xref: /linux/drivers/ufs/core/ufshcd.c (revision 490cc3c5e724502667a104a4e818dc071faf5e77)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Universal Flash Storage Host controller driver Core
4  * Copyright (C) 2011-2013 Samsung India Software Operations
5  * Copyright (c) 2013-2016, The Linux Foundation. All rights reserved.
6  *
7  * Authors:
8  *	Santosh Yaraganavi <santosh.sy@samsung.com>
9  *	Vinayak Holikatti <h.vinayak@samsung.com>
10  */
11 
12 #include <linux/async.h>
13 #include <linux/devfreq.h>
14 #include <linux/nls.h>
15 #include <linux/of.h>
16 #include <linux/bitfield.h>
17 #include <linux/blk-pm.h>
18 #include <linux/blkdev.h>
19 #include <linux/clk.h>
20 #include <linux/delay.h>
21 #include <linux/interrupt.h>
22 #include <linux/module.h>
23 #include <linux/pm_opp.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/sched/clock.h>
26 #include <linux/iopoll.h>
27 #include <scsi/scsi_cmnd.h>
28 #include <scsi/scsi_dbg.h>
29 #include <scsi/scsi_driver.h>
30 #include <scsi/scsi_eh.h>
31 #include "ufshcd-priv.h"
32 #include <ufs/ufs_quirks.h>
33 #include <ufs/unipro.h>
34 #include "ufs-sysfs.h"
35 #include "ufs-debugfs.h"
36 #include "ufs-fault-injection.h"
37 #include "ufs_bsg.h"
38 #include "ufshcd-crypto.h"
39 #include <asm/unaligned.h>
40 
41 #define CREATE_TRACE_POINTS
42 #include <trace/events/ufs.h>
43 
44 #define UFSHCD_ENABLE_INTRS	(UTP_TRANSFER_REQ_COMPL |\
45 				 UTP_TASK_REQ_COMPL |\
46 				 UFSHCD_ERROR_MASK)
47 
48 #define UFSHCD_ENABLE_MCQ_INTRS	(UTP_TASK_REQ_COMPL |\
49 				 UFSHCD_ERROR_MASK |\
50 				 MCQ_CQ_EVENT_STATUS)
51 
52 
53 /* UIC command timeout, unit: ms */
54 #define UIC_CMD_TIMEOUT	500
55 
56 /* NOP OUT retries waiting for NOP IN response */
57 #define NOP_OUT_RETRIES    10
58 /* Timeout after 50 msecs if NOP OUT hangs without response */
59 #define NOP_OUT_TIMEOUT    50 /* msecs */
60 
61 /* Query request retries */
62 #define QUERY_REQ_RETRIES 3
63 /* Query request timeout */
64 #define QUERY_REQ_TIMEOUT 1500 /* 1.5 seconds */
65 
66 /* Advanced RPMB request timeout */
67 #define ADVANCED_RPMB_REQ_TIMEOUT  3000 /* 3 seconds */
68 
69 /* Task management command timeout */
70 #define TM_CMD_TIMEOUT	100 /* msecs */
71 
72 /* maximum number of retries for a general UIC command  */
73 #define UFS_UIC_COMMAND_RETRIES 3
74 
75 /* maximum number of link-startup retries */
76 #define DME_LINKSTARTUP_RETRIES 3
77 
78 /* maximum number of reset retries before giving up */
79 #define MAX_HOST_RESET_RETRIES 5
80 
81 /* Maximum number of error handler retries before giving up */
82 #define MAX_ERR_HANDLER_RETRIES 5
83 
84 /* Expose the flag value from utp_upiu_query.value */
85 #define MASK_QUERY_UPIU_FLAG_LOC 0xFF
86 
87 /* Interrupt aggregation default timeout, unit: 40us */
88 #define INT_AGGR_DEF_TO	0x02
89 
90 /* default delay of autosuspend: 2000 ms */
91 #define RPM_AUTOSUSPEND_DELAY_MS 2000
92 
93 /* Default delay of RPM device flush delayed work */
94 #define RPM_DEV_FLUSH_RECHECK_WORK_DELAY_MS 5000
95 
96 /* Default value of wait time before gating device ref clock */
97 #define UFSHCD_REF_CLK_GATING_WAIT_US 0xFF /* microsecs */
98 
99 /* Polling time to wait for fDeviceInit */
100 #define FDEVICEINIT_COMPL_TIMEOUT 1500 /* millisecs */
101 
102 /* Default RTC update every 10 seconds */
103 #define UFS_RTC_UPDATE_INTERVAL_MS (10 * MSEC_PER_SEC)
104 
105 /* UFSHC 4.0 compliant HC support this mode. */
106 static bool use_mcq_mode = true;
107 
108 static bool is_mcq_supported(struct ufs_hba *hba)
109 {
110 	return hba->mcq_sup && use_mcq_mode;
111 }
112 
113 module_param(use_mcq_mode, bool, 0644);
114 MODULE_PARM_DESC(use_mcq_mode, "Control MCQ mode for controllers starting from UFSHCI 4.0. 1 - enable MCQ, 0 - disable MCQ. MCQ is enabled by default");
115 
116 #define ufshcd_toggle_vreg(_dev, _vreg, _on)				\
117 	({                                                              \
118 		int _ret;                                               \
119 		if (_on)                                                \
120 			_ret = ufshcd_enable_vreg(_dev, _vreg);         \
121 		else                                                    \
122 			_ret = ufshcd_disable_vreg(_dev, _vreg);        \
123 		_ret;                                                   \
124 	})
125 
126 #define ufshcd_hex_dump(prefix_str, buf, len) do {                       \
127 	size_t __len = (len);                                            \
128 	print_hex_dump(KERN_ERR, prefix_str,                             \
129 		       __len > 4 ? DUMP_PREFIX_OFFSET : DUMP_PREFIX_NONE,\
130 		       16, 4, buf, __len, false);                        \
131 } while (0)
132 
133 int ufshcd_dump_regs(struct ufs_hba *hba, size_t offset, size_t len,
134 		     const char *prefix)
135 {
136 	u32 *regs;
137 	size_t pos;
138 
139 	if (offset % 4 != 0 || len % 4 != 0) /* keep readl happy */
140 		return -EINVAL;
141 
142 	regs = kzalloc(len, GFP_ATOMIC);
143 	if (!regs)
144 		return -ENOMEM;
145 
146 	for (pos = 0; pos < len; pos += 4) {
147 		if (offset == 0 &&
148 		    pos >= REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER &&
149 		    pos <= REG_UIC_ERROR_CODE_DME)
150 			continue;
151 		regs[pos / 4] = ufshcd_readl(hba, offset + pos);
152 	}
153 
154 	ufshcd_hex_dump(prefix, regs, len);
155 	kfree(regs);
156 
157 	return 0;
158 }
159 EXPORT_SYMBOL_GPL(ufshcd_dump_regs);
160 
161 enum {
162 	UFSHCD_MAX_CHANNEL	= 0,
163 	UFSHCD_MAX_ID		= 1,
164 	UFSHCD_CMD_PER_LUN	= 32 - UFSHCD_NUM_RESERVED,
165 	UFSHCD_CAN_QUEUE	= 32 - UFSHCD_NUM_RESERVED,
166 };
167 
168 static const char *const ufshcd_state_name[] = {
169 	[UFSHCD_STATE_RESET]			= "reset",
170 	[UFSHCD_STATE_OPERATIONAL]		= "operational",
171 	[UFSHCD_STATE_ERROR]			= "error",
172 	[UFSHCD_STATE_EH_SCHEDULED_FATAL]	= "eh_fatal",
173 	[UFSHCD_STATE_EH_SCHEDULED_NON_FATAL]	= "eh_non_fatal",
174 };
175 
176 /* UFSHCD error handling flags */
177 enum {
178 	UFSHCD_EH_IN_PROGRESS = (1 << 0),
179 };
180 
181 /* UFSHCD UIC layer error flags */
182 enum {
183 	UFSHCD_UIC_DL_PA_INIT_ERROR = (1 << 0), /* Data link layer error */
184 	UFSHCD_UIC_DL_NAC_RECEIVED_ERROR = (1 << 1), /* Data link layer error */
185 	UFSHCD_UIC_DL_TCx_REPLAY_ERROR = (1 << 2), /* Data link layer error */
186 	UFSHCD_UIC_NL_ERROR = (1 << 3), /* Network layer error */
187 	UFSHCD_UIC_TL_ERROR = (1 << 4), /* Transport Layer error */
188 	UFSHCD_UIC_DME_ERROR = (1 << 5), /* DME error */
189 	UFSHCD_UIC_PA_GENERIC_ERROR = (1 << 6), /* Generic PA error */
190 };
191 
192 #define ufshcd_set_eh_in_progress(h) \
193 	((h)->eh_flags |= UFSHCD_EH_IN_PROGRESS)
194 #define ufshcd_eh_in_progress(h) \
195 	((h)->eh_flags & UFSHCD_EH_IN_PROGRESS)
196 #define ufshcd_clear_eh_in_progress(h) \
197 	((h)->eh_flags &= ~UFSHCD_EH_IN_PROGRESS)
198 
199 const struct ufs_pm_lvl_states ufs_pm_lvl_states[] = {
200 	[UFS_PM_LVL_0] = {UFS_ACTIVE_PWR_MODE, UIC_LINK_ACTIVE_STATE},
201 	[UFS_PM_LVL_1] = {UFS_ACTIVE_PWR_MODE, UIC_LINK_HIBERN8_STATE},
202 	[UFS_PM_LVL_2] = {UFS_SLEEP_PWR_MODE, UIC_LINK_ACTIVE_STATE},
203 	[UFS_PM_LVL_3] = {UFS_SLEEP_PWR_MODE, UIC_LINK_HIBERN8_STATE},
204 	[UFS_PM_LVL_4] = {UFS_POWERDOWN_PWR_MODE, UIC_LINK_HIBERN8_STATE},
205 	[UFS_PM_LVL_5] = {UFS_POWERDOWN_PWR_MODE, UIC_LINK_OFF_STATE},
206 	/*
207 	 * For DeepSleep, the link is first put in hibern8 and then off.
208 	 * Leaving the link in hibern8 is not supported.
209 	 */
210 	[UFS_PM_LVL_6] = {UFS_DEEPSLEEP_PWR_MODE, UIC_LINK_OFF_STATE},
211 };
212 
213 static inline enum ufs_dev_pwr_mode
214 ufs_get_pm_lvl_to_dev_pwr_mode(enum ufs_pm_level lvl)
215 {
216 	return ufs_pm_lvl_states[lvl].dev_state;
217 }
218 
219 static inline enum uic_link_state
220 ufs_get_pm_lvl_to_link_pwr_state(enum ufs_pm_level lvl)
221 {
222 	return ufs_pm_lvl_states[lvl].link_state;
223 }
224 
225 static inline enum ufs_pm_level
226 ufs_get_desired_pm_lvl_for_dev_link_state(enum ufs_dev_pwr_mode dev_state,
227 					enum uic_link_state link_state)
228 {
229 	enum ufs_pm_level lvl;
230 
231 	for (lvl = UFS_PM_LVL_0; lvl < UFS_PM_LVL_MAX; lvl++) {
232 		if ((ufs_pm_lvl_states[lvl].dev_state == dev_state) &&
233 			(ufs_pm_lvl_states[lvl].link_state == link_state))
234 			return lvl;
235 	}
236 
237 	/* if no match found, return the level 0 */
238 	return UFS_PM_LVL_0;
239 }
240 
241 static bool ufshcd_is_ufs_dev_busy(struct ufs_hba *hba)
242 {
243 	return (hba->clk_gating.active_reqs || hba->outstanding_reqs || hba->outstanding_tasks ||
244 		hba->active_uic_cmd || hba->uic_async_done);
245 }
246 
247 static const struct ufs_dev_quirk ufs_fixups[] = {
248 	/* UFS cards deviations table */
249 	{ .wmanufacturerid = UFS_VENDOR_MICRON,
250 	  .model = UFS_ANY_MODEL,
251 	  .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM },
252 	{ .wmanufacturerid = UFS_VENDOR_SAMSUNG,
253 	  .model = UFS_ANY_MODEL,
254 	  .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM |
255 		   UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE |
256 		   UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS },
257 	{ .wmanufacturerid = UFS_VENDOR_SKHYNIX,
258 	  .model = UFS_ANY_MODEL,
259 	  .quirk = UFS_DEVICE_QUIRK_HOST_PA_SAVECONFIGTIME },
260 	{ .wmanufacturerid = UFS_VENDOR_SKHYNIX,
261 	  .model = "hB8aL1" /*H28U62301AMR*/,
262 	  .quirk = UFS_DEVICE_QUIRK_HOST_VS_DEBUGSAVECONFIGTIME },
263 	{ .wmanufacturerid = UFS_VENDOR_TOSHIBA,
264 	  .model = UFS_ANY_MODEL,
265 	  .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM },
266 	{ .wmanufacturerid = UFS_VENDOR_TOSHIBA,
267 	  .model = "THGLF2G9C8KBADG",
268 	  .quirk = UFS_DEVICE_QUIRK_PA_TACTIVATE },
269 	{ .wmanufacturerid = UFS_VENDOR_TOSHIBA,
270 	  .model = "THGLF2G9D8KBADG",
271 	  .quirk = UFS_DEVICE_QUIRK_PA_TACTIVATE },
272 	{}
273 };
274 
275 static irqreturn_t ufshcd_tmc_handler(struct ufs_hba *hba);
276 static void ufshcd_async_scan(void *data, async_cookie_t cookie);
277 static int ufshcd_reset_and_restore(struct ufs_hba *hba);
278 static int ufshcd_eh_host_reset_handler(struct scsi_cmnd *cmd);
279 static int ufshcd_clear_tm_cmd(struct ufs_hba *hba, int tag);
280 static void ufshcd_hba_exit(struct ufs_hba *hba);
281 static int ufshcd_probe_hba(struct ufs_hba *hba, bool init_dev_params);
282 static int ufshcd_setup_clocks(struct ufs_hba *hba, bool on);
283 static inline void ufshcd_add_delay_before_dme_cmd(struct ufs_hba *hba);
284 static int ufshcd_host_reset_and_restore(struct ufs_hba *hba);
285 static void ufshcd_resume_clkscaling(struct ufs_hba *hba);
286 static void ufshcd_suspend_clkscaling(struct ufs_hba *hba);
287 static int ufshcd_scale_clks(struct ufs_hba *hba, unsigned long freq,
288 			     bool scale_up);
289 static irqreturn_t ufshcd_intr(int irq, void *__hba);
290 static int ufshcd_change_power_mode(struct ufs_hba *hba,
291 			     struct ufs_pa_layer_attr *pwr_mode);
292 static int ufshcd_setup_hba_vreg(struct ufs_hba *hba, bool on);
293 static int ufshcd_setup_vreg(struct ufs_hba *hba, bool on);
294 static inline int ufshcd_config_vreg_hpm(struct ufs_hba *hba,
295 					 struct ufs_vreg *vreg);
296 static void ufshcd_wb_toggle_buf_flush_during_h8(struct ufs_hba *hba,
297 						 bool enable);
298 static void ufshcd_hba_vreg_set_lpm(struct ufs_hba *hba);
299 static void ufshcd_hba_vreg_set_hpm(struct ufs_hba *hba);
300 
301 void ufshcd_enable_irq(struct ufs_hba *hba)
302 {
303 	if (!hba->is_irq_enabled) {
304 		enable_irq(hba->irq);
305 		hba->is_irq_enabled = true;
306 	}
307 }
308 EXPORT_SYMBOL_GPL(ufshcd_enable_irq);
309 
310 void ufshcd_disable_irq(struct ufs_hba *hba)
311 {
312 	if (hba->is_irq_enabled) {
313 		disable_irq(hba->irq);
314 		hba->is_irq_enabled = false;
315 	}
316 }
317 EXPORT_SYMBOL_GPL(ufshcd_disable_irq);
318 
319 static void ufshcd_configure_wb(struct ufs_hba *hba)
320 {
321 	if (!ufshcd_is_wb_allowed(hba))
322 		return;
323 
324 	ufshcd_wb_toggle(hba, true);
325 
326 	ufshcd_wb_toggle_buf_flush_during_h8(hba, true);
327 
328 	if (ufshcd_is_wb_buf_flush_allowed(hba))
329 		ufshcd_wb_toggle_buf_flush(hba, true);
330 }
331 
332 static void ufshcd_scsi_unblock_requests(struct ufs_hba *hba)
333 {
334 	if (atomic_dec_and_test(&hba->scsi_block_reqs_cnt))
335 		scsi_unblock_requests(hba->host);
336 }
337 
338 static void ufshcd_scsi_block_requests(struct ufs_hba *hba)
339 {
340 	if (atomic_inc_return(&hba->scsi_block_reqs_cnt) == 1)
341 		scsi_block_requests(hba->host);
342 }
343 
344 static void ufshcd_add_cmd_upiu_trace(struct ufs_hba *hba, unsigned int tag,
345 				      enum ufs_trace_str_t str_t)
346 {
347 	struct utp_upiu_req *rq = hba->lrb[tag].ucd_req_ptr;
348 	struct utp_upiu_header *header;
349 
350 	if (!trace_ufshcd_upiu_enabled())
351 		return;
352 
353 	if (str_t == UFS_CMD_SEND)
354 		header = &rq->header;
355 	else
356 		header = &hba->lrb[tag].ucd_rsp_ptr->header;
357 
358 	trace_ufshcd_upiu(dev_name(hba->dev), str_t, header, &rq->sc.cdb,
359 			  UFS_TSF_CDB);
360 }
361 
362 static void ufshcd_add_query_upiu_trace(struct ufs_hba *hba,
363 					enum ufs_trace_str_t str_t,
364 					struct utp_upiu_req *rq_rsp)
365 {
366 	if (!trace_ufshcd_upiu_enabled())
367 		return;
368 
369 	trace_ufshcd_upiu(dev_name(hba->dev), str_t, &rq_rsp->header,
370 			  &rq_rsp->qr, UFS_TSF_OSF);
371 }
372 
373 static void ufshcd_add_tm_upiu_trace(struct ufs_hba *hba, unsigned int tag,
374 				     enum ufs_trace_str_t str_t)
375 {
376 	struct utp_task_req_desc *descp = &hba->utmrdl_base_addr[tag];
377 
378 	if (!trace_ufshcd_upiu_enabled())
379 		return;
380 
381 	if (str_t == UFS_TM_SEND)
382 		trace_ufshcd_upiu(dev_name(hba->dev), str_t,
383 				  &descp->upiu_req.req_header,
384 				  &descp->upiu_req.input_param1,
385 				  UFS_TSF_TM_INPUT);
386 	else
387 		trace_ufshcd_upiu(dev_name(hba->dev), str_t,
388 				  &descp->upiu_rsp.rsp_header,
389 				  &descp->upiu_rsp.output_param1,
390 				  UFS_TSF_TM_OUTPUT);
391 }
392 
393 static void ufshcd_add_uic_command_trace(struct ufs_hba *hba,
394 					 const struct uic_command *ucmd,
395 					 enum ufs_trace_str_t str_t)
396 {
397 	u32 cmd;
398 
399 	if (!trace_ufshcd_uic_command_enabled())
400 		return;
401 
402 	if (str_t == UFS_CMD_SEND)
403 		cmd = ucmd->command;
404 	else
405 		cmd = ufshcd_readl(hba, REG_UIC_COMMAND);
406 
407 	trace_ufshcd_uic_command(dev_name(hba->dev), str_t, cmd,
408 				 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_1),
409 				 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_2),
410 				 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_3));
411 }
412 
413 static void ufshcd_add_command_trace(struct ufs_hba *hba, unsigned int tag,
414 				     enum ufs_trace_str_t str_t)
415 {
416 	u64 lba = 0;
417 	u8 opcode = 0, group_id = 0;
418 	u32 doorbell = 0;
419 	u32 intr;
420 	int hwq_id = -1;
421 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
422 	struct scsi_cmnd *cmd = lrbp->cmd;
423 	struct request *rq = scsi_cmd_to_rq(cmd);
424 	int transfer_len = -1;
425 
426 	if (!cmd)
427 		return;
428 
429 	/* trace UPIU also */
430 	ufshcd_add_cmd_upiu_trace(hba, tag, str_t);
431 	if (!trace_ufshcd_command_enabled())
432 		return;
433 
434 	opcode = cmd->cmnd[0];
435 
436 	if (opcode == READ_10 || opcode == WRITE_10) {
437 		/*
438 		 * Currently we only fully trace read(10) and write(10) commands
439 		 */
440 		transfer_len =
441 		       be32_to_cpu(lrbp->ucd_req_ptr->sc.exp_data_transfer_len);
442 		lba = scsi_get_lba(cmd);
443 		if (opcode == WRITE_10)
444 			group_id = lrbp->cmd->cmnd[6];
445 	} else if (opcode == UNMAP) {
446 		/*
447 		 * The number of Bytes to be unmapped beginning with the lba.
448 		 */
449 		transfer_len = blk_rq_bytes(rq);
450 		lba = scsi_get_lba(cmd);
451 	}
452 
453 	intr = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
454 
455 	if (is_mcq_enabled(hba)) {
456 		struct ufs_hw_queue *hwq = ufshcd_mcq_req_to_hwq(hba, rq);
457 
458 		hwq_id = hwq->id;
459 	} else {
460 		doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
461 	}
462 	trace_ufshcd_command(cmd->device, str_t, tag, doorbell, hwq_id,
463 			     transfer_len, intr, lba, opcode, group_id);
464 }
465 
466 static void ufshcd_print_clk_freqs(struct ufs_hba *hba)
467 {
468 	struct ufs_clk_info *clki;
469 	struct list_head *head = &hba->clk_list_head;
470 
471 	if (list_empty(head))
472 		return;
473 
474 	list_for_each_entry(clki, head, list) {
475 		if (!IS_ERR_OR_NULL(clki->clk) && clki->min_freq &&
476 				clki->max_freq)
477 			dev_err(hba->dev, "clk: %s, rate: %u\n",
478 					clki->name, clki->curr_freq);
479 	}
480 }
481 
482 static void ufshcd_print_evt(struct ufs_hba *hba, u32 id,
483 			     const char *err_name)
484 {
485 	int i;
486 	bool found = false;
487 	const struct ufs_event_hist *e;
488 
489 	if (id >= UFS_EVT_CNT)
490 		return;
491 
492 	e = &hba->ufs_stats.event[id];
493 
494 	for (i = 0; i < UFS_EVENT_HIST_LENGTH; i++) {
495 		int p = (i + e->pos) % UFS_EVENT_HIST_LENGTH;
496 
497 		if (e->tstamp[p] == 0)
498 			continue;
499 		dev_err(hba->dev, "%s[%d] = 0x%x at %lld us\n", err_name, p,
500 			e->val[p], div_u64(e->tstamp[p], 1000));
501 		found = true;
502 	}
503 
504 	if (!found)
505 		dev_err(hba->dev, "No record of %s\n", err_name);
506 	else
507 		dev_err(hba->dev, "%s: total cnt=%llu\n", err_name, e->cnt);
508 }
509 
510 static void ufshcd_print_evt_hist(struct ufs_hba *hba)
511 {
512 	ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, "host_regs: ");
513 
514 	ufshcd_print_evt(hba, UFS_EVT_PA_ERR, "pa_err");
515 	ufshcd_print_evt(hba, UFS_EVT_DL_ERR, "dl_err");
516 	ufshcd_print_evt(hba, UFS_EVT_NL_ERR, "nl_err");
517 	ufshcd_print_evt(hba, UFS_EVT_TL_ERR, "tl_err");
518 	ufshcd_print_evt(hba, UFS_EVT_DME_ERR, "dme_err");
519 	ufshcd_print_evt(hba, UFS_EVT_AUTO_HIBERN8_ERR,
520 			 "auto_hibern8_err");
521 	ufshcd_print_evt(hba, UFS_EVT_FATAL_ERR, "fatal_err");
522 	ufshcd_print_evt(hba, UFS_EVT_LINK_STARTUP_FAIL,
523 			 "link_startup_fail");
524 	ufshcd_print_evt(hba, UFS_EVT_RESUME_ERR, "resume_fail");
525 	ufshcd_print_evt(hba, UFS_EVT_SUSPEND_ERR,
526 			 "suspend_fail");
527 	ufshcd_print_evt(hba, UFS_EVT_WL_RES_ERR, "wlun resume_fail");
528 	ufshcd_print_evt(hba, UFS_EVT_WL_SUSP_ERR,
529 			 "wlun suspend_fail");
530 	ufshcd_print_evt(hba, UFS_EVT_DEV_RESET, "dev_reset");
531 	ufshcd_print_evt(hba, UFS_EVT_HOST_RESET, "host_reset");
532 	ufshcd_print_evt(hba, UFS_EVT_ABORT, "task_abort");
533 
534 	ufshcd_vops_dbg_register_dump(hba);
535 }
536 
537 static
538 void ufshcd_print_tr(struct ufs_hba *hba, int tag, bool pr_prdt)
539 {
540 	const struct ufshcd_lrb *lrbp;
541 	int prdt_length;
542 
543 	lrbp = &hba->lrb[tag];
544 
545 	dev_err(hba->dev, "UPIU[%d] - issue time %lld us\n",
546 			tag, div_u64(lrbp->issue_time_stamp_local_clock, 1000));
547 	dev_err(hba->dev, "UPIU[%d] - complete time %lld us\n",
548 			tag, div_u64(lrbp->compl_time_stamp_local_clock, 1000));
549 	dev_err(hba->dev,
550 		"UPIU[%d] - Transfer Request Descriptor phys@0x%llx\n",
551 		tag, (u64)lrbp->utrd_dma_addr);
552 
553 	ufshcd_hex_dump("UPIU TRD: ", lrbp->utr_descriptor_ptr,
554 			sizeof(struct utp_transfer_req_desc));
555 	dev_err(hba->dev, "UPIU[%d] - Request UPIU phys@0x%llx\n", tag,
556 		(u64)lrbp->ucd_req_dma_addr);
557 	ufshcd_hex_dump("UPIU REQ: ", lrbp->ucd_req_ptr,
558 			sizeof(struct utp_upiu_req));
559 	dev_err(hba->dev, "UPIU[%d] - Response UPIU phys@0x%llx\n", tag,
560 		(u64)lrbp->ucd_rsp_dma_addr);
561 	ufshcd_hex_dump("UPIU RSP: ", lrbp->ucd_rsp_ptr,
562 			sizeof(struct utp_upiu_rsp));
563 
564 	prdt_length = le16_to_cpu(
565 		lrbp->utr_descriptor_ptr->prd_table_length);
566 	if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN)
567 		prdt_length /= ufshcd_sg_entry_size(hba);
568 
569 	dev_err(hba->dev,
570 		"UPIU[%d] - PRDT - %d entries  phys@0x%llx\n",
571 		tag, prdt_length,
572 		(u64)lrbp->ucd_prdt_dma_addr);
573 
574 	if (pr_prdt)
575 		ufshcd_hex_dump("UPIU PRDT: ", lrbp->ucd_prdt_ptr,
576 			ufshcd_sg_entry_size(hba) * prdt_length);
577 }
578 
579 static bool ufshcd_print_tr_iter(struct request *req, void *priv)
580 {
581 	struct scsi_device *sdev = req->q->queuedata;
582 	struct Scsi_Host *shost = sdev->host;
583 	struct ufs_hba *hba = shost_priv(shost);
584 
585 	ufshcd_print_tr(hba, req->tag, *(bool *)priv);
586 
587 	return true;
588 }
589 
590 /**
591  * ufshcd_print_trs_all - print trs for all started requests.
592  * @hba: per-adapter instance.
593  * @pr_prdt: need to print prdt or not.
594  */
595 static void ufshcd_print_trs_all(struct ufs_hba *hba, bool pr_prdt)
596 {
597 	blk_mq_tagset_busy_iter(&hba->host->tag_set, ufshcd_print_tr_iter, &pr_prdt);
598 }
599 
600 static void ufshcd_print_tmrs(struct ufs_hba *hba, unsigned long bitmap)
601 {
602 	int tag;
603 
604 	for_each_set_bit(tag, &bitmap, hba->nutmrs) {
605 		struct utp_task_req_desc *tmrdp = &hba->utmrdl_base_addr[tag];
606 
607 		dev_err(hba->dev, "TM[%d] - Task Management Header\n", tag);
608 		ufshcd_hex_dump("", tmrdp, sizeof(*tmrdp));
609 	}
610 }
611 
612 static void ufshcd_print_host_state(struct ufs_hba *hba)
613 {
614 	const struct scsi_device *sdev_ufs = hba->ufs_device_wlun;
615 
616 	dev_err(hba->dev, "UFS Host state=%d\n", hba->ufshcd_state);
617 	dev_err(hba->dev, "outstanding reqs=0x%lx tasks=0x%lx\n",
618 		hba->outstanding_reqs, hba->outstanding_tasks);
619 	dev_err(hba->dev, "saved_err=0x%x, saved_uic_err=0x%x\n",
620 		hba->saved_err, hba->saved_uic_err);
621 	dev_err(hba->dev, "Device power mode=%d, UIC link state=%d\n",
622 		hba->curr_dev_pwr_mode, hba->uic_link_state);
623 	dev_err(hba->dev, "PM in progress=%d, sys. suspended=%d\n",
624 		hba->pm_op_in_progress, hba->is_sys_suspended);
625 	dev_err(hba->dev, "Auto BKOPS=%d, Host self-block=%d\n",
626 		hba->auto_bkops_enabled, hba->host->host_self_blocked);
627 	dev_err(hba->dev, "Clk gate=%d\n", hba->clk_gating.state);
628 	dev_err(hba->dev,
629 		"last_hibern8_exit_tstamp at %lld us, hibern8_exit_cnt=%d\n",
630 		div_u64(hba->ufs_stats.last_hibern8_exit_tstamp, 1000),
631 		hba->ufs_stats.hibern8_exit_cnt);
632 	dev_err(hba->dev, "last intr at %lld us, last intr status=0x%x\n",
633 		div_u64(hba->ufs_stats.last_intr_ts, 1000),
634 		hba->ufs_stats.last_intr_status);
635 	dev_err(hba->dev, "error handling flags=0x%x, req. abort count=%d\n",
636 		hba->eh_flags, hba->req_abort_count);
637 	dev_err(hba->dev, "hba->ufs_version=0x%x, Host capabilities=0x%x, caps=0x%x\n",
638 		hba->ufs_version, hba->capabilities, hba->caps);
639 	dev_err(hba->dev, "quirks=0x%x, dev. quirks=0x%x\n", hba->quirks,
640 		hba->dev_quirks);
641 	if (sdev_ufs)
642 		dev_err(hba->dev, "UFS dev info: %.8s %.16s rev %.4s\n",
643 			sdev_ufs->vendor, sdev_ufs->model, sdev_ufs->rev);
644 
645 	ufshcd_print_clk_freqs(hba);
646 }
647 
648 /**
649  * ufshcd_print_pwr_info - print power params as saved in hba
650  * power info
651  * @hba: per-adapter instance
652  */
653 static void ufshcd_print_pwr_info(struct ufs_hba *hba)
654 {
655 	static const char * const names[] = {
656 		"INVALID MODE",
657 		"FAST MODE",
658 		"SLOW_MODE",
659 		"INVALID MODE",
660 		"FASTAUTO_MODE",
661 		"SLOWAUTO_MODE",
662 		"INVALID MODE",
663 	};
664 
665 	/*
666 	 * Using dev_dbg to avoid messages during runtime PM to avoid
667 	 * never-ending cycles of messages written back to storage by user space
668 	 * causing runtime resume, causing more messages and so on.
669 	 */
670 	dev_dbg(hba->dev, "%s:[RX, TX]: gear=[%d, %d], lane[%d, %d], pwr[%s, %s], rate = %d\n",
671 		 __func__,
672 		 hba->pwr_info.gear_rx, hba->pwr_info.gear_tx,
673 		 hba->pwr_info.lane_rx, hba->pwr_info.lane_tx,
674 		 names[hba->pwr_info.pwr_rx],
675 		 names[hba->pwr_info.pwr_tx],
676 		 hba->pwr_info.hs_rate);
677 }
678 
679 static void ufshcd_device_reset(struct ufs_hba *hba)
680 {
681 	int err;
682 
683 	err = ufshcd_vops_device_reset(hba);
684 
685 	if (!err) {
686 		ufshcd_set_ufs_dev_active(hba);
687 		if (ufshcd_is_wb_allowed(hba)) {
688 			hba->dev_info.wb_enabled = false;
689 			hba->dev_info.wb_buf_flush_enabled = false;
690 		}
691 		if (hba->dev_info.rtc_type == UFS_RTC_RELATIVE)
692 			hba->dev_info.rtc_time_baseline = 0;
693 	}
694 	if (err != -EOPNOTSUPP)
695 		ufshcd_update_evt_hist(hba, UFS_EVT_DEV_RESET, err);
696 }
697 
698 void ufshcd_delay_us(unsigned long us, unsigned long tolerance)
699 {
700 	if (!us)
701 		return;
702 
703 	if (us < 10)
704 		udelay(us);
705 	else
706 		usleep_range(us, us + tolerance);
707 }
708 EXPORT_SYMBOL_GPL(ufshcd_delay_us);
709 
710 /**
711  * ufshcd_wait_for_register - wait for register value to change
712  * @hba: per-adapter interface
713  * @reg: mmio register offset
714  * @mask: mask to apply to the read register value
715  * @val: value to wait for
716  * @interval_us: polling interval in microseconds
717  * @timeout_ms: timeout in milliseconds
718  *
719  * Return: -ETIMEDOUT on error, zero on success.
720  */
721 static int ufshcd_wait_for_register(struct ufs_hba *hba, u32 reg, u32 mask,
722 				u32 val, unsigned long interval_us,
723 				unsigned long timeout_ms)
724 {
725 	int err = 0;
726 	unsigned long timeout = jiffies + msecs_to_jiffies(timeout_ms);
727 
728 	/* ignore bits that we don't intend to wait on */
729 	val = val & mask;
730 
731 	while ((ufshcd_readl(hba, reg) & mask) != val) {
732 		usleep_range(interval_us, interval_us + 50);
733 		if (time_after(jiffies, timeout)) {
734 			if ((ufshcd_readl(hba, reg) & mask) != val)
735 				err = -ETIMEDOUT;
736 			break;
737 		}
738 	}
739 
740 	return err;
741 }
742 
743 /**
744  * ufshcd_get_intr_mask - Get the interrupt bit mask
745  * @hba: Pointer to adapter instance
746  *
747  * Return: interrupt bit mask per version
748  */
749 static inline u32 ufshcd_get_intr_mask(struct ufs_hba *hba)
750 {
751 	if (hba->ufs_version == ufshci_version(1, 0))
752 		return INTERRUPT_MASK_ALL_VER_10;
753 	if (hba->ufs_version <= ufshci_version(2, 0))
754 		return INTERRUPT_MASK_ALL_VER_11;
755 
756 	return INTERRUPT_MASK_ALL_VER_21;
757 }
758 
759 /**
760  * ufshcd_get_ufs_version - Get the UFS version supported by the HBA
761  * @hba: Pointer to adapter instance
762  *
763  * Return: UFSHCI version supported by the controller
764  */
765 static inline u32 ufshcd_get_ufs_version(struct ufs_hba *hba)
766 {
767 	u32 ufshci_ver;
768 
769 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_UFS_HCI_VERSION)
770 		ufshci_ver = ufshcd_vops_get_ufs_hci_version(hba);
771 	else
772 		ufshci_ver = ufshcd_readl(hba, REG_UFS_VERSION);
773 
774 	/*
775 	 * UFSHCI v1.x uses a different version scheme, in order
776 	 * to allow the use of comparisons with the ufshci_version
777 	 * function, we convert it to the same scheme as ufs 2.0+.
778 	 */
779 	if (ufshci_ver & 0x00010000)
780 		return ufshci_version(1, ufshci_ver & 0x00000100);
781 
782 	return ufshci_ver;
783 }
784 
785 /**
786  * ufshcd_is_device_present - Check if any device connected to
787  *			      the host controller
788  * @hba: pointer to adapter instance
789  *
790  * Return: true if device present, false if no device detected
791  */
792 static inline bool ufshcd_is_device_present(struct ufs_hba *hba)
793 {
794 	return ufshcd_readl(hba, REG_CONTROLLER_STATUS) & DEVICE_PRESENT;
795 }
796 
797 /**
798  * ufshcd_get_tr_ocs - Get the UTRD Overall Command Status
799  * @lrbp: pointer to local command reference block
800  * @cqe: pointer to the completion queue entry
801  *
802  * This function is used to get the OCS field from UTRD
803  *
804  * Return: the OCS field in the UTRD.
805  */
806 static enum utp_ocs ufshcd_get_tr_ocs(struct ufshcd_lrb *lrbp,
807 				      struct cq_entry *cqe)
808 {
809 	if (cqe)
810 		return le32_to_cpu(cqe->status) & MASK_OCS;
811 
812 	return lrbp->utr_descriptor_ptr->header.ocs & MASK_OCS;
813 }
814 
815 /**
816  * ufshcd_utrl_clear() - Clear requests from the controller request list.
817  * @hba: per adapter instance
818  * @mask: mask with one bit set for each request to be cleared
819  */
820 static inline void ufshcd_utrl_clear(struct ufs_hba *hba, u32 mask)
821 {
822 	if (hba->quirks & UFSHCI_QUIRK_BROKEN_REQ_LIST_CLR)
823 		mask = ~mask;
824 	/*
825 	 * From the UFSHCI specification: "UTP Transfer Request List CLear
826 	 * Register (UTRLCLR): This field is bit significant. Each bit
827 	 * corresponds to a slot in the UTP Transfer Request List, where bit 0
828 	 * corresponds to request slot 0. A bit in this field is set to ‘0’
829 	 * by host software to indicate to the host controller that a transfer
830 	 * request slot is cleared. The host controller
831 	 * shall free up any resources associated to the request slot
832 	 * immediately, and shall set the associated bit in UTRLDBR to ‘0’. The
833 	 * host software indicates no change to request slots by setting the
834 	 * associated bits in this field to ‘1’. Bits in this field shall only
835 	 * be set ‘1’ or ‘0’ by host software when UTRLRSR is set to ‘1’."
836 	 */
837 	ufshcd_writel(hba, ~mask, REG_UTP_TRANSFER_REQ_LIST_CLEAR);
838 }
839 
840 /**
841  * ufshcd_utmrl_clear - Clear a bit in UTMRLCLR register
842  * @hba: per adapter instance
843  * @pos: position of the bit to be cleared
844  */
845 static inline void ufshcd_utmrl_clear(struct ufs_hba *hba, u32 pos)
846 {
847 	if (hba->quirks & UFSHCI_QUIRK_BROKEN_REQ_LIST_CLR)
848 		ufshcd_writel(hba, (1 << pos), REG_UTP_TASK_REQ_LIST_CLEAR);
849 	else
850 		ufshcd_writel(hba, ~(1 << pos), REG_UTP_TASK_REQ_LIST_CLEAR);
851 }
852 
853 /**
854  * ufshcd_get_lists_status - Check UCRDY, UTRLRDY and UTMRLRDY
855  * @reg: Register value of host controller status
856  *
857  * Return: 0 on success; a positive value if failed.
858  */
859 static inline int ufshcd_get_lists_status(u32 reg)
860 {
861 	return !((reg & UFSHCD_STATUS_READY) == UFSHCD_STATUS_READY);
862 }
863 
864 /**
865  * ufshcd_get_uic_cmd_result - Get the UIC command result
866  * @hba: Pointer to adapter instance
867  *
868  * This function gets the result of UIC command completion
869  *
870  * Return: 0 on success; non-zero value on error.
871  */
872 static inline int ufshcd_get_uic_cmd_result(struct ufs_hba *hba)
873 {
874 	return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_2) &
875 	       MASK_UIC_COMMAND_RESULT;
876 }
877 
878 /**
879  * ufshcd_get_dme_attr_val - Get the value of attribute returned by UIC command
880  * @hba: Pointer to adapter instance
881  *
882  * This function gets UIC command argument3
883  *
884  * Return: 0 on success; non-zero value on error.
885  */
886 static inline u32 ufshcd_get_dme_attr_val(struct ufs_hba *hba)
887 {
888 	return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_3);
889 }
890 
891 /**
892  * ufshcd_get_req_rsp - returns the TR response transaction type
893  * @ucd_rsp_ptr: pointer to response UPIU
894  *
895  * Return: UPIU type.
896  */
897 static inline enum upiu_response_transaction
898 ufshcd_get_req_rsp(struct utp_upiu_rsp *ucd_rsp_ptr)
899 {
900 	return ucd_rsp_ptr->header.transaction_code;
901 }
902 
903 /**
904  * ufshcd_is_exception_event - Check if the device raised an exception event
905  * @ucd_rsp_ptr: pointer to response UPIU
906  *
907  * The function checks if the device raised an exception event indicated in
908  * the Device Information field of response UPIU.
909  *
910  * Return: true if exception is raised, false otherwise.
911  */
912 static inline bool ufshcd_is_exception_event(struct utp_upiu_rsp *ucd_rsp_ptr)
913 {
914 	return ucd_rsp_ptr->header.device_information & 1;
915 }
916 
917 /**
918  * ufshcd_reset_intr_aggr - Reset interrupt aggregation values.
919  * @hba: per adapter instance
920  */
921 static inline void
922 ufshcd_reset_intr_aggr(struct ufs_hba *hba)
923 {
924 	ufshcd_writel(hba, INT_AGGR_ENABLE |
925 		      INT_AGGR_COUNTER_AND_TIMER_RESET,
926 		      REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
927 }
928 
929 /**
930  * ufshcd_config_intr_aggr - Configure interrupt aggregation values.
931  * @hba: per adapter instance
932  * @cnt: Interrupt aggregation counter threshold
933  * @tmout: Interrupt aggregation timeout value
934  */
935 static inline void
936 ufshcd_config_intr_aggr(struct ufs_hba *hba, u8 cnt, u8 tmout)
937 {
938 	ufshcd_writel(hba, INT_AGGR_ENABLE | INT_AGGR_PARAM_WRITE |
939 		      INT_AGGR_COUNTER_THLD_VAL(cnt) |
940 		      INT_AGGR_TIMEOUT_VAL(tmout),
941 		      REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
942 }
943 
944 /**
945  * ufshcd_disable_intr_aggr - Disables interrupt aggregation.
946  * @hba: per adapter instance
947  */
948 static inline void ufshcd_disable_intr_aggr(struct ufs_hba *hba)
949 {
950 	ufshcd_writel(hba, 0, REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
951 }
952 
953 /**
954  * ufshcd_enable_run_stop_reg - Enable run-stop registers,
955  *			When run-stop registers are set to 1, it indicates the
956  *			host controller that it can process the requests
957  * @hba: per adapter instance
958  */
959 static void ufshcd_enable_run_stop_reg(struct ufs_hba *hba)
960 {
961 	ufshcd_writel(hba, UTP_TASK_REQ_LIST_RUN_STOP_BIT,
962 		      REG_UTP_TASK_REQ_LIST_RUN_STOP);
963 	ufshcd_writel(hba, UTP_TRANSFER_REQ_LIST_RUN_STOP_BIT,
964 		      REG_UTP_TRANSFER_REQ_LIST_RUN_STOP);
965 }
966 
967 /**
968  * ufshcd_hba_start - Start controller initialization sequence
969  * @hba: per adapter instance
970  */
971 static inline void ufshcd_hba_start(struct ufs_hba *hba)
972 {
973 	u32 val = CONTROLLER_ENABLE;
974 
975 	if (ufshcd_crypto_enable(hba))
976 		val |= CRYPTO_GENERAL_ENABLE;
977 
978 	ufshcd_writel(hba, val, REG_CONTROLLER_ENABLE);
979 }
980 
981 /**
982  * ufshcd_is_hba_active - Get controller state
983  * @hba: per adapter instance
984  *
985  * Return: true if and only if the controller is active.
986  */
987 bool ufshcd_is_hba_active(struct ufs_hba *hba)
988 {
989 	return ufshcd_readl(hba, REG_CONTROLLER_ENABLE) & CONTROLLER_ENABLE;
990 }
991 EXPORT_SYMBOL_GPL(ufshcd_is_hba_active);
992 
993 u32 ufshcd_get_local_unipro_ver(struct ufs_hba *hba)
994 {
995 	/* HCI version 1.0 and 1.1 supports UniPro 1.41 */
996 	if (hba->ufs_version <= ufshci_version(1, 1))
997 		return UFS_UNIPRO_VER_1_41;
998 	else
999 		return UFS_UNIPRO_VER_1_6;
1000 }
1001 EXPORT_SYMBOL(ufshcd_get_local_unipro_ver);
1002 
1003 static bool ufshcd_is_unipro_pa_params_tuning_req(struct ufs_hba *hba)
1004 {
1005 	/*
1006 	 * If both host and device support UniPro ver1.6 or later, PA layer
1007 	 * parameters tuning happens during link startup itself.
1008 	 *
1009 	 * We can manually tune PA layer parameters if either host or device
1010 	 * doesn't support UniPro ver 1.6 or later. But to keep manual tuning
1011 	 * logic simple, we will only do manual tuning if local unipro version
1012 	 * doesn't support ver1.6 or later.
1013 	 */
1014 	return ufshcd_get_local_unipro_ver(hba) < UFS_UNIPRO_VER_1_6;
1015 }
1016 
1017 /**
1018  * ufshcd_set_clk_freq - set UFS controller clock frequencies
1019  * @hba: per adapter instance
1020  * @scale_up: If True, set max possible frequency othewise set low frequency
1021  *
1022  * Return: 0 if successful; < 0 upon failure.
1023  */
1024 static int ufshcd_set_clk_freq(struct ufs_hba *hba, bool scale_up)
1025 {
1026 	int ret = 0;
1027 	struct ufs_clk_info *clki;
1028 	struct list_head *head = &hba->clk_list_head;
1029 
1030 	if (list_empty(head))
1031 		goto out;
1032 
1033 	list_for_each_entry(clki, head, list) {
1034 		if (!IS_ERR_OR_NULL(clki->clk)) {
1035 			if (scale_up && clki->max_freq) {
1036 				if (clki->curr_freq == clki->max_freq)
1037 					continue;
1038 
1039 				ret = clk_set_rate(clki->clk, clki->max_freq);
1040 				if (ret) {
1041 					dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
1042 						__func__, clki->name,
1043 						clki->max_freq, ret);
1044 					break;
1045 				}
1046 				trace_ufshcd_clk_scaling(dev_name(hba->dev),
1047 						"scaled up", clki->name,
1048 						clki->curr_freq,
1049 						clki->max_freq);
1050 
1051 				clki->curr_freq = clki->max_freq;
1052 
1053 			} else if (!scale_up && clki->min_freq) {
1054 				if (clki->curr_freq == clki->min_freq)
1055 					continue;
1056 
1057 				ret = clk_set_rate(clki->clk, clki->min_freq);
1058 				if (ret) {
1059 					dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
1060 						__func__, clki->name,
1061 						clki->min_freq, ret);
1062 					break;
1063 				}
1064 				trace_ufshcd_clk_scaling(dev_name(hba->dev),
1065 						"scaled down", clki->name,
1066 						clki->curr_freq,
1067 						clki->min_freq);
1068 				clki->curr_freq = clki->min_freq;
1069 			}
1070 		}
1071 		dev_dbg(hba->dev, "%s: clk: %s, rate: %lu\n", __func__,
1072 				clki->name, clk_get_rate(clki->clk));
1073 	}
1074 
1075 out:
1076 	return ret;
1077 }
1078 
1079 int ufshcd_opp_config_clks(struct device *dev, struct opp_table *opp_table,
1080 			   struct dev_pm_opp *opp, void *data,
1081 			   bool scaling_down)
1082 {
1083 	struct ufs_hba *hba = dev_get_drvdata(dev);
1084 	struct list_head *head = &hba->clk_list_head;
1085 	struct ufs_clk_info *clki;
1086 	unsigned long freq;
1087 	u8 idx = 0;
1088 	int ret;
1089 
1090 	list_for_each_entry(clki, head, list) {
1091 		if (!IS_ERR_OR_NULL(clki->clk)) {
1092 			freq = dev_pm_opp_get_freq_indexed(opp, idx++);
1093 
1094 			/* Do not set rate for clocks having frequency as 0 */
1095 			if (!freq)
1096 				continue;
1097 
1098 			ret = clk_set_rate(clki->clk, freq);
1099 			if (ret) {
1100 				dev_err(dev, "%s: %s clk set rate(%ldHz) failed, %d\n",
1101 					__func__, clki->name, freq, ret);
1102 				return ret;
1103 			}
1104 
1105 			trace_ufshcd_clk_scaling(dev_name(dev),
1106 				(scaling_down ? "scaled down" : "scaled up"),
1107 				clki->name, hba->clk_scaling.target_freq, freq);
1108 		}
1109 	}
1110 
1111 	return 0;
1112 }
1113 EXPORT_SYMBOL_GPL(ufshcd_opp_config_clks);
1114 
1115 static int ufshcd_opp_set_rate(struct ufs_hba *hba, unsigned long freq)
1116 {
1117 	struct dev_pm_opp *opp;
1118 	int ret;
1119 
1120 	opp = dev_pm_opp_find_freq_floor_indexed(hba->dev,
1121 						 &freq, 0);
1122 	if (IS_ERR(opp))
1123 		return PTR_ERR(opp);
1124 
1125 	ret = dev_pm_opp_set_opp(hba->dev, opp);
1126 	dev_pm_opp_put(opp);
1127 
1128 	return ret;
1129 }
1130 
1131 /**
1132  * ufshcd_scale_clks - scale up or scale down UFS controller clocks
1133  * @hba: per adapter instance
1134  * @freq: frequency to scale
1135  * @scale_up: True if scaling up and false if scaling down
1136  *
1137  * Return: 0 if successful; < 0 upon failure.
1138  */
1139 static int ufshcd_scale_clks(struct ufs_hba *hba, unsigned long freq,
1140 			     bool scale_up)
1141 {
1142 	int ret = 0;
1143 	ktime_t start = ktime_get();
1144 
1145 	ret = ufshcd_vops_clk_scale_notify(hba, scale_up, PRE_CHANGE);
1146 	if (ret)
1147 		goto out;
1148 
1149 	if (hba->use_pm_opp)
1150 		ret = ufshcd_opp_set_rate(hba, freq);
1151 	else
1152 		ret = ufshcd_set_clk_freq(hba, scale_up);
1153 	if (ret)
1154 		goto out;
1155 
1156 	ret = ufshcd_vops_clk_scale_notify(hba, scale_up, POST_CHANGE);
1157 	if (ret) {
1158 		if (hba->use_pm_opp)
1159 			ufshcd_opp_set_rate(hba,
1160 					    hba->devfreq->previous_freq);
1161 		else
1162 			ufshcd_set_clk_freq(hba, !scale_up);
1163 	}
1164 
1165 out:
1166 	trace_ufshcd_profile_clk_scaling(dev_name(hba->dev),
1167 			(scale_up ? "up" : "down"),
1168 			ktime_to_us(ktime_sub(ktime_get(), start)), ret);
1169 	return ret;
1170 }
1171 
1172 /**
1173  * ufshcd_is_devfreq_scaling_required - check if scaling is required or not
1174  * @hba: per adapter instance
1175  * @freq: frequency to scale
1176  * @scale_up: True if scaling up and false if scaling down
1177  *
1178  * Return: true if scaling is required, false otherwise.
1179  */
1180 static bool ufshcd_is_devfreq_scaling_required(struct ufs_hba *hba,
1181 					       unsigned long freq, bool scale_up)
1182 {
1183 	struct ufs_clk_info *clki;
1184 	struct list_head *head = &hba->clk_list_head;
1185 
1186 	if (list_empty(head))
1187 		return false;
1188 
1189 	if (hba->use_pm_opp)
1190 		return freq != hba->clk_scaling.target_freq;
1191 
1192 	list_for_each_entry(clki, head, list) {
1193 		if (!IS_ERR_OR_NULL(clki->clk)) {
1194 			if (scale_up && clki->max_freq) {
1195 				if (clki->curr_freq == clki->max_freq)
1196 					continue;
1197 				return true;
1198 			} else if (!scale_up && clki->min_freq) {
1199 				if (clki->curr_freq == clki->min_freq)
1200 					continue;
1201 				return true;
1202 			}
1203 		}
1204 	}
1205 
1206 	return false;
1207 }
1208 
1209 /*
1210  * Determine the number of pending commands by counting the bits in the SCSI
1211  * device budget maps. This approach has been selected because a bit is set in
1212  * the budget map before scsi_host_queue_ready() checks the host_self_blocked
1213  * flag. The host_self_blocked flag can be modified by calling
1214  * scsi_block_requests() or scsi_unblock_requests().
1215  */
1216 static u32 ufshcd_pending_cmds(struct ufs_hba *hba)
1217 {
1218 	const struct scsi_device *sdev;
1219 	u32 pending = 0;
1220 
1221 	lockdep_assert_held(hba->host->host_lock);
1222 	__shost_for_each_device(sdev, hba->host)
1223 		pending += sbitmap_weight(&sdev->budget_map);
1224 
1225 	return pending;
1226 }
1227 
1228 /*
1229  * Wait until all pending SCSI commands and TMFs have finished or the timeout
1230  * has expired.
1231  *
1232  * Return: 0 upon success; -EBUSY upon timeout.
1233  */
1234 static int ufshcd_wait_for_doorbell_clr(struct ufs_hba *hba,
1235 					u64 wait_timeout_us)
1236 {
1237 	unsigned long flags;
1238 	int ret = 0;
1239 	u32 tm_doorbell;
1240 	u32 tr_pending;
1241 	bool timeout = false, do_last_check = false;
1242 	ktime_t start;
1243 
1244 	ufshcd_hold(hba);
1245 	spin_lock_irqsave(hba->host->host_lock, flags);
1246 	/*
1247 	 * Wait for all the outstanding tasks/transfer requests.
1248 	 * Verify by checking the doorbell registers are clear.
1249 	 */
1250 	start = ktime_get();
1251 	do {
1252 		if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL) {
1253 			ret = -EBUSY;
1254 			goto out;
1255 		}
1256 
1257 		tm_doorbell = ufshcd_readl(hba, REG_UTP_TASK_REQ_DOOR_BELL);
1258 		tr_pending = ufshcd_pending_cmds(hba);
1259 		if (!tm_doorbell && !tr_pending) {
1260 			timeout = false;
1261 			break;
1262 		} else if (do_last_check) {
1263 			break;
1264 		}
1265 
1266 		spin_unlock_irqrestore(hba->host->host_lock, flags);
1267 		io_schedule_timeout(msecs_to_jiffies(20));
1268 		if (ktime_to_us(ktime_sub(ktime_get(), start)) >
1269 		    wait_timeout_us) {
1270 			timeout = true;
1271 			/*
1272 			 * We might have scheduled out for long time so make
1273 			 * sure to check if doorbells are cleared by this time
1274 			 * or not.
1275 			 */
1276 			do_last_check = true;
1277 		}
1278 		spin_lock_irqsave(hba->host->host_lock, flags);
1279 	} while (tm_doorbell || tr_pending);
1280 
1281 	if (timeout) {
1282 		dev_err(hba->dev,
1283 			"%s: timedout waiting for doorbell to clear (tm=0x%x, tr=0x%x)\n",
1284 			__func__, tm_doorbell, tr_pending);
1285 		ret = -EBUSY;
1286 	}
1287 out:
1288 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1289 	ufshcd_release(hba);
1290 	return ret;
1291 }
1292 
1293 /**
1294  * ufshcd_scale_gear - scale up/down UFS gear
1295  * @hba: per adapter instance
1296  * @scale_up: True for scaling up gear and false for scaling down
1297  *
1298  * Return: 0 for success; -EBUSY if scaling can't happen at this time;
1299  * non-zero for any other errors.
