1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Universal Flash Storage Host controller driver Core 4 * Copyright (C) 2011-2013 Samsung India Software Operations 5 * Copyright (c) 2013-2016, The Linux Foundation. All rights reserved. 6 * 7 * Authors: 8 * Santosh Yaraganavi <santosh.sy@samsung.com> 9 * Vinayak Holikatti <h.vinayak@samsung.com> 10 */ 11 12 #include <linux/async.h> 13 #include <linux/devfreq.h> 14 #include <linux/nls.h> 15 #include <linux/of.h> 16 #include <linux/bitfield.h> 17 #include <linux/blk-pm.h> 18 #include <linux/blkdev.h> 19 #include <linux/clk.h> 20 #include <linux/delay.h> 21 #include <linux/interrupt.h> 22 #include <linux/module.h> 23 #include <linux/pm_opp.h> 24 #include <linux/regulator/consumer.h> 25 #include <linux/sched/clock.h> 26 #include <linux/iopoll.h> 27 #include <scsi/scsi_cmnd.h> 28 #include <scsi/scsi_dbg.h> 29 #include <scsi/scsi_driver.h> 30 #include <scsi/scsi_eh.h> 31 #include "ufshcd-priv.h" 32 #include <ufs/ufs_quirks.h> 33 #include <ufs/unipro.h> 34 #include "ufs-sysfs.h" 35 #include "ufs-debugfs.h" 36 #include "ufs-fault-injection.h" 37 #include "ufs_bsg.h" 38 #include "ufshcd-crypto.h" 39 #include <asm/unaligned.h> 40 41 #define CREATE_TRACE_POINTS 42 #include "ufs_trace.h" 43 44 #define UFSHCD_ENABLE_INTRS (UTP_TRANSFER_REQ_COMPL |\ 45 UTP_TASK_REQ_COMPL |\ 46 UFSHCD_ERROR_MASK) 47 48 #define UFSHCD_ENABLE_MCQ_INTRS (UTP_TASK_REQ_COMPL |\ 49 UFSHCD_ERROR_MASK |\ 50 MCQ_CQ_EVENT_STATUS) 51 52 53 /* UIC command timeout, unit: ms */ 54 enum { 55 UIC_CMD_TIMEOUT_DEFAULT = 500, 56 UIC_CMD_TIMEOUT_MAX = 2000, 57 }; 58 /* NOP OUT retries waiting for NOP IN response */ 59 #define NOP_OUT_RETRIES 10 60 /* Timeout after 50 msecs if NOP OUT hangs without response */ 61 #define NOP_OUT_TIMEOUT 50 /* msecs */ 62 63 /* Query request retries */ 64 #define QUERY_REQ_RETRIES 3 65 /* Query request timeout */ 66 #define QUERY_REQ_TIMEOUT 1500 /* 1.5 seconds */ 67 68 /* Advanced RPMB request timeout */ 69 #define ADVANCED_RPMB_REQ_TIMEOUT 3000 /* 3 seconds */ 70 71 /* Task management command timeout */ 72 #define TM_CMD_TIMEOUT 100 /* msecs */ 73 74 /* maximum number of retries for a general UIC command */ 75 #define UFS_UIC_COMMAND_RETRIES 3 76 77 /* maximum number of link-startup retries */ 78 #define DME_LINKSTARTUP_RETRIES 3 79 80 /* maximum number of reset retries before giving up */ 81 #define MAX_HOST_RESET_RETRIES 5 82 83 /* Maximum number of error handler retries before giving up */ 84 #define MAX_ERR_HANDLER_RETRIES 5 85 86 /* Expose the flag value from utp_upiu_query.value */ 87 #define MASK_QUERY_UPIU_FLAG_LOC 0xFF 88 89 /* Interrupt aggregation default timeout, unit: 40us */ 90 #define INT_AGGR_DEF_TO 0x02 91 92 /* default delay of autosuspend: 2000 ms */ 93 #define RPM_AUTOSUSPEND_DELAY_MS 2000 94 95 /* Default delay of RPM device flush delayed work */ 96 #define RPM_DEV_FLUSH_RECHECK_WORK_DELAY_MS 5000 97 98 /* Default value of wait time before gating device ref clock */ 99 #define UFSHCD_REF_CLK_GATING_WAIT_US 0xFF /* microsecs */ 100 101 /* Polling time to wait for fDeviceInit */ 102 #define FDEVICEINIT_COMPL_TIMEOUT 1500 /* millisecs */ 103 104 /* Default RTC update every 10 seconds */ 105 #define UFS_RTC_UPDATE_INTERVAL_MS (10 * MSEC_PER_SEC) 106 107 /* bMaxNumOfRTT is equal to two after device manufacturing */ 108 #define DEFAULT_MAX_NUM_RTT 2 109 110 /* UFSHC 4.0 compliant HC support this mode. */ 111 static bool use_mcq_mode = true; 112 113 static bool is_mcq_supported(struct ufs_hba *hba) 114 { 115 return hba->mcq_sup && use_mcq_mode; 116 } 117 118 module_param(use_mcq_mode, bool, 0644); 119 MODULE_PARM_DESC(use_mcq_mode, "Control MCQ mode for controllers starting from UFSHCI 4.0. 1 - enable MCQ, 0 - disable MCQ. MCQ is enabled by default"); 120 121 static unsigned int uic_cmd_timeout = UIC_CMD_TIMEOUT_DEFAULT; 122 123 static int uic_cmd_timeout_set(const char *val, const struct kernel_param *kp) 124 { 125 return param_set_uint_minmax(val, kp, UIC_CMD_TIMEOUT_DEFAULT, 126 UIC_CMD_TIMEOUT_MAX); 127 } 128 129 static const struct kernel_param_ops uic_cmd_timeout_ops = { 130 .set = uic_cmd_timeout_set, 131 .get = param_get_uint, 132 }; 133 134 module_param_cb(uic_cmd_timeout, &uic_cmd_timeout_ops, &uic_cmd_timeout, 0644); 135 MODULE_PARM_DESC(uic_cmd_timeout, 136 "UFS UIC command timeout in milliseconds. Defaults to 500ms. Supported values range from 500ms to 2 seconds inclusively"); 137 138 #define ufshcd_toggle_vreg(_dev, _vreg, _on) \ 139 ({ \ 140 int _ret; \ 141 if (_on) \ 142 _ret = ufshcd_enable_vreg(_dev, _vreg); \ 143 else \ 144 _ret = ufshcd_disable_vreg(_dev, _vreg); \ 145 _ret; \ 146 }) 147 148 #define ufshcd_hex_dump(prefix_str, buf, len) do { \ 149 size_t __len = (len); \ 150 print_hex_dump(KERN_ERR, prefix_str, \ 151 __len > 4 ? DUMP_PREFIX_OFFSET : DUMP_PREFIX_NONE,\ 152 16, 4, buf, __len, false); \ 153 } while (0) 154 155 int ufshcd_dump_regs(struct ufs_hba *hba, size_t offset, size_t len, 156 const char *prefix) 157 { 158 u32 *regs; 159 size_t pos; 160 161 if (offset % 4 != 0 || len % 4 != 0) /* keep readl happy */ 162 return -EINVAL; 163 164 regs = kzalloc(len, GFP_ATOMIC); 165 if (!regs) 166 return -ENOMEM; 167 168 for (pos = 0; pos < len; pos += 4) { 169 if (offset == 0 && 170 pos >= REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER && 171 pos <= REG_UIC_ERROR_CODE_DME) 172 continue; 173 regs[pos / 4] = ufshcd_readl(hba, offset + pos); 174 } 175 176 ufshcd_hex_dump(prefix, regs, len); 177 kfree(regs); 178 179 return 0; 180 } 181 EXPORT_SYMBOL_GPL(ufshcd_dump_regs); 182 183 enum { 184 UFSHCD_MAX_CHANNEL = 0, 185 UFSHCD_MAX_ID = 1, 186 }; 187 188 static const char *const ufshcd_state_name[] = { 189 [UFSHCD_STATE_RESET] = "reset", 190 [UFSHCD_STATE_OPERATIONAL] = "operational", 191 [UFSHCD_STATE_ERROR] = "error", 192 [UFSHCD_STATE_EH_SCHEDULED_FATAL] = "eh_fatal", 193 [UFSHCD_STATE_EH_SCHEDULED_NON_FATAL] = "eh_non_fatal", 194 }; 195 196 /* UFSHCD error handling flags */ 197 enum { 198 UFSHCD_EH_IN_PROGRESS = (1 << 0), 199 }; 200 201 /* UFSHCD UIC layer error flags */ 202 enum { 203 UFSHCD_UIC_DL_PA_INIT_ERROR = (1 << 0), /* Data link layer error */ 204 UFSHCD_UIC_DL_NAC_RECEIVED_ERROR = (1 << 1), /* Data link layer error */ 205 UFSHCD_UIC_DL_TCx_REPLAY_ERROR = (1 << 2), /* Data link layer error */ 206 UFSHCD_UIC_NL_ERROR = (1 << 3), /* Network layer error */ 207 UFSHCD_UIC_TL_ERROR = (1 << 4), /* Transport Layer error */ 208 UFSHCD_UIC_DME_ERROR = (1 << 5), /* DME error */ 209 UFSHCD_UIC_PA_GENERIC_ERROR = (1 << 6), /* Generic PA error */ 210 }; 211 212 #define ufshcd_set_eh_in_progress(h) \ 213 ((h)->eh_flags |= UFSHCD_EH_IN_PROGRESS) 214 #define ufshcd_eh_in_progress(h) \ 215 ((h)->eh_flags & UFSHCD_EH_IN_PROGRESS) 216 #define ufshcd_clear_eh_in_progress(h) \ 217 ((h)->eh_flags &= ~UFSHCD_EH_IN_PROGRESS) 218 219 const struct ufs_pm_lvl_states ufs_pm_lvl_states[] = { 220 [UFS_PM_LVL_0] = {UFS_ACTIVE_PWR_MODE, UIC_LINK_ACTIVE_STATE}, 221 [UFS_PM_LVL_1] = {UFS_ACTIVE_PWR_MODE, UIC_LINK_HIBERN8_STATE}, 222 [UFS_PM_LVL_2] = {UFS_SLEEP_PWR_MODE, UIC_LINK_ACTIVE_STATE}, 223 [UFS_PM_LVL_3] = {UFS_SLEEP_PWR_MODE, UIC_LINK_HIBERN8_STATE}, 224 [UFS_PM_LVL_4] = {UFS_POWERDOWN_PWR_MODE, UIC_LINK_HIBERN8_STATE}, 225 [UFS_PM_LVL_5] = {UFS_POWERDOWN_PWR_MODE, UIC_LINK_OFF_STATE}, 226 /* 227 * For DeepSleep, the link is first put in hibern8 and then off. 228 * Leaving the link in hibern8 is not supported. 229 */ 230 [UFS_PM_LVL_6] = {UFS_DEEPSLEEP_PWR_MODE, UIC_LINK_OFF_STATE}, 231 }; 232 233 static inline enum ufs_dev_pwr_mode 234 ufs_get_pm_lvl_to_dev_pwr_mode(enum ufs_pm_level lvl) 235 { 236 return ufs_pm_lvl_states[lvl].dev_state; 237 } 238 239 static inline enum uic_link_state 240 ufs_get_pm_lvl_to_link_pwr_state(enum ufs_pm_level lvl) 241 { 242 return ufs_pm_lvl_states[lvl].link_state; 243 } 244 245 static inline enum ufs_pm_level 246 ufs_get_desired_pm_lvl_for_dev_link_state(enum ufs_dev_pwr_mode dev_state, 247 enum uic_link_state link_state) 248 { 249 enum ufs_pm_level lvl; 250 251 for (lvl = UFS_PM_LVL_0; lvl < UFS_PM_LVL_MAX; lvl++) { 252 if ((ufs_pm_lvl_states[lvl].dev_state == dev_state) && 253 (ufs_pm_lvl_states[lvl].link_state == link_state)) 254 return lvl; 255 } 256 257 /* if no match found, return the level 0 */ 258 return UFS_PM_LVL_0; 259 } 260 261 static bool ufshcd_is_ufs_dev_busy(struct ufs_hba *hba) 262 { 263 return (hba->clk_gating.active_reqs || hba->outstanding_reqs || hba->outstanding_tasks || 264 hba->active_uic_cmd || hba->uic_async_done); 265 } 266 267 static const struct ufs_dev_quirk ufs_fixups[] = { 268 /* UFS cards deviations table */ 269 { .wmanufacturerid = UFS_VENDOR_MICRON, 270 .model = UFS_ANY_MODEL, 271 .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM }, 272 { .wmanufacturerid = UFS_VENDOR_SAMSUNG, 273 .model = UFS_ANY_MODEL, 274 .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM | 275 UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE | 276 UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS }, 277 { .wmanufacturerid = UFS_VENDOR_SKHYNIX, 278 .model = UFS_ANY_MODEL, 279 .quirk = UFS_DEVICE_QUIRK_HOST_PA_SAVECONFIGTIME }, 280 { .wmanufacturerid = UFS_VENDOR_SKHYNIX, 281 .model = "hB8aL1" /*H28U62301AMR*/, 282 .quirk = UFS_DEVICE_QUIRK_HOST_VS_DEBUGSAVECONFIGTIME }, 283 { .wmanufacturerid = UFS_VENDOR_TOSHIBA, 284 .model = UFS_ANY_MODEL, 285 .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM }, 286 { .wmanufacturerid = UFS_VENDOR_TOSHIBA, 287 .model = "THGLF2G9C8KBADG", 288 .quirk = UFS_DEVICE_QUIRK_PA_TACTIVATE }, 289 { .wmanufacturerid = UFS_VENDOR_TOSHIBA, 290 .model = "THGLF2G9D8KBADG", 291 .quirk = UFS_DEVICE_QUIRK_PA_TACTIVATE }, 292 {} 293 }; 294 295 static irqreturn_t ufshcd_tmc_handler(struct ufs_hba *hba); 296 static void ufshcd_async_scan(void *data, async_cookie_t cookie); 297 static int ufshcd_reset_and_restore(struct ufs_hba *hba); 298 static int ufshcd_eh_host_reset_handler(struct scsi_cmnd *cmd); 299 static int ufshcd_clear_tm_cmd(struct ufs_hba *hba, int tag); 300 static void ufshcd_hba_exit(struct ufs_hba *hba); 301 static int ufshcd_device_init(struct ufs_hba *hba, bool init_dev_params); 302 static int ufshcd_probe_hba(struct ufs_hba *hba, bool init_dev_params); 303 static int ufshcd_setup_clocks(struct ufs_hba *hba, bool on); 304 static inline void ufshcd_add_delay_before_dme_cmd(struct ufs_hba *hba); 305 static int ufshcd_host_reset_and_restore(struct ufs_hba *hba); 306 static void ufshcd_resume_clkscaling(struct ufs_hba *hba); 307 static void ufshcd_suspend_clkscaling(struct ufs_hba *hba); 308 static int ufshcd_scale_clks(struct ufs_hba *hba, unsigned long freq, 309 bool scale_up); 310 static irqreturn_t ufshcd_intr(int irq, void *__hba); 311 static int ufshcd_change_power_mode(struct ufs_hba *hba, 312 struct ufs_pa_layer_attr *pwr_mode); 313 static int ufshcd_setup_hba_vreg(struct ufs_hba *hba, bool on); 314 static int ufshcd_setup_vreg(struct ufs_hba *hba, bool on); 315 static inline int ufshcd_config_vreg_hpm(struct ufs_hba *hba, 316 struct ufs_vreg *vreg); 317 static void ufshcd_wb_toggle_buf_flush_during_h8(struct ufs_hba *hba, 318 bool enable); 319 static void ufshcd_hba_vreg_set_lpm(struct ufs_hba *hba); 320 static void ufshcd_hba_vreg_set_hpm(struct ufs_hba *hba); 321 322 void ufshcd_enable_irq(struct ufs_hba *hba) 323 { 324 if (!hba->is_irq_enabled) { 325 enable_irq(hba->irq); 326 hba->is_irq_enabled = true; 327 } 328 } 329 EXPORT_SYMBOL_GPL(ufshcd_enable_irq); 330 331 void ufshcd_disable_irq(struct ufs_hba *hba) 332 { 333 if (hba->is_irq_enabled) { 334 disable_irq(hba->irq); 335 hba->is_irq_enabled = false; 336 } 337 } 338 EXPORT_SYMBOL_GPL(ufshcd_disable_irq); 339 340 static void ufshcd_configure_wb(struct ufs_hba *hba) 341 { 342 if (!ufshcd_is_wb_allowed(hba)) 343 return; 344 345 ufshcd_wb_toggle(hba, true); 346 347 ufshcd_wb_toggle_buf_flush_during_h8(hba, true); 348 349 if (ufshcd_is_wb_buf_flush_allowed(hba)) 350 ufshcd_wb_toggle_buf_flush(hba, true); 351 } 352 353 static void ufshcd_add_cmd_upiu_trace(struct ufs_hba *hba, unsigned int tag, 354 enum ufs_trace_str_t str_t) 355 { 356 struct utp_upiu_req *rq = hba->lrb[tag].ucd_req_ptr; 357 struct utp_upiu_header *header; 358 359 if (!trace_ufshcd_upiu_enabled()) 360 return; 361 362 if (str_t == UFS_CMD_SEND) 363 header = &rq->header; 364 else 365 header = &hba->lrb[tag].ucd_rsp_ptr->header; 366 367 trace_ufshcd_upiu(dev_name(hba->dev), str_t, header, &rq->sc.cdb, 368 UFS_TSF_CDB); 369 } 370 371 static void ufshcd_add_query_upiu_trace(struct ufs_hba *hba, 372 enum ufs_trace_str_t str_t, 373 struct utp_upiu_req *rq_rsp) 374 { 375 if (!trace_ufshcd_upiu_enabled()) 376 return; 377 378 trace_ufshcd_upiu(dev_name(hba->dev), str_t, &rq_rsp->header, 379 &rq_rsp->qr, UFS_TSF_OSF); 380 } 381 382 static void ufshcd_add_tm_upiu_trace(struct ufs_hba *hba, unsigned int tag, 383 enum ufs_trace_str_t str_t) 384 { 385 struct utp_task_req_desc *descp = &hba->utmrdl_base_addr[tag]; 386 387 if (!trace_ufshcd_upiu_enabled()) 388 return; 389 390 if (str_t == UFS_TM_SEND) 391 trace_ufshcd_upiu(dev_name(hba->dev), str_t, 392 &descp->upiu_req.req_header, 393 &descp->upiu_req.input_param1, 394 UFS_TSF_TM_INPUT); 395 else 396 trace_ufshcd_upiu(dev_name(hba->dev), str_t, 397 &descp->upiu_rsp.rsp_header, 398 &descp->upiu_rsp.output_param1, 399 UFS_TSF_TM_OUTPUT); 400 } 401 402 static void ufshcd_add_uic_command_trace(struct ufs_hba *hba, 403 const struct uic_command *ucmd, 404 enum ufs_trace_str_t str_t) 405 { 406 u32 cmd; 407 408 if (!trace_ufshcd_uic_command_enabled()) 409 return; 410 411 if (str_t == UFS_CMD_SEND) 412 cmd = ucmd->command; 413 else 414 cmd = ufshcd_readl(hba, REG_UIC_COMMAND); 415 416 trace_ufshcd_uic_command(dev_name(hba->dev), str_t, cmd, 417 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_1), 418 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_2), 419 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_3)); 420 } 421 422 static void ufshcd_add_command_trace(struct ufs_hba *hba, unsigned int tag, 423 enum ufs_trace_str_t str_t) 424 { 425 u64 lba = 0; 426 u8 opcode = 0, group_id = 0; 427 u32 doorbell = 0; 428 u32 intr; 429 int hwq_id = -1; 430 struct ufshcd_lrb *lrbp = &hba->lrb[tag]; 431 struct scsi_cmnd *cmd = lrbp->cmd; 432 struct request *rq = scsi_cmd_to_rq(cmd); 433 int transfer_len = -1; 434 435 if (!cmd) 436 return; 437 438 /* trace UPIU also */ 439 ufshcd_add_cmd_upiu_trace(hba, tag, str_t); 440 if (!trace_ufshcd_command_enabled()) 441 return; 442 443 opcode = cmd->cmnd[0]; 444 445 if (opcode == READ_10 || opcode == WRITE_10) { 446 /* 447 * Currently we only fully trace read(10) and write(10) commands 448 */ 449 transfer_len = 450 be32_to_cpu(lrbp->ucd_req_ptr->sc.exp_data_transfer_len); 451 lba = scsi_get_lba(cmd); 452 if (opcode == WRITE_10) 453 group_id = lrbp->cmd->cmnd[6]; 454 } else if (opcode == UNMAP) { 455 /* 456 * The number of Bytes to be unmapped beginning with the lba. 457 */ 458 transfer_len = blk_rq_bytes(rq); 459 lba = scsi_get_lba(cmd); 460 } 461 462 intr = ufshcd_readl(hba, REG_INTERRUPT_STATUS); 463 464 if (hba->mcq_enabled) { 465 struct ufs_hw_queue *hwq = ufshcd_mcq_req_to_hwq(hba, rq); 466 467 hwq_id = hwq->id; 468 } else { 469 doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL); 470 } 471 trace_ufshcd_command(cmd->device, str_t, tag, doorbell, hwq_id, 472 transfer_len, intr, lba, opcode, group_id); 473 } 474 475 static void ufshcd_print_clk_freqs(struct ufs_hba *hba) 476 { 477 struct ufs_clk_info *clki; 478 struct list_head *head = &hba->clk_list_head; 479 480 if (list_empty(head)) 481 return; 482 483 list_for_each_entry(clki, head, list) { 484 if (!IS_ERR_OR_NULL(clki->clk) && clki->min_freq && 485 clki->max_freq) 486 dev_err(hba->dev, "clk: %s, rate: %u\n", 487 clki->name, clki->curr_freq); 488 } 489 } 490 491 static void ufshcd_print_evt(struct ufs_hba *hba, u32 id, 492 const char *err_name) 493 { 494 int i; 495 bool found = false; 496 const struct ufs_event_hist *e; 497 498 if (id >= UFS_EVT_CNT) 499 return; 500 501 e = &hba->ufs_stats.event[id]; 502 503 for (i = 0; i < UFS_EVENT_HIST_LENGTH; i++) { 504 int p = (i + e->pos) % UFS_EVENT_HIST_LENGTH; 505 506 if (e->tstamp[p] == 0) 507 continue; 508 dev_err(hba->dev, "%s[%d] = 0x%x at %lld us\n", err_name, p, 509 e->val[p], div_u64(e->tstamp[p], 1000)); 510 found = true; 511 } 512 513 if (!found) 514 dev_err(hba->dev, "No record of %s\n", err_name); 515 else 516 dev_err(hba->dev, "%s: total cnt=%llu\n", err_name, e->cnt); 517 } 518 519 static void ufshcd_print_evt_hist(struct ufs_hba *hba) 520 { 521 ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, "host_regs: "); 522 523 ufshcd_print_evt(hba, UFS_EVT_PA_ERR, "pa_err"); 524 ufshcd_print_evt(hba, UFS_EVT_DL_ERR, "dl_err"); 525 ufshcd_print_evt(hba, UFS_EVT_NL_ERR, "nl_err"); 526 ufshcd_print_evt(hba, UFS_EVT_TL_ERR, "tl_err"); 527 ufshcd_print_evt(hba, UFS_EVT_DME_ERR, "dme_err"); 528 ufshcd_print_evt(hba, UFS_EVT_AUTO_HIBERN8_ERR, 529 "auto_hibern8_err"); 530 ufshcd_print_evt(hba, UFS_EVT_FATAL_ERR, "fatal_err"); 531 ufshcd_print_evt(hba, UFS_EVT_LINK_STARTUP_FAIL, 532 "link_startup_fail"); 533 ufshcd_print_evt(hba, UFS_EVT_RESUME_ERR, "resume_fail"); 534 ufshcd_print_evt(hba, UFS_EVT_SUSPEND_ERR, 535 "suspend_fail"); 536 ufshcd_print_evt(hba, UFS_EVT_WL_RES_ERR, "wlun resume_fail"); 537 ufshcd_print_evt(hba, UFS_EVT_WL_SUSP_ERR, 538 "wlun suspend_fail"); 539 ufshcd_print_evt(hba, UFS_EVT_DEV_RESET, "dev_reset"); 540 ufshcd_print_evt(hba, UFS_EVT_HOST_RESET, "host_reset"); 541 ufshcd_print_evt(hba, UFS_EVT_ABORT, "task_abort"); 542 543 ufshcd_vops_dbg_register_dump(hba); 544 } 545 546 static 547 void ufshcd_print_tr(struct ufs_hba *hba, int tag, bool pr_prdt) 548 { 549 const struct ufshcd_lrb *lrbp; 550 int prdt_length; 551 552 lrbp = &hba->lrb[tag]; 553 554 dev_err(hba->dev, "UPIU[%d] - issue time %lld us\n", 555 tag, div_u64(lrbp->issue_time_stamp_local_clock, 1000)); 556 dev_err(hba->dev, "UPIU[%d] - complete time %lld us\n", 557 tag, div_u64(lrbp->compl_time_stamp_local_clock, 1000)); 558 dev_err(hba->dev, 559 "UPIU[%d] - Transfer Request Descriptor phys@0x%llx\n", 560 tag, (u64)lrbp->utrd_dma_addr); 561 562 ufshcd_hex_dump("UPIU TRD: ", lrbp->utr_descriptor_ptr, 563 sizeof(struct utp_transfer_req_desc)); 564 dev_err(hba->dev, "UPIU[%d] - Request UPIU phys@0x%llx\n", tag, 565 (u64)lrbp->ucd_req_dma_addr); 566 ufshcd_hex_dump("UPIU REQ: ", lrbp->ucd_req_ptr, 567 sizeof(struct utp_upiu_req)); 568 dev_err(hba->dev, "UPIU[%d] - Response UPIU phys@0x%llx\n", tag, 569 (u64)lrbp->ucd_rsp_dma_addr); 570 ufshcd_hex_dump("UPIU RSP: ", lrbp->ucd_rsp_ptr, 571 sizeof(struct utp_upiu_rsp)); 572 573 prdt_length = le16_to_cpu( 574 lrbp->utr_descriptor_ptr->prd_table_length); 575 if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN) 576 prdt_length /= ufshcd_sg_entry_size(hba); 577 578 dev_err(hba->dev, 579 "UPIU[%d] - PRDT - %d entries phys@0x%llx\n", 580 tag, prdt_length, 581 (u64)lrbp->ucd_prdt_dma_addr); 582 583 if (pr_prdt) 584 ufshcd_hex_dump("UPIU PRDT: ", lrbp->ucd_prdt_ptr, 585 ufshcd_sg_entry_size(hba) * prdt_length); 586 } 587 588 static bool ufshcd_print_tr_iter(struct request *req, void *priv) 589 { 590 struct scsi_device *sdev = req->q->queuedata; 591 struct Scsi_Host *shost = sdev->host; 592 struct ufs_hba *hba = shost_priv(shost); 593 594 ufshcd_print_tr(hba, req->tag, *(bool *)priv); 595 596 return true; 597 } 598 599 /** 600 * ufshcd_print_trs_all - print trs for all started requests. 601 * @hba: per-adapter instance. 602 * @pr_prdt: need to print prdt or not. 603 */ 604 static void ufshcd_print_trs_all(struct ufs_hba *hba, bool pr_prdt) 605 { 606 blk_mq_tagset_busy_iter(&hba->host->tag_set, ufshcd_print_tr_iter, &pr_prdt); 607 } 608 609 static void ufshcd_print_tmrs(struct ufs_hba *hba, unsigned long bitmap) 610 { 611 int tag; 612 613 for_each_set_bit(tag, &bitmap, hba->nutmrs) { 614 struct utp_task_req_desc *tmrdp = &hba->utmrdl_base_addr[tag]; 615 616 dev_err(hba->dev, "TM[%d] - Task Management Header\n", tag); 617 ufshcd_hex_dump("", tmrdp, sizeof(*tmrdp)); 618 } 619 } 620 621 static void ufshcd_print_host_state(struct ufs_hba *hba) 622 { 623 const struct scsi_device *sdev_ufs = hba->ufs_device_wlun; 624 625 dev_err(hba->dev, "UFS Host state=%d\n", hba->ufshcd_state); 626 dev_err(hba->dev, "outstanding reqs=0x%lx tasks=0x%lx\n", 627 hba->outstanding_reqs, hba->outstanding_tasks); 628 dev_err(hba->dev, "saved_err=0x%x, saved_uic_err=0x%x\n", 629 hba->saved_err, hba->saved_uic_err); 630 dev_err(hba->dev, "Device power mode=%d, UIC link state=%d\n", 631 hba->curr_dev_pwr_mode, hba->uic_link_state); 632 dev_err(hba->dev, "PM in progress=%d, sys. suspended=%d\n", 633 hba->pm_op_in_progress, hba->is_sys_suspended); 634 dev_err(hba->dev, "Auto BKOPS=%d, Host self-block=%d\n", 635 hba->auto_bkops_enabled, hba->host->host_self_blocked); 636 dev_err(hba->dev, "Clk gate=%d\n", hba->clk_gating.state); 637 dev_err(hba->dev, 638 "last_hibern8_exit_tstamp at %lld us, hibern8_exit_cnt=%d\n", 639 div_u64(hba->ufs_stats.last_hibern8_exit_tstamp, 1000), 640 hba->ufs_stats.hibern8_exit_cnt); 641 dev_err(hba->dev, "last intr at %lld us, last intr status=0x%x\n", 642 div_u64(hba->ufs_stats.last_intr_ts, 1000), 643 hba->ufs_stats.last_intr_status); 644 dev_err(hba->dev, "error handling flags=0x%x, req. abort count=%d\n", 645 hba->eh_flags, hba->req_abort_count); 646 dev_err(hba->dev, "hba->ufs_version=0x%x, Host capabilities=0x%x, caps=0x%x\n", 647 hba->ufs_version, hba->capabilities, hba->caps); 648 dev_err(hba->dev, "quirks=0x%x, dev. quirks=0x%x\n", hba->quirks, 649 hba->dev_quirks); 650 if (sdev_ufs) 651 dev_err(hba->dev, "UFS dev info: %.8s %.16s rev %.4s\n", 652 sdev_ufs->vendor, sdev_ufs->model, sdev_ufs->rev); 653 654 ufshcd_print_clk_freqs(hba); 655 } 656 657 /** 658 * ufshcd_print_pwr_info - print power params as saved in hba 659 * power info 660 * @hba: per-adapter instance 661 */ 662 static void ufshcd_print_pwr_info(struct ufs_hba *hba) 663 { 664 static const char * const names[] = { 665 "INVALID MODE", 666 "FAST MODE", 667 "SLOW_MODE", 668 "INVALID MODE", 669 "FASTAUTO_MODE", 670 "SLOWAUTO_MODE", 671 "INVALID MODE", 672 }; 673 674 /* 675 * Using dev_dbg to avoid messages during runtime PM to avoid 676 * never-ending cycles of messages written back to storage by user space 677 * causing runtime resume, causing more messages and so on. 678 */ 679 dev_dbg(hba->dev, "%s:[RX, TX]: gear=[%d, %d], lane[%d, %d], pwr[%s, %s], rate = %d\n", 680 __func__, 681 hba->pwr_info.gear_rx, hba->pwr_info.gear_tx, 682 hba->pwr_info.lane_rx, hba->pwr_info.lane_tx, 683 names[hba->pwr_info.pwr_rx], 684 names[hba->pwr_info.pwr_tx], 685 hba->pwr_info.hs_rate); 686 } 687 688 static void ufshcd_device_reset(struct ufs_hba *hba) 689 { 690 int err; 691 692 err = ufshcd_vops_device_reset(hba); 693 694 if (!err) { 695 ufshcd_set_ufs_dev_active(hba); 696 if (ufshcd_is_wb_allowed(hba)) { 697 hba->dev_info.wb_enabled = false; 698 hba->dev_info.wb_buf_flush_enabled = false; 699 } 700 if (hba->dev_info.rtc_type == UFS_RTC_RELATIVE) 701 hba->dev_info.rtc_time_baseline = 0; 702 } 703 if (err != -EOPNOTSUPP) 704 ufshcd_update_evt_hist(hba, UFS_EVT_DEV_RESET, err); 705 } 706 707 void ufshcd_delay_us(unsigned long us, unsigned long tolerance) 708 { 709 if (!us) 710 return; 711 712 if (us < 10) 713 udelay(us); 714 else 715 usleep_range(us, us + tolerance); 716 } 717 EXPORT_SYMBOL_GPL(ufshcd_delay_us); 718 719 /** 720 * ufshcd_wait_for_register - wait for register value to change 721 * @hba: per-adapter interface 722 * @reg: mmio register offset 723 * @mask: mask to apply to the read register value 724 * @val: value to wait for 725 * @interval_us: polling interval in microseconds 726 * @timeout_ms: timeout in milliseconds 727 * 728 * Return: -ETIMEDOUT on error, zero on success. 729 */ 730 static int ufshcd_wait_for_register(struct ufs_hba *hba, u32 reg, u32 mask, 731 u32 val, unsigned long interval_us, 732 unsigned long timeout_ms) 733 { 734 u32 v; 735 736 val &= mask; /* ignore bits that we don't intend to wait on */ 737 738 return read_poll_timeout(ufshcd_readl, v, (v & mask) == val, 739 interval_us, timeout_ms * 1000, false, hba, reg); 740 } 741 742 /** 743 * ufshcd_get_intr_mask - Get the interrupt bit mask 744 * @hba: Pointer to adapter instance 745 * 746 * Return: interrupt bit mask per version 747 */ 748 static inline u32 ufshcd_get_intr_mask(struct ufs_hba *hba) 749 { 750 if (hba->ufs_version <= ufshci_version(2, 0)) 751 return INTERRUPT_MASK_ALL_VER_11; 752 753 return INTERRUPT_MASK_ALL_VER_21; 754 } 755 756 /** 757 * ufshcd_get_ufs_version - Get the UFS version supported by the HBA 758 * @hba: Pointer to adapter instance 759 * 760 * Return: UFSHCI version supported by the controller 761 */ 762 static inline u32 ufshcd_get_ufs_version(struct ufs_hba *hba) 763 { 764 u32 ufshci_ver; 765 766 if (hba->quirks & UFSHCD_QUIRK_BROKEN_UFS_HCI_VERSION) 767 ufshci_ver = ufshcd_vops_get_ufs_hci_version(hba); 768 else 769 ufshci_ver = ufshcd_readl(hba, REG_UFS_VERSION); 770 771 /* 772 * UFSHCI v1.x uses a different version scheme, in order 773 * to allow the use of comparisons with the ufshci_version 774 * function, we convert it to the same scheme as ufs 2.0+. 775 */ 776 if (ufshci_ver & 0x00010000) 777 return ufshci_version(1, ufshci_ver & 0x00000100); 778 779 return ufshci_ver; 780 } 781 782 /** 783 * ufshcd_is_device_present - Check if any device connected to 784 * the host controller 785 * @hba: pointer to adapter instance 786 * 787 * Return: true if device present, false if no device detected 788 */ 789 static inline bool ufshcd_is_device_present(struct ufs_hba *hba) 790 { 791 return ufshcd_readl(hba, REG_CONTROLLER_STATUS) & DEVICE_PRESENT; 792 } 793 794 /** 795 * ufshcd_get_tr_ocs - Get the UTRD Overall Command Status 796 * @lrbp: pointer to local command reference block 797 * @cqe: pointer to the completion queue entry 798 * 799 * This function is used to get the OCS field from UTRD 800 * 801 * Return: the OCS field in the UTRD. 802 */ 803 static enum utp_ocs ufshcd_get_tr_ocs(struct ufshcd_lrb *lrbp, 804 struct cq_entry *cqe) 805 { 806 if (cqe) 807 return le32_to_cpu(cqe->status) & MASK_OCS; 808 809 return lrbp->utr_descriptor_ptr->header.ocs & MASK_OCS; 810 } 811 812 /** 813 * ufshcd_utrl_clear() - Clear requests from the controller request list. 814 * @hba: per adapter instance 815 * @mask: mask with one bit set for each request to be cleared 816 */ 817 static inline void ufshcd_utrl_clear(struct ufs_hba *hba, u32 mask) 818 { 819 if (hba->quirks & UFSHCI_QUIRK_BROKEN_REQ_LIST_CLR) 820 mask = ~mask; 821 /* 822 * From the UFSHCI specification: "UTP Transfer Request List CLear 823 * Register (UTRLCLR): This field is bit significant. Each bit 824 * corresponds to a slot in the UTP Transfer Request List, where bit 0 825 * corresponds to request slot 0. A bit in this field is set to ‘0’ 826 * by host software to indicate to the host controller that a transfer 827 * request slot is cleared. The host controller 828 * shall free up any resources associated to the request slot 829 * immediately, and shall set the associated bit in UTRLDBR to ‘0’. The 830 * host software indicates no change to request slots by setting the 831 * associated bits in this field to ‘1’. Bits in this field shall only 832 * be set ‘1’ or ‘0’ by host software when UTRLRSR is set to ‘1’." 833 */ 834 ufshcd_writel(hba, ~mask, REG_UTP_TRANSFER_REQ_LIST_CLEAR); 835 } 836 837 /** 838 * ufshcd_utmrl_clear - Clear a bit in UTMRLCLR register 839 * @hba: per adapter instance 840 * @pos: position of the bit to be cleared 841 */ 842 static inline void ufshcd_utmrl_clear(struct ufs_hba *hba, u32 pos) 843 { 844 if (hba->quirks & UFSHCI_QUIRK_BROKEN_REQ_LIST_CLR) 845 ufshcd_writel(hba, (1 << pos), REG_UTP_TASK_REQ_LIST_CLEAR); 846 else 847 ufshcd_writel(hba, ~(1 << pos), REG_UTP_TASK_REQ_LIST_CLEAR); 848 } 849 850 /** 851 * ufshcd_get_lists_status - Check UCRDY, UTRLRDY and UTMRLRDY 852 * @reg: Register value of host controller status 853 * 854 * Return: 0 on success; a positive value if failed. 855 */ 856 static inline int ufshcd_get_lists_status(u32 reg) 857 { 858 return !((reg & UFSHCD_STATUS_READY) == UFSHCD_STATUS_READY); 859 } 860 861 /** 862 * ufshcd_get_uic_cmd_result - Get the UIC command result 863 * @hba: Pointer to adapter instance 864 * 865 * This function gets the result of UIC command completion 866 * 867 * Return: 0 on success; non-zero value on error. 868 */ 869 static inline int ufshcd_get_uic_cmd_result(struct ufs_hba *hba) 870 { 871 return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_2) & 872 MASK_UIC_COMMAND_RESULT; 873 } 874 875 /** 876 * ufshcd_get_dme_attr_val - Get the value of attribute returned by UIC command 877 * @hba: Pointer to adapter instance 878 * 879 * This function gets UIC command argument3 880 * 881 * Return: 0 on success; non-zero value on error. 882 */ 883 static inline u32 ufshcd_get_dme_attr_val(struct ufs_hba *hba) 884 { 885 return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_3); 886 } 887 888 /** 889 * ufshcd_get_req_rsp - returns the TR response transaction type 890 * @ucd_rsp_ptr: pointer to response UPIU 891 * 892 * Return: UPIU type. 893 */ 894 static inline enum upiu_response_transaction 895 ufshcd_get_req_rsp(struct utp_upiu_rsp *ucd_rsp_ptr) 896 { 897 return ucd_rsp_ptr->header.transaction_code; 898 } 899 900 /** 901 * ufshcd_is_exception_event - Check if the device raised an exception event 902 * @ucd_rsp_ptr: pointer to response UPIU 903 * 904 * The function checks if the device raised an exception event indicated in 905 * the Device Information field of response UPIU. 906 * 907 * Return: true if exception is raised, false otherwise. 908 */ 909 static inline bool ufshcd_is_exception_event(struct utp_upiu_rsp *ucd_rsp_ptr) 910 { 911 return ucd_rsp_ptr->header.device_information & 1; 912 } 913 914 /** 915 * ufshcd_reset_intr_aggr - Reset interrupt aggregation values. 916 * @hba: per adapter instance 917 */ 918 static inline void 919 ufshcd_reset_intr_aggr(struct ufs_hba *hba) 920 { 921 ufshcd_writel(hba, INT_AGGR_ENABLE | 922 INT_AGGR_COUNTER_AND_TIMER_RESET, 923 REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL); 924 } 925 926 /** 927 * ufshcd_config_intr_aggr - Configure interrupt aggregation values. 928 * @hba: per adapter instance 929 * @cnt: Interrupt aggregation counter threshold 930 * @tmout: Interrupt aggregation timeout value 931 */ 932 static inline void 933 ufshcd_config_intr_aggr(struct ufs_hba *hba, u8 cnt, u8 tmout) 934 { 935 ufshcd_writel(hba, INT_AGGR_ENABLE | INT_AGGR_PARAM_WRITE | 936 INT_AGGR_COUNTER_THLD_VAL(cnt) | 937 INT_AGGR_TIMEOUT_VAL(tmout), 938 REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL); 939 } 940 941 /** 942 * ufshcd_disable_intr_aggr - Disables interrupt aggregation. 943 * @hba: per adapter instance 944 */ 945 static inline void ufshcd_disable_intr_aggr(struct ufs_hba *hba) 946 { 947 ufshcd_writel(hba, 0, REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL); 948 } 949 950 /** 951 * ufshcd_enable_run_stop_reg - Enable run-stop registers, 952 * When run-stop registers are set to 1, it indicates the 953 * host controller that it can process the requests 954 * @hba: per adapter instance 955 */ 956 static void ufshcd_enable_run_stop_reg(struct ufs_hba *hba) 957 { 958 ufshcd_writel(hba, UTP_TASK_REQ_LIST_RUN_STOP_BIT, 959 REG_UTP_TASK_REQ_LIST_RUN_STOP); 960 ufshcd_writel(hba, UTP_TRANSFER_REQ_LIST_RUN_STOP_BIT, 961 REG_UTP_TRANSFER_REQ_LIST_RUN_STOP); 962 } 963 964 /** 965 * ufshcd_hba_start - Start controller initialization sequence 966 * @hba: per adapter instance 967 */ 968 static inline void ufshcd_hba_start(struct ufs_hba *hba) 969 { 970 u32 val = CONTROLLER_ENABLE; 971 972 if (ufshcd_crypto_enable(hba)) 973 val |= CRYPTO_GENERAL_ENABLE; 974 975 ufshcd_writel(hba, val, REG_CONTROLLER_ENABLE); 976 } 977 978 /** 979 * ufshcd_is_hba_active - Get controller state 980 * @hba: per adapter instance 981 * 982 * Return: true if and only if the controller is active. 983 */ 984 bool ufshcd_is_hba_active(struct ufs_hba *hba) 985 { 986 return ufshcd_readl(hba, REG_CONTROLLER_ENABLE) & CONTROLLER_ENABLE; 987 } 988 EXPORT_SYMBOL_GPL(ufshcd_is_hba_active); 989 990 /** 991 * ufshcd_pm_qos_init - initialize PM QoS request 992 * @hba: per adapter instance 993 */ 994 void ufshcd_pm_qos_init(struct ufs_hba *hba) 995 { 996 997 if (hba->pm_qos_enabled) 998 return; 999 1000 cpu_latency_qos_add_request(&hba->pm_qos_req, PM_QOS_DEFAULT_VALUE); 1001 1002 if (cpu_latency_qos_request_active(&hba->pm_qos_req)) 1003 hba->pm_qos_enabled = true; 1004 } 1005 1006 /** 1007 * ufshcd_pm_qos_exit - remove request from PM QoS 1008 * @hba: per adapter instance 1009 */ 1010 void ufshcd_pm_qos_exit(struct ufs_hba *hba) 1011 { 1012 if (!hba->pm_qos_enabled) 1013 return; 1014 1015 cpu_latency_qos_remove_request(&hba->pm_qos_req); 1016 hba->pm_qos_enabled = false; 1017 } 1018 1019 /** 1020 * ufshcd_pm_qos_update - update PM QoS request 1021 * @hba: per adapter instance 1022 * @on: If True, vote for perf PM QoS mode otherwise power save mode 1023 */ 1024 static void ufshcd_pm_qos_update(struct ufs_hba *hba, bool on) 1025 { 1026 if (!hba->pm_qos_enabled) 1027 return; 1028 1029 cpu_latency_qos_update_request(&hba->pm_qos_req, on ? 0 : PM_QOS_DEFAULT_VALUE); 1030 } 1031 1032 /** 1033 * ufshcd_set_clk_freq - set UFS controller clock frequencies 1034 * @hba: per adapter instance 1035 * @scale_up: If True, set max possible frequency othewise set low frequency 1036 * 1037 * Return: 0 if successful; < 0 upon failure. 1038 */ 1039 static int ufshcd_set_clk_freq(struct ufs_hba *hba, bool scale_up) 1040 { 1041 int ret = 0; 1042 struct ufs_clk_info *clki; 1043 struct list_head *head = &hba->clk_list_head; 1044 1045 if (list_empty(head)) 1046 goto out; 1047 1048 list_for_each_entry(clki, head, list) { 1049 if (!IS_ERR_OR_NULL(clki->clk)) { 1050 if (scale_up && clki->max_freq) { 1051 if (clki->curr_freq == clki->max_freq) 1052 continue; 1053 1054 ret = clk_set_rate(clki->clk, clki->max_freq); 1055 if (ret) { 1056 dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n", 1057 __func__, clki->name, 1058 clki->max_freq, ret); 1059 break; 1060 } 1061 trace_ufshcd_clk_scaling(dev_name(hba->dev), 1062 "scaled up", clki->name, 1063 clki->curr_freq, 1064 clki->max_freq); 1065 1066 clki->curr_freq = clki->max_freq; 1067 1068 } else if (!scale_up && clki->min_freq) { 1069 if (clki->curr_freq == clki->min_freq) 1070 continue; 1071 1072 ret = clk_set_rate(clki->clk, clki->min_freq); 1073 if (ret) { 1074 dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n", 1075 __func__, clki->name, 1076 clki->min_freq, ret); 1077 break; 1078 } 1079 trace_ufshcd_clk_scaling(dev_name(hba->dev), 1080 "scaled down", clki->name, 1081 clki->curr_freq, 1082 clki->min_freq); 1083 clki->curr_freq = clki->min_freq; 1084 } 1085 } 1086 dev_dbg(hba->dev, "%s: clk: %s, rate: %lu\n", __func__, 1087 clki->name, clk_get_rate(clki->clk)); 1088 } 1089 1090 out: 1091 return ret; 1092 } 1093 1094 int ufshcd_opp_config_clks(struct device *dev, struct opp_table *opp_table, 1095 struct dev_pm_opp *opp, void *data, 1096 bool scaling_down) 1097 { 1098 struct ufs_hba *hba = dev_get_drvdata(dev); 1099 struct list_head *head = &hba->clk_list_head; 1100 struct ufs_clk_info *clki; 1101 unsigned long freq; 1102 u8 idx = 0; 1103 int ret; 1104 1105 list_for_each_entry(clki, head, list) { 1106 if (!IS_ERR_OR_NULL(clki->clk)) { 1107 freq = dev_pm_opp_get_freq_indexed(opp, idx++); 1108 1109 /* Do not set rate for clocks having frequency as 0 */ 1110 if (!freq) 1111 continue; 1112 1113 ret = clk_set_rate(clki->clk, freq); 1114 if (ret) { 1115 dev_err(dev, "%s: %s clk set rate(%ldHz) failed, %d\n", 1116 __func__, clki->name, freq, ret); 1117 return ret; 1118 } 1119 1120 trace_ufshcd_clk_scaling(dev_name(dev), 1121 (scaling_down ? "scaled down" : "scaled up"), 1122 clki->name, hba->clk_scaling.target_freq, freq); 1123 } 1124 } 1125 1126 return 0; 1127 } 1128 EXPORT_SYMBOL_GPL(ufshcd_opp_config_clks); 1129 1130 static int ufshcd_opp_set_rate(struct ufs_hba *hba, unsigned long freq) 1131 { 1132 struct dev_pm_opp *opp; 1133 int ret; 1134 1135 opp = dev_pm_opp_find_freq_floor_indexed(hba->dev, 1136 &freq, 0); 1137 if (IS_ERR(opp)) 1138 return PTR_ERR(opp); 1139 1140 ret = dev_pm_opp_set_opp(hba->dev, opp); 1141 dev_pm_opp_put(opp); 1142 1143 return ret; 1144 } 1145 1146 /** 1147 * ufshcd_scale_clks - scale up or scale down UFS controller clocks 1148 * @hba: per adapter instance 1149 * @freq: frequency to scale 1150 * @scale_up: True if scaling up and false if scaling down 1151 * 1152 * Return: 0 if successful; < 0 upon failure. 1153 */ 1154 static int ufshcd_scale_clks(struct ufs_hba *hba, unsigned long freq, 1155 bool scale_up) 1156 { 1157 int ret = 0; 1158 ktime_t start = ktime_get(); 1159 1160 ret = ufshcd_vops_clk_scale_notify(hba, scale_up, PRE_CHANGE); 1161 if (ret) 1162 goto out; 1163 1164 if (hba->use_pm_opp) 1165 ret = ufshcd_opp_set_rate(hba, freq); 1166 else 1167 ret = ufshcd_set_clk_freq(hba, scale_up); 1168 if (ret) 1169 goto out; 1170 1171 ret = ufshcd_vops_clk_scale_notify(hba, scale_up, POST_CHANGE); 1172 if (ret) { 1173 if (hba->use_pm_opp) 1174 ufshcd_opp_set_rate(hba, 1175 hba->devfreq->previous_freq); 1176 else 1177 ufshcd_set_clk_freq(hba, !scale_up); 1178 goto out; 1179 } 1180 1181 ufshcd_pm_qos_update(hba, scale_up); 1182 1183 out: 1184 trace_ufshcd_profile_clk_scaling(dev_name(hba->dev), 1185 (scale_up ? "up" : "down"), 1186 ktime_to_us(ktime_sub(ktime_get(), start)), ret); 1187 return ret; 1188 } 1189 1190 /** 1191 * ufshcd_is_devfreq_scaling_required - check if scaling is required or not 1192 * @hba: per adapter instance 1193 * @freq: frequency to scale 1194 * @scale_up: True if scaling up and false if scaling down 1195 * 1196 * Return: true if scaling is required, false otherwise. 1197 */ 1198 static bool ufshcd_is_devfreq_scaling_required(struct ufs_hba *hba, 1199 unsigned long freq, bool scale_up) 1200 { 1201 struct ufs_clk_info *clki; 1202 struct list_head *head = &hba->clk_list_head; 1203 1204 if (list_empty(head)) 1205 return false; 1206 1207 if (hba->use_pm_opp) 1208 return freq != hba->clk_scaling.target_freq; 1209 1210 list_for_each_entry(clki, head, list) { 1211 if (!IS_ERR_OR_NULL(clki->clk)) { 1212 if (scale_up && clki->max_freq) { 1213 if (clki->curr_freq == clki->max_freq) 1214 continue; 1215 return true; 1216 } else if (!scale_up && clki->min_freq) { 1217 if (clki->curr_freq == clki->min_freq) 1218 continue; 1219 return true; 1220 } 1221 } 1222 } 1223 1224 return false; 1225 } 1226 1227 /* 1228 * Determine the number of pending commands by counting the bits in the SCSI 1229 * device budget maps. This approach has been selected because a bit is set in 1230 * the budget map before scsi_host_queue_ready() checks the host_self_blocked 1231 * flag. The host_self_blocked flag can be modified by calling 1232 * scsi_block_requests() or scsi_unblock_requests(). 1233 */ 1234 static u32 ufshcd_pending_cmds(struct ufs_hba *hba) 1235 { 1236 const struct scsi_device *sdev; 1237 unsigned long flags; 1238 u32 pending = 0; 1239 1240 spin_lock_irqsave(hba->host->host_lock, flags); 1241 __shost_for_each_device(sdev, hba->host) 1242 pending += sbitmap_weight(&sdev->budget_map); 1243 spin_unlock_irqrestore(hba->host->host_lock, flags); 1244 1245 return pending; 1246 } 1247 1248 /* 1249 * Wait until all pending SCSI commands and TMFs have finished or the timeout 1250 * has expired. 1251 * 1252 * Return: 0 upon success; -EBUSY upon timeout. 1253 */ 1254 static int ufshcd_wait_for_doorbell_clr(struct ufs_hba *hba, 1255 u64 wait_timeout_us) 1256 { 1257 int ret = 0; 1258 u32 tm_doorbell; 1259 u32 tr_pending; 1260 bool timeout = false, do_last_check = false; 1261 ktime_t start; 1262 1263 ufshcd_hold(hba); 1264 /* 1265 * Wait for all the outstanding tasks/transfer requests. 1266 * Verify by checking the doorbell registers are clear. 1267 */ 1268 start = ktime_get(); 1269 do { 1270 if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL) { 1271 ret = -EBUSY; 1272 goto out; 1273 } 1274 1275 tm_doorbell = ufshcd_readl(hba, REG_UTP_TASK_REQ_DOOR_BELL); 1276 tr_pending = ufshcd_pending_cmds(hba); 1277 if (!tm_doorbell && !tr_pending) { 1278 timeout = false; 1279 break; 1280 } else if (do_last_check) { 1281 break; 1282 } 1283 1284 io_schedule_timeout(msecs_to_jiffies(20)); 1285 if (ktime_to_us(ktime_sub(ktime_get(), start)) > 1286 wait_timeout_us) { 1287 timeout = true; 1288 /* 1289 * We might have scheduled out for long time so make 1290 * sure to check if doorbells are cleared by this time 1291 * or not. 1292 */ 1293 do_last_check = true; 1294 } 1295 } while (tm_doorbell || tr_pending); 1296 1297 if (timeout) { 1298 dev_err(hba->dev, 1299 "%s: timedout waiting for doorbell to clear (tm=0x%x, tr=0x%x)\n", 1300 __func__, tm_doorbell, tr_pending); 1301 ret = -EBUSY; 1302 } 1303 out: 1304 ufshcd_release(hba); 1305 return ret; 1306 } 1307 1308 /** 1309 * ufshcd_scale_gear - scale up/down UFS gear 1310 * @hba: per adapter instance 1311 * @scale_up: True for scaling up gear and false for scaling down 1312 * 1313 * Return: 0 for success; -EBUSY if scaling can't happen at this time; 1314 * non-zero for any other errors. 