struct ufs_ref_clk ufs_ref_clk_freqs[] = {
8428 	{19200000, REF_CLK_FREQ_19_2_MHZ},
8429 	{26000000, REF_CLK_FREQ_26_MHZ},
8430 	{38400000, REF_CLK_FREQ_38_4_MHZ},
8431 	{52000000, REF_CLK_FREQ_52_MHZ},
8432 	{0, REF_CLK_FREQ_INVAL},
8433 };
8434 
8435 static enum ufs_ref_clk_freq
8436 ufs_get_bref_clk_from_hz(unsigned long freq)
8437 {
8438 	int i;
8439 
8440 	for (i = 0; ufs_ref_clk_freqs[i].freq_hz; i++)
8441 		if (ufs_ref_clk_freqs[i].freq_hz == freq)
8442 			return ufs_ref_clk_freqs[i].val;
8443 
8444 	return REF_CLK_FREQ_INVAL;
8445 }
8446 
8447 void ufshcd_parse_dev_ref_clk_freq(struct ufs_hba *hba, struct clk *refclk)
8448 {
8449 	unsigned long freq;
8450 
8451 	freq = clk_get_rate(refclk);
8452 
8453 	hba->dev_ref_clk_freq =
8454 		ufs_get_bref_clk_from_hz(freq);
8455 
8456 	if (hba->dev_ref_clk_freq == REF_CLK_FREQ_INVAL)
8457 		dev_err(hba->dev,
8458 		"invalid ref_clk setting = %ld\n", freq);
8459 }
8460 
8461 static int ufshcd_set_dev_ref_clk(struct ufs_hba *hba)
8462 {
8463 	int err;
8464 	u32 ref_clk;
8465 	u32 freq = hba->dev_ref_clk_freq;
8466 
8467 	err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
8468 			QUERY_ATTR_IDN_REF_CLK_FREQ, 0, 0, &ref_clk);
8469 
8470 	if (err) {
8471 		dev_err(hba->dev, "failed reading bRefClkFreq. err = %d\n",
8472 			err);
8473 		goto out;
8474 	}
8475 
8476 	if (ref_clk == freq)
8477 		goto out; /* nothing to update */
8478 
8479 	err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
8480 			QUERY_ATTR_IDN_REF_CLK_FREQ, 0, 0, &freq);
8481 
8482 	if (err) {
8483 		dev_err(hba->dev, "bRefClkFreq setting to %lu Hz failed\n",
8484 			ufs_ref_clk_freqs[freq].freq_hz);
8485 		goto out;
8486 	}
8487 
8488 	dev_dbg(hba->dev, "bRefClkFreq setting to %lu Hz succeeded\n",
8489 			ufs_ref_clk_freqs[freq].freq_hz);
8490 
8491 out:
8492 	return err;
8493 }
8494 
8495 static int ufshcd_device_params_init(struct ufs_hba *hba)
8496 {
8497 	bool flag;
8498 	int ret;
8499 
8500 	/* Init UFS geometry descriptor related parameters */
8501 	ret = ufshcd_device_geo_params_init(hba);
8502 	if (ret)
8503 		goto out;
8504 
8505 	/* Check and apply UFS device quirks */
8506 	ret = ufs_get_device_desc(hba);
8507 	if (ret) {
8508 		dev_err(hba->dev, "%s: Failed getting device info. err = %d\n",
8509 			__func__, ret);
8510 		goto out;
8511 	}
8512 
8513 	ufshcd_get_ref_clk_gating_wait(hba);
8514 
8515 	if (!ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_READ_FLAG,
8516 			QUERY_FLAG_IDN_PWR_ON_WPE, 0, &flag))
8517 		hba->dev_info.f_power_on_wp_en = flag;
8518 
8519 	/* Probe maximum power mode co-supported by both UFS host and device */
8520 	if (ufshcd_get_max_pwr_mode(hba))
8521 		dev_err(hba->dev,
8522 			"%s: Failed getting max supported power mode\n",
8523 			__func__);
8524 out:
8525 	return ret;
8526 }
8527 
8528 static void ufshcd_set_timestamp_attr(struct ufs_hba *hba)
8529 {
8530 	int err;
8531 	struct ufs_query_req *request = NULL;
8532 	struct ufs_query_res *response = NULL;
8533 	struct ufs_dev_info *dev_info = &hba->dev_info;
8534 	struct utp_upiu_query_v4_0 *upiu_data;
8535 
8536 	if (dev_info->wspecversion < 0x400)
8537 		return;
8538 
8539 	ufshcd_dev_man_lock(hba);
8540 
8541 	ufshcd_init_query(hba, &request, &response,
8542 			  UPIU_QUERY_OPCODE_WRITE_ATTR,
8543 			  QUERY_ATTR_IDN_TIMESTAMP, 0, 0);
8544 
8545 	request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
8546 
8547 	upiu_data = (struct utp_upiu_query_v4_0 *)&request->upiu_req;
8548 
8549 	put_unaligned_be64(ktime_get_real_ns(), &upiu_data->osf3);
8550 
8551 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT);
8552 
8553 	if (err)
8554 		dev_err(hba->dev, "%s: failed to set timestamp %d\n",
8555 			__func__, err);
8556 
8557 	ufshcd_dev_man_unlock(hba);
8558 }
8559 
8560 /**
8561  * ufshcd_add_lus - probe and add UFS logical units
8562  * @hba: per-adapter instance
8563  *
8564  * Return: 0 upon success; < 0 upon failure.
8565  */
8566 static int ufshcd_add_lus(struct ufs_hba *hba)
8567 {
8568 	int ret;
8569 
8570 	/* Add required well known logical units to scsi mid layer */
8571 	ret = ufshcd_scsi_add_wlus(hba);
8572 	if (ret)
8573 		goto out;
8574 
8575 	/* Initialize devfreq after UFS device is detected */
8576 	if (ufshcd_is_clkscaling_supported(hba)) {
8577 		memcpy(&hba->clk_scaling.saved_pwr_info,
8578 			&hba->pwr_info,
8579 			sizeof(struct ufs_pa_layer_attr));
8580 		hba->clk_scaling.is_allowed = true;
8581 
8582 		ret = ufshcd_devfreq_init(hba);
8583 		if (ret)
8584 			goto out;
8585 
8586 		hba->clk_scaling.is_enabled = true;
8587 		ufshcd_init_clk_scaling_sysfs(hba);
8588 	}
8589 
8590 	ufs_bsg_probe(hba);
8591 	scsi_scan_host(hba->host);
8592 
8593 out:
8594 	return ret;
8595 }
8596 
8597 /* SDB - Single Doorbell */
8598 static void ufshcd_release_sdb_queue(struct ufs_hba *hba, int nutrs)
8599 {
8600 	size_t ucdl_size, utrdl_size;
8601 
8602 	ucdl_size = ufshcd_get_ucd_size(hba) * nutrs;
8603 	dmam_free_coherent(hba->dev, ucdl_size, hba->ucdl_base_addr,
8604 			   hba->ucdl_dma_addr);
8605 
8606 	utrdl_size = sizeof(struct utp_transfer_req_desc) * nutrs;
8607 	dmam_free_coherent(hba->dev, utrdl_size, hba->utrdl_base_addr,
8608 			   hba->utrdl_dma_addr);
8609 
8610 	devm_kfree(hba->dev, hba->lrb);
8611 }
8612 
8613 static int ufshcd_alloc_mcq(struct ufs_hba *hba)
8614 {
8615 	int ret;
8616 	int old_nutrs = hba->nutrs;
8617 
8618 	ret = ufshcd_mcq_decide_queue_depth(hba);
8619 	if (ret < 0)
8620 		return ret;
8621 
8622 	hba->nutrs = ret;
8623 	ret = ufshcd_mcq_init(hba);
8624 	if (ret)
8625 		goto err;
8626 
8627 	/*
8628 	 * Previously allocated memory for nutrs may not be enough in MCQ mode.
8629 	 * Number of supported tags in MCQ mode may be larger than SDB mode.
8630 	 */
8631 	if (hba->nutrs != old_nutrs) {
8632 		ufshcd_release_sdb_queue(hba, old_nutrs);
8633 		ret = ufshcd_memory_alloc(hba);
8634 		if (ret)
8635 			goto err;
8636 		ufshcd_host_memory_configure(hba);
8637 	}
8638 
8639 	ret = ufshcd_mcq_memory_alloc(hba);
8640 	if (ret)
8641 		goto err;
8642 
8643 	return 0;
8644 err:
8645 	hba->nutrs = old_nutrs;
8646 	return ret;
8647 }
8648 
8649 static void ufshcd_config_mcq(struct ufs_hba *hba)
8650 {
8651 	int ret;
8652 	u32 intrs;
8653 
8654 	ret = ufshcd_mcq_vops_config_esi(hba);
8655 	dev_info(hba->dev, "ESI %sconfigured\n", ret ? "is not " : "");
8656 
8657 	intrs = UFSHCD_ENABLE_MCQ_INTRS;
8658 	if (hba->quirks & UFSHCD_QUIRK_MCQ_BROKEN_INTR)
8659 		intrs &= ~MCQ_CQ_EVENT_STATUS;
8660 	ufshcd_enable_intr(hba, intrs);
8661 	ufshcd_mcq_make_queues_operational(hba);
8662 	ufshcd_mcq_config_mac(hba, hba->nutrs);
8663 
8664 	hba->host->can_queue = hba->nutrs - UFSHCD_NUM_RESERVED;
8665 	hba->reserved_slot = hba->nutrs - UFSHCD_NUM_RESERVED;
8666 
8667 	ufshcd_mcq_enable(hba);
8668 	hba->mcq_enabled = true;
8669 
8670 	dev_info(hba->dev, "MCQ configured, nr_queues=%d, io_queues=%d, read_queue=%d, poll_queues=%d, queue_depth=%d\n",
8671 		 hba->nr_hw_queues, hba->nr_queues[HCTX_TYPE_DEFAULT],
8672 		 hba->nr_queues[HCTX_TYPE_READ], hba->nr_queues[HCTX_TYPE_POLL],
8673 		 hba->nutrs);
8674 }
8675 
8676 static int ufshcd_device_init(struct ufs_hba *hba, bool init_dev_params)
8677 {
8678 	int ret;
8679 	struct Scsi_Host *host = hba->host;
8680 
8681 	hba->ufshcd_state = UFSHCD_STATE_RESET;
8682 
8683 	ret = ufshcd_link_startup(hba);
8684 	if (ret)
8685 		return ret;
8686 
8687 	if (hba->quirks & UFSHCD_QUIRK_SKIP_PH_CONFIGURATION)
8688 		return ret;
8689 
8690 	/* Debug counters initialization */
8691 	ufshcd_clear_dbg_ufs_stats(hba);
8692 
8693 	/* UniPro link is active now */
8694 	ufshcd_set_link_active(hba);
8695 
8696 	/* Reconfigure MCQ upon reset */
8697 	if (is_mcq_enabled(hba) && !init_dev_params)
8698 		ufshcd_config_mcq(hba);
8699 
8700 	/* Verify device initialization by sending NOP OUT UPIU */
8701 	ret = ufshcd_verify_dev_init(hba);
8702 	if (ret)
8703 		return ret;
8704 
8705 	/* Initiate UFS initialization, and waiting until completion */
8706 	ret = ufshcd_complete_dev_init(hba);
8707 	if (ret)
8708 		return ret;
8709 
8710 	/*
8711 	 * Initialize UFS device parameters used by driver, these
8712 	 * parameters are associated with UFS descriptors.
