xref: /linux/drivers/ufs/core/ufshcd.c (revision 4c0c5bbc89cda1c57ce0fb36d917693396b8b065)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Universal Flash Storage Host controller driver Core
4  * Copyright (C) 2011-2013 Samsung India Software Operations
5  * Copyright (c) 2013-2016, The Linux Foundation. All rights reserved.
6  *
7  * Authors:
8  *	Santosh Yaraganavi <santosh.sy@samsung.com>
9  *	Vinayak Holikatti <h.vinayak@samsung.com>
10  */
11 
12 #include <linux/async.h>
13 #include <linux/devfreq.h>
14 #include <linux/nls.h>
15 #include <linux/of.h>
16 #include <linux/bitfield.h>
17 #include <linux/blk-pm.h>
18 #include <linux/blkdev.h>
19 #include <linux/clk.h>
20 #include <linux/delay.h>
21 #include <linux/interrupt.h>
22 #include <linux/module.h>
23 #include <linux/regulator/consumer.h>
24 #include <linux/sched/clock.h>
25 #include <scsi/scsi_cmnd.h>
26 #include <scsi/scsi_dbg.h>
27 #include <scsi/scsi_driver.h>
28 #include <scsi/scsi_eh.h>
29 #include "ufshcd-priv.h"
30 #include <ufs/ufs_quirks.h>
31 #include <ufs/unipro.h>
32 #include "ufs-sysfs.h"
33 #include "ufs-debugfs.h"
34 #include "ufs-fault-injection.h"
35 #include "ufs_bsg.h"
36 #include "ufshcd-crypto.h"
37 #include "ufshpb.h"
38 #include <asm/unaligned.h>
39 
40 #define CREATE_TRACE_POINTS
41 #include <trace/events/ufs.h>
42 
43 #define UFSHCD_ENABLE_INTRS	(UTP_TRANSFER_REQ_COMPL |\
44 				 UTP_TASK_REQ_COMPL |\
45 				 UFSHCD_ERROR_MASK)
46 /* UIC command timeout, unit: ms */
47 #define UIC_CMD_TIMEOUT	500
48 
49 /* NOP OUT retries waiting for NOP IN response */
50 #define NOP_OUT_RETRIES    10
51 /* Timeout after 50 msecs if NOP OUT hangs without response */
52 #define NOP_OUT_TIMEOUT    50 /* msecs */
53 
54 /* Query request retries */
55 #define QUERY_REQ_RETRIES 3
56 /* Query request timeout */
57 #define QUERY_REQ_TIMEOUT 1500 /* 1.5 seconds */
58 
59 /* Task management command timeout */
60 #define TM_CMD_TIMEOUT	100 /* msecs */
61 
62 /* maximum number of retries for a general UIC command  */
63 #define UFS_UIC_COMMAND_RETRIES 3
64 
65 /* maximum number of link-startup retries */
66 #define DME_LINKSTARTUP_RETRIES 3
67 
68 /* maximum number of reset retries before giving up */
69 #define MAX_HOST_RESET_RETRIES 5
70 
71 /* Maximum number of error handler retries before giving up */
72 #define MAX_ERR_HANDLER_RETRIES 5
73 
74 /* Expose the flag value from utp_upiu_query.value */
75 #define MASK_QUERY_UPIU_FLAG_LOC 0xFF
76 
77 /* Interrupt aggregation default timeout, unit: 40us */
78 #define INT_AGGR_DEF_TO	0x02
79 
80 /* default delay of autosuspend: 2000 ms */
81 #define RPM_AUTOSUSPEND_DELAY_MS 2000
82 
83 /* Default delay of RPM device flush delayed work */
84 #define RPM_DEV_FLUSH_RECHECK_WORK_DELAY_MS 5000
85 
86 /* Default value of wait time before gating device ref clock */
87 #define UFSHCD_REF_CLK_GATING_WAIT_US 0xFF /* microsecs */
88 
89 /* Polling time to wait for fDeviceInit */
90 #define FDEVICEINIT_COMPL_TIMEOUT 1500 /* millisecs */
91 
92 #define ufshcd_toggle_vreg(_dev, _vreg, _on)				\
93 	({                                                              \
94 		int _ret;                                               \
95 		if (_on)                                                \
96 			_ret = ufshcd_enable_vreg(_dev, _vreg);         \
97 		else                                                    \
98 			_ret = ufshcd_disable_vreg(_dev, _vreg);        \
99 		_ret;                                                   \
100 	})
101 
102 #define ufshcd_hex_dump(prefix_str, buf, len) do {                       \
103 	size_t __len = (len);                                            \
104 	print_hex_dump(KERN_ERR, prefix_str,                             \
105 		       __len > 4 ? DUMP_PREFIX_OFFSET : DUMP_PREFIX_NONE,\
106 		       16, 4, buf, __len, false);                        \
107 } while (0)
108 
109 int ufshcd_dump_regs(struct ufs_hba *hba, size_t offset, size_t len,
110 		     const char *prefix)
111 {
112 	u32 *regs;
113 	size_t pos;
114 
115 	if (offset % 4 != 0 || len % 4 != 0) /* keep readl happy */
116 		return -EINVAL;
117 
118 	regs = kzalloc(len, GFP_ATOMIC);
119 	if (!regs)
120 		return -ENOMEM;
121 
122 	for (pos = 0; pos < len; pos += 4) {
123 		if (offset == 0 &&
124 		    pos >= REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER &&
125 		    pos <= REG_UIC_ERROR_CODE_DME)
126 			continue;
127 		regs[pos / 4] = ufshcd_readl(hba, offset + pos);
128 	}
129 
130 	ufshcd_hex_dump(prefix, regs, len);
131 	kfree(regs);
132 
133 	return 0;
134 }
135 EXPORT_SYMBOL_GPL(ufshcd_dump_regs);
136 
137 enum {
138 	UFSHCD_MAX_CHANNEL	= 0,
139 	UFSHCD_MAX_ID		= 1,
140 	UFSHCD_NUM_RESERVED	= 1,
141 	UFSHCD_CMD_PER_LUN	= 32 - UFSHCD_NUM_RESERVED,
142 	UFSHCD_CAN_QUEUE	= 32 - UFSHCD_NUM_RESERVED,
143 };
144 
145 static const char *const ufshcd_state_name[] = {
146 	[UFSHCD_STATE_RESET]			= "reset",
147 	[UFSHCD_STATE_OPERATIONAL]		= "operational",
148 	[UFSHCD_STATE_ERROR]			= "error",
149 	[UFSHCD_STATE_EH_SCHEDULED_FATAL]	= "eh_fatal",
150 	[UFSHCD_STATE_EH_SCHEDULED_NON_FATAL]	= "eh_non_fatal",
151 };
152 
153 /* UFSHCD error handling flags */
154 enum {
155 	UFSHCD_EH_IN_PROGRESS = (1 << 0),
156 };
157 
158 /* UFSHCD UIC layer error flags */
159 enum {
160 	UFSHCD_UIC_DL_PA_INIT_ERROR = (1 << 0), /* Data link layer error */
161 	UFSHCD_UIC_DL_NAC_RECEIVED_ERROR = (1 << 1), /* Data link layer error */
162 	UFSHCD_UIC_DL_TCx_REPLAY_ERROR = (1 << 2), /* Data link layer error */
163 	UFSHCD_UIC_NL_ERROR = (1 << 3), /* Network layer error */
164 	UFSHCD_UIC_TL_ERROR = (1 << 4), /* Transport Layer error */
165 	UFSHCD_UIC_DME_ERROR = (1 << 5), /* DME error */
166 	UFSHCD_UIC_PA_GENERIC_ERROR = (1 << 6), /* Generic PA error */
167 };
168 
169 #define ufshcd_set_eh_in_progress(h) \
170 	((h)->eh_flags |= UFSHCD_EH_IN_PROGRESS)
171 #define ufshcd_eh_in_progress(h) \
172 	((h)->eh_flags & UFSHCD_EH_IN_PROGRESS)
173 #define ufshcd_clear_eh_in_progress(h) \
174 	((h)->eh_flags &= ~UFSHCD_EH_IN_PROGRESS)
175 
176 const struct ufs_pm_lvl_states ufs_pm_lvl_states[] = {
177 	[UFS_PM_LVL_0] = {UFS_ACTIVE_PWR_MODE, UIC_LINK_ACTIVE_STATE},
178 	[UFS_PM_LVL_1] = {UFS_ACTIVE_PWR_MODE, UIC_LINK_HIBERN8_STATE},
179 	[UFS_PM_LVL_2] = {UFS_SLEEP_PWR_MODE, UIC_LINK_ACTIVE_STATE},
180 	[UFS_PM_LVL_3] = {UFS_SLEEP_PWR_MODE, UIC_LINK_HIBERN8_STATE},
181 	[UFS_PM_LVL_4] = {UFS_POWERDOWN_PWR_MODE, UIC_LINK_HIBERN8_STATE},
182 	[UFS_PM_LVL_5] = {UFS_POWERDOWN_PWR_MODE, UIC_LINK_OFF_STATE},
183 	/*
184 	 * For DeepSleep, the link is first put in hibern8 and then off.
185 	 * Leaving the link in hibern8 is not supported.
186 	 */
187 	[UFS_PM_LVL_6] = {UFS_DEEPSLEEP_PWR_MODE, UIC_LINK_OFF_STATE},
188 };
189 
190 static inline enum ufs_dev_pwr_mode
191 ufs_get_pm_lvl_to_dev_pwr_mode(enum ufs_pm_level lvl)
192 {
193 	return ufs_pm_lvl_states[lvl].dev_state;
194 }
195 
196 static inline enum uic_link_state
197 ufs_get_pm_lvl_to_link_pwr_state(enum ufs_pm_level lvl)
198 {
199 	return ufs_pm_lvl_states[lvl].link_state;
200 }
201 
202 static inline enum ufs_pm_level
203 ufs_get_desired_pm_lvl_for_dev_link_state(enum ufs_dev_pwr_mode dev_state,
204 					enum uic_link_state link_state)
205 {
206 	enum ufs_pm_level lvl;
207 
208 	for (lvl = UFS_PM_LVL_0; lvl < UFS_PM_LVL_MAX; lvl++) {
209 		if ((ufs_pm_lvl_states[lvl].dev_state == dev_state) &&
210 			(ufs_pm_lvl_states[lvl].link_state == link_state))
211 			return lvl;
212 	}
213 
214 	/* if no match found, return the level 0 */
215 	return UFS_PM_LVL_0;
216 }
217 
218 static const struct ufs_dev_quirk ufs_fixups[] = {
219 	/* UFS cards deviations table */
220 	{ .wmanufacturerid = UFS_VENDOR_MICRON,
221 	  .model = UFS_ANY_MODEL,
222 	  .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM |
223 		   UFS_DEVICE_QUIRK_SWAP_L2P_ENTRY_FOR_HPB_READ },
224 	{ .wmanufacturerid = UFS_VENDOR_SAMSUNG,
225 	  .model = UFS_ANY_MODEL,
226 	  .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM |
227 		   UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE |
228 		   UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS },
229 	{ .wmanufacturerid = UFS_VENDOR_SKHYNIX,
230 	  .model = UFS_ANY_MODEL,
231 	  .quirk = UFS_DEVICE_QUIRK_HOST_PA_SAVECONFIGTIME },
232 	{ .wmanufacturerid = UFS_VENDOR_SKHYNIX,
233 	  .model = "hB8aL1" /*H28U62301AMR*/,
234 	  .quirk = UFS_DEVICE_QUIRK_HOST_VS_DEBUGSAVECONFIGTIME },
235 	{ .wmanufacturerid = UFS_VENDOR_TOSHIBA,
236 	  .model = UFS_ANY_MODEL,
237 	  .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM },
238 	{ .wmanufacturerid = UFS_VENDOR_TOSHIBA,
239 	  .model = "THGLF2G9C8KBADG",
240 	  .quirk = UFS_DEVICE_QUIRK_PA_TACTIVATE },
241 	{ .wmanufacturerid = UFS_VENDOR_TOSHIBA,
242 	  .model = "THGLF2G9D8KBADG",
243 	  .quirk = UFS_DEVICE_QUIRK_PA_TACTIVATE },
244 	{}
245 };
246 
247 static irqreturn_t ufshcd_tmc_handler(struct ufs_hba *hba);
248 static void ufshcd_async_scan(void *data, async_cookie_t cookie);
249 static int ufshcd_reset_and_restore(struct ufs_hba *hba);
250 static int ufshcd_eh_host_reset_handler(struct scsi_cmnd *cmd);
251 static int ufshcd_clear_tm_cmd(struct ufs_hba *hba, int tag);
252 static void ufshcd_hba_exit(struct ufs_hba *hba);
253 static int ufshcd_probe_hba(struct ufs_hba *hba, bool init_dev_params);
254 static int ufshcd_setup_clocks(struct ufs_hba *hba, bool on);
255 static inline void ufshcd_add_delay_before_dme_cmd(struct ufs_hba *hba);
256 static int ufshcd_host_reset_and_restore(struct ufs_hba *hba);
257 static void ufshcd_resume_clkscaling(struct ufs_hba *hba);
258 static void ufshcd_suspend_clkscaling(struct ufs_hba *hba);
259 static void __ufshcd_suspend_clkscaling(struct ufs_hba *hba);
260 static int ufshcd_scale_clks(struct ufs_hba *hba, bool scale_up);
261 static irqreturn_t ufshcd_intr(int irq, void *__hba);
262 static int ufshcd_change_power_mode(struct ufs_hba *hba,
263 			     struct ufs_pa_layer_attr *pwr_mode);
264 static int ufshcd_setup_hba_vreg(struct ufs_hba *hba, bool on);
265 static int ufshcd_setup_vreg(struct ufs_hba *hba, bool on);
266 static inline int ufshcd_config_vreg_hpm(struct ufs_hba *hba,
267 					 struct ufs_vreg *vreg);
268 static int ufshcd_try_to_abort_task(struct ufs_hba *hba, int tag);
269 static void ufshcd_wb_toggle_buf_flush_during_h8(struct ufs_hba *hba,
270 						 bool enable);
271 static void ufshcd_hba_vreg_set_lpm(struct ufs_hba *hba);
272 static void ufshcd_hba_vreg_set_hpm(struct ufs_hba *hba);
273 
274 static inline void ufshcd_enable_irq(struct ufs_hba *hba)
275 {
276 	if (!hba->is_irq_enabled) {
277 		enable_irq(hba->irq);
278 		hba->is_irq_enabled = true;
279 	}
280 }
281 
282 static inline void ufshcd_disable_irq(struct ufs_hba *hba)
283 {
284 	if (hba->is_irq_enabled) {
285 		disable_irq(hba->irq);
286 		hba->is_irq_enabled = false;
287 	}
288 }
289 
290 static void ufshcd_configure_wb(struct ufs_hba *hba)
291 {
292 	if (!ufshcd_is_wb_allowed(hba))
293 		return;
294 
295 	ufshcd_wb_toggle(hba, true);
296 
297 	ufshcd_wb_toggle_buf_flush_during_h8(hba, true);
298 
299 	if (ufshcd_is_wb_buf_flush_allowed(hba))
300 		ufshcd_wb_toggle_buf_flush(hba, true);
301 }
302 
303 static void ufshcd_scsi_unblock_requests(struct ufs_hba *hba)
304 {
305 	if (atomic_dec_and_test(&hba->scsi_block_reqs_cnt))
306 		scsi_unblock_requests(hba->host);
307 }
308 
309 static void ufshcd_scsi_block_requests(struct ufs_hba *hba)
310 {
311 	if (atomic_inc_return(&hba->scsi_block_reqs_cnt) == 1)
312 		scsi_block_requests(hba->host);
313 }
314 
315 static void ufshcd_add_cmd_upiu_trace(struct ufs_hba *hba, unsigned int tag,
316 				      enum ufs_trace_str_t str_t)
317 {
318 	struct utp_upiu_req *rq = hba->lrb[tag].ucd_req_ptr;
319 	struct utp_upiu_header *header;
320 
321 	if (!trace_ufshcd_upiu_enabled())
322 		return;
323 
324 	if (str_t == UFS_CMD_SEND)
325 		header = &rq->header;
326 	else
327 		header = &hba->lrb[tag].ucd_rsp_ptr->header;
328 
329 	trace_ufshcd_upiu(dev_name(hba->dev), str_t, header, &rq->sc.cdb,
330 			  UFS_TSF_CDB);
331 }
332 
333 static void ufshcd_add_query_upiu_trace(struct ufs_hba *hba,
334 					enum ufs_trace_str_t str_t,
335 					struct utp_upiu_req *rq_rsp)
336 {
337 	if (!trace_ufshcd_upiu_enabled())
338 		return;
339 
340 	trace_ufshcd_upiu(dev_name(hba->dev), str_t, &rq_rsp->header,
341 			  &rq_rsp->qr, UFS_TSF_OSF);
342 }
343 
344 static void ufshcd_add_tm_upiu_trace(struct ufs_hba *hba, unsigned int tag,
345 				     enum ufs_trace_str_t str_t)
346 {
347 	struct utp_task_req_desc *descp = &hba->utmrdl_base_addr[tag];
348 
349 	if (!trace_ufshcd_upiu_enabled())
350 		return;
351 
352 	if (str_t == UFS_TM_SEND)
353 		trace_ufshcd_upiu(dev_name(hba->dev), str_t,
354 				  &descp->upiu_req.req_header,
355 				  &descp->upiu_req.input_param1,
356 				  UFS_TSF_TM_INPUT);
357 	else
358 		trace_ufshcd_upiu(dev_name(hba->dev), str_t,
359 				  &descp->upiu_rsp.rsp_header,
360 				  &descp->upiu_rsp.output_param1,
361 				  UFS_TSF_TM_OUTPUT);
362 }
363 
364 static void ufshcd_add_uic_command_trace(struct ufs_hba *hba,
365 					 const struct uic_command *ucmd,
366 					 enum ufs_trace_str_t str_t)
367 {
368 	u32 cmd;
369 
370 	if (!trace_ufshcd_uic_command_enabled())
371 		return;
372 
373 	if (str_t == UFS_CMD_SEND)
374 		cmd = ucmd->command;
375 	else
376 		cmd = ufshcd_readl(hba, REG_UIC_COMMAND);
377 
378 	trace_ufshcd_uic_command(dev_name(hba->dev), str_t, cmd,
379 				 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_1),
380 				 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_2),
381 				 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_3));
382 }
383 
384 static void ufshcd_add_command_trace(struct ufs_hba *hba, unsigned int tag,
385 				     enum ufs_trace_str_t str_t)
386 {
387 	u64 lba = 0;
388 	u8 opcode = 0, group_id = 0;
389 	u32 intr, doorbell;
390 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
391 	struct scsi_cmnd *cmd = lrbp->cmd;
392 	struct request *rq = scsi_cmd_to_rq(cmd);
393 	int transfer_len = -1;
394 
395 	if (!cmd)
396 		return;
397 
398 	/* trace UPIU also */
399 	ufshcd_add_cmd_upiu_trace(hba, tag, str_t);
400 	if (!trace_ufshcd_command_enabled())
401 		return;
402 
403 	opcode = cmd->cmnd[0];
404 
405 	if (opcode == READ_10 || opcode == WRITE_10) {
406 		/*
407 		 * Currently we only fully trace read(10) and write(10) commands
408 		 */
409 		transfer_len =
410 		       be32_to_cpu(lrbp->ucd_req_ptr->sc.exp_data_transfer_len);
411 		lba = scsi_get_lba(cmd);
412 		if (opcode == WRITE_10)
413 			group_id = lrbp->cmd->cmnd[6];
414 	} else if (opcode == UNMAP) {
415 		/*
416 		 * The number of Bytes to be unmapped beginning with the lba.
417 		 */
418 		transfer_len = blk_rq_bytes(rq);
419 		lba = scsi_get_lba(cmd);
420 	}
421 
422 	intr = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
423 	doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
424 	trace_ufshcd_command(dev_name(hba->dev), str_t, tag,
425 			doorbell, transfer_len, intr, lba, opcode, group_id);
426 }
427 
428 static void ufshcd_print_clk_freqs(struct ufs_hba *hba)
429 {
430 	struct ufs_clk_info *clki;
431 	struct list_head *head = &hba->clk_list_head;
432 
433 	if (list_empty(head))
434 		return;
435 
436 	list_for_each_entry(clki, head, list) {
437 		if (!IS_ERR_OR_NULL(clki->clk) && clki->min_freq &&
438 				clki->max_freq)
439 			dev_err(hba->dev, "clk: %s, rate: %u\n",
440 					clki->name, clki->curr_freq);
441 	}
442 }
443 
444 static void ufshcd_print_evt(struct ufs_hba *hba, u32 id,
445 			     const char *err_name)
446 {
447 	int i;
448 	bool found = false;
449 	const struct ufs_event_hist *e;
450 
451 	if (id >= UFS_EVT_CNT)
452 		return;
453 
454 	e = &hba->ufs_stats.event[id];
455 
456 	for (i = 0; i < UFS_EVENT_HIST_LENGTH; i++) {
457 		int p = (i + e->pos) % UFS_EVENT_HIST_LENGTH;
458 
459 		if (e->tstamp[p] == 0)
460 			continue;
461 		dev_err(hba->dev, "%s[%d] = 0x%x at %lld us\n", err_name, p,
462 			e->val[p], div_u64(e->tstamp[p], 1000));
463 		found = true;
464 	}
465 
466 	if (!found)
467 		dev_err(hba->dev, "No record of %s\n", err_name);
468 	else
469 		dev_err(hba->dev, "%s: total cnt=%llu\n", err_name, e->cnt);
470 }
471 
472 static void ufshcd_print_evt_hist(struct ufs_hba *hba)
473 {
474 	ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, "host_regs: ");
475 
476 	ufshcd_print_evt(hba, UFS_EVT_PA_ERR, "pa_err");
477 	ufshcd_print_evt(hba, UFS_EVT_DL_ERR, "dl_err");
478 	ufshcd_print_evt(hba, UFS_EVT_NL_ERR, "nl_err");
479 	ufshcd_print_evt(hba, UFS_EVT_TL_ERR, "tl_err");
480 	ufshcd_print_evt(hba, UFS_EVT_DME_ERR, "dme_err");
481 	ufshcd_print_evt(hba, UFS_EVT_AUTO_HIBERN8_ERR,
482 			 "auto_hibern8_err");
483 	ufshcd_print_evt(hba, UFS_EVT_FATAL_ERR, "fatal_err");
484 	ufshcd_print_evt(hba, UFS_EVT_LINK_STARTUP_FAIL,
485 			 "link_startup_fail");
486 	ufshcd_print_evt(hba, UFS_EVT_RESUME_ERR, "resume_fail");
487 	ufshcd_print_evt(hba, UFS_EVT_SUSPEND_ERR,
488 			 "suspend_fail");
489 	ufshcd_print_evt(hba, UFS_EVT_DEV_RESET, "dev_reset");
490 	ufshcd_print_evt(hba, UFS_EVT_HOST_RESET, "host_reset");
491 	ufshcd_print_evt(hba, UFS_EVT_ABORT, "task_abort");
492 
493 	ufshcd_vops_dbg_register_dump(hba);
494 }
495 
496 static
497 void ufshcd_print_trs(struct ufs_hba *hba, unsigned long bitmap, bool pr_prdt)
498 {
499 	const struct ufshcd_lrb *lrbp;
500 	int prdt_length;
501 	int tag;
502 
503 	for_each_set_bit(tag, &bitmap, hba->nutrs) {
504 		lrbp = &hba->lrb[tag];
505 
506 		dev_err(hba->dev, "UPIU[%d] - issue time %lld us\n",
507 				tag, div_u64(lrbp->issue_time_stamp_local_clock, 1000));
508 		dev_err(hba->dev, "UPIU[%d] - complete time %lld us\n",
509 				tag, div_u64(lrbp->compl_time_stamp_local_clock, 1000));
510 		dev_err(hba->dev,
511 			"UPIU[%d] - Transfer Request Descriptor phys@0x%llx\n",
512 			tag, (u64)lrbp->utrd_dma_addr);
513 
514 		ufshcd_hex_dump("UPIU TRD: ", lrbp->utr_descriptor_ptr,
515 				sizeof(struct utp_transfer_req_desc));
516 		dev_err(hba->dev, "UPIU[%d] - Request UPIU phys@0x%llx\n", tag,
517 			(u64)lrbp->ucd_req_dma_addr);
518 		ufshcd_hex_dump("UPIU REQ: ", lrbp->ucd_req_ptr,
519 				sizeof(struct utp_upiu_req));
520 		dev_err(hba->dev, "UPIU[%d] - Response UPIU phys@0x%llx\n", tag,
521 			(u64)lrbp->ucd_rsp_dma_addr);
522 		ufshcd_hex_dump("UPIU RSP: ", lrbp->ucd_rsp_ptr,
523 				sizeof(struct utp_upiu_rsp));
524 
525 		prdt_length = le16_to_cpu(
526 			lrbp->utr_descriptor_ptr->prd_table_length);
527 		if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN)
528 			prdt_length /= sizeof(struct ufshcd_sg_entry);
529 
530 		dev_err(hba->dev,
531 			"UPIU[%d] - PRDT - %d entries  phys@0x%llx\n",
532 			tag, prdt_length,
533 			(u64)lrbp->ucd_prdt_dma_addr);
534 
535 		if (pr_prdt)
536 			ufshcd_hex_dump("UPIU PRDT: ", lrbp->ucd_prdt_ptr,
537 				sizeof(struct ufshcd_sg_entry) * prdt_length);
538 	}
539 }
540 
541 static void ufshcd_print_tmrs(struct ufs_hba *hba, unsigned long bitmap)
542 {
543 	int tag;
544 
545 	for_each_set_bit(tag, &bitmap, hba->nutmrs) {
546 		struct utp_task_req_desc *tmrdp = &hba->utmrdl_base_addr[tag];
547 
548 		dev_err(hba->dev, "TM[%d] - Task Management Header\n", tag);
549 		ufshcd_hex_dump("", tmrdp, sizeof(*tmrdp));
550 	}
551 }
552 
553 static void ufshcd_print_host_state(struct ufs_hba *hba)
554 {
555 	const struct scsi_device *sdev_ufs = hba->ufs_device_wlun;
556 
557 	dev_err(hba->dev, "UFS Host state=%d\n", hba->ufshcd_state);
558 	dev_err(hba->dev, "outstanding reqs=0x%lx tasks=0x%lx\n",
559 		hba->outstanding_reqs, hba->outstanding_tasks);
560 	dev_err(hba->dev, "saved_err=0x%x, saved_uic_err=0x%x\n",
561 		hba->saved_err, hba->saved_uic_err);
562 	dev_err(hba->dev, "Device power mode=%d, UIC link state=%d\n",
563 		hba->curr_dev_pwr_mode, hba->uic_link_state);
564 	dev_err(hba->dev, "PM in progress=%d, sys. suspended=%d\n",
565 		hba->pm_op_in_progress, hba->is_sys_suspended);
566 	dev_err(hba->dev, "Auto BKOPS=%d, Host self-block=%d\n",
567 		hba->auto_bkops_enabled, hba->host->host_self_blocked);
568 	dev_err(hba->dev, "Clk gate=%d\n", hba->clk_gating.state);
569 	dev_err(hba->dev,
570 		"last_hibern8_exit_tstamp at %lld us, hibern8_exit_cnt=%d\n",
571 		div_u64(hba->ufs_stats.last_hibern8_exit_tstamp, 1000),
572 		hba->ufs_stats.hibern8_exit_cnt);
573 	dev_err(hba->dev, "last intr at %lld us, last intr status=0x%x\n",
574 		div_u64(hba->ufs_stats.last_intr_ts, 1000),
575 		hba->ufs_stats.last_intr_status);
576 	dev_err(hba->dev, "error handling flags=0x%x, req. abort count=%d\n",
577 		hba->eh_flags, hba->req_abort_count);
578 	dev_err(hba->dev, "hba->ufs_version=0x%x, Host capabilities=0x%x, caps=0x%x\n",
579 		hba->ufs_version, hba->capabilities, hba->caps);
580 	dev_err(hba->dev, "quirks=0x%x, dev. quirks=0x%x\n", hba->quirks,
581 		hba->dev_quirks);
582 	if (sdev_ufs)
583 		dev_err(hba->dev, "UFS dev info: %.8s %.16s rev %.4s\n",
584 			sdev_ufs->vendor, sdev_ufs->model, sdev_ufs->rev);
585 
586 	ufshcd_print_clk_freqs(hba);
587 }
588 
589 /**
590  * ufshcd_print_pwr_info - print power params as saved in hba
591  * power info
592  * @hba: per-adapter instance
593  */
594 static void ufshcd_print_pwr_info(struct ufs_hba *hba)
595 {
596 	static const char * const names[] = {
597 		"INVALID MODE",
598 		"FAST MODE",
599 		"SLOW_MODE",
600 		"INVALID MODE",
601 		"FASTAUTO_MODE",
602 		"SLOWAUTO_MODE",
603 		"INVALID MODE",
604 	};
605 
606 	/*
607 	 * Using dev_dbg to avoid messages during runtime PM to avoid
608 	 * never-ending cycles of messages written back to storage by user space
609 	 * causing runtime resume, causing more messages and so on.
610 	 */
611 	dev_dbg(hba->dev, "%s:[RX, TX]: gear=[%d, %d], lane[%d, %d], pwr[%s, %s], rate = %d\n",
612 		 __func__,
613 		 hba->pwr_info.gear_rx, hba->pwr_info.gear_tx,
614 		 hba->pwr_info.lane_rx, hba->pwr_info.lane_tx,
615 		 names[hba->pwr_info.pwr_rx],
616 		 names[hba->pwr_info.pwr_tx],
617 		 hba->pwr_info.hs_rate);
618 }
619 
620 static void ufshcd_device_reset(struct ufs_hba *hba)
621 {
622 	int err;
623 
624 	err = ufshcd_vops_device_reset(hba);
625 
626 	if (!err) {
627 		ufshcd_set_ufs_dev_active(hba);
628 		if (ufshcd_is_wb_allowed(hba)) {
629 			hba->dev_info.wb_enabled = false;
630 			hba->dev_info.wb_buf_flush_enabled = false;
631 		}
632 	}
633 	if (err != -EOPNOTSUPP)
634 		ufshcd_update_evt_hist(hba, UFS_EVT_DEV_RESET, err);
635 }
636 
637 void ufshcd_delay_us(unsigned long us, unsigned long tolerance)
638 {
639 	if (!us)
640 		return;
641 
642 	if (us < 10)
643 		udelay(us);
644 	else
645 		usleep_range(us, us + tolerance);
646 }
647 EXPORT_SYMBOL_GPL(ufshcd_delay_us);
648 
649 /**
650  * ufshcd_wait_for_register - wait for register value to change
651  * @hba: per-adapter interface
652  * @reg: mmio register offset
653  * @mask: mask to apply to the read register value
654  * @val: value to wait for
655  * @interval_us: polling interval in microseconds
656  * @timeout_ms: timeout in milliseconds
657  *
658  * Return:
659  * -ETIMEDOUT on error, zero on success.
660  */
661 static int ufshcd_wait_for_register(struct ufs_hba *hba, u32 reg, u32 mask,
662 				u32 val, unsigned long interval_us,
663 				unsigned long timeout_ms)
664 {
665 	int err = 0;
666 	unsigned long timeout = jiffies + msecs_to_jiffies(timeout_ms);
667 
668 	/* ignore bits that we don't intend to wait on */
669 	val = val & mask;
670 
671 	while ((ufshcd_readl(hba, reg) & mask) != val) {
672 		usleep_range(interval_us, interval_us + 50);
673 		if (time_after(jiffies, timeout)) {
674 			if ((ufshcd_readl(hba, reg) & mask) != val)
675 				err = -ETIMEDOUT;
676 			break;
677 		}
678 	}
679 
680 	return err;
681 }
682 
683 /**
684  * ufshcd_get_intr_mask - Get the interrupt bit mask
685  * @hba: Pointer to adapter instance
686  *
687  * Returns interrupt bit mask per version
688  */
689 static inline u32 ufshcd_get_intr_mask(struct ufs_hba *hba)
690 {
691 	if (hba->ufs_version == ufshci_version(1, 0))
692 		return INTERRUPT_MASK_ALL_VER_10;
693 	if (hba->ufs_version <= ufshci_version(2, 0))
694 		return INTERRUPT_MASK_ALL_VER_11;
695 
696 	return INTERRUPT_MASK_ALL_VER_21;
697 }
698 
699 /**
700  * ufshcd_get_ufs_version - Get the UFS version supported by the HBA
701  * @hba: Pointer to adapter instance
702  *
703  * Returns UFSHCI version supported by the controller
704  */
705 static inline u32 ufshcd_get_ufs_version(struct ufs_hba *hba)
706 {
707 	u32 ufshci_ver;
708 
709 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_UFS_HCI_VERSION)
710 		ufshci_ver = ufshcd_vops_get_ufs_hci_version(hba);
711 	else
712 		ufshci_ver = ufshcd_readl(hba, REG_UFS_VERSION);
713 
714 	/*
715 	 * UFSHCI v1.x uses a different version scheme, in order
716 	 * to allow the use of comparisons with the ufshci_version
717 	 * function, we convert it to the same scheme as ufs 2.0+.
718 	 */
719 	if (ufshci_ver & 0x00010000)
720 		return ufshci_version(1, ufshci_ver & 0x00000100);
721 
722 	return ufshci_ver;
723 }
724 
725 /**
726  * ufshcd_is_device_present - Check if any device connected to
727  *			      the host controller
728  * @hba: pointer to adapter instance
729  *
730  * Returns true if device present, false if no device detected
731  */
732 static inline bool ufshcd_is_device_present(struct ufs_hba *hba)
733 {
734 	return ufshcd_readl(hba, REG_CONTROLLER_STATUS) & DEVICE_PRESENT;
735 }
736 
737 /**
738  * ufshcd_get_tr_ocs - Get the UTRD Overall Command Status
739  * @lrbp: pointer to local command reference block
740  *
741  * This function is used to get the OCS field from UTRD
742  * Returns the OCS field in the UTRD
743  */
744 static enum utp_ocs ufshcd_get_tr_ocs(struct ufshcd_lrb *lrbp)
745 {
746 	return le32_to_cpu(lrbp->utr_descriptor_ptr->header.dword_2) & MASK_OCS;
747 }
748 
749 /**
750  * ufshcd_utrl_clear() - Clear requests from the controller request list.
751  * @hba: per adapter instance
752  * @mask: mask with one bit set for each request to be cleared
753  */
754 static inline void ufshcd_utrl_clear(struct ufs_hba *hba, u32 mask)
755 {
756 	if (hba->quirks & UFSHCI_QUIRK_BROKEN_REQ_LIST_CLR)
757 		mask = ~mask;
758 	/*
759 	 * From the UFSHCI specification: "UTP Transfer Request List CLear
760 	 * Register (UTRLCLR): This field is bit significant. Each bit
761 	 * corresponds to a slot in the UTP Transfer Request List, where bit 0
762 	 * corresponds to request slot 0. A bit in this field is set to ‘0’
763 	 * by host software to indicate to the host controller that a transfer
764 	 * request slot is cleared. The host controller
765 	 * shall free up any resources associated to the request slot
766 	 * immediately, and shall set the associated bit in UTRLDBR to ‘0’. The
767 	 * host software indicates no change to request slots by setting the
768 	 * associated bits in this field to ‘1’. Bits in this field shall only
769 	 * be set ‘1’ or ‘0’ by host software when UTRLRSR is set to ‘1’."
770 	 */
771 	ufshcd_writel(hba, ~mask, REG_UTP_TRANSFER_REQ_LIST_CLEAR);
772 }
773 
774 /**
775  * ufshcd_utmrl_clear - Clear a bit in UTRMLCLR register
776  * @hba: per adapter instance
777  * @pos: position of the bit to be cleared
778  */
779 static inline void ufshcd_utmrl_clear(struct ufs_hba *hba, u32 pos)
780 {
781 	if (hba->quirks & UFSHCI_QUIRK_BROKEN_REQ_LIST_CLR)
782 		ufshcd_writel(hba, (1 << pos), REG_UTP_TASK_REQ_LIST_CLEAR);
783 	else
784 		ufshcd_writel(hba, ~(1 << pos), REG_UTP_TASK_REQ_LIST_CLEAR);
785 }
786 
787 /**
788  * ufshcd_get_lists_status - Check UCRDY, UTRLRDY and UTMRLRDY
789  * @reg: Register value of host controller status
790  *
791  * Returns integer, 0 on Success and positive value if failed
792  */
793 static inline int ufshcd_get_lists_status(u32 reg)
794 {
795 	return !((reg & UFSHCD_STATUS_READY) == UFSHCD_STATUS_READY);
796 }
797 
798 /**
799  * ufshcd_get_uic_cmd_result - Get the UIC command result
800  * @hba: Pointer to adapter instance
801  *
802  * This function gets the result of UIC command completion
803  * Returns 0 on success, non zero value on error
804  */
805 static inline int ufshcd_get_uic_cmd_result(struct ufs_hba *hba)
806 {
807 	return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_2) &
808 	       MASK_UIC_COMMAND_RESULT;
809 }
810 
811 /**
812  * ufshcd_get_dme_attr_val - Get the value of attribute returned by UIC command
813  * @hba: Pointer to adapter instance
814  *
815  * This function gets UIC command argument3
816  * Returns 0 on success, non zero value on error
817  */
818 static inline u32 ufshcd_get_dme_attr_val(struct ufs_hba *hba)
819 {
820 	return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_3);
821 }
822 
823 /**
824  * ufshcd_get_req_rsp - returns the TR response transaction type
825  * @ucd_rsp_ptr: pointer to response UPIU
826  */
827 static inline int
828 ufshcd_get_req_rsp(struct utp_upiu_rsp *ucd_rsp_ptr)
829 {
830 	return be32_to_cpu(ucd_rsp_ptr->header.dword_0) >> 24;
831 }
832 
833 /**
834  * ufshcd_get_rsp_upiu_result - Get the result from response UPIU
835  * @ucd_rsp_ptr: pointer to response UPIU
836  *
837  * This function gets the response status and scsi_status from response UPIU
838  * Returns the response result code.
839  */
840 static inline int
841 ufshcd_get_rsp_upiu_result(struct utp_upiu_rsp *ucd_rsp_ptr)
842 {
843 	return be32_to_cpu(ucd_rsp_ptr->header.dword_1) & MASK_RSP_UPIU_RESULT;
844 }
845 
846 /*
847  * ufshcd_get_rsp_upiu_data_seg_len - Get the data segment length
848  *				from response UPIU
849  * @ucd_rsp_ptr: pointer to response UPIU
850  *
851  * Return the data segment length.
852  */
853 static inline unsigned int
854 ufshcd_get_rsp_upiu_data_seg_len(struct utp_upiu_rsp *ucd_rsp_ptr)
855 {
856 	return be32_to_cpu(ucd_rsp_ptr->header.dword_2) &
857 		MASK_RSP_UPIU_DATA_SEG_LEN;
858 }
859 
860 /**
861  * ufshcd_is_exception_event - Check if the device raised an exception event
862  * @ucd_rsp_ptr: pointer to response UPIU
863  *
864  * The function checks if the device raised an exception event indicated in
865  * the Device Information field of response UPIU.
866  *
867  * Returns true if exception is raised, false otherwise.
868  */
869 static inline bool ufshcd_is_exception_event(struct utp_upiu_rsp *ucd_rsp_ptr)
870 {
871 	return be32_to_cpu(ucd_rsp_ptr->header.dword_2) &
872 			MASK_RSP_EXCEPTION_EVENT;
873 }
874 
875 /**
876  * ufshcd_reset_intr_aggr - Reset interrupt aggregation values.
877  * @hba: per adapter instance
878  */
879 static inline void
880 ufshcd_reset_intr_aggr(struct ufs_hba *hba)
881 {
882 	ufshcd_writel(hba, INT_AGGR_ENABLE |
883 		      INT_AGGR_COUNTER_AND_TIMER_RESET,
884 		      REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
885 }
886 
887 /**
888  * ufshcd_config_intr_aggr - Configure interrupt aggregation values.
889  * @hba: per adapter instance
890  * @cnt: Interrupt aggregation counter threshold
891  * @tmout: Interrupt aggregation timeout value
892  */
893 static inline void
894 ufshcd_config_intr_aggr(struct ufs_hba *hba, u8 cnt, u8 tmout)
895 {
896 	ufshcd_writel(hba, INT_AGGR_ENABLE | INT_AGGR_PARAM_WRITE |
897 		      INT_AGGR_COUNTER_THLD_VAL(cnt) |
898 		      INT_AGGR_TIMEOUT_VAL(tmout),
899 		      REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
900 }
901 
902 /**
903  * ufshcd_disable_intr_aggr - Disables interrupt aggregation.
904  * @hba: per adapter instance
905  */
906 static inline void ufshcd_disable_intr_aggr(struct ufs_hba *hba)
907 {
908 	ufshcd_writel(hba, 0, REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
909 }
910 
911 /**
912  * ufshcd_enable_run_stop_reg - Enable run-stop registers,
913  *			When run-stop registers are set to 1, it indicates the
914  *			host controller that it can process the requests
915  * @hba: per adapter instance
916  */
917 static void ufshcd_enable_run_stop_reg(struct ufs_hba *hba)
918 {
919 	ufshcd_writel(hba, UTP_TASK_REQ_LIST_RUN_STOP_BIT,
920 		      REG_UTP_TASK_REQ_LIST_RUN_STOP);
921 	ufshcd_writel(hba, UTP_TRANSFER_REQ_LIST_RUN_STOP_BIT,
922 		      REG_UTP_TRANSFER_REQ_LIST_RUN_STOP);
923 }
924 
925 /**
926  * ufshcd_hba_start - Start controller initialization sequence
927  * @hba: per adapter instance
928  */
929 static inline void ufshcd_hba_start(struct ufs_hba *hba)
930 {
931 	u32 val = CONTROLLER_ENABLE;
932 
933 	if (ufshcd_crypto_enable(hba))
934 		val |= CRYPTO_GENERAL_ENABLE;
935 
936 	ufshcd_writel(hba, val, REG_CONTROLLER_ENABLE);
937 }
938 
939 /**
940  * ufshcd_is_hba_active - Get controller state
941  * @hba: per adapter instance
942  *
943  * Returns true if and only if the controller is active.
944  */
945 static inline bool ufshcd_is_hba_active(struct ufs_hba *hba)
946 {
947 	return ufshcd_readl(hba, REG_CONTROLLER_ENABLE) & CONTROLLER_ENABLE;
948 }
949 
950 u32 ufshcd_get_local_unipro_ver(struct ufs_hba *hba)
951 {
952 	/* HCI version 1.0 and 1.1 supports UniPro 1.41 */
953 	if (hba->ufs_version <= ufshci_version(1, 1))
954 		return UFS_UNIPRO_VER_1_41;
955 	else
956 		return UFS_UNIPRO_VER_1_6;
957 }
958 EXPORT_SYMBOL(ufshcd_get_local_unipro_ver);
959 
960 static bool ufshcd_is_unipro_pa_params_tuning_req(struct ufs_hba *hba)
961 {
962 	/*
963 	 * If both host and device support UniPro ver1.6 or later, PA layer
964 	 * parameters tuning happens during link startup itself.
965 	 *
966 	 * We can manually tune PA layer parameters if either host or device
967 	 * doesn't support UniPro ver 1.6 or later. But to keep manual tuning
968 	 * logic simple, we will only do manual tuning if local unipro version
969 	 * doesn't support ver1.6 or later.
970 	 */
971 	return ufshcd_get_local_unipro_ver(hba) < UFS_UNIPRO_VER_1_6;
972 }
973 
974 /**
975  * ufshcd_set_clk_freq - set UFS controller clock frequencies
976  * @hba: per adapter instance
977  * @scale_up: If True, set max possible frequency othewise set low frequency
978  *
979  * Returns 0 if successful
980  * Returns < 0 for any other errors
981  */
982 static int ufshcd_set_clk_freq(struct ufs_hba *hba, bool scale_up)
983 {
984 	int ret = 0;
985 	struct ufs_clk_info *clki;
986 	struct list_head *head = &hba->clk_list_head;
987 
988 	if (list_empty(head))
989 		goto out;
990 
991 	list_for_each_entry(clki, head, list) {
992 		if (!IS_ERR_OR_NULL(clki->clk)) {
993 			if (scale_up && clki->max_freq) {
994 				if (clki->curr_freq == clki->max_freq)
995 					continue;
996 
997 				ret = clk_set_rate(clki->clk, clki->max_freq);
998 				if (ret) {
999 					dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
1000 						__func__, clki->name,
1001 						clki->max_freq, ret);
1002 					break;
1003 				}
1004 				trace_ufshcd_clk_scaling(dev_name(hba->dev),
1005 						"scaled up", clki->name,
1006 						clki->curr_freq,
1007 						clki->max_freq);
1008 
1009 				clki->curr_freq = clki->max_freq;
1010 
1011 			} else if (!scale_up && clki->min_freq) {
1012 				if (clki->curr_freq == clki->min_freq)
1013 					continue;
1014 
1015 				ret = clk_set_rate(clki->clk, clki->min_freq);
1016 				if (ret) {
1017 					dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
1018 						__func__, clki->name,
1019 						clki->min_freq, ret);
1020 					break;
1021 				}
1022 				trace_ufshcd_clk_scaling(dev_name(hba->dev),
1023 						"scaled down", clki->name,
1024 						clki->curr_freq,
1025 						clki->min_freq);
1026 				clki->curr_freq = clki->min_freq;
1027 			}
1028 		}
1029 		dev_dbg(hba->dev, "%s: clk: %s, rate: %lu\n", __func__,
1030 				clki->name, clk_get_rate(clki->clk));
1031 	}
1032 
1033 out:
1034 	return ret;
1035 }
1036 
1037 /**
1038  * ufshcd_scale_clks - scale up or scale down UFS controller clocks
1039  * @hba: per adapter instance
1040  * @scale_up: True if scaling up and false if scaling down
1041  *
1042  * Returns 0 if successful
1043  * Returns < 0 for any other errors
1044  */
1045 static int ufshcd_scale_clks(struct ufs_hba *hba, bool scale_up)
1046 {
1047 	int ret = 0;
1048 	ktime_t start = ktime_get();
1049 
1050 	ret = ufshcd_vops_clk_scale_notify(hba, scale_up, PRE_CHANGE);
1051 	if (ret)
1052 		goto out;
1053 
1054 	ret = ufshcd_set_clk_freq(hba, scale_up);
1055 	if (ret)
1056 		goto out;
1057 
1058 	ret = ufshcd_vops_clk_scale_notify(hba, scale_up, POST_CHANGE);
1059 	if (ret)
1060 		ufshcd_set_clk_freq(hba, !scale_up);
1061 
1062 out:
1063 	trace_ufshcd_profile_clk_scaling(dev_name(hba->dev),
1064 			(scale_up ? "up" : "down"),
1065 			ktime_to_us(ktime_sub(ktime_get(), start)), ret);
1066 	return ret;
1067 }
1068 
1069 /**
1070  * ufshcd_is_devfreq_scaling_required - check if scaling is required or not
1071  * @hba: per adapter instance
1072  * @scale_up: True if scaling up and false if scaling down
1073  *
1074  * Returns true if scaling is required, false otherwise.
1075  */
1076 static bool ufshcd_is_devfreq_scaling_required(struct ufs_hba *hba,
1077 					       bool scale_up)
1078 {
1079 	struct ufs_clk_info *clki;
1080 	struct list_head *head = &hba->clk_list_head;
1081 
1082 	if (list_empty(head))
1083 		return false;
1084 
1085 	list_for_each_entry(clki, head, list) {
1086 		if (!IS_ERR_OR_NULL(clki->clk)) {
1087 			if (scale_up && clki->max_freq) {
1088 				if (clki->curr_freq == clki->max_freq)
1089 					continue;
1090 				return true;
1091 			} else if (!scale_up && clki->min_freq) {
1092 				if (clki->curr_freq == clki->min_freq)
1093 					continue;
1094 				return true;
1095 			}
1096 		}
1097 	}
1098 
1099 	return false;
1100 }
1101 
1102 /*
1103  * Determine the number of pending commands by counting the bits in the SCSI
1104  * device budget maps. This approach has been selected because a bit is set in
1105  * the budget map before scsi_host_queue_ready() checks the host_self_blocked
1106  * flag. The host_self_blocked flag can be modified by calling
1107  * scsi_block_requests() or scsi_unblock_requests().
1108  */
1109 static u32 ufshcd_pending_cmds(struct ufs_hba *hba)
1110 {
1111 	const struct scsi_device *sdev;
1112 	u32 pending = 0;
1113 
1114 	lockdep_assert_held(hba->host->host_lock);
1115 	__shost_for_each_device(sdev, hba->host)
1116 		pending += sbitmap_weight(&sdev->budget_map);
1117 
1118 	return pending;
1119 }
1120 
1121 static int ufshcd_wait_for_doorbell_clr(struct ufs_hba *hba,
1122 					u64 wait_timeout_us)
1123 {
1124 	unsigned long flags;
1125 	int ret = 0;
1126 	u32 tm_doorbell;
1127 	u32 tr_pending;
1128 	bool timeout = false, do_last_check = false;
1129 	ktime_t start;
1130 
1131 	ufshcd_hold(hba, false);
1132 	spin_lock_irqsave(hba->host->host_lock, flags);
1133 	/*
1134 	 * Wait for all the outstanding tasks/transfer requests.
1135 	 * Verify by checking the doorbell registers are clear.
1136 	 */
1137 	start = ktime_get();
1138 	do {
1139 		if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL) {
1140 			ret = -EBUSY;
1141 			goto out;
1142 		}
1143 
1144 		tm_doorbell = ufshcd_readl(hba, REG_UTP_TASK_REQ_DOOR_BELL);
1145 		tr_pending = ufshcd_pending_cmds(hba);
1146 		if (!tm_doorbell && !tr_pending) {
1147 			timeout = false;
1148 			break;
1149 		} else if (do_last_check) {
1150 			break;
1151 		}
1152 
1153 		spin_unlock_irqrestore(hba->host->host_lock, flags);
1154 		schedule();
1155 		if (ktime_to_us(ktime_sub(ktime_get(), start)) >
1156 		    wait_timeout_us) {
1157 			timeout = true;
1158 			/*
1159 			 * We might have scheduled out for long time so make
1160 			 * sure to check if doorbells are cleared by this time
1161 			 * or not.