1315 */ 1316 static int ufshcd_scale_gear(struct ufs_hba *hba, bool scale_up) 1317 { 1318 int ret = 0; 1319 struct ufs_pa_layer_attr new_pwr_info; 1320 1321 if (scale_up) { 1322 memcpy(&new_pwr_info, &hba->clk_scaling.saved_pwr_info, 1323 sizeof(struct ufs_pa_layer_attr)); 1324 } else { 1325 memcpy(&new_pwr_info, &hba->pwr_info, 1326 sizeof(struct ufs_pa_layer_attr)); 1327 1328 if (hba->pwr_info.gear_tx > hba->clk_scaling.min_gear || 1329 hba->pwr_info.gear_rx > hba->clk_scaling.min_gear) { 1330 /* save the current power mode */ 1331 memcpy(&hba->clk_scaling.saved_pwr_info, 1332 &hba->pwr_info, 1333 sizeof(struct ufs_pa_layer_attr)); 1334 1335 /* scale down gear */ 1336 new_pwr_info.gear_tx = hba->clk_scaling.min_gear; 1337 new_pwr_info.gear_rx = hba->clk_scaling.min_gear; 1338 } 1339 } 1340 1341 /* check if the power mode needs to be changed or not? */ 1342 ret = ufshcd_config_pwr_mode(hba, &new_pwr_info); 1343 if (ret) 1344 dev_err(hba->dev, "%s: failed err %d, old gear: (tx %d rx %d), new gear: (tx %d rx %d)", 1345 __func__, ret, 1346 hba->pwr_info.gear_tx, hba->pwr_info.gear_rx, 1347 new_pwr_info.gear_tx, new_pwr_info.gear_rx); 1348 1349 return ret; 1350 } 1351 1352 /* 1353 * Wait until all pending SCSI commands and TMFs have finished or the timeout 1354 * has expired. 1355 * 1356 * Return: 0 upon success; -EBUSY upon timeout. 1357 */ 1358 static int ufshcd_clock_scaling_prepare(struct ufs_hba *hba, u64 timeout_us) 1359 { 1360 int ret = 0; 1361 /* 1362 * make sure that there are no outstanding requests when 1363 * clock scaling is in progress 1364 */ 1365 blk_mq_quiesce_tagset(&hba->host->tag_set); 1366 mutex_lock(&hba->wb_mutex); 1367 down_write(&hba->clk_scaling_lock); 1368 1369 if (!hba->clk_scaling.is_allowed || 1370 ufshcd_wait_for_doorbell_clr(hba, timeout_us)) { 1371 ret = -EBUSY; 1372 up_write(&hba->clk_scaling_lock); 1373 mutex_unlock(&hba->wb_mutex); 1374 blk_mq_unquiesce_tagset(&hba->host->tag_set); 1375 goto out; 1376 } 1377 1378 /* let's not get into low power until clock scaling is completed */ 1379 ufshcd_hold(hba); 1380 1381 out: 1382 return ret; 1383 } 1384 1385 static void ufshcd_clock_scaling_unprepare(struct ufs_hba *hba, int err, bool scale_up) 1386 { 1387 up_write(&hba->clk_scaling_lock); 1388 1389 /* Enable Write Booster if we have scaled up else disable it */ 1390 if (ufshcd_enable_wb_if_scaling_up(hba) && !err) 1391 ufshcd_wb_toggle(hba, scale_up); 1392 1393 mutex_unlock(&hba->wb_mutex); 1394 1395 blk_mq_unquiesce_tagset(&hba->host->tag_set); 1396 ufshcd_release(hba); 1397 } 1398 1399 /** 1400 * ufshcd_devfreq_scale - scale up/down UFS clocks and gear 1401 * @hba: per adapter instance 1402 * @freq: frequency to scale 1403 * @scale_up: True for scaling up and false for scalin down 1404 * 1405 * Return: 0 for success; -EBUSY if scaling can't happen at this time; non-zero 1406 * for any other errors. 1407 */ 1408 static int ufshcd_devfreq_scale(struct ufs_hba *hba, unsigned long freq, 1409 bool scale_up) 1410 { 1411 int ret = 0; 1412 1413 ret = ufshcd_clock_scaling_prepare(hba, 1 * USEC_PER_SEC); 1414 if (ret) 1415 return ret; 1416 1417 /* scale down the gear before scaling down clocks */ 1418 if (!scale_up) { 1419 ret = ufshcd_scale_gear(hba, false); 1420 if (ret) 1421 goto out_unprepare; 1422 } 1423 1424 ret = ufshcd_scale_clks(hba, freq, scale_up); 1425 if (ret) { 1426 if (!scale_up) 1427 ufshcd_scale_gear(hba, true); 1428 goto out_unprepare; 1429 } 1430 1431 /* scale up the gear after scaling up clocks */ 1432 if (scale_up) { 1433 ret = ufshcd_scale_gear(hba, true); 1434 if (ret) { 1435 ufshcd_scale_clks(hba, hba->devfreq->previous_freq, 1436 false); 1437 goto out_unprepare; 1438 } 1439 } 1440 1441 out_unprepare: 1442 ufshcd_clock_scaling_unprepare(hba, ret, scale_up); 1443 return ret; 1444 } 1445 1446 static void ufshcd_clk_scaling_suspend_work(struct work_struct *work) 1447 { 1448 struct ufs_hba *hba = container_of(work, struct ufs_hba, 1449 clk_scaling.suspend_work); 1450 unsigned long irq_flags; 1451 1452 spin_lock_irqsave(hba->host->host_lock, irq_flags); 1453 if (hba->clk_scaling.active_reqs || hba->clk_scaling.is_suspended) { 1454 spin_unlock_irqrestore(hba->host->host_lock, irq_flags); 1455 return; 1456 } 1457 hba->clk_scaling.is_suspended = true; 1458 hba->clk_scaling.window_start_t = 0; 1459 spin_unlock_irqrestore(hba->host->host_lock, irq_flags); 1460 1461 devfreq_suspend_device(hba->devfreq); 1462 } 1463 1464 static void ufshcd_clk_scaling_resume_work(struct work_struct *work) 1465 { 1466 struct ufs_hba *hba = container_of(work, struct ufs_hba, 1467 clk_scaling.resume_work); 1468 unsigned long irq_flags; 1469 1470 spin_lock_irqsave(hba->host->host_lock, irq_flags); 1471 if (!hba->clk_scaling.is_suspended) { 1472 spin_unlock_irqrestore(hba->host->host_lock, irq_flags); 1473 return; 1474 } 1475 hba->clk_scaling.is_suspended = false; 1476 spin_unlock_irqrestore(hba->host->host_lock, irq_flags); 1477 1478 devfreq_resume_device(hba->devfreq); 1479 } 1480 1481 static int ufshcd_devfreq_target(struct device *dev, 1482 unsigned long *freq, u32 flags) 1483 { 1484 int ret = 0; 1485 struct ufs_hba *hba = dev_get_drvdata(dev); 1486 ktime_t start; 1487 bool scale_up = false, sched_clk_scaling_suspend_work = false; 1488 struct list_head *clk_list = &hba->clk_list_head; 1489 struct ufs_clk_info *clki; 1490 unsigned long irq_flags; 1491 1492 if (!ufshcd_is_clkscaling_supported(hba)) 1493 return -EINVAL; 1494 1495 if (hba->use_pm_opp) { 1496 struct dev_pm_opp *opp; 1497 1498 /* Get the recommended frequency from OPP framework */ 1499 opp = devfreq_recommended_opp(dev, freq, flags); 1500 if (IS_ERR(opp)) 1501 return PTR_ERR(opp); 1502 1503 dev_pm_opp_put(opp); 1504 } else { 1505 /* Override with the closest supported frequency */ 1506 clki = list_first_entry(&hba->clk_list_head, struct ufs_clk_info, 1507 list); 1508 *freq = (unsigned long) clk_round_rate(clki->clk, *freq); 1509 } 1510 1511 spin_lock_irqsave(hba->host->host_lock, irq_flags); 1512 if (ufshcd_eh_in_progress(hba)) { 1513 spin_unlock_irqrestore(hba->host->host_lock, irq_flags); 1514 return 0; 1515 } 1516 1517 /* Skip scaling clock when clock scaling is suspended */ 1518 if (hba->clk_scaling.is_suspended) { 1519 spin_unlock_irqrestore(hba->host->host_lock, irq_flags); 1520 dev_warn(hba->dev, "clock scaling is suspended, skip"); 1521 return 0; 1522 } 1523 1524 if (!hba->clk_scaling.active_reqs) 1525 sched_clk_scaling_suspend_work = true; 1526 1527 if (list_empty(clk_list)) { 1528 spin_unlock_irqrestore(hba->host->host_lock, irq_flags); 1529 goto out; 1530 } 1531 1532 /* Decide based on the target or rounded-off frequency and update */ 1533 if (hba->use_pm_opp) 1534 scale_up = *freq > hba->clk_scaling.target_freq; 1535 else 1536 scale_up = *freq == clki->max_freq; 1537 1538 if (!hba->use_pm_opp && !scale_up) 1539 *freq = clki->min_freq; 1540 1541 /* Update the frequency */ 1542 if (!ufshcd_is_devfreq_scaling_required(hba, *freq, scale_up)) { 1543 spin_unlock_irqrestore(hba->host->host_lock, irq_flags); 1544 ret = 0; 1545 goto out; /* no state change required */ 1546 } 1547 spin_unlock_irqrestore(hba->host->host_lock, irq_flags); 1548 1549 start = ktime_get(); 1550 ret = ufshcd_devfreq_scale(hba, *freq, scale_up); 1551 if (!ret) 1552 hba->clk_scaling.target_freq = *freq; 1553 1554 trace_ufshcd_profile_clk_scaling(dev_name(hba->dev), 1555 (scale_up ? "up" : "down"), 1556 ktime_to_us(ktime_sub(ktime_get(), start)), ret); 1557 1558 out: 1559 if (sched_clk_scaling_suspend_work && 1560 (!scale_up || hba->clk_scaling.suspend_on_no_request)) 1561 queue_work(hba->clk_scaling.workq, 1562 &hba->clk_scaling.suspend_work); 1563 1564 return ret; 1565 } 1566 1567 static int ufshcd_devfreq_get_dev_status(struct device *dev, 1568 struct devfreq_dev_status *stat) 1569 { 1570 struct ufs_hba *hba = dev_get_drvdata(dev); 1571 struct ufs_clk_scaling *scaling = &hba->clk_scaling; 1572 unsigned long flags; 1573 ktime_t curr_t; 1574 1575 if (!ufshcd_is_clkscaling_supported(hba)) 1576 return -EINVAL; 1577 1578 memset(stat, 0, sizeof(*stat)); 1579 1580 spin_lock_irqsave(hba->host->host_lock, flags); 1581 curr_t = ktime_get(); 1582 if (!scaling->window_start_t) 1583 goto start_window; 1584 1585 /* 1586 * If current frequency is 0, then the ondemand governor considers 1587 * there's no initial frequency set. And it always requests to set 1588 * to max. frequency. 1589 */ 1590 if (hba->use_pm_opp) { 1591 stat->current_frequency = hba->clk_scaling.target_freq; 1592 } else { 1593 struct list_head *clk_list = &hba->clk_list_head; 1594 struct ufs_clk_info *clki; 1595 1596 clki = list_first_entry(clk_list, struct ufs_clk_info, list); 1597 stat->current_frequency = clki->curr_freq; 1598 } 1599 1600 if (scaling->is_busy_started) 1601 scaling->tot_busy_t += ktime_us_delta(curr_t, 1602 scaling->busy_start_t); 1603 stat->total_time = ktime_us_delta(curr_t, scaling->window_start_t); 1604 stat->busy_time = scaling->tot_busy_t; 1605 start_window: 1606 scaling->window_start_t = curr_t; 1607 scaling->tot_busy_t = 0; 1608 1609 if (scaling->active_reqs) { 1610 scaling->busy_start_t = curr_t; 1611 scaling->is_busy_started = true; 1612 } else { 1613 scaling->busy_start_t = 0; 1614 scaling->is_busy_started = false; 1615 } 1616 spin_unlock_irqrestore(hba->host->host_lock, flags); 1617 return 0; 1618 } 1619 1620 static int ufshcd_devfreq_init(struct ufs_hba *hba) 1621 { 1622 struct list_head *clk_list = &hba->clk_list_head; 1623 struct ufs_clk_info *clki; 1624 struct devfreq *devfreq; 1625 int ret; 1626 1627 /* Skip devfreq if we don't have any clocks in the list */ 1628 if (list_empty(clk_list)) 1629 return 0; 1630 1631 if (!hba->use_pm_opp) { 1632 clki = list_first_entry(clk_list, struct ufs_clk_info, list); 1633 dev_pm_opp_add(hba->dev, clki->min_freq, 0); 1634 dev_pm_opp_add(hba->dev, clki->max_freq, 0); 1635 } 1636 1637 ufshcd_vops_config_scaling_param(hba, &hba->vps->devfreq_profile, 1638 &hba->vps->ondemand_data); 1639 devfreq = devfreq_add_device(hba->dev, 1640 &hba->vps->devfreq_profile, 1641 DEVFREQ_GOV_SIMPLE_ONDEMAND, 1642 &hba->vps->ondemand_data); 1643 if (IS_ERR(devfreq)) { 1644 ret = PTR_ERR(devfreq); 1645 dev_err(hba->dev, "Unable to register with devfreq %d\n", ret); 1646 1647 if (!hba->use_pm_opp) { 1648 dev_pm_opp_remove(hba->dev, clki->min_freq); 1649 dev_pm_opp_remove(hba->dev, clki->max_freq); 1650 } 1651 return ret; 1652 } 1653 1654 hba->devfreq = devfreq; 1655 1656 return 0; 1657 } 1658 1659 static void ufshcd_devfreq_remove(struct ufs_hba *hba) 1660 { 1661 struct list_head *clk_list = &hba->clk_list_head; 1662 1663 if (!hba->devfreq) 1664 return; 1665 1666 devfreq_remove_device(hba->devfreq); 1667 hba->devfreq = NULL; 1668 1669 if (!hba->use_pm_opp) { 1670 struct ufs_clk_info *clki; 1671 1672 clki = list_first_entry(clk_list, struct ufs_clk_info, list); 1673 dev_pm_opp_remove(hba->dev, clki->min_freq); 1674 dev_pm_opp_remove(hba->dev, clki->max_freq); 1675 } 1676 } 1677 1678 static void ufshcd_suspend_clkscaling(struct ufs_hba *hba) 1679 { 1680 unsigned long flags; 1681 bool suspend = false; 1682 1683 cancel_work_sync(&hba->clk_scaling.suspend_work); 1684 cancel_work_sync(&hba->clk_scaling.resume_work); 1685 1686 spin_lock_irqsave(hba->host->host_lock, flags); 1687 if (!hba->clk_scaling.is_suspended) { 1688 suspend = true; 1689 hba->clk_scaling.is_suspended = true; 1690 hba->clk_scaling.window_start_t = 0; 1691 } 1692 spin_unlock_irqrestore(hba->host->host_lock, flags); 1693 1694 if (suspend) 1695 devfreq_suspend_device(hba->devfreq); 1696 } 1697 1698 static void ufshcd_resume_clkscaling(struct ufs_hba *hba) 1699 { 1700 unsigned long flags; 1701 bool resume = false; 1702 1703 spin_lock_irqsave(hba->host->host_lock, flags); 1704 if (hba->clk_scaling.is_suspended) { 1705 resume = true; 1706 hba->clk_scaling.is_suspended = false; 1707 } 1708 spin_unlock_irqrestore(hba->host->host_lock, flags); 1709 1710 if (resume) 1711 devfreq_resume_device(hba->devfreq); 1712 } 1713 1714 static ssize_t ufshcd_clkscale_enable_show(struct device *dev, 1715 struct device_attribute *attr, char *buf) 1716 { 1717 struct ufs_hba *hba = dev_get_drvdata(dev); 1718 1719 return sysfs_emit(buf, "%d\n", hba->clk_scaling.is_enabled); 1720 } 1721 1722 static ssize_t ufshcd_clkscale_enable_store(struct device *dev, 1723 struct device_attribute *attr, const char *buf, size_t count) 1724 { 1725 struct ufs_hba *hba = dev_get_drvdata(dev); 1726 u32 value; 1727 int err = 0; 1728 1729 if (kstrtou32(buf, 0, &value)) 1730 return -EINVAL; 1731 1732 down(&hba->host_sem); 1733 if (!ufshcd_is_user_access_allowed(hba)) { 1734 err = -EBUSY; 1735 goto out; 1736 } 1737 1738 value = !!value; 1739 if (value == hba->clk_scaling.is_enabled) 1740 goto out; 1741 1742 ufshcd_rpm_get_sync(hba); 1743 ufshcd_hold(hba); 1744 1745 hba->clk_scaling.is_enabled = value; 1746 1747 if (value) { 1748 ufshcd_resume_clkscaling(hba); 1749 } else { 1750 ufshcd_suspend_clkscaling(hba); 1751 err = ufshcd_devfreq_scale(hba, ULONG_MAX, true); 1752 if (err) 1753 dev_err(hba->dev, "%s: failed to scale clocks up %d\n", 1754 __func__, err); 1755 } 1756 1757 ufshcd_release(hba); 1758 ufshcd_rpm_put_sync(hba); 1759 out: 1760 up(&hba->host_sem); 1761 return err ? err : count; 1762 } 1763 1764 static void ufshcd_init_clk_scaling_sysfs(struct ufs_hba *hba) 1765 { 1766 hba->clk_scaling.enable_attr.show = ufshcd_clkscale_enable_show; 1767 hba->clk_scaling.enable_attr.store = ufshcd_clkscale_enable_store; 1768 sysfs_attr_init(&hba->clk_scaling.enable_attr.attr); 1769 hba->clk_scaling.enable_attr.attr.name = "clkscale_enable"; 1770 hba->clk_scaling.enable_attr.attr.mode = 0644; 1771 if (device_create_file(hba->dev, &hba->clk_scaling.enable_attr)) 1772 dev_err(hba->dev, "Failed to create sysfs for clkscale_enable\n"); 1773 } 1774 1775 static void ufshcd_remove_clk_scaling_sysfs(struct ufs_hba *hba) 1776 { 1777 if (hba->clk_scaling.enable_attr.attr.name) 1778 device_remove_file(hba->dev, &hba->clk_scaling.enable_attr); 1779 } 1780 1781 static void ufshcd_init_clk_scaling(struct ufs_hba *hba) 1782 { 1783 if (!ufshcd_is_clkscaling_supported(hba)) 1784 return; 1785 1786 if (!hba->clk_scaling.min_gear) 1787 hba->clk_scaling.min_gear = UFS_HS_G1; 1788 1789 INIT_WORK(&hba->clk_scaling.suspend_work, 1790 ufshcd_clk_scaling_suspend_work); 1791 INIT_WORK(&hba->clk_scaling.resume_work, 1792 ufshcd_clk_scaling_resume_work); 1793 1794 hba->clk_scaling.workq = alloc_ordered_workqueue( 1795 "ufs_clkscaling_%d", WQ_MEM_RECLAIM, hba->host->host_no); 1796 1797 hba->clk_scaling.is_initialized = true; 1798 } 1799 1800 static void ufshcd_exit_clk_scaling(struct ufs_hba *hba) 1801 { 1802 if (!hba->clk_scaling.is_initialized) 1803 return; 1804 1805 ufshcd_remove_clk_scaling_sysfs(hba); 1806 destroy_workqueue(hba->clk_scaling.workq); 1807 ufshcd_devfreq_remove(hba); 1808 hba->clk_scaling.is_initialized = false; 1809 } 1810 1811 static void ufshcd_ungate_work(struct work_struct *work) 1812 { 1813 int ret; 1814 unsigned long flags; 1815 struct ufs_hba *hba = container_of(work, struct ufs_hba, 1816 clk_gating.ungate_work); 1817 1818 cancel_delayed_work_sync(&hba->clk_gating.gate_work); 1819 1820 spin_lock_irqsave(hba->host->host_lock, flags); 1821 if (hba->clk_gating.state == CLKS_ON) { 1822 spin_unlock_irqrestore(hba->host->host_lock, flags); 1823 return; 1824 } 1825 1826 spin_unlock_irqrestore(hba->host->host_lock, flags); 1827 ufshcd_hba_vreg_set_hpm(hba); 1828 ufshcd_setup_clocks(hba, true); 1829 1830 ufshcd_enable_irq(hba); 1831 1832 /* Exit from hibern8 */ 1833 if (ufshcd_can_hibern8_during_gating(hba)) { 1834 /* Prevent gating in this path */ 1835 hba->clk_gating.is_suspended = true; 1836 if (ufshcd_is_link_hibern8(hba)) { 1837 ret = ufshcd_uic_hibern8_exit(hba); 1838 if (ret) 1839 dev_err(hba->dev, "%s: hibern8 exit failed %d\n", 1840 __func__, ret); 1841 else 1842 ufshcd_set_link_active(hba); 1843 } 1844 hba->clk_gating.is_suspended = false; 1845 } 1846 } 1847 1848 /** 1849 * ufshcd_hold - Enable clocks that were gated earlier due to ufshcd_release. 1850 * Also, exit from hibern8 mode and set the link as active. 1851 * @hba: per adapter instance 1852 */ 1853 void ufshcd_hold(struct ufs_hba *hba) 1854 { 1855 bool flush_result; 1856 unsigned long flags; 1857 1858 if (!ufshcd_is_clkgating_allowed(hba) || 1859 !hba->clk_gating.is_initialized) 1860 return; 1861 spin_lock_irqsave(hba->host->host_lock, flags); 1862 hba->clk_gating.active_reqs++; 1863 1864 start: 1865 switch (hba->clk_gating.state) { 1866 case CLKS_ON: 1867 /* 1868 * Wait for the ungate work to complete if in progress. 1869 * Though the clocks may be in ON state, the link could 1870 * still be in hibner8 state if hibern8 is allowed 1871 * during clock gating. 1872 * Make sure we exit hibern8 state also in addition to 1873 * clocks being ON. 1874 */ 1875 if (ufshcd_can_hibern8_during_gating(hba) && 1876 ufshcd_is_link_hibern8(hba)) { 1877 spin_unlock_irqrestore(hba->host->host_lock, flags); 1878 flush_result = flush_work(&hba->clk_gating.ungate_work); 1879 if (hba->clk_gating.is_suspended && !flush_result) 1880 return; 1881 spin_lock_irqsave(hba->host->host_lock, flags); 1882 goto start; 1883 } 1884 break; 1885 case REQ_CLKS_OFF: 1886 if (cancel_delayed_work(&hba->clk_gating.gate_work)) { 1887 hba->clk_gating.state = CLKS_ON; 1888 trace_ufshcd_clk_gating(dev_name(hba->dev), 1889 hba->clk_gating.state); 1890 break; 1891 } 1892 /* 1893 * If we are here, it means gating work is either done or 1894 * currently running. Hence, fall through to cancel gating 1895 * work and to enable clocks. 1896 */ 1897 fallthrough; 1898 case CLKS_OFF: 1899 hba->clk_gating.state = REQ_CLKS_ON; 1900 trace_ufshcd_clk_gating(dev_name(hba->dev), 1901 hba->clk_gating.state); 1902 queue_work(hba->clk_gating.clk_gating_workq, 1903 &hba->clk_gating.ungate_work); 1904 /* 1905 * fall through to check if we should wait for this 1906 * work to be done or not. 1907 */ 1908 fallthrough; 1909 case REQ_CLKS_ON: 1910 spin_unlock_irqrestore(hba->host->host_lock, flags); 1911 flush_work(&hba->clk_gating.ungate_work); 1912 /* Make sure state is CLKS_ON before returning */ 1913 spin_lock_irqsave(hba->host->host_lock, flags); 1914 goto start; 1915 default: 1916 dev_err(hba->dev, "%s: clk gating is in invalid state %d\n", 1917 __func__, hba->clk_gating.state); 1918 break; 1919 } 1920 spin_unlock_irqrestore(hba->host->host_lock, flags); 1921 } 1922 EXPORT_SYMBOL_GPL(ufshcd_hold); 1923 1924 static void ufshcd_gate_work(struct work_struct *work) 1925 { 1926 struct ufs_hba *hba = container_of(work, struct ufs_hba, 1927 clk_gating.gate_work.work); 1928 unsigned long flags; 1929 int ret; 1930 1931 spin_lock_irqsave(hba->host->host_lock, flags); 1932 /* 1933 * In case you are here to cancel this work the gating state 1934 * would be marked as REQ_CLKS_ON. In this case save time by 1935 * skipping the gating work and exit after changing the clock 1936 * state to CLKS_ON. 1937 */ 1938 if (hba->clk_gating.is_suspended || 1939 (hba->clk_gating.state != REQ_CLKS_OFF)) { 1940 hba->clk_gating.state = CLKS_ON; 1941 trace_ufshcd_clk_gating(dev_name(hba->dev), 1942 hba->clk_gating.state); 1943 goto rel_lock; 1944 } 1945 1946 if (ufshcd_is_ufs_dev_busy(hba) || hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL) 1947 goto rel_lock; 1948 1949 spin_unlock_irqrestore(hba->host->host_lock, flags); 1950 1951 /* put the link into hibern8 mode before turning off clocks */ 1952 if (ufshcd_can_hibern8_during_gating(hba)) { 1953 ret = ufshcd_uic_hibern8_enter(hba); 1954 if (ret) { 1955 hba->clk_gating.state = CLKS_ON; 1956 dev_err(hba->dev, "%s: hibern8 enter failed %d\n", 1957 __func__, ret); 1958 trace_ufshcd_clk_gating(dev_name(hba->dev), 1959 hba->clk_gating.state); 1960 goto out; 1961 } 1962 ufshcd_set_link_hibern8(hba); 1963 } 1964 1965 ufshcd_disable_irq(hba); 1966 1967 ufshcd_setup_clocks(hba, false); 1968 1969 /* Put the host controller in low power mode if possible */ 1970 ufshcd_hba_vreg_set_lpm(hba); 1971 /* 1972 * In case you are here to cancel this work the gating state 1973 * would be marked as REQ_CLKS_ON. In this case keep the state 1974 * as REQ_CLKS_ON which would anyway imply that clocks are off 1975 * and a request to turn them on is pending. By doing this way, 1976 * we keep the state machine in tact and this would ultimately 1977 * prevent from doing cancel work multiple times when there are 1978 * new requests arriving before the current cancel work is done. 1979 */ 1980 spin_lock_irqsave(hba->host->host_lock, flags); 1981 if (hba->clk_gating.state == REQ_CLKS_OFF) { 1982 hba->clk_gating.state = CLKS_OFF; 1983 trace_ufshcd_clk_gating(dev_name(hba->dev), 1984 hba->clk_gating.state); 1985 } 1986 rel_lock: 1987 spin_unlock_irqrestore(hba->host->host_lock, flags); 1988 out: 1989 return; 1990 } 1991 1992 /* host lock must be held before calling this variant */ 1993 static void __ufshcd_release(struct ufs_hba *hba) 1994 { 1995 if (!ufshcd_is_clkgating_allowed(hba)) 1996 return; 1997 1998 hba->clk_gating.active_reqs--; 1999 2000 if (hba->clk_gating.active_reqs || hba->clk_gating.is_suspended || 2001 hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL || 2002 hba->outstanding_tasks || !hba->clk_gating.is_initialized || 2003 hba->active_uic_cmd || hba->uic_async_done || 2004 hba->clk_gating.state == CLKS_OFF) 2005 return; 2006 2007 hba->clk_gating.state = REQ_CLKS_OFF; 2008 trace_ufshcd_clk_gating(dev_name(hba->dev), hba->clk_gating.state); 2009 queue_delayed_work(hba->clk_gating.clk_gating_workq, 2010 &hba->clk_gating.gate_work, 2011 msecs_to_jiffies(hba->clk_gating.delay_ms)); 2012 } 2013 2014 void ufshcd_release(struct ufs_hba *hba) 2015 { 2016 unsigned long flags; 2017 2018 spin_lock_irqsave(hba->host->host_lock, flags); 2019 __ufshcd_release(hba); 2020 spin_unlock_irqrestore(hba->host->host_lock, flags); 2021 } 2022 EXPORT_SYMBOL_GPL(ufshcd_release); 2023 2024 static ssize_t ufshcd_clkgate_delay_show(struct device *dev, 2025 struct device_attribute *attr, char *buf) 2026 { 2027 struct ufs_hba *hba = dev_get_drvdata(dev); 2028 2029 return sysfs_emit(buf, "%lu\n", hba->clk_gating.delay_ms); 2030 } 2031 2032 void ufshcd_clkgate_delay_set(struct device *dev, unsigned long value) 2033 { 2034 struct ufs_hba *hba = dev_get_drvdata(dev); 2035 unsigned long flags; 2036 2037 spin_lock_irqsave(hba->host->host_lock, flags); 2038 hba->clk_gating.delay_ms = value; 2039 spin_unlock_irqrestore(hba->host->host_lock, flags); 2040 } 2041 EXPORT_SYMBOL_GPL(ufshcd_clkgate_delay_set); 2042 2043 static ssize_t ufshcd_clkgate_delay_store(struct device *dev, 2044 struct device_attribute *attr, const char *buf, size_t count) 2045 { 2046 unsigned long value; 2047 2048 if (kstrtoul(buf, 0, &value)) 2049 return -EINVAL; 2050 2051 ufshcd_clkgate_delay_set(dev, value); 2052 return count; 2053 } 2054 2055 static ssize_t ufshcd_clkgate_enable_show(struct device *dev, 2056 struct device_attribute *attr, char *buf) 2057 { 2058 struct ufs_hba *hba = dev_get_drvdata(dev); 2059 2060 return sysfs_emit(buf, "%d\n", hba->clk_gating.is_enabled); 2061 } 2062 2063 static ssize_t ufshcd_clkgate_enable_store(struct device *dev, 2064 struct device_attribute *attr, const char *buf, size_t count) 2065 { 2066 struct ufs_hba *hba = dev_get_drvdata(dev); 2067 unsigned long flags; 2068 u32 value; 2069 2070 if (kstrtou32(buf, 0, &value)) 2071 return -EINVAL; 2072 2073 value = !!value; 2074 2075 spin_lock_irqsave(hba->host->host_lock, flags); 2076 if (value == hba->clk_gating.is_enabled) 2077 goto out; 2078 2079 if (value) 2080 __ufshcd_release(hba); 2081 else 2082 hba->clk_gating.active_reqs++; 2083 2084 hba->clk_gating.is_enabled = value; 2085 out: 2086 spin_unlock_irqrestore(hba->host->host_lock, flags); 2087 return count; 2088 } 2089 2090 static void ufshcd_init_clk_gating_sysfs(struct ufs_hba *hba) 2091 { 2092 hba->clk_gating.delay_attr.show = ufshcd_clkgate_delay_show; 2093 hba->clk_gating.delay_attr.store = ufshcd_clkgate_delay_store; 2094 sysfs_attr_init(&hba->clk_gating.delay_attr.attr); 2095 hba->clk_gating.delay_attr.attr.name = "clkgate_delay_ms"; 2096 hba->clk_gating.delay_attr.attr.mode = 0644; 2097 if (device_create_file(hba->dev, &hba->clk_gating.delay_attr)) 2098 dev_err(hba->dev, "Failed to create sysfs for clkgate_delay\n"); 2099 2100 hba->clk_gating.enable_attr.show = ufshcd_clkgate_enable_show; 2101 hba->clk_gating.enable_attr.store = ufshcd_clkgate_enable_store; 2102 sysfs_attr_init(&hba->clk_gating.enable_attr.attr); 2103 hba->clk_gating.enable_attr.attr.name = "clkgate_enable"; 2104 hba->clk_gating.enable_attr.attr.mode = 0644; 2105 if (device_create_file(hba->dev, &hba->clk_gating.enable_attr)) 2106 dev_err(hba->dev, "Failed to create sysfs for clkgate_enable\n"); 2107 } 2108 2109 static void ufshcd_remove_clk_gating_sysfs(struct ufs_hba *hba) 2110 { 2111 if (hba->clk_gating.delay_attr.attr.name) 2112 device_remove_file(hba->dev, &hba->clk_gating.delay_attr); 2113 if (hba->clk_gating.enable_attr.attr.name) 2114 device_remove_file(hba->dev, &hba->clk_gating.enable_attr); 2115 } 2116 2117 static void ufshcd_init_clk_gating(struct ufs_hba *hba) 2118 { 2119 if (!ufshcd_is_clkgating_allowed(hba)) 2120 return; 2121 2122 hba->clk_gating.state = CLKS_ON; 2123 2124 hba->clk_gating.delay_ms = 150; 2125 INIT_DELAYED_WORK(&hba->clk_gating.gate_work, ufshcd_gate_work); 2126 INIT_WORK(&hba->clk_gating.ungate_work, ufshcd_ungate_work); 2127 2128 hba->clk_gating.clk_gating_workq = alloc_ordered_workqueue( 2129 "ufs_clk_gating_%d", WQ_MEM_RECLAIM | WQ_HIGHPRI, 2130 hba->host->host_no); 2131 2132 ufshcd_init_clk_gating_sysfs(hba); 2133 2134 hba->clk_gating.is_enabled = true; 2135 hba->clk_gating.is_initialized = true; 2136 } 2137 2138 static void ufshcd_exit_clk_gating(struct ufs_hba *hba) 2139 { 2140 if (!hba->clk_gating.is_initialized) 2141 return; 2142 2143 ufshcd_remove_clk_gating_sysfs(hba); 2144 2145 /* Ungate the clock if necessary. */ 2146 ufshcd_hold(hba); 2147 hba->clk_gating.is_initialized = false; 2148 ufshcd_release(hba); 2149 2150 destroy_workqueue(hba->clk_gating.clk_gating_workq); 2151 } 2152 2153 static void ufshcd_clk_scaling_start_busy(struct ufs_hba *hba) 2154 { 2155 bool queue_resume_work = false; 2156 ktime_t curr_t = ktime_get(); 2157 unsigned long flags; 2158 2159 if (!ufshcd_is_clkscaling_supported(hba)) 2160 return; 2161 2162 spin_lock_irqsave(hba->host->host_lock, flags); 2163 if (!hba->clk_scaling.active_reqs++) 2164 queue_resume_work = true; 2165 2166 if (!hba->clk_scaling.is_enabled || hba->pm_op_in_progress) { 2167 spin_unlock_irqrestore(hba->host->host_lock, flags); 2168 return; 2169 } 2170 2171 if (queue_resume_work) 2172 queue_work(hba->clk_scaling.workq, 2173 &hba->clk_scaling.resume_work); 2174 2175 if (!hba->clk_scaling.window_start_t) { 2176 hba->clk_scaling.window_start_t = curr_t; 2177 hba->clk_scaling.tot_busy_t = 0; 2178 hba->clk_scaling.is_busy_started = false; 2179 } 2180 2181 if (!hba->clk_scaling.is_busy_started) { 2182 hba->clk_scaling.busy_start_t = curr_t; 2183 hba->clk_scaling.is_busy_started = true; 2184 } 2185 spin_unlock_irqrestore(hba->host->host_lock, flags); 2186 } 2187 2188 static void ufshcd_clk_scaling_update_busy(struct ufs_hba *hba) 2189 { 2190 struct ufs_clk_scaling *scaling = &hba->clk_scaling; 2191 unsigned long flags; 2192 2193 if (!ufshcd_is_clkscaling_supported(hba)) 2194 return; 2195 2196 spin_lock_irqsave(hba->host->host_lock, flags); 2197 hba->clk_scaling.active_reqs--; 2198 if (!scaling->active_reqs && scaling->is_busy_started) { 2199 scaling->tot_busy_t += ktime_to_us(ktime_sub(ktime_get(), 2200 scaling->busy_start_t)); 2201 scaling->busy_start_t = 0; 2202 scaling->is_busy_started = false; 2203 } 2204 spin_unlock_irqrestore(hba->host->host_lock, flags); 2205 } 2206 2207 static inline int ufshcd_monitor_opcode2dir(u8 opcode) 2208 { 2209 if (opcode == READ_6 || opcode == READ_10 || opcode == READ_16) 2210 return READ; 2211 else if (opcode == WRITE_6 || opcode == WRITE_10 || opcode == WRITE_16) 2212 return WRITE; 2213 else 2214 return -EINVAL; 2215 } 2216 2217 static inline bool ufshcd_should_inform_monitor(struct ufs_hba *hba, 2218 struct ufshcd_lrb *lrbp) 2219 { 2220 const struct ufs_hba_monitor *m = &hba->monitor; 2221 2222 return (m->enabled && lrbp && lrbp->cmd && 2223 (!m->chunk_size || m->chunk_size == lrbp->cmd->sdb.length) && 2224 ktime_before(hba->monitor.enabled_ts, lrbp->issue_time_stamp)); 2225 } 2226 2227 static void ufshcd_start_monitor(struct ufs_hba *hba, 2228 const struct ufshcd_lrb *lrbp) 2229 { 2230 int dir = ufshcd_monitor_opcode2dir(*lrbp->cmd->cmnd); 2231 unsigned long flags; 2232 2233 spin_lock_irqsave(hba->host->host_lock, flags); 2234 if (dir >= 0 && hba->monitor.nr_queued[dir]++ == 0) 2235 hba->monitor.busy_start_ts[dir] = ktime_get(); 2236 spin_unlock_irqrestore(hba->host->host_lock, flags); 2237 } 2238 2239 static void ufshcd_update_monitor(struct ufs_hba *hba, const struct ufshcd_lrb *lrbp) 2240 { 2241 int dir = ufshcd_monitor_opcode2dir(*lrbp->cmd->cmnd); 2242 unsigned long flags; 2243 2244 spin_lock_irqsave(hba->host->host_lock, flags); 2245 if (dir >= 0 && hba->monitor.nr_queued[dir] > 0) { 2246 const struct request *req = scsi_cmd_to_rq(lrbp->cmd); 2247 struct ufs_hba_monitor *m = &hba->monitor; 2248 ktime_t now, inc, lat; 2249 2250 now = lrbp->compl_time_stamp; 2251 inc = ktime_sub(now, m->busy_start_ts[dir]); 2252 m->total_busy[dir] = ktime_add(m->total_busy[dir], inc); 2253 m->nr_sec_rw[dir] += blk_rq_sectors(req); 2254 2255 /* Update latencies */ 2256 m->nr_req[dir]++; 2257 lat = ktime_sub(now, lrbp->issue_time_stamp); 2258 m->lat_sum[dir] += lat; 2259 if (m->lat_max[dir] < lat || !m->lat_max[dir]) 2260 m->lat_max[dir] = lat; 2261 if (m->lat_min[dir] > lat || !m->lat_min[dir]) 2262 m->lat_min[dir] = lat; 2263 2264 m->nr_queued[dir]--; 2265 /* Push forward the busy start of monitor */ 2266 m->busy_start_ts[dir] = now; 2267 } 2268 spin_unlock_irqrestore(hba->host->host_lock, flags); 2269 } 2270 2271 /** 2272 * ufshcd_send_command - Send SCSI or device management commands 2273 * @hba: per adapter instance 2274 * @task_tag: Task tag of the command 2275 * @hwq: pointer to hardware queue instance 2276 */ 2277 static inline 2278 void ufshcd_send_command(struct ufs_hba *hba, unsigned int task_tag, 2279 struct ufs_hw_queue *hwq) 2280 { 2281 struct ufshcd_lrb *lrbp = &hba->lrb[task_tag]; 2282 unsigned long flags; 2283 2284 lrbp->issue_time_stamp = ktime_get(); 2285 lrbp->issue_time_stamp_local_clock = local_clock(); 2286 lrbp->compl_time_stamp = ktime_set(0, 0); 2287 lrbp->compl_time_stamp_local_clock = 0; 2288 ufshcd_add_command_trace(hba, task_tag, UFS_CMD_SEND); 2289 if (lrbp->cmd) 2290 ufshcd_clk_scaling_start_busy(hba); 2291 if (unlikely(ufshcd_should_inform_monitor(hba, lrbp))) 2292 ufshcd_start_monitor(hba, lrbp); 2293 2294 if (hba->mcq_enabled) { 2295 int utrd_size = sizeof(struct utp_transfer_req_desc); 2296 struct utp_transfer_req_desc *src = lrbp->utr_descriptor_ptr; 2297 struct utp_transfer_req_desc *dest; 2298 2299 spin_lock(&hwq->sq_lock); 2300 dest = hwq->sqe_base_addr + hwq->sq_tail_slot; 2301 memcpy(dest, src, utrd_size); 2302 ufshcd_inc_sq_tail(hwq); 2303 spin_unlock(&hwq->sq_lock); 2304 } else { 2305 spin_lock_irqsave(&hba->outstanding_lock, flags); 2306 if (hba->vops && hba->vops->setup_xfer_req) 2307 hba->vops->setup_xfer_req(hba, lrbp->task_tag, 2308 !!lrbp->cmd); 2309 __set_bit(lrbp->task_tag, &hba->outstanding_reqs); 2310 ufshcd_writel(hba, 1 << lrbp->task_tag, 2311 REG_UTP_TRANSFER_REQ_DOOR_BELL); 2312 spin_unlock_irqrestore(&hba->outstanding_lock, flags); 2313 } 2314 } 2315 2316 /** 2317 * ufshcd_copy_sense_data - Copy sense data in case of check condition 2318 * @lrbp: pointer to local reference block 2319 */ 2320 static inline void ufshcd_copy_sense_data(struct ufshcd_lrb *lrbp) 2321 { 2322 u8 *const sense_buffer = lrbp->cmd->sense_buffer; 2323 u16 resp_len; 2324 int len; 2325 2326 resp_len = be16_to_cpu(lrbp->ucd_rsp_ptr->header.data_segment_length); 2327 if (sense_buffer && resp_len) { 2328 int len_to_copy; 2329 2330 len = be16_to_cpu(lrbp->ucd_rsp_ptr->sr.sense_data_len); 2331 len_to_copy = min_t(int, UFS_SENSE_SIZE, len); 2332 2333 memcpy(sense_buffer, lrbp->ucd_rsp_ptr->sr.sense_data, 2334 len_to_copy); 2335 } 2336 } 2337 2338 /** 2339 * ufshcd_copy_query_response() - Copy the Query Response and the data 2340 * descriptor 2341 * @hba: per adapter instance 2342 * @lrbp: pointer to local reference block 2343 * 2344 * Return: 0 upon success; < 0 upon failure. 2345 */ 2346 static 2347 int ufshcd_copy_query_response(struct ufs_hba *hba, struct ufshcd_lrb *lrbp) 2348 { 2349 struct ufs_query_res *query_res = &hba->dev_cmd.query.response; 2350 2351 memcpy(&query_res->upiu_res, &lrbp->ucd_rsp_ptr->qr, QUERY_OSF_SIZE); 2352 2353 /* Get the descriptor */ 2354 if (hba->dev_cmd.query.descriptor && 2355 lrbp->ucd_rsp_ptr->qr.opcode == UPIU_QUERY_OPCODE_READ_DESC) { 2356 u8 *descp = (u8 *)lrbp->ucd_rsp_ptr + 2357 GENERAL_UPIU_REQUEST_SIZE; 2358 u16 resp_len; 2359 u16 buf_len; 2360 2361 /* data segment length */ 2362 resp_len = be16_to_cpu(lrbp->ucd_rsp_ptr->header 2363 .data_segment_length); 2364 buf_len = be16_to_cpu( 2365 hba->dev_cmd.query.request.upiu_req.length); 2366 if (likely(buf_len >= resp_len)) { 2367 memcpy(hba->dev_cmd.query.descriptor, descp, resp_len); 2368 } else { 2369 dev_warn(hba->dev, 2370 "%s: rsp size %d is bigger than buffer size %d", 2371 __func__, resp_len, buf_len); 2372 return -EINVAL; 2373 } 2374 } 2375 2376 return 0; 2377 } 2378 2379 /** 2380 * ufshcd_hba_capabilities - Read controller capabilities 2381 * @hba: per adapter instance 2382 * 2383 * Return: 0 on success, negative on error. 2384 */ 2385 static inline int ufshcd_hba_capabilities(struct ufs_hba *hba) 2386 { 2387 int err; 2388 2389 hba->capabilities = ufshcd_readl(hba, REG_CONTROLLER_CAPABILITIES); 2390 2391 /* nutrs and nutmrs are 0 based values */ 2392 hba->nutrs = (hba->capabilities & MASK_TRANSFER_REQUESTS_SLOTS_SDB) + 1; 2393 hba->nutmrs = 2394 ((hba->capabilities & MASK_TASK_MANAGEMENT_REQUEST_SLOTS) >> 16) + 1; 2395 hba->reserved_slot = hba->nutrs - 1; 2396 2397 hba->nortt = FIELD_GET(MASK_NUMBER_OUTSTANDING_RTT, hba->capabilities) + 1; 2398 2399 /* Read crypto capabilities */ 2400 err = ufshcd_hba_init_crypto_capabilities(hba); 2401 if (err) { 2402 dev_err(hba->dev, "crypto setup failed\n"); 2403 return err; 2404 } 2405 2406 /* 2407 * The UFSHCI 3.0 specification does not define MCQ_SUPPORT and 2408 * LSDB_SUPPORT, but [31:29] as reserved bits with reset value 0s, which 2409 * means we can simply read values regardless of version. 2410 */ 2411 hba->mcq_sup = FIELD_GET(MASK_MCQ_SUPPORT, hba->capabilities); 2412 /* 2413 * 0h: legacy single doorbell support is available 2414 * 1h: indicate that legacy single doorbell support has been removed 2415 */ 2416 if (!(hba->quirks & UFSHCD_QUIRK_BROKEN_LSDBS_CAP)) 2417 hba->lsdb_sup = !FIELD_GET(MASK_LSDB_SUPPORT, hba->capabilities); 2418 else 2419 hba->lsdb_sup = true; 2420 2421 if (!hba->mcq_sup) 2422 return 0; 2423 2424 hba->mcq_capabilities = ufshcd_readl(hba, REG_MCQCAP); 2425 hba->ext_iid_sup = FIELD_GET(MASK_EXT_IID_SUPPORT, 2426 hba->mcq_capabilities); 2427 2428 return 0; 2429 } 2430 2431 /** 2432 * ufshcd_ready_for_uic_cmd - Check if controller is ready 2433 * to accept UIC commands 2434 * @hba: per adapter instance 2435 * 2436 * Return: true on success, else false. 2437 */ 2438 static inline bool ufshcd_ready_for_uic_cmd(struct ufs_hba *hba) 2439 { 2440 u32 val; 2441 int ret = read_poll_timeout(ufshcd_readl, val, val & UIC_COMMAND_READY, 2442 500, uic_cmd_timeout * 1000, false, hba, 2443 REG_CONTROLLER_STATUS); 2444 return ret == 0; 2445 } 2446 2447 /** 2448 * ufshcd_get_upmcrs - Get the power mode change request status 2449 * @hba: Pointer to adapter instance 2450 * 2451 * This function gets the UPMCRS field of HCS register 2452 * 2453 * Return: value of UPMCRS field. 2454 */ 2455 static inline u8 ufshcd_get_upmcrs(struct ufs_hba *hba) 2456 { 2457 return (ufshcd_readl(hba, REG_CONTROLLER_STATUS) >> 8) & 0x7; 2458 } 2459 2460 /** 2461 * ufshcd_dispatch_uic_cmd - Dispatch an UIC command to the Unipro layer 2462 * @hba: per adapter instance 2463 * @uic_cmd: UIC command 2464 */ 2465 static inline void 2466 ufshcd_dispatch_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd) 2467 { 2468 lockdep_assert_held(&hba->uic_cmd_mutex); 2469 2470 WARN_ON(hba->active_uic_cmd); 2471 2472 hba->active_uic_cmd = uic_cmd; 2473 2474 /* Write Args */ 2475 ufshcd_writel(hba, uic_cmd->argument1, REG_UIC_COMMAND_ARG_1); 2476 ufshcd_writel(hba, uic_cmd->argument2, REG_UIC_COMMAND_ARG_2); 2477 ufshcd_writel(hba, uic_cmd->argument3, REG_UIC_COMMAND_ARG_3); 2478 2479 ufshcd_add_uic_command_trace(hba, uic_cmd, UFS_CMD_SEND); 2480 2481 /* Write UIC Cmd */ 2482 ufshcd_writel(hba, uic_cmd->command & COMMAND_OPCODE_MASK, 2483 REG_UIC_COMMAND); 2484 } 2485 2486 /** 2487 * ufshcd_wait_for_uic_cmd - Wait for completion of an UIC command 2488 * @hba: per adapter instance 2489 * @uic_cmd: UIC command 2490 * 2491 * Return: 0 only if success. 2492 */ 2493 static int 2494 ufshcd_wait_for_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd) 2495 { 2496 int ret; 2497 unsigned long flags; 2498 2499 lockdep_assert_held(&hba->uic_cmd_mutex); 2500 2501 if (wait_for_completion_timeout(&uic_cmd->done, 2502 msecs_to_jiffies(uic_cmd_timeout))) { 2503 ret = uic_cmd->argument2 & MASK_UIC_COMMAND_RESULT; 2504 } else { 2505 ret = -ETIMEDOUT; 2506 dev_err(hba->dev, 2507 "uic cmd 0x%x with arg3 0x%x completion timeout\n", 2508 uic_cmd->command, uic_cmd->argument3); 2509 2510 if (!uic_cmd->cmd_active) { 2511 dev_err(hba->dev, "%s: UIC cmd has been completed, return the result\n", 2512 __func__); 2513 ret = uic_cmd->argument2 & MASK_UIC_COMMAND_RESULT; 2514 } 2515 } 2516 2517 spin_lock_irqsave(hba->host->host_lock, flags); 2518 hba->active_uic_cmd = NULL; 2519 spin_unlock_irqrestore(hba->host->host_lock, flags); 2520 2521 return ret; 2522 } 2523 2524 /** 2525 * __ufshcd_send_uic_cmd - Send UIC commands and retrieve the result 2526 * @hba: per adapter instance 2527 * @uic_cmd: UIC command 2528 * 2529 * Return: 0 only if success. 2530 */ 2531 static int 2532 __ufshcd_send_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd) 2533 { 2534 lockdep_assert_held(&hba->uic_cmd_mutex); 2535 2536 if (!ufshcd_ready_for_uic_cmd(hba)) { 2537 dev_err(hba->dev, 2538 "Controller not ready to accept UIC commands\n"); 2539 return -EIO; 2540 } 2541 2542 init_completion(&uic_cmd->done); 2543 2544 uic_cmd->cmd_active = 1; 2545 ufshcd_dispatch_uic_cmd(hba, uic_cmd); 2546 2547 return 0; 2548 } 2549 2550 /** 2551 * ufshcd_send_uic_cmd - Send UIC commands and retrieve the result 2552 * @hba: per adapter instance 2553 * @uic_cmd: UIC command 2554 * 2555 * Return: 0 only if success. 2556 */ 2557 int ufshcd_send_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd) 2558 { 2559 int ret; 2560 2561 if (hba->quirks & UFSHCD_QUIRK_BROKEN_UIC_CMD) 2562 return 0; 2563 2564 ufshcd_hold(hba); 2565 mutex_lock(&hba->uic_cmd_mutex); 2566 ufshcd_add_delay_before_dme_cmd(hba); 2567 2568 ret = __ufshcd_send_uic_cmd(hba, uic_cmd); 2569 if (!ret) 2570 ret = ufshcd_wait_for_uic_cmd(hba, uic_cmd); 2571 2572 mutex_unlock(&hba->uic_cmd_mutex); 2573 2574 ufshcd_release(hba); 2575 return ret; 2576 } 2577 2578 /** 2579 * ufshcd_sgl_to_prdt - SG list to PRTD (Physical Region Description Table, 4DW format) 2580 * @hba: per-adapter instance 2581 * @lrbp: pointer to local reference block 2582 * @sg_entries: The number of sg lists actually used 2583 * @sg_list: Pointer to SG list 2584 */ 2585 static void ufshcd_sgl_to_prdt(struct ufs_hba *hba, struct ufshcd_lrb *lrbp, int sg_entries, 2586 struct scatterlist *sg_list) 2587 { 2588 struct ufshcd_sg_entry *prd; 2589 struct scatterlist *sg; 2590 int i; 2591 2592 if (sg_entries) { 2593 2594 if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN) 2595 lrbp->utr_descriptor_ptr->prd_table_length = 2596 cpu_to_le16(sg_entries * ufshcd_sg_entry_size(hba)); 2597 else 2598 lrbp->utr_descriptor_ptr->prd_table_length = cpu_to_le16(sg_entries); 2599 2600 prd = lrbp->ucd_prdt_ptr; 2601 2602 for_each_sg(sg_list, sg, sg_entries, i) { 2603 const unsigned int len = sg_dma_len(sg); 2604 2605 /* 2606 * From the UFSHCI spec: "Data Byte Count (DBC): A '0' 2607 * based value that indicates the length, in bytes, of 2608 * the data block. A maximum of length of 256KB may 2609 * exist for any entry. Bits 1:0 of this field shall be 2610 * 11b to indicate Dword granularity. A value of '3' 2611 * indicates 4 bytes, '7' indicates 8 bytes, etc." 2612 */ 2613 WARN_ONCE(len > SZ_256K, "len = %#x\n", len); 2614 prd->size = cpu_to_le32(len - 1); 2615 prd->addr = cpu_to_le64(sg->dma_address); 2616 prd->reserved = 0; 2617 prd = (void *)prd + ufshcd_sg_entry_size(hba); 2618 } 2619 } else { 2620 lrbp->utr_descriptor_ptr->prd_table_length = 0; 2621 } 2622 } 2623 2624 /** 2625 * ufshcd_map_sg - Map scatter-gather list to prdt 2626 * @hba: per adapter instance 2627 * @lrbp: pointer to local reference block 2628 * 2629 * Return: 0 in case of success, non-zero value in case of failure. 