8713 	 */
8714 	if (init_dev_params) {
8715 		ret = ufshcd_device_params_init(hba);
8716 		if (ret)
8717 			return ret;
8718 		if (is_mcq_supported(hba) && !hba->scsi_host_added) {
8719 			ret = ufshcd_alloc_mcq(hba);
8720 			if (!ret) {
8721 				ufshcd_config_mcq(hba);
8722 			} else {
8723 				/* Continue with SDB mode */
8724 				use_mcq_mode = false;
8725 				dev_err(hba->dev, "MCQ mode is disabled, err=%d\n",
8726 					 ret);
8727 			}
8728 			ret = scsi_add_host(host, hba->dev);
8729 			if (ret) {
8730 				dev_err(hba->dev, "scsi_add_host failed\n");
8731 				return ret;
8732 			}
8733 			hba->scsi_host_added = true;
8734 		} else if (is_mcq_supported(hba)) {
8735 			/* UFSHCD_QUIRK_REINIT_AFTER_MAX_GEAR_SWITCH is set */
8736 			ufshcd_config_mcq(hba);
8737 		}
8738 	}
8739 
8740 	ufshcd_tune_unipro_params(hba);
8741 
8742 	/* UFS device is also active now */
8743 	ufshcd_set_ufs_dev_active(hba);
8744 	ufshcd_force_reset_auto_bkops(hba);
8745 
8746 	ufshcd_set_timestamp_attr(hba);
8747 	schedule_delayed_work(&hba->ufs_rtc_update_work,
8748 			      msecs_to_jiffies(UFS_RTC_UPDATE_INTERVAL_MS));
8749 
8750 	/* Gear up to HS gear if supported */
8751 	if (hba->max_pwr_info.is_valid) {
8752 		/*
8753 		 * Set the right value to bRefClkFreq before attempting to
8754 		 * switch to HS gears.
8755 		 */
8756 		if (hba->dev_ref_clk_freq != REF_CLK_FREQ_INVAL)
8757 			ufshcd_set_dev_ref_clk(hba);
8758 		ret = ufshcd_config_pwr_mode(hba, &hba->max_pwr_info.info);
8759 		if (ret) {
8760 			dev_err(hba->dev, "%s: Failed setting power mode, err = %d\n",
8761 					__func__, ret);
8762 			return ret;
8763 		}
8764 	}
8765 
8766 	return 0;
8767 }
8768 
8769 /**
8770  * ufshcd_probe_hba - probe hba to detect device and initialize it
8771  * @hba: per-adapter instance
8772  * @init_dev_params: whether or not to call ufshcd_device_params_init().
8773  *
8774  * Execute link-startup and verify device initialization
8775  *
8776  * Return: 0 upon success; < 0 upon failure.
8777  */
8778 static int ufshcd_probe_hba(struct ufs_hba *hba, bool init_dev_params)
8779 {
8780 	ktime_t start = ktime_get();
8781 	unsigned long flags;
8782 	int ret;
8783 
8784 	ret = ufshcd_device_init(hba, init_dev_params);
8785 	if (ret)
8786 		goto out;
8787 
8788 	if (!hba->pm_op_in_progress &&
8789 	    (hba->quirks & UFSHCD_QUIRK_REINIT_AFTER_MAX_GEAR_SWITCH)) {
8790 		/* Reset the device and controller before doing reinit */
8791 		ufshcd_device_reset(hba);
8792 		ufshcd_hba_stop(hba);
8793 		ufshcd_vops_reinit_notify(hba);
8794 		ret = ufshcd_hba_enable(hba);
8795 		if (ret) {
8796 			dev_err(hba->dev, "Host controller enable failed\n");
8797 			ufshcd_print_evt_hist(hba);
8798 			ufshcd_print_host_state(hba);
8799 			goto out;
8800 		}
8801 
8802 		/* Reinit the device */
8803 		ret = ufshcd_device_init(hba, init_dev_params);
8804 		if (ret)
8805 			goto out;
8806 	}
8807 
8808 	ufshcd_print_pwr_info(hba);
8809 
8810 	/*
8811 	 * bActiveICCLevel is volatile for UFS device (as per latest v2.1 spec)
8812 	 * and for removable UFS card as well, hence always set the parameter.
8813 	 * Note: Error handler may issue the device reset hence resetting
8814 	 * bActiveICCLevel as well so it is always safe to set this here.
8815 	 */
8816 	ufshcd_set_active_icc_lvl(hba);
8817 
8818 	/* Enable UFS Write Booster if supported */
8819 	ufshcd_configure_wb(hba);
8820 
8821 	if (hba->ee_usr_mask)
8822 		ufshcd_write_ee_control(hba);
8823 	ufshcd_configure_auto_hibern8(hba);
8824 
8825 out:
8826 	spin_lock_irqsave(hba->host->host_lock, flags);
8827 	if (ret)
8828 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
8829 	else if (hba->ufshcd_state == UFSHCD_STATE_RESET)
8830 		hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
8831 	spin_unlock_irqrestore(hba->host->host_lock, flags);
8832 
8833 	trace_ufshcd_init(dev_name(hba->dev), ret,
8834 		ktime_to_us(ktime_sub(ktime_get(), start)),
8835 		hba->curr_dev_pwr_mode, hba->uic_link_state);
8836 	return ret;
8837 }
8838 
8839 /**
8840  * ufshcd_async_scan - asynchronous execution for probing hba
8841  * @data: data pointer to pass to this function
8842  * @cookie: cookie data
8843  */
8844 static void ufshcd_async_scan(void *data, async_cookie_t cookie)
8845 {
8846 	struct ufs_hba *hba = (struct ufs_hba *)data;
8847 	int ret;
8848 
8849 	down(&hba->host_sem);
8850 	/* Initialize hba, detect and initialize UFS device */
8851 	ret = ufshcd_probe_hba(hba, true);
8852 	up(&hba->host_sem);
8853 	if (ret)
8854 		goto out;
8855 
8856 	/* Probe and add UFS logical units  */
8857 	ret = ufshcd_add_lus(hba);
8858 
8859 out:
8860 	pm_runtime_put_sync(hba->dev);
8861 
8862 	if (ret)
8863 		dev_err(hba->dev, "%s failed: %d\n", __func__, ret);
8864 }
8865 
8866 static enum scsi_timeout_action ufshcd_eh_timed_out(struct scsi_cmnd *scmd)
8867 {
8868 	struct ufs_hba *hba = shost_priv(scmd->device->host);
8869 
8870 	if (!hba->system_suspending) {
8871 		/* Activate the error handler in the SCSI core. */
8872 		return SCSI_EH_NOT_HANDLED;
8873 	}
8874 
8875 	/*
8876 	 * If we get here we know that no TMFs are outstanding and also that
8877 	 * the only pending command is a START STOP UNIT command. Handle the
8878 	 * timeout of that command directly to prevent a deadlock between
8879 	 * ufshcd_set_dev_pwr_mode() and ufshcd_err_handler().
8880 	 */
8881 	ufshcd_link_recovery(hba);
8882 	dev_info(hba->dev, "%s() finished; outstanding_tasks = %#lx.\n",
8883 		 __func__, hba->outstanding_tasks);
8884 
8885 	return hba->outstanding_reqs ? SCSI_EH_RESET_TIMER : SCSI_EH_DONE;
8886 }
8887 
8888 static const struct attribute_group *ufshcd_driver_groups[] = {
8889 	&ufs_sysfs_unit_descriptor_group,
8890 	&ufs_sysfs_lun_attributes_group,
8891 	NULL,
8892 };
8893 
8894 static struct ufs_hba_variant_params ufs_hba_vps = {
8895 	.hba_enable_delay_us		= 1000,
8896 	.wb_flush_threshold		= UFS_WB_BUF_REMAIN_PERCENT(40),
8897 	.devfreq_profile.polling_ms	= 100,
8898 	.devfreq_profile.target		= ufshcd_devfreq_target,
8899 	.devfreq_profile.get_dev_status	= ufshcd_devfreq_get_dev_status,
8900 	.ondemand_data.upthreshold	= 70,
8901 	.ondemand_data.downdifferential	= 5,
8902 };
8903 
8904 static const struct scsi_host_template ufshcd_driver_template = {
8905 	.module			= THIS_MODULE,
8906 	.name			= UFSHCD,
8907 	.proc_name		= UFSHCD,
8908 	.map_queues		= ufshcd_map_queues,
8909 	.queuecommand		= ufshcd_queuecommand,
8910 	.mq_poll		= ufshcd_poll,
8911 	.slave_alloc		= ufshcd_slave_alloc,
8912 	.device_configure	= ufshcd_device_configure,
8913 	.slave_destroy		= ufshcd_slave_destroy,
8914 	.change_queue_depth	= ufshcd_change_queue_depth,
8915 	.eh_abort_handler	= ufshcd_abort,
8916 	.eh_device_reset_handler = ufshcd_eh_device_reset_handler,
8917 	.eh_host_reset_handler   = ufshcd_eh_host_reset_handler,
8918 	.eh_timed_out		= ufshcd_eh_timed_out,
8919 	.this_id		= -1,
8920 	.sg_tablesize		= SG_ALL,
8921 	.cmd_per_lun		= UFSHCD_CMD_PER_LUN,
8922 	.can_queue		= UFSHCD_CAN_QUEUE,
8923 	.max_segment_size	= PRDT_DATA_BYTE_COUNT_MAX,
8924 	.max_sectors		= SZ_1M / SECTOR_SIZE,
8925 	.max_host_blocked	= 1,
8926 	.track_queue_depth	= 1,
8927 	.skip_settle_delay	= 1,
8928 	.sdev_groups		= ufshcd_driver_groups,
8929 };
8930 
8931 static int ufshcd_config_vreg_load(struct device *dev, struct ufs_vreg *vreg,
8932 				   int ua)
8933 {
8934 	int ret;
8935 
8936 	if (!vreg)
8937 		return 0;
8938 
8939 	/*
8940 	 * "set_load" operation shall be required on those regulators
8941 	 * which specifically configured current limitation. Otherwise
8942 	 * zero max_uA may cause unexpected behavior when regulator is
8943 	 * enabled or set as high power mode.
