xref: /linux/drivers/ufs/core/ufshcd.c (revision 173b0b5b0e865348684c02bd9cb1d22b5d46e458)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Universal Flash Storage Host controller driver Core
4  * Copyright (C) 2011-2013 Samsung India Software Operations
5  * Copyright (c) 2013-2016, The Linux Foundation. All rights reserved.
6  *
7  * Authors:
8  *	Santosh Yaraganavi <santosh.sy@samsung.com>
9  *	Vinayak Holikatti <h.vinayak@samsung.com>
10  */
11 
12 #include <linux/async.h>
13 #include <linux/devfreq.h>
14 #include <linux/nls.h>
15 #include <linux/of.h>
16 #include <linux/bitfield.h>
17 #include <linux/blk-pm.h>
18 #include <linux/blkdev.h>
19 #include <linux/clk.h>
20 #include <linux/delay.h>
21 #include <linux/interrupt.h>
22 #include <linux/module.h>
23 #include <linux/pm_opp.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/sched/clock.h>
26 #include <linux/iopoll.h>
27 #include <scsi/scsi_cmnd.h>
28 #include <scsi/scsi_dbg.h>
29 #include <scsi/scsi_driver.h>
30 #include <scsi/scsi_eh.h>
31 #include "ufshcd-priv.h"
32 #include <ufs/ufs_quirks.h>
33 #include <ufs/unipro.h>
34 #include "ufs-sysfs.h"
35 #include "ufs-debugfs.h"
36 #include "ufs-fault-injection.h"
37 #include "ufs_bsg.h"
38 #include "ufshcd-crypto.h"
39 #include <asm/unaligned.h>
40 
41 #define CREATE_TRACE_POINTS
42 #include <trace/events/ufs.h>
43 
44 #define UFSHCD_ENABLE_INTRS	(UTP_TRANSFER_REQ_COMPL |\
45 				 UTP_TASK_REQ_COMPL |\
46 				 UFSHCD_ERROR_MASK)
47 
48 #define UFSHCD_ENABLE_MCQ_INTRS	(UTP_TASK_REQ_COMPL |\
49 				 UFSHCD_ERROR_MASK |\
50 				 MCQ_CQ_EVENT_STATUS)
51 
52 
53 /* UIC command timeout, unit: ms */
54 #define UIC_CMD_TIMEOUT	500
55 
56 /* NOP OUT retries waiting for NOP IN response */
57 #define NOP_OUT_RETRIES    10
58 /* Timeout after 50 msecs if NOP OUT hangs without response */
59 #define NOP_OUT_TIMEOUT    50 /* msecs */
60 
61 /* Query request retries */
62 #define QUERY_REQ_RETRIES 3
63 /* Query request timeout */
64 #define QUERY_REQ_TIMEOUT 1500 /* 1.5 seconds */
65 
66 /* Advanced RPMB request timeout */
67 #define ADVANCED_RPMB_REQ_TIMEOUT  3000 /* 3 seconds */
68 
69 /* Task management command timeout */
70 #define TM_CMD_TIMEOUT	100 /* msecs */
71 
72 /* maximum number of retries for a general UIC command  */
73 #define UFS_UIC_COMMAND_RETRIES 3
74 
75 /* maximum number of link-startup retries */
76 #define DME_LINKSTARTUP_RETRIES 3
77 
78 /* maximum number of reset retries before giving up */
79 #define MAX_HOST_RESET_RETRIES 5
80 
81 /* Maximum number of error handler retries before giving up */
82 #define MAX_ERR_HANDLER_RETRIES 5
83 
84 /* Expose the flag value from utp_upiu_query.value */
85 #define MASK_QUERY_UPIU_FLAG_LOC 0xFF
86 
87 /* Interrupt aggregation default timeout, unit: 40us */
88 #define INT_AGGR_DEF_TO	0x02
89 
90 /* default delay of autosuspend: 2000 ms */
91 #define RPM_AUTOSUSPEND_DELAY_MS 2000
92 
93 /* Default delay of RPM device flush delayed work */
94 #define RPM_DEV_FLUSH_RECHECK_WORK_DELAY_MS 5000
95 
96 /* Default value of wait time before gating device ref clock */
97 #define UFSHCD_REF_CLK_GATING_WAIT_US 0xFF /* microsecs */
98 
99 /* Polling time to wait for fDeviceInit */
100 #define FDEVICEINIT_COMPL_TIMEOUT 1500 /* millisecs */
101 
102 /* Default RTC update every 10 seconds */
103 #define UFS_RTC_UPDATE_INTERVAL_MS (10 * MSEC_PER_SEC)
104 
105 /* UFSHC 4.0 compliant HC support this mode. */
106 static bool use_mcq_mode = true;
107 
108 static bool is_mcq_supported(struct ufs_hba *hba)
109 {
110 	return hba->mcq_sup && use_mcq_mode;
111 }
112 
113 module_param(use_mcq_mode, bool, 0644);
114 MODULE_PARM_DESC(use_mcq_mode, "Control MCQ mode for controllers starting from UFSHCI 4.0. 1 - enable MCQ, 0 - disable MCQ. MCQ is enabled by default");
115 
116 #define ufshcd_toggle_vreg(_dev, _vreg, _on)				\
117 	({                                                              \
118 		int _ret;                                               \
119 		if (_on)                                                \
120 			_ret = ufshcd_enable_vreg(_dev, _vreg);         \
121 		else                                                    \
122 			_ret = ufshcd_disable_vreg(_dev, _vreg);        \
123 		_ret;                                                   \
124 	})
125 
126 #define ufshcd_hex_dump(prefix_str, buf, len) do {                       \
127 	size_t __len = (len);                                            \
128 	print_hex_dump(KERN_ERR, prefix_str,                             \
129 		       __len > 4 ? DUMP_PREFIX_OFFSET : DUMP_PREFIX_NONE,\
130 		       16, 4, buf, __len, false);                        \
131 } while (0)
132 
133 int ufshcd_dump_regs(struct ufs_hba *hba, size_t offset, size_t len,
134 		     const char *prefix)
135 {
136 	u32 *regs;
137 	size_t pos;
138 
139 	if (offset % 4 != 0 || len % 4 != 0) /* keep readl happy */
140 		return -EINVAL;
141 
142 	regs = kzalloc(len, GFP_ATOMIC);
143 	if (!regs)
144 		return -ENOMEM;
145 
146 	for (pos = 0; pos < len; pos += 4) {
147 		if (offset == 0 &&
148 		    pos >= REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER &&
149 		    pos <= REG_UIC_ERROR_CODE_DME)
150 			continue;
151 		regs[pos / 4] = ufshcd_readl(hba, offset + pos);
152 	}
153 
154 	ufshcd_hex_dump(prefix, regs, len);
155 	kfree(regs);
156 
157 	return 0;
158 }
159 EXPORT_SYMBOL_GPL(ufshcd_dump_regs);
160 
161 enum {
162 	UFSHCD_MAX_CHANNEL	= 0,
163 	UFSHCD_MAX_ID		= 1,
164 	UFSHCD_CMD_PER_LUN	= 32 - UFSHCD_NUM_RESERVED,
165 	UFSHCD_CAN_QUEUE	= 32 - UFSHCD_NUM_RESERVED,
166 };
167 
168 static const char *const ufshcd_state_name[] = {
169 	[UFSHCD_STATE_RESET]			= "reset",
170 	[UFSHCD_STATE_OPERATIONAL]		= "operational",
171 	[UFSHCD_STATE_ERROR]			= "error",
172 	[UFSHCD_STATE_EH_SCHEDULED_FATAL]	= "eh_fatal",
173 	[UFSHCD_STATE_EH_SCHEDULED_NON_FATAL]	= "eh_non_fatal",
174 };
175 
176 /* UFSHCD error handling flags */
177 enum {
178 	UFSHCD_EH_IN_PROGRESS = (1 << 0),
179 };
180 
181 /* UFSHCD UIC layer error flags */
182 enum {
183 	UFSHCD_UIC_DL_PA_INIT_ERROR = (1 << 0), /* Data link layer error */
184 	UFSHCD_UIC_DL_NAC_RECEIVED_ERROR = (1 << 1), /* Data link layer error */
185 	UFSHCD_UIC_DL_TCx_REPLAY_ERROR = (1 << 2), /* Data link layer error */
186 	UFSHCD_UIC_NL_ERROR = (1 << 3), /* Network layer error */
187 	UFSHCD_UIC_TL_ERROR = (1 << 4), /* Transport Layer error */
188 	UFSHCD_UIC_DME_ERROR = (1 << 5), /* DME error */
189 	UFSHCD_UIC_PA_GENERIC_ERROR = (1 << 6), /* Generic PA error */
190 };
191 
192 #define ufshcd_set_eh_in_progress(h) \
193 	((h)->eh_flags |= UFSHCD_EH_IN_PROGRESS)
194 #define ufshcd_eh_in_progress(h) \
195 	((h)->eh_flags & UFSHCD_EH_IN_PROGRESS)
196 #define ufshcd_clear_eh_in_progress(h) \
197 	((h)->eh_flags &= ~UFSHCD_EH_IN_PROGRESS)
198 
199 const struct ufs_pm_lvl_states ufs_pm_lvl_states[] = {
200 	[UFS_PM_LVL_0] = {UFS_ACTIVE_PWR_MODE, UIC_LINK_ACTIVE_STATE},
201 	[UFS_PM_LVL_1] = {UFS_ACTIVE_PWR_MODE, UIC_LINK_HIBERN8_STATE},
202 	[UFS_PM_LVL_2] = {UFS_SLEEP_PWR_MODE, UIC_LINK_ACTIVE_STATE},
203 	[UFS_PM_LVL_3] = {UFS_SLEEP_PWR_MODE, UIC_LINK_HIBERN8_STATE},
204 	[UFS_PM_LVL_4] = {UFS_POWERDOWN_PWR_MODE, UIC_LINK_HIBERN8_STATE},
205 	[UFS_PM_LVL_5] = {UFS_POWERDOWN_PWR_MODE, UIC_LINK_OFF_STATE},
206 	/*
207 	 * For DeepSleep, the link is first put in hibern8 and then off.
208 	 * Leaving the link in hibern8 is not supported.
209 	 */
210 	[UFS_PM_LVL_6] = {UFS_DEEPSLEEP_PWR_MODE, UIC_LINK_OFF_STATE},
211 };
212 
213 static inline enum ufs_dev_pwr_mode
214 ufs_get_pm_lvl_to_dev_pwr_mode(enum ufs_pm_level lvl)
215 {
216 	return ufs_pm_lvl_states[lvl].dev_state;
217 }
218 
219 static inline enum uic_link_state
220 ufs_get_pm_lvl_to_link_pwr_state(enum ufs_pm_level lvl)
221 {
222 	return ufs_pm_lvl_states[lvl].link_state;
223 }
224 
225 static inline enum ufs_pm_level
226 ufs_get_desired_pm_lvl_for_dev_link_state(enum ufs_dev_pwr_mode dev_state,
227 					enum uic_link_state link_state)
228 {
229 	enum ufs_pm_level lvl;
230 
231 	for (lvl = UFS_PM_LVL_0; lvl < UFS_PM_LVL_MAX; lvl++) {
232 		if ((ufs_pm_lvl_states[lvl].dev_state == dev_state) &&
233 			(ufs_pm_lvl_states[lvl].link_state == link_state))
234 			return lvl;
235 	}
236 
237 	/* if no match found, return the level 0 */
238 	return UFS_PM_LVL_0;
239 }
240 
241 static bool ufshcd_is_ufs_dev_busy(struct ufs_hba *hba)
242 {
243 	return (hba->clk_gating.active_reqs || hba->outstanding_reqs || hba->outstanding_tasks ||
244 		hba->active_uic_cmd || hba->uic_async_done);
245 }
246 
247 static const struct ufs_dev_quirk ufs_fixups[] = {
248 	/* UFS cards deviations table */
249 	{ .wmanufacturerid = UFS_VENDOR_MICRON,
250 	  .model = UFS_ANY_MODEL,
251 	  .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM },
252 	{ .wmanufacturerid = UFS_VENDOR_SAMSUNG,
253 	  .model = UFS_ANY_MODEL,
254 	  .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM |
255 		   UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE |
256 		   UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS },
257 	{ .wmanufacturerid = UFS_VENDOR_SKHYNIX,
258 	  .model = UFS_ANY_MODEL,
259 	  .quirk = UFS_DEVICE_QUIRK_HOST_PA_SAVECONFIGTIME },
260 	{ .wmanufacturerid = UFS_VENDOR_SKHYNIX,
261 	  .model = "hB8aL1" /*H28U62301AMR*/,
262 	  .quirk = UFS_DEVICE_QUIRK_HOST_VS_DEBUGSAVECONFIGTIME },
263 	{ .wmanufacturerid = UFS_VENDOR_TOSHIBA,
264 	  .model = UFS_ANY_MODEL,
265 	  .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM },
266 	{ .wmanufacturerid = UFS_VENDOR_TOSHIBA,
267 	  .model = "THGLF2G9C8KBADG",
268 	  .quirk = UFS_DEVICE_QUIRK_PA_TACTIVATE },
269 	{ .wmanufacturerid = UFS_VENDOR_TOSHIBA,
270 	  .model = "THGLF2G9D8KBADG",
271 	  .quirk = UFS_DEVICE_QUIRK_PA_TACTIVATE },
272 	{}
273 };
274 
275 static irqreturn_t ufshcd_tmc_handler(struct ufs_hba *hba);
276 static void ufshcd_async_scan(void *data, async_cookie_t cookie);
277 static int ufshcd_reset_and_restore(struct ufs_hba *hba);
278 static int ufshcd_eh_host_reset_handler(struct scsi_cmnd *cmd);
279 static int ufshcd_clear_tm_cmd(struct ufs_hba *hba, int tag);
280 static void ufshcd_hba_exit(struct ufs_hba *hba);
281 static int ufshcd_probe_hba(struct ufs_hba *hba, bool init_dev_params);
282 static int ufshcd_setup_clocks(struct ufs_hba *hba, bool on);
283 static inline void ufshcd_add_delay_before_dme_cmd(struct ufs_hba *hba);
284 static int ufshcd_host_reset_and_restore(struct ufs_hba *hba);
285 static void ufshcd_resume_clkscaling(struct ufs_hba *hba);
286 static void ufshcd_suspend_clkscaling(struct ufs_hba *hba);
287 static int ufshcd_scale_clks(struct ufs_hba *hba, unsigned long freq,
288 			     bool scale_up);
289 static irqreturn_t ufshcd_intr(int irq, void *__hba);
290 static int ufshcd_change_power_mode(struct ufs_hba *hba,
291 			     struct ufs_pa_layer_attr *pwr_mode);
292 static int ufshcd_setup_hba_vreg(struct ufs_hba *hba, bool on);
293 static int ufshcd_setup_vreg(struct ufs_hba *hba, bool on);
294 static inline int ufshcd_config_vreg_hpm(struct ufs_hba *hba,
295 					 struct ufs_vreg *vreg);
296 static void ufshcd_wb_toggle_buf_flush_during_h8(struct ufs_hba *hba,
297 						 bool enable);
298 static void ufshcd_hba_vreg_set_lpm(struct ufs_hba *hba);
299 static void ufshcd_hba_vreg_set_hpm(struct ufs_hba *hba);
300 
301 void ufshcd_enable_irq(struct ufs_hba *hba)
302 {
303 	if (!hba->is_irq_enabled) {
304 		enable_irq(hba->irq);
305 		hba->is_irq_enabled = true;
306 	}
307 }
308 EXPORT_SYMBOL_GPL(ufshcd_enable_irq);
309 
310 void ufshcd_disable_irq(struct ufs_hba *hba)
311 {
312 	if (hba->is_irq_enabled) {
313 		disable_irq(hba->irq);
314 		hba->is_irq_enabled = false;
315 	}
316 }
317 EXPORT_SYMBOL_GPL(ufshcd_disable_irq);
318 
319 static void ufshcd_configure_wb(struct ufs_hba *hba)
320 {
321 	if (!ufshcd_is_wb_allowed(hba))
322 		return;
323 
324 	ufshcd_wb_toggle(hba, true);
325 
326 	ufshcd_wb_toggle_buf_flush_during_h8(hba, true);
327 
328 	if (ufshcd_is_wb_buf_flush_allowed(hba))
329 		ufshcd_wb_toggle_buf_flush(hba, true);
330 }
331 
332 static void ufshcd_scsi_unblock_requests(struct ufs_hba *hba)
333 {
334 	if (atomic_dec_and_test(&hba->scsi_block_reqs_cnt))
335 		scsi_unblock_requests(hba->host);
336 }
337 
338 static void ufshcd_scsi_block_requests(struct ufs_hba *hba)
339 {
340 	if (atomic_inc_return(&hba->scsi_block_reqs_cnt) == 1)
341 		scsi_block_requests(hba->host);
342 }
343 
344 static void ufshcd_add_cmd_upiu_trace(struct ufs_hba *hba, unsigned int tag,
345 				      enum ufs_trace_str_t str_t)
346 {
347 	struct utp_upiu_req *rq = hba->lrb[tag].ucd_req_ptr;
348 	struct utp_upiu_header *header;
349 
350 	if (!trace_ufshcd_upiu_enabled())
351 		return;
352 
353 	if (str_t == UFS_CMD_SEND)
354 		header = &rq->header;
355 	else
356 		header = &hba->lrb[tag].ucd_rsp_ptr->header;
357 
358 	trace_ufshcd_upiu(dev_name(hba->dev), str_t, header, &rq->sc.cdb,
359 			  UFS_TSF_CDB);
360 }
361 
362 static void ufshcd_add_query_upiu_trace(struct ufs_hba *hba,
363 					enum ufs_trace_str_t str_t,
364 					struct utp_upiu_req *rq_rsp)
365 {
366 	if (!trace_ufshcd_upiu_enabled())
367 		return;
368 
369 	trace_ufshcd_upiu(dev_name(hba->dev), str_t, &rq_rsp->header,
370 			  &rq_rsp->qr, UFS_TSF_OSF);
371 }
372 
373 static void ufshcd_add_tm_upiu_trace(struct ufs_hba *hba, unsigned int tag,
374 				     enum ufs_trace_str_t str_t)
375 {
376 	struct utp_task_req_desc *descp = &hba->utmrdl_base_addr[tag];
377 
378 	if (!trace_ufshcd_upiu_enabled())
379 		return;
380 
381 	if (str_t == UFS_TM_SEND)
382 		trace_ufshcd_upiu(dev_name(hba->dev), str_t,
383 				  &descp->upiu_req.req_header,
384 				  &descp->upiu_req.input_param1,
385 				  UFS_TSF_TM_INPUT);
386 	else
387 		trace_ufshcd_upiu(dev_name(hba->dev), str_t,
388 				  &descp->upiu_rsp.rsp_header,
389 				  &descp->upiu_rsp.output_param1,
390 				  UFS_TSF_TM_OUTPUT);
391 }
392 
393 static void ufshcd_add_uic_command_trace(struct ufs_hba *hba,
394 					 const struct uic_command *ucmd,
395 					 enum ufs_trace_str_t str_t)
396 {
397 	u32 cmd;
398 
399 	if (!trace_ufshcd_uic_command_enabled())
400 		return;
401 
402 	if (str_t == UFS_CMD_SEND)
403 		cmd = ucmd->command;
404 	else
405 		cmd = ufshcd_readl(hba, REG_UIC_COMMAND);
406 
407 	trace_ufshcd_uic_command(dev_name(hba->dev), str_t, cmd,
408 				 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_1),
409 				 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_2),
410 				 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_3));
411 }
412 
413 static void ufshcd_add_command_trace(struct ufs_hba *hba, unsigned int tag,
414 				     enum ufs_trace_str_t str_t)
415 {
416 	u64 lba = 0;
417 	u8 opcode = 0, group_id = 0;
418 	u32 doorbell = 0;
419 	u32 intr;
420 	int hwq_id = -1;
421 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
422 	struct scsi_cmnd *cmd = lrbp->cmd;
423 	struct request *rq = scsi_cmd_to_rq(cmd);
424 	int transfer_len = -1;
425 
426 	if (!cmd)
427 		return;
428 
429 	/* trace UPIU also */
430 	ufshcd_add_cmd_upiu_trace(hba, tag, str_t);
431 	if (!trace_ufshcd_command_enabled())
432 		return;
433 
434 	opcode = cmd->cmnd[0];
435 
436 	if (opcode == READ_10 || opcode == WRITE_10) {
437 		/*
438 		 * Currently we only fully trace read(10) and write(10) commands
439 		 */
440 		transfer_len =
441 		       be32_to_cpu(lrbp->ucd_req_ptr->sc.exp_data_transfer_len);
442 		lba = scsi_get_lba(cmd);
443 		if (opcode == WRITE_10)
444 			group_id = lrbp->cmd->cmnd[6];
445 	} else if (opcode == UNMAP) {
446 		/*
447 		 * The number of Bytes to be unmapped beginning with the lba.
448 		 */
449 		transfer_len = blk_rq_bytes(rq);
450 		lba = scsi_get_lba(cmd);
451 	}
452 
453 	intr = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
454 
455 	if (is_mcq_enabled(hba)) {
456 		struct ufs_hw_queue *hwq = ufshcd_mcq_req_to_hwq(hba, rq);
457 
458 		hwq_id = hwq->id;
459 	} else {
460 		doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
461 	}
462 	trace_ufshcd_command(cmd->device, str_t, tag, doorbell, hwq_id,
463 			     transfer_len, intr, lba, opcode, group_id);
464 }
465 
466 static void ufshcd_print_clk_freqs(struct ufs_hba *hba)
467 {
468 	struct ufs_clk_info *clki;
469 	struct list_head *head = &hba->clk_list_head;
470 
471 	if (list_empty(head))
472 		return;
473 
474 	list_for_each_entry(clki, head, list) {
475 		if (!IS_ERR_OR_NULL(clki->clk) && clki->min_freq &&
476 				clki->max_freq)
477 			dev_err(hba->dev, "clk: %s, rate: %u\n",
478 					clki->name, clki->curr_freq);
479 	}
480 }
481 
482 static void ufshcd_print_evt(struct ufs_hba *hba, u32 id,
483 			     const char *err_name)
484 {
485 	int i;
486 	bool found = false;
487 	const struct ufs_event_hist *e;
488 
489 	if (id >= UFS_EVT_CNT)
490 		return;
491 
492 	e = &hba->ufs_stats.event[id];
493 
494 	for (i = 0; i < UFS_EVENT_HIST_LENGTH; i++) {
495 		int p = (i + e->pos) % UFS_EVENT_HIST_LENGTH;
496 
497 		if (e->tstamp[p] == 0)
498 			continue;
499 		dev_err(hba->dev, "%s[%d] = 0x%x at %lld us\n", err_name, p,
500 			e->val[p], div_u64(e->tstamp[p], 1000));
501 		found = true;
502 	}
503 
504 	if (!found)
505 		dev_err(hba->dev, "No record of %s\n", err_name);
506 	else
507 		dev_err(hba->dev, "%s: total cnt=%llu\n", err_name, e->cnt);
508 }
509 
510 static void ufshcd_print_evt_hist(struct ufs_hba *hba)
511 {
512 	ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, "host_regs: ");
513 
514 	ufshcd_print_evt(hba, UFS_EVT_PA_ERR, "pa_err");
515 	ufshcd_print_evt(hba, UFS_EVT_DL_ERR, "dl_err");
516 	ufshcd_print_evt(hba, UFS_EVT_NL_ERR, "nl_err");
517 	ufshcd_print_evt(hba, UFS_EVT_TL_ERR, "tl_err");
518 	ufshcd_print_evt(hba, UFS_EVT_DME_ERR, "dme_err");
519 	ufshcd_print_evt(hba, UFS_EVT_AUTO_HIBERN8_ERR,
520 			 "auto_hibern8_err");
521 	ufshcd_print_evt(hba, UFS_EVT_FATAL_ERR, "fatal_err");
522 	ufshcd_print_evt(hba, UFS_EVT_LINK_STARTUP_FAIL,
523 			 "link_startup_fail");
524 	ufshcd_print_evt(hba, UFS_EVT_RESUME_ERR, "resume_fail");
525 	ufshcd_print_evt(hba, UFS_EVT_SUSPEND_ERR,
526 			 "suspend_fail");
527 	ufshcd_print_evt(hba, UFS_EVT_WL_RES_ERR, "wlun resume_fail");
528 	ufshcd_print_evt(hba, UFS_EVT_WL_SUSP_ERR,
529 			 "wlun suspend_fail");
530 	ufshcd_print_evt(hba, UFS_EVT_DEV_RESET, "dev_reset");
531 	ufshcd_print_evt(hba, UFS_EVT_HOST_RESET, "host_reset");
532 	ufshcd_print_evt(hba, UFS_EVT_ABORT, "task_abort");
533 
534 	ufshcd_vops_dbg_register_dump(hba);
535 }
536 
537 static
538 void ufshcd_print_tr(struct ufs_hba *hba, int tag, bool pr_prdt)
539 {
540 	const struct ufshcd_lrb *lrbp;
541 	int prdt_length;
542 
543 	lrbp = &hba->lrb[tag];
544 
545 	dev_err(hba->dev, "UPIU[%d] - issue time %lld us\n",
546 			tag, div_u64(lrbp->issue_time_stamp_local_clock, 1000));
547 	dev_err(hba->dev, "UPIU[%d] - complete time %lld us\n",
548 			tag, div_u64(lrbp->compl_time_stamp_local_clock, 1000));
549 	dev_err(hba->dev,
550 		"UPIU[%d] - Transfer Request Descriptor phys@0x%llx\n",
551 		tag, (u64)lrbp->utrd_dma_addr);
552 
553 	ufshcd_hex_dump("UPIU TRD: ", lrbp->utr_descriptor_ptr,
554 			sizeof(struct utp_transfer_req_desc));
555 	dev_err(hba->dev, "UPIU[%d] - Request UPIU phys@0x%llx\n", tag,
556 		(u64)lrbp->ucd_req_dma_addr);
557 	ufshcd_hex_dump("UPIU REQ: ", lrbp->ucd_req_ptr,
558 			sizeof(struct utp_upiu_req));
559 	dev_err(hba->dev, "UPIU[%d] - Response UPIU phys@0x%llx\n", tag,
560 		(u64)lrbp->ucd_rsp_dma_addr);
561 	ufshcd_hex_dump("UPIU RSP: ", lrbp->ucd_rsp_ptr,
562 			sizeof(struct utp_upiu_rsp));
563 
564 	prdt_length = le16_to_cpu(
565 		lrbp->utr_descriptor_ptr->prd_table_length);
566 	if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN)
567 		prdt_length /= ufshcd_sg_entry_size(hba);
568 
569 	dev_err(hba->dev,
570 		"UPIU[%d] - PRDT - %d entries  phys@0x%llx\n",
571 		tag, prdt_length,
572 		(u64)lrbp->ucd_prdt_dma_addr);
573 
574 	if (pr_prdt)
575 		ufshcd_hex_dump("UPIU PRDT: ", lrbp->ucd_prdt_ptr,
576 			ufshcd_sg_entry_size(hba) * prdt_length);
577 }
578 
579 static bool ufshcd_print_tr_iter(struct request *req, void *priv)
580 {
581 	struct scsi_device *sdev = req->q->queuedata;
582 	struct Scsi_Host *shost = sdev->host;
583 	struct ufs_hba *hba = shost_priv(shost);
584 
585 	ufshcd_print_tr(hba, req->tag, *(bool *)priv);
586 
587 	return true;
588 }
589 
590 /**
591  * ufshcd_print_trs_all - print trs for all started requests.
592  * @hba: per-adapter instance.
593  * @pr_prdt: need to print prdt or not.
594  */
595 static void ufshcd_print_trs_all(struct ufs_hba *hba, bool pr_prdt)
596 {
597 	blk_mq_tagset_busy_iter(&hba->host->tag_set, ufshcd_print_tr_iter, &pr_prdt);
598 }
599 
600 static void ufshcd_print_tmrs(struct ufs_hba *hba, unsigned long bitmap)
601 {
602 	int tag;
603 
604 	for_each_set_bit(tag, &bitmap, hba->nutmrs) {
605 		struct utp_task_req_desc *tmrdp = &hba->utmrdl_base_addr[tag];
606 
607 		dev_err(hba->dev, "TM[%d] - Task Management Header\n", tag);
608 		ufshcd_hex_dump("", tmrdp, sizeof(*tmrdp));
609 	}
610 }
611 
612 static void ufshcd_print_host_state(struct ufs_hba *hba)
613 {
614 	const struct scsi_device *sdev_ufs = hba->ufs_device_wlun;
615 
616 	dev_err(hba->dev, "UFS Host state=%d\n", hba->ufshcd_state);
617 	dev_err(hba->dev, "outstanding reqs=0x%lx tasks=0x%lx\n",
618 		hba->outstanding_reqs, hba->outstanding_tasks);
619 	dev_err(hba->dev, "saved_err=0x%x, saved_uic_err=0x%x\n",
620 		hba->saved_err, hba->saved_uic_err);
621 	dev_err(hba->dev, "Device power mode=%d, UIC link state=%d\n",
622 		hba->curr_dev_pwr_mode, hba->uic_link_state);
623 	dev_err(hba->dev, "PM in progress=%d, sys. suspended=%d\n",
624 		hba->pm_op_in_progress, hba->is_sys_suspended);
625 	dev_err(hba->dev, "Auto BKOPS=%d, Host self-block=%d\n",
626 		hba->auto_bkops_enabled, hba->host->host_self_blocked);
627 	dev_err(hba->dev, "Clk gate=%d\n", hba->clk_gating.state);
628 	dev_err(hba->dev,
629 		"last_hibern8_exit_tstamp at %lld us, hibern8_exit_cnt=%d\n",
630 		div_u64(hba->ufs_stats.last_hibern8_exit_tstamp, 1000),
631 		hba->ufs_stats.hibern8_exit_cnt);
632 	dev_err(hba->dev, "last intr at %lld us, last intr status=0x%x\n",
633 		div_u64(hba->ufs_stats.last_intr_ts, 1000),
634 		hba->ufs_stats.last_intr_status);
635 	dev_err(hba->dev, "error handling flags=0x%x, req. abort count=%d\n",
636 		hba->eh_flags, hba->req_abort_count);
637 	dev_err(hba->dev, "hba->ufs_version=0x%x, Host capabilities=0x%x, caps=0x%x\n",
638 		hba->ufs_version, hba->capabilities, hba->caps);
639 	dev_err(hba->dev, "quirks=0x%x, dev. quirks=0x%x\n", hba->quirks,
640 		hba->dev_quirks);
641 	if (sdev_ufs)
642 		dev_err(hba->dev, "UFS dev info: %.8s %.16s rev %.4s\n",
643 			sdev_ufs->vendor, sdev_ufs->model, sdev_ufs->rev);
644 
645 	ufshcd_print_clk_freqs(hba);
646 }
647 
648 /**
649  * ufshcd_print_pwr_info - print power params as saved in hba
650  * power info
651  * @hba: per-adapter instance
652  */
653 static void ufshcd_print_pwr_info(struct ufs_hba *hba)
654 {
655 	static const char * const names[] = {
656 		"INVALID MODE",
657 		"FAST MODE",
658 		"SLOW_MODE",
659 		"INVALID MODE",
660 		"FASTAUTO_MODE",
661 		"SLOWAUTO_MODE",
662 		"INVALID MODE",
663 	};
664 
665 	/*
666 	 * Using dev_dbg to avoid messages during runtime PM to avoid
667 	 * never-ending cycles of messages written back to storage by user space
668 	 * causing runtime resume, causing more messages and so on.
669 	 */
670 	dev_dbg(hba->dev, "%s:[RX, TX]: gear=[%d, %d], lane[%d, %d], pwr[%s, %s], rate = %d\n",
671 		 __func__,
672 		 hba->pwr_info.gear_rx, hba->pwr_info.gear_tx,
673 		 hba->pwr_info.lane_rx, hba->pwr_info.lane_tx,
674 		 names[hba->pwr_info.pwr_rx],
675 		 names[hba->pwr_info.pwr_tx],
676 		 hba->pwr_info.hs_rate);
677 }
678 
679 static void ufshcd_device_reset(struct ufs_hba *hba)
680 {
681 	int err;
682 
683 	err = ufshcd_vops_device_reset(hba);
684 
685 	if (!err) {
686 		ufshcd_set_ufs_dev_active(hba);
687 		if (ufshcd_is_wb_allowed(hba)) {
688 			hba->dev_info.wb_enabled = false;
689 			hba->dev_info.wb_buf_flush_enabled = false;
690 		}
691 		if (hba->dev_info.rtc_type == UFS_RTC_RELATIVE)
692 			hba->dev_info.rtc_time_baseline = 0;
693 	}
694 	if (err != -EOPNOTSUPP)
695 		ufshcd_update_evt_hist(hba, UFS_EVT_DEV_RESET, err);
696 }
697 
698 void ufshcd_delay_us(unsigned long us, unsigned long tolerance)
699 {
700 	if (!us)
701 		return;
702 
703 	if (us < 10)
704 		udelay(us);
705 	else
706 		usleep_range(us, us + tolerance);
707 }
708 EXPORT_SYMBOL_GPL(ufshcd_delay_us);
709 
710 /**
711  * ufshcd_wait_for_register - wait for register value to change
712  * @hba: per-adapter interface
713  * @reg: mmio register offset
714  * @mask: mask to apply to the read register value
715  * @val: value to wait for
716  * @interval_us: polling interval in microseconds
717  * @timeout_ms: timeout in milliseconds
718  *
719  * Return: -ETIMEDOUT on error, zero on success.
720  */
721 static int ufshcd_wait_for_register(struct ufs_hba *hba, u32 reg, u32 mask,
722 				u32 val, unsigned long interval_us,
723 				unsigned long timeout_ms)
724 {
725 	int err = 0;
726 	unsigned long timeout = jiffies + msecs_to_jiffies(timeout_ms);
727 
728 	/* ignore bits that we don't intend to wait on */
729 	val = val & mask;
730 
731 	while ((ufshcd_readl(hba, reg) & mask) != val) {
732 		usleep_range(interval_us, interval_us + 50);
733 		if (time_after(jiffies, timeout)) {
734 			if ((ufshcd_readl(hba, reg) & mask) != val)
735 				err = -ETIMEDOUT;
736 			break;
737 		}
738 	}
739 
740 	return err;
741 }
742 
743 /**
744  * ufshcd_get_intr_mask - Get the interrupt bit mask
745  * @hba: Pointer to adapter instance
746  *
747  * Return: interrupt bit mask per version
748  */
749 static inline u32 ufshcd_get_intr_mask(struct ufs_hba *hba)
750 {
751 	if (hba->ufs_version == ufshci_version(1, 0))
752 		return INTERRUPT_MASK_ALL_VER_10;
753 	if (hba->ufs_version <= ufshci_version(2, 0))
754 		return INTERRUPT_MASK_ALL_VER_11;
755 
756 	return INTERRUPT_MASK_ALL_VER_21;
757 }
758 
759 /**
760  * ufshcd_get_ufs_version - Get the UFS version supported by the HBA
761  * @hba: Pointer to adapter instance
762  *
763  * Return: UFSHCI version supported by the controller
764  */
765 static inline u32 ufshcd_get_ufs_version(struct ufs_hba *hba)
766 {
767 	u32 ufshci_ver;
768 
769 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_UFS_HCI_VERSION)
770 		ufshci_ver = ufshcd_vops_get_ufs_hci_version(hba);
771 	else
772 		ufshci_ver = ufshcd_readl(hba, REG_UFS_VERSION);
773 
774 	/*
775 	 * UFSHCI v1.x uses a different version scheme, in order
776 	 * to allow the use of comparisons with the ufshci_version
777 	 * function, we convert it to the same scheme as ufs 2.0+.
778 	 */
779 	if (ufshci_ver & 0x00010000)
780 		return ufshci_version(1, ufshci_ver & 0x00000100);
781 
782 	return ufshci_ver;
783 }
784 
785 /**
786  * ufshcd_is_device_present - Check if any device connected to
787  *			      the host controller
788  * @hba: pointer to adapter instance
789  *
790  * Return: true if device present, false if no device detected
791  */
792 static inline bool ufshcd_is_device_present(struct ufs_hba *hba)
793 {
794 	return ufshcd_readl(hba, REG_CONTROLLER_STATUS) & DEVICE_PRESENT;
795 }
796 
797 /**
798  * ufshcd_get_tr_ocs - Get the UTRD Overall Command Status
799  * @lrbp: pointer to local command reference block
800  * @cqe: pointer to the completion queue entry
801  *
802  * This function is used to get the OCS field from UTRD
803  *
804  * Return: the OCS field in the UTRD.
805  */
806 static enum utp_ocs ufshcd_get_tr_ocs(struct ufshcd_lrb *lrbp,
807 				      struct cq_entry *cqe)
808 {
809 	if (cqe)
810 		return le32_to_cpu(cqe->status) & MASK_OCS;
811 
812 	return lrbp->utr_descriptor_ptr->header.ocs & MASK_OCS;
813 }
814 
815 /**
816  * ufshcd_utrl_clear() - Clear requests from the controller request list.
817  * @hba: per adapter instance
818  * @mask: mask with one bit set for each request to be cleared
819  */
820 static inline void ufshcd_utrl_clear(struct ufs_hba *hba, u32 mask)
821 {
822 	if (hba->quirks & UFSHCI_QUIRK_BROKEN_REQ_LIST_CLR)
823 		mask = ~mask;
824 	/*
825 	 * From the UFSHCI specification: "UTP Transfer Request List CLear
826 	 * Register (UTRLCLR): This field is bit significant. Each bit
827 	 * corresponds to a slot in the UTP Transfer Request List, where bit 0
828 	 * corresponds to request slot 0. A bit in this field is set to ‘0’
829 	 * by host software to indicate to the host controller that a transfer
830 	 * request slot is cleared. The host controller
831 	 * shall free up any resources associated to the request slot
832 	 * immediately, and shall set the associated bit in UTRLDBR to ‘0’. The
833 	 * host software indicates no change to request slots by setting the
834 	 * associated bits in this field to ‘1’. Bits in this field shall only
835 	 * be set ‘1’ or ‘0’ by host software when UTRLRSR is set to ‘1’."
836 	 */
837 	ufshcd_writel(hba, ~mask, REG_UTP_TRANSFER_REQ_LIST_CLEAR);
838 }
839 
840 /**
841  * ufshcd_utmrl_clear - Clear a bit in UTMRLCLR register
842  * @hba: per adapter instance
843  * @pos: position of the bit to be cleared
844  */
845 static inline void ufshcd_utmrl_clear(struct ufs_hba *hba, u32 pos)
846 {
847 	if (hba->quirks & UFSHCI_QUIRK_BROKEN_REQ_LIST_CLR)
848 		ufshcd_writel(hba, (1 << pos), REG_UTP_TASK_REQ_LIST_CLEAR);
849 	else
850 		ufshcd_writel(hba, ~(1 << pos), REG_UTP_TASK_REQ_LIST_CLEAR);
851 }
852 
853 /**
854  * ufshcd_get_lists_status - Check UCRDY, UTRLRDY and UTMRLRDY
855  * @reg: Register value of host controller status
856  *
857  * Return: 0 on success; a positive value if failed.
858  */
859 static inline int ufshcd_get_lists_status(u32 reg)
860 {
861 	return !((reg & UFSHCD_STATUS_READY) == UFSHCD_STATUS_READY);
862 }
863 
864 /**
865  * ufshcd_get_uic_cmd_result - Get the UIC command result
866  * @hba: Pointer to adapter instance
867  *
868  * This function gets the result of UIC command completion
869  *
870  * Return: 0 on success; non-zero value on error.
871  */
872 static inline int ufshcd_get_uic_cmd_result(struct ufs_hba *hba)
873 {
874 	return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_2) &
875 	       MASK_UIC_COMMAND_RESULT;
876 }
877 
878 /**
879  * ufshcd_get_dme_attr_val - Get the value of attribute returned by UIC command
880  * @hba: Pointer to adapter instance
881  *
882  * This function gets UIC command argument3
883  *
884  * Return: 0 on success; non-zero value on error.
885  */
886 static inline u32 ufshcd_get_dme_attr_val(struct ufs_hba *hba)
887 {
888 	return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_3);
889 }
890 
891 /**
892  * ufshcd_get_req_rsp - returns the TR response transaction type
893  * @ucd_rsp_ptr: pointer to response UPIU
894  *
895  * Return: UPIU type.
896  */
897 static inline enum upiu_response_transaction
898 ufshcd_get_req_rsp(struct utp_upiu_rsp *ucd_rsp_ptr)
899 {
900 	return ucd_rsp_ptr->header.transaction_code;
901 }
902 
903 /**
904  * ufshcd_is_exception_event - Check if the device raised an exception event
905  * @ucd_rsp_ptr: pointer to response UPIU
906  *
907  * The function checks if the device raised an exception event indicated in
908  * the Device Information field of response UPIU.
909  *
910  * Return: true if exception is raised, false otherwise.
911  */
912 static inline bool ufshcd_is_exception_event(struct utp_upiu_rsp *ucd_rsp_ptr)
913 {
914 	return ucd_rsp_ptr->header.device_information & 1;
915 }
916 
917 /**
918  * ufshcd_reset_intr_aggr - Reset interrupt aggregation values.
919  * @hba: per adapter instance
920  */
921 static inline void
922 ufshcd_reset_intr_aggr(struct ufs_hba *hba)
923 {
924 	ufshcd_writel(hba, INT_AGGR_ENABLE |
925 		      INT_AGGR_COUNTER_AND_TIMER_RESET,
926 		      REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
927 }
928 
929 /**
930  * ufshcd_config_intr_aggr - Configure interrupt aggregation values.
931  * @hba: per adapter instance
932  * @cnt: Interrupt aggregation counter threshold
933  * @tmout: Interrupt aggregation timeout value
934  */
935 static inline void
936 ufshcd_config_intr_aggr(struct ufs_hba *hba, u8 cnt, u8 tmout)
937 {
938 	ufshcd_writel(hba, INT_AGGR_ENABLE | INT_AGGR_PARAM_WRITE |
939 		      INT_AGGR_COUNTER_THLD_VAL(cnt) |
940 		      INT_AGGR_TIMEOUT_VAL(tmout),
941 		      REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
942 }
943 
944 /**
945  * ufshcd_disable_intr_aggr - Disables interrupt aggregation.