1162 			 */
1163 			do_last_check = true;
1164 		}
1165 		spin_lock_irqsave(hba->host->host_lock, flags);
1166 	} while (tm_doorbell || tr_pending);
1167 
1168 	if (timeout) {
1169 		dev_err(hba->dev,
1170 			"%s: timedout waiting for doorbell to clear (tm=0x%x, tr=0x%x)\n",
1171 			__func__, tm_doorbell, tr_pending);
1172 		ret = -EBUSY;
1173 	}
1174 out:
1175 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1176 	ufshcd_release(hba);
1177 	return ret;
1178 }
1179 
1180 /**
1181  * ufshcd_scale_gear - scale up/down UFS gear
1182  * @hba: per adapter instance
1183  * @scale_up: True for scaling up gear and false for scaling down
1184  *
1185  * Returns 0 for success,
1186  * Returns -EBUSY if scaling can't happen at this time
1187  * Returns non-zero for any other errors
1188  */
1189 static int ufshcd_scale_gear(struct ufs_hba *hba, bool scale_up)
1190 {
1191 	int ret = 0;
1192 	struct ufs_pa_layer_attr new_pwr_info;
1193 
1194 	if (scale_up) {
1195 		memcpy(&new_pwr_info, &hba->clk_scaling.saved_pwr_info.info,
1196 		       sizeof(struct ufs_pa_layer_attr));
1197 	} else {
1198 		memcpy(&new_pwr_info, &hba->pwr_info,
1199 		       sizeof(struct ufs_pa_layer_attr));
1200 
1201 		if (hba->pwr_info.gear_tx > hba->clk_scaling.min_gear ||
1202 		    hba->pwr_info.gear_rx > hba->clk_scaling.min_gear) {
1203 			/* save the current power mode */
1204 			memcpy(&hba->clk_scaling.saved_pwr_info.info,
1205 				&hba->pwr_info,
1206 				sizeof(struct ufs_pa_layer_attr));
1207 
1208 			/* scale down gear */
1209 			new_pwr_info.gear_tx = hba->clk_scaling.min_gear;
1210 			new_pwr_info.gear_rx = hba->clk_scaling.min_gear;
1211 		}
1212 	}
1213 
1214 	/* check if the power mode needs to be changed or not? */
1215 	ret = ufshcd_config_pwr_mode(hba, &new_pwr_info);
1216 	if (ret)
1217 		dev_err(hba->dev, "%s: failed err %d, old gear: (tx %d rx %d), new gear: (tx %d rx %d)",
1218 			__func__, ret,
1219 			hba->pwr_info.gear_tx, hba->pwr_info.gear_rx,
1220 			new_pwr_info.gear_tx, new_pwr_info.gear_rx);
1221 
1222 	return ret;
1223 }
1224 
1225 static int ufshcd_clock_scaling_prepare(struct ufs_hba *hba)
1226 {
1227 	#define DOORBELL_CLR_TOUT_US		(1000 * 1000) /* 1 sec */
1228 	int ret = 0;
1229 	/*
1230 	 * make sure that there are no outstanding requests when
1231 	 * clock scaling is in progress
1232 	 */
1233 	ufshcd_scsi_block_requests(hba);
1234 	down_write(&hba->clk_scaling_lock);
1235 
1236 	if (!hba->clk_scaling.is_allowed ||
1237 	    ufshcd_wait_for_doorbell_clr(hba, DOORBELL_CLR_TOUT_US)) {
1238 		ret = -EBUSY;
1239 		up_write(&hba->clk_scaling_lock);
1240 		ufshcd_scsi_unblock_requests(hba);
1241 		goto out;
1242 	}
1243 
1244 	/* let's not get into low power until clock scaling is completed */
1245 	ufshcd_hold(hba, false);
1246 
1247 out:
1248 	return ret;
1249 }
1250 
1251 static void ufshcd_clock_scaling_unprepare(struct ufs_hba *hba, bool writelock)
1252 {
1253 	if (writelock)
1254 		up_write(&hba->clk_scaling_lock);
1255 	else
1256 		up_read(&hba->clk_scaling_lock);
1257 	ufshcd_scsi_unblock_requests(hba);
1258 	ufshcd_release(hba);
1259 }
1260 
1261 /**
1262  * ufshcd_devfreq_scale - scale up/down UFS clocks and gear
1263  * @hba: per adapter instance
1264  * @scale_up: True for scaling up and false for scalin down
1265  *
1266  * Returns 0 for success,
1267  * Returns -EBUSY if scaling can't happen at this time
1268  * Returns non-zero for any other errors
1269  */
1270 static int ufshcd_devfreq_scale(struct ufs_hba *hba, bool scale_up)
1271 {
1272 	int ret = 0;
1273 	bool is_writelock = true;
1274 
1275 	ret = ufshcd_clock_scaling_prepare(hba);
1276 	if (ret)
1277 		return ret;
1278 
1279 	/* scale down the gear before scaling down clocks */
1280 	if (!scale_up) {
1281 		ret = ufshcd_scale_gear(hba, false);
1282 		if (ret)
1283 			goto out_unprepare;
1284 	}
1285 
1286 	ret = ufshcd_scale_clks(hba, scale_up);
1287 	if (ret) {
1288 		if (!scale_up)
1289 			ufshcd_scale_gear(hba, true);
1290 		goto out_unprepare;
1291 	}
1292 
1293 	/* scale up the gear after scaling up clocks */
1294 	if (scale_up) {
1295 		ret = ufshcd_scale_gear(hba, true);
1296 		if (ret) {
1297 			ufshcd_scale_clks(hba, false);
1298 			goto out_unprepare;
1299 		}
1300 	}
1301 
1302 	/* Enable Write Booster if we have scaled up else disable it */
1303 	if (ufshcd_enable_wb_if_scaling_up(hba)) {
1304 		downgrade_write(&hba->clk_scaling_lock);
1305 		is_writelock = false;
1306 		ufshcd_wb_toggle(hba, scale_up);
1307 	}
1308 
1309 out_unprepare:
1310 	ufshcd_clock_scaling_unprepare(hba, is_writelock);
1311 	return ret;
1312 }
1313 
1314 static void ufshcd_clk_scaling_suspend_work(struct work_struct *work)
1315 {
1316 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1317 					   clk_scaling.suspend_work);
1318 	unsigned long irq_flags;
1319 
1320 	spin_lock_irqsave(hba->host->host_lock, irq_flags);
1321 	if (hba->clk_scaling.active_reqs || hba->clk_scaling.is_suspended) {
1322 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1323 		return;
1324 	}
1325 	hba->clk_scaling.is_suspended = true;
1326 	spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1327 
1328 	__ufshcd_suspend_clkscaling(hba);
1329 }
1330 
1331 static void ufshcd_clk_scaling_resume_work(struct work_struct *work)
1332 {
1333 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1334 					   clk_scaling.resume_work);
1335 	unsigned long irq_flags;
1336 
1337 	spin_lock_irqsave(hba->host->host_lock, irq_flags);
1338 	if (!hba->clk_scaling.is_suspended) {
1339 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1340 		return;
1341 	}
1342 	hba->clk_scaling.is_suspended = false;
1343 	spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1344 
1345 	devfreq_resume_device(hba->devfreq);
1346 }
1347 
1348 static int ufshcd_devfreq_target(struct device *dev,
1349 				unsigned long *freq, u32 flags)
1350 {
1351 	int ret = 0;
1352 	struct ufs_hba *hba = dev_get_drvdata(dev);
1353 	ktime_t start;
1354 	bool scale_up, sched_clk_scaling_suspend_work = false;
1355 	struct list_head *clk_list = &hba->clk_list_head;
1356 	struct ufs_clk_info *clki;
1357 	unsigned long irq_flags;
1358 
1359 	if (!ufshcd_is_clkscaling_supported(hba))
1360 		return -EINVAL;
1361 
1362 	clki = list_first_entry(&hba->clk_list_head, struct ufs_clk_info, list);
1363 	/* Override with the closest supported frequency */
1364 	*freq = (unsigned long) clk_round_rate(clki->clk, *freq);
1365 	spin_lock_irqsave(hba->host->host_lock, irq_flags);
1366 	if (ufshcd_eh_in_progress(hba)) {
1367 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1368 		return 0;
1369 	}
1370 
1371 	if (!hba->clk_scaling.active_reqs)
1372 		sched_clk_scaling_suspend_work = true;
1373 
1374 	if (list_empty(clk_list)) {
1375 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1376 		goto out;
1377 	}
1378 
1379 	/* Decide based on the rounded-off frequency and update */
1380 	scale_up = *freq == clki->max_freq;
1381 	if (!scale_up)
1382 		*freq = clki->min_freq;
1383 	/* Update the frequency */
1384 	if (!ufshcd_is_devfreq_scaling_required(hba, scale_up)) {
1385 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1386 		ret = 0;
1387 		goto out; /* no state change required */
1388 	}
1389 	spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1390 
1391 	start = ktime_get();
1392 	ret = ufshcd_devfreq_scale(hba, scale_up);
1393 
1394 	trace_ufshcd_profile_clk_scaling(dev_name(hba->dev),
1395 		(scale_up ? "up" : "down"),
1396 		ktime_to_us(ktime_sub(ktime_get(), start)), ret);
1397 
1398 out:
1399 	if (sched_clk_scaling_suspend_work)
1400 		queue_work(hba->clk_scaling.workq,
1401 			   &hba->clk_scaling.suspend_work);
1402 
1403 	return ret;
1404 }
1405 
1406 static int ufshcd_devfreq_get_dev_status(struct device *dev,
1407 		struct devfreq_dev_status *stat)
1408 {
1409 	struct ufs_hba *hba = dev_get_drvdata(dev);
1410 	struct ufs_clk_scaling *scaling = &hba->clk_scaling;
1411 	unsigned long flags;
1412 	struct list_head *clk_list = &hba->clk_list_head;
1413 	struct ufs_clk_info *clki;
1414 	ktime_t curr_t;
1415 
1416 	if (!ufshcd_is_clkscaling_supported(hba))
1417 		return -EINVAL;
1418 
1419 	memset(stat, 0, sizeof(*stat));
1420 
1421 	spin_lock_irqsave(hba->host->host_lock, flags);
1422 	curr_t = ktime_get();
1423 	if (!scaling->window_start_t)
1424 		goto start_window;
1425 
1426 	clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1427 	/*
1428 	 * If current frequency is 0, then the ondemand governor considers
1429 	 * there's no initial frequency set. And it always requests to set
1430 	 * to max. frequency.
1431 	 */
1432 	stat->current_frequency = clki->curr_freq;
1433 	if (scaling->is_busy_started)
1434 		scaling->tot_busy_t += ktime_us_delta(curr_t,
1435 				scaling->busy_start_t);
1436 
1437 	stat->total_time = ktime_us_delta(curr_t, scaling->window_start_t);
1438 	stat->busy_time = scaling->tot_busy_t;
1439 start_window:
1440 	scaling->window_start_t = curr_t;
1441 	scaling->tot_busy_t = 0;
1442 
1443 	if (hba->outstanding_reqs) {
1444 		scaling->busy_start_t = curr_t;
1445 		scaling->is_busy_started = true;
1446 	} else {
1447 		scaling->busy_start_t = 0;
1448 		scaling->is_busy_started = false;
1449 	}
1450 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1451 	return 0;
1452 }
1453 
1454 static int ufshcd_devfreq_init(struct ufs_hba *hba)
1455 {
1456 	struct list_head *clk_list = &hba->clk_list_head;
1457 	struct ufs_clk_info *clki;
1458 	struct devfreq *devfreq;
1459 	int ret;
1460 
1461 	/* Skip devfreq if we don't have any clocks in the list */
1462 	if (list_empty(clk_list))
1463 		return 0;
1464 
1465 	clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1466 	dev_pm_opp_add(hba->dev, clki->min_freq, 0);
1467 	dev_pm_opp_add(hba->dev, clki->max_freq, 0);
1468 
1469 	ufshcd_vops_config_scaling_param(hba, &hba->vps->devfreq_profile,
1470 					 &hba->vps->ondemand_data);
1471 	devfreq = devfreq_add_device(hba->dev,
1472 			&hba->vps->devfreq_profile,
1473 			DEVFREQ_GOV_SIMPLE_ONDEMAND,
1474 			&hba->vps->ondemand_data);
1475 	if (IS_ERR(devfreq)) {
1476 		ret = PTR_ERR(devfreq);
1477 		dev_err(hba->dev, "Unable to register with devfreq %d\n", ret);
1478 
1479 		dev_pm_opp_remove(hba->dev, clki->min_freq);
1480 		dev_pm_opp_remove(hba->dev, clki->max_freq);
1481 		return ret;
1482 	}
1483 
1484 	hba->devfreq = devfreq;
1485 
1486 	return 0;
1487 }
1488 
1489 static void ufshcd_devfreq_remove(struct ufs_hba *hba)
1490 {
1491 	struct list_head *clk_list = &hba->clk_list_head;
1492 	struct ufs_clk_info *clki;
1493 
1494 	if (!hba->devfreq)
1495 		return;
1496 
1497 	devfreq_remove_device(hba->devfreq);
1498 	hba->devfreq = NULL;
1499 
1500 	clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1501 	dev_pm_opp_remove(hba->dev, clki->min_freq);
1502 	dev_pm_opp_remove(hba->dev, clki->max_freq);
1503 }
1504 
1505 static void __ufshcd_suspend_clkscaling(struct ufs_hba *hba)
1506 {
1507 	unsigned long flags;
1508 
1509 	devfreq_suspend_device(hba->devfreq);
1510 	spin_lock_irqsave(hba->host->host_lock, flags);
1511 	hba->clk_scaling.window_start_t = 0;
1512 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1513 }
1514 
1515 static void ufshcd_suspend_clkscaling(struct ufs_hba *hba)
1516 {
1517 	unsigned long flags;
1518 	bool suspend = false;
1519 
1520 	cancel_work_sync(&hba->clk_scaling.suspend_work);
1521 	cancel_work_sync(&hba->clk_scaling.resume_work);
1522 
1523 	spin_lock_irqsave(hba->host->host_lock, flags);
1524 	if (!hba->clk_scaling.is_suspended) {
1525 		suspend = true;
1526 		hba->clk_scaling.is_suspended = true;
1527 	}
1528 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1529 
1530 	if (suspend)
1531 		__ufshcd_suspend_clkscaling(hba);
1532 }
1533 
1534 static void ufshcd_resume_clkscaling(struct ufs_hba *hba)
1535 {
1536 	unsigned long flags;
1537 	bool resume = false;
1538 
1539 	spin_lock_irqsave(hba->host->host_lock, flags);
1540 	if (hba->clk_scaling.is_suspended) {
1541 		resume = true;
1542 		hba->clk_scaling.is_suspended = false;
1543 	}
1544 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1545 
1546 	if (resume)
1547 		devfreq_resume_device(hba->devfreq);
1548 }
1549 
1550 static ssize_t ufshcd_clkscale_enable_show(struct device *dev,
1551 		struct device_attribute *attr, char *buf)
1552 {
1553 	struct ufs_hba *hba = dev_get_drvdata(dev);
1554 
1555 	return sysfs_emit(buf, "%d\n", hba->clk_scaling.is_enabled);
1556 }
1557 
1558 static ssize_t ufshcd_clkscale_enable_store(struct device *dev,
1559 		struct device_attribute *attr, const char *buf, size_t count)
1560 {
1561 	struct ufs_hba *hba = dev_get_drvdata(dev);
1562 	u32 value;
1563 	int err = 0;
1564 
1565 	if (kstrtou32(buf, 0, &value))
1566 		return -EINVAL;
1567 
1568 	down(&hba->host_sem);
1569 	if (!ufshcd_is_user_access_allowed(hba)) {
1570 		err = -EBUSY;
1571 		goto out;
1572 	}
1573 
1574 	value = !!value;
1575 	if (value == hba->clk_scaling.is_enabled)
1576 		goto out;
1577 
1578 	ufshcd_rpm_get_sync(hba);
1579 	ufshcd_hold(hba, false);
1580 
1581 	hba->clk_scaling.is_enabled = value;
1582 
1583 	if (value) {
1584 		ufshcd_resume_clkscaling(hba);
1585 	} else {
1586 		ufshcd_suspend_clkscaling(hba);
1587 		err = ufshcd_devfreq_scale(hba, true);
1588 		if (err)
1589 			dev_err(hba->dev, "%s: failed to scale clocks up %d\n",
1590 					__func__, err);
1591 	}
1592 
1593 	ufshcd_release(hba);
1594 	ufshcd_rpm_put_sync(hba);
1595 out:
1596 	up(&hba->host_sem);
1597 	return err ? err : count;
1598 }
1599 
1600 static void ufshcd_init_clk_scaling_sysfs(struct ufs_hba *hba)
1601 {
1602 	hba->clk_scaling.enable_attr.show = ufshcd_clkscale_enable_show;
1603 	hba->clk_scaling.enable_attr.store = ufshcd_clkscale_enable_store;
1604 	sysfs_attr_init(&hba->clk_scaling.enable_attr.attr);
1605 	hba->clk_scaling.enable_attr.attr.name = "clkscale_enable";
1606 	hba->clk_scaling.enable_attr.attr.mode = 0644;
1607 	if (device_create_file(hba->dev, &hba->clk_scaling.enable_attr))
1608 		dev_err(hba->dev, "Failed to create sysfs for clkscale_enable\n");
1609 }
1610 
1611 static void ufshcd_remove_clk_scaling_sysfs(struct ufs_hba *hba)
1612 {
1613 	if (hba->clk_scaling.enable_attr.attr.name)
1614 		device_remove_file(hba->dev, &hba->clk_scaling.enable_attr);
1615 }
1616 
1617 static void ufshcd_init_clk_scaling(struct ufs_hba *hba)
1618 {
1619 	char wq_name[sizeof("ufs_clkscaling_00")];
1620 
1621 	if (!ufshcd_is_clkscaling_supported(hba))
1622 		return;
1623 
1624 	if (!hba->clk_scaling.min_gear)
1625 		hba->clk_scaling.min_gear = UFS_HS_G1;
1626 
1627 	INIT_WORK(&hba->clk_scaling.suspend_work,
1628 		  ufshcd_clk_scaling_suspend_work);
1629 	INIT_WORK(&hba->clk_scaling.resume_work,
1630 		  ufshcd_clk_scaling_resume_work);
1631 
1632 	snprintf(wq_name, sizeof(wq_name), "ufs_clkscaling_%d",
1633 		 hba->host->host_no);
1634 	hba->clk_scaling.workq = create_singlethread_workqueue(wq_name);
1635 
1636 	hba->clk_scaling.is_initialized = true;
1637 }
1638 
1639 static void ufshcd_exit_clk_scaling(struct ufs_hba *hba)
1640 {
1641 	if (!hba->clk_scaling.is_initialized)
1642 		return;
1643 
1644 	ufshcd_remove_clk_scaling_sysfs(hba);
1645 	destroy_workqueue(hba->clk_scaling.workq);
1646 	ufshcd_devfreq_remove(hba);
1647 	hba->clk_scaling.is_initialized = false;
1648 }
1649 
1650 static void ufshcd_ungate_work(struct work_struct *work)
1651 {
1652 	int ret;
1653 	unsigned long flags;
1654 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1655 			clk_gating.ungate_work);
1656 
1657 	cancel_delayed_work_sync(&hba->clk_gating.gate_work);
1658 
1659 	spin_lock_irqsave(hba->host->host_lock, flags);
1660 	if (hba->clk_gating.state == CLKS_ON) {
1661 		spin_unlock_irqrestore(hba->host->host_lock, flags);
1662 		goto unblock_reqs;
1663 	}
1664 
1665 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1666 	ufshcd_hba_vreg_set_hpm(hba);
1667 	ufshcd_setup_clocks(hba, true);
1668 
1669 	ufshcd_enable_irq(hba);
1670 
1671 	/* Exit from hibern8 */
1672 	if (ufshcd_can_hibern8_during_gating(hba)) {
1673 		/* Prevent gating in this path */
1674 		hba->clk_gating.is_suspended = true;
1675 		if (ufshcd_is_link_hibern8(hba)) {
1676 			ret = ufshcd_uic_hibern8_exit(hba);
1677 			if (ret)
1678 				dev_err(hba->dev, "%s: hibern8 exit failed %d\n",
1679 					__func__, ret);
1680 			else
1681 				ufshcd_set_link_active(hba);
1682 		}
1683 		hba->clk_gating.is_suspended = false;
1684 	}
1685 unblock_reqs:
1686 	ufshcd_scsi_unblock_requests(hba);
1687 }
1688 
1689 /**
1690  * ufshcd_hold - Enable clocks that were gated earlier due to ufshcd_release.
1691  * Also, exit from hibern8 mode and set the link as active.
1692  * @hba: per adapter instance
1693  * @async: This indicates whether caller should ungate clocks asynchronously.
1694  */
1695 int ufshcd_hold(struct ufs_hba *hba, bool async)
1696 {
1697 	int rc = 0;
1698 	bool flush_result;
1699 	unsigned long flags;
1700 
1701 	if (!ufshcd_is_clkgating_allowed(hba) ||
1702 	    !hba->clk_gating.is_initialized)
1703 		goto out;
1704 	spin_lock_irqsave(hba->host->host_lock, flags);
1705 	hba->clk_gating.active_reqs++;
1706 
1707 start:
1708 	switch (hba->clk_gating.state) {
1709 	case CLKS_ON:
1710 		/*
1711 		 * Wait for the ungate work to complete if in progress.
1712 		 * Though the clocks may be in ON state, the link could
1713 		 * still be in hibner8 state if hibern8 is allowed
1714 		 * during clock gating.
1715 		 * Make sure we exit hibern8 state also in addition to
1716 		 * clocks being ON.
1717 		 */
1718 		if (ufshcd_can_hibern8_during_gating(hba) &&
1719 		    ufshcd_is_link_hibern8(hba)) {
1720 			if (async) {
1721 				rc = -EAGAIN;
1722 				hba->clk_gating.active_reqs--;
1723 				break;
1724 			}
1725 			spin_unlock_irqrestore(hba->host->host_lock, flags);
1726 			flush_result = flush_work(&hba->clk_gating.ungate_work);
1727 			if (hba->clk_gating.is_suspended && !flush_result)
1728 				goto out;
1729 			spin_lock_irqsave(hba->host->host_lock, flags);
1730 			goto start;
1731 		}
1732 		break;
1733 	case REQ_CLKS_OFF:
1734 		if (cancel_delayed_work(&hba->clk_gating.gate_work)) {
1735 			hba->clk_gating.state = CLKS_ON;
1736 			trace_ufshcd_clk_gating(dev_name(hba->dev),
1737 						hba->clk_gating.state);
1738 			break;
1739 		}
1740 		/*
1741 		 * If we are here, it means gating work is either done or
1742 		 * currently running. Hence, fall through to cancel gating
1743 		 * work and to enable clocks.
1744 		 */
1745 		fallthrough;
1746 	case CLKS_OFF:
1747 		hba->clk_gating.state = REQ_CLKS_ON;
1748 		trace_ufshcd_clk_gating(dev_name(hba->dev),
1749 					hba->clk_gating.state);
1750 		if (queue_work(hba->clk_gating.clk_gating_workq,
1751 			       &hba->clk_gating.ungate_work))
1752 			ufshcd_scsi_block_requests(hba);
1753 		/*
1754 		 * fall through to check if we should wait for this
1755 		 * work to be done or not.
1756 		 */
1757 		fallthrough;
1758 	case REQ_CLKS_ON:
1759 		if (async) {
1760 			rc = -EAGAIN;
1761 			hba->clk_gating.active_reqs--;
1762 			break;
1763 		}
1764 
1765 		spin_unlock_irqrestore(hba->host->host_lock, flags);
1766 		flush_work(&hba->clk_gating.ungate_work);
1767 		/* Make sure state is CLKS_ON before returning */
1768 		spin_lock_irqsave(hba->host->host_lock, flags);
1769 		goto start;
1770 	default:
1771 		dev_err(hba->dev, "%s: clk gating is in invalid state %d\n",
1772 				__func__, hba->clk_gating.state);
1773 		break;
1774 	}
1775 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1776 out:
1777 	return rc;
1778 }
1779 EXPORT_SYMBOL_GPL(ufshcd_hold);
1780 
1781 static void ufshcd_gate_work(struct work_struct *work)
1782 {
1783 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1784 			clk_gating.gate_work.work);
1785 	unsigned long flags;
1786 	int ret;
1787 
1788 	spin_lock_irqsave(hba->host->host_lock, flags);
1789 	/*
1790 	 * In case you are here to cancel this work the gating state
1791 	 * would be marked as REQ_CLKS_ON. In this case save time by
1792 	 * skipping the gating work and exit after changing the clock
1793 	 * state to CLKS_ON.
1794 	 */
1795 	if (hba->clk_gating.is_suspended ||
1796 		(hba->clk_gating.state != REQ_CLKS_OFF)) {
1797 		hba->clk_gating.state = CLKS_ON;
1798 		trace_ufshcd_clk_gating(dev_name(hba->dev),
1799 					hba->clk_gating.state);
1800 		goto rel_lock;
1801 	}
1802 
1803 	if (hba->clk_gating.active_reqs
1804 		|| hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL
1805 		|| hba->outstanding_reqs || hba->outstanding_tasks
1806 		|| hba->active_uic_cmd || hba->uic_async_done)
1807 		goto rel_lock;
1808 
1809 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1810 
1811 	/* put the link into hibern8 mode before turning off clocks */
1812 	if (ufshcd_can_hibern8_during_gating(hba)) {
1813 		ret = ufshcd_uic_hibern8_enter(hba);
1814 		if (ret) {
1815 			hba->clk_gating.state = CLKS_ON;
1816 			dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
1817 					__func__, ret);
1818 			trace_ufshcd_clk_gating(dev_name(hba->dev),
1819 						hba->clk_gating.state);
1820 			goto out;
1821 		}
1822 		ufshcd_set_link_hibern8(hba);
1823 	}
1824 
1825 	ufshcd_disable_irq(hba);
1826 
1827 	ufshcd_setup_clocks(hba, false);
1828 
1829 	/* Put the host controller in low power mode if possible */
1830 	ufshcd_hba_vreg_set_lpm(hba);
1831 	/*
1832 	 * In case you are here to cancel this work the gating state
1833 	 * would be marked as REQ_CLKS_ON. In this case keep the state
1834 	 * as REQ_CLKS_ON which would anyway imply that clocks are off
1835 	 * and a request to turn them on is pending. By doing this way,
1836 	 * we keep the state machine in tact and this would ultimately
1837 	 * prevent from doing cancel work multiple times when there are
1838 	 * new requests arriving before the current cancel work is done.
1839 	 */
1840 	spin_lock_irqsave(hba->host->host_lock, flags);
1841 	if (hba->clk_gating.state == REQ_CLKS_OFF) {
1842 		hba->clk_gating.state = CLKS_OFF;
1843 		trace_ufshcd_clk_gating(dev_name(hba->dev),
1844 					hba->clk_gating.state);
1845 	}
1846 rel_lock:
1847 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1848 out:
1849 	return;
1850 }
1851 
1852 /* host lock must be held before calling this variant */
1853 static void __ufshcd_release(struct ufs_hba *hba)
1854 {
1855 	if (!ufshcd_is_clkgating_allowed(hba))
1856 		return;
1857 
1858 	hba->clk_gating.active_reqs--;
1859 
1860 	if (hba->clk_gating.active_reqs || hba->clk_gating.is_suspended ||
1861 	    hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL ||
1862 	    hba->outstanding_tasks || !hba->clk_gating.is_initialized ||
1863 	    hba->active_uic_cmd || hba->uic_async_done ||
1864 	    hba->clk_gating.state == CLKS_OFF)
1865 		return;
1866 
1867 	hba->clk_gating.state = REQ_CLKS_OFF;
1868 	trace_ufshcd_clk_gating(dev_name(hba->dev), hba->clk_gating.state);
1869 	queue_delayed_work(hba->clk_gating.clk_gating_workq,
1870 			   &hba->clk_gating.gate_work,
1871 			   msecs_to_jiffies(hba->clk_gating.delay_ms));
1872 }
1873 
1874 void ufshcd_release(struct ufs_hba *hba)
1875 {
1876 	unsigned long flags;
1877 
1878 	spin_lock_irqsave(hba->host->host_lock, flags);
1879 	__ufshcd_release(hba);
1880 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1881 }
1882 EXPORT_SYMBOL_GPL(ufshcd_release);
1883 
1884 static ssize_t ufshcd_clkgate_delay_show(struct device *dev,
1885 		struct device_attribute *attr, char *buf)
1886 {
1887 	struct ufs_hba *hba = dev_get_drvdata(dev);
1888 
1889 	return sysfs_emit(buf, "%lu\n", hba->clk_gating.delay_ms);
1890 }
1891 
1892 void ufshcd_clkgate_delay_set(struct device *dev, unsigned long value)
1893 {
1894 	struct ufs_hba *hba = dev_get_drvdata(dev);
1895 	unsigned long flags;
1896 
1897 	spin_lock_irqsave(hba->host->host_lock, flags);
1898 	hba->clk_gating.delay_ms = value;
1899 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1900 }
1901 EXPORT_SYMBOL_GPL(ufshcd_clkgate_delay_set);
1902 
1903 static ssize_t ufshcd_clkgate_delay_store(struct device *dev,
1904 		struct device_attribute *attr, const char *buf, size_t count)
1905 {
1906 	unsigned long value;
1907 
1908 	if (kstrtoul(buf, 0, &value))
1909 		return -EINVAL;
1910 
1911 	ufshcd_clkgate_delay_set(dev, value);
1912 	return count;
1913 }
1914 
1915 static ssize_t ufshcd_clkgate_enable_show(struct device *dev,
1916 		struct device_attribute *attr, char *buf)
1917 {
1918 	struct ufs_hba *hba = dev_get_drvdata(dev);
1919 
1920 	return sysfs_emit(buf, "%d\n", hba->clk_gating.is_enabled);
1921 }
1922 
1923 static ssize_t ufshcd_clkgate_enable_store(struct device *dev,
1924 		struct device_attribute *attr, const char *buf, size_t count)
1925 {
1926 	struct ufs_hba *hba = dev_get_drvdata(dev);
1927 	unsigned long flags;
1928 	u32 value;
1929 
1930 	if (kstrtou32(buf, 0, &value))
1931 		return -EINVAL;
1932 
1933 	value = !!value;
1934 
1935 	spin_lock_irqsave(hba->host->host_lock, flags);
1936 	if (value == hba->clk_gating.is_enabled)
1937 		goto out;
1938 
1939 	if (value)
1940 		__ufshcd_release(hba);
1941 	else
1942 		hba->clk_gating.active_reqs++;
1943 
1944 	hba->clk_gating.is_enabled = value;
1945 out:
1946 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1947 	return count;
1948 }
1949 
1950 static void ufshcd_init_clk_gating_sysfs(struct ufs_hba *hba)
1951 {
1952 	hba->clk_gating.delay_attr.show = ufshcd_clkgate_delay_show;
1953 	hba->clk_gating.delay_attr.store = ufshcd_clkgate_delay_store;
1954 	sysfs_attr_init(&hba->clk_gating.delay_attr.attr);
1955 	hba->clk_gating.delay_attr.attr.name = "clkgate_delay_ms";
1956 	hba->clk_gating.delay_attr.attr.mode = 0644;
1957 	if (device_create_file(hba->dev, &hba->clk_gating.delay_attr))
1958 		dev_err(hba->dev, "Failed to create sysfs for clkgate_delay\n");
1959 
1960 	hba->clk_gating.enable_attr.show = ufshcd_clkgate_enable_show;
1961 	hba->clk_gating.enable_attr.store = ufshcd_clkgate_enable_store;
1962 	sysfs_attr_init(&hba->clk_gating.enable_attr.attr);
1963 	hba->clk_gating.enable_attr.attr.name = "clkgate_enable";
1964 	hba->clk_gating.enable_attr.attr.mode = 0644;
1965 	if (device_create_file(hba->dev, &hba->clk_gating.enable_attr))
1966 		dev_err(hba->dev, "Failed to create sysfs for clkgate_enable\n");
1967 }
1968 
1969 static void ufshcd_remove_clk_gating_sysfs(struct ufs_hba *hba)
1970 {
1971 	if (hba->clk_gating.delay_attr.attr.name)
1972 		device_remove_file(hba->dev, &hba->clk_gating.delay_attr);
1973 	if (hba->clk_gating.enable_attr.attr.name)
1974 		device_remove_file(hba->dev, &hba->clk_gating.enable_attr);
1975 }
1976 
1977 static void ufshcd_init_clk_gating(struct ufs_hba *hba)
1978 {
1979 	char wq_name[sizeof("ufs_clk_gating_00")];
1980 
1981 	if (!ufshcd_is_clkgating_allowed(hba))
1982 		return;
1983 
1984 	hba->clk_gating.state = CLKS_ON;
1985 
1986 	hba->clk_gating.delay_ms = 150;
1987 	INIT_DELAYED_WORK(&hba->clk_gating.gate_work, ufshcd_gate_work);
1988 	INIT_WORK(&hba->clk_gating.ungate_work, ufshcd_ungate_work);
1989 
1990 	snprintf(wq_name, ARRAY_SIZE(wq_name), "ufs_clk_gating_%d",
1991 		 hba->host->host_no);
1992 	hba->clk_gating.clk_gating_workq = alloc_ordered_workqueue(wq_name,
1993 					WQ_MEM_RECLAIM | WQ_HIGHPRI);
1994 
1995 	ufshcd_init_clk_gating_sysfs(hba);
1996 
1997 	hba->clk_gating.is_enabled = true;
1998 	hba->clk_gating.is_initialized = true;
1999 }
2000 
2001 static void ufshcd_exit_clk_gating(struct ufs_hba *hba)
2002 {
2003 	if (!hba->clk_gating.is_initialized)
2004 		return;
2005 
2006 	ufshcd_remove_clk_gating_sysfs(hba);
2007 
2008 	/* Ungate the clock if necessary. */
2009 	ufshcd_hold(hba, false);
2010 	hba->clk_gating.is_initialized = false;
2011 	ufshcd_release(hba);
2012 
2013 	destroy_workqueue(hba->clk_gating.clk_gating_workq);
2014 }
2015 
2016 /* Must be called with host lock acquired */
2017 static void ufshcd_clk_scaling_start_busy(struct ufs_hba *hba)
2018 {
2019 	bool queue_resume_work = false;
2020 	ktime_t curr_t = ktime_get();
2021 	unsigned long flags;
2022 
2023 	if (!ufshcd_is_clkscaling_supported(hba))
2024 		return;
2025 
2026 	spin_lock_irqsave(hba->host->host_lock, flags);
2027 	if (!hba->clk_scaling.active_reqs++)
2028 		queue_resume_work = true;
2029 
2030 	if (!hba->clk_scaling.is_enabled || hba->pm_op_in_progress) {
2031 		spin_unlock_irqrestore(hba->host->host_lock, flags);
2032 		return;
2033 	}
2034 
2035 	if (queue_resume_work)
2036 		queue_work(hba->clk_scaling.workq,
2037 			   &hba->clk_scaling.resume_work);
2038 
2039 	if (!hba->clk_scaling.window_start_t) {
2040 		hba->clk_scaling.window_start_t = curr_t;
2041 		hba->clk_scaling.tot_busy_t = 0;
2042 		hba->clk_scaling.is_busy_started = false;
2043 	}
2044 
2045 	if (!hba->clk_scaling.is_busy_started) {
2046 		hba->clk_scaling.busy_start_t = curr_t;
2047 		hba->clk_scaling.is_busy_started = true;
2048 	}
2049 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2050 }
2051 
2052 static void ufshcd_clk_scaling_update_busy(struct ufs_hba *hba)
2053 {
2054 	struct ufs_clk_scaling *scaling = &hba->clk_scaling;
2055 	unsigned long flags;
2056 
2057 	if (!ufshcd_is_clkscaling_supported(hba))
2058 		return;
2059 
2060 	spin_lock_irqsave(hba->host->host_lock, flags);
2061 	hba->clk_scaling.active_reqs--;
2062 	if (!hba->outstanding_reqs && scaling->is_busy_started) {
2063 		scaling->tot_busy_t += ktime_to_us(ktime_sub(ktime_get(),
2064 					scaling->busy_start_t));
2065 		scaling->busy_start_t = 0;
2066 		scaling->is_busy_started = false;
2067 	}
2068 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2069 }
2070 
2071 static inline int ufshcd_monitor_opcode2dir(u8 opcode)
2072 {
2073 	if (opcode == READ_6 || opcode == READ_10 || opcode == READ_16)
2074 		return READ;
2075 	else if (opcode == WRITE_6 || opcode == WRITE_10 || opcode == WRITE_16)
2076 		return WRITE;
2077 	else
2078 		return -EINVAL;
2079 }
2080 
2081 static inline bool ufshcd_should_inform_monitor(struct ufs_hba *hba,
2082 						struct ufshcd_lrb *lrbp)
2083 {
2084 	const struct ufs_hba_monitor *m = &hba->monitor;
2085 
2086 	return (m->enabled && lrbp && lrbp->cmd &&
2087 		(!m->chunk_size || m->chunk_size == lrbp->cmd->sdb.length) &&
2088 		ktime_before(hba->monitor.enabled_ts, lrbp->issue_time_stamp));
2089 }
2090 
2091 static void ufshcd_start_monitor(struct ufs_hba *hba,
2092 				 const struct ufshcd_lrb *lrbp)
2093 {
2094 	int dir = ufshcd_monitor_opcode2dir(*lrbp->cmd->cmnd);
2095 	unsigned long flags;
2096 
2097 	spin_lock_irqsave(hba->host->host_lock, flags);
2098 	if (dir >= 0 && hba->monitor.nr_queued[dir]++ == 0)
2099 		hba->monitor.busy_start_ts[dir] = ktime_get();
2100 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2101 }
2102 
2103 static void ufshcd_update_monitor(struct ufs_hba *hba, const struct ufshcd_lrb *lrbp)
2104 {
2105 	int dir = ufshcd_monitor_opcode2dir(*lrbp->cmd->cmnd);
2106 	unsigned long flags;
2107 
2108 	spin_lock_irqsave(hba->host->host_lock, flags);
2109 	if (dir >= 0 && hba->monitor.nr_queued[dir] > 0) {
2110 		const struct request *req = scsi_cmd_to_rq(lrbp->cmd);
2111 		struct ufs_hba_monitor *m = &hba->monitor;
2112 		ktime_t now, inc, lat;
2113 
2114 		now = lrbp->compl_time_stamp;
2115 		inc = ktime_sub(now, m->busy_start_ts[dir]);
2116 		m->total_busy[dir] = ktime_add(m->total_busy[dir], inc);
2117 		m->nr_sec_rw[dir] += blk_rq_sectors(req);
2118 
2119 		/* Update latencies */
2120 		m->nr_req[dir]++;
2121 		lat = ktime_sub(now, lrbp->issue_time_stamp);
2122 		m->lat_sum[dir] += lat;
2123 		if (m->lat_max[dir] < lat || !m->lat_max[dir])
2124 			m->lat_max[dir] = lat;
2125 		if (m->lat_min[dir] > lat || !m->lat_min[dir])
2126 			m->lat_min[dir] = lat;
2127 
2128 		m->nr_queued[dir]--;
2129 		/* Push forward the busy start of monitor */
2130 		m->busy_start_ts[dir] = now;
2131 	}
2132 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2133 }
2134 
2135 /**
2136  * ufshcd_send_command - Send SCSI or device management commands
2137  * @hba: per adapter instance
2138  * @task_tag: Task tag of the command
2139  */
2140 static inline
2141 void ufshcd_send_command(struct ufs_hba *hba, unsigned int task_tag)
2142 {
2143 	struct ufshcd_lrb *lrbp = &hba->lrb[task_tag];
2144 	unsigned long flags;
2145 
2146 	lrbp->issue_time_stamp = ktime_get();
2147 	lrbp->issue_time_stamp_local_clock = local_clock();
2148 	lrbp->compl_time_stamp = ktime_set(0, 0);
2149 	lrbp->compl_time_stamp_local_clock = 0;
2150 	ufshcd_add_command_trace(hba, task_tag, UFS_CMD_SEND);
2151 	ufshcd_clk_scaling_start_busy(hba);
2152 	if (unlikely(ufshcd_should_inform_monitor(hba, lrbp)))
2153 		ufshcd_start_monitor(hba, lrbp);
2154 
2155 	spin_lock_irqsave(&hba->outstanding_lock, flags);
2156 	if (hba->vops && hba->vops->setup_xfer_req)
2157 		hba->vops->setup_xfer_req(hba, task_tag, !!lrbp->cmd);
2158 	__set_bit(task_tag, &hba->outstanding_reqs);
2159 	ufshcd_writel(hba, 1 << task_tag, REG_UTP_TRANSFER_REQ_DOOR_BELL);
2160 	spin_unlock_irqrestore(&hba->outstanding_lock, flags);
2161 }
2162 
2163 /**
2164  * ufshcd_copy_sense_data - Copy sense data in case of check condition
2165  * @lrbp: pointer to local reference block
2166  */
2167 static inline void ufshcd_copy_sense_data(struct ufshcd_lrb *lrbp)
2168 {
2169 	u8 *const sense_buffer = lrbp->cmd->sense_buffer;
2170 	int len;
2171 
2172 	if (sense_buffer &&
2173 	    ufshcd_get_rsp_upiu_data_seg_len(lrbp->ucd_rsp_ptr)) {
2174 		int len_to_copy;
2175 
2176 		len = be16_to_cpu(lrbp->ucd_rsp_ptr->sr.sense_data_len);
2177 		len_to_copy = min_t(int, UFS_SENSE_SIZE, len);
2178 
2179 		memcpy(sense_buffer, lrbp->ucd_rsp_ptr->sr.sense_data,
2180 		       len_to_copy);
2181 	}
2182 }
2183 
2184 /**
2185  * ufshcd_copy_query_response() - Copy the Query Response and the data
2186  * descriptor
2187  * @hba: per adapter instance
2188  * @lrbp: pointer to local reference block
2189  */
2190 static
2191 int ufshcd_copy_query_response(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2192 {
2193 	struct ufs_query_res *query_res = &hba->dev_cmd.query.response;
2194 
2195 	memcpy(&query_res->upiu_res, &lrbp->ucd_rsp_ptr->qr, QUERY_OSF_SIZE);
2196 
2197 	/* Get the descriptor */
2198 	if (hba->dev_cmd.query.descriptor &&
2199 	    lrbp->ucd_rsp_ptr->qr.opcode == UPIU_QUERY_OPCODE_READ_DESC) {
2200 		u8 *descp = (u8 *)lrbp->ucd_rsp_ptr +
2201 				GENERAL_UPIU_REQUEST_SIZE;
2202 		u16 resp_len;
2203 		u16 buf_len;
2204 
2205 		/* data segment length */
2206 		resp_len = be32_to_cpu(lrbp->ucd_rsp_ptr->header.dword_2) &
2207 						MASK_QUERY_DATA_SEG_LEN;
2208 		buf_len = be16_to_cpu(
2209 				hba->dev_cmd.query.request.upiu_req.length);
2210 		if (likely(buf_len >= resp_len)) {
2211 			memcpy(hba->dev_cmd.query.descriptor, descp, resp_len);
2212 		} else {
2213 			dev_warn(hba->dev,
2214 				 "%s: rsp size %d is bigger than buffer size %d",
2215 				 __func__, resp_len, buf_len);
2216 			return -EINVAL;
2217 		}
2218 	}
2219 
2220 	return 0;
2221 }
2222 
2223 /**
2224  * ufshcd_hba_capabilities - Read controller capabilities
2225  * @hba: per adapter instance
2226  *
2227  * Return: 0 on success, negative on error.
2228  */
2229 static inline int ufshcd_hba_capabilities(struct ufs_hba *hba)
2230 {
2231 	int err;
2232 
2233 	hba->capabilities = ufshcd_readl(hba, REG_CONTROLLER_CAPABILITIES);
2234 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_64BIT_ADDRESS)
2235 		hba->capabilities &= ~MASK_64_ADDRESSING_SUPPORT;
2236 
2237 	/* nutrs and nutmrs are 0 based values */
2238 	hba->nutrs = (hba->capabilities & MASK_TRANSFER_REQUESTS_SLOTS) + 1;
2239 	hba->nutmrs =
2240 	((hba->capabilities & MASK_TASK_MANAGEMENT_REQUEST_SLOTS) >> 16) + 1;
2241 	hba->reserved_slot = hba->nutrs - 1;
2242 
2243 	/* Read crypto capabilities */
2244 	err = ufshcd_hba_init_crypto_capabilities(hba);
2245 	if (err)
2246 		dev_err(hba->dev, "crypto setup failed\n");
2247 
2248 	return err;
2249 }
2250 
2251 /**
2252  * ufshcd_ready_for_uic_cmd - Check if controller is ready
2253  *                            to accept UIC commands
2254  * @hba: per adapter instance
2255  * Return true on success, else false
2256  */
2257 static inline bool ufshcd_ready_for_uic_cmd(struct ufs_hba *hba)
2258 {
2259 	return ufshcd_readl(hba, REG_CONTROLLER_STATUS) & UIC_COMMAND_READY;
2260 }
2261 
2262 /**
2263  * ufshcd_get_upmcrs - Get the power mode change request status
2264  * @hba: Pointer to adapter instance
2265  *
2266  * This function gets the UPMCRS field of HCS register
2267  * Returns value of UPMCRS field
2268  */
2269 static inline u8 ufshcd_get_upmcrs(struct ufs_hba *hba)
2270 {
2271 	return (ufshcd_readl(hba, REG_CONTROLLER_STATUS) >> 8) & 0x7;
2272 }
2273 
2274 /**
2275  * ufshcd_dispatch_uic_cmd - Dispatch an UIC command to the Unipro layer
2276  * @hba: per adapter instance
2277  * @uic_cmd: UIC command
2278  */
2279 static inline void
2280 ufshcd_dispatch_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2281 {
2282 	lockdep_assert_held(&hba->uic_cmd_mutex);
2283 
2284 	WARN_ON(hba->active_uic_cmd);
2285 
2286 	hba->active_uic_cmd = uic_cmd;
2287 
2288 	/* Write Args */
2289 	ufshcd_writel(hba, uic_cmd->argument1, REG_UIC_COMMAND_ARG_1);
2290 	ufshcd_writel(hba, uic_cmd->argument2, REG_UIC_COMMAND_ARG_2);
2291 	ufshcd_writel(hba, uic_cmd->argument3, REG_UIC_COMMAND_ARG_3);
2292 
2293 	ufshcd_add_uic_command_trace(hba, uic_cmd, UFS_CMD_SEND);
2294 
2295 	/* Write UIC Cmd */
2296 	ufshcd_writel(hba, uic_cmd->command & COMMAND_OPCODE_MASK,
2297 		      REG_UIC_COMMAND);
2298 }
2299 
2300 /**
2301  * ufshcd_wait_for_uic_cmd - Wait for completion of an UIC command
2302  * @hba: per adapter instance
2303  * @uic_cmd: UIC command
2304  *
2305  * Returns 0 only if success.
2306  */
2307 static int
2308 ufshcd_wait_for_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2309 {
2310 	int ret;
2311 	unsigned long flags;
2312 
2313 	lockdep_assert_held(&hba->uic_cmd_mutex);
2314 
2315 	if (wait_for_completion_timeout(&uic_cmd->done,
2316 					msecs_to_jiffies(UIC_CMD_TIMEOUT))) {
2317 		ret = uic_cmd->argument2 & MASK_UIC_COMMAND_RESULT;
2318 	} else {
2319 		ret = -ETIMEDOUT;
2320 		dev_err(hba->dev,
2321 			"uic cmd 0x%x with arg3 0x%x completion timeout\n",
2322 			uic_cmd->command, uic_cmd->argument3);
2323 
2324 		if (!uic_cmd->cmd_active) {
2325 			dev_err(hba->dev, "%s: UIC cmd has been completed, return the result\n",
2326 				__func__);
2327 			ret = uic_cmd->argument2 & MASK_UIC_COMMAND_RESULT;
2328 		}
2329 	}
2330 
2331 	spin_lock_irqsave(hba->host->host_lock, flags);
2332 	hba->active_uic_cmd = NULL;
2333 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2334 
2335 	return ret;
2336 }
2337 
2338 /**
2339  * __ufshcd_send_uic_cmd - Send UIC commands and retrieve the result
2340  * @hba: per adapter instance
2341  * @uic_cmd: UIC command
2342  * @completion: initialize the completion only if this is set to true
2343  *
2344  * Returns 0 only if success.
2345  */
2346 static int
2347 __ufshcd_send_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd,
2348 		      bool completion)
2349 {
2350 	lockdep_assert_held(&hba->uic_cmd_mutex);
2351 	lockdep_assert_held(hba->host->host_lock);
2352 
2353 	if (!ufshcd_ready_for_uic_cmd(hba)) {
2354 		dev_err(hba->dev,
2355 			"Controller not ready to accept UIC commands\n");
2356 		return -EIO;
2357 	}
2358 
2359 	if (completion)
2360 		init_completion(&uic_cmd->done);
2361 
2362 	uic_cmd->cmd_active = 1;
2363 	ufshcd_dispatch_uic_cmd(hba, uic_cmd);
2364 
2365 	return 0;
2366 }
2367 
2368 /**
2369  * ufshcd_send_uic_cmd - Send UIC commands and retrieve the result
2370  * @hba: per adapter instance
2371  * @uic_cmd: UIC command
2372  *
2373  * Returns 0 only if success.
2374  */
2375 int ufshcd_send_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2376 {
2377 	int ret;
2378 	unsigned long flags;
2379 
2380 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_UIC_CMD)
2381 		return 0;
2382 
2383 	ufshcd_hold(hba, false);
2384 	mutex_lock(&hba->uic_cmd_mutex);
2385 	ufshcd_add_delay_before_dme_cmd(hba);
2386 
2387 	spin_lock_irqsave(hba->host->host_lock, flags);
2388 	ret = __ufshcd_send_uic_cmd(hba, uic_cmd, true);
2389 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2390 	if (!ret)
2391 		ret = ufshcd_wait_for_uic_cmd(hba, uic_cmd);
2392 
2393 	mutex_unlock(&hba->uic_cmd_mutex);
2394 
2395 	ufshcd_release(hba);
2396 	return ret;
2397 }
2398 
2399 /**
2400  * ufshcd_map_sg - Map scatter-gather list to prdt
2401  * @hba: per adapter instance
2402  * @lrbp: pointer to local reference block
2403  *
2404  * Returns 0 in case of success, non-zero value in case of failure
2405  */
2406 static int ufshcd_map_sg(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2407 {
2408 	struct ufshcd_sg_entry *prd_table;
2409 	struct scatterlist *sg;
2410 	struct scsi_cmnd *cmd;
2411 	int sg_segments;
2412 	int i;
2413 
2414 	cmd = lrbp->cmd;
2415 	sg_segments = scsi_dma_map(cmd);
2416 	if (sg_segments < 0)
2417 		return sg_segments;
2418 
2419 	if (sg_segments) {
2420 
2421 		if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN)
2422 			lrbp->utr_descriptor_ptr->prd_table_length =
2423 				cpu_to_le16((sg_segments *
2424 					sizeof(struct ufshcd_sg_entry)));
2425 		else
2426 			lrbp->utr_descriptor_ptr->prd_table_length =
2427 				cpu_to_le16(sg_segments);
2428 
2429 		prd_table = lrbp->ucd_prdt_ptr;
2430 
2431 		scsi_for_each_sg(cmd, sg, sg_segments, i) {
2432 			const unsigned int len = sg_dma_len(sg);
2433 
2434 			/*
2435 			 * From the UFSHCI spec: "Data Byte Count (DBC): A '0'
2436 			 * based value that indicates the length, in bytes, of
2437 			 * the data block. A maximum of length of 256KB may
2438 			 * exist for any entry. Bits 1:0 of this field shall be
2439 			 * 11b to indicate Dword granularity. A value of '3'
2440 			 * indicates 4 bytes, '7' indicates 8 bytes, etc."
