xref: /linux/drivers/ufs/core/ufshcd.c (revision 550ee90ac61c1f0cd987c68a9ac6c4c9833925d7)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Universal Flash Storage Host controller driver Core
4  * Copyright (C) 2011-2013 Samsung India Software Operations
5  * Copyright (c) 2013-2016, The Linux Foundation. All rights reserved.
6  *
7  * Authors:
8  *	Santosh Yaraganavi <santosh.sy@samsung.com>
9  *	Vinayak Holikatti <h.vinayak@samsung.com>
10  */
11 
12 #include <linux/async.h>
13 #include <linux/devfreq.h>
14 #include <linux/nls.h>
15 #include <linux/of.h>
16 #include <linux/bitfield.h>
17 #include <linux/blk-pm.h>
18 #include <linux/blkdev.h>
19 #include <linux/clk.h>
20 #include <linux/delay.h>
21 #include <linux/interrupt.h>
22 #include <linux/module.h>
23 #include <linux/pm_opp.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/sched/clock.h>
26 #include <linux/iopoll.h>
27 #include <scsi/scsi_cmnd.h>
28 #include <scsi/scsi_dbg.h>
29 #include <scsi/scsi_driver.h>
30 #include <scsi/scsi_eh.h>
31 #include "ufshcd-priv.h"
32 #include <ufs/ufs_quirks.h>
33 #include <ufs/unipro.h>
34 #include "ufs-sysfs.h"
35 #include "ufs-debugfs.h"
36 #include "ufs-fault-injection.h"
37 #include "ufs_bsg.h"
38 #include "ufshcd-crypto.h"
39 #include <asm/unaligned.h>
40 
41 #define CREATE_TRACE_POINTS
42 #include <trace/events/ufs.h>
43 
44 #define UFSHCD_ENABLE_INTRS	(UTP_TRANSFER_REQ_COMPL |\
45 				 UTP_TASK_REQ_COMPL |\
46 				 UFSHCD_ERROR_MASK)
47 
48 #define UFSHCD_ENABLE_MCQ_INTRS	(UTP_TASK_REQ_COMPL |\
49 				 UFSHCD_ERROR_MASK |\
50 				 MCQ_CQ_EVENT_STATUS)
51 
52 
53 /* UIC command timeout, unit: ms */
54 #define UIC_CMD_TIMEOUT	500
55 
56 /* NOP OUT retries waiting for NOP IN response */
57 #define NOP_OUT_RETRIES    10
58 /* Timeout after 50 msecs if NOP OUT hangs without response */
59 #define NOP_OUT_TIMEOUT    50 /* msecs */
60 
61 /* Query request retries */
62 #define QUERY_REQ_RETRIES 3
63 /* Query request timeout */
64 #define QUERY_REQ_TIMEOUT 1500 /* 1.5 seconds */
65 
66 /* Advanced RPMB request timeout */
67 #define ADVANCED_RPMB_REQ_TIMEOUT  3000 /* 3 seconds */
68 
69 /* Task management command timeout */
70 #define TM_CMD_TIMEOUT	100 /* msecs */
71 
72 /* maximum number of retries for a general UIC command  */
73 #define UFS_UIC_COMMAND_RETRIES 3
74 
75 /* maximum number of link-startup retries */
76 #define DME_LINKSTARTUP_RETRIES 3
77 
78 /* maximum number of reset retries before giving up */
79 #define MAX_HOST_RESET_RETRIES 5
80 
81 /* Maximum number of error handler retries before giving up */
82 #define MAX_ERR_HANDLER_RETRIES 5
83 
84 /* Expose the flag value from utp_upiu_query.value */
85 #define MASK_QUERY_UPIU_FLAG_LOC 0xFF
86 
87 /* Interrupt aggregation default timeout, unit: 40us */
88 #define INT_AGGR_DEF_TO	0x02
89 
90 /* default delay of autosuspend: 2000 ms */
91 #define RPM_AUTOSUSPEND_DELAY_MS 2000
92 
93 /* Default delay of RPM device flush delayed work */
94 #define RPM_DEV_FLUSH_RECHECK_WORK_DELAY_MS 5000
95 
96 /* Default value of wait time before gating device ref clock */
97 #define UFSHCD_REF_CLK_GATING_WAIT_US 0xFF /* microsecs */
98 
99 /* Polling time to wait for fDeviceInit */
100 #define FDEVICEINIT_COMPL_TIMEOUT 1500 /* millisecs */
101 
102 /* Default RTC update every 10 seconds */
103 #define UFS_RTC_UPDATE_INTERVAL_MS (10 * MSEC_PER_SEC)
104 
105 /* bMaxNumOfRTT is equal to two after device manufacturing */
106 #define DEFAULT_MAX_NUM_RTT 2
107 
108 /* UFSHC 4.0 compliant HC support this mode. */
109 static bool use_mcq_mode = true;
110 
111 static bool is_mcq_supported(struct ufs_hba *hba)
112 {
113 	return hba->mcq_sup && use_mcq_mode;
114 }
115 
116 module_param(use_mcq_mode, bool, 0644);
117 MODULE_PARM_DESC(use_mcq_mode, "Control MCQ mode for controllers starting from UFSHCI 4.0. 1 - enable MCQ, 0 - disable MCQ. MCQ is enabled by default");
118 
119 #define ufshcd_toggle_vreg(_dev, _vreg, _on)				\
120 	({                                                              \
121 		int _ret;                                               \
122 		if (_on)                                                \
123 			_ret = ufshcd_enable_vreg(_dev, _vreg);         \
124 		else                                                    \
125 			_ret = ufshcd_disable_vreg(_dev, _vreg);        \
126 		_ret;                                                   \
127 	})
128 
129 #define ufshcd_hex_dump(prefix_str, buf, len) do {                       \
130 	size_t __len = (len);                                            \
131 	print_hex_dump(KERN_ERR, prefix_str,                             \
132 		       __len > 4 ? DUMP_PREFIX_OFFSET : DUMP_PREFIX_NONE,\
133 		       16, 4, buf, __len, false);                        \
134 } while (0)
135 
136 int ufshcd_dump_regs(struct ufs_hba *hba, size_t offset, size_t len,
137 		     const char *prefix)
138 {
139 	u32 *regs;
140 	size_t pos;
141 
142 	if (offset % 4 != 0 || len % 4 != 0) /* keep readl happy */
143 		return -EINVAL;
144 
145 	regs = kzalloc(len, GFP_ATOMIC);
146 	if (!regs)
147 		return -ENOMEM;
148 
149 	for (pos = 0; pos < len; pos += 4) {
150 		if (offset == 0 &&
151 		    pos >= REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER &&
152 		    pos <= REG_UIC_ERROR_CODE_DME)
153 			continue;
154 		regs[pos / 4] = ufshcd_readl(hba, offset + pos);
155 	}
156 
157 	ufshcd_hex_dump(prefix, regs, len);
158 	kfree(regs);
159 
160 	return 0;
161 }
162 EXPORT_SYMBOL_GPL(ufshcd_dump_regs);
163 
164 enum {
165 	UFSHCD_MAX_CHANNEL	= 0,
166 	UFSHCD_MAX_ID		= 1,
167 };
168 
169 static const char *const ufshcd_state_name[] = {
170 	[UFSHCD_STATE_RESET]			= "reset",
171 	[UFSHCD_STATE_OPERATIONAL]		= "operational",
172 	[UFSHCD_STATE_ERROR]			= "error",
173 	[UFSHCD_STATE_EH_SCHEDULED_FATAL]	= "eh_fatal",
174 	[UFSHCD_STATE_EH_SCHEDULED_NON_FATAL]	= "eh_non_fatal",
175 };
176 
177 /* UFSHCD error handling flags */
178 enum {
179 	UFSHCD_EH_IN_PROGRESS = (1 << 0),
180 };
181 
182 /* UFSHCD UIC layer error flags */
183 enum {
184 	UFSHCD_UIC_DL_PA_INIT_ERROR = (1 << 0), /* Data link layer error */
185 	UFSHCD_UIC_DL_NAC_RECEIVED_ERROR = (1 << 1), /* Data link layer error */
186 	UFSHCD_UIC_DL_TCx_REPLAY_ERROR = (1 << 2), /* Data link layer error */
187 	UFSHCD_UIC_NL_ERROR = (1 << 3), /* Network layer error */
188 	UFSHCD_UIC_TL_ERROR = (1 << 4), /* Transport Layer error */
189 	UFSHCD_UIC_DME_ERROR = (1 << 5), /* DME error */
190 	UFSHCD_UIC_PA_GENERIC_ERROR = (1 << 6), /* Generic PA error */
191 };
192 
193 #define ufshcd_set_eh_in_progress(h) \
194 	((h)->eh_flags |= UFSHCD_EH_IN_PROGRESS)
195 #define ufshcd_eh_in_progress(h) \
196 	((h)->eh_flags & UFSHCD_EH_IN_PROGRESS)
197 #define ufshcd_clear_eh_in_progress(h) \
198 	((h)->eh_flags &= ~UFSHCD_EH_IN_PROGRESS)
199 
200 const struct ufs_pm_lvl_states ufs_pm_lvl_states[] = {
201 	[UFS_PM_LVL_0] = {UFS_ACTIVE_PWR_MODE, UIC_LINK_ACTIVE_STATE},
202 	[UFS_PM_LVL_1] = {UFS_ACTIVE_PWR_MODE, UIC_LINK_HIBERN8_STATE},
203 	[UFS_PM_LVL_2] = {UFS_SLEEP_PWR_MODE, UIC_LINK_ACTIVE_STATE},
204 	[UFS_PM_LVL_3] = {UFS_SLEEP_PWR_MODE, UIC_LINK_HIBERN8_STATE},
205 	[UFS_PM_LVL_4] = {UFS_POWERDOWN_PWR_MODE, UIC_LINK_HIBERN8_STATE},
206 	[UFS_PM_LVL_5] = {UFS_POWERDOWN_PWR_MODE, UIC_LINK_OFF_STATE},
207 	/*
208 	 * For DeepSleep, the link is first put in hibern8 and then off.
209 	 * Leaving the link in hibern8 is not supported.
210 	 */
211 	[UFS_PM_LVL_6] = {UFS_DEEPSLEEP_PWR_MODE, UIC_LINK_OFF_STATE},
212 };
213 
214 static inline enum ufs_dev_pwr_mode
215 ufs_get_pm_lvl_to_dev_pwr_mode(enum ufs_pm_level lvl)
216 {
217 	return ufs_pm_lvl_states[lvl].dev_state;
218 }
219 
220 static inline enum uic_link_state
221 ufs_get_pm_lvl_to_link_pwr_state(enum ufs_pm_level lvl)
222 {
223 	return ufs_pm_lvl_states[lvl].link_state;
224 }
225 
226 static inline enum ufs_pm_level
227 ufs_get_desired_pm_lvl_for_dev_link_state(enum ufs_dev_pwr_mode dev_state,
228 					enum uic_link_state link_state)
229 {
230 	enum ufs_pm_level lvl;
231 
232 	for (lvl = UFS_PM_LVL_0; lvl < UFS_PM_LVL_MAX; lvl++) {
233 		if ((ufs_pm_lvl_states[lvl].dev_state == dev_state) &&
234 			(ufs_pm_lvl_states[lvl].link_state == link_state))
235 			return lvl;
236 	}
237 
238 	/* if no match found, return the level 0 */
239 	return UFS_PM_LVL_0;
240 }
241 
242 static bool ufshcd_is_ufs_dev_busy(struct ufs_hba *hba)
243 {
244 	return (hba->clk_gating.active_reqs || hba->outstanding_reqs || hba->outstanding_tasks ||
245 		hba->active_uic_cmd || hba->uic_async_done);
246 }
247 
248 static const struct ufs_dev_quirk ufs_fixups[] = {
249 	/* UFS cards deviations table */
250 	{ .wmanufacturerid = UFS_VENDOR_MICRON,
251 	  .model = UFS_ANY_MODEL,
252 	  .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM },
253 	{ .wmanufacturerid = UFS_VENDOR_SAMSUNG,
254 	  .model = UFS_ANY_MODEL,
255 	  .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM |
256 		   UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE |
257 		   UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS },
258 	{ .wmanufacturerid = UFS_VENDOR_SKHYNIX,
259 	  .model = UFS_ANY_MODEL,
260 	  .quirk = UFS_DEVICE_QUIRK_HOST_PA_SAVECONFIGTIME },
261 	{ .wmanufacturerid = UFS_VENDOR_SKHYNIX,
262 	  .model = "hB8aL1" /*H28U62301AMR*/,
263 	  .quirk = UFS_DEVICE_QUIRK_HOST_VS_DEBUGSAVECONFIGTIME },
264 	{ .wmanufacturerid = UFS_VENDOR_TOSHIBA,
265 	  .model = UFS_ANY_MODEL,
266 	  .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM },
267 	{ .wmanufacturerid = UFS_VENDOR_TOSHIBA,
268 	  .model = "THGLF2G9C8KBADG",
269 	  .quirk = UFS_DEVICE_QUIRK_PA_TACTIVATE },
270 	{ .wmanufacturerid = UFS_VENDOR_TOSHIBA,
271 	  .model = "THGLF2G9D8KBADG",
272 	  .quirk = UFS_DEVICE_QUIRK_PA_TACTIVATE },
273 	{}
274 };
275 
276 static irqreturn_t ufshcd_tmc_handler(struct ufs_hba *hba);
277 static void ufshcd_async_scan(void *data, async_cookie_t cookie);
278 static int ufshcd_reset_and_restore(struct ufs_hba *hba);
279 static int ufshcd_eh_host_reset_handler(struct scsi_cmnd *cmd);
280 static int ufshcd_clear_tm_cmd(struct ufs_hba *hba, int tag);
281 static void ufshcd_hba_exit(struct ufs_hba *hba);
282 static int ufshcd_probe_hba(struct ufs_hba *hba, bool init_dev_params);
283 static int ufshcd_setup_clocks(struct ufs_hba *hba, bool on);
284 static inline void ufshcd_add_delay_before_dme_cmd(struct ufs_hba *hba);
285 static int ufshcd_host_reset_and_restore(struct ufs_hba *hba);
286 static void ufshcd_resume_clkscaling(struct ufs_hba *hba);
287 static void ufshcd_suspend_clkscaling(struct ufs_hba *hba);
288 static int ufshcd_scale_clks(struct ufs_hba *hba, unsigned long freq,
289 			     bool scale_up);
290 static irqreturn_t ufshcd_intr(int irq, void *__hba);
291 static int ufshcd_change_power_mode(struct ufs_hba *hba,
292 			     struct ufs_pa_layer_attr *pwr_mode);
293 static int ufshcd_setup_hba_vreg(struct ufs_hba *hba, bool on);
294 static int ufshcd_setup_vreg(struct ufs_hba *hba, bool on);
295 static inline int ufshcd_config_vreg_hpm(struct ufs_hba *hba,
296 					 struct ufs_vreg *vreg);
297 static void ufshcd_wb_toggle_buf_flush_during_h8(struct ufs_hba *hba,
298 						 bool enable);
299 static void ufshcd_hba_vreg_set_lpm(struct ufs_hba *hba);
300 static void ufshcd_hba_vreg_set_hpm(struct ufs_hba *hba);
301 
302 void ufshcd_enable_irq(struct ufs_hba *hba)
303 {
304 	if (!hba->is_irq_enabled) {
305 		enable_irq(hba->irq);
306 		hba->is_irq_enabled = true;
307 	}
308 }
309 EXPORT_SYMBOL_GPL(ufshcd_enable_irq);
310 
311 void ufshcd_disable_irq(struct ufs_hba *hba)
312 {
313 	if (hba->is_irq_enabled) {
314 		disable_irq(hba->irq);
315 		hba->is_irq_enabled = false;
316 	}
317 }
318 EXPORT_SYMBOL_GPL(ufshcd_disable_irq);
319 
320 static void ufshcd_configure_wb(struct ufs_hba *hba)
321 {
322 	if (!ufshcd_is_wb_allowed(hba))
323 		return;
324 
325 	ufshcd_wb_toggle(hba, true);
326 
327 	ufshcd_wb_toggle_buf_flush_during_h8(hba, true);
328 
329 	if (ufshcd_is_wb_buf_flush_allowed(hba))
330 		ufshcd_wb_toggle_buf_flush(hba, true);
331 }
332 
333 static void ufshcd_scsi_unblock_requests(struct ufs_hba *hba)
334 {
335 	if (atomic_dec_and_test(&hba->scsi_block_reqs_cnt))
336 		scsi_unblock_requests(hba->host);
337 }
338 
339 static void ufshcd_scsi_block_requests(struct ufs_hba *hba)
340 {
341 	if (atomic_inc_return(&hba->scsi_block_reqs_cnt) == 1)
342 		scsi_block_requests(hba->host);
343 }
344 
345 static void ufshcd_add_cmd_upiu_trace(struct ufs_hba *hba, unsigned int tag,
346 				      enum ufs_trace_str_t str_t)
347 {
348 	struct utp_upiu_req *rq = hba->lrb[tag].ucd_req_ptr;
349 	struct utp_upiu_header *header;
350 
351 	if (!trace_ufshcd_upiu_enabled())
352 		return;
353 
354 	if (str_t == UFS_CMD_SEND)
355 		header = &rq->header;
356 	else
357 		header = &hba->lrb[tag].ucd_rsp_ptr->header;
358 
359 	trace_ufshcd_upiu(dev_name(hba->dev), str_t, header, &rq->sc.cdb,
360 			  UFS_TSF_CDB);
361 }
362 
363 static void ufshcd_add_query_upiu_trace(struct ufs_hba *hba,
364 					enum ufs_trace_str_t str_t,
365 					struct utp_upiu_req *rq_rsp)
366 {
367 	if (!trace_ufshcd_upiu_enabled())
368 		return;
369 
370 	trace_ufshcd_upiu(dev_name(hba->dev), str_t, &rq_rsp->header,
371 			  &rq_rsp->qr, UFS_TSF_OSF);
372 }
373 
374 static void ufshcd_add_tm_upiu_trace(struct ufs_hba *hba, unsigned int tag,
375 				     enum ufs_trace_str_t str_t)
376 {
377 	struct utp_task_req_desc *descp = &hba->utmrdl_base_addr[tag];
378 
379 	if (!trace_ufshcd_upiu_enabled())
380 		return;
381 
382 	if (str_t == UFS_TM_SEND)
383 		trace_ufshcd_upiu(dev_name(hba->dev), str_t,
384 				  &descp->upiu_req.req_header,
385 				  &descp->upiu_req.input_param1,
386 				  UFS_TSF_TM_INPUT);
387 	else
388 		trace_ufshcd_upiu(dev_name(hba->dev), str_t,
389 				  &descp->upiu_rsp.rsp_header,
390 				  &descp->upiu_rsp.output_param1,
391 				  UFS_TSF_TM_OUTPUT);
392 }
393 
394 static void ufshcd_add_uic_command_trace(struct ufs_hba *hba,
395 					 const struct uic_command *ucmd,
396 					 enum ufs_trace_str_t str_t)
397 {
398 	u32 cmd;
399 
400 	if (!trace_ufshcd_uic_command_enabled())
401 		return;
402 
403 	if (str_t == UFS_CMD_SEND)
404 		cmd = ucmd->command;
405 	else
406 		cmd = ufshcd_readl(hba, REG_UIC_COMMAND);
407 
408 	trace_ufshcd_uic_command(dev_name(hba->dev), str_t, cmd,
409 				 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_1),
410 				 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_2),
411 				 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_3));
412 }
413 
414 static void ufshcd_add_command_trace(struct ufs_hba *hba, unsigned int tag,
415 				     enum ufs_trace_str_t str_t)
416 {
417 	u64 lba = 0;
418 	u8 opcode = 0, group_id = 0;
419 	u32 doorbell = 0;
420 	u32 intr;
421 	int hwq_id = -1;
422 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
423 	struct scsi_cmnd *cmd = lrbp->cmd;
424 	struct request *rq = scsi_cmd_to_rq(cmd);
425 	int transfer_len = -1;
426 
427 	if (!cmd)
428 		return;
429 
430 	/* trace UPIU also */
431 	ufshcd_add_cmd_upiu_trace(hba, tag, str_t);
432 	if (!trace_ufshcd_command_enabled())
433 		return;
434 
435 	opcode = cmd->cmnd[0];
436 
437 	if (opcode == READ_10 || opcode == WRITE_10) {
438 		/*
439 		 * Currently we only fully trace read(10) and write(10) commands
440 		 */
441 		transfer_len =
442 		       be32_to_cpu(lrbp->ucd_req_ptr->sc.exp_data_transfer_len);
443 		lba = scsi_get_lba(cmd);
444 		if (opcode == WRITE_10)
445 			group_id = lrbp->cmd->cmnd[6];
446 	} else if (opcode == UNMAP) {
447 		/*
448 		 * The number of Bytes to be unmapped beginning with the lba.
449 		 */
450 		transfer_len = blk_rq_bytes(rq);
451 		lba = scsi_get_lba(cmd);
452 	}
453 
454 	intr = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
455 
456 	if (hba->mcq_enabled) {
457 		struct ufs_hw_queue *hwq = ufshcd_mcq_req_to_hwq(hba, rq);
458 
459 		hwq_id = hwq->id;
460 	} else {
461 		doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
462 	}
463 	trace_ufshcd_command(cmd->device, str_t, tag, doorbell, hwq_id,
464 			     transfer_len, intr, lba, opcode, group_id);
465 }
466 
467 static void ufshcd_print_clk_freqs(struct ufs_hba *hba)
468 {
469 	struct ufs_clk_info *clki;
470 	struct list_head *head = &hba->clk_list_head;
471 
472 	if (list_empty(head))
473 		return;
474 
475 	list_for_each_entry(clki, head, list) {
476 		if (!IS_ERR_OR_NULL(clki->clk) && clki->min_freq &&
477 				clki->max_freq)
478 			dev_err(hba->dev, "clk: %s, rate: %u\n",
479 					clki->name, clki->curr_freq);
480 	}
481 }
482 
483 static void ufshcd_print_evt(struct ufs_hba *hba, u32 id,
484 			     const char *err_name)
485 {
486 	int i;
487 	bool found = false;
488 	const struct ufs_event_hist *e;
489 
490 	if (id >= UFS_EVT_CNT)
491 		return;
492 
493 	e = &hba->ufs_stats.event[id];
494 
495 	for (i = 0; i < UFS_EVENT_HIST_LENGTH; i++) {
496 		int p = (i + e->pos) % UFS_EVENT_HIST_LENGTH;
497 
498 		if (e->tstamp[p] == 0)
499 			continue;
500 		dev_err(hba->dev, "%s[%d] = 0x%x at %lld us\n", err_name, p,
501 			e->val[p], div_u64(e->tstamp[p], 1000));
502 		found = true;
503 	}
504 
505 	if (!found)
506 		dev_err(hba->dev, "No record of %s\n", err_name);
507 	else
508 		dev_err(hba->dev, "%s: total cnt=%llu\n", err_name, e->cnt);
509 }
510 
511 static void ufshcd_print_evt_hist(struct ufs_hba *hba)
512 {
513 	ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, "host_regs: ");
514 
515 	ufshcd_print_evt(hba, UFS_EVT_PA_ERR, "pa_err");
516 	ufshcd_print_evt(hba, UFS_EVT_DL_ERR, "dl_err");
517 	ufshcd_print_evt(hba, UFS_EVT_NL_ERR, "nl_err");
518 	ufshcd_print_evt(hba, UFS_EVT_TL_ERR, "tl_err");
519 	ufshcd_print_evt(hba, UFS_EVT_DME_ERR, "dme_err");
520 	ufshcd_print_evt(hba, UFS_EVT_AUTO_HIBERN8_ERR,
521 			 "auto_hibern8_err");
522 	ufshcd_print_evt(hba, UFS_EVT_FATAL_ERR, "fatal_err");
523 	ufshcd_print_evt(hba, UFS_EVT_LINK_STARTUP_FAIL,
524 			 "link_startup_fail");
525 	ufshcd_print_evt(hba, UFS_EVT_RESUME_ERR, "resume_fail");
526 	ufshcd_print_evt(hba, UFS_EVT_SUSPEND_ERR,
527 			 "suspend_fail");
528 	ufshcd_print_evt(hba, UFS_EVT_WL_RES_ERR, "wlun resume_fail");
529 	ufshcd_print_evt(hba, UFS_EVT_WL_SUSP_ERR,
530 			 "wlun suspend_fail");
531 	ufshcd_print_evt(hba, UFS_EVT_DEV_RESET, "dev_reset");
532 	ufshcd_print_evt(hba, UFS_EVT_HOST_RESET, "host_reset");
533 	ufshcd_print_evt(hba, UFS_EVT_ABORT, "task_abort");
534 
535 	ufshcd_vops_dbg_register_dump(hba);
536 }
537 
538 static
539 void ufshcd_print_tr(struct ufs_hba *hba, int tag, bool pr_prdt)
540 {
541 	const struct ufshcd_lrb *lrbp;
542 	int prdt_length;
543 
544 	lrbp = &hba->lrb[tag];
545 
546 	dev_err(hba->dev, "UPIU[%d] - issue time %lld us\n",
547 			tag, div_u64(lrbp->issue_time_stamp_local_clock, 1000));
548 	dev_err(hba->dev, "UPIU[%d] - complete time %lld us\n",
549 			tag, div_u64(lrbp->compl_time_stamp_local_clock, 1000));
550 	dev_err(hba->dev,
551 		"UPIU[%d] - Transfer Request Descriptor phys@0x%llx\n",
552 		tag, (u64)lrbp->utrd_dma_addr);
553 
554 	ufshcd_hex_dump("UPIU TRD: ", lrbp->utr_descriptor_ptr,
555 			sizeof(struct utp_transfer_req_desc));
556 	dev_err(hba->dev, "UPIU[%d] - Request UPIU phys@0x%llx\n", tag,
557 		(u64)lrbp->ucd_req_dma_addr);
558 	ufshcd_hex_dump("UPIU REQ: ", lrbp->ucd_req_ptr,
559 			sizeof(struct utp_upiu_req));
560 	dev_err(hba->dev, "UPIU[%d] - Response UPIU phys@0x%llx\n", tag,
561 		(u64)lrbp->ucd_rsp_dma_addr);
562 	ufshcd_hex_dump("UPIU RSP: ", lrbp->ucd_rsp_ptr,
563 			sizeof(struct utp_upiu_rsp));
564 
565 	prdt_length = le16_to_cpu(
566 		lrbp->utr_descriptor_ptr->prd_table_length);
567 	if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN)
568 		prdt_length /= ufshcd_sg_entry_size(hba);
569 
570 	dev_err(hba->dev,
571 		"UPIU[%d] - PRDT - %d entries  phys@0x%llx\n",
572 		tag, prdt_length,
573 		(u64)lrbp->ucd_prdt_dma_addr);
574 
575 	if (pr_prdt)
576 		ufshcd_hex_dump("UPIU PRDT: ", lrbp->ucd_prdt_ptr,
577 			ufshcd_sg_entry_size(hba) * prdt_length);
578 }
579 
580 static bool ufshcd_print_tr_iter(struct request *req, void *priv)
581 {
582 	struct scsi_device *sdev = req->q->queuedata;
583 	struct Scsi_Host *shost = sdev->host;
584 	struct ufs_hba *hba = shost_priv(shost);
585 
586 	ufshcd_print_tr(hba, req->tag, *(bool *)priv);
587 
588 	return true;
589 }
590 
591 /**
592  * ufshcd_print_trs_all - print trs for all started requests.
593  * @hba: per-adapter instance.
594  * @pr_prdt: need to print prdt or not.
595  */
596 static void ufshcd_print_trs_all(struct ufs_hba *hba, bool pr_prdt)
597 {
598 	blk_mq_tagset_busy_iter(&hba->host->tag_set, ufshcd_print_tr_iter, &pr_prdt);
599 }
600 
601 static void ufshcd_print_tmrs(struct ufs_hba *hba, unsigned long bitmap)
602 {
603 	int tag;
604 
605 	for_each_set_bit(tag, &bitmap, hba->nutmrs) {
606 		struct utp_task_req_desc *tmrdp = &hba->utmrdl_base_addr[tag];
607 
608 		dev_err(hba->dev, "TM[%d] - Task Management Header\n", tag);
609 		ufshcd_hex_dump("", tmrdp, sizeof(*tmrdp));
610 	}
611 }
612 
613 static void ufshcd_print_host_state(struct ufs_hba *hba)
614 {
615 	const struct scsi_device *sdev_ufs = hba->ufs_device_wlun;
616 
617 	dev_err(hba->dev, "UFS Host state=%d\n", hba->ufshcd_state);
618 	dev_err(hba->dev, "outstanding reqs=0x%lx tasks=0x%lx\n",
619 		hba->outstanding_reqs, hba->outstanding_tasks);
620 	dev_err(hba->dev, "saved_err=0x%x, saved_uic_err=0x%x\n",
621 		hba->saved_err, hba->saved_uic_err);
622 	dev_err(hba->dev, "Device power mode=%d, UIC link state=%d\n",
623 		hba->curr_dev_pwr_mode, hba->uic_link_state);
624 	dev_err(hba->dev, "PM in progress=%d, sys. suspended=%d\n",
625 		hba->pm_op_in_progress, hba->is_sys_suspended);
626 	dev_err(hba->dev, "Auto BKOPS=%d, Host self-block=%d\n",
627 		hba->auto_bkops_enabled, hba->host->host_self_blocked);
628 	dev_err(hba->dev, "Clk gate=%d\n", hba->clk_gating.state);
629 	dev_err(hba->dev,
630 		"last_hibern8_exit_tstamp at %lld us, hibern8_exit_cnt=%d\n",
631 		div_u64(hba->ufs_stats.last_hibern8_exit_tstamp, 1000),
632 		hba->ufs_stats.hibern8_exit_cnt);
633 	dev_err(hba->dev, "last intr at %lld us, last intr status=0x%x\n",
634 		div_u64(hba->ufs_stats.last_intr_ts, 1000),
635 		hba->ufs_stats.last_intr_status);
636 	dev_err(hba->dev, "error handling flags=0x%x, req. abort count=%d\n",
637 		hba->eh_flags, hba->req_abort_count);
638 	dev_err(hba->dev, "hba->ufs_version=0x%x, Host capabilities=0x%x, caps=0x%x\n",
639 		hba->ufs_version, hba->capabilities, hba->caps);
640 	dev_err(hba->dev, "quirks=0x%x, dev. quirks=0x%x\n", hba->quirks,
641 		hba->dev_quirks);
642 	if (sdev_ufs)
643 		dev_err(hba->dev, "UFS dev info: %.8s %.16s rev %.4s\n",
644 			sdev_ufs->vendor, sdev_ufs->model, sdev_ufs->rev);
645 
646 	ufshcd_print_clk_freqs(hba);
647 }
648 
649 /**
650  * ufshcd_print_pwr_info - print power params as saved in hba
651  * power info
652  * @hba: per-adapter instance
653  */
654 static void ufshcd_print_pwr_info(struct ufs_hba *hba)
655 {
656 	static const char * const names[] = {
657 		"INVALID MODE",
658 		"FAST MODE",
659 		"SLOW_MODE",
660 		"INVALID MODE",
661 		"FASTAUTO_MODE",
662 		"SLOWAUTO_MODE",
663 		"INVALID MODE",
664 	};
665 
666 	/*
667 	 * Using dev_dbg to avoid messages during runtime PM to avoid
668 	 * never-ending cycles of messages written back to storage by user space
669 	 * causing runtime resume, causing more messages and so on.
670 	 */
671 	dev_dbg(hba->dev, "%s:[RX, TX]: gear=[%d, %d], lane[%d, %d], pwr[%s, %s], rate = %d\n",
672 		 __func__,
673 		 hba->pwr_info.gear_rx, hba->pwr_info.gear_tx,
674 		 hba->pwr_info.lane_rx, hba->pwr_info.lane_tx,
675 		 names[hba->pwr_info.pwr_rx],
676 		 names[hba->pwr_info.pwr_tx],
677 		 hba->pwr_info.hs_rate);
678 }
679 
680 static void ufshcd_device_reset(struct ufs_hba *hba)
681 {
682 	int err;
683 
684 	err = ufshcd_vops_device_reset(hba);
685 
686 	if (!err) {
687 		ufshcd_set_ufs_dev_active(hba);
688 		if (ufshcd_is_wb_allowed(hba)) {
689 			hba->dev_info.wb_enabled = false;
690 			hba->dev_info.wb_buf_flush_enabled = false;
691 		}
692 		if (hba->dev_info.rtc_type == UFS_RTC_RELATIVE)
693 			hba->dev_info.rtc_time_baseline = 0;
694 	}
695 	if (err != -EOPNOTSUPP)
696 		ufshcd_update_evt_hist(hba, UFS_EVT_DEV_RESET, err);
697 }
698 
699 void ufshcd_delay_us(unsigned long us, unsigned long tolerance)
700 {
701 	if (!us)
702 		return;
703 
704 	if (us < 10)
705 		udelay(us);
706 	else
707 		usleep_range(us, us + tolerance);
708 }
709 EXPORT_SYMBOL_GPL(ufshcd_delay_us);
710 
711 /**
712  * ufshcd_wait_for_register - wait for register value to change
713  * @hba: per-adapter interface
714  * @reg: mmio register offset
715  * @mask: mask to apply to the read register value
716  * @val: value to wait for
717  * @interval_us: polling interval in microseconds
718  * @timeout_ms: timeout in milliseconds
719  *
720  * Return: -ETIMEDOUT on error, zero on success.
721  */
722 static int ufshcd_wait_for_register(struct ufs_hba *hba, u32 reg, u32 mask,
723 				u32 val, unsigned long interval_us,
724 				unsigned long timeout_ms)
725 {
726 	int err = 0;
727 	unsigned long timeout = jiffies + msecs_to_jiffies(timeout_ms);
728 
729 	/* ignore bits that we don't intend to wait on */
730 	val = val & mask;
731 
732 	while ((ufshcd_readl(hba, reg) & mask) != val) {
733 		usleep_range(interval_us, interval_us + 50);
734 		if (time_after(jiffies, timeout)) {
735 			if ((ufshcd_readl(hba, reg) & mask) != val)
736 				err = -ETIMEDOUT;
737 			break;
738 		}
739 	}
740 
741 	return err;
742 }
743 
744 /**
745  * ufshcd_get_intr_mask - Get the interrupt bit mask
746  * @hba: Pointer to adapter instance
747  *
748  * Return: interrupt bit mask per version
749  */
750 static inline u32 ufshcd_get_intr_mask(struct ufs_hba *hba)
751 {
752 	if (hba->ufs_version <= ufshci_version(2, 0))
753 		return INTERRUPT_MASK_ALL_VER_11;
754 
755 	return INTERRUPT_MASK_ALL_VER_21;
756 }
757 
758 /**
759  * ufshcd_get_ufs_version - Get the UFS version supported by the HBA
760  * @hba: Pointer to adapter instance
761  *
762  * Return: UFSHCI version supported by the controller
763  */
764 static inline u32 ufshcd_get_ufs_version(struct ufs_hba *hba)
765 {
766 	u32 ufshci_ver;
767 
768 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_UFS_HCI_VERSION)
769 		ufshci_ver = ufshcd_vops_get_ufs_hci_version(hba);
770 	else
771 		ufshci_ver = ufshcd_readl(hba, REG_UFS_VERSION);
772 
773 	/*
774 	 * UFSHCI v1.x uses a different version scheme, in order
775 	 * to allow the use of comparisons with the ufshci_version
776 	 * function, we convert it to the same scheme as ufs 2.0+.
777 	 */
778 	if (ufshci_ver & 0x00010000)
779 		return ufshci_version(1, ufshci_ver & 0x00000100);
780 
781 	return ufshci_ver;
782 }
783 
784 /**
785  * ufshcd_is_device_present - Check if any device connected to
786  *			      the host controller
787  * @hba: pointer to adapter instance
788  *
789  * Return: true if device present, false if no device detected
790  */
791 static inline bool ufshcd_is_device_present(struct ufs_hba *hba)
792 {
793 	return ufshcd_readl(hba, REG_CONTROLLER_STATUS) & DEVICE_PRESENT;
794 }
795 
796 /**
797  * ufshcd_get_tr_ocs - Get the UTRD Overall Command Status
798  * @lrbp: pointer to local command reference block
799  * @cqe: pointer to the completion queue entry
800  *
801  * This function is used to get the OCS field from UTRD
802  *
803  * Return: the OCS field in the UTRD.
804  */
805 static enum utp_ocs ufshcd_get_tr_ocs(struct ufshcd_lrb *lrbp,
806 				      struct cq_entry *cqe)
807 {
808 	if (cqe)
809 		return le32_to_cpu(cqe->status) & MASK_OCS;
810 
811 	return lrbp->utr_descriptor_ptr->header.ocs & MASK_OCS;
812 }
813 
814 /**
815  * ufshcd_utrl_clear() - Clear requests from the controller request list.
816  * @hba: per adapter instance
817  * @mask: mask with one bit set for each request to be cleared
818  */
819 static inline void ufshcd_utrl_clear(struct ufs_hba *hba, u32 mask)
820 {
821 	if (hba->quirks & UFSHCI_QUIRK_BROKEN_REQ_LIST_CLR)
822 		mask = ~mask;
823 	/*
824 	 * From the UFSHCI specification: "UTP Transfer Request List CLear
825 	 * Register (UTRLCLR): This field is bit significant. Each bit
826 	 * corresponds to a slot in the UTP Transfer Request List, where bit 0
827 	 * corresponds to request slot 0. A bit in this field is set to ‘0’
828 	 * by host software to indicate to the host controller that a transfer
829 	 * request slot is cleared. The host controller
830 	 * shall free up any resources associated to the request slot
831 	 * immediately, and shall set the associated bit in UTRLDBR to ‘0’. The
832 	 * host software indicates no change to request slots by setting the
833 	 * associated bits in this field to ‘1’. Bits in this field shall only
834 	 * be set ‘1’ or ‘0’ by host software when UTRLRSR is set to ‘1’."
835 	 */
836 	ufshcd_writel(hba, ~mask, REG_UTP_TRANSFER_REQ_LIST_CLEAR);
837 }
838 
839 /**
840  * ufshcd_utmrl_clear - Clear a bit in UTMRLCLR register
841  * @hba: per adapter instance
842  * @pos: position of the bit to be cleared
843  */
844 static inline void ufshcd_utmrl_clear(struct ufs_hba *hba, u32 pos)
845 {
846 	if (hba->quirks & UFSHCI_QUIRK_BROKEN_REQ_LIST_CLR)
847 		ufshcd_writel(hba, (1 << pos), REG_UTP_TASK_REQ_LIST_CLEAR);
848 	else
849 		ufshcd_writel(hba, ~(1 << pos), REG_UTP_TASK_REQ_LIST_CLEAR);
850 }
851 
852 /**
853  * ufshcd_get_lists_status - Check UCRDY, UTRLRDY and UTMRLRDY
854  * @reg: Register value of host controller status
855  *
856  * Return: 0 on success; a positive value if failed.
857  */
858 static inline int ufshcd_get_lists_status(u32 reg)
859 {
860 	return !((reg & UFSHCD_STATUS_READY) == UFSHCD_STATUS_READY);
861 }
862 
863 /**
864  * ufshcd_get_uic_cmd_result - Get the UIC command result
865  * @hba: Pointer to adapter instance
866  *
867  * This function gets the result of UIC command completion
868  *
869  * Return: 0 on success; non-zero value on error.
870  */
871 static inline int ufshcd_get_uic_cmd_result(struct ufs_hba *hba)
872 {
873 	return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_2) &
874 	       MASK_UIC_COMMAND_RESULT;
875 }
876 
877 /**
878  * ufshcd_get_dme_attr_val - Get the value of attribute returned by UIC command
879  * @hba: Pointer to adapter instance
880  *
881  * This function gets UIC command argument3
882  *
883  * Return: 0 on success; non-zero value on error.
884  */
885 static inline u32 ufshcd_get_dme_attr_val(struct ufs_hba *hba)
886 {
887 	return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_3);
888 }
889 
890 /**
891  * ufshcd_get_req_rsp - returns the TR response transaction type
892  * @ucd_rsp_ptr: pointer to response UPIU
893  *
894  * Return: UPIU type.
895  */
896 static inline enum upiu_response_transaction
897 ufshcd_get_req_rsp(struct utp_upiu_rsp *ucd_rsp_ptr)
898 {
899 	return ucd_rsp_ptr->header.transaction_code;
900 }
901 
902 /**
903  * ufshcd_is_exception_event - Check if the device raised an exception event
904  * @ucd_rsp_ptr: pointer to response UPIU
905  *
906  * The function checks if the device raised an exception event indicated in
907  * the Device Information field of response UPIU.
908  *
909  * Return: true if exception is raised, false otherwise.
910  */
911 static inline bool ufshcd_is_exception_event(struct utp_upiu_rsp *ucd_rsp_ptr)
912 {
913 	return ucd_rsp_ptr->header.device_information & 1;
914 }
915 
916 /**
917  * ufshcd_reset_intr_aggr - Reset interrupt aggregation values.
918  * @hba: per adapter instance
919  */
920 static inline void
921 ufshcd_reset_intr_aggr(struct ufs_hba *hba)
922 {
923 	ufshcd_writel(hba, INT_AGGR_ENABLE |
924 		      INT_AGGR_COUNTER_AND_TIMER_RESET,
925 		      REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
926 }
927 
928 /**
929  * ufshcd_config_intr_aggr - Configure interrupt aggregation values.
930  * @hba: per adapter instance
931  * @cnt: Interrupt aggregation counter threshold
932  * @tmout: Interrupt aggregation timeout value
933  */
934 static inline void
935 ufshcd_config_intr_aggr(struct ufs_hba *hba, u8 cnt, u8 tmout)
936 {
937 	ufshcd_writel(hba, INT_AGGR_ENABLE | INT_AGGR_PARAM_WRITE |
938 		      INT_AGGR_COUNTER_THLD_VAL(cnt) |
939 		      INT_AGGR_TIMEOUT_VAL(tmout),
940 		      REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
941 }
942 
943 /**
944  * ufshcd_disable_intr_aggr - Disables interrupt aggregation.
945  * @hba: per adapter instance
946  */
947 static inline void ufshcd_disable_intr_aggr(struct ufs_hba *hba)
948 {
949 	ufshcd_writel(hba, 0, REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
950 }
951 
952 /**
953  * ufshcd_enable_run_stop_reg - Enable run-stop registers,
954  *			When run-stop registers are set to 1, it indicates the
955  *			host controller that it can process the requests
956  * @hba: per adapter instance
957  */
958 static void ufshcd_enable_run_stop_reg(struct ufs_hba *hba)
959 {
960 	ufshcd_writel(hba, UTP_TASK_REQ_LIST_RUN_STOP_BIT,
961 		      REG_UTP_TASK_REQ_LIST_RUN_STOP);
962 	ufshcd_writel(hba, UTP_TRANSFER_REQ_LIST_RUN_STOP_BIT,
963 		      REG_UTP_TRANSFER_REQ_LIST_RUN_STOP);
964 }
965 
966 /**
967  * ufshcd_hba_start - Start controller initialization sequence
968  * @hba: per adapter instance
969  */
970 static inline void ufshcd_hba_start(struct ufs_hba *hba)
971 {
972 	u32 val = CONTROLLER_ENABLE;
973 
974 	if (ufshcd_crypto_enable(hba))
975 		val |= CRYPTO_GENERAL_ENABLE;
976 
977 	ufshcd_writel(hba, val, REG_CONTROLLER_ENABLE);
978 }
979 
980 /**
981  * ufshcd_is_hba_active - Get controller state
982  * @hba: per adapter instance
983  *
984  * Return: true if and only if the controller is active.
985  */
986 bool ufshcd_is_hba_active(struct ufs_hba *hba)
987 {
988 	return ufshcd_readl(hba, REG_CONTROLLER_ENABLE) & CONTROLLER_ENABLE;
989 }
990 EXPORT_SYMBOL_GPL(ufshcd_is_hba_active);
991 
992 /**
993  * ufshcd_pm_qos_init - initialize PM QoS request
994  * @hba: per adapter instance
995  */
996 void ufshcd_pm_qos_init(struct ufs_hba *hba)
997 {
998 
999 	if (hba->pm_qos_enabled)
1000 		return;
1001 
1002 	cpu_latency_qos_add_request(&hba->pm_qos_req, PM_QOS_DEFAULT_VALUE);
1003 
1004 	if (cpu_latency_qos_request_active(&hba->pm_qos_req))
1005 		hba->pm_qos_enabled = true;
1006 }
1007 
1008 /**
1009  * ufshcd_pm_qos_exit - remove request from PM QoS
1010  * @hba: per adapter instance
1011  */
1012 void ufshcd_pm_qos_exit(struct ufs_hba *hba)
1013 {
1014 	if (!hba->pm_qos_enabled)
1015 		return;
1016 
1017 	cpu_latency_qos_remove_request(&hba->pm_qos_req);
1018 	hba->pm_qos_enabled = false;
1019 }
1020 
1021 /**
1022  * ufshcd_pm_qos_update - update PM QoS request
1023  * @hba: per adapter instance
1024  * @on: If True, vote for perf PM QoS mode otherwise power save mode
1025  */
1026 static void ufshcd_pm_qos_update(struct ufs_hba *hba, bool on)
1027 {
1028 	if (!hba->pm_qos_enabled)
1029 		return;
1030 
1031 	cpu_latency_qos_update_request(&hba->pm_qos_req, on ? 0 : PM_QOS_DEFAULT_VALUE);
1032 }
1033 
1034 /**
1035  * ufshcd_set_clk_freq - set UFS controller clock frequencies
1036  * @hba: per adapter instance
1037  * @scale_up: If True, set max possible frequency othewise set low frequency
1038  *
1039  * Return: 0 if successful; < 0 upon failure.
1040  */
1041 static int ufshcd_set_clk_freq(struct ufs_hba *hba, bool scale_up)
1042 {
1043 	int ret = 0;
1044 	struct ufs_clk_info *clki;
1045 	struct list_head *head = &hba->clk_list_head;
1046 
1047 	if (list_empty(head))
1048 		goto out;
1049 
1050 	list_for_each_entry(clki, head, list) {
1051 		if (!IS_ERR_OR_NULL(clki->clk)) {
1052 			if (scale_up && clki->max_freq) {
1053 				if (clki->curr_freq == clki->max_freq)
1054 					continue;
1055 
1056 				ret = clk_set_rate(clki->clk, clki->max_freq);
1057 				if (ret) {
1058 					dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
1059 						__func__, clki->name,
1060 						clki->max_freq, ret);
1061 					break;
1062 				}
1063 				trace_ufshcd_clk_scaling(dev_name(hba->dev),
1064 						"scaled up", clki->name,
1065 						clki->curr_freq,
1066 						clki->max_freq);
1067 
1068 				clki->curr_freq = clki->max_freq;
1069 
1070 			} else if (!scale_up && clki->min_freq) {
1071 				if (clki->curr_freq == clki->min_freq)
1072 					continue;
1073 
1074 				ret = clk_set_rate(clki->clk, clki->min_freq);
1075 				if (ret) {
1076 					dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
1077 						__func__, clki->name,
1078 						clki->min_freq, ret);
1079 					break;
1080 				}
1081 				trace_ufshcd_clk_scaling(dev_name(hba->dev),
1082 						"scaled down", clki->name,
1083 						clki->curr_freq,
1084 						clki->min_freq);
1085 				clki->curr_freq = clki->min_freq;
1086 			}
1087 		}
1088 		dev_dbg(hba->dev, "%s: clk: %s, rate: %lu\n", __func__,
1089 				clki->name, clk_get_rate(clki->clk));
1090 	}
1091 
1092 out:
1093 	return ret;
1094 }
1095 
1096 int ufshcd_opp_config_clks(struct device *dev, struct opp_table *opp_table,
1097 			   struct dev_pm_opp *opp, void *data,
1098 			   bool scaling_down)
1099 {
1100 	struct ufs_hba *hba = dev_get_drvdata(dev);
1101 	struct list_head *head = &hba->clk_list_head;
1102 	struct ufs_clk_info *clki;
1103 	unsigned long freq;
1104 	u8 idx = 0;
1105 	int ret;
1106 
1107 	list_for_each_entry(clki, head, list) {
1108 		if (!IS_ERR_OR_NULL(clki->clk)) {
1109 			freq = dev_pm_opp_get_freq_indexed(opp, idx++);
1110 
1111 			/* Do not set rate for clocks having frequency as 0 */
1112 			if (!freq)
1113 				continue;
1114 
1115 			ret = clk_set_rate(clki->clk, freq);
1116 			if (ret) {
1117 				dev_err(dev, "%s: %s clk set rate(%ldHz) failed, %d\n",
1118 					__func__, clki->name, freq, ret);
1119 				return ret;
1120 			}
1121 
1122 			trace_ufshcd_clk_scaling(dev_name(dev),
1123 				(scaling_down ? "scaled down" : "scaled up"),
1124 				clki->name, hba->clk_scaling.target_freq, freq);
1125 		}
1126 	}
1127 
1128 	return 0;
1129 }
1130 EXPORT_SYMBOL_GPL(ufshcd_opp_config_clks);
1131 
1132 static int ufshcd_opp_set_rate(struct ufs_hba *hba, unsigned long freq)
1133 {
1134 	struct dev_pm_opp *opp;
1135 	int ret;
1136 
1137 	opp = dev_pm_opp_find_freq_floor_indexed(hba->dev,
1138 						 &freq, 0);
1139 	if (IS_ERR(opp))
1140 		return PTR_ERR(opp);
1141 
1142 	ret = dev_pm_opp_set_opp(hba->dev, opp);
1143 	dev_pm_opp_put(opp);
1144 
1145 	return ret;
1146 }
1147 
1148 /**
1149  * ufshcd_scale_clks - scale up or scale down UFS controller clocks
1150  * @hba: per adapter instance
1151  * @freq: frequency to scale
1152  * @scale_up: True if scaling up and false if scaling down
1153  *
1154  * Return: 0 if successful; < 0 upon failure.
1155  */
1156 static int ufshcd_scale_clks(struct ufs_hba *hba, unsigned long freq,
1157 			     bool scale_up)
1158 {
1159 	int ret = 0;
1160 	ktime_t start = ktime_get();
1161 
1162 	ret = ufshcd_vops_clk_scale_notify(hba, scale_up, PRE_CHANGE);
1163 	if (ret)
1164 		goto out;
1165 
1166 	if (hba->use_pm_opp)
1167 		ret = ufshcd_opp_set_rate(hba, freq);
1168 	else
1169 		ret = ufshcd_set_clk_freq(hba, scale_up);
1170 	if (ret)
1171 		goto out;
1172 
1173 	ret = ufshcd_vops_clk_scale_notify(hba, scale_up, POST_CHANGE);
1174 	if (ret) {
1175 		if (hba->use_pm_opp)
1176 			ufshcd_opp_set_rate(hba,
1177 					    hba->devfreq->previous_freq);
1178 		else
1179 			ufshcd_set_clk_freq(hba, !scale_up);
1180 		goto out;
1181 	}
1182 
1183 	ufshcd_pm_qos_update(hba, scale_up);
1184 
1185 out:
1186 	trace_ufshcd_profile_clk_scaling(dev_name(hba->dev),
1187 			(scale_up ? "up" : "down"),
1188 			ktime_to_us(ktime_sub(ktime_get(), start)), ret);
1189 	return ret;
1190 }
1191 
1192 /**
1193  * ufshcd_is_devfreq_scaling_required - check if scaling is required or not
1194  * @hba: per adapter instance
1195  * @freq: frequency to scale
1196  * @scale_up: True if scaling up and false if scaling down
1197  *
1198  * Return: true if scaling is required, false otherwise.
1199  */
1200 static bool ufshcd_is_devfreq_scaling_required(struct ufs_hba *hba,
1201 					       unsigned long freq, bool scale_up)
1202 {
1203 	struct ufs_clk_info *clki;
1204 	struct list_head *head = &hba->clk_list_head;
1205 
1206 	if (list_empty(head))
1207 		return false;
1208 
1209 	if (hba->use_pm_opp)
1210 		return freq != hba->clk_scaling.target_freq;
1211 
1212 	list_for_each_entry(clki, head, list) {
1213 		if (!IS_ERR_OR_NULL(clki->clk)) {
1214 			if (scale_up && clki->max_freq) {
1215 				if (clki->curr_freq == clki->max_freq)
1216 					continue;
1217 				return true;
1218 			} else if (!scale_up && clki->min_freq) {
1219 				if (clki->curr_freq == clki->min_freq)
1220 					continue;
1221 				return true;
1222 			}
1223 		}
1224 	}
1225 
1226 	return false;
1227 }
1228 
1229 /*
1230  * Determine the number of pending commands by counting the bits in the SCSI
1231  * device budget maps. This approach has been selected because a bit is set in
1232  * the budget map before scsi_host_queue_ready() checks the host_self_blocked
1233  * flag. The host_self_blocked flag can be modified by calling
1234  * scsi_block_requests() or scsi_unblock_requests().
1235  */
1236 static u32 ufshcd_pending_cmds(struct ufs_hba *hba)
1237 {
1238 	const struct scsi_device *sdev;
1239 	u32 pending = 0;
1240 
1241 	lockdep_assert_held(hba->host->host_lock);
1242 	__shost_for_each_device(sdev, hba->host)
1243 		pending += sbitmap_weight(&sdev->budget_map);
1244 
1245 	return pending;
1246 }
1247 
1248 /*
1249  * Wait until all pending SCSI commands and TMFs have finished or the timeout
1250  * has expired.
1251  *
1252  * Return: 0 upon success; -EBUSY upon timeout.
1253  */
1254 static int ufshcd_wait_for_doorbell_clr(struct ufs_hba *hba,
1255 					u64 wait_timeout_us)
1256 {
1257 	unsigned long flags;
1258 	int ret = 0;
1259 	u32 tm_doorbell;
1260 	u32 tr_pending;
1261 	bool timeout = false, do_last_check = false;
1262 	ktime_t start;
1263 
1264 	ufshcd_hold(hba);
1265 	spin_lock_irqsave(hba->host->host_lock, flags);
1266 	/*
1267 	 * Wait for all the outstanding tasks/transfer requests.
1268 	 * Verify by checking the doorbell registers are clear.
1269 	 */
1270 	start = ktime_get();
1271 	do {
1272 		if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL) {
1273 			ret = -EBUSY;
1274 			goto out;
1275 		}
1276 
1277 		tm_doorbell = ufshcd_readl(hba, REG_UTP_TASK_REQ_DOOR_BELL);
1278 		tr_pending = ufshcd_pending_cmds(hba);
1279 		if (!tm_doorbell && !tr_pending) {
1280 			timeout = false;
1281 			break;
1282 		} else if (do_last_check) {
1283 			break;
1284 		}
1285 
1286 		spin_unlock_irqrestore(hba->host->host_lock, flags);
1287 		io_schedule_timeout(msecs_to_jiffies(20));
1288 		if (ktime_to_us(ktime_sub(ktime_get(), start)) >
1289 		    wait_timeout_us) {
1290 			timeout = true;
1291 			/*
1292 			 * We might have scheduled out for long time so make
1293 			 * sure to check if doorbells are cleared by this time
1294 			 * or not.
1295 			 */
1296 			do_last_check = true;
1297 		}
1298 		spin_lock_irqsave(hba->host->host_lock, flags);
1299 	} while (tm_doorbell || tr_pending);
1300 
1301 	if (timeout) {
1302 		dev_err(hba->dev,
1303 			"%s: timedout waiting for doorbell to clear (tm=0x%x, tr=0x%x)\n",
1304 			__func__, tm_doorbell, tr_pending);
1305 		ret = -EBUSY;
1306 	}
1307 out:
1308 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1309 	ufshcd_release(hba);
1310 	return ret;
1311 }
1312 
1313 /**
1314  * ufshcd_scale_gear - scale up/down UFS gear
1315  * @hba: per adapter instance
1316  * @scale_up: True for scaling up gear and false for scaling down
1317  *
1318  * Return: 0 for success; -EBUSY if scaling can't happen at this time;
1319  * non-zero for any other errors.