2630 */ 2631 static int ufshcd_map_sg(struct ufs_hba *hba, struct ufshcd_lrb *lrbp) 2632 { 2633 struct scsi_cmnd *cmd = lrbp->cmd; 2634 int sg_segments = scsi_dma_map(cmd); 2635 2636 if (sg_segments < 0) 2637 return sg_segments; 2638 2639 ufshcd_sgl_to_prdt(hba, lrbp, sg_segments, scsi_sglist(cmd)); 2640 2641 return ufshcd_crypto_fill_prdt(hba, lrbp); 2642 } 2643 2644 /** 2645 * ufshcd_enable_intr - enable interrupts 2646 * @hba: per adapter instance 2647 * @intrs: interrupt bits 2648 */ 2649 static void ufshcd_enable_intr(struct ufs_hba *hba, u32 intrs) 2650 { 2651 u32 set = ufshcd_readl(hba, REG_INTERRUPT_ENABLE); 2652 2653 set |= intrs; 2654 ufshcd_writel(hba, set, REG_INTERRUPT_ENABLE); 2655 } 2656 2657 /** 2658 * ufshcd_disable_intr - disable interrupts 2659 * @hba: per adapter instance 2660 * @intrs: interrupt bits 2661 */ 2662 static void ufshcd_disable_intr(struct ufs_hba *hba, u32 intrs) 2663 { 2664 u32 set = ufshcd_readl(hba, REG_INTERRUPT_ENABLE); 2665 2666 set &= ~intrs; 2667 ufshcd_writel(hba, set, REG_INTERRUPT_ENABLE); 2668 } 2669 2670 /** 2671 * ufshcd_prepare_req_desc_hdr - Fill UTP Transfer request descriptor header according to request 2672 * descriptor according to request 2673 * @hba: per adapter instance 2674 * @lrbp: pointer to local reference block 2675 * @upiu_flags: flags required in the header 2676 * @cmd_dir: requests data direction 2677 * @ehs_length: Total EHS Length (in 32‐bytes units of all Extra Header Segments) 2678 */ 2679 static void 2680 ufshcd_prepare_req_desc_hdr(struct ufs_hba *hba, struct ufshcd_lrb *lrbp, 2681 u8 *upiu_flags, enum dma_data_direction cmd_dir, 2682 int ehs_length) 2683 { 2684 struct utp_transfer_req_desc *req_desc = lrbp->utr_descriptor_ptr; 2685 struct request_desc_header *h = &req_desc->header; 2686 enum utp_data_direction data_direction; 2687 2688 lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE; 2689 2690 *h = (typeof(*h)){ }; 2691 2692 if (cmd_dir == DMA_FROM_DEVICE) { 2693 data_direction = UTP_DEVICE_TO_HOST; 2694 *upiu_flags = UPIU_CMD_FLAGS_READ; 2695 } else if (cmd_dir == DMA_TO_DEVICE) { 2696 data_direction = UTP_HOST_TO_DEVICE; 2697 *upiu_flags = UPIU_CMD_FLAGS_WRITE; 2698 } else { 2699 data_direction = UTP_NO_DATA_TRANSFER; 2700 *upiu_flags = UPIU_CMD_FLAGS_NONE; 2701 } 2702 2703 h->command_type = lrbp->command_type; 2704 h->data_direction = data_direction; 2705 h->ehs_length = ehs_length; 2706 2707 if (lrbp->intr_cmd) 2708 h->interrupt = 1; 2709 2710 /* Prepare crypto related dwords */ 2711 ufshcd_prepare_req_desc_hdr_crypto(lrbp, h); 2712 2713 /* 2714 * assigning invalid value for command status. Controller 2715 * updates OCS on command completion, with the command 2716 * status 2717 */ 2718 h->ocs = OCS_INVALID_COMMAND_STATUS; 2719 2720 req_desc->prd_table_length = 0; 2721 } 2722 2723 /** 2724 * ufshcd_prepare_utp_scsi_cmd_upiu() - fills the utp_transfer_req_desc, 2725 * for scsi commands 2726 * @lrbp: local reference block pointer 2727 * @upiu_flags: flags 2728 */ 2729 static 2730 void ufshcd_prepare_utp_scsi_cmd_upiu(struct ufshcd_lrb *lrbp, u8 upiu_flags) 2731 { 2732 struct scsi_cmnd *cmd = lrbp->cmd; 2733 struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr; 2734 unsigned short cdb_len; 2735 2736 ucd_req_ptr->header = (struct utp_upiu_header){ 2737 .transaction_code = UPIU_TRANSACTION_COMMAND, 2738 .flags = upiu_flags, 2739 .lun = lrbp->lun, 2740 .task_tag = lrbp->task_tag, 2741 .command_set_type = UPIU_COMMAND_SET_TYPE_SCSI, 2742 }; 2743 2744 WARN_ON_ONCE(ucd_req_ptr->header.task_tag != lrbp->task_tag); 2745 2746 ucd_req_ptr->sc.exp_data_transfer_len = cpu_to_be32(cmd->sdb.length); 2747 2748 cdb_len = min_t(unsigned short, cmd->cmd_len, UFS_CDB_SIZE); 2749 memcpy(ucd_req_ptr->sc.cdb, cmd->cmnd, cdb_len); 2750 2751 memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp)); 2752 } 2753 2754 /** 2755 * ufshcd_prepare_utp_query_req_upiu() - fill the utp_transfer_req_desc for query request 2756 * @hba: UFS hba 2757 * @lrbp: local reference block pointer 2758 * @upiu_flags: flags 2759 */ 2760 static void ufshcd_prepare_utp_query_req_upiu(struct ufs_hba *hba, 2761 struct ufshcd_lrb *lrbp, u8 upiu_flags) 2762 { 2763 struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr; 2764 struct ufs_query *query = &hba->dev_cmd.query; 2765 u16 len = be16_to_cpu(query->request.upiu_req.length); 2766 2767 /* Query request header */ 2768 ucd_req_ptr->header = (struct utp_upiu_header){ 2769 .transaction_code = UPIU_TRANSACTION_QUERY_REQ, 2770 .flags = upiu_flags, 2771 .lun = lrbp->lun, 2772 .task_tag = lrbp->task_tag, 2773 .query_function = query->request.query_func, 2774 /* Data segment length only need for WRITE_DESC */ 2775 .data_segment_length = 2776 query->request.upiu_req.opcode == 2777 UPIU_QUERY_OPCODE_WRITE_DESC ? 2778 cpu_to_be16(len) : 2779 0, 2780 }; 2781 2782 /* Copy the Query Request buffer as is */ 2783 memcpy(&ucd_req_ptr->qr, &query->request.upiu_req, 2784 QUERY_OSF_SIZE); 2785 2786 /* Copy the Descriptor */ 2787 if (query->request.upiu_req.opcode == UPIU_QUERY_OPCODE_WRITE_DESC) 2788 memcpy(ucd_req_ptr + 1, query->descriptor, len); 2789 2790 memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp)); 2791 } 2792 2793 static inline void ufshcd_prepare_utp_nop_upiu(struct ufshcd_lrb *lrbp) 2794 { 2795 struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr; 2796 2797 memset(ucd_req_ptr, 0, sizeof(struct utp_upiu_req)); 2798 2799 ucd_req_ptr->header = (struct utp_upiu_header){ 2800 .transaction_code = UPIU_TRANSACTION_NOP_OUT, 2801 .task_tag = lrbp->task_tag, 2802 }; 2803 2804 memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp)); 2805 } 2806 2807 /** 2808 * ufshcd_compose_devman_upiu - UFS Protocol Information Unit(UPIU) 2809 * for Device Management Purposes 2810 * @hba: per adapter instance 2811 * @lrbp: pointer to local reference block 2812 * 2813 * Return: 0 upon success; < 0 upon failure. 2814 */ 2815 static int ufshcd_compose_devman_upiu(struct ufs_hba *hba, 2816 struct ufshcd_lrb *lrbp) 2817 { 2818 u8 upiu_flags; 2819 int ret = 0; 2820 2821 ufshcd_prepare_req_desc_hdr(hba, lrbp, &upiu_flags, DMA_NONE, 0); 2822 2823 if (hba->dev_cmd.type == DEV_CMD_TYPE_QUERY) 2824 ufshcd_prepare_utp_query_req_upiu(hba, lrbp, upiu_flags); 2825 else if (hba->dev_cmd.type == DEV_CMD_TYPE_NOP) 2826 ufshcd_prepare_utp_nop_upiu(lrbp); 2827 else 2828 ret = -EINVAL; 2829 2830 return ret; 2831 } 2832 2833 /** 2834 * ufshcd_comp_scsi_upiu - UFS Protocol Information Unit(UPIU) 2835 * for SCSI Purposes 2836 * @hba: per adapter instance 2837 * @lrbp: pointer to local reference block 2838 */ 2839 static void ufshcd_comp_scsi_upiu(struct ufs_hba *hba, struct ufshcd_lrb *lrbp) 2840 { 2841 struct request *rq = scsi_cmd_to_rq(lrbp->cmd); 2842 unsigned int ioprio_class = IOPRIO_PRIO_CLASS(req_get_ioprio(rq)); 2843 u8 upiu_flags; 2844 2845 ufshcd_prepare_req_desc_hdr(hba, lrbp, &upiu_flags, lrbp->cmd->sc_data_direction, 0); 2846 if (ioprio_class == IOPRIO_CLASS_RT) 2847 upiu_flags |= UPIU_CMD_FLAGS_CP; 2848 ufshcd_prepare_utp_scsi_cmd_upiu(lrbp, upiu_flags); 2849 } 2850 2851 static void __ufshcd_setup_cmd(struct ufshcd_lrb *lrbp, struct scsi_cmnd *cmd, u8 lun, int tag) 2852 { 2853 memset(lrbp->ucd_req_ptr, 0, sizeof(*lrbp->ucd_req_ptr)); 2854 2855 lrbp->cmd = cmd; 2856 lrbp->task_tag = tag; 2857 lrbp->lun = lun; 2858 ufshcd_prepare_lrbp_crypto(cmd ? scsi_cmd_to_rq(cmd) : NULL, lrbp); 2859 } 2860 2861 static void ufshcd_setup_scsi_cmd(struct ufs_hba *hba, struct ufshcd_lrb *lrbp, 2862 struct scsi_cmnd *cmd, u8 lun, int tag) 2863 { 2864 __ufshcd_setup_cmd(lrbp, cmd, lun, tag); 2865 lrbp->intr_cmd = !ufshcd_is_intr_aggr_allowed(hba); 2866 lrbp->req_abort_skip = false; 2867 2868 ufshcd_comp_scsi_upiu(hba, lrbp); 2869 } 2870 2871 /** 2872 * ufshcd_upiu_wlun_to_scsi_wlun - maps UPIU W-LUN id to SCSI W-LUN ID 2873 * @upiu_wlun_id: UPIU W-LUN id 2874 * 2875 * Return: SCSI W-LUN id. 2876 */ 2877 static inline u16 ufshcd_upiu_wlun_to_scsi_wlun(u8 upiu_wlun_id) 2878 { 2879 return (upiu_wlun_id & ~UFS_UPIU_WLUN_ID) | SCSI_W_LUN_BASE; 2880 } 2881 2882 static inline bool is_device_wlun(struct scsi_device *sdev) 2883 { 2884 return sdev->lun == 2885 ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_UFS_DEVICE_WLUN); 2886 } 2887 2888 /* 2889 * Associate the UFS controller queue with the default and poll HCTX types. 2890 * Initialize the mq_map[] arrays. 2891 */ 2892 static void ufshcd_map_queues(struct Scsi_Host *shost) 2893 { 2894 struct ufs_hba *hba = shost_priv(shost); 2895 int i, queue_offset = 0; 2896 2897 if (!is_mcq_supported(hba)) { 2898 hba->nr_queues[HCTX_TYPE_DEFAULT] = 1; 2899 hba->nr_queues[HCTX_TYPE_READ] = 0; 2900 hba->nr_queues[HCTX_TYPE_POLL] = 1; 2901 hba->nr_hw_queues = 1; 2902 } 2903 2904 for (i = 0; i < shost->nr_maps; i++) { 2905 struct blk_mq_queue_map *map = &shost->tag_set.map[i]; 2906 2907 map->nr_queues = hba->nr_queues[i]; 2908 if (!map->nr_queues) 2909 continue; 2910 map->queue_offset = queue_offset; 2911 if (i == HCTX_TYPE_POLL && !is_mcq_supported(hba)) 2912 map->queue_offset = 0; 2913 2914 blk_mq_map_queues(map); 2915 queue_offset += map->nr_queues; 2916 } 2917 } 2918 2919 static void ufshcd_init_lrb(struct ufs_hba *hba, struct ufshcd_lrb *lrb, int i) 2920 { 2921 struct utp_transfer_cmd_desc *cmd_descp = (void *)hba->ucdl_base_addr + 2922 i * ufshcd_get_ucd_size(hba); 2923 struct utp_transfer_req_desc *utrdlp = hba->utrdl_base_addr; 2924 dma_addr_t cmd_desc_element_addr = hba->ucdl_dma_addr + 2925 i * ufshcd_get_ucd_size(hba); 2926 u16 response_offset = le16_to_cpu(utrdlp[i].response_upiu_offset); 2927 u16 prdt_offset = le16_to_cpu(utrdlp[i].prd_table_offset); 2928 2929 lrb->utr_descriptor_ptr = utrdlp + i; 2930 lrb->utrd_dma_addr = hba->utrdl_dma_addr + 2931 i * sizeof(struct utp_transfer_req_desc); 2932 lrb->ucd_req_ptr = (struct utp_upiu_req *)cmd_descp->command_upiu; 2933 lrb->ucd_req_dma_addr = cmd_desc_element_addr; 2934 lrb->ucd_rsp_ptr = (struct utp_upiu_rsp *)cmd_descp->response_upiu; 2935 lrb->ucd_rsp_dma_addr = cmd_desc_element_addr + response_offset; 2936 lrb->ucd_prdt_ptr = (struct ufshcd_sg_entry *)cmd_descp->prd_table; 2937 lrb->ucd_prdt_dma_addr = cmd_desc_element_addr + prdt_offset; 2938 } 2939 2940 /** 2941 * ufshcd_queuecommand - main entry point for SCSI requests 2942 * @host: SCSI host pointer 2943 * @cmd: command from SCSI Midlayer 2944 * 2945 * Return: 0 for success, non-zero in case of failure. 2946 */ 2947 static int ufshcd_queuecommand(struct Scsi_Host *host, struct scsi_cmnd *cmd) 2948 { 2949 struct ufs_hba *hba = shost_priv(host); 2950 int tag = scsi_cmd_to_rq(cmd)->tag; 2951 struct ufshcd_lrb *lrbp; 2952 int err = 0; 2953 struct ufs_hw_queue *hwq = NULL; 2954 2955 switch (hba->ufshcd_state) { 2956 case UFSHCD_STATE_OPERATIONAL: 2957 break; 2958 case UFSHCD_STATE_EH_SCHEDULED_NON_FATAL: 2959 /* 2960 * SCSI error handler can call ->queuecommand() while UFS error 2961 * handler is in progress. Error interrupts could change the 2962 * state from UFSHCD_STATE_RESET to 2963 * UFSHCD_STATE_EH_SCHEDULED_NON_FATAL. Prevent requests 2964 * being issued in that case. 2965 */ 2966 if (ufshcd_eh_in_progress(hba)) { 2967 err = SCSI_MLQUEUE_HOST_BUSY; 2968 goto out; 2969 } 2970 break; 2971 case UFSHCD_STATE_EH_SCHEDULED_FATAL: 2972 /* 2973 * pm_runtime_get_sync() is used at error handling preparation 2974 * stage. If a scsi cmd, e.g. the SSU cmd, is sent from hba's 2975 * PM ops, it can never be finished if we let SCSI layer keep 2976 * retrying it, which gets err handler stuck forever. Neither 2977 * can we let the scsi cmd pass through, because UFS is in bad 2978 * state, the scsi cmd may eventually time out, which will get 2979 * err handler blocked for too long. So, just fail the scsi cmd 2980 * sent from PM ops, err handler can recover PM error anyways. 2981 */ 2982 if (hba->pm_op_in_progress) { 2983 hba->force_reset = true; 2984 set_host_byte(cmd, DID_BAD_TARGET); 2985 scsi_done(cmd); 2986 goto out; 2987 } 2988 fallthrough; 2989 case UFSHCD_STATE_RESET: 2990 err = SCSI_MLQUEUE_HOST_BUSY; 2991 goto out; 2992 case UFSHCD_STATE_ERROR: 2993 set_host_byte(cmd, DID_ERROR); 2994 scsi_done(cmd); 2995 goto out; 2996 } 2997 2998 hba->req_abort_count = 0; 2999 3000 ufshcd_hold(hba); 3001 3002 lrbp = &hba->lrb[tag]; 3003 3004 ufshcd_setup_scsi_cmd(hba, lrbp, cmd, ufshcd_scsi_to_upiu_lun(cmd->device->lun), tag); 3005 3006 err = ufshcd_map_sg(hba, lrbp); 3007 if (err) { 3008 ufshcd_release(hba); 3009 goto out; 3010 } 3011 3012 if (hba->mcq_enabled) 3013 hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(cmd)); 3014 3015 ufshcd_send_command(hba, tag, hwq); 3016 3017 out: 3018 if (ufs_trigger_eh(hba)) { 3019 unsigned long flags; 3020 3021 spin_lock_irqsave(hba->host->host_lock, flags); 3022 ufshcd_schedule_eh_work(hba); 3023 spin_unlock_irqrestore(hba->host->host_lock, flags); 3024 } 3025 3026 return err; 3027 } 3028 3029 static void ufshcd_setup_dev_cmd(struct ufs_hba *hba, struct ufshcd_lrb *lrbp, 3030 enum dev_cmd_type cmd_type, u8 lun, int tag) 3031 { 3032 __ufshcd_setup_cmd(lrbp, NULL, lun, tag); 3033 lrbp->intr_cmd = true; /* No interrupt aggregation */ 3034 hba->dev_cmd.type = cmd_type; 3035 } 3036 3037 static int ufshcd_compose_dev_cmd(struct ufs_hba *hba, 3038 struct ufshcd_lrb *lrbp, enum dev_cmd_type cmd_type, int tag) 3039 { 3040 ufshcd_setup_dev_cmd(hba, lrbp, cmd_type, 0, tag); 3041 3042 return ufshcd_compose_devman_upiu(hba, lrbp); 3043 } 3044 3045 /* 3046 * Check with the block layer if the command is inflight 3047 * @cmd: command to check. 3048 * 3049 * Return: true if command is inflight; false if not. 3050 */ 3051 bool ufshcd_cmd_inflight(struct scsi_cmnd *cmd) 3052 { 3053 return cmd && blk_mq_rq_state(scsi_cmd_to_rq(cmd)) == MQ_RQ_IN_FLIGHT; 3054 } 3055 3056 /* 3057 * Clear the pending command in the controller and wait until 3058 * the controller confirms that the command has been cleared. 3059 * @hba: per adapter instance 3060 * @task_tag: The tag number of the command to be cleared. 3061 */ 3062 static int ufshcd_clear_cmd(struct ufs_hba *hba, u32 task_tag) 3063 { 3064 u32 mask; 3065 int err; 3066 3067 if (hba->mcq_enabled) { 3068 /* 3069 * MCQ mode. Clean up the MCQ resources similar to 3070 * what the ufshcd_utrl_clear() does for SDB mode. 3071 */ 3072 err = ufshcd_mcq_sq_cleanup(hba, task_tag); 3073 if (err) { 3074 dev_err(hba->dev, "%s: failed tag=%d. err=%d\n", 3075 __func__, task_tag, err); 3076 return err; 3077 } 3078 return 0; 3079 } 3080 3081 mask = 1U << task_tag; 3082 3083 /* clear outstanding transaction before retry */ 3084 ufshcd_utrl_clear(hba, mask); 3085 3086 /* 3087 * wait for h/w to clear corresponding bit in door-bell. 3088 * max. wait is 1 sec. 3089 */ 3090 return ufshcd_wait_for_register(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL, 3091 mask, ~mask, 1000, 1000); 3092 } 3093 3094 /** 3095 * ufshcd_dev_cmd_completion() - handles device management command responses 3096 * @hba: per adapter instance 3097 * @lrbp: pointer to local reference block 3098 * 3099 * Return: 0 upon success; < 0 upon failure. 3100 */ 3101 static int 3102 ufshcd_dev_cmd_completion(struct ufs_hba *hba, struct ufshcd_lrb *lrbp) 3103 { 3104 enum upiu_response_transaction resp; 3105 int err = 0; 3106 3107 hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0); 3108 resp = ufshcd_get_req_rsp(lrbp->ucd_rsp_ptr); 3109 3110 switch (resp) { 3111 case UPIU_TRANSACTION_NOP_IN: 3112 if (hba->dev_cmd.type != DEV_CMD_TYPE_NOP) { 3113 err = -EINVAL; 3114 dev_err(hba->dev, "%s: unexpected response %x\n", 3115 __func__, resp); 3116 } 3117 break; 3118 case UPIU_TRANSACTION_QUERY_RSP: { 3119 u8 response = lrbp->ucd_rsp_ptr->header.response; 3120 3121 if (response == 0) 3122 err = ufshcd_copy_query_response(hba, lrbp); 3123 break; 3124 } 3125 case UPIU_TRANSACTION_REJECT_UPIU: 3126 /* TODO: handle Reject UPIU Response */ 3127 err = -EPERM; 3128 dev_err(hba->dev, "%s: Reject UPIU not fully implemented\n", 3129 __func__); 3130 break; 3131 case UPIU_TRANSACTION_RESPONSE: 3132 if (hba->dev_cmd.type != DEV_CMD_TYPE_RPMB) { 3133 err = -EINVAL; 3134 dev_err(hba->dev, "%s: unexpected response %x\n", __func__, resp); 3135 } 3136 break; 3137 default: 3138 err = -EINVAL; 3139 dev_err(hba->dev, "%s: Invalid device management cmd response: %x\n", 3140 __func__, resp); 3141 break; 3142 } 3143 3144 return err; 3145 } 3146 3147 static int ufshcd_wait_for_dev_cmd(struct ufs_hba *hba, 3148 struct ufshcd_lrb *lrbp, int max_timeout) 3149 { 3150 unsigned long time_left = msecs_to_jiffies(max_timeout); 3151 unsigned long flags; 3152 bool pending; 3153 int err; 3154 3155 retry: 3156 time_left = wait_for_completion_timeout(hba->dev_cmd.complete, 3157 time_left); 3158 3159 if (likely(time_left)) { 3160 /* 3161 * The completion handler called complete() and the caller of 3162 * this function still owns the @lrbp tag so the code below does 3163 * not trigger any race conditions. 3164 */ 3165 hba->dev_cmd.complete = NULL; 3166 err = ufshcd_get_tr_ocs(lrbp, NULL); 3167 if (!err) 3168 err = ufshcd_dev_cmd_completion(hba, lrbp); 3169 } else { 3170 err = -ETIMEDOUT; 3171 dev_dbg(hba->dev, "%s: dev_cmd request timedout, tag %d\n", 3172 __func__, lrbp->task_tag); 3173 3174 /* MCQ mode */ 3175 if (hba->mcq_enabled) { 3176 /* successfully cleared the command, retry if needed */ 3177 if (ufshcd_clear_cmd(hba, lrbp->task_tag) == 0) 3178 err = -EAGAIN; 3179 hba->dev_cmd.complete = NULL; 3180 return err; 3181 } 3182 3183 /* SDB mode */ 3184 if (ufshcd_clear_cmd(hba, lrbp->task_tag) == 0) { 3185 /* successfully cleared the command, retry if needed */ 3186 err = -EAGAIN; 3187 /* 3188 * Since clearing the command succeeded we also need to 3189 * clear the task tag bit from the outstanding_reqs 3190 * variable. 3191 */ 3192 spin_lock_irqsave(&hba->outstanding_lock, flags); 3193 pending = test_bit(lrbp->task_tag, 3194 &hba->outstanding_reqs); 3195 if (pending) { 3196 hba->dev_cmd.complete = NULL; 3197 __clear_bit(lrbp->task_tag, 3198 &hba->outstanding_reqs); 3199 } 3200 spin_unlock_irqrestore(&hba->outstanding_lock, flags); 3201 3202 if (!pending) { 3203 /* 3204 * The completion handler ran while we tried to 3205 * clear the command. 3206 */ 3207 time_left = 1; 3208 goto retry; 3209 } 3210 } else { 3211 dev_err(hba->dev, "%s: failed to clear tag %d\n", 3212 __func__, lrbp->task_tag); 3213 3214 spin_lock_irqsave(&hba->outstanding_lock, flags); 3215 pending = test_bit(lrbp->task_tag, 3216 &hba->outstanding_reqs); 3217 if (pending) 3218 hba->dev_cmd.complete = NULL; 3219 spin_unlock_irqrestore(&hba->outstanding_lock, flags); 3220 3221 if (!pending) { 3222 /* 3223 * The completion handler ran while we tried to 3224 * clear the command. 3225 */ 3226 time_left = 1; 3227 goto retry; 3228 } 3229 } 3230 } 3231 3232 return err; 3233 } 3234 3235 static void ufshcd_dev_man_lock(struct ufs_hba *hba) 3236 { 3237 ufshcd_hold(hba); 3238 mutex_lock(&hba->dev_cmd.lock); 3239 down_read(&hba->clk_scaling_lock); 3240 } 3241 3242 static void ufshcd_dev_man_unlock(struct ufs_hba *hba) 3243 { 3244 up_read(&hba->clk_scaling_lock); 3245 mutex_unlock(&hba->dev_cmd.lock); 3246 ufshcd_release(hba); 3247 } 3248 3249 static int ufshcd_issue_dev_cmd(struct ufs_hba *hba, struct ufshcd_lrb *lrbp, 3250 const u32 tag, int timeout) 3251 { 3252 DECLARE_COMPLETION_ONSTACK(wait); 3253 int err; 3254 3255 hba->dev_cmd.complete = &wait; 3256 3257 ufshcd_add_query_upiu_trace(hba, UFS_QUERY_SEND, lrbp->ucd_req_ptr); 3258 3259 ufshcd_send_command(hba, tag, hba->dev_cmd_queue); 3260 err = ufshcd_wait_for_dev_cmd(hba, lrbp, timeout); 3261 3262 ufshcd_add_query_upiu_trace(hba, err ? UFS_QUERY_ERR : UFS_QUERY_COMP, 3263 (struct utp_upiu_req *)lrbp->ucd_rsp_ptr); 3264 3265 return err; 3266 } 3267 3268 /** 3269 * ufshcd_exec_dev_cmd - API for sending device management requests 3270 * @hba: UFS hba 3271 * @cmd_type: specifies the type (NOP, Query...) 3272 * @timeout: timeout in milliseconds 3273 * 3274 * Return: 0 upon success; < 0 upon failure. 3275 * 3276 * NOTE: Since there is only one available tag for device management commands, 3277 * it is expected you hold the hba->dev_cmd.lock mutex. 3278 */ 3279 static int ufshcd_exec_dev_cmd(struct ufs_hba *hba, 3280 enum dev_cmd_type cmd_type, int timeout) 3281 { 3282 const u32 tag = hba->reserved_slot; 3283 struct ufshcd_lrb *lrbp = &hba->lrb[tag]; 3284 int err; 3285 3286 /* Protects use of hba->reserved_slot. */ 3287 lockdep_assert_held(&hba->dev_cmd.lock); 3288 3289 err = ufshcd_compose_dev_cmd(hba, lrbp, cmd_type, tag); 3290 if (unlikely(err)) 3291 return err; 3292 3293 return ufshcd_issue_dev_cmd(hba, lrbp, tag, timeout); 3294 } 3295 3296 /** 3297 * ufshcd_init_query() - init the query response and request parameters 3298 * @hba: per-adapter instance 3299 * @request: address of the request pointer to be initialized 3300 * @response: address of the response pointer to be initialized 3301 * @opcode: operation to perform 3302 * @idn: flag idn to access 3303 * @index: LU number to access 3304 * @selector: query/flag/descriptor further identification 3305 */ 3306 static inline void ufshcd_init_query(struct ufs_hba *hba, 3307 struct ufs_query_req **request, struct ufs_query_res **response, 3308 enum query_opcode opcode, u8 idn, u8 index, u8 selector) 3309 { 3310 *request = &hba->dev_cmd.query.request; 3311 *response = &hba->dev_cmd.query.response; 3312 memset(*request, 0, sizeof(struct ufs_query_req)); 3313 memset(*response, 0, sizeof(struct ufs_query_res)); 3314 (*request)->upiu_req.opcode = opcode; 3315 (*request)->upiu_req.idn = idn; 3316 (*request)->upiu_req.index = index; 3317 (*request)->upiu_req.selector = selector; 3318 } 3319 3320 static int ufshcd_query_flag_retry(struct ufs_hba *hba, 3321 enum query_opcode opcode, enum flag_idn idn, u8 index, bool *flag_res) 3322 { 3323 int ret; 3324 int retries; 3325 3326 for (retries = 0; retries < QUERY_REQ_RETRIES; retries++) { 3327 ret = ufshcd_query_flag(hba, opcode, idn, index, flag_res); 3328 if (ret) 3329 dev_dbg(hba->dev, 3330 "%s: failed with error %d, retries %d\n", 3331 __func__, ret, retries); 3332 else 3333 break; 3334 } 3335 3336 if (ret) 3337 dev_err(hba->dev, 3338 "%s: query flag, opcode %d, idn %d, failed with error %d after %d retries\n", 3339 __func__, opcode, idn, ret, retries); 3340 return ret; 3341 } 3342 3343 /** 3344 * ufshcd_query_flag() - API function for sending flag query requests 3345 * @hba: per-adapter instance 3346 * @opcode: flag query to perform 3347 * @idn: flag idn to access 3348 * @index: flag index to access 3349 * @flag_res: the flag value after the query request completes 3350 * 3351 * Return: 0 for success, non-zero in case of failure. 3352 */ 3353 int ufshcd_query_flag(struct ufs_hba *hba, enum query_opcode opcode, 3354 enum flag_idn idn, u8 index, bool *flag_res) 3355 { 3356 struct ufs_query_req *request = NULL; 3357 struct ufs_query_res *response = NULL; 3358 int err, selector = 0; 3359 int timeout = QUERY_REQ_TIMEOUT; 3360 3361 BUG_ON(!hba); 3362 3363 ufshcd_dev_man_lock(hba); 3364 3365 ufshcd_init_query(hba, &request, &response, opcode, idn, index, 3366 selector); 3367 3368 switch (opcode) { 3369 case UPIU_QUERY_OPCODE_SET_FLAG: 3370 case UPIU_QUERY_OPCODE_CLEAR_FLAG: 3371 case UPIU_QUERY_OPCODE_TOGGLE_FLAG: 3372 request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST; 3373 break; 3374 case UPIU_QUERY_OPCODE_READ_FLAG: 3375 request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST; 3376 if (!flag_res) { 3377 /* No dummy reads */ 3378 dev_err(hba->dev, "%s: Invalid argument for read request\n", 3379 __func__); 3380 err = -EINVAL; 3381 goto out_unlock; 3382 } 3383 break; 3384 default: 3385 dev_err(hba->dev, 3386 "%s: Expected query flag opcode but got = %d\n", 3387 __func__, opcode); 3388 err = -EINVAL; 3389 goto out_unlock; 3390 } 3391 3392 err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, timeout); 3393 3394 if (err) { 3395 dev_err(hba->dev, 3396 "%s: Sending flag query for idn %d failed, err = %d\n", 3397 __func__, idn, err); 3398 goto out_unlock; 3399 } 3400 3401 if (flag_res) 3402 *flag_res = (be32_to_cpu(response->upiu_res.value) & 3403 MASK_QUERY_UPIU_FLAG_LOC) & 0x1; 3404 3405 out_unlock: 3406 ufshcd_dev_man_unlock(hba); 3407 return err; 3408 } 3409 3410 /** 3411 * ufshcd_query_attr - API function for sending attribute requests 3412 * @hba: per-adapter instance 3413 * @opcode: attribute opcode 3414 * @idn: attribute idn to access 3415 * @index: index field 3416 * @selector: selector field 3417 * @attr_val: the attribute value after the query request completes 3418 * 3419 * Return: 0 for success, non-zero in case of failure. 3420 */ 3421 int ufshcd_query_attr(struct ufs_hba *hba, enum query_opcode opcode, 3422 enum attr_idn idn, u8 index, u8 selector, u32 *attr_val) 3423 { 3424 struct ufs_query_req *request = NULL; 3425 struct ufs_query_res *response = NULL; 3426 int err; 3427 3428 BUG_ON(!hba); 3429 3430 if (!attr_val) { 3431 dev_err(hba->dev, "%s: attribute value required for opcode 0x%x\n", 3432 __func__, opcode); 3433 return -EINVAL; 3434 } 3435 3436 ufshcd_dev_man_lock(hba); 3437 3438 ufshcd_init_query(hba, &request, &response, opcode, idn, index, 3439 selector); 3440 3441 switch (opcode) { 3442 case UPIU_QUERY_OPCODE_WRITE_ATTR: 3443 request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST; 3444 request->upiu_req.value = cpu_to_be32(*attr_val); 3445 break; 3446 case UPIU_QUERY_OPCODE_READ_ATTR: 3447 request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST; 3448 break; 3449 default: 3450 dev_err(hba->dev, "%s: Expected query attr opcode but got = 0x%.2x\n", 3451 __func__, opcode); 3452 err = -EINVAL; 3453 goto out_unlock; 3454 } 3455 3456 err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT); 3457 3458 if (err) { 3459 dev_err(hba->dev, "%s: opcode 0x%.2x for idn %d failed, index %d, err = %d\n", 3460 __func__, opcode, idn, index, err); 3461 goto out_unlock; 3462 } 3463 3464 *attr_val = be32_to_cpu(response->upiu_res.value); 3465 3466 out_unlock: 3467 ufshcd_dev_man_unlock(hba); 3468 return err; 3469 } 3470 3471 /** 3472 * ufshcd_query_attr_retry() - API function for sending query 3473 * attribute with retries 3474 * @hba: per-adapter instance 3475 * @opcode: attribute opcode 3476 * @idn: attribute idn to access 3477 * @index: index field 3478 * @selector: selector field 3479 * @attr_val: the attribute value after the query request 3480 * completes 3481 * 3482 * Return: 0 for success, non-zero in case of failure. 3483 */ 3484 int ufshcd_query_attr_retry(struct ufs_hba *hba, 3485 enum query_opcode opcode, enum attr_idn idn, u8 index, u8 selector, 3486 u32 *attr_val) 3487 { 3488 int ret = 0; 3489 u32 retries; 3490 3491 for (retries = QUERY_REQ_RETRIES; retries > 0; retries--) { 3492 ret = ufshcd_query_attr(hba, opcode, idn, index, 3493 selector, attr_val); 3494 if (ret) 3495 dev_dbg(hba->dev, "%s: failed with error %d, retries %d\n", 3496 __func__, ret, retries); 3497 else 3498 break; 3499 } 3500 3501 if (ret) 3502 dev_err(hba->dev, 3503 "%s: query attribute, idn %d, failed with error %d after %d retries\n", 3504 __func__, idn, ret, QUERY_REQ_RETRIES); 3505 return ret; 3506 } 3507 3508 static int __ufshcd_query_descriptor(struct ufs_hba *hba, 3509 enum query_opcode opcode, enum desc_idn idn, u8 index, 3510 u8 selector, u8 *desc_buf, int *buf_len) 3511 { 3512 struct ufs_query_req *request = NULL; 3513 struct ufs_query_res *response = NULL; 3514 int err; 3515 3516 BUG_ON(!hba); 3517 3518 if (!desc_buf) { 3519 dev_err(hba->dev, "%s: descriptor buffer required for opcode 0x%x\n", 3520 __func__, opcode); 3521 return -EINVAL; 3522 } 3523 3524 if (*buf_len < QUERY_DESC_MIN_SIZE || *buf_len > QUERY_DESC_MAX_SIZE) { 3525 dev_err(hba->dev, "%s: descriptor buffer size (%d) is out of range\n", 3526 __func__, *buf_len); 3527 return -EINVAL; 3528 } 3529 3530 ufshcd_dev_man_lock(hba); 3531 3532 ufshcd_init_query(hba, &request, &response, opcode, idn, index, 3533 selector); 3534 hba->dev_cmd.query.descriptor = desc_buf; 3535 request->upiu_req.length = cpu_to_be16(*buf_len); 3536 3537 switch (opcode) { 3538 case UPIU_QUERY_OPCODE_WRITE_DESC: 3539 request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST; 3540 break; 3541 case UPIU_QUERY_OPCODE_READ_DESC: 3542 request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST; 3543 break; 3544 default: 3545 dev_err(hba->dev, 3546 "%s: Expected query descriptor opcode but got = 0x%.2x\n", 3547 __func__, opcode); 3548 err = -EINVAL; 3549 goto out_unlock; 3550 } 3551 3552 err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT); 3553 3554 if (err) { 3555 dev_err(hba->dev, "%s: opcode 0x%.2x for idn %d failed, index %d, err = %d\n", 3556 __func__, opcode, idn, index, err); 3557 goto out_unlock; 3558 } 3559 3560 *buf_len = be16_to_cpu(response->upiu_res.length); 3561 3562 out_unlock: 3563 hba->dev_cmd.query.descriptor = NULL; 3564 ufshcd_dev_man_unlock(hba); 3565 return err; 3566 } 3567 3568 /** 3569 * ufshcd_query_descriptor_retry - API function for sending descriptor requests 3570 * @hba: per-adapter instance 3571 * @opcode: attribute opcode 3572 * @idn: attribute idn to access 3573 * @index: index field 3574 * @selector: selector field 3575 * @desc_buf: the buffer that contains the descriptor 3576 * @buf_len: length parameter passed to the device 3577 * 3578 * The buf_len parameter will contain, on return, the length parameter 3579 * received on the response. 3580 * 3581 * Return: 0 for success, non-zero in case of failure. 3582 */ 3583 int ufshcd_query_descriptor_retry(struct ufs_hba *hba, 3584 enum query_opcode opcode, 3585 enum desc_idn idn, u8 index, 3586 u8 selector, 3587 u8 *desc_buf, int *buf_len) 3588 { 3589 int err; 3590 int retries; 3591 3592 for (retries = QUERY_REQ_RETRIES; retries > 0; retries--) { 3593 err = __ufshcd_query_descriptor(hba, opcode, idn, index, 3594 selector, desc_buf, buf_len); 3595 if (!err || err == -EINVAL) 3596 break; 3597 } 3598 3599 return err; 3600 } 3601 3602 /** 3603 * ufshcd_read_desc_param - read the specified descriptor parameter 3604 * @hba: Pointer to adapter instance 3605 * @desc_id: descriptor idn value 3606 * @desc_index: descriptor index 3607 * @param_offset: offset of the parameter to read 3608 * @param_read_buf: pointer to buffer where parameter would be read 3609 * @param_size: sizeof(param_read_buf) 3610 * 3611 * Return: 0 in case of success, non-zero otherwise. 3612 */ 3613 int ufshcd_read_desc_param(struct ufs_hba *hba, 3614 enum desc_idn desc_id, 3615 int desc_index, 3616 u8 param_offset, 3617 u8 *param_read_buf, 3618 u8 param_size) 3619 { 3620 int ret; 3621 u8 *desc_buf; 3622 int buff_len = QUERY_DESC_MAX_SIZE; 3623 bool is_kmalloc = true; 3624 3625 /* Safety check */ 3626 if (desc_id >= QUERY_DESC_IDN_MAX || !param_size) 3627 return -EINVAL; 3628 3629 /* Check whether we need temp memory */ 3630 if (param_offset != 0 || param_size < buff_len) { 3631 desc_buf = kzalloc(buff_len, GFP_KERNEL); 3632 if (!desc_buf) 3633 return -ENOMEM; 3634 } else { 3635 desc_buf = param_read_buf; 3636 is_kmalloc = false; 3637 } 3638 3639 /* Request for full descriptor */ 3640 ret = ufshcd_query_descriptor_retry(hba, UPIU_QUERY_OPCODE_READ_DESC, 3641 desc_id, desc_index, 0, 3642 desc_buf, &buff_len); 3643 if (ret) { 3644 dev_err(hba->dev, "%s: Failed reading descriptor. desc_id %d, desc_index %d, param_offset %d, ret %d\n", 3645 __func__, desc_id, desc_index, param_offset, ret); 3646 goto out; 3647 } 3648 3649 /* Update descriptor length */ 3650 buff_len = desc_buf[QUERY_DESC_LENGTH_OFFSET]; 3651 3652 if (param_offset >= buff_len) { 3653 dev_err(hba->dev, "%s: Invalid offset 0x%x in descriptor IDN 0x%x, length 0x%x\n", 3654 __func__, param_offset, desc_id, buff_len); 3655 ret = -EINVAL; 3656 goto out; 3657 } 3658 3659 /* Sanity check */ 3660 if (desc_buf[QUERY_DESC_DESC_TYPE_OFFSET] != desc_id) { 3661 dev_err(hba->dev, "%s: invalid desc_id %d in descriptor header\n", 3662 __func__, desc_buf[QUERY_DESC_DESC_TYPE_OFFSET]); 3663 ret = -EINVAL; 3664 goto out; 3665 } 3666 3667 if (is_kmalloc) { 3668 /* Make sure we don't copy more data than available */ 3669 if (param_offset >= buff_len) 3670 ret = -EINVAL; 3671 else 3672 memcpy(param_read_buf, &desc_buf[param_offset], 3673 min_t(u32, param_size, buff_len - param_offset)); 3674 } 3675 out: 3676 if (is_kmalloc) 3677 kfree(desc_buf); 3678 return ret; 3679 } 3680 3681 /** 3682 * struct uc_string_id - unicode string 3683 * 3684 * @len: size of this descriptor inclusive 3685 * @type: descriptor type 3686 * @uc: unicode string character 3687 */ 3688 struct uc_string_id { 3689 u8 len; 3690 u8 type; 3691 wchar_t uc[]; 3692 } __packed; 3693 3694 /* replace non-printable or non-ASCII characters with spaces */ 3695 static inline char ufshcd_remove_non_printable(u8 ch) 3696 { 3697 return (ch >= 0x20 && ch <= 0x7e) ? ch : ' '; 3698 } 3699 3700 /** 3701 * ufshcd_read_string_desc - read string descriptor 3702 * @hba: pointer to adapter instance 3703 * @desc_index: descriptor index 3704 * @buf: pointer to buffer where descriptor would be read, 3705 * the caller should free the memory. 3706 * @ascii: if true convert from unicode to ascii characters 3707 * null terminated string. 3708 * 3709 * Return: 3710 * * string size on success. 3711 * * -ENOMEM: on allocation failure 3712 * * -EINVAL: on a wrong parameter 3713 */ 3714 int ufshcd_read_string_desc(struct ufs_hba *hba, u8 desc_index, 3715 u8 **buf, bool ascii) 3716 { 3717 struct uc_string_id *uc_str; 3718 u8 *str; 3719 int ret; 3720 3721 if (!buf) 3722 return -EINVAL; 3723 3724 uc_str = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL); 3725 if (!uc_str) 3726 return -ENOMEM; 3727 3728 ret = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_STRING, desc_index, 0, 3729 (u8 *)uc_str, QUERY_DESC_MAX_SIZE); 3730 if (ret < 0) { 3731 dev_err(hba->dev, "Reading String Desc failed after %d retries. err = %d\n", 3732 QUERY_REQ_RETRIES, ret); 3733 str = NULL; 3734 goto out; 3735 } 3736 3737 if (uc_str->len <= QUERY_DESC_HDR_SIZE) { 3738 dev_dbg(hba->dev, "String Desc is of zero length\n"); 3739 str = NULL; 3740 ret = 0; 3741 goto out; 3742 } 3743 3744 if (ascii) { 3745 ssize_t ascii_len; 3746 int i; 3747 /* remove header and divide by 2 to move from UTF16 to UTF8 */ 3748 ascii_len = (uc_str->len - QUERY_DESC_HDR_SIZE) / 2 + 1; 3749 str = kzalloc(ascii_len, GFP_KERNEL); 3750 if (!str) { 3751 ret = -ENOMEM; 3752 goto out; 3753 } 3754 3755 /* 3756 * the descriptor contains string in UTF16 format 3757 * we need to convert to utf-8 so it can be displayed 3758 */ 3759 ret = utf16s_to_utf8s(uc_str->uc, 3760 uc_str->len - QUERY_DESC_HDR_SIZE, 3761 UTF16_BIG_ENDIAN, str, ascii_len - 1); 3762 3763 /* replace non-printable or non-ASCII characters with spaces */ 3764 for (i = 0; i < ret; i++) 3765 str[i] = ufshcd_remove_non_printable(str[i]); 3766 3767 str[ret++] = '\0'; 3768 3769 } else { 3770 str = kmemdup(uc_str, uc_str->len, GFP_KERNEL); 3771 if (!str) { 3772 ret = -ENOMEM; 3773 goto out; 3774 } 3775 ret = uc_str->len; 3776 } 3777 out: 3778 *buf = str; 3779 kfree(uc_str); 3780 return ret; 3781 } 3782 3783 /** 3784 * ufshcd_read_unit_desc_param - read the specified unit descriptor parameter 3785 * @hba: Pointer to adapter instance 3786 * @lun: lun id 3787 * @param_offset: offset of the parameter to read 3788 * @param_read_buf: pointer to buffer where parameter would be read 3789 * @param_size: sizeof(param_read_buf) 3790 * 3791 * Return: 0 in case of success, non-zero otherwise. 3792 */ 3793 static inline int ufshcd_read_unit_desc_param(struct ufs_hba *hba, 3794 int lun, 3795 enum unit_desc_param param_offset, 3796 u8 *param_read_buf, 3797 u32 param_size) 3798 { 3799 /* 3800 * Unit descriptors are only available for general purpose LUs (LUN id 3801 * from 0 to 7) and RPMB Well known LU. 3802 */ 3803 if (!ufs_is_valid_unit_desc_lun(&hba->dev_info, lun)) 3804 return -EOPNOTSUPP; 3805 3806 return ufshcd_read_desc_param(hba, QUERY_DESC_IDN_UNIT, lun, 3807 param_offset, param_read_buf, param_size); 3808 } 3809 3810 static int ufshcd_get_ref_clk_gating_wait(struct ufs_hba *hba) 3811 { 3812 int err = 0; 3813 u32 gating_wait = UFSHCD_REF_CLK_GATING_WAIT_US; 3814 3815 if (hba->dev_info.wspecversion >= 0x300) { 3816 err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR, 3817 QUERY_ATTR_IDN_REF_CLK_GATING_WAIT_TIME, 0, 0, 3818 &gating_wait); 3819 if (err) 3820 dev_err(hba->dev, "Failed reading bRefClkGatingWait. err = %d, use default %uus\n", 3821 err, gating_wait); 3822 3823 if (gating_wait == 0) { 3824 gating_wait = UFSHCD_REF_CLK_GATING_WAIT_US; 3825 dev_err(hba->dev, "Undefined ref clk gating wait time, use default %uus\n", 3826 gating_wait); 3827 } 3828 3829 hba->dev_info.clk_gating_wait_us = gating_wait; 3830 } 3831 3832 return err; 3833 } 3834 3835 /** 3836 * ufshcd_memory_alloc - allocate memory for host memory space data structures 3837 * @hba: per adapter instance 3838 * 3839 * 1. Allocate DMA memory for Command Descriptor array 3840 * Each command descriptor consist of Command UPIU, Response UPIU and PRDT 3841 * 2. Allocate DMA memory for UTP Transfer Request Descriptor List (UTRDL). 3842 * 3. Allocate DMA memory for UTP Task Management Request Descriptor List 3843 * (UTMRDL) 3844 * 4. Allocate memory for local reference block(lrb). 3845 * 3846 * Return: 0 for success, non-zero in case of failure. 3847 */ 3848 static int ufshcd_memory_alloc(struct ufs_hba *hba) 3849 { 3850 size_t utmrdl_size, utrdl_size, ucdl_size; 3851 3852 /* Allocate memory for UTP command descriptors */ 3853 ucdl_size = ufshcd_get_ucd_size(hba) * hba->nutrs; 3854 hba->ucdl_base_addr = dmam_alloc_coherent(hba->dev, 3855 ucdl_size, 3856 &hba->ucdl_dma_addr, 3857 GFP_KERNEL); 3858 3859 /* 3860 * UFSHCI requires UTP command descriptor to be 128 byte aligned. 3861 */ 3862 if (!hba->ucdl_base_addr || 3863 WARN_ON(hba->ucdl_dma_addr & (128 - 1))) { 3864 dev_err(hba->dev, 3865 "Command Descriptor Memory allocation failed\n"); 3866 goto out; 3867 } 3868 3869 /* 3870 * Allocate memory for UTP Transfer descriptors 3871 * UFSHCI requires 1KB alignment of UTRD 3872 */ 3873 utrdl_size = (sizeof(struct utp_transfer_req_desc) * hba->nutrs); 3874 hba->utrdl_base_addr = dmam_alloc_coherent(hba->dev, 3875 utrdl_size, 3876 &hba->utrdl_dma_addr, 3877 GFP_KERNEL); 3878 if (!hba->utrdl_base_addr || 3879 WARN_ON(hba->utrdl_dma_addr & (SZ_1K - 1))) { 3880 dev_err(hba->dev, 3881 "Transfer Descriptor Memory allocation failed\n"); 3882 goto out; 3883 } 3884 3885 /* 3886 * Skip utmrdl allocation; it may have been 3887 * allocated during first pass and not released during 3888 * MCQ memory allocation. 3889 * See ufshcd_release_sdb_queue() and ufshcd_config_mcq() 3890 */ 3891 if (hba->utmrdl_base_addr) 3892 goto skip_utmrdl; 3893 /* 3894 * Allocate memory for UTP Task Management descriptors 3895 * UFSHCI requires 1KB alignment of UTMRD 3896 */ 3897 utmrdl_size = sizeof(struct utp_task_req_desc) * hba->nutmrs; 3898 hba->utmrdl_base_addr = dmam_alloc_coherent(hba->dev, 3899 utmrdl_size, 3900 &hba->utmrdl_dma_addr, 3901 GFP_KERNEL); 3902 if (!hba->utmrdl_base_addr || 3903 WARN_ON(hba->utmrdl_dma_addr & (SZ_1K - 1))) { 3904 dev_err(hba->dev, 3905 "Task Management Descriptor Memory allocation failed\n"); 3906 goto out; 3907 } 3908 3909 skip_utmrdl: 3910 /* Allocate memory for local reference block */ 3911 hba->lrb = devm_kcalloc(hba->dev, 3912 hba->nutrs, sizeof(struct ufshcd_lrb), 3913 GFP_KERNEL); 3914 if (!hba->lrb) { 3915 dev_err(hba->dev, "LRB Memory allocation failed\n"); 3916 goto out; 3917 } 3918 return 0; 3919 out: 3920 return -ENOMEM; 3921 } 3922 3923 /** 3924 * ufshcd_host_memory_configure - configure local reference block with 3925 * memory offsets 3926 * @hba: per adapter instance 3927 * 3928 * Configure Host memory space 3929 * 1. Update Corresponding UTRD.UCDBA and UTRD.UCDBAU with UCD DMA 3930 * address. 3931 * 2. Update each UTRD with Response UPIU offset, Response UPIU length 3932 * and PRDT offset. 3933 * 3. Save the corresponding addresses of UTRD, UCD.CMD, UCD.RSP and UCD.PRDT 3934 * into local reference block. 3935 */ 3936 static void ufshcd_host_memory_configure(struct ufs_hba *hba) 3937 { 3938 struct utp_transfer_req_desc *utrdlp; 3939 dma_addr_t cmd_desc_dma_addr; 3940 dma_addr_t cmd_desc_element_addr; 3941 u16 response_offset; 3942 u16 prdt_offset; 3943 int cmd_desc_size; 3944 int i; 3945 3946 utrdlp = hba->utrdl_base_addr; 3947 3948 response_offset = 3949 offsetof(struct utp_transfer_cmd_desc, response_upiu); 3950 prdt_offset = 3951 offsetof(struct utp_transfer_cmd_desc, prd_table); 3952 3953 cmd_desc_size = ufshcd_get_ucd_size(hba); 3954 cmd_desc_dma_addr = hba->ucdl_dma_addr; 3955 3956 for (i = 0; i < hba->nutrs; i++) { 3957 /* Configure UTRD with command descriptor base address */ 3958 cmd_desc_element_addr = 3959 (cmd_desc_dma_addr + (cmd_desc_size * i)); 3960 utrdlp[i].command_desc_base_addr = 3961 cpu_to_le64(cmd_desc_element_addr); 3962 3963 /* Response upiu and prdt offset should be in double words */ 3964 if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN) { 3965 utrdlp[i].response_upiu_offset = 3966 cpu_to_le16(response_offset); 3967 utrdlp[i].prd_table_offset = 3968 cpu_to_le16(prdt_offset); 3969 utrdlp[i].response_upiu_length = 3970 cpu_to_le16(ALIGNED_UPIU_SIZE); 3971 } else { 3972 utrdlp[i].response_upiu_offset = 3973 cpu_to_le16(response_offset >> 2); 3974 utrdlp[i].prd_table_offset = 3975 cpu_to_le16(prdt_offset >> 2); 3976 utrdlp[i].response_upiu_length = 3977 cpu_to_le16(ALIGNED_UPIU_SIZE >> 2); 3978 } 3979 3980 ufshcd_init_lrb(hba, &hba->lrb[i], i); 3981 } 3982 } 3983 3984 /** 3985 * ufshcd_dme_link_startup - Notify Unipro to perform link startup 3986 * @hba: per adapter instance 3987 * 3988 * UIC_CMD_DME_LINK_STARTUP command must be issued to Unipro layer, 3989 * in order to initialize the Unipro link startup procedure. 3990 * Once the Unipro links are up, the device connected to the controller 3991 * is detected. 3992 * 3993 * Return: 0 on success, non-zero value on failure. 3994 */ 3995 static int ufshcd_dme_link_startup(struct ufs_hba *hba) 3996 { 3997 struct uic_command uic_cmd = { 3998 .command = UIC_CMD_DME_LINK_STARTUP, 3999 }; 4000 int ret; 4001 4002 ret = ufshcd_send_uic_cmd(hba, &uic_cmd); 4003 if (ret) 4004 dev_dbg(hba->dev, 4005 "dme-link-startup: error code %d\n", ret); 4006 return ret; 4007 } 4008 /** 4009 * ufshcd_dme_reset - UIC command for DME_RESET 4010 * @hba: per adapter instance 4011 * 4012 * DME_RESET command is issued in order to reset UniPro stack. 4013 * This function now deals with cold reset. 4014 * 4015 * Return: 0 on success, non-zero value on failure. 4016 */ 4017 static int ufshcd_dme_reset(struct ufs_hba *hba) 4018 { 4019 struct uic_command uic_cmd = { 4020 .command = UIC_CMD_DME_RESET, 4021 }; 4022 int ret; 4023 4024 ret = ufshcd_send_uic_cmd(hba, &uic_cmd); 4025 if (ret) 4026 dev_err(hba->dev, 4027 "dme-reset: error code %d\n", ret); 4028 4029 return ret; 4030 } 4031 4032 int ufshcd_dme_configure_adapt(struct ufs_hba *hba, 4033 int agreed_gear, 4034 int adapt_val) 4035 { 4036 int ret; 4037 4038 if (agreed_gear < UFS_HS_G4) 4039 adapt_val = PA_NO_ADAPT; 4040 4041 ret = ufshcd_dme_set(hba, 4042 UIC_ARG_MIB(PA_TXHSADAPTTYPE), 4043 adapt_val); 4044 return ret; 4045 } 4046 EXPORT_SYMBOL_GPL(ufshcd_dme_configure_adapt); 4047 4048 /** 4049 * ufshcd_dme_enable - UIC command for DME_ENABLE 4050 * @hba: per adapter instance 4051 * 4052 * DME_ENABLE command is issued in order to enable UniPro stack. 