2441 			 */
2442 			WARN_ONCE(len > 256 * 1024, "len = %#x\n", len);
2443 			prd_table[i].size = cpu_to_le32(len - 1);
2444 			prd_table[i].addr = cpu_to_le64(sg->dma_address);
2445 			prd_table[i].reserved = 0;
2446 		}
2447 	} else {
2448 		lrbp->utr_descriptor_ptr->prd_table_length = 0;
2449 	}
2450 
2451 	return 0;
2452 }
2453 
2454 /**
2455  * ufshcd_enable_intr - enable interrupts
2456  * @hba: per adapter instance
2457  * @intrs: interrupt bits
2458  */
2459 static void ufshcd_enable_intr(struct ufs_hba *hba, u32 intrs)
2460 {
2461 	u32 set = ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
2462 
2463 	if (hba->ufs_version == ufshci_version(1, 0)) {
2464 		u32 rw;
2465 		rw = set & INTERRUPT_MASK_RW_VER_10;
2466 		set = rw | ((set ^ intrs) & intrs);
2467 	} else {
2468 		set |= intrs;
2469 	}
2470 
2471 	ufshcd_writel(hba, set, REG_INTERRUPT_ENABLE);
2472 }
2473 
2474 /**
2475  * ufshcd_disable_intr - disable interrupts
2476  * @hba: per adapter instance
2477  * @intrs: interrupt bits
2478  */
2479 static void ufshcd_disable_intr(struct ufs_hba *hba, u32 intrs)
2480 {
2481 	u32 set = ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
2482 
2483 	if (hba->ufs_version == ufshci_version(1, 0)) {
2484 		u32 rw;
2485 		rw = (set & INTERRUPT_MASK_RW_VER_10) &
2486 			~(intrs & INTERRUPT_MASK_RW_VER_10);
2487 		set = rw | ((set & intrs) & ~INTERRUPT_MASK_RW_VER_10);
2488 
2489 	} else {
2490 		set &= ~intrs;
2491 	}
2492 
2493 	ufshcd_writel(hba, set, REG_INTERRUPT_ENABLE);
2494 }
2495 
2496 /**
2497  * ufshcd_prepare_req_desc_hdr() - Fills the requests header
2498  * descriptor according to request
2499  * @lrbp: pointer to local reference block
2500  * @upiu_flags: flags required in the header
2501  * @cmd_dir: requests data direction
2502  */
2503 static void ufshcd_prepare_req_desc_hdr(struct ufshcd_lrb *lrbp,
2504 			u8 *upiu_flags, enum dma_data_direction cmd_dir)
2505 {
2506 	struct utp_transfer_req_desc *req_desc = lrbp->utr_descriptor_ptr;
2507 	u32 data_direction;
2508 	u32 dword_0;
2509 	u32 dword_1 = 0;
2510 	u32 dword_3 = 0;
2511 
2512 	if (cmd_dir == DMA_FROM_DEVICE) {
2513 		data_direction = UTP_DEVICE_TO_HOST;
2514 		*upiu_flags = UPIU_CMD_FLAGS_READ;
2515 	} else if (cmd_dir == DMA_TO_DEVICE) {
2516 		data_direction = UTP_HOST_TO_DEVICE;
2517 		*upiu_flags = UPIU_CMD_FLAGS_WRITE;
2518 	} else {
2519 		data_direction = UTP_NO_DATA_TRANSFER;
2520 		*upiu_flags = UPIU_CMD_FLAGS_NONE;
2521 	}
2522 
2523 	dword_0 = data_direction | (lrbp->command_type
2524 				<< UPIU_COMMAND_TYPE_OFFSET);
2525 	if (lrbp->intr_cmd)
2526 		dword_0 |= UTP_REQ_DESC_INT_CMD;
2527 
2528 	/* Prepare crypto related dwords */
2529 	ufshcd_prepare_req_desc_hdr_crypto(lrbp, &dword_0, &dword_1, &dword_3);
2530 
2531 	/* Transfer request descriptor header fields */
2532 	req_desc->header.dword_0 = cpu_to_le32(dword_0);
2533 	req_desc->header.dword_1 = cpu_to_le32(dword_1);
2534 	/*
2535 	 * assigning invalid value for command status. Controller
2536 	 * updates OCS on command completion, with the command
2537 	 * status
2538 	 */
2539 	req_desc->header.dword_2 =
2540 		cpu_to_le32(OCS_INVALID_COMMAND_STATUS);
2541 	req_desc->header.dword_3 = cpu_to_le32(dword_3);
2542 
2543 	req_desc->prd_table_length = 0;
2544 }
2545 
2546 /**
2547  * ufshcd_prepare_utp_scsi_cmd_upiu() - fills the utp_transfer_req_desc,
2548  * for scsi commands
2549  * @lrbp: local reference block pointer
2550  * @upiu_flags: flags
2551  */
2552 static
2553 void ufshcd_prepare_utp_scsi_cmd_upiu(struct ufshcd_lrb *lrbp, u8 upiu_flags)
2554 {
2555 	struct scsi_cmnd *cmd = lrbp->cmd;
2556 	struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2557 	unsigned short cdb_len;
2558 
2559 	/* command descriptor fields */
2560 	ucd_req_ptr->header.dword_0 = UPIU_HEADER_DWORD(
2561 				UPIU_TRANSACTION_COMMAND, upiu_flags,
2562 				lrbp->lun, lrbp->task_tag);
2563 	ucd_req_ptr->header.dword_1 = UPIU_HEADER_DWORD(
2564 				UPIU_COMMAND_SET_TYPE_SCSI, 0, 0, 0);
2565 
2566 	/* Total EHS length and Data segment length will be zero */
2567 	ucd_req_ptr->header.dword_2 = 0;
2568 
2569 	ucd_req_ptr->sc.exp_data_transfer_len = cpu_to_be32(cmd->sdb.length);
2570 
2571 	cdb_len = min_t(unsigned short, cmd->cmd_len, UFS_CDB_SIZE);
2572 	memset(ucd_req_ptr->sc.cdb, 0, UFS_CDB_SIZE);
2573 	memcpy(ucd_req_ptr->sc.cdb, cmd->cmnd, cdb_len);
2574 
2575 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2576 }
2577 
2578 /**
2579  * ufshcd_prepare_utp_query_req_upiu() - fills the utp_transfer_req_desc,
2580  * for query requsts
2581  * @hba: UFS hba
2582  * @lrbp: local reference block pointer
2583  * @upiu_flags: flags
2584  */
2585 static void ufshcd_prepare_utp_query_req_upiu(struct ufs_hba *hba,
2586 				struct ufshcd_lrb *lrbp, u8 upiu_flags)
2587 {
2588 	struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2589 	struct ufs_query *query = &hba->dev_cmd.query;
2590 	u16 len = be16_to_cpu(query->request.upiu_req.length);
2591 
2592 	/* Query request header */
2593 	ucd_req_ptr->header.dword_0 = UPIU_HEADER_DWORD(
2594 			UPIU_TRANSACTION_QUERY_REQ, upiu_flags,
2595 			lrbp->lun, lrbp->task_tag);
2596 	ucd_req_ptr->header.dword_1 = UPIU_HEADER_DWORD(
2597 			0, query->request.query_func, 0, 0);
2598 
2599 	/* Data segment length only need for WRITE_DESC */
2600 	if (query->request.upiu_req.opcode == UPIU_QUERY_OPCODE_WRITE_DESC)
2601 		ucd_req_ptr->header.dword_2 =
2602 			UPIU_HEADER_DWORD(0, 0, (len >> 8), (u8)len);
2603 	else
2604 		ucd_req_ptr->header.dword_2 = 0;
2605 
2606 	/* Copy the Query Request buffer as is */
2607 	memcpy(&ucd_req_ptr->qr, &query->request.upiu_req,
2608 			QUERY_OSF_SIZE);
2609 
2610 	/* Copy the Descriptor */
2611 	if (query->request.upiu_req.opcode == UPIU_QUERY_OPCODE_WRITE_DESC)
2612 		memcpy(ucd_req_ptr + 1, query->descriptor, len);
2613 
2614 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2615 }
2616 
2617 static inline void ufshcd_prepare_utp_nop_upiu(struct ufshcd_lrb *lrbp)
2618 {
2619 	struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2620 
2621 	memset(ucd_req_ptr, 0, sizeof(struct utp_upiu_req));
2622 
2623 	/* command descriptor fields */
2624 	ucd_req_ptr->header.dword_0 =
2625 		UPIU_HEADER_DWORD(
2626 			UPIU_TRANSACTION_NOP_OUT, 0, 0, lrbp->task_tag);
2627 	/* clear rest of the fields of basic header */
2628 	ucd_req_ptr->header.dword_1 = 0;
2629 	ucd_req_ptr->header.dword_2 = 0;
2630 
2631 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2632 }
2633 
2634 /**
2635  * ufshcd_compose_devman_upiu - UFS Protocol Information Unit(UPIU)
2636  *			     for Device Management Purposes
2637  * @hba: per adapter instance
2638  * @lrbp: pointer to local reference block
2639  */
2640 static int ufshcd_compose_devman_upiu(struct ufs_hba *hba,
2641 				      struct ufshcd_lrb *lrbp)
2642 {
2643 	u8 upiu_flags;
2644 	int ret = 0;
2645 
2646 	if (hba->ufs_version <= ufshci_version(1, 1))
2647 		lrbp->command_type = UTP_CMD_TYPE_DEV_MANAGE;
2648 	else
2649 		lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
2650 
2651 	ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, DMA_NONE);
2652 	if (hba->dev_cmd.type == DEV_CMD_TYPE_QUERY)
2653 		ufshcd_prepare_utp_query_req_upiu(hba, lrbp, upiu_flags);
2654 	else if (hba->dev_cmd.type == DEV_CMD_TYPE_NOP)
2655 		ufshcd_prepare_utp_nop_upiu(lrbp);
2656 	else
2657 		ret = -EINVAL;
2658 
2659 	return ret;
2660 }
2661 
2662 /**
2663  * ufshcd_comp_scsi_upiu - UFS Protocol Information Unit(UPIU)
2664  *			   for SCSI Purposes
2665  * @hba: per adapter instance
2666  * @lrbp: pointer to local reference block
2667  */
2668 static int ufshcd_comp_scsi_upiu(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2669 {
2670 	u8 upiu_flags;
2671 	int ret = 0;
2672 
2673 	if (hba->ufs_version <= ufshci_version(1, 1))
2674 		lrbp->command_type = UTP_CMD_TYPE_SCSI;
2675 	else
2676 		lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
2677 
2678 	if (likely(lrbp->cmd)) {
2679 		ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags,
2680 						lrbp->cmd->sc_data_direction);
2681 		ufshcd_prepare_utp_scsi_cmd_upiu(lrbp, upiu_flags);
2682 	} else {
2683 		ret = -EINVAL;
2684 	}
2685 
2686 	return ret;
2687 }
2688 
2689 /**
2690  * ufshcd_upiu_wlun_to_scsi_wlun - maps UPIU W-LUN id to SCSI W-LUN ID
2691  * @upiu_wlun_id: UPIU W-LUN id
2692  *
2693  * Returns SCSI W-LUN id
2694  */
2695 static inline u16 ufshcd_upiu_wlun_to_scsi_wlun(u8 upiu_wlun_id)
2696 {
2697 	return (upiu_wlun_id & ~UFS_UPIU_WLUN_ID) | SCSI_W_LUN_BASE;
2698 }
2699 
2700 static inline bool is_device_wlun(struct scsi_device *sdev)
2701 {
2702 	return sdev->lun ==
2703 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_UFS_DEVICE_WLUN);
2704 }
2705 
2706 /*
2707  * Associate the UFS controller queue with the default and poll HCTX types.
2708  * Initialize the mq_map[] arrays.
2709  */
2710 static void ufshcd_map_queues(struct Scsi_Host *shost)
2711 {
2712 	int i;
2713 
2714 	for (i = 0; i < shost->nr_maps; i++) {
2715 		struct blk_mq_queue_map *map = &shost->tag_set.map[i];
2716 
2717 		switch (i) {
2718 		case HCTX_TYPE_DEFAULT:
2719 		case HCTX_TYPE_POLL:
2720 			map->nr_queues = 1;
2721 			break;
2722 		case HCTX_TYPE_READ:
2723 			map->nr_queues = 0;
2724 			continue;
2725 		default:
2726 			WARN_ON_ONCE(true);
2727 		}
2728 		map->queue_offset = 0;
2729 		blk_mq_map_queues(map);
2730 	}
2731 }
2732 
2733 static void ufshcd_init_lrb(struct ufs_hba *hba, struct ufshcd_lrb *lrb, int i)
2734 {
2735 	struct utp_transfer_cmd_desc *cmd_descp = hba->ucdl_base_addr;
2736 	struct utp_transfer_req_desc *utrdlp = hba->utrdl_base_addr;
2737 	dma_addr_t cmd_desc_element_addr = hba->ucdl_dma_addr +
2738 		i * sizeof(struct utp_transfer_cmd_desc);
2739 	u16 response_offset = offsetof(struct utp_transfer_cmd_desc,
2740 				       response_upiu);
2741 	u16 prdt_offset = offsetof(struct utp_transfer_cmd_desc, prd_table);
2742 
2743 	lrb->utr_descriptor_ptr = utrdlp + i;
2744 	lrb->utrd_dma_addr = hba->utrdl_dma_addr +
2745 		i * sizeof(struct utp_transfer_req_desc);
2746 	lrb->ucd_req_ptr = (struct utp_upiu_req *)(cmd_descp + i);
2747 	lrb->ucd_req_dma_addr = cmd_desc_element_addr;
2748 	lrb->ucd_rsp_ptr = (struct utp_upiu_rsp *)cmd_descp[i].response_upiu;
2749 	lrb->ucd_rsp_dma_addr = cmd_desc_element_addr + response_offset;
2750 	lrb->ucd_prdt_ptr = cmd_descp[i].prd_table;
2751 	lrb->ucd_prdt_dma_addr = cmd_desc_element_addr + prdt_offset;
2752 }
2753 
2754 /**
2755  * ufshcd_queuecommand - main entry point for SCSI requests
2756  * @host: SCSI host pointer
2757  * @cmd: command from SCSI Midlayer
2758  *
2759  * Returns 0 for success, non-zero in case of failure
2760  */
2761 static int ufshcd_queuecommand(struct Scsi_Host *host, struct scsi_cmnd *cmd)
2762 {
2763 	struct ufs_hba *hba = shost_priv(host);
2764 	int tag = scsi_cmd_to_rq(cmd)->tag;
2765 	struct ufshcd_lrb *lrbp;
2766 	int err = 0;
2767 
2768 	WARN_ONCE(tag < 0 || tag >= hba->nutrs, "Invalid tag %d\n", tag);
2769 
2770 	/*
2771 	 * Allows the UFS error handler to wait for prior ufshcd_queuecommand()
2772 	 * calls.
2773 	 */
2774 	rcu_read_lock();
2775 
2776 	switch (hba->ufshcd_state) {
2777 	case UFSHCD_STATE_OPERATIONAL:
2778 		break;
2779 	case UFSHCD_STATE_EH_SCHEDULED_NON_FATAL:
2780 		/*
2781 		 * SCSI error handler can call ->queuecommand() while UFS error
2782 		 * handler is in progress. Error interrupts could change the
2783 		 * state from UFSHCD_STATE_RESET to
2784 		 * UFSHCD_STATE_EH_SCHEDULED_NON_FATAL. Prevent requests
2785 		 * being issued in that case.
2786 		 */
2787 		if (ufshcd_eh_in_progress(hba)) {
2788 			err = SCSI_MLQUEUE_HOST_BUSY;
2789 			goto out;
2790 		}
2791 		break;
2792 	case UFSHCD_STATE_EH_SCHEDULED_FATAL:
2793 		/*
2794 		 * pm_runtime_get_sync() is used at error handling preparation
2795 		 * stage. If a scsi cmd, e.g. the SSU cmd, is sent from hba's
2796 		 * PM ops, it can never be finished if we let SCSI layer keep
2797 		 * retrying it, which gets err handler stuck forever. Neither
2798 		 * can we let the scsi cmd pass through, because UFS is in bad
2799 		 * state, the scsi cmd may eventually time out, which will get
2800 		 * err handler blocked for too long. So, just fail the scsi cmd
2801 		 * sent from PM ops, err handler can recover PM error anyways.
2802 		 */
2803 		if (hba->pm_op_in_progress) {
2804 			hba->force_reset = true;
2805 			set_host_byte(cmd, DID_BAD_TARGET);
2806 			scsi_done(cmd);
2807 			goto out;
2808 		}
2809 		fallthrough;
2810 	case UFSHCD_STATE_RESET:
2811 		err = SCSI_MLQUEUE_HOST_BUSY;
2812 		goto out;
2813 	case UFSHCD_STATE_ERROR:
2814 		set_host_byte(cmd, DID_ERROR);
2815 		scsi_done(cmd);
2816 		goto out;
2817 	}
2818 
2819 	hba->req_abort_count = 0;
2820 
2821 	err = ufshcd_hold(hba, true);
2822 	if (err) {
2823 		err = SCSI_MLQUEUE_HOST_BUSY;
2824 		goto out;
2825 	}
2826 	WARN_ON(ufshcd_is_clkgating_allowed(hba) &&
2827 		(hba->clk_gating.state != CLKS_ON));
2828 
2829 	lrbp = &hba->lrb[tag];
2830 	WARN_ON(lrbp->cmd);
2831 	lrbp->cmd = cmd;
2832 	lrbp->task_tag = tag;
2833 	lrbp->lun = ufshcd_scsi_to_upiu_lun(cmd->device->lun);
2834 	lrbp->intr_cmd = !ufshcd_is_intr_aggr_allowed(hba);
2835 
2836 	ufshcd_prepare_lrbp_crypto(scsi_cmd_to_rq(cmd), lrbp);
2837 
2838 	lrbp->req_abort_skip = false;
2839 
2840 	ufshpb_prep(hba, lrbp);
2841 
2842 	ufshcd_comp_scsi_upiu(hba, lrbp);
2843 
2844 	err = ufshcd_map_sg(hba, lrbp);
2845 	if (err) {
2846 		lrbp->cmd = NULL;
2847 		ufshcd_release(hba);
2848 		goto out;
2849 	}
2850 
2851 	ufshcd_send_command(hba, tag);
2852 
2853 out:
2854 	rcu_read_unlock();
2855 
2856 	if (ufs_trigger_eh()) {
2857 		unsigned long flags;
2858 
2859 		spin_lock_irqsave(hba->host->host_lock, flags);
2860 		ufshcd_schedule_eh_work(hba);
2861 		spin_unlock_irqrestore(hba->host->host_lock, flags);
2862 	}
2863 
2864 	return err;
2865 }
2866 
2867 static int ufshcd_compose_dev_cmd(struct ufs_hba *hba,
2868 		struct ufshcd_lrb *lrbp, enum dev_cmd_type cmd_type, int tag)
2869 {
2870 	lrbp->cmd = NULL;
2871 	lrbp->task_tag = tag;
2872 	lrbp->lun = 0; /* device management cmd is not specific to any LUN */
2873 	lrbp->intr_cmd = true; /* No interrupt aggregation */
2874 	ufshcd_prepare_lrbp_crypto(NULL, lrbp);
2875 	hba->dev_cmd.type = cmd_type;
2876 
2877 	return ufshcd_compose_devman_upiu(hba, lrbp);
2878 }
2879 
2880 /*
2881  * Clear all the requests from the controller for which a bit has been set in
2882  * @mask and wait until the controller confirms that these requests have been
2883  * cleared.
2884  */
2885 static int ufshcd_clear_cmds(struct ufs_hba *hba, u32 mask)
2886 {
2887 	unsigned long flags;
2888 
2889 	/* clear outstanding transaction before retry */
2890 	spin_lock_irqsave(hba->host->host_lock, flags);
2891 	ufshcd_utrl_clear(hba, mask);
2892 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2893 
2894 	/*
2895 	 * wait for h/w to clear corresponding bit in door-bell.
2896 	 * max. wait is 1 sec.
2897 	 */
2898 	return ufshcd_wait_for_register(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL,
2899 					mask, ~mask, 1000, 1000);
2900 }
2901 
2902 static int
2903 ufshcd_check_query_response(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2904 {
2905 	struct ufs_query_res *query_res = &hba->dev_cmd.query.response;
2906 
2907 	/* Get the UPIU response */
2908 	query_res->response = ufshcd_get_rsp_upiu_result(lrbp->ucd_rsp_ptr) >>
2909 				UPIU_RSP_CODE_OFFSET;
2910 	return query_res->response;
2911 }
2912 
2913 /**
2914  * ufshcd_dev_cmd_completion() - handles device management command responses
2915  * @hba: per adapter instance
2916  * @lrbp: pointer to local reference block
2917  */
2918 static int
2919 ufshcd_dev_cmd_completion(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2920 {
2921 	int resp;
2922 	int err = 0;
2923 
2924 	hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
2925 	resp = ufshcd_get_req_rsp(lrbp->ucd_rsp_ptr);
2926 
2927 	switch (resp) {
2928 	case UPIU_TRANSACTION_NOP_IN:
2929 		if (hba->dev_cmd.type != DEV_CMD_TYPE_NOP) {
2930 			err = -EINVAL;
2931 			dev_err(hba->dev, "%s: unexpected response %x\n",
2932 					__func__, resp);
2933 		}
2934 		break;
2935 	case UPIU_TRANSACTION_QUERY_RSP:
2936 		err = ufshcd_check_query_response(hba, lrbp);
2937 		if (!err)
2938 			err = ufshcd_copy_query_response(hba, lrbp);
2939 		break;
2940 	case UPIU_TRANSACTION_REJECT_UPIU:
2941 		/* TODO: handle Reject UPIU Response */
2942 		err = -EPERM;
2943 		dev_err(hba->dev, "%s: Reject UPIU not fully implemented\n",
2944 				__func__);
2945 		break;
2946 	default:
2947 		err = -EINVAL;
2948 		dev_err(hba->dev, "%s: Invalid device management cmd response: %x\n",
2949 				__func__, resp);
2950 		break;
2951 	}
2952 
2953 	return err;
2954 }
2955 
2956 static int ufshcd_wait_for_dev_cmd(struct ufs_hba *hba,
2957 		struct ufshcd_lrb *lrbp, int max_timeout)
2958 {
2959 	unsigned long time_left = msecs_to_jiffies(max_timeout);
2960 	unsigned long flags;
2961 	bool pending;
2962 	int err;
2963 
2964 retry:
2965 	time_left = wait_for_completion_timeout(hba->dev_cmd.complete,
2966 						time_left);
2967 
2968 	if (likely(time_left)) {
2969 		/*
2970 		 * The completion handler called complete() and the caller of
2971 		 * this function still owns the @lrbp tag so the code below does
2972 		 * not trigger any race conditions.
2973 		 */
2974 		hba->dev_cmd.complete = NULL;
2975 		err = ufshcd_get_tr_ocs(lrbp);
2976 		if (!err)
2977 			err = ufshcd_dev_cmd_completion(hba, lrbp);
2978 	} else {
2979 		err = -ETIMEDOUT;
2980 		dev_dbg(hba->dev, "%s: dev_cmd request timedout, tag %d\n",
2981 			__func__, lrbp->task_tag);
2982 		if (ufshcd_clear_cmds(hba, 1U << lrbp->task_tag) == 0) {
2983 			/* successfully cleared the command, retry if needed */
2984 			err = -EAGAIN;
2985 			/*
2986 			 * Since clearing the command succeeded we also need to
2987 			 * clear the task tag bit from the outstanding_reqs
2988 			 * variable.
2989 			 */
2990 			spin_lock_irqsave(&hba->outstanding_lock, flags);
2991 			pending = test_bit(lrbp->task_tag,
2992 					   &hba->outstanding_reqs);
2993 			if (pending) {
2994 				hba->dev_cmd.complete = NULL;
2995 				__clear_bit(lrbp->task_tag,
2996 					    &hba->outstanding_reqs);
2997 			}
2998 			spin_unlock_irqrestore(&hba->outstanding_lock, flags);
2999 
3000 			if (!pending) {
3001 				/*
3002 				 * The completion handler ran while we tried to
3003 				 * clear the command.
3004 				 */
3005 				time_left = 1;
3006 				goto retry;
3007 			}
3008 		} else {
3009 			dev_err(hba->dev, "%s: failed to clear tag %d\n",
3010 				__func__, lrbp->task_tag);
3011 		}
3012 	}
3013 
3014 	return err;
3015 }
3016 
3017 /**
3018  * ufshcd_exec_dev_cmd - API for sending device management requests
3019  * @hba: UFS hba
3020  * @cmd_type: specifies the type (NOP, Query...)
3021  * @timeout: timeout in milliseconds
3022  *
3023  * NOTE: Since there is only one available tag for device management commands,
3024  * it is expected you hold the hba->dev_cmd.lock mutex.
3025  */
3026 static int ufshcd_exec_dev_cmd(struct ufs_hba *hba,
3027 		enum dev_cmd_type cmd_type, int timeout)
3028 {
3029 	DECLARE_COMPLETION_ONSTACK(wait);
3030 	const u32 tag = hba->reserved_slot;
3031 	struct ufshcd_lrb *lrbp;
3032 	int err;
3033 
3034 	/* Protects use of hba->reserved_slot. */
3035 	lockdep_assert_held(&hba->dev_cmd.lock);
3036 
3037 	down_read(&hba->clk_scaling_lock);
3038 
3039 	lrbp = &hba->lrb[tag];
3040 	WARN_ON(lrbp->cmd);
3041 	err = ufshcd_compose_dev_cmd(hba, lrbp, cmd_type, tag);
3042 	if (unlikely(err))
3043 		goto out;
3044 
3045 	hba->dev_cmd.complete = &wait;
3046 
3047 	ufshcd_add_query_upiu_trace(hba, UFS_QUERY_SEND, lrbp->ucd_req_ptr);
3048 
3049 	ufshcd_send_command(hba, tag);
3050 	err = ufshcd_wait_for_dev_cmd(hba, lrbp, timeout);
3051 	ufshcd_add_query_upiu_trace(hba, err ? UFS_QUERY_ERR : UFS_QUERY_COMP,
3052 				    (struct utp_upiu_req *)lrbp->ucd_rsp_ptr);
3053 
3054 out:
3055 	up_read(&hba->clk_scaling_lock);
3056 	return err;
3057 }
3058 
3059 /**
3060  * ufshcd_init_query() - init the query response and request parameters
3061  * @hba: per-adapter instance
3062  * @request: address of the request pointer to be initialized
3063  * @response: address of the response pointer to be initialized
3064  * @opcode: operation to perform
3065  * @idn: flag idn to access
3066  * @index: LU number to access
3067  * @selector: query/flag/descriptor further identification
3068  */
3069 static inline void ufshcd_init_query(struct ufs_hba *hba,
3070 		struct ufs_query_req **request, struct ufs_query_res **response,
3071 		enum query_opcode opcode, u8 idn, u8 index, u8 selector)
3072 {
3073 	*request = &hba->dev_cmd.query.request;
3074 	*response = &hba->dev_cmd.query.response;
3075 	memset(*request, 0, sizeof(struct ufs_query_req));
3076 	memset(*response, 0, sizeof(struct ufs_query_res));
3077 	(*request)->upiu_req.opcode = opcode;
3078 	(*request)->upiu_req.idn = idn;
3079 	(*request)->upiu_req.index = index;
3080 	(*request)->upiu_req.selector = selector;
3081 }
3082 
3083 static int ufshcd_query_flag_retry(struct ufs_hba *hba,
3084 	enum query_opcode opcode, enum flag_idn idn, u8 index, bool *flag_res)
3085 {
3086 	int ret;
3087 	int retries;
3088 
3089 	for (retries = 0; retries < QUERY_REQ_RETRIES; retries++) {
3090 		ret = ufshcd_query_flag(hba, opcode, idn, index, flag_res);
3091 		if (ret)
3092 			dev_dbg(hba->dev,
3093 				"%s: failed with error %d, retries %d\n",
3094 				__func__, ret, retries);
3095 		else
3096 			break;
3097 	}
3098 
3099 	if (ret)
3100 		dev_err(hba->dev,
3101 			"%s: query attribute, opcode %d, idn %d, failed with error %d after %d retries\n",
3102 			__func__, opcode, idn, ret, retries);
3103 	return ret;
3104 }
3105 
3106 /**
3107  * ufshcd_query_flag() - API function for sending flag query requests
3108  * @hba: per-adapter instance
3109  * @opcode: flag query to perform
3110  * @idn: flag idn to access
3111  * @index: flag index to access
3112  * @flag_res: the flag value after the query request completes
3113  *
3114  * Returns 0 for success, non-zero in case of failure
3115  */
3116 int ufshcd_query_flag(struct ufs_hba *hba, enum query_opcode opcode,
3117 			enum flag_idn idn, u8 index, bool *flag_res)
3118 {
3119 	struct ufs_query_req *request = NULL;
3120 	struct ufs_query_res *response = NULL;
3121 	int err, selector = 0;
3122 	int timeout = QUERY_REQ_TIMEOUT;
3123 
3124 	BUG_ON(!hba);
3125 
3126 	ufshcd_hold(hba, false);
3127 	mutex_lock(&hba->dev_cmd.lock);
3128 	ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3129 			selector);
3130 
3131 	switch (opcode) {
3132 	case UPIU_QUERY_OPCODE_SET_FLAG:
3133 	case UPIU_QUERY_OPCODE_CLEAR_FLAG:
3134 	case UPIU_QUERY_OPCODE_TOGGLE_FLAG:
3135 		request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3136 		break;
3137 	case UPIU_QUERY_OPCODE_READ_FLAG:
3138 		request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3139 		if (!flag_res) {
3140 			/* No dummy reads */
3141 			dev_err(hba->dev, "%s: Invalid argument for read request\n",
3142 					__func__);
3143 			err = -EINVAL;
3144 			goto out_unlock;
3145 		}
3146 		break;
3147 	default:
3148 		dev_err(hba->dev,
3149 			"%s: Expected query flag opcode but got = %d\n",
3150 			__func__, opcode);
3151 		err = -EINVAL;
3152 		goto out_unlock;
3153 	}
3154 
3155 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, timeout);
3156 
3157 	if (err) {
3158 		dev_err(hba->dev,
3159 			"%s: Sending flag query for idn %d failed, err = %d\n",
3160 			__func__, idn, err);
3161 		goto out_unlock;
3162 	}
3163 
3164 	if (flag_res)
3165 		*flag_res = (be32_to_cpu(response->upiu_res.value) &
3166 				MASK_QUERY_UPIU_FLAG_LOC) & 0x1;
3167 
3168 out_unlock:
3169 	mutex_unlock(&hba->dev_cmd.lock);
3170 	ufshcd_release(hba);
3171 	return err;
3172 }
3173 
3174 /**
3175  * ufshcd_query_attr - API function for sending attribute requests
3176  * @hba: per-adapter instance
3177  * @opcode: attribute opcode
3178  * @idn: attribute idn to access
3179  * @index: index field
3180  * @selector: selector field
3181  * @attr_val: the attribute value after the query request completes
3182  *
3183  * Returns 0 for success, non-zero in case of failure
3184 */
3185 int ufshcd_query_attr(struct ufs_hba *hba, enum query_opcode opcode,
3186 		      enum attr_idn idn, u8 index, u8 selector, u32 *attr_val)
3187 {
3188 	struct ufs_query_req *request = NULL;
3189 	struct ufs_query_res *response = NULL;
3190 	int err;
3191 
3192 	BUG_ON(!hba);
3193 
3194 	if (!attr_val) {
3195 		dev_err(hba->dev, "%s: attribute value required for opcode 0x%x\n",
3196 				__func__, opcode);
3197 		return -EINVAL;
3198 	}
3199 
3200 	ufshcd_hold(hba, false);
3201 
3202 	mutex_lock(&hba->dev_cmd.lock);
3203 	ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3204 			selector);
3205 
3206 	switch (opcode) {
3207 	case UPIU_QUERY_OPCODE_WRITE_ATTR:
3208 		request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3209 		request->upiu_req.value = cpu_to_be32(*attr_val);
3210 		break;
3211 	case UPIU_QUERY_OPCODE_READ_ATTR:
3212 		request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3213 		break;
3214 	default:
3215 		dev_err(hba->dev, "%s: Expected query attr opcode but got = 0x%.2x\n",
3216 				__func__, opcode);
3217 		err = -EINVAL;
3218 		goto out_unlock;
3219 	}
3220 
3221 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT);
3222 
3223 	if (err) {
3224 		dev_err(hba->dev, "%s: opcode 0x%.2x for idn %d failed, index %d, err = %d\n",
3225 				__func__, opcode, idn, index, err);
3226 		goto out_unlock;
3227 	}
3228 
3229 	*attr_val = be32_to_cpu(response->upiu_res.value);
3230 
3231 out_unlock:
3232 	mutex_unlock(&hba->dev_cmd.lock);
3233 	ufshcd_release(hba);
3234 	return err;
3235 }
3236 
3237 /**
3238  * ufshcd_query_attr_retry() - API function for sending query
3239  * attribute with retries
3240  * @hba: per-adapter instance
3241  * @opcode: attribute opcode
3242  * @idn: attribute idn to access
3243  * @index: index field
3244  * @selector: selector field
3245  * @attr_val: the attribute value after the query request
3246  * completes
3247  *
3248  * Returns 0 for success, non-zero in case of failure
3249 */
3250 int ufshcd_query_attr_retry(struct ufs_hba *hba,
3251 	enum query_opcode opcode, enum attr_idn idn, u8 index, u8 selector,
3252 	u32 *attr_val)
3253 {
3254 	int ret = 0;
3255 	u32 retries;
3256 
3257 	for (retries = QUERY_REQ_RETRIES; retries > 0; retries--) {
3258 		ret = ufshcd_query_attr(hba, opcode, idn, index,
3259 						selector, attr_val);
3260 		if (ret)
3261 			dev_dbg(hba->dev, "%s: failed with error %d, retries %d\n",
3262 				__func__, ret, retries);
3263 		else
3264 			break;
3265 	}
3266 
3267 	if (ret)
3268 		dev_err(hba->dev,
3269 			"%s: query attribute, idn %d, failed with error %d after %d retries\n",
3270 			__func__, idn, ret, QUERY_REQ_RETRIES);
3271 	return ret;
3272 }
3273 
3274 static int __ufshcd_query_descriptor(struct ufs_hba *hba,
3275 			enum query_opcode opcode, enum desc_idn idn, u8 index,
3276 			u8 selector, u8 *desc_buf, int *buf_len)
3277 {
3278 	struct ufs_query_req *request = NULL;
3279 	struct ufs_query_res *response = NULL;
3280 	int err;
3281 
3282 	BUG_ON(!hba);
3283 
3284 	if (!desc_buf) {
3285 		dev_err(hba->dev, "%s: descriptor buffer required for opcode 0x%x\n",
3286 				__func__, opcode);
3287 		return -EINVAL;
3288 	}
3289 
3290 	if (*buf_len < QUERY_DESC_MIN_SIZE || *buf_len > QUERY_DESC_MAX_SIZE) {
3291 		dev_err(hba->dev, "%s: descriptor buffer size (%d) is out of range\n",
3292 				__func__, *buf_len);
3293 		return -EINVAL;
3294 	}
3295 
3296 	ufshcd_hold(hba, false);
3297 
3298 	mutex_lock(&hba->dev_cmd.lock);
3299 	ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3300 			selector);
3301 	hba->dev_cmd.query.descriptor = desc_buf;
3302 	request->upiu_req.length = cpu_to_be16(*buf_len);
3303 
3304 	switch (opcode) {
3305 	case UPIU_QUERY_OPCODE_WRITE_DESC:
3306 		request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3307 		break;
3308 	case UPIU_QUERY_OPCODE_READ_DESC:
3309 		request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3310 		break;
3311 	default:
3312 		dev_err(hba->dev,
3313 				"%s: Expected query descriptor opcode but got = 0x%.2x\n",
3314 				__func__, opcode);
3315 		err = -EINVAL;
3316 		goto out_unlock;
3317 	}
3318 
3319 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT);
3320 
3321 	if (err) {
3322 		dev_err(hba->dev, "%s: opcode 0x%.2x for idn %d failed, index %d, err = %d\n",
3323 				__func__, opcode, idn, index, err);
3324 		goto out_unlock;
3325 	}
3326 
3327 	*buf_len = be16_to_cpu(response->upiu_res.length);
3328 
3329 out_unlock:
3330 	hba->dev_cmd.query.descriptor = NULL;
3331 	mutex_unlock(&hba->dev_cmd.lock);
3332 	ufshcd_release(hba);
3333 	return err;
3334 }
3335 
3336 /**
3337  * ufshcd_query_descriptor_retry - API function for sending descriptor requests
3338  * @hba: per-adapter instance
3339  * @opcode: attribute opcode
3340  * @idn: attribute idn to access
3341  * @index: index field
3342  * @selector: selector field
3343  * @desc_buf: the buffer that contains the descriptor
3344  * @buf_len: length parameter passed to the device
3345  *
3346  * Returns 0 for success, non-zero in case of failure.
3347  * The buf_len parameter will contain, on return, the length parameter
3348  * received on the response.
3349  */
3350 int ufshcd_query_descriptor_retry(struct ufs_hba *hba,
3351 				  enum query_opcode opcode,
3352 				  enum desc_idn idn, u8 index,
3353 				  u8 selector,
3354 				  u8 *desc_buf, int *buf_len)
3355 {
3356 	int err;
3357 	int retries;
3358 
3359 	for (retries = QUERY_REQ_RETRIES; retries > 0; retries--) {
3360 		err = __ufshcd_query_descriptor(hba, opcode, idn, index,
3361 						selector, desc_buf, buf_len);
3362 		if (!err || err == -EINVAL)
3363 			break;
3364 	}
3365 
3366 	return err;
3367 }
3368 
3369 /**
3370  * ufshcd_map_desc_id_to_length - map descriptor IDN to its length
3371  * @hba: Pointer to adapter instance
3372  * @desc_id: descriptor idn value
3373  * @desc_len: mapped desc length (out)
3374  */
3375 void ufshcd_map_desc_id_to_length(struct ufs_hba *hba, enum desc_idn desc_id,
3376 				  int *desc_len)
3377 {
3378 	if (desc_id >= QUERY_DESC_IDN_MAX || desc_id == QUERY_DESC_IDN_RFU_0 ||
3379 	    desc_id == QUERY_DESC_IDN_RFU_1)
3380 		*desc_len = 0;
3381 	else
3382 		*desc_len = hba->desc_size[desc_id];
3383 }
3384 EXPORT_SYMBOL(ufshcd_map_desc_id_to_length);
3385 
3386 static void ufshcd_update_desc_length(struct ufs_hba *hba,
3387 				      enum desc_idn desc_id, int desc_index,
3388 				      unsigned char desc_len)
3389 {
3390 	if (hba->desc_size[desc_id] == QUERY_DESC_MAX_SIZE &&
3391 	    desc_id != QUERY_DESC_IDN_STRING && desc_index != UFS_RPMB_UNIT)
3392 		/* For UFS 3.1, the normal unit descriptor is 10 bytes larger
3393 		 * than the RPMB unit, however, both descriptors share the same
3394 		 * desc_idn, to cover both unit descriptors with one length, we
3395 		 * choose the normal unit descriptor length by desc_index.
3396 		 */
3397 		hba->desc_size[desc_id] = desc_len;
3398 }
3399 
3400 /**
3401  * ufshcd_read_desc_param - read the specified descriptor parameter
3402  * @hba: Pointer to adapter instance
3403  * @desc_id: descriptor idn value
3404  * @desc_index: descriptor index
3405  * @param_offset: offset of the parameter to read
3406  * @param_read_buf: pointer to buffer where parameter would be read
3407  * @param_size: sizeof(param_read_buf)
3408  *
3409  * Return 0 in case of success, non-zero otherwise
3410  */
3411 int ufshcd_read_desc_param(struct ufs_hba *hba,
3412 			   enum desc_idn desc_id,
3413 			   int desc_index,
3414 			   u8 param_offset,
3415 			   u8 *param_read_buf,
3416 			   u8 param_size)
3417 {
3418 	int ret;
3419 	u8 *desc_buf;
3420 	int buff_len;
3421 	bool is_kmalloc = true;
3422 
3423 	/* Safety check */
3424 	if (desc_id >= QUERY_DESC_IDN_MAX || !param_size)
3425 		return -EINVAL;
3426 
3427 	/* Get the length of descriptor */
3428 	ufshcd_map_desc_id_to_length(hba, desc_id, &buff_len);
3429 	if (!buff_len) {
3430 		dev_err(hba->dev, "%s: Failed to get desc length\n", __func__);
3431 		return -EINVAL;
3432 	}
3433 
3434 	if (param_offset >= buff_len) {
3435 		dev_err(hba->dev, "%s: Invalid offset 0x%x in descriptor IDN 0x%x, length 0x%x\n",
3436 			__func__, param_offset, desc_id, buff_len);
3437 		return -EINVAL;
3438 	}
3439 
3440 	/* Check whether we need temp memory */
3441 	if (param_offset != 0 || param_size < buff_len) {
3442 		desc_buf = kzalloc(buff_len, GFP_KERNEL);
3443 		if (!desc_buf)
3444 			return -ENOMEM;
3445 	} else {
3446 		desc_buf = param_read_buf;
3447 		is_kmalloc = false;
3448 	}
3449 
3450 	/* Request for full descriptor */
3451 	ret = ufshcd_query_descriptor_retry(hba, UPIU_QUERY_OPCODE_READ_DESC,
3452 					desc_id, desc_index, 0,
3453 					desc_buf, &buff_len);
3454 
3455 	if (ret) {
3456 		dev_err(hba->dev, "%s: Failed reading descriptor. desc_id %d, desc_index %d, param_offset %d, ret %d\n",
3457 			__func__, desc_id, desc_index, param_offset, ret);
3458 		goto out;
3459 	}
3460 
3461 	/* Sanity check */
3462 	if (desc_buf[QUERY_DESC_DESC_TYPE_OFFSET] != desc_id) {
3463 		dev_err(hba->dev, "%s: invalid desc_id %d in descriptor header\n",
3464 			__func__, desc_buf[QUERY_DESC_DESC_TYPE_OFFSET]);
3465 		ret = -EINVAL;
3466 		goto out;
3467 	}
3468 
3469 	/* Update descriptor length */
3470 	buff_len = desc_buf[QUERY_DESC_LENGTH_OFFSET];
3471 	ufshcd_update_desc_length(hba, desc_id, desc_index, buff_len);
3472 
3473 	if (is_kmalloc) {
3474 		/* Make sure we don't copy more data than available */
3475 		if (param_offset >= buff_len)
3476 			ret = -EINVAL;
3477 		else
3478 			memcpy(param_read_buf, &desc_buf[param_offset],
3479 			       min_t(u32, param_size, buff_len - param_offset));
3480 	}
3481 out:
3482 	if (is_kmalloc)
3483 		kfree(desc_buf);
3484 	return ret;
3485 }
3486 
3487 /**
3488  * struct uc_string_id - unicode string
3489  *
3490  * @len: size of this descriptor inclusive
3491  * @type: descriptor type
3492  * @uc: unicode string character
3493  */
3494 struct uc_string_id {
3495 	u8 len;
3496 	u8 type;
3497 	wchar_t uc[];
3498 } __packed;
3499 
3500 /* replace non-printable or non-ASCII characters with spaces */
3501 static inline char ufshcd_remove_non_printable(u8 ch)
3502 {
3503 	return (ch >= 0x20 && ch <= 0x7e) ? ch : ' ';
3504 }
3505 
3506 /**
3507  * ufshcd_read_string_desc - read string descriptor
3508  * @hba: pointer to adapter instance
3509  * @desc_index: descriptor index
3510  * @buf: pointer to buffer where descriptor would be read,
3511  *       the caller should free the memory.
3512  * @ascii: if true convert from unicode to ascii characters
3513  *         null terminated string.
3514  *
3515  * Return:
3516  * *      string size on success.
3517  * *      -ENOMEM: on allocation failure
3518  * *      -EINVAL: on a wrong parameter
3519  */
3520 int ufshcd_read_string_desc(struct ufs_hba *hba, u8 desc_index,
3521 			    u8 **buf, bool ascii)
3522 {
3523 	struct uc_string_id *uc_str;
3524 	u8 *str;
3525 	int ret;
3526 
3527 	if (!buf)
3528 		return -EINVAL;
3529 
3530 	uc_str = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
3531 	if (!uc_str)
3532 		return -ENOMEM;
3533 
3534 	ret = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_STRING, desc_index, 0,
3535 				     (u8 *)uc_str, QUERY_DESC_MAX_SIZE);
3536 	if (ret < 0) {
3537 		dev_err(hba->dev, "Reading String Desc failed after %d retries. err = %d\n",
3538 			QUERY_REQ_RETRIES, ret);
3539 		str = NULL;
3540 		goto out;
3541 	}
3542 
3543 	if (uc_str->len <= QUERY_DESC_HDR_SIZE) {
3544 		dev_dbg(hba->dev, "String Desc is of zero length\n");
3545 		str = NULL;
3546 		ret = 0;
3547 		goto out;
3548 	}
3549 
3550 	if (ascii) {
3551 		ssize_t ascii_len;
3552 		int i;
3553 		/* remove header and divide by 2 to move from UTF16 to UTF8 */
3554 		ascii_len = (uc_str->len - QUERY_DESC_HDR_SIZE) / 2 + 1;
3555 		str = kzalloc(ascii_len, GFP_KERNEL);
3556 		if (!str) {
3557 			ret = -ENOMEM;
3558 			goto out;
3559 		}
3560 
3561 		/*
3562 		 * the descriptor contains string in UTF16 format
3563 		 * we need to convert to utf-8 so it can be displayed
3564 		 */
3565 		ret = utf16s_to_utf8s(uc_str->uc,
3566 				      uc_str->len - QUERY_DESC_HDR_SIZE,
3567 				      UTF16_BIG_ENDIAN, str, ascii_len);
3568 
3569 		/* replace non-printable or non-ASCII characters with spaces */
3570 		for (i = 0; i < ret; i++)
3571 			str[i] = ufshcd_remove_non_printable(str[i]);
3572 
3573 		str[ret++] = '\0';
3574 
3575 	} else {
3576 		str = kmemdup(uc_str, uc_str->len, GFP_KERNEL);
3577 		if (!str) {
3578 			ret = -ENOMEM;
3579 			goto out;
3580 		}
3581 		ret = uc_str->len;
3582 	}
3583 out:
3584 	*buf = str;
3585 	kfree(uc_str);
3586 	return ret;
3587 }
3588 
3589 /**
3590  * ufshcd_read_unit_desc_param - read the specified unit descriptor parameter
3591  * @hba: Pointer to adapter instance
3592  * @lun: lun id
3593  * @param_offset: offset of the parameter to read
3594  * @param_read_buf: pointer to buffer where parameter would be read
3595  * @param_size: sizeof(param_read_buf)
3596  *
3597  * Return 0 in case of success, non-zero otherwise
3598  */
3599 static inline int ufshcd_read_unit_desc_param(struct ufs_hba *hba,
3600 					      int lun,
3601 					      enum unit_desc_param param_offset,
3602 					      u8 *param_read_buf,
3603 					      u32 param_size)
3604 {
3605 	/*
3606 	 * Unit descriptors are only available for general purpose LUs (LUN id
3607 	 * from 0 to 7) and RPMB Well known LU.
3608 	 */
3609 	if (!ufs_is_valid_unit_desc_lun(&hba->dev_info, lun, param_offset))
3610 		return -EOPNOTSUPP;
3611 
3612 	return ufshcd_read_desc_param(hba, QUERY_DESC_IDN_UNIT, lun,
3613 				      param_offset, param_read_buf, param_size);
3614 }
3615 
3616 static int ufshcd_get_ref_clk_gating_wait(struct ufs_hba *hba)
3617 {
3618 	int err = 0;
3619 	u32 gating_wait = UFSHCD_REF_CLK_GATING_WAIT_US;
3620 
3621 	if (hba->dev_info.wspecversion >= 0x300) {
3622 		err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
3623 				QUERY_ATTR_IDN_REF_CLK_GATING_WAIT_TIME, 0, 0,
3624 				&gating_wait);
3625 		if (err)
3626 			dev_err(hba->dev, "Failed reading bRefClkGatingWait. err = %d, use default %uus\n",
3627 					 err, gating_wait);
3628 
3629 		if (gating_wait == 0) {
3630 			gating_wait = UFSHCD_REF_CLK_GATING_WAIT_US;
3631 			dev_err(hba->dev, "Undefined ref clk gating wait time, use default %uus\n",
3632 					 gating_wait);
3633 		}
3634 
3635 		hba->dev_info.clk_gating_wait_us = gating_wait;
3636 	}
3637 
3638 	return err;
3639 }
3640 
3641 /**
3642  * ufshcd_memory_alloc - allocate memory for host memory space data structures
3643  * @hba: per adapter instance
3644  *
3645  * 1. Allocate DMA memory for Command Descriptor array
3646  *	Each command descriptor consist of Command UPIU, Response UPIU and PRDT
3647  * 2. Allocate DMA memory for UTP Transfer Request Descriptor List (UTRDL).
3648  * 3. Allocate DMA memory for UTP Task Management Request Descriptor List
3649  *	(UTMRDL)
3650  * 4. Allocate memory for local reference block(lrb).
3651  *
3652  * Returns 0 for success, non-zero in case of failure
3653  */
3654 static int ufshcd_memory_alloc(struct ufs_hba *hba)
3655 {
3656 	size_t utmrdl_size, utrdl_size, ucdl_size;
3657 
3658 	/* Allocate memory for UTP command descriptors */
3659 	ucdl_size = (sizeof(struct utp_transfer_cmd_desc) * hba->nutrs);
3660 	hba->ucdl_base_addr = dmam_alloc_coherent(hba->dev,
3661 						  ucdl_size,
3662 						  &hba->ucdl_dma_addr,
3663 						  GFP_KERNEL);
3664 
3665 	/*
3666 	 * UFSHCI requires UTP command descriptor to be 128 byte aligned.
3667 	 * make sure hba->ucdl_dma_addr is aligned to PAGE_SIZE
3668 	 * if hba->ucdl_dma_addr is aligned to PAGE_SIZE, then it will
3669 	 * be aligned to 128 bytes as well
3670 	 */
3671 	if (!hba->ucdl_base_addr ||
3672 	    WARN_ON(hba->ucdl_dma_addr & (PAGE_SIZE - 1))) {
3673 		dev_err(hba->dev,
3674 			"Command Descriptor Memory allocation failed\n");
3675 		goto out;
3676 	}
3677 
3678 	/*
3679 	 * Allocate memory for UTP Transfer descriptors
3680 	 * UFSHCI requires 1024 byte alignment of UTRD
3681 	 */
3682 	utrdl_size = (sizeof(struct utp_transfer_req_desc) * hba->nutrs);
3683 	hba->utrdl_base_addr = dmam_alloc_coherent(hba->dev,
3684 						   utrdl_size,
3685 						   &hba->utrdl_dma_addr,
3686 						   GFP_KERNEL);
3687 	if (!hba->utrdl_base_addr ||
3688 	    WARN_ON(hba->utrdl_dma_addr & (PAGE_SIZE - 1))) {
3689 		dev_err(hba->dev,
3690 			"Transfer Descriptor Memory allocation failed\n");
3691 		goto out;
3692 	}
3693 
3694 	/*
3695 	 * Allocate memory for UTP Task Management descriptors
3696 	 * UFSHCI requires 1024 byte alignment of UTMRD
3697 	 */
3698 	utmrdl_size = sizeof(struct utp_task_req_desc) * hba->nutmrs;
3699 	hba->utmrdl_base_addr = dmam_alloc_coherent(hba->dev,
3700 						    utmrdl_size,
3701 						    &hba->utmrdl_dma_addr,
3702 						    GFP_KERNEL);
3703 	if (!hba->utmrdl_base_addr ||
3704 	    WARN_ON(hba->utmrdl_dma_addr & (PAGE_SIZE - 1))) {
3705 		dev_err(hba->dev,
3706 		"Task Management Descriptor Memory allocation failed\n");
3707 		goto out;
3708 	}
3709 
3710 	/* Allocate memory for local reference block */
3711 	hba->lrb = devm_kcalloc(hba->dev,
3712 				hba->nutrs, sizeof(struct ufshcd_lrb),
3713 				GFP_KERNEL);
3714 	if (!hba->lrb) {
3715 		dev_err(hba->dev, "LRB Memory allocation failed\n");
3716 		goto out;
3717 	}
3718 	return 0;
3719 out:
3720 	return -ENOMEM;
3721 }
3722 
3723 /**
3724  * ufshcd_host_memory_configure - configure local reference block with
3725  *				memory offsets
3726  * @hba: per adapter instance
3727  *
3728  * Configure Host memory space
3729  * 1. Update Corresponding UTRD.UCDBA and UTRD.UCDBAU with UCD DMA
3730  * address.
3731  * 2. Update each UTRD with Response UPIU offset, Response UPIU length
3732  * and PRDT offset.
3733  * 3. Save the corresponding addresses of UTRD, UCD.CMD, UCD.RSP and UCD.PRDT
3734  * into local reference block.