1320  */
1321 static int ufshcd_scale_gear(struct ufs_hba *hba, bool scale_up)
1322 {
1323 	int ret = 0;
1324 	struct ufs_pa_layer_attr new_pwr_info;
1325 
1326 	if (scale_up) {
1327 		memcpy(&new_pwr_info, &hba->clk_scaling.saved_pwr_info,
1328 		       sizeof(struct ufs_pa_layer_attr));
1329 	} else {
1330 		memcpy(&new_pwr_info, &hba->pwr_info,
1331 		       sizeof(struct ufs_pa_layer_attr));
1332 
1333 		if (hba->pwr_info.gear_tx > hba->clk_scaling.min_gear ||
1334 		    hba->pwr_info.gear_rx > hba->clk_scaling.min_gear) {
1335 			/* save the current power mode */
1336 			memcpy(&hba->clk_scaling.saved_pwr_info,
1337 				&hba->pwr_info,
1338 				sizeof(struct ufs_pa_layer_attr));
1339 
1340 			/* scale down gear */
1341 			new_pwr_info.gear_tx = hba->clk_scaling.min_gear;
1342 			new_pwr_info.gear_rx = hba->clk_scaling.min_gear;
1343 		}
1344 	}
1345 
1346 	/* check if the power mode needs to be changed or not? */
1347 	ret = ufshcd_config_pwr_mode(hba, &new_pwr_info);
1348 	if (ret)
1349 		dev_err(hba->dev, "%s: failed err %d, old gear: (tx %d rx %d), new gear: (tx %d rx %d)",
1350 			__func__, ret,
1351 			hba->pwr_info.gear_tx, hba->pwr_info.gear_rx,
1352 			new_pwr_info.gear_tx, new_pwr_info.gear_rx);
1353 
1354 	return ret;
1355 }
1356 
1357 /*
1358  * Wait until all pending SCSI commands and TMFs have finished or the timeout
1359  * has expired.
1360  *
1361  * Return: 0 upon success; -EBUSY upon timeout.
1362  */
1363 static int ufshcd_clock_scaling_prepare(struct ufs_hba *hba, u64 timeout_us)
1364 {
1365 	int ret = 0;
1366 	/*
1367 	 * make sure that there are no outstanding requests when
1368 	 * clock scaling is in progress
1369 	 */
1370 	blk_mq_quiesce_tagset(&hba->host->tag_set);
1371 	mutex_lock(&hba->wb_mutex);
1372 	down_write(&hba->clk_scaling_lock);
1373 
1374 	if (!hba->clk_scaling.is_allowed ||
1375 	    ufshcd_wait_for_doorbell_clr(hba, timeout_us)) {
1376 		ret = -EBUSY;
1377 		up_write(&hba->clk_scaling_lock);
1378 		mutex_unlock(&hba->wb_mutex);
1379 		blk_mq_unquiesce_tagset(&hba->host->tag_set);
1380 		goto out;
1381 	}
1382 
1383 	/* let's not get into low power until clock scaling is completed */
1384 	ufshcd_hold(hba);
1385 
1386 out:
1387 	return ret;
1388 }
1389 
1390 static void ufshcd_clock_scaling_unprepare(struct ufs_hba *hba, int err, bool scale_up)
1391 {
1392 	up_write(&hba->clk_scaling_lock);
1393 
1394 	/* Enable Write Booster if we have scaled up else disable it */
1395 	if (ufshcd_enable_wb_if_scaling_up(hba) && !err)
1396 		ufshcd_wb_toggle(hba, scale_up);
1397 
1398 	mutex_unlock(&hba->wb_mutex);
1399 
1400 	blk_mq_unquiesce_tagset(&hba->host->tag_set);
1401 	ufshcd_release(hba);
1402 }
1403 
1404 /**
1405  * ufshcd_devfreq_scale - scale up/down UFS clocks and gear
1406  * @hba: per adapter instance
1407  * @freq: frequency to scale
1408  * @scale_up: True for scaling up and false for scalin down
1409  *
1410  * Return: 0 for success; -EBUSY if scaling can't happen at this time; non-zero
1411  * for any other errors.
1412  */
1413 static int ufshcd_devfreq_scale(struct ufs_hba *hba, unsigned long freq,
1414 				bool scale_up)
1415 {
1416 	int ret = 0;
1417 
1418 	ret = ufshcd_clock_scaling_prepare(hba, 1 * USEC_PER_SEC);
1419 	if (ret)
1420 		return ret;
1421 
1422 	/* scale down the gear before scaling down clocks */
1423 	if (!scale_up) {
1424 		ret = ufshcd_scale_gear(hba, false);
1425 		if (ret)
1426 			goto out_unprepare;
1427 	}
1428 
1429 	ret = ufshcd_scale_clks(hba, freq, scale_up);
1430 	if (ret) {
1431 		if (!scale_up)
1432 			ufshcd_scale_gear(hba, true);
1433 		goto out_unprepare;
1434 	}
1435 
1436 	/* scale up the gear after scaling up clocks */
1437 	if (scale_up) {
1438 		ret = ufshcd_scale_gear(hba, true);
1439 		if (ret) {
1440 			ufshcd_scale_clks(hba, hba->devfreq->previous_freq,
1441 					  false);
1442 			goto out_unprepare;
1443 		}
1444 	}
1445 
1446 out_unprepare:
1447 	ufshcd_clock_scaling_unprepare(hba, ret, scale_up);
1448 	return ret;
1449 }
1450 
1451 static void ufshcd_clk_scaling_suspend_work(struct work_struct *work)
1452 {
1453 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1454 					   clk_scaling.suspend_work);
1455 	unsigned long irq_flags;
1456 
1457 	spin_lock_irqsave(hba->host->host_lock, irq_flags);
1458 	if (hba->clk_scaling.active_reqs || hba->clk_scaling.is_suspended) {
1459 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1460 		return;
1461 	}
1462 	hba->clk_scaling.is_suspended = true;
1463 	hba->clk_scaling.window_start_t = 0;
1464 	spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1465 
1466 	devfreq_suspend_device(hba->devfreq);
1467 }
1468 
1469 static void ufshcd_clk_scaling_resume_work(struct work_struct *work)
1470 {
1471 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1472 					   clk_scaling.resume_work);
1473 	unsigned long irq_flags;
1474 
1475 	spin_lock_irqsave(hba->host->host_lock, irq_flags);
1476 	if (!hba->clk_scaling.is_suspended) {
1477 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1478 		return;
1479 	}
1480 	hba->clk_scaling.is_suspended = false;
1481 	spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1482 
1483 	devfreq_resume_device(hba->devfreq);
1484 }
1485 
1486 static int ufshcd_devfreq_target(struct device *dev,
1487 				unsigned long *freq, u32 flags)
1488 {
1489 	int ret = 0;
1490 	struct ufs_hba *hba = dev_get_drvdata(dev);
1491 	ktime_t start;
1492 	bool scale_up = false, sched_clk_scaling_suspend_work = false;
1493 	struct list_head *clk_list = &hba->clk_list_head;
1494 	struct ufs_clk_info *clki;
1495 	unsigned long irq_flags;
1496 
1497 	if (!ufshcd_is_clkscaling_supported(hba))
1498 		return -EINVAL;
1499 
1500 	if (hba->use_pm_opp) {
1501 		struct dev_pm_opp *opp;
1502 
1503 		/* Get the recommended frequency from OPP framework */
1504 		opp = devfreq_recommended_opp(dev, freq, flags);
1505 		if (IS_ERR(opp))
1506 			return PTR_ERR(opp);
1507 
1508 		dev_pm_opp_put(opp);
1509 	} else {
1510 		/* Override with the closest supported frequency */
1511 		clki = list_first_entry(&hba->clk_list_head, struct ufs_clk_info,
1512 					list);
1513 		*freq =	(unsigned long) clk_round_rate(clki->clk, *freq);
1514 	}
1515 
1516 	spin_lock_irqsave(hba->host->host_lock, irq_flags);
1517 	if (ufshcd_eh_in_progress(hba)) {
1518 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1519 		return 0;
1520 	}
1521 
1522 	/* Skip scaling clock when clock scaling is suspended */
1523 	if (hba->clk_scaling.is_suspended) {
1524 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1525 		dev_warn(hba->dev, "clock scaling is suspended, skip");
1526 		return 0;
1527 	}
1528 
1529 	if (!hba->clk_scaling.active_reqs)
1530 		sched_clk_scaling_suspend_work = true;
1531 
1532 	if (list_empty(clk_list)) {
1533 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1534 		goto out;
1535 	}
1536 
1537 	/* Decide based on the target or rounded-off frequency and update */
1538 	if (hba->use_pm_opp)
1539 		scale_up = *freq > hba->clk_scaling.target_freq;
1540 	else
1541 		scale_up = *freq == clki->max_freq;
1542 
1543 	if (!hba->use_pm_opp && !scale_up)
1544 		*freq = clki->min_freq;
1545 
1546 	/* Update the frequency */
1547 	if (!ufshcd_is_devfreq_scaling_required(hba, *freq, scale_up)) {
1548 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1549 		ret = 0;
1550 		goto out; /* no state change required */
1551 	}
1552 	spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1553 
1554 	start = ktime_get();
1555 	ret = ufshcd_devfreq_scale(hba, *freq, scale_up);
1556 	if (!ret)
1557 		hba->clk_scaling.target_freq = *freq;
1558 
1559 	trace_ufshcd_profile_clk_scaling(dev_name(hba->dev),
1560 		(scale_up ? "up" : "down"),
1561 		ktime_to_us(ktime_sub(ktime_get(), start)), ret);
1562 
1563 out:
1564 	if (sched_clk_scaling_suspend_work &&
1565 			(!scale_up || hba->clk_scaling.suspend_on_no_request))
1566 		queue_work(hba->clk_scaling.workq,
1567 			   &hba->clk_scaling.suspend_work);
1568 
1569 	return ret;
1570 }
1571 
1572 static int ufshcd_devfreq_get_dev_status(struct device *dev,
1573 		struct devfreq_dev_status *stat)
1574 {
1575 	struct ufs_hba *hba = dev_get_drvdata(dev);
1576 	struct ufs_clk_scaling *scaling = &hba->clk_scaling;
1577 	unsigned long flags;
1578 	ktime_t curr_t;
1579 
1580 	if (!ufshcd_is_clkscaling_supported(hba))
1581 		return -EINVAL;
1582 
1583 	memset(stat, 0, sizeof(*stat));
1584 
1585 	spin_lock_irqsave(hba->host->host_lock, flags);
1586 	curr_t = ktime_get();
1587 	if (!scaling->window_start_t)
1588 		goto start_window;
1589 
1590 	/*
1591 	 * If current frequency is 0, then the ondemand governor considers
1592 	 * there's no initial frequency set. And it always requests to set
1593 	 * to max. frequency.
1594 	 */
1595 	if (hba->use_pm_opp) {
1596 		stat->current_frequency = hba->clk_scaling.target_freq;
1597 	} else {
1598 		struct list_head *clk_list = &hba->clk_list_head;
1599 		struct ufs_clk_info *clki;
1600 
1601 		clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1602 		stat->current_frequency = clki->curr_freq;
1603 	}
1604 
1605 	if (scaling->is_busy_started)
1606 		scaling->tot_busy_t += ktime_us_delta(curr_t,
1607 				scaling->busy_start_t);
1608 	stat->total_time = ktime_us_delta(curr_t, scaling->window_start_t);
1609 	stat->busy_time = scaling->tot_busy_t;
1610 start_window:
1611 	scaling->window_start_t = curr_t;
1612 	scaling->tot_busy_t = 0;
1613 
1614 	if (scaling->active_reqs) {
1615 		scaling->busy_start_t = curr_t;
1616 		scaling->is_busy_started = true;
1617 	} else {
1618 		scaling->busy_start_t = 0;
1619 		scaling->is_busy_started = false;
1620 	}
1621 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1622 	return 0;
1623 }
1624 
1625 static int ufshcd_devfreq_init(struct ufs_hba *hba)
1626 {
1627 	struct list_head *clk_list = &hba->clk_list_head;
1628 	struct ufs_clk_info *clki;
1629 	struct devfreq *devfreq;
1630 	int ret;
1631 
1632 	/* Skip devfreq if we don't have any clocks in the list */
1633 	if (list_empty(clk_list))
1634 		return 0;
1635 
1636 	if (!hba->use_pm_opp) {
1637 		clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1638 		dev_pm_opp_add(hba->dev, clki->min_freq, 0);
1639 		dev_pm_opp_add(hba->dev, clki->max_freq, 0);
1640 	}
1641 
1642 	ufshcd_vops_config_scaling_param(hba, &hba->vps->devfreq_profile,
1643 					 &hba->vps->ondemand_data);
1644 	devfreq = devfreq_add_device(hba->dev,
1645 			&hba->vps->devfreq_profile,
1646 			DEVFREQ_GOV_SIMPLE_ONDEMAND,
1647 			&hba->vps->ondemand_data);
1648 	if (IS_ERR(devfreq)) {
1649 		ret = PTR_ERR(devfreq);
1650 		dev_err(hba->dev, "Unable to register with devfreq %d\n", ret);
1651 
1652 		if (!hba->use_pm_opp) {
1653 			dev_pm_opp_remove(hba->dev, clki->min_freq);
1654 			dev_pm_opp_remove(hba->dev, clki->max_freq);
1655 		}
1656 		return ret;
1657 	}
1658 
1659 	hba->devfreq = devfreq;
1660 
1661 	return 0;
1662 }
1663 
1664 static void ufshcd_devfreq_remove(struct ufs_hba *hba)
1665 {
1666 	struct list_head *clk_list = &hba->clk_list_head;
1667 
1668 	if (!hba->devfreq)
1669 		return;
1670 
1671 	devfreq_remove_device(hba->devfreq);
1672 	hba->devfreq = NULL;
1673 
1674 	if (!hba->use_pm_opp) {
1675 		struct ufs_clk_info *clki;
1676 
1677 		clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1678 		dev_pm_opp_remove(hba->dev, clki->min_freq);
1679 		dev_pm_opp_remove(hba->dev, clki->max_freq);
1680 	}
1681 }
1682 
1683 static void ufshcd_suspend_clkscaling(struct ufs_hba *hba)
1684 {
1685 	unsigned long flags;
1686 	bool suspend = false;
1687 
1688 	cancel_work_sync(&hba->clk_scaling.suspend_work);
1689 	cancel_work_sync(&hba->clk_scaling.resume_work);
1690 
1691 	spin_lock_irqsave(hba->host->host_lock, flags);
1692 	if (!hba->clk_scaling.is_suspended) {
1693 		suspend = true;
1694 		hba->clk_scaling.is_suspended = true;
1695 		hba->clk_scaling.window_start_t = 0;
1696 	}
1697 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1698 
1699 	if (suspend)
1700 		devfreq_suspend_device(hba->devfreq);
1701 }
1702 
1703 static void ufshcd_resume_clkscaling(struct ufs_hba *hba)
1704 {
1705 	unsigned long flags;
1706 	bool resume = false;
1707 
1708 	spin_lock_irqsave(hba->host->host_lock, flags);
1709 	if (hba->clk_scaling.is_suspended) {
1710 		resume = true;
1711 		hba->clk_scaling.is_suspended = false;
1712 	}
1713 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1714 
1715 	if (resume)
1716 		devfreq_resume_device(hba->devfreq);
1717 }
1718 
1719 static ssize_t ufshcd_clkscale_enable_show(struct device *dev,
1720 		struct device_attribute *attr, char *buf)
1721 {
1722 	struct ufs_hba *hba = dev_get_drvdata(dev);
1723 
1724 	return sysfs_emit(buf, "%d\n", hba->clk_scaling.is_enabled);
1725 }
1726 
1727 static ssize_t ufshcd_clkscale_enable_store(struct device *dev,
1728 		struct device_attribute *attr, const char *buf, size_t count)
1729 {
1730 	struct ufs_hba *hba = dev_get_drvdata(dev);
1731 	u32 value;
1732 	int err = 0;
1733 
1734 	if (kstrtou32(buf, 0, &value))
1735 		return -EINVAL;
1736 
1737 	down(&hba->host_sem);
1738 	if (!ufshcd_is_user_access_allowed(hba)) {
1739 		err = -EBUSY;
1740 		goto out;
1741 	}
1742 
1743 	value = !!value;
1744 	if (value == hba->clk_scaling.is_enabled)
1745 		goto out;
1746 
1747 	ufshcd_rpm_get_sync(hba);
1748 	ufshcd_hold(hba);
1749 
1750 	hba->clk_scaling.is_enabled = value;
1751 
1752 	if (value) {
1753 		ufshcd_resume_clkscaling(hba);
1754 	} else {
1755 		ufshcd_suspend_clkscaling(hba);
1756 		err = ufshcd_devfreq_scale(hba, ULONG_MAX, true);
1757 		if (err)
1758 			dev_err(hba->dev, "%s: failed to scale clocks up %d\n",
1759 					__func__, err);
1760 	}
1761 
1762 	ufshcd_release(hba);
1763 	ufshcd_rpm_put_sync(hba);
1764 out:
1765 	up(&hba->host_sem);
1766 	return err ? err : count;
1767 }
1768 
1769 static void ufshcd_init_clk_scaling_sysfs(struct ufs_hba *hba)
1770 {
1771 	hba->clk_scaling.enable_attr.show = ufshcd_clkscale_enable_show;
1772 	hba->clk_scaling.enable_attr.store = ufshcd_clkscale_enable_store;
1773 	sysfs_attr_init(&hba->clk_scaling.enable_attr.attr);
1774 	hba->clk_scaling.enable_attr.attr.name = "clkscale_enable";
1775 	hba->clk_scaling.enable_attr.attr.mode = 0644;
1776 	if (device_create_file(hba->dev, &hba->clk_scaling.enable_attr))
1777 		dev_err(hba->dev, "Failed to create sysfs for clkscale_enable\n");
1778 }
1779 
1780 static void ufshcd_remove_clk_scaling_sysfs(struct ufs_hba *hba)
1781 {
1782 	if (hba->clk_scaling.enable_attr.attr.name)
1783 		device_remove_file(hba->dev, &hba->clk_scaling.enable_attr);
1784 }
1785 
1786 static void ufshcd_init_clk_scaling(struct ufs_hba *hba)
1787 {
1788 	char wq_name[sizeof("ufs_clkscaling_00")];
1789 
1790 	if (!ufshcd_is_clkscaling_supported(hba))
1791 		return;
1792 
1793 	if (!hba->clk_scaling.min_gear)
1794 		hba->clk_scaling.min_gear = UFS_HS_G1;
1795 
1796 	INIT_WORK(&hba->clk_scaling.suspend_work,
1797 		  ufshcd_clk_scaling_suspend_work);
1798 	INIT_WORK(&hba->clk_scaling.resume_work,
1799 		  ufshcd_clk_scaling_resume_work);
1800 
1801 	snprintf(wq_name, sizeof(wq_name), "ufs_clkscaling_%d",
1802 		 hba->host->host_no);
1803 	hba->clk_scaling.workq = create_singlethread_workqueue(wq_name);
1804 
1805 	hba->clk_scaling.is_initialized = true;
1806 }
1807 
1808 static void ufshcd_exit_clk_scaling(struct ufs_hba *hba)
1809 {
1810 	if (!hba->clk_scaling.is_initialized)
1811 		return;
1812 
1813 	ufshcd_remove_clk_scaling_sysfs(hba);
1814 	destroy_workqueue(hba->clk_scaling.workq);
1815 	ufshcd_devfreq_remove(hba);
1816 	hba->clk_scaling.is_initialized = false;
1817 }
1818 
1819 static void ufshcd_ungate_work(struct work_struct *work)
1820 {
1821 	int ret;
1822 	unsigned long flags;
1823 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1824 			clk_gating.ungate_work);
1825 
1826 	cancel_delayed_work_sync(&hba->clk_gating.gate_work);
1827 
1828 	spin_lock_irqsave(hba->host->host_lock, flags);
1829 	if (hba->clk_gating.state == CLKS_ON) {
1830 		spin_unlock_irqrestore(hba->host->host_lock, flags);
1831 		return;
1832 	}
1833 
1834 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1835 	ufshcd_hba_vreg_set_hpm(hba);
1836 	ufshcd_setup_clocks(hba, true);
1837 
1838 	ufshcd_enable_irq(hba);
1839 
1840 	/* Exit from hibern8 */
1841 	if (ufshcd_can_hibern8_during_gating(hba)) {
1842 		/* Prevent gating in this path */
1843 		hba->clk_gating.is_suspended = true;
1844 		if (ufshcd_is_link_hibern8(hba)) {
1845 			ret = ufshcd_uic_hibern8_exit(hba);
1846 			if (ret)
1847 				dev_err(hba->dev, "%s: hibern8 exit failed %d\n",
1848 					__func__, ret);
1849 			else
1850 				ufshcd_set_link_active(hba);
1851 		}
1852 		hba->clk_gating.is_suspended = false;
1853 	}
1854 }
1855 
1856 /**
1857  * ufshcd_hold - Enable clocks that were gated earlier due to ufshcd_release.
1858  * Also, exit from hibern8 mode and set the link as active.
1859  * @hba: per adapter instance
1860  */
1861 void ufshcd_hold(struct ufs_hba *hba)
1862 {
1863 	bool flush_result;
1864 	unsigned long flags;
1865 
1866 	if (!ufshcd_is_clkgating_allowed(hba) ||
1867 	    !hba->clk_gating.is_initialized)
1868 		return;
1869 	spin_lock_irqsave(hba->host->host_lock, flags);
1870 	hba->clk_gating.active_reqs++;
1871 
1872 start:
1873 	switch (hba->clk_gating.state) {
1874 	case CLKS_ON:
1875 		/*
1876 		 * Wait for the ungate work to complete if in progress.
1877 		 * Though the clocks may be in ON state, the link could
1878 		 * still be in hibner8 state if hibern8 is allowed
1879 		 * during clock gating.
1880 		 * Make sure we exit hibern8 state also in addition to
1881 		 * clocks being ON.
1882 		 */
1883 		if (ufshcd_can_hibern8_during_gating(hba) &&
1884 		    ufshcd_is_link_hibern8(hba)) {
1885 			spin_unlock_irqrestore(hba->host->host_lock, flags);
1886 			flush_result = flush_work(&hba->clk_gating.ungate_work);
1887 			if (hba->clk_gating.is_suspended && !flush_result)
1888 				return;
1889 			spin_lock_irqsave(hba->host->host_lock, flags);
1890 			goto start;
1891 		}
1892 		break;
1893 	case REQ_CLKS_OFF:
1894 		if (cancel_delayed_work(&hba->clk_gating.gate_work)) {
1895 			hba->clk_gating.state = CLKS_ON;
1896 			trace_ufshcd_clk_gating(dev_name(hba->dev),
1897 						hba->clk_gating.state);
1898 			break;
1899 		}
1900 		/*
1901 		 * If we are here, it means gating work is either done or
1902 		 * currently running. Hence, fall through to cancel gating
1903 		 * work and to enable clocks.
1904 		 */
1905 		fallthrough;
1906 	case CLKS_OFF:
1907 		hba->clk_gating.state = REQ_CLKS_ON;
1908 		trace_ufshcd_clk_gating(dev_name(hba->dev),
1909 					hba->clk_gating.state);
1910 		queue_work(hba->clk_gating.clk_gating_workq,
1911 			   &hba->clk_gating.ungate_work);
1912 		/*
1913 		 * fall through to check if we should wait for this
1914 		 * work to be done or not.
1915 		 */
1916 		fallthrough;
1917 	case REQ_CLKS_ON:
1918 		spin_unlock_irqrestore(hba->host->host_lock, flags);
1919 		flush_work(&hba->clk_gating.ungate_work);
1920 		/* Make sure state is CLKS_ON before returning */
1921 		spin_lock_irqsave(hba->host->host_lock, flags);
1922 		goto start;
1923 	default:
1924 		dev_err(hba->dev, "%s: clk gating is in invalid state %d\n",
1925 				__func__, hba->clk_gating.state);
1926 		break;
1927 	}
1928 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1929 }
1930 EXPORT_SYMBOL_GPL(ufshcd_hold);
1931 
1932 static void ufshcd_gate_work(struct work_struct *work)
1933 {
1934 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1935 			clk_gating.gate_work.work);
1936 	unsigned long flags;
1937 	int ret;
1938 
1939 	spin_lock_irqsave(hba->host->host_lock, flags);
1940 	/*
1941 	 * In case you are here to cancel this work the gating state
1942 	 * would be marked as REQ_CLKS_ON. In this case save time by
1943 	 * skipping the gating work and exit after changing the clock
1944 	 * state to CLKS_ON.
1945 	 */
1946 	if (hba->clk_gating.is_suspended ||
1947 		(hba->clk_gating.state != REQ_CLKS_OFF)) {
1948 		hba->clk_gating.state = CLKS_ON;
1949 		trace_ufshcd_clk_gating(dev_name(hba->dev),
1950 					hba->clk_gating.state);
1951 		goto rel_lock;
1952 	}
1953 
1954 	if (ufshcd_is_ufs_dev_busy(hba) || hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL)
1955 		goto rel_lock;
1956 
1957 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1958 
1959 	/* put the link into hibern8 mode before turning off clocks */
1960 	if (ufshcd_can_hibern8_during_gating(hba)) {
1961 		ret = ufshcd_uic_hibern8_enter(hba);
1962 		if (ret) {
1963 			hba->clk_gating.state = CLKS_ON;
1964 			dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
1965 					__func__, ret);
1966 			trace_ufshcd_clk_gating(dev_name(hba->dev),
1967 						hba->clk_gating.state);
1968 			goto out;
1969 		}
1970 		ufshcd_set_link_hibern8(hba);
1971 	}
1972 
1973 	ufshcd_disable_irq(hba);
1974 
1975 	ufshcd_setup_clocks(hba, false);
1976 
1977 	/* Put the host controller in low power mode if possible */
1978 	ufshcd_hba_vreg_set_lpm(hba);
1979 	/*
1980 	 * In case you are here to cancel this work the gating state
1981 	 * would be marked as REQ_CLKS_ON. In this case keep the state
1982 	 * as REQ_CLKS_ON which would anyway imply that clocks are off
1983 	 * and a request to turn them on is pending. By doing this way,
1984 	 * we keep the state machine in tact and this would ultimately
1985 	 * prevent from doing cancel work multiple times when there are
1986 	 * new requests arriving before the current cancel work is done.
1987 	 */
1988 	spin_lock_irqsave(hba->host->host_lock, flags);
1989 	if (hba->clk_gating.state == REQ_CLKS_OFF) {
1990 		hba->clk_gating.state = CLKS_OFF;
1991 		trace_ufshcd_clk_gating(dev_name(hba->dev),
1992 					hba->clk_gating.state);
1993 	}
1994 rel_lock:
1995 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1996 out:
1997 	return;
1998 }
1999 
2000 /* host lock must be held before calling this variant */
2001 static void __ufshcd_release(struct ufs_hba *hba)
2002 {
2003 	if (!ufshcd_is_clkgating_allowed(hba))
2004 		return;
2005 
2006 	hba->clk_gating.active_reqs--;
2007 
2008 	if (hba->clk_gating.active_reqs || hba->clk_gating.is_suspended ||
2009 	    hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL ||
2010 	    hba->outstanding_tasks || !hba->clk_gating.is_initialized ||
2011 	    hba->active_uic_cmd || hba->uic_async_done ||
2012 	    hba->clk_gating.state == CLKS_OFF)
2013 		return;
2014 
2015 	hba->clk_gating.state = REQ_CLKS_OFF;
2016 	trace_ufshcd_clk_gating(dev_name(hba->dev), hba->clk_gating.state);
2017 	queue_delayed_work(hba->clk_gating.clk_gating_workq,
2018 			   &hba->clk_gating.gate_work,
2019 			   msecs_to_jiffies(hba->clk_gating.delay_ms));
2020 }
2021 
2022 void ufshcd_release(struct ufs_hba *hba)
2023 {
2024 	unsigned long flags;
2025 
2026 	spin_lock_irqsave(hba->host->host_lock, flags);
2027 	__ufshcd_release(hba);
2028 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2029 }
2030 EXPORT_SYMBOL_GPL(ufshcd_release);
2031 
2032 static ssize_t ufshcd_clkgate_delay_show(struct device *dev,
2033 		struct device_attribute *attr, char *buf)
2034 {
2035 	struct ufs_hba *hba = dev_get_drvdata(dev);
2036 
2037 	return sysfs_emit(buf, "%lu\n", hba->clk_gating.delay_ms);
2038 }
2039 
2040 void ufshcd_clkgate_delay_set(struct device *dev, unsigned long value)
2041 {
2042 	struct ufs_hba *hba = dev_get_drvdata(dev);
2043 	unsigned long flags;
2044 
2045 	spin_lock_irqsave(hba->host->host_lock, flags);
2046 	hba->clk_gating.delay_ms = value;
2047 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2048 }
2049 EXPORT_SYMBOL_GPL(ufshcd_clkgate_delay_set);
2050 
2051 static ssize_t ufshcd_clkgate_delay_store(struct device *dev,
2052 		struct device_attribute *attr, const char *buf, size_t count)
2053 {
2054 	unsigned long value;
2055 
2056 	if (kstrtoul(buf, 0, &value))
2057 		return -EINVAL;
2058 
2059 	ufshcd_clkgate_delay_set(dev, value);
2060 	return count;
2061 }
2062 
2063 static ssize_t ufshcd_clkgate_enable_show(struct device *dev,
2064 		struct device_attribute *attr, char *buf)
2065 {
2066 	struct ufs_hba *hba = dev_get_drvdata(dev);
2067 
2068 	return sysfs_emit(buf, "%d\n", hba->clk_gating.is_enabled);
2069 }
2070 
2071 static ssize_t ufshcd_clkgate_enable_store(struct device *dev,
2072 		struct device_attribute *attr, const char *buf, size_t count)
2073 {
2074 	struct ufs_hba *hba = dev_get_drvdata(dev);
2075 	unsigned long flags;
2076 	u32 value;
2077 
2078 	if (kstrtou32(buf, 0, &value))
2079 		return -EINVAL;
2080 
2081 	value = !!value;
2082 
2083 	spin_lock_irqsave(hba->host->host_lock, flags);
2084 	if (value == hba->clk_gating.is_enabled)
2085 		goto out;
2086 
2087 	if (value)
2088 		__ufshcd_release(hba);
2089 	else
2090 		hba->clk_gating.active_reqs++;
2091 
2092 	hba->clk_gating.is_enabled = value;
2093 out:
2094 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2095 	return count;
2096 }
2097 
2098 static void ufshcd_init_clk_gating_sysfs(struct ufs_hba *hba)
2099 {
2100 	hba->clk_gating.delay_attr.show = ufshcd_clkgate_delay_show;
2101 	hba->clk_gating.delay_attr.store = ufshcd_clkgate_delay_store;
2102 	sysfs_attr_init(&hba->clk_gating.delay_attr.attr);
2103 	hba->clk_gating.delay_attr.attr.name = "clkgate_delay_ms";
2104 	hba->clk_gating.delay_attr.attr.mode = 0644;
2105 	if (device_create_file(hba->dev, &hba->clk_gating.delay_attr))
2106 		dev_err(hba->dev, "Failed to create sysfs for clkgate_delay\n");
2107 
2108 	hba->clk_gating.enable_attr.show = ufshcd_clkgate_enable_show;
2109 	hba->clk_gating.enable_attr.store = ufshcd_clkgate_enable_store;
2110 	sysfs_attr_init(&hba->clk_gating.enable_attr.attr);
2111 	hba->clk_gating.enable_attr.attr.name = "clkgate_enable";
2112 	hba->clk_gating.enable_attr.attr.mode = 0644;
2113 	if (device_create_file(hba->dev, &hba->clk_gating.enable_attr))
2114 		dev_err(hba->dev, "Failed to create sysfs for clkgate_enable\n");
2115 }
2116 
2117 static void ufshcd_remove_clk_gating_sysfs(struct ufs_hba *hba)
2118 {
2119 	if (hba->clk_gating.delay_attr.attr.name)
2120 		device_remove_file(hba->dev, &hba->clk_gating.delay_attr);
2121 	if (hba->clk_gating.enable_attr.attr.name)
2122 		device_remove_file(hba->dev, &hba->clk_gating.enable_attr);
2123 }
2124 
2125 static void ufshcd_init_clk_gating(struct ufs_hba *hba)
2126 {
2127 	char wq_name[sizeof("ufs_clk_gating_00")];
2128 
2129 	if (!ufshcd_is_clkgating_allowed(hba))
2130 		return;
2131 
2132 	hba->clk_gating.state = CLKS_ON;
2133 
2134 	hba->clk_gating.delay_ms = 150;
2135 	INIT_DELAYED_WORK(&hba->clk_gating.gate_work, ufshcd_gate_work);
2136 	INIT_WORK(&hba->clk_gating.ungate_work, ufshcd_ungate_work);
2137 
2138 	snprintf(wq_name, ARRAY_SIZE(wq_name), "ufs_clk_gating_%d",
2139 		 hba->host->host_no);
2140 	hba->clk_gating.clk_gating_workq = alloc_ordered_workqueue(wq_name,
2141 					WQ_MEM_RECLAIM | WQ_HIGHPRI);
2142 
2143 	ufshcd_init_clk_gating_sysfs(hba);
2144 
2145 	hba->clk_gating.is_enabled = true;
2146 	hba->clk_gating.is_initialized = true;
2147 }
2148 
2149 static void ufshcd_exit_clk_gating(struct ufs_hba *hba)
2150 {
2151 	if (!hba->clk_gating.is_initialized)
2152 		return;
2153 
2154 	ufshcd_remove_clk_gating_sysfs(hba);
2155 
2156 	/* Ungate the clock if necessary. */
2157 	ufshcd_hold(hba);
2158 	hba->clk_gating.is_initialized = false;
2159 	ufshcd_release(hba);
2160 
2161 	destroy_workqueue(hba->clk_gating.clk_gating_workq);
2162 }
2163 
2164 static void ufshcd_clk_scaling_start_busy(struct ufs_hba *hba)
2165 {
2166 	bool queue_resume_work = false;
2167 	ktime_t curr_t = ktime_get();
2168 	unsigned long flags;
2169 
2170 	if (!ufshcd_is_clkscaling_supported(hba))
2171 		return;
2172 
2173 	spin_lock_irqsave(hba->host->host_lock, flags);
2174 	if (!hba->clk_scaling.active_reqs++)
2175 		queue_resume_work = true;
2176 
2177 	if (!hba->clk_scaling.is_enabled || hba->pm_op_in_progress) {
2178 		spin_unlock_irqrestore(hba->host->host_lock, flags);
2179 		return;
2180 	}
2181 
2182 	if (queue_resume_work)
2183 		queue_work(hba->clk_scaling.workq,
2184 			   &hba->clk_scaling.resume_work);
2185 
2186 	if (!hba->clk_scaling.window_start_t) {
2187 		hba->clk_scaling.window_start_t = curr_t;
2188 		hba->clk_scaling.tot_busy_t = 0;
2189 		hba->clk_scaling.is_busy_started = false;
2190 	}
2191 
2192 	if (!hba->clk_scaling.is_busy_started) {
2193 		hba->clk_scaling.busy_start_t = curr_t;
2194 		hba->clk_scaling.is_busy_started = true;
2195 	}
2196 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2197 }
2198 
2199 static void ufshcd_clk_scaling_update_busy(struct ufs_hba *hba)
2200 {
2201 	struct ufs_clk_scaling *scaling = &hba->clk_scaling;
2202 	unsigned long flags;
2203 
2204 	if (!ufshcd_is_clkscaling_supported(hba))
2205 		return;
2206 
2207 	spin_lock_irqsave(hba->host->host_lock, flags);
2208 	hba->clk_scaling.active_reqs--;
2209 	if (!scaling->active_reqs && scaling->is_busy_started) {
2210 		scaling->tot_busy_t += ktime_to_us(ktime_sub(ktime_get(),
2211 					scaling->busy_start_t));
2212 		scaling->busy_start_t = 0;
2213 		scaling->is_busy_started = false;
2214 	}
2215 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2216 }
2217 
2218 static inline int ufshcd_monitor_opcode2dir(u8 opcode)
2219 {
2220 	if (opcode == READ_6 || opcode == READ_10 || opcode == READ_16)
2221 		return READ;
2222 	else if (opcode == WRITE_6 || opcode == WRITE_10 || opcode == WRITE_16)
2223 		return WRITE;
2224 	else
2225 		return -EINVAL;
2226 }
2227 
2228 static inline bool ufshcd_should_inform_monitor(struct ufs_hba *hba,
2229 						struct ufshcd_lrb *lrbp)
2230 {
2231 	const struct ufs_hba_monitor *m = &hba->monitor;
2232 
2233 	return (m->enabled && lrbp && lrbp->cmd &&
2234 		(!m->chunk_size || m->chunk_size == lrbp->cmd->sdb.length) &&
2235 		ktime_before(hba->monitor.enabled_ts, lrbp->issue_time_stamp));
2236 }
2237 
2238 static void ufshcd_start_monitor(struct ufs_hba *hba,
2239 				 const struct ufshcd_lrb *lrbp)
2240 {
2241 	int dir = ufshcd_monitor_opcode2dir(*lrbp->cmd->cmnd);
2242 	unsigned long flags;
2243 
2244 	spin_lock_irqsave(hba->host->host_lock, flags);
2245 	if (dir >= 0 && hba->monitor.nr_queued[dir]++ == 0)
2246 		hba->monitor.busy_start_ts[dir] = ktime_get();
2247 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2248 }
2249 
2250 static void ufshcd_update_monitor(struct ufs_hba *hba, const struct ufshcd_lrb *lrbp)
2251 {
2252 	int dir = ufshcd_monitor_opcode2dir(*lrbp->cmd->cmnd);
2253 	unsigned long flags;
2254 
2255 	spin_lock_irqsave(hba->host->host_lock, flags);
2256 	if (dir >= 0 && hba->monitor.nr_queued[dir] > 0) {
2257 		const struct request *req = scsi_cmd_to_rq(lrbp->cmd);
2258 		struct ufs_hba_monitor *m = &hba->monitor;
2259 		ktime_t now, inc, lat;
2260 
2261 		now = lrbp->compl_time_stamp;
2262 		inc = ktime_sub(now, m->busy_start_ts[dir]);
2263 		m->total_busy[dir] = ktime_add(m->total_busy[dir], inc);
2264 		m->nr_sec_rw[dir] += blk_rq_sectors(req);
2265 
2266 		/* Update latencies */
2267 		m->nr_req[dir]++;
2268 		lat = ktime_sub(now, lrbp->issue_time_stamp);
2269 		m->lat_sum[dir] += lat;
2270 		if (m->lat_max[dir] < lat || !m->lat_max[dir])
2271 			m->lat_max[dir] = lat;
2272 		if (m->lat_min[dir] > lat || !m->lat_min[dir])
2273 			m->lat_min[dir] = lat;
2274 
2275 		m->nr_queued[dir]--;
2276 		/* Push forward the busy start of monitor */
2277 		m->busy_start_ts[dir] = now;
2278 	}
2279 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2280 }
2281 
2282 /**
2283  * ufshcd_send_command - Send SCSI or device management commands
2284  * @hba: per adapter instance
2285  * @task_tag: Task tag of the command
2286  * @hwq: pointer to hardware queue instance
2287  */
2288 static inline
2289 void ufshcd_send_command(struct ufs_hba *hba, unsigned int task_tag,
2290 			 struct ufs_hw_queue *hwq)
2291 {
2292 	struct ufshcd_lrb *lrbp = &hba->lrb[task_tag];
2293 	unsigned long flags;
2294 
2295 	lrbp->issue_time_stamp = ktime_get();
2296 	lrbp->issue_time_stamp_local_clock = local_clock();
2297 	lrbp->compl_time_stamp = ktime_set(0, 0);
2298 	lrbp->compl_time_stamp_local_clock = 0;
2299 	ufshcd_add_command_trace(hba, task_tag, UFS_CMD_SEND);
2300 	if (lrbp->cmd)
2301 		ufshcd_clk_scaling_start_busy(hba);
2302 	if (unlikely(ufshcd_should_inform_monitor(hba, lrbp)))
2303 		ufshcd_start_monitor(hba, lrbp);
2304 
2305 	if (hba->mcq_enabled) {
2306 		int utrd_size = sizeof(struct utp_transfer_req_desc);
2307 		struct utp_transfer_req_desc *src = lrbp->utr_descriptor_ptr;
2308 		struct utp_transfer_req_desc *dest;
2309 
2310 		spin_lock(&hwq->sq_lock);
2311 		dest = hwq->sqe_base_addr + hwq->sq_tail_slot;
2312 		memcpy(dest, src, utrd_size);
2313 		ufshcd_inc_sq_tail(hwq);
2314 		spin_unlock(&hwq->sq_lock);
2315 	} else {
2316 		spin_lock_irqsave(&hba->outstanding_lock, flags);
2317 		if (hba->vops && hba->vops->setup_xfer_req)
2318 			hba->vops->setup_xfer_req(hba, lrbp->task_tag,
2319 						  !!lrbp->cmd);
2320 		__set_bit(lrbp->task_tag, &hba->outstanding_reqs);
2321 		ufshcd_writel(hba, 1 << lrbp->task_tag,
2322 			      REG_UTP_TRANSFER_REQ_DOOR_BELL);
2323 		spin_unlock_irqrestore(&hba->outstanding_lock, flags);
2324 	}
2325 }
2326 
2327 /**
2328  * ufshcd_copy_sense_data - Copy sense data in case of check condition
2329  * @lrbp: pointer to local reference block
2330  */
2331 static inline void ufshcd_copy_sense_data(struct ufshcd_lrb *lrbp)
2332 {
2333 	u8 *const sense_buffer = lrbp->cmd->sense_buffer;
2334 	u16 resp_len;
2335 	int len;
2336 
2337 	resp_len = be16_to_cpu(lrbp->ucd_rsp_ptr->header.data_segment_length);
2338 	if (sense_buffer && resp_len) {
2339 		int len_to_copy;
2340 
2341 		len = be16_to_cpu(lrbp->ucd_rsp_ptr->sr.sense_data_len);
2342 		len_to_copy = min_t(int, UFS_SENSE_SIZE, len);
2343 
2344 		memcpy(sense_buffer, lrbp->ucd_rsp_ptr->sr.sense_data,
2345 		       len_to_copy);
2346 	}
2347 }
2348 
2349 /**
2350  * ufshcd_copy_query_response() - Copy the Query Response and the data
2351  * descriptor
2352  * @hba: per adapter instance
2353  * @lrbp: pointer to local reference block
2354  *
2355  * Return: 0 upon success; < 0 upon failure.
2356  */
2357 static
2358 int ufshcd_copy_query_response(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2359 {
2360 	struct ufs_query_res *query_res = &hba->dev_cmd.query.response;
2361 
2362 	memcpy(&query_res->upiu_res, &lrbp->ucd_rsp_ptr->qr, QUERY_OSF_SIZE);
2363 
2364 	/* Get the descriptor */
2365 	if (hba->dev_cmd.query.descriptor &&
2366 	    lrbp->ucd_rsp_ptr->qr.opcode == UPIU_QUERY_OPCODE_READ_DESC) {
2367 		u8 *descp = (u8 *)lrbp->ucd_rsp_ptr +
2368 				GENERAL_UPIU_REQUEST_SIZE;
2369 		u16 resp_len;
2370 		u16 buf_len;
2371 
2372 		/* data segment length */
2373 		resp_len = be16_to_cpu(lrbp->ucd_rsp_ptr->header
2374 				       .data_segment_length);
2375 		buf_len = be16_to_cpu(
2376 				hba->dev_cmd.query.request.upiu_req.length);
2377 		if (likely(buf_len >= resp_len)) {
2378 			memcpy(hba->dev_cmd.query.descriptor, descp, resp_len);
2379 		} else {
2380 			dev_warn(hba->dev,
2381 				 "%s: rsp size %d is bigger than buffer size %d",
2382 				 __func__, resp_len, buf_len);
2383 			return -EINVAL;
2384 		}
2385 	}
2386 
2387 	return 0;
2388 }
2389 
2390 /**
2391  * ufshcd_hba_capabilities - Read controller capabilities
2392  * @hba: per adapter instance
2393  *
2394  * Return: 0 on success, negative on error.
2395  */
2396 static inline int ufshcd_hba_capabilities(struct ufs_hba *hba)
2397 {
2398 	int err;
2399 
2400 	hba->capabilities = ufshcd_readl(hba, REG_CONTROLLER_CAPABILITIES);
2401 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_64BIT_ADDRESS)
2402 		hba->capabilities &= ~MASK_64_ADDRESSING_SUPPORT;
2403 
2404 	/* nutrs and nutmrs are 0 based values */
2405 	hba->nutrs = (hba->capabilities & MASK_TRANSFER_REQUESTS_SLOTS_SDB) + 1;
2406 	hba->nutmrs =
2407 	((hba->capabilities & MASK_TASK_MANAGEMENT_REQUEST_SLOTS) >> 16) + 1;
2408 	hba->reserved_slot = hba->nutrs - 1;
2409 
2410 	hba->nortt = FIELD_GET(MASK_NUMBER_OUTSTANDING_RTT, hba->capabilities) + 1;
2411 
2412 	/* Read crypto capabilities */
2413 	err = ufshcd_hba_init_crypto_capabilities(hba);
2414 	if (err) {
2415 		dev_err(hba->dev, "crypto setup failed\n");
2416 		return err;
2417 	}
2418 
2419 	/*
2420 	 * The UFSHCI 3.0 specification does not define MCQ_SUPPORT and
2421 	 * LSDB_SUPPORT, but [31:29] as reserved bits with reset value 0s, which
2422 	 * means we can simply read values regardless of version.
2423 	 */
2424 	hba->mcq_sup = FIELD_GET(MASK_MCQ_SUPPORT, hba->capabilities);
2425 	/*
2426 	 * 0h: legacy single doorbell support is available
2427 	 * 1h: indicate that legacy single doorbell support has been removed
2428 	 */
2429 	hba->lsdb_sup = !FIELD_GET(MASK_LSDB_SUPPORT, hba->capabilities);
2430 	if (!hba->mcq_sup)
2431 		return 0;
2432 
2433 	hba->mcq_capabilities = ufshcd_readl(hba, REG_MCQCAP);
2434 	hba->ext_iid_sup = FIELD_GET(MASK_EXT_IID_SUPPORT,
2435 				     hba->mcq_capabilities);
2436 
2437 	return 0;
2438 }
2439 
2440 /**
2441  * ufshcd_ready_for_uic_cmd - Check if controller is ready
2442  *                            to accept UIC commands
2443  * @hba: per adapter instance
2444  *
2445  * Return: true on success, else false.
2446  */
2447 static inline bool ufshcd_ready_for_uic_cmd(struct ufs_hba *hba)
2448 {
2449 	u32 val;
2450 	int ret = read_poll_timeout(ufshcd_readl, val, val & UIC_COMMAND_READY,
2451 				    500, UIC_CMD_TIMEOUT * 1000, false, hba,
2452 				    REG_CONTROLLER_STATUS);
2453 	return ret == 0;
2454 }
2455 
2456 /**
2457  * ufshcd_get_upmcrs - Get the power mode change request status
2458  * @hba: Pointer to adapter instance
2459  *
2460  * This function gets the UPMCRS field of HCS register
2461  *
2462  * Return: value of UPMCRS field.
2463  */
2464 static inline u8 ufshcd_get_upmcrs(struct ufs_hba *hba)
2465 {
2466 	return (ufshcd_readl(hba, REG_CONTROLLER_STATUS) >> 8) & 0x7;
2467 }
2468 
2469 /**
2470  * ufshcd_dispatch_uic_cmd - Dispatch an UIC command to the Unipro layer
2471  * @hba: per adapter instance
2472  * @uic_cmd: UIC command
2473  */
2474 static inline void
2475 ufshcd_dispatch_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2476 {
2477 	lockdep_assert_held(&hba->uic_cmd_mutex);
2478 
2479 	WARN_ON(hba->active_uic_cmd);
2480 
2481 	hba->active_uic_cmd = uic_cmd;
2482 
2483 	/* Write Args */
2484 	ufshcd_writel(hba, uic_cmd->argument1, REG_UIC_COMMAND_ARG_1);
2485 	ufshcd_writel(hba, uic_cmd->argument2, REG_UIC_COMMAND_ARG_2);
2486 	ufshcd_writel(hba, uic_cmd->argument3, REG_UIC_COMMAND_ARG_3);
2487 
2488 	ufshcd_add_uic_command_trace(hba, uic_cmd, UFS_CMD_SEND);
2489 
2490 	/* Write UIC Cmd */
2491 	ufshcd_writel(hba, uic_cmd->command & COMMAND_OPCODE_MASK,
2492 		      REG_UIC_COMMAND);
2493 }
2494 
2495 /**
2496  * ufshcd_wait_for_uic_cmd - Wait for completion of an UIC command
2497  * @hba: per adapter instance
2498  * @uic_cmd: UIC command
2499  *
2500  * Return: 0 only if success.
2501  */
2502 static int
2503 ufshcd_wait_for_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2504 {
2505 	int ret;
2506 	unsigned long flags;
2507 
2508 	lockdep_assert_held(&hba->uic_cmd_mutex);
2509 
2510 	if (wait_for_completion_timeout(&uic_cmd->done,
2511 					msecs_to_jiffies(UIC_CMD_TIMEOUT))) {
2512 		ret = uic_cmd->argument2 & MASK_UIC_COMMAND_RESULT;
2513 	} else {
2514 		ret = -ETIMEDOUT;
2515 		dev_err(hba->dev,
2516 			"uic cmd 0x%x with arg3 0x%x completion timeout\n",
2517 			uic_cmd->command, uic_cmd->argument3);
2518 
2519 		if (!uic_cmd->cmd_active) {
2520 			dev_err(hba->dev, "%s: UIC cmd has been completed, return the result\n",
2521 				__func__);
2522 			ret = uic_cmd->argument2 & MASK_UIC_COMMAND_RESULT;
2523 		}
2524 	}
2525 
2526 	spin_lock_irqsave(hba->host->host_lock, flags);
2527 	hba->active_uic_cmd = NULL;
2528 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2529 
2530 	return ret;
2531 }
2532 
2533 /**
2534  * __ufshcd_send_uic_cmd - Send UIC commands and retrieve the result
2535  * @hba: per adapter instance
2536  * @uic_cmd: UIC command
2537  * @completion: initialize the completion only if this is set to true
2538  *
2539  * Return: 0 only if success.
2540  */
2541 static int
2542 __ufshcd_send_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd,
2543 		      bool completion)
2544 {
2545 	lockdep_assert_held(&hba->uic_cmd_mutex);
2546 
2547 	if (!ufshcd_ready_for_uic_cmd(hba)) {
2548 		dev_err(hba->dev,
2549 			"Controller not ready to accept UIC commands\n");
2550 		return -EIO;
2551 	}
2552 
2553 	if (completion)
2554 		init_completion(&uic_cmd->done);
2555 
2556 	uic_cmd->cmd_active = 1;
2557 	ufshcd_dispatch_uic_cmd(hba, uic_cmd);
2558 
2559 	return 0;
2560 }
2561 
2562 /**
2563  * ufshcd_send_uic_cmd - Send UIC commands and retrieve the result
2564  * @hba: per adapter instance
2565  * @uic_cmd: UIC command
2566  *
2567  * Return: 0 only if success.
2568  */
2569 int ufshcd_send_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2570 {
2571 	int ret;
2572 
2573 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_UIC_CMD)
2574 		return 0;
2575 
2576 	ufshcd_hold(hba);
2577 	mutex_lock(&hba->uic_cmd_mutex);
2578 	ufshcd_add_delay_before_dme_cmd(hba);
2579 
2580 	ret = __ufshcd_send_uic_cmd(hba, uic_cmd, true);
2581 	if (!ret)
2582 		ret = ufshcd_wait_for_uic_cmd(hba, uic_cmd);
2583 
2584 	mutex_unlock(&hba->uic_cmd_mutex);
2585 
2586 	ufshcd_release(hba);
2587 	return ret;
2588 }
2589 
2590 /**
2591  * ufshcd_sgl_to_prdt - SG list to PRTD (Physical Region Description Table, 4DW format)
2592  * @hba:	per-adapter instance
2593  * @lrbp:	pointer to local reference block
2594  * @sg_entries:	The number of sg lists actually used
2595  * @sg_list:	Pointer to SG list
2596  */
2597 static void ufshcd_sgl_to_prdt(struct ufs_hba *hba, struct ufshcd_lrb *lrbp, int sg_entries,
2598 			       struct scatterlist *sg_list)
2599 {
2600 	struct ufshcd_sg_entry *prd;
2601 	struct scatterlist *sg;
2602 	int i;
2603 
2604 	if (sg_entries) {
2605 
2606 		if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN)
2607 			lrbp->utr_descriptor_ptr->prd_table_length =
2608 				cpu_to_le16(sg_entries * ufshcd_sg_entry_size(hba));
2609 		else
2610 			lrbp->utr_descriptor_ptr->prd_table_length = cpu_to_le16(sg_entries);
2611 
2612 		prd = lrbp->ucd_prdt_ptr;
2613 
2614 		for_each_sg(sg_list, sg, sg_entries, i) {
2615 			const unsigned int len = sg_dma_len(sg);
2616 
2617 			/*
2618 			 * From the UFSHCI spec: "Data Byte Count (DBC): A '0'
2619 			 * based value that indicates the length, in bytes, of
2620 			 * the data block. A maximum of length of 256KB may
2621 			 * exist for any entry. Bits 1:0 of this field shall be
2622 			 * 11b to indicate Dword granularity. A value of '3'
2623 			 * indicates 4 bytes, '7' indicates 8 bytes, etc."
2624 			 */
2625 			WARN_ONCE(len > SZ_256K, "len = %#x\n", len);
2626 			prd->size = cpu_to_le32(len - 1);
2627 			prd->addr = cpu_to_le64(sg->dma_address);
2628 			prd->reserved = 0;
2629 			prd = (void *)prd + ufshcd_sg_entry_size(hba);
2630 		}
2631 	} else {
2632 		lrbp->utr_descriptor_ptr->prd_table_length = 0;
2633 	}
2634 }
2635 
2636 /**
2637  * ufshcd_map_sg - Map scatter-gather list to prdt
2638  * @hba: per adapter instance
2639  * @lrbp: pointer to local reference block
2640  *
2641  * Return: 0 in case of success, non-zero value in case of failure.
