xref: /linux/drivers/ufs/core/ufshcd.c (revision 4fc012daf9c074772421c904357abf586336b1ca)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Universal Flash Storage Host controller driver Core
4  * Copyright (C) 2011-2013 Samsung India Software Operations
5  * Copyright (c) 2013-2016, The Linux Foundation. All rights reserved.
6  *
7  * Authors:
8  *	Santosh Yaraganavi <santosh.sy@samsung.com>
9  *	Vinayak Holikatti <h.vinayak@samsung.com>
10  */
11 
12 #include <linux/async.h>
13 #include <linux/devfreq.h>
14 #include <linux/nls.h>
15 #include <linux/of.h>
16 #include <linux/bitfield.h>
17 #include <linux/blk-pm.h>
18 #include <linux/blkdev.h>
19 #include <linux/clk.h>
20 #include <linux/delay.h>
21 #include <linux/interrupt.h>
22 #include <linux/module.h>
23 #include <linux/pm_opp.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/sched/clock.h>
26 #include <linux/iopoll.h>
27 #include <scsi/scsi_cmnd.h>
28 #include <scsi/scsi_dbg.h>
29 #include <scsi/scsi_driver.h>
30 #include <scsi/scsi_eh.h>
31 #include "ufshcd-priv.h"
32 #include <ufs/ufs_quirks.h>
33 #include <ufs/unipro.h>
34 #include "ufs-sysfs.h"
35 #include "ufs-debugfs.h"
36 #include "ufs-fault-injection.h"
37 #include "ufs_bsg.h"
38 #include "ufshcd-crypto.h"
39 #include <linux/unaligned.h>
40 
41 #define CREATE_TRACE_POINTS
42 #include "ufs_trace.h"
43 
44 #define UFSHCD_ENABLE_INTRS	(UTP_TRANSFER_REQ_COMPL |\
45 				 UTP_TASK_REQ_COMPL |\
46 				 UFSHCD_ERROR_MASK)
47 
48 #define UFSHCD_ENABLE_MCQ_INTRS	(UTP_TASK_REQ_COMPL |\
49 				 UFSHCD_ERROR_MASK |\
50 				 MCQ_CQ_EVENT_STATUS)
51 
52 
53 /* UIC command timeout, unit: ms */
54 enum {
55 	UIC_CMD_TIMEOUT_DEFAULT	= 500,
56 	UIC_CMD_TIMEOUT_MAX	= 5000,
57 };
58 /* NOP OUT retries waiting for NOP IN response */
59 #define NOP_OUT_RETRIES    10
60 /* Timeout after 50 msecs if NOP OUT hangs without response */
61 #define NOP_OUT_TIMEOUT    50 /* msecs */
62 
63 /* Query request retries */
64 #define QUERY_REQ_RETRIES 3
65 /* Query request timeout */
66 enum {
67 	QUERY_REQ_TIMEOUT_MIN     = 1,
68 	QUERY_REQ_TIMEOUT_DEFAULT = 1500,
69 	QUERY_REQ_TIMEOUT_MAX     = 30000
70 };
71 
72 /* Advanced RPMB request timeout */
73 #define ADVANCED_RPMB_REQ_TIMEOUT  3000 /* 3 seconds */
74 
75 /* Task management command timeout */
76 #define TM_CMD_TIMEOUT	100 /* msecs */
77 
78 /* maximum number of retries for a general UIC command  */
79 #define UFS_UIC_COMMAND_RETRIES 3
80 
81 /* maximum number of link-startup retries */
82 #define DME_LINKSTARTUP_RETRIES 3
83 
84 /* maximum number of reset retries before giving up */
85 #define MAX_HOST_RESET_RETRIES 5
86 
87 /* Maximum number of error handler retries before giving up */
88 #define MAX_ERR_HANDLER_RETRIES 5
89 
90 /* Expose the flag value from utp_upiu_query.value */
91 #define MASK_QUERY_UPIU_FLAG_LOC 0xFF
92 
93 /* Interrupt aggregation default timeout, unit: 40us */
94 #define INT_AGGR_DEF_TO	0x02
95 
96 /* default delay of autosuspend: 2000 ms */
97 #define RPM_AUTOSUSPEND_DELAY_MS 2000
98 
99 /* Default delay of RPM device flush delayed work */
100 #define RPM_DEV_FLUSH_RECHECK_WORK_DELAY_MS 5000
101 
102 /* Default value of wait time before gating device ref clock */
103 #define UFSHCD_REF_CLK_GATING_WAIT_US 0xFF /* microsecs */
104 
105 /* Polling time to wait for fDeviceInit */
106 #define FDEVICEINIT_COMPL_TIMEOUT 1500 /* millisecs */
107 
108 /* Default RTC update every 10 seconds */
109 #define UFS_RTC_UPDATE_INTERVAL_MS (10 * MSEC_PER_SEC)
110 
111 /* bMaxNumOfRTT is equal to two after device manufacturing */
112 #define DEFAULT_MAX_NUM_RTT 2
113 
114 /* UFSHC 4.0 compliant HC support this mode. */
115 static bool use_mcq_mode = true;
116 
117 static bool is_mcq_supported(struct ufs_hba *hba)
118 {
119 	return hba->mcq_sup && use_mcq_mode;
120 }
121 
122 module_param(use_mcq_mode, bool, 0644);
123 MODULE_PARM_DESC(use_mcq_mode, "Control MCQ mode for controllers starting from UFSHCI 4.0. 1 - enable MCQ, 0 - disable MCQ. MCQ is enabled by default");
124 
125 static unsigned int uic_cmd_timeout = UIC_CMD_TIMEOUT_DEFAULT;
126 
127 static int uic_cmd_timeout_set(const char *val, const struct kernel_param *kp)
128 {
129 	return param_set_uint_minmax(val, kp, UIC_CMD_TIMEOUT_DEFAULT,
130 				     UIC_CMD_TIMEOUT_MAX);
131 }
132 
133 static const struct kernel_param_ops uic_cmd_timeout_ops = {
134 	.set = uic_cmd_timeout_set,
135 	.get = param_get_uint,
136 };
137 
138 module_param_cb(uic_cmd_timeout, &uic_cmd_timeout_ops, &uic_cmd_timeout, 0644);
139 MODULE_PARM_DESC(uic_cmd_timeout,
140 		 "UFS UIC command timeout in milliseconds. Defaults to 500ms. Supported values range from 500ms to 5 seconds inclusively");
141 
142 static unsigned int dev_cmd_timeout = QUERY_REQ_TIMEOUT_DEFAULT;
143 
144 static int dev_cmd_timeout_set(const char *val, const struct kernel_param *kp)
145 {
146 	return param_set_uint_minmax(val, kp, QUERY_REQ_TIMEOUT_MIN,
147 				     QUERY_REQ_TIMEOUT_MAX);
148 }
149 
150 static const struct kernel_param_ops dev_cmd_timeout_ops = {
151 	.set = dev_cmd_timeout_set,
152 	.get = param_get_uint,
153 };
154 
155 module_param_cb(dev_cmd_timeout, &dev_cmd_timeout_ops, &dev_cmd_timeout, 0644);
156 MODULE_PARM_DESC(dev_cmd_timeout,
157 		 "UFS Device command timeout in milliseconds. Defaults to 1.5s. Supported values range from 1ms to 30 seconds inclusively");
158 
159 #define ufshcd_toggle_vreg(_dev, _vreg, _on)				\
160 	({                                                              \
161 		int _ret;                                               \
162 		if (_on)                                                \
163 			_ret = ufshcd_enable_vreg(_dev, _vreg);         \
164 		else                                                    \
165 			_ret = ufshcd_disable_vreg(_dev, _vreg);        \
166 		_ret;                                                   \
167 	})
168 
169 #define ufshcd_hex_dump(prefix_str, buf, len) do {                       \
170 	size_t __len = (len);                                            \
171 	print_hex_dump(KERN_ERR, prefix_str,                             \
172 		       __len > 4 ? DUMP_PREFIX_OFFSET : DUMP_PREFIX_NONE,\
173 		       16, 4, buf, __len, false);                        \
174 } while (0)
175 
176 int ufshcd_dump_regs(struct ufs_hba *hba, size_t offset, size_t len,
177 		     const char *prefix)
178 {
179 	u32 *regs;
180 	size_t pos;
181 
182 	if (offset % 4 != 0 || len % 4 != 0) /* keep readl happy */
183 		return -EINVAL;
184 
185 	regs = kzalloc(len, GFP_ATOMIC);
186 	if (!regs)
187 		return -ENOMEM;
188 
189 	for (pos = 0; pos < len; pos += 4) {
190 		if (offset == 0 &&
191 		    pos >= REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER &&
192 		    pos <= REG_UIC_ERROR_CODE_DME)
193 			continue;
194 		regs[pos / 4] = ufshcd_readl(hba, offset + pos);
195 	}
196 
197 	ufshcd_hex_dump(prefix, regs, len);
198 	kfree(regs);
199 
200 	return 0;
201 }
202 EXPORT_SYMBOL_GPL(ufshcd_dump_regs);
203 
204 enum {
205 	UFSHCD_MAX_CHANNEL	= 0,
206 	UFSHCD_MAX_ID		= 1,
207 };
208 
209 static const char *const ufshcd_state_name[] = {
210 	[UFSHCD_STATE_RESET]			= "reset",
211 	[UFSHCD_STATE_OPERATIONAL]		= "operational",
212 	[UFSHCD_STATE_ERROR]			= "error",
213 	[UFSHCD_STATE_EH_SCHEDULED_FATAL]	= "eh_fatal",
214 	[UFSHCD_STATE_EH_SCHEDULED_NON_FATAL]	= "eh_non_fatal",
215 };
216 
217 /* UFSHCD error handling flags */
218 enum {
219 	UFSHCD_EH_IN_PROGRESS = (1 << 0),
220 };
221 
222 /* UFSHCD UIC layer error flags */
223 enum {
224 	UFSHCD_UIC_DL_PA_INIT_ERROR = (1 << 0), /* Data link layer error */
225 	UFSHCD_UIC_DL_NAC_RECEIVED_ERROR = (1 << 1), /* Data link layer error */
226 	UFSHCD_UIC_DL_TCx_REPLAY_ERROR = (1 << 2), /* Data link layer error */
227 	UFSHCD_UIC_NL_ERROR = (1 << 3), /* Network layer error */
228 	UFSHCD_UIC_TL_ERROR = (1 << 4), /* Transport Layer error */
229 	UFSHCD_UIC_DME_ERROR = (1 << 5), /* DME error */
230 	UFSHCD_UIC_PA_GENERIC_ERROR = (1 << 6), /* Generic PA error */
231 };
232 
233 #define ufshcd_set_eh_in_progress(h) \
234 	((h)->eh_flags |= UFSHCD_EH_IN_PROGRESS)
235 #define ufshcd_eh_in_progress(h) \
236 	((h)->eh_flags & UFSHCD_EH_IN_PROGRESS)
237 #define ufshcd_clear_eh_in_progress(h) \
238 	((h)->eh_flags &= ~UFSHCD_EH_IN_PROGRESS)
239 
240 const struct ufs_pm_lvl_states ufs_pm_lvl_states[] = {
241 	[UFS_PM_LVL_0] = {UFS_ACTIVE_PWR_MODE, UIC_LINK_ACTIVE_STATE},
242 	[UFS_PM_LVL_1] = {UFS_ACTIVE_PWR_MODE, UIC_LINK_HIBERN8_STATE},
243 	[UFS_PM_LVL_2] = {UFS_SLEEP_PWR_MODE, UIC_LINK_ACTIVE_STATE},
244 	[UFS_PM_LVL_3] = {UFS_SLEEP_PWR_MODE, UIC_LINK_HIBERN8_STATE},
245 	[UFS_PM_LVL_4] = {UFS_POWERDOWN_PWR_MODE, UIC_LINK_HIBERN8_STATE},
246 	[UFS_PM_LVL_5] = {UFS_POWERDOWN_PWR_MODE, UIC_LINK_OFF_STATE},
247 	/*
248 	 * For DeepSleep, the link is first put in hibern8 and then off.
249 	 * Leaving the link in hibern8 is not supported.
250 	 */
251 	[UFS_PM_LVL_6] = {UFS_DEEPSLEEP_PWR_MODE, UIC_LINK_OFF_STATE},
252 };
253 
254 static inline enum ufs_dev_pwr_mode
255 ufs_get_pm_lvl_to_dev_pwr_mode(enum ufs_pm_level lvl)
256 {
257 	return ufs_pm_lvl_states[lvl].dev_state;
258 }
259 
260 static inline enum uic_link_state
261 ufs_get_pm_lvl_to_link_pwr_state(enum ufs_pm_level lvl)
262 {
263 	return ufs_pm_lvl_states[lvl].link_state;
264 }
265 
266 static inline enum ufs_pm_level
267 ufs_get_desired_pm_lvl_for_dev_link_state(enum ufs_dev_pwr_mode dev_state,
268 					enum uic_link_state link_state)
269 {
270 	enum ufs_pm_level lvl;
271 
272 	for (lvl = UFS_PM_LVL_0; lvl < UFS_PM_LVL_MAX; lvl++) {
273 		if ((ufs_pm_lvl_states[lvl].dev_state == dev_state) &&
274 			(ufs_pm_lvl_states[lvl].link_state == link_state))
275 			return lvl;
276 	}
277 
278 	/* if no match found, return the level 0 */
279 	return UFS_PM_LVL_0;
280 }
281 
282 static bool ufshcd_has_pending_tasks(struct ufs_hba *hba)
283 {
284 	return hba->outstanding_tasks || hba->active_uic_cmd ||
285 	       hba->uic_async_done;
286 }
287 
288 static bool ufshcd_is_ufs_dev_busy(struct ufs_hba *hba)
289 {
290 	return scsi_host_busy(hba->host) || ufshcd_has_pending_tasks(hba);
291 }
292 
293 static const struct ufs_dev_quirk ufs_fixups[] = {
294 	/* UFS cards deviations table */
295 	{ .wmanufacturerid = UFS_VENDOR_MICRON,
296 	  .model = UFS_ANY_MODEL,
297 	  .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM },
298 	{ .wmanufacturerid = UFS_VENDOR_SAMSUNG,
299 	  .model = UFS_ANY_MODEL,
300 	  .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM |
301 		   UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE |
302 		   UFS_DEVICE_QUIRK_PA_HIBER8TIME |
303 		   UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS },
304 	{ .wmanufacturerid = UFS_VENDOR_SKHYNIX,
305 	  .model = UFS_ANY_MODEL,
306 	  .quirk = UFS_DEVICE_QUIRK_HOST_PA_SAVECONFIGTIME },
307 	{ .wmanufacturerid = UFS_VENDOR_SKHYNIX,
308 	  .model = "hB8aL1" /*H28U62301AMR*/,
309 	  .quirk = UFS_DEVICE_QUIRK_HOST_VS_DEBUGSAVECONFIGTIME },
310 	{ .wmanufacturerid = UFS_VENDOR_TOSHIBA,
311 	  .model = UFS_ANY_MODEL,
312 	  .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM },
313 	{ .wmanufacturerid = UFS_VENDOR_TOSHIBA,
314 	  .model = "THGLF2G9C8KBADG",
315 	  .quirk = UFS_DEVICE_QUIRK_PA_TACTIVATE },
316 	{ .wmanufacturerid = UFS_VENDOR_TOSHIBA,
317 	  .model = "THGLF2G9D8KBADG",
318 	  .quirk = UFS_DEVICE_QUIRK_PA_TACTIVATE },
319 	{}
320 };
321 
322 static irqreturn_t ufshcd_tmc_handler(struct ufs_hba *hba);
323 static void ufshcd_async_scan(void *data, async_cookie_t cookie);
324 static int ufshcd_reset_and_restore(struct ufs_hba *hba);
325 static int ufshcd_eh_host_reset_handler(struct scsi_cmnd *cmd);
326 static int ufshcd_clear_tm_cmd(struct ufs_hba *hba, int tag);
327 static void ufshcd_hba_exit(struct ufs_hba *hba);
328 static int ufshcd_device_init(struct ufs_hba *hba, bool init_dev_params);
329 static int ufshcd_probe_hba(struct ufs_hba *hba, bool init_dev_params);
330 static int ufshcd_setup_clocks(struct ufs_hba *hba, bool on);
331 static inline void ufshcd_add_delay_before_dme_cmd(struct ufs_hba *hba);
332 static int ufshcd_host_reset_and_restore(struct ufs_hba *hba);
333 static void ufshcd_resume_clkscaling(struct ufs_hba *hba);
334 static void ufshcd_suspend_clkscaling(struct ufs_hba *hba);
335 static int ufshcd_scale_clks(struct ufs_hba *hba, unsigned long freq,
336 			     bool scale_up);
337 static irqreturn_t ufshcd_intr(int irq, void *__hba);
338 static int ufshcd_change_power_mode(struct ufs_hba *hba,
339 			     struct ufs_pa_layer_attr *pwr_mode);
340 static int ufshcd_setup_hba_vreg(struct ufs_hba *hba, bool on);
341 static int ufshcd_setup_vreg(struct ufs_hba *hba, bool on);
342 static inline int ufshcd_config_vreg_hpm(struct ufs_hba *hba,
343 					 struct ufs_vreg *vreg);
344 static void ufshcd_wb_toggle_buf_flush_during_h8(struct ufs_hba *hba,
345 						 bool enable);
346 static void ufshcd_hba_vreg_set_lpm(struct ufs_hba *hba);
347 static void ufshcd_hba_vreg_set_hpm(struct ufs_hba *hba);
348 
349 void ufshcd_enable_irq(struct ufs_hba *hba)
350 {
351 	if (!hba->is_irq_enabled) {
352 		enable_irq(hba->irq);
353 		hba->is_irq_enabled = true;
354 	}
355 }
356 EXPORT_SYMBOL_GPL(ufshcd_enable_irq);
357 
358 void ufshcd_disable_irq(struct ufs_hba *hba)
359 {
360 	if (hba->is_irq_enabled) {
361 		disable_irq(hba->irq);
362 		hba->is_irq_enabled = false;
363 	}
364 }
365 EXPORT_SYMBOL_GPL(ufshcd_disable_irq);
366 
367 static void ufshcd_configure_wb(struct ufs_hba *hba)
368 {
369 	if (!ufshcd_is_wb_allowed(hba))
370 		return;
371 
372 	ufshcd_wb_toggle(hba, true);
373 
374 	ufshcd_wb_toggle_buf_flush_during_h8(hba, true);
375 
376 	if (ufshcd_is_wb_buf_flush_allowed(hba))
377 		ufshcd_wb_toggle_buf_flush(hba, true);
378 }
379 
380 static void ufshcd_add_cmd_upiu_trace(struct ufs_hba *hba, unsigned int tag,
381 				      enum ufs_trace_str_t str_t)
382 {
383 	struct utp_upiu_req *rq = hba->lrb[tag].ucd_req_ptr;
384 	struct utp_upiu_header *header;
385 
386 	if (!trace_ufshcd_upiu_enabled())
387 		return;
388 
389 	if (str_t == UFS_CMD_SEND)
390 		header = &rq->header;
391 	else
392 		header = &hba->lrb[tag].ucd_rsp_ptr->header;
393 
394 	trace_ufshcd_upiu(hba, str_t, header, &rq->sc.cdb,
395 			  UFS_TSF_CDB);
396 }
397 
398 static void ufshcd_add_query_upiu_trace(struct ufs_hba *hba,
399 					enum ufs_trace_str_t str_t,
400 					struct utp_upiu_req *rq_rsp)
401 {
402 	if (!trace_ufshcd_upiu_enabled())
403 		return;
404 
405 	trace_ufshcd_upiu(hba, str_t, &rq_rsp->header,
406 			  &rq_rsp->qr, UFS_TSF_OSF);
407 }
408 
409 static void ufshcd_add_tm_upiu_trace(struct ufs_hba *hba, unsigned int tag,
410 				     enum ufs_trace_str_t str_t)
411 {
412 	struct utp_task_req_desc *descp = &hba->utmrdl_base_addr[tag];
413 
414 	if (!trace_ufshcd_upiu_enabled())
415 		return;
416 
417 	if (str_t == UFS_TM_SEND)
418 		trace_ufshcd_upiu(hba, str_t,
419 				  &descp->upiu_req.req_header,
420 				  &descp->upiu_req.input_param1,
421 				  UFS_TSF_TM_INPUT);
422 	else
423 		trace_ufshcd_upiu(hba, str_t,
424 				  &descp->upiu_rsp.rsp_header,
425 				  &descp->upiu_rsp.output_param1,
426 				  UFS_TSF_TM_OUTPUT);
427 }
428 
429 static void ufshcd_add_uic_command_trace(struct ufs_hba *hba,
430 					 const struct uic_command *ucmd,
431 					 enum ufs_trace_str_t str_t)
432 {
433 	u32 cmd;
434 
435 	if (!trace_ufshcd_uic_command_enabled())
436 		return;
437 
438 	if (str_t == UFS_CMD_SEND)
439 		cmd = ucmd->command;
440 	else
441 		cmd = ufshcd_readl(hba, REG_UIC_COMMAND);
442 
443 	trace_ufshcd_uic_command(hba, str_t, cmd,
444 				 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_1),
445 				 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_2),
446 				 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_3));
447 }
448 
449 static void ufshcd_add_command_trace(struct ufs_hba *hba, unsigned int tag,
450 				     enum ufs_trace_str_t str_t)
451 {
452 	u64 lba = 0;
453 	u8 opcode = 0, group_id = 0;
454 	u32 doorbell = 0;
455 	u32 intr;
456 	u32 hwq_id = 0;
457 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
458 	struct scsi_cmnd *cmd = lrbp->cmd;
459 	struct request *rq = scsi_cmd_to_rq(cmd);
460 	int transfer_len = -1;
461 
462 	if (!cmd)
463 		return;
464 
465 	/* trace UPIU also */
466 	ufshcd_add_cmd_upiu_trace(hba, tag, str_t);
467 	if (!trace_ufshcd_command_enabled())
468 		return;
469 
470 	opcode = cmd->cmnd[0];
471 
472 	if (opcode == READ_10 || opcode == WRITE_10) {
473 		/*
474 		 * Currently we only fully trace read(10) and write(10) commands
475 		 */
476 		transfer_len =
477 		       be32_to_cpu(lrbp->ucd_req_ptr->sc.exp_data_transfer_len);
478 		lba = scsi_get_lba(cmd);
479 		if (opcode == WRITE_10)
480 			group_id = lrbp->cmd->cmnd[6];
481 	} else if (opcode == UNMAP) {
482 		/*
483 		 * The number of Bytes to be unmapped beginning with the lba.
484 		 */
485 		transfer_len = blk_rq_bytes(rq);
486 		lba = scsi_get_lba(cmd);
487 	}
488 
489 	intr = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
490 
491 	if (hba->mcq_enabled) {
492 		struct ufs_hw_queue *hwq = ufshcd_mcq_req_to_hwq(hba, rq);
493 
494 		hwq_id = hwq->id;
495 	} else {
496 		doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
497 	}
498 	trace_ufshcd_command(cmd->device, hba, str_t, tag, doorbell, hwq_id,
499 			     transfer_len, intr, lba, opcode, group_id);
500 }
501 
502 static void ufshcd_print_clk_freqs(struct ufs_hba *hba)
503 {
504 	struct ufs_clk_info *clki;
505 	struct list_head *head = &hba->clk_list_head;
506 
507 	if (list_empty(head))
508 		return;
509 
510 	list_for_each_entry(clki, head, list) {
511 		if (!IS_ERR_OR_NULL(clki->clk) && clki->min_freq &&
512 				clki->max_freq)
513 			dev_err(hba->dev, "clk: %s, rate: %u\n",
514 					clki->name, clki->curr_freq);
515 	}
516 }
517 
518 static void ufshcd_print_evt(struct ufs_hba *hba, u32 id,
519 			     const char *err_name)
520 {
521 	int i;
522 	bool found = false;
523 	const struct ufs_event_hist *e;
524 
525 	if (id >= UFS_EVT_CNT)
526 		return;
527 
528 	e = &hba->ufs_stats.event[id];
529 
530 	for (i = 0; i < UFS_EVENT_HIST_LENGTH; i++) {
531 		int p = (i + e->pos) % UFS_EVENT_HIST_LENGTH;
532 
533 		if (e->tstamp[p] == 0)
534 			continue;
535 		dev_err(hba->dev, "%s[%d] = 0x%x at %lld us\n", err_name, p,
536 			e->val[p], div_u64(e->tstamp[p], 1000));
537 		found = true;
538 	}
539 
540 	if (!found)
541 		dev_err(hba->dev, "No record of %s\n", err_name);
542 	else
543 		dev_err(hba->dev, "%s: total cnt=%llu\n", err_name, e->cnt);
544 }
545 
546 static void ufshcd_print_evt_hist(struct ufs_hba *hba)
547 {
548 	ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, "host_regs: ");
549 
550 	ufshcd_print_evt(hba, UFS_EVT_PA_ERR, "pa_err");
551 	ufshcd_print_evt(hba, UFS_EVT_DL_ERR, "dl_err");
552 	ufshcd_print_evt(hba, UFS_EVT_NL_ERR, "nl_err");
553 	ufshcd_print_evt(hba, UFS_EVT_TL_ERR, "tl_err");
554 	ufshcd_print_evt(hba, UFS_EVT_DME_ERR, "dme_err");
555 	ufshcd_print_evt(hba, UFS_EVT_AUTO_HIBERN8_ERR,
556 			 "auto_hibern8_err");
557 	ufshcd_print_evt(hba, UFS_EVT_FATAL_ERR, "fatal_err");
558 	ufshcd_print_evt(hba, UFS_EVT_LINK_STARTUP_FAIL,
559 			 "link_startup_fail");
560 	ufshcd_print_evt(hba, UFS_EVT_RESUME_ERR, "resume_fail");
561 	ufshcd_print_evt(hba, UFS_EVT_SUSPEND_ERR,
562 			 "suspend_fail");
563 	ufshcd_print_evt(hba, UFS_EVT_WL_RES_ERR, "wlun resume_fail");
564 	ufshcd_print_evt(hba, UFS_EVT_WL_SUSP_ERR,
565 			 "wlun suspend_fail");
566 	ufshcd_print_evt(hba, UFS_EVT_DEV_RESET, "dev_reset");
567 	ufshcd_print_evt(hba, UFS_EVT_HOST_RESET, "host_reset");
568 	ufshcd_print_evt(hba, UFS_EVT_ABORT, "task_abort");
569 
570 	ufshcd_vops_dbg_register_dump(hba);
571 }
572 
573 static
574 void ufshcd_print_tr(struct ufs_hba *hba, int tag, bool pr_prdt)
575 {
576 	const struct ufshcd_lrb *lrbp;
577 	int prdt_length;
578 
579 	lrbp = &hba->lrb[tag];
580 
581 	dev_err(hba->dev, "UPIU[%d] - issue time %lld us\n",
582 			tag, div_u64(lrbp->issue_time_stamp_local_clock, 1000));
583 	dev_err(hba->dev, "UPIU[%d] - complete time %lld us\n",
584 			tag, div_u64(lrbp->compl_time_stamp_local_clock, 1000));
585 	dev_err(hba->dev,
586 		"UPIU[%d] - Transfer Request Descriptor phys@0x%llx\n",
587 		tag, (u64)lrbp->utrd_dma_addr);
588 
589 	ufshcd_hex_dump("UPIU TRD: ", lrbp->utr_descriptor_ptr,
590 			sizeof(struct utp_transfer_req_desc));
591 	dev_err(hba->dev, "UPIU[%d] - Request UPIU phys@0x%llx\n", tag,
592 		(u64)lrbp->ucd_req_dma_addr);
593 	ufshcd_hex_dump("UPIU REQ: ", lrbp->ucd_req_ptr,
594 			sizeof(struct utp_upiu_req));
595 	dev_err(hba->dev, "UPIU[%d] - Response UPIU phys@0x%llx\n", tag,
596 		(u64)lrbp->ucd_rsp_dma_addr);
597 	ufshcd_hex_dump("UPIU RSP: ", lrbp->ucd_rsp_ptr,
598 			sizeof(struct utp_upiu_rsp));
599 
600 	prdt_length = le16_to_cpu(
601 		lrbp->utr_descriptor_ptr->prd_table_length);
602 	if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN)
603 		prdt_length /= ufshcd_sg_entry_size(hba);
604 
605 	dev_err(hba->dev,
606 		"UPIU[%d] - PRDT - %d entries  phys@0x%llx\n",
607 		tag, prdt_length,
608 		(u64)lrbp->ucd_prdt_dma_addr);
609 
610 	if (pr_prdt)
611 		ufshcd_hex_dump("UPIU PRDT: ", lrbp->ucd_prdt_ptr,
612 			ufshcd_sg_entry_size(hba) * prdt_length);
613 }
614 
615 static bool ufshcd_print_tr_iter(struct request *req, void *priv)
616 {
617 	struct scsi_device *sdev = req->q->queuedata;
618 	struct Scsi_Host *shost = sdev->host;
619 	struct ufs_hba *hba = shost_priv(shost);
620 
621 	ufshcd_print_tr(hba, req->tag, *(bool *)priv);
622 
623 	return true;
624 }
625 
626 /**
627  * ufshcd_print_trs_all - print trs for all started requests.
628  * @hba: per-adapter instance.
629  * @pr_prdt: need to print prdt or not.
630  */
631 static void ufshcd_print_trs_all(struct ufs_hba *hba, bool pr_prdt)
632 {
633 	blk_mq_tagset_busy_iter(&hba->host->tag_set, ufshcd_print_tr_iter, &pr_prdt);
634 }
635 
636 static void ufshcd_print_tmrs(struct ufs_hba *hba, unsigned long bitmap)
637 {
638 	int tag;
639 
640 	for_each_set_bit(tag, &bitmap, hba->nutmrs) {
641 		struct utp_task_req_desc *tmrdp = &hba->utmrdl_base_addr[tag];
642 
643 		dev_err(hba->dev, "TM[%d] - Task Management Header\n", tag);
644 		ufshcd_hex_dump("", tmrdp, sizeof(*tmrdp));
645 	}
646 }
647 
648 static void ufshcd_print_host_state(struct ufs_hba *hba)
649 {
650 	const struct scsi_device *sdev_ufs = hba->ufs_device_wlun;
651 
652 	dev_err(hba->dev, "UFS Host state=%d\n", hba->ufshcd_state);
653 	dev_err(hba->dev, "%d outstanding reqs, tasks=0x%lx\n",
654 		scsi_host_busy(hba->host), hba->outstanding_tasks);
655 	dev_err(hba->dev, "saved_err=0x%x, saved_uic_err=0x%x\n",
656 		hba->saved_err, hba->saved_uic_err);
657 	dev_err(hba->dev, "Device power mode=%d, UIC link state=%d\n",
658 		hba->curr_dev_pwr_mode, hba->uic_link_state);
659 	dev_err(hba->dev, "PM in progress=%d, sys. suspended=%d\n",
660 		hba->pm_op_in_progress, hba->is_sys_suspended);
661 	dev_err(hba->dev, "Auto BKOPS=%d, Host self-block=%d\n",
662 		hba->auto_bkops_enabled, hba->host->host_self_blocked);
663 	dev_err(hba->dev, "Clk gate=%d\n", hba->clk_gating.state);
664 	dev_err(hba->dev,
665 		"last_hibern8_exit_tstamp at %lld us, hibern8_exit_cnt=%d\n",
666 		div_u64(hba->ufs_stats.last_hibern8_exit_tstamp, 1000),
667 		hba->ufs_stats.hibern8_exit_cnt);
668 	dev_err(hba->dev, "error handling flags=0x%x, req. abort count=%d\n",
669 		hba->eh_flags, hba->req_abort_count);
670 	dev_err(hba->dev, "hba->ufs_version=0x%x, Host capabilities=0x%x, caps=0x%x\n",
671 		hba->ufs_version, hba->capabilities, hba->caps);
672 	dev_err(hba->dev, "quirks=0x%x, dev. quirks=0x%x\n", hba->quirks,
673 		hba->dev_quirks);
674 	if (sdev_ufs)
675 		dev_err(hba->dev, "UFS dev info: %.8s %.16s rev %.4s\n",
676 			sdev_ufs->vendor, sdev_ufs->model, sdev_ufs->rev);
677 
678 	ufshcd_print_clk_freqs(hba);
679 }
680 
681 /**
682  * ufshcd_print_pwr_info - print power params as saved in hba
683  * power info
684  * @hba: per-adapter instance
685  */
686 static void ufshcd_print_pwr_info(struct ufs_hba *hba)
687 {
688 	static const char * const names[] = {
689 		"INVALID MODE",
690 		"FAST MODE",
691 		"SLOW_MODE",
692 		"INVALID MODE",
693 		"FASTAUTO_MODE",
694 		"SLOWAUTO_MODE",
695 		"INVALID MODE",
696 	};
697 
698 	/*
699 	 * Using dev_dbg to avoid messages during runtime PM to avoid
700 	 * never-ending cycles of messages written back to storage by user space
701 	 * causing runtime resume, causing more messages and so on.
702 	 */
703 	dev_dbg(hba->dev, "%s:[RX, TX]: gear=[%d, %d], lane[%d, %d], pwr[%s, %s], rate = %d\n",
704 		 __func__,
705 		 hba->pwr_info.gear_rx, hba->pwr_info.gear_tx,
706 		 hba->pwr_info.lane_rx, hba->pwr_info.lane_tx,
707 		 names[hba->pwr_info.pwr_rx],
708 		 names[hba->pwr_info.pwr_tx],
709 		 hba->pwr_info.hs_rate);
710 }
711 
712 static void ufshcd_device_reset(struct ufs_hba *hba)
713 {
714 	int err;
715 
716 	err = ufshcd_vops_device_reset(hba);
717 
718 	if (!err) {
719 		ufshcd_set_ufs_dev_active(hba);
720 		if (ufshcd_is_wb_allowed(hba)) {
721 			hba->dev_info.wb_enabled = false;
722 			hba->dev_info.wb_buf_flush_enabled = false;
723 		}
724 		if (hba->dev_info.rtc_type == UFS_RTC_RELATIVE)
725 			hba->dev_info.rtc_time_baseline = 0;
726 	}
727 	if (err != -EOPNOTSUPP)
728 		ufshcd_update_evt_hist(hba, UFS_EVT_DEV_RESET, err);
729 }
730 
731 void ufshcd_delay_us(unsigned long us, unsigned long tolerance)
732 {
733 	if (!us)
734 		return;
735 
736 	if (us < 10)
737 		udelay(us);
738 	else
739 		usleep_range(us, us + tolerance);
740 }
741 EXPORT_SYMBOL_GPL(ufshcd_delay_us);
742 
743 /**
744  * ufshcd_wait_for_register - wait for register value to change
745  * @hba: per-adapter interface
746  * @reg: mmio register offset
747  * @mask: mask to apply to the read register value
748  * @val: value to wait for
749  * @interval_us: polling interval in microseconds
750  * @timeout_ms: timeout in milliseconds
751  *
752  * Return: -ETIMEDOUT on error, zero on success.
753  */
754 static int ufshcd_wait_for_register(struct ufs_hba *hba, u32 reg, u32 mask,
755 				    u32 val, unsigned long interval_us,
756 				    unsigned long timeout_ms)
757 {
758 	u32 v;
759 
760 	val &= mask; /* ignore bits that we don't intend to wait on */
761 
762 	return read_poll_timeout(ufshcd_readl, v, (v & mask) == val,
763 				 interval_us, timeout_ms * 1000, false, hba, reg);
764 }
765 
766 /**
767  * ufshcd_get_intr_mask - Get the interrupt bit mask
768  * @hba: Pointer to adapter instance
769  *
770  * Return: interrupt bit mask per version
771  */
772 static inline u32 ufshcd_get_intr_mask(struct ufs_hba *hba)
773 {
774 	if (hba->ufs_version <= ufshci_version(2, 0))
775 		return INTERRUPT_MASK_ALL_VER_11;
776 
777 	return INTERRUPT_MASK_ALL_VER_21;
778 }
779 
780 /**
781  * ufshcd_get_ufs_version - Get the UFS version supported by the HBA
782  * @hba: Pointer to adapter instance
783  *
784  * Return: UFSHCI version supported by the controller
785  */
786 static inline u32 ufshcd_get_ufs_version(struct ufs_hba *hba)
787 {
788 	u32 ufshci_ver;
789 
790 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_UFS_HCI_VERSION)
791 		ufshci_ver = ufshcd_vops_get_ufs_hci_version(hba);
792 	else
793 		ufshci_ver = ufshcd_readl(hba, REG_UFS_VERSION);
794 
795 	/*
796 	 * UFSHCI v1.x uses a different version scheme, in order
797 	 * to allow the use of comparisons with the ufshci_version
798 	 * function, we convert it to the same scheme as ufs 2.0+.
799 	 */
800 	if (ufshci_ver & 0x00010000)
801 		return ufshci_version(1, ufshci_ver & 0x00000100);
802 
803 	return ufshci_ver;
804 }
805 
806 /**
807  * ufshcd_is_device_present - Check if any device connected to
808  *			      the host controller
809  * @hba: pointer to adapter instance
810  *
811  * Return: true if device present, false if no device detected
812  */
813 static inline bool ufshcd_is_device_present(struct ufs_hba *hba)
814 {
815 	return ufshcd_readl(hba, REG_CONTROLLER_STATUS) & DEVICE_PRESENT;
816 }
817 
818 /**
819  * ufshcd_get_tr_ocs - Get the UTRD Overall Command Status
820  * @lrbp: pointer to local command reference block
821  * @cqe: pointer to the completion queue entry
822  *
823  * This function is used to get the OCS field from UTRD
824  *
825  * Return: the OCS field in the UTRD.
826  */
827 static enum utp_ocs ufshcd_get_tr_ocs(struct ufshcd_lrb *lrbp,
828 				      struct cq_entry *cqe)
829 {
830 	if (cqe)
831 		return le32_to_cpu(cqe->status) & MASK_OCS;
832 
833 	return lrbp->utr_descriptor_ptr->header.ocs & MASK_OCS;
834 }
835 
836 /**
837  * ufshcd_utrl_clear() - Clear requests from the controller request list.
838  * @hba: per adapter instance
839  * @mask: mask with one bit set for each request to be cleared
840  */
841 static inline void ufshcd_utrl_clear(struct ufs_hba *hba, u32 mask)
842 {
843 	if (hba->quirks & UFSHCI_QUIRK_BROKEN_REQ_LIST_CLR)
844 		mask = ~mask;
845 	/*
846 	 * From the UFSHCI specification: "UTP Transfer Request List CLear
847 	 * Register (UTRLCLR): This field is bit significant. Each bit
848 	 * corresponds to a slot in the UTP Transfer Request List, where bit 0
849 	 * corresponds to request slot 0. A bit in this field is set to ‘0’
850 	 * by host software to indicate to the host controller that a transfer
851 	 * request slot is cleared. The host controller
852 	 * shall free up any resources associated to the request slot
853 	 * immediately, and shall set the associated bit in UTRLDBR to ‘0’. The
854 	 * host software indicates no change to request slots by setting the
855 	 * associated bits in this field to ‘1’. Bits in this field shall only
856 	 * be set ‘1’ or ‘0’ by host software when UTRLRSR is set to ‘1’."
857 	 */
858 	ufshcd_writel(hba, ~mask, REG_UTP_TRANSFER_REQ_LIST_CLEAR);
859 }
860 
861 /**
862  * ufshcd_utmrl_clear - Clear a bit in UTMRLCLR register
863  * @hba: per adapter instance
864  * @pos: position of the bit to be cleared
865  */
866 static inline void ufshcd_utmrl_clear(struct ufs_hba *hba, u32 pos)
867 {
868 	if (hba->quirks & UFSHCI_QUIRK_BROKEN_REQ_LIST_CLR)
869 		ufshcd_writel(hba, (1 << pos), REG_UTP_TASK_REQ_LIST_CLEAR);
870 	else
871 		ufshcd_writel(hba, ~(1 << pos), REG_UTP_TASK_REQ_LIST_CLEAR);
872 }
873 
874 /**
875  * ufshcd_get_lists_status - Check UCRDY, UTRLRDY and UTMRLRDY
876  * @reg: Register value of host controller status
877  *
878  * Return: 0 on success; a positive value if failed.
879  */
880 static inline int ufshcd_get_lists_status(u32 reg)
881 {
882 	return !((reg & UFSHCD_STATUS_READY) == UFSHCD_STATUS_READY);
883 }
884 
885 /**
886  * ufshcd_get_uic_cmd_result - Get the UIC command result
887  * @hba: Pointer to adapter instance
888  *
889  * This function gets the result of UIC command completion
890  *
891  * Return: 0 on success; non-zero value on error.
892  */
893 static inline int ufshcd_get_uic_cmd_result(struct ufs_hba *hba)
894 {
895 	return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_2) &
896 	       MASK_UIC_COMMAND_RESULT;
897 }
898 
899 /**
900  * ufshcd_get_dme_attr_val - Get the value of attribute returned by UIC command
901  * @hba: Pointer to adapter instance
902  *
903  * This function gets UIC command argument3
904  *
905  * Return: 0 on success; non-zero value on error.
906  */
907 static inline u32 ufshcd_get_dme_attr_val(struct ufs_hba *hba)
908 {
909 	return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_3);
910 }
911 
912 /**
913  * ufshcd_get_req_rsp - returns the TR response transaction type
914  * @ucd_rsp_ptr: pointer to response UPIU
915  *
916  * Return: UPIU type.
917  */
918 static inline enum upiu_response_transaction
919 ufshcd_get_req_rsp(struct utp_upiu_rsp *ucd_rsp_ptr)
920 {
921 	return ucd_rsp_ptr->header.transaction_code;
922 }
923 
924 /**
925  * ufshcd_is_exception_event - Check if the device raised an exception event
926  * @ucd_rsp_ptr: pointer to response UPIU
927  *
928  * The function checks if the device raised an exception event indicated in
929  * the Device Information field of response UPIU.
930  *
931  * Return: true if exception is raised, false otherwise.
932  */
933 static inline bool ufshcd_is_exception_event(struct utp_upiu_rsp *ucd_rsp_ptr)
934 {
935 	return ucd_rsp_ptr->header.device_information & 1;
936 }
937 
938 /**
939  * ufshcd_reset_intr_aggr - Reset interrupt aggregation values.
940  * @hba: per adapter instance
941  */
942 static inline void
943 ufshcd_reset_intr_aggr(struct ufs_hba *hba)
944 {
945 	ufshcd_writel(hba, INT_AGGR_ENABLE |
946 		      INT_AGGR_COUNTER_AND_TIMER_RESET,
947 		      REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
948 }
949 
950 /**
951  * ufshcd_config_intr_aggr - Configure interrupt aggregation values.
952  * @hba: per adapter instance
953  * @cnt: Interrupt aggregation counter threshold
954  * @tmout: Interrupt aggregation timeout value
955  */
956 static inline void
957 ufshcd_config_intr_aggr(struct ufs_hba *hba, u8 cnt, u8 tmout)
958 {
959 	ufshcd_writel(hba, INT_AGGR_ENABLE | INT_AGGR_PARAM_WRITE |
960 		      INT_AGGR_COUNTER_THLD_VAL(cnt) |
961 		      INT_AGGR_TIMEOUT_VAL(tmout),
962 		      REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
963 }
964 
965 /**
966  * ufshcd_disable_intr_aggr - Disables interrupt aggregation.
967  * @hba: per adapter instance
968  */
969 static inline void ufshcd_disable_intr_aggr(struct ufs_hba *hba)
970 {
971 	ufshcd_writel(hba, 0, REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
972 }
973 
974 /**
975  * ufshcd_enable_run_stop_reg - Enable run-stop registers,
976  *			When run-stop registers are set to 1, it indicates the
977  *			host controller that it can process the requests
978  * @hba: per adapter instance
979  */
980 static void ufshcd_enable_run_stop_reg(struct ufs_hba *hba)
981 {
982 	ufshcd_writel(hba, UTP_TASK_REQ_LIST_RUN_STOP_BIT,
983 		      REG_UTP_TASK_REQ_LIST_RUN_STOP);
984 	ufshcd_writel(hba, UTP_TRANSFER_REQ_LIST_RUN_STOP_BIT,
985 		      REG_UTP_TRANSFER_REQ_LIST_RUN_STOP);
986 }
987 
988 /**
989  * ufshcd_hba_start - Start controller initialization sequence
990  * @hba: per adapter instance
991  */
992 static inline void ufshcd_hba_start(struct ufs_hba *hba)
993 {
994 	u32 val = CONTROLLER_ENABLE;
995 
996 	if (ufshcd_crypto_enable(hba))
997 		val |= CRYPTO_GENERAL_ENABLE;
998 
999 	ufshcd_writel(hba, val, REG_CONTROLLER_ENABLE);
1000 }
1001 
1002 /**
1003  * ufshcd_is_hba_active - Get controller state
1004  * @hba: per adapter instance
1005  *
1006  * Return: true if and only if the controller is active.
1007  */
1008 bool ufshcd_is_hba_active(struct ufs_hba *hba)
1009 {
1010 	return ufshcd_readl(hba, REG_CONTROLLER_ENABLE) & CONTROLLER_ENABLE;
1011 }
1012 EXPORT_SYMBOL_GPL(ufshcd_is_hba_active);
1013 
1014 /**
1015  * ufshcd_pm_qos_init - initialize PM QoS request
1016  * @hba: per adapter instance
1017  */
1018 void ufshcd_pm_qos_init(struct ufs_hba *hba)
1019 {
1020 
1021 	if (hba->pm_qos_enabled)
1022 		return;
1023 
1024 	cpu_latency_qos_add_request(&hba->pm_qos_req, PM_QOS_DEFAULT_VALUE);
1025 
1026 	if (cpu_latency_qos_request_active(&hba->pm_qos_req))
1027 		hba->pm_qos_enabled = true;
1028 }
1029 
1030 /**
1031  * ufshcd_pm_qos_exit - remove request from PM QoS
1032  * @hba: per adapter instance
1033  */
1034 void ufshcd_pm_qos_exit(struct ufs_hba *hba)
1035 {
1036 	if (!hba->pm_qos_enabled)
1037 		return;
1038 
1039 	cpu_latency_qos_remove_request(&hba->pm_qos_req);
1040 	hba->pm_qos_enabled = false;
1041 }
1042 
1043 /**
1044  * ufshcd_pm_qos_update - update PM QoS request
1045  * @hba: per adapter instance
1046  * @on: If True, vote for perf PM QoS mode otherwise power save mode
1047  */
1048 static void ufshcd_pm_qos_update(struct ufs_hba *hba, bool on)
1049 {
1050 	if (!hba->pm_qos_enabled)
1051 		return;
1052 
1053 	cpu_latency_qos_update_request(&hba->pm_qos_req, on ? 0 : PM_QOS_DEFAULT_VALUE);
1054 }
1055 
1056 /**
1057  * ufshcd_set_clk_freq - set UFS controller clock frequencies
1058  * @hba: per adapter instance
1059  * @scale_up: If True, set max possible frequency othewise set low frequency
1060  *
1061  * Return: 0 if successful; < 0 upon failure.
1062  */
1063 static int ufshcd_set_clk_freq(struct ufs_hba *hba, bool scale_up)
1064 {
1065 	int ret = 0;
1066 	struct ufs_clk_info *clki;
1067 	struct list_head *head = &hba->clk_list_head;
1068 
1069 	if (list_empty(head))
1070 		goto out;
1071 
1072 	list_for_each_entry(clki, head, list) {
1073 		if (!IS_ERR_OR_NULL(clki->clk)) {
1074 			if (scale_up && clki->max_freq) {
1075 				if (clki->curr_freq == clki->max_freq)
1076 					continue;
1077 
1078 				ret = clk_set_rate(clki->clk, clki->max_freq);
1079 				if (ret) {
1080 					dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
1081 						__func__, clki->name,
1082 						clki->max_freq, ret);
1083 					break;
1084 				}
1085 				trace_ufshcd_clk_scaling(hba,
1086 						"scaled up", clki->name,
1087 						clki->curr_freq,
1088 						clki->max_freq);
1089 
1090 				clki->curr_freq = clki->max_freq;
1091 
1092 			} else if (!scale_up && clki->min_freq) {
1093 				if (clki->curr_freq == clki->min_freq)
1094 					continue;
1095 
1096 				ret = clk_set_rate(clki->clk, clki->min_freq);
1097 				if (ret) {
1098 					dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
1099 						__func__, clki->name,
1100 						clki->min_freq, ret);
1101 					break;
1102 				}
1103 				trace_ufshcd_clk_scaling(hba,
1104 						"scaled down", clki->name,
1105 						clki->curr_freq,
1106 						clki->min_freq);
1107 				clki->curr_freq = clki->min_freq;
1108 			}
1109 		}
1110 		dev_dbg(hba->dev, "%s: clk: %s, rate: %lu\n", __func__,
1111 				clki->name, clk_get_rate(clki->clk));
1112 	}
1113 
1114 out:
1115 	return ret;
1116 }
1117 
1118 int ufshcd_opp_config_clks(struct device *dev, struct opp_table *opp_table,
1119 			   struct dev_pm_opp *opp, void *data,
1120 			   bool scaling_down)
1121 {
1122 	struct ufs_hba *hba = dev_get_drvdata(dev);
1123 	struct list_head *head = &hba->clk_list_head;
1124 	struct ufs_clk_info *clki;
1125 	unsigned long freq;
1126 	u8 idx = 0;
1127 	int ret;
1128 
1129 	list_for_each_entry(clki, head, list) {
1130 		if (!IS_ERR_OR_NULL(clki->clk)) {
1131 			freq = dev_pm_opp_get_freq_indexed(opp, idx++);
1132 
1133 			/* Do not set rate for clocks having frequency as 0 */
1134 			if (!freq)
1135 				continue;
1136 
1137 			ret = clk_set_rate(clki->clk, freq);
1138 			if (ret) {
1139 				dev_err(dev, "%s: %s clk set rate(%ldHz) failed, %d\n",
1140 					__func__, clki->name, freq, ret);
1141 				return ret;
1142 			}
1143 
1144 			trace_ufshcd_clk_scaling(hba,
1145 				(scaling_down ? "scaled down" : "scaled up"),
1146 				clki->name, hba->clk_scaling.target_freq, freq);
1147 		}
1148 	}
1149 
1150 	return 0;
1151 }
1152 EXPORT_SYMBOL_GPL(ufshcd_opp_config_clks);
1153 
1154 static int ufshcd_opp_set_rate(struct ufs_hba *hba, unsigned long freq)
1155 {
1156 	struct dev_pm_opp *opp;
1157 	int ret;
1158 
1159 	opp = dev_pm_opp_find_freq_floor_indexed(hba->dev,
1160 						 &freq, 0);
1161 	if (IS_ERR(opp))
1162 		return PTR_ERR(opp);
1163 
1164 	ret = dev_pm_opp_set_opp(hba->dev, opp);
1165 	dev_pm_opp_put(opp);
1166 
1167 	return ret;
1168 }
1169 
1170 /**
1171  * ufshcd_scale_clks - scale up or scale down UFS controller clocks
1172  * @hba: per adapter instance
1173  * @freq: frequency to scale
1174  * @scale_up: True if scaling up and false if scaling down
1175  *
1176  * Return: 0 if successful; < 0 upon failure.
1177  */
1178 static int ufshcd_scale_clks(struct ufs_hba *hba, unsigned long freq,
1179 			     bool scale_up)
1180 {
1181 	int ret = 0;
1182 	ktime_t start = ktime_get();
1183 
1184 	ret = ufshcd_vops_clk_scale_notify(hba, scale_up, freq, PRE_CHANGE);
1185 	if (ret)
1186 		goto out;
1187 
1188 	if (hba->use_pm_opp)
1189 		ret = ufshcd_opp_set_rate(hba, freq);
1190 	else
1191 		ret = ufshcd_set_clk_freq(hba, scale_up);
1192 	if (ret)
1193 		goto out;
1194 
1195 	ret = ufshcd_vops_clk_scale_notify(hba, scale_up, freq, POST_CHANGE);
1196 	if (ret) {
1197 		if (hba->use_pm_opp)
1198 			ufshcd_opp_set_rate(hba,
1199 					    hba->devfreq->previous_freq);
1200 		else
1201 			ufshcd_set_clk_freq(hba, !scale_up);
1202 		goto out;
1203 	}
1204 
1205 	ufshcd_pm_qos_update(hba, scale_up);
1206 
1207 out:
1208 	trace_ufshcd_profile_clk_scaling(hba,
1209 			(scale_up ? "up" : "down"),
1210 			ktime_to_us(ktime_sub(ktime_get(), start)), ret);
1211 	return ret;
1212 }
1213 
1214 /**
1215  * ufshcd_is_devfreq_scaling_required - check if scaling is required or not
1216  * @hba: per adapter instance
1217  * @freq: frequency to scale
1218  * @scale_up: True if scaling up and false if scaling down
1219  *
1220  * Return: true if scaling is required, false otherwise.
1221  */
1222 static bool ufshcd_is_devfreq_scaling_required(struct ufs_hba *hba,
1223 					       unsigned long freq, bool scale_up)
1224 {
1225 	struct ufs_clk_info *clki;
1226 	struct list_head *head = &hba->clk_list_head;
1227 
1228 	if (list_empty(head))
1229 		return false;
1230 
1231 	if (hba->use_pm_opp)
1232 		return freq != hba->clk_scaling.target_freq;
1233 
1234 	list_for_each_entry(clki, head, list) {
1235 		if (!IS_ERR_OR_NULL(clki->clk)) {
1236 			if (scale_up && clki->max_freq) {
1237 				if (clki->curr_freq == clki->max_freq)
1238 					continue;
1239 				return true;
1240 			} else if (!scale_up && clki->min_freq) {
1241 				if (clki->curr_freq == clki->min_freq)
1242 					continue;
1243 				return true;
1244 			}
1245 		}
1246 	}
1247 
1248 	return false;
1249 }
1250 
1251 /*
1252  * Determine the number of pending commands by counting the bits in the SCSI
1253  * device budget maps. This approach has been selected because a bit is set in
1254  * the budget map before scsi_host_queue_ready() checks the host_self_blocked
1255  * flag. The host_self_blocked flag can be modified by calling
1256  * scsi_block_requests() or scsi_unblock_requests().
1257  */
1258 static u32 ufshcd_pending_cmds(struct ufs_hba *hba)
1259 {
1260 	const struct scsi_device *sdev;
1261 	unsigned long flags;
1262 	u32 pending = 0;
1263 
1264 	spin_lock_irqsave(hba->host->host_lock, flags);
1265 	__shost_for_each_device(sdev, hba->host)
1266 		pending += sbitmap_weight(&sdev->budget_map);
1267 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1268 
1269 	return pending;
1270 }
1271 
1272 /*
1273  * Wait until all pending SCSI commands and TMFs have finished or the timeout
1274  * has expired.
1275  *
1276  * Return: 0 upon success; -EBUSY upon timeout.
1277  */
1278 static int ufshcd_wait_for_doorbell_clr(struct ufs_hba *hba,
1279 					u64 wait_timeout_us)
1280 {
1281 	int ret = 0;
1282 	u32 tm_doorbell;
1283 	u32 tr_pending;
1284 	bool timeout = false, do_last_check = false;
1285 	ktime_t start;
1286 
1287 	ufshcd_hold(hba);
1288 	/*
1289 	 * Wait for all the outstanding tasks/transfer requests.
1290 	 * Verify by checking the doorbell registers are clear.
1291 	 */
1292 	start = ktime_get();
1293 	do {
1294 		if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL) {
1295 			ret = -EBUSY;
1296 			goto out;
1297 		}
1298 
1299 		tm_doorbell = ufshcd_readl(hba, REG_UTP_TASK_REQ_DOOR_BELL);
1300 		tr_pending = ufshcd_pending_cmds(hba);
1301 		if (!tm_doorbell && !tr_pending) {
1302 			timeout = false;
1303 			break;
1304 		} else if (do_last_check) {
1305 			break;
1306 		}
1307 
1308 		io_schedule_timeout(msecs_to_jiffies(20));
1309 		if (ktime_to_us(ktime_sub(ktime_get(), start)) >
1310 		    wait_timeout_us) {
1311 			timeout = true;
1312 			/*
1313 			 * We might have scheduled out for long time so make
1314 			 * sure to check if doorbells are cleared by this time
1315 			 * or not.
1316 			 */
1317 			do_last_check = true;
1318 		}
1319 	} while (tm_doorbell || tr_pending);
1320 
1321 	if (timeout) {
1322 		dev_err(hba->dev,
1323 			"%s: timedout waiting for doorbell to clear (tm=0x%x, tr=0x%x)\n",
1324 			__func__, tm_doorbell, tr_pending);
1325 		ret = -EBUSY;
1326 	}
1327 out:
1328 	ufshcd_release(hba);
1329 	return ret;
1330 }
1331 
1332 /**
1333  * ufshcd_scale_gear - scale up/down UFS gear
1334  * @hba: per adapter instance
1335  * @target_gear: target gear to scale to
1336  * @scale_up: True for scaling up gear and false for scaling down
1337  *
1338  * Return: 0 for success; -EBUSY if scaling can't happen at this time;
1339  * non-zero for any other errors.