3735  */
3736 static void ufshcd_host_memory_configure(struct ufs_hba *hba)
3737 {
3738 	struct utp_transfer_req_desc *utrdlp;
3739 	dma_addr_t cmd_desc_dma_addr;
3740 	dma_addr_t cmd_desc_element_addr;
3741 	u16 response_offset;
3742 	u16 prdt_offset;
3743 	int cmd_desc_size;
3744 	int i;
3745 
3746 	utrdlp = hba->utrdl_base_addr;
3747 
3748 	response_offset =
3749 		offsetof(struct utp_transfer_cmd_desc, response_upiu);
3750 	prdt_offset =
3751 		offsetof(struct utp_transfer_cmd_desc, prd_table);
3752 
3753 	cmd_desc_size = sizeof(struct utp_transfer_cmd_desc);
3754 	cmd_desc_dma_addr = hba->ucdl_dma_addr;
3755 
3756 	for (i = 0; i < hba->nutrs; i++) {
3757 		/* Configure UTRD with command descriptor base address */
3758 		cmd_desc_element_addr =
3759 				(cmd_desc_dma_addr + (cmd_desc_size * i));
3760 		utrdlp[i].command_desc_base_addr_lo =
3761 				cpu_to_le32(lower_32_bits(cmd_desc_element_addr));
3762 		utrdlp[i].command_desc_base_addr_hi =
3763 				cpu_to_le32(upper_32_bits(cmd_desc_element_addr));
3764 
3765 		/* Response upiu and prdt offset should be in double words */
3766 		if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN) {
3767 			utrdlp[i].response_upiu_offset =
3768 				cpu_to_le16(response_offset);
3769 			utrdlp[i].prd_table_offset =
3770 				cpu_to_le16(prdt_offset);
3771 			utrdlp[i].response_upiu_length =
3772 				cpu_to_le16(ALIGNED_UPIU_SIZE);
3773 		} else {
3774 			utrdlp[i].response_upiu_offset =
3775 				cpu_to_le16(response_offset >> 2);
3776 			utrdlp[i].prd_table_offset =
3777 				cpu_to_le16(prdt_offset >> 2);
3778 			utrdlp[i].response_upiu_length =
3779 				cpu_to_le16(ALIGNED_UPIU_SIZE >> 2);
3780 		}
3781 
3782 		ufshcd_init_lrb(hba, &hba->lrb[i], i);
3783 	}
3784 }
3785 
3786 /**
3787  * ufshcd_dme_link_startup - Notify Unipro to perform link startup
3788  * @hba: per adapter instance
3789  *
3790  * UIC_CMD_DME_LINK_STARTUP command must be issued to Unipro layer,
3791  * in order to initialize the Unipro link startup procedure.
3792  * Once the Unipro links are up, the device connected to the controller
3793  * is detected.
3794  *
3795  * Returns 0 on success, non-zero value on failure
3796  */
3797 static int ufshcd_dme_link_startup(struct ufs_hba *hba)
3798 {
3799 	struct uic_command uic_cmd = {0};
3800 	int ret;
3801 
3802 	uic_cmd.command = UIC_CMD_DME_LINK_STARTUP;
3803 
3804 	ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
3805 	if (ret)
3806 		dev_dbg(hba->dev,
3807 			"dme-link-startup: error code %d\n", ret);
3808 	return ret;
3809 }
3810 /**
3811  * ufshcd_dme_reset - UIC command for DME_RESET
3812  * @hba: per adapter instance
3813  *
3814  * DME_RESET command is issued in order to reset UniPro stack.
3815  * This function now deals with cold reset.
3816  *
3817  * Returns 0 on success, non-zero value on failure
3818  */
3819 static int ufshcd_dme_reset(struct ufs_hba *hba)
3820 {
3821 	struct uic_command uic_cmd = {0};
3822 	int ret;
3823 
3824 	uic_cmd.command = UIC_CMD_DME_RESET;
3825 
3826 	ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
3827 	if (ret)
3828 		dev_err(hba->dev,
3829 			"dme-reset: error code %d\n", ret);
3830 
3831 	return ret;
3832 }
3833 
3834 int ufshcd_dme_configure_adapt(struct ufs_hba *hba,
3835 			       int agreed_gear,
3836 			       int adapt_val)
3837 {
3838 	int ret;
3839 
3840 	if (agreed_gear < UFS_HS_G4)
3841 		adapt_val = PA_NO_ADAPT;
3842 
3843 	ret = ufshcd_dme_set(hba,
3844 			     UIC_ARG_MIB(PA_TXHSADAPTTYPE),
3845 			     adapt_val);
3846 	return ret;
3847 }
3848 EXPORT_SYMBOL_GPL(ufshcd_dme_configure_adapt);
3849 
3850 /**
3851  * ufshcd_dme_enable - UIC command for DME_ENABLE
3852  * @hba: per adapter instance
3853  *
3854  * DME_ENABLE command is issued in order to enable UniPro stack.
3855  *
3856  * Returns 0 on success, non-zero value on failure
3857  */
3858 static int ufshcd_dme_enable(struct ufs_hba *hba)
3859 {
3860 	struct uic_command uic_cmd = {0};
3861 	int ret;
3862 
3863 	uic_cmd.command = UIC_CMD_DME_ENABLE;
3864 
3865 	ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
3866 	if (ret)
3867 		dev_err(hba->dev,
3868 			"dme-enable: error code %d\n", ret);
3869 
3870 	return ret;
3871 }
3872 
3873 static inline void ufshcd_add_delay_before_dme_cmd(struct ufs_hba *hba)
3874 {
3875 	#define MIN_DELAY_BEFORE_DME_CMDS_US	1000
3876 	unsigned long min_sleep_time_us;
3877 
3878 	if (!(hba->quirks & UFSHCD_QUIRK_DELAY_BEFORE_DME_CMDS))
3879 		return;
3880 
3881 	/*
3882 	 * last_dme_cmd_tstamp will be 0 only for 1st call to
3883 	 * this function
3884 	 */
3885 	if (unlikely(!ktime_to_us(hba->last_dme_cmd_tstamp))) {
3886 		min_sleep_time_us = MIN_DELAY_BEFORE_DME_CMDS_US;
3887 	} else {
3888 		unsigned long delta =
3889 			(unsigned long) ktime_to_us(
3890 				ktime_sub(ktime_get(),
3891 				hba->last_dme_cmd_tstamp));
3892 
3893 		if (delta < MIN_DELAY_BEFORE_DME_CMDS_US)
3894 			min_sleep_time_us =
3895 				MIN_DELAY_BEFORE_DME_CMDS_US - delta;
3896 		else
3897 			return; /* no more delay required */
3898 	}
3899 
3900 	/* allow sleep for extra 50us if needed */
3901 	usleep_range(min_sleep_time_us, min_sleep_time_us + 50);
3902 }
3903 
3904 /**
3905  * ufshcd_dme_set_attr - UIC command for DME_SET, DME_PEER_SET
3906  * @hba: per adapter instance
3907  * @attr_sel: uic command argument1
3908  * @attr_set: attribute set type as uic command argument2
3909  * @mib_val: setting value as uic command argument3
3910  * @peer: indicate whether peer or local
3911  *
3912  * Returns 0 on success, non-zero value on failure
3913  */
3914 int ufshcd_dme_set_attr(struct ufs_hba *hba, u32 attr_sel,
3915 			u8 attr_set, u32 mib_val, u8 peer)
3916 {
3917 	struct uic_command uic_cmd = {0};
3918 	static const char *const action[] = {
3919 		"dme-set",
3920 		"dme-peer-set"
3921 	};
3922 	const char *set = action[!!peer];
3923 	int ret;
3924 	int retries = UFS_UIC_COMMAND_RETRIES;
3925 
3926 	uic_cmd.command = peer ?
3927 		UIC_CMD_DME_PEER_SET : UIC_CMD_DME_SET;
3928 	uic_cmd.argument1 = attr_sel;
3929 	uic_cmd.argument2 = UIC_ARG_ATTR_TYPE(attr_set);
3930 	uic_cmd.argument3 = mib_val;
3931 
3932 	do {
3933 		/* for peer attributes we retry upon failure */
3934 		ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
3935 		if (ret)
3936 			dev_dbg(hba->dev, "%s: attr-id 0x%x val 0x%x error code %d\n",
3937 				set, UIC_GET_ATTR_ID(attr_sel), mib_val, ret);
3938 	} while (ret && peer && --retries);
3939 
3940 	if (ret)
3941 		dev_err(hba->dev, "%s: attr-id 0x%x val 0x%x failed %d retries\n",
3942 			set, UIC_GET_ATTR_ID(attr_sel), mib_val,
3943 			UFS_UIC_COMMAND_RETRIES - retries);
3944 
3945 	return ret;
3946 }
3947 EXPORT_SYMBOL_GPL(ufshcd_dme_set_attr);
3948 
3949 /**
3950  * ufshcd_dme_get_attr - UIC command for DME_GET, DME_PEER_GET
3951  * @hba: per adapter instance
3952  * @attr_sel: uic command argument1
3953  * @mib_val: the value of the attribute as returned by the UIC command
3954  * @peer: indicate whether peer or local
3955  *
3956  * Returns 0 on success, non-zero value on failure
3957  */
3958 int ufshcd_dme_get_attr(struct ufs_hba *hba, u32 attr_sel,
3959 			u32 *mib_val, u8 peer)
3960 {
3961 	struct uic_command uic_cmd = {0};
3962 	static const char *const action[] = {
3963 		"dme-get",
3964 		"dme-peer-get"
3965 	};
3966 	const char *get = action[!!peer];
3967 	int ret;
3968 	int retries = UFS_UIC_COMMAND_RETRIES;
3969 	struct ufs_pa_layer_attr orig_pwr_info;
3970 	struct ufs_pa_layer_attr temp_pwr_info;
3971 	bool pwr_mode_change = false;
3972 
3973 	if (peer && (hba->quirks & UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE)) {
3974 		orig_pwr_info = hba->pwr_info;
3975 		temp_pwr_info = orig_pwr_info;
3976 
3977 		if (orig_pwr_info.pwr_tx == FAST_MODE ||
3978 		    orig_pwr_info.pwr_rx == FAST_MODE) {
3979 			temp_pwr_info.pwr_tx = FASTAUTO_MODE;
3980 			temp_pwr_info.pwr_rx = FASTAUTO_MODE;
3981 			pwr_mode_change = true;
3982 		} else if (orig_pwr_info.pwr_tx == SLOW_MODE ||
3983 		    orig_pwr_info.pwr_rx == SLOW_MODE) {
3984 			temp_pwr_info.pwr_tx = SLOWAUTO_MODE;
3985 			temp_pwr_info.pwr_rx = SLOWAUTO_MODE;
3986 			pwr_mode_change = true;
3987 		}
3988 		if (pwr_mode_change) {
3989 			ret = ufshcd_change_power_mode(hba, &temp_pwr_info);
3990 			if (ret)
3991 				goto out;
3992 		}
3993 	}
3994 
3995 	uic_cmd.command = peer ?
3996 		UIC_CMD_DME_PEER_GET : UIC_CMD_DME_GET;
3997 	uic_cmd.argument1 = attr_sel;
3998 
3999 	do {
4000 		/* for peer attributes we retry upon failure */
4001 		ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4002 		if (ret)
4003 			dev_dbg(hba->dev, "%s: attr-id 0x%x error code %d\n",
4004 				get, UIC_GET_ATTR_ID(attr_sel), ret);
4005 	} while (ret && peer && --retries);
4006 
4007 	if (ret)
4008 		dev_err(hba->dev, "%s: attr-id 0x%x failed %d retries\n",
4009 			get, UIC_GET_ATTR_ID(attr_sel),
4010 			UFS_UIC_COMMAND_RETRIES - retries);
4011 
4012 	if (mib_val && !ret)
4013 		*mib_val = uic_cmd.argument3;
4014 
4015 	if (peer && (hba->quirks & UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE)
4016 	    && pwr_mode_change)
4017 		ufshcd_change_power_mode(hba, &orig_pwr_info);
4018 out:
4019 	return ret;
4020 }
4021 EXPORT_SYMBOL_GPL(ufshcd_dme_get_attr);
4022 
4023 /**
4024  * ufshcd_uic_pwr_ctrl - executes UIC commands (which affects the link power
4025  * state) and waits for it to take effect.
4026  *
4027  * @hba: per adapter instance
4028  * @cmd: UIC command to execute
4029  *
4030  * DME operations like DME_SET(PA_PWRMODE), DME_HIBERNATE_ENTER &
4031  * DME_HIBERNATE_EXIT commands take some time to take its effect on both host
4032  * and device UniPro link and hence it's final completion would be indicated by
4033  * dedicated status bits in Interrupt Status register (UPMS, UHES, UHXS) in
4034  * addition to normal UIC command completion Status (UCCS). This function only
4035  * returns after the relevant status bits indicate the completion.
4036  *
4037  * Returns 0 on success, non-zero value on failure
4038  */
4039 static int ufshcd_uic_pwr_ctrl(struct ufs_hba *hba, struct uic_command *cmd)
4040 {
4041 	DECLARE_COMPLETION_ONSTACK(uic_async_done);
4042 	unsigned long flags;
4043 	u8 status;
4044 	int ret;
4045 	bool reenable_intr = false;
4046 
4047 	mutex_lock(&hba->uic_cmd_mutex);
4048 	ufshcd_add_delay_before_dme_cmd(hba);
4049 
4050 	spin_lock_irqsave(hba->host->host_lock, flags);
4051 	if (ufshcd_is_link_broken(hba)) {
4052 		ret = -ENOLINK;
4053 		goto out_unlock;
4054 	}
4055 	hba->uic_async_done = &uic_async_done;
4056 	if (ufshcd_readl(hba, REG_INTERRUPT_ENABLE) & UIC_COMMAND_COMPL) {
4057 		ufshcd_disable_intr(hba, UIC_COMMAND_COMPL);
4058 		/*
4059 		 * Make sure UIC command completion interrupt is disabled before
4060 		 * issuing UIC command.
4061 		 */
4062 		wmb();
4063 		reenable_intr = true;
4064 	}
4065 	ret = __ufshcd_send_uic_cmd(hba, cmd, false);
4066 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4067 	if (ret) {
4068 		dev_err(hba->dev,
4069 			"pwr ctrl cmd 0x%x with mode 0x%x uic error %d\n",
4070 			cmd->command, cmd->argument3, ret);
4071 		goto out;
4072 	}
4073 
4074 	if (!wait_for_completion_timeout(hba->uic_async_done,
4075 					 msecs_to_jiffies(UIC_CMD_TIMEOUT))) {
4076 		dev_err(hba->dev,
4077 			"pwr ctrl cmd 0x%x with mode 0x%x completion timeout\n",
4078 			cmd->command, cmd->argument3);
4079 
4080 		if (!cmd->cmd_active) {
4081 			dev_err(hba->dev, "%s: Power Mode Change operation has been completed, go check UPMCRS\n",
4082 				__func__);
4083 			goto check_upmcrs;
4084 		}
4085 
4086 		ret = -ETIMEDOUT;
4087 		goto out;
4088 	}
4089 
4090 check_upmcrs:
4091 	status = ufshcd_get_upmcrs(hba);
4092 	if (status != PWR_LOCAL) {
4093 		dev_err(hba->dev,
4094 			"pwr ctrl cmd 0x%x failed, host upmcrs:0x%x\n",
4095 			cmd->command, status);
4096 		ret = (status != PWR_OK) ? status : -1;
4097 	}
4098 out:
4099 	if (ret) {
4100 		ufshcd_print_host_state(hba);
4101 		ufshcd_print_pwr_info(hba);
4102 		ufshcd_print_evt_hist(hba);
4103 	}
4104 
4105 	spin_lock_irqsave(hba->host->host_lock, flags);
4106 	hba->active_uic_cmd = NULL;
4107 	hba->uic_async_done = NULL;
4108 	if (reenable_intr)
4109 		ufshcd_enable_intr(hba, UIC_COMMAND_COMPL);
4110 	if (ret) {
4111 		ufshcd_set_link_broken(hba);
4112 		ufshcd_schedule_eh_work(hba);
4113 	}
4114 out_unlock:
4115 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4116 	mutex_unlock(&hba->uic_cmd_mutex);
4117 
4118 	return ret;
4119 }
4120 
4121 /**
4122  * ufshcd_uic_change_pwr_mode - Perform the UIC power mode chage
4123  *				using DME_SET primitives.
4124  * @hba: per adapter instance
4125  * @mode: powr mode value
4126  *
4127  * Returns 0 on success, non-zero value on failure
4128  */
4129 int ufshcd_uic_change_pwr_mode(struct ufs_hba *hba, u8 mode)
4130 {
4131 	struct uic_command uic_cmd = {0};
4132 	int ret;
4133 
4134 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_PA_RXHSUNTERMCAP) {
4135 		ret = ufshcd_dme_set(hba,
4136 				UIC_ARG_MIB_SEL(PA_RXHSUNTERMCAP, 0), 1);
4137 		if (ret) {
4138 			dev_err(hba->dev, "%s: failed to enable PA_RXHSUNTERMCAP ret %d\n",
4139 						__func__, ret);
4140 			goto out;
4141 		}
4142 	}
4143 
4144 	uic_cmd.command = UIC_CMD_DME_SET;
4145 	uic_cmd.argument1 = UIC_ARG_MIB(PA_PWRMODE);
4146 	uic_cmd.argument3 = mode;
4147 	ufshcd_hold(hba, false);
4148 	ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4149 	ufshcd_release(hba);
4150 
4151 out:
4152 	return ret;
4153 }
4154 EXPORT_SYMBOL_GPL(ufshcd_uic_change_pwr_mode);
4155 
4156 int ufshcd_link_recovery(struct ufs_hba *hba)
4157 {
4158 	int ret;
4159 	unsigned long flags;
4160 
4161 	spin_lock_irqsave(hba->host->host_lock, flags);
4162 	hba->ufshcd_state = UFSHCD_STATE_RESET;
4163 	ufshcd_set_eh_in_progress(hba);
4164 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4165 
4166 	/* Reset the attached device */
4167 	ufshcd_device_reset(hba);
4168 
4169 	ret = ufshcd_host_reset_and_restore(hba);
4170 
4171 	spin_lock_irqsave(hba->host->host_lock, flags);
4172 	if (ret)
4173 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
4174 	ufshcd_clear_eh_in_progress(hba);
4175 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4176 
4177 	if (ret)
4178 		dev_err(hba->dev, "%s: link recovery failed, err %d",
4179 			__func__, ret);
4180 
4181 	return ret;
4182 }
4183 EXPORT_SYMBOL_GPL(ufshcd_link_recovery);
4184 
4185 int ufshcd_uic_hibern8_enter(struct ufs_hba *hba)
4186 {
4187 	int ret;
4188 	struct uic_command uic_cmd = {0};
4189 	ktime_t start = ktime_get();
4190 
4191 	ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_ENTER, PRE_CHANGE);
4192 
4193 	uic_cmd.command = UIC_CMD_DME_HIBER_ENTER;
4194 	ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4195 	trace_ufshcd_profile_hibern8(dev_name(hba->dev), "enter",
4196 			     ktime_to_us(ktime_sub(ktime_get(), start)), ret);
4197 
4198 	if (ret)
4199 		dev_err(hba->dev, "%s: hibern8 enter failed. ret = %d\n",
4200 			__func__, ret);
4201 	else
4202 		ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_ENTER,
4203 								POST_CHANGE);
4204 
4205 	return ret;
4206 }
4207 EXPORT_SYMBOL_GPL(ufshcd_uic_hibern8_enter);
4208 
4209 int ufshcd_uic_hibern8_exit(struct ufs_hba *hba)
4210 {
4211 	struct uic_command uic_cmd = {0};
4212 	int ret;
4213 	ktime_t start = ktime_get();
4214 
4215 	ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_EXIT, PRE_CHANGE);
4216 
4217 	uic_cmd.command = UIC_CMD_DME_HIBER_EXIT;
4218 	ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4219 	trace_ufshcd_profile_hibern8(dev_name(hba->dev), "exit",
4220 			     ktime_to_us(ktime_sub(ktime_get(), start)), ret);
4221 
4222 	if (ret) {
4223 		dev_err(hba->dev, "%s: hibern8 exit failed. ret = %d\n",
4224 			__func__, ret);
4225 	} else {
4226 		ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_EXIT,
4227 								POST_CHANGE);
4228 		hba->ufs_stats.last_hibern8_exit_tstamp = local_clock();
4229 		hba->ufs_stats.hibern8_exit_cnt++;
4230 	}
4231 
4232 	return ret;
4233 }
4234 EXPORT_SYMBOL_GPL(ufshcd_uic_hibern8_exit);
4235 
4236 void ufshcd_auto_hibern8_update(struct ufs_hba *hba, u32 ahit)
4237 {
4238 	unsigned long flags;
4239 	bool update = false;
4240 
4241 	if (!ufshcd_is_auto_hibern8_supported(hba))
4242 		return;
4243 
4244 	spin_lock_irqsave(hba->host->host_lock, flags);
4245 	if (hba->ahit != ahit) {
4246 		hba->ahit = ahit;
4247 		update = true;
4248 	}
4249 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4250 
4251 	if (update &&
4252 	    !pm_runtime_suspended(&hba->ufs_device_wlun->sdev_gendev)) {
4253 		ufshcd_rpm_get_sync(hba);
4254 		ufshcd_hold(hba, false);
4255 		ufshcd_auto_hibern8_enable(hba);
4256 		ufshcd_release(hba);
4257 		ufshcd_rpm_put_sync(hba);
4258 	}
4259 }
4260 EXPORT_SYMBOL_GPL(ufshcd_auto_hibern8_update);
4261 
4262 void ufshcd_auto_hibern8_enable(struct ufs_hba *hba)
4263 {
4264 	if (!ufshcd_is_auto_hibern8_supported(hba))
4265 		return;
4266 
4267 	ufshcd_writel(hba, hba->ahit, REG_AUTO_HIBERNATE_IDLE_TIMER);
4268 }
4269 
4270  /**
4271  * ufshcd_init_pwr_info - setting the POR (power on reset)
4272  * values in hba power info
4273  * @hba: per-adapter instance
4274  */
4275 static void ufshcd_init_pwr_info(struct ufs_hba *hba)
4276 {
4277 	hba->pwr_info.gear_rx = UFS_PWM_G1;
4278 	hba->pwr_info.gear_tx = UFS_PWM_G1;
4279 	hba->pwr_info.lane_rx = 1;
4280 	hba->pwr_info.lane_tx = 1;
4281 	hba->pwr_info.pwr_rx = SLOWAUTO_MODE;
4282 	hba->pwr_info.pwr_tx = SLOWAUTO_MODE;
4283 	hba->pwr_info.hs_rate = 0;
4284 }
4285 
4286 /**
4287  * ufshcd_get_max_pwr_mode - reads the max power mode negotiated with device
4288  * @hba: per-adapter instance
4289  */
4290 static int ufshcd_get_max_pwr_mode(struct ufs_hba *hba)
4291 {
4292 	struct ufs_pa_layer_attr *pwr_info = &hba->max_pwr_info.info;
4293 
4294 	if (hba->max_pwr_info.is_valid)
4295 		return 0;
4296 
4297 	if (hba->quirks & UFSHCD_QUIRK_HIBERN_FASTAUTO) {
4298 		pwr_info->pwr_tx = FASTAUTO_MODE;
4299 		pwr_info->pwr_rx = FASTAUTO_MODE;
4300 	} else {
4301 		pwr_info->pwr_tx = FAST_MODE;
4302 		pwr_info->pwr_rx = FAST_MODE;
4303 	}
4304 	pwr_info->hs_rate = PA_HS_MODE_B;
4305 
4306 	/* Get the connected lane count */
4307 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDRXDATALANES),
4308 			&pwr_info->lane_rx);
4309 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4310 			&pwr_info->lane_tx);
4311 
4312 	if (!pwr_info->lane_rx || !pwr_info->lane_tx) {
4313 		dev_err(hba->dev, "%s: invalid connected lanes value. rx=%d, tx=%d\n",
4314 				__func__,
4315 				pwr_info->lane_rx,
4316 				pwr_info->lane_tx);
4317 		return -EINVAL;
4318 	}
4319 
4320 	/*
4321 	 * First, get the maximum gears of HS speed.
4322 	 * If a zero value, it means there is no HSGEAR capability.
4323 	 * Then, get the maximum gears of PWM speed.
4324 	 */
4325 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_MAXRXHSGEAR), &pwr_info->gear_rx);
4326 	if (!pwr_info->gear_rx) {
4327 		ufshcd_dme_get(hba, UIC_ARG_MIB(PA_MAXRXPWMGEAR),
4328 				&pwr_info->gear_rx);
4329 		if (!pwr_info->gear_rx) {
4330 			dev_err(hba->dev, "%s: invalid max pwm rx gear read = %d\n",
4331 				__func__, pwr_info->gear_rx);
4332 			return -EINVAL;
4333 		}
4334 		pwr_info->pwr_rx = SLOW_MODE;
4335 	}
4336 
4337 	ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_MAXRXHSGEAR),
4338 			&pwr_info->gear_tx);
4339 	if (!pwr_info->gear_tx) {
4340 		ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_MAXRXPWMGEAR),
4341 				&pwr_info->gear_tx);
4342 		if (!pwr_info->gear_tx) {
4343 			dev_err(hba->dev, "%s: invalid max pwm tx gear read = %d\n",
4344 				__func__, pwr_info->gear_tx);
4345 			return -EINVAL;
4346 		}
4347 		pwr_info->pwr_tx = SLOW_MODE;
4348 	}
4349 
4350 	hba->max_pwr_info.is_valid = true;
4351 	return 0;
4352 }
4353 
4354 static int ufshcd_change_power_mode(struct ufs_hba *hba,
4355 			     struct ufs_pa_layer_attr *pwr_mode)
4356 {
4357 	int ret;
4358 
4359 	/* if already configured to the requested pwr_mode */
4360 	if (!hba->force_pmc &&
4361 	    pwr_mode->gear_rx == hba->pwr_info.gear_rx &&
4362 	    pwr_mode->gear_tx == hba->pwr_info.gear_tx &&
4363 	    pwr_mode->lane_rx == hba->pwr_info.lane_rx &&
4364 	    pwr_mode->lane_tx == hba->pwr_info.lane_tx &&
4365 	    pwr_mode->pwr_rx == hba->pwr_info.pwr_rx &&
4366 	    pwr_mode->pwr_tx == hba->pwr_info.pwr_tx &&
4367 	    pwr_mode->hs_rate == hba->pwr_info.hs_rate) {
4368 		dev_dbg(hba->dev, "%s: power already configured\n", __func__);
4369 		return 0;
4370 	}
4371 
4372 	/*
4373 	 * Configure attributes for power mode change with below.
4374 	 * - PA_RXGEAR, PA_ACTIVERXDATALANES, PA_RXTERMINATION,
4375 	 * - PA_TXGEAR, PA_ACTIVETXDATALANES, PA_TXTERMINATION,
4376 	 * - PA_HSSERIES
4377 	 */
4378 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXGEAR), pwr_mode->gear_rx);
4379 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVERXDATALANES),
4380 			pwr_mode->lane_rx);
4381 	if (pwr_mode->pwr_rx == FASTAUTO_MODE ||
4382 			pwr_mode->pwr_rx == FAST_MODE)
4383 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), true);
4384 	else
4385 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), false);
4386 
4387 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXGEAR), pwr_mode->gear_tx);
4388 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVETXDATALANES),
4389 			pwr_mode->lane_tx);
4390 	if (pwr_mode->pwr_tx == FASTAUTO_MODE ||
4391 			pwr_mode->pwr_tx == FAST_MODE)
4392 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), true);
4393 	else
4394 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), false);
4395 
4396 	if (pwr_mode->pwr_rx == FASTAUTO_MODE ||
4397 	    pwr_mode->pwr_tx == FASTAUTO_MODE ||
4398 	    pwr_mode->pwr_rx == FAST_MODE ||
4399 	    pwr_mode->pwr_tx == FAST_MODE)
4400 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_HSSERIES),
4401 						pwr_mode->hs_rate);
4402 
4403 	if (!(hba->quirks & UFSHCD_QUIRK_SKIP_DEF_UNIPRO_TIMEOUT_SETTING)) {
4404 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA0),
4405 				DL_FC0ProtectionTimeOutVal_Default);
4406 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA1),
4407 				DL_TC0ReplayTimeOutVal_Default);
4408 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA2),
4409 				DL_AFC0ReqTimeOutVal_Default);
4410 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA3),
4411 				DL_FC1ProtectionTimeOutVal_Default);
4412 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA4),
4413 				DL_TC1ReplayTimeOutVal_Default);
4414 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA5),
4415 				DL_AFC1ReqTimeOutVal_Default);
4416 
4417 		ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalFC0ProtectionTimeOutVal),
4418 				DL_FC0ProtectionTimeOutVal_Default);
4419 		ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalTC0ReplayTimeOutVal),
4420 				DL_TC0ReplayTimeOutVal_Default);
4421 		ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalAFC0ReqTimeOutVal),
4422 				DL_AFC0ReqTimeOutVal_Default);
4423 	}
4424 
4425 	ret = ufshcd_uic_change_pwr_mode(hba, pwr_mode->pwr_rx << 4
4426 			| pwr_mode->pwr_tx);
4427 
4428 	if (ret) {
4429 		dev_err(hba->dev,
4430 			"%s: power mode change failed %d\n", __func__, ret);
4431 	} else {
4432 		ufshcd_vops_pwr_change_notify(hba, POST_CHANGE, NULL,
4433 								pwr_mode);
4434 
4435 		memcpy(&hba->pwr_info, pwr_mode,
4436 			sizeof(struct ufs_pa_layer_attr));
4437 	}
4438 
4439 	return ret;
4440 }
4441 
4442 /**
4443  * ufshcd_config_pwr_mode - configure a new power mode
4444  * @hba: per-adapter instance
4445  * @desired_pwr_mode: desired power configuration
4446  */
4447 int ufshcd_config_pwr_mode(struct ufs_hba *hba,
4448 		struct ufs_pa_layer_attr *desired_pwr_mode)
4449 {
4450 	struct ufs_pa_layer_attr final_params = { 0 };
4451 	int ret;
4452 
4453 	ret = ufshcd_vops_pwr_change_notify(hba, PRE_CHANGE,
4454 					desired_pwr_mode, &final_params);
4455 
4456 	if (ret)
4457 		memcpy(&final_params, desired_pwr_mode, sizeof(final_params));
4458 
4459 	ret = ufshcd_change_power_mode(hba, &final_params);
4460 
4461 	return ret;
4462 }
4463 EXPORT_SYMBOL_GPL(ufshcd_config_pwr_mode);
4464 
4465 /**
4466  * ufshcd_complete_dev_init() - checks device readiness
4467  * @hba: per-adapter instance
4468  *
4469  * Set fDeviceInit flag and poll until device toggles it.
4470  */
4471 static int ufshcd_complete_dev_init(struct ufs_hba *hba)
4472 {
4473 	int err;
4474 	bool flag_res = true;
4475 	ktime_t timeout;
4476 
4477 	err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG,
4478 		QUERY_FLAG_IDN_FDEVICEINIT, 0, NULL);
4479 	if (err) {
4480 		dev_err(hba->dev,
4481 			"%s setting fDeviceInit flag failed with error %d\n",
4482 			__func__, err);
4483 		goto out;
4484 	}
4485 
4486 	/* Poll fDeviceInit flag to be cleared */
4487 	timeout = ktime_add_ms(ktime_get(), FDEVICEINIT_COMPL_TIMEOUT);
4488 	do {
4489 		err = ufshcd_query_flag(hba, UPIU_QUERY_OPCODE_READ_FLAG,
4490 					QUERY_FLAG_IDN_FDEVICEINIT, 0, &flag_res);
4491 		if (!flag_res)
4492 			break;
4493 		usleep_range(500, 1000);
4494 	} while (ktime_before(ktime_get(), timeout));
4495 
4496 	if (err) {
4497 		dev_err(hba->dev,
4498 				"%s reading fDeviceInit flag failed with error %d\n",
4499 				__func__, err);
4500 	} else if (flag_res) {
4501 		dev_err(hba->dev,
4502 				"%s fDeviceInit was not cleared by the device\n",
4503 				__func__);
4504 		err = -EBUSY;
4505 	}
4506 out:
4507 	return err;
4508 }
4509 
4510 /**
4511  * ufshcd_make_hba_operational - Make UFS controller operational
4512  * @hba: per adapter instance
4513  *
4514  * To bring UFS host controller to operational state,
4515  * 1. Enable required interrupts
4516  * 2. Configure interrupt aggregation
4517  * 3. Program UTRL and UTMRL base address
4518  * 4. Configure run-stop-registers
4519  *
4520  * Returns 0 on success, non-zero value on failure
4521  */
4522 int ufshcd_make_hba_operational(struct ufs_hba *hba)
4523 {
4524 	int err = 0;
4525 	u32 reg;
4526 
4527 	/* Enable required interrupts */
4528 	ufshcd_enable_intr(hba, UFSHCD_ENABLE_INTRS);
4529 
4530 	/* Configure interrupt aggregation */
4531 	if (ufshcd_is_intr_aggr_allowed(hba))
4532 		ufshcd_config_intr_aggr(hba, hba->nutrs - 1, INT_AGGR_DEF_TO);
4533 	else
4534 		ufshcd_disable_intr_aggr(hba);
4535 
4536 	/* Configure UTRL and UTMRL base address registers */
4537 	ufshcd_writel(hba, lower_32_bits(hba->utrdl_dma_addr),
4538 			REG_UTP_TRANSFER_REQ_LIST_BASE_L);
4539 	ufshcd_writel(hba, upper_32_bits(hba->utrdl_dma_addr),
4540 			REG_UTP_TRANSFER_REQ_LIST_BASE_H);
4541 	ufshcd_writel(hba, lower_32_bits(hba->utmrdl_dma_addr),
4542 			REG_UTP_TASK_REQ_LIST_BASE_L);
4543 	ufshcd_writel(hba, upper_32_bits(hba->utmrdl_dma_addr),
4544 			REG_UTP_TASK_REQ_LIST_BASE_H);
4545 
4546 	/*
4547 	 * Make sure base address and interrupt setup are updated before
4548 	 * enabling the run/stop registers below.
4549 	 */
4550 	wmb();
4551 
4552 	/*
4553 	 * UCRDY, UTMRLDY and UTRLRDY bits must be 1
4554 	 */
4555 	reg = ufshcd_readl(hba, REG_CONTROLLER_STATUS);
4556 	if (!(ufshcd_get_lists_status(reg))) {
4557 		ufshcd_enable_run_stop_reg(hba);
4558 	} else {
4559 		dev_err(hba->dev,
4560 			"Host controller not ready to process requests");
4561 		err = -EIO;
4562 	}
4563 
4564 	return err;
4565 }
4566 EXPORT_SYMBOL_GPL(ufshcd_make_hba_operational);
4567 
4568 /**
4569  * ufshcd_hba_stop - Send controller to reset state
4570  * @hba: per adapter instance
4571  */
4572 void ufshcd_hba_stop(struct ufs_hba *hba)
4573 {
4574 	unsigned long flags;
4575 	int err;
4576 
4577 	/*
4578 	 * Obtain the host lock to prevent that the controller is disabled
4579 	 * while the UFS interrupt handler is active on another CPU.
4580 	 */
4581 	spin_lock_irqsave(hba->host->host_lock, flags);
4582 	ufshcd_writel(hba, CONTROLLER_DISABLE,  REG_CONTROLLER_ENABLE);
4583 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4584 
4585 	err = ufshcd_wait_for_register(hba, REG_CONTROLLER_ENABLE,
4586 					CONTROLLER_ENABLE, CONTROLLER_DISABLE,
4587 					10, 1);
4588 	if (err)
4589 		dev_err(hba->dev, "%s: Controller disable failed\n", __func__);
4590 }
4591 EXPORT_SYMBOL_GPL(ufshcd_hba_stop);
4592 
4593 /**
4594  * ufshcd_hba_execute_hce - initialize the controller
4595  * @hba: per adapter instance
4596  *
4597  * The controller resets itself and controller firmware initialization
4598  * sequence kicks off. When controller is ready it will set
4599  * the Host Controller Enable bit to 1.
4600  *
4601  * Returns 0 on success, non-zero value on failure
4602  */
4603 static int ufshcd_hba_execute_hce(struct ufs_hba *hba)
4604 {
4605 	int retry_outer = 3;
4606 	int retry_inner;
4607 
4608 start:
4609 	if (ufshcd_is_hba_active(hba))
4610 		/* change controller state to "reset state" */
4611 		ufshcd_hba_stop(hba);
4612 
4613 	/* UniPro link is disabled at this point */
4614 	ufshcd_set_link_off(hba);
4615 
4616 	ufshcd_vops_hce_enable_notify(hba, PRE_CHANGE);
4617 
4618 	/* start controller initialization sequence */
4619 	ufshcd_hba_start(hba);
4620 
4621 	/*
4622 	 * To initialize a UFS host controller HCE bit must be set to 1.
4623 	 * During initialization the HCE bit value changes from 1->0->1.
4624 	 * When the host controller completes initialization sequence
4625 	 * it sets the value of HCE bit to 1. The same HCE bit is read back
4626 	 * to check if the controller has completed initialization sequence.
4627 	 * So without this delay the value HCE = 1, set in the previous
4628 	 * instruction might be read back.
4629 	 * This delay can be changed based on the controller.
4630 	 */
4631 	ufshcd_delay_us(hba->vps->hba_enable_delay_us, 100);
4632 
4633 	/* wait for the host controller to complete initialization */
4634 	retry_inner = 50;
4635 	while (!ufshcd_is_hba_active(hba)) {
4636 		if (retry_inner) {
4637 			retry_inner--;
4638 		} else {
4639 			dev_err(hba->dev,
4640 				"Controller enable failed\n");
4641 			if (retry_outer) {
4642 				retry_outer--;
4643 				goto start;
4644 			}
4645 			return -EIO;
4646 		}
4647 		usleep_range(1000, 1100);
4648 	}
4649 
4650 	/* enable UIC related interrupts */
4651 	ufshcd_enable_intr(hba, UFSHCD_UIC_MASK);
4652 
4653 	ufshcd_vops_hce_enable_notify(hba, POST_CHANGE);
4654 
4655 	return 0;
4656 }
4657 
4658 int ufshcd_hba_enable(struct ufs_hba *hba)
4659 {
4660 	int ret;
4661 
4662 	if (hba->quirks & UFSHCI_QUIRK_BROKEN_HCE) {
4663 		ufshcd_set_link_off(hba);
4664 		ufshcd_vops_hce_enable_notify(hba, PRE_CHANGE);
4665 
4666 		/* enable UIC related interrupts */
4667 		ufshcd_enable_intr(hba, UFSHCD_UIC_MASK);
4668 		ret = ufshcd_dme_reset(hba);
4669 		if (!ret) {
4670 			ret = ufshcd_dme_enable(hba);
4671 			if (!ret)
4672 				ufshcd_vops_hce_enable_notify(hba, POST_CHANGE);
4673 			if (ret)
4674 				dev_err(hba->dev,
4675 					"Host controller enable failed with non-hce\n");
4676 		}
4677 	} else {
4678 		ret = ufshcd_hba_execute_hce(hba);
4679 	}
4680 
4681 	return ret;
4682 }
4683 EXPORT_SYMBOL_GPL(ufshcd_hba_enable);
4684 
4685 static int ufshcd_disable_tx_lcc(struct ufs_hba *hba, bool peer)
4686 {
4687 	int tx_lanes = 0, i, err = 0;
4688 
4689 	if (!peer)
4690 		ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4691 			       &tx_lanes);
4692 	else
4693 		ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4694 				    &tx_lanes);
4695 	for (i = 0; i < tx_lanes; i++) {
4696 		if (!peer)
4697 			err = ufshcd_dme_set(hba,
4698 				UIC_ARG_MIB_SEL(TX_LCC_ENABLE,
4699 					UIC_ARG_MPHY_TX_GEN_SEL_INDEX(i)),
4700 					0);
4701 		else
4702 			err = ufshcd_dme_peer_set(hba,
4703 				UIC_ARG_MIB_SEL(TX_LCC_ENABLE,
4704 					UIC_ARG_MPHY_TX_GEN_SEL_INDEX(i)),
4705 					0);
4706 		if (err) {
4707 			dev_err(hba->dev, "%s: TX LCC Disable failed, peer = %d, lane = %d, err = %d",
4708 				__func__, peer, i, err);
4709 			break;
4710 		}
4711 	}
4712 
4713 	return err;
4714 }
4715 
4716 static inline int ufshcd_disable_device_tx_lcc(struct ufs_hba *hba)
4717 {
4718 	return ufshcd_disable_tx_lcc(hba, true);
4719 }
4720 
4721 void ufshcd_update_evt_hist(struct ufs_hba *hba, u32 id, u32 val)
4722 {
4723 	struct ufs_event_hist *e;
4724 
4725 	if (id >= UFS_EVT_CNT)
4726 		return;
4727 
4728 	e = &hba->ufs_stats.event[id];
4729 	e->val[e->pos] = val;
4730 	e->tstamp[e->pos] = local_clock();
4731 	e->cnt += 1;
4732 	e->pos = (e->pos + 1) % UFS_EVENT_HIST_LENGTH;
4733 
4734 	ufshcd_vops_event_notify(hba, id, &val);
4735 }
4736 EXPORT_SYMBOL_GPL(ufshcd_update_evt_hist);
4737 
4738 /**
4739  * ufshcd_link_startup - Initialize unipro link startup
4740  * @hba: per adapter instance
4741  *
4742  * Returns 0 for success, non-zero in case of failure
4743  */
4744 static int ufshcd_link_startup(struct ufs_hba *hba)
4745 {
4746 	int ret;
4747 	int retries = DME_LINKSTARTUP_RETRIES;
4748 	bool link_startup_again = false;
4749 
4750 	/*
4751 	 * If UFS device isn't active then we will have to issue link startup
4752 	 * 2 times to make sure the device state move to active.
4753 	 */
4754 	if (!ufshcd_is_ufs_dev_active(hba))
4755 		link_startup_again = true;
4756 
4757 link_startup:
4758 	do {
4759 		ufshcd_vops_link_startup_notify(hba, PRE_CHANGE);
4760 
4761 		ret = ufshcd_dme_link_startup(hba);
4762 
4763 		/* check if device is detected by inter-connect layer */
4764 		if (!ret && !ufshcd_is_device_present(hba)) {
4765 			ufshcd_update_evt_hist(hba,
4766 					       UFS_EVT_LINK_STARTUP_FAIL,
4767 					       0);
4768 			dev_err(hba->dev, "%s: Device not present\n", __func__);
4769 			ret = -ENXIO;
4770 			goto out;
4771 		}
4772 
4773 		/*
4774 		 * DME link lost indication is only received when link is up,
4775 		 * but we can't be sure if the link is up until link startup
4776 		 * succeeds. So reset the local Uni-Pro and try again.
4777 		 */
4778 		if (ret && retries && ufshcd_hba_enable(hba)) {
4779 			ufshcd_update_evt_hist(hba,
4780 					       UFS_EVT_LINK_STARTUP_FAIL,
4781 					       (u32)ret);
4782 			goto out;
4783 		}
4784 	} while (ret && retries--);
4785 
4786 	if (ret) {
4787 		/* failed to get the link up... retire */
4788 		ufshcd_update_evt_hist(hba,
4789 				       UFS_EVT_LINK_STARTUP_FAIL,
4790 				       (u32)ret);
4791 		goto out;
4792 	}
4793 
4794 	if (link_startup_again) {
4795 		link_startup_again = false;
4796 		retries = DME_LINKSTARTUP_RETRIES;
4797 		goto link_startup;
4798 	}
4799 
4800 	/* Mark that link is up in PWM-G1, 1-lane, SLOW-AUTO mode */
4801 	ufshcd_init_pwr_info(hba);
4802 	ufshcd_print_pwr_info(hba);
4803 
4804 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_LCC) {
4805 		ret = ufshcd_disable_device_tx_lcc(hba);
4806 		if (ret)
4807 			goto out;
4808 	}
4809 
4810 	/* Include any host controller configuration via UIC commands */
4811 	ret = ufshcd_vops_link_startup_notify(hba, POST_CHANGE);
4812 	if (ret)
4813 		goto out;
4814 
4815 	/* Clear UECPA once due to LINERESET has happened during LINK_STARTUP */
4816 	ufshcd_readl(hba, REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER);
4817 	ret = ufshcd_make_hba_operational(hba);
4818 out:
4819 	if (ret) {
4820 		dev_err(hba->dev, "link startup failed %d\n", ret);
4821 		ufshcd_print_host_state(hba);
4822 		ufshcd_print_pwr_info(hba);
4823 		ufshcd_print_evt_hist(hba);
4824 	}
4825 	return ret;
4826 }
4827 
4828 /**
4829  * ufshcd_verify_dev_init() - Verify device initialization
4830  * @hba: per-adapter instance
4831  *
4832  * Send NOP OUT UPIU and wait for NOP IN response to check whether the
4833  * device Transport Protocol (UTP) layer is ready after a reset.
4834  * If the UTP layer at the device side is not initialized, it may
4835  * not respond with NOP IN UPIU within timeout of %NOP_OUT_TIMEOUT
4836  * and we retry sending NOP OUT for %NOP_OUT_RETRIES iterations.
4837  */
4838 static int ufshcd_verify_dev_init(struct ufs_hba *hba)
4839 {
4840 	int err = 0;
4841 	int retries;
4842 
4843 	ufshcd_hold(hba, false);
4844 	mutex_lock(&hba->dev_cmd.lock);
4845 	for (retries = NOP_OUT_RETRIES; retries > 0; retries--) {
4846 		err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_NOP,
4847 					  hba->nop_out_timeout);
4848 
4849 		if (!err || err == -ETIMEDOUT)
4850 			break;
4851 
4852 		dev_dbg(hba->dev, "%s: error %d retrying\n", __func__, err);
4853 	}
4854 	mutex_unlock(&hba->dev_cmd.lock);
4855 	ufshcd_release(hba);
4856 
4857 	if (err)
4858 		dev_err(hba->dev, "%s: NOP OUT failed %d\n", __func__, err);
4859 	return err;
4860 }
4861 
4862 /**
4863  * ufshcd_set_queue_depth - set lun queue depth
4864  * @sdev: pointer to SCSI device
4865  *
4866  * Read bLUQueueDepth value and activate scsi tagged command
4867  * queueing. For WLUN, queue depth is set to 1. For best-effort
4868  * cases (bLUQueueDepth = 0) the queue depth is set to a maximum
4869  * value that host can queue.
4870  */
4871 static void ufshcd_set_queue_depth(struct scsi_device *sdev)
4872 {
4873 	int ret = 0;
4874 	u8 lun_qdepth;
4875 	struct ufs_hba *hba;
4876 
4877 	hba = shost_priv(sdev->host);
4878 
4879 	lun_qdepth = hba->nutrs;
4880 	ret = ufshcd_read_unit_desc_param(hba,
4881 					  ufshcd_scsi_to_upiu_lun(sdev->lun),
4882 					  UNIT_DESC_PARAM_LU_Q_DEPTH,
4883 					  &lun_qdepth,
4884 					  sizeof(lun_qdepth));
4885 
4886 	/* Some WLUN doesn't support unit descriptor */
4887 	if (ret == -EOPNOTSUPP)
4888 		lun_qdepth = 1;
4889 	else if (!lun_qdepth)
4890 		/* eventually, we can figure out the real queue depth */
4891 		lun_qdepth = hba->nutrs;
4892 	else
4893 		lun_qdepth = min_t(int, lun_qdepth, hba->nutrs);
4894 
4895 	dev_dbg(hba->dev, "%s: activate tcq with queue depth %d\n",
4896 			__func__, lun_qdepth);
4897 	scsi_change_queue_depth(sdev, lun_qdepth);
4898 }
4899 
4900 /*
4901  * ufshcd_get_lu_wp - returns the "b_lu_write_protect" from UNIT DESCRIPTOR
4902  * @hba: per-adapter instance
4903  * @lun: UFS device lun id
4904  * @b_lu_write_protect: pointer to buffer to hold the LU's write protect info
4905  *
4906  * Returns 0 in case of success and b_lu_write_protect status would be returned
4907  * @b_lu_write_protect parameter.
4908  * Returns -ENOTSUPP if reading b_lu_write_protect is not supported.
4909  * Returns -EINVAL in case of invalid parameters passed to this function.
4910  */
4911 static int ufshcd_get_lu_wp(struct ufs_hba *hba,
4912 			    u8 lun,
4913 			    u8 *b_lu_write_protect)
4914 {
4915 	int ret;
4916 
4917 	if (!b_lu_write_protect)
4918 		ret = -EINVAL;
4919 	/*
4920 	 * According to UFS device spec, RPMB LU can't be write
4921 	 * protected so skip reading bLUWriteProtect parameter for
4922 	 * it. For other W-LUs, UNIT DESCRIPTOR is not available.
4923 	 */
4924 	else if (lun >= hba->dev_info.max_lu_supported)
4925 		ret = -ENOTSUPP;
4926 	else
4927 		ret = ufshcd_read_unit_desc_param(hba,
4928 					  lun,
4929 					  UNIT_DESC_PARAM_LU_WR_PROTECT,
4930 					  b_lu_write_protect,
4931 					  sizeof(*b_lu_write_protect));
4932 	return ret;
4933 }
4934 
4935 /**
4936  * ufshcd_get_lu_power_on_wp_status - get LU's power on write protect
4937  * status
4938  * @hba: per-adapter instance
4939  * @sdev: pointer to SCSI device
4940  *
4941  */
4942 static inline void ufshcd_get_lu_power_on_wp_status(struct ufs_hba *hba,
4943 						    const struct scsi_device *sdev)
4944 {
4945 	if (hba->dev_info.f_power_on_wp_en &&
4946 	    !hba->dev_info.is_lu_power_on_wp) {
4947 		u8 b_lu_write_protect;
4948 
4949 		if (!ufshcd_get_lu_wp(hba, ufshcd_scsi_to_upiu_lun(sdev->lun),
4950 				      &b_lu_write_protect) &&
4951 		    (b_lu_write_protect == UFS_LU_POWER_ON_WP))
4952 			hba->dev_info.is_lu_power_on_wp = true;
4953 	}
4954 }
4955 
4956 /**
4957  * ufshcd_setup_links - associate link b/w device wlun and other luns
4958  * @sdev: pointer to SCSI device
4959  * @hba: pointer to ufs hba
4960  */
4961 static void ufshcd_setup_links(struct ufs_hba *hba, struct scsi_device *sdev)
4962 {
4963 	struct device_link *link;
4964 
4965 	/*
4966 	 * Device wlun is the supplier & rest of the luns are consumers.
4967 	 * This ensures that device wlun suspends after all other luns.
4968 	 */
4969 	if (hba->ufs_device_wlun) {
4970 		link = device_link_add(&sdev->sdev_gendev,
4971 				       &hba->ufs_device_wlun->sdev_gendev,
4972 				       DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE);
4973 		if (!link) {
4974 			dev_err(&sdev->sdev_gendev, "Failed establishing link - %s\n",
4975 				dev_name(&hba->ufs_device_wlun->sdev_gendev));
4976 			return;
4977 		}
4978 		hba->luns_avail--;
4979 		/* Ignore REPORT_LUN wlun probing */
4980 		if (hba->luns_avail == 1) {
4981 			ufshcd_rpm_put(hba);
4982 			return;
4983 		}
4984 	} else {
4985 		/*
4986 		 * Device wlun is probed. The assumption is that WLUNs are
4987 		 * scanned before other LUNs.