4053 * 4054 * Return: 0 on success, non-zero value on failure. 4055 */ 4056 static int ufshcd_dme_enable(struct ufs_hba *hba) 4057 { 4058 struct uic_command uic_cmd = { 4059 .command = UIC_CMD_DME_ENABLE, 4060 }; 4061 int ret; 4062 4063 ret = ufshcd_send_uic_cmd(hba, &uic_cmd); 4064 if (ret) 4065 dev_err(hba->dev, 4066 "dme-enable: error code %d\n", ret); 4067 4068 return ret; 4069 } 4070 4071 static inline void ufshcd_add_delay_before_dme_cmd(struct ufs_hba *hba) 4072 { 4073 #define MIN_DELAY_BEFORE_DME_CMDS_US 1000 4074 unsigned long min_sleep_time_us; 4075 4076 if (!(hba->quirks & UFSHCD_QUIRK_DELAY_BEFORE_DME_CMDS)) 4077 return; 4078 4079 /* 4080 * last_dme_cmd_tstamp will be 0 only for 1st call to 4081 * this function 4082 */ 4083 if (unlikely(!ktime_to_us(hba->last_dme_cmd_tstamp))) { 4084 min_sleep_time_us = MIN_DELAY_BEFORE_DME_CMDS_US; 4085 } else { 4086 unsigned long delta = 4087 (unsigned long) ktime_to_us( 4088 ktime_sub(ktime_get(), 4089 hba->last_dme_cmd_tstamp)); 4090 4091 if (delta < MIN_DELAY_BEFORE_DME_CMDS_US) 4092 min_sleep_time_us = 4093 MIN_DELAY_BEFORE_DME_CMDS_US - delta; 4094 else 4095 min_sleep_time_us = 0; /* no more delay required */ 4096 } 4097 4098 if (min_sleep_time_us > 0) { 4099 /* allow sleep for extra 50us if needed */ 4100 usleep_range(min_sleep_time_us, min_sleep_time_us + 50); 4101 } 4102 4103 /* update the last_dme_cmd_tstamp */ 4104 hba->last_dme_cmd_tstamp = ktime_get(); 4105 } 4106 4107 /** 4108 * ufshcd_dme_set_attr - UIC command for DME_SET, DME_PEER_SET 4109 * @hba: per adapter instance 4110 * @attr_sel: uic command argument1 4111 * @attr_set: attribute set type as uic command argument2 4112 * @mib_val: setting value as uic command argument3 4113 * @peer: indicate whether peer or local 4114 * 4115 * Return: 0 on success, non-zero value on failure. 4116 */ 4117 int ufshcd_dme_set_attr(struct ufs_hba *hba, u32 attr_sel, 4118 u8 attr_set, u32 mib_val, u8 peer) 4119 { 4120 struct uic_command uic_cmd = { 4121 .command = peer ? UIC_CMD_DME_PEER_SET : UIC_CMD_DME_SET, 4122 .argument1 = attr_sel, 4123 .argument2 = UIC_ARG_ATTR_TYPE(attr_set), 4124 .argument3 = mib_val, 4125 }; 4126 static const char *const action[] = { 4127 "dme-set", 4128 "dme-peer-set" 4129 }; 4130 const char *set = action[!!peer]; 4131 int ret; 4132 int retries = UFS_UIC_COMMAND_RETRIES; 4133 4134 do { 4135 /* for peer attributes we retry upon failure */ 4136 ret = ufshcd_send_uic_cmd(hba, &uic_cmd); 4137 if (ret) 4138 dev_dbg(hba->dev, "%s: attr-id 0x%x val 0x%x error code %d\n", 4139 set, UIC_GET_ATTR_ID(attr_sel), mib_val, ret); 4140 } while (ret && peer && --retries); 4141 4142 if (ret) 4143 dev_err(hba->dev, "%s: attr-id 0x%x val 0x%x failed %d retries\n", 4144 set, UIC_GET_ATTR_ID(attr_sel), mib_val, 4145 UFS_UIC_COMMAND_RETRIES - retries); 4146 4147 return ret; 4148 } 4149 EXPORT_SYMBOL_GPL(ufshcd_dme_set_attr); 4150 4151 /** 4152 * ufshcd_dme_get_attr - UIC command for DME_GET, DME_PEER_GET 4153 * @hba: per adapter instance 4154 * @attr_sel: uic command argument1 4155 * @mib_val: the value of the attribute as returned by the UIC command 4156 * @peer: indicate whether peer or local 4157 * 4158 * Return: 0 on success, non-zero value on failure. 4159 */ 4160 int ufshcd_dme_get_attr(struct ufs_hba *hba, u32 attr_sel, 4161 u32 *mib_val, u8 peer) 4162 { 4163 struct uic_command uic_cmd = { 4164 .command = peer ? UIC_CMD_DME_PEER_GET : UIC_CMD_DME_GET, 4165 .argument1 = attr_sel, 4166 }; 4167 static const char *const action[] = { 4168 "dme-get", 4169 "dme-peer-get" 4170 }; 4171 const char *get = action[!!peer]; 4172 int ret; 4173 int retries = UFS_UIC_COMMAND_RETRIES; 4174 struct ufs_pa_layer_attr orig_pwr_info; 4175 struct ufs_pa_layer_attr temp_pwr_info; 4176 bool pwr_mode_change = false; 4177 4178 if (peer && (hba->quirks & UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE)) { 4179 orig_pwr_info = hba->pwr_info; 4180 temp_pwr_info = orig_pwr_info; 4181 4182 if (orig_pwr_info.pwr_tx == FAST_MODE || 4183 orig_pwr_info.pwr_rx == FAST_MODE) { 4184 temp_pwr_info.pwr_tx = FASTAUTO_MODE; 4185 temp_pwr_info.pwr_rx = FASTAUTO_MODE; 4186 pwr_mode_change = true; 4187 } else if (orig_pwr_info.pwr_tx == SLOW_MODE || 4188 orig_pwr_info.pwr_rx == SLOW_MODE) { 4189 temp_pwr_info.pwr_tx = SLOWAUTO_MODE; 4190 temp_pwr_info.pwr_rx = SLOWAUTO_MODE; 4191 pwr_mode_change = true; 4192 } 4193 if (pwr_mode_change) { 4194 ret = ufshcd_change_power_mode(hba, &temp_pwr_info); 4195 if (ret) 4196 goto out; 4197 } 4198 } 4199 4200 do { 4201 /* for peer attributes we retry upon failure */ 4202 ret = ufshcd_send_uic_cmd(hba, &uic_cmd); 4203 if (ret) 4204 dev_dbg(hba->dev, "%s: attr-id 0x%x error code %d\n", 4205 get, UIC_GET_ATTR_ID(attr_sel), ret); 4206 } while (ret && peer && --retries); 4207 4208 if (ret) 4209 dev_err(hba->dev, "%s: attr-id 0x%x failed %d retries\n", 4210 get, UIC_GET_ATTR_ID(attr_sel), 4211 UFS_UIC_COMMAND_RETRIES - retries); 4212 4213 if (mib_val && !ret) 4214 *mib_val = uic_cmd.argument3; 4215 4216 if (peer && (hba->quirks & UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE) 4217 && pwr_mode_change) 4218 ufshcd_change_power_mode(hba, &orig_pwr_info); 4219 out: 4220 return ret; 4221 } 4222 EXPORT_SYMBOL_GPL(ufshcd_dme_get_attr); 4223 4224 /** 4225 * ufshcd_uic_pwr_ctrl - executes UIC commands (which affects the link power 4226 * state) and waits for it to take effect. 4227 * 4228 * @hba: per adapter instance 4229 * @cmd: UIC command to execute 4230 * 4231 * DME operations like DME_SET(PA_PWRMODE), DME_HIBERNATE_ENTER & 4232 * DME_HIBERNATE_EXIT commands take some time to take its effect on both host 4233 * and device UniPro link and hence it's final completion would be indicated by 4234 * dedicated status bits in Interrupt Status register (UPMS, UHES, UHXS) in 4235 * addition to normal UIC command completion Status (UCCS). This function only 4236 * returns after the relevant status bits indicate the completion. 4237 * 4238 * Return: 0 on success, non-zero value on failure. 4239 */ 4240 static int ufshcd_uic_pwr_ctrl(struct ufs_hba *hba, struct uic_command *cmd) 4241 { 4242 DECLARE_COMPLETION_ONSTACK(uic_async_done); 4243 unsigned long flags; 4244 u8 status; 4245 int ret; 4246 bool reenable_intr = false; 4247 4248 mutex_lock(&hba->uic_cmd_mutex); 4249 ufshcd_add_delay_before_dme_cmd(hba); 4250 4251 spin_lock_irqsave(hba->host->host_lock, flags); 4252 if (ufshcd_is_link_broken(hba)) { 4253 ret = -ENOLINK; 4254 goto out_unlock; 4255 } 4256 hba->uic_async_done = &uic_async_done; 4257 if (ufshcd_readl(hba, REG_INTERRUPT_ENABLE) & UIC_COMMAND_COMPL) { 4258 ufshcd_disable_intr(hba, UIC_COMMAND_COMPL); 4259 /* 4260 * Make sure UIC command completion interrupt is disabled before 4261 * issuing UIC command. 4262 */ 4263 ufshcd_readl(hba, REG_INTERRUPT_ENABLE); 4264 reenable_intr = true; 4265 } 4266 spin_unlock_irqrestore(hba->host->host_lock, flags); 4267 ret = __ufshcd_send_uic_cmd(hba, cmd); 4268 if (ret) { 4269 dev_err(hba->dev, 4270 "pwr ctrl cmd 0x%x with mode 0x%x uic error %d\n", 4271 cmd->command, cmd->argument3, ret); 4272 goto out; 4273 } 4274 4275 if (!wait_for_completion_timeout(hba->uic_async_done, 4276 msecs_to_jiffies(uic_cmd_timeout))) { 4277 dev_err(hba->dev, 4278 "pwr ctrl cmd 0x%x with mode 0x%x completion timeout\n", 4279 cmd->command, cmd->argument3); 4280 4281 if (!cmd->cmd_active) { 4282 dev_err(hba->dev, "%s: Power Mode Change operation has been completed, go check UPMCRS\n", 4283 __func__); 4284 goto check_upmcrs; 4285 } 4286 4287 ret = -ETIMEDOUT; 4288 goto out; 4289 } 4290 4291 check_upmcrs: 4292 status = ufshcd_get_upmcrs(hba); 4293 if (status != PWR_LOCAL) { 4294 dev_err(hba->dev, 4295 "pwr ctrl cmd 0x%x failed, host upmcrs:0x%x\n", 4296 cmd->command, status); 4297 ret = (status != PWR_OK) ? status : -1; 4298 } 4299 out: 4300 if (ret) { 4301 ufshcd_print_host_state(hba); 4302 ufshcd_print_pwr_info(hba); 4303 ufshcd_print_evt_hist(hba); 4304 } 4305 4306 spin_lock_irqsave(hba->host->host_lock, flags); 4307 hba->active_uic_cmd = NULL; 4308 hba->uic_async_done = NULL; 4309 if (reenable_intr) 4310 ufshcd_enable_intr(hba, UIC_COMMAND_COMPL); 4311 if (ret) { 4312 ufshcd_set_link_broken(hba); 4313 ufshcd_schedule_eh_work(hba); 4314 } 4315 out_unlock: 4316 spin_unlock_irqrestore(hba->host->host_lock, flags); 4317 mutex_unlock(&hba->uic_cmd_mutex); 4318 4319 return ret; 4320 } 4321 4322 /** 4323 * ufshcd_uic_change_pwr_mode - Perform the UIC power mode chage 4324 * using DME_SET primitives. 4325 * @hba: per adapter instance 4326 * @mode: powr mode value 4327 * 4328 * Return: 0 on success, non-zero value on failure. 4329 */ 4330 int ufshcd_uic_change_pwr_mode(struct ufs_hba *hba, u8 mode) 4331 { 4332 struct uic_command uic_cmd = { 4333 .command = UIC_CMD_DME_SET, 4334 .argument1 = UIC_ARG_MIB(PA_PWRMODE), 4335 .argument3 = mode, 4336 }; 4337 int ret; 4338 4339 if (hba->quirks & UFSHCD_QUIRK_BROKEN_PA_RXHSUNTERMCAP) { 4340 ret = ufshcd_dme_set(hba, 4341 UIC_ARG_MIB_SEL(PA_RXHSUNTERMCAP, 0), 1); 4342 if (ret) { 4343 dev_err(hba->dev, "%s: failed to enable PA_RXHSUNTERMCAP ret %d\n", 4344 __func__, ret); 4345 goto out; 4346 } 4347 } 4348 4349 ufshcd_hold(hba); 4350 ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd); 4351 ufshcd_release(hba); 4352 4353 out: 4354 return ret; 4355 } 4356 EXPORT_SYMBOL_GPL(ufshcd_uic_change_pwr_mode); 4357 4358 int ufshcd_link_recovery(struct ufs_hba *hba) 4359 { 4360 int ret; 4361 unsigned long flags; 4362 4363 spin_lock_irqsave(hba->host->host_lock, flags); 4364 hba->ufshcd_state = UFSHCD_STATE_RESET; 4365 ufshcd_set_eh_in_progress(hba); 4366 spin_unlock_irqrestore(hba->host->host_lock, flags); 4367 4368 /* Reset the attached device */ 4369 ufshcd_device_reset(hba); 4370 4371 ret = ufshcd_host_reset_and_restore(hba); 4372 4373 spin_lock_irqsave(hba->host->host_lock, flags); 4374 if (ret) 4375 hba->ufshcd_state = UFSHCD_STATE_ERROR; 4376 ufshcd_clear_eh_in_progress(hba); 4377 spin_unlock_irqrestore(hba->host->host_lock, flags); 4378 4379 if (ret) 4380 dev_err(hba->dev, "%s: link recovery failed, err %d", 4381 __func__, ret); 4382 4383 return ret; 4384 } 4385 EXPORT_SYMBOL_GPL(ufshcd_link_recovery); 4386 4387 int ufshcd_uic_hibern8_enter(struct ufs_hba *hba) 4388 { 4389 struct uic_command uic_cmd = { 4390 .command = UIC_CMD_DME_HIBER_ENTER, 4391 }; 4392 ktime_t start = ktime_get(); 4393 int ret; 4394 4395 ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_ENTER, PRE_CHANGE); 4396 4397 ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd); 4398 trace_ufshcd_profile_hibern8(dev_name(hba->dev), "enter", 4399 ktime_to_us(ktime_sub(ktime_get(), start)), ret); 4400 4401 if (ret) 4402 dev_err(hba->dev, "%s: hibern8 enter failed. ret = %d\n", 4403 __func__, ret); 4404 else 4405 ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_ENTER, 4406 POST_CHANGE); 4407 4408 return ret; 4409 } 4410 EXPORT_SYMBOL_GPL(ufshcd_uic_hibern8_enter); 4411 4412 int ufshcd_uic_hibern8_exit(struct ufs_hba *hba) 4413 { 4414 struct uic_command uic_cmd = { 4415 .command = UIC_CMD_DME_HIBER_EXIT, 4416 }; 4417 int ret; 4418 ktime_t start = ktime_get(); 4419 4420 ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_EXIT, PRE_CHANGE); 4421 4422 ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd); 4423 trace_ufshcd_profile_hibern8(dev_name(hba->dev), "exit", 4424 ktime_to_us(ktime_sub(ktime_get(), start)), ret); 4425 4426 if (ret) { 4427 dev_err(hba->dev, "%s: hibern8 exit failed. ret = %d\n", 4428 __func__, ret); 4429 } else { 4430 ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_EXIT, 4431 POST_CHANGE); 4432 hba->ufs_stats.last_hibern8_exit_tstamp = local_clock(); 4433 hba->ufs_stats.hibern8_exit_cnt++; 4434 } 4435 4436 return ret; 4437 } 4438 EXPORT_SYMBOL_GPL(ufshcd_uic_hibern8_exit); 4439 4440 static void ufshcd_configure_auto_hibern8(struct ufs_hba *hba) 4441 { 4442 if (!ufshcd_is_auto_hibern8_supported(hba)) 4443 return; 4444 4445 ufshcd_writel(hba, hba->ahit, REG_AUTO_HIBERNATE_IDLE_TIMER); 4446 } 4447 4448 void ufshcd_auto_hibern8_update(struct ufs_hba *hba, u32 ahit) 4449 { 4450 const u32 cur_ahit = READ_ONCE(hba->ahit); 4451 4452 if (!ufshcd_is_auto_hibern8_supported(hba) || cur_ahit == ahit) 4453 return; 4454 4455 WRITE_ONCE(hba->ahit, ahit); 4456 if (!pm_runtime_suspended(&hba->ufs_device_wlun->sdev_gendev)) { 4457 ufshcd_rpm_get_sync(hba); 4458 ufshcd_hold(hba); 4459 ufshcd_configure_auto_hibern8(hba); 4460 ufshcd_release(hba); 4461 ufshcd_rpm_put_sync(hba); 4462 } 4463 } 4464 EXPORT_SYMBOL_GPL(ufshcd_auto_hibern8_update); 4465 4466 /** 4467 * ufshcd_init_pwr_info - setting the POR (power on reset) 4468 * values in hba power info 4469 * @hba: per-adapter instance 4470 */ 4471 static void ufshcd_init_pwr_info(struct ufs_hba *hba) 4472 { 4473 hba->pwr_info.gear_rx = UFS_PWM_G1; 4474 hba->pwr_info.gear_tx = UFS_PWM_G1; 4475 hba->pwr_info.lane_rx = UFS_LANE_1; 4476 hba->pwr_info.lane_tx = UFS_LANE_1; 4477 hba->pwr_info.pwr_rx = SLOWAUTO_MODE; 4478 hba->pwr_info.pwr_tx = SLOWAUTO_MODE; 4479 hba->pwr_info.hs_rate = 0; 4480 } 4481 4482 /** 4483 * ufshcd_get_max_pwr_mode - reads the max power mode negotiated with device 4484 * @hba: per-adapter instance 4485 * 4486 * Return: 0 upon success; < 0 upon failure. 4487 */ 4488 static int ufshcd_get_max_pwr_mode(struct ufs_hba *hba) 4489 { 4490 struct ufs_pa_layer_attr *pwr_info = &hba->max_pwr_info.info; 4491 4492 if (hba->max_pwr_info.is_valid) 4493 return 0; 4494 4495 if (hba->quirks & UFSHCD_QUIRK_HIBERN_FASTAUTO) { 4496 pwr_info->pwr_tx = FASTAUTO_MODE; 4497 pwr_info->pwr_rx = FASTAUTO_MODE; 4498 } else { 4499 pwr_info->pwr_tx = FAST_MODE; 4500 pwr_info->pwr_rx = FAST_MODE; 4501 } 4502 pwr_info->hs_rate = PA_HS_MODE_B; 4503 4504 /* Get the connected lane count */ 4505 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDRXDATALANES), 4506 &pwr_info->lane_rx); 4507 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES), 4508 &pwr_info->lane_tx); 4509 4510 if (!pwr_info->lane_rx || !pwr_info->lane_tx) { 4511 dev_err(hba->dev, "%s: invalid connected lanes value. rx=%d, tx=%d\n", 4512 __func__, 4513 pwr_info->lane_rx, 4514 pwr_info->lane_tx); 4515 return -EINVAL; 4516 } 4517 4518 if (pwr_info->lane_rx != pwr_info->lane_tx) { 4519 dev_err(hba->dev, "%s: asymmetric connected lanes. rx=%d, tx=%d\n", 4520 __func__, 4521 pwr_info->lane_rx, 4522 pwr_info->lane_tx); 4523 return -EINVAL; 4524 } 4525 4526 /* 4527 * First, get the maximum gears of HS speed. 4528 * If a zero value, it means there is no HSGEAR capability. 4529 * Then, get the maximum gears of PWM speed. 4530 */ 4531 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_MAXRXHSGEAR), &pwr_info->gear_rx); 4532 if (!pwr_info->gear_rx) { 4533 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_MAXRXPWMGEAR), 4534 &pwr_info->gear_rx); 4535 if (!pwr_info->gear_rx) { 4536 dev_err(hba->dev, "%s: invalid max pwm rx gear read = %d\n", 4537 __func__, pwr_info->gear_rx); 4538 return -EINVAL; 4539 } 4540 pwr_info->pwr_rx = SLOW_MODE; 4541 } 4542 4543 ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_MAXRXHSGEAR), 4544 &pwr_info->gear_tx); 4545 if (!pwr_info->gear_tx) { 4546 ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_MAXRXPWMGEAR), 4547 &pwr_info->gear_tx); 4548 if (!pwr_info->gear_tx) { 4549 dev_err(hba->dev, "%s: invalid max pwm tx gear read = %d\n", 4550 __func__, pwr_info->gear_tx); 4551 return -EINVAL; 4552 } 4553 pwr_info->pwr_tx = SLOW_MODE; 4554 } 4555 4556 hba->max_pwr_info.is_valid = true; 4557 return 0; 4558 } 4559 4560 static int ufshcd_change_power_mode(struct ufs_hba *hba, 4561 struct ufs_pa_layer_attr *pwr_mode) 4562 { 4563 int ret; 4564 4565 /* if already configured to the requested pwr_mode */ 4566 if (!hba->force_pmc && 4567 pwr_mode->gear_rx == hba->pwr_info.gear_rx && 4568 pwr_mode->gear_tx == hba->pwr_info.gear_tx && 4569 pwr_mode->lane_rx == hba->pwr_info.lane_rx && 4570 pwr_mode->lane_tx == hba->pwr_info.lane_tx && 4571 pwr_mode->pwr_rx == hba->pwr_info.pwr_rx && 4572 pwr_mode->pwr_tx == hba->pwr_info.pwr_tx && 4573 pwr_mode->hs_rate == hba->pwr_info.hs_rate) { 4574 dev_dbg(hba->dev, "%s: power already configured\n", __func__); 4575 return 0; 4576 } 4577 4578 /* 4579 * Configure attributes for power mode change with below. 4580 * - PA_RXGEAR, PA_ACTIVERXDATALANES, PA_RXTERMINATION, 4581 * - PA_TXGEAR, PA_ACTIVETXDATALANES, PA_TXTERMINATION, 4582 * - PA_HSSERIES 4583 */ 4584 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXGEAR), pwr_mode->gear_rx); 4585 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVERXDATALANES), 4586 pwr_mode->lane_rx); 4587 if (pwr_mode->pwr_rx == FASTAUTO_MODE || 4588 pwr_mode->pwr_rx == FAST_MODE) 4589 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), true); 4590 else 4591 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), false); 4592 4593 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXGEAR), pwr_mode->gear_tx); 4594 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVETXDATALANES), 4595 pwr_mode->lane_tx); 4596 if (pwr_mode->pwr_tx == FASTAUTO_MODE || 4597 pwr_mode->pwr_tx == FAST_MODE) 4598 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), true); 4599 else 4600 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), false); 4601 4602 if (pwr_mode->pwr_rx == FASTAUTO_MODE || 4603 pwr_mode->pwr_tx == FASTAUTO_MODE || 4604 pwr_mode->pwr_rx == FAST_MODE || 4605 pwr_mode->pwr_tx == FAST_MODE) 4606 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_HSSERIES), 4607 pwr_mode->hs_rate); 4608 4609 if (!(hba->quirks & UFSHCD_QUIRK_SKIP_DEF_UNIPRO_TIMEOUT_SETTING)) { 4610 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA0), 4611 DL_FC0ProtectionTimeOutVal_Default); 4612 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA1), 4613 DL_TC0ReplayTimeOutVal_Default); 4614 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA2), 4615 DL_AFC0ReqTimeOutVal_Default); 4616 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA3), 4617 DL_FC1ProtectionTimeOutVal_Default); 4618 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA4), 4619 DL_TC1ReplayTimeOutVal_Default); 4620 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA5), 4621 DL_AFC1ReqTimeOutVal_Default); 4622 4623 ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalFC0ProtectionTimeOutVal), 4624 DL_FC0ProtectionTimeOutVal_Default); 4625 ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalTC0ReplayTimeOutVal), 4626 DL_TC0ReplayTimeOutVal_Default); 4627 ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalAFC0ReqTimeOutVal), 4628 DL_AFC0ReqTimeOutVal_Default); 4629 } 4630 4631 ret = ufshcd_uic_change_pwr_mode(hba, pwr_mode->pwr_rx << 4 4632 | pwr_mode->pwr_tx); 4633 4634 if (ret) { 4635 dev_err(hba->dev, 4636 "%s: power mode change failed %d\n", __func__, ret); 4637 } else { 4638 ufshcd_vops_pwr_change_notify(hba, POST_CHANGE, NULL, 4639 pwr_mode); 4640 4641 memcpy(&hba->pwr_info, pwr_mode, 4642 sizeof(struct ufs_pa_layer_attr)); 4643 } 4644 4645 return ret; 4646 } 4647 4648 /** 4649 * ufshcd_config_pwr_mode - configure a new power mode 4650 * @hba: per-adapter instance 4651 * @desired_pwr_mode: desired power configuration 4652 * 4653 * Return: 0 upon success; < 0 upon failure. 4654 */ 4655 int ufshcd_config_pwr_mode(struct ufs_hba *hba, 4656 struct ufs_pa_layer_attr *desired_pwr_mode) 4657 { 4658 struct ufs_pa_layer_attr final_params = { 0 }; 4659 int ret; 4660 4661 ret = ufshcd_vops_pwr_change_notify(hba, PRE_CHANGE, 4662 desired_pwr_mode, &final_params); 4663 4664 if (ret) 4665 memcpy(&final_params, desired_pwr_mode, sizeof(final_params)); 4666 4667 ret = ufshcd_change_power_mode(hba, &final_params); 4668 4669 return ret; 4670 } 4671 EXPORT_SYMBOL_GPL(ufshcd_config_pwr_mode); 4672 4673 /** 4674 * ufshcd_complete_dev_init() - checks device readiness 4675 * @hba: per-adapter instance 4676 * 4677 * Set fDeviceInit flag and poll until device toggles it. 4678 * 4679 * Return: 0 upon success; < 0 upon failure. 4680 */ 4681 static int ufshcd_complete_dev_init(struct ufs_hba *hba) 4682 { 4683 int err; 4684 bool flag_res = true; 4685 ktime_t timeout; 4686 4687 err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG, 4688 QUERY_FLAG_IDN_FDEVICEINIT, 0, NULL); 4689 if (err) { 4690 dev_err(hba->dev, 4691 "%s: setting fDeviceInit flag failed with error %d\n", 4692 __func__, err); 4693 goto out; 4694 } 4695 4696 /* Poll fDeviceInit flag to be cleared */ 4697 timeout = ktime_add_ms(ktime_get(), FDEVICEINIT_COMPL_TIMEOUT); 4698 do { 4699 err = ufshcd_query_flag(hba, UPIU_QUERY_OPCODE_READ_FLAG, 4700 QUERY_FLAG_IDN_FDEVICEINIT, 0, &flag_res); 4701 if (!flag_res) 4702 break; 4703 usleep_range(500, 1000); 4704 } while (ktime_before(ktime_get(), timeout)); 4705 4706 if (err) { 4707 dev_err(hba->dev, 4708 "%s: reading fDeviceInit flag failed with error %d\n", 4709 __func__, err); 4710 } else if (flag_res) { 4711 dev_err(hba->dev, 4712 "%s: fDeviceInit was not cleared by the device\n", 4713 __func__); 4714 err = -EBUSY; 4715 } 4716 out: 4717 return err; 4718 } 4719 4720 /** 4721 * ufshcd_make_hba_operational - Make UFS controller operational 4722 * @hba: per adapter instance 4723 * 4724 * To bring UFS host controller to operational state, 4725 * 1. Enable required interrupts 4726 * 2. Configure interrupt aggregation 4727 * 3. Program UTRL and UTMRL base address 4728 * 4. Configure run-stop-registers 4729 * 4730 * Return: 0 on success, non-zero value on failure. 4731 */ 4732 int ufshcd_make_hba_operational(struct ufs_hba *hba) 4733 { 4734 int err = 0; 4735 u32 reg; 4736 4737 /* Enable required interrupts */ 4738 ufshcd_enable_intr(hba, UFSHCD_ENABLE_INTRS); 4739 4740 /* Configure interrupt aggregation */ 4741 if (ufshcd_is_intr_aggr_allowed(hba)) 4742 ufshcd_config_intr_aggr(hba, hba->nutrs - 1, INT_AGGR_DEF_TO); 4743 else 4744 ufshcd_disable_intr_aggr(hba); 4745 4746 /* Configure UTRL and UTMRL base address registers */ 4747 ufshcd_writel(hba, lower_32_bits(hba->utrdl_dma_addr), 4748 REG_UTP_TRANSFER_REQ_LIST_BASE_L); 4749 ufshcd_writel(hba, upper_32_bits(hba->utrdl_dma_addr), 4750 REG_UTP_TRANSFER_REQ_LIST_BASE_H); 4751 ufshcd_writel(hba, lower_32_bits(hba->utmrdl_dma_addr), 4752 REG_UTP_TASK_REQ_LIST_BASE_L); 4753 ufshcd_writel(hba, upper_32_bits(hba->utmrdl_dma_addr), 4754 REG_UTP_TASK_REQ_LIST_BASE_H); 4755 4756 /* 4757 * UCRDY, UTMRLDY and UTRLRDY bits must be 1 4758 */ 4759 reg = ufshcd_readl(hba, REG_CONTROLLER_STATUS); 4760 if (!(ufshcd_get_lists_status(reg))) { 4761 ufshcd_enable_run_stop_reg(hba); 4762 } else { 4763 dev_err(hba->dev, 4764 "Host controller not ready to process requests"); 4765 err = -EIO; 4766 } 4767 4768 return err; 4769 } 4770 EXPORT_SYMBOL_GPL(ufshcd_make_hba_operational); 4771 4772 /** 4773 * ufshcd_hba_stop - Send controller to reset state 4774 * @hba: per adapter instance 4775 */ 4776 void ufshcd_hba_stop(struct ufs_hba *hba) 4777 { 4778 unsigned long flags; 4779 int err; 4780 4781 /* 4782 * Obtain the host lock to prevent that the controller is disabled 4783 * while the UFS interrupt handler is active on another CPU. 4784 */ 4785 spin_lock_irqsave(hba->host->host_lock, flags); 4786 ufshcd_writel(hba, CONTROLLER_DISABLE, REG_CONTROLLER_ENABLE); 4787 spin_unlock_irqrestore(hba->host->host_lock, flags); 4788 4789 err = ufshcd_wait_for_register(hba, REG_CONTROLLER_ENABLE, 4790 CONTROLLER_ENABLE, CONTROLLER_DISABLE, 4791 10, 1); 4792 if (err) 4793 dev_err(hba->dev, "%s: Controller disable failed\n", __func__); 4794 } 4795 EXPORT_SYMBOL_GPL(ufshcd_hba_stop); 4796 4797 /** 4798 * ufshcd_hba_execute_hce - initialize the controller 4799 * @hba: per adapter instance 4800 * 4801 * The controller resets itself and controller firmware initialization 4802 * sequence kicks off. When controller is ready it will set 4803 * the Host Controller Enable bit to 1. 4804 * 4805 * Return: 0 on success, non-zero value on failure. 4806 */ 4807 static int ufshcd_hba_execute_hce(struct ufs_hba *hba) 4808 { 4809 int retry; 4810 4811 for (retry = 3; retry > 0; retry--) { 4812 if (ufshcd_is_hba_active(hba)) 4813 /* change controller state to "reset state" */ 4814 ufshcd_hba_stop(hba); 4815 4816 /* UniPro link is disabled at this point */ 4817 ufshcd_set_link_off(hba); 4818 4819 ufshcd_vops_hce_enable_notify(hba, PRE_CHANGE); 4820 4821 /* start controller initialization sequence */ 4822 ufshcd_hba_start(hba); 4823 4824 /* 4825 * To initialize a UFS host controller HCE bit must be set to 1. 4826 * During initialization the HCE bit value changes from 1->0->1. 4827 * When the host controller completes initialization sequence 4828 * it sets the value of HCE bit to 1. The same HCE bit is read back 4829 * to check if the controller has completed initialization sequence. 4830 * So without this delay the value HCE = 1, set in the previous 4831 * instruction might be read back. 4832 * This delay can be changed based on the controller. 4833 */ 4834 ufshcd_delay_us(hba->vps->hba_enable_delay_us, 100); 4835 4836 /* wait for the host controller to complete initialization */ 4837 if (!ufshcd_wait_for_register(hba, REG_CONTROLLER_ENABLE, CONTROLLER_ENABLE, 4838 CONTROLLER_ENABLE, 1000, 50)) 4839 break; 4840 4841 dev_err(hba->dev, "Enabling the controller failed\n"); 4842 } 4843 4844 if (!retry) 4845 return -EIO; 4846 4847 /* enable UIC related interrupts */ 4848 ufshcd_enable_intr(hba, UFSHCD_UIC_MASK); 4849 4850 ufshcd_vops_hce_enable_notify(hba, POST_CHANGE); 4851 4852 return 0; 4853 } 4854 4855 int ufshcd_hba_enable(struct ufs_hba *hba) 4856 { 4857 int ret; 4858 4859 if (hba->quirks & UFSHCI_QUIRK_BROKEN_HCE) { 4860 ufshcd_set_link_off(hba); 4861 ufshcd_vops_hce_enable_notify(hba, PRE_CHANGE); 4862 4863 /* enable UIC related interrupts */ 4864 ufshcd_enable_intr(hba, UFSHCD_UIC_MASK); 4865 ret = ufshcd_dme_reset(hba); 4866 if (ret) { 4867 dev_err(hba->dev, "DME_RESET failed\n"); 4868 return ret; 4869 } 4870 4871 ret = ufshcd_dme_enable(hba); 4872 if (ret) { 4873 dev_err(hba->dev, "Enabling DME failed\n"); 4874 return ret; 4875 } 4876 4877 ufshcd_vops_hce_enable_notify(hba, POST_CHANGE); 4878 } else { 4879 ret = ufshcd_hba_execute_hce(hba); 4880 } 4881 4882 return ret; 4883 } 4884 EXPORT_SYMBOL_GPL(ufshcd_hba_enable); 4885 4886 static int ufshcd_disable_tx_lcc(struct ufs_hba *hba, bool peer) 4887 { 4888 int tx_lanes = 0, i, err = 0; 4889 4890 if (!peer) 4891 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES), 4892 &tx_lanes); 4893 else 4894 ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES), 4895 &tx_lanes); 4896 for (i = 0; i < tx_lanes; i++) { 4897 if (!peer) 4898 err = ufshcd_dme_set(hba, 4899 UIC_ARG_MIB_SEL(TX_LCC_ENABLE, 4900 UIC_ARG_MPHY_TX_GEN_SEL_INDEX(i)), 4901 0); 4902 else 4903 err = ufshcd_dme_peer_set(hba, 4904 UIC_ARG_MIB_SEL(TX_LCC_ENABLE, 4905 UIC_ARG_MPHY_TX_GEN_SEL_INDEX(i)), 4906 0); 4907 if (err) { 4908 dev_err(hba->dev, "%s: TX LCC Disable failed, peer = %d, lane = %d, err = %d", 4909 __func__, peer, i, err); 4910 break; 4911 } 4912 } 4913 4914 return err; 4915 } 4916 4917 static inline int ufshcd_disable_device_tx_lcc(struct ufs_hba *hba) 4918 { 4919 return ufshcd_disable_tx_lcc(hba, true); 4920 } 4921 4922 void ufshcd_update_evt_hist(struct ufs_hba *hba, u32 id, u32 val) 4923 { 4924 struct ufs_event_hist *e; 4925 4926 if (id >= UFS_EVT_CNT) 4927 return; 4928 4929 e = &hba->ufs_stats.event[id]; 4930 e->val[e->pos] = val; 4931 e->tstamp[e->pos] = local_clock(); 4932 e->cnt += 1; 4933 e->pos = (e->pos + 1) % UFS_EVENT_HIST_LENGTH; 4934 4935 ufshcd_vops_event_notify(hba, id, &val); 4936 } 4937 EXPORT_SYMBOL_GPL(ufshcd_update_evt_hist); 4938 4939 /** 4940 * ufshcd_link_startup - Initialize unipro link startup 4941 * @hba: per adapter instance 4942 * 4943 * Return: 0 for success, non-zero in case of failure. 4944 */ 4945 static int ufshcd_link_startup(struct ufs_hba *hba) 4946 { 4947 int ret; 4948 int retries = DME_LINKSTARTUP_RETRIES; 4949 bool link_startup_again = false; 4950 4951 /* 4952 * If UFS device isn't active then we will have to issue link startup 4953 * 2 times to make sure the device state move to active. 4954 */ 4955 if (!ufshcd_is_ufs_dev_active(hba)) 4956 link_startup_again = true; 4957 4958 link_startup: 4959 do { 4960 ufshcd_vops_link_startup_notify(hba, PRE_CHANGE); 4961 4962 ret = ufshcd_dme_link_startup(hba); 4963 4964 /* check if device is detected by inter-connect layer */ 4965 if (!ret && !ufshcd_is_device_present(hba)) { 4966 ufshcd_update_evt_hist(hba, 4967 UFS_EVT_LINK_STARTUP_FAIL, 4968 0); 4969 dev_err(hba->dev, "%s: Device not present\n", __func__); 4970 ret = -ENXIO; 4971 goto out; 4972 } 4973 4974 /* 4975 * DME link lost indication is only received when link is up, 4976 * but we can't be sure if the link is up until link startup 4977 * succeeds. So reset the local Uni-Pro and try again. 4978 */ 4979 if (ret && retries && ufshcd_hba_enable(hba)) { 4980 ufshcd_update_evt_hist(hba, 4981 UFS_EVT_LINK_STARTUP_FAIL, 4982 (u32)ret); 4983 goto out; 4984 } 4985 } while (ret && retries--); 4986 4987 if (ret) { 4988 /* failed to get the link up... retire */ 4989 ufshcd_update_evt_hist(hba, 4990 UFS_EVT_LINK_STARTUP_FAIL, 4991 (u32)ret); 4992 goto out; 4993 } 4994 4995 if (link_startup_again) { 4996 link_startup_again = false; 4997 retries = DME_LINKSTARTUP_RETRIES; 4998 goto link_startup; 4999 } 5000 5001 /* Mark that link is up in PWM-G1, 1-lane, SLOW-AUTO mode */ 5002 ufshcd_init_pwr_info(hba); 5003 ufshcd_print_pwr_info(hba); 5004 5005 if (hba->quirks & UFSHCD_QUIRK_BROKEN_LCC) { 5006 ret = ufshcd_disable_device_tx_lcc(hba); 5007 if (ret) 5008 goto out; 5009 } 5010 5011 /* Include any host controller configuration via UIC commands */ 5012 ret = ufshcd_vops_link_startup_notify(hba, POST_CHANGE); 5013 if (ret) 5014 goto out; 5015 5016 /* Clear UECPA once due to LINERESET has happened during LINK_STARTUP */ 5017 ufshcd_readl(hba, REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER); 5018 ret = ufshcd_make_hba_operational(hba); 5019 out: 5020 if (ret) { 5021 dev_err(hba->dev, "link startup failed %d\n", ret); 5022 ufshcd_print_host_state(hba); 5023 ufshcd_print_pwr_info(hba); 5024 ufshcd_print_evt_hist(hba); 5025 } 5026 return ret; 5027 } 5028 5029 /** 5030 * ufshcd_verify_dev_init() - Verify device initialization 5031 * @hba: per-adapter instance 5032 * 5033 * Send NOP OUT UPIU and wait for NOP IN response to check whether the 5034 * device Transport Protocol (UTP) layer is ready after a reset. 5035 * If the UTP layer at the device side is not initialized, it may 5036 * not respond with NOP IN UPIU within timeout of %NOP_OUT_TIMEOUT 5037 * and we retry sending NOP OUT for %NOP_OUT_RETRIES iterations. 5038 * 5039 * Return: 0 upon success; < 0 upon failure. 5040 */ 5041 static int ufshcd_verify_dev_init(struct ufs_hba *hba) 5042 { 5043 int err = 0; 5044 int retries; 5045 5046 ufshcd_dev_man_lock(hba); 5047 5048 for (retries = NOP_OUT_RETRIES; retries > 0; retries--) { 5049 err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_NOP, 5050 hba->nop_out_timeout); 5051 5052 if (!err || err == -ETIMEDOUT) 5053 break; 5054 5055 dev_dbg(hba->dev, "%s: error %d retrying\n", __func__, err); 5056 } 5057 5058 ufshcd_dev_man_unlock(hba); 5059 5060 if (err) 5061 dev_err(hba->dev, "%s: NOP OUT failed %d\n", __func__, err); 5062 return err; 5063 } 5064 5065 /** 5066 * ufshcd_setup_links - associate link b/w device wlun and other luns 5067 * @sdev: pointer to SCSI device 5068 * @hba: pointer to ufs hba 5069 */ 5070 static void ufshcd_setup_links(struct ufs_hba *hba, struct scsi_device *sdev) 5071 { 5072 struct device_link *link; 5073 5074 /* 5075 * Device wlun is the supplier & rest of the luns are consumers. 5076 * This ensures that device wlun suspends after all other luns. 5077 */ 5078 if (hba->ufs_device_wlun) { 5079 link = device_link_add(&sdev->sdev_gendev, 5080 &hba->ufs_device_wlun->sdev_gendev, 5081 DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE); 5082 if (!link) { 5083 dev_err(&sdev->sdev_gendev, "Failed establishing link - %s\n", 5084 dev_name(&hba->ufs_device_wlun->sdev_gendev)); 5085 return; 5086 } 5087 hba->luns_avail--; 5088 /* Ignore REPORT_LUN wlun probing */ 5089 if (hba->luns_avail == 1) { 5090 ufshcd_rpm_put(hba); 5091 return; 5092 } 5093 } else { 5094 /* 5095 * Device wlun is probed. The assumption is that WLUNs are 5096 * scanned before other LUNs. 5097 */ 5098 hba->luns_avail--; 5099 } 5100 } 5101 5102 /** 5103 * ufshcd_lu_init - Initialize the relevant parameters of the LU 5104 * @hba: per-adapter instance 5105 * @sdev: pointer to SCSI device 5106 */ 5107 static void ufshcd_lu_init(struct ufs_hba *hba, struct scsi_device *sdev) 5108 { 5109 int len = QUERY_DESC_MAX_SIZE; 5110 u8 lun = ufshcd_scsi_to_upiu_lun(sdev->lun); 5111 u8 lun_qdepth = hba->nutrs; 5112 u8 *desc_buf; 5113 int ret; 5114 5115 desc_buf = kzalloc(len, GFP_KERNEL); 5116 if (!desc_buf) 5117 goto set_qdepth; 5118 5119 ret = ufshcd_read_unit_desc_param(hba, lun, 0, desc_buf, len); 5120 if (ret < 0) { 5121 if (ret == -EOPNOTSUPP) 5122 /* If LU doesn't support unit descriptor, its queue depth is set to 1 */ 5123 lun_qdepth = 1; 5124 kfree(desc_buf); 5125 goto set_qdepth; 5126 } 5127 5128 if (desc_buf[UNIT_DESC_PARAM_LU_Q_DEPTH]) { 5129 /* 5130 * In per-LU queueing architecture, bLUQueueDepth will not be 0, then we will 5131 * use the smaller between UFSHCI CAP.NUTRS and UFS LU bLUQueueDepth 5132 */ 5133 lun_qdepth = min_t(int, desc_buf[UNIT_DESC_PARAM_LU_Q_DEPTH], hba->nutrs); 5134 } 5135 /* 5136 * According to UFS device specification, the write protection mode is only supported by 5137 * normal LU, not supported by WLUN. 5138 */ 5139 if (hba->dev_info.f_power_on_wp_en && lun < hba->dev_info.max_lu_supported && 5140 !hba->dev_info.is_lu_power_on_wp && 5141 desc_buf[UNIT_DESC_PARAM_LU_WR_PROTECT] == UFS_LU_POWER_ON_WP) 5142 hba->dev_info.is_lu_power_on_wp = true; 5143 5144 /* In case of RPMB LU, check if advanced RPMB mode is enabled */ 5145 if (desc_buf[UNIT_DESC_PARAM_UNIT_INDEX] == UFS_UPIU_RPMB_WLUN && 5146 desc_buf[RPMB_UNIT_DESC_PARAM_REGION_EN] & BIT(4)) 5147 hba->dev_info.b_advanced_rpmb_en = true; 5148 5149 5150 kfree(desc_buf); 5151 set_qdepth: 5152 /* 5153 * For WLUNs that don't support unit descriptor, queue depth is set to 1. For LUs whose 5154 * bLUQueueDepth == 0, the queue depth is set to a maximum value that host can queue. 5155 */ 5156 dev_dbg(hba->dev, "Set LU %x queue depth %d\n", lun, lun_qdepth); 5157 scsi_change_queue_depth(sdev, lun_qdepth); 5158 } 5159 5160 /** 5161 * ufshcd_slave_alloc - handle initial SCSI device configurations 5162 * @sdev: pointer to SCSI device 5163 * 5164 * Return: success. 5165 */ 5166 static int ufshcd_slave_alloc(struct scsi_device *sdev) 5167 { 5168 struct ufs_hba *hba; 5169 5170 hba = shost_priv(sdev->host); 5171 5172 /* Mode sense(6) is not supported by UFS, so use Mode sense(10) */ 5173 sdev->use_10_for_ms = 1; 5174 5175 /* DBD field should be set to 1 in mode sense(10) */ 5176 sdev->set_dbd_for_ms = 1; 5177 5178 /* allow SCSI layer to restart the device in case of errors */ 5179 sdev->allow_restart = 1; 5180 5181 /* REPORT SUPPORTED OPERATION CODES is not supported */ 5182 sdev->no_report_opcodes = 1; 5183 5184 /* WRITE_SAME command is not supported */ 5185 sdev->no_write_same = 1; 5186 5187 ufshcd_lu_init(hba, sdev); 5188 5189 ufshcd_setup_links(hba, sdev); 5190 5191 return 0; 5192 } 5193 5194 /** 5195 * ufshcd_change_queue_depth - change queue depth 5196 * @sdev: pointer to SCSI device 5197 * @depth: required depth to set 5198 * 5199 * Change queue depth and make sure the max. limits are not crossed. 5200 * 5201 * Return: new queue depth. 5202 */ 5203 static int ufshcd_change_queue_depth(struct scsi_device *sdev, int depth) 5204 { 5205 return scsi_change_queue_depth(sdev, min(depth, sdev->host->can_queue)); 5206 } 5207 5208 /** 5209 * ufshcd_device_configure - adjust SCSI device configurations 5210 * @sdev: pointer to SCSI device 5211 * @lim: queue limits 5212 * 5213 * Return: 0 (success). 5214 */ 5215 static int ufshcd_device_configure(struct scsi_device *sdev, 5216 struct queue_limits *lim) 5217 { 5218 struct ufs_hba *hba = shost_priv(sdev->host); 5219 struct request_queue *q = sdev->request_queue; 5220 5221 lim->dma_pad_mask = PRDT_DATA_BYTE_COUNT_PAD - 1; 5222 5223 /* 5224 * Block runtime-pm until all consumers are added. 5225 * Refer ufshcd_setup_links(). 5226 */ 5227 if (is_device_wlun(sdev)) 5228 pm_runtime_get_noresume(&sdev->sdev_gendev); 5229 else if (ufshcd_is_rpm_autosuspend_allowed(hba)) 5230 sdev->rpm_autosuspend = 1; 5231 /* 5232 * Do not print messages during runtime PM to avoid never-ending cycles 5233 * of messages written back to storage by user space causing runtime 5234 * resume, causing more messages and so on. 5235 */ 5236 sdev->silence_suspend = 1; 5237 5238 ufshcd_crypto_register(hba, q); 5239 5240 return 0; 5241 } 5242 5243 /** 5244 * ufshcd_slave_destroy - remove SCSI device configurations 5245 * @sdev: pointer to SCSI device 5246 */ 5247 static void ufshcd_slave_destroy(struct scsi_device *sdev) 5248 { 5249 struct ufs_hba *hba; 5250 unsigned long flags; 5251 5252 hba = shost_priv(sdev->host); 5253 5254 /* Drop the reference as it won't be needed anymore */ 5255 if (ufshcd_scsi_to_upiu_lun(sdev->lun) == UFS_UPIU_UFS_DEVICE_WLUN) { 5256 spin_lock_irqsave(hba->host->host_lock, flags); 5257 hba->ufs_device_wlun = NULL; 5258 spin_unlock_irqrestore(hba->host->host_lock, flags); 5259 } else if (hba->ufs_device_wlun) { 5260 struct device *supplier = NULL; 5261 5262 /* Ensure UFS Device WLUN exists and does not disappear */ 5263 spin_lock_irqsave(hba->host->host_lock, flags); 5264 if (hba->ufs_device_wlun) { 5265 supplier = &hba->ufs_device_wlun->sdev_gendev; 5266 get_device(supplier); 5267 } 5268 spin_unlock_irqrestore(hba->host->host_lock, flags); 5269 5270 if (supplier) { 5271 /* 5272 * If a LUN fails to probe (e.g. absent BOOT WLUN), the 5273 * device will not have been registered but can still 5274 * have a device link holding a reference to the device. 5275 */ 5276 device_link_remove(&sdev->sdev_gendev, supplier); 5277 put_device(supplier); 5278 } 5279 } 5280 } 5281 5282 /** 5283 * ufshcd_scsi_cmd_status - Update SCSI command result based on SCSI status 5284 * @lrbp: pointer to local reference block of completed command 5285 * @scsi_status: SCSI command status 5286 * 5287 * Return: value base on SCSI command status. 5288 */ 5289 static inline int 5290 ufshcd_scsi_cmd_status(struct ufshcd_lrb *lrbp, int scsi_status) 5291 { 5292 int result = 0; 5293 5294 switch (scsi_status) { 5295 case SAM_STAT_CHECK_CONDITION: 5296 ufshcd_copy_sense_data(lrbp); 5297 fallthrough; 5298 case SAM_STAT_GOOD: 5299 result |= DID_OK << 16 | scsi_status; 5300 break; 5301 case SAM_STAT_TASK_SET_FULL: 5302 case SAM_STAT_BUSY: 5303 case SAM_STAT_TASK_ABORTED: 5304 ufshcd_copy_sense_data(lrbp); 5305 result |= scsi_status; 5306 break; 5307 default: 5308 result |= DID_ERROR << 16; 5309 break; 5310 } /* end of switch */ 5311 5312 return result; 5313 } 5314 5315 /** 5316 * ufshcd_transfer_rsp_status - Get overall status of the response 5317 * @hba: per adapter instance 5318 * @lrbp: pointer to local reference block of completed command 5319 * @cqe: pointer to the completion queue entry 5320 * 5321 * Return: result of the command to notify SCSI midlayer. 5322 */ 5323 static inline int 5324 ufshcd_transfer_rsp_status(struct ufs_hba *hba, struct ufshcd_lrb *lrbp, 5325 struct cq_entry *cqe) 5326 { 5327 int result = 0; 5328 int scsi_status; 5329 enum utp_ocs ocs; 5330 u8 upiu_flags; 5331 u32 resid; 5332 5333 upiu_flags = lrbp->ucd_rsp_ptr->header.flags; 5334 resid = be32_to_cpu(lrbp->ucd_rsp_ptr->sr.residual_transfer_count); 5335 /* 5336 * Test !overflow instead of underflow to support UFS devices that do 5337 * not set either flag. 5338 */ 5339 if (resid && !(upiu_flags & UPIU_RSP_FLAG_OVERFLOW)) 5340 scsi_set_resid(lrbp->cmd, resid); 5341 5342 /* overall command status of utrd */ 5343 ocs = ufshcd_get_tr_ocs(lrbp, cqe); 5344 5345 if (hba->quirks & UFSHCD_QUIRK_BROKEN_OCS_FATAL_ERROR) { 5346 if (lrbp->ucd_rsp_ptr->header.response || 5347 lrbp->ucd_rsp_ptr->header.status) 5348 ocs = OCS_SUCCESS; 5349 } 5350 5351 switch (ocs) { 5352 case OCS_SUCCESS: 5353 hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0); 5354 switch (ufshcd_get_req_rsp(lrbp->ucd_rsp_ptr)) { 5355 case UPIU_TRANSACTION_RESPONSE: 5356 /* 5357 * get the result based on SCSI status response 5358 * to notify the SCSI midlayer of the command status 5359 */ 5360 scsi_status = lrbp->ucd_rsp_ptr->header.status; 5361 result = ufshcd_scsi_cmd_status(lrbp, scsi_status); 5362 5363 /* 5364 * Currently we are only supporting BKOPs exception 5365 * events hence we can ignore BKOPs exception event 5366 * during power management callbacks. BKOPs exception 5367 * event is not expected to be raised in runtime suspend 5368 * callback as it allows the urgent bkops. 5369 * During system suspend, we are anyway forcefully 5370 * disabling the bkops and if urgent bkops is needed 5371 * it will be enabled on system resume. Long term 5372 * solution could be to abort the system suspend if 5373 * UFS device needs urgent BKOPs. 