946  * @hba: per adapter instance
947  */
948 static inline void ufshcd_disable_intr_aggr(struct ufs_hba *hba)
949 {
950 	ufshcd_writel(hba, 0, REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
951 }
952 
953 /**
954  * ufshcd_enable_run_stop_reg - Enable run-stop registers,
955  *			When run-stop registers are set to 1, it indicates the
956  *			host controller that it can process the requests
957  * @hba: per adapter instance
958  */
959 static void ufshcd_enable_run_stop_reg(struct ufs_hba *hba)
960 {
961 	ufshcd_writel(hba, UTP_TASK_REQ_LIST_RUN_STOP_BIT,
962 		      REG_UTP_TASK_REQ_LIST_RUN_STOP);
963 	ufshcd_writel(hba, UTP_TRANSFER_REQ_LIST_RUN_STOP_BIT,
964 		      REG_UTP_TRANSFER_REQ_LIST_RUN_STOP);
965 }
966 
967 /**
968  * ufshcd_hba_start - Start controller initialization sequence
969  * @hba: per adapter instance
970  */
971 static inline void ufshcd_hba_start(struct ufs_hba *hba)
972 {
973 	u32 val = CONTROLLER_ENABLE;
974 
975 	if (ufshcd_crypto_enable(hba))
976 		val |= CRYPTO_GENERAL_ENABLE;
977 
978 	ufshcd_writel(hba, val, REG_CONTROLLER_ENABLE);
979 }
980 
981 /**
982  * ufshcd_is_hba_active - Get controller state
983  * @hba: per adapter instance
984  *
985  * Return: true if and only if the controller is active.
986  */
987 bool ufshcd_is_hba_active(struct ufs_hba *hba)
988 {
989 	return ufshcd_readl(hba, REG_CONTROLLER_ENABLE) & CONTROLLER_ENABLE;
990 }
991 EXPORT_SYMBOL_GPL(ufshcd_is_hba_active);
992 
993 u32 ufshcd_get_local_unipro_ver(struct ufs_hba *hba)
994 {
995 	/* HCI version 1.0 and 1.1 supports UniPro 1.41 */
996 	if (hba->ufs_version <= ufshci_version(1, 1))
997 		return UFS_UNIPRO_VER_1_41;
998 	else
999 		return UFS_UNIPRO_VER_1_6;
1000 }
1001 EXPORT_SYMBOL(ufshcd_get_local_unipro_ver);
1002 
1003 static bool ufshcd_is_unipro_pa_params_tuning_req(struct ufs_hba *hba)
1004 {
1005 	/*
1006 	 * If both host and device support UniPro ver1.6 or later, PA layer
1007 	 * parameters tuning happens during link startup itself.
1008 	 *
1009 	 * We can manually tune PA layer parameters if either host or device
1010 	 * doesn't support UniPro ver 1.6 or later. But to keep manual tuning
1011 	 * logic simple, we will only do manual tuning if local unipro version
1012 	 * doesn't support ver1.6 or later.
1013 	 */
1014 	return ufshcd_get_local_unipro_ver(hba) < UFS_UNIPRO_VER_1_6;
1015 }
1016 
1017 /**
1018  * ufshcd_pm_qos_init - initialize PM QoS request
1019  * @hba: per adapter instance
1020  */
1021 void ufshcd_pm_qos_init(struct ufs_hba *hba)
1022 {
1023 
1024 	if (hba->pm_qos_enabled)
1025 		return;
1026 
1027 	cpu_latency_qos_add_request(&hba->pm_qos_req, PM_QOS_DEFAULT_VALUE);
1028 
1029 	if (cpu_latency_qos_request_active(&hba->pm_qos_req))
1030 		hba->pm_qos_enabled = true;
1031 }
1032 
1033 /**
1034  * ufshcd_pm_qos_exit - remove request from PM QoS
1035  * @hba: per adapter instance
1036  */
1037 void ufshcd_pm_qos_exit(struct ufs_hba *hba)
1038 {
1039 	if (!hba->pm_qos_enabled)
1040 		return;
1041 
1042 	cpu_latency_qos_remove_request(&hba->pm_qos_req);
1043 	hba->pm_qos_enabled = false;
1044 }
1045 
1046 /**
1047  * ufshcd_pm_qos_update - update PM QoS request
1048  * @hba: per adapter instance
1049  * @on: If True, vote for perf PM QoS mode otherwise power save mode
1050  */
1051 static void ufshcd_pm_qos_update(struct ufs_hba *hba, bool on)
1052 {
1053 	if (!hba->pm_qos_enabled)
1054 		return;
1055 
1056 	cpu_latency_qos_update_request(&hba->pm_qos_req, on ? 0 : PM_QOS_DEFAULT_VALUE);
1057 }
1058 
1059 /**
1060  * ufshcd_set_clk_freq - set UFS controller clock frequencies
1061  * @hba: per adapter instance
1062  * @scale_up: If True, set max possible frequency othewise set low frequency
1063  *
1064  * Return: 0 if successful; < 0 upon failure.
1065  */
1066 static int ufshcd_set_clk_freq(struct ufs_hba *hba, bool scale_up)
1067 {
1068 	int ret = 0;
1069 	struct ufs_clk_info *clki;
1070 	struct list_head *head = &hba->clk_list_head;
1071 
1072 	if (list_empty(head))
1073 		goto out;
1074 
1075 	list_for_each_entry(clki, head, list) {
1076 		if (!IS_ERR_OR_NULL(clki->clk)) {
1077 			if (scale_up && clki->max_freq) {
1078 				if (clki->curr_freq == clki->max_freq)
1079 					continue;
1080 
1081 				ret = clk_set_rate(clki->clk, clki->max_freq);
1082 				if (ret) {
1083 					dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
1084 						__func__, clki->name,
1085 						clki->max_freq, ret);
1086 					break;
1087 				}
1088 				trace_ufshcd_clk_scaling(dev_name(hba->dev),
1089 						"scaled up", clki->name,
1090 						clki->curr_freq,
1091 						clki->max_freq);
1092 
1093 				clki->curr_freq = clki->max_freq;
1094 
1095 			} else if (!scale_up && clki->min_freq) {
1096 				if (clki->curr_freq == clki->min_freq)
1097 					continue;
1098 
1099 				ret = clk_set_rate(clki->clk, clki->min_freq);
1100 				if (ret) {
1101 					dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
1102 						__func__, clki->name,
1103 						clki->min_freq, ret);
1104 					break;
1105 				}
1106 				trace_ufshcd_clk_scaling(dev_name(hba->dev),
1107 						"scaled down", clki->name,
1108 						clki->curr_freq,
1109 						clki->min_freq);
1110 				clki->curr_freq = clki->min_freq;
1111 			}
1112 		}
1113 		dev_dbg(hba->dev, "%s: clk: %s, rate: %lu\n", __func__,
1114 				clki->name, clk_get_rate(clki->clk));
1115 	}
1116 
1117 out:
1118 	return ret;
1119 }
1120 
1121 int ufshcd_opp_config_clks(struct device *dev, struct opp_table *opp_table,
1122 			   struct dev_pm_opp *opp, void *data,
1123 			   bool scaling_down)
1124 {
1125 	struct ufs_hba *hba = dev_get_drvdata(dev);
1126 	struct list_head *head = &hba->clk_list_head;
1127 	struct ufs_clk_info *clki;
1128 	unsigned long freq;
1129 	u8 idx = 0;
1130 	int ret;
1131 
1132 	list_for_each_entry(clki, head, list) {
1133 		if (!IS_ERR_OR_NULL(clki->clk)) {
1134 			freq = dev_pm_opp_get_freq_indexed(opp, idx++);
1135 
1136 			/* Do not set rate for clocks having frequency as 0 */
1137 			if (!freq)
1138 				continue;
1139 
1140 			ret = clk_set_rate(clki->clk, freq);
1141 			if (ret) {
1142 				dev_err(dev, "%s: %s clk set rate(%ldHz) failed, %d\n",
1143 					__func__, clki->name, freq, ret);
1144 				return ret;
1145 			}
1146 
1147 			trace_ufshcd_clk_scaling(dev_name(dev),
1148 				(scaling_down ? "scaled down" : "scaled up"),
1149 				clki->name, hba->clk_scaling.target_freq, freq);
1150 		}
1151 	}
1152 
1153 	return 0;
1154 }
1155 EXPORT_SYMBOL_GPL(ufshcd_opp_config_clks);
1156 
1157 static int ufshcd_opp_set_rate(struct ufs_hba *hba, unsigned long freq)
1158 {
1159 	struct dev_pm_opp *opp;
1160 	int ret;
1161 
1162 	opp = dev_pm_opp_find_freq_floor_indexed(hba->dev,
1163 						 &freq, 0);
1164 	if (IS_ERR(opp))
1165 		return PTR_ERR(opp);
1166 
1167 	ret = dev_pm_opp_set_opp(hba->dev, opp);
1168 	dev_pm_opp_put(opp);
1169 
1170 	return ret;
1171 }
1172 
1173 /**
1174  * ufshcd_scale_clks - scale up or scale down UFS controller clocks
1175  * @hba: per adapter instance
1176  * @freq: frequency to scale
1177  * @scale_up: True if scaling up and false if scaling down
1178  *
1179  * Return: 0 if successful; < 0 upon failure.
1180  */
1181 static int ufshcd_scale_clks(struct ufs_hba *hba, unsigned long freq,
1182 			     bool scale_up)
1183 {
1184 	int ret = 0;
1185 	ktime_t start = ktime_get();
1186 
1187 	ret = ufshcd_vops_clk_scale_notify(hba, scale_up, PRE_CHANGE);
1188 	if (ret)
1189 		goto out;
1190 
1191 	if (hba->use_pm_opp)
1192 		ret = ufshcd_opp_set_rate(hba, freq);
1193 	else
1194 		ret = ufshcd_set_clk_freq(hba, scale_up);
1195 	if (ret)
1196 		goto out;
1197 
1198 	ret = ufshcd_vops_clk_scale_notify(hba, scale_up, POST_CHANGE);
1199 	if (ret) {
1200 		if (hba->use_pm_opp)
1201 			ufshcd_opp_set_rate(hba,
1202 					    hba->devfreq->previous_freq);
1203 		else
1204 			ufshcd_set_clk_freq(hba, !scale_up);
1205 		goto out;
1206 	}
1207 
1208 	ufshcd_pm_qos_update(hba, scale_up);
1209 
1210 out:
1211 	trace_ufshcd_profile_clk_scaling(dev_name(hba->dev),
1212 			(scale_up ? "up" : "down"),
1213 			ktime_to_us(ktime_sub(ktime_get(), start)), ret);
1214 	return ret;
1215 }
1216 
1217 /**
1218  * ufshcd_is_devfreq_scaling_required - check if scaling is required or not
1219  * @hba: per adapter instance
1220  * @freq: frequency to scale
1221  * @scale_up: True if scaling up and false if scaling down
1222  *
1223  * Return: true if scaling is required, false otherwise.
1224  */
1225 static bool ufshcd_is_devfreq_scaling_required(struct ufs_hba *hba,
1226 					       unsigned long freq, bool scale_up)
1227 {
1228 	struct ufs_clk_info *clki;
1229 	struct list_head *head = &hba->clk_list_head;
1230 
1231 	if (list_empty(head))
1232 		return false;
1233 
1234 	if (hba->use_pm_opp)
1235 		return freq != hba->clk_scaling.target_freq;
1236 
1237 	list_for_each_entry(clki, head, list) {
1238 		if (!IS_ERR_OR_NULL(clki->clk)) {
1239 			if (scale_up && clki->max_freq) {
1240 				if (clki->curr_freq == clki->max_freq)
1241 					continue;
1242 				return true;
1243 			} else if (!scale_up && clki->min_freq) {
1244 				if (clki->curr_freq == clki->min_freq)
1245 					continue;
1246 				return true;
1247 			}
1248 		}
1249 	}
1250 
1251 	return false;
1252 }
1253 
1254 /*
1255  * Determine the number of pending commands by counting the bits in the SCSI
1256  * device budget maps. This approach has been selected because a bit is set in
1257  * the budget map before scsi_host_queue_ready() checks the host_self_blocked
1258  * flag. The host_self_blocked flag can be modified by calling
1259  * scsi_block_requests() or scsi_unblock_requests().
1260  */
1261 static u32 ufshcd_pending_cmds(struct ufs_hba *hba)
1262 {
1263 	const struct scsi_device *sdev;
1264 	u32 pending = 0;
1265 
1266 	lockdep_assert_held(hba->host->host_lock);
1267 	__shost_for_each_device(sdev, hba->host)
1268 		pending += sbitmap_weight(&sdev->budget_map);
1269 
1270 	return pending;
1271 }
1272 
1273 /*
1274  * Wait until all pending SCSI commands and TMFs have finished or the timeout
1275  * has expired.
1276  *
1277  * Return: 0 upon success; -EBUSY upon timeout.
1278  */
1279 static int ufshcd_wait_for_doorbell_clr(struct ufs_hba *hba,
1280 					u64 wait_timeout_us)
1281 {
1282 	unsigned long flags;
1283 	int ret = 0;
1284 	u32 tm_doorbell;
1285 	u32 tr_pending;
1286 	bool timeout = false, do_last_check = false;
1287 	ktime_t start;
1288 
1289 	ufshcd_hold(hba);
1290 	spin_lock_irqsave(hba->host->host_lock, flags);
1291 	/*
1292 	 * Wait for all the outstanding tasks/transfer requests.
1293 	 * Verify by checking the doorbell registers are clear.
1294 	 */
1295 	start = ktime_get();
1296 	do {
1297 		if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL) {
1298 			ret = -EBUSY;
1299 			goto out;
1300 		}
1301 
1302 		tm_doorbell = ufshcd_readl(hba, REG_UTP_TASK_REQ_DOOR_BELL);
1303 		tr_pending = ufshcd_pending_cmds(hba);
1304 		if (!tm_doorbell && !tr_pending) {
1305 			timeout = false;
1306 			break;
1307 		} else if (do_last_check) {
1308 			break;
1309 		}
1310 
1311 		spin_unlock_irqrestore(hba->host->host_lock, flags);
1312 		io_schedule_timeout(msecs_to_jiffies(20));
1313 		if (ktime_to_us(ktime_sub(ktime_get(), start)) >
1314 		    wait_timeout_us) {
1315 			timeout = true;
1316 			/*
1317 			 * We might have scheduled out for long time so make
1318 			 * sure to check if doorbells are cleared by this time
1319 			 * or not.
1320 			 */
1321 			do_last_check = true;
1322 		}
1323 		spin_lock_irqsave(hba->host->host_lock, flags);
1324 	} while (tm_doorbell || tr_pending);
1325 
1326 	if (timeout) {
1327 		dev_err(hba->dev,
1328 			"%s: timedout waiting for doorbell to clear (tm=0x%x, tr=0x%x)\n",
1329 			__func__, tm_doorbell, tr_pending);
1330 		ret = -EBUSY;
1331 	}
1332 out:
1333 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1334 	ufshcd_release(hba);
1335 	return ret;
1336 }
1337 
1338 /**
1339  * ufshcd_scale_gear - scale up/down UFS gear
1340  * @hba: per adapter instance
1341  * @scale_up: True for scaling up gear and false for scaling down
1342  *
1343  * Return: 0 for success; -EBUSY if scaling can't happen at this time;
1344  * non-zero for any other errors.
1345  */
1346 static int ufshcd_scale_gear(struct ufs_hba *hba, bool scale_up)
1347 {
1348 	int ret = 0;
1349 	struct ufs_pa_layer_attr new_pwr_info;
1350 
1351 	if (scale_up) {
1352 		memcpy(&new_pwr_info, &hba->clk_scaling.saved_pwr_info,
1353 		       sizeof(struct ufs_pa_layer_attr));
1354 	} else {
1355 		memcpy(&new_pwr_info, &hba->pwr_info,
1356 		       sizeof(struct ufs_pa_layer_attr));
1357 
1358 		if (hba->pwr_info.gear_tx > hba->clk_scaling.min_gear ||
1359 		    hba->pwr_info.gear_rx > hba->clk_scaling.min_gear) {
1360 			/* save the current power mode */
1361 			memcpy(&hba->clk_scaling.saved_pwr_info,
1362 				&hba->pwr_info,
1363 				sizeof(struct ufs_pa_layer_attr));
1364 
1365 			/* scale down gear */
1366 			new_pwr_info.gear_tx = hba->clk_scaling.min_gear;
1367 			new_pwr_info.gear_rx = hba->clk_scaling.min_gear;
1368 		}
1369 	}
1370 
1371 	/* check if the power mode needs to be changed or not? */
1372 	ret = ufshcd_config_pwr_mode(hba, &new_pwr_info);
1373 	if (ret)
1374 		dev_err(hba->dev, "%s: failed err %d, old gear: (tx %d rx %d), new gear: (tx %d rx %d)",
1375 			__func__, ret,
1376 			hba->pwr_info.gear_tx, hba->pwr_info.gear_rx,
1377 			new_pwr_info.gear_tx, new_pwr_info.gear_rx);
1378 
1379 	return ret;
1380 }
1381 
1382 /*
1383  * Wait until all pending SCSI commands and TMFs have finished or the timeout
1384  * has expired.
1385  *
1386  * Return: 0 upon success; -EBUSY upon timeout.
1387  */
1388 static int ufshcd_clock_scaling_prepare(struct ufs_hba *hba, u64 timeout_us)
1389 {
1390 	int ret = 0;
1391 	/*
1392 	 * make sure that there are no outstanding requests when
1393 	 * clock scaling is in progress
1394 	 */
1395 	ufshcd_scsi_block_requests(hba);
1396 	mutex_lock(&hba->wb_mutex);
1397 	down_write(&hba->clk_scaling_lock);
1398 
1399 	if (!hba->clk_scaling.is_allowed ||
1400 	    ufshcd_wait_for_doorbell_clr(hba, timeout_us)) {
1401 		ret = -EBUSY;
1402 		up_write(&hba->clk_scaling_lock);
1403 		mutex_unlock(&hba->wb_mutex);
1404 		ufshcd_scsi_unblock_requests(hba);
1405 		goto out;
1406 	}
1407 
1408 	/* let's not get into low power until clock scaling is completed */
1409 	ufshcd_hold(hba);
1410 
1411 out:
1412 	return ret;
1413 }
1414 
1415 static void ufshcd_clock_scaling_unprepare(struct ufs_hba *hba, int err, bool scale_up)
1416 {
1417 	up_write(&hba->clk_scaling_lock);
1418 
1419 	/* Enable Write Booster if we have scaled up else disable it */
1420 	if (ufshcd_enable_wb_if_scaling_up(hba) && !err)
1421 		ufshcd_wb_toggle(hba, scale_up);
1422 
1423 	mutex_unlock(&hba->wb_mutex);
1424 
1425 	ufshcd_scsi_unblock_requests(hba);
1426 	ufshcd_release(hba);
1427 }
1428 
1429 /**
1430  * ufshcd_devfreq_scale - scale up/down UFS clocks and gear
1431  * @hba: per adapter instance
1432  * @freq: frequency to scale
1433  * @scale_up: True for scaling up and false for scalin down
1434  *
1435  * Return: 0 for success; -EBUSY if scaling can't happen at this time; non-zero
1436  * for any other errors.
1437  */
1438 static int ufshcd_devfreq_scale(struct ufs_hba *hba, unsigned long freq,
1439 				bool scale_up)
1440 {
1441 	int ret = 0;
1442 
1443 	ret = ufshcd_clock_scaling_prepare(hba, 1 * USEC_PER_SEC);
1444 	if (ret)
1445 		return ret;
1446 
1447 	/* scale down the gear before scaling down clocks */
1448 	if (!scale_up) {
1449 		ret = ufshcd_scale_gear(hba, false);
1450 		if (ret)
1451 			goto out_unprepare;
1452 	}
1453 
1454 	ret = ufshcd_scale_clks(hba, freq, scale_up);
1455 	if (ret) {
1456 		if (!scale_up)
1457 			ufshcd_scale_gear(hba, true);
1458 		goto out_unprepare;
1459 	}
1460 
1461 	/* scale up the gear after scaling up clocks */
1462 	if (scale_up) {
1463 		ret = ufshcd_scale_gear(hba, true);
1464 		if (ret) {
1465 			ufshcd_scale_clks(hba, hba->devfreq->previous_freq,
1466 					  false);
1467 			goto out_unprepare;
1468 		}
1469 	}
1470 
1471 out_unprepare:
1472 	ufshcd_clock_scaling_unprepare(hba, ret, scale_up);
1473 	return ret;
1474 }
1475 
1476 static void ufshcd_clk_scaling_suspend_work(struct work_struct *work)
1477 {
1478 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1479 					   clk_scaling.suspend_work);
1480 	unsigned long irq_flags;
1481 
1482 	spin_lock_irqsave(hba->host->host_lock, irq_flags);
1483 	if (hba->clk_scaling.active_reqs || hba->clk_scaling.is_suspended) {
1484 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1485 		return;
1486 	}
1487 	hba->clk_scaling.is_suspended = true;
1488 	hba->clk_scaling.window_start_t = 0;
1489 	spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1490 
1491 	devfreq_suspend_device(hba->devfreq);
1492 }
1493 
1494 static void ufshcd_clk_scaling_resume_work(struct work_struct *work)
1495 {
1496 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1497 					   clk_scaling.resume_work);
1498 	unsigned long irq_flags;
1499 
1500 	spin_lock_irqsave(hba->host->host_lock, irq_flags);
1501 	if (!hba->clk_scaling.is_suspended) {
1502 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1503 		return;
1504 	}
1505 	hba->clk_scaling.is_suspended = false;
1506 	spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1507 
1508 	devfreq_resume_device(hba->devfreq);
1509 }
1510 
1511 static int ufshcd_devfreq_target(struct device *dev,
1512 				unsigned long *freq, u32 flags)
1513 {
1514 	int ret = 0;
1515 	struct ufs_hba *hba = dev_get_drvdata(dev);
1516 	ktime_t start;
1517 	bool scale_up = false, sched_clk_scaling_suspend_work = false;
1518 	struct list_head *clk_list = &hba->clk_list_head;
1519 	struct ufs_clk_info *clki;
1520 	unsigned long irq_flags;
1521 
1522 	if (!ufshcd_is_clkscaling_supported(hba))
1523 		return -EINVAL;
1524 
1525 	if (hba->use_pm_opp) {
1526 		struct dev_pm_opp *opp;
1527 
1528 		/* Get the recommended frequency from OPP framework */
1529 		opp = devfreq_recommended_opp(dev, freq, flags);
1530 		if (IS_ERR(opp))
1531 			return PTR_ERR(opp);
1532 
1533 		dev_pm_opp_put(opp);
1534 	} else {
1535 		/* Override with the closest supported frequency */
1536 		clki = list_first_entry(&hba->clk_list_head, struct ufs_clk_info,
1537 					list);
1538 		*freq =	(unsigned long) clk_round_rate(clki->clk, *freq);
1539 	}
1540 
1541 	spin_lock_irqsave(hba->host->host_lock, irq_flags);
1542 	if (ufshcd_eh_in_progress(hba)) {
1543 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1544 		return 0;
1545 	}
1546 
1547 	/* Skip scaling clock when clock scaling is suspended */
1548 	if (hba->clk_scaling.is_suspended) {
1549 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1550 		dev_warn(hba->dev, "clock scaling is suspended, skip");
1551 		return 0;
1552 	}
1553 
1554 	if (!hba->clk_scaling.active_reqs)
1555 		sched_clk_scaling_suspend_work = true;
1556 
1557 	if (list_empty(clk_list)) {
1558 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1559 		goto out;
1560 	}
1561 
1562 	/* Decide based on the target or rounded-off frequency and update */
1563 	if (hba->use_pm_opp)
1564 		scale_up = *freq > hba->clk_scaling.target_freq;
1565 	else
1566 		scale_up = *freq == clki->max_freq;
1567 
1568 	if (!hba->use_pm_opp && !scale_up)
1569 		*freq = clki->min_freq;
1570 
1571 	/* Update the frequency */
1572 	if (!ufshcd_is_devfreq_scaling_required(hba, *freq, scale_up)) {
1573 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1574 		ret = 0;
1575 		goto out; /* no state change required */
1576 	}
1577 	spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1578 
1579 	start = ktime_get();
1580 	ret = ufshcd_devfreq_scale(hba, *freq, scale_up);
1581 	if (!ret)
1582 		hba->clk_scaling.target_freq = *freq;
1583 
1584 	trace_ufshcd_profile_clk_scaling(dev_name(hba->dev),
1585 		(scale_up ? "up" : "down"),
1586 		ktime_to_us(ktime_sub(ktime_get(), start)), ret);
1587 
1588 out:
1589 	if (sched_clk_scaling_suspend_work && !scale_up)
1590 		queue_work(hba->clk_scaling.workq,
1591 			   &hba->clk_scaling.suspend_work);
1592 
1593 	return ret;
1594 }
1595 
1596 static int ufshcd_devfreq_get_dev_status(struct device *dev,
1597 		struct devfreq_dev_status *stat)
1598 {
1599 	struct ufs_hba *hba = dev_get_drvdata(dev);
1600 	struct ufs_clk_scaling *scaling = &hba->clk_scaling;
1601 	unsigned long flags;
1602 	ktime_t curr_t;
1603 
1604 	if (!ufshcd_is_clkscaling_supported(hba))
1605 		return -EINVAL;
1606 
1607 	memset(stat, 0, sizeof(*stat));
1608 
1609 	spin_lock_irqsave(hba->host->host_lock, flags);
1610 	curr_t = ktime_get();
1611 	if (!scaling->window_start_t)
1612 		goto start_window;
1613 
1614 	/*
1615 	 * If current frequency is 0, then the ondemand governor considers
1616 	 * there's no initial frequency set. And it always requests to set
1617 	 * to max. frequency.
1618 	 */
1619 	if (hba->use_pm_opp) {
1620 		stat->current_frequency = hba->clk_scaling.target_freq;
1621 	} else {
1622 		struct list_head *clk_list = &hba->clk_list_head;
1623 		struct ufs_clk_info *clki;
1624 
1625 		clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1626 		stat->current_frequency = clki->curr_freq;
1627 	}
1628 
1629 	if (scaling->is_busy_started)
1630 		scaling->tot_busy_t += ktime_us_delta(curr_t,
1631 				scaling->busy_start_t);
1632 	stat->total_time = ktime_us_delta(curr_t, scaling->window_start_t);
1633 	stat->busy_time = scaling->tot_busy_t;
1634 start_window:
1635 	scaling->window_start_t = curr_t;
1636 	scaling->tot_busy_t = 0;
1637 
1638 	if (scaling->active_reqs) {
1639 		scaling->busy_start_t = curr_t;
1640 		scaling->is_busy_started = true;
1641 	} else {
1642 		scaling->busy_start_t = 0;
1643 		scaling->is_busy_started = false;
1644 	}
1645 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1646 	return 0;
1647 }
1648 
1649 static int ufshcd_devfreq_init(struct ufs_hba *hba)
1650 {
1651 	struct list_head *clk_list = &hba->clk_list_head;
1652 	struct ufs_clk_info *clki;
1653 	struct devfreq *devfreq;
1654 	int ret;
1655 
1656 	/* Skip devfreq if we don't have any clocks in the list */
1657 	if (list_empty(clk_list))
1658 		return 0;
1659 
1660 	if (!hba->use_pm_opp) {
1661 		clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1662 		dev_pm_opp_add(hba->dev, clki->min_freq, 0);
1663 		dev_pm_opp_add(hba->dev, clki->max_freq, 0);
1664 	}
1665 
1666 	ufshcd_vops_config_scaling_param(hba, &hba->vps->devfreq_profile,
1667 					 &hba->vps->ondemand_data);
1668 	devfreq = devfreq_add_device(hba->dev,
1669 			&hba->vps->devfreq_profile,
1670 			DEVFREQ_GOV_SIMPLE_ONDEMAND,
1671 			&hba->vps->ondemand_data);
1672 	if (IS_ERR(devfreq)) {
1673 		ret = PTR_ERR(devfreq);
1674 		dev_err(hba->dev, "Unable to register with devfreq %d\n", ret);
1675 
1676 		if (!hba->use_pm_opp) {
1677 			dev_pm_opp_remove(hba->dev, clki->min_freq);
1678 			dev_pm_opp_remove(hba->dev, clki->max_freq);
1679 		}
1680 		return ret;
1681 	}
1682 
1683 	hba->devfreq = devfreq;
1684 
1685 	return 0;
1686 }
1687 
1688 static void ufshcd_devfreq_remove(struct ufs_hba *hba)
1689 {
1690 	struct list_head *clk_list = &hba->clk_list_head;
1691 
1692 	if (!hba->devfreq)
1693 		return;
1694 
1695 	devfreq_remove_device(hba->devfreq);
1696 	hba->devfreq = NULL;
1697 
1698 	if (!hba->use_pm_opp) {
1699 		struct ufs_clk_info *clki;
1700 
1701 		clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1702 		dev_pm_opp_remove(hba->dev, clki->min_freq);
1703 		dev_pm_opp_remove(hba->dev, clki->max_freq);
1704 	}
1705 }
1706 
1707 static void ufshcd_suspend_clkscaling(struct ufs_hba *hba)
1708 {
1709 	unsigned long flags;
1710 	bool suspend = false;
1711 
1712 	cancel_work_sync(&hba->clk_scaling.suspend_work);
1713 	cancel_work_sync(&hba->clk_scaling.resume_work);
1714 
1715 	spin_lock_irqsave(hba->host->host_lock, flags);
1716 	if (!hba->clk_scaling.is_suspended) {
1717 		suspend = true;
1718 		hba->clk_scaling.is_suspended = true;
1719 		hba->clk_scaling.window_start_t = 0;
1720 	}
1721 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1722 
1723 	if (suspend)
1724 		devfreq_suspend_device(hba->devfreq);
1725 }
1726 
1727 static void ufshcd_resume_clkscaling(struct ufs_hba *hba)
1728 {
1729 	unsigned long flags;
1730 	bool resume = false;
1731 
1732 	spin_lock_irqsave(hba->host->host_lock, flags);
1733 	if (hba->clk_scaling.is_suspended) {
1734 		resume = true;
1735 		hba->clk_scaling.is_suspended = false;
1736 	}
1737 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1738 
1739 	if (resume)
1740 		devfreq_resume_device(hba->devfreq);
1741 }
1742 
1743 static ssize_t ufshcd_clkscale_enable_show(struct device *dev,
1744 		struct device_attribute *attr, char *buf)
1745 {
1746 	struct ufs_hba *hba = dev_get_drvdata(dev);
1747 
1748 	return sysfs_emit(buf, "%d\n", hba->clk_scaling.is_enabled);
1749 }
1750 
1751 static ssize_t ufshcd_clkscale_enable_store(struct device *dev,
1752 		struct device_attribute *attr, const char *buf, size_t count)
1753 {
1754 	struct ufs_hba *hba = dev_get_drvdata(dev);
1755 	u32 value;
1756 	int err = 0;
1757 
1758 	if (kstrtou32(buf, 0, &value))
1759 		return -EINVAL;
1760 
1761 	down(&hba->host_sem);
1762 	if (!ufshcd_is_user_access_allowed(hba)) {
1763 		err = -EBUSY;
1764 		goto out;
1765 	}
1766 
1767 	value = !!value;
1768 	if (value == hba->clk_scaling.is_enabled)
1769 		goto out;
1770 
1771 	ufshcd_rpm_get_sync(hba);
1772 	ufshcd_hold(hba);
1773 
1774 	hba->clk_scaling.is_enabled = value;
1775 
1776 	if (value) {
1777 		ufshcd_resume_clkscaling(hba);
1778 	} else {
1779 		ufshcd_suspend_clkscaling(hba);
1780 		err = ufshcd_devfreq_scale(hba, ULONG_MAX, true);
1781 		if (err)
1782 			dev_err(hba->dev, "%s: failed to scale clocks up %d\n",
1783 					__func__, err);
1784 	}
1785 
1786 	ufshcd_release(hba);
1787 	ufshcd_rpm_put_sync(hba);
1788 out:
1789 	up(&hba->host_sem);
1790 	return err ? err : count;
1791 }
1792 
1793 static void ufshcd_init_clk_scaling_sysfs(struct ufs_hba *hba)
1794 {
1795 	hba->clk_scaling.enable_attr.show = ufshcd_clkscale_enable_show;
1796 	hba->clk_scaling.enable_attr.store = ufshcd_clkscale_enable_store;
1797 	sysfs_attr_init(&hba->clk_scaling.enable_attr.attr);
1798 	hba->clk_scaling.enable_attr.attr.name = "clkscale_enable";
1799 	hba->clk_scaling.enable_attr.attr.mode = 0644;
1800 	if (device_create_file(hba->dev, &hba->clk_scaling.enable_attr))
1801 		dev_err(hba->dev, "Failed to create sysfs for clkscale_enable\n");
1802 }
1803 
1804 static void ufshcd_remove_clk_scaling_sysfs(struct ufs_hba *hba)
1805 {
1806 	if (hba->clk_scaling.enable_attr.attr.name)
1807 		device_remove_file(hba->dev, &hba->clk_scaling.enable_attr);
1808 }
1809 
1810 static void ufshcd_init_clk_scaling(struct ufs_hba *hba)
1811 {
1812 	char wq_name[sizeof("ufs_clkscaling_00")];
1813 
1814 	if (!ufshcd_is_clkscaling_supported(hba))
1815 		return;
1816 
1817 	if (!hba->clk_scaling.min_gear)
1818 		hba->clk_scaling.min_gear = UFS_HS_G1;
1819 
1820 	INIT_WORK(&hba->clk_scaling.suspend_work,
1821 		  ufshcd_clk_scaling_suspend_work);
1822 	INIT_WORK(&hba->clk_scaling.resume_work,
1823 		  ufshcd_clk_scaling_resume_work);
1824 
1825 	snprintf(wq_name, sizeof(wq_name), "ufs_clkscaling_%d",
1826 		 hba->host->host_no);
1827 	hba->clk_scaling.workq = create_singlethread_workqueue(wq_name);
1828 
1829 	hba->clk_scaling.is_initialized = true;
1830 }
1831 
1832 static void ufshcd_exit_clk_scaling(struct ufs_hba *hba)
1833 {
1834 	if (!hba->clk_scaling.is_initialized)
1835 		return;
1836 
1837 	ufshcd_remove_clk_scaling_sysfs(hba);
1838 	destroy_workqueue(hba->clk_scaling.workq);
1839 	ufshcd_devfreq_remove(hba);
1840 	hba->clk_scaling.is_initialized = false;
1841 }
1842 
1843 static void ufshcd_ungate_work(struct work_struct *work)
1844 {
1845 	int ret;
1846 	unsigned long flags;
1847 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1848 			clk_gating.ungate_work);
1849 
1850 	cancel_delayed_work_sync(&hba->clk_gating.gate_work);
1851 
1852 	spin_lock_irqsave(hba->host->host_lock, flags);
1853 	if (hba->clk_gating.state == CLKS_ON) {
1854 		spin_unlock_irqrestore(hba->host->host_lock, flags);
1855 		return;
1856 	}
1857 
1858 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1859 	ufshcd_hba_vreg_set_hpm(hba);
1860 	ufshcd_setup_clocks(hba, true);
1861 
1862 	ufshcd_enable_irq(hba);
1863 
1864 	/* Exit from hibern8 */
1865 	if (ufshcd_can_hibern8_during_gating(hba)) {
1866 		/* Prevent gating in this path */
1867 		hba->clk_gating.is_suspended = true;
1868 		if (ufshcd_is_link_hibern8(hba)) {
1869 			ret = ufshcd_uic_hibern8_exit(hba);
1870 			if (ret)
1871 				dev_err(hba->dev, "%s: hibern8 exit failed %d\n",
1872 					__func__, ret);
1873 			else
1874 				ufshcd_set_link_active(hba);
1875 		}
1876 		hba->clk_gating.is_suspended = false;
1877 	}
1878 }
1879 
1880 /**
1881  * ufshcd_hold - Enable clocks that were gated earlier due to ufshcd_release.
1882  * Also, exit from hibern8 mode and set the link as active.
1883  * @hba: per adapter instance
1884  */
1885 void ufshcd_hold(struct ufs_hba *hba)
1886 {
1887 	bool flush_result;
1888 	unsigned long flags;
1889 
1890 	if (!ufshcd_is_clkgating_allowed(hba) ||
1891 	    !hba->clk_gating.is_initialized)
1892 		return;
1893 	spin_lock_irqsave(hba->host->host_lock, flags);
1894 	hba->clk_gating.active_reqs++;
1895 
1896 start:
1897 	switch (hba->clk_gating.state) {
1898 	case CLKS_ON:
1899 		/*
1900 		 * Wait for the ungate work to complete if in progress.
1901 		 * Though the clocks may be in ON state, the link could
1902 		 * still be in hibner8 state if hibern8 is allowed
1903 		 * during clock gating.
1904 		 * Make sure we exit hibern8 state also in addition to
1905 		 * clocks being ON.
1906 		 */
1907 		if (ufshcd_can_hibern8_during_gating(hba) &&
1908 		    ufshcd_is_link_hibern8(hba)) {
1909 			spin_unlock_irqrestore(hba->host->host_lock, flags);
1910 			flush_result = flush_work(&hba->clk_gating.ungate_work);
1911 			if (hba->clk_gating.is_suspended && !flush_result)
1912 				return;
1913 			spin_lock_irqsave(hba->host->host_lock, flags);
1914 			goto start;
1915 		}
1916 		break;
1917 	case REQ_CLKS_OFF:
1918 		if (cancel_delayed_work(&hba->clk_gating.gate_work)) {
1919 			hba->clk_gating.state = CLKS_ON;
1920 			trace_ufshcd_clk_gating(dev_name(hba->dev),
1921 						hba->clk_gating.state);
1922 			break;
1923 		}
1924 		/*
1925 		 * If we are here, it means gating work is either done or
1926 		 * currently running. Hence, fall through to cancel gating
1927 		 * work and to enable clocks.
1928 		 */
1929 		fallthrough;
1930 	case CLKS_OFF:
1931 		hba->clk_gating.state = REQ_CLKS_ON;
1932 		trace_ufshcd_clk_gating(dev_name(hba->dev),
1933 					hba->clk_gating.state);
1934 		queue_work(hba->clk_gating.clk_gating_workq,
1935 			   &hba->clk_gating.ungate_work);
1936 		/*
1937 		 * fall through to check if we should wait for this
1938 		 * work to be done or not.
1939 		 */
1940 		fallthrough;
1941 	case REQ_CLKS_ON:
1942 		spin_unlock_irqrestore(hba->host->host_lock, flags);
1943 		flush_work(&hba->clk_gating.ungate_work);
1944 		/* Make sure state is CLKS_ON before returning */
1945 		spin_lock_irqsave(hba->host->host_lock, flags);
1946 		goto start;
1947 	default:
1948 		dev_err(hba->dev, "%s: clk gating is in invalid state %d\n",
1949 				__func__, hba->clk_gating.state);
1950 		break;
1951 	}
1952 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1953 }
1954 EXPORT_SYMBOL_GPL(ufshcd_hold);
1955 
1956 static void ufshcd_gate_work(struct work_struct *work)
1957 {
1958 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1959 			clk_gating.gate_work.work);
1960 	unsigned long flags;
1961 	int ret;
1962 
1963 	spin_lock_irqsave(hba->host->host_lock, flags);
1964 	/*
1965 	 * In case you are here to cancel this work the gating state
1966 	 * would be marked as REQ_CLKS_ON. In this case save time by
1967 	 * skipping the gating work and exit after changing the clock
1968 	 * state to CLKS_ON.
1969 	 */
1970 	if (hba->clk_gating.is_suspended ||
1971 		(hba->clk_gating.state != REQ_CLKS_OFF)) {
1972 		hba->clk_gating.state = CLKS_ON;
1973 		trace_ufshcd_clk_gating(dev_name(hba->dev),
1974 					hba->clk_gating.state);
1975 		goto rel_lock;
1976 	}
1977 
1978 	if (ufshcd_is_ufs_dev_busy(hba) || hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL)
1979 		goto rel_lock;
1980 
1981 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1982 
1983 	/* put the link into hibern8 mode before turning off clocks */
1984 	if (ufshcd_can_hibern8_during_gating(hba)) {
1985 		ret = ufshcd_uic_hibern8_enter(hba);
1986 		if (ret) {
1987 			hba->clk_gating.state = CLKS_ON;
1988 			dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
1989 					__func__, ret);
1990 			trace_ufshcd_clk_gating(dev_name(hba->dev),
1991 						hba->clk_gating.state);
1992 			goto out;
1993 		}
1994 		ufshcd_set_link_hibern8(hba);
1995 	}
1996 
1997 	ufshcd_disable_irq(hba);
1998 
1999 	ufshcd_setup_clocks(hba, false);
2000 
2001 	/* Put the host controller in low power mode if possible */
2002 	ufshcd_hba_vreg_set_lpm(hba);
2003 	/*
2004 	 * In case you are here to cancel this work the gating state
2005 	 * would be marked as REQ_CLKS_ON. In this case keep the state
2006 	 * as REQ_CLKS_ON which would anyway imply that clocks are off
2007 	 * and a request to turn them on is pending. By doing this way,
2008 	 * we keep the state machine in tact and this would ultimately
2009 	 * prevent from doing cancel work multiple times when there are
2010 	 * new requests arriving before the current cancel work is done.