2642  */
2643 static int ufshcd_map_sg(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2644 {
2645 	struct scsi_cmnd *cmd = lrbp->cmd;
2646 	int sg_segments = scsi_dma_map(cmd);
2647 
2648 	if (sg_segments < 0)
2649 		return sg_segments;
2650 
2651 	ufshcd_sgl_to_prdt(hba, lrbp, sg_segments, scsi_sglist(cmd));
2652 
2653 	return ufshcd_crypto_fill_prdt(hba, lrbp);
2654 }
2655 
2656 /**
2657  * ufshcd_enable_intr - enable interrupts
2658  * @hba: per adapter instance
2659  * @intrs: interrupt bits
2660  */
2661 static void ufshcd_enable_intr(struct ufs_hba *hba, u32 intrs)
2662 {
2663 	u32 set = ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
2664 
2665 	set |= intrs;
2666 	ufshcd_writel(hba, set, REG_INTERRUPT_ENABLE);
2667 }
2668 
2669 /**
2670  * ufshcd_disable_intr - disable interrupts
2671  * @hba: per adapter instance
2672  * @intrs: interrupt bits
2673  */
2674 static void ufshcd_disable_intr(struct ufs_hba *hba, u32 intrs)
2675 {
2676 	u32 set = ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
2677 
2678 	set &= ~intrs;
2679 	ufshcd_writel(hba, set, REG_INTERRUPT_ENABLE);
2680 }
2681 
2682 /**
2683  * ufshcd_prepare_req_desc_hdr - Fill UTP Transfer request descriptor header according to request
2684  * descriptor according to request
2685  * @hba: per adapter instance
2686  * @lrbp: pointer to local reference block
2687  * @upiu_flags: flags required in the header
2688  * @cmd_dir: requests data direction
2689  * @ehs_length: Total EHS Length (in 32‐bytes units of all Extra Header Segments)
2690  */
2691 static void
2692 ufshcd_prepare_req_desc_hdr(struct ufs_hba *hba, struct ufshcd_lrb *lrbp,
2693 			    u8 *upiu_flags, enum dma_data_direction cmd_dir,
2694 			    int ehs_length)
2695 {
2696 	struct utp_transfer_req_desc *req_desc = lrbp->utr_descriptor_ptr;
2697 	struct request_desc_header *h = &req_desc->header;
2698 	enum utp_data_direction data_direction;
2699 
2700 	lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
2701 
2702 	*h = (typeof(*h)){ };
2703 
2704 	if (cmd_dir == DMA_FROM_DEVICE) {
2705 		data_direction = UTP_DEVICE_TO_HOST;
2706 		*upiu_flags = UPIU_CMD_FLAGS_READ;
2707 	} else if (cmd_dir == DMA_TO_DEVICE) {
2708 		data_direction = UTP_HOST_TO_DEVICE;
2709 		*upiu_flags = UPIU_CMD_FLAGS_WRITE;
2710 	} else {
2711 		data_direction = UTP_NO_DATA_TRANSFER;
2712 		*upiu_flags = UPIU_CMD_FLAGS_NONE;
2713 	}
2714 
2715 	h->command_type = lrbp->command_type;
2716 	h->data_direction = data_direction;
2717 	h->ehs_length = ehs_length;
2718 
2719 	if (lrbp->intr_cmd)
2720 		h->interrupt = 1;
2721 
2722 	/* Prepare crypto related dwords */
2723 	ufshcd_prepare_req_desc_hdr_crypto(lrbp, h);
2724 
2725 	/*
2726 	 * assigning invalid value for command status. Controller
2727 	 * updates OCS on command completion, with the command
2728 	 * status
2729 	 */
2730 	h->ocs = OCS_INVALID_COMMAND_STATUS;
2731 
2732 	req_desc->prd_table_length = 0;
2733 }
2734 
2735 /**
2736  * ufshcd_prepare_utp_scsi_cmd_upiu() - fills the utp_transfer_req_desc,
2737  * for scsi commands
2738  * @lrbp: local reference block pointer
2739  * @upiu_flags: flags
2740  */
2741 static
2742 void ufshcd_prepare_utp_scsi_cmd_upiu(struct ufshcd_lrb *lrbp, u8 upiu_flags)
2743 {
2744 	struct scsi_cmnd *cmd = lrbp->cmd;
2745 	struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2746 	unsigned short cdb_len;
2747 
2748 	ucd_req_ptr->header = (struct utp_upiu_header){
2749 		.transaction_code = UPIU_TRANSACTION_COMMAND,
2750 		.flags = upiu_flags,
2751 		.lun = lrbp->lun,
2752 		.task_tag = lrbp->task_tag,
2753 		.command_set_type = UPIU_COMMAND_SET_TYPE_SCSI,
2754 	};
2755 
2756 	WARN_ON_ONCE(ucd_req_ptr->header.task_tag != lrbp->task_tag);
2757 
2758 	ucd_req_ptr->sc.exp_data_transfer_len = cpu_to_be32(cmd->sdb.length);
2759 
2760 	cdb_len = min_t(unsigned short, cmd->cmd_len, UFS_CDB_SIZE);
2761 	memset(ucd_req_ptr->sc.cdb, 0, UFS_CDB_SIZE);
2762 	memcpy(ucd_req_ptr->sc.cdb, cmd->cmnd, cdb_len);
2763 
2764 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2765 }
2766 
2767 /**
2768  * ufshcd_prepare_utp_query_req_upiu() - fill the utp_transfer_req_desc for query request
2769  * @hba: UFS hba
2770  * @lrbp: local reference block pointer
2771  * @upiu_flags: flags
2772  */
2773 static void ufshcd_prepare_utp_query_req_upiu(struct ufs_hba *hba,
2774 				struct ufshcd_lrb *lrbp, u8 upiu_flags)
2775 {
2776 	struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2777 	struct ufs_query *query = &hba->dev_cmd.query;
2778 	u16 len = be16_to_cpu(query->request.upiu_req.length);
2779 
2780 	/* Query request header */
2781 	ucd_req_ptr->header = (struct utp_upiu_header){
2782 		.transaction_code = UPIU_TRANSACTION_QUERY_REQ,
2783 		.flags = upiu_flags,
2784 		.lun = lrbp->lun,
2785 		.task_tag = lrbp->task_tag,
2786 		.query_function = query->request.query_func,
2787 		/* Data segment length only need for WRITE_DESC */
2788 		.data_segment_length =
2789 			query->request.upiu_req.opcode ==
2790 					UPIU_QUERY_OPCODE_WRITE_DESC ?
2791 				cpu_to_be16(len) :
2792 				0,
2793 	};
2794 
2795 	/* Copy the Query Request buffer as is */
2796 	memcpy(&ucd_req_ptr->qr, &query->request.upiu_req,
2797 			QUERY_OSF_SIZE);
2798 
2799 	/* Copy the Descriptor */
2800 	if (query->request.upiu_req.opcode == UPIU_QUERY_OPCODE_WRITE_DESC)
2801 		memcpy(ucd_req_ptr + 1, query->descriptor, len);
2802 
2803 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2804 }
2805 
2806 static inline void ufshcd_prepare_utp_nop_upiu(struct ufshcd_lrb *lrbp)
2807 {
2808 	struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2809 
2810 	memset(ucd_req_ptr, 0, sizeof(struct utp_upiu_req));
2811 
2812 	ucd_req_ptr->header = (struct utp_upiu_header){
2813 		.transaction_code = UPIU_TRANSACTION_NOP_OUT,
2814 		.task_tag = lrbp->task_tag,
2815 	};
2816 
2817 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2818 }
2819 
2820 /**
2821  * ufshcd_compose_devman_upiu - UFS Protocol Information Unit(UPIU)
2822  *			     for Device Management Purposes
2823  * @hba: per adapter instance
2824  * @lrbp: pointer to local reference block
2825  *
2826  * Return: 0 upon success; < 0 upon failure.
2827  */
2828 static int ufshcd_compose_devman_upiu(struct ufs_hba *hba,
2829 				      struct ufshcd_lrb *lrbp)
2830 {
2831 	u8 upiu_flags;
2832 	int ret = 0;
2833 
2834 	ufshcd_prepare_req_desc_hdr(hba, lrbp, &upiu_flags, DMA_NONE, 0);
2835 
2836 	if (hba->dev_cmd.type == DEV_CMD_TYPE_QUERY)
2837 		ufshcd_prepare_utp_query_req_upiu(hba, lrbp, upiu_flags);
2838 	else if (hba->dev_cmd.type == DEV_CMD_TYPE_NOP)
2839 		ufshcd_prepare_utp_nop_upiu(lrbp);
2840 	else
2841 		ret = -EINVAL;
2842 
2843 	return ret;
2844 }
2845 
2846 /**
2847  * ufshcd_comp_scsi_upiu - UFS Protocol Information Unit(UPIU)
2848  *			   for SCSI Purposes
2849  * @hba: per adapter instance
2850  * @lrbp: pointer to local reference block
2851  */
2852 static void ufshcd_comp_scsi_upiu(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2853 {
2854 	struct request *rq = scsi_cmd_to_rq(lrbp->cmd);
2855 	unsigned int ioprio_class = IOPRIO_PRIO_CLASS(req_get_ioprio(rq));
2856 	u8 upiu_flags;
2857 
2858 	ufshcd_prepare_req_desc_hdr(hba, lrbp, &upiu_flags, lrbp->cmd->sc_data_direction, 0);
2859 	if (ioprio_class == IOPRIO_CLASS_RT)
2860 		upiu_flags |= UPIU_CMD_FLAGS_CP;
2861 	ufshcd_prepare_utp_scsi_cmd_upiu(lrbp, upiu_flags);
2862 }
2863 
2864 /**
2865  * ufshcd_upiu_wlun_to_scsi_wlun - maps UPIU W-LUN id to SCSI W-LUN ID
2866  * @upiu_wlun_id: UPIU W-LUN id
2867  *
2868  * Return: SCSI W-LUN id.
2869  */
2870 static inline u16 ufshcd_upiu_wlun_to_scsi_wlun(u8 upiu_wlun_id)
2871 {
2872 	return (upiu_wlun_id & ~UFS_UPIU_WLUN_ID) | SCSI_W_LUN_BASE;
2873 }
2874 
2875 static inline bool is_device_wlun(struct scsi_device *sdev)
2876 {
2877 	return sdev->lun ==
2878 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_UFS_DEVICE_WLUN);
2879 }
2880 
2881 /*
2882  * Associate the UFS controller queue with the default and poll HCTX types.
2883  * Initialize the mq_map[] arrays.
2884  */
2885 static void ufshcd_map_queues(struct Scsi_Host *shost)
2886 {
2887 	struct ufs_hba *hba = shost_priv(shost);
2888 	int i, queue_offset = 0;
2889 
2890 	if (!is_mcq_supported(hba)) {
2891 		hba->nr_queues[HCTX_TYPE_DEFAULT] = 1;
2892 		hba->nr_queues[HCTX_TYPE_READ] = 0;
2893 		hba->nr_queues[HCTX_TYPE_POLL] = 1;
2894 		hba->nr_hw_queues = 1;
2895 	}
2896 
2897 	for (i = 0; i < shost->nr_maps; i++) {
2898 		struct blk_mq_queue_map *map = &shost->tag_set.map[i];
2899 
2900 		map->nr_queues = hba->nr_queues[i];
2901 		if (!map->nr_queues)
2902 			continue;
2903 		map->queue_offset = queue_offset;
2904 		if (i == HCTX_TYPE_POLL && !is_mcq_supported(hba))
2905 			map->queue_offset = 0;
2906 
2907 		blk_mq_map_queues(map);
2908 		queue_offset += map->nr_queues;
2909 	}
2910 }
2911 
2912 static void ufshcd_init_lrb(struct ufs_hba *hba, struct ufshcd_lrb *lrb, int i)
2913 {
2914 	struct utp_transfer_cmd_desc *cmd_descp = (void *)hba->ucdl_base_addr +
2915 		i * ufshcd_get_ucd_size(hba);
2916 	struct utp_transfer_req_desc *utrdlp = hba->utrdl_base_addr;
2917 	dma_addr_t cmd_desc_element_addr = hba->ucdl_dma_addr +
2918 		i * ufshcd_get_ucd_size(hba);
2919 	u16 response_offset = offsetof(struct utp_transfer_cmd_desc,
2920 				       response_upiu);
2921 	u16 prdt_offset = offsetof(struct utp_transfer_cmd_desc, prd_table);
2922 
2923 	lrb->utr_descriptor_ptr = utrdlp + i;
2924 	lrb->utrd_dma_addr = hba->utrdl_dma_addr +
2925 		i * sizeof(struct utp_transfer_req_desc);
2926 	lrb->ucd_req_ptr = (struct utp_upiu_req *)cmd_descp->command_upiu;
2927 	lrb->ucd_req_dma_addr = cmd_desc_element_addr;
2928 	lrb->ucd_rsp_ptr = (struct utp_upiu_rsp *)cmd_descp->response_upiu;
2929 	lrb->ucd_rsp_dma_addr = cmd_desc_element_addr + response_offset;
2930 	lrb->ucd_prdt_ptr = (struct ufshcd_sg_entry *)cmd_descp->prd_table;
2931 	lrb->ucd_prdt_dma_addr = cmd_desc_element_addr + prdt_offset;
2932 }
2933 
2934 /**
2935  * ufshcd_queuecommand - main entry point for SCSI requests
2936  * @host: SCSI host pointer
2937  * @cmd: command from SCSI Midlayer
2938  *
2939  * Return: 0 for success, non-zero in case of failure.
2940  */
2941 static int ufshcd_queuecommand(struct Scsi_Host *host, struct scsi_cmnd *cmd)
2942 {
2943 	struct ufs_hba *hba = shost_priv(host);
2944 	int tag = scsi_cmd_to_rq(cmd)->tag;
2945 	struct ufshcd_lrb *lrbp;
2946 	int err = 0;
2947 	struct ufs_hw_queue *hwq = NULL;
2948 
2949 	switch (hba->ufshcd_state) {
2950 	case UFSHCD_STATE_OPERATIONAL:
2951 		break;
2952 	case UFSHCD_STATE_EH_SCHEDULED_NON_FATAL:
2953 		/*
2954 		 * SCSI error handler can call ->queuecommand() while UFS error
2955 		 * handler is in progress. Error interrupts could change the
2956 		 * state from UFSHCD_STATE_RESET to
2957 		 * UFSHCD_STATE_EH_SCHEDULED_NON_FATAL. Prevent requests
2958 		 * being issued in that case.
2959 		 */
2960 		if (ufshcd_eh_in_progress(hba)) {
2961 			err = SCSI_MLQUEUE_HOST_BUSY;
2962 			goto out;
2963 		}
2964 		break;
2965 	case UFSHCD_STATE_EH_SCHEDULED_FATAL:
2966 		/*
2967 		 * pm_runtime_get_sync() is used at error handling preparation
2968 		 * stage. If a scsi cmd, e.g. the SSU cmd, is sent from hba's
2969 		 * PM ops, it can never be finished if we let SCSI layer keep
2970 		 * retrying it, which gets err handler stuck forever. Neither
2971 		 * can we let the scsi cmd pass through, because UFS is in bad
2972 		 * state, the scsi cmd may eventually time out, which will get
2973 		 * err handler blocked for too long. So, just fail the scsi cmd
2974 		 * sent from PM ops, err handler can recover PM error anyways.
2975 		 */
2976 		if (hba->pm_op_in_progress) {
2977 			hba->force_reset = true;
2978 			set_host_byte(cmd, DID_BAD_TARGET);
2979 			scsi_done(cmd);
2980 			goto out;
2981 		}
2982 		fallthrough;
2983 	case UFSHCD_STATE_RESET:
2984 		err = SCSI_MLQUEUE_HOST_BUSY;
2985 		goto out;
2986 	case UFSHCD_STATE_ERROR:
2987 		set_host_byte(cmd, DID_ERROR);
2988 		scsi_done(cmd);
2989 		goto out;
2990 	}
2991 
2992 	hba->req_abort_count = 0;
2993 
2994 	ufshcd_hold(hba);
2995 
2996 	lrbp = &hba->lrb[tag];
2997 	lrbp->cmd = cmd;
2998 	lrbp->task_tag = tag;
2999 	lrbp->lun = ufshcd_scsi_to_upiu_lun(cmd->device->lun);
3000 	lrbp->intr_cmd = !ufshcd_is_intr_aggr_allowed(hba);
3001 
3002 	ufshcd_prepare_lrbp_crypto(scsi_cmd_to_rq(cmd), lrbp);
3003 
3004 	lrbp->req_abort_skip = false;
3005 
3006 	ufshcd_comp_scsi_upiu(hba, lrbp);
3007 
3008 	err = ufshcd_map_sg(hba, lrbp);
3009 	if (err) {
3010 		ufshcd_release(hba);
3011 		goto out;
3012 	}
3013 
3014 	if (hba->mcq_enabled)
3015 		hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(cmd));
3016 
3017 	ufshcd_send_command(hba, tag, hwq);
3018 
3019 out:
3020 	if (ufs_trigger_eh(hba)) {
3021 		unsigned long flags;
3022 
3023 		spin_lock_irqsave(hba->host->host_lock, flags);
3024 		ufshcd_schedule_eh_work(hba);
3025 		spin_unlock_irqrestore(hba->host->host_lock, flags);
3026 	}
3027 
3028 	return err;
3029 }
3030 
3031 static void ufshcd_setup_dev_cmd(struct ufs_hba *hba, struct ufshcd_lrb *lrbp,
3032 			     enum dev_cmd_type cmd_type, u8 lun, int tag)
3033 {
3034 	lrbp->cmd = NULL;
3035 	lrbp->task_tag = tag;
3036 	lrbp->lun = lun;
3037 	lrbp->intr_cmd = true; /* No interrupt aggregation */
3038 	ufshcd_prepare_lrbp_crypto(NULL, lrbp);
3039 	hba->dev_cmd.type = cmd_type;
3040 }
3041 
3042 static int ufshcd_compose_dev_cmd(struct ufs_hba *hba,
3043 		struct ufshcd_lrb *lrbp, enum dev_cmd_type cmd_type, int tag)
3044 {
3045 	ufshcd_setup_dev_cmd(hba, lrbp, cmd_type, 0, tag);
3046 
3047 	return ufshcd_compose_devman_upiu(hba, lrbp);
3048 }
3049 
3050 /*
3051  * Check with the block layer if the command is inflight
3052  * @cmd: command to check.
3053  *
3054  * Return: true if command is inflight; false if not.
3055  */
3056 bool ufshcd_cmd_inflight(struct scsi_cmnd *cmd)
3057 {
3058 	return cmd && blk_mq_rq_state(scsi_cmd_to_rq(cmd)) == MQ_RQ_IN_FLIGHT;
3059 }
3060 
3061 /*
3062  * Clear the pending command in the controller and wait until
3063  * the controller confirms that the command has been cleared.
3064  * @hba: per adapter instance
3065  * @task_tag: The tag number of the command to be cleared.
3066  */
3067 static int ufshcd_clear_cmd(struct ufs_hba *hba, u32 task_tag)
3068 {
3069 	u32 mask;
3070 	unsigned long flags;
3071 	int err;
3072 
3073 	if (hba->mcq_enabled) {
3074 		/*
3075 		 * MCQ mode. Clean up the MCQ resources similar to
3076 		 * what the ufshcd_utrl_clear() does for SDB mode.
3077 		 */
3078 		err = ufshcd_mcq_sq_cleanup(hba, task_tag);
3079 		if (err) {
3080 			dev_err(hba->dev, "%s: failed tag=%d. err=%d\n",
3081 				__func__, task_tag, err);
3082 			return err;
3083 		}
3084 		return 0;
3085 	}
3086 
3087 	mask = 1U << task_tag;
3088 
3089 	/* clear outstanding transaction before retry */
3090 	spin_lock_irqsave(hba->host->host_lock, flags);
3091 	ufshcd_utrl_clear(hba, mask);
3092 	spin_unlock_irqrestore(hba->host->host_lock, flags);
3093 
3094 	/*
3095 	 * wait for h/w to clear corresponding bit in door-bell.
3096 	 * max. wait is 1 sec.
3097 	 */
3098 	return ufshcd_wait_for_register(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL,
3099 					mask, ~mask, 1000, 1000);
3100 }
3101 
3102 /**
3103  * ufshcd_dev_cmd_completion() - handles device management command responses
3104  * @hba: per adapter instance
3105  * @lrbp: pointer to local reference block
3106  *
3107  * Return: 0 upon success; < 0 upon failure.
3108  */
3109 static int
3110 ufshcd_dev_cmd_completion(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
3111 {
3112 	enum upiu_response_transaction resp;
3113 	int err = 0;
3114 
3115 	hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
3116 	resp = ufshcd_get_req_rsp(lrbp->ucd_rsp_ptr);
3117 
3118 	switch (resp) {
3119 	case UPIU_TRANSACTION_NOP_IN:
3120 		if (hba->dev_cmd.type != DEV_CMD_TYPE_NOP) {
3121 			err = -EINVAL;
3122 			dev_err(hba->dev, "%s: unexpected response %x\n",
3123 					__func__, resp);
3124 		}
3125 		break;
3126 	case UPIU_TRANSACTION_QUERY_RSP: {
3127 		u8 response = lrbp->ucd_rsp_ptr->header.response;
3128 
3129 		if (response == 0)
3130 			err = ufshcd_copy_query_response(hba, lrbp);
3131 		break;
3132 	}
3133 	case UPIU_TRANSACTION_REJECT_UPIU:
3134 		/* TODO: handle Reject UPIU Response */
3135 		err = -EPERM;
3136 		dev_err(hba->dev, "%s: Reject UPIU not fully implemented\n",
3137 				__func__);
3138 		break;
3139 	case UPIU_TRANSACTION_RESPONSE:
3140 		if (hba->dev_cmd.type != DEV_CMD_TYPE_RPMB) {
3141 			err = -EINVAL;
3142 			dev_err(hba->dev, "%s: unexpected response %x\n", __func__, resp);
3143 		}
3144 		break;
3145 	default:
3146 		err = -EINVAL;
3147 		dev_err(hba->dev, "%s: Invalid device management cmd response: %x\n",
3148 				__func__, resp);
3149 		break;
3150 	}
3151 
3152 	return err;
3153 }
3154 
3155 static int ufshcd_wait_for_dev_cmd(struct ufs_hba *hba,
3156 		struct ufshcd_lrb *lrbp, int max_timeout)
3157 {
3158 	unsigned long time_left = msecs_to_jiffies(max_timeout);
3159 	unsigned long flags;
3160 	bool pending;
3161 	int err;
3162 
3163 retry:
3164 	time_left = wait_for_completion_timeout(hba->dev_cmd.complete,
3165 						time_left);
3166 
3167 	if (likely(time_left)) {
3168 		/*
3169 		 * The completion handler called complete() and the caller of
3170 		 * this function still owns the @lrbp tag so the code below does
3171 		 * not trigger any race conditions.
3172 		 */
3173 		hba->dev_cmd.complete = NULL;
3174 		err = ufshcd_get_tr_ocs(lrbp, NULL);
3175 		if (!err)
3176 			err = ufshcd_dev_cmd_completion(hba, lrbp);
3177 	} else {
3178 		err = -ETIMEDOUT;
3179 		dev_dbg(hba->dev, "%s: dev_cmd request timedout, tag %d\n",
3180 			__func__, lrbp->task_tag);
3181 
3182 		/* MCQ mode */
3183 		if (hba->mcq_enabled) {
3184 			/* successfully cleared the command, retry if needed */
3185 			if (ufshcd_clear_cmd(hba, lrbp->task_tag) == 0)
3186 				err = -EAGAIN;
3187 			hba->dev_cmd.complete = NULL;
3188 			return err;
3189 		}
3190 
3191 		/* SDB mode */
3192 		if (ufshcd_clear_cmd(hba, lrbp->task_tag) == 0) {
3193 			/* successfully cleared the command, retry if needed */
3194 			err = -EAGAIN;
3195 			/*
3196 			 * Since clearing the command succeeded we also need to
3197 			 * clear the task tag bit from the outstanding_reqs
3198 			 * variable.
3199 			 */
3200 			spin_lock_irqsave(&hba->outstanding_lock, flags);
3201 			pending = test_bit(lrbp->task_tag,
3202 					   &hba->outstanding_reqs);
3203 			if (pending) {
3204 				hba->dev_cmd.complete = NULL;
3205 				__clear_bit(lrbp->task_tag,
3206 					    &hba->outstanding_reqs);
3207 			}
3208 			spin_unlock_irqrestore(&hba->outstanding_lock, flags);
3209 
3210 			if (!pending) {
3211 				/*
3212 				 * The completion handler ran while we tried to
3213 				 * clear the command.
3214 				 */
3215 				time_left = 1;
3216 				goto retry;
3217 			}
3218 		} else {
3219 			dev_err(hba->dev, "%s: failed to clear tag %d\n",
3220 				__func__, lrbp->task_tag);
3221 
3222 			spin_lock_irqsave(&hba->outstanding_lock, flags);
3223 			pending = test_bit(lrbp->task_tag,
3224 					   &hba->outstanding_reqs);
3225 			if (pending)
3226 				hba->dev_cmd.complete = NULL;
3227 			spin_unlock_irqrestore(&hba->outstanding_lock, flags);
3228 
3229 			if (!pending) {
3230 				/*
3231 				 * The completion handler ran while we tried to
3232 				 * clear the command.
3233 				 */
3234 				time_left = 1;
3235 				goto retry;
3236 			}
3237 		}
3238 	}
3239 
3240 	return err;
3241 }
3242 
3243 static void ufshcd_dev_man_lock(struct ufs_hba *hba)
3244 {
3245 	ufshcd_hold(hba);
3246 	mutex_lock(&hba->dev_cmd.lock);
3247 	down_read(&hba->clk_scaling_lock);
3248 }
3249 
3250 static void ufshcd_dev_man_unlock(struct ufs_hba *hba)
3251 {
3252 	up_read(&hba->clk_scaling_lock);
3253 	mutex_unlock(&hba->dev_cmd.lock);
3254 	ufshcd_release(hba);
3255 }
3256 
3257 static int ufshcd_issue_dev_cmd(struct ufs_hba *hba, struct ufshcd_lrb *lrbp,
3258 			  const u32 tag, int timeout)
3259 {
3260 	DECLARE_COMPLETION_ONSTACK(wait);
3261 	int err;
3262 
3263 	hba->dev_cmd.complete = &wait;
3264 
3265 	ufshcd_add_query_upiu_trace(hba, UFS_QUERY_SEND, lrbp->ucd_req_ptr);
3266 
3267 	ufshcd_send_command(hba, tag, hba->dev_cmd_queue);
3268 	err = ufshcd_wait_for_dev_cmd(hba, lrbp, timeout);
3269 
3270 	ufshcd_add_query_upiu_trace(hba, err ? UFS_QUERY_ERR : UFS_QUERY_COMP,
3271 				    (struct utp_upiu_req *)lrbp->ucd_rsp_ptr);
3272 
3273 	return err;
3274 }
3275 
3276 /**
3277  * ufshcd_exec_dev_cmd - API for sending device management requests
3278  * @hba: UFS hba
3279  * @cmd_type: specifies the type (NOP, Query...)
3280  * @timeout: timeout in milliseconds
3281  *
3282  * Return: 0 upon success; < 0 upon failure.
3283  *
3284  * NOTE: Since there is only one available tag for device management commands,
3285  * it is expected you hold the hba->dev_cmd.lock mutex.
3286  */
3287 static int ufshcd_exec_dev_cmd(struct ufs_hba *hba,
3288 		enum dev_cmd_type cmd_type, int timeout)
3289 {
3290 	const u32 tag = hba->reserved_slot;
3291 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
3292 	int err;
3293 
3294 	/* Protects use of hba->reserved_slot. */
3295 	lockdep_assert_held(&hba->dev_cmd.lock);
3296 
3297 	err = ufshcd_compose_dev_cmd(hba, lrbp, cmd_type, tag);
3298 	if (unlikely(err))
3299 		return err;
3300 
3301 	return ufshcd_issue_dev_cmd(hba, lrbp, tag, timeout);
3302 }
3303 
3304 /**
3305  * ufshcd_init_query() - init the query response and request parameters
3306  * @hba: per-adapter instance
3307  * @request: address of the request pointer to be initialized
3308  * @response: address of the response pointer to be initialized
3309  * @opcode: operation to perform
3310  * @idn: flag idn to access
3311  * @index: LU number to access
3312  * @selector: query/flag/descriptor further identification
3313  */
3314 static inline void ufshcd_init_query(struct ufs_hba *hba,
3315 		struct ufs_query_req **request, struct ufs_query_res **response,
3316 		enum query_opcode opcode, u8 idn, u8 index, u8 selector)
3317 {
3318 	*request = &hba->dev_cmd.query.request;
3319 	*response = &hba->dev_cmd.query.response;
3320 	memset(*request, 0, sizeof(struct ufs_query_req));
3321 	memset(*response, 0, sizeof(struct ufs_query_res));
3322 	(*request)->upiu_req.opcode = opcode;
3323 	(*request)->upiu_req.idn = idn;
3324 	(*request)->upiu_req.index = index;
3325 	(*request)->upiu_req.selector = selector;
3326 }
3327 
3328 static int ufshcd_query_flag_retry(struct ufs_hba *hba,
3329 	enum query_opcode opcode, enum flag_idn idn, u8 index, bool *flag_res)
3330 {
3331 	int ret;
3332 	int retries;
3333 
3334 	for (retries = 0; retries < QUERY_REQ_RETRIES; retries++) {
3335 		ret = ufshcd_query_flag(hba, opcode, idn, index, flag_res);
3336 		if (ret)
3337 			dev_dbg(hba->dev,
3338 				"%s: failed with error %d, retries %d\n",
3339 				__func__, ret, retries);
3340 		else
3341 			break;
3342 	}
3343 
3344 	if (ret)
3345 		dev_err(hba->dev,
3346 			"%s: query flag, opcode %d, idn %d, failed with error %d after %d retries\n",
3347 			__func__, opcode, idn, ret, retries);
3348 	return ret;
3349 }
3350 
3351 /**
3352  * ufshcd_query_flag() - API function for sending flag query requests
3353  * @hba: per-adapter instance
3354  * @opcode: flag query to perform
3355  * @idn: flag idn to access
3356  * @index: flag index to access
3357  * @flag_res: the flag value after the query request completes
3358  *
3359  * Return: 0 for success, non-zero in case of failure.
3360  */
3361 int ufshcd_query_flag(struct ufs_hba *hba, enum query_opcode opcode,
3362 			enum flag_idn idn, u8 index, bool *flag_res)
3363 {
3364 	struct ufs_query_req *request = NULL;
3365 	struct ufs_query_res *response = NULL;
3366 	int err, selector = 0;
3367 	int timeout = QUERY_REQ_TIMEOUT;
3368 
3369 	BUG_ON(!hba);
3370 
3371 	ufshcd_dev_man_lock(hba);
3372 
3373 	ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3374 			selector);
3375 
3376 	switch (opcode) {
3377 	case UPIU_QUERY_OPCODE_SET_FLAG:
3378 	case UPIU_QUERY_OPCODE_CLEAR_FLAG:
3379 	case UPIU_QUERY_OPCODE_TOGGLE_FLAG:
3380 		request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3381 		break;
3382 	case UPIU_QUERY_OPCODE_READ_FLAG:
3383 		request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3384 		if (!flag_res) {
3385 			/* No dummy reads */
3386 			dev_err(hba->dev, "%s: Invalid argument for read request\n",
3387 					__func__);
3388 			err = -EINVAL;
3389 			goto out_unlock;
3390 		}
3391 		break;
3392 	default:
3393 		dev_err(hba->dev,
3394 			"%s: Expected query flag opcode but got = %d\n",
3395 			__func__, opcode);
3396 		err = -EINVAL;
3397 		goto out_unlock;
3398 	}
3399 
3400 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, timeout);
3401 
3402 	if (err) {
3403 		dev_err(hba->dev,
3404 			"%s: Sending flag query for idn %d failed, err = %d\n",
3405 			__func__, idn, err);
3406 		goto out_unlock;
3407 	}
3408 
3409 	if (flag_res)
3410 		*flag_res = (be32_to_cpu(response->upiu_res.value) &
3411 				MASK_QUERY_UPIU_FLAG_LOC) & 0x1;
3412 
3413 out_unlock:
3414 	ufshcd_dev_man_unlock(hba);
3415 	return err;
3416 }
3417 
3418 /**
3419  * ufshcd_query_attr - API function for sending attribute requests
3420  * @hba: per-adapter instance
3421  * @opcode: attribute opcode
3422  * @idn: attribute idn to access
3423  * @index: index field
3424  * @selector: selector field
3425  * @attr_val: the attribute value after the query request completes
3426  *
3427  * Return: 0 for success, non-zero in case of failure.
3428 */
3429 int ufshcd_query_attr(struct ufs_hba *hba, enum query_opcode opcode,
3430 		      enum attr_idn idn, u8 index, u8 selector, u32 *attr_val)
3431 {
3432 	struct ufs_query_req *request = NULL;
3433 	struct ufs_query_res *response = NULL;
3434 	int err;
3435 
3436 	BUG_ON(!hba);
3437 
3438 	if (!attr_val) {
3439 		dev_err(hba->dev, "%s: attribute value required for opcode 0x%x\n",
3440 				__func__, opcode);
3441 		return -EINVAL;
3442 	}
3443 
3444 	ufshcd_dev_man_lock(hba);
3445 
3446 	ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3447 			selector);
3448 
3449 	switch (opcode) {
3450 	case UPIU_QUERY_OPCODE_WRITE_ATTR:
3451 		request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3452 		request->upiu_req.value = cpu_to_be32(*attr_val);
3453 		break;
3454 	case UPIU_QUERY_OPCODE_READ_ATTR:
3455 		request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3456 		break;
3457 	default:
3458 		dev_err(hba->dev, "%s: Expected query attr opcode but got = 0x%.2x\n",
3459 				__func__, opcode);
3460 		err = -EINVAL;
3461 		goto out_unlock;
3462 	}
3463 
3464 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT);
3465 
3466 	if (err) {
3467 		dev_err(hba->dev, "%s: opcode 0x%.2x for idn %d failed, index %d, err = %d\n",
3468 				__func__, opcode, idn, index, err);
3469 		goto out_unlock;
3470 	}
3471 
3472 	*attr_val = be32_to_cpu(response->upiu_res.value);
3473 
3474 out_unlock:
3475 	ufshcd_dev_man_unlock(hba);
3476 	return err;
3477 }
3478 
3479 /**
3480  * ufshcd_query_attr_retry() - API function for sending query
3481  * attribute with retries
3482  * @hba: per-adapter instance
3483  * @opcode: attribute opcode
3484  * @idn: attribute idn to access
3485  * @index: index field
3486  * @selector: selector field
3487  * @attr_val: the attribute value after the query request
3488  * completes
3489  *
3490  * Return: 0 for success, non-zero in case of failure.
3491 */
3492 int ufshcd_query_attr_retry(struct ufs_hba *hba,
3493 	enum query_opcode opcode, enum attr_idn idn, u8 index, u8 selector,
3494 	u32 *attr_val)
3495 {
3496 	int ret = 0;
3497 	u32 retries;
3498 
3499 	for (retries = QUERY_REQ_RETRIES; retries > 0; retries--) {
3500 		ret = ufshcd_query_attr(hba, opcode, idn, index,
3501 						selector, attr_val);
3502 		if (ret)
3503 			dev_dbg(hba->dev, "%s: failed with error %d, retries %d\n",
3504 				__func__, ret, retries);
3505 		else
3506 			break;
3507 	}
3508 
3509 	if (ret)
3510 		dev_err(hba->dev,
3511 			"%s: query attribute, idn %d, failed with error %d after %d retries\n",
3512 			__func__, idn, ret, QUERY_REQ_RETRIES);
3513 	return ret;
3514 }
3515 
3516 static int __ufshcd_query_descriptor(struct ufs_hba *hba,
3517 			enum query_opcode opcode, enum desc_idn idn, u8 index,
3518 			u8 selector, u8 *desc_buf, int *buf_len)
3519 {
3520 	struct ufs_query_req *request = NULL;
3521 	struct ufs_query_res *response = NULL;
3522 	int err;
3523 
3524 	BUG_ON(!hba);
3525 
3526 	if (!desc_buf) {
3527 		dev_err(hba->dev, "%s: descriptor buffer required for opcode 0x%x\n",
3528 				__func__, opcode);
3529 		return -EINVAL;
3530 	}
3531 
3532 	if (*buf_len < QUERY_DESC_MIN_SIZE || *buf_len > QUERY_DESC_MAX_SIZE) {
3533 		dev_err(hba->dev, "%s: descriptor buffer size (%d) is out of range\n",
3534 				__func__, *buf_len);
3535 		return -EINVAL;
3536 	}
3537 
3538 	ufshcd_dev_man_lock(hba);
3539 
3540 	ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3541 			selector);
3542 	hba->dev_cmd.query.descriptor = desc_buf;
3543 	request->upiu_req.length = cpu_to_be16(*buf_len);
3544 
3545 	switch (opcode) {
3546 	case UPIU_QUERY_OPCODE_WRITE_DESC:
3547 		request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3548 		break;
3549 	case UPIU_QUERY_OPCODE_READ_DESC:
3550 		request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3551 		break;
3552 	default:
3553 		dev_err(hba->dev,
3554 				"%s: Expected query descriptor opcode but got = 0x%.2x\n",
3555 				__func__, opcode);
3556 		err = -EINVAL;
3557 		goto out_unlock;
3558 	}
3559 
3560 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT);
3561 
3562 	if (err) {
3563 		dev_err(hba->dev, "%s: opcode 0x%.2x for idn %d failed, index %d, err = %d\n",
3564 				__func__, opcode, idn, index, err);
3565 		goto out_unlock;
3566 	}
3567 
3568 	*buf_len = be16_to_cpu(response->upiu_res.length);
3569 
3570 out_unlock:
3571 	hba->dev_cmd.query.descriptor = NULL;
3572 	ufshcd_dev_man_unlock(hba);
3573 	return err;
3574 }
3575 
3576 /**
3577  * ufshcd_query_descriptor_retry - API function for sending descriptor requests
3578  * @hba: per-adapter instance
3579  * @opcode: attribute opcode
3580  * @idn: attribute idn to access
3581  * @index: index field
3582  * @selector: selector field
3583  * @desc_buf: the buffer that contains the descriptor
3584  * @buf_len: length parameter passed to the device
3585  *
3586  * The buf_len parameter will contain, on return, the length parameter
3587  * received on the response.
3588  *
3589  * Return: 0 for success, non-zero in case of failure.
3590  */
3591 int ufshcd_query_descriptor_retry(struct ufs_hba *hba,
3592 				  enum query_opcode opcode,
3593 				  enum desc_idn idn, u8 index,
3594 				  u8 selector,
3595 				  u8 *desc_buf, int *buf_len)
3596 {
3597 	int err;
3598 	int retries;
3599 
3600 	for (retries = QUERY_REQ_RETRIES; retries > 0; retries--) {
3601 		err = __ufshcd_query_descriptor(hba, opcode, idn, index,
3602 						selector, desc_buf, buf_len);
3603 		if (!err || err == -EINVAL)
3604 			break;
3605 	}
3606 
3607 	return err;
3608 }
3609 
3610 /**
3611  * ufshcd_read_desc_param - read the specified descriptor parameter
3612  * @hba: Pointer to adapter instance
3613  * @desc_id: descriptor idn value
3614  * @desc_index: descriptor index
3615  * @param_offset: offset of the parameter to read
3616  * @param_read_buf: pointer to buffer where parameter would be read
3617  * @param_size: sizeof(param_read_buf)
3618  *
3619  * Return: 0 in case of success, non-zero otherwise.
3620  */
3621 int ufshcd_read_desc_param(struct ufs_hba *hba,
3622 			   enum desc_idn desc_id,
3623 			   int desc_index,
3624 			   u8 param_offset,
3625 			   u8 *param_read_buf,
3626 			   u8 param_size)
3627 {
3628 	int ret;
3629 	u8 *desc_buf;
3630 	int buff_len = QUERY_DESC_MAX_SIZE;
3631 	bool is_kmalloc = true;
3632 
3633 	/* Safety check */
3634 	if (desc_id >= QUERY_DESC_IDN_MAX || !param_size)
3635 		return -EINVAL;
3636 
3637 	/* Check whether we need temp memory */
3638 	if (param_offset != 0 || param_size < buff_len) {
3639 		desc_buf = kzalloc(buff_len, GFP_KERNEL);
3640 		if (!desc_buf)
3641 			return -ENOMEM;
3642 	} else {
3643 		desc_buf = param_read_buf;
3644 		is_kmalloc = false;
3645 	}
3646 
3647 	/* Request for full descriptor */
3648 	ret = ufshcd_query_descriptor_retry(hba, UPIU_QUERY_OPCODE_READ_DESC,
3649 					    desc_id, desc_index, 0,
3650 					    desc_buf, &buff_len);
3651 	if (ret) {
3652 		dev_err(hba->dev, "%s: Failed reading descriptor. desc_id %d, desc_index %d, param_offset %d, ret %d\n",
3653 			__func__, desc_id, desc_index, param_offset, ret);
3654 		goto out;
3655 	}
3656 
3657 	/* Update descriptor length */
3658 	buff_len = desc_buf[QUERY_DESC_LENGTH_OFFSET];
3659 
3660 	if (param_offset >= buff_len) {
3661 		dev_err(hba->dev, "%s: Invalid offset 0x%x in descriptor IDN 0x%x, length 0x%x\n",
3662 			__func__, param_offset, desc_id, buff_len);
3663 		ret = -EINVAL;
3664 		goto out;
3665 	}
3666 
3667 	/* Sanity check */
3668 	if (desc_buf[QUERY_DESC_DESC_TYPE_OFFSET] != desc_id) {
3669 		dev_err(hba->dev, "%s: invalid desc_id %d in descriptor header\n",
3670 			__func__, desc_buf[QUERY_DESC_DESC_TYPE_OFFSET]);
3671 		ret = -EINVAL;
3672 		goto out;
3673 	}
3674 
3675 	if (is_kmalloc) {
3676 		/* Make sure we don't copy more data than available */
3677 		if (param_offset >= buff_len)
3678 			ret = -EINVAL;
3679 		else
3680 			memcpy(param_read_buf, &desc_buf[param_offset],
3681 			       min_t(u32, param_size, buff_len - param_offset));
3682 	}
3683 out:
3684 	if (is_kmalloc)
3685 		kfree(desc_buf);
3686 	return ret;
3687 }
3688 
3689 /**
3690  * struct uc_string_id - unicode string
3691  *
3692  * @len: size of this descriptor inclusive
3693  * @type: descriptor type
3694  * @uc: unicode string character
3695  */
3696 struct uc_string_id {
3697 	u8 len;
3698 	u8 type;
3699 	wchar_t uc[];
3700 } __packed;
3701 
3702 /* replace non-printable or non-ASCII characters with spaces */
3703 static inline char ufshcd_remove_non_printable(u8 ch)
3704 {
3705 	return (ch >= 0x20 && ch <= 0x7e) ? ch : ' ';
3706 }
3707 
3708 /**
3709  * ufshcd_read_string_desc - read string descriptor
3710  * @hba: pointer to adapter instance
3711  * @desc_index: descriptor index
3712  * @buf: pointer to buffer where descriptor would be read,
3713  *       the caller should free the memory.
3714  * @ascii: if true convert from unicode to ascii characters
3715  *         null terminated string.
3716  *
3717  * Return:
3718  * *      string size on success.
3719  * *      -ENOMEM: on allocation failure
3720  * *      -EINVAL: on a wrong parameter
3721  */
3722 int ufshcd_read_string_desc(struct ufs_hba *hba, u8 desc_index,
3723 			    u8 **buf, bool ascii)
3724 {
3725 	struct uc_string_id *uc_str;
3726 	u8 *str;
3727 	int ret;
3728 
3729 	if (!buf)
3730 		return -EINVAL;
3731 
3732 	uc_str = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
3733 	if (!uc_str)
3734 		return -ENOMEM;
3735 
3736 	ret = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_STRING, desc_index, 0,
3737 				     (u8 *)uc_str, QUERY_DESC_MAX_SIZE);
3738 	if (ret < 0) {
3739 		dev_err(hba->dev, "Reading String Desc failed after %d retries. err = %d\n",
3740 			QUERY_REQ_RETRIES, ret);
3741 		str = NULL;
3742 		goto out;
3743 	}
3744 
3745 	if (uc_str->len <= QUERY_DESC_HDR_SIZE) {
3746 		dev_dbg(hba->dev, "String Desc is of zero length\n");
3747 		str = NULL;
3748 		ret = 0;
3749 		goto out;
3750 	}
3751 
3752 	if (ascii) {
3753 		ssize_t ascii_len;
3754 		int i;
3755 		/* remove header and divide by 2 to move from UTF16 to UTF8 */
3756 		ascii_len = (uc_str->len - QUERY_DESC_HDR_SIZE) / 2 + 1;
3757 		str = kzalloc(ascii_len, GFP_KERNEL);
3758 		if (!str) {
3759 			ret = -ENOMEM;
3760 			goto out;
3761 		}
3762 
3763 		/*
3764 		 * the descriptor contains string in UTF16 format
3765 		 * we need to convert to utf-8 so it can be displayed
3766 		 */
3767 		ret = utf16s_to_utf8s(uc_str->uc,
3768 				      uc_str->len - QUERY_DESC_HDR_SIZE,
3769 				      UTF16_BIG_ENDIAN, str, ascii_len - 1);
3770 
3771 		/* replace non-printable or non-ASCII characters with spaces */
3772 		for (i = 0; i < ret; i++)
3773 			str[i] = ufshcd_remove_non_printable(str[i]);
3774 
3775 		str[ret++] = '\0';
3776 
3777 	} else {
3778 		str = kmemdup(uc_str, uc_str->len, GFP_KERNEL);
3779 		if (!str) {
3780 			ret = -ENOMEM;
3781 			goto out;
3782 		}
3783 		ret = uc_str->len;
3784 	}
3785 out:
3786 	*buf = str;
3787 	kfree(uc_str);
3788 	return ret;
3789 }
3790 
3791 /**
3792  * ufshcd_read_unit_desc_param - read the specified unit descriptor parameter
3793  * @hba: Pointer to adapter instance
3794  * @lun: lun id
3795  * @param_offset: offset of the parameter to read
3796  * @param_read_buf: pointer to buffer where parameter would be read
3797  * @param_size: sizeof(param_read_buf)
3798  *
3799  * Return: 0 in case of success, non-zero otherwise.
3800  */
3801 static inline int ufshcd_read_unit_desc_param(struct ufs_hba *hba,
3802 					      int lun,
3803 					      enum unit_desc_param param_offset,
3804 					      u8 *param_read_buf,
3805 					      u32 param_size)
3806 {
3807 	/*
3808 	 * Unit descriptors are only available for general purpose LUs (LUN id
3809 	 * from 0 to 7) and RPMB Well known LU.
3810 	 */
3811 	if (!ufs_is_valid_unit_desc_lun(&hba->dev_info, lun))
3812 		return -EOPNOTSUPP;
3813 
3814 	return ufshcd_read_desc_param(hba, QUERY_DESC_IDN_UNIT, lun,
3815 				      param_offset, param_read_buf, param_size);
3816 }
3817 
3818 static int ufshcd_get_ref_clk_gating_wait(struct ufs_hba *hba)
3819 {
3820 	int err = 0;
3821 	u32 gating_wait = UFSHCD_REF_CLK_GATING_WAIT_US;
3822 
3823 	if (hba->dev_info.wspecversion >= 0x300) {
3824 		err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
3825 				QUERY_ATTR_IDN_REF_CLK_GATING_WAIT_TIME, 0, 0,
3826 				&gating_wait);
3827 		if (err)
3828 			dev_err(hba->dev, "Failed reading bRefClkGatingWait. err = %d, use default %uus\n",
3829 					 err, gating_wait);
3830 
3831 		if (gating_wait == 0) {
3832 			gating_wait = UFSHCD_REF_CLK_GATING_WAIT_US;
3833 			dev_err(hba->dev, "Undefined ref clk gating wait time, use default %uus\n",
3834 					 gating_wait);
3835 		}
3836 
3837 		hba->dev_info.clk_gating_wait_us = gating_wait;
3838 	}
3839 
3840 	return err;
3841 }
3842 
3843 /**
3844  * ufshcd_memory_alloc - allocate memory for host memory space data structures
3845  * @hba: per adapter instance
3846  *
3847  * 1. Allocate DMA memory for Command Descriptor array
3848  *	Each command descriptor consist of Command UPIU, Response UPIU and PRDT
3849  * 2. Allocate DMA memory for UTP Transfer Request Descriptor List (UTRDL).
3850  * 3. Allocate DMA memory for UTP Task Management Request Descriptor List
3851  *	(UTMRDL)
3852  * 4. Allocate memory for local reference block(lrb).
3853  *
3854  * Return: 0 for success, non-zero in case of failure.
3855  */
3856 static int ufshcd_memory_alloc(struct ufs_hba *hba)
3857 {
3858 	size_t utmrdl_size, utrdl_size, ucdl_size;
3859 
3860 	/* Allocate memory for UTP command descriptors */
3861 	ucdl_size = ufshcd_get_ucd_size(hba) * hba->nutrs;
3862 	hba->ucdl_base_addr = dmam_alloc_coherent(hba->dev,
3863 						  ucdl_size,
3864 						  &hba->ucdl_dma_addr,
3865 						  GFP_KERNEL);
3866 
3867 	/*
3868 	 * UFSHCI requires UTP command descriptor to be 128 byte aligned.
3869 	 */
3870 	if (!hba->ucdl_base_addr ||
3871 	    WARN_ON(hba->ucdl_dma_addr & (128 - 1))) {
3872 		dev_err(hba->dev,
3873 			"Command Descriptor Memory allocation failed\n");
3874 		goto out;
3875 	}
3876 
3877 	/*
3878 	 * Allocate memory for UTP Transfer descriptors
3879 	 * UFSHCI requires 1KB alignment of UTRD
3880 	 */
3881 	utrdl_size = (sizeof(struct utp_transfer_req_desc) * hba->nutrs);
3882 	hba->utrdl_base_addr = dmam_alloc_coherent(hba->dev,
3883 						   utrdl_size,
3884 						   &hba->utrdl_dma_addr,
3885 						   GFP_KERNEL);
3886 	if (!hba->utrdl_base_addr ||
3887 	    WARN_ON(hba->utrdl_dma_addr & (SZ_1K - 1))) {
3888 		dev_err(hba->dev,
3889 			"Transfer Descriptor Memory allocation failed\n");
3890 		goto out;
3891 	}
3892 
3893 	/*
3894 	 * Skip utmrdl allocation; it may have been
3895 	 * allocated during first pass and not released during
3896 	 * MCQ memory allocation.
3897 	 * See ufshcd_release_sdb_queue() and ufshcd_config_mcq()
3898 	 */
3899 	if (hba->utmrdl_base_addr)
3900 		goto skip_utmrdl;
3901 	/*
3902 	 * Allocate memory for UTP Task Management descriptors
3903 	 * UFSHCI requires 1KB alignment of UTMRD
3904 	 */
3905 	utmrdl_size = sizeof(struct utp_task_req_desc) * hba->nutmrs;
3906 	hba->utmrdl_base_addr = dmam_alloc_coherent(hba->dev,
3907 						    utmrdl_size,
3908 						    &hba->utmrdl_dma_addr,
3909 						    GFP_KERNEL);
3910 	if (!hba->utmrdl_base_addr ||
3911 	    WARN_ON(hba->utmrdl_dma_addr & (SZ_1K - 1))) {
3912 		dev_err(hba->dev,
3913 		"Task Management Descriptor Memory allocation failed\n");
3914 		goto out;
3915 	}
3916 
3917 skip_utmrdl:
3918 	/* Allocate memory for local reference block */
3919 	hba->lrb = devm_kcalloc(hba->dev,
3920 				hba->nutrs, sizeof(struct ufshcd_lrb),
3921 				GFP_KERNEL);
3922 	if (!hba->lrb) {
3923 		dev_err(hba->dev, "LRB Memory allocation failed\n");
3924 		goto out;
3925 	}
3926 	return 0;
3927 out:
3928 	return -ENOMEM;
3929 }
3930 
3931 /**
3932  * ufshcd_host_memory_configure - configure local reference block with
3933  *				memory offsets
3934  * @hba: per adapter instance
3935  *
3936  * Configure Host memory space
3937  * 1. Update Corresponding UTRD.UCDBA and UTRD.UCDBAU with UCD DMA
3938  * address.
3939  * 2. Update each UTRD with Response UPIU offset, Response UPIU length
3940  * and PRDT offset.
3941  * 3. Save the corresponding addresses of UTRD, UCD.CMD, UCD.RSP and UCD.PRDT
3942  * into local reference block.
3943  */
3944 static void ufshcd_host_memory_configure(struct ufs_hba *hba)
3945 {
3946 	struct utp_transfer_req_desc *utrdlp;
3947 	dma_addr_t cmd_desc_dma_addr;
3948 	dma_addr_t cmd_desc_element_addr;
3949 	u16 response_offset;
3950 	u16 prdt_offset;
3951 	int cmd_desc_size;
3952 	int i;
3953 
3954 	utrdlp = hba->utrdl_base_addr;
3955 
3956 	response_offset =
3957 		offsetof(struct utp_transfer_cmd_desc, response_upiu);
3958 	prdt_offset =
3959 		offsetof(struct utp_transfer_cmd_desc, prd_table);
3960 
3961 	cmd_desc_size = ufshcd_get_ucd_size(hba);
3962 	cmd_desc_dma_addr = hba->ucdl_dma_addr;
3963 
3964 	for (i = 0; i < hba->nutrs; i++) {
3965 		/* Configure UTRD with command descriptor base address */
3966 		cmd_desc_element_addr =
3967 				(cmd_desc_dma_addr + (cmd_desc_size * i));
3968 		utrdlp[i].command_desc_base_addr =
3969 				cpu_to_le64(cmd_desc_element_addr);
3970 
3971 		/* Response upiu and prdt offset should be in double words */
3972 		if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN) {
3973 			utrdlp[i].response_upiu_offset =
3974 				cpu_to_le16(response_offset);
3975 			utrdlp[i].prd_table_offset =
3976 				cpu_to_le16(prdt_offset);
3977 			utrdlp[i].response_upiu_length =
3978 				cpu_to_le16(ALIGNED_UPIU_SIZE);
3979 		} else {
3980 			utrdlp[i].response_upiu_offset =
3981 				cpu_to_le16(response_offset >> 2);
3982 			utrdlp[i].prd_table_offset =
3983 				cpu_to_le16(prdt_offset >> 2);
3984 			utrdlp[i].response_upiu_length =
3985 				cpu_to_le16(ALIGNED_UPIU_SIZE >> 2);
3986 		}
3987 
3988 		ufshcd_init_lrb(hba, &hba->lrb[i], i);
3989 	}
3990 }
3991 
3992 /**
3993  * ufshcd_dme_link_startup - Notify Unipro to perform link startup
3994  * @hba: per adapter instance
3995  *
3996  * UIC_CMD_DME_LINK_STARTUP command must be issued to Unipro layer,
3997  * in order to initialize the Unipro link startup procedure.
3998  * Once the Unipro links are up, the device connected to the controller
3999  * is detected.
4000  *
4001  * Return: 0 on success, non-zero value on failure.
4002  */
4003 static int ufshcd_dme_link_startup(struct ufs_hba *hba)
4004 {
4005 	struct uic_command uic_cmd = {
4006 		.command = UIC_CMD_DME_LINK_STARTUP,
4007 	};
4008 	int ret;
4009 
4010 	ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4011 	if (ret)
4012 		dev_dbg(hba->dev,
4013 			"dme-link-startup: error code %d\n", ret);
4014 	return ret;
4015 }
4016 /**
4017  * ufshcd_dme_reset - UIC command for DME_RESET
4018  * @hba: per adapter instance
4019  *
4020  * DME_RESET command is issued in order to reset UniPro stack.
4021  * This function now deals with cold reset.
4022  *
4023  * Return: 0 on success, non-zero value on failure.
4024  */
4025 static int ufshcd_dme_reset(struct ufs_hba *hba)
4026 {
4027 	struct uic_command uic_cmd = {
4028 		.command = UIC_CMD_DME_RESET,
4029 	};
4030 	int ret;
4031 
4032 	ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4033 	if (ret)
4034 		dev_err(hba->dev,
4035 			"dme-reset: error code %d\n", ret);
4036 
4037 	return ret;
4038 }
4039 
4040 int ufshcd_dme_configure_adapt(struct ufs_hba *hba,
4041 			       int agreed_gear,
4042 			       int adapt_val)
4043 {
4044 	int ret;
4045 
4046 	if (agreed_gear < UFS_HS_G4)
4047 		adapt_val = PA_NO_ADAPT;
4048 
4049 	ret = ufshcd_dme_set(hba,
4050 			     UIC_ARG_MIB(PA_TXHSADAPTTYPE),
4051 			     adapt_val);
4052 	return ret;
4053 }
4054 EXPORT_SYMBOL_GPL(ufshcd_dme_configure_adapt);
4055 
4056 /**
4057  * ufshcd_dme_enable - UIC command for DME_ENABLE
4058  * @hba: per adapter instance
4059  *
4060  * DME_ENABLE command is issued in order to enable UniPro stack.
4061  *
4062  * Return: 0 on success, non-zero value on failure.