5374 */ 5375 if (!hba->pm_op_in_progress && 5376 !ufshcd_eh_in_progress(hba) && 5377 ufshcd_is_exception_event(lrbp->ucd_rsp_ptr)) 5378 /* Flushed in suspend */ 5379 schedule_work(&hba->eeh_work); 5380 break; 5381 case UPIU_TRANSACTION_REJECT_UPIU: 5382 /* TODO: handle Reject UPIU Response */ 5383 result = DID_ERROR << 16; 5384 dev_err(hba->dev, 5385 "Reject UPIU not fully implemented\n"); 5386 break; 5387 default: 5388 dev_err(hba->dev, 5389 "Unexpected request response code = %x\n", 5390 result); 5391 result = DID_ERROR << 16; 5392 break; 5393 } 5394 break; 5395 case OCS_ABORTED: 5396 case OCS_INVALID_COMMAND_STATUS: 5397 result |= DID_REQUEUE << 16; 5398 dev_warn(hba->dev, 5399 "OCS %s from controller for tag %d\n", 5400 (ocs == OCS_ABORTED ? "aborted" : "invalid"), 5401 lrbp->task_tag); 5402 break; 5403 case OCS_INVALID_CMD_TABLE_ATTR: 5404 case OCS_INVALID_PRDT_ATTR: 5405 case OCS_MISMATCH_DATA_BUF_SIZE: 5406 case OCS_MISMATCH_RESP_UPIU_SIZE: 5407 case OCS_PEER_COMM_FAILURE: 5408 case OCS_FATAL_ERROR: 5409 case OCS_DEVICE_FATAL_ERROR: 5410 case OCS_INVALID_CRYPTO_CONFIG: 5411 case OCS_GENERAL_CRYPTO_ERROR: 5412 default: 5413 result |= DID_ERROR << 16; 5414 dev_err(hba->dev, 5415 "OCS error from controller = %x for tag %d\n", 5416 ocs, lrbp->task_tag); 5417 ufshcd_print_evt_hist(hba); 5418 ufshcd_print_host_state(hba); 5419 break; 5420 } /* end of switch */ 5421 5422 if ((host_byte(result) != DID_OK) && 5423 (host_byte(result) != DID_REQUEUE) && !hba->silence_err_logs) 5424 ufshcd_print_tr(hba, lrbp->task_tag, true); 5425 return result; 5426 } 5427 5428 static bool ufshcd_is_auto_hibern8_error(struct ufs_hba *hba, 5429 u32 intr_mask) 5430 { 5431 if (!ufshcd_is_auto_hibern8_supported(hba) || 5432 !ufshcd_is_auto_hibern8_enabled(hba)) 5433 return false; 5434 5435 if (!(intr_mask & UFSHCD_UIC_HIBERN8_MASK)) 5436 return false; 5437 5438 if (hba->active_uic_cmd && 5439 (hba->active_uic_cmd->command == UIC_CMD_DME_HIBER_ENTER || 5440 hba->active_uic_cmd->command == UIC_CMD_DME_HIBER_EXIT)) 5441 return false; 5442 5443 return true; 5444 } 5445 5446 /** 5447 * ufshcd_uic_cmd_compl - handle completion of uic command 5448 * @hba: per adapter instance 5449 * @intr_status: interrupt status generated by the controller 5450 * 5451 * Return: 5452 * IRQ_HANDLED - If interrupt is valid 5453 * IRQ_NONE - If invalid interrupt 5454 */ 5455 static irqreturn_t ufshcd_uic_cmd_compl(struct ufs_hba *hba, u32 intr_status) 5456 { 5457 irqreturn_t retval = IRQ_NONE; 5458 struct uic_command *cmd; 5459 5460 spin_lock(hba->host->host_lock); 5461 cmd = hba->active_uic_cmd; 5462 if (WARN_ON_ONCE(!cmd)) 5463 goto unlock; 5464 5465 if (ufshcd_is_auto_hibern8_error(hba, intr_status)) 5466 hba->errors |= (UFSHCD_UIC_HIBERN8_MASK & intr_status); 5467 5468 if (intr_status & UIC_COMMAND_COMPL) { 5469 cmd->argument2 |= ufshcd_get_uic_cmd_result(hba); 5470 cmd->argument3 = ufshcd_get_dme_attr_val(hba); 5471 if (!hba->uic_async_done) 5472 cmd->cmd_active = 0; 5473 complete(&cmd->done); 5474 retval = IRQ_HANDLED; 5475 } 5476 5477 if (intr_status & UFSHCD_UIC_PWR_MASK && hba->uic_async_done) { 5478 cmd->cmd_active = 0; 5479 complete(hba->uic_async_done); 5480 retval = IRQ_HANDLED; 5481 } 5482 5483 if (retval == IRQ_HANDLED) 5484 ufshcd_add_uic_command_trace(hba, cmd, UFS_CMD_COMP); 5485 5486 unlock: 5487 spin_unlock(hba->host->host_lock); 5488 5489 return retval; 5490 } 5491 5492 /* Release the resources allocated for processing a SCSI command. */ 5493 void ufshcd_release_scsi_cmd(struct ufs_hba *hba, 5494 struct ufshcd_lrb *lrbp) 5495 { 5496 struct scsi_cmnd *cmd = lrbp->cmd; 5497 5498 scsi_dma_unmap(cmd); 5499 ufshcd_crypto_clear_prdt(hba, lrbp); 5500 ufshcd_release(hba); 5501 ufshcd_clk_scaling_update_busy(hba); 5502 } 5503 5504 /** 5505 * ufshcd_compl_one_cqe - handle a completion queue entry 5506 * @hba: per adapter instance 5507 * @task_tag: the task tag of the request to be completed 5508 * @cqe: pointer to the completion queue entry 5509 */ 5510 void ufshcd_compl_one_cqe(struct ufs_hba *hba, int task_tag, 5511 struct cq_entry *cqe) 5512 { 5513 struct ufshcd_lrb *lrbp; 5514 struct scsi_cmnd *cmd; 5515 enum utp_ocs ocs; 5516 5517 lrbp = &hba->lrb[task_tag]; 5518 lrbp->compl_time_stamp = ktime_get(); 5519 cmd = lrbp->cmd; 5520 if (cmd) { 5521 if (unlikely(ufshcd_should_inform_monitor(hba, lrbp))) 5522 ufshcd_update_monitor(hba, lrbp); 5523 ufshcd_add_command_trace(hba, task_tag, UFS_CMD_COMP); 5524 cmd->result = ufshcd_transfer_rsp_status(hba, lrbp, cqe); 5525 ufshcd_release_scsi_cmd(hba, lrbp); 5526 /* Do not touch lrbp after scsi done */ 5527 scsi_done(cmd); 5528 } else if (hba->dev_cmd.complete) { 5529 if (cqe) { 5530 ocs = le32_to_cpu(cqe->status) & MASK_OCS; 5531 lrbp->utr_descriptor_ptr->header.ocs = ocs; 5532 } 5533 complete(hba->dev_cmd.complete); 5534 } 5535 } 5536 5537 /** 5538 * __ufshcd_transfer_req_compl - handle SCSI and query command completion 5539 * @hba: per adapter instance 5540 * @completed_reqs: bitmask that indicates which requests to complete 5541 */ 5542 static void __ufshcd_transfer_req_compl(struct ufs_hba *hba, 5543 unsigned long completed_reqs) 5544 { 5545 int tag; 5546 5547 for_each_set_bit(tag, &completed_reqs, hba->nutrs) 5548 ufshcd_compl_one_cqe(hba, tag, NULL); 5549 } 5550 5551 /* Any value that is not an existing queue number is fine for this constant. */ 5552 enum { 5553 UFSHCD_POLL_FROM_INTERRUPT_CONTEXT = -1 5554 }; 5555 5556 static void ufshcd_clear_polled(struct ufs_hba *hba, 5557 unsigned long *completed_reqs) 5558 { 5559 int tag; 5560 5561 for_each_set_bit(tag, completed_reqs, hba->nutrs) { 5562 struct scsi_cmnd *cmd = hba->lrb[tag].cmd; 5563 5564 if (!cmd) 5565 continue; 5566 if (scsi_cmd_to_rq(cmd)->cmd_flags & REQ_POLLED) 5567 __clear_bit(tag, completed_reqs); 5568 } 5569 } 5570 5571 /* 5572 * Return: > 0 if one or more commands have been completed or 0 if no 5573 * requests have been completed. 5574 */ 5575 static int ufshcd_poll(struct Scsi_Host *shost, unsigned int queue_num) 5576 { 5577 struct ufs_hba *hba = shost_priv(shost); 5578 unsigned long completed_reqs, flags; 5579 u32 tr_doorbell; 5580 struct ufs_hw_queue *hwq; 5581 5582 if (hba->mcq_enabled) { 5583 hwq = &hba->uhq[queue_num]; 5584 5585 return ufshcd_mcq_poll_cqe_lock(hba, hwq); 5586 } 5587 5588 spin_lock_irqsave(&hba->outstanding_lock, flags); 5589 tr_doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL); 5590 completed_reqs = ~tr_doorbell & hba->outstanding_reqs; 5591 WARN_ONCE(completed_reqs & ~hba->outstanding_reqs, 5592 "completed: %#lx; outstanding: %#lx\n", completed_reqs, 5593 hba->outstanding_reqs); 5594 if (queue_num == UFSHCD_POLL_FROM_INTERRUPT_CONTEXT) { 5595 /* Do not complete polled requests from interrupt context. */ 5596 ufshcd_clear_polled(hba, &completed_reqs); 5597 } 5598 hba->outstanding_reqs &= ~completed_reqs; 5599 spin_unlock_irqrestore(&hba->outstanding_lock, flags); 5600 5601 if (completed_reqs) 5602 __ufshcd_transfer_req_compl(hba, completed_reqs); 5603 5604 return completed_reqs != 0; 5605 } 5606 5607 /** 5608 * ufshcd_mcq_compl_pending_transfer - MCQ mode function. It is 5609 * invoked from the error handler context or ufshcd_host_reset_and_restore() 5610 * to complete the pending transfers and free the resources associated with 5611 * the scsi command. 5612 * 5613 * @hba: per adapter instance 5614 * @force_compl: This flag is set to true when invoked 5615 * from ufshcd_host_reset_and_restore() in which case it requires special 5616 * handling because the host controller has been reset by ufshcd_hba_stop(). 5617 */ 5618 static void ufshcd_mcq_compl_pending_transfer(struct ufs_hba *hba, 5619 bool force_compl) 5620 { 5621 struct ufs_hw_queue *hwq; 5622 struct ufshcd_lrb *lrbp; 5623 struct scsi_cmnd *cmd; 5624 unsigned long flags; 5625 int tag; 5626 5627 for (tag = 0; tag < hba->nutrs; tag++) { 5628 lrbp = &hba->lrb[tag]; 5629 cmd = lrbp->cmd; 5630 if (!ufshcd_cmd_inflight(cmd) || 5631 test_bit(SCMD_STATE_COMPLETE, &cmd->state)) 5632 continue; 5633 5634 hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(cmd)); 5635 5636 if (force_compl) { 5637 ufshcd_mcq_compl_all_cqes_lock(hba, hwq); 5638 /* 5639 * For those cmds of which the cqes are not present 5640 * in the cq, complete them explicitly. 5641 */ 5642 spin_lock_irqsave(&hwq->cq_lock, flags); 5643 if (cmd && !test_bit(SCMD_STATE_COMPLETE, &cmd->state)) { 5644 set_host_byte(cmd, DID_REQUEUE); 5645 ufshcd_release_scsi_cmd(hba, lrbp); 5646 scsi_done(cmd); 5647 } 5648 spin_unlock_irqrestore(&hwq->cq_lock, flags); 5649 } else { 5650 ufshcd_mcq_poll_cqe_lock(hba, hwq); 5651 } 5652 } 5653 } 5654 5655 /** 5656 * ufshcd_transfer_req_compl - handle SCSI and query command completion 5657 * @hba: per adapter instance 5658 * 5659 * Return: 5660 * IRQ_HANDLED - If interrupt is valid 5661 * IRQ_NONE - If invalid interrupt 5662 */ 5663 static irqreturn_t ufshcd_transfer_req_compl(struct ufs_hba *hba) 5664 { 5665 /* Resetting interrupt aggregation counters first and reading the 5666 * DOOR_BELL afterward allows us to handle all the completed requests. 5667 * In order to prevent other interrupts starvation the DB is read once 5668 * after reset. The down side of this solution is the possibility of 5669 * false interrupt if device completes another request after resetting 5670 * aggregation and before reading the DB. 5671 */ 5672 if (ufshcd_is_intr_aggr_allowed(hba) && 5673 !(hba->quirks & UFSHCI_QUIRK_SKIP_RESET_INTR_AGGR)) 5674 ufshcd_reset_intr_aggr(hba); 5675 5676 if (ufs_fail_completion(hba)) 5677 return IRQ_HANDLED; 5678 5679 /* 5680 * Ignore the ufshcd_poll() return value and return IRQ_HANDLED since we 5681 * do not want polling to trigger spurious interrupt complaints. 5682 */ 5683 ufshcd_poll(hba->host, UFSHCD_POLL_FROM_INTERRUPT_CONTEXT); 5684 5685 return IRQ_HANDLED; 5686 } 5687 5688 int __ufshcd_write_ee_control(struct ufs_hba *hba, u32 ee_ctrl_mask) 5689 { 5690 return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR, 5691 QUERY_ATTR_IDN_EE_CONTROL, 0, 0, 5692 &ee_ctrl_mask); 5693 } 5694 5695 int ufshcd_write_ee_control(struct ufs_hba *hba) 5696 { 5697 int err; 5698 5699 mutex_lock(&hba->ee_ctrl_mutex); 5700 err = __ufshcd_write_ee_control(hba, hba->ee_ctrl_mask); 5701 mutex_unlock(&hba->ee_ctrl_mutex); 5702 if (err) 5703 dev_err(hba->dev, "%s: failed to write ee control %d\n", 5704 __func__, err); 5705 return err; 5706 } 5707 5708 int ufshcd_update_ee_control(struct ufs_hba *hba, u16 *mask, 5709 const u16 *other_mask, u16 set, u16 clr) 5710 { 5711 u16 new_mask, ee_ctrl_mask; 5712 int err = 0; 5713 5714 mutex_lock(&hba->ee_ctrl_mutex); 5715 new_mask = (*mask & ~clr) | set; 5716 ee_ctrl_mask = new_mask | *other_mask; 5717 if (ee_ctrl_mask != hba->ee_ctrl_mask) 5718 err = __ufshcd_write_ee_control(hba, ee_ctrl_mask); 5719 /* Still need to update 'mask' even if 'ee_ctrl_mask' was unchanged */ 5720 if (!err) { 5721 hba->ee_ctrl_mask = ee_ctrl_mask; 5722 *mask = new_mask; 5723 } 5724 mutex_unlock(&hba->ee_ctrl_mutex); 5725 return err; 5726 } 5727 5728 /** 5729 * ufshcd_disable_ee - disable exception event 5730 * @hba: per-adapter instance 5731 * @mask: exception event to disable 5732 * 5733 * Disables exception event in the device so that the EVENT_ALERT 5734 * bit is not set. 5735 * 5736 * Return: zero on success, non-zero error value on failure. 5737 */ 5738 static inline int ufshcd_disable_ee(struct ufs_hba *hba, u16 mask) 5739 { 5740 return ufshcd_update_ee_drv_mask(hba, 0, mask); 5741 } 5742 5743 /** 5744 * ufshcd_enable_ee - enable exception event 5745 * @hba: per-adapter instance 5746 * @mask: exception event to enable 5747 * 5748 * Enable corresponding exception event in the device to allow 5749 * device to alert host in critical scenarios. 5750 * 5751 * Return: zero on success, non-zero error value on failure. 5752 */ 5753 static inline int ufshcd_enable_ee(struct ufs_hba *hba, u16 mask) 5754 { 5755 return ufshcd_update_ee_drv_mask(hba, mask, 0); 5756 } 5757 5758 /** 5759 * ufshcd_enable_auto_bkops - Allow device managed BKOPS 5760 * @hba: per-adapter instance 5761 * 5762 * Allow device to manage background operations on its own. Enabling 5763 * this might lead to inconsistent latencies during normal data transfers 5764 * as the device is allowed to manage its own way of handling background 5765 * operations. 5766 * 5767 * Return: zero on success, non-zero on failure. 5768 */ 5769 static int ufshcd_enable_auto_bkops(struct ufs_hba *hba) 5770 { 5771 int err = 0; 5772 5773 if (hba->auto_bkops_enabled) 5774 goto out; 5775 5776 err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG, 5777 QUERY_FLAG_IDN_BKOPS_EN, 0, NULL); 5778 if (err) { 5779 dev_err(hba->dev, "%s: failed to enable bkops %d\n", 5780 __func__, err); 5781 goto out; 5782 } 5783 5784 hba->auto_bkops_enabled = true; 5785 trace_ufshcd_auto_bkops_state(dev_name(hba->dev), "Enabled"); 5786 5787 /* No need of URGENT_BKOPS exception from the device */ 5788 err = ufshcd_disable_ee(hba, MASK_EE_URGENT_BKOPS); 5789 if (err) 5790 dev_err(hba->dev, "%s: failed to disable exception event %d\n", 5791 __func__, err); 5792 out: 5793 return err; 5794 } 5795 5796 /** 5797 * ufshcd_disable_auto_bkops - block device in doing background operations 5798 * @hba: per-adapter instance 5799 * 5800 * Disabling background operations improves command response latency but 5801 * has drawback of device moving into critical state where the device is 5802 * not-operable. Make sure to call ufshcd_enable_auto_bkops() whenever the 5803 * host is idle so that BKOPS are managed effectively without any negative 5804 * impacts. 5805 * 5806 * Return: zero on success, non-zero on failure. 5807 */ 5808 static int ufshcd_disable_auto_bkops(struct ufs_hba *hba) 5809 { 5810 int err = 0; 5811 5812 if (!hba->auto_bkops_enabled) 5813 goto out; 5814 5815 /* 5816 * If host assisted BKOPs is to be enabled, make sure 5817 * urgent bkops exception is allowed. 5818 */ 5819 err = ufshcd_enable_ee(hba, MASK_EE_URGENT_BKOPS); 5820 if (err) { 5821 dev_err(hba->dev, "%s: failed to enable exception event %d\n", 5822 __func__, err); 5823 goto out; 5824 } 5825 5826 err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_CLEAR_FLAG, 5827 QUERY_FLAG_IDN_BKOPS_EN, 0, NULL); 5828 if (err) { 5829 dev_err(hba->dev, "%s: failed to disable bkops %d\n", 5830 __func__, err); 5831 ufshcd_disable_ee(hba, MASK_EE_URGENT_BKOPS); 5832 goto out; 5833 } 5834 5835 hba->auto_bkops_enabled = false; 5836 trace_ufshcd_auto_bkops_state(dev_name(hba->dev), "Disabled"); 5837 hba->is_urgent_bkops_lvl_checked = false; 5838 out: 5839 return err; 5840 } 5841 5842 /** 5843 * ufshcd_force_reset_auto_bkops - force reset auto bkops state 5844 * @hba: per adapter instance 5845 * 5846 * After a device reset the device may toggle the BKOPS_EN flag 5847 * to default value. The s/w tracking variables should be updated 5848 * as well. This function would change the auto-bkops state based on 5849 * UFSHCD_CAP_KEEP_AUTO_BKOPS_ENABLED_EXCEPT_SUSPEND. 5850 */ 5851 static void ufshcd_force_reset_auto_bkops(struct ufs_hba *hba) 5852 { 5853 if (ufshcd_keep_autobkops_enabled_except_suspend(hba)) { 5854 hba->auto_bkops_enabled = false; 5855 hba->ee_ctrl_mask |= MASK_EE_URGENT_BKOPS; 5856 ufshcd_enable_auto_bkops(hba); 5857 } else { 5858 hba->auto_bkops_enabled = true; 5859 hba->ee_ctrl_mask &= ~MASK_EE_URGENT_BKOPS; 5860 ufshcd_disable_auto_bkops(hba); 5861 } 5862 hba->urgent_bkops_lvl = BKOPS_STATUS_PERF_IMPACT; 5863 hba->is_urgent_bkops_lvl_checked = false; 5864 } 5865 5866 static inline int ufshcd_get_bkops_status(struct ufs_hba *hba, u32 *status) 5867 { 5868 return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR, 5869 QUERY_ATTR_IDN_BKOPS_STATUS, 0, 0, status); 5870 } 5871 5872 /** 5873 * ufshcd_bkops_ctrl - control the auto bkops based on current bkops status 5874 * @hba: per-adapter instance 5875 * 5876 * Read the bkops_status from the UFS device and Enable fBackgroundOpsEn 5877 * flag in the device to permit background operations if the device 5878 * bkops_status is greater than or equal to the "hba->urgent_bkops_lvl", 5879 * disable otherwise. 5880 * 5881 * Return: 0 for success, non-zero in case of failure. 5882 * 5883 * NOTE: Caller of this function can check the "hba->auto_bkops_enabled" flag 5884 * to know whether auto bkops is enabled or disabled after this function 5885 * returns control to it. 5886 */ 5887 static int ufshcd_bkops_ctrl(struct ufs_hba *hba) 5888 { 5889 enum bkops_status status = hba->urgent_bkops_lvl; 5890 u32 curr_status = 0; 5891 int err; 5892 5893 err = ufshcd_get_bkops_status(hba, &curr_status); 5894 if (err) { 5895 dev_err(hba->dev, "%s: failed to get BKOPS status %d\n", 5896 __func__, err); 5897 goto out; 5898 } else if (curr_status > BKOPS_STATUS_MAX) { 5899 dev_err(hba->dev, "%s: invalid BKOPS status %d\n", 5900 __func__, curr_status); 5901 err = -EINVAL; 5902 goto out; 5903 } 5904 5905 if (curr_status >= status) 5906 err = ufshcd_enable_auto_bkops(hba); 5907 else 5908 err = ufshcd_disable_auto_bkops(hba); 5909 out: 5910 return err; 5911 } 5912 5913 static inline int ufshcd_get_ee_status(struct ufs_hba *hba, u32 *status) 5914 { 5915 return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR, 5916 QUERY_ATTR_IDN_EE_STATUS, 0, 0, status); 5917 } 5918 5919 static void ufshcd_bkops_exception_event_handler(struct ufs_hba *hba) 5920 { 5921 int err; 5922 u32 curr_status = 0; 5923 5924 if (hba->is_urgent_bkops_lvl_checked) 5925 goto enable_auto_bkops; 5926 5927 err = ufshcd_get_bkops_status(hba, &curr_status); 5928 if (err) { 5929 dev_err(hba->dev, "%s: failed to get BKOPS status %d\n", 5930 __func__, err); 5931 goto out; 5932 } 5933 5934 /* 5935 * We are seeing that some devices are raising the urgent bkops 5936 * exception events even when BKOPS status doesn't indicate performace 5937 * impacted or critical. Handle these device by determining their urgent 5938 * bkops status at runtime. 5939 */ 5940 if (curr_status < BKOPS_STATUS_PERF_IMPACT) { 5941 dev_err(hba->dev, "%s: device raised urgent BKOPS exception for bkops status %d\n", 5942 __func__, curr_status); 5943 /* update the current status as the urgent bkops level */ 5944 hba->urgent_bkops_lvl = curr_status; 5945 hba->is_urgent_bkops_lvl_checked = true; 5946 } 5947 5948 enable_auto_bkops: 5949 err = ufshcd_enable_auto_bkops(hba); 5950 out: 5951 if (err < 0) 5952 dev_err(hba->dev, "%s: failed to handle urgent bkops %d\n", 5953 __func__, err); 5954 } 5955 5956 static void ufshcd_temp_exception_event_handler(struct ufs_hba *hba, u16 status) 5957 { 5958 u32 value; 5959 5960 if (ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR, 5961 QUERY_ATTR_IDN_CASE_ROUGH_TEMP, 0, 0, &value)) 5962 return; 5963 5964 dev_info(hba->dev, "exception Tcase %d\n", value - 80); 5965 5966 ufs_hwmon_notify_event(hba, status & MASK_EE_URGENT_TEMP); 5967 5968 /* 5969 * A placeholder for the platform vendors to add whatever additional 5970 * steps required 5971 */ 5972 } 5973 5974 static int __ufshcd_wb_toggle(struct ufs_hba *hba, bool set, enum flag_idn idn) 5975 { 5976 u8 index; 5977 enum query_opcode opcode = set ? UPIU_QUERY_OPCODE_SET_FLAG : 5978 UPIU_QUERY_OPCODE_CLEAR_FLAG; 5979 5980 index = ufshcd_wb_get_query_index(hba); 5981 return ufshcd_query_flag_retry(hba, opcode, idn, index, NULL); 5982 } 5983 5984 int ufshcd_wb_toggle(struct ufs_hba *hba, bool enable) 5985 { 5986 int ret; 5987 5988 if (!ufshcd_is_wb_allowed(hba) || 5989 hba->dev_info.wb_enabled == enable) 5990 return 0; 5991 5992 ret = __ufshcd_wb_toggle(hba, enable, QUERY_FLAG_IDN_WB_EN); 5993 if (ret) { 5994 dev_err(hba->dev, "%s: Write Booster %s failed %d\n", 5995 __func__, enable ? "enabling" : "disabling", ret); 5996 return ret; 5997 } 5998 5999 hba->dev_info.wb_enabled = enable; 6000 dev_dbg(hba->dev, "%s: Write Booster %s\n", 6001 __func__, enable ? "enabled" : "disabled"); 6002 6003 return ret; 6004 } 6005 6006 static void ufshcd_wb_toggle_buf_flush_during_h8(struct ufs_hba *hba, 6007 bool enable) 6008 { 6009 int ret; 6010 6011 ret = __ufshcd_wb_toggle(hba, enable, 6012 QUERY_FLAG_IDN_WB_BUFF_FLUSH_DURING_HIBERN8); 6013 if (ret) { 6014 dev_err(hba->dev, "%s: WB-Buf Flush during H8 %s failed %d\n", 6015 __func__, enable ? "enabling" : "disabling", ret); 6016 return; 6017 } 6018 dev_dbg(hba->dev, "%s: WB-Buf Flush during H8 %s\n", 6019 __func__, enable ? "enabled" : "disabled"); 6020 } 6021 6022 int ufshcd_wb_toggle_buf_flush(struct ufs_hba *hba, bool enable) 6023 { 6024 int ret; 6025 6026 if (!ufshcd_is_wb_allowed(hba) || 6027 hba->dev_info.wb_buf_flush_enabled == enable) 6028 return 0; 6029 6030 ret = __ufshcd_wb_toggle(hba, enable, QUERY_FLAG_IDN_WB_BUFF_FLUSH_EN); 6031 if (ret) { 6032 dev_err(hba->dev, "%s: WB-Buf Flush %s failed %d\n", 6033 __func__, enable ? "enabling" : "disabling", ret); 6034 return ret; 6035 } 6036 6037 hba->dev_info.wb_buf_flush_enabled = enable; 6038 dev_dbg(hba->dev, "%s: WB-Buf Flush %s\n", 6039 __func__, enable ? "enabled" : "disabled"); 6040 6041 return ret; 6042 } 6043 6044 static bool ufshcd_wb_presrv_usrspc_keep_vcc_on(struct ufs_hba *hba, 6045 u32 avail_buf) 6046 { 6047 u32 cur_buf; 6048 int ret; 6049 u8 index; 6050 6051 index = ufshcd_wb_get_query_index(hba); 6052 ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR, 6053 QUERY_ATTR_IDN_CURR_WB_BUFF_SIZE, 6054 index, 0, &cur_buf); 6055 if (ret) { 6056 dev_err(hba->dev, "%s: dCurWriteBoosterBufferSize read failed %d\n", 6057 __func__, ret); 6058 return false; 6059 } 6060 6061 if (!cur_buf) { 6062 dev_info(hba->dev, "dCurWBBuf: %d WB disabled until free-space is available\n", 6063 cur_buf); 6064 return false; 6065 } 6066 /* Let it continue to flush when available buffer exceeds threshold */ 6067 return avail_buf < hba->vps->wb_flush_threshold; 6068 } 6069 6070 static void ufshcd_wb_force_disable(struct ufs_hba *hba) 6071 { 6072 if (ufshcd_is_wb_buf_flush_allowed(hba)) 6073 ufshcd_wb_toggle_buf_flush(hba, false); 6074 6075 ufshcd_wb_toggle_buf_flush_during_h8(hba, false); 6076 ufshcd_wb_toggle(hba, false); 6077 hba->caps &= ~UFSHCD_CAP_WB_EN; 6078 6079 dev_info(hba->dev, "%s: WB force disabled\n", __func__); 6080 } 6081 6082 static bool ufshcd_is_wb_buf_lifetime_available(struct ufs_hba *hba) 6083 { 6084 u32 lifetime; 6085 int ret; 6086 u8 index; 6087 6088 index = ufshcd_wb_get_query_index(hba); 6089 ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR, 6090 QUERY_ATTR_IDN_WB_BUFF_LIFE_TIME_EST, 6091 index, 0, &lifetime); 6092 if (ret) { 6093 dev_err(hba->dev, 6094 "%s: bWriteBoosterBufferLifeTimeEst read failed %d\n", 6095 __func__, ret); 6096 return false; 6097 } 6098 6099 if (lifetime == UFS_WB_EXCEED_LIFETIME) { 6100 dev_err(hba->dev, "%s: WB buf lifetime is exhausted 0x%02X\n", 6101 __func__, lifetime); 6102 return false; 6103 } 6104 6105 dev_dbg(hba->dev, "%s: WB buf lifetime is 0x%02X\n", 6106 __func__, lifetime); 6107 6108 return true; 6109 } 6110 6111 static bool ufshcd_wb_need_flush(struct ufs_hba *hba) 6112 { 6113 int ret; 6114 u32 avail_buf; 6115 u8 index; 6116 6117 if (!ufshcd_is_wb_allowed(hba)) 6118 return false; 6119 6120 if (!ufshcd_is_wb_buf_lifetime_available(hba)) { 6121 ufshcd_wb_force_disable(hba); 6122 return false; 6123 } 6124 6125 /* 6126 * The ufs device needs the vcc to be ON to flush. 6127 * With user-space reduction enabled, it's enough to enable flush 6128 * by checking only the available buffer. The threshold 6129 * defined here is > 90% full. 6130 * With user-space preserved enabled, the current-buffer 6131 * should be checked too because the wb buffer size can reduce 6132 * when disk tends to be full. This info is provided by current 6133 * buffer (dCurrentWriteBoosterBufferSize). There's no point in 6134 * keeping vcc on when current buffer is empty. 6135 */ 6136 index = ufshcd_wb_get_query_index(hba); 6137 ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR, 6138 QUERY_ATTR_IDN_AVAIL_WB_BUFF_SIZE, 6139 index, 0, &avail_buf); 6140 if (ret) { 6141 dev_warn(hba->dev, "%s: dAvailableWriteBoosterBufferSize read failed %d\n", 6142 __func__, ret); 6143 return false; 6144 } 6145 6146 if (!hba->dev_info.b_presrv_uspc_en) 6147 return avail_buf <= UFS_WB_BUF_REMAIN_PERCENT(10); 6148 6149 return ufshcd_wb_presrv_usrspc_keep_vcc_on(hba, avail_buf); 6150 } 6151 6152 static void ufshcd_rpm_dev_flush_recheck_work(struct work_struct *work) 6153 { 6154 struct ufs_hba *hba = container_of(to_delayed_work(work), 6155 struct ufs_hba, 6156 rpm_dev_flush_recheck_work); 6157 /* 6158 * To prevent unnecessary VCC power drain after device finishes 6159 * WriteBooster buffer flush or Auto BKOPs, force runtime resume 6160 * after a certain delay to recheck the threshold by next runtime 6161 * suspend. 6162 */ 6163 ufshcd_rpm_get_sync(hba); 6164 ufshcd_rpm_put_sync(hba); 6165 } 6166 6167 /** 6168 * ufshcd_exception_event_handler - handle exceptions raised by device 6169 * @work: pointer to work data 6170 * 6171 * Read bExceptionEventStatus attribute from the device and handle the 6172 * exception event accordingly. 6173 */ 6174 static void ufshcd_exception_event_handler(struct work_struct *work) 6175 { 6176 struct ufs_hba *hba; 6177 int err; 6178 u32 status = 0; 6179 hba = container_of(work, struct ufs_hba, eeh_work); 6180 6181 err = ufshcd_get_ee_status(hba, &status); 6182 if (err) { 6183 dev_err(hba->dev, "%s: failed to get exception status %d\n", 6184 __func__, err); 6185 return; 6186 } 6187 6188 trace_ufshcd_exception_event(dev_name(hba->dev), status); 6189 6190 if (status & hba->ee_drv_mask & MASK_EE_URGENT_BKOPS) 6191 ufshcd_bkops_exception_event_handler(hba); 6192 6193 if (status & hba->ee_drv_mask & MASK_EE_URGENT_TEMP) 6194 ufshcd_temp_exception_event_handler(hba, status); 6195 6196 ufs_debugfs_exception_event(hba, status); 6197 } 6198 6199 /* Complete requests that have door-bell cleared */ 6200 static void ufshcd_complete_requests(struct ufs_hba *hba, bool force_compl) 6201 { 6202 if (hba->mcq_enabled) 6203 ufshcd_mcq_compl_pending_transfer(hba, force_compl); 6204 else 6205 ufshcd_transfer_req_compl(hba); 6206 6207 ufshcd_tmc_handler(hba); 6208 } 6209 6210 /** 6211 * ufshcd_quirk_dl_nac_errors - This function checks if error handling is 6212 * to recover from the DL NAC errors or not. 6213 * @hba: per-adapter instance 6214 * 6215 * Return: true if error handling is required, false otherwise. 6216 */ 6217 static bool ufshcd_quirk_dl_nac_errors(struct ufs_hba *hba) 6218 { 6219 unsigned long flags; 6220 bool err_handling = true; 6221 6222 spin_lock_irqsave(hba->host->host_lock, flags); 6223 /* 6224 * UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS only workaround the 6225 * device fatal error and/or DL NAC & REPLAY timeout errors. 6226 */ 6227 if (hba->saved_err & (CONTROLLER_FATAL_ERROR | SYSTEM_BUS_FATAL_ERROR)) 6228 goto out; 6229 6230 if ((hba->saved_err & DEVICE_FATAL_ERROR) || 6231 ((hba->saved_err & UIC_ERROR) && 6232 (hba->saved_uic_err & UFSHCD_UIC_DL_TCx_REPLAY_ERROR))) 6233 goto out; 6234 6235 if ((hba->saved_err & UIC_ERROR) && 6236 (hba->saved_uic_err & UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)) { 6237 int err; 6238 /* 6239 * wait for 50ms to see if we can get any other errors or not. 6240 */ 6241 spin_unlock_irqrestore(hba->host->host_lock, flags); 6242 msleep(50); 6243 spin_lock_irqsave(hba->host->host_lock, flags); 6244 6245 /* 6246 * now check if we have got any other severe errors other than 6247 * DL NAC error? 6248 */ 6249 if ((hba->saved_err & INT_FATAL_ERRORS) || 6250 ((hba->saved_err & UIC_ERROR) && 6251 (hba->saved_uic_err & ~UFSHCD_UIC_DL_NAC_RECEIVED_ERROR))) 6252 goto out; 6253 6254 /* 6255 * As DL NAC is the only error received so far, send out NOP 6256 * command to confirm if link is still active or not. 6257 * - If we don't get any response then do error recovery. 6258 * - If we get response then clear the DL NAC error bit. 6259 */ 6260 6261 spin_unlock_irqrestore(hba->host->host_lock, flags); 6262 err = ufshcd_verify_dev_init(hba); 6263 spin_lock_irqsave(hba->host->host_lock, flags); 6264 6265 if (err) 6266 goto out; 6267 6268 /* Link seems to be alive hence ignore the DL NAC errors */ 6269 if (hba->saved_uic_err == UFSHCD_UIC_DL_NAC_RECEIVED_ERROR) 6270 hba->saved_err &= ~UIC_ERROR; 6271 /* clear NAC error */ 6272 hba->saved_uic_err &= ~UFSHCD_UIC_DL_NAC_RECEIVED_ERROR; 6273 if (!hba->saved_uic_err) 6274 err_handling = false; 6275 } 6276 out: 6277 spin_unlock_irqrestore(hba->host->host_lock, flags); 6278 return err_handling; 6279 } 6280 6281 /* host lock must be held before calling this func */ 6282 static inline bool ufshcd_is_saved_err_fatal(struct ufs_hba *hba) 6283 { 6284 return (hba->saved_uic_err & UFSHCD_UIC_DL_PA_INIT_ERROR) || 6285 (hba->saved_err & (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK)); 6286 } 6287 6288 void ufshcd_schedule_eh_work(struct ufs_hba *hba) 6289 { 6290 lockdep_assert_held(hba->host->host_lock); 6291 6292 /* handle fatal errors only when link is not in error state */ 6293 if (hba->ufshcd_state != UFSHCD_STATE_ERROR) { 6294 if (hba->force_reset || ufshcd_is_link_broken(hba) || 6295 ufshcd_is_saved_err_fatal(hba)) 6296 hba->ufshcd_state = UFSHCD_STATE_EH_SCHEDULED_FATAL; 6297 else 6298 hba->ufshcd_state = UFSHCD_STATE_EH_SCHEDULED_NON_FATAL; 6299 queue_work(hba->eh_wq, &hba->eh_work); 6300 } 6301 } 6302 6303 static void ufshcd_force_error_recovery(struct ufs_hba *hba) 6304 { 6305 spin_lock_irq(hba->host->host_lock); 6306 hba->force_reset = true; 6307 ufshcd_schedule_eh_work(hba); 6308 spin_unlock_irq(hba->host->host_lock); 6309 } 6310 6311 static void ufshcd_clk_scaling_allow(struct ufs_hba *hba, bool allow) 6312 { 6313 mutex_lock(&hba->wb_mutex); 6314 down_write(&hba->clk_scaling_lock); 6315 hba->clk_scaling.is_allowed = allow; 6316 up_write(&hba->clk_scaling_lock); 6317 mutex_unlock(&hba->wb_mutex); 6318 } 6319 6320 static void ufshcd_clk_scaling_suspend(struct ufs_hba *hba, bool suspend) 6321 { 6322 if (suspend) { 6323 if (hba->clk_scaling.is_enabled) 6324 ufshcd_suspend_clkscaling(hba); 6325 ufshcd_clk_scaling_allow(hba, false); 6326 } else { 6327 ufshcd_clk_scaling_allow(hba, true); 6328 if (hba->clk_scaling.is_enabled) 6329 ufshcd_resume_clkscaling(hba); 6330 } 6331 } 6332 6333 static void ufshcd_err_handling_prepare(struct ufs_hba *hba) 6334 { 6335 ufshcd_rpm_get_sync(hba); 6336 if (pm_runtime_status_suspended(&hba->ufs_device_wlun->sdev_gendev) || 6337 hba->is_sys_suspended) { 6338 enum ufs_pm_op pm_op; 6339 6340 /* 6341 * Don't assume anything of resume, if 6342 * resume fails, irq and clocks can be OFF, and powers 6343 * can be OFF or in LPM. 6344 */ 6345 ufshcd_setup_hba_vreg(hba, true); 6346 ufshcd_enable_irq(hba); 6347 ufshcd_setup_vreg(hba, true); 6348 ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq); 6349 ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq2); 6350 ufshcd_hold(hba); 6351 if (!ufshcd_is_clkgating_allowed(hba)) 6352 ufshcd_setup_clocks(hba, true); 6353 pm_op = hba->is_sys_suspended ? UFS_SYSTEM_PM : UFS_RUNTIME_PM; 6354 ufshcd_vops_resume(hba, pm_op); 6355 } else { 6356 ufshcd_hold(hba); 6357 if (ufshcd_is_clkscaling_supported(hba) && 6358 hba->clk_scaling.is_enabled) 6359 ufshcd_suspend_clkscaling(hba); 6360 ufshcd_clk_scaling_allow(hba, false); 6361 } 6362 /* Wait for ongoing ufshcd_queuecommand() calls to finish. */ 6363 blk_mq_quiesce_tagset(&hba->host->tag_set); 6364 cancel_work_sync(&hba->eeh_work); 6365 } 6366 6367 static void ufshcd_err_handling_unprepare(struct ufs_hba *hba) 6368 { 6369 blk_mq_unquiesce_tagset(&hba->host->tag_set); 6370 ufshcd_release(hba); 6371 if (ufshcd_is_clkscaling_supported(hba)) 6372 ufshcd_clk_scaling_suspend(hba, false); 6373 ufshcd_rpm_put(hba); 6374 } 6375 6376 static inline bool ufshcd_err_handling_should_stop(struct ufs_hba *hba) 6377 { 6378 return (!hba->is_powered || hba->shutting_down || 6379 !hba->ufs_device_wlun || 6380 hba->ufshcd_state == UFSHCD_STATE_ERROR || 6381 (!(hba->saved_err || hba->saved_uic_err || hba->force_reset || 6382 ufshcd_is_link_broken(hba)))); 6383 } 6384 6385 #ifdef CONFIG_PM 6386 static void ufshcd_recover_pm_error(struct ufs_hba *hba) 6387 { 6388 struct Scsi_Host *shost = hba->host; 6389 struct scsi_device *sdev; 6390 struct request_queue *q; 6391 int ret; 6392 6393 hba->is_sys_suspended = false; 6394 /* 6395 * Set RPM status of wlun device to RPM_ACTIVE, 6396 * this also clears its runtime error. 6397 */ 6398 ret = pm_runtime_set_active(&hba->ufs_device_wlun->sdev_gendev); 6399 6400 /* hba device might have a runtime error otherwise */ 6401 if (ret) 6402 ret = pm_runtime_set_active(hba->dev); 6403 /* 6404 * If wlun device had runtime error, we also need to resume those 6405 * consumer scsi devices in case any of them has failed to be 6406 * resumed due to supplier runtime resume failure. This is to unblock 6407 * blk_queue_enter in case there are bios waiting inside it. 6408 */ 6409 if (!ret) { 6410 shost_for_each_device(sdev, shost) { 6411 q = sdev->request_queue; 6412 if (q->dev && (q->rpm_status == RPM_SUSPENDED || 6413 q->rpm_status == RPM_SUSPENDING)) 6414 pm_request_resume(q->dev); 6415 } 6416 } 6417 } 6418 #else 6419 static inline void ufshcd_recover_pm_error(struct ufs_hba *hba) 6420 { 6421 } 6422 #endif 6423 6424 static bool ufshcd_is_pwr_mode_restore_needed(struct ufs_hba *hba) 6425 { 6426 struct ufs_pa_layer_attr *pwr_info = &hba->pwr_info; 6427 u32 mode; 6428 6429 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_PWRMODE), &mode); 6430 6431 if (pwr_info->pwr_rx != ((mode >> PWRMODE_RX_OFFSET) & PWRMODE_MASK)) 6432 return true; 6433 6434 if (pwr_info->pwr_tx != (mode & PWRMODE_MASK)) 6435 return true; 6436 6437 return false; 6438 } 6439 6440 static bool ufshcd_abort_one(struct request *rq, void *priv) 6441 { 6442 int *ret = priv; 6443 u32 tag = rq->tag; 6444 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 6445 struct scsi_device *sdev = cmd->device; 6446 struct Scsi_Host *shost = sdev->host; 6447 struct ufs_hba *hba = shost_priv(shost); 6448 6449 *ret = ufshcd_try_to_abort_task(hba, tag); 6450 dev_err(hba->dev, "Aborting tag %d / CDB %#02x %s\n", tag, 6451 hba->lrb[tag].cmd ? hba->lrb[tag].cmd->cmnd[0] : -1, 6452 *ret ? "failed" : "succeeded"); 6453 6454 return *ret == 0; 6455 } 6456 6457 /** 6458 * ufshcd_abort_all - Abort all pending commands. 6459 * @hba: Host bus adapter pointer. 6460 * 6461 * Return: true if and only if the host controller needs to be reset. 6462 */ 6463 static bool ufshcd_abort_all(struct ufs_hba *hba) 6464 { 6465 int tag, ret = 0; 6466 6467 blk_mq_tagset_busy_iter(&hba->host->tag_set, ufshcd_abort_one, &ret); 6468 if (ret) 6469 goto out; 6470 6471 /* Clear pending task management requests */ 6472 for_each_set_bit(tag, &hba->outstanding_tasks, hba->nutmrs) { 6473 ret = ufshcd_clear_tm_cmd(hba, tag); 6474 if (ret) 6475 goto out; 6476 } 6477 6478 out: 6479 /* Complete the requests that are cleared by s/w */ 6480 ufshcd_complete_requests(hba, false); 6481 6482 return ret != 0; 6483 } 6484 6485 /** 6486 * ufshcd_err_handler - handle UFS errors that require s/w attention 6487 * @work: pointer to work structure 6488 */ 6489 static void ufshcd_err_handler(struct work_struct *work) 6490 { 6491 int retries = MAX_ERR_HANDLER_RETRIES; 6492 struct ufs_hba *hba; 6493 unsigned long flags; 6494 bool needs_restore; 6495 bool needs_reset; 6496 int pmc_err; 6497 6498 hba = container_of(work, struct ufs_hba, eh_work); 6499 6500 dev_info(hba->dev, 6501 "%s started; HBA state %s; powered %d; shutting down %d; saved_err = %d; saved_uic_err = %d; force_reset = %d%s\n", 6502 __func__, ufshcd_state_name[hba->ufshcd_state], 6503 hba->is_powered, hba->shutting_down, hba->saved_err, 6504 hba->saved_uic_err, hba->force_reset, 6505 ufshcd_is_link_broken(hba) ? "; link is broken" : ""); 6506 6507 down(&hba->host_sem); 6508 spin_lock_irqsave(hba->host->host_lock, flags); 6509 if (ufshcd_err_handling_should_stop(hba)) { 6510 if (hba->ufshcd_state != UFSHCD_STATE_ERROR) 6511 hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL; 6512 spin_unlock_irqrestore(hba->host->host_lock, flags); 6513 up(&hba->host_sem); 6514 return; 6515 } 6516 ufshcd_set_eh_in_progress(hba); 6517 spin_unlock_irqrestore(hba->host->host_lock, flags); 6518 ufshcd_err_handling_prepare(hba); 6519 /* Complete requests that have door-bell cleared by h/w */ 6520 ufshcd_complete_requests(hba, false); 6521 spin_lock_irqsave(hba->host->host_lock, flags); 6522 again: 6523 needs_restore = false; 6524 needs_reset = false; 6525 6526 if (hba->ufshcd_state != UFSHCD_STATE_ERROR) 6527 hba->ufshcd_state = UFSHCD_STATE_RESET; 6528 /* 6529 * A full reset and restore might have happened after preparation 6530 * is finished, double check whether we should stop. 6531 */ 6532 if (ufshcd_err_handling_should_stop(hba)) 6533 goto skip_err_handling; 6534 6535 if ((hba->dev_quirks & UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS) && 6536 !hba->force_reset) { 6537 bool ret; 6538 6539 spin_unlock_irqrestore(hba->host->host_lock, flags); 6540 /* release the lock as ufshcd_quirk_dl_nac_errors() may sleep */ 6541 ret = ufshcd_quirk_dl_nac_errors(hba); 6542 spin_lock_irqsave(hba->host->host_lock, flags); 6543 if (!ret && ufshcd_err_handling_should_stop(hba)) 6544 goto skip_err_handling; 6545 } 6546 6547 if ((hba->saved_err & (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK)) || 6548 (hba->saved_uic_err && 6549 (hba->saved_uic_err != UFSHCD_UIC_PA_GENERIC_ERROR))) { 6550 bool pr_prdt = !!(hba->saved_err & SYSTEM_BUS_FATAL_ERROR); 6551 6552 spin_unlock_irqrestore(hba->host->host_lock, flags); 6553 ufshcd_print_host_state(hba); 6554 ufshcd_print_pwr_info(hba); 6555 ufshcd_print_evt_hist(hba); 6556 ufshcd_print_tmrs(hba, hba->outstanding_tasks); 6557 ufshcd_print_trs_all(hba, pr_prdt); 6558 spin_lock_irqsave(hba->host->host_lock, flags); 6559 } 6560 6561 /* 6562 * if host reset is required then skip clearing the pending 6563 * transfers forcefully because they will get cleared during 6564 * host reset and restore 6565 */ 6566 if (hba->force_reset || ufshcd_is_link_broken(hba) || 6567 ufshcd_is_saved_err_fatal(hba) || 6568 ((hba->saved_err & UIC_ERROR) && 6569 (hba->saved_uic_err & (UFSHCD_UIC_DL_NAC_RECEIVED_ERROR | 6570 UFSHCD_UIC_DL_TCx_REPLAY_ERROR)))) { 6571 needs_reset = true; 6572 goto do_reset; 6573 } 6574 6575 /* 6576 * If LINERESET was caught, UFS might have been put to PWM mode, 6577 * check if power mode restore is needed. 6578 */ 6579 if (hba->saved_uic_err & UFSHCD_UIC_PA_GENERIC_ERROR) { 6580 hba->saved_uic_err &= ~UFSHCD_UIC_PA_GENERIC_ERROR; 6581 if (!hba->saved_uic_err) 6582 hba->saved_err &= ~UIC_ERROR; 6583 spin_unlock_irqrestore(hba->host->host_lock, flags); 6584 if (ufshcd_is_pwr_mode_restore_needed(hba)) 6585 needs_restore = true; 6586 spin_lock_irqsave(hba->host->host_lock, flags); 6587 if (!hba->saved_err && !needs_restore) 6588 goto skip_err_handling; 6589 } 6590 6591 hba->silence_err_logs = true; 6592 /* release lock as clear command might sleep */ 6593 spin_unlock_irqrestore(hba->host->host_lock, flags); 6594 6595 needs_reset = ufshcd_abort_all(hba); 6596 6597 spin_lock_irqsave(hba->host->host_lock, flags); 6598 hba->silence_err_logs = false; 6599 if (needs_reset) 6600 goto do_reset; 6601 6602 /* 6603 * After all reqs and tasks are cleared from doorbell, 6604 * now it is safe to retore power mode. 6605 */ 6606 if (needs_restore) { 6607 spin_unlock_irqrestore(hba->host->host_lock, flags); 6608 /* 6609 * Hold the scaling lock just in case dev cmds 6610 * are sent via bsg and/or sysfs. 6611 */ 6612 down_write(&hba->clk_scaling_lock); 6613 hba->force_pmc = true; 6614 pmc_err = ufshcd_config_pwr_mode(hba, &(hba->pwr_info)); 6615 if (pmc_err) { 6616 needs_reset = true; 6617 dev_err(hba->dev, "%s: Failed to restore power mode, err = %d\n", 6618 __func__, pmc_err); 6619 } 6620 hba->force_pmc = false; 6621 ufshcd_print_pwr_info(hba); 6622 up_write(&hba->clk_scaling_lock); 6623 spin_lock_irqsave(hba->host->host_lock, flags); 6624 } 6625 6626 do_reset: 6627 /* Fatal errors need reset */ 6628 if (needs_reset) { 6629 int err; 6630 6631 hba->force_reset = false; 6632 spin_unlock_irqrestore(hba->host->host_lock, flags); 6633 err = ufshcd_reset_and_restore(hba); 6634 if (err) 6635 dev_err(hba->dev, "%s: reset and restore failed with err %d\n", 6636 __func__, err); 6637 else 6638 ufshcd_recover_pm_error(hba); 6639 spin_lock_irqsave(hba->host->host_lock, flags); 6640 } 6641 6642 skip_err_handling: 6643 if (!needs_reset) { 6644 if (hba->ufshcd_state == UFSHCD_STATE_RESET) 6645 hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL; 6646 if (hba->saved_err || hba->saved_uic_err) 6647 dev_err_ratelimited(hba->dev, "%s: exit: saved_err 0x%x saved_uic_err 0x%x", 6648 __func__, hba->saved_err, hba->saved_uic_err); 6649 } 6650 /* Exit in an operational state or dead */ 6651 if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL && 6652 hba->ufshcd_state != UFSHCD_STATE_ERROR) { 6653 if (--retries) 6654 goto again; 6655 hba->ufshcd_state = UFSHCD_STATE_ERROR; 6656 } 6657 ufshcd_clear_eh_in_progress(hba); 6658 spin_unlock_irqrestore(hba->host->host_lock, flags); 6659 ufshcd_err_handling_unprepare(hba); 6660 up(&hba->host_sem); 6661 6662 dev_info(hba->dev, "%s finished; HBA state %s\n", __func__, 6663 ufshcd_state_name[hba->ufshcd_state]); 6664 } 6665 6666 /** 6667 * ufshcd_update_uic_error - check and set fatal UIC error flags. 6668 * @hba: per-adapter instance 6669 * 6670 * Return: 6671 * IRQ_HANDLED - If interrupt is valid 6672 * IRQ_NONE - If invalid interrupt 6673 */ 6674 static irqreturn_t ufshcd_update_uic_error(struct ufs_hba *hba) 6675 { 6676 u32 reg; 6677 irqreturn_t retval = IRQ_NONE; 6678 6679 /* PHY layer error */ 6680 reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER); 6681 if ((reg & UIC_PHY_ADAPTER_LAYER_ERROR) && 6682 (reg & UIC_PHY_ADAPTER_LAYER_ERROR_CODE_MASK)) { 6683 ufshcd_update_evt_hist(hba, UFS_EVT_PA_ERR, reg); 6684 /* 6685 * To know whether this error is fatal or not, DB timeout 6686 * must be checked but this error is handled separately. 6687 */ 6688 if (reg & UIC_PHY_ADAPTER_LAYER_LANE_ERR_MASK) 6689 dev_dbg(hba->dev, "%s: UIC Lane error reported\n", 6690 __func__); 6691 6692 /* Got a LINERESET indication. */ 6693 if (reg & UIC_PHY_ADAPTER_LAYER_GENERIC_ERROR) { 6694 struct uic_command *cmd = NULL; 6695 6696 hba->uic_error |= UFSHCD_UIC_PA_GENERIC_ERROR; 6697 if (hba->uic_async_done && hba->active_uic_cmd) 6698 cmd = hba->active_uic_cmd; 6699 /* 6700 * Ignore the LINERESET during power mode change 6701 * operation via DME_SET command. 