4988 		 */
4989 		hba->luns_avail--;
4990 	}
4991 }
4992 
4993 /**
4994  * ufshcd_slave_alloc - handle initial SCSI device configurations
4995  * @sdev: pointer to SCSI device
4996  *
4997  * Returns success
4998  */
4999 static int ufshcd_slave_alloc(struct scsi_device *sdev)
5000 {
5001 	struct ufs_hba *hba;
5002 
5003 	hba = shost_priv(sdev->host);
5004 
5005 	/* Mode sense(6) is not supported by UFS, so use Mode sense(10) */
5006 	sdev->use_10_for_ms = 1;
5007 
5008 	/* DBD field should be set to 1 in mode sense(10) */
5009 	sdev->set_dbd_for_ms = 1;
5010 
5011 	/* allow SCSI layer to restart the device in case of errors */
5012 	sdev->allow_restart = 1;
5013 
5014 	/* REPORT SUPPORTED OPERATION CODES is not supported */
5015 	sdev->no_report_opcodes = 1;
5016 
5017 	/* WRITE_SAME command is not supported */
5018 	sdev->no_write_same = 1;
5019 
5020 	ufshcd_set_queue_depth(sdev);
5021 
5022 	ufshcd_get_lu_power_on_wp_status(hba, sdev);
5023 
5024 	ufshcd_setup_links(hba, sdev);
5025 
5026 	return 0;
5027 }
5028 
5029 /**
5030  * ufshcd_change_queue_depth - change queue depth
5031  * @sdev: pointer to SCSI device
5032  * @depth: required depth to set
5033  *
5034  * Change queue depth and make sure the max. limits are not crossed.
5035  */
5036 static int ufshcd_change_queue_depth(struct scsi_device *sdev, int depth)
5037 {
5038 	return scsi_change_queue_depth(sdev, min(depth, sdev->host->can_queue));
5039 }
5040 
5041 static void ufshcd_hpb_destroy(struct ufs_hba *hba, struct scsi_device *sdev)
5042 {
5043 	/* skip well-known LU */
5044 	if ((sdev->lun >= UFS_UPIU_MAX_UNIT_NUM_ID) ||
5045 	    !(hba->dev_info.hpb_enabled) || !ufshpb_is_allowed(hba))
5046 		return;
5047 
5048 	ufshpb_destroy_lu(hba, sdev);
5049 }
5050 
5051 static void ufshcd_hpb_configure(struct ufs_hba *hba, struct scsi_device *sdev)
5052 {
5053 	/* skip well-known LU */
5054 	if ((sdev->lun >= UFS_UPIU_MAX_UNIT_NUM_ID) ||
5055 	    !(hba->dev_info.hpb_enabled) || !ufshpb_is_allowed(hba))
5056 		return;
5057 
5058 	ufshpb_init_hpb_lu(hba, sdev);
5059 }
5060 
5061 /**
5062  * ufshcd_slave_configure - adjust SCSI device configurations
5063  * @sdev: pointer to SCSI device
5064  */
5065 static int ufshcd_slave_configure(struct scsi_device *sdev)
5066 {
5067 	struct ufs_hba *hba = shost_priv(sdev->host);
5068 	struct request_queue *q = sdev->request_queue;
5069 
5070 	ufshcd_hpb_configure(hba, sdev);
5071 
5072 	blk_queue_update_dma_pad(q, PRDT_DATA_BYTE_COUNT_PAD - 1);
5073 	if (hba->quirks & UFSHCD_QUIRK_ALIGN_SG_WITH_PAGE_SIZE)
5074 		blk_queue_update_dma_alignment(q, PAGE_SIZE - 1);
5075 	/*
5076 	 * Block runtime-pm until all consumers are added.
5077 	 * Refer ufshcd_setup_links().
5078 	 */
5079 	if (is_device_wlun(sdev))
5080 		pm_runtime_get_noresume(&sdev->sdev_gendev);
5081 	else if (ufshcd_is_rpm_autosuspend_allowed(hba))
5082 		sdev->rpm_autosuspend = 1;
5083 	/*
5084 	 * Do not print messages during runtime PM to avoid never-ending cycles
5085 	 * of messages written back to storage by user space causing runtime
5086 	 * resume, causing more messages and so on.
5087 	 */
5088 	sdev->silence_suspend = 1;
5089 
5090 	ufshcd_crypto_register(hba, q);
5091 
5092 	return 0;
5093 }
5094 
5095 /**
5096  * ufshcd_slave_destroy - remove SCSI device configurations
5097  * @sdev: pointer to SCSI device
5098  */
5099 static void ufshcd_slave_destroy(struct scsi_device *sdev)
5100 {
5101 	struct ufs_hba *hba;
5102 	unsigned long flags;
5103 
5104 	hba = shost_priv(sdev->host);
5105 
5106 	ufshcd_hpb_destroy(hba, sdev);
5107 
5108 	/* Drop the reference as it won't be needed anymore */
5109 	if (ufshcd_scsi_to_upiu_lun(sdev->lun) == UFS_UPIU_UFS_DEVICE_WLUN) {
5110 		spin_lock_irqsave(hba->host->host_lock, flags);
5111 		hba->ufs_device_wlun = NULL;
5112 		spin_unlock_irqrestore(hba->host->host_lock, flags);
5113 	} else if (hba->ufs_device_wlun) {
5114 		struct device *supplier = NULL;
5115 
5116 		/* Ensure UFS Device WLUN exists and does not disappear */
5117 		spin_lock_irqsave(hba->host->host_lock, flags);
5118 		if (hba->ufs_device_wlun) {
5119 			supplier = &hba->ufs_device_wlun->sdev_gendev;
5120 			get_device(supplier);
5121 		}
5122 		spin_unlock_irqrestore(hba->host->host_lock, flags);
5123 
5124 		if (supplier) {
5125 			/*
5126 			 * If a LUN fails to probe (e.g. absent BOOT WLUN), the
5127 			 * device will not have been registered but can still
5128 			 * have a device link holding a reference to the device.
5129 			 */
5130 			device_link_remove(&sdev->sdev_gendev, supplier);
5131 			put_device(supplier);
5132 		}
5133 	}
5134 }
5135 
5136 /**
5137  * ufshcd_scsi_cmd_status - Update SCSI command result based on SCSI status
5138  * @lrbp: pointer to local reference block of completed command
5139  * @scsi_status: SCSI command status
5140  *
5141  * Returns value base on SCSI command status
5142  */
5143 static inline int
5144 ufshcd_scsi_cmd_status(struct ufshcd_lrb *lrbp, int scsi_status)
5145 {
5146 	int result = 0;
5147 
5148 	switch (scsi_status) {
5149 	case SAM_STAT_CHECK_CONDITION:
5150 		ufshcd_copy_sense_data(lrbp);
5151 		fallthrough;
5152 	case SAM_STAT_GOOD:
5153 		result |= DID_OK << 16 | scsi_status;
5154 		break;
5155 	case SAM_STAT_TASK_SET_FULL:
5156 	case SAM_STAT_BUSY:
5157 	case SAM_STAT_TASK_ABORTED:
5158 		ufshcd_copy_sense_data(lrbp);
5159 		result |= scsi_status;
5160 		break;
5161 	default:
5162 		result |= DID_ERROR << 16;
5163 		break;
5164 	} /* end of switch */
5165 
5166 	return result;
5167 }
5168 
5169 /**
5170  * ufshcd_transfer_rsp_status - Get overall status of the response
5171  * @hba: per adapter instance
5172  * @lrbp: pointer to local reference block of completed command
5173  *
5174  * Returns result of the command to notify SCSI midlayer
5175  */
5176 static inline int
5177 ufshcd_transfer_rsp_status(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
5178 {
5179 	int result = 0;
5180 	int scsi_status;
5181 	enum utp_ocs ocs;
5182 
5183 	/* overall command status of utrd */
5184 	ocs = ufshcd_get_tr_ocs(lrbp);
5185 
5186 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_OCS_FATAL_ERROR) {
5187 		if (be32_to_cpu(lrbp->ucd_rsp_ptr->header.dword_1) &
5188 					MASK_RSP_UPIU_RESULT)
5189 			ocs = OCS_SUCCESS;
5190 	}
5191 
5192 	switch (ocs) {
5193 	case OCS_SUCCESS:
5194 		result = ufshcd_get_req_rsp(lrbp->ucd_rsp_ptr);
5195 		hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
5196 		switch (result) {
5197 		case UPIU_TRANSACTION_RESPONSE:
5198 			/*
5199 			 * get the response UPIU result to extract
5200 			 * the SCSI command status
5201 			 */
5202 			result = ufshcd_get_rsp_upiu_result(lrbp->ucd_rsp_ptr);
5203 
5204 			/*
5205 			 * get the result based on SCSI status response
5206 			 * to notify the SCSI midlayer of the command status
5207 			 */
5208 			scsi_status = result & MASK_SCSI_STATUS;
5209 			result = ufshcd_scsi_cmd_status(lrbp, scsi_status);
5210 
5211 			/*
5212 			 * Currently we are only supporting BKOPs exception
5213 			 * events hence we can ignore BKOPs exception event
5214 			 * during power management callbacks. BKOPs exception
5215 			 * event is not expected to be raised in runtime suspend
5216 			 * callback as it allows the urgent bkops.
5217 			 * During system suspend, we are anyway forcefully
5218 			 * disabling the bkops and if urgent bkops is needed
5219 			 * it will be enabled on system resume. Long term
5220 			 * solution could be to abort the system suspend if
5221 			 * UFS device needs urgent BKOPs.
5222 			 */
5223 			if (!hba->pm_op_in_progress &&
5224 			    !ufshcd_eh_in_progress(hba) &&
5225 			    ufshcd_is_exception_event(lrbp->ucd_rsp_ptr))
5226 				/* Flushed in suspend */
5227 				schedule_work(&hba->eeh_work);
5228 
5229 			if (scsi_status == SAM_STAT_GOOD)
5230 				ufshpb_rsp_upiu(hba, lrbp);
5231 			break;
5232 		case UPIU_TRANSACTION_REJECT_UPIU:
5233 			/* TODO: handle Reject UPIU Response */
5234 			result = DID_ERROR << 16;
5235 			dev_err(hba->dev,
5236 				"Reject UPIU not fully implemented\n");
5237 			break;
5238 		default:
5239 			dev_err(hba->dev,
5240 				"Unexpected request response code = %x\n",
5241 				result);
5242 			result = DID_ERROR << 16;
5243 			break;
5244 		}
5245 		break;
5246 	case OCS_ABORTED:
5247 		result |= DID_ABORT << 16;
5248 		break;
5249 	case OCS_INVALID_COMMAND_STATUS:
5250 		result |= DID_REQUEUE << 16;
5251 		break;
5252 	case OCS_INVALID_CMD_TABLE_ATTR:
5253 	case OCS_INVALID_PRDT_ATTR:
5254 	case OCS_MISMATCH_DATA_BUF_SIZE:
5255 	case OCS_MISMATCH_RESP_UPIU_SIZE:
5256 	case OCS_PEER_COMM_FAILURE:
5257 	case OCS_FATAL_ERROR:
5258 	case OCS_DEVICE_FATAL_ERROR:
5259 	case OCS_INVALID_CRYPTO_CONFIG:
5260 	case OCS_GENERAL_CRYPTO_ERROR:
5261 	default:
5262 		result |= DID_ERROR << 16;
5263 		dev_err(hba->dev,
5264 				"OCS error from controller = %x for tag %d\n",
5265 				ocs, lrbp->task_tag);
5266 		ufshcd_print_evt_hist(hba);
5267 		ufshcd_print_host_state(hba);
5268 		break;
5269 	} /* end of switch */
5270 
5271 	if ((host_byte(result) != DID_OK) &&
5272 	    (host_byte(result) != DID_REQUEUE) && !hba->silence_err_logs)
5273 		ufshcd_print_trs(hba, 1 << lrbp->task_tag, true);
5274 	return result;
5275 }
5276 
5277 static bool ufshcd_is_auto_hibern8_error(struct ufs_hba *hba,
5278 					 u32 intr_mask)
5279 {
5280 	if (!ufshcd_is_auto_hibern8_supported(hba) ||
5281 	    !ufshcd_is_auto_hibern8_enabled(hba))
5282 		return false;
5283 
5284 	if (!(intr_mask & UFSHCD_UIC_HIBERN8_MASK))
5285 		return false;
5286 
5287 	if (hba->active_uic_cmd &&
5288 	    (hba->active_uic_cmd->command == UIC_CMD_DME_HIBER_ENTER ||
5289 	    hba->active_uic_cmd->command == UIC_CMD_DME_HIBER_EXIT))
5290 		return false;
5291 
5292 	return true;
5293 }
5294 
5295 /**
5296  * ufshcd_uic_cmd_compl - handle completion of uic command
5297  * @hba: per adapter instance
5298  * @intr_status: interrupt status generated by the controller
5299  *
5300  * Returns
5301  *  IRQ_HANDLED - If interrupt is valid
5302  *  IRQ_NONE    - If invalid interrupt
5303  */
5304 static irqreturn_t ufshcd_uic_cmd_compl(struct ufs_hba *hba, u32 intr_status)
5305 {
5306 	irqreturn_t retval = IRQ_NONE;
5307 
5308 	spin_lock(hba->host->host_lock);
5309 	if (ufshcd_is_auto_hibern8_error(hba, intr_status))
5310 		hba->errors |= (UFSHCD_UIC_HIBERN8_MASK & intr_status);
5311 
5312 	if ((intr_status & UIC_COMMAND_COMPL) && hba->active_uic_cmd) {
5313 		hba->active_uic_cmd->argument2 |=
5314 			ufshcd_get_uic_cmd_result(hba);
5315 		hba->active_uic_cmd->argument3 =
5316 			ufshcd_get_dme_attr_val(hba);
5317 		if (!hba->uic_async_done)
5318 			hba->active_uic_cmd->cmd_active = 0;
5319 		complete(&hba->active_uic_cmd->done);
5320 		retval = IRQ_HANDLED;
5321 	}
5322 
5323 	if ((intr_status & UFSHCD_UIC_PWR_MASK) && hba->uic_async_done) {
5324 		hba->active_uic_cmd->cmd_active = 0;
5325 		complete(hba->uic_async_done);
5326 		retval = IRQ_HANDLED;
5327 	}
5328 
5329 	if (retval == IRQ_HANDLED)
5330 		ufshcd_add_uic_command_trace(hba, hba->active_uic_cmd,
5331 					     UFS_CMD_COMP);
5332 	spin_unlock(hba->host->host_lock);
5333 	return retval;
5334 }
5335 
5336 /* Release the resources allocated for processing a SCSI command. */
5337 static void ufshcd_release_scsi_cmd(struct ufs_hba *hba,
5338 				    struct ufshcd_lrb *lrbp)
5339 {
5340 	struct scsi_cmnd *cmd = lrbp->cmd;
5341 
5342 	scsi_dma_unmap(cmd);
5343 	lrbp->cmd = NULL;	/* Mark the command as completed. */
5344 	ufshcd_release(hba);
5345 	ufshcd_clk_scaling_update_busy(hba);
5346 }
5347 
5348 /**
5349  * __ufshcd_transfer_req_compl - handle SCSI and query command completion
5350  * @hba: per adapter instance
5351  * @completed_reqs: bitmask that indicates which requests to complete
5352  */
5353 static void __ufshcd_transfer_req_compl(struct ufs_hba *hba,
5354 					unsigned long completed_reqs)
5355 {
5356 	struct ufshcd_lrb *lrbp;
5357 	struct scsi_cmnd *cmd;
5358 	int index;
5359 
5360 	for_each_set_bit(index, &completed_reqs, hba->nutrs) {
5361 		lrbp = &hba->lrb[index];
5362 		lrbp->compl_time_stamp = ktime_get();
5363 		lrbp->compl_time_stamp_local_clock = local_clock();
5364 		cmd = lrbp->cmd;
5365 		if (cmd) {
5366 			if (unlikely(ufshcd_should_inform_monitor(hba, lrbp)))
5367 				ufshcd_update_monitor(hba, lrbp);
5368 			ufshcd_add_command_trace(hba, index, UFS_CMD_COMP);
5369 			cmd->result = ufshcd_transfer_rsp_status(hba, lrbp);
5370 			ufshcd_release_scsi_cmd(hba, lrbp);
5371 			/* Do not touch lrbp after scsi done */
5372 			scsi_done(cmd);
5373 		} else if (lrbp->command_type == UTP_CMD_TYPE_DEV_MANAGE ||
5374 			lrbp->command_type == UTP_CMD_TYPE_UFS_STORAGE) {
5375 			if (hba->dev_cmd.complete) {
5376 				ufshcd_add_command_trace(hba, index,
5377 							 UFS_DEV_COMP);
5378 				complete(hba->dev_cmd.complete);
5379 				ufshcd_clk_scaling_update_busy(hba);
5380 			}
5381 		}
5382 	}
5383 }
5384 
5385 /*
5386  * Returns > 0 if one or more commands have been completed or 0 if no
5387  * requests have been completed.
5388  */
5389 static int ufshcd_poll(struct Scsi_Host *shost, unsigned int queue_num)
5390 {
5391 	struct ufs_hba *hba = shost_priv(shost);
5392 	unsigned long completed_reqs, flags;
5393 	u32 tr_doorbell;
5394 
5395 	spin_lock_irqsave(&hba->outstanding_lock, flags);
5396 	tr_doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
5397 	completed_reqs = ~tr_doorbell & hba->outstanding_reqs;
5398 	WARN_ONCE(completed_reqs & ~hba->outstanding_reqs,
5399 		  "completed: %#lx; outstanding: %#lx\n", completed_reqs,
5400 		  hba->outstanding_reqs);
5401 	hba->outstanding_reqs &= ~completed_reqs;
5402 	spin_unlock_irqrestore(&hba->outstanding_lock, flags);
5403 
5404 	if (completed_reqs)
5405 		__ufshcd_transfer_req_compl(hba, completed_reqs);
5406 
5407 	return completed_reqs;
5408 }
5409 
5410 /**
5411  * ufshcd_transfer_req_compl - handle SCSI and query command completion
5412  * @hba: per adapter instance
5413  *
5414  * Returns
5415  *  IRQ_HANDLED - If interrupt is valid
5416  *  IRQ_NONE    - If invalid interrupt
5417  */
5418 static irqreturn_t ufshcd_transfer_req_compl(struct ufs_hba *hba)
5419 {
5420 	/* Resetting interrupt aggregation counters first and reading the
5421 	 * DOOR_BELL afterward allows us to handle all the completed requests.
5422 	 * In order to prevent other interrupts starvation the DB is read once
5423 	 * after reset. The down side of this solution is the possibility of
5424 	 * false interrupt if device completes another request after resetting
5425 	 * aggregation and before reading the DB.
5426 	 */
5427 	if (ufshcd_is_intr_aggr_allowed(hba) &&
5428 	    !(hba->quirks & UFSHCI_QUIRK_SKIP_RESET_INTR_AGGR))
5429 		ufshcd_reset_intr_aggr(hba);
5430 
5431 	if (ufs_fail_completion())
5432 		return IRQ_HANDLED;
5433 
5434 	/*
5435 	 * Ignore the ufshcd_poll() return value and return IRQ_HANDLED since we
5436 	 * do not want polling to trigger spurious interrupt complaints.
5437 	 */
5438 	ufshcd_poll(hba->host, 0);
5439 
5440 	return IRQ_HANDLED;
5441 }
5442 
5443 int __ufshcd_write_ee_control(struct ufs_hba *hba, u32 ee_ctrl_mask)
5444 {
5445 	return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
5446 				       QUERY_ATTR_IDN_EE_CONTROL, 0, 0,
5447 				       &ee_ctrl_mask);
5448 }
5449 
5450 int ufshcd_write_ee_control(struct ufs_hba *hba)
5451 {
5452 	int err;
5453 
5454 	mutex_lock(&hba->ee_ctrl_mutex);
5455 	err = __ufshcd_write_ee_control(hba, hba->ee_ctrl_mask);
5456 	mutex_unlock(&hba->ee_ctrl_mutex);
5457 	if (err)
5458 		dev_err(hba->dev, "%s: failed to write ee control %d\n",
5459 			__func__, err);
5460 	return err;
5461 }
5462 
5463 int ufshcd_update_ee_control(struct ufs_hba *hba, u16 *mask,
5464 			     const u16 *other_mask, u16 set, u16 clr)
5465 {
5466 	u16 new_mask, ee_ctrl_mask;
5467 	int err = 0;
5468 
5469 	mutex_lock(&hba->ee_ctrl_mutex);
5470 	new_mask = (*mask & ~clr) | set;
5471 	ee_ctrl_mask = new_mask | *other_mask;
5472 	if (ee_ctrl_mask != hba->ee_ctrl_mask)
5473 		err = __ufshcd_write_ee_control(hba, ee_ctrl_mask);
5474 	/* Still need to update 'mask' even if 'ee_ctrl_mask' was unchanged */
5475 	if (!err) {
5476 		hba->ee_ctrl_mask = ee_ctrl_mask;
5477 		*mask = new_mask;
5478 	}
5479 	mutex_unlock(&hba->ee_ctrl_mutex);
5480 	return err;
5481 }
5482 
5483 /**
5484  * ufshcd_disable_ee - disable exception event
5485  * @hba: per-adapter instance
5486  * @mask: exception event to disable
5487  *
5488  * Disables exception event in the device so that the EVENT_ALERT
5489  * bit is not set.
5490  *
5491  * Returns zero on success, non-zero error value on failure.
5492  */
5493 static inline int ufshcd_disable_ee(struct ufs_hba *hba, u16 mask)
5494 {
5495 	return ufshcd_update_ee_drv_mask(hba, 0, mask);
5496 }
5497 
5498 /**
5499  * ufshcd_enable_ee - enable exception event
5500  * @hba: per-adapter instance
5501  * @mask: exception event to enable
5502  *
5503  * Enable corresponding exception event in the device to allow
5504  * device to alert host in critical scenarios.
5505  *
5506  * Returns zero on success, non-zero error value on failure.
5507  */
5508 static inline int ufshcd_enable_ee(struct ufs_hba *hba, u16 mask)
5509 {
5510 	return ufshcd_update_ee_drv_mask(hba, mask, 0);
5511 }
5512 
5513 /**
5514  * ufshcd_enable_auto_bkops - Allow device managed BKOPS
5515  * @hba: per-adapter instance
5516  *
5517  * Allow device to manage background operations on its own. Enabling
5518  * this might lead to inconsistent latencies during normal data transfers
5519  * as the device is allowed to manage its own way of handling background
5520  * operations.
5521  *
5522  * Returns zero on success, non-zero on failure.
5523  */
5524 static int ufshcd_enable_auto_bkops(struct ufs_hba *hba)
5525 {
5526 	int err = 0;
5527 
5528 	if (hba->auto_bkops_enabled)
5529 		goto out;
5530 
5531 	err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG,
5532 			QUERY_FLAG_IDN_BKOPS_EN, 0, NULL);
5533 	if (err) {
5534 		dev_err(hba->dev, "%s: failed to enable bkops %d\n",
5535 				__func__, err);
5536 		goto out;
5537 	}
5538 
5539 	hba->auto_bkops_enabled = true;
5540 	trace_ufshcd_auto_bkops_state(dev_name(hba->dev), "Enabled");
5541 
5542 	/* No need of URGENT_BKOPS exception from the device */
5543 	err = ufshcd_disable_ee(hba, MASK_EE_URGENT_BKOPS);
5544 	if (err)
5545 		dev_err(hba->dev, "%s: failed to disable exception event %d\n",
5546 				__func__, err);
5547 out:
5548 	return err;
5549 }
5550 
5551 /**
5552  * ufshcd_disable_auto_bkops - block device in doing background operations
5553  * @hba: per-adapter instance
5554  *
5555  * Disabling background operations improves command response latency but
5556  * has drawback of device moving into critical state where the device is
5557  * not-operable. Make sure to call ufshcd_enable_auto_bkops() whenever the
5558  * host is idle so that BKOPS are managed effectively without any negative
5559  * impacts.
5560  *
5561  * Returns zero on success, non-zero on failure.
5562  */
5563 static int ufshcd_disable_auto_bkops(struct ufs_hba *hba)
5564 {
5565 	int err = 0;
5566 
5567 	if (!hba->auto_bkops_enabled)
5568 		goto out;
5569 
5570 	/*
5571 	 * If host assisted BKOPs is to be enabled, make sure
5572 	 * urgent bkops exception is allowed.
5573 	 */
5574 	err = ufshcd_enable_ee(hba, MASK_EE_URGENT_BKOPS);
5575 	if (err) {
5576 		dev_err(hba->dev, "%s: failed to enable exception event %d\n",
5577 				__func__, err);
5578 		goto out;
5579 	}
5580 
5581 	err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_CLEAR_FLAG,
5582 			QUERY_FLAG_IDN_BKOPS_EN, 0, NULL);
5583 	if (err) {
5584 		dev_err(hba->dev, "%s: failed to disable bkops %d\n",
5585 				__func__, err);
5586 		ufshcd_disable_ee(hba, MASK_EE_URGENT_BKOPS);
5587 		goto out;
5588 	}
5589 
5590 	hba->auto_bkops_enabled = false;
5591 	trace_ufshcd_auto_bkops_state(dev_name(hba->dev), "Disabled");
5592 	hba->is_urgent_bkops_lvl_checked = false;
5593 out:
5594 	return err;
5595 }
5596 
5597 /**
5598  * ufshcd_force_reset_auto_bkops - force reset auto bkops state
5599  * @hba: per adapter instance
5600  *
5601  * After a device reset the device may toggle the BKOPS_EN flag
5602  * to default value. The s/w tracking variables should be updated
5603  * as well. This function would change the auto-bkops state based on
5604  * UFSHCD_CAP_KEEP_AUTO_BKOPS_ENABLED_EXCEPT_SUSPEND.
5605  */
5606 static void ufshcd_force_reset_auto_bkops(struct ufs_hba *hba)
5607 {
5608 	if (ufshcd_keep_autobkops_enabled_except_suspend(hba)) {
5609 		hba->auto_bkops_enabled = false;
5610 		hba->ee_ctrl_mask |= MASK_EE_URGENT_BKOPS;
5611 		ufshcd_enable_auto_bkops(hba);
5612 	} else {
5613 		hba->auto_bkops_enabled = true;
5614 		hba->ee_ctrl_mask &= ~MASK_EE_URGENT_BKOPS;
5615 		ufshcd_disable_auto_bkops(hba);
5616 	}
5617 	hba->urgent_bkops_lvl = BKOPS_STATUS_PERF_IMPACT;
5618 	hba->is_urgent_bkops_lvl_checked = false;
5619 }
5620 
5621 static inline int ufshcd_get_bkops_status(struct ufs_hba *hba, u32 *status)
5622 {
5623 	return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5624 			QUERY_ATTR_IDN_BKOPS_STATUS, 0, 0, status);
5625 }
5626 
5627 /**
5628  * ufshcd_bkops_ctrl - control the auto bkops based on current bkops status
5629  * @hba: per-adapter instance
5630  * @status: bkops_status value
5631  *
5632  * Read the bkops_status from the UFS device and Enable fBackgroundOpsEn
5633  * flag in the device to permit background operations if the device
5634  * bkops_status is greater than or equal to "status" argument passed to
5635  * this function, disable otherwise.
5636  *
5637  * Returns 0 for success, non-zero in case of failure.
5638  *
5639  * NOTE: Caller of this function can check the "hba->auto_bkops_enabled" flag
5640  * to know whether auto bkops is enabled or disabled after this function
5641  * returns control to it.
5642  */
5643 static int ufshcd_bkops_ctrl(struct ufs_hba *hba,
5644 			     enum bkops_status status)
5645 {
5646 	int err;
5647 	u32 curr_status = 0;
5648 
5649 	err = ufshcd_get_bkops_status(hba, &curr_status);
5650 	if (err) {
5651 		dev_err(hba->dev, "%s: failed to get BKOPS status %d\n",
5652 				__func__, err);
5653 		goto out;
5654 	} else if (curr_status > BKOPS_STATUS_MAX) {
5655 		dev_err(hba->dev, "%s: invalid BKOPS status %d\n",
5656 				__func__, curr_status);
5657 		err = -EINVAL;
5658 		goto out;
5659 	}
5660 
5661 	if (curr_status >= status)
5662 		err = ufshcd_enable_auto_bkops(hba);
5663 	else
5664 		err = ufshcd_disable_auto_bkops(hba);
5665 out:
5666 	return err;
5667 }
5668 
5669 /**
5670  * ufshcd_urgent_bkops - handle urgent bkops exception event
5671  * @hba: per-adapter instance
5672  *
5673  * Enable fBackgroundOpsEn flag in the device to permit background
5674  * operations.
5675  *
5676  * If BKOPs is enabled, this function returns 0, 1 if the bkops in not enabled
5677  * and negative error value for any other failure.
5678  */
5679 static int ufshcd_urgent_bkops(struct ufs_hba *hba)
5680 {
5681 	return ufshcd_bkops_ctrl(hba, hba->urgent_bkops_lvl);
5682 }
5683 
5684 static inline int ufshcd_get_ee_status(struct ufs_hba *hba, u32 *status)
5685 {
5686 	return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5687 			QUERY_ATTR_IDN_EE_STATUS, 0, 0, status);
5688 }
5689 
5690 static void ufshcd_bkops_exception_event_handler(struct ufs_hba *hba)
5691 {
5692 	int err;
5693 	u32 curr_status = 0;
5694 
5695 	if (hba->is_urgent_bkops_lvl_checked)
5696 		goto enable_auto_bkops;
5697 
5698 	err = ufshcd_get_bkops_status(hba, &curr_status);
5699 	if (err) {
5700 		dev_err(hba->dev, "%s: failed to get BKOPS status %d\n",
5701 				__func__, err);
5702 		goto out;
5703 	}
5704 
5705 	/*
5706 	 * We are seeing that some devices are raising the urgent bkops
5707 	 * exception events even when BKOPS status doesn't indicate performace
5708 	 * impacted or critical. Handle these device by determining their urgent
5709 	 * bkops status at runtime.
5710 	 */
5711 	if (curr_status < BKOPS_STATUS_PERF_IMPACT) {
5712 		dev_err(hba->dev, "%s: device raised urgent BKOPS exception for bkops status %d\n",
5713 				__func__, curr_status);
5714 		/* update the current status as the urgent bkops level */
5715 		hba->urgent_bkops_lvl = curr_status;
5716 		hba->is_urgent_bkops_lvl_checked = true;
5717 	}
5718 
5719 enable_auto_bkops:
5720 	err = ufshcd_enable_auto_bkops(hba);
5721 out:
5722 	if (err < 0)
5723 		dev_err(hba->dev, "%s: failed to handle urgent bkops %d\n",
5724 				__func__, err);
5725 }
5726 
5727 static void ufshcd_temp_exception_event_handler(struct ufs_hba *hba, u16 status)
5728 {
5729 	u32 value;
5730 
5731 	if (ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5732 				QUERY_ATTR_IDN_CASE_ROUGH_TEMP, 0, 0, &value))
5733 		return;
5734 
5735 	dev_info(hba->dev, "exception Tcase %d\n", value - 80);
5736 
5737 	ufs_hwmon_notify_event(hba, status & MASK_EE_URGENT_TEMP);
5738 
5739 	/*
5740 	 * A placeholder for the platform vendors to add whatever additional
5741 	 * steps required
5742 	 */
5743 }
5744 
5745 static int __ufshcd_wb_toggle(struct ufs_hba *hba, bool set, enum flag_idn idn)
5746 {
5747 	u8 index;
5748 	enum query_opcode opcode = set ? UPIU_QUERY_OPCODE_SET_FLAG :
5749 				   UPIU_QUERY_OPCODE_CLEAR_FLAG;
5750 
5751 	index = ufshcd_wb_get_query_index(hba);
5752 	return ufshcd_query_flag_retry(hba, opcode, idn, index, NULL);
5753 }
5754 
5755 int ufshcd_wb_toggle(struct ufs_hba *hba, bool enable)
5756 {
5757 	int ret;
5758 
5759 	if (!ufshcd_is_wb_allowed(hba) ||
5760 	    hba->dev_info.wb_enabled == enable)
5761 		return 0;
5762 
5763 	ret = __ufshcd_wb_toggle(hba, enable, QUERY_FLAG_IDN_WB_EN);
5764 	if (ret) {
5765 		dev_err(hba->dev, "%s: Write Booster %s failed %d\n",
5766 			__func__, enable ? "enabling" : "disabling", ret);
5767 		return ret;
5768 	}
5769 
5770 	hba->dev_info.wb_enabled = enable;
5771 	dev_dbg(hba->dev, "%s: Write Booster %s\n",
5772 			__func__, enable ? "enabled" : "disabled");
5773 
5774 	return ret;
5775 }
5776 
5777 static void ufshcd_wb_toggle_buf_flush_during_h8(struct ufs_hba *hba,
5778 						 bool enable)
5779 {
5780 	int ret;
5781 
5782 	ret = __ufshcd_wb_toggle(hba, enable,
5783 			QUERY_FLAG_IDN_WB_BUFF_FLUSH_DURING_HIBERN8);
5784 	if (ret) {
5785 		dev_err(hba->dev, "%s: WB-Buf Flush during H8 %s failed %d\n",
5786 			__func__, enable ? "enabling" : "disabling", ret);
5787 		return;
5788 	}
5789 	dev_dbg(hba->dev, "%s: WB-Buf Flush during H8 %s\n",
5790 			__func__, enable ? "enabled" : "disabled");
5791 }
5792 
5793 int ufshcd_wb_toggle_buf_flush(struct ufs_hba *hba, bool enable)
5794 {
5795 	int ret;
5796 
5797 	if (!ufshcd_is_wb_allowed(hba) ||
5798 	    hba->dev_info.wb_buf_flush_enabled == enable)
5799 		return 0;
5800 
5801 	ret = __ufshcd_wb_toggle(hba, enable, QUERY_FLAG_IDN_WB_BUFF_FLUSH_EN);
5802 	if (ret) {
5803 		dev_err(hba->dev, "%s: WB-Buf Flush %s failed %d\n",
5804 			__func__, enable ? "enabling" : "disabling", ret);
5805 		return ret;
5806 	}
5807 
5808 	hba->dev_info.wb_buf_flush_enabled = enable;
5809 	dev_dbg(hba->dev, "%s: WB-Buf Flush %s\n",
5810 			__func__, enable ? "enabled" : "disabled");
5811 
5812 	return ret;
5813 }
5814 
5815 static bool ufshcd_wb_presrv_usrspc_keep_vcc_on(struct ufs_hba *hba,
5816 						u32 avail_buf)
5817 {
5818 	u32 cur_buf;
5819 	int ret;
5820 	u8 index;
5821 
5822 	index = ufshcd_wb_get_query_index(hba);
5823 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5824 					      QUERY_ATTR_IDN_CURR_WB_BUFF_SIZE,
5825 					      index, 0, &cur_buf);
5826 	if (ret) {
5827 		dev_err(hba->dev, "%s: dCurWriteBoosterBufferSize read failed %d\n",
5828 			__func__, ret);
5829 		return false;
5830 	}
5831 
5832 	if (!cur_buf) {
5833 		dev_info(hba->dev, "dCurWBBuf: %d WB disabled until free-space is available\n",
5834 			 cur_buf);
5835 		return false;
5836 	}
5837 	/* Let it continue to flush when available buffer exceeds threshold */
5838 	return avail_buf < hba->vps->wb_flush_threshold;
5839 }
5840 
5841 static void ufshcd_wb_force_disable(struct ufs_hba *hba)
5842 {
5843 	if (ufshcd_is_wb_buf_flush_allowed(hba))
5844 		ufshcd_wb_toggle_buf_flush(hba, false);
5845 
5846 	ufshcd_wb_toggle_buf_flush_during_h8(hba, false);
5847 	ufshcd_wb_toggle(hba, false);
5848 	hba->caps &= ~UFSHCD_CAP_WB_EN;
5849 
5850 	dev_info(hba->dev, "%s: WB force disabled\n", __func__);
5851 }
5852 
5853 static bool ufshcd_is_wb_buf_lifetime_available(struct ufs_hba *hba)
5854 {
5855 	u32 lifetime;
5856 	int ret;
5857 	u8 index;
5858 
5859 	index = ufshcd_wb_get_query_index(hba);
5860 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5861 				      QUERY_ATTR_IDN_WB_BUFF_LIFE_TIME_EST,
5862 				      index, 0, &lifetime);
5863 	if (ret) {
5864 		dev_err(hba->dev,
5865 			"%s: bWriteBoosterBufferLifeTimeEst read failed %d\n",
5866 			__func__, ret);
5867 		return false;
5868 	}
5869 
5870 	if (lifetime == UFS_WB_EXCEED_LIFETIME) {
5871 		dev_err(hba->dev, "%s: WB buf lifetime is exhausted 0x%02X\n",
5872 			__func__, lifetime);
5873 		return false;
5874 	}
5875 
5876 	dev_dbg(hba->dev, "%s: WB buf lifetime is 0x%02X\n",
5877 		__func__, lifetime);
5878 
5879 	return true;
5880 }
5881 
5882 static bool ufshcd_wb_need_flush(struct ufs_hba *hba)
5883 {
5884 	int ret;
5885 	u32 avail_buf;
5886 	u8 index;
5887 
5888 	if (!ufshcd_is_wb_allowed(hba))
5889 		return false;
5890 
5891 	if (!ufshcd_is_wb_buf_lifetime_available(hba)) {
5892 		ufshcd_wb_force_disable(hba);
5893 		return false;
5894 	}
5895 
5896 	/*
5897 	 * The ufs device needs the vcc to be ON to flush.
5898 	 * With user-space reduction enabled, it's enough to enable flush
5899 	 * by checking only the available buffer. The threshold
5900 	 * defined here is > 90% full.
5901 	 * With user-space preserved enabled, the current-buffer
5902 	 * should be checked too because the wb buffer size can reduce
5903 	 * when disk tends to be full. This info is provided by current
5904 	 * buffer (dCurrentWriteBoosterBufferSize). There's no point in
5905 	 * keeping vcc on when current buffer is empty.
5906 	 */
5907 	index = ufshcd_wb_get_query_index(hba);
5908 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5909 				      QUERY_ATTR_IDN_AVAIL_WB_BUFF_SIZE,
5910 				      index, 0, &avail_buf);
5911 	if (ret) {
5912 		dev_warn(hba->dev, "%s: dAvailableWriteBoosterBufferSize read failed %d\n",
5913 			 __func__, ret);
5914 		return false;
5915 	}
5916 
5917 	if (!hba->dev_info.b_presrv_uspc_en)
5918 		return avail_buf <= UFS_WB_BUF_REMAIN_PERCENT(10);
5919 
5920 	return ufshcd_wb_presrv_usrspc_keep_vcc_on(hba, avail_buf);
5921 }
5922 
5923 static void ufshcd_rpm_dev_flush_recheck_work(struct work_struct *work)
5924 {
5925 	struct ufs_hba *hba = container_of(to_delayed_work(work),
5926 					   struct ufs_hba,
5927 					   rpm_dev_flush_recheck_work);
5928 	/*
5929 	 * To prevent unnecessary VCC power drain after device finishes
5930 	 * WriteBooster buffer flush or Auto BKOPs, force runtime resume
5931 	 * after a certain delay to recheck the threshold by next runtime
5932 	 * suspend.
5933 	 */
5934 	ufshcd_rpm_get_sync(hba);
5935 	ufshcd_rpm_put_sync(hba);
5936 }
5937 
5938 /**
5939  * ufshcd_exception_event_handler - handle exceptions raised by device
5940  * @work: pointer to work data
5941  *
5942  * Read bExceptionEventStatus attribute from the device and handle the
5943  * exception event accordingly.
5944  */
5945 static void ufshcd_exception_event_handler(struct work_struct *work)
5946 {
5947 	struct ufs_hba *hba;
5948 	int err;
5949 	u32 status = 0;
5950 	hba = container_of(work, struct ufs_hba, eeh_work);
5951 
5952 	ufshcd_scsi_block_requests(hba);
5953 	err = ufshcd_get_ee_status(hba, &status);
5954 	if (err) {
5955 		dev_err(hba->dev, "%s: failed to get exception status %d\n",
5956 				__func__, err);
5957 		goto out;
5958 	}
5959 
5960 	trace_ufshcd_exception_event(dev_name(hba->dev), status);
5961 
5962 	if (status & hba->ee_drv_mask & MASK_EE_URGENT_BKOPS)
5963 		ufshcd_bkops_exception_event_handler(hba);
5964 
5965 	if (status & hba->ee_drv_mask & MASK_EE_URGENT_TEMP)
5966 		ufshcd_temp_exception_event_handler(hba, status);
5967 
5968 	ufs_debugfs_exception_event(hba, status);
5969 out:
5970 	ufshcd_scsi_unblock_requests(hba);
5971 }
5972 
5973 /* Complete requests that have door-bell cleared */
5974 static void ufshcd_complete_requests(struct ufs_hba *hba)
5975 {
5976 	ufshcd_transfer_req_compl(hba);
5977 	ufshcd_tmc_handler(hba);
5978 }
5979 
5980 /**
5981  * ufshcd_quirk_dl_nac_errors - This function checks if error handling is
5982  *				to recover from the DL NAC errors or not.
5983  * @hba: per-adapter instance
5984  *
5985  * Returns true if error handling is required, false otherwise
5986  */
5987 static bool ufshcd_quirk_dl_nac_errors(struct ufs_hba *hba)
5988 {
5989 	unsigned long flags;
5990 	bool err_handling = true;
5991 
5992 	spin_lock_irqsave(hba->host->host_lock, flags);
5993 	/*
5994 	 * UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS only workaround the
5995 	 * device fatal error and/or DL NAC & REPLAY timeout errors.
5996 	 */
5997 	if (hba->saved_err & (CONTROLLER_FATAL_ERROR | SYSTEM_BUS_FATAL_ERROR))
5998 		goto out;
5999 
6000 	if ((hba->saved_err & DEVICE_FATAL_ERROR) ||
6001 	    ((hba->saved_err & UIC_ERROR) &&
6002 	     (hba->saved_uic_err & UFSHCD_UIC_DL_TCx_REPLAY_ERROR)))
6003 		goto out;
6004 
6005 	if ((hba->saved_err & UIC_ERROR) &&
6006 	    (hba->saved_uic_err & UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)) {
6007 		int err;
6008 		/*
6009 		 * wait for 50ms to see if we can get any other errors or not.
6010 		 */
6011 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6012 		msleep(50);
6013 		spin_lock_irqsave(hba->host->host_lock, flags);
6014 
6015 		/*
6016 		 * now check if we have got any other severe errors other than
6017 		 * DL NAC error?
6018 		 */
6019 		if ((hba->saved_err & INT_FATAL_ERRORS) ||
6020 		    ((hba->saved_err & UIC_ERROR) &&
6021 		    (hba->saved_uic_err & ~UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)))
6022 			goto out;
6023 
6024 		/*
6025 		 * As DL NAC is the only error received so far, send out NOP
6026 		 * command to confirm if link is still active or not.
6027 		 *   - If we don't get any response then do error recovery.
6028 		 *   - If we get response then clear the DL NAC error bit.
6029 		 */
6030 
6031 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6032 		err = ufshcd_verify_dev_init(hba);
6033 		spin_lock_irqsave(hba->host->host_lock, flags);
6034 
6035 		if (err)
6036 			goto out;
6037 
6038 		/* Link seems to be alive hence ignore the DL NAC errors */
6039 		if (hba->saved_uic_err == UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)
6040 			hba->saved_err &= ~UIC_ERROR;
6041 		/* clear NAC error */
6042 		hba->saved_uic_err &= ~UFSHCD_UIC_DL_NAC_RECEIVED_ERROR;
6043 		if (!hba->saved_uic_err)
6044 			err_handling = false;
6045 	}
6046 out:
6047 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6048 	return err_handling;
6049 }
6050 
6051 /* host lock must be held before calling this func */
6052 static inline bool ufshcd_is_saved_err_fatal(struct ufs_hba *hba)
6053 {
6054 	return (hba->saved_uic_err & UFSHCD_UIC_DL_PA_INIT_ERROR) ||
6055 	       (hba->saved_err & (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK));
6056 }
6057 
6058 void ufshcd_schedule_eh_work(struct ufs_hba *hba)
6059 {
6060 	lockdep_assert_held(hba->host->host_lock);
6061 
6062 	/* handle fatal errors only when link is not in error state */
6063 	if (hba->ufshcd_state != UFSHCD_STATE_ERROR) {
6064 		if (hba->force_reset || ufshcd_is_link_broken(hba) ||
6065 		    ufshcd_is_saved_err_fatal(hba))
6066 			hba->ufshcd_state = UFSHCD_STATE_EH_SCHEDULED_FATAL;
6067 		else
6068 			hba->ufshcd_state = UFSHCD_STATE_EH_SCHEDULED_NON_FATAL;
6069 		queue_work(hba->eh_wq, &hba->eh_work);
6070 	}
6071 }
6072 
6073 static void ufshcd_clk_scaling_allow(struct ufs_hba *hba, bool allow)
6074 {
6075 	down_write(&hba->clk_scaling_lock);
6076 	hba->clk_scaling.is_allowed = allow;
6077 	up_write(&hba->clk_scaling_lock);
6078 }
6079 
6080 static void ufshcd_clk_scaling_suspend(struct ufs_hba *hba, bool suspend)
6081 {
6082 	if (suspend) {
6083 		if (hba->clk_scaling.is_enabled)
6084 			ufshcd_suspend_clkscaling(hba);
6085 		ufshcd_clk_scaling_allow(hba, false);
6086 	} else {
6087 		ufshcd_clk_scaling_allow(hba, true);
6088 		if (hba->clk_scaling.is_enabled)
6089 			ufshcd_resume_clkscaling(hba);
6090 	}
6091 }
6092 
6093 static void ufshcd_err_handling_prepare(struct ufs_hba *hba)
6094 {
6095 	ufshcd_rpm_get_sync(hba);
6096 	if (pm_runtime_status_suspended(&hba->ufs_device_wlun->sdev_gendev) ||
6097 	    hba->is_sys_suspended) {
6098 		enum ufs_pm_op pm_op;
6099 
6100 		/*
6101 		 * Don't assume anything of resume, if
6102 		 * resume fails, irq and clocks can be OFF, and powers
6103 		 * can be OFF or in LPM.
6104 		 */
6105 		ufshcd_setup_hba_vreg(hba, true);
6106 		ufshcd_enable_irq(hba);
6107 		ufshcd_setup_vreg(hba, true);
6108 		ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq);
6109 		ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq2);
6110 		ufshcd_hold(hba, false);
6111 		if (!ufshcd_is_clkgating_allowed(hba))
6112 			ufshcd_setup_clocks(hba, true);
6113 		ufshcd_release(hba);
6114 		pm_op = hba->is_sys_suspended ? UFS_SYSTEM_PM : UFS_RUNTIME_PM;
6115 		ufshcd_vops_resume(hba, pm_op);
6116 	} else {
6117 		ufshcd_hold(hba, false);
6118 		if (ufshcd_is_clkscaling_supported(hba) &&
6119 		    hba->clk_scaling.is_enabled)
6120 			ufshcd_suspend_clkscaling(hba);
6121 		ufshcd_clk_scaling_allow(hba, false);
6122 	}
6123 	ufshcd_scsi_block_requests(hba);
6124 	/* Drain ufshcd_queuecommand() */
6125 	synchronize_rcu();
6126 	cancel_work_sync(&hba->eeh_work);
6127 }
6128 
6129 static void ufshcd_err_handling_unprepare(struct ufs_hba *hba)
6130 {
6131 	ufshcd_scsi_unblock_requests(hba);
6132 	ufshcd_release(hba);
6133 	if (ufshcd_is_clkscaling_supported(hba))
6134 		ufshcd_clk_scaling_suspend(hba, false);
6135 	ufshcd_rpm_put(hba);
6136 }
6137 
6138 static inline bool ufshcd_err_handling_should_stop(struct ufs_hba *hba)
6139 {
6140 	return (!hba->is_powered || hba->shutting_down ||
6141 		!hba->ufs_device_wlun ||
6142 		hba->ufshcd_state == UFSHCD_STATE_ERROR ||
6143 		(!(hba->saved_err || hba->saved_uic_err || hba->force_reset ||
6144 		   ufshcd_is_link_broken(hba))));
6145 }
6146 
6147 #ifdef CONFIG_PM
6148 static void ufshcd_recover_pm_error(struct ufs_hba *hba)
6149 {
6150 	struct Scsi_Host *shost = hba->host;
6151 	struct scsi_device *sdev;
6152 	struct request_queue *q;
6153 	int ret;
6154 
6155 	hba->is_sys_suspended = false;
6156 	/*
6157 	 * Set RPM status of wlun device to RPM_ACTIVE,
6158 	 * this also clears its runtime error.
6159 	 */
6160 	ret = pm_runtime_set_active(&hba->ufs_device_wlun->sdev_gendev);
6161 
6162 	/* hba device might have a runtime error otherwise */
6163 	if (ret)
6164 		ret = pm_runtime_set_active(hba->dev);
6165 	/*
6166 	 * If wlun device had runtime error, we also need to resume those
6167 	 * consumer scsi devices in case any of them has failed to be
6168 	 * resumed due to supplier runtime resume failure. This is to unblock
6169 	 * blk_queue_enter in case there are bios waiting inside it.
6170 	 */
6171 	if (!ret) {
6172 		shost_for_each_device(sdev, shost) {
6173 			q = sdev->request_queue;
6174 			if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
6175 				       q->rpm_status == RPM_SUSPENDING))
6176 				pm_request_resume(q->dev);
6177 		}
6178 	}
6179 }
6180 #else
6181 static inline void ufshcd_recover_pm_error(struct ufs_hba *hba)
6182 {
6183 }
6184 #endif
6185 
6186 static bool ufshcd_is_pwr_mode_restore_needed(struct ufs_hba *hba)
6187 {
6188 	struct ufs_pa_layer_attr *pwr_info = &hba->pwr_info;
6189 	u32 mode;
6190 
6191 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_PWRMODE), &mode);
6192 
6193 	if (pwr_info->pwr_rx != ((mode >> PWRMODE_RX_OFFSET) & PWRMODE_MASK))
6194 		return true;
6195 
6196 	if (pwr_info->pwr_tx != (mode & PWRMODE_MASK))
6197 		return true;
6198 
6199 	return false;
6200 }
6201 
6202 /**
6203  * ufshcd_err_handler - handle UFS errors that require s/w attention
6204  * @work: pointer to work structure
6205  */
6206 static void ufshcd_err_handler(struct work_struct *work)
6207 {
6208 	int retries = MAX_ERR_HANDLER_RETRIES;
6209 	struct ufs_hba *hba;
6210 	unsigned long flags;
6211 	bool needs_restore;
6212 	bool needs_reset;
6213 	bool err_xfer;
6214 	bool err_tm;
6215 	int pmc_err;
6216 	int tag;
6217 
6218 	hba = container_of(work, struct ufs_hba, eh_work);
6219 
6220 	dev_info(hba->dev,
6221 		 "%s started; HBA state %s; powered %d; shutting down %d; saved_err = %d; saved_uic_err = %d; force_reset = %d%s\n",
6222 		 __func__, ufshcd_state_name[hba->ufshcd_state],
6223 		 hba->is_powered, hba->shutting_down, hba->saved_err,
6224 		 hba->saved_uic_err, hba->force_reset,
6225 		 ufshcd_is_link_broken(hba) ? "; link is broken" : "");
6226 
6227 	down(&hba->host_sem);
6228 	spin_lock_irqsave(hba->host->host_lock, flags);
6229 	if (ufshcd_err_handling_should_stop(hba)) {
6230 		if (hba->ufshcd_state != UFSHCD_STATE_ERROR)
6231 			hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
6232 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6233 		up(&hba->host_sem);
6234 		return;
6235 	}
6236 	ufshcd_set_eh_in_progress(hba);
6237 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6238 	ufshcd_err_handling_prepare(hba);
6239 	/* Complete requests that have door-bell cleared by h/w */
6240 	ufshcd_complete_requests(hba);
6241 	spin_lock_irqsave(hba->host->host_lock, flags);
6242 again:
6243 	needs_restore = false;
6244 	needs_reset = false;
6245 	err_xfer = false;
6246 	err_tm = false;
6247 
6248 	if (hba->ufshcd_state != UFSHCD_STATE_ERROR)
6249 		hba->ufshcd_state = UFSHCD_STATE_RESET;
6250 	/*
6251 	 * A full reset and restore might have happened after preparation
6252 	 * is finished, double check whether we should stop.
