xref: /linux/drivers/ufs/core/ufshcd.c (revision 55a42f78ffd386e01a5404419f8c5ded7db70a21)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Universal Flash Storage Host controller driver Core
4  * Copyright (C) 2011-2013 Samsung India Software Operations
5  * Copyright (c) 2013-2016, The Linux Foundation. All rights reserved.
6  *
7  * Authors:
8  *	Santosh Yaraganavi <santosh.sy@samsung.com>
9  *	Vinayak Holikatti <h.vinayak@samsung.com>
10  */
11 
12 #include <linux/async.h>
13 #include <linux/devfreq.h>
14 #include <linux/nls.h>
15 #include <linux/of.h>
16 #include <linux/bitfield.h>
17 #include <linux/blk-pm.h>
18 #include <linux/blkdev.h>
19 #include <linux/clk.h>
20 #include <linux/delay.h>
21 #include <linux/interrupt.h>
22 #include <linux/module.h>
23 #include <linux/pm_opp.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/sched/clock.h>
26 #include <linux/iopoll.h>
27 #include <scsi/scsi_cmnd.h>
28 #include <scsi/scsi_dbg.h>
29 #include <scsi/scsi_driver.h>
30 #include <scsi/scsi_eh.h>
31 #include "ufshcd-priv.h"
32 #include <ufs/ufs_quirks.h>
33 #include <ufs/unipro.h>
34 #include "ufs-sysfs.h"
35 #include "ufs-debugfs.h"
36 #include "ufs-fault-injection.h"
37 #include "ufs_bsg.h"
38 #include "ufshcd-crypto.h"
39 #include <linux/unaligned.h>
40 
41 #define CREATE_TRACE_POINTS
42 #include "ufs_trace.h"
43 
44 #define UFSHCD_ENABLE_INTRS	(UTP_TRANSFER_REQ_COMPL |\
45 				 UTP_TASK_REQ_COMPL |\
46 				 UFSHCD_ERROR_MASK)
47 
48 /* UIC command timeout, unit: ms */
49 enum {
50 	UIC_CMD_TIMEOUT_DEFAULT	= 500,
51 	UIC_CMD_TIMEOUT_MAX	= 5000,
52 };
53 /* NOP OUT retries waiting for NOP IN response */
54 #define NOP_OUT_RETRIES    10
55 /* Timeout after 50 msecs if NOP OUT hangs without response */
56 #define NOP_OUT_TIMEOUT    50 /* msecs */
57 
58 /* Query request retries */
59 #define QUERY_REQ_RETRIES 3
60 /* Query request timeout */
61 enum {
62 	QUERY_REQ_TIMEOUT_MIN     = 1,
63 	QUERY_REQ_TIMEOUT_DEFAULT = 1500,
64 	QUERY_REQ_TIMEOUT_MAX     = 30000
65 };
66 
67 /* Advanced RPMB request timeout */
68 #define ADVANCED_RPMB_REQ_TIMEOUT  3000 /* 3 seconds */
69 
70 /* Task management command timeout */
71 #define TM_CMD_TIMEOUT	100 /* msecs */
72 
73 /* maximum number of retries for a general UIC command  */
74 #define UFS_UIC_COMMAND_RETRIES 3
75 
76 /* maximum number of link-startup retries */
77 #define DME_LINKSTARTUP_RETRIES 3
78 
79 /* maximum number of reset retries before giving up */
80 #define MAX_HOST_RESET_RETRIES 5
81 
82 /* Maximum number of error handler retries before giving up */
83 #define MAX_ERR_HANDLER_RETRIES 5
84 
85 /* Expose the flag value from utp_upiu_query.value */
86 #define MASK_QUERY_UPIU_FLAG_LOC 0xFF
87 
88 /* Interrupt aggregation default timeout, unit: 40us */
89 #define INT_AGGR_DEF_TO	0x02
90 
91 /* default delay of autosuspend: 2000 ms */
92 #define RPM_AUTOSUSPEND_DELAY_MS 2000
93 
94 /* Default delay of RPM device flush delayed work */
95 #define RPM_DEV_FLUSH_RECHECK_WORK_DELAY_MS 5000
96 
97 /* Default value of wait time before gating device ref clock */
98 #define UFSHCD_REF_CLK_GATING_WAIT_US 0xFF /* microsecs */
99 
100 /* Polling time to wait for fDeviceInit */
101 #define FDEVICEINIT_COMPL_TIMEOUT 1500 /* millisecs */
102 
103 /* Default RTC update every 10 seconds */
104 #define UFS_RTC_UPDATE_INTERVAL_MS (10 * MSEC_PER_SEC)
105 
106 /* bMaxNumOfRTT is equal to two after device manufacturing */
107 #define DEFAULT_MAX_NUM_RTT 2
108 
109 /* UFSHC 4.0 compliant HC support this mode. */
110 static bool use_mcq_mode = true;
111 
112 static bool is_mcq_supported(struct ufs_hba *hba)
113 {
114 	return hba->mcq_sup && use_mcq_mode;
115 }
116 
117 module_param(use_mcq_mode, bool, 0644);
118 MODULE_PARM_DESC(use_mcq_mode, "Control MCQ mode for controllers starting from UFSHCI 4.0. 1 - enable MCQ, 0 - disable MCQ. MCQ is enabled by default");
119 
120 static unsigned int uic_cmd_timeout = UIC_CMD_TIMEOUT_DEFAULT;
121 
122 static int uic_cmd_timeout_set(const char *val, const struct kernel_param *kp)
123 {
124 	return param_set_uint_minmax(val, kp, UIC_CMD_TIMEOUT_DEFAULT,
125 				     UIC_CMD_TIMEOUT_MAX);
126 }
127 
128 static const struct kernel_param_ops uic_cmd_timeout_ops = {
129 	.set = uic_cmd_timeout_set,
130 	.get = param_get_uint,
131 };
132 
133 module_param_cb(uic_cmd_timeout, &uic_cmd_timeout_ops, &uic_cmd_timeout, 0644);
134 MODULE_PARM_DESC(uic_cmd_timeout,
135 		 "UFS UIC command timeout in milliseconds. Defaults to 500ms. Supported values range from 500ms to 5 seconds inclusively");
136 
137 static unsigned int dev_cmd_timeout = QUERY_REQ_TIMEOUT_DEFAULT;
138 
139 static int dev_cmd_timeout_set(const char *val, const struct kernel_param *kp)
140 {
141 	return param_set_uint_minmax(val, kp, QUERY_REQ_TIMEOUT_MIN,
142 				     QUERY_REQ_TIMEOUT_MAX);
143 }
144 
145 static const struct kernel_param_ops dev_cmd_timeout_ops = {
146 	.set = dev_cmd_timeout_set,
147 	.get = param_get_uint,
148 };
149 
150 module_param_cb(dev_cmd_timeout, &dev_cmd_timeout_ops, &dev_cmd_timeout, 0644);
151 MODULE_PARM_DESC(dev_cmd_timeout,
152 		 "UFS Device command timeout in milliseconds. Defaults to 1.5s. Supported values range from 1ms to 30 seconds inclusively");
153 
154 #define ufshcd_toggle_vreg(_dev, _vreg, _on)				\
155 	({                                                              \
156 		int _ret;                                               \
157 		if (_on)                                                \
158 			_ret = ufshcd_enable_vreg(_dev, _vreg);         \
159 		else                                                    \
160 			_ret = ufshcd_disable_vreg(_dev, _vreg);        \
161 		_ret;                                                   \
162 	})
163 
164 #define ufshcd_hex_dump(prefix_str, buf, len) do {                       \
165 	size_t __len = (len);                                            \
166 	print_hex_dump(KERN_ERR, prefix_str,                             \
167 		       __len > 4 ? DUMP_PREFIX_OFFSET : DUMP_PREFIX_NONE,\
168 		       16, 4, buf, __len, false);                        \
169 } while (0)
170 
171 int ufshcd_dump_regs(struct ufs_hba *hba, size_t offset, size_t len,
172 		     const char *prefix)
173 {
174 	u32 *regs;
175 	size_t pos;
176 
177 	if (offset % 4 != 0 || len % 4 != 0) /* keep readl happy */
178 		return -EINVAL;
179 
180 	regs = kzalloc(len, GFP_ATOMIC);
181 	if (!regs)
182 		return -ENOMEM;
183 
184 	for (pos = 0; pos < len; pos += 4) {
185 		if (offset == 0 &&
186 		    pos >= REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER &&
187 		    pos <= REG_UIC_ERROR_CODE_DME)
188 			continue;
189 		regs[pos / 4] = ufshcd_readl(hba, offset + pos);
190 	}
191 
192 	ufshcd_hex_dump(prefix, regs, len);
193 	kfree(regs);
194 
195 	return 0;
196 }
197 EXPORT_SYMBOL_GPL(ufshcd_dump_regs);
198 
199 enum {
200 	UFSHCD_MAX_CHANNEL	= 0,
201 	UFSHCD_MAX_ID		= 1,
202 };
203 
204 static const char *const ufshcd_state_name[] = {
205 	[UFSHCD_STATE_RESET]			= "reset",
206 	[UFSHCD_STATE_OPERATIONAL]		= "operational",
207 	[UFSHCD_STATE_ERROR]			= "error",
208 	[UFSHCD_STATE_EH_SCHEDULED_FATAL]	= "eh_fatal",
209 	[UFSHCD_STATE_EH_SCHEDULED_NON_FATAL]	= "eh_non_fatal",
210 };
211 
212 /* UFSHCD error handling flags */
213 enum {
214 	UFSHCD_EH_IN_PROGRESS = (1 << 0),
215 };
216 
217 /* UFSHCD UIC layer error flags */
218 enum {
219 	UFSHCD_UIC_DL_PA_INIT_ERROR = (1 << 0), /* Data link layer error */
220 	UFSHCD_UIC_DL_NAC_RECEIVED_ERROR = (1 << 1), /* Data link layer error */
221 	UFSHCD_UIC_DL_TCx_REPLAY_ERROR = (1 << 2), /* Data link layer error */
222 	UFSHCD_UIC_NL_ERROR = (1 << 3), /* Network layer error */
223 	UFSHCD_UIC_TL_ERROR = (1 << 4), /* Transport Layer error */
224 	UFSHCD_UIC_DME_ERROR = (1 << 5), /* DME error */
225 	UFSHCD_UIC_PA_GENERIC_ERROR = (1 << 6), /* Generic PA error */
226 };
227 
228 #define ufshcd_set_eh_in_progress(h) \
229 	((h)->eh_flags |= UFSHCD_EH_IN_PROGRESS)
230 #define ufshcd_eh_in_progress(h) \
231 	((h)->eh_flags & UFSHCD_EH_IN_PROGRESS)
232 #define ufshcd_clear_eh_in_progress(h) \
233 	((h)->eh_flags &= ~UFSHCD_EH_IN_PROGRESS)
234 
235 const struct ufs_pm_lvl_states ufs_pm_lvl_states[] = {
236 	[UFS_PM_LVL_0] = {UFS_ACTIVE_PWR_MODE, UIC_LINK_ACTIVE_STATE},
237 	[UFS_PM_LVL_1] = {UFS_ACTIVE_PWR_MODE, UIC_LINK_HIBERN8_STATE},
238 	[UFS_PM_LVL_2] = {UFS_SLEEP_PWR_MODE, UIC_LINK_ACTIVE_STATE},
239 	[UFS_PM_LVL_3] = {UFS_SLEEP_PWR_MODE, UIC_LINK_HIBERN8_STATE},
240 	[UFS_PM_LVL_4] = {UFS_POWERDOWN_PWR_MODE, UIC_LINK_HIBERN8_STATE},
241 	[UFS_PM_LVL_5] = {UFS_POWERDOWN_PWR_MODE, UIC_LINK_OFF_STATE},
242 	/*
243 	 * For DeepSleep, the link is first put in hibern8 and then off.
244 	 * Leaving the link in hibern8 is not supported.
245 	 */
246 	[UFS_PM_LVL_6] = {UFS_DEEPSLEEP_PWR_MODE, UIC_LINK_OFF_STATE},
247 };
248 
249 static inline enum ufs_dev_pwr_mode
250 ufs_get_pm_lvl_to_dev_pwr_mode(enum ufs_pm_level lvl)
251 {
252 	return ufs_pm_lvl_states[lvl].dev_state;
253 }
254 
255 static inline enum uic_link_state
256 ufs_get_pm_lvl_to_link_pwr_state(enum ufs_pm_level lvl)
257 {
258 	return ufs_pm_lvl_states[lvl].link_state;
259 }
260 
261 static inline enum ufs_pm_level
262 ufs_get_desired_pm_lvl_for_dev_link_state(enum ufs_dev_pwr_mode dev_state,
263 					enum uic_link_state link_state)
264 {
265 	enum ufs_pm_level lvl;
266 
267 	for (lvl = UFS_PM_LVL_0; lvl < UFS_PM_LVL_MAX; lvl++) {
268 		if ((ufs_pm_lvl_states[lvl].dev_state == dev_state) &&
269 			(ufs_pm_lvl_states[lvl].link_state == link_state))
270 			return lvl;
271 	}
272 
273 	/* if no match found, return the level 0 */
274 	return UFS_PM_LVL_0;
275 }
276 
277 static bool ufshcd_has_pending_tasks(struct ufs_hba *hba)
278 {
279 	return hba->outstanding_tasks || hba->active_uic_cmd ||
280 	       hba->uic_async_done;
281 }
282 
283 static bool ufshcd_is_ufs_dev_busy(struct ufs_hba *hba)
284 {
285 	return scsi_host_busy(hba->host) || ufshcd_has_pending_tasks(hba);
286 }
287 
288 static const struct ufs_dev_quirk ufs_fixups[] = {
289 	/* UFS cards deviations table */
290 	{ .wmanufacturerid = UFS_VENDOR_MICRON,
291 	  .model = UFS_ANY_MODEL,
292 	  .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM },
293 	{ .wmanufacturerid = UFS_VENDOR_SAMSUNG,
294 	  .model = UFS_ANY_MODEL,
295 	  .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM |
296 		   UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE |
297 		   UFS_DEVICE_QUIRK_PA_HIBER8TIME |
298 		   UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS },
299 	{ .wmanufacturerid = UFS_VENDOR_SKHYNIX,
300 	  .model = UFS_ANY_MODEL,
301 	  .quirk = UFS_DEVICE_QUIRK_HOST_PA_SAVECONFIGTIME },
302 	{ .wmanufacturerid = UFS_VENDOR_SKHYNIX,
303 	  .model = "hB8aL1" /*H28U62301AMR*/,
304 	  .quirk = UFS_DEVICE_QUIRK_HOST_VS_DEBUGSAVECONFIGTIME },
305 	{ .wmanufacturerid = UFS_VENDOR_TOSHIBA,
306 	  .model = UFS_ANY_MODEL,
307 	  .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM },
308 	{ .wmanufacturerid = UFS_VENDOR_TOSHIBA,
309 	  .model = "THGLF2G9C8KBADG",
310 	  .quirk = UFS_DEVICE_QUIRK_PA_TACTIVATE },
311 	{ .wmanufacturerid = UFS_VENDOR_TOSHIBA,
312 	  .model = "THGLF2G9D8KBADG",
313 	  .quirk = UFS_DEVICE_QUIRK_PA_TACTIVATE },
314 	{ .wmanufacturerid = UFS_VENDOR_TOSHIBA,
315 	  .model = "THGJFJT1E45BATP",
316 	  .quirk = UFS_DEVICE_QUIRK_NO_TIMESTAMP_SUPPORT },
317 	{}
318 };
319 
320 static irqreturn_t ufshcd_tmc_handler(struct ufs_hba *hba);
321 static void ufshcd_async_scan(void *data, async_cookie_t cookie);
322 static int ufshcd_reset_and_restore(struct ufs_hba *hba);
323 static int ufshcd_eh_host_reset_handler(struct scsi_cmnd *cmd);
324 static int ufshcd_clear_tm_cmd(struct ufs_hba *hba, int tag);
325 static void ufshcd_hba_exit(struct ufs_hba *hba);
326 static int ufshcd_device_init(struct ufs_hba *hba, bool init_dev_params);
327 static int ufshcd_probe_hba(struct ufs_hba *hba, bool init_dev_params);
328 static int ufshcd_setup_clocks(struct ufs_hba *hba, bool on);
329 static inline void ufshcd_add_delay_before_dme_cmd(struct ufs_hba *hba);
330 static int ufshcd_host_reset_and_restore(struct ufs_hba *hba);
331 static void ufshcd_resume_clkscaling(struct ufs_hba *hba);
332 static void ufshcd_suspend_clkscaling(struct ufs_hba *hba);
333 static int ufshcd_scale_clks(struct ufs_hba *hba, unsigned long freq,
334 			     bool scale_up);
335 static irqreturn_t ufshcd_intr(int irq, void *__hba);
336 static int ufshcd_change_power_mode(struct ufs_hba *hba,
337 			     struct ufs_pa_layer_attr *pwr_mode);
338 static int ufshcd_setup_hba_vreg(struct ufs_hba *hba, bool on);
339 static int ufshcd_setup_vreg(struct ufs_hba *hba, bool on);
340 static inline int ufshcd_config_vreg_hpm(struct ufs_hba *hba,
341 					 struct ufs_vreg *vreg);
342 static void ufshcd_wb_toggle_buf_flush_during_h8(struct ufs_hba *hba,
343 						 bool enable);
344 static void ufshcd_hba_vreg_set_lpm(struct ufs_hba *hba);
345 static void ufshcd_hba_vreg_set_hpm(struct ufs_hba *hba);
346 
347 void ufshcd_enable_irq(struct ufs_hba *hba)
348 {
349 	if (!hba->is_irq_enabled) {
350 		enable_irq(hba->irq);
351 		hba->is_irq_enabled = true;
352 	}
353 }
354 EXPORT_SYMBOL_GPL(ufshcd_enable_irq);
355 
356 void ufshcd_disable_irq(struct ufs_hba *hba)
357 {
358 	if (hba->is_irq_enabled) {
359 		disable_irq(hba->irq);
360 		hba->is_irq_enabled = false;
361 	}
362 }
363 EXPORT_SYMBOL_GPL(ufshcd_disable_irq);
364 
365 /**
366  * ufshcd_enable_intr - enable interrupts
367  * @hba: per adapter instance
368  * @intrs: interrupt bits
369  */
370 void ufshcd_enable_intr(struct ufs_hba *hba, u32 intrs)
371 {
372 	u32 old_val = ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
373 	u32 new_val = old_val | intrs;
374 
375 	if (new_val != old_val)
376 		ufshcd_writel(hba, new_val, REG_INTERRUPT_ENABLE);
377 }
378 
379 /**
380  * ufshcd_disable_intr - disable interrupts
381  * @hba: per adapter instance
382  * @intrs: interrupt bits
383  */
384 static void ufshcd_disable_intr(struct ufs_hba *hba, u32 intrs)
385 {
386 	u32 old_val = ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
387 	u32 new_val = old_val & ~intrs;
388 
389 	if (new_val != old_val)
390 		ufshcd_writel(hba, new_val, REG_INTERRUPT_ENABLE);
391 }
392 
393 static void ufshcd_configure_wb(struct ufs_hba *hba)
394 {
395 	if (!ufshcd_is_wb_allowed(hba))
396 		return;
397 
398 	ufshcd_wb_toggle(hba, true);
399 
400 	ufshcd_wb_toggle_buf_flush_during_h8(hba, true);
401 
402 	if (ufshcd_is_wb_buf_flush_allowed(hba))
403 		ufshcd_wb_toggle_buf_flush(hba, true);
404 }
405 
406 static void ufshcd_add_cmd_upiu_trace(struct ufs_hba *hba, unsigned int tag,
407 				      enum ufs_trace_str_t str_t)
408 {
409 	struct utp_upiu_req *rq = hba->lrb[tag].ucd_req_ptr;
410 	struct utp_upiu_header *header;
411 
412 	if (!trace_ufshcd_upiu_enabled())
413 		return;
414 
415 	if (str_t == UFS_CMD_SEND)
416 		header = &rq->header;
417 	else
418 		header = &hba->lrb[tag].ucd_rsp_ptr->header;
419 
420 	trace_ufshcd_upiu(hba, str_t, header, &rq->sc.cdb,
421 			  UFS_TSF_CDB);
422 }
423 
424 static void ufshcd_add_query_upiu_trace(struct ufs_hba *hba,
425 					enum ufs_trace_str_t str_t,
426 					struct utp_upiu_req *rq_rsp)
427 {
428 	if (!trace_ufshcd_upiu_enabled())
429 		return;
430 
431 	trace_ufshcd_upiu(hba, str_t, &rq_rsp->header,
432 			  &rq_rsp->qr, UFS_TSF_OSF);
433 }
434 
435 static void ufshcd_add_tm_upiu_trace(struct ufs_hba *hba, unsigned int tag,
436 				     enum ufs_trace_str_t str_t)
437 {
438 	struct utp_task_req_desc *descp = &hba->utmrdl_base_addr[tag];
439 
440 	if (!trace_ufshcd_upiu_enabled())
441 		return;
442 
443 	if (str_t == UFS_TM_SEND)
444 		trace_ufshcd_upiu(hba, str_t,
445 				  &descp->upiu_req.req_header,
446 				  &descp->upiu_req.input_param1,
447 				  UFS_TSF_TM_INPUT);
448 	else
449 		trace_ufshcd_upiu(hba, str_t,
450 				  &descp->upiu_rsp.rsp_header,
451 				  &descp->upiu_rsp.output_param1,
452 				  UFS_TSF_TM_OUTPUT);
453 }
454 
455 static void ufshcd_add_uic_command_trace(struct ufs_hba *hba,
456 					 const struct uic_command *ucmd,
457 					 enum ufs_trace_str_t str_t)
458 {
459 	u32 cmd;
460 
461 	if (!trace_ufshcd_uic_command_enabled())
462 		return;
463 
464 	if (str_t == UFS_CMD_SEND)
465 		cmd = ucmd->command;
466 	else
467 		cmd = ufshcd_readl(hba, REG_UIC_COMMAND);
468 
469 	trace_ufshcd_uic_command(hba, str_t, cmd,
470 				 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_1),
471 				 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_2),
472 				 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_3));
473 }
474 
475 static void ufshcd_add_command_trace(struct ufs_hba *hba, unsigned int tag,
476 				     enum ufs_trace_str_t str_t)
477 {
478 	u64 lba = 0;
479 	u8 opcode = 0, group_id = 0;
480 	u32 doorbell = 0;
481 	u32 intr;
482 	u32 hwq_id = 0;
483 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
484 	struct scsi_cmnd *cmd = lrbp->cmd;
485 	struct request *rq = scsi_cmd_to_rq(cmd);
486 	int transfer_len = -1;
487 
488 	if (!cmd)
489 		return;
490 
491 	/* trace UPIU also */
492 	ufshcd_add_cmd_upiu_trace(hba, tag, str_t);
493 	if (!trace_ufshcd_command_enabled())
494 		return;
495 
496 	opcode = cmd->cmnd[0];
497 
498 	if (opcode == READ_10 || opcode == WRITE_10) {
499 		/*
500 		 * Currently we only fully trace read(10) and write(10) commands
501 		 */
502 		transfer_len =
503 		       be32_to_cpu(lrbp->ucd_req_ptr->sc.exp_data_transfer_len);
504 		lba = scsi_get_lba(cmd);
505 		if (opcode == WRITE_10)
506 			group_id = lrbp->cmd->cmnd[6];
507 	} else if (opcode == UNMAP) {
508 		/*
509 		 * The number of Bytes to be unmapped beginning with the lba.
510 		 */
511 		transfer_len = blk_rq_bytes(rq);
512 		lba = scsi_get_lba(cmd);
513 	}
514 
515 	intr = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
516 
517 	if (hba->mcq_enabled) {
518 		struct ufs_hw_queue *hwq = ufshcd_mcq_req_to_hwq(hba, rq);
519 
520 		hwq_id = hwq->id;
521 	} else {
522 		doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
523 	}
524 	trace_ufshcd_command(cmd->device, hba, str_t, tag, doorbell, hwq_id,
525 			     transfer_len, intr, lba, opcode, group_id);
526 }
527 
528 static void ufshcd_print_clk_freqs(struct ufs_hba *hba)
529 {
530 	struct ufs_clk_info *clki;
531 	struct list_head *head = &hba->clk_list_head;
532 
533 	if (list_empty(head))
534 		return;
535 
536 	list_for_each_entry(clki, head, list) {
537 		if (!IS_ERR_OR_NULL(clki->clk) && clki->min_freq &&
538 				clki->max_freq)
539 			dev_err(hba->dev, "clk: %s, rate: %u\n",
540 					clki->name, clki->curr_freq);
541 	}
542 }
543 
544 static void ufshcd_print_evt(struct ufs_hba *hba, u32 id,
545 			     const char *err_name)
546 {
547 	int i;
548 	bool found = false;
549 	const struct ufs_event_hist *e;
550 
551 	if (id >= UFS_EVT_CNT)
552 		return;
553 
554 	e = &hba->ufs_stats.event[id];
555 
556 	for (i = 0; i < UFS_EVENT_HIST_LENGTH; i++) {
557 		int p = (i + e->pos) % UFS_EVENT_HIST_LENGTH;
558 
559 		if (e->tstamp[p] == 0)
560 			continue;
561 		dev_err(hba->dev, "%s[%d] = 0x%x at %lld us\n", err_name, p,
562 			e->val[p], div_u64(e->tstamp[p], 1000));
563 		found = true;
564 	}
565 
566 	if (!found)
567 		dev_err(hba->dev, "No record of %s\n", err_name);
568 	else
569 		dev_err(hba->dev, "%s: total cnt=%llu\n", err_name, e->cnt);
570 }
571 
572 static void ufshcd_print_evt_hist(struct ufs_hba *hba)
573 {
574 	ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, "host_regs: ");
575 
576 	ufshcd_print_evt(hba, UFS_EVT_PA_ERR, "pa_err");
577 	ufshcd_print_evt(hba, UFS_EVT_DL_ERR, "dl_err");
578 	ufshcd_print_evt(hba, UFS_EVT_NL_ERR, "nl_err");
579 	ufshcd_print_evt(hba, UFS_EVT_TL_ERR, "tl_err");
580 	ufshcd_print_evt(hba, UFS_EVT_DME_ERR, "dme_err");
581 	ufshcd_print_evt(hba, UFS_EVT_AUTO_HIBERN8_ERR,
582 			 "auto_hibern8_err");
583 	ufshcd_print_evt(hba, UFS_EVT_FATAL_ERR, "fatal_err");
584 	ufshcd_print_evt(hba, UFS_EVT_LINK_STARTUP_FAIL,
585 			 "link_startup_fail");
586 	ufshcd_print_evt(hba, UFS_EVT_RESUME_ERR, "resume_fail");
587 	ufshcd_print_evt(hba, UFS_EVT_SUSPEND_ERR,
588 			 "suspend_fail");
589 	ufshcd_print_evt(hba, UFS_EVT_WL_RES_ERR, "wlun resume_fail");
590 	ufshcd_print_evt(hba, UFS_EVT_WL_SUSP_ERR,
591 			 "wlun suspend_fail");
592 	ufshcd_print_evt(hba, UFS_EVT_DEV_RESET, "dev_reset");
593 	ufshcd_print_evt(hba, UFS_EVT_HOST_RESET, "host_reset");
594 	ufshcd_print_evt(hba, UFS_EVT_ABORT, "task_abort");
595 
596 	ufshcd_vops_dbg_register_dump(hba);
597 }
598 
599 static
600 void ufshcd_print_tr(struct ufs_hba *hba, int tag, bool pr_prdt)
601 {
602 	const struct ufshcd_lrb *lrbp;
603 	int prdt_length;
604 
605 	lrbp = &hba->lrb[tag];
606 
607 	if (hba->monitor.enabled) {
608 		dev_err(hba->dev, "UPIU[%d] - issue time %lld us\n", tag,
609 			div_u64(lrbp->issue_time_stamp_local_clock, 1000));
610 		dev_err(hba->dev, "UPIU[%d] - complete time %lld us\n", tag,
611 			div_u64(lrbp->compl_time_stamp_local_clock, 1000));
612 	}
613 	dev_err(hba->dev,
614 		"UPIU[%d] - Transfer Request Descriptor phys@0x%llx\n",
615 		tag, (u64)lrbp->utrd_dma_addr);
616 
617 	ufshcd_hex_dump("UPIU TRD: ", lrbp->utr_descriptor_ptr,
618 			sizeof(struct utp_transfer_req_desc));
619 	dev_err(hba->dev, "UPIU[%d] - Request UPIU phys@0x%llx\n", tag,
620 		(u64)lrbp->ucd_req_dma_addr);
621 	ufshcd_hex_dump("UPIU REQ: ", lrbp->ucd_req_ptr,
622 			sizeof(struct utp_upiu_req));
623 	dev_err(hba->dev, "UPIU[%d] - Response UPIU phys@0x%llx\n", tag,
624 		(u64)lrbp->ucd_rsp_dma_addr);
625 	ufshcd_hex_dump("UPIU RSP: ", lrbp->ucd_rsp_ptr,
626 			sizeof(struct utp_upiu_rsp));
627 
628 	prdt_length = le16_to_cpu(
629 		lrbp->utr_descriptor_ptr->prd_table_length);
630 	if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN)
631 		prdt_length /= ufshcd_sg_entry_size(hba);
632 
633 	dev_err(hba->dev,
634 		"UPIU[%d] - PRDT - %d entries  phys@0x%llx\n",
635 		tag, prdt_length,
636 		(u64)lrbp->ucd_prdt_dma_addr);
637 
638 	if (pr_prdt)
639 		ufshcd_hex_dump("UPIU PRDT: ", lrbp->ucd_prdt_ptr,
640 			ufshcd_sg_entry_size(hba) * prdt_length);
641 }
642 
643 static bool ufshcd_print_tr_iter(struct request *req, void *priv)
644 {
645 	struct scsi_device *sdev = req->q->queuedata;
646 	struct Scsi_Host *shost = sdev->host;
647 	struct ufs_hba *hba = shost_priv(shost);
648 
649 	ufshcd_print_tr(hba, req->tag, *(bool *)priv);
650 
651 	return true;
652 }
653 
654 /**
655  * ufshcd_print_trs_all - print trs for all started requests.
656  * @hba: per-adapter instance.
657  * @pr_prdt: need to print prdt or not.
658  */
659 static void ufshcd_print_trs_all(struct ufs_hba *hba, bool pr_prdt)
660 {
661 	blk_mq_tagset_busy_iter(&hba->host->tag_set, ufshcd_print_tr_iter, &pr_prdt);
662 }
663 
664 static void ufshcd_print_tmrs(struct ufs_hba *hba, unsigned long bitmap)
665 {
666 	int tag;
667 
668 	for_each_set_bit(tag, &bitmap, hba->nutmrs) {
669 		struct utp_task_req_desc *tmrdp = &hba->utmrdl_base_addr[tag];
670 
671 		dev_err(hba->dev, "TM[%d] - Task Management Header\n", tag);
672 		ufshcd_hex_dump("", tmrdp, sizeof(*tmrdp));
673 	}
674 }
675 
676 static void ufshcd_print_host_state(struct ufs_hba *hba)
677 {
678 	const struct scsi_device *sdev_ufs = hba->ufs_device_wlun;
679 
680 	dev_err(hba->dev, "UFS Host state=%d\n", hba->ufshcd_state);
681 	dev_err(hba->dev, "%d outstanding reqs, tasks=0x%lx\n",
682 		scsi_host_busy(hba->host), hba->outstanding_tasks);
683 	dev_err(hba->dev, "saved_err=0x%x, saved_uic_err=0x%x\n",
684 		hba->saved_err, hba->saved_uic_err);
685 	dev_err(hba->dev, "Device power mode=%d, UIC link state=%d\n",
686 		hba->curr_dev_pwr_mode, hba->uic_link_state);
687 	dev_err(hba->dev, "PM in progress=%d, sys. suspended=%d\n",
688 		hba->pm_op_in_progress, hba->is_sys_suspended);
689 	dev_err(hba->dev, "Auto BKOPS=%d, Host self-block=%d\n",
690 		hba->auto_bkops_enabled, hba->host->host_self_blocked);
691 	dev_err(hba->dev, "Clk gate=%d\n", hba->clk_gating.state);
692 	dev_err(hba->dev,
693 		"last_hibern8_exit_tstamp at %lld us, hibern8_exit_cnt=%d\n",
694 		div_u64(hba->ufs_stats.last_hibern8_exit_tstamp, 1000),
695 		hba->ufs_stats.hibern8_exit_cnt);
696 	dev_err(hba->dev, "error handling flags=0x%x, req. abort count=%d\n",
697 		hba->eh_flags, hba->req_abort_count);
698 	dev_err(hba->dev, "hba->ufs_version=0x%x, Host capabilities=0x%x, caps=0x%x\n",
699 		hba->ufs_version, hba->capabilities, hba->caps);
700 	dev_err(hba->dev, "quirks=0x%x, dev. quirks=0x%x\n", hba->quirks,
701 		hba->dev_quirks);
702 	if (sdev_ufs)
703 		dev_err(hba->dev, "UFS dev info: %.8s %.16s rev %.4s\n",
704 			sdev_ufs->vendor, sdev_ufs->model, sdev_ufs->rev);
705 
706 	ufshcd_print_clk_freqs(hba);
707 }
708 
709 /**
710  * ufshcd_print_pwr_info - print power params as saved in hba
711  * power info
712  * @hba: per-adapter instance
713  */
714 static void ufshcd_print_pwr_info(struct ufs_hba *hba)
715 {
716 	static const char * const names[] = {
717 		"INVALID MODE",
718 		"FAST MODE",
719 		"SLOW_MODE",
720 		"INVALID MODE",
721 		"FASTAUTO_MODE",
722 		"SLOWAUTO_MODE",
723 		"INVALID MODE",
724 	};
725 
726 	/*
727 	 * Using dev_dbg to avoid messages during runtime PM to avoid
728 	 * never-ending cycles of messages written back to storage by user space
729 	 * causing runtime resume, causing more messages and so on.
730 	 */
731 	dev_dbg(hba->dev, "%s:[RX, TX]: gear=[%d, %d], lane[%d, %d], pwr[%s, %s], rate = %d\n",
732 		 __func__,
733 		 hba->pwr_info.gear_rx, hba->pwr_info.gear_tx,
734 		 hba->pwr_info.lane_rx, hba->pwr_info.lane_tx,
735 		 names[hba->pwr_info.pwr_rx],
736 		 names[hba->pwr_info.pwr_tx],
737 		 hba->pwr_info.hs_rate);
738 }
739 
740 static void ufshcd_device_reset(struct ufs_hba *hba)
741 {
742 	int err;
743 
744 	err = ufshcd_vops_device_reset(hba);
745 
746 	if (!err) {
747 		ufshcd_set_ufs_dev_active(hba);
748 		if (ufshcd_is_wb_allowed(hba)) {
749 			hba->dev_info.wb_enabled = false;
750 			hba->dev_info.wb_buf_flush_enabled = false;
751 		}
752 		if (hba->dev_info.rtc_type == UFS_RTC_RELATIVE)
753 			hba->dev_info.rtc_time_baseline = 0;
754 	}
755 	if (err != -EOPNOTSUPP)
756 		ufshcd_update_evt_hist(hba, UFS_EVT_DEV_RESET, err);
757 }
758 
759 void ufshcd_delay_us(unsigned long us, unsigned long tolerance)
760 {
761 	if (!us)
762 		return;
763 
764 	if (us < 10)
765 		udelay(us);
766 	else
767 		usleep_range(us, us + tolerance);
768 }
769 EXPORT_SYMBOL_GPL(ufshcd_delay_us);
770 
771 /**
772  * ufshcd_wait_for_register - wait for register value to change
773  * @hba: per-adapter interface
774  * @reg: mmio register offset
775  * @mask: mask to apply to the read register value
776  * @val: value to wait for
777  * @interval_us: polling interval in microseconds
778  * @timeout_ms: timeout in milliseconds
779  *
780  * Return: -ETIMEDOUT on error, zero on success.
781  */
782 static int ufshcd_wait_for_register(struct ufs_hba *hba, u32 reg, u32 mask,
783 				    u32 val, unsigned long interval_us,
784 				    unsigned long timeout_ms)
785 {
786 	u32 v;
787 
788 	val &= mask; /* ignore bits that we don't intend to wait on */
789 
790 	return read_poll_timeout(ufshcd_readl, v, (v & mask) == val,
791 				 interval_us, timeout_ms * 1000, false, hba, reg);
792 }
793 
794 /**
795  * ufshcd_get_intr_mask - Get the interrupt bit mask
796  * @hba: Pointer to adapter instance
797  *
798  * Return: interrupt bit mask per version
799  */
800 static inline u32 ufshcd_get_intr_mask(struct ufs_hba *hba)
801 {
802 	if (hba->ufs_version <= ufshci_version(2, 0))
803 		return INTERRUPT_MASK_ALL_VER_11;
804 
805 	return INTERRUPT_MASK_ALL_VER_21;
806 }
807 
808 /**
809  * ufshcd_get_ufs_version - Get the UFS version supported by the HBA
810  * @hba: Pointer to adapter instance
811  *
812  * Return: UFSHCI version supported by the controller
813  */
814 static inline u32 ufshcd_get_ufs_version(struct ufs_hba *hba)
815 {
816 	u32 ufshci_ver;
817 
818 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_UFS_HCI_VERSION)
819 		ufshci_ver = ufshcd_vops_get_ufs_hci_version(hba);
820 	else
821 		ufshci_ver = ufshcd_readl(hba, REG_UFS_VERSION);
822 
823 	/*
824 	 * UFSHCI v1.x uses a different version scheme, in order
825 	 * to allow the use of comparisons with the ufshci_version
826 	 * function, we convert it to the same scheme as ufs 2.0+.
827 	 */
828 	if (ufshci_ver & 0x00010000)
829 		return ufshci_version(1, ufshci_ver & 0x00000100);
830 
831 	return ufshci_ver;
832 }
833 
834 /**
835  * ufshcd_is_device_present - Check if any device connected to
836  *			      the host controller
837  * @hba: pointer to adapter instance
838  *
839  * Return: true if device present, false if no device detected
840  */
841 static inline bool ufshcd_is_device_present(struct ufs_hba *hba)
842 {
843 	return ufshcd_readl(hba, REG_CONTROLLER_STATUS) & DEVICE_PRESENT;
844 }
845 
846 /**
847  * ufshcd_get_tr_ocs - Get the UTRD Overall Command Status
848  * @lrbp: pointer to local command reference block
849  * @cqe: pointer to the completion queue entry
850  *
851  * This function is used to get the OCS field from UTRD
852  *
853  * Return: the OCS field in the UTRD.
854  */
855 static enum utp_ocs ufshcd_get_tr_ocs(struct ufshcd_lrb *lrbp,
856 				      struct cq_entry *cqe)
857 {
858 	if (cqe)
859 		return le32_to_cpu(cqe->status) & MASK_OCS;
860 
861 	return lrbp->utr_descriptor_ptr->header.ocs & MASK_OCS;
862 }
863 
864 /**
865  * ufshcd_utrl_clear() - Clear requests from the controller request list.
866  * @hba: per adapter instance
867  * @mask: mask with one bit set for each request to be cleared
868  */
869 static inline void ufshcd_utrl_clear(struct ufs_hba *hba, u32 mask)
870 {
871 	if (hba->quirks & UFSHCI_QUIRK_BROKEN_REQ_LIST_CLR)
872 		mask = ~mask;
873 	/*
874 	 * From the UFSHCI specification: "UTP Transfer Request List CLear
875 	 * Register (UTRLCLR): This field is bit significant. Each bit
876 	 * corresponds to a slot in the UTP Transfer Request List, where bit 0
877 	 * corresponds to request slot 0. A bit in this field is set to ‘0’
878 	 * by host software to indicate to the host controller that a transfer
879 	 * request slot is cleared. The host controller
880 	 * shall free up any resources associated to the request slot
881 	 * immediately, and shall set the associated bit in UTRLDBR to ‘0’. The
882 	 * host software indicates no change to request slots by setting the
883 	 * associated bits in this field to ‘1’. Bits in this field shall only
884 	 * be set ‘1’ or ‘0’ by host software when UTRLRSR is set to ‘1’."
885 	 */
886 	ufshcd_writel(hba, ~mask, REG_UTP_TRANSFER_REQ_LIST_CLEAR);
887 }
888 
889 /**
890  * ufshcd_utmrl_clear - Clear a bit in UTMRLCLR register
891  * @hba: per adapter instance
892  * @pos: position of the bit to be cleared
893  */
894 static inline void ufshcd_utmrl_clear(struct ufs_hba *hba, u32 pos)
895 {
896 	if (hba->quirks & UFSHCI_QUIRK_BROKEN_REQ_LIST_CLR)
897 		ufshcd_writel(hba, (1 << pos), REG_UTP_TASK_REQ_LIST_CLEAR);
898 	else
899 		ufshcd_writel(hba, ~(1 << pos), REG_UTP_TASK_REQ_LIST_CLEAR);
900 }
901 
902 /**
903  * ufshcd_get_lists_status - Check UCRDY, UTRLRDY and UTMRLRDY
904  * @reg: Register value of host controller status
905  *
906  * Return: 0 on success; a positive value if failed.
907  */
908 static inline int ufshcd_get_lists_status(u32 reg)
909 {
910 	return !((reg & UFSHCD_STATUS_READY) == UFSHCD_STATUS_READY);
911 }
912 
913 /**
914  * ufshcd_get_uic_cmd_result - Get the UIC command result
915  * @hba: Pointer to adapter instance
916  *
917  * This function gets the result of UIC command completion
918  *
919  * Return: 0 on success; non-zero value on error.
920  */
921 static inline int ufshcd_get_uic_cmd_result(struct ufs_hba *hba)
922 {
923 	return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_2) &
924 	       MASK_UIC_COMMAND_RESULT;
925 }
926 
927 /**
928  * ufshcd_get_dme_attr_val - Get the value of attribute returned by UIC command
929  * @hba: Pointer to adapter instance
930  *
931  * This function gets UIC command argument3
932  *
933  * Return: 0 on success; non-zero value on error.
934  */
935 static inline u32 ufshcd_get_dme_attr_val(struct ufs_hba *hba)
936 {
937 	return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_3);
938 }
939 
940 /**
941  * ufshcd_get_req_rsp - returns the TR response transaction type
942  * @ucd_rsp_ptr: pointer to response UPIU
943  *
944  * Return: UPIU type.
945  */
946 static inline enum upiu_response_transaction
947 ufshcd_get_req_rsp(struct utp_upiu_rsp *ucd_rsp_ptr)
948 {
949 	return ucd_rsp_ptr->header.transaction_code;
950 }
951 
952 /**
953  * ufshcd_is_exception_event - Check if the device raised an exception event
954  * @ucd_rsp_ptr: pointer to response UPIU
955  *
956  * The function checks if the device raised an exception event indicated in
957  * the Device Information field of response UPIU.
958  *
959  * Return: true if exception is raised, false otherwise.
960  */
961 static inline bool ufshcd_is_exception_event(struct utp_upiu_rsp *ucd_rsp_ptr)
962 {
963 	return ucd_rsp_ptr->header.device_information & 1;
964 }
965 
966 /**
967  * ufshcd_reset_intr_aggr - Reset interrupt aggregation values.
968  * @hba: per adapter instance
969  */
970 static inline void
971 ufshcd_reset_intr_aggr(struct ufs_hba *hba)
972 {
973 	ufshcd_writel(hba, INT_AGGR_ENABLE |
974 		      INT_AGGR_COUNTER_AND_TIMER_RESET,
975 		      REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
976 }
977 
978 /**
979  * ufshcd_config_intr_aggr - Configure interrupt aggregation values.
980  * @hba: per adapter instance
981  * @cnt: Interrupt aggregation counter threshold
982  * @tmout: Interrupt aggregation timeout value
983  */
984 static inline void
985 ufshcd_config_intr_aggr(struct ufs_hba *hba, u8 cnt, u8 tmout)
986 {
987 	ufshcd_writel(hba, INT_AGGR_ENABLE | INT_AGGR_PARAM_WRITE |
988 		      INT_AGGR_COUNTER_THLD_VAL(cnt) |
989 		      INT_AGGR_TIMEOUT_VAL(tmout),
990 		      REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
991 }
992 
993 /**
994  * ufshcd_disable_intr_aggr - Disables interrupt aggregation.
995  * @hba: per adapter instance
996  */
997 static inline void ufshcd_disable_intr_aggr(struct ufs_hba *hba)
998 {
999 	ufshcd_writel(hba, 0, REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
1000 }
1001 
1002 /**
1003  * ufshcd_enable_run_stop_reg - Enable run-stop registers,
1004  *			When run-stop registers are set to 1, it indicates the
1005  *			host controller that it can process the requests
1006  * @hba: per adapter instance
1007  */
1008 static void ufshcd_enable_run_stop_reg(struct ufs_hba *hba)
1009 {
1010 	ufshcd_writel(hba, UTP_TASK_REQ_LIST_RUN_STOP_BIT,
1011 		      REG_UTP_TASK_REQ_LIST_RUN_STOP);
1012 	ufshcd_writel(hba, UTP_TRANSFER_REQ_LIST_RUN_STOP_BIT,
1013 		      REG_UTP_TRANSFER_REQ_LIST_RUN_STOP);
1014 }
1015 
1016 /**
1017  * ufshcd_hba_start - Start controller initialization sequence
1018  * @hba: per adapter instance
1019  */
1020 static inline void ufshcd_hba_start(struct ufs_hba *hba)
1021 {
1022 	u32 val = CONTROLLER_ENABLE;
1023 
1024 	if (ufshcd_crypto_enable(hba))
1025 		val |= CRYPTO_GENERAL_ENABLE;
1026 
1027 	ufshcd_writel(hba, val, REG_CONTROLLER_ENABLE);
1028 }
1029 
1030 /**
1031  * ufshcd_is_hba_active - Get controller state
1032  * @hba: per adapter instance
1033  *
1034  * Return: true if and only if the controller is active.
1035  */
1036 bool ufshcd_is_hba_active(struct ufs_hba *hba)
1037 {
1038 	return ufshcd_readl(hba, REG_CONTROLLER_ENABLE) & CONTROLLER_ENABLE;
1039 }
1040 EXPORT_SYMBOL_GPL(ufshcd_is_hba_active);
1041 
1042 /**
1043  * ufshcd_pm_qos_init - initialize PM QoS request
1044  * @hba: per adapter instance
1045  */
1046 void ufshcd_pm_qos_init(struct ufs_hba *hba)
1047 {
1048 	guard(mutex)(&hba->pm_qos_mutex);
1049 
1050 	if (hba->pm_qos_enabled)
1051 		return;
1052 
1053 	cpu_latency_qos_add_request(&hba->pm_qos_req, PM_QOS_DEFAULT_VALUE);
1054 
1055 	if (cpu_latency_qos_request_active(&hba->pm_qos_req))
1056 		hba->pm_qos_enabled = true;
1057 }
1058 
1059 /**
1060  * ufshcd_pm_qos_exit - remove request from PM QoS
1061  * @hba: per adapter instance
1062  */
1063 void ufshcd_pm_qos_exit(struct ufs_hba *hba)
1064 {
1065 	guard(mutex)(&hba->pm_qos_mutex);
1066 
1067 	if (!hba->pm_qos_enabled)
1068 		return;
1069 
1070 	cpu_latency_qos_remove_request(&hba->pm_qos_req);
1071 	hba->pm_qos_enabled = false;
1072 }
1073 
1074 /**
1075  * ufshcd_pm_qos_update - update PM QoS request
1076  * @hba: per adapter instance
1077  * @on: If True, vote for perf PM QoS mode otherwise power save mode
1078  */
1079 static void ufshcd_pm_qos_update(struct ufs_hba *hba, bool on)
1080 {
1081 	guard(mutex)(&hba->pm_qos_mutex);
1082 
1083 	if (!hba->pm_qos_enabled)
1084 		return;
1085 
1086 	cpu_latency_qos_update_request(&hba->pm_qos_req, on ? 0 : PM_QOS_DEFAULT_VALUE);
1087 }
1088 
1089 /**
1090  * ufshcd_set_clk_freq - set UFS controller clock frequencies
1091  * @hba: per adapter instance
1092  * @scale_up: If True, set max possible frequency othewise set low frequency
1093  *
1094  * Return: 0 if successful; < 0 upon failure.
1095  */
1096 static int ufshcd_set_clk_freq(struct ufs_hba *hba, bool scale_up)
1097 {
1098 	int ret = 0;
1099 	struct ufs_clk_info *clki;
1100 	struct list_head *head = &hba->clk_list_head;
1101 
1102 	if (list_empty(head))
1103 		goto out;
1104 
1105 	list_for_each_entry(clki, head, list) {
1106 		if (!IS_ERR_OR_NULL(clki->clk)) {
1107 			if (scale_up && clki->max_freq) {
1108 				if (clki->curr_freq == clki->max_freq)
1109 					continue;
1110 
1111 				ret = clk_set_rate(clki->clk, clki->max_freq);
1112 				if (ret) {
1113 					dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
1114 						__func__, clki->name,
1115 						clki->max_freq, ret);
1116 					break;
1117 				}
1118 				trace_ufshcd_clk_scaling(hba,
1119 						"scaled up", clki->name,
1120 						clki->curr_freq,
1121 						clki->max_freq);
1122 
1123 				clki->curr_freq = clki->max_freq;
1124 
1125 			} else if (!scale_up && clki->min_freq) {
1126 				if (clki->curr_freq == clki->min_freq)
1127 					continue;
1128 
1129 				ret = clk_set_rate(clki->clk, clki->min_freq);
1130 				if (ret) {
1131 					dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
1132 						__func__, clki->name,
1133 						clki->min_freq, ret);
1134 					break;
1135 				}
1136 				trace_ufshcd_clk_scaling(hba,
1137 						"scaled down", clki->name,
1138 						clki->curr_freq,
1139 						clki->min_freq);
1140 				clki->curr_freq = clki->min_freq;
1141 			}
1142 		}
1143 		dev_dbg(hba->dev, "%s: clk: %s, rate: %lu\n", __func__,
1144 				clki->name, clk_get_rate(clki->clk));
1145 	}
1146 
1147 out:
1148 	return ret;
1149 }
1150 
1151 int ufshcd_opp_config_clks(struct device *dev, struct opp_table *opp_table,
1152 			   struct dev_pm_opp *opp, void *data,
1153 			   bool scaling_down)
1154 {
1155 	struct ufs_hba *hba = dev_get_drvdata(dev);
1156 	struct list_head *head = &hba->clk_list_head;
1157 	struct ufs_clk_info *clki;
1158 	unsigned long freq;
1159 	u8 idx = 0;
1160 	int ret;
1161 
1162 	list_for_each_entry(clki, head, list) {
1163 		if (!IS_ERR_OR_NULL(clki->clk)) {
1164 			freq = dev_pm_opp_get_freq_indexed(opp, idx++);
1165 
1166 			/* Do not set rate for clocks having frequency as 0 */
1167 			if (!freq)
1168 				continue;
1169 
1170 			ret = clk_set_rate(clki->clk, freq);
1171 			if (ret) {
1172 				dev_err(dev, "%s: %s clk set rate(%ldHz) failed, %d\n",
1173 					__func__, clki->name, freq, ret);
1174 				return ret;
1175 			}
1176 
1177 			trace_ufshcd_clk_scaling(hba,
1178 				(scaling_down ? "scaled down" : "scaled up"),
1179 				clki->name, hba->clk_scaling.target_freq, freq);
1180 		}
1181 	}
1182 
1183 	return 0;
1184 }
1185 EXPORT_SYMBOL_GPL(ufshcd_opp_config_clks);
1186 
1187 static int ufshcd_opp_set_rate(struct ufs_hba *hba, unsigned long freq)
1188 {
1189 	struct dev_pm_opp *opp;
1190 	int ret;
1191 
1192 	opp = dev_pm_opp_find_freq_floor_indexed(hba->dev,
1193 						 &freq, 0);
1194 	if (IS_ERR(opp))
1195 		return PTR_ERR(opp);
1196 
1197 	ret = dev_pm_opp_set_opp(hba->dev, opp);
1198 	dev_pm_opp_put(opp);
1199 
1200 	return ret;
1201 }
1202 
1203 /**
1204  * ufshcd_scale_clks - scale up or scale down UFS controller clocks
1205  * @hba: per adapter instance
1206  * @freq: frequency to scale
1207  * @scale_up: True if scaling up and false if scaling down
1208  *
1209  * Return: 0 if successful; < 0 upon failure.
1210  */
1211 static int ufshcd_scale_clks(struct ufs_hba *hba, unsigned long freq,
1212 			     bool scale_up)
1213 {
1214 	int ret = 0;
1215 	ktime_t start = ktime_get();
1216 
1217 	ret = ufshcd_vops_clk_scale_notify(hba, scale_up, freq, PRE_CHANGE);
1218 	if (ret)
1219 		goto out;
1220 
1221 	if (hba->use_pm_opp)
1222 		ret = ufshcd_opp_set_rate(hba, freq);
1223 	else
1224 		ret = ufshcd_set_clk_freq(hba, scale_up);
1225 	if (ret)
1226 		goto out;
1227 
1228 	ret = ufshcd_vops_clk_scale_notify(hba, scale_up, freq, POST_CHANGE);
1229 	if (ret) {
1230 		if (hba->use_pm_opp)
1231 			ufshcd_opp_set_rate(hba,
1232 					    hba->devfreq->previous_freq);
1233 		else
1234 			ufshcd_set_clk_freq(hba, !scale_up);
1235 		goto out;
1236 	}
1237 
1238 	ufshcd_pm_qos_update(hba, scale_up);
1239 
1240 out:
1241 	trace_ufshcd_profile_clk_scaling(hba,
1242 			(scale_up ? "up" : "down"),
1243 			ktime_to_us(ktime_sub(ktime_get(), start)), ret);
1244 	return ret;
1245 }
1246 
1247 /**
1248  * ufshcd_is_devfreq_scaling_required - check if scaling is required or not
1249  * @hba: per adapter instance
1250  * @freq: frequency to scale
1251  * @scale_up: True if scaling up and false if scaling down
1252  *
1253  * Return: true if scaling is required, false otherwise.
1254  */
1255 static bool ufshcd_is_devfreq_scaling_required(struct ufs_hba *hba,
1256 					       unsigned long freq, bool scale_up)
1257 {
1258 	struct ufs_clk_info *clki;
1259 	struct list_head *head = &hba->clk_list_head;
1260 
1261 	if (list_empty(head))
1262 		return false;
1263 
1264 	if (hba->use_pm_opp)
1265 		return freq != hba->clk_scaling.target_freq;
1266 
1267 	list_for_each_entry(clki, head, list) {
1268 		if (!IS_ERR_OR_NULL(clki->clk)) {
1269 			if (scale_up && clki->max_freq) {
1270 				if (clki->curr_freq == clki->max_freq)
1271 					continue;
1272 				return true;
1273 			} else if (!scale_up && clki->min_freq) {
1274 				if (clki->curr_freq == clki->min_freq)
1275 					continue;
1276 				return true;
1277 			}
1278 		}
1279 	}
1280 
1281 	return false;
1282 }
1283 
1284 /*
1285  * Determine the number of pending commands by counting the bits in the SCSI
1286  * device budget maps. This approach has been selected because a bit is set in
1287  * the budget map before scsi_host_queue_ready() checks the host_self_blocked
1288  * flag. The host_self_blocked flag can be modified by calling
1289  * scsi_block_requests() or scsi_unblock_requests().
1290  */
1291 static u32 ufshcd_pending_cmds(struct ufs_hba *hba)
1292 {
1293 	const struct scsi_device *sdev;
1294 	unsigned long flags;
1295 	u32 pending = 0;
1296 
1297 	spin_lock_irqsave(hba->host->host_lock, flags);
1298 	__shost_for_each_device(sdev, hba->host)
1299 		pending += sbitmap_weight(&sdev->budget_map);
1300 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1301 
1302 	return pending;
1303 }
1304 
1305 /*
1306  * Wait until all pending SCSI commands and TMFs have finished or the timeout
1307  * has expired.
1308  *
1309  * Return: 0 upon success; -EBUSY upon timeout.
1310  */
1311 static int ufshcd_wait_for_pending_cmds(struct ufs_hba *hba,
1312 					u64 wait_timeout_us)
1313 {
1314 	int ret = 0;
1315 	u32 tm_doorbell;
1316 	u32 tr_pending;
1317 	bool timeout = false, do_last_check = false;
1318 	ktime_t start;
1319 
1320 	ufshcd_hold(hba);
1321 	/*
1322 	 * Wait for all the outstanding tasks/transfer requests.
1323 	 * Verify by checking the doorbell registers are clear.
1324 	 */
1325 	start = ktime_get();
1326 	do {
1327 		if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL) {
1328 			ret = -EBUSY;
1329 			goto out;
1330 		}
1331 
1332 		tm_doorbell = ufshcd_readl(hba, REG_UTP_TASK_REQ_DOOR_BELL);
1333 		tr_pending = ufshcd_pending_cmds(hba);
1334 		if (!tm_doorbell && !tr_pending) {
1335 			timeout = false;
1336 			break;
1337 		} else if (do_last_check) {
1338 			break;
1339 		}
1340 
1341 		io_schedule_timeout(msecs_to_jiffies(20));
1342 		if (ktime_to_us(ktime_sub(ktime_get(), start)) >
1343 		    wait_timeout_us) {
1344 			timeout = true;
1345 			/*
1346 			 * We might have scheduled out for long time so make
1347 			 * sure to check if doorbells are cleared by this time
1348 			 * or not.