6702 */ 6703 if (cmd && (cmd->command == UIC_CMD_DME_SET)) 6704 hba->uic_error &= ~UFSHCD_UIC_PA_GENERIC_ERROR; 6705 } 6706 retval |= IRQ_HANDLED; 6707 } 6708 6709 /* PA_INIT_ERROR is fatal and needs UIC reset */ 6710 reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_DATA_LINK_LAYER); 6711 if ((reg & UIC_DATA_LINK_LAYER_ERROR) && 6712 (reg & UIC_DATA_LINK_LAYER_ERROR_CODE_MASK)) { 6713 ufshcd_update_evt_hist(hba, UFS_EVT_DL_ERR, reg); 6714 6715 if (reg & UIC_DATA_LINK_LAYER_ERROR_PA_INIT) 6716 hba->uic_error |= UFSHCD_UIC_DL_PA_INIT_ERROR; 6717 else if (hba->dev_quirks & 6718 UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS) { 6719 if (reg & UIC_DATA_LINK_LAYER_ERROR_NAC_RECEIVED) 6720 hba->uic_error |= 6721 UFSHCD_UIC_DL_NAC_RECEIVED_ERROR; 6722 else if (reg & UIC_DATA_LINK_LAYER_ERROR_TCx_REPLAY_TIMEOUT) 6723 hba->uic_error |= UFSHCD_UIC_DL_TCx_REPLAY_ERROR; 6724 } 6725 retval |= IRQ_HANDLED; 6726 } 6727 6728 /* UIC NL/TL/DME errors needs software retry */ 6729 reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_NETWORK_LAYER); 6730 if ((reg & UIC_NETWORK_LAYER_ERROR) && 6731 (reg & UIC_NETWORK_LAYER_ERROR_CODE_MASK)) { 6732 ufshcd_update_evt_hist(hba, UFS_EVT_NL_ERR, reg); 6733 hba->uic_error |= UFSHCD_UIC_NL_ERROR; 6734 retval |= IRQ_HANDLED; 6735 } 6736 6737 reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_TRANSPORT_LAYER); 6738 if ((reg & UIC_TRANSPORT_LAYER_ERROR) && 6739 (reg & UIC_TRANSPORT_LAYER_ERROR_CODE_MASK)) { 6740 ufshcd_update_evt_hist(hba, UFS_EVT_TL_ERR, reg); 6741 hba->uic_error |= UFSHCD_UIC_TL_ERROR; 6742 retval |= IRQ_HANDLED; 6743 } 6744 6745 reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_DME); 6746 if ((reg & UIC_DME_ERROR) && 6747 (reg & UIC_DME_ERROR_CODE_MASK)) { 6748 ufshcd_update_evt_hist(hba, UFS_EVT_DME_ERR, reg); 6749 hba->uic_error |= UFSHCD_UIC_DME_ERROR; 6750 retval |= IRQ_HANDLED; 6751 } 6752 6753 dev_dbg(hba->dev, "%s: UIC error flags = 0x%08x\n", 6754 __func__, hba->uic_error); 6755 return retval; 6756 } 6757 6758 /** 6759 * ufshcd_check_errors - Check for errors that need s/w attention 6760 * @hba: per-adapter instance 6761 * @intr_status: interrupt status generated by the controller 6762 * 6763 * Return: 6764 * IRQ_HANDLED - If interrupt is valid 6765 * IRQ_NONE - If invalid interrupt 6766 */ 6767 static irqreturn_t ufshcd_check_errors(struct ufs_hba *hba, u32 intr_status) 6768 { 6769 bool queue_eh_work = false; 6770 irqreturn_t retval = IRQ_NONE; 6771 6772 spin_lock(hba->host->host_lock); 6773 hba->errors |= UFSHCD_ERROR_MASK & intr_status; 6774 6775 if (hba->errors & INT_FATAL_ERRORS) { 6776 ufshcd_update_evt_hist(hba, UFS_EVT_FATAL_ERR, 6777 hba->errors); 6778 queue_eh_work = true; 6779 } 6780 6781 if (hba->errors & UIC_ERROR) { 6782 hba->uic_error = 0; 6783 retval = ufshcd_update_uic_error(hba); 6784 if (hba->uic_error) 6785 queue_eh_work = true; 6786 } 6787 6788 if (hba->errors & UFSHCD_UIC_HIBERN8_MASK) { 6789 dev_err(hba->dev, 6790 "%s: Auto Hibern8 %s failed - status: 0x%08x, upmcrs: 0x%08x\n", 6791 __func__, (hba->errors & UIC_HIBERNATE_ENTER) ? 6792 "Enter" : "Exit", 6793 hba->errors, ufshcd_get_upmcrs(hba)); 6794 ufshcd_update_evt_hist(hba, UFS_EVT_AUTO_HIBERN8_ERR, 6795 hba->errors); 6796 ufshcd_set_link_broken(hba); 6797 queue_eh_work = true; 6798 } 6799 6800 if (queue_eh_work) { 6801 /* 6802 * update the transfer error masks to sticky bits, let's do this 6803 * irrespective of current ufshcd_state. 6804 */ 6805 hba->saved_err |= hba->errors; 6806 hba->saved_uic_err |= hba->uic_error; 6807 6808 /* dump controller state before resetting */ 6809 if ((hba->saved_err & 6810 (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK)) || 6811 (hba->saved_uic_err && 6812 (hba->saved_uic_err != UFSHCD_UIC_PA_GENERIC_ERROR))) { 6813 dev_err(hba->dev, "%s: saved_err 0x%x saved_uic_err 0x%x\n", 6814 __func__, hba->saved_err, 6815 hba->saved_uic_err); 6816 ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, 6817 "host_regs: "); 6818 ufshcd_print_pwr_info(hba); 6819 } 6820 ufshcd_schedule_eh_work(hba); 6821 retval |= IRQ_HANDLED; 6822 } 6823 /* 6824 * if (!queue_eh_work) - 6825 * Other errors are either non-fatal where host recovers 6826 * itself without s/w intervention or errors that will be 6827 * handled by the SCSI core layer. 6828 */ 6829 hba->errors = 0; 6830 hba->uic_error = 0; 6831 spin_unlock(hba->host->host_lock); 6832 return retval; 6833 } 6834 6835 /** 6836 * ufshcd_tmc_handler - handle task management function completion 6837 * @hba: per adapter instance 6838 * 6839 * Return: 6840 * IRQ_HANDLED - If interrupt is valid 6841 * IRQ_NONE - If invalid interrupt 6842 */ 6843 static irqreturn_t ufshcd_tmc_handler(struct ufs_hba *hba) 6844 { 6845 unsigned long flags, pending, issued; 6846 irqreturn_t ret = IRQ_NONE; 6847 int tag; 6848 6849 spin_lock_irqsave(hba->host->host_lock, flags); 6850 pending = ufshcd_readl(hba, REG_UTP_TASK_REQ_DOOR_BELL); 6851 issued = hba->outstanding_tasks & ~pending; 6852 for_each_set_bit(tag, &issued, hba->nutmrs) { 6853 struct request *req = hba->tmf_rqs[tag]; 6854 struct completion *c = req->end_io_data; 6855 6856 complete(c); 6857 ret = IRQ_HANDLED; 6858 } 6859 spin_unlock_irqrestore(hba->host->host_lock, flags); 6860 6861 return ret; 6862 } 6863 6864 /** 6865 * ufshcd_handle_mcq_cq_events - handle MCQ completion queue events 6866 * @hba: per adapter instance 6867 * 6868 * Return: IRQ_HANDLED if interrupt is handled. 6869 */ 6870 static irqreturn_t ufshcd_handle_mcq_cq_events(struct ufs_hba *hba) 6871 { 6872 struct ufs_hw_queue *hwq; 6873 unsigned long outstanding_cqs; 6874 unsigned int nr_queues; 6875 int i, ret; 6876 u32 events; 6877 6878 ret = ufshcd_vops_get_outstanding_cqs(hba, &outstanding_cqs); 6879 if (ret) 6880 outstanding_cqs = (1U << hba->nr_hw_queues) - 1; 6881 6882 /* Exclude the poll queues */ 6883 nr_queues = hba->nr_hw_queues - hba->nr_queues[HCTX_TYPE_POLL]; 6884 for_each_set_bit(i, &outstanding_cqs, nr_queues) { 6885 hwq = &hba->uhq[i]; 6886 6887 events = ufshcd_mcq_read_cqis(hba, i); 6888 if (events) 6889 ufshcd_mcq_write_cqis(hba, events, i); 6890 6891 if (events & UFSHCD_MCQ_CQIS_TAIL_ENT_PUSH_STS) 6892 ufshcd_mcq_poll_cqe_lock(hba, hwq); 6893 } 6894 6895 return IRQ_HANDLED; 6896 } 6897 6898 /** 6899 * ufshcd_sl_intr - Interrupt service routine 6900 * @hba: per adapter instance 6901 * @intr_status: contains interrupts generated by the controller 6902 * 6903 * Return: 6904 * IRQ_HANDLED - If interrupt is valid 6905 * IRQ_NONE - If invalid interrupt 6906 */ 6907 static irqreturn_t ufshcd_sl_intr(struct ufs_hba *hba, u32 intr_status) 6908 { 6909 irqreturn_t retval = IRQ_NONE; 6910 6911 if (intr_status & UFSHCD_UIC_MASK) 6912 retval |= ufshcd_uic_cmd_compl(hba, intr_status); 6913 6914 if (intr_status & UFSHCD_ERROR_MASK || hba->errors) 6915 retval |= ufshcd_check_errors(hba, intr_status); 6916 6917 if (intr_status & UTP_TASK_REQ_COMPL) 6918 retval |= ufshcd_tmc_handler(hba); 6919 6920 if (intr_status & UTP_TRANSFER_REQ_COMPL) 6921 retval |= ufshcd_transfer_req_compl(hba); 6922 6923 if (intr_status & MCQ_CQ_EVENT_STATUS) 6924 retval |= ufshcd_handle_mcq_cq_events(hba); 6925 6926 return retval; 6927 } 6928 6929 /** 6930 * ufshcd_intr - Main interrupt service routine 6931 * @irq: irq number 6932 * @__hba: pointer to adapter instance 6933 * 6934 * Return: 6935 * IRQ_HANDLED - If interrupt is valid 6936 * IRQ_NONE - If invalid interrupt 6937 */ 6938 static irqreturn_t ufshcd_intr(int irq, void *__hba) 6939 { 6940 u32 intr_status, enabled_intr_status = 0; 6941 irqreturn_t retval = IRQ_NONE; 6942 struct ufs_hba *hba = __hba; 6943 int retries = hba->nutrs; 6944 6945 intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS); 6946 hba->ufs_stats.last_intr_status = intr_status; 6947 hba->ufs_stats.last_intr_ts = local_clock(); 6948 6949 /* 6950 * There could be max of hba->nutrs reqs in flight and in worst case 6951 * if the reqs get finished 1 by 1 after the interrupt status is 6952 * read, make sure we handle them by checking the interrupt status 6953 * again in a loop until we process all of the reqs before returning. 6954 */ 6955 while (intr_status && retries--) { 6956 enabled_intr_status = 6957 intr_status & ufshcd_readl(hba, REG_INTERRUPT_ENABLE); 6958 ufshcd_writel(hba, intr_status, REG_INTERRUPT_STATUS); 6959 if (enabled_intr_status) 6960 retval |= ufshcd_sl_intr(hba, enabled_intr_status); 6961 6962 intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS); 6963 } 6964 6965 if (enabled_intr_status && retval == IRQ_NONE && 6966 (!(enabled_intr_status & UTP_TRANSFER_REQ_COMPL) || 6967 hba->outstanding_reqs) && !ufshcd_eh_in_progress(hba)) { 6968 dev_err(hba->dev, "%s: Unhandled interrupt 0x%08x (0x%08x, 0x%08x)\n", 6969 __func__, 6970 intr_status, 6971 hba->ufs_stats.last_intr_status, 6972 enabled_intr_status); 6973 ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, "host_regs: "); 6974 } 6975 6976 return retval; 6977 } 6978 6979 static int ufshcd_clear_tm_cmd(struct ufs_hba *hba, int tag) 6980 { 6981 int err = 0; 6982 u32 mask = 1 << tag; 6983 6984 if (!test_bit(tag, &hba->outstanding_tasks)) 6985 goto out; 6986 6987 ufshcd_utmrl_clear(hba, tag); 6988 6989 /* poll for max. 1 sec to clear door bell register by h/w */ 6990 err = ufshcd_wait_for_register(hba, 6991 REG_UTP_TASK_REQ_DOOR_BELL, 6992 mask, 0, 1000, 1000); 6993 6994 dev_err(hba->dev, "Clearing task management function with tag %d %s\n", 6995 tag, err < 0 ? "failed" : "succeeded"); 6996 6997 out: 6998 return err; 6999 } 7000 7001 static int __ufshcd_issue_tm_cmd(struct ufs_hba *hba, 7002 struct utp_task_req_desc *treq, u8 tm_function) 7003 { 7004 struct request_queue *q = hba->tmf_queue; 7005 struct Scsi_Host *host = hba->host; 7006 DECLARE_COMPLETION_ONSTACK(wait); 7007 struct request *req; 7008 unsigned long flags; 7009 int task_tag, err; 7010 7011 /* 7012 * blk_mq_alloc_request() is used here only to get a free tag. 7013 */ 7014 req = blk_mq_alloc_request(q, REQ_OP_DRV_OUT, 0); 7015 if (IS_ERR(req)) 7016 return PTR_ERR(req); 7017 7018 req->end_io_data = &wait; 7019 ufshcd_hold(hba); 7020 7021 spin_lock_irqsave(host->host_lock, flags); 7022 7023 task_tag = req->tag; 7024 hba->tmf_rqs[req->tag] = req; 7025 treq->upiu_req.req_header.task_tag = task_tag; 7026 7027 memcpy(hba->utmrdl_base_addr + task_tag, treq, sizeof(*treq)); 7028 ufshcd_vops_setup_task_mgmt(hba, task_tag, tm_function); 7029 7030 __set_bit(task_tag, &hba->outstanding_tasks); 7031 7032 spin_unlock_irqrestore(host->host_lock, flags); 7033 7034 /* send command to the controller */ 7035 ufshcd_writel(hba, 1 << task_tag, REG_UTP_TASK_REQ_DOOR_BELL); 7036 7037 ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_SEND); 7038 7039 /* wait until the task management command is completed */ 7040 err = wait_for_completion_io_timeout(&wait, 7041 msecs_to_jiffies(TM_CMD_TIMEOUT)); 7042 if (!err) { 7043 ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_ERR); 7044 dev_err(hba->dev, "%s: task management cmd 0x%.2x timed-out\n", 7045 __func__, tm_function); 7046 if (ufshcd_clear_tm_cmd(hba, task_tag)) 7047 dev_WARN(hba->dev, "%s: unable to clear tm cmd (slot %d) after timeout\n", 7048 __func__, task_tag); 7049 err = -ETIMEDOUT; 7050 } else { 7051 err = 0; 7052 memcpy(treq, hba->utmrdl_base_addr + task_tag, sizeof(*treq)); 7053 7054 ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_COMP); 7055 } 7056 7057 spin_lock_irqsave(hba->host->host_lock, flags); 7058 hba->tmf_rqs[req->tag] = NULL; 7059 __clear_bit(task_tag, &hba->outstanding_tasks); 7060 spin_unlock_irqrestore(hba->host->host_lock, flags); 7061 7062 ufshcd_release(hba); 7063 blk_mq_free_request(req); 7064 7065 return err; 7066 } 7067 7068 /** 7069 * ufshcd_issue_tm_cmd - issues task management commands to controller 7070 * @hba: per adapter instance 7071 * @lun_id: LUN ID to which TM command is sent 7072 * @task_id: task ID to which the TM command is applicable 7073 * @tm_function: task management function opcode 7074 * @tm_response: task management service response return value 7075 * 7076 * Return: non-zero value on error, zero on success. 7077 */ 7078 static int ufshcd_issue_tm_cmd(struct ufs_hba *hba, int lun_id, int task_id, 7079 u8 tm_function, u8 *tm_response) 7080 { 7081 struct utp_task_req_desc treq = { }; 7082 enum utp_ocs ocs_value; 7083 int err; 7084 7085 /* Configure task request descriptor */ 7086 treq.header.interrupt = 1; 7087 treq.header.ocs = OCS_INVALID_COMMAND_STATUS; 7088 7089 /* Configure task request UPIU */ 7090 treq.upiu_req.req_header.transaction_code = UPIU_TRANSACTION_TASK_REQ; 7091 treq.upiu_req.req_header.lun = lun_id; 7092 treq.upiu_req.req_header.tm_function = tm_function; 7093 7094 /* 7095 * The host shall provide the same value for LUN field in the basic 7096 * header and for Input Parameter. 7097 */ 7098 treq.upiu_req.input_param1 = cpu_to_be32(lun_id); 7099 treq.upiu_req.input_param2 = cpu_to_be32(task_id); 7100 7101 err = __ufshcd_issue_tm_cmd(hba, &treq, tm_function); 7102 if (err == -ETIMEDOUT) 7103 return err; 7104 7105 ocs_value = treq.header.ocs & MASK_OCS; 7106 if (ocs_value != OCS_SUCCESS) 7107 dev_err(hba->dev, "%s: failed, ocs = 0x%x\n", 7108 __func__, ocs_value); 7109 else if (tm_response) 7110 *tm_response = be32_to_cpu(treq.upiu_rsp.output_param1) & 7111 MASK_TM_SERVICE_RESP; 7112 return err; 7113 } 7114 7115 /** 7116 * ufshcd_issue_devman_upiu_cmd - API for sending "utrd" type requests 7117 * @hba: per-adapter instance 7118 * @req_upiu: upiu request 7119 * @rsp_upiu: upiu reply 7120 * @desc_buff: pointer to descriptor buffer, NULL if NA 7121 * @buff_len: descriptor size, 0 if NA 7122 * @cmd_type: specifies the type (NOP, Query...) 7123 * @desc_op: descriptor operation 7124 * 7125 * Those type of requests uses UTP Transfer Request Descriptor - utrd. 7126 * Therefore, it "rides" the device management infrastructure: uses its tag and 7127 * tasks work queues. 7128 * 7129 * Since there is only one available tag for device management commands, 7130 * the caller is expected to hold the hba->dev_cmd.lock mutex. 7131 * 7132 * Return: 0 upon success; < 0 upon failure. 7133 */ 7134 static int ufshcd_issue_devman_upiu_cmd(struct ufs_hba *hba, 7135 struct utp_upiu_req *req_upiu, 7136 struct utp_upiu_req *rsp_upiu, 7137 u8 *desc_buff, int *buff_len, 7138 enum dev_cmd_type cmd_type, 7139 enum query_opcode desc_op) 7140 { 7141 const u32 tag = hba->reserved_slot; 7142 struct ufshcd_lrb *lrbp = &hba->lrb[tag]; 7143 int err = 0; 7144 u8 upiu_flags; 7145 7146 /* Protects use of hba->reserved_slot. */ 7147 lockdep_assert_held(&hba->dev_cmd.lock); 7148 7149 ufshcd_setup_dev_cmd(hba, lrbp, cmd_type, 0, tag); 7150 7151 ufshcd_prepare_req_desc_hdr(hba, lrbp, &upiu_flags, DMA_NONE, 0); 7152 7153 /* update the task tag in the request upiu */ 7154 req_upiu->header.task_tag = tag; 7155 7156 /* just copy the upiu request as it is */ 7157 memcpy(lrbp->ucd_req_ptr, req_upiu, sizeof(*lrbp->ucd_req_ptr)); 7158 if (desc_buff && desc_op == UPIU_QUERY_OPCODE_WRITE_DESC) { 7159 /* The Data Segment Area is optional depending upon the query 7160 * function value. for WRITE DESCRIPTOR, the data segment 7161 * follows right after the tsf. 7162 */ 7163 memcpy(lrbp->ucd_req_ptr + 1, desc_buff, *buff_len); 7164 *buff_len = 0; 7165 } 7166 7167 memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp)); 7168 7169 /* 7170 * ignore the returning value here - ufshcd_check_query_response is 7171 * bound to fail since dev_cmd.query and dev_cmd.type were left empty. 7172 * read the response directly ignoring all errors. 7173 */ 7174 ufshcd_issue_dev_cmd(hba, lrbp, tag, QUERY_REQ_TIMEOUT); 7175 7176 /* just copy the upiu response as it is */ 7177 memcpy(rsp_upiu, lrbp->ucd_rsp_ptr, sizeof(*rsp_upiu)); 7178 if (desc_buff && desc_op == UPIU_QUERY_OPCODE_READ_DESC) { 7179 u8 *descp = (u8 *)lrbp->ucd_rsp_ptr + sizeof(*rsp_upiu); 7180 u16 resp_len = be16_to_cpu(lrbp->ucd_rsp_ptr->header 7181 .data_segment_length); 7182 7183 if (*buff_len >= resp_len) { 7184 memcpy(desc_buff, descp, resp_len); 7185 *buff_len = resp_len; 7186 } else { 7187 dev_warn(hba->dev, 7188 "%s: rsp size %d is bigger than buffer size %d", 7189 __func__, resp_len, *buff_len); 7190 *buff_len = 0; 7191 err = -EINVAL; 7192 } 7193 } 7194 ufshcd_add_query_upiu_trace(hba, err ? UFS_QUERY_ERR : UFS_QUERY_COMP, 7195 (struct utp_upiu_req *)lrbp->ucd_rsp_ptr); 7196 7197 return err; 7198 } 7199 7200 /** 7201 * ufshcd_exec_raw_upiu_cmd - API function for sending raw upiu commands 7202 * @hba: per-adapter instance 7203 * @req_upiu: upiu request 7204 * @rsp_upiu: upiu reply - only 8 DW as we do not support scsi commands 7205 * @msgcode: message code, one of UPIU Transaction Codes Initiator to Target 7206 * @desc_buff: pointer to descriptor buffer, NULL if NA 7207 * @buff_len: descriptor size, 0 if NA 7208 * @desc_op: descriptor operation 7209 * 7210 * Supports UTP Transfer requests (nop and query), and UTP Task 7211 * Management requests. 7212 * It is up to the caller to fill the upiu conent properly, as it will 7213 * be copied without any further input validations. 7214 * 7215 * Return: 0 upon success; < 0 upon failure. 7216 */ 7217 int ufshcd_exec_raw_upiu_cmd(struct ufs_hba *hba, 7218 struct utp_upiu_req *req_upiu, 7219 struct utp_upiu_req *rsp_upiu, 7220 enum upiu_request_transaction msgcode, 7221 u8 *desc_buff, int *buff_len, 7222 enum query_opcode desc_op) 7223 { 7224 int err; 7225 enum dev_cmd_type cmd_type = DEV_CMD_TYPE_QUERY; 7226 struct utp_task_req_desc treq = { }; 7227 enum utp_ocs ocs_value; 7228 u8 tm_f = req_upiu->header.tm_function; 7229 7230 switch (msgcode) { 7231 case UPIU_TRANSACTION_NOP_OUT: 7232 cmd_type = DEV_CMD_TYPE_NOP; 7233 fallthrough; 7234 case UPIU_TRANSACTION_QUERY_REQ: 7235 ufshcd_dev_man_lock(hba); 7236 err = ufshcd_issue_devman_upiu_cmd(hba, req_upiu, rsp_upiu, 7237 desc_buff, buff_len, 7238 cmd_type, desc_op); 7239 ufshcd_dev_man_unlock(hba); 7240 7241 break; 7242 case UPIU_TRANSACTION_TASK_REQ: 7243 treq.header.interrupt = 1; 7244 treq.header.ocs = OCS_INVALID_COMMAND_STATUS; 7245 7246 memcpy(&treq.upiu_req, req_upiu, sizeof(*req_upiu)); 7247 7248 err = __ufshcd_issue_tm_cmd(hba, &treq, tm_f); 7249 if (err == -ETIMEDOUT) 7250 break; 7251 7252 ocs_value = treq.header.ocs & MASK_OCS; 7253 if (ocs_value != OCS_SUCCESS) { 7254 dev_err(hba->dev, "%s: failed, ocs = 0x%x\n", __func__, 7255 ocs_value); 7256 break; 7257 } 7258 7259 memcpy(rsp_upiu, &treq.upiu_rsp, sizeof(*rsp_upiu)); 7260 7261 break; 7262 default: 7263 err = -EINVAL; 7264 7265 break; 7266 } 7267 7268 return err; 7269 } 7270 7271 /** 7272 * ufshcd_advanced_rpmb_req_handler - handle advanced RPMB request 7273 * @hba: per adapter instance 7274 * @req_upiu: upiu request 7275 * @rsp_upiu: upiu reply 7276 * @req_ehs: EHS field which contains Advanced RPMB Request Message 7277 * @rsp_ehs: EHS field which returns Advanced RPMB Response Message 7278 * @sg_cnt: The number of sg lists actually used 7279 * @sg_list: Pointer to SG list when DATA IN/OUT UPIU is required in ARPMB operation 7280 * @dir: DMA direction 7281 * 7282 * Return: zero on success, non-zero on failure. 7283 */ 7284 int ufshcd_advanced_rpmb_req_handler(struct ufs_hba *hba, struct utp_upiu_req *req_upiu, 7285 struct utp_upiu_req *rsp_upiu, struct ufs_ehs *req_ehs, 7286 struct ufs_ehs *rsp_ehs, int sg_cnt, struct scatterlist *sg_list, 7287 enum dma_data_direction dir) 7288 { 7289 const u32 tag = hba->reserved_slot; 7290 struct ufshcd_lrb *lrbp = &hba->lrb[tag]; 7291 int err = 0; 7292 int result; 7293 u8 upiu_flags; 7294 u8 *ehs_data; 7295 u16 ehs_len; 7296 int ehs = (hba->capabilities & MASK_EHSLUTRD_SUPPORTED) ? 2 : 0; 7297 7298 /* Protects use of hba->reserved_slot. */ 7299 ufshcd_dev_man_lock(hba); 7300 7301 ufshcd_setup_dev_cmd(hba, lrbp, DEV_CMD_TYPE_RPMB, UFS_UPIU_RPMB_WLUN, tag); 7302 7303 ufshcd_prepare_req_desc_hdr(hba, lrbp, &upiu_flags, DMA_NONE, ehs); 7304 7305 /* update the task tag */ 7306 req_upiu->header.task_tag = tag; 7307 7308 /* copy the UPIU(contains CDB) request as it is */ 7309 memcpy(lrbp->ucd_req_ptr, req_upiu, sizeof(*lrbp->ucd_req_ptr)); 7310 /* Copy EHS, starting with byte32, immediately after the CDB package */ 7311 memcpy(lrbp->ucd_req_ptr + 1, req_ehs, sizeof(*req_ehs)); 7312 7313 if (dir != DMA_NONE && sg_list) 7314 ufshcd_sgl_to_prdt(hba, lrbp, sg_cnt, sg_list); 7315 7316 memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp)); 7317 7318 err = ufshcd_issue_dev_cmd(hba, lrbp, tag, ADVANCED_RPMB_REQ_TIMEOUT); 7319 7320 if (!err) { 7321 /* Just copy the upiu response as it is */ 7322 memcpy(rsp_upiu, lrbp->ucd_rsp_ptr, sizeof(*rsp_upiu)); 7323 /* Get the response UPIU result */ 7324 result = (lrbp->ucd_rsp_ptr->header.response << 8) | 7325 lrbp->ucd_rsp_ptr->header.status; 7326 7327 ehs_len = lrbp->ucd_rsp_ptr->header.ehs_length; 7328 /* 7329 * Since the bLength in EHS indicates the total size of the EHS Header and EHS Data 7330 * in 32 Byte units, the value of the bLength Request/Response for Advanced RPMB 7331 * Message is 02h 7332 */ 7333 if (ehs_len == 2 && rsp_ehs) { 7334 /* 7335 * ucd_rsp_ptr points to a buffer with a length of 512 bytes 7336 * (ALIGNED_UPIU_SIZE = 512), and the EHS data just starts from byte32 7337 */ 7338 ehs_data = (u8 *)lrbp->ucd_rsp_ptr + EHS_OFFSET_IN_RESPONSE; 7339 memcpy(rsp_ehs, ehs_data, ehs_len * 32); 7340 } 7341 } 7342 7343 ufshcd_dev_man_unlock(hba); 7344 7345 return err ? : result; 7346 } 7347 7348 /** 7349 * ufshcd_eh_device_reset_handler() - Reset a single logical unit. 7350 * @cmd: SCSI command pointer 7351 * 7352 * Return: SUCCESS or FAILED. 7353 */ 7354 static int ufshcd_eh_device_reset_handler(struct scsi_cmnd *cmd) 7355 { 7356 unsigned long flags, pending_reqs = 0, not_cleared = 0; 7357 struct Scsi_Host *host; 7358 struct ufs_hba *hba; 7359 struct ufs_hw_queue *hwq; 7360 struct ufshcd_lrb *lrbp; 7361 u32 pos, not_cleared_mask = 0; 7362 int err; 7363 u8 resp = 0xF, lun; 7364 7365 host = cmd->device->host; 7366 hba = shost_priv(host); 7367 7368 lun = ufshcd_scsi_to_upiu_lun(cmd->device->lun); 7369 err = ufshcd_issue_tm_cmd(hba, lun, 0, UFS_LOGICAL_RESET, &resp); 7370 if (err || resp != UPIU_TASK_MANAGEMENT_FUNC_COMPL) { 7371 if (!err) 7372 err = resp; 7373 goto out; 7374 } 7375 7376 if (hba->mcq_enabled) { 7377 for (pos = 0; pos < hba->nutrs; pos++) { 7378 lrbp = &hba->lrb[pos]; 7379 if (ufshcd_cmd_inflight(lrbp->cmd) && 7380 lrbp->lun == lun) { 7381 ufshcd_clear_cmd(hba, pos); 7382 hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(lrbp->cmd)); 7383 ufshcd_mcq_poll_cqe_lock(hba, hwq); 7384 } 7385 } 7386 err = 0; 7387 goto out; 7388 } 7389 7390 /* clear the commands that were pending for corresponding LUN */ 7391 spin_lock_irqsave(&hba->outstanding_lock, flags); 7392 for_each_set_bit(pos, &hba->outstanding_reqs, hba->nutrs) 7393 if (hba->lrb[pos].lun == lun) 7394 __set_bit(pos, &pending_reqs); 7395 hba->outstanding_reqs &= ~pending_reqs; 7396 spin_unlock_irqrestore(&hba->outstanding_lock, flags); 7397 7398 for_each_set_bit(pos, &pending_reqs, hba->nutrs) { 7399 if (ufshcd_clear_cmd(hba, pos) < 0) { 7400 spin_lock_irqsave(&hba->outstanding_lock, flags); 7401 not_cleared = 1U << pos & 7402 ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL); 7403 hba->outstanding_reqs |= not_cleared; 7404 not_cleared_mask |= not_cleared; 7405 spin_unlock_irqrestore(&hba->outstanding_lock, flags); 7406 7407 dev_err(hba->dev, "%s: failed to clear request %d\n", 7408 __func__, pos); 7409 } 7410 } 7411 __ufshcd_transfer_req_compl(hba, pending_reqs & ~not_cleared_mask); 7412 7413 out: 7414 hba->req_abort_count = 0; 7415 ufshcd_update_evt_hist(hba, UFS_EVT_DEV_RESET, (u32)err); 7416 if (!err) { 7417 err = SUCCESS; 7418 } else { 7419 dev_err(hba->dev, "%s: failed with err %d\n", __func__, err); 7420 err = FAILED; 7421 } 7422 return err; 7423 } 7424 7425 static void ufshcd_set_req_abort_skip(struct ufs_hba *hba, unsigned long bitmap) 7426 { 7427 struct ufshcd_lrb *lrbp; 7428 int tag; 7429 7430 for_each_set_bit(tag, &bitmap, hba->nutrs) { 7431 lrbp = &hba->lrb[tag]; 7432 lrbp->req_abort_skip = true; 7433 } 7434 } 7435 7436 /** 7437 * ufshcd_try_to_abort_task - abort a specific task 7438 * @hba: Pointer to adapter instance 7439 * @tag: Task tag/index to be aborted 7440 * 7441 * Abort the pending command in device by sending UFS_ABORT_TASK task management 7442 * command, and in host controller by clearing the door-bell register. There can 7443 * be race between controller sending the command to the device while abort is 7444 * issued. To avoid that, first issue UFS_QUERY_TASK to check if the command is 7445 * really issued and then try to abort it. 7446 * 7447 * Return: zero on success, non-zero on failure. 7448 */ 7449 int ufshcd_try_to_abort_task(struct ufs_hba *hba, int tag) 7450 { 7451 struct ufshcd_lrb *lrbp = &hba->lrb[tag]; 7452 int err; 7453 int poll_cnt; 7454 u8 resp = 0xF; 7455 7456 for (poll_cnt = 100; poll_cnt; poll_cnt--) { 7457 err = ufshcd_issue_tm_cmd(hba, lrbp->lun, lrbp->task_tag, 7458 UFS_QUERY_TASK, &resp); 7459 if (!err && resp == UPIU_TASK_MANAGEMENT_FUNC_SUCCEEDED) { 7460 /* cmd pending in the device */ 7461 dev_err(hba->dev, "%s: cmd pending in the device. tag = %d\n", 7462 __func__, tag); 7463 break; 7464 } else if (!err && resp == UPIU_TASK_MANAGEMENT_FUNC_COMPL) { 7465 /* 7466 * cmd not pending in the device, check if it is 7467 * in transition. 7468 */ 7469 dev_info( 7470 hba->dev, 7471 "%s: cmd with tag %d not pending in the device.\n", 7472 __func__, tag); 7473 if (!ufshcd_cmd_inflight(lrbp->cmd)) { 7474 dev_info(hba->dev, 7475 "%s: cmd with tag=%d completed.\n", 7476 __func__, tag); 7477 return 0; 7478 } 7479 usleep_range(100, 200); 7480 } else { 7481 dev_err(hba->dev, 7482 "%s: no response from device. tag = %d, err %d\n", 7483 __func__, tag, err); 7484 return err ? : resp; 7485 } 7486 } 7487 7488 if (!poll_cnt) 7489 return -EBUSY; 7490 7491 err = ufshcd_issue_tm_cmd(hba, lrbp->lun, lrbp->task_tag, 7492 UFS_ABORT_TASK, &resp); 7493 if (err || resp != UPIU_TASK_MANAGEMENT_FUNC_COMPL) { 7494 if (!err) { 7495 err = resp; /* service response error */ 7496 dev_err(hba->dev, "%s: issued. tag = %d, err %d\n", 7497 __func__, tag, err); 7498 } 7499 return err; 7500 } 7501 7502 err = ufshcd_clear_cmd(hba, tag); 7503 if (err) 7504 dev_err(hba->dev, "%s: Failed clearing cmd at tag %d, err %d\n", 7505 __func__, tag, err); 7506 7507 return err; 7508 } 7509 7510 /** 7511 * ufshcd_abort - scsi host template eh_abort_handler callback 7512 * @cmd: SCSI command pointer 7513 * 7514 * Return: SUCCESS or FAILED. 7515 */ 7516 static int ufshcd_abort(struct scsi_cmnd *cmd) 7517 { 7518 struct Scsi_Host *host = cmd->device->host; 7519 struct ufs_hba *hba = shost_priv(host); 7520 int tag = scsi_cmd_to_rq(cmd)->tag; 7521 struct ufshcd_lrb *lrbp = &hba->lrb[tag]; 7522 unsigned long flags; 7523 int err = FAILED; 7524 bool outstanding; 7525 u32 reg; 7526 7527 ufshcd_hold(hba); 7528 7529 if (!hba->mcq_enabled) { 7530 reg = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL); 7531 if (!test_bit(tag, &hba->outstanding_reqs)) { 7532 /* If command is already aborted/completed, return FAILED. */ 7533 dev_err(hba->dev, 7534 "%s: cmd at tag %d already completed, outstanding=0x%lx, doorbell=0x%x\n", 7535 __func__, tag, hba->outstanding_reqs, reg); 7536 goto release; 7537 } 7538 } 7539 7540 /* Print Transfer Request of aborted task */ 7541 dev_info(hba->dev, "%s: Device abort task at tag %d\n", __func__, tag); 7542 7543 /* 7544 * Print detailed info about aborted request. 7545 * As more than one request might get aborted at the same time, 7546 * print full information only for the first aborted request in order 7547 * to reduce repeated printouts. For other aborted requests only print 7548 * basic details. 7549 */ 7550 scsi_print_command(cmd); 7551 if (!hba->req_abort_count) { 7552 ufshcd_update_evt_hist(hba, UFS_EVT_ABORT, tag); 7553 ufshcd_print_evt_hist(hba); 7554 ufshcd_print_host_state(hba); 7555 ufshcd_print_pwr_info(hba); 7556 ufshcd_print_tr(hba, tag, true); 7557 } else { 7558 ufshcd_print_tr(hba, tag, false); 7559 } 7560 hba->req_abort_count++; 7561 7562 if (!hba->mcq_enabled && !(reg & (1 << tag))) { 7563 /* only execute this code in single doorbell mode */ 7564 dev_err(hba->dev, 7565 "%s: cmd was completed, but without a notifying intr, tag = %d", 7566 __func__, tag); 7567 __ufshcd_transfer_req_compl(hba, 1UL << tag); 7568 goto release; 7569 } 7570 7571 /* 7572 * Task abort to the device W-LUN is illegal. When this command 7573 * will fail, due to spec violation, scsi err handling next step 7574 * will be to send LU reset which, again, is a spec violation. 7575 * To avoid these unnecessary/illegal steps, first we clean up 7576 * the lrb taken by this cmd and re-set it in outstanding_reqs, 7577 * then queue the eh_work and bail. 7578 */ 7579 if (lrbp->lun == UFS_UPIU_UFS_DEVICE_WLUN) { 7580 ufshcd_update_evt_hist(hba, UFS_EVT_ABORT, lrbp->lun); 7581 7582 spin_lock_irqsave(host->host_lock, flags); 7583 hba->force_reset = true; 7584 ufshcd_schedule_eh_work(hba); 7585 spin_unlock_irqrestore(host->host_lock, flags); 7586 goto release; 7587 } 7588 7589 if (hba->mcq_enabled) { 7590 /* MCQ mode. Branch off to handle abort for mcq mode */ 7591 err = ufshcd_mcq_abort(cmd); 7592 goto release; 7593 } 7594 7595 /* Skip task abort in case previous aborts failed and report failure */ 7596 if (lrbp->req_abort_skip) { 7597 dev_err(hba->dev, "%s: skipping abort\n", __func__); 7598 ufshcd_set_req_abort_skip(hba, hba->outstanding_reqs); 7599 goto release; 7600 } 7601 7602 err = ufshcd_try_to_abort_task(hba, tag); 7603 if (err) { 7604 dev_err(hba->dev, "%s: failed with err %d\n", __func__, err); 7605 ufshcd_set_req_abort_skip(hba, hba->outstanding_reqs); 7606 err = FAILED; 7607 goto release; 7608 } 7609 7610 /* 7611 * Clear the corresponding bit from outstanding_reqs since the command 7612 * has been aborted successfully. 7613 */ 7614 spin_lock_irqsave(&hba->outstanding_lock, flags); 7615 outstanding = __test_and_clear_bit(tag, &hba->outstanding_reqs); 7616 spin_unlock_irqrestore(&hba->outstanding_lock, flags); 7617 7618 if (outstanding) 7619 ufshcd_release_scsi_cmd(hba, lrbp); 7620 7621 err = SUCCESS; 7622 7623 release: 7624 /* Matches the ufshcd_hold() call at the start of this function. */ 7625 ufshcd_release(hba); 7626 return err; 7627 } 7628 7629 /** 7630 * ufshcd_process_probe_result - Process the ufshcd_probe_hba() result. 7631 * @hba: UFS host controller instance. 7632 * @probe_start: time when the ufshcd_probe_hba() call started. 7633 * @ret: ufshcd_probe_hba() return value. 7634 */ 7635 static void ufshcd_process_probe_result(struct ufs_hba *hba, 7636 ktime_t probe_start, int ret) 7637 { 7638 unsigned long flags; 7639 7640 spin_lock_irqsave(hba->host->host_lock, flags); 7641 if (ret) 7642 hba->ufshcd_state = UFSHCD_STATE_ERROR; 7643 else if (hba->ufshcd_state == UFSHCD_STATE_RESET) 7644 hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL; 7645 spin_unlock_irqrestore(hba->host->host_lock, flags); 7646 7647 trace_ufshcd_init(dev_name(hba->dev), ret, 7648 ktime_to_us(ktime_sub(ktime_get(), probe_start)), 7649 hba->curr_dev_pwr_mode, hba->uic_link_state); 7650 } 7651 7652 /** 7653 * ufshcd_host_reset_and_restore - reset and restore host controller 7654 * @hba: per-adapter instance 7655 * 7656 * Note that host controller reset may issue DME_RESET to 7657 * local and remote (device) Uni-Pro stack and the attributes 7658 * are reset to default state. 7659 * 7660 * Return: zero on success, non-zero on failure. 7661 */ 7662 static int ufshcd_host_reset_and_restore(struct ufs_hba *hba) 7663 { 7664 int err; 7665 7666 /* 7667 * Stop the host controller and complete the requests 7668 * cleared by h/w 7669 */ 7670 ufshcd_hba_stop(hba); 7671 hba->silence_err_logs = true; 7672 ufshcd_complete_requests(hba, true); 7673 hba->silence_err_logs = false; 7674 7675 /* scale up clocks to max frequency before full reinitialization */ 7676 ufshcd_scale_clks(hba, ULONG_MAX, true); 7677 7678 err = ufshcd_hba_enable(hba); 7679 7680 /* Establish the link again and restore the device */ 7681 if (!err) { 7682 ktime_t probe_start = ktime_get(); 7683 7684 err = ufshcd_device_init(hba, /*init_dev_params=*/false); 7685 if (!err) 7686 err = ufshcd_probe_hba(hba, false); 7687 ufshcd_process_probe_result(hba, probe_start, err); 7688 } 7689 7690 if (err) 7691 dev_err(hba->dev, "%s: Host init failed %d\n", __func__, err); 7692 ufshcd_update_evt_hist(hba, UFS_EVT_HOST_RESET, (u32)err); 7693 return err; 7694 } 7695 7696 /** 7697 * ufshcd_reset_and_restore - reset and re-initialize host/device 7698 * @hba: per-adapter instance 7699 * 7700 * Reset and recover device, host and re-establish link. This 7701 * is helpful to recover the communication in fatal error conditions. 7702 * 7703 * Return: zero on success, non-zero on failure. 7704 */ 7705 static int ufshcd_reset_and_restore(struct ufs_hba *hba) 7706 { 7707 u32 saved_err = 0; 7708 u32 saved_uic_err = 0; 7709 int err = 0; 7710 unsigned long flags; 7711 int retries = MAX_HOST_RESET_RETRIES; 7712 7713 spin_lock_irqsave(hba->host->host_lock, flags); 7714 do { 7715 /* 7716 * This is a fresh start, cache and clear saved error first, 7717 * in case new error generated during reset and restore. 7718 */ 7719 saved_err |= hba->saved_err; 7720 saved_uic_err |= hba->saved_uic_err; 7721 hba->saved_err = 0; 7722 hba->saved_uic_err = 0; 7723 hba->force_reset = false; 7724 hba->ufshcd_state = UFSHCD_STATE_RESET; 7725 spin_unlock_irqrestore(hba->host->host_lock, flags); 7726 7727 /* Reset the attached device */ 7728 ufshcd_device_reset(hba); 7729 7730 err = ufshcd_host_reset_and_restore(hba); 7731 7732 spin_lock_irqsave(hba->host->host_lock, flags); 7733 if (err) 7734 continue; 7735 /* Do not exit unless operational or dead */ 7736 if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL && 7737 hba->ufshcd_state != UFSHCD_STATE_ERROR && 7738 hba->ufshcd_state != UFSHCD_STATE_EH_SCHEDULED_NON_FATAL) 7739 err = -EAGAIN; 7740 } while (err && --retries); 7741 7742 /* 7743 * Inform scsi mid-layer that we did reset and allow to handle 7744 * Unit Attention properly. 7745 */ 7746 scsi_report_bus_reset(hba->host, 0); 7747 if (err) { 7748 hba->ufshcd_state = UFSHCD_STATE_ERROR; 7749 hba->saved_err |= saved_err; 7750 hba->saved_uic_err |= saved_uic_err; 7751 } 7752 spin_unlock_irqrestore(hba->host->host_lock, flags); 7753 7754 return err; 7755 } 7756 7757 /** 7758 * ufshcd_eh_host_reset_handler - host reset handler registered to scsi layer 7759 * @cmd: SCSI command pointer 7760 * 7761 * Return: SUCCESS or FAILED. 7762 */ 7763 static int ufshcd_eh_host_reset_handler(struct scsi_cmnd *cmd) 7764 { 7765 int err = SUCCESS; 7766 unsigned long flags; 7767 struct ufs_hba *hba; 7768 7769 hba = shost_priv(cmd->device->host); 7770 7771 /* 7772 * If runtime PM sent SSU and got a timeout, scsi_error_handler is 7773 * stuck in this function waiting for flush_work(&hba->eh_work). And 7774 * ufshcd_err_handler(eh_work) is stuck waiting for runtime PM. Do 7775 * ufshcd_link_recovery instead of eh_work to prevent deadlock. 7776 */ 7777 if (hba->pm_op_in_progress) { 7778 if (ufshcd_link_recovery(hba)) 7779 err = FAILED; 7780 7781 return err; 7782 } 7783 7784 spin_lock_irqsave(hba->host->host_lock, flags); 7785 hba->force_reset = true; 7786 ufshcd_schedule_eh_work(hba); 7787 dev_err(hba->dev, "%s: reset in progress - 1\n", __func__); 7788 spin_unlock_irqrestore(hba->host->host_lock, flags); 7789 7790 flush_work(&hba->eh_work); 7791 7792 spin_lock_irqsave(hba->host->host_lock, flags); 7793 if (hba->ufshcd_state == UFSHCD_STATE_ERROR) 7794 err = FAILED; 7795 spin_unlock_irqrestore(hba->host->host_lock, flags); 7796 7797 return err; 7798 } 7799 7800 /** 7801 * ufshcd_get_max_icc_level - calculate the ICC level 7802 * @sup_curr_uA: max. current supported by the regulator 7803 * @start_scan: row at the desc table to start scan from 7804 * @buff: power descriptor buffer 7805 * 7806 * Return: calculated max ICC level for specific regulator. 7807 */ 7808 static u32 ufshcd_get_max_icc_level(int sup_curr_uA, u32 start_scan, 7809 const char *buff) 7810 { 7811 int i; 7812 int curr_uA; 7813 u16 data; 7814 u16 unit; 7815 7816 for (i = start_scan; i >= 0; i--) { 7817 data = get_unaligned_be16(&buff[2 * i]); 7818 unit = (data & ATTR_ICC_LVL_UNIT_MASK) >> 7819 ATTR_ICC_LVL_UNIT_OFFSET; 7820 curr_uA = data & ATTR_ICC_LVL_VALUE_MASK; 7821 switch (unit) { 7822 case UFSHCD_NANO_AMP: 7823 curr_uA = curr_uA / 1000; 7824 break; 7825 case UFSHCD_MILI_AMP: 7826 curr_uA = curr_uA * 1000; 7827 break; 7828 case UFSHCD_AMP: 7829 curr_uA = curr_uA * 1000 * 1000; 7830 break; 7831 case UFSHCD_MICRO_AMP: 7832 default: 7833 break; 7834 } 7835 if (sup_curr_uA >= curr_uA) 7836 break; 7837 } 7838 if (i < 0) { 7839 i = 0; 7840 pr_err("%s: Couldn't find valid icc_level = %d", __func__, i); 7841 } 7842 7843 return (u32)i; 7844 } 7845 7846 /** 7847 * ufshcd_find_max_sup_active_icc_level - calculate the max ICC level 7848 * In case regulators are not initialized we'll return 0 7849 * @hba: per-adapter instance 7850 * @desc_buf: power descriptor buffer to extract ICC levels from. 7851 * 7852 * Return: calculated ICC level. 7853 */ 7854 static u32 ufshcd_find_max_sup_active_icc_level(struct ufs_hba *hba, 7855 const u8 *desc_buf) 7856 { 7857 u32 icc_level = 0; 7858 7859 if (!hba->vreg_info.vcc || !hba->vreg_info.vccq || 7860 !hba->vreg_info.vccq2) { 7861 /* 7862 * Using dev_dbg to avoid messages during runtime PM to avoid 7863 * never-ending cycles of messages written back to storage by 7864 * user space causing runtime resume, causing more messages and 7865 * so on. 7866 */ 7867 dev_dbg(hba->dev, 7868 "%s: Regulator capability was not set, actvIccLevel=%d", 7869 __func__, icc_level); 7870 goto out; 7871 } 7872 7873 if (hba->vreg_info.vcc->max_uA) 7874 icc_level = ufshcd_get_max_icc_level( 7875 hba->vreg_info.vcc->max_uA, 7876 POWER_DESC_MAX_ACTV_ICC_LVLS - 1, 7877 &desc_buf[PWR_DESC_ACTIVE_LVLS_VCC_0]); 7878 7879 if (hba->vreg_info.vccq->max_uA) 7880 icc_level = ufshcd_get_max_icc_level( 7881 hba->vreg_info.vccq->max_uA, 7882 icc_level, 7883 &desc_buf[PWR_DESC_ACTIVE_LVLS_VCCQ_0]); 7884 7885 if (hba->vreg_info.vccq2->max_uA) 7886 icc_level = ufshcd_get_max_icc_level( 7887 hba->vreg_info.vccq2->max_uA, 7888 icc_level, 7889 &desc_buf[PWR_DESC_ACTIVE_LVLS_VCCQ2_0]); 7890 out: 7891 return icc_level; 7892 } 7893 7894 static void ufshcd_set_active_icc_lvl(struct ufs_hba *hba) 7895 { 7896 int ret; 7897 u8 *desc_buf; 7898 u32 icc_level; 7899 7900 desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL); 7901 if (!desc_buf) 7902 return; 7903 7904 ret = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_POWER, 0, 0, 7905 desc_buf, QUERY_DESC_MAX_SIZE); 7906 if (ret) { 7907 dev_err(hba->dev, 7908 "%s: Failed reading power descriptor ret = %d", 7909 __func__, ret); 7910 goto out; 7911 } 7912 7913 icc_level = ufshcd_find_max_sup_active_icc_level(hba, desc_buf); 7914 dev_dbg(hba->dev, "%s: setting icc_level 0x%x", __func__, icc_level); 7915 7916 ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR, 7917 QUERY_ATTR_IDN_ACTIVE_ICC_LVL, 0, 0, &icc_level); 7918 7919 if (ret) 7920 dev_err(hba->dev, 7921 "%s: Failed configuring bActiveICCLevel = %d ret = %d", 7922 __func__, icc_level, ret); 7923 7924 out: 7925 kfree(desc_buf); 7926 } 7927 7928 static inline void ufshcd_blk_pm_runtime_init(struct scsi_device *sdev) 7929 { 7930 struct Scsi_Host *shost = sdev->host; 7931 7932 scsi_autopm_get_device(sdev); 7933 blk_pm_runtime_init(sdev->request_queue, &sdev->sdev_gendev); 7934 if (sdev->rpm_autosuspend) 7935 pm_runtime_set_autosuspend_delay(&sdev->sdev_gendev, 7936 shost->rpm_autosuspend_delay); 7937 scsi_autopm_put_device(sdev); 7938 } 7939 7940 /** 7941 * ufshcd_scsi_add_wlus - Adds required W-LUs 7942 * @hba: per-adapter instance 7943 * 7944 * UFS device specification requires the UFS devices to support 4 well known 7945 * logical units: 7946 * "REPORT_LUNS" (address: 01h) 7947 * "UFS Device" (address: 50h) 7948 * "RPMB" (address: 44h) 7949 * "BOOT" (address: 30h) 7950 * UFS device's power management needs to be controlled by "POWER CONDITION" 7951 * field of SSU (START STOP UNIT) command. But this "power condition" field 7952 * will take effect only when its sent to "UFS device" well known logical unit 7953 * hence we require the scsi_device instance to represent this logical unit in 7954 * order for the UFS host driver to send the SSU command for power management. 7955 * 7956 * We also require the scsi_device instance for "RPMB" (Replay Protected Memory 7957 * Block) LU so user space process can control this LU. User space may also 7958 * want to have access to BOOT LU. 7959 * 7960 * This function adds scsi device instances for each of all well known LUs 7961 * (except "REPORT LUNS" LU). 7962 * 7963 * Return: zero on success (all required W-LUs are added successfully), 7964 * non-zero error value on failure (if failed to add any of the required W-LU). 7965 */ 7966 static int ufshcd_scsi_add_wlus(struct ufs_hba *hba) 7967 { 7968 int ret = 0; 7969 struct scsi_device *sdev_boot, *sdev_rpmb; 7970 7971 hba->ufs_device_wlun = __scsi_add_device(hba->host, 0, 0, 7972 ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_UFS_DEVICE_WLUN), NULL); 7973 if (IS_ERR(hba->ufs_device_wlun)) { 7974 ret = PTR_ERR(hba->ufs_device_wlun); 7975 hba->ufs_device_wlun = NULL; 7976 goto out; 7977 } 7978 scsi_device_put(hba->ufs_device_wlun); 7979 7980 sdev_rpmb = __scsi_add_device(hba->host, 0, 0, 7981 ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_RPMB_WLUN), NULL); 7982 if (IS_ERR(sdev_rpmb)) { 7983 ret = PTR_ERR(sdev_rpmb); 7984 goto remove_ufs_device_wlun; 7985 } 7986 ufshcd_blk_pm_runtime_init(sdev_rpmb); 7987 scsi_device_put(sdev_rpmb); 7988 7989 sdev_boot = __scsi_add_device(hba->host, 0, 0, 7990 ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_BOOT_WLUN), NULL); 7991 if (IS_ERR(sdev_boot)) { 7992 dev_err(hba->dev, "%s: BOOT WLUN not found\n", __func__); 7993 } else { 7994 ufshcd_blk_pm_runtime_init(sdev_boot); 7995 scsi_device_put(sdev_boot); 7996 } 7997 goto out; 7998 7999 remove_ufs_device_wlun: 8000 scsi_remove_device(hba->ufs_device_wlun); 8001 out: 8002 return ret; 8003 } 8004 8005 static void ufshcd_wb_probe(struct ufs_hba *hba, const u8 *desc_buf) 8006 { 8007 struct ufs_dev_info *dev_info = &hba->dev_info; 8008 u8 lun; 8009 u32 d_lu_wb_buf_alloc; 8010 u32 ext_ufs_feature; 8011 8012 if (!ufshcd_is_wb_allowed(hba)) 8013 return; 8014 8015 /* 8016 * Probe WB only for UFS-2.2 and UFS-3.1 (and later) devices or 8017 * UFS devices with quirk UFS_DEVICE_QUIRK_SUPPORT_EXTENDED_FEATURES 8018 * enabled 8019 */ 8020 if (!