8944 	 */
8945 	if (!vreg->max_uA)
8946 		return 0;
8947 
8948 	ret = regulator_set_load(vreg->reg, ua);
8949 	if (ret < 0) {
8950 		dev_err(dev, "%s: %s set load (ua=%d) failed, err=%d\n",
8951 				__func__, vreg->name, ua, ret);
8952 	}
8953 
8954 	return ret;
8955 }
8956 
8957 static inline int ufshcd_config_vreg_lpm(struct ufs_hba *hba,
8958 					 struct ufs_vreg *vreg)
8959 {
8960 	return ufshcd_config_vreg_load(hba->dev, vreg, UFS_VREG_LPM_LOAD_UA);
8961 }
8962 
8963 static inline int ufshcd_config_vreg_hpm(struct ufs_hba *hba,
8964 					 struct ufs_vreg *vreg)
8965 {
8966 	if (!vreg)
8967 		return 0;
8968 
8969 	return ufshcd_config_vreg_load(hba->dev, vreg, vreg->max_uA);
8970 }
8971 
8972 static int ufshcd_config_vreg(struct device *dev,
8973 		struct ufs_vreg *vreg, bool on)
8974 {
8975 	if (regulator_count_voltages(vreg->reg) <= 0)
8976 		return 0;
8977 
8978 	return ufshcd_config_vreg_load(dev, vreg, on ? vreg->max_uA : 0);
8979 }
8980 
8981 static int ufshcd_enable_vreg(struct device *dev, struct ufs_vreg *vreg)
8982 {
8983 	int ret = 0;
8984 
8985 	if (!vreg || vreg->enabled)
8986 		goto out;
8987 
8988 	ret = ufshcd_config_vreg(dev, vreg, true);
8989 	if (!ret)
8990 		ret = regulator_enable(vreg->reg);
8991 
8992 	if (!ret)
8993 		vreg->enabled = true;
8994 	else
8995 		dev_err(dev, "%s: %s enable failed, err=%d\n",
8996 				__func__, vreg->name, ret);
8997 out:
8998 	return ret;
8999 }
9000 
9001 static int ufshcd_disable_vreg(struct device *dev, struct ufs_vreg *vreg)
9002 {
9003 	int ret = 0;
9004 
9005 	if (!vreg || !vreg->enabled || vreg->always_on)
9006 		goto out;
9007 
9008 	ret = regulator_disable(vreg->reg);
9009 
9010 	if (!ret) {
9011 		/* ignore errors on applying disable config */
9012 		ufshcd_config_vreg(dev, vreg, false);
9013 		vreg->enabled = false;
9014 	} else {
9015 		dev_err(dev, "%s: %s disable failed, err=%d\n",
9016 				__func__, vreg->name, ret);
9017 	}
9018 out:
9019 	return ret;
9020 }
9021 
9022 static int ufshcd_setup_vreg(struct ufs_hba *hba, bool on)
9023 {
9024 	int ret = 0;
9025 	struct device *dev = hba->dev;
9026 	struct ufs_vreg_info *info = &hba->vreg_info;
9027 
9028 	ret = ufshcd_toggle_vreg(dev, info->vcc, on);
9029 	if (ret)
9030 		goto out;
9031 
9032 	ret = ufshcd_toggle_vreg(dev, info->vccq, on);
9033 	if (ret)
9034 		goto out;
9035 
9036 	ret = ufshcd_toggle_vreg(dev, info->vccq2, on);
9037 
9038 out:
9039 	if (ret) {
9040 		ufshcd_toggle_vreg(dev, info->vccq2, false);
9041 		ufshcd_toggle_vreg(dev, info->vccq, false);
9042 		ufshcd_toggle_vreg(dev, info->vcc, false);
9043 	}
9044 	return ret;
9045 }
9046 
9047 static int ufshcd_setup_hba_vreg(struct ufs_hba *hba, bool on)
9048 {
9049 	struct ufs_vreg_info *info = &hba->vreg_info;
9050 
9051 	return ufshcd_toggle_vreg(hba->dev, info->vdd_hba, on);
9052 }
9053 
9054 int ufshcd_get_vreg(struct device *dev, struct ufs_vreg *vreg)
9055 {
9056 	int ret = 0;
9057 
9058 	if (!vreg)
9059 		goto out;
9060 
9061 	vreg->reg = devm_regulator_get(dev, vreg->name);
9062 	if (IS_ERR(vreg->reg)) {
9063 		ret = PTR_ERR(vreg->reg);
9064 		dev_err(dev, "%s: %s get failed, err=%d\n",
9065 				__func__, vreg->name, ret);
9066 	}
9067 out:
9068 	return ret;
9069 }
9070 EXPORT_SYMBOL_GPL(ufshcd_get_vreg);
9071 
9072 static int ufshcd_init_vreg(struct ufs_hba *hba)
9073 {
9074 	int ret = 0;
9075 	struct device *dev = hba->dev;
9076 	struct ufs_vreg_info *info = &hba->vreg_info;
9077 
9078 	ret = ufshcd_get_vreg(dev, info->vcc);
9079 	if (ret)
9080 		goto out;
9081 
9082 	ret = ufshcd_get_vreg(dev, info->vccq);
9083 	if (!ret)
9084 		ret = ufshcd_get_vreg(dev, info->vccq2);
9085 out:
9086 	return ret;
9087 }
9088 
9089 static int ufshcd_init_hba_vreg(struct ufs_hba *hba)
9090 {
9091 	struct ufs_vreg_info *info = &hba->vreg_info;
9092 
9093 	return ufshcd_get_vreg(hba->dev, info->vdd_hba);
9094 }
9095 
9096 static int ufshcd_setup_clocks(struct ufs_hba *hba, bool on)
9097 {
9098 	int ret = 0;
9099 	struct ufs_clk_info *clki;
9100 	struct list_head *head = &hba->clk_list_head;
9101 	unsigned long flags;
9102 	ktime_t start = ktime_get();
9103 	bool clk_state_changed = false;
9104 
9105 	if (list_empty(head))
9106 		goto out;
9107 
9108 	ret = ufshcd_vops_setup_clocks(hba, on, PRE_CHANGE);
9109 	if (ret)
9110 		return ret;
9111 
9112 	list_for_each_entry(clki, head, list) {
9113 		if (!IS_ERR_OR_NULL(clki->clk)) {
9114 			/*
9115 			 * Don't disable clocks which are needed
9116 			 * to keep the link active.
9117 			 */
9118 			if (ufshcd_is_link_active(hba) &&
9119 			    clki->keep_link_active)
9120 				continue;
9121 
9122 			clk_state_changed = on ^ clki->enabled;
9123 			if (on && !clki->enabled) {
9124 				ret = clk_prepare_enable(clki->clk);
9125 				if (ret) {
9126 					dev_err(hba->dev, "%s: %s prepare enable failed, %d\n",
9127 						__func__, clki->name, ret);
9128 					goto out;
9129 				}
9130 			} else if (!on && clki->enabled) {
9131 				clk_disable_unprepare(clki->clk);
9132 			}
9133 			clki->enabled = on;
9134 			dev_dbg(hba->dev, "%s: clk: %s %sabled\n", __func__,
9135 					clki->name, on ? "en" : "dis");
9136 		}
9137 	}
9138 
9139 	ret = ufshcd_vops_setup_clocks(hba, on, POST_CHANGE);
9140 	if (ret)
9141 		return ret;
9142 
9143 	if (!ufshcd_is_clkscaling_supported(hba))
9144 		ufshcd_pm_qos_update(hba, on);
9145 out:
9146 	if (ret) {
9147 		list_for_each_entry(clki, head, list) {
9148 			if (!IS_ERR_OR_NULL(clki->clk) && clki->enabled)
9149 				clk_disable_unprepare(clki->clk);
9150 		}
9151 	} else if (!ret && on) {
9152 		spin_lock_irqsave(hba->host->host_lock, flags);
9153 		hba->clk_gating.state = CLKS_ON;
9154 		trace_ufshcd_clk_gating(dev_name(hba->dev),
9155 					hba->clk_gating.state);
9156 		spin_unlock_irqrestore(hba->host->host_lock, flags);
9157 	}
9158 
9159 	if (clk_state_changed)
9160 		trace_ufshcd_profile_clk_gating(dev_name(hba->dev),
9161 			(on ? "on" : "off"),
9162 			ktime_to_us(ktime_sub(ktime_get(), start)), ret);
9163 	return ret;
9164 }
9165 
9166 static enum ufs_ref_clk_freq ufshcd_parse_ref_clk_property(struct ufs_hba *hba)
9167 {
9168 	u32 freq;
9169 	int ret = device_property_read_u32(hba->dev, "ref-clk-freq", &freq);
9170 
9171 	if (ret) {
9172 		dev_dbg(hba->dev, "Cannot query 'ref-clk-freq' property = %d", ret);
9173 		return REF_CLK_FREQ_INVAL;
9174 	}
9175 
9176 	return ufs_get_bref_clk_from_hz(freq);
9177 }
9178 
9179 static int ufshcd_init_clocks(struct ufs_hba *hba)
9180 {
9181 	int ret = 0;
9182 	struct ufs_clk_info *clki;
9183 	struct device *dev = hba->dev;
9184 	struct list_head *head = &hba->clk_list_head;
9185 
9186 	if (list_empty(head))
9187 		goto out;
9188 
9189 	list_for_each_entry(clki, head, list) {
9190 		if (!clki->name)
9191 			continue;
9192 
9193 		clki->clk = devm_clk_get(dev, clki->name);
9194 		if (IS_ERR(clki->clk)) {
9195 			ret = PTR_ERR(clki->clk);
9196 			dev_err(dev, "%s: %s clk get failed, %d\n",
9197 					__func__, clki->name, ret);
9198 			goto out;
9199 		}
9200 
9201 		/*
9202 		 * Parse device ref clk freq as per device tree "ref_clk".
9203 		 * Default dev_ref_clk_freq is set to REF_CLK_FREQ_INVAL
9204 		 * in ufshcd_alloc_host().
9205 		 */
9206 		if (!strcmp(clki->name, "ref_clk"))
9207 			ufshcd_parse_dev_ref_clk_freq(hba, clki->clk);
9208 
9209 		if (clki->max_freq) {
9210 			ret = clk_set_rate(clki->clk, clki->max_freq);
9211 			if (ret) {
9212 				dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
9213 					__func__, clki->name,
9214 					clki->max_freq, ret);
9215 				goto out;
9216 			}
9217 			clki->curr_freq = clki->max_freq;
9218 		}
9219 		dev_dbg(dev, "%s: clk: %s, rate: %lu\n", __func__,
9220 				clki->name, clk_get_rate(clki->clk));
9221 	}
9222 
9223 	/* Set Max. frequency for all clocks */
9224 	if (hba->use_pm_opp) {
9225 		ret = ufshcd_opp_set_rate(hba, ULONG_MAX);
9226 		if (ret) {
9227 			dev_err(hba->dev, "%s: failed to set OPP: %d", __func__,
9228 				ret);
9229 			goto out;
9230 		}
9231 	}
9232 
9233 out:
9234 	return ret;
9235 }
9236 
9237 static int ufshcd_variant_hba_init(struct ufs_hba *hba)
9238 {
9239 	int err = 0;
9240 
9241 	if (!hba->vops)
9242 		goto out;
9243 
9244 	err = ufshcd_vops_init(hba);
9245 	if (err)
9246 		dev_err_probe(hba->dev, err,
9247 			      "%s: variant %s init failed with err %d\n",
9248 			      __func__, ufshcd_get_var_name(hba), err);
9249 out:
9250 	return err;
9251 }
9252 
9253 static void ufshcd_variant_hba_exit(struct ufs_hba *hba)
9254 {
9255 	if (!hba->vops)
9256 		return;
9257 
9258 	ufshcd_vops_exit(hba);
9259 }
9260 
9261 static int ufshcd_hba_init(struct ufs_hba *hba)
9262 {
9263 	int err;
9264 
9265 	/*
9266 	 * Handle host controller power separately from the UFS device power
9267 	 * rails as it will help controlling the UFS host controller power
9268 	 * collapse easily which is different than UFS device power collapse.
9269 	 * Also, enable the host controller power before we go ahead with rest
9270 	 * of the initialization here.
9271 	 */
9272 	err = ufshcd_init_hba_vreg(hba);
9273 	if (err)
9274 		goto out;
9275 
9276 	err = ufshcd_setup_hba_vreg(hba, true);
9277 	if (err)
9278 		goto out;
9279 
9280 	err = ufshcd_init_clocks(hba);
9281 	if (err)
9282 		goto out_disable_hba_vreg;
9283 
9284 	if (hba->dev_ref_clk_freq == REF_CLK_FREQ_INVAL)
9285 		hba->dev_ref_clk_freq = ufshcd_parse_ref_clk_property(hba);
9286 
9287 	err = ufshcd_setup_clocks(hba, true);
9288 	if (err)
9289 		goto out_disable_hba_vreg;
9290 
9291 	err = ufshcd_init_vreg(hba);
9292 	if (err)
9293 		goto out_disable_clks;
9294 
9295 	err = ufshcd_setup_vreg(hba, true);
9296 	if (err)
9297 		goto out_disable_clks;
9298 
9299 	err = ufshcd_variant_hba_init(hba);
9300 	if (err)
9301 		goto out_disable_vreg;
9302 
9303 	ufs_debugfs_hba_init(hba);
9304 	ufs_fault_inject_hba_init(hba);
9305 
9306 	hba->is_powered = true;
9307 	goto out;
9308 
9309 out_disable_vreg:
9310 	ufshcd_setup_vreg(hba, false);
9311 out_disable_clks:
9312 	ufshcd_setup_clocks(hba, false);
9313 out_disable_hba_vreg:
9314 	ufshcd_setup_hba_vreg(hba, false);
9315 out:
9316 	return err;
9317 }
9318 
9319 static void ufshcd_hba_exit(struct ufs_hba *hba)
9320 {
9321 	if (hba->is_powered) {
9322 		ufshcd_pm_qos_exit(hba);
9323 		ufshcd_exit_clk_scaling(hba);
9324 		ufshcd_exit_clk_gating(hba);
9325 		if (hba->eh_wq)
9326 			destroy_workqueue(hba->eh_wq);
9327 		ufs_debugfs_hba_exit(hba);
9328 		ufshcd_variant_hba_exit(hba);
9329 		ufshcd_setup_vreg(hba, false);
9330 		ufshcd_setup_clocks(hba, false);
9331 		ufshcd_setup_hba_vreg(hba, false);
9332 		hba->is_powered = false;
9333 		ufs_put_device_desc(hba);
9334 	}
9335 }
9336 
9337 static int ufshcd_execute_start_stop(struct scsi_device *sdev,
9338 				     enum ufs_dev_pwr_mode pwr_mode,
9339 				     struct scsi_sense_hdr *sshdr)
9340 {
9341 	const unsigned char cdb[6] = { START_STOP, 0, 0, 0, pwr_mode << 4, 0 };
9342 	struct scsi_failure failure_defs[] = {
9343 		{
9344 			.allowed = 2,
9345 			.result = SCMD_FAILURE_RESULT_ANY,
9346 		},
9347 	};
9348 	struct scsi_failures failures = {
9349 		.failure_definitions = failure_defs,
9350 	};
9351 	const struct scsi_exec_args args = {
9352 		.failures = &failures,
9353 		.sshdr = sshdr,
9354 		.req_flags = BLK_MQ_REQ_PM,
9355 		.scmd_flags = SCMD_FAIL_IF_RECOVERING,
9356 	};
9357 
9358 	return scsi_execute_cmd(sdev, cdb, REQ_OP_DRV_IN, /*buffer=*/NULL,
9359 			/*bufflen=*/0, /*timeout=*/10 * HZ, /*retries=*/0,
9360 			&args);
9361 }
9362 
9363 /**
9364  * ufshcd_set_dev_pwr_mode - sends START STOP UNIT command to set device
9365  *			     power mode
9366  * @hba: per adapter instance
9367  * @pwr_mode: device power mode to set
9368  *
9369  * Return: 0 if requested power mode is set successfully;
9370  *         < 0 if failed to set the requested power mode.