1349 			 */
1350 			do_last_check = true;
1351 		}
1352 	} while (tm_doorbell || tr_pending);
1353 
1354 	if (timeout) {
1355 		dev_err(hba->dev,
1356 			"%s: timedout waiting for doorbell to clear (tm=0x%x, tr=0x%x)\n",
1357 			__func__, tm_doorbell, tr_pending);
1358 		ret = -EBUSY;
1359 	}
1360 out:
1361 	ufshcd_release(hba);
1362 	return ret;
1363 }
1364 
1365 /**
1366  * ufshcd_scale_gear - scale up/down UFS gear
1367  * @hba: per adapter instance
1368  * @target_gear: target gear to scale to
1369  * @scale_up: True for scaling up gear and false for scaling down
1370  *
1371  * Return: 0 for success; -EBUSY if scaling can't happen at this time;
1372  * non-zero for any other errors.
1373  */
1374 static int ufshcd_scale_gear(struct ufs_hba *hba, u32 target_gear, bool scale_up)
1375 {
1376 	int ret = 0;
1377 	struct ufs_pa_layer_attr new_pwr_info;
1378 
1379 	if (target_gear) {
1380 		new_pwr_info = hba->pwr_info;
1381 		new_pwr_info.gear_tx = target_gear;
1382 		new_pwr_info.gear_rx = target_gear;
1383 
1384 		goto config_pwr_mode;
1385 	}
1386 
1387 	/* Legacy gear scaling, in case vops_freq_to_gear_speed() is not implemented */
1388 	if (scale_up) {
1389 		memcpy(&new_pwr_info, &hba->clk_scaling.saved_pwr_info,
1390 		       sizeof(struct ufs_pa_layer_attr));
1391 	} else {
1392 		memcpy(&new_pwr_info, &hba->pwr_info,
1393 		       sizeof(struct ufs_pa_layer_attr));
1394 
1395 		if (hba->pwr_info.gear_tx > hba->clk_scaling.min_gear ||
1396 		    hba->pwr_info.gear_rx > hba->clk_scaling.min_gear) {
1397 			/* save the current power mode */
1398 			memcpy(&hba->clk_scaling.saved_pwr_info,
1399 				&hba->pwr_info,
1400 				sizeof(struct ufs_pa_layer_attr));
1401 
1402 			/* scale down gear */
1403 			new_pwr_info.gear_tx = hba->clk_scaling.min_gear;
1404 			new_pwr_info.gear_rx = hba->clk_scaling.min_gear;
1405 		}
1406 	}
1407 
1408 config_pwr_mode:
1409 	/* check if the power mode needs to be changed or not? */
1410 	ret = ufshcd_config_pwr_mode(hba, &new_pwr_info);
1411 	if (ret)
1412 		dev_err(hba->dev, "%s: failed err %d, old gear: (tx %d rx %d), new gear: (tx %d rx %d)",
1413 			__func__, ret,
1414 			hba->pwr_info.gear_tx, hba->pwr_info.gear_rx,
1415 			new_pwr_info.gear_tx, new_pwr_info.gear_rx);
1416 
1417 	return ret;
1418 }
1419 
1420 /*
1421  * Wait until all pending SCSI commands and TMFs have finished or the timeout
1422  * has expired.
1423  *
1424  * Return: 0 upon success; -EBUSY upon timeout.
1425  */
1426 static int ufshcd_clock_scaling_prepare(struct ufs_hba *hba, u64 timeout_us)
1427 {
1428 	int ret = 0;
1429 	/*
1430 	 * make sure that there are no outstanding requests when
1431 	 * clock scaling is in progress
1432 	 */
1433 	mutex_lock(&hba->host->scan_mutex);
1434 	blk_mq_quiesce_tagset(&hba->host->tag_set);
1435 	mutex_lock(&hba->wb_mutex);
1436 	down_write(&hba->clk_scaling_lock);
1437 
1438 	if (!hba->clk_scaling.is_allowed ||
1439 	    ufshcd_wait_for_pending_cmds(hba, timeout_us)) {
1440 		ret = -EBUSY;
1441 		up_write(&hba->clk_scaling_lock);
1442 		mutex_unlock(&hba->wb_mutex);
1443 		blk_mq_unquiesce_tagset(&hba->host->tag_set);
1444 		mutex_unlock(&hba->host->scan_mutex);
1445 		goto out;
1446 	}
1447 
1448 	/* let's not get into low power until clock scaling is completed */
1449 	ufshcd_hold(hba);
1450 
1451 out:
1452 	return ret;
1453 }
1454 
1455 static void ufshcd_clock_scaling_unprepare(struct ufs_hba *hba, int err)
1456 {
1457 	up_write(&hba->clk_scaling_lock);
1458 
1459 	/* Enable Write Booster if current gear requires it else disable it */
1460 	if (ufshcd_enable_wb_if_scaling_up(hba) && !err)
1461 		ufshcd_wb_toggle(hba, hba->pwr_info.gear_rx >= hba->clk_scaling.wb_gear);
1462 
1463 	mutex_unlock(&hba->wb_mutex);
1464 
1465 	blk_mq_unquiesce_tagset(&hba->host->tag_set);
1466 	mutex_unlock(&hba->host->scan_mutex);
1467 	ufshcd_release(hba);
1468 }
1469 
1470 /**
1471  * ufshcd_devfreq_scale - scale up/down UFS clocks and gear
1472  * @hba: per adapter instance
1473  * @freq: frequency to scale
1474  * @scale_up: True for scaling up and false for scalin down
1475  *
1476  * Return: 0 for success; -EBUSY if scaling can't happen at this time; non-zero
1477  * for any other errors.
1478  */
1479 static int ufshcd_devfreq_scale(struct ufs_hba *hba, unsigned long freq,
1480 				bool scale_up)
1481 {
1482 	u32 old_gear = hba->pwr_info.gear_rx;
1483 	u32 new_gear = 0;
1484 	int ret = 0;
1485 
1486 	new_gear = ufshcd_vops_freq_to_gear_speed(hba, freq);
1487 
1488 	ret = ufshcd_clock_scaling_prepare(hba, 1 * USEC_PER_SEC);
1489 	if (ret)
1490 		return ret;
1491 
1492 	/* scale down the gear before scaling down clocks */
1493 	if (!scale_up) {
1494 		ret = ufshcd_scale_gear(hba, new_gear, false);
1495 		if (ret)
1496 			goto out_unprepare;
1497 	}
1498 
1499 	ret = ufshcd_scale_clks(hba, freq, scale_up);
1500 	if (ret) {
1501 		if (!scale_up)
1502 			ufshcd_scale_gear(hba, old_gear, true);
1503 		goto out_unprepare;
1504 	}
1505 
1506 	/* scale up the gear after scaling up clocks */
1507 	if (scale_up) {
1508 		ret = ufshcd_scale_gear(hba, new_gear, true);
1509 		if (ret) {
1510 			ufshcd_scale_clks(hba, hba->devfreq->previous_freq,
1511 					  false);
1512 			goto out_unprepare;
1513 		}
1514 	}
1515 
1516 out_unprepare:
1517 	ufshcd_clock_scaling_unprepare(hba, ret);
1518 	return ret;
1519 }
1520 
1521 static void ufshcd_clk_scaling_suspend_work(struct work_struct *work)
1522 {
1523 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1524 					   clk_scaling.suspend_work);
1525 
1526 	scoped_guard(spinlock_irqsave, &hba->clk_scaling.lock)
1527 	{
1528 		if (hba->clk_scaling.active_reqs ||
1529 		    hba->clk_scaling.is_suspended)
1530 			return;
1531 
1532 		hba->clk_scaling.is_suspended = true;
1533 		hba->clk_scaling.window_start_t = 0;
1534 	}
1535 
1536 	devfreq_suspend_device(hba->devfreq);
1537 }
1538 
1539 static void ufshcd_clk_scaling_resume_work(struct work_struct *work)
1540 {
1541 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1542 					   clk_scaling.resume_work);
1543 
1544 	scoped_guard(spinlock_irqsave, &hba->clk_scaling.lock)
1545 	{
1546 		if (!hba->clk_scaling.is_suspended)
1547 			return;
1548 		hba->clk_scaling.is_suspended = false;
1549 	}
1550 
1551 	devfreq_resume_device(hba->devfreq);
1552 }
1553 
1554 static int ufshcd_devfreq_target(struct device *dev,
1555 				unsigned long *freq, u32 flags)
1556 {
1557 	int ret = 0;
1558 	struct ufs_hba *hba = dev_get_drvdata(dev);
1559 	ktime_t start;
1560 	bool scale_up = false, sched_clk_scaling_suspend_work = false;
1561 	struct list_head *clk_list = &hba->clk_list_head;
1562 	struct ufs_clk_info *clki;
1563 
1564 	if (!ufshcd_is_clkscaling_supported(hba))
1565 		return -EINVAL;
1566 
1567 	if (hba->use_pm_opp) {
1568 		struct dev_pm_opp *opp;
1569 
1570 		/* Get the recommended frequency from OPP framework */
1571 		opp = devfreq_recommended_opp(dev, freq, flags);
1572 		if (IS_ERR(opp))
1573 			return PTR_ERR(opp);
1574 
1575 		dev_pm_opp_put(opp);
1576 	} else {
1577 		/* Override with the closest supported frequency */
1578 		clki = list_first_entry(&hba->clk_list_head, struct ufs_clk_info,
1579 					list);
1580 		*freq =	(unsigned long) clk_round_rate(clki->clk, *freq);
1581 	}
1582 
1583 	scoped_guard(spinlock_irqsave, &hba->clk_scaling.lock)
1584 	{
1585 		if (ufshcd_eh_in_progress(hba))
1586 			return 0;
1587 
1588 		/* Skip scaling clock when clock scaling is suspended */
1589 		if (hba->clk_scaling.is_suspended) {
1590 			dev_warn(hba->dev, "clock scaling is suspended, skip");
1591 			return 0;
1592 		}
1593 
1594 		if (!hba->clk_scaling.active_reqs)
1595 			sched_clk_scaling_suspend_work = true;
1596 
1597 		if (list_empty(clk_list))
1598 			goto out;
1599 
1600 		/* Decide based on the target or rounded-off frequency and update */
1601 		if (hba->use_pm_opp)
1602 			scale_up = *freq > hba->clk_scaling.target_freq;
1603 		else
1604 			scale_up = *freq == clki->max_freq;
1605 
1606 		if (!hba->use_pm_opp && !scale_up)
1607 			*freq = clki->min_freq;
1608 
1609 		/* Update the frequency */
1610 		if (!ufshcd_is_devfreq_scaling_required(hba, *freq, scale_up)) {
1611 			ret = 0;
1612 			goto out; /* no state change required */
1613 		}
1614 	}
1615 
1616 	start = ktime_get();
1617 	ret = ufshcd_devfreq_scale(hba, *freq, scale_up);
1618 	if (!ret)
1619 		hba->clk_scaling.target_freq = *freq;
1620 
1621 	trace_ufshcd_profile_clk_scaling(hba,
1622 		(scale_up ? "up" : "down"),
1623 		ktime_to_us(ktime_sub(ktime_get(), start)), ret);
1624 
1625 out:
1626 	if (sched_clk_scaling_suspend_work &&
1627 			(!scale_up || hba->clk_scaling.suspend_on_no_request))
1628 		queue_work(hba->clk_scaling.workq,
1629 			   &hba->clk_scaling.suspend_work);
1630 
1631 	return ret;
1632 }
1633 
1634 static int ufshcd_devfreq_get_dev_status(struct device *dev,
1635 		struct devfreq_dev_status *stat)
1636 {
1637 	struct ufs_hba *hba = dev_get_drvdata(dev);
1638 	struct ufs_clk_scaling *scaling = &hba->clk_scaling;
1639 	ktime_t curr_t;
1640 
1641 	if (!ufshcd_is_clkscaling_supported(hba))
1642 		return -EINVAL;
1643 
1644 	memset(stat, 0, sizeof(*stat));
1645 
1646 	guard(spinlock_irqsave)(&hba->clk_scaling.lock);
1647 
1648 	curr_t = ktime_get();
1649 	if (!scaling->window_start_t)
1650 		goto start_window;
1651 
1652 	/*
1653 	 * If current frequency is 0, then the ondemand governor considers
1654 	 * there's no initial frequency set. And it always requests to set
1655 	 * to max. frequency.
1656 	 */
1657 	if (hba->use_pm_opp) {
1658 		stat->current_frequency = hba->clk_scaling.target_freq;
1659 	} else {
1660 		struct list_head *clk_list = &hba->clk_list_head;
1661 		struct ufs_clk_info *clki;
1662 
1663 		clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1664 		stat->current_frequency = clki->curr_freq;
1665 	}
1666 
1667 	if (scaling->is_busy_started)
1668 		scaling->tot_busy_t += ktime_us_delta(curr_t,
1669 				scaling->busy_start_t);
1670 	stat->total_time = ktime_us_delta(curr_t, scaling->window_start_t);
1671 	stat->busy_time = scaling->tot_busy_t;
1672 start_window:
1673 	scaling->window_start_t = curr_t;
1674 	scaling->tot_busy_t = 0;
1675 
1676 	if (scaling->active_reqs) {
1677 		scaling->busy_start_t = curr_t;
1678 		scaling->is_busy_started = true;
1679 	} else {
1680 		scaling->busy_start_t = 0;
1681 		scaling->is_busy_started = false;
1682 	}
1683 
1684 	return 0;
1685 }
1686 
1687 static int ufshcd_devfreq_init(struct ufs_hba *hba)
1688 {
1689 	struct list_head *clk_list = &hba->clk_list_head;
1690 	struct ufs_clk_info *clki;
1691 	struct devfreq *devfreq;
1692 	int ret;
1693 
1694 	/* Skip devfreq if we don't have any clocks in the list */
1695 	if (list_empty(clk_list))
1696 		return 0;
1697 
1698 	if (!hba->use_pm_opp) {
1699 		clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1700 		dev_pm_opp_add(hba->dev, clki->min_freq, 0);
1701 		dev_pm_opp_add(hba->dev, clki->max_freq, 0);
1702 	}
1703 
1704 	ufshcd_vops_config_scaling_param(hba, &hba->vps->devfreq_profile,
1705 					 &hba->vps->ondemand_data);
1706 	devfreq = devfreq_add_device(hba->dev,
1707 			&hba->vps->devfreq_profile,
1708 			DEVFREQ_GOV_SIMPLE_ONDEMAND,
1709 			&hba->vps->ondemand_data);
1710 	if (IS_ERR(devfreq)) {
1711 		ret = PTR_ERR(devfreq);
1712 		dev_err(hba->dev, "Unable to register with devfreq %d\n", ret);
1713 
1714 		if (!hba->use_pm_opp) {
1715 			dev_pm_opp_remove(hba->dev, clki->min_freq);
1716 			dev_pm_opp_remove(hba->dev, clki->max_freq);
1717 		}
1718 		return ret;
1719 	}
1720 
1721 	hba->devfreq = devfreq;
1722 
1723 	return 0;
1724 }
1725 
1726 static void ufshcd_devfreq_remove(struct ufs_hba *hba)
1727 {
1728 	struct list_head *clk_list = &hba->clk_list_head;
1729 
1730 	if (!hba->devfreq)
1731 		return;
1732 
1733 	devfreq_remove_device(hba->devfreq);
1734 	hba->devfreq = NULL;
1735 
1736 	if (!hba->use_pm_opp) {
1737 		struct ufs_clk_info *clki;
1738 
1739 		clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1740 		dev_pm_opp_remove(hba->dev, clki->min_freq);
1741 		dev_pm_opp_remove(hba->dev, clki->max_freq);
1742 	}
1743 }
1744 
1745 static void ufshcd_suspend_clkscaling(struct ufs_hba *hba)
1746 {
1747 	bool suspend = false;
1748 
1749 	cancel_work_sync(&hba->clk_scaling.suspend_work);
1750 	cancel_work_sync(&hba->clk_scaling.resume_work);
1751 
1752 	scoped_guard(spinlock_irqsave, &hba->clk_scaling.lock)
1753 	{
1754 		if (!hba->clk_scaling.is_suspended) {
1755 			suspend = true;
1756 			hba->clk_scaling.is_suspended = true;
1757 			hba->clk_scaling.window_start_t = 0;
1758 		}
1759 	}
1760 
1761 	if (suspend)
1762 		devfreq_suspend_device(hba->devfreq);
1763 }
1764 
1765 static void ufshcd_resume_clkscaling(struct ufs_hba *hba)
1766 {
1767 	bool resume = false;
1768 
1769 	scoped_guard(spinlock_irqsave, &hba->clk_scaling.lock)
1770 	{
1771 		if (hba->clk_scaling.is_suspended) {
1772 			resume = true;
1773 			hba->clk_scaling.is_suspended = false;
1774 		}
1775 	}
1776 
1777 	if (resume)
1778 		devfreq_resume_device(hba->devfreq);
1779 }
1780 
1781 static ssize_t ufshcd_clkscale_enable_show(struct device *dev,
1782 		struct device_attribute *attr, char *buf)
1783 {
1784 	struct ufs_hba *hba = dev_get_drvdata(dev);
1785 
1786 	return sysfs_emit(buf, "%d\n", hba->clk_scaling.is_enabled);
1787 }
1788 
1789 static ssize_t ufshcd_clkscale_enable_store(struct device *dev,
1790 		struct device_attribute *attr, const char *buf, size_t count)
1791 {
1792 	struct ufs_hba *hba = dev_get_drvdata(dev);
1793 	struct ufs_clk_info *clki;
1794 	unsigned long freq;
1795 	u32 value;
1796 	int err = 0;
1797 
1798 	if (kstrtou32(buf, 0, &value))
1799 		return -EINVAL;
1800 
1801 	down(&hba->host_sem);
1802 	if (!ufshcd_is_user_access_allowed(hba)) {
1803 		err = -EBUSY;
1804 		goto out;
1805 	}
1806 
1807 	value = !!value;
1808 	if (value == hba->clk_scaling.is_enabled)
1809 		goto out;
1810 
1811 	ufshcd_rpm_get_sync(hba);
1812 	ufshcd_hold(hba);
1813 
1814 	hba->clk_scaling.is_enabled = value;
1815 
1816 	if (value) {
1817 		ufshcd_resume_clkscaling(hba);
1818 		goto out_rel;
1819 	}
1820 
1821 	clki = list_first_entry(&hba->clk_list_head, struct ufs_clk_info, list);
1822 	freq = clki->max_freq;
1823 
1824 	ufshcd_suspend_clkscaling(hba);
1825 
1826 	if (!ufshcd_is_devfreq_scaling_required(hba, freq, true))
1827 		goto out_rel;
1828 
1829 	err = ufshcd_devfreq_scale(hba, freq, true);
1830 	if (err)
1831 		dev_err(hba->dev, "%s: failed to scale clocks up %d\n",
1832 				__func__, err);
1833 	else
1834 		hba->clk_scaling.target_freq = freq;
1835 
1836 out_rel:
1837 	ufshcd_release(hba);
1838 	ufshcd_rpm_put_sync(hba);
1839 out:
1840 	up(&hba->host_sem);
1841 	return err ? err : count;
1842 }
1843 
1844 static void ufshcd_init_clk_scaling_sysfs(struct ufs_hba *hba)
1845 {
1846 	hba->clk_scaling.enable_attr.show = ufshcd_clkscale_enable_show;
1847 	hba->clk_scaling.enable_attr.store = ufshcd_clkscale_enable_store;
1848 	sysfs_attr_init(&hba->clk_scaling.enable_attr.attr);
1849 	hba->clk_scaling.enable_attr.attr.name = "clkscale_enable";
1850 	hba->clk_scaling.enable_attr.attr.mode = 0644;
1851 	if (device_create_file(hba->dev, &hba->clk_scaling.enable_attr))
1852 		dev_err(hba->dev, "Failed to create sysfs for clkscale_enable\n");
1853 }
1854 
1855 static void ufshcd_remove_clk_scaling_sysfs(struct ufs_hba *hba)
1856 {
1857 	if (hba->clk_scaling.enable_attr.attr.name)
1858 		device_remove_file(hba->dev, &hba->clk_scaling.enable_attr);
1859 }
1860 
1861 static void ufshcd_init_clk_scaling(struct ufs_hba *hba)
1862 {
1863 	if (!ufshcd_is_clkscaling_supported(hba))
1864 		return;
1865 
1866 	if (!hba->clk_scaling.min_gear)
1867 		hba->clk_scaling.min_gear = UFS_HS_G1;
1868 
1869 	if (!hba->clk_scaling.wb_gear)
1870 		/* Use intermediate gear speed HS_G3 as the default wb_gear */
1871 		hba->clk_scaling.wb_gear = UFS_HS_G3;
1872 
1873 	INIT_WORK(&hba->clk_scaling.suspend_work,
1874 		  ufshcd_clk_scaling_suspend_work);
1875 	INIT_WORK(&hba->clk_scaling.resume_work,
1876 		  ufshcd_clk_scaling_resume_work);
1877 
1878 	spin_lock_init(&hba->clk_scaling.lock);
1879 
1880 	hba->clk_scaling.workq = alloc_ordered_workqueue(
1881 		"ufs_clkscaling_%d", WQ_MEM_RECLAIM, hba->host->host_no);
1882 
1883 	hba->clk_scaling.is_initialized = true;
1884 }
1885 
1886 static void ufshcd_exit_clk_scaling(struct ufs_hba *hba)
1887 {
1888 	if (!hba->clk_scaling.is_initialized)
1889 		return;
1890 
1891 	ufshcd_remove_clk_scaling_sysfs(hba);
1892 	destroy_workqueue(hba->clk_scaling.workq);
1893 	ufshcd_devfreq_remove(hba);
1894 	hba->clk_scaling.is_initialized = false;
1895 }
1896 
1897 static void ufshcd_ungate_work(struct work_struct *work)
1898 {
1899 	int ret;
1900 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1901 			clk_gating.ungate_work);
1902 
1903 	cancel_delayed_work_sync(&hba->clk_gating.gate_work);
1904 
1905 	scoped_guard(spinlock_irqsave, &hba->clk_gating.lock) {
1906 		if (hba->clk_gating.state == CLKS_ON)
1907 			return;
1908 	}
1909 
1910 	ufshcd_hba_vreg_set_hpm(hba);
1911 	ufshcd_setup_clocks(hba, true);
1912 
1913 	ufshcd_enable_irq(hba);
1914 
1915 	/* Exit from hibern8 */
1916 	if (ufshcd_can_hibern8_during_gating(hba)) {
1917 		/* Prevent gating in this path */
1918 		hba->clk_gating.is_suspended = true;
1919 		if (ufshcd_is_link_hibern8(hba)) {
1920 			ret = ufshcd_uic_hibern8_exit(hba);
1921 			if (ret)
1922 				dev_err(hba->dev, "%s: hibern8 exit failed %d\n",
1923 					__func__, ret);
1924 			else
1925 				ufshcd_set_link_active(hba);
1926 		}
1927 		hba->clk_gating.is_suspended = false;
1928 	}
1929 }
1930 
1931 /**
1932  * ufshcd_hold - Enable clocks that were gated earlier due to ufshcd_release.
1933  * Also, exit from hibern8 mode and set the link as active.
1934  * @hba: per adapter instance
1935  */
1936 void ufshcd_hold(struct ufs_hba *hba)
1937 {
1938 	bool flush_result;
1939 	unsigned long flags;
1940 
1941 	if (!ufshcd_is_clkgating_allowed(hba) ||
1942 	    !hba->clk_gating.is_initialized)
1943 		return;
1944 	spin_lock_irqsave(&hba->clk_gating.lock, flags);
1945 	hba->clk_gating.active_reqs++;
1946 
1947 start:
1948 	switch (hba->clk_gating.state) {
1949 	case CLKS_ON:
1950 		/*
1951 		 * Wait for the ungate work to complete if in progress.
1952 		 * Though the clocks may be in ON state, the link could
1953 		 * still be in hibner8 state if hibern8 is allowed
1954 		 * during clock gating.
1955 		 * Make sure we exit hibern8 state also in addition to
1956 		 * clocks being ON.
1957 		 */
1958 		if (ufshcd_can_hibern8_during_gating(hba) &&
1959 		    ufshcd_is_link_hibern8(hba)) {
1960 			spin_unlock_irqrestore(&hba->clk_gating.lock, flags);
1961 			flush_result = flush_work(&hba->clk_gating.ungate_work);
1962 			if (hba->clk_gating.is_suspended && !flush_result)
1963 				return;
1964 			spin_lock_irqsave(&hba->clk_gating.lock, flags);
1965 			goto start;
1966 		}
1967 		break;
1968 	case REQ_CLKS_OFF:
1969 		if (cancel_delayed_work(&hba->clk_gating.gate_work)) {
1970 			hba->clk_gating.state = CLKS_ON;
1971 			trace_ufshcd_clk_gating(hba,
1972 						hba->clk_gating.state);
1973 			break;
1974 		}
1975 		/*
1976 		 * If we are here, it means gating work is either done or
1977 		 * currently running. Hence, fall through to cancel gating
1978 		 * work and to enable clocks.
1979 		 */
1980 		fallthrough;
1981 	case CLKS_OFF:
1982 		hba->clk_gating.state = REQ_CLKS_ON;
1983 		trace_ufshcd_clk_gating(hba,
1984 					hba->clk_gating.state);
1985 		queue_work(hba->clk_gating.clk_gating_workq,
1986 			   &hba->clk_gating.ungate_work);
1987 		/*
1988 		 * fall through to check if we should wait for this
1989 		 * work to be done or not.
1990 		 */
1991 		fallthrough;
1992 	case REQ_CLKS_ON:
1993 		spin_unlock_irqrestore(&hba->clk_gating.lock, flags);
1994 		flush_work(&hba->clk_gating.ungate_work);
1995 		/* Make sure state is CLKS_ON before returning */
1996 		spin_lock_irqsave(&hba->clk_gating.lock, flags);
1997 		goto start;
1998 	default:
1999 		dev_err(hba->dev, "%s: clk gating is in invalid state %d\n",
2000 				__func__, hba->clk_gating.state);
2001 		break;
2002 	}
2003 	spin_unlock_irqrestore(&hba->clk_gating.lock, flags);
2004 }
2005 EXPORT_SYMBOL_GPL(ufshcd_hold);
2006 
2007 static void ufshcd_gate_work(struct work_struct *work)
2008 {
2009 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
2010 			clk_gating.gate_work.work);
2011 	int ret;
2012 
2013 	scoped_guard(spinlock_irqsave, &hba->clk_gating.lock) {
2014 		/*
2015 		 * In case you are here to cancel this work the gating state
2016 		 * would be marked as REQ_CLKS_ON. In this case save time by
2017 		 * skipping the gating work and exit after changing the clock
2018 		 * state to CLKS_ON.
2019 		 */
2020 		if (hba->clk_gating.is_suspended ||
2021 		    hba->clk_gating.state != REQ_CLKS_OFF) {
2022 			hba->clk_gating.state = CLKS_ON;
2023 			trace_ufshcd_clk_gating(hba,
2024 						hba->clk_gating.state);
2025 			return;
2026 		}
2027 
2028 		if (hba->clk_gating.active_reqs)
2029 			return;
2030 	}
2031 
2032 	scoped_guard(spinlock_irqsave, hba->host->host_lock) {
2033 		if (ufshcd_is_ufs_dev_busy(hba) ||
2034 		    hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL)
2035 			return;
2036 	}
2037 
2038 	/* put the link into hibern8 mode before turning off clocks */
2039 	if (ufshcd_can_hibern8_during_gating(hba)) {
2040 		ret = ufshcd_uic_hibern8_enter(hba);
2041 		if (ret) {
2042 			hba->clk_gating.state = CLKS_ON;
2043 			dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
2044 					__func__, ret);
2045 			trace_ufshcd_clk_gating(hba,
2046 						hba->clk_gating.state);
2047 			return;
2048 		}
2049 		ufshcd_set_link_hibern8(hba);
2050 	}
2051 
2052 	ufshcd_disable_irq(hba);
2053 
2054 	ufshcd_setup_clocks(hba, false);
2055 
2056 	/* Put the host controller in low power mode if possible */
2057 	ufshcd_hba_vreg_set_lpm(hba);
2058 	/*
2059 	 * In case you are here to cancel this work the gating state
2060 	 * would be marked as REQ_CLKS_ON. In this case keep the state
2061 	 * as REQ_CLKS_ON which would anyway imply that clocks are off
2062 	 * and a request to turn them on is pending. By doing this way,
2063 	 * we keep the state machine in tact and this would ultimately
2064 	 * prevent from doing cancel work multiple times when there are
2065 	 * new requests arriving before the current cancel work is done.
2066 	 */
2067 	guard(spinlock_irqsave)(&hba->clk_gating.lock);
2068 	if (hba->clk_gating.state == REQ_CLKS_OFF) {
2069 		hba->clk_gating.state = CLKS_OFF;
2070 		trace_ufshcd_clk_gating(hba,
2071 					hba->clk_gating.state);
2072 	}
2073 }
2074 
2075 static void __ufshcd_release(struct ufs_hba *hba)
2076 {
2077 	lockdep_assert_held(&hba->clk_gating.lock);
2078 
2079 	if (!ufshcd_is_clkgating_allowed(hba))
2080 		return;
2081 
2082 	hba->clk_gating.active_reqs--;
2083 
2084 	if (hba->clk_gating.active_reqs || hba->clk_gating.is_suspended ||
2085 	    !hba->clk_gating.is_initialized ||
2086 	    hba->clk_gating.state == CLKS_OFF)
2087 		return;
2088 
2089 	scoped_guard(spinlock_irqsave, hba->host->host_lock) {
2090 		if (ufshcd_has_pending_tasks(hba) ||
2091 		    hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL)
2092 			return;
2093 	}
2094 
2095 	hba->clk_gating.state = REQ_CLKS_OFF;
2096 	trace_ufshcd_clk_gating(hba, hba->clk_gating.state);
2097 	queue_delayed_work(hba->clk_gating.clk_gating_workq,
2098 			   &hba->clk_gating.gate_work,
2099 			   msecs_to_jiffies(hba->clk_gating.delay_ms));
2100 }
2101 
2102 void ufshcd_release(struct ufs_hba *hba)
2103 {
2104 	guard(spinlock_irqsave)(&hba->clk_gating.lock);
2105 	__ufshcd_release(hba);
2106 }
2107 EXPORT_SYMBOL_GPL(ufshcd_release);
2108 
2109 static ssize_t ufshcd_clkgate_delay_show(struct device *dev,
2110 		struct device_attribute *attr, char *buf)
2111 {
2112 	struct ufs_hba *hba = dev_get_drvdata(dev);
2113 
2114 	return sysfs_emit(buf, "%lu\n", hba->clk_gating.delay_ms);
2115 }
2116 
2117 void ufshcd_clkgate_delay_set(struct device *dev, unsigned long value)
2118 {
2119 	struct ufs_hba *hba = dev_get_drvdata(dev);
2120 
2121 	guard(spinlock_irqsave)(&hba->clk_gating.lock);
2122 	hba->clk_gating.delay_ms = value;
2123 }
2124 EXPORT_SYMBOL_GPL(ufshcd_clkgate_delay_set);
2125 
2126 static ssize_t ufshcd_clkgate_delay_store(struct device *dev,
2127 		struct device_attribute *attr, const char *buf, size_t count)
2128 {
2129 	unsigned long value;
2130 
2131 	if (kstrtoul(buf, 0, &value))
2132 		return -EINVAL;
2133 
2134 	ufshcd_clkgate_delay_set(dev, value);
2135 	return count;
2136 }
2137 
2138 static ssize_t ufshcd_clkgate_enable_show(struct device *dev,
2139 		struct device_attribute *attr, char *buf)
2140 {
2141 	struct ufs_hba *hba = dev_get_drvdata(dev);
2142 
2143 	return sysfs_emit(buf, "%d\n", hba->clk_gating.is_enabled);
2144 }
2145 
2146 static ssize_t ufshcd_clkgate_enable_store(struct device *dev,
2147 		struct device_attribute *attr, const char *buf, size_t count)
2148 {
2149 	struct ufs_hba *hba = dev_get_drvdata(dev);
2150 	u32 value;
2151 
2152 	if (kstrtou32(buf, 0, &value))
2153 		return -EINVAL;
2154 
2155 	value = !!value;
2156 
2157 	guard(spinlock_irqsave)(&hba->clk_gating.lock);
2158 
2159 	if (value == hba->clk_gating.is_enabled)
2160 		return count;
2161 
2162 	if (value)
2163 		__ufshcd_release(hba);
2164 	else
2165 		hba->clk_gating.active_reqs++;
2166 
2167 	hba->clk_gating.is_enabled = value;
2168 
2169 	return count;
2170 }
2171 
2172 static void ufshcd_init_clk_gating_sysfs(struct ufs_hba *hba)
2173 {
2174 	hba->clk_gating.delay_attr.show = ufshcd_clkgate_delay_show;
2175 	hba->clk_gating.delay_attr.store = ufshcd_clkgate_delay_store;
2176 	sysfs_attr_init(&hba->clk_gating.delay_attr.attr);
2177 	hba->clk_gating.delay_attr.attr.name = "clkgate_delay_ms";
2178 	hba->clk_gating.delay_attr.attr.mode = 0644;
2179 	if (device_create_file(hba->dev, &hba->clk_gating.delay_attr))
2180 		dev_err(hba->dev, "Failed to create sysfs for clkgate_delay\n");
2181 
2182 	hba->clk_gating.enable_attr.show = ufshcd_clkgate_enable_show;
2183 	hba->clk_gating.enable_attr.store = ufshcd_clkgate_enable_store;
2184 	sysfs_attr_init(&hba->clk_gating.enable_attr.attr);
2185 	hba->clk_gating.enable_attr.attr.name = "clkgate_enable";
2186 	hba->clk_gating.enable_attr.attr.mode = 0644;
2187 	if (device_create_file(hba->dev, &hba->clk_gating.enable_attr))
2188 		dev_err(hba->dev, "Failed to create sysfs for clkgate_enable\n");
2189 }
2190 
2191 static void ufshcd_remove_clk_gating_sysfs(struct ufs_hba *hba)
2192 {
2193 	if (hba->clk_gating.delay_attr.attr.name)
2194 		device_remove_file(hba->dev, &hba->clk_gating.delay_attr);
2195 	if (hba->clk_gating.enable_attr.attr.name)
2196 		device_remove_file(hba->dev, &hba->clk_gating.enable_attr);
2197 }
2198 
2199 static void ufshcd_init_clk_gating(struct ufs_hba *hba)
2200 {
2201 	if (!ufshcd_is_clkgating_allowed(hba))
2202 		return;
2203 
2204 	hba->clk_gating.state = CLKS_ON;
2205 
2206 	hba->clk_gating.delay_ms = 150;
2207 	INIT_DELAYED_WORK(&hba->clk_gating.gate_work, ufshcd_gate_work);
2208 	INIT_WORK(&hba->clk_gating.ungate_work, ufshcd_ungate_work);
2209 
2210 	hba->clk_gating.clk_gating_workq = alloc_ordered_workqueue(
2211 		"ufs_clk_gating_%d", WQ_MEM_RECLAIM | WQ_HIGHPRI,
2212 		hba->host->host_no);
2213 
2214 	ufshcd_init_clk_gating_sysfs(hba);
2215 
2216 	hba->clk_gating.is_enabled = true;
2217 	hba->clk_gating.is_initialized = true;
2218 }
2219 
2220 static void ufshcd_exit_clk_gating(struct ufs_hba *hba)
2221 {
2222 	if (!hba->clk_gating.is_initialized)
2223 		return;
2224 
2225 	ufshcd_remove_clk_gating_sysfs(hba);
2226 
2227 	/* Ungate the clock if necessary. */
2228 	ufshcd_hold(hba);
2229 	hba->clk_gating.is_initialized = false;
2230 	ufshcd_release(hba);
2231 
2232 	destroy_workqueue(hba->clk_gating.clk_gating_workq);
2233 }
2234 
2235 static void ufshcd_clk_scaling_start_busy(struct ufs_hba *hba)
2236 {
2237 	bool queue_resume_work = false;
2238 	ktime_t curr_t;
2239 
2240 	if (!ufshcd_is_clkscaling_supported(hba))
2241 		return;
2242 
2243 	curr_t = ktime_get();
2244 
2245 	guard(spinlock_irqsave)(&hba->clk_scaling.lock);
2246 
2247 	if (!hba->clk_scaling.active_reqs++)
2248 		queue_resume_work = true;
2249 
2250 	if (!hba->clk_scaling.is_enabled || hba->pm_op_in_progress)
2251 		return;
2252 
2253 	if (queue_resume_work)
2254 		queue_work(hba->clk_scaling.workq,
2255 			   &hba->clk_scaling.resume_work);
2256 
2257 	if (!hba->clk_scaling.window_start_t) {
2258 		hba->clk_scaling.window_start_t = curr_t;
2259 		hba->clk_scaling.tot_busy_t = 0;
2260 		hba->clk_scaling.is_busy_started = false;
2261 	}
2262 
2263 	if (!hba->clk_scaling.is_busy_started) {
2264 		hba->clk_scaling.busy_start_t = curr_t;
2265 		hba->clk_scaling.is_busy_started = true;
2266 	}
2267 }
2268 
2269 static void ufshcd_clk_scaling_update_busy(struct ufs_hba *hba)
2270 {
2271 	struct ufs_clk_scaling *scaling = &hba->clk_scaling;
2272 
2273 	if (!ufshcd_is_clkscaling_supported(hba))
2274 		return;
2275 
2276 	guard(spinlock_irqsave)(&hba->clk_scaling.lock);
2277 
2278 	hba->clk_scaling.active_reqs--;
2279 	if (!scaling->active_reqs && scaling->is_busy_started) {
2280 		scaling->tot_busy_t += ktime_to_us(ktime_sub(ktime_get(),
2281 					scaling->busy_start_t));
2282 		scaling->busy_start_t = 0;
2283 		scaling->is_busy_started = false;
2284 	}
2285 }
2286 
2287 static inline int ufshcd_monitor_opcode2dir(u8 opcode)
2288 {
2289 	if (opcode == READ_6 || opcode == READ_10 || opcode == READ_16)
2290 		return READ;
2291 	else if (opcode == WRITE_6 || opcode == WRITE_10 || opcode == WRITE_16)
2292 		return WRITE;
2293 	else
2294 		return -EINVAL;
2295 }
2296 
2297 static inline bool ufshcd_should_inform_monitor(struct ufs_hba *hba,
2298 						struct ufshcd_lrb *lrbp)
2299 {
2300 	const struct ufs_hba_monitor *m = &hba->monitor;
2301 
2302 	return (m->enabled && lrbp && lrbp->cmd &&
2303 		(!m->chunk_size || m->chunk_size == lrbp->cmd->sdb.length) &&
2304 		ktime_before(hba->monitor.enabled_ts, lrbp->issue_time_stamp));
2305 }
2306 
2307 static void ufshcd_start_monitor(struct ufs_hba *hba,
2308 				 const struct ufshcd_lrb *lrbp)
2309 {
2310 	int dir = ufshcd_monitor_opcode2dir(*lrbp->cmd->cmnd);
2311 	unsigned long flags;
2312 
2313 	spin_lock_irqsave(hba->host->host_lock, flags);
2314 	if (dir >= 0 && hba->monitor.nr_queued[dir]++ == 0)
2315 		hba->monitor.busy_start_ts[dir] = ktime_get();
2316 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2317 }
2318 
2319 static void ufshcd_update_monitor(struct ufs_hba *hba, const struct ufshcd_lrb *lrbp)
2320 {
2321 	int dir = ufshcd_monitor_opcode2dir(*lrbp->cmd->cmnd);
2322 	unsigned long flags;
2323 
2324 	spin_lock_irqsave(hba->host->host_lock, flags);
2325 	if (dir >= 0 && hba->monitor.nr_queued[dir] > 0) {
2326 		const struct request *req = scsi_cmd_to_rq(lrbp->cmd);
2327 		struct ufs_hba_monitor *m = &hba->monitor;
2328 		ktime_t now, inc, lat;
2329 
2330 		now = lrbp->compl_time_stamp;
2331 		inc = ktime_sub(now, m->busy_start_ts[dir]);
2332 		m->total_busy[dir] = ktime_add(m->total_busy[dir], inc);
2333 		m->nr_sec_rw[dir] += blk_rq_sectors(req);
2334 
2335 		/* Update latencies */
2336 		m->nr_req[dir]++;
2337 		lat = ktime_sub(now, lrbp->issue_time_stamp);
2338 		m->lat_sum[dir] += lat;
2339 		if (m->lat_max[dir] < lat || !m->lat_max[dir])
2340 			m->lat_max[dir] = lat;
2341 		if (m->lat_min[dir] > lat || !m->lat_min[dir])
2342 			m->lat_min[dir] = lat;
2343 
2344 		m->nr_queued[dir]--;
2345 		/* Push forward the busy start of monitor */
2346 		m->busy_start_ts[dir] = now;
2347 	}
2348 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2349 }
2350 
2351 /**
2352  * ufshcd_send_command - Send SCSI or device management commands
2353  * @hba: per adapter instance
2354  * @task_tag: Task tag of the command
2355  * @hwq: pointer to hardware queue instance
2356  */
2357 static inline
2358 void ufshcd_send_command(struct ufs_hba *hba, unsigned int task_tag,
2359 			 struct ufs_hw_queue *hwq)
2360 {
2361 	struct ufshcd_lrb *lrbp = &hba->lrb[task_tag];
2362 	unsigned long flags;
2363 
2364 	if (hba->monitor.enabled) {
2365 		lrbp->issue_time_stamp = ktime_get();
2366 		lrbp->issue_time_stamp_local_clock = local_clock();
2367 		lrbp->compl_time_stamp = ktime_set(0, 0);
2368 		lrbp->compl_time_stamp_local_clock = 0;
2369 	}
2370 	ufshcd_add_command_trace(hba, task_tag, UFS_CMD_SEND);
2371 	if (lrbp->cmd)
2372 		ufshcd_clk_scaling_start_busy(hba);
2373 	if (unlikely(ufshcd_should_inform_monitor(hba, lrbp)))
2374 		ufshcd_start_monitor(hba, lrbp);
2375 
2376 	if (hba->mcq_enabled) {
2377 		int utrd_size = sizeof(struct utp_transfer_req_desc);
2378 		struct utp_transfer_req_desc *src = lrbp->utr_descriptor_ptr;
2379 		struct utp_transfer_req_desc *dest;
2380 
2381 		spin_lock(&hwq->sq_lock);
2382 		dest = hwq->sqe_base_addr + hwq->sq_tail_slot;
2383 		memcpy(dest, src, utrd_size);
2384 		ufshcd_inc_sq_tail(hwq);
2385 		spin_unlock(&hwq->sq_lock);
2386 	} else {
2387 		spin_lock_irqsave(&hba->outstanding_lock, flags);
2388 		if (hba->vops && hba->vops->setup_xfer_req)
2389 			hba->vops->setup_xfer_req(hba, lrbp->task_tag,
2390 						  !!lrbp->cmd);
2391 		__set_bit(lrbp->task_tag, &hba->outstanding_reqs);
2392 		ufshcd_writel(hba, 1 << lrbp->task_tag,
2393 			      REG_UTP_TRANSFER_REQ_DOOR_BELL);
2394 		spin_unlock_irqrestore(&hba->outstanding_lock, flags);
2395 	}
2396 }
2397 
2398 /**
2399  * ufshcd_copy_sense_data - Copy sense data in case of check condition
2400  * @lrbp: pointer to local reference block
2401  */
2402 static inline void ufshcd_copy_sense_data(struct ufshcd_lrb *lrbp)
2403 {
2404 	u8 *const sense_buffer = lrbp->cmd->sense_buffer;
2405 	u16 resp_len;
2406 	int len;
2407 
2408 	resp_len = be16_to_cpu(lrbp->ucd_rsp_ptr->header.data_segment_length);
2409 	if (sense_buffer && resp_len) {
2410 		int len_to_copy;
2411 
2412 		len = be16_to_cpu(lrbp->ucd_rsp_ptr->sr.sense_data_len);
2413 		len_to_copy = min_t(int, UFS_SENSE_SIZE, len);
2414 
2415 		memcpy(sense_buffer, lrbp->ucd_rsp_ptr->sr.sense_data,
2416 		       len_to_copy);
2417 	}
2418 }
2419 
2420 /**
2421  * ufshcd_copy_query_response() - Copy the Query Response and the data
2422  * descriptor
2423  * @hba: per adapter instance
2424  * @lrbp: pointer to local reference block
2425  *
2426  * Return: 0 upon success; < 0 upon failure.
2427  */
2428 static
2429 int ufshcd_copy_query_response(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2430 {
2431 	struct ufs_query_res *query_res = &hba->dev_cmd.query.response;
2432 
2433 	memcpy(&query_res->upiu_res, &lrbp->ucd_rsp_ptr->qr, QUERY_OSF_SIZE);
2434 
2435 	/* Get the descriptor */
2436 	if (hba->dev_cmd.query.descriptor &&
2437 	    lrbp->ucd_rsp_ptr->qr.opcode == UPIU_QUERY_OPCODE_READ_DESC) {
2438 		u8 *descp = (u8 *)lrbp->ucd_rsp_ptr +
2439 				GENERAL_UPIU_REQUEST_SIZE;
2440 		u16 resp_len;
2441 		u16 buf_len;
2442 
2443 		/* data segment length */
2444 		resp_len = be16_to_cpu(lrbp->ucd_rsp_ptr->header
2445 				       .data_segment_length);
2446 		buf_len = be16_to_cpu(
2447 				hba->dev_cmd.query.request.upiu_req.length);
2448 		if (likely(buf_len >= resp_len)) {
2449 			memcpy(hba->dev_cmd.query.descriptor, descp, resp_len);
2450 		} else {
2451 			dev_warn(hba->dev,
2452 				 "%s: rsp size %d is bigger than buffer size %d",
2453 				 __func__, resp_len, buf_len);
2454 			return -EINVAL;
2455 		}
2456 	}
2457 
2458 	return 0;
2459 }
2460 
2461 /**
2462  * ufshcd_hba_capabilities - Read controller capabilities
2463  * @hba: per adapter instance
2464  *
2465  * Return: 0 on success, negative on error.
2466  */
2467 static inline int ufshcd_hba_capabilities(struct ufs_hba *hba)
2468 {
2469 	int err;
2470 
2471 	hba->capabilities = ufshcd_readl(hba, REG_CONTROLLER_CAPABILITIES);
2472 
2473 	/* nutrs and nutmrs are 0 based values */
2474 	hba->nutrs = (hba->capabilities & MASK_TRANSFER_REQUESTS_SLOTS_SDB) + 1;
2475 	hba->nutmrs =
2476 	((hba->capabilities & MASK_TASK_MANAGEMENT_REQUEST_SLOTS) >> 16) + 1;
2477 	hba->reserved_slot = hba->nutrs - 1;
2478 
2479 	hba->nortt = FIELD_GET(MASK_NUMBER_OUTSTANDING_RTT, hba->capabilities) + 1;
2480 
2481 	/* Read crypto capabilities */
2482 	err = ufshcd_hba_init_crypto_capabilities(hba);
2483 	if (err) {
2484 		dev_err(hba->dev, "crypto setup failed\n");
2485 		return err;
2486 	}
2487 
2488 	/*
2489 	 * The UFSHCI 3.0 specification does not define MCQ_SUPPORT and
2490 	 * LSDB_SUPPORT, but [31:29] as reserved bits with reset value 0s, which
2491 	 * means we can simply read values regardless of version.
2492 	 */
2493 	hba->mcq_sup = FIELD_GET(MASK_MCQ_SUPPORT, hba->capabilities);
2494 	/*
2495 	 * 0h: legacy single doorbell support is available
2496 	 * 1h: indicate that legacy single doorbell support has been removed
2497 	 */
2498 	if (!(hba->quirks & UFSHCD_QUIRK_BROKEN_LSDBS_CAP))
2499 		hba->lsdb_sup = !FIELD_GET(MASK_LSDB_SUPPORT, hba->capabilities);
2500 	else
2501 		hba->lsdb_sup = true;
2502 
2503 	hba->mcq_capabilities = ufshcd_readl(hba, REG_MCQCAP);
2504 
2505 	return 0;
2506 }
2507 
2508 /**
2509  * ufshcd_ready_for_uic_cmd - Check if controller is ready
2510  *                            to accept UIC commands
2511  * @hba: per adapter instance
2512  *
2513  * Return: true on success, else false.
2514  */
2515 static inline bool ufshcd_ready_for_uic_cmd(struct ufs_hba *hba)
2516 {
2517 	u32 val;
2518 	int ret = read_poll_timeout(ufshcd_readl, val, val & UIC_COMMAND_READY,
2519 				    500, uic_cmd_timeout * 1000, false, hba,
2520 				    REG_CONTROLLER_STATUS);
2521 	return ret == 0;
2522 }
2523 
2524 /**
2525  * ufshcd_get_upmcrs - Get the power mode change request status
2526  * @hba: Pointer to adapter instance
2527  *
2528  * This function gets the UPMCRS field of HCS register
2529  *
2530  * Return: value of UPMCRS field.
2531  */
2532 static inline u8 ufshcd_get_upmcrs(struct ufs_hba *hba)
2533 {
2534 	return (ufshcd_readl(hba, REG_CONTROLLER_STATUS) >> 8) & 0x7;
2535 }
2536 
2537 /**
2538  * ufshcd_dispatch_uic_cmd - Dispatch an UIC command to the Unipro layer
2539  * @hba: per adapter instance
2540  * @uic_cmd: UIC command
2541  */
2542 static inline void
2543 ufshcd_dispatch_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2544 {
2545 	lockdep_assert_held(&hba->uic_cmd_mutex);
2546 
2547 	WARN_ON(hba->active_uic_cmd);
2548 
2549 	hba->active_uic_cmd = uic_cmd;
2550 
2551 	/* Write Args */
2552 	ufshcd_writel(hba, uic_cmd->argument1, REG_UIC_COMMAND_ARG_1);
2553 	ufshcd_writel(hba, uic_cmd->argument2, REG_UIC_COMMAND_ARG_2);
2554 	ufshcd_writel(hba, uic_cmd->argument3, REG_UIC_COMMAND_ARG_3);
2555 
2556 	ufshcd_add_uic_command_trace(hba, uic_cmd, UFS_CMD_SEND);
2557 
2558 	/* Write UIC Cmd */
2559 	ufshcd_writel(hba, uic_cmd->command & COMMAND_OPCODE_MASK,
2560 		      REG_UIC_COMMAND);
2561 }
2562 
2563 /**
2564  * ufshcd_wait_for_uic_cmd - Wait for completion of an UIC command
2565  * @hba: per adapter instance
2566  * @uic_cmd: UIC command
2567  *
2568  * Return: 0 only if success.
2569  */
2570 static int
2571 ufshcd_wait_for_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2572 {
2573 	int ret;
2574 	unsigned long flags;
2575 
2576 	lockdep_assert_held(&hba->uic_cmd_mutex);
2577 
2578 	if (wait_for_completion_timeout(&uic_cmd->done,
2579 					msecs_to_jiffies(uic_cmd_timeout))) {
2580 		ret = uic_cmd->argument2 & MASK_UIC_COMMAND_RESULT;
2581 	} else {
2582 		ret = -ETIMEDOUT;
2583 		dev_err(hba->dev,
2584 			"uic cmd 0x%x with arg3 0x%x completion timeout\n",
2585 			uic_cmd->command, uic_cmd->argument3);
2586 
2587 		if (!uic_cmd->cmd_active) {
2588 			dev_err(hba->dev, "%s: UIC cmd has been completed, return the result\n",
2589 				__func__);
2590 			ret = uic_cmd->argument2 & MASK_UIC_COMMAND_RESULT;
2591 		}
2592 	}
2593 
2594 	spin_lock_irqsave(hba->host->host_lock, flags);
2595 	hba->active_uic_cmd = NULL;
2596 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2597 
2598 	return ret;
2599 }
2600 
2601 /**
2602  * __ufshcd_send_uic_cmd - Send UIC commands and retrieve the result
2603  * @hba: per adapter instance
2604  * @uic_cmd: UIC command
2605  *
2606  * Return: 0 if successful; < 0 upon failure.
2607  */
2608 static int
2609 __ufshcd_send_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2610 {
2611 	lockdep_assert_held(&hba->uic_cmd_mutex);
2612 
2613 	if (!ufshcd_ready_for_uic_cmd(hba)) {
2614 		dev_err(hba->dev,
2615 			"Controller not ready to accept UIC commands\n");
2616 		return -EIO;
2617 	}
2618 
2619 	init_completion(&uic_cmd->done);
2620 
2621 	uic_cmd->cmd_active = 1;
2622 	ufshcd_dispatch_uic_cmd(hba, uic_cmd);
2623 
2624 	return 0;
2625 }
2626 
2627 /**
2628  * ufshcd_send_uic_cmd - Send UIC commands and retrieve the result
2629  * @hba: per adapter instance
2630  * @uic_cmd: UIC command
2631  *
2632  * Return: 0 only if success.
2633  */
2634 int ufshcd_send_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2635 {
2636 	unsigned long flags;
2637 	int ret;
2638 
2639 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_UIC_CMD)
2640 		return 0;
2641 
2642 	ufshcd_hold(hba);
2643 	mutex_lock(&hba->uic_cmd_mutex);
2644 	ufshcd_add_delay_before_dme_cmd(hba);
2645 
2646 	spin_lock_irqsave(hba->host->host_lock, flags);
2647 	ufshcd_enable_intr(hba, UIC_COMMAND_COMPL);
2648 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2649 
2650 	ret = __ufshcd_send_uic_cmd(hba, uic_cmd);
2651 	if (!ret)
2652 		ret = ufshcd_wait_for_uic_cmd(hba, uic_cmd);
2653 
2654 	mutex_unlock(&hba->uic_cmd_mutex);
2655 
2656 	ufshcd_release(hba);
2657 	return ret;
2658 }
2659 
2660 /**
2661  * ufshcd_sgl_to_prdt - SG list to PRTD (Physical Region Description Table, 4DW format)
2662  * @hba:	per-adapter instance
2663  * @lrbp:	pointer to local reference block
2664  * @sg_entries:	The number of sg lists actually used
2665  * @sg_list:	Pointer to SG list
2666  */
2667 static void ufshcd_sgl_to_prdt(struct ufs_hba *hba, struct ufshcd_lrb *lrbp, int sg_entries,
2668 			       struct scatterlist *sg_list)
2669 {
2670 	struct ufshcd_sg_entry *prd;
2671 	struct scatterlist *sg;
2672 	int i;
2673 
2674 	if (sg_entries) {
2675 
2676 		if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN)
2677 			lrbp->utr_descriptor_ptr->prd_table_length =
2678 				cpu_to_le16(sg_entries * ufshcd_sg_entry_size(hba));
2679 		else
2680 			lrbp->utr_descriptor_ptr->prd_table_length = cpu_to_le16(sg_entries);
2681 
2682 		prd = lrbp->ucd_prdt_ptr;
2683 
2684 		for_each_sg(sg_list, sg, sg_entries, i) {
2685 			const unsigned int len = sg_dma_len(sg);
2686 
2687 			/*
2688 			 * From the UFSHCI spec: "Data Byte Count (DBC): A '0'
2689 			 * based value that indicates the length, in bytes, of
2690 			 * the data block. A maximum of length of 256KB may
2691 			 * exist for any entry. Bits 1:0 of this field shall be
2692 			 * 11b to indicate Dword granularity. A value of '3'
2693 			 * indicates 4 bytes, '7' indicates 8 bytes, etc."
2694 			 */
2695 			WARN_ONCE(len > SZ_256K, "len = %#x\n", len);
2696 			prd->size = cpu_to_le32(len - 1);
2697 			prd->addr = cpu_to_le64(sg->dma_address);
2698 			prd->reserved = 0;
2699 			prd = (void *)prd + ufshcd_sg_entry_size(hba);
2700 		}
2701 	} else {
2702 		lrbp->utr_descriptor_ptr->prd_table_length = 0;
2703 	}
2704 }
2705 
2706 /**
2707  * ufshcd_map_sg - Map scatter-gather list to prdt
2708  * @hba: per adapter instance
2709  * @lrbp: pointer to local reference block
2710  *
2711  * Return: 0 in case of success, non-zero value in case of failure.