1300  */
1301 static int ufshcd_scale_gear(struct ufs_hba *hba, bool scale_up)
1302 {
1303 	int ret = 0;
1304 	struct ufs_pa_layer_attr new_pwr_info;
1305 
1306 	if (scale_up) {
1307 		memcpy(&new_pwr_info, &hba->clk_scaling.saved_pwr_info,
1308 		       sizeof(struct ufs_pa_layer_attr));
1309 	} else {
1310 		memcpy(&new_pwr_info, &hba->pwr_info,
1311 		       sizeof(struct ufs_pa_layer_attr));
1312 
1313 		if (hba->pwr_info.gear_tx > hba->clk_scaling.min_gear ||
1314 		    hba->pwr_info.gear_rx > hba->clk_scaling.min_gear) {
1315 			/* save the current power mode */
1316 			memcpy(&hba->clk_scaling.saved_pwr_info,
1317 				&hba->pwr_info,
1318 				sizeof(struct ufs_pa_layer_attr));
1319 
1320 			/* scale down gear */
1321 			new_pwr_info.gear_tx = hba->clk_scaling.min_gear;
1322 			new_pwr_info.gear_rx = hba->clk_scaling.min_gear;
1323 		}
1324 	}
1325 
1326 	/* check if the power mode needs to be changed or not? */
1327 	ret = ufshcd_config_pwr_mode(hba, &new_pwr_info);
1328 	if (ret)
1329 		dev_err(hba->dev, "%s: failed err %d, old gear: (tx %d rx %d), new gear: (tx %d rx %d)",
1330 			__func__, ret,
1331 			hba->pwr_info.gear_tx, hba->pwr_info.gear_rx,
1332 			new_pwr_info.gear_tx, new_pwr_info.gear_rx);
1333 
1334 	return ret;
1335 }
1336 
1337 /*
1338  * Wait until all pending SCSI commands and TMFs have finished or the timeout
1339  * has expired.
1340  *
1341  * Return: 0 upon success; -EBUSY upon timeout.
1342  */
1343 static int ufshcd_clock_scaling_prepare(struct ufs_hba *hba, u64 timeout_us)
1344 {
1345 	int ret = 0;
1346 	/*
1347 	 * make sure that there are no outstanding requests when
1348 	 * clock scaling is in progress
1349 	 */
1350 	ufshcd_scsi_block_requests(hba);
1351 	mutex_lock(&hba->wb_mutex);
1352 	down_write(&hba->clk_scaling_lock);
1353 
1354 	if (!hba->clk_scaling.is_allowed ||
1355 	    ufshcd_wait_for_doorbell_clr(hba, timeout_us)) {
1356 		ret = -EBUSY;
1357 		up_write(&hba->clk_scaling_lock);
1358 		mutex_unlock(&hba->wb_mutex);
1359 		ufshcd_scsi_unblock_requests(hba);
1360 		goto out;
1361 	}
1362 
1363 	/* let's not get into low power until clock scaling is completed */
1364 	ufshcd_hold(hba);
1365 
1366 out:
1367 	return ret;
1368 }
1369 
1370 static void ufshcd_clock_scaling_unprepare(struct ufs_hba *hba, int err, bool scale_up)
1371 {
1372 	up_write(&hba->clk_scaling_lock);
1373 
1374 	/* Enable Write Booster if we have scaled up else disable it */
1375 	if (ufshcd_enable_wb_if_scaling_up(hba) && !err)
1376 		ufshcd_wb_toggle(hba, scale_up);
1377 
1378 	mutex_unlock(&hba->wb_mutex);
1379 
1380 	ufshcd_scsi_unblock_requests(hba);
1381 	ufshcd_release(hba);
1382 }
1383 
1384 /**
1385  * ufshcd_devfreq_scale - scale up/down UFS clocks and gear
1386  * @hba: per adapter instance
1387  * @freq: frequency to scale
1388  * @scale_up: True for scaling up and false for scalin down
1389  *
1390  * Return: 0 for success; -EBUSY if scaling can't happen at this time; non-zero
1391  * for any other errors.
1392  */
1393 static int ufshcd_devfreq_scale(struct ufs_hba *hba, unsigned long freq,
1394 				bool scale_up)
1395 {
1396 	int ret = 0;
1397 
1398 	ret = ufshcd_clock_scaling_prepare(hba, 1 * USEC_PER_SEC);
1399 	if (ret)
1400 		return ret;
1401 
1402 	/* scale down the gear before scaling down clocks */
1403 	if (!scale_up) {
1404 		ret = ufshcd_scale_gear(hba, false);
1405 		if (ret)
1406 			goto out_unprepare;
1407 	}
1408 
1409 	ret = ufshcd_scale_clks(hba, freq, scale_up);
1410 	if (ret) {
1411 		if (!scale_up)
1412 			ufshcd_scale_gear(hba, true);
1413 		goto out_unprepare;
1414 	}
1415 
1416 	/* scale up the gear after scaling up clocks */
1417 	if (scale_up) {
1418 		ret = ufshcd_scale_gear(hba, true);
1419 		if (ret) {
1420 			ufshcd_scale_clks(hba, hba->devfreq->previous_freq,
1421 					  false);
1422 			goto out_unprepare;
1423 		}
1424 	}
1425 
1426 out_unprepare:
1427 	ufshcd_clock_scaling_unprepare(hba, ret, scale_up);
1428 	return ret;
1429 }
1430 
1431 static void ufshcd_clk_scaling_suspend_work(struct work_struct *work)
1432 {
1433 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1434 					   clk_scaling.suspend_work);
1435 	unsigned long irq_flags;
1436 
1437 	spin_lock_irqsave(hba->host->host_lock, irq_flags);
1438 	if (hba->clk_scaling.active_reqs || hba->clk_scaling.is_suspended) {
1439 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1440 		return;
1441 	}
1442 	hba->clk_scaling.is_suspended = true;
1443 	hba->clk_scaling.window_start_t = 0;
1444 	spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1445 
1446 	devfreq_suspend_device(hba->devfreq);
1447 }
1448 
1449 static void ufshcd_clk_scaling_resume_work(struct work_struct *work)
1450 {
1451 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1452 					   clk_scaling.resume_work);
1453 	unsigned long irq_flags;
1454 
1455 	spin_lock_irqsave(hba->host->host_lock, irq_flags);
1456 	if (!hba->clk_scaling.is_suspended) {
1457 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1458 		return;
1459 	}
1460 	hba->clk_scaling.is_suspended = false;
1461 	spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1462 
1463 	devfreq_resume_device(hba->devfreq);
1464 }
1465 
1466 static int ufshcd_devfreq_target(struct device *dev,
1467 				unsigned long *freq, u32 flags)
1468 {
1469 	int ret = 0;
1470 	struct ufs_hba *hba = dev_get_drvdata(dev);
1471 	ktime_t start;
1472 	bool scale_up, sched_clk_scaling_suspend_work = false;
1473 	struct list_head *clk_list = &hba->clk_list_head;
1474 	struct ufs_clk_info *clki;
1475 	unsigned long irq_flags;
1476 
1477 	if (!ufshcd_is_clkscaling_supported(hba))
1478 		return -EINVAL;
1479 
1480 	if (hba->use_pm_opp) {
1481 		struct dev_pm_opp *opp;
1482 
1483 		/* Get the recommended frequency from OPP framework */
1484 		opp = devfreq_recommended_opp(dev, freq, flags);
1485 		if (IS_ERR(opp))
1486 			return PTR_ERR(opp);
1487 
1488 		dev_pm_opp_put(opp);
1489 	} else {
1490 		/* Override with the closest supported frequency */
1491 		clki = list_first_entry(&hba->clk_list_head, struct ufs_clk_info,
1492 					list);
1493 		*freq =	(unsigned long) clk_round_rate(clki->clk, *freq);
1494 	}
1495 
1496 	spin_lock_irqsave(hba->host->host_lock, irq_flags);
1497 	if (ufshcd_eh_in_progress(hba)) {
1498 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1499 		return 0;
1500 	}
1501 
1502 	/* Skip scaling clock when clock scaling is suspended */
1503 	if (hba->clk_scaling.is_suspended) {
1504 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1505 		dev_warn(hba->dev, "clock scaling is suspended, skip");
1506 		return 0;
1507 	}
1508 
1509 	if (!hba->clk_scaling.active_reqs)
1510 		sched_clk_scaling_suspend_work = true;
1511 
1512 	if (list_empty(clk_list)) {
1513 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1514 		goto out;
1515 	}
1516 
1517 	/* Decide based on the target or rounded-off frequency and update */
1518 	if (hba->use_pm_opp)
1519 		scale_up = *freq > hba->clk_scaling.target_freq;
1520 	else
1521 		scale_up = *freq == clki->max_freq;
1522 
1523 	if (!hba->use_pm_opp && !scale_up)
1524 		*freq = clki->min_freq;
1525 
1526 	/* Update the frequency */
1527 	if (!ufshcd_is_devfreq_scaling_required(hba, *freq, scale_up)) {
1528 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1529 		ret = 0;
1530 		goto out; /* no state change required */
1531 	}
1532 	spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1533 
1534 	start = ktime_get();
1535 	ret = ufshcd_devfreq_scale(hba, *freq, scale_up);
1536 	if (!ret)
1537 		hba->clk_scaling.target_freq = *freq;
1538 
1539 	trace_ufshcd_profile_clk_scaling(dev_name(hba->dev),
1540 		(scale_up ? "up" : "down"),
1541 		ktime_to_us(ktime_sub(ktime_get(), start)), ret);
1542 
1543 out:
1544 	if (sched_clk_scaling_suspend_work && !scale_up)
1545 		queue_work(hba->clk_scaling.workq,
1546 			   &hba->clk_scaling.suspend_work);
1547 
1548 	return ret;
1549 }
1550 
1551 static int ufshcd_devfreq_get_dev_status(struct device *dev,
1552 		struct devfreq_dev_status *stat)
1553 {
1554 	struct ufs_hba *hba = dev_get_drvdata(dev);
1555 	struct ufs_clk_scaling *scaling = &hba->clk_scaling;
1556 	unsigned long flags;
1557 	ktime_t curr_t;
1558 
1559 	if (!ufshcd_is_clkscaling_supported(hba))
1560 		return -EINVAL;
1561 
1562 	memset(stat, 0, sizeof(*stat));
1563 
1564 	spin_lock_irqsave(hba->host->host_lock, flags);
1565 	curr_t = ktime_get();
1566 	if (!scaling->window_start_t)
1567 		goto start_window;
1568 
1569 	/*
1570 	 * If current frequency is 0, then the ondemand governor considers
1571 	 * there's no initial frequency set. And it always requests to set
1572 	 * to max. frequency.
1573 	 */
1574 	if (hba->use_pm_opp) {
1575 		stat->current_frequency = hba->clk_scaling.target_freq;
1576 	} else {
1577 		struct list_head *clk_list = &hba->clk_list_head;
1578 		struct ufs_clk_info *clki;
1579 
1580 		clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1581 		stat->current_frequency = clki->curr_freq;
1582 	}
1583 
1584 	if (scaling->is_busy_started)
1585 		scaling->tot_busy_t += ktime_us_delta(curr_t,
1586 				scaling->busy_start_t);
1587 	stat->total_time = ktime_us_delta(curr_t, scaling->window_start_t);
1588 	stat->busy_time = scaling->tot_busy_t;
1589 start_window:
1590 	scaling->window_start_t = curr_t;
1591 	scaling->tot_busy_t = 0;
1592 
1593 	if (scaling->active_reqs) {
1594 		scaling->busy_start_t = curr_t;
1595 		scaling->is_busy_started = true;
1596 	} else {
1597 		scaling->busy_start_t = 0;
1598 		scaling->is_busy_started = false;
1599 	}
1600 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1601 	return 0;
1602 }
1603 
1604 static int ufshcd_devfreq_init(struct ufs_hba *hba)
1605 {
1606 	struct list_head *clk_list = &hba->clk_list_head;
1607 	struct ufs_clk_info *clki;
1608 	struct devfreq *devfreq;
1609 	int ret;
1610 
1611 	/* Skip devfreq if we don't have any clocks in the list */
1612 	if (list_empty(clk_list))
1613 		return 0;
1614 
1615 	if (!hba->use_pm_opp) {
1616 		clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1617 		dev_pm_opp_add(hba->dev, clki->min_freq, 0);
1618 		dev_pm_opp_add(hba->dev, clki->max_freq, 0);
1619 	}
1620 
1621 	ufshcd_vops_config_scaling_param(hba, &hba->vps->devfreq_profile,
1622 					 &hba->vps->ondemand_data);
1623 	devfreq = devfreq_add_device(hba->dev,
1624 			&hba->vps->devfreq_profile,
1625 			DEVFREQ_GOV_SIMPLE_ONDEMAND,
1626 			&hba->vps->ondemand_data);
1627 	if (IS_ERR(devfreq)) {
1628 		ret = PTR_ERR(devfreq);
1629 		dev_err(hba->dev, "Unable to register with devfreq %d\n", ret);
1630 
1631 		if (!hba->use_pm_opp) {
1632 			dev_pm_opp_remove(hba->dev, clki->min_freq);
1633 			dev_pm_opp_remove(hba->dev, clki->max_freq);
1634 		}
1635 		return ret;
1636 	}
1637 
1638 	hba->devfreq = devfreq;
1639 
1640 	return 0;
1641 }
1642 
1643 static void ufshcd_devfreq_remove(struct ufs_hba *hba)
1644 {
1645 	struct list_head *clk_list = &hba->clk_list_head;
1646 
1647 	if (!hba->devfreq)
1648 		return;
1649 
1650 	devfreq_remove_device(hba->devfreq);
1651 	hba->devfreq = NULL;
1652 
1653 	if (!hba->use_pm_opp) {
1654 		struct ufs_clk_info *clki;
1655 
1656 		clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1657 		dev_pm_opp_remove(hba->dev, clki->min_freq);
1658 		dev_pm_opp_remove(hba->dev, clki->max_freq);
1659 	}
1660 }
1661 
1662 static void ufshcd_suspend_clkscaling(struct ufs_hba *hba)
1663 {
1664 	unsigned long flags;
1665 	bool suspend = false;
1666 
1667 	cancel_work_sync(&hba->clk_scaling.suspend_work);
1668 	cancel_work_sync(&hba->clk_scaling.resume_work);
1669 
1670 	spin_lock_irqsave(hba->host->host_lock, flags);
1671 	if (!hba->clk_scaling.is_suspended) {
1672 		suspend = true;
1673 		hba->clk_scaling.is_suspended = true;
1674 		hba->clk_scaling.window_start_t = 0;
1675 	}
1676 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1677 
1678 	if (suspend)
1679 		devfreq_suspend_device(hba->devfreq);
1680 }
1681 
1682 static void ufshcd_resume_clkscaling(struct ufs_hba *hba)
1683 {
1684 	unsigned long flags;
1685 	bool resume = false;
1686 
1687 	spin_lock_irqsave(hba->host->host_lock, flags);
1688 	if (hba->clk_scaling.is_suspended) {
1689 		resume = true;
1690 		hba->clk_scaling.is_suspended = false;
1691 	}
1692 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1693 
1694 	if (resume)
1695 		devfreq_resume_device(hba->devfreq);
1696 }
1697 
1698 static ssize_t ufshcd_clkscale_enable_show(struct device *dev,
1699 		struct device_attribute *attr, char *buf)
1700 {
1701 	struct ufs_hba *hba = dev_get_drvdata(dev);
1702 
1703 	return sysfs_emit(buf, "%d\n", hba->clk_scaling.is_enabled);
1704 }
1705 
1706 static ssize_t ufshcd_clkscale_enable_store(struct device *dev,
1707 		struct device_attribute *attr, const char *buf, size_t count)
1708 {
1709 	struct ufs_hba *hba = dev_get_drvdata(dev);
1710 	u32 value;
1711 	int err = 0;
1712 
1713 	if (kstrtou32(buf, 0, &value))
1714 		return -EINVAL;
1715 
1716 	down(&hba->host_sem);
1717 	if (!ufshcd_is_user_access_allowed(hba)) {
1718 		err = -EBUSY;
1719 		goto out;
1720 	}
1721 
1722 	value = !!value;
1723 	if (value == hba->clk_scaling.is_enabled)
1724 		goto out;
1725 
1726 	ufshcd_rpm_get_sync(hba);
1727 	ufshcd_hold(hba);
1728 
1729 	hba->clk_scaling.is_enabled = value;
1730 
1731 	if (value) {
1732 		ufshcd_resume_clkscaling(hba);
1733 	} else {
1734 		ufshcd_suspend_clkscaling(hba);
1735 		err = ufshcd_devfreq_scale(hba, ULONG_MAX, true);
1736 		if (err)
1737 			dev_err(hba->dev, "%s: failed to scale clocks up %d\n",
1738 					__func__, err);
1739 	}
1740 
1741 	ufshcd_release(hba);
1742 	ufshcd_rpm_put_sync(hba);
1743 out:
1744 	up(&hba->host_sem);
1745 	return err ? err : count;
1746 }
1747 
1748 static void ufshcd_init_clk_scaling_sysfs(struct ufs_hba *hba)
1749 {
1750 	hba->clk_scaling.enable_attr.show = ufshcd_clkscale_enable_show;
1751 	hba->clk_scaling.enable_attr.store = ufshcd_clkscale_enable_store;
1752 	sysfs_attr_init(&hba->clk_scaling.enable_attr.attr);
1753 	hba->clk_scaling.enable_attr.attr.name = "clkscale_enable";
1754 	hba->clk_scaling.enable_attr.attr.mode = 0644;
1755 	if (device_create_file(hba->dev, &hba->clk_scaling.enable_attr))
1756 		dev_err(hba->dev, "Failed to create sysfs for clkscale_enable\n");
1757 }
1758 
1759 static void ufshcd_remove_clk_scaling_sysfs(struct ufs_hba *hba)
1760 {
1761 	if (hba->clk_scaling.enable_attr.attr.name)
1762 		device_remove_file(hba->dev, &hba->clk_scaling.enable_attr);
1763 }
1764 
1765 static void ufshcd_init_clk_scaling(struct ufs_hba *hba)
1766 {
1767 	char wq_name[sizeof("ufs_clkscaling_00")];
1768 
1769 	if (!ufshcd_is_clkscaling_supported(hba))
1770 		return;
1771 
1772 	if (!hba->clk_scaling.min_gear)
1773 		hba->clk_scaling.min_gear = UFS_HS_G1;
1774 
1775 	INIT_WORK(&hba->clk_scaling.suspend_work,
1776 		  ufshcd_clk_scaling_suspend_work);
1777 	INIT_WORK(&hba->clk_scaling.resume_work,
1778 		  ufshcd_clk_scaling_resume_work);
1779 
1780 	snprintf(wq_name, sizeof(wq_name), "ufs_clkscaling_%d",
1781 		 hba->host->host_no);
1782 	hba->clk_scaling.workq = create_singlethread_workqueue(wq_name);
1783 
1784 	hba->clk_scaling.is_initialized = true;
1785 }
1786 
1787 static void ufshcd_exit_clk_scaling(struct ufs_hba *hba)
1788 {
1789 	if (!hba->clk_scaling.is_initialized)
1790 		return;
1791 
1792 	ufshcd_remove_clk_scaling_sysfs(hba);
1793 	destroy_workqueue(hba->clk_scaling.workq);
1794 	ufshcd_devfreq_remove(hba);
1795 	hba->clk_scaling.is_initialized = false;
1796 }
1797 
1798 static void ufshcd_ungate_work(struct work_struct *work)
1799 {
1800 	int ret;
1801 	unsigned long flags;
1802 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1803 			clk_gating.ungate_work);
1804 
1805 	cancel_delayed_work_sync(&hba->clk_gating.gate_work);
1806 
1807 	spin_lock_irqsave(hba->host->host_lock, flags);
1808 	if (hba->clk_gating.state == CLKS_ON) {
1809 		spin_unlock_irqrestore(hba->host->host_lock, flags);
1810 		return;
1811 	}
1812 
1813 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1814 	ufshcd_hba_vreg_set_hpm(hba);
1815 	ufshcd_setup_clocks(hba, true);
1816 
1817 	ufshcd_enable_irq(hba);
1818 
1819 	/* Exit from hibern8 */
1820 	if (ufshcd_can_hibern8_during_gating(hba)) {
1821 		/* Prevent gating in this path */
1822 		hba->clk_gating.is_suspended = true;
1823 		if (ufshcd_is_link_hibern8(hba)) {
1824 			ret = ufshcd_uic_hibern8_exit(hba);
1825 			if (ret)
1826 				dev_err(hba->dev, "%s: hibern8 exit failed %d\n",
1827 					__func__, ret);
1828 			else
1829 				ufshcd_set_link_active(hba);
1830 		}
1831 		hba->clk_gating.is_suspended = false;
1832 	}
1833 }
1834 
1835 /**
1836  * ufshcd_hold - Enable clocks that were gated earlier due to ufshcd_release.
1837  * Also, exit from hibern8 mode and set the link as active.
1838  * @hba: per adapter instance
1839  */
1840 void ufshcd_hold(struct ufs_hba *hba)
1841 {
1842 	bool flush_result;
1843 	unsigned long flags;
1844 
1845 	if (!ufshcd_is_clkgating_allowed(hba) ||
1846 	    !hba->clk_gating.is_initialized)
1847 		return;
1848 	spin_lock_irqsave(hba->host->host_lock, flags);
1849 	hba->clk_gating.active_reqs++;
1850 
1851 start:
1852 	switch (hba->clk_gating.state) {
1853 	case CLKS_ON:
1854 		/*
1855 		 * Wait for the ungate work to complete if in progress.
1856 		 * Though the clocks may be in ON state, the link could
1857 		 * still be in hibner8 state if hibern8 is allowed
1858 		 * during clock gating.
1859 		 * Make sure we exit hibern8 state also in addition to
1860 		 * clocks being ON.
1861 		 */
1862 		if (ufshcd_can_hibern8_during_gating(hba) &&
1863 		    ufshcd_is_link_hibern8(hba)) {
1864 			spin_unlock_irqrestore(hba->host->host_lock, flags);
1865 			flush_result = flush_work(&hba->clk_gating.ungate_work);
1866 			if (hba->clk_gating.is_suspended && !flush_result)
1867 				return;
1868 			spin_lock_irqsave(hba->host->host_lock, flags);
1869 			goto start;
1870 		}
1871 		break;
1872 	case REQ_CLKS_OFF:
1873 		if (cancel_delayed_work(&hba->clk_gating.gate_work)) {
1874 			hba->clk_gating.state = CLKS_ON;
1875 			trace_ufshcd_clk_gating(dev_name(hba->dev),
1876 						hba->clk_gating.state);
1877 			break;
1878 		}
1879 		/*
1880 		 * If we are here, it means gating work is either done or
1881 		 * currently running. Hence, fall through to cancel gating
1882 		 * work and to enable clocks.
1883 		 */
1884 		fallthrough;
1885 	case CLKS_OFF:
1886 		hba->clk_gating.state = REQ_CLKS_ON;
1887 		trace_ufshcd_clk_gating(dev_name(hba->dev),
1888 					hba->clk_gating.state);
1889 		queue_work(hba->clk_gating.clk_gating_workq,
1890 			   &hba->clk_gating.ungate_work);
1891 		/*
1892 		 * fall through to check if we should wait for this
1893 		 * work to be done or not.
1894 		 */
1895 		fallthrough;
1896 	case REQ_CLKS_ON:
1897 		spin_unlock_irqrestore(hba->host->host_lock, flags);
1898 		flush_work(&hba->clk_gating.ungate_work);
1899 		/* Make sure state is CLKS_ON before returning */
1900 		spin_lock_irqsave(hba->host->host_lock, flags);
1901 		goto start;
1902 	default:
1903 		dev_err(hba->dev, "%s: clk gating is in invalid state %d\n",
1904 				__func__, hba->clk_gating.state);
1905 		break;
1906 	}
1907 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1908 }
1909 EXPORT_SYMBOL_GPL(ufshcd_hold);
1910 
1911 static void ufshcd_gate_work(struct work_struct *work)
1912 {
1913 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1914 			clk_gating.gate_work.work);
1915 	unsigned long flags;
1916 	int ret;
1917 
1918 	spin_lock_irqsave(hba->host->host_lock, flags);
1919 	/*
1920 	 * In case you are here to cancel this work the gating state
1921 	 * would be marked as REQ_CLKS_ON. In this case save time by
1922 	 * skipping the gating work and exit after changing the clock
1923 	 * state to CLKS_ON.
1924 	 */
1925 	if (hba->clk_gating.is_suspended ||
1926 		(hba->clk_gating.state != REQ_CLKS_OFF)) {
1927 		hba->clk_gating.state = CLKS_ON;
1928 		trace_ufshcd_clk_gating(dev_name(hba->dev),
1929 					hba->clk_gating.state);
1930 		goto rel_lock;
1931 	}
1932 
1933 	if (ufshcd_is_ufs_dev_busy(hba) || hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL)
1934 		goto rel_lock;
1935 
1936 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1937 
1938 	/* put the link into hibern8 mode before turning off clocks */
1939 	if (ufshcd_can_hibern8_during_gating(hba)) {
1940 		ret = ufshcd_uic_hibern8_enter(hba);
1941 		if (ret) {
1942 			hba->clk_gating.state = CLKS_ON;
1943 			dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
1944 					__func__, ret);
1945 			trace_ufshcd_clk_gating(dev_name(hba->dev),
1946 						hba->clk_gating.state);
1947 			goto out;
1948 		}
1949 		ufshcd_set_link_hibern8(hba);
1950 	}
1951 
1952 	ufshcd_disable_irq(hba);
1953 
1954 	ufshcd_setup_clocks(hba, false);
1955 
1956 	/* Put the host controller in low power mode if possible */
1957 	ufshcd_hba_vreg_set_lpm(hba);
1958 	/*
1959 	 * In case you are here to cancel this work the gating state
1960 	 * would be marked as REQ_CLKS_ON. In this case keep the state
1961 	 * as REQ_CLKS_ON which would anyway imply that clocks are off
1962 	 * and a request to turn them on is pending. By doing this way,
1963 	 * we keep the state machine in tact and this would ultimately
1964 	 * prevent from doing cancel work multiple times when there are
1965 	 * new requests arriving before the current cancel work is done.
1966 	 */
1967 	spin_lock_irqsave(hba->host->host_lock, flags);
1968 	if (hba->clk_gating.state == REQ_CLKS_OFF) {
1969 		hba->clk_gating.state = CLKS_OFF;
1970 		trace_ufshcd_clk_gating(dev_name(hba->dev),
1971 					hba->clk_gating.state);
1972 	}
1973 rel_lock:
1974 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1975 out:
1976 	return;
1977 }
1978 
1979 /* host lock must be held before calling this variant */
1980 static void __ufshcd_release(struct ufs_hba *hba)
1981 {
1982 	if (!ufshcd_is_clkgating_allowed(hba))
1983 		return;
1984 
1985 	hba->clk_gating.active_reqs--;
1986 
1987 	if (hba->clk_gating.active_reqs || hba->clk_gating.is_suspended ||
1988 	    hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL ||
1989 	    hba->outstanding_tasks || !hba->clk_gating.is_initialized ||
1990 	    hba->active_uic_cmd || hba->uic_async_done ||
1991 	    hba->clk_gating.state == CLKS_OFF)
1992 		return;
1993 
1994 	hba->clk_gating.state = REQ_CLKS_OFF;
1995 	trace_ufshcd_clk_gating(dev_name(hba->dev), hba->clk_gating.state);
1996 	queue_delayed_work(hba->clk_gating.clk_gating_workq,
1997 			   &hba->clk_gating.gate_work,
1998 			   msecs_to_jiffies(hba->clk_gating.delay_ms));
1999 }
2000 
2001 void ufshcd_release(struct ufs_hba *hba)
2002 {
2003 	unsigned long flags;
2004 
2005 	spin_lock_irqsave(hba->host->host_lock, flags);
2006 	__ufshcd_release(hba);
2007 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2008 }
2009 EXPORT_SYMBOL_GPL(ufshcd_release);
2010 
2011 static ssize_t ufshcd_clkgate_delay_show(struct device *dev,
2012 		struct device_attribute *attr, char *buf)
2013 {
2014 	struct ufs_hba *hba = dev_get_drvdata(dev);
2015 
2016 	return sysfs_emit(buf, "%lu\n", hba->clk_gating.delay_ms);
2017 }
2018 
2019 void ufshcd_clkgate_delay_set(struct device *dev, unsigned long value)
2020 {
2021 	struct ufs_hba *hba = dev_get_drvdata(dev);
2022 	unsigned long flags;
2023 
2024 	spin_lock_irqsave(hba->host->host_lock, flags);
2025 	hba->clk_gating.delay_ms = value;
2026 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2027 }
2028 EXPORT_SYMBOL_GPL(ufshcd_clkgate_delay_set);
2029 
2030 static ssize_t ufshcd_clkgate_delay_store(struct device *dev,
2031 		struct device_attribute *attr, const char *buf, size_t count)
2032 {
2033 	unsigned long value;
2034 
2035 	if (kstrtoul(buf, 0, &value))
2036 		return -EINVAL;
2037 
2038 	ufshcd_clkgate_delay_set(dev, value);
2039 	return count;
2040 }
2041 
2042 static ssize_t ufshcd_clkgate_enable_show(struct device *dev,
2043 		struct device_attribute *attr, char *buf)
2044 {
2045 	struct ufs_hba *hba = dev_get_drvdata(dev);
2046 
2047 	return sysfs_emit(buf, "%d\n", hba->clk_gating.is_enabled);
2048 }
2049 
2050 static ssize_t ufshcd_clkgate_enable_store(struct device *dev,
2051 		struct device_attribute *attr, const char *buf, size_t count)
2052 {
2053 	struct ufs_hba *hba = dev_get_drvdata(dev);
2054 	unsigned long flags;
2055 	u32 value;
2056 
2057 	if (kstrtou32(buf, 0, &value))
2058 		return -EINVAL;
2059 
2060 	value = !!value;
2061 
2062 	spin_lock_irqsave(hba->host->host_lock, flags);
2063 	if (value == hba->clk_gating.is_enabled)
2064 		goto out;
2065 
2066 	if (value)
2067 		__ufshcd_release(hba);
2068 	else
2069 		hba->clk_gating.active_reqs++;
2070 
2071 	hba->clk_gating.is_enabled = value;
2072 out:
2073 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2074 	return count;
2075 }
2076 
2077 static void ufshcd_init_clk_gating_sysfs(struct ufs_hba *hba)
2078 {
2079 	hba->clk_gating.delay_attr.show = ufshcd_clkgate_delay_show;
2080 	hba->clk_gating.delay_attr.store = ufshcd_clkgate_delay_store;
2081 	sysfs_attr_init(&hba->clk_gating.delay_attr.attr);
2082 	hba->clk_gating.delay_attr.attr.name = "clkgate_delay_ms";
2083 	hba->clk_gating.delay_attr.attr.mode = 0644;
2084 	if (device_create_file(hba->dev, &hba->clk_gating.delay_attr))
2085 		dev_err(hba->dev, "Failed to create sysfs for clkgate_delay\n");
2086 
2087 	hba->clk_gating.enable_attr.show = ufshcd_clkgate_enable_show;
2088 	hba->clk_gating.enable_attr.store = ufshcd_clkgate_enable_store;
2089 	sysfs_attr_init(&hba->clk_gating.enable_attr.attr);
2090 	hba->clk_gating.enable_attr.attr.name = "clkgate_enable";
2091 	hba->clk_gating.enable_attr.attr.mode = 0644;
2092 	if (device_create_file(hba->dev, &hba->clk_gating.enable_attr))
2093 		dev_err(hba->dev, "Failed to create sysfs for clkgate_enable\n");
2094 }
2095 
2096 static void ufshcd_remove_clk_gating_sysfs(struct ufs_hba *hba)
2097 {
2098 	if (hba->clk_gating.delay_attr.attr.name)
2099 		device_remove_file(hba->dev, &hba->clk_gating.delay_attr);
2100 	if (hba->clk_gating.enable_attr.attr.name)
2101 		device_remove_file(hba->dev, &hba->clk_gating.enable_attr);
2102 }
2103 
2104 static void ufshcd_init_clk_gating(struct ufs_hba *hba)
2105 {
2106 	char wq_name[sizeof("ufs_clk_gating_00")];
2107 
2108 	if (!ufshcd_is_clkgating_allowed(hba))
2109 		return;
2110 
2111 	hba->clk_gating.state = CLKS_ON;
2112 
2113 	hba->clk_gating.delay_ms = 150;
2114 	INIT_DELAYED_WORK(&hba->clk_gating.gate_work, ufshcd_gate_work);
2115 	INIT_WORK(&hba->clk_gating.ungate_work, ufshcd_ungate_work);
2116 
2117 	snprintf(wq_name, ARRAY_SIZE(wq_name), "ufs_clk_gating_%d",
2118 		 hba->host->host_no);
2119 	hba->clk_gating.clk_gating_workq = alloc_ordered_workqueue(wq_name,
2120 					WQ_MEM_RECLAIM | WQ_HIGHPRI);
2121 
2122 	ufshcd_init_clk_gating_sysfs(hba);
2123 
2124 	hba->clk_gating.is_enabled = true;
2125 	hba->clk_gating.is_initialized = true;
2126 }
2127 
2128 static void ufshcd_exit_clk_gating(struct ufs_hba *hba)
2129 {
2130 	if (!hba->clk_gating.is_initialized)
2131 		return;
2132 
2133 	ufshcd_remove_clk_gating_sysfs(hba);
2134 
2135 	/* Ungate the clock if necessary. */
2136 	ufshcd_hold(hba);
2137 	hba->clk_gating.is_initialized = false;
2138 	ufshcd_release(hba);
2139 
2140 	destroy_workqueue(hba->clk_gating.clk_gating_workq);
2141 }
2142 
2143 static void ufshcd_clk_scaling_start_busy(struct ufs_hba *hba)
2144 {
2145 	bool queue_resume_work = false;
2146 	ktime_t curr_t = ktime_get();
2147 	unsigned long flags;
2148 
2149 	if (!ufshcd_is_clkscaling_supported(hba))
2150 		return;
2151 
2152 	spin_lock_irqsave(hba->host->host_lock, flags);
2153 	if (!hba->clk_scaling.active_reqs++)
2154 		queue_resume_work = true;
2155 
2156 	if (!hba->clk_scaling.is_enabled || hba->pm_op_in_progress) {
2157 		spin_unlock_irqrestore(hba->host->host_lock, flags);
2158 		return;
2159 	}
2160 
2161 	if (queue_resume_work)
2162 		queue_work(hba->clk_scaling.workq,
2163 			   &hba->clk_scaling.resume_work);
2164 
2165 	if (!hba->clk_scaling.window_start_t) {
2166 		hba->clk_scaling.window_start_t = curr_t;
2167 		hba->clk_scaling.tot_busy_t = 0;
2168 		hba->clk_scaling.is_busy_started = false;
2169 	}
2170 
2171 	if (!hba->clk_scaling.is_busy_started) {
2172 		hba->clk_scaling.busy_start_t = curr_t;
2173 		hba->clk_scaling.is_busy_started = true;
2174 	}
2175 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2176 }
2177 
2178 static void ufshcd_clk_scaling_update_busy(struct ufs_hba *hba)
2179 {
2180 	struct ufs_clk_scaling *scaling = &hba->clk_scaling;
2181 	unsigned long flags;
2182 
2183 	if (!ufshcd_is_clkscaling_supported(hba))
2184 		return;
2185 
2186 	spin_lock_irqsave(hba->host->host_lock, flags);
2187 	hba->clk_scaling.active_reqs--;
2188 	if (!scaling->active_reqs && scaling->is_busy_started) {
2189 		scaling->tot_busy_t += ktime_to_us(ktime_sub(ktime_get(),
2190 					scaling->busy_start_t));
2191 		scaling->busy_start_t = 0;
2192 		scaling->is_busy_started = false;
2193 	}
2194 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2195 }
2196 
2197 static inline int ufshcd_monitor_opcode2dir(u8 opcode)
2198 {
2199 	if (opcode == READ_6 || opcode == READ_10 || opcode == READ_16)
2200 		return READ;
2201 	else if (opcode == WRITE_6 || opcode == WRITE_10 || opcode == WRITE_16)
2202 		return WRITE;
2203 	else
2204 		return -EINVAL;
2205 }
2206 
2207 static inline bool ufshcd_should_inform_monitor(struct ufs_hba *hba,
2208 						struct ufshcd_lrb *lrbp)
2209 {
2210 	const struct ufs_hba_monitor *m = &hba->monitor;
2211 
2212 	return (m->enabled && lrbp && lrbp->cmd &&
2213 		(!m->chunk_size || m->chunk_size == lrbp->cmd->sdb.length) &&
2214 		ktime_before(hba->monitor.enabled_ts, lrbp->issue_time_stamp));
2215 }
2216 
2217 static void ufshcd_start_monitor(struct ufs_hba *hba,
2218 				 const struct ufshcd_lrb *lrbp)
2219 {
2220 	int dir = ufshcd_monitor_opcode2dir(*lrbp->cmd->cmnd);
2221 	unsigned long flags;
2222 
2223 	spin_lock_irqsave(hba->host->host_lock, flags);
2224 	if (dir >= 0 && hba->monitor.nr_queued[dir]++ == 0)
2225 		hba->monitor.busy_start_ts[dir] = ktime_get();
2226 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2227 }
2228 
2229 static void ufshcd_update_monitor(struct ufs_hba *hba, const struct ufshcd_lrb *lrbp)
2230 {
2231 	int dir = ufshcd_monitor_opcode2dir(*lrbp->cmd->cmnd);
2232 	unsigned long flags;
2233 
2234 	spin_lock_irqsave(hba->host->host_lock, flags);
2235 	if (dir >= 0 && hba->monitor.nr_queued[dir] > 0) {
2236 		const struct request *req = scsi_cmd_to_rq(lrbp->cmd);
2237 		struct ufs_hba_monitor *m = &hba->monitor;
2238 		ktime_t now, inc, lat;
2239 
2240 		now = lrbp->compl_time_stamp;
2241 		inc = ktime_sub(now, m->busy_start_ts[dir]);
2242 		m->total_busy[dir] = ktime_add(m->total_busy[dir], inc);
2243 		m->nr_sec_rw[dir] += blk_rq_sectors(req);
2244 
2245 		/* Update latencies */
2246 		m->nr_req[dir]++;
2247 		lat = ktime_sub(now, lrbp->issue_time_stamp);
2248 		m->lat_sum[dir] += lat;
2249 		if (m->lat_max[dir] < lat || !m->lat_max[dir])
2250 			m->lat_max[dir] = lat;
2251 		if (m->lat_min[dir] > lat || !m->lat_min[dir])
2252 			m->lat_min[dir] = lat;
2253 
2254 		m->nr_queued[dir]--;
2255 		/* Push forward the busy start of monitor */
2256 		m->busy_start_ts[dir] = now;
2257 	}
2258 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2259 }
2260 
2261 /**
2262  * ufshcd_send_command - Send SCSI or device management commands
2263  * @hba: per adapter instance
2264  * @task_tag: Task tag of the command
2265  * @hwq: pointer to hardware queue instance
2266  */
2267 static inline
2268 void ufshcd_send_command(struct ufs_hba *hba, unsigned int task_tag,
2269 			 struct ufs_hw_queue *hwq)
2270 {
2271 	struct ufshcd_lrb *lrbp = &hba->lrb[task_tag];
2272 	unsigned long flags;
2273 
2274 	lrbp->issue_time_stamp = ktime_get();
2275 	lrbp->issue_time_stamp_local_clock = local_clock();
2276 	lrbp->compl_time_stamp = ktime_set(0, 0);
2277 	lrbp->compl_time_stamp_local_clock = 0;
2278 	ufshcd_add_command_trace(hba, task_tag, UFS_CMD_SEND);
2279 	if (lrbp->cmd)
2280 		ufshcd_clk_scaling_start_busy(hba);
2281 	if (unlikely(ufshcd_should_inform_monitor(hba, lrbp)))
2282 		ufshcd_start_monitor(hba, lrbp);
2283 
2284 	if (is_mcq_enabled(hba)) {
2285 		int utrd_size = sizeof(struct utp_transfer_req_desc);
2286 		struct utp_transfer_req_desc *src = lrbp->utr_descriptor_ptr;
2287 		struct utp_transfer_req_desc *dest;
2288 
2289 		spin_lock(&hwq->sq_lock);
2290 		dest = hwq->sqe_base_addr + hwq->sq_tail_slot;
2291 		memcpy(dest, src, utrd_size);
2292 		ufshcd_inc_sq_tail(hwq);
2293 		spin_unlock(&hwq->sq_lock);
2294 	} else {
2295 		spin_lock_irqsave(&hba->outstanding_lock, flags);
2296 		if (hba->vops && hba->vops->setup_xfer_req)
2297 			hba->vops->setup_xfer_req(hba, lrbp->task_tag,
2298 						  !!lrbp->cmd);
2299 		__set_bit(lrbp->task_tag, &hba->outstanding_reqs);
2300 		ufshcd_writel(hba, 1 << lrbp->task_tag,
2301 			      REG_UTP_TRANSFER_REQ_DOOR_BELL);
2302 		spin_unlock_irqrestore(&hba->outstanding_lock, flags);
2303 	}
2304 }
2305 
2306 /**
2307  * ufshcd_copy_sense_data - Copy sense data in case of check condition
2308  * @lrbp: pointer to local reference block
2309  */
2310 static inline void ufshcd_copy_sense_data(struct ufshcd_lrb *lrbp)
2311 {
2312 	u8 *const sense_buffer = lrbp->cmd->sense_buffer;
2313 	u16 resp_len;
2314 	int len;
2315 
2316 	resp_len = be16_to_cpu(lrbp->ucd_rsp_ptr->header.data_segment_length);
2317 	if (sense_buffer && resp_len) {
2318 		int len_to_copy;
2319 
2320 		len = be16_to_cpu(lrbp->ucd_rsp_ptr->sr.sense_data_len);
2321 		len_to_copy = min_t(int, UFS_SENSE_SIZE, len);
2322 
2323 		memcpy(sense_buffer, lrbp->ucd_rsp_ptr->sr.sense_data,
2324 		       len_to_copy);
2325 	}
2326 }
2327 
2328 /**
2329  * ufshcd_copy_query_response() - Copy the Query Response and the data
2330  * descriptor
2331  * @hba: per adapter instance
2332  * @lrbp: pointer to local reference block
2333  *
2334  * Return: 0 upon success; < 0 upon failure.
2335  */
2336 static
2337 int ufshcd_copy_query_response(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2338 {
2339 	struct ufs_query_res *query_res = &hba->dev_cmd.query.response;
2340 
2341 	memcpy(&query_res->upiu_res, &lrbp->ucd_rsp_ptr->qr, QUERY_OSF_SIZE);
2342 
2343 	/* Get the descriptor */
2344 	if (hba->dev_cmd.query.descriptor &&
2345 	    lrbp->ucd_rsp_ptr->qr.opcode == UPIU_QUERY_OPCODE_READ_DESC) {
2346 		u8 *descp = (u8 *)lrbp->ucd_rsp_ptr +
2347 				GENERAL_UPIU_REQUEST_SIZE;
2348 		u16 resp_len;
2349 		u16 buf_len;
2350 
2351 		/* data segment length */
2352 		resp_len = be16_to_cpu(lrbp->ucd_rsp_ptr->header
2353 				       .data_segment_length);
2354 		buf_len = be16_to_cpu(
2355 				hba->dev_cmd.query.request.upiu_req.length);
2356 		if (likely(buf_len >= resp_len)) {
2357 			memcpy(hba->dev_cmd.query.descriptor, descp, resp_len);
2358 		} else {
2359 			dev_warn(hba->dev,
2360 				 "%s: rsp size %d is bigger than buffer size %d",
2361 				 __func__, resp_len, buf_len);
2362 			return -EINVAL;
2363 		}
2364 	}
2365 
2366 	return 0;
2367 }
2368 
2369 /**
2370  * ufshcd_hba_capabilities - Read controller capabilities
2371  * @hba: per adapter instance
2372  *
2373  * Return: 0 on success, negative on error.
2374  */
2375 static inline int ufshcd_hba_capabilities(struct ufs_hba *hba)
2376 {
2377 	int err;
2378 
2379 	hba->capabilities = ufshcd_readl(hba, REG_CONTROLLER_CAPABILITIES);
2380 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_64BIT_ADDRESS)
2381 		hba->capabilities &= ~MASK_64_ADDRESSING_SUPPORT;
2382 
2383 	/* nutrs and nutmrs are 0 based values */
2384 	hba->nutrs = (hba->capabilities & MASK_TRANSFER_REQUESTS_SLOTS) + 1;
2385 	hba->nutmrs =
2386 	((hba->capabilities & MASK_TASK_MANAGEMENT_REQUEST_SLOTS) >> 16) + 1;
2387 	hba->reserved_slot = hba->nutrs - 1;
2388 
2389 	/* Read crypto capabilities */
2390 	err = ufshcd_hba_init_crypto_capabilities(hba);
2391 	if (err) {
2392 		dev_err(hba->dev, "crypto setup failed\n");
2393 		return err;
2394 	}
2395 
2396 	hba->mcq_sup = FIELD_GET(MASK_MCQ_SUPPORT, hba->capabilities);
2397 	if (!hba->mcq_sup)
2398 		return 0;
2399 
2400 	hba->mcq_capabilities = ufshcd_readl(hba, REG_MCQCAP);
2401 	hba->ext_iid_sup = FIELD_GET(MASK_EXT_IID_SUPPORT,
2402 				     hba->mcq_capabilities);
2403 
2404 	return 0;
2405 }
2406 
2407 /**
2408  * ufshcd_ready_for_uic_cmd - Check if controller is ready
2409  *                            to accept UIC commands
2410  * @hba: per adapter instance
2411  *
2412  * Return: true on success, else false.
2413  */
2414 static inline bool ufshcd_ready_for_uic_cmd(struct ufs_hba *hba)
2415 {
2416 	u32 val;
2417 	int ret = read_poll_timeout(ufshcd_readl, val, val & UIC_COMMAND_READY,
2418 				    500, UIC_CMD_TIMEOUT * 1000, false, hba,
2419 				    REG_CONTROLLER_STATUS);
2420 	return ret == 0;
2421 }
2422 
2423 /**
2424  * ufshcd_get_upmcrs - Get the power mode change request status
2425  * @hba: Pointer to adapter instance
2426  *
2427  * This function gets the UPMCRS field of HCS register
2428  *
2429  * Return: value of UPMCRS field.
2430  */
2431 static inline u8 ufshcd_get_upmcrs(struct ufs_hba *hba)
2432 {
2433 	return (ufshcd_readl(hba, REG_CONTROLLER_STATUS) >> 8) & 0x7;
2434 }
2435 
2436 /**
2437  * ufshcd_dispatch_uic_cmd - Dispatch an UIC command to the Unipro layer
2438  * @hba: per adapter instance
2439  * @uic_cmd: UIC command
2440  */
2441 static inline void
2442 ufshcd_dispatch_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2443 {
2444 	lockdep_assert_held(&hba->uic_cmd_mutex);
2445 
2446 	WARN_ON(hba->active_uic_cmd);
2447 
2448 	hba->active_uic_cmd = uic_cmd;
2449 
2450 	/* Write Args */
2451 	ufshcd_writel(hba, uic_cmd->argument1, REG_UIC_COMMAND_ARG_1);
2452 	ufshcd_writel(hba, uic_cmd->argument2, REG_UIC_COMMAND_ARG_2);
2453 	ufshcd_writel(hba, uic_cmd->argument3, REG_UIC_COMMAND_ARG_3);
2454 
2455 	ufshcd_add_uic_command_trace(hba, uic_cmd, UFS_CMD_SEND);
2456 
2457 	/* Write UIC Cmd */
2458 	ufshcd_writel(hba, uic_cmd->command & COMMAND_OPCODE_MASK,
2459 		      REG_UIC_COMMAND);
2460 }
2461 
2462 /**
2463  * ufshcd_wait_for_uic_cmd - Wait for completion of an UIC command
2464  * @hba: per adapter instance
2465  * @uic_cmd: UIC command
2466  *
2467  * Return: 0 only if success.
2468  */
2469 static int
2470 ufshcd_wait_for_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2471 {
2472 	int ret;
2473 	unsigned long flags;
2474 
2475 	lockdep_assert_held(&hba->uic_cmd_mutex);
2476 
2477 	if (wait_for_completion_timeout(&uic_cmd->done,
2478 					msecs_to_jiffies(UIC_CMD_TIMEOUT))) {
2479 		ret = uic_cmd->argument2 & MASK_UIC_COMMAND_RESULT;
2480 	} else {
2481 		ret = -ETIMEDOUT;
2482 		dev_err(hba->dev,
2483 			"uic cmd 0x%x with arg3 0x%x completion timeout\n",
2484 			uic_cmd->command, uic_cmd->argument3);
2485 
2486 		if (!uic_cmd->cmd_active) {
2487 			dev_err(hba->dev, "%s: UIC cmd has been completed, return the result\n",
2488 				__func__);
2489 			ret = uic_cmd->argument2 & MASK_UIC_COMMAND_RESULT;
2490 		}
2491 	}
2492 
2493 	spin_lock_irqsave(hba->host->host_lock, flags);
2494 	hba->active_uic_cmd = NULL;
2495 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2496 
2497 	return ret;
2498 }
2499 
2500 /**
2501  * __ufshcd_send_uic_cmd - Send UIC commands and retrieve the result
2502  * @hba: per adapter instance
2503  * @uic_cmd: UIC command
2504  * @completion: initialize the completion only if this is set to true
2505  *
2506  * Return: 0 only if success.
2507  */
2508 static int
2509 __ufshcd_send_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd,
2510 		      bool completion)
2511 {
2512 	lockdep_assert_held(&hba->uic_cmd_mutex);
2513 
2514 	if (!ufshcd_ready_for_uic_cmd(hba)) {
2515 		dev_err(hba->dev,
2516 			"Controller not ready to accept UIC commands\n");
2517 		return -EIO;
2518 	}
2519 
2520 	if (completion)
2521 		init_completion(&uic_cmd->done);
2522 
2523 	uic_cmd->cmd_active = 1;
2524 	ufshcd_dispatch_uic_cmd(hba, uic_cmd);
2525 
2526 	return 0;
2527 }
2528 
2529 /**
2530  * ufshcd_send_uic_cmd - Send UIC commands and retrieve the result
2531  * @hba: per adapter instance
2532  * @uic_cmd: UIC command
2533  *
2534  * Return: 0 only if success.
2535  */
2536 int ufshcd_send_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2537 {
2538 	int ret;
2539 
2540 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_UIC_CMD)
2541 		return 0;
2542 
2543 	ufshcd_hold(hba);
2544 	mutex_lock(&hba->uic_cmd_mutex);
2545 	ufshcd_add_delay_before_dme_cmd(hba);
2546 
2547 	ret = __ufshcd_send_uic_cmd(hba, uic_cmd, true);
2548 	if (!ret)
2549 		ret = ufshcd_wait_for_uic_cmd(hba, uic_cmd);
2550 
2551 	mutex_unlock(&hba->uic_cmd_mutex);
2552 
2553 	ufshcd_release(hba);
2554 	return ret;
2555 }
2556 
2557 /**
2558  * ufshcd_sgl_to_prdt - SG list to PRTD (Physical Region Description Table, 4DW format)
2559  * @hba:	per-adapter instance
2560  * @lrbp:	pointer to local reference block
2561  * @sg_entries:	The number of sg lists actually used
2562  * @sg_list:	Pointer to SG list
2563  */
2564 static void ufshcd_sgl_to_prdt(struct ufs_hba *hba, struct ufshcd_lrb *lrbp, int sg_entries,
2565 			       struct scatterlist *sg_list)
2566 {
2567 	struct ufshcd_sg_entry *prd;
2568 	struct scatterlist *sg;
2569 	int i;
2570 
2571 	if (sg_entries) {
2572 
2573 		if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN)
2574 			lrbp->utr_descriptor_ptr->prd_table_length =
2575 				cpu_to_le16(sg_entries * ufshcd_sg_entry_size(hba));
2576 		else
2577 			lrbp->utr_descriptor_ptr->prd_table_length = cpu_to_le16(sg_entries);
2578 
2579 		prd = lrbp->ucd_prdt_ptr;
2580 
2581 		for_each_sg(sg_list, sg, sg_entries, i) {
2582 			const unsigned int len = sg_dma_len(sg);
2583 
2584 			/*
2585 			 * From the UFSHCI spec: "Data Byte Count (DBC): A '0'
2586 			 * based value that indicates the length, in bytes, of
2587 			 * the data block. A maximum of length of 256KB may
2588 			 * exist for any entry. Bits 1:0 of this field shall be
2589 			 * 11b to indicate Dword granularity. A value of '3'
2590 			 * indicates 4 bytes, '7' indicates 8 bytes, etc."
2591 			 */
2592 			WARN_ONCE(len > SZ_256K, "len = %#x\n", len);
2593 			prd->size = cpu_to_le32(len - 1);
2594 			prd->addr = cpu_to_le64(sg->dma_address);
2595 			prd->reserved = 0;
2596 			prd = (void *)prd + ufshcd_sg_entry_size(hba);
2597 		}
2598 	} else {
2599 		lrbp->utr_descriptor_ptr->prd_table_length = 0;
2600 	}
2601 }
2602 
2603 /**
2604  * ufshcd_map_sg - Map scatter-gather list to prdt
2605  * @hba: per adapter instance
2606  * @lrbp: pointer to local reference block
2607  *
2608  * Return: 0 in case of success, non-zero value in case of failure.