2011 	 */
2012 	spin_lock_irqsave(hba->host->host_lock, flags);
2013 	if (hba->clk_gating.state == REQ_CLKS_OFF) {
2014 		hba->clk_gating.state = CLKS_OFF;
2015 		trace_ufshcd_clk_gating(dev_name(hba->dev),
2016 					hba->clk_gating.state);
2017 	}
2018 rel_lock:
2019 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2020 out:
2021 	return;
2022 }
2023 
2024 /* host lock must be held before calling this variant */
2025 static void __ufshcd_release(struct ufs_hba *hba)
2026 {
2027 	if (!ufshcd_is_clkgating_allowed(hba))
2028 		return;
2029 
2030 	hba->clk_gating.active_reqs--;
2031 
2032 	if (hba->clk_gating.active_reqs || hba->clk_gating.is_suspended ||
2033 	    hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL ||
2034 	    hba->outstanding_tasks || !hba->clk_gating.is_initialized ||
2035 	    hba->active_uic_cmd || hba->uic_async_done ||
2036 	    hba->clk_gating.state == CLKS_OFF)
2037 		return;
2038 
2039 	hba->clk_gating.state = REQ_CLKS_OFF;
2040 	trace_ufshcd_clk_gating(dev_name(hba->dev), hba->clk_gating.state);
2041 	queue_delayed_work(hba->clk_gating.clk_gating_workq,
2042 			   &hba->clk_gating.gate_work,
2043 			   msecs_to_jiffies(hba->clk_gating.delay_ms));
2044 }
2045 
2046 void ufshcd_release(struct ufs_hba *hba)
2047 {
2048 	unsigned long flags;
2049 
2050 	spin_lock_irqsave(hba->host->host_lock, flags);
2051 	__ufshcd_release(hba);
2052 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2053 }
2054 EXPORT_SYMBOL_GPL(ufshcd_release);
2055 
2056 static ssize_t ufshcd_clkgate_delay_show(struct device *dev,
2057 		struct device_attribute *attr, char *buf)
2058 {
2059 	struct ufs_hba *hba = dev_get_drvdata(dev);
2060 
2061 	return sysfs_emit(buf, "%lu\n", hba->clk_gating.delay_ms);
2062 }
2063 
2064 void ufshcd_clkgate_delay_set(struct device *dev, unsigned long value)
2065 {
2066 	struct ufs_hba *hba = dev_get_drvdata(dev);
2067 	unsigned long flags;
2068 
2069 	spin_lock_irqsave(hba->host->host_lock, flags);
2070 	hba->clk_gating.delay_ms = value;
2071 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2072 }
2073 EXPORT_SYMBOL_GPL(ufshcd_clkgate_delay_set);
2074 
2075 static ssize_t ufshcd_clkgate_delay_store(struct device *dev,
2076 		struct device_attribute *attr, const char *buf, size_t count)
2077 {
2078 	unsigned long value;
2079 
2080 	if (kstrtoul(buf, 0, &value))
2081 		return -EINVAL;
2082 
2083 	ufshcd_clkgate_delay_set(dev, value);
2084 	return count;
2085 }
2086 
2087 static ssize_t ufshcd_clkgate_enable_show(struct device *dev,
2088 		struct device_attribute *attr, char *buf)
2089 {
2090 	struct ufs_hba *hba = dev_get_drvdata(dev);
2091 
2092 	return sysfs_emit(buf, "%d\n", hba->clk_gating.is_enabled);
2093 }
2094 
2095 static ssize_t ufshcd_clkgate_enable_store(struct device *dev,
2096 		struct device_attribute *attr, const char *buf, size_t count)
2097 {
2098 	struct ufs_hba *hba = dev_get_drvdata(dev);
2099 	unsigned long flags;
2100 	u32 value;
2101 
2102 	if (kstrtou32(buf, 0, &value))
2103 		return -EINVAL;
2104 
2105 	value = !!value;
2106 
2107 	spin_lock_irqsave(hba->host->host_lock, flags);
2108 	if (value == hba->clk_gating.is_enabled)
2109 		goto out;
2110 
2111 	if (value)
2112 		__ufshcd_release(hba);
2113 	else
2114 		hba->clk_gating.active_reqs++;
2115 
2116 	hba->clk_gating.is_enabled = value;
2117 out:
2118 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2119 	return count;
2120 }
2121 
2122 static void ufshcd_init_clk_gating_sysfs(struct ufs_hba *hba)
2123 {
2124 	hba->clk_gating.delay_attr.show = ufshcd_clkgate_delay_show;
2125 	hba->clk_gating.delay_attr.store = ufshcd_clkgate_delay_store;
2126 	sysfs_attr_init(&hba->clk_gating.delay_attr.attr);
2127 	hba->clk_gating.delay_attr.attr.name = "clkgate_delay_ms";
2128 	hba->clk_gating.delay_attr.attr.mode = 0644;
2129 	if (device_create_file(hba->dev, &hba->clk_gating.delay_attr))
2130 		dev_err(hba->dev, "Failed to create sysfs for clkgate_delay\n");
2131 
2132 	hba->clk_gating.enable_attr.show = ufshcd_clkgate_enable_show;
2133 	hba->clk_gating.enable_attr.store = ufshcd_clkgate_enable_store;
2134 	sysfs_attr_init(&hba->clk_gating.enable_attr.attr);
2135 	hba->clk_gating.enable_attr.attr.name = "clkgate_enable";
2136 	hba->clk_gating.enable_attr.attr.mode = 0644;
2137 	if (device_create_file(hba->dev, &hba->clk_gating.enable_attr))
2138 		dev_err(hba->dev, "Failed to create sysfs for clkgate_enable\n");
2139 }
2140 
2141 static void ufshcd_remove_clk_gating_sysfs(struct ufs_hba *hba)
2142 {
2143 	if (hba->clk_gating.delay_attr.attr.name)
2144 		device_remove_file(hba->dev, &hba->clk_gating.delay_attr);
2145 	if (hba->clk_gating.enable_attr.attr.name)
2146 		device_remove_file(hba->dev, &hba->clk_gating.enable_attr);
2147 }
2148 
2149 static void ufshcd_init_clk_gating(struct ufs_hba *hba)
2150 {
2151 	char wq_name[sizeof("ufs_clk_gating_00")];
2152 
2153 	if (!ufshcd_is_clkgating_allowed(hba))
2154 		return;
2155 
2156 	hba->clk_gating.state = CLKS_ON;
2157 
2158 	hba->clk_gating.delay_ms = 150;
2159 	INIT_DELAYED_WORK(&hba->clk_gating.gate_work, ufshcd_gate_work);
2160 	INIT_WORK(&hba->clk_gating.ungate_work, ufshcd_ungate_work);
2161 
2162 	snprintf(wq_name, ARRAY_SIZE(wq_name), "ufs_clk_gating_%d",
2163 		 hba->host->host_no);
2164 	hba->clk_gating.clk_gating_workq = alloc_ordered_workqueue(wq_name,
2165 					WQ_MEM_RECLAIM | WQ_HIGHPRI);
2166 
2167 	ufshcd_init_clk_gating_sysfs(hba);
2168 
2169 	hba->clk_gating.is_enabled = true;
2170 	hba->clk_gating.is_initialized = true;
2171 }
2172 
2173 static void ufshcd_exit_clk_gating(struct ufs_hba *hba)
2174 {
2175 	if (!hba->clk_gating.is_initialized)
2176 		return;
2177 
2178 	ufshcd_remove_clk_gating_sysfs(hba);
2179 
2180 	/* Ungate the clock if necessary. */
2181 	ufshcd_hold(hba);
2182 	hba->clk_gating.is_initialized = false;
2183 	ufshcd_release(hba);
2184 
2185 	destroy_workqueue(hba->clk_gating.clk_gating_workq);
2186 }
2187 
2188 static void ufshcd_clk_scaling_start_busy(struct ufs_hba *hba)
2189 {
2190 	bool queue_resume_work = false;
2191 	ktime_t curr_t = ktime_get();
2192 	unsigned long flags;
2193 
2194 	if (!ufshcd_is_clkscaling_supported(hba))
2195 		return;
2196 
2197 	spin_lock_irqsave(hba->host->host_lock, flags);
2198 	if (!hba->clk_scaling.active_reqs++)
2199 		queue_resume_work = true;
2200 
2201 	if (!hba->clk_scaling.is_enabled || hba->pm_op_in_progress) {
2202 		spin_unlock_irqrestore(hba->host->host_lock, flags);
2203 		return;
2204 	}
2205 
2206 	if (queue_resume_work)
2207 		queue_work(hba->clk_scaling.workq,
2208 			   &hba->clk_scaling.resume_work);
2209 
2210 	if (!hba->clk_scaling.window_start_t) {
2211 		hba->clk_scaling.window_start_t = curr_t;
2212 		hba->clk_scaling.tot_busy_t = 0;
2213 		hba->clk_scaling.is_busy_started = false;
2214 	}
2215 
2216 	if (!hba->clk_scaling.is_busy_started) {
2217 		hba->clk_scaling.busy_start_t = curr_t;
2218 		hba->clk_scaling.is_busy_started = true;
2219 	}
2220 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2221 }
2222 
2223 static void ufshcd_clk_scaling_update_busy(struct ufs_hba *hba)
2224 {
2225 	struct ufs_clk_scaling *scaling = &hba->clk_scaling;
2226 	unsigned long flags;
2227 
2228 	if (!ufshcd_is_clkscaling_supported(hba))
2229 		return;
2230 
2231 	spin_lock_irqsave(hba->host->host_lock, flags);
2232 	hba->clk_scaling.active_reqs--;
2233 	if (!scaling->active_reqs && scaling->is_busy_started) {
2234 		scaling->tot_busy_t += ktime_to_us(ktime_sub(ktime_get(),
2235 					scaling->busy_start_t));
2236 		scaling->busy_start_t = 0;
2237 		scaling->is_busy_started = false;
2238 	}
2239 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2240 }
2241 
2242 static inline int ufshcd_monitor_opcode2dir(u8 opcode)
2243 {
2244 	if (opcode == READ_6 || opcode == READ_10 || opcode == READ_16)
2245 		return READ;
2246 	else if (opcode == WRITE_6 || opcode == WRITE_10 || opcode == WRITE_16)
2247 		return WRITE;
2248 	else
2249 		return -EINVAL;
2250 }
2251 
2252 static inline bool ufshcd_should_inform_monitor(struct ufs_hba *hba,
2253 						struct ufshcd_lrb *lrbp)
2254 {
2255 	const struct ufs_hba_monitor *m = &hba->monitor;
2256 
2257 	return (m->enabled && lrbp && lrbp->cmd &&
2258 		(!m->chunk_size || m->chunk_size == lrbp->cmd->sdb.length) &&
2259 		ktime_before(hba->monitor.enabled_ts, lrbp->issue_time_stamp));
2260 }
2261 
2262 static void ufshcd_start_monitor(struct ufs_hba *hba,
2263 				 const struct ufshcd_lrb *lrbp)
2264 {
2265 	int dir = ufshcd_monitor_opcode2dir(*lrbp->cmd->cmnd);
2266 	unsigned long flags;
2267 
2268 	spin_lock_irqsave(hba->host->host_lock, flags);
2269 	if (dir >= 0 && hba->monitor.nr_queued[dir]++ == 0)
2270 		hba->monitor.busy_start_ts[dir] = ktime_get();
2271 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2272 }
2273 
2274 static void ufshcd_update_monitor(struct ufs_hba *hba, const struct ufshcd_lrb *lrbp)
2275 {
2276 	int dir = ufshcd_monitor_opcode2dir(*lrbp->cmd->cmnd);
2277 	unsigned long flags;
2278 
2279 	spin_lock_irqsave(hba->host->host_lock, flags);
2280 	if (dir >= 0 && hba->monitor.nr_queued[dir] > 0) {
2281 		const struct request *req = scsi_cmd_to_rq(lrbp->cmd);
2282 		struct ufs_hba_monitor *m = &hba->monitor;
2283 		ktime_t now, inc, lat;
2284 
2285 		now = lrbp->compl_time_stamp;
2286 		inc = ktime_sub(now, m->busy_start_ts[dir]);
2287 		m->total_busy[dir] = ktime_add(m->total_busy[dir], inc);
2288 		m->nr_sec_rw[dir] += blk_rq_sectors(req);
2289 
2290 		/* Update latencies */
2291 		m->nr_req[dir]++;
2292 		lat = ktime_sub(now, lrbp->issue_time_stamp);
2293 		m->lat_sum[dir] += lat;
2294 		if (m->lat_max[dir] < lat || !m->lat_max[dir])
2295 			m->lat_max[dir] = lat;
2296 		if (m->lat_min[dir] > lat || !m->lat_min[dir])
2297 			m->lat_min[dir] = lat;
2298 
2299 		m->nr_queued[dir]--;
2300 		/* Push forward the busy start of monitor */
2301 		m->busy_start_ts[dir] = now;
2302 	}
2303 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2304 }
2305 
2306 /**
2307  * ufshcd_send_command - Send SCSI or device management commands
2308  * @hba: per adapter instance
2309  * @task_tag: Task tag of the command
2310  * @hwq: pointer to hardware queue instance
2311  */
2312 static inline
2313 void ufshcd_send_command(struct ufs_hba *hba, unsigned int task_tag,
2314 			 struct ufs_hw_queue *hwq)
2315 {
2316 	struct ufshcd_lrb *lrbp = &hba->lrb[task_tag];
2317 	unsigned long flags;
2318 
2319 	lrbp->issue_time_stamp = ktime_get();
2320 	lrbp->issue_time_stamp_local_clock = local_clock();
2321 	lrbp->compl_time_stamp = ktime_set(0, 0);
2322 	lrbp->compl_time_stamp_local_clock = 0;
2323 	ufshcd_add_command_trace(hba, task_tag, UFS_CMD_SEND);
2324 	if (lrbp->cmd)
2325 		ufshcd_clk_scaling_start_busy(hba);
2326 	if (unlikely(ufshcd_should_inform_monitor(hba, lrbp)))
2327 		ufshcd_start_monitor(hba, lrbp);
2328 
2329 	if (is_mcq_enabled(hba)) {
2330 		int utrd_size = sizeof(struct utp_transfer_req_desc);
2331 		struct utp_transfer_req_desc *src = lrbp->utr_descriptor_ptr;
2332 		struct utp_transfer_req_desc *dest;
2333 
2334 		spin_lock(&hwq->sq_lock);
2335 		dest = hwq->sqe_base_addr + hwq->sq_tail_slot;
2336 		memcpy(dest, src, utrd_size);
2337 		ufshcd_inc_sq_tail(hwq);
2338 		spin_unlock(&hwq->sq_lock);
2339 	} else {
2340 		spin_lock_irqsave(&hba->outstanding_lock, flags);
2341 		if (hba->vops && hba->vops->setup_xfer_req)
2342 			hba->vops->setup_xfer_req(hba, lrbp->task_tag,
2343 						  !!lrbp->cmd);
2344 		__set_bit(lrbp->task_tag, &hba->outstanding_reqs);
2345 		ufshcd_writel(hba, 1 << lrbp->task_tag,
2346 			      REG_UTP_TRANSFER_REQ_DOOR_BELL);
2347 		spin_unlock_irqrestore(&hba->outstanding_lock, flags);
2348 	}
2349 }
2350 
2351 /**
2352  * ufshcd_copy_sense_data - Copy sense data in case of check condition
2353  * @lrbp: pointer to local reference block
2354  */
2355 static inline void ufshcd_copy_sense_data(struct ufshcd_lrb *lrbp)
2356 {
2357 	u8 *const sense_buffer = lrbp->cmd->sense_buffer;
2358 	u16 resp_len;
2359 	int len;
2360 
2361 	resp_len = be16_to_cpu(lrbp->ucd_rsp_ptr->header.data_segment_length);
2362 	if (sense_buffer && resp_len) {
2363 		int len_to_copy;
2364 
2365 		len = be16_to_cpu(lrbp->ucd_rsp_ptr->sr.sense_data_len);
2366 		len_to_copy = min_t(int, UFS_SENSE_SIZE, len);
2367 
2368 		memcpy(sense_buffer, lrbp->ucd_rsp_ptr->sr.sense_data,
2369 		       len_to_copy);
2370 	}
2371 }
2372 
2373 /**
2374  * ufshcd_copy_query_response() - Copy the Query Response and the data
2375  * descriptor
2376  * @hba: per adapter instance
2377  * @lrbp: pointer to local reference block
2378  *
2379  * Return: 0 upon success; < 0 upon failure.
2380  */
2381 static
2382 int ufshcd_copy_query_response(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2383 {
2384 	struct ufs_query_res *query_res = &hba->dev_cmd.query.response;
2385 
2386 	memcpy(&query_res->upiu_res, &lrbp->ucd_rsp_ptr->qr, QUERY_OSF_SIZE);
2387 
2388 	/* Get the descriptor */
2389 	if (hba->dev_cmd.query.descriptor &&
2390 	    lrbp->ucd_rsp_ptr->qr.opcode == UPIU_QUERY_OPCODE_READ_DESC) {
2391 		u8 *descp = (u8 *)lrbp->ucd_rsp_ptr +
2392 				GENERAL_UPIU_REQUEST_SIZE;
2393 		u16 resp_len;
2394 		u16 buf_len;
2395 
2396 		/* data segment length */
2397 		resp_len = be16_to_cpu(lrbp->ucd_rsp_ptr->header
2398 				       .data_segment_length);
2399 		buf_len = be16_to_cpu(
2400 				hba->dev_cmd.query.request.upiu_req.length);
2401 		if (likely(buf_len >= resp_len)) {
2402 			memcpy(hba->dev_cmd.query.descriptor, descp, resp_len);
2403 		} else {
2404 			dev_warn(hba->dev,
2405 				 "%s: rsp size %d is bigger than buffer size %d",
2406 				 __func__, resp_len, buf_len);
2407 			return -EINVAL;
2408 		}
2409 	}
2410 
2411 	return 0;
2412 }
2413 
2414 /**
2415  * ufshcd_hba_capabilities - Read controller capabilities
2416  * @hba: per adapter instance
2417  *
2418  * Return: 0 on success, negative on error.
2419  */
2420 static inline int ufshcd_hba_capabilities(struct ufs_hba *hba)
2421 {
2422 	int err;
2423 
2424 	hba->capabilities = ufshcd_readl(hba, REG_CONTROLLER_CAPABILITIES);
2425 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_64BIT_ADDRESS)
2426 		hba->capabilities &= ~MASK_64_ADDRESSING_SUPPORT;
2427 
2428 	/* nutrs and nutmrs are 0 based values */
2429 	hba->nutrs = (hba->capabilities & MASK_TRANSFER_REQUESTS_SLOTS) + 1;
2430 	hba->nutmrs =
2431 	((hba->capabilities & MASK_TASK_MANAGEMENT_REQUEST_SLOTS) >> 16) + 1;
2432 	hba->reserved_slot = hba->nutrs - 1;
2433 
2434 	/* Read crypto capabilities */
2435 	err = ufshcd_hba_init_crypto_capabilities(hba);
2436 	if (err) {
2437 		dev_err(hba->dev, "crypto setup failed\n");
2438 		return err;
2439 	}
2440 
2441 	hba->mcq_sup = FIELD_GET(MASK_MCQ_SUPPORT, hba->capabilities);
2442 	if (!hba->mcq_sup)
2443 		return 0;
2444 
2445 	hba->mcq_capabilities = ufshcd_readl(hba, REG_MCQCAP);
2446 	hba->ext_iid_sup = FIELD_GET(MASK_EXT_IID_SUPPORT,
2447 				     hba->mcq_capabilities);
2448 
2449 	return 0;
2450 }
2451 
2452 /**
2453  * ufshcd_ready_for_uic_cmd - Check if controller is ready
2454  *                            to accept UIC commands
2455  * @hba: per adapter instance
2456  *
2457  * Return: true on success, else false.
2458  */
2459 static inline bool ufshcd_ready_for_uic_cmd(struct ufs_hba *hba)
2460 {
2461 	u32 val;
2462 	int ret = read_poll_timeout(ufshcd_readl, val, val & UIC_COMMAND_READY,
2463 				    500, UIC_CMD_TIMEOUT * 1000, false, hba,
2464 				    REG_CONTROLLER_STATUS);
2465 	return ret == 0;
2466 }
2467 
2468 /**
2469  * ufshcd_get_upmcrs - Get the power mode change request status
2470  * @hba: Pointer to adapter instance
2471  *
2472  * This function gets the UPMCRS field of HCS register
2473  *
2474  * Return: value of UPMCRS field.
2475  */
2476 static inline u8 ufshcd_get_upmcrs(struct ufs_hba *hba)
2477 {
2478 	return (ufshcd_readl(hba, REG_CONTROLLER_STATUS) >> 8) & 0x7;
2479 }
2480 
2481 /**
2482  * ufshcd_dispatch_uic_cmd - Dispatch an UIC command to the Unipro layer
2483  * @hba: per adapter instance
2484  * @uic_cmd: UIC command
2485  */
2486 static inline void
2487 ufshcd_dispatch_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2488 {
2489 	lockdep_assert_held(&hba->uic_cmd_mutex);
2490 
2491 	WARN_ON(hba->active_uic_cmd);
2492 
2493 	hba->active_uic_cmd = uic_cmd;
2494 
2495 	/* Write Args */
2496 	ufshcd_writel(hba, uic_cmd->argument1, REG_UIC_COMMAND_ARG_1);
2497 	ufshcd_writel(hba, uic_cmd->argument2, REG_UIC_COMMAND_ARG_2);
2498 	ufshcd_writel(hba, uic_cmd->argument3, REG_UIC_COMMAND_ARG_3);
2499 
2500 	ufshcd_add_uic_command_trace(hba, uic_cmd, UFS_CMD_SEND);
2501 
2502 	/* Write UIC Cmd */
2503 	ufshcd_writel(hba, uic_cmd->command & COMMAND_OPCODE_MASK,
2504 		      REG_UIC_COMMAND);
2505 }
2506 
2507 /**
2508  * ufshcd_wait_for_uic_cmd - Wait for completion of an UIC command
2509  * @hba: per adapter instance
2510  * @uic_cmd: UIC command
2511  *
2512  * Return: 0 only if success.
2513  */
2514 static int
2515 ufshcd_wait_for_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2516 {
2517 	int ret;
2518 	unsigned long flags;
2519 
2520 	lockdep_assert_held(&hba->uic_cmd_mutex);
2521 
2522 	if (wait_for_completion_timeout(&uic_cmd->done,
2523 					msecs_to_jiffies(UIC_CMD_TIMEOUT))) {
2524 		ret = uic_cmd->argument2 & MASK_UIC_COMMAND_RESULT;
2525 	} else {
2526 		ret = -ETIMEDOUT;
2527 		dev_err(hba->dev,
2528 			"uic cmd 0x%x with arg3 0x%x completion timeout\n",
2529 			uic_cmd->command, uic_cmd->argument3);
2530 
2531 		if (!uic_cmd->cmd_active) {
2532 			dev_err(hba->dev, "%s: UIC cmd has been completed, return the result\n",
2533 				__func__);
2534 			ret = uic_cmd->argument2 & MASK_UIC_COMMAND_RESULT;
2535 		}
2536 	}
2537 
2538 	spin_lock_irqsave(hba->host->host_lock, flags);
2539 	hba->active_uic_cmd = NULL;
2540 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2541 
2542 	return ret;
2543 }
2544 
2545 /**
2546  * __ufshcd_send_uic_cmd - Send UIC commands and retrieve the result
2547  * @hba: per adapter instance
2548  * @uic_cmd: UIC command
2549  * @completion: initialize the completion only if this is set to true
2550  *
2551  * Return: 0 only if success.
2552  */
2553 static int
2554 __ufshcd_send_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd,
2555 		      bool completion)
2556 {
2557 	lockdep_assert_held(&hba->uic_cmd_mutex);
2558 
2559 	if (!ufshcd_ready_for_uic_cmd(hba)) {
2560 		dev_err(hba->dev,
2561 			"Controller not ready to accept UIC commands\n");
2562 		return -EIO;
2563 	}
2564 
2565 	if (completion)
2566 		init_completion(&uic_cmd->done);
2567 
2568 	uic_cmd->cmd_active = 1;
2569 	ufshcd_dispatch_uic_cmd(hba, uic_cmd);
2570 
2571 	return 0;
2572 }
2573 
2574 /**
2575  * ufshcd_send_uic_cmd - Send UIC commands and retrieve the result
2576  * @hba: per adapter instance
2577  * @uic_cmd: UIC command
2578  *
2579  * Return: 0 only if success.
2580  */
2581 int ufshcd_send_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2582 {
2583 	int ret;
2584 
2585 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_UIC_CMD)
2586 		return 0;
2587 
2588 	ufshcd_hold(hba);
2589 	mutex_lock(&hba->uic_cmd_mutex);
2590 	ufshcd_add_delay_before_dme_cmd(hba);
2591 
2592 	ret = __ufshcd_send_uic_cmd(hba, uic_cmd, true);
2593 	if (!ret)
2594 		ret = ufshcd_wait_for_uic_cmd(hba, uic_cmd);
2595 
2596 	mutex_unlock(&hba->uic_cmd_mutex);
2597 
2598 	ufshcd_release(hba);
2599 	return ret;
2600 }
2601 
2602 /**
2603  * ufshcd_sgl_to_prdt - SG list to PRTD (Physical Region Description Table, 4DW format)
2604  * @hba:	per-adapter instance
2605  * @lrbp:	pointer to local reference block
2606  * @sg_entries:	The number of sg lists actually used
2607  * @sg_list:	Pointer to SG list
2608  */
2609 static void ufshcd_sgl_to_prdt(struct ufs_hba *hba, struct ufshcd_lrb *lrbp, int sg_entries,
2610 			       struct scatterlist *sg_list)
2611 {
2612 	struct ufshcd_sg_entry *prd;
2613 	struct scatterlist *sg;
2614 	int i;
2615 
2616 	if (sg_entries) {
2617 
2618 		if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN)
2619 			lrbp->utr_descriptor_ptr->prd_table_length =
2620 				cpu_to_le16(sg_entries * ufshcd_sg_entry_size(hba));
2621 		else
2622 			lrbp->utr_descriptor_ptr->prd_table_length = cpu_to_le16(sg_entries);
2623 
2624 		prd = lrbp->ucd_prdt_ptr;
2625 
2626 		for_each_sg(sg_list, sg, sg_entries, i) {
2627 			const unsigned int len = sg_dma_len(sg);
2628 
2629 			/*
2630 			 * From the UFSHCI spec: "Data Byte Count (DBC): A '0'
2631 			 * based value that indicates the length, in bytes, of
2632 			 * the data block. A maximum of length of 256KB may
2633 			 * exist for any entry. Bits 1:0 of this field shall be
2634 			 * 11b to indicate Dword granularity. A value of '3'
2635 			 * indicates 4 bytes, '7' indicates 8 bytes, etc."
2636 			 */
2637 			WARN_ONCE(len > SZ_256K, "len = %#x\n", len);
2638 			prd->size = cpu_to_le32(len - 1);
2639 			prd->addr = cpu_to_le64(sg->dma_address);
2640 			prd->reserved = 0;
2641 			prd = (void *)prd + ufshcd_sg_entry_size(hba);
2642 		}
2643 	} else {
2644 		lrbp->utr_descriptor_ptr->prd_table_length = 0;
2645 	}
2646 }
2647 
2648 /**
2649  * ufshcd_map_sg - Map scatter-gather list to prdt
2650  * @hba: per adapter instance
2651  * @lrbp: pointer to local reference block
2652  *
2653  * Return: 0 in case of success, non-zero value in case of failure.
2654  */
2655 static int ufshcd_map_sg(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2656 {
2657 	struct scsi_cmnd *cmd = lrbp->cmd;
2658 	int sg_segments = scsi_dma_map(cmd);
2659 
2660 	if (sg_segments < 0)
2661 		return sg_segments;
2662 
2663 	ufshcd_sgl_to_prdt(hba, lrbp, sg_segments, scsi_sglist(cmd));
2664 
2665 	return 0;
2666 }
2667 
2668 /**
2669  * ufshcd_enable_intr - enable interrupts
2670  * @hba: per adapter instance
2671  * @intrs: interrupt bits
2672  */
2673 static void ufshcd_enable_intr(struct ufs_hba *hba, u32 intrs)
2674 {
2675 	u32 set = ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
2676 
2677 	if (hba->ufs_version == ufshci_version(1, 0)) {
2678 		u32 rw;
2679 		rw = set & INTERRUPT_MASK_RW_VER_10;
2680 		set = rw | ((set ^ intrs) & intrs);
2681 	} else {
2682 		set |= intrs;
2683 	}
2684 
2685 	ufshcd_writel(hba, set, REG_INTERRUPT_ENABLE);
2686 }
2687 
2688 /**
2689  * ufshcd_disable_intr - disable interrupts
2690  * @hba: per adapter instance
2691  * @intrs: interrupt bits
2692  */
2693 static void ufshcd_disable_intr(struct ufs_hba *hba, u32 intrs)
2694 {
2695 	u32 set = ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
2696 
2697 	if (hba->ufs_version == ufshci_version(1, 0)) {
2698 		u32 rw;
2699 		rw = (set & INTERRUPT_MASK_RW_VER_10) &
2700 			~(intrs & INTERRUPT_MASK_RW_VER_10);
2701 		set = rw | ((set & intrs) & ~INTERRUPT_MASK_RW_VER_10);
2702 
2703 	} else {
2704 		set &= ~intrs;
2705 	}
2706 
2707 	ufshcd_writel(hba, set, REG_INTERRUPT_ENABLE);
2708 }
2709 
2710 /**
2711  * ufshcd_prepare_req_desc_hdr - Fill UTP Transfer request descriptor header according to request
2712  * descriptor according to request
2713  * @lrbp: pointer to local reference block
2714  * @upiu_flags: flags required in the header
2715  * @cmd_dir: requests data direction
2716  * @ehs_length: Total EHS Length (in 32‐bytes units of all Extra Header Segments)
2717  */
2718 static void ufshcd_prepare_req_desc_hdr(struct ufshcd_lrb *lrbp, u8 *upiu_flags,
2719 					enum dma_data_direction cmd_dir, int ehs_length)
2720 {
2721 	struct utp_transfer_req_desc *req_desc = lrbp->utr_descriptor_ptr;
2722 	struct request_desc_header *h = &req_desc->header;
2723 	enum utp_data_direction data_direction;
2724 
2725 	*h = (typeof(*h)){ };
2726 
2727 	if (cmd_dir == DMA_FROM_DEVICE) {
2728 		data_direction = UTP_DEVICE_TO_HOST;
2729 		*upiu_flags = UPIU_CMD_FLAGS_READ;
2730 	} else if (cmd_dir == DMA_TO_DEVICE) {
2731 		data_direction = UTP_HOST_TO_DEVICE;
2732 		*upiu_flags = UPIU_CMD_FLAGS_WRITE;
2733 	} else {
2734 		data_direction = UTP_NO_DATA_TRANSFER;
2735 		*upiu_flags = UPIU_CMD_FLAGS_NONE;
2736 	}
2737 
2738 	h->command_type = lrbp->command_type;
2739 	h->data_direction = data_direction;
2740 	h->ehs_length = ehs_length;
2741 
2742 	if (lrbp->intr_cmd)
2743 		h->interrupt = 1;
2744 
2745 	/* Prepare crypto related dwords */
2746 	ufshcd_prepare_req_desc_hdr_crypto(lrbp, h);
2747 
2748 	/*
2749 	 * assigning invalid value for command status. Controller
2750 	 * updates OCS on command completion, with the command
2751 	 * status
2752 	 */
2753 	h->ocs = OCS_INVALID_COMMAND_STATUS;
2754 
2755 	req_desc->prd_table_length = 0;
2756 }
2757 
2758 /**
2759  * ufshcd_prepare_utp_scsi_cmd_upiu() - fills the utp_transfer_req_desc,
2760  * for scsi commands
2761  * @lrbp: local reference block pointer
2762  * @upiu_flags: flags
2763  */
2764 static
2765 void ufshcd_prepare_utp_scsi_cmd_upiu(struct ufshcd_lrb *lrbp, u8 upiu_flags)
2766 {
2767 	struct scsi_cmnd *cmd = lrbp->cmd;
2768 	struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2769 	unsigned short cdb_len;
2770 
2771 	ucd_req_ptr->header = (struct utp_upiu_header){
2772 		.transaction_code = UPIU_TRANSACTION_COMMAND,
2773 		.flags = upiu_flags,
2774 		.lun = lrbp->lun,
2775 		.task_tag = lrbp->task_tag,
2776 		.command_set_type = UPIU_COMMAND_SET_TYPE_SCSI,
2777 	};
2778 
2779 	WARN_ON_ONCE(ucd_req_ptr->header.task_tag != lrbp->task_tag);
2780 
2781 	ucd_req_ptr->sc.exp_data_transfer_len = cpu_to_be32(cmd->sdb.length);
2782 
2783 	cdb_len = min_t(unsigned short, cmd->cmd_len, UFS_CDB_SIZE);
2784 	memset(ucd_req_ptr->sc.cdb, 0, UFS_CDB_SIZE);
2785 	memcpy(ucd_req_ptr->sc.cdb, cmd->cmnd, cdb_len);
2786 
2787 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2788 }
2789 
2790 /**
2791  * ufshcd_prepare_utp_query_req_upiu() - fill the utp_transfer_req_desc for query request
2792  * @hba: UFS hba
2793  * @lrbp: local reference block pointer
2794  * @upiu_flags: flags
2795  */
2796 static void ufshcd_prepare_utp_query_req_upiu(struct ufs_hba *hba,
2797 				struct ufshcd_lrb *lrbp, u8 upiu_flags)
2798 {
2799 	struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2800 	struct ufs_query *query = &hba->dev_cmd.query;
2801 	u16 len = be16_to_cpu(query->request.upiu_req.length);
2802 
2803 	/* Query request header */
2804 	ucd_req_ptr->header = (struct utp_upiu_header){
2805 		.transaction_code = UPIU_TRANSACTION_QUERY_REQ,
2806 		.flags = upiu_flags,
2807 		.lun = lrbp->lun,
2808 		.task_tag = lrbp->task_tag,
2809 		.query_function = query->request.query_func,
2810 		/* Data segment length only need for WRITE_DESC */
2811 		.data_segment_length =
2812 			query->request.upiu_req.opcode ==
2813 					UPIU_QUERY_OPCODE_WRITE_DESC ?
2814 				cpu_to_be16(len) :
2815 				0,
2816 	};
2817 
2818 	/* Copy the Query Request buffer as is */
2819 	memcpy(&ucd_req_ptr->qr, &query->request.upiu_req,
2820 			QUERY_OSF_SIZE);
2821 
2822 	/* Copy the Descriptor */
2823 	if (query->request.upiu_req.opcode == UPIU_QUERY_OPCODE_WRITE_DESC)
2824 		memcpy(ucd_req_ptr + 1, query->descriptor, len);
2825 
2826 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2827 }
2828 
2829 static inline void ufshcd_prepare_utp_nop_upiu(struct ufshcd_lrb *lrbp)
2830 {
2831 	struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2832 
2833 	memset(ucd_req_ptr, 0, sizeof(struct utp_upiu_req));
2834 
2835 	ucd_req_ptr->header = (struct utp_upiu_header){
2836 		.transaction_code = UPIU_TRANSACTION_NOP_OUT,
2837 		.task_tag = lrbp->task_tag,
2838 	};
2839 
2840 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2841 }
2842 
2843 /**
2844  * ufshcd_compose_devman_upiu - UFS Protocol Information Unit(UPIU)
2845  *			     for Device Management Purposes
2846  * @hba: per adapter instance
2847  * @lrbp: pointer to local reference block
2848  *
2849  * Return: 0 upon success; < 0 upon failure.
2850  */
2851 static int ufshcd_compose_devman_upiu(struct ufs_hba *hba,
2852 				      struct ufshcd_lrb *lrbp)
2853 {
2854 	u8 upiu_flags;
2855 	int ret = 0;
2856 
2857 	if (hba->ufs_version <= ufshci_version(1, 1))
2858 		lrbp->command_type = UTP_CMD_TYPE_DEV_MANAGE;
2859 	else
2860 		lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
2861 
2862 	ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, DMA_NONE, 0);
2863 	if (hba->dev_cmd.type == DEV_CMD_TYPE_QUERY)
2864 		ufshcd_prepare_utp_query_req_upiu(hba, lrbp, upiu_flags);
2865 	else if (hba->dev_cmd.type == DEV_CMD_TYPE_NOP)
2866 		ufshcd_prepare_utp_nop_upiu(lrbp);
2867 	else
2868 		ret = -EINVAL;
2869 
2870 	return ret;
2871 }
2872 
2873 /**
2874  * ufshcd_comp_scsi_upiu - UFS Protocol Information Unit(UPIU)
2875  *			   for SCSI Purposes
2876  * @hba: per adapter instance
2877  * @lrbp: pointer to local reference block
2878  */
2879 static void ufshcd_comp_scsi_upiu(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2880 {
2881 	struct request *rq = scsi_cmd_to_rq(lrbp->cmd);
2882 	unsigned int ioprio_class = IOPRIO_PRIO_CLASS(req_get_ioprio(rq));
2883 	u8 upiu_flags;
2884 
2885 	if (hba->ufs_version <= ufshci_version(1, 1))
2886 		lrbp->command_type = UTP_CMD_TYPE_SCSI;
2887 	else
2888 		lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
2889 
2890 	ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags,
2891 				    lrbp->cmd->sc_data_direction, 0);
2892 	if (ioprio_class == IOPRIO_CLASS_RT)
2893 		upiu_flags |= UPIU_CMD_FLAGS_CP;
2894 	ufshcd_prepare_utp_scsi_cmd_upiu(lrbp, upiu_flags);
2895 }
2896 
2897 /**
2898  * ufshcd_upiu_wlun_to_scsi_wlun - maps UPIU W-LUN id to SCSI W-LUN ID
2899  * @upiu_wlun_id: UPIU W-LUN id
2900  *
2901  * Return: SCSI W-LUN id.
2902  */
2903 static inline u16 ufshcd_upiu_wlun_to_scsi_wlun(u8 upiu_wlun_id)
2904 {
2905 	return (upiu_wlun_id & ~UFS_UPIU_WLUN_ID) | SCSI_W_LUN_BASE;
2906 }
2907 
2908 static inline bool is_device_wlun(struct scsi_device *sdev)
2909 {
2910 	return sdev->lun ==
2911 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_UFS_DEVICE_WLUN);
2912 }
2913 
2914 /*
2915  * Associate the UFS controller queue with the default and poll HCTX types.
2916  * Initialize the mq_map[] arrays.
2917  */
2918 static void ufshcd_map_queues(struct Scsi_Host *shost)
2919 {
2920 	struct ufs_hba *hba = shost_priv(shost);
2921 	int i, queue_offset = 0;
2922 
2923 	if (!is_mcq_supported(hba)) {
2924 		hba->nr_queues[HCTX_TYPE_DEFAULT] = 1;
2925 		hba->nr_queues[HCTX_TYPE_READ] = 0;
2926 		hba->nr_queues[HCTX_TYPE_POLL] = 1;
2927 		hba->nr_hw_queues = 1;
2928 	}
2929 
2930 	for (i = 0; i < shost->nr_maps; i++) {
2931 		struct blk_mq_queue_map *map = &shost->tag_set.map[i];
2932 
2933 		map->nr_queues = hba->nr_queues[i];
2934 		if (!map->nr_queues)
2935 			continue;
2936 		map->queue_offset = queue_offset;
2937 		if (i == HCTX_TYPE_POLL && !is_mcq_supported(hba))
2938 			map->queue_offset = 0;
2939 
2940 		blk_mq_map_queues(map);
2941 		queue_offset += map->nr_queues;
2942 	}
2943 }
2944 
2945 static void ufshcd_init_lrb(struct ufs_hba *hba, struct ufshcd_lrb *lrb, int i)
2946 {
2947 	struct utp_transfer_cmd_desc *cmd_descp = (void *)hba->ucdl_base_addr +
2948 		i * ufshcd_get_ucd_size(hba);
2949 	struct utp_transfer_req_desc *utrdlp = hba->utrdl_base_addr;
2950 	dma_addr_t cmd_desc_element_addr = hba->ucdl_dma_addr +
2951 		i * ufshcd_get_ucd_size(hba);
2952 	u16 response_offset = offsetof(struct utp_transfer_cmd_desc,
2953 				       response_upiu);
2954 	u16 prdt_offset = offsetof(struct utp_transfer_cmd_desc, prd_table);
2955 
2956 	lrb->utr_descriptor_ptr = utrdlp + i;
2957 	lrb->utrd_dma_addr = hba->utrdl_dma_addr +
2958 		i * sizeof(struct utp_transfer_req_desc);
2959 	lrb->ucd_req_ptr = (struct utp_upiu_req *)cmd_descp->command_upiu;
2960 	lrb->ucd_req_dma_addr = cmd_desc_element_addr;
2961 	lrb->ucd_rsp_ptr = (struct utp_upiu_rsp *)cmd_descp->response_upiu;
2962 	lrb->ucd_rsp_dma_addr = cmd_desc_element_addr + response_offset;
2963 	lrb->ucd_prdt_ptr = (struct ufshcd_sg_entry *)cmd_descp->prd_table;
2964 	lrb->ucd_prdt_dma_addr = cmd_desc_element_addr + prdt_offset;
2965 }
2966 
2967 /**
2968  * ufshcd_queuecommand - main entry point for SCSI requests
2969  * @host: SCSI host pointer
2970  * @cmd: command from SCSI Midlayer
2971  *
2972  * Return: 0 for success, non-zero in case of failure.
2973  */
2974 static int ufshcd_queuecommand(struct Scsi_Host *host, struct scsi_cmnd *cmd)
2975 {
2976 	struct ufs_hba *hba = shost_priv(host);
2977 	int tag = scsi_cmd_to_rq(cmd)->tag;
2978 	struct ufshcd_lrb *lrbp;
2979 	int err = 0;
2980 	struct ufs_hw_queue *hwq = NULL;
2981 
2982 	switch (hba->ufshcd_state) {
2983 	case UFSHCD_STATE_OPERATIONAL:
2984 		break;
2985 	case UFSHCD_STATE_EH_SCHEDULED_NON_FATAL:
2986 		/*
2987 		 * SCSI error handler can call ->queuecommand() while UFS error
2988 		 * handler is in progress. Error interrupts could change the
2989 		 * state from UFSHCD_STATE_RESET to
2990 		 * UFSHCD_STATE_EH_SCHEDULED_NON_FATAL. Prevent requests
2991 		 * being issued in that case.
2992 		 */
2993 		if (ufshcd_eh_in_progress(hba)) {
2994 			err = SCSI_MLQUEUE_HOST_BUSY;
2995 			goto out;
2996 		}
2997 		break;
2998 	case UFSHCD_STATE_EH_SCHEDULED_FATAL:
2999 		/*
3000 		 * pm_runtime_get_sync() is used at error handling preparation
3001 		 * stage. If a scsi cmd, e.g. the SSU cmd, is sent from hba's
3002 		 * PM ops, it can never be finished if we let SCSI layer keep
3003 		 * retrying it, which gets err handler stuck forever. Neither
3004 		 * can we let the scsi cmd pass through, because UFS is in bad
3005 		 * state, the scsi cmd may eventually time out, which will get
3006 		 * err handler blocked for too long. So, just fail the scsi cmd
3007 		 * sent from PM ops, err handler can recover PM error anyways.