2712  */
2713 static int ufshcd_map_sg(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2714 {
2715 	struct scsi_cmnd *cmd = lrbp->cmd;
2716 	int sg_segments = scsi_dma_map(cmd);
2717 
2718 	if (sg_segments < 0)
2719 		return sg_segments;
2720 
2721 	ufshcd_sgl_to_prdt(hba, lrbp, sg_segments, scsi_sglist(cmd));
2722 
2723 	return ufshcd_crypto_fill_prdt(hba, lrbp);
2724 }
2725 
2726 /**
2727  * ufshcd_prepare_req_desc_hdr - Fill UTP Transfer request descriptor header according to request
2728  * descriptor according to request
2729  * @hba: per adapter instance
2730  * @lrbp: pointer to local reference block
2731  * @upiu_flags: flags required in the header
2732  * @cmd_dir: requests data direction
2733  * @ehs_length: Total EHS Length (in 32‐bytes units of all Extra Header Segments)
2734  */
2735 static void
2736 ufshcd_prepare_req_desc_hdr(struct ufs_hba *hba, struct ufshcd_lrb *lrbp,
2737 			    u8 *upiu_flags, enum dma_data_direction cmd_dir,
2738 			    int ehs_length)
2739 {
2740 	struct utp_transfer_req_desc *req_desc = lrbp->utr_descriptor_ptr;
2741 	struct request_desc_header *h = &req_desc->header;
2742 	enum utp_data_direction data_direction;
2743 
2744 	lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
2745 
2746 	*h = (typeof(*h)){ };
2747 
2748 	if (cmd_dir == DMA_FROM_DEVICE) {
2749 		data_direction = UTP_DEVICE_TO_HOST;
2750 		*upiu_flags = UPIU_CMD_FLAGS_READ;
2751 	} else if (cmd_dir == DMA_TO_DEVICE) {
2752 		data_direction = UTP_HOST_TO_DEVICE;
2753 		*upiu_flags = UPIU_CMD_FLAGS_WRITE;
2754 	} else {
2755 		data_direction = UTP_NO_DATA_TRANSFER;
2756 		*upiu_flags = UPIU_CMD_FLAGS_NONE;
2757 	}
2758 
2759 	h->command_type = lrbp->command_type;
2760 	h->data_direction = data_direction;
2761 	h->ehs_length = ehs_length;
2762 
2763 	if (lrbp->intr_cmd)
2764 		h->interrupt = 1;
2765 
2766 	/* Prepare crypto related dwords */
2767 	ufshcd_prepare_req_desc_hdr_crypto(lrbp, h);
2768 
2769 	/*
2770 	 * assigning invalid value for command status. Controller
2771 	 * updates OCS on command completion, with the command
2772 	 * status
2773 	 */
2774 	h->ocs = OCS_INVALID_COMMAND_STATUS;
2775 
2776 	req_desc->prd_table_length = 0;
2777 }
2778 
2779 /**
2780  * ufshcd_prepare_utp_scsi_cmd_upiu() - fills the utp_transfer_req_desc,
2781  * for scsi commands
2782  * @lrbp: local reference block pointer
2783  * @upiu_flags: flags
2784  */
2785 static
2786 void ufshcd_prepare_utp_scsi_cmd_upiu(struct ufshcd_lrb *lrbp, u8 upiu_flags)
2787 {
2788 	struct scsi_cmnd *cmd = lrbp->cmd;
2789 	struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2790 	unsigned short cdb_len;
2791 
2792 	ucd_req_ptr->header = (struct utp_upiu_header){
2793 		.transaction_code = UPIU_TRANSACTION_COMMAND,
2794 		.flags = upiu_flags,
2795 		.lun = lrbp->lun,
2796 		.task_tag = lrbp->task_tag,
2797 		.command_set_type = UPIU_COMMAND_SET_TYPE_SCSI,
2798 	};
2799 
2800 	WARN_ON_ONCE(ucd_req_ptr->header.task_tag != lrbp->task_tag);
2801 
2802 	ucd_req_ptr->sc.exp_data_transfer_len = cpu_to_be32(cmd->sdb.length);
2803 
2804 	cdb_len = min_t(unsigned short, cmd->cmd_len, UFS_CDB_SIZE);
2805 	memcpy(ucd_req_ptr->sc.cdb, cmd->cmnd, cdb_len);
2806 
2807 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2808 }
2809 
2810 /**
2811  * ufshcd_prepare_utp_query_req_upiu() - fill the utp_transfer_req_desc for query request
2812  * @hba: UFS hba
2813  * @lrbp: local reference block pointer
2814  * @upiu_flags: flags
2815  */
2816 static void ufshcd_prepare_utp_query_req_upiu(struct ufs_hba *hba,
2817 				struct ufshcd_lrb *lrbp, u8 upiu_flags)
2818 {
2819 	struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2820 	struct ufs_query *query = &hba->dev_cmd.query;
2821 	u16 len = be16_to_cpu(query->request.upiu_req.length);
2822 
2823 	/* Query request header */
2824 	ucd_req_ptr->header = (struct utp_upiu_header){
2825 		.transaction_code = UPIU_TRANSACTION_QUERY_REQ,
2826 		.flags = upiu_flags,
2827 		.lun = lrbp->lun,
2828 		.task_tag = lrbp->task_tag,
2829 		.query_function = query->request.query_func,
2830 		/* Data segment length only need for WRITE_DESC */
2831 		.data_segment_length =
2832 			query->request.upiu_req.opcode ==
2833 					UPIU_QUERY_OPCODE_WRITE_DESC ?
2834 				cpu_to_be16(len) :
2835 				0,
2836 	};
2837 
2838 	/* Copy the Query Request buffer as is */
2839 	memcpy(&ucd_req_ptr->qr, &query->request.upiu_req,
2840 			QUERY_OSF_SIZE);
2841 
2842 	/* Copy the Descriptor */
2843 	if (query->request.upiu_req.opcode == UPIU_QUERY_OPCODE_WRITE_DESC)
2844 		memcpy(ucd_req_ptr + 1, query->descriptor, len);
2845 }
2846 
2847 static inline void ufshcd_prepare_utp_nop_upiu(struct ufshcd_lrb *lrbp)
2848 {
2849 	struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2850 
2851 	memset(ucd_req_ptr, 0, sizeof(struct utp_upiu_req));
2852 
2853 	ucd_req_ptr->header = (struct utp_upiu_header){
2854 		.transaction_code = UPIU_TRANSACTION_NOP_OUT,
2855 		.task_tag = lrbp->task_tag,
2856 	};
2857 }
2858 
2859 /**
2860  * ufshcd_compose_devman_upiu - UFS Protocol Information Unit(UPIU)
2861  *			     for Device Management Purposes
2862  * @hba: per adapter instance
2863  * @lrbp: pointer to local reference block
2864  *
2865  * Return: 0 upon success; < 0 upon failure.
2866  */
2867 static int ufshcd_compose_devman_upiu(struct ufs_hba *hba,
2868 				      struct ufshcd_lrb *lrbp)
2869 {
2870 	u8 upiu_flags;
2871 	int ret = 0;
2872 
2873 	ufshcd_prepare_req_desc_hdr(hba, lrbp, &upiu_flags, DMA_NONE, 0);
2874 
2875 	if (hba->dev_cmd.type == DEV_CMD_TYPE_QUERY)
2876 		ufshcd_prepare_utp_query_req_upiu(hba, lrbp, upiu_flags);
2877 	else if (hba->dev_cmd.type == DEV_CMD_TYPE_NOP)
2878 		ufshcd_prepare_utp_nop_upiu(lrbp);
2879 	else
2880 		ret = -EINVAL;
2881 
2882 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2883 
2884 	return ret;
2885 }
2886 
2887 /**
2888  * ufshcd_comp_scsi_upiu - UFS Protocol Information Unit(UPIU)
2889  *			   for SCSI Purposes
2890  * @hba: per adapter instance
2891  * @lrbp: pointer to local reference block
2892  */
2893 static void ufshcd_comp_scsi_upiu(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2894 {
2895 	struct request *rq = scsi_cmd_to_rq(lrbp->cmd);
2896 	unsigned int ioprio_class = IOPRIO_PRIO_CLASS(req_get_ioprio(rq));
2897 	u8 upiu_flags;
2898 
2899 	ufshcd_prepare_req_desc_hdr(hba, lrbp, &upiu_flags, lrbp->cmd->sc_data_direction, 0);
2900 	if (ioprio_class == IOPRIO_CLASS_RT)
2901 		upiu_flags |= UPIU_CMD_FLAGS_CP;
2902 	ufshcd_prepare_utp_scsi_cmd_upiu(lrbp, upiu_flags);
2903 }
2904 
2905 static void __ufshcd_setup_cmd(struct ufshcd_lrb *lrbp, struct scsi_cmnd *cmd, u8 lun, int tag)
2906 {
2907 	memset(lrbp->ucd_req_ptr, 0, sizeof(*lrbp->ucd_req_ptr));
2908 
2909 	lrbp->cmd = cmd;
2910 	lrbp->task_tag = tag;
2911 	lrbp->lun = lun;
2912 	ufshcd_prepare_lrbp_crypto(cmd ? scsi_cmd_to_rq(cmd) : NULL, lrbp);
2913 }
2914 
2915 static void ufshcd_setup_scsi_cmd(struct ufs_hba *hba, struct ufshcd_lrb *lrbp,
2916 				  struct scsi_cmnd *cmd, u8 lun, int tag)
2917 {
2918 	__ufshcd_setup_cmd(lrbp, cmd, lun, tag);
2919 	lrbp->intr_cmd = !ufshcd_is_intr_aggr_allowed(hba);
2920 	lrbp->req_abort_skip = false;
2921 
2922 	ufshcd_comp_scsi_upiu(hba, lrbp);
2923 }
2924 
2925 /**
2926  * ufshcd_upiu_wlun_to_scsi_wlun - maps UPIU W-LUN id to SCSI W-LUN ID
2927  * @upiu_wlun_id: UPIU W-LUN id
2928  *
2929  * Return: SCSI W-LUN id.
2930  */
2931 static inline u16 ufshcd_upiu_wlun_to_scsi_wlun(u8 upiu_wlun_id)
2932 {
2933 	return (upiu_wlun_id & ~UFS_UPIU_WLUN_ID) | SCSI_W_LUN_BASE;
2934 }
2935 
2936 static inline bool is_device_wlun(struct scsi_device *sdev)
2937 {
2938 	return sdev->lun ==
2939 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_UFS_DEVICE_WLUN);
2940 }
2941 
2942 /*
2943  * Associate the UFS controller queue with the default and poll HCTX types.
2944  * Initialize the mq_map[] arrays.
2945  */
2946 static void ufshcd_map_queues(struct Scsi_Host *shost)
2947 {
2948 	struct ufs_hba *hba = shost_priv(shost);
2949 	int i, queue_offset = 0;
2950 
2951 	if (!is_mcq_supported(hba)) {
2952 		hba->nr_queues[HCTX_TYPE_DEFAULT] = 1;
2953 		hba->nr_queues[HCTX_TYPE_READ] = 0;
2954 		hba->nr_queues[HCTX_TYPE_POLL] = 1;
2955 		hba->nr_hw_queues = 1;
2956 	}
2957 
2958 	for (i = 0; i < shost->nr_maps; i++) {
2959 		struct blk_mq_queue_map *map = &shost->tag_set.map[i];
2960 
2961 		map->nr_queues = hba->nr_queues[i];
2962 		if (!map->nr_queues)
2963 			continue;
2964 		map->queue_offset = queue_offset;
2965 		if (i == HCTX_TYPE_POLL && !is_mcq_supported(hba))
2966 			map->queue_offset = 0;
2967 
2968 		blk_mq_map_queues(map);
2969 		queue_offset += map->nr_queues;
2970 	}
2971 }
2972 
2973 static void ufshcd_init_lrb(struct ufs_hba *hba, struct ufshcd_lrb *lrb, int i)
2974 {
2975 	struct utp_transfer_cmd_desc *cmd_descp = (void *)hba->ucdl_base_addr +
2976 		i * ufshcd_get_ucd_size(hba);
2977 	struct utp_transfer_req_desc *utrdlp = hba->utrdl_base_addr;
2978 	dma_addr_t cmd_desc_element_addr = hba->ucdl_dma_addr +
2979 		i * ufshcd_get_ucd_size(hba);
2980 	u16 response_offset = le16_to_cpu(utrdlp[i].response_upiu_offset);
2981 	u16 prdt_offset = le16_to_cpu(utrdlp[i].prd_table_offset);
2982 
2983 	lrb->utr_descriptor_ptr = utrdlp + i;
2984 	lrb->utrd_dma_addr = hba->utrdl_dma_addr +
2985 		i * sizeof(struct utp_transfer_req_desc);
2986 	lrb->ucd_req_ptr = (struct utp_upiu_req *)cmd_descp->command_upiu;
2987 	lrb->ucd_req_dma_addr = cmd_desc_element_addr;
2988 	lrb->ucd_rsp_ptr = (struct utp_upiu_rsp *)cmd_descp->response_upiu;
2989 	lrb->ucd_rsp_dma_addr = cmd_desc_element_addr + response_offset;
2990 	lrb->ucd_prdt_ptr = (struct ufshcd_sg_entry *)cmd_descp->prd_table;
2991 	lrb->ucd_prdt_dma_addr = cmd_desc_element_addr + prdt_offset;
2992 }
2993 
2994 /**
2995  * ufshcd_queuecommand - main entry point for SCSI requests
2996  * @host: SCSI host pointer
2997  * @cmd: command from SCSI Midlayer
2998  *
2999  * Return: 0 for success, non-zero in case of failure.
3000  */
3001 static int ufshcd_queuecommand(struct Scsi_Host *host, struct scsi_cmnd *cmd)
3002 {
3003 	struct ufs_hba *hba = shost_priv(host);
3004 	int tag = scsi_cmd_to_rq(cmd)->tag;
3005 	struct ufshcd_lrb *lrbp;
3006 	int err = 0;
3007 	struct ufs_hw_queue *hwq = NULL;
3008 
3009 	switch (hba->ufshcd_state) {
3010 	case UFSHCD_STATE_OPERATIONAL:
3011 		break;
3012 	case UFSHCD_STATE_EH_SCHEDULED_NON_FATAL:
3013 		/*
3014 		 * SCSI error handler can call ->queuecommand() while UFS error
3015 		 * handler is in progress. Error interrupts could change the
3016 		 * state from UFSHCD_STATE_RESET to
3017 		 * UFSHCD_STATE_EH_SCHEDULED_NON_FATAL. Prevent requests
3018 		 * being issued in that case.
3019 		 */
3020 		if (ufshcd_eh_in_progress(hba)) {
3021 			err = SCSI_MLQUEUE_HOST_BUSY;
3022 			goto out;
3023 		}
3024 		break;
3025 	case UFSHCD_STATE_EH_SCHEDULED_FATAL:
3026 		/*
3027 		 * pm_runtime_get_sync() is used at error handling preparation
3028 		 * stage. If a scsi cmd, e.g. the SSU cmd, is sent from hba's
3029 		 * PM ops, it can never be finished if we let SCSI layer keep
3030 		 * retrying it, which gets err handler stuck forever. Neither
3031 		 * can we let the scsi cmd pass through, because UFS is in bad
3032 		 * state, the scsi cmd may eventually time out, which will get
3033 		 * err handler blocked for too long. So, just fail the scsi cmd
3034 		 * sent from PM ops, err handler can recover PM error anyways.
3035 		 */
3036 		if (hba->pm_op_in_progress) {
3037 			hba->force_reset = true;
3038 			set_host_byte(cmd, DID_BAD_TARGET);
3039 			scsi_done(cmd);
3040 			goto out;
3041 		}
3042 		fallthrough;
3043 	case UFSHCD_STATE_RESET:
3044 		err = SCSI_MLQUEUE_HOST_BUSY;
3045 		goto out;
3046 	case UFSHCD_STATE_ERROR:
3047 		set_host_byte(cmd, DID_ERROR);
3048 		scsi_done(cmd);
3049 		goto out;
3050 	}
3051 
3052 	hba->req_abort_count = 0;
3053 
3054 	ufshcd_hold(hba);
3055 
3056 	lrbp = &hba->lrb[tag];
3057 
3058 	ufshcd_setup_scsi_cmd(hba, lrbp, cmd, ufshcd_scsi_to_upiu_lun(cmd->device->lun), tag);
3059 
3060 	err = ufshcd_map_sg(hba, lrbp);
3061 	if (err) {
3062 		ufshcd_release(hba);
3063 		goto out;
3064 	}
3065 
3066 	if (hba->mcq_enabled)
3067 		hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(cmd));
3068 
3069 	ufshcd_send_command(hba, tag, hwq);
3070 
3071 out:
3072 	if (ufs_trigger_eh(hba)) {
3073 		unsigned long flags;
3074 
3075 		spin_lock_irqsave(hba->host->host_lock, flags);
3076 		ufshcd_schedule_eh_work(hba);
3077 		spin_unlock_irqrestore(hba->host->host_lock, flags);
3078 	}
3079 
3080 	return err;
3081 }
3082 
3083 static void ufshcd_setup_dev_cmd(struct ufs_hba *hba, struct ufshcd_lrb *lrbp,
3084 			     enum dev_cmd_type cmd_type, u8 lun, int tag)
3085 {
3086 	__ufshcd_setup_cmd(lrbp, NULL, lun, tag);
3087 	lrbp->intr_cmd = true; /* No interrupt aggregation */
3088 	hba->dev_cmd.type = cmd_type;
3089 }
3090 
3091 /*
3092  * Return: 0 upon success; < 0 upon failure.
3093  */
3094 static int ufshcd_compose_dev_cmd(struct ufs_hba *hba,
3095 		struct ufshcd_lrb *lrbp, enum dev_cmd_type cmd_type, int tag)
3096 {
3097 	ufshcd_setup_dev_cmd(hba, lrbp, cmd_type, 0, tag);
3098 
3099 	return ufshcd_compose_devman_upiu(hba, lrbp);
3100 }
3101 
3102 /*
3103  * Check with the block layer if the command is inflight
3104  * @cmd: command to check.
3105  *
3106  * Return: true if command is inflight; false if not.
3107  */
3108 bool ufshcd_cmd_inflight(struct scsi_cmnd *cmd)
3109 {
3110 	return cmd && blk_mq_rq_state(scsi_cmd_to_rq(cmd)) == MQ_RQ_IN_FLIGHT;
3111 }
3112 
3113 /*
3114  * Clear the pending command in the controller and wait until
3115  * the controller confirms that the command has been cleared.
3116  * @hba: per adapter instance
3117  * @task_tag: The tag number of the command to be cleared.
3118  */
3119 static int ufshcd_clear_cmd(struct ufs_hba *hba, u32 task_tag)
3120 {
3121 	u32 mask;
3122 	int err;
3123 
3124 	if (hba->mcq_enabled) {
3125 		/*
3126 		 * MCQ mode. Clean up the MCQ resources similar to
3127 		 * what the ufshcd_utrl_clear() does for SDB mode.
3128 		 */
3129 		err = ufshcd_mcq_sq_cleanup(hba, task_tag);
3130 		if (err) {
3131 			dev_err(hba->dev, "%s: failed tag=%d. err=%d\n",
3132 				__func__, task_tag, err);
3133 			return err;
3134 		}
3135 		return 0;
3136 	}
3137 
3138 	mask = 1U << task_tag;
3139 
3140 	/* clear outstanding transaction before retry */
3141 	ufshcd_utrl_clear(hba, mask);
3142 
3143 	/*
3144 	 * wait for h/w to clear corresponding bit in door-bell.
3145 	 * max. wait is 1 sec.
3146 	 */
3147 	return ufshcd_wait_for_register(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL,
3148 					mask, ~mask, 1000, 1000);
3149 }
3150 
3151 /**
3152  * ufshcd_dev_cmd_completion() - handles device management command responses
3153  * @hba: per adapter instance
3154  * @lrbp: pointer to local reference block
3155  *
3156  * Return: 0 upon success; < 0 upon failure.
3157  */
3158 static int
3159 ufshcd_dev_cmd_completion(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
3160 {
3161 	enum upiu_response_transaction resp;
3162 	int err = 0;
3163 
3164 	hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
3165 	resp = ufshcd_get_req_rsp(lrbp->ucd_rsp_ptr);
3166 
3167 	switch (resp) {
3168 	case UPIU_TRANSACTION_NOP_IN:
3169 		if (hba->dev_cmd.type != DEV_CMD_TYPE_NOP) {
3170 			err = -EINVAL;
3171 			dev_err(hba->dev, "%s: unexpected response %x\n",
3172 					__func__, resp);
3173 		}
3174 		break;
3175 	case UPIU_TRANSACTION_QUERY_RSP: {
3176 		u8 response = lrbp->ucd_rsp_ptr->header.response;
3177 
3178 		if (response == 0) {
3179 			err = ufshcd_copy_query_response(hba, lrbp);
3180 		} else {
3181 			err = -EINVAL;
3182 			dev_err(hba->dev, "%s: unexpected response in Query RSP: %x\n",
3183 					__func__, response);
3184 		}
3185 		break;
3186 	}
3187 	case UPIU_TRANSACTION_REJECT_UPIU:
3188 		/* TODO: handle Reject UPIU Response */
3189 		err = -EPERM;
3190 		dev_err(hba->dev, "%s: Reject UPIU not fully implemented\n",
3191 				__func__);
3192 		break;
3193 	case UPIU_TRANSACTION_RESPONSE:
3194 		if (hba->dev_cmd.type != DEV_CMD_TYPE_RPMB) {
3195 			err = -EINVAL;
3196 			dev_err(hba->dev, "%s: unexpected response %x\n", __func__, resp);
3197 		}
3198 		break;
3199 	default:
3200 		err = -EINVAL;
3201 		dev_err(hba->dev, "%s: Invalid device management cmd response: %x\n",
3202 				__func__, resp);
3203 		break;
3204 	}
3205 
3206 	WARN_ONCE(err > 0, "Incorrect return value %d > 0\n", err);
3207 	return err;
3208 }
3209 
3210 /*
3211  * Return: 0 upon success; > 0 in case the UFS device reported an OCS error;
3212  * < 0 if another error occurred.
3213  */
3214 static int ufshcd_wait_for_dev_cmd(struct ufs_hba *hba,
3215 		struct ufshcd_lrb *lrbp, int max_timeout)
3216 {
3217 	unsigned long time_left = msecs_to_jiffies(max_timeout);
3218 	unsigned long flags;
3219 	bool pending;
3220 	int err;
3221 
3222 retry:
3223 	time_left = wait_for_completion_timeout(&hba->dev_cmd.complete,
3224 						time_left);
3225 
3226 	if (likely(time_left)) {
3227 		err = ufshcd_get_tr_ocs(lrbp, NULL);
3228 		if (!err)
3229 			err = ufshcd_dev_cmd_completion(hba, lrbp);
3230 	} else {
3231 		err = -ETIMEDOUT;
3232 		dev_dbg(hba->dev, "%s: dev_cmd request timedout, tag %d\n",
3233 			__func__, lrbp->task_tag);
3234 
3235 		/* MCQ mode */
3236 		if (hba->mcq_enabled) {
3237 			/* successfully cleared the command, retry if needed */
3238 			if (ufshcd_clear_cmd(hba, lrbp->task_tag) == 0)
3239 				err = -EAGAIN;
3240 			return err;
3241 		}
3242 
3243 		/* SDB mode */
3244 		if (ufshcd_clear_cmd(hba, lrbp->task_tag) == 0) {
3245 			/* successfully cleared the command, retry if needed */
3246 			err = -EAGAIN;
3247 			/*
3248 			 * Since clearing the command succeeded we also need to
3249 			 * clear the task tag bit from the outstanding_reqs
3250 			 * variable.
3251 			 */
3252 			spin_lock_irqsave(&hba->outstanding_lock, flags);
3253 			pending = test_bit(lrbp->task_tag,
3254 					   &hba->outstanding_reqs);
3255 			if (pending)
3256 				__clear_bit(lrbp->task_tag,
3257 					    &hba->outstanding_reqs);
3258 			spin_unlock_irqrestore(&hba->outstanding_lock, flags);
3259 
3260 			if (!pending) {
3261 				/*
3262 				 * The completion handler ran while we tried to
3263 				 * clear the command.
3264 				 */
3265 				time_left = 1;
3266 				goto retry;
3267 			}
3268 		} else {
3269 			dev_err(hba->dev, "%s: failed to clear tag %d\n",
3270 				__func__, lrbp->task_tag);
3271 
3272 			spin_lock_irqsave(&hba->outstanding_lock, flags);
3273 			pending = test_bit(lrbp->task_tag,
3274 					   &hba->outstanding_reqs);
3275 			spin_unlock_irqrestore(&hba->outstanding_lock, flags);
3276 
3277 			if (!pending) {
3278 				/*
3279 				 * The completion handler ran while we tried to
3280 				 * clear the command.
3281 				 */
3282 				time_left = 1;
3283 				goto retry;
3284 			}
3285 		}
3286 	}
3287 
3288 	return err;
3289 }
3290 
3291 static void ufshcd_dev_man_lock(struct ufs_hba *hba)
3292 {
3293 	ufshcd_hold(hba);
3294 	mutex_lock(&hba->dev_cmd.lock);
3295 	down_read(&hba->clk_scaling_lock);
3296 }
3297 
3298 static void ufshcd_dev_man_unlock(struct ufs_hba *hba)
3299 {
3300 	up_read(&hba->clk_scaling_lock);
3301 	mutex_unlock(&hba->dev_cmd.lock);
3302 	ufshcd_release(hba);
3303 }
3304 
3305 /*
3306  * Return: 0 upon success; > 0 in case the UFS device reported an OCS error;
3307  * < 0 if another error occurred.
3308  */
3309 static int ufshcd_issue_dev_cmd(struct ufs_hba *hba, struct ufshcd_lrb *lrbp,
3310 			  const u32 tag, int timeout)
3311 {
3312 	int err;
3313 
3314 	ufshcd_add_query_upiu_trace(hba, UFS_QUERY_SEND, lrbp->ucd_req_ptr);
3315 	ufshcd_send_command(hba, tag, hba->dev_cmd_queue);
3316 	err = ufshcd_wait_for_dev_cmd(hba, lrbp, timeout);
3317 
3318 	ufshcd_add_query_upiu_trace(hba, err ? UFS_QUERY_ERR : UFS_QUERY_COMP,
3319 				    (struct utp_upiu_req *)lrbp->ucd_rsp_ptr);
3320 
3321 	return err;
3322 }
3323 
3324 /**
3325  * ufshcd_exec_dev_cmd - API for sending device management requests
3326  * @hba: UFS hba
3327  * @cmd_type: specifies the type (NOP, Query...)
3328  * @timeout: timeout in milliseconds
3329  *
3330  * Return: 0 upon success; > 0 in case the UFS device reported an OCS error;
3331  * < 0 if another error occurred.
3332  *
3333  * NOTE: Since there is only one available tag for device management commands,
3334  * it is expected you hold the hba->dev_cmd.lock mutex.
3335  */
3336 static int ufshcd_exec_dev_cmd(struct ufs_hba *hba,
3337 		enum dev_cmd_type cmd_type, int timeout)
3338 {
3339 	const u32 tag = hba->reserved_slot;
3340 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
3341 	int err;
3342 
3343 	/* Protects use of hba->reserved_slot. */
3344 	lockdep_assert_held(&hba->dev_cmd.lock);
3345 
3346 	err = ufshcd_compose_dev_cmd(hba, lrbp, cmd_type, tag);
3347 	if (unlikely(err))
3348 		return err;
3349 
3350 	return ufshcd_issue_dev_cmd(hba, lrbp, tag, timeout);
3351 }
3352 
3353 /**
3354  * ufshcd_init_query() - init the query response and request parameters
3355  * @hba: per-adapter instance
3356  * @request: address of the request pointer to be initialized
3357  * @response: address of the response pointer to be initialized
3358  * @opcode: operation to perform
3359  * @idn: flag idn to access
3360  * @index: LU number to access
3361  * @selector: query/flag/descriptor further identification
3362  */
3363 static inline void ufshcd_init_query(struct ufs_hba *hba,
3364 		struct ufs_query_req **request, struct ufs_query_res **response,
3365 		enum query_opcode opcode, u8 idn, u8 index, u8 selector)
3366 {
3367 	*request = &hba->dev_cmd.query.request;
3368 	*response = &hba->dev_cmd.query.response;
3369 	memset(*request, 0, sizeof(struct ufs_query_req));
3370 	memset(*response, 0, sizeof(struct ufs_query_res));
3371 	(*request)->upiu_req.opcode = opcode;
3372 	(*request)->upiu_req.idn = idn;
3373 	(*request)->upiu_req.index = index;
3374 	(*request)->upiu_req.selector = selector;
3375 }
3376 
3377 /*
3378  * Return: 0 upon success; > 0 in case the UFS device reported an OCS error;
3379  * < 0 if another error occurred.
3380  */
3381 static int ufshcd_query_flag_retry(struct ufs_hba *hba,
3382 	enum query_opcode opcode, enum flag_idn idn, u8 index, bool *flag_res)
3383 {
3384 	int ret;
3385 	int retries;
3386 
3387 	for (retries = 0; retries < QUERY_REQ_RETRIES; retries++) {
3388 		ret = ufshcd_query_flag(hba, opcode, idn, index, flag_res);
3389 		if (ret)
3390 			dev_dbg(hba->dev,
3391 				"%s: failed with error %d, retries %d\n",
3392 				__func__, ret, retries);
3393 		else
3394 			break;
3395 	}
3396 
3397 	if (ret)
3398 		dev_err(hba->dev,
3399 			"%s: query flag, opcode %d, idn %d, failed with error %d after %d retries\n",
3400 			__func__, opcode, idn, ret, retries);
3401 	return ret;
3402 }
3403 
3404 /**
3405  * ufshcd_query_flag() - API function for sending flag query requests
3406  * @hba: per-adapter instance
3407  * @opcode: flag query to perform
3408  * @idn: flag idn to access
3409  * @index: flag index to access
3410  * @flag_res: the flag value after the query request completes
3411  *
3412  * Return: 0 upon success; > 0 in case the UFS device reported an OCS error;
3413  * < 0 if another error occurred.
3414  */
3415 int ufshcd_query_flag(struct ufs_hba *hba, enum query_opcode opcode,
3416 			enum flag_idn idn, u8 index, bool *flag_res)
3417 {
3418 	struct ufs_query_req *request = NULL;
3419 	struct ufs_query_res *response = NULL;
3420 	int err, selector = 0;
3421 	int timeout = dev_cmd_timeout;
3422 
3423 	BUG_ON(!hba);
3424 
3425 	ufshcd_dev_man_lock(hba);
3426 
3427 	ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3428 			selector);
3429 
3430 	switch (opcode) {
3431 	case UPIU_QUERY_OPCODE_SET_FLAG:
3432 	case UPIU_QUERY_OPCODE_CLEAR_FLAG:
3433 	case UPIU_QUERY_OPCODE_TOGGLE_FLAG:
3434 		request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3435 		break;
3436 	case UPIU_QUERY_OPCODE_READ_FLAG:
3437 		request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3438 		if (!flag_res) {
3439 			/* No dummy reads */
3440 			dev_err(hba->dev, "%s: Invalid argument for read request\n",
3441 					__func__);
3442 			err = -EINVAL;
3443 			goto out_unlock;
3444 		}
3445 		break;
3446 	default:
3447 		dev_err(hba->dev,
3448 			"%s: Expected query flag opcode but got = %d\n",
3449 			__func__, opcode);
3450 		err = -EINVAL;
3451 		goto out_unlock;
3452 	}
3453 
3454 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, timeout);
3455 
3456 	if (err) {
3457 		dev_err(hba->dev,
3458 			"%s: Sending flag query for idn %d failed, err = %d\n",
3459 			__func__, idn, err);
3460 		goto out_unlock;
3461 	}
3462 
3463 	if (flag_res)
3464 		*flag_res = (be32_to_cpu(response->upiu_res.value) &
3465 				MASK_QUERY_UPIU_FLAG_LOC) & 0x1;
3466 
3467 out_unlock:
3468 	ufshcd_dev_man_unlock(hba);
3469 	return err;
3470 }
3471 
3472 /**
3473  * ufshcd_query_attr - API function for sending attribute requests
3474  * @hba: per-adapter instance
3475  * @opcode: attribute opcode
3476  * @idn: attribute idn to access
3477  * @index: index field
3478  * @selector: selector field
3479  * @attr_val: the attribute value after the query request completes
3480  *
3481  * Return: 0 upon success; > 0 in case the UFS device reported an OCS error;
3482  * < 0 if another error occurred.
3483  */
3484 int ufshcd_query_attr(struct ufs_hba *hba, enum query_opcode opcode,
3485 		      enum attr_idn idn, u8 index, u8 selector, u32 *attr_val)
3486 {
3487 	struct ufs_query_req *request = NULL;
3488 	struct ufs_query_res *response = NULL;
3489 	int err;
3490 
3491 	BUG_ON(!hba);
3492 
3493 	if (!attr_val) {
3494 		dev_err(hba->dev, "%s: attribute value required for opcode 0x%x\n",
3495 				__func__, opcode);
3496 		return -EINVAL;
3497 	}
3498 
3499 	ufshcd_dev_man_lock(hba);
3500 
3501 	ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3502 			selector);
3503 
3504 	switch (opcode) {
3505 	case UPIU_QUERY_OPCODE_WRITE_ATTR:
3506 		request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3507 		request->upiu_req.value = cpu_to_be32(*attr_val);
3508 		break;
3509 	case UPIU_QUERY_OPCODE_READ_ATTR:
3510 		request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3511 		break;
3512 	default:
3513 		dev_err(hba->dev, "%s: Expected query attr opcode but got = 0x%.2x\n",
3514 				__func__, opcode);
3515 		err = -EINVAL;
3516 		goto out_unlock;
3517 	}
3518 
3519 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, dev_cmd_timeout);
3520 
3521 	if (err) {
3522 		dev_err(hba->dev, "%s: opcode 0x%.2x for idn %d failed, index %d, err = %d\n",
3523 				__func__, opcode, idn, index, err);
3524 		goto out_unlock;
3525 	}
3526 
3527 	*attr_val = be32_to_cpu(response->upiu_res.value);
3528 
3529 out_unlock:
3530 	ufshcd_dev_man_unlock(hba);
3531 	return err;
3532 }
3533 
3534 /**
3535  * ufshcd_query_attr_retry() - API function for sending query
3536  * attribute with retries
3537  * @hba: per-adapter instance
3538  * @opcode: attribute opcode
3539  * @idn: attribute idn to access
3540  * @index: index field
3541  * @selector: selector field
3542  * @attr_val: the attribute value after the query request
3543  * completes
3544  *
3545  * Return: 0 upon success; > 0 in case the UFS device reported an OCS error;
3546  * < 0 if another error occurred.
3547  */
3548 int ufshcd_query_attr_retry(struct ufs_hba *hba,
3549 	enum query_opcode opcode, enum attr_idn idn, u8 index, u8 selector,
3550 	u32 *attr_val)
3551 {
3552 	int ret = 0;
3553 	u32 retries;
3554 
3555 	for (retries = QUERY_REQ_RETRIES; retries > 0; retries--) {
3556 		ret = ufshcd_query_attr(hba, opcode, idn, index,
3557 						selector, attr_val);
3558 		if (ret)
3559 			dev_dbg(hba->dev, "%s: failed with error %d, retries %d\n",
3560 				__func__, ret, retries);
3561 		else
3562 			break;
3563 	}
3564 
3565 	if (ret)
3566 		dev_err(hba->dev,
3567 			"%s: query attribute, idn %d, failed with error %d after %d retries\n",
3568 			__func__, idn, ret, QUERY_REQ_RETRIES);
3569 	return ret;
3570 }
3571 
3572 /*
3573  * Return: 0 upon success; > 0 in case the UFS device reported an OCS error;
3574  * < 0 if another error occurred.
3575  */
3576 static int __ufshcd_query_descriptor(struct ufs_hba *hba,
3577 			enum query_opcode opcode, enum desc_idn idn, u8 index,
3578 			u8 selector, u8 *desc_buf, int *buf_len)
3579 {
3580 	struct ufs_query_req *request = NULL;
3581 	struct ufs_query_res *response = NULL;
3582 	int err;
3583 
3584 	BUG_ON(!hba);
3585 
3586 	if (!desc_buf) {
3587 		dev_err(hba->dev, "%s: descriptor buffer required for opcode 0x%x\n",
3588 				__func__, opcode);
3589 		return -EINVAL;
3590 	}
3591 
3592 	if (*buf_len < QUERY_DESC_MIN_SIZE || *buf_len > QUERY_DESC_MAX_SIZE) {
3593 		dev_err(hba->dev, "%s: descriptor buffer size (%d) is out of range\n",
3594 				__func__, *buf_len);
3595 		return -EINVAL;
3596 	}
3597 
3598 	ufshcd_dev_man_lock(hba);
3599 
3600 	ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3601 			selector);
3602 	hba->dev_cmd.query.descriptor = desc_buf;
3603 	request->upiu_req.length = cpu_to_be16(*buf_len);
3604 
3605 	switch (opcode) {
3606 	case UPIU_QUERY_OPCODE_WRITE_DESC:
3607 		request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3608 		break;
3609 	case UPIU_QUERY_OPCODE_READ_DESC:
3610 		request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3611 		break;
3612 	default:
3613 		dev_err(hba->dev,
3614 				"%s: Expected query descriptor opcode but got = 0x%.2x\n",
3615 				__func__, opcode);
3616 		err = -EINVAL;
3617 		goto out_unlock;
3618 	}
3619 
3620 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, dev_cmd_timeout);
3621 
3622 	if (err) {
3623 		dev_err(hba->dev, "%s: opcode 0x%.2x for idn %d failed, index %d, err = %d\n",
3624 				__func__, opcode, idn, index, err);
3625 		goto out_unlock;
3626 	}
3627 
3628 	*buf_len = be16_to_cpu(response->upiu_res.length);
3629 
3630 out_unlock:
3631 	hba->dev_cmd.query.descriptor = NULL;
3632 	ufshcd_dev_man_unlock(hba);
3633 	return err;
3634 }
3635 
3636 /**
3637  * ufshcd_query_descriptor_retry - API function for sending descriptor requests
3638  * @hba: per-adapter instance
3639  * @opcode: attribute opcode
3640  * @idn: attribute idn to access
3641  * @index: index field
3642  * @selector: selector field
3643  * @desc_buf: the buffer that contains the descriptor
3644  * @buf_len: length parameter passed to the device
3645  *
3646  * The buf_len parameter will contain, on return, the length parameter
3647  * received on the response.
3648  *
3649  * Return: 0 upon success; > 0 in case the UFS device reported an OCS error;
3650  * < 0 if another error occurred.
3651  */
3652 int ufshcd_query_descriptor_retry(struct ufs_hba *hba,
3653 				  enum query_opcode opcode,
3654 				  enum desc_idn idn, u8 index,
3655 				  u8 selector,
3656 				  u8 *desc_buf, int *buf_len)
3657 {
3658 	int err;
3659 	int retries;
3660 
3661 	for (retries = QUERY_REQ_RETRIES; retries > 0; retries--) {
3662 		err = __ufshcd_query_descriptor(hba, opcode, idn, index,
3663 						selector, desc_buf, buf_len);
3664 		if (!err || err == -EINVAL)
3665 			break;
3666 	}
3667 
3668 	return err;
3669 }
3670 
3671 /**
3672  * ufshcd_read_desc_param - read the specified descriptor parameter
3673  * @hba: Pointer to adapter instance
3674  * @desc_id: descriptor idn value
3675  * @desc_index: descriptor index
3676  * @param_offset: offset of the parameter to read
3677  * @param_read_buf: pointer to buffer where parameter would be read
3678  * @param_size: sizeof(param_read_buf)
3679  *
3680  * Return: 0 upon success; > 0 in case the UFS device reported an OCS error;
3681  * < 0 if another error occurred.
3682  */
3683 int ufshcd_read_desc_param(struct ufs_hba *hba,
3684 			   enum desc_idn desc_id,
3685 			   int desc_index,
3686 			   u8 param_offset,
3687 			   u8 *param_read_buf,
3688 			   u8 param_size)
3689 {
3690 	int ret;
3691 	u8 *desc_buf;
3692 	int buff_len = QUERY_DESC_MAX_SIZE;
3693 	bool is_kmalloc = true;
3694 
3695 	/* Safety check */
3696 	if (desc_id >= QUERY_DESC_IDN_MAX || !param_size)
3697 		return -EINVAL;
3698 
3699 	/* Check whether we need temp memory */
3700 	if (param_offset != 0 || param_size < buff_len) {
3701 		desc_buf = kzalloc(buff_len, GFP_KERNEL);
3702 		if (!desc_buf)
3703 			return -ENOMEM;
3704 	} else {
3705 		desc_buf = param_read_buf;
3706 		is_kmalloc = false;
3707 	}
3708 
3709 	/* Request for full descriptor */
3710 	ret = ufshcd_query_descriptor_retry(hba, UPIU_QUERY_OPCODE_READ_DESC,
3711 					    desc_id, desc_index, 0,
3712 					    desc_buf, &buff_len);
3713 	if (ret) {
3714 		dev_err(hba->dev, "%s: Failed reading descriptor. desc_id %d, desc_index %d, param_offset %d, ret %d\n",
3715 			__func__, desc_id, desc_index, param_offset, ret);
3716 		goto out;
3717 	}
3718 
3719 	/* Update descriptor length */
3720 	buff_len = desc_buf[QUERY_DESC_LENGTH_OFFSET];
3721 
3722 	if (param_offset >= buff_len) {
3723 		dev_err(hba->dev, "%s: Invalid offset 0x%x in descriptor IDN 0x%x, length 0x%x\n",
3724 			__func__, param_offset, desc_id, buff_len);
3725 		ret = -EINVAL;
3726 		goto out;
3727 	}
3728 
3729 	/* Sanity check */
3730 	if (desc_buf[QUERY_DESC_DESC_TYPE_OFFSET] != desc_id) {
3731 		dev_err(hba->dev, "%s: invalid desc_id %d in descriptor header\n",
3732 			__func__, desc_buf[QUERY_DESC_DESC_TYPE_OFFSET]);
3733 		ret = -EINVAL;
3734 		goto out;
3735 	}
3736 
3737 	if (is_kmalloc) {
3738 		/* Make sure we don't copy more data than available */
3739 		if (param_offset >= buff_len)
3740 			ret = -EINVAL;
3741 		else
3742 			memcpy(param_read_buf, &desc_buf[param_offset],
3743 			       min_t(u32, param_size, buff_len - param_offset));
3744 	}
3745 out:
3746 	if (is_kmalloc)
3747 		kfree(desc_buf);
3748 	return ret;
3749 }
3750 
3751 /**
3752  * struct uc_string_id - unicode string
3753  *
3754  * @len: size of this descriptor inclusive
3755  * @type: descriptor type
3756  * @uc: unicode string character
3757  */
3758 struct uc_string_id {
3759 	u8 len;
3760 	u8 type;
3761 	wchar_t uc[];
3762 } __packed;
3763 
3764 /* replace non-printable or non-ASCII characters with spaces */
3765 static inline char ufshcd_remove_non_printable(u8 ch)
3766 {
3767 	return (ch >= 0x20 && ch <= 0x7e) ? ch : ' ';
3768 }
3769 
3770 /**
3771  * ufshcd_read_string_desc - read string descriptor
3772  * @hba: pointer to adapter instance
3773  * @desc_index: descriptor index
3774  * @buf: pointer to buffer where descriptor would be read,
3775  *       the caller should free the memory.
3776  * @ascii: if true convert from unicode to ascii characters
3777  *         null terminated string.
3778  *
3779  * Return:
3780  * *      string size on success.
3781  * *      -ENOMEM: on allocation failure
3782  * *      -EINVAL: on a wrong parameter
3783  */
3784 int ufshcd_read_string_desc(struct ufs_hba *hba, u8 desc_index,
3785 			    u8 **buf, bool ascii)
3786 {
3787 	struct uc_string_id *uc_str;
3788 	u8 *str;
3789 	int ret;
3790 
3791 	if (!buf)
3792 		return -EINVAL;
3793 
3794 	uc_str = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
3795 	if (!uc_str)
3796 		return -ENOMEM;
3797 
3798 	ret = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_STRING, desc_index, 0,
3799 				     (u8 *)uc_str, QUERY_DESC_MAX_SIZE);
3800 	if (ret < 0) {
3801 		dev_err(hba->dev, "Reading String Desc failed after %d retries. err = %d\n",
3802 			QUERY_REQ_RETRIES, ret);
3803 		str = NULL;
3804 		goto out;
3805 	}
3806 
3807 	if (uc_str->len <= QUERY_DESC_HDR_SIZE) {
3808 		dev_dbg(hba->dev, "String Desc is of zero length\n");
3809 		str = NULL;
3810 		ret = 0;
3811 		goto out;
3812 	}
3813 
3814 	if (ascii) {
3815 		ssize_t ascii_len;
3816 		int i;
3817 		/* remove header and divide by 2 to move from UTF16 to UTF8 */
3818 		ascii_len = (uc_str->len - QUERY_DESC_HDR_SIZE) / 2 + 1;
3819 		str = kzalloc(ascii_len, GFP_KERNEL);
3820 		if (!str) {
3821 			ret = -ENOMEM;
3822 			goto out;
3823 		}
3824 
3825 		/*
3826 		 * the descriptor contains string in UTF16 format
3827 		 * we need to convert to utf-8 so it can be displayed
3828 		 */
3829 		ret = utf16s_to_utf8s(uc_str->uc,
3830 				      uc_str->len - QUERY_DESC_HDR_SIZE,
3831 				      UTF16_BIG_ENDIAN, str, ascii_len - 1);
3832 
3833 		/* replace non-printable or non-ASCII characters with spaces */
3834 		for (i = 0; i < ret; i++)
3835 			str[i] = ufshcd_remove_non_printable(str[i]);
3836 
3837 		str[ret++] = '\0';
3838 
3839 	} else {
3840 		str = kmemdup(uc_str, uc_str->len, GFP_KERNEL);
3841 		if (!str) {
3842 			ret = -ENOMEM;
3843 			goto out;
3844 		}
3845 		ret = uc_str->len;
3846 	}
3847 out:
3848 	*buf = str;
3849 	kfree(uc_str);
3850 	return ret;
3851 }
3852 
3853 /**
3854  * ufshcd_read_unit_desc_param - read the specified unit descriptor parameter
3855  * @hba: Pointer to adapter instance
3856  * @lun: lun id
3857  * @param_offset: offset of the parameter to read
3858  * @param_read_buf: pointer to buffer where parameter would be read
3859  * @param_size: sizeof(param_read_buf)
3860  *
3861  * Return: 0 in case of success; < 0 upon failure.
3862  */
3863 static inline int ufshcd_read_unit_desc_param(struct ufs_hba *hba,
3864 					      int lun,
3865 					      enum unit_desc_param param_offset,
3866 					      u8 *param_read_buf,
3867 					      u32 param_size)
3868 {
3869 	/*
3870 	 * Unit descriptors are only available for general purpose LUs (LUN id
3871 	 * from 0 to 7) and RPMB Well known LU.
3872 	 */
3873 	if (!ufs_is_valid_unit_desc_lun(&hba->dev_info, lun))
3874 		return -EOPNOTSUPP;
3875 
3876 	return ufshcd_read_desc_param(hba, QUERY_DESC_IDN_UNIT, lun,
3877 				      param_offset, param_read_buf, param_size);
3878 }
3879 
3880 static int ufshcd_get_ref_clk_gating_wait(struct ufs_hba *hba)
3881 {
3882 	int err = 0;
3883 	u32 gating_wait = UFSHCD_REF_CLK_GATING_WAIT_US;
3884 
3885 	if (hba->dev_info.wspecversion >= 0x300) {
3886 		err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
3887 				QUERY_ATTR_IDN_REF_CLK_GATING_WAIT_TIME, 0, 0,
3888 				&gating_wait);
3889 		if (err)
3890 			dev_err(hba->dev, "Failed reading bRefClkGatingWait. err = %d, use default %uus\n",
3891 					 err, gating_wait);
3892 
3893 		if (gating_wait == 0) {
3894 			gating_wait = UFSHCD_REF_CLK_GATING_WAIT_US;
3895 			dev_err(hba->dev, "Undefined ref clk gating wait time, use default %uus\n",
3896 					 gating_wait);
3897 		}
3898 
3899 		hba->dev_info.clk_gating_wait_us = gating_wait;
3900 	}
3901 
3902 	return err;
3903 }
3904 
3905 /**
3906  * ufshcd_memory_alloc - allocate memory for host memory space data structures
3907  * @hba: per adapter instance
3908  *
3909  * 1. Allocate DMA memory for Command Descriptor array
3910  *	Each command descriptor consist of Command UPIU, Response UPIU and PRDT
3911  * 2. Allocate DMA memory for UTP Transfer Request Descriptor List (UTRDL).
3912  * 3. Allocate DMA memory for UTP Task Management Request Descriptor List
3913  *	(UTMRDL)
3914  * 4. Allocate memory for local reference block(lrb).
3915  *
3916  * Return: 0 for success, non-zero in case of failure.
3917  */
3918 static int ufshcd_memory_alloc(struct ufs_hba *hba)
3919 {
3920 	size_t utmrdl_size, utrdl_size, ucdl_size;
3921 
3922 	/* Allocate memory for UTP command descriptors */
3923 	ucdl_size = ufshcd_get_ucd_size(hba) * hba->nutrs;
3924 	hba->ucdl_base_addr = dmam_alloc_coherent(hba->dev,
3925 						  ucdl_size,
3926 						  &hba->ucdl_dma_addr,
3927 						  GFP_KERNEL);
3928 
3929 	/*
3930 	 * UFSHCI requires UTP command descriptor to be 128 byte aligned.
3931 	 */
3932 	if (!hba->ucdl_base_addr ||
3933 	    WARN_ON(hba->ucdl_dma_addr & (128 - 1))) {
3934 		dev_err(hba->dev,
3935 			"Command Descriptor Memory allocation failed\n");
3936 		goto out;
3937 	}
3938 
3939 	/*
3940 	 * Allocate memory for UTP Transfer descriptors
3941 	 * UFSHCI requires 1KB alignment of UTRD
3942 	 */
3943 	utrdl_size = (sizeof(struct utp_transfer_req_desc) * hba->nutrs);
3944 	hba->utrdl_base_addr = dmam_alloc_coherent(hba->dev,
3945 						   utrdl_size,
3946 						   &hba->utrdl_dma_addr,
3947 						   GFP_KERNEL);
3948 	if (!hba->utrdl_base_addr ||
3949 	    WARN_ON(hba->utrdl_dma_addr & (SZ_1K - 1))) {
3950 		dev_err(hba->dev,
3951 			"Transfer Descriptor Memory allocation failed\n");
3952 		goto out;
3953 	}
3954 
3955 	/*
3956 	 * Skip utmrdl allocation; it may have been
3957 	 * allocated during first pass and not released during
3958 	 * MCQ memory allocation.
3959 	 * See ufshcd_release_sdb_queue() and ufshcd_config_mcq()
3960 	 */
3961 	if (hba->utmrdl_base_addr)
3962 		goto skip_utmrdl;
3963 	/*
3964 	 * Allocate memory for UTP Task Management descriptors
3965 	 * UFSHCI requires 1KB alignment of UTMRD
3966 	 */
3967 	utmrdl_size = sizeof(struct utp_task_req_desc) * hba->nutmrs;
3968 	hba->utmrdl_base_addr = dmam_alloc_coherent(hba->dev,
3969 						    utmrdl_size,
3970 						    &hba->utmrdl_dma_addr,
3971 						    GFP_KERNEL);
3972 	if (!hba->utmrdl_base_addr ||
3973 	    WARN_ON(hba->utmrdl_dma_addr & (SZ_1K - 1))) {
3974 		dev_err(hba->dev,
3975 		"Task Management Descriptor Memory allocation failed\n");
3976 		goto out;
3977 	}
3978 
3979 skip_utmrdl:
3980 	/* Allocate memory for local reference block */
3981 	hba->lrb = devm_kcalloc(hba->dev,
3982 				hba->nutrs, sizeof(struct ufshcd_lrb),
3983 				GFP_KERNEL);
3984 	if (!hba->lrb) {
3985 		dev_err(hba->dev, "LRB Memory allocation failed\n");
3986 		goto out;
3987 	}
3988 	return 0;
3989 out:
3990 	return -ENOMEM;
3991 }
3992 
3993 /**
3994  * ufshcd_host_memory_configure - configure local reference block with
3995  *				memory offsets
3996  * @hba: per adapter instance
3997  *
3998  * Configure Host memory space
3999  * 1. Update Corresponding UTRD.UCDBA and UTRD.UCDBAU with UCD DMA
4000  * address.
4001  * 2. Update each UTRD with Response UPIU offset, Response UPIU length
4002  * and PRDT offset.
4003  * 3. Save the corresponding addresses of UTRD, UCD.CMD, UCD.RSP and UCD.PRDT
4004  * into local reference block.
4005  */
4006 static void ufshcd_host_memory_configure(struct ufs_hba *hba)
4007 {
4008 	struct utp_transfer_req_desc *utrdlp;
4009 	dma_addr_t cmd_desc_dma_addr;
4010 	dma_addr_t cmd_desc_element_addr;
4011 	u16 response_offset;
4012 	u16 prdt_offset;
4013 	int cmd_desc_size;
4014 	int i;
4015 
4016 	utrdlp = hba->utrdl_base_addr;
4017 
4018 	response_offset =
4019 		offsetof(struct utp_transfer_cmd_desc, response_upiu);
4020 	prdt_offset =
4021 		offsetof(struct utp_transfer_cmd_desc, prd_table);
4022 
4023 	cmd_desc_size = ufshcd_get_ucd_size(hba);
4024 	cmd_desc_dma_addr = hba->ucdl_dma_addr;
4025 
4026 	for (i = 0; i < hba->nutrs; i++) {
4027 		/* Configure UTRD with command descriptor base address */
4028 		cmd_desc_element_addr =
4029 				(cmd_desc_dma_addr + (cmd_desc_size * i));
4030 		utrdlp[i].command_desc_base_addr =
4031 				cpu_to_le64(cmd_desc_element_addr);
4032 
4033 		/* Response upiu and prdt offset should be in double words */
4034 		if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN) {
4035 			utrdlp[i].response_upiu_offset =
4036 				cpu_to_le16(response_offset);
4037 			utrdlp[i].prd_table_offset =
4038 				cpu_to_le16(prdt_offset);
4039 			utrdlp[i].response_upiu_length =
4040 				cpu_to_le16(ALIGNED_UPIU_SIZE);
4041 		} else {
4042 			utrdlp[i].response_upiu_offset =
4043 				cpu_to_le16(response_offset >> 2);
4044 			utrdlp[i].prd_table_offset =
4045 				cpu_to_le16(prdt_offset >> 2);
4046 			utrdlp[i].response_upiu_length =
4047 				cpu_to_le16(ALIGNED_UPIU_SIZE >> 2);
4048 		}
4049 
4050 		ufshcd_init_lrb(hba, &hba->lrb[i], i);
4051 	}
4052 }
4053 
4054 /**
4055  * ufshcd_dme_link_startup - Notify Unipro to perform link startup
4056  * @hba: per adapter instance
4057  *
4058  * UIC_CMD_DME_LINK_STARTUP command must be issued to Unipro layer,
4059  * in order to initialize the Unipro link startup procedure.
4060  * Once the Unipro links are up, the device connected to the controller
4061  * is detected.
4062  *
4063  * Return: 0 on success, non-zero value on failure.
4064  */
4065 static int ufshcd_dme_link_startup(struct ufs_hba *hba)
4066 {
4067 	struct uic_command uic_cmd = {
4068 		.command = UIC_CMD_DME_LINK_STARTUP,
4069 	};
4070 	int ret;
4071 
4072 	ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4073 	if (ret)
4074 		dev_dbg(hba->dev,
4075 			"dme-link-startup: error code %d\n", ret);
4076 	return ret;
4077 }
4078 /**
4079  * ufshcd_dme_reset - UIC command for DME_RESET
4080  * @hba: per adapter instance
4081  *
4082  * DME_RESET command is issued in order to reset UniPro stack.
4083  * This function now deals with cold reset.
4084  *
4085  * Return: 0 on success, non-zero value on failure.
4086  */
4087 int ufshcd_dme_reset(struct ufs_hba *hba)
4088 {
4089 	struct uic_command uic_cmd = {
4090 		.command = UIC_CMD_DME_RESET,
4091 	};
4092 	int ret;
4093 
4094 	ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4095 	if (ret)
4096 		dev_err(hba->dev,
4097 			"dme-reset: error code %d\n", ret);
4098 
4099 	return ret;
4100 }
4101 EXPORT_SYMBOL_GPL(ufshcd_dme_reset);
4102 
4103 int ufshcd_dme_configure_adapt(struct ufs_hba *hba,
4104 			       int agreed_gear,
4105 			       int adapt_val)
4106 {
4107 	int ret;
4108 
4109 	if (agreed_gear < UFS_HS_G4)
4110 		adapt_val = PA_NO_ADAPT;
4111 
4112 	ret = ufshcd_dme_set(hba,
4113 			     UIC_ARG_MIB(PA_TXHSADAPTTYPE),
4114 			     adapt_val);
4115 	return ret;
4116 }
4117 EXPORT_SYMBOL_GPL(ufshcd_dme_configure_adapt);
4118 
4119 /**
4120  * ufshcd_dme_enable - UIC command for DME_ENABLE
4121  * @hba: per adapter instance
4122  *
4123  * DME_ENABLE command is issued in order to enable UniPro stack.
4124  *
4125  * Return: 0 on success, non-zero value on failure.