4063  */
4064 static int ufshcd_dme_enable(struct ufs_hba *hba)
4065 {
4066 	struct uic_command uic_cmd = {
4067 		.command = UIC_CMD_DME_ENABLE,
4068 	};
4069 	int ret;
4070 
4071 	ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4072 	if (ret)
4073 		dev_err(hba->dev,
4074 			"dme-enable: error code %d\n", ret);
4075 
4076 	return ret;
4077 }
4078 
4079 static inline void ufshcd_add_delay_before_dme_cmd(struct ufs_hba *hba)
4080 {
4081 	#define MIN_DELAY_BEFORE_DME_CMDS_US	1000
4082 	unsigned long min_sleep_time_us;
4083 
4084 	if (!(hba->quirks & UFSHCD_QUIRK_DELAY_BEFORE_DME_CMDS))
4085 		return;
4086 
4087 	/*
4088 	 * last_dme_cmd_tstamp will be 0 only for 1st call to
4089 	 * this function
4090 	 */
4091 	if (unlikely(!ktime_to_us(hba->last_dme_cmd_tstamp))) {
4092 		min_sleep_time_us = MIN_DELAY_BEFORE_DME_CMDS_US;
4093 	} else {
4094 		unsigned long delta =
4095 			(unsigned long) ktime_to_us(
4096 				ktime_sub(ktime_get(),
4097 				hba->last_dme_cmd_tstamp));
4098 
4099 		if (delta < MIN_DELAY_BEFORE_DME_CMDS_US)
4100 			min_sleep_time_us =
4101 				MIN_DELAY_BEFORE_DME_CMDS_US - delta;
4102 		else
4103 			min_sleep_time_us = 0; /* no more delay required */
4104 	}
4105 
4106 	if (min_sleep_time_us > 0) {
4107 		/* allow sleep for extra 50us if needed */
4108 		usleep_range(min_sleep_time_us, min_sleep_time_us + 50);
4109 	}
4110 
4111 	/* update the last_dme_cmd_tstamp */
4112 	hba->last_dme_cmd_tstamp = ktime_get();
4113 }
4114 
4115 /**
4116  * ufshcd_dme_set_attr - UIC command for DME_SET, DME_PEER_SET
4117  * @hba: per adapter instance
4118  * @attr_sel: uic command argument1
4119  * @attr_set: attribute set type as uic command argument2
4120  * @mib_val: setting value as uic command argument3
4121  * @peer: indicate whether peer or local
4122  *
4123  * Return: 0 on success, non-zero value on failure.
4124  */
4125 int ufshcd_dme_set_attr(struct ufs_hba *hba, u32 attr_sel,
4126 			u8 attr_set, u32 mib_val, u8 peer)
4127 {
4128 	struct uic_command uic_cmd = {
4129 		.command = peer ? UIC_CMD_DME_PEER_SET : UIC_CMD_DME_SET,
4130 		.argument1 = attr_sel,
4131 		.argument2 = UIC_ARG_ATTR_TYPE(attr_set),
4132 		.argument3 = mib_val,
4133 	};
4134 	static const char *const action[] = {
4135 		"dme-set",
4136 		"dme-peer-set"
4137 	};
4138 	const char *set = action[!!peer];
4139 	int ret;
4140 	int retries = UFS_UIC_COMMAND_RETRIES;
4141 
4142 	do {
4143 		/* for peer attributes we retry upon failure */
4144 		ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4145 		if (ret)
4146 			dev_dbg(hba->dev, "%s: attr-id 0x%x val 0x%x error code %d\n",
4147 				set, UIC_GET_ATTR_ID(attr_sel), mib_val, ret);
4148 	} while (ret && peer && --retries);
4149 
4150 	if (ret)
4151 		dev_err(hba->dev, "%s: attr-id 0x%x val 0x%x failed %d retries\n",
4152 			set, UIC_GET_ATTR_ID(attr_sel), mib_val,
4153 			UFS_UIC_COMMAND_RETRIES - retries);
4154 
4155 	return ret;
4156 }
4157 EXPORT_SYMBOL_GPL(ufshcd_dme_set_attr);
4158 
4159 /**
4160  * ufshcd_dme_get_attr - UIC command for DME_GET, DME_PEER_GET
4161  * @hba: per adapter instance
4162  * @attr_sel: uic command argument1
4163  * @mib_val: the value of the attribute as returned by the UIC command
4164  * @peer: indicate whether peer or local
4165  *
4166  * Return: 0 on success, non-zero value on failure.
4167  */
4168 int ufshcd_dme_get_attr(struct ufs_hba *hba, u32 attr_sel,
4169 			u32 *mib_val, u8 peer)
4170 {
4171 	struct uic_command uic_cmd = {
4172 		.command = peer ? UIC_CMD_DME_PEER_GET : UIC_CMD_DME_GET,
4173 		.argument1 = attr_sel,
4174 	};
4175 	static const char *const action[] = {
4176 		"dme-get",
4177 		"dme-peer-get"
4178 	};
4179 	const char *get = action[!!peer];
4180 	int ret;
4181 	int retries = UFS_UIC_COMMAND_RETRIES;
4182 	struct ufs_pa_layer_attr orig_pwr_info;
4183 	struct ufs_pa_layer_attr temp_pwr_info;
4184 	bool pwr_mode_change = false;
4185 
4186 	if (peer && (hba->quirks & UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE)) {
4187 		orig_pwr_info = hba->pwr_info;
4188 		temp_pwr_info = orig_pwr_info;
4189 
4190 		if (orig_pwr_info.pwr_tx == FAST_MODE ||
4191 		    orig_pwr_info.pwr_rx == FAST_MODE) {
4192 			temp_pwr_info.pwr_tx = FASTAUTO_MODE;
4193 			temp_pwr_info.pwr_rx = FASTAUTO_MODE;
4194 			pwr_mode_change = true;
4195 		} else if (orig_pwr_info.pwr_tx == SLOW_MODE ||
4196 		    orig_pwr_info.pwr_rx == SLOW_MODE) {
4197 			temp_pwr_info.pwr_tx = SLOWAUTO_MODE;
4198 			temp_pwr_info.pwr_rx = SLOWAUTO_MODE;
4199 			pwr_mode_change = true;
4200 		}
4201 		if (pwr_mode_change) {
4202 			ret = ufshcd_change_power_mode(hba, &temp_pwr_info);
4203 			if (ret)
4204 				goto out;
4205 		}
4206 	}
4207 
4208 	do {
4209 		/* for peer attributes we retry upon failure */
4210 		ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4211 		if (ret)
4212 			dev_dbg(hba->dev, "%s: attr-id 0x%x error code %d\n",
4213 				get, UIC_GET_ATTR_ID(attr_sel), ret);
4214 	} while (ret && peer && --retries);
4215 
4216 	if (ret)
4217 		dev_err(hba->dev, "%s: attr-id 0x%x failed %d retries\n",
4218 			get, UIC_GET_ATTR_ID(attr_sel),
4219 			UFS_UIC_COMMAND_RETRIES - retries);
4220 
4221 	if (mib_val && !ret)
4222 		*mib_val = uic_cmd.argument3;
4223 
4224 	if (peer && (hba->quirks & UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE)
4225 	    && pwr_mode_change)
4226 		ufshcd_change_power_mode(hba, &orig_pwr_info);
4227 out:
4228 	return ret;
4229 }
4230 EXPORT_SYMBOL_GPL(ufshcd_dme_get_attr);
4231 
4232 /**
4233  * ufshcd_uic_pwr_ctrl - executes UIC commands (which affects the link power
4234  * state) and waits for it to take effect.
4235  *
4236  * @hba: per adapter instance
4237  * @cmd: UIC command to execute
4238  *
4239  * DME operations like DME_SET(PA_PWRMODE), DME_HIBERNATE_ENTER &
4240  * DME_HIBERNATE_EXIT commands take some time to take its effect on both host
4241  * and device UniPro link and hence it's final completion would be indicated by
4242  * dedicated status bits in Interrupt Status register (UPMS, UHES, UHXS) in
4243  * addition to normal UIC command completion Status (UCCS). This function only
4244  * returns after the relevant status bits indicate the completion.
4245  *
4246  * Return: 0 on success, non-zero value on failure.
4247  */
4248 static int ufshcd_uic_pwr_ctrl(struct ufs_hba *hba, struct uic_command *cmd)
4249 {
4250 	DECLARE_COMPLETION_ONSTACK(uic_async_done);
4251 	unsigned long flags;
4252 	u8 status;
4253 	int ret;
4254 	bool reenable_intr = false;
4255 
4256 	mutex_lock(&hba->uic_cmd_mutex);
4257 	ufshcd_add_delay_before_dme_cmd(hba);
4258 
4259 	spin_lock_irqsave(hba->host->host_lock, flags);
4260 	if (ufshcd_is_link_broken(hba)) {
4261 		ret = -ENOLINK;
4262 		goto out_unlock;
4263 	}
4264 	hba->uic_async_done = &uic_async_done;
4265 	if (ufshcd_readl(hba, REG_INTERRUPT_ENABLE) & UIC_COMMAND_COMPL) {
4266 		ufshcd_disable_intr(hba, UIC_COMMAND_COMPL);
4267 		/*
4268 		 * Make sure UIC command completion interrupt is disabled before
4269 		 * issuing UIC command.
4270 		 */
4271 		ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
4272 		reenable_intr = true;
4273 	}
4274 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4275 	ret = __ufshcd_send_uic_cmd(hba, cmd, false);
4276 	if (ret) {
4277 		dev_err(hba->dev,
4278 			"pwr ctrl cmd 0x%x with mode 0x%x uic error %d\n",
4279 			cmd->command, cmd->argument3, ret);
4280 		goto out;
4281 	}
4282 
4283 	if (!wait_for_completion_timeout(hba->uic_async_done,
4284 					 msecs_to_jiffies(UIC_CMD_TIMEOUT))) {
4285 		dev_err(hba->dev,
4286 			"pwr ctrl cmd 0x%x with mode 0x%x completion timeout\n",
4287 			cmd->command, cmd->argument3);
4288 
4289 		if (!cmd->cmd_active) {
4290 			dev_err(hba->dev, "%s: Power Mode Change operation has been completed, go check UPMCRS\n",
4291 				__func__);
4292 			goto check_upmcrs;
4293 		}
4294 
4295 		ret = -ETIMEDOUT;
4296 		goto out;
4297 	}
4298 
4299 check_upmcrs:
4300 	status = ufshcd_get_upmcrs(hba);
4301 	if (status != PWR_LOCAL) {
4302 		dev_err(hba->dev,
4303 			"pwr ctrl cmd 0x%x failed, host upmcrs:0x%x\n",
4304 			cmd->command, status);
4305 		ret = (status != PWR_OK) ? status : -1;
4306 	}
4307 out:
4308 	if (ret) {
4309 		ufshcd_print_host_state(hba);
4310 		ufshcd_print_pwr_info(hba);
4311 		ufshcd_print_evt_hist(hba);
4312 	}
4313 
4314 	spin_lock_irqsave(hba->host->host_lock, flags);
4315 	hba->active_uic_cmd = NULL;
4316 	hba->uic_async_done = NULL;
4317 	if (reenable_intr)
4318 		ufshcd_enable_intr(hba, UIC_COMMAND_COMPL);
4319 	if (ret) {
4320 		ufshcd_set_link_broken(hba);
4321 		ufshcd_schedule_eh_work(hba);
4322 	}
4323 out_unlock:
4324 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4325 	mutex_unlock(&hba->uic_cmd_mutex);
4326 
4327 	return ret;
4328 }
4329 
4330 /**
4331  * ufshcd_uic_change_pwr_mode - Perform the UIC power mode chage
4332  *				using DME_SET primitives.
4333  * @hba: per adapter instance
4334  * @mode: powr mode value
4335  *
4336  * Return: 0 on success, non-zero value on failure.
4337  */
4338 int ufshcd_uic_change_pwr_mode(struct ufs_hba *hba, u8 mode)
4339 {
4340 	struct uic_command uic_cmd = {
4341 		.command = UIC_CMD_DME_SET,
4342 		.argument1 = UIC_ARG_MIB(PA_PWRMODE),
4343 		.argument3 = mode,
4344 	};
4345 	int ret;
4346 
4347 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_PA_RXHSUNTERMCAP) {
4348 		ret = ufshcd_dme_set(hba,
4349 				UIC_ARG_MIB_SEL(PA_RXHSUNTERMCAP, 0), 1);
4350 		if (ret) {
4351 			dev_err(hba->dev, "%s: failed to enable PA_RXHSUNTERMCAP ret %d\n",
4352 						__func__, ret);
4353 			goto out;
4354 		}
4355 	}
4356 
4357 	ufshcd_hold(hba);
4358 	ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4359 	ufshcd_release(hba);
4360 
4361 out:
4362 	return ret;
4363 }
4364 EXPORT_SYMBOL_GPL(ufshcd_uic_change_pwr_mode);
4365 
4366 int ufshcd_link_recovery(struct ufs_hba *hba)
4367 {
4368 	int ret;
4369 	unsigned long flags;
4370 
4371 	spin_lock_irqsave(hba->host->host_lock, flags);
4372 	hba->ufshcd_state = UFSHCD_STATE_RESET;
4373 	ufshcd_set_eh_in_progress(hba);
4374 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4375 
4376 	/* Reset the attached device */
4377 	ufshcd_device_reset(hba);
4378 
4379 	ret = ufshcd_host_reset_and_restore(hba);
4380 
4381 	spin_lock_irqsave(hba->host->host_lock, flags);
4382 	if (ret)
4383 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
4384 	ufshcd_clear_eh_in_progress(hba);
4385 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4386 
4387 	if (ret)
4388 		dev_err(hba->dev, "%s: link recovery failed, err %d",
4389 			__func__, ret);
4390 
4391 	return ret;
4392 }
4393 EXPORT_SYMBOL_GPL(ufshcd_link_recovery);
4394 
4395 int ufshcd_uic_hibern8_enter(struct ufs_hba *hba)
4396 {
4397 	struct uic_command uic_cmd = {
4398 		.command = UIC_CMD_DME_HIBER_ENTER,
4399 	};
4400 	ktime_t start = ktime_get();
4401 	int ret;
4402 
4403 	ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_ENTER, PRE_CHANGE);
4404 
4405 	ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4406 	trace_ufshcd_profile_hibern8(dev_name(hba->dev), "enter",
4407 			     ktime_to_us(ktime_sub(ktime_get(), start)), ret);
4408 
4409 	if (ret)
4410 		dev_err(hba->dev, "%s: hibern8 enter failed. ret = %d\n",
4411 			__func__, ret);
4412 	else
4413 		ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_ENTER,
4414 								POST_CHANGE);
4415 
4416 	return ret;
4417 }
4418 EXPORT_SYMBOL_GPL(ufshcd_uic_hibern8_enter);
4419 
4420 int ufshcd_uic_hibern8_exit(struct ufs_hba *hba)
4421 {
4422 	struct uic_command uic_cmd = {
4423 		.command = UIC_CMD_DME_HIBER_EXIT,
4424 	};
4425 	int ret;
4426 	ktime_t start = ktime_get();
4427 
4428 	ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_EXIT, PRE_CHANGE);
4429 
4430 	ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4431 	trace_ufshcd_profile_hibern8(dev_name(hba->dev), "exit",
4432 			     ktime_to_us(ktime_sub(ktime_get(), start)), ret);
4433 
4434 	if (ret) {
4435 		dev_err(hba->dev, "%s: hibern8 exit failed. ret = %d\n",
4436 			__func__, ret);
4437 	} else {
4438 		ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_EXIT,
4439 								POST_CHANGE);
4440 		hba->ufs_stats.last_hibern8_exit_tstamp = local_clock();
4441 		hba->ufs_stats.hibern8_exit_cnt++;
4442 	}
4443 
4444 	return ret;
4445 }
4446 EXPORT_SYMBOL_GPL(ufshcd_uic_hibern8_exit);
4447 
4448 static void ufshcd_configure_auto_hibern8(struct ufs_hba *hba)
4449 {
4450 	if (!ufshcd_is_auto_hibern8_supported(hba))
4451 		return;
4452 
4453 	ufshcd_writel(hba, hba->ahit, REG_AUTO_HIBERNATE_IDLE_TIMER);
4454 }
4455 
4456 void ufshcd_auto_hibern8_update(struct ufs_hba *hba, u32 ahit)
4457 {
4458 	const u32 cur_ahit = READ_ONCE(hba->ahit);
4459 
4460 	if (!ufshcd_is_auto_hibern8_supported(hba) || cur_ahit == ahit)
4461 		return;
4462 
4463 	WRITE_ONCE(hba->ahit, ahit);
4464 	if (!pm_runtime_suspended(&hba->ufs_device_wlun->sdev_gendev)) {
4465 		ufshcd_rpm_get_sync(hba);
4466 		ufshcd_hold(hba);
4467 		ufshcd_configure_auto_hibern8(hba);
4468 		ufshcd_release(hba);
4469 		ufshcd_rpm_put_sync(hba);
4470 	}
4471 }
4472 EXPORT_SYMBOL_GPL(ufshcd_auto_hibern8_update);
4473 
4474  /**
4475  * ufshcd_init_pwr_info - setting the POR (power on reset)
4476  * values in hba power info
4477  * @hba: per-adapter instance
4478  */
4479 static void ufshcd_init_pwr_info(struct ufs_hba *hba)
4480 {
4481 	hba->pwr_info.gear_rx = UFS_PWM_G1;
4482 	hba->pwr_info.gear_tx = UFS_PWM_G1;
4483 	hba->pwr_info.lane_rx = UFS_LANE_1;
4484 	hba->pwr_info.lane_tx = UFS_LANE_1;
4485 	hba->pwr_info.pwr_rx = SLOWAUTO_MODE;
4486 	hba->pwr_info.pwr_tx = SLOWAUTO_MODE;
4487 	hba->pwr_info.hs_rate = 0;
4488 }
4489 
4490 /**
4491  * ufshcd_get_max_pwr_mode - reads the max power mode negotiated with device
4492  * @hba: per-adapter instance
4493  *
4494  * Return: 0 upon success; < 0 upon failure.
4495  */
4496 static int ufshcd_get_max_pwr_mode(struct ufs_hba *hba)
4497 {
4498 	struct ufs_pa_layer_attr *pwr_info = &hba->max_pwr_info.info;
4499 
4500 	if (hba->max_pwr_info.is_valid)
4501 		return 0;
4502 
4503 	if (hba->quirks & UFSHCD_QUIRK_HIBERN_FASTAUTO) {
4504 		pwr_info->pwr_tx = FASTAUTO_MODE;
4505 		pwr_info->pwr_rx = FASTAUTO_MODE;
4506 	} else {
4507 		pwr_info->pwr_tx = FAST_MODE;
4508 		pwr_info->pwr_rx = FAST_MODE;
4509 	}
4510 	pwr_info->hs_rate = PA_HS_MODE_B;
4511 
4512 	/* Get the connected lane count */
4513 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDRXDATALANES),
4514 			&pwr_info->lane_rx);
4515 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4516 			&pwr_info->lane_tx);
4517 
4518 	if (!pwr_info->lane_rx || !pwr_info->lane_tx) {
4519 		dev_err(hba->dev, "%s: invalid connected lanes value. rx=%d, tx=%d\n",
4520 				__func__,
4521 				pwr_info->lane_rx,
4522 				pwr_info->lane_tx);
4523 		return -EINVAL;
4524 	}
4525 
4526 	/*
4527 	 * First, get the maximum gears of HS speed.
4528 	 * If a zero value, it means there is no HSGEAR capability.
4529 	 * Then, get the maximum gears of PWM speed.
4530 	 */
4531 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_MAXRXHSGEAR), &pwr_info->gear_rx);
4532 	if (!pwr_info->gear_rx) {
4533 		ufshcd_dme_get(hba, UIC_ARG_MIB(PA_MAXRXPWMGEAR),
4534 				&pwr_info->gear_rx);
4535 		if (!pwr_info->gear_rx) {
4536 			dev_err(hba->dev, "%s: invalid max pwm rx gear read = %d\n",
4537 				__func__, pwr_info->gear_rx);
4538 			return -EINVAL;
4539 		}
4540 		pwr_info->pwr_rx = SLOW_MODE;
4541 	}
4542 
4543 	ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_MAXRXHSGEAR),
4544 			&pwr_info->gear_tx);
4545 	if (!pwr_info->gear_tx) {
4546 		ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_MAXRXPWMGEAR),
4547 				&pwr_info->gear_tx);
4548 		if (!pwr_info->gear_tx) {
4549 			dev_err(hba->dev, "%s: invalid max pwm tx gear read = %d\n",
4550 				__func__, pwr_info->gear_tx);
4551 			return -EINVAL;
4552 		}
4553 		pwr_info->pwr_tx = SLOW_MODE;
4554 	}
4555 
4556 	hba->max_pwr_info.is_valid = true;
4557 	return 0;
4558 }
4559 
4560 static int ufshcd_change_power_mode(struct ufs_hba *hba,
4561 			     struct ufs_pa_layer_attr *pwr_mode)
4562 {
4563 	int ret;
4564 
4565 	/* if already configured to the requested pwr_mode */
4566 	if (!hba->force_pmc &&
4567 	    pwr_mode->gear_rx == hba->pwr_info.gear_rx &&
4568 	    pwr_mode->gear_tx == hba->pwr_info.gear_tx &&
4569 	    pwr_mode->lane_rx == hba->pwr_info.lane_rx &&
4570 	    pwr_mode->lane_tx == hba->pwr_info.lane_tx &&
4571 	    pwr_mode->pwr_rx == hba->pwr_info.pwr_rx &&
4572 	    pwr_mode->pwr_tx == hba->pwr_info.pwr_tx &&
4573 	    pwr_mode->hs_rate == hba->pwr_info.hs_rate) {
4574 		dev_dbg(hba->dev, "%s: power already configured\n", __func__);
4575 		return 0;
4576 	}
4577 
4578 	/*
4579 	 * Configure attributes for power mode change with below.
4580 	 * - PA_RXGEAR, PA_ACTIVERXDATALANES, PA_RXTERMINATION,
4581 	 * - PA_TXGEAR, PA_ACTIVETXDATALANES, PA_TXTERMINATION,
4582 	 * - PA_HSSERIES
4583 	 */
4584 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXGEAR), pwr_mode->gear_rx);
4585 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVERXDATALANES),
4586 			pwr_mode->lane_rx);
4587 	if (pwr_mode->pwr_rx == FASTAUTO_MODE ||
4588 			pwr_mode->pwr_rx == FAST_MODE)
4589 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), true);
4590 	else
4591 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), false);
4592 
4593 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXGEAR), pwr_mode->gear_tx);
4594 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVETXDATALANES),
4595 			pwr_mode->lane_tx);
4596 	if (pwr_mode->pwr_tx == FASTAUTO_MODE ||
4597 			pwr_mode->pwr_tx == FAST_MODE)
4598 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), true);
4599 	else
4600 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), false);
4601 
4602 	if (pwr_mode->pwr_rx == FASTAUTO_MODE ||
4603 	    pwr_mode->pwr_tx == FASTAUTO_MODE ||
4604 	    pwr_mode->pwr_rx == FAST_MODE ||
4605 	    pwr_mode->pwr_tx == FAST_MODE)
4606 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_HSSERIES),
4607 						pwr_mode->hs_rate);
4608 
4609 	if (!(hba->quirks & UFSHCD_QUIRK_SKIP_DEF_UNIPRO_TIMEOUT_SETTING)) {
4610 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA0),
4611 				DL_FC0ProtectionTimeOutVal_Default);
4612 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA1),
4613 				DL_TC0ReplayTimeOutVal_Default);
4614 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA2),
4615 				DL_AFC0ReqTimeOutVal_Default);
4616 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA3),
4617 				DL_FC1ProtectionTimeOutVal_Default);
4618 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA4),
4619 				DL_TC1ReplayTimeOutVal_Default);
4620 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA5),
4621 				DL_AFC1ReqTimeOutVal_Default);
4622 
4623 		ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalFC0ProtectionTimeOutVal),
4624 				DL_FC0ProtectionTimeOutVal_Default);
4625 		ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalTC0ReplayTimeOutVal),
4626 				DL_TC0ReplayTimeOutVal_Default);
4627 		ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalAFC0ReqTimeOutVal),
4628 				DL_AFC0ReqTimeOutVal_Default);
4629 	}
4630 
4631 	ret = ufshcd_uic_change_pwr_mode(hba, pwr_mode->pwr_rx << 4
4632 			| pwr_mode->pwr_tx);
4633 
4634 	if (ret) {
4635 		dev_err(hba->dev,
4636 			"%s: power mode change failed %d\n", __func__, ret);
4637 	} else {
4638 		ufshcd_vops_pwr_change_notify(hba, POST_CHANGE, NULL,
4639 								pwr_mode);
4640 
4641 		memcpy(&hba->pwr_info, pwr_mode,
4642 			sizeof(struct ufs_pa_layer_attr));
4643 	}
4644 
4645 	return ret;
4646 }
4647 
4648 /**
4649  * ufshcd_config_pwr_mode - configure a new power mode
4650  * @hba: per-adapter instance
4651  * @desired_pwr_mode: desired power configuration
4652  *
4653  * Return: 0 upon success; < 0 upon failure.
4654  */
4655 int ufshcd_config_pwr_mode(struct ufs_hba *hba,
4656 		struct ufs_pa_layer_attr *desired_pwr_mode)
4657 {
4658 	struct ufs_pa_layer_attr final_params = { 0 };
4659 	int ret;
4660 
4661 	ret = ufshcd_vops_pwr_change_notify(hba, PRE_CHANGE,
4662 					desired_pwr_mode, &final_params);
4663 
4664 	if (ret)
4665 		memcpy(&final_params, desired_pwr_mode, sizeof(final_params));
4666 
4667 	ret = ufshcd_change_power_mode(hba, &final_params);
4668 
4669 	return ret;
4670 }
4671 EXPORT_SYMBOL_GPL(ufshcd_config_pwr_mode);
4672 
4673 /**
4674  * ufshcd_complete_dev_init() - checks device readiness
4675  * @hba: per-adapter instance
4676  *
4677  * Set fDeviceInit flag and poll until device toggles it.
4678  *
4679  * Return: 0 upon success; < 0 upon failure.
4680  */
4681 static int ufshcd_complete_dev_init(struct ufs_hba *hba)
4682 {
4683 	int err;
4684 	bool flag_res = true;
4685 	ktime_t timeout;
4686 
4687 	err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG,
4688 		QUERY_FLAG_IDN_FDEVICEINIT, 0, NULL);
4689 	if (err) {
4690 		dev_err(hba->dev,
4691 			"%s: setting fDeviceInit flag failed with error %d\n",
4692 			__func__, err);
4693 		goto out;
4694 	}
4695 
4696 	/* Poll fDeviceInit flag to be cleared */
4697 	timeout = ktime_add_ms(ktime_get(), FDEVICEINIT_COMPL_TIMEOUT);
4698 	do {
4699 		err = ufshcd_query_flag(hba, UPIU_QUERY_OPCODE_READ_FLAG,
4700 					QUERY_FLAG_IDN_FDEVICEINIT, 0, &flag_res);
4701 		if (!flag_res)
4702 			break;
4703 		usleep_range(500, 1000);
4704 	} while (ktime_before(ktime_get(), timeout));
4705 
4706 	if (err) {
4707 		dev_err(hba->dev,
4708 				"%s: reading fDeviceInit flag failed with error %d\n",
4709 				__func__, err);
4710 	} else if (flag_res) {
4711 		dev_err(hba->dev,
4712 				"%s: fDeviceInit was not cleared by the device\n",
4713 				__func__);
4714 		err = -EBUSY;
4715 	}
4716 out:
4717 	return err;
4718 }
4719 
4720 /**
4721  * ufshcd_make_hba_operational - Make UFS controller operational
4722  * @hba: per adapter instance
4723  *
4724  * To bring UFS host controller to operational state,
4725  * 1. Enable required interrupts
4726  * 2. Configure interrupt aggregation
4727  * 3. Program UTRL and UTMRL base address
4728  * 4. Configure run-stop-registers
4729  *
4730  * Return: 0 on success, non-zero value on failure.
4731  */
4732 int ufshcd_make_hba_operational(struct ufs_hba *hba)
4733 {
4734 	int err = 0;
4735 	u32 reg;
4736 
4737 	/* Enable required interrupts */
4738 	ufshcd_enable_intr(hba, UFSHCD_ENABLE_INTRS);
4739 
4740 	/* Configure interrupt aggregation */
4741 	if (ufshcd_is_intr_aggr_allowed(hba))
4742 		ufshcd_config_intr_aggr(hba, hba->nutrs - 1, INT_AGGR_DEF_TO);
4743 	else
4744 		ufshcd_disable_intr_aggr(hba);
4745 
4746 	/* Configure UTRL and UTMRL base address registers */
4747 	ufshcd_writel(hba, lower_32_bits(hba->utrdl_dma_addr),
4748 			REG_UTP_TRANSFER_REQ_LIST_BASE_L);
4749 	ufshcd_writel(hba, upper_32_bits(hba->utrdl_dma_addr),
4750 			REG_UTP_TRANSFER_REQ_LIST_BASE_H);
4751 	ufshcd_writel(hba, lower_32_bits(hba->utmrdl_dma_addr),
4752 			REG_UTP_TASK_REQ_LIST_BASE_L);
4753 	ufshcd_writel(hba, upper_32_bits(hba->utmrdl_dma_addr),
4754 			REG_UTP_TASK_REQ_LIST_BASE_H);
4755 
4756 	/*
4757 	 * UCRDY, UTMRLDY and UTRLRDY bits must be 1
4758 	 */
4759 	reg = ufshcd_readl(hba, REG_CONTROLLER_STATUS);
4760 	if (!(ufshcd_get_lists_status(reg))) {
4761 		ufshcd_enable_run_stop_reg(hba);
4762 	} else {
4763 		dev_err(hba->dev,
4764 			"Host controller not ready to process requests");
4765 		err = -EIO;
4766 	}
4767 
4768 	return err;
4769 }
4770 EXPORT_SYMBOL_GPL(ufshcd_make_hba_operational);
4771 
4772 /**
4773  * ufshcd_hba_stop - Send controller to reset state
4774  * @hba: per adapter instance
4775  */
4776 void ufshcd_hba_stop(struct ufs_hba *hba)
4777 {
4778 	unsigned long flags;
4779 	int err;
4780 
4781 	/*
4782 	 * Obtain the host lock to prevent that the controller is disabled
4783 	 * while the UFS interrupt handler is active on another CPU.
4784 	 */
4785 	spin_lock_irqsave(hba->host->host_lock, flags);
4786 	ufshcd_writel(hba, CONTROLLER_DISABLE,  REG_CONTROLLER_ENABLE);
4787 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4788 
4789 	err = ufshcd_wait_for_register(hba, REG_CONTROLLER_ENABLE,
4790 					CONTROLLER_ENABLE, CONTROLLER_DISABLE,
4791 					10, 1);
4792 	if (err)
4793 		dev_err(hba->dev, "%s: Controller disable failed\n", __func__);
4794 }
4795 EXPORT_SYMBOL_GPL(ufshcd_hba_stop);
4796 
4797 /**
4798  * ufshcd_hba_execute_hce - initialize the controller
4799  * @hba: per adapter instance
4800  *
4801  * The controller resets itself and controller firmware initialization
4802  * sequence kicks off. When controller is ready it will set
4803  * the Host Controller Enable bit to 1.
4804  *
4805  * Return: 0 on success, non-zero value on failure.
4806  */
4807 static int ufshcd_hba_execute_hce(struct ufs_hba *hba)
4808 {
4809 	int retry_outer = 3;
4810 	int retry_inner;
4811 
4812 start:
4813 	if (ufshcd_is_hba_active(hba))
4814 		/* change controller state to "reset state" */
4815 		ufshcd_hba_stop(hba);
4816 
4817 	/* UniPro link is disabled at this point */
4818 	ufshcd_set_link_off(hba);
4819 
4820 	ufshcd_vops_hce_enable_notify(hba, PRE_CHANGE);
4821 
4822 	/* start controller initialization sequence */
4823 	ufshcd_hba_start(hba);
4824 
4825 	/*
4826 	 * To initialize a UFS host controller HCE bit must be set to 1.
4827 	 * During initialization the HCE bit value changes from 1->0->1.
4828 	 * When the host controller completes initialization sequence
4829 	 * it sets the value of HCE bit to 1. The same HCE bit is read back
4830 	 * to check if the controller has completed initialization sequence.
4831 	 * So without this delay the value HCE = 1, set in the previous
4832 	 * instruction might be read back.
4833 	 * This delay can be changed based on the controller.
4834 	 */
4835 	ufshcd_delay_us(hba->vps->hba_enable_delay_us, 100);
4836 
4837 	/* wait for the host controller to complete initialization */
4838 	retry_inner = 50;
4839 	while (!ufshcd_is_hba_active(hba)) {
4840 		if (retry_inner) {
4841 			retry_inner--;
4842 		} else {
4843 			dev_err(hba->dev,
4844 				"Controller enable failed\n");
4845 			if (retry_outer) {
4846 				retry_outer--;
4847 				goto start;
4848 			}
4849 			return -EIO;
4850 		}
4851 		usleep_range(1000, 1100);
4852 	}
4853 
4854 	/* enable UIC related interrupts */
4855 	ufshcd_enable_intr(hba, UFSHCD_UIC_MASK);
4856 
4857 	ufshcd_vops_hce_enable_notify(hba, POST_CHANGE);
4858 
4859 	return 0;
4860 }
4861 
4862 int ufshcd_hba_enable(struct ufs_hba *hba)
4863 {
4864 	int ret;
4865 
4866 	if (hba->quirks & UFSHCI_QUIRK_BROKEN_HCE) {
4867 		ufshcd_set_link_off(hba);
4868 		ufshcd_vops_hce_enable_notify(hba, PRE_CHANGE);
4869 
4870 		/* enable UIC related interrupts */
4871 		ufshcd_enable_intr(hba, UFSHCD_UIC_MASK);
4872 		ret = ufshcd_dme_reset(hba);
4873 		if (ret) {
4874 			dev_err(hba->dev, "DME_RESET failed\n");
4875 			return ret;
4876 		}
4877 
4878 		ret = ufshcd_dme_enable(hba);
4879 		if (ret) {
4880 			dev_err(hba->dev, "Enabling DME failed\n");
4881 			return ret;
4882 		}
4883 
4884 		ufshcd_vops_hce_enable_notify(hba, POST_CHANGE);
4885 	} else {
4886 		ret = ufshcd_hba_execute_hce(hba);
4887 	}
4888 
4889 	return ret;
4890 }
4891 EXPORT_SYMBOL_GPL(ufshcd_hba_enable);
4892 
4893 static int ufshcd_disable_tx_lcc(struct ufs_hba *hba, bool peer)
4894 {
4895 	int tx_lanes = 0, i, err = 0;
4896 
4897 	if (!peer)
4898 		ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4899 			       &tx_lanes);
4900 	else
4901 		ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4902 				    &tx_lanes);
4903 	for (i = 0; i < tx_lanes; i++) {
4904 		if (!peer)
4905 			err = ufshcd_dme_set(hba,
4906 				UIC_ARG_MIB_SEL(TX_LCC_ENABLE,
4907 					UIC_ARG_MPHY_TX_GEN_SEL_INDEX(i)),
4908 					0);
4909 		else
4910 			err = ufshcd_dme_peer_set(hba,
4911 				UIC_ARG_MIB_SEL(TX_LCC_ENABLE,
4912 					UIC_ARG_MPHY_TX_GEN_SEL_INDEX(i)),
4913 					0);
4914 		if (err) {
4915 			dev_err(hba->dev, "%s: TX LCC Disable failed, peer = %d, lane = %d, err = %d",
4916 				__func__, peer, i, err);
4917 			break;
4918 		}
4919 	}
4920 
4921 	return err;
4922 }
4923 
4924 static inline int ufshcd_disable_device_tx_lcc(struct ufs_hba *hba)
4925 {
4926 	return ufshcd_disable_tx_lcc(hba, true);
4927 }
4928 
4929 void ufshcd_update_evt_hist(struct ufs_hba *hba, u32 id, u32 val)
4930 {
4931 	struct ufs_event_hist *e;
4932 
4933 	if (id >= UFS_EVT_CNT)
4934 		return;
4935 
4936 	e = &hba->ufs_stats.event[id];
4937 	e->val[e->pos] = val;
4938 	e->tstamp[e->pos] = local_clock();
4939 	e->cnt += 1;
4940 	e->pos = (e->pos + 1) % UFS_EVENT_HIST_LENGTH;
4941 
4942 	ufshcd_vops_event_notify(hba, id, &val);
4943 }
4944 EXPORT_SYMBOL_GPL(ufshcd_update_evt_hist);
4945 
4946 /**
4947  * ufshcd_link_startup - Initialize unipro link startup
4948  * @hba: per adapter instance
4949  *
4950  * Return: 0 for success, non-zero in case of failure.
4951  */
4952 static int ufshcd_link_startup(struct ufs_hba *hba)
4953 {
4954 	int ret;
4955 	int retries = DME_LINKSTARTUP_RETRIES;
4956 	bool link_startup_again = false;
4957 
4958 	/*
4959 	 * If UFS device isn't active then we will have to issue link startup
4960 	 * 2 times to make sure the device state move to active.
4961 	 */
4962 	if (!ufshcd_is_ufs_dev_active(hba))
4963 		link_startup_again = true;
4964 
4965 link_startup:
4966 	do {
4967 		ufshcd_vops_link_startup_notify(hba, PRE_CHANGE);
4968 
4969 		ret = ufshcd_dme_link_startup(hba);
4970 
4971 		/* check if device is detected by inter-connect layer */
4972 		if (!ret && !ufshcd_is_device_present(hba)) {
4973 			ufshcd_update_evt_hist(hba,
4974 					       UFS_EVT_LINK_STARTUP_FAIL,
4975 					       0);
4976 			dev_err(hba->dev, "%s: Device not present\n", __func__);
4977 			ret = -ENXIO;
4978 			goto out;
4979 		}
4980 
4981 		/*
4982 		 * DME link lost indication is only received when link is up,
4983 		 * but we can't be sure if the link is up until link startup
4984 		 * succeeds. So reset the local Uni-Pro and try again.
4985 		 */
4986 		if (ret && retries && ufshcd_hba_enable(hba)) {
4987 			ufshcd_update_evt_hist(hba,
4988 					       UFS_EVT_LINK_STARTUP_FAIL,
4989 					       (u32)ret);
4990 			goto out;
4991 		}
4992 	} while (ret && retries--);
4993 
4994 	if (ret) {
4995 		/* failed to get the link up... retire */
4996 		ufshcd_update_evt_hist(hba,
4997 				       UFS_EVT_LINK_STARTUP_FAIL,
4998 				       (u32)ret);
4999 		goto out;
5000 	}
5001 
5002 	if (link_startup_again) {
5003 		link_startup_again = false;
5004 		retries = DME_LINKSTARTUP_RETRIES;
5005 		goto link_startup;
5006 	}
5007 
5008 	/* Mark that link is up in PWM-G1, 1-lane, SLOW-AUTO mode */
5009 	ufshcd_init_pwr_info(hba);
5010 	ufshcd_print_pwr_info(hba);
5011 
5012 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_LCC) {
5013 		ret = ufshcd_disable_device_tx_lcc(hba);
5014 		if (ret)
5015 			goto out;
5016 	}
5017 
5018 	/* Include any host controller configuration via UIC commands */
5019 	ret = ufshcd_vops_link_startup_notify(hba, POST_CHANGE);
5020 	if (ret)
5021 		goto out;
5022 
5023 	/* Clear UECPA once due to LINERESET has happened during LINK_STARTUP */
5024 	ufshcd_readl(hba, REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER);
5025 	ret = ufshcd_make_hba_operational(hba);
5026 out:
5027 	if (ret) {
5028 		dev_err(hba->dev, "link startup failed %d\n", ret);
5029 		ufshcd_print_host_state(hba);
5030 		ufshcd_print_pwr_info(hba);
5031 		ufshcd_print_evt_hist(hba);
5032 	}
5033 	return ret;
5034 }
5035 
5036 /**
5037  * ufshcd_verify_dev_init() - Verify device initialization
5038  * @hba: per-adapter instance
5039  *
5040  * Send NOP OUT UPIU and wait for NOP IN response to check whether the
5041  * device Transport Protocol (UTP) layer is ready after a reset.
5042  * If the UTP layer at the device side is not initialized, it may
5043  * not respond with NOP IN UPIU within timeout of %NOP_OUT_TIMEOUT
5044  * and we retry sending NOP OUT for %NOP_OUT_RETRIES iterations.
5045  *
5046  * Return: 0 upon success; < 0 upon failure.
5047  */
5048 static int ufshcd_verify_dev_init(struct ufs_hba *hba)
5049 {
5050 	int err = 0;
5051 	int retries;
5052 
5053 	ufshcd_dev_man_lock(hba);
5054 
5055 	for (retries = NOP_OUT_RETRIES; retries > 0; retries--) {
5056 		err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_NOP,
5057 					  hba->nop_out_timeout);
5058 
5059 		if (!err || err == -ETIMEDOUT)
5060 			break;
5061 
5062 		dev_dbg(hba->dev, "%s: error %d retrying\n", __func__, err);
5063 	}
5064 
5065 	ufshcd_dev_man_unlock(hba);
5066 
5067 	if (err)
5068 		dev_err(hba->dev, "%s: NOP OUT failed %d\n", __func__, err);
5069 	return err;
5070 }
5071 
5072 /**
5073  * ufshcd_setup_links - associate link b/w device wlun and other luns
5074  * @sdev: pointer to SCSI device
5075  * @hba: pointer to ufs hba
5076  */
5077 static void ufshcd_setup_links(struct ufs_hba *hba, struct scsi_device *sdev)
5078 {
5079 	struct device_link *link;
5080 
5081 	/*
5082 	 * Device wlun is the supplier & rest of the luns are consumers.
5083 	 * This ensures that device wlun suspends after all other luns.
5084 	 */
5085 	if (hba->ufs_device_wlun) {
5086 		link = device_link_add(&sdev->sdev_gendev,
5087 				       &hba->ufs_device_wlun->sdev_gendev,
5088 				       DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE);
5089 		if (!link) {
5090 			dev_err(&sdev->sdev_gendev, "Failed establishing link - %s\n",
5091 				dev_name(&hba->ufs_device_wlun->sdev_gendev));
5092 			return;
5093 		}
5094 		hba->luns_avail--;
5095 		/* Ignore REPORT_LUN wlun probing */
5096 		if (hba->luns_avail == 1) {
5097 			ufshcd_rpm_put(hba);
5098 			return;
5099 		}
5100 	} else {
5101 		/*
5102 		 * Device wlun is probed. The assumption is that WLUNs are
5103 		 * scanned before other LUNs.
5104 		 */
5105 		hba->luns_avail--;
5106 	}
5107 }
5108 
5109 /**
5110  * ufshcd_lu_init - Initialize the relevant parameters of the LU
5111  * @hba: per-adapter instance
5112  * @sdev: pointer to SCSI device
5113  */
5114 static void ufshcd_lu_init(struct ufs_hba *hba, struct scsi_device *sdev)
5115 {
5116 	int len = QUERY_DESC_MAX_SIZE;
5117 	u8 lun = ufshcd_scsi_to_upiu_lun(sdev->lun);
5118 	u8 lun_qdepth = hba->nutrs;
5119 	u8 *desc_buf;
5120 	int ret;
5121 
5122 	desc_buf = kzalloc(len, GFP_KERNEL);
5123 	if (!desc_buf)
5124 		goto set_qdepth;
5125 
5126 	ret = ufshcd_read_unit_desc_param(hba, lun, 0, desc_buf, len);
5127 	if (ret < 0) {
5128 		if (ret == -EOPNOTSUPP)
5129 			/* If LU doesn't support unit descriptor, its queue depth is set to 1 */
5130 			lun_qdepth = 1;
5131 		kfree(desc_buf);
5132 		goto set_qdepth;
5133 	}
5134 
5135 	if (desc_buf[UNIT_DESC_PARAM_LU_Q_DEPTH]) {
5136 		/*
5137 		 * In per-LU queueing architecture, bLUQueueDepth will not be 0, then we will
5138 		 * use the smaller between UFSHCI CAP.NUTRS and UFS LU bLUQueueDepth
5139 		 */
5140 		lun_qdepth = min_t(int, desc_buf[UNIT_DESC_PARAM_LU_Q_DEPTH], hba->nutrs);
5141 	}
5142 	/*
5143 	 * According to UFS device specification, the write protection mode is only supported by
5144 	 * normal LU, not supported by WLUN.
5145 	 */
5146 	if (hba->dev_info.f_power_on_wp_en && lun < hba->dev_info.max_lu_supported &&
5147 	    !hba->dev_info.is_lu_power_on_wp &&
5148 	    desc_buf[UNIT_DESC_PARAM_LU_WR_PROTECT] == UFS_LU_POWER_ON_WP)
5149 		hba->dev_info.is_lu_power_on_wp = true;
5150 
5151 	/* In case of RPMB LU, check if advanced RPMB mode is enabled */
5152 	if (desc_buf[UNIT_DESC_PARAM_UNIT_INDEX] == UFS_UPIU_RPMB_WLUN &&
5153 	    desc_buf[RPMB_UNIT_DESC_PARAM_REGION_EN] & BIT(4))
5154 		hba->dev_info.b_advanced_rpmb_en = true;
5155 
5156 
5157 	kfree(desc_buf);
5158 set_qdepth:
5159 	/*
5160 	 * For WLUNs that don't support unit descriptor, queue depth is set to 1. For LUs whose
5161 	 * bLUQueueDepth == 0, the queue depth is set to a maximum value that host can queue.
5162 	 */
5163 	dev_dbg(hba->dev, "Set LU %x queue depth %d\n", lun, lun_qdepth);
5164 	scsi_change_queue_depth(sdev, lun_qdepth);
5165 }
5166 
5167 /**
5168  * ufshcd_slave_alloc - handle initial SCSI device configurations
5169  * @sdev: pointer to SCSI device
5170  *
5171  * Return: success.
5172  */
5173 static int ufshcd_slave_alloc(struct scsi_device *sdev)
5174 {
5175 	struct ufs_hba *hba;
5176 
5177 	hba = shost_priv(sdev->host);
5178 
5179 	/* Mode sense(6) is not supported by UFS, so use Mode sense(10) */
5180 	sdev->use_10_for_ms = 1;
5181 
5182 	/* DBD field should be set to 1 in mode sense(10) */
5183 	sdev->set_dbd_for_ms = 1;
5184 
5185 	/* allow SCSI layer to restart the device in case of errors */
5186 	sdev->allow_restart = 1;
5187 
5188 	/* REPORT SUPPORTED OPERATION CODES is not supported */
5189 	sdev->no_report_opcodes = 1;
5190 
5191 	/* WRITE_SAME command is not supported */
5192 	sdev->no_write_same = 1;
5193 
5194 	ufshcd_lu_init(hba, sdev);
5195 
5196 	ufshcd_setup_links(hba, sdev);
5197 
5198 	return 0;
5199 }
5200 
5201 /**
5202  * ufshcd_change_queue_depth - change queue depth
5203  * @sdev: pointer to SCSI device
5204  * @depth: required depth to set
5205  *
5206  * Change queue depth and make sure the max. limits are not crossed.
5207  *
5208  * Return: new queue depth.
5209  */
5210 static int ufshcd_change_queue_depth(struct scsi_device *sdev, int depth)
5211 {
5212 	return scsi_change_queue_depth(sdev, min(depth, sdev->host->can_queue));
5213 }
5214 
5215 /**
5216  * ufshcd_device_configure - adjust SCSI device configurations
5217  * @sdev: pointer to SCSI device
5218  * @lim: queue limits
5219  *
5220  * Return: 0 (success).
5221  */
5222 static int ufshcd_device_configure(struct scsi_device *sdev,
5223 		struct queue_limits *lim)
5224 {
5225 	struct ufs_hba *hba = shost_priv(sdev->host);
5226 	struct request_queue *q = sdev->request_queue;
5227 
5228 	lim->dma_pad_mask = PRDT_DATA_BYTE_COUNT_PAD - 1;
5229 
5230 	/*
5231 	 * Block runtime-pm until all consumers are added.
5232 	 * Refer ufshcd_setup_links().
5233 	 */
5234 	if (is_device_wlun(sdev))
5235 		pm_runtime_get_noresume(&sdev->sdev_gendev);
5236 	else if (ufshcd_is_rpm_autosuspend_allowed(hba))
5237 		sdev->rpm_autosuspend = 1;
5238 	/*
5239 	 * Do not print messages during runtime PM to avoid never-ending cycles
5240 	 * of messages written back to storage by user space causing runtime
5241 	 * resume, causing more messages and so on.
5242 	 */
5243 	sdev->silence_suspend = 1;
5244 
5245 	ufshcd_crypto_register(hba, q);
5246 
5247 	return 0;
5248 }
5249 
5250 /**
5251  * ufshcd_slave_destroy - remove SCSI device configurations
5252  * @sdev: pointer to SCSI device
5253  */
5254 static void ufshcd_slave_destroy(struct scsi_device *sdev)
5255 {
5256 	struct ufs_hba *hba;
5257 	unsigned long flags;
5258 
5259 	hba = shost_priv(sdev->host);
5260 
5261 	/* Drop the reference as it won't be needed anymore */
5262 	if (ufshcd_scsi_to_upiu_lun(sdev->lun) == UFS_UPIU_UFS_DEVICE_WLUN) {
5263 		spin_lock_irqsave(hba->host->host_lock, flags);
5264 		hba->ufs_device_wlun = NULL;
5265 		spin_unlock_irqrestore(hba->host->host_lock, flags);
5266 	} else if (hba->ufs_device_wlun) {
5267 		struct device *supplier = NULL;
5268 
5269 		/* Ensure UFS Device WLUN exists and does not disappear */
5270 		spin_lock_irqsave(hba->host->host_lock, flags);
5271 		if (hba->ufs_device_wlun) {
5272 			supplier = &hba->ufs_device_wlun->sdev_gendev;
5273 			get_device(supplier);
5274 		}
5275 		spin_unlock_irqrestore(hba->host->host_lock, flags);
5276 
5277 		if (supplier) {
5278 			/*
5279 			 * If a LUN fails to probe (e.g. absent BOOT WLUN), the
5280 			 * device will not have been registered but can still
5281 			 * have a device link holding a reference to the device.
5282 			 */
5283 			device_link_remove(&sdev->sdev_gendev, supplier);
5284 			put_device(supplier);
5285 		}
5286 	}
5287 }
5288 
5289 /**
5290  * ufshcd_scsi_cmd_status - Update SCSI command result based on SCSI status
5291  * @lrbp: pointer to local reference block of completed command
5292  * @scsi_status: SCSI command status
5293  *
5294  * Return: value base on SCSI command status.
5295  */
5296 static inline int
5297 ufshcd_scsi_cmd_status(struct ufshcd_lrb *lrbp, int scsi_status)
5298 {
5299 	int result = 0;
5300 
5301 	switch (scsi_status) {
5302 	case SAM_STAT_CHECK_CONDITION:
5303 		ufshcd_copy_sense_data(lrbp);
5304 		fallthrough;
5305 	case SAM_STAT_GOOD:
5306 		result |= DID_OK << 16 | scsi_status;
5307 		break;
5308 	case SAM_STAT_TASK_SET_FULL:
5309 	case SAM_STAT_BUSY:
5310 	case SAM_STAT_TASK_ABORTED:
5311 		ufshcd_copy_sense_data(lrbp);
5312 		result |= scsi_status;
5313 		break;
5314 	default:
5315 		result |= DID_ERROR << 16;
5316 		break;
5317 	} /* end of switch */
5318 
5319 	return result;
5320 }
5321 
5322 /**
5323  * ufshcd_transfer_rsp_status - Get overall status of the response
5324  * @hba: per adapter instance
5325  * @lrbp: pointer to local reference block of completed command
5326  * @cqe: pointer to the completion queue entry
5327  *
5328  * Return: result of the command to notify SCSI midlayer.
5329  */
5330 static inline int
5331 ufshcd_transfer_rsp_status(struct ufs_hba *hba, struct ufshcd_lrb *lrbp,
5332 			   struct cq_entry *cqe)
5333 {
5334 	int result = 0;
5335 	int scsi_status;
5336 	enum utp_ocs ocs;
5337 	u8 upiu_flags;
5338 	u32 resid;
5339 
5340 	upiu_flags = lrbp->ucd_rsp_ptr->header.flags;
5341 	resid = be32_to_cpu(lrbp->ucd_rsp_ptr->sr.residual_transfer_count);
5342 	/*
5343 	 * Test !overflow instead of underflow to support UFS devices that do
5344 	 * not set either flag.
5345 	 */
5346 	if (resid && !(upiu_flags & UPIU_RSP_FLAG_OVERFLOW))
5347 		scsi_set_resid(lrbp->cmd, resid);
5348 
5349 	/* overall command status of utrd */
5350 	ocs = ufshcd_get_tr_ocs(lrbp, cqe);
5351 
5352 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_OCS_FATAL_ERROR) {
5353 		if (lrbp->ucd_rsp_ptr->header.response ||
5354 		    lrbp->ucd_rsp_ptr->header.status)
5355 			ocs = OCS_SUCCESS;
5356 	}
5357 
5358 	switch (ocs) {
5359 	case OCS_SUCCESS:
5360 		hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
5361 		switch (ufshcd_get_req_rsp(lrbp->ucd_rsp_ptr)) {
5362 		case UPIU_TRANSACTION_RESPONSE:
5363 			/*
5364 			 * get the result based on SCSI status response
5365 			 * to notify the SCSI midlayer of the command status
5366 			 */
5367 			scsi_status = lrbp->ucd_rsp_ptr->header.status;
5368 			result = ufshcd_scsi_cmd_status(lrbp, scsi_status);
5369 
5370 			/*
5371 			 * Currently we are only supporting BKOPs exception
5372 			 * events hence we can ignore BKOPs exception event
5373 			 * during power management callbacks. BKOPs exception
5374 			 * event is not expected to be raised in runtime suspend
5375 			 * callback as it allows the urgent bkops.
5376 			 * During system suspend, we are anyway forcefully
5377 			 * disabling the bkops and if urgent bkops is needed
5378 			 * it will be enabled on system resume. Long term
5379 			 * solution could be to abort the system suspend if
5380 			 * UFS device needs urgent BKOPs.