6253 	 */
6254 	if (ufshcd_err_handling_should_stop(hba))
6255 		goto skip_err_handling;
6256 
6257 	if (hba->dev_quirks & UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS) {
6258 		bool ret;
6259 
6260 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6261 		/* release the lock as ufshcd_quirk_dl_nac_errors() may sleep */
6262 		ret = ufshcd_quirk_dl_nac_errors(hba);
6263 		spin_lock_irqsave(hba->host->host_lock, flags);
6264 		if (!ret && ufshcd_err_handling_should_stop(hba))
6265 			goto skip_err_handling;
6266 	}
6267 
6268 	if ((hba->saved_err & (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK)) ||
6269 	    (hba->saved_uic_err &&
6270 	     (hba->saved_uic_err != UFSHCD_UIC_PA_GENERIC_ERROR))) {
6271 		bool pr_prdt = !!(hba->saved_err & SYSTEM_BUS_FATAL_ERROR);
6272 
6273 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6274 		ufshcd_print_host_state(hba);
6275 		ufshcd_print_pwr_info(hba);
6276 		ufshcd_print_evt_hist(hba);
6277 		ufshcd_print_tmrs(hba, hba->outstanding_tasks);
6278 		ufshcd_print_trs(hba, hba->outstanding_reqs, pr_prdt);
6279 		spin_lock_irqsave(hba->host->host_lock, flags);
6280 	}
6281 
6282 	/*
6283 	 * if host reset is required then skip clearing the pending
6284 	 * transfers forcefully because they will get cleared during
6285 	 * host reset and restore
6286 	 */
6287 	if (hba->force_reset || ufshcd_is_link_broken(hba) ||
6288 	    ufshcd_is_saved_err_fatal(hba) ||
6289 	    ((hba->saved_err & UIC_ERROR) &&
6290 	     (hba->saved_uic_err & (UFSHCD_UIC_DL_NAC_RECEIVED_ERROR |
6291 				    UFSHCD_UIC_DL_TCx_REPLAY_ERROR)))) {
6292 		needs_reset = true;
6293 		goto do_reset;
6294 	}
6295 
6296 	/*
6297 	 * If LINERESET was caught, UFS might have been put to PWM mode,
6298 	 * check if power mode restore is needed.
6299 	 */
6300 	if (hba->saved_uic_err & UFSHCD_UIC_PA_GENERIC_ERROR) {
6301 		hba->saved_uic_err &= ~UFSHCD_UIC_PA_GENERIC_ERROR;
6302 		if (!hba->saved_uic_err)
6303 			hba->saved_err &= ~UIC_ERROR;
6304 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6305 		if (ufshcd_is_pwr_mode_restore_needed(hba))
6306 			needs_restore = true;
6307 		spin_lock_irqsave(hba->host->host_lock, flags);
6308 		if (!hba->saved_err && !needs_restore)
6309 			goto skip_err_handling;
6310 	}
6311 
6312 	hba->silence_err_logs = true;
6313 	/* release lock as clear command might sleep */
6314 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6315 	/* Clear pending transfer requests */
6316 	for_each_set_bit(tag, &hba->outstanding_reqs, hba->nutrs) {
6317 		if (ufshcd_try_to_abort_task(hba, tag)) {
6318 			err_xfer = true;
6319 			goto lock_skip_pending_xfer_clear;
6320 		}
6321 		dev_err(hba->dev, "Aborted tag %d / CDB %#02x\n", tag,
6322 			hba->lrb[tag].cmd ? hba->lrb[tag].cmd->cmnd[0] : -1);
6323 	}
6324 
6325 	/* Clear pending task management requests */
6326 	for_each_set_bit(tag, &hba->outstanding_tasks, hba->nutmrs) {
6327 		if (ufshcd_clear_tm_cmd(hba, tag)) {
6328 			err_tm = true;
6329 			goto lock_skip_pending_xfer_clear;
6330 		}
6331 	}
6332 
6333 lock_skip_pending_xfer_clear:
6334 	/* Complete the requests that are cleared by s/w */
6335 	ufshcd_complete_requests(hba);
6336 
6337 	spin_lock_irqsave(hba->host->host_lock, flags);
6338 	hba->silence_err_logs = false;
6339 	if (err_xfer || err_tm) {
6340 		needs_reset = true;
6341 		goto do_reset;
6342 	}
6343 
6344 	/*
6345 	 * After all reqs and tasks are cleared from doorbell,
6346 	 * now it is safe to retore power mode.
6347 	 */
6348 	if (needs_restore) {
6349 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6350 		/*
6351 		 * Hold the scaling lock just in case dev cmds
6352 		 * are sent via bsg and/or sysfs.
6353 		 */
6354 		down_write(&hba->clk_scaling_lock);
6355 		hba->force_pmc = true;
6356 		pmc_err = ufshcd_config_pwr_mode(hba, &(hba->pwr_info));
6357 		if (pmc_err) {
6358 			needs_reset = true;
6359 			dev_err(hba->dev, "%s: Failed to restore power mode, err = %d\n",
6360 					__func__, pmc_err);
6361 		}
6362 		hba->force_pmc = false;
6363 		ufshcd_print_pwr_info(hba);
6364 		up_write(&hba->clk_scaling_lock);
6365 		spin_lock_irqsave(hba->host->host_lock, flags);
6366 	}
6367 
6368 do_reset:
6369 	/* Fatal errors need reset */
6370 	if (needs_reset) {
6371 		int err;
6372 
6373 		hba->force_reset = false;
6374 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6375 		err = ufshcd_reset_and_restore(hba);
6376 		if (err)
6377 			dev_err(hba->dev, "%s: reset and restore failed with err %d\n",
6378 					__func__, err);
6379 		else
6380 			ufshcd_recover_pm_error(hba);
6381 		spin_lock_irqsave(hba->host->host_lock, flags);
6382 	}
6383 
6384 skip_err_handling:
6385 	if (!needs_reset) {
6386 		if (hba->ufshcd_state == UFSHCD_STATE_RESET)
6387 			hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
6388 		if (hba->saved_err || hba->saved_uic_err)
6389 			dev_err_ratelimited(hba->dev, "%s: exit: saved_err 0x%x saved_uic_err 0x%x",
6390 			    __func__, hba->saved_err, hba->saved_uic_err);
6391 	}
6392 	/* Exit in an operational state or dead */
6393 	if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL &&
6394 	    hba->ufshcd_state != UFSHCD_STATE_ERROR) {
6395 		if (--retries)
6396 			goto again;
6397 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
6398 	}
6399 	ufshcd_clear_eh_in_progress(hba);
6400 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6401 	ufshcd_err_handling_unprepare(hba);
6402 	up(&hba->host_sem);
6403 
6404 	dev_info(hba->dev, "%s finished; HBA state %s\n", __func__,
6405 		 ufshcd_state_name[hba->ufshcd_state]);
6406 }
6407 
6408 /**
6409  * ufshcd_update_uic_error - check and set fatal UIC error flags.
6410  * @hba: per-adapter instance
6411  *
6412  * Returns
6413  *  IRQ_HANDLED - If interrupt is valid
6414  *  IRQ_NONE    - If invalid interrupt
6415  */
6416 static irqreturn_t ufshcd_update_uic_error(struct ufs_hba *hba)
6417 {
6418 	u32 reg;
6419 	irqreturn_t retval = IRQ_NONE;
6420 
6421 	/* PHY layer error */
6422 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER);
6423 	if ((reg & UIC_PHY_ADAPTER_LAYER_ERROR) &&
6424 	    (reg & UIC_PHY_ADAPTER_LAYER_ERROR_CODE_MASK)) {
6425 		ufshcd_update_evt_hist(hba, UFS_EVT_PA_ERR, reg);
6426 		/*
6427 		 * To know whether this error is fatal or not, DB timeout
6428 		 * must be checked but this error is handled separately.
6429 		 */
6430 		if (reg & UIC_PHY_ADAPTER_LAYER_LANE_ERR_MASK)
6431 			dev_dbg(hba->dev, "%s: UIC Lane error reported\n",
6432 					__func__);
6433 
6434 		/* Got a LINERESET indication. */
6435 		if (reg & UIC_PHY_ADAPTER_LAYER_GENERIC_ERROR) {
6436 			struct uic_command *cmd = NULL;
6437 
6438 			hba->uic_error |= UFSHCD_UIC_PA_GENERIC_ERROR;
6439 			if (hba->uic_async_done && hba->active_uic_cmd)
6440 				cmd = hba->active_uic_cmd;
6441 			/*
6442 			 * Ignore the LINERESET during power mode change
6443 			 * operation via DME_SET command.
6444 			 */
6445 			if (cmd && (cmd->command == UIC_CMD_DME_SET))
6446 				hba->uic_error &= ~UFSHCD_UIC_PA_GENERIC_ERROR;
6447 		}
6448 		retval |= IRQ_HANDLED;
6449 	}
6450 
6451 	/* PA_INIT_ERROR is fatal and needs UIC reset */
6452 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_DATA_LINK_LAYER);
6453 	if ((reg & UIC_DATA_LINK_LAYER_ERROR) &&
6454 	    (reg & UIC_DATA_LINK_LAYER_ERROR_CODE_MASK)) {
6455 		ufshcd_update_evt_hist(hba, UFS_EVT_DL_ERR, reg);
6456 
6457 		if (reg & UIC_DATA_LINK_LAYER_ERROR_PA_INIT)
6458 			hba->uic_error |= UFSHCD_UIC_DL_PA_INIT_ERROR;
6459 		else if (hba->dev_quirks &
6460 				UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS) {
6461 			if (reg & UIC_DATA_LINK_LAYER_ERROR_NAC_RECEIVED)
6462 				hba->uic_error |=
6463 					UFSHCD_UIC_DL_NAC_RECEIVED_ERROR;
6464 			else if (reg & UIC_DATA_LINK_LAYER_ERROR_TCx_REPLAY_TIMEOUT)
6465 				hba->uic_error |= UFSHCD_UIC_DL_TCx_REPLAY_ERROR;
6466 		}
6467 		retval |= IRQ_HANDLED;
6468 	}
6469 
6470 	/* UIC NL/TL/DME errors needs software retry */
6471 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_NETWORK_LAYER);
6472 	if ((reg & UIC_NETWORK_LAYER_ERROR) &&
6473 	    (reg & UIC_NETWORK_LAYER_ERROR_CODE_MASK)) {
6474 		ufshcd_update_evt_hist(hba, UFS_EVT_NL_ERR, reg);
6475 		hba->uic_error |= UFSHCD_UIC_NL_ERROR;
6476 		retval |= IRQ_HANDLED;
6477 	}
6478 
6479 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_TRANSPORT_LAYER);
6480 	if ((reg & UIC_TRANSPORT_LAYER_ERROR) &&
6481 	    (reg & UIC_TRANSPORT_LAYER_ERROR_CODE_MASK)) {
6482 		ufshcd_update_evt_hist(hba, UFS_EVT_TL_ERR, reg);
6483 		hba->uic_error |= UFSHCD_UIC_TL_ERROR;
6484 		retval |= IRQ_HANDLED;
6485 	}
6486 
6487 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_DME);
6488 	if ((reg & UIC_DME_ERROR) &&
6489 	    (reg & UIC_DME_ERROR_CODE_MASK)) {
6490 		ufshcd_update_evt_hist(hba, UFS_EVT_DME_ERR, reg);
6491 		hba->uic_error |= UFSHCD_UIC_DME_ERROR;
6492 		retval |= IRQ_HANDLED;
6493 	}
6494 
6495 	dev_dbg(hba->dev, "%s: UIC error flags = 0x%08x\n",
6496 			__func__, hba->uic_error);
6497 	return retval;
6498 }
6499 
6500 /**
6501  * ufshcd_check_errors - Check for errors that need s/w attention
6502  * @hba: per-adapter instance
6503  * @intr_status: interrupt status generated by the controller
6504  *
6505  * Returns
6506  *  IRQ_HANDLED - If interrupt is valid
6507  *  IRQ_NONE    - If invalid interrupt
6508  */
6509 static irqreturn_t ufshcd_check_errors(struct ufs_hba *hba, u32 intr_status)
6510 {
6511 	bool queue_eh_work = false;
6512 	irqreturn_t retval = IRQ_NONE;
6513 
6514 	spin_lock(hba->host->host_lock);
6515 	hba->errors |= UFSHCD_ERROR_MASK & intr_status;
6516 
6517 	if (hba->errors & INT_FATAL_ERRORS) {
6518 		ufshcd_update_evt_hist(hba, UFS_EVT_FATAL_ERR,
6519 				       hba->errors);
6520 		queue_eh_work = true;
6521 	}
6522 
6523 	if (hba->errors & UIC_ERROR) {
6524 		hba->uic_error = 0;
6525 		retval = ufshcd_update_uic_error(hba);
6526 		if (hba->uic_error)
6527 			queue_eh_work = true;
6528 	}
6529 
6530 	if (hba->errors & UFSHCD_UIC_HIBERN8_MASK) {
6531 		dev_err(hba->dev,
6532 			"%s: Auto Hibern8 %s failed - status: 0x%08x, upmcrs: 0x%08x\n",
6533 			__func__, (hba->errors & UIC_HIBERNATE_ENTER) ?
6534 			"Enter" : "Exit",
6535 			hba->errors, ufshcd_get_upmcrs(hba));
6536 		ufshcd_update_evt_hist(hba, UFS_EVT_AUTO_HIBERN8_ERR,
6537 				       hba->errors);
6538 		ufshcd_set_link_broken(hba);
6539 		queue_eh_work = true;
6540 	}
6541 
6542 	if (queue_eh_work) {
6543 		/*
6544 		 * update the transfer error masks to sticky bits, let's do this
6545 		 * irrespective of current ufshcd_state.
6546 		 */
6547 		hba->saved_err |= hba->errors;
6548 		hba->saved_uic_err |= hba->uic_error;
6549 
6550 		/* dump controller state before resetting */
6551 		if ((hba->saved_err &
6552 		     (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK)) ||
6553 		    (hba->saved_uic_err &&
6554 		     (hba->saved_uic_err != UFSHCD_UIC_PA_GENERIC_ERROR))) {
6555 			dev_err(hba->dev, "%s: saved_err 0x%x saved_uic_err 0x%x\n",
6556 					__func__, hba->saved_err,
6557 					hba->saved_uic_err);
6558 			ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE,
6559 					 "host_regs: ");
6560 			ufshcd_print_pwr_info(hba);
6561 		}
6562 		ufshcd_schedule_eh_work(hba);
6563 		retval |= IRQ_HANDLED;
6564 	}
6565 	/*
6566 	 * if (!queue_eh_work) -
6567 	 * Other errors are either non-fatal where host recovers
6568 	 * itself without s/w intervention or errors that will be
6569 	 * handled by the SCSI core layer.
6570 	 */
6571 	hba->errors = 0;
6572 	hba->uic_error = 0;
6573 	spin_unlock(hba->host->host_lock);
6574 	return retval;
6575 }
6576 
6577 /**
6578  * ufshcd_tmc_handler - handle task management function completion
6579  * @hba: per adapter instance
6580  *
6581  * Returns
6582  *  IRQ_HANDLED - If interrupt is valid
6583  *  IRQ_NONE    - If invalid interrupt
6584  */
6585 static irqreturn_t ufshcd_tmc_handler(struct ufs_hba *hba)
6586 {
6587 	unsigned long flags, pending, issued;
6588 	irqreturn_t ret = IRQ_NONE;
6589 	int tag;
6590 
6591 	spin_lock_irqsave(hba->host->host_lock, flags);
6592 	pending = ufshcd_readl(hba, REG_UTP_TASK_REQ_DOOR_BELL);
6593 	issued = hba->outstanding_tasks & ~pending;
6594 	for_each_set_bit(tag, &issued, hba->nutmrs) {
6595 		struct request *req = hba->tmf_rqs[tag];
6596 		struct completion *c = req->end_io_data;
6597 
6598 		complete(c);
6599 		ret = IRQ_HANDLED;
6600 	}
6601 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6602 
6603 	return ret;
6604 }
6605 
6606 /**
6607  * ufshcd_sl_intr - Interrupt service routine
6608  * @hba: per adapter instance
6609  * @intr_status: contains interrupts generated by the controller
6610  *
6611  * Returns
6612  *  IRQ_HANDLED - If interrupt is valid
6613  *  IRQ_NONE    - If invalid interrupt
6614  */
6615 static irqreturn_t ufshcd_sl_intr(struct ufs_hba *hba, u32 intr_status)
6616 {
6617 	irqreturn_t retval = IRQ_NONE;
6618 
6619 	if (intr_status & UFSHCD_UIC_MASK)
6620 		retval |= ufshcd_uic_cmd_compl(hba, intr_status);
6621 
6622 	if (intr_status & UFSHCD_ERROR_MASK || hba->errors)
6623 		retval |= ufshcd_check_errors(hba, intr_status);
6624 
6625 	if (intr_status & UTP_TASK_REQ_COMPL)
6626 		retval |= ufshcd_tmc_handler(hba);
6627 
6628 	if (intr_status & UTP_TRANSFER_REQ_COMPL)
6629 		retval |= ufshcd_transfer_req_compl(hba);
6630 
6631 	return retval;
6632 }
6633 
6634 /**
6635  * ufshcd_intr - Main interrupt service routine
6636  * @irq: irq number
6637  * @__hba: pointer to adapter instance
6638  *
6639  * Returns
6640  *  IRQ_HANDLED - If interrupt is valid
6641  *  IRQ_NONE    - If invalid interrupt
6642  */
6643 static irqreturn_t ufshcd_intr(int irq, void *__hba)
6644 {
6645 	u32 intr_status, enabled_intr_status = 0;
6646 	irqreturn_t retval = IRQ_NONE;
6647 	struct ufs_hba *hba = __hba;
6648 	int retries = hba->nutrs;
6649 
6650 	intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
6651 	hba->ufs_stats.last_intr_status = intr_status;
6652 	hba->ufs_stats.last_intr_ts = local_clock();
6653 
6654 	/*
6655 	 * There could be max of hba->nutrs reqs in flight and in worst case
6656 	 * if the reqs get finished 1 by 1 after the interrupt status is
6657 	 * read, make sure we handle them by checking the interrupt status
6658 	 * again in a loop until we process all of the reqs before returning.
6659 	 */
6660 	while (intr_status && retries--) {
6661 		enabled_intr_status =
6662 			intr_status & ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
6663 		ufshcd_writel(hba, intr_status, REG_INTERRUPT_STATUS);
6664 		if (enabled_intr_status)
6665 			retval |= ufshcd_sl_intr(hba, enabled_intr_status);
6666 
6667 		intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
6668 	}
6669 
6670 	if (enabled_intr_status && retval == IRQ_NONE &&
6671 	    (!(enabled_intr_status & UTP_TRANSFER_REQ_COMPL) ||
6672 	     hba->outstanding_reqs) && !ufshcd_eh_in_progress(hba)) {
6673 		dev_err(hba->dev, "%s: Unhandled interrupt 0x%08x (0x%08x, 0x%08x)\n",
6674 					__func__,
6675 					intr_status,
6676 					hba->ufs_stats.last_intr_status,
6677 					enabled_intr_status);
6678 		ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, "host_regs: ");
6679 	}
6680 
6681 	return retval;
6682 }
6683 
6684 static int ufshcd_clear_tm_cmd(struct ufs_hba *hba, int tag)
6685 {
6686 	int err = 0;
6687 	u32 mask = 1 << tag;
6688 	unsigned long flags;
6689 
6690 	if (!test_bit(tag, &hba->outstanding_tasks))
6691 		goto out;
6692 
6693 	spin_lock_irqsave(hba->host->host_lock, flags);
6694 	ufshcd_utmrl_clear(hba, tag);
6695 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6696 
6697 	/* poll for max. 1 sec to clear door bell register by h/w */
6698 	err = ufshcd_wait_for_register(hba,
6699 			REG_UTP_TASK_REQ_DOOR_BELL,
6700 			mask, 0, 1000, 1000);
6701 
6702 	dev_err(hba->dev, "Clearing task management function with tag %d %s\n",
6703 		tag, err ? "succeeded" : "failed");
6704 
6705 out:
6706 	return err;
6707 }
6708 
6709 static int __ufshcd_issue_tm_cmd(struct ufs_hba *hba,
6710 		struct utp_task_req_desc *treq, u8 tm_function)
6711 {
6712 	struct request_queue *q = hba->tmf_queue;
6713 	struct Scsi_Host *host = hba->host;
6714 	DECLARE_COMPLETION_ONSTACK(wait);
6715 	struct request *req;
6716 	unsigned long flags;
6717 	int task_tag, err;
6718 
6719 	/*
6720 	 * blk_mq_alloc_request() is used here only to get a free tag.
6721 	 */
6722 	req = blk_mq_alloc_request(q, REQ_OP_DRV_OUT, 0);
6723 	if (IS_ERR(req))
6724 		return PTR_ERR(req);
6725 
6726 	req->end_io_data = &wait;
6727 	ufshcd_hold(hba, false);
6728 
6729 	spin_lock_irqsave(host->host_lock, flags);
6730 
6731 	task_tag = req->tag;
6732 	WARN_ONCE(task_tag < 0 || task_tag >= hba->nutmrs, "Invalid tag %d\n",
6733 		  task_tag);
6734 	hba->tmf_rqs[req->tag] = req;
6735 	treq->upiu_req.req_header.dword_0 |= cpu_to_be32(task_tag);
6736 
6737 	memcpy(hba->utmrdl_base_addr + task_tag, treq, sizeof(*treq));
6738 	ufshcd_vops_setup_task_mgmt(hba, task_tag, tm_function);
6739 
6740 	/* send command to the controller */
6741 	__set_bit(task_tag, &hba->outstanding_tasks);
6742 
6743 	ufshcd_writel(hba, 1 << task_tag, REG_UTP_TASK_REQ_DOOR_BELL);
6744 	/* Make sure that doorbell is committed immediately */
6745 	wmb();
6746 
6747 	spin_unlock_irqrestore(host->host_lock, flags);
6748 
6749 	ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_SEND);
6750 
6751 	/* wait until the task management command is completed */
6752 	err = wait_for_completion_io_timeout(&wait,
6753 			msecs_to_jiffies(TM_CMD_TIMEOUT));
6754 	if (!err) {
6755 		ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_ERR);
6756 		dev_err(hba->dev, "%s: task management cmd 0x%.2x timed-out\n",
6757 				__func__, tm_function);
6758 		if (ufshcd_clear_tm_cmd(hba, task_tag))
6759 			dev_WARN(hba->dev, "%s: unable to clear tm cmd (slot %d) after timeout\n",
6760 					__func__, task_tag);
6761 		err = -ETIMEDOUT;
6762 	} else {
6763 		err = 0;
6764 		memcpy(treq, hba->utmrdl_base_addr + task_tag, sizeof(*treq));
6765 
6766 		ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_COMP);
6767 	}
6768 
6769 	spin_lock_irqsave(hba->host->host_lock, flags);
6770 	hba->tmf_rqs[req->tag] = NULL;
6771 	__clear_bit(task_tag, &hba->outstanding_tasks);
6772 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6773 
6774 	ufshcd_release(hba);
6775 	blk_mq_free_request(req);
6776 
6777 	return err;
6778 }
6779 
6780 /**
6781  * ufshcd_issue_tm_cmd - issues task management commands to controller
6782  * @hba: per adapter instance
6783  * @lun_id: LUN ID to which TM command is sent
6784  * @task_id: task ID to which the TM command is applicable
6785  * @tm_function: task management function opcode
6786  * @tm_response: task management service response return value
6787  *
6788  * Returns non-zero value on error, zero on success.
6789  */
6790 static int ufshcd_issue_tm_cmd(struct ufs_hba *hba, int lun_id, int task_id,
6791 		u8 tm_function, u8 *tm_response)
6792 {
6793 	struct utp_task_req_desc treq = { { 0 }, };
6794 	enum utp_ocs ocs_value;
6795 	int err;
6796 
6797 	/* Configure task request descriptor */
6798 	treq.header.dword_0 = cpu_to_le32(UTP_REQ_DESC_INT_CMD);
6799 	treq.header.dword_2 = cpu_to_le32(OCS_INVALID_COMMAND_STATUS);
6800 
6801 	/* Configure task request UPIU */
6802 	treq.upiu_req.req_header.dword_0 = cpu_to_be32(lun_id << 8) |
6803 				  cpu_to_be32(UPIU_TRANSACTION_TASK_REQ << 24);
6804 	treq.upiu_req.req_header.dword_1 = cpu_to_be32(tm_function << 16);
6805 
6806 	/*
6807 	 * The host shall provide the same value for LUN field in the basic
6808 	 * header and for Input Parameter.
6809 	 */
6810 	treq.upiu_req.input_param1 = cpu_to_be32(lun_id);
6811 	treq.upiu_req.input_param2 = cpu_to_be32(task_id);
6812 
6813 	err = __ufshcd_issue_tm_cmd(hba, &treq, tm_function);
6814 	if (err == -ETIMEDOUT)
6815 		return err;
6816 
6817 	ocs_value = le32_to_cpu(treq.header.dword_2) & MASK_OCS;
6818 	if (ocs_value != OCS_SUCCESS)
6819 		dev_err(hba->dev, "%s: failed, ocs = 0x%x\n",
6820 				__func__, ocs_value);
6821 	else if (tm_response)
6822 		*tm_response = be32_to_cpu(treq.upiu_rsp.output_param1) &
6823 				MASK_TM_SERVICE_RESP;
6824 	return err;
6825 }
6826 
6827 /**
6828  * ufshcd_issue_devman_upiu_cmd - API for sending "utrd" type requests
6829  * @hba:	per-adapter instance
6830  * @req_upiu:	upiu request
6831  * @rsp_upiu:	upiu reply
6832  * @desc_buff:	pointer to descriptor buffer, NULL if NA
6833  * @buff_len:	descriptor size, 0 if NA
6834  * @cmd_type:	specifies the type (NOP, Query...)
6835  * @desc_op:	descriptor operation
6836  *
6837  * Those type of requests uses UTP Transfer Request Descriptor - utrd.
6838  * Therefore, it "rides" the device management infrastructure: uses its tag and
6839  * tasks work queues.
6840  *
6841  * Since there is only one available tag for device management commands,
6842  * the caller is expected to hold the hba->dev_cmd.lock mutex.
6843  */
6844 static int ufshcd_issue_devman_upiu_cmd(struct ufs_hba *hba,
6845 					struct utp_upiu_req *req_upiu,
6846 					struct utp_upiu_req *rsp_upiu,
6847 					u8 *desc_buff, int *buff_len,
6848 					enum dev_cmd_type cmd_type,
6849 					enum query_opcode desc_op)
6850 {
6851 	DECLARE_COMPLETION_ONSTACK(wait);
6852 	const u32 tag = hba->reserved_slot;
6853 	struct ufshcd_lrb *lrbp;
6854 	int err = 0;
6855 	u8 upiu_flags;
6856 
6857 	/* Protects use of hba->reserved_slot. */
6858 	lockdep_assert_held(&hba->dev_cmd.lock);
6859 
6860 	down_read(&hba->clk_scaling_lock);
6861 
6862 	lrbp = &hba->lrb[tag];
6863 	WARN_ON(lrbp->cmd);
6864 	lrbp->cmd = NULL;
6865 	lrbp->task_tag = tag;
6866 	lrbp->lun = 0;
6867 	lrbp->intr_cmd = true;
6868 	ufshcd_prepare_lrbp_crypto(NULL, lrbp);
6869 	hba->dev_cmd.type = cmd_type;
6870 
6871 	if (hba->ufs_version <= ufshci_version(1, 1))
6872 		lrbp->command_type = UTP_CMD_TYPE_DEV_MANAGE;
6873 	else
6874 		lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
6875 
6876 	/* update the task tag in the request upiu */
6877 	req_upiu->header.dword_0 |= cpu_to_be32(tag);
6878 
6879 	ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, DMA_NONE);
6880 
6881 	/* just copy the upiu request as it is */
6882 	memcpy(lrbp->ucd_req_ptr, req_upiu, sizeof(*lrbp->ucd_req_ptr));
6883 	if (desc_buff && desc_op == UPIU_QUERY_OPCODE_WRITE_DESC) {
6884 		/* The Data Segment Area is optional depending upon the query
6885 		 * function value. for WRITE DESCRIPTOR, the data segment
6886 		 * follows right after the tsf.
6887 		 */
6888 		memcpy(lrbp->ucd_req_ptr + 1, desc_buff, *buff_len);
6889 		*buff_len = 0;
6890 	}
6891 
6892 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
6893 
6894 	hba->dev_cmd.complete = &wait;
6895 
6896 	ufshcd_add_query_upiu_trace(hba, UFS_QUERY_SEND, lrbp->ucd_req_ptr);
6897 
6898 	ufshcd_send_command(hba, tag);
6899 	/*
6900 	 * ignore the returning value here - ufshcd_check_query_response is
6901 	 * bound to fail since dev_cmd.query and dev_cmd.type were left empty.
6902 	 * read the response directly ignoring all errors.
6903 	 */
6904 	ufshcd_wait_for_dev_cmd(hba, lrbp, QUERY_REQ_TIMEOUT);
6905 
6906 	/* just copy the upiu response as it is */
6907 	memcpy(rsp_upiu, lrbp->ucd_rsp_ptr, sizeof(*rsp_upiu));
6908 	if (desc_buff && desc_op == UPIU_QUERY_OPCODE_READ_DESC) {
6909 		u8 *descp = (u8 *)lrbp->ucd_rsp_ptr + sizeof(*rsp_upiu);
6910 		u16 resp_len = be32_to_cpu(lrbp->ucd_rsp_ptr->header.dword_2) &
6911 			       MASK_QUERY_DATA_SEG_LEN;
6912 
6913 		if (*buff_len >= resp_len) {
6914 			memcpy(desc_buff, descp, resp_len);
6915 			*buff_len = resp_len;
6916 		} else {
6917 			dev_warn(hba->dev,
6918 				 "%s: rsp size %d is bigger than buffer size %d",
6919 				 __func__, resp_len, *buff_len);
6920 			*buff_len = 0;
6921 			err = -EINVAL;
6922 		}
6923 	}
6924 	ufshcd_add_query_upiu_trace(hba, err ? UFS_QUERY_ERR : UFS_QUERY_COMP,
6925 				    (struct utp_upiu_req *)lrbp->ucd_rsp_ptr);
6926 
6927 	up_read(&hba->clk_scaling_lock);
6928 	return err;
6929 }
6930 
6931 /**
6932  * ufshcd_exec_raw_upiu_cmd - API function for sending raw upiu commands
6933  * @hba:	per-adapter instance
6934  * @req_upiu:	upiu request
6935  * @rsp_upiu:	upiu reply - only 8 DW as we do not support scsi commands
6936  * @msgcode:	message code, one of UPIU Transaction Codes Initiator to Target
6937  * @desc_buff:	pointer to descriptor buffer, NULL if NA
6938  * @buff_len:	descriptor size, 0 if NA
6939  * @desc_op:	descriptor operation
6940  *
6941  * Supports UTP Transfer requests (nop and query), and UTP Task
6942  * Management requests.
6943  * It is up to the caller to fill the upiu conent properly, as it will
6944  * be copied without any further input validations.
6945  */
6946 int ufshcd_exec_raw_upiu_cmd(struct ufs_hba *hba,
6947 			     struct utp_upiu_req *req_upiu,
6948 			     struct utp_upiu_req *rsp_upiu,
6949 			     int msgcode,
6950 			     u8 *desc_buff, int *buff_len,
6951 			     enum query_opcode desc_op)
6952 {
6953 	int err;
6954 	enum dev_cmd_type cmd_type = DEV_CMD_TYPE_QUERY;
6955 	struct utp_task_req_desc treq = { { 0 }, };
6956 	enum utp_ocs ocs_value;
6957 	u8 tm_f = be32_to_cpu(req_upiu->header.dword_1) >> 16 & MASK_TM_FUNC;
6958 
6959 	switch (msgcode) {
6960 	case UPIU_TRANSACTION_NOP_OUT:
6961 		cmd_type = DEV_CMD_TYPE_NOP;
6962 		fallthrough;
6963 	case UPIU_TRANSACTION_QUERY_REQ:
6964 		ufshcd_hold(hba, false);
6965 		mutex_lock(&hba->dev_cmd.lock);
6966 		err = ufshcd_issue_devman_upiu_cmd(hba, req_upiu, rsp_upiu,
6967 						   desc_buff, buff_len,
6968 						   cmd_type, desc_op);
6969 		mutex_unlock(&hba->dev_cmd.lock);
6970 		ufshcd_release(hba);
6971 
6972 		break;
6973 	case UPIU_TRANSACTION_TASK_REQ:
6974 		treq.header.dword_0 = cpu_to_le32(UTP_REQ_DESC_INT_CMD);
6975 		treq.header.dword_2 = cpu_to_le32(OCS_INVALID_COMMAND_STATUS);
6976 
6977 		memcpy(&treq.upiu_req, req_upiu, sizeof(*req_upiu));
6978 
6979 		err = __ufshcd_issue_tm_cmd(hba, &treq, tm_f);
6980 		if (err == -ETIMEDOUT)
6981 			break;
6982 
6983 		ocs_value = le32_to_cpu(treq.header.dword_2) & MASK_OCS;
6984 		if (ocs_value != OCS_SUCCESS) {
6985 			dev_err(hba->dev, "%s: failed, ocs = 0x%x\n", __func__,
6986 				ocs_value);
6987 			break;
6988 		}
6989 
6990 		memcpy(rsp_upiu, &treq.upiu_rsp, sizeof(*rsp_upiu));
6991 
6992 		break;
6993 	default:
6994 		err = -EINVAL;
6995 
6996 		break;
6997 	}
6998 
6999 	return err;
7000 }
7001 
7002 /**
7003  * ufshcd_eh_device_reset_handler() - Reset a single logical unit.
7004  * @cmd: SCSI command pointer
7005  *
7006  * Returns SUCCESS/FAILED
7007  */
7008 static int ufshcd_eh_device_reset_handler(struct scsi_cmnd *cmd)
7009 {
7010 	unsigned long flags, pending_reqs = 0, not_cleared = 0;
7011 	struct Scsi_Host *host;
7012 	struct ufs_hba *hba;
7013 	u32 pos;
7014 	int err;
7015 	u8 resp = 0xF, lun;
7016 
7017 	host = cmd->device->host;
7018 	hba = shost_priv(host);
7019 
7020 	lun = ufshcd_scsi_to_upiu_lun(cmd->device->lun);
7021 	err = ufshcd_issue_tm_cmd(hba, lun, 0, UFS_LOGICAL_RESET, &resp);
7022 	if (err || resp != UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7023 		if (!err)
7024 			err = resp;
7025 		goto out;
7026 	}
7027 
7028 	/* clear the commands that were pending for corresponding LUN */
7029 	spin_lock_irqsave(&hba->outstanding_lock, flags);
7030 	for_each_set_bit(pos, &hba->outstanding_reqs, hba->nutrs)
7031 		if (hba->lrb[pos].lun == lun)
7032 			__set_bit(pos, &pending_reqs);
7033 	hba->outstanding_reqs &= ~pending_reqs;
7034 	spin_unlock_irqrestore(&hba->outstanding_lock, flags);
7035 
7036 	if (ufshcd_clear_cmds(hba, pending_reqs) < 0) {
7037 		spin_lock_irqsave(&hba->outstanding_lock, flags);
7038 		not_cleared = pending_reqs &
7039 			ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
7040 		hba->outstanding_reqs |= not_cleared;
7041 		spin_unlock_irqrestore(&hba->outstanding_lock, flags);
7042 
7043 		dev_err(hba->dev, "%s: failed to clear requests %#lx\n",
7044 			__func__, not_cleared);
7045 	}
7046 	__ufshcd_transfer_req_compl(hba, pending_reqs & ~not_cleared);
7047 
7048 out:
7049 	hba->req_abort_count = 0;
7050 	ufshcd_update_evt_hist(hba, UFS_EVT_DEV_RESET, (u32)err);
7051 	if (!err) {
7052 		err = SUCCESS;
7053 	} else {
7054 		dev_err(hba->dev, "%s: failed with err %d\n", __func__, err);
7055 		err = FAILED;
7056 	}
7057 	return err;
7058 }
7059 
7060 static void ufshcd_set_req_abort_skip(struct ufs_hba *hba, unsigned long bitmap)
7061 {
7062 	struct ufshcd_lrb *lrbp;
7063 	int tag;
7064 
7065 	for_each_set_bit(tag, &bitmap, hba->nutrs) {
7066 		lrbp = &hba->lrb[tag];
7067 		lrbp->req_abort_skip = true;
7068 	}
7069 }
7070 
7071 /**
7072  * ufshcd_try_to_abort_task - abort a specific task
7073  * @hba: Pointer to adapter instance
7074  * @tag: Task tag/index to be aborted
7075  *
7076  * Abort the pending command in device by sending UFS_ABORT_TASK task management
7077  * command, and in host controller by clearing the door-bell register. There can
7078  * be race between controller sending the command to the device while abort is
7079  * issued. To avoid that, first issue UFS_QUERY_TASK to check if the command is
7080  * really issued and then try to abort it.
7081  *
7082  * Returns zero on success, non-zero on failure
7083  */
7084 static int ufshcd_try_to_abort_task(struct ufs_hba *hba, int tag)
7085 {
7086 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
7087 	int err = 0;
7088 	int poll_cnt;
7089 	u8 resp = 0xF;
7090 	u32 reg;
7091 
7092 	for (poll_cnt = 100; poll_cnt; poll_cnt--) {
7093 		err = ufshcd_issue_tm_cmd(hba, lrbp->lun, lrbp->task_tag,
7094 				UFS_QUERY_TASK, &resp);
7095 		if (!err && resp == UPIU_TASK_MANAGEMENT_FUNC_SUCCEEDED) {
7096 			/* cmd pending in the device */
7097 			dev_err(hba->dev, "%s: cmd pending in the device. tag = %d\n",
7098 				__func__, tag);
7099 			break;
7100 		} else if (!err && resp == UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7101 			/*
7102 			 * cmd not pending in the device, check if it is
7103 			 * in transition.
7104 			 */
7105 			dev_err(hba->dev, "%s: cmd at tag %d not pending in the device.\n",
7106 				__func__, tag);
7107 			reg = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
7108 			if (reg & (1 << tag)) {
7109 				/* sleep for max. 200us to stabilize */
7110 				usleep_range(100, 200);
7111 				continue;
7112 			}
7113 			/* command completed already */
7114 			dev_err(hba->dev, "%s: cmd at tag %d successfully cleared from DB.\n",
7115 				__func__, tag);
7116 			goto out;
7117 		} else {
7118 			dev_err(hba->dev,
7119 				"%s: no response from device. tag = %d, err %d\n",
7120 				__func__, tag, err);
7121 			if (!err)
7122 				err = resp; /* service response error */
7123 			goto out;
7124 		}
7125 	}
7126 
7127 	if (!poll_cnt) {
7128 		err = -EBUSY;
7129 		goto out;
7130 	}
7131 
7132 	err = ufshcd_issue_tm_cmd(hba, lrbp->lun, lrbp->task_tag,
7133 			UFS_ABORT_TASK, &resp);
7134 	if (err || resp != UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7135 		if (!err) {
7136 			err = resp; /* service response error */
7137 			dev_err(hba->dev, "%s: issued. tag = %d, err %d\n",
7138 				__func__, tag, err);
7139 		}
7140 		goto out;
7141 	}
7142 
7143 	err = ufshcd_clear_cmds(hba, 1U << tag);
7144 	if (err)
7145 		dev_err(hba->dev, "%s: Failed clearing cmd at tag %d, err %d\n",
7146 			__func__, tag, err);
7147 
7148 out:
7149 	return err;
7150 }
7151 
7152 /**
7153  * ufshcd_abort - scsi host template eh_abort_handler callback
7154  * @cmd: SCSI command pointer
7155  *
7156  * Returns SUCCESS/FAILED
7157  */
7158 static int ufshcd_abort(struct scsi_cmnd *cmd)
7159 {
7160 	struct Scsi_Host *host = cmd->device->host;
7161 	struct ufs_hba *hba = shost_priv(host);
7162 	int tag = scsi_cmd_to_rq(cmd)->tag;
7163 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
7164 	unsigned long flags;
7165 	int err = FAILED;
7166 	bool outstanding;
7167 	u32 reg;
7168 
7169 	WARN_ONCE(tag < 0, "Invalid tag %d\n", tag);
7170 
7171 	ufshcd_hold(hba, false);
7172 	reg = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
7173 	/* If command is already aborted/completed, return FAILED. */
7174 	if (!(test_bit(tag, &hba->outstanding_reqs))) {
7175 		dev_err(hba->dev,
7176 			"%s: cmd at tag %d already completed, outstanding=0x%lx, doorbell=0x%x\n",
7177 			__func__, tag, hba->outstanding_reqs, reg);
7178 		goto release;
7179 	}
7180 
7181 	/* Print Transfer Request of aborted task */
7182 	dev_info(hba->dev, "%s: Device abort task at tag %d\n", __func__, tag);
7183 
7184 	/*
7185 	 * Print detailed info about aborted request.
7186 	 * As more than one request might get aborted at the same time,
7187 	 * print full information only for the first aborted request in order
7188 	 * to reduce repeated printouts. For other aborted requests only print
7189 	 * basic details.
7190 	 */
7191 	scsi_print_command(cmd);
7192 	if (!hba->req_abort_count) {
7193 		ufshcd_update_evt_hist(hba, UFS_EVT_ABORT, tag);
7194 		ufshcd_print_evt_hist(hba);
7195 		ufshcd_print_host_state(hba);
7196 		ufshcd_print_pwr_info(hba);
7197 		ufshcd_print_trs(hba, 1 << tag, true);
7198 	} else {
7199 		ufshcd_print_trs(hba, 1 << tag, false);
7200 	}
7201 	hba->req_abort_count++;
7202 
7203 	if (!(reg & (1 << tag))) {
7204 		dev_err(hba->dev,
7205 		"%s: cmd was completed, but without a notifying intr, tag = %d",
7206 		__func__, tag);
7207 		__ufshcd_transfer_req_compl(hba, 1UL << tag);
7208 		goto release;
7209 	}
7210 
7211 	/*
7212 	 * Task abort to the device W-LUN is illegal. When this command
7213 	 * will fail, due to spec violation, scsi err handling next step
7214 	 * will be to send LU reset which, again, is a spec violation.
7215 	 * To avoid these unnecessary/illegal steps, first we clean up
7216 	 * the lrb taken by this cmd and re-set it in outstanding_reqs,
7217 	 * then queue the eh_work and bail.
7218 	 */
7219 	if (lrbp->lun == UFS_UPIU_UFS_DEVICE_WLUN) {
7220 		ufshcd_update_evt_hist(hba, UFS_EVT_ABORT, lrbp->lun);
7221 
7222 		spin_lock_irqsave(host->host_lock, flags);
7223 		hba->force_reset = true;
7224 		ufshcd_schedule_eh_work(hba);
7225 		spin_unlock_irqrestore(host->host_lock, flags);
7226 		goto release;
7227 	}
7228 
7229 	/* Skip task abort in case previous aborts failed and report failure */
7230 	if (lrbp->req_abort_skip) {
7231 		dev_err(hba->dev, "%s: skipping abort\n", __func__);
7232 		ufshcd_set_req_abort_skip(hba, hba->outstanding_reqs);
7233 		goto release;
7234 	}
7235 
7236 	err = ufshcd_try_to_abort_task(hba, tag);
7237 	if (err) {
7238 		dev_err(hba->dev, "%s: failed with err %d\n", __func__, err);
7239 		ufshcd_set_req_abort_skip(hba, hba->outstanding_reqs);
7240 		err = FAILED;
7241 		goto release;
7242 	}
7243 
7244 	/*
7245 	 * Clear the corresponding bit from outstanding_reqs since the command
7246 	 * has been aborted successfully.
7247 	 */
7248 	spin_lock_irqsave(&hba->outstanding_lock, flags);
7249 	outstanding = __test_and_clear_bit(tag, &hba->outstanding_reqs);
7250 	spin_unlock_irqrestore(&hba->outstanding_lock, flags);
7251 
7252 	if (outstanding)
7253 		ufshcd_release_scsi_cmd(hba, lrbp);
7254 
7255 	err = SUCCESS;
7256 
7257 release:
7258 	/* Matches the ufshcd_hold() call at the start of this function. */
7259 	ufshcd_release(hba);
7260 	return err;
7261 }
7262 
7263 /**
7264  * ufshcd_host_reset_and_restore - reset and restore host controller
7265  * @hba: per-adapter instance
7266  *
7267  * Note that host controller reset may issue DME_RESET to
7268  * local and remote (device) Uni-Pro stack and the attributes
7269  * are reset to default state.
7270  *
7271  * Returns zero on success, non-zero on failure
7272  */
7273 static int ufshcd_host_reset_and_restore(struct ufs_hba *hba)
7274 {
7275 	int err;
7276 
7277 	/*
7278 	 * Stop the host controller and complete the requests
7279 	 * cleared by h/w
7280 	 */
7281 	ufshpb_toggle_state(hba, HPB_PRESENT, HPB_RESET);
7282 	ufshcd_hba_stop(hba);
7283 	hba->silence_err_logs = true;
7284 	ufshcd_complete_requests(hba);
7285 	hba->silence_err_logs = false;
7286 
7287 	/* scale up clocks to max frequency before full reinitialization */
7288 	ufshcd_scale_clks(hba, true);
7289 
7290 	err = ufshcd_hba_enable(hba);
7291 
7292 	/* Establish the link again and restore the device */
7293 	if (!err)
7294 		err = ufshcd_probe_hba(hba, false);
7295 
7296 	if (err)
7297 		dev_err(hba->dev, "%s: Host init failed %d\n", __func__, err);
7298 	ufshcd_update_evt_hist(hba, UFS_EVT_HOST_RESET, (u32)err);
7299 	return err;
7300 }
7301 
7302 /**
7303  * ufshcd_reset_and_restore - reset and re-initialize host/device
7304  * @hba: per-adapter instance
7305  *
7306  * Reset and recover device, host and re-establish link. This
7307  * is helpful to recover the communication in fatal error conditions.
7308  *
7309  * Returns zero on success, non-zero on failure
7310  */
7311 static int ufshcd_reset_and_restore(struct ufs_hba *hba)
7312 {
7313 	u32 saved_err = 0;
7314 	u32 saved_uic_err = 0;
7315 	int err = 0;
7316 	unsigned long flags;
7317 	int retries = MAX_HOST_RESET_RETRIES;
7318 
7319 	spin_lock_irqsave(hba->host->host_lock, flags);
7320 	do {
7321 		/*
7322 		 * This is a fresh start, cache and clear saved error first,
7323 		 * in case new error generated during reset and restore.
7324 		 */
7325 		saved_err |= hba->saved_err;
7326 		saved_uic_err |= hba->saved_uic_err;
7327 		hba->saved_err = 0;
7328 		hba->saved_uic_err = 0;
7329 		hba->force_reset = false;
7330 		hba->ufshcd_state = UFSHCD_STATE_RESET;
7331 		spin_unlock_irqrestore(hba->host->host_lock, flags);
7332 
7333 		/* Reset the attached device */
7334 		ufshcd_device_reset(hba);
7335 
7336 		err = ufshcd_host_reset_and_restore(hba);
7337 
7338 		spin_lock_irqsave(hba->host->host_lock, flags);
7339 		if (err)
7340 			continue;
7341 		/* Do not exit unless operational or dead */
7342 		if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL &&
7343 		    hba->ufshcd_state != UFSHCD_STATE_ERROR &&
7344 		    hba->ufshcd_state != UFSHCD_STATE_EH_SCHEDULED_NON_FATAL)
7345 			err = -EAGAIN;
7346 	} while (err && --retries);
7347 
7348 	/*
7349 	 * Inform scsi mid-layer that we did reset and allow to handle
7350 	 * Unit Attention properly.
7351 	 */
7352 	scsi_report_bus_reset(hba->host, 0);
7353 	if (err) {
7354 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
7355 		hba->saved_err |= saved_err;
7356 		hba->saved_uic_err |= saved_uic_err;
7357 	}
7358 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7359 
7360 	return err;
7361 }
7362 
7363 /**
7364  * ufshcd_eh_host_reset_handler - host reset handler registered to scsi layer
7365  * @cmd: SCSI command pointer
7366  *
7367  * Returns SUCCESS/FAILED
7368  */
7369 static int ufshcd_eh_host_reset_handler(struct scsi_cmnd *cmd)
7370 {
7371 	int err = SUCCESS;
7372 	unsigned long flags;
7373 	struct ufs_hba *hba;
7374 
7375 	hba = shost_priv(cmd->device->host);
7376 
7377 	spin_lock_irqsave(hba->host->host_lock, flags);
7378 	hba->force_reset = true;
7379 	ufshcd_schedule_eh_work(hba);
7380 	dev_err(hba->dev, "%s: reset in progress - 1\n", __func__);
7381 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7382 
7383 	flush_work(&hba->eh_work);
7384 
7385 	spin_lock_irqsave(hba->host->host_lock, flags);
7386 	if (hba->ufshcd_state == UFSHCD_STATE_ERROR)
7387 		err = FAILED;
7388 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7389 
7390 	return err;
7391 }
7392 
7393 /**
7394  * ufshcd_get_max_icc_level - calculate the ICC level
7395  * @sup_curr_uA: max. current supported by the regulator
7396  * @start_scan: row at the desc table to start scan from
7397  * @buff: power descriptor buffer
7398  *
7399  * Returns calculated max ICC level for specific regulator
7400  */
7401 static u32 ufshcd_get_max_icc_level(int sup_curr_uA, u32 start_scan,
7402 				    const char *buff)
7403 {
7404 	int i;
7405 	int curr_uA;
7406 	u16 data;
7407 	u16 unit;
7408 
7409 	for (i = start_scan; i >= 0; i--) {
7410 		data = get_unaligned_be16(&buff[2 * i]);
7411 		unit = (data & ATTR_ICC_LVL_UNIT_MASK) >>
7412 						ATTR_ICC_LVL_UNIT_OFFSET;
7413 		curr_uA = data & ATTR_ICC_LVL_VALUE_MASK;
7414 		switch (unit) {
7415 		case UFSHCD_NANO_AMP:
7416 			curr_uA = curr_uA / 1000;
7417 			break;
7418 		case UFSHCD_MILI_AMP:
7419 			curr_uA = curr_uA * 1000;
7420 			break;
7421 		case UFSHCD_AMP:
7422 			curr_uA = curr_uA * 1000 * 1000;
7423 			break;
7424 		case UFSHCD_MICRO_AMP:
7425 		default:
7426 			break;
7427 		}
7428 		if (sup_curr_uA >= curr_uA)
7429 			break;
7430 	}
7431 	if (i < 0) {
7432 		i = 0;
7433 		pr_err("%s: Couldn't find valid icc_level = %d", __func__, i);
7434 	}
7435 
7436 	return (u32)i;
7437 }
7438 
7439 /**
7440  * ufshcd_find_max_sup_active_icc_level - calculate the max ICC level
7441  * In case regulators are not initialized we'll return 0
7442  * @hba: per-adapter instance
7443  * @desc_buf: power descriptor buffer to extract ICC levels from.
7444  * @len: length of desc_buff
7445  *
7446  * Returns calculated ICC level
7447  */
7448 static u32 ufshcd_find_max_sup_active_icc_level(struct ufs_hba *hba,
7449 						const u8 *desc_buf, int len)
7450 {
7451 	u32 icc_level = 0;
7452 
7453 	if (!hba->vreg_info.vcc || !hba->vreg_info.vccq ||
7454 						!hba->vreg_info.vccq2) {
7455 		/*
7456 		 * Using dev_dbg to avoid messages during runtime PM to avoid
7457 		 * never-ending cycles of messages written back to storage by
7458 		 * user space causing runtime resume, causing more messages and
7459 		 * so on.