4126  */
4127 int ufshcd_dme_enable(struct ufs_hba *hba)
4128 {
4129 	struct uic_command uic_cmd = {
4130 		.command = UIC_CMD_DME_ENABLE,
4131 	};
4132 	int ret;
4133 
4134 	ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4135 	if (ret)
4136 		dev_err(hba->dev,
4137 			"dme-enable: error code %d\n", ret);
4138 
4139 	return ret;
4140 }
4141 EXPORT_SYMBOL_GPL(ufshcd_dme_enable);
4142 
4143 static inline void ufshcd_add_delay_before_dme_cmd(struct ufs_hba *hba)
4144 {
4145 	#define MIN_DELAY_BEFORE_DME_CMDS_US	1000
4146 	unsigned long min_sleep_time_us;
4147 
4148 	if (!(hba->quirks & UFSHCD_QUIRK_DELAY_BEFORE_DME_CMDS))
4149 		return;
4150 
4151 	/*
4152 	 * last_dme_cmd_tstamp will be 0 only for 1st call to
4153 	 * this function
4154 	 */
4155 	if (unlikely(!ktime_to_us(hba->last_dme_cmd_tstamp))) {
4156 		min_sleep_time_us = MIN_DELAY_BEFORE_DME_CMDS_US;
4157 	} else {
4158 		unsigned long delta =
4159 			(unsigned long) ktime_to_us(
4160 				ktime_sub(ktime_get(),
4161 				hba->last_dme_cmd_tstamp));
4162 
4163 		if (delta < MIN_DELAY_BEFORE_DME_CMDS_US)
4164 			min_sleep_time_us =
4165 				MIN_DELAY_BEFORE_DME_CMDS_US - delta;
4166 		else
4167 			min_sleep_time_us = 0; /* no more delay required */
4168 	}
4169 
4170 	if (min_sleep_time_us > 0) {
4171 		/* allow sleep for extra 50us if needed */
4172 		usleep_range(min_sleep_time_us, min_sleep_time_us + 50);
4173 	}
4174 
4175 	/* update the last_dme_cmd_tstamp */
4176 	hba->last_dme_cmd_tstamp = ktime_get();
4177 }
4178 
4179 /**
4180  * ufshcd_dme_set_attr - UIC command for DME_SET, DME_PEER_SET
4181  * @hba: per adapter instance
4182  * @attr_sel: uic command argument1
4183  * @attr_set: attribute set type as uic command argument2
4184  * @mib_val: setting value as uic command argument3
4185  * @peer: indicate whether peer or local
4186  *
4187  * Return: 0 on success, non-zero value on failure.
4188  */
4189 int ufshcd_dme_set_attr(struct ufs_hba *hba, u32 attr_sel,
4190 			u8 attr_set, u32 mib_val, u8 peer)
4191 {
4192 	struct uic_command uic_cmd = {
4193 		.command = peer ? UIC_CMD_DME_PEER_SET : UIC_CMD_DME_SET,
4194 		.argument1 = attr_sel,
4195 		.argument2 = UIC_ARG_ATTR_TYPE(attr_set),
4196 		.argument3 = mib_val,
4197 	};
4198 	static const char *const action[] = {
4199 		"dme-set",
4200 		"dme-peer-set"
4201 	};
4202 	const char *set = action[!!peer];
4203 	int ret;
4204 	int retries = UFS_UIC_COMMAND_RETRIES;
4205 
4206 	do {
4207 		/* for peer attributes we retry upon failure */
4208 		ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4209 		if (ret)
4210 			dev_dbg(hba->dev, "%s: attr-id 0x%x val 0x%x error code %d\n",
4211 				set, UIC_GET_ATTR_ID(attr_sel), mib_val, ret);
4212 	} while (ret && peer && --retries);
4213 
4214 	if (ret)
4215 		dev_err(hba->dev, "%s: attr-id 0x%x val 0x%x failed %d retries\n",
4216 			set, UIC_GET_ATTR_ID(attr_sel), mib_val,
4217 			UFS_UIC_COMMAND_RETRIES - retries);
4218 
4219 	return ret;
4220 }
4221 EXPORT_SYMBOL_GPL(ufshcd_dme_set_attr);
4222 
4223 /**
4224  * ufshcd_dme_get_attr - UIC command for DME_GET, DME_PEER_GET
4225  * @hba: per adapter instance
4226  * @attr_sel: uic command argument1
4227  * @mib_val: the value of the attribute as returned by the UIC command
4228  * @peer: indicate whether peer or local
4229  *
4230  * Return: 0 on success, non-zero value on failure.
4231  */
4232 int ufshcd_dme_get_attr(struct ufs_hba *hba, u32 attr_sel,
4233 			u32 *mib_val, u8 peer)
4234 {
4235 	struct uic_command uic_cmd = {
4236 		.command = peer ? UIC_CMD_DME_PEER_GET : UIC_CMD_DME_GET,
4237 		.argument1 = attr_sel,
4238 	};
4239 	static const char *const action[] = {
4240 		"dme-get",
4241 		"dme-peer-get"
4242 	};
4243 	const char *get = action[!!peer];
4244 	int ret;
4245 	int retries = UFS_UIC_COMMAND_RETRIES;
4246 	struct ufs_pa_layer_attr orig_pwr_info;
4247 	struct ufs_pa_layer_attr temp_pwr_info;
4248 	bool pwr_mode_change = false;
4249 
4250 	if (peer && (hba->quirks & UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE)) {
4251 		orig_pwr_info = hba->pwr_info;
4252 		temp_pwr_info = orig_pwr_info;
4253 
4254 		if (orig_pwr_info.pwr_tx == FAST_MODE ||
4255 		    orig_pwr_info.pwr_rx == FAST_MODE) {
4256 			temp_pwr_info.pwr_tx = FASTAUTO_MODE;
4257 			temp_pwr_info.pwr_rx = FASTAUTO_MODE;
4258 			pwr_mode_change = true;
4259 		} else if (orig_pwr_info.pwr_tx == SLOW_MODE ||
4260 		    orig_pwr_info.pwr_rx == SLOW_MODE) {
4261 			temp_pwr_info.pwr_tx = SLOWAUTO_MODE;
4262 			temp_pwr_info.pwr_rx = SLOWAUTO_MODE;
4263 			pwr_mode_change = true;
4264 		}
4265 		if (pwr_mode_change) {
4266 			ret = ufshcd_change_power_mode(hba, &temp_pwr_info);
4267 			if (ret)
4268 				goto out;
4269 		}
4270 	}
4271 
4272 	do {
4273 		/* for peer attributes we retry upon failure */
4274 		ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4275 		if (ret)
4276 			dev_dbg(hba->dev, "%s: attr-id 0x%x error code %d\n",
4277 				get, UIC_GET_ATTR_ID(attr_sel), ret);
4278 	} while (ret && peer && --retries);
4279 
4280 	if (ret)
4281 		dev_err(hba->dev, "%s: attr-id 0x%x failed %d retries\n",
4282 			get, UIC_GET_ATTR_ID(attr_sel),
4283 			UFS_UIC_COMMAND_RETRIES - retries);
4284 
4285 	if (mib_val && !ret)
4286 		*mib_val = uic_cmd.argument3;
4287 
4288 	if (peer && (hba->quirks & UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE)
4289 	    && pwr_mode_change)
4290 		ufshcd_change_power_mode(hba, &orig_pwr_info);
4291 out:
4292 	return ret;
4293 }
4294 EXPORT_SYMBOL_GPL(ufshcd_dme_get_attr);
4295 
4296 /**
4297  * ufshcd_dme_rmw - get modify set a DME attribute
4298  * @hba: per adapter instance
4299  * @mask: indicates which bits to clear from the value that has been read
4300  * @val: actual value to write
4301  * @attr: dme attribute
4302  */
4303 int ufshcd_dme_rmw(struct ufs_hba *hba, u32 mask,
4304 		   u32 val, u32 attr)
4305 {
4306 	u32 cfg = 0;
4307 	int err;
4308 
4309 	err = ufshcd_dme_get(hba, UIC_ARG_MIB(attr), &cfg);
4310 	if (err)
4311 		return err;
4312 
4313 	cfg &= ~mask;
4314 	cfg |= (val & mask);
4315 
4316 	return ufshcd_dme_set(hba, UIC_ARG_MIB(attr), cfg);
4317 }
4318 EXPORT_SYMBOL_GPL(ufshcd_dme_rmw);
4319 
4320 /**
4321  * ufshcd_uic_pwr_ctrl - executes UIC commands (which affects the link power
4322  * state) and waits for it to take effect.
4323  *
4324  * @hba: per adapter instance
4325  * @cmd: UIC command to execute
4326  *
4327  * DME operations like DME_SET(PA_PWRMODE), DME_HIBERNATE_ENTER &
4328  * DME_HIBERNATE_EXIT commands take some time to take its effect on both host
4329  * and device UniPro link and hence it's final completion would be indicated by
4330  * dedicated status bits in Interrupt Status register (UPMS, UHES, UHXS) in
4331  * addition to normal UIC command completion Status (UCCS). This function only
4332  * returns after the relevant status bits indicate the completion.
4333  *
4334  * Return: 0 on success, non-zero value on failure.
4335  */
4336 static int ufshcd_uic_pwr_ctrl(struct ufs_hba *hba, struct uic_command *cmd)
4337 {
4338 	DECLARE_COMPLETION_ONSTACK(uic_async_done);
4339 	unsigned long flags;
4340 	u8 status;
4341 	int ret;
4342 
4343 	mutex_lock(&hba->uic_cmd_mutex);
4344 	ufshcd_add_delay_before_dme_cmd(hba);
4345 
4346 	spin_lock_irqsave(hba->host->host_lock, flags);
4347 	if (ufshcd_is_link_broken(hba)) {
4348 		ret = -ENOLINK;
4349 		goto out_unlock;
4350 	}
4351 	hba->uic_async_done = &uic_async_done;
4352 	ufshcd_disable_intr(hba, UIC_COMMAND_COMPL);
4353 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4354 	ret = __ufshcd_send_uic_cmd(hba, cmd);
4355 	if (ret) {
4356 		dev_err(hba->dev,
4357 			"pwr ctrl cmd 0x%x with mode 0x%x uic error %d\n",
4358 			cmd->command, cmd->argument3, ret);
4359 		goto out;
4360 	}
4361 
4362 	if (!wait_for_completion_timeout(hba->uic_async_done,
4363 					 msecs_to_jiffies(uic_cmd_timeout))) {
4364 		dev_err(hba->dev,
4365 			"pwr ctrl cmd 0x%x with mode 0x%x completion timeout\n",
4366 			cmd->command, cmd->argument3);
4367 
4368 		if (!cmd->cmd_active) {
4369 			dev_err(hba->dev, "%s: Power Mode Change operation has been completed, go check UPMCRS\n",
4370 				__func__);
4371 			goto check_upmcrs;
4372 		}
4373 
4374 		ret = -ETIMEDOUT;
4375 		goto out;
4376 	}
4377 
4378 check_upmcrs:
4379 	status = ufshcd_get_upmcrs(hba);
4380 	if (status != PWR_LOCAL) {
4381 		dev_err(hba->dev,
4382 			"pwr ctrl cmd 0x%x failed, host upmcrs:0x%x\n",
4383 			cmd->command, status);
4384 		ret = (status != PWR_OK) ? status : -1;
4385 	}
4386 out:
4387 	if (ret) {
4388 		ufshcd_print_host_state(hba);
4389 		ufshcd_print_pwr_info(hba);
4390 		ufshcd_print_evt_hist(hba);
4391 	}
4392 
4393 	spin_lock_irqsave(hba->host->host_lock, flags);
4394 	hba->active_uic_cmd = NULL;
4395 	hba->uic_async_done = NULL;
4396 	if (ret && !hba->pm_op_in_progress) {
4397 		ufshcd_set_link_broken(hba);
4398 		ufshcd_schedule_eh_work(hba);
4399 	}
4400 out_unlock:
4401 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4402 	mutex_unlock(&hba->uic_cmd_mutex);
4403 
4404 	/*
4405 	 * If the h8 exit fails during the runtime resume process, it becomes
4406 	 * stuck and cannot be recovered through the error handler.  To fix
4407 	 * this, use link recovery instead of the error handler.
4408 	 */
4409 	if (ret && hba->pm_op_in_progress)
4410 		ret = ufshcd_link_recovery(hba);
4411 
4412 	return ret;
4413 }
4414 
4415 /**
4416  * ufshcd_send_bsg_uic_cmd - Send UIC commands requested via BSG layer and retrieve the result
4417  * @hba: per adapter instance
4418  * @uic_cmd: UIC command
4419  *
4420  * Return: 0 only if success.
4421  */
4422 int ufshcd_send_bsg_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
4423 {
4424 	int ret;
4425 
4426 	if (uic_cmd->argument1 != UIC_ARG_MIB(PA_PWRMODE) ||
4427 	    uic_cmd->command != UIC_CMD_DME_SET)
4428 		return ufshcd_send_uic_cmd(hba, uic_cmd);
4429 
4430 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_UIC_CMD)
4431 		return 0;
4432 
4433 	ufshcd_hold(hba);
4434 	ret = ufshcd_uic_pwr_ctrl(hba, uic_cmd);
4435 	ufshcd_release(hba);
4436 
4437 	return ret;
4438 }
4439 
4440 /**
4441  * ufshcd_uic_change_pwr_mode - Perform the UIC power mode chage
4442  *				using DME_SET primitives.
4443  * @hba: per adapter instance
4444  * @mode: powr mode value
4445  *
4446  * Return: 0 on success, non-zero value on failure.
4447  */
4448 int ufshcd_uic_change_pwr_mode(struct ufs_hba *hba, u8 mode)
4449 {
4450 	struct uic_command uic_cmd = {
4451 		.command = UIC_CMD_DME_SET,
4452 		.argument1 = UIC_ARG_MIB(PA_PWRMODE),
4453 		.argument3 = mode,
4454 	};
4455 	int ret;
4456 
4457 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_PA_RXHSUNTERMCAP) {
4458 		ret = ufshcd_dme_set(hba,
4459 				UIC_ARG_MIB_SEL(PA_RXHSUNTERMCAP, 0), 1);
4460 		if (ret) {
4461 			dev_err(hba->dev, "%s: failed to enable PA_RXHSUNTERMCAP ret %d\n",
4462 						__func__, ret);
4463 			goto out;
4464 		}
4465 	}
4466 
4467 	ufshcd_hold(hba);
4468 	ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4469 	ufshcd_release(hba);
4470 
4471 out:
4472 	return ret;
4473 }
4474 EXPORT_SYMBOL_GPL(ufshcd_uic_change_pwr_mode);
4475 
4476 int ufshcd_link_recovery(struct ufs_hba *hba)
4477 {
4478 	int ret;
4479 	unsigned long flags;
4480 
4481 	spin_lock_irqsave(hba->host->host_lock, flags);
4482 	hba->ufshcd_state = UFSHCD_STATE_RESET;
4483 	ufshcd_set_eh_in_progress(hba);
4484 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4485 
4486 	/* Reset the attached device */
4487 	ufshcd_device_reset(hba);
4488 
4489 	ret = ufshcd_host_reset_and_restore(hba);
4490 
4491 	spin_lock_irqsave(hba->host->host_lock, flags);
4492 	if (ret)
4493 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
4494 	ufshcd_clear_eh_in_progress(hba);
4495 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4496 
4497 	if (ret)
4498 		dev_err(hba->dev, "%s: link recovery failed, err %d",
4499 			__func__, ret);
4500 
4501 	return ret;
4502 }
4503 EXPORT_SYMBOL_GPL(ufshcd_link_recovery);
4504 
4505 int ufshcd_uic_hibern8_enter(struct ufs_hba *hba)
4506 {
4507 	struct uic_command uic_cmd = {
4508 		.command = UIC_CMD_DME_HIBER_ENTER,
4509 	};
4510 	ktime_t start = ktime_get();
4511 	int ret;
4512 
4513 	ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_ENTER, PRE_CHANGE);
4514 
4515 	ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4516 	trace_ufshcd_profile_hibern8(hba, "enter",
4517 			     ktime_to_us(ktime_sub(ktime_get(), start)), ret);
4518 
4519 	if (ret)
4520 		dev_err(hba->dev, "%s: hibern8 enter failed. ret = %d\n",
4521 			__func__, ret);
4522 	else
4523 		ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_ENTER,
4524 								POST_CHANGE);
4525 
4526 	return ret;
4527 }
4528 EXPORT_SYMBOL_GPL(ufshcd_uic_hibern8_enter);
4529 
4530 int ufshcd_uic_hibern8_exit(struct ufs_hba *hba)
4531 {
4532 	struct uic_command uic_cmd = {
4533 		.command = UIC_CMD_DME_HIBER_EXIT,
4534 	};
4535 	int ret;
4536 	ktime_t start = ktime_get();
4537 
4538 	ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_EXIT, PRE_CHANGE);
4539 
4540 	ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4541 	trace_ufshcd_profile_hibern8(hba, "exit",
4542 			     ktime_to_us(ktime_sub(ktime_get(), start)), ret);
4543 
4544 	if (ret) {
4545 		dev_err(hba->dev, "%s: hibern8 exit failed. ret = %d\n",
4546 			__func__, ret);
4547 	} else {
4548 		ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_EXIT,
4549 								POST_CHANGE);
4550 		hba->ufs_stats.last_hibern8_exit_tstamp = local_clock();
4551 		hba->ufs_stats.hibern8_exit_cnt++;
4552 	}
4553 
4554 	return ret;
4555 }
4556 EXPORT_SYMBOL_GPL(ufshcd_uic_hibern8_exit);
4557 
4558 static void ufshcd_configure_auto_hibern8(struct ufs_hba *hba)
4559 {
4560 	if (!ufshcd_is_auto_hibern8_supported(hba))
4561 		return;
4562 
4563 	ufshcd_writel(hba, hba->ahit, REG_AUTO_HIBERNATE_IDLE_TIMER);
4564 }
4565 
4566 void ufshcd_auto_hibern8_update(struct ufs_hba *hba, u32 ahit)
4567 {
4568 	const u32 cur_ahit = READ_ONCE(hba->ahit);
4569 
4570 	if (!ufshcd_is_auto_hibern8_supported(hba) || cur_ahit == ahit)
4571 		return;
4572 
4573 	WRITE_ONCE(hba->ahit, ahit);
4574 	if (!pm_runtime_suspended(&hba->ufs_device_wlun->sdev_gendev)) {
4575 		ufshcd_rpm_get_sync(hba);
4576 		ufshcd_hold(hba);
4577 		ufshcd_configure_auto_hibern8(hba);
4578 		ufshcd_release(hba);
4579 		ufshcd_rpm_put_sync(hba);
4580 	}
4581 }
4582 EXPORT_SYMBOL_GPL(ufshcd_auto_hibern8_update);
4583 
4584  /**
4585  * ufshcd_init_pwr_info - setting the POR (power on reset)
4586  * values in hba power info
4587  * @hba: per-adapter instance
4588  */
4589 static void ufshcd_init_pwr_info(struct ufs_hba *hba)
4590 {
4591 	hba->pwr_info.gear_rx = UFS_PWM_G1;
4592 	hba->pwr_info.gear_tx = UFS_PWM_G1;
4593 	hba->pwr_info.lane_rx = UFS_LANE_1;
4594 	hba->pwr_info.lane_tx = UFS_LANE_1;
4595 	hba->pwr_info.pwr_rx = SLOWAUTO_MODE;
4596 	hba->pwr_info.pwr_tx = SLOWAUTO_MODE;
4597 	hba->pwr_info.hs_rate = 0;
4598 }
4599 
4600 /**
4601  * ufshcd_get_max_pwr_mode - reads the max power mode negotiated with device
4602  * @hba: per-adapter instance
4603  *
4604  * Return: 0 upon success; < 0 upon failure.
4605  */
4606 static int ufshcd_get_max_pwr_mode(struct ufs_hba *hba)
4607 {
4608 	struct ufs_pa_layer_attr *pwr_info = &hba->max_pwr_info.info;
4609 
4610 	if (hba->max_pwr_info.is_valid)
4611 		return 0;
4612 
4613 	if (hba->quirks & UFSHCD_QUIRK_HIBERN_FASTAUTO) {
4614 		pwr_info->pwr_tx = FASTAUTO_MODE;
4615 		pwr_info->pwr_rx = FASTAUTO_MODE;
4616 	} else {
4617 		pwr_info->pwr_tx = FAST_MODE;
4618 		pwr_info->pwr_rx = FAST_MODE;
4619 	}
4620 	pwr_info->hs_rate = PA_HS_MODE_B;
4621 
4622 	/* Get the connected lane count */
4623 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDRXDATALANES),
4624 			&pwr_info->lane_rx);
4625 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4626 			&pwr_info->lane_tx);
4627 
4628 	if (!pwr_info->lane_rx || !pwr_info->lane_tx) {
4629 		dev_err(hba->dev, "%s: invalid connected lanes value. rx=%d, tx=%d\n",
4630 				__func__,
4631 				pwr_info->lane_rx,
4632 				pwr_info->lane_tx);
4633 		return -EINVAL;
4634 	}
4635 
4636 	if (pwr_info->lane_rx != pwr_info->lane_tx) {
4637 		dev_err(hba->dev, "%s: asymmetric connected lanes. rx=%d, tx=%d\n",
4638 			__func__,
4639 				pwr_info->lane_rx,
4640 				pwr_info->lane_tx);
4641 		return -EINVAL;
4642 	}
4643 
4644 	/*
4645 	 * First, get the maximum gears of HS speed.
4646 	 * If a zero value, it means there is no HSGEAR capability.
4647 	 * Then, get the maximum gears of PWM speed.
4648 	 */
4649 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_MAXRXHSGEAR), &pwr_info->gear_rx);
4650 	if (!pwr_info->gear_rx) {
4651 		ufshcd_dme_get(hba, UIC_ARG_MIB(PA_MAXRXPWMGEAR),
4652 				&pwr_info->gear_rx);
4653 		if (!pwr_info->gear_rx) {
4654 			dev_err(hba->dev, "%s: invalid max pwm rx gear read = %d\n",
4655 				__func__, pwr_info->gear_rx);
4656 			return -EINVAL;
4657 		}
4658 		pwr_info->pwr_rx = SLOW_MODE;
4659 	}
4660 
4661 	ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_MAXRXHSGEAR),
4662 			&pwr_info->gear_tx);
4663 	if (!pwr_info->gear_tx) {
4664 		ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_MAXRXPWMGEAR),
4665 				&pwr_info->gear_tx);
4666 		if (!pwr_info->gear_tx) {
4667 			dev_err(hba->dev, "%s: invalid max pwm tx gear read = %d\n",
4668 				__func__, pwr_info->gear_tx);
4669 			return -EINVAL;
4670 		}
4671 		pwr_info->pwr_tx = SLOW_MODE;
4672 	}
4673 
4674 	hba->max_pwr_info.is_valid = true;
4675 	return 0;
4676 }
4677 
4678 static int ufshcd_change_power_mode(struct ufs_hba *hba,
4679 			     struct ufs_pa_layer_attr *pwr_mode)
4680 {
4681 	int ret;
4682 
4683 	/* if already configured to the requested pwr_mode */
4684 	if (!hba->force_pmc &&
4685 	    pwr_mode->gear_rx == hba->pwr_info.gear_rx &&
4686 	    pwr_mode->gear_tx == hba->pwr_info.gear_tx &&
4687 	    pwr_mode->lane_rx == hba->pwr_info.lane_rx &&
4688 	    pwr_mode->lane_tx == hba->pwr_info.lane_tx &&
4689 	    pwr_mode->pwr_rx == hba->pwr_info.pwr_rx &&
4690 	    pwr_mode->pwr_tx == hba->pwr_info.pwr_tx &&
4691 	    pwr_mode->hs_rate == hba->pwr_info.hs_rate) {
4692 		dev_dbg(hba->dev, "%s: power already configured\n", __func__);
4693 		return 0;
4694 	}
4695 
4696 	/*
4697 	 * Configure attributes for power mode change with below.
4698 	 * - PA_RXGEAR, PA_ACTIVERXDATALANES, PA_RXTERMINATION,
4699 	 * - PA_TXGEAR, PA_ACTIVETXDATALANES, PA_TXTERMINATION,
4700 	 * - PA_HSSERIES
4701 	 */
4702 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXGEAR), pwr_mode->gear_rx);
4703 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVERXDATALANES),
4704 			pwr_mode->lane_rx);
4705 	if (pwr_mode->pwr_rx == FASTAUTO_MODE ||
4706 			pwr_mode->pwr_rx == FAST_MODE)
4707 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), true);
4708 	else
4709 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), false);
4710 
4711 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXGEAR), pwr_mode->gear_tx);
4712 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVETXDATALANES),
4713 			pwr_mode->lane_tx);
4714 	if (pwr_mode->pwr_tx == FASTAUTO_MODE ||
4715 			pwr_mode->pwr_tx == FAST_MODE)
4716 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), true);
4717 	else
4718 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), false);
4719 
4720 	if (pwr_mode->pwr_rx == FASTAUTO_MODE ||
4721 	    pwr_mode->pwr_tx == FASTAUTO_MODE ||
4722 	    pwr_mode->pwr_rx == FAST_MODE ||
4723 	    pwr_mode->pwr_tx == FAST_MODE)
4724 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_HSSERIES),
4725 						pwr_mode->hs_rate);
4726 
4727 	if (!(hba->quirks & UFSHCD_QUIRK_SKIP_DEF_UNIPRO_TIMEOUT_SETTING)) {
4728 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA0),
4729 				DL_FC0ProtectionTimeOutVal_Default);
4730 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA1),
4731 				DL_TC0ReplayTimeOutVal_Default);
4732 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA2),
4733 				DL_AFC0ReqTimeOutVal_Default);
4734 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA3),
4735 				DL_FC1ProtectionTimeOutVal_Default);
4736 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA4),
4737 				DL_TC1ReplayTimeOutVal_Default);
4738 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA5),
4739 				DL_AFC1ReqTimeOutVal_Default);
4740 
4741 		ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalFC0ProtectionTimeOutVal),
4742 				DL_FC0ProtectionTimeOutVal_Default);
4743 		ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalTC0ReplayTimeOutVal),
4744 				DL_TC0ReplayTimeOutVal_Default);
4745 		ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalAFC0ReqTimeOutVal),
4746 				DL_AFC0ReqTimeOutVal_Default);
4747 	}
4748 
4749 	ret = ufshcd_uic_change_pwr_mode(hba, pwr_mode->pwr_rx << 4
4750 			| pwr_mode->pwr_tx);
4751 
4752 	if (ret) {
4753 		dev_err(hba->dev,
4754 			"%s: power mode change failed %d\n", __func__, ret);
4755 	} else {
4756 		memcpy(&hba->pwr_info, pwr_mode,
4757 			sizeof(struct ufs_pa_layer_attr));
4758 	}
4759 
4760 	return ret;
4761 }
4762 
4763 /**
4764  * ufshcd_config_pwr_mode - configure a new power mode
4765  * @hba: per-adapter instance
4766  * @desired_pwr_mode: desired power configuration
4767  *
4768  * Return: 0 upon success; < 0 upon failure.
4769  */
4770 int ufshcd_config_pwr_mode(struct ufs_hba *hba,
4771 		struct ufs_pa_layer_attr *desired_pwr_mode)
4772 {
4773 	struct ufs_pa_layer_attr final_params = { 0 };
4774 	int ret;
4775 
4776 	ret = ufshcd_vops_pwr_change_notify(hba, PRE_CHANGE,
4777 					desired_pwr_mode, &final_params);
4778 
4779 	if (ret)
4780 		memcpy(&final_params, desired_pwr_mode, sizeof(final_params));
4781 
4782 	ret = ufshcd_change_power_mode(hba, &final_params);
4783 
4784 	if (!ret)
4785 		ufshcd_vops_pwr_change_notify(hba, POST_CHANGE, NULL,
4786 					&final_params);
4787 
4788 	return ret;
4789 }
4790 EXPORT_SYMBOL_GPL(ufshcd_config_pwr_mode);
4791 
4792 /**
4793  * ufshcd_complete_dev_init() - checks device readiness
4794  * @hba: per-adapter instance
4795  *
4796  * Set fDeviceInit flag and poll until device toggles it.
4797  *
4798  * Return: 0 upon success; > 0 in case the UFS device reported an OCS error;
4799  * < 0 if another error occurred.
4800  */
4801 static int ufshcd_complete_dev_init(struct ufs_hba *hba)
4802 {
4803 	int err;
4804 	bool flag_res = true;
4805 	ktime_t timeout;
4806 
4807 	err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG,
4808 		QUERY_FLAG_IDN_FDEVICEINIT, 0, NULL);
4809 	if (err) {
4810 		dev_err(hba->dev,
4811 			"%s: setting fDeviceInit flag failed with error %d\n",
4812 			__func__, err);
4813 		goto out;
4814 	}
4815 
4816 	/* Poll fDeviceInit flag to be cleared */
4817 	timeout = ktime_add_ms(ktime_get(), FDEVICEINIT_COMPL_TIMEOUT);
4818 	do {
4819 		err = ufshcd_query_flag(hba, UPIU_QUERY_OPCODE_READ_FLAG,
4820 					QUERY_FLAG_IDN_FDEVICEINIT, 0, &flag_res);
4821 		if (!flag_res)
4822 			break;
4823 		usleep_range(500, 1000);
4824 	} while (ktime_before(ktime_get(), timeout));
4825 
4826 	if (err) {
4827 		dev_err(hba->dev,
4828 				"%s: reading fDeviceInit flag failed with error %d\n",
4829 				__func__, err);
4830 	} else if (flag_res) {
4831 		dev_err(hba->dev,
4832 				"%s: fDeviceInit was not cleared by the device\n",
4833 				__func__);
4834 		err = -EBUSY;
4835 	}
4836 out:
4837 	return err;
4838 }
4839 
4840 /**
4841  * ufshcd_make_hba_operational - Make UFS controller operational
4842  * @hba: per adapter instance
4843  *
4844  * To bring UFS host controller to operational state,
4845  * 1. Enable required interrupts
4846  * 2. Configure interrupt aggregation
4847  * 3. Program UTRL and UTMRL base address
4848  * 4. Configure run-stop-registers
4849  *
4850  * Return: 0 if successful; < 0 upon failure.
4851  */
4852 int ufshcd_make_hba_operational(struct ufs_hba *hba)
4853 {
4854 	int err = 0;
4855 	u32 reg;
4856 
4857 	/* Enable required interrupts */
4858 	ufshcd_enable_intr(hba, UFSHCD_ENABLE_INTRS);
4859 
4860 	/* Configure interrupt aggregation */
4861 	if (ufshcd_is_intr_aggr_allowed(hba))
4862 		ufshcd_config_intr_aggr(hba, hba->nutrs - 1, INT_AGGR_DEF_TO);
4863 	else
4864 		ufshcd_disable_intr_aggr(hba);
4865 
4866 	/* Configure UTRL and UTMRL base address registers */
4867 	ufshcd_writel(hba, lower_32_bits(hba->utrdl_dma_addr),
4868 			REG_UTP_TRANSFER_REQ_LIST_BASE_L);
4869 	ufshcd_writel(hba, upper_32_bits(hba->utrdl_dma_addr),
4870 			REG_UTP_TRANSFER_REQ_LIST_BASE_H);
4871 	ufshcd_writel(hba, lower_32_bits(hba->utmrdl_dma_addr),
4872 			REG_UTP_TASK_REQ_LIST_BASE_L);
4873 	ufshcd_writel(hba, upper_32_bits(hba->utmrdl_dma_addr),
4874 			REG_UTP_TASK_REQ_LIST_BASE_H);
4875 
4876 	/*
4877 	 * UCRDY, UTMRLDY and UTRLRDY bits must be 1
4878 	 */
4879 	reg = ufshcd_readl(hba, REG_CONTROLLER_STATUS);
4880 	if (!(ufshcd_get_lists_status(reg))) {
4881 		ufshcd_enable_run_stop_reg(hba);
4882 	} else {
4883 		dev_err(hba->dev,
4884 			"Host controller not ready to process requests");
4885 		err = -EIO;
4886 	}
4887 
4888 	return err;
4889 }
4890 EXPORT_SYMBOL_GPL(ufshcd_make_hba_operational);
4891 
4892 /**
4893  * ufshcd_hba_stop - Send controller to reset state
4894  * @hba: per adapter instance
4895  */
4896 void ufshcd_hba_stop(struct ufs_hba *hba)
4897 {
4898 	int err;
4899 
4900 	ufshcd_disable_irq(hba);
4901 	ufshcd_writel(hba, CONTROLLER_DISABLE,  REG_CONTROLLER_ENABLE);
4902 	err = ufshcd_wait_for_register(hba, REG_CONTROLLER_ENABLE,
4903 					CONTROLLER_ENABLE, CONTROLLER_DISABLE,
4904 					10, 1);
4905 	ufshcd_enable_irq(hba);
4906 	if (err)
4907 		dev_err(hba->dev, "%s: Controller disable failed\n", __func__);
4908 }
4909 EXPORT_SYMBOL_GPL(ufshcd_hba_stop);
4910 
4911 /**
4912  * ufshcd_hba_execute_hce - initialize the controller
4913  * @hba: per adapter instance
4914  *
4915  * The controller resets itself and controller firmware initialization
4916  * sequence kicks off. When controller is ready it will set
4917  * the Host Controller Enable bit to 1.
4918  *
4919  * Return: 0 on success, non-zero value on failure.
4920  */
4921 static int ufshcd_hba_execute_hce(struct ufs_hba *hba)
4922 {
4923 	int retry;
4924 
4925 	for (retry = 3; retry > 0; retry--) {
4926 		if (ufshcd_is_hba_active(hba))
4927 			/* change controller state to "reset state" */
4928 			ufshcd_hba_stop(hba);
4929 
4930 		/* UniPro link is disabled at this point */
4931 		ufshcd_set_link_off(hba);
4932 
4933 		ufshcd_vops_hce_enable_notify(hba, PRE_CHANGE);
4934 
4935 		/* start controller initialization sequence */
4936 		ufshcd_hba_start(hba);
4937 
4938 		/*
4939 		 * To initialize a UFS host controller HCE bit must be set to 1.
4940 		 * During initialization the HCE bit value changes from 1->0->1.
4941 		 * When the host controller completes initialization sequence
4942 		 * it sets the value of HCE bit to 1. The same HCE bit is read back
4943 		 * to check if the controller has completed initialization sequence.
4944 		 * So without this delay the value HCE = 1, set in the previous
4945 		 * instruction might be read back.
4946 		 * This delay can be changed based on the controller.
4947 		 */
4948 		ufshcd_delay_us(hba->vps->hba_enable_delay_us, 100);
4949 
4950 		/* wait for the host controller to complete initialization */
4951 		if (!ufshcd_wait_for_register(hba, REG_CONTROLLER_ENABLE, CONTROLLER_ENABLE,
4952 					      CONTROLLER_ENABLE, 1000, 50))
4953 			break;
4954 
4955 		dev_err(hba->dev, "Enabling the controller failed\n");
4956 	}
4957 
4958 	if (!retry)
4959 		return -EIO;
4960 
4961 	/* enable UIC related interrupts */
4962 	ufshcd_enable_intr(hba, UFSHCD_UIC_MASK);
4963 
4964 	ufshcd_vops_hce_enable_notify(hba, POST_CHANGE);
4965 
4966 	return 0;
4967 }
4968 
4969 int ufshcd_hba_enable(struct ufs_hba *hba)
4970 {
4971 	int ret;
4972 
4973 	if (hba->quirks & UFSHCI_QUIRK_BROKEN_HCE) {
4974 		ufshcd_set_link_off(hba);
4975 		ufshcd_vops_hce_enable_notify(hba, PRE_CHANGE);
4976 
4977 		/* enable UIC related interrupts */
4978 		ufshcd_enable_intr(hba, UFSHCD_UIC_MASK);
4979 		ret = ufshcd_dme_reset(hba);
4980 		if (ret) {
4981 			dev_err(hba->dev, "DME_RESET failed\n");
4982 			return ret;
4983 		}
4984 
4985 		ret = ufshcd_dme_enable(hba);
4986 		if (ret) {
4987 			dev_err(hba->dev, "Enabling DME failed\n");
4988 			return ret;
4989 		}
4990 
4991 		ufshcd_vops_hce_enable_notify(hba, POST_CHANGE);
4992 	} else {
4993 		ret = ufshcd_hba_execute_hce(hba);
4994 	}
4995 
4996 	return ret;
4997 }
4998 EXPORT_SYMBOL_GPL(ufshcd_hba_enable);
4999 
5000 static int ufshcd_disable_tx_lcc(struct ufs_hba *hba, bool peer)
5001 {
5002 	int tx_lanes = 0, i, err = 0;
5003 
5004 	if (!peer)
5005 		ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
5006 			       &tx_lanes);
5007 	else
5008 		ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
5009 				    &tx_lanes);
5010 	for (i = 0; i < tx_lanes; i++) {
5011 		if (!peer)
5012 			err = ufshcd_dme_set(hba,
5013 				UIC_ARG_MIB_SEL(TX_LCC_ENABLE,
5014 					UIC_ARG_MPHY_TX_GEN_SEL_INDEX(i)),
5015 					0);
5016 		else
5017 			err = ufshcd_dme_peer_set(hba,
5018 				UIC_ARG_MIB_SEL(TX_LCC_ENABLE,
5019 					UIC_ARG_MPHY_TX_GEN_SEL_INDEX(i)),
5020 					0);
5021 		if (err) {
5022 			dev_err(hba->dev, "%s: TX LCC Disable failed, peer = %d, lane = %d, err = %d",
5023 				__func__, peer, i, err);
5024 			break;
5025 		}
5026 	}
5027 
5028 	return err;
5029 }
5030 
5031 static inline int ufshcd_disable_device_tx_lcc(struct ufs_hba *hba)
5032 {
5033 	return ufshcd_disable_tx_lcc(hba, true);
5034 }
5035 
5036 void ufshcd_update_evt_hist(struct ufs_hba *hba, u32 id, u32 val)
5037 {
5038 	struct ufs_event_hist *e;
5039 
5040 	if (id >= UFS_EVT_CNT)
5041 		return;
5042 
5043 	e = &hba->ufs_stats.event[id];
5044 	e->val[e->pos] = val;
5045 	e->tstamp[e->pos] = local_clock();
5046 	e->cnt += 1;
5047 	e->pos = (e->pos + 1) % UFS_EVENT_HIST_LENGTH;
5048 
5049 	ufshcd_vops_event_notify(hba, id, &val);
5050 }
5051 EXPORT_SYMBOL_GPL(ufshcd_update_evt_hist);
5052 
5053 /**
5054  * ufshcd_link_startup - Initialize unipro link startup
5055  * @hba: per adapter instance
5056  *
5057  * Return: 0 for success, non-zero in case of failure.
5058  */
5059 static int ufshcd_link_startup(struct ufs_hba *hba)
5060 {
5061 	int ret;
5062 	int retries = DME_LINKSTARTUP_RETRIES;
5063 	bool link_startup_again = false;
5064 
5065 	/*
5066 	 * If UFS device isn't active then we will have to issue link startup
5067 	 * 2 times to make sure the device state move to active.
5068 	 */
5069 	if (!ufshcd_is_ufs_dev_active(hba))
5070 		link_startup_again = true;
5071 
5072 link_startup:
5073 	do {
5074 		ufshcd_vops_link_startup_notify(hba, PRE_CHANGE);
5075 
5076 		ret = ufshcd_dme_link_startup(hba);
5077 
5078 		/* check if device is detected by inter-connect layer */
5079 		if (!ret && !ufshcd_is_device_present(hba)) {
5080 			ufshcd_update_evt_hist(hba,
5081 					       UFS_EVT_LINK_STARTUP_FAIL,
5082 					       0);
5083 			dev_err(hba->dev, "%s: Device not present\n", __func__);
5084 			ret = -ENXIO;
5085 			goto out;
5086 		}
5087 
5088 		/*
5089 		 * DME link lost indication is only received when link is up,
5090 		 * but we can't be sure if the link is up until link startup
5091 		 * succeeds. So reset the local Uni-Pro and try again.
5092 		 */
5093 		if (ret && retries && ufshcd_hba_enable(hba)) {
5094 			ufshcd_update_evt_hist(hba,
5095 					       UFS_EVT_LINK_STARTUP_FAIL,
5096 					       (u32)ret);
5097 			goto out;
5098 		}
5099 	} while (ret && retries--);
5100 
5101 	if (ret) {
5102 		/* failed to get the link up... retire */
5103 		ufshcd_update_evt_hist(hba,
5104 				       UFS_EVT_LINK_STARTUP_FAIL,
5105 				       (u32)ret);
5106 		goto out;
5107 	}
5108 
5109 	if (link_startup_again) {
5110 		link_startup_again = false;
5111 		retries = DME_LINKSTARTUP_RETRIES;
5112 		goto link_startup;
5113 	}
5114 
5115 	/* Mark that link is up in PWM-G1, 1-lane, SLOW-AUTO mode */
5116 	ufshcd_init_pwr_info(hba);
5117 	ufshcd_print_pwr_info(hba);
5118 
5119 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_LCC) {
5120 		ret = ufshcd_disable_device_tx_lcc(hba);
5121 		if (ret)
5122 			goto out;
5123 	}
5124 
5125 	/* Include any host controller configuration via UIC commands */
5126 	ret = ufshcd_vops_link_startup_notify(hba, POST_CHANGE);
5127 	if (ret)
5128 		goto out;
5129 
5130 	/* Clear UECPA once due to LINERESET has happened during LINK_STARTUP */
5131 	ufshcd_readl(hba, REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER);
5132 	ret = ufshcd_make_hba_operational(hba);
5133 out:
5134 	if (ret) {
5135 		dev_err(hba->dev, "link startup failed %d\n", ret);
5136 		ufshcd_print_host_state(hba);
5137 		ufshcd_print_pwr_info(hba);
5138 		ufshcd_print_evt_hist(hba);
5139 	}
5140 	return ret;
5141 }
5142 
5143 /**
5144  * ufshcd_verify_dev_init() - Verify device initialization
5145  * @hba: per-adapter instance
5146  *
5147  * Send NOP OUT UPIU and wait for NOP IN response to check whether the
5148  * device Transport Protocol (UTP) layer is ready after a reset.
5149  * If the UTP layer at the device side is not initialized, it may
5150  * not respond with NOP IN UPIU within timeout of %NOP_OUT_TIMEOUT
5151  * and we retry sending NOP OUT for %NOP_OUT_RETRIES iterations.
5152  *
5153  * Return: 0 upon success; > 0 in case the UFS device reported an OCS error;
5154  * < 0 if another error occurred.
5155  */
5156 static int ufshcd_verify_dev_init(struct ufs_hba *hba)
5157 {
5158 	int err = 0;
5159 	int retries;
5160 
5161 	ufshcd_dev_man_lock(hba);
5162 
5163 	for (retries = NOP_OUT_RETRIES; retries > 0; retries--) {
5164 		err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_NOP,
5165 					  hba->nop_out_timeout);
5166 
5167 		if (!err || err == -ETIMEDOUT)
5168 			break;
5169 
5170 		dev_dbg(hba->dev, "%s: error %d retrying\n", __func__, err);
5171 	}
5172 
5173 	ufshcd_dev_man_unlock(hba);
5174 
5175 	if (err)
5176 		dev_err(hba->dev, "%s: NOP OUT failed %d\n", __func__, err);
5177 	return err;
5178 }
5179 
5180 /**
5181  * ufshcd_setup_links - associate link b/w device wlun and other luns
5182  * @sdev: pointer to SCSI device
5183  * @hba: pointer to ufs hba
5184  */
5185 static void ufshcd_setup_links(struct ufs_hba *hba, struct scsi_device *sdev)
5186 {
5187 	struct device_link *link;
5188 
5189 	/*
5190 	 * Device wlun is the supplier & rest of the luns are consumers.
5191 	 * This ensures that device wlun suspends after all other luns.
5192 	 */
5193 	if (hba->ufs_device_wlun) {
5194 		link = device_link_add(&sdev->sdev_gendev,
5195 				       &hba->ufs_device_wlun->sdev_gendev,
5196 				       DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE);
5197 		if (!link) {
5198 			dev_err(&sdev->sdev_gendev, "Failed establishing link - %s\n",
5199 				dev_name(&hba->ufs_device_wlun->sdev_gendev));
5200 			return;
5201 		}
5202 		hba->luns_avail--;
5203 		/* Ignore REPORT_LUN wlun probing */
5204 		if (hba->luns_avail == 1) {
5205 			ufshcd_rpm_put(hba);
5206 			return;
5207 		}
5208 	} else {
5209 		/*
5210 		 * Device wlun is probed. The assumption is that WLUNs are
5211 		 * scanned before other LUNs.
5212 		 */
5213 		hba->luns_avail--;
5214 	}
5215 }
5216 
5217 /**
5218  * ufshcd_lu_init - Initialize the relevant parameters of the LU
5219  * @hba: per-adapter instance
5220  * @sdev: pointer to SCSI device
5221  */
5222 static void ufshcd_lu_init(struct ufs_hba *hba, struct scsi_device *sdev)
5223 {
5224 	int len = QUERY_DESC_MAX_SIZE;
5225 	u8 lun = ufshcd_scsi_to_upiu_lun(sdev->lun);
5226 	u8 lun_qdepth = hba->nutrs;
5227 	u8 *desc_buf;
5228 	int ret;
5229 
5230 	desc_buf = kzalloc(len, GFP_KERNEL);
5231 	if (!desc_buf)
5232 		goto set_qdepth;
5233 
5234 	ret = ufshcd_read_unit_desc_param(hba, lun, 0, desc_buf, len);
5235 	if (ret < 0) {
5236 		if (ret == -EOPNOTSUPP)
5237 			/* If LU doesn't support unit descriptor, its queue depth is set to 1 */
5238 			lun_qdepth = 1;
5239 		kfree(desc_buf);
5240 		goto set_qdepth;
5241 	}
5242 
5243 	if (desc_buf[UNIT_DESC_PARAM_LU_Q_DEPTH]) {
5244 		/*
5245 		 * In per-LU queueing architecture, bLUQueueDepth will not be 0, then we will
5246 		 * use the smaller between UFSHCI CAP.NUTRS and UFS LU bLUQueueDepth
5247 		 */
5248 		lun_qdepth = min_t(int, desc_buf[UNIT_DESC_PARAM_LU_Q_DEPTH], hba->nutrs);
5249 	}
5250 	/*
5251 	 * According to UFS device specification, the write protection mode is only supported by
5252 	 * normal LU, not supported by WLUN.
5253 	 */
5254 	if (hba->dev_info.f_power_on_wp_en && lun < hba->dev_info.max_lu_supported &&
5255 	    !hba->dev_info.is_lu_power_on_wp &&
5256 	    desc_buf[UNIT_DESC_PARAM_LU_WR_PROTECT] == UFS_LU_POWER_ON_WP)
5257 		hba->dev_info.is_lu_power_on_wp = true;
5258 
5259 	/* In case of RPMB LU, check if advanced RPMB mode is enabled */
5260 	if (desc_buf[UNIT_DESC_PARAM_UNIT_INDEX] == UFS_UPIU_RPMB_WLUN &&
5261 	    desc_buf[RPMB_UNIT_DESC_PARAM_REGION_EN] & BIT(4))
5262 		hba->dev_info.b_advanced_rpmb_en = true;
5263 
5264 
5265 	kfree(desc_buf);
5266 set_qdepth:
5267 	/*
5268 	 * For WLUNs that don't support unit descriptor, queue depth is set to 1. For LUs whose
5269 	 * bLUQueueDepth == 0, the queue depth is set to a maximum value that host can queue.
5270 	 */
5271 	dev_dbg(hba->dev, "Set LU %x queue depth %d\n", lun, lun_qdepth);
5272 	scsi_change_queue_depth(sdev, lun_qdepth);
5273 }
5274 
5275 /**
5276  * ufshcd_sdev_init - handle initial SCSI device configurations
5277  * @sdev: pointer to SCSI device
5278  *
5279  * Return: success.
5280  */
5281 static int ufshcd_sdev_init(struct scsi_device *sdev)
5282 {
5283 	struct ufs_hba *hba;
5284 
5285 	hba = shost_priv(sdev->host);
5286 
5287 	/* Mode sense(6) is not supported by UFS, so use Mode sense(10) */
5288 	sdev->use_10_for_ms = 1;
5289 
5290 	/* DBD field should be set to 1 in mode sense(10) */
5291 	sdev->set_dbd_for_ms = 1;
5292 
5293 	/* allow SCSI layer to restart the device in case of errors */
5294 	sdev->allow_restart = 1;
5295 
5296 	/* REPORT SUPPORTED OPERATION CODES is not supported */
5297 	sdev->no_report_opcodes = 1;
5298 
5299 	/* WRITE_SAME command is not supported */
5300 	sdev->no_write_same = 1;
5301 
5302 	ufshcd_lu_init(hba, sdev);
5303 
5304 	ufshcd_setup_links(hba, sdev);
5305 
5306 	return 0;
5307 }
5308 
5309 /**
5310  * ufshcd_change_queue_depth - change queue depth
5311  * @sdev: pointer to SCSI device
5312  * @depth: required depth to set
5313  *
5314  * Change queue depth and make sure the max. limits are not crossed.
5315  *
5316  * Return: new queue depth.
5317  */
5318 static int ufshcd_change_queue_depth(struct scsi_device *sdev, int depth)
5319 {
5320 	return scsi_change_queue_depth(sdev, min(depth, sdev->host->can_queue));
5321 }
5322 
5323 /**
5324  * ufshcd_sdev_configure - adjust SCSI device configurations
5325  * @sdev: pointer to SCSI device
5326  * @lim: queue limits
5327  *
5328  * Return: 0 (success).
5329  */
5330 static int ufshcd_sdev_configure(struct scsi_device *sdev,
5331 				 struct queue_limits *lim)
5332 {
5333 	struct ufs_hba *hba = shost_priv(sdev->host);
5334 	struct request_queue *q = sdev->request_queue;
5335 
5336 	lim->dma_pad_mask = PRDT_DATA_BYTE_COUNT_PAD - 1;
5337 
5338 	/*
5339 	 * Block runtime-pm until all consumers are added.
5340 	 * Refer ufshcd_setup_links().
5341 	 */
5342 	if (is_device_wlun(sdev))
5343 		pm_runtime_get_noresume(&sdev->sdev_gendev);
5344 	else if (ufshcd_is_rpm_autosuspend_allowed(hba))
5345 		sdev->rpm_autosuspend = 1;
5346 	/*
5347 	 * Do not print messages during runtime PM to avoid never-ending cycles
5348 	 * of messages written back to storage by user space causing runtime
5349 	 * resume, causing more messages and so on.
5350 	 */
5351 	sdev->silence_suspend = 1;
5352 
5353 	if (hba->vops && hba->vops->config_scsi_dev)
5354 		hba->vops->config_scsi_dev(sdev);
5355 
5356 	ufshcd_crypto_register(hba, q);
5357 
5358 	return 0;
5359 }
5360 
5361 /**
5362  * ufshcd_sdev_destroy - remove SCSI device configurations
5363  * @sdev: pointer to SCSI device
5364  */
5365 static void ufshcd_sdev_destroy(struct scsi_device *sdev)
5366 {
5367 	struct ufs_hba *hba;
5368 	unsigned long flags;
5369 
5370 	hba = shost_priv(sdev->host);
5371 
5372 	/* Drop the reference as it won't be needed anymore */
5373 	if (ufshcd_scsi_to_upiu_lun(sdev->lun) == UFS_UPIU_UFS_DEVICE_WLUN) {
5374 		spin_lock_irqsave(hba->host->host_lock, flags);
5375 		hba->ufs_device_wlun = NULL;
5376 		spin_unlock_irqrestore(hba->host->host_lock, flags);
5377 	} else if (hba->ufs_device_wlun) {
5378 		struct device *supplier = NULL;
5379 
5380 		/* Ensure UFS Device WLUN exists and does not disappear */
5381 		spin_lock_irqsave(hba->host->host_lock, flags);
5382 		if (hba->ufs_device_wlun) {
5383 			supplier = &hba->ufs_device_wlun->sdev_gendev;
5384 			get_device(supplier);
5385 		}
5386 		spin_unlock_irqrestore(hba->host->host_lock, flags);
5387 
5388 		if (supplier) {
5389 			/*
5390 			 * If a LUN fails to probe (e.g. absent BOOT WLUN), the
5391 			 * device will not have been registered but can still
5392 			 * have a device link holding a reference to the device.
5393 			 */
5394 			device_link_remove(&sdev->sdev_gendev, supplier);
5395 			put_device(supplier);
5396 		}
5397 	}
5398 }
5399 
5400 /**
5401  * ufshcd_scsi_cmd_status - Update SCSI command result based on SCSI status
5402  * @lrbp: pointer to local reference block of completed command
5403  * @scsi_status: SCSI command status
5404  *
5405  * Return: value base on SCSI command status.
5406  */
5407 static inline int
5408 ufshcd_scsi_cmd_status(struct ufshcd_lrb *lrbp, int scsi_status)
5409 {
5410 	int result = 0;
5411 
5412 	switch (scsi_status) {
5413 	case SAM_STAT_CHECK_CONDITION:
5414 		ufshcd_copy_sense_data(lrbp);
5415 		fallthrough;
5416 	case SAM_STAT_GOOD:
5417 		result |= DID_OK << 16 | scsi_status;
5418 		break;
5419 	case SAM_STAT_TASK_SET_FULL:
5420 	case SAM_STAT_BUSY:
5421 	case SAM_STAT_TASK_ABORTED:
5422 		ufshcd_copy_sense_data(lrbp);
5423 		result |= scsi_status;
5424 		break;
5425 	default:
5426 		result |= DID_ERROR << 16;
5427 		break;
5428 	} /* end of switch */
5429 
5430 	return result;
5431 }
5432 
5433 /**
5434  * ufshcd_transfer_rsp_status - Get overall status of the response
5435  * @hba: per adapter instance
5436  * @lrbp: pointer to local reference block of completed command
5437  * @cqe: pointer to the completion queue entry
5438  *
5439  * Return: result of the command to notify SCSI midlayer.
5440  */
5441 static inline int
5442 ufshcd_transfer_rsp_status(struct ufs_hba *hba, struct ufshcd_lrb *lrbp,
5443 			   struct cq_entry *cqe)
5444 {
5445 	int result = 0;
5446 	int scsi_status;
5447 	enum utp_ocs ocs;
5448 	u8 upiu_flags;
5449 	u32 resid;
5450 
5451 	upiu_flags = lrbp->ucd_rsp_ptr->header.flags;
5452 	resid = be32_to_cpu(lrbp->ucd_rsp_ptr->sr.residual_transfer_count);
5453 	/*
5454 	 * Test !overflow instead of underflow to support UFS devices that do
5455 	 * not set either flag.
5456 	 */
5457 	if (resid && !(upiu_flags & UPIU_RSP_FLAG_OVERFLOW))
5458 		scsi_set_resid(lrbp->cmd, resid);
5459 
5460 	/* overall command status of utrd */
5461 	ocs = ufshcd_get_tr_ocs(lrbp, cqe);
5462 
5463 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_OCS_FATAL_ERROR) {
5464 		if (lrbp->ucd_rsp_ptr->header.response ||
5465 		    lrbp->ucd_rsp_ptr->header.status)
5466 			ocs = OCS_SUCCESS;
5467 	}
5468 
5469 	switch (ocs) {
5470 	case OCS_SUCCESS:
5471 		hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
5472 		switch (ufshcd_get_req_rsp(lrbp->ucd_rsp_ptr)) {
5473 		case UPIU_TRANSACTION_RESPONSE:
5474 			/*
5475 			 * get the result based on SCSI status response
5476 			 * to notify the SCSI midlayer of the command status
5477 			 */
5478 			scsi_status = lrbp->ucd_rsp_ptr->header.status;
5479 			result = ufshcd_scsi_cmd_status(lrbp, scsi_status);
5480 
5481 			/*
5482 			 * Currently we are only supporting BKOPs exception
5483 			 * events hence we can ignore BKOPs exception event
5484 			 * during power management callbacks. BKOPs exception
5485 			 * event is not expected to be raised in runtime suspend
5486 			 * callback as it allows the urgent bkops.
5487 			 * During system suspend, we are anyway forcefully
5488 			 * disabling the bkops and if urgent bkops is needed
5489 			 * it will be enabled on system resume. Long term
5490 			 * solution could be to abort the system suspend if
5491 			 * UFS device needs urgent BKOPs.