1340  */
1341 static int ufshcd_scale_gear(struct ufs_hba *hba, u32 target_gear, bool scale_up)
1342 {
1343 	int ret = 0;
1344 	struct ufs_pa_layer_attr new_pwr_info;
1345 
1346 	if (target_gear) {
1347 		new_pwr_info = hba->pwr_info;
1348 		new_pwr_info.gear_tx = target_gear;
1349 		new_pwr_info.gear_rx = target_gear;
1350 
1351 		goto config_pwr_mode;
1352 	}
1353 
1354 	/* Legacy gear scaling, in case vops_freq_to_gear_speed() is not implemented */
1355 	if (scale_up) {
1356 		memcpy(&new_pwr_info, &hba->clk_scaling.saved_pwr_info,
1357 		       sizeof(struct ufs_pa_layer_attr));
1358 	} else {
1359 		memcpy(&new_pwr_info, &hba->pwr_info,
1360 		       sizeof(struct ufs_pa_layer_attr));
1361 
1362 		if (hba->pwr_info.gear_tx > hba->clk_scaling.min_gear ||
1363 		    hba->pwr_info.gear_rx > hba->clk_scaling.min_gear) {
1364 			/* save the current power mode */
1365 			memcpy(&hba->clk_scaling.saved_pwr_info,
1366 				&hba->pwr_info,
1367 				sizeof(struct ufs_pa_layer_attr));
1368 
1369 			/* scale down gear */
1370 			new_pwr_info.gear_tx = hba->clk_scaling.min_gear;
1371 			new_pwr_info.gear_rx = hba->clk_scaling.min_gear;
1372 		}
1373 	}
1374 
1375 config_pwr_mode:
1376 	/* check if the power mode needs to be changed or not? */
1377 	ret = ufshcd_config_pwr_mode(hba, &new_pwr_info);
1378 	if (ret)
1379 		dev_err(hba->dev, "%s: failed err %d, old gear: (tx %d rx %d), new gear: (tx %d rx %d)",
1380 			__func__, ret,
1381 			hba->pwr_info.gear_tx, hba->pwr_info.gear_rx,
1382 			new_pwr_info.gear_tx, new_pwr_info.gear_rx);
1383 
1384 	return ret;
1385 }
1386 
1387 /*
1388  * Wait until all pending SCSI commands and TMFs have finished or the timeout
1389  * has expired.
1390  *
1391  * Return: 0 upon success; -EBUSY upon timeout.
1392  */
1393 static int ufshcd_clock_scaling_prepare(struct ufs_hba *hba, u64 timeout_us)
1394 {
1395 	int ret = 0;
1396 	/*
1397 	 * make sure that there are no outstanding requests when
1398 	 * clock scaling is in progress
1399 	 */
1400 	blk_mq_quiesce_tagset(&hba->host->tag_set);
1401 	mutex_lock(&hba->wb_mutex);
1402 	down_write(&hba->clk_scaling_lock);
1403 
1404 	if (!hba->clk_scaling.is_allowed ||
1405 	    ufshcd_wait_for_doorbell_clr(hba, timeout_us)) {
1406 		ret = -EBUSY;
1407 		up_write(&hba->clk_scaling_lock);
1408 		mutex_unlock(&hba->wb_mutex);
1409 		blk_mq_unquiesce_tagset(&hba->host->tag_set);
1410 		goto out;
1411 	}
1412 
1413 	/* let's not get into low power until clock scaling is completed */
1414 	ufshcd_hold(hba);
1415 
1416 out:
1417 	return ret;
1418 }
1419 
1420 static void ufshcd_clock_scaling_unprepare(struct ufs_hba *hba, int err)
1421 {
1422 	up_write(&hba->clk_scaling_lock);
1423 
1424 	/* Enable Write Booster if current gear requires it else disable it */
1425 	if (ufshcd_enable_wb_if_scaling_up(hba) && !err)
1426 		ufshcd_wb_toggle(hba, hba->pwr_info.gear_rx >= hba->clk_scaling.wb_gear);
1427 
1428 	mutex_unlock(&hba->wb_mutex);
1429 
1430 	blk_mq_unquiesce_tagset(&hba->host->tag_set);
1431 	ufshcd_release(hba);
1432 }
1433 
1434 /**
1435  * ufshcd_devfreq_scale - scale up/down UFS clocks and gear
1436  * @hba: per adapter instance
1437  * @freq: frequency to scale
1438  * @scale_up: True for scaling up and false for scalin down
1439  *
1440  * Return: 0 for success; -EBUSY if scaling can't happen at this time; non-zero
1441  * for any other errors.
1442  */
1443 static int ufshcd_devfreq_scale(struct ufs_hba *hba, unsigned long freq,
1444 				bool scale_up)
1445 {
1446 	u32 old_gear = hba->pwr_info.gear_rx;
1447 	u32 new_gear = 0;
1448 	int ret = 0;
1449 
1450 	new_gear = ufshcd_vops_freq_to_gear_speed(hba, freq);
1451 
1452 	ret = ufshcd_clock_scaling_prepare(hba, 1 * USEC_PER_SEC);
1453 	if (ret)
1454 		return ret;
1455 
1456 	/* scale down the gear before scaling down clocks */
1457 	if (!scale_up) {
1458 		ret = ufshcd_scale_gear(hba, new_gear, false);
1459 		if (ret)
1460 			goto out_unprepare;
1461 	}
1462 
1463 	ret = ufshcd_scale_clks(hba, freq, scale_up);
1464 	if (ret) {
1465 		if (!scale_up)
1466 			ufshcd_scale_gear(hba, old_gear, true);
1467 		goto out_unprepare;
1468 	}
1469 
1470 	/* scale up the gear after scaling up clocks */
1471 	if (scale_up) {
1472 		ret = ufshcd_scale_gear(hba, new_gear, true);
1473 		if (ret) {
1474 			ufshcd_scale_clks(hba, hba->devfreq->previous_freq,
1475 					  false);
1476 			goto out_unprepare;
1477 		}
1478 	}
1479 
1480 out_unprepare:
1481 	ufshcd_clock_scaling_unprepare(hba, ret);
1482 	return ret;
1483 }
1484 
1485 static void ufshcd_clk_scaling_suspend_work(struct work_struct *work)
1486 {
1487 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1488 					   clk_scaling.suspend_work);
1489 
1490 	scoped_guard(spinlock_irqsave, &hba->clk_scaling.lock)
1491 	{
1492 		if (hba->clk_scaling.active_reqs ||
1493 		    hba->clk_scaling.is_suspended)
1494 			return;
1495 
1496 		hba->clk_scaling.is_suspended = true;
1497 		hba->clk_scaling.window_start_t = 0;
1498 	}
1499 
1500 	devfreq_suspend_device(hba->devfreq);
1501 }
1502 
1503 static void ufshcd_clk_scaling_resume_work(struct work_struct *work)
1504 {
1505 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1506 					   clk_scaling.resume_work);
1507 
1508 	scoped_guard(spinlock_irqsave, &hba->clk_scaling.lock)
1509 	{
1510 		if (!hba->clk_scaling.is_suspended)
1511 			return;
1512 		hba->clk_scaling.is_suspended = false;
1513 	}
1514 
1515 	devfreq_resume_device(hba->devfreq);
1516 }
1517 
1518 static int ufshcd_devfreq_target(struct device *dev,
1519 				unsigned long *freq, u32 flags)
1520 {
1521 	int ret = 0;
1522 	struct ufs_hba *hba = dev_get_drvdata(dev);
1523 	ktime_t start;
1524 	bool scale_up = false, sched_clk_scaling_suspend_work = false;
1525 	struct list_head *clk_list = &hba->clk_list_head;
1526 	struct ufs_clk_info *clki;
1527 
1528 	if (!ufshcd_is_clkscaling_supported(hba))
1529 		return -EINVAL;
1530 
1531 	if (hba->use_pm_opp) {
1532 		struct dev_pm_opp *opp;
1533 
1534 		/* Get the recommended frequency from OPP framework */
1535 		opp = devfreq_recommended_opp(dev, freq, flags);
1536 		if (IS_ERR(opp))
1537 			return PTR_ERR(opp);
1538 
1539 		dev_pm_opp_put(opp);
1540 	} else {
1541 		/* Override with the closest supported frequency */
1542 		clki = list_first_entry(&hba->clk_list_head, struct ufs_clk_info,
1543 					list);
1544 		*freq =	(unsigned long) clk_round_rate(clki->clk, *freq);
1545 	}
1546 
1547 	scoped_guard(spinlock_irqsave, &hba->clk_scaling.lock)
1548 	{
1549 		if (ufshcd_eh_in_progress(hba))
1550 			return 0;
1551 
1552 		/* Skip scaling clock when clock scaling is suspended */
1553 		if (hba->clk_scaling.is_suspended) {
1554 			dev_warn(hba->dev, "clock scaling is suspended, skip");
1555 			return 0;
1556 		}
1557 
1558 		if (!hba->clk_scaling.active_reqs)
1559 			sched_clk_scaling_suspend_work = true;
1560 
1561 		if (list_empty(clk_list))
1562 			goto out;
1563 
1564 		/* Decide based on the target or rounded-off frequency and update */
1565 		if (hba->use_pm_opp)
1566 			scale_up = *freq > hba->clk_scaling.target_freq;
1567 		else
1568 			scale_up = *freq == clki->max_freq;
1569 
1570 		if (!hba->use_pm_opp && !scale_up)
1571 			*freq = clki->min_freq;
1572 
1573 		/* Update the frequency */
1574 		if (!ufshcd_is_devfreq_scaling_required(hba, *freq, scale_up)) {
1575 			ret = 0;
1576 			goto out; /* no state change required */
1577 		}
1578 	}
1579 
1580 	start = ktime_get();
1581 	ret = ufshcd_devfreq_scale(hba, *freq, scale_up);
1582 	if (!ret)
1583 		hba->clk_scaling.target_freq = *freq;
1584 
1585 	trace_ufshcd_profile_clk_scaling(hba,
1586 		(scale_up ? "up" : "down"),
1587 		ktime_to_us(ktime_sub(ktime_get(), start)), ret);
1588 
1589 out:
1590 	if (sched_clk_scaling_suspend_work &&
1591 			(!scale_up || hba->clk_scaling.suspend_on_no_request))
1592 		queue_work(hba->clk_scaling.workq,
1593 			   &hba->clk_scaling.suspend_work);
1594 
1595 	return ret;
1596 }
1597 
1598 static int ufshcd_devfreq_get_dev_status(struct device *dev,
1599 		struct devfreq_dev_status *stat)
1600 {
1601 	struct ufs_hba *hba = dev_get_drvdata(dev);
1602 	struct ufs_clk_scaling *scaling = &hba->clk_scaling;
1603 	ktime_t curr_t;
1604 
1605 	if (!ufshcd_is_clkscaling_supported(hba))
1606 		return -EINVAL;
1607 
1608 	memset(stat, 0, sizeof(*stat));
1609 
1610 	guard(spinlock_irqsave)(&hba->clk_scaling.lock);
1611 
1612 	curr_t = ktime_get();
1613 	if (!scaling->window_start_t)
1614 		goto start_window;
1615 
1616 	/*
1617 	 * If current frequency is 0, then the ondemand governor considers
1618 	 * there's no initial frequency set. And it always requests to set
1619 	 * to max. frequency.
1620 	 */
1621 	if (hba->use_pm_opp) {
1622 		stat->current_frequency = hba->clk_scaling.target_freq;
1623 	} else {
1624 		struct list_head *clk_list = &hba->clk_list_head;
1625 		struct ufs_clk_info *clki;
1626 
1627 		clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1628 		stat->current_frequency = clki->curr_freq;
1629 	}
1630 
1631 	if (scaling->is_busy_started)
1632 		scaling->tot_busy_t += ktime_us_delta(curr_t,
1633 				scaling->busy_start_t);
1634 	stat->total_time = ktime_us_delta(curr_t, scaling->window_start_t);
1635 	stat->busy_time = scaling->tot_busy_t;
1636 start_window:
1637 	scaling->window_start_t = curr_t;
1638 	scaling->tot_busy_t = 0;
1639 
1640 	if (scaling->active_reqs) {
1641 		scaling->busy_start_t = curr_t;
1642 		scaling->is_busy_started = true;
1643 	} else {
1644 		scaling->busy_start_t = 0;
1645 		scaling->is_busy_started = false;
1646 	}
1647 
1648 	return 0;
1649 }
1650 
1651 static int ufshcd_devfreq_init(struct ufs_hba *hba)
1652 {
1653 	struct list_head *clk_list = &hba->clk_list_head;
1654 	struct ufs_clk_info *clki;
1655 	struct devfreq *devfreq;
1656 	int ret;
1657 
1658 	/* Skip devfreq if we don't have any clocks in the list */
1659 	if (list_empty(clk_list))
1660 		return 0;
1661 
1662 	if (!hba->use_pm_opp) {
1663 		clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1664 		dev_pm_opp_add(hba->dev, clki->min_freq, 0);
1665 		dev_pm_opp_add(hba->dev, clki->max_freq, 0);
1666 	}
1667 
1668 	ufshcd_vops_config_scaling_param(hba, &hba->vps->devfreq_profile,
1669 					 &hba->vps->ondemand_data);
1670 	devfreq = devfreq_add_device(hba->dev,
1671 			&hba->vps->devfreq_profile,
1672 			DEVFREQ_GOV_SIMPLE_ONDEMAND,
1673 			&hba->vps->ondemand_data);
1674 	if (IS_ERR(devfreq)) {
1675 		ret = PTR_ERR(devfreq);
1676 		dev_err(hba->dev, "Unable to register with devfreq %d\n", ret);
1677 
1678 		if (!hba->use_pm_opp) {
1679 			dev_pm_opp_remove(hba->dev, clki->min_freq);
1680 			dev_pm_opp_remove(hba->dev, clki->max_freq);
1681 		}
1682 		return ret;
1683 	}
1684 
1685 	hba->devfreq = devfreq;
1686 
1687 	return 0;
1688 }
1689 
1690 static void ufshcd_devfreq_remove(struct ufs_hba *hba)
1691 {
1692 	struct list_head *clk_list = &hba->clk_list_head;
1693 
1694 	if (!hba->devfreq)
1695 		return;
1696 
1697 	devfreq_remove_device(hba->devfreq);
1698 	hba->devfreq = NULL;
1699 
1700 	if (!hba->use_pm_opp) {
1701 		struct ufs_clk_info *clki;
1702 
1703 		clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1704 		dev_pm_opp_remove(hba->dev, clki->min_freq);
1705 		dev_pm_opp_remove(hba->dev, clki->max_freq);
1706 	}
1707 }
1708 
1709 static void ufshcd_suspend_clkscaling(struct ufs_hba *hba)
1710 {
1711 	bool suspend = false;
1712 
1713 	cancel_work_sync(&hba->clk_scaling.suspend_work);
1714 	cancel_work_sync(&hba->clk_scaling.resume_work);
1715 
1716 	scoped_guard(spinlock_irqsave, &hba->clk_scaling.lock)
1717 	{
1718 		if (!hba->clk_scaling.is_suspended) {
1719 			suspend = true;
1720 			hba->clk_scaling.is_suspended = true;
1721 			hba->clk_scaling.window_start_t = 0;
1722 		}
1723 	}
1724 
1725 	if (suspend)
1726 		devfreq_suspend_device(hba->devfreq);
1727 }
1728 
1729 static void ufshcd_resume_clkscaling(struct ufs_hba *hba)
1730 {
1731 	bool resume = false;
1732 
1733 	scoped_guard(spinlock_irqsave, &hba->clk_scaling.lock)
1734 	{
1735 		if (hba->clk_scaling.is_suspended) {
1736 			resume = true;
1737 			hba->clk_scaling.is_suspended = false;
1738 		}
1739 	}
1740 
1741 	if (resume)
1742 		devfreq_resume_device(hba->devfreq);
1743 }
1744 
1745 static ssize_t ufshcd_clkscale_enable_show(struct device *dev,
1746 		struct device_attribute *attr, char *buf)
1747 {
1748 	struct ufs_hba *hba = dev_get_drvdata(dev);
1749 
1750 	return sysfs_emit(buf, "%d\n", hba->clk_scaling.is_enabled);
1751 }
1752 
1753 static ssize_t ufshcd_clkscale_enable_store(struct device *dev,
1754 		struct device_attribute *attr, const char *buf, size_t count)
1755 {
1756 	struct ufs_hba *hba = dev_get_drvdata(dev);
1757 	struct ufs_clk_info *clki;
1758 	unsigned long freq;
1759 	u32 value;
1760 	int err = 0;
1761 
1762 	if (kstrtou32(buf, 0, &value))
1763 		return -EINVAL;
1764 
1765 	down(&hba->host_sem);
1766 	if (!ufshcd_is_user_access_allowed(hba)) {
1767 		err = -EBUSY;
1768 		goto out;
1769 	}
1770 
1771 	value = !!value;
1772 	if (value == hba->clk_scaling.is_enabled)
1773 		goto out;
1774 
1775 	ufshcd_rpm_get_sync(hba);
1776 	ufshcd_hold(hba);
1777 
1778 	hba->clk_scaling.is_enabled = value;
1779 
1780 	if (value) {
1781 		ufshcd_resume_clkscaling(hba);
1782 		goto out_rel;
1783 	}
1784 
1785 	clki = list_first_entry(&hba->clk_list_head, struct ufs_clk_info, list);
1786 	freq = clki->max_freq;
1787 
1788 	ufshcd_suspend_clkscaling(hba);
1789 
1790 	if (!ufshcd_is_devfreq_scaling_required(hba, freq, true))
1791 		goto out_rel;
1792 
1793 	err = ufshcd_devfreq_scale(hba, freq, true);
1794 	if (err)
1795 		dev_err(hba->dev, "%s: failed to scale clocks up %d\n",
1796 				__func__, err);
1797 	else
1798 		hba->clk_scaling.target_freq = freq;
1799 
1800 out_rel:
1801 	ufshcd_release(hba);
1802 	ufshcd_rpm_put_sync(hba);
1803 out:
1804 	up(&hba->host_sem);
1805 	return err ? err : count;
1806 }
1807 
1808 static void ufshcd_init_clk_scaling_sysfs(struct ufs_hba *hba)
1809 {
1810 	hba->clk_scaling.enable_attr.show = ufshcd_clkscale_enable_show;
1811 	hba->clk_scaling.enable_attr.store = ufshcd_clkscale_enable_store;
1812 	sysfs_attr_init(&hba->clk_scaling.enable_attr.attr);
1813 	hba->clk_scaling.enable_attr.attr.name = "clkscale_enable";
1814 	hba->clk_scaling.enable_attr.attr.mode = 0644;
1815 	if (device_create_file(hba->dev, &hba->clk_scaling.enable_attr))
1816 		dev_err(hba->dev, "Failed to create sysfs for clkscale_enable\n");
1817 }
1818 
1819 static void ufshcd_remove_clk_scaling_sysfs(struct ufs_hba *hba)
1820 {
1821 	if (hba->clk_scaling.enable_attr.attr.name)
1822 		device_remove_file(hba->dev, &hba->clk_scaling.enable_attr);
1823 }
1824 
1825 static void ufshcd_init_clk_scaling(struct ufs_hba *hba)
1826 {
1827 	if (!ufshcd_is_clkscaling_supported(hba))
1828 		return;
1829 
1830 	if (!hba->clk_scaling.min_gear)
1831 		hba->clk_scaling.min_gear = UFS_HS_G1;
1832 
1833 	if (!hba->clk_scaling.wb_gear)
1834 		/* Use intermediate gear speed HS_G3 as the default wb_gear */
1835 		hba->clk_scaling.wb_gear = UFS_HS_G3;
1836 
1837 	INIT_WORK(&hba->clk_scaling.suspend_work,
1838 		  ufshcd_clk_scaling_suspend_work);
1839 	INIT_WORK(&hba->clk_scaling.resume_work,
1840 		  ufshcd_clk_scaling_resume_work);
1841 
1842 	spin_lock_init(&hba->clk_scaling.lock);
1843 
1844 	hba->clk_scaling.workq = alloc_ordered_workqueue(
1845 		"ufs_clkscaling_%d", WQ_MEM_RECLAIM, hba->host->host_no);
1846 
1847 	hba->clk_scaling.is_initialized = true;
1848 }
1849 
1850 static void ufshcd_exit_clk_scaling(struct ufs_hba *hba)
1851 {
1852 	if (!hba->clk_scaling.is_initialized)
1853 		return;
1854 
1855 	ufshcd_remove_clk_scaling_sysfs(hba);
1856 	destroy_workqueue(hba->clk_scaling.workq);
1857 	ufshcd_devfreq_remove(hba);
1858 	hba->clk_scaling.is_initialized = false;
1859 }
1860 
1861 static void ufshcd_ungate_work(struct work_struct *work)
1862 {
1863 	int ret;
1864 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1865 			clk_gating.ungate_work);
1866 
1867 	cancel_delayed_work_sync(&hba->clk_gating.gate_work);
1868 
1869 	scoped_guard(spinlock_irqsave, &hba->clk_gating.lock) {
1870 		if (hba->clk_gating.state == CLKS_ON)
1871 			return;
1872 	}
1873 
1874 	ufshcd_hba_vreg_set_hpm(hba);
1875 	ufshcd_setup_clocks(hba, true);
1876 
1877 	ufshcd_enable_irq(hba);
1878 
1879 	/* Exit from hibern8 */
1880 	if (ufshcd_can_hibern8_during_gating(hba)) {
1881 		/* Prevent gating in this path */
1882 		hba->clk_gating.is_suspended = true;
1883 		if (ufshcd_is_link_hibern8(hba)) {
1884 			ret = ufshcd_uic_hibern8_exit(hba);
1885 			if (ret)
1886 				dev_err(hba->dev, "%s: hibern8 exit failed %d\n",
1887 					__func__, ret);
1888 			else
1889 				ufshcd_set_link_active(hba);
1890 		}
1891 		hba->clk_gating.is_suspended = false;
1892 	}
1893 }
1894 
1895 /**
1896  * ufshcd_hold - Enable clocks that were gated earlier due to ufshcd_release.
1897  * Also, exit from hibern8 mode and set the link as active.
1898  * @hba: per adapter instance
1899  */
1900 void ufshcd_hold(struct ufs_hba *hba)
1901 {
1902 	bool flush_result;
1903 	unsigned long flags;
1904 
1905 	if (!ufshcd_is_clkgating_allowed(hba) ||
1906 	    !hba->clk_gating.is_initialized)
1907 		return;
1908 	spin_lock_irqsave(&hba->clk_gating.lock, flags);
1909 	hba->clk_gating.active_reqs++;
1910 
1911 start:
1912 	switch (hba->clk_gating.state) {
1913 	case CLKS_ON:
1914 		/*
1915 		 * Wait for the ungate work to complete if in progress.
1916 		 * Though the clocks may be in ON state, the link could
1917 		 * still be in hibner8 state if hibern8 is allowed
1918 		 * during clock gating.
1919 		 * Make sure we exit hibern8 state also in addition to
1920 		 * clocks being ON.
1921 		 */
1922 		if (ufshcd_can_hibern8_during_gating(hba) &&
1923 		    ufshcd_is_link_hibern8(hba)) {
1924 			spin_unlock_irqrestore(&hba->clk_gating.lock, flags);
1925 			flush_result = flush_work(&hba->clk_gating.ungate_work);
1926 			if (hba->clk_gating.is_suspended && !flush_result)
1927 				return;
1928 			spin_lock_irqsave(&hba->clk_gating.lock, flags);
1929 			goto start;
1930 		}
1931 		break;
1932 	case REQ_CLKS_OFF:
1933 		if (cancel_delayed_work(&hba->clk_gating.gate_work)) {
1934 			hba->clk_gating.state = CLKS_ON;
1935 			trace_ufshcd_clk_gating(hba,
1936 						hba->clk_gating.state);
1937 			break;
1938 		}
1939 		/*
1940 		 * If we are here, it means gating work is either done or
1941 		 * currently running. Hence, fall through to cancel gating
1942 		 * work and to enable clocks.
1943 		 */
1944 		fallthrough;
1945 	case CLKS_OFF:
1946 		hba->clk_gating.state = REQ_CLKS_ON;
1947 		trace_ufshcd_clk_gating(hba,
1948 					hba->clk_gating.state);
1949 		queue_work(hba->clk_gating.clk_gating_workq,
1950 			   &hba->clk_gating.ungate_work);
1951 		/*
1952 		 * fall through to check if we should wait for this
1953 		 * work to be done or not.
1954 		 */
1955 		fallthrough;
1956 	case REQ_CLKS_ON:
1957 		spin_unlock_irqrestore(&hba->clk_gating.lock, flags);
1958 		flush_work(&hba->clk_gating.ungate_work);
1959 		/* Make sure state is CLKS_ON before returning */
1960 		spin_lock_irqsave(&hba->clk_gating.lock, flags);
1961 		goto start;
1962 	default:
1963 		dev_err(hba->dev, "%s: clk gating is in invalid state %d\n",
1964 				__func__, hba->clk_gating.state);
1965 		break;
1966 	}
1967 	spin_unlock_irqrestore(&hba->clk_gating.lock, flags);
1968 }
1969 EXPORT_SYMBOL_GPL(ufshcd_hold);
1970 
1971 static void ufshcd_gate_work(struct work_struct *work)
1972 {
1973 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1974 			clk_gating.gate_work.work);
1975 	int ret;
1976 
1977 	scoped_guard(spinlock_irqsave, &hba->clk_gating.lock) {
1978 		/*
1979 		 * In case you are here to cancel this work the gating state
1980 		 * would be marked as REQ_CLKS_ON. In this case save time by
1981 		 * skipping the gating work and exit after changing the clock
1982 		 * state to CLKS_ON.
1983 		 */
1984 		if (hba->clk_gating.is_suspended ||
1985 		    hba->clk_gating.state != REQ_CLKS_OFF) {
1986 			hba->clk_gating.state = CLKS_ON;
1987 			trace_ufshcd_clk_gating(hba,
1988 						hba->clk_gating.state);
1989 			return;
1990 		}
1991 
1992 		if (hba->clk_gating.active_reqs)
1993 			return;
1994 	}
1995 
1996 	scoped_guard(spinlock_irqsave, hba->host->host_lock) {
1997 		if (ufshcd_is_ufs_dev_busy(hba) ||
1998 		    hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL)
1999 			return;
2000 	}
2001 
2002 	/* put the link into hibern8 mode before turning off clocks */
2003 	if (ufshcd_can_hibern8_during_gating(hba)) {
2004 		ret = ufshcd_uic_hibern8_enter(hba);
2005 		if (ret) {
2006 			hba->clk_gating.state = CLKS_ON;
2007 			dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
2008 					__func__, ret);
2009 			trace_ufshcd_clk_gating(hba,
2010 						hba->clk_gating.state);
2011 			return;
2012 		}
2013 		ufshcd_set_link_hibern8(hba);
2014 	}
2015 
2016 	ufshcd_disable_irq(hba);
2017 
2018 	ufshcd_setup_clocks(hba, false);
2019 
2020 	/* Put the host controller in low power mode if possible */
2021 	ufshcd_hba_vreg_set_lpm(hba);
2022 	/*
2023 	 * In case you are here to cancel this work the gating state
2024 	 * would be marked as REQ_CLKS_ON. In this case keep the state
2025 	 * as REQ_CLKS_ON which would anyway imply that clocks are off
2026 	 * and a request to turn them on is pending. By doing this way,
2027 	 * we keep the state machine in tact and this would ultimately
2028 	 * prevent from doing cancel work multiple times when there are
2029 	 * new requests arriving before the current cancel work is done.
2030 	 */
2031 	guard(spinlock_irqsave)(&hba->clk_gating.lock);
2032 	if (hba->clk_gating.state == REQ_CLKS_OFF) {
2033 		hba->clk_gating.state = CLKS_OFF;
2034 		trace_ufshcd_clk_gating(hba,
2035 					hba->clk_gating.state);
2036 	}
2037 }
2038 
2039 static void __ufshcd_release(struct ufs_hba *hba)
2040 {
2041 	lockdep_assert_held(&hba->clk_gating.lock);
2042 
2043 	if (!ufshcd_is_clkgating_allowed(hba))
2044 		return;
2045 
2046 	hba->clk_gating.active_reqs--;
2047 
2048 	if (hba->clk_gating.active_reqs || hba->clk_gating.is_suspended ||
2049 	    !hba->clk_gating.is_initialized ||
2050 	    hba->clk_gating.state == CLKS_OFF)
2051 		return;
2052 
2053 	scoped_guard(spinlock_irqsave, hba->host->host_lock) {
2054 		if (ufshcd_has_pending_tasks(hba) ||
2055 		    hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL)
2056 			return;
2057 	}
2058 
2059 	hba->clk_gating.state = REQ_CLKS_OFF;
2060 	trace_ufshcd_clk_gating(hba, hba->clk_gating.state);
2061 	queue_delayed_work(hba->clk_gating.clk_gating_workq,
2062 			   &hba->clk_gating.gate_work,
2063 			   msecs_to_jiffies(hba->clk_gating.delay_ms));
2064 }
2065 
2066 void ufshcd_release(struct ufs_hba *hba)
2067 {
2068 	guard(spinlock_irqsave)(&hba->clk_gating.lock);
2069 	__ufshcd_release(hba);
2070 }
2071 EXPORT_SYMBOL_GPL(ufshcd_release);
2072 
2073 static ssize_t ufshcd_clkgate_delay_show(struct device *dev,
2074 		struct device_attribute *attr, char *buf)
2075 {
2076 	struct ufs_hba *hba = dev_get_drvdata(dev);
2077 
2078 	return sysfs_emit(buf, "%lu\n", hba->clk_gating.delay_ms);
2079 }
2080 
2081 void ufshcd_clkgate_delay_set(struct device *dev, unsigned long value)
2082 {
2083 	struct ufs_hba *hba = dev_get_drvdata(dev);
2084 
2085 	guard(spinlock_irqsave)(&hba->clk_gating.lock);
2086 	hba->clk_gating.delay_ms = value;
2087 }
2088 EXPORT_SYMBOL_GPL(ufshcd_clkgate_delay_set);
2089 
2090 static ssize_t ufshcd_clkgate_delay_store(struct device *dev,
2091 		struct device_attribute *attr, const char *buf, size_t count)
2092 {
2093 	unsigned long value;
2094 
2095 	if (kstrtoul(buf, 0, &value))
2096 		return -EINVAL;
2097 
2098 	ufshcd_clkgate_delay_set(dev, value);
2099 	return count;
2100 }
2101 
2102 static ssize_t ufshcd_clkgate_enable_show(struct device *dev,
2103 		struct device_attribute *attr, char *buf)
2104 {
2105 	struct ufs_hba *hba = dev_get_drvdata(dev);
2106 
2107 	return sysfs_emit(buf, "%d\n", hba->clk_gating.is_enabled);
2108 }
2109 
2110 static ssize_t ufshcd_clkgate_enable_store(struct device *dev,
2111 		struct device_attribute *attr, const char *buf, size_t count)
2112 {
2113 	struct ufs_hba *hba = dev_get_drvdata(dev);
2114 	u32 value;
2115 
2116 	if (kstrtou32(buf, 0, &value))
2117 		return -EINVAL;
2118 
2119 	value = !!value;
2120 
2121 	guard(spinlock_irqsave)(&hba->clk_gating.lock);
2122 
2123 	if (value == hba->clk_gating.is_enabled)
2124 		return count;
2125 
2126 	if (value)
2127 		__ufshcd_release(hba);
2128 	else
2129 		hba->clk_gating.active_reqs++;
2130 
2131 	hba->clk_gating.is_enabled = value;
2132 
2133 	return count;
2134 }
2135 
2136 static void ufshcd_init_clk_gating_sysfs(struct ufs_hba *hba)
2137 {
2138 	hba->clk_gating.delay_attr.show = ufshcd_clkgate_delay_show;
2139 	hba->clk_gating.delay_attr.store = ufshcd_clkgate_delay_store;
2140 	sysfs_attr_init(&hba->clk_gating.delay_attr.attr);
2141 	hba->clk_gating.delay_attr.attr.name = "clkgate_delay_ms";
2142 	hba->clk_gating.delay_attr.attr.mode = 0644;
2143 	if (device_create_file(hba->dev, &hba->clk_gating.delay_attr))
2144 		dev_err(hba->dev, "Failed to create sysfs for clkgate_delay\n");
2145 
2146 	hba->clk_gating.enable_attr.show = ufshcd_clkgate_enable_show;
2147 	hba->clk_gating.enable_attr.store = ufshcd_clkgate_enable_store;
2148 	sysfs_attr_init(&hba->clk_gating.enable_attr.attr);
2149 	hba->clk_gating.enable_attr.attr.name = "clkgate_enable";
2150 	hba->clk_gating.enable_attr.attr.mode = 0644;
2151 	if (device_create_file(hba->dev, &hba->clk_gating.enable_attr))
2152 		dev_err(hba->dev, "Failed to create sysfs for clkgate_enable\n");
2153 }
2154 
2155 static void ufshcd_remove_clk_gating_sysfs(struct ufs_hba *hba)
2156 {
2157 	if (hba->clk_gating.delay_attr.attr.name)
2158 		device_remove_file(hba->dev, &hba->clk_gating.delay_attr);
2159 	if (hba->clk_gating.enable_attr.attr.name)
2160 		device_remove_file(hba->dev, &hba->clk_gating.enable_attr);
2161 }
2162 
2163 static void ufshcd_init_clk_gating(struct ufs_hba *hba)
2164 {
2165 	if (!ufshcd_is_clkgating_allowed(hba))
2166 		return;
2167 
2168 	hba->clk_gating.state = CLKS_ON;
2169 
2170 	hba->clk_gating.delay_ms = 150;
2171 	INIT_DELAYED_WORK(&hba->clk_gating.gate_work, ufshcd_gate_work);
2172 	INIT_WORK(&hba->clk_gating.ungate_work, ufshcd_ungate_work);
2173 
2174 	hba->clk_gating.clk_gating_workq = alloc_ordered_workqueue(
2175 		"ufs_clk_gating_%d", WQ_MEM_RECLAIM | WQ_HIGHPRI,
2176 		hba->host->host_no);
2177 
2178 	ufshcd_init_clk_gating_sysfs(hba);
2179 
2180 	hba->clk_gating.is_enabled = true;
2181 	hba->clk_gating.is_initialized = true;
2182 }
2183 
2184 static void ufshcd_exit_clk_gating(struct ufs_hba *hba)
2185 {
2186 	if (!hba->clk_gating.is_initialized)
2187 		return;
2188 
2189 	ufshcd_remove_clk_gating_sysfs(hba);
2190 
2191 	/* Ungate the clock if necessary. */
2192 	ufshcd_hold(hba);
2193 	hba->clk_gating.is_initialized = false;
2194 	ufshcd_release(hba);
2195 
2196 	destroy_workqueue(hba->clk_gating.clk_gating_workq);
2197 }
2198 
2199 static void ufshcd_clk_scaling_start_busy(struct ufs_hba *hba)
2200 {
2201 	bool queue_resume_work = false;
2202 	ktime_t curr_t = ktime_get();
2203 
2204 	if (!ufshcd_is_clkscaling_supported(hba))
2205 		return;
2206 
2207 	guard(spinlock_irqsave)(&hba->clk_scaling.lock);
2208 
2209 	if (!hba->clk_scaling.active_reqs++)
2210 		queue_resume_work = true;
2211 
2212 	if (!hba->clk_scaling.is_enabled || hba->pm_op_in_progress)
2213 		return;
2214 
2215 	if (queue_resume_work)
2216 		queue_work(hba->clk_scaling.workq,
2217 			   &hba->clk_scaling.resume_work);
2218 
2219 	if (!hba->clk_scaling.window_start_t) {
2220 		hba->clk_scaling.window_start_t = curr_t;
2221 		hba->clk_scaling.tot_busy_t = 0;
2222 		hba->clk_scaling.is_busy_started = false;
2223 	}
2224 
2225 	if (!hba->clk_scaling.is_busy_started) {
2226 		hba->clk_scaling.busy_start_t = curr_t;
2227 		hba->clk_scaling.is_busy_started = true;
2228 	}
2229 }
2230 
2231 static void ufshcd_clk_scaling_update_busy(struct ufs_hba *hba)
2232 {
2233 	struct ufs_clk_scaling *scaling = &hba->clk_scaling;
2234 
2235 	if (!ufshcd_is_clkscaling_supported(hba))
2236 		return;
2237 
2238 	guard(spinlock_irqsave)(&hba->clk_scaling.lock);
2239 
2240 	hba->clk_scaling.active_reqs--;
2241 	if (!scaling->active_reqs && scaling->is_busy_started) {
2242 		scaling->tot_busy_t += ktime_to_us(ktime_sub(ktime_get(),
2243 					scaling->busy_start_t));
2244 		scaling->busy_start_t = 0;
2245 		scaling->is_busy_started = false;
2246 	}
2247 }
2248 
2249 static inline int ufshcd_monitor_opcode2dir(u8 opcode)
2250 {
2251 	if (opcode == READ_6 || opcode == READ_10 || opcode == READ_16)
2252 		return READ;
2253 	else if (opcode == WRITE_6 || opcode == WRITE_10 || opcode == WRITE_16)
2254 		return WRITE;
2255 	else
2256 		return -EINVAL;
2257 }
2258 
2259 static inline bool ufshcd_should_inform_monitor(struct ufs_hba *hba,
2260 						struct ufshcd_lrb *lrbp)
2261 {
2262 	const struct ufs_hba_monitor *m = &hba->monitor;
2263 
2264 	return (m->enabled && lrbp && lrbp->cmd &&
2265 		(!m->chunk_size || m->chunk_size == lrbp->cmd->sdb.length) &&
2266 		ktime_before(hba->monitor.enabled_ts, lrbp->issue_time_stamp));
2267 }
2268 
2269 static void ufshcd_start_monitor(struct ufs_hba *hba,
2270 				 const struct ufshcd_lrb *lrbp)
2271 {
2272 	int dir = ufshcd_monitor_opcode2dir(*lrbp->cmd->cmnd);
2273 	unsigned long flags;
2274 
2275 	spin_lock_irqsave(hba->host->host_lock, flags);
2276 	if (dir >= 0 && hba->monitor.nr_queued[dir]++ == 0)
2277 		hba->monitor.busy_start_ts[dir] = ktime_get();
2278 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2279 }
2280 
2281 static void ufshcd_update_monitor(struct ufs_hba *hba, const struct ufshcd_lrb *lrbp)
2282 {
2283 	int dir = ufshcd_monitor_opcode2dir(*lrbp->cmd->cmnd);
2284 	unsigned long flags;
2285 
2286 	spin_lock_irqsave(hba->host->host_lock, flags);
2287 	if (dir >= 0 && hba->monitor.nr_queued[dir] > 0) {
2288 		const struct request *req = scsi_cmd_to_rq(lrbp->cmd);
2289 		struct ufs_hba_monitor *m = &hba->monitor;
2290 		ktime_t now, inc, lat;
2291 
2292 		now = lrbp->compl_time_stamp;
2293 		inc = ktime_sub(now, m->busy_start_ts[dir]);
2294 		m->total_busy[dir] = ktime_add(m->total_busy[dir], inc);
2295 		m->nr_sec_rw[dir] += blk_rq_sectors(req);
2296 
2297 		/* Update latencies */
2298 		m->nr_req[dir]++;
2299 		lat = ktime_sub(now, lrbp->issue_time_stamp);
2300 		m->lat_sum[dir] += lat;
2301 		if (m->lat_max[dir] < lat || !m->lat_max[dir])
2302 			m->lat_max[dir] = lat;
2303 		if (m->lat_min[dir] > lat || !m->lat_min[dir])
2304 			m->lat_min[dir] = lat;
2305 
2306 		m->nr_queued[dir]--;
2307 		/* Push forward the busy start of monitor */
2308 		m->busy_start_ts[dir] = now;
2309 	}
2310 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2311 }
2312 
2313 /**
2314  * ufshcd_send_command - Send SCSI or device management commands
2315  * @hba: per adapter instance
2316  * @task_tag: Task tag of the command
2317  * @hwq: pointer to hardware queue instance
2318  */
2319 static inline
2320 void ufshcd_send_command(struct ufs_hba *hba, unsigned int task_tag,
2321 			 struct ufs_hw_queue *hwq)
2322 {
2323 	struct ufshcd_lrb *lrbp = &hba->lrb[task_tag];
2324 	unsigned long flags;
2325 
2326 	lrbp->issue_time_stamp = ktime_get();
2327 	lrbp->issue_time_stamp_local_clock = local_clock();
2328 	lrbp->compl_time_stamp = ktime_set(0, 0);
2329 	lrbp->compl_time_stamp_local_clock = 0;
2330 	ufshcd_add_command_trace(hba, task_tag, UFS_CMD_SEND);
2331 	if (lrbp->cmd)
2332 		ufshcd_clk_scaling_start_busy(hba);
2333 	if (unlikely(ufshcd_should_inform_monitor(hba, lrbp)))
2334 		ufshcd_start_monitor(hba, lrbp);
2335 
2336 	if (hba->mcq_enabled) {
2337 		int utrd_size = sizeof(struct utp_transfer_req_desc);
2338 		struct utp_transfer_req_desc *src = lrbp->utr_descriptor_ptr;
2339 		struct utp_transfer_req_desc *dest;
2340 
2341 		spin_lock(&hwq->sq_lock);
2342 		dest = hwq->sqe_base_addr + hwq->sq_tail_slot;
2343 		memcpy(dest, src, utrd_size);
2344 		ufshcd_inc_sq_tail(hwq);
2345 		spin_unlock(&hwq->sq_lock);
2346 	} else {
2347 		spin_lock_irqsave(&hba->outstanding_lock, flags);
2348 		if (hba->vops && hba->vops->setup_xfer_req)
2349 			hba->vops->setup_xfer_req(hba, lrbp->task_tag,
2350 						  !!lrbp->cmd);
2351 		__set_bit(lrbp->task_tag, &hba->outstanding_reqs);
2352 		ufshcd_writel(hba, 1 << lrbp->task_tag,
2353 			      REG_UTP_TRANSFER_REQ_DOOR_BELL);
2354 		spin_unlock_irqrestore(&hba->outstanding_lock, flags);
2355 	}
2356 }
2357 
2358 /**
2359  * ufshcd_copy_sense_data - Copy sense data in case of check condition
2360  * @lrbp: pointer to local reference block
2361  */
2362 static inline void ufshcd_copy_sense_data(struct ufshcd_lrb *lrbp)
2363 {
2364 	u8 *const sense_buffer = lrbp->cmd->sense_buffer;
2365 	u16 resp_len;
2366 	int len;
2367 
2368 	resp_len = be16_to_cpu(lrbp->ucd_rsp_ptr->header.data_segment_length);
2369 	if (sense_buffer && resp_len) {
2370 		int len_to_copy;
2371 
2372 		len = be16_to_cpu(lrbp->ucd_rsp_ptr->sr.sense_data_len);
2373 		len_to_copy = min_t(int, UFS_SENSE_SIZE, len);
2374 
2375 		memcpy(sense_buffer, lrbp->ucd_rsp_ptr->sr.sense_data,
2376 		       len_to_copy);
2377 	}
2378 }
2379 
2380 /**
2381  * ufshcd_copy_query_response() - Copy the Query Response and the data
2382  * descriptor
2383  * @hba: per adapter instance
2384  * @lrbp: pointer to local reference block
2385  *
2386  * Return: 0 upon success; < 0 upon failure.
2387  */
2388 static
2389 int ufshcd_copy_query_response(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2390 {
2391 	struct ufs_query_res *query_res = &hba->dev_cmd.query.response;
2392 
2393 	memcpy(&query_res->upiu_res, &lrbp->ucd_rsp_ptr->qr, QUERY_OSF_SIZE);
2394 
2395 	/* Get the descriptor */
2396 	if (hba->dev_cmd.query.descriptor &&
2397 	    lrbp->ucd_rsp_ptr->qr.opcode == UPIU_QUERY_OPCODE_READ_DESC) {
2398 		u8 *descp = (u8 *)lrbp->ucd_rsp_ptr +
2399 				GENERAL_UPIU_REQUEST_SIZE;
2400 		u16 resp_len;
2401 		u16 buf_len;
2402 
2403 		/* data segment length */
2404 		resp_len = be16_to_cpu(lrbp->ucd_rsp_ptr->header
2405 				       .data_segment_length);
2406 		buf_len = be16_to_cpu(
2407 				hba->dev_cmd.query.request.upiu_req.length);
2408 		if (likely(buf_len >= resp_len)) {
2409 			memcpy(hba->dev_cmd.query.descriptor, descp, resp_len);
2410 		} else {
2411 			dev_warn(hba->dev,
2412 				 "%s: rsp size %d is bigger than buffer size %d",
2413 				 __func__, resp_len, buf_len);
2414 			return -EINVAL;
2415 		}
2416 	}
2417 
2418 	return 0;
2419 }
2420 
2421 /**
2422  * ufshcd_hba_capabilities - Read controller capabilities
2423  * @hba: per adapter instance
2424  *
2425  * Return: 0 on success, negative on error.
2426  */
2427 static inline int ufshcd_hba_capabilities(struct ufs_hba *hba)
2428 {
2429 	int err;
2430 
2431 	hba->capabilities = ufshcd_readl(hba, REG_CONTROLLER_CAPABILITIES);
2432 
2433 	/* nutrs and nutmrs are 0 based values */
2434 	hba->nutrs = (hba->capabilities & MASK_TRANSFER_REQUESTS_SLOTS_SDB) + 1;
2435 	hba->nutmrs =
2436 	((hba->capabilities & MASK_TASK_MANAGEMENT_REQUEST_SLOTS) >> 16) + 1;
2437 	hba->reserved_slot = hba->nutrs - 1;
2438 
2439 	hba->nortt = FIELD_GET(MASK_NUMBER_OUTSTANDING_RTT, hba->capabilities) + 1;
2440 
2441 	/* Read crypto capabilities */
2442 	err = ufshcd_hba_init_crypto_capabilities(hba);
2443 	if (err) {
2444 		dev_err(hba->dev, "crypto setup failed\n");
2445 		return err;
2446 	}
2447 
2448 	/*
2449 	 * The UFSHCI 3.0 specification does not define MCQ_SUPPORT and
2450 	 * LSDB_SUPPORT, but [31:29] as reserved bits with reset value 0s, which
2451 	 * means we can simply read values regardless of version.
2452 	 */
2453 	hba->mcq_sup = FIELD_GET(MASK_MCQ_SUPPORT, hba->capabilities);
2454 	/*
2455 	 * 0h: legacy single doorbell support is available
2456 	 * 1h: indicate that legacy single doorbell support has been removed
2457 	 */
2458 	if (!(hba->quirks & UFSHCD_QUIRK_BROKEN_LSDBS_CAP))
2459 		hba->lsdb_sup = !FIELD_GET(MASK_LSDB_SUPPORT, hba->capabilities);
2460 	else
2461 		hba->lsdb_sup = true;
2462 
2463 	hba->mcq_capabilities = ufshcd_readl(hba, REG_MCQCAP);
2464 
2465 	return 0;
2466 }
2467 
2468 /**
2469  * ufshcd_ready_for_uic_cmd - Check if controller is ready
2470  *                            to accept UIC commands
2471  * @hba: per adapter instance
2472  *
2473  * Return: true on success, else false.
2474  */
2475 static inline bool ufshcd_ready_for_uic_cmd(struct ufs_hba *hba)
2476 {
2477 	u32 val;
2478 	int ret = read_poll_timeout(ufshcd_readl, val, val & UIC_COMMAND_READY,
2479 				    500, uic_cmd_timeout * 1000, false, hba,
2480 				    REG_CONTROLLER_STATUS);
2481 	return ret == 0;
2482 }
2483 
2484 /**
2485  * ufshcd_get_upmcrs - Get the power mode change request status
2486  * @hba: Pointer to adapter instance
2487  *
2488  * This function gets the UPMCRS field of HCS register
2489  *
2490  * Return: value of UPMCRS field.
2491  */
2492 static inline u8 ufshcd_get_upmcrs(struct ufs_hba *hba)
2493 {
2494 	return (ufshcd_readl(hba, REG_CONTROLLER_STATUS) >> 8) & 0x7;
2495 }
2496 
2497 /**
2498  * ufshcd_dispatch_uic_cmd - Dispatch an UIC command to the Unipro layer
2499  * @hba: per adapter instance
2500  * @uic_cmd: UIC command
2501  */
2502 static inline void
2503 ufshcd_dispatch_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2504 {
2505 	lockdep_assert_held(&hba->uic_cmd_mutex);
2506 
2507 	WARN_ON(hba->active_uic_cmd);
2508 
2509 	hba->active_uic_cmd = uic_cmd;
2510 
2511 	/* Write Args */
2512 	ufshcd_writel(hba, uic_cmd->argument1, REG_UIC_COMMAND_ARG_1);
2513 	ufshcd_writel(hba, uic_cmd->argument2, REG_UIC_COMMAND_ARG_2);
2514 	ufshcd_writel(hba, uic_cmd->argument3, REG_UIC_COMMAND_ARG_3);
2515 
2516 	ufshcd_add_uic_command_trace(hba, uic_cmd, UFS_CMD_SEND);
2517 
2518 	/* Write UIC Cmd */
2519 	ufshcd_writel(hba, uic_cmd->command & COMMAND_OPCODE_MASK,
2520 		      REG_UIC_COMMAND);
2521 }
2522 
2523 /**
2524  * ufshcd_wait_for_uic_cmd - Wait for completion of an UIC command
2525  * @hba: per adapter instance
2526  * @uic_cmd: UIC command
2527  *
2528  * Return: 0 only if success.
2529  */
2530 static int
2531 ufshcd_wait_for_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2532 {
2533 	int ret;
2534 	unsigned long flags;
2535 
2536 	lockdep_assert_held(&hba->uic_cmd_mutex);
2537 
2538 	if (wait_for_completion_timeout(&uic_cmd->done,
2539 					msecs_to_jiffies(uic_cmd_timeout))) {
2540 		ret = uic_cmd->argument2 & MASK_UIC_COMMAND_RESULT;
2541 	} else {
2542 		ret = -ETIMEDOUT;
2543 		dev_err(hba->dev,
2544 			"uic cmd 0x%x with arg3 0x%x completion timeout\n",
2545 			uic_cmd->command, uic_cmd->argument3);
2546 
2547 		if (!uic_cmd->cmd_active) {
2548 			dev_err(hba->dev, "%s: UIC cmd has been completed, return the result\n",
2549 				__func__);
2550 			ret = uic_cmd->argument2 & MASK_UIC_COMMAND_RESULT;
2551 		}
2552 	}
2553 
2554 	spin_lock_irqsave(hba->host->host_lock, flags);
2555 	hba->active_uic_cmd = NULL;
2556 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2557 
2558 	return ret;
2559 }
2560 
2561 /**
2562  * __ufshcd_send_uic_cmd - Send UIC commands and retrieve the result
2563  * @hba: per adapter instance
2564  * @uic_cmd: UIC command
2565  *
2566  * Return: 0 only if success.
2567  */
2568 static int
2569 __ufshcd_send_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2570 {
2571 	lockdep_assert_held(&hba->uic_cmd_mutex);
2572 
2573 	if (!ufshcd_ready_for_uic_cmd(hba)) {
2574 		dev_err(hba->dev,
2575 			"Controller not ready to accept UIC commands\n");
2576 		return -EIO;
2577 	}
2578 
2579 	init_completion(&uic_cmd->done);
2580 
2581 	uic_cmd->cmd_active = 1;
2582 	ufshcd_dispatch_uic_cmd(hba, uic_cmd);
2583 
2584 	return 0;
2585 }
2586 
2587 /**
2588  * ufshcd_send_uic_cmd - Send UIC commands and retrieve the result
2589  * @hba: per adapter instance
2590  * @uic_cmd: UIC command
2591  *
2592  * Return: 0 only if success.
2593  */
2594 int ufshcd_send_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2595 {
2596 	int ret;
2597 
2598 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_UIC_CMD)
2599 		return 0;
2600 
2601 	ufshcd_hold(hba);
2602 	mutex_lock(&hba->uic_cmd_mutex);
2603 	ufshcd_add_delay_before_dme_cmd(hba);
2604 
2605 	ret = __ufshcd_send_uic_cmd(hba, uic_cmd);
2606 	if (!ret)
2607 		ret = ufshcd_wait_for_uic_cmd(hba, uic_cmd);
2608 
2609 	mutex_unlock(&hba->uic_cmd_mutex);
2610 
2611 	ufshcd_release(hba);
2612 	return ret;
2613 }
2614 
2615 /**
2616  * ufshcd_sgl_to_prdt - SG list to PRTD (Physical Region Description Table, 4DW format)
2617  * @hba:	per-adapter instance
2618  * @lrbp:	pointer to local reference block
2619  * @sg_entries:	The number of sg lists actually used
2620  * @sg_list:	Pointer to SG list
2621  */
2622 static void ufshcd_sgl_to_prdt(struct ufs_hba *hba, struct ufshcd_lrb *lrbp, int sg_entries,
2623 			       struct scatterlist *sg_list)
2624 {
2625 	struct ufshcd_sg_entry *prd;
2626 	struct scatterlist *sg;
2627 	int i;
2628 
2629 	if (sg_entries) {
2630 
2631 		if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN)
2632 			lrbp->utr_descriptor_ptr->prd_table_length =
2633 				cpu_to_le16(sg_entries * ufshcd_sg_entry_size(hba));
2634 		else
2635 			lrbp->utr_descriptor_ptr->prd_table_length = cpu_to_le16(sg_entries);
2636 
2637 		prd = lrbp->ucd_prdt_ptr;
2638 
2639 		for_each_sg(sg_list, sg, sg_entries, i) {
2640 			const unsigned int len = sg_dma_len(sg);
2641 
2642 			/*
2643 			 * From the UFSHCI spec: "Data Byte Count (DBC): A '0'
2644 			 * based value that indicates the length, in bytes, of
2645 			 * the data block. A maximum of length of 256KB may
2646 			 * exist for any entry. Bits 1:0 of this field shall be
2647 			 * 11b to indicate Dword granularity. A value of '3'
2648 			 * indicates 4 bytes, '7' indicates 8 bytes, etc."
2649 			 */
2650 			WARN_ONCE(len > SZ_256K, "len = %#x\n", len);
2651 			prd->size = cpu_to_le32(len - 1);
2652 			prd->addr = cpu_to_le64(sg->dma_address);
2653 			prd->reserved = 0;
2654 			prd = (void *)prd + ufshcd_sg_entry_size(hba);
2655 		}
2656 	} else {
2657 		lrbp->utr_descriptor_ptr->prd_table_length = 0;
2658 	}
2659 }
2660 
2661 /**
2662  * ufshcd_map_sg - Map scatter-gather list to prdt
2663  * @hba: per adapter instance
2664  * @lrbp: pointer to local reference block
2665  *
2666  * Return: 0 in case of success, non-zero value in case of failure.