7460 		 */
7461 		dev_dbg(hba->dev,
7462 			"%s: Regulator capability was not set, actvIccLevel=%d",
7463 							__func__, icc_level);
7464 		goto out;
7465 	}
7466 
7467 	if (hba->vreg_info.vcc->max_uA)
7468 		icc_level = ufshcd_get_max_icc_level(
7469 				hba->vreg_info.vcc->max_uA,
7470 				POWER_DESC_MAX_ACTV_ICC_LVLS - 1,
7471 				&desc_buf[PWR_DESC_ACTIVE_LVLS_VCC_0]);
7472 
7473 	if (hba->vreg_info.vccq->max_uA)
7474 		icc_level = ufshcd_get_max_icc_level(
7475 				hba->vreg_info.vccq->max_uA,
7476 				icc_level,
7477 				&desc_buf[PWR_DESC_ACTIVE_LVLS_VCCQ_0]);
7478 
7479 	if (hba->vreg_info.vccq2->max_uA)
7480 		icc_level = ufshcd_get_max_icc_level(
7481 				hba->vreg_info.vccq2->max_uA,
7482 				icc_level,
7483 				&desc_buf[PWR_DESC_ACTIVE_LVLS_VCCQ2_0]);
7484 out:
7485 	return icc_level;
7486 }
7487 
7488 static void ufshcd_set_active_icc_lvl(struct ufs_hba *hba)
7489 {
7490 	int ret;
7491 	int buff_len = hba->desc_size[QUERY_DESC_IDN_POWER];
7492 	u8 *desc_buf;
7493 	u32 icc_level;
7494 
7495 	desc_buf = kmalloc(buff_len, GFP_KERNEL);
7496 	if (!desc_buf)
7497 		return;
7498 
7499 	ret = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_POWER, 0, 0,
7500 				     desc_buf, buff_len);
7501 	if (ret) {
7502 		dev_err(hba->dev,
7503 			"%s: Failed reading power descriptor.len = %d ret = %d",
7504 			__func__, buff_len, ret);
7505 		goto out;
7506 	}
7507 
7508 	icc_level = ufshcd_find_max_sup_active_icc_level(hba, desc_buf,
7509 							 buff_len);
7510 	dev_dbg(hba->dev, "%s: setting icc_level 0x%x", __func__, icc_level);
7511 
7512 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
7513 		QUERY_ATTR_IDN_ACTIVE_ICC_LVL, 0, 0, &icc_level);
7514 
7515 	if (ret)
7516 		dev_err(hba->dev,
7517 			"%s: Failed configuring bActiveICCLevel = %d ret = %d",
7518 			__func__, icc_level, ret);
7519 
7520 out:
7521 	kfree(desc_buf);
7522 }
7523 
7524 static inline void ufshcd_blk_pm_runtime_init(struct scsi_device *sdev)
7525 {
7526 	scsi_autopm_get_device(sdev);
7527 	blk_pm_runtime_init(sdev->request_queue, &sdev->sdev_gendev);
7528 	if (sdev->rpm_autosuspend)
7529 		pm_runtime_set_autosuspend_delay(&sdev->sdev_gendev,
7530 						 RPM_AUTOSUSPEND_DELAY_MS);
7531 	scsi_autopm_put_device(sdev);
7532 }
7533 
7534 /**
7535  * ufshcd_scsi_add_wlus - Adds required W-LUs
7536  * @hba: per-adapter instance
7537  *
7538  * UFS device specification requires the UFS devices to support 4 well known
7539  * logical units:
7540  *	"REPORT_LUNS" (address: 01h)
7541  *	"UFS Device" (address: 50h)
7542  *	"RPMB" (address: 44h)
7543  *	"BOOT" (address: 30h)
7544  * UFS device's power management needs to be controlled by "POWER CONDITION"
7545  * field of SSU (START STOP UNIT) command. But this "power condition" field
7546  * will take effect only when its sent to "UFS device" well known logical unit
7547  * hence we require the scsi_device instance to represent this logical unit in
7548  * order for the UFS host driver to send the SSU command for power management.
7549  *
7550  * We also require the scsi_device instance for "RPMB" (Replay Protected Memory
7551  * Block) LU so user space process can control this LU. User space may also
7552  * want to have access to BOOT LU.
7553  *
7554  * This function adds scsi device instances for each of all well known LUs
7555  * (except "REPORT LUNS" LU).
7556  *
7557  * Returns zero on success (all required W-LUs are added successfully),
7558  * non-zero error value on failure (if failed to add any of the required W-LU).
7559  */
7560 static int ufshcd_scsi_add_wlus(struct ufs_hba *hba)
7561 {
7562 	int ret = 0;
7563 	struct scsi_device *sdev_boot, *sdev_rpmb;
7564 
7565 	hba->ufs_device_wlun = __scsi_add_device(hba->host, 0, 0,
7566 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_UFS_DEVICE_WLUN), NULL);
7567 	if (IS_ERR(hba->ufs_device_wlun)) {
7568 		ret = PTR_ERR(hba->ufs_device_wlun);
7569 		hba->ufs_device_wlun = NULL;
7570 		goto out;
7571 	}
7572 	scsi_device_put(hba->ufs_device_wlun);
7573 
7574 	sdev_rpmb = __scsi_add_device(hba->host, 0, 0,
7575 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_RPMB_WLUN), NULL);
7576 	if (IS_ERR(sdev_rpmb)) {
7577 		ret = PTR_ERR(sdev_rpmb);
7578 		goto remove_ufs_device_wlun;
7579 	}
7580 	ufshcd_blk_pm_runtime_init(sdev_rpmb);
7581 	scsi_device_put(sdev_rpmb);
7582 
7583 	sdev_boot = __scsi_add_device(hba->host, 0, 0,
7584 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_BOOT_WLUN), NULL);
7585 	if (IS_ERR(sdev_boot)) {
7586 		dev_err(hba->dev, "%s: BOOT WLUN not found\n", __func__);
7587 	} else {
7588 		ufshcd_blk_pm_runtime_init(sdev_boot);
7589 		scsi_device_put(sdev_boot);
7590 	}
7591 	goto out;
7592 
7593 remove_ufs_device_wlun:
7594 	scsi_remove_device(hba->ufs_device_wlun);
7595 out:
7596 	return ret;
7597 }
7598 
7599 static void ufshcd_wb_probe(struct ufs_hba *hba, const u8 *desc_buf)
7600 {
7601 	struct ufs_dev_info *dev_info = &hba->dev_info;
7602 	u8 lun;
7603 	u32 d_lu_wb_buf_alloc;
7604 	u32 ext_ufs_feature;
7605 
7606 	if (!ufshcd_is_wb_allowed(hba))
7607 		return;
7608 
7609 	/*
7610 	 * Probe WB only for UFS-2.2 and UFS-3.1 (and later) devices or
7611 	 * UFS devices with quirk UFS_DEVICE_QUIRK_SUPPORT_EXTENDED_FEATURES
7612 	 * enabled
7613 	 */
7614 	if (!(dev_info->wspecversion >= 0x310 ||
7615 	      dev_info->wspecversion == 0x220 ||
7616 	     (hba->dev_quirks & UFS_DEVICE_QUIRK_SUPPORT_EXTENDED_FEATURES)))
7617 		goto wb_disabled;
7618 
7619 	if (hba->desc_size[QUERY_DESC_IDN_DEVICE] <
7620 	    DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP + 4)
7621 		goto wb_disabled;
7622 
7623 	ext_ufs_feature = get_unaligned_be32(desc_buf +
7624 					DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
7625 
7626 	if (!(ext_ufs_feature & UFS_DEV_WRITE_BOOSTER_SUP))
7627 		goto wb_disabled;
7628 
7629 	/*
7630 	 * WB may be supported but not configured while provisioning. The spec
7631 	 * says, in dedicated wb buffer mode, a max of 1 lun would have wb
7632 	 * buffer configured.
7633 	 */
7634 	dev_info->wb_buffer_type = desc_buf[DEVICE_DESC_PARAM_WB_TYPE];
7635 
7636 	dev_info->b_presrv_uspc_en =
7637 		desc_buf[DEVICE_DESC_PARAM_WB_PRESRV_USRSPC_EN];
7638 
7639 	if (dev_info->wb_buffer_type == WB_BUF_MODE_SHARED) {
7640 		if (!get_unaligned_be32(desc_buf +
7641 				   DEVICE_DESC_PARAM_WB_SHARED_ALLOC_UNITS))
7642 			goto wb_disabled;
7643 	} else {
7644 		for (lun = 0; lun < UFS_UPIU_MAX_WB_LUN_ID; lun++) {
7645 			d_lu_wb_buf_alloc = 0;
7646 			ufshcd_read_unit_desc_param(hba,
7647 					lun,
7648 					UNIT_DESC_PARAM_WB_BUF_ALLOC_UNITS,
7649 					(u8 *)&d_lu_wb_buf_alloc,
7650 					sizeof(d_lu_wb_buf_alloc));
7651 			if (d_lu_wb_buf_alloc) {
7652 				dev_info->wb_dedicated_lu = lun;
7653 				break;
7654 			}
7655 		}
7656 
7657 		if (!d_lu_wb_buf_alloc)
7658 			goto wb_disabled;
7659 	}
7660 
7661 	if (!ufshcd_is_wb_buf_lifetime_available(hba))
7662 		goto wb_disabled;
7663 
7664 	return;
7665 
7666 wb_disabled:
7667 	hba->caps &= ~UFSHCD_CAP_WB_EN;
7668 }
7669 
7670 static void ufshcd_temp_notif_probe(struct ufs_hba *hba, const u8 *desc_buf)
7671 {
7672 	struct ufs_dev_info *dev_info = &hba->dev_info;
7673 	u32 ext_ufs_feature;
7674 	u8 mask = 0;
7675 
7676 	if (!(hba->caps & UFSHCD_CAP_TEMP_NOTIF) || dev_info->wspecversion < 0x300)
7677 		return;
7678 
7679 	ext_ufs_feature = get_unaligned_be32(desc_buf + DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
7680 
7681 	if (ext_ufs_feature & UFS_DEV_LOW_TEMP_NOTIF)
7682 		mask |= MASK_EE_TOO_LOW_TEMP;
7683 
7684 	if (ext_ufs_feature & UFS_DEV_HIGH_TEMP_NOTIF)
7685 		mask |= MASK_EE_TOO_HIGH_TEMP;
7686 
7687 	if (mask) {
7688 		ufshcd_enable_ee(hba, mask);
7689 		ufs_hwmon_probe(hba, mask);
7690 	}
7691 }
7692 
7693 void ufshcd_fixup_dev_quirks(struct ufs_hba *hba,
7694 			     const struct ufs_dev_quirk *fixups)
7695 {
7696 	const struct ufs_dev_quirk *f;
7697 	struct ufs_dev_info *dev_info = &hba->dev_info;
7698 
7699 	if (!fixups)
7700 		return;
7701 
7702 	for (f = fixups; f->quirk; f++) {
7703 		if ((f->wmanufacturerid == dev_info->wmanufacturerid ||
7704 		     f->wmanufacturerid == UFS_ANY_VENDOR) &&
7705 		     ((dev_info->model &&
7706 		       STR_PRFX_EQUAL(f->model, dev_info->model)) ||
7707 		      !strcmp(f->model, UFS_ANY_MODEL)))
7708 			hba->dev_quirks |= f->quirk;
7709 	}
7710 }
7711 EXPORT_SYMBOL_GPL(ufshcd_fixup_dev_quirks);
7712 
7713 static void ufs_fixup_device_setup(struct ufs_hba *hba)
7714 {
7715 	/* fix by general quirk table */
7716 	ufshcd_fixup_dev_quirks(hba, ufs_fixups);
7717 
7718 	/* allow vendors to fix quirks */
7719 	ufshcd_vops_fixup_dev_quirks(hba);
7720 }
7721 
7722 static int ufs_get_device_desc(struct ufs_hba *hba)
7723 {
7724 	int err;
7725 	u8 model_index;
7726 	u8 b_ufs_feature_sup;
7727 	u8 *desc_buf;
7728 	struct ufs_dev_info *dev_info = &hba->dev_info;
7729 
7730 	desc_buf = kmalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
7731 	if (!desc_buf) {
7732 		err = -ENOMEM;
7733 		goto out;
7734 	}
7735 
7736 	err = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_DEVICE, 0, 0, desc_buf,
7737 				     hba->desc_size[QUERY_DESC_IDN_DEVICE]);
7738 	if (err) {
7739 		dev_err(hba->dev, "%s: Failed reading Device Desc. err = %d\n",
7740 			__func__, err);
7741 		goto out;
7742 	}
7743 
7744 	/*
7745 	 * getting vendor (manufacturerID) and Bank Index in big endian
7746 	 * format
7747 	 */
7748 	dev_info->wmanufacturerid = desc_buf[DEVICE_DESC_PARAM_MANF_ID] << 8 |
7749 				     desc_buf[DEVICE_DESC_PARAM_MANF_ID + 1];
7750 
7751 	/* getting Specification Version in big endian format */
7752 	dev_info->wspecversion = desc_buf[DEVICE_DESC_PARAM_SPEC_VER] << 8 |
7753 				      desc_buf[DEVICE_DESC_PARAM_SPEC_VER + 1];
7754 	b_ufs_feature_sup = desc_buf[DEVICE_DESC_PARAM_UFS_FEAT];
7755 
7756 	model_index = desc_buf[DEVICE_DESC_PARAM_PRDCT_NAME];
7757 
7758 	if (dev_info->wspecversion >= UFS_DEV_HPB_SUPPORT_VERSION &&
7759 	    (b_ufs_feature_sup & UFS_DEV_HPB_SUPPORT)) {
7760 		bool hpb_en = false;
7761 
7762 		ufshpb_get_dev_info(hba, desc_buf);
7763 
7764 		if (!ufshpb_is_legacy(hba))
7765 			err = ufshcd_query_flag_retry(hba,
7766 						      UPIU_QUERY_OPCODE_READ_FLAG,
7767 						      QUERY_FLAG_IDN_HPB_EN, 0,
7768 						      &hpb_en);
7769 
7770 		if (ufshpb_is_legacy(hba) || (!err && hpb_en))
7771 			dev_info->hpb_enabled = true;
7772 	}
7773 
7774 	err = ufshcd_read_string_desc(hba, model_index,
7775 				      &dev_info->model, SD_ASCII_STD);
7776 	if (err < 0) {
7777 		dev_err(hba->dev, "%s: Failed reading Product Name. err = %d\n",
7778 			__func__, err);
7779 		goto out;
7780 	}
7781 
7782 	hba->luns_avail = desc_buf[DEVICE_DESC_PARAM_NUM_LU] +
7783 		desc_buf[DEVICE_DESC_PARAM_NUM_WLU];
7784 
7785 	ufs_fixup_device_setup(hba);
7786 
7787 	ufshcd_wb_probe(hba, desc_buf);
7788 
7789 	ufshcd_temp_notif_probe(hba, desc_buf);
7790 
7791 	/*
7792 	 * ufshcd_read_string_desc returns size of the string
7793 	 * reset the error value
7794 	 */
7795 	err = 0;
7796 
7797 out:
7798 	kfree(desc_buf);
7799 	return err;
7800 }
7801 
7802 static void ufs_put_device_desc(struct ufs_hba *hba)
7803 {
7804 	struct ufs_dev_info *dev_info = &hba->dev_info;
7805 
7806 	kfree(dev_info->model);
7807 	dev_info->model = NULL;
7808 }
7809 
7810 /**
7811  * ufshcd_tune_pa_tactivate - Tunes PA_TActivate of local UniPro
7812  * @hba: per-adapter instance
7813  *
7814  * PA_TActivate parameter can be tuned manually if UniPro version is less than
7815  * 1.61. PA_TActivate needs to be greater than or equal to peerM-PHY's
7816  * RX_MIN_ACTIVATETIME_CAPABILITY attribute. This optimal value can help reduce
7817  * the hibern8 exit latency.
7818  *
7819  * Returns zero on success, non-zero error value on failure.
7820  */
7821 static int ufshcd_tune_pa_tactivate(struct ufs_hba *hba)
7822 {
7823 	int ret = 0;
7824 	u32 peer_rx_min_activatetime = 0, tuned_pa_tactivate;
7825 
7826 	ret = ufshcd_dme_peer_get(hba,
7827 				  UIC_ARG_MIB_SEL(
7828 					RX_MIN_ACTIVATETIME_CAPABILITY,
7829 					UIC_ARG_MPHY_RX_GEN_SEL_INDEX(0)),
7830 				  &peer_rx_min_activatetime);
7831 	if (ret)
7832 		goto out;
7833 
7834 	/* make sure proper unit conversion is applied */
7835 	tuned_pa_tactivate =
7836 		((peer_rx_min_activatetime * RX_MIN_ACTIVATETIME_UNIT_US)
7837 		 / PA_TACTIVATE_TIME_UNIT_US);
7838 	ret = ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TACTIVATE),
7839 			     tuned_pa_tactivate);
7840 
7841 out:
7842 	return ret;
7843 }
7844 
7845 /**
7846  * ufshcd_tune_pa_hibern8time - Tunes PA_Hibern8Time of local UniPro
7847  * @hba: per-adapter instance
7848  *
7849  * PA_Hibern8Time parameter can be tuned manually if UniPro version is less than
7850  * 1.61. PA_Hibern8Time needs to be maximum of local M-PHY's
7851  * TX_HIBERN8TIME_CAPABILITY & peer M-PHY's RX_HIBERN8TIME_CAPABILITY.
7852  * This optimal value can help reduce the hibern8 exit latency.
7853  *
7854  * Returns zero on success, non-zero error value on failure.
7855  */
7856 static int ufshcd_tune_pa_hibern8time(struct ufs_hba *hba)
7857 {
7858 	int ret = 0;
7859 	u32 local_tx_hibern8_time_cap = 0, peer_rx_hibern8_time_cap = 0;
7860 	u32 max_hibern8_time, tuned_pa_hibern8time;
7861 
7862 	ret = ufshcd_dme_get(hba,
7863 			     UIC_ARG_MIB_SEL(TX_HIBERN8TIME_CAPABILITY,
7864 					UIC_ARG_MPHY_TX_GEN_SEL_INDEX(0)),
7865 				  &local_tx_hibern8_time_cap);
7866 	if (ret)
7867 		goto out;
7868 
7869 	ret = ufshcd_dme_peer_get(hba,
7870 				  UIC_ARG_MIB_SEL(RX_HIBERN8TIME_CAPABILITY,
7871 					UIC_ARG_MPHY_RX_GEN_SEL_INDEX(0)),
7872 				  &peer_rx_hibern8_time_cap);
7873 	if (ret)
7874 		goto out;
7875 
7876 	max_hibern8_time = max(local_tx_hibern8_time_cap,
7877 			       peer_rx_hibern8_time_cap);
7878 	/* make sure proper unit conversion is applied */
7879 	tuned_pa_hibern8time = ((max_hibern8_time * HIBERN8TIME_UNIT_US)
7880 				/ PA_HIBERN8_TIME_UNIT_US);
7881 	ret = ufshcd_dme_set(hba, UIC_ARG_MIB(PA_HIBERN8TIME),
7882 			     tuned_pa_hibern8time);
7883 out:
7884 	return ret;
7885 }
7886 
7887 /**
7888  * ufshcd_quirk_tune_host_pa_tactivate - Ensures that host PA_TACTIVATE is
7889  * less than device PA_TACTIVATE time.
7890  * @hba: per-adapter instance
7891  *
7892  * Some UFS devices require host PA_TACTIVATE to be lower than device
7893  * PA_TACTIVATE, we need to enable UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE quirk
7894  * for such devices.
7895  *
7896  * Returns zero on success, non-zero error value on failure.
7897  */
7898 static int ufshcd_quirk_tune_host_pa_tactivate(struct ufs_hba *hba)
7899 {
7900 	int ret = 0;
7901 	u32 granularity, peer_granularity;
7902 	u32 pa_tactivate, peer_pa_tactivate;
7903 	u32 pa_tactivate_us, peer_pa_tactivate_us;
7904 	static const u8 gran_to_us_table[] = {1, 4, 8, 16, 32, 100};
7905 
7906 	ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_GRANULARITY),
7907 				  &granularity);
7908 	if (ret)
7909 		goto out;
7910 
7911 	ret = ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_GRANULARITY),
7912 				  &peer_granularity);
7913 	if (ret)
7914 		goto out;
7915 
7916 	if ((granularity < PA_GRANULARITY_MIN_VAL) ||
7917 	    (granularity > PA_GRANULARITY_MAX_VAL)) {
7918 		dev_err(hba->dev, "%s: invalid host PA_GRANULARITY %d",
7919 			__func__, granularity);
7920 		return -EINVAL;
7921 	}
7922 
7923 	if ((peer_granularity < PA_GRANULARITY_MIN_VAL) ||
7924 	    (peer_granularity > PA_GRANULARITY_MAX_VAL)) {
7925 		dev_err(hba->dev, "%s: invalid device PA_GRANULARITY %d",
7926 			__func__, peer_granularity);
7927 		return -EINVAL;
7928 	}
7929 
7930 	ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_TACTIVATE), &pa_tactivate);
7931 	if (ret)
7932 		goto out;
7933 
7934 	ret = ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_TACTIVATE),
7935 				  &peer_pa_tactivate);
7936 	if (ret)
7937 		goto out;
7938 
7939 	pa_tactivate_us = pa_tactivate * gran_to_us_table[granularity - 1];
7940 	peer_pa_tactivate_us = peer_pa_tactivate *
7941 			     gran_to_us_table[peer_granularity - 1];
7942 
7943 	if (pa_tactivate_us >= peer_pa_tactivate_us) {
7944 		u32 new_peer_pa_tactivate;
7945 
7946 		new_peer_pa_tactivate = pa_tactivate_us /
7947 				      gran_to_us_table[peer_granularity - 1];
7948 		new_peer_pa_tactivate++;
7949 		ret = ufshcd_dme_peer_set(hba, UIC_ARG_MIB(PA_TACTIVATE),
7950 					  new_peer_pa_tactivate);
7951 	}
7952 
7953 out:
7954 	return ret;
7955 }
7956 
7957 static void ufshcd_tune_unipro_params(struct ufs_hba *hba)
7958 {
7959 	if (ufshcd_is_unipro_pa_params_tuning_req(hba)) {
7960 		ufshcd_tune_pa_tactivate(hba);
7961 		ufshcd_tune_pa_hibern8time(hba);
7962 	}
7963 
7964 	ufshcd_vops_apply_dev_quirks(hba);
7965 
7966 	if (hba->dev_quirks & UFS_DEVICE_QUIRK_PA_TACTIVATE)
7967 		/* set 1ms timeout for PA_TACTIVATE */
7968 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TACTIVATE), 10);
7969 
7970 	if (hba->dev_quirks & UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE)
7971 		ufshcd_quirk_tune_host_pa_tactivate(hba);
7972 }
7973 
7974 static void ufshcd_clear_dbg_ufs_stats(struct ufs_hba *hba)
7975 {
7976 	hba->ufs_stats.hibern8_exit_cnt = 0;
7977 	hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
7978 	hba->req_abort_count = 0;
7979 }
7980 
7981 static int ufshcd_device_geo_params_init(struct ufs_hba *hba)
7982 {
7983 	int err;
7984 	size_t buff_len;
7985 	u8 *desc_buf;
7986 
7987 	buff_len = hba->desc_size[QUERY_DESC_IDN_GEOMETRY];
7988 	desc_buf = kmalloc(buff_len, GFP_KERNEL);
7989 	if (!desc_buf) {
7990 		err = -ENOMEM;
7991 		goto out;
7992 	}
7993 
7994 	err = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_GEOMETRY, 0, 0,
7995 				     desc_buf, buff_len);
7996 	if (err) {
7997 		dev_err(hba->dev, "%s: Failed reading Geometry Desc. err = %d\n",
7998 				__func__, err);
7999 		goto out;
8000 	}
8001 
8002 	if (desc_buf[GEOMETRY_DESC_PARAM_MAX_NUM_LUN] == 1)
8003 		hba->dev_info.max_lu_supported = 32;
8004 	else if (desc_buf[GEOMETRY_DESC_PARAM_MAX_NUM_LUN] == 0)
8005 		hba->dev_info.max_lu_supported = 8;
8006 
8007 	if (hba->desc_size[QUERY_DESC_IDN_GEOMETRY] >=
8008 		GEOMETRY_DESC_PARAM_HPB_MAX_ACTIVE_REGS)
8009 		ufshpb_get_geo_info(hba, desc_buf);
8010 
8011 out:
8012 	kfree(desc_buf);
8013 	return err;
8014 }
8015 
8016 struct ufs_ref_clk {
8017 	unsigned long freq_hz;
8018 	enum ufs_ref_clk_freq val;
8019 };
8020 
8021 static const struct ufs_ref_clk ufs_ref_clk_freqs[] = {
8022 	{19200000, REF_CLK_FREQ_19_2_MHZ},
8023 	{26000000, REF_CLK_FREQ_26_MHZ},
8024 	{38400000, REF_CLK_FREQ_38_4_MHZ},
8025 	{52000000, REF_CLK_FREQ_52_MHZ},
8026 	{0, REF_CLK_FREQ_INVAL},
8027 };
8028 
8029 static enum ufs_ref_clk_freq
8030 ufs_get_bref_clk_from_hz(unsigned long freq)
8031 {
8032 	int i;
8033 
8034 	for (i = 0; ufs_ref_clk_freqs[i].freq_hz; i++)
8035 		if (ufs_ref_clk_freqs[i].freq_hz == freq)
8036 			return ufs_ref_clk_freqs[i].val;
8037 
8038 	return REF_CLK_FREQ_INVAL;
8039 }
8040 
8041 void ufshcd_parse_dev_ref_clk_freq(struct ufs_hba *hba, struct clk *refclk)
8042 {
8043 	unsigned long freq;
8044 
8045 	freq = clk_get_rate(refclk);
8046 
8047 	hba->dev_ref_clk_freq =
8048 		ufs_get_bref_clk_from_hz(freq);
8049 
8050 	if (hba->dev_ref_clk_freq == REF_CLK_FREQ_INVAL)
8051 		dev_err(hba->dev,
8052 		"invalid ref_clk setting = %ld\n", freq);
8053 }
8054 
8055 static int ufshcd_set_dev_ref_clk(struct ufs_hba *hba)
8056 {
8057 	int err;
8058 	u32 ref_clk;
8059 	u32 freq = hba->dev_ref_clk_freq;
8060 
8061 	err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
8062 			QUERY_ATTR_IDN_REF_CLK_FREQ, 0, 0, &ref_clk);
8063 
8064 	if (err) {
8065 		dev_err(hba->dev, "failed reading bRefClkFreq. err = %d\n",
8066 			err);
8067 		goto out;
8068 	}
8069 
8070 	if (ref_clk == freq)
8071 		goto out; /* nothing to update */
8072 
8073 	err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
8074 			QUERY_ATTR_IDN_REF_CLK_FREQ, 0, 0, &freq);
8075 
8076 	if (err) {
8077 		dev_err(hba->dev, "bRefClkFreq setting to %lu Hz failed\n",
8078 			ufs_ref_clk_freqs[freq].freq_hz);
8079 		goto out;
8080 	}
8081 
8082 	dev_dbg(hba->dev, "bRefClkFreq setting to %lu Hz succeeded\n",
8083 			ufs_ref_clk_freqs[freq].freq_hz);
8084 
8085 out:
8086 	return err;
8087 }
8088 
8089 static int ufshcd_device_params_init(struct ufs_hba *hba)
8090 {
8091 	bool flag;
8092 	int ret, i;
8093 
8094 	 /* Init device descriptor sizes */
8095 	for (i = 0; i < QUERY_DESC_IDN_MAX; i++)
8096 		hba->desc_size[i] = QUERY_DESC_MAX_SIZE;
8097 
8098 	/* Init UFS geometry descriptor related parameters */
8099 	ret = ufshcd_device_geo_params_init(hba);
8100 	if (ret)
8101 		goto out;
8102 
8103 	/* Check and apply UFS device quirks */
8104 	ret = ufs_get_device_desc(hba);
8105 	if (ret) {
8106 		dev_err(hba->dev, "%s: Failed getting device info. err = %d\n",
8107 			__func__, ret);
8108 		goto out;
8109 	}
8110 
8111 	ufshcd_get_ref_clk_gating_wait(hba);
8112 
8113 	if (!ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_READ_FLAG,
8114 			QUERY_FLAG_IDN_PWR_ON_WPE, 0, &flag))
8115 		hba->dev_info.f_power_on_wp_en = flag;
8116 
8117 	/* Probe maximum power mode co-supported by both UFS host and device */
8118 	if (ufshcd_get_max_pwr_mode(hba))
8119 		dev_err(hba->dev,
8120 			"%s: Failed getting max supported power mode\n",
8121 			__func__);
8122 out:
8123 	return ret;
8124 }
8125 
8126 /**
8127  * ufshcd_add_lus - probe and add UFS logical units
8128  * @hba: per-adapter instance
8129  */
8130 static int ufshcd_add_lus(struct ufs_hba *hba)
8131 {
8132 	int ret;
8133 
8134 	/* Add required well known logical units to scsi mid layer */
8135 	ret = ufshcd_scsi_add_wlus(hba);
8136 	if (ret)
8137 		goto out;
8138 
8139 	/* Initialize devfreq after UFS device is detected */
8140 	if (ufshcd_is_clkscaling_supported(hba)) {
8141 		memcpy(&hba->clk_scaling.saved_pwr_info.info,
8142 			&hba->pwr_info,
8143 			sizeof(struct ufs_pa_layer_attr));
8144 		hba->clk_scaling.saved_pwr_info.is_valid = true;
8145 		hba->clk_scaling.is_allowed = true;
8146 
8147 		ret = ufshcd_devfreq_init(hba);
8148 		if (ret)
8149 			goto out;
8150 
8151 		hba->clk_scaling.is_enabled = true;
8152 		ufshcd_init_clk_scaling_sysfs(hba);
8153 	}
8154 
8155 	ufs_bsg_probe(hba);
8156 	ufshpb_init(hba);
8157 	scsi_scan_host(hba->host);
8158 	pm_runtime_put_sync(hba->dev);
8159 
8160 out:
8161 	return ret;
8162 }
8163 
8164 /**
8165  * ufshcd_probe_hba - probe hba to detect device and initialize it
8166  * @hba: per-adapter instance
8167  * @init_dev_params: whether or not to call ufshcd_device_params_init().
8168  *
8169  * Execute link-startup and verify device initialization
8170  */
8171 static int ufshcd_probe_hba(struct ufs_hba *hba, bool init_dev_params)
8172 {
8173 	int ret;
8174 	unsigned long flags;
8175 	ktime_t start = ktime_get();
8176 
8177 	hba->ufshcd_state = UFSHCD_STATE_RESET;
8178 
8179 	ret = ufshcd_link_startup(hba);
8180 	if (ret)
8181 		goto out;
8182 
8183 	if (hba->quirks & UFSHCD_QUIRK_SKIP_PH_CONFIGURATION)
8184 		goto out;
8185 
8186 	/* Debug counters initialization */
8187 	ufshcd_clear_dbg_ufs_stats(hba);
8188 
8189 	/* UniPro link is active now */
8190 	ufshcd_set_link_active(hba);
8191 
8192 	/* Verify device initialization by sending NOP OUT UPIU */
8193 	ret = ufshcd_verify_dev_init(hba);
8194 	if (ret)
8195 		goto out;
8196 
8197 	/* Initiate UFS initialization, and waiting until completion */
8198 	ret = ufshcd_complete_dev_init(hba);
8199 	if (ret)
8200 		goto out;
8201 
8202 	/*
8203 	 * Initialize UFS device parameters used by driver, these
8204 	 * parameters are associated with UFS descriptors.
8205 	 */
8206 	if (init_dev_params) {
8207 		ret = ufshcd_device_params_init(hba);
8208 		if (ret)
8209 			goto out;
8210 	}
8211 
8212 	ufshcd_tune_unipro_params(hba);
8213 
8214 	/* UFS device is also active now */
8215 	ufshcd_set_ufs_dev_active(hba);
8216 	ufshcd_force_reset_auto_bkops(hba);
8217 
8218 	/* Gear up to HS gear if supported */
8219 	if (hba->max_pwr_info.is_valid) {
8220 		/*
8221 		 * Set the right value to bRefClkFreq before attempting to
8222 		 * switch to HS gears.
8223 		 */
8224 		if (hba->dev_ref_clk_freq != REF_CLK_FREQ_INVAL)
8225 			ufshcd_set_dev_ref_clk(hba);
8226 		ret = ufshcd_config_pwr_mode(hba, &hba->max_pwr_info.info);
8227 		if (ret) {
8228 			dev_err(hba->dev, "%s: Failed setting power mode, err = %d\n",
8229 					__func__, ret);
8230 			goto out;
8231 		}
8232 		ufshcd_print_pwr_info(hba);
8233 	}
8234 
8235 	/*
8236 	 * bActiveICCLevel is volatile for UFS device (as per latest v2.1 spec)
8237 	 * and for removable UFS card as well, hence always set the parameter.
8238 	 * Note: Error handler may issue the device reset hence resetting
8239 	 * bActiveICCLevel as well so it is always safe to set this here.
8240 	 */
8241 	ufshcd_set_active_icc_lvl(hba);
8242 
8243 	/* Enable UFS Write Booster if supported */
8244 	ufshcd_configure_wb(hba);
8245 
8246 	if (hba->ee_usr_mask)
8247 		ufshcd_write_ee_control(hba);
8248 	/* Enable Auto-Hibernate if configured */
8249 	ufshcd_auto_hibern8_enable(hba);
8250 
8251 	ufshpb_toggle_state(hba, HPB_RESET, HPB_PRESENT);
8252 out:
8253 	spin_lock_irqsave(hba->host->host_lock, flags);
8254 	if (ret)
8255 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
8256 	else if (hba->ufshcd_state == UFSHCD_STATE_RESET)
8257 		hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
8258 	spin_unlock_irqrestore(hba->host->host_lock, flags);
8259 
8260 	trace_ufshcd_init(dev_name(hba->dev), ret,
8261 		ktime_to_us(ktime_sub(ktime_get(), start)),
8262 		hba->curr_dev_pwr_mode, hba->uic_link_state);
8263 	return ret;
8264 }
8265 
8266 /**
8267  * ufshcd_async_scan - asynchronous execution for probing hba
8268  * @data: data pointer to pass to this function
8269  * @cookie: cookie data
8270  */
8271 static void ufshcd_async_scan(void *data, async_cookie_t cookie)
8272 {
8273 	struct ufs_hba *hba = (struct ufs_hba *)data;
8274 	int ret;
8275 
8276 	down(&hba->host_sem);
8277 	/* Initialize hba, detect and initialize UFS device */
8278 	ret = ufshcd_probe_hba(hba, true);
8279 	up(&hba->host_sem);
8280 	if (ret)
8281 		goto out;
8282 
8283 	/* Probe and add UFS logical units  */
8284 	ret = ufshcd_add_lus(hba);
8285 out:
8286 	/*
8287 	 * If we failed to initialize the device or the device is not
8288 	 * present, turn off the power/clocks etc.
8289 	 */
8290 	if (ret) {
8291 		pm_runtime_put_sync(hba->dev);
8292 		ufshcd_hba_exit(hba);
8293 	}
8294 }
8295 
8296 static const struct attribute_group *ufshcd_driver_groups[] = {
8297 	&ufs_sysfs_unit_descriptor_group,
8298 	&ufs_sysfs_lun_attributes_group,
8299 #ifdef CONFIG_SCSI_UFS_HPB
8300 	&ufs_sysfs_hpb_stat_group,
8301 	&ufs_sysfs_hpb_param_group,
8302 #endif
8303 	NULL,
8304 };
8305 
8306 static struct ufs_hba_variant_params ufs_hba_vps = {
8307 	.hba_enable_delay_us		= 1000,
8308 	.wb_flush_threshold		= UFS_WB_BUF_REMAIN_PERCENT(40),
8309 	.devfreq_profile.polling_ms	= 100,
8310 	.devfreq_profile.target		= ufshcd_devfreq_target,
8311 	.devfreq_profile.get_dev_status	= ufshcd_devfreq_get_dev_status,
8312 	.ondemand_data.upthreshold	= 70,
8313 	.ondemand_data.downdifferential	= 5,
8314 };
8315 
8316 static struct scsi_host_template ufshcd_driver_template = {
8317 	.module			= THIS_MODULE,
8318 	.name			= UFSHCD,
8319 	.proc_name		= UFSHCD,
8320 	.map_queues		= ufshcd_map_queues,
8321 	.queuecommand		= ufshcd_queuecommand,
8322 	.mq_poll		= ufshcd_poll,
8323 	.slave_alloc		= ufshcd_slave_alloc,
8324 	.slave_configure	= ufshcd_slave_configure,
8325 	.slave_destroy		= ufshcd_slave_destroy,
8326 	.change_queue_depth	= ufshcd_change_queue_depth,
8327 	.eh_abort_handler	= ufshcd_abort,
8328 	.eh_device_reset_handler = ufshcd_eh_device_reset_handler,
8329 	.eh_host_reset_handler   = ufshcd_eh_host_reset_handler,
8330 	.this_id		= -1,
8331 	.sg_tablesize		= SG_ALL,
8332 	.cmd_per_lun		= UFSHCD_CMD_PER_LUN,
8333 	.can_queue		= UFSHCD_CAN_QUEUE,
8334 	.max_segment_size	= PRDT_DATA_BYTE_COUNT_MAX,
8335 	.max_sectors		= (1 << 20) / SECTOR_SIZE, /* 1 MiB */
8336 	.max_host_blocked	= 1,
8337 	.track_queue_depth	= 1,
8338 	.sdev_groups		= ufshcd_driver_groups,
8339 	.dma_boundary		= PAGE_SIZE - 1,
8340 	.rpm_autosuspend_delay	= RPM_AUTOSUSPEND_DELAY_MS,
8341 };
8342 
8343 static int ufshcd_config_vreg_load(struct device *dev, struct ufs_vreg *vreg,
8344 				   int ua)
8345 {
8346 	int ret;
8347 
8348 	if (!vreg)
8349 		return 0;
8350 
8351 	/*
8352 	 * "set_load" operation shall be required on those regulators
8353 	 * which specifically configured current limitation. Otherwise
8354 	 * zero max_uA may cause unexpected behavior when regulator is
8355 	 * enabled or set as high power mode.
8356 	 */
8357 	if (!vreg->max_uA)
8358 		return 0;
8359 
8360 	ret = regulator_set_load(vreg->reg, ua);
8361 	if (ret < 0) {
8362 		dev_err(dev, "%s: %s set load (ua=%d) failed, err=%d\n",
8363 				__func__, vreg->name, ua, ret);
8364 	}
8365 
8366 	return ret;
8367 }
8368 
8369 static inline int ufshcd_config_vreg_lpm(struct ufs_hba *hba,
8370 					 struct ufs_vreg *vreg)
8371 {
8372 	return ufshcd_config_vreg_load(hba->dev, vreg, UFS_VREG_LPM_LOAD_UA);
8373 }
8374 
8375 static inline int ufshcd_config_vreg_hpm(struct ufs_hba *hba,
8376 					 struct ufs_vreg *vreg)
8377 {
8378 	if (!vreg)
8379 		return 0;
8380 
8381 	return ufshcd_config_vreg_load(hba->dev, vreg, vreg->max_uA);
8382 }
8383 
8384 static int ufshcd_config_vreg(struct device *dev,
8385 		struct ufs_vreg *vreg, bool on)
8386 {
8387 	if (regulator_count_voltages(vreg->reg) <= 0)
8388 		return 0;
8389 
8390 	return ufshcd_config_vreg_load(dev, vreg, on ? vreg->max_uA : 0);
8391 }
8392 
8393 static int ufshcd_enable_vreg(struct device *dev, struct ufs_vreg *vreg)
8394 {
8395 	int ret = 0;
8396 
8397 	if (!vreg || vreg->enabled)
8398 		goto out;
8399 
8400 	ret = ufshcd_config_vreg(dev, vreg, true);
8401 	if (!ret)
8402 		ret = regulator_enable(vreg->reg);
8403 
8404 	if (!ret)
8405 		vreg->enabled = true;
8406 	else
8407 		dev_err(dev, "%s: %s enable failed, err=%d\n",
8408 				__func__, vreg->name, ret);
8409 out:
8410 	return ret;
8411 }
8412 
8413 static int ufshcd_disable_vreg(struct device *dev, struct ufs_vreg *vreg)
8414 {
8415 	int ret = 0;
8416 
8417 	if (!vreg || !vreg->enabled || vreg->always_on)
8418 		goto out;
8419 
8420 	ret = regulator_disable(vreg->reg);
8421 
8422 	if (!ret) {
8423 		/* ignore errors on applying disable config */
8424 		ufshcd_config_vreg(dev, vreg, false);
8425 		vreg->enabled = false;
8426 	} else {
8427 		dev_err(dev, "%s: %s disable failed, err=%d\n",
8428 				__func__, vreg->name, ret);
8429 	}
8430 out:
8431 	return ret;
8432 }
8433 
8434 static int ufshcd_setup_vreg(struct ufs_hba *hba, bool on)
8435 {
8436 	int ret = 0;
8437 	struct device *dev = hba->dev;
8438 	struct ufs_vreg_info *info = &hba->vreg_info;
8439 
8440 	ret = ufshcd_toggle_vreg(dev, info->vcc, on);
8441 	if (ret)
8442 		goto out;
8443 
8444 	ret = ufshcd_toggle_vreg(dev, info->vccq, on);
8445 	if (ret)
8446 		goto out;
8447 
8448 	ret = ufshcd_toggle_vreg(dev, info->vccq2, on);
8449 
8450 out:
8451 	if (ret) {
8452 		ufshcd_toggle_vreg(dev, info->vccq2, false);
8453 		ufshcd_toggle_vreg(dev, info->vccq, false);
8454 		ufshcd_toggle_vreg(dev, info->vcc, false);
8455 	}
8456 	return ret;
8457 }
8458 
8459 static int ufshcd_setup_hba_vreg(struct ufs_hba *hba, bool on)
8460 {
8461 	struct ufs_vreg_info *info = &hba->vreg_info;
8462 
8463 	return ufshcd_toggle_vreg(hba->dev, info->vdd_hba, on);
8464 }
8465 
8466 int ufshcd_get_vreg(struct device *dev, struct ufs_vreg *vreg)
8467 {
8468 	int ret = 0;
8469 
8470 	if (!vreg)
8471 		goto out;
8472 
8473 	vreg->reg = devm_regulator_get(dev, vreg->name);
8474 	if (IS_ERR(vreg->reg)) {
8475 		ret = PTR_ERR(vreg->reg);
8476 		dev_err(dev, "%s: %s get failed, err=%d\n",
8477 				__func__, vreg->name, ret);
8478 	}
8479 out:
8480 	return ret;
8481 }
8482 EXPORT_SYMBOL_GPL(ufshcd_get_vreg);
8483 
8484 static int ufshcd_init_vreg(struct ufs_hba *hba)
8485 {
8486 	int ret = 0;
8487 	struct device *dev = hba->dev;
8488 	struct ufs_vreg_info *info = &hba->vreg_info;
8489 
8490 	ret = ufshcd_get_vreg(dev, info->vcc);
8491 	if (ret)
8492 		goto out;
8493 
8494 	ret = ufshcd_get_vreg(dev, info->vccq);
8495 	if (!ret)
8496 		ret = ufshcd_get_vreg(dev, info->vccq2);
8497 out:
8498 	return ret;
8499 }
8500 
8501 static int ufshcd_init_hba_vreg(struct ufs_hba *hba)
8502 {
8503 	struct ufs_vreg_info *info = &hba->vreg_info;
8504 
8505 	return ufshcd_get_vreg(hba->dev, info->vdd_hba);
8506 }
8507 
8508 static int ufshcd_setup_clocks(struct ufs_hba *hba, bool on)
8509 {
8510 	int ret = 0;
8511 	struct ufs_clk_info *clki;
8512 	struct list_head *head = &hba->clk_list_head;
8513 	unsigned long flags;
8514 	ktime_t start = ktime_get();
8515 	bool clk_state_changed = false;
8516 
8517 	if (list_empty(head))
8518 		goto out;
8519 
8520 	ret = ufshcd_vops_setup_clocks(hba, on, PRE_CHANGE);
8521 	if (ret)
8522 		return ret;
8523 
8524 	list_for_each_entry(clki, head, list) {
8525 		if (!IS_ERR_OR_NULL(clki->clk)) {
8526 			/*
8527 			 * Don't disable clocks which are needed
8528 			 * to keep the link active.
8529 			 */
8530 			if (ufshcd_is_link_active(hba) &&
8531 			    clki->keep_link_active)
8532 				continue;
8533 
8534 			clk_state_changed = on ^ clki->enabled;
8535 			if (on && !clki->enabled) {
8536 				ret = clk_prepare_enable(clki->clk);
8537 				if (ret) {
8538 					dev_err(hba->dev, "%s: %s prepare enable failed, %d\n",
8539 						__func__, clki->name, ret);
8540 					goto out;
8541 				}
8542 			} else if (!on && clki->enabled) {
8543 				clk_disable_unprepare(clki->clk);
8544 			}
8545 			clki->enabled = on;
8546 			dev_dbg(hba->dev, "%s: clk: %s %sabled\n", __func__,
8547 					clki->name, on ? "en" : "dis");
8548 		}
8549 	}
8550 
8551 	ret = ufshcd_vops_setup_clocks(hba, on, POST_CHANGE);
8552 	if (ret)
8553 		return ret;
8554 
8555 out:
8556 	if (ret) {
8557 		list_for_each_entry(clki, head, list) {
8558 			if (!IS_ERR_OR_NULL(clki->clk) && clki->enabled)
8559 				clk_disable_unprepare(clki->clk);
8560 		}
8561 	} else if (!ret && on) {
8562 		spin_lock_irqsave(hba->host->host_lock, flags);
8563 		hba->clk_gating.state = CLKS_ON;
8564 		trace_ufshcd_clk_gating(dev_name(hba->dev),
8565 					hba->clk_gating.state);
8566 		spin_unlock_irqrestore(hba->host->host_lock, flags);
8567 	}
8568 
8569 	if (clk_state_changed)
8570 		trace_ufshcd_profile_clk_gating(dev_name(hba->dev),
8571 			(on ? "on" : "off"),
8572 			ktime_to_us(ktime_sub(ktime_get(), start)), ret);
8573 	return ret;
8574 }
8575 
8576 static enum ufs_ref_clk_freq ufshcd_parse_ref_clk_property(struct ufs_hba *hba)
8577 {
8578 	u32 freq;
8579 	int ret = device_property_read_u32(hba->dev, "ref-clk-freq", &freq);
8580 
8581 	if (ret) {
8582 		dev_dbg(hba->dev, "Cannot query 'ref-clk-freq' property = %d", ret);
8583 		return REF_CLK_FREQ_INVAL;
8584 	}
8585 
8586 	return ufs_get_bref_clk_from_hz(freq);
8587 }
8588 
8589 static int ufshcd_init_clocks(struct ufs_hba *hba)
8590 {
8591 	int ret = 0;
8592 	struct ufs_clk_info *clki;
8593 	struct device *dev = hba->dev;
8594 	struct list_head *head = &hba->clk_list_head;
8595 
8596 	if (list_empty(head))
8597 		goto out;
8598 
8599 	list_for_each_entry(clki, head, list) {
8600 		if (!clki->name)
8601 			continue;
8602 
8603 		clki->clk = devm_clk_get(dev, clki->name);
8604 		if (IS_ERR(clki->clk)) {
8605 			ret = PTR_ERR(clki->clk);
8606 			dev_err(dev, "%s: %s clk get failed, %d\n",
8607 					__func__, clki->name, ret);
8608 			goto out;
8609 		}
8610 
8611 		/*
8612 		 * Parse device ref clk freq as per device tree "ref_clk".
8613 		 * Default dev_ref_clk_freq is set to REF_CLK_FREQ_INVAL
8614 		 * in ufshcd_alloc_host().
8615 		 */
8616 		if (!strcmp(clki->name, "ref_clk"))
8617 			ufshcd_parse_dev_ref_clk_freq(hba, clki->clk);
8618 
8619 		if (clki->max_freq) {
8620 			ret = clk_set_rate(clki->clk, clki->max_freq);
8621 			if (ret) {
8622 				dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
8623 					__func__, clki->name,
8624 					clki->max_freq, ret);
8625 				goto out;
8626 			}
8627 			clki->curr_freq = clki->max_freq;
8628 		}
8629 		dev_dbg(dev, "%s: clk: %s, rate: %lu\n", __func__,
8630 				clki->name, clk_get_rate(clki->clk));
8631 	}
8632 out:
8633 	return ret;
8634 }
8635 
8636 static int ufshcd_variant_hba_init(struct ufs_hba *hba)
8637 {
8638 	int err = 0;
8639 
8640 	if (!hba->vops)
8641 		goto out;
8642 
8643 	err = ufshcd_vops_init(hba);
8644 	if (err)
8645 		dev_err(hba->dev, "%s: variant %s init failed err %d\n",
8646 			__func__, ufshcd_get_var_name(hba), err);
8647 out:
8648 	return err;
8649 }
8650 
8651 static void ufshcd_variant_hba_exit(struct ufs_hba *hba)
8652 {
8653 	if (!hba->vops)
8654 		return;
8655 
8656 	ufshcd_vops_exit(hba);
8657 }
8658 
8659 static int ufshcd_hba_init(struct ufs_hba *hba)
8660 {
8661 	int err;
8662 
8663 	/*
8664 	 * Handle host controller power separately from the UFS device power
8665 	 * rails as it will help controlling the UFS host controller power
8666 	 * collapse easily which is different than UFS device power collapse.
8667 	 * Also, enable the host controller power before we go ahead with rest
8668 	 * of the initialization here.
8669 	 */
8670 	err = ufshcd_init_hba_vreg(hba);
8671 	if (err)
8672 		goto out;
8673 
8674 	err = ufshcd_setup_hba_vreg(hba, true);
8675 	if (err)
8676 		goto out;
8677 
8678 	err = ufshcd_init_clocks(hba);
8679 	if (err)
8680 		goto out_disable_hba_vreg;
8681 
8682 	if (hba->dev_ref_clk_freq == REF_CLK_FREQ_INVAL)
8683 		hba->dev_ref_clk_freq = ufshcd_parse_ref_clk_property(hba);
8684 
8685 	err = ufshcd_setup_clocks(hba, true);
8686 	if (err)
8687 		goto out_disable_hba_vreg;
8688 
8689 	err = ufshcd_init_vreg(hba);
8690 	if (err)
8691 		goto out_disable_clks;
8692 
8693 	err = ufshcd_setup_vreg(hba, true);
8694 	if (err)
8695 		goto out_disable_clks;
8696 
8697 	err = ufshcd_variant_hba_init(hba);
8698 	if (err)
8699 		goto out_disable_vreg;
8700 
8701 	ufs_debugfs_hba_init(hba);
8702 
8703 	hba->is_powered = true;
8704 	goto out;
8705 
8706 out_disable_vreg:
8707 	ufshcd_setup_vreg(hba, false);
8708 out_disable_clks:
8709 	ufshcd_setup_clocks(hba, false);
8710 out_disable_hba_vreg:
8711 	ufshcd_setup_hba_vreg(hba, false);
8712 out:
8713 	return err;
8714 }
8715 
8716 static void ufshcd_hba_exit(struct ufs_hba *hba)
8717 {
8718 	if (hba->is_powered) {
8719 		ufshcd_exit_clk_scaling(hba);
8720 		ufshcd_exit_clk_gating(hba);
8721 		if (hba->eh_wq)
8722 			destroy_workqueue(hba->eh_wq);
8723 		ufs_debugfs_hba_exit(hba);
8724 		ufshcd_variant_hba_exit(hba);
8725 		ufshcd_setup_vreg(hba, false);
8726 		ufshcd_setup_clocks(hba, false);
8727 		ufshcd_setup_hba_vreg(hba, false);
8728 		hba->is_powered = false;
8729 		ufs_put_device_desc(hba);
8730 	}
8731 }
8732 
8733 /**
8734  * ufshcd_set_dev_pwr_mode - sends START STOP UNIT command to set device
8735  *			     power mode
8736  * @hba: per adapter instance
8737  * @pwr_mode: device power mode to set
8738  *
8739  * Returns 0 if requested power mode is set successfully
8740  * Returns < 0 if failed to set the requested power mode
8741  */
8742 static int ufshcd_set_dev_pwr_mode(struct ufs_hba *hba,
8743 				     enum ufs_dev_pwr_mode pwr_mode)
8744 {
8745 	unsigned char cmd[6] = { START_STOP };
8746 	struct scsi_sense_hdr sshdr;
8747 	struct scsi_device *sdp;
8748 	unsigned long flags;
8749 	int ret, retries;
8750 	unsigned long deadline;
8751 	int32_t remaining;
8752 
8753 	spin_lock_irqsave(hba->host->host_lock, flags);
8754 	sdp = hba->ufs_device_wlun;
8755 	if (sdp) {
8756 		ret = scsi_device_get(sdp);
8757 		if (!ret && !scsi_device_online(sdp)) {
8758 			ret = -ENODEV;
8759 			scsi_device_put(sdp);
8760 		}
8761 	} else {
8762 		ret = -ENODEV;
8763 	}
8764 	spin_unlock_irqrestore(hba->host->host_lock, flags);
8765 
8766 	if (ret)
8767 		return ret;
8768 
8769 	/*
8770 	 * If scsi commands fail, the scsi mid-layer schedules scsi error-
8771 	 * handling, which would wait for host to be resumed. Since we know
8772 	 * we are functional while we are here, skip host resume in error
8773 	 * handling context.