5492 			 */
5493 			if (!hba->pm_op_in_progress &&
5494 			    !ufshcd_eh_in_progress(hba) &&
5495 			    ufshcd_is_exception_event(lrbp->ucd_rsp_ptr))
5496 				/* Flushed in suspend */
5497 				schedule_work(&hba->eeh_work);
5498 			break;
5499 		case UPIU_TRANSACTION_REJECT_UPIU:
5500 			/* TODO: handle Reject UPIU Response */
5501 			result = DID_ERROR << 16;
5502 			dev_err(hba->dev,
5503 				"Reject UPIU not fully implemented\n");
5504 			break;
5505 		default:
5506 			dev_err(hba->dev,
5507 				"Unexpected request response code = %x\n",
5508 				result);
5509 			result = DID_ERROR << 16;
5510 			break;
5511 		}
5512 		break;
5513 	case OCS_ABORTED:
5514 	case OCS_INVALID_COMMAND_STATUS:
5515 		result |= DID_REQUEUE << 16;
5516 		dev_warn(hba->dev,
5517 				"OCS %s from controller for tag %d\n",
5518 				(ocs == OCS_ABORTED ? "aborted" : "invalid"),
5519 				lrbp->task_tag);
5520 		break;
5521 	case OCS_INVALID_CMD_TABLE_ATTR:
5522 	case OCS_INVALID_PRDT_ATTR:
5523 	case OCS_MISMATCH_DATA_BUF_SIZE:
5524 	case OCS_MISMATCH_RESP_UPIU_SIZE:
5525 	case OCS_PEER_COMM_FAILURE:
5526 	case OCS_FATAL_ERROR:
5527 	case OCS_DEVICE_FATAL_ERROR:
5528 	case OCS_INVALID_CRYPTO_CONFIG:
5529 	case OCS_GENERAL_CRYPTO_ERROR:
5530 	default:
5531 		result |= DID_ERROR << 16;
5532 		dev_err(hba->dev,
5533 				"OCS error from controller = %x for tag %d\n",
5534 				ocs, lrbp->task_tag);
5535 		ufshcd_print_evt_hist(hba);
5536 		ufshcd_print_host_state(hba);
5537 		break;
5538 	} /* end of switch */
5539 
5540 	if ((host_byte(result) != DID_OK) &&
5541 	    (host_byte(result) != DID_REQUEUE) && !hba->silence_err_logs)
5542 		ufshcd_print_tr(hba, lrbp->task_tag, true);
5543 	return result;
5544 }
5545 
5546 static bool ufshcd_is_auto_hibern8_error(struct ufs_hba *hba,
5547 					 u32 intr_mask)
5548 {
5549 	if (!ufshcd_is_auto_hibern8_supported(hba) ||
5550 	    !ufshcd_is_auto_hibern8_enabled(hba))
5551 		return false;
5552 
5553 	if (!(intr_mask & UFSHCD_UIC_HIBERN8_MASK))
5554 		return false;
5555 
5556 	if (hba->active_uic_cmd &&
5557 	    (hba->active_uic_cmd->command == UIC_CMD_DME_HIBER_ENTER ||
5558 	    hba->active_uic_cmd->command == UIC_CMD_DME_HIBER_EXIT))
5559 		return false;
5560 
5561 	return true;
5562 }
5563 
5564 /**
5565  * ufshcd_uic_cmd_compl - handle completion of uic command
5566  * @hba: per adapter instance
5567  * @intr_status: interrupt status generated by the controller
5568  *
5569  * Return:
5570  *  IRQ_HANDLED - If interrupt is valid
5571  *  IRQ_NONE    - If invalid interrupt
5572  */
5573 static irqreturn_t ufshcd_uic_cmd_compl(struct ufs_hba *hba, u32 intr_status)
5574 {
5575 	irqreturn_t retval = IRQ_NONE;
5576 	struct uic_command *cmd;
5577 
5578 	guard(spinlock_irqsave)(hba->host->host_lock);
5579 	cmd = hba->active_uic_cmd;
5580 	if (!cmd)
5581 		goto unlock;
5582 
5583 	if (ufshcd_is_auto_hibern8_error(hba, intr_status))
5584 		hba->errors |= (UFSHCD_UIC_HIBERN8_MASK & intr_status);
5585 
5586 	if (intr_status & UIC_COMMAND_COMPL) {
5587 		cmd->argument2 |= ufshcd_get_uic_cmd_result(hba);
5588 		cmd->argument3 = ufshcd_get_dme_attr_val(hba);
5589 		if (!hba->uic_async_done)
5590 			cmd->cmd_active = 0;
5591 		complete(&cmd->done);
5592 		retval = IRQ_HANDLED;
5593 	}
5594 
5595 	if (intr_status & UFSHCD_UIC_PWR_MASK && hba->uic_async_done) {
5596 		cmd->cmd_active = 0;
5597 		complete(hba->uic_async_done);
5598 		retval = IRQ_HANDLED;
5599 	}
5600 
5601 	if (retval == IRQ_HANDLED)
5602 		ufshcd_add_uic_command_trace(hba, cmd, UFS_CMD_COMP);
5603 
5604 unlock:
5605 	return retval;
5606 }
5607 
5608 /* Release the resources allocated for processing a SCSI command. */
5609 void ufshcd_release_scsi_cmd(struct ufs_hba *hba,
5610 			     struct ufshcd_lrb *lrbp)
5611 {
5612 	struct scsi_cmnd *cmd = lrbp->cmd;
5613 
5614 	scsi_dma_unmap(cmd);
5615 	ufshcd_crypto_clear_prdt(hba, lrbp);
5616 	ufshcd_release(hba);
5617 	ufshcd_clk_scaling_update_busy(hba);
5618 }
5619 
5620 /**
5621  * ufshcd_compl_one_cqe - handle a completion queue entry
5622  * @hba: per adapter instance
5623  * @task_tag: the task tag of the request to be completed
5624  * @cqe: pointer to the completion queue entry
5625  */
5626 void ufshcd_compl_one_cqe(struct ufs_hba *hba, int task_tag,
5627 			  struct cq_entry *cqe)
5628 {
5629 	struct ufshcd_lrb *lrbp;
5630 	struct scsi_cmnd *cmd;
5631 	enum utp_ocs ocs;
5632 
5633 	lrbp = &hba->lrb[task_tag];
5634 	if (hba->monitor.enabled) {
5635 		lrbp->compl_time_stamp = ktime_get();
5636 		lrbp->compl_time_stamp_local_clock = local_clock();
5637 	}
5638 	cmd = lrbp->cmd;
5639 	if (cmd) {
5640 		if (unlikely(ufshcd_should_inform_monitor(hba, lrbp)))
5641 			ufshcd_update_monitor(hba, lrbp);
5642 		ufshcd_add_command_trace(hba, task_tag, UFS_CMD_COMP);
5643 		cmd->result = ufshcd_transfer_rsp_status(hba, lrbp, cqe);
5644 		ufshcd_release_scsi_cmd(hba, lrbp);
5645 		/* Do not touch lrbp after scsi done */
5646 		scsi_done(cmd);
5647 	} else {
5648 		if (cqe) {
5649 			ocs = le32_to_cpu(cqe->status) & MASK_OCS;
5650 			lrbp->utr_descriptor_ptr->header.ocs = ocs;
5651 		}
5652 		complete(&hba->dev_cmd.complete);
5653 	}
5654 }
5655 
5656 /**
5657  * __ufshcd_transfer_req_compl - handle SCSI and query command completion
5658  * @hba: per adapter instance
5659  * @completed_reqs: bitmask that indicates which requests to complete
5660  */
5661 static void __ufshcd_transfer_req_compl(struct ufs_hba *hba,
5662 					unsigned long completed_reqs)
5663 {
5664 	int tag;
5665 
5666 	for_each_set_bit(tag, &completed_reqs, hba->nutrs)
5667 		ufshcd_compl_one_cqe(hba, tag, NULL);
5668 }
5669 
5670 /* Any value that is not an existing queue number is fine for this constant. */
5671 enum {
5672 	UFSHCD_POLL_FROM_INTERRUPT_CONTEXT = -1
5673 };
5674 
5675 static void ufshcd_clear_polled(struct ufs_hba *hba,
5676 				unsigned long *completed_reqs)
5677 {
5678 	int tag;
5679 
5680 	for_each_set_bit(tag, completed_reqs, hba->nutrs) {
5681 		struct scsi_cmnd *cmd = hba->lrb[tag].cmd;
5682 
5683 		if (!cmd)
5684 			continue;
5685 		if (scsi_cmd_to_rq(cmd)->cmd_flags & REQ_POLLED)
5686 			__clear_bit(tag, completed_reqs);
5687 	}
5688 }
5689 
5690 /*
5691  * Return: > 0 if one or more commands have been completed or 0 if no
5692  * requests have been completed.
5693  */
5694 static int ufshcd_poll(struct Scsi_Host *shost, unsigned int queue_num)
5695 {
5696 	struct ufs_hba *hba = shost_priv(shost);
5697 	unsigned long completed_reqs, flags;
5698 	u32 tr_doorbell;
5699 	struct ufs_hw_queue *hwq;
5700 
5701 	if (hba->mcq_enabled) {
5702 		hwq = &hba->uhq[queue_num];
5703 
5704 		return ufshcd_mcq_poll_cqe_lock(hba, hwq);
5705 	}
5706 
5707 	spin_lock_irqsave(&hba->outstanding_lock, flags);
5708 	tr_doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
5709 	completed_reqs = ~tr_doorbell & hba->outstanding_reqs;
5710 	WARN_ONCE(completed_reqs & ~hba->outstanding_reqs,
5711 		  "completed: %#lx; outstanding: %#lx\n", completed_reqs,
5712 		  hba->outstanding_reqs);
5713 	if (queue_num == UFSHCD_POLL_FROM_INTERRUPT_CONTEXT) {
5714 		/* Do not complete polled requests from interrupt context. */
5715 		ufshcd_clear_polled(hba, &completed_reqs);
5716 	}
5717 	hba->outstanding_reqs &= ~completed_reqs;
5718 	spin_unlock_irqrestore(&hba->outstanding_lock, flags);
5719 
5720 	if (completed_reqs)
5721 		__ufshcd_transfer_req_compl(hba, completed_reqs);
5722 
5723 	return completed_reqs != 0;
5724 }
5725 
5726 /**
5727  * ufshcd_mcq_compl_pending_transfer - MCQ mode function. It is
5728  * invoked from the error handler context or ufshcd_host_reset_and_restore()
5729  * to complete the pending transfers and free the resources associated with
5730  * the scsi command.
5731  *
5732  * @hba: per adapter instance
5733  * @force_compl: This flag is set to true when invoked
5734  * from ufshcd_host_reset_and_restore() in which case it requires special
5735  * handling because the host controller has been reset by ufshcd_hba_stop().
5736  */
5737 static void ufshcd_mcq_compl_pending_transfer(struct ufs_hba *hba,
5738 					      bool force_compl)
5739 {
5740 	struct ufs_hw_queue *hwq;
5741 	struct ufshcd_lrb *lrbp;
5742 	struct scsi_cmnd *cmd;
5743 	unsigned long flags;
5744 	int tag;
5745 
5746 	for (tag = 0; tag < hba->nutrs; tag++) {
5747 		lrbp = &hba->lrb[tag];
5748 		cmd = lrbp->cmd;
5749 		if (!ufshcd_cmd_inflight(cmd) ||
5750 		    test_bit(SCMD_STATE_COMPLETE, &cmd->state))
5751 			continue;
5752 
5753 		hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(cmd));
5754 		if (!hwq)
5755 			continue;
5756 
5757 		if (force_compl) {
5758 			ufshcd_mcq_compl_all_cqes_lock(hba, hwq);
5759 			/*
5760 			 * For those cmds of which the cqes are not present
5761 			 * in the cq, complete them explicitly.
5762 			 */
5763 			spin_lock_irqsave(&hwq->cq_lock, flags);
5764 			if (cmd && !test_bit(SCMD_STATE_COMPLETE, &cmd->state)) {
5765 				set_host_byte(cmd, DID_REQUEUE);
5766 				ufshcd_release_scsi_cmd(hba, lrbp);
5767 				scsi_done(cmd);
5768 			}
5769 			spin_unlock_irqrestore(&hwq->cq_lock, flags);
5770 		} else {
5771 			ufshcd_mcq_poll_cqe_lock(hba, hwq);
5772 		}
5773 	}
5774 }
5775 
5776 /**
5777  * ufshcd_transfer_req_compl - handle SCSI and query command completion
5778  * @hba: per adapter instance
5779  *
5780  * Return:
5781  *  IRQ_HANDLED - If interrupt is valid
5782  *  IRQ_NONE    - If invalid interrupt
5783  */
5784 static irqreturn_t ufshcd_transfer_req_compl(struct ufs_hba *hba)
5785 {
5786 	/* Resetting interrupt aggregation counters first and reading the
5787 	 * DOOR_BELL afterward allows us to handle all the completed requests.
5788 	 * In order to prevent other interrupts starvation the DB is read once
5789 	 * after reset. The down side of this solution is the possibility of
5790 	 * false interrupt if device completes another request after resetting
5791 	 * aggregation and before reading the DB.
5792 	 */
5793 	if (ufshcd_is_intr_aggr_allowed(hba) &&
5794 	    !(hba->quirks & UFSHCI_QUIRK_SKIP_RESET_INTR_AGGR))
5795 		ufshcd_reset_intr_aggr(hba);
5796 
5797 	if (ufs_fail_completion(hba))
5798 		return IRQ_HANDLED;
5799 
5800 	/*
5801 	 * Ignore the ufshcd_poll() return value and return IRQ_HANDLED since we
5802 	 * do not want polling to trigger spurious interrupt complaints.
5803 	 */
5804 	ufshcd_poll(hba->host, UFSHCD_POLL_FROM_INTERRUPT_CONTEXT);
5805 
5806 	return IRQ_HANDLED;
5807 }
5808 
5809 int __ufshcd_write_ee_control(struct ufs_hba *hba, u32 ee_ctrl_mask)
5810 {
5811 	return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
5812 				       QUERY_ATTR_IDN_EE_CONTROL, 0, 0,
5813 				       &ee_ctrl_mask);
5814 }
5815 
5816 int ufshcd_write_ee_control(struct ufs_hba *hba)
5817 {
5818 	int err;
5819 
5820 	mutex_lock(&hba->ee_ctrl_mutex);
5821 	err = __ufshcd_write_ee_control(hba, hba->ee_ctrl_mask);
5822 	mutex_unlock(&hba->ee_ctrl_mutex);
5823 	if (err)
5824 		dev_err(hba->dev, "%s: failed to write ee control %d\n",
5825 			__func__, err);
5826 	return err;
5827 }
5828 
5829 int ufshcd_update_ee_control(struct ufs_hba *hba, u16 *mask,
5830 			     const u16 *other_mask, u16 set, u16 clr)
5831 {
5832 	u16 new_mask, ee_ctrl_mask;
5833 	int err = 0;
5834 
5835 	mutex_lock(&hba->ee_ctrl_mutex);
5836 	new_mask = (*mask & ~clr) | set;
5837 	ee_ctrl_mask = new_mask | *other_mask;
5838 	if (ee_ctrl_mask != hba->ee_ctrl_mask)
5839 		err = __ufshcd_write_ee_control(hba, ee_ctrl_mask);
5840 	/* Still need to update 'mask' even if 'ee_ctrl_mask' was unchanged */
5841 	if (!err) {
5842 		hba->ee_ctrl_mask = ee_ctrl_mask;
5843 		*mask = new_mask;
5844 	}
5845 	mutex_unlock(&hba->ee_ctrl_mutex);
5846 	return err;
5847 }
5848 
5849 /**
5850  * ufshcd_disable_ee - disable exception event
5851  * @hba: per-adapter instance
5852  * @mask: exception event to disable
5853  *
5854  * Disables exception event in the device so that the EVENT_ALERT
5855  * bit is not set.
5856  *
5857  * Return: zero on success, non-zero error value on failure.
5858  */
5859 static inline int ufshcd_disable_ee(struct ufs_hba *hba, u16 mask)
5860 {
5861 	return ufshcd_update_ee_drv_mask(hba, 0, mask);
5862 }
5863 
5864 /**
5865  * ufshcd_enable_ee - enable exception event
5866  * @hba: per-adapter instance
5867  * @mask: exception event to enable
5868  *
5869  * Enable corresponding exception event in the device to allow
5870  * device to alert host in critical scenarios.
5871  *
5872  * Return: zero on success, non-zero error value on failure.
5873  */
5874 static inline int ufshcd_enable_ee(struct ufs_hba *hba, u16 mask)
5875 {
5876 	return ufshcd_update_ee_drv_mask(hba, mask, 0);
5877 }
5878 
5879 /**
5880  * ufshcd_enable_auto_bkops - Allow device managed BKOPS
5881  * @hba: per-adapter instance
5882  *
5883  * Allow device to manage background operations on its own. Enabling
5884  * this might lead to inconsistent latencies during normal data transfers
5885  * as the device is allowed to manage its own way of handling background
5886  * operations.
5887  *
5888  * Return: 0 upon success; > 0 in case the UFS device reported an OCS error;
5889  * < 0 if another error occurred.
5890  */
5891 static int ufshcd_enable_auto_bkops(struct ufs_hba *hba)
5892 {
5893 	int err = 0;
5894 
5895 	if (hba->auto_bkops_enabled)
5896 		goto out;
5897 
5898 	err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG,
5899 			QUERY_FLAG_IDN_BKOPS_EN, 0, NULL);
5900 	if (err) {
5901 		dev_err(hba->dev, "%s: failed to enable bkops %d\n",
5902 				__func__, err);
5903 		goto out;
5904 	}
5905 
5906 	hba->auto_bkops_enabled = true;
5907 	trace_ufshcd_auto_bkops_state(hba, "Enabled");
5908 
5909 	/* No need of URGENT_BKOPS exception from the device */
5910 	err = ufshcd_disable_ee(hba, MASK_EE_URGENT_BKOPS);
5911 	if (err)
5912 		dev_err(hba->dev, "%s: failed to disable exception event %d\n",
5913 				__func__, err);
5914 out:
5915 	return err;
5916 }
5917 
5918 /**
5919  * ufshcd_disable_auto_bkops - block device in doing background operations
5920  * @hba: per-adapter instance
5921  *
5922  * Disabling background operations improves command response latency but
5923  * has drawback of device moving into critical state where the device is
5924  * not-operable. Make sure to call ufshcd_enable_auto_bkops() whenever the
5925  * host is idle so that BKOPS are managed effectively without any negative
5926  * impacts.
5927  *
5928  * Return: 0 upon success; > 0 in case the UFS device reported an OCS error;
5929  * < 0 if another error occurred.
5930  */
5931 static int ufshcd_disable_auto_bkops(struct ufs_hba *hba)
5932 {
5933 	int err = 0;
5934 
5935 	if (!hba->auto_bkops_enabled)
5936 		goto out;
5937 
5938 	/*
5939 	 * If host assisted BKOPs is to be enabled, make sure
5940 	 * urgent bkops exception is allowed.
5941 	 */
5942 	err = ufshcd_enable_ee(hba, MASK_EE_URGENT_BKOPS);
5943 	if (err) {
5944 		dev_err(hba->dev, "%s: failed to enable exception event %d\n",
5945 				__func__, err);
5946 		goto out;
5947 	}
5948 
5949 	err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_CLEAR_FLAG,
5950 			QUERY_FLAG_IDN_BKOPS_EN, 0, NULL);
5951 	if (err) {
5952 		dev_err(hba->dev, "%s: failed to disable bkops %d\n",
5953 				__func__, err);
5954 		ufshcd_disable_ee(hba, MASK_EE_URGENT_BKOPS);
5955 		goto out;
5956 	}
5957 
5958 	hba->auto_bkops_enabled = false;
5959 	trace_ufshcd_auto_bkops_state(hba, "Disabled");
5960 	hba->is_urgent_bkops_lvl_checked = false;
5961 out:
5962 	return err;
5963 }
5964 
5965 /**
5966  * ufshcd_force_reset_auto_bkops - force reset auto bkops state
5967  * @hba: per adapter instance
5968  *
5969  * After a device reset the device may toggle the BKOPS_EN flag
5970  * to default value. The s/w tracking variables should be updated
5971  * as well. This function would change the auto-bkops state based on
5972  * UFSHCD_CAP_KEEP_AUTO_BKOPS_ENABLED_EXCEPT_SUSPEND.
5973  */
5974 static void ufshcd_force_reset_auto_bkops(struct ufs_hba *hba)
5975 {
5976 	if (ufshcd_keep_autobkops_enabled_except_suspend(hba)) {
5977 		hba->auto_bkops_enabled = false;
5978 		hba->ee_ctrl_mask |= MASK_EE_URGENT_BKOPS;
5979 		ufshcd_enable_auto_bkops(hba);
5980 	} else {
5981 		hba->auto_bkops_enabled = true;
5982 		hba->ee_ctrl_mask &= ~MASK_EE_URGENT_BKOPS;
5983 		ufshcd_disable_auto_bkops(hba);
5984 	}
5985 	hba->urgent_bkops_lvl = BKOPS_STATUS_PERF_IMPACT;
5986 	hba->is_urgent_bkops_lvl_checked = false;
5987 }
5988 
5989 static inline int ufshcd_get_bkops_status(struct ufs_hba *hba, u32 *status)
5990 {
5991 	return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5992 			QUERY_ATTR_IDN_BKOPS_STATUS, 0, 0, status);
5993 }
5994 
5995 /**
5996  * ufshcd_bkops_ctrl - control the auto bkops based on current bkops status
5997  * @hba: per-adapter instance
5998  *
5999  * Read the bkops_status from the UFS device and Enable fBackgroundOpsEn
6000  * flag in the device to permit background operations if the device
6001  * bkops_status is greater than or equal to the "hba->urgent_bkops_lvl",
6002  * disable otherwise.
6003  *
6004  * Return: 0 for success, non-zero in case of failure.
6005  *
6006  * NOTE: Caller of this function can check the "hba->auto_bkops_enabled" flag
6007  * to know whether auto bkops is enabled or disabled after this function
6008  * returns control to it.
6009  */
6010 static int ufshcd_bkops_ctrl(struct ufs_hba *hba)
6011 {
6012 	enum bkops_status status = hba->urgent_bkops_lvl;
6013 	u32 curr_status = 0;
6014 	int err;
6015 
6016 	err = ufshcd_get_bkops_status(hba, &curr_status);
6017 	if (err) {
6018 		dev_err(hba->dev, "%s: failed to get BKOPS status %d\n",
6019 				__func__, err);
6020 		goto out;
6021 	} else if (curr_status > BKOPS_STATUS_MAX) {
6022 		dev_err(hba->dev, "%s: invalid BKOPS status %d\n",
6023 				__func__, curr_status);
6024 		err = -EINVAL;
6025 		goto out;
6026 	}
6027 
6028 	if (curr_status >= status)
6029 		err = ufshcd_enable_auto_bkops(hba);
6030 	else
6031 		err = ufshcd_disable_auto_bkops(hba);
6032 out:
6033 	return err;
6034 }
6035 
6036 static inline int ufshcd_get_ee_status(struct ufs_hba *hba, u32 *status)
6037 {
6038 	return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
6039 			QUERY_ATTR_IDN_EE_STATUS, 0, 0, status);
6040 }
6041 
6042 static void ufshcd_bkops_exception_event_handler(struct ufs_hba *hba)
6043 {
6044 	int err;
6045 	u32 curr_status = 0;
6046 
6047 	if (hba->is_urgent_bkops_lvl_checked)
6048 		goto enable_auto_bkops;
6049 
6050 	err = ufshcd_get_bkops_status(hba, &curr_status);
6051 	if (err) {
6052 		dev_err(hba->dev, "%s: failed to get BKOPS status %d\n",
6053 				__func__, err);
6054 		goto out;
6055 	}
6056 
6057 	/*
6058 	 * We are seeing that some devices are raising the urgent bkops
6059 	 * exception events even when BKOPS status doesn't indicate performace
6060 	 * impacted or critical. Handle these device by determining their urgent
6061 	 * bkops status at runtime.
6062 	 */
6063 	if (curr_status < BKOPS_STATUS_PERF_IMPACT) {
6064 		dev_err(hba->dev, "%s: device raised urgent BKOPS exception for bkops status %d\n",
6065 				__func__, curr_status);
6066 		/* update the current status as the urgent bkops level */
6067 		hba->urgent_bkops_lvl = curr_status;
6068 		hba->is_urgent_bkops_lvl_checked = true;
6069 	}
6070 
6071 enable_auto_bkops:
6072 	err = ufshcd_enable_auto_bkops(hba);
6073 out:
6074 	if (err < 0)
6075 		dev_err(hba->dev, "%s: failed to handle urgent bkops %d\n",
6076 				__func__, err);
6077 }
6078 
6079 /*
6080  * Return: 0 upon success; > 0 in case the UFS device reported an OCS error;
6081  * < 0 if another error occurred.
6082  */
6083 int ufshcd_read_device_lvl_exception_id(struct ufs_hba *hba, u64 *exception_id)
6084 {
6085 	struct utp_upiu_query_v4_0 *upiu_resp;
6086 	struct ufs_query_req *request = NULL;
6087 	struct ufs_query_res *response = NULL;
6088 	int err;
6089 
6090 	if (hba->dev_info.wspecversion < 0x410)
6091 		return -EOPNOTSUPP;
6092 
6093 	ufshcd_hold(hba);
6094 	mutex_lock(&hba->dev_cmd.lock);
6095 
6096 	ufshcd_init_query(hba, &request, &response,
6097 			  UPIU_QUERY_OPCODE_READ_ATTR,
6098 			  QUERY_ATTR_IDN_DEV_LVL_EXCEPTION_ID, 0, 0);
6099 
6100 	request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
6101 
6102 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, dev_cmd_timeout);
6103 
6104 	if (err) {
6105 		dev_err(hba->dev, "%s: failed to read device level exception %d\n",
6106 			__func__, err);
6107 		goto out;
6108 	}
6109 
6110 	upiu_resp = (struct utp_upiu_query_v4_0 *)response;
6111 	*exception_id = get_unaligned_be64(&upiu_resp->osf3);
6112 out:
6113 	mutex_unlock(&hba->dev_cmd.lock);
6114 	ufshcd_release(hba);
6115 
6116 	return err;
6117 }
6118 
6119 static int __ufshcd_wb_toggle(struct ufs_hba *hba, bool set, enum flag_idn idn)
6120 {
6121 	u8 index;
6122 	enum query_opcode opcode = set ? UPIU_QUERY_OPCODE_SET_FLAG :
6123 				   UPIU_QUERY_OPCODE_CLEAR_FLAG;
6124 
6125 	index = ufshcd_wb_get_query_index(hba);
6126 	return ufshcd_query_flag_retry(hba, opcode, idn, index, NULL);
6127 }
6128 
6129 int ufshcd_wb_toggle(struct ufs_hba *hba, bool enable)
6130 {
6131 	int ret;
6132 
6133 	if (!ufshcd_is_wb_allowed(hba) ||
6134 	    hba->dev_info.wb_enabled == enable)
6135 		return 0;
6136 
6137 	ret = __ufshcd_wb_toggle(hba, enable, QUERY_FLAG_IDN_WB_EN);
6138 	if (ret) {
6139 		dev_err(hba->dev, "%s: Write Booster %s failed %d\n",
6140 			__func__, enable ? "enabling" : "disabling", ret);
6141 		return ret;
6142 	}
6143 
6144 	hba->dev_info.wb_enabled = enable;
6145 	dev_dbg(hba->dev, "%s: Write Booster %s\n",
6146 			__func__, enable ? "enabled" : "disabled");
6147 
6148 	return ret;
6149 }
6150 
6151 static void ufshcd_wb_toggle_buf_flush_during_h8(struct ufs_hba *hba,
6152 						 bool enable)
6153 {
6154 	int ret;
6155 
6156 	ret = __ufshcd_wb_toggle(hba, enable,
6157 			QUERY_FLAG_IDN_WB_BUFF_FLUSH_DURING_HIBERN8);
6158 	if (ret) {
6159 		dev_err(hba->dev, "%s: WB-Buf Flush during H8 %s failed %d\n",
6160 			__func__, enable ? "enabling" : "disabling", ret);
6161 		return;
6162 	}
6163 	dev_dbg(hba->dev, "%s: WB-Buf Flush during H8 %s\n",
6164 			__func__, enable ? "enabled" : "disabled");
6165 }
6166 
6167 int ufshcd_wb_toggle_buf_flush(struct ufs_hba *hba, bool enable)
6168 {
6169 	int ret;
6170 
6171 	if (!ufshcd_is_wb_allowed(hba) ||
6172 	    hba->dev_info.wb_buf_flush_enabled == enable)
6173 		return 0;
6174 
6175 	ret = __ufshcd_wb_toggle(hba, enable, QUERY_FLAG_IDN_WB_BUFF_FLUSH_EN);
6176 	if (ret) {
6177 		dev_err(hba->dev, "%s: WB-Buf Flush %s failed %d\n",
6178 			__func__, enable ? "enabling" : "disabling", ret);
6179 		return ret;
6180 	}
6181 
6182 	hba->dev_info.wb_buf_flush_enabled = enable;
6183 	dev_dbg(hba->dev, "%s: WB-Buf Flush %s\n",
6184 			__func__, enable ? "enabled" : "disabled");
6185 
6186 	return ret;
6187 }
6188 
6189 int ufshcd_wb_set_resize_en(struct ufs_hba *hba, enum wb_resize_en en_mode)
6190 {
6191 	int ret;
6192 	u8 index;
6193 
6194 	index = ufshcd_wb_get_query_index(hba);
6195 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
6196 				QUERY_ATTR_IDN_WB_BUF_RESIZE_EN, index, 0, &en_mode);
6197 	if (ret)
6198 		dev_err(hba->dev, "%s: Enable WB buf resize operation failed %d\n",
6199 			__func__, ret);
6200 
6201 	return ret;
6202 }
6203 
6204 static bool ufshcd_wb_curr_buff_threshold_check(struct ufs_hba *hba,
6205 						u32 avail_buf)
6206 {
6207 	u32 cur_buf;
6208 	int ret;
6209 	u8 index;
6210 
6211 	index = ufshcd_wb_get_query_index(hba);
6212 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
6213 					      QUERY_ATTR_IDN_CURR_WB_BUFF_SIZE,
6214 					      index, 0, &cur_buf);
6215 	if (ret) {
6216 		dev_err(hba->dev, "%s: dCurWriteBoosterBufferSize read failed %d\n",
6217 			__func__, ret);
6218 		return false;
6219 	}
6220 
6221 	if (!cur_buf) {
6222 		dev_info(hba->dev, "dCurWBBuf: %d WB disabled until free-space is available\n",
6223 			 cur_buf);
6224 		return false;
6225 	}
6226 	/* Let it continue to flush when available buffer exceeds threshold */
6227 	return avail_buf < hba->vps->wb_flush_threshold;
6228 }
6229 
6230 static void ufshcd_wb_force_disable(struct ufs_hba *hba)
6231 {
6232 	if (ufshcd_is_wb_buf_flush_allowed(hba))
6233 		ufshcd_wb_toggle_buf_flush(hba, false);
6234 
6235 	ufshcd_wb_toggle_buf_flush_during_h8(hba, false);
6236 	ufshcd_wb_toggle(hba, false);
6237 	hba->caps &= ~UFSHCD_CAP_WB_EN;
6238 
6239 	dev_info(hba->dev, "%s: WB force disabled\n", __func__);
6240 }
6241 
6242 static bool ufshcd_is_wb_buf_lifetime_available(struct ufs_hba *hba)
6243 {
6244 	u32 lifetime;
6245 	int ret;
6246 	u8 index;
6247 
6248 	index = ufshcd_wb_get_query_index(hba);
6249 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
6250 				      QUERY_ATTR_IDN_WB_BUFF_LIFE_TIME_EST,
6251 				      index, 0, &lifetime);
6252 	if (ret) {
6253 		dev_err(hba->dev,
6254 			"%s: bWriteBoosterBufferLifeTimeEst read failed %d\n",
6255 			__func__, ret);
6256 		return false;
6257 	}
6258 
6259 	if (lifetime == UFS_WB_EXCEED_LIFETIME) {
6260 		dev_err(hba->dev, "%s: WB buf lifetime is exhausted 0x%02X\n",
6261 			__func__, lifetime);
6262 		return false;
6263 	}
6264 
6265 	dev_dbg(hba->dev, "%s: WB buf lifetime is 0x%02X\n",
6266 		__func__, lifetime);
6267 
6268 	return true;
6269 }
6270 
6271 static bool ufshcd_wb_need_flush(struct ufs_hba *hba)
6272 {
6273 	int ret;
6274 	u32 avail_buf;
6275 	u8 index;
6276 
6277 	if (!ufshcd_is_wb_allowed(hba))
6278 		return false;
6279 
6280 	if (!ufshcd_is_wb_buf_lifetime_available(hba)) {
6281 		ufshcd_wb_force_disable(hba);
6282 		return false;
6283 	}
6284 
6285 	/*
6286 	 * With user-space reduction enabled, it's enough to enable flush
6287 	 * by checking only the available buffer. The threshold
6288 	 * defined here is > 90% full.
6289 	 * With user-space preserved enabled, the current-buffer
6290 	 * should be checked too because the wb buffer size can reduce
6291 	 * when disk tends to be full. This info is provided by current
6292 	 * buffer (dCurrentWriteBoosterBufferSize).
6293 	 */
6294 	index = ufshcd_wb_get_query_index(hba);
6295 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
6296 				      QUERY_ATTR_IDN_AVAIL_WB_BUFF_SIZE,
6297 				      index, 0, &avail_buf);
6298 	if (ret) {
6299 		dev_warn(hba->dev, "%s: dAvailableWriteBoosterBufferSize read failed %d\n",
6300 			 __func__, ret);
6301 		return false;
6302 	}
6303 
6304 	if (!hba->dev_info.b_presrv_uspc_en)
6305 		return avail_buf <= UFS_WB_BUF_REMAIN_PERCENT(10);
6306 
6307 	return ufshcd_wb_curr_buff_threshold_check(hba, avail_buf);
6308 }
6309 
6310 static void ufshcd_rpm_dev_flush_recheck_work(struct work_struct *work)
6311 {
6312 	struct ufs_hba *hba = container_of(to_delayed_work(work),
6313 					   struct ufs_hba,
6314 					   rpm_dev_flush_recheck_work);
6315 	/*
6316 	 * To prevent unnecessary VCC power drain after device finishes
6317 	 * WriteBooster buffer flush or Auto BKOPs, force runtime resume
6318 	 * after a certain delay to recheck the threshold by next runtime
6319 	 * suspend.
6320 	 */
6321 	ufshcd_rpm_get_sync(hba);
6322 	ufshcd_rpm_put_sync(hba);
6323 }
6324 
6325 /**
6326  * ufshcd_exception_event_handler - handle exceptions raised by device
6327  * @work: pointer to work data
6328  *
6329  * Read bExceptionEventStatus attribute from the device and handle the
6330  * exception event accordingly.
6331  */
6332 static void ufshcd_exception_event_handler(struct work_struct *work)
6333 {
6334 	struct ufs_hba *hba;
6335 	int err;
6336 	u32 status = 0;
6337 	hba = container_of(work, struct ufs_hba, eeh_work);
6338 
6339 	err = ufshcd_get_ee_status(hba, &status);
6340 	if (err) {
6341 		dev_err(hba->dev, "%s: failed to get exception status %d\n",
6342 				__func__, err);
6343 		return;
6344 	}
6345 
6346 	trace_ufshcd_exception_event(hba, status);
6347 
6348 	if (status & hba->ee_drv_mask & MASK_EE_URGENT_BKOPS)
6349 		ufshcd_bkops_exception_event_handler(hba);
6350 
6351 	if (status & hba->ee_drv_mask & MASK_EE_URGENT_TEMP)
6352 		ufs_hwmon_notify_event(hba, status & MASK_EE_URGENT_TEMP);
6353 
6354 	if (status & hba->ee_drv_mask & MASK_EE_HEALTH_CRITICAL) {
6355 		hba->critical_health_count++;
6356 		sysfs_notify(&hba->dev->kobj, NULL, "critical_health");
6357 	}
6358 
6359 	if (status & hba->ee_drv_mask & MASK_EE_DEV_LVL_EXCEPTION) {
6360 		atomic_inc(&hba->dev_lvl_exception_count);
6361 		sysfs_notify(&hba->dev->kobj, NULL, "device_lvl_exception_count");
6362 	}
6363 
6364 	ufs_debugfs_exception_event(hba, status);
6365 }
6366 
6367 /* Complete requests that have door-bell cleared */
6368 static void ufshcd_complete_requests(struct ufs_hba *hba, bool force_compl)
6369 {
6370 	if (hba->mcq_enabled)
6371 		ufshcd_mcq_compl_pending_transfer(hba, force_compl);
6372 	else
6373 		ufshcd_transfer_req_compl(hba);
6374 
6375 	ufshcd_tmc_handler(hba);
6376 }
6377 
6378 /**
6379  * ufshcd_quirk_dl_nac_errors - This function checks if error handling is
6380  *				to recover from the DL NAC errors or not.
6381  * @hba: per-adapter instance
6382  *
6383  * Return: true if error handling is required, false otherwise.
6384  */
6385 static bool ufshcd_quirk_dl_nac_errors(struct ufs_hba *hba)
6386 {
6387 	unsigned long flags;
6388 	bool err_handling = true;
6389 
6390 	spin_lock_irqsave(hba->host->host_lock, flags);
6391 	/*
6392 	 * UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS only workaround the
6393 	 * device fatal error and/or DL NAC & REPLAY timeout errors.
6394 	 */
6395 	if (hba->saved_err & (CONTROLLER_FATAL_ERROR | SYSTEM_BUS_FATAL_ERROR))
6396 		goto out;
6397 
6398 	if ((hba->saved_err & DEVICE_FATAL_ERROR) ||
6399 	    ((hba->saved_err & UIC_ERROR) &&
6400 	     (hba->saved_uic_err & UFSHCD_UIC_DL_TCx_REPLAY_ERROR)))
6401 		goto out;
6402 
6403 	if ((hba->saved_err & UIC_ERROR) &&
6404 	    (hba->saved_uic_err & UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)) {
6405 		int err;
6406 		/*
6407 		 * wait for 50ms to see if we can get any other errors or not.
6408 		 */
6409 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6410 		msleep(50);
6411 		spin_lock_irqsave(hba->host->host_lock, flags);
6412 
6413 		/*
6414 		 * now check if we have got any other severe errors other than
6415 		 * DL NAC error?
6416 		 */
6417 		if ((hba->saved_err & INT_FATAL_ERRORS) ||
6418 		    ((hba->saved_err & UIC_ERROR) &&
6419 		    (hba->saved_uic_err & ~UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)))
6420 			goto out;
6421 
6422 		/*
6423 		 * As DL NAC is the only error received so far, send out NOP
6424 		 * command to confirm if link is still active or not.
6425 		 *   - If we don't get any response then do error recovery.
6426 		 *   - If we get response then clear the DL NAC error bit.
6427 		 */
6428 
6429 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6430 		err = ufshcd_verify_dev_init(hba);
6431 		spin_lock_irqsave(hba->host->host_lock, flags);
6432 
6433 		if (err)
6434 			goto out;
6435 
6436 		/* Link seems to be alive hence ignore the DL NAC errors */
6437 		if (hba->saved_uic_err == UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)
6438 			hba->saved_err &= ~UIC_ERROR;
6439 		/* clear NAC error */
6440 		hba->saved_uic_err &= ~UFSHCD_UIC_DL_NAC_RECEIVED_ERROR;
6441 		if (!hba->saved_uic_err)
6442 			err_handling = false;
6443 	}
6444 out:
6445 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6446 	return err_handling;
6447 }
6448 
6449 /* host lock must be held before calling this func */
6450 static inline bool ufshcd_is_saved_err_fatal(struct ufs_hba *hba)
6451 {
6452 	return (hba->saved_uic_err & UFSHCD_UIC_DL_PA_INIT_ERROR) ||
6453 	       (hba->saved_err & (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK));
6454 }
6455 
6456 void ufshcd_schedule_eh_work(struct ufs_hba *hba)
6457 {
6458 	lockdep_assert_held(hba->host->host_lock);
6459 
6460 	/* handle fatal errors only when link is not in error state */
6461 	if (hba->ufshcd_state != UFSHCD_STATE_ERROR) {
6462 		if (hba->force_reset || ufshcd_is_link_broken(hba) ||
6463 		    ufshcd_is_saved_err_fatal(hba))
6464 			hba->ufshcd_state = UFSHCD_STATE_EH_SCHEDULED_FATAL;
6465 		else
6466 			hba->ufshcd_state = UFSHCD_STATE_EH_SCHEDULED_NON_FATAL;
6467 		queue_work(hba->eh_wq, &hba->eh_work);
6468 	}
6469 }
6470 
6471 void ufshcd_force_error_recovery(struct ufs_hba *hba)
6472 {
6473 	spin_lock_irq(hba->host->host_lock);
6474 	hba->force_reset = true;
6475 	ufshcd_schedule_eh_work(hba);
6476 	spin_unlock_irq(hba->host->host_lock);
6477 }
6478 EXPORT_SYMBOL_GPL(ufshcd_force_error_recovery);
6479 
6480 static void ufshcd_clk_scaling_allow(struct ufs_hba *hba, bool allow)
6481 {
6482 	mutex_lock(&hba->wb_mutex);
6483 	down_write(&hba->clk_scaling_lock);
6484 	hba->clk_scaling.is_allowed = allow;
6485 	up_write(&hba->clk_scaling_lock);
6486 	mutex_unlock(&hba->wb_mutex);
6487 }
6488 
6489 static void ufshcd_clk_scaling_suspend(struct ufs_hba *hba, bool suspend)
6490 {
6491 	if (suspend) {
6492 		if (hba->clk_scaling.is_enabled)
6493 			ufshcd_suspend_clkscaling(hba);
6494 		ufshcd_clk_scaling_allow(hba, false);
6495 	} else {
6496 		ufshcd_clk_scaling_allow(hba, true);
6497 		if (hba->clk_scaling.is_enabled)
6498 			ufshcd_resume_clkscaling(hba);
6499 	}
6500 }
6501 
6502 static void ufshcd_err_handling_prepare(struct ufs_hba *hba)
6503 {
6504 	ufshcd_rpm_get_sync(hba);
6505 	if (pm_runtime_status_suspended(&hba->ufs_device_wlun->sdev_gendev) ||
6506 	    hba->is_sys_suspended) {
6507 		enum ufs_pm_op pm_op;
6508 
6509 		/*
6510 		 * Don't assume anything of resume, if
6511 		 * resume fails, irq and clocks can be OFF, and powers
6512 		 * can be OFF or in LPM.
6513 		 */
6514 		ufshcd_setup_hba_vreg(hba, true);
6515 		ufshcd_enable_irq(hba);
6516 		ufshcd_setup_vreg(hba, true);
6517 		ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq);
6518 		ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq2);
6519 		ufshcd_hold(hba);
6520 		if (!ufshcd_is_clkgating_allowed(hba))
6521 			ufshcd_setup_clocks(hba, true);
6522 		pm_op = hba->is_sys_suspended ? UFS_SYSTEM_PM : UFS_RUNTIME_PM;
6523 		ufshcd_vops_resume(hba, pm_op);
6524 	} else {
6525 		ufshcd_hold(hba);
6526 		if (ufshcd_is_clkscaling_supported(hba) &&
6527 		    hba->clk_scaling.is_enabled)
6528 			ufshcd_suspend_clkscaling(hba);
6529 		ufshcd_clk_scaling_allow(hba, false);
6530 	}
6531 	/* Wait for ongoing ufshcd_queuecommand() calls to finish. */
6532 	blk_mq_quiesce_tagset(&hba->host->tag_set);
6533 	cancel_work_sync(&hba->eeh_work);
6534 }
6535 
6536 static void ufshcd_err_handling_unprepare(struct ufs_hba *hba)
6537 {
6538 	blk_mq_unquiesce_tagset(&hba->host->tag_set);
6539 	ufshcd_release(hba);
6540 	if (ufshcd_is_clkscaling_supported(hba))
6541 		ufshcd_clk_scaling_suspend(hba, false);
6542 	ufshcd_rpm_put(hba);
6543 }
6544 
6545 static inline bool ufshcd_err_handling_should_stop(struct ufs_hba *hba)
6546 {
6547 	return (!hba->is_powered || hba->shutting_down ||
6548 		!hba->ufs_device_wlun ||
6549 		hba->ufshcd_state == UFSHCD_STATE_ERROR ||
6550 		(!(hba->saved_err || hba->saved_uic_err || hba->force_reset ||
6551 		   ufshcd_is_link_broken(hba))));
6552 }
6553 
6554 #ifdef CONFIG_PM
6555 static void ufshcd_recover_pm_error(struct ufs_hba *hba)
6556 {
6557 	struct Scsi_Host *shost = hba->host;
6558 	struct scsi_device *sdev;
6559 	struct request_queue *q;
6560 	int ret;
6561 
6562 	hba->is_sys_suspended = false;
6563 	/*
6564 	 * Set RPM status of wlun device to RPM_ACTIVE,
6565 	 * this also clears its runtime error.
6566 	 */
6567 	ret = pm_runtime_set_active(&hba->ufs_device_wlun->sdev_gendev);
6568 
6569 	/* hba device might have a runtime error otherwise */
6570 	if (ret)
6571 		ret = pm_runtime_set_active(hba->dev);
6572 	/*
6573 	 * If wlun device had runtime error, we also need to resume those
6574 	 * consumer scsi devices in case any of them has failed to be
6575 	 * resumed due to supplier runtime resume failure. This is to unblock
6576 	 * blk_queue_enter in case there are bios waiting inside it.
6577 	 */
6578 	if (!ret) {
6579 		shost_for_each_device(sdev, shost) {
6580 			q = sdev->request_queue;
6581 			if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
6582 				       q->rpm_status == RPM_SUSPENDING))
6583 				pm_request_resume(q->dev);
6584 		}
6585 	}
6586 }
6587 #else
6588 static inline void ufshcd_recover_pm_error(struct ufs_hba *hba)
6589 {
6590 }
6591 #endif
6592 
6593 static bool ufshcd_is_pwr_mode_restore_needed(struct ufs_hba *hba)
6594 {
6595 	struct ufs_pa_layer_attr *pwr_info = &hba->pwr_info;
6596 	u32 mode;
6597 
6598 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_PWRMODE), &mode);
6599 
6600 	if (pwr_info->pwr_rx != ((mode >> PWRMODE_RX_OFFSET) & PWRMODE_MASK))
6601 		return true;
6602 
6603 	if (pwr_info->pwr_tx != (mode & PWRMODE_MASK))
6604 		return true;
6605 
6606 	return false;
6607 }
6608 
6609 static bool ufshcd_abort_one(struct request *rq, void *priv)
6610 {
6611 	int *ret = priv;
6612 	u32 tag = rq->tag;
6613 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
6614 	struct scsi_device *sdev = cmd->device;
6615 	struct Scsi_Host *shost = sdev->host;
6616 	struct ufs_hba *hba = shost_priv(shost);
6617 
6618 	*ret = ufshcd_try_to_abort_task(hba, tag);
6619 	dev_err(hba->dev, "Aborting tag %d / CDB %#02x %s\n", tag,
6620 		hba->lrb[tag].cmd ? hba->lrb[tag].cmd->cmnd[0] : -1,
6621 		*ret ? "failed" : "succeeded");
6622 
6623 	return *ret == 0;
6624 }
6625 
6626 /**
6627  * ufshcd_abort_all - Abort all pending commands.
6628  * @hba: Host bus adapter pointer.
6629  *
6630  * Return: true if and only if the host controller needs to be reset.
6631  */
6632 static bool ufshcd_abort_all(struct ufs_hba *hba)
6633 {
6634 	int tag, ret = 0;
6635 
6636 	blk_mq_tagset_busy_iter(&hba->host->tag_set, ufshcd_abort_one, &ret);
6637 	if (ret)
6638 		goto out;
6639 
6640 	/* Clear pending task management requests */
6641 	for_each_set_bit(tag, &hba->outstanding_tasks, hba->nutmrs) {
6642 		ret = ufshcd_clear_tm_cmd(hba, tag);
6643 		if (ret)
6644 			goto out;
6645 	}
6646 
6647 out:
6648 	/* Complete the requests that are cleared by s/w */
6649 	ufshcd_complete_requests(hba, false);
6650 
6651 	return ret != 0;
6652 }
6653 
6654 /**
6655  * ufshcd_err_handler - handle UFS errors that require s/w attention
6656  * @work: pointer to work structure
6657  */
6658 static void ufshcd_err_handler(struct work_struct *work)
6659 {
6660 	int retries = MAX_ERR_HANDLER_RETRIES;
6661 	struct ufs_hba *hba;
6662 	unsigned long flags;
6663 	bool needs_restore;
6664 	bool needs_reset;
6665 	int pmc_err;
6666 
6667 	hba = container_of(work, struct ufs_hba, eh_work);
6668 
6669 	dev_info(hba->dev,
6670 		 "%s started; HBA state %s; powered %d; shutting down %d; saved_err = 0x%x; saved_uic_err = 0x%x; force_reset = %d%s\n",
6671 		 __func__, ufshcd_state_name[hba->ufshcd_state],
6672 		 hba->is_powered, hba->shutting_down, hba->saved_err,
6673 		 hba->saved_uic_err, hba->force_reset,
6674 		 ufshcd_is_link_broken(hba) ? "; link is broken" : "");
6675 
6676 	down(&hba->host_sem);
6677 	spin_lock_irqsave(hba->host->host_lock, flags);
6678 	if (ufshcd_err_handling_should_stop(hba)) {
6679 		if (hba->ufshcd_state != UFSHCD_STATE_ERROR)
6680 			hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
6681 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6682 		up(&hba->host_sem);
6683 		return;
6684 	}
6685 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6686 
6687 	ufshcd_err_handling_prepare(hba);
6688 
6689 	spin_lock_irqsave(hba->host->host_lock, flags);
6690 	ufshcd_set_eh_in_progress(hba);
6691 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6692 
6693 	/* Complete requests that have door-bell cleared by h/w */
6694 	ufshcd_complete_requests(hba, false);
6695 	spin_lock_irqsave(hba->host->host_lock, flags);
6696 again:
6697 	needs_restore = false;
6698 	needs_reset = false;
6699 
6700 	if (hba->ufshcd_state != UFSHCD_STATE_ERROR)
6701 		hba->ufshcd_state = UFSHCD_STATE_RESET;
6702 	/*
6703 	 * A full reset and restore might have happened after preparation
6704 	 * is finished, double check whether we should stop.
6705 	 */
6706 	if (ufshcd_err_handling_should_stop(hba))
6707 		goto skip_err_handling;
6708 
6709 	if ((hba->dev_quirks & UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS) &&
6710 	    !hba->force_reset) {
6711 		bool ret;
6712 
6713 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6714 		/* release the lock as ufshcd_quirk_dl_nac_errors() may sleep */
6715 		ret = ufshcd_quirk_dl_nac_errors(hba);
6716 		spin_lock_irqsave(hba->host->host_lock, flags);
6717 		if (!ret && ufshcd_err_handling_should_stop(hba))
6718 			goto skip_err_handling;
6719 	}
6720 
6721 	if ((hba->saved_err & (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK)) ||
6722 	    (hba->saved_uic_err &&
6723 	     (hba->saved_uic_err != UFSHCD_UIC_PA_GENERIC_ERROR))) {
6724 		bool pr_prdt = !!(hba->saved_err & SYSTEM_BUS_FATAL_ERROR);
6725 
6726 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6727 		ufshcd_print_host_state(hba);
6728 		ufshcd_print_pwr_info(hba);
6729 		ufshcd_print_evt_hist(hba);
6730 		ufshcd_print_tmrs(hba, hba->outstanding_tasks);
6731 		ufshcd_print_trs_all(hba, pr_prdt);
6732 		spin_lock_irqsave(hba->host->host_lock, flags);
6733 	}
6734 
6735 	/*
6736 	 * if host reset is required then skip clearing the pending
6737 	 * transfers forcefully because they will get cleared during
6738 	 * host reset and restore
6739 	 */
6740 	if (hba->force_reset || ufshcd_is_link_broken(hba) ||
6741 	    ufshcd_is_saved_err_fatal(hba) ||
6742 	    ((hba->saved_err & UIC_ERROR) &&
6743 	     (hba->saved_uic_err & (UFSHCD_UIC_DL_NAC_RECEIVED_ERROR |
6744 				    UFSHCD_UIC_DL_TCx_REPLAY_ERROR)))) {
6745 		needs_reset = true;
6746 		goto do_reset;
6747 	}
6748 
6749 	/*
6750 	 * If LINERESET was caught, UFS might have been put to PWM mode,
6751 	 * check if power mode restore is needed.
6752 	 */
6753 	if (hba->saved_uic_err & UFSHCD_UIC_PA_GENERIC_ERROR) {
6754 		hba->saved_uic_err &= ~UFSHCD_UIC_PA_GENERIC_ERROR;
6755 		if (!hba->saved_uic_err)
6756 			hba->saved_err &= ~UIC_ERROR;
6757 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6758 		if (ufshcd_is_pwr_mode_restore_needed(hba))
6759 			needs_restore = true;
6760 		spin_lock_irqsave(hba->host->host_lock, flags);
6761 		if (!hba->saved_err && !needs_restore)
6762 			goto skip_err_handling;
6763 	}
6764 
6765 	hba->silence_err_logs = true;
6766 	/* release lock as clear command might sleep */
6767 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6768 
6769 	needs_reset = ufshcd_abort_all(hba);
6770 
6771 	spin_lock_irqsave(hba->host->host_lock, flags);
6772 	hba->silence_err_logs = false;
6773 	if (needs_reset)
6774 		goto do_reset;
6775 
6776 	/*
6777 	 * After all reqs and tasks are cleared from doorbell,
6778 	 * now it is safe to retore power mode.
6779 	 */
6780 	if (needs_restore) {
6781 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6782 		/*
6783 		 * Hold the scaling lock just in case dev cmds
6784 		 * are sent via bsg and/or sysfs.
6785 		 */
6786 		down_write(&hba->clk_scaling_lock);
6787 		hba->force_pmc = true;
6788 		pmc_err = ufshcd_config_pwr_mode(hba, &(hba->pwr_info));
6789 		if (pmc_err) {
6790 			needs_reset = true;
6791 			dev_err(hba->dev, "%s: Failed to restore power mode, err = %d\n",
6792 					__func__, pmc_err);
6793 		}
6794 		hba->force_pmc = false;
6795 		ufshcd_print_pwr_info(hba);
6796 		up_write(&hba->clk_scaling_lock);
6797 		spin_lock_irqsave(hba->host->host_lock, flags);
6798 	}
6799 
6800 do_reset:
6801 	/* Fatal errors need reset */
6802 	if (needs_reset) {
6803 		int err;
6804 
6805 		hba->force_reset = false;
6806 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6807 		err = ufshcd_reset_and_restore(hba);
6808 		if (err)
6809 			dev_err(hba->dev, "%s: reset and restore failed with err %d\n",
6810 					__func__, err);
6811 		else
6812 			ufshcd_recover_pm_error(hba);
6813 		spin_lock_irqsave(hba->host->host_lock, flags);
6814 	}
6815 
6816 skip_err_handling:
6817 	if (!needs_reset) {
6818 		if (hba->ufshcd_state == UFSHCD_STATE_RESET)
6819 			hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
6820 		if (hba->saved_err || hba->saved_uic_err)
6821 			dev_err_ratelimited(hba->dev, "%s: exit: saved_err 0x%x saved_uic_err 0x%x",
6822 			    __func__, hba->saved_err, hba->saved_uic_err);
6823 	}
6824 	/* Exit in an operational state or dead */
6825 	if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL &&
6826 	    hba->ufshcd_state != UFSHCD_STATE_ERROR) {
6827 		if (--retries)
6828 			goto again;
6829 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
6830 	}
6831 	ufshcd_clear_eh_in_progress(hba);
6832 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6833 	ufshcd_err_handling_unprepare(hba);
6834 	up(&hba->host_sem);
6835 
6836 	dev_info(hba->dev, "%s finished; HBA state %s\n", __func__,
6837 		 ufshcd_state_name[hba->ufshcd_state]);
6838 }
6839 
6840 /**
6841  * ufshcd_update_uic_error - check and set fatal UIC error flags.
6842  * @hba: per-adapter instance
6843  *
6844  * Return:
6845  *  IRQ_HANDLED - If interrupt is valid
6846  *  IRQ_NONE    - If invalid interrupt
6847  */
6848 static irqreturn_t ufshcd_update_uic_error(struct ufs_hba *hba)
6849 {
6850 	u32 reg;
6851 	irqreturn_t retval = IRQ_NONE;
6852 
6853 	/* PHY layer error */
6854 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER);
6855 	if ((reg & UIC_PHY_ADAPTER_LAYER_ERROR) &&
6856 	    (reg & UIC_PHY_ADAPTER_LAYER_ERROR_CODE_MASK)) {
6857 		ufshcd_update_evt_hist(hba, UFS_EVT_PA_ERR, reg);
6858 		/*
6859 		 * To know whether this error is fatal or not, DB timeout
6860 		 * must be checked but this error is handled separately.
6861 		 */
6862 		if (reg & UIC_PHY_ADAPTER_LAYER_LANE_ERR_MASK)
6863 			dev_dbg(hba->dev, "%s: UIC Lane error reported\n",
6864 					__func__);
6865 
6866 		/* Got a LINERESET indication. */
6867 		if (reg & UIC_PHY_ADAPTER_LAYER_GENERIC_ERROR) {
6868 			struct uic_command *cmd = NULL;
6869 
6870 			hba->uic_error |= UFSHCD_UIC_PA_GENERIC_ERROR;
6871 			if (hba->uic_async_done && hba->active_uic_cmd)
6872 				cmd = hba->active_uic_cmd;
6873 			/*
6874 			 * Ignore the LINERESET during power mode change
6875 			 * operation via DME_SET command.