2609  */
2610 static int ufshcd_map_sg(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2611 {
2612 	struct scsi_cmnd *cmd = lrbp->cmd;
2613 	int sg_segments = scsi_dma_map(cmd);
2614 
2615 	if (sg_segments < 0)
2616 		return sg_segments;
2617 
2618 	ufshcd_sgl_to_prdt(hba, lrbp, sg_segments, scsi_sglist(cmd));
2619 
2620 	return 0;
2621 }
2622 
2623 /**
2624  * ufshcd_enable_intr - enable interrupts
2625  * @hba: per adapter instance
2626  * @intrs: interrupt bits
2627  */
2628 static void ufshcd_enable_intr(struct ufs_hba *hba, u32 intrs)
2629 {
2630 	u32 set = ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
2631 
2632 	if (hba->ufs_version == ufshci_version(1, 0)) {
2633 		u32 rw;
2634 		rw = set & INTERRUPT_MASK_RW_VER_10;
2635 		set = rw | ((set ^ intrs) & intrs);
2636 	} else {
2637 		set |= intrs;
2638 	}
2639 
2640 	ufshcd_writel(hba, set, REG_INTERRUPT_ENABLE);
2641 }
2642 
2643 /**
2644  * ufshcd_disable_intr - disable interrupts
2645  * @hba: per adapter instance
2646  * @intrs: interrupt bits
2647  */
2648 static void ufshcd_disable_intr(struct ufs_hba *hba, u32 intrs)
2649 {
2650 	u32 set = ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
2651 
2652 	if (hba->ufs_version == ufshci_version(1, 0)) {
2653 		u32 rw;
2654 		rw = (set & INTERRUPT_MASK_RW_VER_10) &
2655 			~(intrs & INTERRUPT_MASK_RW_VER_10);
2656 		set = rw | ((set & intrs) & ~INTERRUPT_MASK_RW_VER_10);
2657 
2658 	} else {
2659 		set &= ~intrs;
2660 	}
2661 
2662 	ufshcd_writel(hba, set, REG_INTERRUPT_ENABLE);
2663 }
2664 
2665 /**
2666  * ufshcd_prepare_req_desc_hdr - Fill UTP Transfer request descriptor header according to request
2667  * descriptor according to request
2668  * @lrbp: pointer to local reference block
2669  * @upiu_flags: flags required in the header
2670  * @cmd_dir: requests data direction
2671  * @ehs_length: Total EHS Length (in 32‐bytes units of all Extra Header Segments)
2672  */
2673 static void ufshcd_prepare_req_desc_hdr(struct ufshcd_lrb *lrbp, u8 *upiu_flags,
2674 					enum dma_data_direction cmd_dir, int ehs_length)
2675 {
2676 	struct utp_transfer_req_desc *req_desc = lrbp->utr_descriptor_ptr;
2677 	struct request_desc_header *h = &req_desc->header;
2678 	enum utp_data_direction data_direction;
2679 
2680 	*h = (typeof(*h)){ };
2681 
2682 	if (cmd_dir == DMA_FROM_DEVICE) {
2683 		data_direction = UTP_DEVICE_TO_HOST;
2684 		*upiu_flags = UPIU_CMD_FLAGS_READ;
2685 	} else if (cmd_dir == DMA_TO_DEVICE) {
2686 		data_direction = UTP_HOST_TO_DEVICE;
2687 		*upiu_flags = UPIU_CMD_FLAGS_WRITE;
2688 	} else {
2689 		data_direction = UTP_NO_DATA_TRANSFER;
2690 		*upiu_flags = UPIU_CMD_FLAGS_NONE;
2691 	}
2692 
2693 	h->command_type = lrbp->command_type;
2694 	h->data_direction = data_direction;
2695 	h->ehs_length = ehs_length;
2696 
2697 	if (lrbp->intr_cmd)
2698 		h->interrupt = 1;
2699 
2700 	/* Prepare crypto related dwords */
2701 	ufshcd_prepare_req_desc_hdr_crypto(lrbp, h);
2702 
2703 	/*
2704 	 * assigning invalid value for command status. Controller
2705 	 * updates OCS on command completion, with the command
2706 	 * status
2707 	 */
2708 	h->ocs = OCS_INVALID_COMMAND_STATUS;
2709 
2710 	req_desc->prd_table_length = 0;
2711 }
2712 
2713 /**
2714  * ufshcd_prepare_utp_scsi_cmd_upiu() - fills the utp_transfer_req_desc,
2715  * for scsi commands
2716  * @lrbp: local reference block pointer
2717  * @upiu_flags: flags
2718  */
2719 static
2720 void ufshcd_prepare_utp_scsi_cmd_upiu(struct ufshcd_lrb *lrbp, u8 upiu_flags)
2721 {
2722 	struct scsi_cmnd *cmd = lrbp->cmd;
2723 	struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2724 	unsigned short cdb_len;
2725 
2726 	ucd_req_ptr->header = (struct utp_upiu_header){
2727 		.transaction_code = UPIU_TRANSACTION_COMMAND,
2728 		.flags = upiu_flags,
2729 		.lun = lrbp->lun,
2730 		.task_tag = lrbp->task_tag,
2731 		.command_set_type = UPIU_COMMAND_SET_TYPE_SCSI,
2732 	};
2733 
2734 	WARN_ON_ONCE(ucd_req_ptr->header.task_tag != lrbp->task_tag);
2735 
2736 	ucd_req_ptr->sc.exp_data_transfer_len = cpu_to_be32(cmd->sdb.length);
2737 
2738 	cdb_len = min_t(unsigned short, cmd->cmd_len, UFS_CDB_SIZE);
2739 	memset(ucd_req_ptr->sc.cdb, 0, UFS_CDB_SIZE);
2740 	memcpy(ucd_req_ptr->sc.cdb, cmd->cmnd, cdb_len);
2741 
2742 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2743 }
2744 
2745 /**
2746  * ufshcd_prepare_utp_query_req_upiu() - fill the utp_transfer_req_desc for query request
2747  * @hba: UFS hba
2748  * @lrbp: local reference block pointer
2749  * @upiu_flags: flags
2750  */
2751 static void ufshcd_prepare_utp_query_req_upiu(struct ufs_hba *hba,
2752 				struct ufshcd_lrb *lrbp, u8 upiu_flags)
2753 {
2754 	struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2755 	struct ufs_query *query = &hba->dev_cmd.query;
2756 	u16 len = be16_to_cpu(query->request.upiu_req.length);
2757 
2758 	/* Query request header */
2759 	ucd_req_ptr->header = (struct utp_upiu_header){
2760 		.transaction_code = UPIU_TRANSACTION_QUERY_REQ,
2761 		.flags = upiu_flags,
2762 		.lun = lrbp->lun,
2763 		.task_tag = lrbp->task_tag,
2764 		.query_function = query->request.query_func,
2765 		/* Data segment length only need for WRITE_DESC */
2766 		.data_segment_length =
2767 			query->request.upiu_req.opcode ==
2768 					UPIU_QUERY_OPCODE_WRITE_DESC ?
2769 				cpu_to_be16(len) :
2770 				0,
2771 	};
2772 
2773 	/* Copy the Query Request buffer as is */
2774 	memcpy(&ucd_req_ptr->qr, &query->request.upiu_req,
2775 			QUERY_OSF_SIZE);
2776 
2777 	/* Copy the Descriptor */
2778 	if (query->request.upiu_req.opcode == UPIU_QUERY_OPCODE_WRITE_DESC)
2779 		memcpy(ucd_req_ptr + 1, query->descriptor, len);
2780 
2781 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2782 }
2783 
2784 static inline void ufshcd_prepare_utp_nop_upiu(struct ufshcd_lrb *lrbp)
2785 {
2786 	struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2787 
2788 	memset(ucd_req_ptr, 0, sizeof(struct utp_upiu_req));
2789 
2790 	ucd_req_ptr->header = (struct utp_upiu_header){
2791 		.transaction_code = UPIU_TRANSACTION_NOP_OUT,
2792 		.task_tag = lrbp->task_tag,
2793 	};
2794 
2795 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2796 }
2797 
2798 /**
2799  * ufshcd_compose_devman_upiu - UFS Protocol Information Unit(UPIU)
2800  *			     for Device Management Purposes
2801  * @hba: per adapter instance
2802  * @lrbp: pointer to local reference block
2803  *
2804  * Return: 0 upon success; < 0 upon failure.
2805  */
2806 static int ufshcd_compose_devman_upiu(struct ufs_hba *hba,
2807 				      struct ufshcd_lrb *lrbp)
2808 {
2809 	u8 upiu_flags;
2810 	int ret = 0;
2811 
2812 	if (hba->ufs_version <= ufshci_version(1, 1))
2813 		lrbp->command_type = UTP_CMD_TYPE_DEV_MANAGE;
2814 	else
2815 		lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
2816 
2817 	ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, DMA_NONE, 0);
2818 	if (hba->dev_cmd.type == DEV_CMD_TYPE_QUERY)
2819 		ufshcd_prepare_utp_query_req_upiu(hba, lrbp, upiu_flags);
2820 	else if (hba->dev_cmd.type == DEV_CMD_TYPE_NOP)
2821 		ufshcd_prepare_utp_nop_upiu(lrbp);
2822 	else
2823 		ret = -EINVAL;
2824 
2825 	return ret;
2826 }
2827 
2828 /**
2829  * ufshcd_comp_scsi_upiu - UFS Protocol Information Unit(UPIU)
2830  *			   for SCSI Purposes
2831  * @hba: per adapter instance
2832  * @lrbp: pointer to local reference block
2833  */
2834 static void ufshcd_comp_scsi_upiu(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2835 {
2836 	struct request *rq = scsi_cmd_to_rq(lrbp->cmd);
2837 	unsigned int ioprio_class = IOPRIO_PRIO_CLASS(req_get_ioprio(rq));
2838 	u8 upiu_flags;
2839 
2840 	if (hba->ufs_version <= ufshci_version(1, 1))
2841 		lrbp->command_type = UTP_CMD_TYPE_SCSI;
2842 	else
2843 		lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
2844 
2845 	ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags,
2846 				    lrbp->cmd->sc_data_direction, 0);
2847 	if (ioprio_class == IOPRIO_CLASS_RT)
2848 		upiu_flags |= UPIU_CMD_FLAGS_CP;
2849 	ufshcd_prepare_utp_scsi_cmd_upiu(lrbp, upiu_flags);
2850 }
2851 
2852 /**
2853  * ufshcd_upiu_wlun_to_scsi_wlun - maps UPIU W-LUN id to SCSI W-LUN ID
2854  * @upiu_wlun_id: UPIU W-LUN id
2855  *
2856  * Return: SCSI W-LUN id.
2857  */
2858 static inline u16 ufshcd_upiu_wlun_to_scsi_wlun(u8 upiu_wlun_id)
2859 {
2860 	return (upiu_wlun_id & ~UFS_UPIU_WLUN_ID) | SCSI_W_LUN_BASE;
2861 }
2862 
2863 static inline bool is_device_wlun(struct scsi_device *sdev)
2864 {
2865 	return sdev->lun ==
2866 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_UFS_DEVICE_WLUN);
2867 }
2868 
2869 /*
2870  * Associate the UFS controller queue with the default and poll HCTX types.
2871  * Initialize the mq_map[] arrays.
2872  */
2873 static void ufshcd_map_queues(struct Scsi_Host *shost)
2874 {
2875 	struct ufs_hba *hba = shost_priv(shost);
2876 	int i, queue_offset = 0;
2877 
2878 	if (!is_mcq_supported(hba)) {
2879 		hba->nr_queues[HCTX_TYPE_DEFAULT] = 1;
2880 		hba->nr_queues[HCTX_TYPE_READ] = 0;
2881 		hba->nr_queues[HCTX_TYPE_POLL] = 1;
2882 		hba->nr_hw_queues = 1;
2883 	}
2884 
2885 	for (i = 0; i < shost->nr_maps; i++) {
2886 		struct blk_mq_queue_map *map = &shost->tag_set.map[i];
2887 
2888 		map->nr_queues = hba->nr_queues[i];
2889 		if (!map->nr_queues)
2890 			continue;
2891 		map->queue_offset = queue_offset;
2892 		if (i == HCTX_TYPE_POLL && !is_mcq_supported(hba))
2893 			map->queue_offset = 0;
2894 
2895 		blk_mq_map_queues(map);
2896 		queue_offset += map->nr_queues;
2897 	}
2898 }
2899 
2900 static void ufshcd_init_lrb(struct ufs_hba *hba, struct ufshcd_lrb *lrb, int i)
2901 {
2902 	struct utp_transfer_cmd_desc *cmd_descp = (void *)hba->ucdl_base_addr +
2903 		i * ufshcd_get_ucd_size(hba);
2904 	struct utp_transfer_req_desc *utrdlp = hba->utrdl_base_addr;
2905 	dma_addr_t cmd_desc_element_addr = hba->ucdl_dma_addr +
2906 		i * ufshcd_get_ucd_size(hba);
2907 	u16 response_offset = offsetof(struct utp_transfer_cmd_desc,
2908 				       response_upiu);
2909 	u16 prdt_offset = offsetof(struct utp_transfer_cmd_desc, prd_table);
2910 
2911 	lrb->utr_descriptor_ptr = utrdlp + i;
2912 	lrb->utrd_dma_addr = hba->utrdl_dma_addr +
2913 		i * sizeof(struct utp_transfer_req_desc);
2914 	lrb->ucd_req_ptr = (struct utp_upiu_req *)cmd_descp->command_upiu;
2915 	lrb->ucd_req_dma_addr = cmd_desc_element_addr;
2916 	lrb->ucd_rsp_ptr = (struct utp_upiu_rsp *)cmd_descp->response_upiu;
2917 	lrb->ucd_rsp_dma_addr = cmd_desc_element_addr + response_offset;
2918 	lrb->ucd_prdt_ptr = (struct ufshcd_sg_entry *)cmd_descp->prd_table;
2919 	lrb->ucd_prdt_dma_addr = cmd_desc_element_addr + prdt_offset;
2920 }
2921 
2922 /**
2923  * ufshcd_queuecommand - main entry point for SCSI requests
2924  * @host: SCSI host pointer
2925  * @cmd: command from SCSI Midlayer
2926  *
2927  * Return: 0 for success, non-zero in case of failure.
2928  */
2929 static int ufshcd_queuecommand(struct Scsi_Host *host, struct scsi_cmnd *cmd)
2930 {
2931 	struct ufs_hba *hba = shost_priv(host);
2932 	int tag = scsi_cmd_to_rq(cmd)->tag;
2933 	struct ufshcd_lrb *lrbp;
2934 	int err = 0;
2935 	struct ufs_hw_queue *hwq = NULL;
2936 
2937 	switch (hba->ufshcd_state) {
2938 	case UFSHCD_STATE_OPERATIONAL:
2939 		break;
2940 	case UFSHCD_STATE_EH_SCHEDULED_NON_FATAL:
2941 		/*
2942 		 * SCSI error handler can call ->queuecommand() while UFS error
2943 		 * handler is in progress. Error interrupts could change the
2944 		 * state from UFSHCD_STATE_RESET to
2945 		 * UFSHCD_STATE_EH_SCHEDULED_NON_FATAL. Prevent requests
2946 		 * being issued in that case.
2947 		 */
2948 		if (ufshcd_eh_in_progress(hba)) {
2949 			err = SCSI_MLQUEUE_HOST_BUSY;
2950 			goto out;
2951 		}
2952 		break;
2953 	case UFSHCD_STATE_EH_SCHEDULED_FATAL:
2954 		/*
2955 		 * pm_runtime_get_sync() is used at error handling preparation
2956 		 * stage. If a scsi cmd, e.g. the SSU cmd, is sent from hba's
2957 		 * PM ops, it can never be finished if we let SCSI layer keep
2958 		 * retrying it, which gets err handler stuck forever. Neither
2959 		 * can we let the scsi cmd pass through, because UFS is in bad
2960 		 * state, the scsi cmd may eventually time out, which will get
2961 		 * err handler blocked for too long. So, just fail the scsi cmd
2962 		 * sent from PM ops, err handler can recover PM error anyways.
2963 		 */
2964 		if (hba->pm_op_in_progress) {
2965 			hba->force_reset = true;
2966 			set_host_byte(cmd, DID_BAD_TARGET);
2967 			scsi_done(cmd);
2968 			goto out;
2969 		}
2970 		fallthrough;
2971 	case UFSHCD_STATE_RESET:
2972 		err = SCSI_MLQUEUE_HOST_BUSY;
2973 		goto out;
2974 	case UFSHCD_STATE_ERROR:
2975 		set_host_byte(cmd, DID_ERROR);
2976 		scsi_done(cmd);
2977 		goto out;
2978 	}
2979 
2980 	hba->req_abort_count = 0;
2981 
2982 	ufshcd_hold(hba);
2983 
2984 	lrbp = &hba->lrb[tag];
2985 	lrbp->cmd = cmd;
2986 	lrbp->task_tag = tag;
2987 	lrbp->lun = ufshcd_scsi_to_upiu_lun(cmd->device->lun);
2988 	lrbp->intr_cmd = !ufshcd_is_intr_aggr_allowed(hba);
2989 
2990 	ufshcd_prepare_lrbp_crypto(scsi_cmd_to_rq(cmd), lrbp);
2991 
2992 	lrbp->req_abort_skip = false;
2993 
2994 	ufshcd_comp_scsi_upiu(hba, lrbp);
2995 
2996 	err = ufshcd_map_sg(hba, lrbp);
2997 	if (err) {
2998 		ufshcd_release(hba);
2999 		goto out;
3000 	}
3001 
3002 	if (is_mcq_enabled(hba))
3003 		hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(cmd));
3004 
3005 	ufshcd_send_command(hba, tag, hwq);
3006 
3007 out:
3008 	if (ufs_trigger_eh(hba)) {
3009 		unsigned long flags;
3010 
3011 		spin_lock_irqsave(hba->host->host_lock, flags);
3012 		ufshcd_schedule_eh_work(hba);
3013 		spin_unlock_irqrestore(hba->host->host_lock, flags);
3014 	}
3015 
3016 	return err;
3017 }
3018 
3019 static int ufshcd_compose_dev_cmd(struct ufs_hba *hba,
3020 		struct ufshcd_lrb *lrbp, enum dev_cmd_type cmd_type, int tag)
3021 {
3022 	lrbp->cmd = NULL;
3023 	lrbp->task_tag = tag;
3024 	lrbp->lun = 0; /* device management cmd is not specific to any LUN */
3025 	lrbp->intr_cmd = true; /* No interrupt aggregation */
3026 	ufshcd_prepare_lrbp_crypto(NULL, lrbp);
3027 	hba->dev_cmd.type = cmd_type;
3028 
3029 	return ufshcd_compose_devman_upiu(hba, lrbp);
3030 }
3031 
3032 /*
3033  * Check with the block layer if the command is inflight
3034  * @cmd: command to check.
3035  *
3036  * Return: true if command is inflight; false if not.
3037  */
3038 bool ufshcd_cmd_inflight(struct scsi_cmnd *cmd)
3039 {
3040 	struct request *rq;
3041 
3042 	if (!cmd)
3043 		return false;
3044 
3045 	rq = scsi_cmd_to_rq(cmd);
3046 	if (!blk_mq_request_started(rq))
3047 		return false;
3048 
3049 	return true;
3050 }
3051 
3052 /*
3053  * Clear the pending command in the controller and wait until
3054  * the controller confirms that the command has been cleared.
3055  * @hba: per adapter instance
3056  * @task_tag: The tag number of the command to be cleared.
3057  */
3058 static int ufshcd_clear_cmd(struct ufs_hba *hba, u32 task_tag)
3059 {
3060 	u32 mask;
3061 	unsigned long flags;
3062 	int err;
3063 
3064 	if (is_mcq_enabled(hba)) {
3065 		/*
3066 		 * MCQ mode. Clean up the MCQ resources similar to
3067 		 * what the ufshcd_utrl_clear() does for SDB mode.
3068 		 */
3069 		err = ufshcd_mcq_sq_cleanup(hba, task_tag);
3070 		if (err) {
3071 			dev_err(hba->dev, "%s: failed tag=%d. err=%d\n",
3072 				__func__, task_tag, err);
3073 			return err;
3074 		}
3075 		return 0;
3076 	}
3077 
3078 	mask = 1U << task_tag;
3079 
3080 	/* clear outstanding transaction before retry */
3081 	spin_lock_irqsave(hba->host->host_lock, flags);
3082 	ufshcd_utrl_clear(hba, mask);
3083 	spin_unlock_irqrestore(hba->host->host_lock, flags);
3084 
3085 	/*
3086 	 * wait for h/w to clear corresponding bit in door-bell.
3087 	 * max. wait is 1 sec.
3088 	 */
3089 	return ufshcd_wait_for_register(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL,
3090 					mask, ~mask, 1000, 1000);
3091 }
3092 
3093 /**
3094  * ufshcd_dev_cmd_completion() - handles device management command responses
3095  * @hba: per adapter instance
3096  * @lrbp: pointer to local reference block
3097  *
3098  * Return: 0 upon success; < 0 upon failure.
3099  */
3100 static int
3101 ufshcd_dev_cmd_completion(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
3102 {
3103 	enum upiu_response_transaction resp;
3104 	int err = 0;
3105 
3106 	hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
3107 	resp = ufshcd_get_req_rsp(lrbp->ucd_rsp_ptr);
3108 
3109 	switch (resp) {
3110 	case UPIU_TRANSACTION_NOP_IN:
3111 		if (hba->dev_cmd.type != DEV_CMD_TYPE_NOP) {
3112 			err = -EINVAL;
3113 			dev_err(hba->dev, "%s: unexpected response %x\n",
3114 					__func__, resp);
3115 		}
3116 		break;
3117 	case UPIU_TRANSACTION_QUERY_RSP: {
3118 		u8 response = lrbp->ucd_rsp_ptr->header.response;
3119 
3120 		if (response == 0)
3121 			err = ufshcd_copy_query_response(hba, lrbp);
3122 		break;
3123 	}
3124 	case UPIU_TRANSACTION_REJECT_UPIU:
3125 		/* TODO: handle Reject UPIU Response */
3126 		err = -EPERM;
3127 		dev_err(hba->dev, "%s: Reject UPIU not fully implemented\n",
3128 				__func__);
3129 		break;
3130 	case UPIU_TRANSACTION_RESPONSE:
3131 		if (hba->dev_cmd.type != DEV_CMD_TYPE_RPMB) {
3132 			err = -EINVAL;
3133 			dev_err(hba->dev, "%s: unexpected response %x\n", __func__, resp);
3134 		}
3135 		break;
3136 	default:
3137 		err = -EINVAL;
3138 		dev_err(hba->dev, "%s: Invalid device management cmd response: %x\n",
3139 				__func__, resp);
3140 		break;
3141 	}
3142 
3143 	return err;
3144 }
3145 
3146 static int ufshcd_wait_for_dev_cmd(struct ufs_hba *hba,
3147 		struct ufshcd_lrb *lrbp, int max_timeout)
3148 {
3149 	unsigned long time_left = msecs_to_jiffies(max_timeout);
3150 	unsigned long flags;
3151 	bool pending;
3152 	int err;
3153 
3154 retry:
3155 	time_left = wait_for_completion_timeout(hba->dev_cmd.complete,
3156 						time_left);
3157 
3158 	if (likely(time_left)) {
3159 		/*
3160 		 * The completion handler called complete() and the caller of
3161 		 * this function still owns the @lrbp tag so the code below does
3162 		 * not trigger any race conditions.
3163 		 */
3164 		hba->dev_cmd.complete = NULL;
3165 		err = ufshcd_get_tr_ocs(lrbp, NULL);
3166 		if (!err)
3167 			err = ufshcd_dev_cmd_completion(hba, lrbp);
3168 	} else {
3169 		err = -ETIMEDOUT;
3170 		dev_dbg(hba->dev, "%s: dev_cmd request timedout, tag %d\n",
3171 			__func__, lrbp->task_tag);
3172 
3173 		/* MCQ mode */
3174 		if (is_mcq_enabled(hba)) {
3175 			err = ufshcd_clear_cmd(hba, lrbp->task_tag);
3176 			hba->dev_cmd.complete = NULL;
3177 			return err;
3178 		}
3179 
3180 		/* SDB mode */
3181 		if (ufshcd_clear_cmd(hba, lrbp->task_tag) == 0) {
3182 			/* successfully cleared the command, retry if needed */
3183 			err = -EAGAIN;
3184 			/*
3185 			 * Since clearing the command succeeded we also need to
3186 			 * clear the task tag bit from the outstanding_reqs
3187 			 * variable.
3188 			 */
3189 			spin_lock_irqsave(&hba->outstanding_lock, flags);
3190 			pending = test_bit(lrbp->task_tag,
3191 					   &hba->outstanding_reqs);
3192 			if (pending) {
3193 				hba->dev_cmd.complete = NULL;
3194 				__clear_bit(lrbp->task_tag,
3195 					    &hba->outstanding_reqs);
3196 			}
3197 			spin_unlock_irqrestore(&hba->outstanding_lock, flags);
3198 
3199 			if (!pending) {
3200 				/*
3201 				 * The completion handler ran while we tried to
3202 				 * clear the command.
3203 				 */
3204 				time_left = 1;
3205 				goto retry;
3206 			}
3207 		} else {
3208 			dev_err(hba->dev, "%s: failed to clear tag %d\n",
3209 				__func__, lrbp->task_tag);
3210 
3211 			spin_lock_irqsave(&hba->outstanding_lock, flags);
3212 			pending = test_bit(lrbp->task_tag,
3213 					   &hba->outstanding_reqs);
3214 			if (pending)
3215 				hba->dev_cmd.complete = NULL;
3216 			spin_unlock_irqrestore(&hba->outstanding_lock, flags);
3217 
3218 			if (!pending) {
3219 				/*
3220 				 * The completion handler ran while we tried to
3221 				 * clear the command.
3222 				 */
3223 				time_left = 1;
3224 				goto retry;
3225 			}
3226 		}
3227 	}
3228 
3229 	return err;
3230 }
3231 
3232 /**
3233  * ufshcd_exec_dev_cmd - API for sending device management requests
3234  * @hba: UFS hba
3235  * @cmd_type: specifies the type (NOP, Query...)
3236  * @timeout: timeout in milliseconds
3237  *
3238  * Return: 0 upon success; < 0 upon failure.
3239  *
3240  * NOTE: Since there is only one available tag for device management commands,
3241  * it is expected you hold the hba->dev_cmd.lock mutex.
3242  */
3243 static int ufshcd_exec_dev_cmd(struct ufs_hba *hba,
3244 		enum dev_cmd_type cmd_type, int timeout)
3245 {
3246 	DECLARE_COMPLETION_ONSTACK(wait);
3247 	const u32 tag = hba->reserved_slot;
3248 	struct ufshcd_lrb *lrbp;
3249 	int err;
3250 
3251 	/* Protects use of hba->reserved_slot. */
3252 	lockdep_assert_held(&hba->dev_cmd.lock);
3253 
3254 	down_read(&hba->clk_scaling_lock);
3255 
3256 	lrbp = &hba->lrb[tag];
3257 	lrbp->cmd = NULL;
3258 	err = ufshcd_compose_dev_cmd(hba, lrbp, cmd_type, tag);
3259 	if (unlikely(err))
3260 		goto out;
3261 
3262 	hba->dev_cmd.complete = &wait;
3263 
3264 	ufshcd_add_query_upiu_trace(hba, UFS_QUERY_SEND, lrbp->ucd_req_ptr);
3265 
3266 	ufshcd_send_command(hba, tag, hba->dev_cmd_queue);
3267 	err = ufshcd_wait_for_dev_cmd(hba, lrbp, timeout);
3268 	ufshcd_add_query_upiu_trace(hba, err ? UFS_QUERY_ERR : UFS_QUERY_COMP,
3269 				    (struct utp_upiu_req *)lrbp->ucd_rsp_ptr);
3270 
3271 out:
3272 	up_read(&hba->clk_scaling_lock);
3273 	return err;
3274 }
3275 
3276 /**
3277  * ufshcd_init_query() - init the query response and request parameters
3278  * @hba: per-adapter instance
3279  * @request: address of the request pointer to be initialized
3280  * @response: address of the response pointer to be initialized
3281  * @opcode: operation to perform
3282  * @idn: flag idn to access
3283  * @index: LU number to access
3284  * @selector: query/flag/descriptor further identification
3285  */
3286 static inline void ufshcd_init_query(struct ufs_hba *hba,
3287 		struct ufs_query_req **request, struct ufs_query_res **response,
3288 		enum query_opcode opcode, u8 idn, u8 index, u8 selector)
3289 {
3290 	*request = &hba->dev_cmd.query.request;
3291 	*response = &hba->dev_cmd.query.response;
3292 	memset(*request, 0, sizeof(struct ufs_query_req));
3293 	memset(*response, 0, sizeof(struct ufs_query_res));
3294 	(*request)->upiu_req.opcode = opcode;
3295 	(*request)->upiu_req.idn = idn;
3296 	(*request)->upiu_req.index = index;
3297 	(*request)->upiu_req.selector = selector;
3298 }
3299 
3300 static int ufshcd_query_flag_retry(struct ufs_hba *hba,
3301 	enum query_opcode opcode, enum flag_idn idn, u8 index, bool *flag_res)
3302 {
3303 	int ret;
3304 	int retries;
3305 
3306 	for (retries = 0; retries < QUERY_REQ_RETRIES; retries++) {
3307 		ret = ufshcd_query_flag(hba, opcode, idn, index, flag_res);
3308 		if (ret)
3309 			dev_dbg(hba->dev,
3310 				"%s: failed with error %d, retries %d\n",
3311 				__func__, ret, retries);
3312 		else
3313 			break;
3314 	}
3315 
3316 	if (ret)
3317 		dev_err(hba->dev,
3318 			"%s: query flag, opcode %d, idn %d, failed with error %d after %d retries\n",
3319 			__func__, opcode, idn, ret, retries);
3320 	return ret;
3321 }
3322 
3323 /**
3324  * ufshcd_query_flag() - API function for sending flag query requests
3325  * @hba: per-adapter instance
3326  * @opcode: flag query to perform
3327  * @idn: flag idn to access
3328  * @index: flag index to access
3329  * @flag_res: the flag value after the query request completes
3330  *
3331  * Return: 0 for success, non-zero in case of failure.
3332  */
3333 int ufshcd_query_flag(struct ufs_hba *hba, enum query_opcode opcode,
3334 			enum flag_idn idn, u8 index, bool *flag_res)
3335 {
3336 	struct ufs_query_req *request = NULL;
3337 	struct ufs_query_res *response = NULL;
3338 	int err, selector = 0;
3339 	int timeout = QUERY_REQ_TIMEOUT;
3340 
3341 	BUG_ON(!hba);
3342 
3343 	ufshcd_hold(hba);
3344 	mutex_lock(&hba->dev_cmd.lock);
3345 	ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3346 			selector);
3347 
3348 	switch (opcode) {
3349 	case UPIU_QUERY_OPCODE_SET_FLAG:
3350 	case UPIU_QUERY_OPCODE_CLEAR_FLAG:
3351 	case UPIU_QUERY_OPCODE_TOGGLE_FLAG:
3352 		request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3353 		break;
3354 	case UPIU_QUERY_OPCODE_READ_FLAG:
3355 		request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3356 		if (!flag_res) {
3357 			/* No dummy reads */
3358 			dev_err(hba->dev, "%s: Invalid argument for read request\n",
3359 					__func__);
3360 			err = -EINVAL;
3361 			goto out_unlock;
3362 		}
3363 		break;
3364 	default:
3365 		dev_err(hba->dev,
3366 			"%s: Expected query flag opcode but got = %d\n",
3367 			__func__, opcode);
3368 		err = -EINVAL;
3369 		goto out_unlock;
3370 	}
3371 
3372 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, timeout);
3373 
3374 	if (err) {
3375 		dev_err(hba->dev,
3376 			"%s: Sending flag query for idn %d failed, err = %d\n",
3377 			__func__, idn, err);
3378 		goto out_unlock;
3379 	}
3380 
3381 	if (flag_res)
3382 		*flag_res = (be32_to_cpu(response->upiu_res.value) &
3383 				MASK_QUERY_UPIU_FLAG_LOC) & 0x1;
3384 
3385 out_unlock:
3386 	mutex_unlock(&hba->dev_cmd.lock);
3387 	ufshcd_release(hba);
3388 	return err;
3389 }
3390 
3391 /**
3392  * ufshcd_query_attr - API function for sending attribute requests
3393  * @hba: per-adapter instance
3394  * @opcode: attribute opcode
3395  * @idn: attribute idn to access
3396  * @index: index field
3397  * @selector: selector field
3398  * @attr_val: the attribute value after the query request completes
3399  *
3400  * Return: 0 for success, non-zero in case of failure.
3401 */
3402 int ufshcd_query_attr(struct ufs_hba *hba, enum query_opcode opcode,
3403 		      enum attr_idn idn, u8 index, u8 selector, u32 *attr_val)
3404 {
3405 	struct ufs_query_req *request = NULL;
3406 	struct ufs_query_res *response = NULL;
3407 	int err;
3408 
3409 	BUG_ON(!hba);
3410 
3411 	if (!attr_val) {
3412 		dev_err(hba->dev, "%s: attribute value required for opcode 0x%x\n",
3413 				__func__, opcode);
3414 		return -EINVAL;
3415 	}
3416 
3417 	ufshcd_hold(hba);
3418 
3419 	mutex_lock(&hba->dev_cmd.lock);
3420 	ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3421 			selector);
3422 
3423 	switch (opcode) {
3424 	case UPIU_QUERY_OPCODE_WRITE_ATTR:
3425 		request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3426 		request->upiu_req.value = cpu_to_be32(*attr_val);
3427 		break;
3428 	case UPIU_QUERY_OPCODE_READ_ATTR:
3429 		request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3430 		break;
3431 	default:
3432 		dev_err(hba->dev, "%s: Expected query attr opcode but got = 0x%.2x\n",
3433 				__func__, opcode);
3434 		err = -EINVAL;
3435 		goto out_unlock;
3436 	}
3437 
3438 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT);
3439 
3440 	if (err) {
3441 		dev_err(hba->dev, "%s: opcode 0x%.2x for idn %d failed, index %d, err = %d\n",
3442 				__func__, opcode, idn, index, err);
3443 		goto out_unlock;
3444 	}
3445 
3446 	*attr_val = be32_to_cpu(response->upiu_res.value);
3447 
3448 out_unlock:
3449 	mutex_unlock(&hba->dev_cmd.lock);
3450 	ufshcd_release(hba);
3451 	return err;
3452 }
3453 
3454 /**
3455  * ufshcd_query_attr_retry() - API function for sending query
3456  * attribute with retries
3457  * @hba: per-adapter instance
3458  * @opcode: attribute opcode
3459  * @idn: attribute idn to access
3460  * @index: index field
3461  * @selector: selector field
3462  * @attr_val: the attribute value after the query request
3463  * completes
3464  *
3465  * Return: 0 for success, non-zero in case of failure.
3466 */
3467 int ufshcd_query_attr_retry(struct ufs_hba *hba,
3468 	enum query_opcode opcode, enum attr_idn idn, u8 index, u8 selector,
3469 	u32 *attr_val)
3470 {
3471 	int ret = 0;
3472 	u32 retries;
3473 
3474 	for (retries = QUERY_REQ_RETRIES; retries > 0; retries--) {
3475 		ret = ufshcd_query_attr(hba, opcode, idn, index,
3476 						selector, attr_val);
3477 		if (ret)
3478 			dev_dbg(hba->dev, "%s: failed with error %d, retries %d\n",
3479 				__func__, ret, retries);
3480 		else
3481 			break;
3482 	}
3483 
3484 	if (ret)
3485 		dev_err(hba->dev,
3486 			"%s: query attribute, idn %d, failed with error %d after %d retries\n",
3487 			__func__, idn, ret, QUERY_REQ_RETRIES);
3488 	return ret;
3489 }
3490 
3491 static int __ufshcd_query_descriptor(struct ufs_hba *hba,
3492 			enum query_opcode opcode, enum desc_idn idn, u8 index,
3493 			u8 selector, u8 *desc_buf, int *buf_len)
3494 {
3495 	struct ufs_query_req *request = NULL;
3496 	struct ufs_query_res *response = NULL;
3497 	int err;
3498 
3499 	BUG_ON(!hba);
3500 
3501 	if (!desc_buf) {
3502 		dev_err(hba->dev, "%s: descriptor buffer required for opcode 0x%x\n",
3503 				__func__, opcode);
3504 		return -EINVAL;
3505 	}
3506 
3507 	if (*buf_len < QUERY_DESC_MIN_SIZE || *buf_len > QUERY_DESC_MAX_SIZE) {
3508 		dev_err(hba->dev, "%s: descriptor buffer size (%d) is out of range\n",
3509 				__func__, *buf_len);
3510 		return -EINVAL;
3511 	}
3512 
3513 	ufshcd_hold(hba);
3514 
3515 	mutex_lock(&hba->dev_cmd.lock);
3516 	ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3517 			selector);
3518 	hba->dev_cmd.query.descriptor = desc_buf;
3519 	request->upiu_req.length = cpu_to_be16(*buf_len);
3520 
3521 	switch (opcode) {
3522 	case UPIU_QUERY_OPCODE_WRITE_DESC:
3523 		request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3524 		break;
3525 	case UPIU_QUERY_OPCODE_READ_DESC:
3526 		request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3527 		break;
3528 	default:
3529 		dev_err(hba->dev,
3530 				"%s: Expected query descriptor opcode but got = 0x%.2x\n",
3531 				__func__, opcode);
3532 		err = -EINVAL;
3533 		goto out_unlock;
3534 	}
3535 
3536 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT);
3537 
3538 	if (err) {
3539 		dev_err(hba->dev, "%s: opcode 0x%.2x for idn %d failed, index %d, err = %d\n",
3540 				__func__, opcode, idn, index, err);
3541 		goto out_unlock;
3542 	}
3543 
3544 	*buf_len = be16_to_cpu(response->upiu_res.length);
3545 
3546 out_unlock:
3547 	hba->dev_cmd.query.descriptor = NULL;
3548 	mutex_unlock(&hba->dev_cmd.lock);
3549 	ufshcd_release(hba);
3550 	return err;
3551 }
3552 
3553 /**
3554  * ufshcd_query_descriptor_retry - API function for sending descriptor requests
3555  * @hba: per-adapter instance
3556  * @opcode: attribute opcode
3557  * @idn: attribute idn to access
3558  * @index: index field
3559  * @selector: selector field
3560  * @desc_buf: the buffer that contains the descriptor
3561  * @buf_len: length parameter passed to the device
3562  *
3563  * The buf_len parameter will contain, on return, the length parameter
3564  * received on the response.
3565  *
3566  * Return: 0 for success, non-zero in case of failure.
3567  */
3568 int ufshcd_query_descriptor_retry(struct ufs_hba *hba,
3569 				  enum query_opcode opcode,
3570 				  enum desc_idn idn, u8 index,
3571 				  u8 selector,
3572 				  u8 *desc_buf, int *buf_len)
3573 {
3574 	int err;
3575 	int retries;
3576 
3577 	for (retries = QUERY_REQ_RETRIES; retries > 0; retries--) {
3578 		err = __ufshcd_query_descriptor(hba, opcode, idn, index,
3579 						selector, desc_buf, buf_len);
3580 		if (!err || err == -EINVAL)
3581 			break;
3582 	}
3583 
3584 	return err;
3585 }
3586 
3587 /**
3588  * ufshcd_read_desc_param - read the specified descriptor parameter
3589  * @hba: Pointer to adapter instance
3590  * @desc_id: descriptor idn value
3591  * @desc_index: descriptor index
3592  * @param_offset: offset of the parameter to read
3593  * @param_read_buf: pointer to buffer where parameter would be read
3594  * @param_size: sizeof(param_read_buf)
3595  *
3596  * Return: 0 in case of success, non-zero otherwise.
3597  */
3598 int ufshcd_read_desc_param(struct ufs_hba *hba,
3599 			   enum desc_idn desc_id,
3600 			   int desc_index,
3601 			   u8 param_offset,
3602 			   u8 *param_read_buf,
3603 			   u8 param_size)
3604 {
3605 	int ret;
3606 	u8 *desc_buf;
3607 	int buff_len = QUERY_DESC_MAX_SIZE;
3608 	bool is_kmalloc = true;
3609 
3610 	/* Safety check */
3611 	if (desc_id >= QUERY_DESC_IDN_MAX || !param_size)
3612 		return -EINVAL;
3613 
3614 	/* Check whether we need temp memory */
3615 	if (param_offset != 0 || param_size < buff_len) {
3616 		desc_buf = kzalloc(buff_len, GFP_KERNEL);
3617 		if (!desc_buf)
3618 			return -ENOMEM;
3619 	} else {
3620 		desc_buf = param_read_buf;
3621 		is_kmalloc = false;
3622 	}
3623 
3624 	/* Request for full descriptor */
3625 	ret = ufshcd_query_descriptor_retry(hba, UPIU_QUERY_OPCODE_READ_DESC,
3626 					    desc_id, desc_index, 0,
3627 					    desc_buf, &buff_len);
3628 	if (ret) {
3629 		dev_err(hba->dev, "%s: Failed reading descriptor. desc_id %d, desc_index %d, param_offset %d, ret %d\n",
3630 			__func__, desc_id, desc_index, param_offset, ret);
3631 		goto out;
3632 	}
3633 
3634 	/* Update descriptor length */
3635 	buff_len = desc_buf[QUERY_DESC_LENGTH_OFFSET];
3636 
3637 	if (param_offset >= buff_len) {
3638 		dev_err(hba->dev, "%s: Invalid offset 0x%x in descriptor IDN 0x%x, length 0x%x\n",
3639 			__func__, param_offset, desc_id, buff_len);
3640 		ret = -EINVAL;
3641 		goto out;
3642 	}
3643 
3644 	/* Sanity check */
3645 	if (desc_buf[QUERY_DESC_DESC_TYPE_OFFSET] != desc_id) {
3646 		dev_err(hba->dev, "%s: invalid desc_id %d in descriptor header\n",
3647 			__func__, desc_buf[QUERY_DESC_DESC_TYPE_OFFSET]);
3648 		ret = -EINVAL;
3649 		goto out;
3650 	}
3651 
3652 	if (is_kmalloc) {
3653 		/* Make sure we don't copy more data than available */
3654 		if (param_offset >= buff_len)
3655 			ret = -EINVAL;
3656 		else
3657 			memcpy(param_read_buf, &desc_buf[param_offset],
3658 			       min_t(u32, param_size, buff_len - param_offset));
3659 	}
3660 out:
3661 	if (is_kmalloc)
3662 		kfree(desc_buf);
3663 	return ret;
3664 }
3665 
3666 /**
3667  * struct uc_string_id - unicode string
3668  *
3669  * @len: size of this descriptor inclusive
3670  * @type: descriptor type
3671  * @uc: unicode string character
3672  */
3673 struct uc_string_id {
3674 	u8 len;
3675 	u8 type;
3676 	wchar_t uc[];
3677 } __packed;
3678 
3679 /* replace non-printable or non-ASCII characters with spaces */
3680 static inline char ufshcd_remove_non_printable(u8 ch)
3681 {
3682 	return (ch >= 0x20 && ch <= 0x7e) ? ch : ' ';
3683 }
3684 
3685 /**
3686  * ufshcd_read_string_desc - read string descriptor
3687  * @hba: pointer to adapter instance
3688  * @desc_index: descriptor index
3689  * @buf: pointer to buffer where descriptor would be read,
3690  *       the caller should free the memory.
3691  * @ascii: if true convert from unicode to ascii characters
3692  *         null terminated string.
3693  *
3694  * Return:
3695  * *      string size on success.
3696  * *      -ENOMEM: on allocation failure
3697  * *      -EINVAL: on a wrong parameter
3698  */
3699 int ufshcd_read_string_desc(struct ufs_hba *hba, u8 desc_index,
3700 			    u8 **buf, bool ascii)
3701 {
3702 	struct uc_string_id *uc_str;
3703 	u8 *str;
3704 	int ret;
3705 
3706 	if (!buf)
3707 		return -EINVAL;
3708 
3709 	uc_str = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
3710 	if (!uc_str)
3711 		return -ENOMEM;
3712 
3713 	ret = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_STRING, desc_index, 0,
3714 				     (u8 *)uc_str, QUERY_DESC_MAX_SIZE);
3715 	if (ret < 0) {
3716 		dev_err(hba->dev, "Reading String Desc failed after %d retries. err = %d\n",
3717 			QUERY_REQ_RETRIES, ret);
3718 		str = NULL;
3719 		goto out;
3720 	}
3721 
3722 	if (uc_str->len <= QUERY_DESC_HDR_SIZE) {
3723 		dev_dbg(hba->dev, "String Desc is of zero length\n");
3724 		str = NULL;
3725 		ret = 0;
3726 		goto out;
3727 	}
3728 
3729 	if (ascii) {
3730 		ssize_t ascii_len;
3731 		int i;
3732 		/* remove header and divide by 2 to move from UTF16 to UTF8 */
3733 		ascii_len = (uc_str->len - QUERY_DESC_HDR_SIZE) / 2 + 1;
3734 		str = kzalloc(ascii_len, GFP_KERNEL);
3735 		if (!str) {
3736 			ret = -ENOMEM;
3737 			goto out;
3738 		}
3739 
3740 		/*
3741 		 * the descriptor contains string in UTF16 format
3742 		 * we need to convert to utf-8 so it can be displayed
3743 		 */
3744 		ret = utf16s_to_utf8s(uc_str->uc,
3745 				      uc_str->len - QUERY_DESC_HDR_SIZE,
3746 				      UTF16_BIG_ENDIAN, str, ascii_len - 1);
3747 
3748 		/* replace non-printable or non-ASCII characters with spaces */
3749 		for (i = 0; i < ret; i++)
3750 			str[i] = ufshcd_remove_non_printable(str[i]);
3751 
3752 		str[ret++] = '\0';
3753 
3754 	} else {
3755 		str = kmemdup(uc_str, uc_str->len, GFP_KERNEL);
3756 		if (!str) {
3757 			ret = -ENOMEM;
3758 			goto out;
3759 		}
3760 		ret = uc_str->len;
3761 	}
3762 out:
3763 	*buf = str;
3764 	kfree(uc_str);
3765 	return ret;
3766 }
3767 
3768 /**
3769  * ufshcd_read_unit_desc_param - read the specified unit descriptor parameter
3770  * @hba: Pointer to adapter instance
3771  * @lun: lun id
3772  * @param_offset: offset of the parameter to read
3773  * @param_read_buf: pointer to buffer where parameter would be read
3774  * @param_size: sizeof(param_read_buf)
3775  *
3776  * Return: 0 in case of success, non-zero otherwise.
3777  */
3778 static inline int ufshcd_read_unit_desc_param(struct ufs_hba *hba,
3779 					      int lun,
3780 					      enum unit_desc_param param_offset,
3781 					      u8 *param_read_buf,
3782 					      u32 param_size)
3783 {
3784 	/*
3785 	 * Unit descriptors are only available for general purpose LUs (LUN id
3786 	 * from 0 to 7) and RPMB Well known LU.
3787 	 */
3788 	if (!ufs_is_valid_unit_desc_lun(&hba->dev_info, lun))
3789 		return -EOPNOTSUPP;
3790 
3791 	return ufshcd_read_desc_param(hba, QUERY_DESC_IDN_UNIT, lun,
3792 				      param_offset, param_read_buf, param_size);
3793 }
3794 
3795 static int ufshcd_get_ref_clk_gating_wait(struct ufs_hba *hba)
3796 {
3797 	int err = 0;
3798 	u32 gating_wait = UFSHCD_REF_CLK_GATING_WAIT_US;
3799 
3800 	if (hba->dev_info.wspecversion >= 0x300) {
3801 		err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
3802 				QUERY_ATTR_IDN_REF_CLK_GATING_WAIT_TIME, 0, 0,
3803 				&gating_wait);
3804 		if (err)
3805 			dev_err(hba->dev, "Failed reading bRefClkGatingWait. err = %d, use default %uus\n",
3806 					 err, gating_wait);
3807 
3808 		if (gating_wait == 0) {
3809 			gating_wait = UFSHCD_REF_CLK_GATING_WAIT_US;
3810 			dev_err(hba->dev, "Undefined ref clk gating wait time, use default %uus\n",
3811 					 gating_wait);
3812 		}
3813 
3814 		hba->dev_info.clk_gating_wait_us = gating_wait;
3815 	}
3816 
3817 	return err;
3818 }
3819 
3820 /**
3821  * ufshcd_memory_alloc - allocate memory for host memory space data structures
3822  * @hba: per adapter instance
3823  *
3824  * 1. Allocate DMA memory for Command Descriptor array
3825  *	Each command descriptor consist of Command UPIU, Response UPIU and PRDT
3826  * 2. Allocate DMA memory for UTP Transfer Request Descriptor List (UTRDL).
3827  * 3. Allocate DMA memory for UTP Task Management Request Descriptor List
3828  *	(UTMRDL)
3829  * 4. Allocate memory for local reference block(lrb).
3830  *
3831  * Return: 0 for success, non-zero in case of failure.
3832  */
3833 static int ufshcd_memory_alloc(struct ufs_hba *hba)
3834 {
3835 	size_t utmrdl_size, utrdl_size, ucdl_size;
3836 
3837 	/* Allocate memory for UTP command descriptors */
3838 	ucdl_size = ufshcd_get_ucd_size(hba) * hba->nutrs;
3839 	hba->ucdl_base_addr = dmam_alloc_coherent(hba->dev,
3840 						  ucdl_size,
3841 						  &hba->ucdl_dma_addr,
3842 						  GFP_KERNEL);
3843 
3844 	/*
3845 	 * UFSHCI requires UTP command descriptor to be 128 byte aligned.
3846 	 */
3847 	if (!hba->ucdl_base_addr ||
3848 	    WARN_ON(hba->ucdl_dma_addr & (128 - 1))) {
3849 		dev_err(hba->dev,
3850 			"Command Descriptor Memory allocation failed\n");
3851 		goto out;
3852 	}
3853 
3854 	/*
3855 	 * Allocate memory for UTP Transfer descriptors
3856 	 * UFSHCI requires 1KB alignment of UTRD
3857 	 */
3858 	utrdl_size = (sizeof(struct utp_transfer_req_desc) * hba->nutrs);
3859 	hba->utrdl_base_addr = dmam_alloc_coherent(hba->dev,
3860 						   utrdl_size,
3861 						   &hba->utrdl_dma_addr,
3862 						   GFP_KERNEL);
3863 	if (!hba->utrdl_base_addr ||
3864 	    WARN_ON(hba->utrdl_dma_addr & (SZ_1K - 1))) {
3865 		dev_err(hba->dev,
3866 			"Transfer Descriptor Memory allocation failed\n");
3867 		goto out;
3868 	}
3869 
3870 	/*
3871 	 * Skip utmrdl allocation; it may have been
3872 	 * allocated during first pass and not released during
3873 	 * MCQ memory allocation.
3874 	 * See ufshcd_release_sdb_queue() and ufshcd_config_mcq()
3875 	 */
3876 	if (hba->utmrdl_base_addr)
3877 		goto skip_utmrdl;
3878 	/*
3879 	 * Allocate memory for UTP Task Management descriptors
3880 	 * UFSHCI requires 1KB alignment of UTMRD
3881 	 */
3882 	utmrdl_size = sizeof(struct utp_task_req_desc) * hba->nutmrs;
3883 	hba->utmrdl_base_addr = dmam_alloc_coherent(hba->dev,
3884 						    utmrdl_size,
3885 						    &hba->utmrdl_dma_addr,
3886 						    GFP_KERNEL);
3887 	if (!hba->utmrdl_base_addr ||
3888 	    WARN_ON(hba->utmrdl_dma_addr & (SZ_1K - 1))) {
3889 		dev_err(hba->dev,
3890 		"Task Management Descriptor Memory allocation failed\n");
3891 		goto out;
3892 	}
3893 
3894 skip_utmrdl:
3895 	/* Allocate memory for local reference block */
3896 	hba->lrb = devm_kcalloc(hba->dev,
3897 				hba->nutrs, sizeof(struct ufshcd_lrb),
3898 				GFP_KERNEL);
3899 	if (!hba->lrb) {
3900 		dev_err(hba->dev, "LRB Memory allocation failed\n");
3901 		goto out;
3902 	}
3903 	return 0;
3904 out:
3905 	return -ENOMEM;
3906 }
3907 
3908 /**
3909  * ufshcd_host_memory_configure - configure local reference block with
3910  *				memory offsets
3911  * @hba: per adapter instance
3912  *
3913  * Configure Host memory space
3914  * 1. Update Corresponding UTRD.UCDBA and UTRD.UCDBAU with UCD DMA
3915  * address.
3916  * 2. Update each UTRD with Response UPIU offset, Response UPIU length
3917  * and PRDT offset.
3918  * 3. Save the corresponding addresses of UTRD, UCD.CMD, UCD.RSP and UCD.PRDT
3919  * into local reference block.
3920  */
3921 static void ufshcd_host_memory_configure(struct ufs_hba *hba)
3922 {
3923 	struct utp_transfer_req_desc *utrdlp;
3924 	dma_addr_t cmd_desc_dma_addr;
3925 	dma_addr_t cmd_desc_element_addr;
3926 	u16 response_offset;
3927 	u16 prdt_offset;
3928 	int cmd_desc_size;
3929 	int i;
3930 
3931 	utrdlp = hba->utrdl_base_addr;
3932 
3933 	response_offset =
3934 		offsetof(struct utp_transfer_cmd_desc, response_upiu);
3935 	prdt_offset =
3936 		offsetof(struct utp_transfer_cmd_desc, prd_table);
3937 
3938 	cmd_desc_size = ufshcd_get_ucd_size(hba);
3939 	cmd_desc_dma_addr = hba->ucdl_dma_addr;
3940 
3941 	for (i = 0; i < hba->nutrs; i++) {
3942 		/* Configure UTRD with command descriptor base address */
3943 		cmd_desc_element_addr =
3944 				(cmd_desc_dma_addr + (cmd_desc_size * i));
3945 		utrdlp[i].command_desc_base_addr =
3946 				cpu_to_le64(cmd_desc_element_addr);
3947 
3948 		/* Response upiu and prdt offset should be in double words */
3949 		if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN) {
3950 			utrdlp[i].response_upiu_offset =
3951 				cpu_to_le16(response_offset);
3952 			utrdlp[i].prd_table_offset =
3953 				cpu_to_le16(prdt_offset);
3954 			utrdlp[i].response_upiu_length =
3955 				cpu_to_le16(ALIGNED_UPIU_SIZE);
3956 		} else {
3957 			utrdlp[i].response_upiu_offset =
3958 				cpu_to_le16(response_offset >> 2);
3959 			utrdlp[i].prd_table_offset =
3960 				cpu_to_le16(prdt_offset >> 2);
3961 			utrdlp[i].response_upiu_length =
3962 				cpu_to_le16(ALIGNED_UPIU_SIZE >> 2);
3963 		}
3964 
3965 		ufshcd_init_lrb(hba, &hba->lrb[i], i);
3966 	}
3967 }
3968 
3969 /**
3970  * ufshcd_dme_link_startup - Notify Unipro to perform link startup
3971  * @hba: per adapter instance
3972  *
3973  * UIC_CMD_DME_LINK_STARTUP command must be issued to Unipro layer,
3974  * in order to initialize the Unipro link startup procedure.
3975  * Once the Unipro links are up, the device connected to the controller
3976  * is detected.
3977  *
3978  * Return: 0 on success, non-zero value on failure.
3979  */
3980 static int ufshcd_dme_link_startup(struct ufs_hba *hba)
3981 {
3982 	struct uic_command uic_cmd = {0};
3983 	int ret;
3984 
3985 	uic_cmd.command = UIC_CMD_DME_LINK_STARTUP;
3986 
3987 	ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
3988 	if (ret)
3989 		dev_dbg(hba->dev,
3990 			"dme-link-startup: error code %d\n", ret);
3991 	return ret;
3992 }
3993 /**
3994  * ufshcd_dme_reset - UIC command for DME_RESET
3995  * @hba: per adapter instance
3996  *
3997  * DME_RESET command is issued in order to reset UniPro stack.
3998  * This function now deals with cold reset.
3999  *
4000  * Return: 0 on success, non-zero value on failure.
4001  */
4002 static int ufshcd_dme_reset(struct ufs_hba *hba)
4003 {
4004 	struct uic_command uic_cmd = {0};
4005 	int ret;
4006 
4007 	uic_cmd.command = UIC_CMD_DME_RESET;
4008 
4009 	ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4010 	if (ret)
4011 		dev_err(hba->dev,
4012 			"dme-reset: error code %d\n", ret);
4013 
4014 	return ret;
4015 }
4016 
4017 int ufshcd_dme_configure_adapt(struct ufs_hba *hba,
4018 			       int agreed_gear,
4019 			       int adapt_val)
4020 {
4021 	int ret;
4022 
4023 	if (agreed_gear < UFS_HS_G4)
4024 		adapt_val = PA_NO_ADAPT;
4025 
4026 	ret = ufshcd_dme_set(hba,
4027 			     UIC_ARG_MIB(PA_TXHSADAPTTYPE),
4028 			     adapt_val);
4029 	return ret;
4030 }
4031 EXPORT_SYMBOL_GPL(ufshcd_dme_configure_adapt);
4032 
4033 /**
4034  * ufshcd_dme_enable - UIC command for DME_ENABLE
4035  * @hba: per adapter instance
4036  *
4037  * DME_ENABLE command is issued in order to enable UniPro stack.
4038  *
4039  * Return: 0 on success, non-zero value on failure.
4040  */
4041 static int ufshcd_dme_enable(struct ufs_hba *hba)
4042 {
4043 	struct uic_command uic_cmd = {0};
4044 	int ret;
4045 
4046 	uic_cmd.command = UIC_CMD_DME_ENABLE;
4047 
4048 	ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4049 	if (ret)
4050 		dev_err(hba->dev,
4051 			"dme-enable: error code %d\n", ret);
4052 
4053 	return ret;
4054 }
4055 
4056 static inline void ufshcd_add_delay_before_dme_cmd(struct ufs_hba *hba)
4057 {
4058 	#define MIN_DELAY_BEFORE_DME_CMDS_US	1000
4059 	unsigned long min_sleep_time_us;
4060 
4061 	if (!(hba->quirks & UFSHCD_QUIRK_DELAY_BEFORE_DME_CMDS))
4062 		return;
4063 
4064 	/*
4065 	 * last_dme_cmd_tstamp will be 0 only for 1st call to
4066 	 * this function
4067 	 */
4068 	if (unlikely(!ktime_to_us(hba->last_dme_cmd_tstamp))) {
4069 		min_sleep_time_us = MIN_DELAY_BEFORE_DME_CMDS_US;
4070 	} else {
4071 		unsigned long delta =
4072 			(unsigned long) ktime_to_us(
4073 				ktime_sub(ktime_get(),
4074 				hba->last_dme_cmd_tstamp));
4075 
4076 		if (delta < MIN_DELAY_BEFORE_DME_CMDS_US)
4077 			min_sleep_time_us =
4078 				MIN_DELAY_BEFORE_DME_CMDS_US - delta;
4079 		else
4080 			return; /* no more delay required */
4081 	}
4082 
4083 	/* allow sleep for extra 50us if needed */
4084 	usleep_range(min_sleep_time_us, min_sleep_time_us + 50);
4085 }
4086 
4087 /**
4088  * ufshcd_dme_set_attr - UIC command for DME_SET, DME_PEER_SET
4089  * @hba: per adapter instance
4090  * @attr_sel: uic command argument1
4091  * @attr_set: attribute set type as uic command argument2
4092  * @mib_val: setting value as uic command argument3
4093  * @peer: indicate whether peer or local
4094  *
4095  * Return: 0 on success, non-zero value on failure.
4096  */
4097 int ufshcd_dme_set_attr(struct ufs_hba *hba, u32 attr_sel,
4098 			u8 attr_set, u32 mib_val, u8 peer)
4099 {
4100 	struct uic_command uic_cmd = {0};
4101 	static const char *const action[] = {
4102 		"dme-set",
4103 		"dme-peer-set"
4104 	};
4105 	const char *set = action[!!peer];
4106 	int ret;
4107 	int retries = UFS_UIC_COMMAND_RETRIES;
4108 
4109 	uic_cmd.command = peer ?