9371  */
9372 static int ufshcd_set_dev_pwr_mode(struct ufs_hba *hba,
9373 				     enum ufs_dev_pwr_mode pwr_mode)
9374 {
9375 	struct scsi_sense_hdr sshdr;
9376 	struct scsi_device *sdp;
9377 	unsigned long flags;
9378 	int ret;
9379 
9380 	spin_lock_irqsave(hba->host->host_lock, flags);
9381 	sdp = hba->ufs_device_wlun;
9382 	if (sdp && scsi_device_online(sdp))
9383 		ret = scsi_device_get(sdp);
9384 	else
9385 		ret = -ENODEV;
9386 	spin_unlock_irqrestore(hba->host->host_lock, flags);
9387 
9388 	if (ret)
9389 		return ret;
9390 
9391 	/*
9392 	 * If scsi commands fail, the scsi mid-layer schedules scsi error-
9393 	 * handling, which would wait for host to be resumed. Since we know
9394 	 * we are functional while we are here, skip host resume in error
9395 	 * handling context.
9396 	 */
9397 	hba->host->eh_noresume = 1;
9398 
9399 	/*
9400 	 * Current function would be generally called from the power management
9401 	 * callbacks hence set the RQF_PM flag so that it doesn't resume the
9402 	 * already suspended childs.
9403 	 */
9404 	ret = ufshcd_execute_start_stop(sdp, pwr_mode, &sshdr);
9405 	if (ret) {
9406 		sdev_printk(KERN_WARNING, sdp,
9407 			    "START_STOP failed for power mode: %d, result %x\n",
9408 			    pwr_mode, ret);
9409 		if (ret > 0) {
9410 			if (scsi_sense_valid(&sshdr))
9411 				scsi_print_sense_hdr(sdp, NULL, &sshdr);
9412 			ret = -EIO;
9413 		}
9414 	} else {
9415 		hba->curr_dev_pwr_mode = pwr_mode;
9416 	}
9417 
9418 	scsi_device_put(sdp);
9419 	hba->host->eh_noresume = 0;
9420 	return ret;
9421 }
9422 
9423 static int ufshcd_link_state_transition(struct ufs_hba *hba,
9424 					enum uic_link_state req_link_state,
9425 					bool check_for_bkops)
9426 {
9427 	int ret = 0;
9428 
9429 	if (req_link_state == hba->uic_link_state)
9430 		return 0;
9431 
9432 	if (req_link_state == UIC_LINK_HIBERN8_STATE) {
9433 		ret = ufshcd_uic_hibern8_enter(hba);
9434 		if (!ret) {
9435 			ufshcd_set_link_hibern8(hba);
9436 		} else {
9437 			dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
9438 					__func__, ret);
9439 			goto out;
9440 		}
9441 	}
9442 	/*
9443 	 * If autobkops is enabled, link can't be turned off because
9444 	 * turning off the link would also turn off the device, except in the
9445 	 * case of DeepSleep where the device is expected to remain powered.
9446 	 */
9447 	else if ((req_link_state == UIC_LINK_OFF_STATE) &&
9448 		 (!check_for_bkops || !hba->auto_bkops_enabled)) {
9449 		/*
9450 		 * Let's make sure that link is in low power mode, we are doing
9451 		 * this currently by putting the link in Hibern8. Otherway to
9452 		 * put the link in low power mode is to send the DME end point
9453 		 * to device and then send the DME reset command to local
9454 		 * unipro. But putting the link in hibern8 is much faster.
9455 		 *
9456 		 * Note also that putting the link in Hibern8 is a requirement
9457 		 * for entering DeepSleep.
9458 		 */
9459 		ret = ufshcd_uic_hibern8_enter(hba);
9460 		if (ret) {
9461 			dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
9462 					__func__, ret);
9463 			goto out;
9464 		}
9465 		/*
9466 		 * Change controller state to "reset state" which
9467 		 * should also put the link in off/reset state
9468 		 */
9469 		ufshcd_hba_stop(hba);
9470 		/*
9471 		 * TODO: Check if we need any delay to make sure that
9472 		 * controller is reset
9473 		 */
9474 		ufshcd_set_link_off(hba);
9475 	}
9476 
9477 out:
9478 	return ret;
9479 }
9480 
9481 static void ufshcd_vreg_set_lpm(struct ufs_hba *hba)
9482 {
9483 	bool vcc_off = false;
9484 
9485 	/*
9486 	 * It seems some UFS devices may keep drawing more than sleep current
9487 	 * (atleast for 500us) from UFS rails (especially from VCCQ rail).
9488 	 * To avoid this situation, add 2ms delay before putting these UFS
9489 	 * rails in LPM mode.
9490 	 */
9491 	if (!ufshcd_is_link_active(hba) &&
9492 	    hba->dev_quirks & UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM)
9493 		usleep_range(2000, 2100);
9494 
9495 	/*
9496 	 * If UFS device is either in UFS_Sleep turn off VCC rail to save some
9497 	 * power.
9498 	 *
9499 	 * If UFS device and link is in OFF state, all power supplies (VCC,
9500 	 * VCCQ, VCCQ2) can be turned off if power on write protect is not
9501 	 * required. If UFS link is inactive (Hibern8 or OFF state) and device
9502 	 * is in sleep state, put VCCQ & VCCQ2 rails in LPM mode.
9503 	 *
9504 	 * Ignore the error returned by ufshcd_toggle_vreg() as device is anyway
9505 	 * in low power state which would save some power.
9506 	 *
9507 	 * If Write Booster is enabled and the device needs to flush the WB
9508 	 * buffer OR if bkops status is urgent for WB, keep Vcc on.
9509 	 */
9510 	if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba) &&
9511 	    !hba->dev_info.is_lu_power_on_wp) {
9512 		ufshcd_setup_vreg(hba, false);
9513 		vcc_off = true;
9514 	} else if (!ufshcd_is_ufs_dev_active(hba)) {
9515 		ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, false);
9516 		vcc_off = true;
9517 		if (ufshcd_is_link_hibern8(hba) || ufshcd_is_link_off(hba)) {
9518 			ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq);
9519 			ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq2);
9520 		}
9521 	}
9522 
9523 	/*
9524 	 * Some UFS devices require delay after VCC power rail is turned-off.
9525 	 */
9526 	if (vcc_off && hba->vreg_info.vcc &&
9527 		hba->dev_quirks & UFS_DEVICE_QUIRK_DELAY_AFTER_LPM)
9528 		usleep_range(5000, 5100);
9529 }
9530 
9531 #ifdef CONFIG_PM
9532 static int ufshcd_vreg_set_hpm(struct ufs_hba *hba)
9533 {
9534 	int ret = 0;
9535 
9536 	if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba) &&
9537 	    !hba->dev_info.is_lu_power_on_wp) {
9538 		ret = ufshcd_setup_vreg(hba, true);
9539 	} else if (!ufshcd_is_ufs_dev_active(hba)) {
9540 		if (!ufshcd_is_link_active(hba)) {
9541 			ret = ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq);
9542 			if (ret)
9543 				goto vcc_disable;
9544 			ret = ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq2);
9545 			if (ret)
9546 				goto vccq_lpm;
9547 		}
9548 		ret = ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, true);
9549 	}
9550 	goto out;
9551 
9552 vccq_lpm:
9553 	ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq);
9554 vcc_disable:
9555 	ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, false);
9556 out:
9557 	return ret;
9558 }
9559 #endif /* CONFIG_PM */
9560 
9561 static void ufshcd_hba_vreg_set_lpm(struct ufs_hba *hba)
9562 {
9563 	if (ufshcd_is_link_off(hba) || ufshcd_can_aggressive_pc(hba))
9564 		ufshcd_setup_hba_vreg(hba, false);
9565 }
9566 
9567 static void ufshcd_hba_vreg_set_hpm(struct ufs_hba *hba)
9568 {
9569 	if (ufshcd_is_link_off(hba) || ufshcd_can_aggressive_pc(hba))
9570 		ufshcd_setup_hba_vreg(hba, true);
9571 }
9572 
9573 static int __ufshcd_wl_suspend(struct ufs_hba *hba, enum ufs_pm_op pm_op)
9574 {
9575 	int ret = 0;
9576 	bool check_for_bkops;
9577 	enum ufs_pm_level pm_lvl;
9578 	enum ufs_dev_pwr_mode req_dev_pwr_mode;
9579 	enum uic_link_state req_link_state;
9580 
9581 	hba->pm_op_in_progress = true;
9582 	if (pm_op != UFS_SHUTDOWN_PM) {
9583 		pm_lvl = pm_op == UFS_RUNTIME_PM ?
9584 			 hba->rpm_lvl : hba->spm_lvl;
9585 		req_dev_pwr_mode = ufs_get_pm_lvl_to_dev_pwr_mode(pm_lvl);
9586 		req_link_state = ufs_get_pm_lvl_to_link_pwr_state(pm_lvl);
9587 	} else {
9588 		req_dev_pwr_mode = UFS_POWERDOWN_PWR_MODE;
9589 		req_link_state = UIC_LINK_OFF_STATE;
9590 	}
9591 
9592 	/*
9593 	 * If we can't transition into any of the low power modes
9594 	 * just gate the clocks.
9595 	 */
9596 	ufshcd_hold(hba);
9597 	hba->clk_gating.is_suspended = true;
9598 
9599 	if (ufshcd_is_clkscaling_supported(hba))
9600 		ufshcd_clk_scaling_suspend(hba, true);
9601 
9602 	if (req_dev_pwr_mode == UFS_ACTIVE_PWR_MODE &&
9603 			req_link_state == UIC_LINK_ACTIVE_STATE) {
9604 		goto vops_suspend;
9605 	}
9606 
9607 	if ((req_dev_pwr_mode == hba->curr_dev_pwr_mode) &&
9608 	    (req_link_state == hba->uic_link_state))
9609 		goto enable_scaling;
9610 
9611 	/* UFS device & link must be active before we enter in this function */
9612 	if (!ufshcd_is_ufs_dev_active(hba) || !ufshcd_is_link_active(hba)) {
9613 		/*  Wait err handler finish or trigger err recovery */
9614 		if (!ufshcd_eh_in_progress(hba))
9615 			ufshcd_force_error_recovery(hba);
9616 		ret = -EBUSY;
9617 		goto enable_scaling;
9618 	}
9619 
9620 	if (pm_op == UFS_RUNTIME_PM) {
9621 		if (ufshcd_can_autobkops_during_suspend(hba)) {
9622 			/*
9623 			 * The device is idle with no requests in the queue,
9624 			 * allow background operations if bkops status shows
9625 			 * that performance might be impacted.