3008 		 */
3009 		if (hba->pm_op_in_progress) {
3010 			hba->force_reset = true;
3011 			set_host_byte(cmd, DID_BAD_TARGET);
3012 			scsi_done(cmd);
3013 			goto out;
3014 		}
3015 		fallthrough;
3016 	case UFSHCD_STATE_RESET:
3017 		err = SCSI_MLQUEUE_HOST_BUSY;
3018 		goto out;
3019 	case UFSHCD_STATE_ERROR:
3020 		set_host_byte(cmd, DID_ERROR);
3021 		scsi_done(cmd);
3022 		goto out;
3023 	}
3024 
3025 	hba->req_abort_count = 0;
3026 
3027 	ufshcd_hold(hba);
3028 
3029 	lrbp = &hba->lrb[tag];
3030 	lrbp->cmd = cmd;
3031 	lrbp->task_tag = tag;
3032 	lrbp->lun = ufshcd_scsi_to_upiu_lun(cmd->device->lun);
3033 	lrbp->intr_cmd = !ufshcd_is_intr_aggr_allowed(hba);
3034 
3035 	ufshcd_prepare_lrbp_crypto(scsi_cmd_to_rq(cmd), lrbp);
3036 
3037 	lrbp->req_abort_skip = false;
3038 
3039 	ufshcd_comp_scsi_upiu(hba, lrbp);
3040 
3041 	err = ufshcd_map_sg(hba, lrbp);
3042 	if (err) {
3043 		ufshcd_release(hba);
3044 		goto out;
3045 	}
3046 
3047 	if (is_mcq_enabled(hba))
3048 		hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(cmd));
3049 
3050 	ufshcd_send_command(hba, tag, hwq);
3051 
3052 out:
3053 	if (ufs_trigger_eh(hba)) {
3054 		unsigned long flags;
3055 
3056 		spin_lock_irqsave(hba->host->host_lock, flags);
3057 		ufshcd_schedule_eh_work(hba);
3058 		spin_unlock_irqrestore(hba->host->host_lock, flags);
3059 	}
3060 
3061 	return err;
3062 }
3063 
3064 static int ufshcd_compose_dev_cmd(struct ufs_hba *hba,
3065 		struct ufshcd_lrb *lrbp, enum dev_cmd_type cmd_type, int tag)
3066 {
3067 	lrbp->cmd = NULL;
3068 	lrbp->task_tag = tag;
3069 	lrbp->lun = 0; /* device management cmd is not specific to any LUN */
3070 	lrbp->intr_cmd = true; /* No interrupt aggregation */
3071 	ufshcd_prepare_lrbp_crypto(NULL, lrbp);
3072 	hba->dev_cmd.type = cmd_type;
3073 
3074 	return ufshcd_compose_devman_upiu(hba, lrbp);
3075 }
3076 
3077 /*
3078  * Check with the block layer if the command is inflight
3079  * @cmd: command to check.
3080  *
3081  * Return: true if command is inflight; false if not.
3082  */
3083 bool ufshcd_cmd_inflight(struct scsi_cmnd *cmd)
3084 {
3085 	struct request *rq;
3086 
3087 	if (!cmd)
3088 		return false;
3089 
3090 	rq = scsi_cmd_to_rq(cmd);
3091 	if (!blk_mq_request_started(rq))
3092 		return false;
3093 
3094 	return true;
3095 }
3096 
3097 /*
3098  * Clear the pending command in the controller and wait until
3099  * the controller confirms that the command has been cleared.
3100  * @hba: per adapter instance
3101  * @task_tag: The tag number of the command to be cleared.
3102  */
3103 static int ufshcd_clear_cmd(struct ufs_hba *hba, u32 task_tag)
3104 {
3105 	u32 mask;
3106 	unsigned long flags;
3107 	int err;
3108 
3109 	if (is_mcq_enabled(hba)) {
3110 		/*
3111 		 * MCQ mode. Clean up the MCQ resources similar to
3112 		 * what the ufshcd_utrl_clear() does for SDB mode.
3113 		 */
3114 		err = ufshcd_mcq_sq_cleanup(hba, task_tag);
3115 		if (err) {
3116 			dev_err(hba->dev, "%s: failed tag=%d. err=%d\n",
3117 				__func__, task_tag, err);
3118 			return err;
3119 		}
3120 		return 0;
3121 	}
3122 
3123 	mask = 1U << task_tag;
3124 
3125 	/* clear outstanding transaction before retry */
3126 	spin_lock_irqsave(hba->host->host_lock, flags);
3127 	ufshcd_utrl_clear(hba, mask);
3128 	spin_unlock_irqrestore(hba->host->host_lock, flags);
3129 
3130 	/*
3131 	 * wait for h/w to clear corresponding bit in door-bell.
3132 	 * max. wait is 1 sec.
3133 	 */
3134 	return ufshcd_wait_for_register(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL,
3135 					mask, ~mask, 1000, 1000);
3136 }
3137 
3138 /**
3139  * ufshcd_dev_cmd_completion() - handles device management command responses
3140  * @hba: per adapter instance
3141  * @lrbp: pointer to local reference block
3142  *
3143  * Return: 0 upon success; < 0 upon failure.
3144  */
3145 static int
3146 ufshcd_dev_cmd_completion(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
3147 {
3148 	enum upiu_response_transaction resp;
3149 	int err = 0;
3150 
3151 	hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
3152 	resp = ufshcd_get_req_rsp(lrbp->ucd_rsp_ptr);
3153 
3154 	switch (resp) {
3155 	case UPIU_TRANSACTION_NOP_IN:
3156 		if (hba->dev_cmd.type != DEV_CMD_TYPE_NOP) {
3157 			err = -EINVAL;
3158 			dev_err(hba->dev, "%s: unexpected response %x\n",
3159 					__func__, resp);
3160 		}
3161 		break;
3162 	case UPIU_TRANSACTION_QUERY_RSP: {
3163 		u8 response = lrbp->ucd_rsp_ptr->header.response;
3164 
3165 		if (response == 0)
3166 			err = ufshcd_copy_query_response(hba, lrbp);
3167 		break;
3168 	}
3169 	case UPIU_TRANSACTION_REJECT_UPIU:
3170 		/* TODO: handle Reject UPIU Response */
3171 		err = -EPERM;
3172 		dev_err(hba->dev, "%s: Reject UPIU not fully implemented\n",
3173 				__func__);
3174 		break;
3175 	case UPIU_TRANSACTION_RESPONSE:
3176 		if (hba->dev_cmd.type != DEV_CMD_TYPE_RPMB) {
3177 			err = -EINVAL;
3178 			dev_err(hba->dev, "%s: unexpected response %x\n", __func__, resp);
3179 		}
3180 		break;
3181 	default:
3182 		err = -EINVAL;
3183 		dev_err(hba->dev, "%s: Invalid device management cmd response: %x\n",
3184 				__func__, resp);
3185 		break;
3186 	}
3187 
3188 	return err;
3189 }
3190 
3191 static int ufshcd_wait_for_dev_cmd(struct ufs_hba *hba,
3192 		struct ufshcd_lrb *lrbp, int max_timeout)
3193 {
3194 	unsigned long time_left = msecs_to_jiffies(max_timeout);
3195 	unsigned long flags;
3196 	bool pending;
3197 	int err;
3198 
3199 retry:
3200 	time_left = wait_for_completion_timeout(hba->dev_cmd.complete,
3201 						time_left);
3202 
3203 	if (likely(time_left)) {
3204 		/*
3205 		 * The completion handler called complete() and the caller of
3206 		 * this function still owns the @lrbp tag so the code below does
3207 		 * not trigger any race conditions.
3208 		 */
3209 		hba->dev_cmd.complete = NULL;
3210 		err = ufshcd_get_tr_ocs(lrbp, NULL);
3211 		if (!err)
3212 			err = ufshcd_dev_cmd_completion(hba, lrbp);
3213 	} else {
3214 		err = -ETIMEDOUT;
3215 		dev_dbg(hba->dev, "%s: dev_cmd request timedout, tag %d\n",
3216 			__func__, lrbp->task_tag);
3217 
3218 		/* MCQ mode */
3219 		if (is_mcq_enabled(hba)) {
3220 			/* successfully cleared the command, retry if needed */
3221 			if (ufshcd_clear_cmd(hba, lrbp->task_tag) == 0)
3222 				err = -EAGAIN;
3223 			hba->dev_cmd.complete = NULL;
3224 			return err;
3225 		}
3226 
3227 		/* SDB mode */
3228 		if (ufshcd_clear_cmd(hba, lrbp->task_tag) == 0) {
3229 			/* successfully cleared the command, retry if needed */
3230 			err = -EAGAIN;
3231 			/*
3232 			 * Since clearing the command succeeded we also need to
3233 			 * clear the task tag bit from the outstanding_reqs
3234 			 * variable.
3235 			 */
3236 			spin_lock_irqsave(&hba->outstanding_lock, flags);
3237 			pending = test_bit(lrbp->task_tag,
3238 					   &hba->outstanding_reqs);
3239 			if (pending) {
3240 				hba->dev_cmd.complete = NULL;
3241 				__clear_bit(lrbp->task_tag,
3242 					    &hba->outstanding_reqs);
3243 			}
3244 			spin_unlock_irqrestore(&hba->outstanding_lock, flags);
3245 
3246 			if (!pending) {
3247 				/*
3248 				 * The completion handler ran while we tried to
3249 				 * clear the command.
3250 				 */
3251 				time_left = 1;
3252 				goto retry;
3253 			}
3254 		} else {
3255 			dev_err(hba->dev, "%s: failed to clear tag %d\n",
3256 				__func__, lrbp->task_tag);
3257 
3258 			spin_lock_irqsave(&hba->outstanding_lock, flags);
3259 			pending = test_bit(lrbp->task_tag,
3260 					   &hba->outstanding_reqs);
3261 			if (pending)
3262 				hba->dev_cmd.complete = NULL;
3263 			spin_unlock_irqrestore(&hba->outstanding_lock, flags);
3264 
3265 			if (!pending) {
3266 				/*
3267 				 * The completion handler ran while we tried to
3268 				 * clear the command.
3269 				 */
3270 				time_left = 1;
3271 				goto retry;
3272 			}
3273 		}
3274 	}
3275 
3276 	return err;
3277 }
3278 
3279 /**
3280  * ufshcd_exec_dev_cmd - API for sending device management requests
3281  * @hba: UFS hba
3282  * @cmd_type: specifies the type (NOP, Query...)
3283  * @timeout: timeout in milliseconds
3284  *
3285  * Return: 0 upon success; < 0 upon failure.
3286  *
3287  * NOTE: Since there is only one available tag for device management commands,
3288  * it is expected you hold the hba->dev_cmd.lock mutex.
3289  */
3290 static int ufshcd_exec_dev_cmd(struct ufs_hba *hba,
3291 		enum dev_cmd_type cmd_type, int timeout)
3292 {
3293 	DECLARE_COMPLETION_ONSTACK(wait);
3294 	const u32 tag = hba->reserved_slot;
3295 	struct ufshcd_lrb *lrbp;
3296 	int err;
3297 
3298 	/* Protects use of hba->reserved_slot. */
3299 	lockdep_assert_held(&hba->dev_cmd.lock);
3300 
3301 	down_read(&hba->clk_scaling_lock);
3302 
3303 	lrbp = &hba->lrb[tag];
3304 	lrbp->cmd = NULL;
3305 	err = ufshcd_compose_dev_cmd(hba, lrbp, cmd_type, tag);
3306 	if (unlikely(err))
3307 		goto out;
3308 
3309 	hba->dev_cmd.complete = &wait;
3310 
3311 	ufshcd_add_query_upiu_trace(hba, UFS_QUERY_SEND, lrbp->ucd_req_ptr);
3312 
3313 	ufshcd_send_command(hba, tag, hba->dev_cmd_queue);
3314 	err = ufshcd_wait_for_dev_cmd(hba, lrbp, timeout);
3315 	ufshcd_add_query_upiu_trace(hba, err ? UFS_QUERY_ERR : UFS_QUERY_COMP,
3316 				    (struct utp_upiu_req *)lrbp->ucd_rsp_ptr);
3317 
3318 out:
3319 	up_read(&hba->clk_scaling_lock);
3320 	return err;
3321 }
3322 
3323 /**
3324  * ufshcd_init_query() - init the query response and request parameters
3325  * @hba: per-adapter instance
3326  * @request: address of the request pointer to be initialized
3327  * @response: address of the response pointer to be initialized
3328  * @opcode: operation to perform
3329  * @idn: flag idn to access
3330  * @index: LU number to access
3331  * @selector: query/flag/descriptor further identification
3332  */
3333 static inline void ufshcd_init_query(struct ufs_hba *hba,
3334 		struct ufs_query_req **request, struct ufs_query_res **response,
3335 		enum query_opcode opcode, u8 idn, u8 index, u8 selector)
3336 {
3337 	*request = &hba->dev_cmd.query.request;
3338 	*response = &hba->dev_cmd.query.response;
3339 	memset(*request, 0, sizeof(struct ufs_query_req));
3340 	memset(*response, 0, sizeof(struct ufs_query_res));
3341 	(*request)->upiu_req.opcode = opcode;
3342 	(*request)->upiu_req.idn = idn;
3343 	(*request)->upiu_req.index = index;
3344 	(*request)->upiu_req.selector = selector;
3345 }
3346 
3347 static int ufshcd_query_flag_retry(struct ufs_hba *hba,
3348 	enum query_opcode opcode, enum flag_idn idn, u8 index, bool *flag_res)
3349 {
3350 	int ret;
3351 	int retries;
3352 
3353 	for (retries = 0; retries < QUERY_REQ_RETRIES; retries++) {
3354 		ret = ufshcd_query_flag(hba, opcode, idn, index, flag_res);
3355 		if (ret)
3356 			dev_dbg(hba->dev,
3357 				"%s: failed with error %d, retries %d\n",
3358 				__func__, ret, retries);
3359 		else
3360 			break;
3361 	}
3362 
3363 	if (ret)
3364 		dev_err(hba->dev,
3365 			"%s: query flag, opcode %d, idn %d, failed with error %d after %d retries\n",
3366 			__func__, opcode, idn, ret, retries);
3367 	return ret;
3368 }
3369 
3370 /**
3371  * ufshcd_query_flag() - API function for sending flag query requests
3372  * @hba: per-adapter instance
3373  * @opcode: flag query to perform
3374  * @idn: flag idn to access
3375  * @index: flag index to access
3376  * @flag_res: the flag value after the query request completes
3377  *
3378  * Return: 0 for success, non-zero in case of failure.
3379  */
3380 int ufshcd_query_flag(struct ufs_hba *hba, enum query_opcode opcode,
3381 			enum flag_idn idn, u8 index, bool *flag_res)
3382 {
3383 	struct ufs_query_req *request = NULL;
3384 	struct ufs_query_res *response = NULL;
3385 	int err, selector = 0;
3386 	int timeout = QUERY_REQ_TIMEOUT;
3387 
3388 	BUG_ON(!hba);
3389 
3390 	ufshcd_hold(hba);
3391 	mutex_lock(&hba->dev_cmd.lock);
3392 	ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3393 			selector);
3394 
3395 	switch (opcode) {
3396 	case UPIU_QUERY_OPCODE_SET_FLAG:
3397 	case UPIU_QUERY_OPCODE_CLEAR_FLAG:
3398 	case UPIU_QUERY_OPCODE_TOGGLE_FLAG:
3399 		request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3400 		break;
3401 	case UPIU_QUERY_OPCODE_READ_FLAG:
3402 		request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3403 		if (!flag_res) {
3404 			/* No dummy reads */
3405 			dev_err(hba->dev, "%s: Invalid argument for read request\n",
3406 					__func__);
3407 			err = -EINVAL;
3408 			goto out_unlock;
3409 		}
3410 		break;
3411 	default:
3412 		dev_err(hba->dev,
3413 			"%s: Expected query flag opcode but got = %d\n",
3414 			__func__, opcode);
3415 		err = -EINVAL;
3416 		goto out_unlock;
3417 	}
3418 
3419 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, timeout);
3420 
3421 	if (err) {
3422 		dev_err(hba->dev,
3423 			"%s: Sending flag query for idn %d failed, err = %d\n",
3424 			__func__, idn, err);
3425 		goto out_unlock;
3426 	}
3427 
3428 	if (flag_res)
3429 		*flag_res = (be32_to_cpu(response->upiu_res.value) &
3430 				MASK_QUERY_UPIU_FLAG_LOC) & 0x1;
3431 
3432 out_unlock:
3433 	mutex_unlock(&hba->dev_cmd.lock);
3434 	ufshcd_release(hba);
3435 	return err;
3436 }
3437 
3438 /**
3439  * ufshcd_query_attr - API function for sending attribute requests
3440  * @hba: per-adapter instance
3441  * @opcode: attribute opcode
3442  * @idn: attribute idn to access
3443  * @index: index field
3444  * @selector: selector field
3445  * @attr_val: the attribute value after the query request completes
3446  *
3447  * Return: 0 for success, non-zero in case of failure.
3448 */
3449 int ufshcd_query_attr(struct ufs_hba *hba, enum query_opcode opcode,
3450 		      enum attr_idn idn, u8 index, u8 selector, u32 *attr_val)
3451 {
3452 	struct ufs_query_req *request = NULL;
3453 	struct ufs_query_res *response = NULL;
3454 	int err;
3455 
3456 	BUG_ON(!hba);
3457 
3458 	if (!attr_val) {
3459 		dev_err(hba->dev, "%s: attribute value required for opcode 0x%x\n",
3460 				__func__, opcode);
3461 		return -EINVAL;
3462 	}
3463 
3464 	ufshcd_hold(hba);
3465 
3466 	mutex_lock(&hba->dev_cmd.lock);
3467 	ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3468 			selector);
3469 
3470 	switch (opcode) {
3471 	case UPIU_QUERY_OPCODE_WRITE_ATTR:
3472 		request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3473 		request->upiu_req.value = cpu_to_be32(*attr_val);
3474 		break;
3475 	case UPIU_QUERY_OPCODE_READ_ATTR:
3476 		request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3477 		break;
3478 	default:
3479 		dev_err(hba->dev, "%s: Expected query attr opcode but got = 0x%.2x\n",
3480 				__func__, opcode);
3481 		err = -EINVAL;
3482 		goto out_unlock;
3483 	}
3484 
3485 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT);
3486 
3487 	if (err) {
3488 		dev_err(hba->dev, "%s: opcode 0x%.2x for idn %d failed, index %d, err = %d\n",
3489 				__func__, opcode, idn, index, err);
3490 		goto out_unlock;
3491 	}
3492 
3493 	*attr_val = be32_to_cpu(response->upiu_res.value);
3494 
3495 out_unlock:
3496 	mutex_unlock(&hba->dev_cmd.lock);
3497 	ufshcd_release(hba);
3498 	return err;
3499 }
3500 
3501 /**
3502  * ufshcd_query_attr_retry() - API function for sending query
3503  * attribute with retries
3504  * @hba: per-adapter instance
3505  * @opcode: attribute opcode
3506  * @idn: attribute idn to access
3507  * @index: index field
3508  * @selector: selector field
3509  * @attr_val: the attribute value after the query request
3510  * completes
3511  *
3512  * Return: 0 for success, non-zero in case of failure.
3513 */
3514 int ufshcd_query_attr_retry(struct ufs_hba *hba,
3515 	enum query_opcode opcode, enum attr_idn idn, u8 index, u8 selector,
3516 	u32 *attr_val)
3517 {
3518 	int ret = 0;
3519 	u32 retries;
3520 
3521 	for (retries = QUERY_REQ_RETRIES; retries > 0; retries--) {
3522 		ret = ufshcd_query_attr(hba, opcode, idn, index,
3523 						selector, attr_val);
3524 		if (ret)
3525 			dev_dbg(hba->dev, "%s: failed with error %d, retries %d\n",
3526 				__func__, ret, retries);
3527 		else
3528 			break;
3529 	}
3530 
3531 	if (ret)
3532 		dev_err(hba->dev,
3533 			"%s: query attribute, idn %d, failed with error %d after %d retries\n",
3534 			__func__, idn, ret, QUERY_REQ_RETRIES);
3535 	return ret;
3536 }
3537 
3538 static int __ufshcd_query_descriptor(struct ufs_hba *hba,
3539 			enum query_opcode opcode, enum desc_idn idn, u8 index,
3540 			u8 selector, u8 *desc_buf, int *buf_len)
3541 {
3542 	struct ufs_query_req *request = NULL;
3543 	struct ufs_query_res *response = NULL;
3544 	int err;
3545 
3546 	BUG_ON(!hba);
3547 
3548 	if (!desc_buf) {
3549 		dev_err(hba->dev, "%s: descriptor buffer required for opcode 0x%x\n",
3550 				__func__, opcode);
3551 		return -EINVAL;
3552 	}
3553 
3554 	if (*buf_len < QUERY_DESC_MIN_SIZE || *buf_len > QUERY_DESC_MAX_SIZE) {
3555 		dev_err(hba->dev, "%s: descriptor buffer size (%d) is out of range\n",
3556 				__func__, *buf_len);
3557 		return -EINVAL;
3558 	}
3559 
3560 	ufshcd_hold(hba);
3561 
3562 	mutex_lock(&hba->dev_cmd.lock);
3563 	ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3564 			selector);
3565 	hba->dev_cmd.query.descriptor = desc_buf;
3566 	request->upiu_req.length = cpu_to_be16(*buf_len);
3567 
3568 	switch (opcode) {
3569 	case UPIU_QUERY_OPCODE_WRITE_DESC:
3570 		request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3571 		break;
3572 	case UPIU_QUERY_OPCODE_READ_DESC:
3573 		request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3574 		break;
3575 	default:
3576 		dev_err(hba->dev,
3577 				"%s: Expected query descriptor opcode but got = 0x%.2x\n",
3578 				__func__, opcode);
3579 		err = -EINVAL;
3580 		goto out_unlock;
3581 	}
3582 
3583 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT);
3584 
3585 	if (err) {
3586 		dev_err(hba->dev, "%s: opcode 0x%.2x for idn %d failed, index %d, err = %d\n",
3587 				__func__, opcode, idn, index, err);
3588 		goto out_unlock;
3589 	}
3590 
3591 	*buf_len = be16_to_cpu(response->upiu_res.length);
3592 
3593 out_unlock:
3594 	hba->dev_cmd.query.descriptor = NULL;
3595 	mutex_unlock(&hba->dev_cmd.lock);
3596 	ufshcd_release(hba);
3597 	return err;
3598 }
3599 
3600 /**
3601  * ufshcd_query_descriptor_retry - API function for sending descriptor requests
3602  * @hba: per-adapter instance
3603  * @opcode: attribute opcode
3604  * @idn: attribute idn to access
3605  * @index: index field
3606  * @selector: selector field
3607  * @desc_buf: the buffer that contains the descriptor
3608  * @buf_len: length parameter passed to the device
3609  *
3610  * The buf_len parameter will contain, on return, the length parameter
3611  * received on the response.
3612  *
3613  * Return: 0 for success, non-zero in case of failure.
3614  */
3615 int ufshcd_query_descriptor_retry(struct ufs_hba *hba,
3616 				  enum query_opcode opcode,
3617 				  enum desc_idn idn, u8 index,
3618 				  u8 selector,
3619 				  u8 *desc_buf, int *buf_len)
3620 {
3621 	int err;
3622 	int retries;
3623 
3624 	for (retries = QUERY_REQ_RETRIES; retries > 0; retries--) {
3625 		err = __ufshcd_query_descriptor(hba, opcode, idn, index,
3626 						selector, desc_buf, buf_len);
3627 		if (!err || err == -EINVAL)
3628 			break;
3629 	}
3630 
3631 	return err;
3632 }
3633 
3634 /**
3635  * ufshcd_read_desc_param - read the specified descriptor parameter
3636  * @hba: Pointer to adapter instance
3637  * @desc_id: descriptor idn value
3638  * @desc_index: descriptor index
3639  * @param_offset: offset of the parameter to read
3640  * @param_read_buf: pointer to buffer where parameter would be read
3641  * @param_size: sizeof(param_read_buf)
3642  *
3643  * Return: 0 in case of success, non-zero otherwise.
3644  */
3645 int ufshcd_read_desc_param(struct ufs_hba *hba,
3646 			   enum desc_idn desc_id,
3647 			   int desc_index,
3648 			   u8 param_offset,
3649 			   u8 *param_read_buf,
3650 			   u8 param_size)
3651 {
3652 	int ret;
3653 	u8 *desc_buf;
3654 	int buff_len = QUERY_DESC_MAX_SIZE;
3655 	bool is_kmalloc = true;
3656 
3657 	/* Safety check */
3658 	if (desc_id >= QUERY_DESC_IDN_MAX || !param_size)
3659 		return -EINVAL;
3660 
3661 	/* Check whether we need temp memory */
3662 	if (param_offset != 0 || param_size < buff_len) {
3663 		desc_buf = kzalloc(buff_len, GFP_KERNEL);
3664 		if (!desc_buf)
3665 			return -ENOMEM;
3666 	} else {
3667 		desc_buf = param_read_buf;
3668 		is_kmalloc = false;
3669 	}
3670 
3671 	/* Request for full descriptor */
3672 	ret = ufshcd_query_descriptor_retry(hba, UPIU_QUERY_OPCODE_READ_DESC,
3673 					    desc_id, desc_index, 0,
3674 					    desc_buf, &buff_len);
3675 	if (ret) {
3676 		dev_err(hba->dev, "%s: Failed reading descriptor. desc_id %d, desc_index %d, param_offset %d, ret %d\n",
3677 			__func__, desc_id, desc_index, param_offset, ret);
3678 		goto out;
3679 	}
3680 
3681 	/* Update descriptor length */
3682 	buff_len = desc_buf[QUERY_DESC_LENGTH_OFFSET];
3683 
3684 	if (param_offset >= buff_len) {
3685 		dev_err(hba->dev, "%s: Invalid offset 0x%x in descriptor IDN 0x%x, length 0x%x\n",
3686 			__func__, param_offset, desc_id, buff_len);
3687 		ret = -EINVAL;
3688 		goto out;
3689 	}
3690 
3691 	/* Sanity check */
3692 	if (desc_buf[QUERY_DESC_DESC_TYPE_OFFSET] != desc_id) {
3693 		dev_err(hba->dev, "%s: invalid desc_id %d in descriptor header\n",
3694 			__func__, desc_buf[QUERY_DESC_DESC_TYPE_OFFSET]);
3695 		ret = -EINVAL;
3696 		goto out;
3697 	}
3698 
3699 	if (is_kmalloc) {
3700 		/* Make sure we don't copy more data than available */
3701 		if (param_offset >= buff_len)
3702 			ret = -EINVAL;
3703 		else
3704 			memcpy(param_read_buf, &desc_buf[param_offset],
3705 			       min_t(u32, param_size, buff_len - param_offset));
3706 	}
3707 out:
3708 	if (is_kmalloc)
3709 		kfree(desc_buf);
3710 	return ret;
3711 }
3712 
3713 /**
3714  * struct uc_string_id - unicode string
3715  *
3716  * @len: size of this descriptor inclusive
3717  * @type: descriptor type
3718  * @uc: unicode string character
3719  */
3720 struct uc_string_id {
3721 	u8 len;
3722 	u8 type;
3723 	wchar_t uc[];
3724 } __packed;
3725 
3726 /* replace non-printable or non-ASCII characters with spaces */
3727 static inline char ufshcd_remove_non_printable(u8 ch)
3728 {
3729 	return (ch >= 0x20 && ch <= 0x7e) ? ch : ' ';
3730 }
3731 
3732 /**
3733  * ufshcd_read_string_desc - read string descriptor
3734  * @hba: pointer to adapter instance
3735  * @desc_index: descriptor index
3736  * @buf: pointer to buffer where descriptor would be read,
3737  *       the caller should free the memory.
3738  * @ascii: if true convert from unicode to ascii characters
3739  *         null terminated string.
3740  *
3741  * Return:
3742  * *      string size on success.
3743  * *      -ENOMEM: on allocation failure
3744  * *      -EINVAL: on a wrong parameter
3745  */
3746 int ufshcd_read_string_desc(struct ufs_hba *hba, u8 desc_index,
3747 			    u8 **buf, bool ascii)
3748 {
3749 	struct uc_string_id *uc_str;
3750 	u8 *str;
3751 	int ret;
3752 
3753 	if (!buf)
3754 		return -EINVAL;
3755 
3756 	uc_str = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
3757 	if (!uc_str)
3758 		return -ENOMEM;
3759 
3760 	ret = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_STRING, desc_index, 0,
3761 				     (u8 *)uc_str, QUERY_DESC_MAX_SIZE);
3762 	if (ret < 0) {
3763 		dev_err(hba->dev, "Reading String Desc failed after %d retries. err = %d\n",
3764 			QUERY_REQ_RETRIES, ret);
3765 		str = NULL;
3766 		goto out;
3767 	}
3768 
3769 	if (uc_str->len <= QUERY_DESC_HDR_SIZE) {
3770 		dev_dbg(hba->dev, "String Desc is of zero length\n");
3771 		str = NULL;
3772 		ret = 0;
3773 		goto out;
3774 	}
3775 
3776 	if (ascii) {
3777 		ssize_t ascii_len;
3778 		int i;
3779 		/* remove header and divide by 2 to move from UTF16 to UTF8 */
3780 		ascii_len = (uc_str->len - QUERY_DESC_HDR_SIZE) / 2 + 1;
3781 		str = kzalloc(ascii_len, GFP_KERNEL);
3782 		if (!str) {
3783 			ret = -ENOMEM;
3784 			goto out;
3785 		}
3786 
3787 		/*
3788 		 * the descriptor contains string in UTF16 format
3789 		 * we need to convert to utf-8 so it can be displayed
3790 		 */
3791 		ret = utf16s_to_utf8s(uc_str->uc,
3792 				      uc_str->len - QUERY_DESC_HDR_SIZE,
3793 				      UTF16_BIG_ENDIAN, str, ascii_len - 1);
3794 
3795 		/* replace non-printable or non-ASCII characters with spaces */
3796 		for (i = 0; i < ret; i++)
3797 			str[i] = ufshcd_remove_non_printable(str[i]);
3798 
3799 		str[ret++] = '\0';
3800 
3801 	} else {
3802 		str = kmemdup(uc_str, uc_str->len, GFP_KERNEL);
3803 		if (!str) {
3804 			ret = -ENOMEM;
3805 			goto out;
3806 		}
3807 		ret = uc_str->len;
3808 	}
3809 out:
3810 	*buf = str;
3811 	kfree(uc_str);
3812 	return ret;
3813 }
3814 
3815 /**
3816  * ufshcd_read_unit_desc_param - read the specified unit descriptor parameter
3817  * @hba: Pointer to adapter instance
3818  * @lun: lun id
3819  * @param_offset: offset of the parameter to read
3820  * @param_read_buf: pointer to buffer where parameter would be read
3821  * @param_size: sizeof(param_read_buf)
3822  *
3823  * Return: 0 in case of success, non-zero otherwise.
3824  */
3825 static inline int ufshcd_read_unit_desc_param(struct ufs_hba *hba,
3826 					      int lun,
3827 					      enum unit_desc_param param_offset,
3828 					      u8 *param_read_buf,
3829 					      u32 param_size)
3830 {
3831 	/*
3832 	 * Unit descriptors are only available for general purpose LUs (LUN id
3833 	 * from 0 to 7) and RPMB Well known LU.
3834 	 */
3835 	if (!ufs_is_valid_unit_desc_lun(&hba->dev_info, lun))
3836 		return -EOPNOTSUPP;
3837 
3838 	return ufshcd_read_desc_param(hba, QUERY_DESC_IDN_UNIT, lun,
3839 				      param_offset, param_read_buf, param_size);
3840 }
3841 
3842 static int ufshcd_get_ref_clk_gating_wait(struct ufs_hba *hba)
3843 {
3844 	int err = 0;
3845 	u32 gating_wait = UFSHCD_REF_CLK_GATING_WAIT_US;
3846 
3847 	if (hba->dev_info.wspecversion >= 0x300) {
3848 		err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
3849 				QUERY_ATTR_IDN_REF_CLK_GATING_WAIT_TIME, 0, 0,
3850 				&gating_wait);
3851 		if (err)
3852 			dev_err(hba->dev, "Failed reading bRefClkGatingWait. err = %d, use default %uus\n",
3853 					 err, gating_wait);
3854 
3855 		if (gating_wait == 0) {
3856 			gating_wait = UFSHCD_REF_CLK_GATING_WAIT_US;
3857 			dev_err(hba->dev, "Undefined ref clk gating wait time, use default %uus\n",
3858 					 gating_wait);
3859 		}
3860 
3861 		hba->dev_info.clk_gating_wait_us = gating_wait;
3862 	}
3863 
3864 	return err;
3865 }
3866 
3867 /**
3868  * ufshcd_memory_alloc - allocate memory for host memory space data structures
3869  * @hba: per adapter instance
3870  *
3871  * 1. Allocate DMA memory for Command Descriptor array
3872  *	Each command descriptor consist of Command UPIU, Response UPIU and PRDT
3873  * 2. Allocate DMA memory for UTP Transfer Request Descriptor List (UTRDL).
3874  * 3. Allocate DMA memory for UTP Task Management Request Descriptor List
3875  *	(UTMRDL)
3876  * 4. Allocate memory for local reference block(lrb).
3877  *
3878  * Return: 0 for success, non-zero in case of failure.
3879  */
3880 static int ufshcd_memory_alloc(struct ufs_hba *hba)
3881 {
3882 	size_t utmrdl_size, utrdl_size, ucdl_size;
3883 
3884 	/* Allocate memory for UTP command descriptors */
3885 	ucdl_size = ufshcd_get_ucd_size(hba) * hba->nutrs;
3886 	hba->ucdl_base_addr = dmam_alloc_coherent(hba->dev,
3887 						  ucdl_size,
3888 						  &hba->ucdl_dma_addr,
3889 						  GFP_KERNEL);
3890 
3891 	/*
3892 	 * UFSHCI requires UTP command descriptor to be 128 byte aligned.
3893 	 */
3894 	if (!hba->ucdl_base_addr ||
3895 	    WARN_ON(hba->ucdl_dma_addr & (128 - 1))) {
3896 		dev_err(hba->dev,
3897 			"Command Descriptor Memory allocation failed\n");
3898 		goto out;
3899 	}
3900 
3901 	/*
3902 	 * Allocate memory for UTP Transfer descriptors
3903 	 * UFSHCI requires 1KB alignment of UTRD
3904 	 */
3905 	utrdl_size = (sizeof(struct utp_transfer_req_desc) * hba->nutrs);
3906 	hba->utrdl_base_addr = dmam_alloc_coherent(hba->dev,
3907 						   utrdl_size,
3908 						   &hba->utrdl_dma_addr,
3909 						   GFP_KERNEL);
3910 	if (!hba->utrdl_base_addr ||
3911 	    WARN_ON(hba->utrdl_dma_addr & (SZ_1K - 1))) {
3912 		dev_err(hba->dev,
3913 			"Transfer Descriptor Memory allocation failed\n");
3914 		goto out;
3915 	}
3916 
3917 	/*
3918 	 * Skip utmrdl allocation; it may have been
3919 	 * allocated during first pass and not released during
3920 	 * MCQ memory allocation.
3921 	 * See ufshcd_release_sdb_queue() and ufshcd_config_mcq()
3922 	 */
3923 	if (hba->utmrdl_base_addr)
3924 		goto skip_utmrdl;
3925 	/*
3926 	 * Allocate memory for UTP Task Management descriptors
3927 	 * UFSHCI requires 1KB alignment of UTMRD
3928 	 */
3929 	utmrdl_size = sizeof(struct utp_task_req_desc) * hba->nutmrs;
3930 	hba->utmrdl_base_addr = dmam_alloc_coherent(hba->dev,
3931 						    utmrdl_size,
3932 						    &hba->utmrdl_dma_addr,
3933 						    GFP_KERNEL);
3934 	if (!hba->utmrdl_base_addr ||
3935 	    WARN_ON(hba->utmrdl_dma_addr & (SZ_1K - 1))) {
3936 		dev_err(hba->dev,
3937 		"Task Management Descriptor Memory allocation failed\n");
3938 		goto out;
3939 	}
3940 
3941 skip_utmrdl:
3942 	/* Allocate memory for local reference block */
3943 	hba->lrb = devm_kcalloc(hba->dev,
3944 				hba->nutrs, sizeof(struct ufshcd_lrb),
3945 				GFP_KERNEL);
3946 	if (!hba->lrb) {
3947 		dev_err(hba->dev, "LRB Memory allocation failed\n");
3948 		goto out;
3949 	}
3950 	return 0;
3951 out:
3952 	return -ENOMEM;
3953 }
3954 
3955 /**
3956  * ufshcd_host_memory_configure - configure local reference block with
3957  *				memory offsets
3958  * @hba: per adapter instance
3959  *
3960  * Configure Host memory space
3961  * 1. Update Corresponding UTRD.UCDBA and UTRD.UCDBAU with UCD DMA
3962  * address.
3963  * 2. Update each UTRD with Response UPIU offset, Response UPIU length
3964  * and PRDT offset.
3965  * 3. Save the corresponding addresses of UTRD, UCD.CMD, UCD.RSP and UCD.PRDT
3966  * into local reference block.
3967  */
3968 static void ufshcd_host_memory_configure(struct ufs_hba *hba)
3969 {
3970 	struct utp_transfer_req_desc *utrdlp;
3971 	dma_addr_t cmd_desc_dma_addr;
3972 	dma_addr_t cmd_desc_element_addr;
3973 	u16 response_offset;
3974 	u16 prdt_offset;
3975 	int cmd_desc_size;
3976 	int i;
3977 
3978 	utrdlp = hba->utrdl_base_addr;
3979 
3980 	response_offset =
3981 		offsetof(struct utp_transfer_cmd_desc, response_upiu);
3982 	prdt_offset =
3983 		offsetof(struct utp_transfer_cmd_desc, prd_table);
3984 
3985 	cmd_desc_size = ufshcd_get_ucd_size(hba);
3986 	cmd_desc_dma_addr = hba->ucdl_dma_addr;
3987 
3988 	for (i = 0; i < hba->nutrs; i++) {
3989 		/* Configure UTRD with command descriptor base address */
3990 		cmd_desc_element_addr =
3991 				(cmd_desc_dma_addr + (cmd_desc_size * i));
3992 		utrdlp[i].command_desc_base_addr =
3993 				cpu_to_le64(cmd_desc_element_addr);
3994 
3995 		/* Response upiu and prdt offset should be in double words */
3996 		if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN) {
3997 			utrdlp[i].response_upiu_offset =
3998 				cpu_to_le16(response_offset);
3999 			utrdlp[i].prd_table_offset =
4000 				cpu_to_le16(prdt_offset);
4001 			utrdlp[i].response_upiu_length =
4002 				cpu_to_le16(ALIGNED_UPIU_SIZE);
4003 		} else {
4004 			utrdlp[i].response_upiu_offset =
4005 				cpu_to_le16(response_offset >> 2);
4006 			utrdlp[i].prd_table_offset =
4007 				cpu_to_le16(prdt_offset >> 2);
4008 			utrdlp[i].response_upiu_length =
4009 				cpu_to_le16(ALIGNED_UPIU_SIZE >> 2);
4010 		}
4011 
4012 		ufshcd_init_lrb(hba, &hba->lrb[i], i);
4013 	}
4014 }
4015 
4016 /**
4017  * ufshcd_dme_link_startup - Notify Unipro to perform link startup
4018  * @hba: per adapter instance
4019  *
4020  * UIC_CMD_DME_LINK_STARTUP command must be issued to Unipro layer,
4021  * in order to initialize the Unipro link startup procedure.
4022  * Once the Unipro links are up, the device connected to the controller
4023  * is detected.
4024  *
4025  * Return: 0 on success, non-zero value on failure.
4026  */
4027 static int ufshcd_dme_link_startup(struct ufs_hba *hba)
4028 {
4029 	struct uic_command uic_cmd = {0};
4030 	int ret;
4031 
4032 	uic_cmd.command = UIC_CMD_DME_LINK_STARTUP;
4033 
4034 	ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4035 	if (ret)
4036 		dev_dbg(hba->dev,
4037 			"dme-link-startup: error code %d\n", ret);
4038 	return ret;
4039 }
4040 /**
4041  * ufshcd_dme_reset - UIC command for DME_RESET
4042  * @hba: per adapter instance
4043  *
4044  * DME_RESET command is issued in order to reset UniPro stack.
4045  * This function now deals with cold reset.
4046  *
4047  * Return: 0 on success, non-zero value on failure.
4048  */
4049 static int ufshcd_dme_reset(struct ufs_hba *hba)
4050 {
4051 	struct uic_command uic_cmd = {0};
4052 	int ret;
4053 
4054 	uic_cmd.command = UIC_CMD_DME_RESET;
4055 
4056 	ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4057 	if (ret)
4058 		dev_err(hba->dev,
4059 			"dme-reset: error code %d\n", ret);
4060 
4061 	return ret;
4062 }
4063 
4064 int ufshcd_dme_configure_adapt(struct ufs_hba *hba,
4065 			       int agreed_gear,
4066 			       int adapt_val)
4067 {
4068 	int ret;
4069 
4070 	if (agreed_gear < UFS_HS_G4)
4071 		adapt_val = PA_NO_ADAPT;
4072 
4073 	ret = ufshcd_dme_set(hba,
4074 			     UIC_ARG_MIB(PA_TXHSADAPTTYPE),
4075 			     adapt_val);
4076 	return ret;
4077 }
4078 EXPORT_SYMBOL_GPL(ufshcd_dme_configure_adapt);
4079 
4080 /**
4081  * ufshcd_dme_enable - UIC command for DME_ENABLE
4082  * @hba: per adapter instance
4083  *
4084  * DME_ENABLE command is issued in order to enable UniPro stack.
4085  *
4086  * Return: 0 on success, non-zero value on failure.