2667  */
2668 static int ufshcd_map_sg(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2669 {
2670 	struct scsi_cmnd *cmd = lrbp->cmd;
2671 	int sg_segments = scsi_dma_map(cmd);
2672 
2673 	if (sg_segments < 0)
2674 		return sg_segments;
2675 
2676 	ufshcd_sgl_to_prdt(hba, lrbp, sg_segments, scsi_sglist(cmd));
2677 
2678 	return ufshcd_crypto_fill_prdt(hba, lrbp);
2679 }
2680 
2681 /**
2682  * ufshcd_enable_intr - enable interrupts
2683  * @hba: per adapter instance
2684  * @intrs: interrupt bits
2685  */
2686 static void ufshcd_enable_intr(struct ufs_hba *hba, u32 intrs)
2687 {
2688 	u32 set = ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
2689 
2690 	set |= intrs;
2691 	ufshcd_writel(hba, set, REG_INTERRUPT_ENABLE);
2692 }
2693 
2694 /**
2695  * ufshcd_disable_intr - disable interrupts
2696  * @hba: per adapter instance
2697  * @intrs: interrupt bits
2698  */
2699 static void ufshcd_disable_intr(struct ufs_hba *hba, u32 intrs)
2700 {
2701 	u32 set = ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
2702 
2703 	set &= ~intrs;
2704 	ufshcd_writel(hba, set, REG_INTERRUPT_ENABLE);
2705 }
2706 
2707 /**
2708  * ufshcd_prepare_req_desc_hdr - Fill UTP Transfer request descriptor header according to request
2709  * descriptor according to request
2710  * @hba: per adapter instance
2711  * @lrbp: pointer to local reference block
2712  * @upiu_flags: flags required in the header
2713  * @cmd_dir: requests data direction
2714  * @ehs_length: Total EHS Length (in 32‐bytes units of all Extra Header Segments)
2715  */
2716 static void
2717 ufshcd_prepare_req_desc_hdr(struct ufs_hba *hba, struct ufshcd_lrb *lrbp,
2718 			    u8 *upiu_flags, enum dma_data_direction cmd_dir,
2719 			    int ehs_length)
2720 {
2721 	struct utp_transfer_req_desc *req_desc = lrbp->utr_descriptor_ptr;
2722 	struct request_desc_header *h = &req_desc->header;
2723 	enum utp_data_direction data_direction;
2724 
2725 	lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
2726 
2727 	*h = (typeof(*h)){ };
2728 
2729 	if (cmd_dir == DMA_FROM_DEVICE) {
2730 		data_direction = UTP_DEVICE_TO_HOST;
2731 		*upiu_flags = UPIU_CMD_FLAGS_READ;
2732 	} else if (cmd_dir == DMA_TO_DEVICE) {
2733 		data_direction = UTP_HOST_TO_DEVICE;
2734 		*upiu_flags = UPIU_CMD_FLAGS_WRITE;
2735 	} else {
2736 		data_direction = UTP_NO_DATA_TRANSFER;
2737 		*upiu_flags = UPIU_CMD_FLAGS_NONE;
2738 	}
2739 
2740 	h->command_type = lrbp->command_type;
2741 	h->data_direction = data_direction;
2742 	h->ehs_length = ehs_length;
2743 
2744 	if (lrbp->intr_cmd)
2745 		h->interrupt = 1;
2746 
2747 	/* Prepare crypto related dwords */
2748 	ufshcd_prepare_req_desc_hdr_crypto(lrbp, h);
2749 
2750 	/*
2751 	 * assigning invalid value for command status. Controller
2752 	 * updates OCS on command completion, with the command
2753 	 * status
2754 	 */
2755 	h->ocs = OCS_INVALID_COMMAND_STATUS;
2756 
2757 	req_desc->prd_table_length = 0;
2758 }
2759 
2760 /**
2761  * ufshcd_prepare_utp_scsi_cmd_upiu() - fills the utp_transfer_req_desc,
2762  * for scsi commands
2763  * @lrbp: local reference block pointer
2764  * @upiu_flags: flags
2765  */
2766 static
2767 void ufshcd_prepare_utp_scsi_cmd_upiu(struct ufshcd_lrb *lrbp, u8 upiu_flags)
2768 {
2769 	struct scsi_cmnd *cmd = lrbp->cmd;
2770 	struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2771 	unsigned short cdb_len;
2772 
2773 	ucd_req_ptr->header = (struct utp_upiu_header){
2774 		.transaction_code = UPIU_TRANSACTION_COMMAND,
2775 		.flags = upiu_flags,
2776 		.lun = lrbp->lun,
2777 		.task_tag = lrbp->task_tag,
2778 		.command_set_type = UPIU_COMMAND_SET_TYPE_SCSI,
2779 	};
2780 
2781 	WARN_ON_ONCE(ucd_req_ptr->header.task_tag != lrbp->task_tag);
2782 
2783 	ucd_req_ptr->sc.exp_data_transfer_len = cpu_to_be32(cmd->sdb.length);
2784 
2785 	cdb_len = min_t(unsigned short, cmd->cmd_len, UFS_CDB_SIZE);
2786 	memcpy(ucd_req_ptr->sc.cdb, cmd->cmnd, cdb_len);
2787 
2788 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2789 }
2790 
2791 /**
2792  * ufshcd_prepare_utp_query_req_upiu() - fill the utp_transfer_req_desc for query request
2793  * @hba: UFS hba
2794  * @lrbp: local reference block pointer
2795  * @upiu_flags: flags
2796  */
2797 static void ufshcd_prepare_utp_query_req_upiu(struct ufs_hba *hba,
2798 				struct ufshcd_lrb *lrbp, u8 upiu_flags)
2799 {
2800 	struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2801 	struct ufs_query *query = &hba->dev_cmd.query;
2802 	u16 len = be16_to_cpu(query->request.upiu_req.length);
2803 
2804 	/* Query request header */
2805 	ucd_req_ptr->header = (struct utp_upiu_header){
2806 		.transaction_code = UPIU_TRANSACTION_QUERY_REQ,
2807 		.flags = upiu_flags,
2808 		.lun = lrbp->lun,
2809 		.task_tag = lrbp->task_tag,
2810 		.query_function = query->request.query_func,
2811 		/* Data segment length only need for WRITE_DESC */
2812 		.data_segment_length =
2813 			query->request.upiu_req.opcode ==
2814 					UPIU_QUERY_OPCODE_WRITE_DESC ?
2815 				cpu_to_be16(len) :
2816 				0,
2817 	};
2818 
2819 	/* Copy the Query Request buffer as is */
2820 	memcpy(&ucd_req_ptr->qr, &query->request.upiu_req,
2821 			QUERY_OSF_SIZE);
2822 
2823 	/* Copy the Descriptor */
2824 	if (query->request.upiu_req.opcode == UPIU_QUERY_OPCODE_WRITE_DESC)
2825 		memcpy(ucd_req_ptr + 1, query->descriptor, len);
2826 
2827 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2828 }
2829 
2830 static inline void ufshcd_prepare_utp_nop_upiu(struct ufshcd_lrb *lrbp)
2831 {
2832 	struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2833 
2834 	memset(ucd_req_ptr, 0, sizeof(struct utp_upiu_req));
2835 
2836 	ucd_req_ptr->header = (struct utp_upiu_header){
2837 		.transaction_code = UPIU_TRANSACTION_NOP_OUT,
2838 		.task_tag = lrbp->task_tag,
2839 	};
2840 
2841 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2842 }
2843 
2844 /**
2845  * ufshcd_compose_devman_upiu - UFS Protocol Information Unit(UPIU)
2846  *			     for Device Management Purposes
2847  * @hba: per adapter instance
2848  * @lrbp: pointer to local reference block
2849  *
2850  * Return: 0 upon success; < 0 upon failure.
2851  */
2852 static int ufshcd_compose_devman_upiu(struct ufs_hba *hba,
2853 				      struct ufshcd_lrb *lrbp)
2854 {
2855 	u8 upiu_flags;
2856 	int ret = 0;
2857 
2858 	ufshcd_prepare_req_desc_hdr(hba, lrbp, &upiu_flags, DMA_NONE, 0);
2859 
2860 	if (hba->dev_cmd.type == DEV_CMD_TYPE_QUERY)
2861 		ufshcd_prepare_utp_query_req_upiu(hba, lrbp, upiu_flags);
2862 	else if (hba->dev_cmd.type == DEV_CMD_TYPE_NOP)
2863 		ufshcd_prepare_utp_nop_upiu(lrbp);
2864 	else
2865 		ret = -EINVAL;
2866 
2867 	return ret;
2868 }
2869 
2870 /**
2871  * ufshcd_comp_scsi_upiu - UFS Protocol Information Unit(UPIU)
2872  *			   for SCSI Purposes
2873  * @hba: per adapter instance
2874  * @lrbp: pointer to local reference block
2875  */
2876 static void ufshcd_comp_scsi_upiu(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2877 {
2878 	struct request *rq = scsi_cmd_to_rq(lrbp->cmd);
2879 	unsigned int ioprio_class = IOPRIO_PRIO_CLASS(req_get_ioprio(rq));
2880 	u8 upiu_flags;
2881 
2882 	ufshcd_prepare_req_desc_hdr(hba, lrbp, &upiu_flags, lrbp->cmd->sc_data_direction, 0);
2883 	if (ioprio_class == IOPRIO_CLASS_RT)
2884 		upiu_flags |= UPIU_CMD_FLAGS_CP;
2885 	ufshcd_prepare_utp_scsi_cmd_upiu(lrbp, upiu_flags);
2886 }
2887 
2888 static void __ufshcd_setup_cmd(struct ufshcd_lrb *lrbp, struct scsi_cmnd *cmd, u8 lun, int tag)
2889 {
2890 	memset(lrbp->ucd_req_ptr, 0, sizeof(*lrbp->ucd_req_ptr));
2891 
2892 	lrbp->cmd = cmd;
2893 	lrbp->task_tag = tag;
2894 	lrbp->lun = lun;
2895 	ufshcd_prepare_lrbp_crypto(cmd ? scsi_cmd_to_rq(cmd) : NULL, lrbp);
2896 }
2897 
2898 static void ufshcd_setup_scsi_cmd(struct ufs_hba *hba, struct ufshcd_lrb *lrbp,
2899 				  struct scsi_cmnd *cmd, u8 lun, int tag)
2900 {
2901 	__ufshcd_setup_cmd(lrbp, cmd, lun, tag);
2902 	lrbp->intr_cmd = !ufshcd_is_intr_aggr_allowed(hba);
2903 	lrbp->req_abort_skip = false;
2904 
2905 	ufshcd_comp_scsi_upiu(hba, lrbp);
2906 }
2907 
2908 /**
2909  * ufshcd_upiu_wlun_to_scsi_wlun - maps UPIU W-LUN id to SCSI W-LUN ID
2910  * @upiu_wlun_id: UPIU W-LUN id
2911  *
2912  * Return: SCSI W-LUN id.
2913  */
2914 static inline u16 ufshcd_upiu_wlun_to_scsi_wlun(u8 upiu_wlun_id)
2915 {
2916 	return (upiu_wlun_id & ~UFS_UPIU_WLUN_ID) | SCSI_W_LUN_BASE;
2917 }
2918 
2919 static inline bool is_device_wlun(struct scsi_device *sdev)
2920 {
2921 	return sdev->lun ==
2922 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_UFS_DEVICE_WLUN);
2923 }
2924 
2925 /*
2926  * Associate the UFS controller queue with the default and poll HCTX types.
2927  * Initialize the mq_map[] arrays.
2928  */
2929 static void ufshcd_map_queues(struct Scsi_Host *shost)
2930 {
2931 	struct ufs_hba *hba = shost_priv(shost);
2932 	int i, queue_offset = 0;
2933 
2934 	if (!is_mcq_supported(hba)) {
2935 		hba->nr_queues[HCTX_TYPE_DEFAULT] = 1;
2936 		hba->nr_queues[HCTX_TYPE_READ] = 0;
2937 		hba->nr_queues[HCTX_TYPE_POLL] = 1;
2938 		hba->nr_hw_queues = 1;
2939 	}
2940 
2941 	for (i = 0; i < shost->nr_maps; i++) {
2942 		struct blk_mq_queue_map *map = &shost->tag_set.map[i];
2943 
2944 		map->nr_queues = hba->nr_queues[i];
2945 		if (!map->nr_queues)
2946 			continue;
2947 		map->queue_offset = queue_offset;
2948 		if (i == HCTX_TYPE_POLL && !is_mcq_supported(hba))
2949 			map->queue_offset = 0;
2950 
2951 		blk_mq_map_queues(map);
2952 		queue_offset += map->nr_queues;
2953 	}
2954 }
2955 
2956 static void ufshcd_init_lrb(struct ufs_hba *hba, struct ufshcd_lrb *lrb, int i)
2957 {
2958 	struct utp_transfer_cmd_desc *cmd_descp = (void *)hba->ucdl_base_addr +
2959 		i * ufshcd_get_ucd_size(hba);
2960 	struct utp_transfer_req_desc *utrdlp = hba->utrdl_base_addr;
2961 	dma_addr_t cmd_desc_element_addr = hba->ucdl_dma_addr +
2962 		i * ufshcd_get_ucd_size(hba);
2963 	u16 response_offset = le16_to_cpu(utrdlp[i].response_upiu_offset);
2964 	u16 prdt_offset = le16_to_cpu(utrdlp[i].prd_table_offset);
2965 
2966 	lrb->utr_descriptor_ptr = utrdlp + i;
2967 	lrb->utrd_dma_addr = hba->utrdl_dma_addr +
2968 		i * sizeof(struct utp_transfer_req_desc);
2969 	lrb->ucd_req_ptr = (struct utp_upiu_req *)cmd_descp->command_upiu;
2970 	lrb->ucd_req_dma_addr = cmd_desc_element_addr;
2971 	lrb->ucd_rsp_ptr = (struct utp_upiu_rsp *)cmd_descp->response_upiu;
2972 	lrb->ucd_rsp_dma_addr = cmd_desc_element_addr + response_offset;
2973 	lrb->ucd_prdt_ptr = (struct ufshcd_sg_entry *)cmd_descp->prd_table;
2974 	lrb->ucd_prdt_dma_addr = cmd_desc_element_addr + prdt_offset;
2975 }
2976 
2977 /**
2978  * ufshcd_queuecommand - main entry point for SCSI requests
2979  * @host: SCSI host pointer
2980  * @cmd: command from SCSI Midlayer
2981  *
2982  * Return: 0 for success, non-zero in case of failure.
2983  */
2984 static int ufshcd_queuecommand(struct Scsi_Host *host, struct scsi_cmnd *cmd)
2985 {
2986 	struct ufs_hba *hba = shost_priv(host);
2987 	int tag = scsi_cmd_to_rq(cmd)->tag;
2988 	struct ufshcd_lrb *lrbp;
2989 	int err = 0;
2990 	struct ufs_hw_queue *hwq = NULL;
2991 
2992 	switch (hba->ufshcd_state) {
2993 	case UFSHCD_STATE_OPERATIONAL:
2994 		break;
2995 	case UFSHCD_STATE_EH_SCHEDULED_NON_FATAL:
2996 		/*
2997 		 * SCSI error handler can call ->queuecommand() while UFS error
2998 		 * handler is in progress. Error interrupts could change the
2999 		 * state from UFSHCD_STATE_RESET to
3000 		 * UFSHCD_STATE_EH_SCHEDULED_NON_FATAL. Prevent requests
3001 		 * being issued in that case.
3002 		 */
3003 		if (ufshcd_eh_in_progress(hba)) {
3004 			err = SCSI_MLQUEUE_HOST_BUSY;
3005 			goto out;
3006 		}
3007 		break;
3008 	case UFSHCD_STATE_EH_SCHEDULED_FATAL:
3009 		/*
3010 		 * pm_runtime_get_sync() is used at error handling preparation
3011 		 * stage. If a scsi cmd, e.g. the SSU cmd, is sent from hba's
3012 		 * PM ops, it can never be finished if we let SCSI layer keep
3013 		 * retrying it, which gets err handler stuck forever. Neither
3014 		 * can we let the scsi cmd pass through, because UFS is in bad
3015 		 * state, the scsi cmd may eventually time out, which will get
3016 		 * err handler blocked for too long. So, just fail the scsi cmd
3017 		 * sent from PM ops, err handler can recover PM error anyways.
3018 		 */
3019 		if (hba->pm_op_in_progress) {
3020 			hba->force_reset = true;
3021 			set_host_byte(cmd, DID_BAD_TARGET);
3022 			scsi_done(cmd);
3023 			goto out;
3024 		}
3025 		fallthrough;
3026 	case UFSHCD_STATE_RESET:
3027 		err = SCSI_MLQUEUE_HOST_BUSY;
3028 		goto out;
3029 	case UFSHCD_STATE_ERROR:
3030 		set_host_byte(cmd, DID_ERROR);
3031 		scsi_done(cmd);
3032 		goto out;
3033 	}
3034 
3035 	hba->req_abort_count = 0;
3036 
3037 	ufshcd_hold(hba);
3038 
3039 	lrbp = &hba->lrb[tag];
3040 
3041 	ufshcd_setup_scsi_cmd(hba, lrbp, cmd, ufshcd_scsi_to_upiu_lun(cmd->device->lun), tag);
3042 
3043 	err = ufshcd_map_sg(hba, lrbp);
3044 	if (err) {
3045 		ufshcd_release(hba);
3046 		goto out;
3047 	}
3048 
3049 	if (hba->mcq_enabled)
3050 		hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(cmd));
3051 
3052 	ufshcd_send_command(hba, tag, hwq);
3053 
3054 out:
3055 	if (ufs_trigger_eh(hba)) {
3056 		unsigned long flags;
3057 
3058 		spin_lock_irqsave(hba->host->host_lock, flags);
3059 		ufshcd_schedule_eh_work(hba);
3060 		spin_unlock_irqrestore(hba->host->host_lock, flags);
3061 	}
3062 
3063 	return err;
3064 }
3065 
3066 static void ufshcd_setup_dev_cmd(struct ufs_hba *hba, struct ufshcd_lrb *lrbp,
3067 			     enum dev_cmd_type cmd_type, u8 lun, int tag)
3068 {
3069 	__ufshcd_setup_cmd(lrbp, NULL, lun, tag);
3070 	lrbp->intr_cmd = true; /* No interrupt aggregation */
3071 	hba->dev_cmd.type = cmd_type;
3072 }
3073 
3074 static int ufshcd_compose_dev_cmd(struct ufs_hba *hba,
3075 		struct ufshcd_lrb *lrbp, enum dev_cmd_type cmd_type, int tag)
3076 {
3077 	ufshcd_setup_dev_cmd(hba, lrbp, cmd_type, 0, tag);
3078 
3079 	return ufshcd_compose_devman_upiu(hba, lrbp);
3080 }
3081 
3082 /*
3083  * Check with the block layer if the command is inflight
3084  * @cmd: command to check.
3085  *
3086  * Return: true if command is inflight; false if not.
3087  */
3088 bool ufshcd_cmd_inflight(struct scsi_cmnd *cmd)
3089 {
3090 	return cmd && blk_mq_rq_state(scsi_cmd_to_rq(cmd)) == MQ_RQ_IN_FLIGHT;
3091 }
3092 
3093 /*
3094  * Clear the pending command in the controller and wait until
3095  * the controller confirms that the command has been cleared.
3096  * @hba: per adapter instance
3097  * @task_tag: The tag number of the command to be cleared.
3098  */
3099 static int ufshcd_clear_cmd(struct ufs_hba *hba, u32 task_tag)
3100 {
3101 	u32 mask;
3102 	int err;
3103 
3104 	if (hba->mcq_enabled) {
3105 		/*
3106 		 * MCQ mode. Clean up the MCQ resources similar to
3107 		 * what the ufshcd_utrl_clear() does for SDB mode.
3108 		 */
3109 		err = ufshcd_mcq_sq_cleanup(hba, task_tag);
3110 		if (err) {
3111 			dev_err(hba->dev, "%s: failed tag=%d. err=%d\n",
3112 				__func__, task_tag, err);
3113 			return err;
3114 		}
3115 		return 0;
3116 	}
3117 
3118 	mask = 1U << task_tag;
3119 
3120 	/* clear outstanding transaction before retry */
3121 	ufshcd_utrl_clear(hba, mask);
3122 
3123 	/*
3124 	 * wait for h/w to clear corresponding bit in door-bell.
3125 	 * max. wait is 1 sec.
3126 	 */
3127 	return ufshcd_wait_for_register(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL,
3128 					mask, ~mask, 1000, 1000);
3129 }
3130 
3131 /**
3132  * ufshcd_dev_cmd_completion() - handles device management command responses
3133  * @hba: per adapter instance
3134  * @lrbp: pointer to local reference block
3135  *
3136  * Return: 0 upon success; < 0 upon failure.
3137  */
3138 static int
3139 ufshcd_dev_cmd_completion(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
3140 {
3141 	enum upiu_response_transaction resp;
3142 	int err = 0;
3143 
3144 	hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
3145 	resp = ufshcd_get_req_rsp(lrbp->ucd_rsp_ptr);
3146 
3147 	switch (resp) {
3148 	case UPIU_TRANSACTION_NOP_IN:
3149 		if (hba->dev_cmd.type != DEV_CMD_TYPE_NOP) {
3150 			err = -EINVAL;
3151 			dev_err(hba->dev, "%s: unexpected response %x\n",
3152 					__func__, resp);
3153 		}
3154 		break;
3155 	case UPIU_TRANSACTION_QUERY_RSP: {
3156 		u8 response = lrbp->ucd_rsp_ptr->header.response;
3157 
3158 		if (response == 0) {
3159 			err = ufshcd_copy_query_response(hba, lrbp);
3160 		} else {
3161 			err = -EINVAL;
3162 			dev_err(hba->dev, "%s: unexpected response in Query RSP: %x\n",
3163 					__func__, response);
3164 		}
3165 		break;
3166 	}
3167 	case UPIU_TRANSACTION_REJECT_UPIU:
3168 		/* TODO: handle Reject UPIU Response */
3169 		err = -EPERM;
3170 		dev_err(hba->dev, "%s: Reject UPIU not fully implemented\n",
3171 				__func__);
3172 		break;
3173 	case UPIU_TRANSACTION_RESPONSE:
3174 		if (hba->dev_cmd.type != DEV_CMD_TYPE_RPMB) {
3175 			err = -EINVAL;
3176 			dev_err(hba->dev, "%s: unexpected response %x\n", __func__, resp);
3177 		}
3178 		break;
3179 	default:
3180 		err = -EINVAL;
3181 		dev_err(hba->dev, "%s: Invalid device management cmd response: %x\n",
3182 				__func__, resp);
3183 		break;
3184 	}
3185 
3186 	return err;
3187 }
3188 
3189 static int ufshcd_wait_for_dev_cmd(struct ufs_hba *hba,
3190 		struct ufshcd_lrb *lrbp, int max_timeout)
3191 {
3192 	unsigned long time_left = msecs_to_jiffies(max_timeout);
3193 	unsigned long flags;
3194 	bool pending;
3195 	int err;
3196 
3197 retry:
3198 	time_left = wait_for_completion_timeout(&hba->dev_cmd.complete,
3199 						time_left);
3200 
3201 	if (likely(time_left)) {
3202 		err = ufshcd_get_tr_ocs(lrbp, NULL);
3203 		if (!err)
3204 			err = ufshcd_dev_cmd_completion(hba, lrbp);
3205 	} else {
3206 		err = -ETIMEDOUT;
3207 		dev_dbg(hba->dev, "%s: dev_cmd request timedout, tag %d\n",
3208 			__func__, lrbp->task_tag);
3209 
3210 		/* MCQ mode */
3211 		if (hba->mcq_enabled) {
3212 			/* successfully cleared the command, retry if needed */
3213 			if (ufshcd_clear_cmd(hba, lrbp->task_tag) == 0)
3214 				err = -EAGAIN;
3215 			return err;
3216 		}
3217 
3218 		/* SDB mode */
3219 		if (ufshcd_clear_cmd(hba, lrbp->task_tag) == 0) {
3220 			/* successfully cleared the command, retry if needed */
3221 			err = -EAGAIN;
3222 			/*
3223 			 * Since clearing the command succeeded we also need to
3224 			 * clear the task tag bit from the outstanding_reqs
3225 			 * variable.
3226 			 */
3227 			spin_lock_irqsave(&hba->outstanding_lock, flags);
3228 			pending = test_bit(lrbp->task_tag,
3229 					   &hba->outstanding_reqs);
3230 			if (pending)
3231 				__clear_bit(lrbp->task_tag,
3232 					    &hba->outstanding_reqs);
3233 			spin_unlock_irqrestore(&hba->outstanding_lock, flags);
3234 
3235 			if (!pending) {
3236 				/*
3237 				 * The completion handler ran while we tried to
3238 				 * clear the command.
3239 				 */
3240 				time_left = 1;
3241 				goto retry;
3242 			}
3243 		} else {
3244 			dev_err(hba->dev, "%s: failed to clear tag %d\n",
3245 				__func__, lrbp->task_tag);
3246 
3247 			spin_lock_irqsave(&hba->outstanding_lock, flags);
3248 			pending = test_bit(lrbp->task_tag,
3249 					   &hba->outstanding_reqs);
3250 			spin_unlock_irqrestore(&hba->outstanding_lock, flags);
3251 
3252 			if (!pending) {
3253 				/*
3254 				 * The completion handler ran while we tried to
3255 				 * clear the command.
3256 				 */
3257 				time_left = 1;
3258 				goto retry;
3259 			}
3260 		}
3261 	}
3262 
3263 	return err;
3264 }
3265 
3266 static void ufshcd_dev_man_lock(struct ufs_hba *hba)
3267 {
3268 	ufshcd_hold(hba);
3269 	mutex_lock(&hba->dev_cmd.lock);
3270 	down_read(&hba->clk_scaling_lock);
3271 }
3272 
3273 static void ufshcd_dev_man_unlock(struct ufs_hba *hba)
3274 {
3275 	up_read(&hba->clk_scaling_lock);
3276 	mutex_unlock(&hba->dev_cmd.lock);
3277 	ufshcd_release(hba);
3278 }
3279 
3280 static int ufshcd_issue_dev_cmd(struct ufs_hba *hba, struct ufshcd_lrb *lrbp,
3281 			  const u32 tag, int timeout)
3282 {
3283 	int err;
3284 
3285 	ufshcd_add_query_upiu_trace(hba, UFS_QUERY_SEND, lrbp->ucd_req_ptr);
3286 	ufshcd_send_command(hba, tag, hba->dev_cmd_queue);
3287 	err = ufshcd_wait_for_dev_cmd(hba, lrbp, timeout);
3288 
3289 	ufshcd_add_query_upiu_trace(hba, err ? UFS_QUERY_ERR : UFS_QUERY_COMP,
3290 				    (struct utp_upiu_req *)lrbp->ucd_rsp_ptr);
3291 
3292 	return err;
3293 }
3294 
3295 /**
3296  * ufshcd_exec_dev_cmd - API for sending device management requests
3297  * @hba: UFS hba
3298  * @cmd_type: specifies the type (NOP, Query...)
3299  * @timeout: timeout in milliseconds
3300  *
3301  * Return: 0 upon success; < 0 upon failure.
3302  *
3303  * NOTE: Since there is only one available tag for device management commands,
3304  * it is expected you hold the hba->dev_cmd.lock mutex.
3305  */
3306 static int ufshcd_exec_dev_cmd(struct ufs_hba *hba,
3307 		enum dev_cmd_type cmd_type, int timeout)
3308 {
3309 	const u32 tag = hba->reserved_slot;
3310 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
3311 	int err;
3312 
3313 	/* Protects use of hba->reserved_slot. */
3314 	lockdep_assert_held(&hba->dev_cmd.lock);
3315 
3316 	err = ufshcd_compose_dev_cmd(hba, lrbp, cmd_type, tag);
3317 	if (unlikely(err))
3318 		return err;
3319 
3320 	return ufshcd_issue_dev_cmd(hba, lrbp, tag, timeout);
3321 }
3322 
3323 /**
3324  * ufshcd_init_query() - init the query response and request parameters
3325  * @hba: per-adapter instance
3326  * @request: address of the request pointer to be initialized
3327  * @response: address of the response pointer to be initialized
3328  * @opcode: operation to perform
3329  * @idn: flag idn to access
3330  * @index: LU number to access
3331  * @selector: query/flag/descriptor further identification
3332  */
3333 static inline void ufshcd_init_query(struct ufs_hba *hba,
3334 		struct ufs_query_req **request, struct ufs_query_res **response,
3335 		enum query_opcode opcode, u8 idn, u8 index, u8 selector)
3336 {
3337 	*request = &hba->dev_cmd.query.request;
3338 	*response = &hba->dev_cmd.query.response;
3339 	memset(*request, 0, sizeof(struct ufs_query_req));
3340 	memset(*response, 0, sizeof(struct ufs_query_res));
3341 	(*request)->upiu_req.opcode = opcode;
3342 	(*request)->upiu_req.idn = idn;
3343 	(*request)->upiu_req.index = index;
3344 	(*request)->upiu_req.selector = selector;
3345 }
3346 
3347 static int ufshcd_query_flag_retry(struct ufs_hba *hba,
3348 	enum query_opcode opcode, enum flag_idn idn, u8 index, bool *flag_res)
3349 {
3350 	int ret;
3351 	int retries;
3352 
3353 	for (retries = 0; retries < QUERY_REQ_RETRIES; retries++) {
3354 		ret = ufshcd_query_flag(hba, opcode, idn, index, flag_res);
3355 		if (ret)
3356 			dev_dbg(hba->dev,
3357 				"%s: failed with error %d, retries %d\n",
3358 				__func__, ret, retries);
3359 		else
3360 			break;
3361 	}
3362 
3363 	if (ret)
3364 		dev_err(hba->dev,
3365 			"%s: query flag, opcode %d, idn %d, failed with error %d after %d retries\n",
3366 			__func__, opcode, idn, ret, retries);
3367 	return ret;
3368 }
3369 
3370 /**
3371  * ufshcd_query_flag() - API function for sending flag query requests
3372  * @hba: per-adapter instance
3373  * @opcode: flag query to perform
3374  * @idn: flag idn to access
3375  * @index: flag index to access
3376  * @flag_res: the flag value after the query request completes
3377  *
3378  * Return: 0 for success, non-zero in case of failure.
3379  */
3380 int ufshcd_query_flag(struct ufs_hba *hba, enum query_opcode opcode,
3381 			enum flag_idn idn, u8 index, bool *flag_res)
3382 {
3383 	struct ufs_query_req *request = NULL;
3384 	struct ufs_query_res *response = NULL;
3385 	int err, selector = 0;
3386 	int timeout = dev_cmd_timeout;
3387 
3388 	BUG_ON(!hba);
3389 
3390 	ufshcd_dev_man_lock(hba);
3391 
3392 	ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3393 			selector);
3394 
3395 	switch (opcode) {
3396 	case UPIU_QUERY_OPCODE_SET_FLAG:
3397 	case UPIU_QUERY_OPCODE_CLEAR_FLAG:
3398 	case UPIU_QUERY_OPCODE_TOGGLE_FLAG:
3399 		request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3400 		break;
3401 	case UPIU_QUERY_OPCODE_READ_FLAG:
3402 		request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3403 		if (!flag_res) {
3404 			/* No dummy reads */
3405 			dev_err(hba->dev, "%s: Invalid argument for read request\n",
3406 					__func__);
3407 			err = -EINVAL;
3408 			goto out_unlock;
3409 		}
3410 		break;
3411 	default:
3412 		dev_err(hba->dev,
3413 			"%s: Expected query flag opcode but got = %d\n",
3414 			__func__, opcode);
3415 		err = -EINVAL;
3416 		goto out_unlock;
3417 	}
3418 
3419 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, timeout);
3420 
3421 	if (err) {
3422 		dev_err(hba->dev,
3423 			"%s: Sending flag query for idn %d failed, err = %d\n",
3424 			__func__, idn, err);
3425 		goto out_unlock;
3426 	}
3427 
3428 	if (flag_res)
3429 		*flag_res = (be32_to_cpu(response->upiu_res.value) &
3430 				MASK_QUERY_UPIU_FLAG_LOC) & 0x1;
3431 
3432 out_unlock:
3433 	ufshcd_dev_man_unlock(hba);
3434 	return err;
3435 }
3436 
3437 /**
3438  * ufshcd_query_attr - API function for sending attribute requests
3439  * @hba: per-adapter instance
3440  * @opcode: attribute opcode
3441  * @idn: attribute idn to access
3442  * @index: index field
3443  * @selector: selector field
3444  * @attr_val: the attribute value after the query request completes
3445  *
3446  * Return: 0 for success, non-zero in case of failure.
3447 */
3448 int ufshcd_query_attr(struct ufs_hba *hba, enum query_opcode opcode,
3449 		      enum attr_idn idn, u8 index, u8 selector, u32 *attr_val)
3450 {
3451 	struct ufs_query_req *request = NULL;
3452 	struct ufs_query_res *response = NULL;
3453 	int err;
3454 
3455 	BUG_ON(!hba);
3456 
3457 	if (!attr_val) {
3458 		dev_err(hba->dev, "%s: attribute value required for opcode 0x%x\n",
3459 				__func__, opcode);
3460 		return -EINVAL;
3461 	}
3462 
3463 	ufshcd_dev_man_lock(hba);
3464 
3465 	ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3466 			selector);
3467 
3468 	switch (opcode) {
3469 	case UPIU_QUERY_OPCODE_WRITE_ATTR:
3470 		request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3471 		request->upiu_req.value = cpu_to_be32(*attr_val);
3472 		break;
3473 	case UPIU_QUERY_OPCODE_READ_ATTR:
3474 		request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3475 		break;
3476 	default:
3477 		dev_err(hba->dev, "%s: Expected query attr opcode but got = 0x%.2x\n",
3478 				__func__, opcode);
3479 		err = -EINVAL;
3480 		goto out_unlock;
3481 	}
3482 
3483 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, dev_cmd_timeout);
3484 
3485 	if (err) {
3486 		dev_err(hba->dev, "%s: opcode 0x%.2x for idn %d failed, index %d, err = %d\n",
3487 				__func__, opcode, idn, index, err);
3488 		goto out_unlock;
3489 	}
3490 
3491 	*attr_val = be32_to_cpu(response->upiu_res.value);
3492 
3493 out_unlock:
3494 	ufshcd_dev_man_unlock(hba);
3495 	return err;
3496 }
3497 
3498 /**
3499  * ufshcd_query_attr_retry() - API function for sending query
3500  * attribute with retries
3501  * @hba: per-adapter instance
3502  * @opcode: attribute opcode
3503  * @idn: attribute idn to access
3504  * @index: index field
3505  * @selector: selector field
3506  * @attr_val: the attribute value after the query request
3507  * completes
3508  *
3509  * Return: 0 for success, non-zero in case of failure.
3510 */
3511 int ufshcd_query_attr_retry(struct ufs_hba *hba,
3512 	enum query_opcode opcode, enum attr_idn idn, u8 index, u8 selector,
3513 	u32 *attr_val)
3514 {
3515 	int ret = 0;
3516 	u32 retries;
3517 
3518 	for (retries = QUERY_REQ_RETRIES; retries > 0; retries--) {
3519 		ret = ufshcd_query_attr(hba, opcode, idn, index,
3520 						selector, attr_val);
3521 		if (ret)
3522 			dev_dbg(hba->dev, "%s: failed with error %d, retries %d\n",
3523 				__func__, ret, retries);
3524 		else
3525 			break;
3526 	}
3527 
3528 	if (ret)
3529 		dev_err(hba->dev,
3530 			"%s: query attribute, idn %d, failed with error %d after %d retries\n",
3531 			__func__, idn, ret, QUERY_REQ_RETRIES);
3532 	return ret;
3533 }
3534 
3535 static int __ufshcd_query_descriptor(struct ufs_hba *hba,
3536 			enum query_opcode opcode, enum desc_idn idn, u8 index,
3537 			u8 selector, u8 *desc_buf, int *buf_len)
3538 {
3539 	struct ufs_query_req *request = NULL;
3540 	struct ufs_query_res *response = NULL;
3541 	int err;
3542 
3543 	BUG_ON(!hba);
3544 
3545 	if (!desc_buf) {
3546 		dev_err(hba->dev, "%s: descriptor buffer required for opcode 0x%x\n",
3547 				__func__, opcode);
3548 		return -EINVAL;
3549 	}
3550 
3551 	if (*buf_len < QUERY_DESC_MIN_SIZE || *buf_len > QUERY_DESC_MAX_SIZE) {
3552 		dev_err(hba->dev, "%s: descriptor buffer size (%d) is out of range\n",
3553 				__func__, *buf_len);
3554 		return -EINVAL;
3555 	}
3556 
3557 	ufshcd_dev_man_lock(hba);
3558 
3559 	ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3560 			selector);
3561 	hba->dev_cmd.query.descriptor = desc_buf;
3562 	request->upiu_req.length = cpu_to_be16(*buf_len);
3563 
3564 	switch (opcode) {
3565 	case UPIU_QUERY_OPCODE_WRITE_DESC:
3566 		request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3567 		break;
3568 	case UPIU_QUERY_OPCODE_READ_DESC:
3569 		request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3570 		break;
3571 	default:
3572 		dev_err(hba->dev,
3573 				"%s: Expected query descriptor opcode but got = 0x%.2x\n",
3574 				__func__, opcode);
3575 		err = -EINVAL;
3576 		goto out_unlock;
3577 	}
3578 
3579 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, dev_cmd_timeout);
3580 
3581 	if (err) {
3582 		dev_err(hba->dev, "%s: opcode 0x%.2x for idn %d failed, index %d, err = %d\n",
3583 				__func__, opcode, idn, index, err);
3584 		goto out_unlock;
3585 	}
3586 
3587 	*buf_len = be16_to_cpu(response->upiu_res.length);
3588 
3589 out_unlock:
3590 	hba->dev_cmd.query.descriptor = NULL;
3591 	ufshcd_dev_man_unlock(hba);
3592 	return err;
3593 }
3594 
3595 /**
3596  * ufshcd_query_descriptor_retry - API function for sending descriptor requests
3597  * @hba: per-adapter instance
3598  * @opcode: attribute opcode
3599  * @idn: attribute idn to access
3600  * @index: index field
3601  * @selector: selector field
3602  * @desc_buf: the buffer that contains the descriptor
3603  * @buf_len: length parameter passed to the device
3604  *
3605  * The buf_len parameter will contain, on return, the length parameter
3606  * received on the response.
3607  *
3608  * Return: 0 for success, non-zero in case of failure.
3609  */
3610 int ufshcd_query_descriptor_retry(struct ufs_hba *hba,
3611 				  enum query_opcode opcode,
3612 				  enum desc_idn idn, u8 index,
3613 				  u8 selector,
3614 				  u8 *desc_buf, int *buf_len)
3615 {
3616 	int err;
3617 	int retries;
3618 
3619 	for (retries = QUERY_REQ_RETRIES; retries > 0; retries--) {
3620 		err = __ufshcd_query_descriptor(hba, opcode, idn, index,
3621 						selector, desc_buf, buf_len);
3622 		if (!err || err == -EINVAL)
3623 			break;
3624 	}
3625 
3626 	return err;
3627 }
3628 
3629 /**
3630  * ufshcd_read_desc_param - read the specified descriptor parameter
3631  * @hba: Pointer to adapter instance
3632  * @desc_id: descriptor idn value
3633  * @desc_index: descriptor index
3634  * @param_offset: offset of the parameter to read
3635  * @param_read_buf: pointer to buffer where parameter would be read
3636  * @param_size: sizeof(param_read_buf)
3637  *
3638  * Return: 0 in case of success, non-zero otherwise.
3639  */
3640 int ufshcd_read_desc_param(struct ufs_hba *hba,
3641 			   enum desc_idn desc_id,
3642 			   int desc_index,
3643 			   u8 param_offset,
3644 			   u8 *param_read_buf,
3645 			   u8 param_size)
3646 {
3647 	int ret;
3648 	u8 *desc_buf;
3649 	int buff_len = QUERY_DESC_MAX_SIZE;
3650 	bool is_kmalloc = true;
3651 
3652 	/* Safety check */
3653 	if (desc_id >= QUERY_DESC_IDN_MAX || !param_size)
3654 		return -EINVAL;
3655 
3656 	/* Check whether we need temp memory */
3657 	if (param_offset != 0 || param_size < buff_len) {
3658 		desc_buf = kzalloc(buff_len, GFP_KERNEL);
3659 		if (!desc_buf)
3660 			return -ENOMEM;
3661 	} else {
3662 		desc_buf = param_read_buf;
3663 		is_kmalloc = false;
3664 	}
3665 
3666 	/* Request for full descriptor */
3667 	ret = ufshcd_query_descriptor_retry(hba, UPIU_QUERY_OPCODE_READ_DESC,
3668 					    desc_id, desc_index, 0,
3669 					    desc_buf, &buff_len);
3670 	if (ret) {
3671 		dev_err(hba->dev, "%s: Failed reading descriptor. desc_id %d, desc_index %d, param_offset %d, ret %d\n",
3672 			__func__, desc_id, desc_index, param_offset, ret);
3673 		goto out;
3674 	}
3675 
3676 	/* Update descriptor length */
3677 	buff_len = desc_buf[QUERY_DESC_LENGTH_OFFSET];
3678 
3679 	if (param_offset >= buff_len) {
3680 		dev_err(hba->dev, "%s: Invalid offset 0x%x in descriptor IDN 0x%x, length 0x%x\n",
3681 			__func__, param_offset, desc_id, buff_len);
3682 		ret = -EINVAL;
3683 		goto out;
3684 	}
3685 
3686 	/* Sanity check */
3687 	if (desc_buf[QUERY_DESC_DESC_TYPE_OFFSET] != desc_id) {
3688 		dev_err(hba->dev, "%s: invalid desc_id %d in descriptor header\n",
3689 			__func__, desc_buf[QUERY_DESC_DESC_TYPE_OFFSET]);
3690 		ret = -EINVAL;
3691 		goto out;
3692 	}
3693 
3694 	if (is_kmalloc) {
3695 		/* Make sure we don't copy more data than available */
3696 		if (param_offset >= buff_len)
3697 			ret = -EINVAL;
3698 		else
3699 			memcpy(param_read_buf, &desc_buf[param_offset],
3700 			       min_t(u32, param_size, buff_len - param_offset));
3701 	}
3702 out:
3703 	if (is_kmalloc)
3704 		kfree(desc_buf);
3705 	return ret;
3706 }
3707 
3708 /**
3709  * struct uc_string_id - unicode string
3710  *
3711  * @len: size of this descriptor inclusive
3712  * @type: descriptor type
3713  * @uc: unicode string character
3714  */
3715 struct uc_string_id {
3716 	u8 len;
3717 	u8 type;
3718 	wchar_t uc[];
3719 } __packed;
3720 
3721 /* replace non-printable or non-ASCII characters with spaces */
3722 static inline char ufshcd_remove_non_printable(u8 ch)
3723 {
3724 	return (ch >= 0x20 && ch <= 0x7e) ? ch : ' ';
3725 }
3726 
3727 /**
3728  * ufshcd_read_string_desc - read string descriptor
3729  * @hba: pointer to adapter instance
3730  * @desc_index: descriptor index
3731  * @buf: pointer to buffer where descriptor would be read,
3732  *       the caller should free the memory.
3733  * @ascii: if true convert from unicode to ascii characters
3734  *         null terminated string.
3735  *
3736  * Return:
3737  * *      string size on success.
3738  * *      -ENOMEM: on allocation failure
3739  * *      -EINVAL: on a wrong parameter
3740  */
3741 int ufshcd_read_string_desc(struct ufs_hba *hba, u8 desc_index,
3742 			    u8 **buf, bool ascii)
3743 {
3744 	struct uc_string_id *uc_str;
3745 	u8 *str;
3746 	int ret;
3747 
3748 	if (!buf)
3749 		return -EINVAL;
3750 
3751 	uc_str = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
3752 	if (!uc_str)
3753 		return -ENOMEM;
3754 
3755 	ret = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_STRING, desc_index, 0,
3756 				     (u8 *)uc_str, QUERY_DESC_MAX_SIZE);
3757 	if (ret < 0) {
3758 		dev_err(hba->dev, "Reading String Desc failed after %d retries. err = %d\n",
3759 			QUERY_REQ_RETRIES, ret);
3760 		str = NULL;
3761 		goto out;
3762 	}
3763 
3764 	if (uc_str->len <= QUERY_DESC_HDR_SIZE) {
3765 		dev_dbg(hba->dev, "String Desc is of zero length\n");
3766 		str = NULL;
3767 		ret = 0;
3768 		goto out;
3769 	}
3770 
3771 	if (ascii) {
3772 		ssize_t ascii_len;
3773 		int i;
3774 		/* remove header and divide by 2 to move from UTF16 to UTF8 */
3775 		ascii_len = (uc_str->len - QUERY_DESC_HDR_SIZE) / 2 + 1;
3776 		str = kzalloc(ascii_len, GFP_KERNEL);
3777 		if (!str) {
3778 			ret = -ENOMEM;
3779 			goto out;
3780 		}
3781 
3782 		/*
3783 		 * the descriptor contains string in UTF16 format
3784 		 * we need to convert to utf-8 so it can be displayed
3785 		 */
3786 		ret = utf16s_to_utf8s(uc_str->uc,
3787 				      uc_str->len - QUERY_DESC_HDR_SIZE,
3788 				      UTF16_BIG_ENDIAN, str, ascii_len - 1);
3789 
3790 		/* replace non-printable or non-ASCII characters with spaces */
3791 		for (i = 0; i < ret; i++)
3792 			str[i] = ufshcd_remove_non_printable(str[i]);
3793 
3794 		str[ret++] = '\0';
3795 
3796 	} else {
3797 		str = kmemdup(uc_str, uc_str->len, GFP_KERNEL);
3798 		if (!str) {
3799 			ret = -ENOMEM;
3800 			goto out;
3801 		}
3802 		ret = uc_str->len;
3803 	}
3804 out:
3805 	*buf = str;
3806 	kfree(uc_str);
3807 	return ret;
3808 }
3809 
3810 /**
3811  * ufshcd_read_unit_desc_param - read the specified unit descriptor parameter
3812  * @hba: Pointer to adapter instance
3813  * @lun: lun id
3814  * @param_offset: offset of the parameter to read
3815  * @param_read_buf: pointer to buffer where parameter would be read
3816  * @param_size: sizeof(param_read_buf)
3817  *
3818  * Return: 0 in case of success, non-zero otherwise.
3819  */
3820 static inline int ufshcd_read_unit_desc_param(struct ufs_hba *hba,
3821 					      int lun,
3822 					      enum unit_desc_param param_offset,
3823 					      u8 *param_read_buf,
3824 					      u32 param_size)
3825 {
3826 	/*
3827 	 * Unit descriptors are only available for general purpose LUs (LUN id
3828 	 * from 0 to 7) and RPMB Well known LU.
3829 	 */
3830 	if (!ufs_is_valid_unit_desc_lun(&hba->dev_info, lun))
3831 		return -EOPNOTSUPP;
3832 
3833 	return ufshcd_read_desc_param(hba, QUERY_DESC_IDN_UNIT, lun,
3834 				      param_offset, param_read_buf, param_size);
3835 }
3836 
3837 static int ufshcd_get_ref_clk_gating_wait(struct ufs_hba *hba)
3838 {
3839 	int err = 0;
3840 	u32 gating_wait = UFSHCD_REF_CLK_GATING_WAIT_US;
3841 
3842 	if (hba->dev_info.wspecversion >= 0x300) {
3843 		err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
3844 				QUERY_ATTR_IDN_REF_CLK_GATING_WAIT_TIME, 0, 0,
3845 				&gating_wait);
3846 		if (err)
3847 			dev_err(hba->dev, "Failed reading bRefClkGatingWait. err = %d, use default %uus\n",
3848 					 err, gating_wait);
3849 
3850 		if (gating_wait == 0) {
3851 			gating_wait = UFSHCD_REF_CLK_GATING_WAIT_US;
3852 			dev_err(hba->dev, "Undefined ref clk gating wait time, use default %uus\n",
3853 					 gating_wait);
3854 		}
3855 
3856 		hba->dev_info.clk_gating_wait_us = gating_wait;
3857 	}
3858 
3859 	return err;
3860 }
3861 
3862 /**
3863  * ufshcd_memory_alloc - allocate memory for host memory space data structures
3864  * @hba: per adapter instance
3865  *
3866  * 1. Allocate DMA memory for Command Descriptor array
3867  *	Each command descriptor consist of Command UPIU, Response UPIU and PRDT
3868  * 2. Allocate DMA memory for UTP Transfer Request Descriptor List (UTRDL).
3869  * 3. Allocate DMA memory for UTP Task Management Request Descriptor List
3870  *	(UTMRDL)
3871  * 4. Allocate memory for local reference block(lrb).
3872  *
3873  * Return: 0 for success, non-zero in case of failure.
3874  */
3875 static int ufshcd_memory_alloc(struct ufs_hba *hba)
3876 {
3877 	size_t utmrdl_size, utrdl_size, ucdl_size;
3878 
3879 	/* Allocate memory for UTP command descriptors */
3880 	ucdl_size = ufshcd_get_ucd_size(hba) * hba->nutrs;
3881 	hba->ucdl_base_addr = dmam_alloc_coherent(hba->dev,
3882 						  ucdl_size,
3883 						  &hba->ucdl_dma_addr,
3884 						  GFP_KERNEL);
3885 
3886 	/*
3887 	 * UFSHCI requires UTP command descriptor to be 128 byte aligned.
3888 	 */
3889 	if (!hba->ucdl_base_addr ||
3890 	    WARN_ON(hba->ucdl_dma_addr & (128 - 1))) {
3891 		dev_err(hba->dev,
3892 			"Command Descriptor Memory allocation failed\n");
3893 		goto out;
3894 	}
3895 
3896 	/*
3897 	 * Allocate memory for UTP Transfer descriptors
3898 	 * UFSHCI requires 1KB alignment of UTRD
3899 	 */
3900 	utrdl_size = (sizeof(struct utp_transfer_req_desc) * hba->nutrs);
3901 	hba->utrdl_base_addr = dmam_alloc_coherent(hba->dev,
3902 						   utrdl_size,
3903 						   &hba->utrdl_dma_addr,
3904 						   GFP_KERNEL);
3905 	if (!hba->utrdl_base_addr ||
3906 	    WARN_ON(hba->utrdl_dma_addr & (SZ_1K - 1))) {
3907 		dev_err(hba->dev,
3908 			"Transfer Descriptor Memory allocation failed\n");
3909 		goto out;
3910 	}
3911 
3912 	/*
3913 	 * Skip utmrdl allocation; it may have been
3914 	 * allocated during first pass and not released during
3915 	 * MCQ memory allocation.
3916 	 * See ufshcd_release_sdb_queue() and ufshcd_config_mcq()
3917 	 */
3918 	if (hba->utmrdl_base_addr)
3919 		goto skip_utmrdl;
3920 	/*
3921 	 * Allocate memory for UTP Task Management descriptors
3922 	 * UFSHCI requires 1KB alignment of UTMRD
3923 	 */
3924 	utmrdl_size = sizeof(struct utp_task_req_desc) * hba->nutmrs;
3925 	hba->utmrdl_base_addr = dmam_alloc_coherent(hba->dev,
3926 						    utmrdl_size,
3927 						    &hba->utmrdl_dma_addr,
3928 						    GFP_KERNEL);
3929 	if (!hba->utmrdl_base_addr ||
3930 	    WARN_ON(hba->utmrdl_dma_addr & (SZ_1K - 1))) {
3931 		dev_err(hba->dev,
3932 		"Task Management Descriptor Memory allocation failed\n");
3933 		goto out;
3934 	}
3935 
3936 skip_utmrdl:
3937 	/* Allocate memory for local reference block */
3938 	hba->lrb = devm_kcalloc(hba->dev,
3939 				hba->nutrs, sizeof(struct ufshcd_lrb),
3940 				GFP_KERNEL);
3941 	if (!hba->lrb) {
3942 		dev_err(hba->dev, "LRB Memory allocation failed\n");
3943 		goto out;
3944 	}
3945 	return 0;
3946 out:
3947 	return -ENOMEM;
3948 }
3949 
3950 /**
3951  * ufshcd_host_memory_configure - configure local reference block with
3952  *				memory offsets
3953  * @hba: per adapter instance
3954  *
3955  * Configure Host memory space
3956  * 1. Update Corresponding UTRD.UCDBA and UTRD.UCDBAU with UCD DMA
3957  * address.
3958  * 2. Update each UTRD with Response UPIU offset, Response UPIU length
3959  * and PRDT offset.
3960  * 3. Save the corresponding addresses of UTRD, UCD.CMD, UCD.RSP and UCD.PRDT
3961  * into local reference block.
3962  */
3963 static void ufshcd_host_memory_configure(struct ufs_hba *hba)
3964 {
3965 	struct utp_transfer_req_desc *utrdlp;
3966 	dma_addr_t cmd_desc_dma_addr;
3967 	dma_addr_t cmd_desc_element_addr;
3968 	u16 response_offset;
3969 	u16 prdt_offset;
3970 	int cmd_desc_size;
3971 	int i;
3972 
3973 	utrdlp = hba->utrdl_base_addr;
3974 
3975 	response_offset =
3976 		offsetof(struct utp_transfer_cmd_desc, response_upiu);
3977 	prdt_offset =
3978 		offsetof(struct utp_transfer_cmd_desc, prd_table);
3979 
3980 	cmd_desc_size = ufshcd_get_ucd_size(hba);
3981 	cmd_desc_dma_addr = hba->ucdl_dma_addr;
3982 
3983 	for (i = 0; i < hba->nutrs; i++) {
3984 		/* Configure UTRD with command descriptor base address */
3985 		cmd_desc_element_addr =
3986 				(cmd_desc_dma_addr + (cmd_desc_size * i));
3987 		utrdlp[i].command_desc_base_addr =
3988 				cpu_to_le64(cmd_desc_element_addr);
3989 
3990 		/* Response upiu and prdt offset should be in double words */
3991 		if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN) {
3992 			utrdlp[i].response_upiu_offset =
3993 				cpu_to_le16(response_offset);
3994 			utrdlp[i].prd_table_offset =
3995 				cpu_to_le16(prdt_offset);
3996 			utrdlp[i].response_upiu_length =
3997 				cpu_to_le16(ALIGNED_UPIU_SIZE);
3998 		} else {
3999 			utrdlp[i].response_upiu_offset =
4000 				cpu_to_le16(response_offset >> 2);
4001 			utrdlp[i].prd_table_offset =
4002 				cpu_to_le16(prdt_offset >> 2);
4003 			utrdlp[i].response_upiu_length =
4004 				cpu_to_le16(ALIGNED_UPIU_SIZE >> 2);
4005 		}
4006 
4007 		ufshcd_init_lrb(hba, &hba->lrb[i], i);
4008 	}
4009 }
4010 
4011 /**
4012  * ufshcd_dme_link_startup - Notify Unipro to perform link startup
4013  * @hba: per adapter instance
4014  *
4015  * UIC_CMD_DME_LINK_STARTUP command must be issued to Unipro layer,
4016  * in order to initialize the Unipro link startup procedure.
4017  * Once the Unipro links are up, the device connected to the controller
4018  * is detected.
4019  *
4020  * Return: 0 on success, non-zero value on failure.
4021  */
4022 static int ufshcd_dme_link_startup(struct ufs_hba *hba)
4023 {
4024 	struct uic_command uic_cmd = {
4025 		.command = UIC_CMD_DME_LINK_STARTUP,
4026 	};
4027 	int ret;
4028 
4029 	ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4030 	if (ret)
4031 		dev_dbg(hba->dev,
4032 			"dme-link-startup: error code %d\n", ret);
4033 	return ret;
4034 }
4035 /**
4036  * ufshcd_dme_reset - UIC command for DME_RESET
4037  * @hba: per adapter instance
4038  *
4039  * DME_RESET command is issued in order to reset UniPro stack.
4040  * This function now deals with cold reset.
4041  *
4042  * Return: 0 on success, non-zero value on failure.
4043  */
4044 int ufshcd_dme_reset(struct ufs_hba *hba)
4045 {
4046 	struct uic_command uic_cmd = {
4047 		.command = UIC_CMD_DME_RESET,
4048 	};
4049 	int ret;
4050 
4051 	ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4052 	if (ret)
4053 		dev_err(hba->dev,
4054 			"dme-reset: error code %d\n", ret);
4055 
4056 	return ret;
4057 }
4058 EXPORT_SYMBOL_GPL(ufshcd_dme_reset);
4059 
4060 int ufshcd_dme_configure_adapt(struct ufs_hba *hba,
4061 			       int agreed_gear,
4062 			       int adapt_val)
4063 {
4064 	int ret;
4065 
4066 	if (agreed_gear < UFS_HS_G4)
4067 		adapt_val = PA_NO_ADAPT;
4068 
4069 	ret = ufshcd_dme_set(hba,
4070 			     UIC_ARG_MIB(PA_TXHSADAPTTYPE),
4071 			     adapt_val);
4072 	return ret;
4073 }
4074 EXPORT_SYMBOL_GPL(ufshcd_dme_configure_adapt);
4075 
4076 /**
4077  * ufshcd_dme_enable - UIC command for DME_ENABLE
4078  * @hba: per adapter instance
4079  *
4080  * DME_ENABLE command is issued in order to enable UniPro stack.
4081  *
4082  * Return: 0 on success, non-zero value on failure.
4083  */
4084 int ufshcd_dme_enable(struct ufs_hba *hba)
4085 {
4086 	struct uic_command uic_cmd = {
4087 		.command = UIC_CMD_DME_ENABLE,
4088 	};
4089 	int ret;
4090 
4091 	ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4092 	if (ret)
4093 		dev_err(hba->dev,
4094 			"dme-enable: error code %d\n", ret);
4095 
4096 	return ret;
4097 }
4098 EXPORT_SYMBOL_GPL(ufshcd_dme_enable);
4099 
4100 static inline void ufshcd_add_delay_before_dme_cmd(struct ufs_hba *hba)
4101 {
4102 	#define MIN_DELAY_BEFORE_DME_CMDS_US	1000
4103 	unsigned long min_sleep_time_us;
4104 
4105 	if (!(hba->quirks & UFSHCD_QUIRK_DELAY_BEFORE_DME_CMDS))
4106 		return;
4107 
4108 	/*
4109 	 * last_dme_cmd_tstamp will be 0 only for 1st call to
4110 	 * this function
4111 	 */
4112 	if (unlikely(!ktime_to_us(hba->last_dme_cmd_tstamp))) {
4113 		min_sleep_time_us = MIN_DELAY_BEFORE_DME_CMDS_US;
4114 	} else {
4115 		unsigned long delta =
4116 			(unsigned long) ktime_to_us(
4117 				ktime_sub(ktime_get(),
4118 				hba->last_dme_cmd_tstamp));
4119 
4120 		if (delta < MIN_DELAY_BEFORE_DME_CMDS_US)
4121 			min_sleep_time_us =
4122 				MIN_DELAY_BEFORE_DME_CMDS_US - delta;
4123 		else
4124 			min_sleep_time_us = 0; /* no more delay required */
4125 	}
4126 
4127 	if (min_sleep_time_us > 0) {
4128 		/* allow sleep for extra 50us if needed */
4129 		usleep_range(min_sleep_time_us, min_sleep_time_us + 50);
4130 	}
4131 
4132 	/* update the last_dme_cmd_tstamp */
4133 	hba->last_dme_cmd_tstamp = ktime_get();
4134 }
4135 
4136 /**
4137  * ufshcd_dme_set_attr - UIC command for DME_SET, DME_PEER_SET
4138  * @hba: per adapter instance
4139  * @attr_sel: uic command argument1
4140  * @attr_set: attribute set type as uic command argument2
4141  * @mib_val: setting value as uic command argument3
4142  * @peer: indicate whether peer or local
4143  *
4144  * Return: 0 on success, non-zero value on failure.