(dev_info->wspecversion >= 0x310 || 8021 dev_info->wspecversion == 0x220 || 8022 (hba->dev_quirks & UFS_DEVICE_QUIRK_SUPPORT_EXTENDED_FEATURES))) 8023 goto wb_disabled; 8024 8025 ext_ufs_feature = get_unaligned_be32(desc_buf + 8026 DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP); 8027 8028 if (!(ext_ufs_feature & UFS_DEV_WRITE_BOOSTER_SUP)) 8029 goto wb_disabled; 8030 8031 /* 8032 * WB may be supported but not configured while provisioning. The spec 8033 * says, in dedicated wb buffer mode, a max of 1 lun would have wb 8034 * buffer configured. 8035 */ 8036 dev_info->wb_buffer_type = desc_buf[DEVICE_DESC_PARAM_WB_TYPE]; 8037 8038 dev_info->b_presrv_uspc_en = 8039 desc_buf[DEVICE_DESC_PARAM_WB_PRESRV_USRSPC_EN]; 8040 8041 if (dev_info->wb_buffer_type == WB_BUF_MODE_SHARED) { 8042 if (!get_unaligned_be32(desc_buf + 8043 DEVICE_DESC_PARAM_WB_SHARED_ALLOC_UNITS)) 8044 goto wb_disabled; 8045 } else { 8046 for (lun = 0; lun < UFS_UPIU_MAX_WB_LUN_ID; lun++) { 8047 d_lu_wb_buf_alloc = 0; 8048 ufshcd_read_unit_desc_param(hba, 8049 lun, 8050 UNIT_DESC_PARAM_WB_BUF_ALLOC_UNITS, 8051 (u8 *)&d_lu_wb_buf_alloc, 8052 sizeof(d_lu_wb_buf_alloc)); 8053 if (d_lu_wb_buf_alloc) { 8054 dev_info->wb_dedicated_lu = lun; 8055 break; 8056 } 8057 } 8058 8059 if (!d_lu_wb_buf_alloc) 8060 goto wb_disabled; 8061 } 8062 8063 if (!ufshcd_is_wb_buf_lifetime_available(hba)) 8064 goto wb_disabled; 8065 8066 return; 8067 8068 wb_disabled: 8069 hba->caps &= ~UFSHCD_CAP_WB_EN; 8070 } 8071 8072 static void ufshcd_temp_notif_probe(struct ufs_hba *hba, const u8 *desc_buf) 8073 { 8074 struct ufs_dev_info *dev_info = &hba->dev_info; 8075 u32 ext_ufs_feature; 8076 u8 mask = 0; 8077 8078 if (!(hba->caps & UFSHCD_CAP_TEMP_NOTIF) || dev_info->wspecversion < 0x300) 8079 return; 8080 8081 ext_ufs_feature = get_unaligned_be32(desc_buf + DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP); 8082 8083 if (ext_ufs_feature & UFS_DEV_LOW_TEMP_NOTIF) 8084 mask |= MASK_EE_TOO_LOW_TEMP; 8085 8086 if (ext_ufs_feature & UFS_DEV_HIGH_TEMP_NOTIF) 8087 mask |= MASK_EE_TOO_HIGH_TEMP; 8088 8089 if (mask) { 8090 ufshcd_enable_ee(hba, mask); 8091 ufs_hwmon_probe(hba, mask); 8092 } 8093 } 8094 8095 static void ufshcd_ext_iid_probe(struct ufs_hba *hba, u8 *desc_buf) 8096 { 8097 struct ufs_dev_info *dev_info = &hba->dev_info; 8098 u32 ext_ufs_feature; 8099 u32 ext_iid_en = 0; 8100 int err; 8101 8102 /* Only UFS-4.0 and above may support EXT_IID */ 8103 if (dev_info->wspecversion < 0x400) 8104 goto out; 8105 8106 ext_ufs_feature = get_unaligned_be32(desc_buf + 8107 DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP); 8108 if (!(ext_ufs_feature & UFS_DEV_EXT_IID_SUP)) 8109 goto out; 8110 8111 err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR, 8112 QUERY_ATTR_IDN_EXT_IID_EN, 0, 0, &ext_iid_en); 8113 if (err) 8114 dev_err(hba->dev, "failed reading bEXTIIDEn. err = %d\n", err); 8115 8116 out: 8117 dev_info->b_ext_iid_en = ext_iid_en; 8118 } 8119 8120 static void ufshcd_set_rtt(struct ufs_hba *hba) 8121 { 8122 struct ufs_dev_info *dev_info = &hba->dev_info; 8123 u32 rtt = 0; 8124 u32 dev_rtt = 0; 8125 int host_rtt_cap = hba->vops && hba->vops->max_num_rtt ? 8126 hba->vops->max_num_rtt : hba->nortt; 8127 8128 /* RTT override makes sense only for UFS-4.0 and above */ 8129 if (dev_info->wspecversion < 0x400) 8130 return; 8131 8132 if (ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR, 8133 QUERY_ATTR_IDN_MAX_NUM_OF_RTT, 0, 0, &dev_rtt)) { 8134 dev_err(hba->dev, "failed reading bMaxNumOfRTT\n"); 8135 return; 8136 } 8137 8138 /* do not override if it was already written */ 8139 if (dev_rtt != DEFAULT_MAX_NUM_RTT) 8140 return; 8141 8142 rtt = min_t(int, dev_info->rtt_cap, host_rtt_cap); 8143 8144 if (rtt == dev_rtt) 8145 return; 8146 8147 if (ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR, 8148 QUERY_ATTR_IDN_MAX_NUM_OF_RTT, 0, 0, &rtt)) 8149 dev_err(hba->dev, "failed writing bMaxNumOfRTT\n"); 8150 } 8151 8152 void ufshcd_fixup_dev_quirks(struct ufs_hba *hba, 8153 const struct ufs_dev_quirk *fixups) 8154 { 8155 const struct ufs_dev_quirk *f; 8156 struct ufs_dev_info *dev_info = &hba->dev_info; 8157 8158 if (!fixups) 8159 return; 8160 8161 for (f = fixups; f->quirk; f++) { 8162 if ((f->wmanufacturerid == dev_info->wmanufacturerid || 8163 f->wmanufacturerid == UFS_ANY_VENDOR) && 8164 ((dev_info->model && 8165 STR_PRFX_EQUAL(f->model, dev_info->model)) || 8166 !strcmp(f->model, UFS_ANY_MODEL))) 8167 hba->dev_quirks |= f->quirk; 8168 } 8169 } 8170 EXPORT_SYMBOL_GPL(ufshcd_fixup_dev_quirks); 8171 8172 static void ufs_fixup_device_setup(struct ufs_hba *hba) 8173 { 8174 /* fix by general quirk table */ 8175 ufshcd_fixup_dev_quirks(hba, ufs_fixups); 8176 8177 /* allow vendors to fix quirks */ 8178 ufshcd_vops_fixup_dev_quirks(hba); 8179 } 8180 8181 static void ufshcd_update_rtc(struct ufs_hba *hba) 8182 { 8183 struct timespec64 ts64; 8184 int err; 8185 u32 val; 8186 8187 ktime_get_real_ts64(&ts64); 8188 8189 if (ts64.tv_sec < hba->dev_info.rtc_time_baseline) { 8190 dev_warn_once(hba->dev, "%s: Current time precedes previous setting!\n", __func__); 8191 return; 8192 } 8193 8194 /* 8195 * The Absolute RTC mode has a 136-year limit, spanning from 2010 to 2146. If a time beyond 8196 * 2146 is required, it is recommended to choose the relative RTC mode. 8197 */ 8198 val = ts64.tv_sec - hba->dev_info.rtc_time_baseline; 8199 8200 /* Skip update RTC if RPM state is not RPM_ACTIVE */ 8201 if (ufshcd_rpm_get_if_active(hba) <= 0) 8202 return; 8203 8204 err = ufshcd_query_attr(hba, UPIU_QUERY_OPCODE_WRITE_ATTR, QUERY_ATTR_IDN_SECONDS_PASSED, 8205 0, 0, &val); 8206 ufshcd_rpm_put(hba); 8207 8208 if (err) 8209 dev_err(hba->dev, "%s: Failed to update rtc %d\n", __func__, err); 8210 else if (hba->dev_info.rtc_type == UFS_RTC_RELATIVE) 8211 hba->dev_info.rtc_time_baseline = ts64.tv_sec; 8212 } 8213 8214 static void ufshcd_rtc_work(struct work_struct *work) 8215 { 8216 struct ufs_hba *hba; 8217 8218 hba = container_of(to_delayed_work(work), struct ufs_hba, ufs_rtc_update_work); 8219 8220 /* Update RTC only when there are no requests in progress and UFSHCI is operational */ 8221 if (!ufshcd_is_ufs_dev_busy(hba) && hba->ufshcd_state == UFSHCD_STATE_OPERATIONAL) 8222 ufshcd_update_rtc(hba); 8223 8224 if (ufshcd_is_ufs_dev_active(hba) && hba->dev_info.rtc_update_period) 8225 schedule_delayed_work(&hba->ufs_rtc_update_work, 8226 msecs_to_jiffies(hba->dev_info.rtc_update_period)); 8227 } 8228 8229 static void ufs_init_rtc(struct ufs_hba *hba, u8 *desc_buf) 8230 { 8231 u16 periodic_rtc_update = get_unaligned_be16(&desc_buf[DEVICE_DESC_PARAM_FRQ_RTC]); 8232 struct ufs_dev_info *dev_info = &hba->dev_info; 8233 8234 if (periodic_rtc_update & UFS_RTC_TIME_BASELINE) { 8235 dev_info->rtc_type = UFS_RTC_ABSOLUTE; 8236 8237 /* 8238 * The concept of measuring time in Linux as the number of seconds elapsed since 8239 * 00:00:00 UTC on January 1, 1970, and UFS ABS RTC is elapsed from January 1st 8240 * 2010 00:00, here we need to adjust ABS baseline. 8241 */ 8242 dev_info->rtc_time_baseline = mktime64(2010, 1, 1, 0, 0, 0) - 8243 mktime64(1970, 1, 1, 0, 0, 0); 8244 } else { 8245 dev_info->rtc_type = UFS_RTC_RELATIVE; 8246 dev_info->rtc_time_baseline = 0; 8247 } 8248 8249 /* 8250 * We ignore TIME_PERIOD defined in wPeriodicRTCUpdate because Spec does not clearly state 8251 * how to calculate the specific update period for each time unit. And we disable periodic 8252 * RTC update work, let user configure by sysfs node according to specific circumstance. 8253 */ 8254 dev_info->rtc_update_period = 0; 8255 } 8256 8257 static int ufs_get_device_desc(struct ufs_hba *hba) 8258 { 8259 int err; 8260 u8 model_index; 8261 u8 *desc_buf; 8262 struct ufs_dev_info *dev_info = &hba->dev_info; 8263 8264 desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL); 8265 if (!desc_buf) { 8266 err = -ENOMEM; 8267 goto out; 8268 } 8269 8270 err = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_DEVICE, 0, 0, desc_buf, 8271 QUERY_DESC_MAX_SIZE); 8272 if (err) { 8273 dev_err(hba->dev, "%s: Failed reading Device Desc. err = %d\n", 8274 __func__, err); 8275 goto out; 8276 } 8277 8278 /* 8279 * getting vendor (manufacturerID) and Bank Index in big endian 8280 * format 8281 */ 8282 dev_info->wmanufacturerid = desc_buf[DEVICE_DESC_PARAM_MANF_ID] << 8 | 8283 desc_buf[DEVICE_DESC_PARAM_MANF_ID + 1]; 8284 8285 /* getting Specification Version in big endian format */ 8286 dev_info->wspecversion = desc_buf[DEVICE_DESC_PARAM_SPEC_VER] << 8 | 8287 desc_buf[DEVICE_DESC_PARAM_SPEC_VER + 1]; 8288 dev_info->bqueuedepth = desc_buf[DEVICE_DESC_PARAM_Q_DPTH]; 8289 8290 dev_info->rtt_cap = desc_buf[DEVICE_DESC_PARAM_RTT_CAP]; 8291 8292 model_index = desc_buf[DEVICE_DESC_PARAM_PRDCT_NAME]; 8293 8294 err = ufshcd_read_string_desc(hba, model_index, 8295 &dev_info->model, SD_ASCII_STD); 8296 if (err < 0) { 8297 dev_err(hba->dev, "%s: Failed reading Product Name. err = %d\n", 8298 __func__, err); 8299 goto out; 8300 } 8301 8302 hba->luns_avail = desc_buf[DEVICE_DESC_PARAM_NUM_LU] + 8303 desc_buf[DEVICE_DESC_PARAM_NUM_WLU]; 8304 8305 ufs_fixup_device_setup(hba); 8306 8307 ufshcd_wb_probe(hba, desc_buf); 8308 8309 ufshcd_temp_notif_probe(hba, desc_buf); 8310 8311 ufs_init_rtc(hba, desc_buf); 8312 8313 if (hba->ext_iid_sup) 8314 ufshcd_ext_iid_probe(hba, desc_buf); 8315 8316 /* 8317 * ufshcd_read_string_desc returns size of the string 8318 * reset the error value 8319 */ 8320 err = 0; 8321 8322 out: 8323 kfree(desc_buf); 8324 return err; 8325 } 8326 8327 static void ufs_put_device_desc(struct ufs_hba *hba) 8328 { 8329 struct ufs_dev_info *dev_info = &hba->dev_info; 8330 8331 kfree(dev_info->model); 8332 dev_info->model = NULL; 8333 } 8334 8335 /** 8336 * ufshcd_quirk_tune_host_pa_tactivate - Ensures that host PA_TACTIVATE is 8337 * less than device PA_TACTIVATE time. 8338 * @hba: per-adapter instance 8339 * 8340 * Some UFS devices require host PA_TACTIVATE to be lower than device 8341 * PA_TACTIVATE, we need to enable UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE quirk 8342 * for such devices. 8343 * 8344 * Return: zero on success, non-zero error value on failure. 8345 */ 8346 static int ufshcd_quirk_tune_host_pa_tactivate(struct ufs_hba *hba) 8347 { 8348 int ret = 0; 8349 u32 granularity, peer_granularity; 8350 u32 pa_tactivate, peer_pa_tactivate; 8351 u32 pa_tactivate_us, peer_pa_tactivate_us; 8352 static const u8 gran_to_us_table[] = {1, 4, 8, 16, 32, 100}; 8353 8354 ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_GRANULARITY), 8355 &granularity); 8356 if (ret) 8357 goto out; 8358 8359 ret = ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_GRANULARITY), 8360 &peer_granularity); 8361 if (ret) 8362 goto out; 8363 8364 if ((granularity < PA_GRANULARITY_MIN_VAL) || 8365 (granularity > PA_GRANULARITY_MAX_VAL)) { 8366 dev_err(hba->dev, "%s: invalid host PA_GRANULARITY %d", 8367 __func__, granularity); 8368 return -EINVAL; 8369 } 8370 8371 if ((peer_granularity < PA_GRANULARITY_MIN_VAL) || 8372 (peer_granularity > PA_GRANULARITY_MAX_VAL)) { 8373 dev_err(hba->dev, "%s: invalid device PA_GRANULARITY %d", 8374 __func__, peer_granularity); 8375 return -EINVAL; 8376 } 8377 8378 ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_TACTIVATE), &pa_tactivate); 8379 if (ret) 8380 goto out; 8381 8382 ret = ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_TACTIVATE), 8383 &peer_pa_tactivate); 8384 if (ret) 8385 goto out; 8386 8387 pa_tactivate_us = pa_tactivate * gran_to_us_table[granularity - 1]; 8388 peer_pa_tactivate_us = peer_pa_tactivate * 8389 gran_to_us_table[peer_granularity - 1]; 8390 8391 if (pa_tactivate_us >= peer_pa_tactivate_us) { 8392 u32 new_peer_pa_tactivate; 8393 8394 new_peer_pa_tactivate = pa_tactivate_us / 8395 gran_to_us_table[peer_granularity - 1]; 8396 new_peer_pa_tactivate++; 8397 ret = ufshcd_dme_peer_set(hba, UIC_ARG_MIB(PA_TACTIVATE), 8398 new_peer_pa_tactivate); 8399 } 8400 8401 out: 8402 return ret; 8403 } 8404 8405 static void ufshcd_tune_unipro_params(struct ufs_hba *hba) 8406 { 8407 ufshcd_vops_apply_dev_quirks(hba); 8408 8409 if (hba->dev_quirks & UFS_DEVICE_QUIRK_PA_TACTIVATE) 8410 /* set 1ms timeout for PA_TACTIVATE */ 8411 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TACTIVATE), 10); 8412 8413 if (hba->dev_quirks & UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE) 8414 ufshcd_quirk_tune_host_pa_tactivate(hba); 8415 } 8416 8417 static void ufshcd_clear_dbg_ufs_stats(struct ufs_hba *hba) 8418 { 8419 hba->ufs_stats.hibern8_exit_cnt = 0; 8420 hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0); 8421 hba->req_abort_count = 0; 8422 } 8423 8424 static int ufshcd_device_geo_params_init(struct ufs_hba *hba) 8425 { 8426 int err; 8427 u8 *desc_buf; 8428 8429 desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL); 8430 if (!desc_buf) { 8431 err = -ENOMEM; 8432 goto out; 8433 } 8434 8435 err = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_GEOMETRY, 0, 0, 8436 desc_buf, QUERY_DESC_MAX_SIZE); 8437 if (err) { 8438 dev_err(hba->dev, "%s: Failed reading Geometry Desc. err = %d\n", 8439 __func__, err); 8440 goto out; 8441 } 8442 8443 if (desc_buf[GEOMETRY_DESC_PARAM_MAX_NUM_LUN] == 1) 8444 hba->dev_info.max_lu_supported = 32; 8445 else if (desc_buf[GEOMETRY_DESC_PARAM_MAX_NUM_LUN] == 0) 8446 hba->dev_info.max_lu_supported = 8; 8447 8448 out: 8449 kfree(desc_buf); 8450 return err; 8451 } 8452 8453 struct ufs_ref_clk { 8454 unsigned long freq_hz; 8455 enum ufs_ref_clk_freq val; 8456 }; 8457 8458 static const struct ufs_ref_clk ufs_ref_clk_freqs[] = { 8459 {19200000, REF_CLK_FREQ_19_2_MHZ}, 8460 {26000000, REF_CLK_FREQ_26_MHZ}, 8461 {38400000, REF_CLK_FREQ_38_4_MHZ}, 8462 {52000000, REF_CLK_FREQ_52_MHZ}, 8463 {0, REF_CLK_FREQ_INVAL}, 8464 }; 8465 8466 static enum ufs_ref_clk_freq 8467 ufs_get_bref_clk_from_hz(unsigned long freq) 8468 { 8469 int i; 8470 8471 for (i = 0; ufs_ref_clk_freqs[i].freq_hz; i++) 8472 if (ufs_ref_clk_freqs[i].freq_hz == freq) 8473 return ufs_ref_clk_freqs[i].val; 8474 8475 return REF_CLK_FREQ_INVAL; 8476 } 8477 8478 void ufshcd_parse_dev_ref_clk_freq(struct ufs_hba *hba, struct clk *refclk) 8479 { 8480 unsigned long freq; 8481 8482 freq = clk_get_rate(refclk); 8483 8484 hba->dev_ref_clk_freq = 8485 ufs_get_bref_clk_from_hz(freq); 8486 8487 if (hba->dev_ref_clk_freq == REF_CLK_FREQ_INVAL) 8488 dev_err(hba->dev, 8489 "invalid ref_clk setting = %ld\n", freq); 8490 } 8491 8492 static int ufshcd_set_dev_ref_clk(struct ufs_hba *hba) 8493 { 8494 int err; 8495 u32 ref_clk; 8496 u32 freq = hba->dev_ref_clk_freq; 8497 8498 err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR, 8499 QUERY_ATTR_IDN_REF_CLK_FREQ, 0, 0, &ref_clk); 8500 8501 if (err) { 8502 dev_err(hba->dev, "failed reading bRefClkFreq. err = %d\n", 8503 err); 8504 goto out; 8505 } 8506 8507 if (ref_clk == freq) 8508 goto out; /* nothing to update */ 8509 8510 err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR, 8511 QUERY_ATTR_IDN_REF_CLK_FREQ, 0, 0, &freq); 8512 8513 if (err) { 8514 dev_err(hba->dev, "bRefClkFreq setting to %lu Hz failed\n", 8515 ufs_ref_clk_freqs[freq].freq_hz); 8516 goto out; 8517 } 8518 8519 dev_dbg(hba->dev, "bRefClkFreq setting to %lu Hz succeeded\n", 8520 ufs_ref_clk_freqs[freq].freq_hz); 8521 8522 out: 8523 return err; 8524 } 8525 8526 static int ufshcd_device_params_init(struct ufs_hba *hba) 8527 { 8528 bool flag; 8529 int ret; 8530 8531 /* Init UFS geometry descriptor related parameters */ 8532 ret = ufshcd_device_geo_params_init(hba); 8533 if (ret) 8534 goto out; 8535 8536 /* Check and apply UFS device quirks */ 8537 ret = ufs_get_device_desc(hba); 8538 if (ret) { 8539 dev_err(hba->dev, "%s: Failed getting device info. err = %d\n", 8540 __func__, ret); 8541 goto out; 8542 } 8543 8544 ufshcd_set_rtt(hba); 8545 8546 ufshcd_get_ref_clk_gating_wait(hba); 8547 8548 if (!ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_READ_FLAG, 8549 QUERY_FLAG_IDN_PWR_ON_WPE, 0, &flag)) 8550 hba->dev_info.f_power_on_wp_en = flag; 8551 8552 /* Probe maximum power mode co-supported by both UFS host and device */ 8553 if (ufshcd_get_max_pwr_mode(hba)) 8554 dev_err(hba->dev, 8555 "%s: Failed getting max supported power mode\n", 8556 __func__); 8557 out: 8558 return ret; 8559 } 8560 8561 static void ufshcd_set_timestamp_attr(struct ufs_hba *hba) 8562 { 8563 int err; 8564 struct ufs_query_req *request = NULL; 8565 struct ufs_query_res *response = NULL; 8566 struct ufs_dev_info *dev_info = &hba->dev_info; 8567 struct utp_upiu_query_v4_0 *upiu_data; 8568 8569 if (dev_info->wspecversion < 0x400) 8570 return; 8571 8572 ufshcd_dev_man_lock(hba); 8573 8574 ufshcd_init_query(hba, &request, &response, 8575 UPIU_QUERY_OPCODE_WRITE_ATTR, 8576 QUERY_ATTR_IDN_TIMESTAMP, 0, 0); 8577 8578 request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST; 8579 8580 upiu_data = (struct utp_upiu_query_v4_0 *)&request->upiu_req; 8581 8582 put_unaligned_be64(ktime_get_real_ns(), &upiu_data->osf3); 8583 8584 err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT); 8585 8586 if (err) 8587 dev_err(hba->dev, "%s: failed to set timestamp %d\n", 8588 __func__, err); 8589 8590 ufshcd_dev_man_unlock(hba); 8591 } 8592 8593 /** 8594 * ufshcd_add_lus - probe and add UFS logical units 8595 * @hba: per-adapter instance 8596 * 8597 * Return: 0 upon success; < 0 upon failure. 8598 */ 8599 static int ufshcd_add_lus(struct ufs_hba *hba) 8600 { 8601 int ret; 8602 8603 /* Add required well known logical units to scsi mid layer */ 8604 ret = ufshcd_scsi_add_wlus(hba); 8605 if (ret) 8606 goto out; 8607 8608 /* Initialize devfreq after UFS device is detected */ 8609 if (ufshcd_is_clkscaling_supported(hba)) { 8610 memcpy(&hba->clk_scaling.saved_pwr_info, 8611 &hba->pwr_info, 8612 sizeof(struct ufs_pa_layer_attr)); 8613 hba->clk_scaling.is_allowed = true; 8614 8615 ret = ufshcd_devfreq_init(hba); 8616 if (ret) 8617 goto out; 8618 8619 hba->clk_scaling.is_enabled = true; 8620 ufshcd_init_clk_scaling_sysfs(hba); 8621 } 8622 8623 ufs_bsg_probe(hba); 8624 scsi_scan_host(hba->host); 8625 8626 out: 8627 return ret; 8628 } 8629 8630 /* SDB - Single Doorbell */ 8631 static void ufshcd_release_sdb_queue(struct ufs_hba *hba, int nutrs) 8632 { 8633 size_t ucdl_size, utrdl_size; 8634 8635 ucdl_size = ufshcd_get_ucd_size(hba) * nutrs; 8636 dmam_free_coherent(hba->dev, ucdl_size, hba->ucdl_base_addr, 8637 hba->ucdl_dma_addr); 8638 8639 utrdl_size = sizeof(struct utp_transfer_req_desc) * nutrs; 8640 dmam_free_coherent(hba->dev, utrdl_size, hba->utrdl_base_addr, 8641 hba->utrdl_dma_addr); 8642 8643 devm_kfree(hba->dev, hba->lrb); 8644 } 8645 8646 static int ufshcd_alloc_mcq(struct ufs_hba *hba) 8647 { 8648 int ret; 8649 int old_nutrs = hba->nutrs; 8650 8651 ret = ufshcd_mcq_decide_queue_depth(hba); 8652 if (ret < 0) 8653 return ret; 8654 8655 hba->nutrs = ret; 8656 ret = ufshcd_mcq_init(hba); 8657 if (ret) 8658 goto err; 8659 8660 /* 8661 * Previously allocated memory for nutrs may not be enough in MCQ mode. 8662 * Number of supported tags in MCQ mode may be larger than SDB mode. 8663 */ 8664 if (hba->nutrs != old_nutrs) { 8665 ufshcd_release_sdb_queue(hba, old_nutrs); 8666 ret = ufshcd_memory_alloc(hba); 8667 if (ret) 8668 goto err; 8669 ufshcd_host_memory_configure(hba); 8670 } 8671 8672 ret = ufshcd_mcq_memory_alloc(hba); 8673 if (ret) 8674 goto err; 8675 8676 hba->host->can_queue = hba->nutrs - UFSHCD_NUM_RESERVED; 8677 hba->reserved_slot = hba->nutrs - UFSHCD_NUM_RESERVED; 8678 8679 return 0; 8680 err: 8681 hba->nutrs = old_nutrs; 8682 return ret; 8683 } 8684 8685 static void ufshcd_config_mcq(struct ufs_hba *hba) 8686 { 8687 int ret; 8688 u32 intrs; 8689 8690 ret = ufshcd_mcq_vops_config_esi(hba); 8691 dev_info(hba->dev, "ESI %sconfigured\n", ret ? "is not " : ""); 8692 8693 intrs = UFSHCD_ENABLE_MCQ_INTRS; 8694 if (hba->quirks & UFSHCD_QUIRK_MCQ_BROKEN_INTR) 8695 intrs &= ~MCQ_CQ_EVENT_STATUS; 8696 ufshcd_enable_intr(hba, intrs); 8697 ufshcd_mcq_make_queues_operational(hba); 8698 ufshcd_mcq_config_mac(hba, hba->nutrs); 8699 8700 dev_info(hba->dev, "MCQ configured, nr_queues=%d, io_queues=%d, read_queue=%d, poll_queues=%d, queue_depth=%d\n", 8701 hba->nr_hw_queues, hba->nr_queues[HCTX_TYPE_DEFAULT], 8702 hba->nr_queues[HCTX_TYPE_READ], hba->nr_queues[HCTX_TYPE_POLL], 8703 hba->nutrs); 8704 } 8705 8706 static int ufshcd_post_device_init(struct ufs_hba *hba) 8707 { 8708 int ret; 8709 8710 ufshcd_tune_unipro_params(hba); 8711 8712 /* UFS device is also active now */ 8713 ufshcd_set_ufs_dev_active(hba); 8714 ufshcd_force_reset_auto_bkops(hba); 8715 8716 ufshcd_set_timestamp_attr(hba); 8717 schedule_delayed_work(&hba->ufs_rtc_update_work, 8718 msecs_to_jiffies(UFS_RTC_UPDATE_INTERVAL_MS)); 8719 8720 if (!hba->max_pwr_info.is_valid) 8721 return 0; 8722 8723 /* 8724 * Set the right value to bRefClkFreq before attempting to 8725 * switch to HS gears. 8726 */ 8727 if (hba->dev_ref_clk_freq != REF_CLK_FREQ_INVAL) 8728 ufshcd_set_dev_ref_clk(hba); 8729 /* Gear up to HS gear. */ 8730 ret = ufshcd_config_pwr_mode(hba, &hba->max_pwr_info.info); 8731 if (ret) { 8732 dev_err(hba->dev, "%s: Failed setting power mode, err = %d\n", 8733 __func__, ret); 8734 return ret; 8735 } 8736 8737 return 0; 8738 } 8739 8740 static int ufshcd_device_init(struct ufs_hba *hba, bool init_dev_params) 8741 { 8742 int ret; 8743 8744 WARN_ON_ONCE(!hba->scsi_host_added); 8745 8746 hba->ufshcd_state = UFSHCD_STATE_RESET; 8747 8748 ret = ufshcd_link_startup(hba); 8749 if (ret) 8750 return ret; 8751 8752 if (hba->quirks & UFSHCD_QUIRK_SKIP_PH_CONFIGURATION) 8753 return ret; 8754 8755 /* Debug counters initialization */ 8756 ufshcd_clear_dbg_ufs_stats(hba); 8757 8758 /* UniPro link is active now */ 8759 ufshcd_set_link_active(hba); 8760 8761 /* Reconfigure MCQ upon reset */ 8762 if (hba->mcq_enabled && !init_dev_params) { 8763 ufshcd_config_mcq(hba); 8764 ufshcd_mcq_enable(hba); 8765 } 8766 8767 /* Verify device initialization by sending NOP OUT UPIU */ 8768 ret = ufshcd_verify_dev_init(hba); 8769 if (ret) 8770 return ret; 8771 8772 /* Initiate UFS initialization, and waiting until completion */ 8773 ret = ufshcd_complete_dev_init(hba); 8774 if (ret) 8775 return ret; 8776 8777 /* 8778 * Initialize UFS device parameters used by driver, these 8779 * parameters are associated with UFS descriptors. 8780 */ 8781 if (init_dev_params) { 8782 ret = ufshcd_device_params_init(hba); 8783 if (ret) 8784 return ret; 8785 if (is_mcq_supported(hba) && 8786 hba->quirks & UFSHCD_QUIRK_REINIT_AFTER_MAX_GEAR_SWITCH) { 8787 ufshcd_config_mcq(hba); 8788 ufshcd_mcq_enable(hba); 8789 } 8790 } 8791 8792 return ufshcd_post_device_init(hba); 8793 } 8794 8795 /** 8796 * ufshcd_probe_hba - probe hba to detect device and initialize it 8797 * @hba: per-adapter instance 8798 * @init_dev_params: whether or not to call ufshcd_device_params_init(). 8799 * 8800 * Execute link-startup and verify device initialization 8801 * 8802 * Return: 0 upon success; < 0 upon failure. 8803 */ 8804 static int ufshcd_probe_hba(struct ufs_hba *hba, bool init_dev_params) 8805 { 8806 int ret; 8807 8808 if (!hba->pm_op_in_progress && 8809 (hba->quirks & UFSHCD_QUIRK_REINIT_AFTER_MAX_GEAR_SWITCH)) { 8810 /* Reset the device and controller before doing reinit */ 8811 ufshcd_device_reset(hba); 8812 ufs_put_device_desc(hba); 8813 ufshcd_hba_stop(hba); 8814 ufshcd_vops_reinit_notify(hba); 8815 ret = ufshcd_hba_enable(hba); 8816 if (ret) { 8817 dev_err(hba->dev, "Host controller enable failed\n"); 8818 ufshcd_print_evt_hist(hba); 8819 ufshcd_print_host_state(hba); 8820 return ret; 8821 } 8822 8823 /* Reinit the device */ 8824 ret = ufshcd_device_init(hba, init_dev_params); 8825 if (ret) 8826 return ret; 8827 } 8828 8829 ufshcd_print_pwr_info(hba); 8830 8831 /* 8832 * bActiveICCLevel is volatile for UFS device (as per latest v2.1 spec) 8833 * and for removable UFS card as well, hence always set the parameter. 8834 * Note: Error handler may issue the device reset hence resetting 8835 * bActiveICCLevel as well so it is always safe to set this here. 8836 */ 8837 ufshcd_set_active_icc_lvl(hba); 8838 8839 /* Enable UFS Write Booster if supported */ 8840 ufshcd_configure_wb(hba); 8841 8842 if (hba->ee_usr_mask) 8843 ufshcd_write_ee_control(hba); 8844 ufshcd_configure_auto_hibern8(hba); 8845 8846 return 0; 8847 } 8848 8849 /** 8850 * ufshcd_async_scan - asynchronous execution for probing hba 8851 * @data: data pointer to pass to this function 8852 * @cookie: cookie data 8853 */ 8854 static void ufshcd_async_scan(void *data, async_cookie_t cookie) 8855 { 8856 struct ufs_hba *hba = (struct ufs_hba *)data; 8857 ktime_t probe_start; 8858 int ret; 8859 8860 down(&hba->host_sem); 8861 /* Initialize hba, detect and initialize UFS device */ 8862 probe_start = ktime_get(); 8863 ret = ufshcd_probe_hba(hba, true); 8864 ufshcd_process_probe_result(hba, probe_start, ret); 8865 up(&hba->host_sem); 8866 if (ret) 8867 goto out; 8868 8869 /* Probe and add UFS logical units */ 8870 ret = ufshcd_add_lus(hba); 8871 8872 out: 8873 pm_runtime_put_sync(hba->dev); 8874 8875 if (ret) 8876 dev_err(hba->dev, "%s failed: %d\n", __func__, ret); 8877 } 8878 8879 static enum scsi_timeout_action ufshcd_eh_timed_out(struct scsi_cmnd *scmd) 8880 { 8881 struct ufs_hba *hba = shost_priv(scmd->device->host); 8882 8883 if (!hba->system_suspending) { 8884 /* Activate the error handler in the SCSI core. */ 8885 return SCSI_EH_NOT_HANDLED; 8886 } 8887 8888 /* 8889 * If we get here we know that no TMFs are outstanding and also that 8890 * the only pending command is a START STOP UNIT command. Handle the 8891 * timeout of that command directly to prevent a deadlock between 8892 * ufshcd_set_dev_pwr_mode() and ufshcd_err_handler(). 8893 */ 8894 ufshcd_link_recovery(hba); 8895 dev_info(hba->dev, "%s() finished; outstanding_tasks = %#lx.\n", 8896 __func__, hba->outstanding_tasks); 8897 8898 return hba->outstanding_reqs ? SCSI_EH_RESET_TIMER : SCSI_EH_DONE; 8899 } 8900 8901 static const struct attribute_group *ufshcd_driver_groups[] = { 8902 &ufs_sysfs_unit_descriptor_group, 8903 &ufs_sysfs_lun_attributes_group, 8904 NULL, 8905 }; 8906 8907 static struct ufs_hba_variant_params ufs_hba_vps = { 8908 .hba_enable_delay_us = 1000, 8909 .wb_flush_threshold = UFS_WB_BUF_REMAIN_PERCENT(40), 8910 .devfreq_profile.polling_ms = 100, 8911 .devfreq_profile.target = ufshcd_devfreq_target, 8912 .devfreq_profile.get_dev_status = ufshcd_devfreq_get_dev_status, 8913 .ondemand_data.upthreshold = 70, 8914 .ondemand_data.downdifferential = 5, 8915 }; 8916 8917 static const struct scsi_host_template ufshcd_driver_template = { 8918 .module = THIS_MODULE, 8919 .name = UFSHCD, 8920 .proc_name = UFSHCD, 8921 .map_queues = ufshcd_map_queues, 8922 .queuecommand = ufshcd_queuecommand, 8923 .mq_poll = ufshcd_poll, 8924 .slave_alloc = ufshcd_slave_alloc, 8925 .device_configure = ufshcd_device_configure, 8926 .slave_destroy = ufshcd_slave_destroy, 8927 .change_queue_depth = ufshcd_change_queue_depth, 8928 .eh_abort_handler = ufshcd_abort, 8929 .eh_device_reset_handler = ufshcd_eh_device_reset_handler, 8930 .eh_host_reset_handler = ufshcd_eh_host_reset_handler, 8931 .eh_timed_out = ufshcd_eh_timed_out, 8932 .this_id = -1, 8933 .sg_tablesize = SG_ALL, 8934 .max_segment_size = PRDT_DATA_BYTE_COUNT_MAX, 8935 .max_sectors = SZ_1M / SECTOR_SIZE, 8936 .max_host_blocked = 1, 8937 .track_queue_depth = 1, 8938 .skip_settle_delay = 1, 8939 .sdev_groups = ufshcd_driver_groups, 8940 }; 8941 8942 static int ufshcd_config_vreg_load(struct device *dev, struct ufs_vreg *vreg, 8943 int ua) 8944 { 8945 int ret; 8946 8947 if (!vreg) 8948 return 0; 8949 8950 /* 8951 * "set_load" operation shall be required on those regulators 8952 * which specifically configured current limitation. Otherwise 8953 * zero max_uA may cause unexpected behavior when regulator is 8954 * enabled or set as high power mode. 8955 */ 8956 if (!vreg->max_uA) 8957 return 0; 8958 8959 ret = regulator_set_load(vreg->reg, ua); 8960 if (ret < 0) { 8961 dev_err(dev, "%s: %s set load (ua=%d) failed, err=%d\n", 8962 __func__, vreg->name, ua, ret); 8963 } 8964 8965 return ret; 8966 } 8967 8968 static inline int ufshcd_config_vreg_lpm(struct ufs_hba *hba, 8969 struct ufs_vreg *vreg) 8970 { 8971 return ufshcd_config_vreg_load(hba->dev, vreg, UFS_VREG_LPM_LOAD_UA); 8972 } 8973 8974 static inline int ufshcd_config_vreg_hpm(struct ufs_hba *hba, 8975 struct ufs_vreg *vreg) 8976 { 8977 if (!vreg) 8978 return 0; 8979 8980 return ufshcd_config_vreg_load(hba->dev, vreg, vreg->max_uA); 8981 } 8982 8983 static int ufshcd_config_vreg(struct device *dev, 8984 struct ufs_vreg *vreg, bool on) 8985 { 8986 if (regulator_count_voltages(vreg->reg) <= 0) 8987 return 0; 8988 8989 return ufshcd_config_vreg_load(dev, vreg, on ? vreg->max_uA : 0); 8990 } 8991 8992 static int ufshcd_enable_vreg(struct device *dev, struct ufs_vreg *vreg) 8993 { 8994 int ret = 0; 8995 8996 if (!vreg || vreg->enabled) 8997 goto out; 8998 8999 ret = ufshcd_config_vreg(dev, vreg, true); 9000 if (!ret) 9001 ret = regulator_enable(vreg->reg); 9002 9003 if (!ret) 9004 vreg->enabled = true; 9005 else 9006 dev_err(dev, "%s: %s enable failed, err=%d\n", 9007 __func__, vreg->name, ret); 9008 out: 9009 return ret; 9010 } 9011 9012 static int ufshcd_disable_vreg(struct device *dev, struct ufs_vreg *vreg) 9013 { 9014 int ret = 0; 9015 9016 if (!vreg || !vreg->enabled || vreg->always_on) 9017 goto out; 9018 9019 ret = regulator_disable(vreg->reg); 9020 9021 if (!ret) { 9022 /* ignore errors on applying disable config */ 9023 ufshcd_config_vreg(dev, vreg, false); 9024 vreg->enabled = false; 9025 } else { 9026 dev_err(dev, "%s: %s disable failed, err=%d\n", 9027 __func__, vreg->name, ret); 9028 } 9029 out: 9030 return ret; 9031 } 9032 9033 static int ufshcd_setup_vreg(struct ufs_hba *hba, bool on) 9034 { 9035 int ret = 0; 9036 struct device *dev = hba->dev; 9037 struct ufs_vreg_info *info = &hba->vreg_info; 9038 9039 ret = ufshcd_toggle_vreg(dev, info->vcc, on); 9040 if (ret) 9041 goto out; 9042 9043 ret = ufshcd_toggle_vreg(dev, info->vccq, on); 9044 if (ret) 9045 goto out; 9046 9047 ret = ufshcd_toggle_vreg(dev, info->vccq2, on); 9048 9049 out: 9050 if (ret) { 9051 ufshcd_toggle_vreg(dev, info->vccq2, false); 9052 ufshcd_toggle_vreg(dev, info->vccq, false); 9053 ufshcd_toggle_vreg(dev, info->vcc, false); 9054 } 9055 return ret; 9056 } 9057 9058 static int ufshcd_setup_hba_vreg(struct ufs_hba *hba, bool on) 9059 { 9060 struct ufs_vreg_info *info = &hba->vreg_info; 9061 9062 return ufshcd_toggle_vreg(hba->dev, info->vdd_hba, on); 9063 } 9064 9065 int ufshcd_get_vreg(struct device *dev, struct ufs_vreg *vreg) 9066 { 9067 int ret = 0; 9068 9069 if (!vreg) 9070 goto out; 9071 9072 vreg->reg = devm_regulator_get(dev, vreg->name); 9073 if (IS_ERR(vreg->reg)) { 9074 ret = PTR_ERR(vreg->reg); 9075 dev_err(dev, "%s: %s get failed, err=%d\n", 9076 __func__, vreg->name, ret); 9077 } 9078 out: 9079 return ret; 9080 } 9081 EXPORT_SYMBOL_GPL(ufshcd_get_vreg); 9082 9083 static int ufshcd_init_vreg(struct ufs_hba *hba) 9084 { 9085 int ret = 0; 9086 struct device *dev = hba->dev; 9087 struct ufs_vreg_info *info = &hba->vreg_info; 9088 9089 ret = ufshcd_get_vreg(dev, info->vcc); 9090 if (ret) 9091 goto out; 9092 9093 ret = ufshcd_get_vreg(dev, info->vccq); 9094 if (!ret) 9095 ret = ufshcd_get_vreg(dev, info->vccq2); 9096 out: 9097 return ret; 9098 } 9099 9100 static int ufshcd_init_hba_vreg(struct ufs_hba *hba) 9101 { 9102 struct ufs_vreg_info *info = &hba->vreg_info; 9103 9104 return ufshcd_get_vreg(hba->dev, info->vdd_hba); 9105 } 9106 9107 static int ufshcd_setup_clocks(struct ufs_hba *hba, bool on) 9108 { 9109 int ret = 0; 9110 struct ufs_clk_info *clki; 9111 struct list_head *head = &hba->clk_list_head; 9112 unsigned long flags; 9113 ktime_t start = ktime_get(); 9114 bool clk_state_changed = false; 9115 9116 if (list_empty(head)) 9117 goto out; 9118 9119 ret = ufshcd_vops_setup_clocks(hba, on, PRE_CHANGE); 9120 if (ret) 9121 return ret; 9122 9123 list_for_each_entry(clki, head, list) { 9124 if (!IS_ERR_OR_NULL(clki->clk)) { 9125 /* 9126 * Don't disable clocks which are needed 9127 * to keep the link active. 9128 */ 9129 if (ufshcd_is_link_active(hba) && 9130 clki->keep_link_active) 9131 continue; 9132 9133 clk_state_changed = on ^ clki->enabled; 9134 if (on && !clki->enabled) { 9135 ret = clk_prepare_enable(clki->clk); 9136 if (ret) { 9137 dev_err(hba->dev, "%s: %s prepare enable failed, %d\n", 9138 __func__, clki->name, ret); 9139 goto out; 9140 } 9141 } else if (!on && clki->enabled) { 9142 clk_disable_unprepare(clki->clk); 9143 } 9144 clki->enabled = on; 9145 dev_dbg(hba->dev, "%s: clk: %s %sabled\n", __func__, 9146 clki->name, on ? "en" : "dis"); 9147 } 9148 } 9149 9150 ret = ufshcd_vops_setup_clocks(hba, on, POST_CHANGE); 9151 if (ret) 9152 return ret; 9153 9154 if (!ufshcd_is_clkscaling_supported(hba)) 9155 ufshcd_pm_qos_update(hba, on); 9156 out: 9157 if (ret) { 9158 list_for_each_entry(clki, head, list) { 9159 if (!IS_ERR_OR_NULL(clki->clk) && clki->enabled) 9160 clk_disable_unprepare(clki->clk); 9161 } 9162 } else if (!ret && on) { 9163 spin_lock_irqsave(hba->host->host_lock, flags); 9164 hba->clk_gating.state = CLKS_ON; 9165 trace_ufshcd_clk_gating(dev_name(hba->dev), 9166 hba->clk_gating.state); 9167 spin_unlock_irqrestore(hba->host->host_lock, flags); 9168 } 9169 9170 if (clk_state_changed) 9171 trace_ufshcd_profile_clk_gating(dev_name(hba->dev), 9172 (on ? "on" : "off"), 9173 ktime_to_us(ktime_sub(ktime_get(), start)), ret); 9174 return ret; 9175 } 9176 9177 static enum ufs_ref_clk_freq ufshcd_parse_ref_clk_property(struct ufs_hba *hba) 9178 { 9179 u32 freq; 9180 int ret = device_property_read_u32(hba->dev, "ref-clk-freq", &freq); 9181 9182 if (ret) { 9183 dev_dbg(hba->dev, "Cannot query 'ref-clk-freq' property = %d", ret); 9184 return REF_CLK_FREQ_INVAL; 9185 } 9186 9187 return ufs_get_bref_clk_from_hz(freq); 9188 } 9189 9190 static int ufshcd_init_clocks(struct ufs_hba *hba) 9191 { 9192 int ret = 0; 9193 struct ufs_clk_info *clki; 9194 struct device *dev = hba->dev; 9195 struct list_head *head = &hba->clk_list_head; 9196 9197 if (list_empty(head)) 9198 goto out; 9199 9200 list_for_each_entry(clki, head, list) { 9201 if (!clki->name) 9202 continue; 9203 9204 clki->clk = devm_clk_get(dev, clki->name); 9205 if (IS_ERR(clki->clk)) { 9206 ret = PTR_ERR(clki->clk); 9207 dev_err(dev, "%s: %s clk get failed, %d\n", 9208 __func__, clki->name, ret); 9209 goto out; 9210 } 9211 9212 /* 9213 * Parse device ref clk freq as per device tree "ref_clk". 9214 * Default dev_ref_clk_freq is set to REF_CLK_FREQ_INVAL 9215 * in ufshcd_alloc_host(). 9216 */ 9217 if (!strcmp(clki->name, "ref_clk")) 9218 ufshcd_parse_dev_ref_clk_freq(hba, clki->clk); 9219 9220 if (clki->max_freq) { 9221 ret = clk_set_rate(clki->clk, clki->max_freq); 9222 if (ret) { 9223 dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n", 9224 __func__, clki->name, 9225 clki->max_freq, ret); 9226 goto out; 9227 } 9228 clki->curr_freq = clki->max_freq; 9229 } 9230 dev_dbg(dev, "%s: clk: %s, rate: %lu\n", __func__, 9231 clki->name, clk_get_rate(clki->clk)); 9232 } 9233 9234 /* Set Max. frequency for all clocks */ 9235 if (hba->use_pm_opp) { 9236 ret = ufshcd_opp_set_rate(hba, ULONG_MAX); 9237 if (ret) { 9238 dev_err(hba->dev, "%s: failed to set OPP: %d", __func__, 9239 ret); 9240 goto out; 9241 } 9242 } 9243 9244 out: 9245 return ret; 9246 } 9247 9248 static int ufshcd_variant_hba_init(struct ufs_hba *hba) 9249 { 9250 int err = 0; 9251 9252 if (!hba->vops) 9253 goto out; 9254 9255 err = ufshcd_vops_init(hba); 9256 if (err) 9257 dev_err_probe(hba->dev, err, 9258 "%s: variant %s init failed with err %d\n", 9259 __func__, ufshcd_get_var_name(hba), err); 9260 out: 9261 return err; 9262 } 9263 9264 static void ufshcd_variant_hba_exit(struct ufs_hba *hba) 9265 { 9266 if (!hba->vops) 9267 return; 9268 9269 ufshcd_vops_exit(hba); 9270 } 9271 9272 static int ufshcd_hba_init(struct ufs_hba *hba) 9273 { 9274 int err; 9275 9276 /* 9277 * Handle host controller power separately from the UFS device power 9278 * rails as it will help controlling the UFS host controller power 9279 * collapse easily which is different than UFS device power collapse. 9280 * Also, enable the host controller power before we go ahead with rest 9281 * of the initialization here. 9282 */ 9283 err = ufshcd_init_hba_vreg(hba); 9284 if (err) 9285 goto out; 9286 9287 err = ufshcd_setup_hba_vreg(hba, true); 9288 if (err) 9289 goto out; 9290 9291 err = ufshcd_init_clocks(hba); 9292 if (err) 9293 goto out_disable_hba_vreg; 9294 9295 if (hba->dev_ref_clk_freq == REF_CLK_FREQ_INVAL) 9296 hba->dev_ref_clk_freq = ufshcd_parse_ref_clk_property(hba); 9297 9298 err = ufshcd_setup_clocks(hba, true); 9299 if (err) 9300 goto out_disable_hba_vreg; 9301 9302 err = ufshcd_init_vreg(hba); 9303 if (err) 9304 goto out_disable_clks; 9305 9306 err = ufshcd_setup_vreg(hba, true); 9307 if (err) 9308 goto out_disable_clks; 9309 9310 err = ufshcd_variant_hba_init(hba); 9311 if (err) 9312 goto out_disable_vreg; 9313 9314 ufs_debugfs_hba_init(hba); 9315 ufs_fault_inject_hba_init(hba); 9316 9317 hba->is_powered = true; 9318 goto out; 9319 9320 out_disable_vreg: 9321 ufshcd_setup_vreg(hba, false); 9322 out_disable_clks: 9323 ufshcd_setup_clocks(hba, false); 9324 out_disable_hba_vreg: 9325 ufshcd_setup_hba_vreg(hba, false); 9326 out: 9327 return err; 9328 } 9329 9330 static void ufshcd_hba_exit(struct ufs_hba *hba) 9331 { 9332 if (hba->is_powered) { 9333 ufshcd_pm_qos_exit(hba); 9334 ufshcd_exit_clk_scaling(hba); 9335 ufshcd_exit_clk_gating(hba); 9336 if (hba->eh_wq) 9337 destroy_workqueue(hba->eh_wq); 9338 ufs_debugfs_hba_exit(hba); 9339 ufshcd_variant_hba_exit(hba); 9340 ufshcd_setup_vreg(hba, false); 9341 ufshcd_setup_clocks(hba, false); 9342 ufshcd_setup_hba_vreg(hba, false); 9343 hba->is_powered = false; 9344 ufs_put_device_desc(hba); 9345 } 9346 } 9347 9348 static int ufshcd_execute_start_stop(struct scsi_device *sdev, 9349 enum ufs_dev_pwr_mode pwr_mode, 9350 struct scsi_sense_hdr *sshdr) 9351 { 9352 const unsigned char cdb[6] = { START_STOP, 0, 0, 0, pwr_mode << 4, 0 }; 9353 struct scsi_failure failure_defs[] = { 9354 { 9355 .allowed = 2, 9356 .result = SCMD_FAILURE_RESULT_ANY, 9357 }, 9358 }; 9359 struct scsi_failures failures = { 9360 .failure_definitions = failure_defs, 9361 }; 9362 const struct scsi_exec_args args = { 9363 .failures = &failures, 9364 .sshdr = sshdr, 9365 .req_flags = BLK_MQ_REQ_PM, 9366 .scmd_flags = SCMD_FAIL_IF_RECOVERING, 9367 }; 9368 9369 return scsi_execute_cmd(sdev, cdb, REQ_OP_DRV_IN, /*buffer=*/NULL, 9370 /*bufflen=*/0, /*timeout=*/10 * HZ, /*retries=*/0, 9371 &args); 9372 } 9373 9374 /** 9375 * ufshcd_set_dev_pwr_mode - sends START STOP UNIT command to set device 9376 * power mode 9377 * @hba: per adapter instance 9378 * @pwr_mode: device power mode to set 9379 * 9380 * Return: 0 if requested power mode is set successfully; 9381 * < 0 if failed to set the requested power mode. 9382 */ 9383 static int ufshcd_set_dev_pwr_mode(struct ufs_hba *hba, 9384 enum ufs_dev_pwr_mode pwr_mode) 9385 { 9386 struct scsi_sense_hdr sshdr; 9387 struct scsi_device *sdp; 9388 unsigned long flags; 9389 int ret; 9390 9391 spin_lock_irqsave(hba->host->host_lock, flags); 9392 sdp = hba->ufs_device_wlun; 9393 if (sdp && scsi_device_online(sdp)) 9394 ret = scsi_device_get(sdp); 9395 else 9396 ret = -ENODEV; 9397 spin_unlock_irqrestore(hba->host->host_lock, flags); 9398 9399 if (ret) 9400 return ret; 9401 9402 /* 9403 * If scsi commands fail, the scsi mid-layer schedules scsi error- 9404 * handling, which would wait for host to be resumed. Since we know 9405 * we are functional while we are here, skip host resume in error 9406 * handling context. 9407 */ 9408 hba->host->eh_noresume = 1; 9409 9410 /* 9411 * Current function would be generally called from the power management 9412 * callbacks hence set the RQF_PM flag so that it doesn't resume the 9413 * already suspended childs. 9414 */ 9415 ret = ufshcd_execute_start_stop(sdp, pwr_mode, &sshdr); 9416 if (ret) { 9417 sdev_printk(KERN_WARNING, sdp, 9418 "START_STOP failed for power mode: %d, result %x\n", 9419 pwr_mode, ret); 9420 if (ret > 0) { 9421 if (scsi_sense_valid(&sshdr)) 9422 scsi_print_sense_hdr(sdp, NULL, &sshdr); 9423 ret = -EIO; 9424 } 9425 } else { 9426 hba->curr_dev_pwr_mode = pwr_mode; 9427 } 9428 9429 scsi_device_put(sdp); 9430 hba->host->eh_noresume = 0; 9431 return ret; 9432 } 9433 9434 static int ufshcd_link_state_transition(struct ufs_hba *hba, 9435 enum uic_link_state req_link_state, 9436 bool check_for_bkops) 9437 { 9438 int ret = 0; 9439 9440 if (req_link_state == hba->uic_link_state) 9441 return 0; 9442 9443 if (req_link_state == UIC_LINK_HIBERN8_STATE) { 9444 ret = ufshcd_uic_hibern8_enter(hba); 9445 if (!ret) { 9446 ufshcd_set_link_hibern8(hba); 9447 } else { 9448 dev_err(hba->dev, "%s: hibern8 enter failed %d\n", 9449 __func__, ret); 9450 goto out; 9451 } 9452 } 9453 /* 9454 * If autobkops is enabled, link can't be turned off because 9455 * turning off the link would also turn off the device, except in the 9456 * case of DeepSleep where the device is expected to remain powered. 