4110 		UIC_CMD_DME_PEER_SET : UIC_CMD_DME_SET;
4111 	uic_cmd.argument1 = attr_sel;
4112 	uic_cmd.argument2 = UIC_ARG_ATTR_TYPE(attr_set);
4113 	uic_cmd.argument3 = mib_val;
4114 
4115 	do {
4116 		/* for peer attributes we retry upon failure */
4117 		ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4118 		if (ret)
4119 			dev_dbg(hba->dev, "%s: attr-id 0x%x val 0x%x error code %d\n",
4120 				set, UIC_GET_ATTR_ID(attr_sel), mib_val, ret);
4121 	} while (ret && peer && --retries);
4122 
4123 	if (ret)
4124 		dev_err(hba->dev, "%s: attr-id 0x%x val 0x%x failed %d retries\n",
4125 			set, UIC_GET_ATTR_ID(attr_sel), mib_val,
4126 			UFS_UIC_COMMAND_RETRIES - retries);
4127 
4128 	return ret;
4129 }
4130 EXPORT_SYMBOL_GPL(ufshcd_dme_set_attr);
4131 
4132 /**
4133  * ufshcd_dme_get_attr - UIC command for DME_GET, DME_PEER_GET
4134  * @hba: per adapter instance
4135  * @attr_sel: uic command argument1
4136  * @mib_val: the value of the attribute as returned by the UIC command
4137  * @peer: indicate whether peer or local
4138  *
4139  * Return: 0 on success, non-zero value on failure.
4140  */
4141 int ufshcd_dme_get_attr(struct ufs_hba *hba, u32 attr_sel,
4142 			u32 *mib_val, u8 peer)
4143 {
4144 	struct uic_command uic_cmd = {0};
4145 	static const char *const action[] = {
4146 		"dme-get",
4147 		"dme-peer-get"
4148 	};
4149 	const char *get = action[!!peer];
4150 	int ret;
4151 	int retries = UFS_UIC_COMMAND_RETRIES;
4152 	struct ufs_pa_layer_attr orig_pwr_info;
4153 	struct ufs_pa_layer_attr temp_pwr_info;
4154 	bool pwr_mode_change = false;
4155 
4156 	if (peer && (hba->quirks & UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE)) {
4157 		orig_pwr_info = hba->pwr_info;
4158 		temp_pwr_info = orig_pwr_info;
4159 
4160 		if (orig_pwr_info.pwr_tx == FAST_MODE ||
4161 		    orig_pwr_info.pwr_rx == FAST_MODE) {
4162 			temp_pwr_info.pwr_tx = FASTAUTO_MODE;
4163 			temp_pwr_info.pwr_rx = FASTAUTO_MODE;
4164 			pwr_mode_change = true;
4165 		} else if (orig_pwr_info.pwr_tx == SLOW_MODE ||
4166 		    orig_pwr_info.pwr_rx == SLOW_MODE) {
4167 			temp_pwr_info.pwr_tx = SLOWAUTO_MODE;
4168 			temp_pwr_info.pwr_rx = SLOWAUTO_MODE;
4169 			pwr_mode_change = true;
4170 		}
4171 		if (pwr_mode_change) {
4172 			ret = ufshcd_change_power_mode(hba, &temp_pwr_info);
4173 			if (ret)
4174 				goto out;
4175 		}
4176 	}
4177 
4178 	uic_cmd.command = peer ?
4179 		UIC_CMD_DME_PEER_GET : UIC_CMD_DME_GET;
4180 	uic_cmd.argument1 = attr_sel;
4181 
4182 	do {
4183 		/* for peer attributes we retry upon failure */
4184 		ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4185 		if (ret)
4186 			dev_dbg(hba->dev, "%s: attr-id 0x%x error code %d\n",
4187 				get, UIC_GET_ATTR_ID(attr_sel), ret);
4188 	} while (ret && peer && --retries);
4189 
4190 	if (ret)
4191 		dev_err(hba->dev, "%s: attr-id 0x%x failed %d retries\n",
4192 			get, UIC_GET_ATTR_ID(attr_sel),
4193 			UFS_UIC_COMMAND_RETRIES - retries);
4194 
4195 	if (mib_val && !ret)
4196 		*mib_val = uic_cmd.argument3;
4197 
4198 	if (peer && (hba->quirks & UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE)
4199 	    && pwr_mode_change)
4200 		ufshcd_change_power_mode(hba, &orig_pwr_info);
4201 out:
4202 	return ret;
4203 }
4204 EXPORT_SYMBOL_GPL(ufshcd_dme_get_attr);
4205 
4206 /**
4207  * ufshcd_uic_pwr_ctrl - executes UIC commands (which affects the link power
4208  * state) and waits for it to take effect.
4209  *
4210  * @hba: per adapter instance
4211  * @cmd: UIC command to execute
4212  *
4213  * DME operations like DME_SET(PA_PWRMODE), DME_HIBERNATE_ENTER &
4214  * DME_HIBERNATE_EXIT commands take some time to take its effect on both host
4215  * and device UniPro link and hence it's final completion would be indicated by
4216  * dedicated status bits in Interrupt Status register (UPMS, UHES, UHXS) in
4217  * addition to normal UIC command completion Status (UCCS). This function only
4218  * returns after the relevant status bits indicate the completion.
4219  *
4220  * Return: 0 on success, non-zero value on failure.
4221  */
4222 static int ufshcd_uic_pwr_ctrl(struct ufs_hba *hba, struct uic_command *cmd)
4223 {
4224 	DECLARE_COMPLETION_ONSTACK(uic_async_done);
4225 	unsigned long flags;
4226 	u8 status;
4227 	int ret;
4228 	bool reenable_intr = false;
4229 
4230 	mutex_lock(&hba->uic_cmd_mutex);
4231 	ufshcd_add_delay_before_dme_cmd(hba);
4232 
4233 	spin_lock_irqsave(hba->host->host_lock, flags);
4234 	if (ufshcd_is_link_broken(hba)) {
4235 		ret = -ENOLINK;
4236 		goto out_unlock;
4237 	}
4238 	hba->uic_async_done = &uic_async_done;
4239 	if (ufshcd_readl(hba, REG_INTERRUPT_ENABLE) & UIC_COMMAND_COMPL) {
4240 		ufshcd_disable_intr(hba, UIC_COMMAND_COMPL);
4241 		/*
4242 		 * Make sure UIC command completion interrupt is disabled before
4243 		 * issuing UIC command.
4244 		 */
4245 		wmb();
4246 		reenable_intr = true;
4247 	}
4248 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4249 	ret = __ufshcd_send_uic_cmd(hba, cmd, false);
4250 	if (ret) {
4251 		dev_err(hba->dev,
4252 			"pwr ctrl cmd 0x%x with mode 0x%x uic error %d\n",
4253 			cmd->command, cmd->argument3, ret);
4254 		goto out;
4255 	}
4256 
4257 	if (!wait_for_completion_timeout(hba->uic_async_done,
4258 					 msecs_to_jiffies(UIC_CMD_TIMEOUT))) {
4259 		dev_err(hba->dev,
4260 			"pwr ctrl cmd 0x%x with mode 0x%x completion timeout\n",
4261 			cmd->command, cmd->argument3);
4262 
4263 		if (!cmd->cmd_active) {
4264 			dev_err(hba->dev, "%s: Power Mode Change operation has been completed, go check UPMCRS\n",
4265 				__func__);
4266 			goto check_upmcrs;
4267 		}
4268 
4269 		ret = -ETIMEDOUT;
4270 		goto out;
4271 	}
4272 
4273 check_upmcrs:
4274 	status = ufshcd_get_upmcrs(hba);
4275 	if (status != PWR_LOCAL) {
4276 		dev_err(hba->dev,
4277 			"pwr ctrl cmd 0x%x failed, host upmcrs:0x%x\n",
4278 			cmd->command, status);
4279 		ret = (status != PWR_OK) ? status : -1;
4280 	}
4281 out:
4282 	if (ret) {
4283 		ufshcd_print_host_state(hba);
4284 		ufshcd_print_pwr_info(hba);
4285 		ufshcd_print_evt_hist(hba);
4286 	}
4287 
4288 	spin_lock_irqsave(hba->host->host_lock, flags);
4289 	hba->active_uic_cmd = NULL;
4290 	hba->uic_async_done = NULL;
4291 	if (reenable_intr)
4292 		ufshcd_enable_intr(hba, UIC_COMMAND_COMPL);
4293 	if (ret) {
4294 		ufshcd_set_link_broken(hba);
4295 		ufshcd_schedule_eh_work(hba);
4296 	}
4297 out_unlock:
4298 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4299 	mutex_unlock(&hba->uic_cmd_mutex);
4300 
4301 	return ret;
4302 }
4303 
4304 /**
4305  * ufshcd_uic_change_pwr_mode - Perform the UIC power mode chage
4306  *				using DME_SET primitives.
4307  * @hba: per adapter instance
4308  * @mode: powr mode value
4309  *
4310  * Return: 0 on success, non-zero value on failure.
4311  */
4312 int ufshcd_uic_change_pwr_mode(struct ufs_hba *hba, u8 mode)
4313 {
4314 	struct uic_command uic_cmd = {0};
4315 	int ret;
4316 
4317 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_PA_RXHSUNTERMCAP) {
4318 		ret = ufshcd_dme_set(hba,
4319 				UIC_ARG_MIB_SEL(PA_RXHSUNTERMCAP, 0), 1);
4320 		if (ret) {
4321 			dev_err(hba->dev, "%s: failed to enable PA_RXHSUNTERMCAP ret %d\n",
4322 						__func__, ret);
4323 			goto out;
4324 		}
4325 	}
4326 
4327 	uic_cmd.command = UIC_CMD_DME_SET;
4328 	uic_cmd.argument1 = UIC_ARG_MIB(PA_PWRMODE);
4329 	uic_cmd.argument3 = mode;
4330 	ufshcd_hold(hba);
4331 	ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4332 	ufshcd_release(hba);
4333 
4334 out:
4335 	return ret;
4336 }
4337 EXPORT_SYMBOL_GPL(ufshcd_uic_change_pwr_mode);
4338 
4339 int ufshcd_link_recovery(struct ufs_hba *hba)
4340 {
4341 	int ret;
4342 	unsigned long flags;
4343 
4344 	spin_lock_irqsave(hba->host->host_lock, flags);
4345 	hba->ufshcd_state = UFSHCD_STATE_RESET;
4346 	ufshcd_set_eh_in_progress(hba);
4347 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4348 
4349 	/* Reset the attached device */
4350 	ufshcd_device_reset(hba);
4351 
4352 	ret = ufshcd_host_reset_and_restore(hba);
4353 
4354 	spin_lock_irqsave(hba->host->host_lock, flags);
4355 	if (ret)
4356 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
4357 	ufshcd_clear_eh_in_progress(hba);
4358 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4359 
4360 	if (ret)
4361 		dev_err(hba->dev, "%s: link recovery failed, err %d",
4362 			__func__, ret);
4363 
4364 	return ret;
4365 }
4366 EXPORT_SYMBOL_GPL(ufshcd_link_recovery);
4367 
4368 int ufshcd_uic_hibern8_enter(struct ufs_hba *hba)
4369 {
4370 	int ret;
4371 	struct uic_command uic_cmd = {0};
4372 	ktime_t start = ktime_get();
4373 
4374 	ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_ENTER, PRE_CHANGE);
4375 
4376 	uic_cmd.command = UIC_CMD_DME_HIBER_ENTER;
4377 	ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4378 	trace_ufshcd_profile_hibern8(dev_name(hba->dev), "enter",
4379 			     ktime_to_us(ktime_sub(ktime_get(), start)), ret);
4380 
4381 	if (ret)
4382 		dev_err(hba->dev, "%s: hibern8 enter failed. ret = %d\n",
4383 			__func__, ret);
4384 	else
4385 		ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_ENTER,
4386 								POST_CHANGE);
4387 
4388 	return ret;
4389 }
4390 EXPORT_SYMBOL_GPL(ufshcd_uic_hibern8_enter);
4391 
4392 int ufshcd_uic_hibern8_exit(struct ufs_hba *hba)
4393 {
4394 	struct uic_command uic_cmd = {0};
4395 	int ret;
4396 	ktime_t start = ktime_get();
4397 
4398 	ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_EXIT, PRE_CHANGE);
4399 
4400 	uic_cmd.command = UIC_CMD_DME_HIBER_EXIT;
4401 	ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4402 	trace_ufshcd_profile_hibern8(dev_name(hba->dev), "exit",
4403 			     ktime_to_us(ktime_sub(ktime_get(), start)), ret);
4404 
4405 	if (ret) {
4406 		dev_err(hba->dev, "%s: hibern8 exit failed. ret = %d\n",
4407 			__func__, ret);
4408 	} else {
4409 		ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_EXIT,
4410 								POST_CHANGE);
4411 		hba->ufs_stats.last_hibern8_exit_tstamp = local_clock();
4412 		hba->ufs_stats.hibern8_exit_cnt++;
4413 	}
4414 
4415 	return ret;
4416 }
4417 EXPORT_SYMBOL_GPL(ufshcd_uic_hibern8_exit);
4418 
4419 static void ufshcd_configure_auto_hibern8(struct ufs_hba *hba)
4420 {
4421 	if (!ufshcd_is_auto_hibern8_supported(hba))
4422 		return;
4423 
4424 	ufshcd_writel(hba, hba->ahit, REG_AUTO_HIBERNATE_IDLE_TIMER);
4425 }
4426 
4427 void ufshcd_auto_hibern8_update(struct ufs_hba *hba, u32 ahit)
4428 {
4429 	const u32 cur_ahit = READ_ONCE(hba->ahit);
4430 
4431 	if (!ufshcd_is_auto_hibern8_supported(hba) || cur_ahit == ahit)
4432 		return;
4433 
4434 	WRITE_ONCE(hba->ahit, ahit);
4435 	if (!pm_runtime_suspended(&hba->ufs_device_wlun->sdev_gendev)) {
4436 		ufshcd_rpm_get_sync(hba);
4437 		ufshcd_hold(hba);
4438 		ufshcd_configure_auto_hibern8(hba);
4439 		ufshcd_release(hba);
4440 		ufshcd_rpm_put_sync(hba);
4441 	}
4442 }
4443 EXPORT_SYMBOL_GPL(ufshcd_auto_hibern8_update);
4444 
4445  /**
4446  * ufshcd_init_pwr_info - setting the POR (power on reset)
4447  * values in hba power info
4448  * @hba: per-adapter instance
4449  */
4450 static void ufshcd_init_pwr_info(struct ufs_hba *hba)
4451 {
4452 	hba->pwr_info.gear_rx = UFS_PWM_G1;
4453 	hba->pwr_info.gear_tx = UFS_PWM_G1;
4454 	hba->pwr_info.lane_rx = UFS_LANE_1;
4455 	hba->pwr_info.lane_tx = UFS_LANE_1;
4456 	hba->pwr_info.pwr_rx = SLOWAUTO_MODE;
4457 	hba->pwr_info.pwr_tx = SLOWAUTO_MODE;
4458 	hba->pwr_info.hs_rate = 0;
4459 }
4460 
4461 /**
4462  * ufshcd_get_max_pwr_mode - reads the max power mode negotiated with device
4463  * @hba: per-adapter instance
4464  *
4465  * Return: 0 upon success; < 0 upon failure.
4466  */
4467 static int ufshcd_get_max_pwr_mode(struct ufs_hba *hba)
4468 {
4469 	struct ufs_pa_layer_attr *pwr_info = &hba->max_pwr_info.info;
4470 
4471 	if (hba->max_pwr_info.is_valid)
4472 		return 0;
4473 
4474 	if (hba->quirks & UFSHCD_QUIRK_HIBERN_FASTAUTO) {
4475 		pwr_info->pwr_tx = FASTAUTO_MODE;
4476 		pwr_info->pwr_rx = FASTAUTO_MODE;
4477 	} else {
4478 		pwr_info->pwr_tx = FAST_MODE;
4479 		pwr_info->pwr_rx = FAST_MODE;
4480 	}
4481 	pwr_info->hs_rate = PA_HS_MODE_B;
4482 
4483 	/* Get the connected lane count */
4484 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDRXDATALANES),
4485 			&pwr_info->lane_rx);
4486 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4487 			&pwr_info->lane_tx);
4488 
4489 	if (!pwr_info->lane_rx || !pwr_info->lane_tx) {
4490 		dev_err(hba->dev, "%s: invalid connected lanes value. rx=%d, tx=%d\n",
4491 				__func__,
4492 				pwr_info->lane_rx,
4493 				pwr_info->lane_tx);
4494 		return -EINVAL;
4495 	}
4496 
4497 	/*
4498 	 * First, get the maximum gears of HS speed.
4499 	 * If a zero value, it means there is no HSGEAR capability.
4500 	 * Then, get the maximum gears of PWM speed.
4501 	 */
4502 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_MAXRXHSGEAR), &pwr_info->gear_rx);
4503 	if (!pwr_info->gear_rx) {
4504 		ufshcd_dme_get(hba, UIC_ARG_MIB(PA_MAXRXPWMGEAR),
4505 				&pwr_info->gear_rx);
4506 		if (!pwr_info->gear_rx) {
4507 			dev_err(hba->dev, "%s: invalid max pwm rx gear read = %d\n",
4508 				__func__, pwr_info->gear_rx);
4509 			return -EINVAL;
4510 		}
4511 		pwr_info->pwr_rx = SLOW_MODE;
4512 	}
4513 
4514 	ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_MAXRXHSGEAR),
4515 			&pwr_info->gear_tx);
4516 	if (!pwr_info->gear_tx) {
4517 		ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_MAXRXPWMGEAR),
4518 				&pwr_info->gear_tx);
4519 		if (!pwr_info->gear_tx) {
4520 			dev_err(hba->dev, "%s: invalid max pwm tx gear read = %d\n",
4521 				__func__, pwr_info->gear_tx);
4522 			return -EINVAL;
4523 		}
4524 		pwr_info->pwr_tx = SLOW_MODE;
4525 	}
4526 
4527 	hba->max_pwr_info.is_valid = true;
4528 	return 0;
4529 }
4530 
4531 static int ufshcd_change_power_mode(struct ufs_hba *hba,
4532 			     struct ufs_pa_layer_attr *pwr_mode)
4533 {
4534 	int ret;
4535 
4536 	/* if already configured to the requested pwr_mode */
4537 	if (!hba->force_pmc &&
4538 	    pwr_mode->gear_rx == hba->pwr_info.gear_rx &&
4539 	    pwr_mode->gear_tx == hba->pwr_info.gear_tx &&
4540 	    pwr_mode->lane_rx == hba->pwr_info.lane_rx &&
4541 	    pwr_mode->lane_tx == hba->pwr_info.lane_tx &&
4542 	    pwr_mode->pwr_rx == hba->pwr_info.pwr_rx &&
4543 	    pwr_mode->pwr_tx == hba->pwr_info.pwr_tx &&
4544 	    pwr_mode->hs_rate == hba->pwr_info.hs_rate) {
4545 		dev_dbg(hba->dev, "%s: power already configured\n", __func__);
4546 		return 0;
4547 	}
4548 
4549 	/*
4550 	 * Configure attributes for power mode change with below.
4551 	 * - PA_RXGEAR, PA_ACTIVERXDATALANES, PA_RXTERMINATION,
4552 	 * - PA_TXGEAR, PA_ACTIVETXDATALANES, PA_TXTERMINATION,
4553 	 * - PA_HSSERIES
4554 	 */
4555 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXGEAR), pwr_mode->gear_rx);
4556 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVERXDATALANES),
4557 			pwr_mode->lane_rx);
4558 	if (pwr_mode->pwr_rx == FASTAUTO_MODE ||
4559 			pwr_mode->pwr_rx == FAST_MODE)
4560 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), true);
4561 	else
4562 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), false);
4563 
4564 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXGEAR), pwr_mode->gear_tx);
4565 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVETXDATALANES),
4566 			pwr_mode->lane_tx);
4567 	if (pwr_mode->pwr_tx == FASTAUTO_MODE ||
4568 			pwr_mode->pwr_tx == FAST_MODE)
4569 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), true);
4570 	else
4571 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), false);
4572 
4573 	if (pwr_mode->pwr_rx == FASTAUTO_MODE ||
4574 	    pwr_mode->pwr_tx == FASTAUTO_MODE ||
4575 	    pwr_mode->pwr_rx == FAST_MODE ||
4576 	    pwr_mode->pwr_tx == FAST_MODE)
4577 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_HSSERIES),
4578 						pwr_mode->hs_rate);
4579 
4580 	if (!(hba->quirks & UFSHCD_QUIRK_SKIP_DEF_UNIPRO_TIMEOUT_SETTING)) {
4581 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA0),
4582 				DL_FC0ProtectionTimeOutVal_Default);
4583 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA1),
4584 				DL_TC0ReplayTimeOutVal_Default);
4585 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA2),
4586 				DL_AFC0ReqTimeOutVal_Default);
4587 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA3),
4588 				DL_FC1ProtectionTimeOutVal_Default);
4589 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA4),
4590 				DL_TC1ReplayTimeOutVal_Default);
4591 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA5),
4592 				DL_AFC1ReqTimeOutVal_Default);
4593 
4594 		ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalFC0ProtectionTimeOutVal),
4595 				DL_FC0ProtectionTimeOutVal_Default);
4596 		ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalTC0ReplayTimeOutVal),
4597 				DL_TC0ReplayTimeOutVal_Default);
4598 		ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalAFC0ReqTimeOutVal),
4599 				DL_AFC0ReqTimeOutVal_Default);
4600 	}
4601 
4602 	ret = ufshcd_uic_change_pwr_mode(hba, pwr_mode->pwr_rx << 4
4603 			| pwr_mode->pwr_tx);
4604 
4605 	if (ret) {
4606 		dev_err(hba->dev,
4607 			"%s: power mode change failed %d\n", __func__, ret);
4608 	} else {
4609 		ufshcd_vops_pwr_change_notify(hba, POST_CHANGE, NULL,
4610 								pwr_mode);
4611 
4612 		memcpy(&hba->pwr_info, pwr_mode,
4613 			sizeof(struct ufs_pa_layer_attr));
4614 	}
4615 
4616 	return ret;
4617 }
4618 
4619 /**
4620  * ufshcd_config_pwr_mode - configure a new power mode
4621  * @hba: per-adapter instance
4622  * @desired_pwr_mode: desired power configuration
4623  *
4624  * Return: 0 upon success; < 0 upon failure.
4625  */
4626 int ufshcd_config_pwr_mode(struct ufs_hba *hba,
4627 		struct ufs_pa_layer_attr *desired_pwr_mode)
4628 {
4629 	struct ufs_pa_layer_attr final_params = { 0 };
4630 	int ret;
4631 
4632 	ret = ufshcd_vops_pwr_change_notify(hba, PRE_CHANGE,
4633 					desired_pwr_mode, &final_params);
4634 
4635 	if (ret)
4636 		memcpy(&final_params, desired_pwr_mode, sizeof(final_params));
4637 
4638 	ret = ufshcd_change_power_mode(hba, &final_params);
4639 
4640 	return ret;
4641 }
4642 EXPORT_SYMBOL_GPL(ufshcd_config_pwr_mode);
4643 
4644 /**
4645  * ufshcd_complete_dev_init() - checks device readiness
4646  * @hba: per-adapter instance
4647  *
4648  * Set fDeviceInit flag and poll until device toggles it.
4649  *
4650  * Return: 0 upon success; < 0 upon failure.
4651  */
4652 static int ufshcd_complete_dev_init(struct ufs_hba *hba)
4653 {
4654 	int err;
4655 	bool flag_res = true;
4656 	ktime_t timeout;
4657 
4658 	err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG,
4659 		QUERY_FLAG_IDN_FDEVICEINIT, 0, NULL);
4660 	if (err) {
4661 		dev_err(hba->dev,
4662 			"%s: setting fDeviceInit flag failed with error %d\n",
4663 			__func__, err);
4664 		goto out;
4665 	}
4666 
4667 	/* Poll fDeviceInit flag to be cleared */
4668 	timeout = ktime_add_ms(ktime_get(), FDEVICEINIT_COMPL_TIMEOUT);
4669 	do {
4670 		err = ufshcd_query_flag(hba, UPIU_QUERY_OPCODE_READ_FLAG,
4671 					QUERY_FLAG_IDN_FDEVICEINIT, 0, &flag_res);
4672 		if (!flag_res)
4673 			break;
4674 		usleep_range(500, 1000);
4675 	} while (ktime_before(ktime_get(), timeout));
4676 
4677 	if (err) {
4678 		dev_err(hba->dev,
4679 				"%s: reading fDeviceInit flag failed with error %d\n",
4680 				__func__, err);
4681 	} else if (flag_res) {
4682 		dev_err(hba->dev,
4683 				"%s: fDeviceInit was not cleared by the device\n",
4684 				__func__);
4685 		err = -EBUSY;
4686 	}
4687 out:
4688 	return err;
4689 }
4690 
4691 /**
4692  * ufshcd_make_hba_operational - Make UFS controller operational
4693  * @hba: per adapter instance
4694  *
4695  * To bring UFS host controller to operational state,
4696  * 1. Enable required interrupts
4697  * 2. Configure interrupt aggregation
4698  * 3. Program UTRL and UTMRL base address
4699  * 4. Configure run-stop-registers
4700  *
4701  * Return: 0 on success, non-zero value on failure.
4702  */
4703 int ufshcd_make_hba_operational(struct ufs_hba *hba)
4704 {
4705 	int err = 0;
4706 	u32 reg;
4707 
4708 	/* Enable required interrupts */
4709 	ufshcd_enable_intr(hba, UFSHCD_ENABLE_INTRS);
4710 
4711 	/* Configure interrupt aggregation */
4712 	if (ufshcd_is_intr_aggr_allowed(hba))
4713 		ufshcd_config_intr_aggr(hba, hba->nutrs - 1, INT_AGGR_DEF_TO);
4714 	else
4715 		ufshcd_disable_intr_aggr(hba);
4716 
4717 	/* Configure UTRL and UTMRL base address registers */
4718 	ufshcd_writel(hba, lower_32_bits(hba->utrdl_dma_addr),
4719 			REG_UTP_TRANSFER_REQ_LIST_BASE_L);
4720 	ufshcd_writel(hba, upper_32_bits(hba->utrdl_dma_addr),
4721 			REG_UTP_TRANSFER_REQ_LIST_BASE_H);
4722 	ufshcd_writel(hba, lower_32_bits(hba->utmrdl_dma_addr),
4723 			REG_UTP_TASK_REQ_LIST_BASE_L);
4724 	ufshcd_writel(hba, upper_32_bits(hba->utmrdl_dma_addr),
4725 			REG_UTP_TASK_REQ_LIST_BASE_H);
4726 
4727 	/*
4728 	 * Make sure base address and interrupt setup are updated before
4729 	 * enabling the run/stop registers below.
4730 	 */
4731 	wmb();
4732 
4733 	/*
4734 	 * UCRDY, UTMRLDY and UTRLRDY bits must be 1
4735 	 */
4736 	reg = ufshcd_readl(hba, REG_CONTROLLER_STATUS);
4737 	if (!(ufshcd_get_lists_status(reg))) {
4738 		ufshcd_enable_run_stop_reg(hba);
4739 	} else {
4740 		dev_err(hba->dev,
4741 			"Host controller not ready to process requests");
4742 		err = -EIO;
4743 	}
4744 
4745 	return err;
4746 }
4747 EXPORT_SYMBOL_GPL(ufshcd_make_hba_operational);
4748 
4749 /**
4750  * ufshcd_hba_stop - Send controller to reset state
4751  * @hba: per adapter instance
4752  */
4753 void ufshcd_hba_stop(struct ufs_hba *hba)
4754 {
4755 	unsigned long flags;
4756 	int err;
4757 
4758 	/*
4759 	 * Obtain the host lock to prevent that the controller is disabled
4760 	 * while the UFS interrupt handler is active on another CPU.
4761 	 */
4762 	spin_lock_irqsave(hba->host->host_lock, flags);
4763 	ufshcd_writel(hba, CONTROLLER_DISABLE,  REG_CONTROLLER_ENABLE);
4764 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4765 
4766 	err = ufshcd_wait_for_register(hba, REG_CONTROLLER_ENABLE,
4767 					CONTROLLER_ENABLE, CONTROLLER_DISABLE,
4768 					10, 1);
4769 	if (err)
4770 		dev_err(hba->dev, "%s: Controller disable failed\n", __func__);
4771 }
4772 EXPORT_SYMBOL_GPL(ufshcd_hba_stop);
4773 
4774 /**
4775  * ufshcd_hba_execute_hce - initialize the controller
4776  * @hba: per adapter instance
4777  *
4778  * The controller resets itself and controller firmware initialization
4779  * sequence kicks off. When controller is ready it will set
4780  * the Host Controller Enable bit to 1.
4781  *
4782  * Return: 0 on success, non-zero value on failure.
4783  */
4784 static int ufshcd_hba_execute_hce(struct ufs_hba *hba)
4785 {
4786 	int retry_outer = 3;
4787 	int retry_inner;
4788 
4789 start:
4790 	if (ufshcd_is_hba_active(hba))
4791 		/* change controller state to "reset state" */
4792 		ufshcd_hba_stop(hba);
4793 
4794 	/* UniPro link is disabled at this point */
4795 	ufshcd_set_link_off(hba);
4796 
4797 	ufshcd_vops_hce_enable_notify(hba, PRE_CHANGE);
4798 
4799 	/* start controller initialization sequence */
4800 	ufshcd_hba_start(hba);
4801 
4802 	/*
4803 	 * To initialize a UFS host controller HCE bit must be set to 1.
4804 	 * During initialization the HCE bit value changes from 1->0->1.
4805 	 * When the host controller completes initialization sequence
4806 	 * it sets the value of HCE bit to 1. The same HCE bit is read back
4807 	 * to check if the controller has completed initialization sequence.
4808 	 * So without this delay the value HCE = 1, set in the previous
4809 	 * instruction might be read back.
4810 	 * This delay can be changed based on the controller.
4811 	 */
4812 	ufshcd_delay_us(hba->vps->hba_enable_delay_us, 100);
4813 
4814 	/* wait for the host controller to complete initialization */
4815 	retry_inner = 50;
4816 	while (!ufshcd_is_hba_active(hba)) {
4817 		if (retry_inner) {
4818 			retry_inner--;
4819 		} else {
4820 			dev_err(hba->dev,
4821 				"Controller enable failed\n");
4822 			if (retry_outer) {
4823 				retry_outer--;
4824 				goto start;
4825 			}
4826 			return -EIO;
4827 		}
4828 		usleep_range(1000, 1100);
4829 	}
4830 
4831 	/* enable UIC related interrupts */
4832 	ufshcd_enable_intr(hba, UFSHCD_UIC_MASK);
4833 
4834 	ufshcd_vops_hce_enable_notify(hba, POST_CHANGE);
4835 
4836 	return 0;
4837 }
4838 
4839 int ufshcd_hba_enable(struct ufs_hba *hba)
4840 {
4841 	int ret;
4842 
4843 	if (hba->quirks & UFSHCI_QUIRK_BROKEN_HCE) {
4844 		ufshcd_set_link_off(hba);
4845 		ufshcd_vops_hce_enable_notify(hba, PRE_CHANGE);
4846 
4847 		/* enable UIC related interrupts */
4848 		ufshcd_enable_intr(hba, UFSHCD_UIC_MASK);
4849 		ret = ufshcd_dme_reset(hba);
4850 		if (ret) {
4851 			dev_err(hba->dev, "DME_RESET failed\n");
4852 			return ret;
4853 		}
4854 
4855 		ret = ufshcd_dme_enable(hba);
4856 		if (ret) {
4857 			dev_err(hba->dev, "Enabling DME failed\n");
4858 			return ret;
4859 		}
4860 
4861 		ufshcd_vops_hce_enable_notify(hba, POST_CHANGE);
4862 	} else {
4863 		ret = ufshcd_hba_execute_hce(hba);
4864 	}
4865 
4866 	return ret;
4867 }
4868 EXPORT_SYMBOL_GPL(ufshcd_hba_enable);
4869 
4870 static int ufshcd_disable_tx_lcc(struct ufs_hba *hba, bool peer)
4871 {
4872 	int tx_lanes = 0, i, err = 0;
4873 
4874 	if (!peer)
4875 		ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4876 			       &tx_lanes);
4877 	else
4878 		ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4879 				    &tx_lanes);
4880 	for (i = 0; i < tx_lanes; i++) {
4881 		if (!peer)
4882 			err = ufshcd_dme_set(hba,
4883 				UIC_ARG_MIB_SEL(TX_LCC_ENABLE,
4884 					UIC_ARG_MPHY_TX_GEN_SEL_INDEX(i)),
4885 					0);
4886 		else
4887 			err = ufshcd_dme_peer_set(hba,
4888 				UIC_ARG_MIB_SEL(TX_LCC_ENABLE,
4889 					UIC_ARG_MPHY_TX_GEN_SEL_INDEX(i)),
4890 					0);
4891 		if (err) {
4892 			dev_err(hba->dev, "%s: TX LCC Disable failed, peer = %d, lane = %d, err = %d",
4893 				__func__, peer, i, err);
4894 			break;
4895 		}
4896 	}
4897 
4898 	return err;
4899 }
4900 
4901 static inline int ufshcd_disable_device_tx_lcc(struct ufs_hba *hba)
4902 {
4903 	return ufshcd_disable_tx_lcc(hba, true);
4904 }
4905 
4906 void ufshcd_update_evt_hist(struct ufs_hba *hba, u32 id, u32 val)
4907 {
4908 	struct ufs_event_hist *e;
4909 
4910 	if (id >= UFS_EVT_CNT)
4911 		return;
4912 
4913 	e = &hba->ufs_stats.event[id];
4914 	e->val[e->pos] = val;
4915 	e->tstamp[e->pos] = local_clock();
4916 	e->cnt += 1;
4917 	e->pos = (e->pos + 1) % UFS_EVENT_HIST_LENGTH;
4918 
4919 	ufshcd_vops_event_notify(hba, id, &val);
4920 }
4921 EXPORT_SYMBOL_GPL(ufshcd_update_evt_hist);
4922 
4923 /**
4924  * ufshcd_link_startup - Initialize unipro link startup
4925  * @hba: per adapter instance
4926  *
4927  * Return: 0 for success, non-zero in case of failure.
4928  */
4929 static int ufshcd_link_startup(struct ufs_hba *hba)
4930 {
4931 	int ret;
4932 	int retries = DME_LINKSTARTUP_RETRIES;
4933 	bool link_startup_again = false;
4934 
4935 	/*
4936 	 * If UFS device isn't active then we will have to issue link startup
4937 	 * 2 times to make sure the device state move to active.
4938 	 */
4939 	if (!ufshcd_is_ufs_dev_active(hba))
4940 		link_startup_again = true;
4941 
4942 link_startup:
4943 	do {
4944 		ufshcd_vops_link_startup_notify(hba, PRE_CHANGE);
4945 
4946 		ret = ufshcd_dme_link_startup(hba);
4947 
4948 		/* check if device is detected by inter-connect layer */
4949 		if (!ret && !ufshcd_is_device_present(hba)) {
4950 			ufshcd_update_evt_hist(hba,
4951 					       UFS_EVT_LINK_STARTUP_FAIL,
4952 					       0);
4953 			dev_err(hba->dev, "%s: Device not present\n", __func__);
4954 			ret = -ENXIO;
4955 			goto out;
4956 		}
4957 
4958 		/*
4959 		 * DME link lost indication is only received when link is up,
4960 		 * but we can't be sure if the link is up until link startup
4961 		 * succeeds. So reset the local Uni-Pro and try again.
4962 		 */
4963 		if (ret && retries && ufshcd_hba_enable(hba)) {
4964 			ufshcd_update_evt_hist(hba,
4965 					       UFS_EVT_LINK_STARTUP_FAIL,
4966 					       (u32)ret);
4967 			goto out;
4968 		}
4969 	} while (ret && retries--);
4970 
4971 	if (ret) {
4972 		/* failed to get the link up... retire */
4973 		ufshcd_update_evt_hist(hba,
4974 				       UFS_EVT_LINK_STARTUP_FAIL,
4975 				       (u32)ret);
4976 		goto out;
4977 	}
4978 
4979 	if (link_startup_again) {
4980 		link_startup_again = false;
4981 		retries = DME_LINKSTARTUP_RETRIES;
4982 		goto link_startup;
4983 	}
4984 
4985 	/* Mark that link is up in PWM-G1, 1-lane, SLOW-AUTO mode */
4986 	ufshcd_init_pwr_info(hba);
4987 	ufshcd_print_pwr_info(hba);
4988 
4989 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_LCC) {
4990 		ret = ufshcd_disable_device_tx_lcc(hba);
4991 		if (ret)
4992 			goto out;
4993 	}
4994 
4995 	/* Include any host controller configuration via UIC commands */
4996 	ret = ufshcd_vops_link_startup_notify(hba, POST_CHANGE);
4997 	if (ret)
4998 		goto out;
4999 
5000 	/* Clear UECPA once due to LINERESET has happened during LINK_STARTUP */
5001 	ufshcd_readl(hba, REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER);
5002 	ret = ufshcd_make_hba_operational(hba);
5003 out:
5004 	if (ret) {
5005 		dev_err(hba->dev, "link startup failed %d\n", ret);
5006 		ufshcd_print_host_state(hba);
5007 		ufshcd_print_pwr_info(hba);
5008 		ufshcd_print_evt_hist(hba);
5009 	}
5010 	return ret;
5011 }
5012 
5013 /**
5014  * ufshcd_verify_dev_init() - Verify device initialization
5015  * @hba: per-adapter instance
5016  *
5017  * Send NOP OUT UPIU and wait for NOP IN response to check whether the
5018  * device Transport Protocol (UTP) layer is ready after a reset.
5019  * If the UTP layer at the device side is not initialized, it may
5020  * not respond with NOP IN UPIU within timeout of %NOP_OUT_TIMEOUT
5021  * and we retry sending NOP OUT for %NOP_OUT_RETRIES iterations.
5022  *
5023  * Return: 0 upon success; < 0 upon failure.
5024  */
5025 static int ufshcd_verify_dev_init(struct ufs_hba *hba)
5026 {
5027 	int err = 0;
5028 	int retries;
5029 
5030 	ufshcd_hold(hba);
5031 	mutex_lock(&hba->dev_cmd.lock);
5032 	for (retries = NOP_OUT_RETRIES; retries > 0; retries--) {
5033 		err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_NOP,
5034 					  hba->nop_out_timeout);
5035 
5036 		if (!err || err == -ETIMEDOUT)
5037 			break;
5038 
5039 		dev_dbg(hba->dev, "%s: error %d retrying\n", __func__, err);
5040 	}
5041 	mutex_unlock(&hba->dev_cmd.lock);
5042 	ufshcd_release(hba);
5043 
5044 	if (err)
5045 		dev_err(hba->dev, "%s: NOP OUT failed %d\n", __func__, err);
5046 	return err;
5047 }
5048 
5049 /**
5050  * ufshcd_setup_links - associate link b/w device wlun and other luns
5051  * @sdev: pointer to SCSI device
5052  * @hba: pointer to ufs hba
5053  */
5054 static void ufshcd_setup_links(struct ufs_hba *hba, struct scsi_device *sdev)
5055 {
5056 	struct device_link *link;
5057 
5058 	/*
5059 	 * Device wlun is the supplier & rest of the luns are consumers.
5060 	 * This ensures that device wlun suspends after all other luns.
5061 	 */
5062 	if (hba->ufs_device_wlun) {
5063 		link = device_link_add(&sdev->sdev_gendev,
5064 				       &hba->ufs_device_wlun->sdev_gendev,
5065 				       DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE);
5066 		if (!link) {
5067 			dev_err(&sdev->sdev_gendev, "Failed establishing link - %s\n",
5068 				dev_name(&hba->ufs_device_wlun->sdev_gendev));
5069 			return;
5070 		}
5071 		hba->luns_avail--;
5072 		/* Ignore REPORT_LUN wlun probing */
5073 		if (hba->luns_avail == 1) {
5074 			ufshcd_rpm_put(hba);
5075 			return;
5076 		}
5077 	} else {
5078 		/*
5079 		 * Device wlun is probed. The assumption is that WLUNs are
5080 		 * scanned before other LUNs.
5081 		 */
5082 		hba->luns_avail--;
5083 	}
5084 }
5085 
5086 /**
5087  * ufshcd_lu_init - Initialize the relevant parameters of the LU
5088  * @hba: per-adapter instance
5089  * @sdev: pointer to SCSI device
5090  */
5091 static void ufshcd_lu_init(struct ufs_hba *hba, struct scsi_device *sdev)
5092 {
5093 	int len = QUERY_DESC_MAX_SIZE;
5094 	u8 lun = ufshcd_scsi_to_upiu_lun(sdev->lun);
5095 	u8 lun_qdepth = hba->nutrs;
5096 	u8 *desc_buf;
5097 	int ret;
5098 
5099 	desc_buf = kzalloc(len, GFP_KERNEL);
5100 	if (!desc_buf)
5101 		goto set_qdepth;
5102 
5103 	ret = ufshcd_read_unit_desc_param(hba, lun, 0, desc_buf, len);
5104 	if (ret < 0) {
5105 		if (ret == -EOPNOTSUPP)
5106 			/* If LU doesn't support unit descriptor, its queue depth is set to 1 */
5107 			lun_qdepth = 1;
5108 		kfree(desc_buf);
5109 		goto set_qdepth;
5110 	}
5111 
5112 	if (desc_buf[UNIT_DESC_PARAM_LU_Q_DEPTH]) {
5113 		/*
5114 		 * In per-LU queueing architecture, bLUQueueDepth will not be 0, then we will
5115 		 * use the smaller between UFSHCI CAP.NUTRS and UFS LU bLUQueueDepth
5116 		 */
5117 		lun_qdepth = min_t(int, desc_buf[UNIT_DESC_PARAM_LU_Q_DEPTH], hba->nutrs);
5118 	}
5119 	/*
5120 	 * According to UFS device specification, the write protection mode is only supported by
5121 	 * normal LU, not supported by WLUN.
5122 	 */
5123 	if (hba->dev_info.f_power_on_wp_en && lun < hba->dev_info.max_lu_supported &&
5124 	    !hba->dev_info.is_lu_power_on_wp &&
5125 	    desc_buf[UNIT_DESC_PARAM_LU_WR_PROTECT] == UFS_LU_POWER_ON_WP)
5126 		hba->dev_info.is_lu_power_on_wp = true;
5127 
5128 	/* In case of RPMB LU, check if advanced RPMB mode is enabled */
5129 	if (desc_buf[UNIT_DESC_PARAM_UNIT_INDEX] == UFS_UPIU_RPMB_WLUN &&
5130 	    desc_buf[RPMB_UNIT_DESC_PARAM_REGION_EN] & BIT(4))
5131 		hba->dev_info.b_advanced_rpmb_en = true;
5132 
5133 
5134 	kfree(desc_buf);
5135 set_qdepth:
5136 	/*
5137 	 * For WLUNs that don't support unit descriptor, queue depth is set to 1. For LUs whose
5138 	 * bLUQueueDepth == 0, the queue depth is set to a maximum value that host can queue.
5139 	 */
5140 	dev_dbg(hba->dev, "Set LU %x queue depth %d\n", lun, lun_qdepth);
5141 	scsi_change_queue_depth(sdev, lun_qdepth);
5142 }
5143 
5144 /**
5145  * ufshcd_slave_alloc - handle initial SCSI device configurations
5146  * @sdev: pointer to SCSI device
5147  *
5148  * Return: success.
5149  */
5150 static int ufshcd_slave_alloc(struct scsi_device *sdev)
5151 {
5152 	struct ufs_hba *hba;
5153 
5154 	hba = shost_priv(sdev->host);
5155 
5156 	/* Mode sense(6) is not supported by UFS, so use Mode sense(10) */
5157 	sdev->use_10_for_ms = 1;
5158 
5159 	/* DBD field should be set to 1 in mode sense(10) */
5160 	sdev->set_dbd_for_ms = 1;
5161 
5162 	/* allow SCSI layer to restart the device in case of errors */
5163 	sdev->allow_restart = 1;
5164 
5165 	/* REPORT SUPPORTED OPERATION CODES is not supported */
5166 	sdev->no_report_opcodes = 1;
5167 
5168 	/* WRITE_SAME command is not supported */
5169 	sdev->no_write_same = 1;
5170 
5171 	ufshcd_lu_init(hba, sdev);
5172 
5173 	ufshcd_setup_links(hba, sdev);
5174 
5175 	return 0;
5176 }
5177 
5178 /**
5179  * ufshcd_change_queue_depth - change queue depth
5180  * @sdev: pointer to SCSI device
5181  * @depth: required depth to set
5182  *
5183  * Change queue depth and make sure the max. limits are not crossed.
5184  *
5185  * Return: new queue depth.
5186  */
5187 static int ufshcd_change_queue_depth(struct scsi_device *sdev, int depth)
5188 {
5189 	return scsi_change_queue_depth(sdev, min(depth, sdev->host->can_queue));
5190 }
5191 
5192 /**
5193  * ufshcd_slave_configure - adjust SCSI device configurations
5194  * @sdev: pointer to SCSI device
5195  *
5196  * Return: 0 (success).
5197  */
5198 static int ufshcd_slave_configure(struct scsi_device *sdev)
5199 {
5200 	struct ufs_hba *hba = shost_priv(sdev->host);
5201 	struct request_queue *q = sdev->request_queue;
5202 
5203 	blk_queue_update_dma_pad(q, PRDT_DATA_BYTE_COUNT_PAD - 1);
5204 
5205 	/*
5206 	 * Block runtime-pm until all consumers are added.
5207 	 * Refer ufshcd_setup_links().
5208 	 */
5209 	if (is_device_wlun(sdev))
5210 		pm_runtime_get_noresume(&sdev->sdev_gendev);
5211 	else if (ufshcd_is_rpm_autosuspend_allowed(hba))
5212 		sdev->rpm_autosuspend = 1;
5213 	/*
5214 	 * Do not print messages during runtime PM to avoid never-ending cycles
5215 	 * of messages written back to storage by user space causing runtime
5216 	 * resume, causing more messages and so on.
5217 	 */
5218 	sdev->silence_suspend = 1;
5219 
5220 	if (hba->vops && hba->vops->config_scsi_dev)
5221 		hba->vops->config_scsi_dev(sdev);
5222 
5223 	ufshcd_crypto_register(hba, q);
5224 
5225 	return 0;
5226 }
5227 
5228 /**
5229  * ufshcd_slave_destroy - remove SCSI device configurations
5230  * @sdev: pointer to SCSI device
5231  */
5232 static void ufshcd_slave_destroy(struct scsi_device *sdev)
5233 {
5234 	struct ufs_hba *hba;
5235 	unsigned long flags;
5236 
5237 	hba = shost_priv(sdev->host);
5238 
5239 	/* Drop the reference as it won't be needed anymore */
5240 	if (ufshcd_scsi_to_upiu_lun(sdev->lun) == UFS_UPIU_UFS_DEVICE_WLUN) {
5241 		spin_lock_irqsave(hba->host->host_lock, flags);
5242 		hba->ufs_device_wlun = NULL;
5243 		spin_unlock_irqrestore(hba->host->host_lock, flags);
5244 	} else if (hba->ufs_device_wlun) {
5245 		struct device *supplier = NULL;
5246 
5247 		/* Ensure UFS Device WLUN exists and does not disappear */
5248 		spin_lock_irqsave(hba->host->host_lock, flags);
5249 		if (hba->ufs_device_wlun) {
5250 			supplier = &hba->ufs_device_wlun->sdev_gendev;
5251 			get_device(supplier);
5252 		}
5253 		spin_unlock_irqrestore(hba->host->host_lock, flags);
5254 
5255 		if (supplier) {
5256 			/*
5257 			 * If a LUN fails to probe (e.g. absent BOOT WLUN), the
5258 			 * device will not have been registered but can still
5259 			 * have a device link holding a reference to the device.
5260 			 */
5261 			device_link_remove(&sdev->sdev_gendev, supplier);
5262 			put_device(supplier);
5263 		}
5264 	}
5265 }
5266 
5267 /**
5268  * ufshcd_scsi_cmd_status - Update SCSI command result based on SCSI status
5269  * @lrbp: pointer to local reference block of completed command
5270  * @scsi_status: SCSI command status
5271  *
5272  * Return: value base on SCSI command status.
5273  */
5274 static inline int
5275 ufshcd_scsi_cmd_status(struct ufshcd_lrb *lrbp, int scsi_status)
5276 {
5277 	int result = 0;
5278 
5279 	switch (scsi_status) {
5280 	case SAM_STAT_CHECK_CONDITION:
5281 		ufshcd_copy_sense_data(lrbp);
5282 		fallthrough;
5283 	case SAM_STAT_GOOD:
5284 		result |= DID_OK << 16 | scsi_status;
5285 		break;
5286 	case SAM_STAT_TASK_SET_FULL:
5287 	case SAM_STAT_BUSY:
5288 	case SAM_STAT_TASK_ABORTED:
5289 		ufshcd_copy_sense_data(lrbp);
5290 		result |= scsi_status;
5291 		break;
5292 	default:
5293 		result |= DID_ERROR << 16;
5294 		break;
5295 	} /* end of switch */
5296 
5297 	return result;
5298 }
5299 
5300 /**
5301  * ufshcd_transfer_rsp_status - Get overall status of the response
5302  * @hba: per adapter instance
5303  * @lrbp: pointer to local reference block of completed command
5304  * @cqe: pointer to the completion queue entry
5305  *
5306  * Return: result of the command to notify SCSI midlayer.
5307  */
5308 static inline int
5309 ufshcd_transfer_rsp_status(struct ufs_hba *hba, struct ufshcd_lrb *lrbp,
5310 			   struct cq_entry *cqe)
5311 {
5312 	int result = 0;
5313 	int scsi_status;
5314 	enum utp_ocs ocs;
5315 	u8 upiu_flags;
5316 	u32 resid;
5317 
5318 	upiu_flags = lrbp->ucd_rsp_ptr->header.flags;
5319 	resid = be32_to_cpu(lrbp->ucd_rsp_ptr->sr.residual_transfer_count);
5320 	/*
5321 	 * Test !overflow instead of underflow to support UFS devices that do
5322 	 * not set either flag.
5323 	 */
5324 	if (resid && !(upiu_flags & UPIU_RSP_FLAG_OVERFLOW))
5325 		scsi_set_resid(lrbp->cmd, resid);
5326 
5327 	/* overall command status of utrd */
5328 	ocs = ufshcd_get_tr_ocs(lrbp, cqe);
5329 
5330 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_OCS_FATAL_ERROR) {
5331 		if (lrbp->ucd_rsp_ptr->header.response ||
5332 		    lrbp->ucd_rsp_ptr->header.status)
5333 			ocs = OCS_SUCCESS;
5334 	}
5335 
5336 	switch (ocs) {
5337 	case OCS_SUCCESS:
5338 		hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
5339 		switch (ufshcd_get_req_rsp(lrbp->ucd_rsp_ptr)) {
5340 		case UPIU_TRANSACTION_RESPONSE:
5341 			/*
5342 			 * get the result based on SCSI status response
5343 			 * to notify the SCSI midlayer of the command status
5344 			 */
5345 			scsi_status = lrbp->ucd_rsp_ptr->header.status;
5346 			result = ufshcd_scsi_cmd_status(lrbp, scsi_status);
5347 
5348 			/*
5349 			 * Currently we are only supporting BKOPs exception
5350 			 * events hence we can ignore BKOPs exception event
5351 			 * during power management callbacks. BKOPs exception
5352 			 * event is not expected to be raised in runtime suspend
5353 			 * callback as it allows the urgent bkops.
5354 			 * During system suspend, we are anyway forcefully
5355 			 * disabling the bkops and if urgent bkops is needed
5356 			 * it will be enabled on system resume. Long term
5357 			 * solution could be to abort the system suspend if
5358 			 * UFS device needs urgent BKOPs.
5359 			 */
5360 			if (!hba->pm_op_in_progress &&
5361 			    !ufshcd_eh_in_progress(hba) &&
5362 			    ufshcd_is_exception_event(lrbp->ucd_rsp_ptr))
5363 				/* Flushed in suspend */
5364 				schedule_work(&hba->eeh_work);
5365 			break;
5366 		case UPIU_TRANSACTION_REJECT_UPIU:
5367 			/* TODO: handle Reject UPIU Response */
5368 			result = DID_ERROR << 16;
5369 			dev_err(hba->dev,
5370 				"Reject UPIU not fully implemented\n");
5371 			break;
5372 		default:
5373 			dev_err(hba->dev,
5374 				"Unexpected request response code = %x\n",
5375 				result);
5376 			result = DID_ERROR << 16;
5377 			break;
5378 		}
5379 		break;
5380 	case OCS_ABORTED:
5381 		result |= DID_ABORT << 16;
5382 		break;
5383 	case OCS_INVALID_COMMAND_STATUS:
5384 		result |= DID_REQUEUE << 16;
5385 		break;
5386 	case OCS_INVALID_CMD_TABLE_ATTR:
5387 	case OCS_INVALID_PRDT_ATTR:
5388 	case OCS_MISMATCH_DATA_BUF_SIZE:
5389 	case OCS_MISMATCH_RESP_UPIU_SIZE:
5390 	case OCS_PEER_COMM_FAILURE:
5391 	case OCS_FATAL_ERROR:
5392 	case OCS_DEVICE_FATAL_ERROR:
5393 	case OCS_INVALID_CRYPTO_CONFIG:
5394 	case OCS_GENERAL_CRYPTO_ERROR:
5395 	default:
5396 		result |= DID_ERROR << 16;
5397 		dev_err(hba->dev,
5398 				"OCS error from controller = %x for tag %d\n",
5399 				ocs, lrbp->task_tag);
5400 		ufshcd_print_evt_hist(hba);
5401 		ufshcd_print_host_state(hba);
5402 		break;
5403 	} /* end of switch */
5404 
5405 	if ((host_byte(result) != DID_OK) &&
5406 	    (host_byte(result) != DID_REQUEUE) && !hba->silence_err_logs)
5407 		ufshcd_print_tr(hba, lrbp->task_tag, true);
5408 	return result;
5409 }
5410 
5411 static bool ufshcd_is_auto_hibern8_error(struct ufs_hba *hba,
5412 					 u32 intr_mask)
5413 {
5414 	if (!ufshcd_is_auto_hibern8_supported(hba) ||
5415 	    !ufshcd_is_auto_hibern8_enabled(hba))
5416 		return false;
5417 
5418 	if (!(intr_mask & UFSHCD_UIC_HIBERN8_MASK))
5419 		return false;
5420 
5421 	if (hba->active_uic_cmd &&
5422 	    (hba->active_uic_cmd->command == UIC_CMD_DME_HIBER_ENTER ||
5423 	    hba->active_uic_cmd->command == UIC_CMD_DME_HIBER_EXIT))
5424 		return false;
5425 
5426 	return true;
5427 }
5428 
5429 /**
5430  * ufshcd_uic_cmd_compl - handle completion of uic command
5431  * @hba: per adapter instance
5432  * @intr_status: interrupt status generated by the controller
5433  *
5434  * Return:
5435  *  IRQ_HANDLED - If interrupt is valid
5436  *  IRQ_NONE    - If invalid interrupt
5437  */
5438 static irqreturn_t ufshcd_uic_cmd_compl(struct ufs_hba *hba, u32 intr_status)
5439 {
5440 	irqreturn_t retval = IRQ_NONE;
5441 
5442 	spin_lock(hba->host->host_lock);
5443 	if (ufshcd_is_auto_hibern8_error(hba, intr_status))
5444 		hba->errors |= (UFSHCD_UIC_HIBERN8_MASK & intr_status);
5445 
5446 	if ((intr_status & UIC_COMMAND_COMPL) && hba->active_uic_cmd) {
5447 		hba->active_uic_cmd->argument2 |=
5448 			ufshcd_get_uic_cmd_result(hba);
5449 		hba->active_uic_cmd->argument3 =
5450 			ufshcd_get_dme_attr_val(hba);
5451 		if (!hba->uic_async_done)
5452 			hba->active_uic_cmd->cmd_active = 0;
5453 		complete(&hba->active_uic_cmd->done);
5454 		retval = IRQ_HANDLED;
5455 	}
5456 
5457 	if ((intr_status & UFSHCD_UIC_PWR_MASK) && hba->uic_async_done) {
5458 		hba->active_uic_cmd->cmd_active = 0;
5459 		complete(hba->uic_async_done);
5460 		retval = IRQ_HANDLED;
5461 	}
5462 
5463 	if (retval == IRQ_HANDLED)
5464 		ufshcd_add_uic_command_trace(hba, hba->active_uic_cmd,
5465 					     UFS_CMD_COMP);
5466 	spin_unlock(hba->host->host_lock);
5467 	return retval;
5468 }
5469 
5470 /* Release the resources allocated for processing a SCSI command. */
5471 void ufshcd_release_scsi_cmd(struct ufs_hba *hba,
5472 			     struct ufshcd_lrb *lrbp)
5473 {
5474 	struct scsi_cmnd *cmd = lrbp->cmd;
5475 
5476 	scsi_dma_unmap(cmd);
5477 	ufshcd_release(hba);
5478 	ufshcd_clk_scaling_update_busy(hba);
5479 }
5480 
5481 /**
5482  * ufshcd_compl_one_cqe - handle a completion queue entry
5483  * @hba: per adapter instance
5484  * @task_tag: the task tag of the request to be completed
5485  * @cqe: pointer to the completion queue entry
5486  */
5487 void ufshcd_compl_one_cqe(struct ufs_hba *hba, int task_tag,
5488 			  struct cq_entry *cqe)
5489 {
5490 	struct ufshcd_lrb *lrbp;
5491 	struct scsi_cmnd *cmd;
5492 	enum utp_ocs ocs;
5493 
5494 	lrbp = &hba->lrb[task_tag];
5495 	lrbp->compl_time_stamp = ktime_get();
5496 	cmd = lrbp->cmd;
5497 	if (cmd) {
5498 		if (unlikely(ufshcd_should_inform_monitor(hba, lrbp)))
5499 			ufshcd_update_monitor(hba, lrbp);
5500 		ufshcd_add_command_trace(hba, task_tag, UFS_CMD_COMP);
5501 		cmd->result = ufshcd_transfer_rsp_status(hba, lrbp, cqe);
5502 		ufshcd_release_scsi_cmd(hba, lrbp);
5503 		/* Do not touch lrbp after scsi done */
5504 		scsi_done(cmd);
5505 	} else if (lrbp->command_type == UTP_CMD_TYPE_DEV_MANAGE ||
5506 		   lrbp->command_type == UTP_CMD_TYPE_UFS_STORAGE) {
5507 		if (hba->dev_cmd.complete) {
5508 			if (cqe) {
5509 				ocs = le32_to_cpu(cqe->status) & MASK_OCS;
5510 				lrbp->utr_descriptor_ptr->header.ocs = ocs;
5511 			}
5512 			complete(hba->dev_cmd.complete);
5513 		}
5514 	}
5515 }
5516 
5517 /**
5518  * __ufshcd_transfer_req_compl - handle SCSI and query command completion
5519  * @hba: per adapter instance
5520  * @completed_reqs: bitmask that indicates which requests to complete
5521  */
5522 static void __ufshcd_transfer_req_compl(struct ufs_hba *hba,
5523 					unsigned long completed_reqs)
5524 {
5525 	int tag;
5526 
5527 	for_each_set_bit(tag, &completed_reqs, hba->nutrs)
5528 		ufshcd_compl_one_cqe(hba, tag, NULL);
5529 }
5530 
5531 /* Any value that is not an existing queue number is fine for this constant. */
5532 enum {
5533 	UFSHCD_POLL_FROM_INTERRUPT_CONTEXT = -1
5534 };
5535 
5536 static void ufshcd_clear_polled(struct ufs_hba *hba,
5537 				unsigned long *completed_reqs)
5538 {
5539 	int tag;
5540 
5541 	for_each_set_bit(tag, completed_reqs, hba->nutrs) {
5542 		struct scsi_cmnd *cmd = hba->lrb[tag].cmd;
5543 
5544 		if (!cmd)
5545 			continue;
5546 		if (scsi_cmd_to_rq(cmd)->cmd_flags & REQ_POLLED)
5547 			__clear_bit(tag, completed_reqs);
5548 	}
5549 }
5550 
5551 /*
5552  * Return: > 0 if one or more commands have been completed or 0 if no
5553  * requests have been completed.