4087  */
4088 static int ufshcd_dme_enable(struct ufs_hba *hba)
4089 {
4090 	struct uic_command uic_cmd = {0};
4091 	int ret;
4092 
4093 	uic_cmd.command = UIC_CMD_DME_ENABLE;
4094 
4095 	ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4096 	if (ret)
4097 		dev_err(hba->dev,
4098 			"dme-enable: error code %d\n", ret);
4099 
4100 	return ret;
4101 }
4102 
4103 static inline void ufshcd_add_delay_before_dme_cmd(struct ufs_hba *hba)
4104 {
4105 	#define MIN_DELAY_BEFORE_DME_CMDS_US	1000
4106 	unsigned long min_sleep_time_us;
4107 
4108 	if (!(hba->quirks & UFSHCD_QUIRK_DELAY_BEFORE_DME_CMDS))
4109 		return;
4110 
4111 	/*
4112 	 * last_dme_cmd_tstamp will be 0 only for 1st call to
4113 	 * this function
4114 	 */
4115 	if (unlikely(!ktime_to_us(hba->last_dme_cmd_tstamp))) {
4116 		min_sleep_time_us = MIN_DELAY_BEFORE_DME_CMDS_US;
4117 	} else {
4118 		unsigned long delta =
4119 			(unsigned long) ktime_to_us(
4120 				ktime_sub(ktime_get(),
4121 				hba->last_dme_cmd_tstamp));
4122 
4123 		if (delta < MIN_DELAY_BEFORE_DME_CMDS_US)
4124 			min_sleep_time_us =
4125 				MIN_DELAY_BEFORE_DME_CMDS_US - delta;
4126 		else
4127 			return; /* no more delay required */
4128 	}
4129 
4130 	/* allow sleep for extra 50us if needed */
4131 	usleep_range(min_sleep_time_us, min_sleep_time_us + 50);
4132 }
4133 
4134 /**
4135  * ufshcd_dme_set_attr - UIC command for DME_SET, DME_PEER_SET
4136  * @hba: per adapter instance
4137  * @attr_sel: uic command argument1
4138  * @attr_set: attribute set type as uic command argument2
4139  * @mib_val: setting value as uic command argument3
4140  * @peer: indicate whether peer or local
4141  *
4142  * Return: 0 on success, non-zero value on failure.
4143  */
4144 int ufshcd_dme_set_attr(struct ufs_hba *hba, u32 attr_sel,
4145 			u8 attr_set, u32 mib_val, u8 peer)
4146 {
4147 	struct uic_command uic_cmd = {0};
4148 	static const char *const action[] = {
4149 		"dme-set",
4150 		"dme-peer-set"
4151 	};
4152 	const char *set = action[!!peer];
4153 	int ret;
4154 	int retries = UFS_UIC_COMMAND_RETRIES;
4155 
4156 	uic_cmd.command = peer ?
4157 		UIC_CMD_DME_PEER_SET : UIC_CMD_DME_SET;
4158 	uic_cmd.argument1 = attr_sel;
4159 	uic_cmd.argument2 = UIC_ARG_ATTR_TYPE(attr_set);
4160 	uic_cmd.argument3 = mib_val;
4161 
4162 	do {
4163 		/* for peer attributes we retry upon failure */
4164 		ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4165 		if (ret)
4166 			dev_dbg(hba->dev, "%s: attr-id 0x%x val 0x%x error code %d\n",
4167 				set, UIC_GET_ATTR_ID(attr_sel), mib_val, ret);
4168 	} while (ret && peer && --retries);
4169 
4170 	if (ret)
4171 		dev_err(hba->dev, "%s: attr-id 0x%x val 0x%x failed %d retries\n",
4172 			set, UIC_GET_ATTR_ID(attr_sel), mib_val,
4173 			UFS_UIC_COMMAND_RETRIES - retries);
4174 
4175 	return ret;
4176 }
4177 EXPORT_SYMBOL_GPL(ufshcd_dme_set_attr);
4178 
4179 /**
4180  * ufshcd_dme_get_attr - UIC command for DME_GET, DME_PEER_GET
4181  * @hba: per adapter instance
4182  * @attr_sel: uic command argument1
4183  * @mib_val: the value of the attribute as returned by the UIC command
4184  * @peer: indicate whether peer or local
4185  *
4186  * Return: 0 on success, non-zero value on failure.
4187  */
4188 int ufshcd_dme_get_attr(struct ufs_hba *hba, u32 attr_sel,
4189 			u32 *mib_val, u8 peer)
4190 {
4191 	struct uic_command uic_cmd = {0};
4192 	static const char *const action[] = {
4193 		"dme-get",
4194 		"dme-peer-get"
4195 	};
4196 	const char *get = action[!!peer];
4197 	int ret;
4198 	int retries = UFS_UIC_COMMAND_RETRIES;
4199 	struct ufs_pa_layer_attr orig_pwr_info;
4200 	struct ufs_pa_layer_attr temp_pwr_info;
4201 	bool pwr_mode_change = false;
4202 
4203 	if (peer && (hba->quirks & UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE)) {
4204 		orig_pwr_info = hba->pwr_info;
4205 		temp_pwr_info = orig_pwr_info;
4206 
4207 		if (orig_pwr_info.pwr_tx == FAST_MODE ||
4208 		    orig_pwr_info.pwr_rx == FAST_MODE) {
4209 			temp_pwr_info.pwr_tx = FASTAUTO_MODE;
4210 			temp_pwr_info.pwr_rx = FASTAUTO_MODE;
4211 			pwr_mode_change = true;
4212 		} else if (orig_pwr_info.pwr_tx == SLOW_MODE ||
4213 		    orig_pwr_info.pwr_rx == SLOW_MODE) {
4214 			temp_pwr_info.pwr_tx = SLOWAUTO_MODE;
4215 			temp_pwr_info.pwr_rx = SLOWAUTO_MODE;
4216 			pwr_mode_change = true;
4217 		}
4218 		if (pwr_mode_change) {
4219 			ret = ufshcd_change_power_mode(hba, &temp_pwr_info);
4220 			if (ret)
4221 				goto out;
4222 		}
4223 	}
4224 
4225 	uic_cmd.command = peer ?
4226 		UIC_CMD_DME_PEER_GET : UIC_CMD_DME_GET;
4227 	uic_cmd.argument1 = attr_sel;
4228 
4229 	do {
4230 		/* for peer attributes we retry upon failure */
4231 		ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4232 		if (ret)
4233 			dev_dbg(hba->dev, "%s: attr-id 0x%x error code %d\n",
4234 				get, UIC_GET_ATTR_ID(attr_sel), ret);
4235 	} while (ret && peer && --retries);
4236 
4237 	if (ret)
4238 		dev_err(hba->dev, "%s: attr-id 0x%x failed %d retries\n",
4239 			get, UIC_GET_ATTR_ID(attr_sel),
4240 			UFS_UIC_COMMAND_RETRIES - retries);
4241 
4242 	if (mib_val && !ret)
4243 		*mib_val = uic_cmd.argument3;
4244 
4245 	if (peer && (hba->quirks & UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE)
4246 	    && pwr_mode_change)
4247 		ufshcd_change_power_mode(hba, &orig_pwr_info);
4248 out:
4249 	return ret;
4250 }
4251 EXPORT_SYMBOL_GPL(ufshcd_dme_get_attr);
4252 
4253 /**
4254  * ufshcd_uic_pwr_ctrl - executes UIC commands (which affects the link power
4255  * state) and waits for it to take effect.
4256  *
4257  * @hba: per adapter instance
4258  * @cmd: UIC command to execute
4259  *
4260  * DME operations like DME_SET(PA_PWRMODE), DME_HIBERNATE_ENTER &
4261  * DME_HIBERNATE_EXIT commands take some time to take its effect on both host
4262  * and device UniPro link and hence it's final completion would be indicated by
4263  * dedicated status bits in Interrupt Status register (UPMS, UHES, UHXS) in
4264  * addition to normal UIC command completion Status (UCCS). This function only
4265  * returns after the relevant status bits indicate the completion.
4266  *
4267  * Return: 0 on success, non-zero value on failure.
4268  */
4269 static int ufshcd_uic_pwr_ctrl(struct ufs_hba *hba, struct uic_command *cmd)
4270 {
4271 	DECLARE_COMPLETION_ONSTACK(uic_async_done);
4272 	unsigned long flags;
4273 	u8 status;
4274 	int ret;
4275 	bool reenable_intr = false;
4276 
4277 	mutex_lock(&hba->uic_cmd_mutex);
4278 	ufshcd_add_delay_before_dme_cmd(hba);
4279 
4280 	spin_lock_irqsave(hba->host->host_lock, flags);
4281 	if (ufshcd_is_link_broken(hba)) {
4282 		ret = -ENOLINK;
4283 		goto out_unlock;
4284 	}
4285 	hba->uic_async_done = &uic_async_done;
4286 	if (ufshcd_readl(hba, REG_INTERRUPT_ENABLE) & UIC_COMMAND_COMPL) {
4287 		ufshcd_disable_intr(hba, UIC_COMMAND_COMPL);
4288 		/*
4289 		 * Make sure UIC command completion interrupt is disabled before
4290 		 * issuing UIC command.
4291 		 */
4292 		wmb();
4293 		reenable_intr = true;
4294 	}
4295 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4296 	ret = __ufshcd_send_uic_cmd(hba, cmd, false);
4297 	if (ret) {
4298 		dev_err(hba->dev,
4299 			"pwr ctrl cmd 0x%x with mode 0x%x uic error %d\n",
4300 			cmd->command, cmd->argument3, ret);
4301 		goto out;
4302 	}
4303 
4304 	if (!wait_for_completion_timeout(hba->uic_async_done,
4305 					 msecs_to_jiffies(UIC_CMD_TIMEOUT))) {
4306 		dev_err(hba->dev,
4307 			"pwr ctrl cmd 0x%x with mode 0x%x completion timeout\n",
4308 			cmd->command, cmd->argument3);
4309 
4310 		if (!cmd->cmd_active) {
4311 			dev_err(hba->dev, "%s: Power Mode Change operation has been completed, go check UPMCRS\n",
4312 				__func__);
4313 			goto check_upmcrs;
4314 		}
4315 
4316 		ret = -ETIMEDOUT;
4317 		goto out;
4318 	}
4319 
4320 check_upmcrs:
4321 	status = ufshcd_get_upmcrs(hba);
4322 	if (status != PWR_LOCAL) {
4323 		dev_err(hba->dev,
4324 			"pwr ctrl cmd 0x%x failed, host upmcrs:0x%x\n",
4325 			cmd->command, status);
4326 		ret = (status != PWR_OK) ? status : -1;
4327 	}
4328 out:
4329 	if (ret) {
4330 		ufshcd_print_host_state(hba);
4331 		ufshcd_print_pwr_info(hba);
4332 		ufshcd_print_evt_hist(hba);
4333 	}
4334 
4335 	spin_lock_irqsave(hba->host->host_lock, flags);
4336 	hba->active_uic_cmd = NULL;
4337 	hba->uic_async_done = NULL;
4338 	if (reenable_intr)
4339 		ufshcd_enable_intr(hba, UIC_COMMAND_COMPL);
4340 	if (ret) {
4341 		ufshcd_set_link_broken(hba);
4342 		ufshcd_schedule_eh_work(hba);
4343 	}
4344 out_unlock:
4345 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4346 	mutex_unlock(&hba->uic_cmd_mutex);
4347 
4348 	return ret;
4349 }
4350 
4351 /**
4352  * ufshcd_uic_change_pwr_mode - Perform the UIC power mode chage
4353  *				using DME_SET primitives.
4354  * @hba: per adapter instance
4355  * @mode: powr mode value
4356  *
4357  * Return: 0 on success, non-zero value on failure.
4358  */
4359 int ufshcd_uic_change_pwr_mode(struct ufs_hba *hba, u8 mode)
4360 {
4361 	struct uic_command uic_cmd = {0};
4362 	int ret;
4363 
4364 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_PA_RXHSUNTERMCAP) {
4365 		ret = ufshcd_dme_set(hba,
4366 				UIC_ARG_MIB_SEL(PA_RXHSUNTERMCAP, 0), 1);
4367 		if (ret) {
4368 			dev_err(hba->dev, "%s: failed to enable PA_RXHSUNTERMCAP ret %d\n",
4369 						__func__, ret);
4370 			goto out;
4371 		}
4372 	}
4373 
4374 	uic_cmd.command = UIC_CMD_DME_SET;
4375 	uic_cmd.argument1 = UIC_ARG_MIB(PA_PWRMODE);
4376 	uic_cmd.argument3 = mode;
4377 	ufshcd_hold(hba);
4378 	ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4379 	ufshcd_release(hba);
4380 
4381 out:
4382 	return ret;
4383 }
4384 EXPORT_SYMBOL_GPL(ufshcd_uic_change_pwr_mode);
4385 
4386 int ufshcd_link_recovery(struct ufs_hba *hba)
4387 {
4388 	int ret;
4389 	unsigned long flags;
4390 
4391 	spin_lock_irqsave(hba->host->host_lock, flags);
4392 	hba->ufshcd_state = UFSHCD_STATE_RESET;
4393 	ufshcd_set_eh_in_progress(hba);
4394 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4395 
4396 	/* Reset the attached device */
4397 	ufshcd_device_reset(hba);
4398 
4399 	ret = ufshcd_host_reset_and_restore(hba);
4400 
4401 	spin_lock_irqsave(hba->host->host_lock, flags);
4402 	if (ret)
4403 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
4404 	ufshcd_clear_eh_in_progress(hba);
4405 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4406 
4407 	if (ret)
4408 		dev_err(hba->dev, "%s: link recovery failed, err %d",
4409 			__func__, ret);
4410 
4411 	return ret;
4412 }
4413 EXPORT_SYMBOL_GPL(ufshcd_link_recovery);
4414 
4415 int ufshcd_uic_hibern8_enter(struct ufs_hba *hba)
4416 {
4417 	int ret;
4418 	struct uic_command uic_cmd = {0};
4419 	ktime_t start = ktime_get();
4420 
4421 	ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_ENTER, PRE_CHANGE);
4422 
4423 	uic_cmd.command = UIC_CMD_DME_HIBER_ENTER;
4424 	ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4425 	trace_ufshcd_profile_hibern8(dev_name(hba->dev), "enter",
4426 			     ktime_to_us(ktime_sub(ktime_get(), start)), ret);
4427 
4428 	if (ret)
4429 		dev_err(hba->dev, "%s: hibern8 enter failed. ret = %d\n",
4430 			__func__, ret);
4431 	else
4432 		ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_ENTER,
4433 								POST_CHANGE);
4434 
4435 	return ret;
4436 }
4437 EXPORT_SYMBOL_GPL(ufshcd_uic_hibern8_enter);
4438 
4439 int ufshcd_uic_hibern8_exit(struct ufs_hba *hba)
4440 {
4441 	struct uic_command uic_cmd = {0};
4442 	int ret;
4443 	ktime_t start = ktime_get();
4444 
4445 	ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_EXIT, PRE_CHANGE);
4446 
4447 	uic_cmd.command = UIC_CMD_DME_HIBER_EXIT;
4448 	ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4449 	trace_ufshcd_profile_hibern8(dev_name(hba->dev), "exit",
4450 			     ktime_to_us(ktime_sub(ktime_get(), start)), ret);
4451 
4452 	if (ret) {
4453 		dev_err(hba->dev, "%s: hibern8 exit failed. ret = %d\n",
4454 			__func__, ret);
4455 	} else {
4456 		ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_EXIT,
4457 								POST_CHANGE);
4458 		hba->ufs_stats.last_hibern8_exit_tstamp = local_clock();
4459 		hba->ufs_stats.hibern8_exit_cnt++;
4460 	}
4461 
4462 	return ret;
4463 }
4464 EXPORT_SYMBOL_GPL(ufshcd_uic_hibern8_exit);
4465 
4466 static void ufshcd_configure_auto_hibern8(struct ufs_hba *hba)
4467 {
4468 	if (!ufshcd_is_auto_hibern8_supported(hba))
4469 		return;
4470 
4471 	ufshcd_writel(hba, hba->ahit, REG_AUTO_HIBERNATE_IDLE_TIMER);
4472 }
4473 
4474 void ufshcd_auto_hibern8_update(struct ufs_hba *hba, u32 ahit)
4475 {
4476 	const u32 cur_ahit = READ_ONCE(hba->ahit);
4477 
4478 	if (!ufshcd_is_auto_hibern8_supported(hba) || cur_ahit == ahit)
4479 		return;
4480 
4481 	WRITE_ONCE(hba->ahit, ahit);
4482 	if (!pm_runtime_suspended(&hba->ufs_device_wlun->sdev_gendev)) {
4483 		ufshcd_rpm_get_sync(hba);
4484 		ufshcd_hold(hba);
4485 		ufshcd_configure_auto_hibern8(hba);
4486 		ufshcd_release(hba);
4487 		ufshcd_rpm_put_sync(hba);
4488 	}
4489 }
4490 EXPORT_SYMBOL_GPL(ufshcd_auto_hibern8_update);
4491 
4492  /**
4493  * ufshcd_init_pwr_info - setting the POR (power on reset)
4494  * values in hba power info
4495  * @hba: per-adapter instance
4496  */
4497 static void ufshcd_init_pwr_info(struct ufs_hba *hba)
4498 {
4499 	hba->pwr_info.gear_rx = UFS_PWM_G1;
4500 	hba->pwr_info.gear_tx = UFS_PWM_G1;
4501 	hba->pwr_info.lane_rx = UFS_LANE_1;
4502 	hba->pwr_info.lane_tx = UFS_LANE_1;
4503 	hba->pwr_info.pwr_rx = SLOWAUTO_MODE;
4504 	hba->pwr_info.pwr_tx = SLOWAUTO_MODE;
4505 	hba->pwr_info.hs_rate = 0;
4506 }
4507 
4508 /**
4509  * ufshcd_get_max_pwr_mode - reads the max power mode negotiated with device
4510  * @hba: per-adapter instance
4511  *
4512  * Return: 0 upon success; < 0 upon failure.
4513  */
4514 static int ufshcd_get_max_pwr_mode(struct ufs_hba *hba)
4515 {
4516 	struct ufs_pa_layer_attr *pwr_info = &hba->max_pwr_info.info;
4517 
4518 	if (hba->max_pwr_info.is_valid)
4519 		return 0;
4520 
4521 	if (hba->quirks & UFSHCD_QUIRK_HIBERN_FASTAUTO) {
4522 		pwr_info->pwr_tx = FASTAUTO_MODE;
4523 		pwr_info->pwr_rx = FASTAUTO_MODE;
4524 	} else {
4525 		pwr_info->pwr_tx = FAST_MODE;
4526 		pwr_info->pwr_rx = FAST_MODE;
4527 	}
4528 	pwr_info->hs_rate = PA_HS_MODE_B;
4529 
4530 	/* Get the connected lane count */
4531 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDRXDATALANES),
4532 			&pwr_info->lane_rx);
4533 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4534 			&pwr_info->lane_tx);
4535 
4536 	if (!pwr_info->lane_rx || !pwr_info->lane_tx) {
4537 		dev_err(hba->dev, "%s: invalid connected lanes value. rx=%d, tx=%d\n",
4538 				__func__,
4539 				pwr_info->lane_rx,
4540 				pwr_info->lane_tx);
4541 		return -EINVAL;
4542 	}
4543 
4544 	/*
4545 	 * First, get the maximum gears of HS speed.
4546 	 * If a zero value, it means there is no HSGEAR capability.
4547 	 * Then, get the maximum gears of PWM speed.
4548 	 */
4549 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_MAXRXHSGEAR), &pwr_info->gear_rx);
4550 	if (!pwr_info->gear_rx) {
4551 		ufshcd_dme_get(hba, UIC_ARG_MIB(PA_MAXRXPWMGEAR),
4552 				&pwr_info->gear_rx);
4553 		if (!pwr_info->gear_rx) {
4554 			dev_err(hba->dev, "%s: invalid max pwm rx gear read = %d\n",
4555 				__func__, pwr_info->gear_rx);
4556 			return -EINVAL;
4557 		}
4558 		pwr_info->pwr_rx = SLOW_MODE;
4559 	}
4560 
4561 	ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_MAXRXHSGEAR),
4562 			&pwr_info->gear_tx);
4563 	if (!pwr_info->gear_tx) {
4564 		ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_MAXRXPWMGEAR),
4565 				&pwr_info->gear_tx);
4566 		if (!pwr_info->gear_tx) {
4567 			dev_err(hba->dev, "%s: invalid max pwm tx gear read = %d\n",
4568 				__func__, pwr_info->gear_tx);
4569 			return -EINVAL;
4570 		}
4571 		pwr_info->pwr_tx = SLOW_MODE;
4572 	}
4573 
4574 	hba->max_pwr_info.is_valid = true;
4575 	return 0;
4576 }
4577 
4578 static int ufshcd_change_power_mode(struct ufs_hba *hba,
4579 			     struct ufs_pa_layer_attr *pwr_mode)
4580 {
4581 	int ret;
4582 
4583 	/* if already configured to the requested pwr_mode */
4584 	if (!hba->force_pmc &&
4585 	    pwr_mode->gear_rx == hba->pwr_info.gear_rx &&
4586 	    pwr_mode->gear_tx == hba->pwr_info.gear_tx &&
4587 	    pwr_mode->lane_rx == hba->pwr_info.lane_rx &&
4588 	    pwr_mode->lane_tx == hba->pwr_info.lane_tx &&
4589 	    pwr_mode->pwr_rx == hba->pwr_info.pwr_rx &&
4590 	    pwr_mode->pwr_tx == hba->pwr_info.pwr_tx &&
4591 	    pwr_mode->hs_rate == hba->pwr_info.hs_rate) {
4592 		dev_dbg(hba->dev, "%s: power already configured\n", __func__);
4593 		return 0;
4594 	}
4595 
4596 	/*
4597 	 * Configure attributes for power mode change with below.
4598 	 * - PA_RXGEAR, PA_ACTIVERXDATALANES, PA_RXTERMINATION,
4599 	 * - PA_TXGEAR, PA_ACTIVETXDATALANES, PA_TXTERMINATION,
4600 	 * - PA_HSSERIES
4601 	 */
4602 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXGEAR), pwr_mode->gear_rx);
4603 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVERXDATALANES),
4604 			pwr_mode->lane_rx);
4605 	if (pwr_mode->pwr_rx == FASTAUTO_MODE ||
4606 			pwr_mode->pwr_rx == FAST_MODE)
4607 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), true);
4608 	else
4609 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), false);
4610 
4611 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXGEAR), pwr_mode->gear_tx);
4612 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVETXDATALANES),
4613 			pwr_mode->lane_tx);
4614 	if (pwr_mode->pwr_tx == FASTAUTO_MODE ||
4615 			pwr_mode->pwr_tx == FAST_MODE)
4616 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), true);
4617 	else
4618 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), false);
4619 
4620 	if (pwr_mode->pwr_rx == FASTAUTO_MODE ||
4621 	    pwr_mode->pwr_tx == FASTAUTO_MODE ||
4622 	    pwr_mode->pwr_rx == FAST_MODE ||
4623 	    pwr_mode->pwr_tx == FAST_MODE)
4624 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_HSSERIES),
4625 						pwr_mode->hs_rate);
4626 
4627 	if (!(hba->quirks & UFSHCD_QUIRK_SKIP_DEF_UNIPRO_TIMEOUT_SETTING)) {
4628 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA0),
4629 				DL_FC0ProtectionTimeOutVal_Default);
4630 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA1),
4631 				DL_TC0ReplayTimeOutVal_Default);
4632 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA2),
4633 				DL_AFC0ReqTimeOutVal_Default);
4634 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA3),
4635 				DL_FC1ProtectionTimeOutVal_Default);
4636 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA4),
4637 				DL_TC1ReplayTimeOutVal_Default);
4638 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA5),
4639 				DL_AFC1ReqTimeOutVal_Default);
4640 
4641 		ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalFC0ProtectionTimeOutVal),
4642 				DL_FC0ProtectionTimeOutVal_Default);
4643 		ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalTC0ReplayTimeOutVal),
4644 				DL_TC0ReplayTimeOutVal_Default);
4645 		ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalAFC0ReqTimeOutVal),
4646 				DL_AFC0ReqTimeOutVal_Default);
4647 	}
4648 
4649 	ret = ufshcd_uic_change_pwr_mode(hba, pwr_mode->pwr_rx << 4
4650 			| pwr_mode->pwr_tx);
4651 
4652 	if (ret) {
4653 		dev_err(hba->dev,
4654 			"%s: power mode change failed %d\n", __func__, ret);
4655 	} else {
4656 		ufshcd_vops_pwr_change_notify(hba, POST_CHANGE, NULL,
4657 								pwr_mode);
4658 
4659 		memcpy(&hba->pwr_info, pwr_mode,
4660 			sizeof(struct ufs_pa_layer_attr));
4661 	}
4662 
4663 	return ret;
4664 }
4665 
4666 /**
4667  * ufshcd_config_pwr_mode - configure a new power mode
4668  * @hba: per-adapter instance
4669  * @desired_pwr_mode: desired power configuration
4670  *
4671  * Return: 0 upon success; < 0 upon failure.
4672  */
4673 int ufshcd_config_pwr_mode(struct ufs_hba *hba,
4674 		struct ufs_pa_layer_attr *desired_pwr_mode)
4675 {
4676 	struct ufs_pa_layer_attr final_params = { 0 };
4677 	int ret;
4678 
4679 	ret = ufshcd_vops_pwr_change_notify(hba, PRE_CHANGE,
4680 					desired_pwr_mode, &final_params);
4681 
4682 	if (ret)
4683 		memcpy(&final_params, desired_pwr_mode, sizeof(final_params));
4684 
4685 	ret = ufshcd_change_power_mode(hba, &final_params);
4686 
4687 	return ret;
4688 }
4689 EXPORT_SYMBOL_GPL(ufshcd_config_pwr_mode);
4690 
4691 /**
4692  * ufshcd_complete_dev_init() - checks device readiness
4693  * @hba: per-adapter instance
4694  *
4695  * Set fDeviceInit flag and poll until device toggles it.
4696  *
4697  * Return: 0 upon success; < 0 upon failure.
4698  */
4699 static int ufshcd_complete_dev_init(struct ufs_hba *hba)
4700 {
4701 	int err;
4702 	bool flag_res = true;
4703 	ktime_t timeout;
4704 
4705 	err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG,
4706 		QUERY_FLAG_IDN_FDEVICEINIT, 0, NULL);
4707 	if (err) {
4708 		dev_err(hba->dev,
4709 			"%s: setting fDeviceInit flag failed with error %d\n",
4710 			__func__, err);
4711 		goto out;
4712 	}
4713 
4714 	/* Poll fDeviceInit flag to be cleared */
4715 	timeout = ktime_add_ms(ktime_get(), FDEVICEINIT_COMPL_TIMEOUT);
4716 	do {
4717 		err = ufshcd_query_flag(hba, UPIU_QUERY_OPCODE_READ_FLAG,
4718 					QUERY_FLAG_IDN_FDEVICEINIT, 0, &flag_res);
4719 		if (!flag_res)
4720 			break;
4721 		usleep_range(500, 1000);
4722 	} while (ktime_before(ktime_get(), timeout));
4723 
4724 	if (err) {
4725 		dev_err(hba->dev,
4726 				"%s: reading fDeviceInit flag failed with error %d\n",
4727 				__func__, err);
4728 	} else if (flag_res) {
4729 		dev_err(hba->dev,
4730 				"%s: fDeviceInit was not cleared by the device\n",
4731 				__func__);
4732 		err = -EBUSY;
4733 	}
4734 out:
4735 	return err;
4736 }
4737 
4738 /**
4739  * ufshcd_make_hba_operational - Make UFS controller operational
4740  * @hba: per adapter instance
4741  *
4742  * To bring UFS host controller to operational state,
4743  * 1. Enable required interrupts
4744  * 2. Configure interrupt aggregation
4745  * 3. Program UTRL and UTMRL base address
4746  * 4. Configure run-stop-registers
4747  *
4748  * Return: 0 on success, non-zero value on failure.
4749  */
4750 int ufshcd_make_hba_operational(struct ufs_hba *hba)
4751 {
4752 	int err = 0;
4753 	u32 reg;
4754 
4755 	/* Enable required interrupts */
4756 	ufshcd_enable_intr(hba, UFSHCD_ENABLE_INTRS);
4757 
4758 	/* Configure interrupt aggregation */
4759 	if (ufshcd_is_intr_aggr_allowed(hba))
4760 		ufshcd_config_intr_aggr(hba, hba->nutrs - 1, INT_AGGR_DEF_TO);
4761 	else
4762 		ufshcd_disable_intr_aggr(hba);
4763 
4764 	/* Configure UTRL and UTMRL base address registers */
4765 	ufshcd_writel(hba, lower_32_bits(hba->utrdl_dma_addr),
4766 			REG_UTP_TRANSFER_REQ_LIST_BASE_L);
4767 	ufshcd_writel(hba, upper_32_bits(hba->utrdl_dma_addr),
4768 			REG_UTP_TRANSFER_REQ_LIST_BASE_H);
4769 	ufshcd_writel(hba, lower_32_bits(hba->utmrdl_dma_addr),
4770 			REG_UTP_TASK_REQ_LIST_BASE_L);
4771 	ufshcd_writel(hba, upper_32_bits(hba->utmrdl_dma_addr),
4772 			REG_UTP_TASK_REQ_LIST_BASE_H);
4773 
4774 	/*
4775 	 * Make sure base address and interrupt setup are updated before
4776 	 * enabling the run/stop registers below.
4777 	 */
4778 	wmb();
4779 
4780 	/*
4781 	 * UCRDY, UTMRLDY and UTRLRDY bits must be 1
4782 	 */
4783 	reg = ufshcd_readl(hba, REG_CONTROLLER_STATUS);
4784 	if (!(ufshcd_get_lists_status(reg))) {
4785 		ufshcd_enable_run_stop_reg(hba);
4786 	} else {
4787 		dev_err(hba->dev,
4788 			"Host controller not ready to process requests");
4789 		err = -EIO;
4790 	}
4791 
4792 	return err;
4793 }
4794 EXPORT_SYMBOL_GPL(ufshcd_make_hba_operational);
4795 
4796 /**
4797  * ufshcd_hba_stop - Send controller to reset state
4798  * @hba: per adapter instance
4799  */
4800 void ufshcd_hba_stop(struct ufs_hba *hba)
4801 {
4802 	unsigned long flags;
4803 	int err;
4804 
4805 	/*
4806 	 * Obtain the host lock to prevent that the controller is disabled
4807 	 * while the UFS interrupt handler is active on another CPU.
4808 	 */
4809 	spin_lock_irqsave(hba->host->host_lock, flags);
4810 	ufshcd_writel(hba, CONTROLLER_DISABLE,  REG_CONTROLLER_ENABLE);
4811 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4812 
4813 	err = ufshcd_wait_for_register(hba, REG_CONTROLLER_ENABLE,
4814 					CONTROLLER_ENABLE, CONTROLLER_DISABLE,
4815 					10, 1);
4816 	if (err)
4817 		dev_err(hba->dev, "%s: Controller disable failed\n", __func__);
4818 }
4819 EXPORT_SYMBOL_GPL(ufshcd_hba_stop);
4820 
4821 /**
4822  * ufshcd_hba_execute_hce - initialize the controller
4823  * @hba: per adapter instance
4824  *
4825  * The controller resets itself and controller firmware initialization
4826  * sequence kicks off. When controller is ready it will set
4827  * the Host Controller Enable bit to 1.
4828  *
4829  * Return: 0 on success, non-zero value on failure.
4830  */
4831 static int ufshcd_hba_execute_hce(struct ufs_hba *hba)
4832 {
4833 	int retry_outer = 3;
4834 	int retry_inner;
4835 
4836 start:
4837 	if (ufshcd_is_hba_active(hba))
4838 		/* change controller state to "reset state" */
4839 		ufshcd_hba_stop(hba);
4840 
4841 	/* UniPro link is disabled at this point */
4842 	ufshcd_set_link_off(hba);
4843 
4844 	ufshcd_vops_hce_enable_notify(hba, PRE_CHANGE);
4845 
4846 	/* start controller initialization sequence */
4847 	ufshcd_hba_start(hba);
4848 
4849 	/*
4850 	 * To initialize a UFS host controller HCE bit must be set to 1.
4851 	 * During initialization the HCE bit value changes from 1->0->1.
4852 	 * When the host controller completes initialization sequence
4853 	 * it sets the value of HCE bit to 1. The same HCE bit is read back
4854 	 * to check if the controller has completed initialization sequence.
4855 	 * So without this delay the value HCE = 1, set in the previous
4856 	 * instruction might be read back.
4857 	 * This delay can be changed based on the controller.
4858 	 */
4859 	ufshcd_delay_us(hba->vps->hba_enable_delay_us, 100);
4860 
4861 	/* wait for the host controller to complete initialization */
4862 	retry_inner = 50;
4863 	while (!ufshcd_is_hba_active(hba)) {
4864 		if (retry_inner) {
4865 			retry_inner--;
4866 		} else {
4867 			dev_err(hba->dev,
4868 				"Controller enable failed\n");
4869 			if (retry_outer) {
4870 				retry_outer--;
4871 				goto start;
4872 			}
4873 			return -EIO;
4874 		}
4875 		usleep_range(1000, 1100);
4876 	}
4877 
4878 	/* enable UIC related interrupts */
4879 	ufshcd_enable_intr(hba, UFSHCD_UIC_MASK);
4880 
4881 	ufshcd_vops_hce_enable_notify(hba, POST_CHANGE);
4882 
4883 	return 0;
4884 }
4885 
4886 int ufshcd_hba_enable(struct ufs_hba *hba)
4887 {
4888 	int ret;
4889 
4890 	if (hba->quirks & UFSHCI_QUIRK_BROKEN_HCE) {
4891 		ufshcd_set_link_off(hba);
4892 		ufshcd_vops_hce_enable_notify(hba, PRE_CHANGE);
4893 
4894 		/* enable UIC related interrupts */
4895 		ufshcd_enable_intr(hba, UFSHCD_UIC_MASK);
4896 		ret = ufshcd_dme_reset(hba);
4897 		if (ret) {
4898 			dev_err(hba->dev, "DME_RESET failed\n");
4899 			return ret;
4900 		}
4901 
4902 		ret = ufshcd_dme_enable(hba);
4903 		if (ret) {
4904 			dev_err(hba->dev, "Enabling DME failed\n");
4905 			return ret;
4906 		}
4907 
4908 		ufshcd_vops_hce_enable_notify(hba, POST_CHANGE);
4909 	} else {
4910 		ret = ufshcd_hba_execute_hce(hba);
4911 	}
4912 
4913 	return ret;
4914 }
4915 EXPORT_SYMBOL_GPL(ufshcd_hba_enable);
4916 
4917 static int ufshcd_disable_tx_lcc(struct ufs_hba *hba, bool peer)
4918 {
4919 	int tx_lanes = 0, i, err = 0;
4920 
4921 	if (!peer)
4922 		ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4923 			       &tx_lanes);
4924 	else
4925 		ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4926 				    &tx_lanes);
4927 	for (i = 0; i < tx_lanes; i++) {
4928 		if (!peer)
4929 			err = ufshcd_dme_set(hba,
4930 				UIC_ARG_MIB_SEL(TX_LCC_ENABLE,
4931 					UIC_ARG_MPHY_TX_GEN_SEL_INDEX(i)),
4932 					0);
4933 		else
4934 			err = ufshcd_dme_peer_set(hba,
4935 				UIC_ARG_MIB_SEL(TX_LCC_ENABLE,
4936 					UIC_ARG_MPHY_TX_GEN_SEL_INDEX(i)),
4937 					0);
4938 		if (err) {
4939 			dev_err(hba->dev, "%s: TX LCC Disable failed, peer = %d, lane = %d, err = %d",
4940 				__func__, peer, i, err);
4941 			break;
4942 		}
4943 	}
4944 
4945 	return err;
4946 }
4947 
4948 static inline int ufshcd_disable_device_tx_lcc(struct ufs_hba *hba)
4949 {
4950 	return ufshcd_disable_tx_lcc(hba, true);
4951 }
4952 
4953 void ufshcd_update_evt_hist(struct ufs_hba *hba, u32 id, u32 val)
4954 {
4955 	struct ufs_event_hist *e;
4956 
4957 	if (id >= UFS_EVT_CNT)
4958 		return;
4959 
4960 	e = &hba->ufs_stats.event[id];
4961 	e->val[e->pos] = val;
4962 	e->tstamp[e->pos] = local_clock();
4963 	e->cnt += 1;
4964 	e->pos = (e->pos + 1) % UFS_EVENT_HIST_LENGTH;
4965 
4966 	ufshcd_vops_event_notify(hba, id, &val);
4967 }
4968 EXPORT_SYMBOL_GPL(ufshcd_update_evt_hist);
4969 
4970 /**
4971  * ufshcd_link_startup - Initialize unipro link startup
4972  * @hba: per adapter instance
4973  *
4974  * Return: 0 for success, non-zero in case of failure.
4975  */
4976 static int ufshcd_link_startup(struct ufs_hba *hba)
4977 {
4978 	int ret;
4979 	int retries = DME_LINKSTARTUP_RETRIES;
4980 	bool link_startup_again = false;
4981 
4982 	/*
4983 	 * If UFS device isn't active then we will have to issue link startup
4984 	 * 2 times to make sure the device state move to active.
4985 	 */
4986 	if (!ufshcd_is_ufs_dev_active(hba))
4987 		link_startup_again = true;
4988 
4989 link_startup:
4990 	do {
4991 		ufshcd_vops_link_startup_notify(hba, PRE_CHANGE);
4992 
4993 		ret = ufshcd_dme_link_startup(hba);
4994 
4995 		/* check if device is detected by inter-connect layer */
4996 		if (!ret && !ufshcd_is_device_present(hba)) {
4997 			ufshcd_update_evt_hist(hba,
4998 					       UFS_EVT_LINK_STARTUP_FAIL,
4999 					       0);
5000 			dev_err(hba->dev, "%s: Device not present\n", __func__);
5001 			ret = -ENXIO;
5002 			goto out;
5003 		}
5004 
5005 		/*
5006 		 * DME link lost indication is only received when link is up,
5007 		 * but we can't be sure if the link is up until link startup
5008 		 * succeeds. So reset the local Uni-Pro and try again.
5009 		 */
5010 		if (ret && retries && ufshcd_hba_enable(hba)) {
5011 			ufshcd_update_evt_hist(hba,
5012 					       UFS_EVT_LINK_STARTUP_FAIL,
5013 					       (u32)ret);
5014 			goto out;
5015 		}
5016 	} while (ret && retries--);
5017 
5018 	if (ret) {
5019 		/* failed to get the link up... retire */
5020 		ufshcd_update_evt_hist(hba,
5021 				       UFS_EVT_LINK_STARTUP_FAIL,
5022 				       (u32)ret);
5023 		goto out;
5024 	}
5025 
5026 	if (link_startup_again) {
5027 		link_startup_again = false;
5028 		retries = DME_LINKSTARTUP_RETRIES;
5029 		goto link_startup;
5030 	}
5031 
5032 	/* Mark that link is up in PWM-G1, 1-lane, SLOW-AUTO mode */
5033 	ufshcd_init_pwr_info(hba);
5034 	ufshcd_print_pwr_info(hba);
5035 
5036 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_LCC) {
5037 		ret = ufshcd_disable_device_tx_lcc(hba);
5038 		if (ret)
5039 			goto out;
5040 	}
5041 
5042 	/* Include any host controller configuration via UIC commands */
5043 	ret = ufshcd_vops_link_startup_notify(hba, POST_CHANGE);
5044 	if (ret)
5045 		goto out;
5046 
5047 	/* Clear UECPA once due to LINERESET has happened during LINK_STARTUP */
5048 	ufshcd_readl(hba, REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER);
5049 	ret = ufshcd_make_hba_operational(hba);
5050 out:
5051 	if (ret) {
5052 		dev_err(hba->dev, "link startup failed %d\n", ret);
5053 		ufshcd_print_host_state(hba);
5054 		ufshcd_print_pwr_info(hba);
5055 		ufshcd_print_evt_hist(hba);
5056 	}
5057 	return ret;
5058 }
5059 
5060 /**
5061  * ufshcd_verify_dev_init() - Verify device initialization
5062  * @hba: per-adapter instance
5063  *
5064  * Send NOP OUT UPIU and wait for NOP IN response to check whether the
5065  * device Transport Protocol (UTP) layer is ready after a reset.
5066  * If the UTP layer at the device side is not initialized, it may
5067  * not respond with NOP IN UPIU within timeout of %NOP_OUT_TIMEOUT
5068  * and we retry sending NOP OUT for %NOP_OUT_RETRIES iterations.
5069  *
5070  * Return: 0 upon success; < 0 upon failure.
5071  */
5072 static int ufshcd_verify_dev_init(struct ufs_hba *hba)
5073 {
5074 	int err = 0;
5075 	int retries;
5076 
5077 	ufshcd_hold(hba);
5078 	mutex_lock(&hba->dev_cmd.lock);
5079 	for (retries = NOP_OUT_RETRIES; retries > 0; retries--) {
5080 		err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_NOP,
5081 					  hba->nop_out_timeout);
5082 
5083 		if (!err || err == -ETIMEDOUT)
5084 			break;
5085 
5086 		dev_dbg(hba->dev, "%s: error %d retrying\n", __func__, err);
5087 	}
5088 	mutex_unlock(&hba->dev_cmd.lock);
5089 	ufshcd_release(hba);
5090 
5091 	if (err)
5092 		dev_err(hba->dev, "%s: NOP OUT failed %d\n", __func__, err);
5093 	return err;
5094 }
5095 
5096 /**
5097  * ufshcd_setup_links - associate link b/w device wlun and other luns
5098  * @sdev: pointer to SCSI device
5099  * @hba: pointer to ufs hba
5100  */
5101 static void ufshcd_setup_links(struct ufs_hba *hba, struct scsi_device *sdev)
5102 {
5103 	struct device_link *link;
5104 
5105 	/*
5106 	 * Device wlun is the supplier & rest of the luns are consumers.
5107 	 * This ensures that device wlun suspends after all other luns.
5108 	 */
5109 	if (hba->ufs_device_wlun) {
5110 		link = device_link_add(&sdev->sdev_gendev,
5111 				       &hba->ufs_device_wlun->sdev_gendev,
5112 				       DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE);
5113 		if (!link) {
5114 			dev_err(&sdev->sdev_gendev, "Failed establishing link - %s\n",
5115 				dev_name(&hba->ufs_device_wlun->sdev_gendev));
5116 			return;
5117 		}
5118 		hba->luns_avail--;
5119 		/* Ignore REPORT_LUN wlun probing */
5120 		if (hba->luns_avail == 1) {
5121 			ufshcd_rpm_put(hba);
5122 			return;
5123 		}
5124 	} else {
5125 		/*
5126 		 * Device wlun is probed. The assumption is that WLUNs are
5127 		 * scanned before other LUNs.