6876 			 */
6877 			if (cmd && (cmd->command == UIC_CMD_DME_SET))
6878 				hba->uic_error &= ~UFSHCD_UIC_PA_GENERIC_ERROR;
6879 		}
6880 		retval |= IRQ_HANDLED;
6881 	}
6882 
6883 	/* PA_INIT_ERROR is fatal and needs UIC reset */
6884 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_DATA_LINK_LAYER);
6885 	if ((reg & UIC_DATA_LINK_LAYER_ERROR) &&
6886 	    (reg & UIC_DATA_LINK_LAYER_ERROR_CODE_MASK)) {
6887 		ufshcd_update_evt_hist(hba, UFS_EVT_DL_ERR, reg);
6888 
6889 		if (reg & UIC_DATA_LINK_LAYER_ERROR_PA_INIT)
6890 			hba->uic_error |= UFSHCD_UIC_DL_PA_INIT_ERROR;
6891 		else if (hba->dev_quirks &
6892 				UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS) {
6893 			if (reg & UIC_DATA_LINK_LAYER_ERROR_NAC_RECEIVED)
6894 				hba->uic_error |=
6895 					UFSHCD_UIC_DL_NAC_RECEIVED_ERROR;
6896 			else if (reg & UIC_DATA_LINK_LAYER_ERROR_TCx_REPLAY_TIMEOUT)
6897 				hba->uic_error |= UFSHCD_UIC_DL_TCx_REPLAY_ERROR;
6898 		}
6899 		retval |= IRQ_HANDLED;
6900 	}
6901 
6902 	/* UIC NL/TL/DME errors needs software retry */
6903 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_NETWORK_LAYER);
6904 	if ((reg & UIC_NETWORK_LAYER_ERROR) &&
6905 	    (reg & UIC_NETWORK_LAYER_ERROR_CODE_MASK)) {
6906 		ufshcd_update_evt_hist(hba, UFS_EVT_NL_ERR, reg);
6907 		hba->uic_error |= UFSHCD_UIC_NL_ERROR;
6908 		retval |= IRQ_HANDLED;
6909 	}
6910 
6911 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_TRANSPORT_LAYER);
6912 	if ((reg & UIC_TRANSPORT_LAYER_ERROR) &&
6913 	    (reg & UIC_TRANSPORT_LAYER_ERROR_CODE_MASK)) {
6914 		ufshcd_update_evt_hist(hba, UFS_EVT_TL_ERR, reg);
6915 		hba->uic_error |= UFSHCD_UIC_TL_ERROR;
6916 		retval |= IRQ_HANDLED;
6917 	}
6918 
6919 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_DME);
6920 	if ((reg & UIC_DME_ERROR) &&
6921 	    (reg & UIC_DME_ERROR_CODE_MASK)) {
6922 		ufshcd_update_evt_hist(hba, UFS_EVT_DME_ERR, reg);
6923 		hba->uic_error |= UFSHCD_UIC_DME_ERROR;
6924 		retval |= IRQ_HANDLED;
6925 	}
6926 
6927 	dev_dbg(hba->dev, "%s: UIC error flags = 0x%08x\n",
6928 			__func__, hba->uic_error);
6929 	return retval;
6930 }
6931 
6932 /**
6933  * ufshcd_check_errors - Check for errors that need s/w attention
6934  * @hba: per-adapter instance
6935  * @intr_status: interrupt status generated by the controller
6936  *
6937  * Return:
6938  *  IRQ_HANDLED - If interrupt is valid
6939  *  IRQ_NONE    - If invalid interrupt
6940  */
6941 static irqreturn_t ufshcd_check_errors(struct ufs_hba *hba, u32 intr_status)
6942 {
6943 	bool queue_eh_work = false;
6944 	irqreturn_t retval = IRQ_NONE;
6945 
6946 	guard(spinlock_irqsave)(hba->host->host_lock);
6947 	hba->errors |= UFSHCD_ERROR_MASK & intr_status;
6948 
6949 	if (hba->errors & INT_FATAL_ERRORS) {
6950 		ufshcd_update_evt_hist(hba, UFS_EVT_FATAL_ERR,
6951 				       hba->errors);
6952 		queue_eh_work = true;
6953 	}
6954 
6955 	if (hba->errors & UIC_ERROR) {
6956 		hba->uic_error = 0;
6957 		retval = ufshcd_update_uic_error(hba);
6958 		if (hba->uic_error)
6959 			queue_eh_work = true;
6960 	}
6961 
6962 	if (hba->errors & UFSHCD_UIC_HIBERN8_MASK) {
6963 		dev_err(hba->dev,
6964 			"%s: Auto Hibern8 %s failed - status: 0x%08x, upmcrs: 0x%08x\n",
6965 			__func__, (hba->errors & UIC_HIBERNATE_ENTER) ?
6966 			"Enter" : "Exit",
6967 			hba->errors, ufshcd_get_upmcrs(hba));
6968 		ufshcd_update_evt_hist(hba, UFS_EVT_AUTO_HIBERN8_ERR,
6969 				       hba->errors);
6970 		ufshcd_set_link_broken(hba);
6971 		queue_eh_work = true;
6972 	}
6973 
6974 	if (queue_eh_work) {
6975 		/*
6976 		 * update the transfer error masks to sticky bits, let's do this
6977 		 * irrespective of current ufshcd_state.
6978 		 */
6979 		hba->saved_err |= hba->errors;
6980 		hba->saved_uic_err |= hba->uic_error;
6981 
6982 		/* dump controller state before resetting */
6983 		if ((hba->saved_err &
6984 		     (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK)) ||
6985 		    (hba->saved_uic_err &&
6986 		     (hba->saved_uic_err != UFSHCD_UIC_PA_GENERIC_ERROR))) {
6987 			dev_err(hba->dev, "%s: saved_err 0x%x saved_uic_err 0x%x\n",
6988 					__func__, hba->saved_err,
6989 					hba->saved_uic_err);
6990 			ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE,
6991 					 "host_regs: ");
6992 			ufshcd_print_pwr_info(hba);
6993 		}
6994 		ufshcd_schedule_eh_work(hba);
6995 		retval |= IRQ_HANDLED;
6996 	}
6997 	/*
6998 	 * if (!queue_eh_work) -
6999 	 * Other errors are either non-fatal where host recovers
7000 	 * itself without s/w intervention or errors that will be
7001 	 * handled by the SCSI core layer.
7002 	 */
7003 	hba->errors = 0;
7004 	hba->uic_error = 0;
7005 
7006 	return retval;
7007 }
7008 
7009 /**
7010  * ufshcd_tmc_handler - handle task management function completion
7011  * @hba: per adapter instance
7012  *
7013  * Return:
7014  *  IRQ_HANDLED - If interrupt is valid
7015  *  IRQ_NONE    - If invalid interrupt
7016  */
7017 static irqreturn_t ufshcd_tmc_handler(struct ufs_hba *hba)
7018 {
7019 	unsigned long flags, pending, issued;
7020 	irqreturn_t ret = IRQ_NONE;
7021 	int tag;
7022 
7023 	spin_lock_irqsave(hba->host->host_lock, flags);
7024 	pending = ufshcd_readl(hba, REG_UTP_TASK_REQ_DOOR_BELL);
7025 	issued = hba->outstanding_tasks & ~pending;
7026 	for_each_set_bit(tag, &issued, hba->nutmrs) {
7027 		struct request *req = hba->tmf_rqs[tag];
7028 		struct completion *c = req->end_io_data;
7029 
7030 		complete(c);
7031 		ret = IRQ_HANDLED;
7032 	}
7033 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7034 
7035 	return ret;
7036 }
7037 
7038 /**
7039  * ufshcd_handle_mcq_cq_events - handle MCQ completion queue events
7040  * @hba: per adapter instance
7041  *
7042  * Return: IRQ_HANDLED if interrupt is handled.
7043  */
7044 static irqreturn_t ufshcd_handle_mcq_cq_events(struct ufs_hba *hba)
7045 {
7046 	struct ufs_hw_queue *hwq;
7047 	unsigned long outstanding_cqs;
7048 	unsigned int nr_queues;
7049 	int i, ret;
7050 	u32 events;
7051 
7052 	ret = ufshcd_vops_get_outstanding_cqs(hba, &outstanding_cqs);
7053 	if (ret)
7054 		outstanding_cqs = (1U << hba->nr_hw_queues) - 1;
7055 
7056 	/* Exclude the poll queues */
7057 	nr_queues = hba->nr_hw_queues - hba->nr_queues[HCTX_TYPE_POLL];
7058 	for_each_set_bit(i, &outstanding_cqs, nr_queues) {
7059 		hwq = &hba->uhq[i];
7060 
7061 		events = ufshcd_mcq_read_cqis(hba, i);
7062 		if (events)
7063 			ufshcd_mcq_write_cqis(hba, events, i);
7064 
7065 		if (events & UFSHCD_MCQ_CQIS_TAIL_ENT_PUSH_STS)
7066 			ufshcd_mcq_poll_cqe_lock(hba, hwq);
7067 	}
7068 
7069 	return IRQ_HANDLED;
7070 }
7071 
7072 /**
7073  * ufshcd_sl_intr - Interrupt service routine
7074  * @hba: per adapter instance
7075  * @intr_status: contains interrupts generated by the controller
7076  *
7077  * Return:
7078  *  IRQ_HANDLED - If interrupt is valid
7079  *  IRQ_NONE    - If invalid interrupt
7080  */
7081 static irqreturn_t ufshcd_sl_intr(struct ufs_hba *hba, u32 intr_status)
7082 {
7083 	irqreturn_t retval = IRQ_NONE;
7084 
7085 	if (intr_status & UFSHCD_UIC_MASK)
7086 		retval |= ufshcd_uic_cmd_compl(hba, intr_status);
7087 
7088 	if (intr_status & UFSHCD_ERROR_MASK || hba->errors)
7089 		retval |= ufshcd_check_errors(hba, intr_status);
7090 
7091 	if (intr_status & UTP_TASK_REQ_COMPL)
7092 		retval |= ufshcd_tmc_handler(hba);
7093 
7094 	if (intr_status & UTP_TRANSFER_REQ_COMPL)
7095 		retval |= ufshcd_transfer_req_compl(hba);
7096 
7097 	if (intr_status & MCQ_CQ_EVENT_STATUS)
7098 		retval |= ufshcd_handle_mcq_cq_events(hba);
7099 
7100 	return retval;
7101 }
7102 
7103 /**
7104  * ufshcd_threaded_intr - Threaded interrupt service routine
7105  * @irq: irq number
7106  * @__hba: pointer to adapter instance
7107  *
7108  * Return:
7109  *  IRQ_HANDLED - If interrupt is valid
7110  *  IRQ_NONE    - If invalid interrupt
7111  */
7112 static irqreturn_t ufshcd_threaded_intr(int irq, void *__hba)
7113 {
7114 	u32 last_intr_status, intr_status, enabled_intr_status = 0;
7115 	irqreturn_t retval = IRQ_NONE;
7116 	struct ufs_hba *hba = __hba;
7117 	int retries = hba->nutrs;
7118 
7119 	last_intr_status = intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
7120 
7121 	/*
7122 	 * There could be max of hba->nutrs reqs in flight and in worst case
7123 	 * if the reqs get finished 1 by 1 after the interrupt status is
7124 	 * read, make sure we handle them by checking the interrupt status
7125 	 * again in a loop until we process all of the reqs before returning.
7126 	 */
7127 	while (intr_status && retries--) {
7128 		enabled_intr_status =
7129 			intr_status & ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
7130 		ufshcd_writel(hba, intr_status, REG_INTERRUPT_STATUS);
7131 		if (enabled_intr_status)
7132 			retval |= ufshcd_sl_intr(hba, enabled_intr_status);
7133 
7134 		intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
7135 	}
7136 
7137 	if (enabled_intr_status && retval == IRQ_NONE &&
7138 	    (!(enabled_intr_status & UTP_TRANSFER_REQ_COMPL) ||
7139 	     hba->outstanding_reqs) && !ufshcd_eh_in_progress(hba)) {
7140 		dev_err(hba->dev, "%s: Unhandled interrupt 0x%08x (0x%08x, 0x%08x)\n",
7141 					__func__,
7142 					intr_status,
7143 					last_intr_status,
7144 					enabled_intr_status);
7145 		ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, "host_regs: ");
7146 	}
7147 
7148 	return retval;
7149 }
7150 
7151 /**
7152  * ufshcd_intr - Main interrupt service routine
7153  * @irq: irq number
7154  * @__hba: pointer to adapter instance
7155  *
7156  * Return:
7157  *  IRQ_HANDLED     - If interrupt is valid
7158  *  IRQ_WAKE_THREAD - If handling is moved to threaded handled
7159  *  IRQ_NONE        - If invalid interrupt
7160  */
7161 static irqreturn_t ufshcd_intr(int irq, void *__hba)
7162 {
7163 	struct ufs_hba *hba = __hba;
7164 	u32 intr_status, enabled_intr_status;
7165 
7166 	/* Move interrupt handling to thread when MCQ & ESI are not enabled */
7167 	if (!hba->mcq_enabled || !hba->mcq_esi_enabled)
7168 		return IRQ_WAKE_THREAD;
7169 
7170 	intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
7171 	enabled_intr_status = intr_status & ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
7172 
7173 	ufshcd_writel(hba, intr_status, REG_INTERRUPT_STATUS);
7174 
7175 	/* Directly handle interrupts since MCQ ESI handlers does the hard job */
7176 	return ufshcd_sl_intr(hba, enabled_intr_status);
7177 }
7178 
7179 static int ufshcd_clear_tm_cmd(struct ufs_hba *hba, int tag)
7180 {
7181 	int err = 0;
7182 	u32 mask = 1 << tag;
7183 
7184 	if (!test_bit(tag, &hba->outstanding_tasks))
7185 		goto out;
7186 
7187 	ufshcd_utmrl_clear(hba, tag);
7188 
7189 	/* poll for max. 1 sec to clear door bell register by h/w */
7190 	err = ufshcd_wait_for_register(hba,
7191 			REG_UTP_TASK_REQ_DOOR_BELL,
7192 			mask, 0, 1000, 1000);
7193 
7194 	dev_err(hba->dev, "Clearing task management function with tag %d %s\n",
7195 		tag, err < 0 ? "failed" : "succeeded");
7196 
7197 out:
7198 	return err;
7199 }
7200 
7201 static int __ufshcd_issue_tm_cmd(struct ufs_hba *hba,
7202 		struct utp_task_req_desc *treq, u8 tm_function)
7203 {
7204 	struct request_queue *q = hba->tmf_queue;
7205 	struct Scsi_Host *host = hba->host;
7206 	DECLARE_COMPLETION_ONSTACK(wait);
7207 	struct request *req;
7208 	unsigned long flags;
7209 	int task_tag, err;
7210 
7211 	/*
7212 	 * blk_mq_alloc_request() is used here only to get a free tag.
7213 	 */
7214 	req = blk_mq_alloc_request(q, REQ_OP_DRV_OUT, 0);
7215 	if (IS_ERR(req))
7216 		return PTR_ERR(req);
7217 
7218 	req->end_io_data = &wait;
7219 	ufshcd_hold(hba);
7220 
7221 	spin_lock_irqsave(host->host_lock, flags);
7222 
7223 	task_tag = req->tag;
7224 	hba->tmf_rqs[req->tag] = req;
7225 	treq->upiu_req.req_header.task_tag = task_tag;
7226 
7227 	memcpy(hba->utmrdl_base_addr + task_tag, treq, sizeof(*treq));
7228 	ufshcd_vops_setup_task_mgmt(hba, task_tag, tm_function);
7229 
7230 	__set_bit(task_tag, &hba->outstanding_tasks);
7231 
7232 	spin_unlock_irqrestore(host->host_lock, flags);
7233 
7234 	/* send command to the controller */
7235 	ufshcd_writel(hba, 1 << task_tag, REG_UTP_TASK_REQ_DOOR_BELL);
7236 
7237 	ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_SEND);
7238 
7239 	/* wait until the task management command is completed */
7240 	err = wait_for_completion_io_timeout(&wait,
7241 			msecs_to_jiffies(TM_CMD_TIMEOUT));
7242 	if (!err) {
7243 		ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_ERR);
7244 		dev_err(hba->dev, "%s: task management cmd 0x%.2x timed-out\n",
7245 				__func__, tm_function);
7246 		if (ufshcd_clear_tm_cmd(hba, task_tag))
7247 			dev_WARN(hba->dev, "%s: unable to clear tm cmd (slot %d) after timeout\n",
7248 					__func__, task_tag);
7249 		err = -ETIMEDOUT;
7250 	} else {
7251 		err = 0;
7252 		memcpy(treq, hba->utmrdl_base_addr + task_tag, sizeof(*treq));
7253 
7254 		ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_COMP);
7255 	}
7256 
7257 	spin_lock_irqsave(hba->host->host_lock, flags);
7258 	hba->tmf_rqs[req->tag] = NULL;
7259 	__clear_bit(task_tag, &hba->outstanding_tasks);
7260 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7261 
7262 	ufshcd_release(hba);
7263 	blk_mq_free_request(req);
7264 
7265 	return err;
7266 }
7267 
7268 /**
7269  * ufshcd_issue_tm_cmd - issues task management commands to controller
7270  * @hba: per adapter instance
7271  * @lun_id: LUN ID to which TM command is sent
7272  * @task_id: task ID to which the TM command is applicable
7273  * @tm_function: task management function opcode
7274  * @tm_response: task management service response return value
7275  *
7276  * Return: non-zero value on error, zero on success.
7277  */
7278 static int ufshcd_issue_tm_cmd(struct ufs_hba *hba, int lun_id, int task_id,
7279 		u8 tm_function, u8 *tm_response)
7280 {
7281 	struct utp_task_req_desc treq = { };
7282 	enum utp_ocs ocs_value;
7283 	int err;
7284 
7285 	/* Configure task request descriptor */
7286 	treq.header.interrupt = 1;
7287 	treq.header.ocs = OCS_INVALID_COMMAND_STATUS;
7288 
7289 	/* Configure task request UPIU */
7290 	treq.upiu_req.req_header.transaction_code = UPIU_TRANSACTION_TASK_REQ;
7291 	treq.upiu_req.req_header.lun = lun_id;
7292 	treq.upiu_req.req_header.tm_function = tm_function;
7293 
7294 	/*
7295 	 * The host shall provide the same value for LUN field in the basic
7296 	 * header and for Input Parameter.
7297 	 */
7298 	treq.upiu_req.input_param1 = cpu_to_be32(lun_id);
7299 	treq.upiu_req.input_param2 = cpu_to_be32(task_id);
7300 
7301 	err = __ufshcd_issue_tm_cmd(hba, &treq, tm_function);
7302 	if (err == -ETIMEDOUT)
7303 		return err;
7304 
7305 	ocs_value = treq.header.ocs & MASK_OCS;
7306 	if (ocs_value != OCS_SUCCESS)
7307 		dev_err(hba->dev, "%s: failed, ocs = 0x%x\n",
7308 				__func__, ocs_value);
7309 	else if (tm_response)
7310 		*tm_response = be32_to_cpu(treq.upiu_rsp.output_param1) &
7311 				MASK_TM_SERVICE_RESP;
7312 	return err;
7313 }
7314 
7315 /**
7316  * ufshcd_issue_devman_upiu_cmd - API for sending "utrd" type requests
7317  * @hba:	per-adapter instance
7318  * @req_upiu:	upiu request
7319  * @rsp_upiu:	upiu reply
7320  * @desc_buff:	pointer to descriptor buffer, NULL if NA
7321  * @buff_len:	descriptor size, 0 if NA
7322  * @cmd_type:	specifies the type (NOP, Query...)
7323  * @desc_op:	descriptor operation
7324  *
7325  * Those type of requests uses UTP Transfer Request Descriptor - utrd.
7326  * Therefore, it "rides" the device management infrastructure: uses its tag and
7327  * tasks work queues.
7328  *
7329  * Since there is only one available tag for device management commands,
7330  * the caller is expected to hold the hba->dev_cmd.lock mutex.
7331  *
7332  * Return: 0 upon success; < 0 upon failure.
7333  */
7334 static int ufshcd_issue_devman_upiu_cmd(struct ufs_hba *hba,
7335 					struct utp_upiu_req *req_upiu,
7336 					struct utp_upiu_req *rsp_upiu,
7337 					u8 *desc_buff, int *buff_len,
7338 					enum dev_cmd_type cmd_type,
7339 					enum query_opcode desc_op)
7340 {
7341 	const u32 tag = hba->reserved_slot;
7342 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
7343 	int err = 0;
7344 	u8 upiu_flags;
7345 
7346 	/* Protects use of hba->reserved_slot. */
7347 	lockdep_assert_held(&hba->dev_cmd.lock);
7348 
7349 	ufshcd_setup_dev_cmd(hba, lrbp, cmd_type, 0, tag);
7350 
7351 	ufshcd_prepare_req_desc_hdr(hba, lrbp, &upiu_flags, DMA_NONE, 0);
7352 
7353 	/* update the task tag in the request upiu */
7354 	req_upiu->header.task_tag = tag;
7355 
7356 	/* just copy the upiu request as it is */
7357 	memcpy(lrbp->ucd_req_ptr, req_upiu, sizeof(*lrbp->ucd_req_ptr));
7358 	if (desc_buff && desc_op == UPIU_QUERY_OPCODE_WRITE_DESC) {
7359 		/* The Data Segment Area is optional depending upon the query
7360 		 * function value. for WRITE DESCRIPTOR, the data segment
7361 		 * follows right after the tsf.
7362 		 */
7363 		memcpy(lrbp->ucd_req_ptr + 1, desc_buff, *buff_len);
7364 		*buff_len = 0;
7365 	}
7366 
7367 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
7368 
7369 	/*
7370 	 * ignore the returning value here - ufshcd_check_query_response is
7371 	 * bound to fail since dev_cmd.query and dev_cmd.type were left empty.
7372 	 * read the response directly ignoring all errors.
7373 	 */
7374 	ufshcd_issue_dev_cmd(hba, lrbp, tag, dev_cmd_timeout);
7375 
7376 	/* just copy the upiu response as it is */
7377 	memcpy(rsp_upiu, lrbp->ucd_rsp_ptr, sizeof(*rsp_upiu));
7378 	if (desc_buff && desc_op == UPIU_QUERY_OPCODE_READ_DESC) {
7379 		u8 *descp = (u8 *)lrbp->ucd_rsp_ptr + sizeof(*rsp_upiu);
7380 		u16 resp_len = be16_to_cpu(lrbp->ucd_rsp_ptr->header
7381 					   .data_segment_length);
7382 
7383 		if (*buff_len >= resp_len) {
7384 			memcpy(desc_buff, descp, resp_len);
7385 			*buff_len = resp_len;
7386 		} else {
7387 			dev_warn(hba->dev,
7388 				 "%s: rsp size %d is bigger than buffer size %d",
7389 				 __func__, resp_len, *buff_len);
7390 			*buff_len = 0;
7391 			err = -EINVAL;
7392 		}
7393 	}
7394 
7395 	return err;
7396 }
7397 
7398 /**
7399  * ufshcd_exec_raw_upiu_cmd - API function for sending raw upiu commands
7400  * @hba:	per-adapter instance
7401  * @req_upiu:	upiu request
7402  * @rsp_upiu:	upiu reply - only 8 DW as we do not support scsi commands
7403  * @msgcode:	message code, one of UPIU Transaction Codes Initiator to Target
7404  * @desc_buff:	pointer to descriptor buffer, NULL if NA
7405  * @buff_len:	descriptor size, 0 if NA
7406  * @desc_op:	descriptor operation
7407  *
7408  * Supports UTP Transfer requests (nop and query), and UTP Task
7409  * Management requests.
7410  * It is up to the caller to fill the upiu conent properly, as it will
7411  * be copied without any further input validations.
7412  *
7413  * Return: 0 upon success; < 0 upon failure.
7414  */
7415 int ufshcd_exec_raw_upiu_cmd(struct ufs_hba *hba,
7416 			     struct utp_upiu_req *req_upiu,
7417 			     struct utp_upiu_req *rsp_upiu,
7418 			     enum upiu_request_transaction msgcode,
7419 			     u8 *desc_buff, int *buff_len,
7420 			     enum query_opcode desc_op)
7421 {
7422 	int err;
7423 	enum dev_cmd_type cmd_type = DEV_CMD_TYPE_QUERY;
7424 	struct utp_task_req_desc treq = { };
7425 	enum utp_ocs ocs_value;
7426 	u8 tm_f = req_upiu->header.tm_function;
7427 
7428 	switch (msgcode) {
7429 	case UPIU_TRANSACTION_NOP_OUT:
7430 		cmd_type = DEV_CMD_TYPE_NOP;
7431 		fallthrough;
7432 	case UPIU_TRANSACTION_QUERY_REQ:
7433 		ufshcd_dev_man_lock(hba);
7434 		err = ufshcd_issue_devman_upiu_cmd(hba, req_upiu, rsp_upiu,
7435 						   desc_buff, buff_len,
7436 						   cmd_type, desc_op);
7437 		ufshcd_dev_man_unlock(hba);
7438 
7439 		break;
7440 	case UPIU_TRANSACTION_TASK_REQ:
7441 		treq.header.interrupt = 1;
7442 		treq.header.ocs = OCS_INVALID_COMMAND_STATUS;
7443 
7444 		memcpy(&treq.upiu_req, req_upiu, sizeof(*req_upiu));
7445 
7446 		err = __ufshcd_issue_tm_cmd(hba, &treq, tm_f);
7447 		if (err == -ETIMEDOUT)
7448 			break;
7449 
7450 		ocs_value = treq.header.ocs & MASK_OCS;
7451 		if (ocs_value != OCS_SUCCESS) {
7452 			dev_err(hba->dev, "%s: failed, ocs = 0x%x\n", __func__,
7453 				ocs_value);
7454 			break;
7455 		}
7456 
7457 		memcpy(rsp_upiu, &treq.upiu_rsp, sizeof(*rsp_upiu));
7458 
7459 		break;
7460 	default:
7461 		err = -EINVAL;
7462 
7463 		break;
7464 	}
7465 
7466 	return err;
7467 }
7468 
7469 /**
7470  * ufshcd_advanced_rpmb_req_handler - handle advanced RPMB request
7471  * @hba:	per adapter instance
7472  * @req_upiu:	upiu request
7473  * @rsp_upiu:	upiu reply
7474  * @req_ehs:	EHS field which contains Advanced RPMB Request Message
7475  * @rsp_ehs:	EHS field which returns Advanced RPMB Response Message
7476  * @sg_cnt:	The number of sg lists actually used
7477  * @sg_list:	Pointer to SG list when DATA IN/OUT UPIU is required in ARPMB operation
7478  * @dir:	DMA direction
7479  *
7480  * Return: 0 upon success; > 0 in case the UFS device reported an OCS error;
7481  * < 0 if another error occurred.
7482  */
7483 int ufshcd_advanced_rpmb_req_handler(struct ufs_hba *hba, struct utp_upiu_req *req_upiu,
7484 			 struct utp_upiu_req *rsp_upiu, struct ufs_ehs *req_ehs,
7485 			 struct ufs_ehs *rsp_ehs, int sg_cnt, struct scatterlist *sg_list,
7486 			 enum dma_data_direction dir)
7487 {
7488 	const u32 tag = hba->reserved_slot;
7489 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
7490 	int err = 0;
7491 	int result;
7492 	u8 upiu_flags;
7493 	u8 *ehs_data;
7494 	u16 ehs_len;
7495 	int ehs = (hba->capabilities & MASK_EHSLUTRD_SUPPORTED) ? 2 : 0;
7496 
7497 	/* Protects use of hba->reserved_slot. */
7498 	ufshcd_dev_man_lock(hba);
7499 
7500 	ufshcd_setup_dev_cmd(hba, lrbp, DEV_CMD_TYPE_RPMB, UFS_UPIU_RPMB_WLUN, tag);
7501 
7502 	ufshcd_prepare_req_desc_hdr(hba, lrbp, &upiu_flags, DMA_NONE, ehs);
7503 
7504 	/* update the task tag */
7505 	req_upiu->header.task_tag = tag;
7506 
7507 	/* copy the UPIU(contains CDB) request as it is */
7508 	memcpy(lrbp->ucd_req_ptr, req_upiu, sizeof(*lrbp->ucd_req_ptr));
7509 	/* Copy EHS, starting with byte32, immediately after the CDB package */
7510 	memcpy(lrbp->ucd_req_ptr + 1, req_ehs, sizeof(*req_ehs));
7511 
7512 	if (dir != DMA_NONE && sg_list)
7513 		ufshcd_sgl_to_prdt(hba, lrbp, sg_cnt, sg_list);
7514 
7515 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
7516 
7517 	err = ufshcd_issue_dev_cmd(hba, lrbp, tag, ADVANCED_RPMB_REQ_TIMEOUT);
7518 
7519 	if (!err) {
7520 		/* Just copy the upiu response as it is */
7521 		memcpy(rsp_upiu, lrbp->ucd_rsp_ptr, sizeof(*rsp_upiu));
7522 		/* Get the response UPIU result */
7523 		result = (lrbp->ucd_rsp_ptr->header.response << 8) |
7524 			lrbp->ucd_rsp_ptr->header.status;
7525 
7526 		ehs_len = lrbp->ucd_rsp_ptr->header.ehs_length;
7527 		/*
7528 		 * Since the bLength in EHS indicates the total size of the EHS Header and EHS Data
7529 		 * in 32 Byte units, the value of the bLength Request/Response for Advanced RPMB
7530 		 * Message is 02h
7531 		 */
7532 		if (ehs_len == 2 && rsp_ehs) {
7533 			/*
7534 			 * ucd_rsp_ptr points to a buffer with a length of 512 bytes
7535 			 * (ALIGNED_UPIU_SIZE = 512), and the EHS data just starts from byte32
7536 			 */
7537 			ehs_data = (u8 *)lrbp->ucd_rsp_ptr + EHS_OFFSET_IN_RESPONSE;
7538 			memcpy(rsp_ehs, ehs_data, ehs_len * 32);
7539 		}
7540 	}
7541 
7542 	ufshcd_dev_man_unlock(hba);
7543 
7544 	return err ? : result;
7545 }
7546 
7547 /**
7548  * ufshcd_eh_device_reset_handler() - Reset a single logical unit.
7549  * @cmd: SCSI command pointer
7550  *
7551  * Return: SUCCESS or FAILED.
7552  */
7553 static int ufshcd_eh_device_reset_handler(struct scsi_cmnd *cmd)
7554 {
7555 	unsigned long flags, pending_reqs = 0, not_cleared = 0;
7556 	struct Scsi_Host *host;
7557 	struct ufs_hba *hba;
7558 	struct ufs_hw_queue *hwq;
7559 	struct ufshcd_lrb *lrbp;
7560 	u32 pos, not_cleared_mask = 0;
7561 	int err;
7562 	u8 resp = 0xF, lun;
7563 
7564 	host = cmd->device->host;
7565 	hba = shost_priv(host);
7566 
7567 	lun = ufshcd_scsi_to_upiu_lun(cmd->device->lun);
7568 	err = ufshcd_issue_tm_cmd(hba, lun, 0, UFS_LOGICAL_RESET, &resp);
7569 	if (err || resp != UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7570 		if (!err)
7571 			err = resp;
7572 		goto out;
7573 	}
7574 
7575 	if (hba->mcq_enabled) {
7576 		for (pos = 0; pos < hba->nutrs; pos++) {
7577 			lrbp = &hba->lrb[pos];
7578 			if (ufshcd_cmd_inflight(lrbp->cmd) &&
7579 			    lrbp->lun == lun) {
7580 				ufshcd_clear_cmd(hba, pos);
7581 				hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(lrbp->cmd));
7582 				ufshcd_mcq_poll_cqe_lock(hba, hwq);
7583 			}
7584 		}
7585 		err = 0;
7586 		goto out;
7587 	}
7588 
7589 	/* clear the commands that were pending for corresponding LUN */
7590 	spin_lock_irqsave(&hba->outstanding_lock, flags);
7591 	for_each_set_bit(pos, &hba->outstanding_reqs, hba->nutrs)
7592 		if (hba->lrb[pos].lun == lun)
7593 			__set_bit(pos, &pending_reqs);
7594 	hba->outstanding_reqs &= ~pending_reqs;
7595 	spin_unlock_irqrestore(&hba->outstanding_lock, flags);
7596 
7597 	for_each_set_bit(pos, &pending_reqs, hba->nutrs) {
7598 		if (ufshcd_clear_cmd(hba, pos) < 0) {
7599 			spin_lock_irqsave(&hba->outstanding_lock, flags);
7600 			not_cleared = 1U << pos &
7601 				ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
7602 			hba->outstanding_reqs |= not_cleared;
7603 			not_cleared_mask |= not_cleared;
7604 			spin_unlock_irqrestore(&hba->outstanding_lock, flags);
7605 
7606 			dev_err(hba->dev, "%s: failed to clear request %d\n",
7607 				__func__, pos);
7608 		}
7609 	}
7610 	__ufshcd_transfer_req_compl(hba, pending_reqs & ~not_cleared_mask);
7611 
7612 out:
7613 	hba->req_abort_count = 0;
7614 	ufshcd_update_evt_hist(hba, UFS_EVT_DEV_RESET, (u32)err);
7615 	if (!err) {
7616 		err = SUCCESS;
7617 	} else {
7618 		dev_err(hba->dev, "%s: failed with err %d\n", __func__, err);
7619 		err = FAILED;
7620 	}
7621 	return err;
7622 }
7623 
7624 static void ufshcd_set_req_abort_skip(struct ufs_hba *hba, unsigned long bitmap)
7625 {
7626 	struct ufshcd_lrb *lrbp;
7627 	int tag;
7628 
7629 	for_each_set_bit(tag, &bitmap, hba->nutrs) {
7630 		lrbp = &hba->lrb[tag];
7631 		lrbp->req_abort_skip = true;
7632 	}
7633 }
7634 
7635 /**
7636  * ufshcd_try_to_abort_task - abort a specific task
7637  * @hba: Pointer to adapter instance
7638  * @tag: Task tag/index to be aborted
7639  *
7640  * Abort the pending command in device by sending UFS_ABORT_TASK task management
7641  * command, and in host controller by clearing the door-bell register. There can
7642  * be race between controller sending the command to the device while abort is
7643  * issued. To avoid that, first issue UFS_QUERY_TASK to check if the command is
7644  * really issued and then try to abort it.
7645  *
7646  * Return: zero on success, non-zero on failure.
7647  */
7648 int ufshcd_try_to_abort_task(struct ufs_hba *hba, int tag)
7649 {
7650 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
7651 	int err;
7652 	int poll_cnt;
7653 	u8 resp = 0xF;
7654 
7655 	for (poll_cnt = 100; poll_cnt; poll_cnt--) {
7656 		err = ufshcd_issue_tm_cmd(hba, lrbp->lun, lrbp->task_tag,
7657 				UFS_QUERY_TASK, &resp);
7658 		if (!err && resp == UPIU_TASK_MANAGEMENT_FUNC_SUCCEEDED) {
7659 			/* cmd pending in the device */
7660 			dev_err(hba->dev, "%s: cmd pending in the device. tag = %d\n",
7661 				__func__, tag);
7662 			break;
7663 		} else if (!err && resp == UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7664 			/*
7665 			 * cmd not pending in the device, check if it is
7666 			 * in transition.
7667 			 */
7668 			dev_info(
7669 				hba->dev,
7670 				"%s: cmd with tag %d not pending in the device.\n",
7671 				__func__, tag);
7672 			if (!ufshcd_cmd_inflight(lrbp->cmd)) {
7673 				dev_info(hba->dev,
7674 					 "%s: cmd with tag=%d completed.\n",
7675 					 __func__, tag);
7676 				return 0;
7677 			}
7678 			usleep_range(100, 200);
7679 		} else {
7680 			dev_err(hba->dev,
7681 				"%s: no response from device. tag = %d, err %d\n",
7682 				__func__, tag, err);
7683 			return err ? : resp;
7684 		}
7685 	}
7686 
7687 	if (!poll_cnt)
7688 		return -EBUSY;
7689 
7690 	err = ufshcd_issue_tm_cmd(hba, lrbp->lun, lrbp->task_tag,
7691 			UFS_ABORT_TASK, &resp);
7692 	if (err || resp != UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7693 		if (!err) {
7694 			err = resp; /* service response error */
7695 			dev_err(hba->dev, "%s: issued. tag = %d, err %d\n",
7696 				__func__, tag, err);
7697 		}
7698 		return err;
7699 	}
7700 
7701 	err = ufshcd_clear_cmd(hba, tag);
7702 	if (err)
7703 		dev_err(hba->dev, "%s: Failed clearing cmd at tag %d, err %d\n",
7704 			__func__, tag, err);
7705 
7706 	return err;
7707 }
7708 
7709 /**
7710  * ufshcd_abort - scsi host template eh_abort_handler callback
7711  * @cmd: SCSI command pointer
7712  *
7713  * Return: SUCCESS or FAILED.
7714  */
7715 static int ufshcd_abort(struct scsi_cmnd *cmd)
7716 {
7717 	struct Scsi_Host *host = cmd->device->host;
7718 	struct ufs_hba *hba = shost_priv(host);
7719 	int tag = scsi_cmd_to_rq(cmd)->tag;
7720 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
7721 	unsigned long flags;
7722 	int err = FAILED;
7723 	bool outstanding;
7724 	u32 reg;
7725 
7726 	ufshcd_hold(hba);
7727 
7728 	if (!hba->mcq_enabled) {
7729 		reg = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
7730 		if (!test_bit(tag, &hba->outstanding_reqs)) {
7731 			/* If command is already aborted/completed, return FAILED. */
7732 			dev_err(hba->dev,
7733 				"%s: cmd at tag %d already completed, outstanding=0x%lx, doorbell=0x%x\n",
7734 				__func__, tag, hba->outstanding_reqs, reg);
7735 			goto release;
7736 		}
7737 	}
7738 
7739 	/* Print Transfer Request of aborted task */
7740 	dev_info(hba->dev, "%s: Device abort task at tag %d\n", __func__, tag);
7741 
7742 	/*
7743 	 * Print detailed info about aborted request.
7744 	 * As more than one request might get aborted at the same time,
7745 	 * print full information only for the first aborted request in order
7746 	 * to reduce repeated printouts. For other aborted requests only print
7747 	 * basic details.
7748 	 */
7749 	scsi_print_command(cmd);
7750 	if (!hba->req_abort_count) {
7751 		ufshcd_update_evt_hist(hba, UFS_EVT_ABORT, tag);
7752 		ufshcd_print_evt_hist(hba);
7753 		ufshcd_print_host_state(hba);
7754 		ufshcd_print_pwr_info(hba);
7755 		ufshcd_print_tr(hba, tag, true);
7756 	} else {
7757 		ufshcd_print_tr(hba, tag, false);
7758 	}
7759 	hba->req_abort_count++;
7760 
7761 	if (!hba->mcq_enabled && !(reg & (1 << tag))) {
7762 		/* only execute this code in single doorbell mode */
7763 		dev_err(hba->dev,
7764 		"%s: cmd was completed, but without a notifying intr, tag = %d",
7765 		__func__, tag);
7766 		__ufshcd_transfer_req_compl(hba, 1UL << tag);
7767 		goto release;
7768 	}
7769 
7770 	/*
7771 	 * Task abort to the device W-LUN is illegal. When this command
7772 	 * will fail, due to spec violation, scsi err handling next step
7773 	 * will be to send LU reset which, again, is a spec violation.
7774 	 * To avoid these unnecessary/illegal steps, first we clean up
7775 	 * the lrb taken by this cmd and re-set it in outstanding_reqs,
7776 	 * then queue the eh_work and bail.
7777 	 */
7778 	if (lrbp->lun == UFS_UPIU_UFS_DEVICE_WLUN) {
7779 		ufshcd_update_evt_hist(hba, UFS_EVT_ABORT, lrbp->lun);
7780 
7781 		spin_lock_irqsave(host->host_lock, flags);
7782 		hba->force_reset = true;
7783 		ufshcd_schedule_eh_work(hba);
7784 		spin_unlock_irqrestore(host->host_lock, flags);
7785 		goto release;
7786 	}
7787 
7788 	if (hba->mcq_enabled) {
7789 		/* MCQ mode. Branch off to handle abort for mcq mode */
7790 		err = ufshcd_mcq_abort(cmd);
7791 		goto release;
7792 	}
7793 
7794 	/* Skip task abort in case previous aborts failed and report failure */
7795 	if (lrbp->req_abort_skip) {
7796 		dev_err(hba->dev, "%s: skipping abort\n", __func__);
7797 		ufshcd_set_req_abort_skip(hba, hba->outstanding_reqs);
7798 		goto release;
7799 	}
7800 
7801 	err = ufshcd_try_to_abort_task(hba, tag);
7802 	if (err) {
7803 		dev_err(hba->dev, "%s: failed with err %d\n", __func__, err);
7804 		ufshcd_set_req_abort_skip(hba, hba->outstanding_reqs);
7805 		err = FAILED;
7806 		goto release;
7807 	}
7808 
7809 	/*
7810 	 * Clear the corresponding bit from outstanding_reqs since the command
7811 	 * has been aborted successfully.
7812 	 */
7813 	spin_lock_irqsave(&hba->outstanding_lock, flags);
7814 	outstanding = __test_and_clear_bit(tag, &hba->outstanding_reqs);
7815 	spin_unlock_irqrestore(&hba->outstanding_lock, flags);
7816 
7817 	if (outstanding)
7818 		ufshcd_release_scsi_cmd(hba, lrbp);
7819 
7820 	err = SUCCESS;
7821 
7822 release:
7823 	/* Matches the ufshcd_hold() call at the start of this function. */
7824 	ufshcd_release(hba);
7825 	return err;
7826 }
7827 
7828 /**
7829  * ufshcd_process_probe_result - Process the ufshcd_probe_hba() result.
7830  * @hba: UFS host controller instance.
7831  * @probe_start: time when the ufshcd_probe_hba() call started.
7832  * @ret: ufshcd_probe_hba() return value.
7833  */
7834 static void ufshcd_process_probe_result(struct ufs_hba *hba,
7835 					ktime_t probe_start, int ret)
7836 {
7837 	unsigned long flags;
7838 
7839 	spin_lock_irqsave(hba->host->host_lock, flags);
7840 	if (ret)
7841 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
7842 	else if (hba->ufshcd_state == UFSHCD_STATE_RESET)
7843 		hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
7844 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7845 
7846 	trace_ufshcd_init(hba, ret,
7847 			  ktime_to_us(ktime_sub(ktime_get(), probe_start)),
7848 			  hba->curr_dev_pwr_mode, hba->uic_link_state);
7849 }
7850 
7851 /**
7852  * ufshcd_host_reset_and_restore - reset and restore host controller
7853  * @hba: per-adapter instance
7854  *
7855  * Note that host controller reset may issue DME_RESET to
7856  * local and remote (device) Uni-Pro stack and the attributes
7857  * are reset to default state.
7858  *
7859  * Return: zero on success, non-zero on failure.
7860  */
7861 static int ufshcd_host_reset_and_restore(struct ufs_hba *hba)
7862 {
7863 	int err;
7864 
7865 	/*
7866 	 * Stop the host controller and complete the requests
7867 	 * cleared by h/w
7868 	 */
7869 	ufshcd_hba_stop(hba);
7870 	hba->silence_err_logs = true;
7871 	ufshcd_complete_requests(hba, true);
7872 	hba->silence_err_logs = false;
7873 
7874 	/* scale up clocks to max frequency before full reinitialization */
7875 	if (ufshcd_is_clkscaling_supported(hba))
7876 		ufshcd_scale_clks(hba, ULONG_MAX, true);
7877 
7878 	err = ufshcd_hba_enable(hba);
7879 
7880 	/* Establish the link again and restore the device */
7881 	if (!err) {
7882 		ktime_t probe_start = ktime_get();
7883 
7884 		err = ufshcd_device_init(hba, /*init_dev_params=*/false);
7885 		if (!err)
7886 			err = ufshcd_probe_hba(hba, false);
7887 		ufshcd_process_probe_result(hba, probe_start, err);
7888 	}
7889 
7890 	if (err)
7891 		dev_err(hba->dev, "%s: Host init failed %d\n", __func__, err);
7892 	ufshcd_update_evt_hist(hba, UFS_EVT_HOST_RESET, (u32)err);
7893 	return err;
7894 }
7895 
7896 /**
7897  * ufshcd_reset_and_restore - reset and re-initialize host/device
7898  * @hba: per-adapter instance
7899  *
7900  * Reset and recover device, host and re-establish link. This
7901  * is helpful to recover the communication in fatal error conditions.
7902  *
7903  * Return: zero on success, non-zero on failure.
7904  */
7905 static int ufshcd_reset_and_restore(struct ufs_hba *hba)
7906 {
7907 	u32 saved_err = 0;
7908 	u32 saved_uic_err = 0;
7909 	int err = 0;
7910 	unsigned long flags;
7911 	int retries = MAX_HOST_RESET_RETRIES;
7912 
7913 	spin_lock_irqsave(hba->host->host_lock, flags);
7914 	do {
7915 		/*
7916 		 * This is a fresh start, cache and clear saved error first,
7917 		 * in case new error generated during reset and restore.
7918 		 */
7919 		saved_err |= hba->saved_err;
7920 		saved_uic_err |= hba->saved_uic_err;
7921 		hba->saved_err = 0;
7922 		hba->saved_uic_err = 0;
7923 		hba->force_reset = false;
7924 		hba->ufshcd_state = UFSHCD_STATE_RESET;
7925 		spin_unlock_irqrestore(hba->host->host_lock, flags);
7926 
7927 		/* Reset the attached device */
7928 		ufshcd_device_reset(hba);
7929 
7930 		err = ufshcd_host_reset_and_restore(hba);
7931 
7932 		spin_lock_irqsave(hba->host->host_lock, flags);
7933 		if (err)
7934 			continue;
7935 		/* Do not exit unless operational or dead */
7936 		if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL &&
7937 		    hba->ufshcd_state != UFSHCD_STATE_ERROR &&
7938 		    hba->ufshcd_state != UFSHCD_STATE_EH_SCHEDULED_NON_FATAL)
7939 			err = -EAGAIN;
7940 	} while (err && --retries);
7941 
7942 	/*
7943 	 * Inform scsi mid-layer that we did reset and allow to handle
7944 	 * Unit Attention properly.
7945 	 */
7946 	scsi_report_bus_reset(hba->host, 0);
7947 	if (err) {
7948 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
7949 		hba->saved_err |= saved_err;
7950 		hba->saved_uic_err |= saved_uic_err;
7951 	}
7952 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7953 
7954 	return err;
7955 }
7956 
7957 /**
7958  * ufshcd_eh_host_reset_handler - host reset handler registered to scsi layer
7959  * @cmd: SCSI command pointer
7960  *
7961  * Return: SUCCESS or FAILED.
7962  */
7963 static int ufshcd_eh_host_reset_handler(struct scsi_cmnd *cmd)
7964 {
7965 	int err = SUCCESS;
7966 	unsigned long flags;
7967 	struct ufs_hba *hba;
7968 
7969 	hba = shost_priv(cmd->device->host);
7970 
7971 	/*
7972 	 * If runtime PM sent SSU and got a timeout, scsi_error_handler is
7973 	 * stuck in this function waiting for flush_work(&hba->eh_work). And
7974 	 * ufshcd_err_handler(eh_work) is stuck waiting for runtime PM. Do
7975 	 * ufshcd_link_recovery instead of eh_work to prevent deadlock.
7976 	 */
7977 	if (hba->pm_op_in_progress) {
7978 		if (ufshcd_link_recovery(hba))
7979 			err = FAILED;
7980 
7981 		return err;
7982 	}
7983 
7984 	spin_lock_irqsave(hba->host->host_lock, flags);
7985 	hba->force_reset = true;
7986 	ufshcd_schedule_eh_work(hba);
7987 	dev_err(hba->dev, "%s: reset in progress - 1\n", __func__);
7988 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7989 
7990 	flush_work(&hba->eh_work);
7991 
7992 	spin_lock_irqsave(hba->host->host_lock, flags);
7993 	if (hba->ufshcd_state == UFSHCD_STATE_ERROR)
7994 		err = FAILED;
7995 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7996 
7997 	return err;
7998 }
7999 
8000 /**
8001  * ufshcd_get_max_icc_level - calculate the ICC level
8002  * @sup_curr_uA: max. current supported by the regulator
8003  * @start_scan: row at the desc table to start scan from
8004  * @buff: power descriptor buffer
8005  *
8006  * Return: calculated max ICC level for specific regulator.
8007  */
8008 static u32 ufshcd_get_max_icc_level(int sup_curr_uA, u32 start_scan,
8009 				    const char *buff)
8010 {
8011 	int i;
8012 	int curr_uA;
8013 	u16 data;
8014 	u16 unit;
8015 
8016 	for (i = start_scan; i >= 0; i--) {
8017 		data = get_unaligned_be16(&buff[2 * i]);
8018 		unit = (data & ATTR_ICC_LVL_UNIT_MASK) >>
8019 						ATTR_ICC_LVL_UNIT_OFFSET;
8020 		curr_uA = data & ATTR_ICC_LVL_VALUE_MASK;
8021 		switch (unit) {
8022 		case UFSHCD_NANO_AMP:
8023 			curr_uA = curr_uA / 1000;
8024 			break;
8025 		case UFSHCD_MILI_AMP:
8026 			curr_uA = curr_uA * 1000;
8027 			break;
8028 		case UFSHCD_AMP:
8029 			curr_uA = curr_uA * 1000 * 1000;
8030 			break;
8031 		case UFSHCD_MICRO_AMP:
8032 		default:
8033 			break;
8034 		}
8035 		if (sup_curr_uA >= curr_uA)
8036 			break;
8037 	}
8038 	if (i < 0) {
8039 		i = 0;
8040 		pr_err("%s: Couldn't find valid icc_level = %d", __func__, i);
8041 	}
8042 
8043 	return (u32)i;
8044 }
8045 
8046 /**
8047  * ufshcd_find_max_sup_active_icc_level - calculate the max ICC level
8048  * In case regulators are not initialized we'll return 0
8049  * @hba: per-adapter instance
8050  * @desc_buf: power descriptor buffer to extract ICC levels from.
8051  *
8052  * Return: calculated ICC level.
8053  */
8054 static u32 ufshcd_find_max_sup_active_icc_level(struct ufs_hba *hba,
8055 						const u8 *desc_buf)
8056 {
8057 	u32 icc_level = 0;
8058 
8059 	if (!hba->vreg_info.vcc || !hba->vreg_info.vccq ||
8060 						!hba->vreg_info.vccq2) {
8061 		/*
8062 		 * Using dev_dbg to avoid messages during runtime PM to avoid
8063 		 * never-ending cycles of messages written back to storage by
8064 		 * user space causing runtime resume, causing more messages and
8065 		 * so on.
8066 		 */
8067 		dev_dbg(hba->dev,
8068 			"%s: Regulator capability was not set, actvIccLevel=%d",
8069 							__func__, icc_level);
8070 		goto out;
8071 	}
8072 
8073 	if (hba->vreg_info.vcc->max_uA)
8074 		icc_level = ufshcd_get_max_icc_level(
8075 				hba->vreg_info.vcc->max_uA,
8076 				POWER_DESC_MAX_ACTV_ICC_LVLS - 1,
8077 				&desc_buf[PWR_DESC_ACTIVE_LVLS_VCC_0]);
8078 
8079 	if (hba->vreg_info.vccq->max_uA)
8080 		icc_level = ufshcd_get_max_icc_level(
8081 				hba->vreg_info.vccq->max_uA,
8082 				icc_level,
8083 				&desc_buf[PWR_DESC_ACTIVE_LVLS_VCCQ_0]);
8084 
8085 	if (hba->vreg_info.vccq2->max_uA)
8086 		icc_level = ufshcd_get_max_icc_level(
8087 				hba->vreg_info.vccq2->max_uA,
8088 				icc_level,
8089 				&desc_buf[PWR_DESC_ACTIVE_LVLS_VCCQ2_0]);
8090 out:
8091 	return icc_level;
8092 }
8093 
8094 static void ufshcd_set_active_icc_lvl(struct ufs_hba *hba)
8095 {
8096 	int ret;
8097 	u8 *desc_buf;
8098 	u32 icc_level;
8099 
8100 	desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
8101 	if (!desc_buf)
8102 		return;
8103 
8104 	ret = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_POWER, 0, 0,
8105 				     desc_buf, QUERY_DESC_MAX_SIZE);
8106 	if (ret) {
8107 		dev_err(hba->dev,
8108 			"%s: Failed reading power descriptor ret = %d",
8109 			__func__, ret);
8110 		goto out;
8111 	}
8112 
8113 	icc_level = ufshcd_find_max_sup_active_icc_level(hba, desc_buf);
8114 	dev_dbg(hba->dev, "%s: setting icc_level 0x%x", __func__, icc_level);
8115 
8116 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
8117 		QUERY_ATTR_IDN_ACTIVE_ICC_LVL, 0, 0, &icc_level);
8118 
8119 	if (ret)
8120 		dev_err(hba->dev,
8121 			"%s: Failed configuring bActiveICCLevel = %d ret = %d",
8122 			__func__, icc_level, ret);
8123 
8124 out:
8125 	kfree(desc_buf);
8126 }
8127 
8128 static inline void ufshcd_blk_pm_runtime_init(struct scsi_device *sdev)
8129 {
8130 	struct Scsi_Host *shost = sdev->host;
8131 
8132 	scsi_autopm_get_device(sdev);
8133 	blk_pm_runtime_init(sdev->request_queue, &sdev->sdev_gendev);
8134 	if (sdev->rpm_autosuspend)
8135 		pm_runtime_set_autosuspend_delay(&sdev->sdev_gendev,
8136 						 shost->rpm_autosuspend_delay);
8137 	scsi_autopm_put_device(sdev);
8138 }
8139 
8140 /**
8141  * ufshcd_scsi_add_wlus - Adds required W-LUs
8142  * @hba: per-adapter instance
8143  *
8144  * UFS device specification requires the UFS devices to support 4 well known
8145  * logical units:
8146  *	"REPORT_LUNS" (address: 01h)
8147  *	"UFS Device" (address: 50h)
8148  *	"RPMB" (address: 44h)
8149  *	"BOOT" (address: 30h)
8150  * UFS device's power management needs to be controlled by "POWER CONDITION"
8151  * field of SSU (START STOP UNIT) command. But this "power condition" field
8152  * will take effect only when its sent to "UFS device" well known logical unit
8153  * hence we require the scsi_device instance to represent this logical unit in
8154  * order for the UFS host driver to send the SSU command for power management.
8155  *
8156  * We also require the scsi_device instance for "RPMB" (Replay Protected Memory
8157  * Block) LU so user space process can control this LU. User space may also
8158  * want to have access to BOOT LU.
8159  *
8160  * This function adds scsi device instances for each of all well known LUs
8161  * (except "REPORT LUNS" LU).
8162  *
8163  * Return: zero on success (all required W-LUs are added successfully),
8164  * non-zero error value on failure (if failed to add any of the required W-LU).
8165  */
8166 static int ufshcd_scsi_add_wlus(struct ufs_hba *hba)
8167 {
8168 	int ret = 0;
8169 	struct scsi_device *sdev_boot, *sdev_rpmb;
8170 
8171 	hba->ufs_device_wlun = __scsi_add_device(hba->host, 0, 0,
8172 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_UFS_DEVICE_WLUN), NULL);
8173 	if (IS_ERR(hba->ufs_device_wlun)) {
8174 		ret = PTR_ERR(hba->ufs_device_wlun);
8175 		hba->ufs_device_wlun = NULL;
8176 		goto out;
8177 	}
8178 	scsi_device_put(hba->ufs_device_wlun);
8179 
8180 	sdev_rpmb = __scsi_add_device(hba->host, 0, 0,
8181 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_RPMB_WLUN), NULL);
8182 	if (IS_ERR(sdev_rpmb)) {
8183 		ret = PTR_ERR(sdev_rpmb);
8184 		goto remove_ufs_device_wlun;
8185 	}
8186 	ufshcd_blk_pm_runtime_init(sdev_rpmb);
8187 	scsi_device_put(sdev_rpmb);
8188 
8189 	sdev_boot = __scsi_add_device(hba->host, 0, 0,
8190 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_BOOT_WLUN), NULL);
8191 	if (IS_ERR(sdev_boot)) {
8192 		dev_err(hba->dev, "%s: BOOT WLUN not found\n", __func__);
8193 	} else {
8194 		ufshcd_blk_pm_runtime_init(sdev_boot);
8195 		scsi_device_put(sdev_boot);
8196 	}
8197 	goto out;
8198 
8199 remove_ufs_device_wlun:
8200 	scsi_remove_device(hba->ufs_device_wlun);
8201 out:
8202 	return ret;
8203 }
8204 
8205 static void ufshcd_wb_probe(struct ufs_hba *hba, const u8 *desc_buf)
8206 {
8207 	struct ufs_dev_info *dev_info = &hba->dev_info;
8208 	u8 lun;
8209 	u32 d_lu_wb_buf_alloc;
8210 	u32 ext_ufs_feature;
8211 
8212 	if (!ufshcd_is_wb_allowed(hba))
8213 		return;
8214 
8215 	/*
8216 	 * Probe WB only for UFS-2.2 and UFS-3.1 (and later) devices or
8217 	 * UFS devices with quirk UFS_DEVICE_QUIRK_SUPPORT_EXTENDED_FEATURES
8218 	 * enabled
8219 	 */
8220 	if (!(dev_info->wspecversion >= 0x310 ||
8221 	      dev_info->wspecversion == 0x220 ||
8222 	     (hba->dev_quirks & UFS_DEVICE_QUIRK_SUPPORT_EXTENDED_FEATURES)))
8223 		goto wb_disabled;
8224 
8225 	ext_ufs_feature = get_unaligned_be32(desc_buf +
8226 					DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
8227 
8228 	if (!(ext_ufs_feature & UFS_DEV_WRITE_BOOSTER_SUP))
8229 		goto wb_disabled;
8230 
8231 	/*
8232 	 * WB may be supported but not configured while provisioning. The spec
8233 	 * says, in dedicated wb buffer mode, a max of 1 lun would have wb
8234 	 * buffer configured.