5381 			 */
5382 			if (!hba->pm_op_in_progress &&
5383 			    !ufshcd_eh_in_progress(hba) &&
5384 			    ufshcd_is_exception_event(lrbp->ucd_rsp_ptr))
5385 				/* Flushed in suspend */
5386 				schedule_work(&hba->eeh_work);
5387 			break;
5388 		case UPIU_TRANSACTION_REJECT_UPIU:
5389 			/* TODO: handle Reject UPIU Response */
5390 			result = DID_ERROR << 16;
5391 			dev_err(hba->dev,
5392 				"Reject UPIU not fully implemented\n");
5393 			break;
5394 		default:
5395 			dev_err(hba->dev,
5396 				"Unexpected request response code = %x\n",
5397 				result);
5398 			result = DID_ERROR << 16;
5399 			break;
5400 		}
5401 		break;
5402 	case OCS_ABORTED:
5403 		result |= DID_ABORT << 16;
5404 		break;
5405 	case OCS_INVALID_COMMAND_STATUS:
5406 		result |= DID_REQUEUE << 16;
5407 		break;
5408 	case OCS_INVALID_CMD_TABLE_ATTR:
5409 	case OCS_INVALID_PRDT_ATTR:
5410 	case OCS_MISMATCH_DATA_BUF_SIZE:
5411 	case OCS_MISMATCH_RESP_UPIU_SIZE:
5412 	case OCS_PEER_COMM_FAILURE:
5413 	case OCS_FATAL_ERROR:
5414 	case OCS_DEVICE_FATAL_ERROR:
5415 	case OCS_INVALID_CRYPTO_CONFIG:
5416 	case OCS_GENERAL_CRYPTO_ERROR:
5417 	default:
5418 		result |= DID_ERROR << 16;
5419 		dev_err(hba->dev,
5420 				"OCS error from controller = %x for tag %d\n",
5421 				ocs, lrbp->task_tag);
5422 		ufshcd_print_evt_hist(hba);
5423 		ufshcd_print_host_state(hba);
5424 		break;
5425 	} /* end of switch */
5426 
5427 	if ((host_byte(result) != DID_OK) &&
5428 	    (host_byte(result) != DID_REQUEUE) && !hba->silence_err_logs)
5429 		ufshcd_print_tr(hba, lrbp->task_tag, true);
5430 	return result;
5431 }
5432 
5433 static bool ufshcd_is_auto_hibern8_error(struct ufs_hba *hba,
5434 					 u32 intr_mask)
5435 {
5436 	if (!ufshcd_is_auto_hibern8_supported(hba) ||
5437 	    !ufshcd_is_auto_hibern8_enabled(hba))
5438 		return false;
5439 
5440 	if (!(intr_mask & UFSHCD_UIC_HIBERN8_MASK))
5441 		return false;
5442 
5443 	if (hba->active_uic_cmd &&
5444 	    (hba->active_uic_cmd->command == UIC_CMD_DME_HIBER_ENTER ||
5445 	    hba->active_uic_cmd->command == UIC_CMD_DME_HIBER_EXIT))
5446 		return false;
5447 
5448 	return true;
5449 }
5450 
5451 /**
5452  * ufshcd_uic_cmd_compl - handle completion of uic command
5453  * @hba: per adapter instance
5454  * @intr_status: interrupt status generated by the controller
5455  *
5456  * Return:
5457  *  IRQ_HANDLED - If interrupt is valid
5458  *  IRQ_NONE    - If invalid interrupt
5459  */
5460 static irqreturn_t ufshcd_uic_cmd_compl(struct ufs_hba *hba, u32 intr_status)
5461 {
5462 	irqreturn_t retval = IRQ_NONE;
5463 
5464 	spin_lock(hba->host->host_lock);
5465 	if (ufshcd_is_auto_hibern8_error(hba, intr_status))
5466 		hba->errors |= (UFSHCD_UIC_HIBERN8_MASK & intr_status);
5467 
5468 	if ((intr_status & UIC_COMMAND_COMPL) && hba->active_uic_cmd) {
5469 		hba->active_uic_cmd->argument2 |=
5470 			ufshcd_get_uic_cmd_result(hba);
5471 		hba->active_uic_cmd->argument3 =
5472 			ufshcd_get_dme_attr_val(hba);
5473 		if (!hba->uic_async_done)
5474 			hba->active_uic_cmd->cmd_active = 0;
5475 		complete(&hba->active_uic_cmd->done);
5476 		retval = IRQ_HANDLED;
5477 	}
5478 
5479 	if ((intr_status & UFSHCD_UIC_PWR_MASK) && hba->uic_async_done) {
5480 		hba->active_uic_cmd->cmd_active = 0;
5481 		complete(hba->uic_async_done);
5482 		retval = IRQ_HANDLED;
5483 	}
5484 
5485 	if (retval == IRQ_HANDLED)
5486 		ufshcd_add_uic_command_trace(hba, hba->active_uic_cmd,
5487 					     UFS_CMD_COMP);
5488 	spin_unlock(hba->host->host_lock);
5489 	return retval;
5490 }
5491 
5492 /* Release the resources allocated for processing a SCSI command. */
5493 void ufshcd_release_scsi_cmd(struct ufs_hba *hba,
5494 			     struct ufshcd_lrb *lrbp)
5495 {
5496 	struct scsi_cmnd *cmd = lrbp->cmd;
5497 
5498 	scsi_dma_unmap(cmd);
5499 	ufshcd_crypto_clear_prdt(hba, lrbp);
5500 	ufshcd_release(hba);
5501 	ufshcd_clk_scaling_update_busy(hba);
5502 }
5503 
5504 /**
5505  * ufshcd_compl_one_cqe - handle a completion queue entry
5506  * @hba: per adapter instance
5507  * @task_tag: the task tag of the request to be completed
5508  * @cqe: pointer to the completion queue entry
5509  */
5510 void ufshcd_compl_one_cqe(struct ufs_hba *hba, int task_tag,
5511 			  struct cq_entry *cqe)
5512 {
5513 	struct ufshcd_lrb *lrbp;
5514 	struct scsi_cmnd *cmd;
5515 	enum utp_ocs ocs;
5516 
5517 	lrbp = &hba->lrb[task_tag];
5518 	lrbp->compl_time_stamp = ktime_get();
5519 	cmd = lrbp->cmd;
5520 	if (cmd) {
5521 		if (unlikely(ufshcd_should_inform_monitor(hba, lrbp)))
5522 			ufshcd_update_monitor(hba, lrbp);
5523 		ufshcd_add_command_trace(hba, task_tag, UFS_CMD_COMP);
5524 		cmd->result = ufshcd_transfer_rsp_status(hba, lrbp, cqe);
5525 		ufshcd_release_scsi_cmd(hba, lrbp);
5526 		/* Do not touch lrbp after scsi done */
5527 		scsi_done(cmd);
5528 	} else if (hba->dev_cmd.complete) {
5529 		if (cqe) {
5530 			ocs = le32_to_cpu(cqe->status) & MASK_OCS;
5531 			lrbp->utr_descriptor_ptr->header.ocs = ocs;
5532 		}
5533 		complete(hba->dev_cmd.complete);
5534 	}
5535 }
5536 
5537 /**
5538  * __ufshcd_transfer_req_compl - handle SCSI and query command completion
5539  * @hba: per adapter instance
5540  * @completed_reqs: bitmask that indicates which requests to complete
5541  */
5542 static void __ufshcd_transfer_req_compl(struct ufs_hba *hba,
5543 					unsigned long completed_reqs)
5544 {
5545 	int tag;
5546 
5547 	for_each_set_bit(tag, &completed_reqs, hba->nutrs)
5548 		ufshcd_compl_one_cqe(hba, tag, NULL);
5549 }
5550 
5551 /* Any value that is not an existing queue number is fine for this constant. */
5552 enum {
5553 	UFSHCD_POLL_FROM_INTERRUPT_CONTEXT = -1
5554 };
5555 
5556 static void ufshcd_clear_polled(struct ufs_hba *hba,
5557 				unsigned long *completed_reqs)
5558 {
5559 	int tag;
5560 
5561 	for_each_set_bit(tag, completed_reqs, hba->nutrs) {
5562 		struct scsi_cmnd *cmd = hba->lrb[tag].cmd;
5563 
5564 		if (!cmd)
5565 			continue;
5566 		if (scsi_cmd_to_rq(cmd)->cmd_flags & REQ_POLLED)
5567 			__clear_bit(tag, completed_reqs);
5568 	}
5569 }
5570 
5571 /*
5572  * Return: > 0 if one or more commands have been completed or 0 if no
5573  * requests have been completed.
5574  */
5575 static int ufshcd_poll(struct Scsi_Host *shost, unsigned int queue_num)
5576 {
5577 	struct ufs_hba *hba = shost_priv(shost);
5578 	unsigned long completed_reqs, flags;
5579 	u32 tr_doorbell;
5580 	struct ufs_hw_queue *hwq;
5581 
5582 	if (hba->mcq_enabled) {
5583 		hwq = &hba->uhq[queue_num];
5584 
5585 		return ufshcd_mcq_poll_cqe_lock(hba, hwq);
5586 	}
5587 
5588 	spin_lock_irqsave(&hba->outstanding_lock, flags);
5589 	tr_doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
5590 	completed_reqs = ~tr_doorbell & hba->outstanding_reqs;
5591 	WARN_ONCE(completed_reqs & ~hba->outstanding_reqs,
5592 		  "completed: %#lx; outstanding: %#lx\n", completed_reqs,
5593 		  hba->outstanding_reqs);
5594 	if (queue_num == UFSHCD_POLL_FROM_INTERRUPT_CONTEXT) {
5595 		/* Do not complete polled requests from interrupt context. */
5596 		ufshcd_clear_polled(hba, &completed_reqs);
5597 	}
5598 	hba->outstanding_reqs &= ~completed_reqs;
5599 	spin_unlock_irqrestore(&hba->outstanding_lock, flags);
5600 
5601 	if (completed_reqs)
5602 		__ufshcd_transfer_req_compl(hba, completed_reqs);
5603 
5604 	return completed_reqs != 0;
5605 }
5606 
5607 /**
5608  * ufshcd_mcq_compl_pending_transfer - MCQ mode function. It is
5609  * invoked from the error handler context or ufshcd_host_reset_and_restore()
5610  * to complete the pending transfers and free the resources associated with
5611  * the scsi command.
5612  *
5613  * @hba: per adapter instance
5614  * @force_compl: This flag is set to true when invoked
5615  * from ufshcd_host_reset_and_restore() in which case it requires special
5616  * handling because the host controller has been reset by ufshcd_hba_stop().
5617  */
5618 static void ufshcd_mcq_compl_pending_transfer(struct ufs_hba *hba,
5619 					      bool force_compl)
5620 {
5621 	struct ufs_hw_queue *hwq;
5622 	struct ufshcd_lrb *lrbp;
5623 	struct scsi_cmnd *cmd;
5624 	unsigned long flags;
5625 	int tag;
5626 
5627 	for (tag = 0; tag < hba->nutrs; tag++) {
5628 		lrbp = &hba->lrb[tag];
5629 		cmd = lrbp->cmd;
5630 		if (!ufshcd_cmd_inflight(cmd) ||
5631 		    test_bit(SCMD_STATE_COMPLETE, &cmd->state))
5632 			continue;
5633 
5634 		hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(cmd));
5635 
5636 		if (force_compl) {
5637 			ufshcd_mcq_compl_all_cqes_lock(hba, hwq);
5638 			/*
5639 			 * For those cmds of which the cqes are not present
5640 			 * in the cq, complete them explicitly.
5641 			 */
5642 			spin_lock_irqsave(&hwq->cq_lock, flags);
5643 			if (cmd && !test_bit(SCMD_STATE_COMPLETE, &cmd->state)) {
5644 				set_host_byte(cmd, DID_REQUEUE);
5645 				ufshcd_release_scsi_cmd(hba, lrbp);
5646 				scsi_done(cmd);
5647 			}
5648 			spin_unlock_irqrestore(&hwq->cq_lock, flags);
5649 		} else {
5650 			ufshcd_mcq_poll_cqe_lock(hba, hwq);
5651 		}
5652 	}
5653 }
5654 
5655 /**
5656  * ufshcd_transfer_req_compl - handle SCSI and query command completion
5657  * @hba: per adapter instance
5658  *
5659  * Return:
5660  *  IRQ_HANDLED - If interrupt is valid
5661  *  IRQ_NONE    - If invalid interrupt
5662  */
5663 static irqreturn_t ufshcd_transfer_req_compl(struct ufs_hba *hba)
5664 {
5665 	/* Resetting interrupt aggregation counters first and reading the
5666 	 * DOOR_BELL afterward allows us to handle all the completed requests.
5667 	 * In order to prevent other interrupts starvation the DB is read once
5668 	 * after reset. The down side of this solution is the possibility of
5669 	 * false interrupt if device completes another request after resetting
5670 	 * aggregation and before reading the DB.
5671 	 */
5672 	if (ufshcd_is_intr_aggr_allowed(hba) &&
5673 	    !(hba->quirks & UFSHCI_QUIRK_SKIP_RESET_INTR_AGGR))
5674 		ufshcd_reset_intr_aggr(hba);
5675 
5676 	if (ufs_fail_completion(hba))
5677 		return IRQ_HANDLED;
5678 
5679 	/*
5680 	 * Ignore the ufshcd_poll() return value and return IRQ_HANDLED since we
5681 	 * do not want polling to trigger spurious interrupt complaints.
5682 	 */
5683 	ufshcd_poll(hba->host, UFSHCD_POLL_FROM_INTERRUPT_CONTEXT);
5684 
5685 	return IRQ_HANDLED;
5686 }
5687 
5688 int __ufshcd_write_ee_control(struct ufs_hba *hba, u32 ee_ctrl_mask)
5689 {
5690 	return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
5691 				       QUERY_ATTR_IDN_EE_CONTROL, 0, 0,
5692 				       &ee_ctrl_mask);
5693 }
5694 
5695 int ufshcd_write_ee_control(struct ufs_hba *hba)
5696 {
5697 	int err;
5698 
5699 	mutex_lock(&hba->ee_ctrl_mutex);
5700 	err = __ufshcd_write_ee_control(hba, hba->ee_ctrl_mask);
5701 	mutex_unlock(&hba->ee_ctrl_mutex);
5702 	if (err)
5703 		dev_err(hba->dev, "%s: failed to write ee control %d\n",
5704 			__func__, err);
5705 	return err;
5706 }
5707 
5708 int ufshcd_update_ee_control(struct ufs_hba *hba, u16 *mask,
5709 			     const u16 *other_mask, u16 set, u16 clr)
5710 {
5711 	u16 new_mask, ee_ctrl_mask;
5712 	int err = 0;
5713 
5714 	mutex_lock(&hba->ee_ctrl_mutex);
5715 	new_mask = (*mask & ~clr) | set;
5716 	ee_ctrl_mask = new_mask | *other_mask;
5717 	if (ee_ctrl_mask != hba->ee_ctrl_mask)
5718 		err = __ufshcd_write_ee_control(hba, ee_ctrl_mask);
5719 	/* Still need to update 'mask' even if 'ee_ctrl_mask' was unchanged */
5720 	if (!err) {
5721 		hba->ee_ctrl_mask = ee_ctrl_mask;
5722 		*mask = new_mask;
5723 	}
5724 	mutex_unlock(&hba->ee_ctrl_mutex);
5725 	return err;
5726 }
5727 
5728 /**
5729  * ufshcd_disable_ee - disable exception event
5730  * @hba: per-adapter instance
5731  * @mask: exception event to disable
5732  *
5733  * Disables exception event in the device so that the EVENT_ALERT
5734  * bit is not set.
5735  *
5736  * Return: zero on success, non-zero error value on failure.
5737  */
5738 static inline int ufshcd_disable_ee(struct ufs_hba *hba, u16 mask)
5739 {
5740 	return ufshcd_update_ee_drv_mask(hba, 0, mask);
5741 }
5742 
5743 /**
5744  * ufshcd_enable_ee - enable exception event
5745  * @hba: per-adapter instance
5746  * @mask: exception event to enable
5747  *
5748  * Enable corresponding exception event in the device to allow
5749  * device to alert host in critical scenarios.
5750  *
5751  * Return: zero on success, non-zero error value on failure.
5752  */
5753 static inline int ufshcd_enable_ee(struct ufs_hba *hba, u16 mask)
5754 {
5755 	return ufshcd_update_ee_drv_mask(hba, mask, 0);
5756 }
5757 
5758 /**
5759  * ufshcd_enable_auto_bkops - Allow device managed BKOPS
5760  * @hba: per-adapter instance
5761  *
5762  * Allow device to manage background operations on its own. Enabling
5763  * this might lead to inconsistent latencies during normal data transfers
5764  * as the device is allowed to manage its own way of handling background
5765  * operations.
5766  *
5767  * Return: zero on success, non-zero on failure.
5768  */
5769 static int ufshcd_enable_auto_bkops(struct ufs_hba *hba)
5770 {
5771 	int err = 0;
5772 
5773 	if (hba->auto_bkops_enabled)
5774 		goto out;
5775 
5776 	err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG,
5777 			QUERY_FLAG_IDN_BKOPS_EN, 0, NULL);
5778 	if (err) {
5779 		dev_err(hba->dev, "%s: failed to enable bkops %d\n",
5780 				__func__, err);
5781 		goto out;
5782 	}
5783 
5784 	hba->auto_bkops_enabled = true;
5785 	trace_ufshcd_auto_bkops_state(dev_name(hba->dev), "Enabled");
5786 
5787 	/* No need of URGENT_BKOPS exception from the device */
5788 	err = ufshcd_disable_ee(hba, MASK_EE_URGENT_BKOPS);
5789 	if (err)
5790 		dev_err(hba->dev, "%s: failed to disable exception event %d\n",
5791 				__func__, err);
5792 out:
5793 	return err;
5794 }
5795 
5796 /**
5797  * ufshcd_disable_auto_bkops - block device in doing background operations
5798  * @hba: per-adapter instance
5799  *
5800  * Disabling background operations improves command response latency but
5801  * has drawback of device moving into critical state where the device is
5802  * not-operable. Make sure to call ufshcd_enable_auto_bkops() whenever the
5803  * host is idle so that BKOPS are managed effectively without any negative
5804  * impacts.
5805  *
5806  * Return: zero on success, non-zero on failure.
5807  */
5808 static int ufshcd_disable_auto_bkops(struct ufs_hba *hba)
5809 {
5810 	int err = 0;
5811 
5812 	if (!hba->auto_bkops_enabled)
5813 		goto out;
5814 
5815 	/*
5816 	 * If host assisted BKOPs is to be enabled, make sure
5817 	 * urgent bkops exception is allowed.
5818 	 */
5819 	err = ufshcd_enable_ee(hba, MASK_EE_URGENT_BKOPS);
5820 	if (err) {
5821 		dev_err(hba->dev, "%s: failed to enable exception event %d\n",
5822 				__func__, err);
5823 		goto out;
5824 	}
5825 
5826 	err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_CLEAR_FLAG,
5827 			QUERY_FLAG_IDN_BKOPS_EN, 0, NULL);
5828 	if (err) {
5829 		dev_err(hba->dev, "%s: failed to disable bkops %d\n",
5830 				__func__, err);
5831 		ufshcd_disable_ee(hba, MASK_EE_URGENT_BKOPS);
5832 		goto out;
5833 	}
5834 
5835 	hba->auto_bkops_enabled = false;
5836 	trace_ufshcd_auto_bkops_state(dev_name(hba->dev), "Disabled");
5837 	hba->is_urgent_bkops_lvl_checked = false;
5838 out:
5839 	return err;
5840 }
5841 
5842 /**
5843  * ufshcd_force_reset_auto_bkops - force reset auto bkops state
5844  * @hba: per adapter instance
5845  *
5846  * After a device reset the device may toggle the BKOPS_EN flag
5847  * to default value. The s/w tracking variables should be updated
5848  * as well. This function would change the auto-bkops state based on
5849  * UFSHCD_CAP_KEEP_AUTO_BKOPS_ENABLED_EXCEPT_SUSPEND.
5850  */
5851 static void ufshcd_force_reset_auto_bkops(struct ufs_hba *hba)
5852 {
5853 	if (ufshcd_keep_autobkops_enabled_except_suspend(hba)) {
5854 		hba->auto_bkops_enabled = false;
5855 		hba->ee_ctrl_mask |= MASK_EE_URGENT_BKOPS;
5856 		ufshcd_enable_auto_bkops(hba);
5857 	} else {
5858 		hba->auto_bkops_enabled = true;
5859 		hba->ee_ctrl_mask &= ~MASK_EE_URGENT_BKOPS;
5860 		ufshcd_disable_auto_bkops(hba);
5861 	}
5862 	hba->urgent_bkops_lvl = BKOPS_STATUS_PERF_IMPACT;
5863 	hba->is_urgent_bkops_lvl_checked = false;
5864 }
5865 
5866 static inline int ufshcd_get_bkops_status(struct ufs_hba *hba, u32 *status)
5867 {
5868 	return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5869 			QUERY_ATTR_IDN_BKOPS_STATUS, 0, 0, status);
5870 }
5871 
5872 /**
5873  * ufshcd_bkops_ctrl - control the auto bkops based on current bkops status
5874  * @hba: per-adapter instance
5875  * @status: bkops_status value
5876  *
5877  * Read the bkops_status from the UFS device and Enable fBackgroundOpsEn
5878  * flag in the device to permit background operations if the device
5879  * bkops_status is greater than or equal to "status" argument passed to
5880  * this function, disable otherwise.
5881  *
5882  * Return: 0 for success, non-zero in case of failure.
5883  *
5884  * NOTE: Caller of this function can check the "hba->auto_bkops_enabled" flag
5885  * to know whether auto bkops is enabled or disabled after this function
5886  * returns control to it.
5887  */
5888 static int ufshcd_bkops_ctrl(struct ufs_hba *hba,
5889 			     enum bkops_status status)
5890 {
5891 	int err;
5892 	u32 curr_status = 0;
5893 
5894 	err = ufshcd_get_bkops_status(hba, &curr_status);
5895 	if (err) {
5896 		dev_err(hba->dev, "%s: failed to get BKOPS status %d\n",
5897 				__func__, err);
5898 		goto out;
5899 	} else if (curr_status > BKOPS_STATUS_MAX) {
5900 		dev_err(hba->dev, "%s: invalid BKOPS status %d\n",
5901 				__func__, curr_status);
5902 		err = -EINVAL;
5903 		goto out;
5904 	}
5905 
5906 	if (curr_status >= status)
5907 		err = ufshcd_enable_auto_bkops(hba);
5908 	else
5909 		err = ufshcd_disable_auto_bkops(hba);
5910 out:
5911 	return err;
5912 }
5913 
5914 /**
5915  * ufshcd_urgent_bkops - handle urgent bkops exception event
5916  * @hba: per-adapter instance
5917  *
5918  * Enable fBackgroundOpsEn flag in the device to permit background
5919  * operations.
5920  *
5921  * If BKOPs is enabled, this function returns 0, 1 if the bkops in not enabled
5922  * and negative error value for any other failure.
5923  *
5924  * Return: 0 upon success; < 0 upon failure.
5925  */
5926 static int ufshcd_urgent_bkops(struct ufs_hba *hba)
5927 {
5928 	return ufshcd_bkops_ctrl(hba, hba->urgent_bkops_lvl);
5929 }
5930 
5931 static inline int ufshcd_get_ee_status(struct ufs_hba *hba, u32 *status)
5932 {
5933 	return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5934 			QUERY_ATTR_IDN_EE_STATUS, 0, 0, status);
5935 }
5936 
5937 static void ufshcd_bkops_exception_event_handler(struct ufs_hba *hba)
5938 {
5939 	int err;
5940 	u32 curr_status = 0;
5941 
5942 	if (hba->is_urgent_bkops_lvl_checked)
5943 		goto enable_auto_bkops;
5944 
5945 	err = ufshcd_get_bkops_status(hba, &curr_status);
5946 	if (err) {
5947 		dev_err(hba->dev, "%s: failed to get BKOPS status %d\n",
5948 				__func__, err);
5949 		goto out;
5950 	}
5951 
5952 	/*
5953 	 * We are seeing that some devices are raising the urgent bkops
5954 	 * exception events even when BKOPS status doesn't indicate performace
5955 	 * impacted or critical. Handle these device by determining their urgent
5956 	 * bkops status at runtime.
5957 	 */
5958 	if (curr_status < BKOPS_STATUS_PERF_IMPACT) {
5959 		dev_err(hba->dev, "%s: device raised urgent BKOPS exception for bkops status %d\n",
5960 				__func__, curr_status);
5961 		/* update the current status as the urgent bkops level */
5962 		hba->urgent_bkops_lvl = curr_status;
5963 		hba->is_urgent_bkops_lvl_checked = true;
5964 	}
5965 
5966 enable_auto_bkops:
5967 	err = ufshcd_enable_auto_bkops(hba);
5968 out:
5969 	if (err < 0)
5970 		dev_err(hba->dev, "%s: failed to handle urgent bkops %d\n",
5971 				__func__, err);
5972 }
5973 
5974 static void ufshcd_temp_exception_event_handler(struct ufs_hba *hba, u16 status)
5975 {
5976 	u32 value;
5977 
5978 	if (ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5979 				QUERY_ATTR_IDN_CASE_ROUGH_TEMP, 0, 0, &value))
5980 		return;
5981 
5982 	dev_info(hba->dev, "exception Tcase %d\n", value - 80);
5983 
5984 	ufs_hwmon_notify_event(hba, status & MASK_EE_URGENT_TEMP);
5985 
5986 	/*
5987 	 * A placeholder for the platform vendors to add whatever additional
5988 	 * steps required
5989 	 */
5990 }
5991 
5992 static int __ufshcd_wb_toggle(struct ufs_hba *hba, bool set, enum flag_idn idn)
5993 {
5994 	u8 index;
5995 	enum query_opcode opcode = set ? UPIU_QUERY_OPCODE_SET_FLAG :
5996 				   UPIU_QUERY_OPCODE_CLEAR_FLAG;
5997 
5998 	index = ufshcd_wb_get_query_index(hba);
5999 	return ufshcd_query_flag_retry(hba, opcode, idn, index, NULL);
6000 }
6001 
6002 int ufshcd_wb_toggle(struct ufs_hba *hba, bool enable)
6003 {
6004 	int ret;
6005 
6006 	if (!ufshcd_is_wb_allowed(hba) ||
6007 	    hba->dev_info.wb_enabled == enable)
6008 		return 0;
6009 
6010 	ret = __ufshcd_wb_toggle(hba, enable, QUERY_FLAG_IDN_WB_EN);
6011 	if (ret) {
6012 		dev_err(hba->dev, "%s: Write Booster %s failed %d\n",
6013 			__func__, enable ? "enabling" : "disabling", ret);
6014 		return ret;
6015 	}
6016 
6017 	hba->dev_info.wb_enabled = enable;
6018 	dev_dbg(hba->dev, "%s: Write Booster %s\n",
6019 			__func__, enable ? "enabled" : "disabled");
6020 
6021 	return ret;
6022 }
6023 
6024 static void ufshcd_wb_toggle_buf_flush_during_h8(struct ufs_hba *hba,
6025 						 bool enable)
6026 {
6027 	int ret;
6028 
6029 	ret = __ufshcd_wb_toggle(hba, enable,
6030 			QUERY_FLAG_IDN_WB_BUFF_FLUSH_DURING_HIBERN8);
6031 	if (ret) {
6032 		dev_err(hba->dev, "%s: WB-Buf Flush during H8 %s failed %d\n",
6033 			__func__, enable ? "enabling" : "disabling", ret);
6034 		return;
6035 	}
6036 	dev_dbg(hba->dev, "%s: WB-Buf Flush during H8 %s\n",
6037 			__func__, enable ? "enabled" : "disabled");
6038 }
6039 
6040 int ufshcd_wb_toggle_buf_flush(struct ufs_hba *hba, bool enable)
6041 {
6042 	int ret;
6043 
6044 	if (!ufshcd_is_wb_allowed(hba) ||
6045 	    hba->dev_info.wb_buf_flush_enabled == enable)
6046 		return 0;
6047 
6048 	ret = __ufshcd_wb_toggle(hba, enable, QUERY_FLAG_IDN_WB_BUFF_FLUSH_EN);
6049 	if (ret) {
6050 		dev_err(hba->dev, "%s: WB-Buf Flush %s failed %d\n",
6051 			__func__, enable ? "enabling" : "disabling", ret);
6052 		return ret;
6053 	}
6054 
6055 	hba->dev_info.wb_buf_flush_enabled = enable;
6056 	dev_dbg(hba->dev, "%s: WB-Buf Flush %s\n",
6057 			__func__, enable ? "enabled" : "disabled");
6058 
6059 	return ret;
6060 }
6061 
6062 static bool ufshcd_wb_presrv_usrspc_keep_vcc_on(struct ufs_hba *hba,
6063 						u32 avail_buf)
6064 {
6065 	u32 cur_buf;
6066 	int ret;
6067 	u8 index;
6068 
6069 	index = ufshcd_wb_get_query_index(hba);
6070 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
6071 					      QUERY_ATTR_IDN_CURR_WB_BUFF_SIZE,
6072 					      index, 0, &cur_buf);
6073 	if (ret) {
6074 		dev_err(hba->dev, "%s: dCurWriteBoosterBufferSize read failed %d\n",
6075 			__func__, ret);
6076 		return false;
6077 	}
6078 
6079 	if (!cur_buf) {
6080 		dev_info(hba->dev, "dCurWBBuf: %d WB disabled until free-space is available\n",
6081 			 cur_buf);
6082 		return false;
6083 	}
6084 	/* Let it continue to flush when available buffer exceeds threshold */
6085 	return avail_buf < hba->vps->wb_flush_threshold;
6086 }
6087 
6088 static void ufshcd_wb_force_disable(struct ufs_hba *hba)
6089 {
6090 	if (ufshcd_is_wb_buf_flush_allowed(hba))
6091 		ufshcd_wb_toggle_buf_flush(hba, false);
6092 
6093 	ufshcd_wb_toggle_buf_flush_during_h8(hba, false);
6094 	ufshcd_wb_toggle(hba, false);
6095 	hba->caps &= ~UFSHCD_CAP_WB_EN;
6096 
6097 	dev_info(hba->dev, "%s: WB force disabled\n", __func__);
6098 }
6099 
6100 static bool ufshcd_is_wb_buf_lifetime_available(struct ufs_hba *hba)
6101 {
6102 	u32 lifetime;
6103 	int ret;
6104 	u8 index;
6105 
6106 	index = ufshcd_wb_get_query_index(hba);
6107 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
6108 				      QUERY_ATTR_IDN_WB_BUFF_LIFE_TIME_EST,
6109 				      index, 0, &lifetime);
6110 	if (ret) {
6111 		dev_err(hba->dev,
6112 			"%s: bWriteBoosterBufferLifeTimeEst read failed %d\n",
6113 			__func__, ret);
6114 		return false;
6115 	}
6116 
6117 	if (lifetime == UFS_WB_EXCEED_LIFETIME) {
6118 		dev_err(hba->dev, "%s: WB buf lifetime is exhausted 0x%02X\n",
6119 			__func__, lifetime);
6120 		return false;
6121 	}
6122 
6123 	dev_dbg(hba->dev, "%s: WB buf lifetime is 0x%02X\n",
6124 		__func__, lifetime);
6125 
6126 	return true;
6127 }
6128 
6129 static bool ufshcd_wb_need_flush(struct ufs_hba *hba)
6130 {
6131 	int ret;
6132 	u32 avail_buf;
6133 	u8 index;
6134 
6135 	if (!ufshcd_is_wb_allowed(hba))
6136 		return false;
6137 
6138 	if (!ufshcd_is_wb_buf_lifetime_available(hba)) {
6139 		ufshcd_wb_force_disable(hba);
6140 		return false;
6141 	}
6142 
6143 	/*
6144 	 * The ufs device needs the vcc to be ON to flush.
6145 	 * With user-space reduction enabled, it's enough to enable flush
6146 	 * by checking only the available buffer. The threshold
6147 	 * defined here is > 90% full.
6148 	 * With user-space preserved enabled, the current-buffer
6149 	 * should be checked too because the wb buffer size can reduce
6150 	 * when disk tends to be full. This info is provided by current
6151 	 * buffer (dCurrentWriteBoosterBufferSize). There's no point in
6152 	 * keeping vcc on when current buffer is empty.
6153 	 */
6154 	index = ufshcd_wb_get_query_index(hba);
6155 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
6156 				      QUERY_ATTR_IDN_AVAIL_WB_BUFF_SIZE,
6157 				      index, 0, &avail_buf);
6158 	if (ret) {
6159 		dev_warn(hba->dev, "%s: dAvailableWriteBoosterBufferSize read failed %d\n",
6160 			 __func__, ret);
6161 		return false;
6162 	}
6163 
6164 	if (!hba->dev_info.b_presrv_uspc_en)
6165 		return avail_buf <= UFS_WB_BUF_REMAIN_PERCENT(10);
6166 
6167 	return ufshcd_wb_presrv_usrspc_keep_vcc_on(hba, avail_buf);
6168 }
6169 
6170 static void ufshcd_rpm_dev_flush_recheck_work(struct work_struct *work)
6171 {
6172 	struct ufs_hba *hba = container_of(to_delayed_work(work),
6173 					   struct ufs_hba,
6174 					   rpm_dev_flush_recheck_work);
6175 	/*
6176 	 * To prevent unnecessary VCC power drain after device finishes
6177 	 * WriteBooster buffer flush or Auto BKOPs, force runtime resume
6178 	 * after a certain delay to recheck the threshold by next runtime
6179 	 * suspend.
6180 	 */
6181 	ufshcd_rpm_get_sync(hba);
6182 	ufshcd_rpm_put_sync(hba);
6183 }
6184 
6185 /**
6186  * ufshcd_exception_event_handler - handle exceptions raised by device
6187  * @work: pointer to work data
6188  *
6189  * Read bExceptionEventStatus attribute from the device and handle the
6190  * exception event accordingly.
6191  */
6192 static void ufshcd_exception_event_handler(struct work_struct *work)
6193 {
6194 	struct ufs_hba *hba;
6195 	int err;
6196 	u32 status = 0;
6197 	hba = container_of(work, struct ufs_hba, eeh_work);
6198 
6199 	ufshcd_scsi_block_requests(hba);
6200 	err = ufshcd_get_ee_status(hba, &status);
6201 	if (err) {
6202 		dev_err(hba->dev, "%s: failed to get exception status %d\n",
6203 				__func__, err);
6204 		goto out;
6205 	}
6206 
6207 	trace_ufshcd_exception_event(dev_name(hba->dev), status);
6208 
6209 	if (status & hba->ee_drv_mask & MASK_EE_URGENT_BKOPS)
6210 		ufshcd_bkops_exception_event_handler(hba);
6211 
6212 	if (status & hba->ee_drv_mask & MASK_EE_URGENT_TEMP)
6213 		ufshcd_temp_exception_event_handler(hba, status);
6214 
6215 	ufs_debugfs_exception_event(hba, status);
6216 out:
6217 	ufshcd_scsi_unblock_requests(hba);
6218 }
6219 
6220 /* Complete requests that have door-bell cleared */
6221 static void ufshcd_complete_requests(struct ufs_hba *hba, bool force_compl)
6222 {
6223 	if (hba->mcq_enabled)
6224 		ufshcd_mcq_compl_pending_transfer(hba, force_compl);
6225 	else
6226 		ufshcd_transfer_req_compl(hba);
6227 
6228 	ufshcd_tmc_handler(hba);
6229 }
6230 
6231 /**
6232  * ufshcd_quirk_dl_nac_errors - This function checks if error handling is
6233  *				to recover from the DL NAC errors or not.
6234  * @hba: per-adapter instance
6235  *
6236  * Return: true if error handling is required, false otherwise.
6237  */
6238 static bool ufshcd_quirk_dl_nac_errors(struct ufs_hba *hba)
6239 {
6240 	unsigned long flags;
6241 	bool err_handling = true;
6242 
6243 	spin_lock_irqsave(hba->host->host_lock, flags);
6244 	/*
6245 	 * UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS only workaround the
6246 	 * device fatal error and/or DL NAC & REPLAY timeout errors.
6247 	 */
6248 	if (hba->saved_err & (CONTROLLER_FATAL_ERROR | SYSTEM_BUS_FATAL_ERROR))
6249 		goto out;
6250 
6251 	if ((hba->saved_err & DEVICE_FATAL_ERROR) ||
6252 	    ((hba->saved_err & UIC_ERROR) &&
6253 	     (hba->saved_uic_err & UFSHCD_UIC_DL_TCx_REPLAY_ERROR)))
6254 		goto out;
6255 
6256 	if ((hba->saved_err & UIC_ERROR) &&
6257 	    (hba->saved_uic_err & UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)) {
6258 		int err;
6259 		/*
6260 		 * wait for 50ms to see if we can get any other errors or not.
6261 		 */
6262 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6263 		msleep(50);
6264 		spin_lock_irqsave(hba->host->host_lock, flags);
6265 
6266 		/*
6267 		 * now check if we have got any other severe errors other than
6268 		 * DL NAC error?
6269 		 */
6270 		if ((hba->saved_err & INT_FATAL_ERRORS) ||
6271 		    ((hba->saved_err & UIC_ERROR) &&
6272 		    (hba->saved_uic_err & ~UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)))
6273 			goto out;
6274 
6275 		/*
6276 		 * As DL NAC is the only error received so far, send out NOP
6277 		 * command to confirm if link is still active or not.
6278 		 *   - If we don't get any response then do error recovery.
6279 		 *   - If we get response then clear the DL NAC error bit.
6280 		 */
6281 
6282 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6283 		err = ufshcd_verify_dev_init(hba);
6284 		spin_lock_irqsave(hba->host->host_lock, flags);
6285 
6286 		if (err)
6287 			goto out;
6288 
6289 		/* Link seems to be alive hence ignore the DL NAC errors */
6290 		if (hba->saved_uic_err == UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)
6291 			hba->saved_err &= ~UIC_ERROR;
6292 		/* clear NAC error */
6293 		hba->saved_uic_err &= ~UFSHCD_UIC_DL_NAC_RECEIVED_ERROR;
6294 		if (!hba->saved_uic_err)
6295 			err_handling = false;
6296 	}
6297 out:
6298 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6299 	return err_handling;
6300 }
6301 
6302 /* host lock must be held before calling this func */
6303 static inline bool ufshcd_is_saved_err_fatal(struct ufs_hba *hba)
6304 {
6305 	return (hba->saved_uic_err & UFSHCD_UIC_DL_PA_INIT_ERROR) ||
6306 	       (hba->saved_err & (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK));
6307 }
6308 
6309 void ufshcd_schedule_eh_work(struct ufs_hba *hba)
6310 {
6311 	lockdep_assert_held(hba->host->host_lock);
6312 
6313 	/* handle fatal errors only when link is not in error state */
6314 	if (hba->ufshcd_state != UFSHCD_STATE_ERROR) {
6315 		if (hba->force_reset || ufshcd_is_link_broken(hba) ||
6316 		    ufshcd_is_saved_err_fatal(hba))
6317 			hba->ufshcd_state = UFSHCD_STATE_EH_SCHEDULED_FATAL;
6318 		else
6319 			hba->ufshcd_state = UFSHCD_STATE_EH_SCHEDULED_NON_FATAL;
6320 		queue_work(hba->eh_wq, &hba->eh_work);
6321 	}
6322 }
6323 
6324 static void ufshcd_force_error_recovery(struct ufs_hba *hba)
6325 {
6326 	spin_lock_irq(hba->host->host_lock);
6327 	hba->force_reset = true;
6328 	ufshcd_schedule_eh_work(hba);
6329 	spin_unlock_irq(hba->host->host_lock);
6330 }
6331 
6332 static void ufshcd_clk_scaling_allow(struct ufs_hba *hba, bool allow)
6333 {
6334 	mutex_lock(&hba->wb_mutex);
6335 	down_write(&hba->clk_scaling_lock);
6336 	hba->clk_scaling.is_allowed = allow;
6337 	up_write(&hba->clk_scaling_lock);
6338 	mutex_unlock(&hba->wb_mutex);
6339 }
6340 
6341 static void ufshcd_clk_scaling_suspend(struct ufs_hba *hba, bool suspend)
6342 {
6343 	if (suspend) {
6344 		if (hba->clk_scaling.is_enabled)
6345 			ufshcd_suspend_clkscaling(hba);
6346 		ufshcd_clk_scaling_allow(hba, false);
6347 	} else {
6348 		ufshcd_clk_scaling_allow(hba, true);
6349 		if (hba->clk_scaling.is_enabled)
6350 			ufshcd_resume_clkscaling(hba);
6351 	}
6352 }
6353 
6354 static void ufshcd_err_handling_prepare(struct ufs_hba *hba)
6355 {
6356 	ufshcd_rpm_get_sync(hba);
6357 	if (pm_runtime_status_suspended(&hba->ufs_device_wlun->sdev_gendev) ||
6358 	    hba->is_sys_suspended) {
6359 		enum ufs_pm_op pm_op;
6360 
6361 		/*
6362 		 * Don't assume anything of resume, if
6363 		 * resume fails, irq and clocks can be OFF, and powers
6364 		 * can be OFF or in LPM.
6365 		 */
6366 		ufshcd_setup_hba_vreg(hba, true);
6367 		ufshcd_enable_irq(hba);
6368 		ufshcd_setup_vreg(hba, true);
6369 		ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq);
6370 		ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq2);
6371 		ufshcd_hold(hba);
6372 		if (!ufshcd_is_clkgating_allowed(hba))
6373 			ufshcd_setup_clocks(hba, true);
6374 		pm_op = hba->is_sys_suspended ? UFS_SYSTEM_PM : UFS_RUNTIME_PM;
6375 		ufshcd_vops_resume(hba, pm_op);
6376 	} else {
6377 		ufshcd_hold(hba);
6378 		if (ufshcd_is_clkscaling_supported(hba) &&
6379 		    hba->clk_scaling.is_enabled)
6380 			ufshcd_suspend_clkscaling(hba);
6381 		ufshcd_clk_scaling_allow(hba, false);
6382 	}
6383 	ufshcd_scsi_block_requests(hba);
6384 	/* Wait for ongoing ufshcd_queuecommand() calls to finish. */
6385 	blk_mq_wait_quiesce_done(&hba->host->tag_set);
6386 	cancel_work_sync(&hba->eeh_work);
6387 }
6388 
6389 static void ufshcd_err_handling_unprepare(struct ufs_hba *hba)
6390 {
6391 	ufshcd_scsi_unblock_requests(hba);
6392 	ufshcd_release(hba);
6393 	if (ufshcd_is_clkscaling_supported(hba))
6394 		ufshcd_clk_scaling_suspend(hba, false);
6395 	ufshcd_rpm_put(hba);
6396 }
6397 
6398 static inline bool ufshcd_err_handling_should_stop(struct ufs_hba *hba)
6399 {
6400 	return (!hba->is_powered || hba->shutting_down ||
6401 		!hba->ufs_device_wlun ||
6402 		hba->ufshcd_state == UFSHCD_STATE_ERROR ||
6403 		(!(hba->saved_err || hba->saved_uic_err || hba->force_reset ||
6404 		   ufshcd_is_link_broken(hba))));
6405 }
6406 
6407 #ifdef CONFIG_PM
6408 static void ufshcd_recover_pm_error(struct ufs_hba *hba)
6409 {
6410 	struct Scsi_Host *shost = hba->host;
6411 	struct scsi_device *sdev;
6412 	struct request_queue *q;
6413 	int ret;
6414 
6415 	hba->is_sys_suspended = false;
6416 	/*
6417 	 * Set RPM status of wlun device to RPM_ACTIVE,
6418 	 * this also clears its runtime error.
6419 	 */
6420 	ret = pm_runtime_set_active(&hba->ufs_device_wlun->sdev_gendev);
6421 
6422 	/* hba device might have a runtime error otherwise */
6423 	if (ret)
6424 		ret = pm_runtime_set_active(hba->dev);
6425 	/*
6426 	 * If wlun device had runtime error, we also need to resume those
6427 	 * consumer scsi devices in case any of them has failed to be
6428 	 * resumed due to supplier runtime resume failure. This is to unblock
6429 	 * blk_queue_enter in case there are bios waiting inside it.
6430 	 */
6431 	if (!ret) {
6432 		shost_for_each_device(sdev, shost) {
6433 			q = sdev->request_queue;
6434 			if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
6435 				       q->rpm_status == RPM_SUSPENDING))
6436 				pm_request_resume(q->dev);
6437 		}
6438 	}
6439 }
6440 #else
6441 static inline void ufshcd_recover_pm_error(struct ufs_hba *hba)
6442 {
6443 }
6444 #endif
6445 
6446 static bool ufshcd_is_pwr_mode_restore_needed(struct ufs_hba *hba)
6447 {
6448 	struct ufs_pa_layer_attr *pwr_info = &hba->pwr_info;
6449 	u32 mode;
6450 
6451 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_PWRMODE), &mode);
6452 
6453 	if (pwr_info->pwr_rx != ((mode >> PWRMODE_RX_OFFSET) & PWRMODE_MASK))
6454 		return true;
6455 
6456 	if (pwr_info->pwr_tx != (mode & PWRMODE_MASK))
6457 		return true;
6458 
6459 	return false;
6460 }
6461 
6462 static bool ufshcd_abort_one(struct request *rq, void *priv)
6463 {
6464 	int *ret = priv;
6465 	u32 tag = rq->tag;
6466 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
6467 	struct scsi_device *sdev = cmd->device;
6468 	struct Scsi_Host *shost = sdev->host;
6469 	struct ufs_hba *hba = shost_priv(shost);
6470 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
6471 	struct ufs_hw_queue *hwq;
6472 	unsigned long flags;
6473 
6474 	*ret = ufshcd_try_to_abort_task(hba, tag);
6475 	dev_err(hba->dev, "Aborting tag %d / CDB %#02x %s\n", tag,
6476 		hba->lrb[tag].cmd ? hba->lrb[tag].cmd->cmnd[0] : -1,
6477 		*ret ? "failed" : "succeeded");
6478 
6479 	/* Release cmd in MCQ mode if abort succeeds */
6480 	if (hba->mcq_enabled && (*ret == 0)) {
6481 		hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(lrbp->cmd));
6482 		if (!hwq)
6483 			return 0;
6484 		spin_lock_irqsave(&hwq->cq_lock, flags);
6485 		if (ufshcd_cmd_inflight(lrbp->cmd))
6486 			ufshcd_release_scsi_cmd(hba, lrbp);
6487 		spin_unlock_irqrestore(&hwq->cq_lock, flags);
6488 	}
6489 
6490 	return *ret == 0;
6491 }
6492 
6493 /**
6494  * ufshcd_abort_all - Abort all pending commands.
6495  * @hba: Host bus adapter pointer.
6496  *
6497  * Return: true if and only if the host controller needs to be reset.
6498  */
6499 static bool ufshcd_abort_all(struct ufs_hba *hba)
6500 {
6501 	int tag, ret = 0;
6502 
6503 	blk_mq_tagset_busy_iter(&hba->host->tag_set, ufshcd_abort_one, &ret);
6504 	if (ret)
6505 		goto out;
6506 
6507 	/* Clear pending task management requests */
6508 	for_each_set_bit(tag, &hba->outstanding_tasks, hba->nutmrs) {
6509 		ret = ufshcd_clear_tm_cmd(hba, tag);
6510 		if (ret)
6511 			goto out;
6512 	}
6513 
6514 out:
6515 	/* Complete the requests that are cleared by s/w */
6516 	ufshcd_complete_requests(hba, false);
6517 
6518 	return ret != 0;
6519 }
6520 
6521 /**
6522  * ufshcd_err_handler - handle UFS errors that require s/w attention
6523  * @work: pointer to work structure
6524  */
6525 static void ufshcd_err_handler(struct work_struct *work)
6526 {
6527 	int retries = MAX_ERR_HANDLER_RETRIES;
6528 	struct ufs_hba *hba;
6529 	unsigned long flags;
6530 	bool needs_restore;
6531 	bool needs_reset;
6532 	int pmc_err;
6533 
6534 	hba = container_of(work, struct ufs_hba, eh_work);
6535 
6536 	dev_info(hba->dev,
6537 		 "%s started; HBA state %s; powered %d; shutting down %d; saved_err = %d; saved_uic_err = %d; force_reset = %d%s\n",
6538 		 __func__, ufshcd_state_name[hba->ufshcd_state],
6539 		 hba->is_powered, hba->shutting_down, hba->saved_err,
6540 		 hba->saved_uic_err, hba->force_reset,
6541 		 ufshcd_is_link_broken(hba) ? "; link is broken" : "");
6542 
6543 	down(&hba->host_sem);
6544 	spin_lock_irqsave(hba->host->host_lock, flags);
6545 	if (ufshcd_err_handling_should_stop(hba)) {
6546 		if (hba->ufshcd_state != UFSHCD_STATE_ERROR)
6547 			hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
6548 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6549 		up(&hba->host_sem);
6550 		return;
6551 	}
6552 	ufshcd_set_eh_in_progress(hba);
6553 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6554 	ufshcd_err_handling_prepare(hba);
6555 	/* Complete requests that have door-bell cleared by h/w */
6556 	ufshcd_complete_requests(hba, false);
6557 	spin_lock_irqsave(hba->host->host_lock, flags);
6558 again:
6559 	needs_restore = false;
6560 	needs_reset = false;
6561 
6562 	if (hba->ufshcd_state != UFSHCD_STATE_ERROR)
6563 		hba->ufshcd_state = UFSHCD_STATE_RESET;
6564 	/*
6565 	 * A full reset and restore might have happened after preparation
6566 	 * is finished, double check whether we should stop.
6567 	 */
6568 	if (ufshcd_err_handling_should_stop(hba))
6569 		goto skip_err_handling;
6570 
6571 	if ((hba->dev_quirks & UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS) &&
6572 	    !hba->force_reset) {
6573 		bool ret;
6574 
6575 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6576 		/* release the lock as ufshcd_quirk_dl_nac_errors() may sleep */
6577 		ret = ufshcd_quirk_dl_nac_errors(hba);
6578 		spin_lock_irqsave(hba->host->host_lock, flags);
6579 		if (!ret && ufshcd_err_handling_should_stop(hba))
6580 			goto skip_err_handling;
6581 	}
6582 
6583 	if ((hba->saved_err & (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK)) ||
6584 	    (hba->saved_uic_err &&
6585 	     (hba->saved_uic_err != UFSHCD_UIC_PA_GENERIC_ERROR))) {
6586 		bool pr_prdt = !!(hba->saved_err & SYSTEM_BUS_FATAL_ERROR);
6587 
6588 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6589 		ufshcd_print_host_state(hba);
6590 		ufshcd_print_pwr_info(hba);
6591 		ufshcd_print_evt_hist(hba);
6592 		ufshcd_print_tmrs(hba, hba->outstanding_tasks);
6593 		ufshcd_print_trs_all(hba, pr_prdt);
6594 		spin_lock_irqsave(hba->host->host_lock, flags);
6595 	}
6596 
6597 	/*
6598 	 * if host reset is required then skip clearing the pending
6599 	 * transfers forcefully because they will get cleared during
6600 	 * host reset and restore
6601 	 */
6602 	if (hba->force_reset || ufshcd_is_link_broken(hba) ||
6603 	    ufshcd_is_saved_err_fatal(hba) ||
6604 	    ((hba->saved_err & UIC_ERROR) &&
6605 	     (hba->saved_uic_err & (UFSHCD_UIC_DL_NAC_RECEIVED_ERROR |
6606 				    UFSHCD_UIC_DL_TCx_REPLAY_ERROR)))) {
6607 		needs_reset = true;
6608 		goto do_reset;
6609 	}
6610 
6611 	/*
6612 	 * If LINERESET was caught, UFS might have been put to PWM mode,
6613 	 * check if power mode restore is needed.
6614 	 */
6615 	if (hba->saved_uic_err & UFSHCD_UIC_PA_GENERIC_ERROR) {
6616 		hba->saved_uic_err &= ~UFSHCD_UIC_PA_GENERIC_ERROR;
6617 		if (!hba->saved_uic_err)
6618 			hba->saved_err &= ~UIC_ERROR;
6619 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6620 		if (ufshcd_is_pwr_mode_restore_needed(hba))
6621 			needs_restore = true;
6622 		spin_lock_irqsave(hba->host->host_lock, flags);
6623 		if (!hba->saved_err && !needs_restore)
6624 			goto skip_err_handling;
6625 	}
6626 
6627 	hba->silence_err_logs = true;
6628 	/* release lock as clear command might sleep */
6629 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6630 
6631 	needs_reset = ufshcd_abort_all(hba);
6632 
6633 	spin_lock_irqsave(hba->host->host_lock, flags);
6634 	hba->silence_err_logs = false;
6635 	if (needs_reset)
6636 		goto do_reset;
6637 
6638 	/*
6639 	 * After all reqs and tasks are cleared from doorbell,
6640 	 * now it is safe to retore power mode.
6641 	 */
6642 	if (needs_restore) {
6643 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6644 		/*
6645 		 * Hold the scaling lock just in case dev cmds
6646 		 * are sent via bsg and/or sysfs.
6647 		 */
6648 		down_write(&hba->clk_scaling_lock);
6649 		hba->force_pmc = true;
6650 		pmc_err = ufshcd_config_pwr_mode(hba, &(hba->pwr_info));
6651 		if (pmc_err) {
6652 			needs_reset = true;
6653 			dev_err(hba->dev, "%s: Failed to restore power mode, err = %d\n",
6654 					__func__, pmc_err);
6655 		}
6656 		hba->force_pmc = false;
6657 		ufshcd_print_pwr_info(hba);
6658 		up_write(&hba->clk_scaling_lock);
6659 		spin_lock_irqsave(hba->host->host_lock, flags);
6660 	}
6661 
6662 do_reset:
6663 	/* Fatal errors need reset */
6664 	if (needs_reset) {
6665 		int err;
6666 
6667 		hba->force_reset = false;
6668 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6669 		err = ufshcd_reset_and_restore(hba);
6670 		if (err)
6671 			dev_err(hba->dev, "%s: reset and restore failed with err %d\n",
6672 					__func__, err);
6673 		else
6674 			ufshcd_recover_pm_error(hba);
6675 		spin_lock_irqsave(hba->host->host_lock, flags);
6676 	}
6677 
6678 skip_err_handling:
6679 	if (!needs_reset) {
6680 		if (hba->ufshcd_state == UFSHCD_STATE_RESET)
6681 			hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
6682 		if (hba->saved_err || hba->saved_uic_err)
6683 			dev_err_ratelimited(hba->dev, "%s: exit: saved_err 0x%x saved_uic_err 0x%x",
6684 			    __func__, hba->saved_err, hba->saved_uic_err);
6685 	}
6686 	/* Exit in an operational state or dead */
6687 	if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL &&
6688 	    hba->ufshcd_state != UFSHCD_STATE_ERROR) {
6689 		if (--retries)
6690 			goto again;
6691 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
6692 	}
6693 	ufshcd_clear_eh_in_progress(hba);
6694 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6695 	ufshcd_err_handling_unprepare(hba);
6696 	up(&hba->host_sem);
6697 
6698 	dev_info(hba->dev, "%s finished; HBA state %s\n", __func__,
6699 		 ufshcd_state_name[hba->ufshcd_state]);
6700 }
6701 
6702 /**
6703  * ufshcd_update_uic_error - check and set fatal UIC error flags.
6704  * @hba: per-adapter instance
6705  *
6706  * Return:
6707  *  IRQ_HANDLED - If interrupt is valid
6708  *  IRQ_NONE    - If invalid interrupt
6709  */
6710 static irqreturn_t ufshcd_update_uic_error(struct ufs_hba *hba)
6711 {
6712 	u32 reg;
6713 	irqreturn_t retval = IRQ_NONE;
6714 
6715 	/* PHY layer error */
6716 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER);
6717 	if ((reg & UIC_PHY_ADAPTER_LAYER_ERROR) &&
6718 	    (reg & UIC_PHY_ADAPTER_LAYER_ERROR_CODE_MASK)) {
6719 		ufshcd_update_evt_hist(hba, UFS_EVT_PA_ERR, reg);
6720 		/*
6721 		 * To know whether this error is fatal or not, DB timeout
6722 		 * must be checked but this error is handled separately.
6723 		 */
6724 		if (reg & UIC_PHY_ADAPTER_LAYER_LANE_ERR_MASK)
6725 			dev_dbg(hba->dev, "%s: UIC Lane error reported\n",
6726 					__func__);
6727 
6728 		/* Got a LINERESET indication. */
6729 		if (reg & UIC_PHY_ADAPTER_LAYER_GENERIC_ERROR) {
6730 			struct uic_command *cmd = NULL;
6731 
6732 			hba->uic_error |= UFSHCD_UIC_PA_GENERIC_ERROR;
6733 			if (hba->uic_async_done && hba->active_uic_cmd)
6734 				cmd = hba->active_uic_cmd;
6735 			/*
6736 			 * Ignore the LINERESET during power mode change
6737 			 * operation via DME_SET command.
