1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Universal Flash Storage Host controller driver Core 4 * Copyright (C) 2011-2013 Samsung India Software Operations 5 * Copyright (c) 2013-2016, The Linux Foundation. All rights reserved. 6 * 7 * Authors: 8 * Santosh Yaraganavi <santosh.sy@samsung.com> 9 * Vinayak Holikatti <h.vinayak@samsung.com> 10 */ 11 12 #include <linux/async.h> 13 #include <linux/devfreq.h> 14 #include <linux/nls.h> 15 #include <linux/of.h> 16 #include <linux/bitfield.h> 17 #include <linux/blk-pm.h> 18 #include <linux/blkdev.h> 19 #include <linux/clk.h> 20 #include <linux/delay.h> 21 #include <linux/interrupt.h> 22 #include <linux/module.h> 23 #include <linux/pm_opp.h> 24 #include <linux/regulator/consumer.h> 25 #include <linux/sched/clock.h> 26 #include <linux/iopoll.h> 27 #include <scsi/scsi_cmnd.h> 28 #include <scsi/scsi_dbg.h> 29 #include <scsi/scsi_driver.h> 30 #include <scsi/scsi_eh.h> 31 #include <scsi/scsi_tcq.h> 32 #include "ufshcd-priv.h" 33 #include <ufs/ufs_quirks.h> 34 #include <ufs/unipro.h> 35 #include "ufs-sysfs.h" 36 #include "ufs-debugfs.h" 37 #include "ufs-fault-injection.h" 38 #include "ufs_bsg.h" 39 #include "ufshcd-crypto.h" 40 #include <linux/unaligned.h> 41 42 #define CREATE_TRACE_POINTS 43 #include "ufs_trace.h" 44 45 #define UFSHCD_ENABLE_INTRS (UTP_TRANSFER_REQ_COMPL |\ 46 UTP_TASK_REQ_COMPL |\ 47 UFSHCD_ERROR_MASK) 48 49 /* UIC command timeout, unit: ms */ 50 enum { 51 UIC_CMD_TIMEOUT_DEFAULT = 500, 52 UIC_CMD_TIMEOUT_MAX = 5000, 53 }; 54 /* NOP OUT retries waiting for NOP IN response */ 55 #define NOP_OUT_RETRIES 10 56 /* Timeout after 50 msecs if NOP OUT hangs without response */ 57 #define NOP_OUT_TIMEOUT 50 /* msecs */ 58 59 /* Query request retries */ 60 #define QUERY_REQ_RETRIES 3 61 /* Query request timeout */ 62 enum { 63 QUERY_REQ_TIMEOUT_MIN = 1, 64 QUERY_REQ_TIMEOUT_DEFAULT = 1500, 65 QUERY_REQ_TIMEOUT_MAX = 30000 66 }; 67 68 /* Advanced RPMB request timeout */ 69 #define ADVANCED_RPMB_REQ_TIMEOUT 3000 /* 3 seconds */ 70 71 /* Task management command timeout */ 72 #define TM_CMD_TIMEOUT 100 /* msecs */ 73 74 /* maximum number of retries for a general UIC command */ 75 #define UFS_UIC_COMMAND_RETRIES 3 76 77 /* maximum number of link-startup retries */ 78 #define DME_LINKSTARTUP_RETRIES 3 79 80 /* maximum number of reset retries before giving up */ 81 #define MAX_HOST_RESET_RETRIES 5 82 83 /* Maximum number of error handler retries before giving up */ 84 #define MAX_ERR_HANDLER_RETRIES 5 85 86 /* Expose the flag value from utp_upiu_query.value */ 87 #define MASK_QUERY_UPIU_FLAG_LOC 0xFF 88 89 /* Interrupt aggregation default timeout, unit: 40us */ 90 #define INT_AGGR_DEF_TO 0x02 91 92 /* default delay of autosuspend: 2000 ms */ 93 #define RPM_AUTOSUSPEND_DELAY_MS 2000 94 95 /* Default delay of RPM device flush delayed work */ 96 #define RPM_DEV_FLUSH_RECHECK_WORK_DELAY_MS 5000 97 98 /* Default value of wait time before gating device ref clock */ 99 #define UFSHCD_REF_CLK_GATING_WAIT_US 0xFF /* microsecs */ 100 101 /* Polling time to wait for fDeviceInit */ 102 #define FDEVICEINIT_COMPL_TIMEOUT 1500 /* millisecs */ 103 104 /* Default RTC update every 10 seconds */ 105 #define UFS_RTC_UPDATE_INTERVAL_MS (10 * MSEC_PER_SEC) 106 107 /* bMaxNumOfRTT is equal to two after device manufacturing */ 108 #define DEFAULT_MAX_NUM_RTT 2 109 110 /* UFSHC 4.0 compliant HC support this mode. */ 111 static bool use_mcq_mode = true; 112 113 static bool is_mcq_supported(struct ufs_hba *hba) 114 { 115 return hba->mcq_sup && use_mcq_mode; 116 } 117 118 module_param(use_mcq_mode, bool, 0644); 119 MODULE_PARM_DESC(use_mcq_mode, "Control MCQ mode for controllers starting from UFSHCI 4.0. 1 - enable MCQ, 0 - disable MCQ. MCQ is enabled by default"); 120 121 static unsigned int uic_cmd_timeout = UIC_CMD_TIMEOUT_DEFAULT; 122 123 static int uic_cmd_timeout_set(const char *val, const struct kernel_param *kp) 124 { 125 return param_set_uint_minmax(val, kp, UIC_CMD_TIMEOUT_DEFAULT, 126 UIC_CMD_TIMEOUT_MAX); 127 } 128 129 static const struct kernel_param_ops uic_cmd_timeout_ops = { 130 .set = uic_cmd_timeout_set, 131 .get = param_get_uint, 132 }; 133 134 module_param_cb(uic_cmd_timeout, &uic_cmd_timeout_ops, &uic_cmd_timeout, 0644); 135 MODULE_PARM_DESC(uic_cmd_timeout, 136 "UFS UIC command timeout in milliseconds. Defaults to 500ms. Supported values range from 500ms to 5 seconds inclusively"); 137 138 static unsigned int dev_cmd_timeout = QUERY_REQ_TIMEOUT_DEFAULT; 139 140 static int dev_cmd_timeout_set(const char *val, const struct kernel_param *kp) 141 { 142 return param_set_uint_minmax(val, kp, QUERY_REQ_TIMEOUT_MIN, 143 QUERY_REQ_TIMEOUT_MAX); 144 } 145 146 static const struct kernel_param_ops dev_cmd_timeout_ops = { 147 .set = dev_cmd_timeout_set, 148 .get = param_get_uint, 149 }; 150 151 module_param_cb(dev_cmd_timeout, &dev_cmd_timeout_ops, &dev_cmd_timeout, 0644); 152 MODULE_PARM_DESC(dev_cmd_timeout, 153 "UFS Device command timeout in milliseconds. Defaults to 1.5s. Supported values range from 1ms to 30 seconds inclusively"); 154 155 #define ufshcd_toggle_vreg(_dev, _vreg, _on) \ 156 ({ \ 157 int _ret; \ 158 if (_on) \ 159 _ret = ufshcd_enable_vreg(_dev, _vreg); \ 160 else \ 161 _ret = ufshcd_disable_vreg(_dev, _vreg); \ 162 _ret; \ 163 }) 164 165 #define ufshcd_hex_dump(prefix_str, buf, len) do { \ 166 size_t __len = (len); \ 167 print_hex_dump(KERN_ERR, prefix_str, \ 168 __len > 4 ? DUMP_PREFIX_OFFSET : DUMP_PREFIX_NONE,\ 169 16, 4, buf, __len, false); \ 170 } while (0) 171 172 int ufshcd_dump_regs(struct ufs_hba *hba, size_t offset, size_t len, 173 const char *prefix) 174 { 175 u32 *regs; 176 size_t pos; 177 178 if (offset % 4 != 0 || len % 4 != 0) /* keep readl happy */ 179 return -EINVAL; 180 181 regs = kzalloc(len, GFP_ATOMIC); 182 if (!regs) 183 return -ENOMEM; 184 185 for (pos = 0; pos < len; pos += 4) { 186 if (offset == 0 && 187 pos >= REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER && 188 pos <= REG_UIC_ERROR_CODE_DME) 189 continue; 190 regs[pos / 4] = ufshcd_readl(hba, offset + pos); 191 } 192 193 ufshcd_hex_dump(prefix, regs, len); 194 kfree(regs); 195 196 return 0; 197 } 198 EXPORT_SYMBOL_GPL(ufshcd_dump_regs); 199 200 enum { 201 UFSHCD_MAX_CHANNEL = 0, 202 UFSHCD_MAX_ID = 1, 203 }; 204 205 static const char *const ufshcd_state_name[] = { 206 [UFSHCD_STATE_RESET] = "reset", 207 [UFSHCD_STATE_OPERATIONAL] = "operational", 208 [UFSHCD_STATE_ERROR] = "error", 209 [UFSHCD_STATE_EH_SCHEDULED_FATAL] = "eh_fatal", 210 [UFSHCD_STATE_EH_SCHEDULED_NON_FATAL] = "eh_non_fatal", 211 }; 212 213 /* UFSHCD error handling flags */ 214 enum { 215 UFSHCD_EH_IN_PROGRESS = (1 << 0), 216 }; 217 218 /* UFSHCD UIC layer error flags */ 219 enum { 220 UFSHCD_UIC_DL_PA_INIT_ERROR = (1 << 0), /* Data link layer error */ 221 UFSHCD_UIC_DL_NAC_RECEIVED_ERROR = (1 << 1), /* Data link layer error */ 222 UFSHCD_UIC_DL_TCx_REPLAY_ERROR = (1 << 2), /* Data link layer error */ 223 UFSHCD_UIC_NL_ERROR = (1 << 3), /* Network layer error */ 224 UFSHCD_UIC_TL_ERROR = (1 << 4), /* Transport Layer error */ 225 UFSHCD_UIC_DME_ERROR = (1 << 5), /* DME error */ 226 UFSHCD_UIC_PA_GENERIC_ERROR = (1 << 6), /* Generic PA error */ 227 }; 228 229 #define ufshcd_set_eh_in_progress(h) \ 230 ((h)->eh_flags |= UFSHCD_EH_IN_PROGRESS) 231 #define ufshcd_eh_in_progress(h) \ 232 ((h)->eh_flags & UFSHCD_EH_IN_PROGRESS) 233 #define ufshcd_clear_eh_in_progress(h) \ 234 ((h)->eh_flags &= ~UFSHCD_EH_IN_PROGRESS) 235 236 const struct ufs_pm_lvl_states ufs_pm_lvl_states[] = { 237 [UFS_PM_LVL_0] = {UFS_ACTIVE_PWR_MODE, UIC_LINK_ACTIVE_STATE}, 238 [UFS_PM_LVL_1] = {UFS_ACTIVE_PWR_MODE, UIC_LINK_HIBERN8_STATE}, 239 [UFS_PM_LVL_2] = {UFS_SLEEP_PWR_MODE, UIC_LINK_ACTIVE_STATE}, 240 [UFS_PM_LVL_3] = {UFS_SLEEP_PWR_MODE, UIC_LINK_HIBERN8_STATE}, 241 [UFS_PM_LVL_4] = {UFS_POWERDOWN_PWR_MODE, UIC_LINK_HIBERN8_STATE}, 242 [UFS_PM_LVL_5] = {UFS_POWERDOWN_PWR_MODE, UIC_LINK_OFF_STATE}, 243 /* 244 * For DeepSleep, the link is first put in hibern8 and then off. 245 * Leaving the link in hibern8 is not supported. 246 */ 247 [UFS_PM_LVL_6] = {UFS_DEEPSLEEP_PWR_MODE, UIC_LINK_OFF_STATE}, 248 }; 249 250 static inline enum ufs_dev_pwr_mode 251 ufs_get_pm_lvl_to_dev_pwr_mode(enum ufs_pm_level lvl) 252 { 253 return ufs_pm_lvl_states[lvl].dev_state; 254 } 255 256 static inline enum uic_link_state 257 ufs_get_pm_lvl_to_link_pwr_state(enum ufs_pm_level lvl) 258 { 259 return ufs_pm_lvl_states[lvl].link_state; 260 } 261 262 static inline enum ufs_pm_level 263 ufs_get_desired_pm_lvl_for_dev_link_state(enum ufs_dev_pwr_mode dev_state, 264 enum uic_link_state link_state) 265 { 266 enum ufs_pm_level lvl; 267 268 for (lvl = UFS_PM_LVL_0; lvl < UFS_PM_LVL_MAX; lvl++) { 269 if ((ufs_pm_lvl_states[lvl].dev_state == dev_state) && 270 (ufs_pm_lvl_states[lvl].link_state == link_state)) 271 return lvl; 272 } 273 274 /* if no match found, return the level 0 */ 275 return UFS_PM_LVL_0; 276 } 277 278 static bool ufshcd_has_pending_tasks(struct ufs_hba *hba) 279 { 280 return hba->outstanding_tasks || hba->active_uic_cmd || 281 hba->uic_async_done; 282 } 283 284 static bool ufshcd_is_ufs_dev_busy(struct ufs_hba *hba) 285 { 286 return scsi_host_busy(hba->host) || ufshcd_has_pending_tasks(hba); 287 } 288 289 static const struct ufs_dev_quirk ufs_fixups[] = { 290 /* UFS cards deviations table */ 291 { .wmanufacturerid = UFS_VENDOR_MICRON, 292 .model = UFS_ANY_MODEL, 293 .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM }, 294 { .wmanufacturerid = UFS_VENDOR_SAMSUNG, 295 .model = UFS_ANY_MODEL, 296 .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM | 297 UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE | 298 UFS_DEVICE_QUIRK_PA_HIBER8TIME | 299 UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS }, 300 { .wmanufacturerid = UFS_VENDOR_SKHYNIX, 301 .model = UFS_ANY_MODEL, 302 .quirk = UFS_DEVICE_QUIRK_HOST_PA_SAVECONFIGTIME }, 303 { .wmanufacturerid = UFS_VENDOR_SKHYNIX, 304 .model = "hB8aL1" /*H28U62301AMR*/, 305 .quirk = UFS_DEVICE_QUIRK_HOST_VS_DEBUGSAVECONFIGTIME }, 306 { .wmanufacturerid = UFS_VENDOR_TOSHIBA, 307 .model = UFS_ANY_MODEL, 308 .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM }, 309 { .wmanufacturerid = UFS_VENDOR_TOSHIBA, 310 .model = "THGLF2G9C8KBADG", 311 .quirk = UFS_DEVICE_QUIRK_PA_TACTIVATE }, 312 { .wmanufacturerid = UFS_VENDOR_TOSHIBA, 313 .model = "THGLF2G9D8KBADG", 314 .quirk = UFS_DEVICE_QUIRK_PA_TACTIVATE }, 315 { .wmanufacturerid = UFS_VENDOR_TOSHIBA, 316 .model = "THGJFJT1E45BATP", 317 .quirk = UFS_DEVICE_QUIRK_NO_TIMESTAMP_SUPPORT }, 318 {} 319 }; 320 321 static irqreturn_t ufshcd_tmc_handler(struct ufs_hba *hba); 322 static void ufshcd_async_scan(void *data, async_cookie_t cookie); 323 static int ufshcd_reset_and_restore(struct ufs_hba *hba); 324 static int ufshcd_eh_host_reset_handler(struct scsi_cmnd *cmd); 325 static int ufshcd_clear_tm_cmd(struct ufs_hba *hba, int tag); 326 static void ufshcd_hba_exit(struct ufs_hba *hba); 327 static int ufshcd_device_init(struct ufs_hba *hba, bool init_dev_params); 328 static int ufshcd_probe_hba(struct ufs_hba *hba, bool init_dev_params); 329 static int ufshcd_setup_clocks(struct ufs_hba *hba, bool on); 330 static inline void ufshcd_add_delay_before_dme_cmd(struct ufs_hba *hba); 331 static int ufshcd_host_reset_and_restore(struct ufs_hba *hba); 332 static void ufshcd_resume_clkscaling(struct ufs_hba *hba); 333 static void ufshcd_suspend_clkscaling(struct ufs_hba *hba); 334 static int ufshcd_scale_clks(struct ufs_hba *hba, unsigned long freq, 335 bool scale_up); 336 static irqreturn_t ufshcd_intr(int irq, void *__hba); 337 static int ufshcd_change_power_mode(struct ufs_hba *hba, 338 struct ufs_pa_layer_attr *pwr_mode); 339 static int ufshcd_setup_hba_vreg(struct ufs_hba *hba, bool on); 340 static int ufshcd_setup_vreg(struct ufs_hba *hba, bool on); 341 static inline int ufshcd_config_vreg_hpm(struct ufs_hba *hba, 342 struct ufs_vreg *vreg); 343 static void ufshcd_wb_toggle_buf_flush_during_h8(struct ufs_hba *hba, 344 bool enable); 345 static void ufshcd_hba_vreg_set_lpm(struct ufs_hba *hba); 346 static void ufshcd_hba_vreg_set_hpm(struct ufs_hba *hba); 347 348 void ufshcd_enable_irq(struct ufs_hba *hba) 349 { 350 if (!hba->is_irq_enabled) { 351 enable_irq(hba->irq); 352 hba->is_irq_enabled = true; 353 } 354 } 355 EXPORT_SYMBOL_GPL(ufshcd_enable_irq); 356 357 void ufshcd_disable_irq(struct ufs_hba *hba) 358 { 359 if (hba->is_irq_enabled) { 360 disable_irq(hba->irq); 361 hba->is_irq_enabled = false; 362 } 363 } 364 EXPORT_SYMBOL_GPL(ufshcd_disable_irq); 365 366 /** 367 * ufshcd_enable_intr - enable interrupts 368 * @hba: per adapter instance 369 * @intrs: interrupt bits 370 */ 371 void ufshcd_enable_intr(struct ufs_hba *hba, u32 intrs) 372 { 373 u32 old_val = ufshcd_readl(hba, REG_INTERRUPT_ENABLE); 374 u32 new_val = old_val | intrs; 375 376 if (new_val != old_val) 377 ufshcd_writel(hba, new_val, REG_INTERRUPT_ENABLE); 378 } 379 380 /** 381 * ufshcd_disable_intr - disable interrupts 382 * @hba: per adapter instance 383 * @intrs: interrupt bits 384 */ 385 static void ufshcd_disable_intr(struct ufs_hba *hba, u32 intrs) 386 { 387 u32 old_val = ufshcd_readl(hba, REG_INTERRUPT_ENABLE); 388 u32 new_val = old_val & ~intrs; 389 390 if (new_val != old_val) 391 ufshcd_writel(hba, new_val, REG_INTERRUPT_ENABLE); 392 } 393 394 static void ufshcd_configure_wb(struct ufs_hba *hba) 395 { 396 if (!ufshcd_is_wb_allowed(hba)) 397 return; 398 399 ufshcd_wb_toggle(hba, true); 400 401 ufshcd_wb_toggle_buf_flush_during_h8(hba, true); 402 403 if (ufshcd_is_wb_buf_flush_allowed(hba)) 404 ufshcd_wb_toggle_buf_flush(hba, true); 405 } 406 407 static void ufshcd_add_cmd_upiu_trace(struct ufs_hba *hba, 408 struct ufshcd_lrb *lrb, 409 enum ufs_trace_str_t str_t) 410 { 411 struct utp_upiu_req *rq = lrb->ucd_req_ptr; 412 struct utp_upiu_header *header; 413 414 if (!trace_ufshcd_upiu_enabled()) 415 return; 416 417 if (str_t == UFS_CMD_SEND) 418 header = &rq->header; 419 else 420 header = &lrb->ucd_rsp_ptr->header; 421 422 trace_ufshcd_upiu(hba, str_t, header, &rq->sc.cdb, 423 UFS_TSF_CDB); 424 } 425 426 static void ufshcd_add_query_upiu_trace(struct ufs_hba *hba, 427 enum ufs_trace_str_t str_t, 428 struct utp_upiu_req *rq_rsp) 429 { 430 if (!trace_ufshcd_upiu_enabled()) 431 return; 432 433 trace_ufshcd_upiu(hba, str_t, &rq_rsp->header, 434 &rq_rsp->qr, UFS_TSF_OSF); 435 } 436 437 static void ufshcd_add_tm_upiu_trace(struct ufs_hba *hba, unsigned int tag, 438 enum ufs_trace_str_t str_t) 439 { 440 struct utp_task_req_desc *descp = &hba->utmrdl_base_addr[tag]; 441 442 if (!trace_ufshcd_upiu_enabled()) 443 return; 444 445 if (str_t == UFS_TM_SEND) 446 trace_ufshcd_upiu(hba, str_t, 447 &descp->upiu_req.req_header, 448 &descp->upiu_req.input_param1, 449 UFS_TSF_TM_INPUT); 450 else 451 trace_ufshcd_upiu(hba, str_t, 452 &descp->upiu_rsp.rsp_header, 453 &descp->upiu_rsp.output_param1, 454 UFS_TSF_TM_OUTPUT); 455 } 456 457 static void ufshcd_add_uic_command_trace(struct ufs_hba *hba, 458 const struct uic_command *ucmd, 459 enum ufs_trace_str_t str_t) 460 { 461 u32 cmd; 462 463 if (!trace_ufshcd_uic_command_enabled()) 464 return; 465 466 if (str_t == UFS_CMD_SEND) 467 cmd = ucmd->command; 468 else 469 cmd = ufshcd_readl(hba, REG_UIC_COMMAND); 470 471 trace_ufshcd_uic_command(hba, str_t, cmd, 472 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_1), 473 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_2), 474 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_3)); 475 } 476 477 static void ufshcd_add_command_trace(struct ufs_hba *hba, struct scsi_cmnd *cmd, 478 enum ufs_trace_str_t str_t) 479 { 480 u64 lba = 0; 481 u8 opcode = 0, group_id = 0; 482 u32 doorbell = 0; 483 u32 intr; 484 u32 hwq_id = 0; 485 struct request *rq = scsi_cmd_to_rq(cmd); 486 unsigned int tag = rq->tag; 487 struct ufshcd_lrb *lrbp = scsi_cmd_priv(cmd); 488 int transfer_len = -1; 489 490 /* trace UPIU also */ 491 ufshcd_add_cmd_upiu_trace(hba, lrbp, str_t); 492 if (!trace_ufshcd_command_enabled()) 493 return; 494 495 opcode = cmd->cmnd[0]; 496 497 if (opcode == READ_10 || opcode == WRITE_10) { 498 /* 499 * Currently we only fully trace read(10) and write(10) commands 500 */ 501 transfer_len = 502 be32_to_cpu(lrbp->ucd_req_ptr->sc.exp_data_transfer_len); 503 lba = scsi_get_lba(cmd); 504 if (opcode == WRITE_10) 505 group_id = cmd->cmnd[6]; 506 } else if (opcode == UNMAP) { 507 /* 508 * The number of Bytes to be unmapped beginning with the lba. 509 */ 510 transfer_len = blk_rq_bytes(rq); 511 lba = scsi_get_lba(cmd); 512 } 513 514 intr = ufshcd_readl(hba, REG_INTERRUPT_STATUS); 515 516 if (hba->mcq_enabled) { 517 struct ufs_hw_queue *hwq = ufshcd_mcq_req_to_hwq(hba, rq); 518 519 hwq_id = hwq->id; 520 } else { 521 doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL); 522 } 523 trace_ufshcd_command(cmd->device, hba, str_t, tag, doorbell, hwq_id, 524 transfer_len, intr, lba, opcode, group_id); 525 } 526 527 static void ufshcd_print_clk_freqs(struct ufs_hba *hba) 528 { 529 struct ufs_clk_info *clki; 530 struct list_head *head = &hba->clk_list_head; 531 532 if (list_empty(head)) 533 return; 534 535 list_for_each_entry(clki, head, list) { 536 if (!IS_ERR_OR_NULL(clki->clk) && clki->min_freq && 537 clki->max_freq) 538 dev_err(hba->dev, "clk: %s, rate: %u\n", 539 clki->name, clki->curr_freq); 540 } 541 } 542 543 static void ufshcd_print_evt(struct ufs_hba *hba, u32 id, 544 const char *err_name) 545 { 546 int i; 547 bool found = false; 548 const struct ufs_event_hist *e; 549 550 if (id >= UFS_EVT_CNT) 551 return; 552 553 e = &hba->ufs_stats.event[id]; 554 555 for (i = 0; i < UFS_EVENT_HIST_LENGTH; i++) { 556 int p = (i + e->pos) % UFS_EVENT_HIST_LENGTH; 557 558 if (e->tstamp[p] == 0) 559 continue; 560 dev_err(hba->dev, "%s[%d] = 0x%x at %lld us\n", err_name, p, 561 e->val[p], div_u64(e->tstamp[p], 1000)); 562 found = true; 563 } 564 565 if (!found) 566 dev_err(hba->dev, "No record of %s\n", err_name); 567 else 568 dev_err(hba->dev, "%s: total cnt=%llu\n", err_name, e->cnt); 569 } 570 571 static void ufshcd_print_evt_hist(struct ufs_hba *hba) 572 { 573 ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, "host_regs: "); 574 575 ufshcd_print_evt(hba, UFS_EVT_PA_ERR, "pa_err"); 576 ufshcd_print_evt(hba, UFS_EVT_DL_ERR, "dl_err"); 577 ufshcd_print_evt(hba, UFS_EVT_NL_ERR, "nl_err"); 578 ufshcd_print_evt(hba, UFS_EVT_TL_ERR, "tl_err"); 579 ufshcd_print_evt(hba, UFS_EVT_DME_ERR, "dme_err"); 580 ufshcd_print_evt(hba, UFS_EVT_AUTO_HIBERN8_ERR, 581 "auto_hibern8_err"); 582 ufshcd_print_evt(hba, UFS_EVT_FATAL_ERR, "fatal_err"); 583 ufshcd_print_evt(hba, UFS_EVT_LINK_STARTUP_FAIL, 584 "link_startup_fail"); 585 ufshcd_print_evt(hba, UFS_EVT_RESUME_ERR, "resume_fail"); 586 ufshcd_print_evt(hba, UFS_EVT_SUSPEND_ERR, 587 "suspend_fail"); 588 ufshcd_print_evt(hba, UFS_EVT_WL_RES_ERR, "wlun resume_fail"); 589 ufshcd_print_evt(hba, UFS_EVT_WL_SUSP_ERR, 590 "wlun suspend_fail"); 591 ufshcd_print_evt(hba, UFS_EVT_DEV_RESET, "dev_reset"); 592 ufshcd_print_evt(hba, UFS_EVT_HOST_RESET, "host_reset"); 593 ufshcd_print_evt(hba, UFS_EVT_ABORT, "task_abort"); 594 595 ufshcd_vops_dbg_register_dump(hba); 596 } 597 598 static void ufshcd_print_tr(struct ufs_hba *hba, struct scsi_cmnd *cmd, 599 bool pr_prdt) 600 { 601 struct ufshcd_lrb *lrbp = scsi_cmd_priv(cmd); 602 const int tag = scsi_cmd_to_rq(cmd)->tag; 603 int prdt_length; 604 605 if (hba->monitor.enabled) { 606 dev_err(hba->dev, "UPIU[%d] - issue time %lld us\n", tag, 607 div_u64(lrbp->issue_time_stamp_local_clock, 1000)); 608 dev_err(hba->dev, "UPIU[%d] - complete time %lld us\n", tag, 609 div_u64(lrbp->compl_time_stamp_local_clock, 1000)); 610 } 611 dev_err(hba->dev, 612 "UPIU[%d] - Transfer Request Descriptor phys@0x%llx\n", 613 tag, (u64)lrbp->utrd_dma_addr); 614 615 ufshcd_hex_dump("UPIU TRD: ", lrbp->utr_descriptor_ptr, 616 sizeof(struct utp_transfer_req_desc)); 617 dev_err(hba->dev, "UPIU[%d] - Request UPIU phys@0x%llx\n", tag, 618 (u64)lrbp->ucd_req_dma_addr); 619 ufshcd_hex_dump("UPIU REQ: ", lrbp->ucd_req_ptr, 620 sizeof(struct utp_upiu_req)); 621 dev_err(hba->dev, "UPIU[%d] - Response UPIU phys@0x%llx\n", tag, 622 (u64)lrbp->ucd_rsp_dma_addr); 623 ufshcd_hex_dump("UPIU RSP: ", lrbp->ucd_rsp_ptr, 624 sizeof(struct utp_upiu_rsp)); 625 626 prdt_length = le16_to_cpu( 627 lrbp->utr_descriptor_ptr->prd_table_length); 628 if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN) 629 prdt_length /= ufshcd_sg_entry_size(hba); 630 631 dev_err(hba->dev, 632 "UPIU[%d] - PRDT - %d entries phys@0x%llx\n", 633 tag, prdt_length, 634 (u64)lrbp->ucd_prdt_dma_addr); 635 636 if (pr_prdt) 637 ufshcd_hex_dump("UPIU PRDT: ", lrbp->ucd_prdt_ptr, 638 ufshcd_sg_entry_size(hba) * prdt_length); 639 } 640 641 static bool ufshcd_print_tr_iter(struct request *req, void *priv) 642 { 643 struct scsi_device *sdev = req->q->queuedata; 644 struct Scsi_Host *shost = sdev->host; 645 struct ufs_hba *hba = shost_priv(shost); 646 647 if (!blk_mq_is_reserved_rq(req)) 648 ufshcd_print_tr(hba, blk_mq_rq_to_pdu(req), *(bool *)priv); 649 650 return true; 651 } 652 653 /** 654 * ufshcd_print_trs_all - print trs for all started requests. 655 * @hba: per-adapter instance. 656 * @pr_prdt: need to print prdt or not. 657 */ 658 static void ufshcd_print_trs_all(struct ufs_hba *hba, bool pr_prdt) 659 { 660 blk_mq_tagset_busy_iter(&hba->host->tag_set, ufshcd_print_tr_iter, &pr_prdt); 661 } 662 663 static void ufshcd_print_tmrs(struct ufs_hba *hba, unsigned long bitmap) 664 { 665 int tag; 666 667 for_each_set_bit(tag, &bitmap, hba->nutmrs) { 668 struct utp_task_req_desc *tmrdp = &hba->utmrdl_base_addr[tag]; 669 670 dev_err(hba->dev, "TM[%d] - Task Management Header\n", tag); 671 ufshcd_hex_dump("", tmrdp, sizeof(*tmrdp)); 672 } 673 } 674 675 static void ufshcd_print_host_state(struct ufs_hba *hba) 676 { 677 const struct scsi_device *sdev_ufs = hba->ufs_device_wlun; 678 679 dev_err(hba->dev, "UFS Host state=%d\n", hba->ufshcd_state); 680 dev_err(hba->dev, "%d outstanding reqs, tasks=0x%lx\n", 681 scsi_host_busy(hba->host), hba->outstanding_tasks); 682 dev_err(hba->dev, "saved_err=0x%x, saved_uic_err=0x%x\n", 683 hba->saved_err, hba->saved_uic_err); 684 dev_err(hba->dev, "Device power mode=%d, UIC link state=%d\n", 685 hba->curr_dev_pwr_mode, hba->uic_link_state); 686 dev_err(hba->dev, "PM in progress=%d, sys. suspended=%d\n", 687 hba->pm_op_in_progress, hba->is_sys_suspended); 688 dev_err(hba->dev, "Auto BKOPS=%d, Host self-block=%d\n", 689 hba->auto_bkops_enabled, hba->host->host_self_blocked); 690 dev_err(hba->dev, "Clk gate=%d\n", hba->clk_gating.state); 691 dev_err(hba->dev, 692 "last_hibern8_exit_tstamp at %lld us, hibern8_exit_cnt=%d\n", 693 div_u64(hba->ufs_stats.last_hibern8_exit_tstamp, 1000), 694 hba->ufs_stats.hibern8_exit_cnt); 695 dev_err(hba->dev, "error handling flags=0x%x, req. abort count=%d\n", 696 hba->eh_flags, hba->req_abort_count); 697 dev_err(hba->dev, "hba->ufs_version=0x%x, Host capabilities=0x%x, caps=0x%x\n", 698 hba->ufs_version, hba->capabilities, hba->caps); 699 dev_err(hba->dev, "quirks=0x%x, dev. quirks=0x%x\n", hba->quirks, 700 hba->dev_quirks); 701 if (sdev_ufs) 702 dev_err(hba->dev, "UFS dev info: %.8s %.16s rev %.4s\n", 703 sdev_ufs->vendor, sdev_ufs->model, sdev_ufs->rev); 704 705 ufshcd_print_clk_freqs(hba); 706 } 707 708 /** 709 * ufshcd_print_pwr_info - print power params as saved in hba 710 * power info 711 * @hba: per-adapter instance 712 */ 713 static void ufshcd_print_pwr_info(struct ufs_hba *hba) 714 { 715 static const char * const names[] = { 716 "INVALID MODE", 717 "FAST MODE", 718 "SLOW_MODE", 719 "INVALID MODE", 720 "FASTAUTO_MODE", 721 "SLOWAUTO_MODE", 722 "INVALID MODE", 723 }; 724 725 /* 726 * Using dev_dbg to avoid messages during runtime PM to avoid 727 * never-ending cycles of messages written back to storage by user space 728 * causing runtime resume, causing more messages and so on. 729 */ 730 dev_dbg(hba->dev, "%s:[RX, TX]: gear=[%d, %d], lane[%d, %d], pwr[%s, %s], rate = %d\n", 731 __func__, 732 hba->pwr_info.gear_rx, hba->pwr_info.gear_tx, 733 hba->pwr_info.lane_rx, hba->pwr_info.lane_tx, 734 names[hba->pwr_info.pwr_rx], 735 names[hba->pwr_info.pwr_tx], 736 hba->pwr_info.hs_rate); 737 } 738 739 static void ufshcd_device_reset(struct ufs_hba *hba) 740 { 741 int err; 742 743 err = ufshcd_vops_device_reset(hba); 744 745 if (!err) { 746 ufshcd_set_ufs_dev_active(hba); 747 if (ufshcd_is_wb_allowed(hba)) { 748 hba->dev_info.wb_enabled = false; 749 hba->dev_info.wb_buf_flush_enabled = false; 750 } 751 if (hba->dev_info.rtc_type == UFS_RTC_RELATIVE) 752 hba->dev_info.rtc_time_baseline = 0; 753 } 754 if (err != -EOPNOTSUPP) 755 ufshcd_update_evt_hist(hba, UFS_EVT_DEV_RESET, err); 756 } 757 758 void ufshcd_delay_us(unsigned long us, unsigned long tolerance) 759 { 760 if (!us) 761 return; 762 763 if (us < 10) 764 udelay(us); 765 else 766 usleep_range(us, us + tolerance); 767 } 768 EXPORT_SYMBOL_GPL(ufshcd_delay_us); 769 770 /** 771 * ufshcd_wait_for_register - wait for register value to change 772 * @hba: per-adapter interface 773 * @reg: mmio register offset 774 * @mask: mask to apply to the read register value 775 * @val: value to wait for 776 * @interval_us: polling interval in microseconds 777 * @timeout_ms: timeout in milliseconds 778 * 779 * Return: -ETIMEDOUT on error, zero on success. 780 */ 781 static int ufshcd_wait_for_register(struct ufs_hba *hba, u32 reg, u32 mask, 782 u32 val, unsigned long interval_us, 783 unsigned long timeout_ms) 784 { 785 u32 v; 786 787 val &= mask; /* ignore bits that we don't intend to wait on */ 788 789 return read_poll_timeout(ufshcd_readl, v, (v & mask) == val, 790 interval_us, timeout_ms * 1000, false, hba, reg); 791 } 792 793 /** 794 * ufshcd_get_intr_mask - Get the interrupt bit mask 795 * @hba: Pointer to adapter instance 796 * 797 * Return: interrupt bit mask per version 798 */ 799 static inline u32 ufshcd_get_intr_mask(struct ufs_hba *hba) 800 { 801 if (hba->ufs_version <= ufshci_version(2, 0)) 802 return INTERRUPT_MASK_ALL_VER_11; 803 804 return INTERRUPT_MASK_ALL_VER_21; 805 } 806 807 /** 808 * ufshcd_get_ufs_version - Get the UFS version supported by the HBA 809 * @hba: Pointer to adapter instance 810 * 811 * Return: UFSHCI version supported by the controller 812 */ 813 static inline u32 ufshcd_get_ufs_version(struct ufs_hba *hba) 814 { 815 u32 ufshci_ver; 816 817 if (hba->quirks & UFSHCD_QUIRK_BROKEN_UFS_HCI_VERSION) 818 ufshci_ver = ufshcd_vops_get_ufs_hci_version(hba); 819 else 820 ufshci_ver = ufshcd_readl(hba, REG_UFS_VERSION); 821 822 /* 823 * UFSHCI v1.x uses a different version scheme, in order 824 * to allow the use of comparisons with the ufshci_version 825 * function, we convert it to the same scheme as ufs 2.0+. 826 */ 827 if (ufshci_ver & 0x00010000) 828 return ufshci_version(1, ufshci_ver & 0x00000100); 829 830 return ufshci_ver; 831 } 832 833 /** 834 * ufshcd_is_device_present - Check if any device connected to 835 * the host controller 836 * @hba: pointer to adapter instance 837 * 838 * Return: true if device present, false if no device detected 839 */ 840 static inline bool ufshcd_is_device_present(struct ufs_hba *hba) 841 { 842 return ufshcd_readl(hba, REG_CONTROLLER_STATUS) & DEVICE_PRESENT; 843 } 844 845 /** 846 * ufshcd_get_tr_ocs - Get the UTRD Overall Command Status 847 * @lrbp: pointer to local command reference block 848 * @cqe: pointer to the completion queue entry 849 * 850 * This function is used to get the OCS field from UTRD 851 * 852 * Return: the OCS field in the UTRD. 853 */ 854 static enum utp_ocs ufshcd_get_tr_ocs(struct ufshcd_lrb *lrbp, 855 struct cq_entry *cqe) 856 { 857 if (cqe) 858 return cqe->overall_status & MASK_OCS; 859 860 return lrbp->utr_descriptor_ptr->header.ocs & MASK_OCS; 861 } 862 863 /** 864 * ufshcd_utrl_clear() - Clear requests from the controller request list. 865 * @hba: per adapter instance 866 * @mask: mask with one bit set for each request to be cleared 867 */ 868 static inline void ufshcd_utrl_clear(struct ufs_hba *hba, u32 mask) 869 { 870 if (hba->quirks & UFSHCI_QUIRK_BROKEN_REQ_LIST_CLR) 871 mask = ~mask; 872 /* 873 * From the UFSHCI specification: "UTP Transfer Request List CLear 874 * Register (UTRLCLR): This field is bit significant. Each bit 875 * corresponds to a slot in the UTP Transfer Request List, where bit 0 876 * corresponds to request slot 0. A bit in this field is set to ‘0’ 877 * by host software to indicate to the host controller that a transfer 878 * request slot is cleared. The host controller 879 * shall free up any resources associated to the request slot 880 * immediately, and shall set the associated bit in UTRLDBR to ‘0’. The 881 * host software indicates no change to request slots by setting the 882 * associated bits in this field to ‘1’. Bits in this field shall only 883 * be set ‘1’ or ‘0’ by host software when UTRLRSR is set to ‘1’." 884 */ 885 ufshcd_writel(hba, ~mask, REG_UTP_TRANSFER_REQ_LIST_CLEAR); 886 } 887 888 /** 889 * ufshcd_utmrl_clear - Clear a bit in UTMRLCLR register 890 * @hba: per adapter instance 891 * @pos: position of the bit to be cleared 892 */ 893 static inline void ufshcd_utmrl_clear(struct ufs_hba *hba, u32 pos) 894 { 895 if (hba->quirks & UFSHCI_QUIRK_BROKEN_REQ_LIST_CLR) 896 ufshcd_writel(hba, (1 << pos), REG_UTP_TASK_REQ_LIST_CLEAR); 897 else 898 ufshcd_writel(hba, ~(1 << pos), REG_UTP_TASK_REQ_LIST_CLEAR); 899 } 900 901 /** 902 * ufshcd_get_lists_status - Check UCRDY, UTRLRDY and UTMRLRDY 903 * @reg: Register value of host controller status 904 * 905 * Return: 0 on success; a positive value if failed. 906 */ 907 static inline int ufshcd_get_lists_status(u32 reg) 908 { 909 return !((reg & UFSHCD_STATUS_READY) == UFSHCD_STATUS_READY); 910 } 911 912 /** 913 * ufshcd_get_uic_cmd_result - Get the UIC command result 914 * @hba: Pointer to adapter instance 915 * 916 * This function gets the result of UIC command completion 917 * 918 * Return: 0 on success; non-zero value on error. 919 */ 920 static inline int ufshcd_get_uic_cmd_result(struct ufs_hba *hba) 921 { 922 return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_2) & 923 MASK_UIC_COMMAND_RESULT; 924 } 925 926 /** 927 * ufshcd_get_dme_attr_val - Get the value of attribute returned by UIC command 928 * @hba: Pointer to adapter instance 929 * 930 * This function gets UIC command argument3 931 * 932 * Return: 0 on success; non-zero value on error. 933 */ 934 static inline u32 ufshcd_get_dme_attr_val(struct ufs_hba *hba) 935 { 936 return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_3); 937 } 938 939 /** 940 * ufshcd_get_req_rsp - returns the TR response transaction type 941 * @ucd_rsp_ptr: pointer to response UPIU 942 * 943 * Return: UPIU type. 944 */ 945 static inline enum upiu_response_transaction 946 ufshcd_get_req_rsp(struct utp_upiu_rsp *ucd_rsp_ptr) 947 { 948 return ucd_rsp_ptr->header.transaction_code; 949 } 950 951 /** 952 * ufshcd_is_exception_event - Check if the device raised an exception event 953 * @ucd_rsp_ptr: pointer to response UPIU 954 * 955 * The function checks if the device raised an exception event indicated in 956 * the Device Information field of response UPIU. 957 * 958 * Return: true if exception is raised, false otherwise. 959 */ 960 static inline bool ufshcd_is_exception_event(struct utp_upiu_rsp *ucd_rsp_ptr) 961 { 962 return ucd_rsp_ptr->header.device_information & 1; 963 } 964 965 /** 966 * ufshcd_reset_intr_aggr - Reset interrupt aggregation values. 967 * @hba: per adapter instance 968 */ 969 static inline void 970 ufshcd_reset_intr_aggr(struct ufs_hba *hba) 971 { 972 ufshcd_writel(hba, INT_AGGR_ENABLE | 973 INT_AGGR_COUNTER_AND_TIMER_RESET, 974 REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL); 975 } 976 977 /** 978 * ufshcd_config_intr_aggr - Configure interrupt aggregation values. 979 * @hba: per adapter instance 980 * @cnt: Interrupt aggregation counter threshold 981 * @tmout: Interrupt aggregation timeout value 982 */ 983 static inline void 984 ufshcd_config_intr_aggr(struct ufs_hba *hba, u8 cnt, u8 tmout) 985 { 986 ufshcd_writel(hba, INT_AGGR_ENABLE | INT_AGGR_PARAM_WRITE | 987 INT_AGGR_COUNTER_THLD_VAL(cnt) | 988 INT_AGGR_TIMEOUT_VAL(tmout), 989 REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL); 990 } 991 992 /** 993 * ufshcd_disable_intr_aggr - Disables interrupt aggregation. 994 * @hba: per adapter instance 995 */ 996 static inline void ufshcd_disable_intr_aggr(struct ufs_hba *hba) 997 { 998 ufshcd_writel(hba, 0, REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL); 999 } 1000 1001 /** 1002 * ufshcd_enable_run_stop_reg - Enable run-stop registers, 1003 * When run-stop registers are set to 1, it indicates the 1004 * host controller that it can process the requests 1005 * @hba: per adapter instance 1006 */ 1007 static void ufshcd_enable_run_stop_reg(struct ufs_hba *hba) 1008 { 1009 ufshcd_writel(hba, UTP_TASK_REQ_LIST_RUN_STOP_BIT, 1010 REG_UTP_TASK_REQ_LIST_RUN_STOP); 1011 ufshcd_writel(hba, UTP_TRANSFER_REQ_LIST_RUN_STOP_BIT, 1012 REG_UTP_TRANSFER_REQ_LIST_RUN_STOP); 1013 } 1014 1015 /** 1016 * ufshcd_hba_start - Start controller initialization sequence 1017 * @hba: per adapter instance 1018 */ 1019 static inline void ufshcd_hba_start(struct ufs_hba *hba) 1020 { 1021 u32 val = CONTROLLER_ENABLE; 1022 1023 if (ufshcd_crypto_enable(hba)) 1024 val |= CRYPTO_GENERAL_ENABLE; 1025 1026 ufshcd_writel(hba, val, REG_CONTROLLER_ENABLE); 1027 } 1028 1029 /** 1030 * ufshcd_is_hba_active - Get controller state 1031 * @hba: per adapter instance 1032 * 1033 * Return: true if and only if the controller is active. 1034 */ 1035 bool ufshcd_is_hba_active(struct ufs_hba *hba) 1036 { 1037 return ufshcd_readl(hba, REG_CONTROLLER_ENABLE) & CONTROLLER_ENABLE; 1038 } 1039 EXPORT_SYMBOL_GPL(ufshcd_is_hba_active); 1040 1041 /** 1042 * ufshcd_pm_qos_init - initialize PM QoS request 1043 * @hba: per adapter instance 1044 */ 1045 void ufshcd_pm_qos_init(struct ufs_hba *hba) 1046 { 1047 guard(mutex)(&hba->pm_qos_mutex); 1048 1049 if (hba->pm_qos_enabled) 1050 return; 1051 1052 cpu_latency_qos_add_request(&hba->pm_qos_req, PM_QOS_DEFAULT_VALUE); 1053 1054 if (cpu_latency_qos_request_active(&hba->pm_qos_req)) 1055 hba->pm_qos_enabled = true; 1056 } 1057 1058 /** 1059 * ufshcd_pm_qos_exit - remove request from PM QoS 1060 * @hba: per adapter instance 1061 */ 1062 void ufshcd_pm_qos_exit(struct ufs_hba *hba) 1063 { 1064 guard(mutex)(&hba->pm_qos_mutex); 1065 1066 if (!hba->pm_qos_enabled) 1067 return; 1068 1069 cpu_latency_qos_remove_request(&hba->pm_qos_req); 1070 hba->pm_qos_enabled = false; 1071 } 1072 1073 /** 1074 * ufshcd_pm_qos_update - update PM QoS request 1075 * @hba: per adapter instance 1076 * @on: If True, vote for perf PM QoS mode otherwise power save mode 1077 */ 1078 void ufshcd_pm_qos_update(struct ufs_hba *hba, bool on) 1079 { 1080 guard(mutex)(&hba->pm_qos_mutex); 1081 1082 if (!hba->pm_qos_enabled) 1083 return; 1084 1085 cpu_latency_qos_update_request(&hba->pm_qos_req, on ? 0 : PM_QOS_DEFAULT_VALUE); 1086 } 1087 EXPORT_SYMBOL_GPL(ufshcd_pm_qos_update); 1088 1089 /** 1090 * ufshcd_set_clk_freq - set UFS controller clock frequencies 1091 * @hba: per adapter instance 1092 * @scale_up: If True, set max possible frequency othewise set low frequency 1093 * 1094 * Return: 0 if successful; < 0 upon failure. 1095 */ 1096 static int ufshcd_set_clk_freq(struct ufs_hba *hba, bool scale_up) 1097 { 1098 int ret = 0; 1099 struct ufs_clk_info *clki; 1100 struct list_head *head = &hba->clk_list_head; 1101 1102 if (list_empty(head)) 1103 goto out; 1104 1105 list_for_each_entry(clki, head, list) { 1106 if (!IS_ERR_OR_NULL(clki->clk)) { 1107 if (scale_up && clki->max_freq) { 1108 if (clki->curr_freq == clki->max_freq) 1109 continue; 1110 1111 ret = clk_set_rate(clki->clk, clki->max_freq); 1112 if (ret) { 1113 dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n", 1114 __func__, clki->name, 1115 clki->max_freq, ret); 1116 break; 1117 } 1118 trace_ufshcd_clk_scaling(hba, 1119 "scaled up", clki->name, 1120 clki->curr_freq, 1121 clki->max_freq); 1122 1123 clki->curr_freq = clki->max_freq; 1124 1125 } else if (!scale_up && clki->min_freq) { 1126 if (clki->curr_freq == clki->min_freq) 1127 continue; 1128 1129 ret = clk_set_rate(clki->clk, clki->min_freq); 1130 if (ret) { 1131 dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n", 1132 __func__, clki->name, 1133 clki->min_freq, ret); 1134 break; 1135 } 1136 trace_ufshcd_clk_scaling(hba, 1137 "scaled down", clki->name, 1138 clki->curr_freq, 1139 clki->min_freq); 1140 clki->curr_freq = clki->min_freq; 1141 } 1142 } 1143 dev_dbg(hba->dev, "%s: clk: %s, rate: %lu\n", __func__, 1144 clki->name, clk_get_rate(clki->clk)); 1145 } 1146 1147 out: 1148 return ret; 1149 } 1150 1151 int ufshcd_opp_config_clks(struct device *dev, struct opp_table *opp_table, 1152 struct dev_pm_opp *opp, void *data, 1153 bool scaling_down) 1154 { 1155 struct ufs_hba *hba = dev_get_drvdata(dev); 1156 struct list_head *head = &hba->clk_list_head; 1157 struct ufs_clk_info *clki; 1158 unsigned long freq; 1159 u8 idx = 0; 1160 int ret; 1161 1162 list_for_each_entry(clki, head, list) { 1163 if (!IS_ERR_OR_NULL(clki->clk)) { 1164 freq = dev_pm_opp_get_freq_indexed(opp, idx++); 1165 1166 /* Do not set rate for clocks having frequency as 0 */ 1167 if (!freq) 1168 continue; 1169 1170 ret = clk_set_rate(clki->clk, freq); 1171 if (ret) { 1172 dev_err(dev, "%s: %s clk set rate(%ldHz) failed, %d\n", 1173 __func__, clki->name, freq, ret); 1174 return ret; 1175 } 1176 1177 trace_ufshcd_clk_scaling(hba, 1178 (scaling_down ? "scaled down" : "scaled up"), 1179 clki->name, hba->clk_scaling.target_freq, freq); 1180 } 1181 } 1182 1183 return 0; 1184 } 1185 EXPORT_SYMBOL_GPL(ufshcd_opp_config_clks); 1186 1187 static int ufshcd_opp_set_rate(struct ufs_hba *hba, unsigned long freq) 1188 { 1189 struct dev_pm_opp *opp; 1190 int ret; 1191 1192 opp = dev_pm_opp_find_freq_floor_indexed(hba->dev, 1193 &freq, 0); 1194 if (IS_ERR(opp)) 1195 return PTR_ERR(opp); 1196 1197 ret = dev_pm_opp_set_opp(hba->dev, opp); 1198 dev_pm_opp_put(opp); 1199 1200 return ret; 1201 } 1202 1203 /** 1204 * ufshcd_scale_clks - scale up or scale down UFS controller clocks 1205 * @hba: per adapter instance 1206 * @freq: frequency to scale 1207 * @scale_up: True if scaling up and false if scaling down 1208 * 1209 * Return: 0 if successful; < 0 upon failure. 1210 */ 1211 static int ufshcd_scale_clks(struct ufs_hba *hba, unsigned long freq, 1212 bool scale_up) 1213 { 1214 int ret = 0; 1215 ktime_t start = ktime_get(); 1216 1217 ret = ufshcd_vops_clk_scale_notify(hba, scale_up, freq, PRE_CHANGE); 1218 if (ret) 1219 goto out; 1220 1221 if (hba->use_pm_opp) 1222 ret = ufshcd_opp_set_rate(hba, freq); 1223 else 1224 ret = ufshcd_set_clk_freq(hba, scale_up); 1225 if (ret) 1226 goto out; 1227 1228 ret = ufshcd_vops_clk_scale_notify(hba, scale_up, freq, POST_CHANGE); 1229 if (ret) { 1230 if (hba->use_pm_opp) 1231 ufshcd_opp_set_rate(hba, 1232 hba->devfreq->previous_freq); 1233 else 1234 ufshcd_set_clk_freq(hba, !scale_up); 1235 goto out; 1236 } 1237 1238 ufshcd_pm_qos_update(hba, scale_up); 1239 1240 out: 1241 trace_ufshcd_profile_clk_scaling(hba, 1242 (scale_up ? "up" : "down"), 1243 ktime_to_us(ktime_sub(ktime_get(), start)), ret); 1244 return ret; 1245 } 1246 1247 /** 1248 * ufshcd_is_devfreq_scaling_required - check if scaling is required or not 1249 * @hba: per adapter instance 1250 * @freq: frequency to scale 1251 * @scale_up: True if scaling up and false if scaling down 1252 * 1253 * Return: true if scaling is required, false otherwise. 1254 */ 1255 static bool ufshcd_is_devfreq_scaling_required(struct ufs_hba *hba, 1256 unsigned long freq, bool scale_up) 1257 { 1258 struct ufs_clk_info *clki; 1259 struct list_head *head = &hba->clk_list_head; 1260 1261 if (list_empty(head)) 1262 return false; 1263 1264 if (hba->use_pm_opp) 1265 return freq != hba->clk_scaling.target_freq; 1266 1267 list_for_each_entry(clki, head, list) { 1268 if (!IS_ERR_OR_NULL(clki->clk)) { 1269 if (scale_up && clki->max_freq) { 1270 if (clki->curr_freq == clki->max_freq) 1271 continue; 1272 return true; 1273 } else if (!scale_up && clki->min_freq) { 1274 if (clki->curr_freq == clki->min_freq) 1275 continue; 1276 return true; 1277 } 1278 } 1279 } 1280 1281 return false; 1282 } 1283 1284 /* 1285 * Determine the number of pending commands by counting the bits in the SCSI 1286 * device budget maps. This approach has been selected because a bit is set in 1287 * the budget map before scsi_host_queue_ready() checks the host_self_blocked 1288 * flag. The host_self_blocked flag can be modified by calling 1289 * scsi_block_requests() or scsi_unblock_requests(). 1290 */ 1291 static u32 ufshcd_pending_cmds(struct ufs_hba *hba) 1292 { 1293 struct scsi_device *sdev; 1294 unsigned long flags; 1295 u32 pending = 0; 1296 1297 spin_lock_irqsave(hba->host->host_lock, flags); 1298 __shost_for_each_device(sdev, hba->host) 1299 pending += scsi_device_busy(sdev); 1300 spin_unlock_irqrestore(hba->host->host_lock, flags); 1301 1302 return pending; 1303 } 1304 1305 /* 1306 * Wait until all pending SCSI commands and TMFs have finished or the timeout 1307 * has expired. 1308 * 1309 * Return: 0 upon success; -EBUSY upon timeout. 1310 */ 1311 static int ufshcd_wait_for_pending_cmds(struct ufs_hba *hba, 1312 u64 wait_timeout_us) 1313 { 1314 int ret = 0; 1315 u32 tm_doorbell; 1316 u32 tr_pending; 1317 bool timeout = false, do_last_check = false; 1318 ktime_t start; 1319 1320 ufshcd_hold(hba); 1321 /* 1322 * Wait for all the outstanding tasks/transfer requests. 1323 * Verify by checking the doorbell registers are clear. 1324 */ 1325 start = ktime_get(); 1326 do { 1327 if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL) { 1328 ret = -EBUSY; 1329 goto out; 1330 } 1331 1332 tm_doorbell = ufshcd_readl(hba, REG_UTP_TASK_REQ_DOOR_BELL); 1333 tr_pending = ufshcd_pending_cmds(hba); 1334 if (!tm_doorbell && !tr_pending) { 1335 timeout = false; 1336 break; 1337 } else if (do_last_check) { 1338 break; 1339 } 1340 1341 io_schedule_timeout(msecs_to_jiffies(20)); 1342 if (ktime_to_us(ktime_sub(ktime_get(), start)) > 1343 wait_timeout_us) { 1344 timeout = true; 1345 /* 1346 * We might have scheduled out for long time so make 1347 * sure to check if doorbells are cleared by this time 1348 * or not. 1349 */ 1350 do_last_check = true; 1351 } 1352 } while (tm_doorbell || tr_pending); 1353 1354 if (timeout) { 1355 dev_err(hba->dev, 1356 "%s: timedout waiting for doorbell to clear (tm=0x%x, tr=0x%x)\n", 1357 __func__, tm_doorbell, tr_pending); 1358 ret = -EBUSY; 1359 } 1360 out: 1361 ufshcd_release(hba); 1362 return ret; 1363 } 1364 1365 /** 1366 * ufshcd_scale_gear - scale up/down UFS gear 1367 * @hba: per adapter instance 1368 * @target_gear: target gear to scale to 1369 * @scale_up: True for scaling up gear and false for scaling down 1370 * 1371 * Return: 0 for success; -EBUSY if scaling can't happen at this time; 1372 * non-zero for any other errors. 