8235 	 */
8236 	dev_info->wb_buffer_type = desc_buf[DEVICE_DESC_PARAM_WB_TYPE];
8237 
8238 	dev_info->ext_wb_sup =  get_unaligned_be16(desc_buf +
8239 						DEVICE_DESC_PARAM_EXT_WB_SUP);
8240 
8241 	dev_info->b_presrv_uspc_en =
8242 		desc_buf[DEVICE_DESC_PARAM_WB_PRESRV_USRSPC_EN];
8243 
8244 	if (dev_info->wb_buffer_type == WB_BUF_MODE_SHARED) {
8245 		if (!get_unaligned_be32(desc_buf +
8246 				   DEVICE_DESC_PARAM_WB_SHARED_ALLOC_UNITS))
8247 			goto wb_disabled;
8248 	} else {
8249 		for (lun = 0; lun < UFS_UPIU_MAX_WB_LUN_ID; lun++) {
8250 			d_lu_wb_buf_alloc = 0;
8251 			ufshcd_read_unit_desc_param(hba,
8252 					lun,
8253 					UNIT_DESC_PARAM_WB_BUF_ALLOC_UNITS,
8254 					(u8 *)&d_lu_wb_buf_alloc,
8255 					sizeof(d_lu_wb_buf_alloc));
8256 			if (d_lu_wb_buf_alloc) {
8257 				dev_info->wb_dedicated_lu = lun;
8258 				break;
8259 			}
8260 		}
8261 
8262 		if (!d_lu_wb_buf_alloc)
8263 			goto wb_disabled;
8264 	}
8265 
8266 	if (!ufshcd_is_wb_buf_lifetime_available(hba))
8267 		goto wb_disabled;
8268 
8269 	return;
8270 
8271 wb_disabled:
8272 	hba->caps &= ~UFSHCD_CAP_WB_EN;
8273 }
8274 
8275 static void ufshcd_temp_notif_probe(struct ufs_hba *hba, const u8 *desc_buf)
8276 {
8277 	struct ufs_dev_info *dev_info = &hba->dev_info;
8278 	u32 ext_ufs_feature;
8279 	u8 mask = 0;
8280 
8281 	if (!(hba->caps & UFSHCD_CAP_TEMP_NOTIF) || dev_info->wspecversion < 0x300)
8282 		return;
8283 
8284 	ext_ufs_feature = get_unaligned_be32(desc_buf + DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
8285 
8286 	if (ext_ufs_feature & UFS_DEV_LOW_TEMP_NOTIF)
8287 		mask |= MASK_EE_TOO_LOW_TEMP;
8288 
8289 	if (ext_ufs_feature & UFS_DEV_HIGH_TEMP_NOTIF)
8290 		mask |= MASK_EE_TOO_HIGH_TEMP;
8291 
8292 	if (mask) {
8293 		ufshcd_enable_ee(hba, mask);
8294 		ufs_hwmon_probe(hba, mask);
8295 	}
8296 }
8297 
8298 static void ufshcd_device_lvl_exception_probe(struct ufs_hba *hba, u8 *desc_buf)
8299 {
8300 	u32 ext_ufs_feature;
8301 
8302 	if (hba->dev_info.wspecversion < 0x410)
8303 		return;
8304 
8305 	ext_ufs_feature = get_unaligned_be32(desc_buf +
8306 				DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
8307 	if (!(ext_ufs_feature & UFS_DEV_LVL_EXCEPTION_SUP))
8308 		return;
8309 
8310 	atomic_set(&hba->dev_lvl_exception_count, 0);
8311 	ufshcd_enable_ee(hba, MASK_EE_DEV_LVL_EXCEPTION);
8312 }
8313 
8314 static void ufshcd_set_rtt(struct ufs_hba *hba)
8315 {
8316 	struct ufs_dev_info *dev_info = &hba->dev_info;
8317 	u32 rtt = 0;
8318 	u32 dev_rtt = 0;
8319 	int host_rtt_cap = hba->vops && hba->vops->max_num_rtt ?
8320 			   hba->vops->max_num_rtt : hba->nortt;
8321 
8322 	/* RTT override makes sense only for UFS-4.0 and above */
8323 	if (dev_info->wspecversion < 0x400)
8324 		return;
8325 
8326 	if (ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
8327 				    QUERY_ATTR_IDN_MAX_NUM_OF_RTT, 0, 0, &dev_rtt)) {
8328 		dev_err(hba->dev, "failed reading bMaxNumOfRTT\n");
8329 		return;
8330 	}
8331 
8332 	/* do not override if it was already written */
8333 	if (dev_rtt != DEFAULT_MAX_NUM_RTT)
8334 		return;
8335 
8336 	rtt = min_t(int, dev_info->rtt_cap, host_rtt_cap);
8337 
8338 	if (rtt == dev_rtt)
8339 		return;
8340 
8341 	if (ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
8342 				    QUERY_ATTR_IDN_MAX_NUM_OF_RTT, 0, 0, &rtt))
8343 		dev_err(hba->dev, "failed writing bMaxNumOfRTT\n");
8344 }
8345 
8346 void ufshcd_fixup_dev_quirks(struct ufs_hba *hba,
8347 			     const struct ufs_dev_quirk *fixups)
8348 {
8349 	const struct ufs_dev_quirk *f;
8350 	struct ufs_dev_info *dev_info = &hba->dev_info;
8351 
8352 	if (!fixups)
8353 		return;
8354 
8355 	for (f = fixups; f->quirk; f++) {
8356 		if ((f->wmanufacturerid == dev_info->wmanufacturerid ||
8357 		     f->wmanufacturerid == UFS_ANY_VENDOR) &&
8358 		     ((dev_info->model &&
8359 		       STR_PRFX_EQUAL(f->model, dev_info->model)) ||
8360 		      !strcmp(f->model, UFS_ANY_MODEL)))
8361 			hba->dev_quirks |= f->quirk;
8362 	}
8363 }
8364 EXPORT_SYMBOL_GPL(ufshcd_fixup_dev_quirks);
8365 
8366 static void ufs_fixup_device_setup(struct ufs_hba *hba)
8367 {
8368 	/* fix by general quirk table */
8369 	ufshcd_fixup_dev_quirks(hba, ufs_fixups);
8370 
8371 	/* allow vendors to fix quirks */
8372 	ufshcd_vops_fixup_dev_quirks(hba);
8373 }
8374 
8375 static void ufshcd_update_rtc(struct ufs_hba *hba)
8376 {
8377 	struct timespec64 ts64;
8378 	int err;
8379 	u32 val;
8380 
8381 	ktime_get_real_ts64(&ts64);
8382 
8383 	if (ts64.tv_sec < hba->dev_info.rtc_time_baseline) {
8384 		dev_warn_once(hba->dev, "%s: Current time precedes previous setting!\n", __func__);
8385 		return;
8386 	}
8387 
8388 	/*
8389 	 * The Absolute RTC mode has a 136-year limit, spanning from 2010 to 2146. If a time beyond
8390 	 * 2146 is required, it is recommended to choose the relative RTC mode.
8391 	 */
8392 	val = ts64.tv_sec - hba->dev_info.rtc_time_baseline;
8393 
8394 	/* Skip update RTC if RPM state is not RPM_ACTIVE */
8395 	if (ufshcd_rpm_get_if_active(hba) <= 0)
8396 		return;
8397 
8398 	err = ufshcd_query_attr(hba, UPIU_QUERY_OPCODE_WRITE_ATTR, QUERY_ATTR_IDN_SECONDS_PASSED,
8399 				0, 0, &val);
8400 	ufshcd_rpm_put(hba);
8401 
8402 	if (err)
8403 		dev_err(hba->dev, "%s: Failed to update rtc %d\n", __func__, err);
8404 	else if (hba->dev_info.rtc_type == UFS_RTC_RELATIVE)
8405 		hba->dev_info.rtc_time_baseline = ts64.tv_sec;
8406 }
8407 
8408 static void ufshcd_rtc_work(struct work_struct *work)
8409 {
8410 	struct ufs_hba *hba;
8411 
8412 	hba = container_of(to_delayed_work(work), struct ufs_hba, ufs_rtc_update_work);
8413 
8414 	 /* Update RTC only when there are no requests in progress and UFSHCI is operational */
8415 	if (!ufshcd_is_ufs_dev_busy(hba) &&
8416 	    hba->ufshcd_state == UFSHCD_STATE_OPERATIONAL &&
8417 	    !hba->clk_gating.active_reqs)
8418 		ufshcd_update_rtc(hba);
8419 
8420 	if (ufshcd_is_ufs_dev_active(hba) && hba->dev_info.rtc_update_period)
8421 		schedule_delayed_work(&hba->ufs_rtc_update_work,
8422 				      msecs_to_jiffies(hba->dev_info.rtc_update_period));
8423 }
8424 
8425 static void ufs_init_rtc(struct ufs_hba *hba, u8 *desc_buf)
8426 {
8427 	u16 periodic_rtc_update = get_unaligned_be16(&desc_buf[DEVICE_DESC_PARAM_FRQ_RTC]);
8428 	struct ufs_dev_info *dev_info = &hba->dev_info;
8429 
8430 	if (periodic_rtc_update & UFS_RTC_TIME_BASELINE) {
8431 		dev_info->rtc_type = UFS_RTC_ABSOLUTE;
8432 
8433 		/*
8434 		 * The concept of measuring time in Linux as the number of seconds elapsed since
8435 		 * 00:00:00 UTC on January 1, 1970, and UFS ABS RTC is elapsed from January 1st
8436 		 * 2010 00:00, here we need to adjust ABS baseline.
8437 		 */
8438 		dev_info->rtc_time_baseline = mktime64(2010, 1, 1, 0, 0, 0) -
8439 							mktime64(1970, 1, 1, 0, 0, 0);
8440 	} else {
8441 		dev_info->rtc_type = UFS_RTC_RELATIVE;
8442 		dev_info->rtc_time_baseline = 0;
8443 	}
8444 
8445 	/*
8446 	 * We ignore TIME_PERIOD defined in wPeriodicRTCUpdate because Spec does not clearly state
8447 	 * how to calculate the specific update period for each time unit. And we disable periodic
8448 	 * RTC update work, let user configure by sysfs node according to specific circumstance.
8449 	 */
8450 	dev_info->rtc_update_period = 0;
8451 }
8452 
8453 static int ufs_get_device_desc(struct ufs_hba *hba)
8454 {
8455 	int err;
8456 	u8 model_index;
8457 	u8 *desc_buf;
8458 	struct ufs_dev_info *dev_info = &hba->dev_info;
8459 
8460 	desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
8461 	if (!desc_buf) {
8462 		err = -ENOMEM;
8463 		goto out;
8464 	}
8465 
8466 	err = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_DEVICE, 0, 0, desc_buf,
8467 				     QUERY_DESC_MAX_SIZE);
8468 	if (err) {
8469 		dev_err(hba->dev, "%s: Failed reading Device Desc. err = %d\n",
8470 			__func__, err);
8471 		goto out;
8472 	}
8473 
8474 	/*
8475 	 * getting vendor (manufacturerID) and Bank Index in big endian
8476 	 * format
8477 	 */
8478 	dev_info->wmanufacturerid = desc_buf[DEVICE_DESC_PARAM_MANF_ID] << 8 |
8479 				     desc_buf[DEVICE_DESC_PARAM_MANF_ID + 1];
8480 
8481 	/* getting Specification Version in big endian format */
8482 	dev_info->wspecversion = desc_buf[DEVICE_DESC_PARAM_SPEC_VER] << 8 |
8483 				      desc_buf[DEVICE_DESC_PARAM_SPEC_VER + 1];
8484 	dev_info->bqueuedepth = desc_buf[DEVICE_DESC_PARAM_Q_DPTH];
8485 
8486 	dev_info->rtt_cap = desc_buf[DEVICE_DESC_PARAM_RTT_CAP];
8487 
8488 	dev_info->hid_sup = get_unaligned_be32(desc_buf +
8489 				DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP) &
8490 				UFS_DEV_HID_SUPPORT;
8491 
8492 	model_index = desc_buf[DEVICE_DESC_PARAM_PRDCT_NAME];
8493 
8494 	err = ufshcd_read_string_desc(hba, model_index,
8495 				      &dev_info->model, SD_ASCII_STD);
8496 	if (err < 0) {
8497 		dev_err(hba->dev, "%s: Failed reading Product Name. err = %d\n",
8498 			__func__, err);
8499 		goto out;
8500 	}
8501 
8502 	hba->luns_avail = desc_buf[DEVICE_DESC_PARAM_NUM_LU] +
8503 		desc_buf[DEVICE_DESC_PARAM_NUM_WLU];
8504 
8505 	ufs_fixup_device_setup(hba);
8506 
8507 	ufshcd_wb_probe(hba, desc_buf);
8508 
8509 	ufshcd_temp_notif_probe(hba, desc_buf);
8510 
8511 	if (dev_info->wspecversion >= 0x410) {
8512 		hba->critical_health_count = 0;
8513 		ufshcd_enable_ee(hba, MASK_EE_HEALTH_CRITICAL);
8514 	}
8515 
8516 	ufs_init_rtc(hba, desc_buf);
8517 
8518 	ufshcd_device_lvl_exception_probe(hba, desc_buf);
8519 
8520 	/*
8521 	 * ufshcd_read_string_desc returns size of the string
8522 	 * reset the error value
8523 	 */
8524 	err = 0;
8525 
8526 out:
8527 	kfree(desc_buf);
8528 	return err;
8529 }
8530 
8531 static void ufs_put_device_desc(struct ufs_hba *hba)
8532 {
8533 	struct ufs_dev_info *dev_info = &hba->dev_info;
8534 
8535 	kfree(dev_info->model);
8536 	dev_info->model = NULL;
8537 }
8538 
8539 /**
8540  * ufshcd_quirk_tune_host_pa_tactivate - Ensures that host PA_TACTIVATE is
8541  * less than device PA_TACTIVATE time.
8542  * @hba: per-adapter instance
8543  *
8544  * Some UFS devices require host PA_TACTIVATE to be lower than device
8545  * PA_TACTIVATE, we need to enable UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE quirk
8546  * for such devices.
8547  *
8548  * Return: zero on success, non-zero error value on failure.
8549  */
8550 static int ufshcd_quirk_tune_host_pa_tactivate(struct ufs_hba *hba)
8551 {
8552 	int ret = 0;
8553 	u32 granularity, peer_granularity;
8554 	u32 pa_tactivate, peer_pa_tactivate;
8555 	u32 pa_tactivate_us, peer_pa_tactivate_us;
8556 	static const u8 gran_to_us_table[] = {1, 4, 8, 16, 32, 100};
8557 
8558 	ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_GRANULARITY),
8559 				  &granularity);
8560 	if (ret)
8561 		goto out;
8562 
8563 	ret = ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_GRANULARITY),
8564 				  &peer_granularity);
8565 	if (ret)
8566 		goto out;
8567 
8568 	if ((granularity < PA_GRANULARITY_MIN_VAL) ||
8569 	    (granularity > PA_GRANULARITY_MAX_VAL)) {
8570 		dev_err(hba->dev, "%s: invalid host PA_GRANULARITY %d",
8571 			__func__, granularity);
8572 		return -EINVAL;
8573 	}
8574 
8575 	if ((peer_granularity < PA_GRANULARITY_MIN_VAL) ||
8576 	    (peer_granularity > PA_GRANULARITY_MAX_VAL)) {
8577 		dev_err(hba->dev, "%s: invalid device PA_GRANULARITY %d",
8578 			__func__, peer_granularity);
8579 		return -EINVAL;
8580 	}
8581 
8582 	ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_TACTIVATE), &pa_tactivate);
8583 	if (ret)
8584 		goto out;
8585 
8586 	ret = ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_TACTIVATE),
8587 				  &peer_pa_tactivate);
8588 	if (ret)
8589 		goto out;
8590 
8591 	pa_tactivate_us = pa_tactivate * gran_to_us_table[granularity - 1];
8592 	peer_pa_tactivate_us = peer_pa_tactivate *
8593 			     gran_to_us_table[peer_granularity - 1];
8594 
8595 	if (pa_tactivate_us >= peer_pa_tactivate_us) {
8596 		u32 new_peer_pa_tactivate;
8597 
8598 		new_peer_pa_tactivate = pa_tactivate_us /
8599 				      gran_to_us_table[peer_granularity - 1];
8600 		new_peer_pa_tactivate++;
8601 		ret = ufshcd_dme_peer_set(hba, UIC_ARG_MIB(PA_TACTIVATE),
8602 					  new_peer_pa_tactivate);
8603 	}
8604 
8605 out:
8606 	return ret;
8607 }
8608 
8609 /**
8610  * ufshcd_quirk_override_pa_h8time - Ensures proper adjustment of PA_HIBERN8TIME.
8611  * @hba: per-adapter instance
8612  *
8613  * Some UFS devices require specific adjustments to the PA_HIBERN8TIME parameter
8614  * to ensure proper hibernation timing. This function retrieves the current
8615  * PA_HIBERN8TIME value and increments it by 100us.
8616  */
8617 static void ufshcd_quirk_override_pa_h8time(struct ufs_hba *hba)
8618 {
8619 	u32 pa_h8time;
8620 	int ret;
8621 
8622 	ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_HIBERN8TIME), &pa_h8time);
8623 	if (ret) {
8624 		dev_err(hba->dev, "Failed to get PA_HIBERN8TIME: %d\n", ret);
8625 		return;
8626 	}
8627 
8628 	/* Increment by 1 to increase hibernation time by 100 µs */
8629 	ret = ufshcd_dme_set(hba, UIC_ARG_MIB(PA_HIBERN8TIME), pa_h8time + 1);
8630 	if (ret)
8631 		dev_err(hba->dev, "Failed updating PA_HIBERN8TIME: %d\n", ret);
8632 }
8633 
8634 static void ufshcd_tune_unipro_params(struct ufs_hba *hba)
8635 {
8636 	ufshcd_vops_apply_dev_quirks(hba);
8637 
8638 	if (hba->dev_quirks & UFS_DEVICE_QUIRK_PA_TACTIVATE)
8639 		/* set 1ms timeout for PA_TACTIVATE */
8640 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TACTIVATE), 10);
8641 
8642 	if (hba->dev_quirks & UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE)
8643 		ufshcd_quirk_tune_host_pa_tactivate(hba);
8644 
8645 	if (hba->dev_quirks & UFS_DEVICE_QUIRK_PA_HIBER8TIME)
8646 		ufshcd_quirk_override_pa_h8time(hba);
8647 }
8648 
8649 static void ufshcd_clear_dbg_ufs_stats(struct ufs_hba *hba)
8650 {
8651 	hba->ufs_stats.hibern8_exit_cnt = 0;
8652 	hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
8653 	hba->req_abort_count = 0;
8654 }
8655 
8656 static int ufshcd_device_geo_params_init(struct ufs_hba *hba)
8657 {
8658 	int err;
8659 	u8 *desc_buf;
8660 
8661 	desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
8662 	if (!desc_buf) {
8663 		err = -ENOMEM;
8664 		goto out;
8665 	}
8666 
8667 	err = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_GEOMETRY, 0, 0,
8668 				     desc_buf, QUERY_DESC_MAX_SIZE);
8669 	if (err) {
8670 		dev_err(hba->dev, "%s: Failed reading Geometry Desc. err = %d\n",
8671 				__func__, err);
8672 		goto out;
8673 	}
8674 
8675 	if (desc_buf[GEOMETRY_DESC_PARAM_MAX_NUM_LUN] == 1)
8676 		hba->dev_info.max_lu_supported = 32;
8677 	else if (desc_buf[GEOMETRY_DESC_PARAM_MAX_NUM_LUN] == 0)
8678 		hba->dev_info.max_lu_supported = 8;
8679 
8680 out:
8681 	kfree(desc_buf);
8682 	return err;
8683 }
8684 
8685 struct ufs_ref_clk {
8686 	unsigned long freq_hz;
8687 	enum ufs_ref_clk_freq val;
8688 };
8689 
8690 static const struct ufs_ref_clk ufs_ref_clk_freqs[] = {
8691 	{19200000, REF_CLK_FREQ_19_2_MHZ},
8692 	{26000000, REF_CLK_FREQ_26_MHZ},
8693 	{38400000, REF_CLK_FREQ_38_4_MHZ},
8694 	{52000000, REF_CLK_FREQ_52_MHZ},
8695 	{0, REF_CLK_FREQ_INVAL},
8696 };
8697 
8698 static enum ufs_ref_clk_freq
8699 ufs_get_bref_clk_from_hz(unsigned long freq)
8700 {
8701 	int i;
8702 
8703 	for (i = 0; ufs_ref_clk_freqs[i].freq_hz; i++)
8704 		if (ufs_ref_clk_freqs[i].freq_hz == freq)
8705 			return ufs_ref_clk_freqs[i].val;
8706 
8707 	return REF_CLK_FREQ_INVAL;
8708 }
8709 
8710 void ufshcd_parse_dev_ref_clk_freq(struct ufs_hba *hba, struct clk *refclk)
8711 {
8712 	unsigned long freq;
8713 
8714 	freq = clk_get_rate(refclk);
8715 
8716 	hba->dev_ref_clk_freq =
8717 		ufs_get_bref_clk_from_hz(freq);
8718 
8719 	if (hba->dev_ref_clk_freq == REF_CLK_FREQ_INVAL)
8720 		dev_err(hba->dev,
8721 		"invalid ref_clk setting = %ld\n", freq);
8722 }
8723 
8724 static int ufshcd_set_dev_ref_clk(struct ufs_hba *hba)
8725 {
8726 	int err;
8727 	u32 ref_clk;
8728 	u32 freq = hba->dev_ref_clk_freq;
8729 
8730 	err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
8731 			QUERY_ATTR_IDN_REF_CLK_FREQ, 0, 0, &ref_clk);
8732 
8733 	if (err) {
8734 		dev_err(hba->dev, "failed reading bRefClkFreq. err = %d\n",
8735 			err);
8736 		goto out;
8737 	}
8738 
8739 	if (ref_clk == freq)
8740 		goto out; /* nothing to update */
8741 
8742 	err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
8743 			QUERY_ATTR_IDN_REF_CLK_FREQ, 0, 0, &freq);
8744 
8745 	if (err) {
8746 		dev_err(hba->dev, "bRefClkFreq setting to %lu Hz failed\n",
8747 			ufs_ref_clk_freqs[freq].freq_hz);
8748 		goto out;
8749 	}
8750 
8751 	dev_dbg(hba->dev, "bRefClkFreq setting to %lu Hz succeeded\n",
8752 			ufs_ref_clk_freqs[freq].freq_hz);
8753 
8754 out:
8755 	return err;
8756 }
8757 
8758 static int ufshcd_device_params_init(struct ufs_hba *hba)
8759 {
8760 	bool flag;
8761 	int ret;
8762 
8763 	/* Init UFS geometry descriptor related parameters */
8764 	ret = ufshcd_device_geo_params_init(hba);
8765 	if (ret)
8766 		goto out;
8767 
8768 	/* Check and apply UFS device quirks */
8769 	ret = ufs_get_device_desc(hba);
8770 	if (ret) {
8771 		dev_err(hba->dev, "%s: Failed getting device info. err = %d\n",
8772 			__func__, ret);
8773 		goto out;
8774 	}
8775 
8776 	ufshcd_set_rtt(hba);
8777 
8778 	ufshcd_get_ref_clk_gating_wait(hba);
8779 
8780 	if (!ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_READ_FLAG,
8781 			QUERY_FLAG_IDN_PWR_ON_WPE, 0, &flag))
8782 		hba->dev_info.f_power_on_wp_en = flag;
8783 
8784 	/* Probe maximum power mode co-supported by both UFS host and device */
8785 	if (ufshcd_get_max_pwr_mode(hba))
8786 		dev_err(hba->dev,
8787 			"%s: Failed getting max supported power mode\n",
8788 			__func__);
8789 out:
8790 	return ret;
8791 }
8792 
8793 static void ufshcd_set_timestamp_attr(struct ufs_hba *hba)
8794 {
8795 	int err;
8796 	struct ufs_query_req *request = NULL;
8797 	struct ufs_query_res *response = NULL;
8798 	struct ufs_dev_info *dev_info = &hba->dev_info;
8799 	struct utp_upiu_query_v4_0 *upiu_data;
8800 
8801 	if (dev_info->wspecversion < 0x400 ||
8802 	    hba->dev_quirks & UFS_DEVICE_QUIRK_NO_TIMESTAMP_SUPPORT)
8803 		return;
8804 
8805 	ufshcd_dev_man_lock(hba);
8806 
8807 	ufshcd_init_query(hba, &request, &response,
8808 			  UPIU_QUERY_OPCODE_WRITE_ATTR,
8809 			  QUERY_ATTR_IDN_TIMESTAMP, 0, 0);
8810 
8811 	request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
8812 
8813 	upiu_data = (struct utp_upiu_query_v4_0 *)&request->upiu_req;
8814 
8815 	put_unaligned_be64(ktime_get_real_ns(), &upiu_data->osf3);
8816 
8817 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, dev_cmd_timeout);
8818 
8819 	if (err)
8820 		dev_err(hba->dev, "%s: failed to set timestamp %d\n",
8821 			__func__, err);
8822 
8823 	ufshcd_dev_man_unlock(hba);
8824 }
8825 
8826 /**
8827  * ufshcd_add_lus - probe and add UFS logical units
8828  * @hba: per-adapter instance
8829  *
8830  * Return: 0 upon success; < 0 upon failure.
8831  */
8832 static int ufshcd_add_lus(struct ufs_hba *hba)
8833 {
8834 	int ret;
8835 
8836 	/* Add required well known logical units to scsi mid layer */
8837 	ret = ufshcd_scsi_add_wlus(hba);
8838 	if (ret)
8839 		goto out;
8840 
8841 	/* Initialize devfreq after UFS device is detected */
8842 	if (ufshcd_is_clkscaling_supported(hba)) {
8843 		memcpy(&hba->clk_scaling.saved_pwr_info,
8844 			&hba->pwr_info,
8845 			sizeof(struct ufs_pa_layer_attr));
8846 		hba->clk_scaling.is_allowed = true;
8847 
8848 		ret = ufshcd_devfreq_init(hba);
8849 		if (ret)
8850 			goto out;
8851 
8852 		hba->clk_scaling.is_enabled = true;
8853 		ufshcd_init_clk_scaling_sysfs(hba);
8854 	}
8855 
8856 	/*
8857 	 * The RTC update code accesses the hba->ufs_device_wlun->sdev_gendev
8858 	 * pointer and hence must only be started after the WLUN pointer has
8859 	 * been initialized by ufshcd_scsi_add_wlus().
8860 	 */
8861 	schedule_delayed_work(&hba->ufs_rtc_update_work,
8862 			      msecs_to_jiffies(UFS_RTC_UPDATE_INTERVAL_MS));
8863 
8864 	ufs_bsg_probe(hba);
8865 	scsi_scan_host(hba->host);
8866 
8867 out:
8868 	return ret;
8869 }
8870 
8871 /* SDB - Single Doorbell */
8872 static void ufshcd_release_sdb_queue(struct ufs_hba *hba, int nutrs)
8873 {
8874 	size_t ucdl_size, utrdl_size;
8875 
8876 	ucdl_size = ufshcd_get_ucd_size(hba) * nutrs;
8877 	dmam_free_coherent(hba->dev, ucdl_size, hba->ucdl_base_addr,
8878 			   hba->ucdl_dma_addr);
8879 
8880 	utrdl_size = sizeof(struct utp_transfer_req_desc) * nutrs;
8881 	dmam_free_coherent(hba->dev, utrdl_size, hba->utrdl_base_addr,
8882 			   hba->utrdl_dma_addr);
8883 
8884 	devm_kfree(hba->dev, hba->lrb);
8885 }
8886 
8887 static int ufshcd_alloc_mcq(struct ufs_hba *hba)
8888 {
8889 	int ret;
8890 	int old_nutrs = hba->nutrs;
8891 
8892 	ret = ufshcd_mcq_decide_queue_depth(hba);
8893 	if (ret < 0)
8894 		return ret;
8895 
8896 	hba->nutrs = ret;
8897 	ret = ufshcd_mcq_init(hba);
8898 	if (ret)
8899 		goto err;
8900 
8901 	/*
8902 	 * Previously allocated memory for nutrs may not be enough in MCQ mode.
8903 	 * Number of supported tags in MCQ mode may be larger than SDB mode.
8904 	 */
8905 	if (hba->nutrs != old_nutrs) {
8906 		ufshcd_release_sdb_queue(hba, old_nutrs);
8907 		ret = ufshcd_memory_alloc(hba);
8908 		if (ret)
8909 			goto err;
8910 		ufshcd_host_memory_configure(hba);
8911 	}
8912 
8913 	ret = ufshcd_mcq_memory_alloc(hba);
8914 	if (ret)
8915 		goto err;
8916 
8917 	hba->host->can_queue = hba->nutrs - UFSHCD_NUM_RESERVED;
8918 	hba->reserved_slot = hba->nutrs - UFSHCD_NUM_RESERVED;
8919 
8920 	return 0;
8921 err:
8922 	hba->nutrs = old_nutrs;
8923 	return ret;
8924 }
8925 
8926 static void ufshcd_config_mcq(struct ufs_hba *hba)
8927 {
8928 	int ret;
8929 
8930 	ret = ufshcd_mcq_vops_config_esi(hba);
8931 	hba->mcq_esi_enabled = !ret;
8932 	dev_info(hba->dev, "ESI %sconfigured\n", ret ? "is not " : "");
8933 
8934 	ufshcd_mcq_make_queues_operational(hba);
8935 	ufshcd_mcq_config_mac(hba, hba->nutrs);
8936 
8937 	dev_info(hba->dev, "MCQ configured, nr_queues=%d, io_queues=%d, read_queue=%d, poll_queues=%d, queue_depth=%d\n",
8938 		 hba->nr_hw_queues, hba->nr_queues[HCTX_TYPE_DEFAULT],
8939 		 hba->nr_queues[HCTX_TYPE_READ], hba->nr_queues[HCTX_TYPE_POLL],
8940 		 hba->nutrs);
8941 }
8942 
8943 static int ufshcd_post_device_init(struct ufs_hba *hba)
8944 {
8945 	int ret;
8946 
8947 	ufshcd_tune_unipro_params(hba);
8948 
8949 	/* UFS device is also active now */
8950 	ufshcd_set_ufs_dev_active(hba);
8951 	ufshcd_force_reset_auto_bkops(hba);
8952 
8953 	ufshcd_set_timestamp_attr(hba);
8954 
8955 	if (!hba->max_pwr_info.is_valid)
8956 		return 0;
8957 
8958 	/*
8959 	 * Set the right value to bRefClkFreq before attempting to
8960 	 * switch to HS gears.
8961 	 */
8962 	if (hba->dev_ref_clk_freq != REF_CLK_FREQ_INVAL)
8963 		ufshcd_set_dev_ref_clk(hba);
8964 	/* Gear up to HS gear. */
8965 	ret = ufshcd_config_pwr_mode(hba, &hba->max_pwr_info.info);
8966 	if (ret) {
8967 		dev_err(hba->dev, "%s: Failed setting power mode, err = %d\n",
8968 			__func__, ret);
8969 		return ret;
8970 	}
8971 
8972 	return 0;
8973 }
8974 
8975 static int ufshcd_device_init(struct ufs_hba *hba, bool init_dev_params)
8976 {
8977 	int ret;
8978 
8979 	WARN_ON_ONCE(!hba->scsi_host_added);
8980 
8981 	hba->ufshcd_state = UFSHCD_STATE_RESET;
8982 
8983 	ret = ufshcd_link_startup(hba);
8984 	if (ret)
8985 		return ret;
8986 
8987 	if (hba->quirks & UFSHCD_QUIRK_SKIP_PH_CONFIGURATION)
8988 		return ret;
8989 
8990 	/* Debug counters initialization */
8991 	ufshcd_clear_dbg_ufs_stats(hba);
8992 
8993 	/* UniPro link is active now */
8994 	ufshcd_set_link_active(hba);
8995 
8996 	/* Reconfigure MCQ upon reset */
8997 	if (hba->mcq_enabled && !init_dev_params) {
8998 		ufshcd_config_mcq(hba);
8999 		ufshcd_mcq_enable(hba);
9000 	}
9001 
9002 	/* Verify device initialization by sending NOP OUT UPIU */
9003 	ret = ufshcd_verify_dev_init(hba);
9004 	if (ret)
9005 		return ret;
9006 
9007 	/* Initiate UFS initialization, and waiting until completion */
9008 	ret = ufshcd_complete_dev_init(hba);
9009 	if (ret)
9010 		return ret;
9011 
9012 	/*
9013 	 * Initialize UFS device parameters used by driver, these
9014 	 * parameters are associated with UFS descriptors.
9015 	 */
9016 	if (init_dev_params) {
9017 		ret = ufshcd_device_params_init(hba);
9018 		if (ret)
9019 			return ret;
9020 		if (is_mcq_supported(hba) &&
9021 		    hba->quirks & UFSHCD_QUIRK_REINIT_AFTER_MAX_GEAR_SWITCH) {
9022 			ufshcd_config_mcq(hba);
9023 			ufshcd_mcq_enable(hba);
9024 		}
9025 	}
9026 
9027 	return ufshcd_post_device_init(hba);
9028 }
9029 
9030 /**
9031  * ufshcd_probe_hba - probe hba to detect device and initialize it
9032  * @hba: per-adapter instance
9033  * @init_dev_params: whether or not to call ufshcd_device_params_init().
9034  *
9035  * Execute link-startup and verify device initialization
9036  *
9037  * Return: 0 upon success; < 0 upon failure.
9038  */
9039 static int ufshcd_probe_hba(struct ufs_hba *hba, bool init_dev_params)
9040 {
9041 	int ret;
9042 
9043 	if (!hba->pm_op_in_progress &&
9044 	    (hba->quirks & UFSHCD_QUIRK_REINIT_AFTER_MAX_GEAR_SWITCH)) {
9045 		/* Reset the device and controller before doing reinit */
9046 		ufshcd_device_reset(hba);
9047 		ufs_put_device_desc(hba);
9048 		ufshcd_hba_stop(hba);
9049 		ret = ufshcd_hba_enable(hba);
9050 		if (ret) {
9051 			dev_err(hba->dev, "Host controller enable failed\n");
9052 			ufshcd_print_evt_hist(hba);
9053 			ufshcd_print_host_state(hba);
9054 			return ret;
9055 		}
9056 
9057 		/* Reinit the device */
9058 		ret = ufshcd_device_init(hba, init_dev_params);
9059 		if (ret)
9060 			return ret;
9061 	}
9062 
9063 	ufshcd_print_pwr_info(hba);
9064 
9065 	/*
9066 	 * bActiveICCLevel is volatile for UFS device (as per latest v2.1 spec)
9067 	 * and for removable UFS card as well, hence always set the parameter.
9068 	 * Note: Error handler may issue the device reset hence resetting
9069 	 * bActiveICCLevel as well so it is always safe to set this here.
9070 	 */
9071 	ufshcd_set_active_icc_lvl(hba);
9072 
9073 	/* Enable UFS Write Booster if supported */
9074 	ufshcd_configure_wb(hba);
9075 
9076 	if (hba->ee_usr_mask)
9077 		ufshcd_write_ee_control(hba);
9078 	ufshcd_configure_auto_hibern8(hba);
9079 
9080 	return 0;
9081 }
9082 
9083 /**
9084  * ufshcd_async_scan - asynchronous execution for probing hba
9085  * @data: data pointer to pass to this function
9086  * @cookie: cookie data
9087  */
9088 static void ufshcd_async_scan(void *data, async_cookie_t cookie)
9089 {
9090 	struct ufs_hba *hba = (struct ufs_hba *)data;
9091 	ktime_t probe_start;
9092 	int ret;
9093 
9094 	down(&hba->host_sem);
9095 	/* Initialize hba, detect and initialize UFS device */
9096 	probe_start = ktime_get();
9097 	ret = ufshcd_probe_hba(hba, true);
9098 	ufshcd_process_probe_result(hba, probe_start, ret);
9099 	up(&hba->host_sem);
9100 	if (ret)
9101 		goto out;
9102 
9103 	/* Probe and add UFS logical units  */
9104 	ret = ufshcd_add_lus(hba);
9105 
9106 out:
9107 	pm_runtime_put_sync(hba->dev);
9108 
9109 	if (ret)
9110 		dev_err(hba->dev, "%s failed: %d\n", __func__, ret);
9111 }
9112 
9113 static enum scsi_timeout_action ufshcd_eh_timed_out(struct scsi_cmnd *scmd)
9114 {
9115 	struct ufs_hba *hba = shost_priv(scmd->device->host);
9116 
9117 	if (!hba->system_suspending) {
9118 		/* Activate the error handler in the SCSI core. */
9119 		return SCSI_EH_NOT_HANDLED;
9120 	}
9121 
9122 	/*
9123 	 * If we get here we know that no TMFs are outstanding and also that
9124 	 * the only pending command is a START STOP UNIT command. Handle the
9125 	 * timeout of that command directly to prevent a deadlock between
9126 	 * ufshcd_set_dev_pwr_mode() and ufshcd_err_handler().
9127 	 */
9128 	ufshcd_link_recovery(hba);
9129 	dev_info(hba->dev, "%s() finished; outstanding_tasks = %#lx.\n",
9130 		 __func__, hba->outstanding_tasks);
9131 
9132 	return scsi_host_busy(hba->host) ? SCSI_EH_RESET_TIMER : SCSI_EH_DONE;
9133 }
9134 
9135 static const struct attribute_group *ufshcd_driver_groups[] = {
9136 	&ufs_sysfs_unit_descriptor_group,
9137 	&ufs_sysfs_lun_attributes_group,
9138 	NULL,
9139 };
9140 
9141 static struct ufs_hba_variant_params ufs_hba_vps = {
9142 	.hba_enable_delay_us		= 1000,
9143 	.wb_flush_threshold		= UFS_WB_BUF_REMAIN_PERCENT(40),
9144 	.devfreq_profile.polling_ms	= 100,
9145 	.devfreq_profile.target		= ufshcd_devfreq_target,
9146 	.devfreq_profile.get_dev_status	= ufshcd_devfreq_get_dev_status,
9147 	.ondemand_data.upthreshold	= 70,
9148 	.ondemand_data.downdifferential	= 5,
9149 };
9150 
9151 static const struct scsi_host_template ufshcd_driver_template = {
9152 	.module			= THIS_MODULE,
9153 	.name			= UFSHCD,
9154 	.proc_name		= UFSHCD,
9155 	.map_queues		= ufshcd_map_queues,
9156 	.queuecommand		= ufshcd_queuecommand,
9157 	.mq_poll		= ufshcd_poll,
9158 	.sdev_init		= ufshcd_sdev_init,
9159 	.sdev_configure		= ufshcd_sdev_configure,
9160 	.sdev_destroy		= ufshcd_sdev_destroy,
9161 	.change_queue_depth	= ufshcd_change_queue_depth,
9162 	.eh_abort_handler	= ufshcd_abort,
9163 	.eh_device_reset_handler = ufshcd_eh_device_reset_handler,
9164 	.eh_host_reset_handler   = ufshcd_eh_host_reset_handler,
9165 	.eh_timed_out		= ufshcd_eh_timed_out,
9166 	.this_id		= -1,
9167 	.sg_tablesize		= SG_ALL,
9168 	.max_segment_size	= PRDT_DATA_BYTE_COUNT_MAX,
9169 	.max_sectors		= SZ_1M / SECTOR_SIZE,
9170 	.max_host_blocked	= 1,
9171 	.track_queue_depth	= 1,
9172 	.skip_settle_delay	= 1,
9173 	.sdev_groups		= ufshcd_driver_groups,
9174 };
9175 
9176 static int ufshcd_config_vreg_load(struct device *dev, struct ufs_vreg *vreg,
9177 				   int ua)
9178 {
9179 	int ret;
9180 
9181 	if (!vreg)
9182 		return 0;
9183 
9184 	/*
9185 	 * "set_load" operation shall be required on those regulators
9186 	 * which specifically configured current limitation. Otherwise
9187 	 * zero max_uA may cause unexpected behavior when regulator is
9188 	 * enabled or set as high power mode.
9189 	 */
9190 	if (!vreg->max_uA)
9191 		return 0;
9192 
9193 	ret = regulator_set_load(vreg->reg, ua);
9194 	if (ret < 0) {
9195 		dev_err(dev, "%s: %s set load (ua=%d) failed, err=%d\n",
9196 				__func__, vreg->name, ua, ret);
9197 	}
9198 
9199 	return ret;
9200 }
9201 
9202 static inline int ufshcd_config_vreg_lpm(struct ufs_hba *hba,
9203 					 struct ufs_vreg *vreg)
9204 {
9205 	return ufshcd_config_vreg_load(hba->dev, vreg, UFS_VREG_LPM_LOAD_UA);
9206 }
9207 
9208 static inline int ufshcd_config_vreg_hpm(struct ufs_hba *hba,
9209 					 struct ufs_vreg *vreg)
9210 {
9211 	if (!vreg)
9212 		return 0;
9213 
9214 	return ufshcd_config_vreg_load(hba->dev, vreg, vreg->max_uA);
9215 }
9216 
9217 static int ufshcd_config_vreg(struct device *dev,
9218 		struct ufs_vreg *vreg, bool on)
9219 {
9220 	if (regulator_count_voltages(vreg->reg) <= 0)
9221 		return 0;
9222 
9223 	return ufshcd_config_vreg_load(dev, vreg, on ? vreg->max_uA : 0);
9224 }
9225 
9226 static int ufshcd_enable_vreg(struct device *dev, struct ufs_vreg *vreg)
9227 {
9228 	int ret = 0;
9229 
9230 	if (!vreg || vreg->enabled)
9231 		goto out;
9232 
9233 	ret = ufshcd_config_vreg(dev, vreg, true);
9234 	if (!ret)
9235 		ret = regulator_enable(vreg->reg);
9236 
9237 	if (!ret)
9238 		vreg->enabled = true;
9239 	else
9240 		dev_err(dev, "%s: %s enable failed, err=%d\n",
9241 				__func__, vreg->name, ret);
9242 out:
9243 	return ret;
9244 }
9245 
9246 static int ufshcd_disable_vreg(struct device *dev, struct ufs_vreg *vreg)
9247 {
9248 	int ret = 0;
9249 
9250 	if (!vreg || !vreg->enabled || vreg->always_on)
9251 		goto out;
9252 
9253 	ret = regulator_disable(vreg->reg);
9254 
9255 	if (!ret) {
9256 		/* ignore errors on applying disable config */
9257 		ufshcd_config_vreg(dev, vreg, false);
9258 		vreg->enabled = false;
9259 	} else {
9260 		dev_err(dev, "%s: %s disable failed, err=%d\n",
9261 				__func__, vreg->name, ret);
9262 	}
9263 out:
9264 	return ret;
9265 }
9266 
9267 static int ufshcd_setup_vreg(struct ufs_hba *hba, bool on)
9268 {
9269 	int ret = 0;
9270 	struct device *dev = hba->dev;
9271 	struct ufs_vreg_info *info = &hba->vreg_info;
9272 
9273 	ret = ufshcd_toggle_vreg(dev, info->vcc, on);
9274 	if (ret)
9275 		goto out;
9276 
9277 	ret = ufshcd_toggle_vreg(dev, info->vccq, on);
9278 	if (ret)
9279 		goto out;
9280 
9281 	ret = ufshcd_toggle_vreg(dev, info->vccq2, on);
9282 
9283 out:
9284 	if (ret) {
9285 		ufshcd_toggle_vreg(dev, info->vccq2, false);
9286 		ufshcd_toggle_vreg(dev, info->vccq, false);
9287 		ufshcd_toggle_vreg(dev, info->vcc, false);
9288 	}
9289 	return ret;
9290 }
9291 
9292 static int ufshcd_setup_hba_vreg(struct ufs_hba *hba, bool on)
9293 {
9294 	struct ufs_vreg_info *info = &hba->vreg_info;
9295 
9296 	return ufshcd_toggle_vreg(hba->dev, info->vdd_hba, on);
9297 }
9298 
9299 int ufshcd_get_vreg(struct device *dev, struct ufs_vreg *vreg)
9300 {
9301 	int ret = 0;
9302 
9303 	if (!vreg)
9304 		goto out;
9305 
9306 	vreg->reg = devm_regulator_get(dev, vreg->name);
9307 	if (IS_ERR(vreg->reg)) {
9308 		ret = PTR_ERR(vreg->reg);
9309 		dev_err(dev, "%s: %s get failed, err=%d\n",
9310 				__func__, vreg->name, ret);
9311 	}
9312 out:
9313 	return ret;
9314 }
9315 EXPORT_SYMBOL_GPL(ufshcd_get_vreg);
9316 
9317 static int ufshcd_init_vreg(struct ufs_hba *hba)
9318 {
9319 	int ret = 0;
9320 	struct device *dev = hba->dev;
9321 	struct ufs_vreg_info *info = &hba->vreg_info;
9322 
9323 	ret = ufshcd_get_vreg(dev, info->vcc);
9324 	if (ret)
9325 		goto out;
9326 
9327 	ret = ufshcd_get_vreg(dev, info->vccq);
9328 	if (!ret)
9329 		ret = ufshcd_get_vreg(dev, info->vccq2);
9330 out:
9331 	return ret;
9332 }
9333 
9334 static int ufshcd_init_hba_vreg(struct ufs_hba *hba)
9335 {
9336 	struct ufs_vreg_info *info = &hba->vreg_info;
9337 
9338 	return ufshcd_get_vreg(hba->dev, info->vdd_hba);
9339 }
9340 
9341 static int ufshcd_setup_clocks(struct ufs_hba *hba, bool on)
9342 {
9343 	int ret = 0;
9344 	struct ufs_clk_info *clki;
9345 	struct list_head *head = &hba->clk_list_head;
9346 	ktime_t start = ktime_get();
9347 	bool clk_state_changed = false;
9348 
9349 	if (list_empty(head))
9350 		goto out;
9351 
9352 	ret = ufshcd_vops_setup_clocks(hba, on, PRE_CHANGE);
9353 	if (ret)
9354 		return ret;
9355 
9356 	list_for_each_entry(clki, head, list) {
9357 		if (!IS_ERR_OR_NULL(clki->clk)) {
9358 			/*
9359 			 * Don't disable clocks which are needed
9360 			 * to keep the link active.
9361 			 */
9362 			if (ufshcd_is_link_active(hba) &&
9363 			    clki->keep_link_active)
9364 				continue;
9365 
9366 			clk_state_changed = on ^ clki->enabled;
9367 			if (on && !clki->enabled) {
9368 				ret = clk_prepare_enable(clki->clk);
9369 				if (ret) {
9370 					dev_err(hba->dev, "%s: %s prepare enable failed, %d\n",
9371 						__func__, clki->name, ret);
9372 					goto out;
9373 				}
9374 			} else if (!on && clki->enabled) {
9375 				clk_disable_unprepare(clki->clk);
9376 			}
9377 			clki->enabled = on;
9378 			dev_dbg(hba->dev, "%s: clk: %s %sabled\n", __func__,
9379 					clki->name, on ? "en" : "dis");
9380 		}
9381 	}
9382 
9383 	ret = ufshcd_vops_setup_clocks(hba, on, POST_CHANGE);
9384 	if (ret)
9385 		return ret;
9386 
9387 	if (!ufshcd_is_clkscaling_supported(hba))
9388 		ufshcd_pm_qos_update(hba, on);
9389 out:
9390 	if (ret) {
9391 		list_for_each_entry(clki, head, list) {
9392 			if (!IS_ERR_OR_NULL(clki->clk) && clki->enabled)
9393 				clk_disable_unprepare(clki->clk);
9394 		}
9395 	} else if (!ret && on && hba->clk_gating.is_initialized) {
9396 		scoped_guard(spinlock_irqsave, &hba->clk_gating.lock)
9397 			hba->clk_gating.state = CLKS_ON;
9398 		trace_ufshcd_clk_gating(hba,
9399 					hba->clk_gating.state);
9400 	}
9401 
9402 	if (clk_state_changed)
9403 		trace_ufshcd_profile_clk_gating(hba,
9404 			(on ? "on" : "off"),
9405 			ktime_to_us(ktime_sub(ktime_get(), start)), ret);
9406 	return ret;
9407 }
9408 
9409 static enum ufs_ref_clk_freq ufshcd_parse_ref_clk_property(struct ufs_hba *hba)
9410 {
9411 	u32 freq;
9412 	int ret = device_property_read_u32(hba->dev, "ref-clk-freq", &freq);
9413 
9414 	if (ret) {
9415 		dev_dbg(hba->dev, "Cannot query 'ref-clk-freq' property = %d", ret);
9416 		return REF_CLK_FREQ_INVAL;
9417 	}
9418 
9419 	return ufs_get_bref_clk_from_hz(freq);
9420 }
9421 
9422 static int ufshcd_init_clocks(struct ufs_hba *hba)
9423 {
9424 	int ret = 0;
9425 	struct ufs_clk_info *clki;
9426 	struct device *dev = hba->dev;
9427 	struct list_head *head = &hba->clk_list_head;
9428 
9429 	if (list_empty(head))
9430 		goto out;
9431 
9432 	list_for_each_entry(clki, head, list) {
9433 		if (!clki->name)
9434 			continue;
9435 
9436 		clki->clk = devm_clk_get(dev, clki->name);
9437 		if (IS_ERR(clki->clk)) {
9438 			ret = PTR_ERR(clki->clk);
9439 			dev_err(dev, "%s: %s clk get failed, %d\n",
9440 					__func__, clki->name, ret);
9441 			goto out;
9442 		}
9443 
9444 		/*
9445 		 * Parse device ref clk freq as per device tree "ref_clk".
9446 		 * Default dev_ref_clk_freq is set to REF_CLK_FREQ_INVAL
9447 		 * in ufshcd_alloc_host().
9448 		 */
9449 		if (!strcmp(clki->name, "ref_clk"))
9450 			ufshcd_parse_dev_ref_clk_freq(hba, clki->clk);
9451 
9452 		if (clki->max_freq) {
9453 			ret = clk_set_rate(clki->clk, clki->max_freq);
9454 			if (ret) {
9455 				dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
9456 					__func__, clki->name,
9457 					clki->max_freq, ret);
9458 				goto out;
9459 			}
9460 			clki->curr_freq = clki->max_freq;
9461 		}
9462 		dev_dbg(dev, "%s: clk: %s, rate: %lu\n", __func__,
9463 				clki->name, clk_get_rate(clki->clk));
9464 	}
9465 
9466 	/* Set Max. frequency for all clocks */
9467 	if (hba->use_pm_opp) {
9468 		ret = ufshcd_opp_set_rate(hba, ULONG_MAX);
9469 		if (ret) {
9470 			dev_err(hba->dev, "%s: failed to set OPP: %d", __func__,
9471 				ret);
9472 			goto out;
9473 		}
9474 	}
9475 
9476 out:
9477 	return ret;
9478 }
9479 
9480 static int ufshcd_variant_hba_init(struct ufs_hba *hba)
9481 {
9482 	int err = 0;
9483 
9484 	if (!hba->vops)
9485 		goto out;
9486 
9487 	err = ufshcd_vops_init(hba);
9488 	if (err)
9489 		dev_err_probe(hba->dev, err,
9490 			      "%s: variant %s init failed with err %d\n",
9491 			      __func__, ufshcd_get_var_name(hba), err);
9492 out:
9493 	return err;
9494 }
9495 
9496 static void ufshcd_variant_hba_exit(struct ufs_hba *hba)
9497 {
9498 	if (!hba->vops)
9499 		return;
9500 
9501 	ufshcd_vops_exit(hba);
9502 }
9503 
9504 static int ufshcd_hba_init(struct ufs_hba *hba)
9505 {
9506 	int err;
9507 
9508 	/*
9509 	 * Handle host controller power separately from the UFS device power
9510 	 * rails as it will help controlling the UFS host controller power
9511 	 * collapse easily which is different than UFS device power collapse.
9512 	 * Also, enable the host controller power before we go ahead with rest
9513 	 * of the initialization here.
9514 	 */
9515 	err = ufshcd_init_hba_vreg(hba);
9516 	if (err)
9517 		goto out;
9518 
9519 	err = ufshcd_setup_hba_vreg(hba, true);
9520 	if (err)
9521 		goto out;
9522 
9523 	err = ufshcd_init_clocks(hba);
9524 	if (err)
9525 		goto out_disable_hba_vreg;
9526 
9527 	if (hba->dev_ref_clk_freq == REF_CLK_FREQ_INVAL)
9528 		hba->dev_ref_clk_freq = ufshcd_parse_ref_clk_property(hba);
9529 
9530 	err = ufshcd_setup_clocks(hba, true);
9531 	if (err)
9532 		goto out_disable_hba_vreg;
9533 
9534 	err = ufshcd_init_vreg(hba);
9535 	if (err)
9536 		goto out_disable_clks;
9537 
9538 	err = ufshcd_setup_vreg(hba, true);
9539 	if (err)
9540 		goto out_disable_clks;
9541 
9542 	err = ufshcd_variant_hba_init(hba);
9543 	if (err)
9544 		goto out_disable_vreg;
9545 
9546 	ufs_debugfs_hba_init(hba);
9547 	ufs_fault_inject_hba_init(hba);
9548 
9549 	hba->is_powered = true;
9550 	goto out;
9551 
9552 out_disable_vreg:
9553 	ufshcd_setup_vreg(hba, false);
9554 out_disable_clks:
9555 	ufshcd_setup_clocks(hba, false);
9556 out_disable_hba_vreg:
9557 	ufshcd_setup_hba_vreg(hba, false);
9558 out:
9559 	return err;
9560 }
9561 
9562 static void ufshcd_hba_exit(struct ufs_hba *hba)
9563 {
9564 	if (hba->is_powered) {
9565 		ufshcd_pm_qos_exit(hba);
9566 		ufshcd_exit_clk_scaling(hba);
9567 		ufshcd_exit_clk_gating(hba);
9568 		if (hba->eh_wq)
9569 			destroy_workqueue(hba->eh_wq);
9570 		ufs_debugfs_hba_exit(hba);
9571 		ufshcd_variant_hba_exit(hba);
9572 		ufshcd_setup_vreg(hba, false);
9573 		ufshcd_setup_clocks(hba, false);
9574 		ufshcd_setup_hba_vreg(hba, false);
9575 		hba->is_powered = false;
9576 		ufs_put_device_desc(hba);
9577 	}
9578 }
9579 
9580 static int ufshcd_execute_start_stop(struct scsi_device *sdev,
9581 				     enum ufs_dev_pwr_mode pwr_mode,
9582 				     struct scsi_sense_hdr *sshdr)
9583 {
9584 	const unsigned char cdb[6] = { START_STOP, 0, 0, 0, pwr_mode << 4, 0 };
9585 	struct scsi_failure failure_defs[] = {
9586 		{
9587 			.allowed = 2,
9588 			.result = SCMD_FAILURE_RESULT_ANY,
9589 		},
9590 	};
9591 	struct scsi_failures failures = {
9592 		.failure_definitions = failure_defs,
9593 	};
9594 	const struct scsi_exec_args args = {
9595 		.failures = &failures,
9596 		.sshdr = sshdr,
9597 		.req_flags = BLK_MQ_REQ_PM,
9598 		.scmd_flags = SCMD_FAIL_IF_RECOVERING,
9599 	};
9600 
9601 	return scsi_execute_cmd(sdev, cdb, REQ_OP_DRV_IN, /*buffer=*/NULL,
9602 			/*bufflen=*/0, /*timeout=*/10 * HZ, /*retries=*/0,
9603 			&args);
9604 }
9605 
9606 /**
9607  * ufshcd_set_dev_pwr_mode - sends START STOP UNIT command to set device
9608  *			     power mode
9609  * @hba: per adapter instance
9610  * @pwr_mode: device power mode to set
9611  *
9612  * Return: 0 if requested power mode is set successfully;
9613  *         < 0 if failed to set the requested power mode.
9614  */
9615 static int ufshcd_set_dev_pwr_mode(struct ufs_hba *hba,
9616 				     enum ufs_dev_pwr_mode pwr_mode)
9617 {
9618 	struct scsi_sense_hdr sshdr;
9619 	struct scsi_device *sdp;
9620 	unsigned long flags;
9621 	int ret;
9622 
9623 	spin_lock_irqsave(hba->host->host_lock, flags);
9624 	sdp = hba->ufs_device_wlun;
9625 	if (sdp && scsi_device_online(sdp))
9626 		ret = scsi_device_get(sdp);
9627 	else
9628 		ret = -ENODEV;
9629 	spin_unlock_irqrestore(hba->host->host_lock, flags);
9630 
9631 	if (ret)
9632 		return ret;
9633 
9634 	/*
9635 	 * If scsi commands fail, the scsi mid-layer schedules scsi error-
9636 	 * handling, which would wait for host to be resumed. Since we know
9637 	 * we are functional while we are here, skip host resume in error
9638 	 * handling context.
9639 	 */
9640 	hba->host->eh_noresume = 1;
9641 
9642 	/*
9643 	 * Current function would be generally called from the power management
9644 	 * callbacks hence set the RQF_PM flag so that it doesn't resume the
9645 	 * already suspended childs.
9646 	 */
9647 	ret = ufshcd_execute_start_stop(sdp, pwr_mode, &sshdr);
9648 	if (ret) {
9649 		sdev_printk(KERN_WARNING, sdp,
9650 			    "START_STOP failed for power mode: %d, result %x\n",
9651 			    pwr_mode, ret);
9652 		if (ret > 0) {
9653 			if (scsi_sense_valid(&sshdr))
9654 				scsi_print_sense_hdr(sdp, NULL, &sshdr);
9655 			ret = -EIO;
9656 		}
9657 	} else {
9658 		hba->curr_dev_pwr_mode = pwr_mode;
9659 	}
9660 
9661 	scsi_device_put(sdp);
9662 	hba->host->eh_noresume = 0;
9663 	return ret;
9664 }
9665 
9666 static int ufshcd_link_state_transition(struct ufs_hba *hba,
9667 					enum uic_link_state req_link_state,
9668 					bool check_for_bkops)
9669 {
9670 	int ret = 0;
9671 
9672 	if (req_link_state == hba->uic_link_state)
9673 		return 0;
9674 
9675 	if (req_link_state == UIC_LINK_HIBERN8_STATE) {
9676 		ret = ufshcd_uic_hibern8_enter(hba);
9677 		if (!ret) {
9678 			ufshcd_set_link_hibern8(hba);
9679 		} else {
9680 			dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
9681 					__func__, ret);
9682 			goto out;
9683 		}
9684 	}
9685 	/*
9686 	 * If autobkops is enabled, link can't be turned off because
9687 	 * turning off the link would also turn off the device, except in the
9688 	 * case of DeepSleep where the device is expected to remain powered.