4145  */
4146 int ufshcd_dme_set_attr(struct ufs_hba *hba, u32 attr_sel,
4147 			u8 attr_set, u32 mib_val, u8 peer)
4148 {
4149 	struct uic_command uic_cmd = {
4150 		.command = peer ? UIC_CMD_DME_PEER_SET : UIC_CMD_DME_SET,
4151 		.argument1 = attr_sel,
4152 		.argument2 = UIC_ARG_ATTR_TYPE(attr_set),
4153 		.argument3 = mib_val,
4154 	};
4155 	static const char *const action[] = {
4156 		"dme-set",
4157 		"dme-peer-set"
4158 	};
4159 	const char *set = action[!!peer];
4160 	int ret;
4161 	int retries = UFS_UIC_COMMAND_RETRIES;
4162 
4163 	do {
4164 		/* for peer attributes we retry upon failure */
4165 		ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4166 		if (ret)
4167 			dev_dbg(hba->dev, "%s: attr-id 0x%x val 0x%x error code %d\n",
4168 				set, UIC_GET_ATTR_ID(attr_sel), mib_val, ret);
4169 	} while (ret && peer && --retries);
4170 
4171 	if (ret)
4172 		dev_err(hba->dev, "%s: attr-id 0x%x val 0x%x failed %d retries\n",
4173 			set, UIC_GET_ATTR_ID(attr_sel), mib_val,
4174 			UFS_UIC_COMMAND_RETRIES - retries);
4175 
4176 	return ret;
4177 }
4178 EXPORT_SYMBOL_GPL(ufshcd_dme_set_attr);
4179 
4180 /**
4181  * ufshcd_dme_get_attr - UIC command for DME_GET, DME_PEER_GET
4182  * @hba: per adapter instance
4183  * @attr_sel: uic command argument1
4184  * @mib_val: the value of the attribute as returned by the UIC command
4185  * @peer: indicate whether peer or local
4186  *
4187  * Return: 0 on success, non-zero value on failure.
4188  */
4189 int ufshcd_dme_get_attr(struct ufs_hba *hba, u32 attr_sel,
4190 			u32 *mib_val, u8 peer)
4191 {
4192 	struct uic_command uic_cmd = {
4193 		.command = peer ? UIC_CMD_DME_PEER_GET : UIC_CMD_DME_GET,
4194 		.argument1 = attr_sel,
4195 	};
4196 	static const char *const action[] = {
4197 		"dme-get",
4198 		"dme-peer-get"
4199 	};
4200 	const char *get = action[!!peer];
4201 	int ret;
4202 	int retries = UFS_UIC_COMMAND_RETRIES;
4203 	struct ufs_pa_layer_attr orig_pwr_info;
4204 	struct ufs_pa_layer_attr temp_pwr_info;
4205 	bool pwr_mode_change = false;
4206 
4207 	if (peer && (hba->quirks & UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE)) {
4208 		orig_pwr_info = hba->pwr_info;
4209 		temp_pwr_info = orig_pwr_info;
4210 
4211 		if (orig_pwr_info.pwr_tx == FAST_MODE ||
4212 		    orig_pwr_info.pwr_rx == FAST_MODE) {
4213 			temp_pwr_info.pwr_tx = FASTAUTO_MODE;
4214 			temp_pwr_info.pwr_rx = FASTAUTO_MODE;
4215 			pwr_mode_change = true;
4216 		} else if (orig_pwr_info.pwr_tx == SLOW_MODE ||
4217 		    orig_pwr_info.pwr_rx == SLOW_MODE) {
4218 			temp_pwr_info.pwr_tx = SLOWAUTO_MODE;
4219 			temp_pwr_info.pwr_rx = SLOWAUTO_MODE;
4220 			pwr_mode_change = true;
4221 		}
4222 		if (pwr_mode_change) {
4223 			ret = ufshcd_change_power_mode(hba, &temp_pwr_info);
4224 			if (ret)
4225 				goto out;
4226 		}
4227 	}
4228 
4229 	do {
4230 		/* for peer attributes we retry upon failure */
4231 		ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4232 		if (ret)
4233 			dev_dbg(hba->dev, "%s: attr-id 0x%x error code %d\n",
4234 				get, UIC_GET_ATTR_ID(attr_sel), ret);
4235 	} while (ret && peer && --retries);
4236 
4237 	if (ret)
4238 		dev_err(hba->dev, "%s: attr-id 0x%x failed %d retries\n",
4239 			get, UIC_GET_ATTR_ID(attr_sel),
4240 			UFS_UIC_COMMAND_RETRIES - retries);
4241 
4242 	if (mib_val && !ret)
4243 		*mib_val = uic_cmd.argument3;
4244 
4245 	if (peer && (hba->quirks & UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE)
4246 	    && pwr_mode_change)
4247 		ufshcd_change_power_mode(hba, &orig_pwr_info);
4248 out:
4249 	return ret;
4250 }
4251 EXPORT_SYMBOL_GPL(ufshcd_dme_get_attr);
4252 
4253 /**
4254  * ufshcd_uic_pwr_ctrl - executes UIC commands (which affects the link power
4255  * state) and waits for it to take effect.
4256  *
4257  * @hba: per adapter instance
4258  * @cmd: UIC command to execute
4259  *
4260  * DME operations like DME_SET(PA_PWRMODE), DME_HIBERNATE_ENTER &
4261  * DME_HIBERNATE_EXIT commands take some time to take its effect on both host
4262  * and device UniPro link and hence it's final completion would be indicated by
4263  * dedicated status bits in Interrupt Status register (UPMS, UHES, UHXS) in
4264  * addition to normal UIC command completion Status (UCCS). This function only
4265  * returns after the relevant status bits indicate the completion.
4266  *
4267  * Return: 0 on success, non-zero value on failure.
4268  */
4269 static int ufshcd_uic_pwr_ctrl(struct ufs_hba *hba, struct uic_command *cmd)
4270 {
4271 	DECLARE_COMPLETION_ONSTACK(uic_async_done);
4272 	unsigned long flags;
4273 	u8 status;
4274 	int ret;
4275 	bool reenable_intr = false;
4276 
4277 	mutex_lock(&hba->uic_cmd_mutex);
4278 	ufshcd_add_delay_before_dme_cmd(hba);
4279 
4280 	spin_lock_irqsave(hba->host->host_lock, flags);
4281 	if (ufshcd_is_link_broken(hba)) {
4282 		ret = -ENOLINK;
4283 		goto out_unlock;
4284 	}
4285 	hba->uic_async_done = &uic_async_done;
4286 	if (ufshcd_readl(hba, REG_INTERRUPT_ENABLE) & UIC_COMMAND_COMPL) {
4287 		ufshcd_disable_intr(hba, UIC_COMMAND_COMPL);
4288 		/*
4289 		 * Make sure UIC command completion interrupt is disabled before
4290 		 * issuing UIC command.
4291 		 */
4292 		ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
4293 		reenable_intr = true;
4294 	}
4295 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4296 	ret = __ufshcd_send_uic_cmd(hba, cmd);
4297 	if (ret) {
4298 		dev_err(hba->dev,
4299 			"pwr ctrl cmd 0x%x with mode 0x%x uic error %d\n",
4300 			cmd->command, cmd->argument3, ret);
4301 		goto out;
4302 	}
4303 
4304 	if (!wait_for_completion_timeout(hba->uic_async_done,
4305 					 msecs_to_jiffies(uic_cmd_timeout))) {
4306 		dev_err(hba->dev,
4307 			"pwr ctrl cmd 0x%x with mode 0x%x completion timeout\n",
4308 			cmd->command, cmd->argument3);
4309 
4310 		if (!cmd->cmd_active) {
4311 			dev_err(hba->dev, "%s: Power Mode Change operation has been completed, go check UPMCRS\n",
4312 				__func__);
4313 			goto check_upmcrs;
4314 		}
4315 
4316 		ret = -ETIMEDOUT;
4317 		goto out;
4318 	}
4319 
4320 check_upmcrs:
4321 	status = ufshcd_get_upmcrs(hba);
4322 	if (status != PWR_LOCAL) {
4323 		dev_err(hba->dev,
4324 			"pwr ctrl cmd 0x%x failed, host upmcrs:0x%x\n",
4325 			cmd->command, status);
4326 		ret = (status != PWR_OK) ? status : -1;
4327 	}
4328 out:
4329 	if (ret) {
4330 		ufshcd_print_host_state(hba);
4331 		ufshcd_print_pwr_info(hba);
4332 		ufshcd_print_evt_hist(hba);
4333 	}
4334 
4335 	spin_lock_irqsave(hba->host->host_lock, flags);
4336 	hba->active_uic_cmd = NULL;
4337 	hba->uic_async_done = NULL;
4338 	if (reenable_intr)
4339 		ufshcd_enable_intr(hba, UIC_COMMAND_COMPL);
4340 	if (ret) {
4341 		ufshcd_set_link_broken(hba);
4342 		ufshcd_schedule_eh_work(hba);
4343 	}
4344 out_unlock:
4345 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4346 	mutex_unlock(&hba->uic_cmd_mutex);
4347 
4348 	return ret;
4349 }
4350 
4351 /**
4352  * ufshcd_send_bsg_uic_cmd - Send UIC commands requested via BSG layer and retrieve the result
4353  * @hba: per adapter instance
4354  * @uic_cmd: UIC command
4355  *
4356  * Return: 0 only if success.
4357  */
4358 int ufshcd_send_bsg_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
4359 {
4360 	int ret;
4361 
4362 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_UIC_CMD)
4363 		return 0;
4364 
4365 	ufshcd_hold(hba);
4366 
4367 	if (uic_cmd->argument1 == UIC_ARG_MIB(PA_PWRMODE) &&
4368 	    uic_cmd->command == UIC_CMD_DME_SET) {
4369 		ret = ufshcd_uic_pwr_ctrl(hba, uic_cmd);
4370 		goto out;
4371 	}
4372 
4373 	mutex_lock(&hba->uic_cmd_mutex);
4374 	ufshcd_add_delay_before_dme_cmd(hba);
4375 
4376 	ret = __ufshcd_send_uic_cmd(hba, uic_cmd);
4377 	if (!ret)
4378 		ret = ufshcd_wait_for_uic_cmd(hba, uic_cmd);
4379 
4380 	mutex_unlock(&hba->uic_cmd_mutex);
4381 
4382 out:
4383 	ufshcd_release(hba);
4384 	return ret;
4385 }
4386 
4387 /**
4388  * ufshcd_uic_change_pwr_mode - Perform the UIC power mode chage
4389  *				using DME_SET primitives.
4390  * @hba: per adapter instance
4391  * @mode: powr mode value
4392  *
4393  * Return: 0 on success, non-zero value on failure.
4394  */
4395 int ufshcd_uic_change_pwr_mode(struct ufs_hba *hba, u8 mode)
4396 {
4397 	struct uic_command uic_cmd = {
4398 		.command = UIC_CMD_DME_SET,
4399 		.argument1 = UIC_ARG_MIB(PA_PWRMODE),
4400 		.argument3 = mode,
4401 	};
4402 	int ret;
4403 
4404 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_PA_RXHSUNTERMCAP) {
4405 		ret = ufshcd_dme_set(hba,
4406 				UIC_ARG_MIB_SEL(PA_RXHSUNTERMCAP, 0), 1);
4407 		if (ret) {
4408 			dev_err(hba->dev, "%s: failed to enable PA_RXHSUNTERMCAP ret %d\n",
4409 						__func__, ret);
4410 			goto out;
4411 		}
4412 	}
4413 
4414 	ufshcd_hold(hba);
4415 	ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4416 	ufshcd_release(hba);
4417 
4418 out:
4419 	return ret;
4420 }
4421 EXPORT_SYMBOL_GPL(ufshcd_uic_change_pwr_mode);
4422 
4423 int ufshcd_link_recovery(struct ufs_hba *hba)
4424 {
4425 	int ret;
4426 	unsigned long flags;
4427 
4428 	spin_lock_irqsave(hba->host->host_lock, flags);
4429 	hba->ufshcd_state = UFSHCD_STATE_RESET;
4430 	ufshcd_set_eh_in_progress(hba);
4431 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4432 
4433 	/* Reset the attached device */
4434 	ufshcd_device_reset(hba);
4435 
4436 	ret = ufshcd_host_reset_and_restore(hba);
4437 
4438 	spin_lock_irqsave(hba->host->host_lock, flags);
4439 	if (ret)
4440 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
4441 	ufshcd_clear_eh_in_progress(hba);
4442 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4443 
4444 	if (ret)
4445 		dev_err(hba->dev, "%s: link recovery failed, err %d",
4446 			__func__, ret);
4447 
4448 	return ret;
4449 }
4450 EXPORT_SYMBOL_GPL(ufshcd_link_recovery);
4451 
4452 int ufshcd_uic_hibern8_enter(struct ufs_hba *hba)
4453 {
4454 	struct uic_command uic_cmd = {
4455 		.command = UIC_CMD_DME_HIBER_ENTER,
4456 	};
4457 	ktime_t start = ktime_get();
4458 	int ret;
4459 
4460 	ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_ENTER, PRE_CHANGE);
4461 
4462 	ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4463 	trace_ufshcd_profile_hibern8(hba, "enter",
4464 			     ktime_to_us(ktime_sub(ktime_get(), start)), ret);
4465 
4466 	if (ret)
4467 		dev_err(hba->dev, "%s: hibern8 enter failed. ret = %d\n",
4468 			__func__, ret);
4469 	else
4470 		ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_ENTER,
4471 								POST_CHANGE);
4472 
4473 	return ret;
4474 }
4475 EXPORT_SYMBOL_GPL(ufshcd_uic_hibern8_enter);
4476 
4477 int ufshcd_uic_hibern8_exit(struct ufs_hba *hba)
4478 {
4479 	struct uic_command uic_cmd = {
4480 		.command = UIC_CMD_DME_HIBER_EXIT,
4481 	};
4482 	int ret;
4483 	ktime_t start = ktime_get();
4484 
4485 	ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_EXIT, PRE_CHANGE);
4486 
4487 	ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4488 	trace_ufshcd_profile_hibern8(hba, "exit",
4489 			     ktime_to_us(ktime_sub(ktime_get(), start)), ret);
4490 
4491 	if (ret) {
4492 		dev_err(hba->dev, "%s: hibern8 exit failed. ret = %d\n",
4493 			__func__, ret);
4494 	} else {
4495 		ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_EXIT,
4496 								POST_CHANGE);
4497 		hba->ufs_stats.last_hibern8_exit_tstamp = local_clock();
4498 		hba->ufs_stats.hibern8_exit_cnt++;
4499 	}
4500 
4501 	return ret;
4502 }
4503 EXPORT_SYMBOL_GPL(ufshcd_uic_hibern8_exit);
4504 
4505 static void ufshcd_configure_auto_hibern8(struct ufs_hba *hba)
4506 {
4507 	if (!ufshcd_is_auto_hibern8_supported(hba))
4508 		return;
4509 
4510 	ufshcd_writel(hba, hba->ahit, REG_AUTO_HIBERNATE_IDLE_TIMER);
4511 }
4512 
4513 void ufshcd_auto_hibern8_update(struct ufs_hba *hba, u32 ahit)
4514 {
4515 	const u32 cur_ahit = READ_ONCE(hba->ahit);
4516 
4517 	if (!ufshcd_is_auto_hibern8_supported(hba) || cur_ahit == ahit)
4518 		return;
4519 
4520 	WRITE_ONCE(hba->ahit, ahit);
4521 	if (!pm_runtime_suspended(&hba->ufs_device_wlun->sdev_gendev)) {
4522 		ufshcd_rpm_get_sync(hba);
4523 		ufshcd_hold(hba);
4524 		ufshcd_configure_auto_hibern8(hba);
4525 		ufshcd_release(hba);
4526 		ufshcd_rpm_put_sync(hba);
4527 	}
4528 }
4529 EXPORT_SYMBOL_GPL(ufshcd_auto_hibern8_update);
4530 
4531  /**
4532  * ufshcd_init_pwr_info - setting the POR (power on reset)
4533  * values in hba power info
4534  * @hba: per-adapter instance
4535  */
4536 static void ufshcd_init_pwr_info(struct ufs_hba *hba)
4537 {
4538 	hba->pwr_info.gear_rx = UFS_PWM_G1;
4539 	hba->pwr_info.gear_tx = UFS_PWM_G1;
4540 	hba->pwr_info.lane_rx = UFS_LANE_1;
4541 	hba->pwr_info.lane_tx = UFS_LANE_1;
4542 	hba->pwr_info.pwr_rx = SLOWAUTO_MODE;
4543 	hba->pwr_info.pwr_tx = SLOWAUTO_MODE;
4544 	hba->pwr_info.hs_rate = 0;
4545 }
4546 
4547 /**
4548  * ufshcd_get_max_pwr_mode - reads the max power mode negotiated with device
4549  * @hba: per-adapter instance
4550  *
4551  * Return: 0 upon success; < 0 upon failure.
4552  */
4553 static int ufshcd_get_max_pwr_mode(struct ufs_hba *hba)
4554 {
4555 	struct ufs_pa_layer_attr *pwr_info = &hba->max_pwr_info.info;
4556 
4557 	if (hba->max_pwr_info.is_valid)
4558 		return 0;
4559 
4560 	if (hba->quirks & UFSHCD_QUIRK_HIBERN_FASTAUTO) {
4561 		pwr_info->pwr_tx = FASTAUTO_MODE;
4562 		pwr_info->pwr_rx = FASTAUTO_MODE;
4563 	} else {
4564 		pwr_info->pwr_tx = FAST_MODE;
4565 		pwr_info->pwr_rx = FAST_MODE;
4566 	}
4567 	pwr_info->hs_rate = PA_HS_MODE_B;
4568 
4569 	/* Get the connected lane count */
4570 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDRXDATALANES),
4571 			&pwr_info->lane_rx);
4572 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4573 			&pwr_info->lane_tx);
4574 
4575 	if (!pwr_info->lane_rx || !pwr_info->lane_tx) {
4576 		dev_err(hba->dev, "%s: invalid connected lanes value. rx=%d, tx=%d\n",
4577 				__func__,
4578 				pwr_info->lane_rx,
4579 				pwr_info->lane_tx);
4580 		return -EINVAL;
4581 	}
4582 
4583 	if (pwr_info->lane_rx != pwr_info->lane_tx) {
4584 		dev_err(hba->dev, "%s: asymmetric connected lanes. rx=%d, tx=%d\n",
4585 			__func__,
4586 				pwr_info->lane_rx,
4587 				pwr_info->lane_tx);
4588 		return -EINVAL;
4589 	}
4590 
4591 	/*
4592 	 * First, get the maximum gears of HS speed.
4593 	 * If a zero value, it means there is no HSGEAR capability.
4594 	 * Then, get the maximum gears of PWM speed.
4595 	 */
4596 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_MAXRXHSGEAR), &pwr_info->gear_rx);
4597 	if (!pwr_info->gear_rx) {
4598 		ufshcd_dme_get(hba, UIC_ARG_MIB(PA_MAXRXPWMGEAR),
4599 				&pwr_info->gear_rx);
4600 		if (!pwr_info->gear_rx) {
4601 			dev_err(hba->dev, "%s: invalid max pwm rx gear read = %d\n",
4602 				__func__, pwr_info->gear_rx);
4603 			return -EINVAL;
4604 		}
4605 		pwr_info->pwr_rx = SLOW_MODE;
4606 	}
4607 
4608 	ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_MAXRXHSGEAR),
4609 			&pwr_info->gear_tx);
4610 	if (!pwr_info->gear_tx) {
4611 		ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_MAXRXPWMGEAR),
4612 				&pwr_info->gear_tx);
4613 		if (!pwr_info->gear_tx) {
4614 			dev_err(hba->dev, "%s: invalid max pwm tx gear read = %d\n",
4615 				__func__, pwr_info->gear_tx);
4616 			return -EINVAL;
4617 		}
4618 		pwr_info->pwr_tx = SLOW_MODE;
4619 	}
4620 
4621 	hba->max_pwr_info.is_valid = true;
4622 	return 0;
4623 }
4624 
4625 static int ufshcd_change_power_mode(struct ufs_hba *hba,
4626 			     struct ufs_pa_layer_attr *pwr_mode)
4627 {
4628 	int ret;
4629 
4630 	/* if already configured to the requested pwr_mode */
4631 	if (!hba->force_pmc &&
4632 	    pwr_mode->gear_rx == hba->pwr_info.gear_rx &&
4633 	    pwr_mode->gear_tx == hba->pwr_info.gear_tx &&
4634 	    pwr_mode->lane_rx == hba->pwr_info.lane_rx &&
4635 	    pwr_mode->lane_tx == hba->pwr_info.lane_tx &&
4636 	    pwr_mode->pwr_rx == hba->pwr_info.pwr_rx &&
4637 	    pwr_mode->pwr_tx == hba->pwr_info.pwr_tx &&
4638 	    pwr_mode->hs_rate == hba->pwr_info.hs_rate) {
4639 		dev_dbg(hba->dev, "%s: power already configured\n", __func__);
4640 		return 0;
4641 	}
4642 
4643 	/*
4644 	 * Configure attributes for power mode change with below.
4645 	 * - PA_RXGEAR, PA_ACTIVERXDATALANES, PA_RXTERMINATION,
4646 	 * - PA_TXGEAR, PA_ACTIVETXDATALANES, PA_TXTERMINATION,
4647 	 * - PA_HSSERIES
4648 	 */
4649 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXGEAR), pwr_mode->gear_rx);
4650 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVERXDATALANES),
4651 			pwr_mode->lane_rx);
4652 	if (pwr_mode->pwr_rx == FASTAUTO_MODE ||
4653 			pwr_mode->pwr_rx == FAST_MODE)
4654 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), true);
4655 	else
4656 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), false);
4657 
4658 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXGEAR), pwr_mode->gear_tx);
4659 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVETXDATALANES),
4660 			pwr_mode->lane_tx);
4661 	if (pwr_mode->pwr_tx == FASTAUTO_MODE ||
4662 			pwr_mode->pwr_tx == FAST_MODE)
4663 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), true);
4664 	else
4665 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), false);
4666 
4667 	if (pwr_mode->pwr_rx == FASTAUTO_MODE ||
4668 	    pwr_mode->pwr_tx == FASTAUTO_MODE ||
4669 	    pwr_mode->pwr_rx == FAST_MODE ||
4670 	    pwr_mode->pwr_tx == FAST_MODE)
4671 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_HSSERIES),
4672 						pwr_mode->hs_rate);
4673 
4674 	if (!(hba->quirks & UFSHCD_QUIRK_SKIP_DEF_UNIPRO_TIMEOUT_SETTING)) {
4675 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA0),
4676 				DL_FC0ProtectionTimeOutVal_Default);
4677 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA1),
4678 				DL_TC0ReplayTimeOutVal_Default);
4679 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA2),
4680 				DL_AFC0ReqTimeOutVal_Default);
4681 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA3),
4682 				DL_FC1ProtectionTimeOutVal_Default);
4683 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA4),
4684 				DL_TC1ReplayTimeOutVal_Default);
4685 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA5),
4686 				DL_AFC1ReqTimeOutVal_Default);
4687 
4688 		ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalFC0ProtectionTimeOutVal),
4689 				DL_FC0ProtectionTimeOutVal_Default);
4690 		ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalTC0ReplayTimeOutVal),
4691 				DL_TC0ReplayTimeOutVal_Default);
4692 		ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalAFC0ReqTimeOutVal),
4693 				DL_AFC0ReqTimeOutVal_Default);
4694 	}
4695 
4696 	ret = ufshcd_uic_change_pwr_mode(hba, pwr_mode->pwr_rx << 4
4697 			| pwr_mode->pwr_tx);
4698 
4699 	if (ret) {
4700 		dev_err(hba->dev,
4701 			"%s: power mode change failed %d\n", __func__, ret);
4702 	} else {
4703 		memcpy(&hba->pwr_info, pwr_mode,
4704 			sizeof(struct ufs_pa_layer_attr));
4705 	}
4706 
4707 	return ret;
4708 }
4709 
4710 /**
4711  * ufshcd_config_pwr_mode - configure a new power mode
4712  * @hba: per-adapter instance
4713  * @desired_pwr_mode: desired power configuration
4714  *
4715  * Return: 0 upon success; < 0 upon failure.
4716  */
4717 int ufshcd_config_pwr_mode(struct ufs_hba *hba,
4718 		struct ufs_pa_layer_attr *desired_pwr_mode)
4719 {
4720 	struct ufs_pa_layer_attr final_params = { 0 };
4721 	int ret;
4722 
4723 	ret = ufshcd_vops_pwr_change_notify(hba, PRE_CHANGE,
4724 					desired_pwr_mode, &final_params);
4725 
4726 	if (ret)
4727 		memcpy(&final_params, desired_pwr_mode, sizeof(final_params));
4728 
4729 	ret = ufshcd_change_power_mode(hba, &final_params);
4730 
4731 	if (!ret)
4732 		ufshcd_vops_pwr_change_notify(hba, POST_CHANGE, NULL,
4733 					&final_params);
4734 
4735 	return ret;
4736 }
4737 EXPORT_SYMBOL_GPL(ufshcd_config_pwr_mode);
4738 
4739 /**
4740  * ufshcd_complete_dev_init() - checks device readiness
4741  * @hba: per-adapter instance
4742  *
4743  * Set fDeviceInit flag and poll until device toggles it.
4744  *
4745  * Return: 0 upon success; < 0 upon failure.
4746  */
4747 static int ufshcd_complete_dev_init(struct ufs_hba *hba)
4748 {
4749 	int err;
4750 	bool flag_res = true;
4751 	ktime_t timeout;
4752 
4753 	err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG,
4754 		QUERY_FLAG_IDN_FDEVICEINIT, 0, NULL);
4755 	if (err) {
4756 		dev_err(hba->dev,
4757 			"%s: setting fDeviceInit flag failed with error %d\n",
4758 			__func__, err);
4759 		goto out;
4760 	}
4761 
4762 	/* Poll fDeviceInit flag to be cleared */
4763 	timeout = ktime_add_ms(ktime_get(), FDEVICEINIT_COMPL_TIMEOUT);
4764 	do {
4765 		err = ufshcd_query_flag(hba, UPIU_QUERY_OPCODE_READ_FLAG,
4766 					QUERY_FLAG_IDN_FDEVICEINIT, 0, &flag_res);
4767 		if (!flag_res)
4768 			break;
4769 		usleep_range(500, 1000);
4770 	} while (ktime_before(ktime_get(), timeout));
4771 
4772 	if (err) {
4773 		dev_err(hba->dev,
4774 				"%s: reading fDeviceInit flag failed with error %d\n",
4775 				__func__, err);
4776 	} else if (flag_res) {
4777 		dev_err(hba->dev,
4778 				"%s: fDeviceInit was not cleared by the device\n",
4779 				__func__);
4780 		err = -EBUSY;
4781 	}
4782 out:
4783 	return err;
4784 }
4785 
4786 /**
4787  * ufshcd_make_hba_operational - Make UFS controller operational
4788  * @hba: per adapter instance
4789  *
4790  * To bring UFS host controller to operational state,
4791  * 1. Enable required interrupts
4792  * 2. Configure interrupt aggregation
4793  * 3. Program UTRL and UTMRL base address
4794  * 4. Configure run-stop-registers
4795  *
4796  * Return: 0 on success, non-zero value on failure.
4797  */
4798 int ufshcd_make_hba_operational(struct ufs_hba *hba)
4799 {
4800 	int err = 0;
4801 	u32 reg;
4802 
4803 	/* Enable required interrupts */
4804 	ufshcd_enable_intr(hba, UFSHCD_ENABLE_INTRS);
4805 
4806 	/* Configure interrupt aggregation */
4807 	if (ufshcd_is_intr_aggr_allowed(hba))
4808 		ufshcd_config_intr_aggr(hba, hba->nutrs - 1, INT_AGGR_DEF_TO);
4809 	else
4810 		ufshcd_disable_intr_aggr(hba);
4811 
4812 	/* Configure UTRL and UTMRL base address registers */
4813 	ufshcd_writel(hba, lower_32_bits(hba->utrdl_dma_addr),
4814 			REG_UTP_TRANSFER_REQ_LIST_BASE_L);
4815 	ufshcd_writel(hba, upper_32_bits(hba->utrdl_dma_addr),
4816 			REG_UTP_TRANSFER_REQ_LIST_BASE_H);
4817 	ufshcd_writel(hba, lower_32_bits(hba->utmrdl_dma_addr),
4818 			REG_UTP_TASK_REQ_LIST_BASE_L);
4819 	ufshcd_writel(hba, upper_32_bits(hba->utmrdl_dma_addr),
4820 			REG_UTP_TASK_REQ_LIST_BASE_H);
4821 
4822 	/*
4823 	 * UCRDY, UTMRLDY and UTRLRDY bits must be 1
4824 	 */
4825 	reg = ufshcd_readl(hba, REG_CONTROLLER_STATUS);
4826 	if (!(ufshcd_get_lists_status(reg))) {
4827 		ufshcd_enable_run_stop_reg(hba);
4828 	} else {
4829 		dev_err(hba->dev,
4830 			"Host controller not ready to process requests");
4831 		err = -EIO;
4832 	}
4833 
4834 	return err;
4835 }
4836 EXPORT_SYMBOL_GPL(ufshcd_make_hba_operational);
4837 
4838 /**
4839  * ufshcd_hba_stop - Send controller to reset state
4840  * @hba: per adapter instance
4841  */
4842 void ufshcd_hba_stop(struct ufs_hba *hba)
4843 {
4844 	int err;
4845 
4846 	ufshcd_disable_irq(hba);
4847 	ufshcd_writel(hba, CONTROLLER_DISABLE,  REG_CONTROLLER_ENABLE);
4848 	err = ufshcd_wait_for_register(hba, REG_CONTROLLER_ENABLE,
4849 					CONTROLLER_ENABLE, CONTROLLER_DISABLE,
4850 					10, 1);
4851 	ufshcd_enable_irq(hba);
4852 	if (err)
4853 		dev_err(hba->dev, "%s: Controller disable failed\n", __func__);
4854 }
4855 EXPORT_SYMBOL_GPL(ufshcd_hba_stop);
4856 
4857 /**
4858  * ufshcd_hba_execute_hce - initialize the controller
4859  * @hba: per adapter instance
4860  *
4861  * The controller resets itself and controller firmware initialization
4862  * sequence kicks off. When controller is ready it will set
4863  * the Host Controller Enable bit to 1.
4864  *
4865  * Return: 0 on success, non-zero value on failure.
4866  */
4867 static int ufshcd_hba_execute_hce(struct ufs_hba *hba)
4868 {
4869 	int retry;
4870 
4871 	for (retry = 3; retry > 0; retry--) {
4872 		if (ufshcd_is_hba_active(hba))
4873 			/* change controller state to "reset state" */
4874 			ufshcd_hba_stop(hba);
4875 
4876 		/* UniPro link is disabled at this point */
4877 		ufshcd_set_link_off(hba);
4878 
4879 		ufshcd_vops_hce_enable_notify(hba, PRE_CHANGE);
4880 
4881 		/* start controller initialization sequence */
4882 		ufshcd_hba_start(hba);
4883 
4884 		/*
4885 		 * To initialize a UFS host controller HCE bit must be set to 1.
4886 		 * During initialization the HCE bit value changes from 1->0->1.
4887 		 * When the host controller completes initialization sequence
4888 		 * it sets the value of HCE bit to 1. The same HCE bit is read back
4889 		 * to check if the controller has completed initialization sequence.
4890 		 * So without this delay the value HCE = 1, set in the previous
4891 		 * instruction might be read back.
4892 		 * This delay can be changed based on the controller.
4893 		 */
4894 		ufshcd_delay_us(hba->vps->hba_enable_delay_us, 100);
4895 
4896 		/* wait for the host controller to complete initialization */
4897 		if (!ufshcd_wait_for_register(hba, REG_CONTROLLER_ENABLE, CONTROLLER_ENABLE,
4898 					      CONTROLLER_ENABLE, 1000, 50))
4899 			break;
4900 
4901 		dev_err(hba->dev, "Enabling the controller failed\n");
4902 	}
4903 
4904 	if (!retry)
4905 		return -EIO;
4906 
4907 	/* enable UIC related interrupts */
4908 	ufshcd_enable_intr(hba, UFSHCD_UIC_MASK);
4909 
4910 	ufshcd_vops_hce_enable_notify(hba, POST_CHANGE);
4911 
4912 	return 0;
4913 }
4914 
4915 int ufshcd_hba_enable(struct ufs_hba *hba)
4916 {
4917 	int ret;
4918 
4919 	if (hba->quirks & UFSHCI_QUIRK_BROKEN_HCE) {
4920 		ufshcd_set_link_off(hba);
4921 		ufshcd_vops_hce_enable_notify(hba, PRE_CHANGE);
4922 
4923 		/* enable UIC related interrupts */
4924 		ufshcd_enable_intr(hba, UFSHCD_UIC_MASK);
4925 		ret = ufshcd_dme_reset(hba);
4926 		if (ret) {
4927 			dev_err(hba->dev, "DME_RESET failed\n");
4928 			return ret;
4929 		}
4930 
4931 		ret = ufshcd_dme_enable(hba);
4932 		if (ret) {
4933 			dev_err(hba->dev, "Enabling DME failed\n");
4934 			return ret;
4935 		}
4936 
4937 		ufshcd_vops_hce_enable_notify(hba, POST_CHANGE);
4938 	} else {
4939 		ret = ufshcd_hba_execute_hce(hba);
4940 	}
4941 
4942 	return ret;
4943 }
4944 EXPORT_SYMBOL_GPL(ufshcd_hba_enable);
4945 
4946 static int ufshcd_disable_tx_lcc(struct ufs_hba *hba, bool peer)
4947 {
4948 	int tx_lanes = 0, i, err = 0;
4949 
4950 	if (!peer)
4951 		ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4952 			       &tx_lanes);
4953 	else
4954 		ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4955 				    &tx_lanes);
4956 	for (i = 0; i < tx_lanes; i++) {
4957 		if (!peer)
4958 			err = ufshcd_dme_set(hba,
4959 				UIC_ARG_MIB_SEL(TX_LCC_ENABLE,
4960 					UIC_ARG_MPHY_TX_GEN_SEL_INDEX(i)),
4961 					0);
4962 		else
4963 			err = ufshcd_dme_peer_set(hba,
4964 				UIC_ARG_MIB_SEL(TX_LCC_ENABLE,
4965 					UIC_ARG_MPHY_TX_GEN_SEL_INDEX(i)),
4966 					0);
4967 		if (err) {
4968 			dev_err(hba->dev, "%s: TX LCC Disable failed, peer = %d, lane = %d, err = %d",
4969 				__func__, peer, i, err);
4970 			break;
4971 		}
4972 	}
4973 
4974 	return err;
4975 }
4976 
4977 static inline int ufshcd_disable_device_tx_lcc(struct ufs_hba *hba)
4978 {
4979 	return ufshcd_disable_tx_lcc(hba, true);
4980 }
4981 
4982 void ufshcd_update_evt_hist(struct ufs_hba *hba, u32 id, u32 val)
4983 {
4984 	struct ufs_event_hist *e;
4985 
4986 	if (id >= UFS_EVT_CNT)
4987 		return;
4988 
4989 	e = &hba->ufs_stats.event[id];
4990 	e->val[e->pos] = val;
4991 	e->tstamp[e->pos] = local_clock();
4992 	e->cnt += 1;
4993 	e->pos = (e->pos + 1) % UFS_EVENT_HIST_LENGTH;
4994 
4995 	ufshcd_vops_event_notify(hba, id, &val);
4996 }
4997 EXPORT_SYMBOL_GPL(ufshcd_update_evt_hist);
4998 
4999 /**
5000  * ufshcd_link_startup - Initialize unipro link startup
5001  * @hba: per adapter instance
5002  *
5003  * Return: 0 for success, non-zero in case of failure.
5004  */
5005 static int ufshcd_link_startup(struct ufs_hba *hba)
5006 {
5007 	int ret;
5008 	int retries = DME_LINKSTARTUP_RETRIES;
5009 	bool link_startup_again = false;
5010 
5011 	/*
5012 	 * If UFS device isn't active then we will have to issue link startup
5013 	 * 2 times to make sure the device state move to active.
5014 	 */
5015 	if (!ufshcd_is_ufs_dev_active(hba))
5016 		link_startup_again = true;
5017 
5018 link_startup:
5019 	do {
5020 		ufshcd_vops_link_startup_notify(hba, PRE_CHANGE);
5021 
5022 		ret = ufshcd_dme_link_startup(hba);
5023 
5024 		/* check if device is detected by inter-connect layer */
5025 		if (!ret && !ufshcd_is_device_present(hba)) {
5026 			ufshcd_update_evt_hist(hba,
5027 					       UFS_EVT_LINK_STARTUP_FAIL,
5028 					       0);
5029 			dev_err(hba->dev, "%s: Device not present\n", __func__);
5030 			ret = -ENXIO;
5031 			goto out;
5032 		}
5033 
5034 		/*
5035 		 * DME link lost indication is only received when link is up,
5036 		 * but we can't be sure if the link is up until link startup
5037 		 * succeeds. So reset the local Uni-Pro and try again.
5038 		 */
5039 		if (ret && retries && ufshcd_hba_enable(hba)) {
5040 			ufshcd_update_evt_hist(hba,
5041 					       UFS_EVT_LINK_STARTUP_FAIL,
5042 					       (u32)ret);
5043 			goto out;
5044 		}
5045 	} while (ret && retries--);
5046 
5047 	if (ret) {
5048 		/* failed to get the link up... retire */
5049 		ufshcd_update_evt_hist(hba,
5050 				       UFS_EVT_LINK_STARTUP_FAIL,
5051 				       (u32)ret);
5052 		goto out;
5053 	}
5054 
5055 	if (link_startup_again) {
5056 		link_startup_again = false;
5057 		retries = DME_LINKSTARTUP_RETRIES;
5058 		goto link_startup;
5059 	}
5060 
5061 	/* Mark that link is up in PWM-G1, 1-lane, SLOW-AUTO mode */
5062 	ufshcd_init_pwr_info(hba);
5063 	ufshcd_print_pwr_info(hba);
5064 
5065 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_LCC) {
5066 		ret = ufshcd_disable_device_tx_lcc(hba);
5067 		if (ret)
5068 			goto out;
5069 	}
5070 
5071 	/* Include any host controller configuration via UIC commands */
5072 	ret = ufshcd_vops_link_startup_notify(hba, POST_CHANGE);
5073 	if (ret)
5074 		goto out;
5075 
5076 	/* Clear UECPA once due to LINERESET has happened during LINK_STARTUP */
5077 	ufshcd_readl(hba, REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER);
5078 	ret = ufshcd_make_hba_operational(hba);
5079 out:
5080 	if (ret) {
5081 		dev_err(hba->dev, "link startup failed %d\n", ret);
5082 		ufshcd_print_host_state(hba);
5083 		ufshcd_print_pwr_info(hba);
5084 		ufshcd_print_evt_hist(hba);
5085 	}
5086 	return ret;
5087 }
5088 
5089 /**
5090  * ufshcd_verify_dev_init() - Verify device initialization
5091  * @hba: per-adapter instance
5092  *
5093  * Send NOP OUT UPIU and wait for NOP IN response to check whether the
5094  * device Transport Protocol (UTP) layer is ready after a reset.
5095  * If the UTP layer at the device side is not initialized, it may
5096  * not respond with NOP IN UPIU within timeout of %NOP_OUT_TIMEOUT
5097  * and we retry sending NOP OUT for %NOP_OUT_RETRIES iterations.
5098  *
5099  * Return: 0 upon success; < 0 upon failure.
5100  */
5101 static int ufshcd_verify_dev_init(struct ufs_hba *hba)
5102 {
5103 	int err = 0;
5104 	int retries;
5105 
5106 	ufshcd_dev_man_lock(hba);
5107 
5108 	for (retries = NOP_OUT_RETRIES; retries > 0; retries--) {
5109 		err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_NOP,
5110 					  hba->nop_out_timeout);
5111 
5112 		if (!err || err == -ETIMEDOUT)
5113 			break;
5114 
5115 		dev_dbg(hba->dev, "%s: error %d retrying\n", __func__, err);
5116 	}
5117 
5118 	ufshcd_dev_man_unlock(hba);
5119 
5120 	if (err)
5121 		dev_err(hba->dev, "%s: NOP OUT failed %d\n", __func__, err);
5122 	return err;
5123 }
5124 
5125 /**
5126  * ufshcd_setup_links - associate link b/w device wlun and other luns
5127  * @sdev: pointer to SCSI device
5128  * @hba: pointer to ufs hba
5129  */
5130 static void ufshcd_setup_links(struct ufs_hba *hba, struct scsi_device *sdev)
5131 {
5132 	struct device_link *link;
5133 
5134 	/*
5135 	 * Device wlun is the supplier & rest of the luns are consumers.
5136 	 * This ensures that device wlun suspends after all other luns.
5137 	 */
5138 	if (hba->ufs_device_wlun) {
5139 		link = device_link_add(&sdev->sdev_gendev,
5140 				       &hba->ufs_device_wlun->sdev_gendev,
5141 				       DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE);
5142 		if (!link) {
5143 			dev_err(&sdev->sdev_gendev, "Failed establishing link - %s\n",
5144 				dev_name(&hba->ufs_device_wlun->sdev_gendev));
5145 			return;
5146 		}
5147 		hba->luns_avail--;
5148 		/* Ignore REPORT_LUN wlun probing */
5149 		if (hba->luns_avail == 1) {
5150 			ufshcd_rpm_put(hba);
5151 			return;
5152 		}
5153 	} else {
5154 		/*
5155 		 * Device wlun is probed. The assumption is that WLUNs are
5156 		 * scanned before other LUNs.
5157 		 */
5158 		hba->luns_avail--;
5159 	}
5160 }
5161 
5162 /**
5163  * ufshcd_lu_init - Initialize the relevant parameters of the LU
5164  * @hba: per-adapter instance
5165  * @sdev: pointer to SCSI device
5166  */
5167 static void ufshcd_lu_init(struct ufs_hba *hba, struct scsi_device *sdev)
5168 {
5169 	int len = QUERY_DESC_MAX_SIZE;
5170 	u8 lun = ufshcd_scsi_to_upiu_lun(sdev->lun);
5171 	u8 lun_qdepth = hba->nutrs;
5172 	u8 *desc_buf;
5173 	int ret;
5174 
5175 	desc_buf = kzalloc(len, GFP_KERNEL);
5176 	if (!desc_buf)
5177 		goto set_qdepth;
5178 
5179 	ret = ufshcd_read_unit_desc_param(hba, lun, 0, desc_buf, len);
5180 	if (ret < 0) {
5181 		if (ret == -EOPNOTSUPP)
5182 			/* If LU doesn't support unit descriptor, its queue depth is set to 1 */
5183 			lun_qdepth = 1;
5184 		kfree(desc_buf);
5185 		goto set_qdepth;
5186 	}
5187 
5188 	if (desc_buf[UNIT_DESC_PARAM_LU_Q_DEPTH]) {
5189 		/*
5190 		 * In per-LU queueing architecture, bLUQueueDepth will not be 0, then we will
5191 		 * use the smaller between UFSHCI CAP.NUTRS and UFS LU bLUQueueDepth
5192 		 */
5193 		lun_qdepth = min_t(int, desc_buf[UNIT_DESC_PARAM_LU_Q_DEPTH], hba->nutrs);
5194 	}
5195 	/*
5196 	 * According to UFS device specification, the write protection mode is only supported by
5197 	 * normal LU, not supported by WLUN.
5198 	 */
5199 	if (hba->dev_info.f_power_on_wp_en && lun < hba->dev_info.max_lu_supported &&
5200 	    !hba->dev_info.is_lu_power_on_wp &&
5201 	    desc_buf[UNIT_DESC_PARAM_LU_WR_PROTECT] == UFS_LU_POWER_ON_WP)
5202 		hba->dev_info.is_lu_power_on_wp = true;
5203 
5204 	/* In case of RPMB LU, check if advanced RPMB mode is enabled */
5205 	if (desc_buf[UNIT_DESC_PARAM_UNIT_INDEX] == UFS_UPIU_RPMB_WLUN &&
5206 	    desc_buf[RPMB_UNIT_DESC_PARAM_REGION_EN] & BIT(4))
5207 		hba->dev_info.b_advanced_rpmb_en = true;
5208 
5209 
5210 	kfree(desc_buf);
5211 set_qdepth:
5212 	/*
5213 	 * For WLUNs that don't support unit descriptor, queue depth is set to 1. For LUs whose
5214 	 * bLUQueueDepth == 0, the queue depth is set to a maximum value that host can queue.
5215 	 */
5216 	dev_dbg(hba->dev, "Set LU %x queue depth %d\n", lun, lun_qdepth);
5217 	scsi_change_queue_depth(sdev, lun_qdepth);
5218 }
5219 
5220 /**
5221  * ufshcd_sdev_init - handle initial SCSI device configurations
5222  * @sdev: pointer to SCSI device
5223  *
5224  * Return: success.
5225  */
5226 static int ufshcd_sdev_init(struct scsi_device *sdev)
5227 {
5228 	struct ufs_hba *hba;
5229 
5230 	hba = shost_priv(sdev->host);
5231 
5232 	/* Mode sense(6) is not supported by UFS, so use Mode sense(10) */
5233 	sdev->use_10_for_ms = 1;
5234 
5235 	/* DBD field should be set to 1 in mode sense(10) */
5236 	sdev->set_dbd_for_ms = 1;
5237 
5238 	/* allow SCSI layer to restart the device in case of errors */
5239 	sdev->allow_restart = 1;
5240 
5241 	/* REPORT SUPPORTED OPERATION CODES is not supported */
5242 	sdev->no_report_opcodes = 1;
5243 
5244 	/* WRITE_SAME command is not supported */
5245 	sdev->no_write_same = 1;
5246 
5247 	ufshcd_lu_init(hba, sdev);
5248 
5249 	ufshcd_setup_links(hba, sdev);
5250 
5251 	return 0;
5252 }
5253 
5254 /**
5255  * ufshcd_change_queue_depth - change queue depth
5256  * @sdev: pointer to SCSI device
5257  * @depth: required depth to set
5258  *
5259  * Change queue depth and make sure the max. limits are not crossed.
5260  *
5261  * Return: new queue depth.
5262  */
5263 static int ufshcd_change_queue_depth(struct scsi_device *sdev, int depth)
5264 {
5265 	return scsi_change_queue_depth(sdev, min(depth, sdev->host->can_queue));
5266 }
5267 
5268 /**
5269  * ufshcd_sdev_configure - adjust SCSI device configurations
5270  * @sdev: pointer to SCSI device
5271  * @lim: queue limits
5272  *
5273  * Return: 0 (success).
5274  */
5275 static int ufshcd_sdev_configure(struct scsi_device *sdev,
5276 				 struct queue_limits *lim)
5277 {
5278 	struct ufs_hba *hba = shost_priv(sdev->host);
5279 	struct request_queue *q = sdev->request_queue;
5280 
5281 	lim->dma_pad_mask = PRDT_DATA_BYTE_COUNT_PAD - 1;
5282 
5283 	/*
5284 	 * Block runtime-pm until all consumers are added.
5285 	 * Refer ufshcd_setup_links().
5286 	 */
5287 	if (is_device_wlun(sdev))
5288 		pm_runtime_get_noresume(&sdev->sdev_gendev);
5289 	else if (ufshcd_is_rpm_autosuspend_allowed(hba))
5290 		sdev->rpm_autosuspend = 1;
5291 	/*
5292 	 * Do not print messages during runtime PM to avoid never-ending cycles
5293 	 * of messages written back to storage by user space causing runtime
5294 	 * resume, causing more messages and so on.
5295 	 */
5296 	sdev->silence_suspend = 1;
5297 
5298 	if (hba->vops && hba->vops->config_scsi_dev)
5299 		hba->vops->config_scsi_dev(sdev);
5300 
5301 	ufshcd_crypto_register(hba, q);
5302 
5303 	return 0;
5304 }
5305 
5306 /**
5307  * ufshcd_sdev_destroy - remove SCSI device configurations
5308  * @sdev: pointer to SCSI device
5309  */
5310 static void ufshcd_sdev_destroy(struct scsi_device *sdev)
5311 {
5312 	struct ufs_hba *hba;
5313 	unsigned long flags;
5314 
5315 	hba = shost_priv(sdev->host);
5316 
5317 	/* Drop the reference as it won't be needed anymore */
5318 	if (ufshcd_scsi_to_upiu_lun(sdev->lun) == UFS_UPIU_UFS_DEVICE_WLUN) {
5319 		spin_lock_irqsave(hba->host->host_lock, flags);
5320 		hba->ufs_device_wlun = NULL;
5321 		spin_unlock_irqrestore(hba->host->host_lock, flags);
5322 	} else if (hba->ufs_device_wlun) {
5323 		struct device *supplier = NULL;
5324 
5325 		/* Ensure UFS Device WLUN exists and does not disappear */
5326 		spin_lock_irqsave(hba->host->host_lock, flags);
5327 		if (hba->ufs_device_wlun) {
5328 			supplier = &hba->ufs_device_wlun->sdev_gendev;
5329 			get_device(supplier);
5330 		}
5331 		spin_unlock_irqrestore(hba->host->host_lock, flags);
5332 
5333 		if (supplier) {
5334 			/*
5335 			 * If a LUN fails to probe (e.g. absent BOOT WLUN), the
5336 			 * device will not have been registered but can still
5337 			 * have a device link holding a reference to the device.
5338 			 */
5339 			device_link_remove(&sdev->sdev_gendev, supplier);
5340 			put_device(supplier);
5341 		}
5342 	}
5343 }
5344 
5345 /**
5346  * ufshcd_scsi_cmd_status - Update SCSI command result based on SCSI status
5347  * @lrbp: pointer to local reference block of completed command
5348  * @scsi_status: SCSI command status
5349  *
5350  * Return: value base on SCSI command status.
5351  */
5352 static inline int
5353 ufshcd_scsi_cmd_status(struct ufshcd_lrb *lrbp, int scsi_status)
5354 {
5355 	int result = 0;
5356 
5357 	switch (scsi_status) {
5358 	case SAM_STAT_CHECK_CONDITION:
5359 		ufshcd_copy_sense_data(lrbp);
5360 		fallthrough;
5361 	case SAM_STAT_GOOD:
5362 		result |= DID_OK << 16 | scsi_status;
5363 		break;
5364 	case SAM_STAT_TASK_SET_FULL:
5365 	case SAM_STAT_BUSY:
5366 	case SAM_STAT_TASK_ABORTED:
5367 		ufshcd_copy_sense_data(lrbp);
5368 		result |= scsi_status;
5369 		break;
5370 	default:
5371 		result |= DID_ERROR << 16;
5372 		break;
5373 	} /* end of switch */
5374 
5375 	return result;
5376 }
5377 
5378 /**
5379  * ufshcd_transfer_rsp_status - Get overall status of the response
5380  * @hba: per adapter instance
5381  * @lrbp: pointer to local reference block of completed command
5382  * @cqe: pointer to the completion queue entry
5383  *
5384  * Return: result of the command to notify SCSI midlayer.
5385  */
5386 static inline int
5387 ufshcd_transfer_rsp_status(struct ufs_hba *hba, struct ufshcd_lrb *lrbp,
5388 			   struct cq_entry *cqe)
5389 {
5390 	int result = 0;
5391 	int scsi_status;
5392 	enum utp_ocs ocs;
5393 	u8 upiu_flags;
5394 	u32 resid;
5395 
5396 	upiu_flags = lrbp->ucd_rsp_ptr->header.flags;
5397 	resid = be32_to_cpu(lrbp->ucd_rsp_ptr->sr.residual_transfer_count);
5398 	/*
5399 	 * Test !overflow instead of underflow to support UFS devices that do
5400 	 * not set either flag.
5401 	 */
5402 	if (resid && !(upiu_flags & UPIU_RSP_FLAG_OVERFLOW))
5403 		scsi_set_resid(lrbp->cmd, resid);
5404 
5405 	/* overall command status of utrd */
5406 	ocs = ufshcd_get_tr_ocs(lrbp, cqe);
5407 
5408 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_OCS_FATAL_ERROR) {
5409 		if (lrbp->ucd_rsp_ptr->header.response ||
5410 		    lrbp->ucd_rsp_ptr->header.status)
5411 			ocs = OCS_SUCCESS;
5412 	}
5413 
5414 	switch (ocs) {
5415 	case OCS_SUCCESS:
5416 		hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
5417 		switch (ufshcd_get_req_rsp(lrbp->ucd_rsp_ptr)) {
5418 		case UPIU_TRANSACTION_RESPONSE:
5419 			/*
5420 			 * get the result based on SCSI status response
5421 			 * to notify the SCSI midlayer of the command status
5422 			 */
5423 			scsi_status = lrbp->ucd_rsp_ptr->header.status;
5424 			result = ufshcd_scsi_cmd_status(lrbp, scsi_status);
5425 
5426 			/*
5427 			 * Currently we are only supporting BKOPs exception
5428 			 * events hence we can ignore BKOPs exception event
5429 			 * during power management callbacks. BKOPs exception
5430 			 * event is not expected to be raised in runtime suspend
5431 			 * callback as it allows the urgent bkops.
5432 			 * During system suspend, we are anyway forcefully
5433 			 * disabling the bkops and if urgent bkops is needed
5434 			 * it will be enabled on system resume. Long term
5435 			 * solution could be to abort the system suspend if
5436 			 * UFS device needs urgent BKOPs.