1373 */ 1374 static int ufshcd_scale_gear(struct ufs_hba *hba, u32 target_gear, bool scale_up) 1375 { 1376 int ret = 0; 1377 struct ufs_pa_layer_attr new_pwr_info; 1378 1379 if (target_gear) { 1380 new_pwr_info = hba->pwr_info; 1381 new_pwr_info.gear_tx = target_gear; 1382 new_pwr_info.gear_rx = target_gear; 1383 1384 goto config_pwr_mode; 1385 } 1386 1387 /* Legacy gear scaling, in case vops_freq_to_gear_speed() is not implemented */ 1388 if (scale_up) { 1389 memcpy(&new_pwr_info, &hba->clk_scaling.saved_pwr_info, 1390 sizeof(struct ufs_pa_layer_attr)); 1391 } else { 1392 memcpy(&new_pwr_info, &hba->pwr_info, 1393 sizeof(struct ufs_pa_layer_attr)); 1394 1395 if (hba->pwr_info.gear_tx > hba->clk_scaling.min_gear || 1396 hba->pwr_info.gear_rx > hba->clk_scaling.min_gear) { 1397 /* save the current power mode */ 1398 memcpy(&hba->clk_scaling.saved_pwr_info, 1399 &hba->pwr_info, 1400 sizeof(struct ufs_pa_layer_attr)); 1401 1402 /* scale down gear */ 1403 new_pwr_info.gear_tx = hba->clk_scaling.min_gear; 1404 new_pwr_info.gear_rx = hba->clk_scaling.min_gear; 1405 } 1406 } 1407 1408 config_pwr_mode: 1409 /* check if the power mode needs to be changed or not? */ 1410 ret = ufshcd_config_pwr_mode(hba, &new_pwr_info); 1411 if (ret) 1412 dev_err(hba->dev, "%s: failed err %d, old gear: (tx %d rx %d), new gear: (tx %d rx %d)", 1413 __func__, ret, 1414 hba->pwr_info.gear_tx, hba->pwr_info.gear_rx, 1415 new_pwr_info.gear_tx, new_pwr_info.gear_rx); 1416 1417 return ret; 1418 } 1419 1420 /* 1421 * Wait until all pending SCSI commands and TMFs have finished or the timeout 1422 * has expired. 1423 * 1424 * Return: 0 upon success; -EBUSY upon timeout. 1425 */ 1426 static int ufshcd_clock_scaling_prepare(struct ufs_hba *hba, u64 timeout_us) 1427 { 1428 int ret = 0; 1429 /* 1430 * make sure that there are no outstanding requests when 1431 * clock scaling is in progress 1432 */ 1433 mutex_lock(&hba->host->scan_mutex); 1434 blk_mq_quiesce_tagset(&hba->host->tag_set); 1435 mutex_lock(&hba->wb_mutex); 1436 down_write(&hba->clk_scaling_lock); 1437 1438 if (!hba->clk_scaling.is_allowed || 1439 ufshcd_wait_for_pending_cmds(hba, timeout_us)) { 1440 ret = -EBUSY; 1441 up_write(&hba->clk_scaling_lock); 1442 mutex_unlock(&hba->wb_mutex); 1443 blk_mq_unquiesce_tagset(&hba->host->tag_set); 1444 mutex_unlock(&hba->host->scan_mutex); 1445 goto out; 1446 } 1447 1448 /* let's not get into low power until clock scaling is completed */ 1449 ufshcd_hold(hba); 1450 1451 out: 1452 return ret; 1453 } 1454 1455 static void ufshcd_clock_scaling_unprepare(struct ufs_hba *hba, int err) 1456 { 1457 up_write(&hba->clk_scaling_lock); 1458 1459 /* Enable Write Booster if current gear requires it else disable it */ 1460 if (ufshcd_enable_wb_if_scaling_up(hba) && !err) 1461 ufshcd_wb_toggle(hba, hba->pwr_info.gear_rx >= hba->clk_scaling.wb_gear); 1462 1463 mutex_unlock(&hba->wb_mutex); 1464 1465 blk_mq_unquiesce_tagset(&hba->host->tag_set); 1466 mutex_unlock(&hba->host->scan_mutex); 1467 ufshcd_release(hba); 1468 } 1469 1470 /** 1471 * ufshcd_devfreq_scale - scale up/down UFS clocks and gear 1472 * @hba: per adapter instance 1473 * @freq: frequency to scale 1474 * @scale_up: True for scaling up and false for scalin down 1475 * 1476 * Return: 0 for success; -EBUSY if scaling can't happen at this time; non-zero 1477 * for any other errors. 1478 */ 1479 static int ufshcd_devfreq_scale(struct ufs_hba *hba, unsigned long freq, 1480 bool scale_up) 1481 { 1482 u32 old_gear = hba->pwr_info.gear_rx; 1483 u32 new_gear = 0; 1484 int ret = 0; 1485 1486 new_gear = ufshcd_vops_freq_to_gear_speed(hba, freq); 1487 1488 ret = ufshcd_clock_scaling_prepare(hba, 1 * USEC_PER_SEC); 1489 if (ret) 1490 return ret; 1491 1492 /* scale down the gear before scaling down clocks */ 1493 if (!scale_up) { 1494 ret = ufshcd_scale_gear(hba, new_gear, false); 1495 if (ret) 1496 goto out_unprepare; 1497 } 1498 1499 ret = ufshcd_scale_clks(hba, freq, scale_up); 1500 if (ret) { 1501 if (!scale_up) 1502 ufshcd_scale_gear(hba, old_gear, true); 1503 goto out_unprepare; 1504 } 1505 1506 /* scale up the gear after scaling up clocks */ 1507 if (scale_up) { 1508 ret = ufshcd_scale_gear(hba, new_gear, true); 1509 if (ret) { 1510 ufshcd_scale_clks(hba, hba->devfreq->previous_freq, 1511 false); 1512 goto out_unprepare; 1513 } 1514 } 1515 1516 out_unprepare: 1517 ufshcd_clock_scaling_unprepare(hba, ret); 1518 return ret; 1519 } 1520 1521 static void ufshcd_clk_scaling_suspend_work(struct work_struct *work) 1522 { 1523 struct ufs_hba *hba = container_of(work, struct ufs_hba, 1524 clk_scaling.suspend_work); 1525 1526 scoped_guard(spinlock_irqsave, &hba->clk_scaling.lock) 1527 { 1528 if (hba->clk_scaling.active_reqs || 1529 hba->clk_scaling.is_suspended) 1530 return; 1531 1532 hba->clk_scaling.is_suspended = true; 1533 hba->clk_scaling.window_start_t = 0; 1534 } 1535 1536 devfreq_suspend_device(hba->devfreq); 1537 } 1538 1539 static void ufshcd_clk_scaling_resume_work(struct work_struct *work) 1540 { 1541 struct ufs_hba *hba = container_of(work, struct ufs_hba, 1542 clk_scaling.resume_work); 1543 1544 scoped_guard(spinlock_irqsave, &hba->clk_scaling.lock) 1545 { 1546 if (!hba->clk_scaling.is_suspended) 1547 return; 1548 hba->clk_scaling.is_suspended = false; 1549 } 1550 1551 devfreq_resume_device(hba->devfreq); 1552 } 1553 1554 static int ufshcd_devfreq_target(struct device *dev, 1555 unsigned long *freq, u32 flags) 1556 { 1557 int ret = 0; 1558 struct ufs_hba *hba = dev_get_drvdata(dev); 1559 ktime_t start; 1560 bool scale_up = false, sched_clk_scaling_suspend_work = false; 1561 struct list_head *clk_list = &hba->clk_list_head; 1562 struct ufs_clk_info *clki; 1563 1564 if (!ufshcd_is_clkscaling_supported(hba)) 1565 return -EINVAL; 1566 1567 if (hba->use_pm_opp) { 1568 struct dev_pm_opp *opp; 1569 1570 /* Get the recommended frequency from OPP framework */ 1571 opp = devfreq_recommended_opp(dev, freq, flags); 1572 if (IS_ERR(opp)) 1573 return PTR_ERR(opp); 1574 1575 dev_pm_opp_put(opp); 1576 } else { 1577 /* Override with the closest supported frequency */ 1578 clki = list_first_entry(&hba->clk_list_head, struct ufs_clk_info, 1579 list); 1580 *freq = (unsigned long) clk_round_rate(clki->clk, *freq); 1581 } 1582 1583 scoped_guard(spinlock_irqsave, &hba->clk_scaling.lock) 1584 { 1585 if (ufshcd_eh_in_progress(hba)) 1586 return 0; 1587 1588 /* Skip scaling clock when clock scaling is suspended */ 1589 if (hba->clk_scaling.is_suspended) { 1590 dev_warn(hba->dev, "clock scaling is suspended, skip"); 1591 return 0; 1592 } 1593 1594 if (!hba->clk_scaling.active_reqs) 1595 sched_clk_scaling_suspend_work = true; 1596 1597 if (list_empty(clk_list)) 1598 goto out; 1599 1600 /* Decide based on the target or rounded-off frequency and update */ 1601 if (hba->use_pm_opp) 1602 scale_up = *freq > hba->clk_scaling.target_freq; 1603 else 1604 scale_up = *freq == clki->max_freq; 1605 1606 if (!hba->use_pm_opp && !scale_up) 1607 *freq = clki->min_freq; 1608 1609 /* Update the frequency */ 1610 if (!ufshcd_is_devfreq_scaling_required(hba, *freq, scale_up)) { 1611 ret = 0; 1612 goto out; /* no state change required */ 1613 } 1614 } 1615 1616 start = ktime_get(); 1617 ret = ufshcd_devfreq_scale(hba, *freq, scale_up); 1618 if (!ret) 1619 hba->clk_scaling.target_freq = *freq; 1620 1621 trace_ufshcd_profile_clk_scaling(hba, 1622 (scale_up ? "up" : "down"), 1623 ktime_to_us(ktime_sub(ktime_get(), start)), ret); 1624 1625 out: 1626 if (sched_clk_scaling_suspend_work && 1627 (!scale_up || hba->clk_scaling.suspend_on_no_request)) 1628 queue_work(hba->clk_scaling.workq, 1629 &hba->clk_scaling.suspend_work); 1630 1631 return ret; 1632 } 1633 1634 static int ufshcd_devfreq_get_dev_status(struct device *dev, 1635 struct devfreq_dev_status *stat) 1636 { 1637 struct ufs_hba *hba = dev_get_drvdata(dev); 1638 struct ufs_clk_scaling *scaling = &hba->clk_scaling; 1639 ktime_t curr_t; 1640 1641 if (!ufshcd_is_clkscaling_supported(hba)) 1642 return -EINVAL; 1643 1644 memset(stat, 0, sizeof(*stat)); 1645 1646 guard(spinlock_irqsave)(&hba->clk_scaling.lock); 1647 1648 curr_t = ktime_get(); 1649 if (!scaling->window_start_t) 1650 goto start_window; 1651 1652 /* 1653 * If current frequency is 0, then the ondemand governor considers 1654 * there's no initial frequency set. And it always requests to set 1655 * to max. frequency. 1656 */ 1657 if (hba->use_pm_opp) { 1658 stat->current_frequency = hba->clk_scaling.target_freq; 1659 } else { 1660 struct list_head *clk_list = &hba->clk_list_head; 1661 struct ufs_clk_info *clki; 1662 1663 clki = list_first_entry(clk_list, struct ufs_clk_info, list); 1664 stat->current_frequency = clki->curr_freq; 1665 } 1666 1667 if (scaling->is_busy_started) 1668 scaling->tot_busy_t += ktime_us_delta(curr_t, 1669 scaling->busy_start_t); 1670 stat->total_time = ktime_us_delta(curr_t, scaling->window_start_t); 1671 stat->busy_time = scaling->tot_busy_t; 1672 start_window: 1673 scaling->window_start_t = curr_t; 1674 scaling->tot_busy_t = 0; 1675 1676 if (scaling->active_reqs) { 1677 scaling->busy_start_t = curr_t; 1678 scaling->is_busy_started = true; 1679 } else { 1680 scaling->busy_start_t = 0; 1681 scaling->is_busy_started = false; 1682 } 1683 1684 return 0; 1685 } 1686 1687 static int ufshcd_devfreq_init(struct ufs_hba *hba) 1688 { 1689 struct list_head *clk_list = &hba->clk_list_head; 1690 struct ufs_clk_info *clki; 1691 struct devfreq *devfreq; 1692 int ret; 1693 1694 /* Skip devfreq if we don't have any clocks in the list */ 1695 if (list_empty(clk_list)) 1696 return 0; 1697 1698 if (!hba->use_pm_opp) { 1699 clki = list_first_entry(clk_list, struct ufs_clk_info, list); 1700 dev_pm_opp_add(hba->dev, clki->min_freq, 0); 1701 dev_pm_opp_add(hba->dev, clki->max_freq, 0); 1702 } 1703 1704 ufshcd_vops_config_scaling_param(hba, &hba->vps->devfreq_profile, 1705 &hba->vps->ondemand_data); 1706 devfreq = devfreq_add_device(hba->dev, 1707 &hba->vps->devfreq_profile, 1708 DEVFREQ_GOV_SIMPLE_ONDEMAND, 1709 &hba->vps->ondemand_data); 1710 if (IS_ERR(devfreq)) { 1711 ret = PTR_ERR(devfreq); 1712 dev_err(hba->dev, "Unable to register with devfreq %d\n", ret); 1713 1714 if (!hba->use_pm_opp) { 1715 dev_pm_opp_remove(hba->dev, clki->min_freq); 1716 dev_pm_opp_remove(hba->dev, clki->max_freq); 1717 } 1718 return ret; 1719 } 1720 1721 hba->devfreq = devfreq; 1722 1723 return 0; 1724 } 1725 1726 static void ufshcd_devfreq_remove(struct ufs_hba *hba) 1727 { 1728 struct list_head *clk_list = &hba->clk_list_head; 1729 1730 if (!hba->devfreq) 1731 return; 1732 1733 devfreq_remove_device(hba->devfreq); 1734 hba->devfreq = NULL; 1735 1736 if (!hba->use_pm_opp) { 1737 struct ufs_clk_info *clki; 1738 1739 clki = list_first_entry(clk_list, struct ufs_clk_info, list); 1740 dev_pm_opp_remove(hba->dev, clki->min_freq); 1741 dev_pm_opp_remove(hba->dev, clki->max_freq); 1742 } 1743 } 1744 1745 static void ufshcd_suspend_clkscaling(struct ufs_hba *hba) 1746 { 1747 bool suspend = false; 1748 1749 cancel_work_sync(&hba->clk_scaling.suspend_work); 1750 cancel_work_sync(&hba->clk_scaling.resume_work); 1751 1752 scoped_guard(spinlock_irqsave, &hba->clk_scaling.lock) 1753 { 1754 if (!hba->clk_scaling.is_suspended) { 1755 suspend = true; 1756 hba->clk_scaling.is_suspended = true; 1757 hba->clk_scaling.window_start_t = 0; 1758 } 1759 } 1760 1761 if (suspend) 1762 devfreq_suspend_device(hba->devfreq); 1763 } 1764 1765 static void ufshcd_resume_clkscaling(struct ufs_hba *hba) 1766 { 1767 bool resume = false; 1768 1769 scoped_guard(spinlock_irqsave, &hba->clk_scaling.lock) 1770 { 1771 if (hba->clk_scaling.is_suspended) { 1772 resume = true; 1773 hba->clk_scaling.is_suspended = false; 1774 } 1775 } 1776 1777 if (resume) 1778 devfreq_resume_device(hba->devfreq); 1779 } 1780 1781 static ssize_t ufshcd_clkscale_enable_show(struct device *dev, 1782 struct device_attribute *attr, char *buf) 1783 { 1784 struct ufs_hba *hba = dev_get_drvdata(dev); 1785 1786 return sysfs_emit(buf, "%d\n", hba->clk_scaling.is_enabled); 1787 } 1788 1789 static ssize_t ufshcd_clkscale_enable_store(struct device *dev, 1790 struct device_attribute *attr, const char *buf, size_t count) 1791 { 1792 struct ufs_hba *hba = dev_get_drvdata(dev); 1793 struct ufs_clk_info *clki; 1794 unsigned long freq; 1795 u32 value; 1796 int err = 0; 1797 1798 if (kstrtou32(buf, 0, &value)) 1799 return -EINVAL; 1800 1801 down(&hba->host_sem); 1802 if (!ufshcd_is_user_access_allowed(hba)) { 1803 err = -EBUSY; 1804 goto out; 1805 } 1806 1807 value = !!value; 1808 if (value == hba->clk_scaling.is_enabled) 1809 goto out; 1810 1811 ufshcd_rpm_get_sync(hba); 1812 ufshcd_hold(hba); 1813 1814 hba->clk_scaling.is_enabled = value; 1815 1816 if (value) { 1817 ufshcd_resume_clkscaling(hba); 1818 goto out_rel; 1819 } 1820 1821 clki = list_first_entry(&hba->clk_list_head, struct ufs_clk_info, list); 1822 freq = clki->max_freq; 1823 1824 ufshcd_suspend_clkscaling(hba); 1825 1826 if (!ufshcd_is_devfreq_scaling_required(hba, freq, true)) 1827 goto out_rel; 1828 1829 err = ufshcd_devfreq_scale(hba, freq, true); 1830 if (err) 1831 dev_err(hba->dev, "%s: failed to scale clocks up %d\n", 1832 __func__, err); 1833 else 1834 hba->clk_scaling.target_freq = freq; 1835 1836 out_rel: 1837 ufshcd_release(hba); 1838 ufshcd_rpm_put_sync(hba); 1839 out: 1840 up(&hba->host_sem); 1841 return err ? err : count; 1842 } 1843 1844 static void ufshcd_init_clk_scaling_sysfs(struct ufs_hba *hba) 1845 { 1846 hba->clk_scaling.enable_attr.show = ufshcd_clkscale_enable_show; 1847 hba->clk_scaling.enable_attr.store = ufshcd_clkscale_enable_store; 1848 sysfs_attr_init(&hba->clk_scaling.enable_attr.attr); 1849 hba->clk_scaling.enable_attr.attr.name = "clkscale_enable"; 1850 hba->clk_scaling.enable_attr.attr.mode = 0644; 1851 if (device_create_file(hba->dev, &hba->clk_scaling.enable_attr)) 1852 dev_err(hba->dev, "Failed to create sysfs for clkscale_enable\n"); 1853 } 1854 1855 static void ufshcd_remove_clk_scaling_sysfs(struct ufs_hba *hba) 1856 { 1857 if (hba->clk_scaling.enable_attr.attr.name) 1858 device_remove_file(hba->dev, &hba->clk_scaling.enable_attr); 1859 } 1860 1861 static void ufshcd_init_clk_scaling(struct ufs_hba *hba) 1862 { 1863 if (!ufshcd_is_clkscaling_supported(hba)) 1864 return; 1865 1866 if (!hba->clk_scaling.min_gear) 1867 hba->clk_scaling.min_gear = UFS_HS_G1; 1868 1869 if (!hba->clk_scaling.wb_gear) 1870 /* Use intermediate gear speed HS_G3 as the default wb_gear */ 1871 hba->clk_scaling.wb_gear = UFS_HS_G3; 1872 1873 INIT_WORK(&hba->clk_scaling.suspend_work, 1874 ufshcd_clk_scaling_suspend_work); 1875 INIT_WORK(&hba->clk_scaling.resume_work, 1876 ufshcd_clk_scaling_resume_work); 1877 1878 spin_lock_init(&hba->clk_scaling.lock); 1879 1880 hba->clk_scaling.workq = alloc_ordered_workqueue( 1881 "ufs_clkscaling_%d", WQ_MEM_RECLAIM, hba->host->host_no); 1882 1883 hba->clk_scaling.is_initialized = true; 1884 } 1885 1886 static void ufshcd_exit_clk_scaling(struct ufs_hba *hba) 1887 { 1888 if (!hba->clk_scaling.is_initialized) 1889 return; 1890 1891 ufshcd_remove_clk_scaling_sysfs(hba); 1892 destroy_workqueue(hba->clk_scaling.workq); 1893 ufshcd_devfreq_remove(hba); 1894 hba->clk_scaling.is_initialized = false; 1895 } 1896 1897 static void ufshcd_ungate_work(struct work_struct *work) 1898 { 1899 int ret; 1900 struct ufs_hba *hba = container_of(work, struct ufs_hba, 1901 clk_gating.ungate_work); 1902 1903 cancel_delayed_work_sync(&hba->clk_gating.gate_work); 1904 1905 scoped_guard(spinlock_irqsave, &hba->clk_gating.lock) { 1906 if (hba->clk_gating.state == CLKS_ON) 1907 return; 1908 } 1909 1910 ufshcd_hba_vreg_set_hpm(hba); 1911 ufshcd_setup_clocks(hba, true); 1912 1913 ufshcd_enable_irq(hba); 1914 1915 /* Exit from hibern8 */ 1916 if (ufshcd_can_hibern8_during_gating(hba)) { 1917 /* Prevent gating in this path */ 1918 hba->clk_gating.is_suspended = true; 1919 if (ufshcd_is_link_hibern8(hba)) { 1920 ret = ufshcd_uic_hibern8_exit(hba); 1921 if (ret) 1922 dev_err(hba->dev, "%s: hibern8 exit failed %d\n", 1923 __func__, ret); 1924 else 1925 ufshcd_set_link_active(hba); 1926 } 1927 hba->clk_gating.is_suspended = false; 1928 } 1929 } 1930 1931 /** 1932 * ufshcd_hold - Enable clocks that were gated earlier due to ufshcd_release. 1933 * Also, exit from hibern8 mode and set the link as active. 1934 * @hba: per adapter instance 1935 */ 1936 void ufshcd_hold(struct ufs_hba *hba) 1937 { 1938 bool flush_result; 1939 unsigned long flags; 1940 1941 if (!ufshcd_is_clkgating_allowed(hba) || 1942 !hba->clk_gating.is_initialized) 1943 return; 1944 spin_lock_irqsave(&hba->clk_gating.lock, flags); 1945 hba->clk_gating.active_reqs++; 1946 1947 start: 1948 switch (hba->clk_gating.state) { 1949 case CLKS_ON: 1950 /* 1951 * Wait for the ungate work to complete if in progress. 1952 * Though the clocks may be in ON state, the link could 1953 * still be in hibner8 state if hibern8 is allowed 1954 * during clock gating. 1955 * Make sure we exit hibern8 state also in addition to 1956 * clocks being ON. 1957 */ 1958 if (ufshcd_can_hibern8_during_gating(hba) && 1959 ufshcd_is_link_hibern8(hba)) { 1960 spin_unlock_irqrestore(&hba->clk_gating.lock, flags); 1961 flush_result = flush_work(&hba->clk_gating.ungate_work); 1962 if (hba->clk_gating.is_suspended && !flush_result) 1963 return; 1964 spin_lock_irqsave(&hba->clk_gating.lock, flags); 1965 goto start; 1966 } 1967 break; 1968 case REQ_CLKS_OFF: 1969 if (cancel_delayed_work(&hba->clk_gating.gate_work)) { 1970 hba->clk_gating.state = CLKS_ON; 1971 trace_ufshcd_clk_gating(hba, 1972 hba->clk_gating.state); 1973 break; 1974 } 1975 /* 1976 * If we are here, it means gating work is either done or 1977 * currently running. Hence, fall through to cancel gating 1978 * work and to enable clocks. 1979 */ 1980 fallthrough; 1981 case CLKS_OFF: 1982 hba->clk_gating.state = REQ_CLKS_ON; 1983 trace_ufshcd_clk_gating(hba, 1984 hba->clk_gating.state); 1985 queue_work(hba->clk_gating.clk_gating_workq, 1986 &hba->clk_gating.ungate_work); 1987 /* 1988 * fall through to check if we should wait for this 1989 * work to be done or not. 1990 */ 1991 fallthrough; 1992 case REQ_CLKS_ON: 1993 spin_unlock_irqrestore(&hba->clk_gating.lock, flags); 1994 flush_work(&hba->clk_gating.ungate_work); 1995 /* Make sure state is CLKS_ON before returning */ 1996 spin_lock_irqsave(&hba->clk_gating.lock, flags); 1997 goto start; 1998 default: 1999 dev_err(hba->dev, "%s: clk gating is in invalid state %d\n", 2000 __func__, hba->clk_gating.state); 2001 break; 2002 } 2003 spin_unlock_irqrestore(&hba->clk_gating.lock, flags); 2004 } 2005 EXPORT_SYMBOL_GPL(ufshcd_hold); 2006 2007 static void ufshcd_gate_work(struct work_struct *work) 2008 { 2009 struct ufs_hba *hba = container_of(work, struct ufs_hba, 2010 clk_gating.gate_work.work); 2011 int ret; 2012 2013 scoped_guard(spinlock_irqsave, &hba->clk_gating.lock) { 2014 /* 2015 * In case you are here to cancel this work the gating state 2016 * would be marked as REQ_CLKS_ON. In this case save time by 2017 * skipping the gating work and exit after changing the clock 2018 * state to CLKS_ON. 2019 */ 2020 if (hba->clk_gating.is_suspended || 2021 hba->clk_gating.state != REQ_CLKS_OFF) { 2022 hba->clk_gating.state = CLKS_ON; 2023 trace_ufshcd_clk_gating(hba, 2024 hba->clk_gating.state); 2025 return; 2026 } 2027 2028 if (hba->clk_gating.active_reqs) 2029 return; 2030 } 2031 2032 scoped_guard(spinlock_irqsave, hba->host->host_lock) { 2033 if (ufshcd_is_ufs_dev_busy(hba) || 2034 hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL) 2035 return; 2036 } 2037 2038 /* put the link into hibern8 mode before turning off clocks */ 2039 if (ufshcd_can_hibern8_during_gating(hba)) { 2040 ret = ufshcd_uic_hibern8_enter(hba); 2041 if (ret) { 2042 hba->clk_gating.state = CLKS_ON; 2043 dev_err(hba->dev, "%s: hibern8 enter failed %d\n", 2044 __func__, ret); 2045 trace_ufshcd_clk_gating(hba, 2046 hba->clk_gating.state); 2047 return; 2048 } 2049 ufshcd_set_link_hibern8(hba); 2050 } 2051 2052 ufshcd_disable_irq(hba); 2053 2054 ufshcd_setup_clocks(hba, false); 2055 2056 /* Put the host controller in low power mode if possible */ 2057 ufshcd_hba_vreg_set_lpm(hba); 2058 /* 2059 * In case you are here to cancel this work the gating state 2060 * would be marked as REQ_CLKS_ON. In this case keep the state 2061 * as REQ_CLKS_ON which would anyway imply that clocks are off 2062 * and a request to turn them on is pending. By doing this way, 2063 * we keep the state machine in tact and this would ultimately 2064 * prevent from doing cancel work multiple times when there are 2065 * new requests arriving before the current cancel work is done. 2066 */ 2067 guard(spinlock_irqsave)(&hba->clk_gating.lock); 2068 if (hba->clk_gating.state == REQ_CLKS_OFF) { 2069 hba->clk_gating.state = CLKS_OFF; 2070 trace_ufshcd_clk_gating(hba, 2071 hba->clk_gating.state); 2072 } 2073 } 2074 2075 static void __ufshcd_release(struct ufs_hba *hba) 2076 { 2077 lockdep_assert_held(&hba->clk_gating.lock); 2078 2079 if (!ufshcd_is_clkgating_allowed(hba)) 2080 return; 2081 2082 hba->clk_gating.active_reqs--; 2083 2084 if (hba->clk_gating.active_reqs || hba->clk_gating.is_suspended || 2085 !hba->clk_gating.is_initialized || 2086 hba->clk_gating.state == CLKS_OFF) 2087 return; 2088 2089 scoped_guard(spinlock_irqsave, hba->host->host_lock) { 2090 if (ufshcd_has_pending_tasks(hba) || 2091 hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL) 2092 return; 2093 } 2094 2095 hba->clk_gating.state = REQ_CLKS_OFF; 2096 trace_ufshcd_clk_gating(hba, hba->clk_gating.state); 2097 queue_delayed_work(hba->clk_gating.clk_gating_workq, 2098 &hba->clk_gating.gate_work, 2099 msecs_to_jiffies(hba->clk_gating.delay_ms)); 2100 } 2101 2102 void ufshcd_release(struct ufs_hba *hba) 2103 { 2104 guard(spinlock_irqsave)(&hba->clk_gating.lock); 2105 __ufshcd_release(hba); 2106 } 2107 EXPORT_SYMBOL_GPL(ufshcd_release); 2108 2109 static ssize_t ufshcd_clkgate_delay_show(struct device *dev, 2110 struct device_attribute *attr, char *buf) 2111 { 2112 struct ufs_hba *hba = dev_get_drvdata(dev); 2113 2114 return sysfs_emit(buf, "%lu\n", hba->clk_gating.delay_ms); 2115 } 2116 2117 void ufshcd_clkgate_delay_set(struct device *dev, unsigned long value) 2118 { 2119 struct ufs_hba *hba = dev_get_drvdata(dev); 2120 2121 guard(spinlock_irqsave)(&hba->clk_gating.lock); 2122 hba->clk_gating.delay_ms = value; 2123 } 2124 EXPORT_SYMBOL_GPL(ufshcd_clkgate_delay_set); 2125 2126 static ssize_t ufshcd_clkgate_delay_store(struct device *dev, 2127 struct device_attribute *attr, const char *buf, size_t count) 2128 { 2129 unsigned long value; 2130 2131 if (kstrtoul(buf, 0, &value)) 2132 return -EINVAL; 2133 2134 ufshcd_clkgate_delay_set(dev, value); 2135 return count; 2136 } 2137 2138 static ssize_t ufshcd_clkgate_enable_show(struct device *dev, 2139 struct device_attribute *attr, char *buf) 2140 { 2141 struct ufs_hba *hba = dev_get_drvdata(dev); 2142 2143 return sysfs_emit(buf, "%d\n", hba->clk_gating.is_enabled); 2144 } 2145 2146 static ssize_t ufshcd_clkgate_enable_store(struct device *dev, 2147 struct device_attribute *attr, const char *buf, size_t count) 2148 { 2149 struct ufs_hba *hba = dev_get_drvdata(dev); 2150 u32 value; 2151 2152 if (kstrtou32(buf, 0, &value)) 2153 return -EINVAL; 2154 2155 value = !!value; 2156 2157 guard(spinlock_irqsave)(&hba->clk_gating.lock); 2158 2159 if (value == hba->clk_gating.is_enabled) 2160 return count; 2161 2162 if (value) 2163 __ufshcd_release(hba); 2164 else 2165 hba->clk_gating.active_reqs++; 2166 2167 hba->clk_gating.is_enabled = value; 2168 2169 return count; 2170 } 2171 2172 static void ufshcd_init_clk_gating_sysfs(struct ufs_hba *hba) 2173 { 2174 hba->clk_gating.delay_attr.show = ufshcd_clkgate_delay_show; 2175 hba->clk_gating.delay_attr.store = ufshcd_clkgate_delay_store; 2176 sysfs_attr_init(&hba->clk_gating.delay_attr.attr); 2177 hba->clk_gating.delay_attr.attr.name = "clkgate_delay_ms"; 2178 hba->clk_gating.delay_attr.attr.mode = 0644; 2179 if (device_create_file(hba->dev, &hba->clk_gating.delay_attr)) 2180 dev_err(hba->dev, "Failed to create sysfs for clkgate_delay\n"); 2181 2182 hba->clk_gating.enable_attr.show = ufshcd_clkgate_enable_show; 2183 hba->clk_gating.enable_attr.store = ufshcd_clkgate_enable_store; 2184 sysfs_attr_init(&hba->clk_gating.enable_attr.attr); 2185 hba->clk_gating.enable_attr.attr.name = "clkgate_enable"; 2186 hba->clk_gating.enable_attr.attr.mode = 0644; 2187 if (device_create_file(hba->dev, &hba->clk_gating.enable_attr)) 2188 dev_err(hba->dev, "Failed to create sysfs for clkgate_enable\n"); 2189 } 2190 2191 static void ufshcd_remove_clk_gating_sysfs(struct ufs_hba *hba) 2192 { 2193 if (hba->clk_gating.delay_attr.attr.name) 2194 device_remove_file(hba->dev, &hba->clk_gating.delay_attr); 2195 if (hba->clk_gating.enable_attr.attr.name) 2196 device_remove_file(hba->dev, &hba->clk_gating.enable_attr); 2197 } 2198 2199 static void ufshcd_init_clk_gating(struct ufs_hba *hba) 2200 { 2201 if (!ufshcd_is_clkgating_allowed(hba)) 2202 return; 2203 2204 hba->clk_gating.state = CLKS_ON; 2205 2206 hba->clk_gating.delay_ms = 150; 2207 INIT_DELAYED_WORK(&hba->clk_gating.gate_work, ufshcd_gate_work); 2208 INIT_WORK(&hba->clk_gating.ungate_work, ufshcd_ungate_work); 2209 2210 hba->clk_gating.clk_gating_workq = alloc_ordered_workqueue( 2211 "ufs_clk_gating_%d", WQ_MEM_RECLAIM | WQ_HIGHPRI, 2212 hba->host->host_no); 2213 2214 ufshcd_init_clk_gating_sysfs(hba); 2215 2216 hba->clk_gating.is_enabled = true; 2217 hba->clk_gating.is_initialized = true; 2218 } 2219 2220 static void ufshcd_exit_clk_gating(struct ufs_hba *hba) 2221 { 2222 if (!hba->clk_gating.is_initialized) 2223 return; 2224 2225 ufshcd_remove_clk_gating_sysfs(hba); 2226 2227 /* Ungate the clock if necessary. */ 2228 ufshcd_hold(hba); 2229 hba->clk_gating.is_initialized = false; 2230 ufshcd_release(hba); 2231 2232 destroy_workqueue(hba->clk_gating.clk_gating_workq); 2233 } 2234 2235 static void ufshcd_clk_scaling_start_busy(struct ufs_hba *hba) 2236 { 2237 bool queue_resume_work = false; 2238 ktime_t curr_t; 2239 2240 if (!ufshcd_is_clkscaling_supported(hba)) 2241 return; 2242 2243 curr_t = ktime_get(); 2244 2245 guard(spinlock_irqsave)(&hba->clk_scaling.lock); 2246 2247 if (!hba->clk_scaling.active_reqs++) 2248 queue_resume_work = true; 2249 2250 if (!hba->clk_scaling.is_enabled || hba->pm_op_in_progress) 2251 return; 2252 2253 if (queue_resume_work) 2254 queue_work(hba->clk_scaling.workq, 2255 &hba->clk_scaling.resume_work); 2256 2257 if (!hba->clk_scaling.window_start_t) { 2258 hba->clk_scaling.window_start_t = curr_t; 2259 hba->clk_scaling.tot_busy_t = 0; 2260 hba->clk_scaling.is_busy_started = false; 2261 } 2262 2263 if (!hba->clk_scaling.is_busy_started) { 2264 hba->clk_scaling.busy_start_t = curr_t; 2265 hba->clk_scaling.is_busy_started = true; 2266 } 2267 } 2268 2269 static void ufshcd_clk_scaling_update_busy(struct ufs_hba *hba) 2270 { 2271 struct ufs_clk_scaling *scaling = &hba->clk_scaling; 2272 2273 if (!ufshcd_is_clkscaling_supported(hba)) 2274 return; 2275 2276 guard(spinlock_irqsave)(&hba->clk_scaling.lock); 2277 2278 hba->clk_scaling.active_reqs--; 2279 if (!scaling->active_reqs && scaling->is_busy_started) { 2280 scaling->tot_busy_t += ktime_to_us(ktime_sub(ktime_get(), 2281 scaling->busy_start_t)); 2282 scaling->busy_start_t = 0; 2283 scaling->is_busy_started = false; 2284 } 2285 } 2286 2287 static inline int ufshcd_monitor_opcode2dir(u8 opcode) 2288 { 2289 if (opcode == READ_6 || opcode == READ_10 || opcode == READ_16) 2290 return READ; 2291 else if (opcode == WRITE_6 || opcode == WRITE_10 || opcode == WRITE_16) 2292 return WRITE; 2293 else 2294 return -EINVAL; 2295 } 2296 2297 /* Must only be called for SCSI commands. */ 2298 static inline bool ufshcd_should_inform_monitor(struct ufs_hba *hba, 2299 struct scsi_cmnd *cmd) 2300 { 2301 const struct ufs_hba_monitor *m = &hba->monitor; 2302 struct ufshcd_lrb *lrbp = scsi_cmd_priv(cmd); 2303 2304 return m->enabled && 2305 (!m->chunk_size || m->chunk_size == cmd->sdb.length) && 2306 ktime_before(hba->monitor.enabled_ts, lrbp->issue_time_stamp); 2307 } 2308 2309 static void ufshcd_start_monitor(struct ufs_hba *hba, struct scsi_cmnd *cmd) 2310 { 2311 int dir = ufshcd_monitor_opcode2dir(cmd->cmnd[0]); 2312 unsigned long flags; 2313 2314 spin_lock_irqsave(hba->host->host_lock, flags); 2315 if (dir >= 0 && hba->monitor.nr_queued[dir]++ == 0) 2316 hba->monitor.busy_start_ts[dir] = ktime_get(); 2317 spin_unlock_irqrestore(hba->host->host_lock, flags); 2318 } 2319 2320 static void ufshcd_update_monitor(struct ufs_hba *hba, struct scsi_cmnd *cmd) 2321 { 2322 struct request *req = scsi_cmd_to_rq(cmd); 2323 const struct ufshcd_lrb *lrbp = scsi_cmd_priv(cmd); 2324 int dir = ufshcd_monitor_opcode2dir(cmd->cmnd[0]); 2325 unsigned long flags; 2326 2327 spin_lock_irqsave(hba->host->host_lock, flags); 2328 if (dir >= 0 && hba->monitor.nr_queued[dir] > 0) { 2329 struct ufs_hba_monitor *m = &hba->monitor; 2330 ktime_t now, inc, lat; 2331 2332 now = lrbp->compl_time_stamp; 2333 inc = ktime_sub(now, m->busy_start_ts[dir]); 2334 m->total_busy[dir] = ktime_add(m->total_busy[dir], inc); 2335 m->nr_sec_rw[dir] += blk_rq_sectors(req); 2336 2337 /* Update latencies */ 2338 m->nr_req[dir]++; 2339 lat = ktime_sub(now, lrbp->issue_time_stamp); 2340 m->lat_sum[dir] += lat; 2341 if (m->lat_max[dir] < lat || !m->lat_max[dir]) 2342 m->lat_max[dir] = lat; 2343 if (m->lat_min[dir] > lat || !m->lat_min[dir]) 2344 m->lat_min[dir] = lat; 2345 2346 m->nr_queued[dir]--; 2347 /* Push forward the busy start of monitor */ 2348 m->busy_start_ts[dir] = now; 2349 } 2350 spin_unlock_irqrestore(hba->host->host_lock, flags); 2351 } 2352 2353 /* Returns %true for SCSI commands and %false for device management commands. */ 2354 static bool ufshcd_is_scsi_cmd(struct scsi_cmnd *cmd) 2355 { 2356 return !blk_mq_is_reserved_rq(scsi_cmd_to_rq(cmd)); 2357 } 2358 2359 /** 2360 * ufshcd_send_command - Send SCSI or device management commands 2361 * @hba: per adapter instance 2362 * @cmd: SCSI command or device management command pointer 2363 * @hwq: pointer to hardware queue instance 2364 */ 2365 static inline void ufshcd_send_command(struct ufs_hba *hba, 2366 struct scsi_cmnd *cmd, 2367 struct ufs_hw_queue *hwq) 2368 { 2369 struct ufshcd_lrb *lrbp = scsi_cmd_priv(cmd); 2370 const int tag = scsi_cmd_to_rq(cmd)->tag; 2371 unsigned long flags; 2372 2373 if (hba->monitor.enabled) { 2374 lrbp->issue_time_stamp = ktime_get(); 2375 lrbp->issue_time_stamp_local_clock = local_clock(); 2376 lrbp->compl_time_stamp = ktime_set(0, 0); 2377 lrbp->compl_time_stamp_local_clock = 0; 2378 } 2379 if (ufshcd_is_scsi_cmd(cmd)) { 2380 ufshcd_add_command_trace(hba, cmd, UFS_CMD_SEND); 2381 ufshcd_clk_scaling_start_busy(hba); 2382 if (unlikely(ufshcd_should_inform_monitor(hba, cmd))) 2383 ufshcd_start_monitor(hba, cmd); 2384 } 2385 2386 if (hba->mcq_enabled) { 2387 int utrd_size = sizeof(struct utp_transfer_req_desc); 2388 struct utp_transfer_req_desc *src = lrbp->utr_descriptor_ptr; 2389 struct utp_transfer_req_desc *dest; 2390 2391 spin_lock(&hwq->sq_lock); 2392 dest = hwq->sqe_base_addr + hwq->sq_tail_slot; 2393 memcpy(dest, src, utrd_size); 2394 ufshcd_inc_sq_tail(hwq); 2395 spin_unlock(&hwq->sq_lock); 2396 } else { 2397 spin_lock_irqsave(&hba->outstanding_lock, flags); 2398 if (hba->vops && hba->vops->setup_xfer_req) 2399 hba->vops->setup_xfer_req(hba, tag, 2400 ufshcd_is_scsi_cmd(cmd)); 2401 __set_bit(tag, &hba->outstanding_reqs); 2402 ufshcd_writel(hba, 1 << tag, REG_UTP_TRANSFER_REQ_DOOR_BELL); 2403 spin_unlock_irqrestore(&hba->outstanding_lock, flags); 2404 } 2405 } 2406 2407 /** 2408 * ufshcd_copy_sense_data - Copy sense data in case of check condition 2409 * @cmd: SCSI command 2410 */ 2411 static inline void ufshcd_copy_sense_data(struct scsi_cmnd *cmd) 2412 { 2413 struct ufshcd_lrb *lrbp = scsi_cmd_priv(cmd); 2414 u8 *const sense_buffer = cmd->sense_buffer; 2415 u16 resp_len; 2416 int len; 2417 2418 resp_len = be16_to_cpu(lrbp->ucd_rsp_ptr->header.data_segment_length); 2419 if (sense_buffer && resp_len) { 2420 int len_to_copy; 2421 2422 len = be16_to_cpu(lrbp->ucd_rsp_ptr->sr.sense_data_len); 2423 len_to_copy = min_t(int, UFS_SENSE_SIZE, len); 2424 2425 memcpy(sense_buffer, lrbp->ucd_rsp_ptr->sr.sense_data, 2426 len_to_copy); 2427 } 2428 } 2429 2430 /** 2431 * ufshcd_copy_query_response() - Copy the Query Response and the data 2432 * descriptor 2433 * @hba: per adapter instance 2434 * @lrbp: pointer to local reference block 2435 * 2436 * Return: 0 upon success; < 0 upon failure. 2437 */ 2438 static 2439 int ufshcd_copy_query_response(struct ufs_hba *hba, struct ufshcd_lrb *lrbp) 2440 { 2441 struct ufs_query_res *query_res = &hba->dev_cmd.query.response; 2442 2443 memcpy(&query_res->upiu_res, &lrbp->ucd_rsp_ptr->qr, QUERY_OSF_SIZE); 2444 2445 /* Get the descriptor */ 2446 if (hba->dev_cmd.query.descriptor && 2447 lrbp->ucd_rsp_ptr->qr.opcode == UPIU_QUERY_OPCODE_READ_DESC) { 2448 u8 *descp = (u8 *)lrbp->ucd_rsp_ptr + 2449 GENERAL_UPIU_REQUEST_SIZE; 2450 u16 resp_len; 2451 u16 buf_len; 2452 2453 /* data segment length */ 2454 resp_len = be16_to_cpu(lrbp->ucd_rsp_ptr->header 2455 .data_segment_length); 2456 buf_len = be16_to_cpu( 2457 hba->dev_cmd.query.request.upiu_req.length); 2458 if (likely(buf_len >= resp_len)) { 2459 memcpy(hba->dev_cmd.query.descriptor, descp, resp_len); 2460 } else { 2461 dev_warn(hba->dev, 2462 "%s: rsp size %d is bigger than buffer size %d", 2463 __func__, resp_len, buf_len); 2464 return -EINVAL; 2465 } 2466 } 2467 2468 return 0; 2469 } 2470 2471 /** 2472 * ufshcd_hba_capabilities - Read controller capabilities 2473 * @hba: per adapter instance 2474 * 2475 * Return: 0 on success, negative on error. 2476 */ 2477 static inline int ufshcd_hba_capabilities(struct ufs_hba *hba) 2478 { 2479 int err; 2480 2481 hba->capabilities = ufshcd_readl(hba, REG_CONTROLLER_CAPABILITIES); 2482 2483 /* nutrs and nutmrs are 0 based values */ 2484 hba->nutrs = (hba->capabilities & MASK_TRANSFER_REQUESTS_SLOTS_SDB) + 1; 2485 hba->nutmrs = 2486 ((hba->capabilities & MASK_TASK_MANAGEMENT_REQUEST_SLOTS) >> 16) + 1; 2487 2488 hba->nortt = FIELD_GET(MASK_NUMBER_OUTSTANDING_RTT, hba->capabilities) + 1; 2489 2490 /* Read crypto capabilities */ 2491 err = ufshcd_hba_init_crypto_capabilities(hba); 2492 if (err) { 2493 dev_err(hba->dev, "crypto setup failed\n"); 2494 return err; 2495 } 2496 2497 /* 2498 * The UFSHCI 3.0 specification does not define MCQ_SUPPORT and 2499 * LSDB_SUPPORT, but [31:29] as reserved bits with reset value 0s, which 2500 * means we can simply read values regardless of version. 2501 */ 2502 hba->mcq_sup = FIELD_GET(MASK_MCQ_SUPPORT, hba->capabilities); 2503 /* 2504 * 0h: legacy single doorbell support is available 2505 * 1h: indicate that legacy single doorbell support has been removed 2506 */ 2507 if (!(hba->quirks & UFSHCD_QUIRK_BROKEN_LSDBS_CAP)) 2508 hba->lsdb_sup = !FIELD_GET(MASK_LSDB_SUPPORT, hba->capabilities); 2509 else 2510 hba->lsdb_sup = true; 2511 2512 hba->mcq_capabilities = ufshcd_readl(hba, REG_MCQCAP); 2513 2514 return 0; 2515 } 2516 2517 /** 2518 * ufshcd_ready_for_uic_cmd - Check if controller is ready 2519 * to accept UIC commands 2520 * @hba: per adapter instance 2521 * 2522 * Return: true on success, else false. 2523 */ 2524 static inline bool ufshcd_ready_for_uic_cmd(struct ufs_hba *hba) 2525 { 2526 u32 val; 2527 int ret = read_poll_timeout(ufshcd_readl, val, val & UIC_COMMAND_READY, 2528 500, uic_cmd_timeout * 1000, false, hba, 2529 REG_CONTROLLER_STATUS); 2530 return ret == 0; 2531 } 2532 2533 /** 2534 * ufshcd_get_upmcrs - Get the power mode change request status 2535 * @hba: Pointer to adapter instance 2536 * 2537 * This function gets the UPMCRS field of HCS register 2538 * 2539 * Return: value of UPMCRS field. 2540 */ 2541 static inline u8 ufshcd_get_upmcrs(struct ufs_hba *hba) 2542 { 2543 return (ufshcd_readl(hba, REG_CONTROLLER_STATUS) >> 8) & 0x7; 2544 } 2545 2546 /** 2547 * ufshcd_dispatch_uic_cmd - Dispatch an UIC command to the Unipro layer 2548 * @hba: per adapter instance 2549 * @uic_cmd: UIC command 2550 */ 2551 static inline void 2552 ufshcd_dispatch_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd) 2553 { 2554 lockdep_assert_held(&hba->uic_cmd_mutex); 2555 2556 WARN_ON(hba->active_uic_cmd); 2557 2558 hba->active_uic_cmd = uic_cmd; 2559 2560 /* Write Args */ 2561 ufshcd_writel(hba, uic_cmd->argument1, REG_UIC_COMMAND_ARG_1); 2562 ufshcd_writel(hba, uic_cmd->argument2, REG_UIC_COMMAND_ARG_2); 2563 ufshcd_writel(hba, uic_cmd->argument3, REG_UIC_COMMAND_ARG_3); 2564 2565 ufshcd_add_uic_command_trace(hba, uic_cmd, UFS_CMD_SEND); 2566 2567 /* Write UIC Cmd */ 2568 ufshcd_writel(hba, uic_cmd->command & COMMAND_OPCODE_MASK, 2569 REG_UIC_COMMAND); 2570 } 2571 2572 /** 2573 * ufshcd_wait_for_uic_cmd - Wait for completion of an UIC command 2574 * @hba: per adapter instance 2575 * @uic_cmd: UIC command 2576 * 2577 * Return: 0 only if success. 2578 */ 2579 static int 2580 ufshcd_wait_for_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd) 2581 { 2582 int ret; 2583 unsigned long flags; 2584 2585 lockdep_assert_held(&hba->uic_cmd_mutex); 2586 2587 if (wait_for_completion_timeout(&uic_cmd->done, 2588 msecs_to_jiffies(uic_cmd_timeout))) { 2589 ret = uic_cmd->argument2 & MASK_UIC_COMMAND_RESULT; 2590 } else { 2591 ret = -ETIMEDOUT; 2592 dev_err(hba->dev, 2593 "uic cmd 0x%x with arg3 0x%x completion timeout\n", 2594 uic_cmd->command, uic_cmd->argument3); 2595 2596 if (!uic_cmd->cmd_active) { 2597 dev_err(hba->dev, "%s: UIC cmd has been completed, return the result\n", 2598 __func__); 2599 ret = uic_cmd->argument2 & MASK_UIC_COMMAND_RESULT; 2600 } 2601 } 2602 2603 spin_lock_irqsave(hba->host->host_lock, flags); 2604 hba->active_uic_cmd = NULL; 2605 spin_unlock_irqrestore(hba->host->host_lock, flags); 2606 2607 return ret; 2608 } 2609 2610 /** 2611 * __ufshcd_send_uic_cmd - Send UIC commands and retrieve the result 2612 * @hba: per adapter instance 2613 * @uic_cmd: UIC command 2614 * 2615 * Return: 0 if successful; < 0 upon failure. 2616 */ 2617 static int 2618 __ufshcd_send_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd) 2619 { 2620 lockdep_assert_held(&hba->uic_cmd_mutex); 2621 2622 if (!ufshcd_ready_for_uic_cmd(hba)) { 2623 dev_err(hba->dev, 2624 "Controller not ready to accept UIC commands\n"); 2625 return -EIO; 2626 } 2627 2628 init_completion(&uic_cmd->done); 2629 2630 uic_cmd->cmd_active = true; 2631 ufshcd_dispatch_uic_cmd(hba, uic_cmd); 2632 2633 return 0; 2634 } 2635 2636 /** 2637 * ufshcd_send_uic_cmd - Send UIC commands and retrieve the result 2638 * @hba: per adapter instance 2639 * @uic_cmd: UIC command 2640 * 2641 * Return: 0 only if success. 2642 */ 2643 int ufshcd_send_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd) 2644 { 2645 unsigned long flags; 2646 int ret; 2647 2648 if (hba->quirks & UFSHCD_QUIRK_BROKEN_UIC_CMD) 2649 return 0; 2650 2651 ufshcd_hold(hba); 2652 mutex_lock(&hba->uic_cmd_mutex); 2653 ufshcd_add_delay_before_dme_cmd(hba); 2654 2655 spin_lock_irqsave(hba->host->host_lock, flags); 2656 ufshcd_enable_intr(hba, UIC_COMMAND_COMPL); 2657 spin_unlock_irqrestore(hba->host->host_lock, flags); 2658 2659 ret = __ufshcd_send_uic_cmd(hba, uic_cmd); 2660 if (!ret) 2661 ret = ufshcd_wait_for_uic_cmd(hba, uic_cmd); 2662 2663 mutex_unlock(&hba->uic_cmd_mutex); 2664 2665 ufshcd_release(hba); 2666 return ret; 2667 } 2668 2669 /** 2670 * ufshcd_sgl_to_prdt - SG list to PRTD (Physical Region Description Table, 4DW format) 2671 * @hba: per-adapter instance 2672 * @lrbp: pointer to local reference block 2673 * @sg_entries: The number of sg lists actually used 2674 * @sg_list: Pointer to SG list 2675 */ 2676 static void ufshcd_sgl_to_prdt(struct ufs_hba *hba, struct ufshcd_lrb *lrbp, int sg_entries, 2677 struct scatterlist *sg_list) 2678 { 2679 struct ufshcd_sg_entry *prd; 2680 struct scatterlist *sg; 2681 int i; 2682 2683 if (sg_entries) { 2684 2685 if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN) 2686 lrbp->utr_descriptor_ptr->prd_table_length = 2687 cpu_to_le16(sg_entries * ufshcd_sg_entry_size(hba)); 2688 else 2689 lrbp->utr_descriptor_ptr->prd_table_length = cpu_to_le16(sg_entries); 2690 2691 prd = lrbp->ucd_prdt_ptr; 2692 2693 for_each_sg(sg_list, sg, sg_entries, i) { 2694 const unsigned int len = sg_dma_len(sg); 2695 2696 /* 2697 * From the UFSHCI spec: "Data Byte Count (DBC): A '0' 2698 * based value that indicates the length, in bytes, of 2699 * the data block. A maximum of length of 256KB may 2700 * exist for any entry. Bits 1:0 of this field shall be 2701 * 11b to indicate Dword granularity. A value of '3' 2702 * indicates 4 bytes, '7' indicates 8 bytes, etc." 2703 */ 2704 WARN_ONCE(len > SZ_256K, "len = %#x\n", len); 2705 prd->size = cpu_to_le32(len - 1); 2706 prd->addr = cpu_to_le64(sg->dma_address); 2707 prd->reserved = 0; 2708 prd = (void *)prd + ufshcd_sg_entry_size(hba); 2709 } 2710 } else { 2711 lrbp->utr_descriptor_ptr->prd_table_length = 0; 2712 } 2713 } 2714 2715 /** 2716 * ufshcd_map_sg - Map scatter-gather list to prdt 2717 * @hba: per adapter instance 2718 * @cmd: SCSI command 2719 * 2720 * Return: 0 in case of success, non-zero value in case of failure. 2721 */ 2722 static int ufshcd_map_sg(struct ufs_hba *hba, struct scsi_cmnd *cmd) 2723 { 2724 struct ufshcd_lrb *lrbp = scsi_cmd_priv(cmd); 2725 int sg_segments = scsi_dma_map(cmd); 2726 2727 if (sg_segments < 0) 2728 return sg_segments; 2729 2730 ufshcd_sgl_to_prdt(hba, lrbp, sg_segments, scsi_sglist(cmd)); 2731 2732 return ufshcd_crypto_fill_prdt(hba, cmd); 2733 } 2734 2735 /** 2736 * ufshcd_prepare_req_desc_hdr - Fill UTP Transfer request descriptor header according to request 2737 * descriptor according to request 2738 * @hba: per adapter instance 2739 * @lrbp: pointer to local reference block 2740 * @upiu_flags: flags required in the header 2741 * @cmd_dir: requests data direction 2742 * @ehs_length: Total EHS Length (in 32‐bytes units of all Extra Header Segments) 2743 */ 2744 static void 2745 ufshcd_prepare_req_desc_hdr(struct ufs_hba *hba, struct ufshcd_lrb *lrbp, 2746 u8 *upiu_flags, enum dma_data_direction cmd_dir, 2747 int ehs_length) 2748 { 2749 struct utp_transfer_req_desc *req_desc = lrbp->utr_descriptor_ptr; 2750 struct request_desc_header *h = &req_desc->header; 2751 enum utp_data_direction data_direction; 2752 2753 lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE; 2754 2755 *h = (typeof(*h)){ }; 2756 2757 if (cmd_dir == DMA_FROM_DEVICE) { 2758 data_direction = UTP_DEVICE_TO_HOST; 2759 *upiu_flags = UPIU_CMD_FLAGS_READ; 2760 } else if (cmd_dir == DMA_TO_DEVICE) { 2761 data_direction = UTP_HOST_TO_DEVICE; 2762 *upiu_flags = UPIU_CMD_FLAGS_WRITE; 2763 } else { 2764 data_direction = UTP_NO_DATA_TRANSFER; 2765 *upiu_flags = UPIU_CMD_FLAGS_NONE; 2766 } 2767 2768 h->command_type = lrbp->command_type; 2769 h->data_direction = data_direction; 2770 h->ehs_length = ehs_length; 2771 2772 if (lrbp->intr_cmd) 2773 h->interrupt = 1; 2774 2775 /* Prepare crypto related dwords */ 2776 ufshcd_prepare_req_desc_hdr_crypto(lrbp, h); 2777 2778 /* 2779 * assigning invalid value for command status. Controller 2780 * updates OCS on command completion, with the command 2781 * status 2782 */ 2783 h->ocs = OCS_INVALID_COMMAND_STATUS; 2784 2785 req_desc->prd_table_length = 0; 2786 } 2787 2788 /** 2789 * ufshcd_prepare_utp_scsi_cmd_upiu() - fills the utp_transfer_req_desc, 2790 * for scsi commands 2791 * @cmd: SCSI command 2792 * @upiu_flags: flags 2793 */ 2794 static void ufshcd_prepare_utp_scsi_cmd_upiu(struct scsi_cmnd *cmd, 2795 u8 upiu_flags) 2796 { 2797 struct ufshcd_lrb *lrbp = scsi_cmd_priv(cmd); 2798 const int tag = scsi_cmd_to_rq(cmd)->tag; 2799 struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr; 2800 unsigned short cdb_len; 2801 2802 ucd_req_ptr->header = (struct utp_upiu_header){ 2803 .transaction_code = UPIU_TRANSACTION_COMMAND, 2804 .flags = upiu_flags, 2805 .lun = lrbp->lun, 2806 .task_tag = tag, 2807 .command_set_type = UPIU_COMMAND_SET_TYPE_SCSI, 2808 }; 2809 2810 WARN_ON_ONCE(ucd_req_ptr->header.task_tag != tag); 2811 2812 ucd_req_ptr->sc.exp_data_transfer_len = cpu_to_be32(cmd->sdb.length); 2813 2814 cdb_len = min_t(unsigned short, cmd->cmd_len, UFS_CDB_SIZE); 2815 memcpy(ucd_req_ptr->sc.cdb, cmd->cmnd, cdb_len); 2816 2817 memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp)); 2818 } 2819 2820 /** 2821 * ufshcd_prepare_utp_query_req_upiu() - fill the utp_transfer_req_desc for query request 2822 * @hba: UFS hba 2823 * @cmd: SCSI command pointer 2824 * @upiu_flags: flags 2825 */ 2826 static void ufshcd_prepare_utp_query_req_upiu(struct ufs_hba *hba, 2827 struct scsi_cmnd *cmd, u8 upiu_flags) 2828 { 2829 struct ufshcd_lrb *lrbp = scsi_cmd_priv(cmd); 2830 struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr; 2831 const int tag = scsi_cmd_to_rq(cmd)->tag; 2832 struct ufs_query *query = &hba->dev_cmd.query; 2833 u16 len = be16_to_cpu(query->request.upiu_req.length); 2834 2835 /* Query request header */ 2836 ucd_req_ptr->header = (struct utp_upiu_header){ 2837 .transaction_code = UPIU_TRANSACTION_QUERY_REQ, 2838 .flags = upiu_flags, 2839 .lun = lrbp->lun, 2840 .task_tag = tag, 2841 .query_function = query->request.query_func, 2842 /* Data segment length only need for WRITE_DESC */ 2843 .data_segment_length = 2844 query->request.upiu_req.opcode == 2845 UPIU_QUERY_OPCODE_WRITE_DESC ? 