9626 			 */
9627 			ret = ufshcd_urgent_bkops(hba);
9628 			if (ret) {
9629 				/*
9630 				 * If return err in suspend flow, IO will hang.
9631 				 * Trigger error handler and break suspend for
9632 				 * error recovery.
9633 				 */
9634 				ufshcd_force_error_recovery(hba);
9635 				ret = -EBUSY;
9636 				goto enable_scaling;
9637 			}
9638 		} else {
9639 			/* make sure that auto bkops is disabled */
9640 			ufshcd_disable_auto_bkops(hba);
9641 		}
9642 		/*
9643 		 * If device needs to do BKOP or WB buffer flush during
9644 		 * Hibern8, keep device power mode as "active power mode"
9645 		 * and VCC supply.
9646 		 */
9647 		hba->dev_info.b_rpm_dev_flush_capable =
9648 			hba->auto_bkops_enabled ||
9649 			(((req_link_state == UIC_LINK_HIBERN8_STATE) ||
9650 			((req_link_state == UIC_LINK_ACTIVE_STATE) &&
9651 			ufshcd_is_auto_hibern8_enabled(hba))) &&
9652 			ufshcd_wb_need_flush(hba));
9653 	}
9654 
9655 	flush_work(&hba->eeh_work);
9656 
9657 	ret = ufshcd_vops_suspend(hba, pm_op, PRE_CHANGE);
9658 	if (ret)
9659 		goto enable_scaling;
9660 
9661 	if (req_dev_pwr_mode != hba->curr_dev_pwr_mode) {
9662 		if (pm_op != UFS_RUNTIME_PM)
9663 			/* ensure that bkops is disabled */
9664 			ufshcd_disable_auto_bkops(hba);
9665 
9666 		if (!hba->dev_info.b_rpm_dev_flush_capable) {
9667 			ret = ufshcd_set_dev_pwr_mode(hba, req_dev_pwr_mode);
9668 			if (ret && pm_op != UFS_SHUTDOWN_PM) {
9669 				/*
9670 				 * If return err in suspend flow, IO will hang.
9671 				 * Trigger error handler and break suspend for
9672 				 * error recovery.
9673 				 */
9674 				ufshcd_force_error_recovery(hba);
9675 				ret = -EBUSY;
9676 			}
9677 			if (ret)
9678 				goto enable_scaling;
9679 		}
9680 	}
9681 
9682 	/*
9683 	 * In the case of DeepSleep, the device is expected to remain powered
9684 	 * with the link off, so do not check for bkops.
9685 	 */
9686 	check_for_bkops = !ufshcd_is_ufs_dev_deepsleep(hba);
9687 	ret = ufshcd_link_state_transition(hba, req_link_state, check_for_bkops);
9688 	if (ret && pm_op != UFS_SHUTDOWN_PM) {
9689 		/*
9690 		 * If return err in suspend flow, IO will hang.
9691 		 * Trigger error handler and break suspend for
9692 		 * error recovery.
9693 		 */
9694 		ufshcd_force_error_recovery(hba);
9695 		ret = -EBUSY;
9696 	}
9697 	if (ret)
9698 		goto set_dev_active;
9699 
9700 vops_suspend:
9701 	/*
9702 	 * Call vendor specific suspend callback. As these callbacks may access
9703 	 * vendor specific host controller register space call them before the
9704 	 * host clocks are ON.
9705 	 */
9706 	ret = ufshcd_vops_suspend(hba, pm_op, POST_CHANGE);
9707 	if (ret)
9708 		goto set_link_active;
9709 
9710 	cancel_delayed_work_sync(&hba->ufs_rtc_update_work);
9711 	goto out;
9712 
9713 set_link_active:
9714 	/*
9715 	 * Device hardware reset is required to exit DeepSleep. Also, for
9716 	 * DeepSleep, the link is off so host reset and restore will be done
9717 	 * further below.
9718 	 */
9719 	if (ufshcd_is_ufs_dev_deepsleep(hba)) {
9720 		ufshcd_device_reset(hba);
9721 		WARN_ON(!ufshcd_is_link_off(hba));
9722 	}
9723 	if (ufshcd_is_link_hibern8(hba) && !ufshcd_uic_hibern8_exit(hba))
9724 		ufshcd_set_link_active(hba);
9725 	else if (ufshcd_is_link_off(hba))
9726 		ufshcd_host_reset_and_restore(hba);
9727 set_dev_active:
9728 	/* Can also get here needing to exit DeepSleep */
9729 	if (ufshcd_is_ufs_dev_deepsleep(hba)) {
9730 		ufshcd_device_reset(hba);
9731 		ufshcd_host_reset_and_restore(hba);
9732 	}
9733 	if (!ufshcd_set_dev_pwr_mode(hba, UFS_ACTIVE_PWR_MODE))
9734 		ufshcd_disable_auto_bkops(hba);
9735 enable_scaling:
9736 	if (ufshcd_is_clkscaling_supported(hba))
9737 		ufshcd_clk_scaling_suspend(hba, false);
9738 
9739 	hba->dev_info.b_rpm_dev_flush_capable = false;
9740 out:
9741 	if (hba->dev_info.b_rpm_dev_flush_capable) {
9742 		schedule_delayed_work(&hba->rpm_dev_flush_recheck_work,
9743 			msecs_to_jiffies(RPM_DEV_FLUSH_RECHECK_WORK_DELAY_MS));
9744 	}
9745 
9746 	if (ret) {
9747 		ufshcd_update_evt_hist(hba, UFS_EVT_WL_SUSP_ERR, (u32)ret);
9748 		hba->clk_gating.is_suspended = false;
9749 		ufshcd_release(hba);
9750 	}
9751 	hba->pm_op_in_progress = false;
9752 	return ret;
9753 }
9754 
9755 #ifdef CONFIG_PM
9756 static int __ufshcd_wl_resume(struct ufs_hba *hba, enum ufs_pm_op pm_op)
9757 {
9758 	int ret;
9759 	enum uic_link_state old_link_state = hba->uic_link_state;
9760 
9761 	hba->pm_op_in_progress = true;
9762 
9763 	/*
9764 	 * Call vendor specific resume callback. As these callbacks may access
9765 	 * vendor specific host controller register space call them when the
9766 	 * host clocks are ON.
9767 	 */
9768 	ret = ufshcd_vops_resume(hba, pm_op);
9769 	if (ret)
9770 		goto out;
9771 
9772 	/* For DeepSleep, the only supported option is to have the link off */
9773 	WARN_ON(ufshcd_is_ufs_dev_deepsleep(hba) && !ufshcd_is_link_off(hba));
9774 
9775 	if (ufshcd_is_link_hibern8(hba)) {
9776 		ret = ufshcd_uic_hibern8_exit(hba);
9777 		if (!ret) {
9778 			ufshcd_set_link_active(hba);
9779 		} else {
9780 			dev_err(hba->dev, "%s: hibern8 exit failed %d\n",
9781 					__func__, ret);
9782 			goto vendor_suspend;
9783 		}
9784 	} else if (ufshcd_is_link_off(hba)) {
9785 		/*
9786 		 * A full initialization of the host and the device is
9787 		 * required since the link was put to off during suspend.
9788 		 * Note, in the case of DeepSleep, the device will exit
9789 		 * DeepSleep due to device reset.
9790 		 */
9791 		ret = ufshcd_reset_and_restore(hba);
9792 		/*
9793 		 * ufshcd_reset_and_restore() should have already
9794 		 * set the link state as active
9795 		 */
9796 		if (ret || !ufshcd_is_link_active(hba))
9797 			goto vendor_suspend;
9798 	}
9799 
9800 	if (!ufshcd_is_ufs_dev_active(hba)) {
9801 		ret = ufshcd_set_dev_pwr_mode(hba, UFS_ACTIVE_PWR_MODE);
9802 		if (ret)
9803 			goto set_old_link_state;
9804 		ufshcd_set_timestamp_attr(hba);
9805 		schedule_delayed_work(&hba->ufs_rtc_update_work,
9806 				      msecs_to_jiffies(UFS_RTC_UPDATE_INTERVAL_MS));
9807 	}
9808 
9809 	if (ufshcd_keep_autobkops_enabled_except_suspend(hba))
9810 		ufshcd_enable_auto_bkops(hba);
9811 	else
9812 		/*
9813 		 * If BKOPs operations are urgently needed at this moment then
9814 		 * keep auto-bkops enabled or else disable it.
9815 		 */
9816 		ufshcd_urgent_bkops(hba);
9817 
9818 	if (hba->ee_usr_mask)
9819 		ufshcd_write_ee_control(hba);
9820 
9821 	if (ufshcd_is_clkscaling_supported(hba))
9822 		ufshcd_clk_scaling_suspend(hba, false);
9823 
9824 	if (hba->dev_info.b_rpm_dev_flush_capable) {
9825 		hba->dev_info.b_rpm_dev_flush_capable = false;
9826 		cancel_delayed_work(&hba->rpm_dev_flush_recheck_work);
9827 	}
9828 
9829 	ufshcd_configure_auto_hibern8(hba);
9830 
9831 	goto out;
9832 
9833 set_old_link_state:
9834 	ufshcd_link_state_transition(hba, old_link_state, 0);
9835 vendor_suspend:
9836 	ufshcd_vops_suspend(hba, pm_op, PRE_CHANGE);
9837 	ufshcd_vops_suspend(hba, pm_op, POST_CHANGE);
9838 out:
9839 	if (ret)
9840 		ufshcd_update_evt_hist(hba, UFS_EVT_WL_RES_ERR, (u32)ret);
9841 	hba->clk_gating.is_suspended = false;
9842 	ufshcd_release(hba);
9843 	hba->pm_op_in_progress = false;
9844 	return ret;
9845 }
9846 
9847 static int ufshcd_wl_runtime_suspend(struct device *dev)
9848 {
9849 	struct scsi_device *sdev = to_scsi_device(dev);
9850 	struct ufs_hba *hba;
9851 	int ret;
9852 	ktime_t start = ktime_get();
9853 
9854 	hba = shost_priv(sdev->host);
9855 
9856 	ret = __ufshcd_wl_suspend(hba, UFS_RUNTIME_PM);
9857 	if (ret)
9858 		dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
9859 
9860 	trace_ufshcd_wl_runtime_suspend(dev_name(dev), ret,
9861 		ktime_to_us(ktime_sub(ktime_get(), start)),
9862 		hba->curr_dev_pwr_mode, hba->uic_link_state);
9863 
9864 	return ret;
9865 }
9866 
9867 static int ufshcd_wl_runtime_resume(struct device *dev)
9868 {
9869 	struct scsi_device *sdev = to_scsi_device(dev);
9870 	struct ufs_hba *hba;
9871 	int ret = 0;
9872 	ktime_t start = ktime_get();
9873 
9874 	hba = shost_priv(sdev->host);
9875 
9876 	ret = __ufshcd_wl_resume(hba, UFS_RUNTIME_PM);
9877 	if (ret)
9878 		dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
9879 
9880 	trace_ufshcd_wl_runtime_resume(dev_name(dev), ret,
9881 		ktime_to_us(ktime_sub(ktime_get(), start)),
9882 		hba->curr_dev_pwr_mode, hba->uic_link_state);
9883 
9884 	return ret;
9885 }
9886 #endif
9887 
9888 #ifdef CONFIG_PM_SLEEP
9889 static int ufshcd_wl_suspend(struct device *dev)
9890 {
9891 	struct scsi_device *sdev = to_scsi_device(dev);
9892 	struct ufs_hba *hba;
9893 	int ret = 0;
9894 	ktime_t start = ktime_get();
9895 
9896 	hba = shost_priv(sdev->host);
9897 	down(&hba->host_sem);
9898 	hba->system_suspending = true;
9899 
9900 	if (pm_runtime_suspended(dev))
9901 		goto out;
9902 
9903 	ret = __ufshcd_wl_suspend(hba, UFS_SYSTEM_PM);
9904 	if (ret) {
9905 		dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__,  ret);
9906 		up(&hba->host_sem);
9907 	}
9908 
9909 out:
9910 	if (!ret)
9911 		hba->is_sys_suspended = true;
9912 	trace_ufshcd_wl_suspend(dev_name(dev), ret,
9913 		ktime_to_us(ktime_sub(ktime_get(), start)),
9914 		hba->curr_dev_pwr_mode, hba->uic_link_state);
9915 
9916 	return ret;
9917 }
9918 
9919 static int ufshcd_wl_resume(struct device *dev)
9920 {
9921 	struct scsi_device *sdev = to_scsi_device(dev);
9922 	struct ufs_hba *hba;
9923 	int ret = 0;
9924 	ktime_t start = ktime_get();
9925 
9926 	hba = shost_priv(sdev->host);
9927 
9928 	if (pm_runtime_suspended(dev))
9929 		goto out;
9930 
9931 	ret = __ufshcd_wl_resume(hba, UFS_SYSTEM_PM);
9932 	if (ret)
9933 		dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
9934 out:
9935 	trace_ufshcd_wl_resume(dev_name(dev), ret,
9936 		ktime_to_us(ktime_sub(ktime_get(), start)),
9937 		hba->curr_dev_pwr_mode, hba->uic_link_state);
9938 	if (!ret)
9939 		hba->is_sys_suspended = false;
9940 	hba->system_suspending = false;
9941 	up(&hba->host_sem);
9942 	return ret;
9943 }
9944 #endif
9945 
9946 /**
9947  * ufshcd_suspend - helper function for suspend operations
9948  * @hba: per adapter instance
9949  *
9950  * This function will put disable irqs, turn off clocks
9951  * and set vreg and hba-vreg in lpm mode.