5128 		 */
5129 		hba->luns_avail--;
5130 	}
5131 }
5132 
5133 /**
5134  * ufshcd_lu_init - Initialize the relevant parameters of the LU
5135  * @hba: per-adapter instance
5136  * @sdev: pointer to SCSI device
5137  */
5138 static void ufshcd_lu_init(struct ufs_hba *hba, struct scsi_device *sdev)
5139 {
5140 	int len = QUERY_DESC_MAX_SIZE;
5141 	u8 lun = ufshcd_scsi_to_upiu_lun(sdev->lun);
5142 	u8 lun_qdepth = hba->nutrs;
5143 	u8 *desc_buf;
5144 	int ret;
5145 
5146 	desc_buf = kzalloc(len, GFP_KERNEL);
5147 	if (!desc_buf)
5148 		goto set_qdepth;
5149 
5150 	ret = ufshcd_read_unit_desc_param(hba, lun, 0, desc_buf, len);
5151 	if (ret < 0) {
5152 		if (ret == -EOPNOTSUPP)
5153 			/* If LU doesn't support unit descriptor, its queue depth is set to 1 */
5154 			lun_qdepth = 1;
5155 		kfree(desc_buf);
5156 		goto set_qdepth;
5157 	}
5158 
5159 	if (desc_buf[UNIT_DESC_PARAM_LU_Q_DEPTH]) {
5160 		/*
5161 		 * In per-LU queueing architecture, bLUQueueDepth will not be 0, then we will
5162 		 * use the smaller between UFSHCI CAP.NUTRS and UFS LU bLUQueueDepth
5163 		 */
5164 		lun_qdepth = min_t(int, desc_buf[UNIT_DESC_PARAM_LU_Q_DEPTH], hba->nutrs);
5165 	}
5166 	/*
5167 	 * According to UFS device specification, the write protection mode is only supported by
5168 	 * normal LU, not supported by WLUN.
5169 	 */
5170 	if (hba->dev_info.f_power_on_wp_en && lun < hba->dev_info.max_lu_supported &&
5171 	    !hba->dev_info.is_lu_power_on_wp &&
5172 	    desc_buf[UNIT_DESC_PARAM_LU_WR_PROTECT] == UFS_LU_POWER_ON_WP)
5173 		hba->dev_info.is_lu_power_on_wp = true;
5174 
5175 	/* In case of RPMB LU, check if advanced RPMB mode is enabled */
5176 	if (desc_buf[UNIT_DESC_PARAM_UNIT_INDEX] == UFS_UPIU_RPMB_WLUN &&
5177 	    desc_buf[RPMB_UNIT_DESC_PARAM_REGION_EN] & BIT(4))
5178 		hba->dev_info.b_advanced_rpmb_en = true;
5179 
5180 
5181 	kfree(desc_buf);
5182 set_qdepth:
5183 	/*
5184 	 * For WLUNs that don't support unit descriptor, queue depth is set to 1. For LUs whose
5185 	 * bLUQueueDepth == 0, the queue depth is set to a maximum value that host can queue.
5186 	 */
5187 	dev_dbg(hba->dev, "Set LU %x queue depth %d\n", lun, lun_qdepth);
5188 	scsi_change_queue_depth(sdev, lun_qdepth);
5189 }
5190 
5191 /**
5192  * ufshcd_slave_alloc - handle initial SCSI device configurations
5193  * @sdev: pointer to SCSI device
5194  *
5195  * Return: success.
5196  */
5197 static int ufshcd_slave_alloc(struct scsi_device *sdev)
5198 {
5199 	struct ufs_hba *hba;
5200 
5201 	hba = shost_priv(sdev->host);
5202 
5203 	/* Mode sense(6) is not supported by UFS, so use Mode sense(10) */
5204 	sdev->use_10_for_ms = 1;
5205 
5206 	/* DBD field should be set to 1 in mode sense(10) */
5207 	sdev->set_dbd_for_ms = 1;
5208 
5209 	/* allow SCSI layer to restart the device in case of errors */
5210 	sdev->allow_restart = 1;
5211 
5212 	/* REPORT SUPPORTED OPERATION CODES is not supported */
5213 	sdev->no_report_opcodes = 1;
5214 
5215 	/* WRITE_SAME command is not supported */
5216 	sdev->no_write_same = 1;
5217 
5218 	ufshcd_lu_init(hba, sdev);
5219 
5220 	ufshcd_setup_links(hba, sdev);
5221 
5222 	return 0;
5223 }
5224 
5225 /**
5226  * ufshcd_change_queue_depth - change queue depth
5227  * @sdev: pointer to SCSI device
5228  * @depth: required depth to set
5229  *
5230  * Change queue depth and make sure the max. limits are not crossed.
5231  *
5232  * Return: new queue depth.
5233  */
5234 static int ufshcd_change_queue_depth(struct scsi_device *sdev, int depth)
5235 {
5236 	return scsi_change_queue_depth(sdev, min(depth, sdev->host->can_queue));
5237 }
5238 
5239 /**
5240  * ufshcd_slave_configure - adjust SCSI device configurations
5241  * @sdev: pointer to SCSI device
5242  *
5243  * Return: 0 (success).
5244  */
5245 static int ufshcd_slave_configure(struct scsi_device *sdev)
5246 {
5247 	struct ufs_hba *hba = shost_priv(sdev->host);
5248 	struct request_queue *q = sdev->request_queue;
5249 
5250 	blk_queue_update_dma_pad(q, PRDT_DATA_BYTE_COUNT_PAD - 1);
5251 
5252 	/*
5253 	 * Block runtime-pm until all consumers are added.
5254 	 * Refer ufshcd_setup_links().
5255 	 */
5256 	if (is_device_wlun(sdev))
5257 		pm_runtime_get_noresume(&sdev->sdev_gendev);
5258 	else if (ufshcd_is_rpm_autosuspend_allowed(hba))
5259 		sdev->rpm_autosuspend = 1;
5260 	/*
5261 	 * Do not print messages during runtime PM to avoid never-ending cycles
5262 	 * of messages written back to storage by user space causing runtime
5263 	 * resume, causing more messages and so on.
5264 	 */
5265 	sdev->silence_suspend = 1;
5266 
5267 	if (hba->vops && hba->vops->config_scsi_dev)
5268 		hba->vops->config_scsi_dev(sdev);
5269 
5270 	ufshcd_crypto_register(hba, q);
5271 
5272 	return 0;
5273 }
5274 
5275 /**
5276  * ufshcd_slave_destroy - remove SCSI device configurations
5277  * @sdev: pointer to SCSI device
5278  */
5279 static void ufshcd_slave_destroy(struct scsi_device *sdev)
5280 {
5281 	struct ufs_hba *hba;
5282 	unsigned long flags;
5283 
5284 	hba = shost_priv(sdev->host);
5285 
5286 	/* Drop the reference as it won't be needed anymore */
5287 	if (ufshcd_scsi_to_upiu_lun(sdev->lun) == UFS_UPIU_UFS_DEVICE_WLUN) {
5288 		spin_lock_irqsave(hba->host->host_lock, flags);
5289 		hba->ufs_device_wlun = NULL;
5290 		spin_unlock_irqrestore(hba->host->host_lock, flags);
5291 	} else if (hba->ufs_device_wlun) {
5292 		struct device *supplier = NULL;
5293 
5294 		/* Ensure UFS Device WLUN exists and does not disappear */
5295 		spin_lock_irqsave(hba->host->host_lock, flags);
5296 		if (hba->ufs_device_wlun) {
5297 			supplier = &hba->ufs_device_wlun->sdev_gendev;
5298 			get_device(supplier);
5299 		}
5300 		spin_unlock_irqrestore(hba->host->host_lock, flags);
5301 
5302 		if (supplier) {
5303 			/*
5304 			 * If a LUN fails to probe (e.g. absent BOOT WLUN), the
5305 			 * device will not have been registered but can still
5306 			 * have a device link holding a reference to the device.
5307 			 */
5308 			device_link_remove(&sdev->sdev_gendev, supplier);
5309 			put_device(supplier);
5310 		}
5311 	}
5312 }
5313 
5314 /**
5315  * ufshcd_scsi_cmd_status - Update SCSI command result based on SCSI status
5316  * @lrbp: pointer to local reference block of completed command
5317  * @scsi_status: SCSI command status
5318  *
5319  * Return: value base on SCSI command status.
5320  */
5321 static inline int
5322 ufshcd_scsi_cmd_status(struct ufshcd_lrb *lrbp, int scsi_status)
5323 {
5324 	int result = 0;
5325 
5326 	switch (scsi_status) {
5327 	case SAM_STAT_CHECK_CONDITION:
5328 		ufshcd_copy_sense_data(lrbp);
5329 		fallthrough;
5330 	case SAM_STAT_GOOD:
5331 		result |= DID_OK << 16 | scsi_status;
5332 		break;
5333 	case SAM_STAT_TASK_SET_FULL:
5334 	case SAM_STAT_BUSY:
5335 	case SAM_STAT_TASK_ABORTED:
5336 		ufshcd_copy_sense_data(lrbp);
5337 		result |= scsi_status;
5338 		break;
5339 	default:
5340 		result |= DID_ERROR << 16;
5341 		break;
5342 	} /* end of switch */
5343 
5344 	return result;
5345 }
5346 
5347 /**
5348  * ufshcd_transfer_rsp_status - Get overall status of the response
5349  * @hba: per adapter instance
5350  * @lrbp: pointer to local reference block of completed command
5351  * @cqe: pointer to the completion queue entry
5352  *
5353  * Return: result of the command to notify SCSI midlayer.
5354  */
5355 static inline int
5356 ufshcd_transfer_rsp_status(struct ufs_hba *hba, struct ufshcd_lrb *lrbp,
5357 			   struct cq_entry *cqe)
5358 {
5359 	int result = 0;
5360 	int scsi_status;
5361 	enum utp_ocs ocs;
5362 	u8 upiu_flags;
5363 	u32 resid;
5364 
5365 	upiu_flags = lrbp->ucd_rsp_ptr->header.flags;
5366 	resid = be32_to_cpu(lrbp->ucd_rsp_ptr->sr.residual_transfer_count);
5367 	/*
5368 	 * Test !overflow instead of underflow to support UFS devices that do
5369 	 * not set either flag.
5370 	 */
5371 	if (resid && !(upiu_flags & UPIU_RSP_FLAG_OVERFLOW))
5372 		scsi_set_resid(lrbp->cmd, resid);
5373 
5374 	/* overall command status of utrd */
5375 	ocs = ufshcd_get_tr_ocs(lrbp, cqe);
5376 
5377 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_OCS_FATAL_ERROR) {
5378 		if (lrbp->ucd_rsp_ptr->header.response ||
5379 		    lrbp->ucd_rsp_ptr->header.status)
5380 			ocs = OCS_SUCCESS;
5381 	}
5382 
5383 	switch (ocs) {
5384 	case OCS_SUCCESS:
5385 		hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
5386 		switch (ufshcd_get_req_rsp(lrbp->ucd_rsp_ptr)) {
5387 		case UPIU_TRANSACTION_RESPONSE:
5388 			/*
5389 			 * get the result based on SCSI status response
5390 			 * to notify the SCSI midlayer of the command status
5391 			 */
5392 			scsi_status = lrbp->ucd_rsp_ptr->header.status;
5393 			result = ufshcd_scsi_cmd_status(lrbp, scsi_status);
5394 
5395 			/*
5396 			 * Currently we are only supporting BKOPs exception
5397 			 * events hence we can ignore BKOPs exception event
5398 			 * during power management callbacks. BKOPs exception
5399 			 * event is not expected to be raised in runtime suspend
5400 			 * callback as it allows the urgent bkops.
5401 			 * During system suspend, we are anyway forcefully
5402 			 * disabling the bkops and if urgent bkops is needed
5403 			 * it will be enabled on system resume. Long term
5404 			 * solution could be to abort the system suspend if
5405 			 * UFS device needs urgent BKOPs.
5406 			 */
5407 			if (!hba->pm_op_in_progress &&
5408 			    !ufshcd_eh_in_progress(hba) &&
5409 			    ufshcd_is_exception_event(lrbp->ucd_rsp_ptr))
5410 				/* Flushed in suspend */
5411 				schedule_work(&hba->eeh_work);
5412 			break;
5413 		case UPIU_TRANSACTION_REJECT_UPIU:
5414 			/* TODO: handle Reject UPIU Response */
5415 			result = DID_ERROR << 16;
5416 			dev_err(hba->dev,
5417 				"Reject UPIU not fully implemented\n");
5418 			break;
5419 		default:
5420 			dev_err(hba->dev,
5421 				"Unexpected request response code = %x\n",
5422 				result);
5423 			result = DID_ERROR << 16;
5424 			break;
5425 		}
5426 		break;
5427 	case OCS_ABORTED:
5428 		result |= DID_ABORT << 16;
5429 		break;
5430 	case OCS_INVALID_COMMAND_STATUS:
5431 		result |= DID_REQUEUE << 16;
5432 		break;
5433 	case OCS_INVALID_CMD_TABLE_ATTR:
5434 	case OCS_INVALID_PRDT_ATTR:
5435 	case OCS_MISMATCH_DATA_BUF_SIZE:
5436 	case OCS_MISMATCH_RESP_UPIU_SIZE:
5437 	case OCS_PEER_COMM_FAILURE:
5438 	case OCS_FATAL_ERROR:
5439 	case OCS_DEVICE_FATAL_ERROR:
5440 	case OCS_INVALID_CRYPTO_CONFIG:
5441 	case OCS_GENERAL_CRYPTO_ERROR:
5442 	default:
5443 		result |= DID_ERROR << 16;
5444 		dev_err(hba->dev,
5445 				"OCS error from controller = %x for tag %d\n",
5446 				ocs, lrbp->task_tag);
5447 		ufshcd_print_evt_hist(hba);
5448 		ufshcd_print_host_state(hba);
5449 		break;
5450 	} /* end of switch */
5451 
5452 	if ((host_byte(result) != DID_OK) &&
5453 	    (host_byte(result) != DID_REQUEUE) && !hba->silence_err_logs)
5454 		ufshcd_print_tr(hba, lrbp->task_tag, true);
5455 	return result;
5456 }
5457 
5458 static bool ufshcd_is_auto_hibern8_error(struct ufs_hba *hba,
5459 					 u32 intr_mask)
5460 {
5461 	if (!ufshcd_is_auto_hibern8_supported(hba) ||
5462 	    !ufshcd_is_auto_hibern8_enabled(hba))
5463 		return false;
5464 
5465 	if (!(intr_mask & UFSHCD_UIC_HIBERN8_MASK))
5466 		return false;
5467 
5468 	if (hba->active_uic_cmd &&
5469 	    (hba->active_uic_cmd->command == UIC_CMD_DME_HIBER_ENTER ||
5470 	    hba->active_uic_cmd->command == UIC_CMD_DME_HIBER_EXIT))
5471 		return false;
5472 
5473 	return true;
5474 }
5475 
5476 /**
5477  * ufshcd_uic_cmd_compl - handle completion of uic command
5478  * @hba: per adapter instance
5479  * @intr_status: interrupt status generated by the controller
5480  *
5481  * Return:
5482  *  IRQ_HANDLED - If interrupt is valid
5483  *  IRQ_NONE    - If invalid interrupt
5484  */
5485 static irqreturn_t ufshcd_uic_cmd_compl(struct ufs_hba *hba, u32 intr_status)
5486 {
5487 	irqreturn_t retval = IRQ_NONE;
5488 
5489 	spin_lock(hba->host->host_lock);
5490 	if (ufshcd_is_auto_hibern8_error(hba, intr_status))
5491 		hba->errors |= (UFSHCD_UIC_HIBERN8_MASK & intr_status);
5492 
5493 	if ((intr_status & UIC_COMMAND_COMPL) && hba->active_uic_cmd) {
5494 		hba->active_uic_cmd->argument2 |=
5495 			ufshcd_get_uic_cmd_result(hba);
5496 		hba->active_uic_cmd->argument3 =
5497 			ufshcd_get_dme_attr_val(hba);
5498 		if (!hba->uic_async_done)
5499 			hba->active_uic_cmd->cmd_active = 0;
5500 		complete(&hba->active_uic_cmd->done);
5501 		retval = IRQ_HANDLED;
5502 	}
5503 
5504 	if ((intr_status & UFSHCD_UIC_PWR_MASK) && hba->uic_async_done) {
5505 		hba->active_uic_cmd->cmd_active = 0;
5506 		complete(hba->uic_async_done);
5507 		retval = IRQ_HANDLED;
5508 	}
5509 
5510 	if (retval == IRQ_HANDLED)
5511 		ufshcd_add_uic_command_trace(hba, hba->active_uic_cmd,
5512 					     UFS_CMD_COMP);
5513 	spin_unlock(hba->host->host_lock);
5514 	return retval;
5515 }
5516 
5517 /* Release the resources allocated for processing a SCSI command. */
5518 void ufshcd_release_scsi_cmd(struct ufs_hba *hba,
5519 			     struct ufshcd_lrb *lrbp)
5520 {
5521 	struct scsi_cmnd *cmd = lrbp->cmd;
5522 
5523 	scsi_dma_unmap(cmd);
5524 	ufshcd_release(hba);
5525 	ufshcd_clk_scaling_update_busy(hba);
5526 }
5527 
5528 /**
5529  * ufshcd_compl_one_cqe - handle a completion queue entry
5530  * @hba: per adapter instance
5531  * @task_tag: the task tag of the request to be completed
5532  * @cqe: pointer to the completion queue entry
5533  */
5534 void ufshcd_compl_one_cqe(struct ufs_hba *hba, int task_tag,
5535 			  struct cq_entry *cqe)
5536 {
5537 	struct ufshcd_lrb *lrbp;
5538 	struct scsi_cmnd *cmd;
5539 	enum utp_ocs ocs;
5540 
5541 	lrbp = &hba->lrb[task_tag];
5542 	lrbp->compl_time_stamp = ktime_get();
5543 	cmd = lrbp->cmd;
5544 	if (cmd) {
5545 		if (unlikely(ufshcd_should_inform_monitor(hba, lrbp)))
5546 			ufshcd_update_monitor(hba, lrbp);
5547 		ufshcd_add_command_trace(hba, task_tag, UFS_CMD_COMP);
5548 		cmd->result = ufshcd_transfer_rsp_status(hba, lrbp, cqe);
5549 		ufshcd_release_scsi_cmd(hba, lrbp);
5550 		/* Do not touch lrbp after scsi done */
5551 		scsi_done(cmd);
5552 	} else if (lrbp->command_type == UTP_CMD_TYPE_DEV_MANAGE ||
5553 		   lrbp->command_type == UTP_CMD_TYPE_UFS_STORAGE) {
5554 		if (hba->dev_cmd.complete) {
5555 			if (cqe) {
5556 				ocs = le32_to_cpu(cqe->status) & MASK_OCS;
5557 				lrbp->utr_descriptor_ptr->header.ocs = ocs;
5558 			}
5559 			complete(hba->dev_cmd.complete);
5560 		}
5561 	}
5562 }
5563 
5564 /**
5565  * __ufshcd_transfer_req_compl - handle SCSI and query command completion
5566  * @hba: per adapter instance
5567  * @completed_reqs: bitmask that indicates which requests to complete
5568  */
5569 static void __ufshcd_transfer_req_compl(struct ufs_hba *hba,
5570 					unsigned long completed_reqs)
5571 {
5572 	int tag;
5573 
5574 	for_each_set_bit(tag, &completed_reqs, hba->nutrs)
5575 		ufshcd_compl_one_cqe(hba, tag, NULL);
5576 }
5577 
5578 /* Any value that is not an existing queue number is fine for this constant. */
5579 enum {
5580 	UFSHCD_POLL_FROM_INTERRUPT_CONTEXT = -1
5581 };
5582 
5583 static void ufshcd_clear_polled(struct ufs_hba *hba,
5584 				unsigned long *completed_reqs)
5585 {
5586 	int tag;
5587 
5588 	for_each_set_bit(tag, completed_reqs, hba->nutrs) {
5589 		struct scsi_cmnd *cmd = hba->lrb[tag].cmd;
5590 
5591 		if (!cmd)
5592 			continue;
5593 		if (scsi_cmd_to_rq(cmd)->cmd_flags & REQ_POLLED)
5594 			__clear_bit(tag, completed_reqs);
5595 	}
5596 }
5597 
5598 /*
5599  * Return: > 0 if one or more commands have been completed or 0 if no
5600  * requests have been completed.
5601  */
5602 static int ufshcd_poll(struct Scsi_Host *shost, unsigned int queue_num)
5603 {
5604 	struct ufs_hba *hba = shost_priv(shost);
5605 	unsigned long completed_reqs, flags;
5606 	u32 tr_doorbell;
5607 	struct ufs_hw_queue *hwq;
5608 
5609 	if (is_mcq_enabled(hba)) {
5610 		hwq = &hba->uhq[queue_num];
5611 
5612 		return ufshcd_mcq_poll_cqe_lock(hba, hwq);
5613 	}
5614 
5615 	spin_lock_irqsave(&hba->outstanding_lock, flags);
5616 	tr_doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
5617 	completed_reqs = ~tr_doorbell & hba->outstanding_reqs;
5618 	WARN_ONCE(completed_reqs & ~hba->outstanding_reqs,
5619 		  "completed: %#lx; outstanding: %#lx\n", completed_reqs,
5620 		  hba->outstanding_reqs);
5621 	if (queue_num == UFSHCD_POLL_FROM_INTERRUPT_CONTEXT) {
5622 		/* Do not complete polled requests from interrupt context. */
5623 		ufshcd_clear_polled(hba, &completed_reqs);
5624 	}
5625 	hba->outstanding_reqs &= ~completed_reqs;
5626 	spin_unlock_irqrestore(&hba->outstanding_lock, flags);
5627 
5628 	if (completed_reqs)
5629 		__ufshcd_transfer_req_compl(hba, completed_reqs);
5630 
5631 	return completed_reqs != 0;
5632 }
5633 
5634 /**
5635  * ufshcd_mcq_compl_pending_transfer - MCQ mode function. It is
5636  * invoked from the error handler context or ufshcd_host_reset_and_restore()
5637  * to complete the pending transfers and free the resources associated with
5638  * the scsi command.
5639  *
5640  * @hba: per adapter instance
5641  * @force_compl: This flag is set to true when invoked
5642  * from ufshcd_host_reset_and_restore() in which case it requires special
5643  * handling because the host controller has been reset by ufshcd_hba_stop().
5644  */
5645 static void ufshcd_mcq_compl_pending_transfer(struct ufs_hba *hba,
5646 					      bool force_compl)
5647 {
5648 	struct ufs_hw_queue *hwq;
5649 	struct ufshcd_lrb *lrbp;
5650 	struct scsi_cmnd *cmd;
5651 	unsigned long flags;
5652 	int tag;
5653 
5654 	for (tag = 0; tag < hba->nutrs; tag++) {
5655 		lrbp = &hba->lrb[tag];
5656 		cmd = lrbp->cmd;
5657 		if (!ufshcd_cmd_inflight(cmd) ||
5658 		    test_bit(SCMD_STATE_COMPLETE, &cmd->state))
5659 			continue;
5660 
5661 		hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(cmd));
5662 
5663 		if (force_compl) {
5664 			ufshcd_mcq_compl_all_cqes_lock(hba, hwq);
5665 			/*
5666 			 * For those cmds of which the cqes are not present
5667 			 * in the cq, complete them explicitly.
5668 			 */
5669 			spin_lock_irqsave(&hwq->cq_lock, flags);
5670 			if (cmd && !test_bit(SCMD_STATE_COMPLETE, &cmd->state)) {
5671 				set_host_byte(cmd, DID_REQUEUE);
5672 				ufshcd_release_scsi_cmd(hba, lrbp);
5673 				scsi_done(cmd);
5674 			}
5675 			spin_unlock_irqrestore(&hwq->cq_lock, flags);
5676 		} else {
5677 			ufshcd_mcq_poll_cqe_lock(hba, hwq);
5678 		}
5679 	}
5680 }
5681 
5682 /**
5683  * ufshcd_transfer_req_compl - handle SCSI and query command completion
5684  * @hba: per adapter instance
5685  *
5686  * Return:
5687  *  IRQ_HANDLED - If interrupt is valid
5688  *  IRQ_NONE    - If invalid interrupt
5689  */
5690 static irqreturn_t ufshcd_transfer_req_compl(struct ufs_hba *hba)
5691 {
5692 	/* Resetting interrupt aggregation counters first and reading the
5693 	 * DOOR_BELL afterward allows us to handle all the completed requests.
5694 	 * In order to prevent other interrupts starvation the DB is read once
5695 	 * after reset. The down side of this solution is the possibility of
5696 	 * false interrupt if device completes another request after resetting
5697 	 * aggregation and before reading the DB.
5698 	 */
5699 	if (ufshcd_is_intr_aggr_allowed(hba) &&
5700 	    !(hba->quirks & UFSHCI_QUIRK_SKIP_RESET_INTR_AGGR))
5701 		ufshcd_reset_intr_aggr(hba);
5702 
5703 	if (ufs_fail_completion(hba))
5704 		return IRQ_HANDLED;
5705 
5706 	/*
5707 	 * Ignore the ufshcd_poll() return value and return IRQ_HANDLED since we
5708 	 * do not want polling to trigger spurious interrupt complaints.
5709 	 */
5710 	ufshcd_poll(hba->host, UFSHCD_POLL_FROM_INTERRUPT_CONTEXT);
5711 
5712 	return IRQ_HANDLED;
5713 }
5714 
5715 int __ufshcd_write_ee_control(struct ufs_hba *hba, u32 ee_ctrl_mask)
5716 {
5717 	return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
5718 				       QUERY_ATTR_IDN_EE_CONTROL, 0, 0,
5719 				       &ee_ctrl_mask);
5720 }
5721 
5722 int ufshcd_write_ee_control(struct ufs_hba *hba)
5723 {
5724 	int err;
5725 
5726 	mutex_lock(&hba->ee_ctrl_mutex);
5727 	err = __ufshcd_write_ee_control(hba, hba->ee_ctrl_mask);
5728 	mutex_unlock(&hba->ee_ctrl_mutex);
5729 	if (err)
5730 		dev_err(hba->dev, "%s: failed to write ee control %d\n",
5731 			__func__, err);
5732 	return err;
5733 }
5734 
5735 int ufshcd_update_ee_control(struct ufs_hba *hba, u16 *mask,
5736 			     const u16 *other_mask, u16 set, u16 clr)
5737 {
5738 	u16 new_mask, ee_ctrl_mask;
5739 	int err = 0;
5740 
5741 	mutex_lock(&hba->ee_ctrl_mutex);
5742 	new_mask = (*mask & ~clr) | set;
5743 	ee_ctrl_mask = new_mask | *other_mask;
5744 	if (ee_ctrl_mask != hba->ee_ctrl_mask)
5745 		err = __ufshcd_write_ee_control(hba, ee_ctrl_mask);
5746 	/* Still need to update 'mask' even if 'ee_ctrl_mask' was unchanged */
5747 	if (!err) {
5748 		hba->ee_ctrl_mask = ee_ctrl_mask;
5749 		*mask = new_mask;
5750 	}
5751 	mutex_unlock(&hba->ee_ctrl_mutex);
5752 	return err;
5753 }
5754 
5755 /**
5756  * ufshcd_disable_ee - disable exception event
5757  * @hba: per-adapter instance
5758  * @mask: exception event to disable
5759  *
5760  * Disables exception event in the device so that the EVENT_ALERT
5761  * bit is not set.
5762  *
5763  * Return: zero on success, non-zero error value on failure.
5764  */
5765 static inline int ufshcd_disable_ee(struct ufs_hba *hba, u16 mask)
5766 {
5767 	return ufshcd_update_ee_drv_mask(hba, 0, mask);
5768 }
5769 
5770 /**
5771  * ufshcd_enable_ee - enable exception event
5772  * @hba: per-adapter instance
5773  * @mask: exception event to enable
5774  *
5775  * Enable corresponding exception event in the device to allow
5776  * device to alert host in critical scenarios.
5777  *
5778  * Return: zero on success, non-zero error value on failure.
5779  */
5780 static inline int ufshcd_enable_ee(struct ufs_hba *hba, u16 mask)
5781 {
5782 	return ufshcd_update_ee_drv_mask(hba, mask, 0);
5783 }
5784 
5785 /**
5786  * ufshcd_enable_auto_bkops - Allow device managed BKOPS
5787  * @hba: per-adapter instance
5788  *
5789  * Allow device to manage background operations on its own. Enabling
5790  * this might lead to inconsistent latencies during normal data transfers
5791  * as the device is allowed to manage its own way of handling background
5792  * operations.
5793  *
5794  * Return: zero on success, non-zero on failure.
5795  */
5796 static int ufshcd_enable_auto_bkops(struct ufs_hba *hba)
5797 {
5798 	int err = 0;
5799 
5800 	if (hba->auto_bkops_enabled)
5801 		goto out;
5802 
5803 	err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG,
5804 			QUERY_FLAG_IDN_BKOPS_EN, 0, NULL);
5805 	if (err) {
5806 		dev_err(hba->dev, "%s: failed to enable bkops %d\n",
5807 				__func__, err);
5808 		goto out;
5809 	}
5810 
5811 	hba->auto_bkops_enabled = true;
5812 	trace_ufshcd_auto_bkops_state(dev_name(hba->dev), "Enabled");
5813 
5814 	/* No need of URGENT_BKOPS exception from the device */
5815 	err = ufshcd_disable_ee(hba, MASK_EE_URGENT_BKOPS);
5816 	if (err)
5817 		dev_err(hba->dev, "%s: failed to disable exception event %d\n",
5818 				__func__, err);
5819 out:
5820 	return err;
5821 }
5822 
5823 /**
5824  * ufshcd_disable_auto_bkops - block device in doing background operations
5825  * @hba: per-adapter instance
5826  *
5827  * Disabling background operations improves command response latency but
5828  * has drawback of device moving into critical state where the device is
5829  * not-operable. Make sure to call ufshcd_enable_auto_bkops() whenever the
5830  * host is idle so that BKOPS are managed effectively without any negative
5831  * impacts.
5832  *
5833  * Return: zero on success, non-zero on failure.
5834  */
5835 static int ufshcd_disable_auto_bkops(struct ufs_hba *hba)
5836 {
5837 	int err = 0;
5838 
5839 	if (!hba->auto_bkops_enabled)
5840 		goto out;
5841 
5842 	/*
5843 	 * If host assisted BKOPs is to be enabled, make sure
5844 	 * urgent bkops exception is allowed.
5845 	 */
5846 	err = ufshcd_enable_ee(hba, MASK_EE_URGENT_BKOPS);
5847 	if (err) {
5848 		dev_err(hba->dev, "%s: failed to enable exception event %d\n",
5849 				__func__, err);
5850 		goto out;
5851 	}
5852 
5853 	err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_CLEAR_FLAG,
5854 			QUERY_FLAG_IDN_BKOPS_EN, 0, NULL);
5855 	if (err) {
5856 		dev_err(hba->dev, "%s: failed to disable bkops %d\n",
5857 				__func__, err);
5858 		ufshcd_disable_ee(hba, MASK_EE_URGENT_BKOPS);
5859 		goto out;
5860 	}
5861 
5862 	hba->auto_bkops_enabled = false;
5863 	trace_ufshcd_auto_bkops_state(dev_name(hba->dev), "Disabled");
5864 	hba->is_urgent_bkops_lvl_checked = false;
5865 out:
5866 	return err;
5867 }
5868 
5869 /**
5870  * ufshcd_force_reset_auto_bkops - force reset auto bkops state
5871  * @hba: per adapter instance
5872  *
5873  * After a device reset the device may toggle the BKOPS_EN flag
5874  * to default value. The s/w tracking variables should be updated
5875  * as well. This function would change the auto-bkops state based on
5876  * UFSHCD_CAP_KEEP_AUTO_BKOPS_ENABLED_EXCEPT_SUSPEND.
5877  */
5878 static void ufshcd_force_reset_auto_bkops(struct ufs_hba *hba)
5879 {
5880 	if (ufshcd_keep_autobkops_enabled_except_suspend(hba)) {
5881 		hba->auto_bkops_enabled = false;
5882 		hba->ee_ctrl_mask |= MASK_EE_URGENT_BKOPS;
5883 		ufshcd_enable_auto_bkops(hba);
5884 	} else {
5885 		hba->auto_bkops_enabled = true;
5886 		hba->ee_ctrl_mask &= ~MASK_EE_URGENT_BKOPS;
5887 		ufshcd_disable_auto_bkops(hba);
5888 	}
5889 	hba->urgent_bkops_lvl = BKOPS_STATUS_PERF_IMPACT;
5890 	hba->is_urgent_bkops_lvl_checked = false;
5891 }
5892 
5893 static inline int ufshcd_get_bkops_status(struct ufs_hba *hba, u32 *status)
5894 {
5895 	return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5896 			QUERY_ATTR_IDN_BKOPS_STATUS, 0, 0, status);
5897 }
5898 
5899 /**
5900  * ufshcd_bkops_ctrl - control the auto bkops based on current bkops status
5901  * @hba: per-adapter instance
5902  * @status: bkops_status value
5903  *
5904  * Read the bkops_status from the UFS device and Enable fBackgroundOpsEn
5905  * flag in the device to permit background operations if the device
5906  * bkops_status is greater than or equal to "status" argument passed to
5907  * this function, disable otherwise.
5908  *
5909  * Return: 0 for success, non-zero in case of failure.
5910  *
5911  * NOTE: Caller of this function can check the "hba->auto_bkops_enabled" flag
5912  * to know whether auto bkops is enabled or disabled after this function
5913  * returns control to it.
5914  */
5915 static int ufshcd_bkops_ctrl(struct ufs_hba *hba,
5916 			     enum bkops_status status)
5917 {
5918 	int err;
5919 	u32 curr_status = 0;
5920 
5921 	err = ufshcd_get_bkops_status(hba, &curr_status);
5922 	if (err) {
5923 		dev_err(hba->dev, "%s: failed to get BKOPS status %d\n",
5924 				__func__, err);
5925 		goto out;
5926 	} else if (curr_status > BKOPS_STATUS_MAX) {
5927 		dev_err(hba->dev, "%s: invalid BKOPS status %d\n",
5928 				__func__, curr_status);
5929 		err = -EINVAL;
5930 		goto out;
5931 	}
5932 
5933 	if (curr_status >= status)
5934 		err = ufshcd_enable_auto_bkops(hba);
5935 	else
5936 		err = ufshcd_disable_auto_bkops(hba);
5937 out:
5938 	return err;
5939 }
5940 
5941 /**
5942  * ufshcd_urgent_bkops - handle urgent bkops exception event
5943  * @hba: per-adapter instance
5944  *
5945  * Enable fBackgroundOpsEn flag in the device to permit background
5946  * operations.
5947  *
5948  * If BKOPs is enabled, this function returns 0, 1 if the bkops in not enabled
5949  * and negative error value for any other failure.
5950  *
5951  * Return: 0 upon success; < 0 upon failure.
5952  */
5953 static int ufshcd_urgent_bkops(struct ufs_hba *hba)
5954 {
5955 	return ufshcd_bkops_ctrl(hba, hba->urgent_bkops_lvl);
5956 }
5957 
5958 static inline int ufshcd_get_ee_status(struct ufs_hba *hba, u32 *status)
5959 {
5960 	return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5961 			QUERY_ATTR_IDN_EE_STATUS, 0, 0, status);
5962 }
5963 
5964 static void ufshcd_bkops_exception_event_handler(struct ufs_hba *hba)
5965 {
5966 	int err;
5967 	u32 curr_status = 0;
5968 
5969 	if (hba->is_urgent_bkops_lvl_checked)
5970 		goto enable_auto_bkops;
5971 
5972 	err = ufshcd_get_bkops_status(hba, &curr_status);
5973 	if (err) {
5974 		dev_err(hba->dev, "%s: failed to get BKOPS status %d\n",
5975 				__func__, err);
5976 		goto out;
5977 	}
5978 
5979 	/*
5980 	 * We are seeing that some devices are raising the urgent bkops
5981 	 * exception events even when BKOPS status doesn't indicate performace
5982 	 * impacted or critical. Handle these device by determining their urgent
5983 	 * bkops status at runtime.
5984 	 */
5985 	if (curr_status < BKOPS_STATUS_PERF_IMPACT) {
5986 		dev_err(hba->dev, "%s: device raised urgent BKOPS exception for bkops status %d\n",
5987 				__func__, curr_status);
5988 		/* update the current status as the urgent bkops level */
5989 		hba->urgent_bkops_lvl = curr_status;
5990 		hba->is_urgent_bkops_lvl_checked = true;
5991 	}
5992 
5993 enable_auto_bkops:
5994 	err = ufshcd_enable_auto_bkops(hba);
5995 out:
5996 	if (err < 0)
5997 		dev_err(hba->dev, "%s: failed to handle urgent bkops %d\n",
5998 				__func__, err);
5999 }
6000 
6001 static void ufshcd_temp_exception_event_handler(struct ufs_hba *hba, u16 status)
6002 {
6003 	u32 value;
6004 
6005 	if (ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
6006 				QUERY_ATTR_IDN_CASE_ROUGH_TEMP, 0, 0, &value))
6007 		return;
6008 
6009 	dev_info(hba->dev, "exception Tcase %d\n", value - 80);
6010 
6011 	ufs_hwmon_notify_event(hba, status & MASK_EE_URGENT_TEMP);
6012 
6013 	/*
6014 	 * A placeholder for the platform vendors to add whatever additional
6015 	 * steps required
6016 	 */
6017 }
6018 
6019 static int __ufshcd_wb_toggle(struct ufs_hba *hba, bool set, enum flag_idn idn)
6020 {
6021 	u8 index;
6022 	enum query_opcode opcode = set ? UPIU_QUERY_OPCODE_SET_FLAG :
6023 				   UPIU_QUERY_OPCODE_CLEAR_FLAG;
6024 
6025 	index = ufshcd_wb_get_query_index(hba);
6026 	return ufshcd_query_flag_retry(hba, opcode, idn, index, NULL);
6027 }
6028 
6029 int ufshcd_wb_toggle(struct ufs_hba *hba, bool enable)
6030 {
6031 	int ret;
6032 
6033 	if (!ufshcd_is_wb_allowed(hba) ||
6034 	    hba->dev_info.wb_enabled == enable)
6035 		return 0;
6036 
6037 	ret = __ufshcd_wb_toggle(hba, enable, QUERY_FLAG_IDN_WB_EN);
6038 	if (ret) {
6039 		dev_err(hba->dev, "%s: Write Booster %s failed %d\n",
6040 			__func__, enable ? "enabling" : "disabling", ret);
6041 		return ret;
6042 	}
6043 
6044 	hba->dev_info.wb_enabled = enable;
6045 	dev_dbg(hba->dev, "%s: Write Booster %s\n",
6046 			__func__, enable ? "enabled" : "disabled");
6047 
6048 	return ret;
6049 }
6050 
6051 static void ufshcd_wb_toggle_buf_flush_during_h8(struct ufs_hba *hba,
6052 						 bool enable)
6053 {
6054 	int ret;
6055 
6056 	ret = __ufshcd_wb_toggle(hba, enable,
6057 			QUERY_FLAG_IDN_WB_BUFF_FLUSH_DURING_HIBERN8);
6058 	if (ret) {
6059 		dev_err(hba->dev, "%s: WB-Buf Flush during H8 %s failed %d\n",
6060 			__func__, enable ? "enabling" : "disabling", ret);
6061 		return;
6062 	}
6063 	dev_dbg(hba->dev, "%s: WB-Buf Flush during H8 %s\n",
6064 			__func__, enable ? "enabled" : "disabled");
6065 }
6066 
6067 int ufshcd_wb_toggle_buf_flush(struct ufs_hba *hba, bool enable)
6068 {
6069 	int ret;
6070 
6071 	if (!ufshcd_is_wb_allowed(hba) ||
6072 	    hba->dev_info.wb_buf_flush_enabled == enable)
6073 		return 0;
6074 
6075 	ret = __ufshcd_wb_toggle(hba, enable, QUERY_FLAG_IDN_WB_BUFF_FLUSH_EN);
6076 	if (ret) {
6077 		dev_err(hba->dev, "%s: WB-Buf Flush %s failed %d\n",
6078 			__func__, enable ? "enabling" : "disabling", ret);
6079 		return ret;
6080 	}
6081 
6082 	hba->dev_info.wb_buf_flush_enabled = enable;
6083 	dev_dbg(hba->dev, "%s: WB-Buf Flush %s\n",
6084 			__func__, enable ? "enabled" : "disabled");
6085 
6086 	return ret;
6087 }
6088 
6089 static bool ufshcd_wb_presrv_usrspc_keep_vcc_on(struct ufs_hba *hba,
6090 						u32 avail_buf)
6091 {
6092 	u32 cur_buf;
6093 	int ret;
6094 	u8 index;
6095 
6096 	index = ufshcd_wb_get_query_index(hba);
6097 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
6098 					      QUERY_ATTR_IDN_CURR_WB_BUFF_SIZE,
6099 					      index, 0, &cur_buf);
6100 	if (ret) {
6101 		dev_err(hba->dev, "%s: dCurWriteBoosterBufferSize read failed %d\n",
6102 			__func__, ret);
6103 		return false;
6104 	}
6105 
6106 	if (!cur_buf) {
6107 		dev_info(hba->dev, "dCurWBBuf: %d WB disabled until free-space is available\n",
6108 			 cur_buf);
6109 		return false;
6110 	}
6111 	/* Let it continue to flush when available buffer exceeds threshold */
6112 	return avail_buf < hba->vps->wb_flush_threshold;
6113 }
6114 
6115 static void ufshcd_wb_force_disable(struct ufs_hba *hba)
6116 {
6117 	if (ufshcd_is_wb_buf_flush_allowed(hba))
6118 		ufshcd_wb_toggle_buf_flush(hba, false);
6119 
6120 	ufshcd_wb_toggle_buf_flush_during_h8(hba, false);
6121 	ufshcd_wb_toggle(hba, false);
6122 	hba->caps &= ~UFSHCD_CAP_WB_EN;
6123 
6124 	dev_info(hba->dev, "%s: WB force disabled\n", __func__);
6125 }
6126 
6127 static bool ufshcd_is_wb_buf_lifetime_available(struct ufs_hba *hba)
6128 {
6129 	u32 lifetime;
6130 	int ret;
6131 	u8 index;
6132 
6133 	index = ufshcd_wb_get_query_index(hba);
6134 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
6135 				      QUERY_ATTR_IDN_WB_BUFF_LIFE_TIME_EST,
6136 				      index, 0, &lifetime);
6137 	if (ret) {
6138 		dev_err(hba->dev,
6139 			"%s: bWriteBoosterBufferLifeTimeEst read failed %d\n",
6140 			__func__, ret);
6141 		return false;
6142 	}
6143 
6144 	if (lifetime == UFS_WB_EXCEED_LIFETIME) {
6145 		dev_err(hba->dev, "%s: WB buf lifetime is exhausted 0x%02X\n",
6146 			__func__, lifetime);
6147 		return false;
6148 	}
6149 
6150 	dev_dbg(hba->dev, "%s: WB buf lifetime is 0x%02X\n",
6151 		__func__, lifetime);
6152 
6153 	return true;
6154 }
6155 
6156 static bool ufshcd_wb_need_flush(struct ufs_hba *hba)
6157 {
6158 	int ret;
6159 	u32 avail_buf;
6160 	u8 index;
6161 
6162 	if (!ufshcd_is_wb_allowed(hba))
6163 		return false;
6164 
6165 	if (!ufshcd_is_wb_buf_lifetime_available(hba)) {
6166 		ufshcd_wb_force_disable(hba);
6167 		return false;
6168 	}
6169 
6170 	/*
6171 	 * The ufs device needs the vcc to be ON to flush.