8774 	 */
8775 	hba->host->eh_noresume = 1;
8776 
8777 	cmd[4] = pwr_mode << 4;
8778 
8779 	/*
8780 	 * Current function would be generally called from the power management
8781 	 * callbacks hence set the RQF_PM flag so that it doesn't resume the
8782 	 * already suspended childs.
8783 	 */
8784 	deadline = jiffies + 10 * HZ;
8785 	for (retries = 3; retries > 0; --retries) {
8786 		ret = -ETIMEDOUT;
8787 		remaining = deadline - jiffies;
8788 		if (remaining <= 0)
8789 			break;
8790 		ret = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, &sshdr,
8791 				   remaining / HZ, 0, 0, RQF_PM, NULL);
8792 		if (!scsi_status_is_check_condition(ret) ||
8793 				!scsi_sense_valid(&sshdr) ||
8794 				sshdr.sense_key != UNIT_ATTENTION)
8795 			break;
8796 	}
8797 	if (ret) {
8798 		sdev_printk(KERN_WARNING, sdp,
8799 			    "START_STOP failed for power mode: %d, result %x\n",
8800 			    pwr_mode, ret);
8801 		if (ret > 0) {
8802 			if (scsi_sense_valid(&sshdr))
8803 				scsi_print_sense_hdr(sdp, NULL, &sshdr);
8804 			ret = -EIO;
8805 		}
8806 	}
8807 
8808 	if (!ret)
8809 		hba->curr_dev_pwr_mode = pwr_mode;
8810 
8811 	scsi_device_put(sdp);
8812 	hba->host->eh_noresume = 0;
8813 	return ret;
8814 }
8815 
8816 static int ufshcd_link_state_transition(struct ufs_hba *hba,
8817 					enum uic_link_state req_link_state,
8818 					int check_for_bkops)
8819 {
8820 	int ret = 0;
8821 
8822 	if (req_link_state == hba->uic_link_state)
8823 		return 0;
8824 
8825 	if (req_link_state == UIC_LINK_HIBERN8_STATE) {
8826 		ret = ufshcd_uic_hibern8_enter(hba);
8827 		if (!ret) {
8828 			ufshcd_set_link_hibern8(hba);
8829 		} else {
8830 			dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
8831 					__func__, ret);
8832 			goto out;
8833 		}
8834 	}
8835 	/*
8836 	 * If autobkops is enabled, link can't be turned off because
8837 	 * turning off the link would also turn off the device, except in the
8838 	 * case of DeepSleep where the device is expected to remain powered.
8839 	 */
8840 	else if ((req_link_state == UIC_LINK_OFF_STATE) &&
8841 		 (!check_for_bkops || !hba->auto_bkops_enabled)) {
8842 		/*
8843 		 * Let's make sure that link is in low power mode, we are doing
8844 		 * this currently by putting the link in Hibern8. Otherway to
8845 		 * put the link in low power mode is to send the DME end point
8846 		 * to device and then send the DME reset command to local
8847 		 * unipro. But putting the link in hibern8 is much faster.
8848 		 *
8849 		 * Note also that putting the link in Hibern8 is a requirement
8850 		 * for entering DeepSleep.
8851 		 */
8852 		ret = ufshcd_uic_hibern8_enter(hba);
8853 		if (ret) {
8854 			dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
8855 					__func__, ret);
8856 			goto out;
8857 		}
8858 		/*
8859 		 * Change controller state to "reset state" which
8860 		 * should also put the link in off/reset state
8861 		 */
8862 		ufshcd_hba_stop(hba);
8863 		/*
8864 		 * TODO: Check if we need any delay to make sure that
8865 		 * controller is reset
8866 		 */
8867 		ufshcd_set_link_off(hba);
8868 	}
8869 
8870 out:
8871 	return ret;
8872 }
8873 
8874 static void ufshcd_vreg_set_lpm(struct ufs_hba *hba)
8875 {
8876 	bool vcc_off = false;
8877 
8878 	/*
8879 	 * It seems some UFS devices may keep drawing more than sleep current
8880 	 * (atleast for 500us) from UFS rails (especially from VCCQ rail).
8881 	 * To avoid this situation, add 2ms delay before putting these UFS
8882 	 * rails in LPM mode.
8883 	 */
8884 	if (!ufshcd_is_link_active(hba) &&
8885 	    hba->dev_quirks & UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM)
8886 		usleep_range(2000, 2100);
8887 
8888 	/*
8889 	 * If UFS device is either in UFS_Sleep turn off VCC rail to save some
8890 	 * power.
8891 	 *
8892 	 * If UFS device and link is in OFF state, all power supplies (VCC,
8893 	 * VCCQ, VCCQ2) can be turned off if power on write protect is not
8894 	 * required. If UFS link is inactive (Hibern8 or OFF state) and device
8895 	 * is in sleep state, put VCCQ & VCCQ2 rails in LPM mode.
8896 	 *
8897 	 * Ignore the error returned by ufshcd_toggle_vreg() as device is anyway
8898 	 * in low power state which would save some power.
8899 	 *
8900 	 * If Write Booster is enabled and the device needs to flush the WB
8901 	 * buffer OR if bkops status is urgent for WB, keep Vcc on.
8902 	 */
8903 	if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba) &&
8904 	    !hba->dev_info.is_lu_power_on_wp) {
8905 		ufshcd_setup_vreg(hba, false);
8906 		vcc_off = true;
8907 	} else if (!ufshcd_is_ufs_dev_active(hba)) {
8908 		ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, false);
8909 		vcc_off = true;
8910 		if (ufshcd_is_link_hibern8(hba) || ufshcd_is_link_off(hba)) {
8911 			ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq);
8912 			ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq2);
8913 		}
8914 	}
8915 
8916 	/*
8917 	 * Some UFS devices require delay after VCC power rail is turned-off.
8918 	 */
8919 	if (vcc_off && hba->vreg_info.vcc &&
8920 		hba->dev_quirks & UFS_DEVICE_QUIRK_DELAY_AFTER_LPM)
8921 		usleep_range(5000, 5100);
8922 }
8923 
8924 #ifdef CONFIG_PM
8925 static int ufshcd_vreg_set_hpm(struct ufs_hba *hba)
8926 {
8927 	int ret = 0;
8928 
8929 	if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba) &&
8930 	    !hba->dev_info.is_lu_power_on_wp) {
8931 		ret = ufshcd_setup_vreg(hba, true);
8932 	} else if (!ufshcd_is_ufs_dev_active(hba)) {
8933 		if (!ufshcd_is_link_active(hba)) {
8934 			ret = ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq);
8935 			if (ret)
8936 				goto vcc_disable;
8937 			ret = ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq2);
8938 			if (ret)
8939 				goto vccq_lpm;
8940 		}
8941 		ret = ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, true);
8942 	}
8943 	goto out;
8944 
8945 vccq_lpm:
8946 	ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq);
8947 vcc_disable:
8948 	ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, false);
8949 out:
8950 	return ret;
8951 }
8952 #endif /* CONFIG_PM */
8953 
8954 static void ufshcd_hba_vreg_set_lpm(struct ufs_hba *hba)
8955 {
8956 	if (ufshcd_is_link_off(hba) || ufshcd_can_aggressive_pc(hba))
8957 		ufshcd_setup_hba_vreg(hba, false);
8958 }
8959 
8960 static void ufshcd_hba_vreg_set_hpm(struct ufs_hba *hba)
8961 {
8962 	if (ufshcd_is_link_off(hba) || ufshcd_can_aggressive_pc(hba))
8963 		ufshcd_setup_hba_vreg(hba, true);
8964 }
8965 
8966 static int __ufshcd_wl_suspend(struct ufs_hba *hba, enum ufs_pm_op pm_op)
8967 {
8968 	int ret = 0;
8969 	int check_for_bkops;
8970 	enum ufs_pm_level pm_lvl;
8971 	enum ufs_dev_pwr_mode req_dev_pwr_mode;
8972 	enum uic_link_state req_link_state;
8973 
8974 	hba->pm_op_in_progress = true;
8975 	if (pm_op != UFS_SHUTDOWN_PM) {
8976 		pm_lvl = pm_op == UFS_RUNTIME_PM ?
8977 			 hba->rpm_lvl : hba->spm_lvl;
8978 		req_dev_pwr_mode = ufs_get_pm_lvl_to_dev_pwr_mode(pm_lvl);
8979 		req_link_state = ufs_get_pm_lvl_to_link_pwr_state(pm_lvl);
8980 	} else {
8981 		req_dev_pwr_mode = UFS_POWERDOWN_PWR_MODE;
8982 		req_link_state = UIC_LINK_OFF_STATE;
8983 	}
8984 
8985 	ufshpb_suspend(hba);
8986 
8987 	/*
8988 	 * If we can't transition into any of the low power modes
8989 	 * just gate the clocks.
8990 	 */
8991 	ufshcd_hold(hba, false);
8992 	hba->clk_gating.is_suspended = true;
8993 
8994 	if (ufshcd_is_clkscaling_supported(hba))
8995 		ufshcd_clk_scaling_suspend(hba, true);
8996 
8997 	if (req_dev_pwr_mode == UFS_ACTIVE_PWR_MODE &&
8998 			req_link_state == UIC_LINK_ACTIVE_STATE) {
8999 		goto vops_suspend;
9000 	}
9001 
9002 	if ((req_dev_pwr_mode == hba->curr_dev_pwr_mode) &&
9003 	    (req_link_state == hba->uic_link_state))
9004 		goto enable_scaling;
9005 
9006 	/* UFS device & link must be active before we enter in this function */
9007 	if (!ufshcd_is_ufs_dev_active(hba) || !ufshcd_is_link_active(hba)) {
9008 		ret = -EINVAL;
9009 		goto enable_scaling;
9010 	}
9011 
9012 	if (pm_op == UFS_RUNTIME_PM) {
9013 		if (ufshcd_can_autobkops_during_suspend(hba)) {
9014 			/*
9015 			 * The device is idle with no requests in the queue,
9016 			 * allow background operations if bkops status shows
9017 			 * that performance might be impacted.
9018 			 */
9019 			ret = ufshcd_urgent_bkops(hba);
9020 			if (ret)
9021 				goto enable_scaling;
9022 		} else {
9023 			/* make sure that auto bkops is disabled */
9024 			ufshcd_disable_auto_bkops(hba);
9025 		}
9026 		/*
9027 		 * If device needs to do BKOP or WB buffer flush during
9028 		 * Hibern8, keep device power mode as "active power mode"
9029 		 * and VCC supply.
9030 		 */
9031 		hba->dev_info.b_rpm_dev_flush_capable =
9032 			hba->auto_bkops_enabled ||
9033 			(((req_link_state == UIC_LINK_HIBERN8_STATE) ||
9034 			((req_link_state == UIC_LINK_ACTIVE_STATE) &&
9035 			ufshcd_is_auto_hibern8_enabled(hba))) &&
9036 			ufshcd_wb_need_flush(hba));
9037 	}
9038 
9039 	flush_work(&hba->eeh_work);
9040 
9041 	ret = ufshcd_vops_suspend(hba, pm_op, PRE_CHANGE);
9042 	if (ret)
9043 		goto enable_scaling;
9044 
9045 	if (req_dev_pwr_mode != hba->curr_dev_pwr_mode) {
9046 		if (pm_op != UFS_RUNTIME_PM)
9047 			/* ensure that bkops is disabled */
9048 			ufshcd_disable_auto_bkops(hba);
9049 
9050 		if (!hba->dev_info.b_rpm_dev_flush_capable) {
9051 			ret = ufshcd_set_dev_pwr_mode(hba, req_dev_pwr_mode);
9052 			if (ret)
9053 				goto enable_scaling;
9054 		}
9055 	}
9056 
9057 	/*
9058 	 * In the case of DeepSleep, the device is expected to remain powered
9059 	 * with the link off, so do not check for bkops.
9060 	 */
9061 	check_for_bkops = !ufshcd_is_ufs_dev_deepsleep(hba);
9062 	ret = ufshcd_link_state_transition(hba, req_link_state, check_for_bkops);
9063 	if (ret)
9064 		goto set_dev_active;
9065 
9066 vops_suspend:
9067 	/*
9068 	 * Call vendor specific suspend callback. As these callbacks may access
9069 	 * vendor specific host controller register space call them before the
9070 	 * host clocks are ON.
9071 	 */
9072 	ret = ufshcd_vops_suspend(hba, pm_op, POST_CHANGE);
9073 	if (ret)
9074 		goto set_link_active;
9075 	goto out;
9076 
9077 set_link_active:
9078 	/*
9079 	 * Device hardware reset is required to exit DeepSleep. Also, for
9080 	 * DeepSleep, the link is off so host reset and restore will be done
9081 	 * further below.
9082 	 */
9083 	if (ufshcd_is_ufs_dev_deepsleep(hba)) {
9084 		ufshcd_device_reset(hba);
9085 		WARN_ON(!ufshcd_is_link_off(hba));
9086 	}
9087 	if (ufshcd_is_link_hibern8(hba) && !ufshcd_uic_hibern8_exit(hba))
9088 		ufshcd_set_link_active(hba);
9089 	else if (ufshcd_is_link_off(hba))
9090 		ufshcd_host_reset_and_restore(hba);
9091 set_dev_active:
9092 	/* Can also get here needing to exit DeepSleep */
9093 	if (ufshcd_is_ufs_dev_deepsleep(hba)) {
9094 		ufshcd_device_reset(hba);
9095 		ufshcd_host_reset_and_restore(hba);
9096 	}
9097 	if (!ufshcd_set_dev_pwr_mode(hba, UFS_ACTIVE_PWR_MODE))
9098 		ufshcd_disable_auto_bkops(hba);
9099 enable_scaling:
9100 	if (ufshcd_is_clkscaling_supported(hba))
9101 		ufshcd_clk_scaling_suspend(hba, false);
9102 
9103 	hba->dev_info.b_rpm_dev_flush_capable = false;
9104 out:
9105 	if (hba->dev_info.b_rpm_dev_flush_capable) {
9106 		schedule_delayed_work(&hba->rpm_dev_flush_recheck_work,
9107 			msecs_to_jiffies(RPM_DEV_FLUSH_RECHECK_WORK_DELAY_MS));
9108 	}
9109 
9110 	if (ret) {
9111 		ufshcd_update_evt_hist(hba, UFS_EVT_WL_SUSP_ERR, (u32)ret);
9112 		hba->clk_gating.is_suspended = false;
9113 		ufshcd_release(hba);
9114 		ufshpb_resume(hba);
9115 	}
9116 	hba->pm_op_in_progress = false;
9117 	return ret;
9118 }
9119 
9120 #ifdef CONFIG_PM
9121 static int __ufshcd_wl_resume(struct ufs_hba *hba, enum ufs_pm_op pm_op)
9122 {
9123 	int ret;
9124 	enum uic_link_state old_link_state = hba->uic_link_state;
9125 
9126 	hba->pm_op_in_progress = true;
9127 
9128 	/*
9129 	 * Call vendor specific resume callback. As these callbacks may access
9130 	 * vendor specific host controller register space call them when the
9131 	 * host clocks are ON.
9132 	 */
9133 	ret = ufshcd_vops_resume(hba, pm_op);
9134 	if (ret)
9135 		goto out;
9136 
9137 	/* For DeepSleep, the only supported option is to have the link off */
9138 	WARN_ON(ufshcd_is_ufs_dev_deepsleep(hba) && !ufshcd_is_link_off(hba));
9139 
9140 	if (ufshcd_is_link_hibern8(hba)) {
9141 		ret = ufshcd_uic_hibern8_exit(hba);
9142 		if (!ret) {
9143 			ufshcd_set_link_active(hba);
9144 		} else {
9145 			dev_err(hba->dev, "%s: hibern8 exit failed %d\n",
9146 					__func__, ret);
9147 			goto vendor_suspend;
9148 		}
9149 	} else if (ufshcd_is_link_off(hba)) {
9150 		/*
9151 		 * A full initialization of the host and the device is
9152 		 * required since the link was put to off during suspend.
9153 		 * Note, in the case of DeepSleep, the device will exit
9154 		 * DeepSleep due to device reset.
9155 		 */
9156 		ret = ufshcd_reset_and_restore(hba);
9157 		/*
9158 		 * ufshcd_reset_and_restore() should have already
9159 		 * set the link state as active
9160 		 */
9161 		if (ret || !ufshcd_is_link_active(hba))
9162 			goto vendor_suspend;
9163 	}
9164 
9165 	if (!ufshcd_is_ufs_dev_active(hba)) {
9166 		ret = ufshcd_set_dev_pwr_mode(hba, UFS_ACTIVE_PWR_MODE);
9167 		if (ret)
9168 			goto set_old_link_state;
9169 	}
9170 
9171 	if (ufshcd_keep_autobkops_enabled_except_suspend(hba))
9172 		ufshcd_enable_auto_bkops(hba);
9173 	else
9174 		/*
9175 		 * If BKOPs operations are urgently needed at this moment then
9176 		 * keep auto-bkops enabled or else disable it.
9177 		 */
9178 		ufshcd_urgent_bkops(hba);
9179 
9180 	if (hba->ee_usr_mask)
9181 		ufshcd_write_ee_control(hba);
9182 
9183 	if (ufshcd_is_clkscaling_supported(hba))
9184 		ufshcd_clk_scaling_suspend(hba, false);
9185 
9186 	if (hba->dev_info.b_rpm_dev_flush_capable) {
9187 		hba->dev_info.b_rpm_dev_flush_capable = false;
9188 		cancel_delayed_work(&hba->rpm_dev_flush_recheck_work);
9189 	}
9190 
9191 	/* Enable Auto-Hibernate if configured */
9192 	ufshcd_auto_hibern8_enable(hba);
9193 
9194 	ufshpb_resume(hba);
9195 	goto out;
9196 
9197 set_old_link_state:
9198 	ufshcd_link_state_transition(hba, old_link_state, 0);
9199 vendor_suspend:
9200 	ufshcd_vops_suspend(hba, pm_op, PRE_CHANGE);
9201 	ufshcd_vops_suspend(hba, pm_op, POST_CHANGE);
9202 out:
9203 	if (ret)
9204 		ufshcd_update_evt_hist(hba, UFS_EVT_WL_RES_ERR, (u32)ret);
9205 	hba->clk_gating.is_suspended = false;
9206 	ufshcd_release(hba);
9207 	hba->pm_op_in_progress = false;
9208 	return ret;
9209 }
9210 
9211 static int ufshcd_wl_runtime_suspend(struct device *dev)
9212 {
9213 	struct scsi_device *sdev = to_scsi_device(dev);
9214 	struct ufs_hba *hba;
9215 	int ret;
9216 	ktime_t start = ktime_get();
9217 
9218 	hba = shost_priv(sdev->host);
9219 
9220 	ret = __ufshcd_wl_suspend(hba, UFS_RUNTIME_PM);
9221 	if (ret)
9222 		dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
9223 
9224 	trace_ufshcd_wl_runtime_suspend(dev_name(dev), ret,
9225 		ktime_to_us(ktime_sub(ktime_get(), start)),
9226 		hba->curr_dev_pwr_mode, hba->uic_link_state);
9227 
9228 	return ret;
9229 }
9230 
9231 static int ufshcd_wl_runtime_resume(struct device *dev)
9232 {
9233 	struct scsi_device *sdev = to_scsi_device(dev);
9234 	struct ufs_hba *hba;
9235 	int ret = 0;
9236 	ktime_t start = ktime_get();
9237 
9238 	hba = shost_priv(sdev->host);
9239 
9240 	ret = __ufshcd_wl_resume(hba, UFS_RUNTIME_PM);
9241 	if (ret)
9242 		dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
9243 
9244 	trace_ufshcd_wl_runtime_resume(dev_name(dev), ret,
9245 		ktime_to_us(ktime_sub(ktime_get(), start)),
9246 		hba->curr_dev_pwr_mode, hba->uic_link_state);
9247 
9248 	return ret;
9249 }
9250 #endif
9251 
9252 #ifdef CONFIG_PM_SLEEP
9253 static int ufshcd_wl_suspend(struct device *dev)
9254 {
9255 	struct scsi_device *sdev = to_scsi_device(dev);
9256 	struct ufs_hba *hba;
9257 	int ret = 0;
9258 	ktime_t start = ktime_get();
9259 
9260 	hba = shost_priv(sdev->host);
9261 	down(&hba->host_sem);
9262 
9263 	if (pm_runtime_suspended(dev))
9264 		goto out;
9265 
9266 	ret = __ufshcd_wl_suspend(hba, UFS_SYSTEM_PM);
9267 	if (ret) {
9268 		dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__,  ret);
9269 		up(&hba->host_sem);
9270 	}
9271 
9272 out:
9273 	if (!ret)
9274 		hba->is_sys_suspended = true;
9275 	trace_ufshcd_wl_suspend(dev_name(dev), ret,
9276 		ktime_to_us(ktime_sub(ktime_get(), start)),
9277 		hba->curr_dev_pwr_mode, hba->uic_link_state);
9278 
9279 	return ret;
9280 }
9281 
9282 static int ufshcd_wl_resume(struct device *dev)
9283 {
9284 	struct scsi_device *sdev = to_scsi_device(dev);
9285 	struct ufs_hba *hba;
9286 	int ret = 0;
9287 	ktime_t start = ktime_get();
9288 
9289 	hba = shost_priv(sdev->host);
9290 
9291 	if (pm_runtime_suspended(dev))
9292 		goto out;
9293 
9294 	ret = __ufshcd_wl_resume(hba, UFS_SYSTEM_PM);
9295 	if (ret)
9296 		dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
9297 out:
9298 	trace_ufshcd_wl_resume(dev_name(dev), ret,
9299 		ktime_to_us(ktime_sub(ktime_get(), start)),
9300 		hba->curr_dev_pwr_mode, hba->uic_link_state);
9301 	if (!ret)
9302 		hba->is_sys_suspended = false;
9303 	up(&hba->host_sem);
9304 	return ret;
9305 }
9306 #endif
9307 
9308 static void ufshcd_wl_shutdown(struct device *dev)
9309 {
9310 	struct scsi_device *sdev = to_scsi_device(dev);
9311 	struct ufs_hba *hba;
9312 
9313 	hba = shost_priv(sdev->host);
9314 
9315 	down(&hba->host_sem);
9316 	hba->shutting_down = true;
9317 	up(&hba->host_sem);
9318 
9319 	/* Turn on everything while shutting down */
9320 	ufshcd_rpm_get_sync(hba);
9321 	scsi_device_quiesce(sdev);
9322 	shost_for_each_device(sdev, hba->host) {
9323 		if (sdev == hba->ufs_device_wlun)
9324 			continue;
9325 		scsi_device_quiesce(sdev);
9326 	}
9327 	__ufshcd_wl_suspend(hba, UFS_SHUTDOWN_PM);
9328 }
9329 
9330 /**
9331  * ufshcd_suspend - helper function for suspend operations
9332  * @hba: per adapter instance
9333  *
9334  * This function will put disable irqs, turn off clocks
9335  * and set vreg and hba-vreg in lpm mode.
9336  */
9337 static int ufshcd_suspend(struct ufs_hba *hba)
9338 {
9339 	int ret;
9340 
9341 	if (!hba->is_powered)
9342 		return 0;
9343 	/*
9344 	 * Disable the host irq as host controller as there won't be any
9345 	 * host controller transaction expected till resume.
9346 	 */
9347 	ufshcd_disable_irq(hba);
9348 	ret = ufshcd_setup_clocks(hba, false);
9349 	if (ret) {
9350 		ufshcd_enable_irq(hba);
9351 		return ret;
9352 	}
9353 	if (ufshcd_is_clkgating_allowed(hba)) {
9354 		hba->clk_gating.state = CLKS_OFF;
9355 		trace_ufshcd_clk_gating(dev_name(hba->dev),
9356 					hba->clk_gating.state);
9357 	}
9358 
9359 	ufshcd_vreg_set_lpm(hba);
9360 	/* Put the host controller in low power mode if possible */
9361 	ufshcd_hba_vreg_set_lpm(hba);
9362 	return ret;
9363 }
9364 
9365 #ifdef CONFIG_PM
9366 /**
9367  * ufshcd_resume - helper function for resume operations
9368  * @hba: per adapter instance
9369  *
9370  * This function basically turns on the regulators, clocks and
9371  * irqs of the hba.
9372  *
9373  * Returns 0 for success and non-zero for failure
9374  */
9375 static int ufshcd_resume(struct ufs_hba *hba)
9376 {
9377 	int ret;
9378 
9379 	if (!hba->is_powered)
9380 		return 0;
9381 
9382 	ufshcd_hba_vreg_set_hpm(hba);
9383 	ret = ufshcd_vreg_set_hpm(hba);
9384 	if (ret)
9385 		goto out;
9386 
9387 	/* Make sure clocks are enabled before accessing controller */
9388 	ret = ufshcd_setup_clocks(hba, true);
9389 	if (ret)
9390 		goto disable_vreg;
9391 
9392 	/* enable the host irq as host controller would be active soon */
9393 	ufshcd_enable_irq(hba);
9394 	goto out;
9395 
9396 disable_vreg:
9397 	ufshcd_vreg_set_lpm(hba);
9398 out:
9399 	if (ret)
9400 		ufshcd_update_evt_hist(hba, UFS_EVT_RESUME_ERR, (u32)ret);
9401 	return ret;
9402 }
9403 #endif /* CONFIG_PM */
9404 
9405 #ifdef CONFIG_PM_SLEEP
9406 /**
9407  * ufshcd_system_suspend - system suspend callback
9408  * @dev: Device associated with the UFS controller.
9409  *
9410  * Executed before putting the system into a sleep state in which the contents
9411  * of main memory are preserved.
9412  *
9413  * Returns 0 for success and non-zero for failure
9414  */
9415 int ufshcd_system_suspend(struct device *dev)
9416 {
9417 	struct ufs_hba *hba = dev_get_drvdata(dev);
9418 	int ret = 0;
9419 	ktime_t start = ktime_get();
9420 
9421 	if (pm_runtime_suspended(hba->dev))
9422 		goto out;
9423 
9424 	ret = ufshcd_suspend(hba);
9425 out:
9426 	trace_ufshcd_system_suspend(dev_name(hba->dev), ret,
9427 		ktime_to_us(ktime_sub(ktime_get(), start)),
9428 		hba->curr_dev_pwr_mode, hba->uic_link_state);
9429 	return ret;
9430 }
9431 EXPORT_SYMBOL(ufshcd_system_suspend);
9432 
9433 /**
9434  * ufshcd_system_resume - system resume callback
9435  * @dev: Device associated with the UFS controller.
9436  *
9437  * Executed after waking the system up from a sleep state in which the contents
9438  * of main memory were preserved.
9439  *
9440  * Returns 0 for success and non-zero for failure
9441  */
9442 int ufshcd_system_resume(struct device *dev)
9443 {
9444 	struct ufs_hba *hba = dev_get_drvdata(dev);
9445 	ktime_t start = ktime_get();
9446 	int ret = 0;
9447 
9448 	if (pm_runtime_suspended(hba->dev))
9449 		goto out;
9450 
9451 	ret = ufshcd_resume(hba);
9452 
9453 out:
9454 	trace_ufshcd_system_resume(dev_name(hba->dev), ret,
9455 		ktime_to_us(ktime_sub(ktime_get(), start)),
9456 		hba->curr_dev_pwr_mode, hba->uic_link_state);
9457 
9458 	return ret;
9459 }
9460 EXPORT_SYMBOL(ufshcd_system_resume);
9461 #endif /* CONFIG_PM_SLEEP */
9462 
9463 #ifdef CONFIG_PM
9464 /**
9465  * ufshcd_runtime_suspend - runtime suspend callback
9466  * @dev: Device associated with the UFS controller.
9467  *
9468  * Check the description of ufshcd_suspend() function for more details.
9469  *
9470  * Returns 0 for success and non-zero for failure
9471  */
9472 int ufshcd_runtime_suspend(struct device *dev)
9473 {
9474 	struct ufs_hba *hba = dev_get_drvdata(dev);
9475 	int ret;
9476 	ktime_t start = ktime_get();
9477 
9478 	ret = ufshcd_suspend(hba);
9479 
9480 	trace_ufshcd_runtime_suspend(dev_name(hba->dev), ret,
9481 		ktime_to_us(ktime_sub(ktime_get(), start)),
9482 		hba->curr_dev_pwr_mode, hba->uic_link_state);
9483 	return ret;
9484 }
9485 EXPORT_SYMBOL(ufshcd_runtime_suspend);
9486 
9487 /**
9488  * ufshcd_runtime_resume - runtime resume routine
9489  * @dev: Device associated with the UFS controller.
9490  *
9491  * This function basically brings controller
9492  * to active state. Following operations are done in this function:
9493  *
9494  * 1. Turn on all the controller related clocks
9495  * 2. Turn ON VCC rail
9496  */
9497 int ufshcd_runtime_resume(struct device *dev)
9498 {
9499 	struct ufs_hba *hba = dev_get_drvdata(dev);
9500 	int ret;
9501 	ktime_t start = ktime_get();
9502 
9503 	ret = ufshcd_resume(hba);
9504 
9505 	trace_ufshcd_runtime_resume(dev_name(hba->dev), ret,
9506 		ktime_to_us(ktime_sub(ktime_get(), start)),
9507 		hba->curr_dev_pwr_mode, hba->uic_link_state);
9508 	return ret;
9509 }
9510 EXPORT_SYMBOL(ufshcd_runtime_resume);
9511 #endif /* CONFIG_PM */
9512 
9513 /**
9514  * ufshcd_shutdown - shutdown routine
9515  * @hba: per adapter instance
9516  *
9517  * This function would turn off both UFS device and UFS hba
9518  * regulators. It would also disable clocks.
9519  *
9520  * Returns 0 always to allow force shutdown even in case of errors.
9521  */
9522 int ufshcd_shutdown(struct ufs_hba *hba)
9523 {
9524 	if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba))
9525 		ufshcd_suspend(hba);
9526 
9527 	hba->is_powered = false;
9528 	/* allow force shutdown even in case of errors */
9529 	return 0;
9530 }
9531 EXPORT_SYMBOL(ufshcd_shutdown);
9532 
9533 /**
9534  * ufshcd_remove - de-allocate SCSI host and host memory space
9535  *		data structure memory
9536  * @hba: per adapter instance
9537  */
9538 void ufshcd_remove(struct ufs_hba *hba)
9539 {
9540 	if (hba->ufs_device_wlun)
9541 		ufshcd_rpm_get_sync(hba);
9542 	ufs_hwmon_remove(hba);
9543 	ufs_bsg_remove(hba);
9544 	ufshpb_remove(hba);
9545 	ufs_sysfs_remove_nodes(hba->dev);
9546 	blk_mq_destroy_queue(hba->tmf_queue);
9547 	blk_mq_free_tag_set(&hba->tmf_tag_set);
9548 	scsi_remove_host(hba->host);
9549 	/* disable interrupts */
9550 	ufshcd_disable_intr(hba, hba->intr_mask);
9551 	ufshcd_hba_stop(hba);
9552 	ufshcd_hba_exit(hba);
9553 }
9554 EXPORT_SYMBOL_GPL(ufshcd_remove);
9555 
9556 /**
9557  * ufshcd_dealloc_host - deallocate Host Bus Adapter (HBA)
9558  * @hba: pointer to Host Bus Adapter (HBA)
9559  */
9560 void ufshcd_dealloc_host(struct ufs_hba *hba)
9561 {
9562 	scsi_host_put(hba->host);
9563 }
9564 EXPORT_SYMBOL_GPL(ufshcd_dealloc_host);
9565 
9566 /**
9567  * ufshcd_set_dma_mask - Set dma mask based on the controller
9568  *			 addressing capability
9569  * @hba: per adapter instance
9570  *
9571  * Returns 0 for success, non-zero for failure
9572  */
9573 static int ufshcd_set_dma_mask(struct ufs_hba *hba)
9574 {
9575 	if (hba->capabilities & MASK_64_ADDRESSING_SUPPORT) {
9576 		if (!dma_set_mask_and_coherent(hba->dev, DMA_BIT_MASK(64)))
9577 			return 0;
9578 	}
9579 	return dma_set_mask_and_coherent(hba->dev, DMA_BIT_MASK(32));
9580 }
9581 
9582 /**
9583  * ufshcd_alloc_host - allocate Host Bus Adapter (HBA)
9584  * @dev: pointer to device handle
9585  * @hba_handle: driver private handle
9586  * Returns 0 on success, non-zero value on failure
9587  */
9588 int ufshcd_alloc_host(struct device *dev, struct ufs_hba **hba_handle)
9589 {
9590 	struct Scsi_Host *host;
9591 	struct ufs_hba *hba;
9592 	int err = 0;
9593 
9594 	if (!dev) {
9595 		dev_err(dev,
9596 		"Invalid memory reference for dev is NULL\n");
9597 		err = -ENODEV;
9598 		goto out_error;
9599 	}
9600 
9601 	host = scsi_host_alloc(&ufshcd_driver_template,
9602 				sizeof(struct ufs_hba));
9603 	if (!host) {
9604 		dev_err(dev, "scsi_host_alloc failed\n");
9605 		err = -ENOMEM;
9606 		goto out_error;
9607 	}
9608 	host->nr_maps = HCTX_TYPE_POLL + 1;
9609 	hba = shost_priv(host);
9610 	hba->host = host;
9611 	hba->dev = dev;
9612 	hba->dev_ref_clk_freq = REF_CLK_FREQ_INVAL;
9613 	hba->nop_out_timeout = NOP_OUT_TIMEOUT;
9614 	INIT_LIST_HEAD(&hba->clk_list_head);
9615 	spin_lock_init(&hba->outstanding_lock);
9616 
9617 	*hba_handle = hba;
9618 
9619 out_error:
9620 	return err;
9621 }
9622 EXPORT_SYMBOL(ufshcd_alloc_host);
9623 
9624 /* This function exists because blk_mq_alloc_tag_set() requires this. */
9625 static blk_status_t ufshcd_queue_tmf(struct blk_mq_hw_ctx *hctx,
9626 				     const struct blk_mq_queue_data *qd)
9627 {
9628 	WARN_ON_ONCE(true);
9629 	return BLK_STS_NOTSUPP;
9630 }
9631 
9632 static const struct blk_mq_ops ufshcd_tmf_ops = {
9633 	.queue_rq = ufshcd_queue_tmf,
9634 };
9635 
9636 /**
9637  * ufshcd_init - Driver initialization routine
9638  * @hba: per-adapter instance
9639  * @mmio_base: base register address
9640  * @irq: Interrupt line of device
9641  * Returns 0 on success, non-zero value on failure
9642  */
9643 int ufshcd_init(struct ufs_hba *hba, void __iomem *mmio_base, unsigned int irq)
9644 {
9645 	int err;
9646 	struct Scsi_Host *host = hba->host;
9647 	struct device *dev = hba->dev;
9648 	char eh_wq_name[sizeof("ufs_eh_wq_00")];
9649 
9650 	/*
9651 	 * dev_set_drvdata() must be called before any callbacks are registered
9652 	 * that use dev_get_drvdata() (frequency scaling, clock scaling, hwmon,
9653 	 * sysfs).
9654 	 */
9655 	dev_set_drvdata(dev, hba);
9656 
9657 	if (!mmio_base) {
9658 		dev_err(hba->dev,
9659 		"Invalid memory reference for mmio_base is NULL\n");
9660 		err = -ENODEV;
9661 		goto out_error;
9662 	}
9663 
9664 	hba->mmio_base = mmio_base;
9665 	hba->irq = irq;
9666 	hba->vps = &ufs_hba_vps;
9667 
9668 	err = ufshcd_hba_init(hba);
9669 	if (err)
9670 		goto out_error;
9671 
9672 	/* Read capabilities registers */
9673 	err = ufshcd_hba_capabilities(hba);
9674 	if (err)
9675 		goto out_disable;
9676 
9677 	/* Get UFS version supported by the controller */
9678 	hba->ufs_version = ufshcd_get_ufs_version(hba);
9679 
9680 	/* Get Interrupt bit mask per version */
9681 	hba->intr_mask = ufshcd_get_intr_mask(hba);
9682 
9683 	err = ufshcd_set_dma_mask(hba);
9684 	if (err) {
9685 		dev_err(hba->dev, "set dma mask failed\n");
9686 		goto out_disable;
9687 	}
9688 
9689 	/* Allocate memory for host memory space */
9690 	err = ufshcd_memory_alloc(hba);
9691 	if (err) {
9692 		dev_err(hba->dev, "Memory allocation failed\n");
9693 		goto out_disable;
9694 	}
9695 
9696 	/* Configure LRB */
9697 	ufshcd_host_memory_configure(hba);
9698 
9699 	host->can_queue = hba->nutrs - UFSHCD_NUM_RESERVED;
9700 	host->cmd_per_lun = hba->nutrs - UFSHCD_NUM_RESERVED;
9701 	host->max_id = UFSHCD_MAX_ID;
9702 	host->max_lun = UFS_MAX_LUNS;
9703 	host->max_channel = UFSHCD_MAX_CHANNEL;
9704 	host->unique_id = host->host_no;
9705 	host->max_cmd_len = UFS_CDB_SIZE;
9706 
9707 	hba->max_pwr_info.is_valid = false;
9708 
9709 	/* Initialize work queues */
9710 	snprintf(eh_wq_name, sizeof(eh_wq_name), "ufs_eh_wq_%d",
9711 		 hba->host->host_no);
9712 	hba->eh_wq = create_singlethread_workqueue(eh_wq_name);
9713 	if (!hba->eh_wq) {
9714 		dev_err(hba->dev, "%s: failed to create eh workqueue\n",
9715 			__func__);
9716 		err = -ENOMEM;
9717 		goto out_disable;
9718 	}
9719 	INIT_WORK(&hba->eh_work, ufshcd_err_handler);
9720 	INIT_WORK(&hba->eeh_work, ufshcd_exception_event_handler);
9721 
9722 	sema_init(&hba->host_sem, 1);
9723 
9724 	/* Initialize UIC command mutex */
9725 	mutex_init(&hba->uic_cmd_mutex);
9726 
9727 	/* Initialize mutex for device management commands */
9728 	mutex_init(&hba->dev_cmd.lock);
9729 
9730 	/* Initialize mutex for exception event control */
9731 	mutex_init(&hba->ee_ctrl_mutex);
9732 
9733 	init_rwsem(&hba->clk_scaling_lock);
9734 
9735 	ufshcd_init_clk_gating(hba);
9736 
9737 	ufshcd_init_clk_scaling(hba);
9738 
9739 	/*
9740 	 * In order to avoid any spurious interrupt immediately after
9741 	 * registering UFS controller interrupt handler, clear any pending UFS
9742 	 * interrupt status and disable all the UFS interrupts.
9743 	 */
9744 	ufshcd_writel(hba, ufshcd_readl(hba, REG_INTERRUPT_STATUS),
9745 		      REG_INTERRUPT_STATUS);
9746 	ufshcd_writel(hba, 0, REG_INTERRUPT_ENABLE);
9747 	/*
9748 	 * Make sure that UFS interrupts are disabled and any pending interrupt
9749 	 * status is cleared before registering UFS interrupt handler.
9750 	 */
9751 	mb();
9752 
9753 	/* IRQ registration */
9754 	err = devm_request_irq(dev, irq, ufshcd_intr, IRQF_SHARED, UFSHCD, hba);
9755 	if (err) {
9756 		dev_err(hba->dev, "request irq failed\n");
9757 		goto out_disable;
9758 	} else {
9759 		hba->is_irq_enabled = true;
9760 	}
9761 
9762 	err = scsi_add_host(host, hba->dev);
9763 	if (err) {
9764 		dev_err(hba->dev, "scsi_add_host failed\n");
9765 		goto out_disable;
9766 	}
9767 
9768 	hba->tmf_tag_set = (struct blk_mq_tag_set) {
9769 		.nr_hw_queues	= 1,
9770 		.queue_depth	= hba->nutmrs,
9771 		.ops		= &ufshcd_tmf_ops,
9772 		.flags		= BLK_MQ_F_NO_SCHED,
9773 	};
9774 	err = blk_mq_alloc_tag_set(&hba->tmf_tag_set);
9775 	if (err < 0)
9776 		goto out_remove_scsi_host;
9777 	hba->tmf_queue = blk_mq_init_queue(&hba->tmf_tag_set);
9778 	if (IS_ERR(hba->tmf_queue)) {
9779 		err = PTR_ERR(hba->tmf_queue);
9780 		goto free_tmf_tag_set;
9781 	}
9782 	hba->tmf_rqs = devm_kcalloc(hba->dev, hba->nutmrs,
9783 				    sizeof(*hba->tmf_rqs), GFP_KERNEL);
9784 	if (!hba->tmf_rqs) {
9785 		err = -ENOMEM;
9786 		goto free_tmf_queue;
9787 	}
9788 
9789 	/* Reset the attached device */
9790 	ufshcd_device_reset(hba);
9791 
9792 	ufshcd_init_crypto(hba);
9793 
9794 	/* Host controller enable */
9795 	err = ufshcd_hba_enable(hba);
9796 	if (err) {
9797 		dev_err(hba->dev, "Host controller enable failed\n");
9798 		ufshcd_print_evt_hist(hba);
9799 		ufshcd_print_host_state(hba);
9800 		goto free_tmf_queue;
9801 	}
9802 
9803 	/*
9804 	 * Set the default power management level for runtime and system PM.
9805 	 * Default power saving mode is to keep UFS link in Hibern8 state
9806 	 * and UFS device in sleep state.
9807 	 */
9808 	hba->rpm_lvl = ufs_get_desired_pm_lvl_for_dev_link_state(
9809 						UFS_SLEEP_PWR_MODE,
9810 						UIC_LINK_HIBERN8_STATE);
9811 	hba->spm_lvl = ufs_get_desired_pm_lvl_for_dev_link_state(
9812 						UFS_SLEEP_PWR_MODE,
9813 						UIC_LINK_HIBERN8_STATE);
9814 
9815 	INIT_DELAYED_WORK(&hba->rpm_dev_flush_recheck_work,
9816 			  ufshcd_rpm_dev_flush_recheck_work);
9817 
9818 	/* Set the default auto-hiberate idle timer value to 150 ms */
9819 	if (ufshcd_is_auto_hibern8_supported(hba) && !hba->ahit) {
9820 		hba->ahit = FIELD_PREP(UFSHCI_AHIBERN8_TIMER_MASK, 150) |
9821 			    FIELD_PREP(UFSHCI_AHIBERN8_SCALE_MASK, 3);
9822 	}
9823 
9824 	/* Hold auto suspend until async scan completes */
9825 	pm_runtime_get_sync(dev);
9826 	atomic_set(&hba->scsi_block_reqs_cnt, 0);
9827 	/*
9828 	 * We are assuming that device wasn't put in sleep/power-down
9829 	 * state exclusively during the boot stage before kernel.
9830 	 * This assumption helps avoid doing link startup twice during
9831 	 * ufshcd_probe_hba().
9832 	 */
9833 	ufshcd_set_ufs_dev_active(hba);
9834 
9835 	async_schedule(ufshcd_async_scan, hba);
9836 	ufs_sysfs_add_nodes(hba->dev);
9837 
9838 	device_enable_async_suspend(dev);
9839 	return 0;
9840 
9841 free_tmf_queue:
9842 	blk_mq_destroy_queue(hba->tmf_queue);
9843 free_tmf_tag_set:
9844 	blk_mq_free_tag_set(&hba->tmf_tag_set);
9845 out_remove_scsi_host:
9846 	scsi_remove_host(hba->host);
9847 out_disable:
9848 	hba->is_irq_enabled = false;
9849 	ufshcd_hba_exit(hba);
9850 out_error:
9851 	return err;
9852 }
9853 EXPORT_SYMBOL_GPL(ufshcd_init);
9854 
9855 void ufshcd_resume_complete(struct device *dev)
9856 {
9857 	struct ufs_hba *hba = dev_get_drvdata(dev);
9858 
9859 	if (hba->complete_put) {
9860 		ufshcd_rpm_put(hba);
9861 		hba->complete_put = false;
9862 	}
9863 }
9864 EXPORT_SYMBOL_GPL(ufshcd_resume_complete);
9865 
9866 static bool ufshcd_rpm_ok_for_spm(struct ufs_hba *hba)
9867 {
9868 	struct device *dev = &hba->ufs_device_wlun->sdev_gendev;
9869 	enum ufs_dev_pwr_mode dev_pwr_mode;
9870 	enum uic_link_state link_state;
9871 	unsigned long flags;
9872 	bool res;
9873 
9874 	spin_lock_irqsave(&dev->power.lock, flags);
9875 	dev_pwr_mode = ufs_get_pm_lvl_to_dev_pwr_mode(hba->spm_lvl);
9876 	link_state = ufs_get_pm_lvl_to_link_pwr_state(hba->spm_lvl);
9877 	res = pm_runtime_suspended(dev) &&
9878 	      hba->curr_dev_pwr_mode == dev_pwr_mode &&
9879 	      hba->uic_link_state == link_state &&
9880 	      !hba->dev_info.b_rpm_dev_flush_capable;
9881 	spin_unlock_irqrestore(&dev->power.lock, flags);
9882 
9883 	return res;
9884 }
9885 
9886 int __ufshcd_suspend_prepare(struct device *dev, bool rpm_ok_for_spm)
9887 {
9888 	struct ufs_hba *hba = dev_get_drvdata(dev);
9889 	int ret;
9890 
9891 	/*
9892 	 * SCSI assumes that runtime-pm and system-pm for scsi drivers
9893 	 * are same. And it doesn't wake up the device for system-suspend
9894 	 * if it's runtime suspended. But ufs doesn't follow that.
9895 	 * Refer ufshcd_resume_complete()
9896 	 */
9897 	if (hba->ufs_device_wlun) {
9898 		/* Prevent runtime suspend */
9899 		ufshcd_rpm_get_noresume(hba);
9900 		/*
9901 		 * Check if already runtime suspended in same state as system
9902 		 * suspend would be.
9903 		 */
9904 		if (!rpm_ok_for_spm || !ufshcd_rpm_ok_for_spm(hba)) {
9905 			/* RPM state is not ok for SPM, so runtime resume */
9906 			ret = ufshcd_rpm_resume(hba);
9907 			if (ret < 0 && ret != -EACCES) {
9908 				ufshcd_rpm_put(hba);
9909 				return ret;
9910 			}
9911 		}
9912 		hba->complete_put = true;
9913 	}
9914 	return 0;
9915 }
9916 EXPORT_SYMBOL_GPL(__ufshcd_suspend_prepare);
9917 
9918 int ufshcd_suspend_prepare(struct device *dev)
9919 {
9920 	return __ufshcd_suspend_prepare(dev, true);
9921 }
9922 EXPORT_SYMBOL_GPL(ufshcd_suspend_prepare);
9923 
9924 #ifdef CONFIG_PM_SLEEP
9925 static int ufshcd_wl_poweroff(struct device *dev)
9926 {
9927 	struct scsi_device *sdev = to_scsi_device(dev);
9928 	struct ufs_hba *hba = shost_priv(sdev->host);
9929 
9930 	__ufshcd_wl_suspend(hba, UFS_SHUTDOWN_PM);
9931 	return 0;
9932 }
9933 #endif
9934 
9935 static int ufshcd_wl_probe(struct device *dev)
9936 {
9937 	struct scsi_device *sdev = to_scsi_device(dev);
9938 
9939 	if (!is_device_wlun(sdev))
9940 		return -ENODEV;
9941 
9942 	blk_pm_runtime_init(sdev->request_queue, dev);
9943 	pm_runtime_set_autosuspend_delay(dev, 0);
9944 	pm_runtime_allow(dev);
9945 
9946 	return  0;
9947 }
9948 
9949 static int ufshcd_wl_remove(struct device *dev)
9950 {
9951 	pm_runtime_forbid(dev);
9952 	return 0;
9953 }
9954 
9955 static const struct dev_pm_ops ufshcd_wl_pm_ops = {
9956 #ifdef CONFIG_PM_SLEEP
9957 	.suspend = ufshcd_wl_suspend,
9958 	.resume = ufshcd_wl_resume,
9959 	.freeze = ufshcd_wl_suspend,
9960 	.thaw = ufshcd_wl_resume,
9961 	.poweroff = ufshcd_wl_poweroff,
9962 	.restore = ufshcd_wl_resume,
9963 #endif
9964 	SET_RUNTIME_PM_OPS(ufshcd_wl_runtime_suspend, ufshcd_wl_runtime_resume, NULL)
9965 };
9966 
9967 /*
9968  * ufs_dev_wlun_template - describes ufs device wlun
9969  * ufs-device wlun - used to send pm commands
9970  * All luns are consumers of ufs-device wlun.
9971  *
9972  * Currently, no sd driver is present for wluns.
9973  * Hence the no specific pm operations are performed.
9974  * With ufs design, SSU should be sent to ufs-device wlun.
9975  * Hence register a scsi driver for ufs wluns only.
9976  */
9977 static struct scsi_driver ufs_dev_wlun_template = {
9978 	.gendrv = {
9979 		.name = "ufs_device_wlun",
9980 		.owner = THIS_MODULE,
9981 		.probe = ufshcd_wl_probe,
9982 		.remove = ufshcd_wl_remove,
9983 		.pm = &ufshcd_wl_pm_ops,
9984 		.shutdown = ufshcd_wl_shutdown,
9985 	},
9986 };
9987 
9988 static int __init ufshcd_core_init(void)
9989 {
9990 	int ret;
9991 
9992 	/* Verify that there are no gaps in struct utp_transfer_cmd_desc. */
9993 	static_assert(sizeof(struct utp_transfer_cmd_desc) ==
9994 		      2 * ALIGNED_UPIU_SIZE +
9995 			      SG_ALL * sizeof(struct ufshcd_sg_entry));
9996 
9997 	ufs_debugfs_init();
9998 
9999 	ret = scsi_register_driver(&ufs_dev_wlun_template.gendrv);
10000 	if (ret)
10001 		ufs_debugfs_exit();
10002 	return ret;
10003 }
10004 
10005 static void __exit ufshcd_core_exit(void)
10006 {
10007 	ufs_debugfs_exit();
10008 	scsi_unregister_driver(&ufs_dev_wlun_template.gendrv);
10009 }
10010 
10011 module_init(ufshcd_core_init);
10012 module_exit(ufshcd_core_exit);
10013 
10014 MODULE_AUTHOR("Santosh Yaragnavi <santosh.sy@samsung.com>");
10015 MODULE_AUTHOR("Vinayak Holikatti <h.vinayak@samsung.com>");
10016 MODULE_DESCRIPTION("Generic UFS host controller driver Core");
10017 MODULE_LICENSE("GPL");
10018