9457 */ 9458 else if ((req_link_state == UIC_LINK_OFF_STATE) && 9459 (!check_for_bkops || !hba->auto_bkops_enabled)) { 9460 /* 9461 * Let's make sure that link is in low power mode, we are doing 9462 * this currently by putting the link in Hibern8. Otherway to 9463 * put the link in low power mode is to send the DME end point 9464 * to device and then send the DME reset command to local 9465 * unipro. But putting the link in hibern8 is much faster. 9466 * 9467 * Note also that putting the link in Hibern8 is a requirement 9468 * for entering DeepSleep. 9469 */ 9470 ret = ufshcd_uic_hibern8_enter(hba); 9471 if (ret) { 9472 dev_err(hba->dev, "%s: hibern8 enter failed %d\n", 9473 __func__, ret); 9474 goto out; 9475 } 9476 /* 9477 * Change controller state to "reset state" which 9478 * should also put the link in off/reset state 9479 */ 9480 ufshcd_hba_stop(hba); 9481 /* 9482 * TODO: Check if we need any delay to make sure that 9483 * controller is reset 9484 */ 9485 ufshcd_set_link_off(hba); 9486 } 9487 9488 out: 9489 return ret; 9490 } 9491 9492 static void ufshcd_vreg_set_lpm(struct ufs_hba *hba) 9493 { 9494 bool vcc_off = false; 9495 9496 /* 9497 * It seems some UFS devices may keep drawing more than sleep current 9498 * (atleast for 500us) from UFS rails (especially from VCCQ rail). 9499 * To avoid this situation, add 2ms delay before putting these UFS 9500 * rails in LPM mode. 9501 */ 9502 if (!ufshcd_is_link_active(hba) && 9503 hba->dev_quirks & UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM) 9504 usleep_range(2000, 2100); 9505 9506 /* 9507 * If UFS device is either in UFS_Sleep turn off VCC rail to save some 9508 * power. 9509 * 9510 * If UFS device and link is in OFF state, all power supplies (VCC, 9511 * VCCQ, VCCQ2) can be turned off if power on write protect is not 9512 * required. If UFS link is inactive (Hibern8 or OFF state) and device 9513 * is in sleep state, put VCCQ & VCCQ2 rails in LPM mode. 9514 * 9515 * Ignore the error returned by ufshcd_toggle_vreg() as device is anyway 9516 * in low power state which would save some power. 9517 * 9518 * If Write Booster is enabled and the device needs to flush the WB 9519 * buffer OR if bkops status is urgent for WB, keep Vcc on. 9520 */ 9521 if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba) && 9522 !hba->dev_info.is_lu_power_on_wp) { 9523 ufshcd_setup_vreg(hba, false); 9524 vcc_off = true; 9525 } else if (!ufshcd_is_ufs_dev_active(hba)) { 9526 ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, false); 9527 vcc_off = true; 9528 if (ufshcd_is_link_hibern8(hba) || ufshcd_is_link_off(hba)) { 9529 ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq); 9530 ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq2); 9531 } 9532 } 9533 9534 /* 9535 * Some UFS devices require delay after VCC power rail is turned-off. 9536 */ 9537 if (vcc_off && hba->vreg_info.vcc && 9538 hba->dev_quirks & UFS_DEVICE_QUIRK_DELAY_AFTER_LPM) 9539 usleep_range(5000, 5100); 9540 } 9541 9542 #ifdef CONFIG_PM 9543 static int ufshcd_vreg_set_hpm(struct ufs_hba *hba) 9544 { 9545 int ret = 0; 9546 9547 if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba) && 9548 !hba->dev_info.is_lu_power_on_wp) { 9549 ret = ufshcd_setup_vreg(hba, true); 9550 } else if (!ufshcd_is_ufs_dev_active(hba)) { 9551 if (!ufshcd_is_link_active(hba)) { 9552 ret = ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq); 9553 if (ret) 9554 goto vcc_disable; 9555 ret = ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq2); 9556 if (ret) 9557 goto vccq_lpm; 9558 } 9559 ret = ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, true); 9560 } 9561 goto out; 9562 9563 vccq_lpm: 9564 ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq); 9565 vcc_disable: 9566 ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, false); 9567 out: 9568 return ret; 9569 } 9570 #endif /* CONFIG_PM */ 9571 9572 static void ufshcd_hba_vreg_set_lpm(struct ufs_hba *hba) 9573 { 9574 if (ufshcd_is_link_off(hba) || ufshcd_can_aggressive_pc(hba)) 9575 ufshcd_setup_hba_vreg(hba, false); 9576 } 9577 9578 static void ufshcd_hba_vreg_set_hpm(struct ufs_hba *hba) 9579 { 9580 if (ufshcd_is_link_off(hba) || ufshcd_can_aggressive_pc(hba)) 9581 ufshcd_setup_hba_vreg(hba, true); 9582 } 9583 9584 static int __ufshcd_wl_suspend(struct ufs_hba *hba, enum ufs_pm_op pm_op) 9585 { 9586 int ret = 0; 9587 bool check_for_bkops; 9588 enum ufs_pm_level pm_lvl; 9589 enum ufs_dev_pwr_mode req_dev_pwr_mode; 9590 enum uic_link_state req_link_state; 9591 9592 hba->pm_op_in_progress = true; 9593 if (pm_op != UFS_SHUTDOWN_PM) { 9594 pm_lvl = pm_op == UFS_RUNTIME_PM ? 9595 hba->rpm_lvl : hba->spm_lvl; 9596 req_dev_pwr_mode = ufs_get_pm_lvl_to_dev_pwr_mode(pm_lvl); 9597 req_link_state = ufs_get_pm_lvl_to_link_pwr_state(pm_lvl); 9598 } else { 9599 req_dev_pwr_mode = UFS_POWERDOWN_PWR_MODE; 9600 req_link_state = UIC_LINK_OFF_STATE; 9601 } 9602 9603 /* 9604 * If we can't transition into any of the low power modes 9605 * just gate the clocks. 9606 */ 9607 ufshcd_hold(hba); 9608 hba->clk_gating.is_suspended = true; 9609 9610 if (ufshcd_is_clkscaling_supported(hba)) 9611 ufshcd_clk_scaling_suspend(hba, true); 9612 9613 if (req_dev_pwr_mode == UFS_ACTIVE_PWR_MODE && 9614 req_link_state == UIC_LINK_ACTIVE_STATE) { 9615 goto vops_suspend; 9616 } 9617 9618 if ((req_dev_pwr_mode == hba->curr_dev_pwr_mode) && 9619 (req_link_state == hba->uic_link_state)) 9620 goto enable_scaling; 9621 9622 /* UFS device & link must be active before we enter in this function */ 9623 if (!ufshcd_is_ufs_dev_active(hba) || !ufshcd_is_link_active(hba)) { 9624 /* Wait err handler finish or trigger err recovery */ 9625 if (!ufshcd_eh_in_progress(hba)) 9626 ufshcd_force_error_recovery(hba); 9627 ret = -EBUSY; 9628 goto enable_scaling; 9629 } 9630 9631 if (pm_op == UFS_RUNTIME_PM) { 9632 if (ufshcd_can_autobkops_during_suspend(hba)) { 9633 /* 9634 * The device is idle with no requests in the queue, 9635 * allow background operations if bkops status shows 9636 * that performance might be impacted. 9637 */ 9638 ret = ufshcd_bkops_ctrl(hba); 9639 if (ret) { 9640 /* 9641 * If return err in suspend flow, IO will hang. 9642 * Trigger error handler and break suspend for 9643 * error recovery. 9644 */ 9645 ufshcd_force_error_recovery(hba); 9646 ret = -EBUSY; 9647 goto enable_scaling; 9648 } 9649 } else { 9650 /* make sure that auto bkops is disabled */ 9651 ufshcd_disable_auto_bkops(hba); 9652 } 9653 /* 9654 * If device needs to do BKOP or WB buffer flush during 9655 * Hibern8, keep device power mode as "active power mode" 9656 * and VCC supply. 9657 */ 9658 hba->dev_info.b_rpm_dev_flush_capable = 9659 hba->auto_bkops_enabled || 9660 (((req_link_state == UIC_LINK_HIBERN8_STATE) || 9661 ((req_link_state == UIC_LINK_ACTIVE_STATE) && 9662 ufshcd_is_auto_hibern8_enabled(hba))) && 9663 ufshcd_wb_need_flush(hba)); 9664 } 9665 9666 flush_work(&hba->eeh_work); 9667 9668 ret = ufshcd_vops_suspend(hba, pm_op, PRE_CHANGE); 9669 if (ret) 9670 goto enable_scaling; 9671 9672 if (req_dev_pwr_mode != hba->curr_dev_pwr_mode) { 9673 if (pm_op != UFS_RUNTIME_PM) 9674 /* ensure that bkops is disabled */ 9675 ufshcd_disable_auto_bkops(hba); 9676 9677 if (!hba->dev_info.b_rpm_dev_flush_capable) { 9678 ret = ufshcd_set_dev_pwr_mode(hba, req_dev_pwr_mode); 9679 if (ret && pm_op != UFS_SHUTDOWN_PM) { 9680 /* 9681 * If return err in suspend flow, IO will hang. 9682 * Trigger error handler and break suspend for 9683 * error recovery. 9684 */ 9685 ufshcd_force_error_recovery(hba); 9686 ret = -EBUSY; 9687 } 9688 if (ret) 9689 goto enable_scaling; 9690 } 9691 } 9692 9693 /* 9694 * In the case of DeepSleep, the device is expected to remain powered 9695 * with the link off, so do not check for bkops. 9696 */ 9697 check_for_bkops = !ufshcd_is_ufs_dev_deepsleep(hba); 9698 ret = ufshcd_link_state_transition(hba, req_link_state, check_for_bkops); 9699 if (ret && pm_op != UFS_SHUTDOWN_PM) { 9700 /* 9701 * If return err in suspend flow, IO will hang. 9702 * Trigger error handler and break suspend for 9703 * error recovery. 9704 */ 9705 ufshcd_force_error_recovery(hba); 9706 ret = -EBUSY; 9707 } 9708 if (ret) 9709 goto set_dev_active; 9710 9711 vops_suspend: 9712 /* 9713 * Call vendor specific suspend callback. As these callbacks may access 9714 * vendor specific host controller register space call them before the 9715 * host clocks are ON. 9716 */ 9717 ret = ufshcd_vops_suspend(hba, pm_op, POST_CHANGE); 9718 if (ret) 9719 goto set_link_active; 9720 9721 cancel_delayed_work_sync(&hba->ufs_rtc_update_work); 9722 goto out; 9723 9724 set_link_active: 9725 /* 9726 * Device hardware reset is required to exit DeepSleep. Also, for 9727 * DeepSleep, the link is off so host reset and restore will be done 9728 * further below. 9729 */ 9730 if (ufshcd_is_ufs_dev_deepsleep(hba)) { 9731 ufshcd_device_reset(hba); 9732 WARN_ON(!ufshcd_is_link_off(hba)); 9733 } 9734 if (ufshcd_is_link_hibern8(hba) && !ufshcd_uic_hibern8_exit(hba)) 9735 ufshcd_set_link_active(hba); 9736 else if (ufshcd_is_link_off(hba)) 9737 ufshcd_host_reset_and_restore(hba); 9738 set_dev_active: 9739 /* Can also get here needing to exit DeepSleep */ 9740 if (ufshcd_is_ufs_dev_deepsleep(hba)) { 9741 ufshcd_device_reset(hba); 9742 ufshcd_host_reset_and_restore(hba); 9743 } 9744 if (!ufshcd_set_dev_pwr_mode(hba, UFS_ACTIVE_PWR_MODE)) 9745 ufshcd_disable_auto_bkops(hba); 9746 enable_scaling: 9747 if (ufshcd_is_clkscaling_supported(hba)) 9748 ufshcd_clk_scaling_suspend(hba, false); 9749 9750 hba->dev_info.b_rpm_dev_flush_capable = false; 9751 out: 9752 if (hba->dev_info.b_rpm_dev_flush_capable) { 9753 schedule_delayed_work(&hba->rpm_dev_flush_recheck_work, 9754 msecs_to_jiffies(RPM_DEV_FLUSH_RECHECK_WORK_DELAY_MS)); 9755 } 9756 9757 if (ret) { 9758 ufshcd_update_evt_hist(hba, UFS_EVT_WL_SUSP_ERR, (u32)ret); 9759 hba->clk_gating.is_suspended = false; 9760 ufshcd_release(hba); 9761 } 9762 hba->pm_op_in_progress = false; 9763 return ret; 9764 } 9765 9766 #ifdef CONFIG_PM 9767 static int __ufshcd_wl_resume(struct ufs_hba *hba, enum ufs_pm_op pm_op) 9768 { 9769 int ret; 9770 enum uic_link_state old_link_state = hba->uic_link_state; 9771 9772 hba->pm_op_in_progress = true; 9773 9774 /* 9775 * Call vendor specific resume callback. As these callbacks may access 9776 * vendor specific host controller register space call them when the 9777 * host clocks are ON. 9778 */ 9779 ret = ufshcd_vops_resume(hba, pm_op); 9780 if (ret) 9781 goto out; 9782 9783 /* For DeepSleep, the only supported option is to have the link off */ 9784 WARN_ON(ufshcd_is_ufs_dev_deepsleep(hba) && !ufshcd_is_link_off(hba)); 9785 9786 if (ufshcd_is_link_hibern8(hba)) { 9787 ret = ufshcd_uic_hibern8_exit(hba); 9788 if (!ret) { 9789 ufshcd_set_link_active(hba); 9790 } else { 9791 dev_err(hba->dev, "%s: hibern8 exit failed %d\n", 9792 __func__, ret); 9793 goto vendor_suspend; 9794 } 9795 } else if (ufshcd_is_link_off(hba)) { 9796 /* 9797 * A full initialization of the host and the device is 9798 * required since the link was put to off during suspend. 9799 * Note, in the case of DeepSleep, the device will exit 9800 * DeepSleep due to device reset. 9801 */ 9802 ret = ufshcd_reset_and_restore(hba); 9803 /* 9804 * ufshcd_reset_and_restore() should have already 9805 * set the link state as active 9806 */ 9807 if (ret || !ufshcd_is_link_active(hba)) 9808 goto vendor_suspend; 9809 } 9810 9811 if (!ufshcd_is_ufs_dev_active(hba)) { 9812 ret = ufshcd_set_dev_pwr_mode(hba, UFS_ACTIVE_PWR_MODE); 9813 if (ret) 9814 goto set_old_link_state; 9815 ufshcd_set_timestamp_attr(hba); 9816 schedule_delayed_work(&hba->ufs_rtc_update_work, 9817 msecs_to_jiffies(UFS_RTC_UPDATE_INTERVAL_MS)); 9818 } 9819 9820 if (ufshcd_keep_autobkops_enabled_except_suspend(hba)) 9821 ufshcd_enable_auto_bkops(hba); 9822 else 9823 /* 9824 * If BKOPs operations are urgently needed at this moment then 9825 * keep auto-bkops enabled or else disable it. 9826 */ 9827 ufshcd_bkops_ctrl(hba); 9828 9829 if (hba->ee_usr_mask) 9830 ufshcd_write_ee_control(hba); 9831 9832 if (ufshcd_is_clkscaling_supported(hba)) 9833 ufshcd_clk_scaling_suspend(hba, false); 9834 9835 if (hba->dev_info.b_rpm_dev_flush_capable) { 9836 hba->dev_info.b_rpm_dev_flush_capable = false; 9837 cancel_delayed_work(&hba->rpm_dev_flush_recheck_work); 9838 } 9839 9840 ufshcd_configure_auto_hibern8(hba); 9841 9842 goto out; 9843 9844 set_old_link_state: 9845 ufshcd_link_state_transition(hba, old_link_state, 0); 9846 vendor_suspend: 9847 ufshcd_vops_suspend(hba, pm_op, PRE_CHANGE); 9848 ufshcd_vops_suspend(hba, pm_op, POST_CHANGE); 9849 out: 9850 if (ret) 9851 ufshcd_update_evt_hist(hba, UFS_EVT_WL_RES_ERR, (u32)ret); 9852 hba->clk_gating.is_suspended = false; 9853 ufshcd_release(hba); 9854 hba->pm_op_in_progress = false; 9855 return ret; 9856 } 9857 9858 static int ufshcd_wl_runtime_suspend(struct device *dev) 9859 { 9860 struct scsi_device *sdev = to_scsi_device(dev); 9861 struct ufs_hba *hba; 9862 int ret; 9863 ktime_t start = ktime_get(); 9864 9865 hba = shost_priv(sdev->host); 9866 9867 ret = __ufshcd_wl_suspend(hba, UFS_RUNTIME_PM); 9868 if (ret) 9869 dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret); 9870 9871 trace_ufshcd_wl_runtime_suspend(dev_name(dev), ret, 9872 ktime_to_us(ktime_sub(ktime_get(), start)), 9873 hba->curr_dev_pwr_mode, hba->uic_link_state); 9874 9875 return ret; 9876 } 9877 9878 static int ufshcd_wl_runtime_resume(struct device *dev) 9879 { 9880 struct scsi_device *sdev = to_scsi_device(dev); 9881 struct ufs_hba *hba; 9882 int ret = 0; 9883 ktime_t start = ktime_get(); 9884 9885 hba = shost_priv(sdev->host); 9886 9887 ret = __ufshcd_wl_resume(hba, UFS_RUNTIME_PM); 9888 if (ret) 9889 dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret); 9890 9891 trace_ufshcd_wl_runtime_resume(dev_name(dev), ret, 9892 ktime_to_us(ktime_sub(ktime_get(), start)), 9893 hba->curr_dev_pwr_mode, hba->uic_link_state); 9894 9895 return ret; 9896 } 9897 #endif 9898 9899 #ifdef CONFIG_PM_SLEEP 9900 static int ufshcd_wl_suspend(struct device *dev) 9901 { 9902 struct scsi_device *sdev = to_scsi_device(dev); 9903 struct ufs_hba *hba; 9904 int ret = 0; 9905 ktime_t start = ktime_get(); 9906 9907 hba = shost_priv(sdev->host); 9908 down(&hba->host_sem); 9909 hba->system_suspending = true; 9910 9911 if (pm_runtime_suspended(dev)) 9912 goto out; 9913 9914 ret = __ufshcd_wl_suspend(hba, UFS_SYSTEM_PM); 9915 if (ret) { 9916 dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret); 9917 up(&hba->host_sem); 9918 } 9919 9920 out: 9921 if (!ret) 9922 hba->is_sys_suspended = true; 9923 trace_ufshcd_wl_suspend(dev_name(dev), ret, 9924 ktime_to_us(ktime_sub(ktime_get(), start)), 9925 hba->curr_dev_pwr_mode, hba->uic_link_state); 9926 9927 return ret; 9928 } 9929 9930 static int ufshcd_wl_resume(struct device *dev) 9931 { 9932 struct scsi_device *sdev = to_scsi_device(dev); 9933 struct ufs_hba *hba; 9934 int ret = 0; 9935 ktime_t start = ktime_get(); 9936 9937 hba = shost_priv(sdev->host); 9938 9939 if (pm_runtime_suspended(dev)) 9940 goto out; 9941 9942 ret = __ufshcd_wl_resume(hba, UFS_SYSTEM_PM); 9943 if (ret) 9944 dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret); 9945 out: 9946 trace_ufshcd_wl_resume(dev_name(dev), ret, 9947 ktime_to_us(ktime_sub(ktime_get(), start)), 9948 hba->curr_dev_pwr_mode, hba->uic_link_state); 9949 if (!ret) 9950 hba->is_sys_suspended = false; 9951 hba->system_suspending = false; 9952 up(&hba->host_sem); 9953 return ret; 9954 } 9955 #endif 9956 9957 /** 9958 * ufshcd_suspend - helper function for suspend operations 9959 * @hba: per adapter instance 9960 * 9961 * This function will put disable irqs, turn off clocks 9962 * and set vreg and hba-vreg in lpm mode. 9963 * 9964 * Return: 0 upon success; < 0 upon failure. 9965 */ 9966 static int ufshcd_suspend(struct ufs_hba *hba) 9967 { 9968 int ret; 9969 9970 if (!hba->is_powered) 9971 return 0; 9972 /* 9973 * Disable the host irq as host controller as there won't be any 9974 * host controller transaction expected till resume. 9975 */ 9976 ufshcd_disable_irq(hba); 9977 ret = ufshcd_setup_clocks(hba, false); 9978 if (ret) { 9979 ufshcd_enable_irq(hba); 9980 return ret; 9981 } 9982 if (ufshcd_is_clkgating_allowed(hba)) { 9983 hba->clk_gating.state = CLKS_OFF; 9984 trace_ufshcd_clk_gating(dev_name(hba->dev), 9985 hba->clk_gating.state); 9986 } 9987 9988 ufshcd_vreg_set_lpm(hba); 9989 /* Put the host controller in low power mode if possible */ 9990 ufshcd_hba_vreg_set_lpm(hba); 9991 ufshcd_pm_qos_update(hba, false); 9992 return ret; 9993 } 9994 9995 #ifdef CONFIG_PM 9996 /** 9997 * ufshcd_resume - helper function for resume operations 9998 * @hba: per adapter instance 9999 * 10000 * This function basically turns on the regulators, clocks and 10001 * irqs of the hba. 10002 * 10003 * Return: 0 for success and non-zero for failure. 10004 */ 10005 static int ufshcd_resume(struct ufs_hba *hba) 10006 { 10007 int ret; 10008 10009 if (!hba->is_powered) 10010 return 0; 10011 10012 ufshcd_hba_vreg_set_hpm(hba); 10013 ret = ufshcd_vreg_set_hpm(hba); 10014 if (ret) 10015 goto out; 10016 10017 /* Make sure clocks are enabled before accessing controller */ 10018 ret = ufshcd_setup_clocks(hba, true); 10019 if (ret) 10020 goto disable_vreg; 10021 10022 /* enable the host irq as host controller would be active soon */ 10023 ufshcd_enable_irq(hba); 10024 10025 goto out; 10026 10027 disable_vreg: 10028 ufshcd_vreg_set_lpm(hba); 10029 out: 10030 if (ret) 10031 ufshcd_update_evt_hist(hba, UFS_EVT_RESUME_ERR, (u32)ret); 10032 return ret; 10033 } 10034 #endif /* CONFIG_PM */ 10035 10036 #ifdef CONFIG_PM_SLEEP 10037 /** 10038 * ufshcd_system_suspend - system suspend callback 10039 * @dev: Device associated with the UFS controller. 10040 * 10041 * Executed before putting the system into a sleep state in which the contents 10042 * of main memory are preserved. 10043 * 10044 * Return: 0 for success and non-zero for failure. 10045 */ 10046 int ufshcd_system_suspend(struct device *dev) 10047 { 10048 struct ufs_hba *hba = dev_get_drvdata(dev); 10049 int ret = 0; 10050 ktime_t start = ktime_get(); 10051 10052 if (pm_runtime_suspended(hba->dev)) 10053 goto out; 10054 10055 ret = ufshcd_suspend(hba); 10056 out: 10057 trace_ufshcd_system_suspend(dev_name(hba->dev), ret, 10058 ktime_to_us(ktime_sub(ktime_get(), start)), 10059 hba->curr_dev_pwr_mode, hba->uic_link_state); 10060 return ret; 10061 } 10062 EXPORT_SYMBOL(ufshcd_system_suspend); 10063 10064 /** 10065 * ufshcd_system_resume - system resume callback 10066 * @dev: Device associated with the UFS controller. 10067 * 10068 * Executed after waking the system up from a sleep state in which the contents 10069 * of main memory were preserved. 10070 * 10071 * Return: 0 for success and non-zero for failure. 10072 */ 10073 int ufshcd_system_resume(struct device *dev) 10074 { 10075 struct ufs_hba *hba = dev_get_drvdata(dev); 10076 ktime_t start = ktime_get(); 10077 int ret = 0; 10078 10079 if (pm_runtime_suspended(hba->dev)) 10080 goto out; 10081 10082 ret = ufshcd_resume(hba); 10083 10084 out: 10085 trace_ufshcd_system_resume(dev_name(hba->dev), ret, 10086 ktime_to_us(ktime_sub(ktime_get(), start)), 10087 hba->curr_dev_pwr_mode, hba->uic_link_state); 10088 10089 return ret; 10090 } 10091 EXPORT_SYMBOL(ufshcd_system_resume); 10092 #endif /* CONFIG_PM_SLEEP */ 10093 10094 #ifdef CONFIG_PM 10095 /** 10096 * ufshcd_runtime_suspend - runtime suspend callback 10097 * @dev: Device associated with the UFS controller. 10098 * 10099 * Check the description of ufshcd_suspend() function for more details. 10100 * 10101 * Return: 0 for success and non-zero for failure. 10102 */ 10103 int ufshcd_runtime_suspend(struct device *dev) 10104 { 10105 struct ufs_hba *hba = dev_get_drvdata(dev); 10106 int ret; 10107 ktime_t start = ktime_get(); 10108 10109 ret = ufshcd_suspend(hba); 10110 10111 trace_ufshcd_runtime_suspend(dev_name(hba->dev), ret, 10112 ktime_to_us(ktime_sub(ktime_get(), start)), 10113 hba->curr_dev_pwr_mode, hba->uic_link_state); 10114 return ret; 10115 } 10116 EXPORT_SYMBOL(ufshcd_runtime_suspend); 10117 10118 /** 10119 * ufshcd_runtime_resume - runtime resume routine 10120 * @dev: Device associated with the UFS controller. 10121 * 10122 * This function basically brings controller 10123 * to active state. Following operations are done in this function: 10124 * 10125 * 1. Turn on all the controller related clocks 10126 * 2. Turn ON VCC rail 10127 * 10128 * Return: 0 upon success; < 0 upon failure. 10129 */ 10130 int ufshcd_runtime_resume(struct device *dev) 10131 { 10132 struct ufs_hba *hba = dev_get_drvdata(dev); 10133 int ret; 10134 ktime_t start = ktime_get(); 10135 10136 ret = ufshcd_resume(hba); 10137 10138 trace_ufshcd_runtime_resume(dev_name(hba->dev), ret, 10139 ktime_to_us(ktime_sub(ktime_get(), start)), 10140 hba->curr_dev_pwr_mode, hba->uic_link_state); 10141 return ret; 10142 } 10143 EXPORT_SYMBOL(ufshcd_runtime_resume); 10144 #endif /* CONFIG_PM */ 10145 10146 static void ufshcd_wl_shutdown(struct device *dev) 10147 { 10148 struct scsi_device *sdev = to_scsi_device(dev); 10149 struct ufs_hba *hba = shost_priv(sdev->host); 10150 10151 down(&hba->host_sem); 10152 hba->shutting_down = true; 10153 up(&hba->host_sem); 10154 10155 /* Turn on everything while shutting down */ 10156 ufshcd_rpm_get_sync(hba); 10157 scsi_device_quiesce(sdev); 10158 shost_for_each_device(sdev, hba->host) { 10159 if (sdev == hba->ufs_device_wlun) 10160 continue; 10161 mutex_lock(&sdev->state_mutex); 10162 scsi_device_set_state(sdev, SDEV_OFFLINE); 10163 mutex_unlock(&sdev->state_mutex); 10164 } 10165 __ufshcd_wl_suspend(hba, UFS_SHUTDOWN_PM); 10166 10167 /* 10168 * Next, turn off the UFS controller and the UFS regulators. Disable 10169 * clocks. 10170 */ 10171 if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba)) 10172 ufshcd_suspend(hba); 10173 10174 hba->is_powered = false; 10175 } 10176 10177 /** 10178 * ufshcd_remove - de-allocate SCSI host and host memory space 10179 * data structure memory 10180 * @hba: per adapter instance 10181 */ 10182 void ufshcd_remove(struct ufs_hba *hba) 10183 { 10184 if (hba->ufs_device_wlun) 10185 ufshcd_rpm_get_sync(hba); 10186 ufs_hwmon_remove(hba); 10187 ufs_bsg_remove(hba); 10188 ufs_sysfs_remove_nodes(hba->dev); 10189 blk_mq_destroy_queue(hba->tmf_queue); 10190 blk_put_queue(hba->tmf_queue); 10191 blk_mq_free_tag_set(&hba->tmf_tag_set); 10192 if (hba->scsi_host_added) 10193 scsi_remove_host(hba->host); 10194 /* disable interrupts */ 10195 ufshcd_disable_intr(hba, hba->intr_mask); 10196 ufshcd_hba_stop(hba); 10197 ufshcd_hba_exit(hba); 10198 } 10199 EXPORT_SYMBOL_GPL(ufshcd_remove); 10200 10201 #ifdef CONFIG_PM_SLEEP 10202 int ufshcd_system_freeze(struct device *dev) 10203 { 10204 10205 return ufshcd_system_suspend(dev); 10206 10207 } 10208 EXPORT_SYMBOL_GPL(ufshcd_system_freeze); 10209 10210 int ufshcd_system_restore(struct device *dev) 10211 { 10212 10213 struct ufs_hba *hba = dev_get_drvdata(dev); 10214 int ret; 10215 10216 ret = ufshcd_system_resume(dev); 10217 if (ret) 10218 return ret; 10219 10220 /* Configure UTRL and UTMRL base address registers */ 10221 ufshcd_writel(hba, lower_32_bits(hba->utrdl_dma_addr), 10222 REG_UTP_TRANSFER_REQ_LIST_BASE_L); 10223 ufshcd_writel(hba, upper_32_bits(hba->utrdl_dma_addr), 10224 REG_UTP_TRANSFER_REQ_LIST_BASE_H); 10225 ufshcd_writel(hba, lower_32_bits(hba->utmrdl_dma_addr), 10226 REG_UTP_TASK_REQ_LIST_BASE_L); 10227 ufshcd_writel(hba, upper_32_bits(hba->utmrdl_dma_addr), 10228 REG_UTP_TASK_REQ_LIST_BASE_H); 10229 /* 10230 * Make sure that UTRL and UTMRL base address registers 10231 * are updated with the latest queue addresses. Only after 10232 * updating these addresses, we can queue the new commands. 10233 */ 10234 ufshcd_readl(hba, REG_UTP_TASK_REQ_LIST_BASE_H); 10235 10236 return 0; 10237 10238 } 10239 EXPORT_SYMBOL_GPL(ufshcd_system_restore); 10240 10241 int ufshcd_system_thaw(struct device *dev) 10242 { 10243 return ufshcd_system_resume(dev); 10244 } 10245 EXPORT_SYMBOL_GPL(ufshcd_system_thaw); 10246 #endif /* CONFIG_PM_SLEEP */ 10247 10248 /** 10249 * ufshcd_dealloc_host - deallocate Host Bus Adapter (HBA) 10250 * @hba: pointer to Host Bus Adapter (HBA) 10251 */ 10252 void ufshcd_dealloc_host(struct ufs_hba *hba) 10253 { 10254 scsi_host_put(hba->host); 10255 } 10256 EXPORT_SYMBOL_GPL(ufshcd_dealloc_host); 10257 10258 /** 10259 * ufshcd_set_dma_mask - Set dma mask based on the controller 10260 * addressing capability 10261 * @hba: per adapter instance 10262 * 10263 * Return: 0 for success, non-zero for failure. 10264 */ 10265 static int ufshcd_set_dma_mask(struct ufs_hba *hba) 10266 { 10267 if (hba->vops && hba->vops->set_dma_mask) 10268 return hba->vops->set_dma_mask(hba); 10269 if (hba->capabilities & MASK_64_ADDRESSING_SUPPORT) { 10270 if (!dma_set_mask_and_coherent(hba->dev, DMA_BIT_MASK(64))) 10271 return 0; 10272 } 10273 return dma_set_mask_and_coherent(hba->dev, DMA_BIT_MASK(32)); 10274 } 10275 10276 /** 10277 * ufshcd_alloc_host - allocate Host Bus Adapter (HBA) 10278 * @dev: pointer to device handle 10279 * @hba_handle: driver private handle 10280 * 10281 * Return: 0 on success, non-zero value on failure. 10282 */ 10283 int ufshcd_alloc_host(struct device *dev, struct ufs_hba **hba_handle) 10284 { 10285 struct Scsi_Host *host; 10286 struct ufs_hba *hba; 10287 int err = 0; 10288 10289 if (!dev) { 10290 dev_err(dev, 10291 "Invalid memory reference for dev is NULL\n"); 10292 err = -ENODEV; 10293 goto out_error; 10294 } 10295 10296 host = scsi_host_alloc(&ufshcd_driver_template, 10297 sizeof(struct ufs_hba)); 10298 if (!host) { 10299 dev_err(dev, "scsi_host_alloc failed\n"); 10300 err = -ENOMEM; 10301 goto out_error; 10302 } 10303 host->nr_maps = HCTX_TYPE_POLL + 1; 10304 hba = shost_priv(host); 10305 hba->host = host; 10306 hba->dev = dev; 10307 hba->dev_ref_clk_freq = REF_CLK_FREQ_INVAL; 10308 hba->nop_out_timeout = NOP_OUT_TIMEOUT; 10309 ufshcd_set_sg_entry_size(hba, sizeof(struct ufshcd_sg_entry)); 10310 INIT_LIST_HEAD(&hba->clk_list_head); 10311 spin_lock_init(&hba->outstanding_lock); 10312 10313 *hba_handle = hba; 10314 10315 out_error: 10316 return err; 10317 } 10318 EXPORT_SYMBOL(ufshcd_alloc_host); 10319 10320 /* This function exists because blk_mq_alloc_tag_set() requires this. */ 10321 static blk_status_t ufshcd_queue_tmf(struct blk_mq_hw_ctx *hctx, 10322 const struct blk_mq_queue_data *qd) 10323 { 10324 WARN_ON_ONCE(true); 10325 return BLK_STS_NOTSUPP; 10326 } 10327 10328 static const struct blk_mq_ops ufshcd_tmf_ops = { 10329 .queue_rq = ufshcd_queue_tmf, 10330 }; 10331 10332 static int ufshcd_add_scsi_host(struct ufs_hba *hba) 10333 { 10334 int err; 10335 10336 if (is_mcq_supported(hba)) { 10337 ufshcd_mcq_enable(hba); 10338 err = ufshcd_alloc_mcq(hba); 10339 if (!err) { 10340 ufshcd_config_mcq(hba); 10341 } else { 10342 /* Continue with SDB mode */ 10343 ufshcd_mcq_disable(hba); 10344 use_mcq_mode = false; 10345 dev_err(hba->dev, "MCQ mode is disabled, err=%d\n", 10346 err); 10347 } 10348 } 10349 if (!is_mcq_supported(hba) && !hba->lsdb_sup) { 10350 dev_err(hba->dev, 10351 "%s: failed to initialize (legacy doorbell mode not supported)\n", 10352 __func__); 10353 return -EINVAL; 10354 } 10355 10356 err = scsi_add_host(hba->host, hba->dev); 10357 if (err) { 10358 dev_err(hba->dev, "scsi_add_host failed\n"); 10359 return err; 10360 } 10361 hba->scsi_host_added = true; 10362 10363 hba->tmf_tag_set = (struct blk_mq_tag_set) { 10364 .nr_hw_queues = 1, 10365 .queue_depth = hba->nutmrs, 10366 .ops = &ufshcd_tmf_ops, 10367 .flags = BLK_MQ_F_NO_SCHED, 10368 }; 10369 err = blk_mq_alloc_tag_set(&hba->tmf_tag_set); 10370 if (err < 0) 10371 goto remove_scsi_host; 10372 hba->tmf_queue = blk_mq_alloc_queue(&hba->tmf_tag_set, NULL, NULL); 10373 if (IS_ERR(hba->tmf_queue)) { 10374 err = PTR_ERR(hba->tmf_queue); 10375 goto free_tmf_tag_set; 10376 } 10377 hba->tmf_rqs = devm_kcalloc(hba->dev, hba->nutmrs, 10378 sizeof(*hba->tmf_rqs), GFP_KERNEL); 10379 if (!hba->tmf_rqs) { 10380 err = -ENOMEM; 10381 goto free_tmf_queue; 10382 } 10383 10384 return 0; 10385 10386 free_tmf_queue: 10387 blk_mq_destroy_queue(hba->tmf_queue); 10388 blk_put_queue(hba->tmf_queue); 10389 10390 free_tmf_tag_set: 10391 blk_mq_free_tag_set(&hba->tmf_tag_set); 10392 10393 remove_scsi_host: 10394 if (hba->scsi_host_added) 10395 scsi_remove_host(hba->host); 10396 10397 return err; 10398 } 10399 10400 /** 10401 * ufshcd_init - Driver initialization routine 10402 * @hba: per-adapter instance 10403 * @mmio_base: base register address 10404 * @irq: Interrupt line of device 10405 * 10406 * Return: 0 on success, non-zero value on failure. 10407 */ 10408 int ufshcd_init(struct ufs_hba *hba, void __iomem *mmio_base, unsigned int irq) 10409 { 10410 int err; 10411 struct Scsi_Host *host = hba->host; 10412 struct device *dev = hba->dev; 10413 10414 /* 10415 * dev_set_drvdata() must be called before any callbacks are registered 10416 * that use dev_get_drvdata() (frequency scaling, clock scaling, hwmon, 10417 * sysfs). 10418 */ 10419 dev_set_drvdata(dev, hba); 10420 10421 if (!mmio_base) { 10422 dev_err(hba->dev, 10423 "Invalid memory reference for mmio_base is NULL\n"); 10424 err = -ENODEV; 10425 goto out_error; 10426 } 10427 10428 hba->mmio_base = mmio_base; 10429 hba->irq = irq; 10430 hba->vps = &ufs_hba_vps; 10431 10432 err = ufshcd_hba_init(hba); 10433 if (err) 10434 goto out_error; 10435 10436 /* Read capabilities registers */ 10437 err = ufshcd_hba_capabilities(hba); 10438 if (err) 10439 goto out_disable; 10440 10441 /* Get UFS version supported by the controller */ 10442 hba->ufs_version = ufshcd_get_ufs_version(hba); 10443 10444 /* Get Interrupt bit mask per version */ 10445 hba->intr_mask = ufshcd_get_intr_mask(hba); 10446 10447 err = ufshcd_set_dma_mask(hba); 10448 if (err) { 10449 dev_err(hba->dev, "set dma mask failed\n"); 10450 goto out_disable; 10451 } 10452 10453 /* Allocate memory for host memory space */ 10454 err = ufshcd_memory_alloc(hba); 10455 if (err) { 10456 dev_err(hba->dev, "Memory allocation failed\n"); 10457 goto out_disable; 10458 } 10459 10460 /* Configure LRB */ 10461 ufshcd_host_memory_configure(hba); 10462 10463 host->can_queue = hba->nutrs - UFSHCD_NUM_RESERVED; 10464 host->cmd_per_lun = hba->nutrs - UFSHCD_NUM_RESERVED; 10465 host->max_id = UFSHCD_MAX_ID; 10466 host->max_lun = UFS_MAX_LUNS; 10467 host->max_channel = UFSHCD_MAX_CHANNEL; 10468 host->unique_id = host->host_no; 10469 host->max_cmd_len = UFS_CDB_SIZE; 10470 host->queuecommand_may_block = !!(hba->caps & UFSHCD_CAP_CLK_GATING); 10471 10472 /* Use default RPM delay if host not set */ 10473 if (host->rpm_autosuspend_delay == 0) 10474 host->rpm_autosuspend_delay = RPM_AUTOSUSPEND_DELAY_MS; 10475 10476 hba->max_pwr_info.is_valid = false; 10477 10478 /* Initialize work queues */ 10479 hba->eh_wq = alloc_ordered_workqueue("ufs_eh_wq_%d", WQ_MEM_RECLAIM, 10480 hba->host->host_no); 10481 if (!hba->eh_wq) { 10482 dev_err(hba->dev, "%s: failed to create eh workqueue\n", 10483 __func__); 10484 err = -ENOMEM; 10485 goto out_disable; 10486 } 10487 INIT_WORK(&hba->eh_work, ufshcd_err_handler); 10488 INIT_WORK(&hba->eeh_work, ufshcd_exception_event_handler); 10489 10490 sema_init(&hba->host_sem, 1); 10491 10492 /* Initialize UIC command mutex */ 10493 mutex_init(&hba->uic_cmd_mutex); 10494 10495 /* Initialize mutex for device management commands */ 10496 mutex_init(&hba->dev_cmd.lock); 10497 10498 /* Initialize mutex for exception event control */ 10499 mutex_init(&hba->ee_ctrl_mutex); 10500 10501 mutex_init(&hba->wb_mutex); 10502 init_rwsem(&hba->clk_scaling_lock); 10503 10504 ufshcd_init_clk_gating(hba); 10505 10506 ufshcd_init_clk_scaling(hba); 10507 10508 /* 10509 * In order to avoid any spurious interrupt immediately after 10510 * registering UFS controller interrupt handler, clear any pending UFS 10511 * interrupt status and disable all the UFS interrupts. 10512 */ 10513 ufshcd_writel(hba, ufshcd_readl(hba, REG_INTERRUPT_STATUS), 10514 REG_INTERRUPT_STATUS); 10515 ufshcd_writel(hba, 0, REG_INTERRUPT_ENABLE); 10516 /* 10517 * Make sure that UFS interrupts are disabled and any pending interrupt 10518 * status is cleared before registering UFS interrupt handler. 10519 */ 10520 ufshcd_readl(hba, REG_INTERRUPT_ENABLE); 10521 10522 /* IRQ registration */ 10523 err = devm_request_irq(dev, irq, ufshcd_intr, IRQF_SHARED, UFSHCD, hba); 10524 if (err) { 10525 dev_err(hba->dev, "request irq failed\n"); 10526 goto out_disable; 10527 } else { 10528 hba->is_irq_enabled = true; 10529 } 10530 10531 /* Reset the attached device */ 10532 ufshcd_device_reset(hba); 10533 10534 ufshcd_init_crypto(hba); 10535 10536 /* Host controller enable */ 10537 err = ufshcd_hba_enable(hba); 10538 if (err) { 10539 dev_err(hba->dev, "Host controller enable failed\n"); 10540 ufshcd_print_evt_hist(hba); 10541 ufshcd_print_host_state(hba); 10542 goto out_disable; 10543 } 10544 10545 /* 10546 * Set the default power management level for runtime and system PM. 10547 * Default power saving mode is to keep UFS link in Hibern8 state 10548 * and UFS device in sleep state. 10549 */ 10550 hba->rpm_lvl = ufs_get_desired_pm_lvl_for_dev_link_state( 10551 UFS_SLEEP_PWR_MODE, 10552 UIC_LINK_HIBERN8_STATE); 10553 hba->spm_lvl = ufs_get_desired_pm_lvl_for_dev_link_state( 10554 UFS_SLEEP_PWR_MODE, 10555 UIC_LINK_HIBERN8_STATE); 10556 10557 INIT_DELAYED_WORK(&hba->rpm_dev_flush_recheck_work, ufshcd_rpm_dev_flush_recheck_work); 10558 INIT_DELAYED_WORK(&hba->ufs_rtc_update_work, ufshcd_rtc_work); 10559 10560 /* Set the default auto-hiberate idle timer value to 150 ms */ 10561 if (ufshcd_is_auto_hibern8_supported(hba) && !hba->ahit) { 10562 hba->ahit = FIELD_PREP(UFSHCI_AHIBERN8_TIMER_MASK, 150) | 10563 FIELD_PREP(UFSHCI_AHIBERN8_SCALE_MASK, 3); 10564 } 10565 10566 /* Hold auto suspend until async scan completes */ 10567 pm_runtime_get_sync(dev); 10568 10569 /* 10570 * We are assuming that device wasn't put in sleep/power-down 10571 * state exclusively during the boot stage before kernel. 10572 * This assumption helps avoid doing link startup twice during 10573 * ufshcd_probe_hba(). 10574 */ 10575 ufshcd_set_ufs_dev_active(hba); 10576 10577 /* Initialize hba, detect and initialize UFS device */ 10578 ktime_t probe_start = ktime_get(); 10579 10580 hba->ufshcd_state = UFSHCD_STATE_RESET; 10581 10582 err = ufshcd_link_startup(hba); 10583 if (err) 10584 goto out_disable; 10585 10586 if (hba->quirks & UFSHCD_QUIRK_SKIP_PH_CONFIGURATION) 10587 goto initialized; 10588 10589 /* Debug counters initialization */ 10590 ufshcd_clear_dbg_ufs_stats(hba); 10591 10592 /* UniPro link is active now */ 10593 ufshcd_set_link_active(hba); 10594 10595 /* Verify device initialization by sending NOP OUT UPIU */ 10596 err = ufshcd_verify_dev_init(hba); 10597 if (err) 10598 goto out_disable; 10599 10600 /* Initiate UFS initialization, and waiting until completion */ 10601 err = ufshcd_complete_dev_init(hba); 10602 if (err) 10603 goto out_disable; 10604 10605 err = ufshcd_device_params_init(hba); 10606 if (err) 10607 goto out_disable; 10608 10609 err = ufshcd_post_device_init(hba); 10610 10611 initialized: 10612 ufshcd_process_probe_result(hba, probe_start, err); 10613 if (err) 10614 goto out_disable; 10615 10616 err = ufshcd_add_scsi_host(hba); 10617 if (err) 10618 goto out_disable; 10619 10620 async_schedule(ufshcd_async_scan, hba); 10621 ufs_sysfs_add_nodes(hba->dev); 10622 10623 device_enable_async_suspend(dev); 10624 ufshcd_pm_qos_init(hba); 10625 return 0; 10626 10627 out_disable: 10628 hba->is_irq_enabled = false; 10629 ufshcd_hba_exit(hba); 10630 out_error: 10631 return err; 10632 } 10633 EXPORT_SYMBOL_GPL(ufshcd_init); 10634 10635 void ufshcd_resume_complete(struct device *dev) 10636 { 10637 struct ufs_hba *hba = dev_get_drvdata(dev); 10638 10639 if (hba->complete_put) { 10640 ufshcd_rpm_put(hba); 10641 hba->complete_put = false; 10642 } 10643 } 10644 EXPORT_SYMBOL_GPL(ufshcd_resume_complete); 10645 10646 static bool ufshcd_rpm_ok_for_spm(struct ufs_hba *hba) 10647 { 10648 struct device *dev = &hba->ufs_device_wlun->sdev_gendev; 10649 enum ufs_dev_pwr_mode dev_pwr_mode; 10650 enum uic_link_state link_state; 10651 unsigned long flags; 10652 bool res; 10653 10654 spin_lock_irqsave(&dev->power.lock, flags); 10655 dev_pwr_mode = ufs_get_pm_lvl_to_dev_pwr_mode(hba->spm_lvl); 10656 link_state = ufs_get_pm_lvl_to_link_pwr_state(hba->spm_lvl); 10657 res = pm_runtime_suspended(dev) && 10658 hba->curr_dev_pwr_mode == dev_pwr_mode && 10659 hba->uic_link_state == link_state && 10660 !hba->dev_info.b_rpm_dev_flush_capable; 10661 spin_unlock_irqrestore(&dev->power.lock, flags); 10662 10663 return res; 10664 } 10665 10666 int __ufshcd_suspend_prepare(struct device *dev, bool rpm_ok_for_spm) 10667 { 10668 struct ufs_hba *hba = dev_get_drvdata(dev); 10669 int ret; 10670 10671 /* 10672 * SCSI assumes that runtime-pm and system-pm for scsi drivers 10673 * are same. And it doesn't wake up the device for system-suspend 10674 * if it's runtime suspended. But ufs doesn't follow that. 10675 * Refer ufshcd_resume_complete() 10676 */ 10677 if (hba->ufs_device_wlun) { 10678 /* Prevent runtime suspend */ 10679 ufshcd_rpm_get_noresume(hba); 10680 /* 10681 * Check if already runtime suspended in same state as system 10682 * suspend would be. 10683 */ 10684 if (!rpm_ok_for_spm || !ufshcd_rpm_ok_for_spm(hba)) { 10685 /* RPM state is not ok for SPM, so runtime resume */ 10686 ret = ufshcd_rpm_resume(hba); 10687 if (ret < 0 && ret != -EACCES) { 10688 ufshcd_rpm_put(hba); 10689 return ret; 10690 } 10691 } 10692 hba->complete_put = true; 10693 } 10694 return 0; 10695 } 10696 EXPORT_SYMBOL_GPL(__ufshcd_suspend_prepare); 10697 10698 int ufshcd_suspend_prepare(struct device *dev) 10699 { 10700 return __ufshcd_suspend_prepare(dev, true); 10701 } 10702 EXPORT_SYMBOL_GPL(ufshcd_suspend_prepare); 10703 10704 #ifdef CONFIG_PM_SLEEP 10705 static int ufshcd_wl_poweroff(struct device *dev) 10706 { 10707 struct scsi_device *sdev = to_scsi_device(dev); 10708 struct ufs_hba *hba = shost_priv(sdev->host); 10709 10710 __ufshcd_wl_suspend(hba, UFS_SHUTDOWN_PM); 10711 return 0; 10712 } 10713 #endif 10714 10715 static int ufshcd_wl_probe(struct device *dev) 10716 { 10717 struct scsi_device *sdev = to_scsi_device(dev); 10718 10719 if (!is_device_wlun(sdev)) 10720 return -ENODEV; 10721 10722 blk_pm_runtime_init(sdev->request_queue, dev); 10723 pm_runtime_set_autosuspend_delay(dev, 0); 10724 pm_runtime_allow(dev); 10725 10726 return 0; 10727 } 10728 10729 static int ufshcd_wl_remove(struct device *dev) 10730 { 10731 pm_runtime_forbid(dev); 10732 return 0; 10733 } 10734 10735 static const struct dev_pm_ops ufshcd_wl_pm_ops = { 10736 #ifdef CONFIG_PM_SLEEP 10737 .suspend = ufshcd_wl_suspend, 10738 .resume = ufshcd_wl_resume, 10739 .freeze = ufshcd_wl_suspend, 10740 .thaw = ufshcd_wl_resume, 10741 .poweroff = ufshcd_wl_poweroff, 10742 .restore = ufshcd_wl_resume, 10743 #endif 10744 SET_RUNTIME_PM_OPS(ufshcd_wl_runtime_suspend, ufshcd_wl_runtime_resume, NULL) 10745 }; 10746 10747 static void ufshcd_check_header_layout(void) 10748 { 10749 /* 10750 * gcc compilers before version 10 cannot do constant-folding for 10751 * sub-byte bitfields. Hence skip the layout checks for gcc 9 and 10752 * before. 10753 */ 10754 if (IS_ENABLED(CONFIG_CC_IS_GCC) && CONFIG_GCC_VERSION < 100000) 10755 return; 10756 10757 BUILD_BUG_ON(((u8 *)&(struct request_desc_header){ 10758 .cci = 3})[0] != 3); 10759 10760 BUILD_BUG_ON(((u8 *)&(struct request_desc_header){ 10761 .ehs_length = 2})[1] != 2); 10762 10763 BUILD_BUG_ON(((u8 *)&(struct request_desc_header){ 10764 .enable_crypto = 1})[2] 10765 != 0x80); 10766 10767 BUILD_BUG_ON((((u8 *)&(struct request_desc_header){ 10768 .command_type = 5, 10769 .data_direction = 3, 10770 .interrupt = 1, 10771 })[3]) != ((5 << 4) | (3 << 1) | 1)); 10772 10773 BUILD_BUG_ON(((__le32 *)&(struct request_desc_header){ 10774 .dunl = cpu_to_le32(0xdeadbeef)})[1] != 10775 cpu_to_le32(0xdeadbeef)); 10776 10777 BUILD_BUG_ON(((u8 *)&(struct request_desc_header){ 10778 .ocs = 4})[8] != 4); 10779 10780 BUILD_BUG_ON(((u8 *)&(struct request_desc_header){ 10781 .cds = 5})[9] != 5); 10782 10783 BUILD_BUG_ON(((__le32 *)&(struct request_desc_header){ 10784 .dunu = cpu_to_le32(0xbadcafe)})[3] != 10785 cpu_to_le32(0xbadcafe)); 10786 10787 BUILD_BUG_ON(((u8 *)&(struct utp_upiu_header){ 10788 .iid = 0xf })[4] != 0xf0); 10789 10790 BUILD_BUG_ON(((u8 *)&(struct utp_upiu_header){ 10791 .command_set_type = 0xf })[4] != 0xf); 10792 } 10793 10794 /* 10795 * ufs_dev_wlun_template - describes ufs device wlun 10796 * ufs-device wlun - used to send pm commands 10797 * All luns are consumers of ufs-device wlun. 10798 * 10799 * Currently, no sd driver is present for wluns. 10800 * Hence the no specific pm operations are performed. 10801 * With ufs design, SSU should be sent to ufs-device wlun. 10802 * Hence register a scsi driver for ufs wluns only. 10803 */ 10804 static struct scsi_driver ufs_dev_wlun_template = { 10805 .gendrv = { 10806 .name = "ufs_device_wlun", 10807 .probe = ufshcd_wl_probe, 10808 .remove = ufshcd_wl_remove, 10809 .pm = &ufshcd_wl_pm_ops, 10810 .shutdown = ufshcd_wl_shutdown, 10811 }, 10812 }; 10813 10814 static int __init ufshcd_core_init(void) 10815 { 10816 int ret; 10817 10818 ufshcd_check_header_layout(); 10819 10820 ufs_debugfs_init(); 10821 10822 ret = scsi_register_driver(&ufs_dev_wlun_template.gendrv); 10823 if (ret) 10824 ufs_debugfs_exit(); 10825 return ret; 10826 } 10827 10828 static void __exit ufshcd_core_exit(void) 10829 { 10830 ufs_debugfs_exit(); 10831 scsi_unregister_driver(&ufs_dev_wlun_template.gendrv); 10832 } 10833 10834 module_init(ufshcd_core_init); 10835 module_exit(ufshcd_core_exit); 10836 10837 MODULE_AUTHOR("Santosh Yaragnavi <santosh.sy@samsung.com>"); 10838 MODULE_AUTHOR("Vinayak Holikatti <h.vinayak@samsung.com>"); 10839 MODULE_DESCRIPTION("Generic UFS host controller driver Core"); 10840 MODULE_SOFTDEP("pre: governor_simpleondemand"); 10841 MODULE_LICENSE("GPL"); 10842