6172 	 * With user-space reduction enabled, it's enough to enable flush
6173 	 * by checking only the available buffer. The threshold
6174 	 * defined here is > 90% full.
6175 	 * With user-space preserved enabled, the current-buffer
6176 	 * should be checked too because the wb buffer size can reduce
6177 	 * when disk tends to be full. This info is provided by current
6178 	 * buffer (dCurrentWriteBoosterBufferSize). There's no point in
6179 	 * keeping vcc on when current buffer is empty.
6180 	 */
6181 	index = ufshcd_wb_get_query_index(hba);
6182 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
6183 				      QUERY_ATTR_IDN_AVAIL_WB_BUFF_SIZE,
6184 				      index, 0, &avail_buf);
6185 	if (ret) {
6186 		dev_warn(hba->dev, "%s: dAvailableWriteBoosterBufferSize read failed %d\n",
6187 			 __func__, ret);
6188 		return false;
6189 	}
6190 
6191 	if (!hba->dev_info.b_presrv_uspc_en)
6192 		return avail_buf <= UFS_WB_BUF_REMAIN_PERCENT(10);
6193 
6194 	return ufshcd_wb_presrv_usrspc_keep_vcc_on(hba, avail_buf);
6195 }
6196 
6197 static void ufshcd_rpm_dev_flush_recheck_work(struct work_struct *work)
6198 {
6199 	struct ufs_hba *hba = container_of(to_delayed_work(work),
6200 					   struct ufs_hba,
6201 					   rpm_dev_flush_recheck_work);
6202 	/*
6203 	 * To prevent unnecessary VCC power drain after device finishes
6204 	 * WriteBooster buffer flush or Auto BKOPs, force runtime resume
6205 	 * after a certain delay to recheck the threshold by next runtime
6206 	 * suspend.
6207 	 */
6208 	ufshcd_rpm_get_sync(hba);
6209 	ufshcd_rpm_put_sync(hba);
6210 }
6211 
6212 /**
6213  * ufshcd_exception_event_handler - handle exceptions raised by device
6214  * @work: pointer to work data
6215  *
6216  * Read bExceptionEventStatus attribute from the device and handle the
6217  * exception event accordingly.
6218  */
6219 static void ufshcd_exception_event_handler(struct work_struct *work)
6220 {
6221 	struct ufs_hba *hba;
6222 	int err;
6223 	u32 status = 0;
6224 	hba = container_of(work, struct ufs_hba, eeh_work);
6225 
6226 	ufshcd_scsi_block_requests(hba);
6227 	err = ufshcd_get_ee_status(hba, &status);
6228 	if (err) {
6229 		dev_err(hba->dev, "%s: failed to get exception status %d\n",
6230 				__func__, err);
6231 		goto out;
6232 	}
6233 
6234 	trace_ufshcd_exception_event(dev_name(hba->dev), status);
6235 
6236 	if (status & hba->ee_drv_mask & MASK_EE_URGENT_BKOPS)
6237 		ufshcd_bkops_exception_event_handler(hba);
6238 
6239 	if (status & hba->ee_drv_mask & MASK_EE_URGENT_TEMP)
6240 		ufshcd_temp_exception_event_handler(hba, status);
6241 
6242 	ufs_debugfs_exception_event(hba, status);
6243 out:
6244 	ufshcd_scsi_unblock_requests(hba);
6245 }
6246 
6247 /* Complete requests that have door-bell cleared */
6248 static void ufshcd_complete_requests(struct ufs_hba *hba, bool force_compl)
6249 {
6250 	if (is_mcq_enabled(hba))
6251 		ufshcd_mcq_compl_pending_transfer(hba, force_compl);
6252 	else
6253 		ufshcd_transfer_req_compl(hba);
6254 
6255 	ufshcd_tmc_handler(hba);
6256 }
6257 
6258 /**
6259  * ufshcd_quirk_dl_nac_errors - This function checks if error handling is
6260  *				to recover from the DL NAC errors or not.
6261  * @hba: per-adapter instance
6262  *
6263  * Return: true if error handling is required, false otherwise.
6264  */
6265 static bool ufshcd_quirk_dl_nac_errors(struct ufs_hba *hba)
6266 {
6267 	unsigned long flags;
6268 	bool err_handling = true;
6269 
6270 	spin_lock_irqsave(hba->host->host_lock, flags);
6271 	/*
6272 	 * UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS only workaround the
6273 	 * device fatal error and/or DL NAC & REPLAY timeout errors.
6274 	 */
6275 	if (hba->saved_err & (CONTROLLER_FATAL_ERROR | SYSTEM_BUS_FATAL_ERROR))
6276 		goto out;
6277 
6278 	if ((hba->saved_err & DEVICE_FATAL_ERROR) ||
6279 	    ((hba->saved_err & UIC_ERROR) &&
6280 	     (hba->saved_uic_err & UFSHCD_UIC_DL_TCx_REPLAY_ERROR)))
6281 		goto out;
6282 
6283 	if ((hba->saved_err & UIC_ERROR) &&
6284 	    (hba->saved_uic_err & UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)) {
6285 		int err;
6286 		/*
6287 		 * wait for 50ms to see if we can get any other errors or not.
6288 		 */
6289 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6290 		msleep(50);
6291 		spin_lock_irqsave(hba->host->host_lock, flags);
6292 
6293 		/*
6294 		 * now check if we have got any other severe errors other than
6295 		 * DL NAC error?
6296 		 */
6297 		if ((hba->saved_err & INT_FATAL_ERRORS) ||
6298 		    ((hba->saved_err & UIC_ERROR) &&
6299 		    (hba->saved_uic_err & ~UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)))
6300 			goto out;
6301 
6302 		/*
6303 		 * As DL NAC is the only error received so far, send out NOP
6304 		 * command to confirm if link is still active or not.
6305 		 *   - If we don't get any response then do error recovery.
6306 		 *   - If we get response then clear the DL NAC error bit.
6307 		 */
6308 
6309 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6310 		err = ufshcd_verify_dev_init(hba);
6311 		spin_lock_irqsave(hba->host->host_lock, flags);
6312 
6313 		if (err)
6314 			goto out;
6315 
6316 		/* Link seems to be alive hence ignore the DL NAC errors */
6317 		if (hba->saved_uic_err == UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)
6318 			hba->saved_err &= ~UIC_ERROR;
6319 		/* clear NAC error */
6320 		hba->saved_uic_err &= ~UFSHCD_UIC_DL_NAC_RECEIVED_ERROR;
6321 		if (!hba->saved_uic_err)
6322 			err_handling = false;
6323 	}
6324 out:
6325 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6326 	return err_handling;
6327 }
6328 
6329 /* host lock must be held before calling this func */
6330 static inline bool ufshcd_is_saved_err_fatal(struct ufs_hba *hba)
6331 {
6332 	return (hba->saved_uic_err & UFSHCD_UIC_DL_PA_INIT_ERROR) ||
6333 	       (hba->saved_err & (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK));
6334 }
6335 
6336 void ufshcd_schedule_eh_work(struct ufs_hba *hba)
6337 {
6338 	lockdep_assert_held(hba->host->host_lock);
6339 
6340 	/* handle fatal errors only when link is not in error state */
6341 	if (hba->ufshcd_state != UFSHCD_STATE_ERROR) {
6342 		if (hba->force_reset || ufshcd_is_link_broken(hba) ||
6343 		    ufshcd_is_saved_err_fatal(hba))
6344 			hba->ufshcd_state = UFSHCD_STATE_EH_SCHEDULED_FATAL;
6345 		else
6346 			hba->ufshcd_state = UFSHCD_STATE_EH_SCHEDULED_NON_FATAL;
6347 		queue_work(hba->eh_wq, &hba->eh_work);
6348 	}
6349 }
6350 
6351 static void ufshcd_force_error_recovery(struct ufs_hba *hba)
6352 {
6353 	spin_lock_irq(hba->host->host_lock);
6354 	hba->force_reset = true;
6355 	ufshcd_schedule_eh_work(hba);
6356 	spin_unlock_irq(hba->host->host_lock);
6357 }
6358 
6359 static void ufshcd_clk_scaling_allow(struct ufs_hba *hba, bool allow)
6360 {
6361 	mutex_lock(&hba->wb_mutex);
6362 	down_write(&hba->clk_scaling_lock);
6363 	hba->clk_scaling.is_allowed = allow;
6364 	up_write(&hba->clk_scaling_lock);
6365 	mutex_unlock(&hba->wb_mutex);
6366 }
6367 
6368 static void ufshcd_clk_scaling_suspend(struct ufs_hba *hba, bool suspend)
6369 {
6370 	if (suspend) {
6371 		if (hba->clk_scaling.is_enabled)
6372 			ufshcd_suspend_clkscaling(hba);
6373 		ufshcd_clk_scaling_allow(hba, false);
6374 	} else {
6375 		ufshcd_clk_scaling_allow(hba, true);
6376 		if (hba->clk_scaling.is_enabled)
6377 			ufshcd_resume_clkscaling(hba);
6378 	}
6379 }
6380 
6381 static void ufshcd_err_handling_prepare(struct ufs_hba *hba)
6382 {
6383 	ufshcd_rpm_get_sync(hba);
6384 	if (pm_runtime_status_suspended(&hba->ufs_device_wlun->sdev_gendev) ||
6385 	    hba->is_sys_suspended) {
6386 		enum ufs_pm_op pm_op;
6387 
6388 		/*
6389 		 * Don't assume anything of resume, if
6390 		 * resume fails, irq and clocks can be OFF, and powers
6391 		 * can be OFF or in LPM.
6392 		 */
6393 		ufshcd_setup_hba_vreg(hba, true);
6394 		ufshcd_enable_irq(hba);
6395 		ufshcd_setup_vreg(hba, true);
6396 		ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq);
6397 		ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq2);
6398 		ufshcd_hold(hba);
6399 		if (!ufshcd_is_clkgating_allowed(hba))
6400 			ufshcd_setup_clocks(hba, true);
6401 		pm_op = hba->is_sys_suspended ? UFS_SYSTEM_PM : UFS_RUNTIME_PM;
6402 		ufshcd_vops_resume(hba, pm_op);
6403 	} else {
6404 		ufshcd_hold(hba);
6405 		if (ufshcd_is_clkscaling_supported(hba) &&
6406 		    hba->clk_scaling.is_enabled)
6407 			ufshcd_suspend_clkscaling(hba);
6408 		ufshcd_clk_scaling_allow(hba, false);
6409 	}
6410 	ufshcd_scsi_block_requests(hba);
6411 	/* Wait for ongoing ufshcd_queuecommand() calls to finish. */
6412 	blk_mq_wait_quiesce_done(&hba->host->tag_set);
6413 	cancel_work_sync(&hba->eeh_work);
6414 }
6415 
6416 static void ufshcd_err_handling_unprepare(struct ufs_hba *hba)
6417 {
6418 	ufshcd_scsi_unblock_requests(hba);
6419 	ufshcd_release(hba);
6420 	if (ufshcd_is_clkscaling_supported(hba))
6421 		ufshcd_clk_scaling_suspend(hba, false);
6422 	ufshcd_rpm_put(hba);
6423 }
6424 
6425 static inline bool ufshcd_err_handling_should_stop(struct ufs_hba *hba)
6426 {
6427 	return (!hba->is_powered || hba->shutting_down ||
6428 		!hba->ufs_device_wlun ||
6429 		hba->ufshcd_state == UFSHCD_STATE_ERROR ||
6430 		(!(hba->saved_err || hba->saved_uic_err || hba->force_reset ||
6431 		   ufshcd_is_link_broken(hba))));
6432 }
6433 
6434 #ifdef CONFIG_PM
6435 static void ufshcd_recover_pm_error(struct ufs_hba *hba)
6436 {
6437 	struct Scsi_Host *shost = hba->host;
6438 	struct scsi_device *sdev;
6439 	struct request_queue *q;
6440 	int ret;
6441 
6442 	hba->is_sys_suspended = false;
6443 	/*
6444 	 * Set RPM status of wlun device to RPM_ACTIVE,
6445 	 * this also clears its runtime error.
6446 	 */
6447 	ret = pm_runtime_set_active(&hba->ufs_device_wlun->sdev_gendev);
6448 
6449 	/* hba device might have a runtime error otherwise */
6450 	if (ret)
6451 		ret = pm_runtime_set_active(hba->dev);
6452 	/*
6453 	 * If wlun device had runtime error, we also need to resume those
6454 	 * consumer scsi devices in case any of them has failed to be
6455 	 * resumed due to supplier runtime resume failure. This is to unblock
6456 	 * blk_queue_enter in case there are bios waiting inside it.
6457 	 */
6458 	if (!ret) {
6459 		shost_for_each_device(sdev, shost) {
6460 			q = sdev->request_queue;
6461 			if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
6462 				       q->rpm_status == RPM_SUSPENDING))
6463 				pm_request_resume(q->dev);
6464 		}
6465 	}
6466 }
6467 #else
6468 static inline void ufshcd_recover_pm_error(struct ufs_hba *hba)
6469 {
6470 }
6471 #endif
6472 
6473 static bool ufshcd_is_pwr_mode_restore_needed(struct ufs_hba *hba)
6474 {
6475 	struct ufs_pa_layer_attr *pwr_info = &hba->pwr_info;
6476 	u32 mode;
6477 
6478 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_PWRMODE), &mode);
6479 
6480 	if (pwr_info->pwr_rx != ((mode >> PWRMODE_RX_OFFSET) & PWRMODE_MASK))
6481 		return true;
6482 
6483 	if (pwr_info->pwr_tx != (mode & PWRMODE_MASK))
6484 		return true;
6485 
6486 	return false;
6487 }
6488 
6489 static bool ufshcd_abort_one(struct request *rq, void *priv)
6490 {
6491 	int *ret = priv;
6492 	u32 tag = rq->tag;
6493 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
6494 	struct scsi_device *sdev = cmd->device;
6495 	struct Scsi_Host *shost = sdev->host;
6496 	struct ufs_hba *hba = shost_priv(shost);
6497 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
6498 	struct ufs_hw_queue *hwq;
6499 	unsigned long flags;
6500 
6501 	*ret = ufshcd_try_to_abort_task(hba, tag);
6502 	dev_err(hba->dev, "Aborting tag %d / CDB %#02x %s\n", tag,
6503 		hba->lrb[tag].cmd ? hba->lrb[tag].cmd->cmnd[0] : -1,
6504 		*ret ? "failed" : "succeeded");
6505 
6506 	/* Release cmd in MCQ mode if abort succeeds */
6507 	if (is_mcq_enabled(hba) && (*ret == 0)) {
6508 		hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(lrbp->cmd));
6509 		spin_lock_irqsave(&hwq->cq_lock, flags);
6510 		if (ufshcd_cmd_inflight(lrbp->cmd))
6511 			ufshcd_release_scsi_cmd(hba, lrbp);
6512 		spin_unlock_irqrestore(&hwq->cq_lock, flags);
6513 	}
6514 
6515 	return *ret == 0;
6516 }
6517 
6518 /**
6519  * ufshcd_abort_all - Abort all pending commands.
6520  * @hba: Host bus adapter pointer.
6521  *
6522  * Return: true if and only if the host controller needs to be reset.
6523  */
6524 static bool ufshcd_abort_all(struct ufs_hba *hba)
6525 {
6526 	int tag, ret = 0;
6527 
6528 	blk_mq_tagset_busy_iter(&hba->host->tag_set, ufshcd_abort_one, &ret);
6529 	if (ret)
6530 		goto out;
6531 
6532 	/* Clear pending task management requests */
6533 	for_each_set_bit(tag, &hba->outstanding_tasks, hba->nutmrs) {
6534 		ret = ufshcd_clear_tm_cmd(hba, tag);
6535 		if (ret)
6536 			goto out;
6537 	}
6538 
6539 out:
6540 	/* Complete the requests that are cleared by s/w */
6541 	ufshcd_complete_requests(hba, false);
6542 
6543 	return ret != 0;
6544 }
6545 
6546 /**
6547  * ufshcd_err_handler - handle UFS errors that require s/w attention
6548  * @work: pointer to work structure
6549  */
6550 static void ufshcd_err_handler(struct work_struct *work)
6551 {
6552 	int retries = MAX_ERR_HANDLER_RETRIES;
6553 	struct ufs_hba *hba;
6554 	unsigned long flags;
6555 	bool needs_restore;
6556 	bool needs_reset;
6557 	int pmc_err;
6558 
6559 	hba = container_of(work, struct ufs_hba, eh_work);
6560 
6561 	dev_info(hba->dev,
6562 		 "%s started; HBA state %s; powered %d; shutting down %d; saved_err = %d; saved_uic_err = %d; force_reset = %d%s\n",
6563 		 __func__, ufshcd_state_name[hba->ufshcd_state],
6564 		 hba->is_powered, hba->shutting_down, hba->saved_err,
6565 		 hba->saved_uic_err, hba->force_reset,
6566 		 ufshcd_is_link_broken(hba) ? "; link is broken" : "");
6567 
6568 	down(&hba->host_sem);
6569 	spin_lock_irqsave(hba->host->host_lock, flags);
6570 	if (ufshcd_err_handling_should_stop(hba)) {
6571 		if (hba->ufshcd_state != UFSHCD_STATE_ERROR)
6572 			hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
6573 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6574 		up(&hba->host_sem);
6575 		return;
6576 	}
6577 	ufshcd_set_eh_in_progress(hba);
6578 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6579 	ufshcd_err_handling_prepare(hba);
6580 	/* Complete requests that have door-bell cleared by h/w */
6581 	ufshcd_complete_requests(hba, false);
6582 	spin_lock_irqsave(hba->host->host_lock, flags);
6583 again:
6584 	needs_restore = false;
6585 	needs_reset = false;
6586 
6587 	if (hba->ufshcd_state != UFSHCD_STATE_ERROR)
6588 		hba->ufshcd_state = UFSHCD_STATE_RESET;
6589 	/*
6590 	 * A full reset and restore might have happened after preparation
6591 	 * is finished, double check whether we should stop.
6592 	 */
6593 	if (ufshcd_err_handling_should_stop(hba))
6594 		goto skip_err_handling;
6595 
6596 	if (hba->dev_quirks & UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS) {
6597 		bool ret;
6598 
6599 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6600 		/* release the lock as ufshcd_quirk_dl_nac_errors() may sleep */
6601 		ret = ufshcd_quirk_dl_nac_errors(hba);
6602 		spin_lock_irqsave(hba->host->host_lock, flags);
6603 		if (!ret && ufshcd_err_handling_should_stop(hba))
6604 			goto skip_err_handling;
6605 	}
6606 
6607 	if ((hba->saved_err & (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK)) ||
6608 	    (hba->saved_uic_err &&
6609 	     (hba->saved_uic_err != UFSHCD_UIC_PA_GENERIC_ERROR))) {
6610 		bool pr_prdt = !!(hba->saved_err & SYSTEM_BUS_FATAL_ERROR);
6611 
6612 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6613 		ufshcd_print_host_state(hba);
6614 		ufshcd_print_pwr_info(hba);
6615 		ufshcd_print_evt_hist(hba);
6616 		ufshcd_print_tmrs(hba, hba->outstanding_tasks);
6617 		ufshcd_print_trs_all(hba, pr_prdt);
6618 		spin_lock_irqsave(hba->host->host_lock, flags);
6619 	}
6620 
6621 	/*
6622 	 * if host reset is required then skip clearing the pending
6623 	 * transfers forcefully because they will get cleared during
6624 	 * host reset and restore
6625 	 */
6626 	if (hba->force_reset || ufshcd_is_link_broken(hba) ||
6627 	    ufshcd_is_saved_err_fatal(hba) ||
6628 	    ((hba->saved_err & UIC_ERROR) &&
6629 	     (hba->saved_uic_err & (UFSHCD_UIC_DL_NAC_RECEIVED_ERROR |
6630 				    UFSHCD_UIC_DL_TCx_REPLAY_ERROR)))) {
6631 		needs_reset = true;
6632 		goto do_reset;
6633 	}
6634 
6635 	/*
6636 	 * If LINERESET was caught, UFS might have been put to PWM mode,
6637 	 * check if power mode restore is needed.
6638 	 */
6639 	if (hba->saved_uic_err & UFSHCD_UIC_PA_GENERIC_ERROR) {
6640 		hba->saved_uic_err &= ~UFSHCD_UIC_PA_GENERIC_ERROR;
6641 		if (!hba->saved_uic_err)
6642 			hba->saved_err &= ~UIC_ERROR;
6643 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6644 		if (ufshcd_is_pwr_mode_restore_needed(hba))
6645 			needs_restore = true;
6646 		spin_lock_irqsave(hba->host->host_lock, flags);
6647 		if (!hba->saved_err && !needs_restore)
6648 			goto skip_err_handling;
6649 	}
6650 
6651 	hba->silence_err_logs = true;
6652 	/* release lock as clear command might sleep */
6653 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6654 
6655 	needs_reset = ufshcd_abort_all(hba);
6656 
6657 	spin_lock_irqsave(hba->host->host_lock, flags);
6658 	hba->silence_err_logs = false;
6659 	if (needs_reset)
6660 		goto do_reset;
6661 
6662 	/*
6663 	 * After all reqs and tasks are cleared from doorbell,
6664 	 * now it is safe to retore power mode.
6665 	 */
6666 	if (needs_restore) {
6667 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6668 		/*
6669 		 * Hold the scaling lock just in case dev cmds
6670 		 * are sent via bsg and/or sysfs.
6671 		 */
6672 		down_write(&hba->clk_scaling_lock);
6673 		hba->force_pmc = true;
6674 		pmc_err = ufshcd_config_pwr_mode(hba, &(hba->pwr_info));
6675 		if (pmc_err) {
6676 			needs_reset = true;
6677 			dev_err(hba->dev, "%s: Failed to restore power mode, err = %d\n",
6678 					__func__, pmc_err);
6679 		}
6680 		hba->force_pmc = false;
6681 		ufshcd_print_pwr_info(hba);
6682 		up_write(&hba->clk_scaling_lock);
6683 		spin_lock_irqsave(hba->host->host_lock, flags);
6684 	}
6685 
6686 do_reset:
6687 	/* Fatal errors need reset */
6688 	if (needs_reset) {
6689 		int err;
6690 
6691 		hba->force_reset = false;
6692 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6693 		err = ufshcd_reset_and_restore(hba);
6694 		if (err)
6695 			dev_err(hba->dev, "%s: reset and restore failed with err %d\n",
6696 					__func__, err);
6697 		else
6698 			ufshcd_recover_pm_error(hba);
6699 		spin_lock_irqsave(hba->host->host_lock, flags);
6700 	}
6701 
6702 skip_err_handling:
6703 	if (!needs_reset) {
6704 		if (hba->ufshcd_state == UFSHCD_STATE_RESET)
6705 			hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
6706 		if (hba->saved_err || hba->saved_uic_err)
6707 			dev_err_ratelimited(hba->dev, "%s: exit: saved_err 0x%x saved_uic_err 0x%x",
6708 			    __func__, hba->saved_err, hba->saved_uic_err);
6709 	}
6710 	/* Exit in an operational state or dead */
6711 	if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL &&
6712 	    hba->ufshcd_state != UFSHCD_STATE_ERROR) {
6713 		if (--retries)
6714 			goto again;
6715 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
6716 	}
6717 	ufshcd_clear_eh_in_progress(hba);
6718 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6719 	ufshcd_err_handling_unprepare(hba);
6720 	up(&hba->host_sem);
6721 
6722 	dev_info(hba->dev, "%s finished; HBA state %s\n", __func__,
6723 		 ufshcd_state_name[hba->ufshcd_state]);
6724 }
6725 
6726 /**
6727  * ufshcd_update_uic_error - check and set fatal UIC error flags.
6728  * @hba: per-adapter instance
6729  *
6730  * Return:
6731  *  IRQ_HANDLED - If interrupt is valid
6732  *  IRQ_NONE    - If invalid interrupt
6733  */
6734 static irqreturn_t ufshcd_update_uic_error(struct ufs_hba *hba)
6735 {
6736 	u32 reg;
6737 	irqreturn_t retval = IRQ_NONE;
6738 
6739 	/* PHY layer error */
6740 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER);
6741 	if ((reg & UIC_PHY_ADAPTER_LAYER_ERROR) &&
6742 	    (reg & UIC_PHY_ADAPTER_LAYER_ERROR_CODE_MASK)) {
6743 		ufshcd_update_evt_hist(hba, UFS_EVT_PA_ERR, reg);
6744 		/*
6745 		 * To know whether this error is fatal or not, DB timeout
6746 		 * must be checked but this error is handled separately.
6747 		 */
6748 		if (reg & UIC_PHY_ADAPTER_LAYER_LANE_ERR_MASK)
6749 			dev_dbg(hba->dev, "%s: UIC Lane error reported\n",
6750 					__func__);
6751 
6752 		/* Got a LINERESET indication. */
6753 		if (reg & UIC_PHY_ADAPTER_LAYER_GENERIC_ERROR) {
6754 			struct uic_command *cmd = NULL;
6755 
6756 			hba->uic_error |= UFSHCD_UIC_PA_GENERIC_ERROR;
6757 			if (hba->uic_async_done && hba->active_uic_cmd)
6758 				cmd = hba->active_uic_cmd;
6759 			/*
6760 			 * Ignore the LINERESET during power mode change
6761 			 * operation via DME_SET command.
6762 			 */
6763 			if (cmd && (cmd->command == UIC_CMD_DME_SET))
6764 				hba->uic_error &= ~UFSHCD_UIC_PA_GENERIC_ERROR;
6765 		}
6766 		retval |= IRQ_HANDLED;
6767 	}
6768 
6769 	/* PA_INIT_ERROR is fatal and needs UIC reset */
6770 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_DATA_LINK_LAYER);
6771 	if ((reg & UIC_DATA_LINK_LAYER_ERROR) &&
6772 	    (reg & UIC_DATA_LINK_LAYER_ERROR_CODE_MASK)) {
6773 		ufshcd_update_evt_hist(hba, UFS_EVT_DL_ERR, reg);
6774 
6775 		if (reg & UIC_DATA_LINK_LAYER_ERROR_PA_INIT)
6776 			hba->uic_error |= UFSHCD_UIC_DL_PA_INIT_ERROR;
6777 		else if (hba->dev_quirks &
6778 				UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS) {
6779 			if (reg & UIC_DATA_LINK_LAYER_ERROR_NAC_RECEIVED)
6780 				hba->uic_error |=
6781 					UFSHCD_UIC_DL_NAC_RECEIVED_ERROR;
6782 			else if (reg & UIC_DATA_LINK_LAYER_ERROR_TCx_REPLAY_TIMEOUT)
6783 				hba->uic_error |= UFSHCD_UIC_DL_TCx_REPLAY_ERROR;
6784 		}
6785 		retval |= IRQ_HANDLED;
6786 	}
6787 
6788 	/* UIC NL/TL/DME errors needs software retry */
6789 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_NETWORK_LAYER);
6790 	if ((reg & UIC_NETWORK_LAYER_ERROR) &&
6791 	    (reg & UIC_NETWORK_LAYER_ERROR_CODE_MASK)) {
6792 		ufshcd_update_evt_hist(hba, UFS_EVT_NL_ERR, reg);
6793 		hba->uic_error |= UFSHCD_UIC_NL_ERROR;
6794 		retval |= IRQ_HANDLED;
6795 	}
6796 
6797 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_TRANSPORT_LAYER);
6798 	if ((reg & UIC_TRANSPORT_LAYER_ERROR) &&
6799 	    (reg & UIC_TRANSPORT_LAYER_ERROR_CODE_MASK)) {
6800 		ufshcd_update_evt_hist(hba, UFS_EVT_TL_ERR, reg);
6801 		hba->uic_error |= UFSHCD_UIC_TL_ERROR;
6802 		retval |= IRQ_HANDLED;
6803 	}
6804 
6805 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_DME);
6806 	if ((reg & UIC_DME_ERROR) &&
6807 	    (reg & UIC_DME_ERROR_CODE_MASK)) {
6808 		ufshcd_update_evt_hist(hba, UFS_EVT_DME_ERR, reg);
6809 		hba->uic_error |= UFSHCD_UIC_DME_ERROR;
6810 		retval |= IRQ_HANDLED;
6811 	}
6812 
6813 	dev_dbg(hba->dev, "%s: UIC error flags = 0x%08x\n",
6814 			__func__, hba->uic_error);
6815 	return retval;
6816 }
6817 
6818 /**
6819  * ufshcd_check_errors - Check for errors that need s/w attention
6820  * @hba: per-adapter instance
6821  * @intr_status: interrupt status generated by the controller
6822  *
6823  * Return:
6824  *  IRQ_HANDLED - If interrupt is valid
6825  *  IRQ_NONE    - If invalid interrupt
6826  */
6827 static irqreturn_t ufshcd_check_errors(struct ufs_hba *hba, u32 intr_status)
6828 {
6829 	bool queue_eh_work = false;
6830 	irqreturn_t retval = IRQ_NONE;
6831 
6832 	spin_lock(hba->host->host_lock);
6833 	hba->errors |= UFSHCD_ERROR_MASK & intr_status;
6834 
6835 	if (hba->errors & INT_FATAL_ERRORS) {
6836 		ufshcd_update_evt_hist(hba, UFS_EVT_FATAL_ERR,
6837 				       hba->errors);
6838 		queue_eh_work = true;
6839 	}
6840 
6841 	if (hba->errors & UIC_ERROR) {
6842 		hba->uic_error = 0;
6843 		retval = ufshcd_update_uic_error(hba);
6844 		if (hba->uic_error)
6845 			queue_eh_work = true;
6846 	}
6847 
6848 	if (hba->errors & UFSHCD_UIC_HIBERN8_MASK) {
6849 		dev_err(hba->dev,
6850 			"%s: Auto Hibern8 %s failed - status: 0x%08x, upmcrs: 0x%08x\n",
6851 			__func__, (hba->errors & UIC_HIBERNATE_ENTER) ?
6852 			"Enter" : "Exit",
6853 			hba->errors, ufshcd_get_upmcrs(hba));
6854 		ufshcd_update_evt_hist(hba, UFS_EVT_AUTO_HIBERN8_ERR,
6855 				       hba->errors);
6856 		ufshcd_set_link_broken(hba);
6857 		queue_eh_work = true;
6858 	}
6859 
6860 	if (queue_eh_work) {
6861 		/*
6862 		 * update the transfer error masks to sticky bits, let's do this
6863 		 * irrespective of current ufshcd_state.
6864 		 */
6865 		hba->saved_err |= hba->errors;
6866 		hba->saved_uic_err |= hba->uic_error;
6867 
6868 		/* dump controller state before resetting */
6869 		if ((hba->saved_err &
6870 		     (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK)) ||
6871 		    (hba->saved_uic_err &&
6872 		     (hba->saved_uic_err != UFSHCD_UIC_PA_GENERIC_ERROR))) {
6873 			dev_err(hba->dev, "%s: saved_err 0x%x saved_uic_err 0x%x\n",
6874 					__func__, hba->saved_err,
6875 					hba->saved_uic_err);
6876 			ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE,
6877 					 "host_regs: ");
6878 			ufshcd_print_pwr_info(hba);
6879 		}
6880 		ufshcd_schedule_eh_work(hba);
6881 		retval |= IRQ_HANDLED;
6882 	}
6883 	/*
6884 	 * if (!queue_eh_work) -
6885 	 * Other errors are either non-fatal where host recovers
6886 	 * itself without s/w intervention or errors that will be
6887 	 * handled by the SCSI core layer.
6888 	 */
6889 	hba->errors = 0;
6890 	hba->uic_error = 0;
6891 	spin_unlock(hba->host->host_lock);
6892 	return retval;
6893 }
6894 
6895 /**
6896  * ufshcd_tmc_handler - handle task management function completion
6897  * @hba: per adapter instance
6898  *
6899  * Return:
6900  *  IRQ_HANDLED - If interrupt is valid
6901  *  IRQ_NONE    - If invalid interrupt
6902  */
6903 static irqreturn_t ufshcd_tmc_handler(struct ufs_hba *hba)
6904 {
6905 	unsigned long flags, pending, issued;
6906 	irqreturn_t ret = IRQ_NONE;
6907 	int tag;
6908 
6909 	spin_lock_irqsave(hba->host->host_lock, flags);
6910 	pending = ufshcd_readl(hba, REG_UTP_TASK_REQ_DOOR_BELL);
6911 	issued = hba->outstanding_tasks & ~pending;
6912 	for_each_set_bit(tag, &issued, hba->nutmrs) {
6913 		struct request *req = hba->tmf_rqs[tag];
6914 		struct completion *c = req->end_io_data;
6915 
6916 		complete(c);
6917 		ret = IRQ_HANDLED;
6918 	}
6919 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6920 
6921 	return ret;
6922 }
6923 
6924 /**
6925  * ufshcd_handle_mcq_cq_events - handle MCQ completion queue events
6926  * @hba: per adapter instance
6927  *
6928  * Return: IRQ_HANDLED if interrupt is handled.
6929  */
6930 static irqreturn_t ufshcd_handle_mcq_cq_events(struct ufs_hba *hba)
6931 {
6932 	struct ufs_hw_queue *hwq;
6933 	unsigned long outstanding_cqs;
6934 	unsigned int nr_queues;
6935 	int i, ret;
6936 	u32 events;
6937 
6938 	ret = ufshcd_vops_get_outstanding_cqs(hba, &outstanding_cqs);
6939 	if (ret)
6940 		outstanding_cqs = (1U << hba->nr_hw_queues) - 1;
6941 
6942 	/* Exclude the poll queues */
6943 	nr_queues = hba->nr_hw_queues - hba->nr_queues[HCTX_TYPE_POLL];
6944 	for_each_set_bit(i, &outstanding_cqs, nr_queues) {
6945 		hwq = &hba->uhq[i];
6946 
6947 		events = ufshcd_mcq_read_cqis(hba, i);
6948 		if (events)
6949 			ufshcd_mcq_write_cqis(hba, events, i);
6950 
6951 		if (events & UFSHCD_MCQ_CQIS_TAIL_ENT_PUSH_STS)
6952 			ufshcd_mcq_poll_cqe_lock(hba, hwq);
6953 	}
6954 
6955 	return IRQ_HANDLED;
6956 }
6957 
6958 /**
6959  * ufshcd_sl_intr - Interrupt service routine
6960  * @hba: per adapter instance
6961  * @intr_status: contains interrupts generated by the controller
6962  *
6963  * Return:
6964  *  IRQ_HANDLED - If interrupt is valid
6965  *  IRQ_NONE    - If invalid interrupt
6966  */
6967 static irqreturn_t ufshcd_sl_intr(struct ufs_hba *hba, u32 intr_status)
6968 {
6969 	irqreturn_t retval = IRQ_NONE;
6970 
6971 	if (intr_status & UFSHCD_UIC_MASK)
6972 		retval |= ufshcd_uic_cmd_compl(hba, intr_status);
6973 
6974 	if (intr_status & UFSHCD_ERROR_MASK || hba->errors)
6975 		retval |= ufshcd_check_errors(hba, intr_status);
6976 
6977 	if (intr_status & UTP_TASK_REQ_COMPL)
6978 		retval |= ufshcd_tmc_handler(hba);
6979 
6980 	if (intr_status & UTP_TRANSFER_REQ_COMPL)
6981 		retval |= ufshcd_transfer_req_compl(hba);
6982 
6983 	if (intr_status & MCQ_CQ_EVENT_STATUS)
6984 		retval |= ufshcd_handle_mcq_cq_events(hba);
6985 
6986 	return retval;
6987 }
6988 
6989 /**
6990  * ufshcd_intr - Main interrupt service routine
6991  * @irq: irq number
6992  * @__hba: pointer to adapter instance
6993  *
6994  * Return:
6995  *  IRQ_HANDLED - If interrupt is valid
6996  *  IRQ_NONE    - If invalid interrupt
6997  */
6998 static irqreturn_t ufshcd_intr(int irq, void *__hba)
6999 {
7000 	u32 intr_status, enabled_intr_status = 0;
7001 	irqreturn_t retval = IRQ_NONE;
7002 	struct ufs_hba *hba = __hba;
7003 	int retries = hba->nutrs;
7004 
7005 	intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
7006 	hba->ufs_stats.last_intr_status = intr_status;
7007 	hba->ufs_stats.last_intr_ts = local_clock();
7008 
7009 	/*
7010 	 * There could be max of hba->nutrs reqs in flight and in worst case
7011 	 * if the reqs get finished 1 by 1 after the interrupt status is
7012 	 * read, make sure we handle them by checking the interrupt status
7013 	 * again in a loop until we process all of the reqs before returning.
7014 	 */
7015 	while (intr_status && retries--) {
7016 		enabled_intr_status =
7017 			intr_status & ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
7018 		ufshcd_writel(hba, intr_status, REG_INTERRUPT_STATUS);
7019 		if (enabled_intr_status)
7020 			retval |= ufshcd_sl_intr(hba, enabled_intr_status);
7021 
7022 		intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
7023 	}
7024 
7025 	if (enabled_intr_status && retval == IRQ_NONE &&
7026 	    (!(enabled_intr_status & UTP_TRANSFER_REQ_COMPL) ||
7027 	     hba->outstanding_reqs) && !ufshcd_eh_in_progress(hba)) {
7028 		dev_err(hba->dev, "%s: Unhandled interrupt 0x%08x (0x%08x, 0x%08x)\n",
7029 					__func__,
7030 					intr_status,
7031 					hba->ufs_stats.last_intr_status,
7032 					enabled_intr_status);
7033 		ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, "host_regs: ");
7034 	}
7035 
7036 	return retval;
7037 }
7038 
7039 static int ufshcd_clear_tm_cmd(struct ufs_hba *hba, int tag)
7040 {
7041 	int err = 0;
7042 	u32 mask = 1 << tag;
7043 	unsigned long flags;
7044 
7045 	if (!test_bit(tag, &hba->outstanding_tasks))
7046 		goto out;
7047 
7048 	spin_lock_irqsave(hba->host->host_lock, flags);
7049 	ufshcd_utmrl_clear(hba, tag);
7050 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7051 
7052 	/* poll for max. 1 sec to clear door bell register by h/w */
7053 	err = ufshcd_wait_for_register(hba,
7054 			REG_UTP_TASK_REQ_DOOR_BELL,
7055 			mask, 0, 1000, 1000);
7056 
7057 	dev_err(hba->dev, "Clearing task management function with tag %d %s\n",
7058 		tag, err < 0 ? "failed" : "succeeded");
7059 
7060 out:
7061 	return err;
7062 }
7063 
7064 static int __ufshcd_issue_tm_cmd(struct ufs_hba *hba,
7065 		struct utp_task_req_desc *treq, u8 tm_function)
7066 {
7067 	struct request_queue *q = hba->tmf_queue;
7068 	struct Scsi_Host *host = hba->host;
7069 	DECLARE_COMPLETION_ONSTACK(wait);
7070 	struct request *req;
7071 	unsigned long flags;
7072 	int task_tag, err;
7073 
7074 	/*
7075 	 * blk_mq_alloc_request() is used here only to get a free tag.
7076 	 */
7077 	req = blk_mq_alloc_request(q, REQ_OP_DRV_OUT, 0);
7078 	if (IS_ERR(req))
7079 		return PTR_ERR(req);
7080 
7081 	req->end_io_data = &wait;
7082 	ufshcd_hold(hba);
7083 
7084 	spin_lock_irqsave(host->host_lock, flags);
7085 
7086 	task_tag = req->tag;
7087 	hba->tmf_rqs[req->tag] = req;
7088 	treq->upiu_req.req_header.task_tag = task_tag;
7089 
7090 	memcpy(hba->utmrdl_base_addr + task_tag, treq, sizeof(*treq));
7091 	ufshcd_vops_setup_task_mgmt(hba, task_tag, tm_function);
7092 
7093 	/* send command to the controller */
7094 	__set_bit(task_tag, &hba->outstanding_tasks);
7095 
7096 	ufshcd_writel(hba, 1 << task_tag, REG_UTP_TASK_REQ_DOOR_BELL);
7097 	/* Make sure that doorbell is committed immediately */
7098 	wmb();
7099 
7100 	spin_unlock_irqrestore(host->host_lock, flags);
7101 
7102 	ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_SEND);
7103 
7104 	/* wait until the task management command is completed */
7105 	err = wait_for_completion_io_timeout(&wait,
7106 			msecs_to_jiffies(TM_CMD_TIMEOUT));
7107 	if (!err) {
7108 		ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_ERR);
7109 		dev_err(hba->dev, "%s: task management cmd 0x%.2x timed-out\n",
7110 				__func__, tm_function);
7111 		if (ufshcd_clear_tm_cmd(hba, task_tag))
7112 			dev_WARN(hba->dev, "%s: unable to clear tm cmd (slot %d) after timeout\n",
7113 					__func__, task_tag);
7114 		err = -ETIMEDOUT;
7115 	} else {
7116 		err = 0;
7117 		memcpy(treq, hba->utmrdl_base_addr + task_tag, sizeof(*treq));
7118 
7119 		ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_COMP);
7120 	}
7121 
7122 	spin_lock_irqsave(hba->host->host_lock, flags);
7123 	hba->tmf_rqs[req->tag] = NULL;
7124 	__clear_bit(task_tag, &hba->outstanding_tasks);
7125 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7126 
7127 	ufshcd_release(hba);
7128 	blk_mq_free_request(req);
7129 
7130 	return err;
7131 }
7132 
7133 /**
7134  * ufshcd_issue_tm_cmd - issues task management commands to controller
7135  * @hba: per adapter instance
7136  * @lun_id: LUN ID to which TM command is sent
7137  * @task_id: task ID to which the TM command is applicable
7138  * @tm_function: task management function opcode
7139  * @tm_response: task management service response return value
7140  *
7141  * Return: non-zero value on error, zero on success.