9952  *
9953  * Return: 0 upon success; < 0 upon failure.
9954  */
9955 static int ufshcd_suspend(struct ufs_hba *hba)
9956 {
9957 	int ret;
9958 
9959 	if (!hba->is_powered)
9960 		return 0;
9961 	/*
9962 	 * Disable the host irq as host controller as there won't be any
9963 	 * host controller transaction expected till resume.
9964 	 */
9965 	ufshcd_disable_irq(hba);
9966 	ret = ufshcd_setup_clocks(hba, false);
9967 	if (ret) {
9968 		ufshcd_enable_irq(hba);
9969 		return ret;
9970 	}
9971 	if (ufshcd_is_clkgating_allowed(hba)) {
9972 		hba->clk_gating.state = CLKS_OFF;
9973 		trace_ufshcd_clk_gating(dev_name(hba->dev),
9974 					hba->clk_gating.state);
9975 	}
9976 
9977 	ufshcd_vreg_set_lpm(hba);
9978 	/* Put the host controller in low power mode if possible */
9979 	ufshcd_hba_vreg_set_lpm(hba);
9980 	ufshcd_pm_qos_update(hba, false);
9981 	return ret;
9982 }
9983 
9984 #ifdef CONFIG_PM
9985 /**
9986  * ufshcd_resume - helper function for resume operations
9987  * @hba: per adapter instance
9988  *
9989  * This function basically turns on the regulators, clocks and
9990  * irqs of the hba.
9991  *
9992  * Return: 0 for success and non-zero for failure.
9993  */
9994 static int ufshcd_resume(struct ufs_hba *hba)
9995 {
9996 	int ret;
9997 
9998 	if (!hba->is_powered)
9999 		return 0;
10000 
10001 	ufshcd_hba_vreg_set_hpm(hba);
10002 	ret = ufshcd_vreg_set_hpm(hba);
10003 	if (ret)
10004 		goto out;
10005 
10006 	/* Make sure clocks are enabled before accessing controller */
10007 	ret = ufshcd_setup_clocks(hba, true);
10008 	if (ret)
10009 		goto disable_vreg;
10010 
10011 	/* enable the host irq as host controller would be active soon */
10012 	ufshcd_enable_irq(hba);
10013 
10014 	goto out;
10015 
10016 disable_vreg:
10017 	ufshcd_vreg_set_lpm(hba);
10018 out:
10019 	if (ret)
10020 		ufshcd_update_evt_hist(hba, UFS_EVT_RESUME_ERR, (u32)ret);
10021 	return ret;
10022 }
10023 #endif /* CONFIG_PM */
10024 
10025 #ifdef CONFIG_PM_SLEEP
10026 /**
10027  * ufshcd_system_suspend - system suspend callback
10028  * @dev: Device associated with the UFS controller.
10029  *
10030  * Executed before putting the system into a sleep state in which the contents
10031  * of main memory are preserved.
10032  *
10033  * Return: 0 for success and non-zero for failure.
10034  */
10035 int ufshcd_system_suspend(struct device *dev)
10036 {
10037 	struct ufs_hba *hba = dev_get_drvdata(dev);
10038 	int ret = 0;
10039 	ktime_t start = ktime_get();
10040 
10041 	if (pm_runtime_suspended(hba->dev))
10042 		goto out;
10043 
10044 	ret = ufshcd_suspend(hba);
10045 out:
10046 	trace_ufshcd_system_suspend(dev_name(hba->dev), ret,
10047 		ktime_to_us(ktime_sub(ktime_get(), start)),
10048 		hba->curr_dev_pwr_mode, hba->uic_link_state);
10049 	return ret;
10050 }
10051 EXPORT_SYMBOL(ufshcd_system_suspend);
10052 
10053 /**
10054  * ufshcd_system_resume - system resume callback
10055  * @dev: Device associated with the UFS controller.
10056  *
10057  * Executed after waking the system up from a sleep state in which the contents
10058  * of main memory were preserved.
10059  *
10060  * Return: 0 for success and non-zero for failure.
10061  */
10062 int ufshcd_system_resume(struct device *dev)
10063 {
10064 	struct ufs_hba *hba = dev_get_drvdata(dev);
10065 	ktime_t start = ktime_get();
10066 	int ret = 0;
10067 
10068 	if (pm_runtime_suspended(hba->dev))
10069 		goto out;
10070 
10071 	ret = ufshcd_resume(hba);
10072 
10073 out:
10074 	trace_ufshcd_system_resume(dev_name(hba->dev), ret,
10075 		ktime_to_us(ktime_sub(ktime_get(), start)),
10076 		hba->curr_dev_pwr_mode, hba->uic_link_state);
10077 
10078 	return ret;
10079 }
10080 EXPORT_SYMBOL(ufshcd_system_resume);
10081 #endif /* CONFIG_PM_SLEEP */
10082 
10083 #ifdef CONFIG_PM
10084 /**
10085  * ufshcd_runtime_suspend - runtime suspend callback
10086  * @dev: Device associated with the UFS controller.
10087  *
10088  * Check the description of ufshcd_suspend() function for more details.
10089  *
10090  * Return: 0 for success and non-zero for failure.
10091  */
10092 int ufshcd_runtime_suspend(struct device *dev)
10093 {
10094 	struct ufs_hba *hba = dev_get_drvdata(dev);
10095 	int ret;
10096 	ktime_t start = ktime_get();
10097 
10098 	ret = ufshcd_suspend(hba);
10099 
10100 	trace_ufshcd_runtime_suspend(dev_name(hba->dev), ret,
10101 		ktime_to_us(ktime_sub(ktime_get(), start)),
10102 		hba->curr_dev_pwr_mode, hba->uic_link_state);
10103 	return ret;
10104 }
10105 EXPORT_SYMBOL(ufshcd_runtime_suspend);
10106 
10107 /**
10108  * ufshcd_runtime_resume - runtime resume routine
10109  * @dev: Device associated with the UFS controller.
10110  *
10111  * This function basically brings controller
10112  * to active state. Following operations are done in this function:
10113  *
10114  * 1. Turn on all the controller related clocks
10115  * 2. Turn ON VCC rail
10116  *
10117  * Return: 0 upon success; < 0 upon failure.
10118  */
10119 int ufshcd_runtime_resume(struct device *dev)
10120 {
10121 	struct ufs_hba *hba = dev_get_drvdata(dev);
10122 	int ret;
10123 	ktime_t start = ktime_get();
10124 
10125 	ret = ufshcd_resume(hba);
10126 
10127 	trace_ufshcd_runtime_resume(dev_name(hba->dev), ret,
10128 		ktime_to_us(ktime_sub(ktime_get(), start)),
10129 		hba->curr_dev_pwr_mode, hba->uic_link_state);
10130 	return ret;
10131 }
10132 EXPORT_SYMBOL(ufshcd_runtime_resume);
10133 #endif /* CONFIG_PM */
10134 
10135 static void ufshcd_wl_shutdown(struct device *dev)
10136 {
10137 	struct scsi_device *sdev = to_scsi_device(dev);
10138 	struct ufs_hba *hba = shost_priv(sdev->host);
10139 
10140 	down(&hba->host_sem);
10141 	hba->shutting_down = true;
10142 	up(&hba->host_sem);
10143 
10144 	/* Turn on everything while shutting down */
10145 	ufshcd_rpm_get_sync(hba);
10146 	scsi_device_quiesce(sdev);
10147 	shost_for_each_device(sdev, hba->host) {
10148 		if (sdev == hba->ufs_device_wlun)
10149 			continue;
10150 		scsi_device_quiesce(sdev);
10151 	}
10152 	__ufshcd_wl_suspend(hba, UFS_SHUTDOWN_PM);
10153 
10154 	/*
10155 	 * Next, turn off the UFS controller and the UFS regulators. Disable
10156 	 * clocks.
10157 	 */
10158 	if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba))
10159 		ufshcd_suspend(hba);
10160 
10161 	hba->is_powered = false;
10162 }
10163 
10164 /**
10165  * ufshcd_remove - de-allocate SCSI host and host memory space
10166  *		data structure memory
10167  * @hba: per adapter instance
10168  */
10169 void ufshcd_remove(struct ufs_hba *hba)
10170 {
10171 	if (hba->ufs_device_wlun)
10172 		ufshcd_rpm_get_sync(hba);
10173 	ufs_hwmon_remove(hba);
10174 	ufs_bsg_remove(hba);
10175 	ufs_sysfs_remove_nodes(hba->dev);
10176 	blk_mq_destroy_queue(hba->tmf_queue);
10177 	blk_put_queue(hba->tmf_queue);
10178 	blk_mq_free_tag_set(&hba->tmf_tag_set);
10179 	scsi_remove_host(hba->host);
10180 	/* disable interrupts */
10181 	ufshcd_disable_intr(hba, hba->intr_mask);
10182 	ufshcd_hba_stop(hba);
10183 	ufshcd_hba_exit(hba);
10184 }
10185 EXPORT_SYMBOL_GPL(ufshcd_remove);
10186 
10187 #ifdef CONFIG_PM_SLEEP
10188 int ufshcd_system_freeze(struct device *dev)
10189 {
10190 
10191 	return ufshcd_system_suspend(dev);
10192 
10193 }
10194 EXPORT_SYMBOL_GPL(ufshcd_system_freeze);
10195 
10196 int ufshcd_system_restore(struct device *dev)
10197 {
10198 
10199 	struct ufs_hba *hba = dev_get_drvdata(dev);
10200 	int ret;
10201 
10202 	ret = ufshcd_system_resume(dev);
10203 	if (ret)
10204 		return ret;
10205 
10206 	/* Configure UTRL and UTMRL base address registers */
10207 	ufshcd_writel(hba, lower_32_bits(hba->utrdl_dma_addr),
10208 			REG_UTP_TRANSFER_REQ_LIST_BASE_L);
10209 	ufshcd_writel(hba, upper_32_bits(hba->utrdl_dma_addr),
10210 			REG_UTP_TRANSFER_REQ_LIST_BASE_H);
10211 	ufshcd_writel(hba, lower_32_bits(hba->utmrdl_dma_addr),
10212 			REG_UTP_TASK_REQ_LIST_BASE_L);
10213 	ufshcd_writel(hba, upper_32_bits(hba->utmrdl_dma_addr),
10214 			REG_UTP_TASK_REQ_LIST_BASE_H);
10215 	/*
10216 	 * Make sure that UTRL and UTMRL base address registers
10217 	 * are updated with the latest queue addresses. Only after
10218 	 * updating these addresses, we can queue the new commands.