5437 			 */
5438 			if (!hba->pm_op_in_progress &&
5439 			    !ufshcd_eh_in_progress(hba) &&
5440 			    ufshcd_is_exception_event(lrbp->ucd_rsp_ptr))
5441 				/* Flushed in suspend */
5442 				schedule_work(&hba->eeh_work);
5443 			break;
5444 		case UPIU_TRANSACTION_REJECT_UPIU:
5445 			/* TODO: handle Reject UPIU Response */
5446 			result = DID_ERROR << 16;
5447 			dev_err(hba->dev,
5448 				"Reject UPIU not fully implemented\n");
5449 			break;
5450 		default:
5451 			dev_err(hba->dev,
5452 				"Unexpected request response code = %x\n",
5453 				result);
5454 			result = DID_ERROR << 16;
5455 			break;
5456 		}
5457 		break;
5458 	case OCS_ABORTED:
5459 	case OCS_INVALID_COMMAND_STATUS:
5460 		result |= DID_REQUEUE << 16;
5461 		dev_warn(hba->dev,
5462 				"OCS %s from controller for tag %d\n",
5463 				(ocs == OCS_ABORTED ? "aborted" : "invalid"),
5464 				lrbp->task_tag);
5465 		break;
5466 	case OCS_INVALID_CMD_TABLE_ATTR:
5467 	case OCS_INVALID_PRDT_ATTR:
5468 	case OCS_MISMATCH_DATA_BUF_SIZE:
5469 	case OCS_MISMATCH_RESP_UPIU_SIZE:
5470 	case OCS_PEER_COMM_FAILURE:
5471 	case OCS_FATAL_ERROR:
5472 	case OCS_DEVICE_FATAL_ERROR:
5473 	case OCS_INVALID_CRYPTO_CONFIG:
5474 	case OCS_GENERAL_CRYPTO_ERROR:
5475 	default:
5476 		result |= DID_ERROR << 16;
5477 		dev_err(hba->dev,
5478 				"OCS error from controller = %x for tag %d\n",
5479 				ocs, lrbp->task_tag);
5480 		ufshcd_print_evt_hist(hba);
5481 		ufshcd_print_host_state(hba);
5482 		break;
5483 	} /* end of switch */
5484 
5485 	if ((host_byte(result) != DID_OK) &&
5486 	    (host_byte(result) != DID_REQUEUE) && !hba->silence_err_logs)
5487 		ufshcd_print_tr(hba, lrbp->task_tag, true);
5488 	return result;
5489 }
5490 
5491 static bool ufshcd_is_auto_hibern8_error(struct ufs_hba *hba,
5492 					 u32 intr_mask)
5493 {
5494 	if (!ufshcd_is_auto_hibern8_supported(hba) ||
5495 	    !ufshcd_is_auto_hibern8_enabled(hba))
5496 		return false;
5497 
5498 	if (!(intr_mask & UFSHCD_UIC_HIBERN8_MASK))
5499 		return false;
5500 
5501 	if (hba->active_uic_cmd &&
5502 	    (hba->active_uic_cmd->command == UIC_CMD_DME_HIBER_ENTER ||
5503 	    hba->active_uic_cmd->command == UIC_CMD_DME_HIBER_EXIT))
5504 		return false;
5505 
5506 	return true;
5507 }
5508 
5509 /**
5510  * ufshcd_uic_cmd_compl - handle completion of uic command
5511  * @hba: per adapter instance
5512  * @intr_status: interrupt status generated by the controller
5513  *
5514  * Return:
5515  *  IRQ_HANDLED - If interrupt is valid
5516  *  IRQ_NONE    - If invalid interrupt
5517  */
5518 static irqreturn_t ufshcd_uic_cmd_compl(struct ufs_hba *hba, u32 intr_status)
5519 {
5520 	irqreturn_t retval = IRQ_NONE;
5521 	struct uic_command *cmd;
5522 
5523 	spin_lock(hba->host->host_lock);
5524 	cmd = hba->active_uic_cmd;
5525 	if (WARN_ON_ONCE(!cmd))
5526 		goto unlock;
5527 
5528 	if (ufshcd_is_auto_hibern8_error(hba, intr_status))
5529 		hba->errors |= (UFSHCD_UIC_HIBERN8_MASK & intr_status);
5530 
5531 	if (intr_status & UIC_COMMAND_COMPL) {
5532 		cmd->argument2 |= ufshcd_get_uic_cmd_result(hba);
5533 		cmd->argument3 = ufshcd_get_dme_attr_val(hba);
5534 		if (!hba->uic_async_done)
5535 			cmd->cmd_active = 0;
5536 		complete(&cmd->done);
5537 		retval = IRQ_HANDLED;
5538 	}
5539 
5540 	if (intr_status & UFSHCD_UIC_PWR_MASK && hba->uic_async_done) {
5541 		cmd->cmd_active = 0;
5542 		complete(hba->uic_async_done);
5543 		retval = IRQ_HANDLED;
5544 	}
5545 
5546 	if (retval == IRQ_HANDLED)
5547 		ufshcd_add_uic_command_trace(hba, cmd, UFS_CMD_COMP);
5548 
5549 unlock:
5550 	spin_unlock(hba->host->host_lock);
5551 
5552 	return retval;
5553 }
5554 
5555 /* Release the resources allocated for processing a SCSI command. */
5556 void ufshcd_release_scsi_cmd(struct ufs_hba *hba,
5557 			     struct ufshcd_lrb *lrbp)
5558 {
5559 	struct scsi_cmnd *cmd = lrbp->cmd;
5560 
5561 	scsi_dma_unmap(cmd);
5562 	ufshcd_crypto_clear_prdt(hba, lrbp);
5563 	ufshcd_release(hba);
5564 	ufshcd_clk_scaling_update_busy(hba);
5565 }
5566 
5567 /**
5568  * ufshcd_compl_one_cqe - handle a completion queue entry
5569  * @hba: per adapter instance
5570  * @task_tag: the task tag of the request to be completed
5571  * @cqe: pointer to the completion queue entry
5572  */
5573 void ufshcd_compl_one_cqe(struct ufs_hba *hba, int task_tag,
5574 			  struct cq_entry *cqe)
5575 {
5576 	struct ufshcd_lrb *lrbp;
5577 	struct scsi_cmnd *cmd;
5578 	enum utp_ocs ocs;
5579 
5580 	lrbp = &hba->lrb[task_tag];
5581 	lrbp->compl_time_stamp = ktime_get();
5582 	lrbp->compl_time_stamp_local_clock = local_clock();
5583 	cmd = lrbp->cmd;
5584 	if (cmd) {
5585 		if (unlikely(ufshcd_should_inform_monitor(hba, lrbp)))
5586 			ufshcd_update_monitor(hba, lrbp);
5587 		ufshcd_add_command_trace(hba, task_tag, UFS_CMD_COMP);
5588 		cmd->result = ufshcd_transfer_rsp_status(hba, lrbp, cqe);
5589 		ufshcd_release_scsi_cmd(hba, lrbp);
5590 		/* Do not touch lrbp after scsi done */
5591 		scsi_done(cmd);
5592 	} else {
5593 		if (cqe) {
5594 			ocs = le32_to_cpu(cqe->status) & MASK_OCS;
5595 			lrbp->utr_descriptor_ptr->header.ocs = ocs;
5596 		}
5597 		complete(&hba->dev_cmd.complete);
5598 	}
5599 }
5600 
5601 /**
5602  * __ufshcd_transfer_req_compl - handle SCSI and query command completion
5603  * @hba: per adapter instance
5604  * @completed_reqs: bitmask that indicates which requests to complete
5605  */
5606 static void __ufshcd_transfer_req_compl(struct ufs_hba *hba,
5607 					unsigned long completed_reqs)
5608 {
5609 	int tag;
5610 
5611 	for_each_set_bit(tag, &completed_reqs, hba->nutrs)
5612 		ufshcd_compl_one_cqe(hba, tag, NULL);
5613 }
5614 
5615 /* Any value that is not an existing queue number is fine for this constant. */
5616 enum {
5617 	UFSHCD_POLL_FROM_INTERRUPT_CONTEXT = -1
5618 };
5619 
5620 static void ufshcd_clear_polled(struct ufs_hba *hba,
5621 				unsigned long *completed_reqs)
5622 {
5623 	int tag;
5624 
5625 	for_each_set_bit(tag, completed_reqs, hba->nutrs) {
5626 		struct scsi_cmnd *cmd = hba->lrb[tag].cmd;
5627 
5628 		if (!cmd)
5629 			continue;
5630 		if (scsi_cmd_to_rq(cmd)->cmd_flags & REQ_POLLED)
5631 			__clear_bit(tag, completed_reqs);
5632 	}
5633 }
5634 
5635 /*
5636  * Return: > 0 if one or more commands have been completed or 0 if no
5637  * requests have been completed.
5638  */
5639 static int ufshcd_poll(struct Scsi_Host *shost, unsigned int queue_num)
5640 {
5641 	struct ufs_hba *hba = shost_priv(shost);
5642 	unsigned long completed_reqs, flags;
5643 	u32 tr_doorbell;
5644 	struct ufs_hw_queue *hwq;
5645 
5646 	if (hba->mcq_enabled) {
5647 		hwq = &hba->uhq[queue_num];
5648 
5649 		return ufshcd_mcq_poll_cqe_lock(hba, hwq);
5650 	}
5651 
5652 	spin_lock_irqsave(&hba->outstanding_lock, flags);
5653 	tr_doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
5654 	completed_reqs = ~tr_doorbell & hba->outstanding_reqs;
5655 	WARN_ONCE(completed_reqs & ~hba->outstanding_reqs,
5656 		  "completed: %#lx; outstanding: %#lx\n", completed_reqs,
5657 		  hba->outstanding_reqs);
5658 	if (queue_num == UFSHCD_POLL_FROM_INTERRUPT_CONTEXT) {
5659 		/* Do not complete polled requests from interrupt context. */
5660 		ufshcd_clear_polled(hba, &completed_reqs);
5661 	}
5662 	hba->outstanding_reqs &= ~completed_reqs;
5663 	spin_unlock_irqrestore(&hba->outstanding_lock, flags);
5664 
5665 	if (completed_reqs)
5666 		__ufshcd_transfer_req_compl(hba, completed_reqs);
5667 
5668 	return completed_reqs != 0;
5669 }
5670 
5671 /**
5672  * ufshcd_mcq_compl_pending_transfer - MCQ mode function. It is
5673  * invoked from the error handler context or ufshcd_host_reset_and_restore()
5674  * to complete the pending transfers and free the resources associated with
5675  * the scsi command.
5676  *
5677  * @hba: per adapter instance
5678  * @force_compl: This flag is set to true when invoked
5679  * from ufshcd_host_reset_and_restore() in which case it requires special
5680  * handling because the host controller has been reset by ufshcd_hba_stop().
5681  */
5682 static void ufshcd_mcq_compl_pending_transfer(struct ufs_hba *hba,
5683 					      bool force_compl)
5684 {
5685 	struct ufs_hw_queue *hwq;
5686 	struct ufshcd_lrb *lrbp;
5687 	struct scsi_cmnd *cmd;
5688 	unsigned long flags;
5689 	int tag;
5690 
5691 	for (tag = 0; tag < hba->nutrs; tag++) {
5692 		lrbp = &hba->lrb[tag];
5693 		cmd = lrbp->cmd;
5694 		if (!ufshcd_cmd_inflight(cmd) ||
5695 		    test_bit(SCMD_STATE_COMPLETE, &cmd->state))
5696 			continue;
5697 
5698 		hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(cmd));
5699 		if (!hwq)
5700 			continue;
5701 
5702 		if (force_compl) {
5703 			ufshcd_mcq_compl_all_cqes_lock(hba, hwq);
5704 			/*
5705 			 * For those cmds of which the cqes are not present
5706 			 * in the cq, complete them explicitly.
5707 			 */
5708 			spin_lock_irqsave(&hwq->cq_lock, flags);
5709 			if (cmd && !test_bit(SCMD_STATE_COMPLETE, &cmd->state)) {
5710 				set_host_byte(cmd, DID_REQUEUE);
5711 				ufshcd_release_scsi_cmd(hba, lrbp);
5712 				scsi_done(cmd);
5713 			}
5714 			spin_unlock_irqrestore(&hwq->cq_lock, flags);
5715 		} else {
5716 			ufshcd_mcq_poll_cqe_lock(hba, hwq);
5717 		}
5718 	}
5719 }
5720 
5721 /**
5722  * ufshcd_transfer_req_compl - handle SCSI and query command completion
5723  * @hba: per adapter instance
5724  *
5725  * Return:
5726  *  IRQ_HANDLED - If interrupt is valid
5727  *  IRQ_NONE    - If invalid interrupt
5728  */
5729 static irqreturn_t ufshcd_transfer_req_compl(struct ufs_hba *hba)
5730 {
5731 	/* Resetting interrupt aggregation counters first and reading the
5732 	 * DOOR_BELL afterward allows us to handle all the completed requests.
5733 	 * In order to prevent other interrupts starvation the DB is read once
5734 	 * after reset. The down side of this solution is the possibility of
5735 	 * false interrupt if device completes another request after resetting
5736 	 * aggregation and before reading the DB.
5737 	 */
5738 	if (ufshcd_is_intr_aggr_allowed(hba) &&
5739 	    !(hba->quirks & UFSHCI_QUIRK_SKIP_RESET_INTR_AGGR))
5740 		ufshcd_reset_intr_aggr(hba);
5741 
5742 	if (ufs_fail_completion(hba))
5743 		return IRQ_HANDLED;
5744 
5745 	/*
5746 	 * Ignore the ufshcd_poll() return value and return IRQ_HANDLED since we
5747 	 * do not want polling to trigger spurious interrupt complaints.
5748 	 */
5749 	ufshcd_poll(hba->host, UFSHCD_POLL_FROM_INTERRUPT_CONTEXT);
5750 
5751 	return IRQ_HANDLED;
5752 }
5753 
5754 int __ufshcd_write_ee_control(struct ufs_hba *hba, u32 ee_ctrl_mask)
5755 {
5756 	return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
5757 				       QUERY_ATTR_IDN_EE_CONTROL, 0, 0,
5758 				       &ee_ctrl_mask);
5759 }
5760 
5761 int ufshcd_write_ee_control(struct ufs_hba *hba)
5762 {
5763 	int err;
5764 
5765 	mutex_lock(&hba->ee_ctrl_mutex);
5766 	err = __ufshcd_write_ee_control(hba, hba->ee_ctrl_mask);
5767 	mutex_unlock(&hba->ee_ctrl_mutex);
5768 	if (err)
5769 		dev_err(hba->dev, "%s: failed to write ee control %d\n",
5770 			__func__, err);
5771 	return err;
5772 }
5773 
5774 int ufshcd_update_ee_control(struct ufs_hba *hba, u16 *mask,
5775 			     const u16 *other_mask, u16 set, u16 clr)
5776 {
5777 	u16 new_mask, ee_ctrl_mask;
5778 	int err = 0;
5779 
5780 	mutex_lock(&hba->ee_ctrl_mutex);
5781 	new_mask = (*mask & ~clr) | set;
5782 	ee_ctrl_mask = new_mask | *other_mask;
5783 	if (ee_ctrl_mask != hba->ee_ctrl_mask)
5784 		err = __ufshcd_write_ee_control(hba, ee_ctrl_mask);
5785 	/* Still need to update 'mask' even if 'ee_ctrl_mask' was unchanged */
5786 	if (!err) {
5787 		hba->ee_ctrl_mask = ee_ctrl_mask;
5788 		*mask = new_mask;
5789 	}
5790 	mutex_unlock(&hba->ee_ctrl_mutex);
5791 	return err;
5792 }
5793 
5794 /**
5795  * ufshcd_disable_ee - disable exception event
5796  * @hba: per-adapter instance
5797  * @mask: exception event to disable
5798  *
5799  * Disables exception event in the device so that the EVENT_ALERT
5800  * bit is not set.
5801  *
5802  * Return: zero on success, non-zero error value on failure.
5803  */
5804 static inline int ufshcd_disable_ee(struct ufs_hba *hba, u16 mask)
5805 {
5806 	return ufshcd_update_ee_drv_mask(hba, 0, mask);
5807 }
5808 
5809 /**
5810  * ufshcd_enable_ee - enable exception event
5811  * @hba: per-adapter instance
5812  * @mask: exception event to enable
5813  *
5814  * Enable corresponding exception event in the device to allow
5815  * device to alert host in critical scenarios.
5816  *
5817  * Return: zero on success, non-zero error value on failure.
5818  */
5819 static inline int ufshcd_enable_ee(struct ufs_hba *hba, u16 mask)
5820 {
5821 	return ufshcd_update_ee_drv_mask(hba, mask, 0);
5822 }
5823 
5824 /**
5825  * ufshcd_enable_auto_bkops - Allow device managed BKOPS
5826  * @hba: per-adapter instance
5827  *
5828  * Allow device to manage background operations on its own. Enabling
5829  * this might lead to inconsistent latencies during normal data transfers
5830  * as the device is allowed to manage its own way of handling background
5831  * operations.
5832  *
5833  * Return: zero on success, non-zero on failure.
5834  */
5835 static int ufshcd_enable_auto_bkops(struct ufs_hba *hba)
5836 {
5837 	int err = 0;
5838 
5839 	if (hba->auto_bkops_enabled)
5840 		goto out;
5841 
5842 	err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG,
5843 			QUERY_FLAG_IDN_BKOPS_EN, 0, NULL);
5844 	if (err) {
5845 		dev_err(hba->dev, "%s: failed to enable bkops %d\n",
5846 				__func__, err);
5847 		goto out;
5848 	}
5849 
5850 	hba->auto_bkops_enabled = true;
5851 	trace_ufshcd_auto_bkops_state(hba, "Enabled");
5852 
5853 	/* No need of URGENT_BKOPS exception from the device */
5854 	err = ufshcd_disable_ee(hba, MASK_EE_URGENT_BKOPS);
5855 	if (err)
5856 		dev_err(hba->dev, "%s: failed to disable exception event %d\n",
5857 				__func__, err);
5858 out:
5859 	return err;
5860 }
5861 
5862 /**
5863  * ufshcd_disable_auto_bkops - block device in doing background operations
5864  * @hba: per-adapter instance
5865  *
5866  * Disabling background operations improves command response latency but
5867  * has drawback of device moving into critical state where the device is
5868  * not-operable. Make sure to call ufshcd_enable_auto_bkops() whenever the
5869  * host is idle so that BKOPS are managed effectively without any negative
5870  * impacts.
5871  *
5872  * Return: zero on success, non-zero on failure.
5873  */
5874 static int ufshcd_disable_auto_bkops(struct ufs_hba *hba)
5875 {
5876 	int err = 0;
5877 
5878 	if (!hba->auto_bkops_enabled)
5879 		goto out;
5880 
5881 	/*
5882 	 * If host assisted BKOPs is to be enabled, make sure
5883 	 * urgent bkops exception is allowed.
5884 	 */
5885 	err = ufshcd_enable_ee(hba, MASK_EE_URGENT_BKOPS);
5886 	if (err) {
5887 		dev_err(hba->dev, "%s: failed to enable exception event %d\n",
5888 				__func__, err);
5889 		goto out;
5890 	}
5891 
5892 	err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_CLEAR_FLAG,
5893 			QUERY_FLAG_IDN_BKOPS_EN, 0, NULL);
5894 	if (err) {
5895 		dev_err(hba->dev, "%s: failed to disable bkops %d\n",
5896 				__func__, err);
5897 		ufshcd_disable_ee(hba, MASK_EE_URGENT_BKOPS);
5898 		goto out;
5899 	}
5900 
5901 	hba->auto_bkops_enabled = false;
5902 	trace_ufshcd_auto_bkops_state(hba, "Disabled");
5903 	hba->is_urgent_bkops_lvl_checked = false;
5904 out:
5905 	return err;
5906 }
5907 
5908 /**
5909  * ufshcd_force_reset_auto_bkops - force reset auto bkops state
5910  * @hba: per adapter instance
5911  *
5912  * After a device reset the device may toggle the BKOPS_EN flag
5913  * to default value. The s/w tracking variables should be updated
5914  * as well. This function would change the auto-bkops state based on
5915  * UFSHCD_CAP_KEEP_AUTO_BKOPS_ENABLED_EXCEPT_SUSPEND.
5916  */
5917 static void ufshcd_force_reset_auto_bkops(struct ufs_hba *hba)
5918 {
5919 	if (ufshcd_keep_autobkops_enabled_except_suspend(hba)) {
5920 		hba->auto_bkops_enabled = false;
5921 		hba->ee_ctrl_mask |= MASK_EE_URGENT_BKOPS;
5922 		ufshcd_enable_auto_bkops(hba);
5923 	} else {
5924 		hba->auto_bkops_enabled = true;
5925 		hba->ee_ctrl_mask &= ~MASK_EE_URGENT_BKOPS;
5926 		ufshcd_disable_auto_bkops(hba);
5927 	}
5928 	hba->urgent_bkops_lvl = BKOPS_STATUS_PERF_IMPACT;
5929 	hba->is_urgent_bkops_lvl_checked = false;
5930 }
5931 
5932 static inline int ufshcd_get_bkops_status(struct ufs_hba *hba, u32 *status)
5933 {
5934 	return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5935 			QUERY_ATTR_IDN_BKOPS_STATUS, 0, 0, status);
5936 }
5937 
5938 /**
5939  * ufshcd_bkops_ctrl - control the auto bkops based on current bkops status
5940  * @hba: per-adapter instance
5941  *
5942  * Read the bkops_status from the UFS device and Enable fBackgroundOpsEn
5943  * flag in the device to permit background operations if the device
5944  * bkops_status is greater than or equal to the "hba->urgent_bkops_lvl",
5945  * disable otherwise.
5946  *
5947  * Return: 0 for success, non-zero in case of failure.
5948  *
5949  * NOTE: Caller of this function can check the "hba->auto_bkops_enabled" flag
5950  * to know whether auto bkops is enabled or disabled after this function
5951  * returns control to it.
5952  */
5953 static int ufshcd_bkops_ctrl(struct ufs_hba *hba)
5954 {
5955 	enum bkops_status status = hba->urgent_bkops_lvl;
5956 	u32 curr_status = 0;
5957 	int err;
5958 
5959 	err = ufshcd_get_bkops_status(hba, &curr_status);
5960 	if (err) {
5961 		dev_err(hba->dev, "%s: failed to get BKOPS status %d\n",
5962 				__func__, err);
5963 		goto out;
5964 	} else if (curr_status > BKOPS_STATUS_MAX) {
5965 		dev_err(hba->dev, "%s: invalid BKOPS status %d\n",
5966 				__func__, curr_status);
5967 		err = -EINVAL;
5968 		goto out;
5969 	}
5970 
5971 	if (curr_status >= status)
5972 		err = ufshcd_enable_auto_bkops(hba);
5973 	else
5974 		err = ufshcd_disable_auto_bkops(hba);
5975 out:
5976 	return err;
5977 }
5978 
5979 static inline int ufshcd_get_ee_status(struct ufs_hba *hba, u32 *status)
5980 {
5981 	return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5982 			QUERY_ATTR_IDN_EE_STATUS, 0, 0, status);
5983 }
5984 
5985 static void ufshcd_bkops_exception_event_handler(struct ufs_hba *hba)
5986 {
5987 	int err;
5988 	u32 curr_status = 0;
5989 
5990 	if (hba->is_urgent_bkops_lvl_checked)
5991 		goto enable_auto_bkops;
5992 
5993 	err = ufshcd_get_bkops_status(hba, &curr_status);
5994 	if (err) {
5995 		dev_err(hba->dev, "%s: failed to get BKOPS status %d\n",
5996 				__func__, err);
5997 		goto out;
5998 	}
5999 
6000 	/*
6001 	 * We are seeing that some devices are raising the urgent bkops
6002 	 * exception events even when BKOPS status doesn't indicate performace
6003 	 * impacted or critical. Handle these device by determining their urgent
6004 	 * bkops status at runtime.
6005 	 */
6006 	if (curr_status < BKOPS_STATUS_PERF_IMPACT) {
6007 		dev_err(hba->dev, "%s: device raised urgent BKOPS exception for bkops status %d\n",
6008 				__func__, curr_status);
6009 		/* update the current status as the urgent bkops level */
6010 		hba->urgent_bkops_lvl = curr_status;
6011 		hba->is_urgent_bkops_lvl_checked = true;
6012 	}
6013 
6014 enable_auto_bkops:
6015 	err = ufshcd_enable_auto_bkops(hba);
6016 out:
6017 	if (err < 0)
6018 		dev_err(hba->dev, "%s: failed to handle urgent bkops %d\n",
6019 				__func__, err);
6020 }
6021 
6022 int ufshcd_read_device_lvl_exception_id(struct ufs_hba *hba, u64 *exception_id)
6023 {
6024 	struct utp_upiu_query_v4_0 *upiu_resp;
6025 	struct ufs_query_req *request = NULL;
6026 	struct ufs_query_res *response = NULL;
6027 	int err;
6028 
6029 	if (hba->dev_info.wspecversion < 0x410)
6030 		return -EOPNOTSUPP;
6031 
6032 	ufshcd_hold(hba);
6033 	mutex_lock(&hba->dev_cmd.lock);
6034 
6035 	ufshcd_init_query(hba, &request, &response,
6036 			  UPIU_QUERY_OPCODE_READ_ATTR,
6037 			  QUERY_ATTR_IDN_DEV_LVL_EXCEPTION_ID, 0, 0);
6038 
6039 	request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
6040 
6041 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, dev_cmd_timeout);
6042 
6043 	if (err) {
6044 		dev_err(hba->dev, "%s: failed to read device level exception %d\n",
6045 			__func__, err);
6046 		goto out;
6047 	}
6048 
6049 	upiu_resp = (struct utp_upiu_query_v4_0 *)response;
6050 	*exception_id = get_unaligned_be64(&upiu_resp->osf3);
6051 out:
6052 	mutex_unlock(&hba->dev_cmd.lock);
6053 	ufshcd_release(hba);
6054 
6055 	return err;
6056 }
6057 
6058 static int __ufshcd_wb_toggle(struct ufs_hba *hba, bool set, enum flag_idn idn)
6059 {
6060 	u8 index;
6061 	enum query_opcode opcode = set ? UPIU_QUERY_OPCODE_SET_FLAG :
6062 				   UPIU_QUERY_OPCODE_CLEAR_FLAG;
6063 
6064 	index = ufshcd_wb_get_query_index(hba);
6065 	return ufshcd_query_flag_retry(hba, opcode, idn, index, NULL);
6066 }
6067 
6068 int ufshcd_wb_toggle(struct ufs_hba *hba, bool enable)
6069 {
6070 	int ret;
6071 
6072 	if (!ufshcd_is_wb_allowed(hba) ||
6073 	    hba->dev_info.wb_enabled == enable)
6074 		return 0;
6075 
6076 	ret = __ufshcd_wb_toggle(hba, enable, QUERY_FLAG_IDN_WB_EN);
6077 	if (ret) {
6078 		dev_err(hba->dev, "%s: Write Booster %s failed %d\n",
6079 			__func__, enable ? "enabling" : "disabling", ret);
6080 		return ret;
6081 	}
6082 
6083 	hba->dev_info.wb_enabled = enable;
6084 	dev_dbg(hba->dev, "%s: Write Booster %s\n",
6085 			__func__, enable ? "enabled" : "disabled");
6086 
6087 	return ret;
6088 }
6089 
6090 static void ufshcd_wb_toggle_buf_flush_during_h8(struct ufs_hba *hba,
6091 						 bool enable)
6092 {
6093 	int ret;
6094 
6095 	ret = __ufshcd_wb_toggle(hba, enable,
6096 			QUERY_FLAG_IDN_WB_BUFF_FLUSH_DURING_HIBERN8);
6097 	if (ret) {
6098 		dev_err(hba->dev, "%s: WB-Buf Flush during H8 %s failed %d\n",
6099 			__func__, enable ? "enabling" : "disabling", ret);
6100 		return;
6101 	}
6102 	dev_dbg(hba->dev, "%s: WB-Buf Flush during H8 %s\n",
6103 			__func__, enable ? "enabled" : "disabled");
6104 }
6105 
6106 int ufshcd_wb_toggle_buf_flush(struct ufs_hba *hba, bool enable)
6107 {
6108 	int ret;
6109 
6110 	if (!ufshcd_is_wb_allowed(hba) ||
6111 	    hba->dev_info.wb_buf_flush_enabled == enable)
6112 		return 0;
6113 
6114 	ret = __ufshcd_wb_toggle(hba, enable, QUERY_FLAG_IDN_WB_BUFF_FLUSH_EN);
6115 	if (ret) {
6116 		dev_err(hba->dev, "%s: WB-Buf Flush %s failed %d\n",
6117 			__func__, enable ? "enabling" : "disabling", ret);
6118 		return ret;
6119 	}
6120 
6121 	hba->dev_info.wb_buf_flush_enabled = enable;
6122 	dev_dbg(hba->dev, "%s: WB-Buf Flush %s\n",
6123 			__func__, enable ? "enabled" : "disabled");
6124 
6125 	return ret;
6126 }
6127 
6128 int ufshcd_wb_set_resize_en(struct ufs_hba *hba, enum wb_resize_en en_mode)
6129 {
6130 	int ret;
6131 	u8 index;
6132 
6133 	index = ufshcd_wb_get_query_index(hba);
6134 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
6135 				QUERY_ATTR_IDN_WB_BUF_RESIZE_EN, index, 0, &en_mode);
6136 	if (ret)
6137 		dev_err(hba->dev, "%s: Enable WB buf resize operation failed %d\n",
6138 			__func__, ret);
6139 
6140 	return ret;
6141 }
6142 
6143 static bool ufshcd_wb_curr_buff_threshold_check(struct ufs_hba *hba,
6144 						u32 avail_buf)
6145 {
6146 	u32 cur_buf;
6147 	int ret;
6148 	u8 index;
6149 
6150 	index = ufshcd_wb_get_query_index(hba);
6151 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
6152 					      QUERY_ATTR_IDN_CURR_WB_BUFF_SIZE,
6153 					      index, 0, &cur_buf);
6154 	if (ret) {
6155 		dev_err(hba->dev, "%s: dCurWriteBoosterBufferSize read failed %d\n",
6156 			__func__, ret);
6157 		return false;
6158 	}
6159 
6160 	if (!cur_buf) {
6161 		dev_info(hba->dev, "dCurWBBuf: %d WB disabled until free-space is available\n",
6162 			 cur_buf);
6163 		return false;
6164 	}
6165 	/* Let it continue to flush when available buffer exceeds threshold */
6166 	return avail_buf < hba->vps->wb_flush_threshold;
6167 }
6168 
6169 static void ufshcd_wb_force_disable(struct ufs_hba *hba)
6170 {
6171 	if (ufshcd_is_wb_buf_flush_allowed(hba))
6172 		ufshcd_wb_toggle_buf_flush(hba, false);
6173 
6174 	ufshcd_wb_toggle_buf_flush_during_h8(hba, false);
6175 	ufshcd_wb_toggle(hba, false);
6176 	hba->caps &= ~UFSHCD_CAP_WB_EN;
6177 
6178 	dev_info(hba->dev, "%s: WB force disabled\n", __func__);
6179 }
6180 
6181 static bool ufshcd_is_wb_buf_lifetime_available(struct ufs_hba *hba)
6182 {
6183 	u32 lifetime;
6184 	int ret;
6185 	u8 index;
6186 
6187 	index = ufshcd_wb_get_query_index(hba);
6188 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
6189 				      QUERY_ATTR_IDN_WB_BUFF_LIFE_TIME_EST,
6190 				      index, 0, &lifetime);
6191 	if (ret) {
6192 		dev_err(hba->dev,
6193 			"%s: bWriteBoosterBufferLifeTimeEst read failed %d\n",
6194 			__func__, ret);
6195 		return false;
6196 	}
6197 
6198 	if (lifetime == UFS_WB_EXCEED_LIFETIME) {
6199 		dev_err(hba->dev, "%s: WB buf lifetime is exhausted 0x%02X\n",
6200 			__func__, lifetime);
6201 		return false;
6202 	}
6203 
6204 	dev_dbg(hba->dev, "%s: WB buf lifetime is 0x%02X\n",
6205 		__func__, lifetime);
6206 
6207 	return true;
6208 }
6209 
6210 static bool ufshcd_wb_need_flush(struct ufs_hba *hba)
6211 {
6212 	int ret;
6213 	u32 avail_buf;
6214 	u8 index;
6215 
6216 	if (!ufshcd_is_wb_allowed(hba))
6217 		return false;
6218 
6219 	if (!ufshcd_is_wb_buf_lifetime_available(hba)) {
6220 		ufshcd_wb_force_disable(hba);
6221 		return false;
6222 	}
6223 
6224 	/*
6225 	 * With user-space reduction enabled, it's enough to enable flush
6226 	 * by checking only the available buffer. The threshold
6227 	 * defined here is > 90% full.
6228 	 * With user-space preserved enabled, the current-buffer
6229 	 * should be checked too because the wb buffer size can reduce
6230 	 * when disk tends to be full. This info is provided by current
6231 	 * buffer (dCurrentWriteBoosterBufferSize).
6232 	 */
6233 	index = ufshcd_wb_get_query_index(hba);
6234 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
6235 				      QUERY_ATTR_IDN_AVAIL_WB_BUFF_SIZE,
6236 				      index, 0, &avail_buf);
6237 	if (ret) {
6238 		dev_warn(hba->dev, "%s: dAvailableWriteBoosterBufferSize read failed %d\n",
6239 			 __func__, ret);
6240 		return false;
6241 	}
6242 
6243 	if (!hba->dev_info.b_presrv_uspc_en)
6244 		return avail_buf <= UFS_WB_BUF_REMAIN_PERCENT(10);
6245 
6246 	return ufshcd_wb_curr_buff_threshold_check(hba, avail_buf);
6247 }
6248 
6249 static void ufshcd_rpm_dev_flush_recheck_work(struct work_struct *work)
6250 {
6251 	struct ufs_hba *hba = container_of(to_delayed_work(work),
6252 					   struct ufs_hba,
6253 					   rpm_dev_flush_recheck_work);
6254 	/*
6255 	 * To prevent unnecessary VCC power drain after device finishes
6256 	 * WriteBooster buffer flush or Auto BKOPs, force runtime resume
6257 	 * after a certain delay to recheck the threshold by next runtime
6258 	 * suspend.
6259 	 */
6260 	ufshcd_rpm_get_sync(hba);
6261 	ufshcd_rpm_put_sync(hba);
6262 }
6263 
6264 /**
6265  * ufshcd_exception_event_handler - handle exceptions raised by device
6266  * @work: pointer to work data
6267  *
6268  * Read bExceptionEventStatus attribute from the device and handle the
6269  * exception event accordingly.
6270  */
6271 static void ufshcd_exception_event_handler(struct work_struct *work)
6272 {
6273 	struct ufs_hba *hba;
6274 	int err;
6275 	u32 status = 0;
6276 	hba = container_of(work, struct ufs_hba, eeh_work);
6277 
6278 	err = ufshcd_get_ee_status(hba, &status);
6279 	if (err) {
6280 		dev_err(hba->dev, "%s: failed to get exception status %d\n",
6281 				__func__, err);
6282 		return;
6283 	}
6284 
6285 	trace_ufshcd_exception_event(hba, status);
6286 
6287 	if (status & hba->ee_drv_mask & MASK_EE_URGENT_BKOPS)
6288 		ufshcd_bkops_exception_event_handler(hba);
6289 
6290 	if (status & hba->ee_drv_mask & MASK_EE_URGENT_TEMP)
6291 		ufs_hwmon_notify_event(hba, status & MASK_EE_URGENT_TEMP);
6292 
6293 	if (status & hba->ee_drv_mask & MASK_EE_HEALTH_CRITICAL) {
6294 		hba->critical_health_count++;
6295 		sysfs_notify(&hba->dev->kobj, NULL, "critical_health");
6296 	}
6297 
6298 	if (status & hba->ee_drv_mask & MASK_EE_DEV_LVL_EXCEPTION) {
6299 		atomic_inc(&hba->dev_lvl_exception_count);
6300 		sysfs_notify(&hba->dev->kobj, NULL, "device_lvl_exception_count");
6301 	}
6302 
6303 	ufs_debugfs_exception_event(hba, status);
6304 }
6305 
6306 /* Complete requests that have door-bell cleared */
6307 static void ufshcd_complete_requests(struct ufs_hba *hba, bool force_compl)
6308 {
6309 	if (hba->mcq_enabled)
6310 		ufshcd_mcq_compl_pending_transfer(hba, force_compl);
6311 	else
6312 		ufshcd_transfer_req_compl(hba);
6313 
6314 	ufshcd_tmc_handler(hba);
6315 }
6316 
6317 /**
6318  * ufshcd_quirk_dl_nac_errors - This function checks if error handling is
6319  *				to recover from the DL NAC errors or not.
6320  * @hba: per-adapter instance
6321  *
6322  * Return: true if error handling is required, false otherwise.
6323  */
6324 static bool ufshcd_quirk_dl_nac_errors(struct ufs_hba *hba)
6325 {
6326 	unsigned long flags;
6327 	bool err_handling = true;
6328 
6329 	spin_lock_irqsave(hba->host->host_lock, flags);
6330 	/*
6331 	 * UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS only workaround the
6332 	 * device fatal error and/or DL NAC & REPLAY timeout errors.
6333 	 */
6334 	if (hba->saved_err & (CONTROLLER_FATAL_ERROR | SYSTEM_BUS_FATAL_ERROR))
6335 		goto out;
6336 
6337 	if ((hba->saved_err & DEVICE_FATAL_ERROR) ||
6338 	    ((hba->saved_err & UIC_ERROR) &&
6339 	     (hba->saved_uic_err & UFSHCD_UIC_DL_TCx_REPLAY_ERROR)))
6340 		goto out;
6341 
6342 	if ((hba->saved_err & UIC_ERROR) &&
6343 	    (hba->saved_uic_err & UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)) {
6344 		int err;
6345 		/*
6346 		 * wait for 50ms to see if we can get any other errors or not.
6347 		 */
6348 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6349 		msleep(50);
6350 		spin_lock_irqsave(hba->host->host_lock, flags);
6351 
6352 		/*
6353 		 * now check if we have got any other severe errors other than
6354 		 * DL NAC error?
6355 		 */
6356 		if ((hba->saved_err & INT_FATAL_ERRORS) ||
6357 		    ((hba->saved_err & UIC_ERROR) &&
6358 		    (hba->saved_uic_err & ~UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)))
6359 			goto out;
6360 
6361 		/*
6362 		 * As DL NAC is the only error received so far, send out NOP
6363 		 * command to confirm if link is still active or not.
6364 		 *   - If we don't get any response then do error recovery.
6365 		 *   - If we get response then clear the DL NAC error bit.
6366 		 */
6367 
6368 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6369 		err = ufshcd_verify_dev_init(hba);
6370 		spin_lock_irqsave(hba->host->host_lock, flags);
6371 
6372 		if (err)
6373 			goto out;
6374 
6375 		/* Link seems to be alive hence ignore the DL NAC errors */
6376 		if (hba->saved_uic_err == UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)
6377 			hba->saved_err &= ~UIC_ERROR;
6378 		/* clear NAC error */
6379 		hba->saved_uic_err &= ~UFSHCD_UIC_DL_NAC_RECEIVED_ERROR;
6380 		if (!hba->saved_uic_err)
6381 			err_handling = false;
6382 	}
6383 out:
6384 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6385 	return err_handling;
6386 }
6387 
6388 /* host lock must be held before calling this func */
6389 static inline bool ufshcd_is_saved_err_fatal(struct ufs_hba *hba)
6390 {
6391 	return (hba->saved_uic_err & UFSHCD_UIC_DL_PA_INIT_ERROR) ||
6392 	       (hba->saved_err & (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK));
6393 }
6394 
6395 void ufshcd_schedule_eh_work(struct ufs_hba *hba)
6396 {
6397 	lockdep_assert_held(hba->host->host_lock);
6398 
6399 	/* handle fatal errors only when link is not in error state */
6400 	if (hba->ufshcd_state != UFSHCD_STATE_ERROR) {
6401 		if (hba->force_reset || ufshcd_is_link_broken(hba) ||
6402 		    ufshcd_is_saved_err_fatal(hba))
6403 			hba->ufshcd_state = UFSHCD_STATE_EH_SCHEDULED_FATAL;
6404 		else
6405 			hba->ufshcd_state = UFSHCD_STATE_EH_SCHEDULED_NON_FATAL;
6406 		queue_work(hba->eh_wq, &hba->eh_work);
6407 	}
6408 }
6409 
6410 static void ufshcd_force_error_recovery(struct ufs_hba *hba)
6411 {
6412 	spin_lock_irq(hba->host->host_lock);
6413 	hba->force_reset = true;
6414 	ufshcd_schedule_eh_work(hba);
6415 	spin_unlock_irq(hba->host->host_lock);
6416 }
6417 
6418 static void ufshcd_clk_scaling_allow(struct ufs_hba *hba, bool allow)
6419 {
6420 	mutex_lock(&hba->wb_mutex);
6421 	down_write(&hba->clk_scaling_lock);
6422 	hba->clk_scaling.is_allowed = allow;
6423 	up_write(&hba->clk_scaling_lock);
6424 	mutex_unlock(&hba->wb_mutex);
6425 }
6426 
6427 static void ufshcd_clk_scaling_suspend(struct ufs_hba *hba, bool suspend)
6428 {
6429 	if (suspend) {
6430 		if (hba->clk_scaling.is_enabled)
6431 			ufshcd_suspend_clkscaling(hba);
6432 		ufshcd_clk_scaling_allow(hba, false);
6433 	} else {
6434 		ufshcd_clk_scaling_allow(hba, true);
6435 		if (hba->clk_scaling.is_enabled)
6436 			ufshcd_resume_clkscaling(hba);
6437 	}
6438 }
6439 
6440 static void ufshcd_err_handling_prepare(struct ufs_hba *hba)
6441 {
6442 	ufshcd_rpm_get_sync(hba);
6443 	if (pm_runtime_status_suspended(&hba->ufs_device_wlun->sdev_gendev) ||
6444 	    hba->is_sys_suspended) {
6445 		enum ufs_pm_op pm_op;
6446 
6447 		/*
6448 		 * Don't assume anything of resume, if
6449 		 * resume fails, irq and clocks can be OFF, and powers
6450 		 * can be OFF or in LPM.
6451 		 */
6452 		ufshcd_setup_hba_vreg(hba, true);
6453 		ufshcd_enable_irq(hba);
6454 		ufshcd_setup_vreg(hba, true);
6455 		ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq);
6456 		ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq2);
6457 		ufshcd_hold(hba);
6458 		if (!ufshcd_is_clkgating_allowed(hba))
6459 			ufshcd_setup_clocks(hba, true);
6460 		pm_op = hba->is_sys_suspended ? UFS_SYSTEM_PM : UFS_RUNTIME_PM;
6461 		ufshcd_vops_resume(hba, pm_op);
6462 	} else {
6463 		ufshcd_hold(hba);
6464 		if (ufshcd_is_clkscaling_supported(hba) &&
6465 		    hba->clk_scaling.is_enabled)
6466 			ufshcd_suspend_clkscaling(hba);
6467 		ufshcd_clk_scaling_allow(hba, false);
6468 	}
6469 	/* Wait for ongoing ufshcd_queuecommand() calls to finish. */
6470 	blk_mq_quiesce_tagset(&hba->host->tag_set);
6471 	cancel_work_sync(&hba->eeh_work);
6472 }
6473 
6474 static void ufshcd_err_handling_unprepare(struct ufs_hba *hba)
6475 {
6476 	blk_mq_unquiesce_tagset(&hba->host->tag_set);
6477 	ufshcd_release(hba);
6478 	if (ufshcd_is_clkscaling_supported(hba))
6479 		ufshcd_clk_scaling_suspend(hba, false);
6480 	ufshcd_rpm_put(hba);
6481 }
6482 
6483 static inline bool ufshcd_err_handling_should_stop(struct ufs_hba *hba)
6484 {
6485 	return (!hba->is_powered || hba->shutting_down ||
6486 		!hba->ufs_device_wlun ||
6487 		hba->ufshcd_state == UFSHCD_STATE_ERROR ||
6488 		(!(hba->saved_err || hba->saved_uic_err || hba->force_reset ||
6489 		   ufshcd_is_link_broken(hba))));
6490 }
6491 
6492 #ifdef CONFIG_PM
6493 static void ufshcd_recover_pm_error(struct ufs_hba *hba)
6494 {
6495 	struct Scsi_Host *shost = hba->host;
6496 	struct scsi_device *sdev;
6497 	struct request_queue *q;
6498 	int ret;
6499 
6500 	hba->is_sys_suspended = false;
6501 	/*
6502 	 * Set RPM status of wlun device to RPM_ACTIVE,
6503 	 * this also clears its runtime error.
6504 	 */
6505 	ret = pm_runtime_set_active(&hba->ufs_device_wlun->sdev_gendev);
6506 
6507 	/* hba device might have a runtime error otherwise */
6508 	if (ret)
6509 		ret = pm_runtime_set_active(hba->dev);
6510 	/*
6511 	 * If wlun device had runtime error, we also need to resume those
6512 	 * consumer scsi devices in case any of them has failed to be
6513 	 * resumed due to supplier runtime resume failure. This is to unblock
6514 	 * blk_queue_enter in case there are bios waiting inside it.
6515 	 */
6516 	if (!ret) {
6517 		shost_for_each_device(sdev, shost) {
6518 			q = sdev->request_queue;
6519 			if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
6520 				       q->rpm_status == RPM_SUSPENDING))
6521 				pm_request_resume(q->dev);
6522 		}
6523 	}
6524 }
6525 #else
6526 static inline void ufshcd_recover_pm_error(struct ufs_hba *hba)
6527 {
6528 }
6529 #endif
6530 
6531 static bool ufshcd_is_pwr_mode_restore_needed(struct ufs_hba *hba)
6532 {
6533 	struct ufs_pa_layer_attr *pwr_info = &hba->pwr_info;
6534 	u32 mode;
6535 
6536 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_PWRMODE), &mode);
6537 
6538 	if (pwr_info->pwr_rx != ((mode >> PWRMODE_RX_OFFSET) & PWRMODE_MASK))
6539 		return true;
6540 
6541 	if (pwr_info->pwr_tx != (mode & PWRMODE_MASK))
6542 		return true;
6543 
6544 	return false;
6545 }
6546 
6547 static bool ufshcd_abort_one(struct request *rq, void *priv)
6548 {
6549 	int *ret = priv;
6550 	u32 tag = rq->tag;
6551 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
6552 	struct scsi_device *sdev = cmd->device;
6553 	struct Scsi_Host *shost = sdev->host;
6554 	struct ufs_hba *hba = shost_priv(shost);
6555 
6556 	*ret = ufshcd_try_to_abort_task(hba, tag);
6557 	dev_err(hba->dev, "Aborting tag %d / CDB %#02x %s\n", tag,
6558 		hba->lrb[tag].cmd ? hba->lrb[tag].cmd->cmnd[0] : -1,
6559 		*ret ? "failed" : "succeeded");
6560 
6561 	return *ret == 0;
6562 }
6563 
6564 /**
6565  * ufshcd_abort_all - Abort all pending commands.
6566  * @hba: Host bus adapter pointer.
6567  *
6568  * Return: true if and only if the host controller needs to be reset.
6569  */
6570 static bool ufshcd_abort_all(struct ufs_hba *hba)
6571 {
6572 	int tag, ret = 0;
6573 
6574 	blk_mq_tagset_busy_iter(&hba->host->tag_set, ufshcd_abort_one, &ret);
6575 	if (ret)
6576 		goto out;
6577 
6578 	/* Clear pending task management requests */
6579 	for_each_set_bit(tag, &hba->outstanding_tasks, hba->nutmrs) {
6580 		ret = ufshcd_clear_tm_cmd(hba, tag);
6581 		if (ret)
6582 			goto out;
6583 	}
6584 
6585 out:
6586 	/* Complete the requests that are cleared by s/w */
6587 	ufshcd_complete_requests(hba, false);
6588 
6589 	return ret != 0;
6590 }
6591 
6592 /**
6593  * ufshcd_err_handler - handle UFS errors that require s/w attention
6594  * @work: pointer to work structure
6595  */
6596 static void ufshcd_err_handler(struct work_struct *work)
6597 {
6598 	int retries = MAX_ERR_HANDLER_RETRIES;
6599 	struct ufs_hba *hba;
6600 	unsigned long flags;
6601 	bool needs_restore;
6602 	bool needs_reset;
6603 	int pmc_err;
6604 
6605 	hba = container_of(work, struct ufs_hba, eh_work);
6606 
6607 	dev_info(hba->dev,
6608 		 "%s started; HBA state %s; powered %d; shutting down %d; saved_err = 0x%x; saved_uic_err = 0x%x; force_reset = %d%s\n",
6609 		 __func__, ufshcd_state_name[hba->ufshcd_state],
6610 		 hba->is_powered, hba->shutting_down, hba->saved_err,
6611 		 hba->saved_uic_err, hba->force_reset,
6612 		 ufshcd_is_link_broken(hba) ? "; link is broken" : "");
6613 
6614 	down(&hba->host_sem);
6615 	spin_lock_irqsave(hba->host->host_lock, flags);
6616 	if (ufshcd_err_handling_should_stop(hba)) {
6617 		if (hba->ufshcd_state != UFSHCD_STATE_ERROR)
6618 			hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
6619 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6620 		up(&hba->host_sem);
6621 		return;
6622 	}
6623 	ufshcd_set_eh_in_progress(hba);
6624 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6625 	ufshcd_err_handling_prepare(hba);
6626 	/* Complete requests that have door-bell cleared by h/w */
6627 	ufshcd_complete_requests(hba, false);
6628 	spin_lock_irqsave(hba->host->host_lock, flags);
6629 again:
6630 	needs_restore = false;
6631 	needs_reset = false;
6632 
6633 	if (hba->ufshcd_state != UFSHCD_STATE_ERROR)
6634 		hba->ufshcd_state = UFSHCD_STATE_RESET;
6635 	/*
6636 	 * A full reset and restore might have happened after preparation
6637 	 * is finished, double check whether we should stop.
6638 	 */
6639 	if (ufshcd_err_handling_should_stop(hba))
6640 		goto skip_err_handling;
6641 
6642 	if ((hba->dev_quirks & UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS) &&
6643 	    !hba->force_reset) {
6644 		bool ret;
6645 
6646 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6647 		/* release the lock as ufshcd_quirk_dl_nac_errors() may sleep */
6648 		ret = ufshcd_quirk_dl_nac_errors(hba);
6649 		spin_lock_irqsave(hba->host->host_lock, flags);
6650 		if (!ret && ufshcd_err_handling_should_stop(hba))
6651 			goto skip_err_handling;
6652 	}
6653 
6654 	if ((hba->saved_err & (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK)) ||
6655 	    (hba->saved_uic_err &&
6656 	     (hba->saved_uic_err != UFSHCD_UIC_PA_GENERIC_ERROR))) {
6657 		bool pr_prdt = !!(hba->saved_err & SYSTEM_BUS_FATAL_ERROR);
6658 
6659 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6660 		ufshcd_print_host_state(hba);
6661 		ufshcd_print_pwr_info(hba);
6662 		ufshcd_print_evt_hist(hba);
6663 		ufshcd_print_tmrs(hba, hba->outstanding_tasks);
6664 		ufshcd_print_trs_all(hba, pr_prdt);
6665 		spin_lock_irqsave(hba->host->host_lock, flags);
6666 	}
6667 
6668 	/*
6669 	 * if host reset is required then skip clearing the pending
6670 	 * transfers forcefully because they will get cleared during
6671 	 * host reset and restore
6672 	 */
6673 	if (hba->force_reset || ufshcd_is_link_broken(hba) ||
6674 	    ufshcd_is_saved_err_fatal(hba) ||
6675 	    ((hba->saved_err & UIC_ERROR) &&
6676 	     (hba->saved_uic_err & (UFSHCD_UIC_DL_NAC_RECEIVED_ERROR |
6677 				    UFSHCD_UIC_DL_TCx_REPLAY_ERROR)))) {
6678 		needs_reset = true;
6679 		goto do_reset;
6680 	}
6681 
6682 	/*
6683 	 * If LINERESET was caught, UFS might have been put to PWM mode,
6684 	 * check if power mode restore is needed.
6685 	 */
6686 	if (hba->saved_uic_err & UFSHCD_UIC_PA_GENERIC_ERROR) {
6687 		hba->saved_uic_err &= ~UFSHCD_UIC_PA_GENERIC_ERROR;
6688 		if (!hba->saved_uic_err)
6689 			hba->saved_err &= ~UIC_ERROR;
6690 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6691 		if (ufshcd_is_pwr_mode_restore_needed(hba))
6692 			needs_restore = true;
6693 		spin_lock_irqsave(hba->host->host_lock, flags);
6694 		if (!hba->saved_err && !needs_restore)
6695 			goto skip_err_handling;
6696 	}
6697 
6698 	hba->silence_err_logs = true;
6699 	/* release lock as clear command might sleep */
6700 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6701 
6702 	needs_reset = ufshcd_abort_all(hba);
6703 
6704 	spin_lock_irqsave(hba->host->host_lock, flags);
6705 	hba->silence_err_logs = false;
6706 	if (needs_reset)
6707 		goto do_reset;
6708 
6709 	/*
6710 	 * After all reqs and tasks are cleared from doorbell,
6711 	 * now it is safe to retore power mode.
6712 	 */
6713 	if (needs_restore) {
6714 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6715 		/*
6716 		 * Hold the scaling lock just in case dev cmds
6717 		 * are sent via bsg and/or sysfs.
6718 		 */
6719 		down_write(&hba->clk_scaling_lock);
6720 		hba->force_pmc = true;
6721 		pmc_err = ufshcd_config_pwr_mode(hba, &(hba->pwr_info));
6722 		if (pmc_err) {
6723 			needs_reset = true;
6724 			dev_err(hba->dev, "%s: Failed to restore power mode, err = %d\n",
6725 					__func__, pmc_err);
6726 		}
6727 		hba->force_pmc = false;
6728 		ufshcd_print_pwr_info(hba);
6729 		up_write(&hba->clk_scaling_lock);
6730 		spin_lock_irqsave(hba->host->host_lock, flags);
6731 	}
6732 
6733 do_reset:
6734 	/* Fatal errors need reset */
6735 	if (needs_reset) {
6736 		int err;
6737 
6738 		hba->force_reset = false;
6739 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6740 		err = ufshcd_reset_and_restore(hba);
6741 		if (err)
6742 			dev_err(hba->dev, "%s: reset and restore failed with err %d\n",
6743 					__func__, err);
6744 		else
6745 			ufshcd_recover_pm_error(hba);
6746 		spin_lock_irqsave(hba->host->host_lock, flags);
6747 	}
6748 
6749 skip_err_handling:
6750 	if (!needs_reset) {
6751 		if (hba->ufshcd_state == UFSHCD_STATE_RESET)
6752 			hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
6753 		if (hba->saved_err || hba->saved_uic_err)
6754 			dev_err_ratelimited(hba->dev, "%s: exit: saved_err 0x%x saved_uic_err 0x%x",
6755 			    __func__, hba->saved_err, hba->saved_uic_err);
6756 	}
6757 	/* Exit in an operational state or dead */
6758 	if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL &&
6759 	    hba->ufshcd_state != UFSHCD_STATE_ERROR) {
6760 		if (--retries)
6761 			goto again;
6762 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
6763 	}
6764 	ufshcd_clear_eh_in_progress(hba);
6765 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6766 	ufshcd_err_handling_unprepare(hba);
6767 	up(&hba->host_sem);
6768 
6769 	dev_info(hba->dev, "%s finished; HBA state %s\n", __func__,
6770 		 ufshcd_state_name[hba->ufshcd_state]);
6771 }
6772 
6773 /**
6774  * ufshcd_update_uic_error - check and set fatal UIC error flags.
6775  * @hba: per-adapter instance
6776  *
6777  * Return:
6778  *  IRQ_HANDLED - If interrupt is valid
6779  *  IRQ_NONE    - If invalid interrupt
6780  */
6781 static irqreturn_t ufshcd_update_uic_error(struct ufs_hba *hba)
6782 {
6783 	u32 reg;
6784 	irqreturn_t retval = IRQ_NONE;
6785 
6786 	/* PHY layer error */
6787 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER);
6788 	if ((reg & UIC_PHY_ADAPTER_LAYER_ERROR) &&
6789 	    (reg & UIC_PHY_ADAPTER_LAYER_ERROR_CODE_MASK)) {
6790 		ufshcd_update_evt_hist(hba, UFS_EVT_PA_ERR, reg);
6791 		/*
6792 		 * To know whether this error is fatal or not, DB timeout
6793 		 * must be checked but this error is handled separately.
6794 		 */
6795 		if (reg & UIC_PHY_ADAPTER_LAYER_LANE_ERR_MASK)
6796 			dev_dbg(hba->dev, "%s: UIC Lane error reported\n",
6797 					__func__);
6798 
6799 		/* Got a LINERESET indication. */
6800 		if (reg & UIC_PHY_ADAPTER_LAYER_GENERIC_ERROR) {
6801 			struct uic_command *cmd = NULL;
6802 
6803 			hba->uic_error |= UFSHCD_UIC_PA_GENERIC_ERROR;
6804 			if (hba->uic_async_done && hba->active_uic_cmd)
6805 				cmd = hba->active_uic_cmd;
6806 			/*
6807 			 * Ignore the LINERESET during power mode change
6808 			 * operation via DME_SET command.
6809 			 */
6810 			if (cmd && (cmd->command == UIC_CMD_DME_SET))
6811 				hba->uic_error &= ~UFSHCD_UIC_PA_GENERIC_ERROR;
6812 		}
6813 		retval |= IRQ_HANDLED;
6814 	}
6815 
6816 	/* PA_INIT_ERROR is fatal and needs UIC reset */
6817 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_DATA_LINK_LAYER);
6818 	if ((reg & UIC_DATA_LINK_LAYER_ERROR) &&
6819 	    (reg & UIC_DATA_LINK_LAYER_ERROR_CODE_MASK)) {
6820 		ufshcd_update_evt_hist(hba, UFS_EVT_DL_ERR, reg);
6821 
6822 		if (reg & UIC_DATA_LINK_LAYER_ERROR_PA_INIT)
6823 			hba->uic_error |= UFSHCD_UIC_DL_PA_INIT_ERROR;
6824 		else if (hba->dev_quirks &
6825 				UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS) {
6826 			if (reg & UIC_DATA_LINK_LAYER_ERROR_NAC_RECEIVED)
6827 				hba->uic_error |=
6828 					UFSHCD_UIC_DL_NAC_RECEIVED_ERROR;
6829 			else if (reg & UIC_DATA_LINK_LAYER_ERROR_TCx_REPLAY_TIMEOUT)
6830 				hba->uic_error |= UFSHCD_UIC_DL_TCx_REPLAY_ERROR;
6831 		}
6832 		retval |= IRQ_HANDLED;
6833 	}
6834 
6835 	/* UIC NL/TL/DME errors needs software retry */
6836 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_NETWORK_LAYER);
6837 	if ((reg & UIC_NETWORK_LAYER_ERROR) &&
6838 	    (reg & UIC_NETWORK_LAYER_ERROR_CODE_MASK)) {
6839 		ufshcd_update_evt_hist(hba, UFS_EVT_NL_ERR, reg);
6840 		hba->uic_error |= UFSHCD_UIC_NL_ERROR;
6841 		retval |= IRQ_HANDLED;
6842 	}
6843 
6844 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_TRANSPORT_LAYER);
6845 	if ((reg & UIC_TRANSPORT_LAYER_ERROR) &&
6846 	    (reg & UIC_TRANSPORT_LAYER_ERROR_CODE_MASK)) {
6847 		ufshcd_update_evt_hist(hba, UFS_EVT_TL_ERR, reg);
6848 		hba->uic_error |= UFSHCD_UIC_TL_ERROR;
6849 		retval |= IRQ_HANDLED;
6850 	}
6851 
6852 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_DME);
6853 	if ((reg & UIC_DME_ERROR) &&
6854 	    (reg & UIC_DME_ERROR_CODE_MASK)) {
6855 		ufshcd_update_evt_hist(hba, UFS_EVT_DME_ERR, reg);
6856 		hba->uic_error |= UFSHCD_UIC_DME_ERROR;
6857 		retval |= IRQ_HANDLED;
6858 	}
6859 
6860 	dev_dbg(hba->dev, "%s: UIC error flags = 0x%08x\n",
6861 			__func__, hba->uic_error);
6862 	return retval;
6863 }
6864 
6865 /**
6866  * ufshcd_check_errors - Check for errors that need s/w attention
6867  * @hba: per-adapter instance
6868  * @intr_status: interrupt status generated by the controller
6869  *
6870  * Return:
6871  *  IRQ_HANDLED - If interrupt is valid
6872  *  IRQ_NONE    - If invalid interrupt
6873  */
6874 static irqreturn_t ufshcd_check_errors(struct ufs_hba *hba, u32 intr_status)
6875 {
6876 	bool queue_eh_work = false;
6877 	irqreturn_t retval = IRQ_NONE;
6878 
6879 	spin_lock(hba->host->host_lock);
6880 	hba->errors |= UFSHCD_ERROR_MASK & intr_status;
6881 
6882 	if (hba->errors & INT_FATAL_ERRORS) {
6883 		ufshcd_update_evt_hist(hba, UFS_EVT_FATAL_ERR,
6884 				       hba->errors);
6885 		queue_eh_work = true;
6886 	}
6887 
6888 	if (hba->errors & UIC_ERROR) {
6889 		hba->uic_error = 0;
6890 		retval = ufshcd_update_uic_error(hba);
6891 		if (hba->uic_error)
6892 			queue_eh_work = true;
6893 	}
6894 
6895 	if (hba->errors & UFSHCD_UIC_HIBERN8_MASK) {
6896 		dev_err(hba->dev,
6897 			"%s: Auto Hibern8 %s failed - status: 0x%08x, upmcrs: 0x%08x\n",
6898 			__func__, (hba->errors & UIC_HIBERNATE_ENTER) ?