2846 cpu_to_be16(len) : 2847 0, 2848 }; 2849 2850 /* Copy the Query Request buffer as is */ 2851 memcpy(&ucd_req_ptr->qr, &query->request.upiu_req, 2852 QUERY_OSF_SIZE); 2853 2854 /* Copy the Descriptor */ 2855 if (query->request.upiu_req.opcode == UPIU_QUERY_OPCODE_WRITE_DESC) 2856 memcpy(ucd_req_ptr + 1, query->descriptor, len); 2857 } 2858 2859 static inline void ufshcd_prepare_utp_nop_upiu(struct scsi_cmnd *cmd) 2860 { 2861 struct ufshcd_lrb *lrbp = scsi_cmd_priv(cmd); 2862 struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr; 2863 const int tag = scsi_cmd_to_rq(cmd)->tag; 2864 2865 memset(ucd_req_ptr, 0, sizeof(struct utp_upiu_req)); 2866 2867 ucd_req_ptr->header = (struct utp_upiu_header){ 2868 .transaction_code = UPIU_TRANSACTION_NOP_OUT, 2869 .task_tag = tag, 2870 }; 2871 } 2872 2873 /** 2874 * ufshcd_compose_devman_upiu - UFS Protocol Information Unit(UPIU) 2875 * for Device Management Purposes 2876 * @hba: per adapter instance 2877 * @cmd: SCSI command pointer 2878 * 2879 * Return: 0 upon success; < 0 upon failure. 2880 */ 2881 static int ufshcd_compose_devman_upiu(struct ufs_hba *hba, 2882 struct scsi_cmnd *cmd) 2883 { 2884 struct ufshcd_lrb *lrbp = scsi_cmd_priv(cmd); 2885 u8 upiu_flags; 2886 int ret = 0; 2887 2888 ufshcd_prepare_req_desc_hdr(hba, lrbp, &upiu_flags, DMA_NONE, 0); 2889 2890 if (hba->dev_cmd.type == DEV_CMD_TYPE_QUERY) 2891 ufshcd_prepare_utp_query_req_upiu(hba, cmd, upiu_flags); 2892 else if (hba->dev_cmd.type == DEV_CMD_TYPE_NOP) 2893 ufshcd_prepare_utp_nop_upiu(cmd); 2894 else 2895 ret = -EINVAL; 2896 2897 memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp)); 2898 2899 return ret; 2900 } 2901 2902 /** 2903 * ufshcd_comp_scsi_upiu - UFS Protocol Information Unit(UPIU) 2904 * for SCSI Purposes 2905 * @hba: per adapter instance 2906 * @cmd: SCSI command 2907 */ 2908 static void ufshcd_comp_scsi_upiu(struct ufs_hba *hba, struct scsi_cmnd *cmd) 2909 { 2910 struct ufshcd_lrb *lrbp = scsi_cmd_priv(cmd); 2911 struct request *rq = scsi_cmd_to_rq(cmd); 2912 unsigned int ioprio_class = IOPRIO_PRIO_CLASS(req_get_ioprio(rq)); 2913 u8 upiu_flags; 2914 2915 ufshcd_prepare_req_desc_hdr(hba, lrbp, &upiu_flags, 2916 cmd->sc_data_direction, 0); 2917 if (ioprio_class == IOPRIO_CLASS_RT) 2918 upiu_flags |= UPIU_CMD_FLAGS_CP; 2919 ufshcd_prepare_utp_scsi_cmd_upiu(cmd, upiu_flags); 2920 } 2921 2922 static void ufshcd_init_lrb(struct ufs_hba *hba, struct scsi_cmnd *cmd) 2923 { 2924 const int i = scsi_cmd_to_rq(cmd)->tag; 2925 struct utp_transfer_cmd_desc *cmd_descp = 2926 (void *)hba->ucdl_base_addr + i * ufshcd_get_ucd_size(hba); 2927 struct utp_transfer_req_desc *utrdlp = hba->utrdl_base_addr; 2928 dma_addr_t cmd_desc_element_addr = 2929 hba->ucdl_dma_addr + i * ufshcd_get_ucd_size(hba); 2930 u16 response_offset = le16_to_cpu(utrdlp[i].response_upiu_offset); 2931 u16 prdt_offset = le16_to_cpu(utrdlp[i].prd_table_offset); 2932 struct ufshcd_lrb *lrb = scsi_cmd_priv(cmd); 2933 2934 lrb->utr_descriptor_ptr = utrdlp + i; 2935 lrb->utrd_dma_addr = 2936 hba->utrdl_dma_addr + i * sizeof(struct utp_transfer_req_desc); 2937 lrb->ucd_req_ptr = (struct utp_upiu_req *)cmd_descp->command_upiu; 2938 lrb->ucd_req_dma_addr = cmd_desc_element_addr; 2939 lrb->ucd_rsp_ptr = (struct utp_upiu_rsp *)cmd_descp->response_upiu; 2940 lrb->ucd_rsp_dma_addr = cmd_desc_element_addr + response_offset; 2941 lrb->ucd_prdt_ptr = (struct ufshcd_sg_entry *)cmd_descp->prd_table; 2942 lrb->ucd_prdt_dma_addr = cmd_desc_element_addr + prdt_offset; 2943 } 2944 2945 static void __ufshcd_setup_cmd(struct ufs_hba *hba, struct scsi_cmnd *cmd, 2946 u8 lun, int tag) 2947 { 2948 struct ufshcd_lrb *lrbp = scsi_cmd_priv(cmd); 2949 2950 ufshcd_init_lrb(hba, cmd); 2951 2952 memset(lrbp->ucd_req_ptr, 0, sizeof(*lrbp->ucd_req_ptr)); 2953 2954 lrbp->lun = lun; 2955 ufshcd_prepare_lrbp_crypto(ufshcd_is_scsi_cmd(cmd) ? 2956 scsi_cmd_to_rq(cmd) : NULL, lrbp); 2957 } 2958 2959 static void ufshcd_setup_scsi_cmd(struct ufs_hba *hba, struct scsi_cmnd *cmd, 2960 u8 lun, int tag) 2961 { 2962 struct ufshcd_lrb *lrbp = scsi_cmd_priv(cmd); 2963 2964 __ufshcd_setup_cmd(hba, cmd, lun, tag); 2965 lrbp->intr_cmd = !ufshcd_is_intr_aggr_allowed(hba); 2966 lrbp->req_abort_skip = false; 2967 2968 ufshcd_comp_scsi_upiu(hba, cmd); 2969 } 2970 2971 /** 2972 * ufshcd_upiu_wlun_to_scsi_wlun - maps UPIU W-LUN id to SCSI W-LUN ID 2973 * @upiu_wlun_id: UPIU W-LUN id 2974 * 2975 * Return: SCSI W-LUN id. 2976 */ 2977 static inline u16 ufshcd_upiu_wlun_to_scsi_wlun(u8 upiu_wlun_id) 2978 { 2979 return (upiu_wlun_id & ~UFS_UPIU_WLUN_ID) | SCSI_W_LUN_BASE; 2980 } 2981 2982 static inline bool is_device_wlun(struct scsi_device *sdev) 2983 { 2984 return sdev->lun == 2985 ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_UFS_DEVICE_WLUN); 2986 } 2987 2988 /* 2989 * Associate the UFS controller queue with the default and poll HCTX types. 2990 * Initialize the mq_map[] arrays. 2991 */ 2992 static void ufshcd_map_queues(struct Scsi_Host *shost) 2993 { 2994 struct ufs_hba *hba = shost_priv(shost); 2995 int i, queue_offset = 0; 2996 2997 if (!is_mcq_supported(hba)) { 2998 hba->nr_queues[HCTX_TYPE_DEFAULT] = 1; 2999 hba->nr_queues[HCTX_TYPE_READ] = 0; 3000 hba->nr_queues[HCTX_TYPE_POLL] = 1; 3001 hba->nr_hw_queues = 1; 3002 } 3003 3004 for (i = 0; i < shost->nr_maps; i++) { 3005 struct blk_mq_queue_map *map = &shost->tag_set.map[i]; 3006 3007 map->nr_queues = hba->nr_queues[i]; 3008 if (!map->nr_queues) 3009 continue; 3010 map->queue_offset = queue_offset; 3011 if (i == HCTX_TYPE_POLL && !is_mcq_supported(hba)) 3012 map->queue_offset = 0; 3013 3014 blk_mq_map_queues(map); 3015 queue_offset += map->nr_queues; 3016 } 3017 } 3018 3019 /* 3020 * The only purpose of this function is to make the SCSI core skip the memset() 3021 * call for the private command data. 3022 */ 3023 static int ufshcd_init_cmd_priv(struct Scsi_Host *host, struct scsi_cmnd *cmd) 3024 { 3025 return 0; 3026 } 3027 3028 /** 3029 * ufshcd_queuecommand - main entry point for SCSI requests 3030 * @host: SCSI host pointer 3031 * @cmd: command from SCSI Midlayer 3032 * 3033 * Return: 0 for success, non-zero in case of failure. 3034 */ 3035 static int ufshcd_queuecommand(struct Scsi_Host *host, struct scsi_cmnd *cmd) 3036 { 3037 struct ufs_hba *hba = shost_priv(host); 3038 int tag = scsi_cmd_to_rq(cmd)->tag; 3039 int err = 0; 3040 struct ufs_hw_queue *hwq = NULL; 3041 3042 switch (hba->ufshcd_state) { 3043 case UFSHCD_STATE_OPERATIONAL: 3044 break; 3045 case UFSHCD_STATE_EH_SCHEDULED_NON_FATAL: 3046 /* 3047 * SCSI error handler can call ->queuecommand() while UFS error 3048 * handler is in progress. Error interrupts could change the 3049 * state from UFSHCD_STATE_RESET to 3050 * UFSHCD_STATE_EH_SCHEDULED_NON_FATAL. Prevent requests 3051 * being issued in that case. 3052 */ 3053 if (ufshcd_eh_in_progress(hba)) { 3054 err = SCSI_MLQUEUE_HOST_BUSY; 3055 goto out; 3056 } 3057 break; 3058 case UFSHCD_STATE_EH_SCHEDULED_FATAL: 3059 /* 3060 * pm_runtime_get_sync() is used at error handling preparation 3061 * stage. If a scsi cmd, e.g. the SSU cmd, is sent from hba's 3062 * PM ops, it can never be finished if we let SCSI layer keep 3063 * retrying it, which gets err handler stuck forever. Neither 3064 * can we let the scsi cmd pass through, because UFS is in bad 3065 * state, the scsi cmd may eventually time out, which will get 3066 * err handler blocked for too long. So, just fail the scsi cmd 3067 * sent from PM ops, err handler can recover PM error anyways. 3068 */ 3069 if (hba->pm_op_in_progress) { 3070 hba->force_reset = true; 3071 set_host_byte(cmd, DID_BAD_TARGET); 3072 scsi_done(cmd); 3073 goto out; 3074 } 3075 fallthrough; 3076 case UFSHCD_STATE_RESET: 3077 err = SCSI_MLQUEUE_HOST_BUSY; 3078 goto out; 3079 case UFSHCD_STATE_ERROR: 3080 set_host_byte(cmd, DID_ERROR); 3081 scsi_done(cmd); 3082 goto out; 3083 } 3084 3085 hba->req_abort_count = 0; 3086 3087 ufshcd_hold(hba); 3088 3089 ufshcd_setup_scsi_cmd(hba, cmd, 3090 ufshcd_scsi_to_upiu_lun(cmd->device->lun), tag); 3091 3092 err = ufshcd_map_sg(hba, cmd); 3093 if (err) { 3094 ufshcd_release(hba); 3095 goto out; 3096 } 3097 3098 if (hba->mcq_enabled) 3099 hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(cmd)); 3100 3101 ufshcd_send_command(hba, cmd, hwq); 3102 3103 out: 3104 if (ufs_trigger_eh(hba)) { 3105 unsigned long flags; 3106 3107 spin_lock_irqsave(hba->host->host_lock, flags); 3108 ufshcd_schedule_eh_work(hba); 3109 spin_unlock_irqrestore(hba->host->host_lock, flags); 3110 } 3111 3112 return err; 3113 } 3114 3115 static int ufshcd_queue_reserved_command(struct Scsi_Host *host, 3116 struct scsi_cmnd *cmd) 3117 { 3118 struct ufshcd_lrb *lrbp = scsi_cmd_priv(cmd); 3119 struct request *rq = scsi_cmd_to_rq(cmd); 3120 struct ufs_hba *hba = shost_priv(host); 3121 struct ufs_hw_queue *hwq = 3122 hba->mcq_enabled ? ufshcd_mcq_req_to_hwq(hba, rq) : NULL; 3123 3124 ufshcd_add_query_upiu_trace(hba, UFS_QUERY_SEND, lrbp->ucd_req_ptr); 3125 ufshcd_send_command(hba, cmd, hwq); 3126 return 0; 3127 } 3128 3129 static void ufshcd_setup_dev_cmd(struct ufs_hba *hba, struct scsi_cmnd *cmd, 3130 enum dev_cmd_type cmd_type, u8 lun, int tag) 3131 { 3132 struct ufshcd_lrb *lrbp = scsi_cmd_priv(cmd); 3133 3134 __ufshcd_setup_cmd(hba, cmd, lun, tag); 3135 lrbp->intr_cmd = true; /* No interrupt aggregation */ 3136 hba->dev_cmd.type = cmd_type; 3137 } 3138 3139 /* 3140 * Return: 0 upon success; < 0 upon failure. 3141 */ 3142 static int ufshcd_compose_dev_cmd(struct ufs_hba *hba, struct scsi_cmnd *cmd, 3143 enum dev_cmd_type cmd_type, int tag) 3144 { 3145 ufshcd_setup_dev_cmd(hba, cmd, cmd_type, 0, tag); 3146 3147 return ufshcd_compose_devman_upiu(hba, cmd); 3148 } 3149 3150 /* 3151 * Check with the block layer if the command is inflight 3152 * @cmd: command to check. 3153 * 3154 * Return: true if command is inflight; false if not. 3155 */ 3156 bool ufshcd_cmd_inflight(struct scsi_cmnd *cmd) 3157 { 3158 return cmd && blk_mq_rq_state(scsi_cmd_to_rq(cmd)) == MQ_RQ_IN_FLIGHT; 3159 } 3160 3161 /* 3162 * Clear the pending command in the controller and wait until 3163 * the controller confirms that the command has been cleared. 3164 * @hba: per adapter instance 3165 * @task_tag: The tag number of the command to be cleared. 3166 */ 3167 static int ufshcd_clear_cmd(struct ufs_hba *hba, u32 task_tag) 3168 { 3169 u32 mask; 3170 int err; 3171 3172 if (hba->mcq_enabled) { 3173 /* 3174 * MCQ mode. Clean up the MCQ resources similar to 3175 * what the ufshcd_utrl_clear() does for SDB mode. 3176 */ 3177 err = ufshcd_mcq_sq_cleanup(hba, task_tag); 3178 if (err) { 3179 dev_err(hba->dev, "%s: failed tag=%d. err=%d\n", 3180 __func__, task_tag, err); 3181 return err; 3182 } 3183 return 0; 3184 } 3185 3186 mask = 1U << task_tag; 3187 3188 /* clear outstanding transaction before retry */ 3189 ufshcd_utrl_clear(hba, mask); 3190 3191 /* 3192 * wait for h/w to clear corresponding bit in door-bell. 3193 * max. wait is 1 sec. 3194 */ 3195 return ufshcd_wait_for_register(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL, 3196 mask, ~mask, 1000, 1000); 3197 } 3198 3199 /** 3200 * ufshcd_dev_cmd_completion() - handles device management command responses 3201 * @hba: per adapter instance 3202 * @lrbp: pointer to local reference block 3203 * 3204 * Return: 0 upon success; < 0 upon failure. 3205 */ 3206 static int 3207 ufshcd_dev_cmd_completion(struct ufs_hba *hba, struct ufshcd_lrb *lrbp) 3208 { 3209 enum upiu_response_transaction resp; 3210 int err = 0; 3211 3212 hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0); 3213 resp = ufshcd_get_req_rsp(lrbp->ucd_rsp_ptr); 3214 3215 switch (resp) { 3216 case UPIU_TRANSACTION_NOP_IN: 3217 if (hba->dev_cmd.type != DEV_CMD_TYPE_NOP) { 3218 err = -EINVAL; 3219 dev_err(hba->dev, "%s: unexpected response %x\n", 3220 __func__, resp); 3221 } 3222 break; 3223 case UPIU_TRANSACTION_QUERY_RSP: { 3224 u8 response = lrbp->ucd_rsp_ptr->header.response; 3225 3226 if (response == 0) { 3227 err = ufshcd_copy_query_response(hba, lrbp); 3228 } else { 3229 err = -EINVAL; 3230 dev_err(hba->dev, "%s: unexpected response in Query RSP: %x\n", 3231 __func__, response); 3232 } 3233 break; 3234 } 3235 case UPIU_TRANSACTION_REJECT_UPIU: 3236 /* TODO: handle Reject UPIU Response */ 3237 err = -EPERM; 3238 dev_err(hba->dev, "%s: Reject UPIU not fully implemented\n", 3239 __func__); 3240 break; 3241 case UPIU_TRANSACTION_RESPONSE: 3242 if (hba->dev_cmd.type != DEV_CMD_TYPE_RPMB) { 3243 err = -EINVAL; 3244 dev_err(hba->dev, "%s: unexpected response %x\n", __func__, resp); 3245 } 3246 break; 3247 default: 3248 err = -EINVAL; 3249 dev_err(hba->dev, "%s: Invalid device management cmd response: %x\n", 3250 __func__, resp); 3251 break; 3252 } 3253 3254 WARN_ONCE(err > 0, "Incorrect return value %d > 0\n", err); 3255 return err; 3256 } 3257 3258 static void ufshcd_dev_man_lock(struct ufs_hba *hba) 3259 { 3260 ufshcd_hold(hba); 3261 mutex_lock(&hba->dev_cmd.lock); 3262 down_read(&hba->clk_scaling_lock); 3263 } 3264 3265 static void ufshcd_dev_man_unlock(struct ufs_hba *hba) 3266 { 3267 up_read(&hba->clk_scaling_lock); 3268 mutex_unlock(&hba->dev_cmd.lock); 3269 ufshcd_release(hba); 3270 } 3271 3272 static struct scsi_cmnd *ufshcd_get_dev_mgmt_cmd(struct ufs_hba *hba) 3273 { 3274 /* 3275 * The caller must hold this lock to guarantee that the NOWAIT 3276 * allocation will succeed. 3277 */ 3278 lockdep_assert_held(&hba->dev_cmd.lock); 3279 3280 return scsi_get_internal_cmd( 3281 hba->host->pseudo_sdev, DMA_TO_DEVICE, 3282 BLK_MQ_REQ_RESERVED | BLK_MQ_REQ_NOWAIT); 3283 } 3284 3285 static void ufshcd_put_dev_mgmt_cmd(struct scsi_cmnd *cmd) 3286 { 3287 scsi_put_internal_cmd(cmd); 3288 } 3289 3290 /* 3291 * Return: 0 upon success; > 0 in case the UFS device reported an OCS error; 3292 * < 0 if another error occurred. 3293 */ 3294 static int ufshcd_issue_dev_cmd(struct ufs_hba *hba, struct scsi_cmnd *cmd, 3295 const u32 tag, int timeout) 3296 { 3297 struct ufshcd_lrb *lrbp = scsi_cmd_priv(cmd); 3298 struct request *rq = scsi_cmd_to_rq(cmd); 3299 blk_status_t sts; 3300 3301 rq->timeout = timeout; 3302 sts = blk_execute_rq(rq, true); 3303 if (sts != BLK_STS_OK) 3304 return blk_status_to_errno(sts); 3305 return lrbp->utr_descriptor_ptr->header.ocs; 3306 } 3307 3308 /** 3309 * ufshcd_exec_dev_cmd - API for sending device management requests 3310 * @hba: UFS hba 3311 * @cmd_type: specifies the type (NOP, Query...) 3312 * @timeout: timeout in milliseconds 3313 * 3314 * Return: 0 upon success; > 0 in case the UFS device reported an OCS error; 3315 * < 0 if another error occurred. 3316 * 3317 * NOTE: Since there is only one available tag for device management commands, 3318 * it is expected you hold the hba->dev_cmd.lock mutex. 3319 */ 3320 static int ufshcd_exec_dev_cmd(struct ufs_hba *hba, 3321 enum dev_cmd_type cmd_type, int timeout) 3322 { 3323 struct scsi_cmnd *cmd = ufshcd_get_dev_mgmt_cmd(hba); 3324 struct ufshcd_lrb *lrbp = scsi_cmd_priv(cmd); 3325 u32 tag; 3326 int err; 3327 3328 /* Protects use of hba->dev_cmd. */ 3329 lockdep_assert_held(&hba->dev_cmd.lock); 3330 3331 if (WARN_ON_ONCE(!cmd)) 3332 return -ENOMEM; 3333 3334 tag = scsi_cmd_to_rq(cmd)->tag; 3335 3336 err = ufshcd_compose_dev_cmd(hba, cmd, cmd_type, tag); 3337 if (unlikely(err)) 3338 goto out; 3339 3340 err = ufshcd_issue_dev_cmd(hba, cmd, tag, timeout); 3341 if (err == 0) 3342 err = ufshcd_dev_cmd_completion(hba, lrbp); 3343 3344 out: 3345 ufshcd_put_dev_mgmt_cmd(cmd); 3346 3347 return err; 3348 } 3349 3350 /** 3351 * ufshcd_init_query() - init the query response and request parameters 3352 * @hba: per-adapter instance 3353 * @request: address of the request pointer to be initialized 3354 * @response: address of the response pointer to be initialized 3355 * @opcode: operation to perform 3356 * @idn: flag idn to access 3357 * @index: LU number to access 3358 * @selector: query/flag/descriptor further identification 3359 */ 3360 static inline void ufshcd_init_query(struct ufs_hba *hba, 3361 struct ufs_query_req **request, struct ufs_query_res **response, 3362 enum query_opcode opcode, u8 idn, u8 index, u8 selector) 3363 { 3364 *request = &hba->dev_cmd.query.request; 3365 *response = &hba->dev_cmd.query.response; 3366 memset(*request, 0, sizeof(struct ufs_query_req)); 3367 memset(*response, 0, sizeof(struct ufs_query_res)); 3368 (*request)->upiu_req.opcode = opcode; 3369 (*request)->upiu_req.idn = idn; 3370 (*request)->upiu_req.index = index; 3371 (*request)->upiu_req.selector = selector; 3372 } 3373 3374 /* 3375 * Return: 0 upon success; > 0 in case the UFS device reported an OCS error; 3376 * < 0 if another error occurred. 3377 */ 3378 static int ufshcd_query_flag_retry(struct ufs_hba *hba, 3379 enum query_opcode opcode, enum flag_idn idn, u8 index, bool *flag_res) 3380 { 3381 int ret; 3382 int retries; 3383 3384 for (retries = 0; retries < QUERY_REQ_RETRIES; retries++) { 3385 ret = ufshcd_query_flag(hba, opcode, idn, index, flag_res); 3386 if (ret) 3387 dev_dbg(hba->dev, 3388 "%s: failed with error %d, retries %d\n", 3389 __func__, ret, retries); 3390 else 3391 break; 3392 } 3393 3394 if (ret) 3395 dev_err(hba->dev, 3396 "%s: query flag, opcode %d, idn %d, failed with error %d after %d retries\n", 3397 __func__, opcode, idn, ret, retries); 3398 return ret; 3399 } 3400 3401 /** 3402 * ufshcd_query_flag() - API function for sending flag query requests 3403 * @hba: per-adapter instance 3404 * @opcode: flag query to perform 3405 * @idn: flag idn to access 3406 * @index: flag index to access 3407 * @flag_res: the flag value after the query request completes 3408 * 3409 * Return: 0 upon success; > 0 in case the UFS device reported an OCS error; 3410 * < 0 if another error occurred. 3411 */ 3412 int ufshcd_query_flag(struct ufs_hba *hba, enum query_opcode opcode, 3413 enum flag_idn idn, u8 index, bool *flag_res) 3414 { 3415 struct ufs_query_req *request = NULL; 3416 struct ufs_query_res *response = NULL; 3417 int err, selector = 0; 3418 int timeout = dev_cmd_timeout; 3419 3420 BUG_ON(!hba); 3421 3422 ufshcd_dev_man_lock(hba); 3423 3424 ufshcd_init_query(hba, &request, &response, opcode, idn, index, 3425 selector); 3426 3427 switch (opcode) { 3428 case UPIU_QUERY_OPCODE_SET_FLAG: 3429 case UPIU_QUERY_OPCODE_CLEAR_FLAG: 3430 case UPIU_QUERY_OPCODE_TOGGLE_FLAG: 3431 request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST; 3432 break; 3433 case UPIU_QUERY_OPCODE_READ_FLAG: 3434 request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST; 3435 if (!flag_res) { 3436 /* No dummy reads */ 3437 dev_err(hba->dev, "%s: Invalid argument for read request\n", 3438 __func__); 3439 err = -EINVAL; 3440 goto out_unlock; 3441 } 3442 break; 3443 default: 3444 dev_err(hba->dev, 3445 "%s: Expected query flag opcode but got = %d\n", 3446 __func__, opcode); 3447 err = -EINVAL; 3448 goto out_unlock; 3449 } 3450 3451 err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, timeout); 3452 3453 if (err) { 3454 dev_err(hba->dev, 3455 "%s: Sending flag query for idn %d failed, err = %d\n", 3456 __func__, idn, err); 3457 goto out_unlock; 3458 } 3459 3460 if (flag_res) 3461 *flag_res = (be32_to_cpu(response->upiu_res.value) & 3462 MASK_QUERY_UPIU_FLAG_LOC) & 0x1; 3463 3464 out_unlock: 3465 ufshcd_dev_man_unlock(hba); 3466 return err; 3467 } 3468 3469 /** 3470 * ufshcd_query_attr - API function for sending attribute requests 3471 * @hba: per-adapter instance 3472 * @opcode: attribute opcode 3473 * @idn: attribute idn to access 3474 * @index: index field 3475 * @selector: selector field 3476 * @attr_val: the attribute value after the query request completes 3477 * 3478 * Return: 0 upon success; > 0 in case the UFS device reported an OCS error; 3479 * < 0 if another error occurred. 3480 */ 3481 int ufshcd_query_attr(struct ufs_hba *hba, enum query_opcode opcode, 3482 enum attr_idn idn, u8 index, u8 selector, u32 *attr_val) 3483 { 3484 struct ufs_query_req *request = NULL; 3485 struct ufs_query_res *response = NULL; 3486 int err; 3487 3488 BUG_ON(!hba); 3489 3490 if (!attr_val) { 3491 dev_err(hba->dev, "%s: attribute value required for opcode 0x%x\n", 3492 __func__, opcode); 3493 return -EINVAL; 3494 } 3495 3496 ufshcd_dev_man_lock(hba); 3497 3498 ufshcd_init_query(hba, &request, &response, opcode, idn, index, 3499 selector); 3500 3501 switch (opcode) { 3502 case UPIU_QUERY_OPCODE_WRITE_ATTR: 3503 request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST; 3504 request->upiu_req.value = cpu_to_be32(*attr_val); 3505 break; 3506 case UPIU_QUERY_OPCODE_READ_ATTR: 3507 request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST; 3508 break; 3509 default: 3510 dev_err(hba->dev, "%s: Expected query attr opcode but got = 0x%.2x\n", 3511 __func__, opcode); 3512 err = -EINVAL; 3513 goto out_unlock; 3514 } 3515 3516 err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, dev_cmd_timeout); 3517 3518 if (err) { 3519 dev_err(hba->dev, "%s: opcode 0x%.2x for idn %d failed, index %d, err = %d\n", 3520 __func__, opcode, idn, index, err); 3521 goto out_unlock; 3522 } 3523 3524 *attr_val = be32_to_cpu(response->upiu_res.value); 3525 3526 out_unlock: 3527 ufshcd_dev_man_unlock(hba); 3528 return err; 3529 } 3530 3531 /** 3532 * ufshcd_query_attr_retry() - API function for sending query 3533 * attribute with retries 3534 * @hba: per-adapter instance 3535 * @opcode: attribute opcode 3536 * @idn: attribute idn to access 3537 * @index: index field 3538 * @selector: selector field 3539 * @attr_val: the attribute value after the query request 3540 * completes 3541 * 3542 * Return: 0 upon success; > 0 in case the UFS device reported an OCS error; 3543 * < 0 if another error occurred. 3544 */ 3545 int ufshcd_query_attr_retry(struct ufs_hba *hba, 3546 enum query_opcode opcode, enum attr_idn idn, u8 index, u8 selector, 3547 u32 *attr_val) 3548 { 3549 int ret = 0; 3550 u32 retries; 3551 3552 for (retries = QUERY_REQ_RETRIES; retries > 0; retries--) { 3553 ret = ufshcd_query_attr(hba, opcode, idn, index, 3554 selector, attr_val); 3555 if (ret) 3556 dev_dbg(hba->dev, "%s: failed with error %d, retries %d\n", 3557 __func__, ret, retries); 3558 else 3559 break; 3560 } 3561 3562 if (ret) 3563 dev_err(hba->dev, 3564 "%s: query attribute, idn %d, failed with error %d after %d retries\n", 3565 __func__, idn, ret, QUERY_REQ_RETRIES); 3566 return ret; 3567 } 3568 3569 /* 3570 * Return: 0 upon success; > 0 in case the UFS device reported an OCS error; 3571 * < 0 if another error occurred. 3572 */ 3573 static int __ufshcd_query_descriptor(struct ufs_hba *hba, 3574 enum query_opcode opcode, enum desc_idn idn, u8 index, 3575 u8 selector, u8 *desc_buf, int *buf_len) 3576 { 3577 struct ufs_query_req *request = NULL; 3578 struct ufs_query_res *response = NULL; 3579 int err; 3580 3581 BUG_ON(!hba); 3582 3583 if (!desc_buf) { 3584 dev_err(hba->dev, "%s: descriptor buffer required for opcode 0x%x\n", 3585 __func__, opcode); 3586 return -EINVAL; 3587 } 3588 3589 if (*buf_len < QUERY_DESC_MIN_SIZE || *buf_len > QUERY_DESC_MAX_SIZE) { 3590 dev_err(hba->dev, "%s: descriptor buffer size (%d) is out of range\n", 3591 __func__, *buf_len); 3592 return -EINVAL; 3593 } 3594 3595 ufshcd_dev_man_lock(hba); 3596 3597 ufshcd_init_query(hba, &request, &response, opcode, idn, index, 3598 selector); 3599 hba->dev_cmd.query.descriptor = desc_buf; 3600 request->upiu_req.length = cpu_to_be16(*buf_len); 3601 3602 switch (opcode) { 3603 case UPIU_QUERY_OPCODE_WRITE_DESC: 3604 request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST; 3605 break; 3606 case UPIU_QUERY_OPCODE_READ_DESC: 3607 request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST; 3608 break; 3609 default: 3610 dev_err(hba->dev, 3611 "%s: Expected query descriptor opcode but got = 0x%.2x\n", 3612 __func__, opcode); 3613 err = -EINVAL; 3614 goto out_unlock; 3615 } 3616 3617 err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, dev_cmd_timeout); 3618 3619 if (err) { 3620 dev_err(hba->dev, "%s: opcode 0x%.2x for idn %d failed, index %d, err = %d\n", 3621 __func__, opcode, idn, index, err); 3622 goto out_unlock; 3623 } 3624 3625 *buf_len = be16_to_cpu(response->upiu_res.length); 3626 3627 out_unlock: 3628 hba->dev_cmd.query.descriptor = NULL; 3629 ufshcd_dev_man_unlock(hba); 3630 return err; 3631 } 3632 3633 /** 3634 * ufshcd_query_descriptor_retry - API function for sending descriptor requests 3635 * @hba: per-adapter instance 3636 * @opcode: attribute opcode 3637 * @idn: attribute idn to access 3638 * @index: index field 3639 * @selector: selector field 3640 * @desc_buf: the buffer that contains the descriptor 3641 * @buf_len: length parameter passed to the device 3642 * 3643 * The buf_len parameter will contain, on return, the length parameter 3644 * received on the response. 3645 * 3646 * Return: 0 upon success; > 0 in case the UFS device reported an OCS error; 3647 * < 0 if another error occurred. 3648 */ 3649 int ufshcd_query_descriptor_retry(struct ufs_hba *hba, 3650 enum query_opcode opcode, 3651 enum desc_idn idn, u8 index, 3652 u8 selector, 3653 u8 *desc_buf, int *buf_len) 3654 { 3655 int err; 3656 int retries; 3657 3658 for (retries = QUERY_REQ_RETRIES; retries > 0; retries--) { 3659 err = __ufshcd_query_descriptor(hba, opcode, idn, index, 3660 selector, desc_buf, buf_len); 3661 if (!err || err == -EINVAL) 3662 break; 3663 } 3664 3665 return err; 3666 } 3667 3668 /** 3669 * ufshcd_read_desc_param - read the specified descriptor parameter 3670 * @hba: Pointer to adapter instance 3671 * @desc_id: descriptor idn value 3672 * @desc_index: descriptor index 3673 * @param_offset: offset of the parameter to read 3674 * @param_read_buf: pointer to buffer where parameter would be read 3675 * @param_size: sizeof(param_read_buf) 3676 * 3677 * Return: 0 upon success; > 0 in case the UFS device reported an OCS error; 3678 * < 0 if another error occurred. 3679 */ 3680 int ufshcd_read_desc_param(struct ufs_hba *hba, 3681 enum desc_idn desc_id, 3682 int desc_index, 3683 u8 param_offset, 3684 u8 *param_read_buf, 3685 u8 param_size) 3686 { 3687 int ret; 3688 u8 *desc_buf; 3689 int buff_len = QUERY_DESC_MAX_SIZE; 3690 bool is_kmalloc = true; 3691 3692 /* Safety check */ 3693 if (desc_id >= QUERY_DESC_IDN_MAX || !param_size) 3694 return -EINVAL; 3695 3696 /* Check whether we need temp memory */ 3697 if (param_offset != 0 || param_size < buff_len) { 3698 desc_buf = kzalloc(buff_len, GFP_KERNEL); 3699 if (!desc_buf) 3700 return -ENOMEM; 3701 } else { 3702 desc_buf = param_read_buf; 3703 is_kmalloc = false; 3704 } 3705 3706 /* Request for full descriptor */ 3707 ret = ufshcd_query_descriptor_retry(hba, UPIU_QUERY_OPCODE_READ_DESC, 3708 desc_id, desc_index, 0, 3709 desc_buf, &buff_len); 3710 if (ret) { 3711 dev_err(hba->dev, "%s: Failed reading descriptor. desc_id %d, desc_index %d, param_offset %d, ret %d\n", 3712 __func__, desc_id, desc_index, param_offset, ret); 3713 goto out; 3714 } 3715 3716 /* Update descriptor length */ 3717 buff_len = desc_buf[QUERY_DESC_LENGTH_OFFSET]; 3718 3719 if (param_offset >= buff_len) { 3720 dev_err(hba->dev, "%s: Invalid offset 0x%x in descriptor IDN 0x%x, length 0x%x\n", 3721 __func__, param_offset, desc_id, buff_len); 3722 ret = -EINVAL; 3723 goto out; 3724 } 3725 3726 /* Sanity check */ 3727 if (desc_buf[QUERY_DESC_DESC_TYPE_OFFSET] != desc_id) { 3728 dev_err(hba->dev, "%s: invalid desc_id %d in descriptor header\n", 3729 __func__, desc_buf[QUERY_DESC_DESC_TYPE_OFFSET]); 3730 ret = -EINVAL; 3731 goto out; 3732 } 3733 3734 if (is_kmalloc) { 3735 /* Make sure we don't copy more data than available */ 3736 if (param_offset >= buff_len) 3737 ret = -EINVAL; 3738 else 3739 memcpy(param_read_buf, &desc_buf[param_offset], 3740 min_t(u32, param_size, buff_len - param_offset)); 3741 } 3742 out: 3743 if (is_kmalloc) 3744 kfree(desc_buf); 3745 return ret; 3746 } 3747 3748 /** 3749 * struct uc_string_id - unicode string 3750 * 3751 * @len: size of this descriptor inclusive 3752 * @type: descriptor type 3753 * @uc: unicode string character 3754 */ 3755 struct uc_string_id { 3756 u8 len; 3757 u8 type; 3758 wchar_t uc[]; 3759 } __packed; 3760 3761 /* replace non-printable or non-ASCII characters with spaces */ 3762 static inline char ufshcd_remove_non_printable(u8 ch) 3763 { 3764 return (ch >= 0x20 && ch <= 0x7e) ? ch : ' '; 3765 } 3766 3767 /** 3768 * ufshcd_read_string_desc - read string descriptor 3769 * @hba: pointer to adapter instance 3770 * @desc_index: descriptor index 3771 * @buf: pointer to buffer where descriptor would be read, 3772 * the caller should free the memory. 3773 * @fmt: if %SD_ASCII_STD, convert from UTF-16 to ASCII 3774 * 3775 * Return: 3776 * * string size on success. 3777 * * -ENOMEM: on allocation failure 3778 * * -EINVAL: on a wrong parameter 3779 */ 3780 int ufshcd_read_string_desc(struct ufs_hba *hba, u8 desc_index, u8 **buf, enum ufs_descr_fmt fmt) 3781 { 3782 struct uc_string_id *uc_str; 3783 u8 *str; 3784 int ret; 3785 3786 if (!buf) 3787 return -EINVAL; 3788 3789 uc_str = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL); 3790 if (!uc_str) 3791 return -ENOMEM; 3792 3793 ret = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_STRING, desc_index, 0, 3794 (u8 *)uc_str, QUERY_DESC_MAX_SIZE); 3795 if (ret < 0) { 3796 dev_err(hba->dev, "Reading String Desc failed after %d retries. err = %d\n", 3797 QUERY_REQ_RETRIES, ret); 3798 str = NULL; 3799 goto out; 3800 } 3801 3802 if (uc_str->len <= QUERY_DESC_HDR_SIZE) { 3803 dev_dbg(hba->dev, "String Desc is of zero length\n"); 3804 str = NULL; 3805 ret = 0; 3806 goto out; 3807 } 3808 3809 if (fmt == SD_ASCII_STD) { 3810 ssize_t ascii_len; 3811 int i; 3812 /* remove header and divide by 2 to move from UTF16 to UTF8 */ 3813 ascii_len = (uc_str->len - QUERY_DESC_HDR_SIZE) / 2 + 1; 3814 str = kzalloc(ascii_len, GFP_KERNEL); 3815 if (!str) { 3816 ret = -ENOMEM; 3817 goto out; 3818 } 3819 3820 /* 3821 * the descriptor contains string in UTF16 format 3822 * we need to convert to utf-8 so it can be displayed 3823 */ 3824 ret = utf16s_to_utf8s(uc_str->uc, 3825 uc_str->len - QUERY_DESC_HDR_SIZE, 3826 UTF16_BIG_ENDIAN, str, ascii_len - 1); 3827 3828 /* replace non-printable or non-ASCII characters with spaces */ 3829 for (i = 0; i < ret; i++) 3830 str[i] = ufshcd_remove_non_printable(str[i]); 3831 3832 str[ret++] = '\0'; 3833 3834 } else { 3835 str = kmemdup(uc_str->uc, uc_str->len, GFP_KERNEL); 3836 if (!str) { 3837 ret = -ENOMEM; 3838 goto out; 3839 } 3840 ret = uc_str->len; 3841 } 3842 out: 3843 *buf = str; 3844 kfree(uc_str); 3845 return ret; 3846 } 3847 3848 /** 3849 * ufshcd_read_unit_desc_param - read the specified unit descriptor parameter 3850 * @hba: Pointer to adapter instance 3851 * @lun: lun id 3852 * @param_offset: offset of the parameter to read 3853 * @param_read_buf: pointer to buffer where parameter would be read 3854 * @param_size: sizeof(param_read_buf) 3855 * 3856 * Return: 0 in case of success; < 0 upon failure. 3857 */ 3858 static inline int ufshcd_read_unit_desc_param(struct ufs_hba *hba, 3859 int lun, 3860 enum unit_desc_param param_offset, 3861 u8 *param_read_buf, 3862 u32 param_size) 3863 { 3864 /* 3865 * Unit descriptors are only available for general purpose LUs (LUN id 3866 * from 0 to 7) and RPMB Well known LU. 3867 */ 3868 if (!ufs_is_valid_unit_desc_lun(&hba->dev_info, lun)) 3869 return -EOPNOTSUPP; 3870 3871 return ufshcd_read_desc_param(hba, QUERY_DESC_IDN_UNIT, lun, 3872 param_offset, param_read_buf, param_size); 3873 } 3874 3875 static int ufshcd_get_ref_clk_gating_wait(struct ufs_hba *hba) 3876 { 3877 int err = 0; 3878 u32 gating_wait = UFSHCD_REF_CLK_GATING_WAIT_US; 3879 3880 if (hba->dev_info.wspecversion >= 0x300) { 3881 err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR, 3882 QUERY_ATTR_IDN_REF_CLK_GATING_WAIT_TIME, 0, 0, 3883 &gating_wait); 3884 if (err) 3885 dev_err(hba->dev, "Failed reading bRefClkGatingWait. err = %d, use default %uus\n", 3886 err, gating_wait); 3887 3888 if (gating_wait == 0) { 3889 gating_wait = UFSHCD_REF_CLK_GATING_WAIT_US; 3890 dev_err(hba->dev, "Undefined ref clk gating wait time, use default %uus\n", 3891 gating_wait); 3892 } 3893 3894 hba->dev_info.clk_gating_wait_us = gating_wait; 3895 } 3896 3897 return err; 3898 } 3899 3900 /** 3901 * ufshcd_memory_alloc - allocate memory for host memory space data structures 3902 * @hba: per adapter instance 3903 * 3904 * 1. Allocate DMA memory for Command Descriptor array 3905 * Each command descriptor consist of Command UPIU, Response UPIU and PRDT 3906 * 2. Allocate DMA memory for UTP Transfer Request Descriptor List (UTRDL). 3907 * 3. Allocate DMA memory for UTP Task Management Request Descriptor List 3908 * (UTMRDL) 3909 * 4. Allocate memory for local reference block(lrb). 3910 * 3911 * Return: 0 for success, non-zero in case of failure. 3912 */ 3913 static int ufshcd_memory_alloc(struct ufs_hba *hba) 3914 { 3915 size_t utmrdl_size, utrdl_size, ucdl_size; 3916 3917 /* Allocate memory for UTP command descriptors */ 3918 ucdl_size = ufshcd_get_ucd_size(hba) * hba->nutrs; 3919 hba->ucdl_base_addr = dmam_alloc_coherent(hba->dev, 3920 ucdl_size, 3921 &hba->ucdl_dma_addr, 3922 GFP_KERNEL); 3923 3924 /* 3925 * UFSHCI requires UTP command descriptor to be 128 byte aligned. 3926 */ 3927 if (!hba->ucdl_base_addr || 3928 WARN_ON(hba->ucdl_dma_addr & (128 - 1))) { 3929 dev_err(hba->dev, 3930 "Command Descriptor Memory allocation failed\n"); 3931 goto out; 3932 } 3933 3934 /* 3935 * Allocate memory for UTP Transfer descriptors 3936 * UFSHCI requires 1KB alignment of UTRD 3937 */ 3938 utrdl_size = (sizeof(struct utp_transfer_req_desc) * hba->nutrs); 3939 hba->utrdl_base_addr = dmam_alloc_coherent(hba->dev, 3940 utrdl_size, 3941 &hba->utrdl_dma_addr, 3942 GFP_KERNEL); 3943 if (!hba->utrdl_base_addr || 3944 WARN_ON(hba->utrdl_dma_addr & (SZ_1K - 1))) { 3945 dev_err(hba->dev, 3946 "Transfer Descriptor Memory allocation failed\n"); 3947 goto out; 3948 } 3949 3950 /* 3951 * Skip utmrdl allocation; it may have been 3952 * allocated during first pass and not released during 3953 * MCQ memory allocation. 3954 * See ufshcd_release_sdb_queue() and ufshcd_config_mcq() 3955 */ 3956 if (hba->utmrdl_base_addr) 3957 goto skip_utmrdl; 3958 /* 3959 * Allocate memory for UTP Task Management descriptors 3960 * UFSHCI requires 1KB alignment of UTMRD 3961 */ 3962 utmrdl_size = sizeof(struct utp_task_req_desc) * hba->nutmrs; 3963 hba->utmrdl_base_addr = dmam_alloc_coherent(hba->dev, 3964 utmrdl_size, 3965 &hba->utmrdl_dma_addr, 3966 GFP_KERNEL); 3967 if (!hba->utmrdl_base_addr || 3968 WARN_ON(hba->utmrdl_dma_addr & (SZ_1K - 1))) { 3969 dev_err(hba->dev, 3970 "Task Management Descriptor Memory allocation failed\n"); 3971 goto out; 3972 } 3973 3974 skip_utmrdl: 3975 return 0; 3976 out: 3977 return -ENOMEM; 3978 } 3979 3980 /** 3981 * ufshcd_host_memory_configure - configure local reference block with 3982 * memory offsets 3983 * @hba: per adapter instance 3984 * 3985 * Configure Host memory space 3986 * 1. Update Corresponding UTRD.UCDBA and UTRD.UCDBAU with UCD DMA 3987 * address. 3988 * 2. Update each UTRD with Response UPIU offset, Response UPIU length 3989 * and PRDT offset. 3990 * 3. Save the corresponding addresses of UTRD, UCD.CMD, UCD.RSP and UCD.PRDT 3991 * into local reference block. 3992 */ 3993 static void ufshcd_host_memory_configure(struct ufs_hba *hba) 3994 { 3995 struct utp_transfer_req_desc *utrdlp; 3996 dma_addr_t cmd_desc_dma_addr; 3997 dma_addr_t cmd_desc_element_addr; 3998 u16 response_offset; 3999 u16 prdt_offset; 4000 int cmd_desc_size; 4001 int i; 4002 4003 utrdlp = hba->utrdl_base_addr; 4004 4005 response_offset = 4006 offsetof(struct utp_transfer_cmd_desc, response_upiu); 4007 prdt_offset = 4008 offsetof(struct utp_transfer_cmd_desc, prd_table); 4009 4010 cmd_desc_size = ufshcd_get_ucd_size(hba); 4011 cmd_desc_dma_addr = hba->ucdl_dma_addr; 4012 4013 for (i = 0; i < hba->nutrs; i++) { 4014 /* Configure UTRD with command descriptor base address */ 4015 cmd_desc_element_addr = 4016 (cmd_desc_dma_addr + (cmd_desc_size * i)); 4017 utrdlp[i].command_desc_base_addr = 4018 cpu_to_le64(cmd_desc_element_addr); 4019 4020 /* Response upiu and prdt offset should be in double words */ 4021 if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN) { 4022 utrdlp[i].response_upiu_offset = 4023 cpu_to_le16(response_offset); 4024 utrdlp[i].prd_table_offset = 4025 cpu_to_le16(prdt_offset); 4026 utrdlp[i].response_upiu_length = 4027 cpu_to_le16(ALIGNED_UPIU_SIZE); 4028 } else { 4029 utrdlp[i].response_upiu_offset = 4030 cpu_to_le16(response_offset >> 2); 4031 utrdlp[i].prd_table_offset = 4032 cpu_to_le16(prdt_offset >> 2); 4033 utrdlp[i].response_upiu_length = 4034 cpu_to_le16(ALIGNED_UPIU_SIZE >> 2); 4035 } 4036 } 4037 } 4038 4039 /** 4040 * ufshcd_dme_link_startup - Notify Unipro to perform link startup 4041 * @hba: per adapter instance 4042 * 4043 * UIC_CMD_DME_LINK_STARTUP command must be issued to Unipro layer, 4044 * in order to initialize the Unipro link startup procedure. 4045 * Once the Unipro links are up, the device connected to the controller 4046 * is detected. 4047 * 4048 * Return: 0 on success, non-zero value on failure. 4049 */ 4050 static int ufshcd_dme_link_startup(struct ufs_hba *hba) 4051 { 4052 struct uic_command uic_cmd = { 4053 .command = UIC_CMD_DME_LINK_STARTUP, 4054 }; 4055 int ret; 4056 4057 ret = ufshcd_send_uic_cmd(hba, &uic_cmd); 4058 if (ret) 4059 dev_dbg(hba->dev, 4060 "dme-link-startup: error code %d\n", ret); 4061 return ret; 4062 } 4063 /** 4064 * ufshcd_dme_reset - UIC command for DME_RESET 4065 * @hba: per adapter instance 4066 * 4067 * DME_RESET command is issued in order to reset UniPro stack. 4068 * This function now deals with cold reset. 4069 * 4070 * Return: 0 on success, non-zero value on failure. 4071 */ 4072 int ufshcd_dme_reset(struct ufs_hba *hba) 4073 { 4074 struct uic_command uic_cmd = { 4075 .command = UIC_CMD_DME_RESET, 4076 }; 4077 int ret; 4078 4079 ret = ufshcd_send_uic_cmd(hba, &uic_cmd); 4080 if (ret) 4081 dev_err(hba->dev, 4082 "dme-reset: error code %d\n", ret); 4083 4084 return ret; 4085 } 4086 EXPORT_SYMBOL_GPL(ufshcd_dme_reset); 4087 4088 int ufshcd_dme_configure_adapt(struct ufs_hba *hba, 4089 int agreed_gear, 4090 int adapt_val) 4091 { 4092 int ret; 4093 4094 if (agreed_gear < UFS_HS_G4) 4095 adapt_val = PA_NO_ADAPT; 4096 4097 ret = ufshcd_dme_set(hba, 4098 UIC_ARG_MIB(PA_TXHSADAPTTYPE), 4099 adapt_val); 4100 return ret; 4101 } 4102 EXPORT_SYMBOL_GPL(ufshcd_dme_configure_adapt); 4103 4104 /** 4105 * ufshcd_dme_enable - UIC command for DME_ENABLE 4106 * @hba: per adapter instance 4107 * 4108 * DME_ENABLE command is issued in order to enable UniPro stack. 4109 * 4110 * Return: 0 on success, non-zero value on failure. 4111 */ 4112 int ufshcd_dme_enable(struct ufs_hba *hba) 4113 { 4114 struct uic_command uic_cmd = { 4115 .command = UIC_CMD_DME_ENABLE, 4116 }; 4117 int ret; 4118 4119 ret = ufshcd_send_uic_cmd(hba, &uic_cmd); 4120 if (ret) 4121 dev_err(hba->dev, 4122 "dme-enable: error code %d\n", ret); 4123 4124 return ret; 4125 } 4126 EXPORT_SYMBOL_GPL(ufshcd_dme_enable); 4127 4128 static inline void ufshcd_add_delay_before_dme_cmd(struct ufs_hba *hba) 4129 { 4130 #define MIN_DELAY_BEFORE_DME_CMDS_US 1000 4131 unsigned long min_sleep_time_us; 4132 4133 if (!(hba->quirks & UFSHCD_QUIRK_DELAY_BEFORE_DME_CMDS)) 4134 return; 4135 4136 /* 4137 * last_dme_cmd_tstamp will be 0 only for 1st call to 4138 * this function 4139 */ 4140 if (unlikely(!ktime_to_us(hba->last_dme_cmd_tstamp))) { 4141 min_sleep_time_us = MIN_DELAY_BEFORE_DME_CMDS_US; 4142 } else { 4143 unsigned long delta = 4144 (unsigned long) ktime_to_us( 4145 ktime_sub(ktime_get(), 4146 hba->last_dme_cmd_tstamp)); 4147 4148 if (delta < MIN_DELAY_BEFORE_DME_CMDS_US) 4149 min_sleep_time_us = 4150 MIN_DELAY_BEFORE_DME_CMDS_US - delta; 4151 else 4152 min_sleep_time_us = 0; /* no more delay required */ 4153 } 4154 4155 if (min_sleep_time_us > 0) { 4156 /* allow sleep for extra 50us if needed */ 4157 usleep_range(min_sleep_time_us, min_sleep_time_us + 50); 4158 } 4159 4160 /* update the last_dme_cmd_tstamp */ 4161 hba->last_dme_cmd_tstamp = ktime_get(); 4162 } 4163 4164 /** 4165 * ufshcd_dme_set_attr - UIC command for DME_SET, DME_PEER_SET 4166 * @hba: per adapter instance 4167 * @attr_sel: uic command argument1 4168 * @attr_set: attribute set type as uic command argument2 4169 * @mib_val: setting value as uic command argument3 4170 * @peer: indicate whether peer or local 4171 * 4172 * Return: 0 on success, non-zero value on failure. 4173 */ 4174 int ufshcd_dme_set_attr(struct ufs_hba *hba, u32 attr_sel, 4175 u8 attr_set, u32 mib_val, u8 peer) 4176 { 4177 struct uic_command uic_cmd = { 4178 .command = peer ? UIC_CMD_DME_PEER_SET : UIC_CMD_DME_SET, 4179 .argument1 = attr_sel, 4180 .argument2 = UIC_ARG_ATTR_TYPE(attr_set), 4181 .argument3 = mib_val, 4182 }; 4183 static const char *const action[] = { 4184 "dme-set", 4185 "dme-peer-set" 4186 }; 4187 const char *set = action[!!peer]; 4188 int ret; 4189 int retries = UFS_UIC_COMMAND_RETRIES; 4190 4191 do { 4192 /* for peer attributes we retry upon failure */ 4193 ret = ufshcd_send_uic_cmd(hba, &uic_cmd); 4194 if (ret) 4195 dev_dbg(hba->dev, "%s: attr-id 0x%x val 0x%x error code %d\n", 4196 set, UIC_GET_ATTR_ID(attr_sel), mib_val, ret); 4197 } while (ret && peer && --retries); 4198 4199 if (ret) 4200 dev_err(hba->dev, "%s: attr-id 0x%x val 0x%x failed %d retries\n", 4201 set, UIC_GET_ATTR_ID(attr_sel), mib_val, 4202 UFS_UIC_COMMAND_RETRIES - retries); 4203 4204 return ret; 4205 } 4206 EXPORT_SYMBOL_GPL(ufshcd_dme_set_attr); 4207 4208 /** 4209 * ufshcd_dme_get_attr - UIC command for DME_GET, DME_PEER_GET 4210 * @hba: per adapter instance 4211 * @attr_sel: uic command argument1 4212 * @mib_val: the value of the attribute as returned by the UIC command 4213 * @peer: indicate whether peer or local 4214 * 4215 * Return: 0 on success, non-zero value on failure. 