5554  */
5555 static int ufshcd_poll(struct Scsi_Host *shost, unsigned int queue_num)
5556 {
5557 	struct ufs_hba *hba = shost_priv(shost);
5558 	unsigned long completed_reqs, flags;
5559 	u32 tr_doorbell;
5560 	struct ufs_hw_queue *hwq;
5561 
5562 	if (is_mcq_enabled(hba)) {
5563 		hwq = &hba->uhq[queue_num];
5564 
5565 		return ufshcd_mcq_poll_cqe_lock(hba, hwq);
5566 	}
5567 
5568 	spin_lock_irqsave(&hba->outstanding_lock, flags);
5569 	tr_doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
5570 	completed_reqs = ~tr_doorbell & hba->outstanding_reqs;
5571 	WARN_ONCE(completed_reqs & ~hba->outstanding_reqs,
5572 		  "completed: %#lx; outstanding: %#lx\n", completed_reqs,
5573 		  hba->outstanding_reqs);
5574 	if (queue_num == UFSHCD_POLL_FROM_INTERRUPT_CONTEXT) {
5575 		/* Do not complete polled requests from interrupt context. */
5576 		ufshcd_clear_polled(hba, &completed_reqs);
5577 	}
5578 	hba->outstanding_reqs &= ~completed_reqs;
5579 	spin_unlock_irqrestore(&hba->outstanding_lock, flags);
5580 
5581 	if (completed_reqs)
5582 		__ufshcd_transfer_req_compl(hba, completed_reqs);
5583 
5584 	return completed_reqs != 0;
5585 }
5586 
5587 /**
5588  * ufshcd_mcq_compl_pending_transfer - MCQ mode function. It is
5589  * invoked from the error handler context or ufshcd_host_reset_and_restore()
5590  * to complete the pending transfers and free the resources associated with
5591  * the scsi command.
5592  *
5593  * @hba: per adapter instance
5594  * @force_compl: This flag is set to true when invoked
5595  * from ufshcd_host_reset_and_restore() in which case it requires special
5596  * handling because the host controller has been reset by ufshcd_hba_stop().
5597  */
5598 static void ufshcd_mcq_compl_pending_transfer(struct ufs_hba *hba,
5599 					      bool force_compl)
5600 {
5601 	struct ufs_hw_queue *hwq;
5602 	struct ufshcd_lrb *lrbp;
5603 	struct scsi_cmnd *cmd;
5604 	unsigned long flags;
5605 	u32 hwq_num, utag;
5606 	int tag;
5607 
5608 	for (tag = 0; tag < hba->nutrs; tag++) {
5609 		lrbp = &hba->lrb[tag];
5610 		cmd = lrbp->cmd;
5611 		if (!ufshcd_cmd_inflight(cmd) ||
5612 		    test_bit(SCMD_STATE_COMPLETE, &cmd->state))
5613 			continue;
5614 
5615 		utag = blk_mq_unique_tag(scsi_cmd_to_rq(cmd));
5616 		hwq_num = blk_mq_unique_tag_to_hwq(utag);
5617 		hwq = &hba->uhq[hwq_num];
5618 
5619 		if (force_compl) {
5620 			ufshcd_mcq_compl_all_cqes_lock(hba, hwq);
5621 			/*
5622 			 * For those cmds of which the cqes are not present
5623 			 * in the cq, complete them explicitly.
5624 			 */
5625 			spin_lock_irqsave(&hwq->cq_lock, flags);
5626 			if (cmd && !test_bit(SCMD_STATE_COMPLETE, &cmd->state)) {
5627 				set_host_byte(cmd, DID_REQUEUE);
5628 				ufshcd_release_scsi_cmd(hba, lrbp);
5629 				scsi_done(cmd);
5630 			}
5631 			spin_unlock_irqrestore(&hwq->cq_lock, flags);
5632 		} else {
5633 			ufshcd_mcq_poll_cqe_lock(hba, hwq);
5634 		}
5635 	}
5636 }
5637 
5638 /**
5639  * ufshcd_transfer_req_compl - handle SCSI and query command completion
5640  * @hba: per adapter instance
5641  *
5642  * Return:
5643  *  IRQ_HANDLED - If interrupt is valid
5644  *  IRQ_NONE    - If invalid interrupt
5645  */
5646 static irqreturn_t ufshcd_transfer_req_compl(struct ufs_hba *hba)
5647 {
5648 	/* Resetting interrupt aggregation counters first and reading the
5649 	 * DOOR_BELL afterward allows us to handle all the completed requests.
5650 	 * In order to prevent other interrupts starvation the DB is read once
5651 	 * after reset. The down side of this solution is the possibility of
5652 	 * false interrupt if device completes another request after resetting
5653 	 * aggregation and before reading the DB.
5654 	 */
5655 	if (ufshcd_is_intr_aggr_allowed(hba) &&
5656 	    !(hba->quirks & UFSHCI_QUIRK_SKIP_RESET_INTR_AGGR))
5657 		ufshcd_reset_intr_aggr(hba);
5658 
5659 	if (ufs_fail_completion(hba))
5660 		return IRQ_HANDLED;
5661 
5662 	/*
5663 	 * Ignore the ufshcd_poll() return value and return IRQ_HANDLED since we
5664 	 * do not want polling to trigger spurious interrupt complaints.
5665 	 */
5666 	ufshcd_poll(hba->host, UFSHCD_POLL_FROM_INTERRUPT_CONTEXT);
5667 
5668 	return IRQ_HANDLED;
5669 }
5670 
5671 int __ufshcd_write_ee_control(struct ufs_hba *hba, u32 ee_ctrl_mask)
5672 {
5673 	return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
5674 				       QUERY_ATTR_IDN_EE_CONTROL, 0, 0,
5675 				       &ee_ctrl_mask);
5676 }
5677 
5678 int ufshcd_write_ee_control(struct ufs_hba *hba)
5679 {
5680 	int err;
5681 
5682 	mutex_lock(&hba->ee_ctrl_mutex);
5683 	err = __ufshcd_write_ee_control(hba, hba->ee_ctrl_mask);
5684 	mutex_unlock(&hba->ee_ctrl_mutex);
5685 	if (err)
5686 		dev_err(hba->dev, "%s: failed to write ee control %d\n",
5687 			__func__, err);
5688 	return err;
5689 }
5690 
5691 int ufshcd_update_ee_control(struct ufs_hba *hba, u16 *mask,
5692 			     const u16 *other_mask, u16 set, u16 clr)
5693 {
5694 	u16 new_mask, ee_ctrl_mask;
5695 	int err = 0;
5696 
5697 	mutex_lock(&hba->ee_ctrl_mutex);
5698 	new_mask = (*mask & ~clr) | set;
5699 	ee_ctrl_mask = new_mask | *other_mask;
5700 	if (ee_ctrl_mask != hba->ee_ctrl_mask)
5701 		err = __ufshcd_write_ee_control(hba, ee_ctrl_mask);
5702 	/* Still need to update 'mask' even if 'ee_ctrl_mask' was unchanged */
5703 	if (!err) {
5704 		hba->ee_ctrl_mask = ee_ctrl_mask;
5705 		*mask = new_mask;
5706 	}
5707 	mutex_unlock(&hba->ee_ctrl_mutex);
5708 	return err;
5709 }
5710 
5711 /**
5712  * ufshcd_disable_ee - disable exception event
5713  * @hba: per-adapter instance
5714  * @mask: exception event to disable
5715  *
5716  * Disables exception event in the device so that the EVENT_ALERT
5717  * bit is not set.
5718  *
5719  * Return: zero on success, non-zero error value on failure.
5720  */
5721 static inline int ufshcd_disable_ee(struct ufs_hba *hba, u16 mask)
5722 {
5723 	return ufshcd_update_ee_drv_mask(hba, 0, mask);
5724 }
5725 
5726 /**
5727  * ufshcd_enable_ee - enable exception event
5728  * @hba: per-adapter instance
5729  * @mask: exception event to enable
5730  *
5731  * Enable corresponding exception event in the device to allow
5732  * device to alert host in critical scenarios.
5733  *
5734  * Return: zero on success, non-zero error value on failure.
5735  */
5736 static inline int ufshcd_enable_ee(struct ufs_hba *hba, u16 mask)
5737 {
5738 	return ufshcd_update_ee_drv_mask(hba, mask, 0);
5739 }
5740 
5741 /**
5742  * ufshcd_enable_auto_bkops - Allow device managed BKOPS
5743  * @hba: per-adapter instance
5744  *
5745  * Allow device to manage background operations on its own. Enabling
5746  * this might lead to inconsistent latencies during normal data transfers
5747  * as the device is allowed to manage its own way of handling background
5748  * operations.
5749  *
5750  * Return: zero on success, non-zero on failure.
5751  */
5752 static int ufshcd_enable_auto_bkops(struct ufs_hba *hba)
5753 {
5754 	int err = 0;
5755 
5756 	if (hba->auto_bkops_enabled)
5757 		goto out;
5758 
5759 	err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG,
5760 			QUERY_FLAG_IDN_BKOPS_EN, 0, NULL);
5761 	if (err) {
5762 		dev_err(hba->dev, "%s: failed to enable bkops %d\n",
5763 				__func__, err);
5764 		goto out;
5765 	}
5766 
5767 	hba->auto_bkops_enabled = true;
5768 	trace_ufshcd_auto_bkops_state(dev_name(hba->dev), "Enabled");
5769 
5770 	/* No need of URGENT_BKOPS exception from the device */
5771 	err = ufshcd_disable_ee(hba, MASK_EE_URGENT_BKOPS);
5772 	if (err)
5773 		dev_err(hba->dev, "%s: failed to disable exception event %d\n",
5774 				__func__, err);
5775 out:
5776 	return err;
5777 }
5778 
5779 /**
5780  * ufshcd_disable_auto_bkops - block device in doing background operations
5781  * @hba: per-adapter instance
5782  *
5783  * Disabling background operations improves command response latency but
5784  * has drawback of device moving into critical state where the device is
5785  * not-operable. Make sure to call ufshcd_enable_auto_bkops() whenever the
5786  * host is idle so that BKOPS are managed effectively without any negative
5787  * impacts.
5788  *
5789  * Return: zero on success, non-zero on failure.
5790  */
5791 static int ufshcd_disable_auto_bkops(struct ufs_hba *hba)
5792 {
5793 	int err = 0;
5794 
5795 	if (!hba->auto_bkops_enabled)
5796 		goto out;
5797 
5798 	/*
5799 	 * If host assisted BKOPs is to be enabled, make sure
5800 	 * urgent bkops exception is allowed.
5801 	 */
5802 	err = ufshcd_enable_ee(hba, MASK_EE_URGENT_BKOPS);
5803 	if (err) {
5804 		dev_err(hba->dev, "%s: failed to enable exception event %d\n",
5805 				__func__, err);
5806 		goto out;
5807 	}
5808 
5809 	err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_CLEAR_FLAG,
5810 			QUERY_FLAG_IDN_BKOPS_EN, 0, NULL);
5811 	if (err) {
5812 		dev_err(hba->dev, "%s: failed to disable bkops %d\n",
5813 				__func__, err);
5814 		ufshcd_disable_ee(hba, MASK_EE_URGENT_BKOPS);
5815 		goto out;
5816 	}
5817 
5818 	hba->auto_bkops_enabled = false;
5819 	trace_ufshcd_auto_bkops_state(dev_name(hba->dev), "Disabled");
5820 	hba->is_urgent_bkops_lvl_checked = false;
5821 out:
5822 	return err;
5823 }
5824 
5825 /**
5826  * ufshcd_force_reset_auto_bkops - force reset auto bkops state
5827  * @hba: per adapter instance
5828  *
5829  * After a device reset the device may toggle the BKOPS_EN flag
5830  * to default value. The s/w tracking variables should be updated
5831  * as well. This function would change the auto-bkops state based on
5832  * UFSHCD_CAP_KEEP_AUTO_BKOPS_ENABLED_EXCEPT_SUSPEND.
5833  */
5834 static void ufshcd_force_reset_auto_bkops(struct ufs_hba *hba)
5835 {
5836 	if (ufshcd_keep_autobkops_enabled_except_suspend(hba)) {
5837 		hba->auto_bkops_enabled = false;
5838 		hba->ee_ctrl_mask |= MASK_EE_URGENT_BKOPS;
5839 		ufshcd_enable_auto_bkops(hba);
5840 	} else {
5841 		hba->auto_bkops_enabled = true;
5842 		hba->ee_ctrl_mask &= ~MASK_EE_URGENT_BKOPS;
5843 		ufshcd_disable_auto_bkops(hba);
5844 	}
5845 	hba->urgent_bkops_lvl = BKOPS_STATUS_PERF_IMPACT;
5846 	hba->is_urgent_bkops_lvl_checked = false;
5847 }
5848 
5849 static inline int ufshcd_get_bkops_status(struct ufs_hba *hba, u32 *status)
5850 {
5851 	return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5852 			QUERY_ATTR_IDN_BKOPS_STATUS, 0, 0, status);
5853 }
5854 
5855 /**
5856  * ufshcd_bkops_ctrl - control the auto bkops based on current bkops status
5857  * @hba: per-adapter instance
5858  * @status: bkops_status value
5859  *
5860  * Read the bkops_status from the UFS device and Enable fBackgroundOpsEn
5861  * flag in the device to permit background operations if the device
5862  * bkops_status is greater than or equal to "status" argument passed to
5863  * this function, disable otherwise.
5864  *
5865  * Return: 0 for success, non-zero in case of failure.
5866  *
5867  * NOTE: Caller of this function can check the "hba->auto_bkops_enabled" flag
5868  * to know whether auto bkops is enabled or disabled after this function
5869  * returns control to it.
5870  */
5871 static int ufshcd_bkops_ctrl(struct ufs_hba *hba,
5872 			     enum bkops_status status)
5873 {
5874 	int err;
5875 	u32 curr_status = 0;
5876 
5877 	err = ufshcd_get_bkops_status(hba, &curr_status);
5878 	if (err) {
5879 		dev_err(hba->dev, "%s: failed to get BKOPS status %d\n",
5880 				__func__, err);
5881 		goto out;
5882 	} else if (curr_status > BKOPS_STATUS_MAX) {
5883 		dev_err(hba->dev, "%s: invalid BKOPS status %d\n",
5884 				__func__, curr_status);
5885 		err = -EINVAL;
5886 		goto out;
5887 	}
5888 
5889 	if (curr_status >= status)
5890 		err = ufshcd_enable_auto_bkops(hba);
5891 	else
5892 		err = ufshcd_disable_auto_bkops(hba);
5893 out:
5894 	return err;
5895 }
5896 
5897 /**
5898  * ufshcd_urgent_bkops - handle urgent bkops exception event
5899  * @hba: per-adapter instance
5900  *
5901  * Enable fBackgroundOpsEn flag in the device to permit background
5902  * operations.
5903  *
5904  * If BKOPs is enabled, this function returns 0, 1 if the bkops in not enabled
5905  * and negative error value for any other failure.
5906  *
5907  * Return: 0 upon success; < 0 upon failure.
5908  */
5909 static int ufshcd_urgent_bkops(struct ufs_hba *hba)
5910 {
5911 	return ufshcd_bkops_ctrl(hba, hba->urgent_bkops_lvl);
5912 }
5913 
5914 static inline int ufshcd_get_ee_status(struct ufs_hba *hba, u32 *status)
5915 {
5916 	return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5917 			QUERY_ATTR_IDN_EE_STATUS, 0, 0, status);
5918 }
5919 
5920 static void ufshcd_bkops_exception_event_handler(struct ufs_hba *hba)
5921 {
5922 	int err;
5923 	u32 curr_status = 0;
5924 
5925 	if (hba->is_urgent_bkops_lvl_checked)
5926 		goto enable_auto_bkops;
5927 
5928 	err = ufshcd_get_bkops_status(hba, &curr_status);
5929 	if (err) {
5930 		dev_err(hba->dev, "%s: failed to get BKOPS status %d\n",
5931 				__func__, err);
5932 		goto out;
5933 	}
5934 
5935 	/*
5936 	 * We are seeing that some devices are raising the urgent bkops
5937 	 * exception events even when BKOPS status doesn't indicate performace
5938 	 * impacted or critical. Handle these device by determining their urgent
5939 	 * bkops status at runtime.
5940 	 */
5941 	if (curr_status < BKOPS_STATUS_PERF_IMPACT) {
5942 		dev_err(hba->dev, "%s: device raised urgent BKOPS exception for bkops status %d\n",
5943 				__func__, curr_status);
5944 		/* update the current status as the urgent bkops level */
5945 		hba->urgent_bkops_lvl = curr_status;
5946 		hba->is_urgent_bkops_lvl_checked = true;
5947 	}
5948 
5949 enable_auto_bkops:
5950 	err = ufshcd_enable_auto_bkops(hba);
5951 out:
5952 	if (err < 0)
5953 		dev_err(hba->dev, "%s: failed to handle urgent bkops %d\n",
5954 				__func__, err);
5955 }
5956 
5957 static void ufshcd_temp_exception_event_handler(struct ufs_hba *hba, u16 status)
5958 {
5959 	u32 value;
5960 
5961 	if (ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5962 				QUERY_ATTR_IDN_CASE_ROUGH_TEMP, 0, 0, &value))
5963 		return;
5964 
5965 	dev_info(hba->dev, "exception Tcase %d\n", value - 80);
5966 
5967 	ufs_hwmon_notify_event(hba, status & MASK_EE_URGENT_TEMP);
5968 
5969 	/*
5970 	 * A placeholder for the platform vendors to add whatever additional
5971 	 * steps required
5972 	 */
5973 }
5974 
5975 static int __ufshcd_wb_toggle(struct ufs_hba *hba, bool set, enum flag_idn idn)
5976 {
5977 	u8 index;
5978 	enum query_opcode opcode = set ? UPIU_QUERY_OPCODE_SET_FLAG :
5979 				   UPIU_QUERY_OPCODE_CLEAR_FLAG;
5980 
5981 	index = ufshcd_wb_get_query_index(hba);
5982 	return ufshcd_query_flag_retry(hba, opcode, idn, index, NULL);
5983 }
5984 
5985 int ufshcd_wb_toggle(struct ufs_hba *hba, bool enable)
5986 {
5987 	int ret;
5988 
5989 	if (!ufshcd_is_wb_allowed(hba) ||
5990 	    hba->dev_info.wb_enabled == enable)
5991 		return 0;
5992 
5993 	ret = __ufshcd_wb_toggle(hba, enable, QUERY_FLAG_IDN_WB_EN);
5994 	if (ret) {
5995 		dev_err(hba->dev, "%s: Write Booster %s failed %d\n",
5996 			__func__, enable ? "enabling" : "disabling", ret);
5997 		return ret;
5998 	}
5999 
6000 	hba->dev_info.wb_enabled = enable;
6001 	dev_dbg(hba->dev, "%s: Write Booster %s\n",
6002 			__func__, enable ? "enabled" : "disabled");
6003 
6004 	return ret;
6005 }
6006 
6007 static void ufshcd_wb_toggle_buf_flush_during_h8(struct ufs_hba *hba,
6008 						 bool enable)
6009 {
6010 	int ret;
6011 
6012 	ret = __ufshcd_wb_toggle(hba, enable,
6013 			QUERY_FLAG_IDN_WB_BUFF_FLUSH_DURING_HIBERN8);
6014 	if (ret) {
6015 		dev_err(hba->dev, "%s: WB-Buf Flush during H8 %s failed %d\n",
6016 			__func__, enable ? "enabling" : "disabling", ret);
6017 		return;
6018 	}
6019 	dev_dbg(hba->dev, "%s: WB-Buf Flush during H8 %s\n",
6020 			__func__, enable ? "enabled" : "disabled");
6021 }
6022 
6023 int ufshcd_wb_toggle_buf_flush(struct ufs_hba *hba, bool enable)
6024 {
6025 	int ret;
6026 
6027 	if (!ufshcd_is_wb_allowed(hba) ||
6028 	    hba->dev_info.wb_buf_flush_enabled == enable)
6029 		return 0;
6030 
6031 	ret = __ufshcd_wb_toggle(hba, enable, QUERY_FLAG_IDN_WB_BUFF_FLUSH_EN);
6032 	if (ret) {
6033 		dev_err(hba->dev, "%s: WB-Buf Flush %s failed %d\n",
6034 			__func__, enable ? "enabling" : "disabling", ret);
6035 		return ret;
6036 	}
6037 
6038 	hba->dev_info.wb_buf_flush_enabled = enable;
6039 	dev_dbg(hba->dev, "%s: WB-Buf Flush %s\n",
6040 			__func__, enable ? "enabled" : "disabled");
6041 
6042 	return ret;
6043 }
6044 
6045 static bool ufshcd_wb_presrv_usrspc_keep_vcc_on(struct ufs_hba *hba,
6046 						u32 avail_buf)
6047 {
6048 	u32 cur_buf;
6049 	int ret;
6050 	u8 index;
6051 
6052 	index = ufshcd_wb_get_query_index(hba);
6053 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
6054 					      QUERY_ATTR_IDN_CURR_WB_BUFF_SIZE,
6055 					      index, 0, &cur_buf);
6056 	if (ret) {
6057 		dev_err(hba->dev, "%s: dCurWriteBoosterBufferSize read failed %d\n",
6058 			__func__, ret);
6059 		return false;
6060 	}
6061 
6062 	if (!cur_buf) {
6063 		dev_info(hba->dev, "dCurWBBuf: %d WB disabled until free-space is available\n",
6064 			 cur_buf);
6065 		return false;
6066 	}
6067 	/* Let it continue to flush when available buffer exceeds threshold */
6068 	return avail_buf < hba->vps->wb_flush_threshold;
6069 }
6070 
6071 static void ufshcd_wb_force_disable(struct ufs_hba *hba)
6072 {
6073 	if (ufshcd_is_wb_buf_flush_allowed(hba))
6074 		ufshcd_wb_toggle_buf_flush(hba, false);
6075 
6076 	ufshcd_wb_toggle_buf_flush_during_h8(hba, false);
6077 	ufshcd_wb_toggle(hba, false);
6078 	hba->caps &= ~UFSHCD_CAP_WB_EN;
6079 
6080 	dev_info(hba->dev, "%s: WB force disabled\n", __func__);
6081 }
6082 
6083 static bool ufshcd_is_wb_buf_lifetime_available(struct ufs_hba *hba)
6084 {
6085 	u32 lifetime;
6086 	int ret;
6087 	u8 index;
6088 
6089 	index = ufshcd_wb_get_query_index(hba);
6090 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
6091 				      QUERY_ATTR_IDN_WB_BUFF_LIFE_TIME_EST,
6092 				      index, 0, &lifetime);
6093 	if (ret) {
6094 		dev_err(hba->dev,
6095 			"%s: bWriteBoosterBufferLifeTimeEst read failed %d\n",
6096 			__func__, ret);
6097 		return false;
6098 	}
6099 
6100 	if (lifetime == UFS_WB_EXCEED_LIFETIME) {
6101 		dev_err(hba->dev, "%s: WB buf lifetime is exhausted 0x%02X\n",
6102 			__func__, lifetime);
6103 		return false;
6104 	}
6105 
6106 	dev_dbg(hba->dev, "%s: WB buf lifetime is 0x%02X\n",
6107 		__func__, lifetime);
6108 
6109 	return true;
6110 }
6111 
6112 static bool ufshcd_wb_need_flush(struct ufs_hba *hba)
6113 {
6114 	int ret;
6115 	u32 avail_buf;
6116 	u8 index;
6117 
6118 	if (!ufshcd_is_wb_allowed(hba))
6119 		return false;
6120 
6121 	if (!ufshcd_is_wb_buf_lifetime_available(hba)) {
6122 		ufshcd_wb_force_disable(hba);
6123 		return false;
6124 	}
6125 
6126 	/*
6127 	 * The ufs device needs the vcc to be ON to flush.
6128 	 * With user-space reduction enabled, it's enough to enable flush
6129 	 * by checking only the available buffer. The threshold
6130 	 * defined here is > 90% full.
6131 	 * With user-space preserved enabled, the current-buffer
6132 	 * should be checked too because the wb buffer size can reduce
6133 	 * when disk tends to be full. This info is provided by current
6134 	 * buffer (dCurrentWriteBoosterBufferSize). There's no point in
6135 	 * keeping vcc on when current buffer is empty.
6136 	 */
6137 	index = ufshcd_wb_get_query_index(hba);
6138 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
6139 				      QUERY_ATTR_IDN_AVAIL_WB_BUFF_SIZE,
6140 				      index, 0, &avail_buf);
6141 	if (ret) {
6142 		dev_warn(hba->dev, "%s: dAvailableWriteBoosterBufferSize read failed %d\n",
6143 			 __func__, ret);
6144 		return false;
6145 	}
6146 
6147 	if (!hba->dev_info.b_presrv_uspc_en)
6148 		return avail_buf <= UFS_WB_BUF_REMAIN_PERCENT(10);
6149 
6150 	return ufshcd_wb_presrv_usrspc_keep_vcc_on(hba, avail_buf);
6151 }
6152 
6153 static void ufshcd_rpm_dev_flush_recheck_work(struct work_struct *work)
6154 {
6155 	struct ufs_hba *hba = container_of(to_delayed_work(work),
6156 					   struct ufs_hba,
6157 					   rpm_dev_flush_recheck_work);
6158 	/*
6159 	 * To prevent unnecessary VCC power drain after device finishes
6160 	 * WriteBooster buffer flush or Auto BKOPs, force runtime resume
6161 	 * after a certain delay to recheck the threshold by next runtime
6162 	 * suspend.
6163 	 */
6164 	ufshcd_rpm_get_sync(hba);
6165 	ufshcd_rpm_put_sync(hba);
6166 }
6167 
6168 /**
6169  * ufshcd_exception_event_handler - handle exceptions raised by device
6170  * @work: pointer to work data
6171  *
6172  * Read bExceptionEventStatus attribute from the device and handle the
6173  * exception event accordingly.
6174  */
6175 static void ufshcd_exception_event_handler(struct work_struct *work)
6176 {
6177 	struct ufs_hba *hba;
6178 	int err;
6179 	u32 status = 0;
6180 	hba = container_of(work, struct ufs_hba, eeh_work);
6181 
6182 	ufshcd_scsi_block_requests(hba);
6183 	err = ufshcd_get_ee_status(hba, &status);
6184 	if (err) {
6185 		dev_err(hba->dev, "%s: failed to get exception status %d\n",
6186 				__func__, err);
6187 		goto out;
6188 	}
6189 
6190 	trace_ufshcd_exception_event(dev_name(hba->dev), status);
6191 
6192 	if (status & hba->ee_drv_mask & MASK_EE_URGENT_BKOPS)
6193 		ufshcd_bkops_exception_event_handler(hba);
6194 
6195 	if (status & hba->ee_drv_mask & MASK_EE_URGENT_TEMP)
6196 		ufshcd_temp_exception_event_handler(hba, status);
6197 
6198 	ufs_debugfs_exception_event(hba, status);
6199 out:
6200 	ufshcd_scsi_unblock_requests(hba);
6201 }
6202 
6203 /* Complete requests that have door-bell cleared */
6204 static void ufshcd_complete_requests(struct ufs_hba *hba, bool force_compl)
6205 {
6206 	if (is_mcq_enabled(hba))
6207 		ufshcd_mcq_compl_pending_transfer(hba, force_compl);
6208 	else
6209 		ufshcd_transfer_req_compl(hba);
6210 
6211 	ufshcd_tmc_handler(hba);
6212 }
6213 
6214 /**
6215  * ufshcd_quirk_dl_nac_errors - This function checks if error handling is
6216  *				to recover from the DL NAC errors or not.
6217  * @hba: per-adapter instance
6218  *
6219  * Return: true if error handling is required, false otherwise.
6220  */
6221 static bool ufshcd_quirk_dl_nac_errors(struct ufs_hba *hba)
6222 {
6223 	unsigned long flags;
6224 	bool err_handling = true;
6225 
6226 	spin_lock_irqsave(hba->host->host_lock, flags);
6227 	/*
6228 	 * UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS only workaround the
6229 	 * device fatal error and/or DL NAC & REPLAY timeout errors.
6230 	 */
6231 	if (hba->saved_err & (CONTROLLER_FATAL_ERROR | SYSTEM_BUS_FATAL_ERROR))
6232 		goto out;
6233 
6234 	if ((hba->saved_err & DEVICE_FATAL_ERROR) ||
6235 	    ((hba->saved_err & UIC_ERROR) &&
6236 	     (hba->saved_uic_err & UFSHCD_UIC_DL_TCx_REPLAY_ERROR)))
6237 		goto out;
6238 
6239 	if ((hba->saved_err & UIC_ERROR) &&
6240 	    (hba->saved_uic_err & UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)) {
6241 		int err;
6242 		/*
6243 		 * wait for 50ms to see if we can get any other errors or not.
6244 		 */
6245 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6246 		msleep(50);
6247 		spin_lock_irqsave(hba->host->host_lock, flags);
6248 
6249 		/*
6250 		 * now check if we have got any other severe errors other than
6251 		 * DL NAC error?
6252 		 */
6253 		if ((hba->saved_err & INT_FATAL_ERRORS) ||
6254 		    ((hba->saved_err & UIC_ERROR) &&
6255 		    (hba->saved_uic_err & ~UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)))
6256 			goto out;
6257 
6258 		/*
6259 		 * As DL NAC is the only error received so far, send out NOP
6260 		 * command to confirm if link is still active or not.
6261 		 *   - If we don't get any response then do error recovery.
6262 		 *   - If we get response then clear the DL NAC error bit.
6263 		 */
6264 
6265 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6266 		err = ufshcd_verify_dev_init(hba);
6267 		spin_lock_irqsave(hba->host->host_lock, flags);
6268 
6269 		if (err)
6270 			goto out;
6271 
6272 		/* Link seems to be alive hence ignore the DL NAC errors */
6273 		if (hba->saved_uic_err == UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)
6274 			hba->saved_err &= ~UIC_ERROR;
6275 		/* clear NAC error */
6276 		hba->saved_uic_err &= ~UFSHCD_UIC_DL_NAC_RECEIVED_ERROR;
6277 		if (!hba->saved_uic_err)
6278 			err_handling = false;
6279 	}
6280 out:
6281 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6282 	return err_handling;
6283 }
6284 
6285 /* host lock must be held before calling this func */
6286 static inline bool ufshcd_is_saved_err_fatal(struct ufs_hba *hba)
6287 {
6288 	return (hba->saved_uic_err & UFSHCD_UIC_DL_PA_INIT_ERROR) ||
6289 	       (hba->saved_err & (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK));
6290 }
6291 
6292 void ufshcd_schedule_eh_work(struct ufs_hba *hba)
6293 {
6294 	lockdep_assert_held(hba->host->host_lock);
6295 
6296 	/* handle fatal errors only when link is not in error state */
6297 	if (hba->ufshcd_state != UFSHCD_STATE_ERROR) {
6298 		if (hba->force_reset || ufshcd_is_link_broken(hba) ||
6299 		    ufshcd_is_saved_err_fatal(hba))
6300 			hba->ufshcd_state = UFSHCD_STATE_EH_SCHEDULED_FATAL;
6301 		else
6302 			hba->ufshcd_state = UFSHCD_STATE_EH_SCHEDULED_NON_FATAL;
6303 		queue_work(hba->eh_wq, &hba->eh_work);
6304 	}
6305 }
6306 
6307 static void ufshcd_force_error_recovery(struct ufs_hba *hba)
6308 {
6309 	spin_lock_irq(hba->host->host_lock);
6310 	hba->force_reset = true;
6311 	ufshcd_schedule_eh_work(hba);
6312 	spin_unlock_irq(hba->host->host_lock);
6313 }
6314 
6315 static void ufshcd_clk_scaling_allow(struct ufs_hba *hba, bool allow)
6316 {
6317 	mutex_lock(&hba->wb_mutex);
6318 	down_write(&hba->clk_scaling_lock);
6319 	hba->clk_scaling.is_allowed = allow;
6320 	up_write(&hba->clk_scaling_lock);
6321 	mutex_unlock(&hba->wb_mutex);
6322 }
6323 
6324 static void ufshcd_clk_scaling_suspend(struct ufs_hba *hba, bool suspend)
6325 {
6326 	if (suspend) {
6327 		if (hba->clk_scaling.is_enabled)
6328 			ufshcd_suspend_clkscaling(hba);
6329 		ufshcd_clk_scaling_allow(hba, false);
6330 	} else {
6331 		ufshcd_clk_scaling_allow(hba, true);
6332 		if (hba->clk_scaling.is_enabled)
6333 			ufshcd_resume_clkscaling(hba);
6334 	}
6335 }
6336 
6337 static void ufshcd_err_handling_prepare(struct ufs_hba *hba)
6338 {
6339 	ufshcd_rpm_get_sync(hba);
6340 	if (pm_runtime_status_suspended(&hba->ufs_device_wlun->sdev_gendev) ||
6341 	    hba->is_sys_suspended) {
6342 		enum ufs_pm_op pm_op;
6343 
6344 		/*
6345 		 * Don't assume anything of resume, if
6346 		 * resume fails, irq and clocks can be OFF, and powers
6347 		 * can be OFF or in LPM.
6348 		 */
6349 		ufshcd_setup_hba_vreg(hba, true);
6350 		ufshcd_enable_irq(hba);
6351 		ufshcd_setup_vreg(hba, true);
6352 		ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq);
6353 		ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq2);
6354 		ufshcd_hold(hba);
6355 		if (!ufshcd_is_clkgating_allowed(hba))
6356 			ufshcd_setup_clocks(hba, true);
6357 		pm_op = hba->is_sys_suspended ? UFS_SYSTEM_PM : UFS_RUNTIME_PM;
6358 		ufshcd_vops_resume(hba, pm_op);
6359 	} else {
6360 		ufshcd_hold(hba);
6361 		if (ufshcd_is_clkscaling_supported(hba) &&
6362 		    hba->clk_scaling.is_enabled)
6363 			ufshcd_suspend_clkscaling(hba);
6364 		ufshcd_clk_scaling_allow(hba, false);
6365 	}
6366 	ufshcd_scsi_block_requests(hba);
6367 	/* Wait for ongoing ufshcd_queuecommand() calls to finish. */
6368 	blk_mq_wait_quiesce_done(&hba->host->tag_set);
6369 	cancel_work_sync(&hba->eeh_work);
6370 }
6371 
6372 static void ufshcd_err_handling_unprepare(struct ufs_hba *hba)
6373 {
6374 	ufshcd_scsi_unblock_requests(hba);
6375 	ufshcd_release(hba);
6376 	if (ufshcd_is_clkscaling_supported(hba))
6377 		ufshcd_clk_scaling_suspend(hba, false);
6378 	ufshcd_rpm_put(hba);
6379 }
6380 
6381 static inline bool ufshcd_err_handling_should_stop(struct ufs_hba *hba)
6382 {
6383 	return (!hba->is_powered || hba->shutting_down ||
6384 		!hba->ufs_device_wlun ||
6385 		hba->ufshcd_state == UFSHCD_STATE_ERROR ||
6386 		(!(hba->saved_err || hba->saved_uic_err || hba->force_reset ||
6387 		   ufshcd_is_link_broken(hba))));
6388 }
6389 
6390 #ifdef CONFIG_PM
6391 static void ufshcd_recover_pm_error(struct ufs_hba *hba)
6392 {
6393 	struct Scsi_Host *shost = hba->host;
6394 	struct scsi_device *sdev;
6395 	struct request_queue *q;
6396 	int ret;
6397 
6398 	hba->is_sys_suspended = false;
6399 	/*
6400 	 * Set RPM status of wlun device to RPM_ACTIVE,
6401 	 * this also clears its runtime error.
6402 	 */
6403 	ret = pm_runtime_set_active(&hba->ufs_device_wlun->sdev_gendev);
6404 
6405 	/* hba device might have a runtime error otherwise */
6406 	if (ret)
6407 		ret = pm_runtime_set_active(hba->dev);
6408 	/*
6409 	 * If wlun device had runtime error, we also need to resume those
6410 	 * consumer scsi devices in case any of them has failed to be
6411 	 * resumed due to supplier runtime resume failure. This is to unblock
6412 	 * blk_queue_enter in case there are bios waiting inside it.
6413 	 */
6414 	if (!ret) {
6415 		shost_for_each_device(sdev, shost) {
6416 			q = sdev->request_queue;
6417 			if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
6418 				       q->rpm_status == RPM_SUSPENDING))
6419 				pm_request_resume(q->dev);
6420 		}
6421 	}
6422 }
6423 #else
6424 static inline void ufshcd_recover_pm_error(struct ufs_hba *hba)
6425 {
6426 }
6427 #endif
6428 
6429 static bool ufshcd_is_pwr_mode_restore_needed(struct ufs_hba *hba)
6430 {
6431 	struct ufs_pa_layer_attr *pwr_info = &hba->pwr_info;
6432 	u32 mode;
6433 
6434 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_PWRMODE), &mode);
6435 
6436 	if (pwr_info->pwr_rx != ((mode >> PWRMODE_RX_OFFSET) & PWRMODE_MASK))
6437 		return true;
6438 
6439 	if (pwr_info->pwr_tx != (mode & PWRMODE_MASK))
6440 		return true;
6441 
6442 	return false;
6443 }
6444 
6445 static bool ufshcd_abort_one(struct request *rq, void *priv)
6446 {
6447 	int *ret = priv;
6448 	u32 tag = rq->tag;
6449 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
6450 	struct scsi_device *sdev = cmd->device;
6451 	struct Scsi_Host *shost = sdev->host;
6452 	struct ufs_hba *hba = shost_priv(shost);
6453 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
6454 	struct ufs_hw_queue *hwq;
6455 	unsigned long flags;
6456 
6457 	*ret = ufshcd_try_to_abort_task(hba, tag);
6458 	dev_err(hba->dev, "Aborting tag %d / CDB %#02x %s\n", tag,
6459 		hba->lrb[tag].cmd ? hba->lrb[tag].cmd->cmnd[0] : -1,
6460 		*ret ? "failed" : "succeeded");
6461 
6462 	/* Release cmd in MCQ mode if abort succeeds */
6463 	if (is_mcq_enabled(hba) && (*ret == 0)) {
6464 		hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(lrbp->cmd));
6465 		spin_lock_irqsave(&hwq->cq_lock, flags);
6466 		if (ufshcd_cmd_inflight(lrbp->cmd))
6467 			ufshcd_release_scsi_cmd(hba, lrbp);
6468 		spin_unlock_irqrestore(&hwq->cq_lock, flags);
6469 	}
6470 
6471 	return *ret == 0;
6472 }
6473 
6474 /**
6475  * ufshcd_abort_all - Abort all pending commands.
6476  * @hba: Host bus adapter pointer.
6477  *
6478  * Return: true if and only if the host controller needs to be reset.
6479  */
6480 static bool ufshcd_abort_all(struct ufs_hba *hba)
6481 {
6482 	int tag, ret = 0;
6483 
6484 	blk_mq_tagset_busy_iter(&hba->host->tag_set, ufshcd_abort_one, &ret);
6485 	if (ret)
6486 		goto out;
6487 
6488 	/* Clear pending task management requests */
6489 	for_each_set_bit(tag, &hba->outstanding_tasks, hba->nutmrs) {
6490 		ret = ufshcd_clear_tm_cmd(hba, tag);
6491 		if (ret)
6492 			goto out;
6493 	}
6494 
6495 out:
6496 	/* Complete the requests that are cleared by s/w */
6497 	ufshcd_complete_requests(hba, false);
6498 
6499 	return ret != 0;
6500 }
6501 
6502 /**
6503  * ufshcd_err_handler - handle UFS errors that require s/w attention
6504  * @work: pointer to work structure
6505  */
6506 static void ufshcd_err_handler(struct work_struct *work)
6507 {
6508 	int retries = MAX_ERR_HANDLER_RETRIES;
6509 	struct ufs_hba *hba;
6510 	unsigned long flags;
6511 	bool needs_restore;
6512 	bool needs_reset;
6513 	int pmc_err;
6514 
6515 	hba = container_of(work, struct ufs_hba, eh_work);
6516 
6517 	dev_info(hba->dev,
6518 		 "%s started; HBA state %s; powered %d; shutting down %d; saved_err = %d; saved_uic_err = %d; force_reset = %d%s\n",
6519 		 __func__, ufshcd_state_name[hba->ufshcd_state],
6520 		 hba->is_powered, hba->shutting_down, hba->saved_err,
6521 		 hba->saved_uic_err, hba->force_reset,
6522 		 ufshcd_is_link_broken(hba) ? "; link is broken" : "");
6523 
6524 	down(&hba->host_sem);
6525 	spin_lock_irqsave(hba->host->host_lock, flags);
6526 	if (ufshcd_err_handling_should_stop(hba)) {
6527 		if (hba->ufshcd_state != UFSHCD_STATE_ERROR)
6528 			hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
6529 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6530 		up(&hba->host_sem);
6531 		return;
6532 	}
6533 	ufshcd_set_eh_in_progress(hba);
6534 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6535 	ufshcd_err_handling_prepare(hba);
6536 	/* Complete requests that have door-bell cleared by h/w */
6537 	ufshcd_complete_requests(hba, false);
6538 	spin_lock_irqsave(hba->host->host_lock, flags);
6539 again:
6540 	needs_restore = false;
6541 	needs_reset = false;
6542 
6543 	if (hba->ufshcd_state != UFSHCD_STATE_ERROR)
6544 		hba->ufshcd_state = UFSHCD_STATE_RESET;
6545 	/*
6546 	 * A full reset and restore might have happened after preparation
6547 	 * is finished, double check whether we should stop.
6548 	 */
6549 	if (ufshcd_err_handling_should_stop(hba))
6550 		goto skip_err_handling;
6551 
6552 	if (hba->dev_quirks & UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS) {
6553 		bool ret;
6554 
6555 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6556 		/* release the lock as ufshcd_quirk_dl_nac_errors() may sleep */
6557 		ret = ufshcd_quirk_dl_nac_errors(hba);
6558 		spin_lock_irqsave(hba->host->host_lock, flags);
6559 		if (!ret && ufshcd_err_handling_should_stop(hba))
6560 			goto skip_err_handling;
6561 	}
6562 
6563 	if ((hba->saved_err & (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK)) ||
6564 	    (hba->saved_uic_err &&
6565 	     (hba->saved_uic_err != UFSHCD_UIC_PA_GENERIC_ERROR))) {
6566 		bool pr_prdt = !!(hba->saved_err & SYSTEM_BUS_FATAL_ERROR);
6567 
6568 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6569 		ufshcd_print_host_state(hba);
6570 		ufshcd_print_pwr_info(hba);
6571 		ufshcd_print_evt_hist(hba);
6572 		ufshcd_print_tmrs(hba, hba->outstanding_tasks);
6573 		ufshcd_print_trs_all(hba, pr_prdt);
6574 		spin_lock_irqsave(hba->host->host_lock, flags);
6575 	}
6576 
6577 	/*
6578 	 * if host reset is required then skip clearing the pending
6579 	 * transfers forcefully because they will get cleared during
6580 	 * host reset and restore
6581 	 */
6582 	if (hba->force_reset || ufshcd_is_link_broken(hba) ||
6583 	    ufshcd_is_saved_err_fatal(hba) ||
6584 	    ((hba->saved_err & UIC_ERROR) &&
6585 	     (hba->saved_uic_err & (UFSHCD_UIC_DL_NAC_RECEIVED_ERROR |
6586 				    UFSHCD_UIC_DL_TCx_REPLAY_ERROR)))) {
6587 		needs_reset = true;
6588 		goto do_reset;
6589 	}
6590 
6591 	/*
6592 	 * If LINERESET was caught, UFS might have been put to PWM mode,
6593 	 * check if power mode restore is needed.
6594 	 */
6595 	if (hba->saved_uic_err & UFSHCD_UIC_PA_GENERIC_ERROR) {
6596 		hba->saved_uic_err &= ~UFSHCD_UIC_PA_GENERIC_ERROR;
6597 		if (!hba->saved_uic_err)
6598 			hba->saved_err &= ~UIC_ERROR;
6599 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6600 		if (ufshcd_is_pwr_mode_restore_needed(hba))
6601 			needs_restore = true;
6602 		spin_lock_irqsave(hba->host->host_lock, flags);
6603 		if (!hba->saved_err && !needs_restore)
6604 			goto skip_err_handling;
6605 	}
6606 
6607 	hba->silence_err_logs = true;
6608 	/* release lock as clear command might sleep */
6609 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6610 
6611 	needs_reset = ufshcd_abort_all(hba);
6612 
6613 	spin_lock_irqsave(hba->host->host_lock, flags);
6614 	hba->silence_err_logs = false;
6615 	if (needs_reset)
6616 		goto do_reset;
6617 
6618 	/*
6619 	 * After all reqs and tasks are cleared from doorbell,
6620 	 * now it is safe to retore power mode.
6621 	 */
6622 	if (needs_restore) {
6623 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6624 		/*
6625 		 * Hold the scaling lock just in case dev cmds
6626 		 * are sent via bsg and/or sysfs.
6627 		 */
6628 		down_write(&hba->clk_scaling_lock);
6629 		hba->force_pmc = true;
6630 		pmc_err = ufshcd_config_pwr_mode(hba, &(hba->pwr_info));
6631 		if (pmc_err) {
6632 			needs_reset = true;
6633 			dev_err(hba->dev, "%s: Failed to restore power mode, err = %d\n",
6634 					__func__, pmc_err);
6635 		}
6636 		hba->force_pmc = false;
6637 		ufshcd_print_pwr_info(hba);
6638 		up_write(&hba->clk_scaling_lock);
6639 		spin_lock_irqsave(hba->host->host_lock, flags);
6640 	}
6641 
6642 do_reset:
6643 	/* Fatal errors need reset */
6644 	if (needs_reset) {
6645 		int err;
6646 
6647 		hba->force_reset = false;
6648 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6649 		err = ufshcd_reset_and_restore(hba);
6650 		if (err)
6651 			dev_err(hba->dev, "%s: reset and restore failed with err %d\n",
6652 					__func__, err);
6653 		else
6654 			ufshcd_recover_pm_error(hba);
6655 		spin_lock_irqsave(hba->host->host_lock, flags);
6656 	}
6657 
6658 skip_err_handling:
6659 	if (!needs_reset) {
6660 		if (hba->ufshcd_state == UFSHCD_STATE_RESET)
6661 			hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
6662 		if (hba->saved_err || hba->saved_uic_err)
6663 			dev_err_ratelimited(hba->dev, "%s: exit: saved_err 0x%x saved_uic_err 0x%x",
6664 			    __func__, hba->saved_err, hba->saved_uic_err);
6665 	}
6666 	/* Exit in an operational state or dead */
6667 	if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL &&
6668 	    hba->ufshcd_state != UFSHCD_STATE_ERROR) {
6669 		if (--retries)
6670 			goto again;
6671 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
6672 	}
6673 	ufshcd_clear_eh_in_progress(hba);
6674 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6675 	ufshcd_err_handling_unprepare(hba);
6676 	up(&hba->host_sem);
6677 
6678 	dev_info(hba->dev, "%s finished; HBA state %s\n", __func__,
6679 		 ufshcd_state_name[hba->ufshcd_state]);
6680 }
6681 
6682 /**
6683  * ufshcd_update_uic_error - check and set fatal UIC error flags.
6684  * @hba: per-adapter instance
6685  *
6686  * Return:
6687  *  IRQ_HANDLED - If interrupt is valid
6688  *  IRQ_NONE    - If invalid interrupt
6689  */
6690 static irqreturn_t ufshcd_update_uic_error(struct ufs_hba *hba)
6691 {
6692 	u32 reg;
6693 	irqreturn_t retval = IRQ_NONE;
6694 
6695 	/* PHY layer error */
6696 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER);
6697 	if ((reg & UIC_PHY_ADAPTER_LAYER_ERROR) &&
6698 	    (reg & UIC_PHY_ADAPTER_LAYER_ERROR_CODE_MASK)) {
6699 		ufshcd_update_evt_hist(hba, UFS_EVT_PA_ERR, reg);
6700 		/*
6701 		 * To know whether this error is fatal or not, DB timeout
6702 		 * must be checked but this error is handled separately.
6703 		 */
6704 		if (reg & UIC_PHY_ADAPTER_LAYER_LANE_ERR_MASK)
6705 			dev_dbg(hba->dev, "%s: UIC Lane error reported\n",
6706 					__func__);
6707 
6708 		/* Got a LINERESET indication. */
6709 		if (reg & UIC_PHY_ADAPTER_LAYER_GENERIC_ERROR) {
6710 			struct uic_command *cmd = NULL;
6711 
6712 			hba->uic_error |= UFSHCD_UIC_PA_GENERIC_ERROR;
6713 			if (hba->uic_async_done && hba->active_uic_cmd)
6714 				cmd = hba->active_uic_cmd;
6715 			/*
6716 			 * Ignore the LINERESET during power mode change
6717 			 * operation via DME_SET command.
6718 			 */
6719 			if (cmd && (cmd->command == UIC_CMD_DME_SET))
6720 				hba->uic_error &= ~UFSHCD_UIC_PA_GENERIC_ERROR;
6721 		}
6722 		retval |= IRQ_HANDLED;
6723 	}
6724 
6725 	/* PA_INIT_ERROR is fatal and needs UIC reset */
6726 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_DATA_LINK_LAYER);
6727 	if ((reg & UIC_DATA_LINK_LAYER_ERROR) &&
6728 	    (reg & UIC_DATA_LINK_LAYER_ERROR_CODE_MASK)) {
6729 		ufshcd_update_evt_hist(hba, UFS_EVT_DL_ERR, reg);
6730 
6731 		if (reg & UIC_DATA_LINK_LAYER_ERROR_PA_INIT)
6732 			hba->uic_error |= UFSHCD_UIC_DL_PA_INIT_ERROR;
6733 		else if (hba->dev_quirks &
6734 				UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS) {
6735 			if (reg & UIC_DATA_LINK_LAYER_ERROR_NAC_RECEIVED)
6736 				hba->uic_error |=
6737 					UFSHCD_UIC_DL_NAC_RECEIVED_ERROR;
6738 			else if (reg & UIC_DATA_LINK_LAYER_ERROR_TCx_REPLAY_TIMEOUT)
6739 				hba->uic_error |= UFSHCD_UIC_DL_TCx_REPLAY_ERROR;
6740 		}
6741 		retval |= IRQ_HANDLED;
6742 	}
6743 
6744 	/* UIC NL/TL/DME errors needs software retry */
6745 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_NETWORK_LAYER);
6746 	if ((reg & UIC_NETWORK_LAYER_ERROR) &&
6747 	    (reg & UIC_NETWORK_LAYER_ERROR_CODE_MASK)) {
6748 		ufshcd_update_evt_hist(hba, UFS_EVT_NL_ERR, reg);
6749 		hba->uic_error |= UFSHCD_UIC_NL_ERROR;
6750 		retval |= IRQ_HANDLED;
6751 	}
6752 
6753 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_TRANSPORT_LAYER);
6754 	if ((reg & UIC_TRANSPORT_LAYER_ERROR) &&
6755 	    (reg & UIC_TRANSPORT_LAYER_ERROR_CODE_MASK)) {
6756 		ufshcd_update_evt_hist(hba, UFS_EVT_TL_ERR, reg);
6757 		hba->uic_error |= UFSHCD_UIC_TL_ERROR;
6758 		retval |= IRQ_HANDLED;
6759 	}
6760 
6761 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_DME);
6762 	if ((reg & UIC_DME_ERROR) &&
6763 	    (reg & UIC_DME_ERROR_CODE_MASK)) {
6764 		ufshcd_update_evt_hist(hba, UFS_EVT_DME_ERR, reg);
6765 		hba->uic_error |= UFSHCD_UIC_DME_ERROR;
6766 		retval |= IRQ_HANDLED;
6767 	}
6768 
6769 	dev_dbg(hba->dev, "%s: UIC error flags = 0x%08x\n",
6770 			__func__, hba->uic_error);
6771 	return retval;
6772 }
6773 
6774 /**
6775  * ufshcd_check_errors - Check for errors that need s/w attention
6776  * @hba: per-adapter instance
6777  * @intr_status: interrupt status generated by the controller
6778  *
6779  * Return:
6780  *  IRQ_HANDLED - If interrupt is valid
6781  *  IRQ_NONE    - If invalid interrupt
6782  */
6783 static irqreturn_t ufshcd_check_errors(struct ufs_hba *hba, u32 intr_status)
6784 {
6785 	bool queue_eh_work = false;
6786 	irqreturn_t retval = IRQ_NONE;
6787 
6788 	spin_lock(hba->host->host_lock);
6789 	hba->errors |= UFSHCD_ERROR_MASK & intr_status;
6790 
6791 	if (hba->errors & INT_FATAL_ERRORS) {
6792 		ufshcd_update_evt_hist(hba, UFS_EVT_FATAL_ERR,
6793 				       hba->errors);
6794 		queue_eh_work = true;
6795 	}
6796 
6797 	if (hba->errors & UIC_ERROR) {
6798 		hba->uic_error = 0;
6799 		retval = ufshcd_update_uic_error(hba);
6800 		if (hba->uic_error)
6801 			queue_eh_work = true;
6802 	}
6803 
6804 	if (hba->errors & UFSHCD_UIC_HIBERN8_MASK) {
6805 		dev_err(hba->dev,
6806 			"%s: Auto Hibern8 %s failed - status: 0x%08x, upmcrs: 0x%08x\n",
6807 			__func__, (hba->errors & UIC_HIBERNATE_ENTER) ?