6738 			 */
6739 			if (cmd && (cmd->command == UIC_CMD_DME_SET))
6740 				hba->uic_error &= ~UFSHCD_UIC_PA_GENERIC_ERROR;
6741 		}
6742 		retval |= IRQ_HANDLED;
6743 	}
6744 
6745 	/* PA_INIT_ERROR is fatal and needs UIC reset */
6746 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_DATA_LINK_LAYER);
6747 	if ((reg & UIC_DATA_LINK_LAYER_ERROR) &&
6748 	    (reg & UIC_DATA_LINK_LAYER_ERROR_CODE_MASK)) {
6749 		ufshcd_update_evt_hist(hba, UFS_EVT_DL_ERR, reg);
6750 
6751 		if (reg & UIC_DATA_LINK_LAYER_ERROR_PA_INIT)
6752 			hba->uic_error |= UFSHCD_UIC_DL_PA_INIT_ERROR;
6753 		else if (hba->dev_quirks &
6754 				UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS) {
6755 			if (reg & UIC_DATA_LINK_LAYER_ERROR_NAC_RECEIVED)
6756 				hba->uic_error |=
6757 					UFSHCD_UIC_DL_NAC_RECEIVED_ERROR;
6758 			else if (reg & UIC_DATA_LINK_LAYER_ERROR_TCx_REPLAY_TIMEOUT)
6759 				hba->uic_error |= UFSHCD_UIC_DL_TCx_REPLAY_ERROR;
6760 		}
6761 		retval |= IRQ_HANDLED;
6762 	}
6763 
6764 	/* UIC NL/TL/DME errors needs software retry */
6765 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_NETWORK_LAYER);
6766 	if ((reg & UIC_NETWORK_LAYER_ERROR) &&
6767 	    (reg & UIC_NETWORK_LAYER_ERROR_CODE_MASK)) {
6768 		ufshcd_update_evt_hist(hba, UFS_EVT_NL_ERR, reg);
6769 		hba->uic_error |= UFSHCD_UIC_NL_ERROR;
6770 		retval |= IRQ_HANDLED;
6771 	}
6772 
6773 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_TRANSPORT_LAYER);
6774 	if ((reg & UIC_TRANSPORT_LAYER_ERROR) &&
6775 	    (reg & UIC_TRANSPORT_LAYER_ERROR_CODE_MASK)) {
6776 		ufshcd_update_evt_hist(hba, UFS_EVT_TL_ERR, reg);
6777 		hba->uic_error |= UFSHCD_UIC_TL_ERROR;
6778 		retval |= IRQ_HANDLED;
6779 	}
6780 
6781 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_DME);
6782 	if ((reg & UIC_DME_ERROR) &&
6783 	    (reg & UIC_DME_ERROR_CODE_MASK)) {
6784 		ufshcd_update_evt_hist(hba, UFS_EVT_DME_ERR, reg);
6785 		hba->uic_error |= UFSHCD_UIC_DME_ERROR;
6786 		retval |= IRQ_HANDLED;
6787 	}
6788 
6789 	dev_dbg(hba->dev, "%s: UIC error flags = 0x%08x\n",
6790 			__func__, hba->uic_error);
6791 	return retval;
6792 }
6793 
6794 /**
6795  * ufshcd_check_errors - Check for errors that need s/w attention
6796  * @hba: per-adapter instance
6797  * @intr_status: interrupt status generated by the controller
6798  *
6799  * Return:
6800  *  IRQ_HANDLED - If interrupt is valid
6801  *  IRQ_NONE    - If invalid interrupt
6802  */
6803 static irqreturn_t ufshcd_check_errors(struct ufs_hba *hba, u32 intr_status)
6804 {
6805 	bool queue_eh_work = false;
6806 	irqreturn_t retval = IRQ_NONE;
6807 
6808 	spin_lock(hba->host->host_lock);
6809 	hba->errors |= UFSHCD_ERROR_MASK & intr_status;
6810 
6811 	if (hba->errors & INT_FATAL_ERRORS) {
6812 		ufshcd_update_evt_hist(hba, UFS_EVT_FATAL_ERR,
6813 				       hba->errors);
6814 		queue_eh_work = true;
6815 	}
6816 
6817 	if (hba->errors & UIC_ERROR) {
6818 		hba->uic_error = 0;
6819 		retval = ufshcd_update_uic_error(hba);
6820 		if (hba->uic_error)
6821 			queue_eh_work = true;
6822 	}
6823 
6824 	if (hba->errors & UFSHCD_UIC_HIBERN8_MASK) {
6825 		dev_err(hba->dev,
6826 			"%s: Auto Hibern8 %s failed - status: 0x%08x, upmcrs: 0x%08x\n",
6827 			__func__, (hba->errors & UIC_HIBERNATE_ENTER) ?
6828 			"Enter" : "Exit",
6829 			hba->errors, ufshcd_get_upmcrs(hba));
6830 		ufshcd_update_evt_hist(hba, UFS_EVT_AUTO_HIBERN8_ERR,
6831 				       hba->errors);
6832 		ufshcd_set_link_broken(hba);
6833 		queue_eh_work = true;
6834 	}
6835 
6836 	if (queue_eh_work) {
6837 		/*
6838 		 * update the transfer error masks to sticky bits, let's do this
6839 		 * irrespective of current ufshcd_state.
6840 		 */
6841 		hba->saved_err |= hba->errors;
6842 		hba->saved_uic_err |= hba->uic_error;
6843 
6844 		/* dump controller state before resetting */
6845 		if ((hba->saved_err &
6846 		     (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK)) ||
6847 		    (hba->saved_uic_err &&
6848 		     (hba->saved_uic_err != UFSHCD_UIC_PA_GENERIC_ERROR))) {
6849 			dev_err(hba->dev, "%s: saved_err 0x%x saved_uic_err 0x%x\n",
6850 					__func__, hba->saved_err,
6851 					hba->saved_uic_err);
6852 			ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE,
6853 					 "host_regs: ");
6854 			ufshcd_print_pwr_info(hba);
6855 		}
6856 		ufshcd_schedule_eh_work(hba);
6857 		retval |= IRQ_HANDLED;
6858 	}
6859 	/*
6860 	 * if (!queue_eh_work) -
6861 	 * Other errors are either non-fatal where host recovers
6862 	 * itself without s/w intervention or errors that will be
6863 	 * handled by the SCSI core layer.
6864 	 */
6865 	hba->errors = 0;
6866 	hba->uic_error = 0;
6867 	spin_unlock(hba->host->host_lock);
6868 	return retval;
6869 }
6870 
6871 /**
6872  * ufshcd_tmc_handler - handle task management function completion
6873  * @hba: per adapter instance
6874  *
6875  * Return:
6876  *  IRQ_HANDLED - If interrupt is valid
6877  *  IRQ_NONE    - If invalid interrupt
6878  */
6879 static irqreturn_t ufshcd_tmc_handler(struct ufs_hba *hba)
6880 {
6881 	unsigned long flags, pending, issued;
6882 	irqreturn_t ret = IRQ_NONE;
6883 	int tag;
6884 
6885 	spin_lock_irqsave(hba->host->host_lock, flags);
6886 	pending = ufshcd_readl(hba, REG_UTP_TASK_REQ_DOOR_BELL);
6887 	issued = hba->outstanding_tasks & ~pending;
6888 	for_each_set_bit(tag, &issued, hba->nutmrs) {
6889 		struct request *req = hba->tmf_rqs[tag];
6890 		struct completion *c = req->end_io_data;
6891 
6892 		complete(c);
6893 		ret = IRQ_HANDLED;
6894 	}
6895 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6896 
6897 	return ret;
6898 }
6899 
6900 /**
6901  * ufshcd_handle_mcq_cq_events - handle MCQ completion queue events
6902  * @hba: per adapter instance
6903  *
6904  * Return: IRQ_HANDLED if interrupt is handled.
6905  */
6906 static irqreturn_t ufshcd_handle_mcq_cq_events(struct ufs_hba *hba)
6907 {
6908 	struct ufs_hw_queue *hwq;
6909 	unsigned long outstanding_cqs;
6910 	unsigned int nr_queues;
6911 	int i, ret;
6912 	u32 events;
6913 
6914 	ret = ufshcd_vops_get_outstanding_cqs(hba, &outstanding_cqs);
6915 	if (ret)
6916 		outstanding_cqs = (1U << hba->nr_hw_queues) - 1;
6917 
6918 	/* Exclude the poll queues */
6919 	nr_queues = hba->nr_hw_queues - hba->nr_queues[HCTX_TYPE_POLL];
6920 	for_each_set_bit(i, &outstanding_cqs, nr_queues) {
6921 		hwq = &hba->uhq[i];
6922 
6923 		events = ufshcd_mcq_read_cqis(hba, i);
6924 		if (events)
6925 			ufshcd_mcq_write_cqis(hba, events, i);
6926 
6927 		if (events & UFSHCD_MCQ_CQIS_TAIL_ENT_PUSH_STS)
6928 			ufshcd_mcq_poll_cqe_lock(hba, hwq);
6929 	}
6930 
6931 	return IRQ_HANDLED;
6932 }
6933 
6934 /**
6935  * ufshcd_sl_intr - Interrupt service routine
6936  * @hba: per adapter instance
6937  * @intr_status: contains interrupts generated by the controller
6938  *
6939  * Return:
6940  *  IRQ_HANDLED - If interrupt is valid
6941  *  IRQ_NONE    - If invalid interrupt
6942  */
6943 static irqreturn_t ufshcd_sl_intr(struct ufs_hba *hba, u32 intr_status)
6944 {
6945 	irqreturn_t retval = IRQ_NONE;
6946 
6947 	if (intr_status & UFSHCD_UIC_MASK)
6948 		retval |= ufshcd_uic_cmd_compl(hba, intr_status);
6949 
6950 	if (intr_status & UFSHCD_ERROR_MASK || hba->errors)
6951 		retval |= ufshcd_check_errors(hba, intr_status);
6952 
6953 	if (intr_status & UTP_TASK_REQ_COMPL)
6954 		retval |= ufshcd_tmc_handler(hba);
6955 
6956 	if (intr_status & UTP_TRANSFER_REQ_COMPL)
6957 		retval |= ufshcd_transfer_req_compl(hba);
6958 
6959 	if (intr_status & MCQ_CQ_EVENT_STATUS)
6960 		retval |= ufshcd_handle_mcq_cq_events(hba);
6961 
6962 	return retval;
6963 }
6964 
6965 /**
6966  * ufshcd_intr - Main interrupt service routine
6967  * @irq: irq number
6968  * @__hba: pointer to adapter instance
6969  *
6970  * Return:
6971  *  IRQ_HANDLED - If interrupt is valid
6972  *  IRQ_NONE    - If invalid interrupt
6973  */
6974 static irqreturn_t ufshcd_intr(int irq, void *__hba)
6975 {
6976 	u32 intr_status, enabled_intr_status = 0;
6977 	irqreturn_t retval = IRQ_NONE;
6978 	struct ufs_hba *hba = __hba;
6979 	int retries = hba->nutrs;
6980 
6981 	intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
6982 	hba->ufs_stats.last_intr_status = intr_status;
6983 	hba->ufs_stats.last_intr_ts = local_clock();
6984 
6985 	/*
6986 	 * There could be max of hba->nutrs reqs in flight and in worst case
6987 	 * if the reqs get finished 1 by 1 after the interrupt status is
6988 	 * read, make sure we handle them by checking the interrupt status
6989 	 * again in a loop until we process all of the reqs before returning.
6990 	 */
6991 	while (intr_status && retries--) {
6992 		enabled_intr_status =
6993 			intr_status & ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
6994 		ufshcd_writel(hba, intr_status, REG_INTERRUPT_STATUS);
6995 		if (enabled_intr_status)
6996 			retval |= ufshcd_sl_intr(hba, enabled_intr_status);
6997 
6998 		intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
6999 	}
7000 
7001 	if (enabled_intr_status && retval == IRQ_NONE &&
7002 	    (!(enabled_intr_status & UTP_TRANSFER_REQ_COMPL) ||
7003 	     hba->outstanding_reqs) && !ufshcd_eh_in_progress(hba)) {
7004 		dev_err(hba->dev, "%s: Unhandled interrupt 0x%08x (0x%08x, 0x%08x)\n",
7005 					__func__,
7006 					intr_status,
7007 					hba->ufs_stats.last_intr_status,
7008 					enabled_intr_status);
7009 		ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, "host_regs: ");
7010 	}
7011 
7012 	return retval;
7013 }
7014 
7015 static int ufshcd_clear_tm_cmd(struct ufs_hba *hba, int tag)
7016 {
7017 	int err = 0;
7018 	u32 mask = 1 << tag;
7019 	unsigned long flags;
7020 
7021 	if (!test_bit(tag, &hba->outstanding_tasks))
7022 		goto out;
7023 
7024 	spin_lock_irqsave(hba->host->host_lock, flags);
7025 	ufshcd_utmrl_clear(hba, tag);
7026 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7027 
7028 	/* poll for max. 1 sec to clear door bell register by h/w */
7029 	err = ufshcd_wait_for_register(hba,
7030 			REG_UTP_TASK_REQ_DOOR_BELL,
7031 			mask, 0, 1000, 1000);
7032 
7033 	dev_err(hba->dev, "Clearing task management function with tag %d %s\n",
7034 		tag, err < 0 ? "failed" : "succeeded");
7035 
7036 out:
7037 	return err;
7038 }
7039 
7040 static int __ufshcd_issue_tm_cmd(struct ufs_hba *hba,
7041 		struct utp_task_req_desc *treq, u8 tm_function)
7042 {
7043 	struct request_queue *q = hba->tmf_queue;
7044 	struct Scsi_Host *host = hba->host;
7045 	DECLARE_COMPLETION_ONSTACK(wait);
7046 	struct request *req;
7047 	unsigned long flags;
7048 	int task_tag, err;
7049 
7050 	/*
7051 	 * blk_mq_alloc_request() is used here only to get a free tag.
7052 	 */
7053 	req = blk_mq_alloc_request(q, REQ_OP_DRV_OUT, 0);
7054 	if (IS_ERR(req))
7055 		return PTR_ERR(req);
7056 
7057 	req->end_io_data = &wait;
7058 	ufshcd_hold(hba);
7059 
7060 	spin_lock_irqsave(host->host_lock, flags);
7061 
7062 	task_tag = req->tag;
7063 	hba->tmf_rqs[req->tag] = req;
7064 	treq->upiu_req.req_header.task_tag = task_tag;
7065 
7066 	memcpy(hba->utmrdl_base_addr + task_tag, treq, sizeof(*treq));
7067 	ufshcd_vops_setup_task_mgmt(hba, task_tag, tm_function);
7068 
7069 	/* send command to the controller */
7070 	__set_bit(task_tag, &hba->outstanding_tasks);
7071 	ufshcd_writel(hba, 1 << task_tag, REG_UTP_TASK_REQ_DOOR_BELL);
7072 
7073 	spin_unlock_irqrestore(host->host_lock, flags);
7074 
7075 	ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_SEND);
7076 
7077 	/* wait until the task management command is completed */
7078 	err = wait_for_completion_io_timeout(&wait,
7079 			msecs_to_jiffies(TM_CMD_TIMEOUT));
7080 	if (!err) {
7081 		ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_ERR);
7082 		dev_err(hba->dev, "%s: task management cmd 0x%.2x timed-out\n",
7083 				__func__, tm_function);
7084 		if (ufshcd_clear_tm_cmd(hba, task_tag))
7085 			dev_WARN(hba->dev, "%s: unable to clear tm cmd (slot %d) after timeout\n",
7086 					__func__, task_tag);
7087 		err = -ETIMEDOUT;
7088 	} else {
7089 		err = 0;
7090 		memcpy(treq, hba->utmrdl_base_addr + task_tag, sizeof(*treq));
7091 
7092 		ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_COMP);
7093 	}
7094 
7095 	spin_lock_irqsave(hba->host->host_lock, flags);
7096 	hba->tmf_rqs[req->tag] = NULL;
7097 	__clear_bit(task_tag, &hba->outstanding_tasks);
7098 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7099 
7100 	ufshcd_release(hba);
7101 	blk_mq_free_request(req);
7102 
7103 	return err;
7104 }
7105 
7106 /**
7107  * ufshcd_issue_tm_cmd - issues task management commands to controller
7108  * @hba: per adapter instance
7109  * @lun_id: LUN ID to which TM command is sent
7110  * @task_id: task ID to which the TM command is applicable
7111  * @tm_function: task management function opcode
7112  * @tm_response: task management service response return value
7113  *
7114  * Return: non-zero value on error, zero on success.
7115  */
7116 static int ufshcd_issue_tm_cmd(struct ufs_hba *hba, int lun_id, int task_id,
7117 		u8 tm_function, u8 *tm_response)
7118 {
7119 	struct utp_task_req_desc treq = { };
7120 	enum utp_ocs ocs_value;
7121 	int err;
7122 
7123 	/* Configure task request descriptor */
7124 	treq.header.interrupt = 1;
7125 	treq.header.ocs = OCS_INVALID_COMMAND_STATUS;
7126 
7127 	/* Configure task request UPIU */
7128 	treq.upiu_req.req_header.transaction_code = UPIU_TRANSACTION_TASK_REQ;
7129 	treq.upiu_req.req_header.lun = lun_id;
7130 	treq.upiu_req.req_header.tm_function = tm_function;
7131 
7132 	/*
7133 	 * The host shall provide the same value for LUN field in the basic
7134 	 * header and for Input Parameter.
7135 	 */
7136 	treq.upiu_req.input_param1 = cpu_to_be32(lun_id);
7137 	treq.upiu_req.input_param2 = cpu_to_be32(task_id);
7138 
7139 	err = __ufshcd_issue_tm_cmd(hba, &treq, tm_function);
7140 	if (err == -ETIMEDOUT)
7141 		return err;
7142 
7143 	ocs_value = treq.header.ocs & MASK_OCS;
7144 	if (ocs_value != OCS_SUCCESS)
7145 		dev_err(hba->dev, "%s: failed, ocs = 0x%x\n",
7146 				__func__, ocs_value);
7147 	else if (tm_response)
7148 		*tm_response = be32_to_cpu(treq.upiu_rsp.output_param1) &
7149 				MASK_TM_SERVICE_RESP;
7150 	return err;
7151 }
7152 
7153 /**
7154  * ufshcd_issue_devman_upiu_cmd - API for sending "utrd" type requests
7155  * @hba:	per-adapter instance
7156  * @req_upiu:	upiu request
7157  * @rsp_upiu:	upiu reply
7158  * @desc_buff:	pointer to descriptor buffer, NULL if NA
7159  * @buff_len:	descriptor size, 0 if NA
7160  * @cmd_type:	specifies the type (NOP, Query...)
7161  * @desc_op:	descriptor operation
7162  *
7163  * Those type of requests uses UTP Transfer Request Descriptor - utrd.
7164  * Therefore, it "rides" the device management infrastructure: uses its tag and
7165  * tasks work queues.
7166  *
7167  * Since there is only one available tag for device management commands,
7168  * the caller is expected to hold the hba->dev_cmd.lock mutex.
7169  *
7170  * Return: 0 upon success; < 0 upon failure.
7171  */
7172 static int ufshcd_issue_devman_upiu_cmd(struct ufs_hba *hba,
7173 					struct utp_upiu_req *req_upiu,
7174 					struct utp_upiu_req *rsp_upiu,
7175 					u8 *desc_buff, int *buff_len,
7176 					enum dev_cmd_type cmd_type,
7177 					enum query_opcode desc_op)
7178 {
7179 	const u32 tag = hba->reserved_slot;
7180 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
7181 	int err = 0;
7182 	u8 upiu_flags;
7183 
7184 	/* Protects use of hba->reserved_slot. */
7185 	lockdep_assert_held(&hba->dev_cmd.lock);
7186 
7187 	ufshcd_setup_dev_cmd(hba, lrbp, cmd_type, 0, tag);
7188 
7189 	ufshcd_prepare_req_desc_hdr(hba, lrbp, &upiu_flags, DMA_NONE, 0);
7190 
7191 	/* update the task tag in the request upiu */
7192 	req_upiu->header.task_tag = tag;
7193 
7194 	/* just copy the upiu request as it is */
7195 	memcpy(lrbp->ucd_req_ptr, req_upiu, sizeof(*lrbp->ucd_req_ptr));
7196 	if (desc_buff && desc_op == UPIU_QUERY_OPCODE_WRITE_DESC) {
7197 		/* The Data Segment Area is optional depending upon the query
7198 		 * function value. for WRITE DESCRIPTOR, the data segment
7199 		 * follows right after the tsf.
7200 		 */
7201 		memcpy(lrbp->ucd_req_ptr + 1, desc_buff, *buff_len);
7202 		*buff_len = 0;
7203 	}
7204 
7205 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
7206 
7207 	/*
7208 	 * ignore the returning value here - ufshcd_check_query_response is
7209 	 * bound to fail since dev_cmd.query and dev_cmd.type were left empty.
7210 	 * read the response directly ignoring all errors.
7211 	 */
7212 	ufshcd_issue_dev_cmd(hba, lrbp, tag, QUERY_REQ_TIMEOUT);
7213 
7214 	/* just copy the upiu response as it is */
7215 	memcpy(rsp_upiu, lrbp->ucd_rsp_ptr, sizeof(*rsp_upiu));
7216 	if (desc_buff && desc_op == UPIU_QUERY_OPCODE_READ_DESC) {
7217 		u8 *descp = (u8 *)lrbp->ucd_rsp_ptr + sizeof(*rsp_upiu);
7218 		u16 resp_len = be16_to_cpu(lrbp->ucd_rsp_ptr->header
7219 					   .data_segment_length);
7220 
7221 		if (*buff_len >= resp_len) {
7222 			memcpy(desc_buff, descp, resp_len);
7223 			*buff_len = resp_len;
7224 		} else {
7225 			dev_warn(hba->dev,
7226 				 "%s: rsp size %d is bigger than buffer size %d",
7227 				 __func__, resp_len, *buff_len);
7228 			*buff_len = 0;
7229 			err = -EINVAL;
7230 		}
7231 	}
7232 	ufshcd_add_query_upiu_trace(hba, err ? UFS_QUERY_ERR : UFS_QUERY_COMP,
7233 				    (struct utp_upiu_req *)lrbp->ucd_rsp_ptr);
7234 
7235 	return err;
7236 }
7237 
7238 /**
7239  * ufshcd_exec_raw_upiu_cmd - API function for sending raw upiu commands
7240  * @hba:	per-adapter instance
7241  * @req_upiu:	upiu request
7242  * @rsp_upiu:	upiu reply - only 8 DW as we do not support scsi commands
7243  * @msgcode:	message code, one of UPIU Transaction Codes Initiator to Target
7244  * @desc_buff:	pointer to descriptor buffer, NULL if NA
7245  * @buff_len:	descriptor size, 0 if NA
7246  * @desc_op:	descriptor operation
7247  *
7248  * Supports UTP Transfer requests (nop and query), and UTP Task
7249  * Management requests.
7250  * It is up to the caller to fill the upiu conent properly, as it will
7251  * be copied without any further input validations.
7252  *
7253  * Return: 0 upon success; < 0 upon failure.
7254  */
7255 int ufshcd_exec_raw_upiu_cmd(struct ufs_hba *hba,
7256 			     struct utp_upiu_req *req_upiu,
7257 			     struct utp_upiu_req *rsp_upiu,
7258 			     enum upiu_request_transaction msgcode,
7259 			     u8 *desc_buff, int *buff_len,
7260 			     enum query_opcode desc_op)
7261 {
7262 	int err;
7263 	enum dev_cmd_type cmd_type = DEV_CMD_TYPE_QUERY;
7264 	struct utp_task_req_desc treq = { };
7265 	enum utp_ocs ocs_value;
7266 	u8 tm_f = req_upiu->header.tm_function;
7267 
7268 	switch (msgcode) {
7269 	case UPIU_TRANSACTION_NOP_OUT:
7270 		cmd_type = DEV_CMD_TYPE_NOP;
7271 		fallthrough;
7272 	case UPIU_TRANSACTION_QUERY_REQ:
7273 		ufshcd_dev_man_lock(hba);
7274 		err = ufshcd_issue_devman_upiu_cmd(hba, req_upiu, rsp_upiu,
7275 						   desc_buff, buff_len,
7276 						   cmd_type, desc_op);
7277 		ufshcd_dev_man_unlock(hba);
7278 
7279 		break;
7280 	case UPIU_TRANSACTION_TASK_REQ:
7281 		treq.header.interrupt = 1;
7282 		treq.header.ocs = OCS_INVALID_COMMAND_STATUS;
7283 
7284 		memcpy(&treq.upiu_req, req_upiu, sizeof(*req_upiu));
7285 
7286 		err = __ufshcd_issue_tm_cmd(hba, &treq, tm_f);
7287 		if (err == -ETIMEDOUT)
7288 			break;
7289 
7290 		ocs_value = treq.header.ocs & MASK_OCS;
7291 		if (ocs_value != OCS_SUCCESS) {
7292 			dev_err(hba->dev, "%s: failed, ocs = 0x%x\n", __func__,
7293 				ocs_value);
7294 			break;
7295 		}
7296 
7297 		memcpy(rsp_upiu, &treq.upiu_rsp, sizeof(*rsp_upiu));
7298 
7299 		break;
7300 	default:
7301 		err = -EINVAL;
7302 
7303 		break;
7304 	}
7305 
7306 	return err;
7307 }
7308 
7309 /**
7310  * ufshcd_advanced_rpmb_req_handler - handle advanced RPMB request
7311  * @hba:	per adapter instance
7312  * @req_upiu:	upiu request
7313  * @rsp_upiu:	upiu reply
7314  * @req_ehs:	EHS field which contains Advanced RPMB Request Message
7315  * @rsp_ehs:	EHS field which returns Advanced RPMB Response Message
7316  * @sg_cnt:	The number of sg lists actually used
7317  * @sg_list:	Pointer to SG list when DATA IN/OUT UPIU is required in ARPMB operation
7318  * @dir:	DMA direction
7319  *
7320  * Return: zero on success, non-zero on failure.
7321  */
7322 int ufshcd_advanced_rpmb_req_handler(struct ufs_hba *hba, struct utp_upiu_req *req_upiu,
7323 			 struct utp_upiu_req *rsp_upiu, struct ufs_ehs *req_ehs,
7324 			 struct ufs_ehs *rsp_ehs, int sg_cnt, struct scatterlist *sg_list,
7325 			 enum dma_data_direction dir)
7326 {
7327 	const u32 tag = hba->reserved_slot;
7328 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
7329 	int err = 0;
7330 	int result;
7331 	u8 upiu_flags;
7332 	u8 *ehs_data;
7333 	u16 ehs_len;
7334 	int ehs = (hba->capabilities & MASK_EHSLUTRD_SUPPORTED) ? 2 : 0;
7335 
7336 	/* Protects use of hba->reserved_slot. */
7337 	ufshcd_dev_man_lock(hba);
7338 
7339 	ufshcd_setup_dev_cmd(hba, lrbp, DEV_CMD_TYPE_RPMB, UFS_UPIU_RPMB_WLUN, tag);
7340 
7341 	ufshcd_prepare_req_desc_hdr(hba, lrbp, &upiu_flags, DMA_NONE, ehs);
7342 
7343 	/* update the task tag */
7344 	req_upiu->header.task_tag = tag;
7345 
7346 	/* copy the UPIU(contains CDB) request as it is */
7347 	memcpy(lrbp->ucd_req_ptr, req_upiu, sizeof(*lrbp->ucd_req_ptr));
7348 	/* Copy EHS, starting with byte32, immediately after the CDB package */
7349 	memcpy(lrbp->ucd_req_ptr + 1, req_ehs, sizeof(*req_ehs));
7350 
7351 	if (dir != DMA_NONE && sg_list)
7352 		ufshcd_sgl_to_prdt(hba, lrbp, sg_cnt, sg_list);
7353 
7354 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
7355 
7356 	err = ufshcd_issue_dev_cmd(hba, lrbp, tag, ADVANCED_RPMB_REQ_TIMEOUT);
7357 
7358 	if (!err) {
7359 		/* Just copy the upiu response as it is */
7360 		memcpy(rsp_upiu, lrbp->ucd_rsp_ptr, sizeof(*rsp_upiu));
7361 		/* Get the response UPIU result */
7362 		result = (lrbp->ucd_rsp_ptr->header.response << 8) |
7363 			lrbp->ucd_rsp_ptr->header.status;
7364 
7365 		ehs_len = lrbp->ucd_rsp_ptr->header.ehs_length;
7366 		/*
7367 		 * Since the bLength in EHS indicates the total size of the EHS Header and EHS Data
7368 		 * in 32 Byte units, the value of the bLength Request/Response for Advanced RPMB
7369 		 * Message is 02h
7370 		 */
7371 		if (ehs_len == 2 && rsp_ehs) {
7372 			/*
7373 			 * ucd_rsp_ptr points to a buffer with a length of 512 bytes
7374 			 * (ALIGNED_UPIU_SIZE = 512), and the EHS data just starts from byte32
7375 			 */
7376 			ehs_data = (u8 *)lrbp->ucd_rsp_ptr + EHS_OFFSET_IN_RESPONSE;
7377 			memcpy(rsp_ehs, ehs_data, ehs_len * 32);
7378 		}
7379 	}
7380 
7381 	ufshcd_dev_man_unlock(hba);
7382 
7383 	return err ? : result;
7384 }
7385 
7386 /**
7387  * ufshcd_eh_device_reset_handler() - Reset a single logical unit.
7388  * @cmd: SCSI command pointer
7389  *
7390  * Return: SUCCESS or FAILED.
7391  */
7392 static int ufshcd_eh_device_reset_handler(struct scsi_cmnd *cmd)
7393 {
7394 	unsigned long flags, pending_reqs = 0, not_cleared = 0;
7395 	struct Scsi_Host *host;
7396 	struct ufs_hba *hba;
7397 	struct ufs_hw_queue *hwq;
7398 	struct ufshcd_lrb *lrbp;
7399 	u32 pos, not_cleared_mask = 0;
7400 	int err;
7401 	u8 resp = 0xF, lun;
7402 
7403 	host = cmd->device->host;
7404 	hba = shost_priv(host);
7405 
7406 	lun = ufshcd_scsi_to_upiu_lun(cmd->device->lun);
7407 	err = ufshcd_issue_tm_cmd(hba, lun, 0, UFS_LOGICAL_RESET, &resp);
7408 	if (err || resp != UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7409 		if (!err)
7410 			err = resp;
7411 		goto out;
7412 	}
7413 
7414 	if (hba->mcq_enabled) {
7415 		for (pos = 0; pos < hba->nutrs; pos++) {
7416 			lrbp = &hba->lrb[pos];
7417 			if (ufshcd_cmd_inflight(lrbp->cmd) &&
7418 			    lrbp->lun == lun) {
7419 				ufshcd_clear_cmd(hba, pos);
7420 				hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(lrbp->cmd));
7421 				ufshcd_mcq_poll_cqe_lock(hba, hwq);
7422 			}
7423 		}
7424 		err = 0;
7425 		goto out;
7426 	}
7427 
7428 	/* clear the commands that were pending for corresponding LUN */
7429 	spin_lock_irqsave(&hba->outstanding_lock, flags);
7430 	for_each_set_bit(pos, &hba->outstanding_reqs, hba->nutrs)
7431 		if (hba->lrb[pos].lun == lun)
7432 			__set_bit(pos, &pending_reqs);
7433 	hba->outstanding_reqs &= ~pending_reqs;
7434 	spin_unlock_irqrestore(&hba->outstanding_lock, flags);
7435 
7436 	for_each_set_bit(pos, &pending_reqs, hba->nutrs) {
7437 		if (ufshcd_clear_cmd(hba, pos) < 0) {
7438 			spin_lock_irqsave(&hba->outstanding_lock, flags);
7439 			not_cleared = 1U << pos &
7440 				ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
7441 			hba->outstanding_reqs |= not_cleared;
7442 			not_cleared_mask |= not_cleared;
7443 			spin_unlock_irqrestore(&hba->outstanding_lock, flags);
7444 
7445 			dev_err(hba->dev, "%s: failed to clear request %d\n",
7446 				__func__, pos);
7447 		}
7448 	}
7449 	__ufshcd_transfer_req_compl(hba, pending_reqs & ~not_cleared_mask);
7450 
7451 out:
7452 	hba->req_abort_count = 0;
7453 	ufshcd_update_evt_hist(hba, UFS_EVT_DEV_RESET, (u32)err);
7454 	if (!err) {
7455 		err = SUCCESS;
7456 	} else {
7457 		dev_err(hba->dev, "%s: failed with err %d\n", __func__, err);
7458 		err = FAILED;
7459 	}
7460 	return err;
7461 }
7462 
7463 static void ufshcd_set_req_abort_skip(struct ufs_hba *hba, unsigned long bitmap)
7464 {
7465 	struct ufshcd_lrb *lrbp;
7466 	int tag;
7467 
7468 	for_each_set_bit(tag, &bitmap, hba->nutrs) {
7469 		lrbp = &hba->lrb[tag];
7470 		lrbp->req_abort_skip = true;
7471 	}
7472 }
7473 
7474 /**
7475  * ufshcd_try_to_abort_task - abort a specific task
7476  * @hba: Pointer to adapter instance
7477  * @tag: Task tag/index to be aborted
7478  *
7479  * Abort the pending command in device by sending UFS_ABORT_TASK task management
7480  * command, and in host controller by clearing the door-bell register. There can
7481  * be race between controller sending the command to the device while abort is
7482  * issued. To avoid that, first issue UFS_QUERY_TASK to check if the command is
7483  * really issued and then try to abort it.
7484  *
7485  * Return: zero on success, non-zero on failure.
7486  */
7487 int ufshcd_try_to_abort_task(struct ufs_hba *hba, int tag)
7488 {
7489 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
7490 	int err = 0;
7491 	int poll_cnt;
7492 	u8 resp = 0xF;
7493 	u32 reg;
7494 
7495 	for (poll_cnt = 100; poll_cnt; poll_cnt--) {
7496 		err = ufshcd_issue_tm_cmd(hba, lrbp->lun, lrbp->task_tag,
7497 				UFS_QUERY_TASK, &resp);
7498 		if (!err && resp == UPIU_TASK_MANAGEMENT_FUNC_SUCCEEDED) {
7499 			/* cmd pending in the device */
7500 			dev_err(hba->dev, "%s: cmd pending in the device. tag = %d\n",
7501 				__func__, tag);
7502 			break;
7503 		} else if (!err && resp == UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7504 			/*
7505 			 * cmd not pending in the device, check if it is
7506 			 * in transition.
7507 			 */
7508 			dev_err(hba->dev, "%s: cmd at tag %d not pending in the device.\n",
7509 				__func__, tag);
7510 			if (hba->mcq_enabled) {
7511 				/* MCQ mode */
7512 				if (ufshcd_cmd_inflight(lrbp->cmd)) {
7513 					/* sleep for max. 200us same delay as in SDB mode */
7514 					usleep_range(100, 200);
7515 					continue;
7516 				}
7517 				/* command completed already */
7518 				dev_err(hba->dev, "%s: cmd at tag=%d is cleared.\n",
7519 					__func__, tag);
7520 				goto out;
7521 			}
7522 
7523 			/* Single Doorbell Mode */
7524 			reg = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
7525 			if (reg & (1 << tag)) {
7526 				/* sleep for max. 200us to stabilize */
7527 				usleep_range(100, 200);
7528 				continue;
7529 			}
7530 			/* command completed already */
7531 			dev_err(hba->dev, "%s: cmd at tag %d successfully cleared from DB.\n",
7532 				__func__, tag);
7533 			goto out;
7534 		} else {
7535 			dev_err(hba->dev,
7536 				"%s: no response from device. tag = %d, err %d\n",
7537 				__func__, tag, err);
7538 			if (!err)
7539 				err = resp; /* service response error */
7540 			goto out;
7541 		}
7542 	}
7543 
7544 	if (!poll_cnt) {
7545 		err = -EBUSY;
7546 		goto out;
7547 	}
7548 
7549 	err = ufshcd_issue_tm_cmd(hba, lrbp->lun, lrbp->task_tag,
7550 			UFS_ABORT_TASK, &resp);
7551 	if (err || resp != UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7552 		if (!err) {
7553 			err = resp; /* service response error */
7554 			dev_err(hba->dev, "%s: issued. tag = %d, err %d\n",
7555 				__func__, tag, err);
7556 		}
7557 		goto out;
7558 	}
7559 
7560 	err = ufshcd_clear_cmd(hba, tag);
7561 	if (err)
7562 		dev_err(hba->dev, "%s: Failed clearing cmd at tag %d, err %d\n",
7563 			__func__, tag, err);
7564 
7565 out:
7566 	return err;
7567 }
7568 
7569 /**
7570  * ufshcd_abort - scsi host template eh_abort_handler callback
7571  * @cmd: SCSI command pointer
7572  *
7573  * Return: SUCCESS or FAILED.
7574  */
7575 static int ufshcd_abort(struct scsi_cmnd *cmd)
7576 {
7577 	struct Scsi_Host *host = cmd->device->host;
7578 	struct ufs_hba *hba = shost_priv(host);
7579 	int tag = scsi_cmd_to_rq(cmd)->tag;
7580 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
7581 	unsigned long flags;
7582 	int err = FAILED;
7583 	bool outstanding;
7584 	u32 reg;
7585 
7586 	ufshcd_hold(hba);
7587 
7588 	if (!hba->mcq_enabled) {
7589 		reg = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
7590 		if (!test_bit(tag, &hba->outstanding_reqs)) {
7591 			/* If command is already aborted/completed, return FAILED. */
7592 			dev_err(hba->dev,
7593 				"%s: cmd at tag %d already completed, outstanding=0x%lx, doorbell=0x%x\n",
7594 				__func__, tag, hba->outstanding_reqs, reg);
7595 			goto release;
7596 		}
7597 	}
7598 
7599 	/* Print Transfer Request of aborted task */
7600 	dev_info(hba->dev, "%s: Device abort task at tag %d\n", __func__, tag);
7601 
7602 	/*
7603 	 * Print detailed info about aborted request.
7604 	 * As more than one request might get aborted at the same time,
7605 	 * print full information only for the first aborted request in order
7606 	 * to reduce repeated printouts. For other aborted requests only print
7607 	 * basic details.
7608 	 */
7609 	scsi_print_command(cmd);
7610 	if (!hba->req_abort_count) {
7611 		ufshcd_update_evt_hist(hba, UFS_EVT_ABORT, tag);
7612 		ufshcd_print_evt_hist(hba);
7613 		ufshcd_print_host_state(hba);
7614 		ufshcd_print_pwr_info(hba);
7615 		ufshcd_print_tr(hba, tag, true);
7616 	} else {
7617 		ufshcd_print_tr(hba, tag, false);
7618 	}
7619 	hba->req_abort_count++;
7620 
7621 	if (!hba->mcq_enabled && !(reg & (1 << tag))) {
7622 		/* only execute this code in single doorbell mode */
7623 		dev_err(hba->dev,
7624 		"%s: cmd was completed, but without a notifying intr, tag = %d",
7625 		__func__, tag);
7626 		__ufshcd_transfer_req_compl(hba, 1UL << tag);
7627 		goto release;
7628 	}
7629 
7630 	/*
7631 	 * Task abort to the device W-LUN is illegal. When this command
7632 	 * will fail, due to spec violation, scsi err handling next step
7633 	 * will be to send LU reset which, again, is a spec violation.
7634 	 * To avoid these unnecessary/illegal steps, first we clean up
7635 	 * the lrb taken by this cmd and re-set it in outstanding_reqs,
7636 	 * then queue the eh_work and bail.
7637 	 */
7638 	if (lrbp->lun == UFS_UPIU_UFS_DEVICE_WLUN) {
7639 		ufshcd_update_evt_hist(hba, UFS_EVT_ABORT, lrbp->lun);
7640 
7641 		spin_lock_irqsave(host->host_lock, flags);
7642 		hba->force_reset = true;
7643 		ufshcd_schedule_eh_work(hba);
7644 		spin_unlock_irqrestore(host->host_lock, flags);
7645 		goto release;
7646 	}
7647 
7648 	if (hba->mcq_enabled) {
7649 		/* MCQ mode. Branch off to handle abort for mcq mode */
7650 		err = ufshcd_mcq_abort(cmd);
7651 		goto release;
7652 	}
7653 
7654 	/* Skip task abort in case previous aborts failed and report failure */
7655 	if (lrbp->req_abort_skip) {
7656 		dev_err(hba->dev, "%s: skipping abort\n", __func__);
7657 		ufshcd_set_req_abort_skip(hba, hba->outstanding_reqs);
7658 		goto release;
7659 	}
7660 
7661 	err = ufshcd_try_to_abort_task(hba, tag);
7662 	if (err) {
7663 		dev_err(hba->dev, "%s: failed with err %d\n", __func__, err);
7664 		ufshcd_set_req_abort_skip(hba, hba->outstanding_reqs);
7665 		err = FAILED;
7666 		goto release;
7667 	}
7668 
7669 	/*
7670 	 * Clear the corresponding bit from outstanding_reqs since the command
7671 	 * has been aborted successfully.
7672 	 */
7673 	spin_lock_irqsave(&hba->outstanding_lock, flags);
7674 	outstanding = __test_and_clear_bit(tag, &hba->outstanding_reqs);
7675 	spin_unlock_irqrestore(&hba->outstanding_lock, flags);
7676 
7677 	if (outstanding)
7678 		ufshcd_release_scsi_cmd(hba, lrbp);
7679 
7680 	err = SUCCESS;
7681 
7682 release:
7683 	/* Matches the ufshcd_hold() call at the start of this function. */
7684 	ufshcd_release(hba);
7685 	return err;
7686 }
7687 
7688 /**
7689  * ufshcd_host_reset_and_restore - reset and restore host controller
7690  * @hba: per-adapter instance
7691  *
7692  * Note that host controller reset may issue DME_RESET to
7693  * local and remote (device) Uni-Pro stack and the attributes
7694  * are reset to default state.
7695  *
7696  * Return: zero on success, non-zero on failure.
7697  */
7698 static int ufshcd_host_reset_and_restore(struct ufs_hba *hba)
7699 {
7700 	int err;
7701 
7702 	/*
7703 	 * Stop the host controller and complete the requests
7704 	 * cleared by h/w
7705 	 */
7706 	ufshcd_hba_stop(hba);
7707 	hba->silence_err_logs = true;
7708 	ufshcd_complete_requests(hba, true);
7709 	hba->silence_err_logs = false;
7710 
7711 	/* scale up clocks to max frequency before full reinitialization */
7712 	ufshcd_scale_clks(hba, ULONG_MAX, true);
7713 
7714 	err = ufshcd_hba_enable(hba);
7715 
7716 	/* Establish the link again and restore the device */
7717 	if (!err)
7718 		err = ufshcd_probe_hba(hba, false);
7719 
7720 	if (err)
7721 		dev_err(hba->dev, "%s: Host init failed %d\n", __func__, err);
7722 	ufshcd_update_evt_hist(hba, UFS_EVT_HOST_RESET, (u32)err);
7723 	return err;
7724 }
7725 
7726 /**
7727  * ufshcd_reset_and_restore - reset and re-initialize host/device
7728  * @hba: per-adapter instance
7729  *
7730  * Reset and recover device, host and re-establish link. This
7731  * is helpful to recover the communication in fatal error conditions.
7732  *
7733  * Return: zero on success, non-zero on failure.
7734  */
7735 static int ufshcd_reset_and_restore(struct ufs_hba *hba)
7736 {
7737 	u32 saved_err = 0;
7738 	u32 saved_uic_err = 0;
7739 	int err = 0;
7740 	unsigned long flags;
7741 	int retries = MAX_HOST_RESET_RETRIES;
7742 
7743 	spin_lock_irqsave(hba->host->host_lock, flags);
7744 	do {
7745 		/*
7746 		 * This is a fresh start, cache and clear saved error first,
7747 		 * in case new error generated during reset and restore.
7748 		 */
7749 		saved_err |= hba->saved_err;
7750 		saved_uic_err |= hba->saved_uic_err;
7751 		hba->saved_err = 0;
7752 		hba->saved_uic_err = 0;
7753 		hba->force_reset = false;
7754 		hba->ufshcd_state = UFSHCD_STATE_RESET;
7755 		spin_unlock_irqrestore(hba->host->host_lock, flags);
7756 
7757 		/* Reset the attached device */
7758 		ufshcd_device_reset(hba);
7759 
7760 		err = ufshcd_host_reset_and_restore(hba);
7761 
7762 		spin_lock_irqsave(hba->host->host_lock, flags);
7763 		if (err)
7764 			continue;
7765 		/* Do not exit unless operational or dead */
7766 		if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL &&
7767 		    hba->ufshcd_state != UFSHCD_STATE_ERROR &&
7768 		    hba->ufshcd_state != UFSHCD_STATE_EH_SCHEDULED_NON_FATAL)
7769 			err = -EAGAIN;
7770 	} while (err && --retries);
7771 
7772 	/*
7773 	 * Inform scsi mid-layer that we did reset and allow to handle
7774 	 * Unit Attention properly.
7775 	 */
7776 	scsi_report_bus_reset(hba->host, 0);
7777 	if (err) {
7778 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
7779 		hba->saved_err |= saved_err;
7780 		hba->saved_uic_err |= saved_uic_err;
7781 	}
7782 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7783 
7784 	return err;
7785 }
7786 
7787 /**
7788  * ufshcd_eh_host_reset_handler - host reset handler registered to scsi layer
7789  * @cmd: SCSI command pointer
7790  *
7791  * Return: SUCCESS or FAILED.
7792  */
7793 static int ufshcd_eh_host_reset_handler(struct scsi_cmnd *cmd)
7794 {
7795 	int err = SUCCESS;
7796 	unsigned long flags;
7797 	struct ufs_hba *hba;
7798 
7799 	hba = shost_priv(cmd->device->host);
7800 
7801 	/*
7802 	 * If runtime PM sent SSU and got a timeout, scsi_error_handler is
7803 	 * stuck in this function waiting for flush_work(&hba->eh_work). And
7804 	 * ufshcd_err_handler(eh_work) is stuck waiting for runtime PM. Do
7805 	 * ufshcd_link_recovery instead of eh_work to prevent deadlock.
7806 	 */
7807 	if (hba->pm_op_in_progress) {
7808 		if (ufshcd_link_recovery(hba))
7809 			err = FAILED;
7810 
7811 		return err;
7812 	}
7813 
7814 	spin_lock_irqsave(hba->host->host_lock, flags);
7815 	hba->force_reset = true;
7816 	ufshcd_schedule_eh_work(hba);
7817 	dev_err(hba->dev, "%s: reset in progress - 1\n", __func__);
7818 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7819 
7820 	flush_work(&hba->eh_work);
7821 
7822 	spin_lock_irqsave(hba->host->host_lock, flags);
7823 	if (hba->ufshcd_state == UFSHCD_STATE_ERROR)
7824 		err = FAILED;
7825 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7826 
7827 	return err;
7828 }
7829 
7830 /**
7831  * ufshcd_get_max_icc_level - calculate the ICC level
7832  * @sup_curr_uA: max. current supported by the regulator
7833  * @start_scan: row at the desc table to start scan from
7834  * @buff: power descriptor buffer
7835  *
7836  * Return: calculated max ICC level for specific regulator.
7837  */
7838 static u32 ufshcd_get_max_icc_level(int sup_curr_uA, u32 start_scan,
7839 				    const char *buff)
7840 {
7841 	int i;
7842 	int curr_uA;
7843 	u16 data;
7844 	u16 unit;
7845 
7846 	for (i = start_scan; i >= 0; i--) {
7847 		data = get_unaligned_be16(&buff[2 * i]);
7848 		unit = (data & ATTR_ICC_LVL_UNIT_MASK) >>
7849 						ATTR_ICC_LVL_UNIT_OFFSET;
7850 		curr_uA = data & ATTR_ICC_LVL_VALUE_MASK;
7851 		switch (unit) {
7852 		case UFSHCD_NANO_AMP:
7853 			curr_uA = curr_uA / 1000;
7854 			break;
7855 		case UFSHCD_MILI_AMP:
7856 			curr_uA = curr_uA * 1000;
7857 			break;
7858 		case UFSHCD_AMP:
7859 			curr_uA = curr_uA * 1000 * 1000;
7860 			break;
7861 		case UFSHCD_MICRO_AMP:
7862 		default:
7863 			break;
7864 		}
7865 		if (sup_curr_uA >= curr_uA)
7866 			break;
7867 	}
7868 	if (i < 0) {
7869 		i = 0;
7870 		pr_err("%s: Couldn't find valid icc_level = %d", __func__, i);
7871 	}
7872 
7873 	return (u32)i;
7874 }
7875 
7876 /**
7877  * ufshcd_find_max_sup_active_icc_level - calculate the max ICC level
7878  * In case regulators are not initialized we'll return 0
7879  * @hba: per-adapter instance
7880  * @desc_buf: power descriptor buffer to extract ICC levels from.
7881  *
7882  * Return: calculated ICC level.
7883  */
7884 static u32 ufshcd_find_max_sup_active_icc_level(struct ufs_hba *hba,
7885 						const u8 *desc_buf)
7886 {
7887 	u32 icc_level = 0;
7888 
7889 	if (!hba->vreg_info.vcc || !hba->vreg_info.vccq ||
7890 						!hba->vreg_info.vccq2) {
7891 		/*
7892 		 * Using dev_dbg to avoid messages during runtime PM to avoid
7893 		 * never-ending cycles of messages written back to storage by
7894 		 * user space causing runtime resume, causing more messages and
7895 		 * so on.
7896 		 */
7897 		dev_dbg(hba->dev,
7898 			"%s: Regulator capability was not set, actvIccLevel=%d",
7899 							__func__, icc_level);
7900 		goto out;
7901 	}
7902 
7903 	if (hba->vreg_info.vcc->max_uA)
7904 		icc_level = ufshcd_get_max_icc_level(
7905 				hba->vreg_info.vcc->max_uA,
7906 				POWER_DESC_MAX_ACTV_ICC_LVLS - 1,
7907 				&desc_buf[PWR_DESC_ACTIVE_LVLS_VCC_0]);
7908 
7909 	if (hba->vreg_info.vccq->max_uA)
7910 		icc_level = ufshcd_get_max_icc_level(
7911 				hba->vreg_info.vccq->max_uA,
7912 				icc_level,
7913 				&desc_buf[PWR_DESC_ACTIVE_LVLS_VCCQ_0]);
7914 
7915 	if (hba->vreg_info.vccq2->max_uA)
7916 		icc_level = ufshcd_get_max_icc_level(
7917 				hba->vreg_info.vccq2->max_uA,
7918 				icc_level,
7919 				&desc_buf[PWR_DESC_ACTIVE_LVLS_VCCQ2_0]);
7920 out:
7921 	return icc_level;
7922 }
7923 
7924 static void ufshcd_set_active_icc_lvl(struct ufs_hba *hba)
7925 {
7926 	int ret;
7927 	u8 *desc_buf;
7928 	u32 icc_level;
7929 
7930 	desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
7931 	if (!desc_buf)
7932 		return;
7933 
7934 	ret = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_POWER, 0, 0,
7935 				     desc_buf, QUERY_DESC_MAX_SIZE);
7936 	if (ret) {
7937 		dev_err(hba->dev,
7938 			"%s: Failed reading power descriptor ret = %d",
7939 			__func__, ret);
7940 		goto out;
7941 	}
7942 
7943 	icc_level = ufshcd_find_max_sup_active_icc_level(hba, desc_buf);
7944 	dev_dbg(hba->dev, "%s: setting icc_level 0x%x", __func__, icc_level);
7945 
7946 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
7947 		QUERY_ATTR_IDN_ACTIVE_ICC_LVL, 0, 0, &icc_level);
7948 
7949 	if (ret)
7950 		dev_err(hba->dev,
7951 			"%s: Failed configuring bActiveICCLevel = %d ret = %d",
7952 			__func__, icc_level, ret);
7953 
7954 out:
7955 	kfree(desc_buf);
7956 }
7957 
7958 static inline void ufshcd_blk_pm_runtime_init(struct scsi_device *sdev)
7959 {
7960 	struct Scsi_Host *shost = sdev->host;
7961 
7962 	scsi_autopm_get_device(sdev);
7963 	blk_pm_runtime_init(sdev->request_queue, &sdev->sdev_gendev);
7964 	if (sdev->rpm_autosuspend)
7965 		pm_runtime_set_autosuspend_delay(&sdev->sdev_gendev,
7966 						 shost->rpm_autosuspend_delay);
7967 	scsi_autopm_put_device(sdev);
7968 }
7969 
7970 /**
7971  * ufshcd_scsi_add_wlus - Adds required W-LUs
7972  * @hba: per-adapter instance
7973  *
7974  * UFS device specification requires the UFS devices to support 4 well known
7975  * logical units:
7976  *	"REPORT_LUNS" (address: 01h)
7977  *	"UFS Device" (address: 50h)
7978  *	"RPMB" (address: 44h)
7979  *	"BOOT" (address: 30h)
7980  * UFS device's power management needs to be controlled by "POWER CONDITION"
7981  * field of SSU (START STOP UNIT) command. But this "power condition" field
7982  * will take effect only when its sent to "UFS device" well known logical unit
7983  * hence we require the scsi_device instance to represent this logical unit in
7984  * order for the UFS host driver to send the SSU command for power management.
7985  *
7986  * We also require the scsi_device instance for "RPMB" (Replay Protected Memory
7987  * Block) LU so user space process can control this LU. User space may also
7988  * want to have access to BOOT LU.
7989  *
7990  * This function adds scsi device instances for each of all well known LUs
7991  * (except "REPORT LUNS" LU).
7992  *
7993  * Return: zero on success (all required W-LUs are added successfully),
7994  * non-zero error value on failure (if failed to add any of the required W-LU).
7995  */
7996 static int ufshcd_scsi_add_wlus(struct ufs_hba *hba)
7997 {
7998 	int ret = 0;
7999 	struct scsi_device *sdev_boot, *sdev_rpmb;
8000 
8001 	hba->ufs_device_wlun = __scsi_add_device(hba->host, 0, 0,
8002 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_UFS_DEVICE_WLUN), NULL);
8003 	if (IS_ERR(hba->ufs_device_wlun)) {
8004 		ret = PTR_ERR(hba->ufs_device_wlun);
8005 		hba->ufs_device_wlun = NULL;
8006 		goto out;
8007 	}
8008 	scsi_device_put(hba->ufs_device_wlun);
8009 
8010 	sdev_rpmb = __scsi_add_device(hba->host, 0, 0,
8011 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_RPMB_WLUN), NULL);
8012 	if (IS_ERR(sdev_rpmb)) {
8013 		ret = PTR_ERR(sdev_rpmb);
8014 		goto remove_ufs_device_wlun;
8015 	}
8016 	ufshcd_blk_pm_runtime_init(sdev_rpmb);
8017 	scsi_device_put(sdev_rpmb);
8018 
8019 	sdev_boot = __scsi_add_device(hba->host, 0, 0,
8020 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_BOOT_WLUN), NULL);
8021 	if (IS_ERR(sdev_boot)) {
8022 		dev_err(hba->dev, "%s: BOOT WLUN not found\n", __func__);
8023 	} else {
8024 		ufshcd_blk_pm_runtime_init(sdev_boot);
8025 		scsi_device_put(sdev_boot);
8026 	}
8027 	goto out;
8028 
8029 remove_ufs_device_wlun:
8030 	scsi_remove_device(hba->ufs_device_wlun);
8031 out:
8032 	return ret;
8033 }
8034 
8035 static void ufshcd_wb_probe(struct ufs_hba *hba, const u8 *desc_buf)
8036 {
8037 	struct ufs_dev_info *dev_info = &hba->dev_info;
8038 	u8 lun;
8039 	u32 d_lu_wb_buf_alloc;
8040 	u32 ext_ufs_feature;
8041 
8042 	if (!ufshcd_is_wb_allowed(hba))
8043 		return;
8044 
8045 	/*
8046 	 * Probe WB only for UFS-2.2 and UFS-3.1 (and later) devices or
8047 	 * UFS devices with quirk UFS_DEVICE_QUIRK_SUPPORT_EXTENDED_FEATURES
8048 	 * enabled
8049 	 */
8050 	if (!(dev_info->wspecversion >= 0x310 ||
8051 	      dev_info->wspecversion == 0x220 ||
8052 	     (hba->dev_quirks & UFS_DEVICE_QUIRK_SUPPORT_EXTENDED_FEATURES)))
8053 		goto wb_disabled;
8054 
8055 	ext_ufs_feature = get_unaligned_be32(desc_buf +
8056 					DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
8057 
8058 	if (!(ext_ufs_feature & UFS_DEV_WRITE_BOOSTER_SUP))
8059 		goto wb_disabled;
8060 
8061 	/*
8062 	 * WB may be supported but not configured while provisioning. The spec
8063 	 * says, in dedicated wb buffer mode, a max of 1 lun would have wb
8064 	 * buffer configured.