10219 	 */
10220 	ufshcd_readl(hba, REG_UTP_TASK_REQ_LIST_BASE_H);
10221 
10222 	/* Resuming from hibernate, assume that link was OFF */
10223 	ufshcd_set_link_off(hba);
10224 
10225 	return 0;
10226 
10227 }
10228 EXPORT_SYMBOL_GPL(ufshcd_system_restore);
10229 
10230 int ufshcd_system_thaw(struct device *dev)
10231 {
10232 	return ufshcd_system_resume(dev);
10233 }
10234 EXPORT_SYMBOL_GPL(ufshcd_system_thaw);
10235 #endif /* CONFIG_PM_SLEEP  */
10236 
10237 /**
10238  * ufshcd_dealloc_host - deallocate Host Bus Adapter (HBA)
10239  * @hba: pointer to Host Bus Adapter (HBA)
10240  */
10241 void ufshcd_dealloc_host(struct ufs_hba *hba)
10242 {
10243 	scsi_host_put(hba->host);
10244 }
10245 EXPORT_SYMBOL_GPL(ufshcd_dealloc_host);
10246 
10247 /**
10248  * ufshcd_set_dma_mask - Set dma mask based on the controller
10249  *			 addressing capability
10250  * @hba: per adapter instance
10251  *
10252  * Return: 0 for success, non-zero for failure.
10253  */
10254 static int ufshcd_set_dma_mask(struct ufs_hba *hba)
10255 {
10256 	if (hba->capabilities & MASK_64_ADDRESSING_SUPPORT) {
10257 		if (!dma_set_mask_and_coherent(hba->dev, DMA_BIT_MASK(64)))
10258 			return 0;
10259 	}
10260 	return dma_set_mask_and_coherent(hba->dev, DMA_BIT_MASK(32));
10261 }
10262 
10263 /**
10264  * ufshcd_alloc_host - allocate Host Bus Adapter (HBA)
10265  * @dev: pointer to device handle
10266  * @hba_handle: driver private handle
10267  *
10268  * Return: 0 on success, non-zero value on failure.
10269  */
10270 int ufshcd_alloc_host(struct device *dev, struct ufs_hba **hba_handle)
10271 {
10272 	struct Scsi_Host *host;
10273 	struct ufs_hba *hba;
10274 	int err = 0;
10275 
10276 	if (!dev) {
10277 		dev_err(dev,
10278 		"Invalid memory reference for dev is NULL\n");
10279 		err = -ENODEV;
10280 		goto out_error;
10281 	}
10282 
10283 	host = scsi_host_alloc(&ufshcd_driver_template,
10284 				sizeof(struct ufs_hba));
10285 	if (!host) {
10286 		dev_err(dev, "scsi_host_alloc failed\n");
10287 		err = -ENOMEM;
10288 		goto out_error;
10289 	}
10290 	host->nr_maps = HCTX_TYPE_POLL + 1;
10291 	hba = shost_priv(host);
10292 	hba->host = host;
10293 	hba->dev = dev;
10294 	hba->dev_ref_clk_freq = REF_CLK_FREQ_INVAL;
10295 	hba->nop_out_timeout = NOP_OUT_TIMEOUT;
10296 	ufshcd_set_sg_entry_size(hba, sizeof(struct ufshcd_sg_entry));
10297 	INIT_LIST_HEAD(&hba->clk_list_head);
10298 	spin_lock_init(&hba->outstanding_lock);
10299 
10300 	*hba_handle = hba;
10301 
10302 out_error:
10303 	return err;
10304 }
10305 EXPORT_SYMBOL(ufshcd_alloc_host);
10306 
10307 /* This function exists because blk_mq_alloc_tag_set() requires this. */
10308 static blk_status_t ufshcd_queue_tmf(struct blk_mq_hw_ctx *hctx,
10309 				     const struct blk_mq_queue_data *qd)
10310 {
10311 	WARN_ON_ONCE(true);
10312 	return BLK_STS_NOTSUPP;
10313 }
10314 
10315 static const struct blk_mq_ops ufshcd_tmf_ops = {
10316 	.queue_rq = ufshcd_queue_tmf,
10317 };
10318 
10319 /**
10320  * ufshcd_init - Driver initialization routine
10321  * @hba: per-adapter instance
10322  * @mmio_base: base register address
10323  * @irq: Interrupt line of device
10324  *
10325  * Return: 0 on success, non-zero value on failure.
10326  */
10327 int ufshcd_init(struct ufs_hba *hba, void __iomem *mmio_base, unsigned int irq)
10328 {
10329 	int err;
10330 	struct Scsi_Host *host = hba->host;
10331 	struct device *dev = hba->dev;
10332 	char eh_wq_name[sizeof("ufs_eh_wq_00")];
10333 
10334 	/*
10335 	 * dev_set_drvdata() must be called before any callbacks are registered
10336 	 * that use dev_get_drvdata() (frequency scaling, clock scaling, hwmon,
10337 	 * sysfs).
10338 	 */
10339 	dev_set_drvdata(dev, hba);
10340 
10341 	if (!mmio_base) {
10342 		dev_err(hba->dev,
10343 		"Invalid memory reference for mmio_base is NULL\n");
10344 		err = -ENODEV;
10345 		goto out_error;
10346 	}
10347 
10348 	hba->mmio_base = mmio_base;
10349 	hba->irq = irq;
10350 	hba->vps = &ufs_hba_vps;
10351 
10352 	err = ufshcd_hba_init(hba);
10353 	if (err)
10354 		goto out_error;
10355 
10356 	/* Read capabilities registers */
10357 	err = ufshcd_hba_capabilities(hba);
10358 	if (err)
10359 		goto out_disable;
10360 
10361 	/* Get UFS version supported by the controller */
10362 	hba->ufs_version = ufshcd_get_ufs_version(hba);
10363 
10364 	/* Get Interrupt bit mask per version */
10365 	hba->intr_mask = ufshcd_get_intr_mask(hba);
10366 
10367 	err = ufshcd_set_dma_mask(hba);
10368 	if (err) {
10369 		dev_err(hba->dev, "set dma mask failed\n");
10370 		goto out_disable;
10371 	}
10372 
10373 	/* Allocate memory for host memory space */
10374 	err = ufshcd_memory_alloc(hba);
10375 	if (err) {
10376 		dev_err(hba->dev, "Memory allocation failed\n");
10377 		goto out_disable;
10378 	}
10379 
10380 	/* Configure LRB */
10381 	ufshcd_host_memory_configure(hba);
10382 
10383 	host->can_queue = hba->nutrs - UFSHCD_NUM_RESERVED;
10384 	host->cmd_per_lun = hba->nutrs - UFSHCD_NUM_RESERVED;
10385 	host->max_id = UFSHCD_MAX_ID;
10386 	host->max_lun = UFS_MAX_LUNS;
10387 	host->max_channel = UFSHCD_MAX_CHANNEL;
10388 	host->unique_id = host->host_no;
10389 	host->max_cmd_len = UFS_CDB_SIZE;
10390 	host->queuecommand_may_block = !!(hba->caps & UFSHCD_CAP_CLK_GATING);
10391 
10392 	/* Use default RPM delay if host not set */
10393 	if (host->rpm_autosuspend_delay == 0)
10394 		host->rpm_autosuspend_delay = RPM_AUTOSUSPEND_DELAY_MS;
10395 
10396 	hba->max_pwr_info.is_valid = false;
10397 
10398 	/* Initialize work queues */
10399 	snprintf(eh_wq_name, sizeof(eh_wq_name), "ufs_eh_wq_%d",
10400 		 hba->host->host_no);
10401 	hba->eh_wq = create_singlethread_workqueue(eh_wq_name);
10402 	if (!hba->eh_wq) {
10403 		dev_err(hba->dev, "%s: failed to create eh workqueue\n",
10404 			__func__);
10405 		err = -ENOMEM;
10406 		goto out_disable;
10407 	}
10408 	INIT_WORK(&hba->eh_work, ufshcd_err_handler);
10409 	INIT_WORK(&hba->eeh_work, ufshcd_exception_event_handler);
10410 
10411 	sema_init(&hba->host_sem, 1);
10412 
10413 	/* Initialize UIC command mutex */
10414 	mutex_init(&hba->uic_cmd_mutex);
10415 
10416 	/* Initialize mutex for device management commands */
10417 	mutex_init(&hba->dev_cmd.lock);
10418 
10419 	/* Initialize mutex for exception event control */
10420 	mutex_init(&hba->ee_ctrl_mutex);
10421 
10422 	mutex_init(&hba->wb_mutex);
10423 	init_rwsem(&hba->clk_scaling_lock);
10424 
10425 	ufshcd_init_clk_gating(hba);
10426 
10427 	ufshcd_init_clk_scaling(hba);
10428 
10429 	/*
10430 	 * In order to avoid any spurious interrupt immediately after
10431 	 * registering UFS controller interrupt handler, clear any pending UFS
10432 	 * interrupt status and disable all the UFS interrupts.
10433 	 */
10434 	ufshcd_writel(hba, ufshcd_readl(hba, REG_INTERRUPT_STATUS),
10435 		      REG_INTERRUPT_STATUS);
10436 	ufshcd_writel(hba, 0, REG_INTERRUPT_ENABLE);
10437 	/*
10438 	 * Make sure that UFS interrupts are disabled and any pending interrupt
10439 	 * status is cleared before registering UFS interrupt handler.
10440 	 */
10441 	ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
10442 
10443 	/* IRQ registration */
10444 	err = devm_request_irq(dev, irq, ufshcd_intr, IRQF_SHARED, UFSHCD, hba);
10445 	if (err) {
10446 		dev_err(hba->dev, "request irq failed\n");
10447 		goto out_disable;
10448 	} else {
10449 		hba->is_irq_enabled = true;
10450 	}
10451 
10452 	if (!is_mcq_supported(hba)) {
10453 		err = scsi_add_host(host, hba->dev);
10454 		if (err) {
10455 			dev_err(hba->dev, "scsi_add_host failed\n");
10456 			goto out_disable;
10457 		}
10458 	}
10459 
10460 	hba->tmf_tag_set = (struct blk_mq_tag_set) {
10461 		.nr_hw_queues	= 1,
10462 		.queue_depth	= hba->nutmrs,
10463 		.ops		= &ufshcd_tmf_ops,
10464 		.flags		= BLK_MQ_F_NO_SCHED,
10465 	};
10466 	err = blk_mq_alloc_tag_set(&hba->tmf_tag_set);
10467 	if (err < 0)
10468 		goto out_remove_scsi_host;
10469 	hba->tmf_queue = blk_mq_alloc_queue(&hba->tmf_tag_set, NULL, NULL);
10470 	if (IS_ERR(hba->tmf_queue)) {
10471 		err = PTR_ERR(hba->tmf_queue);
10472 		goto free_tmf_tag_set;
10473 	}
10474 	hba->tmf_rqs = devm_kcalloc(hba->dev, hba->nutmrs,
10475 				    sizeof(*hba->tmf_rqs), GFP_KERNEL);
10476 	if (!hba->tmf_rqs) {
10477 		err = -ENOMEM;
10478 		goto free_tmf_queue;
10479 	}
10480 
10481 	/* Reset the attached device */
10482 	ufshcd_device_reset(hba);
10483 
10484 	ufshcd_init_crypto(hba);
10485 
10486 	/* Host controller enable */
10487 	err = ufshcd_hba_enable(hba);
10488 	if (err) {
10489 		dev_err(hba->dev, "Host controller enable failed\n");
10490 		ufshcd_print_evt_hist(hba);
10491 		ufshcd_print_host_state(hba);
10492 		goto free_tmf_queue;
10493 	}
10494 
10495 	/*
10496 	 * Set the default power management level for runtime and system PM.