6808 			"Enter" : "Exit",
6809 			hba->errors, ufshcd_get_upmcrs(hba));
6810 		ufshcd_update_evt_hist(hba, UFS_EVT_AUTO_HIBERN8_ERR,
6811 				       hba->errors);
6812 		ufshcd_set_link_broken(hba);
6813 		queue_eh_work = true;
6814 	}
6815 
6816 	if (queue_eh_work) {
6817 		/*
6818 		 * update the transfer error masks to sticky bits, let's do this
6819 		 * irrespective of current ufshcd_state.
6820 		 */
6821 		hba->saved_err |= hba->errors;
6822 		hba->saved_uic_err |= hba->uic_error;
6823 
6824 		/* dump controller state before resetting */
6825 		if ((hba->saved_err &
6826 		     (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK)) ||
6827 		    (hba->saved_uic_err &&
6828 		     (hba->saved_uic_err != UFSHCD_UIC_PA_GENERIC_ERROR))) {
6829 			dev_err(hba->dev, "%s: saved_err 0x%x saved_uic_err 0x%x\n",
6830 					__func__, hba->saved_err,
6831 					hba->saved_uic_err);
6832 			ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE,
6833 					 "host_regs: ");
6834 			ufshcd_print_pwr_info(hba);
6835 		}
6836 		ufshcd_schedule_eh_work(hba);
6837 		retval |= IRQ_HANDLED;
6838 	}
6839 	/*
6840 	 * if (!queue_eh_work) -
6841 	 * Other errors are either non-fatal where host recovers
6842 	 * itself without s/w intervention or errors that will be
6843 	 * handled by the SCSI core layer.
6844 	 */
6845 	hba->errors = 0;
6846 	hba->uic_error = 0;
6847 	spin_unlock(hba->host->host_lock);
6848 	return retval;
6849 }
6850 
6851 /**
6852  * ufshcd_tmc_handler - handle task management function completion
6853  * @hba: per adapter instance
6854  *
6855  * Return:
6856  *  IRQ_HANDLED - If interrupt is valid
6857  *  IRQ_NONE    - If invalid interrupt
6858  */
6859 static irqreturn_t ufshcd_tmc_handler(struct ufs_hba *hba)
6860 {
6861 	unsigned long flags, pending, issued;
6862 	irqreturn_t ret = IRQ_NONE;
6863 	int tag;
6864 
6865 	spin_lock_irqsave(hba->host->host_lock, flags);
6866 	pending = ufshcd_readl(hba, REG_UTP_TASK_REQ_DOOR_BELL);
6867 	issued = hba->outstanding_tasks & ~pending;
6868 	for_each_set_bit(tag, &issued, hba->nutmrs) {
6869 		struct request *req = hba->tmf_rqs[tag];
6870 		struct completion *c = req->end_io_data;
6871 
6872 		complete(c);
6873 		ret = IRQ_HANDLED;
6874 	}
6875 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6876 
6877 	return ret;
6878 }
6879 
6880 /**
6881  * ufshcd_handle_mcq_cq_events - handle MCQ completion queue events
6882  * @hba: per adapter instance
6883  *
6884  * Return: IRQ_HANDLED if interrupt is handled.
6885  */
6886 static irqreturn_t ufshcd_handle_mcq_cq_events(struct ufs_hba *hba)
6887 {
6888 	struct ufs_hw_queue *hwq;
6889 	unsigned long outstanding_cqs;
6890 	unsigned int nr_queues;
6891 	int i, ret;
6892 	u32 events;
6893 
6894 	ret = ufshcd_vops_get_outstanding_cqs(hba, &outstanding_cqs);
6895 	if (ret)
6896 		outstanding_cqs = (1U << hba->nr_hw_queues) - 1;
6897 
6898 	/* Exclude the poll queues */
6899 	nr_queues = hba->nr_hw_queues - hba->nr_queues[HCTX_TYPE_POLL];
6900 	for_each_set_bit(i, &outstanding_cqs, nr_queues) {
6901 		hwq = &hba->uhq[i];
6902 
6903 		events = ufshcd_mcq_read_cqis(hba, i);
6904 		if (events)
6905 			ufshcd_mcq_write_cqis(hba, events, i);
6906 
6907 		if (events & UFSHCD_MCQ_CQIS_TAIL_ENT_PUSH_STS)
6908 			ufshcd_mcq_poll_cqe_lock(hba, hwq);
6909 	}
6910 
6911 	return IRQ_HANDLED;
6912 }
6913 
6914 /**
6915  * ufshcd_sl_intr - Interrupt service routine
6916  * @hba: per adapter instance
6917  * @intr_status: contains interrupts generated by the controller
6918  *
6919  * Return:
6920  *  IRQ_HANDLED - If interrupt is valid
6921  *  IRQ_NONE    - If invalid interrupt
6922  */
6923 static irqreturn_t ufshcd_sl_intr(struct ufs_hba *hba, u32 intr_status)
6924 {
6925 	irqreturn_t retval = IRQ_NONE;
6926 
6927 	if (intr_status & UFSHCD_UIC_MASK)
6928 		retval |= ufshcd_uic_cmd_compl(hba, intr_status);
6929 
6930 	if (intr_status & UFSHCD_ERROR_MASK || hba->errors)
6931 		retval |= ufshcd_check_errors(hba, intr_status);
6932 
6933 	if (intr_status & UTP_TASK_REQ_COMPL)
6934 		retval |= ufshcd_tmc_handler(hba);
6935 
6936 	if (intr_status & UTP_TRANSFER_REQ_COMPL)
6937 		retval |= ufshcd_transfer_req_compl(hba);
6938 
6939 	if (intr_status & MCQ_CQ_EVENT_STATUS)
6940 		retval |= ufshcd_handle_mcq_cq_events(hba);
6941 
6942 	return retval;
6943 }
6944 
6945 /**
6946  * ufshcd_intr - Main interrupt service routine
6947  * @irq: irq number
6948  * @__hba: pointer to adapter instance
6949  *
6950  * Return:
6951  *  IRQ_HANDLED - If interrupt is valid
6952  *  IRQ_NONE    - If invalid interrupt
6953  */
6954 static irqreturn_t ufshcd_intr(int irq, void *__hba)
6955 {
6956 	u32 intr_status, enabled_intr_status = 0;
6957 	irqreturn_t retval = IRQ_NONE;
6958 	struct ufs_hba *hba = __hba;
6959 	int retries = hba->nutrs;
6960 
6961 	intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
6962 	hba->ufs_stats.last_intr_status = intr_status;
6963 	hba->ufs_stats.last_intr_ts = local_clock();
6964 
6965 	/*
6966 	 * There could be max of hba->nutrs reqs in flight and in worst case
6967 	 * if the reqs get finished 1 by 1 after the interrupt status is
6968 	 * read, make sure we handle them by checking the interrupt status
6969 	 * again in a loop until we process all of the reqs before returning.
6970 	 */
6971 	while (intr_status && retries--) {
6972 		enabled_intr_status =
6973 			intr_status & ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
6974 		ufshcd_writel(hba, intr_status, REG_INTERRUPT_STATUS);
6975 		if (enabled_intr_status)
6976 			retval |= ufshcd_sl_intr(hba, enabled_intr_status);
6977 
6978 		intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
6979 	}
6980 
6981 	if (enabled_intr_status && retval == IRQ_NONE &&
6982 	    (!(enabled_intr_status & UTP_TRANSFER_REQ_COMPL) ||
6983 	     hba->outstanding_reqs) && !ufshcd_eh_in_progress(hba)) {
6984 		dev_err(hba->dev, "%s: Unhandled interrupt 0x%08x (0x%08x, 0x%08x)\n",
6985 					__func__,
6986 					intr_status,
6987 					hba->ufs_stats.last_intr_status,
6988 					enabled_intr_status);
6989 		ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, "host_regs: ");
6990 	}
6991 
6992 	return retval;
6993 }
6994 
6995 static int ufshcd_clear_tm_cmd(struct ufs_hba *hba, int tag)
6996 {
6997 	int err = 0;
6998 	u32 mask = 1 << tag;
6999 	unsigned long flags;
7000 
7001 	if (!test_bit(tag, &hba->outstanding_tasks))
7002 		goto out;
7003 
7004 	spin_lock_irqsave(hba->host->host_lock, flags);
7005 	ufshcd_utmrl_clear(hba, tag);
7006 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7007 
7008 	/* poll for max. 1 sec to clear door bell register by h/w */
7009 	err = ufshcd_wait_for_register(hba,
7010 			REG_UTP_TASK_REQ_DOOR_BELL,
7011 			mask, 0, 1000, 1000);
7012 
7013 	dev_err(hba->dev, "Clearing task management function with tag %d %s\n",
7014 		tag, err < 0 ? "failed" : "succeeded");
7015 
7016 out:
7017 	return err;
7018 }
7019 
7020 static int __ufshcd_issue_tm_cmd(struct ufs_hba *hba,
7021 		struct utp_task_req_desc *treq, u8 tm_function)
7022 {
7023 	struct request_queue *q = hba->tmf_queue;
7024 	struct Scsi_Host *host = hba->host;
7025 	DECLARE_COMPLETION_ONSTACK(wait);
7026 	struct request *req;
7027 	unsigned long flags;
7028 	int task_tag, err;
7029 
7030 	/*
7031 	 * blk_mq_alloc_request() is used here only to get a free tag.
7032 	 */
7033 	req = blk_mq_alloc_request(q, REQ_OP_DRV_OUT, 0);
7034 	if (IS_ERR(req))
7035 		return PTR_ERR(req);
7036 
7037 	req->end_io_data = &wait;
7038 	ufshcd_hold(hba);
7039 
7040 	spin_lock_irqsave(host->host_lock, flags);
7041 
7042 	task_tag = req->tag;
7043 	hba->tmf_rqs[req->tag] = req;
7044 	treq->upiu_req.req_header.task_tag = task_tag;
7045 
7046 	memcpy(hba->utmrdl_base_addr + task_tag, treq, sizeof(*treq));
7047 	ufshcd_vops_setup_task_mgmt(hba, task_tag, tm_function);
7048 
7049 	/* send command to the controller */
7050 	__set_bit(task_tag, &hba->outstanding_tasks);
7051 
7052 	ufshcd_writel(hba, 1 << task_tag, REG_UTP_TASK_REQ_DOOR_BELL);
7053 	/* Make sure that doorbell is committed immediately */
7054 	wmb();
7055 
7056 	spin_unlock_irqrestore(host->host_lock, flags);
7057 
7058 	ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_SEND);
7059 
7060 	/* wait until the task management command is completed */
7061 	err = wait_for_completion_io_timeout(&wait,
7062 			msecs_to_jiffies(TM_CMD_TIMEOUT));
7063 	if (!err) {
7064 		ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_ERR);
7065 		dev_err(hba->dev, "%s: task management cmd 0x%.2x timed-out\n",
7066 				__func__, tm_function);
7067 		if (ufshcd_clear_tm_cmd(hba, task_tag))
7068 			dev_WARN(hba->dev, "%s: unable to clear tm cmd (slot %d) after timeout\n",
7069 					__func__, task_tag);
7070 		err = -ETIMEDOUT;
7071 	} else {
7072 		err = 0;
7073 		memcpy(treq, hba->utmrdl_base_addr + task_tag, sizeof(*treq));
7074 
7075 		ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_COMP);
7076 	}
7077 
7078 	spin_lock_irqsave(hba->host->host_lock, flags);
7079 	hba->tmf_rqs[req->tag] = NULL;
7080 	__clear_bit(task_tag, &hba->outstanding_tasks);
7081 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7082 
7083 	ufshcd_release(hba);
7084 	blk_mq_free_request(req);
7085 
7086 	return err;
7087 }
7088 
7089 /**
7090  * ufshcd_issue_tm_cmd - issues task management commands to controller
7091  * @hba: per adapter instance
7092  * @lun_id: LUN ID to which TM command is sent
7093  * @task_id: task ID to which the TM command is applicable
7094  * @tm_function: task management function opcode
7095  * @tm_response: task management service response return value
7096  *
7097  * Return: non-zero value on error, zero on success.
7098  */
7099 static int ufshcd_issue_tm_cmd(struct ufs_hba *hba, int lun_id, int task_id,
7100 		u8 tm_function, u8 *tm_response)
7101 {
7102 	struct utp_task_req_desc treq = { };
7103 	enum utp_ocs ocs_value;
7104 	int err;
7105 
7106 	/* Configure task request descriptor */
7107 	treq.header.interrupt = 1;
7108 	treq.header.ocs = OCS_INVALID_COMMAND_STATUS;
7109 
7110 	/* Configure task request UPIU */
7111 	treq.upiu_req.req_header.transaction_code = UPIU_TRANSACTION_TASK_REQ;
7112 	treq.upiu_req.req_header.lun = lun_id;
7113 	treq.upiu_req.req_header.tm_function = tm_function;
7114 
7115 	/*
7116 	 * The host shall provide the same value for LUN field in the basic
7117 	 * header and for Input Parameter.
7118 	 */
7119 	treq.upiu_req.input_param1 = cpu_to_be32(lun_id);
7120 	treq.upiu_req.input_param2 = cpu_to_be32(task_id);
7121 
7122 	err = __ufshcd_issue_tm_cmd(hba, &treq, tm_function);
7123 	if (err == -ETIMEDOUT)
7124 		return err;
7125 
7126 	ocs_value = treq.header.ocs & MASK_OCS;
7127 	if (ocs_value != OCS_SUCCESS)
7128 		dev_err(hba->dev, "%s: failed, ocs = 0x%x\n",
7129 				__func__, ocs_value);
7130 	else if (tm_response)
7131 		*tm_response = be32_to_cpu(treq.upiu_rsp.output_param1) &
7132 				MASK_TM_SERVICE_RESP;
7133 	return err;
7134 }
7135 
7136 /**
7137  * ufshcd_issue_devman_upiu_cmd - API for sending "utrd" type requests
7138  * @hba:	per-adapter instance
7139  * @req_upiu:	upiu request
7140  * @rsp_upiu:	upiu reply
7141  * @desc_buff:	pointer to descriptor buffer, NULL if NA
7142  * @buff_len:	descriptor size, 0 if NA
7143  * @cmd_type:	specifies the type (NOP, Query...)
7144  * @desc_op:	descriptor operation
7145  *
7146  * Those type of requests uses UTP Transfer Request Descriptor - utrd.
7147  * Therefore, it "rides" the device management infrastructure: uses its tag and
7148  * tasks work queues.
7149  *
7150  * Since there is only one available tag for device management commands,
7151  * the caller is expected to hold the hba->dev_cmd.lock mutex.
7152  *
7153  * Return: 0 upon success; < 0 upon failure.
7154  */
7155 static int ufshcd_issue_devman_upiu_cmd(struct ufs_hba *hba,
7156 					struct utp_upiu_req *req_upiu,
7157 					struct utp_upiu_req *rsp_upiu,
7158 					u8 *desc_buff, int *buff_len,
7159 					enum dev_cmd_type cmd_type,
7160 					enum query_opcode desc_op)
7161 {
7162 	DECLARE_COMPLETION_ONSTACK(wait);
7163 	const u32 tag = hba->reserved_slot;
7164 	struct ufshcd_lrb *lrbp;
7165 	int err = 0;
7166 	u8 upiu_flags;
7167 
7168 	/* Protects use of hba->reserved_slot. */
7169 	lockdep_assert_held(&hba->dev_cmd.lock);
7170 
7171 	down_read(&hba->clk_scaling_lock);
7172 
7173 	lrbp = &hba->lrb[tag];
7174 	lrbp->cmd = NULL;
7175 	lrbp->task_tag = tag;
7176 	lrbp->lun = 0;
7177 	lrbp->intr_cmd = true;
7178 	ufshcd_prepare_lrbp_crypto(NULL, lrbp);
7179 	hba->dev_cmd.type = cmd_type;
7180 
7181 	if (hba->ufs_version <= ufshci_version(1, 1))
7182 		lrbp->command_type = UTP_CMD_TYPE_DEV_MANAGE;
7183 	else
7184 		lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
7185 
7186 	/* update the task tag in the request upiu */
7187 	req_upiu->header.task_tag = tag;
7188 
7189 	ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, DMA_NONE, 0);
7190 
7191 	/* just copy the upiu request as it is */
7192 	memcpy(lrbp->ucd_req_ptr, req_upiu, sizeof(*lrbp->ucd_req_ptr));
7193 	if (desc_buff && desc_op == UPIU_QUERY_OPCODE_WRITE_DESC) {
7194 		/* The Data Segment Area is optional depending upon the query
7195 		 * function value. for WRITE DESCRIPTOR, the data segment
7196 		 * follows right after the tsf.
7197 		 */
7198 		memcpy(lrbp->ucd_req_ptr + 1, desc_buff, *buff_len);
7199 		*buff_len = 0;
7200 	}
7201 
7202 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
7203 
7204 	hba->dev_cmd.complete = &wait;
7205 
7206 	ufshcd_add_query_upiu_trace(hba, UFS_QUERY_SEND, lrbp->ucd_req_ptr);
7207 
7208 	ufshcd_send_command(hba, tag, hba->dev_cmd_queue);
7209 	/*
7210 	 * ignore the returning value here - ufshcd_check_query_response is
7211 	 * bound to fail since dev_cmd.query and dev_cmd.type were left empty.
7212 	 * read the response directly ignoring all errors.
7213 	 */
7214 	ufshcd_wait_for_dev_cmd(hba, lrbp, QUERY_REQ_TIMEOUT);
7215 
7216 	/* just copy the upiu response as it is */
7217 	memcpy(rsp_upiu, lrbp->ucd_rsp_ptr, sizeof(*rsp_upiu));
7218 	if (desc_buff && desc_op == UPIU_QUERY_OPCODE_READ_DESC) {
7219 		u8 *descp = (u8 *)lrbp->ucd_rsp_ptr + sizeof(*rsp_upiu);
7220 		u16 resp_len = be16_to_cpu(lrbp->ucd_rsp_ptr->header
7221 					   .data_segment_length);
7222 
7223 		if (*buff_len >= resp_len) {
7224 			memcpy(desc_buff, descp, resp_len);
7225 			*buff_len = resp_len;
7226 		} else {
7227 			dev_warn(hba->dev,
7228 				 "%s: rsp size %d is bigger than buffer size %d",
7229 				 __func__, resp_len, *buff_len);
7230 			*buff_len = 0;
7231 			err = -EINVAL;
7232 		}
7233 	}
7234 	ufshcd_add_query_upiu_trace(hba, err ? UFS_QUERY_ERR : UFS_QUERY_COMP,
7235 				    (struct utp_upiu_req *)lrbp->ucd_rsp_ptr);
7236 
7237 	up_read(&hba->clk_scaling_lock);
7238 	return err;
7239 }
7240 
7241 /**
7242  * ufshcd_exec_raw_upiu_cmd - API function for sending raw upiu commands
7243  * @hba:	per-adapter instance
7244  * @req_upiu:	upiu request
7245  * @rsp_upiu:	upiu reply - only 8 DW as we do not support scsi commands
7246  * @msgcode:	message code, one of UPIU Transaction Codes Initiator to Target
7247  * @desc_buff:	pointer to descriptor buffer, NULL if NA
7248  * @buff_len:	descriptor size, 0 if NA
7249  * @desc_op:	descriptor operation
7250  *
7251  * Supports UTP Transfer requests (nop and query), and UTP Task
7252  * Management requests.
7253  * It is up to the caller to fill the upiu conent properly, as it will
7254  * be copied without any further input validations.
7255  *
7256  * Return: 0 upon success; < 0 upon failure.
7257  */
7258 int ufshcd_exec_raw_upiu_cmd(struct ufs_hba *hba,
7259 			     struct utp_upiu_req *req_upiu,
7260 			     struct utp_upiu_req *rsp_upiu,
7261 			     enum upiu_request_transaction msgcode,
7262 			     u8 *desc_buff, int *buff_len,
7263 			     enum query_opcode desc_op)
7264 {
7265 	int err;
7266 	enum dev_cmd_type cmd_type = DEV_CMD_TYPE_QUERY;
7267 	struct utp_task_req_desc treq = { };
7268 	enum utp_ocs ocs_value;
7269 	u8 tm_f = req_upiu->header.tm_function;
7270 
7271 	switch (msgcode) {
7272 	case UPIU_TRANSACTION_NOP_OUT:
7273 		cmd_type = DEV_CMD_TYPE_NOP;
7274 		fallthrough;
7275 	case UPIU_TRANSACTION_QUERY_REQ:
7276 		ufshcd_hold(hba);
7277 		mutex_lock(&hba->dev_cmd.lock);
7278 		err = ufshcd_issue_devman_upiu_cmd(hba, req_upiu, rsp_upiu,
7279 						   desc_buff, buff_len,
7280 						   cmd_type, desc_op);
7281 		mutex_unlock(&hba->dev_cmd.lock);
7282 		ufshcd_release(hba);
7283 
7284 		break;
7285 	case UPIU_TRANSACTION_TASK_REQ:
7286 		treq.header.interrupt = 1;
7287 		treq.header.ocs = OCS_INVALID_COMMAND_STATUS;
7288 
7289 		memcpy(&treq.upiu_req, req_upiu, sizeof(*req_upiu));
7290 
7291 		err = __ufshcd_issue_tm_cmd(hba, &treq, tm_f);
7292 		if (err == -ETIMEDOUT)
7293 			break;
7294 
7295 		ocs_value = treq.header.ocs & MASK_OCS;
7296 		if (ocs_value != OCS_SUCCESS) {
7297 			dev_err(hba->dev, "%s: failed, ocs = 0x%x\n", __func__,
7298 				ocs_value);
7299 			break;
7300 		}
7301 
7302 		memcpy(rsp_upiu, &treq.upiu_rsp, sizeof(*rsp_upiu));
7303 
7304 		break;
7305 	default:
7306 		err = -EINVAL;
7307 
7308 		break;
7309 	}
7310 
7311 	return err;
7312 }
7313 
7314 /**
7315  * ufshcd_advanced_rpmb_req_handler - handle advanced RPMB request
7316  * @hba:	per adapter instance
7317  * @req_upiu:	upiu request
7318  * @rsp_upiu:	upiu reply
7319  * @req_ehs:	EHS field which contains Advanced RPMB Request Message
7320  * @rsp_ehs:	EHS field which returns Advanced RPMB Response Message
7321  * @sg_cnt:	The number of sg lists actually used
7322  * @sg_list:	Pointer to SG list when DATA IN/OUT UPIU is required in ARPMB operation
7323  * @dir:	DMA direction
7324  *
7325  * Return: zero on success, non-zero on failure.
7326  */
7327 int ufshcd_advanced_rpmb_req_handler(struct ufs_hba *hba, struct utp_upiu_req *req_upiu,
7328 			 struct utp_upiu_req *rsp_upiu, struct ufs_ehs *req_ehs,
7329 			 struct ufs_ehs *rsp_ehs, int sg_cnt, struct scatterlist *sg_list,
7330 			 enum dma_data_direction dir)
7331 {
7332 	DECLARE_COMPLETION_ONSTACK(wait);
7333 	const u32 tag = hba->reserved_slot;
7334 	struct ufshcd_lrb *lrbp;
7335 	int err = 0;
7336 	int result;
7337 	u8 upiu_flags;
7338 	u8 *ehs_data;
7339 	u16 ehs_len;
7340 
7341 	/* Protects use of hba->reserved_slot. */
7342 	ufshcd_hold(hba);
7343 	mutex_lock(&hba->dev_cmd.lock);
7344 	down_read(&hba->clk_scaling_lock);
7345 
7346 	lrbp = &hba->lrb[tag];
7347 	lrbp->cmd = NULL;
7348 	lrbp->task_tag = tag;
7349 	lrbp->lun = UFS_UPIU_RPMB_WLUN;
7350 
7351 	lrbp->intr_cmd = true;
7352 	ufshcd_prepare_lrbp_crypto(NULL, lrbp);
7353 	hba->dev_cmd.type = DEV_CMD_TYPE_RPMB;
7354 
7355 	/* Advanced RPMB starts from UFS 4.0, so its command type is UTP_CMD_TYPE_UFS_STORAGE */
7356 	lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
7357 
7358 	/*
7359 	 * According to UFSHCI 4.0 specification page 24, if EHSLUTRDS is 0, host controller takes
7360 	 * EHS length from CMD UPIU, and SW driver use EHS Length field in CMD UPIU. if it is 1,
7361 	 * HW controller takes EHS length from UTRD.
7362 	 */
7363 	if (hba->capabilities & MASK_EHSLUTRD_SUPPORTED)
7364 		ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, dir, 2);
7365 	else
7366 		ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, dir, 0);
7367 
7368 	/* update the task tag */
7369 	req_upiu->header.task_tag = tag;
7370 
7371 	/* copy the UPIU(contains CDB) request as it is */
7372 	memcpy(lrbp->ucd_req_ptr, req_upiu, sizeof(*lrbp->ucd_req_ptr));
7373 	/* Copy EHS, starting with byte32, immediately after the CDB package */
7374 	memcpy(lrbp->ucd_req_ptr + 1, req_ehs, sizeof(*req_ehs));
7375 
7376 	if (dir != DMA_NONE && sg_list)
7377 		ufshcd_sgl_to_prdt(hba, lrbp, sg_cnt, sg_list);
7378 
7379 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
7380 
7381 	hba->dev_cmd.complete = &wait;
7382 
7383 	ufshcd_send_command(hba, tag, hba->dev_cmd_queue);
7384 
7385 	err = ufshcd_wait_for_dev_cmd(hba, lrbp, ADVANCED_RPMB_REQ_TIMEOUT);
7386 
7387 	if (!err) {
7388 		/* Just copy the upiu response as it is */
7389 		memcpy(rsp_upiu, lrbp->ucd_rsp_ptr, sizeof(*rsp_upiu));
7390 		/* Get the response UPIU result */
7391 		result = (lrbp->ucd_rsp_ptr->header.response << 8) |
7392 			lrbp->ucd_rsp_ptr->header.status;
7393 
7394 		ehs_len = lrbp->ucd_rsp_ptr->header.ehs_length;
7395 		/*
7396 		 * Since the bLength in EHS indicates the total size of the EHS Header and EHS Data
7397 		 * in 32 Byte units, the value of the bLength Request/Response for Advanced RPMB
7398 		 * Message is 02h
7399 		 */
7400 		if (ehs_len == 2 && rsp_ehs) {
7401 			/*
7402 			 * ucd_rsp_ptr points to a buffer with a length of 512 bytes
7403 			 * (ALIGNED_UPIU_SIZE = 512), and the EHS data just starts from byte32
7404 			 */
7405 			ehs_data = (u8 *)lrbp->ucd_rsp_ptr + EHS_OFFSET_IN_RESPONSE;
7406 			memcpy(rsp_ehs, ehs_data, ehs_len * 32);
7407 		}
7408 	}
7409 
7410 	up_read(&hba->clk_scaling_lock);
7411 	mutex_unlock(&hba->dev_cmd.lock);
7412 	ufshcd_release(hba);
7413 	return err ? : result;
7414 }
7415 
7416 /**
7417  * ufshcd_eh_device_reset_handler() - Reset a single logical unit.
7418  * @cmd: SCSI command pointer
7419  *
7420  * Return: SUCCESS or FAILED.
7421  */
7422 static int ufshcd_eh_device_reset_handler(struct scsi_cmnd *cmd)
7423 {
7424 	unsigned long flags, pending_reqs = 0, not_cleared = 0;
7425 	struct Scsi_Host *host;
7426 	struct ufs_hba *hba;
7427 	struct ufs_hw_queue *hwq;
7428 	struct ufshcd_lrb *lrbp;
7429 	u32 pos, not_cleared_mask = 0;
7430 	int err;
7431 	u8 resp = 0xF, lun;
7432 
7433 	host = cmd->device->host;
7434 	hba = shost_priv(host);
7435 
7436 	lun = ufshcd_scsi_to_upiu_lun(cmd->device->lun);
7437 	err = ufshcd_issue_tm_cmd(hba, lun, 0, UFS_LOGICAL_RESET, &resp);
7438 	if (err || resp != UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7439 		if (!err)
7440 			err = resp;
7441 		goto out;
7442 	}
7443 
7444 	if (is_mcq_enabled(hba)) {
7445 		for (pos = 0; pos < hba->nutrs; pos++) {
7446 			lrbp = &hba->lrb[pos];
7447 			if (ufshcd_cmd_inflight(lrbp->cmd) &&
7448 			    lrbp->lun == lun) {
7449 				ufshcd_clear_cmd(hba, pos);
7450 				hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(lrbp->cmd));
7451 				ufshcd_mcq_poll_cqe_lock(hba, hwq);
7452 			}
7453 		}
7454 		err = 0;
7455 		goto out;
7456 	}
7457 
7458 	/* clear the commands that were pending for corresponding LUN */
7459 	spin_lock_irqsave(&hba->outstanding_lock, flags);
7460 	for_each_set_bit(pos, &hba->outstanding_reqs, hba->nutrs)
7461 		if (hba->lrb[pos].lun == lun)
7462 			__set_bit(pos, &pending_reqs);
7463 	hba->outstanding_reqs &= ~pending_reqs;
7464 	spin_unlock_irqrestore(&hba->outstanding_lock, flags);
7465 
7466 	for_each_set_bit(pos, &pending_reqs, hba->nutrs) {
7467 		if (ufshcd_clear_cmd(hba, pos) < 0) {
7468 			spin_lock_irqsave(&hba->outstanding_lock, flags);
7469 			not_cleared = 1U << pos &
7470 				ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
7471 			hba->outstanding_reqs |= not_cleared;
7472 			not_cleared_mask |= not_cleared;
7473 			spin_unlock_irqrestore(&hba->outstanding_lock, flags);
7474 
7475 			dev_err(hba->dev, "%s: failed to clear request %d\n",
7476 				__func__, pos);
7477 		}
7478 	}
7479 	__ufshcd_transfer_req_compl(hba, pending_reqs & ~not_cleared_mask);
7480 
7481 out:
7482 	hba->req_abort_count = 0;
7483 	ufshcd_update_evt_hist(hba, UFS_EVT_DEV_RESET, (u32)err);
7484 	if (!err) {
7485 		err = SUCCESS;
7486 	} else {
7487 		dev_err(hba->dev, "%s: failed with err %d\n", __func__, err);
7488 		err = FAILED;
7489 	}
7490 	return err;
7491 }
7492 
7493 static void ufshcd_set_req_abort_skip(struct ufs_hba *hba, unsigned long bitmap)
7494 {
7495 	struct ufshcd_lrb *lrbp;
7496 	int tag;
7497 
7498 	for_each_set_bit(tag, &bitmap, hba->nutrs) {
7499 		lrbp = &hba->lrb[tag];
7500 		lrbp->req_abort_skip = true;
7501 	}
7502 }
7503 
7504 /**
7505  * ufshcd_try_to_abort_task - abort a specific task
7506  * @hba: Pointer to adapter instance
7507  * @tag: Task tag/index to be aborted
7508  *
7509  * Abort the pending command in device by sending UFS_ABORT_TASK task management
7510  * command, and in host controller by clearing the door-bell register. There can
7511  * be race between controller sending the command to the device while abort is
7512  * issued. To avoid that, first issue UFS_QUERY_TASK to check if the command is
7513  * really issued and then try to abort it.
7514  *
7515  * Return: zero on success, non-zero on failure.
7516  */
7517 int ufshcd_try_to_abort_task(struct ufs_hba *hba, int tag)
7518 {
7519 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
7520 	int err = 0;
7521 	int poll_cnt;
7522 	u8 resp = 0xF;
7523 	u32 reg;
7524 
7525 	for (poll_cnt = 100; poll_cnt; poll_cnt--) {
7526 		err = ufshcd_issue_tm_cmd(hba, lrbp->lun, lrbp->task_tag,
7527 				UFS_QUERY_TASK, &resp);
7528 		if (!err && resp == UPIU_TASK_MANAGEMENT_FUNC_SUCCEEDED) {
7529 			/* cmd pending in the device */
7530 			dev_err(hba->dev, "%s: cmd pending in the device. tag = %d\n",
7531 				__func__, tag);
7532 			break;
7533 		} else if (!err && resp == UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7534 			/*
7535 			 * cmd not pending in the device, check if it is
7536 			 * in transition.
7537 			 */
7538 			dev_err(hba->dev, "%s: cmd at tag %d not pending in the device.\n",
7539 				__func__, tag);
7540 			if (is_mcq_enabled(hba)) {
7541 				/* MCQ mode */
7542 				if (ufshcd_cmd_inflight(lrbp->cmd)) {
7543 					/* sleep for max. 200us same delay as in SDB mode */
7544 					usleep_range(100, 200);
7545 					continue;
7546 				}
7547 				/* command completed already */
7548 				dev_err(hba->dev, "%s: cmd at tag=%d is cleared.\n",
7549 					__func__, tag);
7550 				goto out;
7551 			}
7552 
7553 			/* Single Doorbell Mode */
7554 			reg = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
7555 			if (reg & (1 << tag)) {
7556 				/* sleep for max. 200us to stabilize */
7557 				usleep_range(100, 200);
7558 				continue;
7559 			}
7560 			/* command completed already */
7561 			dev_err(hba->dev, "%s: cmd at tag %d successfully cleared from DB.\n",
7562 				__func__, tag);
7563 			goto out;
7564 		} else {
7565 			dev_err(hba->dev,
7566 				"%s: no response from device. tag = %d, err %d\n",
7567 				__func__, tag, err);
7568 			if (!err)
7569 				err = resp; /* service response error */
7570 			goto out;
7571 		}
7572 	}
7573 
7574 	if (!poll_cnt) {
7575 		err = -EBUSY;
7576 		goto out;
7577 	}
7578 
7579 	err = ufshcd_issue_tm_cmd(hba, lrbp->lun, lrbp->task_tag,
7580 			UFS_ABORT_TASK, &resp);
7581 	if (err || resp != UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7582 		if (!err) {
7583 			err = resp; /* service response error */
7584 			dev_err(hba->dev, "%s: issued. tag = %d, err %d\n",
7585 				__func__, tag, err);
7586 		}
7587 		goto out;
7588 	}
7589 
7590 	err = ufshcd_clear_cmd(hba, tag);
7591 	if (err)
7592 		dev_err(hba->dev, "%s: Failed clearing cmd at tag %d, err %d\n",
7593 			__func__, tag, err);
7594 
7595 out:
7596 	return err;
7597 }
7598 
7599 /**
7600  * ufshcd_abort - scsi host template eh_abort_handler callback
7601  * @cmd: SCSI command pointer
7602  *
7603  * Return: SUCCESS or FAILED.
7604  */
7605 static int ufshcd_abort(struct scsi_cmnd *cmd)
7606 {
7607 	struct Scsi_Host *host = cmd->device->host;
7608 	struct ufs_hba *hba = shost_priv(host);
7609 	int tag = scsi_cmd_to_rq(cmd)->tag;
7610 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
7611 	unsigned long flags;
7612 	int err = FAILED;
7613 	bool outstanding;
7614 	u32 reg;
7615 
7616 	ufshcd_hold(hba);
7617 
7618 	if (!is_mcq_enabled(hba)) {
7619 		reg = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
7620 		if (!test_bit(tag, &hba->outstanding_reqs)) {
7621 			/* If command is already aborted/completed, return FAILED. */
7622 			dev_err(hba->dev,
7623 				"%s: cmd at tag %d already completed, outstanding=0x%lx, doorbell=0x%x\n",
7624 				__func__, tag, hba->outstanding_reqs, reg);
7625 			goto release;
7626 		}
7627 	}
7628 
7629 	/* Print Transfer Request of aborted task */
7630 	dev_info(hba->dev, "%s: Device abort task at tag %d\n", __func__, tag);
7631 
7632 	/*
7633 	 * Print detailed info about aborted request.
7634 	 * As more than one request might get aborted at the same time,
7635 	 * print full information only for the first aborted request in order
7636 	 * to reduce repeated printouts. For other aborted requests only print
7637 	 * basic details.
7638 	 */
7639 	scsi_print_command(cmd);
7640 	if (!hba->req_abort_count) {
7641 		ufshcd_update_evt_hist(hba, UFS_EVT_ABORT, tag);
7642 		ufshcd_print_evt_hist(hba);
7643 		ufshcd_print_host_state(hba);
7644 		ufshcd_print_pwr_info(hba);
7645 		ufshcd_print_tr(hba, tag, true);
7646 	} else {
7647 		ufshcd_print_tr(hba, tag, false);
7648 	}
7649 	hba->req_abort_count++;
7650 
7651 	if (!is_mcq_enabled(hba) && !(reg & (1 << tag))) {
7652 		/* only execute this code in single doorbell mode */
7653 		dev_err(hba->dev,
7654 		"%s: cmd was completed, but without a notifying intr, tag = %d",
7655 		__func__, tag);
7656 		__ufshcd_transfer_req_compl(hba, 1UL << tag);
7657 		goto release;
7658 	}
7659 
7660 	/*
7661 	 * Task abort to the device W-LUN is illegal. When this command
7662 	 * will fail, due to spec violation, scsi err handling next step
7663 	 * will be to send LU reset which, again, is a spec violation.
7664 	 * To avoid these unnecessary/illegal steps, first we clean up
7665 	 * the lrb taken by this cmd and re-set it in outstanding_reqs,
7666 	 * then queue the eh_work and bail.
7667 	 */
7668 	if (lrbp->lun == UFS_UPIU_UFS_DEVICE_WLUN) {
7669 		ufshcd_update_evt_hist(hba, UFS_EVT_ABORT, lrbp->lun);
7670 
7671 		spin_lock_irqsave(host->host_lock, flags);
7672 		hba->force_reset = true;
7673 		ufshcd_schedule_eh_work(hba);
7674 		spin_unlock_irqrestore(host->host_lock, flags);
7675 		goto release;
7676 	}
7677 
7678 	if (is_mcq_enabled(hba)) {
7679 		/* MCQ mode. Branch off to handle abort for mcq mode */
7680 		err = ufshcd_mcq_abort(cmd);
7681 		goto release;
7682 	}
7683 
7684 	/* Skip task abort in case previous aborts failed and report failure */
7685 	if (lrbp->req_abort_skip) {
7686 		dev_err(hba->dev, "%s: skipping abort\n", __func__);
7687 		ufshcd_set_req_abort_skip(hba, hba->outstanding_reqs);
7688 		goto release;
7689 	}
7690 
7691 	err = ufshcd_try_to_abort_task(hba, tag);
7692 	if (err) {
7693 		dev_err(hba->dev, "%s: failed with err %d\n", __func__, err);
7694 		ufshcd_set_req_abort_skip(hba, hba->outstanding_reqs);
7695 		err = FAILED;
7696 		goto release;
7697 	}
7698 
7699 	/*
7700 	 * Clear the corresponding bit from outstanding_reqs since the command
7701 	 * has been aborted successfully.
7702 	 */
7703 	spin_lock_irqsave(&hba->outstanding_lock, flags);
7704 	outstanding = __test_and_clear_bit(tag, &hba->outstanding_reqs);
7705 	spin_unlock_irqrestore(&hba->outstanding_lock, flags);
7706 
7707 	if (outstanding)
7708 		ufshcd_release_scsi_cmd(hba, lrbp);
7709 
7710 	err = SUCCESS;
7711 
7712 release:
7713 	/* Matches the ufshcd_hold() call at the start of this function. */
7714 	ufshcd_release(hba);
7715 	return err;
7716 }
7717 
7718 /**
7719  * ufshcd_host_reset_and_restore - reset and restore host controller
7720  * @hba: per-adapter instance
7721  *
7722  * Note that host controller reset may issue DME_RESET to
7723  * local and remote (device) Uni-Pro stack and the attributes
7724  * are reset to default state.
7725  *
7726  * Return: zero on success, non-zero on failure.
7727  */
7728 static int ufshcd_host_reset_and_restore(struct ufs_hba *hba)
7729 {
7730 	int err;
7731 
7732 	/*
7733 	 * Stop the host controller and complete the requests
7734 	 * cleared by h/w
7735 	 */
7736 	ufshcd_hba_stop(hba);
7737 	hba->silence_err_logs = true;
7738 	ufshcd_complete_requests(hba, true);
7739 	hba->silence_err_logs = false;
7740 
7741 	/* scale up clocks to max frequency before full reinitialization */
7742 	ufshcd_scale_clks(hba, ULONG_MAX, true);
7743 
7744 	err = ufshcd_hba_enable(hba);
7745 
7746 	/* Establish the link again and restore the device */
7747 	if (!err)
7748 		err = ufshcd_probe_hba(hba, false);
7749 
7750 	if (err)
7751 		dev_err(hba->dev, "%s: Host init failed %d\n", __func__, err);
7752 	ufshcd_update_evt_hist(hba, UFS_EVT_HOST_RESET, (u32)err);
7753 	return err;
7754 }
7755 
7756 /**
7757  * ufshcd_reset_and_restore - reset and re-initialize host/device
7758  * @hba: per-adapter instance
7759  *
7760  * Reset and recover device, host and re-establish link. This
7761  * is helpful to recover the communication in fatal error conditions.
7762  *
7763  * Return: zero on success, non-zero on failure.
7764  */
7765 static int ufshcd_reset_and_restore(struct ufs_hba *hba)
7766 {
7767 	u32 saved_err = 0;
7768 	u32 saved_uic_err = 0;
7769 	int err = 0;
7770 	unsigned long flags;
7771 	int retries = MAX_HOST_RESET_RETRIES;
7772 
7773 	spin_lock_irqsave(hba->host->host_lock, flags);
7774 	do {
7775 		/*
7776 		 * This is a fresh start, cache and clear saved error first,
7777 		 * in case new error generated during reset and restore.
7778 		 */
7779 		saved_err |= hba->saved_err;
7780 		saved_uic_err |= hba->saved_uic_err;
7781 		hba->saved_err = 0;
7782 		hba->saved_uic_err = 0;
7783 		hba->force_reset = false;
7784 		hba->ufshcd_state = UFSHCD_STATE_RESET;
7785 		spin_unlock_irqrestore(hba->host->host_lock, flags);
7786 
7787 		/* Reset the attached device */
7788 		ufshcd_device_reset(hba);
7789 
7790 		err = ufshcd_host_reset_and_restore(hba);
7791 
7792 		spin_lock_irqsave(hba->host->host_lock, flags);
7793 		if (err)
7794 			continue;
7795 		/* Do not exit unless operational or dead */
7796 		if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL &&
7797 		    hba->ufshcd_state != UFSHCD_STATE_ERROR &&
7798 		    hba->ufshcd_state != UFSHCD_STATE_EH_SCHEDULED_NON_FATAL)
7799 			err = -EAGAIN;
7800 	} while (err && --retries);
7801 
7802 	/*
7803 	 * Inform scsi mid-layer that we did reset and allow to handle
7804 	 * Unit Attention properly.
7805 	 */
7806 	scsi_report_bus_reset(hba->host, 0);
7807 	if (err) {
7808 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
7809 		hba->saved_err |= saved_err;
7810 		hba->saved_uic_err |= saved_uic_err;
7811 	}
7812 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7813 
7814 	return err;
7815 }
7816 
7817 /**
7818  * ufshcd_eh_host_reset_handler - host reset handler registered to scsi layer
7819  * @cmd: SCSI command pointer
7820  *
7821  * Return: SUCCESS or FAILED.
7822  */
7823 static int ufshcd_eh_host_reset_handler(struct scsi_cmnd *cmd)
7824 {
7825 	int err = SUCCESS;
7826 	unsigned long flags;
7827 	struct ufs_hba *hba;
7828 
7829 	hba = shost_priv(cmd->device->host);
7830 
7831 	/*
7832 	 * If runtime PM sent SSU and got a timeout, scsi_error_handler is
7833 	 * stuck in this function waiting for flush_work(&hba->eh_work). And
7834 	 * ufshcd_err_handler(eh_work) is stuck waiting for runtime PM. Do
7835 	 * ufshcd_link_recovery instead of eh_work to prevent deadlock.
7836 	 */
7837 	if (hba->pm_op_in_progress) {
7838 		if (ufshcd_link_recovery(hba))
7839 			err = FAILED;
7840 
7841 		return err;
7842 	}
7843 
7844 	spin_lock_irqsave(hba->host->host_lock, flags);
7845 	hba->force_reset = true;
7846 	ufshcd_schedule_eh_work(hba);
7847 	dev_err(hba->dev, "%s: reset in progress - 1\n", __func__);
7848 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7849 
7850 	flush_work(&hba->eh_work);
7851 
7852 	spin_lock_irqsave(hba->host->host_lock, flags);
7853 	if (hba->ufshcd_state == UFSHCD_STATE_ERROR)
7854 		err = FAILED;
7855 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7856 
7857 	return err;
7858 }
7859 
7860 /**
7861  * ufshcd_get_max_icc_level - calculate the ICC level
7862  * @sup_curr_uA: max. current supported by the regulator
7863  * @start_scan: row at the desc table to start scan from
7864  * @buff: power descriptor buffer
7865  *
7866  * Return: calculated max ICC level for specific regulator.
7867  */
7868 static u32 ufshcd_get_max_icc_level(int sup_curr_uA, u32 start_scan,
7869 				    const char *buff)
7870 {
7871 	int i;
7872 	int curr_uA;
7873 	u16 data;
7874 	u16 unit;
7875 
7876 	for (i = start_scan; i >= 0; i--) {
7877 		data = get_unaligned_be16(&buff[2 * i]);
7878 		unit = (data & ATTR_ICC_LVL_UNIT_MASK) >>
7879 						ATTR_ICC_LVL_UNIT_OFFSET;
7880 		curr_uA = data & ATTR_ICC_LVL_VALUE_MASK;
7881 		switch (unit) {
7882 		case UFSHCD_NANO_AMP:
7883 			curr_uA = curr_uA / 1000;
7884 			break;
7885 		case UFSHCD_MILI_AMP:
7886 			curr_uA = curr_uA * 1000;
7887 			break;
7888 		case UFSHCD_AMP:
7889 			curr_uA = curr_uA * 1000 * 1000;
7890 			break;
7891 		case UFSHCD_MICRO_AMP:
7892 		default:
7893 			break;
7894 		}
7895 		if (sup_curr_uA >= curr_uA)
7896 			break;
7897 	}
7898 	if (i < 0) {
7899 		i = 0;
7900 		pr_err("%s: Couldn't find valid icc_level = %d", __func__, i);
7901 	}
7902 
7903 	return (u32)i;
7904 }
7905 
7906 /**
7907  * ufshcd_find_max_sup_active_icc_level - calculate the max ICC level
7908  * In case regulators are not initialized we'll return 0
7909  * @hba: per-adapter instance
7910  * @desc_buf: power descriptor buffer to extract ICC levels from.
7911  *
7912  * Return: calculated ICC level.
7913  */
7914 static u32 ufshcd_find_max_sup_active_icc_level(struct ufs_hba *hba,
7915 						const u8 *desc_buf)
7916 {
7917 	u32 icc_level = 0;
7918 
7919 	if (!hba->vreg_info.vcc || !hba->vreg_info.vccq ||
7920 						!hba->vreg_info.vccq2) {
7921 		/*
7922 		 * Using dev_dbg to avoid messages during runtime PM to avoid
7923 		 * never-ending cycles of messages written back to storage by
7924 		 * user space causing runtime resume, causing more messages and
7925 		 * so on.
7926 		 */
7927 		dev_dbg(hba->dev,
7928 			"%s: Regulator capability was not set, actvIccLevel=%d",
7929 							__func__, icc_level);
7930 		goto out;
7931 	}
7932 
7933 	if (hba->vreg_info.vcc->max_uA)
7934 		icc_level = ufshcd_get_max_icc_level(
7935 				hba->vreg_info.vcc->max_uA,
7936 				POWER_DESC_MAX_ACTV_ICC_LVLS - 1,
7937 				&desc_buf[PWR_DESC_ACTIVE_LVLS_VCC_0]);
7938 
7939 	if (hba->vreg_info.vccq->max_uA)
7940 		icc_level = ufshcd_get_max_icc_level(
7941 				hba->vreg_info.vccq->max_uA,
7942 				icc_level,
7943 				&desc_buf[PWR_DESC_ACTIVE_LVLS_VCCQ_0]);
7944 
7945 	if (hba->vreg_info.vccq2->max_uA)
7946 		icc_level = ufshcd_get_max_icc_level(
7947 				hba->vreg_info.vccq2->max_uA,
7948 				icc_level,
7949 				&desc_buf[PWR_DESC_ACTIVE_LVLS_VCCQ2_0]);
7950 out:
7951 	return icc_level;
7952 }
7953 
7954 static void ufshcd_set_active_icc_lvl(struct ufs_hba *hba)
7955 {
7956 	int ret;
7957 	u8 *desc_buf;
7958 	u32 icc_level;
7959 
7960 	desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
7961 	if (!desc_buf)
7962 		return;
7963 
7964 	ret = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_POWER, 0, 0,
7965 				     desc_buf, QUERY_DESC_MAX_SIZE);
7966 	if (ret) {
7967 		dev_err(hba->dev,
7968 			"%s: Failed reading power descriptor ret = %d",
7969 			__func__, ret);
7970 		goto out;
7971 	}
7972 
7973 	icc_level = ufshcd_find_max_sup_active_icc_level(hba, desc_buf);
7974 	dev_dbg(hba->dev, "%s: setting icc_level 0x%x", __func__, icc_level);
7975 
7976 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
7977 		QUERY_ATTR_IDN_ACTIVE_ICC_LVL, 0, 0, &icc_level);
7978 
7979 	if (ret)
7980 		dev_err(hba->dev,
7981 			"%s: Failed configuring bActiveICCLevel = %d ret = %d",
7982 			__func__, icc_level, ret);
7983 
7984 out:
7985 	kfree(desc_buf);
7986 }
7987 
7988 static inline void ufshcd_blk_pm_runtime_init(struct scsi_device *sdev)
7989 {
7990 	scsi_autopm_get_device(sdev);
7991 	blk_pm_runtime_init(sdev->request_queue, &sdev->sdev_gendev);
7992 	if (sdev->rpm_autosuspend)
7993 		pm_runtime_set_autosuspend_delay(&sdev->sdev_gendev,
7994 						 RPM_AUTOSUSPEND_DELAY_MS);
7995 	scsi_autopm_put_device(sdev);
7996 }
7997 
7998 /**
7999  * ufshcd_scsi_add_wlus - Adds required W-LUs
8000  * @hba: per-adapter instance
8001  *
8002  * UFS device specification requires the UFS devices to support 4 well known
8003  * logical units:
8004  *	"REPORT_LUNS" (address: 01h)
8005  *	"UFS Device" (address: 50h)
8006  *	"RPMB" (address: 44h)
8007  *	"BOOT" (address: 30h)
8008  * UFS device's power management needs to be controlled by "POWER CONDITION"
8009  * field of SSU (START STOP UNIT) command. But this "power condition" field
8010  * will take effect only when its sent to "UFS device" well known logical unit
8011  * hence we require the scsi_device instance to represent this logical unit in
8012  * order for the UFS host driver to send the SSU command for power management.
8013  *
8014  * We also require the scsi_device instance for "RPMB" (Replay Protected Memory
8015  * Block) LU so user space process can control this LU. User space may also
8016  * want to have access to BOOT LU.
8017  *
8018  * This function adds scsi device instances for each of all well known LUs
8019  * (except "REPORT LUNS" LU).
8020  *
8021  * Return: zero on success (all required W-LUs are added successfully),
8022  * non-zero error value on failure (if failed to add any of the required W-LU).
8023  */
8024 static int ufshcd_scsi_add_wlus(struct ufs_hba *hba)
8025 {
8026 	int ret = 0;
8027 	struct scsi_device *sdev_boot, *sdev_rpmb;
8028 
8029 	hba->ufs_device_wlun = __scsi_add_device(hba->host, 0, 0,
8030 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_UFS_DEVICE_WLUN), NULL);
8031 	if (IS_ERR(hba->ufs_device_wlun)) {
8032 		ret = PTR_ERR(hba->ufs_device_wlun);
8033 		hba->ufs_device_wlun = NULL;
8034 		goto out;
8035 	}
8036 	scsi_device_put(hba->ufs_device_wlun);
8037 
8038 	sdev_rpmb = __scsi_add_device(hba->host, 0, 0,
8039 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_RPMB_WLUN), NULL);
8040 	if (IS_ERR(sdev_rpmb)) {
8041 		ret = PTR_ERR(sdev_rpmb);
8042 		goto remove_ufs_device_wlun;
8043 	}
8044 	ufshcd_blk_pm_runtime_init(sdev_rpmb);
8045 	scsi_device_put(sdev_rpmb);
8046 
8047 	sdev_boot = __scsi_add_device(hba->host, 0, 0,
8048 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_BOOT_WLUN), NULL);
8049 	if (IS_ERR(sdev_boot)) {
8050 		dev_err(hba->dev, "%s: BOOT WLUN not found\n", __func__);
8051 	} else {
8052 		ufshcd_blk_pm_runtime_init(sdev_boot);
8053 		scsi_device_put(sdev_boot);
8054 	}
8055 	goto out;
8056 
8057 remove_ufs_device_wlun:
8058 	scsi_remove_device(hba->ufs_device_wlun);
8059 out:
8060 	return ret;
8061 }
8062 
8063 static void ufshcd_wb_probe(struct ufs_hba *hba, const u8 *desc_buf)
8064 {
8065 	struct ufs_dev_info *dev_info = &hba->dev_info;
8066 	u8 lun;
8067 	u32 d_lu_wb_buf_alloc;
8068 	u32 ext_ufs_feature;
8069 
8070 	if (!ufshcd_is_wb_allowed(hba))
8071 		return;
8072 
8073 	/*
8074 	 * Probe WB only for UFS-2.2 and UFS-3.1 (and later) devices or
8075 	 * UFS devices with quirk UFS_DEVICE_QUIRK_SUPPORT_EXTENDED_FEATURES
8076 	 * enabled
8077 	 */
8078 	if (!(dev_info->wspecversion >= 0x310 ||
8079 	      dev_info->wspecversion == 0x220 ||
8080 	     (hba->dev_quirks & UFS_DEVICE_QUIRK_SUPPORT_EXTENDED_FEATURES)))
8081 		goto wb_disabled;
8082 
8083 	ext_ufs_feature = get_unaligned_be32(desc_buf +
8084 					DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
8085 
8086 	if (!(ext_ufs_feature & UFS_DEV_WRITE_BOOSTER_SUP))
8087 		goto wb_disabled;
8088 
8089 	/*
8090 	 * WB may be supported but not configured while provisioning. The spec
8091 	 * says, in dedicated wb buffer mode, a max of 1 lun would have wb
8092 	 * buffer configured.