9689 	 */
9690 	else if ((req_link_state == UIC_LINK_OFF_STATE) &&
9691 		 (!check_for_bkops || !hba->auto_bkops_enabled)) {
9692 		/*
9693 		 * Let's make sure that link is in low power mode, we are doing
9694 		 * this currently by putting the link in Hibern8. Otherway to
9695 		 * put the link in low power mode is to send the DME end point
9696 		 * to device and then send the DME reset command to local
9697 		 * unipro. But putting the link in hibern8 is much faster.
9698 		 *
9699 		 * Note also that putting the link in Hibern8 is a requirement
9700 		 * for entering DeepSleep.
9701 		 */
9702 		ret = ufshcd_uic_hibern8_enter(hba);
9703 		if (ret) {
9704 			dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
9705 					__func__, ret);
9706 			goto out;
9707 		}
9708 		/*
9709 		 * Change controller state to "reset state" which
9710 		 * should also put the link in off/reset state
9711 		 */
9712 		ufshcd_hba_stop(hba);
9713 		/*
9714 		 * TODO: Check if we need any delay to make sure that
9715 		 * controller is reset
9716 		 */
9717 		ufshcd_set_link_off(hba);
9718 	}
9719 
9720 out:
9721 	return ret;
9722 }
9723 
9724 static void ufshcd_vreg_set_lpm(struct ufs_hba *hba)
9725 {
9726 	bool vcc_off = false;
9727 
9728 	/*
9729 	 * It seems some UFS devices may keep drawing more than sleep current
9730 	 * (atleast for 500us) from UFS rails (especially from VCCQ rail).
9731 	 * To avoid this situation, add 2ms delay before putting these UFS
9732 	 * rails in LPM mode.
9733 	 */
9734 	if (!ufshcd_is_link_active(hba) &&
9735 	    hba->dev_quirks & UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM)
9736 		usleep_range(2000, 2100);
9737 
9738 	/*
9739 	 * If UFS device is either in UFS_Sleep turn off VCC rail to save some
9740 	 * power.
9741 	 *
9742 	 * If UFS device and link is in OFF state, all power supplies (VCC,
9743 	 * VCCQ, VCCQ2) can be turned off if power on write protect is not
9744 	 * required. If UFS link is inactive (Hibern8 or OFF state) and device
9745 	 * is in sleep state, put VCCQ & VCCQ2 rails in LPM mode.
9746 	 *
9747 	 * Ignore the error returned by ufshcd_toggle_vreg() as device is anyway
9748 	 * in low power state which would save some power.
9749 	 *
9750 	 * If Write Booster is enabled and the device needs to flush the WB
9751 	 * buffer OR if bkops status is urgent for WB, keep Vcc on.
9752 	 */
9753 	if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba) &&
9754 	    !hba->dev_info.is_lu_power_on_wp) {
9755 		ufshcd_setup_vreg(hba, false);
9756 		vcc_off = true;
9757 	} else if (!ufshcd_is_ufs_dev_active(hba)) {
9758 		ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, false);
9759 		vcc_off = true;
9760 		if (ufshcd_is_link_hibern8(hba) || ufshcd_is_link_off(hba)) {
9761 			ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq);
9762 			ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq2);
9763 		}
9764 	}
9765 
9766 	/*
9767 	 * Some UFS devices require delay after VCC power rail is turned-off.
9768 	 */
9769 	if (vcc_off && hba->vreg_info.vcc &&
9770 		hba->dev_quirks & UFS_DEVICE_QUIRK_DELAY_AFTER_LPM)
9771 		usleep_range(5000, 5100);
9772 }
9773 
9774 #ifdef CONFIG_PM
9775 static int ufshcd_vreg_set_hpm(struct ufs_hba *hba)
9776 {
9777 	int ret = 0;
9778 
9779 	if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba) &&
9780 	    !hba->dev_info.is_lu_power_on_wp) {
9781 		ret = ufshcd_setup_vreg(hba, true);
9782 	} else if (!ufshcd_is_ufs_dev_active(hba)) {
9783 		if (!ufshcd_is_link_active(hba)) {
9784 			ret = ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq);
9785 			if (ret)
9786 				goto vcc_disable;
9787 			ret = ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq2);
9788 			if (ret)
9789 				goto vccq_lpm;
9790 		}
9791 		ret = ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, true);
9792 	}
9793 	goto out;
9794 
9795 vccq_lpm:
9796 	ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq);
9797 vcc_disable:
9798 	ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, false);
9799 out:
9800 	return ret;
9801 }
9802 #endif /* CONFIG_PM */
9803 
9804 static void ufshcd_hba_vreg_set_lpm(struct ufs_hba *hba)
9805 {
9806 	if (ufshcd_is_link_off(hba) || ufshcd_can_aggressive_pc(hba))
9807 		ufshcd_setup_hba_vreg(hba, false);
9808 }
9809 
9810 static void ufshcd_hba_vreg_set_hpm(struct ufs_hba *hba)
9811 {
9812 	if (ufshcd_is_link_off(hba) || ufshcd_can_aggressive_pc(hba))
9813 		ufshcd_setup_hba_vreg(hba, true);
9814 }
9815 
9816 static int __ufshcd_wl_suspend(struct ufs_hba *hba, enum ufs_pm_op pm_op)
9817 {
9818 	int ret = 0;
9819 	bool check_for_bkops;
9820 	enum ufs_pm_level pm_lvl;
9821 	enum ufs_dev_pwr_mode req_dev_pwr_mode;
9822 	enum uic_link_state req_link_state;
9823 
9824 	hba->pm_op_in_progress = true;
9825 	if (pm_op != UFS_SHUTDOWN_PM) {
9826 		pm_lvl = pm_op == UFS_RUNTIME_PM ?
9827 			 hba->rpm_lvl : hba->spm_lvl;
9828 		req_dev_pwr_mode = ufs_get_pm_lvl_to_dev_pwr_mode(pm_lvl);
9829 		req_link_state = ufs_get_pm_lvl_to_link_pwr_state(pm_lvl);
9830 	} else {
9831 		req_dev_pwr_mode = UFS_POWERDOWN_PWR_MODE;
9832 		req_link_state = UIC_LINK_OFF_STATE;
9833 	}
9834 
9835 	/*
9836 	 * If we can't transition into any of the low power modes
9837 	 * just gate the clocks.
9838 	 */
9839 	ufshcd_hold(hba);
9840 	hba->clk_gating.is_suspended = true;
9841 
9842 	if (ufshcd_is_clkscaling_supported(hba))
9843 		ufshcd_clk_scaling_suspend(hba, true);
9844 
9845 	if (req_dev_pwr_mode == UFS_ACTIVE_PWR_MODE &&
9846 			req_link_state == UIC_LINK_ACTIVE_STATE) {
9847 		goto vops_suspend;
9848 	}
9849 
9850 	if ((req_dev_pwr_mode == hba->curr_dev_pwr_mode) &&
9851 	    (req_link_state == hba->uic_link_state))
9852 		goto enable_scaling;
9853 
9854 	/* UFS device & link must be active before we enter in this function */
9855 	if (!ufshcd_is_ufs_dev_active(hba) || !ufshcd_is_link_active(hba)) {
9856 		/*  Wait err handler finish or trigger err recovery */
9857 		if (!ufshcd_eh_in_progress(hba))
9858 			ufshcd_force_error_recovery(hba);
9859 		ret = -EBUSY;
9860 		goto enable_scaling;
9861 	}
9862 
9863 	if (pm_op == UFS_RUNTIME_PM) {
9864 		if (ufshcd_can_autobkops_during_suspend(hba)) {
9865 			/*
9866 			 * The device is idle with no requests in the queue,
9867 			 * allow background operations if bkops status shows
9868 			 * that performance might be impacted.
9869 			 */
9870 			ret = ufshcd_bkops_ctrl(hba);
9871 			if (ret) {
9872 				/*
9873 				 * If return err in suspend flow, IO will hang.
9874 				 * Trigger error handler and break suspend for
9875 				 * error recovery.
9876 				 */
9877 				ufshcd_force_error_recovery(hba);
9878 				ret = -EBUSY;
9879 				goto enable_scaling;
9880 			}
9881 		} else {
9882 			/* make sure that auto bkops is disabled */
9883 			ufshcd_disable_auto_bkops(hba);
9884 		}
9885 		/*
9886 		 * If device needs to do BKOP or WB buffer flush during
9887 		 * Hibern8, keep device power mode as "active power mode"
9888 		 * and VCC supply.
9889 		 */
9890 		hba->dev_info.b_rpm_dev_flush_capable =
9891 			hba->auto_bkops_enabled ||
9892 			(((req_link_state == UIC_LINK_HIBERN8_STATE) ||
9893 			((req_link_state == UIC_LINK_ACTIVE_STATE) &&
9894 			ufshcd_is_auto_hibern8_enabled(hba))) &&
9895 			ufshcd_wb_need_flush(hba));
9896 	}
9897 
9898 	flush_work(&hba->eeh_work);
9899 
9900 	ret = ufshcd_vops_suspend(hba, pm_op, PRE_CHANGE);
9901 	if (ret)
9902 		goto enable_scaling;
9903 
9904 	if (req_dev_pwr_mode != hba->curr_dev_pwr_mode) {
9905 		if (pm_op != UFS_RUNTIME_PM)
9906 			/* ensure that bkops is disabled */
9907 			ufshcd_disable_auto_bkops(hba);
9908 
9909 		if (!hba->dev_info.b_rpm_dev_flush_capable) {
9910 			ret = ufshcd_set_dev_pwr_mode(hba, req_dev_pwr_mode);
9911 			if (ret && pm_op != UFS_SHUTDOWN_PM) {
9912 				/*
9913 				 * If return err in suspend flow, IO will hang.
9914 				 * Trigger error handler and break suspend for
9915 				 * error recovery.
9916 				 */
9917 				ufshcd_force_error_recovery(hba);
9918 				ret = -EBUSY;
9919 			}
9920 			if (ret)
9921 				goto enable_scaling;
9922 		}
9923 	}
9924 
9925 	/*
9926 	 * In the case of DeepSleep, the device is expected to remain powered
9927 	 * with the link off, so do not check for bkops.
9928 	 */
9929 	check_for_bkops = !ufshcd_is_ufs_dev_deepsleep(hba);
9930 	ret = ufshcd_link_state_transition(hba, req_link_state, check_for_bkops);
9931 	if (ret && pm_op != UFS_SHUTDOWN_PM) {
9932 		/*
9933 		 * If return err in suspend flow, IO will hang.
9934 		 * Trigger error handler and break suspend for
9935 		 * error recovery.
9936 		 */
9937 		ufshcd_force_error_recovery(hba);
9938 		ret = -EBUSY;
9939 	}
9940 	if (ret)
9941 		goto set_dev_active;
9942 
9943 vops_suspend:
9944 	/*
9945 	 * Call vendor specific suspend callback. As these callbacks may access
9946 	 * vendor specific host controller register space call them before the
9947 	 * host clocks are ON.
9948 	 */
9949 	ret = ufshcd_vops_suspend(hba, pm_op, POST_CHANGE);
9950 	if (ret)
9951 		goto set_link_active;
9952 
9953 	cancel_delayed_work_sync(&hba->ufs_rtc_update_work);
9954 	goto out;
9955 
9956 set_link_active:
9957 	/*
9958 	 * Device hardware reset is required to exit DeepSleep. Also, for
9959 	 * DeepSleep, the link is off so host reset and restore will be done
9960 	 * further below.
9961 	 */
9962 	if (ufshcd_is_ufs_dev_deepsleep(hba)) {
9963 		ufshcd_device_reset(hba);
9964 		WARN_ON(!ufshcd_is_link_off(hba));
9965 	}
9966 	if (ufshcd_is_link_hibern8(hba) && !ufshcd_uic_hibern8_exit(hba))
9967 		ufshcd_set_link_active(hba);
9968 	else if (ufshcd_is_link_off(hba))
9969 		ufshcd_host_reset_and_restore(hba);
9970 set_dev_active:
9971 	/* Can also get here needing to exit DeepSleep */
9972 	if (ufshcd_is_ufs_dev_deepsleep(hba)) {
9973 		ufshcd_device_reset(hba);
9974 		ufshcd_host_reset_and_restore(hba);
9975 	}
9976 	if (!ufshcd_set_dev_pwr_mode(hba, UFS_ACTIVE_PWR_MODE))
9977 		ufshcd_disable_auto_bkops(hba);
9978 enable_scaling:
9979 	if (ufshcd_is_clkscaling_supported(hba))
9980 		ufshcd_clk_scaling_suspend(hba, false);
9981 
9982 	hba->dev_info.b_rpm_dev_flush_capable = false;
9983 out:
9984 	if (hba->dev_info.b_rpm_dev_flush_capable) {
9985 		schedule_delayed_work(&hba->rpm_dev_flush_recheck_work,
9986 			msecs_to_jiffies(RPM_DEV_FLUSH_RECHECK_WORK_DELAY_MS));
9987 	}
9988 
9989 	if (ret) {
9990 		ufshcd_update_evt_hist(hba, UFS_EVT_WL_SUSP_ERR, (u32)ret);
9991 		hba->clk_gating.is_suspended = false;
9992 		ufshcd_release(hba);
9993 	}
9994 	hba->pm_op_in_progress = false;
9995 	return ret;
9996 }
9997 
9998 #ifdef CONFIG_PM
9999 static int __ufshcd_wl_resume(struct ufs_hba *hba, enum ufs_pm_op pm_op)
10000 {
10001 	int ret;
10002 	enum uic_link_state old_link_state = hba->uic_link_state;
10003 
10004 	hba->pm_op_in_progress = true;
10005 
10006 	/*
10007 	 * Call vendor specific resume callback. As these callbacks may access
10008 	 * vendor specific host controller register space call them when the
10009 	 * host clocks are ON.
10010 	 */
10011 	ret = ufshcd_vops_resume(hba, pm_op);
10012 	if (ret)
10013 		goto out;
10014 
10015 	/* For DeepSleep, the only supported option is to have the link off */
10016 	WARN_ON(ufshcd_is_ufs_dev_deepsleep(hba) && !ufshcd_is_link_off(hba));
10017 
10018 	if (ufshcd_is_link_hibern8(hba)) {
10019 		ret = ufshcd_uic_hibern8_exit(hba);
10020 		if (!ret) {
10021 			ufshcd_set_link_active(hba);
10022 		} else {
10023 			dev_err(hba->dev, "%s: hibern8 exit failed %d\n",
10024 					__func__, ret);
10025 			goto vendor_suspend;
10026 		}
10027 	} else if (ufshcd_is_link_off(hba)) {
10028 		/*
10029 		 * A full initialization of the host and the device is
10030 		 * required since the link was put to off during suspend.
10031 		 * Note, in the case of DeepSleep, the device will exit
10032 		 * DeepSleep due to device reset.
10033 		 */
10034 		ret = ufshcd_reset_and_restore(hba);
10035 		/*
10036 		 * ufshcd_reset_and_restore() should have already
10037 		 * set the link state as active
10038 		 */
10039 		if (ret || !ufshcd_is_link_active(hba))
10040 			goto vendor_suspend;
10041 	}
10042 
10043 	if (!ufshcd_is_ufs_dev_active(hba)) {
10044 		ret = ufshcd_set_dev_pwr_mode(hba, UFS_ACTIVE_PWR_MODE);
10045 		if (ret)
10046 			goto set_old_link_state;
10047 		ufshcd_set_timestamp_attr(hba);
10048 		schedule_delayed_work(&hba->ufs_rtc_update_work,
10049 				      msecs_to_jiffies(UFS_RTC_UPDATE_INTERVAL_MS));
10050 	}
10051 
10052 	if (ufshcd_keep_autobkops_enabled_except_suspend(hba))
10053 		ufshcd_enable_auto_bkops(hba);
10054 	else
10055 		/*
10056 		 * If BKOPs operations are urgently needed at this moment then
10057 		 * keep auto-bkops enabled or else disable it.
10058 		 */
10059 		ufshcd_bkops_ctrl(hba);
10060 
10061 	if (hba->ee_usr_mask)
10062 		ufshcd_write_ee_control(hba);
10063 
10064 	if (ufshcd_is_clkscaling_supported(hba))
10065 		ufshcd_clk_scaling_suspend(hba, false);
10066 
10067 	if (hba->dev_info.b_rpm_dev_flush_capable) {
10068 		hba->dev_info.b_rpm_dev_flush_capable = false;
10069 		cancel_delayed_work(&hba->rpm_dev_flush_recheck_work);
10070 	}
10071 
10072 	ufshcd_configure_auto_hibern8(hba);
10073 
10074 	goto out;
10075 
10076 set_old_link_state:
10077 	ufshcd_link_state_transition(hba, old_link_state, 0);
10078 vendor_suspend:
10079 	ufshcd_vops_suspend(hba, pm_op, PRE_CHANGE);
10080 	ufshcd_vops_suspend(hba, pm_op, POST_CHANGE);
10081 out:
10082 	if (ret)
10083 		ufshcd_update_evt_hist(hba, UFS_EVT_WL_RES_ERR, (u32)ret);
10084 	hba->clk_gating.is_suspended = false;
10085 	ufshcd_release(hba);
10086 	hba->pm_op_in_progress = false;
10087 	return ret;
10088 }
10089 
10090 static int ufshcd_wl_runtime_suspend(struct device *dev)
10091 {
10092 	struct scsi_device *sdev = to_scsi_device(dev);
10093 	struct ufs_hba *hba;
10094 	int ret;
10095 	ktime_t start = ktime_get();
10096 
10097 	hba = shost_priv(sdev->host);
10098 
10099 	ret = __ufshcd_wl_suspend(hba, UFS_RUNTIME_PM);
10100 	if (ret)
10101 		dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
10102 
10103 	trace_ufshcd_wl_runtime_suspend(hba, ret,
10104 		ktime_to_us(ktime_sub(ktime_get(), start)),
10105 		hba->curr_dev_pwr_mode, hba->uic_link_state);
10106 
10107 	return ret;
10108 }
10109 
10110 static int ufshcd_wl_runtime_resume(struct device *dev)
10111 {
10112 	struct scsi_device *sdev = to_scsi_device(dev);
10113 	struct ufs_hba *hba;
10114 	int ret = 0;
10115 	ktime_t start = ktime_get();
10116 
10117 	hba = shost_priv(sdev->host);
10118 
10119 	ret = __ufshcd_wl_resume(hba, UFS_RUNTIME_PM);
10120 	if (ret)
10121 		dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
10122 
10123 	trace_ufshcd_wl_runtime_resume(hba, ret,
10124 		ktime_to_us(ktime_sub(ktime_get(), start)),
10125 		hba->curr_dev_pwr_mode, hba->uic_link_state);
10126 
10127 	return ret;
10128 }
10129 #endif
10130 
10131 #ifdef CONFIG_PM_SLEEP
10132 static int ufshcd_wl_suspend(struct device *dev)
10133 {
10134 	struct scsi_device *sdev = to_scsi_device(dev);
10135 	struct ufs_hba *hba;
10136 	int ret = 0;
10137 	ktime_t start = ktime_get();
10138 
10139 	hba = shost_priv(sdev->host);
10140 	down(&hba->host_sem);
10141 	hba->system_suspending = true;
10142 
10143 	if (pm_runtime_suspended(dev))
10144 		goto out;
10145 
10146 	ret = __ufshcd_wl_suspend(hba, UFS_SYSTEM_PM);
10147 	if (ret) {
10148 		dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__,  ret);
10149 		up(&hba->host_sem);
10150 	}
10151 
10152 out:
10153 	if (!ret)
10154 		hba->is_sys_suspended = true;
10155 	trace_ufshcd_wl_suspend(hba, ret,
10156 		ktime_to_us(ktime_sub(ktime_get(), start)),
10157 		hba->curr_dev_pwr_mode, hba->uic_link_state);
10158 
10159 	return ret;
10160 }
10161 
10162 static int ufshcd_wl_resume(struct device *dev)
10163 {
10164 	struct scsi_device *sdev = to_scsi_device(dev);
10165 	struct ufs_hba *hba;
10166 	int ret = 0;
10167 	ktime_t start = ktime_get();
10168 
10169 	hba = shost_priv(sdev->host);
10170 
10171 	if (pm_runtime_suspended(dev))
10172 		goto out;
10173 
10174 	ret = __ufshcd_wl_resume(hba, UFS_SYSTEM_PM);
10175 	if (ret)
10176 		dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
10177 out:
10178 	trace_ufshcd_wl_resume(hba, ret,
10179 		ktime_to_us(ktime_sub(ktime_get(), start)),
10180 		hba->curr_dev_pwr_mode, hba->uic_link_state);
10181 	if (!ret)
10182 		hba->is_sys_suspended = false;
10183 	hba->system_suspending = false;
10184 	up(&hba->host_sem);
10185 	return ret;
10186 }
10187 #endif
10188 
10189 /**
10190  * ufshcd_suspend - helper function for suspend operations
10191  * @hba: per adapter instance
10192  *
10193  * This function will put disable irqs, turn off clocks
10194  * and set vreg and hba-vreg in lpm mode.
10195  *
10196  * Return: 0 upon success; < 0 upon failure.
10197  */
10198 static int ufshcd_suspend(struct ufs_hba *hba)
10199 {
10200 	int ret;
10201 
10202 	if (!hba->is_powered)
10203 		return 0;
10204 	/*
10205 	 * Disable the host irq as host controller as there won't be any
10206 	 * host controller transaction expected till resume.
10207 	 */
10208 	ufshcd_disable_irq(hba);
10209 	ret = ufshcd_setup_clocks(hba, false);
10210 	if (ret) {
10211 		ufshcd_enable_irq(hba);
10212 		return ret;
10213 	}
10214 	if (ufshcd_is_clkgating_allowed(hba)) {
10215 		hba->clk_gating.state = CLKS_OFF;
10216 		trace_ufshcd_clk_gating(hba,
10217 					hba->clk_gating.state);
10218 	}
10219 
10220 	ufshcd_vreg_set_lpm(hba);
10221 	/* Put the host controller in low power mode if possible */
10222 	ufshcd_hba_vreg_set_lpm(hba);
10223 	ufshcd_pm_qos_update(hba, false);
10224 	return ret;
10225 }
10226 
10227 #ifdef CONFIG_PM
10228 /**
10229  * ufshcd_resume - helper function for resume operations
10230  * @hba: per adapter instance
10231  *
10232  * This function basically turns on the regulators, clocks and
10233  * irqs of the hba.
10234  *
10235  * Return: 0 for success and non-zero for failure.
10236  */
10237 static int ufshcd_resume(struct ufs_hba *hba)
10238 {
10239 	int ret;
10240 
10241 	if (!hba->is_powered)
10242 		return 0;
10243 
10244 	ufshcd_hba_vreg_set_hpm(hba);
10245 	ret = ufshcd_vreg_set_hpm(hba);
10246 	if (ret)
10247 		goto out;
10248 
10249 	/* Make sure clocks are enabled before accessing controller */
10250 	ret = ufshcd_setup_clocks(hba, true);
10251 	if (ret)
10252 		goto disable_vreg;
10253 
10254 	/* enable the host irq as host controller would be active soon */
10255 	ufshcd_enable_irq(hba);
10256 
10257 	goto out;
10258 
10259 disable_vreg:
10260 	ufshcd_vreg_set_lpm(hba);
10261 out:
10262 	if (ret)
10263 		ufshcd_update_evt_hist(hba, UFS_EVT_RESUME_ERR, (u32)ret);
10264 	return ret;
10265 }
10266 #endif /* CONFIG_PM */
10267 
10268 #ifdef CONFIG_PM_SLEEP
10269 /**
10270  * ufshcd_system_suspend - system suspend callback
10271  * @dev: Device associated with the UFS controller.
10272  *
10273  * Executed before putting the system into a sleep state in which the contents
10274  * of main memory are preserved.
10275  *
10276  * Return: 0 for success and non-zero for failure.
10277  */
10278 int ufshcd_system_suspend(struct device *dev)
10279 {
10280 	struct ufs_hba *hba = dev_get_drvdata(dev);
10281 	int ret = 0;
10282 	ktime_t start = ktime_get();
10283 
10284 	if (pm_runtime_suspended(hba->dev))
10285 		goto out;
10286 
10287 	ret = ufshcd_suspend(hba);
10288 out:
10289 	trace_ufshcd_system_suspend(hba, ret,
10290 		ktime_to_us(ktime_sub(ktime_get(), start)),
10291 		hba->curr_dev_pwr_mode, hba->uic_link_state);
10292 	return ret;
10293 }
10294 EXPORT_SYMBOL(ufshcd_system_suspend);
10295 
10296 /**
10297  * ufshcd_system_resume - system resume callback
10298  * @dev: Device associated with the UFS controller.
10299  *
10300  * Executed after waking the system up from a sleep state in which the contents
10301  * of main memory were preserved.
10302  *
10303  * Return: 0 for success and non-zero for failure.
10304  */
10305 int ufshcd_system_resume(struct device *dev)
10306 {
10307 	struct ufs_hba *hba = dev_get_drvdata(dev);
10308 	ktime_t start = ktime_get();
10309 	int ret = 0;
10310 
10311 	if (pm_runtime_suspended(hba->dev))
10312 		goto out;
10313 
10314 	ret = ufshcd_resume(hba);
10315 
10316 out:
10317 	trace_ufshcd_system_resume(hba, ret,
10318 		ktime_to_us(ktime_sub(ktime_get(), start)),
10319 		hba->curr_dev_pwr_mode, hba->uic_link_state);
10320 
10321 	return ret;
10322 }
10323 EXPORT_SYMBOL(ufshcd_system_resume);
10324 #endif /* CONFIG_PM_SLEEP */
10325 
10326 #ifdef CONFIG_PM
10327 /**
10328  * ufshcd_runtime_suspend - runtime suspend callback
10329  * @dev: Device associated with the UFS controller.
10330  *
10331  * Check the description of ufshcd_suspend() function for more details.
10332  *
10333  * Return: 0 for success and non-zero for failure.
10334  */
10335 int ufshcd_runtime_suspend(struct device *dev)
10336 {
10337 	struct ufs_hba *hba = dev_get_drvdata(dev);
10338 	int ret;
10339 	ktime_t start = ktime_get();
10340 
10341 	ret = ufshcd_suspend(hba);
10342 
10343 	trace_ufshcd_runtime_suspend(hba, ret,
10344 		ktime_to_us(ktime_sub(ktime_get(), start)),
10345 		hba->curr_dev_pwr_mode, hba->uic_link_state);
10346 	return ret;
10347 }
10348 EXPORT_SYMBOL(ufshcd_runtime_suspend);
10349 
10350 /**
10351  * ufshcd_runtime_resume - runtime resume routine
10352  * @dev: Device associated with the UFS controller.
10353  *
10354  * This function basically brings controller
10355  * to active state. Following operations are done in this function:
10356  *
10357  * 1. Turn on all the controller related clocks
10358  * 2. Turn ON VCC rail
10359  *
10360  * Return: 0 upon success; < 0 upon failure.
10361  */
10362 int ufshcd_runtime_resume(struct device *dev)
10363 {
10364 	struct ufs_hba *hba = dev_get_drvdata(dev);
10365 	int ret;
10366 	ktime_t start = ktime_get();
10367 
10368 	ret = ufshcd_resume(hba);
10369 
10370 	trace_ufshcd_runtime_resume(hba, ret,
10371 		ktime_to_us(ktime_sub(ktime_get(), start)),
10372 		hba->curr_dev_pwr_mode, hba->uic_link_state);
10373 	return ret;
10374 }
10375 EXPORT_SYMBOL(ufshcd_runtime_resume);
10376 #endif /* CONFIG_PM */
10377 
10378 static void ufshcd_wl_shutdown(struct device *dev)
10379 {
10380 	struct scsi_device *sdev = to_scsi_device(dev);
10381 	struct ufs_hba *hba = shost_priv(sdev->host);
10382 
10383 	down(&hba->host_sem);
10384 	hba->shutting_down = true;
10385 	up(&hba->host_sem);
10386 
10387 	/* Turn on everything while shutting down */
10388 	ufshcd_rpm_get_sync(hba);
10389 	scsi_device_quiesce(sdev);
10390 	shost_for_each_device(sdev, hba->host) {
10391 		if (sdev == hba->ufs_device_wlun)
10392 			continue;
10393 		mutex_lock(&sdev->state_mutex);
10394 		scsi_device_set_state(sdev, SDEV_OFFLINE);
10395 		mutex_unlock(&sdev->state_mutex);
10396 	}
10397 	__ufshcd_wl_suspend(hba, UFS_SHUTDOWN_PM);
10398 
10399 	/*
10400 	 * Next, turn off the UFS controller and the UFS regulators. Disable
10401 	 * clocks.
10402 	 */
10403 	if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba))
10404 		ufshcd_suspend(hba);
10405 
10406 	hba->is_powered = false;
10407 }
10408 
10409 /**
10410  * ufshcd_remove - de-allocate SCSI host and host memory space
10411  *		data structure memory
10412  * @hba: per adapter instance
10413  */
10414 void ufshcd_remove(struct ufs_hba *hba)
10415 {
10416 	if (hba->ufs_device_wlun)
10417 		ufshcd_rpm_get_sync(hba);
10418 	ufs_hwmon_remove(hba);
10419 	ufs_bsg_remove(hba);
10420 	ufs_sysfs_remove_nodes(hba->dev);
10421 	cancel_delayed_work_sync(&hba->ufs_rtc_update_work);
10422 	blk_mq_destroy_queue(hba->tmf_queue);
10423 	blk_put_queue(hba->tmf_queue);
10424 	blk_mq_free_tag_set(&hba->tmf_tag_set);
10425 	if (hba->scsi_host_added)
10426 		scsi_remove_host(hba->host);
10427 	/* disable interrupts */
10428 	ufshcd_disable_intr(hba, hba->intr_mask);
10429 	ufshcd_hba_stop(hba);
10430 	ufshcd_hba_exit(hba);
10431 }
10432 EXPORT_SYMBOL_GPL(ufshcd_remove);
10433 
10434 #ifdef CONFIG_PM_SLEEP
10435 int ufshcd_system_freeze(struct device *dev)
10436 {
10437 
10438 	return ufshcd_system_suspend(dev);
10439 
10440 }
10441 EXPORT_SYMBOL_GPL(ufshcd_system_freeze);
10442 
10443 int ufshcd_system_restore(struct device *dev)
10444 {
10445 
10446 	struct ufs_hba *hba = dev_get_drvdata(dev);
10447 	int ret;
10448 
10449 	ret = ufshcd_system_resume(dev);
10450 	if (ret)
10451 		return ret;
10452 
10453 	/* Configure UTRL and UTMRL base address registers */
10454 	ufshcd_writel(hba, lower_32_bits(hba->utrdl_dma_addr),
10455 			REG_UTP_TRANSFER_REQ_LIST_BASE_L);
10456 	ufshcd_writel(hba, upper_32_bits(hba->utrdl_dma_addr),
10457 			REG_UTP_TRANSFER_REQ_LIST_BASE_H);
10458 	ufshcd_writel(hba, lower_32_bits(hba->utmrdl_dma_addr),
10459 			REG_UTP_TASK_REQ_LIST_BASE_L);
10460 	ufshcd_writel(hba, upper_32_bits(hba->utmrdl_dma_addr),
10461 			REG_UTP_TASK_REQ_LIST_BASE_H);
10462 	/*
10463 	 * Make sure that UTRL and UTMRL base address registers
10464 	 * are updated with the latest queue addresses. Only after
10465 	 * updating these addresses, we can queue the new commands.
10466 	 */
10467 	ufshcd_readl(hba, REG_UTP_TASK_REQ_LIST_BASE_H);
10468 
10469 	return 0;
10470 
10471 }
10472 EXPORT_SYMBOL_GPL(ufshcd_system_restore);
10473 
10474 int ufshcd_system_thaw(struct device *dev)
10475 {
10476 	return ufshcd_system_resume(dev);
10477 }
10478 EXPORT_SYMBOL_GPL(ufshcd_system_thaw);
10479 #endif /* CONFIG_PM_SLEEP  */
10480 
10481 /**
10482  * ufshcd_set_dma_mask - Set dma mask based on the controller
10483  *			 addressing capability
10484  * @hba: per adapter instance
10485  *
10486  * Return: 0 for success, non-zero for failure.
10487  */
10488 static int ufshcd_set_dma_mask(struct ufs_hba *hba)
10489 {
10490 	if (hba->vops && hba->vops->set_dma_mask)
10491 		return hba->vops->set_dma_mask(hba);
10492 	if (hba->capabilities & MASK_64_ADDRESSING_SUPPORT) {
10493 		if (!dma_set_mask_and_coherent(hba->dev, DMA_BIT_MASK(64)))
10494 			return 0;
10495 	}
10496 	return dma_set_mask_and_coherent(hba->dev, DMA_BIT_MASK(32));
10497 }
10498 
10499 /**
10500  * ufshcd_devres_release - devres cleanup handler, invoked during release of
10501  *			   hba->dev
10502  * @host: pointer to SCSI host
10503  */
10504 static void ufshcd_devres_release(void *host)
10505 {
10506 	scsi_host_put(host);
10507 }
10508 
10509 /**
10510  * ufshcd_alloc_host - allocate Host Bus Adapter (HBA)
10511  * @dev: pointer to device handle
10512  * @hba_handle: driver private handle
10513  *
10514  * Return: 0 on success, non-zero value on failure.
10515  *
10516  * NOTE: There is no corresponding ufshcd_dealloc_host() because this function
10517  * keeps track of its allocations using devres and deallocates everything on
10518  * device removal automatically.
10519  */
10520 int ufshcd_alloc_host(struct device *dev, struct ufs_hba **hba_handle)
10521 {
10522 	struct Scsi_Host *host;
10523 	struct ufs_hba *hba;
10524 	int err = 0;
10525 
10526 	if (!dev) {
10527 		dev_err(dev,
10528 		"Invalid memory reference for dev is NULL\n");
10529 		err = -ENODEV;
10530 		goto out_error;
10531 	}
10532 
10533 	host = scsi_host_alloc(&ufshcd_driver_template,
10534 				sizeof(struct ufs_hba));
10535 	if (!host) {
10536 		dev_err(dev, "scsi_host_alloc failed\n");
10537 		err = -ENOMEM;
10538 		goto out_error;
10539 	}
10540 
10541 	err = devm_add_action_or_reset(dev, ufshcd_devres_release,
10542 				       host);
10543 	if (err)
10544 		return err;
10545 
10546 	host->nr_maps = HCTX_TYPE_POLL + 1;
10547 	hba = shost_priv(host);
10548 	hba->host = host;
10549 	hba->dev = dev;
10550 	hba->dev_ref_clk_freq = REF_CLK_FREQ_INVAL;
10551 	hba->nop_out_timeout = NOP_OUT_TIMEOUT;
10552 	ufshcd_set_sg_entry_size(hba, sizeof(struct ufshcd_sg_entry));
10553 	INIT_LIST_HEAD(&hba->clk_list_head);
10554 	spin_lock_init(&hba->outstanding_lock);
10555 
10556 	*hba_handle = hba;
10557 
10558 out_error:
10559 	return err;
10560 }
10561 EXPORT_SYMBOL(ufshcd_alloc_host);
10562 
10563 /* This function exists because blk_mq_alloc_tag_set() requires this. */
10564 static blk_status_t ufshcd_queue_tmf(struct blk_mq_hw_ctx *hctx,
10565 				     const struct blk_mq_queue_data *qd)
10566 {
10567 	WARN_ON_ONCE(true);
10568 	return BLK_STS_NOTSUPP;
10569 }
10570 
10571 static const struct blk_mq_ops ufshcd_tmf_ops = {
10572 	.queue_rq = ufshcd_queue_tmf,
10573 };
10574 
10575 static int ufshcd_add_scsi_host(struct ufs_hba *hba)
10576 {
10577 	int err;
10578 
10579 	if (is_mcq_supported(hba)) {
10580 		ufshcd_mcq_enable(hba);
10581 		err = ufshcd_alloc_mcq(hba);
10582 		if (!err) {
10583 			ufshcd_config_mcq(hba);
10584 		} else {
10585 			/* Continue with SDB mode */
10586 			ufshcd_mcq_disable(hba);
10587 			use_mcq_mode = false;
10588 			dev_err(hba->dev, "MCQ mode is disabled, err=%d\n",
10589 				err);
10590 		}
10591 	}
10592 	if (!is_mcq_supported(hba) && !hba->lsdb_sup) {
10593 		dev_err(hba->dev,
10594 			"%s: failed to initialize (legacy doorbell mode not supported)\n",
10595 			__func__);
10596 		return -EINVAL;
10597 	}
10598 
10599 	err = scsi_add_host(hba->host, hba->dev);
10600 	if (err) {
10601 		dev_err(hba->dev, "scsi_add_host failed\n");
10602 		return err;
10603 	}
10604 	hba->scsi_host_added = true;
10605 
10606 	hba->tmf_tag_set = (struct blk_mq_tag_set) {
10607 		.nr_hw_queues	= 1,
10608 		.queue_depth	= hba->nutmrs,
10609 		.ops		= &ufshcd_tmf_ops,
10610 	};
10611 	err = blk_mq_alloc_tag_set(&hba->tmf_tag_set);
10612 	if (err < 0)
10613 		goto remove_scsi_host;
10614 	hba->tmf_queue = blk_mq_alloc_queue(&hba->tmf_tag_set, NULL, NULL);
10615 	if (IS_ERR(hba->tmf_queue)) {
10616 		err = PTR_ERR(hba->tmf_queue);
10617 		goto free_tmf_tag_set;
10618 	}
10619 	hba->tmf_rqs = devm_kcalloc(hba->dev, hba->nutmrs,
10620 				    sizeof(*hba->tmf_rqs), GFP_KERNEL);
10621 	if (!hba->tmf_rqs) {
10622 		err = -ENOMEM;
10623 		goto free_tmf_queue;
10624 	}
10625 
10626 	return 0;
10627 
10628 free_tmf_queue:
10629 	blk_mq_destroy_queue(hba->tmf_queue);
10630 	blk_put_queue(hba->tmf_queue);
10631 
10632 free_tmf_tag_set:
10633 	blk_mq_free_tag_set(&hba->tmf_tag_set);
10634 
10635 remove_scsi_host:
10636 	if (hba->scsi_host_added)
10637 		scsi_remove_host(hba->host);
10638 
10639 	return err;
10640 }
10641 
10642 /**
10643  * ufshcd_init - Driver initialization routine
10644  * @hba: per-adapter instance
10645  * @mmio_base: base register address
10646  * @irq: Interrupt line of device
10647  *
10648  * Return: 0 on success, non-zero value on failure.
10649  */
10650 int ufshcd_init(struct ufs_hba *hba, void __iomem *mmio_base, unsigned int irq)
10651 {
10652 	int err;
10653 	struct Scsi_Host *host = hba->host;
10654 	struct device *dev = hba->dev;
10655 
10656 	/*
10657 	 * dev_set_drvdata() must be called before any callbacks are registered
10658 	 * that use dev_get_drvdata() (frequency scaling, clock scaling, hwmon,
10659 	 * sysfs).
10660 	 */
10661 	dev_set_drvdata(dev, hba);
10662 
10663 	if (!mmio_base) {
10664 		dev_err(hba->dev,
10665 		"Invalid memory reference for mmio_base is NULL\n");
10666 		err = -ENODEV;
10667 		goto out_error;
10668 	}
10669 
10670 	hba->mmio_base = mmio_base;
10671 	hba->irq = irq;
10672 	hba->vps = &ufs_hba_vps;
10673 
10674 	/*
10675 	 * Initialize clk_gating.lock early since it is being used in
10676 	 * ufshcd_setup_clocks()
10677 	 */
10678 	spin_lock_init(&hba->clk_gating.lock);
10679 
10680 	/*
10681 	 * Set the default power management level for runtime and system PM.
10682 	 * Host controller drivers can override them in their
10683 	 * 'ufs_hba_variant_ops::init' callback.
10684 	 *
10685 	 * Default power saving mode is to keep UFS link in Hibern8 state
10686 	 * and UFS device in sleep state.
10687 	 */
10688 	hba->rpm_lvl = ufs_get_desired_pm_lvl_for_dev_link_state(
10689 						UFS_SLEEP_PWR_MODE,
10690 						UIC_LINK_HIBERN8_STATE);
10691 	hba->spm_lvl = ufs_get_desired_pm_lvl_for_dev_link_state(
10692 						UFS_SLEEP_PWR_MODE,
10693 						UIC_LINK_HIBERN8_STATE);
10694 
10695 	init_completion(&hba->dev_cmd.complete);
10696 
10697 	err = ufshcd_hba_init(hba);
10698 	if (err)
10699 		goto out_error;
10700 
10701 	/* Read capabilities registers */
10702 	err = ufshcd_hba_capabilities(hba);
10703 	if (err)
10704 		goto out_disable;
10705 
10706 	/* Get UFS version supported by the controller */
10707 	hba->ufs_version = ufshcd_get_ufs_version(hba);
10708 
10709 	/* Get Interrupt bit mask per version */
10710 	hba->intr_mask = ufshcd_get_intr_mask(hba);
10711 
10712 	err = ufshcd_set_dma_mask(hba);
10713 	if (err) {
10714 		dev_err(hba->dev, "set dma mask failed\n");
10715 		goto out_disable;
10716 	}
10717 
10718 	/* Allocate memory for host memory space */
10719 	err = ufshcd_memory_alloc(hba);
10720 	if (err) {
10721 		dev_err(hba->dev, "Memory allocation failed\n");
10722 		goto out_disable;
10723 	}
10724 
10725 	/* Configure LRB */
10726 	ufshcd_host_memory_configure(hba);
10727 
10728 	host->can_queue = hba->nutrs - UFSHCD_NUM_RESERVED;
10729 	host->cmd_per_lun = hba->nutrs - UFSHCD_NUM_RESERVED;
10730 	host->max_id = UFSHCD_MAX_ID;
10731 	host->max_lun = UFS_MAX_LUNS;
10732 	host->max_channel = UFSHCD_MAX_CHANNEL;
10733 	host->unique_id = host->host_no;
10734 	host->max_cmd_len = UFS_CDB_SIZE;
10735 	host->queuecommand_may_block = !!(hba->caps & UFSHCD_CAP_CLK_GATING);
10736 
10737 	/* Use default RPM delay if host not set */
10738 	if (host->rpm_autosuspend_delay == 0)
10739 		host->rpm_autosuspend_delay = RPM_AUTOSUSPEND_DELAY_MS;
10740 
10741 	hba->max_pwr_info.is_valid = false;
10742 
10743 	/* Initialize work queues */
10744 	hba->eh_wq = alloc_ordered_workqueue("ufs_eh_wq_%d", WQ_MEM_RECLAIM,
10745 					     hba->host->host_no);
10746 	if (!hba->eh_wq) {
10747 		dev_err(hba->dev, "%s: failed to create eh workqueue\n",
10748 			__func__);
10749 		err = -ENOMEM;
10750 		goto out_disable;
10751 	}
10752 	INIT_WORK(&hba->eh_work, ufshcd_err_handler);
10753 	INIT_WORK(&hba->eeh_work, ufshcd_exception_event_handler);
10754 
10755 	sema_init(&hba->host_sem, 1);
10756 
10757 	/* Initialize UIC command mutex */
10758 	mutex_init(&hba->uic_cmd_mutex);
10759 
10760 	/* Initialize mutex for device management commands */
10761 	mutex_init(&hba->dev_cmd.lock);
10762 
10763 	/* Initialize mutex for exception event control */
10764 	mutex_init(&hba->ee_ctrl_mutex);
10765 
10766 	mutex_init(&hba->wb_mutex);
10767 
10768 	/* Initialize mutex for PM QoS request synchronization */
10769 	mutex_init(&hba->pm_qos_mutex);
10770 
10771 	init_rwsem(&hba->clk_scaling_lock);
10772 
10773 	ufshcd_init_clk_gating(hba);
10774 
10775 	ufshcd_init_clk_scaling(hba);
10776 
10777 	/*
10778 	 * In order to avoid any spurious interrupt immediately after
10779 	 * registering UFS controller interrupt handler, clear any pending UFS
10780 	 * interrupt status and disable all the UFS interrupts.
10781 	 */
10782 	ufshcd_writel(hba, ufshcd_readl(hba, REG_INTERRUPT_STATUS),
10783 		      REG_INTERRUPT_STATUS);
10784 	ufshcd_writel(hba, 0, REG_INTERRUPT_ENABLE);
10785 	/*
10786 	 * Make sure that UFS interrupts are disabled and any pending interrupt
10787 	 * status is cleared before registering UFS interrupt handler.
10788 	 */
10789 	ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
10790 
10791 	/* IRQ registration */
10792 	err = devm_request_threaded_irq(dev, irq, ufshcd_intr, ufshcd_threaded_intr,
10793 					IRQF_ONESHOT | IRQF_SHARED, UFSHCD, hba);
10794 	if (err) {
10795 		dev_err(hba->dev, "request irq failed\n");
10796 		goto out_disable;
10797 	} else {
10798 		hba->is_irq_enabled = true;
10799 	}
10800 
10801 	/* Reset the attached device */
10802 	ufshcd_device_reset(hba);
10803 
10804 	ufshcd_init_crypto(hba);
10805 
10806 	/* Host controller enable */
10807 	err = ufshcd_hba_enable(hba);
10808 	if (err) {
10809 		dev_err(hba->dev, "Host controller enable failed\n");
10810 		ufshcd_print_evt_hist(hba);
10811 		ufshcd_print_host_state(hba);
10812 		goto out_disable;
10813 	}
10814 
10815 	INIT_DELAYED_WORK(&hba->rpm_dev_flush_recheck_work, ufshcd_rpm_dev_flush_recheck_work);
10816 	INIT_DELAYED_WORK(&hba->ufs_rtc_update_work, ufshcd_rtc_work);
10817 
10818 	/* Set the default auto-hiberate idle timer value to 150 ms */
10819 	if (ufshcd_is_auto_hibern8_supported(hba) && !hba->ahit) {
10820 		hba->ahit = FIELD_PREP(UFSHCI_AHIBERN8_TIMER_MASK, 150) |
10821 			    FIELD_PREP(UFSHCI_AHIBERN8_SCALE_MASK, 3);
10822 	}
10823 
10824 	/* Hold auto suspend until async scan completes */
10825 	pm_runtime_get_sync(dev);
10826 
10827 	/*
10828 	 * We are assuming that device wasn't put in sleep/power-down
10829 	 * state exclusively during the boot stage before kernel.
10830 	 * This assumption helps avoid doing link startup twice during
10831 	 * ufshcd_probe_hba().
10832 	 */
10833 	ufshcd_set_ufs_dev_active(hba);
10834 
10835 	/* Initialize hba, detect and initialize UFS device */
10836 	ktime_t probe_start = ktime_get();
10837 
10838 	hba->ufshcd_state = UFSHCD_STATE_RESET;
10839 
10840 	err = ufshcd_link_startup(hba);
10841 	if (err)
10842 		goto out_disable;
10843 
10844 	if (hba->quirks & UFSHCD_QUIRK_SKIP_PH_CONFIGURATION)
10845 		goto initialized;
10846 
10847 	/* Debug counters initialization */
10848 	ufshcd_clear_dbg_ufs_stats(hba);
10849 
10850 	/* UniPro link is active now */
10851 	ufshcd_set_link_active(hba);
10852 
10853 	/* Verify device initialization by sending NOP OUT UPIU */
10854 	err = ufshcd_verify_dev_init(hba);
10855 	if (err)
10856 		goto out_disable;
10857 
10858 	/* Initiate UFS initialization, and waiting until completion */
10859 	err = ufshcd_complete_dev_init(hba);
10860 	if (err)
10861 		goto out_disable;
10862 
10863 	err = ufshcd_device_params_init(hba);
10864 	if (err)
10865 		goto out_disable;
10866 
10867 	err = ufshcd_post_device_init(hba);
10868 
10869 initialized:
10870 	ufshcd_process_probe_result(hba, probe_start, err);
10871 	if (err)
10872 		goto out_disable;
10873 
10874 	err = ufshcd_add_scsi_host(hba);
10875 	if (err)
10876 		goto out_disable;
10877 
10878 	async_schedule(ufshcd_async_scan, hba);
10879 	ufs_sysfs_add_nodes(hba->dev);
10880 
10881 	device_enable_async_suspend(dev);
10882 	ufshcd_pm_qos_init(hba);
10883 	return 0;
10884 
10885 out_disable:
10886 	hba->is_irq_enabled = false;
10887 	ufshcd_hba_exit(hba);
10888 out_error:
10889 	return err;
10890 }
10891 EXPORT_SYMBOL_GPL(ufshcd_init);
10892 
10893 void ufshcd_resume_complete(struct device *dev)
10894 {
10895 	struct ufs_hba *hba = dev_get_drvdata(dev);
10896 
10897 	if (hba->complete_put) {
10898 		ufshcd_rpm_put(hba);
10899 		hba->complete_put = false;
10900 	}
10901 }
10902 EXPORT_SYMBOL_GPL(ufshcd_resume_complete);
10903 
10904 static bool ufshcd_rpm_ok_for_spm(struct ufs_hba *hba)
10905 {
10906 	struct device *dev = &hba->ufs_device_wlun->sdev_gendev;
10907 	enum ufs_dev_pwr_mode dev_pwr_mode;
10908 	enum uic_link_state link_state;
10909 	unsigned long flags;
10910 	bool res;
10911 
10912 	spin_lock_irqsave(&dev->power.lock, flags);
10913 	dev_pwr_mode = ufs_get_pm_lvl_to_dev_pwr_mode(hba->spm_lvl);
10914 	link_state = ufs_get_pm_lvl_to_link_pwr_state(hba->spm_lvl);
10915 	res = pm_runtime_suspended(dev) &&
10916 	      hba->curr_dev_pwr_mode == dev_pwr_mode &&
10917 	      hba->uic_link_state == link_state &&
10918 	      !hba->dev_info.b_rpm_dev_flush_capable;
10919 	spin_unlock_irqrestore(&dev->power.lock, flags);
10920 
10921 	return res;
10922 }
10923 
10924 int __ufshcd_suspend_prepare(struct device *dev, bool rpm_ok_for_spm)
10925 {
10926 	struct ufs_hba *hba = dev_get_drvdata(dev);
10927 	int ret;
10928 
10929 	/*
10930 	 * SCSI assumes that runtime-pm and system-pm for scsi drivers
10931 	 * are same. And it doesn't wake up the device for system-suspend
10932 	 * if it's runtime suspended. But ufs doesn't follow that.
10933 	 * Refer ufshcd_resume_complete()
10934 	 */
10935 	if (hba->ufs_device_wlun) {
10936 		/* Prevent runtime suspend */
10937 		ufshcd_rpm_get_noresume(hba);
10938 		/*
10939 		 * Check if already runtime suspended in same state as system
10940 		 * suspend would be.
10941 		 */
10942 		if (!rpm_ok_for_spm || !ufshcd_rpm_ok_for_spm(hba)) {
10943 			/* RPM state is not ok for SPM, so runtime resume */
10944 			ret = ufshcd_rpm_resume(hba);
10945 			if (ret < 0 && ret != -EACCES) {
10946 				ufshcd_rpm_put(hba);
10947 				return ret;
10948 			}
10949 		}
10950 		hba->complete_put = true;
10951 	}
10952 	return 0;
10953 }
10954 EXPORT_SYMBOL_GPL(__ufshcd_suspend_prepare);
10955 
10956 int ufshcd_suspend_prepare(struct device *dev)
10957 {
10958 	return __ufshcd_suspend_prepare(dev, true);
10959 }
10960 EXPORT_SYMBOL_GPL(ufshcd_suspend_prepare);
10961 
10962 #ifdef CONFIG_PM_SLEEP
10963 static int ufshcd_wl_poweroff(struct device *dev)
10964 {
10965 	struct scsi_device *sdev = to_scsi_device(dev);
10966 	struct ufs_hba *hba = shost_priv(sdev->host);
10967 
10968 	__ufshcd_wl_suspend(hba, UFS_SHUTDOWN_PM);
10969 	return 0;
10970 }
10971 #endif
10972 
10973 static int ufshcd_wl_probe(struct device *dev)
10974 {
10975 	struct scsi_device *sdev = to_scsi_device(dev);
10976 
10977 	if (!is_device_wlun(sdev))
10978 		return -ENODEV;
10979 
10980 	blk_pm_runtime_init(sdev->request_queue, dev);
10981 	pm_runtime_set_autosuspend_delay(dev, 0);
10982 	pm_runtime_allow(dev);
10983 
10984 	return  0;
10985 }
10986 
10987 static int ufshcd_wl_remove(struct device *dev)
10988 {
10989 	pm_runtime_forbid(dev);
10990 	return 0;
10991 }
10992 
10993 static const struct dev_pm_ops ufshcd_wl_pm_ops = {
10994 #ifdef CONFIG_PM_SLEEP
10995 	.suspend = ufshcd_wl_suspend,
10996 	.resume = ufshcd_wl_resume,
10997 	.freeze = ufshcd_wl_suspend,
10998 	.thaw = ufshcd_wl_resume,
10999 	.poweroff = ufshcd_wl_poweroff,
11000 	.restore = ufshcd_wl_resume,
11001 #endif
11002 	SET_RUNTIME_PM_OPS(ufshcd_wl_runtime_suspend, ufshcd_wl_runtime_resume, NULL)
11003 };
11004 
11005 static void ufshcd_check_header_layout(void)
11006 {
11007 	/*
11008 	 * gcc compilers before version 10 cannot do constant-folding for
11009 	 * sub-byte bitfields. Hence skip the layout checks for gcc 9 and
11010 	 * before.
11011 	 */
11012 	if (IS_ENABLED(CONFIG_CC_IS_GCC) && CONFIG_GCC_VERSION < 100000)
11013 		return;
11014 
11015 	BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
11016 				.cci = 3})[0] != 3);
11017 
11018 	BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
11019 				.ehs_length = 2})[1] != 2);
11020 
11021 	BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
11022 				.enable_crypto = 1})[2]
11023 		     != 0x80);
11024 
11025 	BUILD_BUG_ON((((u8 *)&(struct request_desc_header){
11026 					.command_type = 5,
11027 					.data_direction = 3,
11028 					.interrupt = 1,
11029 				})[3]) != ((5 << 4) | (3 << 1) | 1));
11030 
11031 	BUILD_BUG_ON(((__le32 *)&(struct request_desc_header){
11032 				.dunl = cpu_to_le32(0xdeadbeef)})[1] !=
11033 		cpu_to_le32(0xdeadbeef));
11034 
11035 	BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
11036 				.ocs = 4})[8] != 4);
11037 
11038 	BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
11039 				.cds = 5})[9] != 5);
11040 
11041 	BUILD_BUG_ON(((__le32 *)&(struct request_desc_header){
11042 				.dunu = cpu_to_le32(0xbadcafe)})[3] !=
11043 		cpu_to_le32(0xbadcafe));
11044 
11045 	BUILD_BUG_ON(((u8 *)&(struct utp_upiu_header){
11046 			     .iid = 0xf })[4] != 0xf0);
11047 
11048 	BUILD_BUG_ON(((u8 *)&(struct utp_upiu_header){
11049 			     .command_set_type = 0xf })[4] != 0xf);
11050 }
11051 
11052 /*
11053  * ufs_dev_wlun_template - describes ufs device wlun
11054  * ufs-device wlun - used to send pm commands
11055  * All luns are consumers of ufs-device wlun.
11056  *
11057  * Currently, no sd driver is present for wluns.
11058  * Hence the no specific pm operations are performed.
11059  * With ufs design, SSU should be sent to ufs-device wlun.
11060  * Hence register a scsi driver for ufs wluns only.
11061  */
11062 static struct scsi_driver ufs_dev_wlun_template = {
11063 	.gendrv = {
11064 		.name = "ufs_device_wlun",
11065 		.probe = ufshcd_wl_probe,
11066 		.remove = ufshcd_wl_remove,
11067 		.pm = &ufshcd_wl_pm_ops,
11068 		.shutdown = ufshcd_wl_shutdown,
11069 	},
11070 };
11071 
11072 static int __init ufshcd_core_init(void)
11073 {
11074 	int ret;
11075 
11076 	ufshcd_check_header_layout();
11077 
11078 	ufs_debugfs_init();
11079 
11080 	ret = scsi_register_driver(&ufs_dev_wlun_template.gendrv);
11081 	if (ret)
11082 		ufs_debugfs_exit();
11083 	return ret;
11084 }
11085 
11086 static void __exit ufshcd_core_exit(void)
11087 {
11088 	ufs_debugfs_exit();
11089 	scsi_unregister_driver(&ufs_dev_wlun_template.gendrv);
11090 }
11091 
11092 module_init(ufshcd_core_init);
11093 module_exit(ufshcd_core_exit);
11094 
11095 MODULE_AUTHOR("Santosh Yaragnavi <santosh.sy@samsung.com>");
11096 MODULE_AUTHOR("Vinayak Holikatti <h.vinayak@samsung.com>");
11097 MODULE_DESCRIPTION("Generic UFS host controller driver Core");
11098 MODULE_SOFTDEP("pre: governor_simpleondemand");
11099 MODULE_LICENSE("GPL");
11100