10497 	 * Default power saving mode is to keep UFS link in Hibern8 state
10498 	 * and UFS device in sleep state.
10499 	 */
10500 	hba->rpm_lvl = ufs_get_desired_pm_lvl_for_dev_link_state(
10501 						UFS_SLEEP_PWR_MODE,
10502 						UIC_LINK_HIBERN8_STATE);
10503 	hba->spm_lvl = ufs_get_desired_pm_lvl_for_dev_link_state(
10504 						UFS_SLEEP_PWR_MODE,
10505 						UIC_LINK_HIBERN8_STATE);
10506 
10507 	INIT_DELAYED_WORK(&hba->rpm_dev_flush_recheck_work, ufshcd_rpm_dev_flush_recheck_work);
10508 	INIT_DELAYED_WORK(&hba->ufs_rtc_update_work, ufshcd_rtc_work);
10509 
10510 	/* Set the default auto-hiberate idle timer value to 150 ms */
10511 	if (ufshcd_is_auto_hibern8_supported(hba) && !hba->ahit) {
10512 		hba->ahit = FIELD_PREP(UFSHCI_AHIBERN8_TIMER_MASK, 150) |
10513 			    FIELD_PREP(UFSHCI_AHIBERN8_SCALE_MASK, 3);
10514 	}
10515 
10516 	/* Hold auto suspend until async scan completes */
10517 	pm_runtime_get_sync(dev);
10518 	atomic_set(&hba->scsi_block_reqs_cnt, 0);
10519 	/*
10520 	 * We are assuming that device wasn't put in sleep/power-down
10521 	 * state exclusively during the boot stage before kernel.
10522 	 * This assumption helps avoid doing link startup twice during
10523 	 * ufshcd_probe_hba().
10524 	 */
10525 	ufshcd_set_ufs_dev_active(hba);
10526 
10527 	async_schedule(ufshcd_async_scan, hba);
10528 	ufs_sysfs_add_nodes(hba->dev);
10529 
10530 	device_enable_async_suspend(dev);
10531 	ufshcd_pm_qos_init(hba);
10532 	return 0;
10533 
10534 free_tmf_queue:
10535 	blk_mq_destroy_queue(hba->tmf_queue);
10536 	blk_put_queue(hba->tmf_queue);
10537 free_tmf_tag_set:
10538 	blk_mq_free_tag_set(&hba->tmf_tag_set);
10539 out_remove_scsi_host:
10540 	scsi_remove_host(hba->host);
10541 out_disable:
10542 	hba->is_irq_enabled = false;
10543 	ufshcd_hba_exit(hba);
10544 out_error:
10545 	return err;
10546 }
10547 EXPORT_SYMBOL_GPL(ufshcd_init);
10548 
10549 void ufshcd_resume_complete(struct device *dev)
10550 {
10551 	struct ufs_hba *hba = dev_get_drvdata(dev);
10552 
10553 	if (hba->complete_put) {
10554 		ufshcd_rpm_put(hba);
10555 		hba->complete_put = false;
10556 	}
10557 }
10558 EXPORT_SYMBOL_GPL(ufshcd_resume_complete);
10559 
10560 static bool ufshcd_rpm_ok_for_spm(struct ufs_hba *hba)
10561 {
10562 	struct device *dev = &hba->ufs_device_wlun->sdev_gendev;
10563 	enum ufs_dev_pwr_mode dev_pwr_mode;
10564 	enum uic_link_state link_state;
10565 	unsigned long flags;
10566 	bool res;
10567 
10568 	spin_lock_irqsave(&dev->power.lock, flags);
10569 	dev_pwr_mode = ufs_get_pm_lvl_to_dev_pwr_mode(hba->spm_lvl);
10570 	link_state = ufs_get_pm_lvl_to_link_pwr_state(hba->spm_lvl);
10571 	res = pm_runtime_suspended(dev) &&
10572 	      hba->curr_dev_pwr_mode == dev_pwr_mode &&
10573 	      hba->uic_link_state == link_state &&
10574 	      !hba->dev_info.b_rpm_dev_flush_capable;
10575 	spin_unlock_irqrestore(&dev->power.lock, flags);
10576 
10577 	return res;
10578 }
10579 
10580 int __ufshcd_suspend_prepare(struct device *dev, bool rpm_ok_for_spm)
10581 {
10582 	struct ufs_hba *hba = dev_get_drvdata(dev);
10583 	int ret;
10584 
10585 	/*
10586 	 * SCSI assumes that runtime-pm and system-pm for scsi drivers
10587 	 * are same. And it doesn't wake up the device for system-suspend
10588 	 * if it's runtime suspended. But ufs doesn't follow that.
10589 	 * Refer ufshcd_resume_complete()
10590 	 */
10591 	if (hba->ufs_device_wlun) {
10592 		/* Prevent runtime suspend */
10593 		ufshcd_rpm_get_noresume(hba);
10594 		/*
10595 		 * Check if already runtime suspended in same state as system
10596 		 * suspend would be.
10597 		 */
10598 		if (!rpm_ok_for_spm || !ufshcd_rpm_ok_for_spm(hba)) {
10599 			/* RPM state is not ok for SPM, so runtime resume */
10600 			ret = ufshcd_rpm_resume(hba);
10601 			if (ret < 0 && ret != -EACCES) {
10602 				ufshcd_rpm_put(hba);
10603 				return ret;
10604 			}
10605 		}
10606 		hba->complete_put = true;
10607 	}
10608 	return 0;
10609 }
10610 EXPORT_SYMBOL_GPL(__ufshcd_suspend_prepare);
10611 
10612 int ufshcd_suspend_prepare(struct device *dev)
10613 {
10614 	return __ufshcd_suspend_prepare(dev, true);
10615 }
10616 EXPORT_SYMBOL_GPL(ufshcd_suspend_prepare);
10617 
10618 #ifdef CONFIG_PM_SLEEP
10619 static int ufshcd_wl_poweroff(struct device *dev)
10620 {
10621 	struct scsi_device *sdev = to_scsi_device(dev);
10622 	struct ufs_hba *hba = shost_priv(sdev->host);
10623 
10624 	__ufshcd_wl_suspend(hba, UFS_SHUTDOWN_PM);
10625 	return 0;
10626 }
10627 #endif
10628 
10629 static int ufshcd_wl_probe(struct device *dev)
10630 {
10631 	struct scsi_device *sdev = to_scsi_device(dev);
10632 
10633 	if (!is_device_wlun(sdev))
10634 		return -ENODEV;
10635 
10636 	blk_pm_runtime_init(sdev->request_queue, dev);
10637 	pm_runtime_set_autosuspend_delay(dev, 0);
10638 	pm_runtime_allow(dev);
10639 
10640 	return  0;
10641 }
10642 
10643 static int ufshcd_wl_remove(struct device *dev)
10644 {
10645 	pm_runtime_forbid(dev);
10646 	return 0;
10647 }
10648 
10649 static const struct dev_pm_ops ufshcd_wl_pm_ops = {
10650 #ifdef CONFIG_PM_SLEEP
10651 	.suspend = ufshcd_wl_suspend,
10652 	.resume = ufshcd_wl_resume,
10653 	.freeze = ufshcd_wl_suspend,
10654 	.thaw = ufshcd_wl_resume,
10655 	.poweroff = ufshcd_wl_poweroff,
10656 	.restore = ufshcd_wl_resume,
10657 #endif
10658 	SET_RUNTIME_PM_OPS(ufshcd_wl_runtime_suspend, ufshcd_wl_runtime_resume, NULL)
10659 };
10660 
10661 static void ufshcd_check_header_layout(void)
10662 {
10663 	/*
10664 	 * gcc compilers before version 10 cannot do constant-folding for
10665 	 * sub-byte bitfields. Hence skip the layout checks for gcc 9 and
10666 	 * before.
10667 	 */
10668 	if (IS_ENABLED(CONFIG_CC_IS_GCC) && CONFIG_GCC_VERSION < 100000)
10669 		return;
10670 
10671 	BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10672 				.cci = 3})[0] != 3);
10673 
10674 	BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10675 				.ehs_length = 2})[1] != 2);
10676 
10677 	BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10678 				.enable_crypto = 1})[2]
10679 		     != 0x80);
10680 
10681 	BUILD_BUG_ON((((u8 *)&(struct request_desc_header){
10682 					.command_type = 5,
10683 					.data_direction = 3,
10684 					.interrupt = 1,
10685 				})[3]) != ((5 << 4) | (3 << 1) | 1));
10686 
10687 	BUILD_BUG_ON(((__le32 *)&(struct request_desc_header){
10688 				.dunl = cpu_to_le32(0xdeadbeef)})[1] !=
10689 		cpu_to_le32(0xdeadbeef));
10690 
10691 	BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10692 				.ocs = 4})[8] != 4);
10693 
10694 	BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10695 				.cds = 5})[9] != 5);
10696 
10697 	BUILD_BUG_ON(((__le32 *)&(struct request_desc_header){
10698 				.dunu = cpu_to_le32(0xbadcafe)})[3] !=
10699 		cpu_to_le32(0xbadcafe));
10700 
10701 	BUILD_BUG_ON(((u8 *)&(struct utp_upiu_header){
10702 			     .iid = 0xf })[4] != 0xf0);
10703 
10704 	BUILD_BUG_ON(((u8 *)&(struct utp_upiu_header){
10705 			     .command_set_type = 0xf })[4] != 0xf);
10706 }
10707 
10708 /*
10709  * ufs_dev_wlun_template - describes ufs device wlun
10710  * ufs-device wlun - used to send pm commands
10711  * All luns are consumers of ufs-device wlun.
10712  *
10713  * Currently, no sd driver is present for wluns.
10714  * Hence the no specific pm operations are performed.
10715  * With ufs design, SSU should be sent to ufs-device wlun.
10716  * Hence register a scsi driver for ufs wluns only.
10717  */
10718 static struct scsi_driver ufs_dev_wlun_template = {
10719 	.gendrv = {
10720 		.name = "ufs_device_wlun",
10721 		.probe = ufshcd_wl_probe,
10722 		.remove = ufshcd_wl_remove,
10723 		.pm = &ufshcd_wl_pm_ops,
10724 		.shutdown = ufshcd_wl_shutdown,
10725 	},
10726 };
10727 
10728 static int __init ufshcd_core_init(void)
10729 {
10730 	int ret;
10731 
10732 	ufshcd_check_header_layout();
10733 
10734 	ufs_debugfs_init();
10735 
10736 	ret = scsi_register_driver(&ufs_dev_wlun_template.gendrv);
10737 	if (ret)
10738 		ufs_debugfs_exit();
10739 	return ret;
10740 }
10741 
10742 static void __exit ufshcd_core_exit(void)
10743 {
10744 	ufs_debugfs_exit();
10745 	scsi_unregister_driver(&ufs_dev_wlun_template.gendrv);
10746 }
10747 
10748 module_init(ufshcd_core_init);
10749 module_exit(ufshcd_core_exit);
10750 
10751 MODULE_AUTHOR("Santosh Yaragnavi <santosh.sy@samsung.com>");
10752 MODULE_AUTHOR("Vinayak Holikatti <h.vinayak@samsung.com>");
10753 MODULE_DESCRIPTION("Generic UFS host controller driver Core");
10754 MODULE_SOFTDEP("pre: governor_simpleondemand");
10755 MODULE_LICENSE("GPL");
10756