4216 */ 4217 int ufshcd_dme_get_attr(struct ufs_hba *hba, u32 attr_sel, 4218 u32 *mib_val, u8 peer) 4219 { 4220 struct uic_command uic_cmd = { 4221 .command = peer ? UIC_CMD_DME_PEER_GET : UIC_CMD_DME_GET, 4222 .argument1 = attr_sel, 4223 }; 4224 static const char *const action[] = { 4225 "dme-get", 4226 "dme-peer-get" 4227 }; 4228 const char *get = action[!!peer]; 4229 int ret; 4230 int retries = UFS_UIC_COMMAND_RETRIES; 4231 struct ufs_pa_layer_attr orig_pwr_info; 4232 struct ufs_pa_layer_attr temp_pwr_info; 4233 bool pwr_mode_change = false; 4234 4235 if (peer && (hba->quirks & UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE)) { 4236 orig_pwr_info = hba->pwr_info; 4237 temp_pwr_info = orig_pwr_info; 4238 4239 if (orig_pwr_info.pwr_tx == FAST_MODE || 4240 orig_pwr_info.pwr_rx == FAST_MODE) { 4241 temp_pwr_info.pwr_tx = FASTAUTO_MODE; 4242 temp_pwr_info.pwr_rx = FASTAUTO_MODE; 4243 pwr_mode_change = true; 4244 } else if (orig_pwr_info.pwr_tx == SLOW_MODE || 4245 orig_pwr_info.pwr_rx == SLOW_MODE) { 4246 temp_pwr_info.pwr_tx = SLOWAUTO_MODE; 4247 temp_pwr_info.pwr_rx = SLOWAUTO_MODE; 4248 pwr_mode_change = true; 4249 } 4250 if (pwr_mode_change) { 4251 ret = ufshcd_change_power_mode(hba, &temp_pwr_info); 4252 if (ret) 4253 goto out; 4254 } 4255 } 4256 4257 do { 4258 /* for peer attributes we retry upon failure */ 4259 ret = ufshcd_send_uic_cmd(hba, &uic_cmd); 4260 if (ret) 4261 dev_dbg(hba->dev, "%s: attr-id 0x%x error code %d\n", 4262 get, UIC_GET_ATTR_ID(attr_sel), ret); 4263 } while (ret && peer && --retries); 4264 4265 if (ret) 4266 dev_err(hba->dev, "%s: attr-id 0x%x failed %d retries\n", 4267 get, UIC_GET_ATTR_ID(attr_sel), 4268 UFS_UIC_COMMAND_RETRIES - retries); 4269 4270 if (mib_val) 4271 *mib_val = ret == 0 ? uic_cmd.argument3 : 0; 4272 4273 if (peer && (hba->quirks & UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE) 4274 && pwr_mode_change) 4275 ufshcd_change_power_mode(hba, &orig_pwr_info); 4276 out: 4277 return ret; 4278 } 4279 EXPORT_SYMBOL_GPL(ufshcd_dme_get_attr); 4280 4281 /** 4282 * ufshcd_dme_rmw - get modify set a DME attribute 4283 * @hba: per adapter instance 4284 * @mask: indicates which bits to clear from the value that has been read 4285 * @val: actual value to write 4286 * @attr: dme attribute 4287 */ 4288 int ufshcd_dme_rmw(struct ufs_hba *hba, u32 mask, 4289 u32 val, u32 attr) 4290 { 4291 u32 cfg = 0; 4292 int err; 4293 4294 err = ufshcd_dme_get(hba, UIC_ARG_MIB(attr), &cfg); 4295 if (err) 4296 return err; 4297 4298 cfg &= ~mask; 4299 cfg |= (val & mask); 4300 4301 return ufshcd_dme_set(hba, UIC_ARG_MIB(attr), cfg); 4302 } 4303 EXPORT_SYMBOL_GPL(ufshcd_dme_rmw); 4304 4305 /** 4306 * ufshcd_uic_pwr_ctrl - executes UIC commands (which affects the link power 4307 * state) and waits for it to take effect. 4308 * 4309 * @hba: per adapter instance 4310 * @cmd: UIC command to execute 4311 * 4312 * DME operations like DME_SET(PA_PWRMODE), DME_HIBERNATE_ENTER & 4313 * DME_HIBERNATE_EXIT commands take some time to take its effect on both host 4314 * and device UniPro link and hence it's final completion would be indicated by 4315 * dedicated status bits in Interrupt Status register (UPMS, UHES, UHXS) in 4316 * addition to normal UIC command completion Status (UCCS). This function only 4317 * returns after the relevant status bits indicate the completion. 4318 * 4319 * Return: 0 on success, non-zero value on failure. 4320 */ 4321 static int ufshcd_uic_pwr_ctrl(struct ufs_hba *hba, struct uic_command *cmd) 4322 { 4323 DECLARE_COMPLETION_ONSTACK(uic_async_done); 4324 unsigned long flags; 4325 u8 status; 4326 int ret; 4327 4328 mutex_lock(&hba->uic_cmd_mutex); 4329 ufshcd_add_delay_before_dme_cmd(hba); 4330 4331 spin_lock_irqsave(hba->host->host_lock, flags); 4332 if (ufshcd_is_link_broken(hba)) { 4333 ret = -ENOLINK; 4334 goto out_unlock; 4335 } 4336 hba->uic_async_done = &uic_async_done; 4337 ufshcd_disable_intr(hba, UIC_COMMAND_COMPL); 4338 spin_unlock_irqrestore(hba->host->host_lock, flags); 4339 ret = __ufshcd_send_uic_cmd(hba, cmd); 4340 if (ret) { 4341 dev_err(hba->dev, 4342 "pwr ctrl cmd 0x%x with mode 0x%x uic error %d\n", 4343 cmd->command, cmd->argument3, ret); 4344 goto out; 4345 } 4346 4347 if (!wait_for_completion_timeout(hba->uic_async_done, 4348 msecs_to_jiffies(uic_cmd_timeout))) { 4349 dev_err(hba->dev, 4350 "pwr ctrl cmd 0x%x with mode 0x%x completion timeout\n", 4351 cmd->command, cmd->argument3); 4352 4353 if (!cmd->cmd_active) { 4354 dev_err(hba->dev, "%s: Power Mode Change operation has been completed, go check UPMCRS\n", 4355 __func__); 4356 goto check_upmcrs; 4357 } 4358 4359 ret = -ETIMEDOUT; 4360 goto out; 4361 } 4362 4363 check_upmcrs: 4364 status = ufshcd_get_upmcrs(hba); 4365 if (status != PWR_LOCAL) { 4366 dev_err(hba->dev, 4367 "pwr ctrl cmd 0x%x failed, host upmcrs:0x%x\n", 4368 cmd->command, status); 4369 ret = (status != PWR_OK) ? status : -1; 4370 } 4371 out: 4372 if (ret) { 4373 ufshcd_print_host_state(hba); 4374 ufshcd_print_pwr_info(hba); 4375 ufshcd_print_evt_hist(hba); 4376 } 4377 4378 spin_lock_irqsave(hba->host->host_lock, flags); 4379 hba->active_uic_cmd = NULL; 4380 hba->uic_async_done = NULL; 4381 if (ret && !hba->pm_op_in_progress) { 4382 ufshcd_set_link_broken(hba); 4383 ufshcd_schedule_eh_work(hba); 4384 } 4385 out_unlock: 4386 spin_unlock_irqrestore(hba->host->host_lock, flags); 4387 mutex_unlock(&hba->uic_cmd_mutex); 4388 4389 /* 4390 * If the h8 exit fails during the runtime resume process, it becomes 4391 * stuck and cannot be recovered through the error handler. To fix 4392 * this, use link recovery instead of the error handler. 4393 */ 4394 if (ret && hba->pm_op_in_progress) 4395 ret = ufshcd_link_recovery(hba); 4396 4397 return ret; 4398 } 4399 4400 /** 4401 * ufshcd_send_bsg_uic_cmd - Send UIC commands requested via BSG layer and retrieve the result 4402 * @hba: per adapter instance 4403 * @uic_cmd: UIC command 4404 * 4405 * Return: 0 only if success. 4406 */ 4407 int ufshcd_send_bsg_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd) 4408 { 4409 int ret; 4410 4411 if (uic_cmd->argument1 != UIC_ARG_MIB(PA_PWRMODE) || 4412 uic_cmd->command != UIC_CMD_DME_SET) 4413 return ufshcd_send_uic_cmd(hba, uic_cmd); 4414 4415 if (hba->quirks & UFSHCD_QUIRK_BROKEN_UIC_CMD) 4416 return 0; 4417 4418 ufshcd_hold(hba); 4419 ret = ufshcd_uic_pwr_ctrl(hba, uic_cmd); 4420 ufshcd_release(hba); 4421 4422 return ret; 4423 } 4424 4425 /** 4426 * ufshcd_uic_change_pwr_mode - Perform the UIC power mode chage 4427 * using DME_SET primitives. 4428 * @hba: per adapter instance 4429 * @mode: powr mode value 4430 * 4431 * Return: 0 on success, non-zero value on failure. 4432 */ 4433 int ufshcd_uic_change_pwr_mode(struct ufs_hba *hba, u8 mode) 4434 { 4435 struct uic_command uic_cmd = { 4436 .command = UIC_CMD_DME_SET, 4437 .argument1 = UIC_ARG_MIB(PA_PWRMODE), 4438 .argument3 = mode, 4439 }; 4440 int ret; 4441 4442 if (hba->quirks & UFSHCD_QUIRK_BROKEN_PA_RXHSUNTERMCAP) { 4443 ret = ufshcd_dme_set(hba, 4444 UIC_ARG_MIB_SEL(PA_RXHSUNTERMCAP, 0), 1); 4445 if (ret) { 4446 dev_err(hba->dev, "%s: failed to enable PA_RXHSUNTERMCAP ret %d\n", 4447 __func__, ret); 4448 goto out; 4449 } 4450 } 4451 4452 ufshcd_hold(hba); 4453 ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd); 4454 ufshcd_release(hba); 4455 4456 out: 4457 return ret; 4458 } 4459 EXPORT_SYMBOL_GPL(ufshcd_uic_change_pwr_mode); 4460 4461 int ufshcd_link_recovery(struct ufs_hba *hba) 4462 { 4463 int ret; 4464 unsigned long flags; 4465 4466 spin_lock_irqsave(hba->host->host_lock, flags); 4467 hba->ufshcd_state = UFSHCD_STATE_RESET; 4468 ufshcd_set_eh_in_progress(hba); 4469 spin_unlock_irqrestore(hba->host->host_lock, flags); 4470 4471 /* Reset the attached device */ 4472 ufshcd_device_reset(hba); 4473 4474 ret = ufshcd_host_reset_and_restore(hba); 4475 4476 spin_lock_irqsave(hba->host->host_lock, flags); 4477 if (ret) 4478 hba->ufshcd_state = UFSHCD_STATE_ERROR; 4479 ufshcd_clear_eh_in_progress(hba); 4480 spin_unlock_irqrestore(hba->host->host_lock, flags); 4481 4482 if (ret) 4483 dev_err(hba->dev, "%s: link recovery failed, err %d", 4484 __func__, ret); 4485 4486 return ret; 4487 } 4488 EXPORT_SYMBOL_GPL(ufshcd_link_recovery); 4489 4490 int ufshcd_uic_hibern8_enter(struct ufs_hba *hba) 4491 { 4492 struct uic_command uic_cmd = { 4493 .command = UIC_CMD_DME_HIBER_ENTER, 4494 }; 4495 ktime_t start = ktime_get(); 4496 int ret; 4497 4498 ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_ENTER, PRE_CHANGE); 4499 4500 ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd); 4501 trace_ufshcd_profile_hibern8(hba, "enter", 4502 ktime_to_us(ktime_sub(ktime_get(), start)), ret); 4503 4504 if (ret) 4505 dev_err(hba->dev, "%s: hibern8 enter failed. ret = %d\n", 4506 __func__, ret); 4507 else 4508 ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_ENTER, 4509 POST_CHANGE); 4510 4511 return ret; 4512 } 4513 EXPORT_SYMBOL_GPL(ufshcd_uic_hibern8_enter); 4514 4515 int ufshcd_uic_hibern8_exit(struct ufs_hba *hba) 4516 { 4517 struct uic_command uic_cmd = { 4518 .command = UIC_CMD_DME_HIBER_EXIT, 4519 }; 4520 int ret; 4521 ktime_t start = ktime_get(); 4522 4523 ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_EXIT, PRE_CHANGE); 4524 4525 ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd); 4526 trace_ufshcd_profile_hibern8(hba, "exit", 4527 ktime_to_us(ktime_sub(ktime_get(), start)), ret); 4528 4529 if (ret) { 4530 dev_err(hba->dev, "%s: hibern8 exit failed. ret = %d\n", 4531 __func__, ret); 4532 } else { 4533 ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_EXIT, 4534 POST_CHANGE); 4535 hba->ufs_stats.last_hibern8_exit_tstamp = local_clock(); 4536 hba->ufs_stats.hibern8_exit_cnt++; 4537 } 4538 4539 return ret; 4540 } 4541 EXPORT_SYMBOL_GPL(ufshcd_uic_hibern8_exit); 4542 4543 static void ufshcd_configure_auto_hibern8(struct ufs_hba *hba) 4544 { 4545 if (!ufshcd_is_auto_hibern8_supported(hba)) 4546 return; 4547 4548 ufshcd_writel(hba, hba->ahit, REG_AUTO_HIBERNATE_IDLE_TIMER); 4549 } 4550 4551 void ufshcd_auto_hibern8_update(struct ufs_hba *hba, u32 ahit) 4552 { 4553 const u32 cur_ahit = READ_ONCE(hba->ahit); 4554 4555 if (!ufshcd_is_auto_hibern8_supported(hba) || cur_ahit == ahit) 4556 return; 4557 4558 WRITE_ONCE(hba->ahit, ahit); 4559 if (!pm_runtime_suspended(&hba->ufs_device_wlun->sdev_gendev)) { 4560 ufshcd_rpm_get_sync(hba); 4561 ufshcd_hold(hba); 4562 ufshcd_configure_auto_hibern8(hba); 4563 ufshcd_release(hba); 4564 ufshcd_rpm_put_sync(hba); 4565 } 4566 } 4567 EXPORT_SYMBOL_GPL(ufshcd_auto_hibern8_update); 4568 4569 /** 4570 * ufshcd_init_pwr_info - setting the POR (power on reset) 4571 * values in hba power info 4572 * @hba: per-adapter instance 4573 */ 4574 static void ufshcd_init_pwr_info(struct ufs_hba *hba) 4575 { 4576 hba->pwr_info.gear_rx = UFS_PWM_G1; 4577 hba->pwr_info.gear_tx = UFS_PWM_G1; 4578 hba->pwr_info.lane_rx = UFS_LANE_1; 4579 hba->pwr_info.lane_tx = UFS_LANE_1; 4580 hba->pwr_info.pwr_rx = SLOWAUTO_MODE; 4581 hba->pwr_info.pwr_tx = SLOWAUTO_MODE; 4582 hba->pwr_info.hs_rate = 0; 4583 } 4584 4585 /** 4586 * ufshcd_get_max_pwr_mode - reads the max power mode negotiated with device 4587 * @hba: per-adapter instance 4588 * 4589 * Return: 0 upon success; < 0 upon failure. 4590 */ 4591 static int ufshcd_get_max_pwr_mode(struct ufs_hba *hba) 4592 { 4593 struct ufs_pa_layer_attr *pwr_info = &hba->max_pwr_info.info; 4594 4595 if (hba->max_pwr_info.is_valid) 4596 return 0; 4597 4598 if (hba->quirks & UFSHCD_QUIRK_HIBERN_FASTAUTO) { 4599 pwr_info->pwr_tx = FASTAUTO_MODE; 4600 pwr_info->pwr_rx = FASTAUTO_MODE; 4601 } else { 4602 pwr_info->pwr_tx = FAST_MODE; 4603 pwr_info->pwr_rx = FAST_MODE; 4604 } 4605 pwr_info->hs_rate = PA_HS_MODE_B; 4606 4607 /* Get the connected lane count */ 4608 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDRXDATALANES), 4609 &pwr_info->lane_rx); 4610 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES), 4611 &pwr_info->lane_tx); 4612 4613 if (!pwr_info->lane_rx || !pwr_info->lane_tx) { 4614 dev_err(hba->dev, "%s: invalid connected lanes value. rx=%d, tx=%d\n", 4615 __func__, 4616 pwr_info->lane_rx, 4617 pwr_info->lane_tx); 4618 return -EINVAL; 4619 } 4620 4621 if (pwr_info->lane_rx != pwr_info->lane_tx) { 4622 dev_err(hba->dev, "%s: asymmetric connected lanes. rx=%d, tx=%d\n", 4623 __func__, 4624 pwr_info->lane_rx, 4625 pwr_info->lane_tx); 4626 return -EINVAL; 4627 } 4628 4629 /* 4630 * First, get the maximum gears of HS speed. 4631 * If a zero value, it means there is no HSGEAR capability. 4632 * Then, get the maximum gears of PWM speed. 4633 */ 4634 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_MAXRXHSGEAR), &pwr_info->gear_rx); 4635 if (!pwr_info->gear_rx) { 4636 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_MAXRXPWMGEAR), 4637 &pwr_info->gear_rx); 4638 if (!pwr_info->gear_rx) { 4639 dev_err(hba->dev, "%s: invalid max pwm rx gear read = %d\n", 4640 __func__, pwr_info->gear_rx); 4641 return -EINVAL; 4642 } 4643 pwr_info->pwr_rx = SLOW_MODE; 4644 } 4645 4646 ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_MAXRXHSGEAR), 4647 &pwr_info->gear_tx); 4648 if (!pwr_info->gear_tx) { 4649 ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_MAXRXPWMGEAR), 4650 &pwr_info->gear_tx); 4651 if (!pwr_info->gear_tx) { 4652 dev_err(hba->dev, "%s: invalid max pwm tx gear read = %d\n", 4653 __func__, pwr_info->gear_tx); 4654 return -EINVAL; 4655 } 4656 pwr_info->pwr_tx = SLOW_MODE; 4657 } 4658 4659 hba->max_pwr_info.is_valid = true; 4660 return 0; 4661 } 4662 4663 static int ufshcd_change_power_mode(struct ufs_hba *hba, 4664 struct ufs_pa_layer_attr *pwr_mode) 4665 { 4666 int ret; 4667 4668 /* if already configured to the requested pwr_mode */ 4669 if (!hba->force_pmc && 4670 pwr_mode->gear_rx == hba->pwr_info.gear_rx && 4671 pwr_mode->gear_tx == hba->pwr_info.gear_tx && 4672 pwr_mode->lane_rx == hba->pwr_info.lane_rx && 4673 pwr_mode->lane_tx == hba->pwr_info.lane_tx && 4674 pwr_mode->pwr_rx == hba->pwr_info.pwr_rx && 4675 pwr_mode->pwr_tx == hba->pwr_info.pwr_tx && 4676 pwr_mode->hs_rate == hba->pwr_info.hs_rate) { 4677 dev_dbg(hba->dev, "%s: power already configured\n", __func__); 4678 return 0; 4679 } 4680 4681 /* 4682 * Configure attributes for power mode change with below. 4683 * - PA_RXGEAR, PA_ACTIVERXDATALANES, PA_RXTERMINATION, 4684 * - PA_TXGEAR, PA_ACTIVETXDATALANES, PA_TXTERMINATION, 4685 * - PA_HSSERIES 4686 */ 4687 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXGEAR), pwr_mode->gear_rx); 4688 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVERXDATALANES), 4689 pwr_mode->lane_rx); 4690 if (pwr_mode->pwr_rx == FASTAUTO_MODE || 4691 pwr_mode->pwr_rx == FAST_MODE) 4692 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), true); 4693 else 4694 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), false); 4695 4696 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXGEAR), pwr_mode->gear_tx); 4697 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVETXDATALANES), 4698 pwr_mode->lane_tx); 4699 if (pwr_mode->pwr_tx == FASTAUTO_MODE || 4700 pwr_mode->pwr_tx == FAST_MODE) 4701 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), true); 4702 else 4703 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), false); 4704 4705 if (pwr_mode->pwr_rx == FASTAUTO_MODE || 4706 pwr_mode->pwr_tx == FASTAUTO_MODE || 4707 pwr_mode->pwr_rx == FAST_MODE || 4708 pwr_mode->pwr_tx == FAST_MODE) 4709 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_HSSERIES), 4710 pwr_mode->hs_rate); 4711 4712 if (!(hba->quirks & UFSHCD_QUIRK_SKIP_DEF_UNIPRO_TIMEOUT_SETTING)) { 4713 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA0), 4714 DL_FC0ProtectionTimeOutVal_Default); 4715 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA1), 4716 DL_TC0ReplayTimeOutVal_Default); 4717 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA2), 4718 DL_AFC0ReqTimeOutVal_Default); 4719 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA3), 4720 DL_FC1ProtectionTimeOutVal_Default); 4721 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA4), 4722 DL_TC1ReplayTimeOutVal_Default); 4723 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA5), 4724 DL_AFC1ReqTimeOutVal_Default); 4725 4726 ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalFC0ProtectionTimeOutVal), 4727 DL_FC0ProtectionTimeOutVal_Default); 4728 ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalTC0ReplayTimeOutVal), 4729 DL_TC0ReplayTimeOutVal_Default); 4730 ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalAFC0ReqTimeOutVal), 4731 DL_AFC0ReqTimeOutVal_Default); 4732 } 4733 4734 ret = ufshcd_uic_change_pwr_mode(hba, pwr_mode->pwr_rx << 4 4735 | pwr_mode->pwr_tx); 4736 4737 if (ret) { 4738 dev_err(hba->dev, 4739 "%s: power mode change failed %d\n", __func__, ret); 4740 } else { 4741 memcpy(&hba->pwr_info, pwr_mode, 4742 sizeof(struct ufs_pa_layer_attr)); 4743 } 4744 4745 return ret; 4746 } 4747 4748 /** 4749 * ufshcd_config_pwr_mode - configure a new power mode 4750 * @hba: per-adapter instance 4751 * @desired_pwr_mode: desired power configuration 4752 * 4753 * Return: 0 upon success; < 0 upon failure. 4754 */ 4755 int ufshcd_config_pwr_mode(struct ufs_hba *hba, 4756 struct ufs_pa_layer_attr *desired_pwr_mode) 4757 { 4758 struct ufs_pa_layer_attr final_params = { 0 }; 4759 int ret; 4760 4761 ret = ufshcd_vops_pwr_change_notify(hba, PRE_CHANGE, 4762 desired_pwr_mode, &final_params); 4763 4764 if (ret) 4765 memcpy(&final_params, desired_pwr_mode, sizeof(final_params)); 4766 4767 ret = ufshcd_change_power_mode(hba, &final_params); 4768 4769 if (!ret) 4770 ufshcd_vops_pwr_change_notify(hba, POST_CHANGE, NULL, 4771 &final_params); 4772 4773 return ret; 4774 } 4775 EXPORT_SYMBOL_GPL(ufshcd_config_pwr_mode); 4776 4777 /** 4778 * ufshcd_complete_dev_init() - checks device readiness 4779 * @hba: per-adapter instance 4780 * 4781 * Set fDeviceInit flag and poll until device toggles it. 4782 * 4783 * Return: 0 upon success; > 0 in case the UFS device reported an OCS error; 4784 * < 0 if another error occurred. 4785 */ 4786 static int ufshcd_complete_dev_init(struct ufs_hba *hba) 4787 { 4788 int err; 4789 bool flag_res = true; 4790 ktime_t timeout; 4791 4792 err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG, 4793 QUERY_FLAG_IDN_FDEVICEINIT, 0, NULL); 4794 if (err) { 4795 dev_err(hba->dev, 4796 "%s: setting fDeviceInit flag failed with error %d\n", 4797 __func__, err); 4798 goto out; 4799 } 4800 4801 /* Poll fDeviceInit flag to be cleared */ 4802 timeout = ktime_add_ms(ktime_get(), FDEVICEINIT_COMPL_TIMEOUT); 4803 do { 4804 err = ufshcd_query_flag(hba, UPIU_QUERY_OPCODE_READ_FLAG, 4805 QUERY_FLAG_IDN_FDEVICEINIT, 0, &flag_res); 4806 if (!flag_res) 4807 break; 4808 usleep_range(500, 1000); 4809 } while (ktime_before(ktime_get(), timeout)); 4810 4811 if (err) { 4812 dev_err(hba->dev, 4813 "%s: reading fDeviceInit flag failed with error %d\n", 4814 __func__, err); 4815 } else if (flag_res) { 4816 dev_err(hba->dev, 4817 "%s: fDeviceInit was not cleared by the device\n", 4818 __func__); 4819 err = -EBUSY; 4820 } 4821 out: 4822 return err; 4823 } 4824 4825 /** 4826 * ufshcd_make_hba_operational - Make UFS controller operational 4827 * @hba: per adapter instance 4828 * 4829 * To bring UFS host controller to operational state, 4830 * 1. Enable required interrupts 4831 * 2. Configure interrupt aggregation 4832 * 3. Program UTRL and UTMRL base address 4833 * 4. Configure run-stop-registers 4834 * 4835 * Return: 0 if successful; < 0 upon failure. 4836 */ 4837 int ufshcd_make_hba_operational(struct ufs_hba *hba) 4838 { 4839 int err = 0; 4840 u32 reg; 4841 4842 /* Enable required interrupts */ 4843 ufshcd_enable_intr(hba, UFSHCD_ENABLE_INTRS); 4844 4845 /* Configure interrupt aggregation */ 4846 if (ufshcd_is_intr_aggr_allowed(hba)) 4847 ufshcd_config_intr_aggr(hba, hba->nutrs - 1, INT_AGGR_DEF_TO); 4848 else 4849 ufshcd_disable_intr_aggr(hba); 4850 4851 /* Configure UTRL and UTMRL base address registers */ 4852 ufshcd_writel(hba, lower_32_bits(hba->utrdl_dma_addr), 4853 REG_UTP_TRANSFER_REQ_LIST_BASE_L); 4854 ufshcd_writel(hba, upper_32_bits(hba->utrdl_dma_addr), 4855 REG_UTP_TRANSFER_REQ_LIST_BASE_H); 4856 ufshcd_writel(hba, lower_32_bits(hba->utmrdl_dma_addr), 4857 REG_UTP_TASK_REQ_LIST_BASE_L); 4858 ufshcd_writel(hba, upper_32_bits(hba->utmrdl_dma_addr), 4859 REG_UTP_TASK_REQ_LIST_BASE_H); 4860 4861 /* 4862 * UCRDY, UTMRLDY and UTRLRDY bits must be 1 4863 */ 4864 reg = ufshcd_readl(hba, REG_CONTROLLER_STATUS); 4865 if (!(ufshcd_get_lists_status(reg))) { 4866 ufshcd_enable_run_stop_reg(hba); 4867 } else { 4868 dev_err(hba->dev, 4869 "Host controller not ready to process requests"); 4870 err = -EIO; 4871 } 4872 4873 return err; 4874 } 4875 EXPORT_SYMBOL_GPL(ufshcd_make_hba_operational); 4876 4877 /** 4878 * ufshcd_hba_stop - Send controller to reset state 4879 * @hba: per adapter instance 4880 */ 4881 void ufshcd_hba_stop(struct ufs_hba *hba) 4882 { 4883 int err; 4884 4885 ufshcd_disable_irq(hba); 4886 ufshcd_writel(hba, CONTROLLER_DISABLE, REG_CONTROLLER_ENABLE); 4887 err = ufshcd_wait_for_register(hba, REG_CONTROLLER_ENABLE, 4888 CONTROLLER_ENABLE, CONTROLLER_DISABLE, 4889 10, 1); 4890 ufshcd_enable_irq(hba); 4891 if (err) 4892 dev_err(hba->dev, "%s: Controller disable failed\n", __func__); 4893 } 4894 EXPORT_SYMBOL_GPL(ufshcd_hba_stop); 4895 4896 /** 4897 * ufshcd_hba_execute_hce - initialize the controller 4898 * @hba: per adapter instance 4899 * 4900 * The controller resets itself and controller firmware initialization 4901 * sequence kicks off. When controller is ready it will set 4902 * the Host Controller Enable bit to 1. 4903 * 4904 * Return: 0 on success, non-zero value on failure. 4905 */ 4906 static int ufshcd_hba_execute_hce(struct ufs_hba *hba) 4907 { 4908 int retry; 4909 4910 for (retry = 3; retry > 0; retry--) { 4911 if (ufshcd_is_hba_active(hba)) 4912 /* change controller state to "reset state" */ 4913 ufshcd_hba_stop(hba); 4914 4915 /* UniPro link is disabled at this point */ 4916 ufshcd_set_link_off(hba); 4917 4918 ufshcd_vops_hce_enable_notify(hba, PRE_CHANGE); 4919 4920 /* start controller initialization sequence */ 4921 ufshcd_hba_start(hba); 4922 4923 /* 4924 * To initialize a UFS host controller HCE bit must be set to 1. 4925 * During initialization the HCE bit value changes from 1->0->1. 4926 * When the host controller completes initialization sequence 4927 * it sets the value of HCE bit to 1. The same HCE bit is read back 4928 * to check if the controller has completed initialization sequence. 4929 * So without this delay the value HCE = 1, set in the previous 4930 * instruction might be read back. 4931 * This delay can be changed based on the controller. 4932 */ 4933 ufshcd_delay_us(hba->vps->hba_enable_delay_us, 100); 4934 4935 /* wait for the host controller to complete initialization */ 4936 if (!ufshcd_wait_for_register(hba, REG_CONTROLLER_ENABLE, CONTROLLER_ENABLE, 4937 CONTROLLER_ENABLE, 1000, 50)) 4938 break; 4939 4940 dev_err(hba->dev, "Enabling the controller failed\n"); 4941 } 4942 4943 if (!retry) 4944 return -EIO; 4945 4946 /* enable UIC related interrupts */ 4947 ufshcd_enable_intr(hba, UFSHCD_UIC_MASK); 4948 4949 ufshcd_vops_hce_enable_notify(hba, POST_CHANGE); 4950 4951 return 0; 4952 } 4953 4954 int ufshcd_hba_enable(struct ufs_hba *hba) 4955 { 4956 int ret; 4957 4958 if (hba->quirks & UFSHCI_QUIRK_BROKEN_HCE) { 4959 ufshcd_set_link_off(hba); 4960 ufshcd_vops_hce_enable_notify(hba, PRE_CHANGE); 4961 4962 /* enable UIC related interrupts */ 4963 ufshcd_enable_intr(hba, UFSHCD_UIC_MASK); 4964 ret = ufshcd_dme_reset(hba); 4965 if (ret) { 4966 dev_err(hba->dev, "DME_RESET failed\n"); 4967 return ret; 4968 } 4969 4970 ret = ufshcd_dme_enable(hba); 4971 if (ret) { 4972 dev_err(hba->dev, "Enabling DME failed\n"); 4973 return ret; 4974 } 4975 4976 ufshcd_vops_hce_enable_notify(hba, POST_CHANGE); 4977 } else { 4978 ret = ufshcd_hba_execute_hce(hba); 4979 } 4980 4981 return ret; 4982 } 4983 EXPORT_SYMBOL_GPL(ufshcd_hba_enable); 4984 4985 static int ufshcd_disable_tx_lcc(struct ufs_hba *hba, bool peer) 4986 { 4987 int tx_lanes, i, err = 0; 4988 4989 if (!peer) 4990 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES), 4991 &tx_lanes); 4992 else 4993 ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES), 4994 &tx_lanes); 4995 for (i = 0; i < tx_lanes; i++) { 4996 if (!peer) 4997 err = ufshcd_dme_set(hba, 4998 UIC_ARG_MIB_SEL(TX_LCC_ENABLE, 4999 UIC_ARG_MPHY_TX_GEN_SEL_INDEX(i)), 5000 0); 5001 else 5002 err = ufshcd_dme_peer_set(hba, 5003 UIC_ARG_MIB_SEL(TX_LCC_ENABLE, 5004 UIC_ARG_MPHY_TX_GEN_SEL_INDEX(i)), 5005 0); 5006 if (err) { 5007 dev_err(hba->dev, "%s: TX LCC Disable failed, peer = %d, lane = %d, err = %d", 5008 __func__, peer, i, err); 5009 break; 5010 } 5011 } 5012 5013 return err; 5014 } 5015 5016 static inline int ufshcd_disable_device_tx_lcc(struct ufs_hba *hba) 5017 { 5018 return ufshcd_disable_tx_lcc(hba, true); 5019 } 5020 5021 void ufshcd_update_evt_hist(struct ufs_hba *hba, u32 id, u32 val) 5022 { 5023 struct ufs_event_hist *e; 5024 5025 if (id >= UFS_EVT_CNT) 5026 return; 5027 5028 e = &hba->ufs_stats.event[id]; 5029 e->val[e->pos] = val; 5030 e->tstamp[e->pos] = local_clock(); 5031 e->cnt += 1; 5032 e->pos = (e->pos + 1) % UFS_EVENT_HIST_LENGTH; 5033 5034 ufshcd_vops_event_notify(hba, id, &val); 5035 } 5036 EXPORT_SYMBOL_GPL(ufshcd_update_evt_hist); 5037 5038 /** 5039 * ufshcd_link_startup - Initialize unipro link startup 5040 * @hba: per adapter instance 5041 * 5042 * Return: 0 for success, non-zero in case of failure. 5043 */ 5044 static int ufshcd_link_startup(struct ufs_hba *hba) 5045 { 5046 int ret; 5047 int retries = DME_LINKSTARTUP_RETRIES; 5048 bool link_startup_again = false; 5049 5050 /* 5051 * If UFS device isn't active then we will have to issue link startup 5052 * 2 times to make sure the device state move to active. 5053 */ 5054 if (!(hba->quirks & UFSHCD_QUIRK_PERFORM_LINK_STARTUP_ONCE) && 5055 !ufshcd_is_ufs_dev_active(hba)) 5056 link_startup_again = true; 5057 5058 link_startup: 5059 do { 5060 ufshcd_vops_link_startup_notify(hba, PRE_CHANGE); 5061 5062 ret = ufshcd_dme_link_startup(hba); 5063 5064 /* check if device is detected by inter-connect layer */ 5065 if (!ret && !ufshcd_is_device_present(hba)) { 5066 ufshcd_update_evt_hist(hba, 5067 UFS_EVT_LINK_STARTUP_FAIL, 5068 0); 5069 dev_err(hba->dev, "%s: Device not present\n", __func__); 5070 ret = -ENXIO; 5071 goto out; 5072 } 5073 5074 /* 5075 * DME link lost indication is only received when link is up, 5076 * but we can't be sure if the link is up until link startup 5077 * succeeds. So reset the local Uni-Pro and try again. 5078 */ 5079 if (ret && retries && ufshcd_hba_enable(hba)) { 5080 ufshcd_update_evt_hist(hba, 5081 UFS_EVT_LINK_STARTUP_FAIL, 5082 (u32)ret); 5083 goto out; 5084 } 5085 } while (ret && retries--); 5086 5087 if (ret) { 5088 /* failed to get the link up... retire */ 5089 ufshcd_update_evt_hist(hba, 5090 UFS_EVT_LINK_STARTUP_FAIL, 5091 (u32)ret); 5092 goto out; 5093 } 5094 5095 if (link_startup_again) { 5096 link_startup_again = false; 5097 retries = DME_LINKSTARTUP_RETRIES; 5098 goto link_startup; 5099 } 5100 5101 /* Mark that link is up in PWM-G1, 1-lane, SLOW-AUTO mode */ 5102 ufshcd_init_pwr_info(hba); 5103 ufshcd_print_pwr_info(hba); 5104 5105 if (hba->quirks & UFSHCD_QUIRK_BROKEN_LCC) { 5106 ret = ufshcd_disable_device_tx_lcc(hba); 5107 if (ret) 5108 goto out; 5109 } 5110 5111 /* Include any host controller configuration via UIC commands */ 5112 ret = ufshcd_vops_link_startup_notify(hba, POST_CHANGE); 5113 if (ret) 5114 goto out; 5115 5116 /* Clear UECPA once due to LINERESET has happened during LINK_STARTUP */ 5117 ufshcd_readl(hba, REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER); 5118 ret = ufshcd_make_hba_operational(hba); 5119 out: 5120 if (ret) 5121 dev_err(hba->dev, "link startup failed %d\n", ret); 5122 return ret; 5123 } 5124 5125 /** 5126 * ufshcd_verify_dev_init() - Verify device initialization 5127 * @hba: per-adapter instance 5128 * 5129 * Send NOP OUT UPIU and wait for NOP IN response to check whether the 5130 * device Transport Protocol (UTP) layer is ready after a reset. 5131 * If the UTP layer at the device side is not initialized, it may 5132 * not respond with NOP IN UPIU within timeout of %NOP_OUT_TIMEOUT 5133 * and we retry sending NOP OUT for %NOP_OUT_RETRIES iterations. 5134 * 5135 * Return: 0 upon success; > 0 in case the UFS device reported an OCS error; 5136 * < 0 if another error occurred. 5137 */ 5138 static int ufshcd_verify_dev_init(struct ufs_hba *hba) 5139 { 5140 int err = 0; 5141 int retries; 5142 5143 ufshcd_dev_man_lock(hba); 5144 5145 for (retries = NOP_OUT_RETRIES; retries > 0; retries--) { 5146 err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_NOP, 5147 hba->nop_out_timeout); 5148 5149 if (!err || err == -ETIMEDOUT) 5150 break; 5151 5152 dev_dbg(hba->dev, "%s: error %d retrying\n", __func__, err); 5153 } 5154 5155 ufshcd_dev_man_unlock(hba); 5156 5157 if (err) 5158 dev_err(hba->dev, "%s: NOP OUT failed %d\n", __func__, err); 5159 return err; 5160 } 5161 5162 /** 5163 * ufshcd_setup_links - associate link b/w device wlun and other luns 5164 * @sdev: pointer to SCSI device 5165 * @hba: pointer to ufs hba 5166 */ 5167 static void ufshcd_setup_links(struct ufs_hba *hba, struct scsi_device *sdev) 5168 { 5169 struct device_link *link; 5170 5171 /* 5172 * Device wlun is the supplier & rest of the luns are consumers. 5173 * This ensures that device wlun suspends after all other luns. 5174 */ 5175 if (hba->ufs_device_wlun) { 5176 link = device_link_add(&sdev->sdev_gendev, 5177 &hba->ufs_device_wlun->sdev_gendev, 5178 DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE); 5179 if (!link) { 5180 dev_err(&sdev->sdev_gendev, "Failed establishing link - %s\n", 5181 dev_name(&hba->ufs_device_wlun->sdev_gendev)); 5182 return; 5183 } 5184 hba->luns_avail--; 5185 /* Ignore REPORT_LUN wlun probing */ 5186 if (hba->luns_avail == 1) { 5187 ufshcd_rpm_put(hba); 5188 return; 5189 } 5190 } else { 5191 /* 5192 * Device wlun is probed. The assumption is that WLUNs are 5193 * scanned before other LUNs. 5194 */ 5195 hba->luns_avail--; 5196 } 5197 } 5198 5199 /** 5200 * ufshcd_lu_init - Initialize the relevant parameters of the LU 5201 * @hba: per-adapter instance 5202 * @sdev: pointer to SCSI device 5203 */ 5204 static void ufshcd_lu_init(struct ufs_hba *hba, struct scsi_device *sdev) 5205 { 5206 int len = QUERY_DESC_MAX_SIZE; 5207 u8 lun = ufshcd_scsi_to_upiu_lun(sdev->lun); 5208 u8 lun_qdepth = hba->nutrs; 5209 u8 *desc_buf; 5210 int ret; 5211 5212 desc_buf = kzalloc(len, GFP_KERNEL); 5213 if (!desc_buf) 5214 goto set_qdepth; 5215 5216 ret = ufshcd_read_unit_desc_param(hba, lun, 0, desc_buf, len); 5217 if (ret < 0) { 5218 if (ret == -EOPNOTSUPP) 5219 /* If LU doesn't support unit descriptor, its queue depth is set to 1 */ 5220 lun_qdepth = 1; 5221 kfree(desc_buf); 5222 goto set_qdepth; 5223 } 5224 5225 if (desc_buf[UNIT_DESC_PARAM_LU_Q_DEPTH]) { 5226 /* 5227 * In per-LU queueing architecture, bLUQueueDepth will not be 0, then we will 5228 * use the smaller between UFSHCI CAP.NUTRS and UFS LU bLUQueueDepth 5229 */ 5230 lun_qdepth = min_t(int, desc_buf[UNIT_DESC_PARAM_LU_Q_DEPTH], hba->nutrs); 5231 } 5232 /* 5233 * According to UFS device specification, the write protection mode is only supported by 5234 * normal LU, not supported by WLUN. 5235 */ 5236 if (hba->dev_info.f_power_on_wp_en && lun < hba->dev_info.max_lu_supported && 5237 !hba->dev_info.is_lu_power_on_wp && 5238 desc_buf[UNIT_DESC_PARAM_LU_WR_PROTECT] == UFS_LU_POWER_ON_WP) 5239 hba->dev_info.is_lu_power_on_wp = true; 5240 5241 /* In case of RPMB LU, check if advanced RPMB mode is enabled, and get region size */ 5242 if (desc_buf[UNIT_DESC_PARAM_UNIT_INDEX] == UFS_UPIU_RPMB_WLUN) { 5243 if (desc_buf[RPMB_UNIT_DESC_PARAM_REGION_EN] & BIT(4)) 5244 hba->dev_info.b_advanced_rpmb_en = true; 5245 hba->dev_info.rpmb_region_size[0] = desc_buf[RPMB_UNIT_DESC_PARAM_REGION0_SIZE]; 5246 hba->dev_info.rpmb_region_size[1] = desc_buf[RPMB_UNIT_DESC_PARAM_REGION1_SIZE]; 5247 hba->dev_info.rpmb_region_size[2] = desc_buf[RPMB_UNIT_DESC_PARAM_REGION2_SIZE]; 5248 hba->dev_info.rpmb_region_size[3] = desc_buf[RPMB_UNIT_DESC_PARAM_REGION3_SIZE]; 5249 } 5250 5251 5252 kfree(desc_buf); 5253 set_qdepth: 5254 /* 5255 * For WLUNs that don't support unit descriptor, queue depth is set to 1. For LUs whose 5256 * bLUQueueDepth == 0, the queue depth is set to a maximum value that host can queue. 5257 */ 5258 dev_dbg(hba->dev, "Set LU %x queue depth %d\n", lun, lun_qdepth); 5259 scsi_change_queue_depth(sdev, lun_qdepth); 5260 } 5261 5262 /** 5263 * ufshcd_sdev_init - handle initial SCSI device configurations 5264 * @sdev: pointer to SCSI device 5265 * 5266 * Return: success. 5267 */ 5268 static int ufshcd_sdev_init(struct scsi_device *sdev) 5269 { 5270 struct ufs_hba *hba; 5271 5272 hba = shost_priv(sdev->host); 5273 5274 /* Mode sense(6) is not supported by UFS, so use Mode sense(10) */ 5275 sdev->use_10_for_ms = 1; 5276 5277 /* DBD field should be set to 1 in mode sense(10) */ 5278 sdev->set_dbd_for_ms = 1; 5279 5280 /* allow SCSI layer to restart the device in case of errors */ 5281 sdev->allow_restart = 1; 5282 5283 /* REPORT SUPPORTED OPERATION CODES is not supported */ 5284 sdev->no_report_opcodes = 1; 5285 5286 /* WRITE_SAME command is not supported */ 5287 sdev->no_write_same = 1; 5288 5289 ufshcd_lu_init(hba, sdev); 5290 5291 ufshcd_setup_links(hba, sdev); 5292 5293 return 0; 5294 } 5295 5296 /** 5297 * ufshcd_change_queue_depth - change queue depth 5298 * @sdev: pointer to SCSI device 5299 * @depth: required depth to set 5300 * 5301 * Change queue depth and make sure the max. limits are not crossed. 5302 * 5303 * Return: new queue depth. 5304 */ 5305 static int ufshcd_change_queue_depth(struct scsi_device *sdev, int depth) 5306 { 5307 return scsi_change_queue_depth(sdev, min(depth, sdev->host->can_queue)); 5308 } 5309 5310 /** 5311 * ufshcd_sdev_configure - adjust SCSI device configurations 5312 * @sdev: pointer to SCSI device 5313 * @lim: queue limits 5314 * 5315 * Return: 0 (success). 5316 */ 5317 static int ufshcd_sdev_configure(struct scsi_device *sdev, 5318 struct queue_limits *lim) 5319 { 5320 struct ufs_hba *hba = shost_priv(sdev->host); 5321 struct request_queue *q = sdev->request_queue; 5322 5323 lim->dma_pad_mask = PRDT_DATA_BYTE_COUNT_PAD - 1; 5324 5325 /* 5326 * Block runtime-pm until all consumers are added. 5327 * Refer ufshcd_setup_links(). 5328 */ 5329 if (is_device_wlun(sdev)) 5330 pm_runtime_get_noresume(&sdev->sdev_gendev); 5331 else if (ufshcd_is_rpm_autosuspend_allowed(hba)) 5332 sdev->rpm_autosuspend = 1; 5333 /* 5334 * Do not print messages during runtime PM to avoid never-ending cycles 5335 * of messages written back to storage by user space causing runtime 5336 * resume, causing more messages and so on. 5337 */ 5338 sdev->silence_suspend = 1; 5339 5340 if (hba->vops && hba->vops->config_scsi_dev) 5341 hba->vops->config_scsi_dev(sdev); 5342 5343 ufshcd_crypto_register(hba, q); 5344 5345 return 0; 5346 } 5347 5348 /** 5349 * ufshcd_sdev_destroy - remove SCSI device configurations 5350 * @sdev: pointer to SCSI device 5351 */ 5352 static void ufshcd_sdev_destroy(struct scsi_device *sdev) 5353 { 5354 struct ufs_hba *hba; 5355 unsigned long flags; 5356 5357 hba = shost_priv(sdev->host); 5358 5359 /* Drop the reference as it won't be needed anymore */ 5360 if (ufshcd_scsi_to_upiu_lun(sdev->lun) == UFS_UPIU_UFS_DEVICE_WLUN) { 5361 spin_lock_irqsave(hba->host->host_lock, flags); 5362 hba->ufs_device_wlun = NULL; 5363 spin_unlock_irqrestore(hba->host->host_lock, flags); 5364 } else if (hba->ufs_device_wlun) { 5365 struct device *supplier = NULL; 5366 5367 /* Ensure UFS Device WLUN exists and does not disappear */ 5368 spin_lock_irqsave(hba->host->host_lock, flags); 5369 if (hba->ufs_device_wlun) { 5370 supplier = &hba->ufs_device_wlun->sdev_gendev; 5371 get_device(supplier); 5372 } 5373 spin_unlock_irqrestore(hba->host->host_lock, flags); 5374 5375 if (supplier) { 5376 /* 5377 * If a LUN fails to probe (e.g. absent BOOT WLUN), the 5378 * device will not have been registered but can still 5379 * have a device link holding a reference to the device. 5380 */ 5381 device_link_remove(&sdev->sdev_gendev, supplier); 5382 put_device(supplier); 5383 } 5384 } 5385 } 5386 5387 /** 5388 * ufshcd_scsi_cmd_status - Update SCSI command result based on SCSI status 5389 * @cmd: SCSI command 5390 * @scsi_status: SCSI command status 5391 * 5392 * Return: value base on SCSI command status. 5393 */ 5394 static inline int ufshcd_scsi_cmd_status(struct scsi_cmnd *cmd, int scsi_status) 5395 { 5396 int result = 0; 5397 5398 switch (scsi_status) { 5399 case SAM_STAT_CHECK_CONDITION: 5400 ufshcd_copy_sense_data(cmd); 5401 fallthrough; 5402 case SAM_STAT_GOOD: 5403 result |= DID_OK << 16 | scsi_status; 5404 break; 5405 case SAM_STAT_TASK_SET_FULL: 5406 case SAM_STAT_BUSY: 5407 case SAM_STAT_TASK_ABORTED: 5408 ufshcd_copy_sense_data(cmd); 5409 result |= scsi_status; 5410 break; 5411 default: 5412 result |= DID_ERROR << 16; 5413 break; 5414 } /* end of switch */ 5415 5416 return result; 5417 } 5418 5419 /** 5420 * ufshcd_transfer_rsp_status - Get overall status of the response 5421 * @hba: per adapter instance 5422 * @cmd: SCSI command 5423 * @cqe: pointer to the completion queue entry 5424 * 5425 * Return: result of the command to notify SCSI midlayer. 5426 */ 5427 static inline int ufshcd_transfer_rsp_status(struct ufs_hba *hba, 5428 struct scsi_cmnd *cmd, 5429 struct cq_entry *cqe) 5430 { 5431 struct ufshcd_lrb *lrbp = scsi_cmd_priv(cmd); 5432 const int tag = scsi_cmd_to_rq(cmd)->tag; 5433 int result = 0; 5434 int scsi_status; 5435 enum utp_ocs ocs; 5436 u8 upiu_flags; 5437 u32 resid; 5438 5439 upiu_flags = lrbp->ucd_rsp_ptr->header.flags; 5440 resid = be32_to_cpu(lrbp->ucd_rsp_ptr->sr.residual_transfer_count); 5441 /* 5442 * Test !overflow instead of underflow to support UFS devices that do 5443 * not set either flag. 5444 */ 5445 if (resid && !(upiu_flags & UPIU_RSP_FLAG_OVERFLOW)) 5446 scsi_set_resid(cmd, resid); 5447 5448 /* overall command status of utrd */ 5449 ocs = ufshcd_get_tr_ocs(lrbp, cqe); 5450 5451 if (hba->quirks & UFSHCD_QUIRK_BROKEN_OCS_FATAL_ERROR) { 5452 if (lrbp->ucd_rsp_ptr->header.response || 5453 lrbp->ucd_rsp_ptr->header.status) 5454 ocs = OCS_SUCCESS; 5455 } 5456 5457 switch (ocs) { 5458 case OCS_SUCCESS: 5459 hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0); 5460 switch (ufshcd_get_req_rsp(lrbp->ucd_rsp_ptr)) { 5461 case UPIU_TRANSACTION_RESPONSE: 5462 /* 5463 * get the result based on SCSI status response 5464 * to notify the SCSI midlayer of the command status 5465 */ 5466 scsi_status = lrbp->ucd_rsp_ptr->header.status; 5467 result = ufshcd_scsi_cmd_status(cmd, scsi_status); 5468 5469 /* 5470 * Currently we are only supporting BKOPs exception 5471 * events hence we can ignore BKOPs exception event 5472 * during power management callbacks. BKOPs exception 5473 * event is not expected to be raised in runtime suspend 5474 * callback as it allows the urgent bkops. 5475 * During system suspend, we are anyway forcefully 5476 * disabling the bkops and if urgent bkops is needed 5477 * it will be enabled on system resume. Long term 5478 * solution could be to abort the system suspend if 5479 * UFS device needs urgent BKOPs. 5480 */ 5481 if (!hba->pm_op_in_progress && 5482 !ufshcd_eh_in_progress(hba) && 5483 ufshcd_is_exception_event(lrbp->ucd_rsp_ptr)) 5484 /* Flushed in suspend */ 5485 schedule_work(&hba->eeh_work); 5486 break; 5487 case UPIU_TRANSACTION_REJECT_UPIU: 5488 /* TODO: handle Reject UPIU Response */ 5489 result = DID_ERROR << 16; 5490 dev_err(hba->dev, 5491 "Reject UPIU not fully implemented\n"); 5492 break; 5493 default: 5494 dev_err(hba->dev, 5495 "Unexpected request response code = %x\n", 5496 result); 5497 result = DID_ERROR << 16; 5498 break; 5499 } 5500 break; 5501 case OCS_ABORTED: 5502 case OCS_INVALID_COMMAND_STATUS: 5503 result |= DID_REQUEUE << 16; 5504 dev_warn(hba->dev, "OCS %s from controller for tag %d\n", 5505 ocs == OCS_ABORTED ? "aborted" : "invalid", tag); 5506 break; 5507 case OCS_INVALID_CMD_TABLE_ATTR: 5508 case OCS_INVALID_PRDT_ATTR: 5509 case OCS_MISMATCH_DATA_BUF_SIZE: 5510 case OCS_MISMATCH_RESP_UPIU_SIZE: 5511 case OCS_PEER_COMM_FAILURE: 5512 case OCS_FATAL_ERROR: 5513 case OCS_DEVICE_FATAL_ERROR: 5514 case OCS_INVALID_CRYPTO_CONFIG: 5515 case OCS_GENERAL_CRYPTO_ERROR: 5516 default: 5517 result |= DID_ERROR << 16; 5518 dev_err(hba->dev, "OCS error from controller = %x for tag %d\n", 5519 ocs, tag); 5520 ufshcd_print_evt_hist(hba); 5521 ufshcd_print_host_state(hba); 5522 break; 5523 } /* end of switch */ 5524 5525 if ((host_byte(result) != DID_OK) && 5526 (host_byte(result) != DID_REQUEUE) && !hba->silence_err_logs) { 5527 if (cqe) 5528 ufshcd_hex_dump("UPIU CQE: ", cqe, sizeof(struct cq_entry)); 5529 ufshcd_print_tr(hba, cmd, true); 5530 } 5531 return result; 5532 } 5533 5534 static bool ufshcd_is_auto_hibern8_error(struct ufs_hba *hba, 5535 u32 intr_mask) 5536 { 5537 if (!ufshcd_is_auto_hibern8_supported(hba) || 5538 !ufshcd_is_auto_hibern8_enabled(hba)) 5539 return false; 5540 5541 if (!(intr_mask & UFSHCD_UIC_HIBERN8_MASK)) 5542 return false; 5543 5544 if (hba->active_uic_cmd && 5545 (hba->active_uic_cmd->command == UIC_CMD_DME_HIBER_ENTER || 5546 hba->active_uic_cmd->command == UIC_CMD_DME_HIBER_EXIT)) 5547 return false; 5548 5549 return true; 5550 } 5551 5552 /** 5553 * ufshcd_uic_cmd_compl - handle completion of uic command 5554 * @hba: per adapter instance 5555 * @intr_status: interrupt status generated by the controller 5556 * 5557 * Return: 5558 * IRQ_HANDLED - If interrupt is valid 5559 * IRQ_NONE - If invalid interrupt 5560 */ 5561 static irqreturn_t ufshcd_uic_cmd_compl(struct ufs_hba *hba, u32 intr_status) 5562 { 5563 irqreturn_t retval = IRQ_NONE; 5564 struct uic_command *cmd; 5565 5566 guard(spinlock_irqsave)(hba->host->host_lock); 5567 cmd = hba->active_uic_cmd; 5568 if (!cmd) 5569 return retval; 5570 5571 if (ufshcd_is_auto_hibern8_error(hba, intr_status)) 5572 hba->errors |= (UFSHCD_UIC_HIBERN8_MASK & intr_status); 5573 5574 if (intr_status & UIC_COMMAND_COMPL) { 5575 cmd->argument2 |= ufshcd_get_uic_cmd_result(hba); 5576 cmd->argument3 = ufshcd_get_dme_attr_val(hba); 5577 if (!hba->uic_async_done) 5578 cmd->cmd_active = false; 5579 complete(&cmd->done); 5580 retval = IRQ_HANDLED; 5581 } 5582 5583 if (intr_status & UFSHCD_UIC_PWR_MASK && hba->uic_async_done) { 5584 cmd->cmd_active = false; 5585 complete(hba->uic_async_done); 5586 retval = IRQ_HANDLED; 5587 } 5588 5589 if (retval == IRQ_HANDLED) 5590 ufshcd_add_uic_command_trace(hba, cmd, UFS_CMD_COMP); 5591 5592 return retval; 5593 } 5594 5595 /* Release the resources allocated for processing a SCSI command. */ 5596 void ufshcd_release_scsi_cmd(struct ufs_hba *hba, struct scsi_cmnd *cmd) 5597 { 5598 scsi_dma_unmap(cmd); 5599 ufshcd_crypto_clear_prdt(hba, cmd); 5600 ufshcd_release(hba); 5601 ufshcd_clk_scaling_update_busy(hba); 5602 } 5603 5604 /** 5605 * ufshcd_compl_one_cqe - handle a completion queue entry 5606 * @hba: per adapter instance 5607 * @task_tag: the task tag of the request to be completed 5608 * @cqe: pointer to the completion queue entry 5609 */ 5610 void ufshcd_compl_one_cqe(struct ufs_hba *hba, int task_tag, 5611 struct cq_entry *cqe) 5612 { 5613 struct scsi_cmnd *cmd = ufshcd_tag_to_cmd(hba, task_tag); 5614 struct ufshcd_lrb *lrbp = scsi_cmd_priv(cmd); 5615 enum utp_ocs ocs; 5616 5617 if (WARN_ONCE(!cmd, "cqe->command_desc_base_addr = %#llx\n", 5618 le64_to_cpu(cqe->command_desc_base_addr))) 5619 return; 5620 5621 if (hba->monitor.enabled) { 5622 lrbp->compl_time_stamp = ktime_get(); 5623 lrbp->compl_time_stamp_local_clock = local_clock(); 5624 } 5625 if (ufshcd_is_scsi_cmd(cmd)) { 5626 if (unlikely(ufshcd_should_inform_monitor(hba, cmd))) 5627 ufshcd_update_monitor(hba, cmd); 5628 ufshcd_add_command_trace(hba, cmd, UFS_CMD_COMP); 5629 cmd->result = ufshcd_transfer_rsp_status(hba, cmd, cqe); 5630 ufshcd_release_scsi_cmd(hba, cmd); 5631 } else { 5632 if (cqe) { 5633 ocs = cqe->overall_status & MASK_OCS; 5634 lrbp->utr_descriptor_ptr->header.ocs = ocs; 5635 } else { 5636 ocs = lrbp->utr_descriptor_ptr->header.ocs; 5637 } 5638 ufshcd_add_query_upiu_trace( 5639 hba, 5640 ocs == OCS_SUCCESS ? UFS_QUERY_COMP : UFS_QUERY_ERR, 5641 (struct utp_upiu_req *)lrbp->ucd_rsp_ptr); 5642 cmd->result = 0; 5643 } 5644 /* Do not touch lrbp after scsi_done() has been called. */ 5645 scsi_done(cmd); 5646 } 5647 5648 /** 5649 * __ufshcd_transfer_req_compl - handle SCSI and query command completion 5650 * @hba: per adapter instance 5651 * @completed_reqs: bitmask that indicates which requests to complete 5652 */ 5653 static void __ufshcd_transfer_req_compl(struct ufs_hba *hba, 5654 unsigned long completed_reqs) 5655 { 5656 int tag; 5657 5658 for_each_set_bit(tag, &completed_reqs, hba->nutrs) 5659 ufshcd_compl_one_cqe(hba, tag, NULL); 5660 } 5661 5662 /* Any value that is not an existing queue number is fine for this constant. */ 5663 enum { 5664 UFSHCD_POLL_FROM_INTERRUPT_CONTEXT = -1 5665 }; 5666 5667 static void ufshcd_clear_polled(struct ufs_hba *hba, 5668 unsigned long *completed_reqs) 5669 { 5670 int tag; 5671 5672 for_each_set_bit(tag, completed_reqs, hba->nutrs) { 5673 struct scsi_cmnd *cmd = scsi_host_find_tag(hba->host, tag); 5674 5675 if (!cmd) 5676 continue; 5677 if (scsi_cmd_to_rq(cmd)->cmd_flags & REQ_POLLED) 5678 __clear_bit(tag, completed_reqs); 5679 } 5680 } 5681 5682 /* 5683 * Return: > 0 if one or more commands have been completed or 0 if no 5684 * requests have been completed. 