6899 			"Enter" : "Exit",
6900 			hba->errors, ufshcd_get_upmcrs(hba));
6901 		ufshcd_update_evt_hist(hba, UFS_EVT_AUTO_HIBERN8_ERR,
6902 				       hba->errors);
6903 		ufshcd_set_link_broken(hba);
6904 		queue_eh_work = true;
6905 	}
6906 
6907 	if (queue_eh_work) {
6908 		/*
6909 		 * update the transfer error masks to sticky bits, let's do this
6910 		 * irrespective of current ufshcd_state.
6911 		 */
6912 		hba->saved_err |= hba->errors;
6913 		hba->saved_uic_err |= hba->uic_error;
6914 
6915 		/* dump controller state before resetting */
6916 		if ((hba->saved_err &
6917 		     (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK)) ||
6918 		    (hba->saved_uic_err &&
6919 		     (hba->saved_uic_err != UFSHCD_UIC_PA_GENERIC_ERROR))) {
6920 			dev_err(hba->dev, "%s: saved_err 0x%x saved_uic_err 0x%x\n",
6921 					__func__, hba->saved_err,
6922 					hba->saved_uic_err);
6923 			ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE,
6924 					 "host_regs: ");
6925 			ufshcd_print_pwr_info(hba);
6926 		}
6927 		ufshcd_schedule_eh_work(hba);
6928 		retval |= IRQ_HANDLED;
6929 	}
6930 	/*
6931 	 * if (!queue_eh_work) -
6932 	 * Other errors are either non-fatal where host recovers
6933 	 * itself without s/w intervention or errors that will be
6934 	 * handled by the SCSI core layer.
6935 	 */
6936 	hba->errors = 0;
6937 	hba->uic_error = 0;
6938 	spin_unlock(hba->host->host_lock);
6939 	return retval;
6940 }
6941 
6942 /**
6943  * ufshcd_tmc_handler - handle task management function completion
6944  * @hba: per adapter instance
6945  *
6946  * Return:
6947  *  IRQ_HANDLED - If interrupt is valid
6948  *  IRQ_NONE    - If invalid interrupt
6949  */
6950 static irqreturn_t ufshcd_tmc_handler(struct ufs_hba *hba)
6951 {
6952 	unsigned long flags, pending, issued;
6953 	irqreturn_t ret = IRQ_NONE;
6954 	int tag;
6955 
6956 	spin_lock_irqsave(hba->host->host_lock, flags);
6957 	pending = ufshcd_readl(hba, REG_UTP_TASK_REQ_DOOR_BELL);
6958 	issued = hba->outstanding_tasks & ~pending;
6959 	for_each_set_bit(tag, &issued, hba->nutmrs) {
6960 		struct request *req = hba->tmf_rqs[tag];
6961 		struct completion *c = req->end_io_data;
6962 
6963 		complete(c);
6964 		ret = IRQ_HANDLED;
6965 	}
6966 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6967 
6968 	return ret;
6969 }
6970 
6971 /**
6972  * ufshcd_handle_mcq_cq_events - handle MCQ completion queue events
6973  * @hba: per adapter instance
6974  *
6975  * Return: IRQ_HANDLED if interrupt is handled.
6976  */
6977 static irqreturn_t ufshcd_handle_mcq_cq_events(struct ufs_hba *hba)
6978 {
6979 	struct ufs_hw_queue *hwq;
6980 	unsigned long outstanding_cqs;
6981 	unsigned int nr_queues;
6982 	int i, ret;
6983 	u32 events;
6984 
6985 	ret = ufshcd_vops_get_outstanding_cqs(hba, &outstanding_cqs);
6986 	if (ret)
6987 		outstanding_cqs = (1U << hba->nr_hw_queues) - 1;
6988 
6989 	/* Exclude the poll queues */
6990 	nr_queues = hba->nr_hw_queues - hba->nr_queues[HCTX_TYPE_POLL];
6991 	for_each_set_bit(i, &outstanding_cqs, nr_queues) {
6992 		hwq = &hba->uhq[i];
6993 
6994 		events = ufshcd_mcq_read_cqis(hba, i);
6995 		if (events)
6996 			ufshcd_mcq_write_cqis(hba, events, i);
6997 
6998 		if (events & UFSHCD_MCQ_CQIS_TAIL_ENT_PUSH_STS)
6999 			ufshcd_mcq_poll_cqe_lock(hba, hwq);
7000 	}
7001 
7002 	return IRQ_HANDLED;
7003 }
7004 
7005 /**
7006  * ufshcd_sl_intr - Interrupt service routine
7007  * @hba: per adapter instance
7008  * @intr_status: contains interrupts generated by the controller
7009  *
7010  * Return:
7011  *  IRQ_HANDLED - If interrupt is valid
7012  *  IRQ_NONE    - If invalid interrupt
7013  */
7014 static irqreturn_t ufshcd_sl_intr(struct ufs_hba *hba, u32 intr_status)
7015 {
7016 	irqreturn_t retval = IRQ_NONE;
7017 
7018 	if (intr_status & UFSHCD_UIC_MASK)
7019 		retval |= ufshcd_uic_cmd_compl(hba, intr_status);
7020 
7021 	if (intr_status & UFSHCD_ERROR_MASK || hba->errors)
7022 		retval |= ufshcd_check_errors(hba, intr_status);
7023 
7024 	if (intr_status & UTP_TASK_REQ_COMPL)
7025 		retval |= ufshcd_tmc_handler(hba);
7026 
7027 	if (intr_status & UTP_TRANSFER_REQ_COMPL)
7028 		retval |= ufshcd_transfer_req_compl(hba);
7029 
7030 	if (intr_status & MCQ_CQ_EVENT_STATUS)
7031 		retval |= ufshcd_handle_mcq_cq_events(hba);
7032 
7033 	return retval;
7034 }
7035 
7036 /**
7037  * ufshcd_threaded_intr - Threaded interrupt service routine
7038  * @irq: irq number
7039  * @__hba: pointer to adapter instance
7040  *
7041  * Return:
7042  *  IRQ_HANDLED - If interrupt is valid
7043  *  IRQ_NONE    - If invalid interrupt
7044  */
7045 static irqreturn_t ufshcd_threaded_intr(int irq, void *__hba)
7046 {
7047 	u32 last_intr_status, intr_status, enabled_intr_status = 0;
7048 	irqreturn_t retval = IRQ_NONE;
7049 	struct ufs_hba *hba = __hba;
7050 	int retries = hba->nutrs;
7051 
7052 	last_intr_status = intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
7053 
7054 	/*
7055 	 * There could be max of hba->nutrs reqs in flight and in worst case
7056 	 * if the reqs get finished 1 by 1 after the interrupt status is
7057 	 * read, make sure we handle them by checking the interrupt status
7058 	 * again in a loop until we process all of the reqs before returning.
7059 	 */
7060 	while (intr_status && retries--) {
7061 		enabled_intr_status =
7062 			intr_status & ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
7063 		ufshcd_writel(hba, intr_status, REG_INTERRUPT_STATUS);
7064 		if (enabled_intr_status)
7065 			retval |= ufshcd_sl_intr(hba, enabled_intr_status);
7066 
7067 		intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
7068 	}
7069 
7070 	if (enabled_intr_status && retval == IRQ_NONE &&
7071 	    (!(enabled_intr_status & UTP_TRANSFER_REQ_COMPL) ||
7072 	     hba->outstanding_reqs) && !ufshcd_eh_in_progress(hba)) {
7073 		dev_err(hba->dev, "%s: Unhandled interrupt 0x%08x (0x%08x, 0x%08x)\n",
7074 					__func__,
7075 					intr_status,
7076 					last_intr_status,
7077 					enabled_intr_status);
7078 		ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, "host_regs: ");
7079 	}
7080 
7081 	return retval;
7082 }
7083 
7084 /**
7085  * ufshcd_intr - Main interrupt service routine
7086  * @irq: irq number
7087  * @__hba: pointer to adapter instance
7088  *
7089  * Return:
7090  *  IRQ_HANDLED     - If interrupt is valid
7091  *  IRQ_WAKE_THREAD - If handling is moved to threaded handled
7092  *  IRQ_NONE        - If invalid interrupt
7093  */
7094 static irqreturn_t ufshcd_intr(int irq, void *__hba)
7095 {
7096 	struct ufs_hba *hba = __hba;
7097 
7098 	/* Move interrupt handling to thread when MCQ & ESI are not enabled */
7099 	if (!hba->mcq_enabled || !hba->mcq_esi_enabled)
7100 		return IRQ_WAKE_THREAD;
7101 
7102 	/* Directly handle interrupts since MCQ ESI handlers does the hard job */
7103 	return ufshcd_sl_intr(hba, ufshcd_readl(hba, REG_INTERRUPT_STATUS) &
7104 				   ufshcd_readl(hba, REG_INTERRUPT_ENABLE));
7105 }
7106 
7107 static int ufshcd_clear_tm_cmd(struct ufs_hba *hba, int tag)
7108 {
7109 	int err = 0;
7110 	u32 mask = 1 << tag;
7111 
7112 	if (!test_bit(tag, &hba->outstanding_tasks))
7113 		goto out;
7114 
7115 	ufshcd_utmrl_clear(hba, tag);
7116 
7117 	/* poll for max. 1 sec to clear door bell register by h/w */
7118 	err = ufshcd_wait_for_register(hba,
7119 			REG_UTP_TASK_REQ_DOOR_BELL,
7120 			mask, 0, 1000, 1000);
7121 
7122 	dev_err(hba->dev, "Clearing task management function with tag %d %s\n",
7123 		tag, err < 0 ? "failed" : "succeeded");
7124 
7125 out:
7126 	return err;
7127 }
7128 
7129 static int __ufshcd_issue_tm_cmd(struct ufs_hba *hba,
7130 		struct utp_task_req_desc *treq, u8 tm_function)
7131 {
7132 	struct request_queue *q = hba->tmf_queue;
7133 	struct Scsi_Host *host = hba->host;
7134 	DECLARE_COMPLETION_ONSTACK(wait);
7135 	struct request *req;
7136 	unsigned long flags;
7137 	int task_tag, err;
7138 
7139 	/*
7140 	 * blk_mq_alloc_request() is used here only to get a free tag.
7141 	 */
7142 	req = blk_mq_alloc_request(q, REQ_OP_DRV_OUT, 0);
7143 	if (IS_ERR(req))
7144 		return PTR_ERR(req);
7145 
7146 	req->end_io_data = &wait;
7147 	ufshcd_hold(hba);
7148 
7149 	spin_lock_irqsave(host->host_lock, flags);
7150 
7151 	task_tag = req->tag;
7152 	hba->tmf_rqs[req->tag] = req;
7153 	treq->upiu_req.req_header.task_tag = task_tag;
7154 
7155 	memcpy(hba->utmrdl_base_addr + task_tag, treq, sizeof(*treq));
7156 	ufshcd_vops_setup_task_mgmt(hba, task_tag, tm_function);
7157 
7158 	__set_bit(task_tag, &hba->outstanding_tasks);
7159 
7160 	spin_unlock_irqrestore(host->host_lock, flags);
7161 
7162 	/* send command to the controller */
7163 	ufshcd_writel(hba, 1 << task_tag, REG_UTP_TASK_REQ_DOOR_BELL);
7164 
7165 	ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_SEND);
7166 
7167 	/* wait until the task management command is completed */
7168 	err = wait_for_completion_io_timeout(&wait,
7169 			msecs_to_jiffies(TM_CMD_TIMEOUT));
7170 	if (!err) {
7171 		ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_ERR);
7172 		dev_err(hba->dev, "%s: task management cmd 0x%.2x timed-out\n",
7173 				__func__, tm_function);
7174 		if (ufshcd_clear_tm_cmd(hba, task_tag))
7175 			dev_WARN(hba->dev, "%s: unable to clear tm cmd (slot %d) after timeout\n",
7176 					__func__, task_tag);
7177 		err = -ETIMEDOUT;
7178 	} else {
7179 		err = 0;
7180 		memcpy(treq, hba->utmrdl_base_addr + task_tag, sizeof(*treq));
7181 
7182 		ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_COMP);
7183 	}
7184 
7185 	spin_lock_irqsave(hba->host->host_lock, flags);
7186 	hba->tmf_rqs[req->tag] = NULL;
7187 	__clear_bit(task_tag, &hba->outstanding_tasks);
7188 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7189 
7190 	ufshcd_release(hba);
7191 	blk_mq_free_request(req);
7192 
7193 	return err;
7194 }
7195 
7196 /**
7197  * ufshcd_issue_tm_cmd - issues task management commands to controller
7198  * @hba: per adapter instance
7199  * @lun_id: LUN ID to which TM command is sent
7200  * @task_id: task ID to which the TM command is applicable
7201  * @tm_function: task management function opcode
7202  * @tm_response: task management service response return value
7203  *
7204  * Return: non-zero value on error, zero on success.
7205  */
7206 static int ufshcd_issue_tm_cmd(struct ufs_hba *hba, int lun_id, int task_id,
7207 		u8 tm_function, u8 *tm_response)
7208 {
7209 	struct utp_task_req_desc treq = { };
7210 	enum utp_ocs ocs_value;
7211 	int err;
7212 
7213 	/* Configure task request descriptor */
7214 	treq.header.interrupt = 1;
7215 	treq.header.ocs = OCS_INVALID_COMMAND_STATUS;
7216 
7217 	/* Configure task request UPIU */
7218 	treq.upiu_req.req_header.transaction_code = UPIU_TRANSACTION_TASK_REQ;
7219 	treq.upiu_req.req_header.lun = lun_id;
7220 	treq.upiu_req.req_header.tm_function = tm_function;
7221 
7222 	/*
7223 	 * The host shall provide the same value for LUN field in the basic
7224 	 * header and for Input Parameter.
7225 	 */
7226 	treq.upiu_req.input_param1 = cpu_to_be32(lun_id);
7227 	treq.upiu_req.input_param2 = cpu_to_be32(task_id);
7228 
7229 	err = __ufshcd_issue_tm_cmd(hba, &treq, tm_function);
7230 	if (err == -ETIMEDOUT)
7231 		return err;
7232 
7233 	ocs_value = treq.header.ocs & MASK_OCS;
7234 	if (ocs_value != OCS_SUCCESS)
7235 		dev_err(hba->dev, "%s: failed, ocs = 0x%x\n",
7236 				__func__, ocs_value);
7237 	else if (tm_response)
7238 		*tm_response = be32_to_cpu(treq.upiu_rsp.output_param1) &
7239 				MASK_TM_SERVICE_RESP;
7240 	return err;
7241 }
7242 
7243 /**
7244  * ufshcd_issue_devman_upiu_cmd - API for sending "utrd" type requests
7245  * @hba:	per-adapter instance
7246  * @req_upiu:	upiu request
7247  * @rsp_upiu:	upiu reply
7248  * @desc_buff:	pointer to descriptor buffer, NULL if NA
7249  * @buff_len:	descriptor size, 0 if NA
7250  * @cmd_type:	specifies the type (NOP, Query...)
7251  * @desc_op:	descriptor operation
7252  *
7253  * Those type of requests uses UTP Transfer Request Descriptor - utrd.
7254  * Therefore, it "rides" the device management infrastructure: uses its tag and
7255  * tasks work queues.
7256  *
7257  * Since there is only one available tag for device management commands,
7258  * the caller is expected to hold the hba->dev_cmd.lock mutex.
7259  *
7260  * Return: 0 upon success; < 0 upon failure.
7261  */
7262 static int ufshcd_issue_devman_upiu_cmd(struct ufs_hba *hba,
7263 					struct utp_upiu_req *req_upiu,
7264 					struct utp_upiu_req *rsp_upiu,
7265 					u8 *desc_buff, int *buff_len,
7266 					enum dev_cmd_type cmd_type,
7267 					enum query_opcode desc_op)
7268 {
7269 	const u32 tag = hba->reserved_slot;
7270 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
7271 	int err = 0;
7272 	u8 upiu_flags;
7273 
7274 	/* Protects use of hba->reserved_slot. */
7275 	lockdep_assert_held(&hba->dev_cmd.lock);
7276 
7277 	ufshcd_setup_dev_cmd(hba, lrbp, cmd_type, 0, tag);
7278 
7279 	ufshcd_prepare_req_desc_hdr(hba, lrbp, &upiu_flags, DMA_NONE, 0);
7280 
7281 	/* update the task tag in the request upiu */
7282 	req_upiu->header.task_tag = tag;
7283 
7284 	/* just copy the upiu request as it is */
7285 	memcpy(lrbp->ucd_req_ptr, req_upiu, sizeof(*lrbp->ucd_req_ptr));
7286 	if (desc_buff && desc_op == UPIU_QUERY_OPCODE_WRITE_DESC) {
7287 		/* The Data Segment Area is optional depending upon the query
7288 		 * function value. for WRITE DESCRIPTOR, the data segment
7289 		 * follows right after the tsf.
7290 		 */
7291 		memcpy(lrbp->ucd_req_ptr + 1, desc_buff, *buff_len);
7292 		*buff_len = 0;
7293 	}
7294 
7295 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
7296 
7297 	/*
7298 	 * ignore the returning value here - ufshcd_check_query_response is
7299 	 * bound to fail since dev_cmd.query and dev_cmd.type were left empty.
7300 	 * read the response directly ignoring all errors.
7301 	 */
7302 	ufshcd_issue_dev_cmd(hba, lrbp, tag, dev_cmd_timeout);
7303 
7304 	/* just copy the upiu response as it is */
7305 	memcpy(rsp_upiu, lrbp->ucd_rsp_ptr, sizeof(*rsp_upiu));
7306 	if (desc_buff && desc_op == UPIU_QUERY_OPCODE_READ_DESC) {
7307 		u8 *descp = (u8 *)lrbp->ucd_rsp_ptr + sizeof(*rsp_upiu);
7308 		u16 resp_len = be16_to_cpu(lrbp->ucd_rsp_ptr->header
7309 					   .data_segment_length);
7310 
7311 		if (*buff_len >= resp_len) {
7312 			memcpy(desc_buff, descp, resp_len);
7313 			*buff_len = resp_len;
7314 		} else {
7315 			dev_warn(hba->dev,
7316 				 "%s: rsp size %d is bigger than buffer size %d",
7317 				 __func__, resp_len, *buff_len);
7318 			*buff_len = 0;
7319 			err = -EINVAL;
7320 		}
7321 	}
7322 
7323 	return err;
7324 }
7325 
7326 /**
7327  * ufshcd_exec_raw_upiu_cmd - API function for sending raw upiu commands
7328  * @hba:	per-adapter instance
7329  * @req_upiu:	upiu request
7330  * @rsp_upiu:	upiu reply - only 8 DW as we do not support scsi commands
7331  * @msgcode:	message code, one of UPIU Transaction Codes Initiator to Target
7332  * @desc_buff:	pointer to descriptor buffer, NULL if NA
7333  * @buff_len:	descriptor size, 0 if NA
7334  * @desc_op:	descriptor operation
7335  *
7336  * Supports UTP Transfer requests (nop and query), and UTP Task
7337  * Management requests.
7338  * It is up to the caller to fill the upiu conent properly, as it will
7339  * be copied without any further input validations.
7340  *
7341  * Return: 0 upon success; < 0 upon failure.
7342  */
7343 int ufshcd_exec_raw_upiu_cmd(struct ufs_hba *hba,
7344 			     struct utp_upiu_req *req_upiu,
7345 			     struct utp_upiu_req *rsp_upiu,
7346 			     enum upiu_request_transaction msgcode,
7347 			     u8 *desc_buff, int *buff_len,
7348 			     enum query_opcode desc_op)
7349 {
7350 	int err;
7351 	enum dev_cmd_type cmd_type = DEV_CMD_TYPE_QUERY;
7352 	struct utp_task_req_desc treq = { };
7353 	enum utp_ocs ocs_value;
7354 	u8 tm_f = req_upiu->header.tm_function;
7355 
7356 	switch (msgcode) {
7357 	case UPIU_TRANSACTION_NOP_OUT:
7358 		cmd_type = DEV_CMD_TYPE_NOP;
7359 		fallthrough;
7360 	case UPIU_TRANSACTION_QUERY_REQ:
7361 		ufshcd_dev_man_lock(hba);
7362 		err = ufshcd_issue_devman_upiu_cmd(hba, req_upiu, rsp_upiu,
7363 						   desc_buff, buff_len,
7364 						   cmd_type, desc_op);
7365 		ufshcd_dev_man_unlock(hba);
7366 
7367 		break;
7368 	case UPIU_TRANSACTION_TASK_REQ:
7369 		treq.header.interrupt = 1;
7370 		treq.header.ocs = OCS_INVALID_COMMAND_STATUS;
7371 
7372 		memcpy(&treq.upiu_req, req_upiu, sizeof(*req_upiu));
7373 
7374 		err = __ufshcd_issue_tm_cmd(hba, &treq, tm_f);
7375 		if (err == -ETIMEDOUT)
7376 			break;
7377 
7378 		ocs_value = treq.header.ocs & MASK_OCS;
7379 		if (ocs_value != OCS_SUCCESS) {
7380 			dev_err(hba->dev, "%s: failed, ocs = 0x%x\n", __func__,
7381 				ocs_value);
7382 			break;
7383 		}
7384 
7385 		memcpy(rsp_upiu, &treq.upiu_rsp, sizeof(*rsp_upiu));
7386 
7387 		break;
7388 	default:
7389 		err = -EINVAL;
7390 
7391 		break;
7392 	}
7393 
7394 	return err;
7395 }
7396 
7397 /**
7398  * ufshcd_advanced_rpmb_req_handler - handle advanced RPMB request
7399  * @hba:	per adapter instance
7400  * @req_upiu:	upiu request
7401  * @rsp_upiu:	upiu reply
7402  * @req_ehs:	EHS field which contains Advanced RPMB Request Message
7403  * @rsp_ehs:	EHS field which returns Advanced RPMB Response Message
7404  * @sg_cnt:	The number of sg lists actually used
7405  * @sg_list:	Pointer to SG list when DATA IN/OUT UPIU is required in ARPMB operation
7406  * @dir:	DMA direction
7407  *
7408  * Return: zero on success, non-zero on failure.
7409  */
7410 int ufshcd_advanced_rpmb_req_handler(struct ufs_hba *hba, struct utp_upiu_req *req_upiu,
7411 			 struct utp_upiu_req *rsp_upiu, struct ufs_ehs *req_ehs,
7412 			 struct ufs_ehs *rsp_ehs, int sg_cnt, struct scatterlist *sg_list,
7413 			 enum dma_data_direction dir)
7414 {
7415 	const u32 tag = hba->reserved_slot;
7416 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
7417 	int err = 0;
7418 	int result;
7419 	u8 upiu_flags;
7420 	u8 *ehs_data;
7421 	u16 ehs_len;
7422 	int ehs = (hba->capabilities & MASK_EHSLUTRD_SUPPORTED) ? 2 : 0;
7423 
7424 	/* Protects use of hba->reserved_slot. */
7425 	ufshcd_dev_man_lock(hba);
7426 
7427 	ufshcd_setup_dev_cmd(hba, lrbp, DEV_CMD_TYPE_RPMB, UFS_UPIU_RPMB_WLUN, tag);
7428 
7429 	ufshcd_prepare_req_desc_hdr(hba, lrbp, &upiu_flags, DMA_NONE, ehs);
7430 
7431 	/* update the task tag */
7432 	req_upiu->header.task_tag = tag;
7433 
7434 	/* copy the UPIU(contains CDB) request as it is */
7435 	memcpy(lrbp->ucd_req_ptr, req_upiu, sizeof(*lrbp->ucd_req_ptr));
7436 	/* Copy EHS, starting with byte32, immediately after the CDB package */
7437 	memcpy(lrbp->ucd_req_ptr + 1, req_ehs, sizeof(*req_ehs));
7438 
7439 	if (dir != DMA_NONE && sg_list)
7440 		ufshcd_sgl_to_prdt(hba, lrbp, sg_cnt, sg_list);
7441 
7442 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
7443 
7444 	err = ufshcd_issue_dev_cmd(hba, lrbp, tag, ADVANCED_RPMB_REQ_TIMEOUT);
7445 
7446 	if (!err) {
7447 		/* Just copy the upiu response as it is */
7448 		memcpy(rsp_upiu, lrbp->ucd_rsp_ptr, sizeof(*rsp_upiu));
7449 		/* Get the response UPIU result */
7450 		result = (lrbp->ucd_rsp_ptr->header.response << 8) |
7451 			lrbp->ucd_rsp_ptr->header.status;
7452 
7453 		ehs_len = lrbp->ucd_rsp_ptr->header.ehs_length;
7454 		/*
7455 		 * Since the bLength in EHS indicates the total size of the EHS Header and EHS Data
7456 		 * in 32 Byte units, the value of the bLength Request/Response for Advanced RPMB
7457 		 * Message is 02h
7458 		 */
7459 		if (ehs_len == 2 && rsp_ehs) {
7460 			/*
7461 			 * ucd_rsp_ptr points to a buffer with a length of 512 bytes
7462 			 * (ALIGNED_UPIU_SIZE = 512), and the EHS data just starts from byte32
7463 			 */
7464 			ehs_data = (u8 *)lrbp->ucd_rsp_ptr + EHS_OFFSET_IN_RESPONSE;
7465 			memcpy(rsp_ehs, ehs_data, ehs_len * 32);
7466 		}
7467 	}
7468 
7469 	ufshcd_dev_man_unlock(hba);
7470 
7471 	return err ? : result;
7472 }
7473 
7474 /**
7475  * ufshcd_eh_device_reset_handler() - Reset a single logical unit.
7476  * @cmd: SCSI command pointer
7477  *
7478  * Return: SUCCESS or FAILED.
7479  */
7480 static int ufshcd_eh_device_reset_handler(struct scsi_cmnd *cmd)
7481 {
7482 	unsigned long flags, pending_reqs = 0, not_cleared = 0;
7483 	struct Scsi_Host *host;
7484 	struct ufs_hba *hba;
7485 	struct ufs_hw_queue *hwq;
7486 	struct ufshcd_lrb *lrbp;
7487 	u32 pos, not_cleared_mask = 0;
7488 	int err;
7489 	u8 resp = 0xF, lun;
7490 
7491 	host = cmd->device->host;
7492 	hba = shost_priv(host);
7493 
7494 	lun = ufshcd_scsi_to_upiu_lun(cmd->device->lun);
7495 	err = ufshcd_issue_tm_cmd(hba, lun, 0, UFS_LOGICAL_RESET, &resp);
7496 	if (err || resp != UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7497 		if (!err)
7498 			err = resp;
7499 		goto out;
7500 	}
7501 
7502 	if (hba->mcq_enabled) {
7503 		for (pos = 0; pos < hba->nutrs; pos++) {
7504 			lrbp = &hba->lrb[pos];
7505 			if (ufshcd_cmd_inflight(lrbp->cmd) &&
7506 			    lrbp->lun == lun) {
7507 				ufshcd_clear_cmd(hba, pos);
7508 				hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(lrbp->cmd));
7509 				ufshcd_mcq_poll_cqe_lock(hba, hwq);
7510 			}
7511 		}
7512 		err = 0;
7513 		goto out;
7514 	}
7515 
7516 	/* clear the commands that were pending for corresponding LUN */
7517 	spin_lock_irqsave(&hba->outstanding_lock, flags);
7518 	for_each_set_bit(pos, &hba->outstanding_reqs, hba->nutrs)
7519 		if (hba->lrb[pos].lun == lun)
7520 			__set_bit(pos, &pending_reqs);
7521 	hba->outstanding_reqs &= ~pending_reqs;
7522 	spin_unlock_irqrestore(&hba->outstanding_lock, flags);
7523 
7524 	for_each_set_bit(pos, &pending_reqs, hba->nutrs) {
7525 		if (ufshcd_clear_cmd(hba, pos) < 0) {
7526 			spin_lock_irqsave(&hba->outstanding_lock, flags);
7527 			not_cleared = 1U << pos &
7528 				ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
7529 			hba->outstanding_reqs |= not_cleared;
7530 			not_cleared_mask |= not_cleared;
7531 			spin_unlock_irqrestore(&hba->outstanding_lock, flags);
7532 
7533 			dev_err(hba->dev, "%s: failed to clear request %d\n",
7534 				__func__, pos);
7535 		}
7536 	}
7537 	__ufshcd_transfer_req_compl(hba, pending_reqs & ~not_cleared_mask);
7538 
7539 out:
7540 	hba->req_abort_count = 0;
7541 	ufshcd_update_evt_hist(hba, UFS_EVT_DEV_RESET, (u32)err);
7542 	if (!err) {
7543 		err = SUCCESS;
7544 	} else {
7545 		dev_err(hba->dev, "%s: failed with err %d\n", __func__, err);
7546 		err = FAILED;
7547 	}
7548 	return err;
7549 }
7550 
7551 static void ufshcd_set_req_abort_skip(struct ufs_hba *hba, unsigned long bitmap)
7552 {
7553 	struct ufshcd_lrb *lrbp;
7554 	int tag;
7555 
7556 	for_each_set_bit(tag, &bitmap, hba->nutrs) {
7557 		lrbp = &hba->lrb[tag];
7558 		lrbp->req_abort_skip = true;
7559 	}
7560 }
7561 
7562 /**
7563  * ufshcd_try_to_abort_task - abort a specific task
7564  * @hba: Pointer to adapter instance
7565  * @tag: Task tag/index to be aborted
7566  *
7567  * Abort the pending command in device by sending UFS_ABORT_TASK task management
7568  * command, and in host controller by clearing the door-bell register. There can
7569  * be race between controller sending the command to the device while abort is
7570  * issued. To avoid that, first issue UFS_QUERY_TASK to check if the command is
7571  * really issued and then try to abort it.
7572  *
7573  * Return: zero on success, non-zero on failure.
7574  */
7575 int ufshcd_try_to_abort_task(struct ufs_hba *hba, int tag)
7576 {
7577 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
7578 	int err;
7579 	int poll_cnt;
7580 	u8 resp = 0xF;
7581 
7582 	for (poll_cnt = 100; poll_cnt; poll_cnt--) {
7583 		err = ufshcd_issue_tm_cmd(hba, lrbp->lun, lrbp->task_tag,
7584 				UFS_QUERY_TASK, &resp);
7585 		if (!err && resp == UPIU_TASK_MANAGEMENT_FUNC_SUCCEEDED) {
7586 			/* cmd pending in the device */
7587 			dev_err(hba->dev, "%s: cmd pending in the device. tag = %d\n",
7588 				__func__, tag);
7589 			break;
7590 		} else if (!err && resp == UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7591 			/*
7592 			 * cmd not pending in the device, check if it is
7593 			 * in transition.
7594 			 */
7595 			dev_info(
7596 				hba->dev,
7597 				"%s: cmd with tag %d not pending in the device.\n",
7598 				__func__, tag);
7599 			if (!ufshcd_cmd_inflight(lrbp->cmd)) {
7600 				dev_info(hba->dev,
7601 					 "%s: cmd with tag=%d completed.\n",
7602 					 __func__, tag);
7603 				return 0;
7604 			}
7605 			usleep_range(100, 200);
7606 		} else {
7607 			dev_err(hba->dev,
7608 				"%s: no response from device. tag = %d, err %d\n",
7609 				__func__, tag, err);
7610 			return err ? : resp;
7611 		}
7612 	}
7613 
7614 	if (!poll_cnt)
7615 		return -EBUSY;
7616 
7617 	err = ufshcd_issue_tm_cmd(hba, lrbp->lun, lrbp->task_tag,
7618 			UFS_ABORT_TASK, &resp);
7619 	if (err || resp != UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7620 		if (!err) {
7621 			err = resp; /* service response error */
7622 			dev_err(hba->dev, "%s: issued. tag = %d, err %d\n",
7623 				__func__, tag, err);
7624 		}
7625 		return err;
7626 	}
7627 
7628 	err = ufshcd_clear_cmd(hba, tag);
7629 	if (err)
7630 		dev_err(hba->dev, "%s: Failed clearing cmd at tag %d, err %d\n",
7631 			__func__, tag, err);
7632 
7633 	return err;
7634 }
7635 
7636 /**
7637  * ufshcd_abort - scsi host template eh_abort_handler callback
7638  * @cmd: SCSI command pointer
7639  *
7640  * Return: SUCCESS or FAILED.
7641  */
7642 static int ufshcd_abort(struct scsi_cmnd *cmd)
7643 {
7644 	struct Scsi_Host *host = cmd->device->host;
7645 	struct ufs_hba *hba = shost_priv(host);
7646 	int tag = scsi_cmd_to_rq(cmd)->tag;
7647 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
7648 	unsigned long flags;
7649 	int err = FAILED;
7650 	bool outstanding;
7651 	u32 reg;
7652 
7653 	ufshcd_hold(hba);
7654 
7655 	if (!hba->mcq_enabled) {
7656 		reg = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
7657 		if (!test_bit(tag, &hba->outstanding_reqs)) {
7658 			/* If command is already aborted/completed, return FAILED. */
7659 			dev_err(hba->dev,
7660 				"%s: cmd at tag %d already completed, outstanding=0x%lx, doorbell=0x%x\n",
7661 				__func__, tag, hba->outstanding_reqs, reg);
7662 			goto release;
7663 		}
7664 	}
7665 
7666 	/* Print Transfer Request of aborted task */
7667 	dev_info(hba->dev, "%s: Device abort task at tag %d\n", __func__, tag);
7668 
7669 	/*
7670 	 * Print detailed info about aborted request.
7671 	 * As more than one request might get aborted at the same time,
7672 	 * print full information only for the first aborted request in order
7673 	 * to reduce repeated printouts. For other aborted requests only print
7674 	 * basic details.
7675 	 */
7676 	scsi_print_command(cmd);
7677 	if (!hba->req_abort_count) {
7678 		ufshcd_update_evt_hist(hba, UFS_EVT_ABORT, tag);
7679 		ufshcd_print_evt_hist(hba);
7680 		ufshcd_print_host_state(hba);
7681 		ufshcd_print_pwr_info(hba);
7682 		ufshcd_print_tr(hba, tag, true);
7683 	} else {
7684 		ufshcd_print_tr(hba, tag, false);
7685 	}
7686 	hba->req_abort_count++;
7687 
7688 	if (!hba->mcq_enabled && !(reg & (1 << tag))) {
7689 		/* only execute this code in single doorbell mode */
7690 		dev_err(hba->dev,
7691 		"%s: cmd was completed, but without a notifying intr, tag = %d",
7692 		__func__, tag);
7693 		__ufshcd_transfer_req_compl(hba, 1UL << tag);
7694 		goto release;
7695 	}
7696 
7697 	/*
7698 	 * Task abort to the device W-LUN is illegal. When this command
7699 	 * will fail, due to spec violation, scsi err handling next step
7700 	 * will be to send LU reset which, again, is a spec violation.
7701 	 * To avoid these unnecessary/illegal steps, first we clean up
7702 	 * the lrb taken by this cmd and re-set it in outstanding_reqs,
7703 	 * then queue the eh_work and bail.
7704 	 */
7705 	if (lrbp->lun == UFS_UPIU_UFS_DEVICE_WLUN) {
7706 		ufshcd_update_evt_hist(hba, UFS_EVT_ABORT, lrbp->lun);
7707 
7708 		spin_lock_irqsave(host->host_lock, flags);
7709 		hba->force_reset = true;
7710 		ufshcd_schedule_eh_work(hba);
7711 		spin_unlock_irqrestore(host->host_lock, flags);
7712 		goto release;
7713 	}
7714 
7715 	if (hba->mcq_enabled) {
7716 		/* MCQ mode. Branch off to handle abort for mcq mode */
7717 		err = ufshcd_mcq_abort(cmd);
7718 		goto release;
7719 	}
7720 
7721 	/* Skip task abort in case previous aborts failed and report failure */
7722 	if (lrbp->req_abort_skip) {
7723 		dev_err(hba->dev, "%s: skipping abort\n", __func__);
7724 		ufshcd_set_req_abort_skip(hba, hba->outstanding_reqs);
7725 		goto release;
7726 	}
7727 
7728 	err = ufshcd_try_to_abort_task(hba, tag);
7729 	if (err) {
7730 		dev_err(hba->dev, "%s: failed with err %d\n", __func__, err);
7731 		ufshcd_set_req_abort_skip(hba, hba->outstanding_reqs);
7732 		err = FAILED;
7733 		goto release;
7734 	}
7735 
7736 	/*
7737 	 * Clear the corresponding bit from outstanding_reqs since the command
7738 	 * has been aborted successfully.
7739 	 */
7740 	spin_lock_irqsave(&hba->outstanding_lock, flags);
7741 	outstanding = __test_and_clear_bit(tag, &hba->outstanding_reqs);
7742 	spin_unlock_irqrestore(&hba->outstanding_lock, flags);
7743 
7744 	if (outstanding)
7745 		ufshcd_release_scsi_cmd(hba, lrbp);
7746 
7747 	err = SUCCESS;
7748 
7749 release:
7750 	/* Matches the ufshcd_hold() call at the start of this function. */
7751 	ufshcd_release(hba);
7752 	return err;
7753 }
7754 
7755 /**
7756  * ufshcd_process_probe_result - Process the ufshcd_probe_hba() result.
7757  * @hba: UFS host controller instance.
7758  * @probe_start: time when the ufshcd_probe_hba() call started.
7759  * @ret: ufshcd_probe_hba() return value.
7760  */
7761 static void ufshcd_process_probe_result(struct ufs_hba *hba,
7762 					ktime_t probe_start, int ret)
7763 {
7764 	unsigned long flags;
7765 
7766 	spin_lock_irqsave(hba->host->host_lock, flags);
7767 	if (ret)
7768 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
7769 	else if (hba->ufshcd_state == UFSHCD_STATE_RESET)
7770 		hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
7771 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7772 
7773 	trace_ufshcd_init(hba, ret,
7774 			  ktime_to_us(ktime_sub(ktime_get(), probe_start)),
7775 			  hba->curr_dev_pwr_mode, hba->uic_link_state);
7776 }
7777 
7778 /**
7779  * ufshcd_host_reset_and_restore - reset and restore host controller
7780  * @hba: per-adapter instance
7781  *
7782  * Note that host controller reset may issue DME_RESET to
7783  * local and remote (device) Uni-Pro stack and the attributes
7784  * are reset to default state.
7785  *
7786  * Return: zero on success, non-zero on failure.
7787  */
7788 static int ufshcd_host_reset_and_restore(struct ufs_hba *hba)
7789 {
7790 	int err;
7791 
7792 	/*
7793 	 * Stop the host controller and complete the requests
7794 	 * cleared by h/w
7795 	 */
7796 	ufshcd_hba_stop(hba);
7797 	hba->silence_err_logs = true;
7798 	ufshcd_complete_requests(hba, true);
7799 	hba->silence_err_logs = false;
7800 
7801 	/* scale up clocks to max frequency before full reinitialization */
7802 	ufshcd_scale_clks(hba, ULONG_MAX, true);
7803 
7804 	err = ufshcd_hba_enable(hba);
7805 
7806 	/* Establish the link again and restore the device */
7807 	if (!err) {
7808 		ktime_t probe_start = ktime_get();
7809 
7810 		err = ufshcd_device_init(hba, /*init_dev_params=*/false);
7811 		if (!err)
7812 			err = ufshcd_probe_hba(hba, false);
7813 		ufshcd_process_probe_result(hba, probe_start, err);
7814 	}
7815 
7816 	if (err)
7817 		dev_err(hba->dev, "%s: Host init failed %d\n", __func__, err);
7818 	ufshcd_update_evt_hist(hba, UFS_EVT_HOST_RESET, (u32)err);
7819 	return err;
7820 }
7821 
7822 /**
7823  * ufshcd_reset_and_restore - reset and re-initialize host/device
7824  * @hba: per-adapter instance
7825  *
7826  * Reset and recover device, host and re-establish link. This
7827  * is helpful to recover the communication in fatal error conditions.
7828  *
7829  * Return: zero on success, non-zero on failure.
7830  */
7831 static int ufshcd_reset_and_restore(struct ufs_hba *hba)
7832 {
7833 	u32 saved_err = 0;
7834 	u32 saved_uic_err = 0;
7835 	int err = 0;
7836 	unsigned long flags;
7837 	int retries = MAX_HOST_RESET_RETRIES;
7838 
7839 	spin_lock_irqsave(hba->host->host_lock, flags);
7840 	do {
7841 		/*
7842 		 * This is a fresh start, cache and clear saved error first,
7843 		 * in case new error generated during reset and restore.
7844 		 */
7845 		saved_err |= hba->saved_err;
7846 		saved_uic_err |= hba->saved_uic_err;
7847 		hba->saved_err = 0;
7848 		hba->saved_uic_err = 0;
7849 		hba->force_reset = false;
7850 		hba->ufshcd_state = UFSHCD_STATE_RESET;
7851 		spin_unlock_irqrestore(hba->host->host_lock, flags);
7852 
7853 		/* Reset the attached device */
7854 		ufshcd_device_reset(hba);
7855 
7856 		err = ufshcd_host_reset_and_restore(hba);
7857 
7858 		spin_lock_irqsave(hba->host->host_lock, flags);
7859 		if (err)
7860 			continue;
7861 		/* Do not exit unless operational or dead */
7862 		if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL &&
7863 		    hba->ufshcd_state != UFSHCD_STATE_ERROR &&
7864 		    hba->ufshcd_state != UFSHCD_STATE_EH_SCHEDULED_NON_FATAL)
7865 			err = -EAGAIN;
7866 	} while (err && --retries);
7867 
7868 	/*
7869 	 * Inform scsi mid-layer that we did reset and allow to handle
7870 	 * Unit Attention properly.
7871 	 */
7872 	scsi_report_bus_reset(hba->host, 0);
7873 	if (err) {
7874 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
7875 		hba->saved_err |= saved_err;
7876 		hba->saved_uic_err |= saved_uic_err;
7877 	}
7878 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7879 
7880 	return err;
7881 }
7882 
7883 /**
7884  * ufshcd_eh_host_reset_handler - host reset handler registered to scsi layer
7885  * @cmd: SCSI command pointer
7886  *
7887  * Return: SUCCESS or FAILED.
7888  */
7889 static int ufshcd_eh_host_reset_handler(struct scsi_cmnd *cmd)
7890 {
7891 	int err = SUCCESS;
7892 	unsigned long flags;
7893 	struct ufs_hba *hba;
7894 
7895 	hba = shost_priv(cmd->device->host);
7896 
7897 	/*
7898 	 * If runtime PM sent SSU and got a timeout, scsi_error_handler is
7899 	 * stuck in this function waiting for flush_work(&hba->eh_work). And
7900 	 * ufshcd_err_handler(eh_work) is stuck waiting for runtime PM. Do
7901 	 * ufshcd_link_recovery instead of eh_work to prevent deadlock.
7902 	 */
7903 	if (hba->pm_op_in_progress) {
7904 		if (ufshcd_link_recovery(hba))
7905 			err = FAILED;
7906 
7907 		return err;
7908 	}
7909 
7910 	spin_lock_irqsave(hba->host->host_lock, flags);
7911 	hba->force_reset = true;
7912 	ufshcd_schedule_eh_work(hba);
7913 	dev_err(hba->dev, "%s: reset in progress - 1\n", __func__);
7914 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7915 
7916 	flush_work(&hba->eh_work);
7917 
7918 	spin_lock_irqsave(hba->host->host_lock, flags);
7919 	if (hba->ufshcd_state == UFSHCD_STATE_ERROR)
7920 		err = FAILED;
7921 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7922 
7923 	return err;
7924 }
7925 
7926 /**
7927  * ufshcd_get_max_icc_level - calculate the ICC level
7928  * @sup_curr_uA: max. current supported by the regulator
7929  * @start_scan: row at the desc table to start scan from
7930  * @buff: power descriptor buffer
7931  *
7932  * Return: calculated max ICC level for specific regulator.
7933  */
7934 static u32 ufshcd_get_max_icc_level(int sup_curr_uA, u32 start_scan,
7935 				    const char *buff)
7936 {
7937 	int i;
7938 	int curr_uA;
7939 	u16 data;
7940 	u16 unit;
7941 
7942 	for (i = start_scan; i >= 0; i--) {
7943 		data = get_unaligned_be16(&buff[2 * i]);
7944 		unit = (data & ATTR_ICC_LVL_UNIT_MASK) >>
7945 						ATTR_ICC_LVL_UNIT_OFFSET;
7946 		curr_uA = data & ATTR_ICC_LVL_VALUE_MASK;
7947 		switch (unit) {
7948 		case UFSHCD_NANO_AMP:
7949 			curr_uA = curr_uA / 1000;
7950 			break;
7951 		case UFSHCD_MILI_AMP:
7952 			curr_uA = curr_uA * 1000;
7953 			break;
7954 		case UFSHCD_AMP:
7955 			curr_uA = curr_uA * 1000 * 1000;
7956 			break;
7957 		case UFSHCD_MICRO_AMP:
7958 		default:
7959 			break;
7960 		}
7961 		if (sup_curr_uA >= curr_uA)
7962 			break;
7963 	}
7964 	if (i < 0) {
7965 		i = 0;
7966 		pr_err("%s: Couldn't find valid icc_level = %d", __func__, i);
7967 	}
7968 
7969 	return (u32)i;
7970 }
7971 
7972 /**
7973  * ufshcd_find_max_sup_active_icc_level - calculate the max ICC level
7974  * In case regulators are not initialized we'll return 0
7975  * @hba: per-adapter instance
7976  * @desc_buf: power descriptor buffer to extract ICC levels from.
7977  *
7978  * Return: calculated ICC level.
7979  */
7980 static u32 ufshcd_find_max_sup_active_icc_level(struct ufs_hba *hba,
7981 						const u8 *desc_buf)
7982 {
7983 	u32 icc_level = 0;
7984 
7985 	if (!hba->vreg_info.vcc || !hba->vreg_info.vccq ||
7986 						!hba->vreg_info.vccq2) {
7987 		/*
7988 		 * Using dev_dbg to avoid messages during runtime PM to avoid
7989 		 * never-ending cycles of messages written back to storage by
7990 		 * user space causing runtime resume, causing more messages and
7991 		 * so on.
7992 		 */
7993 		dev_dbg(hba->dev,
7994 			"%s: Regulator capability was not set, actvIccLevel=%d",
7995 							__func__, icc_level);
7996 		goto out;
7997 	}
7998 
7999 	if (hba->vreg_info.vcc->max_uA)
8000 		icc_level = ufshcd_get_max_icc_level(
8001 				hba->vreg_info.vcc->max_uA,
8002 				POWER_DESC_MAX_ACTV_ICC_LVLS - 1,
8003 				&desc_buf[PWR_DESC_ACTIVE_LVLS_VCC_0]);
8004 
8005 	if (hba->vreg_info.vccq->max_uA)
8006 		icc_level = ufshcd_get_max_icc_level(
8007 				hba->vreg_info.vccq->max_uA,
8008 				icc_level,
8009 				&desc_buf[PWR_DESC_ACTIVE_LVLS_VCCQ_0]);
8010 
8011 	if (hba->vreg_info.vccq2->max_uA)
8012 		icc_level = ufshcd_get_max_icc_level(
8013 				hba->vreg_info.vccq2->max_uA,
8014 				icc_level,
8015 				&desc_buf[PWR_DESC_ACTIVE_LVLS_VCCQ2_0]);
8016 out:
8017 	return icc_level;
8018 }
8019 
8020 static void ufshcd_set_active_icc_lvl(struct ufs_hba *hba)
8021 {
8022 	int ret;
8023 	u8 *desc_buf;
8024 	u32 icc_level;
8025 
8026 	desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
8027 	if (!desc_buf)
8028 		return;
8029 
8030 	ret = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_POWER, 0, 0,
8031 				     desc_buf, QUERY_DESC_MAX_SIZE);
8032 	if (ret) {
8033 		dev_err(hba->dev,
8034 			"%s: Failed reading power descriptor ret = %d",
8035 			__func__, ret);
8036 		goto out;
8037 	}
8038 
8039 	icc_level = ufshcd_find_max_sup_active_icc_level(hba, desc_buf);
8040 	dev_dbg(hba->dev, "%s: setting icc_level 0x%x", __func__, icc_level);
8041 
8042 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
8043 		QUERY_ATTR_IDN_ACTIVE_ICC_LVL, 0, 0, &icc_level);
8044 
8045 	if (ret)
8046 		dev_err(hba->dev,
8047 			"%s: Failed configuring bActiveICCLevel = %d ret = %d",
8048 			__func__, icc_level, ret);
8049 
8050 out:
8051 	kfree(desc_buf);
8052 }
8053 
8054 static inline void ufshcd_blk_pm_runtime_init(struct scsi_device *sdev)
8055 {
8056 	struct Scsi_Host *shost = sdev->host;
8057 
8058 	scsi_autopm_get_device(sdev);
8059 	blk_pm_runtime_init(sdev->request_queue, &sdev->sdev_gendev);
8060 	if (sdev->rpm_autosuspend)
8061 		pm_runtime_set_autosuspend_delay(&sdev->sdev_gendev,
8062 						 shost->rpm_autosuspend_delay);
8063 	scsi_autopm_put_device(sdev);
8064 }
8065 
8066 /**
8067  * ufshcd_scsi_add_wlus - Adds required W-LUs
8068  * @hba: per-adapter instance
8069  *
8070  * UFS device specification requires the UFS devices to support 4 well known
8071  * logical units:
8072  *	"REPORT_LUNS" (address: 01h)
8073  *	"UFS Device" (address: 50h)
8074  *	"RPMB" (address: 44h)
8075  *	"BOOT" (address: 30h)
8076  * UFS device's power management needs to be controlled by "POWER CONDITION"
8077  * field of SSU (START STOP UNIT) command. But this "power condition" field
8078  * will take effect only when its sent to "UFS device" well known logical unit
8079  * hence we require the scsi_device instance to represent this logical unit in
8080  * order for the UFS host driver to send the SSU command for power management.
8081  *
8082  * We also require the scsi_device instance for "RPMB" (Replay Protected Memory
8083  * Block) LU so user space process can control this LU. User space may also
8084  * want to have access to BOOT LU.
8085  *
8086  * This function adds scsi device instances for each of all well known LUs
8087  * (except "REPORT LUNS" LU).
8088  *
8089  * Return: zero on success (all required W-LUs are added successfully),
8090  * non-zero error value on failure (if failed to add any of the required W-LU).
8091  */
8092 static int ufshcd_scsi_add_wlus(struct ufs_hba *hba)
8093 {
8094 	int ret = 0;
8095 	struct scsi_device *sdev_boot, *sdev_rpmb;
8096 
8097 	hba->ufs_device_wlun = __scsi_add_device(hba->host, 0, 0,
8098 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_UFS_DEVICE_WLUN), NULL);
8099 	if (IS_ERR(hba->ufs_device_wlun)) {
8100 		ret = PTR_ERR(hba->ufs_device_wlun);
8101 		hba->ufs_device_wlun = NULL;
8102 		goto out;
8103 	}
8104 	scsi_device_put(hba->ufs_device_wlun);
8105 
8106 	sdev_rpmb = __scsi_add_device(hba->host, 0, 0,
8107 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_RPMB_WLUN), NULL);
8108 	if (IS_ERR(sdev_rpmb)) {
8109 		ret = PTR_ERR(sdev_rpmb);
8110 		goto remove_ufs_device_wlun;
8111 	}
8112 	ufshcd_blk_pm_runtime_init(sdev_rpmb);
8113 	scsi_device_put(sdev_rpmb);
8114 
8115 	sdev_boot = __scsi_add_device(hba->host, 0, 0,
8116 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_BOOT_WLUN), NULL);
8117 	if (IS_ERR(sdev_boot)) {
8118 		dev_err(hba->dev, "%s: BOOT WLUN not found\n", __func__);
8119 	} else {
8120 		ufshcd_blk_pm_runtime_init(sdev_boot);
8121 		scsi_device_put(sdev_boot);
8122 	}
8123 	goto out;
8124 
8125 remove_ufs_device_wlun:
8126 	scsi_remove_device(hba->ufs_device_wlun);
8127 out:
8128 	return ret;
8129 }
8130 
8131 static void ufshcd_wb_probe(struct ufs_hba *hba, const u8 *desc_buf)
8132 {
8133 	struct ufs_dev_info *dev_info = &hba->dev_info;
8134 	u8 lun;
8135 	u32 d_lu_wb_buf_alloc;
8136 	u32 ext_ufs_feature;
8137 
8138 	if (!ufshcd_is_wb_allowed(hba))
8139 		return;
8140 
8141 	/*
8142 	 * Probe WB only for UFS-2.2 and UFS-3.1 (and later) devices or
8143 	 * UFS devices with quirk UFS_DEVICE_QUIRK_SUPPORT_EXTENDED_FEATURES
8144 	 * enabled
8145 	 */
8146 	if (!(dev_info->wspecversion >= 0x310 ||
8147 	      dev_info->wspecversion == 0x220 ||
8148 	     (hba->dev_quirks & UFS_DEVICE_QUIRK_SUPPORT_EXTENDED_FEATURES)))
8149 		goto wb_disabled;
8150 
8151 	ext_ufs_feature = get_unaligned_be32(desc_buf +
8152 					DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
8153 
8154 	if (!(ext_ufs_feature & UFS_DEV_WRITE_BOOSTER_SUP))
8155 		goto wb_disabled;
8156 
8157 	/*
8158 	 * WB may be supported but not configured while provisioning. The spec
8159 	 * says, in dedicated wb buffer mode, a max of 1 lun would have wb
8160 	 * buffer configured.