8093 	 */
8094 	dev_info->wb_buffer_type = desc_buf[DEVICE_DESC_PARAM_WB_TYPE];
8095 
8096 	dev_info->b_presrv_uspc_en =
8097 		desc_buf[DEVICE_DESC_PARAM_WB_PRESRV_USRSPC_EN];
8098 
8099 	if (dev_info->wb_buffer_type == WB_BUF_MODE_SHARED) {
8100 		if (!get_unaligned_be32(desc_buf +
8101 				   DEVICE_DESC_PARAM_WB_SHARED_ALLOC_UNITS))
8102 			goto wb_disabled;
8103 	} else {
8104 		for (lun = 0; lun < UFS_UPIU_MAX_WB_LUN_ID; lun++) {
8105 			d_lu_wb_buf_alloc = 0;
8106 			ufshcd_read_unit_desc_param(hba,
8107 					lun,
8108 					UNIT_DESC_PARAM_WB_BUF_ALLOC_UNITS,
8109 					(u8 *)&d_lu_wb_buf_alloc,
8110 					sizeof(d_lu_wb_buf_alloc));
8111 			if (d_lu_wb_buf_alloc) {
8112 				dev_info->wb_dedicated_lu = lun;
8113 				break;
8114 			}
8115 		}
8116 
8117 		if (!d_lu_wb_buf_alloc)
8118 			goto wb_disabled;
8119 	}
8120 
8121 	if (!ufshcd_is_wb_buf_lifetime_available(hba))
8122 		goto wb_disabled;
8123 
8124 	return;
8125 
8126 wb_disabled:
8127 	hba->caps &= ~UFSHCD_CAP_WB_EN;
8128 }
8129 
8130 static void ufshcd_temp_notif_probe(struct ufs_hba *hba, const u8 *desc_buf)
8131 {
8132 	struct ufs_dev_info *dev_info = &hba->dev_info;
8133 	u32 ext_ufs_feature;
8134 	u8 mask = 0;
8135 
8136 	if (!(hba->caps & UFSHCD_CAP_TEMP_NOTIF) || dev_info->wspecversion < 0x300)
8137 		return;
8138 
8139 	ext_ufs_feature = get_unaligned_be32(desc_buf + DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
8140 
8141 	if (ext_ufs_feature & UFS_DEV_LOW_TEMP_NOTIF)
8142 		mask |= MASK_EE_TOO_LOW_TEMP;
8143 
8144 	if (ext_ufs_feature & UFS_DEV_HIGH_TEMP_NOTIF)
8145 		mask |= MASK_EE_TOO_HIGH_TEMP;
8146 
8147 	if (mask) {
8148 		ufshcd_enable_ee(hba, mask);
8149 		ufs_hwmon_probe(hba, mask);
8150 	}
8151 }
8152 
8153 static void ufshcd_ext_iid_probe(struct ufs_hba *hba, u8 *desc_buf)
8154 {
8155 	struct ufs_dev_info *dev_info = &hba->dev_info;
8156 	u32 ext_ufs_feature;
8157 	u32 ext_iid_en = 0;
8158 	int err;
8159 
8160 	/* Only UFS-4.0 and above may support EXT_IID */
8161 	if (dev_info->wspecversion < 0x400)
8162 		goto out;
8163 
8164 	ext_ufs_feature = get_unaligned_be32(desc_buf +
8165 				     DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
8166 	if (!(ext_ufs_feature & UFS_DEV_EXT_IID_SUP))
8167 		goto out;
8168 
8169 	err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
8170 				      QUERY_ATTR_IDN_EXT_IID_EN, 0, 0, &ext_iid_en);
8171 	if (err)
8172 		dev_err(hba->dev, "failed reading bEXTIIDEn. err = %d\n", err);
8173 
8174 out:
8175 	dev_info->b_ext_iid_en = ext_iid_en;
8176 }
8177 
8178 void ufshcd_fixup_dev_quirks(struct ufs_hba *hba,
8179 			     const struct ufs_dev_quirk *fixups)
8180 {
8181 	const struct ufs_dev_quirk *f;
8182 	struct ufs_dev_info *dev_info = &hba->dev_info;
8183 
8184 	if (!fixups)
8185 		return;
8186 
8187 	for (f = fixups; f->quirk; f++) {
8188 		if ((f->wmanufacturerid == dev_info->wmanufacturerid ||
8189 		     f->wmanufacturerid == UFS_ANY_VENDOR) &&
8190 		     ((dev_info->model &&
8191 		       STR_PRFX_EQUAL(f->model, dev_info->model)) ||
8192 		      !strcmp(f->model, UFS_ANY_MODEL)))
8193 			hba->dev_quirks |= f->quirk;
8194 	}
8195 }
8196 EXPORT_SYMBOL_GPL(ufshcd_fixup_dev_quirks);
8197 
8198 static void ufs_fixup_device_setup(struct ufs_hba *hba)
8199 {
8200 	/* fix by general quirk table */
8201 	ufshcd_fixup_dev_quirks(hba, ufs_fixups);
8202 
8203 	/* allow vendors to fix quirks */
8204 	ufshcd_vops_fixup_dev_quirks(hba);
8205 }
8206 
8207 static void ufshcd_update_rtc(struct ufs_hba *hba)
8208 {
8209 	struct timespec64 ts64;
8210 	int err;
8211 	u32 val;
8212 
8213 	ktime_get_real_ts64(&ts64);
8214 
8215 	if (ts64.tv_sec < hba->dev_info.rtc_time_baseline) {
8216 		dev_warn_once(hba->dev, "%s: Current time precedes previous setting!\n", __func__);
8217 		return;
8218 	}
8219 
8220 	/*
8221 	 * The Absolute RTC mode has a 136-year limit, spanning from 2010 to 2146. If a time beyond
8222 	 * 2146 is required, it is recommended to choose the relative RTC mode.
8223 	 */
8224 	val = ts64.tv_sec - hba->dev_info.rtc_time_baseline;
8225 
8226 	ufshcd_rpm_get_sync(hba);
8227 	err = ufshcd_query_attr(hba, UPIU_QUERY_OPCODE_WRITE_ATTR, QUERY_ATTR_IDN_SECONDS_PASSED,
8228 				0, 0, &val);
8229 	ufshcd_rpm_put_sync(hba);
8230 
8231 	if (err)
8232 		dev_err(hba->dev, "%s: Failed to update rtc %d\n", __func__, err);
8233 	else if (hba->dev_info.rtc_type == UFS_RTC_RELATIVE)
8234 		hba->dev_info.rtc_time_baseline = ts64.tv_sec;
8235 }
8236 
8237 static void ufshcd_rtc_work(struct work_struct *work)
8238 {
8239 	struct ufs_hba *hba;
8240 
8241 	hba = container_of(to_delayed_work(work), struct ufs_hba, ufs_rtc_update_work);
8242 
8243 	 /* Update RTC only when there are no requests in progress and UFSHCI is operational */
8244 	if (!ufshcd_is_ufs_dev_busy(hba) && hba->ufshcd_state == UFSHCD_STATE_OPERATIONAL)
8245 		ufshcd_update_rtc(hba);
8246 
8247 	if (ufshcd_is_ufs_dev_active(hba) && hba->dev_info.rtc_update_period)
8248 		schedule_delayed_work(&hba->ufs_rtc_update_work,
8249 				      msecs_to_jiffies(hba->dev_info.rtc_update_period));
8250 }
8251 
8252 static void ufs_init_rtc(struct ufs_hba *hba, u8 *desc_buf)
8253 {
8254 	u16 periodic_rtc_update = get_unaligned_be16(&desc_buf[DEVICE_DESC_PARAM_FRQ_RTC]);
8255 	struct ufs_dev_info *dev_info = &hba->dev_info;
8256 
8257 	if (periodic_rtc_update & UFS_RTC_TIME_BASELINE) {
8258 		dev_info->rtc_type = UFS_RTC_ABSOLUTE;
8259 
8260 		/*
8261 		 * The concept of measuring time in Linux as the number of seconds elapsed since
8262 		 * 00:00:00 UTC on January 1, 1970, and UFS ABS RTC is elapsed from January 1st
8263 		 * 2010 00:00, here we need to adjust ABS baseline.
8264 		 */
8265 		dev_info->rtc_time_baseline = mktime64(2010, 1, 1, 0, 0, 0) -
8266 							mktime64(1970, 1, 1, 0, 0, 0);
8267 	} else {
8268 		dev_info->rtc_type = UFS_RTC_RELATIVE;
8269 		dev_info->rtc_time_baseline = 0;
8270 	}
8271 
8272 	/*
8273 	 * We ignore TIME_PERIOD defined in wPeriodicRTCUpdate because Spec does not clearly state
8274 	 * how to calculate the specific update period for each time unit. And we disable periodic
8275 	 * RTC update work, let user configure by sysfs node according to specific circumstance.
8276 	 */
8277 	dev_info->rtc_update_period = 0;
8278 }
8279 
8280 static int ufs_get_device_desc(struct ufs_hba *hba)
8281 {
8282 	int err;
8283 	u8 model_index;
8284 	u8 *desc_buf;
8285 	struct ufs_dev_info *dev_info = &hba->dev_info;
8286 
8287 	desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
8288 	if (!desc_buf) {
8289 		err = -ENOMEM;
8290 		goto out;
8291 	}
8292 
8293 	err = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_DEVICE, 0, 0, desc_buf,
8294 				     QUERY_DESC_MAX_SIZE);
8295 	if (err) {
8296 		dev_err(hba->dev, "%s: Failed reading Device Desc. err = %d\n",
8297 			__func__, err);
8298 		goto out;
8299 	}
8300 
8301 	/*
8302 	 * getting vendor (manufacturerID) and Bank Index in big endian
8303 	 * format
8304 	 */
8305 	dev_info->wmanufacturerid = desc_buf[DEVICE_DESC_PARAM_MANF_ID] << 8 |
8306 				     desc_buf[DEVICE_DESC_PARAM_MANF_ID + 1];
8307 
8308 	/* getting Specification Version in big endian format */
8309 	dev_info->wspecversion = desc_buf[DEVICE_DESC_PARAM_SPEC_VER] << 8 |
8310 				      desc_buf[DEVICE_DESC_PARAM_SPEC_VER + 1];
8311 	dev_info->bqueuedepth = desc_buf[DEVICE_DESC_PARAM_Q_DPTH];
8312 
8313 	model_index = desc_buf[DEVICE_DESC_PARAM_PRDCT_NAME];
8314 
8315 	err = ufshcd_read_string_desc(hba, model_index,
8316 				      &dev_info->model, SD_ASCII_STD);
8317 	if (err < 0) {
8318 		dev_err(hba->dev, "%s: Failed reading Product Name. err = %d\n",
8319 			__func__, err);
8320 		goto out;
8321 	}
8322 
8323 	hba->luns_avail = desc_buf[DEVICE_DESC_PARAM_NUM_LU] +
8324 		desc_buf[DEVICE_DESC_PARAM_NUM_WLU];
8325 
8326 	ufs_fixup_device_setup(hba);
8327 
8328 	ufshcd_wb_probe(hba, desc_buf);
8329 
8330 	ufshcd_temp_notif_probe(hba, desc_buf);
8331 
8332 	ufs_init_rtc(hba, desc_buf);
8333 
8334 	if (hba->ext_iid_sup)
8335 		ufshcd_ext_iid_probe(hba, desc_buf);
8336 
8337 	/*
8338 	 * ufshcd_read_string_desc returns size of the string
8339 	 * reset the error value
8340 	 */
8341 	err = 0;
8342 
8343 out:
8344 	kfree(desc_buf);
8345 	return err;
8346 }
8347 
8348 static void ufs_put_device_desc(struct ufs_hba *hba)
8349 {
8350 	struct ufs_dev_info *dev_info = &hba->dev_info;
8351 
8352 	kfree(dev_info->model);
8353 	dev_info->model = NULL;
8354 }
8355 
8356 /**
8357  * ufshcd_tune_pa_tactivate - Tunes PA_TActivate of local UniPro
8358  * @hba: per-adapter instance
8359  *
8360  * PA_TActivate parameter can be tuned manually if UniPro version is less than
8361  * 1.61. PA_TActivate needs to be greater than or equal to peerM-PHY's
8362  * RX_MIN_ACTIVATETIME_CAPABILITY attribute. This optimal value can help reduce
8363  * the hibern8 exit latency.
8364  *
8365  * Return: zero on success, non-zero error value on failure.
8366  */
8367 static int ufshcd_tune_pa_tactivate(struct ufs_hba *hba)
8368 {
8369 	int ret = 0;
8370 	u32 peer_rx_min_activatetime = 0, tuned_pa_tactivate;
8371 
8372 	ret = ufshcd_dme_peer_get(hba,
8373 				  UIC_ARG_MIB_SEL(
8374 					RX_MIN_ACTIVATETIME_CAPABILITY,
8375 					UIC_ARG_MPHY_RX_GEN_SEL_INDEX(0)),
8376 				  &peer_rx_min_activatetime);
8377 	if (ret)
8378 		goto out;
8379 
8380 	/* make sure proper unit conversion is applied */
8381 	tuned_pa_tactivate =
8382 		((peer_rx_min_activatetime * RX_MIN_ACTIVATETIME_UNIT_US)
8383 		 / PA_TACTIVATE_TIME_UNIT_US);
8384 	ret = ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TACTIVATE),
8385 			     tuned_pa_tactivate);
8386 
8387 out:
8388 	return ret;
8389 }
8390 
8391 /**
8392  * ufshcd_tune_pa_hibern8time - Tunes PA_Hibern8Time of local UniPro
8393  * @hba: per-adapter instance
8394  *
8395  * PA_Hibern8Time parameter can be tuned manually if UniPro version is less than
8396  * 1.61. PA_Hibern8Time needs to be maximum of local M-PHY's
8397  * TX_HIBERN8TIME_CAPABILITY & peer M-PHY's RX_HIBERN8TIME_CAPABILITY.
8398  * This optimal value can help reduce the hibern8 exit latency.
8399  *
8400  * Return: zero on success, non-zero error value on failure.
8401  */
8402 static int ufshcd_tune_pa_hibern8time(struct ufs_hba *hba)
8403 {
8404 	int ret = 0;
8405 	u32 local_tx_hibern8_time_cap = 0, peer_rx_hibern8_time_cap = 0;
8406 	u32 max_hibern8_time, tuned_pa_hibern8time;
8407 
8408 	ret = ufshcd_dme_get(hba,
8409 			     UIC_ARG_MIB_SEL(TX_HIBERN8TIME_CAPABILITY,
8410 					UIC_ARG_MPHY_TX_GEN_SEL_INDEX(0)),
8411 				  &local_tx_hibern8_time_cap);
8412 	if (ret)
8413 		goto out;
8414 
8415 	ret = ufshcd_dme_peer_get(hba,
8416 				  UIC_ARG_MIB_SEL(RX_HIBERN8TIME_CAPABILITY,
8417 					UIC_ARG_MPHY_RX_GEN_SEL_INDEX(0)),
8418 				  &peer_rx_hibern8_time_cap);
8419 	if (ret)
8420 		goto out;
8421 
8422 	max_hibern8_time = max(local_tx_hibern8_time_cap,
8423 			       peer_rx_hibern8_time_cap);
8424 	/* make sure proper unit conversion is applied */
8425 	tuned_pa_hibern8time = ((max_hibern8_time * HIBERN8TIME_UNIT_US)
8426 				/ PA_HIBERN8_TIME_UNIT_US);
8427 	ret = ufshcd_dme_set(hba, UIC_ARG_MIB(PA_HIBERN8TIME),
8428 			     tuned_pa_hibern8time);
8429 out:
8430 	return ret;
8431 }
8432 
8433 /**
8434  * ufshcd_quirk_tune_host_pa_tactivate - Ensures that host PA_TACTIVATE is
8435  * less than device PA_TACTIVATE time.
8436  * @hba: per-adapter instance
8437  *
8438  * Some UFS devices require host PA_TACTIVATE to be lower than device
8439  * PA_TACTIVATE, we need to enable UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE quirk
8440  * for such devices.
8441  *
8442  * Return: zero on success, non-zero error value on failure.
8443  */
8444 static int ufshcd_quirk_tune_host_pa_tactivate(struct ufs_hba *hba)
8445 {
8446 	int ret = 0;
8447 	u32 granularity, peer_granularity;
8448 	u32 pa_tactivate, peer_pa_tactivate;
8449 	u32 pa_tactivate_us, peer_pa_tactivate_us;
8450 	static const u8 gran_to_us_table[] = {1, 4, 8, 16, 32, 100};
8451 
8452 	ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_GRANULARITY),
8453 				  &granularity);
8454 	if (ret)
8455 		goto out;
8456 
8457 	ret = ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_GRANULARITY),
8458 				  &peer_granularity);
8459 	if (ret)
8460 		goto out;
8461 
8462 	if ((granularity < PA_GRANULARITY_MIN_VAL) ||
8463 	    (granularity > PA_GRANULARITY_MAX_VAL)) {
8464 		dev_err(hba->dev, "%s: invalid host PA_GRANULARITY %d",
8465 			__func__, granularity);
8466 		return -EINVAL;
8467 	}
8468 
8469 	if ((peer_granularity < PA_GRANULARITY_MIN_VAL) ||
8470 	    (peer_granularity > PA_GRANULARITY_MAX_VAL)) {
8471 		dev_err(hba->dev, "%s: invalid device PA_GRANULARITY %d",
8472 			__func__, peer_granularity);
8473 		return -EINVAL;
8474 	}
8475 
8476 	ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_TACTIVATE), &pa_tactivate);
8477 	if (ret)
8478 		goto out;
8479 
8480 	ret = ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_TACTIVATE),
8481 				  &peer_pa_tactivate);
8482 	if (ret)
8483 		goto out;
8484 
8485 	pa_tactivate_us = pa_tactivate * gran_to_us_table[granularity - 1];
8486 	peer_pa_tactivate_us = peer_pa_tactivate *
8487 			     gran_to_us_table[peer_granularity - 1];
8488 
8489 	if (pa_tactivate_us >= peer_pa_tactivate_us) {
8490 		u32 new_peer_pa_tactivate;
8491 
8492 		new_peer_pa_tactivate = pa_tactivate_us /
8493 				      gran_to_us_table[peer_granularity - 1];
8494 		new_peer_pa_tactivate++;
8495 		ret = ufshcd_dme_peer_set(hba, UIC_ARG_MIB(PA_TACTIVATE),
8496 					  new_peer_pa_tactivate);
8497 	}
8498 
8499 out:
8500 	return ret;
8501 }
8502 
8503 static void ufshcd_tune_unipro_params(struct ufs_hba *hba)
8504 {
8505 	if (ufshcd_is_unipro_pa_params_tuning_req(hba)) {
8506 		ufshcd_tune_pa_tactivate(hba);
8507 		ufshcd_tune_pa_hibern8time(hba);
8508 	}
8509 
8510 	ufshcd_vops_apply_dev_quirks(hba);
8511 
8512 	if (hba->dev_quirks & UFS_DEVICE_QUIRK_PA_TACTIVATE)
8513 		/* set 1ms timeout for PA_TACTIVATE */
8514 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TACTIVATE), 10);
8515 
8516 	if (hba->dev_quirks & UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE)
8517 		ufshcd_quirk_tune_host_pa_tactivate(hba);
8518 }
8519 
8520 static void ufshcd_clear_dbg_ufs_stats(struct ufs_hba *hba)
8521 {
8522 	hba->ufs_stats.hibern8_exit_cnt = 0;
8523 	hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
8524 	hba->req_abort_count = 0;
8525 }
8526 
8527 static int ufshcd_device_geo_params_init(struct ufs_hba *hba)
8528 {
8529 	int err;
8530 	u8 *desc_buf;
8531 
8532 	desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
8533 	if (!desc_buf) {
8534 		err = -ENOMEM;
8535 		goto out;
8536 	}
8537 
8538 	err = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_GEOMETRY, 0, 0,
8539 				     desc_buf, QUERY_DESC_MAX_SIZE);
8540 	if (err) {
8541 		dev_err(hba->dev, "%s: Failed reading Geometry Desc. err = %d\n",
8542 				__func__, err);
8543 		goto out;
8544 	}
8545 
8546 	if (desc_buf[GEOMETRY_DESC_PARAM_MAX_NUM_LUN] == 1)
8547 		hba->dev_info.max_lu_supported = 32;
8548 	else if (desc_buf[GEOMETRY_DESC_PARAM_MAX_NUM_LUN] == 0)
8549 		hba->dev_info.max_lu_supported = 8;
8550 
8551 out:
8552 	kfree(desc_buf);
8553 	return err;
8554 }
8555 
8556 struct ufs_ref_clk {
8557 	unsigned long freq_hz;
8558 	enum ufs_ref_clk_freq val;
8559 };
8560 
8561 static const struct ufs_ref_clk ufs_ref_clk_freqs[] = {
8562 	{19200000, REF_CLK_FREQ_19_2_MHZ},
8563 	{26000000, REF_CLK_FREQ_26_MHZ},
8564 	{38400000, REF_CLK_FREQ_38_4_MHZ},
8565 	{52000000, REF_CLK_FREQ_52_MHZ},
8566 	{0, REF_CLK_FREQ_INVAL},
8567 };
8568 
8569 static enum ufs_ref_clk_freq
8570 ufs_get_bref_clk_from_hz(unsigned long freq)
8571 {
8572 	int i;
8573 
8574 	for (i = 0; ufs_ref_clk_freqs[i].freq_hz; i++)
8575 		if (ufs_ref_clk_freqs[i].freq_hz == freq)
8576 			return ufs_ref_clk_freqs[i].val;
8577 
8578 	return REF_CLK_FREQ_INVAL;
8579 }
8580 
8581 void ufshcd_parse_dev_ref_clk_freq(struct ufs_hba *hba, struct clk *refclk)
8582 {
8583 	unsigned long freq;
8584 
8585 	freq = clk_get_rate(refclk);
8586 
8587 	hba->dev_ref_clk_freq =
8588 		ufs_get_bref_clk_from_hz(freq);
8589 
8590 	if (hba->dev_ref_clk_freq == REF_CLK_FREQ_INVAL)
8591 		dev_err(hba->dev,
8592 		"invalid ref_clk setting = %ld\n", freq);
8593 }
8594 
8595 static int ufshcd_set_dev_ref_clk(struct ufs_hba *hba)
8596 {
8597 	int err;
8598 	u32 ref_clk;
8599 	u32 freq = hba->dev_ref_clk_freq;
8600 
8601 	err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
8602 			QUERY_ATTR_IDN_REF_CLK_FREQ, 0, 0, &ref_clk);
8603 
8604 	if (err) {
8605 		dev_err(hba->dev, "failed reading bRefClkFreq. err = %d\n",
8606 			err);
8607 		goto out;
8608 	}
8609 
8610 	if (ref_clk == freq)
8611 		goto out; /* nothing to update */
8612 
8613 	err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
8614 			QUERY_ATTR_IDN_REF_CLK_FREQ, 0, 0, &freq);
8615 
8616 	if (err) {
8617 		dev_err(hba->dev, "bRefClkFreq setting to %lu Hz failed\n",
8618 			ufs_ref_clk_freqs[freq].freq_hz);
8619 		goto out;
8620 	}
8621 
8622 	dev_dbg(hba->dev, "bRefClkFreq setting to %lu Hz succeeded\n",
8623 			ufs_ref_clk_freqs[freq].freq_hz);
8624 
8625 out:
8626 	return err;
8627 }
8628 
8629 static int ufshcd_device_params_init(struct ufs_hba *hba)
8630 {
8631 	bool flag;
8632 	int ret;
8633 
8634 	/* Init UFS geometry descriptor related parameters */
8635 	ret = ufshcd_device_geo_params_init(hba);
8636 	if (ret)
8637 		goto out;
8638 
8639 	/* Check and apply UFS device quirks */
8640 	ret = ufs_get_device_desc(hba);
8641 	if (ret) {
8642 		dev_err(hba->dev, "%s: Failed getting device info. err = %d\n",
8643 			__func__, ret);
8644 		goto out;
8645 	}
8646 
8647 	ufshcd_get_ref_clk_gating_wait(hba);
8648 
8649 	if (!ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_READ_FLAG,
8650 			QUERY_FLAG_IDN_PWR_ON_WPE, 0, &flag))
8651 		hba->dev_info.f_power_on_wp_en = flag;
8652 
8653 	/* Probe maximum power mode co-supported by both UFS host and device */
8654 	if (ufshcd_get_max_pwr_mode(hba))
8655 		dev_err(hba->dev,
8656 			"%s: Failed getting max supported power mode\n",
8657 			__func__);
8658 out:
8659 	return ret;
8660 }
8661 
8662 static void ufshcd_set_timestamp_attr(struct ufs_hba *hba)
8663 {
8664 	int err;
8665 	struct ufs_query_req *request = NULL;
8666 	struct ufs_query_res *response = NULL;
8667 	struct ufs_dev_info *dev_info = &hba->dev_info;
8668 	struct utp_upiu_query_v4_0 *upiu_data;
8669 
8670 	if (dev_info->wspecversion < 0x400)
8671 		return;
8672 
8673 	ufshcd_hold(hba);
8674 
8675 	mutex_lock(&hba->dev_cmd.lock);
8676 
8677 	ufshcd_init_query(hba, &request, &response,
8678 			  UPIU_QUERY_OPCODE_WRITE_ATTR,
8679 			  QUERY_ATTR_IDN_TIMESTAMP, 0, 0);
8680 
8681 	request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
8682 
8683 	upiu_data = (struct utp_upiu_query_v4_0 *)&request->upiu_req;
8684 
8685 	put_unaligned_be64(ktime_get_real_ns(), &upiu_data->osf3);
8686 
8687 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT);
8688 
8689 	if (err)
8690 		dev_err(hba->dev, "%s: failed to set timestamp %d\n",
8691 			__func__, err);
8692 
8693 	mutex_unlock(&hba->dev_cmd.lock);
8694 	ufshcd_release(hba);
8695 }
8696 
8697 /**
8698  * ufshcd_add_lus - probe and add UFS logical units
8699  * @hba: per-adapter instance
8700  *
8701  * Return: 0 upon success; < 0 upon failure.
8702  */
8703 static int ufshcd_add_lus(struct ufs_hba *hba)
8704 {
8705 	int ret;
8706 
8707 	/* Add required well known logical units to scsi mid layer */
8708 	ret = ufshcd_scsi_add_wlus(hba);
8709 	if (ret)
8710 		goto out;
8711 
8712 	/* Initialize devfreq after UFS device is detected */
8713 	if (ufshcd_is_clkscaling_supported(hba)) {
8714 		memcpy(&hba->clk_scaling.saved_pwr_info,
8715 			&hba->pwr_info,
8716 			sizeof(struct ufs_pa_layer_attr));
8717 		hba->clk_scaling.is_allowed = true;
8718 
8719 		ret = ufshcd_devfreq_init(hba);
8720 		if (ret)
8721 			goto out;
8722 
8723 		hba->clk_scaling.is_enabled = true;
8724 		ufshcd_init_clk_scaling_sysfs(hba);
8725 	}
8726 
8727 	ufs_bsg_probe(hba);
8728 	scsi_scan_host(hba->host);
8729 
8730 out:
8731 	return ret;
8732 }
8733 
8734 /* SDB - Single Doorbell */
8735 static void ufshcd_release_sdb_queue(struct ufs_hba *hba, int nutrs)
8736 {
8737 	size_t ucdl_size, utrdl_size;
8738 
8739 	ucdl_size = ufshcd_get_ucd_size(hba) * nutrs;
8740 	dmam_free_coherent(hba->dev, ucdl_size, hba->ucdl_base_addr,
8741 			   hba->ucdl_dma_addr);
8742 
8743 	utrdl_size = sizeof(struct utp_transfer_req_desc) * nutrs;
8744 	dmam_free_coherent(hba->dev, utrdl_size, hba->utrdl_base_addr,
8745 			   hba->utrdl_dma_addr);
8746 
8747 	devm_kfree(hba->dev, hba->lrb);
8748 }
8749 
8750 static int ufshcd_alloc_mcq(struct ufs_hba *hba)
8751 {
8752 	int ret;
8753 	int old_nutrs = hba->nutrs;
8754 
8755 	ret = ufshcd_mcq_decide_queue_depth(hba);
8756 	if (ret < 0)
8757 		return ret;
8758 
8759 	hba->nutrs = ret;
8760 	ret = ufshcd_mcq_init(hba);
8761 	if (ret)
8762 		goto err;
8763 
8764 	/*
8765 	 * Previously allocated memory for nutrs may not be enough in MCQ mode.
8766 	 * Number of supported tags in MCQ mode may be larger than SDB mode.
8767 	 */
8768 	if (hba->nutrs != old_nutrs) {
8769 		ufshcd_release_sdb_queue(hba, old_nutrs);
8770 		ret = ufshcd_memory_alloc(hba);
8771 		if (ret)
8772 			goto err;
8773 		ufshcd_host_memory_configure(hba);
8774 	}
8775 
8776 	ret = ufshcd_mcq_memory_alloc(hba);
8777 	if (ret)
8778 		goto err;
8779 
8780 	return 0;
8781 err:
8782 	hba->nutrs = old_nutrs;
8783 	return ret;
8784 }
8785 
8786 static void ufshcd_config_mcq(struct ufs_hba *hba)
8787 {
8788 	int ret;
8789 	u32 intrs;
8790 
8791 	ret = ufshcd_mcq_vops_config_esi(hba);
8792 	dev_info(hba->dev, "ESI %sconfigured\n", ret ? "is not " : "");
8793 
8794 	intrs = UFSHCD_ENABLE_MCQ_INTRS;
8795 	if (hba->quirks & UFSHCD_QUIRK_MCQ_BROKEN_INTR)
8796 		intrs &= ~MCQ_CQ_EVENT_STATUS;
8797 	ufshcd_enable_intr(hba, intrs);
8798 	ufshcd_mcq_make_queues_operational(hba);
8799 	ufshcd_mcq_config_mac(hba, hba->nutrs);
8800 
8801 	hba->host->can_queue = hba->nutrs - UFSHCD_NUM_RESERVED;
8802 	hba->reserved_slot = hba->nutrs - UFSHCD_NUM_RESERVED;
8803 
8804 	/* Select MCQ mode */
8805 	ufshcd_writel(hba, ufshcd_readl(hba, REG_UFS_MEM_CFG) | 0x1,
8806 		      REG_UFS_MEM_CFG);
8807 	hba->mcq_enabled = true;
8808 
8809 	dev_info(hba->dev, "MCQ configured, nr_queues=%d, io_queues=%d, read_queue=%d, poll_queues=%d, queue_depth=%d\n",
8810 		 hba->nr_hw_queues, hba->nr_queues[HCTX_TYPE_DEFAULT],
8811 		 hba->nr_queues[HCTX_TYPE_READ], hba->nr_queues[HCTX_TYPE_POLL],
8812 		 hba->nutrs);
8813 }
8814 
8815 static int ufshcd_device_init(struct ufs_hba *hba, bool init_dev_params)
8816 {
8817 	int ret;
8818 	struct Scsi_Host *host = hba->host;
8819 
8820 	hba->ufshcd_state = UFSHCD_STATE_RESET;
8821 
8822 	ret = ufshcd_link_startup(hba);
8823 	if (ret)
8824 		return ret;
8825 
8826 	if (hba->quirks & UFSHCD_QUIRK_SKIP_PH_CONFIGURATION)
8827 		return ret;
8828 
8829 	/* Debug counters initialization */
8830 	ufshcd_clear_dbg_ufs_stats(hba);
8831 
8832 	/* UniPro link is active now */
8833 	ufshcd_set_link_active(hba);
8834 
8835 	/* Reconfigure MCQ upon reset */
8836 	if (is_mcq_enabled(hba) && !init_dev_params)
8837 		ufshcd_config_mcq(hba);
8838 
8839 	/* Verify device initialization by sending NOP OUT UPIU */
8840 	ret = ufshcd_verify_dev_init(hba);
8841 	if (ret)
8842 		return ret;
8843 
8844 	/* Initiate UFS initialization, and waiting until completion */
8845 	ret = ufshcd_complete_dev_init(hba);
8846 	if (ret)
8847 		return ret;
8848 
8849 	/*
8850 	 * Initialize UFS device parameters used by driver, these
8851 	 * parameters are associated with UFS descriptors.
8852 	 */
8853 	if (init_dev_params) {
8854 		ret = ufshcd_device_params_init(hba);
8855 		if (ret)
8856 			return ret;
8857 		if (is_mcq_supported(hba) && !hba->scsi_host_added) {
8858 			ret = ufshcd_alloc_mcq(hba);
8859 			if (!ret) {
8860 				ufshcd_config_mcq(hba);
8861 			} else {
8862 				/* Continue with SDB mode */
8863 				use_mcq_mode = false;
8864 				dev_err(hba->dev, "MCQ mode is disabled, err=%d\n",
8865 					 ret);
8866 			}
8867 			ret = scsi_add_host(host, hba->dev);
8868 			if (ret) {
8869 				dev_err(hba->dev, "scsi_add_host failed\n");
8870 				return ret;
8871 			}
8872 			hba->scsi_host_added = true;
8873 		} else if (is_mcq_supported(hba)) {
8874 			/* UFSHCD_QUIRK_REINIT_AFTER_MAX_GEAR_SWITCH is set */
8875 			ufshcd_config_mcq(hba);
8876 		}
8877 	}
8878 
8879 	ufshcd_tune_unipro_params(hba);
8880 
8881 	/* UFS device is also active now */
8882 	ufshcd_set_ufs_dev_active(hba);
8883 	ufshcd_force_reset_auto_bkops(hba);
8884 
8885 	ufshcd_set_timestamp_attr(hba);
8886 	schedule_delayed_work(&hba->ufs_rtc_update_work,
8887 			      msecs_to_jiffies(UFS_RTC_UPDATE_INTERVAL_MS));
8888 
8889 	/* Gear up to HS gear if supported */
8890 	if (hba->max_pwr_info.is_valid) {
8891 		/*
8892 		 * Set the right value to bRefClkFreq before attempting to
8893 		 * switch to HS gears.
8894 		 */
8895 		if (hba->dev_ref_clk_freq != REF_CLK_FREQ_INVAL)
8896 			ufshcd_set_dev_ref_clk(hba);
8897 		ret = ufshcd_config_pwr_mode(hba, &hba->max_pwr_info.info);
8898 		if (ret) {
8899 			dev_err(hba->dev, "%s: Failed setting power mode, err = %d\n",
8900 					__func__, ret);
8901 			return ret;
8902 		}
8903 	}
8904 
8905 	return 0;
8906 }
8907 
8908 /**
8909  * ufshcd_probe_hba - probe hba to detect device and initialize it
8910  * @hba: per-adapter instance
8911  * @init_dev_params: whether or not to call ufshcd_device_params_init().
8912  *
8913  * Execute link-startup and verify device initialization
8914  *
8915  * Return: 0 upon success; < 0 upon failure.
8916  */
8917 static int ufshcd_probe_hba(struct ufs_hba *hba, bool init_dev_params)
8918 {
8919 	ktime_t start = ktime_get();
8920 	unsigned long flags;
8921 	int ret;
8922 
8923 	ret = ufshcd_device_init(hba, init_dev_params);
8924 	if (ret)
8925 		goto out;
8926 
8927 	if (!hba->pm_op_in_progress &&
8928 	    (hba->quirks & UFSHCD_QUIRK_REINIT_AFTER_MAX_GEAR_SWITCH)) {
8929 		/* Reset the device and controller before doing reinit */
8930 		ufshcd_device_reset(hba);
8931 		ufshcd_hba_stop(hba);
8932 		ufshcd_vops_reinit_notify(hba);
8933 		ret = ufshcd_hba_enable(hba);
8934 		if (ret) {
8935 			dev_err(hba->dev, "Host controller enable failed\n");
8936 			ufshcd_print_evt_hist(hba);
8937 			ufshcd_print_host_state(hba);
8938 			goto out;
8939 		}
8940 
8941 		/* Reinit the device */
8942 		ret = ufshcd_device_init(hba, init_dev_params);
8943 		if (ret)
8944 			goto out;
8945 	}
8946 
8947 	ufshcd_print_pwr_info(hba);
8948 
8949 	/*
8950 	 * bActiveICCLevel is volatile for UFS device (as per latest v2.1 spec)
8951 	 * and for removable UFS card as well, hence always set the parameter.
8952 	 * Note: Error handler may issue the device reset hence resetting
8953 	 * bActiveICCLevel as well so it is always safe to set this here.
8954 	 */
8955 	ufshcd_set_active_icc_lvl(hba);
8956 
8957 	/* Enable UFS Write Booster if supported */
8958 	ufshcd_configure_wb(hba);
8959 
8960 	if (hba->ee_usr_mask)
8961 		ufshcd_write_ee_control(hba);
8962 	ufshcd_configure_auto_hibern8(hba);
8963 
8964 out:
8965 	spin_lock_irqsave(hba->host->host_lock, flags);
8966 	if (ret)
8967 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
8968 	else if (hba->ufshcd_state == UFSHCD_STATE_RESET)
8969 		hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
8970 	spin_unlock_irqrestore(hba->host->host_lock, flags);
8971 
8972 	trace_ufshcd_init(dev_name(hba->dev), ret,
8973 		ktime_to_us(ktime_sub(ktime_get(), start)),
8974 		hba->curr_dev_pwr_mode, hba->uic_link_state);
8975 	return ret;
8976 }
8977 
8978 /**
8979  * ufshcd_async_scan - asynchronous execution for probing hba
8980  * @data: data pointer to pass to this function
8981  * @cookie: cookie data
8982  */
8983 static void ufshcd_async_scan(void *data, async_cookie_t cookie)
8984 {
8985 	struct ufs_hba *hba = (struct ufs_hba *)data;
8986 	int ret;
8987 
8988 	down(&hba->host_sem);
8989 	/* Initialize hba, detect and initialize UFS device */
8990 	ret = ufshcd_probe_hba(hba, true);
8991 	up(&hba->host_sem);
8992 	if (ret)
8993 		goto out;
8994 
8995 	/* Probe and add UFS logical units  */
8996 	ret = ufshcd_add_lus(hba);
8997 
8998 out:
8999 	pm_runtime_put_sync(hba->dev);
9000 
9001 	if (ret)
9002 		dev_err(hba->dev, "%s failed: %d\n", __func__, ret);
9003 }
9004 
9005 static enum scsi_timeout_action ufshcd_eh_timed_out(struct scsi_cmnd *scmd)
9006 {
9007 	struct ufs_hba *hba = shost_priv(scmd->device->host);
9008 
9009 	if (!hba->system_suspending) {
9010 		/* Activate the error handler in the SCSI core. */
9011 		return SCSI_EH_NOT_HANDLED;
9012 	}
9013 
9014 	/*
9015 	 * If we get here we know that no TMFs are outstanding and also that
9016 	 * the only pending command is a START STOP UNIT command. Handle the
9017 	 * timeout of that command directly to prevent a deadlock between
9018 	 * ufshcd_set_dev_pwr_mode() and ufshcd_err_handler().
9019 	 */
9020 	ufshcd_link_recovery(hba);
9021 	dev_info(hba->dev, "%s() finished; outstanding_tasks = %#lx.\n",
9022 		 __func__, hba->outstanding_tasks);
9023 
9024 	return hba->outstanding_reqs ? SCSI_EH_RESET_TIMER : SCSI_EH_DONE;
9025 }
9026 
9027 static const struct attribute_group *ufshcd_driver_groups[] = {
9028 	&ufs_sysfs_unit_descriptor_group,
9029 	&ufs_sysfs_lun_attributes_group,
9030 	NULL,
9031 };
9032 
9033 static struct ufs_hba_variant_params ufs_hba_vps = {
9034 	.hba_enable_delay_us		= 1000,
9035 	.wb_flush_threshold		= UFS_WB_BUF_REMAIN_PERCENT(40),
9036 	.devfreq_profile.polling_ms	= 100,
9037 	.devfreq_profile.target		= ufshcd_devfreq_target,
9038 	.devfreq_profile.get_dev_status	= ufshcd_devfreq_get_dev_status,
9039 	.ondemand_data.upthreshold	= 70,
9040 	.ondemand_data.downdifferential	= 5,
9041 };
9042 
9043 static const struct scsi_host_template ufshcd_driver_template = {
9044 	.module			= THIS_MODULE,
9045 	.name			= UFSHCD,
9046 	.proc_name		= UFSHCD,
9047 	.map_queues		= ufshcd_map_queues,
9048 	.queuecommand		= ufshcd_queuecommand,
9049 	.mq_poll		= ufshcd_poll,
9050 	.slave_alloc		= ufshcd_slave_alloc,
9051 	.slave_configure	= ufshcd_slave_configure,
9052 	.slave_destroy		= ufshcd_slave_destroy,
9053 	.change_queue_depth	= ufshcd_change_queue_depth,
9054 	.eh_abort_handler	= ufshcd_abort,
9055 	.eh_device_reset_handler = ufshcd_eh_device_reset_handler,
9056 	.eh_host_reset_handler   = ufshcd_eh_host_reset_handler,
9057 	.eh_timed_out		= ufshcd_eh_timed_out,
9058 	.this_id		= -1,
9059 	.sg_tablesize		= SG_ALL,
9060 	.cmd_per_lun		= UFSHCD_CMD_PER_LUN,
9061 	.can_queue		= UFSHCD_CAN_QUEUE,
9062 	.max_segment_size	= PRDT_DATA_BYTE_COUNT_MAX,
9063 	.max_sectors		= SZ_1M / SECTOR_SIZE,
9064 	.max_host_blocked	= 1,
9065 	.track_queue_depth	= 1,
9066 	.skip_settle_delay	= 1,
9067 	.sdev_groups		= ufshcd_driver_groups,
9068 	.rpm_autosuspend_delay	= RPM_AUTOSUSPEND_DELAY_MS,
9069 };
9070 
9071 static int ufshcd_config_vreg_load(struct device *dev, struct ufs_vreg *vreg,
9072 				   int ua)
9073 {
9074 	int ret;
9075 
9076 	if (!vreg)
9077 		return 0;
9078 
9079 	/*
9080 	 * "set_load" operation shall be required on those regulators
9081 	 * which specifically configured current limitation. Otherwise
9082 	 * zero max_uA may cause unexpected behavior when regulator is
9083 	 * enabled or set as high power mode.
9084 	 */
9085 	if (!vreg->max_uA)
9086 		return 0;
9087 
9088 	ret = regulator_set_load(vreg->reg, ua);
9089 	if (ret < 0) {
9090 		dev_err(dev, "%s: %s set load (ua=%d) failed, err=%d\n",
9091 				__func__, vreg->name, ua, ret);
9092 	}
9093 
9094 	return ret;
9095 }
9096 
9097 static inline int ufshcd_config_vreg_lpm(struct ufs_hba *hba,
9098 					 struct ufs_vreg *vreg)
9099 {
9100 	return ufshcd_config_vreg_load(hba->dev, vreg, UFS_VREG_LPM_LOAD_UA);
9101 }
9102 
9103 static inline int ufshcd_config_vreg_hpm(struct ufs_hba *hba,
9104 					 struct ufs_vreg *vreg)
9105 {
9106 	if (!vreg)
9107 		return 0;
9108 
9109 	return ufshcd_config_vreg_load(hba->dev, vreg, vreg->max_uA);
9110 }
9111 
9112 static int ufshcd_config_vreg(struct device *dev,
9113 		struct ufs_vreg *vreg, bool on)
9114 {
9115 	if (regulator_count_voltages(vreg->reg) <= 0)
9116 		return 0;
9117 
9118 	return ufshcd_config_vreg_load(dev, vreg, on ? vreg->max_uA : 0);
9119 }
9120 
9121 static int ufshcd_enable_vreg(struct device *dev, struct ufs_vreg *vreg)
9122 {
9123 	int ret = 0;
9124 
9125 	if (!vreg || vreg->enabled)
9126 		goto out;
9127 
9128 	ret = ufshcd_config_vreg(dev, vreg, true);
9129 	if (!ret)
9130 		ret = regulator_enable(vreg->reg);
9131 
9132 	if (!ret)
9133 		vreg->enabled = true;
9134 	else
9135 		dev_err(dev, "%s: %s enable failed, err=%d\n",
9136 				__func__, vreg->name, ret);
9137 out:
9138 	return ret;
9139 }
9140 
9141 static int ufshcd_disable_vreg(struct device *dev, struct ufs_vreg *vreg)
9142 {
9143 	int ret = 0;
9144 
9145 	if (!vreg || !vreg->enabled || vreg->always_on)
9146 		goto out;
9147 
9148 	ret = regulator_disable(vreg->reg);
9149 
9150 	if (!ret) {
9151 		/* ignore errors on applying disable config */
9152 		ufshcd_config_vreg(dev, vreg, false);
9153 		vreg->enabled = false;
9154 	} else {
9155 		dev_err(dev, "%s: %s disable failed, err=%d\n",
9156 				__func__, vreg->name, ret);
9157 	}
9158 out:
9159 	return ret;
9160 }
9161 
9162 static int ufshcd_setup_vreg(struct ufs_hba *hba, bool on)
9163 {
9164 	int ret = 0;
9165 	struct device *dev = hba->dev;
9166 	struct ufs_vreg_info *info = &hba->vreg_info;
9167 
9168 	ret = ufshcd_toggle_vreg(dev, info->vcc, on);
9169 	if (ret)
9170 		goto out;
9171 
9172 	ret = ufshcd_toggle_vreg(dev, info->vccq, on);
9173 	if (ret)
9174 		goto out;
9175 
9176 	ret = ufshcd_toggle_vreg(dev, info->vccq2, on);
9177 
9178 out:
9179 	if (ret) {
9180 		ufshcd_toggle_vreg(dev, info->vccq2, false);
9181 		ufshcd_toggle_vreg(dev, info->vccq, false);
9182 		ufshcd_toggle_vreg(dev, info->vcc, false);
9183 	}
9184 	return ret;
9185 }
9186 
9187 static int ufshcd_setup_hba_vreg(struct ufs_hba *hba, bool on)
9188 {
9189 	struct ufs_vreg_info *info = &hba->vreg_info;
9190 
9191 	return ufshcd_toggle_vreg(hba->dev, info->vdd_hba, on);
9192 }
9193 
9194 int ufshcd_get_vreg(struct device *dev, struct ufs_vreg *vreg)
9195 {
9196 	int ret = 0;
9197 
9198 	if (!vreg)
9199 		goto out;
9200 
9201 	vreg->reg = devm_regulator_get(dev, vreg->name);
9202 	if (IS_ERR(vreg->reg)) {
9203 		ret = PTR_ERR(vreg->reg);
9204 		dev_err(dev, "%s: %s get failed, err=%d\n",
9205 				__func__, vreg->name, ret);
9206 	}
9207 out:
9208 	return ret;
9209 }
9210 EXPORT_SYMBOL_GPL(ufshcd_get_vreg);
9211 
9212 static int ufshcd_init_vreg(struct ufs_hba *hba)
9213 {
9214 	int ret = 0;
9215 	struct device *dev = hba->dev;
9216 	struct ufs_vreg_info *info = &hba->vreg_info;
9217 
9218 	ret = ufshcd_get_vreg(dev, info->vcc);
9219 	if (ret)
9220 		goto out;
9221 
9222 	ret = ufshcd_get_vreg(dev, info->vccq);
9223 	if (!ret)
9224 		ret = ufshcd_get_vreg(dev, info->vccq2);
9225 out:
9226 	return ret;
9227 }
9228 
9229 static int ufshcd_init_hba_vreg(struct ufs_hba *hba)
9230 {
9231 	struct ufs_vreg_info *info = &hba->vreg_info;
9232 
9233 	return ufshcd_get_vreg(hba->dev, info->vdd_hba);
9234 }
9235 
9236 static int ufshcd_setup_clocks(struct ufs_hba *hba, bool on)
9237 {
9238 	int ret = 0;
9239 	struct ufs_clk_info *clki;
9240 	struct list_head *head = &hba->clk_list_head;
9241 	unsigned long flags;
9242 	ktime_t start = ktime_get();
9243 	bool clk_state_changed = false;
9244 
9245 	if (list_empty(head))
9246 		goto out;
9247 
9248 	ret = ufshcd_vops_setup_clocks(hba, on, PRE_CHANGE);
9249 	if (ret)
9250 		return ret;
9251 
9252 	list_for_each_entry(clki, head, list) {
9253 		if (!IS_ERR_OR_NULL(clki->clk)) {
9254 			/*
9255 			 * Don't disable clocks which are needed
9256 			 * to keep the link active.
9257 			 */
9258 			if (ufshcd_is_link_active(hba) &&
9259 			    clki->keep_link_active)
9260 				continue;
9261 
9262 			clk_state_changed = on ^ clki->enabled;
9263 			if (on && !clki->enabled) {
9264 				ret = clk_prepare_enable(clki->clk);
9265 				if (ret) {
9266 					dev_err(hba->dev, "%s: %s prepare enable failed, %d\n",
9267 						__func__, clki->name, ret);
9268 					goto out;
9269 				}
9270 			} else if (!on && clki->enabled) {
9271 				clk_disable_unprepare(clki->clk);
9272 			}
9273 			clki->enabled = on;
9274 			dev_dbg(hba->dev, "%s: clk: %s %sabled\n", __func__,
9275 					clki->name, on ? "en" : "dis");
9276 		}
9277 	}
9278 
9279 	ret = ufshcd_vops_setup_clocks(hba, on, POST_CHANGE);
9280 	if (ret)
9281 		return ret;
9282 
9283 out:
9284 	if (ret) {
9285 		list_for_each_entry(clki, head, list) {
9286 			if (!IS_ERR_OR_NULL(clki->clk) && clki->enabled)
9287 				clk_disable_unprepare(clki->clk);
9288 		}
9289 	} else if (!ret && on) {
9290 		spin_lock_irqsave(hba->host->host_lock, flags);
9291 		hba->clk_gating.state = CLKS_ON;
9292 		trace_ufshcd_clk_gating(dev_name(hba->dev),
9293 					hba->clk_gating.state);
9294 		spin_unlock_irqrestore(hba->host->host_lock, flags);
9295 	}
9296 
9297 	if (clk_state_changed)
9298 		trace_ufshcd_profile_clk_gating(dev_name(hba->dev),
9299 			(on ? "on" : "off"),
9300 			ktime_to_us(ktime_sub(ktime_get(), start)), ret);
9301 	return ret;
9302 }
9303 
9304 static enum ufs_ref_clk_freq ufshcd_parse_ref_clk_property(struct ufs_hba *hba)
9305 {
9306 	u32 freq;
9307 	int ret = device_property_read_u32(hba->dev, "ref-clk-freq", &freq);
9308 
9309 	if (ret) {
9310 		dev_dbg(hba->dev, "Cannot query 'ref-clk-freq' property = %d", ret);
9311 		return REF_CLK_FREQ_INVAL;
9312 	}
9313 
9314 	return ufs_get_bref_clk_from_hz(freq);
9315 }
9316 
9317 static int ufshcd_init_clocks(struct ufs_hba *hba)
9318 {
9319 	int ret = 0;
9320 	struct ufs_clk_info *clki;
9321 	struct device *dev = hba->dev;
9322 	struct list_head *head = &hba->clk_list_head;
9323 
9324 	if (list_empty(head))
9325 		goto out;
9326 
9327 	list_for_each_entry(clki, head, list) {
9328 		if (!clki->name)
9329 			continue;
9330 
9331 		clki->clk = devm_clk_get(dev, clki->name);
9332 		if (IS_ERR(clki->clk)) {
9333 			ret = PTR_ERR(clki->clk);
9334 			dev_err(dev, "%s: %s clk get failed, %d\n",
9335 					__func__, clki->name, ret);
9336 			goto out;
9337 		}
9338 
9339 		/*
9340 		 * Parse device ref clk freq as per device tree "ref_clk".
9341 		 * Default dev_ref_clk_freq is set to REF_CLK_FREQ_INVAL
9342 		 * in ufshcd_alloc_host().
9343 		 */
9344 		if (!strcmp(clki->name, "ref_clk"))
9345 			ufshcd_parse_dev_ref_clk_freq(hba, clki->clk);
9346 
9347 		if (clki->max_freq) {
9348 			ret = clk_set_rate(clki->clk, clki->max_freq);
9349 			if (ret) {
9350 				dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
9351 					__func__, clki->name,
9352 					clki->max_freq, ret);
9353 				goto out;
9354 			}
9355 			clki->curr_freq = clki->max_freq;
9356 		}
9357 		dev_dbg(dev, "%s: clk: %s, rate: %lu\n", __func__,
9358 				clki->name, clk_get_rate(clki->clk));
9359 	}
9360 
9361 	/* Set Max. frequency for all clocks */
9362 	if (hba->use_pm_opp) {
9363 		ret = ufshcd_opp_set_rate(hba, ULONG_MAX);
9364 		if (ret) {
9365 			dev_err(hba->dev, "%s: failed to set OPP: %d", __func__,
9366 				ret);
9367 			goto out;
9368 		}
9369 	}
9370 
9371 out:
9372 	return ret;
9373 }
9374 
9375 static int ufshcd_variant_hba_init(struct ufs_hba *hba)
9376 {
9377 	int err = 0;
9378 
9379 	if (!hba->vops)
9380 		goto out;
9381 
9382 	err = ufshcd_vops_init(hba);
9383 	if (err)
9384 		dev_err_probe(hba->dev, err,
9385 			      "%s: variant %s init failed with err %d\n",
9386 			      __func__, ufshcd_get_var_name(hba), err);
9387 out:
9388 	return err;
9389 }
9390 
9391 static void ufshcd_variant_hba_exit(struct ufs_hba *hba)
9392 {
9393 	if (!hba->vops)
9394 		return;
9395 
9396 	ufshcd_vops_exit(hba);
9397 }
9398 
9399 static int ufshcd_hba_init(struct ufs_hba *hba)
9400 {
9401 	int err;
9402 
9403 	/*
9404 	 * Handle host controller power separately from the UFS device power
9405 	 * rails as it will help controlling the UFS host controller power
9406 	 * collapse easily which is different than UFS device power collapse.
9407 	 * Also, enable the host controller power before we go ahead with rest
9408 	 * of the initialization here.
9409 	 */
9410 	err = ufshcd_init_hba_vreg(hba);
9411 	if (err)
9412 		goto out;
9413 
9414 	err = ufshcd_setup_hba_vreg(hba, true);
9415 	if (err)
9416 		goto out;
9417 
9418 	err = ufshcd_init_clocks(hba);
9419 	if (err)
9420 		goto out_disable_hba_vreg;
9421 
9422 	if (hba->dev_ref_clk_freq == REF_CLK_FREQ_INVAL)
9423 		hba->dev_ref_clk_freq = ufshcd_parse_ref_clk_property(hba);
9424 
9425 	err = ufshcd_setup_clocks(hba, true);
9426 	if (err)
9427 		goto out_disable_hba_vreg;
9428 
9429 	err = ufshcd_init_vreg(hba);
9430 	if (err)
9431 		goto out_disable_clks;
9432 
9433 	err = ufshcd_setup_vreg(hba, true);
9434 	if (err)
9435 		goto out_disable_clks;
9436 
9437 	err = ufshcd_variant_hba_init(hba);
9438 	if (err)
9439 		goto out_disable_vreg;
9440 
9441 	ufs_debugfs_hba_init(hba);
9442 	ufs_fault_inject_hba_init(hba);
9443 
9444 	hba->is_powered = true;
9445 	goto out;
9446 
9447 out_disable_vreg:
9448 	ufshcd_setup_vreg(hba, false);
9449 out_disable_clks:
9450 	ufshcd_setup_clocks(hba, false);
9451 out_disable_hba_vreg:
9452 	ufshcd_setup_hba_vreg(hba, false);
9453 out:
9454 	return err;
9455 }
9456 
9457 static void ufshcd_hba_exit(struct ufs_hba *hba)
9458 {
9459 	if (hba->is_powered) {
9460 		ufshcd_exit_clk_scaling(hba);
9461 		ufshcd_exit_clk_gating(hba);
9462 		if (hba->eh_wq)
9463 			destroy_workqueue(hba->eh_wq);
9464 		ufs_debugfs_hba_exit(hba);
9465 		ufshcd_variant_hba_exit(hba);
9466 		ufshcd_setup_vreg(hba, false);
9467 		ufshcd_setup_clocks(hba, false);
9468 		ufshcd_setup_hba_vreg(hba, false);
9469 		hba->is_powered = false;
9470 		ufs_put_device_desc(hba);
9471 	}
9472 }
9473 
9474 static int ufshcd_execute_start_stop(struct scsi_device *sdev,
9475 				     enum ufs_dev_pwr_mode pwr_mode,
9476 				     struct scsi_sense_hdr *sshdr)
9477 {
9478 	const unsigned char cdb[6] = { START_STOP, 0, 0, 0, pwr_mode << 4, 0 };
9479 	const struct scsi_exec_args args = {
9480 		.sshdr = sshdr,
9481 		.req_flags = BLK_MQ_REQ_PM,
9482 		.scmd_flags = SCMD_FAIL_IF_RECOVERING,
9483 	};
9484 
9485 	return scsi_execute_cmd(sdev, cdb, REQ_OP_DRV_IN, /*buffer=*/NULL,
9486 			/*bufflen=*/0, /*timeout=*/10 * HZ, /*retries=*/0,
9487 			&args);
9488 }
9489 
9490 /**
9491  * ufshcd_set_dev_pwr_mode - sends START STOP UNIT command to set device
9492  *			     power mode
9493  * @hba: per adapter instance
9494  * @pwr_mode: device power mode to set
9495  *
9496  * Return: 0 if requested power mode is set successfully;
9497  *         < 0 if failed to set the requested power mode.