5685 */ 5686 static int ufshcd_poll(struct Scsi_Host *shost, unsigned int queue_num) 5687 { 5688 struct ufs_hba *hba = shost_priv(shost); 5689 unsigned long completed_reqs, flags; 5690 u32 tr_doorbell; 5691 struct ufs_hw_queue *hwq; 5692 5693 if (hba->mcq_enabled) { 5694 hwq = &hba->uhq[queue_num]; 5695 5696 return ufshcd_mcq_poll_cqe_lock(hba, hwq); 5697 } 5698 5699 spin_lock_irqsave(&hba->outstanding_lock, flags); 5700 tr_doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL); 5701 completed_reqs = ~tr_doorbell & hba->outstanding_reqs; 5702 WARN_ONCE(completed_reqs & ~hba->outstanding_reqs, 5703 "completed: %#lx; outstanding: %#lx\n", completed_reqs, 5704 hba->outstanding_reqs); 5705 if (queue_num == UFSHCD_POLL_FROM_INTERRUPT_CONTEXT) { 5706 /* Do not complete polled requests from interrupt context. */ 5707 ufshcd_clear_polled(hba, &completed_reqs); 5708 } 5709 hba->outstanding_reqs &= ~completed_reqs; 5710 spin_unlock_irqrestore(&hba->outstanding_lock, flags); 5711 5712 if (completed_reqs) 5713 __ufshcd_transfer_req_compl(hba, completed_reqs); 5714 5715 return completed_reqs != 0; 5716 } 5717 5718 static bool ufshcd_mcq_force_compl_one(struct request *rq, void *priv) 5719 { 5720 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 5721 struct scsi_device *sdev = rq->q->queuedata; 5722 struct Scsi_Host *shost = sdev->host; 5723 struct ufs_hba *hba = shost_priv(shost); 5724 struct ufs_hw_queue *hwq = ufshcd_mcq_req_to_hwq(hba, rq); 5725 5726 if (blk_mq_is_reserved_rq(rq) || !hwq) 5727 return true; 5728 5729 ufshcd_mcq_compl_all_cqes_lock(hba, hwq); 5730 5731 /* 5732 * For those cmds of which the cqes are not present in the cq, complete 5733 * them explicitly. 5734 */ 5735 scoped_guard(spinlock_irqsave, &hwq->cq_lock) { 5736 if (!test_bit(SCMD_STATE_COMPLETE, &cmd->state)) { 5737 set_host_byte(cmd, DID_REQUEUE); 5738 ufshcd_release_scsi_cmd(hba, cmd); 5739 scsi_done(cmd); 5740 } 5741 } 5742 5743 return true; 5744 } 5745 5746 static bool ufshcd_mcq_compl_one(struct request *rq, void *priv) 5747 { 5748 struct scsi_device *sdev = rq->q->queuedata; 5749 struct Scsi_Host *shost = sdev->host; 5750 struct ufs_hba *hba = shost_priv(shost); 5751 struct ufs_hw_queue *hwq = ufshcd_mcq_req_to_hwq(hba, rq); 5752 5753 if (!blk_mq_is_reserved_rq(rq) && hwq) 5754 ufshcd_mcq_poll_cqe_lock(hba, hwq); 5755 5756 return true; 5757 } 5758 5759 /** 5760 * ufshcd_mcq_compl_pending_transfer - MCQ mode function. It is 5761 * invoked from the error handler context or ufshcd_host_reset_and_restore() 5762 * to complete the pending transfers and free the resources associated with 5763 * the scsi command. 5764 * 5765 * @hba: per adapter instance 5766 * @force_compl: This flag is set to true when invoked 5767 * from ufshcd_host_reset_and_restore() in which case it requires special 5768 * handling because the host controller has been reset by ufshcd_hba_stop(). 5769 */ 5770 static void ufshcd_mcq_compl_pending_transfer(struct ufs_hba *hba, 5771 bool force_compl) 5772 { 5773 blk_mq_tagset_busy_iter(&hba->host->tag_set, 5774 force_compl ? ufshcd_mcq_force_compl_one : 5775 ufshcd_mcq_compl_one, 5776 NULL); 5777 } 5778 5779 /** 5780 * ufshcd_transfer_req_compl - handle SCSI and query command completion 5781 * @hba: per adapter instance 5782 * 5783 * Return: 5784 * IRQ_HANDLED - If interrupt is valid 5785 * IRQ_NONE - If invalid interrupt 5786 */ 5787 static irqreturn_t ufshcd_transfer_req_compl(struct ufs_hba *hba) 5788 { 5789 /* Resetting interrupt aggregation counters first and reading the 5790 * DOOR_BELL afterward allows us to handle all the completed requests. 5791 * In order to prevent other interrupts starvation the DB is read once 5792 * after reset. The down side of this solution is the possibility of 5793 * false interrupt if device completes another request after resetting 5794 * aggregation and before reading the DB. 5795 */ 5796 if (ufshcd_is_intr_aggr_allowed(hba) && 5797 !(hba->quirks & UFSHCI_QUIRK_SKIP_RESET_INTR_AGGR)) 5798 ufshcd_reset_intr_aggr(hba); 5799 5800 if (ufs_fail_completion(hba)) 5801 return IRQ_HANDLED; 5802 5803 /* 5804 * Ignore the ufshcd_poll() return value and return IRQ_HANDLED since we 5805 * do not want polling to trigger spurious interrupt complaints. 5806 */ 5807 ufshcd_poll(hba->host, UFSHCD_POLL_FROM_INTERRUPT_CONTEXT); 5808 5809 return IRQ_HANDLED; 5810 } 5811 5812 int __ufshcd_write_ee_control(struct ufs_hba *hba, u32 ee_ctrl_mask) 5813 { 5814 return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR, 5815 QUERY_ATTR_IDN_EE_CONTROL, 0, 0, 5816 &ee_ctrl_mask); 5817 } 5818 5819 int ufshcd_write_ee_control(struct ufs_hba *hba) 5820 { 5821 int err; 5822 5823 mutex_lock(&hba->ee_ctrl_mutex); 5824 err = __ufshcd_write_ee_control(hba, hba->ee_ctrl_mask); 5825 mutex_unlock(&hba->ee_ctrl_mutex); 5826 if (err) 5827 dev_err(hba->dev, "%s: failed to write ee control %d\n", 5828 __func__, err); 5829 return err; 5830 } 5831 5832 int ufshcd_update_ee_control(struct ufs_hba *hba, u16 *mask, 5833 const u16 *other_mask, u16 set, u16 clr) 5834 { 5835 u16 new_mask, ee_ctrl_mask; 5836 int err = 0; 5837 5838 mutex_lock(&hba->ee_ctrl_mutex); 5839 new_mask = (*mask & ~clr) | set; 5840 ee_ctrl_mask = new_mask | *other_mask; 5841 if (ee_ctrl_mask != hba->ee_ctrl_mask) 5842 err = __ufshcd_write_ee_control(hba, ee_ctrl_mask); 5843 /* Still need to update 'mask' even if 'ee_ctrl_mask' was unchanged */ 5844 if (!err) { 5845 hba->ee_ctrl_mask = ee_ctrl_mask; 5846 *mask = new_mask; 5847 } 5848 mutex_unlock(&hba->ee_ctrl_mutex); 5849 return err; 5850 } 5851 5852 /** 5853 * ufshcd_disable_ee - disable exception event 5854 * @hba: per-adapter instance 5855 * @mask: exception event to disable 5856 * 5857 * Disables exception event in the device so that the EVENT_ALERT 5858 * bit is not set. 5859 * 5860 * Return: zero on success, non-zero error value on failure. 5861 */ 5862 static inline int ufshcd_disable_ee(struct ufs_hba *hba, u16 mask) 5863 { 5864 return ufshcd_update_ee_drv_mask(hba, 0, mask); 5865 } 5866 5867 /** 5868 * ufshcd_enable_ee - enable exception event 5869 * @hba: per-adapter instance 5870 * @mask: exception event to enable 5871 * 5872 * Enable corresponding exception event in the device to allow 5873 * device to alert host in critical scenarios. 5874 * 5875 * Return: zero on success, non-zero error value on failure. 5876 */ 5877 static inline int ufshcd_enable_ee(struct ufs_hba *hba, u16 mask) 5878 { 5879 return ufshcd_update_ee_drv_mask(hba, mask, 0); 5880 } 5881 5882 /** 5883 * ufshcd_enable_auto_bkops - Allow device managed BKOPS 5884 * @hba: per-adapter instance 5885 * 5886 * Allow device to manage background operations on its own. Enabling 5887 * this might lead to inconsistent latencies during normal data transfers 5888 * as the device is allowed to manage its own way of handling background 5889 * operations. 5890 * 5891 * Return: 0 upon success; > 0 in case the UFS device reported an OCS error; 5892 * < 0 if another error occurred. 5893 */ 5894 static int ufshcd_enable_auto_bkops(struct ufs_hba *hba) 5895 { 5896 int err = 0; 5897 5898 if (hba->auto_bkops_enabled) 5899 goto out; 5900 5901 err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG, 5902 QUERY_FLAG_IDN_BKOPS_EN, 0, NULL); 5903 if (err) { 5904 dev_err(hba->dev, "%s: failed to enable bkops %d\n", 5905 __func__, err); 5906 goto out; 5907 } 5908 5909 hba->auto_bkops_enabled = true; 5910 trace_ufshcd_auto_bkops_state(hba, "Enabled"); 5911 5912 /* No need of URGENT_BKOPS exception from the device */ 5913 err = ufshcd_disable_ee(hba, MASK_EE_URGENT_BKOPS); 5914 if (err) 5915 dev_err(hba->dev, "%s: failed to disable exception event %d\n", 5916 __func__, err); 5917 out: 5918 return err; 5919 } 5920 5921 /** 5922 * ufshcd_disable_auto_bkops - block device in doing background operations 5923 * @hba: per-adapter instance 5924 * 5925 * Disabling background operations improves command response latency but 5926 * has drawback of device moving into critical state where the device is 5927 * not-operable. Make sure to call ufshcd_enable_auto_bkops() whenever the 5928 * host is idle so that BKOPS are managed effectively without any negative 5929 * impacts. 5930 * 5931 * Return: 0 upon success; > 0 in case the UFS device reported an OCS error; 5932 * < 0 if another error occurred. 5933 */ 5934 static int ufshcd_disable_auto_bkops(struct ufs_hba *hba) 5935 { 5936 int err = 0; 5937 5938 if (!hba->auto_bkops_enabled) 5939 goto out; 5940 5941 /* 5942 * If host assisted BKOPs is to be enabled, make sure 5943 * urgent bkops exception is allowed. 5944 */ 5945 err = ufshcd_enable_ee(hba, MASK_EE_URGENT_BKOPS); 5946 if (err) { 5947 dev_err(hba->dev, "%s: failed to enable exception event %d\n", 5948 __func__, err); 5949 goto out; 5950 } 5951 5952 err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_CLEAR_FLAG, 5953 QUERY_FLAG_IDN_BKOPS_EN, 0, NULL); 5954 if (err) { 5955 dev_err(hba->dev, "%s: failed to disable bkops %d\n", 5956 __func__, err); 5957 ufshcd_disable_ee(hba, MASK_EE_URGENT_BKOPS); 5958 goto out; 5959 } 5960 5961 hba->auto_bkops_enabled = false; 5962 trace_ufshcd_auto_bkops_state(hba, "Disabled"); 5963 hba->is_urgent_bkops_lvl_checked = false; 5964 out: 5965 return err; 5966 } 5967 5968 /** 5969 * ufshcd_force_reset_auto_bkops - force reset auto bkops state 5970 * @hba: per adapter instance 5971 * 5972 * After a device reset the device may toggle the BKOPS_EN flag 5973 * to default value. The s/w tracking variables should be updated 5974 * as well. This function would change the auto-bkops state based on 5975 * UFSHCD_CAP_KEEP_AUTO_BKOPS_ENABLED_EXCEPT_SUSPEND. 5976 */ 5977 static void ufshcd_force_reset_auto_bkops(struct ufs_hba *hba) 5978 { 5979 if (ufshcd_keep_autobkops_enabled_except_suspend(hba)) { 5980 hba->auto_bkops_enabled = false; 5981 hba->ee_ctrl_mask |= MASK_EE_URGENT_BKOPS; 5982 ufshcd_enable_auto_bkops(hba); 5983 } else { 5984 hba->auto_bkops_enabled = true; 5985 hba->ee_ctrl_mask &= ~MASK_EE_URGENT_BKOPS; 5986 ufshcd_disable_auto_bkops(hba); 5987 } 5988 hba->urgent_bkops_lvl = BKOPS_STATUS_PERF_IMPACT; 5989 hba->is_urgent_bkops_lvl_checked = false; 5990 } 5991 5992 static inline int ufshcd_get_bkops_status(struct ufs_hba *hba, u32 *status) 5993 { 5994 return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR, 5995 QUERY_ATTR_IDN_BKOPS_STATUS, 0, 0, status); 5996 } 5997 5998 /** 5999 * ufshcd_bkops_ctrl - control the auto bkops based on current bkops status 6000 * @hba: per-adapter instance 6001 * 6002 * Read the bkops_status from the UFS device and Enable fBackgroundOpsEn 6003 * flag in the device to permit background operations if the device 6004 * bkops_status is greater than or equal to the "hba->urgent_bkops_lvl", 6005 * disable otherwise. 6006 * 6007 * Return: 0 for success, non-zero in case of failure. 6008 * 6009 * NOTE: Caller of this function can check the "hba->auto_bkops_enabled" flag 6010 * to know whether auto bkops is enabled or disabled after this function 6011 * returns control to it. 6012 */ 6013 static int ufshcd_bkops_ctrl(struct ufs_hba *hba) 6014 { 6015 enum bkops_status status = hba->urgent_bkops_lvl; 6016 u32 curr_status = 0; 6017 int err; 6018 6019 err = ufshcd_get_bkops_status(hba, &curr_status); 6020 if (err) { 6021 dev_err(hba->dev, "%s: failed to get BKOPS status %d\n", 6022 __func__, err); 6023 goto out; 6024 } else if (curr_status > BKOPS_STATUS_MAX) { 6025 dev_err(hba->dev, "%s: invalid BKOPS status %d\n", 6026 __func__, curr_status); 6027 err = -EINVAL; 6028 goto out; 6029 } 6030 6031 if (curr_status >= status) 6032 err = ufshcd_enable_auto_bkops(hba); 6033 else 6034 err = ufshcd_disable_auto_bkops(hba); 6035 out: 6036 return err; 6037 } 6038 6039 static inline int ufshcd_get_ee_status(struct ufs_hba *hba, u32 *status) 6040 { 6041 return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR, 6042 QUERY_ATTR_IDN_EE_STATUS, 0, 0, status); 6043 } 6044 6045 static void ufshcd_bkops_exception_event_handler(struct ufs_hba *hba) 6046 { 6047 int err; 6048 u32 curr_status = 0; 6049 6050 if (hba->is_urgent_bkops_lvl_checked) 6051 goto enable_auto_bkops; 6052 6053 err = ufshcd_get_bkops_status(hba, &curr_status); 6054 if (err) { 6055 dev_err(hba->dev, "%s: failed to get BKOPS status %d\n", 6056 __func__, err); 6057 goto out; 6058 } 6059 6060 /* 6061 * We are seeing that some devices are raising the urgent bkops 6062 * exception events even when BKOPS status doesn't indicate performace 6063 * impacted or critical. Handle these device by determining their urgent 6064 * bkops status at runtime. 6065 */ 6066 if (curr_status < BKOPS_STATUS_PERF_IMPACT) { 6067 dev_err(hba->dev, "%s: device raised urgent BKOPS exception for bkops status %d\n", 6068 __func__, curr_status); 6069 /* update the current status as the urgent bkops level */ 6070 hba->urgent_bkops_lvl = curr_status; 6071 hba->is_urgent_bkops_lvl_checked = true; 6072 } 6073 6074 enable_auto_bkops: 6075 err = ufshcd_enable_auto_bkops(hba); 6076 out: 6077 if (err < 0) 6078 dev_err(hba->dev, "%s: failed to handle urgent bkops %d\n", 6079 __func__, err); 6080 } 6081 6082 /* 6083 * Return: 0 upon success; > 0 in case the UFS device reported an OCS error; 6084 * < 0 if another error occurred. 6085 */ 6086 int ufshcd_read_device_lvl_exception_id(struct ufs_hba *hba, u64 *exception_id) 6087 { 6088 struct utp_upiu_query_v4_0 *upiu_resp; 6089 struct ufs_query_req *request = NULL; 6090 struct ufs_query_res *response = NULL; 6091 int err; 6092 6093 if (hba->dev_info.wspecversion < 0x410) 6094 return -EOPNOTSUPP; 6095 6096 ufshcd_hold(hba); 6097 mutex_lock(&hba->dev_cmd.lock); 6098 6099 ufshcd_init_query(hba, &request, &response, 6100 UPIU_QUERY_OPCODE_READ_ATTR, 6101 QUERY_ATTR_IDN_DEV_LVL_EXCEPTION_ID, 0, 0); 6102 6103 request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST; 6104 6105 err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, dev_cmd_timeout); 6106 6107 if (err) { 6108 dev_err(hba->dev, "%s: failed to read device level exception %d\n", 6109 __func__, err); 6110 goto out; 6111 } 6112 6113 upiu_resp = (struct utp_upiu_query_v4_0 *)response; 6114 *exception_id = get_unaligned_be64(&upiu_resp->osf3); 6115 out: 6116 mutex_unlock(&hba->dev_cmd.lock); 6117 ufshcd_release(hba); 6118 6119 return err; 6120 } 6121 6122 static int __ufshcd_wb_toggle(struct ufs_hba *hba, bool set, enum flag_idn idn) 6123 { 6124 u8 index; 6125 enum query_opcode opcode = set ? UPIU_QUERY_OPCODE_SET_FLAG : 6126 UPIU_QUERY_OPCODE_CLEAR_FLAG; 6127 6128 index = ufshcd_wb_get_query_index(hba); 6129 return ufshcd_query_flag_retry(hba, opcode, idn, index, NULL); 6130 } 6131 6132 int ufshcd_wb_toggle(struct ufs_hba *hba, bool enable) 6133 { 6134 int ret; 6135 6136 if (!ufshcd_is_wb_allowed(hba) || 6137 hba->dev_info.wb_enabled == enable) 6138 return 0; 6139 6140 ret = __ufshcd_wb_toggle(hba, enable, QUERY_FLAG_IDN_WB_EN); 6141 if (ret) { 6142 dev_err(hba->dev, "%s: Write Booster %s failed %d\n", 6143 __func__, enable ? "enabling" : "disabling", ret); 6144 return ret; 6145 } 6146 6147 hba->dev_info.wb_enabled = enable; 6148 dev_dbg(hba->dev, "%s: Write Booster %s\n", 6149 __func__, enable ? "enabled" : "disabled"); 6150 6151 return ret; 6152 } 6153 6154 static void ufshcd_wb_toggle_buf_flush_during_h8(struct ufs_hba *hba, 6155 bool enable) 6156 { 6157 int ret; 6158 6159 ret = __ufshcd_wb_toggle(hba, enable, 6160 QUERY_FLAG_IDN_WB_BUFF_FLUSH_DURING_HIBERN8); 6161 if (ret) { 6162 dev_err(hba->dev, "%s: WB-Buf Flush during H8 %s failed %d\n", 6163 __func__, enable ? "enabling" : "disabling", ret); 6164 return; 6165 } 6166 dev_dbg(hba->dev, "%s: WB-Buf Flush during H8 %s\n", 6167 __func__, enable ? "enabled" : "disabled"); 6168 } 6169 6170 int ufshcd_wb_toggle_buf_flush(struct ufs_hba *hba, bool enable) 6171 { 6172 int ret; 6173 6174 if (!ufshcd_is_wb_allowed(hba) || 6175 hba->dev_info.wb_buf_flush_enabled == enable) 6176 return 0; 6177 6178 ret = __ufshcd_wb_toggle(hba, enable, QUERY_FLAG_IDN_WB_BUFF_FLUSH_EN); 6179 if (ret) { 6180 dev_err(hba->dev, "%s: WB-Buf Flush %s failed %d\n", 6181 __func__, enable ? "enabling" : "disabling", ret); 6182 return ret; 6183 } 6184 6185 hba->dev_info.wb_buf_flush_enabled = enable; 6186 dev_dbg(hba->dev, "%s: WB-Buf Flush %s\n", 6187 __func__, enable ? "enabled" : "disabled"); 6188 6189 return ret; 6190 } 6191 6192 int ufshcd_wb_set_resize_en(struct ufs_hba *hba, enum wb_resize_en en_mode) 6193 { 6194 int ret; 6195 u8 index; 6196 6197 index = ufshcd_wb_get_query_index(hba); 6198 ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR, 6199 QUERY_ATTR_IDN_WB_BUF_RESIZE_EN, index, 0, &en_mode); 6200 if (ret) 6201 dev_err(hba->dev, "%s: Enable WB buf resize operation failed %d\n", 6202 __func__, ret); 6203 6204 return ret; 6205 } 6206 6207 static bool ufshcd_wb_curr_buff_threshold_check(struct ufs_hba *hba, 6208 u32 avail_buf) 6209 { 6210 u32 cur_buf; 6211 int ret; 6212 u8 index; 6213 6214 index = ufshcd_wb_get_query_index(hba); 6215 ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR, 6216 QUERY_ATTR_IDN_CURR_WB_BUFF_SIZE, 6217 index, 0, &cur_buf); 6218 if (ret) { 6219 dev_err(hba->dev, "%s: dCurWriteBoosterBufferSize read failed %d\n", 6220 __func__, ret); 6221 return false; 6222 } 6223 6224 if (!cur_buf) { 6225 dev_info(hba->dev, "dCurWBBuf: %d WB disabled until free-space is available\n", 6226 cur_buf); 6227 return false; 6228 } 6229 /* Let it continue to flush when available buffer exceeds threshold */ 6230 return avail_buf < hba->vps->wb_flush_threshold; 6231 } 6232 6233 static void ufshcd_wb_force_disable(struct ufs_hba *hba) 6234 { 6235 if (ufshcd_is_wb_buf_flush_allowed(hba)) 6236 ufshcd_wb_toggle_buf_flush(hba, false); 6237 6238 ufshcd_wb_toggle_buf_flush_during_h8(hba, false); 6239 ufshcd_wb_toggle(hba, false); 6240 hba->caps &= ~UFSHCD_CAP_WB_EN; 6241 6242 dev_info(hba->dev, "%s: WB force disabled\n", __func__); 6243 } 6244 6245 static bool ufshcd_is_wb_buf_lifetime_available(struct ufs_hba *hba) 6246 { 6247 u32 lifetime; 6248 int ret; 6249 u8 index; 6250 6251 index = ufshcd_wb_get_query_index(hba); 6252 ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR, 6253 QUERY_ATTR_IDN_WB_BUFF_LIFE_TIME_EST, 6254 index, 0, &lifetime); 6255 if (ret) { 6256 dev_err(hba->dev, 6257 "%s: bWriteBoosterBufferLifeTimeEst read failed %d\n", 6258 __func__, ret); 6259 return false; 6260 } 6261 6262 if (lifetime == UFS_WB_EXCEED_LIFETIME) { 6263 dev_err(hba->dev, "%s: WB buf lifetime is exhausted 0x%02X\n", 6264 __func__, lifetime); 6265 return false; 6266 } 6267 6268 dev_dbg(hba->dev, "%s: WB buf lifetime is 0x%02X\n", 6269 __func__, lifetime); 6270 6271 return true; 6272 } 6273 6274 static bool ufshcd_wb_need_flush(struct ufs_hba *hba) 6275 { 6276 int ret; 6277 u32 avail_buf; 6278 u8 index; 6279 6280 if (!ufshcd_is_wb_allowed(hba)) 6281 return false; 6282 6283 if (!ufshcd_is_wb_buf_lifetime_available(hba)) { 6284 ufshcd_wb_force_disable(hba); 6285 return false; 6286 } 6287 6288 /* 6289 * With user-space reduction enabled, it's enough to enable flush 6290 * by checking only the available buffer. The threshold 6291 * defined here is > 90% full. 6292 * With user-space preserved enabled, the current-buffer 6293 * should be checked too because the wb buffer size can reduce 6294 * when disk tends to be full. This info is provided by current 6295 * buffer (dCurrentWriteBoosterBufferSize). 6296 */ 6297 index = ufshcd_wb_get_query_index(hba); 6298 ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR, 6299 QUERY_ATTR_IDN_AVAIL_WB_BUFF_SIZE, 6300 index, 0, &avail_buf); 6301 if (ret) { 6302 dev_warn(hba->dev, "%s: dAvailableWriteBoosterBufferSize read failed %d\n", 6303 __func__, ret); 6304 return false; 6305 } 6306 6307 if (!hba->dev_info.b_presrv_uspc_en) 6308 return avail_buf <= UFS_WB_BUF_REMAIN_PERCENT(10); 6309 6310 return ufshcd_wb_curr_buff_threshold_check(hba, avail_buf); 6311 } 6312 6313 static void ufshcd_rpm_dev_flush_recheck_work(struct work_struct *work) 6314 { 6315 struct ufs_hba *hba = container_of(to_delayed_work(work), 6316 struct ufs_hba, 6317 rpm_dev_flush_recheck_work); 6318 /* 6319 * To prevent unnecessary VCC power drain after device finishes 6320 * WriteBooster buffer flush or Auto BKOPs, force runtime resume 6321 * after a certain delay to recheck the threshold by next runtime 6322 * suspend. 6323 */ 6324 ufshcd_rpm_get_sync(hba); 6325 ufshcd_rpm_put_sync(hba); 6326 } 6327 6328 /** 6329 * ufshcd_exception_event_handler - handle exceptions raised by device 6330 * @work: pointer to work data 6331 * 6332 * Read bExceptionEventStatus attribute from the device and handle the 6333 * exception event accordingly. 6334 */ 6335 static void ufshcd_exception_event_handler(struct work_struct *work) 6336 { 6337 struct ufs_hba *hba; 6338 int err; 6339 u32 status = 0; 6340 hba = container_of(work, struct ufs_hba, eeh_work); 6341 6342 err = ufshcd_get_ee_status(hba, &status); 6343 if (err) { 6344 dev_err(hba->dev, "%s: failed to get exception status %d\n", 6345 __func__, err); 6346 return; 6347 } 6348 6349 trace_ufshcd_exception_event(hba, status); 6350 6351 if (status & hba->ee_drv_mask & MASK_EE_URGENT_BKOPS) 6352 ufshcd_bkops_exception_event_handler(hba); 6353 6354 if (status & hba->ee_drv_mask & MASK_EE_URGENT_TEMP) 6355 ufs_hwmon_notify_event(hba, status & MASK_EE_URGENT_TEMP); 6356 6357 if (status & hba->ee_drv_mask & MASK_EE_HEALTH_CRITICAL) { 6358 hba->critical_health_count++; 6359 sysfs_notify(&hba->dev->kobj, NULL, "critical_health"); 6360 } 6361 6362 if (status & hba->ee_drv_mask & MASK_EE_DEV_LVL_EXCEPTION) { 6363 atomic_inc(&hba->dev_lvl_exception_count); 6364 sysfs_notify(&hba->dev->kobj, NULL, "device_lvl_exception_count"); 6365 } 6366 6367 ufs_debugfs_exception_event(hba, status); 6368 } 6369 6370 /* Complete requests that have door-bell cleared */ 6371 static void ufshcd_complete_requests(struct ufs_hba *hba, bool force_compl) 6372 { 6373 if (hba->mcq_enabled) 6374 ufshcd_mcq_compl_pending_transfer(hba, force_compl); 6375 else 6376 ufshcd_transfer_req_compl(hba); 6377 6378 ufshcd_tmc_handler(hba); 6379 } 6380 6381 /** 6382 * ufshcd_quirk_dl_nac_errors - This function checks if error handling is 6383 * to recover from the DL NAC errors or not. 6384 * @hba: per-adapter instance 6385 * 6386 * Return: true if error handling is required, false otherwise. 6387 */ 6388 static bool ufshcd_quirk_dl_nac_errors(struct ufs_hba *hba) 6389 { 6390 unsigned long flags; 6391 bool err_handling = true; 6392 6393 spin_lock_irqsave(hba->host->host_lock, flags); 6394 /* 6395 * UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS only workaround the 6396 * device fatal error and/or DL NAC & REPLAY timeout errors. 6397 */ 6398 if (hba->saved_err & (CONTROLLER_FATAL_ERROR | SYSTEM_BUS_FATAL_ERROR)) 6399 goto out; 6400 6401 if ((hba->saved_err & DEVICE_FATAL_ERROR) || 6402 ((hba->saved_err & UIC_ERROR) && 6403 (hba->saved_uic_err & UFSHCD_UIC_DL_TCx_REPLAY_ERROR))) 6404 goto out; 6405 6406 if ((hba->saved_err & UIC_ERROR) && 6407 (hba->saved_uic_err & UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)) { 6408 int err; 6409 /* 6410 * wait for 50ms to see if we can get any other errors or not. 6411 */ 6412 spin_unlock_irqrestore(hba->host->host_lock, flags); 6413 msleep(50); 6414 spin_lock_irqsave(hba->host->host_lock, flags); 6415 6416 /* 6417 * now check if we have got any other severe errors other than 6418 * DL NAC error? 6419 */ 6420 if ((hba->saved_err & INT_FATAL_ERRORS) || 6421 ((hba->saved_err & UIC_ERROR) && 6422 (hba->saved_uic_err & ~UFSHCD_UIC_DL_NAC_RECEIVED_ERROR))) 6423 goto out; 6424 6425 /* 6426 * As DL NAC is the only error received so far, send out NOP 6427 * command to confirm if link is still active or not. 6428 * - If we don't get any response then do error recovery. 6429 * - If we get response then clear the DL NAC error bit. 6430 */ 6431 6432 spin_unlock_irqrestore(hba->host->host_lock, flags); 6433 err = ufshcd_verify_dev_init(hba); 6434 spin_lock_irqsave(hba->host->host_lock, flags); 6435 6436 if (err) 6437 goto out; 6438 6439 /* Link seems to be alive hence ignore the DL NAC errors */ 6440 if (hba->saved_uic_err == UFSHCD_UIC_DL_NAC_RECEIVED_ERROR) 6441 hba->saved_err &= ~UIC_ERROR; 6442 /* clear NAC error */ 6443 hba->saved_uic_err &= ~UFSHCD_UIC_DL_NAC_RECEIVED_ERROR; 6444 if (!hba->saved_uic_err) 6445 err_handling = false; 6446 } 6447 out: 6448 spin_unlock_irqrestore(hba->host->host_lock, flags); 6449 return err_handling; 6450 } 6451 6452 /* host lock must be held before calling this func */ 6453 static inline bool ufshcd_is_saved_err_fatal(struct ufs_hba *hba) 6454 { 6455 return (hba->saved_uic_err & UFSHCD_UIC_DL_PA_INIT_ERROR) || 6456 (hba->saved_err & (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK)); 6457 } 6458 6459 void ufshcd_schedule_eh_work(struct ufs_hba *hba) 6460 { 6461 lockdep_assert_held(hba->host->host_lock); 6462 6463 /* handle fatal errors only when link is not in error state */ 6464 if (hba->ufshcd_state != UFSHCD_STATE_ERROR) { 6465 if (hba->force_reset || ufshcd_is_link_broken(hba) || 6466 ufshcd_is_saved_err_fatal(hba)) 6467 hba->ufshcd_state = UFSHCD_STATE_EH_SCHEDULED_FATAL; 6468 else 6469 hba->ufshcd_state = UFSHCD_STATE_EH_SCHEDULED_NON_FATAL; 6470 queue_work(hba->eh_wq, &hba->eh_work); 6471 } 6472 } 6473 6474 void ufshcd_force_error_recovery(struct ufs_hba *hba) 6475 { 6476 spin_lock_irq(hba->host->host_lock); 6477 hba->force_reset = true; 6478 ufshcd_schedule_eh_work(hba); 6479 spin_unlock_irq(hba->host->host_lock); 6480 } 6481 EXPORT_SYMBOL_GPL(ufshcd_force_error_recovery); 6482 6483 static void ufshcd_clk_scaling_allow(struct ufs_hba *hba, bool allow) 6484 { 6485 mutex_lock(&hba->wb_mutex); 6486 down_write(&hba->clk_scaling_lock); 6487 hba->clk_scaling.is_allowed = allow; 6488 up_write(&hba->clk_scaling_lock); 6489 mutex_unlock(&hba->wb_mutex); 6490 } 6491 6492 static void ufshcd_clk_scaling_suspend(struct ufs_hba *hba, bool suspend) 6493 { 6494 if (suspend) { 6495 if (hba->clk_scaling.is_enabled) 6496 ufshcd_suspend_clkscaling(hba); 6497 ufshcd_clk_scaling_allow(hba, false); 6498 } else { 6499 ufshcd_clk_scaling_allow(hba, true); 6500 if (hba->clk_scaling.is_enabled) 6501 ufshcd_resume_clkscaling(hba); 6502 } 6503 } 6504 6505 static void ufshcd_err_handling_prepare(struct ufs_hba *hba) 6506 { 6507 ufshcd_rpm_get_sync(hba); 6508 if (pm_runtime_status_suspended(&hba->ufs_device_wlun->sdev_gendev) || 6509 hba->is_sys_suspended) { 6510 enum ufs_pm_op pm_op; 6511 6512 /* 6513 * Don't assume anything of resume, if 6514 * resume fails, irq and clocks can be OFF, and powers 6515 * can be OFF or in LPM. 6516 */ 6517 ufshcd_setup_hba_vreg(hba, true); 6518 ufshcd_enable_irq(hba); 6519 ufshcd_setup_vreg(hba, true); 6520 ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq); 6521 ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq2); 6522 ufshcd_hold(hba); 6523 if (!ufshcd_is_clkgating_allowed(hba)) 6524 ufshcd_setup_clocks(hba, true); 6525 pm_op = hba->is_sys_suspended ? UFS_SYSTEM_PM : UFS_RUNTIME_PM; 6526 ufshcd_vops_resume(hba, pm_op); 6527 } else { 6528 ufshcd_hold(hba); 6529 if (ufshcd_is_clkscaling_supported(hba) && 6530 hba->clk_scaling.is_enabled) 6531 ufshcd_suspend_clkscaling(hba); 6532 ufshcd_clk_scaling_allow(hba, false); 6533 } 6534 /* Wait for ongoing ufshcd_queuecommand() calls to finish. */ 6535 blk_mq_quiesce_tagset(&hba->host->tag_set); 6536 cancel_work_sync(&hba->eeh_work); 6537 } 6538 6539 static void ufshcd_err_handling_unprepare(struct ufs_hba *hba) 6540 { 6541 blk_mq_unquiesce_tagset(&hba->host->tag_set); 6542 ufshcd_release(hba); 6543 if (ufshcd_is_clkscaling_supported(hba)) 6544 ufshcd_clk_scaling_suspend(hba, false); 6545 ufshcd_rpm_put(hba); 6546 } 6547 6548 static inline bool ufshcd_err_handling_should_stop(struct ufs_hba *hba) 6549 { 6550 return (!hba->is_powered || hba->shutting_down || 6551 !hba->ufs_device_wlun || 6552 hba->ufshcd_state == UFSHCD_STATE_ERROR || 6553 (!(hba->saved_err || hba->saved_uic_err || hba->force_reset || 6554 ufshcd_is_link_broken(hba)))); 6555 } 6556 6557 #ifdef CONFIG_PM 6558 static void ufshcd_recover_pm_error(struct ufs_hba *hba) 6559 { 6560 struct Scsi_Host *shost = hba->host; 6561 struct scsi_device *sdev; 6562 struct request_queue *q; 6563 int ret; 6564 6565 hba->is_sys_suspended = false; 6566 /* 6567 * Set RPM status of wlun device to RPM_ACTIVE, 6568 * this also clears its runtime error. 6569 */ 6570 ret = pm_runtime_set_active(&hba->ufs_device_wlun->sdev_gendev); 6571 6572 /* hba device might have a runtime error otherwise */ 6573 if (ret) 6574 ret = pm_runtime_set_active(hba->dev); 6575 /* 6576 * If wlun device had runtime error, we also need to resume those 6577 * consumer scsi devices in case any of them has failed to be 6578 * resumed due to supplier runtime resume failure. This is to unblock 6579 * blk_queue_enter in case there are bios waiting inside it. 6580 */ 6581 if (!ret) { 6582 shost_for_each_device(sdev, shost) { 6583 q = sdev->request_queue; 6584 if (q->dev && (q->rpm_status == RPM_SUSPENDED || 6585 q->rpm_status == RPM_SUSPENDING)) 6586 pm_request_resume(q->dev); 6587 } 6588 } 6589 } 6590 #else 6591 static inline void ufshcd_recover_pm_error(struct ufs_hba *hba) 6592 { 6593 } 6594 #endif 6595 6596 static bool ufshcd_is_pwr_mode_restore_needed(struct ufs_hba *hba) 6597 { 6598 struct ufs_pa_layer_attr *pwr_info = &hba->pwr_info; 6599 u32 mode; 6600 6601 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_PWRMODE), &mode); 6602 6603 if (pwr_info->pwr_rx != ((mode >> PWRMODE_RX_OFFSET) & PWRMODE_MASK)) 6604 return true; 6605 6606 if (pwr_info->pwr_tx != (mode & PWRMODE_MASK)) 6607 return true; 6608 6609 return false; 6610 } 6611 6612 static bool ufshcd_abort_one(struct request *rq, void *priv) 6613 { 6614 int *ret = priv; 6615 u32 tag = rq->tag; 6616 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 6617 struct scsi_device *sdev = cmd->device; 6618 struct Scsi_Host *shost = sdev->host; 6619 struct ufs_hba *hba = shost_priv(shost); 6620 6621 if (blk_mq_is_reserved_rq(rq)) 6622 return true; 6623 6624 *ret = ufshcd_try_to_abort_task(hba, tag); 6625 dev_err(hba->dev, "Aborting tag %d / CDB %#02x %s\n", tag, 6626 ufshcd_is_scsi_cmd(cmd) ? cmd->cmnd[0] : -1, 6627 *ret ? "failed" : "succeeded"); 6628 6629 return *ret == 0; 6630 } 6631 6632 /** 6633 * ufshcd_abort_all - Abort all pending commands. 6634 * @hba: Host bus adapter pointer. 6635 * 6636 * Return: true if and only if the host controller needs to be reset. 6637 */ 6638 static bool ufshcd_abort_all(struct ufs_hba *hba) 6639 { 6640 int tag, ret = 0; 6641 6642 blk_mq_tagset_busy_iter(&hba->host->tag_set, ufshcd_abort_one, &ret); 6643 if (ret) 6644 goto out; 6645 6646 /* Clear pending task management requests */ 6647 for_each_set_bit(tag, &hba->outstanding_tasks, hba->nutmrs) { 6648 ret = ufshcd_clear_tm_cmd(hba, tag); 6649 if (ret) 6650 goto out; 6651 } 6652 6653 out: 6654 /* Complete the requests that are cleared by s/w */ 6655 ufshcd_complete_requests(hba, false); 6656 6657 return ret != 0; 6658 } 6659 6660 /** 6661 * ufshcd_err_handler - handle UFS errors that require s/w attention 6662 * @work: pointer to work structure 6663 */ 6664 static void ufshcd_err_handler(struct work_struct *work) 6665 { 6666 int retries = MAX_ERR_HANDLER_RETRIES; 6667 struct ufs_hba *hba; 6668 unsigned long flags; 6669 bool needs_restore; 6670 bool needs_reset; 6671 int pmc_err; 6672 6673 hba = container_of(work, struct ufs_hba, eh_work); 6674 6675 dev_info(hba->dev, 6676 "%s started; HBA state %s; powered %d; shutting down %d; saved_err = 0x%x; saved_uic_err = 0x%x; force_reset = %d%s\n", 6677 __func__, ufshcd_state_name[hba->ufshcd_state], 6678 hba->is_powered, hba->shutting_down, hba->saved_err, 6679 hba->saved_uic_err, hba->force_reset, 6680 ufshcd_is_link_broken(hba) ? "; link is broken" : ""); 6681 6682 /* 6683 * Use ufshcd_rpm_get_noresume() here to safely perform link recovery 6684 * even if an error occurs during runtime suspend or runtime resume. 6685 * This avoids potential deadlocks that could happen if we tried to 6686 * resume the device while a PM operation is already in progress. 6687 */ 6688 ufshcd_rpm_get_noresume(hba); 6689 if (hba->pm_op_in_progress) { 6690 ufshcd_link_recovery(hba); 6691 ufshcd_rpm_put(hba); 6692 return; 6693 } 6694 ufshcd_rpm_put(hba); 6695 6696 down(&hba->host_sem); 6697 spin_lock_irqsave(hba->host->host_lock, flags); 6698 if (ufshcd_err_handling_should_stop(hba)) { 6699 if (hba->ufshcd_state != UFSHCD_STATE_ERROR) 6700 hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL; 6701 spin_unlock_irqrestore(hba->host->host_lock, flags); 6702 up(&hba->host_sem); 6703 return; 6704 } 6705 spin_unlock_irqrestore(hba->host->host_lock, flags); 6706 6707 ufshcd_err_handling_prepare(hba); 6708 6709 spin_lock_irqsave(hba->host->host_lock, flags); 6710 ufshcd_set_eh_in_progress(hba); 6711 spin_unlock_irqrestore(hba->host->host_lock, flags); 6712 6713 /* Complete requests that have door-bell cleared by h/w */ 6714 ufshcd_complete_requests(hba, false); 6715 spin_lock_irqsave(hba->host->host_lock, flags); 6716 again: 6717 needs_restore = false; 6718 needs_reset = false; 6719 6720 if (hba->ufshcd_state != UFSHCD_STATE_ERROR) 6721 hba->ufshcd_state = UFSHCD_STATE_RESET; 6722 /* 6723 * A full reset and restore might have happened after preparation 6724 * is finished, double check whether we should stop. 6725 */ 6726 if (ufshcd_err_handling_should_stop(hba)) 6727 goto skip_err_handling; 6728 6729 if ((hba->dev_quirks & UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS) && 6730 !hba->force_reset) { 6731 bool ret; 6732 6733 spin_unlock_irqrestore(hba->host->host_lock, flags); 6734 /* release the lock as ufshcd_quirk_dl_nac_errors() may sleep */ 6735 ret = ufshcd_quirk_dl_nac_errors(hba); 6736 spin_lock_irqsave(hba->host->host_lock, flags); 6737 if (!ret && ufshcd_err_handling_should_stop(hba)) 6738 goto skip_err_handling; 6739 } 6740 6741 if ((hba->saved_err & (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK)) || 6742 (hba->saved_uic_err && 6743 (hba->saved_uic_err != UFSHCD_UIC_PA_GENERIC_ERROR))) { 6744 bool pr_prdt = !!(hba->saved_err & SYSTEM_BUS_FATAL_ERROR); 6745 6746 spin_unlock_irqrestore(hba->host->host_lock, flags); 6747 ufshcd_print_host_state(hba); 6748 ufshcd_print_pwr_info(hba); 6749 ufshcd_print_evt_hist(hba); 6750 ufshcd_print_tmrs(hba, hba->outstanding_tasks); 6751 ufshcd_print_trs_all(hba, pr_prdt); 6752 spin_lock_irqsave(hba->host->host_lock, flags); 6753 } 6754 6755 /* 6756 * if host reset is required then skip clearing the pending 6757 * transfers forcefully because they will get cleared during 6758 * host reset and restore 6759 */ 6760 if (hba->force_reset || ufshcd_is_link_broken(hba) || 6761 ufshcd_is_saved_err_fatal(hba) || 6762 ((hba->saved_err & UIC_ERROR) && 6763 (hba->saved_uic_err & (UFSHCD_UIC_DL_NAC_RECEIVED_ERROR | 6764 UFSHCD_UIC_DL_TCx_REPLAY_ERROR)))) { 6765 needs_reset = true; 6766 goto do_reset; 6767 } 6768 6769 /* 6770 * If LINERESET was caught, UFS might have been put to PWM mode, 6771 * check if power mode restore is needed. 6772 */ 6773 if (hba->saved_uic_err & UFSHCD_UIC_PA_GENERIC_ERROR) { 6774 hba->saved_uic_err &= ~UFSHCD_UIC_PA_GENERIC_ERROR; 6775 if (!hba->saved_uic_err) 6776 hba->saved_err &= ~UIC_ERROR; 6777 spin_unlock_irqrestore(hba->host->host_lock, flags); 6778 if (ufshcd_is_pwr_mode_restore_needed(hba)) 6779 needs_restore = true; 6780 spin_lock_irqsave(hba->host->host_lock, flags); 6781 if (!hba->saved_err && !needs_restore) 6782 goto skip_err_handling; 6783 } 6784 6785 hba->silence_err_logs = true; 6786 /* release lock as clear command might sleep */ 6787 spin_unlock_irqrestore(hba->host->host_lock, flags); 6788 6789 needs_reset = ufshcd_abort_all(hba); 6790 6791 spin_lock_irqsave(hba->host->host_lock, flags); 6792 hba->silence_err_logs = false; 6793 if (needs_reset) 6794 goto do_reset; 6795 6796 /* 6797 * After all reqs and tasks are cleared from doorbell, 6798 * now it is safe to retore power mode. 6799 */ 6800 if (needs_restore) { 6801 spin_unlock_irqrestore(hba->host->host_lock, flags); 6802 /* 6803 * Hold the scaling lock just in case dev cmds 6804 * are sent via bsg and/or sysfs. 6805 */ 6806 down_write(&hba->clk_scaling_lock); 6807 hba->force_pmc = true; 6808 pmc_err = ufshcd_config_pwr_mode(hba, &(hba->pwr_info)); 6809 if (pmc_err) { 6810 needs_reset = true; 6811 dev_err(hba->dev, "%s: Failed to restore power mode, err = %d\n", 6812 __func__, pmc_err); 6813 } 6814 hba->force_pmc = false; 6815 ufshcd_print_pwr_info(hba); 6816 up_write(&hba->clk_scaling_lock); 6817 spin_lock_irqsave(hba->host->host_lock, flags); 6818 } 6819 6820 do_reset: 6821 /* Fatal errors need reset */ 6822 if (needs_reset) { 6823 int err; 6824 6825 hba->force_reset = false; 6826 spin_unlock_irqrestore(hba->host->host_lock, flags); 6827 err = ufshcd_reset_and_restore(hba); 6828 if (err) 6829 dev_err(hba->dev, "%s: reset and restore failed with err %d\n", 6830 __func__, err); 6831 else 6832 ufshcd_recover_pm_error(hba); 6833 spin_lock_irqsave(hba->host->host_lock, flags); 6834 } 6835 6836 skip_err_handling: 6837 if (!needs_reset) { 6838 if (hba->ufshcd_state == UFSHCD_STATE_RESET) 6839 hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL; 6840 if (hba->saved_err || hba->saved_uic_err) 6841 dev_err_ratelimited(hba->dev, "%s: exit: saved_err 0x%x saved_uic_err 0x%x", 6842 __func__, hba->saved_err, hba->saved_uic_err); 6843 } 6844 /* Exit in an operational state or dead */ 6845 if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL && 6846 hba->ufshcd_state != UFSHCD_STATE_ERROR) { 6847 if (--retries) 6848 goto again; 6849 hba->ufshcd_state = UFSHCD_STATE_ERROR; 6850 } 6851 ufshcd_clear_eh_in_progress(hba); 6852 spin_unlock_irqrestore(hba->host->host_lock, flags); 6853 ufshcd_err_handling_unprepare(hba); 6854 up(&hba->host_sem); 6855 6856 dev_info(hba->dev, "%s finished; HBA state %s\n", __func__, 6857 ufshcd_state_name[hba->ufshcd_state]); 6858 } 6859 6860 /** 6861 * ufshcd_update_uic_error - check and set fatal UIC error flags. 6862 * @hba: per-adapter instance 6863 * 6864 * Return: 6865 * IRQ_HANDLED - If interrupt is valid 6866 * IRQ_NONE - If invalid interrupt 6867 */ 6868 static irqreturn_t ufshcd_update_uic_error(struct ufs_hba *hba) 6869 { 6870 u32 reg; 6871 irqreturn_t retval = IRQ_NONE; 6872 6873 /* PHY layer error */ 6874 reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER); 6875 if ((reg & UIC_PHY_ADAPTER_LAYER_ERROR) && 6876 (reg & UIC_PHY_ADAPTER_LAYER_ERROR_CODE_MASK)) { 6877 ufshcd_update_evt_hist(hba, UFS_EVT_PA_ERR, reg); 6878 /* 6879 * To know whether this error is fatal or not, DB timeout 6880 * must be checked but this error is handled separately. 6881 */ 6882 if (reg & UIC_PHY_ADAPTER_LAYER_LANE_ERR_MASK) 6883 dev_dbg(hba->dev, "%s: UIC Lane error reported\n", 6884 __func__); 6885 6886 /* Got a LINERESET indication. */ 6887 if (reg & UIC_PHY_ADAPTER_LAYER_GENERIC_ERROR) { 6888 struct uic_command *cmd = NULL; 6889 6890 hba->uic_error |= UFSHCD_UIC_PA_GENERIC_ERROR; 6891 if (hba->uic_async_done && hba->active_uic_cmd) 6892 cmd = hba->active_uic_cmd; 6893 /* 6894 * Ignore the LINERESET during power mode change 6895 * operation via DME_SET command. 6896 */ 6897 if (cmd && (cmd->command == UIC_CMD_DME_SET)) 6898 hba->uic_error &= ~UFSHCD_UIC_PA_GENERIC_ERROR; 6899 } 6900 retval |= IRQ_HANDLED; 6901 } 6902 6903 /* PA_INIT_ERROR is fatal and needs UIC reset */ 6904 reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_DATA_LINK_LAYER); 6905 if ((reg & UIC_DATA_LINK_LAYER_ERROR) && 6906 (reg & UIC_DATA_LINK_LAYER_ERROR_CODE_MASK)) { 6907 ufshcd_update_evt_hist(hba, UFS_EVT_DL_ERR, reg); 6908 6909 if (reg & UIC_DATA_LINK_LAYER_ERROR_PA_INIT) 6910 hba->uic_error |= UFSHCD_UIC_DL_PA_INIT_ERROR; 6911 else if (hba->dev_quirks & 6912 UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS) { 6913 if (reg & UIC_DATA_LINK_LAYER_ERROR_NAC_RECEIVED) 6914 hba->uic_error |= 6915 UFSHCD_UIC_DL_NAC_RECEIVED_ERROR; 6916 else if (reg & UIC_DATA_LINK_LAYER_ERROR_TCx_REPLAY_TIMEOUT) 6917 hba->uic_error |= UFSHCD_UIC_DL_TCx_REPLAY_ERROR; 6918 } 6919 retval |= IRQ_HANDLED; 6920 } 6921 6922 /* UIC NL/TL/DME errors needs software retry */ 6923 reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_NETWORK_LAYER); 6924 if ((reg & UIC_NETWORK_LAYER_ERROR) && 6925 (reg & UIC_NETWORK_LAYER_ERROR_CODE_MASK)) { 6926 ufshcd_update_evt_hist(hba, UFS_EVT_NL_ERR, reg); 6927 hba->uic_error |= UFSHCD_UIC_NL_ERROR; 6928 retval |= IRQ_HANDLED; 6929 } 6930 6931 reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_TRANSPORT_LAYER); 6932 if ((reg & UIC_TRANSPORT_LAYER_ERROR) && 6933 (reg & UIC_TRANSPORT_LAYER_ERROR_CODE_MASK)) { 6934 ufshcd_update_evt_hist(hba, UFS_EVT_TL_ERR, reg); 6935 hba->uic_error |= UFSHCD_UIC_TL_ERROR; 6936 retval |= IRQ_HANDLED; 6937 } 6938 6939 reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_DME); 6940 if ((reg & UIC_DME_ERROR) && 6941 (reg & UIC_DME_ERROR_CODE_MASK)) { 6942 ufshcd_update_evt_hist(hba, UFS_EVT_DME_ERR, reg); 6943 hba->uic_error |= UFSHCD_UIC_DME_ERROR; 6944 retval |= IRQ_HANDLED; 6945 } 6946 6947 dev_dbg(hba->dev, "%s: UIC error flags = 0x%08x\n", 6948 __func__, hba->uic_error); 6949 return retval; 6950 } 6951 6952 /** 6953 * ufshcd_check_errors - Check for errors that need s/w attention 6954 * @hba: per-adapter instance 6955 * @intr_status: interrupt status generated by the controller 6956 * 6957 * Return: 6958 * IRQ_HANDLED - If interrupt is valid 6959 * IRQ_NONE - If invalid interrupt 6960 */ 6961 static irqreturn_t ufshcd_check_errors(struct ufs_hba *hba, u32 intr_status) 6962 { 6963 bool queue_eh_work = false; 6964 irqreturn_t retval = IRQ_NONE; 6965 6966 guard(spinlock_irqsave)(hba->host->host_lock); 6967 hba->errors |= UFSHCD_ERROR_MASK & intr_status; 6968 6969 if (hba->errors & INT_FATAL_ERRORS) { 6970 ufshcd_update_evt_hist(hba, UFS_EVT_FATAL_ERR, 6971 hba->errors); 6972 queue_eh_work = true; 6973 } 6974 6975 if (hba->errors & UIC_ERROR) { 6976 hba->uic_error = 0; 6977 retval = ufshcd_update_uic_error(hba); 6978 if (hba->uic_error) 6979 queue_eh_work = true; 6980 } 6981 6982 if (hba->errors & UFSHCD_UIC_HIBERN8_MASK) { 6983 dev_err(hba->dev, 6984 "%s: Auto Hibern8 %s failed - status: 0x%08x, upmcrs: 0x%08x\n", 6985 __func__, (hba->errors & UIC_HIBERNATE_ENTER) ? 