8161 	 */
8162 	dev_info->wb_buffer_type = desc_buf[DEVICE_DESC_PARAM_WB_TYPE];
8163 
8164 	dev_info->ext_wb_sup =  get_unaligned_be16(desc_buf +
8165 						DEVICE_DESC_PARAM_EXT_WB_SUP);
8166 
8167 	dev_info->b_presrv_uspc_en =
8168 		desc_buf[DEVICE_DESC_PARAM_WB_PRESRV_USRSPC_EN];
8169 
8170 	if (dev_info->wb_buffer_type == WB_BUF_MODE_SHARED) {
8171 		if (!get_unaligned_be32(desc_buf +
8172 				   DEVICE_DESC_PARAM_WB_SHARED_ALLOC_UNITS))
8173 			goto wb_disabled;
8174 	} else {
8175 		for (lun = 0; lun < UFS_UPIU_MAX_WB_LUN_ID; lun++) {
8176 			d_lu_wb_buf_alloc = 0;
8177 			ufshcd_read_unit_desc_param(hba,
8178 					lun,
8179 					UNIT_DESC_PARAM_WB_BUF_ALLOC_UNITS,
8180 					(u8 *)&d_lu_wb_buf_alloc,
8181 					sizeof(d_lu_wb_buf_alloc));
8182 			if (d_lu_wb_buf_alloc) {
8183 				dev_info->wb_dedicated_lu = lun;
8184 				break;
8185 			}
8186 		}
8187 
8188 		if (!d_lu_wb_buf_alloc)
8189 			goto wb_disabled;
8190 	}
8191 
8192 	if (!ufshcd_is_wb_buf_lifetime_available(hba))
8193 		goto wb_disabled;
8194 
8195 	return;
8196 
8197 wb_disabled:
8198 	hba->caps &= ~UFSHCD_CAP_WB_EN;
8199 }
8200 
8201 static void ufshcd_temp_notif_probe(struct ufs_hba *hba, const u8 *desc_buf)
8202 {
8203 	struct ufs_dev_info *dev_info = &hba->dev_info;
8204 	u32 ext_ufs_feature;
8205 	u8 mask = 0;
8206 
8207 	if (!(hba->caps & UFSHCD_CAP_TEMP_NOTIF) || dev_info->wspecversion < 0x300)
8208 		return;
8209 
8210 	ext_ufs_feature = get_unaligned_be32(desc_buf + DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
8211 
8212 	if (ext_ufs_feature & UFS_DEV_LOW_TEMP_NOTIF)
8213 		mask |= MASK_EE_TOO_LOW_TEMP;
8214 
8215 	if (ext_ufs_feature & UFS_DEV_HIGH_TEMP_NOTIF)
8216 		mask |= MASK_EE_TOO_HIGH_TEMP;
8217 
8218 	if (mask) {
8219 		ufshcd_enable_ee(hba, mask);
8220 		ufs_hwmon_probe(hba, mask);
8221 	}
8222 }
8223 
8224 static void ufshcd_device_lvl_exception_probe(struct ufs_hba *hba, u8 *desc_buf)
8225 {
8226 	u32 ext_ufs_feature;
8227 
8228 	if (hba->dev_info.wspecversion < 0x410)
8229 		return;
8230 
8231 	ext_ufs_feature = get_unaligned_be32(desc_buf +
8232 				DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
8233 	if (!(ext_ufs_feature & UFS_DEV_LVL_EXCEPTION_SUP))
8234 		return;
8235 
8236 	atomic_set(&hba->dev_lvl_exception_count, 0);
8237 	ufshcd_enable_ee(hba, MASK_EE_DEV_LVL_EXCEPTION);
8238 }
8239 
8240 static void ufshcd_set_rtt(struct ufs_hba *hba)
8241 {
8242 	struct ufs_dev_info *dev_info = &hba->dev_info;
8243 	u32 rtt = 0;
8244 	u32 dev_rtt = 0;
8245 	int host_rtt_cap = hba->vops && hba->vops->max_num_rtt ?
8246 			   hba->vops->max_num_rtt : hba->nortt;
8247 
8248 	/* RTT override makes sense only for UFS-4.0 and above */
8249 	if (dev_info->wspecversion < 0x400)
8250 		return;
8251 
8252 	if (ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
8253 				    QUERY_ATTR_IDN_MAX_NUM_OF_RTT, 0, 0, &dev_rtt)) {
8254 		dev_err(hba->dev, "failed reading bMaxNumOfRTT\n");
8255 		return;
8256 	}
8257 
8258 	/* do not override if it was already written */
8259 	if (dev_rtt != DEFAULT_MAX_NUM_RTT)
8260 		return;
8261 
8262 	rtt = min_t(int, dev_info->rtt_cap, host_rtt_cap);
8263 
8264 	if (rtt == dev_rtt)
8265 		return;
8266 
8267 	if (ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
8268 				    QUERY_ATTR_IDN_MAX_NUM_OF_RTT, 0, 0, &rtt))
8269 		dev_err(hba->dev, "failed writing bMaxNumOfRTT\n");
8270 }
8271 
8272 void ufshcd_fixup_dev_quirks(struct ufs_hba *hba,
8273 			     const struct ufs_dev_quirk *fixups)
8274 {
8275 	const struct ufs_dev_quirk *f;
8276 	struct ufs_dev_info *dev_info = &hba->dev_info;
8277 
8278 	if (!fixups)
8279 		return;
8280 
8281 	for (f = fixups; f->quirk; f++) {
8282 		if ((f->wmanufacturerid == dev_info->wmanufacturerid ||
8283 		     f->wmanufacturerid == UFS_ANY_VENDOR) &&
8284 		     ((dev_info->model &&
8285 		       STR_PRFX_EQUAL(f->model, dev_info->model)) ||
8286 		      !strcmp(f->model, UFS_ANY_MODEL)))
8287 			hba->dev_quirks |= f->quirk;
8288 	}
8289 }
8290 EXPORT_SYMBOL_GPL(ufshcd_fixup_dev_quirks);
8291 
8292 static void ufs_fixup_device_setup(struct ufs_hba *hba)
8293 {
8294 	/* fix by general quirk table */
8295 	ufshcd_fixup_dev_quirks(hba, ufs_fixups);
8296 
8297 	/* allow vendors to fix quirks */
8298 	ufshcd_vops_fixup_dev_quirks(hba);
8299 }
8300 
8301 static void ufshcd_update_rtc(struct ufs_hba *hba)
8302 {
8303 	struct timespec64 ts64;
8304 	int err;
8305 	u32 val;
8306 
8307 	ktime_get_real_ts64(&ts64);
8308 
8309 	if (ts64.tv_sec < hba->dev_info.rtc_time_baseline) {
8310 		dev_warn_once(hba->dev, "%s: Current time precedes previous setting!\n", __func__);
8311 		return;
8312 	}
8313 
8314 	/*
8315 	 * The Absolute RTC mode has a 136-year limit, spanning from 2010 to 2146. If a time beyond
8316 	 * 2146 is required, it is recommended to choose the relative RTC mode.
8317 	 */
8318 	val = ts64.tv_sec - hba->dev_info.rtc_time_baseline;
8319 
8320 	/* Skip update RTC if RPM state is not RPM_ACTIVE */
8321 	if (ufshcd_rpm_get_if_active(hba) <= 0)
8322 		return;
8323 
8324 	err = ufshcd_query_attr(hba, UPIU_QUERY_OPCODE_WRITE_ATTR, QUERY_ATTR_IDN_SECONDS_PASSED,
8325 				0, 0, &val);
8326 	ufshcd_rpm_put(hba);
8327 
8328 	if (err)
8329 		dev_err(hba->dev, "%s: Failed to update rtc %d\n", __func__, err);
8330 	else if (hba->dev_info.rtc_type == UFS_RTC_RELATIVE)
8331 		hba->dev_info.rtc_time_baseline = ts64.tv_sec;
8332 }
8333 
8334 static void ufshcd_rtc_work(struct work_struct *work)
8335 {
8336 	struct ufs_hba *hba;
8337 
8338 	hba = container_of(to_delayed_work(work), struct ufs_hba, ufs_rtc_update_work);
8339 
8340 	 /* Update RTC only when there are no requests in progress and UFSHCI is operational */
8341 	if (!ufshcd_is_ufs_dev_busy(hba) &&
8342 	    hba->ufshcd_state == UFSHCD_STATE_OPERATIONAL &&
8343 	    !hba->clk_gating.active_reqs)
8344 		ufshcd_update_rtc(hba);
8345 
8346 	if (ufshcd_is_ufs_dev_active(hba) && hba->dev_info.rtc_update_period)
8347 		schedule_delayed_work(&hba->ufs_rtc_update_work,
8348 				      msecs_to_jiffies(hba->dev_info.rtc_update_period));
8349 }
8350 
8351 static void ufs_init_rtc(struct ufs_hba *hba, u8 *desc_buf)
8352 {
8353 	u16 periodic_rtc_update = get_unaligned_be16(&desc_buf[DEVICE_DESC_PARAM_FRQ_RTC]);
8354 	struct ufs_dev_info *dev_info = &hba->dev_info;
8355 
8356 	if (periodic_rtc_update & UFS_RTC_TIME_BASELINE) {
8357 		dev_info->rtc_type = UFS_RTC_ABSOLUTE;
8358 
8359 		/*
8360 		 * The concept of measuring time in Linux as the number of seconds elapsed since
8361 		 * 00:00:00 UTC on January 1, 1970, and UFS ABS RTC is elapsed from January 1st
8362 		 * 2010 00:00, here we need to adjust ABS baseline.
8363 		 */
8364 		dev_info->rtc_time_baseline = mktime64(2010, 1, 1, 0, 0, 0) -
8365 							mktime64(1970, 1, 1, 0, 0, 0);
8366 	} else {
8367 		dev_info->rtc_type = UFS_RTC_RELATIVE;
8368 		dev_info->rtc_time_baseline = 0;
8369 	}
8370 
8371 	/*
8372 	 * We ignore TIME_PERIOD defined in wPeriodicRTCUpdate because Spec does not clearly state
8373 	 * how to calculate the specific update period for each time unit. And we disable periodic
8374 	 * RTC update work, let user configure by sysfs node according to specific circumstance.
8375 	 */
8376 	dev_info->rtc_update_period = 0;
8377 }
8378 
8379 static int ufs_get_device_desc(struct ufs_hba *hba)
8380 {
8381 	int err;
8382 	u8 model_index;
8383 	u8 *desc_buf;
8384 	struct ufs_dev_info *dev_info = &hba->dev_info;
8385 
8386 	desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
8387 	if (!desc_buf) {
8388 		err = -ENOMEM;
8389 		goto out;
8390 	}
8391 
8392 	err = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_DEVICE, 0, 0, desc_buf,
8393 				     QUERY_DESC_MAX_SIZE);
8394 	if (err) {
8395 		dev_err(hba->dev, "%s: Failed reading Device Desc. err = %d\n",
8396 			__func__, err);
8397 		goto out;
8398 	}
8399 
8400 	/*
8401 	 * getting vendor (manufacturerID) and Bank Index in big endian
8402 	 * format
8403 	 */
8404 	dev_info->wmanufacturerid = desc_buf[DEVICE_DESC_PARAM_MANF_ID] << 8 |
8405 				     desc_buf[DEVICE_DESC_PARAM_MANF_ID + 1];
8406 
8407 	/* getting Specification Version in big endian format */
8408 	dev_info->wspecversion = desc_buf[DEVICE_DESC_PARAM_SPEC_VER] << 8 |
8409 				      desc_buf[DEVICE_DESC_PARAM_SPEC_VER + 1];
8410 	dev_info->bqueuedepth = desc_buf[DEVICE_DESC_PARAM_Q_DPTH];
8411 
8412 	dev_info->rtt_cap = desc_buf[DEVICE_DESC_PARAM_RTT_CAP];
8413 
8414 	model_index = desc_buf[DEVICE_DESC_PARAM_PRDCT_NAME];
8415 
8416 	err = ufshcd_read_string_desc(hba, model_index,
8417 				      &dev_info->model, SD_ASCII_STD);
8418 	if (err < 0) {
8419 		dev_err(hba->dev, "%s: Failed reading Product Name. err = %d\n",
8420 			__func__, err);
8421 		goto out;
8422 	}
8423 
8424 	hba->luns_avail = desc_buf[DEVICE_DESC_PARAM_NUM_LU] +
8425 		desc_buf[DEVICE_DESC_PARAM_NUM_WLU];
8426 
8427 	ufs_fixup_device_setup(hba);
8428 
8429 	ufshcd_wb_probe(hba, desc_buf);
8430 
8431 	ufshcd_temp_notif_probe(hba, desc_buf);
8432 
8433 	if (dev_info->wspecversion >= 0x410) {
8434 		hba->critical_health_count = 0;
8435 		ufshcd_enable_ee(hba, MASK_EE_HEALTH_CRITICAL);
8436 	}
8437 
8438 	ufs_init_rtc(hba, desc_buf);
8439 
8440 	ufshcd_device_lvl_exception_probe(hba, desc_buf);
8441 
8442 	/*
8443 	 * ufshcd_read_string_desc returns size of the string
8444 	 * reset the error value
8445 	 */
8446 	err = 0;
8447 
8448 out:
8449 	kfree(desc_buf);
8450 	return err;
8451 }
8452 
8453 static void ufs_put_device_desc(struct ufs_hba *hba)
8454 {
8455 	struct ufs_dev_info *dev_info = &hba->dev_info;
8456 
8457 	kfree(dev_info->model);
8458 	dev_info->model = NULL;
8459 }
8460 
8461 /**
8462  * ufshcd_quirk_tune_host_pa_tactivate - Ensures that host PA_TACTIVATE is
8463  * less than device PA_TACTIVATE time.
8464  * @hba: per-adapter instance
8465  *
8466  * Some UFS devices require host PA_TACTIVATE to be lower than device
8467  * PA_TACTIVATE, we need to enable UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE quirk
8468  * for such devices.
8469  *
8470  * Return: zero on success, non-zero error value on failure.
8471  */
8472 static int ufshcd_quirk_tune_host_pa_tactivate(struct ufs_hba *hba)
8473 {
8474 	int ret = 0;
8475 	u32 granularity, peer_granularity;
8476 	u32 pa_tactivate, peer_pa_tactivate;
8477 	u32 pa_tactivate_us, peer_pa_tactivate_us;
8478 	static const u8 gran_to_us_table[] = {1, 4, 8, 16, 32, 100};
8479 
8480 	ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_GRANULARITY),
8481 				  &granularity);
8482 	if (ret)
8483 		goto out;
8484 
8485 	ret = ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_GRANULARITY),
8486 				  &peer_granularity);
8487 	if (ret)
8488 		goto out;
8489 
8490 	if ((granularity < PA_GRANULARITY_MIN_VAL) ||
8491 	    (granularity > PA_GRANULARITY_MAX_VAL)) {
8492 		dev_err(hba->dev, "%s: invalid host PA_GRANULARITY %d",
8493 			__func__, granularity);
8494 		return -EINVAL;
8495 	}
8496 
8497 	if ((peer_granularity < PA_GRANULARITY_MIN_VAL) ||
8498 	    (peer_granularity > PA_GRANULARITY_MAX_VAL)) {
8499 		dev_err(hba->dev, "%s: invalid device PA_GRANULARITY %d",
8500 			__func__, peer_granularity);
8501 		return -EINVAL;
8502 	}
8503 
8504 	ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_TACTIVATE), &pa_tactivate);
8505 	if (ret)
8506 		goto out;
8507 
8508 	ret = ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_TACTIVATE),
8509 				  &peer_pa_tactivate);
8510 	if (ret)
8511 		goto out;
8512 
8513 	pa_tactivate_us = pa_tactivate * gran_to_us_table[granularity - 1];
8514 	peer_pa_tactivate_us = peer_pa_tactivate *
8515 			     gran_to_us_table[peer_granularity - 1];
8516 
8517 	if (pa_tactivate_us >= peer_pa_tactivate_us) {
8518 		u32 new_peer_pa_tactivate;
8519 
8520 		new_peer_pa_tactivate = pa_tactivate_us /
8521 				      gran_to_us_table[peer_granularity - 1];
8522 		new_peer_pa_tactivate++;
8523 		ret = ufshcd_dme_peer_set(hba, UIC_ARG_MIB(PA_TACTIVATE),
8524 					  new_peer_pa_tactivate);
8525 	}
8526 
8527 out:
8528 	return ret;
8529 }
8530 
8531 /**
8532  * ufshcd_quirk_override_pa_h8time - Ensures proper adjustment of PA_HIBERN8TIME.
8533  * @hba: per-adapter instance
8534  *
8535  * Some UFS devices require specific adjustments to the PA_HIBERN8TIME parameter
8536  * to ensure proper hibernation timing. This function retrieves the current
8537  * PA_HIBERN8TIME value and increments it by 100us.
8538  */
8539 static void ufshcd_quirk_override_pa_h8time(struct ufs_hba *hba)
8540 {
8541 	u32 pa_h8time;
8542 	int ret;
8543 
8544 	ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_HIBERN8TIME), &pa_h8time);
8545 	if (ret) {
8546 		dev_err(hba->dev, "Failed to get PA_HIBERN8TIME: %d\n", ret);
8547 		return;
8548 	}
8549 
8550 	/* Increment by 1 to increase hibernation time by 100 µs */
8551 	ret = ufshcd_dme_set(hba, UIC_ARG_MIB(PA_HIBERN8TIME), pa_h8time + 1);
8552 	if (ret)
8553 		dev_err(hba->dev, "Failed updating PA_HIBERN8TIME: %d\n", ret);
8554 }
8555 
8556 static void ufshcd_tune_unipro_params(struct ufs_hba *hba)
8557 {
8558 	ufshcd_vops_apply_dev_quirks(hba);
8559 
8560 	if (hba->dev_quirks & UFS_DEVICE_QUIRK_PA_TACTIVATE)
8561 		/* set 1ms timeout for PA_TACTIVATE */
8562 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TACTIVATE), 10);
8563 
8564 	if (hba->dev_quirks & UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE)
8565 		ufshcd_quirk_tune_host_pa_tactivate(hba);
8566 
8567 	if (hba->dev_quirks & UFS_DEVICE_QUIRK_PA_HIBER8TIME)
8568 		ufshcd_quirk_override_pa_h8time(hba);
8569 }
8570 
8571 static void ufshcd_clear_dbg_ufs_stats(struct ufs_hba *hba)
8572 {
8573 	hba->ufs_stats.hibern8_exit_cnt = 0;
8574 	hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
8575 	hba->req_abort_count = 0;
8576 }
8577 
8578 static int ufshcd_device_geo_params_init(struct ufs_hba *hba)
8579 {
8580 	int err;
8581 	u8 *desc_buf;
8582 
8583 	desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
8584 	if (!desc_buf) {
8585 		err = -ENOMEM;
8586 		goto out;
8587 	}
8588 
8589 	err = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_GEOMETRY, 0, 0,
8590 				     desc_buf, QUERY_DESC_MAX_SIZE);
8591 	if (err) {
8592 		dev_err(hba->dev, "%s: Failed reading Geometry Desc. err = %d\n",
8593 				__func__, err);
8594 		goto out;
8595 	}
8596 
8597 	if (desc_buf[GEOMETRY_DESC_PARAM_MAX_NUM_LUN] == 1)
8598 		hba->dev_info.max_lu_supported = 32;
8599 	else if (desc_buf[GEOMETRY_DESC_PARAM_MAX_NUM_LUN] == 0)
8600 		hba->dev_info.max_lu_supported = 8;
8601 
8602 out:
8603 	kfree(desc_buf);
8604 	return err;
8605 }
8606 
8607 struct ufs_ref_clk {
8608 	unsigned long freq_hz;
8609 	enum ufs_ref_clk_freq val;
8610 };
8611 
8612 static const struct ufs_ref_clk ufs_ref_clk_freqs[] = {
8613 	{19200000, REF_CLK_FREQ_19_2_MHZ},
8614 	{26000000, REF_CLK_FREQ_26_MHZ},
8615 	{38400000, REF_CLK_FREQ_38_4_MHZ},
8616 	{52000000, REF_CLK_FREQ_52_MHZ},
8617 	{0, REF_CLK_FREQ_INVAL},
8618 };
8619 
8620 static enum ufs_ref_clk_freq
8621 ufs_get_bref_clk_from_hz(unsigned long freq)
8622 {
8623 	int i;
8624 
8625 	for (i = 0; ufs_ref_clk_freqs[i].freq_hz; i++)
8626 		if (ufs_ref_clk_freqs[i].freq_hz == freq)
8627 			return ufs_ref_clk_freqs[i].val;
8628 
8629 	return REF_CLK_FREQ_INVAL;
8630 }
8631 
8632 void ufshcd_parse_dev_ref_clk_freq(struct ufs_hba *hba, struct clk *refclk)
8633 {
8634 	unsigned long freq;
8635 
8636 	freq = clk_get_rate(refclk);
8637 
8638 	hba->dev_ref_clk_freq =
8639 		ufs_get_bref_clk_from_hz(freq);
8640 
8641 	if (hba->dev_ref_clk_freq == REF_CLK_FREQ_INVAL)
8642 		dev_err(hba->dev,
8643 		"invalid ref_clk setting = %ld\n", freq);
8644 }
8645 
8646 static int ufshcd_set_dev_ref_clk(struct ufs_hba *hba)
8647 {
8648 	int err;
8649 	u32 ref_clk;
8650 	u32 freq = hba->dev_ref_clk_freq;
8651 
8652 	err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
8653 			QUERY_ATTR_IDN_REF_CLK_FREQ, 0, 0, &ref_clk);
8654 
8655 	if (err) {
8656 		dev_err(hba->dev, "failed reading bRefClkFreq. err = %d\n",
8657 			err);
8658 		goto out;
8659 	}
8660 
8661 	if (ref_clk == freq)
8662 		goto out; /* nothing to update */
8663 
8664 	err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
8665 			QUERY_ATTR_IDN_REF_CLK_FREQ, 0, 0, &freq);
8666 
8667 	if (err) {
8668 		dev_err(hba->dev, "bRefClkFreq setting to %lu Hz failed\n",
8669 			ufs_ref_clk_freqs[freq].freq_hz);
8670 		goto out;
8671 	}
8672 
8673 	dev_dbg(hba->dev, "bRefClkFreq setting to %lu Hz succeeded\n",
8674 			ufs_ref_clk_freqs[freq].freq_hz);
8675 
8676 out:
8677 	return err;
8678 }
8679 
8680 static int ufshcd_device_params_init(struct ufs_hba *hba)
8681 {
8682 	bool flag;
8683 	int ret;
8684 
8685 	/* Init UFS geometry descriptor related parameters */
8686 	ret = ufshcd_device_geo_params_init(hba);
8687 	if (ret)
8688 		goto out;
8689 
8690 	/* Check and apply UFS device quirks */
8691 	ret = ufs_get_device_desc(hba);
8692 	if (ret) {
8693 		dev_err(hba->dev, "%s: Failed getting device info. err = %d\n",
8694 			__func__, ret);
8695 		goto out;
8696 	}
8697 
8698 	ufshcd_set_rtt(hba);
8699 
8700 	ufshcd_get_ref_clk_gating_wait(hba);
8701 
8702 	if (!ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_READ_FLAG,
8703 			QUERY_FLAG_IDN_PWR_ON_WPE, 0, &flag))
8704 		hba->dev_info.f_power_on_wp_en = flag;
8705 
8706 	/* Probe maximum power mode co-supported by both UFS host and device */
8707 	if (ufshcd_get_max_pwr_mode(hba))
8708 		dev_err(hba->dev,
8709 			"%s: Failed getting max supported power mode\n",
8710 			__func__);
8711 out:
8712 	return ret;
8713 }
8714 
8715 static void ufshcd_set_timestamp_attr(struct ufs_hba *hba)
8716 {
8717 	int err;
8718 	struct ufs_query_req *request = NULL;
8719 	struct ufs_query_res *response = NULL;
8720 	struct ufs_dev_info *dev_info = &hba->dev_info;
8721 	struct utp_upiu_query_v4_0 *upiu_data;
8722 
8723 	if (dev_info->wspecversion < 0x400)
8724 		return;
8725 
8726 	ufshcd_dev_man_lock(hba);
8727 
8728 	ufshcd_init_query(hba, &request, &response,
8729 			  UPIU_QUERY_OPCODE_WRITE_ATTR,
8730 			  QUERY_ATTR_IDN_TIMESTAMP, 0, 0);
8731 
8732 	request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
8733 
8734 	upiu_data = (struct utp_upiu_query_v4_0 *)&request->upiu_req;
8735 
8736 	put_unaligned_be64(ktime_get_real_ns(), &upiu_data->osf3);
8737 
8738 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, dev_cmd_timeout);
8739 
8740 	if (err)
8741 		dev_err(hba->dev, "%s: failed to set timestamp %d\n",
8742 			__func__, err);
8743 
8744 	ufshcd_dev_man_unlock(hba);
8745 }
8746 
8747 /**
8748  * ufshcd_add_lus - probe and add UFS logical units
8749  * @hba: per-adapter instance
8750  *
8751  * Return: 0 upon success; < 0 upon failure.
8752  */
8753 static int ufshcd_add_lus(struct ufs_hba *hba)
8754 {
8755 	int ret;
8756 
8757 	/* Add required well known logical units to scsi mid layer */
8758 	ret = ufshcd_scsi_add_wlus(hba);
8759 	if (ret)
8760 		goto out;
8761 
8762 	/* Initialize devfreq after UFS device is detected */
8763 	if (ufshcd_is_clkscaling_supported(hba)) {
8764 		memcpy(&hba->clk_scaling.saved_pwr_info,
8765 			&hba->pwr_info,
8766 			sizeof(struct ufs_pa_layer_attr));
8767 		hba->clk_scaling.is_allowed = true;
8768 
8769 		ret = ufshcd_devfreq_init(hba);
8770 		if (ret)
8771 			goto out;
8772 
8773 		hba->clk_scaling.is_enabled = true;
8774 		ufshcd_init_clk_scaling_sysfs(hba);
8775 	}
8776 
8777 	/*
8778 	 * The RTC update code accesses the hba->ufs_device_wlun->sdev_gendev
8779 	 * pointer and hence must only be started after the WLUN pointer has
8780 	 * been initialized by ufshcd_scsi_add_wlus().
8781 	 */
8782 	schedule_delayed_work(&hba->ufs_rtc_update_work,
8783 			      msecs_to_jiffies(UFS_RTC_UPDATE_INTERVAL_MS));
8784 
8785 	ufs_bsg_probe(hba);
8786 	scsi_scan_host(hba->host);
8787 
8788 out:
8789 	return ret;
8790 }
8791 
8792 /* SDB - Single Doorbell */
8793 static void ufshcd_release_sdb_queue(struct ufs_hba *hba, int nutrs)
8794 {
8795 	size_t ucdl_size, utrdl_size;
8796 
8797 	ucdl_size = ufshcd_get_ucd_size(hba) * nutrs;
8798 	dmam_free_coherent(hba->dev, ucdl_size, hba->ucdl_base_addr,
8799 			   hba->ucdl_dma_addr);
8800 
8801 	utrdl_size = sizeof(struct utp_transfer_req_desc) * nutrs;
8802 	dmam_free_coherent(hba->dev, utrdl_size, hba->utrdl_base_addr,
8803 			   hba->utrdl_dma_addr);
8804 
8805 	devm_kfree(hba->dev, hba->lrb);
8806 }
8807 
8808 static int ufshcd_alloc_mcq(struct ufs_hba *hba)
8809 {
8810 	int ret;
8811 	int old_nutrs = hba->nutrs;
8812 
8813 	ret = ufshcd_mcq_decide_queue_depth(hba);
8814 	if (ret < 0)
8815 		return ret;
8816 
8817 	hba->nutrs = ret;
8818 	ret = ufshcd_mcq_init(hba);
8819 	if (ret)
8820 		goto err;
8821 
8822 	/*
8823 	 * Previously allocated memory for nutrs may not be enough in MCQ mode.
8824 	 * Number of supported tags in MCQ mode may be larger than SDB mode.
8825 	 */
8826 	if (hba->nutrs != old_nutrs) {
8827 		ufshcd_release_sdb_queue(hba, old_nutrs);
8828 		ret = ufshcd_memory_alloc(hba);
8829 		if (ret)
8830 			goto err;
8831 		ufshcd_host_memory_configure(hba);
8832 	}
8833 
8834 	ret = ufshcd_mcq_memory_alloc(hba);
8835 	if (ret)
8836 		goto err;
8837 
8838 	hba->host->can_queue = hba->nutrs - UFSHCD_NUM_RESERVED;
8839 	hba->reserved_slot = hba->nutrs - UFSHCD_NUM_RESERVED;
8840 
8841 	return 0;
8842 err:
8843 	hba->nutrs = old_nutrs;
8844 	return ret;
8845 }
8846 
8847 static void ufshcd_config_mcq(struct ufs_hba *hba)
8848 {
8849 	int ret;
8850 	u32 intrs;
8851 
8852 	ret = ufshcd_mcq_vops_config_esi(hba);
8853 	hba->mcq_esi_enabled = !ret;
8854 	dev_info(hba->dev, "ESI %sconfigured\n", ret ? "is not " : "");
8855 
8856 	intrs = UFSHCD_ENABLE_MCQ_INTRS;
8857 	if (hba->quirks & UFSHCD_QUIRK_MCQ_BROKEN_INTR)
8858 		intrs &= ~MCQ_CQ_EVENT_STATUS;
8859 	ufshcd_enable_intr(hba, intrs);
8860 	ufshcd_mcq_make_queues_operational(hba);
8861 	ufshcd_mcq_config_mac(hba, hba->nutrs);
8862 
8863 	dev_info(hba->dev, "MCQ configured, nr_queues=%d, io_queues=%d, read_queue=%d, poll_queues=%d, queue_depth=%d\n",
8864 		 hba->nr_hw_queues, hba->nr_queues[HCTX_TYPE_DEFAULT],
8865 		 hba->nr_queues[HCTX_TYPE_READ], hba->nr_queues[HCTX_TYPE_POLL],
8866 		 hba->nutrs);
8867 }
8868 
8869 static int ufshcd_post_device_init(struct ufs_hba *hba)
8870 {
8871 	int ret;
8872 
8873 	ufshcd_tune_unipro_params(hba);
8874 
8875 	/* UFS device is also active now */
8876 	ufshcd_set_ufs_dev_active(hba);
8877 	ufshcd_force_reset_auto_bkops(hba);
8878 
8879 	ufshcd_set_timestamp_attr(hba);
8880 
8881 	if (!hba->max_pwr_info.is_valid)
8882 		return 0;
8883 
8884 	/*
8885 	 * Set the right value to bRefClkFreq before attempting to
8886 	 * switch to HS gears.
8887 	 */
8888 	if (hba->dev_ref_clk_freq != REF_CLK_FREQ_INVAL)
8889 		ufshcd_set_dev_ref_clk(hba);
8890 	/* Gear up to HS gear. */
8891 	ret = ufshcd_config_pwr_mode(hba, &hba->max_pwr_info.info);
8892 	if (ret) {
8893 		dev_err(hba->dev, "%s: Failed setting power mode, err = %d\n",
8894 			__func__, ret);
8895 		return ret;
8896 	}
8897 
8898 	return 0;
8899 }
8900 
8901 static int ufshcd_device_init(struct ufs_hba *hba, bool init_dev_params)
8902 {
8903 	int ret;
8904 
8905 	WARN_ON_ONCE(!hba->scsi_host_added);
8906 
8907 	hba->ufshcd_state = UFSHCD_STATE_RESET;
8908 
8909 	ret = ufshcd_link_startup(hba);
8910 	if (ret)
8911 		return ret;
8912 
8913 	if (hba->quirks & UFSHCD_QUIRK_SKIP_PH_CONFIGURATION)
8914 		return ret;
8915 
8916 	/* Debug counters initialization */
8917 	ufshcd_clear_dbg_ufs_stats(hba);
8918 
8919 	/* UniPro link is active now */
8920 	ufshcd_set_link_active(hba);
8921 
8922 	/* Reconfigure MCQ upon reset */
8923 	if (hba->mcq_enabled && !init_dev_params) {
8924 		ufshcd_config_mcq(hba);
8925 		ufshcd_mcq_enable(hba);
8926 	}
8927 
8928 	/* Verify device initialization by sending NOP OUT UPIU */
8929 	ret = ufshcd_verify_dev_init(hba);
8930 	if (ret)
8931 		return ret;
8932 
8933 	/* Initiate UFS initialization, and waiting until completion */
8934 	ret = ufshcd_complete_dev_init(hba);
8935 	if (ret)
8936 		return ret;
8937 
8938 	/*
8939 	 * Initialize UFS device parameters used by driver, these
8940 	 * parameters are associated with UFS descriptors.
8941 	 */
8942 	if (init_dev_params) {
8943 		ret = ufshcd_device_params_init(hba);
8944 		if (ret)
8945 			return ret;
8946 		if (is_mcq_supported(hba) &&
8947 		    hba->quirks & UFSHCD_QUIRK_REINIT_AFTER_MAX_GEAR_SWITCH) {
8948 			ufshcd_config_mcq(hba);
8949 			ufshcd_mcq_enable(hba);
8950 		}
8951 	}
8952 
8953 	return ufshcd_post_device_init(hba);
8954 }
8955 
8956 /**
8957  * ufshcd_probe_hba - probe hba to detect device and initialize it
8958  * @hba: per-adapter instance
8959  * @init_dev_params: whether or not to call ufshcd_device_params_init().
8960  *
8961  * Execute link-startup and verify device initialization
8962  *
8963  * Return: 0 upon success; < 0 upon failure.
8964  */
8965 static int ufshcd_probe_hba(struct ufs_hba *hba, bool init_dev_params)
8966 {
8967 	int ret;
8968 
8969 	if (!hba->pm_op_in_progress &&
8970 	    (hba->quirks & UFSHCD_QUIRK_REINIT_AFTER_MAX_GEAR_SWITCH)) {
8971 		/* Reset the device and controller before doing reinit */
8972 		ufshcd_device_reset(hba);
8973 		ufs_put_device_desc(hba);
8974 		ufshcd_hba_stop(hba);
8975 		ret = ufshcd_hba_enable(hba);
8976 		if (ret) {
8977 			dev_err(hba->dev, "Host controller enable failed\n");
8978 			ufshcd_print_evt_hist(hba);
8979 			ufshcd_print_host_state(hba);
8980 			return ret;
8981 		}
8982 
8983 		/* Reinit the device */
8984 		ret = ufshcd_device_init(hba, init_dev_params);
8985 		if (ret)
8986 			return ret;
8987 	}
8988 
8989 	ufshcd_print_pwr_info(hba);
8990 
8991 	/*
8992 	 * bActiveICCLevel is volatile for UFS device (as per latest v2.1 spec)
8993 	 * and for removable UFS card as well, hence always set the parameter.
8994 	 * Note: Error handler may issue the device reset hence resetting
8995 	 * bActiveICCLevel as well so it is always safe to set this here.
8996 	 */
8997 	ufshcd_set_active_icc_lvl(hba);
8998 
8999 	/* Enable UFS Write Booster if supported */
9000 	ufshcd_configure_wb(hba);
9001 
9002 	if (hba->ee_usr_mask)
9003 		ufshcd_write_ee_control(hba);
9004 	ufshcd_configure_auto_hibern8(hba);
9005 
9006 	return 0;
9007 }
9008 
9009 /**
9010  * ufshcd_async_scan - asynchronous execution for probing hba
9011  * @data: data pointer to pass to this function
9012  * @cookie: cookie data
9013  */
9014 static void ufshcd_async_scan(void *data, async_cookie_t cookie)
9015 {
9016 	struct ufs_hba *hba = (struct ufs_hba *)data;
9017 	ktime_t probe_start;
9018 	int ret;
9019 
9020 	down(&hba->host_sem);
9021 	/* Initialize hba, detect and initialize UFS device */
9022 	probe_start = ktime_get();
9023 	ret = ufshcd_probe_hba(hba, true);
9024 	ufshcd_process_probe_result(hba, probe_start, ret);
9025 	up(&hba->host_sem);
9026 	if (ret)
9027 		goto out;
9028 
9029 	/* Probe and add UFS logical units  */
9030 	ret = ufshcd_add_lus(hba);
9031 
9032 out:
9033 	pm_runtime_put_sync(hba->dev);
9034 
9035 	if (ret)
9036 		dev_err(hba->dev, "%s failed: %d\n", __func__, ret);
9037 }
9038 
9039 static enum scsi_timeout_action ufshcd_eh_timed_out(struct scsi_cmnd *scmd)
9040 {
9041 	struct ufs_hba *hba = shost_priv(scmd->device->host);
9042 
9043 	if (!hba->system_suspending) {
9044 		/* Activate the error handler in the SCSI core. */
9045 		return SCSI_EH_NOT_HANDLED;
9046 	}
9047 
9048 	/*
9049 	 * If we get here we know that no TMFs are outstanding and also that
9050 	 * the only pending command is a START STOP UNIT command. Handle the
9051 	 * timeout of that command directly to prevent a deadlock between
9052 	 * ufshcd_set_dev_pwr_mode() and ufshcd_err_handler().
9053 	 */
9054 	ufshcd_link_recovery(hba);
9055 	dev_info(hba->dev, "%s() finished; outstanding_tasks = %#lx.\n",
9056 		 __func__, hba->outstanding_tasks);
9057 
9058 	return scsi_host_busy(hba->host) ? SCSI_EH_RESET_TIMER : SCSI_EH_DONE;
9059 }
9060 
9061 static const struct attribute_group *ufshcd_driver_groups[] = {
9062 	&ufs_sysfs_unit_descriptor_group,
9063 	&ufs_sysfs_lun_attributes_group,
9064 	NULL,
9065 };
9066 
9067 static struct ufs_hba_variant_params ufs_hba_vps = {
9068 	.hba_enable_delay_us		= 1000,
9069 	.wb_flush_threshold		= UFS_WB_BUF_REMAIN_PERCENT(40),
9070 	.devfreq_profile.polling_ms	= 100,
9071 	.devfreq_profile.target		= ufshcd_devfreq_target,
9072 	.devfreq_profile.get_dev_status	= ufshcd_devfreq_get_dev_status,
9073 	.ondemand_data.upthreshold	= 70,
9074 	.ondemand_data.downdifferential	= 5,
9075 };
9076 
9077 static const struct scsi_host_template ufshcd_driver_template = {
9078 	.module			= THIS_MODULE,
9079 	.name			= UFSHCD,
9080 	.proc_name		= UFSHCD,
9081 	.map_queues		= ufshcd_map_queues,
9082 	.queuecommand		= ufshcd_queuecommand,
9083 	.mq_poll		= ufshcd_poll,
9084 	.sdev_init		= ufshcd_sdev_init,
9085 	.sdev_configure		= ufshcd_sdev_configure,
9086 	.sdev_destroy		= ufshcd_sdev_destroy,
9087 	.change_queue_depth	= ufshcd_change_queue_depth,
9088 	.eh_abort_handler	= ufshcd_abort,
9089 	.eh_device_reset_handler = ufshcd_eh_device_reset_handler,
9090 	.eh_host_reset_handler   = ufshcd_eh_host_reset_handler,
9091 	.eh_timed_out		= ufshcd_eh_timed_out,
9092 	.this_id		= -1,
9093 	.sg_tablesize		= SG_ALL,
9094 	.max_segment_size	= PRDT_DATA_BYTE_COUNT_MAX,
9095 	.max_sectors		= SZ_1M / SECTOR_SIZE,
9096 	.max_host_blocked	= 1,
9097 	.track_queue_depth	= 1,
9098 	.skip_settle_delay	= 1,
9099 	.sdev_groups		= ufshcd_driver_groups,
9100 };
9101 
9102 static int ufshcd_config_vreg_load(struct device *dev, struct ufs_vreg *vreg,
9103 				   int ua)
9104 {
9105 	int ret;
9106 
9107 	if (!vreg)
9108 		return 0;
9109 
9110 	/*
9111 	 * "set_load" operation shall be required on those regulators
9112 	 * which specifically configured current limitation. Otherwise
9113 	 * zero max_uA may cause unexpected behavior when regulator is
9114 	 * enabled or set as high power mode.
9115 	 */
9116 	if (!vreg->max_uA)
9117 		return 0;
9118 
9119 	ret = regulator_set_load(vreg->reg, ua);
9120 	if (ret < 0) {
9121 		dev_err(dev, "%s: %s set load (ua=%d) failed, err=%d\n",
9122 				__func__, vreg->name, ua, ret);
9123 	}
9124 
9125 	return ret;
9126 }
9127 
9128 static inline int ufshcd_config_vreg_lpm(struct ufs_hba *hba,
9129 					 struct ufs_vreg *vreg)
9130 {
9131 	return ufshcd_config_vreg_load(hba->dev, vreg, UFS_VREG_LPM_LOAD_UA);
9132 }
9133 
9134 static inline int ufshcd_config_vreg_hpm(struct ufs_hba *hba,
9135 					 struct ufs_vreg *vreg)
9136 {
9137 	if (!vreg)
9138 		return 0;
9139 
9140 	return ufshcd_config_vreg_load(hba->dev, vreg, vreg->max_uA);
9141 }
9142 
9143 static int ufshcd_config_vreg(struct device *dev,
9144 		struct ufs_vreg *vreg, bool on)
9145 {
9146 	if (regulator_count_voltages(vreg->reg) <= 0)
9147 		return 0;
9148 
9149 	return ufshcd_config_vreg_load(dev, vreg, on ? vreg->max_uA : 0);
9150 }
9151 
9152 static int ufshcd_enable_vreg(struct device *dev, struct ufs_vreg *vreg)
9153 {
9154 	int ret = 0;
9155 
9156 	if (!vreg || vreg->enabled)
9157 		goto out;
9158 
9159 	ret = ufshcd_config_vreg(dev, vreg, true);
9160 	if (!ret)
9161 		ret = regulator_enable(vreg->reg);
9162 
9163 	if (!ret)
9164 		vreg->enabled = true;
9165 	else
9166 		dev_err(dev, "%s: %s enable failed, err=%d\n",
9167 				__func__, vreg->name, ret);
9168 out:
9169 	return ret;
9170 }
9171 
9172 static int ufshcd_disable_vreg(struct device *dev, struct ufs_vreg *vreg)
9173 {
9174 	int ret = 0;
9175 
9176 	if (!vreg || !vreg->enabled || vreg->always_on)
9177 		goto out;
9178 
9179 	ret = regulator_disable(vreg->reg);
9180 
9181 	if (!ret) {
9182 		/* ignore errors on applying disable config */
9183 		ufshcd_config_vreg(dev, vreg, false);
9184 		vreg->enabled = false;
9185 	} else {
9186 		dev_err(dev, "%s: %s disable failed, err=%d\n",
9187 				__func__, vreg->name, ret);
9188 	}
9189 out:
9190 	return ret;
9191 }
9192 
9193 static int ufshcd_setup_vreg(struct ufs_hba *hba, bool on)
9194 {
9195 	int ret = 0;
9196 	struct device *dev = hba->dev;
9197 	struct ufs_vreg_info *info = &hba->vreg_info;
9198 
9199 	ret = ufshcd_toggle_vreg(dev, info->vcc, on);
9200 	if (ret)
9201 		goto out;
9202 
9203 	ret = ufshcd_toggle_vreg(dev, info->vccq, on);
9204 	if (ret)
9205 		goto out;
9206 
9207 	ret = ufshcd_toggle_vreg(dev, info->vccq2, on);
9208 
9209 out:
9210 	if (ret) {
9211 		ufshcd_toggle_vreg(dev, info->vccq2, false);
9212 		ufshcd_toggle_vreg(dev, info->vccq, false);
9213 		ufshcd_toggle_vreg(dev, info->vcc, false);
9214 	}
9215 	return ret;
9216 }
9217 
9218 static int ufshcd_setup_hba_vreg(struct ufs_hba *hba, bool on)
9219 {
9220 	struct ufs_vreg_info *info = &hba->vreg_info;
9221 
9222 	return ufshcd_toggle_vreg(hba->dev, info->vdd_hba, on);
9223 }
9224 
9225 int ufshcd_get_vreg(struct device *dev, struct ufs_vreg *vreg)
9226 {
9227 	int ret = 0;
9228 
9229 	if (!vreg)
9230 		goto out;
9231 
9232 	vreg->reg = devm_regulator_get(dev, vreg->name);
9233 	if (IS_ERR(vreg->reg)) {
9234 		ret = PTR_ERR(vreg->reg);
9235 		dev_err(dev, "%s: %s get failed, err=%d\n",
9236 				__func__, vreg->name, ret);
9237 	}
9238 out:
9239 	return ret;
9240 }
9241 EXPORT_SYMBOL_GPL(ufshcd_get_vreg);
9242 
9243 static int ufshcd_init_vreg(struct ufs_hba *hba)
9244 {
9245 	int ret = 0;
9246 	struct device *dev = hba->dev;
9247 	struct ufs_vreg_info *info = &hba->vreg_info;
9248 
9249 	ret = ufshcd_get_vreg(dev, info->vcc);
9250 	if (ret)
9251 		goto out;
9252 
9253 	ret = ufshcd_get_vreg(dev, info->vccq);
9254 	if (!ret)
9255 		ret = ufshcd_get_vreg(dev, info->vccq2);
9256 out:
9257 	return ret;
9258 }
9259 
9260 static int ufshcd_init_hba_vreg(struct ufs_hba *hba)
9261 {
9262 	struct ufs_vreg_info *info = &hba->vreg_info;
9263 
9264 	return ufshcd_get_vreg(hba->dev, info->vdd_hba);
9265 }
9266 
9267 static int ufshcd_setup_clocks(struct ufs_hba *hba, bool on)
9268 {
9269 	int ret = 0;
9270 	struct ufs_clk_info *clki;
9271 	struct list_head *head = &hba->clk_list_head;
9272 	ktime_t start = ktime_get();
9273 	bool clk_state_changed = false;
9274 
9275 	if (list_empty(head))
9276 		goto out;
9277 
9278 	ret = ufshcd_vops_setup_clocks(hba, on, PRE_CHANGE);
9279 	if (ret)
9280 		return ret;
9281 
9282 	list_for_each_entry(clki, head, list) {
9283 		if (!IS_ERR_OR_NULL(clki->clk)) {
9284 			/*
9285 			 * Don't disable clocks which are needed
9286 			 * to keep the link active.
9287 			 */
9288 			if (ufshcd_is_link_active(hba) &&
9289 			    clki->keep_link_active)
9290 				continue;
9291 
9292 			clk_state_changed = on ^ clki->enabled;
9293 			if (on && !clki->enabled) {
9294 				ret = clk_prepare_enable(clki->clk);
9295 				if (ret) {
9296 					dev_err(hba->dev, "%s: %s prepare enable failed, %d\n",
9297 						__func__, clki->name, ret);
9298 					goto out;
9299 				}
9300 			} else if (!on && clki->enabled) {
9301 				clk_disable_unprepare(clki->clk);
9302 			}
9303 			clki->enabled = on;
9304 			dev_dbg(hba->dev, "%s: clk: %s %sabled\n", __func__,
9305 					clki->name, on ? "en" : "dis");
9306 		}
9307 	}
9308 
9309 	ret = ufshcd_vops_setup_clocks(hba, on, POST_CHANGE);
9310 	if (ret)
9311 		return ret;
9312 
9313 	if (!ufshcd_is_clkscaling_supported(hba))
9314 		ufshcd_pm_qos_update(hba, on);
9315 out:
9316 	if (ret) {
9317 		list_for_each_entry(clki, head, list) {
9318 			if (!IS_ERR_OR_NULL(clki->clk) && clki->enabled)
9319 				clk_disable_unprepare(clki->clk);
9320 		}
9321 	} else if (!ret && on && hba->clk_gating.is_initialized) {
9322 		scoped_guard(spinlock_irqsave, &hba->clk_gating.lock)
9323 			hba->clk_gating.state = CLKS_ON;
9324 		trace_ufshcd_clk_gating(hba,
9325 					hba->clk_gating.state);
9326 	}
9327 
9328 	if (clk_state_changed)
9329 		trace_ufshcd_profile_clk_gating(hba,
9330 			(on ? "on" : "off"),
9331 			ktime_to_us(ktime_sub(ktime_get(), start)), ret);
9332 	return ret;
9333 }
9334 
9335 static enum ufs_ref_clk_freq ufshcd_parse_ref_clk_property(struct ufs_hba *hba)
9336 {
9337 	u32 freq;
9338 	int ret = device_property_read_u32(hba->dev, "ref-clk-freq", &freq);
9339 
9340 	if (ret) {
9341 		dev_dbg(hba->dev, "Cannot query 'ref-clk-freq' property = %d", ret);
9342 		return REF_CLK_FREQ_INVAL;
9343 	}
9344 
9345 	return ufs_get_bref_clk_from_hz(freq);
9346 }
9347 
9348 static int ufshcd_init_clocks(struct ufs_hba *hba)
9349 {
9350 	int ret = 0;
9351 	struct ufs_clk_info *clki;
9352 	struct device *dev = hba->dev;
9353 	struct list_head *head = &hba->clk_list_head;
9354 
9355 	if (list_empty(head))
9356 		goto out;
9357 
9358 	list_for_each_entry(clki, head, list) {
9359 		if (!clki->name)
9360 			continue;
9361 
9362 		clki->clk = devm_clk_get(dev, clki->name);
9363 		if (IS_ERR(clki->clk)) {
9364 			ret = PTR_ERR(clki->clk);
9365 			dev_err(dev, "%s: %s clk get failed, %d\n",
9366 					__func__, clki->name, ret);
9367 			goto out;
9368 		}
9369 
9370 		/*
9371 		 * Parse device ref clk freq as per device tree "ref_clk".
9372 		 * Default dev_ref_clk_freq is set to REF_CLK_FREQ_INVAL
9373 		 * in ufshcd_alloc_host().
9374 		 */
9375 		if (!strcmp(clki->name, "ref_clk"))
9376 			ufshcd_parse_dev_ref_clk_freq(hba, clki->clk);
9377 
9378 		if (clki->max_freq) {
9379 			ret = clk_set_rate(clki->clk, clki->max_freq);
9380 			if (ret) {
9381 				dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
9382 					__func__, clki->name,
9383 					clki->max_freq, ret);
9384 				goto out;
9385 			}
9386 			clki->curr_freq = clki->max_freq;
9387 		}
9388 		dev_dbg(dev, "%s: clk: %s, rate: %lu\n", __func__,
9389 				clki->name, clk_get_rate(clki->clk));
9390 	}
9391 
9392 	/* Set Max. frequency for all clocks */
9393 	if (hba->use_pm_opp) {
9394 		ret = ufshcd_opp_set_rate(hba, ULONG_MAX);
9395 		if (ret) {
9396 			dev_err(hba->dev, "%s: failed to set OPP: %d", __func__,
9397 				ret);
9398 			goto out;
9399 		}
9400 	}
9401 
9402 out:
9403 	return ret;
9404 }
9405 
9406 static int ufshcd_variant_hba_init(struct ufs_hba *hba)
9407 {
9408 	int err = 0;
9409 
9410 	if (!hba->vops)
9411 		goto out;
9412 
9413 	err = ufshcd_vops_init(hba);
9414 	if (err)
9415 		dev_err_probe(hba->dev, err,
9416 			      "%s: variant %s init failed with err %d\n",
9417 			      __func__, ufshcd_get_var_name(hba), err);
9418 out:
9419 	return err;
9420 }
9421 
9422 static void ufshcd_variant_hba_exit(struct ufs_hba *hba)
9423 {
9424 	if (!hba->vops)
9425 		return;
9426 
9427 	ufshcd_vops_exit(hba);
9428 }
9429 
9430 static int ufshcd_hba_init(struct ufs_hba *hba)
9431 {
9432 	int err;
9433 
9434 	/*
9435 	 * Handle host controller power separately from the UFS device power
9436 	 * rails as it will help controlling the UFS host controller power
9437 	 * collapse easily which is different than UFS device power collapse.
9438 	 * Also, enable the host controller power before we go ahead with rest
9439 	 * of the initialization here.
9440 	 */
9441 	err = ufshcd_init_hba_vreg(hba);
9442 	if (err)
9443 		goto out;
9444 
9445 	err = ufshcd_setup_hba_vreg(hba, true);
9446 	if (err)
9447 		goto out;
9448 
9449 	err = ufshcd_init_clocks(hba);
9450 	if (err)
9451 		goto out_disable_hba_vreg;
9452 
9453 	if (hba->dev_ref_clk_freq == REF_CLK_FREQ_INVAL)
9454 		hba->dev_ref_clk_freq = ufshcd_parse_ref_clk_property(hba);
9455 
9456 	err = ufshcd_setup_clocks(hba, true);
9457 	if (err)
9458 		goto out_disable_hba_vreg;
9459 
9460 	err = ufshcd_init_vreg(hba);
9461 	if (err)
9462 		goto out_disable_clks;
9463 
9464 	err = ufshcd_setup_vreg(hba, true);
9465 	if (err)
9466 		goto out_disable_clks;
9467 
9468 	err = ufshcd_variant_hba_init(hba);
9469 	if (err)
9470 		goto out_disable_vreg;
9471 
9472 	ufs_debugfs_hba_init(hba);
9473 	ufs_fault_inject_hba_init(hba);
9474 
9475 	hba->is_powered = true;
9476 	goto out;
9477 
9478 out_disable_vreg:
9479 	ufshcd_setup_vreg(hba, false);
9480 out_disable_clks:
9481 	ufshcd_setup_clocks(hba, false);
9482 out_disable_hba_vreg:
9483 	ufshcd_setup_hba_vreg(hba, false);
9484 out:
9485 	return err;
9486 }
9487 
9488 static void ufshcd_hba_exit(struct ufs_hba *hba)
9489 {
9490 	if (hba->is_powered) {
9491 		ufshcd_pm_qos_exit(hba);
9492 		ufshcd_exit_clk_scaling(hba);
9493 		ufshcd_exit_clk_gating(hba);
9494 		if (hba->eh_wq)
9495 			destroy_workqueue(hba->eh_wq);
9496 		ufs_debugfs_hba_exit(hba);
9497 		ufshcd_variant_hba_exit(hba);
9498 		ufshcd_setup_vreg(hba, false);
9499 		ufshcd_setup_clocks(hba, false);
9500 		ufshcd_setup_hba_vreg(hba, false);
9501 		hba->is_powered = false;
9502 		ufs_put_device_desc(hba);
9503 	}
9504 }
9505 
9506 static int ufshcd_execute_start_stop(struct scsi_device *sdev,
9507 				     enum ufs_dev_pwr_mode pwr_mode,
9508 				     struct scsi_sense_hdr *sshdr)
9509 {
9510 	const unsigned char cdb[6] = { START_STOP, 0, 0, 0, pwr_mode << 4, 0 };
9511 	struct scsi_failure failure_defs[] = {
9512 		{
9513 			.allowed = 2,
9514 			.result = SCMD_FAILURE_RESULT_ANY,
9515 		},
9516 	};
9517 	struct scsi_failures failures = {
9518 		.failure_definitions = failure_defs,
9519 	};
9520 	const struct scsi_exec_args args = {
9521 		.failures = &failures,
9522 		.sshdr = sshdr,
9523 		.req_flags = BLK_MQ_REQ_PM,
9524 		.scmd_flags = SCMD_FAIL_IF_RECOVERING,
9525 	};
9526 
9527 	return scsi_execute_cmd(sdev, cdb, REQ_OP_DRV_IN, /*buffer=*/NULL,
9528 			/*bufflen=*/0, /*timeout=*/10 * HZ, /*retries=*/0,
9529 			&args);
9530 }
9531 
9532 /**
9533  * ufshcd_set_dev_pwr_mode - sends START STOP UNIT command to set device
9534  *			     power mode
9535  * @hba: per adapter instance
9536  * @pwr_mode: device power mode to set
9537  *
9538  * Return: 0 if requested power mode is set successfully;
9539  *         < 0 if failed to set the requested power mode.
9540  */
9541 static int ufshcd_set_dev_pwr_mode(struct ufs_hba *hba,
9542 				     enum ufs_dev_pwr_mode pwr_mode)
9543 {
9544 	struct scsi_sense_hdr sshdr;
9545 	struct scsi_device *sdp;
9546 	unsigned long flags;
9547 	int ret;
9548 
9549 	spin_lock_irqsave(hba->host->host_lock, flags);
9550 	sdp = hba->ufs_device_wlun;
9551 	if (sdp && scsi_device_online(sdp))
9552 		ret = scsi_device_get(sdp);
9553 	else
9554 		ret = -ENODEV;
9555 	spin_unlock_irqrestore(hba->host->host_lock, flags);
9556 
9557 	if (ret)
9558 		return ret;
9559 
9560 	/*
9561 	 * If scsi commands fail, the scsi mid-layer schedules scsi error-
9562 	 * handling, which would wait for host to be resumed. Since we know
9563 	 * we are functional while we are here, skip host resume in error
9564 	 * handling context.
9565 	 */
9566 	hba->host->eh_noresume = 1;
9567 
9568 	/*
9569 	 * Current function would be generally called from the power management
9570 	 * callbacks hence set the RQF_PM flag so that it doesn't resume the
9571 	 * already suspended childs.
9572 	 */
9573 	ret = ufshcd_execute_start_stop(sdp, pwr_mode, &sshdr);
9574 	if (ret) {
9575 		sdev_printk(KERN_WARNING, sdp,
9576 			    "START_STOP failed for power mode: %d, result %x\n",
9577 			    pwr_mode, ret);
9578 		if (ret > 0) {
9579 			if (scsi_sense_valid(&sshdr))
9580 				scsi_print_sense_hdr(sdp, NULL, &sshdr);
9581 			ret = -EIO;
9582 		}
9583 	} else {
9584 		hba->curr_dev_pwr_mode = pwr_mode;
9585 	}
9586 
9587 	scsi_device_put(sdp);
9588 	hba->host->eh_noresume = 0;
9589 	return ret;
9590 }
9591 
9592 static int ufshcd_link_state_transition(struct ufs_hba *hba,
9593 					enum uic_link_state req_link_state,
9594 					bool check_for_bkops)
9595 {
9596 	int ret = 0;
9597 
9598 	if (req_link_state == hba->uic_link_state)
9599 		return 0;
9600 
9601 	if (req_link_state == UIC_LINK_HIBERN8_STATE) {
9602 		ret = ufshcd_uic_hibern8_enter(hba);
9603 		if (!ret) {
9604 			ufshcd_set_link_hibern8(hba);
9605 		} else {
9606 			dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
9607 					__func__, ret);
9608 			goto out;
9609 		}
9610 	}
9611 	/*
9612 	 * If autobkops is enabled, link can't be turned off because
9613 	 * turning off the link would also turn off the device, except in the
9614 	 * case of DeepSleep where the device is expected to remain powered.