8065 	 */
8066 	dev_info->wb_buffer_type = desc_buf[DEVICE_DESC_PARAM_WB_TYPE];
8067 
8068 	dev_info->b_presrv_uspc_en =
8069 		desc_buf[DEVICE_DESC_PARAM_WB_PRESRV_USRSPC_EN];
8070 
8071 	if (dev_info->wb_buffer_type == WB_BUF_MODE_SHARED) {
8072 		if (!get_unaligned_be32(desc_buf +
8073 				   DEVICE_DESC_PARAM_WB_SHARED_ALLOC_UNITS))
8074 			goto wb_disabled;
8075 	} else {
8076 		for (lun = 0; lun < UFS_UPIU_MAX_WB_LUN_ID; lun++) {
8077 			d_lu_wb_buf_alloc = 0;
8078 			ufshcd_read_unit_desc_param(hba,
8079 					lun,
8080 					UNIT_DESC_PARAM_WB_BUF_ALLOC_UNITS,
8081 					(u8 *)&d_lu_wb_buf_alloc,
8082 					sizeof(d_lu_wb_buf_alloc));
8083 			if (d_lu_wb_buf_alloc) {
8084 				dev_info->wb_dedicated_lu = lun;
8085 				break;
8086 			}
8087 		}
8088 
8089 		if (!d_lu_wb_buf_alloc)
8090 			goto wb_disabled;
8091 	}
8092 
8093 	if (!ufshcd_is_wb_buf_lifetime_available(hba))
8094 		goto wb_disabled;
8095 
8096 	return;
8097 
8098 wb_disabled:
8099 	hba->caps &= ~UFSHCD_CAP_WB_EN;
8100 }
8101 
8102 static void ufshcd_temp_notif_probe(struct ufs_hba *hba, const u8 *desc_buf)
8103 {
8104 	struct ufs_dev_info *dev_info = &hba->dev_info;
8105 	u32 ext_ufs_feature;
8106 	u8 mask = 0;
8107 
8108 	if (!(hba->caps & UFSHCD_CAP_TEMP_NOTIF) || dev_info->wspecversion < 0x300)
8109 		return;
8110 
8111 	ext_ufs_feature = get_unaligned_be32(desc_buf + DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
8112 
8113 	if (ext_ufs_feature & UFS_DEV_LOW_TEMP_NOTIF)
8114 		mask |= MASK_EE_TOO_LOW_TEMP;
8115 
8116 	if (ext_ufs_feature & UFS_DEV_HIGH_TEMP_NOTIF)
8117 		mask |= MASK_EE_TOO_HIGH_TEMP;
8118 
8119 	if (mask) {
8120 		ufshcd_enable_ee(hba, mask);
8121 		ufs_hwmon_probe(hba, mask);
8122 	}
8123 }
8124 
8125 static void ufshcd_ext_iid_probe(struct ufs_hba *hba, u8 *desc_buf)
8126 {
8127 	struct ufs_dev_info *dev_info = &hba->dev_info;
8128 	u32 ext_ufs_feature;
8129 	u32 ext_iid_en = 0;
8130 	int err;
8131 
8132 	/* Only UFS-4.0 and above may support EXT_IID */
8133 	if (dev_info->wspecversion < 0x400)
8134 		goto out;
8135 
8136 	ext_ufs_feature = get_unaligned_be32(desc_buf +
8137 				     DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
8138 	if (!(ext_ufs_feature & UFS_DEV_EXT_IID_SUP))
8139 		goto out;
8140 
8141 	err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
8142 				      QUERY_ATTR_IDN_EXT_IID_EN, 0, 0, &ext_iid_en);
8143 	if (err)
8144 		dev_err(hba->dev, "failed reading bEXTIIDEn. err = %d\n", err);
8145 
8146 out:
8147 	dev_info->b_ext_iid_en = ext_iid_en;
8148 }
8149 
8150 static void ufshcd_set_rtt(struct ufs_hba *hba)
8151 {
8152 	struct ufs_dev_info *dev_info = &hba->dev_info;
8153 	u32 rtt = 0;
8154 	u32 dev_rtt = 0;
8155 	int host_rtt_cap = hba->vops && hba->vops->max_num_rtt ?
8156 			   hba->vops->max_num_rtt : hba->nortt;
8157 
8158 	/* RTT override makes sense only for UFS-4.0 and above */
8159 	if (dev_info->wspecversion < 0x400)
8160 		return;
8161 
8162 	if (ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
8163 				    QUERY_ATTR_IDN_MAX_NUM_OF_RTT, 0, 0, &dev_rtt)) {
8164 		dev_err(hba->dev, "failed reading bMaxNumOfRTT\n");
8165 		return;
8166 	}
8167 
8168 	/* do not override if it was already written */
8169 	if (dev_rtt != DEFAULT_MAX_NUM_RTT)
8170 		return;
8171 
8172 	rtt = min_t(int, dev_info->rtt_cap, host_rtt_cap);
8173 
8174 	if (rtt == dev_rtt)
8175 		return;
8176 
8177 	if (ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
8178 				    QUERY_ATTR_IDN_MAX_NUM_OF_RTT, 0, 0, &rtt))
8179 		dev_err(hba->dev, "failed writing bMaxNumOfRTT\n");
8180 }
8181 
8182 void ufshcd_fixup_dev_quirks(struct ufs_hba *hba,
8183 			     const struct ufs_dev_quirk *fixups)
8184 {
8185 	const struct ufs_dev_quirk *f;
8186 	struct ufs_dev_info *dev_info = &hba->dev_info;
8187 
8188 	if (!fixups)
8189 		return;
8190 
8191 	for (f = fixups; f->quirk; f++) {
8192 		if ((f->wmanufacturerid == dev_info->wmanufacturerid ||
8193 		     f->wmanufacturerid == UFS_ANY_VENDOR) &&
8194 		     ((dev_info->model &&
8195 		       STR_PRFX_EQUAL(f->model, dev_info->model)) ||
8196 		      !strcmp(f->model, UFS_ANY_MODEL)))
8197 			hba->dev_quirks |= f->quirk;
8198 	}
8199 }
8200 EXPORT_SYMBOL_GPL(ufshcd_fixup_dev_quirks);
8201 
8202 static void ufs_fixup_device_setup(struct ufs_hba *hba)
8203 {
8204 	/* fix by general quirk table */
8205 	ufshcd_fixup_dev_quirks(hba, ufs_fixups);
8206 
8207 	/* allow vendors to fix quirks */
8208 	ufshcd_vops_fixup_dev_quirks(hba);
8209 }
8210 
8211 static void ufshcd_update_rtc(struct ufs_hba *hba)
8212 {
8213 	struct timespec64 ts64;
8214 	int err;
8215 	u32 val;
8216 
8217 	ktime_get_real_ts64(&ts64);
8218 
8219 	if (ts64.tv_sec < hba->dev_info.rtc_time_baseline) {
8220 		dev_warn_once(hba->dev, "%s: Current time precedes previous setting!\n", __func__);
8221 		return;
8222 	}
8223 
8224 	/*
8225 	 * The Absolute RTC mode has a 136-year limit, spanning from 2010 to 2146. If a time beyond
8226 	 * 2146 is required, it is recommended to choose the relative RTC mode.
8227 	 */
8228 	val = ts64.tv_sec - hba->dev_info.rtc_time_baseline;
8229 
8230 	/* Skip update RTC if RPM state is not RPM_ACTIVE */
8231 	if (ufshcd_rpm_get_if_active(hba) <= 0)
8232 		return;
8233 
8234 	err = ufshcd_query_attr(hba, UPIU_QUERY_OPCODE_WRITE_ATTR, QUERY_ATTR_IDN_SECONDS_PASSED,
8235 				0, 0, &val);
8236 	ufshcd_rpm_put_sync(hba);
8237 
8238 	if (err)
8239 		dev_err(hba->dev, "%s: Failed to update rtc %d\n", __func__, err);
8240 	else if (hba->dev_info.rtc_type == UFS_RTC_RELATIVE)
8241 		hba->dev_info.rtc_time_baseline = ts64.tv_sec;
8242 }
8243 
8244 static void ufshcd_rtc_work(struct work_struct *work)
8245 {
8246 	struct ufs_hba *hba;
8247 
8248 	hba = container_of(to_delayed_work(work), struct ufs_hba, ufs_rtc_update_work);
8249 
8250 	 /* Update RTC only when there are no requests in progress and UFSHCI is operational */
8251 	if (!ufshcd_is_ufs_dev_busy(hba) && hba->ufshcd_state == UFSHCD_STATE_OPERATIONAL)
8252 		ufshcd_update_rtc(hba);
8253 
8254 	if (ufshcd_is_ufs_dev_active(hba) && hba->dev_info.rtc_update_period)
8255 		schedule_delayed_work(&hba->ufs_rtc_update_work,
8256 				      msecs_to_jiffies(hba->dev_info.rtc_update_period));
8257 }
8258 
8259 static void ufs_init_rtc(struct ufs_hba *hba, u8 *desc_buf)
8260 {
8261 	u16 periodic_rtc_update = get_unaligned_be16(&desc_buf[DEVICE_DESC_PARAM_FRQ_RTC]);
8262 	struct ufs_dev_info *dev_info = &hba->dev_info;
8263 
8264 	if (periodic_rtc_update & UFS_RTC_TIME_BASELINE) {
8265 		dev_info->rtc_type = UFS_RTC_ABSOLUTE;
8266 
8267 		/*
8268 		 * The concept of measuring time in Linux as the number of seconds elapsed since
8269 		 * 00:00:00 UTC on January 1, 1970, and UFS ABS RTC is elapsed from January 1st
8270 		 * 2010 00:00, here we need to adjust ABS baseline.
8271 		 */
8272 		dev_info->rtc_time_baseline = mktime64(2010, 1, 1, 0, 0, 0) -
8273 							mktime64(1970, 1, 1, 0, 0, 0);
8274 	} else {
8275 		dev_info->rtc_type = UFS_RTC_RELATIVE;
8276 		dev_info->rtc_time_baseline = 0;
8277 	}
8278 
8279 	/*
8280 	 * We ignore TIME_PERIOD defined in wPeriodicRTCUpdate because Spec does not clearly state
8281 	 * how to calculate the specific update period for each time unit. And we disable periodic
8282 	 * RTC update work, let user configure by sysfs node according to specific circumstance.
8283 	 */
8284 	dev_info->rtc_update_period = 0;
8285 }
8286 
8287 static int ufs_get_device_desc(struct ufs_hba *hba)
8288 {
8289 	int err;
8290 	u8 model_index;
8291 	u8 *desc_buf;
8292 	struct ufs_dev_info *dev_info = &hba->dev_info;
8293 
8294 	desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
8295 	if (!desc_buf) {
8296 		err = -ENOMEM;
8297 		goto out;
8298 	}
8299 
8300 	err = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_DEVICE, 0, 0, desc_buf,
8301 				     QUERY_DESC_MAX_SIZE);
8302 	if (err) {
8303 		dev_err(hba->dev, "%s: Failed reading Device Desc. err = %d\n",
8304 			__func__, err);
8305 		goto out;
8306 	}
8307 
8308 	/*
8309 	 * getting vendor (manufacturerID) and Bank Index in big endian
8310 	 * format
8311 	 */
8312 	dev_info->wmanufacturerid = desc_buf[DEVICE_DESC_PARAM_MANF_ID] << 8 |
8313 				     desc_buf[DEVICE_DESC_PARAM_MANF_ID + 1];
8314 
8315 	/* getting Specification Version in big endian format */
8316 	dev_info->wspecversion = desc_buf[DEVICE_DESC_PARAM_SPEC_VER] << 8 |
8317 				      desc_buf[DEVICE_DESC_PARAM_SPEC_VER + 1];
8318 	dev_info->bqueuedepth = desc_buf[DEVICE_DESC_PARAM_Q_DPTH];
8319 
8320 	dev_info->rtt_cap = desc_buf[DEVICE_DESC_PARAM_RTT_CAP];
8321 
8322 	model_index = desc_buf[DEVICE_DESC_PARAM_PRDCT_NAME];
8323 
8324 	err = ufshcd_read_string_desc(hba, model_index,
8325 				      &dev_info->model, SD_ASCII_STD);
8326 	if (err < 0) {
8327 		dev_err(hba->dev, "%s: Failed reading Product Name. err = %d\n",
8328 			__func__, err);
8329 		goto out;
8330 	}
8331 
8332 	hba->luns_avail = desc_buf[DEVICE_DESC_PARAM_NUM_LU] +
8333 		desc_buf[DEVICE_DESC_PARAM_NUM_WLU];
8334 
8335 	ufs_fixup_device_setup(hba);
8336 
8337 	ufshcd_wb_probe(hba, desc_buf);
8338 
8339 	ufshcd_temp_notif_probe(hba, desc_buf);
8340 
8341 	ufs_init_rtc(hba, desc_buf);
8342 
8343 	if (hba->ext_iid_sup)
8344 		ufshcd_ext_iid_probe(hba, desc_buf);
8345 
8346 	/*
8347 	 * ufshcd_read_string_desc returns size of the string
8348 	 * reset the error value
8349 	 */
8350 	err = 0;
8351 
8352 out:
8353 	kfree(desc_buf);
8354 	return err;
8355 }
8356 
8357 static void ufs_put_device_desc(struct ufs_hba *hba)
8358 {
8359 	struct ufs_dev_info *dev_info = &hba->dev_info;
8360 
8361 	kfree(dev_info->model);
8362 	dev_info->model = NULL;
8363 }
8364 
8365 /**
8366  * ufshcd_quirk_tune_host_pa_tactivate - Ensures that host PA_TACTIVATE is
8367  * less than device PA_TACTIVATE time.
8368  * @hba: per-adapter instance
8369  *
8370  * Some UFS devices require host PA_TACTIVATE to be lower than device
8371  * PA_TACTIVATE, we need to enable UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE quirk
8372  * for such devices.
8373  *
8374  * Return: zero on success, non-zero error value on failure.
8375  */
8376 static int ufshcd_quirk_tune_host_pa_tactivate(struct ufs_hba *hba)
8377 {
8378 	int ret = 0;
8379 	u32 granularity, peer_granularity;
8380 	u32 pa_tactivate, peer_pa_tactivate;
8381 	u32 pa_tactivate_us, peer_pa_tactivate_us;
8382 	static const u8 gran_to_us_table[] = {1, 4, 8, 16, 32, 100};
8383 
8384 	ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_GRANULARITY),
8385 				  &granularity);
8386 	if (ret)
8387 		goto out;
8388 
8389 	ret = ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_GRANULARITY),
8390 				  &peer_granularity);
8391 	if (ret)
8392 		goto out;
8393 
8394 	if ((granularity < PA_GRANULARITY_MIN_VAL) ||
8395 	    (granularity > PA_GRANULARITY_MAX_VAL)) {
8396 		dev_err(hba->dev, "%s: invalid host PA_GRANULARITY %d",
8397 			__func__, granularity);
8398 		return -EINVAL;
8399 	}
8400 
8401 	if ((peer_granularity < PA_GRANULARITY_MIN_VAL) ||
8402 	    (peer_granularity > PA_GRANULARITY_MAX_VAL)) {
8403 		dev_err(hba->dev, "%s: invalid device PA_GRANULARITY %d",
8404 			__func__, peer_granularity);
8405 		return -EINVAL;
8406 	}
8407 
8408 	ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_TACTIVATE), &pa_tactivate);
8409 	if (ret)
8410 		goto out;
8411 
8412 	ret = ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_TACTIVATE),
8413 				  &peer_pa_tactivate);
8414 	if (ret)
8415 		goto out;
8416 
8417 	pa_tactivate_us = pa_tactivate * gran_to_us_table[granularity - 1];
8418 	peer_pa_tactivate_us = peer_pa_tactivate *
8419 			     gran_to_us_table[peer_granularity - 1];
8420 
8421 	if (pa_tactivate_us >= peer_pa_tactivate_us) {
8422 		u32 new_peer_pa_tactivate;
8423 
8424 		new_peer_pa_tactivate = pa_tactivate_us /
8425 				      gran_to_us_table[peer_granularity - 1];
8426 		new_peer_pa_tactivate++;
8427 		ret = ufshcd_dme_peer_set(hba, UIC_ARG_MIB(PA_TACTIVATE),
8428 					  new_peer_pa_tactivate);
8429 	}
8430 
8431 out:
8432 	return ret;
8433 }
8434 
8435 static void ufshcd_tune_unipro_params(struct ufs_hba *hba)
8436 {
8437 	ufshcd_vops_apply_dev_quirks(hba);
8438 
8439 	if (hba->dev_quirks & UFS_DEVICE_QUIRK_PA_TACTIVATE)
8440 		/* set 1ms timeout for PA_TACTIVATE */
8441 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TACTIVATE), 10);
8442 
8443 	if (hba->dev_quirks & UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE)
8444 		ufshcd_quirk_tune_host_pa_tactivate(hba);
8445 }
8446 
8447 static void ufshcd_clear_dbg_ufs_stats(struct ufs_hba *hba)
8448 {
8449 	hba->ufs_stats.hibern8_exit_cnt = 0;
8450 	hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
8451 	hba->req_abort_count = 0;
8452 }
8453 
8454 static int ufshcd_device_geo_params_init(struct ufs_hba *hba)
8455 {
8456 	int err;
8457 	u8 *desc_buf;
8458 
8459 	desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
8460 	if (!desc_buf) {
8461 		err = -ENOMEM;
8462 		goto out;
8463 	}
8464 
8465 	err = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_GEOMETRY, 0, 0,
8466 				     desc_buf, QUERY_DESC_MAX_SIZE);
8467 	if (err) {
8468 		dev_err(hba->dev, "%s: Failed reading Geometry Desc. err = %d\n",
8469 				__func__, err);
8470 		goto out;
8471 	}
8472 
8473 	if (desc_buf[GEOMETRY_DESC_PARAM_MAX_NUM_LUN] == 1)
8474 		hba->dev_info.max_lu_supported = 32;
8475 	else if (desc_buf[GEOMETRY_DESC_PARAM_MAX_NUM_LUN] == 0)
8476 		hba->dev_info.max_lu_supported = 8;
8477 
8478 out:
8479 	kfree(desc_buf);
8480 	return err;
8481 }
8482 
8483 struct ufs_ref_clk {
8484 	unsigned long freq_hz;
8485 	enum ufs_ref_clk_freq val;
8486 };
8487 
8488 static const struct ufs_ref_clk ufs_ref_clk_freqs[] = {
8489 	{19200000, REF_CLK_FREQ_19_2_MHZ},
8490 	{26000000, REF_CLK_FREQ_26_MHZ},
8491 	{38400000, REF_CLK_FREQ_38_4_MHZ},
8492 	{52000000, REF_CLK_FREQ_52_MHZ},
8493 	{0, REF_CLK_FREQ_INVAL},
8494 };
8495 
8496 static enum ufs_ref_clk_freq
8497 ufs_get_bref_clk_from_hz(unsigned long freq)
8498 {
8499 	int i;
8500 
8501 	for (i = 0; ufs_ref_clk_freqs[i].freq_hz; i++)
8502 		if (ufs_ref_clk_freqs[i].freq_hz == freq)
8503 			return ufs_ref_clk_freqs[i].val;
8504 
8505 	return REF_CLK_FREQ_INVAL;
8506 }
8507 
8508 void ufshcd_parse_dev_ref_clk_freq(struct ufs_hba *hba, struct clk *refclk)
8509 {
8510 	unsigned long freq;
8511 
8512 	freq = clk_get_rate(refclk);
8513 
8514 	hba->dev_ref_clk_freq =
8515 		ufs_get_bref_clk_from_hz(freq);
8516 
8517 	if (hba->dev_ref_clk_freq == REF_CLK_FREQ_INVAL)
8518 		dev_err(hba->dev,
8519 		"invalid ref_clk setting = %ld\n", freq);
8520 }
8521 
8522 static int ufshcd_set_dev_ref_clk(struct ufs_hba *hba)
8523 {
8524 	int err;
8525 	u32 ref_clk;
8526 	u32 freq = hba->dev_ref_clk_freq;
8527 
8528 	err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
8529 			QUERY_ATTR_IDN_REF_CLK_FREQ, 0, 0, &ref_clk);
8530 
8531 	if (err) {
8532 		dev_err(hba->dev, "failed reading bRefClkFreq. err = %d\n",
8533 			err);
8534 		goto out;
8535 	}
8536 
8537 	if (ref_clk == freq)
8538 		goto out; /* nothing to update */
8539 
8540 	err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
8541 			QUERY_ATTR_IDN_REF_CLK_FREQ, 0, 0, &freq);
8542 
8543 	if (err) {
8544 		dev_err(hba->dev, "bRefClkFreq setting to %lu Hz failed\n",
8545 			ufs_ref_clk_freqs[freq].freq_hz);
8546 		goto out;
8547 	}
8548 
8549 	dev_dbg(hba->dev, "bRefClkFreq setting to %lu Hz succeeded\n",
8550 			ufs_ref_clk_freqs[freq].freq_hz);
8551 
8552 out:
8553 	return err;
8554 }
8555 
8556 static int ufshcd_device_params_init(struct ufs_hba *hba)
8557 {
8558 	bool flag;
8559 	int ret;
8560 
8561 	/* Init UFS geometry descriptor related parameters */
8562 	ret = ufshcd_device_geo_params_init(hba);
8563 	if (ret)
8564 		goto out;
8565 
8566 	/* Check and apply UFS device quirks */
8567 	ret = ufs_get_device_desc(hba);
8568 	if (ret) {
8569 		dev_err(hba->dev, "%s: Failed getting device info. err = %d\n",
8570 			__func__, ret);
8571 		goto out;
8572 	}
8573 
8574 	ufshcd_set_rtt(hba);
8575 
8576 	ufshcd_get_ref_clk_gating_wait(hba);
8577 
8578 	if (!ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_READ_FLAG,
8579 			QUERY_FLAG_IDN_PWR_ON_WPE, 0, &flag))
8580 		hba->dev_info.f_power_on_wp_en = flag;
8581 
8582 	/* Probe maximum power mode co-supported by both UFS host and device */
8583 	if (ufshcd_get_max_pwr_mode(hba))
8584 		dev_err(hba->dev,
8585 			"%s: Failed getting max supported power mode\n",
8586 			__func__);
8587 out:
8588 	return ret;
8589 }
8590 
8591 static void ufshcd_set_timestamp_attr(struct ufs_hba *hba)
8592 {
8593 	int err;
8594 	struct ufs_query_req *request = NULL;
8595 	struct ufs_query_res *response = NULL;
8596 	struct ufs_dev_info *dev_info = &hba->dev_info;
8597 	struct utp_upiu_query_v4_0 *upiu_data;
8598 
8599 	if (dev_info->wspecversion < 0x400)
8600 		return;
8601 
8602 	ufshcd_dev_man_lock(hba);
8603 
8604 	ufshcd_init_query(hba, &request, &response,
8605 			  UPIU_QUERY_OPCODE_WRITE_ATTR,
8606 			  QUERY_ATTR_IDN_TIMESTAMP, 0, 0);
8607 
8608 	request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
8609 
8610 	upiu_data = (struct utp_upiu_query_v4_0 *)&request->upiu_req;
8611 
8612 	put_unaligned_be64(ktime_get_real_ns(), &upiu_data->osf3);
8613 
8614 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT);
8615 
8616 	if (err)
8617 		dev_err(hba->dev, "%s: failed to set timestamp %d\n",
8618 			__func__, err);
8619 
8620 	ufshcd_dev_man_unlock(hba);
8621 }
8622 
8623 /**
8624  * ufshcd_add_lus - probe and add UFS logical units
8625  * @hba: per-adapter instance
8626  *
8627  * Return: 0 upon success; < 0 upon failure.
8628  */
8629 static int ufshcd_add_lus(struct ufs_hba *hba)
8630 {
8631 	int ret;
8632 
8633 	/* Add required well known logical units to scsi mid layer */
8634 	ret = ufshcd_scsi_add_wlus(hba);
8635 	if (ret)
8636 		goto out;
8637 
8638 	/* Initialize devfreq after UFS device is detected */
8639 	if (ufshcd_is_clkscaling_supported(hba)) {
8640 		memcpy(&hba->clk_scaling.saved_pwr_info,
8641 			&hba->pwr_info,
8642 			sizeof(struct ufs_pa_layer_attr));
8643 		hba->clk_scaling.is_allowed = true;
8644 
8645 		ret = ufshcd_devfreq_init(hba);
8646 		if (ret)
8647 			goto out;
8648 
8649 		hba->clk_scaling.is_enabled = true;
8650 		ufshcd_init_clk_scaling_sysfs(hba);
8651 	}
8652 
8653 	ufs_bsg_probe(hba);
8654 	scsi_scan_host(hba->host);
8655 
8656 out:
8657 	return ret;
8658 }
8659 
8660 /* SDB - Single Doorbell */
8661 static void ufshcd_release_sdb_queue(struct ufs_hba *hba, int nutrs)
8662 {
8663 	size_t ucdl_size, utrdl_size;
8664 
8665 	ucdl_size = ufshcd_get_ucd_size(hba) * nutrs;
8666 	dmam_free_coherent(hba->dev, ucdl_size, hba->ucdl_base_addr,
8667 			   hba->ucdl_dma_addr);
8668 
8669 	utrdl_size = sizeof(struct utp_transfer_req_desc) * nutrs;
8670 	dmam_free_coherent(hba->dev, utrdl_size, hba->utrdl_base_addr,
8671 			   hba->utrdl_dma_addr);
8672 
8673 	devm_kfree(hba->dev, hba->lrb);
8674 }
8675 
8676 static int ufshcd_alloc_mcq(struct ufs_hba *hba)
8677 {
8678 	int ret;
8679 	int old_nutrs = hba->nutrs;
8680 
8681 	ret = ufshcd_mcq_decide_queue_depth(hba);
8682 	if (ret < 0)
8683 		return ret;
8684 
8685 	hba->nutrs = ret;
8686 	ret = ufshcd_mcq_init(hba);
8687 	if (ret)
8688 		goto err;
8689 
8690 	/*
8691 	 * Previously allocated memory for nutrs may not be enough in MCQ mode.
8692 	 * Number of supported tags in MCQ mode may be larger than SDB mode.
8693 	 */
8694 	if (hba->nutrs != old_nutrs) {
8695 		ufshcd_release_sdb_queue(hba, old_nutrs);
8696 		ret = ufshcd_memory_alloc(hba);
8697 		if (ret)
8698 			goto err;
8699 		ufshcd_host_memory_configure(hba);
8700 	}
8701 
8702 	ret = ufshcd_mcq_memory_alloc(hba);
8703 	if (ret)
8704 		goto err;
8705 
8706 	hba->host->can_queue = hba->nutrs - UFSHCD_NUM_RESERVED;
8707 	hba->reserved_slot = hba->nutrs - UFSHCD_NUM_RESERVED;
8708 
8709 	return 0;
8710 err:
8711 	hba->nutrs = old_nutrs;
8712 	return ret;
8713 }
8714 
8715 static void ufshcd_config_mcq(struct ufs_hba *hba)
8716 {
8717 	int ret;
8718 	u32 intrs;
8719 
8720 	ret = ufshcd_mcq_vops_config_esi(hba);
8721 	dev_info(hba->dev, "ESI %sconfigured\n", ret ? "is not " : "");
8722 
8723 	intrs = UFSHCD_ENABLE_MCQ_INTRS;
8724 	if (hba->quirks & UFSHCD_QUIRK_MCQ_BROKEN_INTR)
8725 		intrs &= ~MCQ_CQ_EVENT_STATUS;
8726 	ufshcd_enable_intr(hba, intrs);
8727 	ufshcd_mcq_make_queues_operational(hba);
8728 	ufshcd_mcq_config_mac(hba, hba->nutrs);
8729 
8730 	dev_info(hba->dev, "MCQ configured, nr_queues=%d, io_queues=%d, read_queue=%d, poll_queues=%d, queue_depth=%d\n",
8731 		 hba->nr_hw_queues, hba->nr_queues[HCTX_TYPE_DEFAULT],
8732 		 hba->nr_queues[HCTX_TYPE_READ], hba->nr_queues[HCTX_TYPE_POLL],
8733 		 hba->nutrs);
8734 }
8735 
8736 static int ufshcd_device_init(struct ufs_hba *hba, bool init_dev_params)
8737 {
8738 	int ret;
8739 	struct Scsi_Host *host = hba->host;
8740 
8741 	hba->ufshcd_state = UFSHCD_STATE_RESET;
8742 
8743 	ret = ufshcd_link_startup(hba);
8744 	if (ret)
8745 		return ret;
8746 
8747 	if (hba->quirks & UFSHCD_QUIRK_SKIP_PH_CONFIGURATION)
8748 		return ret;
8749 
8750 	/* Debug counters initialization */
8751 	ufshcd_clear_dbg_ufs_stats(hba);
8752 
8753 	/* UniPro link is active now */
8754 	ufshcd_set_link_active(hba);
8755 
8756 	/* Reconfigure MCQ upon reset */
8757 	if (hba->mcq_enabled && !init_dev_params) {
8758 		ufshcd_config_mcq(hba);
8759 		ufshcd_mcq_enable(hba);
8760 	}
8761 
8762 	/* Verify device initialization by sending NOP OUT UPIU */
8763 	ret = ufshcd_verify_dev_init(hba);
8764 	if (ret)
8765 		return ret;
8766 
8767 	/* Initiate UFS initialization, and waiting until completion */
8768 	ret = ufshcd_complete_dev_init(hba);
8769 	if (ret)
8770 		return ret;
8771 
8772 	/*
8773 	 * Initialize UFS device parameters used by driver, these
8774 	 * parameters are associated with UFS descriptors.
8775 	 */
8776 	if (init_dev_params) {
8777 		ret = ufshcd_device_params_init(hba);
8778 		if (ret)
8779 			return ret;
8780 		if (is_mcq_supported(hba) && !hba->scsi_host_added) {
8781 			ufshcd_mcq_enable(hba);
8782 			ret = ufshcd_alloc_mcq(hba);
8783 			if (!ret) {
8784 				ufshcd_config_mcq(hba);
8785 			} else {
8786 				/* Continue with SDB mode */
8787 				ufshcd_mcq_disable(hba);
8788 				use_mcq_mode = false;
8789 				dev_err(hba->dev, "MCQ mode is disabled, err=%d\n",
8790 					 ret);
8791 			}
8792 			ret = scsi_add_host(host, hba->dev);
8793 			if (ret) {
8794 				dev_err(hba->dev, "scsi_add_host failed\n");
8795 				return ret;
8796 			}
8797 			hba->scsi_host_added = true;
8798 		} else if (is_mcq_supported(hba)) {
8799 			/* UFSHCD_QUIRK_REINIT_AFTER_MAX_GEAR_SWITCH is set */
8800 			ufshcd_config_mcq(hba);
8801 			ufshcd_mcq_enable(hba);
8802 		}
8803 	}
8804 
8805 	ufshcd_tune_unipro_params(hba);
8806 
8807 	/* UFS device is also active now */
8808 	ufshcd_set_ufs_dev_active(hba);
8809 	ufshcd_force_reset_auto_bkops(hba);
8810 
8811 	ufshcd_set_timestamp_attr(hba);
8812 	schedule_delayed_work(&hba->ufs_rtc_update_work,
8813 			      msecs_to_jiffies(UFS_RTC_UPDATE_INTERVAL_MS));
8814 
8815 	/* Gear up to HS gear if supported */
8816 	if (hba->max_pwr_info.is_valid) {
8817 		/*
8818 		 * Set the right value to bRefClkFreq before attempting to
8819 		 * switch to HS gears.
8820 		 */
8821 		if (hba->dev_ref_clk_freq != REF_CLK_FREQ_INVAL)
8822 			ufshcd_set_dev_ref_clk(hba);
8823 		ret = ufshcd_config_pwr_mode(hba, &hba->max_pwr_info.info);
8824 		if (ret) {
8825 			dev_err(hba->dev, "%s: Failed setting power mode, err = %d\n",
8826 					__func__, ret);
8827 			return ret;
8828 		}
8829 	}
8830 
8831 	return 0;
8832 }
8833 
8834 /**
8835  * ufshcd_probe_hba - probe hba to detect device and initialize it
8836  * @hba: per-adapter instance
8837  * @init_dev_params: whether or not to call ufshcd_device_params_init().
8838  *
8839  * Execute link-startup and verify device initialization
8840  *
8841  * Return: 0 upon success; < 0 upon failure.
8842  */
8843 static int ufshcd_probe_hba(struct ufs_hba *hba, bool init_dev_params)
8844 {
8845 	ktime_t start = ktime_get();
8846 	unsigned long flags;
8847 	int ret;
8848 
8849 	ret = ufshcd_device_init(hba, init_dev_params);
8850 	if (ret)
8851 		goto out;
8852 
8853 	if (!hba->pm_op_in_progress &&
8854 	    (hba->quirks & UFSHCD_QUIRK_REINIT_AFTER_MAX_GEAR_SWITCH)) {
8855 		/* Reset the device and controller before doing reinit */
8856 		ufshcd_device_reset(hba);
8857 		ufs_put_device_desc(hba);
8858 		ufshcd_hba_stop(hba);
8859 		ufshcd_vops_reinit_notify(hba);
8860 		ret = ufshcd_hba_enable(hba);
8861 		if (ret) {
8862 			dev_err(hba->dev, "Host controller enable failed\n");
8863 			ufshcd_print_evt_hist(hba);
8864 			ufshcd_print_host_state(hba);
8865 			goto out;
8866 		}
8867 
8868 		/* Reinit the device */
8869 		ret = ufshcd_device_init(hba, init_dev_params);
8870 		if (ret)
8871 			goto out;
8872 	}
8873 
8874 	ufshcd_print_pwr_info(hba);
8875 
8876 	/*
8877 	 * bActiveICCLevel is volatile for UFS device (as per latest v2.1 spec)
8878 	 * and for removable UFS card as well, hence always set the parameter.
8879 	 * Note: Error handler may issue the device reset hence resetting
8880 	 * bActiveICCLevel as well so it is always safe to set this here.
8881 	 */
8882 	ufshcd_set_active_icc_lvl(hba);
8883 
8884 	/* Enable UFS Write Booster if supported */
8885 	ufshcd_configure_wb(hba);
8886 
8887 	if (hba->ee_usr_mask)
8888 		ufshcd_write_ee_control(hba);
8889 	ufshcd_configure_auto_hibern8(hba);
8890 
8891 out:
8892 	spin_lock_irqsave(hba->host->host_lock, flags);
8893 	if (ret)
8894 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
8895 	else if (hba->ufshcd_state == UFSHCD_STATE_RESET)
8896 		hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
8897 	spin_unlock_irqrestore(hba->host->host_lock, flags);
8898 
8899 	trace_ufshcd_init(dev_name(hba->dev), ret,
8900 		ktime_to_us(ktime_sub(ktime_get(), start)),
8901 		hba->curr_dev_pwr_mode, hba->uic_link_state);
8902 	return ret;
8903 }
8904 
8905 /**
8906  * ufshcd_async_scan - asynchronous execution for probing hba
8907  * @data: data pointer to pass to this function
8908  * @cookie: cookie data
8909  */
8910 static void ufshcd_async_scan(void *data, async_cookie_t cookie)
8911 {
8912 	struct ufs_hba *hba = (struct ufs_hba *)data;
8913 	int ret;
8914 
8915 	down(&hba->host_sem);
8916 	/* Initialize hba, detect and initialize UFS device */
8917 	ret = ufshcd_probe_hba(hba, true);
8918 	up(&hba->host_sem);
8919 	if (ret)
8920 		goto out;
8921 
8922 	/* Probe and add UFS logical units  */
8923 	ret = ufshcd_add_lus(hba);
8924 
8925 out:
8926 	pm_runtime_put_sync(hba->dev);
8927 
8928 	if (ret)
8929 		dev_err(hba->dev, "%s failed: %d\n", __func__, ret);
8930 }
8931 
8932 static enum scsi_timeout_action ufshcd_eh_timed_out(struct scsi_cmnd *scmd)
8933 {
8934 	struct ufs_hba *hba = shost_priv(scmd->device->host);
8935 
8936 	if (!hba->system_suspending) {
8937 		/* Activate the error handler in the SCSI core. */
8938 		return SCSI_EH_NOT_HANDLED;
8939 	}
8940 
8941 	/*
8942 	 * If we get here we know that no TMFs are outstanding and also that
8943 	 * the only pending command is a START STOP UNIT command. Handle the
8944 	 * timeout of that command directly to prevent a deadlock between
8945 	 * ufshcd_set_dev_pwr_mode() and ufshcd_err_handler().
8946 	 */
8947 	ufshcd_link_recovery(hba);
8948 	dev_info(hba->dev, "%s() finished; outstanding_tasks = %#lx.\n",
8949 		 __func__, hba->outstanding_tasks);
8950 
8951 	return hba->outstanding_reqs ? SCSI_EH_RESET_TIMER : SCSI_EH_DONE;
8952 }
8953 
8954 static const struct attribute_group *ufshcd_driver_groups[] = {
8955 	&ufs_sysfs_unit_descriptor_group,
8956 	&ufs_sysfs_lun_attributes_group,
8957 	NULL,
8958 };
8959 
8960 static struct ufs_hba_variant_params ufs_hba_vps = {
8961 	.hba_enable_delay_us		= 1000,
8962 	.wb_flush_threshold		= UFS_WB_BUF_REMAIN_PERCENT(40),
8963 	.devfreq_profile.polling_ms	= 100,
8964 	.devfreq_profile.target		= ufshcd_devfreq_target,
8965 	.devfreq_profile.get_dev_status	= ufshcd_devfreq_get_dev_status,
8966 	.ondemand_data.upthreshold	= 70,
8967 	.ondemand_data.downdifferential	= 5,
8968 };
8969 
8970 static const struct scsi_host_template ufshcd_driver_template = {
8971 	.module			= THIS_MODULE,
8972 	.name			= UFSHCD,
8973 	.proc_name		= UFSHCD,
8974 	.map_queues		= ufshcd_map_queues,
8975 	.queuecommand		= ufshcd_queuecommand,
8976 	.mq_poll		= ufshcd_poll,
8977 	.slave_alloc		= ufshcd_slave_alloc,
8978 	.device_configure	= ufshcd_device_configure,
8979 	.slave_destroy		= ufshcd_slave_destroy,
8980 	.change_queue_depth	= ufshcd_change_queue_depth,
8981 	.eh_abort_handler	= ufshcd_abort,
8982 	.eh_device_reset_handler = ufshcd_eh_device_reset_handler,
8983 	.eh_host_reset_handler   = ufshcd_eh_host_reset_handler,
8984 	.eh_timed_out		= ufshcd_eh_timed_out,
8985 	.this_id		= -1,
8986 	.sg_tablesize		= SG_ALL,
8987 	.max_segment_size	= PRDT_DATA_BYTE_COUNT_MAX,
8988 	.max_sectors		= SZ_1M / SECTOR_SIZE,
8989 	.max_host_blocked	= 1,
8990 	.track_queue_depth	= 1,
8991 	.skip_settle_delay	= 1,
8992 	.sdev_groups		= ufshcd_driver_groups,
8993 };
8994 
8995 static int ufshcd_config_vreg_load(struct device *dev, struct ufs_vreg *vreg,
8996 				   int ua)
8997 {
8998 	int ret;
8999 
9000 	if (!vreg)
9001 		return 0;
9002 
9003 	/*
9004 	 * "set_load" operation shall be required on those regulators
9005 	 * which specifically configured current limitation. Otherwise
9006 	 * zero max_uA may cause unexpected behavior when regulator is
9007 	 * enabled or set as high power mode.
9008 	 */
9009 	if (!vreg->max_uA)
9010 		return 0;
9011 
9012 	ret = regulator_set_load(vreg->reg, ua);
9013 	if (ret < 0) {
9014 		dev_err(dev, "%s: %s set load (ua=%d) failed, err=%d\n",
9015 				__func__, vreg->name, ua, ret);
9016 	}
9017 
9018 	return ret;
9019 }
9020 
9021 static inline int ufshcd_config_vreg_lpm(struct ufs_hba *hba,
9022 					 struct ufs_vreg *vreg)
9023 {
9024 	return ufshcd_config_vreg_load(hba->dev, vreg, UFS_VREG_LPM_LOAD_UA);
9025 }
9026 
9027 static inline int ufshcd_config_vreg_hpm(struct ufs_hba *hba,
9028 					 struct ufs_vreg *vreg)
9029 {
9030 	if (!vreg)
9031 		return 0;
9032 
9033 	return ufshcd_config_vreg_load(hba->dev, vreg, vreg->max_uA);
9034 }
9035 
9036 static int ufshcd_config_vreg(struct device *dev,
9037 		struct ufs_vreg *vreg, bool on)
9038 {
9039 	if (regulator_count_voltages(vreg->reg) <= 0)
9040 		return 0;
9041 
9042 	return ufshcd_config_vreg_load(dev, vreg, on ? vreg->max_uA : 0);
9043 }
9044 
9045 static int ufshcd_enable_vreg(struct device *dev, struct ufs_vreg *vreg)
9046 {
9047 	int ret = 0;
9048 
9049 	if (!vreg || vreg->enabled)
9050 		goto out;
9051 
9052 	ret = ufshcd_config_vreg(dev, vreg, true);
9053 	if (!ret)
9054 		ret = regulator_enable(vreg->reg);
9055 
9056 	if (!ret)
9057 		vreg->enabled = true;
9058 	else
9059 		dev_err(dev, "%s: %s enable failed, err=%d\n",
9060 				__func__, vreg->name, ret);
9061 out:
9062 	return ret;
9063 }
9064 
9065 static int ufshcd_disable_vreg(struct device *dev, struct ufs_vreg *vreg)
9066 {
9067 	int ret = 0;
9068 
9069 	if (!vreg || !vreg->enabled || vreg->always_on)
9070 		goto out;
9071 
9072 	ret = regulator_disable(vreg->reg);
9073 
9074 	if (!ret) {
9075 		/* ignore errors on applying disable config */
9076 		ufshcd_config_vreg(dev, vreg, false);
9077 		vreg->enabled = false;
9078 	} else {
9079 		dev_err(dev, "%s: %s disable failed, err=%d\n",
9080 				__func__, vreg->name, ret);
9081 	}
9082 out:
9083 	return ret;
9084 }
9085 
9086 static int ufshcd_setup_vreg(struct ufs_hba *hba, bool on)
9087 {
9088 	int ret = 0;
9089 	struct device *dev = hba->dev;
9090 	struct ufs_vreg_info *info = &hba->vreg_info;
9091 
9092 	ret = ufshcd_toggle_vreg(dev, info->vcc, on);
9093 	if (ret)
9094 		goto out;
9095 
9096 	ret = ufshcd_toggle_vreg(dev, info->vccq, on);
9097 	if (ret)
9098 		goto out;
9099 
9100 	ret = ufshcd_toggle_vreg(dev, info->vccq2, on);
9101 
9102 out:
9103 	if (ret) {
9104 		ufshcd_toggle_vreg(dev, info->vccq2, false);
9105 		ufshcd_toggle_vreg(dev, info->vccq, false);
9106 		ufshcd_toggle_vreg(dev, info->vcc, false);
9107 	}
9108 	return ret;
9109 }
9110 
9111 static int ufshcd_setup_hba_vreg(struct ufs_hba *hba, bool on)
9112 {
9113 	struct ufs_vreg_info *info = &hba->vreg_info;
9114 
9115 	return ufshcd_toggle_vreg(hba->dev, info->vdd_hba, on);
9116 }
9117 
9118 int ufshcd_get_vreg(struct device *dev, struct ufs_vreg *vreg)
9119 {
9120 	int ret = 0;
9121 
9122 	if (!vreg)
9123 		goto out;
9124 
9125 	vreg->reg = devm_regulator_get(dev, vreg->name);
9126 	if (IS_ERR(vreg->reg)) {
9127 		ret = PTR_ERR(vreg->reg);
9128 		dev_err(dev, "%s: %s get failed, err=%d\n",
9129 				__func__, vreg->name, ret);
9130 	}
9131 out:
9132 	return ret;
9133 }
9134 EXPORT_SYMBOL_GPL(ufshcd_get_vreg);
9135 
9136 static int ufshcd_init_vreg(struct ufs_hba *hba)
9137 {
9138 	int ret = 0;
9139 	struct device *dev = hba->dev;
9140 	struct ufs_vreg_info *info = &hba->vreg_info;
9141 
9142 	ret = ufshcd_get_vreg(dev, info->vcc);
9143 	if (ret)
9144 		goto out;
9145 
9146 	ret = ufshcd_get_vreg(dev, info->vccq);
9147 	if (!ret)
9148 		ret = ufshcd_get_vreg(dev, info->vccq2);
9149 out:
9150 	return ret;
9151 }
9152 
9153 static int ufshcd_init_hba_vreg(struct ufs_hba *hba)
9154 {
9155 	struct ufs_vreg_info *info = &hba->vreg_info;
9156 
9157 	return ufshcd_get_vreg(hba->dev, info->vdd_hba);
9158 }
9159 
9160 static int ufshcd_setup_clocks(struct ufs_hba *hba, bool on)
9161 {
9162 	int ret = 0;
9163 	struct ufs_clk_info *clki;
9164 	struct list_head *head = &hba->clk_list_head;
9165 	unsigned long flags;
9166 	ktime_t start = ktime_get();
9167 	bool clk_state_changed = false;
9168 
9169 	if (list_empty(head))
9170 		goto out;
9171 
9172 	ret = ufshcd_vops_setup_clocks(hba, on, PRE_CHANGE);
9173 	if (ret)
9174 		return ret;
9175 
9176 	list_for_each_entry(clki, head, list) {
9177 		if (!IS_ERR_OR_NULL(clki->clk)) {
9178 			/*
9179 			 * Don't disable clocks which are needed
9180 			 * to keep the link active.
9181 			 */
9182 			if (ufshcd_is_link_active(hba) &&
9183 			    clki->keep_link_active)
9184 				continue;
9185 
9186 			clk_state_changed = on ^ clki->enabled;
9187 			if (on && !clki->enabled) {
9188 				ret = clk_prepare_enable(clki->clk);
9189 				if (ret) {
9190 					dev_err(hba->dev, "%s: %s prepare enable failed, %d\n",
9191 						__func__, clki->name, ret);
9192 					goto out;
9193 				}
9194 			} else if (!on && clki->enabled) {
9195 				clk_disable_unprepare(clki->clk);
9196 			}
9197 			clki->enabled = on;
9198 			dev_dbg(hba->dev, "%s: clk: %s %sabled\n", __func__,
9199 					clki->name, on ? "en" : "dis");
9200 		}
9201 	}
9202 
9203 	ret = ufshcd_vops_setup_clocks(hba, on, POST_CHANGE);
9204 	if (ret)
9205 		return ret;
9206 
9207 	if (!ufshcd_is_clkscaling_supported(hba))
9208 		ufshcd_pm_qos_update(hba, on);
9209 out:
9210 	if (ret) {
9211 		list_for_each_entry(clki, head, list) {
9212 			if (!IS_ERR_OR_NULL(clki->clk) && clki->enabled)
9213 				clk_disable_unprepare(clki->clk);
9214 		}
9215 	} else if (!ret && on) {
9216 		spin_lock_irqsave(hba->host->host_lock, flags);
9217 		hba->clk_gating.state = CLKS_ON;
9218 		trace_ufshcd_clk_gating(dev_name(hba->dev),
9219 					hba->clk_gating.state);
9220 		spin_unlock_irqrestore(hba->host->host_lock, flags);
9221 	}
9222 
9223 	if (clk_state_changed)
9224 		trace_ufshcd_profile_clk_gating(dev_name(hba->dev),
9225 			(on ? "on" : "off"),
9226 			ktime_to_us(ktime_sub(ktime_get(), start)), ret);
9227 	return ret;
9228 }
9229 
9230 static enum ufs_ref_clk_freq ufshcd_parse_ref_clk_property(struct ufs_hba *hba)
9231 {
9232 	u32 freq;
9233 	int ret = device_property_read_u32(hba->dev, "ref-clk-freq", &freq);
9234 
9235 	if (ret) {
9236 		dev_dbg(hba->dev, "Cannot query 'ref-clk-freq' property = %d", ret);
9237 		return REF_CLK_FREQ_INVAL;
9238 	}
9239 
9240 	return ufs_get_bref_clk_from_hz(freq);
9241 }
9242 
9243 static int ufshcd_init_clocks(struct ufs_hba *hba)
9244 {
9245 	int ret = 0;
9246 	struct ufs_clk_info *clki;
9247 	struct device *dev = hba->dev;
9248 	struct list_head *head = &hba->clk_list_head;
9249 
9250 	if (list_empty(head))
9251 		goto out;
9252 
9253 	list_for_each_entry(clki, head, list) {
9254 		if (!clki->name)
9255 			continue;
9256 
9257 		clki->clk = devm_clk_get(dev, clki->name);
9258 		if (IS_ERR(clki->clk)) {
9259 			ret = PTR_ERR(clki->clk);
9260 			dev_err(dev, "%s: %s clk get failed, %d\n",
9261 					__func__, clki->name, ret);
9262 			goto out;
9263 		}
9264 
9265 		/*
9266 		 * Parse device ref clk freq as per device tree "ref_clk".
9267 		 * Default dev_ref_clk_freq is set to REF_CLK_FREQ_INVAL
9268 		 * in ufshcd_alloc_host().
9269 		 */
9270 		if (!strcmp(clki->name, "ref_clk"))
9271 			ufshcd_parse_dev_ref_clk_freq(hba, clki->clk);
9272 
9273 		if (clki->max_freq) {
9274 			ret = clk_set_rate(clki->clk, clki->max_freq);
9275 			if (ret) {
9276 				dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
9277 					__func__, clki->name,
9278 					clki->max_freq, ret);
9279 				goto out;
9280 			}
9281 			clki->curr_freq = clki->max_freq;
9282 		}
9283 		dev_dbg(dev, "%s: clk: %s, rate: %lu\n", __func__,
9284 				clki->name, clk_get_rate(clki->clk));
9285 	}
9286 
9287 	/* Set Max. frequency for all clocks */
9288 	if (hba->use_pm_opp) {
9289 		ret = ufshcd_opp_set_rate(hba, ULONG_MAX);
9290 		if (ret) {
9291 			dev_err(hba->dev, "%s: failed to set OPP: %d", __func__,
9292 				ret);
9293 			goto out;
9294 		}
9295 	}
9296 
9297 out:
9298 	return ret;
9299 }
9300 
9301 static int ufshcd_variant_hba_init(struct ufs_hba *hba)
9302 {
9303 	int err = 0;
9304 
9305 	if (!hba->vops)
9306 		goto out;
9307 
9308 	err = ufshcd_vops_init(hba);
9309 	if (err)
9310 		dev_err_probe(hba->dev, err,
9311 			      "%s: variant %s init failed with err %d\n",
9312 			      __func__, ufshcd_get_var_name(hba), err);
9313 out:
9314 	return err;
9315 }
9316 
9317 static void ufshcd_variant_hba_exit(struct ufs_hba *hba)
9318 {
9319 	if (!hba->vops)
9320 		return;
9321 
9322 	ufshcd_vops_exit(hba);
9323 }
9324 
9325 static int ufshcd_hba_init(struct ufs_hba *hba)
9326 {
9327 	int err;
9328 
9329 	/*
9330 	 * Handle host controller power separately from the UFS device power
9331 	 * rails as it will help controlling the UFS host controller power
9332 	 * collapse easily which is different than UFS device power collapse.
9333 	 * Also, enable the host controller power before we go ahead with rest
9334 	 * of the initialization here.
9335 	 */
9336 	err = ufshcd_init_hba_vreg(hba);
9337 	if (err)
9338 		goto out;
9339 
9340 	err = ufshcd_setup_hba_vreg(hba, true);
9341 	if (err)
9342 		goto out;
9343 
9344 	err = ufshcd_init_clocks(hba);
9345 	if (err)
9346 		goto out_disable_hba_vreg;
9347 
9348 	if (hba->dev_ref_clk_freq == REF_CLK_FREQ_INVAL)
9349 		hba->dev_ref_clk_freq = ufshcd_parse_ref_clk_property(hba);
9350 
9351 	err = ufshcd_setup_clocks(hba, true);
9352 	if (err)
9353 		goto out_disable_hba_vreg;
9354 
9355 	err = ufshcd_init_vreg(hba);
9356 	if (err)
9357 		goto out_disable_clks;
9358 
9359 	err = ufshcd_setup_vreg(hba, true);
9360 	if (err)
9361 		goto out_disable_clks;
9362 
9363 	err = ufshcd_variant_hba_init(hba);
9364 	if (err)
9365 		goto out_disable_vreg;
9366 
9367 	ufs_debugfs_hba_init(hba);
9368 	ufs_fault_inject_hba_init(hba);
9369 
9370 	hba->is_powered = true;
9371 	goto out;
9372 
9373 out_disable_vreg:
9374 	ufshcd_setup_vreg(hba, false);
9375 out_disable_clks:
9376 	ufshcd_setup_clocks(hba, false);
9377 out_disable_hba_vreg:
9378 	ufshcd_setup_hba_vreg(hba, false);
9379 out:
9380 	return err;
9381 }
9382 
9383 static void ufshcd_hba_exit(struct ufs_hba *hba)
9384 {
9385 	if (hba->is_powered) {
9386 		ufshcd_pm_qos_exit(hba);
9387 		ufshcd_exit_clk_scaling(hba);
9388 		ufshcd_exit_clk_gating(hba);
9389 		if (hba->eh_wq)
9390 			destroy_workqueue(hba->eh_wq);
9391 		ufs_debugfs_hba_exit(hba);
9392 		ufshcd_variant_hba_exit(hba);
9393 		ufshcd_setup_vreg(hba, false);
9394 		ufshcd_setup_clocks(hba, false);
9395 		ufshcd_setup_hba_vreg(hba, false);
9396 		hba->is_powered = false;
9397 		ufs_put_device_desc(hba);
9398 	}
9399 }
9400 
9401 static int ufshcd_execute_start_stop(struct scsi_device *sdev,
9402 				     enum ufs_dev_pwr_mode pwr_mode,
9403 				     struct scsi_sense_hdr *sshdr)
9404 {
9405 	const unsigned char cdb[6] = { START_STOP, 0, 0, 0, pwr_mode << 4, 0 };
9406 	struct scsi_failure failure_defs[] = {
9407 		{
9408 			.allowed = 2,
9409 			.result = SCMD_FAILURE_RESULT_ANY,
9410 		},
9411 	};
9412 	struct scsi_failures failures = {
9413 		.failure_definitions = failure_defs,
9414 	};
9415 	const struct scsi_exec_args args = {
9416 		.failures = &failures,
9417 		.sshdr = sshdr,
9418 		.req_flags = BLK_MQ_REQ_PM,
9419 		.scmd_flags = SCMD_FAIL_IF_RECOVERING,
9420 	};
9421 
9422 	return scsi_execute_cmd(sdev, cdb, REQ_OP_DRV_IN, /*buffer=*/NULL,
9423 			/*bufflen=*/0, /*timeout=*/10 * HZ, /*retries=*/0,
9424 			&args);
9425 }
9426 
9427 /**
9428  * ufshcd_set_dev_pwr_mode - sends START STOP UNIT command to set device
9429  *			     power mode
9430  * @hba: per adapter instance
9431  * @pwr_mode: device power mode to set
9432  *
9433  * Return: 0 if requested power mode is set successfully;
9434  *         < 0 if failed to set the requested power mode.
9435  */
9436 static int ufshcd_set_dev_pwr_mode(struct ufs_hba *hba,
9437 				     enum ufs_dev_pwr_mode pwr_mode)
9438 {
9439 	struct scsi_sense_hdr sshdr;
9440 	struct scsi_device *sdp;
9441 	unsigned long flags;
9442 	int ret;
9443 
9444 	spin_lock_irqsave(hba->host->host_lock, flags);
9445 	sdp = hba->ufs_device_wlun;
9446 	if (sdp && scsi_device_online(sdp))
9447 		ret = scsi_device_get(sdp);
9448 	else
9449 		ret = -ENODEV;
9450 	spin_unlock_irqrestore(hba->host->host_lock, flags);
9451 
9452 	if (ret)
9453 		return ret;
9454 
9455 	/*
9456 	 * If scsi commands fail, the scsi mid-layer schedules scsi error-
9457 	 * handling, which would wait for host to be resumed. Since we know
9458 	 * we are functional while we are here, skip host resume in error
9459 	 * handling context.