6986 "Enter" : "Exit", 6987 hba->errors, ufshcd_get_upmcrs(hba)); 6988 ufshcd_update_evt_hist(hba, UFS_EVT_AUTO_HIBERN8_ERR, 6989 hba->errors); 6990 ufshcd_set_link_broken(hba); 6991 queue_eh_work = true; 6992 } 6993 6994 if (queue_eh_work) { 6995 /* 6996 * update the transfer error masks to sticky bits, let's do this 6997 * irrespective of current ufshcd_state. 6998 */ 6999 hba->saved_err |= hba->errors; 7000 hba->saved_uic_err |= hba->uic_error; 7001 7002 /* dump controller state before resetting */ 7003 if ((hba->saved_err & 7004 (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK)) || 7005 (hba->saved_uic_err && 7006 (hba->saved_uic_err != UFSHCD_UIC_PA_GENERIC_ERROR))) { 7007 dev_err(hba->dev, "%s: saved_err 0x%x saved_uic_err 0x%x\n", 7008 __func__, hba->saved_err, 7009 hba->saved_uic_err); 7010 ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, 7011 "host_regs: "); 7012 ufshcd_print_pwr_info(hba); 7013 } 7014 ufshcd_schedule_eh_work(hba); 7015 retval |= IRQ_HANDLED; 7016 } 7017 /* 7018 * if (!queue_eh_work) - 7019 * Other errors are either non-fatal where host recovers 7020 * itself without s/w intervention or errors that will be 7021 * handled by the SCSI core layer. 7022 */ 7023 hba->errors = 0; 7024 hba->uic_error = 0; 7025 7026 return retval; 7027 } 7028 7029 /** 7030 * ufshcd_tmc_handler - handle task management function completion 7031 * @hba: per adapter instance 7032 * 7033 * Return: 7034 * IRQ_HANDLED - If interrupt is valid 7035 * IRQ_NONE - If invalid interrupt 7036 */ 7037 static irqreturn_t ufshcd_tmc_handler(struct ufs_hba *hba) 7038 { 7039 unsigned long flags, pending, issued; 7040 irqreturn_t ret = IRQ_NONE; 7041 int tag; 7042 7043 spin_lock_irqsave(hba->host->host_lock, flags); 7044 pending = ufshcd_readl(hba, REG_UTP_TASK_REQ_DOOR_BELL); 7045 issued = hba->outstanding_tasks & ~pending; 7046 for_each_set_bit(tag, &issued, hba->nutmrs) { 7047 struct request *req = hba->tmf_rqs[tag]; 7048 struct completion *c = req->end_io_data; 7049 7050 complete(c); 7051 ret = IRQ_HANDLED; 7052 } 7053 spin_unlock_irqrestore(hba->host->host_lock, flags); 7054 7055 return ret; 7056 } 7057 7058 /** 7059 * ufshcd_handle_mcq_cq_events - handle MCQ completion queue events 7060 * @hba: per adapter instance 7061 * 7062 * Return: IRQ_HANDLED if interrupt is handled. 7063 */ 7064 static irqreturn_t ufshcd_handle_mcq_cq_events(struct ufs_hba *hba) 7065 { 7066 struct ufs_hw_queue *hwq; 7067 unsigned long outstanding_cqs; 7068 unsigned int nr_queues; 7069 int i, ret; 7070 u32 events; 7071 7072 ret = ufshcd_vops_get_outstanding_cqs(hba, &outstanding_cqs); 7073 if (ret) 7074 outstanding_cqs = (1U << hba->nr_hw_queues) - 1; 7075 7076 /* Exclude the poll queues */ 7077 nr_queues = hba->nr_hw_queues - hba->nr_queues[HCTX_TYPE_POLL]; 7078 for_each_set_bit(i, &outstanding_cqs, nr_queues) { 7079 hwq = &hba->uhq[i]; 7080 7081 events = ufshcd_mcq_read_cqis(hba, i); 7082 if (events) 7083 ufshcd_mcq_write_cqis(hba, events, i); 7084 7085 if (events & UFSHCD_MCQ_CQIS_TAIL_ENT_PUSH_STS) 7086 ufshcd_mcq_poll_cqe_lock(hba, hwq); 7087 } 7088 7089 return IRQ_HANDLED; 7090 } 7091 7092 /** 7093 * ufshcd_sl_intr - Interrupt service routine 7094 * @hba: per adapter instance 7095 * @intr_status: contains interrupts generated by the controller 7096 * 7097 * Return: 7098 * IRQ_HANDLED - If interrupt is valid 7099 * IRQ_NONE - If invalid interrupt 7100 */ 7101 static irqreturn_t ufshcd_sl_intr(struct ufs_hba *hba, u32 intr_status) 7102 { 7103 irqreturn_t retval = IRQ_NONE; 7104 7105 if (intr_status & UFSHCD_UIC_MASK) 7106 retval |= ufshcd_uic_cmd_compl(hba, intr_status); 7107 7108 if (intr_status & UFSHCD_ERROR_MASK || hba->errors) 7109 retval |= ufshcd_check_errors(hba, intr_status); 7110 7111 if (intr_status & UTP_TASK_REQ_COMPL) 7112 retval |= ufshcd_tmc_handler(hba); 7113 7114 if (intr_status & UTP_TRANSFER_REQ_COMPL) 7115 retval |= ufshcd_transfer_req_compl(hba); 7116 7117 if (intr_status & MCQ_CQ_EVENT_STATUS) 7118 retval |= ufshcd_handle_mcq_cq_events(hba); 7119 7120 return retval; 7121 } 7122 7123 /** 7124 * ufshcd_threaded_intr - Threaded interrupt service routine 7125 * @irq: irq number 7126 * @__hba: pointer to adapter instance 7127 * 7128 * Return: 7129 * IRQ_HANDLED - If interrupt is valid 7130 * IRQ_NONE - If invalid interrupt 7131 */ 7132 static irqreturn_t ufshcd_threaded_intr(int irq, void *__hba) 7133 { 7134 u32 last_intr_status, intr_status, enabled_intr_status = 0; 7135 irqreturn_t retval = IRQ_NONE; 7136 struct ufs_hba *hba = __hba; 7137 int retries = hba->nutrs; 7138 7139 last_intr_status = intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS); 7140 7141 /* 7142 * There could be max of hba->nutrs reqs in flight and in worst case 7143 * if the reqs get finished 1 by 1 after the interrupt status is 7144 * read, make sure we handle them by checking the interrupt status 7145 * again in a loop until we process all of the reqs before returning. 7146 */ 7147 while (intr_status && retries--) { 7148 enabled_intr_status = 7149 intr_status & ufshcd_readl(hba, REG_INTERRUPT_ENABLE); 7150 ufshcd_writel(hba, intr_status, REG_INTERRUPT_STATUS); 7151 if (enabled_intr_status) 7152 retval |= ufshcd_sl_intr(hba, enabled_intr_status); 7153 7154 intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS); 7155 } 7156 7157 if (enabled_intr_status && retval == IRQ_NONE && 7158 (!(enabled_intr_status & UTP_TRANSFER_REQ_COMPL) || 7159 hba->outstanding_reqs) && !ufshcd_eh_in_progress(hba)) { 7160 dev_err(hba->dev, "%s: Unhandled interrupt 0x%08x (0x%08x, 0x%08x)\n", 7161 __func__, 7162 intr_status, 7163 last_intr_status, 7164 enabled_intr_status); 7165 ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, "host_regs: "); 7166 } 7167 7168 return retval; 7169 } 7170 7171 /** 7172 * ufshcd_intr - Main interrupt service routine 7173 * @irq: irq number 7174 * @__hba: pointer to adapter instance 7175 * 7176 * Return: 7177 * IRQ_HANDLED - If interrupt is valid 7178 * IRQ_WAKE_THREAD - If handling is moved to threaded handled 7179 * IRQ_NONE - If invalid interrupt 7180 */ 7181 static irqreturn_t ufshcd_intr(int irq, void *__hba) 7182 { 7183 struct ufs_hba *hba = __hba; 7184 u32 intr_status, enabled_intr_status; 7185 7186 /* Move interrupt handling to thread when MCQ & ESI are not enabled */ 7187 if (!hba->mcq_enabled || !hba->mcq_esi_enabled) 7188 return IRQ_WAKE_THREAD; 7189 7190 intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS); 7191 enabled_intr_status = intr_status & ufshcd_readl(hba, REG_INTERRUPT_ENABLE); 7192 7193 ufshcd_writel(hba, intr_status, REG_INTERRUPT_STATUS); 7194 7195 /* Directly handle interrupts since MCQ ESI handlers does the hard job */ 7196 return ufshcd_sl_intr(hba, enabled_intr_status); 7197 } 7198 7199 static int ufshcd_clear_tm_cmd(struct ufs_hba *hba, int tag) 7200 { 7201 int err = 0; 7202 u32 mask = 1 << tag; 7203 7204 if (!test_bit(tag, &hba->outstanding_tasks)) 7205 goto out; 7206 7207 ufshcd_utmrl_clear(hba, tag); 7208 7209 /* poll for max. 1 sec to clear door bell register by h/w */ 7210 err = ufshcd_wait_for_register(hba, 7211 REG_UTP_TASK_REQ_DOOR_BELL, 7212 mask, 0, 1000, 1000); 7213 7214 dev_err(hba->dev, "Clearing task management function with tag %d %s\n", 7215 tag, err < 0 ? "failed" : "succeeded"); 7216 7217 out: 7218 return err; 7219 } 7220 7221 static int __ufshcd_issue_tm_cmd(struct ufs_hba *hba, 7222 struct utp_task_req_desc *treq, u8 tm_function) 7223 { 7224 struct request_queue *q = hba->tmf_queue; 7225 struct Scsi_Host *host = hba->host; 7226 DECLARE_COMPLETION_ONSTACK(wait); 7227 struct request *req; 7228 unsigned long flags; 7229 int task_tag, err; 7230 7231 /* 7232 * blk_mq_alloc_request() is used here only to get a free tag. 7233 */ 7234 req = blk_mq_alloc_request(q, REQ_OP_DRV_OUT, 0); 7235 if (IS_ERR(req)) 7236 return PTR_ERR(req); 7237 7238 req->end_io_data = &wait; 7239 ufshcd_hold(hba); 7240 7241 spin_lock_irqsave(host->host_lock, flags); 7242 7243 task_tag = req->tag; 7244 hba->tmf_rqs[req->tag] = req; 7245 treq->upiu_req.req_header.task_tag = task_tag; 7246 7247 memcpy(hba->utmrdl_base_addr + task_tag, treq, sizeof(*treq)); 7248 ufshcd_vops_setup_task_mgmt(hba, task_tag, tm_function); 7249 7250 __set_bit(task_tag, &hba->outstanding_tasks); 7251 7252 spin_unlock_irqrestore(host->host_lock, flags); 7253 7254 /* send command to the controller */ 7255 ufshcd_writel(hba, 1 << task_tag, REG_UTP_TASK_REQ_DOOR_BELL); 7256 7257 ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_SEND); 7258 7259 /* wait until the task management command is completed */ 7260 err = wait_for_completion_io_timeout(&wait, 7261 msecs_to_jiffies(TM_CMD_TIMEOUT)); 7262 if (!err) { 7263 ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_ERR); 7264 dev_err(hba->dev, "%s: task management cmd 0x%.2x timed-out\n", 7265 __func__, tm_function); 7266 if (ufshcd_clear_tm_cmd(hba, task_tag)) 7267 dev_WARN(hba->dev, "%s: unable to clear tm cmd (slot %d) after timeout\n", 7268 __func__, task_tag); 7269 err = -ETIMEDOUT; 7270 } else { 7271 err = 0; 7272 memcpy(treq, hba->utmrdl_base_addr + task_tag, sizeof(*treq)); 7273 7274 ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_COMP); 7275 } 7276 7277 spin_lock_irqsave(hba->host->host_lock, flags); 7278 hba->tmf_rqs[req->tag] = NULL; 7279 __clear_bit(task_tag, &hba->outstanding_tasks); 7280 spin_unlock_irqrestore(hba->host->host_lock, flags); 7281 7282 ufshcd_release(hba); 7283 blk_mq_free_request(req); 7284 7285 return err; 7286 } 7287 7288 /** 7289 * ufshcd_issue_tm_cmd - issues task management commands to controller 7290 * @hba: per adapter instance 7291 * @lun_id: LUN ID to which TM command is sent 7292 * @task_id: task ID to which the TM command is applicable 7293 * @tm_function: task management function opcode 7294 * @tm_response: task management service response return value 7295 * 7296 * Return: non-zero value on error, zero on success. 7297 */ 7298 static int ufshcd_issue_tm_cmd(struct ufs_hba *hba, int lun_id, int task_id, 7299 u8 tm_function, u8 *tm_response) 7300 { 7301 struct utp_task_req_desc treq = { }; 7302 enum utp_ocs ocs_value; 7303 int err; 7304 7305 /* Configure task request descriptor */ 7306 treq.header.interrupt = 1; 7307 treq.header.ocs = OCS_INVALID_COMMAND_STATUS; 7308 7309 /* Configure task request UPIU */ 7310 treq.upiu_req.req_header.transaction_code = UPIU_TRANSACTION_TASK_REQ; 7311 treq.upiu_req.req_header.lun = lun_id; 7312 treq.upiu_req.req_header.tm_function = tm_function; 7313 7314 /* 7315 * The host shall provide the same value for LUN field in the basic 7316 * header and for Input Parameter. 7317 */ 7318 treq.upiu_req.input_param1 = cpu_to_be32(lun_id); 7319 treq.upiu_req.input_param2 = cpu_to_be32(task_id); 7320 7321 err = __ufshcd_issue_tm_cmd(hba, &treq, tm_function); 7322 if (err == -ETIMEDOUT) 7323 return err; 7324 7325 ocs_value = treq.header.ocs & MASK_OCS; 7326 if (ocs_value != OCS_SUCCESS) 7327 dev_err(hba->dev, "%s: failed, ocs = 0x%x\n", 7328 __func__, ocs_value); 7329 else if (tm_response) 7330 *tm_response = be32_to_cpu(treq.upiu_rsp.output_param1) & 7331 MASK_TM_SERVICE_RESP; 7332 return err; 7333 } 7334 7335 /** 7336 * ufshcd_issue_devman_upiu_cmd - API for sending "utrd" type requests 7337 * @hba: per-adapter instance 7338 * @req_upiu: upiu request 7339 * @rsp_upiu: upiu reply 7340 * @desc_buff: pointer to descriptor buffer, NULL if NA 7341 * @buff_len: descriptor size, 0 if NA 7342 * @cmd_type: specifies the type (NOP, Query...) 7343 * @desc_op: descriptor operation 7344 * 7345 * Those type of requests uses UTP Transfer Request Descriptor - utrd. 7346 * Therefore, it "rides" the device management infrastructure: uses its tag and 7347 * tasks work queues. 7348 * 7349 * Since there is only one available tag for device management commands, 7350 * the caller is expected to hold the hba->dev_cmd.lock mutex. 7351 * 7352 * Return: 0 upon success; < 0 upon failure. 7353 */ 7354 static int ufshcd_issue_devman_upiu_cmd(struct ufs_hba *hba, 7355 struct utp_upiu_req *req_upiu, 7356 struct utp_upiu_req *rsp_upiu, 7357 u8 *desc_buff, int *buff_len, 7358 enum dev_cmd_type cmd_type, 7359 enum query_opcode desc_op) 7360 { 7361 struct scsi_cmnd *cmd = ufshcd_get_dev_mgmt_cmd(hba); 7362 struct ufshcd_lrb *lrbp = scsi_cmd_priv(cmd); 7363 u32 tag; 7364 int err = 0; 7365 u8 upiu_flags; 7366 7367 /* Protects use of hba->dev_cmd. */ 7368 lockdep_assert_held(&hba->dev_cmd.lock); 7369 7370 if (WARN_ON_ONCE(!cmd)) 7371 return -ENOMEM; 7372 7373 tag = scsi_cmd_to_rq(cmd)->tag; 7374 7375 ufshcd_setup_dev_cmd(hba, cmd, cmd_type, 0, tag); 7376 7377 ufshcd_prepare_req_desc_hdr(hba, lrbp, &upiu_flags, DMA_NONE, 0); 7378 7379 /* update the task tag in the request upiu */ 7380 req_upiu->header.task_tag = tag; 7381 7382 /* just copy the upiu request as it is */ 7383 memcpy(lrbp->ucd_req_ptr, req_upiu, sizeof(*lrbp->ucd_req_ptr)); 7384 if (desc_buff && desc_op == UPIU_QUERY_OPCODE_WRITE_DESC) { 7385 /* The Data Segment Area is optional depending upon the query 7386 * function value. for WRITE DESCRIPTOR, the data segment 7387 * follows right after the tsf. 7388 */ 7389 memcpy(lrbp->ucd_req_ptr + 1, desc_buff, *buff_len); 7390 *buff_len = 0; 7391 } 7392 7393 memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp)); 7394 7395 err = ufshcd_issue_dev_cmd(hba, cmd, tag, dev_cmd_timeout); 7396 if (err) 7397 goto put_dev_mgmt_cmd; 7398 7399 /* just copy the upiu response as it is */ 7400 memcpy(rsp_upiu, lrbp->ucd_rsp_ptr, sizeof(*rsp_upiu)); 7401 if (desc_buff && desc_op == UPIU_QUERY_OPCODE_READ_DESC) { 7402 u8 *descp = (u8 *)lrbp->ucd_rsp_ptr + sizeof(*rsp_upiu); 7403 u16 resp_len = be16_to_cpu(lrbp->ucd_rsp_ptr->header 7404 .data_segment_length); 7405 7406 if (*buff_len >= resp_len) { 7407 memcpy(desc_buff, descp, resp_len); 7408 *buff_len = resp_len; 7409 } else { 7410 dev_warn(hba->dev, 7411 "%s: rsp size %d is bigger than buffer size %d", 7412 __func__, resp_len, *buff_len); 7413 *buff_len = 0; 7414 err = -EINVAL; 7415 } 7416 } 7417 7418 put_dev_mgmt_cmd: 7419 ufshcd_put_dev_mgmt_cmd(cmd); 7420 7421 return err; 7422 } 7423 7424 /** 7425 * ufshcd_exec_raw_upiu_cmd - API function for sending raw upiu commands 7426 * @hba: per-adapter instance 7427 * @req_upiu: upiu request 7428 * @rsp_upiu: upiu reply - only 8 DW as we do not support scsi commands 7429 * @msgcode: message code, one of UPIU Transaction Codes Initiator to Target 7430 * @desc_buff: pointer to descriptor buffer, NULL if NA 7431 * @buff_len: descriptor size, 0 if NA 7432 * @desc_op: descriptor operation 7433 * 7434 * Supports UTP Transfer requests (nop and query), and UTP Task 7435 * Management requests. 7436 * It is up to the caller to fill the upiu conent properly, as it will 7437 * be copied without any further input validations. 7438 * 7439 * Return: 0 upon success; < 0 upon failure. 7440 */ 7441 int ufshcd_exec_raw_upiu_cmd(struct ufs_hba *hba, 7442 struct utp_upiu_req *req_upiu, 7443 struct utp_upiu_req *rsp_upiu, 7444 enum upiu_request_transaction msgcode, 7445 u8 *desc_buff, int *buff_len, 7446 enum query_opcode desc_op) 7447 { 7448 int err; 7449 enum dev_cmd_type cmd_type = DEV_CMD_TYPE_QUERY; 7450 struct utp_task_req_desc treq = { }; 7451 enum utp_ocs ocs_value; 7452 u8 tm_f = req_upiu->header.tm_function; 7453 7454 switch (msgcode) { 7455 case UPIU_TRANSACTION_NOP_OUT: 7456 cmd_type = DEV_CMD_TYPE_NOP; 7457 fallthrough; 7458 case UPIU_TRANSACTION_QUERY_REQ: 7459 ufshcd_dev_man_lock(hba); 7460 err = ufshcd_issue_devman_upiu_cmd(hba, req_upiu, rsp_upiu, 7461 desc_buff, buff_len, 7462 cmd_type, desc_op); 7463 ufshcd_dev_man_unlock(hba); 7464 7465 break; 7466 case UPIU_TRANSACTION_TASK_REQ: 7467 treq.header.interrupt = 1; 7468 treq.header.ocs = OCS_INVALID_COMMAND_STATUS; 7469 7470 memcpy(&treq.upiu_req, req_upiu, sizeof(*req_upiu)); 7471 7472 err = __ufshcd_issue_tm_cmd(hba, &treq, tm_f); 7473 if (err == -ETIMEDOUT) 7474 break; 7475 7476 ocs_value = treq.header.ocs & MASK_OCS; 7477 if (ocs_value != OCS_SUCCESS) { 7478 dev_err(hba->dev, "%s: failed, ocs = 0x%x\n", __func__, 7479 ocs_value); 7480 break; 7481 } 7482 7483 memcpy(rsp_upiu, &treq.upiu_rsp, sizeof(*rsp_upiu)); 7484 7485 break; 7486 default: 7487 err = -EINVAL; 7488 7489 break; 7490 } 7491 7492 return err; 7493 } 7494 7495 /** 7496 * ufshcd_advanced_rpmb_req_handler - handle advanced RPMB request 7497 * @hba: per adapter instance 7498 * @req_upiu: upiu request 7499 * @rsp_upiu: upiu reply 7500 * @req_ehs: EHS field which contains Advanced RPMB Request Message 7501 * @rsp_ehs: EHS field which returns Advanced RPMB Response Message 7502 * @sg_cnt: The number of sg lists actually used 7503 * @sg_list: Pointer to SG list when DATA IN/OUT UPIU is required in ARPMB operation 7504 * @dir: DMA direction 7505 * 7506 * Return: 0 upon success; > 0 in case the UFS device reported an OCS error; 7507 * < 0 if another error occurred. 7508 */ 7509 int ufshcd_advanced_rpmb_req_handler(struct ufs_hba *hba, struct utp_upiu_req *req_upiu, 7510 struct utp_upiu_req *rsp_upiu, struct ufs_ehs *req_ehs, 7511 struct ufs_ehs *rsp_ehs, int sg_cnt, struct scatterlist *sg_list, 7512 enum dma_data_direction dir) 7513 { 7514 struct scsi_cmnd *cmd; 7515 struct ufshcd_lrb *lrbp; 7516 u32 tag; 7517 int err = 0; 7518 int result; 7519 u8 upiu_flags; 7520 u8 *ehs_data; 7521 u16 ehs_len; 7522 int ehs = (hba->capabilities & MASK_EHSLUTRD_SUPPORTED) ? 2 : 0; 7523 7524 ufshcd_dev_man_lock(hba); 7525 7526 cmd = ufshcd_get_dev_mgmt_cmd(hba); 7527 7528 if (WARN_ON_ONCE(!cmd)) { 7529 err = -ENOMEM; 7530 goto unlock; 7531 } 7532 7533 lrbp = scsi_cmd_priv(cmd); 7534 tag = scsi_cmd_to_rq(cmd)->tag; 7535 7536 ufshcd_setup_dev_cmd(hba, cmd, DEV_CMD_TYPE_RPMB, UFS_UPIU_RPMB_WLUN, 7537 tag); 7538 7539 ufshcd_prepare_req_desc_hdr(hba, lrbp, &upiu_flags, DMA_NONE, ehs); 7540 7541 /* update the task tag */ 7542 req_upiu->header.task_tag = tag; 7543 7544 /* copy the UPIU(contains CDB) request as it is */ 7545 memcpy(lrbp->ucd_req_ptr, req_upiu, sizeof(*lrbp->ucd_req_ptr)); 7546 /* Copy EHS, starting with byte32, immediately after the CDB package */ 7547 memcpy(lrbp->ucd_req_ptr + 1, req_ehs, sizeof(*req_ehs)); 7548 7549 if (dir != DMA_NONE && sg_list) 7550 ufshcd_sgl_to_prdt(hba, lrbp, sg_cnt, sg_list); 7551 7552 memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp)); 7553 7554 err = ufshcd_issue_dev_cmd(hba, cmd, tag, ADVANCED_RPMB_REQ_TIMEOUT); 7555 if (err) 7556 goto put_dev_mgmt_cmd; 7557 7558 err = ufshcd_dev_cmd_completion(hba, lrbp); 7559 if (!err) { 7560 /* Just copy the upiu response as it is */ 7561 memcpy(rsp_upiu, lrbp->ucd_rsp_ptr, sizeof(*rsp_upiu)); 7562 /* Get the response UPIU result */ 7563 result = (lrbp->ucd_rsp_ptr->header.response << 8) | 7564 lrbp->ucd_rsp_ptr->header.status; 7565 7566 ehs_len = lrbp->ucd_rsp_ptr->header.ehs_length; 7567 /* 7568 * Since the bLength in EHS indicates the total size of the EHS Header and EHS Data 7569 * in 32 Byte units, the value of the bLength Request/Response for Advanced RPMB 7570 * Message is 02h 7571 */ 7572 if (ehs_len == 2 && rsp_ehs) { 7573 /* 7574 * ucd_rsp_ptr points to a buffer with a length of 512 bytes 7575 * (ALIGNED_UPIU_SIZE = 512), and the EHS data just starts from byte32 7576 */ 7577 ehs_data = (u8 *)lrbp->ucd_rsp_ptr + EHS_OFFSET_IN_RESPONSE; 7578 memcpy(rsp_ehs, ehs_data, ehs_len * 32); 7579 } 7580 } 7581 7582 put_dev_mgmt_cmd: 7583 ufshcd_put_dev_mgmt_cmd(cmd); 7584 7585 unlock: 7586 ufshcd_dev_man_unlock(hba); 7587 7588 return err ? : result; 7589 } 7590 7591 static bool ufshcd_clear_lu_cmds(struct request *req, void *priv) 7592 { 7593 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 7594 struct scsi_device *sdev = cmd->device; 7595 struct Scsi_Host *shost = sdev->host; 7596 struct ufs_hba *hba = shost_priv(shost); 7597 const u64 lun = *(u64 *)priv; 7598 const u32 tag = req->tag; 7599 7600 if (blk_mq_is_reserved_rq(req) || sdev->lun != lun) 7601 return true; 7602 7603 if (ufshcd_clear_cmd(hba, tag) < 0) { 7604 dev_err(hba->dev, "%s: failed to clear request %d\n", __func__, 7605 tag); 7606 return true; 7607 } 7608 7609 if (hba->mcq_enabled) { 7610 struct ufs_hw_queue *hwq = ufshcd_mcq_req_to_hwq(hba, req); 7611 7612 if (hwq) 7613 ufshcd_mcq_poll_cqe_lock(hba, hwq); 7614 return true; 7615 } 7616 7617 ufshcd_compl_one_cqe(hba, tag, NULL); 7618 return true; 7619 } 7620 7621 /** 7622 * ufshcd_eh_device_reset_handler() - Reset a single logical unit. 7623 * @cmd: SCSI command pointer 7624 * 7625 * Return: SUCCESS or FAILED. 7626 */ 7627 static int ufshcd_eh_device_reset_handler(struct scsi_cmnd *cmd) 7628 { 7629 struct Scsi_Host *host; 7630 struct ufs_hba *hba; 7631 int err; 7632 u8 resp = 0xF, lun; 7633 7634 host = cmd->device->host; 7635 hba = shost_priv(host); 7636 7637 lun = ufshcd_scsi_to_upiu_lun(cmd->device->lun); 7638 err = ufshcd_issue_tm_cmd(hba, lun, 0, UFS_LOGICAL_RESET, &resp); 7639 if (err) { 7640 } else if (resp != UPIU_TASK_MANAGEMENT_FUNC_COMPL) { 7641 err = resp; 7642 } else { 7643 /* clear the commands that were pending for corresponding LUN */ 7644 blk_mq_tagset_busy_iter(&hba->host->tag_set, 7645 ufshcd_clear_lu_cmds, 7646 &cmd->device->lun); 7647 } 7648 7649 hba->req_abort_count = 0; 7650 ufshcd_update_evt_hist(hba, UFS_EVT_DEV_RESET, (u32)err); 7651 if (!err) { 7652 err = SUCCESS; 7653 } else { 7654 dev_err(hba->dev, "%s: failed with err %d\n", __func__, err); 7655 err = FAILED; 7656 } 7657 return err; 7658 } 7659 7660 static void ufshcd_set_req_abort_skip(struct ufs_hba *hba, unsigned long bitmap) 7661 { 7662 int tag; 7663 7664 for_each_set_bit(tag, &bitmap, hba->nutrs) { 7665 struct scsi_cmnd *cmd = ufshcd_tag_to_cmd(hba, tag); 7666 struct ufshcd_lrb *lrbp = scsi_cmd_priv(cmd); 7667 7668 lrbp->req_abort_skip = true; 7669 } 7670 } 7671 7672 /** 7673 * ufshcd_try_to_abort_task - abort a specific task 7674 * @hba: Pointer to adapter instance 7675 * @tag: Tag of the task to be aborted 7676 * 7677 * Abort the pending command in device by sending UFS_ABORT_TASK task management 7678 * command, and in host controller by clearing the door-bell register. There can 7679 * be race between controller sending the command to the device while abort is 7680 * issued. To avoid that, first issue UFS_QUERY_TASK to check if the command is 7681 * really issued and then try to abort it. 7682 * 7683 * Return: zero on success, non-zero on failure. 7684 */ 7685 int ufshcd_try_to_abort_task(struct ufs_hba *hba, int tag) 7686 { 7687 struct scsi_cmnd *cmd = ufshcd_tag_to_cmd(hba, tag); 7688 struct ufshcd_lrb *lrbp = scsi_cmd_priv(cmd); 7689 int err; 7690 int poll_cnt; 7691 u8 resp = 0xF; 7692 7693 for (poll_cnt = 100; poll_cnt; poll_cnt--) { 7694 err = ufshcd_issue_tm_cmd(hba, lrbp->lun, tag, UFS_QUERY_TASK, 7695 &resp); 7696 if (!err && resp == UPIU_TASK_MANAGEMENT_FUNC_SUCCEEDED) { 7697 /* cmd pending in the device */ 7698 dev_err(hba->dev, "%s: cmd pending in the device. tag = %d\n", 7699 __func__, tag); 7700 break; 7701 } else if (!err && resp == UPIU_TASK_MANAGEMENT_FUNC_COMPL) { 7702 /* 7703 * cmd not pending in the device, check if it is 7704 * in transition. 7705 */ 7706 dev_info( 7707 hba->dev, 7708 "%s: cmd with tag %d not pending in the device.\n", 7709 __func__, tag); 7710 if (!ufshcd_cmd_inflight(cmd)) { 7711 dev_info(hba->dev, 7712 "%s: cmd with tag=%d completed.\n", 7713 __func__, tag); 7714 return 0; 7715 } 7716 usleep_range(100, 200); 7717 } else { 7718 dev_err(hba->dev, 7719 "%s: no response from device. tag = %d, err %d\n", 7720 __func__, tag, err); 7721 return err ? : resp; 7722 } 7723 } 7724 7725 if (!poll_cnt) 7726 return -EBUSY; 7727 7728 err = ufshcd_issue_tm_cmd(hba, lrbp->lun, tag, UFS_ABORT_TASK, &resp); 7729 if (err || resp != UPIU_TASK_MANAGEMENT_FUNC_COMPL) { 7730 if (!err) { 7731 err = resp; /* service response error */ 7732 dev_err(hba->dev, "%s: issued. tag = %d, err %d\n", 7733 __func__, tag, err); 7734 } 7735 return err; 7736 } 7737 7738 err = ufshcd_clear_cmd(hba, tag); 7739 if (err) 7740 dev_err(hba->dev, "%s: Failed clearing cmd at tag %d, err %d\n", 7741 __func__, tag, err); 7742 7743 return err; 7744 } 7745 7746 /** 7747 * ufshcd_abort - scsi host template eh_abort_handler callback 7748 * @cmd: SCSI command pointer 7749 * 7750 * Return: SUCCESS or FAILED. 7751 */ 7752 static int ufshcd_abort(struct scsi_cmnd *cmd) 7753 { 7754 struct Scsi_Host *host = cmd->device->host; 7755 struct ufs_hba *hba = shost_priv(host); 7756 struct request *rq = scsi_cmd_to_rq(cmd); 7757 int tag = rq->tag; 7758 struct ufshcd_lrb *lrbp = scsi_cmd_priv(cmd); 7759 unsigned long flags; 7760 int err = FAILED; 7761 bool outstanding; 7762 u32 reg; 7763 7764 ufshcd_hold(hba); 7765 7766 if (!hba->mcq_enabled) { 7767 reg = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL); 7768 if (!test_bit(tag, &hba->outstanding_reqs)) { 7769 /* If command is already aborted/completed, return FAILED. */ 7770 dev_err(hba->dev, 7771 "%s: cmd at tag %d already completed, outstanding=0x%lx, doorbell=0x%x\n", 7772 __func__, tag, hba->outstanding_reqs, reg); 7773 goto release; 7774 } 7775 } 7776 7777 /* Print Transfer Request of aborted task */ 7778 dev_info(hba->dev, "%s: Device abort task at tag %d\n", __func__, tag); 7779 7780 /* 7781 * Print detailed info about aborted request. 7782 * As more than one request might get aborted at the same time, 7783 * print full information only for the first aborted request in order 7784 * to reduce repeated printouts. For other aborted requests only print 7785 * basic details. 7786 */ 7787 if (ufshcd_is_scsi_cmd(cmd)) 7788 scsi_print_command(cmd); 7789 if (!hba->req_abort_count) { 7790 ufshcd_update_evt_hist(hba, UFS_EVT_ABORT, tag); 7791 ufshcd_print_evt_hist(hba); 7792 ufshcd_print_host_state(hba); 7793 ufshcd_print_pwr_info(hba); 7794 ufshcd_print_tr(hba, cmd, true); 7795 } else { 7796 ufshcd_print_tr(hba, cmd, false); 7797 } 7798 hba->req_abort_count++; 7799 7800 if (!hba->mcq_enabled && !(reg & (1 << tag))) { 7801 /* only execute this code in single doorbell mode */ 7802 dev_err(hba->dev, 7803 "%s: cmd was completed, but without a notifying intr, tag = %d", 7804 __func__, tag); 7805 __ufshcd_transfer_req_compl(hba, 1UL << tag); 7806 goto release; 7807 } 7808 7809 /* 7810 * Task abort to the device W-LUN is illegal. When this command 7811 * will fail, due to spec violation, scsi err handling next step 7812 * will be to send LU reset which, again, is a spec violation. 7813 * To avoid these unnecessary/illegal steps, first we clean up 7814 * the lrb taken by this cmd and re-set it in outstanding_reqs, 7815 * then queue the eh_work and bail. 7816 */ 7817 if (lrbp->lun == UFS_UPIU_UFS_DEVICE_WLUN) { 7818 ufshcd_update_evt_hist(hba, UFS_EVT_ABORT, lrbp->lun); 7819 7820 spin_lock_irqsave(host->host_lock, flags); 7821 hba->force_reset = true; 7822 ufshcd_schedule_eh_work(hba); 7823 spin_unlock_irqrestore(host->host_lock, flags); 7824 goto release; 7825 } 7826 7827 if (hba->mcq_enabled) { 7828 /* MCQ mode. Branch off to handle abort for mcq mode */ 7829 err = ufshcd_mcq_abort(cmd); 7830 goto release; 7831 } 7832 7833 /* Skip task abort in case previous aborts failed and report failure */ 7834 if (lrbp->req_abort_skip) { 7835 dev_err(hba->dev, "%s: skipping abort\n", __func__); 7836 ufshcd_set_req_abort_skip(hba, hba->outstanding_reqs); 7837 goto release; 7838 } 7839 7840 if (blk_mq_is_reserved_rq(rq)) 7841 err = ufshcd_clear_cmd(hba, tag); 7842 else 7843 err = ufshcd_try_to_abort_task(hba, tag); 7844 if (err) { 7845 dev_err(hba->dev, "%s: failed with err %d\n", __func__, err); 7846 ufshcd_set_req_abort_skip(hba, hba->outstanding_reqs); 7847 err = FAILED; 7848 goto release; 7849 } 7850 7851 /* 7852 * Clear the corresponding bit from outstanding_reqs since the command 7853 * has been aborted successfully. 7854 */ 7855 spin_lock_irqsave(&hba->outstanding_lock, flags); 7856 outstanding = __test_and_clear_bit(tag, &hba->outstanding_reqs); 7857 spin_unlock_irqrestore(&hba->outstanding_lock, flags); 7858 7859 if (outstanding) 7860 ufshcd_release_scsi_cmd(hba, cmd); 7861 7862 err = SUCCESS; 7863 7864 release: 7865 /* Matches the ufshcd_hold() call at the start of this function. */ 7866 ufshcd_release(hba); 7867 return err; 7868 } 7869 7870 /** 7871 * ufshcd_process_probe_result - Process the ufshcd_probe_hba() result. 7872 * @hba: UFS host controller instance. 7873 * @probe_start: time when the ufshcd_probe_hba() call started. 7874 * @ret: ufshcd_probe_hba() return value. 7875 */ 7876 static void ufshcd_process_probe_result(struct ufs_hba *hba, 7877 ktime_t probe_start, int ret) 7878 { 7879 unsigned long flags; 7880 7881 spin_lock_irqsave(hba->host->host_lock, flags); 7882 if (ret) 7883 hba->ufshcd_state = UFSHCD_STATE_ERROR; 7884 else if (hba->ufshcd_state == UFSHCD_STATE_RESET) 7885 hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL; 7886 spin_unlock_irqrestore(hba->host->host_lock, flags); 7887 7888 trace_ufshcd_init(hba, ret, 7889 ktime_to_us(ktime_sub(ktime_get(), probe_start)), 7890 hba->curr_dev_pwr_mode, hba->uic_link_state); 7891 } 7892 7893 /** 7894 * ufshcd_host_reset_and_restore - reset and restore host controller 7895 * @hba: per-adapter instance 7896 * 7897 * Note that host controller reset may issue DME_RESET to 7898 * local and remote (device) Uni-Pro stack and the attributes 7899 * are reset to default state. 7900 * 7901 * Return: zero on success, non-zero on failure. 7902 */ 7903 static int ufshcd_host_reset_and_restore(struct ufs_hba *hba) 7904 { 7905 int err; 7906 7907 /* 7908 * Stop the host controller and complete the requests 7909 * cleared by h/w 7910 */ 7911 ufshcd_hba_stop(hba); 7912 hba->silence_err_logs = true; 7913 ufshcd_complete_requests(hba, true); 7914 hba->silence_err_logs = false; 7915 7916 /* scale up clocks to max frequency before full reinitialization */ 7917 if (ufshcd_is_clkscaling_supported(hba)) 7918 ufshcd_scale_clks(hba, ULONG_MAX, true); 7919 7920 err = ufshcd_hba_enable(hba); 7921 7922 /* Establish the link again and restore the device */ 7923 if (!err) { 7924 ktime_t probe_start = ktime_get(); 7925 7926 err = ufshcd_device_init(hba, /*init_dev_params=*/false); 7927 if (!err) 7928 err = ufshcd_probe_hba(hba, false); 7929 ufshcd_process_probe_result(hba, probe_start, err); 7930 } 7931 7932 if (err) 7933 dev_err(hba->dev, "%s: Host init failed %d\n", __func__, err); 7934 ufshcd_update_evt_hist(hba, UFS_EVT_HOST_RESET, (u32)err); 7935 return err; 7936 } 7937 7938 /** 7939 * ufshcd_reset_and_restore - reset and re-initialize host/device 7940 * @hba: per-adapter instance 7941 * 7942 * Reset and recover device, host and re-establish link. This 7943 * is helpful to recover the communication in fatal error conditions. 7944 * 7945 * Return: zero on success, non-zero on failure. 7946 */ 7947 static int ufshcd_reset_and_restore(struct ufs_hba *hba) 7948 { 7949 u32 saved_err = 0; 7950 u32 saved_uic_err = 0; 7951 int err = 0; 7952 unsigned long flags; 7953 int retries = MAX_HOST_RESET_RETRIES; 7954 7955 spin_lock_irqsave(hba->host->host_lock, flags); 7956 do { 7957 /* 7958 * This is a fresh start, cache and clear saved error first, 7959 * in case new error generated during reset and restore. 7960 */ 7961 saved_err |= hba->saved_err; 7962 saved_uic_err |= hba->saved_uic_err; 7963 hba->saved_err = 0; 7964 hba->saved_uic_err = 0; 7965 hba->force_reset = false; 7966 hba->ufshcd_state = UFSHCD_STATE_RESET; 7967 spin_unlock_irqrestore(hba->host->host_lock, flags); 7968 7969 /* Reset the attached device */ 7970 ufshcd_device_reset(hba); 7971 7972 err = ufshcd_host_reset_and_restore(hba); 7973 7974 spin_lock_irqsave(hba->host->host_lock, flags); 7975 if (err) 7976 continue; 7977 /* Do not exit unless operational or dead */ 7978 if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL && 7979 hba->ufshcd_state != UFSHCD_STATE_ERROR && 7980 hba->ufshcd_state != UFSHCD_STATE_EH_SCHEDULED_NON_FATAL) 7981 err = -EAGAIN; 7982 } while (err && --retries); 7983 7984 /* 7985 * Inform scsi mid-layer that we did reset and allow to handle 7986 * Unit Attention properly. 7987 */ 7988 scsi_report_bus_reset(hba->host, 0); 7989 if (err) { 7990 hba->ufshcd_state = UFSHCD_STATE_ERROR; 7991 hba->saved_err |= saved_err; 7992 hba->saved_uic_err |= saved_uic_err; 7993 } 7994 spin_unlock_irqrestore(hba->host->host_lock, flags); 7995 7996 return err; 7997 } 7998 7999 /** 8000 * ufshcd_eh_host_reset_handler - host reset handler registered to scsi layer 8001 * @cmd: SCSI command pointer 8002 * 8003 * Return: SUCCESS or FAILED. 8004 */ 8005 static int ufshcd_eh_host_reset_handler(struct scsi_cmnd *cmd) 8006 { 8007 int err = SUCCESS; 8008 unsigned long flags; 8009 struct ufs_hba *hba; 8010 8011 hba = shost_priv(cmd->device->host); 8012 8013 /* 8014 * If runtime PM sent SSU and got a timeout, scsi_error_handler is 8015 * stuck in this function waiting for flush_work(&hba->eh_work). And 8016 * ufshcd_err_handler(eh_work) is stuck waiting for runtime PM. Do 8017 * ufshcd_link_recovery instead of eh_work to prevent deadlock. 8018 */ 8019 if (hba->pm_op_in_progress) { 8020 if (ufshcd_link_recovery(hba)) 8021 err = FAILED; 8022 8023 return err; 8024 } 8025 8026 spin_lock_irqsave(hba->host->host_lock, flags); 8027 hba->force_reset = true; 8028 ufshcd_schedule_eh_work(hba); 8029 dev_err(hba->dev, "%s: reset in progress - 1\n", __func__); 8030 spin_unlock_irqrestore(hba->host->host_lock, flags); 8031 8032 flush_work(&hba->eh_work); 8033 8034 spin_lock_irqsave(hba->host->host_lock, flags); 8035 if (hba->ufshcd_state == UFSHCD_STATE_ERROR) 8036 err = FAILED; 8037 spin_unlock_irqrestore(hba->host->host_lock, flags); 8038 8039 return err; 8040 } 8041 8042 /** 8043 * ufshcd_get_max_icc_level - calculate the ICC level 8044 * @sup_curr_uA: max. current supported by the regulator 8045 * @start_scan: row at the desc table to start scan from 8046 * @buff: power descriptor buffer 8047 * 8048 * Return: calculated max ICC level for specific regulator. 8049 */ 8050 static u32 ufshcd_get_max_icc_level(int sup_curr_uA, u32 start_scan, 8051 const char *buff) 8052 { 8053 int i; 8054 int curr_uA; 8055 u16 data; 8056 u16 unit; 8057 8058 for (i = start_scan; i >= 0; i--) { 8059 data = get_unaligned_be16(&buff[2 * i]); 8060 unit = (data & ATTR_ICC_LVL_UNIT_MASK) >> 8061 ATTR_ICC_LVL_UNIT_OFFSET; 8062 curr_uA = data & ATTR_ICC_LVL_VALUE_MASK; 8063 switch (unit) { 8064 case UFSHCD_NANO_AMP: 8065 curr_uA = curr_uA / 1000; 8066 break; 8067 case UFSHCD_MILI_AMP: 8068 curr_uA = curr_uA * 1000; 8069 break; 8070 case UFSHCD_AMP: 8071 curr_uA = curr_uA * 1000 * 1000; 8072 break; 8073 case UFSHCD_MICRO_AMP: 8074 default: 8075 break; 8076 } 8077 if (sup_curr_uA >= curr_uA) 8078 break; 8079 } 8080 if (i < 0) { 8081 i = 0; 8082 pr_err("%s: Couldn't find valid icc_level = %d", __func__, i); 8083 } 8084 8085 return (u32)i; 8086 } 8087 8088 /** 8089 * ufshcd_find_max_sup_active_icc_level - calculate the max ICC level 8090 * In case regulators are not initialized we'll return 0 8091 * @hba: per-adapter instance 8092 * @desc_buf: power descriptor buffer to extract ICC levels from. 8093 * 8094 * Return: calculated ICC level. 8095 */ 8096 static u32 ufshcd_find_max_sup_active_icc_level(struct ufs_hba *hba, 8097 const u8 *desc_buf) 8098 { 8099 u32 icc_level = 0; 8100 8101 if (!hba->vreg_info.vcc || !hba->vreg_info.vccq || 8102 !hba->vreg_info.vccq2) { 8103 /* 8104 * Using dev_dbg to avoid messages during runtime PM to avoid 8105 * never-ending cycles of messages written back to storage by 8106 * user space causing runtime resume, causing more messages and 8107 * so on. 8108 */ 8109 dev_dbg(hba->dev, 8110 "%s: Regulator capability was not set, actvIccLevel=%d", 8111 __func__, icc_level); 8112 goto out; 8113 } 8114 8115 if (hba->vreg_info.vcc->max_uA) 8116 icc_level = ufshcd_get_max_icc_level( 8117 hba->vreg_info.vcc->max_uA, 8118 POWER_DESC_MAX_ACTV_ICC_LVLS - 1, 8119 &desc_buf[PWR_DESC_ACTIVE_LVLS_VCC_0]); 8120 8121 if (hba->vreg_info.vccq->max_uA) 8122 icc_level = ufshcd_get_max_icc_level( 8123 hba->vreg_info.vccq->max_uA, 8124 icc_level, 8125 &desc_buf[PWR_DESC_ACTIVE_LVLS_VCCQ_0]); 8126 8127 if (hba->vreg_info.vccq2->max_uA) 8128 icc_level = ufshcd_get_max_icc_level( 8129 hba->vreg_info.vccq2->max_uA, 8130 icc_level, 8131 &desc_buf[PWR_DESC_ACTIVE_LVLS_VCCQ2_0]); 8132 out: 8133 return icc_level; 8134 } 8135 8136 static void ufshcd_set_active_icc_lvl(struct ufs_hba *hba) 8137 { 8138 int ret; 8139 u8 *desc_buf; 8140 u32 icc_level; 8141 8142 desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL); 8143 if (!desc_buf) 8144 return; 8145 8146 ret = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_POWER, 0, 0, 8147 desc_buf, QUERY_DESC_MAX_SIZE); 8148 if (ret) { 8149 dev_err(hba->dev, 8150 "%s: Failed reading power descriptor ret = %d", 8151 __func__, ret); 8152 goto out; 8153 } 8154 8155 icc_level = ufshcd_find_max_sup_active_icc_level(hba, desc_buf); 8156 dev_dbg(hba->dev, "%s: setting icc_level 0x%x", __func__, icc_level); 8157 8158 ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR, 8159 QUERY_ATTR_IDN_ACTIVE_ICC_LVL, 0, 0, &icc_level); 8160 8161 if (ret) 8162 dev_err(hba->dev, 8163 "%s: Failed configuring bActiveICCLevel = %d ret = %d", 8164 __func__, icc_level, ret); 8165 8166 out: 8167 kfree(desc_buf); 8168 } 8169 8170 static inline void ufshcd_blk_pm_runtime_init(struct scsi_device *sdev) 8171 { 8172 struct Scsi_Host *shost = sdev->host; 8173 8174 scsi_autopm_get_device(sdev); 8175 blk_pm_runtime_init(sdev->request_queue, &sdev->sdev_gendev); 8176 if (sdev->rpm_autosuspend) 8177 pm_runtime_set_autosuspend_delay(&sdev->sdev_gendev, 8178 shost->rpm_autosuspend_delay); 8179 scsi_autopm_put_device(sdev); 8180 } 8181 8182 /** 8183 * ufshcd_scsi_add_wlus - Adds required W-LUs 8184 * @hba: per-adapter instance 8185 * 8186 * UFS device specification requires the UFS devices to support 4 well known 8187 * logical units: 8188 * "REPORT_LUNS" (address: 01h) 8189 * "UFS Device" (address: 50h) 8190 * "RPMB" (address: 44h) 8191 * "BOOT" (address: 30h) 8192 * UFS device's power management needs to be controlled by "POWER CONDITION" 8193 * field of SSU (START STOP UNIT) command. But this "power condition" field 8194 * will take effect only when its sent to "UFS device" well known logical unit 8195 * hence we require the scsi_device instance to represent this logical unit in 8196 * order for the UFS host driver to send the SSU command for power management. 8197 * 8198 * We also require the scsi_device instance for "RPMB" (Replay Protected Memory 8199 * Block) LU so user space process can control this LU. User space may also 8200 * want to have access to BOOT LU. 8201 * 8202 * This function adds scsi device instances for each of all well known LUs 8203 * (except "REPORT LUNS" LU). 8204 * 8205 * Return: zero on success (all required W-LUs are added successfully), 8206 * non-zero error value on failure (if failed to add any of the required W-LU). 8207 */ 8208 static int ufshcd_scsi_add_wlus(struct ufs_hba *hba) 8209 { 8210 int ret = 0; 8211 struct scsi_device *sdev_boot, *sdev_rpmb; 8212 8213 hba->ufs_device_wlun = __scsi_add_device(hba->host, 0, 0, 8214 ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_UFS_DEVICE_WLUN), NULL); 8215 if (IS_ERR(hba->ufs_device_wlun)) { 8216 ret = PTR_ERR(hba->ufs_device_wlun); 8217 hba->ufs_device_wlun = NULL; 8218 goto out; 8219 } 8220 scsi_device_put(hba->ufs_device_wlun); 8221 8222 sdev_rpmb = __scsi_add_device(hba->host, 0, 0, 8223 ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_RPMB_WLUN), NULL); 8224 if (IS_ERR(sdev_rpmb)) { 8225 ret = PTR_ERR(sdev_rpmb); 8226 hba->ufs_rpmb_wlun = NULL; 8227 dev_err(hba->dev, "%s: RPMB WLUN not found\n", __func__); 8228 goto remove_ufs_device_wlun; 8229 } 8230 hba->ufs_rpmb_wlun = sdev_rpmb; 8231 ufshcd_blk_pm_runtime_init(sdev_rpmb); 8232 scsi_device_put(sdev_rpmb); 8233 8234 sdev_boot = __scsi_add_device(hba->host, 0, 0, 8235 ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_BOOT_WLUN), NULL); 8236 if (IS_ERR(sdev_boot)) { 8237 dev_err(hba->dev, "%s: BOOT WLUN not found\n", __func__); 8238 } else { 8239 ufshcd_blk_pm_runtime_init(sdev_boot); 8240 scsi_device_put(sdev_boot); 8241 } 8242 goto out; 8243 8244 remove_ufs_device_wlun: 8245 scsi_remove_device(hba->ufs_device_wlun); 8246 out: 8247 return ret; 8248 } 8249 8250 static void ufshcd_wb_probe(struct ufs_hba *hba, const u8 *desc_buf) 8251 { 8252 struct ufs_dev_info *dev_info = &hba->dev_info; 8253 u8 lun; 8254 u32 d_lu_wb_buf_alloc; 8255 u32 ext_ufs_feature; 8256 8257 if (!ufshcd_is_wb_allowed(hba)) 8258 return; 8259 8260 /* 8261 * Probe WB only for UFS-2.2 and UFS-3.1 (and later) devices or 8262 * UFS devices with quirk UFS_DEVICE_QUIRK_SUPPORT_EXTENDED_FEATURES 8263 * enabled 8264 */ 8265 if (!(dev_info->wspecversion >= 0x310 || 8266 dev_info->wspecversion == 0x220 || 8267 (hba->dev_quirks & UFS_DEVICE_QUIRK_SUPPORT_EXTENDED_FEATURES))) 8268 goto wb_disabled; 8269 8270 ext_ufs_feature = get_unaligned_be32(desc_buf + 8271 DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP); 8272 8273 if (!(ext_ufs_feature & UFS_DEV_WRITE_BOOSTER_SUP)) 8274 goto wb_disabled; 8275 8276 /* 8277 * WB may be supported but not configured while provisioning. The spec 8278 * says, in dedicated wb buffer mode, a max of 1 lun would have wb 8279 * buffer configured. 8280 */ 8281 dev_info->wb_buffer_type = desc_buf[DEVICE_DESC_PARAM_WB_TYPE]; 8282 8283 dev_info->ext_wb_sup = get_unaligned_be16(desc_buf + 8284 DEVICE_DESC_PARAM_EXT_WB_SUP); 8285 8286 dev_info->b_presrv_uspc_en = 8287 desc_buf[DEVICE_DESC_PARAM_WB_PRESRV_USRSPC_EN]; 8288 8289 if (dev_info->wb_buffer_type == WB_BUF_MODE_SHARED) { 8290 if (!get_unaligned_be32(desc_buf + 8291 DEVICE_DESC_PARAM_WB_SHARED_ALLOC_UNITS)) 8292 goto wb_disabled; 8293 } else { 8294 for (lun = 0; lun < UFS_UPIU_MAX_WB_LUN_ID; lun++) { 8295 d_lu_wb_buf_alloc = 0; 8296 ufshcd_read_unit_desc_param(hba, 8297 lun, 8298 UNIT_DESC_PARAM_WB_BUF_ALLOC_UNITS, 8299 (u8 *)&d_lu_wb_buf_alloc, 8300 sizeof(d_lu_wb_buf_alloc)); 8301 if (d_lu_wb_buf_alloc) { 8302 dev_info->wb_dedicated_lu = lun; 8303 break; 8304 } 8305 } 8306 8307 if (!d_lu_wb_buf_alloc) 8308 goto wb_disabled; 8309 } 8310 8311 if (!ufshcd_is_wb_buf_lifetime_available(hba)) 8312 goto wb_disabled; 8313 8314 return; 8315 8316 wb_disabled: 8317 hba->caps &= ~UFSHCD_CAP_WB_EN; 8318 } 8319 8320 static void ufshcd_temp_notif_probe(struct ufs_hba *hba, const u8 *desc_buf) 8321 { 8322 struct ufs_dev_info *dev_info = &hba->dev_info; 8323 u32 ext_ufs_feature; 8324 u8 mask = 0; 8325 8326 if (!