9498  */
9499 static int ufshcd_set_dev_pwr_mode(struct ufs_hba *hba,
9500 				     enum ufs_dev_pwr_mode pwr_mode)
9501 {
9502 	struct scsi_sense_hdr sshdr;
9503 	struct scsi_device *sdp;
9504 	unsigned long flags;
9505 	int ret, retries;
9506 
9507 	spin_lock_irqsave(hba->host->host_lock, flags);
9508 	sdp = hba->ufs_device_wlun;
9509 	if (sdp && scsi_device_online(sdp))
9510 		ret = scsi_device_get(sdp);
9511 	else
9512 		ret = -ENODEV;
9513 	spin_unlock_irqrestore(hba->host->host_lock, flags);
9514 
9515 	if (ret)
9516 		return ret;
9517 
9518 	/*
9519 	 * If scsi commands fail, the scsi mid-layer schedules scsi error-
9520 	 * handling, which would wait for host to be resumed. Since we know
9521 	 * we are functional while we are here, skip host resume in error
9522 	 * handling context.
9523 	 */
9524 	hba->host->eh_noresume = 1;
9525 
9526 	/*
9527 	 * Current function would be generally called from the power management
9528 	 * callbacks hence set the RQF_PM flag so that it doesn't resume the
9529 	 * already suspended childs.
9530 	 */
9531 	for (retries = 3; retries > 0; --retries) {
9532 		ret = ufshcd_execute_start_stop(sdp, pwr_mode, &sshdr);
9533 		/*
9534 		 * scsi_execute() only returns a negative value if the request
9535 		 * queue is dying.
9536 		 */
9537 		if (ret <= 0)
9538 			break;
9539 	}
9540 	if (ret) {
9541 		sdev_printk(KERN_WARNING, sdp,
9542 			    "START_STOP failed for power mode: %d, result %x\n",
9543 			    pwr_mode, ret);
9544 		if (ret > 0) {
9545 			if (scsi_sense_valid(&sshdr))
9546 				scsi_print_sense_hdr(sdp, NULL, &sshdr);
9547 			ret = -EIO;
9548 		}
9549 	} else {
9550 		hba->curr_dev_pwr_mode = pwr_mode;
9551 	}
9552 
9553 	scsi_device_put(sdp);
9554 	hba->host->eh_noresume = 0;
9555 	return ret;
9556 }
9557 
9558 static int ufshcd_link_state_transition(struct ufs_hba *hba,
9559 					enum uic_link_state req_link_state,
9560 					bool check_for_bkops)
9561 {
9562 	int ret = 0;
9563 
9564 	if (req_link_state == hba->uic_link_state)
9565 		return 0;
9566 
9567 	if (req_link_state == UIC_LINK_HIBERN8_STATE) {
9568 		ret = ufshcd_uic_hibern8_enter(hba);
9569 		if (!ret) {
9570 			ufshcd_set_link_hibern8(hba);
9571 		} else {
9572 			dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
9573 					__func__, ret);
9574 			goto out;
9575 		}
9576 	}
9577 	/*
9578 	 * If autobkops is enabled, link can't be turned off because
9579 	 * turning off the link would also turn off the device, except in the
9580 	 * case of DeepSleep where the device is expected to remain powered.
9581 	 */
9582 	else if ((req_link_state == UIC_LINK_OFF_STATE) &&
9583 		 (!check_for_bkops || !hba->auto_bkops_enabled)) {
9584 		/*
9585 		 * Let's make sure that link is in low power mode, we are doing
9586 		 * this currently by putting the link in Hibern8. Otherway to
9587 		 * put the link in low power mode is to send the DME end point
9588 		 * to device and then send the DME reset command to local
9589 		 * unipro. But putting the link in hibern8 is much faster.
9590 		 *
9591 		 * Note also that putting the link in Hibern8 is a requirement
9592 		 * for entering DeepSleep.
9593 		 */
9594 		ret = ufshcd_uic_hibern8_enter(hba);
9595 		if (ret) {
9596 			dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
9597 					__func__, ret);
9598 			goto out;
9599 		}
9600 		/*
9601 		 * Change controller state to "reset state" which
9602 		 * should also put the link in off/reset state
9603 		 */
9604 		ufshcd_hba_stop(hba);
9605 		/*
9606 		 * TODO: Check if we need any delay to make sure that
9607 		 * controller is reset
9608 		 */
9609 		ufshcd_set_link_off(hba);
9610 	}
9611 
9612 out:
9613 	return ret;
9614 }
9615 
9616 static void ufshcd_vreg_set_lpm(struct ufs_hba *hba)
9617 {
9618 	bool vcc_off = false;
9619 
9620 	/*
9621 	 * It seems some UFS devices may keep drawing more than sleep current
9622 	 * (atleast for 500us) from UFS rails (especially from VCCQ rail).
9623 	 * To avoid this situation, add 2ms delay before putting these UFS
9624 	 * rails in LPM mode.
9625 	 */
9626 	if (!ufshcd_is_link_active(hba) &&
9627 	    hba->dev_quirks & UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM)
9628 		usleep_range(2000, 2100);
9629 
9630 	/*
9631 	 * If UFS device is either in UFS_Sleep turn off VCC rail to save some
9632 	 * power.
9633 	 *
9634 	 * If UFS device and link is in OFF state, all power supplies (VCC,
9635 	 * VCCQ, VCCQ2) can be turned off if power on write protect is not
9636 	 * required. If UFS link is inactive (Hibern8 or OFF state) and device
9637 	 * is in sleep state, put VCCQ & VCCQ2 rails in LPM mode.
9638 	 *
9639 	 * Ignore the error returned by ufshcd_toggle_vreg() as device is anyway
9640 	 * in low power state which would save some power.
9641 	 *
9642 	 * If Write Booster is enabled and the device needs to flush the WB
9643 	 * buffer OR if bkops status is urgent for WB, keep Vcc on.
9644 	 */
9645 	if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba) &&
9646 	    !hba->dev_info.is_lu_power_on_wp) {
9647 		ufshcd_setup_vreg(hba, false);
9648 		vcc_off = true;
9649 	} else if (!ufshcd_is_ufs_dev_active(hba)) {
9650 		ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, false);
9651 		vcc_off = true;
9652 		if (ufshcd_is_link_hibern8(hba) || ufshcd_is_link_off(hba)) {
9653 			ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq);
9654 			ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq2);
9655 		}
9656 	}
9657 
9658 	/*
9659 	 * Some UFS devices require delay after VCC power rail is turned-off.
9660 	 */
9661 	if (vcc_off && hba->vreg_info.vcc &&
9662 		hba->dev_quirks & UFS_DEVICE_QUIRK_DELAY_AFTER_LPM)
9663 		usleep_range(5000, 5100);
9664 }
9665 
9666 #ifdef CONFIG_PM
9667 static int ufshcd_vreg_set_hpm(struct ufs_hba *hba)
9668 {
9669 	int ret = 0;
9670 
9671 	if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba) &&
9672 	    !hba->dev_info.is_lu_power_on_wp) {
9673 		ret = ufshcd_setup_vreg(hba, true);
9674 	} else if (!ufshcd_is_ufs_dev_active(hba)) {
9675 		if (!ufshcd_is_link_active(hba)) {
9676 			ret = ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq);
9677 			if (ret)
9678 				goto vcc_disable;
9679 			ret = ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq2);
9680 			if (ret)
9681 				goto vccq_lpm;
9682 		}
9683 		ret = ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, true);
9684 	}
9685 	goto out;
9686 
9687 vccq_lpm:
9688 	ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq);
9689 vcc_disable:
9690 	ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, false);
9691 out:
9692 	return ret;
9693 }
9694 #endif /* CONFIG_PM */
9695 
9696 static void ufshcd_hba_vreg_set_lpm(struct ufs_hba *hba)
9697 {
9698 	if (ufshcd_is_link_off(hba) || ufshcd_can_aggressive_pc(hba))
9699 		ufshcd_setup_hba_vreg(hba, false);
9700 }
9701 
9702 static void ufshcd_hba_vreg_set_hpm(struct ufs_hba *hba)
9703 {
9704 	if (ufshcd_is_link_off(hba) || ufshcd_can_aggressive_pc(hba))
9705 		ufshcd_setup_hba_vreg(hba, true);
9706 }
9707 
9708 static int __ufshcd_wl_suspend(struct ufs_hba *hba, enum ufs_pm_op pm_op)
9709 {
9710 	int ret = 0;
9711 	bool check_for_bkops;
9712 	enum ufs_pm_level pm_lvl;
9713 	enum ufs_dev_pwr_mode req_dev_pwr_mode;
9714 	enum uic_link_state req_link_state;
9715 
9716 	hba->pm_op_in_progress = true;
9717 	if (pm_op != UFS_SHUTDOWN_PM) {
9718 		pm_lvl = pm_op == UFS_RUNTIME_PM ?
9719 			 hba->rpm_lvl : hba->spm_lvl;
9720 		req_dev_pwr_mode = ufs_get_pm_lvl_to_dev_pwr_mode(pm_lvl);
9721 		req_link_state = ufs_get_pm_lvl_to_link_pwr_state(pm_lvl);
9722 	} else {
9723 		req_dev_pwr_mode = UFS_POWERDOWN_PWR_MODE;
9724 		req_link_state = UIC_LINK_OFF_STATE;
9725 	}
9726 
9727 	/*
9728 	 * If we can't transition into any of the low power modes
9729 	 * just gate the clocks.
9730 	 */
9731 	ufshcd_hold(hba);
9732 	hba->clk_gating.is_suspended = true;
9733 
9734 	if (ufshcd_is_clkscaling_supported(hba))
9735 		ufshcd_clk_scaling_suspend(hba, true);
9736 
9737 	if (req_dev_pwr_mode == UFS_ACTIVE_PWR_MODE &&
9738 			req_link_state == UIC_LINK_ACTIVE_STATE) {
9739 		goto vops_suspend;
9740 	}
9741 
9742 	if ((req_dev_pwr_mode == hba->curr_dev_pwr_mode) &&
9743 	    (req_link_state == hba->uic_link_state))
9744 		goto enable_scaling;
9745 
9746 	/* UFS device & link must be active before we enter in this function */
9747 	if (!ufshcd_is_ufs_dev_active(hba) || !ufshcd_is_link_active(hba)) {
9748 		ret = -EINVAL;
9749 		goto enable_scaling;
9750 	}
9751 
9752 	if (pm_op == UFS_RUNTIME_PM) {
9753 		if (ufshcd_can_autobkops_during_suspend(hba)) {
9754 			/*
9755 			 * The device is idle with no requests in the queue,
9756 			 * allow background operations if bkops status shows
9757 			 * that performance might be impacted.
9758 			 */
9759 			ret = ufshcd_urgent_bkops(hba);
9760 			if (ret) {
9761 				/*
9762 				 * If return err in suspend flow, IO will hang.
9763 				 * Trigger error handler and break suspend for
9764 				 * error recovery.
9765 				 */
9766 				ufshcd_force_error_recovery(hba);
9767 				ret = -EBUSY;
9768 				goto enable_scaling;
9769 			}
9770 		} else {
9771 			/* make sure that auto bkops is disabled */
9772 			ufshcd_disable_auto_bkops(hba);
9773 		}
9774 		/*
9775 		 * If device needs to do BKOP or WB buffer flush during
9776 		 * Hibern8, keep device power mode as "active power mode"
9777 		 * and VCC supply.
9778 		 */
9779 		hba->dev_info.b_rpm_dev_flush_capable =
9780 			hba->auto_bkops_enabled ||
9781 			(((req_link_state == UIC_LINK_HIBERN8_STATE) ||
9782 			((req_link_state == UIC_LINK_ACTIVE_STATE) &&
9783 			ufshcd_is_auto_hibern8_enabled(hba))) &&
9784 			ufshcd_wb_need_flush(hba));
9785 	}
9786 
9787 	flush_work(&hba->eeh_work);
9788 
9789 	ret = ufshcd_vops_suspend(hba, pm_op, PRE_CHANGE);
9790 	if (ret)
9791 		goto enable_scaling;
9792 
9793 	if (req_dev_pwr_mode != hba->curr_dev_pwr_mode) {
9794 		if (pm_op != UFS_RUNTIME_PM)
9795 			/* ensure that bkops is disabled */
9796 			ufshcd_disable_auto_bkops(hba);
9797 
9798 		if (!hba->dev_info.b_rpm_dev_flush_capable) {
9799 			ret = ufshcd_set_dev_pwr_mode(hba, req_dev_pwr_mode);
9800 			if (ret && pm_op != UFS_SHUTDOWN_PM) {
9801 				/*
9802 				 * If return err in suspend flow, IO will hang.
9803 				 * Trigger error handler and break suspend for
9804 				 * error recovery.
9805 				 */
9806 				ufshcd_force_error_recovery(hba);
9807 				ret = -EBUSY;
9808 			}
9809 			if (ret)
9810 				goto enable_scaling;
9811 		}
9812 	}
9813 
9814 	/*
9815 	 * In the case of DeepSleep, the device is expected to remain powered
9816 	 * with the link off, so do not check for bkops.
9817 	 */
9818 	check_for_bkops = !ufshcd_is_ufs_dev_deepsleep(hba);
9819 	ret = ufshcd_link_state_transition(hba, req_link_state, check_for_bkops);
9820 	if (ret && pm_op != UFS_SHUTDOWN_PM) {
9821 		/*
9822 		 * If return err in suspend flow, IO will hang.
9823 		 * Trigger error handler and break suspend for
9824 		 * error recovery.
9825 		 */
9826 		ufshcd_force_error_recovery(hba);
9827 		ret = -EBUSY;
9828 	}
9829 	if (ret)
9830 		goto set_dev_active;
9831 
9832 vops_suspend:
9833 	/*
9834 	 * Call vendor specific suspend callback. As these callbacks may access
9835 	 * vendor specific host controller register space call them before the
9836 	 * host clocks are ON.
9837 	 */
9838 	ret = ufshcd_vops_suspend(hba, pm_op, POST_CHANGE);
9839 	if (ret)
9840 		goto set_link_active;
9841 
9842 	cancel_delayed_work_sync(&hba->ufs_rtc_update_work);
9843 	goto out;
9844 
9845 set_link_active:
9846 	/*
9847 	 * Device hardware reset is required to exit DeepSleep. Also, for
9848 	 * DeepSleep, the link is off so host reset and restore will be done
9849 	 * further below.
9850 	 */
9851 	if (ufshcd_is_ufs_dev_deepsleep(hba)) {
9852 		ufshcd_device_reset(hba);
9853 		WARN_ON(!ufshcd_is_link_off(hba));
9854 	}
9855 	if (ufshcd_is_link_hibern8(hba) && !ufshcd_uic_hibern8_exit(hba))
9856 		ufshcd_set_link_active(hba);
9857 	else if (ufshcd_is_link_off(hba))
9858 		ufshcd_host_reset_and_restore(hba);
9859 set_dev_active:
9860 	/* Can also get here needing to exit DeepSleep */
9861 	if (ufshcd_is_ufs_dev_deepsleep(hba)) {
9862 		ufshcd_device_reset(hba);
9863 		ufshcd_host_reset_and_restore(hba);
9864 	}
9865 	if (!ufshcd_set_dev_pwr_mode(hba, UFS_ACTIVE_PWR_MODE))
9866 		ufshcd_disable_auto_bkops(hba);
9867 enable_scaling:
9868 	if (ufshcd_is_clkscaling_supported(hba))
9869 		ufshcd_clk_scaling_suspend(hba, false);
9870 
9871 	hba->dev_info.b_rpm_dev_flush_capable = false;
9872 out:
9873 	if (hba->dev_info.b_rpm_dev_flush_capable) {
9874 		schedule_delayed_work(&hba->rpm_dev_flush_recheck_work,
9875 			msecs_to_jiffies(RPM_DEV_FLUSH_RECHECK_WORK_DELAY_MS));
9876 	}
9877 
9878 	if (ret) {
9879 		ufshcd_update_evt_hist(hba, UFS_EVT_WL_SUSP_ERR, (u32)ret);
9880 		hba->clk_gating.is_suspended = false;
9881 		ufshcd_release(hba);
9882 	}
9883 	hba->pm_op_in_progress = false;
9884 	return ret;
9885 }
9886 
9887 #ifdef CONFIG_PM
9888 static int __ufshcd_wl_resume(struct ufs_hba *hba, enum ufs_pm_op pm_op)
9889 {
9890 	int ret;
9891 	enum uic_link_state old_link_state = hba->uic_link_state;
9892 
9893 	hba->pm_op_in_progress = true;
9894 
9895 	/*
9896 	 * Call vendor specific resume callback. As these callbacks may access
9897 	 * vendor specific host controller register space call them when the
9898 	 * host clocks are ON.
9899 	 */
9900 	ret = ufshcd_vops_resume(hba, pm_op);
9901 	if (ret)
9902 		goto out;
9903 
9904 	/* For DeepSleep, the only supported option is to have the link off */
9905 	WARN_ON(ufshcd_is_ufs_dev_deepsleep(hba) && !ufshcd_is_link_off(hba));
9906 
9907 	if (ufshcd_is_link_hibern8(hba)) {
9908 		ret = ufshcd_uic_hibern8_exit(hba);
9909 		if (!ret) {
9910 			ufshcd_set_link_active(hba);
9911 		} else {
9912 			dev_err(hba->dev, "%s: hibern8 exit failed %d\n",
9913 					__func__, ret);
9914 			goto vendor_suspend;
9915 		}
9916 	} else if (ufshcd_is_link_off(hba)) {
9917 		/*
9918 		 * A full initialization of the host and the device is
9919 		 * required since the link was put to off during suspend.
9920 		 * Note, in the case of DeepSleep, the device will exit
9921 		 * DeepSleep due to device reset.
9922 		 */
9923 		ret = ufshcd_reset_and_restore(hba);
9924 		/*
9925 		 * ufshcd_reset_and_restore() should have already
9926 		 * set the link state as active
9927 		 */
9928 		if (ret || !ufshcd_is_link_active(hba))
9929 			goto vendor_suspend;
9930 	}
9931 
9932 	if (!ufshcd_is_ufs_dev_active(hba)) {
9933 		ret = ufshcd_set_dev_pwr_mode(hba, UFS_ACTIVE_PWR_MODE);
9934 		if (ret)
9935 			goto set_old_link_state;
9936 		ufshcd_set_timestamp_attr(hba);
9937 		schedule_delayed_work(&hba->ufs_rtc_update_work,
9938 				      msecs_to_jiffies(UFS_RTC_UPDATE_INTERVAL_MS));
9939 	}
9940 
9941 	if (ufshcd_keep_autobkops_enabled_except_suspend(hba))
9942 		ufshcd_enable_auto_bkops(hba);
9943 	else
9944 		/*
9945 		 * If BKOPs operations are urgently needed at this moment then
9946 		 * keep auto-bkops enabled or else disable it.
9947 		 */
9948 		ufshcd_urgent_bkops(hba);
9949 
9950 	if (hba->ee_usr_mask)
9951 		ufshcd_write_ee_control(hba);
9952 
9953 	if (ufshcd_is_clkscaling_supported(hba))
9954 		ufshcd_clk_scaling_suspend(hba, false);
9955 
9956 	if (hba->dev_info.b_rpm_dev_flush_capable) {
9957 		hba->dev_info.b_rpm_dev_flush_capable = false;
9958 		cancel_delayed_work(&hba->rpm_dev_flush_recheck_work);
9959 	}
9960 
9961 	ufshcd_configure_auto_hibern8(hba);
9962 
9963 	goto out;
9964 
9965 set_old_link_state:
9966 	ufshcd_link_state_transition(hba, old_link_state, 0);
9967 vendor_suspend:
9968 	ufshcd_vops_suspend(hba, pm_op, PRE_CHANGE);
9969 	ufshcd_vops_suspend(hba, pm_op, POST_CHANGE);
9970 out:
9971 	if (ret)
9972 		ufshcd_update_evt_hist(hba, UFS_EVT_WL_RES_ERR, (u32)ret);
9973 	hba->clk_gating.is_suspended = false;
9974 	ufshcd_release(hba);
9975 	hba->pm_op_in_progress = false;
9976 	return ret;
9977 }
9978 
9979 static int ufshcd_wl_runtime_suspend(struct device *dev)
9980 {
9981 	struct scsi_device *sdev = to_scsi_device(dev);
9982 	struct ufs_hba *hba;
9983 	int ret;
9984 	ktime_t start = ktime_get();
9985 
9986 	hba = shost_priv(sdev->host);
9987 
9988 	ret = __ufshcd_wl_suspend(hba, UFS_RUNTIME_PM);
9989 	if (ret)
9990 		dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
9991 
9992 	trace_ufshcd_wl_runtime_suspend(dev_name(dev), ret,
9993 		ktime_to_us(ktime_sub(ktime_get(), start)),
9994 		hba->curr_dev_pwr_mode, hba->uic_link_state);
9995 
9996 	return ret;
9997 }
9998 
9999 static int ufshcd_wl_runtime_resume(struct device *dev)
10000 {
10001 	struct scsi_device *sdev = to_scsi_device(dev);
10002 	struct ufs_hba *hba;
10003 	int ret = 0;
10004 	ktime_t start = ktime_get();
10005 
10006 	hba = shost_priv(sdev->host);
10007 
10008 	ret = __ufshcd_wl_resume(hba, UFS_RUNTIME_PM);
10009 	if (ret)
10010 		dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
10011 
10012 	trace_ufshcd_wl_runtime_resume(dev_name(dev), ret,
10013 		ktime_to_us(ktime_sub(ktime_get(), start)),
10014 		hba->curr_dev_pwr_mode, hba->uic_link_state);
10015 
10016 	return ret;
10017 }
10018 #endif
10019 
10020 #ifdef CONFIG_PM_SLEEP
10021 static int ufshcd_wl_suspend(struct device *dev)
10022 {
10023 	struct scsi_device *sdev = to_scsi_device(dev);
10024 	struct ufs_hba *hba;
10025 	int ret = 0;
10026 	ktime_t start = ktime_get();
10027 
10028 	hba = shost_priv(sdev->host);
10029 	down(&hba->host_sem);
10030 	hba->system_suspending = true;
10031 
10032 	if (pm_runtime_suspended(dev))
10033 		goto out;
10034 
10035 	ret = __ufshcd_wl_suspend(hba, UFS_SYSTEM_PM);
10036 	if (ret) {
10037 		dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__,  ret);
10038 		up(&hba->host_sem);
10039 	}
10040 
10041 out:
10042 	if (!ret)
10043 		hba->is_sys_suspended = true;
10044 	trace_ufshcd_wl_suspend(dev_name(dev), ret,
10045 		ktime_to_us(ktime_sub(ktime_get(), start)),
10046 		hba->curr_dev_pwr_mode, hba->uic_link_state);
10047 
10048 	return ret;
10049 }
10050 
10051 static int ufshcd_wl_resume(struct device *dev)
10052 {
10053 	struct scsi_device *sdev = to_scsi_device(dev);
10054 	struct ufs_hba *hba;
10055 	int ret = 0;
10056 	ktime_t start = ktime_get();
10057 
10058 	hba = shost_priv(sdev->host);
10059 
10060 	if (pm_runtime_suspended(dev))
10061 		goto out;
10062 
10063 	ret = __ufshcd_wl_resume(hba, UFS_SYSTEM_PM);
10064 	if (ret)
10065 		dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
10066 out:
10067 	trace_ufshcd_wl_resume(dev_name(dev), ret,
10068 		ktime_to_us(ktime_sub(ktime_get(), start)),
10069 		hba->curr_dev_pwr_mode, hba->uic_link_state);
10070 	if (!ret)
10071 		hba->is_sys_suspended = false;
10072 	hba->system_suspending = false;
10073 	up(&hba->host_sem);
10074 	return ret;
10075 }
10076 #endif
10077 
10078 /**
10079  * ufshcd_suspend - helper function for suspend operations
10080  * @hba: per adapter instance
10081  *
10082  * This function will put disable irqs, turn off clocks
10083  * and set vreg and hba-vreg in lpm mode.
10084  *
10085  * Return: 0 upon success; < 0 upon failure.
10086  */
10087 static int ufshcd_suspend(struct ufs_hba *hba)
10088 {
10089 	int ret;
10090 
10091 	if (!hba->is_powered)
10092 		return 0;
10093 	/*
10094 	 * Disable the host irq as host controller as there won't be any
10095 	 * host controller transaction expected till resume.
10096 	 */
10097 	ufshcd_disable_irq(hba);
10098 	ret = ufshcd_setup_clocks(hba, false);
10099 	if (ret) {
10100 		ufshcd_enable_irq(hba);
10101 		return ret;
10102 	}
10103 	if (ufshcd_is_clkgating_allowed(hba)) {
10104 		hba->clk_gating.state = CLKS_OFF;
10105 		trace_ufshcd_clk_gating(dev_name(hba->dev),
10106 					hba->clk_gating.state);
10107 	}
10108 
10109 	ufshcd_vreg_set_lpm(hba);
10110 	/* Put the host controller in low power mode if possible */
10111 	ufshcd_hba_vreg_set_lpm(hba);
10112 	return ret;
10113 }
10114 
10115 #ifdef CONFIG_PM
10116 /**
10117  * ufshcd_resume - helper function for resume operations
10118  * @hba: per adapter instance
10119  *
10120  * This function basically turns on the regulators, clocks and
10121  * irqs of the hba.
10122  *
10123  * Return: 0 for success and non-zero for failure.
10124  */
10125 static int ufshcd_resume(struct ufs_hba *hba)
10126 {
10127 	int ret;
10128 
10129 	if (!hba->is_powered)
10130 		return 0;
10131 
10132 	ufshcd_hba_vreg_set_hpm(hba);
10133 	ret = ufshcd_vreg_set_hpm(hba);
10134 	if (ret)
10135 		goto out;
10136 
10137 	/* Make sure clocks are enabled before accessing controller */
10138 	ret = ufshcd_setup_clocks(hba, true);
10139 	if (ret)
10140 		goto disable_vreg;
10141 
10142 	/* enable the host irq as host controller would be active soon */
10143 	ufshcd_enable_irq(hba);
10144 
10145 	goto out;
10146 
10147 disable_vreg:
10148 	ufshcd_vreg_set_lpm(hba);
10149 out:
10150 	if (ret)
10151 		ufshcd_update_evt_hist(hba, UFS_EVT_RESUME_ERR, (u32)ret);
10152 	return ret;
10153 }
10154 #endif /* CONFIG_PM */
10155 
10156 #ifdef CONFIG_PM_SLEEP
10157 /**
10158  * ufshcd_system_suspend - system suspend callback
10159  * @dev: Device associated with the UFS controller.
10160  *
10161  * Executed before putting the system into a sleep state in which the contents
10162  * of main memory are preserved.
10163  *
10164  * Return: 0 for success and non-zero for failure.
10165  */
10166 int ufshcd_system_suspend(struct device *dev)
10167 {
10168 	struct ufs_hba *hba = dev_get_drvdata(dev);
10169 	int ret = 0;
10170 	ktime_t start = ktime_get();
10171 
10172 	if (pm_runtime_suspended(hba->dev))
10173 		goto out;
10174 
10175 	ret = ufshcd_suspend(hba);
10176 out:
10177 	trace_ufshcd_system_suspend(dev_name(hba->dev), ret,
10178 		ktime_to_us(ktime_sub(ktime_get(), start)),
10179 		hba->curr_dev_pwr_mode, hba->uic_link_state);
10180 	return ret;
10181 }
10182 EXPORT_SYMBOL(ufshcd_system_suspend);
10183 
10184 /**
10185  * ufshcd_system_resume - system resume callback
10186  * @dev: Device associated with the UFS controller.
10187  *
10188  * Executed after waking the system up from a sleep state in which the contents
10189  * of main memory were preserved.
10190  *
10191  * Return: 0 for success and non-zero for failure.
10192  */
10193 int ufshcd_system_resume(struct device *dev)
10194 {
10195 	struct ufs_hba *hba = dev_get_drvdata(dev);
10196 	ktime_t start = ktime_get();
10197 	int ret = 0;
10198 
10199 	if (pm_runtime_suspended(hba->dev))
10200 		goto out;
10201 
10202 	ret = ufshcd_resume(hba);
10203 
10204 out:
10205 	trace_ufshcd_system_resume(dev_name(hba->dev), ret,
10206 		ktime_to_us(ktime_sub(ktime_get(), start)),
10207 		hba->curr_dev_pwr_mode, hba->uic_link_state);
10208 
10209 	return ret;
10210 }
10211 EXPORT_SYMBOL(ufshcd_system_resume);
10212 #endif /* CONFIG_PM_SLEEP */
10213 
10214 #ifdef CONFIG_PM
10215 /**
10216  * ufshcd_runtime_suspend - runtime suspend callback
10217  * @dev: Device associated with the UFS controller.
10218  *
10219  * Check the description of ufshcd_suspend() function for more details.
10220  *
10221  * Return: 0 for success and non-zero for failure.
10222  */
10223 int ufshcd_runtime_suspend(struct device *dev)
10224 {
10225 	struct ufs_hba *hba = dev_get_drvdata(dev);
10226 	int ret;
10227 	ktime_t start = ktime_get();
10228 
10229 	ret = ufshcd_suspend(hba);
10230 
10231 	trace_ufshcd_runtime_suspend(dev_name(hba->dev), ret,
10232 		ktime_to_us(ktime_sub(ktime_get(), start)),
10233 		hba->curr_dev_pwr_mode, hba->uic_link_state);
10234 	return ret;
10235 }
10236 EXPORT_SYMBOL(ufshcd_runtime_suspend);
10237 
10238 /**
10239  * ufshcd_runtime_resume - runtime resume routine
10240  * @dev: Device associated with the UFS controller.
10241  *
10242  * This function basically brings controller
10243  * to active state. Following operations are done in this function:
10244  *
10245  * 1. Turn on all the controller related clocks
10246  * 2. Turn ON VCC rail
10247  *
10248  * Return: 0 upon success; < 0 upon failure.
10249  */
10250 int ufshcd_runtime_resume(struct device *dev)
10251 {
10252 	struct ufs_hba *hba = dev_get_drvdata(dev);
10253 	int ret;
10254 	ktime_t start = ktime_get();
10255 
10256 	ret = ufshcd_resume(hba);
10257 
10258 	trace_ufshcd_runtime_resume(dev_name(hba->dev), ret,
10259 		ktime_to_us(ktime_sub(ktime_get(), start)),
10260 		hba->curr_dev_pwr_mode, hba->uic_link_state);
10261 	return ret;
10262 }
10263 EXPORT_SYMBOL(ufshcd_runtime_resume);
10264 #endif /* CONFIG_PM */
10265 
10266 static void ufshcd_wl_shutdown(struct device *dev)
10267 {
10268 	struct scsi_device *sdev = to_scsi_device(dev);
10269 	struct ufs_hba *hba = shost_priv(sdev->host);
10270 
10271 	down(&hba->host_sem);
10272 	hba->shutting_down = true;
10273 	up(&hba->host_sem);
10274 
10275 	/* Turn on everything while shutting down */
10276 	ufshcd_rpm_get_sync(hba);
10277 	scsi_device_quiesce(sdev);
10278 	shost_for_each_device(sdev, hba->host) {
10279 		if (sdev == hba->ufs_device_wlun)
10280 			continue;
10281 		scsi_device_quiesce(sdev);
10282 	}
10283 	__ufshcd_wl_suspend(hba, UFS_SHUTDOWN_PM);
10284 
10285 	/*
10286 	 * Next, turn off the UFS controller and the UFS regulators. Disable
10287 	 * clocks.
10288 	 */
10289 	if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba))
10290 		ufshcd_suspend(hba);
10291 
10292 	hba->is_powered = false;
10293 }
10294 
10295 /**
10296  * ufshcd_remove - de-allocate SCSI host and host memory space
10297  *		data structure memory
10298  * @hba: per adapter instance
10299  */
10300 void ufshcd_remove(struct ufs_hba *hba)
10301 {
10302 	if (hba->ufs_device_wlun)
10303 		ufshcd_rpm_get_sync(hba);
10304 	ufs_hwmon_remove(hba);
10305 	ufs_bsg_remove(hba);
10306 	ufs_sysfs_remove_nodes(hba->dev);
10307 	blk_mq_destroy_queue(hba->tmf_queue);
10308 	blk_put_queue(hba->tmf_queue);
10309 	blk_mq_free_tag_set(&hba->tmf_tag_set);
10310 	scsi_remove_host(hba->host);
10311 	/* disable interrupts */
10312 	ufshcd_disable_intr(hba, hba->intr_mask);
10313 	ufshcd_hba_stop(hba);
10314 	ufshcd_hba_exit(hba);
10315 }
10316 EXPORT_SYMBOL_GPL(ufshcd_remove);
10317 
10318 #ifdef CONFIG_PM_SLEEP
10319 int ufshcd_system_freeze(struct device *dev)
10320 {
10321 
10322 	return ufshcd_system_suspend(dev);
10323 
10324 }
10325 EXPORT_SYMBOL_GPL(ufshcd_system_freeze);
10326 
10327 int ufshcd_system_restore(struct device *dev)
10328 {
10329 
10330 	struct ufs_hba *hba = dev_get_drvdata(dev);
10331 	int ret;
10332 
10333 	ret = ufshcd_system_resume(dev);
10334 	if (ret)
10335 		return ret;
10336 
10337 	/* Configure UTRL and UTMRL base address registers */
10338 	ufshcd_writel(hba, lower_32_bits(hba->utrdl_dma_addr),
10339 			REG_UTP_TRANSFER_REQ_LIST_BASE_L);
10340 	ufshcd_writel(hba, upper_32_bits(hba->utrdl_dma_addr),
10341 			REG_UTP_TRANSFER_REQ_LIST_BASE_H);
10342 	ufshcd_writel(hba, lower_32_bits(hba->utmrdl_dma_addr),
10343 			REG_UTP_TASK_REQ_LIST_BASE_L);
10344 	ufshcd_writel(hba, upper_32_bits(hba->utmrdl_dma_addr),
10345 			REG_UTP_TASK_REQ_LIST_BASE_H);
10346 	/*
10347 	 * Make sure that UTRL and UTMRL base address registers
10348 	 * are updated with the latest queue addresses. Only after
10349 	 * updating these addresses, we can queue the new commands.
10350 	 */
10351 	mb();
10352 
10353 	/* Resuming from hibernate, assume that link was OFF */
10354 	ufshcd_set_link_off(hba);
10355 
10356 	return 0;
10357 
10358 }
10359 EXPORT_SYMBOL_GPL(ufshcd_system_restore);
10360 
10361 int ufshcd_system_thaw(struct device *dev)
10362 {
10363 	return ufshcd_system_resume(dev);
10364 }
10365 EXPORT_SYMBOL_GPL(ufshcd_system_thaw);
10366 #endif /* CONFIG_PM_SLEEP  */
10367 
10368 /**
10369  * ufshcd_dealloc_host - deallocate Host Bus Adapter (HBA)
10370  * @hba: pointer to Host Bus Adapter (HBA)
10371  */
10372 void ufshcd_dealloc_host(struct ufs_hba *hba)
10373 {
10374 	scsi_host_put(hba->host);
10375 }
10376 EXPORT_SYMBOL_GPL(ufshcd_dealloc_host);
10377 
10378 /**
10379  * ufshcd_set_dma_mask - Set dma mask based on the controller
10380  *			 addressing capability
10381  * @hba: per adapter instance
10382  *
10383  * Return: 0 for success, non-zero for failure.
10384  */
10385 static int ufshcd_set_dma_mask(struct ufs_hba *hba)
10386 {
10387 	if (hba->capabilities & MASK_64_ADDRESSING_SUPPORT) {
10388 		if (!dma_set_mask_and_coherent(hba->dev, DMA_BIT_MASK(64)))
10389 			return 0;
10390 	}
10391 	return dma_set_mask_and_coherent(hba->dev, DMA_BIT_MASK(32));
10392 }
10393 
10394 /**
10395  * ufshcd_alloc_host - allocate Host Bus Adapter (HBA)
10396  * @dev: pointer to device handle
10397  * @hba_handle: driver private handle
10398  *
10399  * Return: 0 on success, non-zero value on failure.
10400  */
10401 int ufshcd_alloc_host(struct device *dev, struct ufs_hba **hba_handle)
10402 {
10403 	struct Scsi_Host *host;
10404 	struct ufs_hba *hba;
10405 	int err = 0;
10406 
10407 	if (!dev) {
10408 		dev_err(dev,
10409 		"Invalid memory reference for dev is NULL\n");
10410 		err = -ENODEV;
10411 		goto out_error;
10412 	}
10413 
10414 	host = scsi_host_alloc(&ufshcd_driver_template,
10415 				sizeof(struct ufs_hba));
10416 	if (!host) {
10417 		dev_err(dev, "scsi_host_alloc failed\n");
10418 		err = -ENOMEM;
10419 		goto out_error;
10420 	}
10421 	host->nr_maps = HCTX_TYPE_POLL + 1;
10422 	hba = shost_priv(host);
10423 	hba->host = host;
10424 	hba->dev = dev;
10425 	hba->dev_ref_clk_freq = REF_CLK_FREQ_INVAL;
10426 	hba->nop_out_timeout = NOP_OUT_TIMEOUT;
10427 	ufshcd_set_sg_entry_size(hba, sizeof(struct ufshcd_sg_entry));
10428 	INIT_LIST_HEAD(&hba->clk_list_head);
10429 	spin_lock_init(&hba->outstanding_lock);
10430 
10431 	*hba_handle = hba;
10432 
10433 out_error:
10434 	return err;
10435 }
10436 EXPORT_SYMBOL(ufshcd_alloc_host);
10437 
10438 /* This function exists because blk_mq_alloc_tag_set() requires this. */
10439 static blk_status_t ufshcd_queue_tmf(struct blk_mq_hw_ctx *hctx,
10440 				     const struct blk_mq_queue_data *qd)
10441 {
10442 	WARN_ON_ONCE(true);
10443 	return BLK_STS_NOTSUPP;
10444 }
10445 
10446 static const struct blk_mq_ops ufshcd_tmf_ops = {
10447 	.queue_rq = ufshcd_queue_tmf,
10448 };
10449 
10450 /**
10451  * ufshcd_init - Driver initialization routine
10452  * @hba: per-adapter instance
10453  * @mmio_base: base register address
10454  * @irq: Interrupt line of device
10455  *
10456  * Return: 0 on success, non-zero value on failure.
10457  */
10458 int ufshcd_init(struct ufs_hba *hba, void __iomem *mmio_base, unsigned int irq)
10459 {
10460 	int err;
10461 	struct Scsi_Host *host = hba->host;
10462 	struct device *dev = hba->dev;
10463 	char eh_wq_name[sizeof("ufs_eh_wq_00")];
10464 
10465 	/*
10466 	 * dev_set_drvdata() must be called before any callbacks are registered
10467 	 * that use dev_get_drvdata() (frequency scaling, clock scaling, hwmon,
10468 	 * sysfs).
10469 	 */
10470 	dev_set_drvdata(dev, hba);
10471 
10472 	if (!mmio_base) {
10473 		dev_err(hba->dev,
10474 		"Invalid memory reference for mmio_base is NULL\n");
10475 		err = -ENODEV;
10476 		goto out_error;
10477 	}
10478 
10479 	hba->mmio_base = mmio_base;
10480 	hba->irq = irq;
10481 	hba->vps = &ufs_hba_vps;
10482 
10483 	err = ufshcd_hba_init(hba);
10484 	if (err)
10485 		goto out_error;
10486 
10487 	/* Read capabilities registers */
10488 	err = ufshcd_hba_capabilities(hba);
10489 	if (err)
10490 		goto out_disable;
10491 
10492 	/* Get UFS version supported by the controller */
10493 	hba->ufs_version = ufshcd_get_ufs_version(hba);
10494 
10495 	/* Get Interrupt bit mask per version */
10496 	hba->intr_mask = ufshcd_get_intr_mask(hba);
10497 
10498 	err = ufshcd_set_dma_mask(hba);
10499 	if (err) {
10500 		dev_err(hba->dev, "set dma mask failed\n");
10501 		goto out_disable;
10502 	}
10503 
10504 	/* Allocate memory for host memory space */
10505 	err = ufshcd_memory_alloc(hba);
10506 	if (err) {
10507 		dev_err(hba->dev, "Memory allocation failed\n");
10508 		goto out_disable;
10509 	}
10510 
10511 	/* Configure LRB */
10512 	ufshcd_host_memory_configure(hba);
10513 
10514 	host->can_queue = hba->nutrs - UFSHCD_NUM_RESERVED;
10515 	host->cmd_per_lun = hba->nutrs - UFSHCD_NUM_RESERVED;
10516 	host->max_id = UFSHCD_MAX_ID;
10517 	host->max_lun = UFS_MAX_LUNS;
10518 	host->max_channel = UFSHCD_MAX_CHANNEL;
10519 	host->unique_id = host->host_no;
10520 	host->max_cmd_len = UFS_CDB_SIZE;
10521 	host->queuecommand_may_block = !!(hba->caps & UFSHCD_CAP_CLK_GATING);
10522 
10523 	hba->max_pwr_info.is_valid = false;
10524 
10525 	/* Initialize work queues */
10526 	snprintf(eh_wq_name, sizeof(eh_wq_name), "ufs_eh_wq_%d",
10527 		 hba->host->host_no);
10528 	hba->eh_wq = create_singlethread_workqueue(eh_wq_name);
10529 	if (!hba->eh_wq) {
10530 		dev_err(hba->dev, "%s: failed to create eh workqueue\n",
10531 			__func__);
10532 		err = -ENOMEM;
10533 		goto out_disable;
10534 	}
10535 	INIT_WORK(&hba->eh_work, ufshcd_err_handler);
10536 	INIT_WORK(&hba->eeh_work, ufshcd_exception_event_handler);
10537 
10538 	sema_init(&hba->host_sem, 1);
10539 
10540 	/* Initialize UIC command mutex */
10541 	mutex_init(&hba->uic_cmd_mutex);
10542 
10543 	/* Initialize mutex for device management commands */
10544 	mutex_init(&hba->dev_cmd.lock);
10545 
10546 	/* Initialize mutex for exception event control */
10547 	mutex_init(&hba->ee_ctrl_mutex);
10548 
10549 	mutex_init(&hba->wb_mutex);
10550 	init_rwsem(&hba->clk_scaling_lock);
10551 
10552 	ufshcd_init_clk_gating(hba);
10553 
10554 	ufshcd_init_clk_scaling(hba);
10555 
10556 	/*
10557 	 * In order to avoid any spurious interrupt immediately after
10558 	 * registering UFS controller interrupt handler, clear any pending UFS
10559 	 * interrupt status and disable all the UFS interrupts.
10560 	 */
10561 	ufshcd_writel(hba, ufshcd_readl(hba, REG_INTERRUPT_STATUS),
10562 		      REG_INTERRUPT_STATUS);
10563 	ufshcd_writel(hba, 0, REG_INTERRUPT_ENABLE);
10564 	/*
10565 	 * Make sure that UFS interrupts are disabled and any pending interrupt
10566 	 * status is cleared before registering UFS interrupt handler.
10567 	 */
10568 	mb();
10569 
10570 	/* IRQ registration */
10571 	err = devm_request_irq(dev, irq, ufshcd_intr, IRQF_SHARED, UFSHCD, hba);
10572 	if (err) {
10573 		dev_err(hba->dev, "request irq failed\n");
10574 		goto out_disable;
10575 	} else {
10576 		hba->is_irq_enabled = true;
10577 	}
10578 
10579 	if (!is_mcq_supported(hba)) {
10580 		err = scsi_add_host(host, hba->dev);
10581 		if (err) {
10582 			dev_err(hba->dev, "scsi_add_host failed\n");
10583 			goto out_disable;
10584 		}
10585 	}
10586 
10587 	hba->tmf_tag_set = (struct blk_mq_tag_set) {
10588 		.nr_hw_queues	= 1,
10589 		.queue_depth	= hba->nutmrs,
10590 		.ops		= &ufshcd_tmf_ops,
10591 		.flags		= BLK_MQ_F_NO_SCHED,
10592 	};
10593 	err = blk_mq_alloc_tag_set(&hba->tmf_tag_set);
10594 	if (err < 0)
10595 		goto out_remove_scsi_host;
10596 	hba->tmf_queue = blk_mq_init_queue(&hba->tmf_tag_set);
10597 	if (IS_ERR(hba->tmf_queue)) {
10598 		err = PTR_ERR(hba->tmf_queue);
10599 		goto free_tmf_tag_set;
10600 	}
10601 	hba->tmf_rqs = devm_kcalloc(hba->dev, hba->nutmrs,
10602 				    sizeof(*hba->tmf_rqs), GFP_KERNEL);
10603 	if (!hba->tmf_rqs) {
10604 		err = -ENOMEM;
10605 		goto free_tmf_queue;
10606 	}
10607 
10608 	/* Reset the attached device */
10609 	ufshcd_device_reset(hba);
10610 
10611 	ufshcd_init_crypto(hba);
10612 
10613 	/* Host controller enable */
10614 	err = ufshcd_hba_enable(hba);
10615 	if (err) {
10616 		dev_err(hba->dev, "Host controller enable failed\n");
10617 		ufshcd_print_evt_hist(hba);
10618 		ufshcd_print_host_state(hba);
10619 		goto free_tmf_queue;
10620 	}
10621 
10622 	/*
10623 	 * Set the default power management level for runtime and system PM.
10624 	 * Default power saving mode is to keep UFS link in Hibern8 state
10625 	 * and UFS device in sleep state.
10626 	 */
10627 	hba->rpm_lvl = ufs_get_desired_pm_lvl_for_dev_link_state(
10628 						UFS_SLEEP_PWR_MODE,
10629 						UIC_LINK_HIBERN8_STATE);
10630 	hba->spm_lvl = ufs_get_desired_pm_lvl_for_dev_link_state(
10631 						UFS_SLEEP_PWR_MODE,
10632 						UIC_LINK_HIBERN8_STATE);
10633 
10634 	INIT_DELAYED_WORK(&hba->rpm_dev_flush_recheck_work, ufshcd_rpm_dev_flush_recheck_work);
10635 	INIT_DELAYED_WORK(&hba->ufs_rtc_update_work, ufshcd_rtc_work);
10636 
10637 	/* Set the default auto-hiberate idle timer value to 150 ms */
10638 	if (ufshcd_is_auto_hibern8_supported(hba) && !hba->ahit) {
10639 		hba->ahit = FIELD_PREP(UFSHCI_AHIBERN8_TIMER_MASK, 150) |
10640 			    FIELD_PREP(UFSHCI_AHIBERN8_SCALE_MASK, 3);
10641 	}
10642 
10643 	/* Hold auto suspend until async scan completes */
10644 	pm_runtime_get_sync(dev);
10645 	atomic_set(&hba->scsi_block_reqs_cnt, 0);
10646 	/*
10647 	 * We are assuming that device wasn't put in sleep/power-down
10648 	 * state exclusively during the boot stage before kernel.
10649 	 * This assumption helps avoid doing link startup twice during
10650 	 * ufshcd_probe_hba().
10651 	 */
10652 	ufshcd_set_ufs_dev_active(hba);
10653 
10654 	async_schedule(ufshcd_async_scan, hba);
10655 	ufs_sysfs_add_nodes(hba->dev);
10656 
10657 	device_enable_async_suspend(dev);
10658 	return 0;
10659 
10660 free_tmf_queue:
10661 	blk_mq_destroy_queue(hba->tmf_queue);
10662 	blk_put_queue(hba->tmf_queue);
10663 free_tmf_tag_set:
10664 	blk_mq_free_tag_set(&hba->tmf_tag_set);
10665 out_remove_scsi_host:
10666 	scsi_remove_host(hba->host);
10667 out_disable:
10668 	hba->is_irq_enabled = false;
10669 	ufshcd_hba_exit(hba);
10670 out_error:
10671 	return err;
10672 }
10673 EXPORT_SYMBOL_GPL(ufshcd_init);
10674 
10675 void ufshcd_resume_complete(struct device *dev)
10676 {
10677 	struct ufs_hba *hba = dev_get_drvdata(dev);
10678 
10679 	if (hba->complete_put) {
10680 		ufshcd_rpm_put(hba);
10681 		hba->complete_put = false;
10682 	}
10683 }
10684 EXPORT_SYMBOL_GPL(ufshcd_resume_complete);
10685 
10686 static bool ufshcd_rpm_ok_for_spm(struct ufs_hba *hba)
10687 {
10688 	struct device *dev = &hba->ufs_device_wlun->sdev_gendev;
10689 	enum ufs_dev_pwr_mode dev_pwr_mode;
10690 	enum uic_link_state link_state;
10691 	unsigned long flags;
10692 	bool res;
10693 
10694 	spin_lock_irqsave(&dev->power.lock, flags);
10695 	dev_pwr_mode = ufs_get_pm_lvl_to_dev_pwr_mode(hba->spm_lvl);
10696 	link_state = ufs_get_pm_lvl_to_link_pwr_state(hba->spm_lvl);
10697 	res = pm_runtime_suspended(dev) &&
10698 	      hba->curr_dev_pwr_mode == dev_pwr_mode &&
10699 	      hba->uic_link_state == link_state &&
10700 	      !hba->dev_info.b_rpm_dev_flush_capable;
10701 	spin_unlock_irqrestore(&dev->power.lock, flags);
10702 
10703 	return res;
10704 }
10705 
10706 int __ufshcd_suspend_prepare(struct device *dev, bool rpm_ok_for_spm)
10707 {
10708 	struct ufs_hba *hba = dev_get_drvdata(dev);
10709 	int ret;
10710 
10711 	/*
10712 	 * SCSI assumes that runtime-pm and system-pm for scsi drivers
10713 	 * are same. And it doesn't wake up the device for system-suspend
10714 	 * if it's runtime suspended. But ufs doesn't follow that.
10715 	 * Refer ufshcd_resume_complete()
10716 	 */
10717 	if (hba->ufs_device_wlun) {
10718 		/* Prevent runtime suspend */
10719 		ufshcd_rpm_get_noresume(hba);
10720 		/*
10721 		 * Check if already runtime suspended in same state as system
10722 		 * suspend would be.
10723 		 */
10724 		if (!rpm_ok_for_spm || !ufshcd_rpm_ok_for_spm(hba)) {
10725 			/* RPM state is not ok for SPM, so runtime resume */
10726 			ret = ufshcd_rpm_resume(hba);
10727 			if (ret < 0 && ret != -EACCES) {
10728 				ufshcd_rpm_put(hba);
10729 				return ret;
10730 			}
10731 		}
10732 		hba->complete_put = true;
10733 	}
10734 	return 0;
10735 }
10736 EXPORT_SYMBOL_GPL(__ufshcd_suspend_prepare);
10737 
10738 int ufshcd_suspend_prepare(struct device *dev)
10739 {
10740 	return __ufshcd_suspend_prepare(dev, true);
10741 }
10742 EXPORT_SYMBOL_GPL(ufshcd_suspend_prepare);
10743 
10744 #ifdef CONFIG_PM_SLEEP
10745 static int ufshcd_wl_poweroff(struct device *dev)
10746 {
10747 	struct scsi_device *sdev = to_scsi_device(dev);
10748 	struct ufs_hba *hba = shost_priv(sdev->host);
10749 
10750 	__ufshcd_wl_suspend(hba, UFS_SHUTDOWN_PM);
10751 	return 0;
10752 }
10753 #endif
10754 
10755 static int ufshcd_wl_probe(struct device *dev)
10756 {
10757 	struct scsi_device *sdev = to_scsi_device(dev);
10758 
10759 	if (!is_device_wlun(sdev))
10760 		return -ENODEV;
10761 
10762 	blk_pm_runtime_init(sdev->request_queue, dev);
10763 	pm_runtime_set_autosuspend_delay(dev, 0);
10764 	pm_runtime_allow(dev);
10765 
10766 	return  0;
10767 }
10768 
10769 static int ufshcd_wl_remove(struct device *dev)
10770 {
10771 	pm_runtime_forbid(dev);
10772 	return 0;
10773 }
10774 
10775 static const struct dev_pm_ops ufshcd_wl_pm_ops = {
10776 #ifdef CONFIG_PM_SLEEP
10777 	.suspend = ufshcd_wl_suspend,
10778 	.resume = ufshcd_wl_resume,
10779 	.freeze = ufshcd_wl_suspend,
10780 	.thaw = ufshcd_wl_resume,
10781 	.poweroff = ufshcd_wl_poweroff,
10782 	.restore = ufshcd_wl_resume,
10783 #endif
10784 	SET_RUNTIME_PM_OPS(ufshcd_wl_runtime_suspend, ufshcd_wl_runtime_resume, NULL)
10785 };
10786 
10787 static void ufshcd_check_header_layout(void)
10788 {
10789 	/*
10790 	 * gcc compilers before version 10 cannot do constant-folding for
10791 	 * sub-byte bitfields. Hence skip the layout checks for gcc 9 and
10792 	 * before.
10793 	 */
10794 	if (IS_ENABLED(CONFIG_CC_IS_GCC) && CONFIG_GCC_VERSION < 100000)
10795 		return;
10796 
10797 	BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10798 				.cci = 3})[0] != 3);
10799 
10800 	BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10801 				.ehs_length = 2})[1] != 2);
10802 
10803 	BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10804 				.enable_crypto = 1})[2]
10805 		     != 0x80);
10806 
10807 	BUILD_BUG_ON((((u8 *)&(struct request_desc_header){
10808 					.command_type = 5,
10809 					.data_direction = 3,
10810 					.interrupt = 1,
10811 				})[3]) != ((5 << 4) | (3 << 1) | 1));
10812 
10813 	BUILD_BUG_ON(((__le32 *)&(struct request_desc_header){
10814 				.dunl = cpu_to_le32(0xdeadbeef)})[1] !=
10815 		cpu_to_le32(0xdeadbeef));
10816 
10817 	BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10818 				.ocs = 4})[8] != 4);
10819 
10820 	BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10821 				.cds = 5})[9] != 5);
10822 
10823 	BUILD_BUG_ON(((__le32 *)&(struct request_desc_header){
10824 				.dunu = cpu_to_le32(0xbadcafe)})[3] !=
10825 		cpu_to_le32(0xbadcafe));
10826 
10827 	BUILD_BUG_ON(((u8 *)&(struct utp_upiu_header){
10828 			     .iid = 0xf })[4] != 0xf0);
10829 
10830 	BUILD_BUG_ON(((u8 *)&(struct utp_upiu_header){
10831 			     .command_set_type = 0xf })[4] != 0xf);
10832 }
10833 
10834 /*
10835  * ufs_dev_wlun_template - describes ufs device wlun
10836  * ufs-device wlun - used to send pm commands
10837  * All luns are consumers of ufs-device wlun.
10838  *
10839  * Currently, no sd driver is present for wluns.
10840  * Hence the no specific pm operations are performed.
10841  * With ufs design, SSU should be sent to ufs-device wlun.
10842  * Hence register a scsi driver for ufs wluns only.
10843  */
10844 static struct scsi_driver ufs_dev_wlun_template = {
10845 	.gendrv = {
10846 		.name = "ufs_device_wlun",
10847 		.owner = THIS_MODULE,
10848 		.probe = ufshcd_wl_probe,
10849 		.remove = ufshcd_wl_remove,
10850 		.pm = &ufshcd_wl_pm_ops,
10851 		.shutdown = ufshcd_wl_shutdown,
10852 	},
10853 };
10854 
10855 static int __init ufshcd_core_init(void)
10856 {
10857 	int ret;
10858 
10859 	ufshcd_check_header_layout();
10860 
10861 	ufs_debugfs_init();
10862 
10863 	ret = scsi_register_driver(&ufs_dev_wlun_template.gendrv);
10864 	if (ret)
10865 		ufs_debugfs_exit();
10866 	return ret;
10867 }
10868 
10869 static void __exit ufshcd_core_exit(void)
10870 {
10871 	ufs_debugfs_exit();
10872 	scsi_unregister_driver(&ufs_dev_wlun_template.gendrv);
10873 }
10874 
10875 module_init(ufshcd_core_init);
10876 module_exit(ufshcd_core_exit);
10877 
10878 MODULE_AUTHOR("Santosh Yaragnavi <santosh.sy@samsung.com>");
10879 MODULE_AUTHOR("Vinayak Holikatti <h.vinayak@samsung.com>");
10880 MODULE_DESCRIPTION("Generic UFS host controller driver Core");
10881 MODULE_SOFTDEP("pre: governor_simpleondemand");
10882 MODULE_LICENSE("GPL");
10883