9460 	 */
9461 	hba->host->eh_noresume = 1;
9462 
9463 	/*
9464 	 * Current function would be generally called from the power management
9465 	 * callbacks hence set the RQF_PM flag so that it doesn't resume the
9466 	 * already suspended childs.
9467 	 */
9468 	ret = ufshcd_execute_start_stop(sdp, pwr_mode, &sshdr);
9469 	if (ret) {
9470 		sdev_printk(KERN_WARNING, sdp,
9471 			    "START_STOP failed for power mode: %d, result %x\n",
9472 			    pwr_mode, ret);
9473 		if (ret > 0) {
9474 			if (scsi_sense_valid(&sshdr))
9475 				scsi_print_sense_hdr(sdp, NULL, &sshdr);
9476 			ret = -EIO;
9477 		}
9478 	} else {
9479 		hba->curr_dev_pwr_mode = pwr_mode;
9480 	}
9481 
9482 	scsi_device_put(sdp);
9483 	hba->host->eh_noresume = 0;
9484 	return ret;
9485 }
9486 
9487 static int ufshcd_link_state_transition(struct ufs_hba *hba,
9488 					enum uic_link_state req_link_state,
9489 					bool check_for_bkops)
9490 {
9491 	int ret = 0;
9492 
9493 	if (req_link_state == hba->uic_link_state)
9494 		return 0;
9495 
9496 	if (req_link_state == UIC_LINK_HIBERN8_STATE) {
9497 		ret = ufshcd_uic_hibern8_enter(hba);
9498 		if (!ret) {
9499 			ufshcd_set_link_hibern8(hba);
9500 		} else {
9501 			dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
9502 					__func__, ret);
9503 			goto out;
9504 		}
9505 	}
9506 	/*
9507 	 * If autobkops is enabled, link can't be turned off because
9508 	 * turning off the link would also turn off the device, except in the
9509 	 * case of DeepSleep where the device is expected to remain powered.
9510 	 */
9511 	else if ((req_link_state == UIC_LINK_OFF_STATE) &&
9512 		 (!check_for_bkops || !hba->auto_bkops_enabled)) {
9513 		/*
9514 		 * Let's make sure that link is in low power mode, we are doing
9515 		 * this currently by putting the link in Hibern8. Otherway to
9516 		 * put the link in low power mode is to send the DME end point
9517 		 * to device and then send the DME reset command to local
9518 		 * unipro. But putting the link in hibern8 is much faster.
9519 		 *
9520 		 * Note also that putting the link in Hibern8 is a requirement
9521 		 * for entering DeepSleep.
9522 		 */
9523 		ret = ufshcd_uic_hibern8_enter(hba);
9524 		if (ret) {
9525 			dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
9526 					__func__, ret);
9527 			goto out;
9528 		}
9529 		/*
9530 		 * Change controller state to "reset state" which
9531 		 * should also put the link in off/reset state
9532 		 */
9533 		ufshcd_hba_stop(hba);
9534 		/*
9535 		 * TODO: Check if we need any delay to make sure that
9536 		 * controller is reset
9537 		 */
9538 		ufshcd_set_link_off(hba);
9539 	}
9540 
9541 out:
9542 	return ret;
9543 }
9544 
9545 static void ufshcd_vreg_set_lpm(struct ufs_hba *hba)
9546 {
9547 	bool vcc_off = false;
9548 
9549 	/*
9550 	 * It seems some UFS devices may keep drawing more than sleep current
9551 	 * (atleast for 500us) from UFS rails (especially from VCCQ rail).
9552 	 * To avoid this situation, add 2ms delay before putting these UFS
9553 	 * rails in LPM mode.
9554 	 */
9555 	if (!ufshcd_is_link_active(hba) &&
9556 	    hba->dev_quirks & UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM)
9557 		usleep_range(2000, 2100);
9558 
9559 	/*
9560 	 * If UFS device is either in UFS_Sleep turn off VCC rail to save some
9561 	 * power.
9562 	 *
9563 	 * If UFS device and link is in OFF state, all power supplies (VCC,
9564 	 * VCCQ, VCCQ2) can be turned off if power on write protect is not
9565 	 * required. If UFS link is inactive (Hibern8 or OFF state) and device
9566 	 * is in sleep state, put VCCQ & VCCQ2 rails in LPM mode.
9567 	 *
9568 	 * Ignore the error returned by ufshcd_toggle_vreg() as device is anyway
9569 	 * in low power state which would save some power.
9570 	 *
9571 	 * If Write Booster is enabled and the device needs to flush the WB
9572 	 * buffer OR if bkops status is urgent for WB, keep Vcc on.
9573 	 */
9574 	if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba) &&
9575 	    !hba->dev_info.is_lu_power_on_wp) {
9576 		ufshcd_setup_vreg(hba, false);
9577 		vcc_off = true;
9578 	} else if (!ufshcd_is_ufs_dev_active(hba)) {
9579 		ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, false);
9580 		vcc_off = true;
9581 		if (ufshcd_is_link_hibern8(hba) || ufshcd_is_link_off(hba)) {
9582 			ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq);
9583 			ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq2);
9584 		}
9585 	}
9586 
9587 	/*
9588 	 * Some UFS devices require delay after VCC power rail is turned-off.
9589 	 */
9590 	if (vcc_off && hba->vreg_info.vcc &&
9591 		hba->dev_quirks & UFS_DEVICE_QUIRK_DELAY_AFTER_LPM)
9592 		usleep_range(5000, 5100);
9593 }
9594 
9595 #ifdef CONFIG_PM
9596 static int ufshcd_vreg_set_hpm(struct ufs_hba *hba)
9597 {
9598 	int ret = 0;
9599 
9600 	if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba) &&
9601 	    !hba->dev_info.is_lu_power_on_wp) {
9602 		ret = ufshcd_setup_vreg(hba, true);
9603 	} else if (!ufshcd_is_ufs_dev_active(hba)) {
9604 		if (!ufshcd_is_link_active(hba)) {
9605 			ret = ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq);
9606 			if (ret)
9607 				goto vcc_disable;
9608 			ret = ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq2);
9609 			if (ret)
9610 				goto vccq_lpm;
9611 		}
9612 		ret = ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, true);
9613 	}
9614 	goto out;
9615 
9616 vccq_lpm:
9617 	ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq);
9618 vcc_disable:
9619 	ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, false);
9620 out:
9621 	return ret;
9622 }
9623 #endif /* CONFIG_PM */
9624 
9625 static void ufshcd_hba_vreg_set_lpm(struct ufs_hba *hba)
9626 {
9627 	if (ufshcd_is_link_off(hba) || ufshcd_can_aggressive_pc(hba))
9628 		ufshcd_setup_hba_vreg(hba, false);
9629 }
9630 
9631 static void ufshcd_hba_vreg_set_hpm(struct ufs_hba *hba)
9632 {
9633 	if (ufshcd_is_link_off(hba) || ufshcd_can_aggressive_pc(hba))
9634 		ufshcd_setup_hba_vreg(hba, true);
9635 }
9636 
9637 static int __ufshcd_wl_suspend(struct ufs_hba *hba, enum ufs_pm_op pm_op)
9638 {
9639 	int ret = 0;
9640 	bool check_for_bkops;
9641 	enum ufs_pm_level pm_lvl;
9642 	enum ufs_dev_pwr_mode req_dev_pwr_mode;
9643 	enum uic_link_state req_link_state;
9644 
9645 	hba->pm_op_in_progress = true;
9646 	if (pm_op != UFS_SHUTDOWN_PM) {
9647 		pm_lvl = pm_op == UFS_RUNTIME_PM ?
9648 			 hba->rpm_lvl : hba->spm_lvl;
9649 		req_dev_pwr_mode = ufs_get_pm_lvl_to_dev_pwr_mode(pm_lvl);
9650 		req_link_state = ufs_get_pm_lvl_to_link_pwr_state(pm_lvl);
9651 	} else {
9652 		req_dev_pwr_mode = UFS_POWERDOWN_PWR_MODE;
9653 		req_link_state = UIC_LINK_OFF_STATE;
9654 	}
9655 
9656 	/*
9657 	 * If we can't transition into any of the low power modes
9658 	 * just gate the clocks.
9659 	 */
9660 	ufshcd_hold(hba);
9661 	hba->clk_gating.is_suspended = true;
9662 
9663 	if (ufshcd_is_clkscaling_supported(hba))
9664 		ufshcd_clk_scaling_suspend(hba, true);
9665 
9666 	if (req_dev_pwr_mode == UFS_ACTIVE_PWR_MODE &&
9667 			req_link_state == UIC_LINK_ACTIVE_STATE) {
9668 		goto vops_suspend;
9669 	}
9670 
9671 	if ((req_dev_pwr_mode == hba->curr_dev_pwr_mode) &&
9672 	    (req_link_state == hba->uic_link_state))
9673 		goto enable_scaling;
9674 
9675 	/* UFS device & link must be active before we enter in this function */
9676 	if (!ufshcd_is_ufs_dev_active(hba) || !ufshcd_is_link_active(hba)) {
9677 		/*  Wait err handler finish or trigger err recovery */
9678 		if (!ufshcd_eh_in_progress(hba))
9679 			ufshcd_force_error_recovery(hba);
9680 		ret = -EBUSY;
9681 		goto enable_scaling;
9682 	}
9683 
9684 	if (pm_op == UFS_RUNTIME_PM) {
9685 		if (ufshcd_can_autobkops_during_suspend(hba)) {
9686 			/*
9687 			 * The device is idle with no requests in the queue,
9688 			 * allow background operations if bkops status shows
9689 			 * that performance might be impacted.
9690 			 */
9691 			ret = ufshcd_urgent_bkops(hba);
9692 			if (ret) {
9693 				/*
9694 				 * If return err in suspend flow, IO will hang.
9695 				 * Trigger error handler and break suspend for
9696 				 * error recovery.
9697 				 */
9698 				ufshcd_force_error_recovery(hba);
9699 				ret = -EBUSY;
9700 				goto enable_scaling;
9701 			}
9702 		} else {
9703 			/* make sure that auto bkops is disabled */
9704 			ufshcd_disable_auto_bkops(hba);
9705 		}
9706 		/*
9707 		 * If device needs to do BKOP or WB buffer flush during
9708 		 * Hibern8, keep device power mode as "active power mode"
9709 		 * and VCC supply.
9710 		 */
9711 		hba->dev_info.b_rpm_dev_flush_capable =
9712 			hba->auto_bkops_enabled ||
9713 			(((req_link_state == UIC_LINK_HIBERN8_STATE) ||
9714 			((req_link_state == UIC_LINK_ACTIVE_STATE) &&
9715 			ufshcd_is_auto_hibern8_enabled(hba))) &&
9716 			ufshcd_wb_need_flush(hba));
9717 	}
9718 
9719 	flush_work(&hba->eeh_work);
9720 
9721 	ret = ufshcd_vops_suspend(hba, pm_op, PRE_CHANGE);
9722 	if (ret)
9723 		goto enable_scaling;
9724 
9725 	if (req_dev_pwr_mode != hba->curr_dev_pwr_mode) {
9726 		if (pm_op != UFS_RUNTIME_PM)
9727 			/* ensure that bkops is disabled */
9728 			ufshcd_disable_auto_bkops(hba);
9729 
9730 		if (!hba->dev_info.b_rpm_dev_flush_capable) {
9731 			ret = ufshcd_set_dev_pwr_mode(hba, req_dev_pwr_mode);
9732 			if (ret && pm_op != UFS_SHUTDOWN_PM) {
9733 				/*
9734 				 * If return err in suspend flow, IO will hang.
9735 				 * Trigger error handler and break suspend for
9736 				 * error recovery.
9737 				 */
9738 				ufshcd_force_error_recovery(hba);
9739 				ret = -EBUSY;
9740 			}
9741 			if (ret)
9742 				goto enable_scaling;
9743 		}
9744 	}
9745 
9746 	/*
9747 	 * In the case of DeepSleep, the device is expected to remain powered
9748 	 * with the link off, so do not check for bkops.
9749 	 */
9750 	check_for_bkops = !ufshcd_is_ufs_dev_deepsleep(hba);
9751 	ret = ufshcd_link_state_transition(hba, req_link_state, check_for_bkops);
9752 	if (ret && pm_op != UFS_SHUTDOWN_PM) {
9753 		/*
9754 		 * If return err in suspend flow, IO will hang.
9755 		 * Trigger error handler and break suspend for
9756 		 * error recovery.
9757 		 */
9758 		ufshcd_force_error_recovery(hba);
9759 		ret = -EBUSY;
9760 	}
9761 	if (ret)
9762 		goto set_dev_active;
9763 
9764 vops_suspend:
9765 	/*
9766 	 * Call vendor specific suspend callback. As these callbacks may access
9767 	 * vendor specific host controller register space call them before the
9768 	 * host clocks are ON.
9769 	 */
9770 	ret = ufshcd_vops_suspend(hba, pm_op, POST_CHANGE);
9771 	if (ret)
9772 		goto set_link_active;
9773 
9774 	cancel_delayed_work_sync(&hba->ufs_rtc_update_work);
9775 	goto out;
9776 
9777 set_link_active:
9778 	/*
9779 	 * Device hardware reset is required to exit DeepSleep. Also, for
9780 	 * DeepSleep, the link is off so host reset and restore will be done
9781 	 * further below.
9782 	 */
9783 	if (ufshcd_is_ufs_dev_deepsleep(hba)) {
9784 		ufshcd_device_reset(hba);
9785 		WARN_ON(!ufshcd_is_link_off(hba));
9786 	}
9787 	if (ufshcd_is_link_hibern8(hba) && !ufshcd_uic_hibern8_exit(hba))
9788 		ufshcd_set_link_active(hba);
9789 	else if (ufshcd_is_link_off(hba))
9790 		ufshcd_host_reset_and_restore(hba);
9791 set_dev_active:
9792 	/* Can also get here needing to exit DeepSleep */
9793 	if (ufshcd_is_ufs_dev_deepsleep(hba)) {
9794 		ufshcd_device_reset(hba);
9795 		ufshcd_host_reset_and_restore(hba);
9796 	}
9797 	if (!ufshcd_set_dev_pwr_mode(hba, UFS_ACTIVE_PWR_MODE))
9798 		ufshcd_disable_auto_bkops(hba);
9799 enable_scaling:
9800 	if (ufshcd_is_clkscaling_supported(hba))
9801 		ufshcd_clk_scaling_suspend(hba, false);
9802 
9803 	hba->dev_info.b_rpm_dev_flush_capable = false;
9804 out:
9805 	if (hba->dev_info.b_rpm_dev_flush_capable) {
9806 		schedule_delayed_work(&hba->rpm_dev_flush_recheck_work,
9807 			msecs_to_jiffies(RPM_DEV_FLUSH_RECHECK_WORK_DELAY_MS));
9808 	}
9809 
9810 	if (ret) {
9811 		ufshcd_update_evt_hist(hba, UFS_EVT_WL_SUSP_ERR, (u32)ret);
9812 		hba->clk_gating.is_suspended = false;
9813 		ufshcd_release(hba);
9814 	}
9815 	hba->pm_op_in_progress = false;
9816 	return ret;
9817 }
9818 
9819 #ifdef CONFIG_PM
9820 static int __ufshcd_wl_resume(struct ufs_hba *hba, enum ufs_pm_op pm_op)
9821 {
9822 	int ret;
9823 	enum uic_link_state old_link_state = hba->uic_link_state;
9824 
9825 	hba->pm_op_in_progress = true;
9826 
9827 	/*
9828 	 * Call vendor specific resume callback. As these callbacks may access
9829 	 * vendor specific host controller register space call them when the
9830 	 * host clocks are ON.
9831 	 */
9832 	ret = ufshcd_vops_resume(hba, pm_op);
9833 	if (ret)
9834 		goto out;
9835 
9836 	/* For DeepSleep, the only supported option is to have the link off */
9837 	WARN_ON(ufshcd_is_ufs_dev_deepsleep(hba) && !ufshcd_is_link_off(hba));
9838 
9839 	if (ufshcd_is_link_hibern8(hba)) {
9840 		ret = ufshcd_uic_hibern8_exit(hba);
9841 		if (!ret) {
9842 			ufshcd_set_link_active(hba);
9843 		} else {
9844 			dev_err(hba->dev, "%s: hibern8 exit failed %d\n",
9845 					__func__, ret);
9846 			goto vendor_suspend;
9847 		}
9848 	} else if (ufshcd_is_link_off(hba)) {
9849 		/*
9850 		 * A full initialization of the host and the device is
9851 		 * required since the link was put to off during suspend.
9852 		 * Note, in the case of DeepSleep, the device will exit
9853 		 * DeepSleep due to device reset.
9854 		 */
9855 		ret = ufshcd_reset_and_restore(hba);
9856 		/*
9857 		 * ufshcd_reset_and_restore() should have already
9858 		 * set the link state as active
9859 		 */
9860 		if (ret || !ufshcd_is_link_active(hba))
9861 			goto vendor_suspend;
9862 	}
9863 
9864 	if (!ufshcd_is_ufs_dev_active(hba)) {
9865 		ret = ufshcd_set_dev_pwr_mode(hba, UFS_ACTIVE_PWR_MODE);
9866 		if (ret)
9867 			goto set_old_link_state;
9868 		ufshcd_set_timestamp_attr(hba);
9869 		schedule_delayed_work(&hba->ufs_rtc_update_work,
9870 				      msecs_to_jiffies(UFS_RTC_UPDATE_INTERVAL_MS));
9871 	}
9872 
9873 	if (ufshcd_keep_autobkops_enabled_except_suspend(hba))
9874 		ufshcd_enable_auto_bkops(hba);
9875 	else
9876 		/*
9877 		 * If BKOPs operations are urgently needed at this moment then
9878 		 * keep auto-bkops enabled or else disable it.
9879 		 */
9880 		ufshcd_urgent_bkops(hba);
9881 
9882 	if (hba->ee_usr_mask)
9883 		ufshcd_write_ee_control(hba);
9884 
9885 	if (ufshcd_is_clkscaling_supported(hba))
9886 		ufshcd_clk_scaling_suspend(hba, false);
9887 
9888 	if (hba->dev_info.b_rpm_dev_flush_capable) {
9889 		hba->dev_info.b_rpm_dev_flush_capable = false;
9890 		cancel_delayed_work(&hba->rpm_dev_flush_recheck_work);
9891 	}
9892 
9893 	ufshcd_configure_auto_hibern8(hba);
9894 
9895 	goto out;
9896 
9897 set_old_link_state:
9898 	ufshcd_link_state_transition(hba, old_link_state, 0);
9899 vendor_suspend:
9900 	ufshcd_vops_suspend(hba, pm_op, PRE_CHANGE);
9901 	ufshcd_vops_suspend(hba, pm_op, POST_CHANGE);
9902 out:
9903 	if (ret)
9904 		ufshcd_update_evt_hist(hba, UFS_EVT_WL_RES_ERR, (u32)ret);
9905 	hba->clk_gating.is_suspended = false;
9906 	ufshcd_release(hba);
9907 	hba->pm_op_in_progress = false;
9908 	return ret;
9909 }
9910 
9911 static int ufshcd_wl_runtime_suspend(struct device *dev)
9912 {
9913 	struct scsi_device *sdev = to_scsi_device(dev);
9914 	struct ufs_hba *hba;
9915 	int ret;
9916 	ktime_t start = ktime_get();
9917 
9918 	hba = shost_priv(sdev->host);
9919 
9920 	ret = __ufshcd_wl_suspend(hba, UFS_RUNTIME_PM);
9921 	if (ret)
9922 		dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
9923 
9924 	trace_ufshcd_wl_runtime_suspend(dev_name(dev), ret,
9925 		ktime_to_us(ktime_sub(ktime_get(), start)),
9926 		hba->curr_dev_pwr_mode, hba->uic_link_state);
9927 
9928 	return ret;
9929 }
9930 
9931 static int ufshcd_wl_runtime_resume(struct device *dev)
9932 {
9933 	struct scsi_device *sdev = to_scsi_device(dev);
9934 	struct ufs_hba *hba;
9935 	int ret = 0;
9936 	ktime_t start = ktime_get();
9937 
9938 	hba = shost_priv(sdev->host);
9939 
9940 	ret = __ufshcd_wl_resume(hba, UFS_RUNTIME_PM);
9941 	if (ret)
9942 		dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
9943 
9944 	trace_ufshcd_wl_runtime_resume(dev_name(dev), ret,
9945 		ktime_to_us(ktime_sub(ktime_get(), start)),
9946 		hba->curr_dev_pwr_mode, hba->uic_link_state);
9947 
9948 	return ret;
9949 }
9950 #endif
9951 
9952 #ifdef CONFIG_PM_SLEEP
9953 static int ufshcd_wl_suspend(struct device *dev)
9954 {
9955 	struct scsi_device *sdev = to_scsi_device(dev);
9956 	struct ufs_hba *hba;
9957 	int ret = 0;
9958 	ktime_t start = ktime_get();
9959 
9960 	hba = shost_priv(sdev->host);
9961 	down(&hba->host_sem);
9962 	hba->system_suspending = true;
9963 
9964 	if (pm_runtime_suspended(dev))
9965 		goto out;
9966 
9967 	ret = __ufshcd_wl_suspend(hba, UFS_SYSTEM_PM);
9968 	if (ret) {
9969 		dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__,  ret);
9970 		up(&hba->host_sem);
9971 	}
9972 
9973 out:
9974 	if (!ret)
9975 		hba->is_sys_suspended = true;
9976 	trace_ufshcd_wl_suspend(dev_name(dev), ret,
9977 		ktime_to_us(ktime_sub(ktime_get(), start)),
9978 		hba->curr_dev_pwr_mode, hba->uic_link_state);
9979 
9980 	return ret;
9981 }
9982 
9983 static int ufshcd_wl_resume(struct device *dev)
9984 {
9985 	struct scsi_device *sdev = to_scsi_device(dev);
9986 	struct ufs_hba *hba;
9987 	int ret = 0;
9988 	ktime_t start = ktime_get();
9989 
9990 	hba = shost_priv(sdev->host);
9991 
9992 	if (pm_runtime_suspended(dev))
9993 		goto out;
9994 
9995 	ret = __ufshcd_wl_resume(hba, UFS_SYSTEM_PM);
9996 	if (ret)
9997 		dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
9998 out:
9999 	trace_ufshcd_wl_resume(dev_name(dev), ret,
10000 		ktime_to_us(ktime_sub(ktime_get(), start)),
10001 		hba->curr_dev_pwr_mode, hba->uic_link_state);
10002 	if (!ret)
10003 		hba->is_sys_suspended = false;
10004 	hba->system_suspending = false;
10005 	up(&hba->host_sem);
10006 	return ret;
10007 }
10008 #endif
10009 
10010 /**
10011  * ufshcd_suspend - helper function for suspend operations
10012  * @hba: per adapter instance
10013  *
10014  * This function will put disable irqs, turn off clocks
10015  * and set vreg and hba-vreg in lpm mode.
10016  *
10017  * Return: 0 upon success; < 0 upon failure.
10018  */
10019 static int ufshcd_suspend(struct ufs_hba *hba)
10020 {
10021 	int ret;
10022 
10023 	if (!hba->is_powered)
10024 		return 0;
10025 	/*
10026 	 * Disable the host irq as host controller as there won't be any
10027 	 * host controller transaction expected till resume.
10028 	 */
10029 	ufshcd_disable_irq(hba);
10030 	ret = ufshcd_setup_clocks(hba, false);
10031 	if (ret) {
10032 		ufshcd_enable_irq(hba);
10033 		return ret;
10034 	}
10035 	if (ufshcd_is_clkgating_allowed(hba)) {
10036 		hba->clk_gating.state = CLKS_OFF;
10037 		trace_ufshcd_clk_gating(dev_name(hba->dev),
10038 					hba->clk_gating.state);
10039 	}
10040 
10041 	ufshcd_vreg_set_lpm(hba);
10042 	/* Put the host controller in low power mode if possible */
10043 	ufshcd_hba_vreg_set_lpm(hba);
10044 	ufshcd_pm_qos_update(hba, false);
10045 	return ret;
10046 }
10047 
10048 #ifdef CONFIG_PM
10049 /**
10050  * ufshcd_resume - helper function for resume operations
10051  * @hba: per adapter instance
10052  *
10053  * This function basically turns on the regulators, clocks and
10054  * irqs of the hba.
10055  *
10056  * Return: 0 for success and non-zero for failure.
10057  */
10058 static int ufshcd_resume(struct ufs_hba *hba)
10059 {
10060 	int ret;
10061 
10062 	if (!hba->is_powered)
10063 		return 0;
10064 
10065 	ufshcd_hba_vreg_set_hpm(hba);
10066 	ret = ufshcd_vreg_set_hpm(hba);
10067 	if (ret)
10068 		goto out;
10069 
10070 	/* Make sure clocks are enabled before accessing controller */
10071 	ret = ufshcd_setup_clocks(hba, true);
10072 	if (ret)
10073 		goto disable_vreg;
10074 
10075 	/* enable the host irq as host controller would be active soon */
10076 	ufshcd_enable_irq(hba);
10077 
10078 	goto out;
10079 
10080 disable_vreg:
10081 	ufshcd_vreg_set_lpm(hba);
10082 out:
10083 	if (ret)
10084 		ufshcd_update_evt_hist(hba, UFS_EVT_RESUME_ERR, (u32)ret);
10085 	return ret;
10086 }
10087 #endif /* CONFIG_PM */
10088 
10089 #ifdef CONFIG_PM_SLEEP
10090 /**
10091  * ufshcd_system_suspend - system suspend callback
10092  * @dev: Device associated with the UFS controller.
10093  *
10094  * Executed before putting the system into a sleep state in which the contents
10095  * of main memory are preserved.
10096  *
10097  * Return: 0 for success and non-zero for failure.
10098  */
10099 int ufshcd_system_suspend(struct device *dev)
10100 {
10101 	struct ufs_hba *hba = dev_get_drvdata(dev);
10102 	int ret = 0;
10103 	ktime_t start = ktime_get();
10104 
10105 	if (pm_runtime_suspended(hba->dev))
10106 		goto out;
10107 
10108 	ret = ufshcd_suspend(hba);
10109 out:
10110 	trace_ufshcd_system_suspend(dev_name(hba->dev), ret,
10111 		ktime_to_us(ktime_sub(ktime_get(), start)),
10112 		hba->curr_dev_pwr_mode, hba->uic_link_state);
10113 	return ret;
10114 }
10115 EXPORT_SYMBOL(ufshcd_system_suspend);
10116 
10117 /**
10118  * ufshcd_system_resume - system resume callback
10119  * @dev: Device associated with the UFS controller.
10120  *
10121  * Executed after waking the system up from a sleep state in which the contents
10122  * of main memory were preserved.
10123  *
10124  * Return: 0 for success and non-zero for failure.
10125  */
10126 int ufshcd_system_resume(struct device *dev)
10127 {
10128 	struct ufs_hba *hba = dev_get_drvdata(dev);
10129 	ktime_t start = ktime_get();
10130 	int ret = 0;
10131 
10132 	if (pm_runtime_suspended(hba->dev))
10133 		goto out;
10134 
10135 	ret = ufshcd_resume(hba);
10136 
10137 out:
10138 	trace_ufshcd_system_resume(dev_name(hba->dev), ret,
10139 		ktime_to_us(ktime_sub(ktime_get(), start)),
10140 		hba->curr_dev_pwr_mode, hba->uic_link_state);
10141 
10142 	return ret;
10143 }
10144 EXPORT_SYMBOL(ufshcd_system_resume);
10145 #endif /* CONFIG_PM_SLEEP */
10146 
10147 #ifdef CONFIG_PM
10148 /**
10149  * ufshcd_runtime_suspend - runtime suspend callback
10150  * @dev: Device associated with the UFS controller.
10151  *
10152  * Check the description of ufshcd_suspend() function for more details.
10153  *
10154  * Return: 0 for success and non-zero for failure.
10155  */
10156 int ufshcd_runtime_suspend(struct device *dev)
10157 {
10158 	struct ufs_hba *hba = dev_get_drvdata(dev);
10159 	int ret;
10160 	ktime_t start = ktime_get();
10161 
10162 	ret = ufshcd_suspend(hba);
10163 
10164 	trace_ufshcd_runtime_suspend(dev_name(hba->dev), ret,
10165 		ktime_to_us(ktime_sub(ktime_get(), start)),
10166 		hba->curr_dev_pwr_mode, hba->uic_link_state);
10167 	return ret;
10168 }
10169 EXPORT_SYMBOL(ufshcd_runtime_suspend);
10170 
10171 /**
10172  * ufshcd_runtime_resume - runtime resume routine
10173  * @dev: Device associated with the UFS controller.
10174  *
10175  * This function basically brings controller
10176  * to active state. Following operations are done in this function:
10177  *
10178  * 1. Turn on all the controller related clocks
10179  * 2. Turn ON VCC rail
10180  *
10181  * Return: 0 upon success; < 0 upon failure.
10182  */
10183 int ufshcd_runtime_resume(struct device *dev)
10184 {
10185 	struct ufs_hba *hba = dev_get_drvdata(dev);
10186 	int ret;
10187 	ktime_t start = ktime_get();
10188 
10189 	ret = ufshcd_resume(hba);
10190 
10191 	trace_ufshcd_runtime_resume(dev_name(hba->dev), ret,
10192 		ktime_to_us(ktime_sub(ktime_get(), start)),
10193 		hba->curr_dev_pwr_mode, hba->uic_link_state);
10194 	return ret;
10195 }
10196 EXPORT_SYMBOL(ufshcd_runtime_resume);
10197 #endif /* CONFIG_PM */
10198 
10199 static void ufshcd_wl_shutdown(struct device *dev)
10200 {
10201 	struct scsi_device *sdev = to_scsi_device(dev);
10202 	struct ufs_hba *hba = shost_priv(sdev->host);
10203 
10204 	down(&hba->host_sem);
10205 	hba->shutting_down = true;
10206 	up(&hba->host_sem);
10207 
10208 	/* Turn on everything while shutting down */
10209 	ufshcd_rpm_get_sync(hba);
10210 	scsi_device_quiesce(sdev);
10211 	shost_for_each_device(sdev, hba->host) {
10212 		if (sdev == hba->ufs_device_wlun)
10213 			continue;
10214 		scsi_device_quiesce(sdev);
10215 	}
10216 	__ufshcd_wl_suspend(hba, UFS_SHUTDOWN_PM);
10217 
10218 	/*
10219 	 * Next, turn off the UFS controller and the UFS regulators. Disable
10220 	 * clocks.
10221 	 */
10222 	if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba))
10223 		ufshcd_suspend(hba);
10224 
10225 	hba->is_powered = false;
10226 }
10227 
10228 /**
10229  * ufshcd_remove - de-allocate SCSI host and host memory space
10230  *		data structure memory
10231  * @hba: per adapter instance
10232  */
10233 void ufshcd_remove(struct ufs_hba *hba)
10234 {
10235 	if (hba->ufs_device_wlun)
10236 		ufshcd_rpm_get_sync(hba);
10237 	ufs_hwmon_remove(hba);
10238 	ufs_bsg_remove(hba);
10239 	ufs_sysfs_remove_nodes(hba->dev);
10240 	blk_mq_destroy_queue(hba->tmf_queue);
10241 	blk_put_queue(hba->tmf_queue);
10242 	blk_mq_free_tag_set(&hba->tmf_tag_set);
10243 	if (hba->scsi_host_added)
10244 		scsi_remove_host(hba->host);
10245 	/* disable interrupts */
10246 	ufshcd_disable_intr(hba, hba->intr_mask);
10247 	ufshcd_hba_stop(hba);
10248 	ufshcd_hba_exit(hba);
10249 }
10250 EXPORT_SYMBOL_GPL(ufshcd_remove);
10251 
10252 #ifdef CONFIG_PM_SLEEP
10253 int ufshcd_system_freeze(struct device *dev)
10254 {
10255 
10256 	return ufshcd_system_suspend(dev);
10257 
10258 }
10259 EXPORT_SYMBOL_GPL(ufshcd_system_freeze);
10260 
10261 int ufshcd_system_restore(struct device *dev)
10262 {
10263 
10264 	struct ufs_hba *hba = dev_get_drvdata(dev);
10265 	int ret;
10266 
10267 	ret = ufshcd_system_resume(dev);
10268 	if (ret)
10269 		return ret;
10270 
10271 	/* Configure UTRL and UTMRL base address registers */
10272 	ufshcd_writel(hba, lower_32_bits(hba->utrdl_dma_addr),
10273 			REG_UTP_TRANSFER_REQ_LIST_BASE_L);
10274 	ufshcd_writel(hba, upper_32_bits(hba->utrdl_dma_addr),
10275 			REG_UTP_TRANSFER_REQ_LIST_BASE_H);
10276 	ufshcd_writel(hba, lower_32_bits(hba->utmrdl_dma_addr),
10277 			REG_UTP_TASK_REQ_LIST_BASE_L);
10278 	ufshcd_writel(hba, upper_32_bits(hba->utmrdl_dma_addr),
10279 			REG_UTP_TASK_REQ_LIST_BASE_H);
10280 	/*
10281 	 * Make sure that UTRL and UTMRL base address registers
10282 	 * are updated with the latest queue addresses. Only after
10283 	 * updating these addresses, we can queue the new commands.
10284 	 */
10285 	ufshcd_readl(hba, REG_UTP_TASK_REQ_LIST_BASE_H);
10286 
10287 	return 0;
10288 
10289 }
10290 EXPORT_SYMBOL_GPL(ufshcd_system_restore);
10291 
10292 int ufshcd_system_thaw(struct device *dev)
10293 {
10294 	return ufshcd_system_resume(dev);
10295 }
10296 EXPORT_SYMBOL_GPL(ufshcd_system_thaw);
10297 #endif /* CONFIG_PM_SLEEP  */
10298 
10299 /**
10300  * ufshcd_dealloc_host - deallocate Host Bus Adapter (HBA)
10301  * @hba: pointer to Host Bus Adapter (HBA)
10302  */
10303 void ufshcd_dealloc_host(struct ufs_hba *hba)
10304 {
10305 	scsi_host_put(hba->host);
10306 }
10307 EXPORT_SYMBOL_GPL(ufshcd_dealloc_host);
10308 
10309 /**
10310  * ufshcd_set_dma_mask - Set dma mask based on the controller
10311  *			 addressing capability
10312  * @hba: per adapter instance
10313  *
10314  * Return: 0 for success, non-zero for failure.
10315  */
10316 static int ufshcd_set_dma_mask(struct ufs_hba *hba)
10317 {
10318 	if (hba->capabilities & MASK_64_ADDRESSING_SUPPORT) {
10319 		if (!dma_set_mask_and_coherent(hba->dev, DMA_BIT_MASK(64)))
10320 			return 0;
10321 	}
10322 	return dma_set_mask_and_coherent(hba->dev, DMA_BIT_MASK(32));
10323 }
10324 
10325 /**
10326  * ufshcd_alloc_host - allocate Host Bus Adapter (HBA)
10327  * @dev: pointer to device handle
10328  * @hba_handle: driver private handle
10329  *
10330  * Return: 0 on success, non-zero value on failure.
10331  */
10332 int ufshcd_alloc_host(struct device *dev, struct ufs_hba **hba_handle)
10333 {
10334 	struct Scsi_Host *host;
10335 	struct ufs_hba *hba;
10336 	int err = 0;
10337 
10338 	if (!dev) {
10339 		dev_err(dev,
10340 		"Invalid memory reference for dev is NULL\n");
10341 		err = -ENODEV;
10342 		goto out_error;
10343 	}
10344 
10345 	host = scsi_host_alloc(&ufshcd_driver_template,
10346 				sizeof(struct ufs_hba));
10347 	if (!host) {
10348 		dev_err(dev, "scsi_host_alloc failed\n");
10349 		err = -ENOMEM;
10350 		goto out_error;
10351 	}
10352 	host->nr_maps = HCTX_TYPE_POLL + 1;
10353 	hba = shost_priv(host);
10354 	hba->host = host;
10355 	hba->dev = dev;
10356 	hba->dev_ref_clk_freq = REF_CLK_FREQ_INVAL;
10357 	hba->nop_out_timeout = NOP_OUT_TIMEOUT;
10358 	ufshcd_set_sg_entry_size(hba, sizeof(struct ufshcd_sg_entry));
10359 	INIT_LIST_HEAD(&hba->clk_list_head);
10360 	spin_lock_init(&hba->outstanding_lock);
10361 
10362 	*hba_handle = hba;
10363 
10364 out_error:
10365 	return err;
10366 }
10367 EXPORT_SYMBOL(ufshcd_alloc_host);
10368 
10369 /* This function exists because blk_mq_alloc_tag_set() requires this. */
10370 static blk_status_t ufshcd_queue_tmf(struct blk_mq_hw_ctx *hctx,
10371 				     const struct blk_mq_queue_data *qd)
10372 {
10373 	WARN_ON_ONCE(true);
10374 	return BLK_STS_NOTSUPP;
10375 }
10376 
10377 static const struct blk_mq_ops ufshcd_tmf_ops = {
10378 	.queue_rq = ufshcd_queue_tmf,
10379 };
10380 
10381 /**
10382  * ufshcd_init - Driver initialization routine
10383  * @hba: per-adapter instance
10384  * @mmio_base: base register address
10385  * @irq: Interrupt line of device
10386  *
10387  * Return: 0 on success, non-zero value on failure.
10388  */
10389 int ufshcd_init(struct ufs_hba *hba, void __iomem *mmio_base, unsigned int irq)
10390 {
10391 	int err;
10392 	struct Scsi_Host *host = hba->host;
10393 	struct device *dev = hba->dev;
10394 	char eh_wq_name[sizeof("ufs_eh_wq_00")];
10395 
10396 	/*
10397 	 * dev_set_drvdata() must be called before any callbacks are registered
10398 	 * that use dev_get_drvdata() (frequency scaling, clock scaling, hwmon,
10399 	 * sysfs).
10400 	 */
10401 	dev_set_drvdata(dev, hba);
10402 
10403 	if (!mmio_base) {
10404 		dev_err(hba->dev,
10405 		"Invalid memory reference for mmio_base is NULL\n");
10406 		err = -ENODEV;
10407 		goto out_error;
10408 	}
10409 
10410 	hba->mmio_base = mmio_base;
10411 	hba->irq = irq;
10412 	hba->vps = &ufs_hba_vps;
10413 
10414 	err = ufshcd_hba_init(hba);
10415 	if (err)
10416 		goto out_error;
10417 
10418 	/* Read capabilities registers */
10419 	err = ufshcd_hba_capabilities(hba);
10420 	if (err)
10421 		goto out_disable;
10422 
10423 	/* Get UFS version supported by the controller */
10424 	hba->ufs_version = ufshcd_get_ufs_version(hba);
10425 
10426 	/* Get Interrupt bit mask per version */
10427 	hba->intr_mask = ufshcd_get_intr_mask(hba);
10428 
10429 	err = ufshcd_set_dma_mask(hba);
10430 	if (err) {
10431 		dev_err(hba->dev, "set dma mask failed\n");
10432 		goto out_disable;
10433 	}
10434 
10435 	/* Allocate memory for host memory space */
10436 	err = ufshcd_memory_alloc(hba);
10437 	if (err) {
10438 		dev_err(hba->dev, "Memory allocation failed\n");
10439 		goto out_disable;
10440 	}
10441 
10442 	/* Configure LRB */
10443 	ufshcd_host_memory_configure(hba);
10444 
10445 	host->can_queue = hba->nutrs - UFSHCD_NUM_RESERVED;
10446 	host->cmd_per_lun = hba->nutrs - UFSHCD_NUM_RESERVED;
10447 	host->max_id = UFSHCD_MAX_ID;
10448 	host->max_lun = UFS_MAX_LUNS;
10449 	host->max_channel = UFSHCD_MAX_CHANNEL;
10450 	host->unique_id = host->host_no;
10451 	host->max_cmd_len = UFS_CDB_SIZE;
10452 	host->queuecommand_may_block = !!(hba->caps & UFSHCD_CAP_CLK_GATING);
10453 
10454 	/* Use default RPM delay if host not set */
10455 	if (host->rpm_autosuspend_delay == 0)
10456 		host->rpm_autosuspend_delay = RPM_AUTOSUSPEND_DELAY_MS;
10457 
10458 	hba->max_pwr_info.is_valid = false;
10459 
10460 	/* Initialize work queues */
10461 	snprintf(eh_wq_name, sizeof(eh_wq_name), "ufs_eh_wq_%d",
10462 		 hba->host->host_no);
10463 	hba->eh_wq = create_singlethread_workqueue(eh_wq_name);
10464 	if (!hba->eh_wq) {
10465 		dev_err(hba->dev, "%s: failed to create eh workqueue\n",
10466 			__func__);
10467 		err = -ENOMEM;
10468 		goto out_disable;
10469 	}
10470 	INIT_WORK(&hba->eh_work, ufshcd_err_handler);
10471 	INIT_WORK(&hba->eeh_work, ufshcd_exception_event_handler);
10472 
10473 	sema_init(&hba->host_sem, 1);
10474 
10475 	/* Initialize UIC command mutex */
10476 	mutex_init(&hba->uic_cmd_mutex);
10477 
10478 	/* Initialize mutex for device management commands */
10479 	mutex_init(&hba->dev_cmd.lock);
10480 
10481 	/* Initialize mutex for exception event control */
10482 	mutex_init(&hba->ee_ctrl_mutex);
10483 
10484 	mutex_init(&hba->wb_mutex);
10485 	init_rwsem(&hba->clk_scaling_lock);
10486 
10487 	ufshcd_init_clk_gating(hba);
10488 
10489 	ufshcd_init_clk_scaling(hba);
10490 
10491 	/*
10492 	 * In order to avoid any spurious interrupt immediately after
10493 	 * registering UFS controller interrupt handler, clear any pending UFS
10494 	 * interrupt status and disable all the UFS interrupts.
10495 	 */
10496 	ufshcd_writel(hba, ufshcd_readl(hba, REG_INTERRUPT_STATUS),
10497 		      REG_INTERRUPT_STATUS);
10498 	ufshcd_writel(hba, 0, REG_INTERRUPT_ENABLE);
10499 	/*
10500 	 * Make sure that UFS interrupts are disabled and any pending interrupt
10501 	 * status is cleared before registering UFS interrupt handler.
10502 	 */
10503 	ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
10504 
10505 	/* IRQ registration */
10506 	err = devm_request_irq(dev, irq, ufshcd_intr, IRQF_SHARED, UFSHCD, hba);
10507 	if (err) {
10508 		dev_err(hba->dev, "request irq failed\n");
10509 		goto out_disable;
10510 	} else {
10511 		hba->is_irq_enabled = true;
10512 	}
10513 
10514 	if (!is_mcq_supported(hba)) {
10515 		if (!hba->lsdb_sup) {
10516 			dev_err(hba->dev, "%s: failed to initialize (legacy doorbell mode not supported)\n",
10517 				__func__);
10518 			err = -EINVAL;
10519 			goto out_disable;
10520 		}
10521 		err = scsi_add_host(host, hba->dev);
10522 		if (err) {
10523 			dev_err(hba->dev, "scsi_add_host failed\n");
10524 			goto out_disable;
10525 		}
10526 		hba->scsi_host_added = true;
10527 	}
10528 
10529 	hba->tmf_tag_set = (struct blk_mq_tag_set) {
10530 		.nr_hw_queues	= 1,
10531 		.queue_depth	= hba->nutmrs,
10532 		.ops		= &ufshcd_tmf_ops,
10533 		.flags		= BLK_MQ_F_NO_SCHED,
10534 	};
10535 	err = blk_mq_alloc_tag_set(&hba->tmf_tag_set);
10536 	if (err < 0)
10537 		goto out_remove_scsi_host;
10538 	hba->tmf_queue = blk_mq_alloc_queue(&hba->tmf_tag_set, NULL, NULL);
10539 	if (IS_ERR(hba->tmf_queue)) {
10540 		err = PTR_ERR(hba->tmf_queue);
10541 		goto free_tmf_tag_set;
10542 	}
10543 	hba->tmf_rqs = devm_kcalloc(hba->dev, hba->nutmrs,
10544 				    sizeof(*hba->tmf_rqs), GFP_KERNEL);
10545 	if (!hba->tmf_rqs) {
10546 		err = -ENOMEM;
10547 		goto free_tmf_queue;
10548 	}
10549 
10550 	/* Reset the attached device */
10551 	ufshcd_device_reset(hba);
10552 
10553 	ufshcd_init_crypto(hba);
10554 
10555 	/* Host controller enable */
10556 	err = ufshcd_hba_enable(hba);
10557 	if (err) {
10558 		dev_err(hba->dev, "Host controller enable failed\n");
10559 		ufshcd_print_evt_hist(hba);
10560 		ufshcd_print_host_state(hba);
10561 		goto free_tmf_queue;
10562 	}
10563 
10564 	/*
10565 	 * Set the default power management level for runtime and system PM.
10566 	 * Default power saving mode is to keep UFS link in Hibern8 state
10567 	 * and UFS device in sleep state.
10568 	 */
10569 	hba->rpm_lvl = ufs_get_desired_pm_lvl_for_dev_link_state(
10570 						UFS_SLEEP_PWR_MODE,
10571 						UIC_LINK_HIBERN8_STATE);
10572 	hba->spm_lvl = ufs_get_desired_pm_lvl_for_dev_link_state(
10573 						UFS_SLEEP_PWR_MODE,
10574 						UIC_LINK_HIBERN8_STATE);
10575 
10576 	INIT_DELAYED_WORK(&hba->rpm_dev_flush_recheck_work, ufshcd_rpm_dev_flush_recheck_work);
10577 	INIT_DELAYED_WORK(&hba->ufs_rtc_update_work, ufshcd_rtc_work);
10578 
10579 	/* Set the default auto-hiberate idle timer value to 150 ms */
10580 	if (ufshcd_is_auto_hibern8_supported(hba) && !hba->ahit) {
10581 		hba->ahit = FIELD_PREP(UFSHCI_AHIBERN8_TIMER_MASK, 150) |
10582 			    FIELD_PREP(UFSHCI_AHIBERN8_SCALE_MASK, 3);
10583 	}
10584 
10585 	/* Hold auto suspend until async scan completes */
10586 	pm_runtime_get_sync(dev);
10587 	atomic_set(&hba->scsi_block_reqs_cnt, 0);
10588 	/*
10589 	 * We are assuming that device wasn't put in sleep/power-down
10590 	 * state exclusively during the boot stage before kernel.
10591 	 * This assumption helps avoid doing link startup twice during
10592 	 * ufshcd_probe_hba().
10593 	 */
10594 	ufshcd_set_ufs_dev_active(hba);
10595 
10596 	async_schedule(ufshcd_async_scan, hba);
10597 	ufs_sysfs_add_nodes(hba->dev);
10598 
10599 	device_enable_async_suspend(dev);
10600 	ufshcd_pm_qos_init(hba);
10601 	return 0;
10602 
10603 free_tmf_queue:
10604 	blk_mq_destroy_queue(hba->tmf_queue);
10605 	blk_put_queue(hba->tmf_queue);
10606 free_tmf_tag_set:
10607 	blk_mq_free_tag_set(&hba->tmf_tag_set);
10608 out_remove_scsi_host:
10609 	if (hba->scsi_host_added)
10610 		scsi_remove_host(hba->host);
10611 out_disable:
10612 	hba->is_irq_enabled = false;
10613 	ufshcd_hba_exit(hba);
10614 out_error:
10615 	return err;
10616 }
10617 EXPORT_SYMBOL_GPL(ufshcd_init);
10618 
10619 void ufshcd_resume_complete(struct device *dev)
10620 {
10621 	struct ufs_hba *hba = dev_get_drvdata(dev);
10622 
10623 	if (hba->complete_put) {
10624 		ufshcd_rpm_put(hba);
10625 		hba->complete_put = false;
10626 	}
10627 }
10628 EXPORT_SYMBOL_GPL(ufshcd_resume_complete);
10629 
10630 static bool ufshcd_rpm_ok_for_spm(struct ufs_hba *hba)
10631 {
10632 	struct device *dev = &hba->ufs_device_wlun->sdev_gendev;
10633 	enum ufs_dev_pwr_mode dev_pwr_mode;
10634 	enum uic_link_state link_state;
10635 	unsigned long flags;
10636 	bool res;
10637 
10638 	spin_lock_irqsave(&dev->power.lock, flags);
10639 	dev_pwr_mode = ufs_get_pm_lvl_to_dev_pwr_mode(hba->spm_lvl);
10640 	link_state = ufs_get_pm_lvl_to_link_pwr_state(hba->spm_lvl);
10641 	res = pm_runtime_suspended(dev) &&
10642 	      hba->curr_dev_pwr_mode == dev_pwr_mode &&
10643 	      hba->uic_link_state == link_state &&
10644 	      !hba->dev_info.b_rpm_dev_flush_capable;
10645 	spin_unlock_irqrestore(&dev->power.lock, flags);
10646 
10647 	return res;
10648 }
10649 
10650 int __ufshcd_suspend_prepare(struct device *dev, bool rpm_ok_for_spm)
10651 {
10652 	struct ufs_hba *hba = dev_get_drvdata(dev);
10653 	int ret;
10654 
10655 	/*
10656 	 * SCSI assumes that runtime-pm and system-pm for scsi drivers
10657 	 * are same. And it doesn't wake up the device for system-suspend
10658 	 * if it's runtime suspended. But ufs doesn't follow that.
10659 	 * Refer ufshcd_resume_complete()
10660 	 */
10661 	if (hba->ufs_device_wlun) {
10662 		/* Prevent runtime suspend */
10663 		ufshcd_rpm_get_noresume(hba);
10664 		/*
10665 		 * Check if already runtime suspended in same state as system
10666 		 * suspend would be.
10667 		 */
10668 		if (!rpm_ok_for_spm || !ufshcd_rpm_ok_for_spm(hba)) {
10669 			/* RPM state is not ok for SPM, so runtime resume */
10670 			ret = ufshcd_rpm_resume(hba);
10671 			if (ret < 0 && ret != -EACCES) {
10672 				ufshcd_rpm_put(hba);
10673 				return ret;
10674 			}
10675 		}
10676 		hba->complete_put = true;
10677 	}
10678 	return 0;
10679 }
10680 EXPORT_SYMBOL_GPL(__ufshcd_suspend_prepare);
10681 
10682 int ufshcd_suspend_prepare(struct device *dev)
10683 {
10684 	return __ufshcd_suspend_prepare(dev, true);
10685 }
10686 EXPORT_SYMBOL_GPL(ufshcd_suspend_prepare);
10687 
10688 #ifdef CONFIG_PM_SLEEP
10689 static int ufshcd_wl_poweroff(struct device *dev)
10690 {
10691 	struct scsi_device *sdev = to_scsi_device(dev);
10692 	struct ufs_hba *hba = shost_priv(sdev->host);
10693 
10694 	__ufshcd_wl_suspend(hba, UFS_SHUTDOWN_PM);
10695 	return 0;
10696 }
10697 #endif
10698 
10699 static int ufshcd_wl_probe(struct device *dev)
10700 {
10701 	struct scsi_device *sdev = to_scsi_device(dev);
10702 
10703 	if (!is_device_wlun(sdev))
10704 		return -ENODEV;
10705 
10706 	blk_pm_runtime_init(sdev->request_queue, dev);
10707 	pm_runtime_set_autosuspend_delay(dev, 0);
10708 	pm_runtime_allow(dev);
10709 
10710 	return  0;
10711 }
10712 
10713 static int ufshcd_wl_remove(struct device *dev)
10714 {
10715 	pm_runtime_forbid(dev);
10716 	return 0;
10717 }
10718 
10719 static const struct dev_pm_ops ufshcd_wl_pm_ops = {
10720 #ifdef CONFIG_PM_SLEEP
10721 	.suspend = ufshcd_wl_suspend,
10722 	.resume = ufshcd_wl_resume,
10723 	.freeze = ufshcd_wl_suspend,
10724 	.thaw = ufshcd_wl_resume,
10725 	.poweroff = ufshcd_wl_poweroff,
10726 	.restore = ufshcd_wl_resume,
10727 #endif
10728 	SET_RUNTIME_PM_OPS(ufshcd_wl_runtime_suspend, ufshcd_wl_runtime_resume, NULL)
10729 };
10730 
10731 static void ufshcd_check_header_layout(void)
10732 {
10733 	/*
10734 	 * gcc compilers before version 10 cannot do constant-folding for
10735 	 * sub-byte bitfields. Hence skip the layout checks for gcc 9 and
10736 	 * before.
10737 	 */
10738 	if (IS_ENABLED(CONFIG_CC_IS_GCC) && CONFIG_GCC_VERSION < 100000)
10739 		return;
10740 
10741 	BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10742 				.cci = 3})[0] != 3);
10743 
10744 	BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10745 				.ehs_length = 2})[1] != 2);
10746 
10747 	BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10748 				.enable_crypto = 1})[2]
10749 		     != 0x80);
10750 
10751 	BUILD_BUG_ON((((u8 *)&(struct request_desc_header){
10752 					.command_type = 5,
10753 					.data_direction = 3,
10754 					.interrupt = 1,
10755 				})[3]) != ((5 << 4) | (3 << 1) | 1));
10756 
10757 	BUILD_BUG_ON(((__le32 *)&(struct request_desc_header){
10758 				.dunl = cpu_to_le32(0xdeadbeef)})[1] !=
10759 		cpu_to_le32(0xdeadbeef));
10760 
10761 	BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10762 				.ocs = 4})[8] != 4);
10763 
10764 	BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10765 				.cds = 5})[9] != 5);
10766 
10767 	BUILD_BUG_ON(((__le32 *)&(struct request_desc_header){
10768 				.dunu = cpu_to_le32(0xbadcafe)})[3] !=
10769 		cpu_to_le32(0xbadcafe));
10770 
10771 	BUILD_BUG_ON(((u8 *)&(struct utp_upiu_header){
10772 			     .iid = 0xf })[4] != 0xf0);
10773 
10774 	BUILD_BUG_ON(((u8 *)&(struct utp_upiu_header){
10775 			     .command_set_type = 0xf })[4] != 0xf);
10776 }
10777 
10778 /*
10779  * ufs_dev_wlun_template - describes ufs device wlun
10780  * ufs-device wlun - used to send pm commands
10781  * All luns are consumers of ufs-device wlun.
10782  *
10783  * Currently, no sd driver is present for wluns.
10784  * Hence the no specific pm operations are performed.
10785  * With ufs design, SSU should be sent to ufs-device wlun.
10786  * Hence register a scsi driver for ufs wluns only.
10787  */
10788 static struct scsi_driver ufs_dev_wlun_template = {
10789 	.gendrv = {
10790 		.name = "ufs_device_wlun",
10791 		.probe = ufshcd_wl_probe,
10792 		.remove = ufshcd_wl_remove,
10793 		.pm = &ufshcd_wl_pm_ops,
10794 		.shutdown = ufshcd_wl_shutdown,
10795 	},
10796 };
10797 
10798 static int __init ufshcd_core_init(void)
10799 {
10800 	int ret;
10801 
10802 	ufshcd_check_header_layout();
10803 
10804 	ufs_debugfs_init();
10805 
10806 	ret = scsi_register_driver(&ufs_dev_wlun_template.gendrv);
10807 	if (ret)
10808 		ufs_debugfs_exit();
10809 	return ret;
10810 }
10811 
10812 static void __exit ufshcd_core_exit(void)
10813 {
10814 	ufs_debugfs_exit();
10815 	scsi_unregister_driver(&ufs_dev_wlun_template.gendrv);
10816 }
10817 
10818 module_init(ufshcd_core_init);
10819 module_exit(ufshcd_core_exit);
10820 
10821 MODULE_AUTHOR("Santosh Yaragnavi <santosh.sy@samsung.com>");
10822 MODULE_AUTHOR("Vinayak Holikatti <h.vinayak@samsung.com>");
10823 MODULE_DESCRIPTION("Generic UFS host controller driver Core");
10824 MODULE_SOFTDEP("pre: governor_simpleondemand");
10825 MODULE_LICENSE("GPL");
10826