(hba->caps & UFSHCD_CAP_TEMP_NOTIF) || dev_info->wspecversion < 0x300) 8327 return; 8328 8329 ext_ufs_feature = get_unaligned_be32(desc_buf + DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP); 8330 8331 if (ext_ufs_feature & UFS_DEV_LOW_TEMP_NOTIF) 8332 mask |= MASK_EE_TOO_LOW_TEMP; 8333 8334 if (ext_ufs_feature & UFS_DEV_HIGH_TEMP_NOTIF) 8335 mask |= MASK_EE_TOO_HIGH_TEMP; 8336 8337 if (mask) { 8338 ufshcd_enable_ee(hba, mask); 8339 ufs_hwmon_probe(hba, mask); 8340 } 8341 } 8342 8343 static void ufshcd_device_lvl_exception_probe(struct ufs_hba *hba, u8 *desc_buf) 8344 { 8345 u32 ext_ufs_feature; 8346 8347 if (hba->dev_info.wspecversion < 0x410) 8348 return; 8349 8350 ext_ufs_feature = get_unaligned_be32(desc_buf + 8351 DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP); 8352 if (!(ext_ufs_feature & UFS_DEV_LVL_EXCEPTION_SUP)) 8353 return; 8354 8355 atomic_set(&hba->dev_lvl_exception_count, 0); 8356 ufshcd_enable_ee(hba, MASK_EE_DEV_LVL_EXCEPTION); 8357 } 8358 8359 static void ufshcd_set_rtt(struct ufs_hba *hba) 8360 { 8361 struct ufs_dev_info *dev_info = &hba->dev_info; 8362 u32 rtt = 0; 8363 u32 dev_rtt = 0; 8364 int host_rtt_cap = hba->vops && hba->vops->max_num_rtt ? 8365 hba->vops->max_num_rtt : hba->nortt; 8366 8367 /* RTT override makes sense only for UFS-4.0 and above */ 8368 if (dev_info->wspecversion < 0x400) 8369 return; 8370 8371 if (ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR, 8372 QUERY_ATTR_IDN_MAX_NUM_OF_RTT, 0, 0, &dev_rtt)) { 8373 dev_err(hba->dev, "failed reading bMaxNumOfRTT\n"); 8374 return; 8375 } 8376 8377 /* do not override if it was already written */ 8378 if (dev_rtt != DEFAULT_MAX_NUM_RTT) 8379 return; 8380 8381 rtt = min_t(int, dev_info->rtt_cap, host_rtt_cap); 8382 8383 if (rtt == dev_rtt) 8384 return; 8385 8386 if (ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR, 8387 QUERY_ATTR_IDN_MAX_NUM_OF_RTT, 0, 0, &rtt)) 8388 dev_err(hba->dev, "failed writing bMaxNumOfRTT\n"); 8389 } 8390 8391 void ufshcd_fixup_dev_quirks(struct ufs_hba *hba, 8392 const struct ufs_dev_quirk *fixups) 8393 { 8394 const struct ufs_dev_quirk *f; 8395 struct ufs_dev_info *dev_info = &hba->dev_info; 8396 8397 if (!fixups) 8398 return; 8399 8400 for (f = fixups; f->quirk; f++) { 8401 if ((f->wmanufacturerid == dev_info->wmanufacturerid || 8402 f->wmanufacturerid == UFS_ANY_VENDOR) && 8403 ((dev_info->model && 8404 STR_PRFX_EQUAL(f->model, dev_info->model)) || 8405 !strcmp(f->model, UFS_ANY_MODEL))) 8406 hba->dev_quirks |= f->quirk; 8407 } 8408 } 8409 EXPORT_SYMBOL_GPL(ufshcd_fixup_dev_quirks); 8410 8411 static void ufs_fixup_device_setup(struct ufs_hba *hba) 8412 { 8413 /* fix by general quirk table */ 8414 ufshcd_fixup_dev_quirks(hba, ufs_fixups); 8415 8416 /* allow vendors to fix quirks */ 8417 ufshcd_vops_fixup_dev_quirks(hba); 8418 } 8419 8420 static void ufshcd_update_rtc(struct ufs_hba *hba) 8421 { 8422 struct timespec64 ts64; 8423 int err; 8424 u32 val; 8425 8426 ktime_get_real_ts64(&ts64); 8427 8428 if (ts64.tv_sec < hba->dev_info.rtc_time_baseline) { 8429 dev_warn_once(hba->dev, "%s: Current time precedes previous setting!\n", __func__); 8430 return; 8431 } 8432 8433 /* 8434 * The Absolute RTC mode has a 136-year limit, spanning from 2010 to 2146. If a time beyond 8435 * 2146 is required, it is recommended to choose the relative RTC mode. 8436 */ 8437 val = ts64.tv_sec - hba->dev_info.rtc_time_baseline; 8438 8439 /* Skip update RTC if RPM state is not RPM_ACTIVE */ 8440 if (ufshcd_rpm_get_if_active(hba) <= 0) 8441 return; 8442 8443 err = ufshcd_query_attr(hba, UPIU_QUERY_OPCODE_WRITE_ATTR, QUERY_ATTR_IDN_SECONDS_PASSED, 8444 0, 0, &val); 8445 ufshcd_rpm_put(hba); 8446 8447 if (err) 8448 dev_err(hba->dev, "%s: Failed to update rtc %d\n", __func__, err); 8449 else if (hba->dev_info.rtc_type == UFS_RTC_RELATIVE) 8450 hba->dev_info.rtc_time_baseline = ts64.tv_sec; 8451 } 8452 8453 static void ufshcd_rtc_work(struct work_struct *work) 8454 { 8455 struct ufs_hba *hba; 8456 8457 hba = container_of(to_delayed_work(work), struct ufs_hba, ufs_rtc_update_work); 8458 8459 /* Update RTC only when there are no requests in progress and UFSHCI is operational */ 8460 if (!ufshcd_is_ufs_dev_busy(hba) && 8461 hba->ufshcd_state == UFSHCD_STATE_OPERATIONAL && 8462 !hba->clk_gating.active_reqs) 8463 ufshcd_update_rtc(hba); 8464 8465 if (ufshcd_is_ufs_dev_active(hba) && hba->dev_info.rtc_update_period) 8466 schedule_delayed_work(&hba->ufs_rtc_update_work, 8467 msecs_to_jiffies(hba->dev_info.rtc_update_period)); 8468 } 8469 8470 static void ufs_init_rtc(struct ufs_hba *hba, u8 *desc_buf) 8471 { 8472 u16 periodic_rtc_update = get_unaligned_be16(&desc_buf[DEVICE_DESC_PARAM_FRQ_RTC]); 8473 struct ufs_dev_info *dev_info = &hba->dev_info; 8474 8475 if (periodic_rtc_update & UFS_RTC_TIME_BASELINE) { 8476 dev_info->rtc_type = UFS_RTC_ABSOLUTE; 8477 8478 /* 8479 * The concept of measuring time in Linux as the number of seconds elapsed since 8480 * 00:00:00 UTC on January 1, 1970, and UFS ABS RTC is elapsed from January 1st 8481 * 2010 00:00, here we need to adjust ABS baseline. 8482 */ 8483 dev_info->rtc_time_baseline = mktime64(2010, 1, 1, 0, 0, 0) - 8484 mktime64(1970, 1, 1, 0, 0, 0); 8485 } else { 8486 dev_info->rtc_type = UFS_RTC_RELATIVE; 8487 dev_info->rtc_time_baseline = 0; 8488 } 8489 8490 /* 8491 * We ignore TIME_PERIOD defined in wPeriodicRTCUpdate because Spec does not clearly state 8492 * how to calculate the specific update period for each time unit. And we disable periodic 8493 * RTC update work, let user configure by sysfs node according to specific circumstance. 8494 */ 8495 dev_info->rtc_update_period = 0; 8496 } 8497 8498 /** 8499 * ufshcd_create_device_id - Generate unique device identifier string 8500 * @hba: per-adapter instance 8501 * @desc_buf: device descriptor buffer 8502 * 8503 * Creates a unique device ID string combining manufacturer ID, spec version, 8504 * model name, serial number (as hex), device version, and manufacture date. 8505 * 8506 * Returns: Allocated device ID string on success, NULL on failure 8507 */ 8508 static char *ufshcd_create_device_id(struct ufs_hba *hba, u8 *desc_buf) 8509 { 8510 struct ufs_dev_info *dev_info = &hba->dev_info; 8511 u16 manufacture_date; 8512 u16 device_version; 8513 u8 *serial_number; 8514 char *serial_hex; 8515 char *device_id; 8516 u8 serial_index; 8517 int serial_len; 8518 int ret; 8519 8520 serial_index = desc_buf[DEVICE_DESC_PARAM_SN]; 8521 8522 ret = ufshcd_read_string_desc(hba, serial_index, &serial_number, SD_RAW); 8523 if (ret < 0) { 8524 dev_err(hba->dev, "Failed reading Serial Number. err = %d\n", ret); 8525 return NULL; 8526 } 8527 8528 device_version = get_unaligned_be16(&desc_buf[DEVICE_DESC_PARAM_DEV_VER]); 8529 manufacture_date = get_unaligned_be16(&desc_buf[DEVICE_DESC_PARAM_MANF_DATE]); 8530 8531 serial_len = ret; 8532 /* Allocate buffer for hex string: 2 chars per byte + null terminator */ 8533 serial_hex = kzalloc(serial_len * 2 + 1, GFP_KERNEL); 8534 if (!serial_hex) { 8535 kfree(serial_number); 8536 return NULL; 8537 } 8538 8539 bin2hex(serial_hex, serial_number, serial_len); 8540 8541 /* 8542 * Device ID format is ABI with secure world - do not change without firmware 8543 * coordination. 8544 */ 8545 device_id = kasprintf(GFP_KERNEL, "%04X-%04X-%s-%s-%04X-%04X", 8546 dev_info->wmanufacturerid, dev_info->wspecversion, 8547 dev_info->model, serial_hex, device_version, 8548 manufacture_date); 8549 8550 kfree(serial_hex); 8551 kfree(serial_number); 8552 8553 if (!device_id) 8554 dev_warn(hba->dev, "Failed to allocate unique device ID\n"); 8555 8556 return device_id; 8557 } 8558 8559 static int ufs_get_device_desc(struct ufs_hba *hba) 8560 { 8561 struct ufs_dev_info *dev_info = &hba->dev_info; 8562 struct Scsi_Host *shost = hba->host; 8563 int err; 8564 u8 model_index; 8565 u8 *desc_buf; 8566 8567 desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL); 8568 if (!desc_buf) { 8569 err = -ENOMEM; 8570 goto out; 8571 } 8572 8573 err = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_DEVICE, 0, 0, desc_buf, 8574 QUERY_DESC_MAX_SIZE); 8575 if (err) { 8576 dev_err(hba->dev, "%s: Failed reading Device Desc. err = %d\n", 8577 __func__, err); 8578 goto out; 8579 } 8580 8581 /* 8582 * getting vendor (manufacturerID) and Bank Index in big endian 8583 * format 8584 */ 8585 dev_info->wmanufacturerid = desc_buf[DEVICE_DESC_PARAM_MANF_ID] << 8 | 8586 desc_buf[DEVICE_DESC_PARAM_MANF_ID + 1]; 8587 8588 /* getting Specification Version in big endian format */ 8589 dev_info->wspecversion = desc_buf[DEVICE_DESC_PARAM_SPEC_VER] << 8 | 8590 desc_buf[DEVICE_DESC_PARAM_SPEC_VER + 1]; 8591 dev_info->bqueuedepth = desc_buf[DEVICE_DESC_PARAM_Q_DPTH]; 8592 8593 /* 8594 * According to the UFS standard, the UFS device queue depth 8595 * (bQueueDepth) must be in the range 1..255 if the shared queueing 8596 * architecture is supported. bQueueDepth is zero if the shared queueing 8597 * architecture is not supported. 8598 */ 8599 if (dev_info->bqueuedepth) 8600 shost->cmd_per_lun = min(hba->nutrs, dev_info->bqueuedepth) - 8601 UFSHCD_NUM_RESERVED; 8602 else 8603 shost->cmd_per_lun = shost->can_queue; 8604 8605 dev_info->rtt_cap = desc_buf[DEVICE_DESC_PARAM_RTT_CAP]; 8606 8607 dev_info->hid_sup = get_unaligned_be32(desc_buf + 8608 DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP) & 8609 UFS_DEV_HID_SUPPORT; 8610 8611 model_index = desc_buf[DEVICE_DESC_PARAM_PRDCT_NAME]; 8612 8613 err = ufshcd_read_string_desc(hba, model_index, 8614 &dev_info->model, SD_ASCII_STD); 8615 if (err < 0) { 8616 dev_err(hba->dev, "%s: Failed reading Product Name. err = %d\n", 8617 __func__, err); 8618 goto out; 8619 } 8620 8621 /* Generate unique device ID */ 8622 dev_info->device_id = ufshcd_create_device_id(hba, desc_buf); 8623 8624 hba->luns_avail = desc_buf[DEVICE_DESC_PARAM_NUM_LU] + 8625 desc_buf[DEVICE_DESC_PARAM_NUM_WLU]; 8626 8627 ufs_fixup_device_setup(hba); 8628 8629 ufshcd_wb_probe(hba, desc_buf); 8630 8631 ufshcd_temp_notif_probe(hba, desc_buf); 8632 8633 if (dev_info->wspecversion >= 0x410) { 8634 hba->critical_health_count = 0; 8635 ufshcd_enable_ee(hba, MASK_EE_HEALTH_CRITICAL); 8636 } 8637 8638 ufs_init_rtc(hba, desc_buf); 8639 8640 ufshcd_device_lvl_exception_probe(hba, desc_buf); 8641 8642 /* 8643 * ufshcd_read_string_desc returns size of the string 8644 * reset the error value 8645 */ 8646 err = 0; 8647 8648 out: 8649 kfree(desc_buf); 8650 return err; 8651 } 8652 8653 static void ufs_put_device_desc(struct ufs_hba *hba) 8654 { 8655 struct ufs_dev_info *dev_info = &hba->dev_info; 8656 8657 kfree(dev_info->model); 8658 dev_info->model = NULL; 8659 kfree(dev_info->device_id); 8660 dev_info->device_id = NULL; 8661 } 8662 8663 /** 8664 * ufshcd_quirk_tune_host_pa_tactivate - Ensures that host PA_TACTIVATE is 8665 * less than device PA_TACTIVATE time. 8666 * @hba: per-adapter instance 8667 * 8668 * Some UFS devices require host PA_TACTIVATE to be lower than device 8669 * PA_TACTIVATE, we need to enable UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE quirk 8670 * for such devices. 8671 * 8672 * Return: zero on success, non-zero error value on failure. 8673 */ 8674 static int ufshcd_quirk_tune_host_pa_tactivate(struct ufs_hba *hba) 8675 { 8676 int ret = 0; 8677 u32 granularity, peer_granularity; 8678 u32 pa_tactivate, peer_pa_tactivate; 8679 u32 pa_tactivate_us, peer_pa_tactivate_us; 8680 static const u8 gran_to_us_table[] = {1, 4, 8, 16, 32, 100}; 8681 8682 ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_GRANULARITY), 8683 &granularity); 8684 if (ret) 8685 goto out; 8686 8687 ret = ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_GRANULARITY), 8688 &peer_granularity); 8689 if (ret) 8690 goto out; 8691 8692 if ((granularity < PA_GRANULARITY_MIN_VAL) || 8693 (granularity > PA_GRANULARITY_MAX_VAL)) { 8694 dev_err(hba->dev, "%s: invalid host PA_GRANULARITY %d", 8695 __func__, granularity); 8696 return -EINVAL; 8697 } 8698 8699 if ((peer_granularity < PA_GRANULARITY_MIN_VAL) || 8700 (peer_granularity > PA_GRANULARITY_MAX_VAL)) { 8701 dev_err(hba->dev, "%s: invalid device PA_GRANULARITY %d", 8702 __func__, peer_granularity); 8703 return -EINVAL; 8704 } 8705 8706 ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_TACTIVATE), &pa_tactivate); 8707 if (ret) 8708 goto out; 8709 8710 ret = ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_TACTIVATE), 8711 &peer_pa_tactivate); 8712 if (ret) 8713 goto out; 8714 8715 pa_tactivate_us = pa_tactivate * gran_to_us_table[granularity - 1]; 8716 peer_pa_tactivate_us = peer_pa_tactivate * 8717 gran_to_us_table[peer_granularity - 1]; 8718 8719 if (pa_tactivate_us >= peer_pa_tactivate_us) { 8720 u32 new_peer_pa_tactivate; 8721 8722 new_peer_pa_tactivate = pa_tactivate_us / 8723 gran_to_us_table[peer_granularity - 1]; 8724 new_peer_pa_tactivate++; 8725 ret = ufshcd_dme_peer_set(hba, UIC_ARG_MIB(PA_TACTIVATE), 8726 new_peer_pa_tactivate); 8727 } 8728 8729 out: 8730 return ret; 8731 } 8732 8733 /** 8734 * ufshcd_quirk_override_pa_h8time - Ensures proper adjustment of PA_HIBERN8TIME. 8735 * @hba: per-adapter instance 8736 * 8737 * Some UFS devices require specific adjustments to the PA_HIBERN8TIME parameter 8738 * to ensure proper hibernation timing. This function retrieves the current 8739 * PA_HIBERN8TIME value and increments it by 100us. 8740 */ 8741 static void ufshcd_quirk_override_pa_h8time(struct ufs_hba *hba) 8742 { 8743 u32 pa_h8time; 8744 int ret; 8745 8746 ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_HIBERN8TIME), &pa_h8time); 8747 if (ret) { 8748 dev_err(hba->dev, "Failed to get PA_HIBERN8TIME: %d\n", ret); 8749 return; 8750 } 8751 8752 /* Increment by 1 to increase hibernation time by 100 µs */ 8753 ret = ufshcd_dme_set(hba, UIC_ARG_MIB(PA_HIBERN8TIME), pa_h8time + 1); 8754 if (ret) 8755 dev_err(hba->dev, "Failed updating PA_HIBERN8TIME: %d\n", ret); 8756 } 8757 8758 static void ufshcd_tune_unipro_params(struct ufs_hba *hba) 8759 { 8760 ufshcd_vops_apply_dev_quirks(hba); 8761 8762 if (hba->dev_quirks & UFS_DEVICE_QUIRK_PA_TACTIVATE) 8763 /* set 1ms timeout for PA_TACTIVATE */ 8764 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TACTIVATE), 10); 8765 8766 if (hba->dev_quirks & UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE) 8767 ufshcd_quirk_tune_host_pa_tactivate(hba); 8768 8769 if (hba->dev_quirks & UFS_DEVICE_QUIRK_PA_HIBER8TIME) 8770 ufshcd_quirk_override_pa_h8time(hba); 8771 } 8772 8773 static void ufshcd_clear_dbg_ufs_stats(struct ufs_hba *hba) 8774 { 8775 hba->ufs_stats.hibern8_exit_cnt = 0; 8776 hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0); 8777 hba->req_abort_count = 0; 8778 } 8779 8780 static int ufshcd_device_geo_params_init(struct ufs_hba *hba) 8781 { 8782 int err; 8783 u8 *desc_buf; 8784 8785 desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL); 8786 if (!desc_buf) { 8787 err = -ENOMEM; 8788 goto out; 8789 } 8790 8791 err = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_GEOMETRY, 0, 0, 8792 desc_buf, QUERY_DESC_MAX_SIZE); 8793 if (err) { 8794 dev_err(hba->dev, "%s: Failed reading Geometry Desc. err = %d\n", 8795 __func__, err); 8796 goto out; 8797 } 8798 8799 if (desc_buf[GEOMETRY_DESC_PARAM_MAX_NUM_LUN] == 1) 8800 hba->dev_info.max_lu_supported = 32; 8801 else if (desc_buf[GEOMETRY_DESC_PARAM_MAX_NUM_LUN] == 0) 8802 hba->dev_info.max_lu_supported = 8; 8803 8804 hba->dev_info.rpmb_io_size = desc_buf[GEOMETRY_DESC_PARAM_RPMB_RW_SIZE]; 8805 8806 out: 8807 kfree(desc_buf); 8808 return err; 8809 } 8810 8811 struct ufs_ref_clk { 8812 unsigned long freq_hz; 8813 enum ufs_ref_clk_freq val; 8814 }; 8815 8816 static const struct ufs_ref_clk ufs_ref_clk_freqs[] = { 8817 {19200000, REF_CLK_FREQ_19_2_MHZ}, 8818 {26000000, REF_CLK_FREQ_26_MHZ}, 8819 {38400000, REF_CLK_FREQ_38_4_MHZ}, 8820 {52000000, REF_CLK_FREQ_52_MHZ}, 8821 {0, REF_CLK_FREQ_INVAL}, 8822 }; 8823 8824 static enum ufs_ref_clk_freq 8825 ufs_get_bref_clk_from_hz(unsigned long freq) 8826 { 8827 int i; 8828 8829 for (i = 0; ufs_ref_clk_freqs[i].freq_hz; i++) 8830 if (ufs_ref_clk_freqs[i].freq_hz == freq) 8831 return ufs_ref_clk_freqs[i].val; 8832 8833 return REF_CLK_FREQ_INVAL; 8834 } 8835 8836 void ufshcd_parse_dev_ref_clk_freq(struct ufs_hba *hba, struct clk *refclk) 8837 { 8838 unsigned long freq; 8839 8840 freq = clk_get_rate(refclk); 8841 8842 hba->dev_ref_clk_freq = 8843 ufs_get_bref_clk_from_hz(freq); 8844 8845 if (hba->dev_ref_clk_freq == REF_CLK_FREQ_INVAL) 8846 dev_err(hba->dev, 8847 "invalid ref_clk setting = %ld\n", freq); 8848 } 8849 8850 static int ufshcd_set_dev_ref_clk(struct ufs_hba *hba) 8851 { 8852 int err; 8853 u32 ref_clk; 8854 u32 freq = hba->dev_ref_clk_freq; 8855 8856 err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR, 8857 QUERY_ATTR_IDN_REF_CLK_FREQ, 0, 0, &ref_clk); 8858 8859 if (err) { 8860 dev_err(hba->dev, "failed reading bRefClkFreq. err = %d\n", 8861 err); 8862 goto out; 8863 } 8864 8865 if (ref_clk == freq) 8866 goto out; /* nothing to update */ 8867 8868 err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR, 8869 QUERY_ATTR_IDN_REF_CLK_FREQ, 0, 0, &freq); 8870 8871 if (err) { 8872 dev_err(hba->dev, "bRefClkFreq setting to %lu Hz failed\n", 8873 ufs_ref_clk_freqs[freq].freq_hz); 8874 goto out; 8875 } 8876 8877 dev_dbg(hba->dev, "bRefClkFreq setting to %lu Hz succeeded\n", 8878 ufs_ref_clk_freqs[freq].freq_hz); 8879 8880 out: 8881 return err; 8882 } 8883 8884 static int ufshcd_device_params_init(struct ufs_hba *hba) 8885 { 8886 bool flag; 8887 int ret; 8888 8889 /* Init UFS geometry descriptor related parameters */ 8890 ret = ufshcd_device_geo_params_init(hba); 8891 if (ret) 8892 goto out; 8893 8894 /* Check and apply UFS device quirks */ 8895 ret = ufs_get_device_desc(hba); 8896 if (ret) { 8897 dev_err(hba->dev, "%s: Failed getting device info. err = %d\n", 8898 __func__, ret); 8899 goto out; 8900 } 8901 8902 ufshcd_set_rtt(hba); 8903 8904 ufshcd_get_ref_clk_gating_wait(hba); 8905 8906 if (!ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_READ_FLAG, 8907 QUERY_FLAG_IDN_PWR_ON_WPE, 0, &flag)) 8908 hba->dev_info.f_power_on_wp_en = flag; 8909 8910 /* Probe maximum power mode co-supported by both UFS host and device */ 8911 if (ufshcd_get_max_pwr_mode(hba)) 8912 dev_err(hba->dev, 8913 "%s: Failed getting max supported power mode\n", 8914 __func__); 8915 out: 8916 return ret; 8917 } 8918 8919 static void ufshcd_set_timestamp_attr(struct ufs_hba *hba) 8920 { 8921 int err; 8922 struct ufs_query_req *request = NULL; 8923 struct ufs_query_res *response = NULL; 8924 struct ufs_dev_info *dev_info = &hba->dev_info; 8925 struct utp_upiu_query_v4_0 *upiu_data; 8926 8927 if (dev_info->wspecversion < 0x400 || 8928 hba->dev_quirks & UFS_DEVICE_QUIRK_NO_TIMESTAMP_SUPPORT) 8929 return; 8930 8931 ufshcd_dev_man_lock(hba); 8932 8933 ufshcd_init_query(hba, &request, &response, 8934 UPIU_QUERY_OPCODE_WRITE_ATTR, 8935 QUERY_ATTR_IDN_TIMESTAMP, 0, 0); 8936 8937 request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST; 8938 8939 upiu_data = (struct utp_upiu_query_v4_0 *)&request->upiu_req; 8940 8941 put_unaligned_be64(ktime_get_real_ns(), &upiu_data->osf3); 8942 8943 err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, dev_cmd_timeout); 8944 8945 if (err) 8946 dev_err(hba->dev, "%s: failed to set timestamp %d\n", 8947 __func__, err); 8948 8949 ufshcd_dev_man_unlock(hba); 8950 } 8951 8952 /** 8953 * ufshcd_add_lus - probe and add UFS logical units 8954 * @hba: per-adapter instance 8955 * 8956 * Return: 0 upon success; < 0 upon failure. 8957 */ 8958 static int ufshcd_add_lus(struct ufs_hba *hba) 8959 { 8960 int ret; 8961 8962 /* Add required well known logical units to scsi mid layer */ 8963 ret = ufshcd_scsi_add_wlus(hba); 8964 if (ret) 8965 goto out; 8966 8967 /* Initialize devfreq after UFS device is detected */ 8968 if (ufshcd_is_clkscaling_supported(hba)) { 8969 memcpy(&hba->clk_scaling.saved_pwr_info, 8970 &hba->pwr_info, 8971 sizeof(struct ufs_pa_layer_attr)); 8972 hba->clk_scaling.is_allowed = true; 8973 8974 ret = ufshcd_devfreq_init(hba); 8975 if (ret) 8976 goto out; 8977 8978 hba->clk_scaling.is_enabled = true; 8979 ufshcd_init_clk_scaling_sysfs(hba); 8980 } 8981 8982 /* 8983 * The RTC update code accesses the hba->ufs_device_wlun->sdev_gendev 8984 * pointer and hence must only be started after the WLUN pointer has 8985 * been initialized by ufshcd_scsi_add_wlus(). 8986 */ 8987 schedule_delayed_work(&hba->ufs_rtc_update_work, 8988 msecs_to_jiffies(UFS_RTC_UPDATE_INTERVAL_MS)); 8989 8990 ufs_bsg_probe(hba); 8991 scsi_scan_host(hba->host); 8992 ufs_rpmb_probe(hba); 8993 8994 out: 8995 return ret; 8996 } 8997 8998 /* SDB - Single Doorbell */ 8999 static void ufshcd_release_sdb_queue(struct ufs_hba *hba, int nutrs) 9000 { 9001 size_t ucdl_size, utrdl_size; 9002 9003 ucdl_size = ufshcd_get_ucd_size(hba) * nutrs; 9004 dmam_free_coherent(hba->dev, ucdl_size, hba->ucdl_base_addr, 9005 hba->ucdl_dma_addr); 9006 9007 utrdl_size = sizeof(struct utp_transfer_req_desc) * nutrs; 9008 dmam_free_coherent(hba->dev, utrdl_size, hba->utrdl_base_addr, 9009 hba->utrdl_dma_addr); 9010 } 9011 9012 static int ufshcd_alloc_mcq(struct ufs_hba *hba) 9013 { 9014 int ret; 9015 int old_nutrs = hba->nutrs; 9016 9017 ret = ufshcd_get_hba_mac(hba); 9018 if (ret < 0) 9019 return ret; 9020 9021 hba->nutrs = ret; 9022 ret = ufshcd_mcq_init(hba); 9023 if (ret) 9024 goto err; 9025 9026 /* 9027 * Previously allocated memory for nutrs may not be enough in MCQ mode. 9028 * Number of supported tags in MCQ mode may be larger than SDB mode. 9029 */ 9030 if (hba->nutrs != old_nutrs) { 9031 ufshcd_release_sdb_queue(hba, old_nutrs); 9032 ret = ufshcd_memory_alloc(hba); 9033 if (ret) 9034 goto err; 9035 ufshcd_host_memory_configure(hba); 9036 } 9037 9038 ret = ufshcd_mcq_memory_alloc(hba); 9039 if (ret) 9040 goto err; 9041 9042 hba->host->can_queue = hba->nutrs - UFSHCD_NUM_RESERVED; 9043 9044 return 0; 9045 err: 9046 hba->nutrs = old_nutrs; 9047 return ret; 9048 } 9049 9050 static void ufshcd_config_mcq(struct ufs_hba *hba) 9051 { 9052 int ret; 9053 9054 ret = ufshcd_mcq_vops_config_esi(hba); 9055 hba->mcq_esi_enabled = !ret; 9056 dev_info(hba->dev, "ESI %sconfigured\n", ret ? "is not " : ""); 9057 9058 ufshcd_mcq_make_queues_operational(hba); 9059 ufshcd_mcq_config_mac(hba, hba->nutrs); 9060 9061 dev_info(hba->dev, "MCQ configured, nr_queues=%d, io_queues=%d, read_queue=%d, poll_queues=%d, queue_depth=%d\n", 9062 hba->nr_hw_queues, hba->nr_queues[HCTX_TYPE_DEFAULT], 9063 hba->nr_queues[HCTX_TYPE_READ], hba->nr_queues[HCTX_TYPE_POLL], 9064 hba->nutrs); 9065 } 9066 9067 static int ufshcd_post_device_init(struct ufs_hba *hba) 9068 { 9069 int ret; 9070 9071 ufshcd_tune_unipro_params(hba); 9072 9073 /* UFS device is also active now */ 9074 ufshcd_set_ufs_dev_active(hba); 9075 ufshcd_force_reset_auto_bkops(hba); 9076 9077 ufshcd_set_timestamp_attr(hba); 9078 9079 if (!hba->max_pwr_info.is_valid) 9080 return 0; 9081 9082 /* 9083 * Set the right value to bRefClkFreq before attempting to 9084 * switch to HS gears. 9085 */ 9086 if (hba->dev_ref_clk_freq != REF_CLK_FREQ_INVAL) 9087 ufshcd_set_dev_ref_clk(hba); 9088 /* Gear up to HS gear. */ 9089 ret = ufshcd_config_pwr_mode(hba, &hba->max_pwr_info.info); 9090 if (ret) { 9091 dev_err(hba->dev, "%s: Failed setting power mode, err = %d\n", 9092 __func__, ret); 9093 return ret; 9094 } 9095 9096 return 0; 9097 } 9098 9099 static int ufshcd_device_init(struct ufs_hba *hba, bool init_dev_params) 9100 { 9101 int ret; 9102 9103 WARN_ON_ONCE(!hba->scsi_host_added); 9104 9105 hba->ufshcd_state = UFSHCD_STATE_RESET; 9106 9107 ret = ufshcd_link_startup(hba); 9108 if (ret) 9109 return ret; 9110 9111 if (hba->quirks & UFSHCD_QUIRK_SKIP_PH_CONFIGURATION) 9112 return ret; 9113 9114 /* Debug counters initialization */ 9115 ufshcd_clear_dbg_ufs_stats(hba); 9116 9117 /* UniPro link is active now */ 9118 ufshcd_set_link_active(hba); 9119 9120 /* Reconfigure MCQ upon reset */ 9121 if (hba->mcq_enabled && !init_dev_params) { 9122 ufshcd_config_mcq(hba); 9123 ufshcd_mcq_enable(hba); 9124 } 9125 9126 /* Verify device initialization by sending NOP OUT UPIU */ 9127 ret = ufshcd_verify_dev_init(hba); 9128 if (ret) 9129 return ret; 9130 9131 /* Initiate UFS initialization, and waiting until completion */ 9132 ret = ufshcd_complete_dev_init(hba); 9133 if (ret) 9134 return ret; 9135 9136 /* 9137 * Initialize UFS device parameters used by driver, these 9138 * parameters are associated with UFS descriptors. 9139 */ 9140 if (init_dev_params) { 9141 ret = ufshcd_device_params_init(hba); 9142 if (ret) 9143 return ret; 9144 if (is_mcq_supported(hba) && 9145 hba->quirks & UFSHCD_QUIRK_REINIT_AFTER_MAX_GEAR_SWITCH) { 9146 ufshcd_config_mcq(hba); 9147 ufshcd_mcq_enable(hba); 9148 } 9149 } 9150 9151 return ufshcd_post_device_init(hba); 9152 } 9153 9154 /** 9155 * ufshcd_probe_hba - probe hba to detect device and initialize it 9156 * @hba: per-adapter instance 9157 * @init_dev_params: whether or not to call ufshcd_device_params_init(). 9158 * 9159 * Execute link-startup and verify device initialization 9160 * 9161 * Return: 0 upon success; < 0 upon failure. 9162 */ 9163 static int ufshcd_probe_hba(struct ufs_hba *hba, bool init_dev_params) 9164 { 9165 int ret; 9166 9167 if (!hba->pm_op_in_progress && 9168 (hba->quirks & UFSHCD_QUIRK_REINIT_AFTER_MAX_GEAR_SWITCH)) { 9169 /* Reset the device and controller before doing reinit */ 9170 ufshcd_device_reset(hba); 9171 ufs_put_device_desc(hba); 9172 ufshcd_hba_stop(hba); 9173 ret = ufshcd_hba_enable(hba); 9174 if (ret) { 9175 dev_err(hba->dev, "Host controller enable failed\n"); 9176 ufshcd_print_evt_hist(hba); 9177 ufshcd_print_host_state(hba); 9178 return ret; 9179 } 9180 9181 /* Reinit the device */ 9182 ret = ufshcd_device_init(hba, init_dev_params); 9183 if (ret) 9184 return ret; 9185 } 9186 9187 ufshcd_print_pwr_info(hba); 9188 9189 /* 9190 * bActiveICCLevel is volatile for UFS device (as per latest v2.1 spec) 9191 * and for removable UFS card as well, hence always set the parameter. 9192 * Note: Error handler may issue the device reset hence resetting 9193 * bActiveICCLevel as well so it is always safe to set this here. 9194 */ 9195 ufshcd_set_active_icc_lvl(hba); 9196 9197 /* Enable UFS Write Booster if supported */ 9198 ufshcd_configure_wb(hba); 9199 9200 if (hba->ee_usr_mask) 9201 ufshcd_write_ee_control(hba); 9202 ufshcd_configure_auto_hibern8(hba); 9203 9204 return 0; 9205 } 9206 9207 /** 9208 * ufshcd_async_scan - asynchronous execution for probing hba 9209 * @data: data pointer to pass to this function 9210 * @cookie: cookie data 9211 */ 9212 static void ufshcd_async_scan(void *data, async_cookie_t cookie) 9213 { 9214 struct ufs_hba *hba = (struct ufs_hba *)data; 9215 ktime_t probe_start; 9216 int ret; 9217 9218 down(&hba->host_sem); 9219 /* Initialize hba, detect and initialize UFS device */ 9220 probe_start = ktime_get(); 9221 ret = ufshcd_probe_hba(hba, true); 9222 ufshcd_process_probe_result(hba, probe_start, ret); 9223 up(&hba->host_sem); 9224 if (ret) 9225 goto out; 9226 9227 /* Probe and add UFS logical units */ 9228 ret = ufshcd_add_lus(hba); 9229 9230 out: 9231 pm_runtime_put_sync(hba->dev); 9232 9233 if (ret) 9234 dev_err(hba->dev, "%s failed: %d\n", __func__, ret); 9235 } 9236 9237 static enum scsi_timeout_action ufshcd_eh_timed_out(struct scsi_cmnd *scmd) 9238 { 9239 struct ufs_hba *hba = shost_priv(scmd->device->host); 9240 9241 if (!hba->system_suspending) { 9242 /* Activate the error handler in the SCSI core. */ 9243 return SCSI_EH_NOT_HANDLED; 9244 } 9245 9246 /* 9247 * If we get here we know that no TMFs are outstanding and also that 9248 * the only pending command is a START STOP UNIT command. Handle the 9249 * timeout of that command directly to prevent a deadlock between 9250 * ufshcd_set_dev_pwr_mode() and ufshcd_err_handler(). 9251 */ 9252 ufshcd_link_recovery(hba); 9253 dev_info(hba->dev, "%s() finished; outstanding_tasks = %#lx.\n", 9254 __func__, hba->outstanding_tasks); 9255 9256 return scsi_host_busy(hba->host) ? SCSI_EH_RESET_TIMER : SCSI_EH_DONE; 9257 } 9258 9259 static const struct attribute_group *ufshcd_driver_groups[] = { 9260 &ufs_sysfs_unit_descriptor_group, 9261 &ufs_sysfs_lun_attributes_group, 9262 NULL, 9263 }; 9264 9265 static struct ufs_hba_variant_params ufs_hba_vps = { 9266 .hba_enable_delay_us = 1000, 9267 .wb_flush_threshold = UFS_WB_BUF_REMAIN_PERCENT(40), 9268 .devfreq_profile.polling_ms = 100, 9269 .devfreq_profile.target = ufshcd_devfreq_target, 9270 .devfreq_profile.get_dev_status = ufshcd_devfreq_get_dev_status, 9271 .ondemand_data.upthreshold = 70, 9272 .ondemand_data.downdifferential = 5, 9273 }; 9274 9275 static const struct scsi_host_template ufshcd_driver_template = { 9276 .module = THIS_MODULE, 9277 .name = UFSHCD, 9278 .proc_name = UFSHCD, 9279 .map_queues = ufshcd_map_queues, 9280 .cmd_size = sizeof(struct ufshcd_lrb), 9281 .init_cmd_priv = ufshcd_init_cmd_priv, 9282 .queuecommand = ufshcd_queuecommand, 9283 .queue_reserved_command = ufshcd_queue_reserved_command, 9284 .nr_reserved_cmds = UFSHCD_NUM_RESERVED, 9285 .mq_poll = ufshcd_poll, 9286 .sdev_init = ufshcd_sdev_init, 9287 .sdev_configure = ufshcd_sdev_configure, 9288 .sdev_destroy = ufshcd_sdev_destroy, 9289 .change_queue_depth = ufshcd_change_queue_depth, 9290 .eh_abort_handler = ufshcd_abort, 9291 .eh_device_reset_handler = ufshcd_eh_device_reset_handler, 9292 .eh_host_reset_handler = ufshcd_eh_host_reset_handler, 9293 .eh_timed_out = ufshcd_eh_timed_out, 9294 .this_id = -1, 9295 .sg_tablesize = SG_ALL, 9296 .max_segment_size = PRDT_DATA_BYTE_COUNT_MAX, 9297 .max_sectors = SZ_1M / SECTOR_SIZE, 9298 .max_host_blocked = 1, 9299 .track_queue_depth = 1, 9300 .skip_settle_delay = 1, 9301 .sdev_groups = ufshcd_driver_groups, 9302 }; 9303 9304 static int ufshcd_config_vreg_load(struct device *dev, struct ufs_vreg *vreg, 9305 int ua) 9306 { 9307 int ret; 9308 9309 if (!vreg) 9310 return 0; 9311 9312 /* 9313 * "set_load" operation shall be required on those regulators 9314 * which specifically configured current limitation. Otherwise 9315 * zero max_uA may cause unexpected behavior when regulator is 9316 * enabled or set as high power mode. 9317 */ 9318 if (!vreg->max_uA) 9319 return 0; 9320 9321 ret = regulator_set_load(vreg->reg, ua); 9322 if (ret < 0) { 9323 dev_err(dev, "%s: %s set load (ua=%d) failed, err=%d\n", 9324 __func__, vreg->name, ua, ret); 9325 } 9326 9327 return ret; 9328 } 9329 9330 static inline int ufshcd_config_vreg_lpm(struct ufs_hba *hba, 9331 struct ufs_vreg *vreg) 9332 { 9333 return ufshcd_config_vreg_load(hba->dev, vreg, UFS_VREG_LPM_LOAD_UA); 9334 } 9335 9336 static inline int ufshcd_config_vreg_hpm(struct ufs_hba *hba, 9337 struct ufs_vreg *vreg) 9338 { 9339 if (!vreg) 9340 return 0; 9341 9342 return ufshcd_config_vreg_load(hba->dev, vreg, vreg->max_uA); 9343 } 9344 9345 static int ufshcd_config_vreg(struct device *dev, 9346 struct ufs_vreg *vreg, bool on) 9347 { 9348 if (regulator_count_voltages(vreg->reg) <= 0) 9349 return 0; 9350 9351 return ufshcd_config_vreg_load(dev, vreg, on ? vreg->max_uA : 0); 9352 } 9353 9354 static int ufshcd_enable_vreg(struct device *dev, struct ufs_vreg *vreg) 9355 { 9356 int ret = 0; 9357 9358 if (!vreg || vreg->enabled) 9359 goto out; 9360 9361 ret = ufshcd_config_vreg(dev, vreg, true); 9362 if (!ret) 9363 ret = regulator_enable(vreg->reg); 9364 9365 if (!ret) 9366 vreg->enabled = true; 9367 else 9368 dev_err(dev, "%s: %s enable failed, err=%d\n", 9369 __func__, vreg->name, ret); 9370 out: 9371 return ret; 9372 } 9373 9374 static int ufshcd_disable_vreg(struct device *dev, struct ufs_vreg *vreg) 9375 { 9376 int ret = 0; 9377 9378 if (!vreg || !vreg->enabled || vreg->always_on) 9379 goto out; 9380 9381 ret = regulator_disable(vreg->reg); 9382 9383 if (!ret) { 9384 /* ignore errors on applying disable config */ 9385 ufshcd_config_vreg(dev, vreg, false); 9386 vreg->enabled = false; 9387 } else { 9388 dev_err(dev, "%s: %s disable failed, err=%d\n", 9389 __func__, vreg->name, ret); 9390 } 9391 out: 9392 return ret; 9393 } 9394 9395 static int ufshcd_setup_vreg(struct ufs_hba *hba, bool on) 9396 { 9397 int ret = 0; 9398 struct device *dev = hba->dev; 9399 struct ufs_vreg_info *info = &hba->vreg_info; 9400 9401 ret = ufshcd_toggle_vreg(dev, info->vcc, on); 9402 if (ret) 9403 goto out; 9404 9405 ret = ufshcd_toggle_vreg(dev, info->vccq, on); 9406 if (ret) 9407 goto out; 9408 9409 ret = ufshcd_toggle_vreg(dev, info->vccq2, on); 9410 9411 out: 9412 if (ret) { 9413 ufshcd_toggle_vreg(dev, info->vccq2, false); 9414 ufshcd_toggle_vreg(dev, info->vccq, false); 9415 ufshcd_toggle_vreg(dev, info->vcc, false); 9416 } 9417 return ret; 9418 } 9419 9420 static int ufshcd_setup_hba_vreg(struct ufs_hba *hba, bool on) 9421 { 9422 struct ufs_vreg_info *info = &hba->vreg_info; 9423 9424 return ufshcd_toggle_vreg(hba->dev, info->vdd_hba, on); 9425 } 9426 9427 int ufshcd_get_vreg(struct device *dev, struct ufs_vreg *vreg) 9428 { 9429 int ret = 0; 9430 9431 if (!vreg) 9432 goto out; 9433 9434 vreg->reg = devm_regulator_get(dev, vreg->name); 9435 if (IS_ERR(vreg->reg)) { 9436 ret = PTR_ERR(vreg->reg); 9437 dev_err(dev, "%s: %s get failed, err=%d\n", 9438 __func__, vreg->name, ret); 9439 } 9440 out: 9441 return ret; 9442 } 9443 EXPORT_SYMBOL_GPL(ufshcd_get_vreg); 9444 9445 static int ufshcd_init_vreg(struct ufs_hba *hba) 9446 { 9447 int ret = 0; 9448 struct device *dev = hba->dev; 9449 struct ufs_vreg_info *info = &hba->vreg_info; 9450 9451 ret = ufshcd_get_vreg(dev, info->vcc); 9452 if (ret) 9453 goto out; 9454 9455 ret = ufshcd_get_vreg(dev, info->vccq); 9456 if (!ret) 9457 ret = ufshcd_get_vreg(dev, info->vccq2); 9458 out: 9459 return ret; 9460 } 9461 9462 static int ufshcd_init_hba_vreg(struct ufs_hba *hba) 9463 { 9464 struct ufs_vreg_info *info = &hba->vreg_info; 9465 9466 return ufshcd_get_vreg(hba->dev, info->vdd_hba); 9467 } 9468 9469 static int ufshcd_setup_clocks(struct ufs_hba *hba, bool on) 9470 { 9471 int ret = 0; 9472 struct ufs_clk_info *clki; 9473 struct list_head *head = &hba->clk_list_head; 9474 ktime_t start = ktime_get(); 9475 bool clk_state_changed = false; 9476 9477 if (list_empty(head)) 9478 goto out; 9479 9480 ret = ufshcd_vops_setup_clocks(hba, on, PRE_CHANGE); 9481 if (ret) 9482 return ret; 9483 9484 list_for_each_entry(clki, head, list) { 9485 if (!IS_ERR_OR_NULL(clki->clk)) { 9486 /* 9487 * Don't disable clocks which are needed 9488 * to keep the link active. 9489 */ 9490 if (ufshcd_is_link_active(hba) && 9491 clki->keep_link_active) 9492 continue; 9493 9494 clk_state_changed = on ^ clki->enabled; 9495 if (on && !clki->enabled) { 9496 ret = clk_prepare_enable(clki->clk); 9497 if (ret) { 9498 dev_err(hba->dev, "%s: %s prepare enable failed, %d\n", 9499 __func__, clki->name, ret); 9500 goto out; 9501 } 9502 } else if (!on && clki->enabled) { 9503 clk_disable_unprepare(clki->clk); 9504 } 9505 clki->enabled = on; 9506 dev_dbg(hba->dev, "%s: clk: %s %sabled\n", __func__, 9507 clki->name, on ? "en" : "dis"); 9508 } 9509 } 9510 9511 ret = ufshcd_vops_setup_clocks(hba, on, POST_CHANGE); 9512 if (ret) 9513 return ret; 9514 9515 if (!ufshcd_is_clkscaling_supported(hba)) 9516 ufshcd_pm_qos_update(hba, on); 9517 out: 9518 if (ret) { 9519 list_for_each_entry(clki, head, list) { 9520 if (!IS_ERR_OR_NULL(clki->clk) && clki->enabled) 9521 clk_disable_unprepare(clki->clk); 9522 } 9523 } else if (!ret && on && hba->clk_gating.is_initialized) { 9524 scoped_guard(spinlock_irqsave, &hba->clk_gating.lock) 9525 hba->clk_gating.state = CLKS_ON; 9526 trace_ufshcd_clk_gating(hba, 9527 hba->clk_gating.state); 9528 } 9529 9530 if (clk_state_changed) 9531 trace_ufshcd_profile_clk_gating(hba, 9532 (on ? "on" : "off"), 9533 ktime_to_us(ktime_sub(ktime_get(), start)), ret); 9534 return ret; 9535 } 9536 9537 static enum ufs_ref_clk_freq ufshcd_parse_ref_clk_property(struct ufs_hba *hba) 9538 { 9539 u32 freq; 9540 int ret = device_property_read_u32(hba->dev, "ref-clk-freq", &freq); 9541 9542 if (ret) { 9543 dev_dbg(hba->dev, "Cannot query 'ref-clk-freq' property = %d", ret); 9544 return REF_CLK_FREQ_INVAL; 9545 } 9546 9547 return ufs_get_bref_clk_from_hz(freq); 9548 } 9549 9550 static int ufshcd_init_clocks(struct ufs_hba *hba) 9551 { 9552 int ret = 0; 9553 struct ufs_clk_info *clki; 9554 struct device *dev = hba->dev; 9555 struct list_head *head = &hba->clk_list_head; 9556 9557 if (list_empty(head)) 9558 goto out; 9559 9560 list_for_each_entry(clki, head, list) { 9561 if (!clki->name) 9562 continue; 9563 9564 clki->clk = devm_clk_get(dev, clki->name); 9565 if (IS_ERR(clki->clk)) { 9566 ret = PTR_ERR(clki->clk); 9567 dev_err(dev, "%s: %s clk get failed, %d\n", 9568 __func__, clki->name, ret); 9569 goto out; 9570 } 9571 9572 /* 9573 * Parse device ref clk freq as per device tree "ref_clk". 9574 * Default dev_ref_clk_freq is set to REF_CLK_FREQ_INVAL 9575 * in ufshcd_alloc_host(). 9576 */ 9577 if (!strcmp(clki->name, "ref_clk")) 9578 ufshcd_parse_dev_ref_clk_freq(hba, clki->clk); 9579 9580 if (clki->max_freq) { 9581 ret = clk_set_rate(clki->clk, clki->max_freq); 9582 if (ret) { 9583 dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n", 9584 __func__, clki->name, 9585 clki->max_freq, ret); 9586 goto out; 9587 } 9588 clki->curr_freq = clki->max_freq; 9589 } 9590 dev_dbg(dev, "%s: clk: %s, rate: %lu\n", __func__, 9591 clki->name, clk_get_rate(clki->clk)); 9592 } 9593 9594 /* Set Max. frequency for all clocks */ 9595 if (hba->use_pm_opp) { 9596 ret = ufshcd_opp_set_rate(hba, ULONG_MAX); 9597 if (ret) { 9598 dev_err(hba->dev, "%s: failed to set OPP: %d", __func__, 9599 ret); 9600 goto out; 9601 } 9602 } 9603 9604 out: 9605 return ret; 9606 } 9607 9608 static int ufshcd_variant_hba_init(struct ufs_hba *hba) 9609 { 9610 int err = 0; 9611 9612 if (!hba->vops) 9613 goto out; 9614 9615 err = ufshcd_vops_init(hba); 9616 if (err) 9617 dev_err_probe(hba->dev, err, 9618 "%s: variant %s init failed with err %d\n", 9619 __func__, ufshcd_get_var_name(hba), err); 9620 out: 9621 return err; 9622 } 9623 9624 static void ufshcd_variant_hba_exit(struct ufs_hba *hba) 9625 { 9626 if (!hba->vops) 9627 return; 9628 9629 ufshcd_vops_exit(hba); 9630 } 9631 9632 static int ufshcd_hba_init(struct ufs_hba *hba) 9633 { 9634 int err; 9635 9636 /* 9637 * Handle host controller power separately from the UFS device power 9638 * rails as it will help controlling the UFS host controller power 9639 * collapse easily which is different than UFS device power collapse. 9640 * Also, enable the host controller power before we go ahead with rest 9641 * of the initialization here. 9642 */ 9643 err = ufshcd_init_hba_vreg(hba); 9644 if (err) 9645 goto out; 9646 9647 err = ufshcd_setup_hba_vreg(hba, true); 9648 if (err) 9649 goto out; 9650 9651 err = ufshcd_init_clocks(hba); 9652 if (err) 9653 goto out_disable_hba_vreg; 9654 9655 if (hba->dev_ref_clk_freq == REF_CLK_FREQ_INVAL) 9656 hba->dev_ref_clk_freq = ufshcd_parse_ref_clk_property(hba); 9657 9658 err = ufshcd_setup_clocks(hba, true); 9659 if (err) 9660 goto out_disable_hba_vreg; 9661 9662 err = ufshcd_init_vreg(hba); 9663 if (err) 9664 goto out_disable_clks; 9665 9666 err = ufshcd_setup_vreg(hba, true); 9667 if (err) 9668 goto out_disable_clks; 9669 9670 err = ufshcd_variant_hba_init(hba); 9671 if (err) 9672 goto out_disable_vreg; 9673 9674 ufs_debugfs_hba_init(hba); 9675 ufs_fault_inject_hba_init(hba); 9676 9677 hba->is_powered = true; 9678 goto out; 9679 9680 out_disable_vreg: 9681 ufshcd_setup_vreg(hba, false); 9682 out_disable_clks: 9683 ufshcd_setup_clocks(hba, false); 9684 out_disable_hba_vreg: 9685 ufshcd_setup_hba_vreg(hba, false); 9686 out: 9687 return err; 9688 } 9689 9690 static void ufshcd_hba_exit(struct ufs_hba *hba) 9691 { 9692 if (hba->is_powered) { 9693 ufshcd_pm_qos_exit(hba); 9694 ufshcd_exit_clk_scaling(hba); 9695 ufshcd_exit_clk_gating(hba); 9696 if (hba->eh_wq) 9697 destroy_workqueue(hba->eh_wq); 9698 ufs_debugfs_hba_exit(hba); 9699 ufshcd_variant_hba_exit(hba); 9700 ufshcd_setup_vreg(hba, false); 9701 ufshcd_setup_clocks(hba, false); 9702 ufshcd_setup_hba_vreg(hba, false); 9703 hba->is_powered = false; 9704 ufs_put_device_desc(hba); 9705 } 9706 } 9707 9708 static int ufshcd_execute_start_stop(struct scsi_device *sdev, 9709 enum ufs_dev_pwr_mode pwr_mode, 9710 struct scsi_sense_hdr *sshdr) 9711 { 9712 const unsigned char cdb[6] = { START_STOP, 0, 0, 0, pwr_mode << 4, 0 }; 9713 struct scsi_failure failure_defs[] = { 9714 { 9715 .allowed = 2, 9716 .result = SCMD_FAILURE_RESULT_ANY, 9717 }, 9718 }; 9719 struct scsi_failures failures = { 9720 .failure_definitions = failure_defs, 9721 }; 9722 const struct scsi_exec_args args = { 9723 .failures = &failures, 9724 .sshdr = sshdr, 9725 .req_flags = BLK_MQ_REQ_PM, 9726 .scmd_flags = SCMD_FAIL_IF_RECOVERING, 9727 }; 9728 9729 return scsi_execute_cmd(sdev, cdb, REQ_OP_DRV_IN, /*buffer=*/NULL, 9730 /*bufflen=*/0, /*timeout=*/10 * HZ, /*retries=*/0, 9731 &args); 9732 } 9733 9734 /** 9735 * ufshcd_set_dev_pwr_mode - sends START STOP UNIT command to set device 9736 * power mode 9737 * @hba: per adapter instance 9738 * @pwr_mode: device power mode to set 9739 * 9740 * Return: 0 if requested power mode is set successfully; 9741 * < 0 if failed to set the requested power mode. 9742 */ 9743 static int ufshcd_set_dev_pwr_mode(struct ufs_hba *hba, 9744 enum ufs_dev_pwr_mode pwr_mode) 9745 { 9746 struct scsi_sense_hdr sshdr; 9747 struct scsi_device *sdp; 9748 unsigned long flags; 9749 int ret; 9750 9751 spin_lock_irqsave(hba->host->host_lock, flags); 9752 sdp = hba->ufs_device_wlun; 9753 if (sdp && scsi_device_online(sdp)) 9754 ret = scsi_device_get(sdp); 9755 else 9756 ret = -ENODEV; 9757 spin_unlock_irqrestore(hba->host->host_lock, flags); 9758 9759 if (ret) 9760 return ret; 9761 9762 /* 9763 * If scsi commands fail, the scsi mid-layer schedules scsi error- 9764 * handling, which would wait for host to be resumed. Since we know 9765 * we are functional while we are here, skip host resume in error 9766 * handling context. 9767 */ 9768 hba->host->eh_noresume = 1; 9769 9770 /* 9771 * Current function would be generally called from the power management 9772 * callbacks hence set the RQF_PM flag so that it doesn't resume the 9773 * already suspended childs. 9774 */ 9775 ret = ufshcd_execute_start_stop(sdp, pwr_mode, &sshdr); 9776 if (ret) { 9777 sdev_printk(KERN_WARNING, sdp, 9778 "START_STOP failed for power mode: %d, result %x\n", 9779 pwr_mode, ret); 9780 if (ret > 0) { 9781 if (scsi_sense_valid(&sshdr)) 9782 scsi_print_sense_hdr(sdp, NULL, &sshdr); 9783 ret = -EIO; 9784 } 9785 } else { 9786 hba->curr_dev_pwr_mode = pwr_mode; 9787 } 9788 9789 scsi_device_put(sdp); 9790 hba->host->eh_noresume = 0; 9791 return ret; 9792 } 9793 9794 static int ufshcd_link_state_transition(struct ufs_hba *hba, 9795 enum uic_link_state req_link_state, 9796 bool check_for_bkops) 9797 { 9798 int ret = 0; 9799 9800 if (req_link_state == hba->uic_link_state) 9801 return 0; 9802 9803 if (req_link_state == UIC_LINK_HIBERN8_STATE) { 9804 ret = ufshcd_uic_hibern8_enter(hba); 9805 if (!ret) { 9806 ufshcd_set_link_hibern8(hba); 9807 } else { 9808 dev_err(hba->dev, "%s: hibern8 enter failed %d\n", 9809 __func__, ret); 9810 goto out; 9811 } 9812 } 9813 /* 9814 * If autobkops is enabled, link can't be turned off because 9815 * turning off the link would also turn off the device, except in the 9816 * case of DeepSleep where the device is expected to remain powered. 