9615 	 */
9616 	else if ((req_link_state == UIC_LINK_OFF_STATE) &&
9617 		 (!check_for_bkops || !hba->auto_bkops_enabled)) {
9618 		/*
9619 		 * Let's make sure that link is in low power mode, we are doing
9620 		 * this currently by putting the link in Hibern8. Otherway to
9621 		 * put the link in low power mode is to send the DME end point
9622 		 * to device and then send the DME reset command to local
9623 		 * unipro. But putting the link in hibern8 is much faster.
9624 		 *
9625 		 * Note also that putting the link in Hibern8 is a requirement
9626 		 * for entering DeepSleep.
9627 		 */
9628 		ret = ufshcd_uic_hibern8_enter(hba);
9629 		if (ret) {
9630 			dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
9631 					__func__, ret);
9632 			goto out;
9633 		}
9634 		/*
9635 		 * Change controller state to "reset state" which
9636 		 * should also put the link in off/reset state
9637 		 */
9638 		ufshcd_hba_stop(hba);
9639 		/*
9640 		 * TODO: Check if we need any delay to make sure that
9641 		 * controller is reset
9642 		 */
9643 		ufshcd_set_link_off(hba);
9644 	}
9645 
9646 out:
9647 	return ret;
9648 }
9649 
9650 static void ufshcd_vreg_set_lpm(struct ufs_hba *hba)
9651 {
9652 	bool vcc_off = false;
9653 
9654 	/*
9655 	 * It seems some UFS devices may keep drawing more than sleep current
9656 	 * (atleast for 500us) from UFS rails (especially from VCCQ rail).
9657 	 * To avoid this situation, add 2ms delay before putting these UFS
9658 	 * rails in LPM mode.
9659 	 */
9660 	if (!ufshcd_is_link_active(hba) &&
9661 	    hba->dev_quirks & UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM)
9662 		usleep_range(2000, 2100);
9663 
9664 	/*
9665 	 * If UFS device is either in UFS_Sleep turn off VCC rail to save some
9666 	 * power.
9667 	 *
9668 	 * If UFS device and link is in OFF state, all power supplies (VCC,
9669 	 * VCCQ, VCCQ2) can be turned off if power on write protect is not
9670 	 * required. If UFS link is inactive (Hibern8 or OFF state) and device
9671 	 * is in sleep state, put VCCQ & VCCQ2 rails in LPM mode.
9672 	 *
9673 	 * Ignore the error returned by ufshcd_toggle_vreg() as device is anyway
9674 	 * in low power state which would save some power.
9675 	 *
9676 	 * If Write Booster is enabled and the device needs to flush the WB
9677 	 * buffer OR if bkops status is urgent for WB, keep Vcc on.
9678 	 */
9679 	if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba) &&
9680 	    !hba->dev_info.is_lu_power_on_wp) {
9681 		ufshcd_setup_vreg(hba, false);
9682 		vcc_off = true;
9683 	} else if (!ufshcd_is_ufs_dev_active(hba)) {
9684 		ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, false);
9685 		vcc_off = true;
9686 		if (ufshcd_is_link_hibern8(hba) || ufshcd_is_link_off(hba)) {
9687 			ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq);
9688 			ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq2);
9689 		}
9690 	}
9691 
9692 	/*
9693 	 * Some UFS devices require delay after VCC power rail is turned-off.
9694 	 */
9695 	if (vcc_off && hba->vreg_info.vcc &&
9696 		hba->dev_quirks & UFS_DEVICE_QUIRK_DELAY_AFTER_LPM)
9697 		usleep_range(5000, 5100);
9698 }
9699 
9700 #ifdef CONFIG_PM
9701 static int ufshcd_vreg_set_hpm(struct ufs_hba *hba)
9702 {
9703 	int ret = 0;
9704 
9705 	if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba) &&
9706 	    !hba->dev_info.is_lu_power_on_wp) {
9707 		ret = ufshcd_setup_vreg(hba, true);
9708 	} else if (!ufshcd_is_ufs_dev_active(hba)) {
9709 		if (!ufshcd_is_link_active(hba)) {
9710 			ret = ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq);
9711 			if (ret)
9712 				goto vcc_disable;
9713 			ret = ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq2);
9714 			if (ret)
9715 				goto vccq_lpm;
9716 		}
9717 		ret = ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, true);
9718 	}
9719 	goto out;
9720 
9721 vccq_lpm:
9722 	ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq);
9723 vcc_disable:
9724 	ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, false);
9725 out:
9726 	return ret;
9727 }
9728 #endif /* CONFIG_PM */
9729 
9730 static void ufshcd_hba_vreg_set_lpm(struct ufs_hba *hba)
9731 {
9732 	if (ufshcd_is_link_off(hba) || ufshcd_can_aggressive_pc(hba))
9733 		ufshcd_setup_hba_vreg(hba, false);
9734 }
9735 
9736 static void ufshcd_hba_vreg_set_hpm(struct ufs_hba *hba)
9737 {
9738 	if (ufshcd_is_link_off(hba) || ufshcd_can_aggressive_pc(hba))
9739 		ufshcd_setup_hba_vreg(hba, true);
9740 }
9741 
9742 static int __ufshcd_wl_suspend(struct ufs_hba *hba, enum ufs_pm_op pm_op)
9743 {
9744 	int ret = 0;
9745 	bool check_for_bkops;
9746 	enum ufs_pm_level pm_lvl;
9747 	enum ufs_dev_pwr_mode req_dev_pwr_mode;
9748 	enum uic_link_state req_link_state;
9749 
9750 	hba->pm_op_in_progress = true;
9751 	if (pm_op != UFS_SHUTDOWN_PM) {
9752 		pm_lvl = pm_op == UFS_RUNTIME_PM ?
9753 			 hba->rpm_lvl : hba->spm_lvl;
9754 		req_dev_pwr_mode = ufs_get_pm_lvl_to_dev_pwr_mode(pm_lvl);
9755 		req_link_state = ufs_get_pm_lvl_to_link_pwr_state(pm_lvl);
9756 	} else {
9757 		req_dev_pwr_mode = UFS_POWERDOWN_PWR_MODE;
9758 		req_link_state = UIC_LINK_OFF_STATE;
9759 	}
9760 
9761 	/*
9762 	 * If we can't transition into any of the low power modes
9763 	 * just gate the clocks.
9764 	 */
9765 	ufshcd_hold(hba);
9766 	hba->clk_gating.is_suspended = true;
9767 
9768 	if (ufshcd_is_clkscaling_supported(hba))
9769 		ufshcd_clk_scaling_suspend(hba, true);
9770 
9771 	if (req_dev_pwr_mode == UFS_ACTIVE_PWR_MODE &&
9772 			req_link_state == UIC_LINK_ACTIVE_STATE) {
9773 		goto vops_suspend;
9774 	}
9775 
9776 	if ((req_dev_pwr_mode == hba->curr_dev_pwr_mode) &&
9777 	    (req_link_state == hba->uic_link_state))
9778 		goto enable_scaling;
9779 
9780 	/* UFS device & link must be active before we enter in this function */
9781 	if (!ufshcd_is_ufs_dev_active(hba) || !ufshcd_is_link_active(hba)) {
9782 		/*  Wait err handler finish or trigger err recovery */
9783 		if (!ufshcd_eh_in_progress(hba))
9784 			ufshcd_force_error_recovery(hba);
9785 		ret = -EBUSY;
9786 		goto enable_scaling;
9787 	}
9788 
9789 	if (pm_op == UFS_RUNTIME_PM) {
9790 		if (ufshcd_can_autobkops_during_suspend(hba)) {
9791 			/*
9792 			 * The device is idle with no requests in the queue,
9793 			 * allow background operations if bkops status shows
9794 			 * that performance might be impacted.
9795 			 */
9796 			ret = ufshcd_bkops_ctrl(hba);
9797 			if (ret) {
9798 				/*
9799 				 * If return err in suspend flow, IO will hang.
9800 				 * Trigger error handler and break suspend for
9801 				 * error recovery.
9802 				 */
9803 				ufshcd_force_error_recovery(hba);
9804 				ret = -EBUSY;
9805 				goto enable_scaling;
9806 			}
9807 		} else {
9808 			/* make sure that auto bkops is disabled */
9809 			ufshcd_disable_auto_bkops(hba);
9810 		}
9811 		/*
9812 		 * If device needs to do BKOP or WB buffer flush during
9813 		 * Hibern8, keep device power mode as "active power mode"
9814 		 * and VCC supply.
9815 		 */
9816 		hba->dev_info.b_rpm_dev_flush_capable =
9817 			hba->auto_bkops_enabled ||
9818 			(((req_link_state == UIC_LINK_HIBERN8_STATE) ||
9819 			((req_link_state == UIC_LINK_ACTIVE_STATE) &&
9820 			ufshcd_is_auto_hibern8_enabled(hba))) &&
9821 			ufshcd_wb_need_flush(hba));
9822 	}
9823 
9824 	flush_work(&hba->eeh_work);
9825 
9826 	ret = ufshcd_vops_suspend(hba, pm_op, PRE_CHANGE);
9827 	if (ret)
9828 		goto enable_scaling;
9829 
9830 	if (req_dev_pwr_mode != hba->curr_dev_pwr_mode) {
9831 		if (pm_op != UFS_RUNTIME_PM)
9832 			/* ensure that bkops is disabled */
9833 			ufshcd_disable_auto_bkops(hba);
9834 
9835 		if (!hba->dev_info.b_rpm_dev_flush_capable) {
9836 			ret = ufshcd_set_dev_pwr_mode(hba, req_dev_pwr_mode);
9837 			if (ret && pm_op != UFS_SHUTDOWN_PM) {
9838 				/*
9839 				 * If return err in suspend flow, IO will hang.
9840 				 * Trigger error handler and break suspend for
9841 				 * error recovery.
9842 				 */
9843 				ufshcd_force_error_recovery(hba);
9844 				ret = -EBUSY;
9845 			}
9846 			if (ret)
9847 				goto enable_scaling;
9848 		}
9849 	}
9850 
9851 	/*
9852 	 * In the case of DeepSleep, the device is expected to remain powered
9853 	 * with the link off, so do not check for bkops.
9854 	 */
9855 	check_for_bkops = !ufshcd_is_ufs_dev_deepsleep(hba);
9856 	ret = ufshcd_link_state_transition(hba, req_link_state, check_for_bkops);
9857 	if (ret && pm_op != UFS_SHUTDOWN_PM) {
9858 		/*
9859 		 * If return err in suspend flow, IO will hang.
9860 		 * Trigger error handler and break suspend for
9861 		 * error recovery.
9862 		 */
9863 		ufshcd_force_error_recovery(hba);
9864 		ret = -EBUSY;
9865 	}
9866 	if (ret)
9867 		goto set_dev_active;
9868 
9869 vops_suspend:
9870 	/*
9871 	 * Call vendor specific suspend callback. As these callbacks may access
9872 	 * vendor specific host controller register space call them before the
9873 	 * host clocks are ON.
9874 	 */
9875 	ret = ufshcd_vops_suspend(hba, pm_op, POST_CHANGE);
9876 	if (ret)
9877 		goto set_link_active;
9878 
9879 	cancel_delayed_work_sync(&hba->ufs_rtc_update_work);
9880 	goto out;
9881 
9882 set_link_active:
9883 	/*
9884 	 * Device hardware reset is required to exit DeepSleep. Also, for
9885 	 * DeepSleep, the link is off so host reset and restore will be done
9886 	 * further below.
9887 	 */
9888 	if (ufshcd_is_ufs_dev_deepsleep(hba)) {
9889 		ufshcd_device_reset(hba);
9890 		WARN_ON(!ufshcd_is_link_off(hba));
9891 	}
9892 	if (ufshcd_is_link_hibern8(hba) && !ufshcd_uic_hibern8_exit(hba))
9893 		ufshcd_set_link_active(hba);
9894 	else if (ufshcd_is_link_off(hba))
9895 		ufshcd_host_reset_and_restore(hba);
9896 set_dev_active:
9897 	/* Can also get here needing to exit DeepSleep */
9898 	if (ufshcd_is_ufs_dev_deepsleep(hba)) {
9899 		ufshcd_device_reset(hba);
9900 		ufshcd_host_reset_and_restore(hba);
9901 	}
9902 	if (!ufshcd_set_dev_pwr_mode(hba, UFS_ACTIVE_PWR_MODE))
9903 		ufshcd_disable_auto_bkops(hba);
9904 enable_scaling:
9905 	if (ufshcd_is_clkscaling_supported(hba))
9906 		ufshcd_clk_scaling_suspend(hba, false);
9907 
9908 	hba->dev_info.b_rpm_dev_flush_capable = false;
9909 out:
9910 	if (hba->dev_info.b_rpm_dev_flush_capable) {
9911 		schedule_delayed_work(&hba->rpm_dev_flush_recheck_work,
9912 			msecs_to_jiffies(RPM_DEV_FLUSH_RECHECK_WORK_DELAY_MS));
9913 	}
9914 
9915 	if (ret) {
9916 		ufshcd_update_evt_hist(hba, UFS_EVT_WL_SUSP_ERR, (u32)ret);
9917 		hba->clk_gating.is_suspended = false;
9918 		ufshcd_release(hba);
9919 	}
9920 	hba->pm_op_in_progress = false;
9921 	return ret;
9922 }
9923 
9924 #ifdef CONFIG_PM
9925 static int __ufshcd_wl_resume(struct ufs_hba *hba, enum ufs_pm_op pm_op)
9926 {
9927 	int ret;
9928 	enum uic_link_state old_link_state = hba->uic_link_state;
9929 
9930 	hba->pm_op_in_progress = true;
9931 
9932 	/*
9933 	 * Call vendor specific resume callback. As these callbacks may access
9934 	 * vendor specific host controller register space call them when the
9935 	 * host clocks are ON.
9936 	 */
9937 	ret = ufshcd_vops_resume(hba, pm_op);
9938 	if (ret)
9939 		goto out;
9940 
9941 	/* For DeepSleep, the only supported option is to have the link off */
9942 	WARN_ON(ufshcd_is_ufs_dev_deepsleep(hba) && !ufshcd_is_link_off(hba));
9943 
9944 	if (ufshcd_is_link_hibern8(hba)) {
9945 		ret = ufshcd_uic_hibern8_exit(hba);
9946 		if (!ret) {
9947 			ufshcd_set_link_active(hba);
9948 		} else {
9949 			dev_err(hba->dev, "%s: hibern8 exit failed %d\n",
9950 					__func__, ret);
9951 			goto vendor_suspend;
9952 		}
9953 	} else if (ufshcd_is_link_off(hba)) {
9954 		/*
9955 		 * A full initialization of the host and the device is
9956 		 * required since the link was put to off during suspend.
9957 		 * Note, in the case of DeepSleep, the device will exit
9958 		 * DeepSleep due to device reset.
9959 		 */
9960 		ret = ufshcd_reset_and_restore(hba);
9961 		/*
9962 		 * ufshcd_reset_and_restore() should have already
9963 		 * set the link state as active
9964 		 */
9965 		if (ret || !ufshcd_is_link_active(hba))
9966 			goto vendor_suspend;
9967 	}
9968 
9969 	if (!ufshcd_is_ufs_dev_active(hba)) {
9970 		ret = ufshcd_set_dev_pwr_mode(hba, UFS_ACTIVE_PWR_MODE);
9971 		if (ret)
9972 			goto set_old_link_state;
9973 		ufshcd_set_timestamp_attr(hba);
9974 		schedule_delayed_work(&hba->ufs_rtc_update_work,
9975 				      msecs_to_jiffies(UFS_RTC_UPDATE_INTERVAL_MS));
9976 	}
9977 
9978 	if (ufshcd_keep_autobkops_enabled_except_suspend(hba))
9979 		ufshcd_enable_auto_bkops(hba);
9980 	else
9981 		/*
9982 		 * If BKOPs operations are urgently needed at this moment then
9983 		 * keep auto-bkops enabled or else disable it.
9984 		 */
9985 		ufshcd_bkops_ctrl(hba);
9986 
9987 	if (hba->ee_usr_mask)
9988 		ufshcd_write_ee_control(hba);
9989 
9990 	if (ufshcd_is_clkscaling_supported(hba))
9991 		ufshcd_clk_scaling_suspend(hba, false);
9992 
9993 	if (hba->dev_info.b_rpm_dev_flush_capable) {
9994 		hba->dev_info.b_rpm_dev_flush_capable = false;
9995 		cancel_delayed_work(&hba->rpm_dev_flush_recheck_work);
9996 	}
9997 
9998 	ufshcd_configure_auto_hibern8(hba);
9999 
10000 	goto out;
10001 
10002 set_old_link_state:
10003 	ufshcd_link_state_transition(hba, old_link_state, 0);
10004 vendor_suspend:
10005 	ufshcd_vops_suspend(hba, pm_op, PRE_CHANGE);
10006 	ufshcd_vops_suspend(hba, pm_op, POST_CHANGE);
10007 out:
10008 	if (ret)
10009 		ufshcd_update_evt_hist(hba, UFS_EVT_WL_RES_ERR, (u32)ret);
10010 	hba->clk_gating.is_suspended = false;
10011 	ufshcd_release(hba);
10012 	hba->pm_op_in_progress = false;
10013 	return ret;
10014 }
10015 
10016 static int ufshcd_wl_runtime_suspend(struct device *dev)
10017 {
10018 	struct scsi_device *sdev = to_scsi_device(dev);
10019 	struct ufs_hba *hba;
10020 	int ret;
10021 	ktime_t start = ktime_get();
10022 
10023 	hba = shost_priv(sdev->host);
10024 
10025 	ret = __ufshcd_wl_suspend(hba, UFS_RUNTIME_PM);
10026 	if (ret)
10027 		dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
10028 
10029 	trace_ufshcd_wl_runtime_suspend(hba, ret,
10030 		ktime_to_us(ktime_sub(ktime_get(), start)),
10031 		hba->curr_dev_pwr_mode, hba->uic_link_state);
10032 
10033 	return ret;
10034 }
10035 
10036 static int ufshcd_wl_runtime_resume(struct device *dev)
10037 {
10038 	struct scsi_device *sdev = to_scsi_device(dev);
10039 	struct ufs_hba *hba;
10040 	int ret = 0;
10041 	ktime_t start = ktime_get();
10042 
10043 	hba = shost_priv(sdev->host);
10044 
10045 	ret = __ufshcd_wl_resume(hba, UFS_RUNTIME_PM);
10046 	if (ret)
10047 		dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
10048 
10049 	trace_ufshcd_wl_runtime_resume(hba, ret,
10050 		ktime_to_us(ktime_sub(ktime_get(), start)),
10051 		hba->curr_dev_pwr_mode, hba->uic_link_state);
10052 
10053 	return ret;
10054 }
10055 #endif
10056 
10057 #ifdef CONFIG_PM_SLEEP
10058 static int ufshcd_wl_suspend(struct device *dev)
10059 {
10060 	struct scsi_device *sdev = to_scsi_device(dev);
10061 	struct ufs_hba *hba;
10062 	int ret = 0;
10063 	ktime_t start = ktime_get();
10064 
10065 	hba = shost_priv(sdev->host);
10066 	down(&hba->host_sem);
10067 	hba->system_suspending = true;
10068 
10069 	if (pm_runtime_suspended(dev))
10070 		goto out;
10071 
10072 	ret = __ufshcd_wl_suspend(hba, UFS_SYSTEM_PM);
10073 	if (ret) {
10074 		dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__,  ret);
10075 		up(&hba->host_sem);
10076 	}
10077 
10078 out:
10079 	if (!ret)
10080 		hba->is_sys_suspended = true;
10081 	trace_ufshcd_wl_suspend(hba, ret,
10082 		ktime_to_us(ktime_sub(ktime_get(), start)),
10083 		hba->curr_dev_pwr_mode, hba->uic_link_state);
10084 
10085 	return ret;
10086 }
10087 
10088 static int ufshcd_wl_resume(struct device *dev)
10089 {
10090 	struct scsi_device *sdev = to_scsi_device(dev);
10091 	struct ufs_hba *hba;
10092 	int ret = 0;
10093 	ktime_t start = ktime_get();
10094 
10095 	hba = shost_priv(sdev->host);
10096 
10097 	if (pm_runtime_suspended(dev))
10098 		goto out;
10099 
10100 	ret = __ufshcd_wl_resume(hba, UFS_SYSTEM_PM);
10101 	if (ret)
10102 		dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
10103 out:
10104 	trace_ufshcd_wl_resume(hba, ret,
10105 		ktime_to_us(ktime_sub(ktime_get(), start)),
10106 		hba->curr_dev_pwr_mode, hba->uic_link_state);
10107 	if (!ret)
10108 		hba->is_sys_suspended = false;
10109 	hba->system_suspending = false;
10110 	up(&hba->host_sem);
10111 	return ret;
10112 }
10113 #endif
10114 
10115 /**
10116  * ufshcd_suspend - helper function for suspend operations
10117  * @hba: per adapter instance
10118  *
10119  * This function will put disable irqs, turn off clocks
10120  * and set vreg and hba-vreg in lpm mode.
10121  *
10122  * Return: 0 upon success; < 0 upon failure.
10123  */
10124 static int ufshcd_suspend(struct ufs_hba *hba)
10125 {
10126 	int ret;
10127 
10128 	if (!hba->is_powered)
10129 		return 0;
10130 	/*
10131 	 * Disable the host irq as host controller as there won't be any
10132 	 * host controller transaction expected till resume.
10133 	 */
10134 	ufshcd_disable_irq(hba);
10135 	ret = ufshcd_setup_clocks(hba, false);
10136 	if (ret) {
10137 		ufshcd_enable_irq(hba);
10138 		return ret;
10139 	}
10140 	if (ufshcd_is_clkgating_allowed(hba)) {
10141 		hba->clk_gating.state = CLKS_OFF;
10142 		trace_ufshcd_clk_gating(hba,
10143 					hba->clk_gating.state);
10144 	}
10145 
10146 	ufshcd_vreg_set_lpm(hba);
10147 	/* Put the host controller in low power mode if possible */
10148 	ufshcd_hba_vreg_set_lpm(hba);
10149 	ufshcd_pm_qos_update(hba, false);
10150 	return ret;
10151 }
10152 
10153 #ifdef CONFIG_PM
10154 /**
10155  * ufshcd_resume - helper function for resume operations
10156  * @hba: per adapter instance
10157  *
10158  * This function basically turns on the regulators, clocks and
10159  * irqs of the hba.
10160  *
10161  * Return: 0 for success and non-zero for failure.
10162  */
10163 static int ufshcd_resume(struct ufs_hba *hba)
10164 {
10165 	int ret;
10166 
10167 	if (!hba->is_powered)
10168 		return 0;
10169 
10170 	ufshcd_hba_vreg_set_hpm(hba);
10171 	ret = ufshcd_vreg_set_hpm(hba);
10172 	if (ret)
10173 		goto out;
10174 
10175 	/* Make sure clocks are enabled before accessing controller */
10176 	ret = ufshcd_setup_clocks(hba, true);
10177 	if (ret)
10178 		goto disable_vreg;
10179 
10180 	/* enable the host irq as host controller would be active soon */
10181 	ufshcd_enable_irq(hba);
10182 
10183 	goto out;
10184 
10185 disable_vreg:
10186 	ufshcd_vreg_set_lpm(hba);
10187 out:
10188 	if (ret)
10189 		ufshcd_update_evt_hist(hba, UFS_EVT_RESUME_ERR, (u32)ret);
10190 	return ret;
10191 }
10192 #endif /* CONFIG_PM */
10193 
10194 #ifdef CONFIG_PM_SLEEP
10195 /**
10196  * ufshcd_system_suspend - system suspend callback
10197  * @dev: Device associated with the UFS controller.
10198  *
10199  * Executed before putting the system into a sleep state in which the contents
10200  * of main memory are preserved.
10201  *
10202  * Return: 0 for success and non-zero for failure.
10203  */
10204 int ufshcd_system_suspend(struct device *dev)
10205 {
10206 	struct ufs_hba *hba = dev_get_drvdata(dev);
10207 	int ret = 0;
10208 	ktime_t start = ktime_get();
10209 
10210 	if (pm_runtime_suspended(hba->dev))
10211 		goto out;
10212 
10213 	ret = ufshcd_suspend(hba);
10214 out:
10215 	trace_ufshcd_system_suspend(hba, ret,
10216 		ktime_to_us(ktime_sub(ktime_get(), start)),
10217 		hba->curr_dev_pwr_mode, hba->uic_link_state);
10218 	return ret;
10219 }
10220 EXPORT_SYMBOL(ufshcd_system_suspend);
10221 
10222 /**
10223  * ufshcd_system_resume - system resume callback
10224  * @dev: Device associated with the UFS controller.
10225  *
10226  * Executed after waking the system up from a sleep state in which the contents
10227  * of main memory were preserved.
10228  *
10229  * Return: 0 for success and non-zero for failure.
10230  */
10231 int ufshcd_system_resume(struct device *dev)
10232 {
10233 	struct ufs_hba *hba = dev_get_drvdata(dev);
10234 	ktime_t start = ktime_get();
10235 	int ret = 0;
10236 
10237 	if (pm_runtime_suspended(hba->dev))
10238 		goto out;
10239 
10240 	ret = ufshcd_resume(hba);
10241 
10242 out:
10243 	trace_ufshcd_system_resume(hba, ret,
10244 		ktime_to_us(ktime_sub(ktime_get(), start)),
10245 		hba->curr_dev_pwr_mode, hba->uic_link_state);
10246 
10247 	return ret;
10248 }
10249 EXPORT_SYMBOL(ufshcd_system_resume);
10250 #endif /* CONFIG_PM_SLEEP */
10251 
10252 #ifdef CONFIG_PM
10253 /**
10254  * ufshcd_runtime_suspend - runtime suspend callback
10255  * @dev: Device associated with the UFS controller.
10256  *
10257  * Check the description of ufshcd_suspend() function for more details.
10258  *
10259  * Return: 0 for success and non-zero for failure.
10260  */
10261 int ufshcd_runtime_suspend(struct device *dev)
10262 {
10263 	struct ufs_hba *hba = dev_get_drvdata(dev);
10264 	int ret;
10265 	ktime_t start = ktime_get();
10266 
10267 	ret = ufshcd_suspend(hba);
10268 
10269 	trace_ufshcd_runtime_suspend(hba, ret,
10270 		ktime_to_us(ktime_sub(ktime_get(), start)),
10271 		hba->curr_dev_pwr_mode, hba->uic_link_state);
10272 	return ret;
10273 }
10274 EXPORT_SYMBOL(ufshcd_runtime_suspend);
10275 
10276 /**
10277  * ufshcd_runtime_resume - runtime resume routine
10278  * @dev: Device associated with the UFS controller.
10279  *
10280  * This function basically brings controller
10281  * to active state. Following operations are done in this function:
10282  *
10283  * 1. Turn on all the controller related clocks
10284  * 2. Turn ON VCC rail
10285  *
10286  * Return: 0 upon success; < 0 upon failure.
10287  */
10288 int ufshcd_runtime_resume(struct device *dev)
10289 {
10290 	struct ufs_hba *hba = dev_get_drvdata(dev);
10291 	int ret;
10292 	ktime_t start = ktime_get();
10293 
10294 	ret = ufshcd_resume(hba);
10295 
10296 	trace_ufshcd_runtime_resume(hba, ret,
10297 		ktime_to_us(ktime_sub(ktime_get(), start)),
10298 		hba->curr_dev_pwr_mode, hba->uic_link_state);
10299 	return ret;
10300 }
10301 EXPORT_SYMBOL(ufshcd_runtime_resume);
10302 #endif /* CONFIG_PM */
10303 
10304 static void ufshcd_wl_shutdown(struct device *dev)
10305 {
10306 	struct scsi_device *sdev = to_scsi_device(dev);
10307 	struct ufs_hba *hba = shost_priv(sdev->host);
10308 
10309 	down(&hba->host_sem);
10310 	hba->shutting_down = true;
10311 	up(&hba->host_sem);
10312 
10313 	/* Turn on everything while shutting down */
10314 	ufshcd_rpm_get_sync(hba);
10315 	scsi_device_quiesce(sdev);
10316 	shost_for_each_device(sdev, hba->host) {
10317 		if (sdev == hba->ufs_device_wlun)
10318 			continue;
10319 		mutex_lock(&sdev->state_mutex);
10320 		scsi_device_set_state(sdev, SDEV_OFFLINE);
10321 		mutex_unlock(&sdev->state_mutex);
10322 	}
10323 	__ufshcd_wl_suspend(hba, UFS_SHUTDOWN_PM);
10324 
10325 	/*
10326 	 * Next, turn off the UFS controller and the UFS regulators. Disable
10327 	 * clocks.
10328 	 */
10329 	if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba))
10330 		ufshcd_suspend(hba);
10331 
10332 	hba->is_powered = false;
10333 }
10334 
10335 /**
10336  * ufshcd_remove - de-allocate SCSI host and host memory space
10337  *		data structure memory
10338  * @hba: per adapter instance
10339  */
10340 void ufshcd_remove(struct ufs_hba *hba)
10341 {
10342 	if (hba->ufs_device_wlun)
10343 		ufshcd_rpm_get_sync(hba);
10344 	ufs_hwmon_remove(hba);
10345 	ufs_bsg_remove(hba);
10346 	ufs_sysfs_remove_nodes(hba->dev);
10347 	cancel_delayed_work_sync(&hba->ufs_rtc_update_work);
10348 	blk_mq_destroy_queue(hba->tmf_queue);
10349 	blk_put_queue(hba->tmf_queue);
10350 	blk_mq_free_tag_set(&hba->tmf_tag_set);
10351 	if (hba->scsi_host_added)
10352 		scsi_remove_host(hba->host);
10353 	/* disable interrupts */
10354 	ufshcd_disable_intr(hba, hba->intr_mask);
10355 	ufshcd_hba_stop(hba);
10356 	ufshcd_hba_exit(hba);
10357 }
10358 EXPORT_SYMBOL_GPL(ufshcd_remove);
10359 
10360 #ifdef CONFIG_PM_SLEEP
10361 int ufshcd_system_freeze(struct device *dev)
10362 {
10363 
10364 	return ufshcd_system_suspend(dev);
10365 
10366 }
10367 EXPORT_SYMBOL_GPL(ufshcd_system_freeze);
10368 
10369 int ufshcd_system_restore(struct device *dev)
10370 {
10371 
10372 	struct ufs_hba *hba = dev_get_drvdata(dev);
10373 	int ret;
10374 
10375 	ret = ufshcd_system_resume(dev);
10376 	if (ret)
10377 		return ret;
10378 
10379 	/* Configure UTRL and UTMRL base address registers */
10380 	ufshcd_writel(hba, lower_32_bits(hba->utrdl_dma_addr),
10381 			REG_UTP_TRANSFER_REQ_LIST_BASE_L);
10382 	ufshcd_writel(hba, upper_32_bits(hba->utrdl_dma_addr),
10383 			REG_UTP_TRANSFER_REQ_LIST_BASE_H);
10384 	ufshcd_writel(hba, lower_32_bits(hba->utmrdl_dma_addr),
10385 			REG_UTP_TASK_REQ_LIST_BASE_L);
10386 	ufshcd_writel(hba, upper_32_bits(hba->utmrdl_dma_addr),
10387 			REG_UTP_TASK_REQ_LIST_BASE_H);
10388 	/*
10389 	 * Make sure that UTRL and UTMRL base address registers
10390 	 * are updated with the latest queue addresses. Only after
10391 	 * updating these addresses, we can queue the new commands.
10392 	 */
10393 	ufshcd_readl(hba, REG_UTP_TASK_REQ_LIST_BASE_H);
10394 
10395 	return 0;
10396 
10397 }
10398 EXPORT_SYMBOL_GPL(ufshcd_system_restore);
10399 
10400 int ufshcd_system_thaw(struct device *dev)
10401 {
10402 	return ufshcd_system_resume(dev);
10403 }
10404 EXPORT_SYMBOL_GPL(ufshcd_system_thaw);
10405 #endif /* CONFIG_PM_SLEEP  */
10406 
10407 /**
10408  * ufshcd_set_dma_mask - Set dma mask based on the controller
10409  *			 addressing capability
10410  * @hba: per adapter instance
10411  *
10412  * Return: 0 for success, non-zero for failure.
10413  */
10414 static int ufshcd_set_dma_mask(struct ufs_hba *hba)
10415 {
10416 	if (hba->vops && hba->vops->set_dma_mask)
10417 		return hba->vops->set_dma_mask(hba);
10418 	if (hba->capabilities & MASK_64_ADDRESSING_SUPPORT) {
10419 		if (!dma_set_mask_and_coherent(hba->dev, DMA_BIT_MASK(64)))
10420 			return 0;
10421 	}
10422 	return dma_set_mask_and_coherent(hba->dev, DMA_BIT_MASK(32));
10423 }
10424 
10425 /**
10426  * ufshcd_devres_release - devres cleanup handler, invoked during release of
10427  *			   hba->dev
10428  * @host: pointer to SCSI host
10429  */
10430 static void ufshcd_devres_release(void *host)
10431 {
10432 	scsi_host_put(host);
10433 }
10434 
10435 /**
10436  * ufshcd_alloc_host - allocate Host Bus Adapter (HBA)
10437  * @dev: pointer to device handle
10438  * @hba_handle: driver private handle
10439  *
10440  * Return: 0 on success, non-zero value on failure.
10441  *
10442  * NOTE: There is no corresponding ufshcd_dealloc_host() because this function
10443  * keeps track of its allocations using devres and deallocates everything on
10444  * device removal automatically.
10445  */
10446 int ufshcd_alloc_host(struct device *dev, struct ufs_hba **hba_handle)
10447 {
10448 	struct Scsi_Host *host;
10449 	struct ufs_hba *hba;
10450 	int err = 0;
10451 
10452 	if (!dev) {
10453 		dev_err(dev,
10454 		"Invalid memory reference for dev is NULL\n");
10455 		err = -ENODEV;
10456 		goto out_error;
10457 	}
10458 
10459 	host = scsi_host_alloc(&ufshcd_driver_template,
10460 				sizeof(struct ufs_hba));
10461 	if (!host) {
10462 		dev_err(dev, "scsi_host_alloc failed\n");
10463 		err = -ENOMEM;
10464 		goto out_error;
10465 	}
10466 
10467 	err = devm_add_action_or_reset(dev, ufshcd_devres_release,
10468 				       host);
10469 	if (err)
10470 		return dev_err_probe(dev, err,
10471 				     "failed to add ufshcd dealloc action\n");
10472 
10473 	host->nr_maps = HCTX_TYPE_POLL + 1;
10474 	hba = shost_priv(host);
10475 	hba->host = host;
10476 	hba->dev = dev;
10477 	hba->dev_ref_clk_freq = REF_CLK_FREQ_INVAL;
10478 	hba->nop_out_timeout = NOP_OUT_TIMEOUT;
10479 	ufshcd_set_sg_entry_size(hba, sizeof(struct ufshcd_sg_entry));
10480 	INIT_LIST_HEAD(&hba->clk_list_head);
10481 	spin_lock_init(&hba->outstanding_lock);
10482 
10483 	*hba_handle = hba;
10484 
10485 out_error:
10486 	return err;
10487 }
10488 EXPORT_SYMBOL(ufshcd_alloc_host);
10489 
10490 /* This function exists because blk_mq_alloc_tag_set() requires this. */
10491 static blk_status_t ufshcd_queue_tmf(struct blk_mq_hw_ctx *hctx,
10492 				     const struct blk_mq_queue_data *qd)
10493 {
10494 	WARN_ON_ONCE(true);
10495 	return BLK_STS_NOTSUPP;
10496 }
10497 
10498 static const struct blk_mq_ops ufshcd_tmf_ops = {
10499 	.queue_rq = ufshcd_queue_tmf,
10500 };
10501 
10502 static int ufshcd_add_scsi_host(struct ufs_hba *hba)
10503 {
10504 	int err;
10505 
10506 	if (is_mcq_supported(hba)) {
10507 		ufshcd_mcq_enable(hba);
10508 		err = ufshcd_alloc_mcq(hba);
10509 		if (!err) {
10510 			ufshcd_config_mcq(hba);
10511 		} else {
10512 			/* Continue with SDB mode */
10513 			ufshcd_mcq_disable(hba);
10514 			use_mcq_mode = false;
10515 			dev_err(hba->dev, "MCQ mode is disabled, err=%d\n",
10516 				err);
10517 		}
10518 	}
10519 	if (!is_mcq_supported(hba) && !hba->lsdb_sup) {
10520 		dev_err(hba->dev,
10521 			"%s: failed to initialize (legacy doorbell mode not supported)\n",
10522 			__func__);
10523 		return -EINVAL;
10524 	}
10525 
10526 	err = scsi_add_host(hba->host, hba->dev);
10527 	if (err) {
10528 		dev_err(hba->dev, "scsi_add_host failed\n");
10529 		return err;
10530 	}
10531 	hba->scsi_host_added = true;
10532 
10533 	hba->tmf_tag_set = (struct blk_mq_tag_set) {
10534 		.nr_hw_queues	= 1,
10535 		.queue_depth	= hba->nutmrs,
10536 		.ops		= &ufshcd_tmf_ops,
10537 	};
10538 	err = blk_mq_alloc_tag_set(&hba->tmf_tag_set);
10539 	if (err < 0)
10540 		goto remove_scsi_host;
10541 	hba->tmf_queue = blk_mq_alloc_queue(&hba->tmf_tag_set, NULL, NULL);
10542 	if (IS_ERR(hba->tmf_queue)) {
10543 		err = PTR_ERR(hba->tmf_queue);
10544 		goto free_tmf_tag_set;
10545 	}
10546 	hba->tmf_rqs = devm_kcalloc(hba->dev, hba->nutmrs,
10547 				    sizeof(*hba->tmf_rqs), GFP_KERNEL);
10548 	if (!hba->tmf_rqs) {
10549 		err = -ENOMEM;
10550 		goto free_tmf_queue;
10551 	}
10552 
10553 	return 0;
10554 
10555 free_tmf_queue:
10556 	blk_mq_destroy_queue(hba->tmf_queue);
10557 	blk_put_queue(hba->tmf_queue);
10558 
10559 free_tmf_tag_set:
10560 	blk_mq_free_tag_set(&hba->tmf_tag_set);
10561 
10562 remove_scsi_host:
10563 	if (hba->scsi_host_added)
10564 		scsi_remove_host(hba->host);
10565 
10566 	return err;
10567 }
10568 
10569 /**
10570  * ufshcd_init - Driver initialization routine
10571  * @hba: per-adapter instance
10572  * @mmio_base: base register address
10573  * @irq: Interrupt line of device
10574  *
10575  * Return: 0 on success, non-zero value on failure.
10576  */
10577 int ufshcd_init(struct ufs_hba *hba, void __iomem *mmio_base, unsigned int irq)
10578 {
10579 	int err;
10580 	struct Scsi_Host *host = hba->host;
10581 	struct device *dev = hba->dev;
10582 
10583 	/*
10584 	 * dev_set_drvdata() must be called before any callbacks are registered
10585 	 * that use dev_get_drvdata() (frequency scaling, clock scaling, hwmon,
10586 	 * sysfs).
10587 	 */
10588 	dev_set_drvdata(dev, hba);
10589 
10590 	if (!mmio_base) {
10591 		dev_err(hba->dev,
10592 		"Invalid memory reference for mmio_base is NULL\n");
10593 		err = -ENODEV;
10594 		goto out_error;
10595 	}
10596 
10597 	hba->mmio_base = mmio_base;
10598 	hba->irq = irq;
10599 	hba->vps = &ufs_hba_vps;
10600 
10601 	/*
10602 	 * Initialize clk_gating.lock early since it is being used in
10603 	 * ufshcd_setup_clocks()
10604 	 */
10605 	spin_lock_init(&hba->clk_gating.lock);
10606 
10607 	/*
10608 	 * Set the default power management level for runtime and system PM.
10609 	 * Host controller drivers can override them in their
10610 	 * 'ufs_hba_variant_ops::init' callback.
10611 	 *
10612 	 * Default power saving mode is to keep UFS link in Hibern8 state
10613 	 * and UFS device in sleep state.
10614 	 */
10615 	hba->rpm_lvl = ufs_get_desired_pm_lvl_for_dev_link_state(
10616 						UFS_SLEEP_PWR_MODE,
10617 						UIC_LINK_HIBERN8_STATE);
10618 	hba->spm_lvl = ufs_get_desired_pm_lvl_for_dev_link_state(
10619 						UFS_SLEEP_PWR_MODE,
10620 						UIC_LINK_HIBERN8_STATE);
10621 
10622 	init_completion(&hba->dev_cmd.complete);
10623 
10624 	err = ufshcd_hba_init(hba);
10625 	if (err)
10626 		goto out_error;
10627 
10628 	/* Read capabilities registers */
10629 	err = ufshcd_hba_capabilities(hba);
10630 	if (err)
10631 		goto out_disable;
10632 
10633 	/* Get UFS version supported by the controller */
10634 	hba->ufs_version = ufshcd_get_ufs_version(hba);
10635 
10636 	/* Get Interrupt bit mask per version */
10637 	hba->intr_mask = ufshcd_get_intr_mask(hba);
10638 
10639 	err = ufshcd_set_dma_mask(hba);
10640 	if (err) {
10641 		dev_err(hba->dev, "set dma mask failed\n");
10642 		goto out_disable;
10643 	}
10644 
10645 	/* Allocate memory for host memory space */
10646 	err = ufshcd_memory_alloc(hba);
10647 	if (err) {
10648 		dev_err(hba->dev, "Memory allocation failed\n");
10649 		goto out_disable;
10650 	}
10651 
10652 	/* Configure LRB */
10653 	ufshcd_host_memory_configure(hba);
10654 
10655 	host->can_queue = hba->nutrs - UFSHCD_NUM_RESERVED;
10656 	host->cmd_per_lun = hba->nutrs - UFSHCD_NUM_RESERVED;
10657 	host->max_id = UFSHCD_MAX_ID;
10658 	host->max_lun = UFS_MAX_LUNS;
10659 	host->max_channel = UFSHCD_MAX_CHANNEL;
10660 	host->unique_id = host->host_no;
10661 	host->max_cmd_len = UFS_CDB_SIZE;
10662 	host->queuecommand_may_block = !!(hba->caps & UFSHCD_CAP_CLK_GATING);
10663 
10664 	/* Use default RPM delay if host not set */
10665 	if (host->rpm_autosuspend_delay == 0)
10666 		host->rpm_autosuspend_delay = RPM_AUTOSUSPEND_DELAY_MS;
10667 
10668 	hba->max_pwr_info.is_valid = false;
10669 
10670 	/* Initialize work queues */
10671 	hba->eh_wq = alloc_ordered_workqueue("ufs_eh_wq_%d", WQ_MEM_RECLAIM,
10672 					     hba->host->host_no);
10673 	if (!hba->eh_wq) {
10674 		dev_err(hba->dev, "%s: failed to create eh workqueue\n",
10675 			__func__);
10676 		err = -ENOMEM;
10677 		goto out_disable;
10678 	}
10679 	INIT_WORK(&hba->eh_work, ufshcd_err_handler);
10680 	INIT_WORK(&hba->eeh_work, ufshcd_exception_event_handler);
10681 
10682 	sema_init(&hba->host_sem, 1);
10683 
10684 	/* Initialize UIC command mutex */
10685 	mutex_init(&hba->uic_cmd_mutex);
10686 
10687 	/* Initialize mutex for device management commands */
10688 	mutex_init(&hba->dev_cmd.lock);
10689 
10690 	/* Initialize mutex for exception event control */
10691 	mutex_init(&hba->ee_ctrl_mutex);
10692 
10693 	mutex_init(&hba->wb_mutex);
10694 	init_rwsem(&hba->clk_scaling_lock);
10695 
10696 	ufshcd_init_clk_gating(hba);
10697 
10698 	ufshcd_init_clk_scaling(hba);
10699 
10700 	/*
10701 	 * In order to avoid any spurious interrupt immediately after
10702 	 * registering UFS controller interrupt handler, clear any pending UFS
10703 	 * interrupt status and disable all the UFS interrupts.
10704 	 */
10705 	ufshcd_writel(hba, ufshcd_readl(hba, REG_INTERRUPT_STATUS),
10706 		      REG_INTERRUPT_STATUS);
10707 	ufshcd_writel(hba, 0, REG_INTERRUPT_ENABLE);
10708 	/*
10709 	 * Make sure that UFS interrupts are disabled and any pending interrupt
10710 	 * status is cleared before registering UFS interrupt handler.
10711 	 */
10712 	ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
10713 
10714 	/* IRQ registration */
10715 	err = devm_request_threaded_irq(dev, irq, ufshcd_intr, ufshcd_threaded_intr,
10716 					IRQF_ONESHOT | IRQF_SHARED, UFSHCD, hba);
10717 	if (err) {
10718 		dev_err(hba->dev, "request irq failed\n");
10719 		goto out_disable;
10720 	} else {
10721 		hba->is_irq_enabled = true;
10722 	}
10723 
10724 	/* Reset the attached device */
10725 	ufshcd_device_reset(hba);
10726 
10727 	ufshcd_init_crypto(hba);
10728 
10729 	/* Host controller enable */
10730 	err = ufshcd_hba_enable(hba);
10731 	if (err) {
10732 		dev_err(hba->dev, "Host controller enable failed\n");
10733 		ufshcd_print_evt_hist(hba);
10734 		ufshcd_print_host_state(hba);
10735 		goto out_disable;
10736 	}
10737 
10738 	INIT_DELAYED_WORK(&hba->rpm_dev_flush_recheck_work, ufshcd_rpm_dev_flush_recheck_work);
10739 	INIT_DELAYED_WORK(&hba->ufs_rtc_update_work, ufshcd_rtc_work);
10740 
10741 	/* Set the default auto-hiberate idle timer value to 150 ms */
10742 	if (ufshcd_is_auto_hibern8_supported(hba) && !hba->ahit) {
10743 		hba->ahit = FIELD_PREP(UFSHCI_AHIBERN8_TIMER_MASK, 150) |
10744 			    FIELD_PREP(UFSHCI_AHIBERN8_SCALE_MASK, 3);
10745 	}
10746 
10747 	/* Hold auto suspend until async scan completes */
10748 	pm_runtime_get_sync(dev);
10749 
10750 	/*
10751 	 * We are assuming that device wasn't put in sleep/power-down
10752 	 * state exclusively during the boot stage before kernel.
10753 	 * This assumption helps avoid doing link startup twice during
10754 	 * ufshcd_probe_hba().
10755 	 */
10756 	ufshcd_set_ufs_dev_active(hba);
10757 
10758 	/* Initialize hba, detect and initialize UFS device */
10759 	ktime_t probe_start = ktime_get();
10760 
10761 	hba->ufshcd_state = UFSHCD_STATE_RESET;
10762 
10763 	err = ufshcd_link_startup(hba);
10764 	if (err)
10765 		goto out_disable;
10766 
10767 	if (hba->quirks & UFSHCD_QUIRK_SKIP_PH_CONFIGURATION)
10768 		goto initialized;
10769 
10770 	/* Debug counters initialization */
10771 	ufshcd_clear_dbg_ufs_stats(hba);
10772 
10773 	/* UniPro link is active now */
10774 	ufshcd_set_link_active(hba);
10775 
10776 	/* Verify device initialization by sending NOP OUT UPIU */
10777 	err = ufshcd_verify_dev_init(hba);
10778 	if (err)
10779 		goto out_disable;
10780 
10781 	/* Initiate UFS initialization, and waiting until completion */
10782 	err = ufshcd_complete_dev_init(hba);
10783 	if (err)
10784 		goto out_disable;
10785 
10786 	err = ufshcd_device_params_init(hba);
10787 	if (err)
10788 		goto out_disable;
10789 
10790 	err = ufshcd_post_device_init(hba);
10791 
10792 initialized:
10793 	ufshcd_process_probe_result(hba, probe_start, err);
10794 	if (err)
10795 		goto out_disable;
10796 
10797 	err = ufshcd_add_scsi_host(hba);
10798 	if (err)
10799 		goto out_disable;
10800 
10801 	async_schedule(ufshcd_async_scan, hba);
10802 	ufs_sysfs_add_nodes(hba->dev);
10803 
10804 	device_enable_async_suspend(dev);
10805 	ufshcd_pm_qos_init(hba);
10806 	return 0;
10807 
10808 out_disable:
10809 	hba->is_irq_enabled = false;
10810 	ufshcd_hba_exit(hba);
10811 out_error:
10812 	return err;
10813 }
10814 EXPORT_SYMBOL_GPL(ufshcd_init);
10815 
10816 void ufshcd_resume_complete(struct device *dev)
10817 {
10818 	struct ufs_hba *hba = dev_get_drvdata(dev);
10819 
10820 	if (hba->complete_put) {
10821 		ufshcd_rpm_put(hba);
10822 		hba->complete_put = false;
10823 	}
10824 }
10825 EXPORT_SYMBOL_GPL(ufshcd_resume_complete);
10826 
10827 static bool ufshcd_rpm_ok_for_spm(struct ufs_hba *hba)
10828 {
10829 	struct device *dev = &hba->ufs_device_wlun->sdev_gendev;
10830 	enum ufs_dev_pwr_mode dev_pwr_mode;
10831 	enum uic_link_state link_state;
10832 	unsigned long flags;
10833 	bool res;
10834 
10835 	spin_lock_irqsave(&dev->power.lock, flags);
10836 	dev_pwr_mode = ufs_get_pm_lvl_to_dev_pwr_mode(hba->spm_lvl);
10837 	link_state = ufs_get_pm_lvl_to_link_pwr_state(hba->spm_lvl);
10838 	res = pm_runtime_suspended(dev) &&
10839 	      hba->curr_dev_pwr_mode == dev_pwr_mode &&
10840 	      hba->uic_link_state == link_state &&
10841 	      !hba->dev_info.b_rpm_dev_flush_capable;
10842 	spin_unlock_irqrestore(&dev->power.lock, flags);
10843 
10844 	return res;
10845 }
10846 
10847 int __ufshcd_suspend_prepare(struct device *dev, bool rpm_ok_for_spm)
10848 {
10849 	struct ufs_hba *hba = dev_get_drvdata(dev);
10850 	int ret;
10851 
10852 	/*
10853 	 * SCSI assumes that runtime-pm and system-pm for scsi drivers
10854 	 * are same. And it doesn't wake up the device for system-suspend
10855 	 * if it's runtime suspended. But ufs doesn't follow that.
10856 	 * Refer ufshcd_resume_complete()
10857 	 */
10858 	if (hba->ufs_device_wlun) {
10859 		/* Prevent runtime suspend */
10860 		ufshcd_rpm_get_noresume(hba);
10861 		/*
10862 		 * Check if already runtime suspended in same state as system
10863 		 * suspend would be.
10864 		 */
10865 		if (!rpm_ok_for_spm || !ufshcd_rpm_ok_for_spm(hba)) {
10866 			/* RPM state is not ok for SPM, so runtime resume */
10867 			ret = ufshcd_rpm_resume(hba);
10868 			if (ret < 0 && ret != -EACCES) {
10869 				ufshcd_rpm_put(hba);
10870 				return ret;
10871 			}
10872 		}
10873 		hba->complete_put = true;
10874 	}
10875 	return 0;
10876 }
10877 EXPORT_SYMBOL_GPL(__ufshcd_suspend_prepare);
10878 
10879 int ufshcd_suspend_prepare(struct device *dev)
10880 {
10881 	return __ufshcd_suspend_prepare(dev, true);
10882 }
10883 EXPORT_SYMBOL_GPL(ufshcd_suspend_prepare);
10884 
10885 #ifdef CONFIG_PM_SLEEP
10886 static int ufshcd_wl_poweroff(struct device *dev)
10887 {
10888 	struct scsi_device *sdev = to_scsi_device(dev);
10889 	struct ufs_hba *hba = shost_priv(sdev->host);
10890 
10891 	__ufshcd_wl_suspend(hba, UFS_SHUTDOWN_PM);
10892 	return 0;
10893 }
10894 #endif
10895 
10896 static int ufshcd_wl_probe(struct device *dev)
10897 {
10898 	struct scsi_device *sdev = to_scsi_device(dev);
10899 
10900 	if (!is_device_wlun(sdev))
10901 		return -ENODEV;
10902 
10903 	blk_pm_runtime_init(sdev->request_queue, dev);
10904 	pm_runtime_set_autosuspend_delay(dev, 0);
10905 	pm_runtime_allow(dev);
10906 
10907 	return  0;
10908 }
10909 
10910 static int ufshcd_wl_remove(struct device *dev)
10911 {
10912 	pm_runtime_forbid(dev);
10913 	return 0;
10914 }
10915 
10916 static const struct dev_pm_ops ufshcd_wl_pm_ops = {
10917 #ifdef CONFIG_PM_SLEEP
10918 	.suspend = ufshcd_wl_suspend,
10919 	.resume = ufshcd_wl_resume,
10920 	.freeze = ufshcd_wl_suspend,
10921 	.thaw = ufshcd_wl_resume,
10922 	.poweroff = ufshcd_wl_poweroff,
10923 	.restore = ufshcd_wl_resume,
10924 #endif
10925 	SET_RUNTIME_PM_OPS(ufshcd_wl_runtime_suspend, ufshcd_wl_runtime_resume, NULL)
10926 };
10927 
10928 static void ufshcd_check_header_layout(void)
10929 {
10930 	/*
10931 	 * gcc compilers before version 10 cannot do constant-folding for
10932 	 * sub-byte bitfields. Hence skip the layout checks for gcc 9 and
10933 	 * before.
10934 	 */
10935 	if (IS_ENABLED(CONFIG_CC_IS_GCC) && CONFIG_GCC_VERSION < 100000)
10936 		return;
10937 
10938 	BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10939 				.cci = 3})[0] != 3);
10940 
10941 	BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10942 				.ehs_length = 2})[1] != 2);
10943 
10944 	BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10945 				.enable_crypto = 1})[2]
10946 		     != 0x80);
10947 
10948 	BUILD_BUG_ON((((u8 *)&(struct request_desc_header){
10949 					.command_type = 5,
10950 					.data_direction = 3,
10951 					.interrupt = 1,
10952 				})[3]) != ((5 << 4) | (3 << 1) | 1));
10953 
10954 	BUILD_BUG_ON(((__le32 *)&(struct request_desc_header){
10955 				.dunl = cpu_to_le32(0xdeadbeef)})[1] !=
10956 		cpu_to_le32(0xdeadbeef));
10957 
10958 	BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10959 				.ocs = 4})[8] != 4);
10960 
10961 	BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10962 				.cds = 5})[9] != 5);
10963 
10964 	BUILD_BUG_ON(((__le32 *)&(struct request_desc_header){
10965 				.dunu = cpu_to_le32(0xbadcafe)})[3] !=
10966 		cpu_to_le32(0xbadcafe));
10967 
10968 	BUILD_BUG_ON(((u8 *)&(struct utp_upiu_header){
10969 			     .iid = 0xf })[4] != 0xf0);
10970 
10971 	BUILD_BUG_ON(((u8 *)&(struct utp_upiu_header){
10972 			     .command_set_type = 0xf })[4] != 0xf);
10973 }
10974 
10975 /*
10976  * ufs_dev_wlun_template - describes ufs device wlun
10977  * ufs-device wlun - used to send pm commands
10978  * All luns are consumers of ufs-device wlun.
10979  *
10980  * Currently, no sd driver is present for wluns.
10981  * Hence the no specific pm operations are performed.
10982  * With ufs design, SSU should be sent to ufs-device wlun.
10983  * Hence register a scsi driver for ufs wluns only.
10984  */
10985 static struct scsi_driver ufs_dev_wlun_template = {
10986 	.gendrv = {
10987 		.name = "ufs_device_wlun",
10988 		.probe = ufshcd_wl_probe,
10989 		.remove = ufshcd_wl_remove,
10990 		.pm = &ufshcd_wl_pm_ops,
10991 		.shutdown = ufshcd_wl_shutdown,
10992 	},
10993 };
10994 
10995 static int __init ufshcd_core_init(void)
10996 {
10997 	int ret;
10998 
10999 	ufshcd_check_header_layout();
11000 
11001 	ufs_debugfs_init();
11002 
11003 	ret = scsi_register_driver(&ufs_dev_wlun_template.gendrv);
11004 	if (ret)
11005 		ufs_debugfs_exit();
11006 	return ret;
11007 }
11008 
11009 static void __exit ufshcd_core_exit(void)
11010 {
11011 	ufs_debugfs_exit();
11012 	scsi_unregister_driver(&ufs_dev_wlun_template.gendrv);
11013 }
11014 
11015 module_init(ufshcd_core_init);
11016 module_exit(ufshcd_core_exit);
11017 
11018 MODULE_AUTHOR("Santosh Yaragnavi <santosh.sy@samsung.com>");
11019 MODULE_AUTHOR("Vinayak Holikatti <h.vinayak@samsung.com>");
11020 MODULE_DESCRIPTION("Generic UFS host controller driver Core");
11021 MODULE_SOFTDEP("pre: governor_simpleondemand");
11022 MODULE_LICENSE("GPL");
11023