9817 */ 9818 else if ((req_link_state == UIC_LINK_OFF_STATE) && 9819 (!check_for_bkops || !hba->auto_bkops_enabled)) { 9820 /* 9821 * Let's make sure that link is in low power mode, we are doing 9822 * this currently by putting the link in Hibern8. Otherway to 9823 * put the link in low power mode is to send the DME end point 9824 * to device and then send the DME reset command to local 9825 * unipro. But putting the link in hibern8 is much faster. 9826 * 9827 * Note also that putting the link in Hibern8 is a requirement 9828 * for entering DeepSleep. 9829 */ 9830 ret = ufshcd_uic_hibern8_enter(hba); 9831 if (ret) { 9832 dev_err(hba->dev, "%s: hibern8 enter failed %d\n", 9833 __func__, ret); 9834 goto out; 9835 } 9836 /* 9837 * Change controller state to "reset state" which 9838 * should also put the link in off/reset state 9839 */ 9840 ufshcd_hba_stop(hba); 9841 /* 9842 * TODO: Check if we need any delay to make sure that 9843 * controller is reset 9844 */ 9845 ufshcd_set_link_off(hba); 9846 } 9847 9848 out: 9849 return ret; 9850 } 9851 9852 static void ufshcd_vreg_set_lpm(struct ufs_hba *hba) 9853 { 9854 bool vcc_off = false; 9855 9856 /* 9857 * It seems some UFS devices may keep drawing more than sleep current 9858 * (atleast for 500us) from UFS rails (especially from VCCQ rail). 9859 * To avoid this situation, add 2ms delay before putting these UFS 9860 * rails in LPM mode. 9861 */ 9862 if (!ufshcd_is_link_active(hba) && 9863 hba->dev_quirks & UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM) 9864 usleep_range(2000, 2100); 9865 9866 /* 9867 * If UFS device is either in UFS_Sleep turn off VCC rail to save some 9868 * power. 9869 * 9870 * If UFS device and link is in OFF state, all power supplies (VCC, 9871 * VCCQ, VCCQ2) can be turned off if power on write protect is not 9872 * required. If UFS link is inactive (Hibern8 or OFF state) and device 9873 * is in sleep state, put VCCQ & VCCQ2 rails in LPM mode. 9874 * 9875 * Ignore the error returned by ufshcd_toggle_vreg() as device is anyway 9876 * in low power state which would save some power. 9877 * 9878 * If Write Booster is enabled and the device needs to flush the WB 9879 * buffer OR if bkops status is urgent for WB, keep Vcc on. 9880 */ 9881 if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba) && 9882 !hba->dev_info.is_lu_power_on_wp) { 9883 ufshcd_setup_vreg(hba, false); 9884 vcc_off = true; 9885 } else if (!ufshcd_is_ufs_dev_active(hba)) { 9886 ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, false); 9887 vcc_off = true; 9888 if (ufshcd_is_link_hibern8(hba) || ufshcd_is_link_off(hba)) { 9889 ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq); 9890 ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq2); 9891 } 9892 } 9893 9894 /* 9895 * All UFS devices require delay after VCC power rail is turned-off. 9896 */ 9897 if (vcc_off && hba->vreg_info.vcc && !hba->vreg_info.vcc->always_on) 9898 usleep_range(hba->vcc_off_delay_us, 9899 hba->vcc_off_delay_us + 100); 9900 } 9901 9902 #ifdef CONFIG_PM 9903 static int ufshcd_vreg_set_hpm(struct ufs_hba *hba) 9904 { 9905 int ret = 0; 9906 9907 if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba) && 9908 !hba->dev_info.is_lu_power_on_wp) { 9909 ret = ufshcd_setup_vreg(hba, true); 9910 } else if (!ufshcd_is_ufs_dev_active(hba)) { 9911 if (!ufshcd_is_link_active(hba)) { 9912 ret = ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq); 9913 if (ret) 9914 goto vcc_disable; 9915 ret = ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq2); 9916 if (ret) 9917 goto vccq_lpm; 9918 } 9919 ret = ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, true); 9920 } 9921 goto out; 9922 9923 vccq_lpm: 9924 ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq); 9925 vcc_disable: 9926 ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, false); 9927 out: 9928 return ret; 9929 } 9930 #endif /* CONFIG_PM */ 9931 9932 static void ufshcd_hba_vreg_set_lpm(struct ufs_hba *hba) 9933 { 9934 if (ufshcd_is_link_off(hba) || ufshcd_can_aggressive_pc(hba)) 9935 ufshcd_setup_hba_vreg(hba, false); 9936 } 9937 9938 static void ufshcd_hba_vreg_set_hpm(struct ufs_hba *hba) 9939 { 9940 if (ufshcd_is_link_off(hba) || ufshcd_can_aggressive_pc(hba)) 9941 ufshcd_setup_hba_vreg(hba, true); 9942 } 9943 9944 static int __ufshcd_wl_suspend(struct ufs_hba *hba, enum ufs_pm_op pm_op) 9945 { 9946 int ret = 0; 9947 bool check_for_bkops; 9948 enum ufs_pm_level pm_lvl; 9949 enum ufs_dev_pwr_mode req_dev_pwr_mode; 9950 enum uic_link_state req_link_state; 9951 9952 hba->pm_op_in_progress = true; 9953 if (pm_op != UFS_SHUTDOWN_PM) { 9954 pm_lvl = pm_op == UFS_RUNTIME_PM ? 9955 hba->rpm_lvl : hba->spm_lvl; 9956 req_dev_pwr_mode = ufs_get_pm_lvl_to_dev_pwr_mode(pm_lvl); 9957 req_link_state = ufs_get_pm_lvl_to_link_pwr_state(pm_lvl); 9958 } else { 9959 req_dev_pwr_mode = UFS_POWERDOWN_PWR_MODE; 9960 req_link_state = UIC_LINK_OFF_STATE; 9961 } 9962 9963 /* 9964 * If we can't transition into any of the low power modes 9965 * just gate the clocks. 9966 */ 9967 ufshcd_hold(hba); 9968 hba->clk_gating.is_suspended = true; 9969 9970 if (ufshcd_is_clkscaling_supported(hba)) 9971 ufshcd_clk_scaling_suspend(hba, true); 9972 9973 if (req_dev_pwr_mode == UFS_ACTIVE_PWR_MODE && 9974 req_link_state == UIC_LINK_ACTIVE_STATE) { 9975 goto vops_suspend; 9976 } 9977 9978 if ((req_dev_pwr_mode == hba->curr_dev_pwr_mode) && 9979 (req_link_state == hba->uic_link_state)) 9980 goto enable_scaling; 9981 9982 /* UFS device & link must be active before we enter in this function */ 9983 if (!ufshcd_is_ufs_dev_active(hba) || !ufshcd_is_link_active(hba)) { 9984 /* Wait err handler finish or trigger err recovery */ 9985 if (!ufshcd_eh_in_progress(hba)) 9986 ufshcd_force_error_recovery(hba); 9987 ret = -EBUSY; 9988 goto enable_scaling; 9989 } 9990 9991 if (pm_op == UFS_RUNTIME_PM) { 9992 if (ufshcd_can_autobkops_during_suspend(hba)) { 9993 /* 9994 * The device is idle with no requests in the queue, 9995 * allow background operations if bkops status shows 9996 * that performance might be impacted. 9997 */ 9998 ret = ufshcd_bkops_ctrl(hba); 9999 if (ret) { 10000 /* 10001 * If return err in suspend flow, IO will hang. 10002 * Trigger error handler and break suspend for 10003 * error recovery. 10004 */ 10005 ufshcd_force_error_recovery(hba); 10006 ret = -EBUSY; 10007 goto enable_scaling; 10008 } 10009 } else { 10010 /* make sure that auto bkops is disabled */ 10011 ufshcd_disable_auto_bkops(hba); 10012 } 10013 /* 10014 * If device needs to do BKOP or WB buffer flush during 10015 * Hibern8, keep device power mode as "active power mode" 10016 * and VCC supply. 10017 */ 10018 hba->dev_info.b_rpm_dev_flush_capable = 10019 hba->auto_bkops_enabled || 10020 (((req_link_state == UIC_LINK_HIBERN8_STATE) || 10021 ((req_link_state == UIC_LINK_ACTIVE_STATE) && 10022 ufshcd_is_auto_hibern8_enabled(hba))) && 10023 ufshcd_wb_need_flush(hba)); 10024 } 10025 10026 flush_work(&hba->eeh_work); 10027 10028 ret = ufshcd_vops_suspend(hba, pm_op, PRE_CHANGE); 10029 if (ret) 10030 goto enable_scaling; 10031 10032 if (req_dev_pwr_mode != hba->curr_dev_pwr_mode) { 10033 if (pm_op != UFS_RUNTIME_PM) 10034 /* ensure that bkops is disabled */ 10035 ufshcd_disable_auto_bkops(hba); 10036 10037 if (!hba->dev_info.b_rpm_dev_flush_capable) { 10038 ret = ufshcd_set_dev_pwr_mode(hba, req_dev_pwr_mode); 10039 if (ret && pm_op != UFS_SHUTDOWN_PM) { 10040 /* 10041 * If return err in suspend flow, IO will hang. 10042 * Trigger error handler and break suspend for 10043 * error recovery. 10044 */ 10045 ufshcd_force_error_recovery(hba); 10046 ret = -EBUSY; 10047 } 10048 if (ret) 10049 goto enable_scaling; 10050 } 10051 } 10052 10053 /* 10054 * In the case of DeepSleep, the device is expected to remain powered 10055 * with the link off, so do not check for bkops. 10056 */ 10057 check_for_bkops = !ufshcd_is_ufs_dev_deepsleep(hba); 10058 ret = ufshcd_link_state_transition(hba, req_link_state, check_for_bkops); 10059 if (ret && pm_op != UFS_SHUTDOWN_PM) { 10060 /* 10061 * If return err in suspend flow, IO will hang. 10062 * Trigger error handler and break suspend for 10063 * error recovery. 10064 */ 10065 ufshcd_force_error_recovery(hba); 10066 ret = -EBUSY; 10067 } 10068 if (ret) 10069 goto set_dev_active; 10070 10071 vops_suspend: 10072 /* 10073 * Call vendor specific suspend callback. As these callbacks may access 10074 * vendor specific host controller register space call them before the 10075 * host clocks are ON. 10076 */ 10077 ret = ufshcd_vops_suspend(hba, pm_op, POST_CHANGE); 10078 if (ret) 10079 goto set_link_active; 10080 10081 cancel_delayed_work_sync(&hba->ufs_rtc_update_work); 10082 goto out; 10083 10084 set_link_active: 10085 /* 10086 * Device hardware reset is required to exit DeepSleep. Also, for 10087 * DeepSleep, the link is off so host reset and restore will be done 10088 * further below. 10089 */ 10090 if (ufshcd_is_ufs_dev_deepsleep(hba)) { 10091 ufshcd_device_reset(hba); 10092 WARN_ON(!ufshcd_is_link_off(hba)); 10093 } 10094 if (ufshcd_is_link_hibern8(hba) && !ufshcd_uic_hibern8_exit(hba)) 10095 ufshcd_set_link_active(hba); 10096 else if (ufshcd_is_link_off(hba)) 10097 ufshcd_host_reset_and_restore(hba); 10098 set_dev_active: 10099 /* Can also get here needing to exit DeepSleep */ 10100 if (ufshcd_is_ufs_dev_deepsleep(hba)) { 10101 ufshcd_device_reset(hba); 10102 ufshcd_host_reset_and_restore(hba); 10103 } 10104 if (!ufshcd_set_dev_pwr_mode(hba, UFS_ACTIVE_PWR_MODE)) 10105 ufshcd_disable_auto_bkops(hba); 10106 enable_scaling: 10107 if (ufshcd_is_clkscaling_supported(hba)) 10108 ufshcd_clk_scaling_suspend(hba, false); 10109 10110 hba->dev_info.b_rpm_dev_flush_capable = false; 10111 out: 10112 if (hba->dev_info.b_rpm_dev_flush_capable) { 10113 schedule_delayed_work(&hba->rpm_dev_flush_recheck_work, 10114 msecs_to_jiffies(RPM_DEV_FLUSH_RECHECK_WORK_DELAY_MS)); 10115 } 10116 10117 if (ret) { 10118 ufshcd_update_evt_hist(hba, UFS_EVT_WL_SUSP_ERR, (u32)ret); 10119 hba->clk_gating.is_suspended = false; 10120 ufshcd_release(hba); 10121 } 10122 hba->pm_op_in_progress = false; 10123 return ret; 10124 } 10125 10126 #ifdef CONFIG_PM 10127 static int __ufshcd_wl_resume(struct ufs_hba *hba, enum ufs_pm_op pm_op) 10128 { 10129 int ret; 10130 enum uic_link_state old_link_state = hba->uic_link_state; 10131 10132 hba->pm_op_in_progress = true; 10133 10134 /* 10135 * Call vendor specific resume callback. As these callbacks may access 10136 * vendor specific host controller register space call them when the 10137 * host clocks are ON. 10138 */ 10139 ret = ufshcd_vops_resume(hba, pm_op); 10140 if (ret) 10141 goto out; 10142 10143 /* For DeepSleep, the only supported option is to have the link off */ 10144 WARN_ON(ufshcd_is_ufs_dev_deepsleep(hba) && !ufshcd_is_link_off(hba)); 10145 10146 if (ufshcd_is_link_hibern8(hba)) { 10147 ret = ufshcd_uic_hibern8_exit(hba); 10148 if (!ret) { 10149 ufshcd_set_link_active(hba); 10150 } else { 10151 dev_err(hba->dev, "%s: hibern8 exit failed %d\n", 10152 __func__, ret); 10153 goto vendor_suspend; 10154 } 10155 } else if (ufshcd_is_link_off(hba)) { 10156 /* 10157 * A full initialization of the host and the device is 10158 * required since the link was put to off during suspend. 10159 * Note, in the case of DeepSleep, the device will exit 10160 * DeepSleep due to device reset. 10161 */ 10162 ret = ufshcd_reset_and_restore(hba); 10163 /* 10164 * ufshcd_reset_and_restore() should have already 10165 * set the link state as active 10166 */ 10167 if (ret || !ufshcd_is_link_active(hba)) 10168 goto vendor_suspend; 10169 } 10170 10171 if (!ufshcd_is_ufs_dev_active(hba)) { 10172 ret = ufshcd_set_dev_pwr_mode(hba, UFS_ACTIVE_PWR_MODE); 10173 if (ret) 10174 goto set_old_link_state; 10175 ufshcd_set_timestamp_attr(hba); 10176 schedule_delayed_work(&hba->ufs_rtc_update_work, 10177 msecs_to_jiffies(UFS_RTC_UPDATE_INTERVAL_MS)); 10178 } 10179 10180 if (ufshcd_keep_autobkops_enabled_except_suspend(hba)) 10181 ufshcd_enable_auto_bkops(hba); 10182 else 10183 /* 10184 * If BKOPs operations are urgently needed at this moment then 10185 * keep auto-bkops enabled or else disable it. 10186 */ 10187 ufshcd_bkops_ctrl(hba); 10188 10189 if (hba->ee_usr_mask) 10190 ufshcd_write_ee_control(hba); 10191 10192 if (ufshcd_is_clkscaling_supported(hba)) 10193 ufshcd_clk_scaling_suspend(hba, false); 10194 10195 if (hba->dev_info.b_rpm_dev_flush_capable) { 10196 hba->dev_info.b_rpm_dev_flush_capable = false; 10197 cancel_delayed_work(&hba->rpm_dev_flush_recheck_work); 10198 } 10199 10200 ufshcd_configure_auto_hibern8(hba); 10201 10202 goto out; 10203 10204 set_old_link_state: 10205 ufshcd_link_state_transition(hba, old_link_state, 0); 10206 vendor_suspend: 10207 ufshcd_vops_suspend(hba, pm_op, PRE_CHANGE); 10208 ufshcd_vops_suspend(hba, pm_op, POST_CHANGE); 10209 out: 10210 if (ret) 10211 ufshcd_update_evt_hist(hba, UFS_EVT_WL_RES_ERR, (u32)ret); 10212 hba->clk_gating.is_suspended = false; 10213 ufshcd_release(hba); 10214 hba->pm_op_in_progress = false; 10215 return ret; 10216 } 10217 10218 static int ufshcd_wl_runtime_suspend(struct device *dev) 10219 { 10220 struct scsi_device *sdev = to_scsi_device(dev); 10221 struct ufs_hba *hba; 10222 int ret; 10223 ktime_t start = ktime_get(); 10224 10225 hba = shost_priv(sdev->host); 10226 10227 ret = __ufshcd_wl_suspend(hba, UFS_RUNTIME_PM); 10228 if (ret) 10229 dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret); 10230 10231 trace_ufshcd_wl_runtime_suspend(hba, ret, 10232 ktime_to_us(ktime_sub(ktime_get(), start)), 10233 hba->curr_dev_pwr_mode, hba->uic_link_state); 10234 10235 return ret; 10236 } 10237 10238 static int ufshcd_wl_runtime_resume(struct device *dev) 10239 { 10240 struct scsi_device *sdev = to_scsi_device(dev); 10241 struct ufs_hba *hba; 10242 int ret = 0; 10243 ktime_t start = ktime_get(); 10244 10245 hba = shost_priv(sdev->host); 10246 10247 ret = __ufshcd_wl_resume(hba, UFS_RUNTIME_PM); 10248 if (ret) 10249 dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret); 10250 10251 trace_ufshcd_wl_runtime_resume(hba, ret, 10252 ktime_to_us(ktime_sub(ktime_get(), start)), 10253 hba->curr_dev_pwr_mode, hba->uic_link_state); 10254 10255 return ret; 10256 } 10257 #endif 10258 10259 #ifdef CONFIG_PM_SLEEP 10260 static int ufshcd_wl_suspend(struct device *dev) 10261 { 10262 struct scsi_device *sdev = to_scsi_device(dev); 10263 struct ufs_hba *hba; 10264 int ret = 0; 10265 ktime_t start = ktime_get(); 10266 10267 hba = shost_priv(sdev->host); 10268 down(&hba->host_sem); 10269 hba->system_suspending = true; 10270 10271 if (pm_runtime_suspended(dev)) 10272 goto out; 10273 10274 ret = __ufshcd_wl_suspend(hba, UFS_SYSTEM_PM); 10275 if (ret) { 10276 dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret); 10277 up(&hba->host_sem); 10278 } 10279 10280 out: 10281 if (!ret) 10282 hba->is_sys_suspended = true; 10283 trace_ufshcd_wl_suspend(hba, ret, 10284 ktime_to_us(ktime_sub(ktime_get(), start)), 10285 hba->curr_dev_pwr_mode, hba->uic_link_state); 10286 10287 return ret; 10288 } 10289 10290 static int ufshcd_wl_resume(struct device *dev) 10291 { 10292 struct scsi_device *sdev = to_scsi_device(dev); 10293 struct ufs_hba *hba; 10294 int ret = 0; 10295 ktime_t start = ktime_get(); 10296 10297 hba = shost_priv(sdev->host); 10298 10299 if (pm_runtime_suspended(dev)) 10300 goto out; 10301 10302 ret = __ufshcd_wl_resume(hba, UFS_SYSTEM_PM); 10303 if (ret) 10304 dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret); 10305 out: 10306 trace_ufshcd_wl_resume(hba, ret, 10307 ktime_to_us(ktime_sub(ktime_get(), start)), 10308 hba->curr_dev_pwr_mode, hba->uic_link_state); 10309 if (!ret) 10310 hba->is_sys_suspended = false; 10311 hba->system_suspending = false; 10312 up(&hba->host_sem); 10313 return ret; 10314 } 10315 #endif 10316 10317 /** 10318 * ufshcd_suspend - helper function for suspend operations 10319 * @hba: per adapter instance 10320 * 10321 * This function will put disable irqs, turn off clocks 10322 * and set vreg and hba-vreg in lpm mode. 10323 * 10324 * Return: 0 upon success; < 0 upon failure. 10325 */ 10326 static int ufshcd_suspend(struct ufs_hba *hba) 10327 { 10328 int ret; 10329 10330 if (!hba->is_powered) 10331 return 0; 10332 /* 10333 * Disable the host irq as host controller as there won't be any 10334 * host controller transaction expected till resume. 10335 */ 10336 ufshcd_disable_irq(hba); 10337 ret = ufshcd_setup_clocks(hba, false); 10338 if (ret) { 10339 ufshcd_enable_irq(hba); 10340 return ret; 10341 } 10342 if (ufshcd_is_clkgating_allowed(hba)) { 10343 hba->clk_gating.state = CLKS_OFF; 10344 trace_ufshcd_clk_gating(hba, 10345 hba->clk_gating.state); 10346 } 10347 10348 ufshcd_vreg_set_lpm(hba); 10349 /* Put the host controller in low power mode if possible */ 10350 ufshcd_hba_vreg_set_lpm(hba); 10351 ufshcd_pm_qos_update(hba, false); 10352 return ret; 10353 } 10354 10355 #ifdef CONFIG_PM 10356 /** 10357 * ufshcd_resume - helper function for resume operations 10358 * @hba: per adapter instance 10359 * 10360 * This function basically turns on the regulators, clocks and 10361 * irqs of the hba. 10362 * 10363 * Return: 0 for success and non-zero for failure. 10364 */ 10365 static int ufshcd_resume(struct ufs_hba *hba) 10366 { 10367 int ret; 10368 10369 if (!hba->is_powered) 10370 return 0; 10371 10372 ufshcd_hba_vreg_set_hpm(hba); 10373 ret = ufshcd_vreg_set_hpm(hba); 10374 if (ret) 10375 goto out; 10376 10377 /* Make sure clocks are enabled before accessing controller */ 10378 ret = ufshcd_setup_clocks(hba, true); 10379 if (ret) 10380 goto disable_vreg; 10381 10382 /* enable the host irq as host controller would be active soon */ 10383 ufshcd_enable_irq(hba); 10384 10385 goto out; 10386 10387 disable_vreg: 10388 ufshcd_vreg_set_lpm(hba); 10389 out: 10390 if (ret) 10391 ufshcd_update_evt_hist(hba, UFS_EVT_RESUME_ERR, (u32)ret); 10392 return ret; 10393 } 10394 #endif /* CONFIG_PM */ 10395 10396 #ifdef CONFIG_PM_SLEEP 10397 /** 10398 * ufshcd_system_suspend - system suspend callback 10399 * @dev: Device associated with the UFS controller. 10400 * 10401 * Executed before putting the system into a sleep state in which the contents 10402 * of main memory are preserved. 10403 * 10404 * Return: 0 for success and non-zero for failure. 10405 */ 10406 int ufshcd_system_suspend(struct device *dev) 10407 { 10408 struct ufs_hba *hba = dev_get_drvdata(dev); 10409 int ret = 0; 10410 ktime_t start = ktime_get(); 10411 10412 if (pm_runtime_suspended(hba->dev)) 10413 goto out; 10414 10415 ret = ufshcd_suspend(hba); 10416 out: 10417 trace_ufshcd_system_suspend(hba, ret, 10418 ktime_to_us(ktime_sub(ktime_get(), start)), 10419 hba->curr_dev_pwr_mode, hba->uic_link_state); 10420 return ret; 10421 } 10422 EXPORT_SYMBOL(ufshcd_system_suspend); 10423 10424 /** 10425 * ufshcd_system_resume - system resume callback 10426 * @dev: Device associated with the UFS controller. 10427 * 10428 * Executed after waking the system up from a sleep state in which the contents 10429 * of main memory were preserved. 10430 * 10431 * Return: 0 for success and non-zero for failure. 10432 */ 10433 int ufshcd_system_resume(struct device *dev) 10434 { 10435 struct ufs_hba *hba = dev_get_drvdata(dev); 10436 ktime_t start = ktime_get(); 10437 int ret = 0; 10438 10439 if (pm_runtime_suspended(hba->dev)) 10440 goto out; 10441 10442 ret = ufshcd_resume(hba); 10443 10444 out: 10445 trace_ufshcd_system_resume(hba, ret, 10446 ktime_to_us(ktime_sub(ktime_get(), start)), 10447 hba->curr_dev_pwr_mode, hba->uic_link_state); 10448 10449 return ret; 10450 } 10451 EXPORT_SYMBOL(ufshcd_system_resume); 10452 #endif /* CONFIG_PM_SLEEP */ 10453 10454 #ifdef CONFIG_PM 10455 /** 10456 * ufshcd_runtime_suspend - runtime suspend callback 10457 * @dev: Device associated with the UFS controller. 10458 * 10459 * Check the description of ufshcd_suspend() function for more details. 10460 * 10461 * Return: 0 for success and non-zero for failure. 10462 */ 10463 int ufshcd_runtime_suspend(struct device *dev) 10464 { 10465 struct ufs_hba *hba = dev_get_drvdata(dev); 10466 int ret; 10467 ktime_t start = ktime_get(); 10468 10469 ret = ufshcd_suspend(hba); 10470 10471 trace_ufshcd_runtime_suspend(hba, ret, 10472 ktime_to_us(ktime_sub(ktime_get(), start)), 10473 hba->curr_dev_pwr_mode, hba->uic_link_state); 10474 return ret; 10475 } 10476 EXPORT_SYMBOL(ufshcd_runtime_suspend); 10477 10478 /** 10479 * ufshcd_runtime_resume - runtime resume routine 10480 * @dev: Device associated with the UFS controller. 10481 * 10482 * This function basically brings controller 10483 * to active state. Following operations are done in this function: 10484 * 10485 * 1. Turn on all the controller related clocks 10486 * 2. Turn ON VCC rail 10487 * 10488 * Return: 0 upon success; < 0 upon failure. 10489 */ 10490 int ufshcd_runtime_resume(struct device *dev) 10491 { 10492 struct ufs_hba *hba = dev_get_drvdata(dev); 10493 int ret; 10494 ktime_t start = ktime_get(); 10495 10496 ret = ufshcd_resume(hba); 10497 10498 trace_ufshcd_runtime_resume(hba, ret, 10499 ktime_to_us(ktime_sub(ktime_get(), start)), 10500 hba->curr_dev_pwr_mode, hba->uic_link_state); 10501 return ret; 10502 } 10503 EXPORT_SYMBOL(ufshcd_runtime_resume); 10504 #endif /* CONFIG_PM */ 10505 10506 static void ufshcd_wl_shutdown(struct device *dev) 10507 { 10508 struct scsi_device *sdev = to_scsi_device(dev); 10509 struct ufs_hba *hba = shost_priv(sdev->host); 10510 10511 down(&hba->host_sem); 10512 hba->shutting_down = true; 10513 up(&hba->host_sem); 10514 10515 /* Turn on everything while shutting down */ 10516 ufshcd_rpm_get_sync(hba); 10517 scsi_device_quiesce(sdev); 10518 shost_for_each_device(sdev, hba->host) { 10519 if (sdev == hba->ufs_device_wlun) 10520 continue; 10521 mutex_lock(&sdev->state_mutex); 10522 scsi_device_set_state(sdev, SDEV_OFFLINE); 10523 mutex_unlock(&sdev->state_mutex); 10524 } 10525 __ufshcd_wl_suspend(hba, UFS_SHUTDOWN_PM); 10526 10527 /* 10528 * Next, turn off the UFS controller and the UFS regulators. Disable 10529 * clocks. 10530 */ 10531 if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba)) 10532 ufshcd_suspend(hba); 10533 10534 hba->is_powered = false; 10535 } 10536 10537 /** 10538 * ufshcd_remove - de-allocate SCSI host and host memory space 10539 * data structure memory 10540 * @hba: per adapter instance 10541 */ 10542 void ufshcd_remove(struct ufs_hba *hba) 10543 { 10544 if (hba->ufs_device_wlun) 10545 ufshcd_rpm_get_sync(hba); 10546 ufs_hwmon_remove(hba); 10547 ufs_bsg_remove(hba); 10548 ufs_rpmb_remove(hba); 10549 ufs_sysfs_remove_nodes(hba->dev); 10550 cancel_delayed_work_sync(&hba->ufs_rtc_update_work); 10551 blk_mq_destroy_queue(hba->tmf_queue); 10552 blk_put_queue(hba->tmf_queue); 10553 blk_mq_free_tag_set(&hba->tmf_tag_set); 10554 if (hba->scsi_host_added) 10555 scsi_remove_host(hba->host); 10556 /* disable interrupts */ 10557 ufshcd_disable_intr(hba, hba->intr_mask); 10558 ufshcd_hba_stop(hba); 10559 ufshcd_hba_exit(hba); 10560 } 10561 EXPORT_SYMBOL_GPL(ufshcd_remove); 10562 10563 #ifdef CONFIG_PM_SLEEP 10564 int ufshcd_system_freeze(struct device *dev) 10565 { 10566 10567 return ufshcd_system_suspend(dev); 10568 10569 } 10570 EXPORT_SYMBOL_GPL(ufshcd_system_freeze); 10571 10572 int ufshcd_system_restore(struct device *dev) 10573 { 10574 10575 struct ufs_hba *hba = dev_get_drvdata(dev); 10576 int ret; 10577 10578 ret = ufshcd_system_resume(dev); 10579 if (ret) 10580 return ret; 10581 10582 /* Configure UTRL and UTMRL base address registers */ 10583 ufshcd_writel(hba, lower_32_bits(hba->utrdl_dma_addr), 10584 REG_UTP_TRANSFER_REQ_LIST_BASE_L); 10585 ufshcd_writel(hba, upper_32_bits(hba->utrdl_dma_addr), 10586 REG_UTP_TRANSFER_REQ_LIST_BASE_H); 10587 ufshcd_writel(hba, lower_32_bits(hba->utmrdl_dma_addr), 10588 REG_UTP_TASK_REQ_LIST_BASE_L); 10589 ufshcd_writel(hba, upper_32_bits(hba->utmrdl_dma_addr), 10590 REG_UTP_TASK_REQ_LIST_BASE_H); 10591 /* 10592 * Make sure that UTRL and UTMRL base address registers 10593 * are updated with the latest queue addresses. Only after 10594 * updating these addresses, we can queue the new commands. 10595 */ 10596 ufshcd_readl(hba, REG_UTP_TASK_REQ_LIST_BASE_H); 10597 10598 return 0; 10599 10600 } 10601 EXPORT_SYMBOL_GPL(ufshcd_system_restore); 10602 10603 int ufshcd_system_thaw(struct device *dev) 10604 { 10605 return ufshcd_system_resume(dev); 10606 } 10607 EXPORT_SYMBOL_GPL(ufshcd_system_thaw); 10608 #endif /* CONFIG_PM_SLEEP */ 10609 10610 /** 10611 * ufshcd_set_dma_mask - Set dma mask based on the controller 10612 * addressing capability 10613 * @hba: per adapter instance 10614 * 10615 * Return: 0 for success, non-zero for failure. 10616 */ 10617 static int ufshcd_set_dma_mask(struct ufs_hba *hba) 10618 { 10619 if (hba->vops && hba->vops->set_dma_mask) 10620 return hba->vops->set_dma_mask(hba); 10621 if (hba->capabilities & MASK_64_ADDRESSING_SUPPORT) { 10622 if (!dma_set_mask_and_coherent(hba->dev, DMA_BIT_MASK(64))) 10623 return 0; 10624 } 10625 return dma_set_mask_and_coherent(hba->dev, DMA_BIT_MASK(32)); 10626 } 10627 10628 /** 10629 * ufshcd_devres_release - devres cleanup handler, invoked during release of 10630 * hba->dev 10631 * @host: pointer to SCSI host 10632 */ 10633 static void ufshcd_devres_release(void *host) 10634 { 10635 scsi_host_put(host); 10636 } 10637 10638 /** 10639 * ufshcd_alloc_host - allocate Host Bus Adapter (HBA) 10640 * @dev: pointer to device handle 10641 * @hba_handle: driver private handle 10642 * 10643 * Return: 0 on success, non-zero value on failure. 10644 * 10645 * NOTE: There is no corresponding ufshcd_dealloc_host() because this function 10646 * keeps track of its allocations using devres and deallocates everything on 10647 * device removal automatically. 10648 */ 10649 int ufshcd_alloc_host(struct device *dev, struct ufs_hba **hba_handle) 10650 { 10651 struct Scsi_Host *host; 10652 struct ufs_hba *hba; 10653 int err = 0; 10654 10655 if (!dev) { 10656 dev_err(dev, 10657 "Invalid memory reference for dev is NULL\n"); 10658 err = -ENODEV; 10659 goto out_error; 10660 } 10661 10662 host = scsi_host_alloc(&ufshcd_driver_template, 10663 sizeof(struct ufs_hba)); 10664 if (!host) { 10665 dev_err(dev, "scsi_host_alloc failed\n"); 10666 err = -ENOMEM; 10667 goto out_error; 10668 } 10669 10670 err = devm_add_action_or_reset(dev, ufshcd_devres_release, 10671 host); 10672 if (err) 10673 return err; 10674 10675 host->nr_maps = HCTX_TYPE_POLL + 1; 10676 hba = shost_priv(host); 10677 hba->host = host; 10678 hba->dev = dev; 10679 hba->dev_ref_clk_freq = REF_CLK_FREQ_INVAL; 10680 hba->nop_out_timeout = NOP_OUT_TIMEOUT; 10681 ufshcd_set_sg_entry_size(hba, sizeof(struct ufshcd_sg_entry)); 10682 INIT_LIST_HEAD(&hba->clk_list_head); 10683 spin_lock_init(&hba->outstanding_lock); 10684 10685 *hba_handle = hba; 10686 10687 out_error: 10688 return err; 10689 } 10690 EXPORT_SYMBOL(ufshcd_alloc_host); 10691 10692 /* This function exists because blk_mq_alloc_tag_set() requires this. */ 10693 static blk_status_t ufshcd_queue_tmf(struct blk_mq_hw_ctx *hctx, 10694 const struct blk_mq_queue_data *qd) 10695 { 10696 WARN_ON_ONCE(true); 10697 return BLK_STS_NOTSUPP; 10698 } 10699 10700 static const struct blk_mq_ops ufshcd_tmf_ops = { 10701 .queue_rq = ufshcd_queue_tmf, 10702 }; 10703 10704 static int ufshcd_add_scsi_host(struct ufs_hba *hba) 10705 { 10706 int err; 10707 10708 WARN_ON_ONCE(!hba->host->can_queue); 10709 WARN_ON_ONCE(!hba->host->cmd_per_lun); 10710 10711 if (is_mcq_supported(hba)) { 10712 ufshcd_mcq_enable(hba); 10713 err = ufshcd_alloc_mcq(hba); 10714 if (!err) { 10715 ufshcd_config_mcq(hba); 10716 } else { 10717 /* Continue with SDB mode */ 10718 ufshcd_mcq_disable(hba); 10719 use_mcq_mode = false; 10720 dev_err(hba->dev, "MCQ mode is disabled, err=%d\n", 10721 err); 10722 } 10723 } 10724 if (!is_mcq_supported(hba) && !hba->lsdb_sup) { 10725 dev_err(hba->dev, 10726 "%s: failed to initialize (legacy doorbell mode not supported)\n", 10727 __func__); 10728 return -EINVAL; 10729 } 10730 10731 err = scsi_add_host(hba->host, hba->dev); 10732 if (err) { 10733 dev_err(hba->dev, "scsi_add_host failed\n"); 10734 return err; 10735 } 10736 hba->scsi_host_added = true; 10737 10738 hba->tmf_tag_set = (struct blk_mq_tag_set) { 10739 .nr_hw_queues = 1, 10740 .queue_depth = hba->nutmrs, 10741 .ops = &ufshcd_tmf_ops, 10742 }; 10743 err = blk_mq_alloc_tag_set(&hba->tmf_tag_set); 10744 if (err < 0) 10745 goto remove_scsi_host; 10746 hba->tmf_queue = blk_mq_alloc_queue(&hba->tmf_tag_set, NULL, NULL); 10747 if (IS_ERR(hba->tmf_queue)) { 10748 err = PTR_ERR(hba->tmf_queue); 10749 goto free_tmf_tag_set; 10750 } 10751 hba->tmf_rqs = devm_kcalloc(hba->dev, hba->nutmrs, 10752 sizeof(*hba->tmf_rqs), GFP_KERNEL); 10753 if (!hba->tmf_rqs) { 10754 err = -ENOMEM; 10755 goto free_tmf_queue; 10756 } 10757 10758 return 0; 10759 10760 free_tmf_queue: 10761 blk_mq_destroy_queue(hba->tmf_queue); 10762 blk_put_queue(hba->tmf_queue); 10763 10764 free_tmf_tag_set: 10765 blk_mq_free_tag_set(&hba->tmf_tag_set); 10766 10767 remove_scsi_host: 10768 if (hba->scsi_host_added) 10769 scsi_remove_host(hba->host); 10770 10771 return err; 10772 } 10773 10774 /** 10775 * ufshcd_init - Driver initialization routine 10776 * @hba: per-adapter instance 10777 * @mmio_base: base register address 10778 * @irq: Interrupt line of device 10779 * 10780 * Return: 0 on success; < 0 on failure. 10781 */ 10782 int ufshcd_init(struct ufs_hba *hba, void __iomem *mmio_base, unsigned int irq) 10783 { 10784 int err; 10785 struct Scsi_Host *host = hba->host; 10786 struct device *dev = hba->dev; 10787 10788 /* 10789 * dev_set_drvdata() must be called before any callbacks are registered 10790 * that use dev_get_drvdata() (frequency scaling, clock scaling, hwmon, 10791 * sysfs). 10792 */ 10793 dev_set_drvdata(dev, hba); 10794 10795 if (!mmio_base) { 10796 dev_err(hba->dev, 10797 "Invalid memory reference for mmio_base is NULL\n"); 10798 err = -ENODEV; 10799 goto out_error; 10800 } 10801 10802 hba->mmio_base = mmio_base; 10803 hba->irq = irq; 10804 hba->vps = &ufs_hba_vps; 10805 10806 /* 10807 * Initialize clk_gating.lock early since it is being used in 10808 * ufshcd_setup_clocks() 10809 */ 10810 spin_lock_init(&hba->clk_gating.lock); 10811 10812 /* Initialize mutex for PM QoS request synchronization */ 10813 mutex_init(&hba->pm_qos_mutex); 10814 10815 /* 10816 * Set the default power management level for runtime and system PM. 10817 * Host controller drivers can override them in their 10818 * 'ufs_hba_variant_ops::init' callback. 10819 * 10820 * Default power saving mode is to keep UFS link in Hibern8 state 10821 * and UFS device in sleep state. 10822 */ 10823 hba->rpm_lvl = ufs_get_desired_pm_lvl_for_dev_link_state( 10824 UFS_SLEEP_PWR_MODE, 10825 UIC_LINK_HIBERN8_STATE); 10826 hba->spm_lvl = ufs_get_desired_pm_lvl_for_dev_link_state( 10827 UFS_SLEEP_PWR_MODE, 10828 UIC_LINK_HIBERN8_STATE); 10829 10830 /* 10831 * Most ufs devices require 1ms delay after vcc is powered off before 10832 * it can be powered on again. Set the default to 2ms. The platform 10833 * drivers can override this setting as needed. 10834 */ 10835 hba->vcc_off_delay_us = 2000; 10836 10837 err = ufshcd_hba_init(hba); 10838 if (err) 10839 goto out_error; 10840 10841 /* Read capabilities registers */ 10842 err = ufshcd_hba_capabilities(hba); 10843 if (err) 10844 goto out_disable; 10845 10846 /* Get UFS version supported by the controller */ 10847 hba->ufs_version = ufshcd_get_ufs_version(hba); 10848 10849 /* Get Interrupt bit mask per version */ 10850 hba->intr_mask = ufshcd_get_intr_mask(hba); 10851 10852 err = ufshcd_set_dma_mask(hba); 10853 if (err) { 10854 dev_err(hba->dev, "set dma mask failed\n"); 10855 goto out_disable; 10856 } 10857 10858 /* Allocate memory for host memory space */ 10859 err = ufshcd_memory_alloc(hba); 10860 if (err) { 10861 dev_err(hba->dev, "Memory allocation failed\n"); 10862 goto out_disable; 10863 } 10864 10865 /* Configure LRB */ 10866 ufshcd_host_memory_configure(hba); 10867 10868 host->can_queue = hba->nutrs - UFSHCD_NUM_RESERVED; 10869 /* 10870 * Set the queue depth for WLUNs. ufs_get_device_desc() will increase 10871 * host->cmd_per_lun to a larger value. 10872 */ 10873 host->cmd_per_lun = 1; 10874 host->max_id = UFSHCD_MAX_ID; 10875 host->max_lun = UFS_MAX_LUNS; 10876 host->max_channel = UFSHCD_MAX_CHANNEL; 10877 host->unique_id = host->host_no; 10878 host->max_cmd_len = UFS_CDB_SIZE; 10879 host->queuecommand_may_block = !!(hba->caps & UFSHCD_CAP_CLK_GATING); 10880 10881 /* Use default RPM delay if host not set */ 10882 if (host->rpm_autosuspend_delay == 0) 10883 host->rpm_autosuspend_delay = RPM_AUTOSUSPEND_DELAY_MS; 10884 10885 hba->max_pwr_info.is_valid = false; 10886 10887 /* Initialize work queues */ 10888 hba->eh_wq = alloc_ordered_workqueue("ufs_eh_wq_%d", WQ_MEM_RECLAIM, 10889 hba->host->host_no); 10890 if (!hba->eh_wq) { 10891 dev_err(hba->dev, "%s: failed to create eh workqueue\n", 10892 __func__); 10893 err = -ENOMEM; 10894 goto out_disable; 10895 } 10896 INIT_WORK(&hba->eh_work, ufshcd_err_handler); 10897 INIT_WORK(&hba->eeh_work, ufshcd_exception_event_handler); 10898 10899 sema_init(&hba->host_sem, 1); 10900 10901 /* Initialize UIC command mutex */ 10902 mutex_init(&hba->uic_cmd_mutex); 10903 10904 /* Initialize mutex for device management commands */ 10905 mutex_init(&hba->dev_cmd.lock); 10906 10907 /* Initialize mutex for exception event control */ 10908 mutex_init(&hba->ee_ctrl_mutex); 10909 10910 mutex_init(&hba->wb_mutex); 10911 10912 init_rwsem(&hba->clk_scaling_lock); 10913 10914 ufshcd_init_clk_gating(hba); 10915 10916 ufshcd_init_clk_scaling(hba); 10917 10918 /* 10919 * In order to avoid any spurious interrupt immediately after 10920 * registering UFS controller interrupt handler, clear any pending UFS 10921 * interrupt status and disable all the UFS interrupts. 10922 */ 10923 ufshcd_writel(hba, ufshcd_readl(hba, REG_INTERRUPT_STATUS), 10924 REG_INTERRUPT_STATUS); 10925 ufshcd_writel(hba, 0, REG_INTERRUPT_ENABLE); 10926 /* 10927 * Make sure that UFS interrupts are disabled and any pending interrupt 10928 * status is cleared before registering UFS interrupt handler. 10929 */ 10930 ufshcd_readl(hba, REG_INTERRUPT_ENABLE); 10931 10932 /* IRQ registration */ 10933 err = devm_request_threaded_irq(dev, irq, ufshcd_intr, ufshcd_threaded_intr, 10934 IRQF_ONESHOT | IRQF_SHARED, UFSHCD, hba); 10935 if (err) { 10936 dev_err(hba->dev, "request irq failed\n"); 10937 goto out_disable; 10938 } else { 10939 hba->is_irq_enabled = true; 10940 } 10941 10942 /* Reset the attached device */ 10943 ufshcd_device_reset(hba); 10944 10945 ufshcd_init_crypto(hba); 10946 10947 /* Host controller enable */ 10948 err = ufshcd_hba_enable(hba); 10949 if (err) { 10950 dev_err(hba->dev, "Host controller enable failed\n"); 10951 ufshcd_print_evt_hist(hba); 10952 ufshcd_print_host_state(hba); 10953 goto out_disable; 10954 } 10955 10956 INIT_DELAYED_WORK(&hba->rpm_dev_flush_recheck_work, ufshcd_rpm_dev_flush_recheck_work); 10957 INIT_DELAYED_WORK(&hba->ufs_rtc_update_work, ufshcd_rtc_work); 10958 10959 /* Set the default auto-hiberate idle timer value to 150 ms */ 10960 if (ufshcd_is_auto_hibern8_supported(hba) && !hba->ahit) { 10961 hba->ahit = FIELD_PREP(UFSHCI_AHIBERN8_TIMER_MASK, 150) | 10962 FIELD_PREP(UFSHCI_AHIBERN8_SCALE_MASK, 3); 10963 } 10964 10965 err = ufshcd_add_scsi_host(hba); 10966 if (err) 10967 goto out_disable; 10968 10969 /* Hold auto suspend until async scan completes */ 10970 pm_runtime_get_sync(dev); 10971 10972 /* 10973 * We are assuming that device wasn't put in sleep/power-down 10974 * state exclusively during the boot stage before kernel. 10975 * This assumption helps avoid doing link startup twice during 10976 * ufshcd_probe_hba(). 10977 */ 10978 ufshcd_set_ufs_dev_active(hba); 10979 10980 /* Initialize hba, detect and initialize UFS device */ 10981 ktime_t probe_start = ktime_get(); 10982 10983 hba->ufshcd_state = UFSHCD_STATE_RESET; 10984 10985 err = ufshcd_link_startup(hba); 10986 if (err) 10987 goto out_disable; 10988 10989 if (hba->quirks & UFSHCD_QUIRK_SKIP_PH_CONFIGURATION) 10990 goto initialized; 10991 10992 /* Debug counters initialization */ 10993 ufshcd_clear_dbg_ufs_stats(hba); 10994 10995 /* UniPro link is active now */ 10996 ufshcd_set_link_active(hba); 10997 10998 /* Verify device initialization by sending NOP OUT UPIU */ 10999 err = ufshcd_verify_dev_init(hba); 11000 if (err) 11001 goto out_disable; 11002 11003 /* Initiate UFS initialization, and waiting until completion */ 11004 err = ufshcd_complete_dev_init(hba); 11005 if (err) 11006 goto out_disable; 11007 11008 err = ufshcd_device_params_init(hba); 11009 if (err) 11010 goto out_disable; 11011 11012 err = ufshcd_post_device_init(hba); 11013 11014 initialized: 11015 ufshcd_process_probe_result(hba, probe_start, err); 11016 if (err) 11017 goto out_disable; 11018 11019 ufs_sysfs_add_nodes(hba->dev); 11020 async_schedule(ufshcd_async_scan, hba); 11021 11022 device_enable_async_suspend(dev); 11023 ufshcd_pm_qos_init(hba); 11024 return 0; 11025 11026 out_disable: 11027 hba->is_irq_enabled = false; 11028 ufshcd_hba_exit(hba); 11029 out_error: 11030 return err > 0 ? -EIO : err; 11031 } 11032 EXPORT_SYMBOL_GPL(ufshcd_init); 11033 11034 void ufshcd_resume_complete(struct device *dev) 11035 { 11036 struct ufs_hba *hba = dev_get_drvdata(dev); 11037 11038 if (hba->complete_put) { 11039 ufshcd_rpm_put(hba); 11040 hba->complete_put = false; 11041 } 11042 } 11043 EXPORT_SYMBOL_GPL(ufshcd_resume_complete); 11044 11045 static bool ufshcd_rpm_ok_for_spm(struct ufs_hba *hba) 11046 { 11047 struct device *dev = &hba->ufs_device_wlun->sdev_gendev; 11048 enum ufs_dev_pwr_mode dev_pwr_mode; 11049 enum uic_link_state link_state; 11050 unsigned long flags; 11051 bool res; 11052 11053 spin_lock_irqsave(&dev->power.lock, flags); 11054 dev_pwr_mode = ufs_get_pm_lvl_to_dev_pwr_mode(hba->spm_lvl); 11055 link_state = ufs_get_pm_lvl_to_link_pwr_state(hba->spm_lvl); 11056 res = pm_runtime_suspended(dev) && 11057 hba->curr_dev_pwr_mode == dev_pwr_mode && 11058 hba->uic_link_state == link_state && 11059 !hba->dev_info.b_rpm_dev_flush_capable; 11060 spin_unlock_irqrestore(&dev->power.lock, flags); 11061 11062 return res; 11063 } 11064 11065 int __ufshcd_suspend_prepare(struct device *dev, bool rpm_ok_for_spm) 11066 { 11067 struct ufs_hba *hba = dev_get_drvdata(dev); 11068 int ret; 11069 11070 /* 11071 * SCSI assumes that runtime-pm and system-pm for scsi drivers 11072 * are same. And it doesn't wake up the device for system-suspend 11073 * if it's runtime suspended. But ufs doesn't follow that. 11074 * Refer ufshcd_resume_complete() 11075 */ 11076 if (hba->ufs_device_wlun) { 11077 /* Prevent runtime suspend */ 11078 ufshcd_rpm_get_noresume(hba); 11079 /* 11080 * Check if already runtime suspended in same state as system 11081 * suspend would be. 11082 */ 11083 if (!rpm_ok_for_spm || !ufshcd_rpm_ok_for_spm(hba)) { 11084 /* RPM state is not ok for SPM, so runtime resume */ 11085 ret = ufshcd_rpm_resume(hba); 11086 if (ret < 0 && ret != -EACCES) { 11087 ufshcd_rpm_put(hba); 11088 return ret; 11089 } 11090 } 11091 hba->complete_put = true; 11092 } 11093 return 0; 11094 } 11095 EXPORT_SYMBOL_GPL(__ufshcd_suspend_prepare); 11096 11097 int ufshcd_suspend_prepare(struct device *dev) 11098 { 11099 return __ufshcd_suspend_prepare(dev, true); 11100 } 11101 EXPORT_SYMBOL_GPL(ufshcd_suspend_prepare); 11102 11103 #ifdef CONFIG_PM_SLEEP 11104 static int ufshcd_wl_poweroff(struct device *dev) 11105 { 11106 struct scsi_device *sdev = to_scsi_device(dev); 11107 struct ufs_hba *hba = shost_priv(sdev->host); 11108 11109 __ufshcd_wl_suspend(hba, UFS_SHUTDOWN_PM); 11110 return 0; 11111 } 11112 #endif 11113 11114 static int ufshcd_wl_probe(struct device *dev) 11115 { 11116 struct scsi_device *sdev = to_scsi_device(dev); 11117 11118 if (!is_device_wlun(sdev)) 11119 return -ENODEV; 11120 11121 blk_pm_runtime_init(sdev->request_queue, dev); 11122 pm_runtime_set_autosuspend_delay(dev, 0); 11123 pm_runtime_allow(dev); 11124 11125 return 0; 11126 } 11127 11128 static int ufshcd_wl_remove(struct device *dev) 11129 { 11130 pm_runtime_forbid(dev); 11131 return 0; 11132 } 11133 11134 static const struct dev_pm_ops ufshcd_wl_pm_ops = { 11135 #ifdef CONFIG_PM_SLEEP 11136 .suspend = ufshcd_wl_suspend, 11137 .resume = ufshcd_wl_resume, 11138 .freeze = ufshcd_wl_suspend, 11139 .thaw = ufshcd_wl_resume, 11140 .poweroff = ufshcd_wl_poweroff, 11141 .restore = ufshcd_wl_resume, 11142 #endif 11143 SET_RUNTIME_PM_OPS(ufshcd_wl_runtime_suspend, ufshcd_wl_runtime_resume, NULL) 11144 }; 11145 11146 static void ufshcd_check_header_layout(void) 11147 { 11148 /* 11149 * gcc compilers before version 10 cannot do constant-folding for 11150 * sub-byte bitfields. Hence skip the layout checks for gcc 9 and 11151 * before. 11152 */ 11153 if (IS_ENABLED(CONFIG_CC_IS_GCC) && CONFIG_GCC_VERSION < 100000) 11154 return; 11155 11156 BUILD_BUG_ON(((u8 *)&(struct request_desc_header){ 11157 .cci = 3})[0] != 3); 11158 11159 BUILD_BUG_ON(((u8 *)&(struct request_desc_header){ 11160 .ehs_length = 2})[1] != 2); 11161 11162 BUILD_BUG_ON(((u8 *)&(struct request_desc_header){ 11163 .enable_crypto = 1})[2] 11164 != 0x80); 11165 11166 BUILD_BUG_ON((((u8 *)&(struct request_desc_header){ 11167 .command_type = 5, 11168 .data_direction = 3, 11169 .interrupt = 1, 11170 })[3]) != ((5 << 4) | (3 << 1) | 1)); 11171 11172 BUILD_BUG_ON(((__le32 *)&(struct request_desc_header){ 11173 .dunl = cpu_to_le32(0xdeadbeef)})[1] != 11174 cpu_to_le32(0xdeadbeef)); 11175 11176 BUILD_BUG_ON(((u8 *)&(struct request_desc_header){ 11177 .ocs = 4})[8] != 4); 11178 11179 BUILD_BUG_ON(((u8 *)&(struct request_desc_header){ 11180 .cds = 5})[9] != 5); 11181 11182 BUILD_BUG_ON(((__le32 *)&(struct request_desc_header){ 11183 .dunu = cpu_to_le32(0xbadcafe)})[3] != 11184 cpu_to_le32(0xbadcafe)); 11185 11186 BUILD_BUG_ON(((u8 *)&(struct utp_upiu_header){ 11187 .iid = 0xf })[4] != 0xf0); 11188 11189 BUILD_BUG_ON(((u8 *)&(struct utp_upiu_header){ 11190 .command_set_type = 0xf })[4] != 0xf); 11191 } 11192 11193 /* 11194 * ufs_dev_wlun_template - describes ufs device wlun 11195 * ufs-device wlun - used to send pm commands 11196 * All luns are consumers of ufs-device wlun. 11197 * 11198 * Currently, no sd driver is present for wluns. 11199 * Hence the no specific pm operations are performed. 11200 * With ufs design, SSU should be sent to ufs-device wlun. 11201 * Hence register a scsi driver for ufs wluns only. 11202 */ 11203 static struct scsi_driver ufs_dev_wlun_template = { 11204 .gendrv = { 11205 .name = "ufs_device_wlun", 11206 .probe = ufshcd_wl_probe, 11207 .remove = ufshcd_wl_remove, 11208 .pm = &ufshcd_wl_pm_ops, 11209 .shutdown = ufshcd_wl_shutdown, 11210 }, 11211 }; 11212 11213 static int __init ufshcd_core_init(void) 11214 { 11215 int ret; 11216 11217 ufshcd_check_header_layout(); 11218 11219 ufs_debugfs_init(); 11220 11221 ret = scsi_register_driver(&ufs_dev_wlun_template.gendrv); 11222 if (ret) 11223 ufs_debugfs_exit(); 11224 return ret; 11225 } 11226 11227 static void __exit ufshcd_core_exit(void) 11228 { 11229 ufs_debugfs_exit(); 11230 scsi_unregister_driver(&ufs_dev_wlun_template.gendrv); 11231 } 11232 11233 module_init(ufshcd_core_init); 11234 module_exit(ufshcd_core_exit); 11235 11236 MODULE_AUTHOR("Santosh Yaragnavi <santosh.sy@samsung.com>"); 11237 MODULE_AUTHOR("Vinayak Holikatti <h.vinayak@samsung.com>"); 11238 MODULE_DESCRIPTION("Generic UFS host controller driver Core"); 11239 MODULE_SOFTDEP("pre: governor_simpleondemand"); 11240 MODULE_LICENSE("GPL"); 11241