7142  */
7143 static int ufshcd_issue_tm_cmd(struct ufs_hba *hba, int lun_id, int task_id,
7144 		u8 tm_function, u8 *tm_response)
7145 {
7146 	struct utp_task_req_desc treq = { };
7147 	enum utp_ocs ocs_value;
7148 	int err;
7149 
7150 	/* Configure task request descriptor */
7151 	treq.header.interrupt = 1;
7152 	treq.header.ocs = OCS_INVALID_COMMAND_STATUS;
7153 
7154 	/* Configure task request UPIU */
7155 	treq.upiu_req.req_header.transaction_code = UPIU_TRANSACTION_TASK_REQ;
7156 	treq.upiu_req.req_header.lun = lun_id;
7157 	treq.upiu_req.req_header.tm_function = tm_function;
7158 
7159 	/*
7160 	 * The host shall provide the same value for LUN field in the basic
7161 	 * header and for Input Parameter.
7162 	 */
7163 	treq.upiu_req.input_param1 = cpu_to_be32(lun_id);
7164 	treq.upiu_req.input_param2 = cpu_to_be32(task_id);
7165 
7166 	err = __ufshcd_issue_tm_cmd(hba, &treq, tm_function);
7167 	if (err == -ETIMEDOUT)
7168 		return err;
7169 
7170 	ocs_value = treq.header.ocs & MASK_OCS;
7171 	if (ocs_value != OCS_SUCCESS)
7172 		dev_err(hba->dev, "%s: failed, ocs = 0x%x\n",
7173 				__func__, ocs_value);
7174 	else if (tm_response)
7175 		*tm_response = be32_to_cpu(treq.upiu_rsp.output_param1) &
7176 				MASK_TM_SERVICE_RESP;
7177 	return err;
7178 }
7179 
7180 /**
7181  * ufshcd_issue_devman_upiu_cmd - API for sending "utrd" type requests
7182  * @hba:	per-adapter instance
7183  * @req_upiu:	upiu request
7184  * @rsp_upiu:	upiu reply
7185  * @desc_buff:	pointer to descriptor buffer, NULL if NA
7186  * @buff_len:	descriptor size, 0 if NA
7187  * @cmd_type:	specifies the type (NOP, Query...)
7188  * @desc_op:	descriptor operation
7189  *
7190  * Those type of requests uses UTP Transfer Request Descriptor - utrd.
7191  * Therefore, it "rides" the device management infrastructure: uses its tag and
7192  * tasks work queues.
7193  *
7194  * Since there is only one available tag for device management commands,
7195  * the caller is expected to hold the hba->dev_cmd.lock mutex.
7196  *
7197  * Return: 0 upon success; < 0 upon failure.
7198  */
7199 static int ufshcd_issue_devman_upiu_cmd(struct ufs_hba *hba,
7200 					struct utp_upiu_req *req_upiu,
7201 					struct utp_upiu_req *rsp_upiu,
7202 					u8 *desc_buff, int *buff_len,
7203 					enum dev_cmd_type cmd_type,
7204 					enum query_opcode desc_op)
7205 {
7206 	DECLARE_COMPLETION_ONSTACK(wait);
7207 	const u32 tag = hba->reserved_slot;
7208 	struct ufshcd_lrb *lrbp;
7209 	int err = 0;
7210 	u8 upiu_flags;
7211 
7212 	/* Protects use of hba->reserved_slot. */
7213 	lockdep_assert_held(&hba->dev_cmd.lock);
7214 
7215 	down_read(&hba->clk_scaling_lock);
7216 
7217 	lrbp = &hba->lrb[tag];
7218 	lrbp->cmd = NULL;
7219 	lrbp->task_tag = tag;
7220 	lrbp->lun = 0;
7221 	lrbp->intr_cmd = true;
7222 	ufshcd_prepare_lrbp_crypto(NULL, lrbp);
7223 	hba->dev_cmd.type = cmd_type;
7224 
7225 	if (hba->ufs_version <= ufshci_version(1, 1))
7226 		lrbp->command_type = UTP_CMD_TYPE_DEV_MANAGE;
7227 	else
7228 		lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
7229 
7230 	/* update the task tag in the request upiu */
7231 	req_upiu->header.task_tag = tag;
7232 
7233 	ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, DMA_NONE, 0);
7234 
7235 	/* just copy the upiu request as it is */
7236 	memcpy(lrbp->ucd_req_ptr, req_upiu, sizeof(*lrbp->ucd_req_ptr));
7237 	if (desc_buff && desc_op == UPIU_QUERY_OPCODE_WRITE_DESC) {
7238 		/* The Data Segment Area is optional depending upon the query
7239 		 * function value. for WRITE DESCRIPTOR, the data segment
7240 		 * follows right after the tsf.
7241 		 */
7242 		memcpy(lrbp->ucd_req_ptr + 1, desc_buff, *buff_len);
7243 		*buff_len = 0;
7244 	}
7245 
7246 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
7247 
7248 	hba->dev_cmd.complete = &wait;
7249 
7250 	ufshcd_add_query_upiu_trace(hba, UFS_QUERY_SEND, lrbp->ucd_req_ptr);
7251 
7252 	ufshcd_send_command(hba, tag, hba->dev_cmd_queue);
7253 	/*
7254 	 * ignore the returning value here - ufshcd_check_query_response is
7255 	 * bound to fail since dev_cmd.query and dev_cmd.type were left empty.
7256 	 * read the response directly ignoring all errors.
7257 	 */
7258 	ufshcd_wait_for_dev_cmd(hba, lrbp, QUERY_REQ_TIMEOUT);
7259 
7260 	/* just copy the upiu response as it is */
7261 	memcpy(rsp_upiu, lrbp->ucd_rsp_ptr, sizeof(*rsp_upiu));
7262 	if (desc_buff && desc_op == UPIU_QUERY_OPCODE_READ_DESC) {
7263 		u8 *descp = (u8 *)lrbp->ucd_rsp_ptr + sizeof(*rsp_upiu);
7264 		u16 resp_len = be16_to_cpu(lrbp->ucd_rsp_ptr->header
7265 					   .data_segment_length);
7266 
7267 		if (*buff_len >= resp_len) {
7268 			memcpy(desc_buff, descp, resp_len);
7269 			*buff_len = resp_len;
7270 		} else {
7271 			dev_warn(hba->dev,
7272 				 "%s: rsp size %d is bigger than buffer size %d",
7273 				 __func__, resp_len, *buff_len);
7274 			*buff_len = 0;
7275 			err = -EINVAL;
7276 		}
7277 	}
7278 	ufshcd_add_query_upiu_trace(hba, err ? UFS_QUERY_ERR : UFS_QUERY_COMP,
7279 				    (struct utp_upiu_req *)lrbp->ucd_rsp_ptr);
7280 
7281 	up_read(&hba->clk_scaling_lock);
7282 	return err;
7283 }
7284 
7285 /**
7286  * ufshcd_exec_raw_upiu_cmd - API function for sending raw upiu commands
7287  * @hba:	per-adapter instance
7288  * @req_upiu:	upiu request
7289  * @rsp_upiu:	upiu reply - only 8 DW as we do not support scsi commands
7290  * @msgcode:	message code, one of UPIU Transaction Codes Initiator to Target
7291  * @desc_buff:	pointer to descriptor buffer, NULL if NA
7292  * @buff_len:	descriptor size, 0 if NA
7293  * @desc_op:	descriptor operation
7294  *
7295  * Supports UTP Transfer requests (nop and query), and UTP Task
7296  * Management requests.
7297  * It is up to the caller to fill the upiu conent properly, as it will
7298  * be copied without any further input validations.
7299  *
7300  * Return: 0 upon success; < 0 upon failure.
7301  */
7302 int ufshcd_exec_raw_upiu_cmd(struct ufs_hba *hba,
7303 			     struct utp_upiu_req *req_upiu,
7304 			     struct utp_upiu_req *rsp_upiu,
7305 			     enum upiu_request_transaction msgcode,
7306 			     u8 *desc_buff, int *buff_len,
7307 			     enum query_opcode desc_op)
7308 {
7309 	int err;
7310 	enum dev_cmd_type cmd_type = DEV_CMD_TYPE_QUERY;
7311 	struct utp_task_req_desc treq = { };
7312 	enum utp_ocs ocs_value;
7313 	u8 tm_f = req_upiu->header.tm_function;
7314 
7315 	switch (msgcode) {
7316 	case UPIU_TRANSACTION_NOP_OUT:
7317 		cmd_type = DEV_CMD_TYPE_NOP;
7318 		fallthrough;
7319 	case UPIU_TRANSACTION_QUERY_REQ:
7320 		ufshcd_hold(hba);
7321 		mutex_lock(&hba->dev_cmd.lock);
7322 		err = ufshcd_issue_devman_upiu_cmd(hba, req_upiu, rsp_upiu,
7323 						   desc_buff, buff_len,
7324 						   cmd_type, desc_op);
7325 		mutex_unlock(&hba->dev_cmd.lock);
7326 		ufshcd_release(hba);
7327 
7328 		break;
7329 	case UPIU_TRANSACTION_TASK_REQ:
7330 		treq.header.interrupt = 1;
7331 		treq.header.ocs = OCS_INVALID_COMMAND_STATUS;
7332 
7333 		memcpy(&treq.upiu_req, req_upiu, sizeof(*req_upiu));
7334 
7335 		err = __ufshcd_issue_tm_cmd(hba, &treq, tm_f);
7336 		if (err == -ETIMEDOUT)
7337 			break;
7338 
7339 		ocs_value = treq.header.ocs & MASK_OCS;
7340 		if (ocs_value != OCS_SUCCESS) {
7341 			dev_err(hba->dev, "%s: failed, ocs = 0x%x\n", __func__,
7342 				ocs_value);
7343 			break;
7344 		}
7345 
7346 		memcpy(rsp_upiu, &treq.upiu_rsp, sizeof(*rsp_upiu));
7347 
7348 		break;
7349 	default:
7350 		err = -EINVAL;
7351 
7352 		break;
7353 	}
7354 
7355 	return err;
7356 }
7357 
7358 /**
7359  * ufshcd_advanced_rpmb_req_handler - handle advanced RPMB request
7360  * @hba:	per adapter instance
7361  * @req_upiu:	upiu request
7362  * @rsp_upiu:	upiu reply
7363  * @req_ehs:	EHS field which contains Advanced RPMB Request Message
7364  * @rsp_ehs:	EHS field which returns Advanced RPMB Response Message
7365  * @sg_cnt:	The number of sg lists actually used
7366  * @sg_list:	Pointer to SG list when DATA IN/OUT UPIU is required in ARPMB operation
7367  * @dir:	DMA direction
7368  *
7369  * Return: zero on success, non-zero on failure.
7370  */
7371 int ufshcd_advanced_rpmb_req_handler(struct ufs_hba *hba, struct utp_upiu_req *req_upiu,
7372 			 struct utp_upiu_req *rsp_upiu, struct ufs_ehs *req_ehs,
7373 			 struct ufs_ehs *rsp_ehs, int sg_cnt, struct scatterlist *sg_list,
7374 			 enum dma_data_direction dir)
7375 {
7376 	DECLARE_COMPLETION_ONSTACK(wait);
7377 	const u32 tag = hba->reserved_slot;
7378 	struct ufshcd_lrb *lrbp;
7379 	int err = 0;
7380 	int result;
7381 	u8 upiu_flags;
7382 	u8 *ehs_data;
7383 	u16 ehs_len;
7384 
7385 	/* Protects use of hba->reserved_slot. */
7386 	ufshcd_hold(hba);
7387 	mutex_lock(&hba->dev_cmd.lock);
7388 	down_read(&hba->clk_scaling_lock);
7389 
7390 	lrbp = &hba->lrb[tag];
7391 	lrbp->cmd = NULL;
7392 	lrbp->task_tag = tag;
7393 	lrbp->lun = UFS_UPIU_RPMB_WLUN;
7394 
7395 	lrbp->intr_cmd = true;
7396 	ufshcd_prepare_lrbp_crypto(NULL, lrbp);
7397 	hba->dev_cmd.type = DEV_CMD_TYPE_RPMB;
7398 
7399 	/* Advanced RPMB starts from UFS 4.0, so its command type is UTP_CMD_TYPE_UFS_STORAGE */
7400 	lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
7401 
7402 	/*
7403 	 * According to UFSHCI 4.0 specification page 24, if EHSLUTRDS is 0, host controller takes
7404 	 * EHS length from CMD UPIU, and SW driver use EHS Length field in CMD UPIU. if it is 1,
7405 	 * HW controller takes EHS length from UTRD.
7406 	 */
7407 	if (hba->capabilities & MASK_EHSLUTRD_SUPPORTED)
7408 		ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, dir, 2);
7409 	else
7410 		ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, dir, 0);
7411 
7412 	/* update the task tag */
7413 	req_upiu->header.task_tag = tag;
7414 
7415 	/* copy the UPIU(contains CDB) request as it is */
7416 	memcpy(lrbp->ucd_req_ptr, req_upiu, sizeof(*lrbp->ucd_req_ptr));
7417 	/* Copy EHS, starting with byte32, immediately after the CDB package */
7418 	memcpy(lrbp->ucd_req_ptr + 1, req_ehs, sizeof(*req_ehs));
7419 
7420 	if (dir != DMA_NONE && sg_list)
7421 		ufshcd_sgl_to_prdt(hba, lrbp, sg_cnt, sg_list);
7422 
7423 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
7424 
7425 	hba->dev_cmd.complete = &wait;
7426 
7427 	ufshcd_send_command(hba, tag, hba->dev_cmd_queue);
7428 
7429 	err = ufshcd_wait_for_dev_cmd(hba, lrbp, ADVANCED_RPMB_REQ_TIMEOUT);
7430 
7431 	if (!err) {
7432 		/* Just copy the upiu response as it is */
7433 		memcpy(rsp_upiu, lrbp->ucd_rsp_ptr, sizeof(*rsp_upiu));
7434 		/* Get the response UPIU result */
7435 		result = (lrbp->ucd_rsp_ptr->header.response << 8) |
7436 			lrbp->ucd_rsp_ptr->header.status;
7437 
7438 		ehs_len = lrbp->ucd_rsp_ptr->header.ehs_length;
7439 		/*
7440 		 * Since the bLength in EHS indicates the total size of the EHS Header and EHS Data
7441 		 * in 32 Byte units, the value of the bLength Request/Response for Advanced RPMB
7442 		 * Message is 02h
7443 		 */
7444 		if (ehs_len == 2 && rsp_ehs) {
7445 			/*
7446 			 * ucd_rsp_ptr points to a buffer with a length of 512 bytes
7447 			 * (ALIGNED_UPIU_SIZE = 512), and the EHS data just starts from byte32
7448 			 */
7449 			ehs_data = (u8 *)lrbp->ucd_rsp_ptr + EHS_OFFSET_IN_RESPONSE;
7450 			memcpy(rsp_ehs, ehs_data, ehs_len * 32);
7451 		}
7452 	}
7453 
7454 	up_read(&hba->clk_scaling_lock);
7455 	mutex_unlock(&hba->dev_cmd.lock);
7456 	ufshcd_release(hba);
7457 	return err ? : result;
7458 }
7459 
7460 /**
7461  * ufshcd_eh_device_reset_handler() - Reset a single logical unit.
7462  * @cmd: SCSI command pointer
7463  *
7464  * Return: SUCCESS or FAILED.
7465  */
7466 static int ufshcd_eh_device_reset_handler(struct scsi_cmnd *cmd)
7467 {
7468 	unsigned long flags, pending_reqs = 0, not_cleared = 0;
7469 	struct Scsi_Host *host;
7470 	struct ufs_hba *hba;
7471 	struct ufs_hw_queue *hwq;
7472 	struct ufshcd_lrb *lrbp;
7473 	u32 pos, not_cleared_mask = 0;
7474 	int err;
7475 	u8 resp = 0xF, lun;
7476 
7477 	host = cmd->device->host;
7478 	hba = shost_priv(host);
7479 
7480 	lun = ufshcd_scsi_to_upiu_lun(cmd->device->lun);
7481 	err = ufshcd_issue_tm_cmd(hba, lun, 0, UFS_LOGICAL_RESET, &resp);
7482 	if (err || resp != UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7483 		if (!err)
7484 			err = resp;
7485 		goto out;
7486 	}
7487 
7488 	if (is_mcq_enabled(hba)) {
7489 		for (pos = 0; pos < hba->nutrs; pos++) {
7490 			lrbp = &hba->lrb[pos];
7491 			if (ufshcd_cmd_inflight(lrbp->cmd) &&
7492 			    lrbp->lun == lun) {
7493 				ufshcd_clear_cmd(hba, pos);
7494 				hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(lrbp->cmd));
7495 				ufshcd_mcq_poll_cqe_lock(hba, hwq);
7496 			}
7497 		}
7498 		err = 0;
7499 		goto out;
7500 	}
7501 
7502 	/* clear the commands that were pending for corresponding LUN */
7503 	spin_lock_irqsave(&hba->outstanding_lock, flags);
7504 	for_each_set_bit(pos, &hba->outstanding_reqs, hba->nutrs)
7505 		if (hba->lrb[pos].lun == lun)
7506 			__set_bit(pos, &pending_reqs);
7507 	hba->outstanding_reqs &= ~pending_reqs;
7508 	spin_unlock_irqrestore(&hba->outstanding_lock, flags);
7509 
7510 	for_each_set_bit(pos, &pending_reqs, hba->nutrs) {
7511 		if (ufshcd_clear_cmd(hba, pos) < 0) {
7512 			spin_lock_irqsave(&hba->outstanding_lock, flags);
7513 			not_cleared = 1U << pos &
7514 				ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
7515 			hba->outstanding_reqs |= not_cleared;
7516 			not_cleared_mask |= not_cleared;
7517 			spin_unlock_irqrestore(&hba->outstanding_lock, flags);
7518 
7519 			dev_err(hba->dev, "%s: failed to clear request %d\n",
7520 				__func__, pos);
7521 		}
7522 	}
7523 	__ufshcd_transfer_req_compl(hba, pending_reqs & ~not_cleared_mask);
7524 
7525 out:
7526 	hba->req_abort_count = 0;
7527 	ufshcd_update_evt_hist(hba, UFS_EVT_DEV_RESET, (u32)err);
7528 	if (!err) {
7529 		err = SUCCESS;
7530 	} else {
7531 		dev_err(hba->dev, "%s: failed with err %d\n", __func__, err);
7532 		err = FAILED;
7533 	}
7534 	return err;
7535 }
7536 
7537 static void ufshcd_set_req_abort_skip(struct ufs_hba *hba, unsigned long bitmap)
7538 {
7539 	struct ufshcd_lrb *lrbp;
7540 	int tag;
7541 
7542 	for_each_set_bit(tag, &bitmap, hba->nutrs) {
7543 		lrbp = &hba->lrb[tag];
7544 		lrbp->req_abort_skip = true;
7545 	}
7546 }
7547 
7548 /**
7549  * ufshcd_try_to_abort_task - abort a specific task
7550  * @hba: Pointer to adapter instance
7551  * @tag: Task tag/index to be aborted
7552  *
7553  * Abort the pending command in device by sending UFS_ABORT_TASK task management
7554  * command, and in host controller by clearing the door-bell register. There can
7555  * be race between controller sending the command to the device while abort is
7556  * issued. To avoid that, first issue UFS_QUERY_TASK to check if the command is
7557  * really issued and then try to abort it.
7558  *
7559  * Return: zero on success, non-zero on failure.
7560  */
7561 int ufshcd_try_to_abort_task(struct ufs_hba *hba, int tag)
7562 {
7563 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
7564 	int err = 0;
7565 	int poll_cnt;
7566 	u8 resp = 0xF;
7567 	u32 reg;
7568 
7569 	for (poll_cnt = 100; poll_cnt; poll_cnt--) {
7570 		err = ufshcd_issue_tm_cmd(hba, lrbp->lun, lrbp->task_tag,
7571 				UFS_QUERY_TASK, &resp);
7572 		if (!err && resp == UPIU_TASK_MANAGEMENT_FUNC_SUCCEEDED) {
7573 			/* cmd pending in the device */
7574 			dev_err(hba->dev, "%s: cmd pending in the device. tag = %d\n",
7575 				__func__, tag);
7576 			break;
7577 		} else if (!err && resp == UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7578 			/*
7579 			 * cmd not pending in the device, check if it is
7580 			 * in transition.
7581 			 */
7582 			dev_err(hba->dev, "%s: cmd at tag %d not pending in the device.\n",
7583 				__func__, tag);
7584 			if (is_mcq_enabled(hba)) {
7585 				/* MCQ mode */
7586 				if (ufshcd_cmd_inflight(lrbp->cmd)) {
7587 					/* sleep for max. 200us same delay as in SDB mode */
7588 					usleep_range(100, 200);
7589 					continue;
7590 				}
7591 				/* command completed already */
7592 				dev_err(hba->dev, "%s: cmd at tag=%d is cleared.\n",
7593 					__func__, tag);
7594 				goto out;
7595 			}
7596 
7597 			/* Single Doorbell Mode */
7598 			reg = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
7599 			if (reg & (1 << tag)) {
7600 				/* sleep for max. 200us to stabilize */
7601 				usleep_range(100, 200);
7602 				continue;
7603 			}
7604 			/* command completed already */
7605 			dev_err(hba->dev, "%s: cmd at tag %d successfully cleared from DB.\n",
7606 				__func__, tag);
7607 			goto out;
7608 		} else {
7609 			dev_err(hba->dev,
7610 				"%s: no response from device. tag = %d, err %d\n",
7611 				__func__, tag, err);
7612 			if (!err)
7613 				err = resp; /* service response error */
7614 			goto out;
7615 		}
7616 	}
7617 
7618 	if (!poll_cnt) {
7619 		err = -EBUSY;
7620 		goto out;
7621 	}
7622 
7623 	err = ufshcd_issue_tm_cmd(hba, lrbp->lun, lrbp->task_tag,
7624 			UFS_ABORT_TASK, &resp);
7625 	if (err || resp != UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7626 		if (!err) {
7627 			err = resp; /* service response error */
7628 			dev_err(hba->dev, "%s: issued. tag = %d, err %d\n",
7629 				__func__, tag, err);
7630 		}
7631 		goto out;
7632 	}
7633 
7634 	err = ufshcd_clear_cmd(hba, tag);
7635 	if (err)
7636 		dev_err(hba->dev, "%s: Failed clearing cmd at tag %d, err %d\n",
7637 			__func__, tag, err);
7638 
7639 out:
7640 	return err;
7641 }
7642 
7643 /**
7644  * ufshcd_abort - scsi host template eh_abort_handler callback
7645  * @cmd: SCSI command pointer
7646  *
7647  * Return: SUCCESS or FAILED.
7648  */
7649 static int ufshcd_abort(struct scsi_cmnd *cmd)
7650 {
7651 	struct Scsi_Host *host = cmd->device->host;
7652 	struct ufs_hba *hba = shost_priv(host);
7653 	int tag = scsi_cmd_to_rq(cmd)->tag;
7654 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
7655 	unsigned long flags;
7656 	int err = FAILED;
7657 	bool outstanding;
7658 	u32 reg;
7659 
7660 	ufshcd_hold(hba);
7661 
7662 	if (!is_mcq_enabled(hba)) {
7663 		reg = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
7664 		if (!test_bit(tag, &hba->outstanding_reqs)) {
7665 			/* If command is already aborted/completed, return FAILED. */
7666 			dev_err(hba->dev,
7667 				"%s: cmd at tag %d already completed, outstanding=0x%lx, doorbell=0x%x\n",
7668 				__func__, tag, hba->outstanding_reqs, reg);
7669 			goto release;
7670 		}
7671 	}
7672 
7673 	/* Print Transfer Request of aborted task */
7674 	dev_info(hba->dev, "%s: Device abort task at tag %d\n", __func__, tag);
7675 
7676 	/*
7677 	 * Print detailed info about aborted request.
7678 	 * As more than one request might get aborted at the same time,
7679 	 * print full information only for the first aborted request in order
7680 	 * to reduce repeated printouts. For other aborted requests only print
7681 	 * basic details.
7682 	 */
7683 	scsi_print_command(cmd);
7684 	if (!hba->req_abort_count) {
7685 		ufshcd_update_evt_hist(hba, UFS_EVT_ABORT, tag);
7686 		ufshcd_print_evt_hist(hba);
7687 		ufshcd_print_host_state(hba);
7688 		ufshcd_print_pwr_info(hba);
7689 		ufshcd_print_tr(hba, tag, true);
7690 	} else {
7691 		ufshcd_print_tr(hba, tag, false);
7692 	}
7693 	hba->req_abort_count++;
7694 
7695 	if (!is_mcq_enabled(hba) && !(reg & (1 << tag))) {
7696 		/* only execute this code in single doorbell mode */
7697 		dev_err(hba->dev,
7698 		"%s: cmd was completed, but without a notifying intr, tag = %d",
7699 		__func__, tag);
7700 		__ufshcd_transfer_req_compl(hba, 1UL << tag);
7701 		goto release;
7702 	}
7703 
7704 	/*
7705 	 * Task abort to the device W-LUN is illegal. When this command
7706 	 * will fail, due to spec violation, scsi err handling next step
7707 	 * will be to send LU reset which, again, is a spec violation.
7708 	 * To avoid these unnecessary/illegal steps, first we clean up
7709 	 * the lrb taken by this cmd and re-set it in outstanding_reqs,
7710 	 * then queue the eh_work and bail.
7711 	 */
7712 	if (lrbp->lun == UFS_UPIU_UFS_DEVICE_WLUN) {
7713 		ufshcd_update_evt_hist(hba, UFS_EVT_ABORT, lrbp->lun);
7714 
7715 		spin_lock_irqsave(host->host_lock, flags);
7716 		hba->force_reset = true;
7717 		ufshcd_schedule_eh_work(hba);
7718 		spin_unlock_irqrestore(host->host_lock, flags);
7719 		goto release;
7720 	}
7721 
7722 	if (is_mcq_enabled(hba)) {
7723 		/* MCQ mode. Branch off to handle abort for mcq mode */
7724 		err = ufshcd_mcq_abort(cmd);
7725 		goto release;
7726 	}
7727 
7728 	/* Skip task abort in case previous aborts failed and report failure */
7729 	if (lrbp->req_abort_skip) {
7730 		dev_err(hba->dev, "%s: skipping abort\n", __func__);
7731 		ufshcd_set_req_abort_skip(hba, hba->outstanding_reqs);
7732 		goto release;
7733 	}
7734 
7735 	err = ufshcd_try_to_abort_task(hba, tag);
7736 	if (err) {
7737 		dev_err(hba->dev, "%s: failed with err %d\n", __func__, err);
7738 		ufshcd_set_req_abort_skip(hba, hba->outstanding_reqs);
7739 		err = FAILED;
7740 		goto release;
7741 	}
7742 
7743 	/*
7744 	 * Clear the corresponding bit from outstanding_reqs since the command
7745 	 * has been aborted successfully.
7746 	 */
7747 	spin_lock_irqsave(&hba->outstanding_lock, flags);
7748 	outstanding = __test_and_clear_bit(tag, &hba->outstanding_reqs);
7749 	spin_unlock_irqrestore(&hba->outstanding_lock, flags);
7750 
7751 	if (outstanding)
7752 		ufshcd_release_scsi_cmd(hba, lrbp);
7753 
7754 	err = SUCCESS;
7755 
7756 release:
7757 	/* Matches the ufshcd_hold() call at the start of this function. */
7758 	ufshcd_release(hba);
7759 	return err;
7760 }
7761 
7762 /**
7763  * ufshcd_host_reset_and_restore - reset and restore host controller
7764  * @hba: per-adapter instance
7765  *
7766  * Note that host controller reset may issue DME_RESET to
7767  * local and remote (device) Uni-Pro stack and the attributes
7768  * are reset to default state.
7769  *
7770  * Return: zero on success, non-zero on failure.
7771  */
7772 static int ufshcd_host_reset_and_restore(struct ufs_hba *hba)
7773 {
7774 	int err;
7775 
7776 	/*
7777 	 * Stop the host controller and complete the requests
7778 	 * cleared by h/w
7779 	 */
7780 	ufshcd_hba_stop(hba);
7781 	hba->silence_err_logs = true;
7782 	ufshcd_complete_requests(hba, true);
7783 	hba->silence_err_logs = false;
7784 
7785 	/* scale up clocks to max frequency before full reinitialization */
7786 	ufshcd_scale_clks(hba, ULONG_MAX, true);
7787 
7788 	err = ufshcd_hba_enable(hba);
7789 
7790 	/* Establish the link again and restore the device */
7791 	if (!err)
7792 		err = ufshcd_probe_hba(hba, false);
7793 
7794 	if (err)
7795 		dev_err(hba->dev, "%s: Host init failed %d\n", __func__, err);
7796 	ufshcd_update_evt_hist(hba, UFS_EVT_HOST_RESET, (u32)err);
7797 	return err;
7798 }
7799 
7800 /**
7801  * ufshcd_reset_and_restore - reset and re-initialize host/device
7802  * @hba: per-adapter instance
7803  *
7804  * Reset and recover device, host and re-establish link. This
7805  * is helpful to recover the communication in fatal error conditions.
7806  *
7807  * Return: zero on success, non-zero on failure.
7808  */
7809 static int ufshcd_reset_and_restore(struct ufs_hba *hba)
7810 {
7811 	u32 saved_err = 0;
7812 	u32 saved_uic_err = 0;
7813 	int err = 0;
7814 	unsigned long flags;
7815 	int retries = MAX_HOST_RESET_RETRIES;
7816 
7817 	spin_lock_irqsave(hba->host->host_lock, flags);
7818 	do {
7819 		/*
7820 		 * This is a fresh start, cache and clear saved error first,
7821 		 * in case new error generated during reset and restore.
7822 		 */
7823 		saved_err |= hba->saved_err;
7824 		saved_uic_err |= hba->saved_uic_err;
7825 		hba->saved_err = 0;
7826 		hba->saved_uic_err = 0;
7827 		hba->force_reset = false;
7828 		hba->ufshcd_state = UFSHCD_STATE_RESET;
7829 		spin_unlock_irqrestore(hba->host->host_lock, flags);
7830 
7831 		/* Reset the attached device */
7832 		ufshcd_device_reset(hba);
7833 
7834 		err = ufshcd_host_reset_and_restore(hba);
7835 
7836 		spin_lock_irqsave(hba->host->host_lock, flags);
7837 		if (err)
7838 			continue;
7839 		/* Do not exit unless operational or dead */
7840 		if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL &&
7841 		    hba->ufshcd_state != UFSHCD_STATE_ERROR &&
7842 		    hba->ufshcd_state != UFSHCD_STATE_EH_SCHEDULED_NON_FATAL)
7843 			err = -EAGAIN;
7844 	} while (err && --retries);
7845 
7846 	/*
7847 	 * Inform scsi mid-layer that we did reset and allow to handle
7848 	 * Unit Attention properly.
7849 	 */
7850 	scsi_report_bus_reset(hba->host, 0);
7851 	if (err) {
7852 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
7853 		hba->saved_err |= saved_err;
7854 		hba->saved_uic_err |= saved_uic_err;
7855 	}
7856 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7857 
7858 	return err;
7859 }
7860 
7861 /**
7862  * ufshcd_eh_host_reset_handler - host reset handler registered to scsi layer
7863  * @cmd: SCSI command pointer
7864  *
7865  * Return: SUCCESS or FAILED.
7866  */
7867 static int ufshcd_eh_host_reset_handler(struct scsi_cmnd *cmd)
7868 {
7869 	int err = SUCCESS;
7870 	unsigned long flags;
7871 	struct ufs_hba *hba;
7872 
7873 	hba = shost_priv(cmd->device->host);
7874 
7875 	/*
7876 	 * If runtime PM sent SSU and got a timeout, scsi_error_handler is
7877 	 * stuck in this function waiting for flush_work(&hba->eh_work). And
7878 	 * ufshcd_err_handler(eh_work) is stuck waiting for runtime PM. Do
7879 	 * ufshcd_link_recovery instead of eh_work to prevent deadlock.
7880 	 */
7881 	if (hba->pm_op_in_progress) {
7882 		if (ufshcd_link_recovery(hba))
7883 			err = FAILED;
7884 
7885 		return err;
7886 	}
7887 
7888 	spin_lock_irqsave(hba->host->host_lock, flags);
7889 	hba->force_reset = true;
7890 	ufshcd_schedule_eh_work(hba);
7891 	dev_err(hba->dev, "%s: reset in progress - 1\n", __func__);
7892 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7893 
7894 	flush_work(&hba->eh_work);
7895 
7896 	spin_lock_irqsave(hba->host->host_lock, flags);
7897 	if (hba->ufshcd_state == UFSHCD_STATE_ERROR)
7898 		err = FAILED;
7899 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7900 
7901 	return err;
7902 }
7903 
7904 /**
7905  * ufshcd_get_max_icc_level - calculate the ICC level
7906  * @sup_curr_uA: max. current supported by the regulator
7907  * @start_scan: row at the desc table to start scan from
7908  * @buff: power descriptor buffer
7909  *
7910  * Return: calculated max ICC level for specific regulator.
7911  */
7912 static u32 ufshcd_get_max_icc_level(int sup_curr_uA, u32 start_scan,
7913 				    const char *buff)
7914 {
7915 	int i;
7916 	int curr_uA;
7917 	u16 data;
7918 	u16 unit;
7919 
7920 	for (i = start_scan; i >= 0; i--) {
7921 		data = get_unaligned_be16(&buff[2 * i]);
7922 		unit = (data & ATTR_ICC_LVL_UNIT_MASK) >>
7923 						ATTR_ICC_LVL_UNIT_OFFSET;
7924 		curr_uA = data & ATTR_ICC_LVL_VALUE_MASK;
7925 		switch (unit) {
7926 		case UFSHCD_NANO_AMP:
7927 			curr_uA = curr_uA / 1000;
7928 			break;
7929 		case UFSHCD_MILI_AMP:
7930 			curr_uA = curr_uA * 1000;
7931 			break;
7932 		case UFSHCD_AMP:
7933 			curr_uA = curr_uA * 1000 * 1000;
7934 			break;
7935 		case UFSHCD_MICRO_AMP:
7936 		default:
7937 			break;
7938 		}
7939 		if (sup_curr_uA >= curr_uA)
7940 			break;
7941 	}
7942 	if (i < 0) {
7943 		i = 0;
7944 		pr_err("%s: Couldn't find valid icc_level = %d", __func__, i);
7945 	}
7946 
7947 	return (u32)i;
7948 }
7949 
7950 /**
7951  * ufshcd_find_max_sup_active_icc_level - calculate the max ICC level
7952  * In case regulators are not initialized we'll return 0
7953  * @hba: per-adapter instance
7954  * @desc_buf: power descriptor buffer to extract ICC levels from.
7955  *
7956  * Return: calculated ICC level.
7957  */
7958 static u32 ufshcd_find_max_sup_active_icc_level(struct ufs_hba *hba,
7959 						const u8 *desc_buf)
7960 {
7961 	u32 icc_level = 0;
7962 
7963 	if (!hba->vreg_info.vcc || !hba->vreg_info.vccq ||
7964 						!hba->vreg_info.vccq2) {
7965 		/*
7966 		 * Using dev_dbg to avoid messages during runtime PM to avoid
7967 		 * never-ending cycles of messages written back to storage by
7968 		 * user space causing runtime resume, causing more messages and
7969 		 * so on.
7970 		 */
7971 		dev_dbg(hba->dev,
7972 			"%s: Regulator capability was not set, actvIccLevel=%d",
7973 							__func__, icc_level);
7974 		goto out;
7975 	}
7976 
7977 	if (hba->vreg_info.vcc->max_uA)
7978 		icc_level = ufshcd_get_max_icc_level(
7979 				hba->vreg_info.vcc->max_uA,
7980 				POWER_DESC_MAX_ACTV_ICC_LVLS - 1,
7981 				&desc_buf[PWR_DESC_ACTIVE_LVLS_VCC_0]);
7982 
7983 	if (hba->vreg_info.vccq->max_uA)
7984 		icc_level = ufshcd_get_max_icc_level(
7985 				hba->vreg_info.vccq->max_uA,
7986 				icc_level,
7987 				&desc_buf[PWR_DESC_ACTIVE_LVLS_VCCQ_0]);
7988 
7989 	if (hba->vreg_info.vccq2->max_uA)
7990 		icc_level = ufshcd_get_max_icc_level(
7991 				hba->vreg_info.vccq2->max_uA,
7992 				icc_level,
7993 				&desc_buf[PWR_DESC_ACTIVE_LVLS_VCCQ2_0]);
7994 out:
7995 	return icc_level;
7996 }
7997 
7998 static void ufshcd_set_active_icc_lvl(struct ufs_hba *hba)
7999 {
8000 	int ret;
8001 	u8 *desc_buf;
8002 	u32 icc_level;
8003 
8004 	desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
8005 	if (!desc_buf)
8006 		return;
8007 
8008 	ret = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_POWER, 0, 0,
8009 				     desc_buf, QUERY_DESC_MAX_SIZE);
8010 	if (ret) {
8011 		dev_err(hba->dev,
8012 			"%s: Failed reading power descriptor ret = %d",
8013 			__func__, ret);
8014 		goto out;
8015 	}
8016 
8017 	icc_level = ufshcd_find_max_sup_active_icc_level(hba, desc_buf);
8018 	dev_dbg(hba->dev, "%s: setting icc_level 0x%x", __func__, icc_level);
8019 
8020 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
8021 		QUERY_ATTR_IDN_ACTIVE_ICC_LVL, 0, 0, &icc_level);
8022 
8023 	if (ret)
8024 		dev_err(hba->dev,
8025 			"%s: Failed configuring bActiveICCLevel = %d ret = %d",
8026 			__func__, icc_level, ret);
8027 
8028 out:
8029 	kfree(desc_buf);
8030 }
8031 
8032 static inline void ufshcd_blk_pm_runtime_init(struct scsi_device *sdev)
8033 {
8034 	struct Scsi_Host *shost = sdev->host;
8035 
8036 	scsi_autopm_get_device(sdev);
8037 	blk_pm_runtime_init(sdev->request_queue, &sdev->sdev_gendev);
8038 	if (sdev->rpm_autosuspend)
8039 		pm_runtime_set_autosuspend_delay(&sdev->sdev_gendev,
8040 						 shost->rpm_autosuspend_delay);
8041 	scsi_autopm_put_device(sdev);
8042 }
8043 
8044 /**
8045  * ufshcd_scsi_add_wlus - Adds required W-LUs
8046  * @hba: per-adapter instance
8047  *
8048  * UFS device specification requires the UFS devices to support 4 well known
8049  * logical units:
8050  *	"REPORT_LUNS" (address: 01h)
8051  *	"UFS Device" (address: 50h)
8052  *	"RPMB" (address: 44h)
8053  *	"BOOT" (address: 30h)
8054  * UFS device's power management needs to be controlled by "POWER CONDITION"
8055  * field of SSU (START STOP UNIT) command. But this "power condition" field
8056  * will take effect only when its sent to "UFS device" well known logical unit
8057  * hence we require the scsi_device instance to represent this logical unit in
8058  * order for the UFS host driver to send the SSU command for power management.
8059  *
8060  * We also require the scsi_device instance for "RPMB" (Replay Protected Memory
8061  * Block) LU so user space process can control this LU. User space may also
8062  * want to have access to BOOT LU.
8063  *
8064  * This function adds scsi device instances for each of all well known LUs
8065  * (except "REPORT LUNS" LU).
8066  *
8067  * Return: zero on success (all required W-LUs are added successfully),
8068  * non-zero error value on failure (if failed to add any of the required W-LU).
8069  */
8070 static int ufshcd_scsi_add_wlus(struct ufs_hba *hba)
8071 {
8072 	int ret = 0;
8073 	struct scsi_device *sdev_boot, *sdev_rpmb;
8074 
8075 	hba->ufs_device_wlun = __scsi_add_device(hba->host, 0, 0,
8076 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_UFS_DEVICE_WLUN), NULL);
8077 	if (IS_ERR(hba->ufs_device_wlun)) {
8078 		ret = PTR_ERR(hba->ufs_device_wlun);
8079 		hba->ufs_device_wlun = NULL;
8080 		goto out;
8081 	}
8082 	scsi_device_put(hba->ufs_device_wlun);
8083 
8084 	sdev_rpmb = __scsi_add_device(hba->host, 0, 0,
8085 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_RPMB_WLUN), NULL);
8086 	if (IS_ERR(sdev_rpmb)) {
8087 		ret = PTR_ERR(sdev_rpmb);
8088 		goto remove_ufs_device_wlun;
8089 	}
8090 	ufshcd_blk_pm_runtime_init(sdev_rpmb);
8091 	scsi_device_put(sdev_rpmb);
8092 
8093 	sdev_boot = __scsi_add_device(hba->host, 0, 0,
8094 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_BOOT_WLUN), NULL);
8095 	if (IS_ERR(sdev_boot)) {
8096 		dev_err(hba->dev, "%s: BOOT WLUN not found\n", __func__);
8097 	} else {
8098 		ufshcd_blk_pm_runtime_init(sdev_boot);
8099 		scsi_device_put(sdev_boot);
8100 	}
8101 	goto out;
8102 
8103 remove_ufs_device_wlun:
8104 	scsi_remove_device(hba->ufs_device_wlun);
8105 out:
8106 	return ret;
8107 }
8108 
8109 static void ufshcd_wb_probe(struct ufs_hba *hba, const u8 *desc_buf)
8110 {
8111 	struct ufs_dev_info *dev_info = &hba->dev_info;
8112 	u8 lun;
8113 	u32 d_lu_wb_buf_alloc;
8114 	u32 ext_ufs_feature;
8115 
8116 	if (!ufshcd_is_wb_allowed(hba))
8117 		return;
8118 
8119 	/*
8120 	 * Probe WB only for UFS-2.2 and UFS-3.1 (and later) devices or
8121 	 * UFS devices with quirk UFS_DEVICE_QUIRK_SUPPORT_EXTENDED_FEATURES
8122 	 * enabled
8123 	 */
8124 	if (!(dev_info->wspecversion >= 0x310 ||
8125 	      dev_info->wspecversion == 0x220 ||
8126 	     (hba->dev_quirks & UFS_DEVICE_QUIRK_SUPPORT_EXTENDED_FEATURES)))
8127 		goto wb_disabled;
8128 
8129 	ext_ufs_feature = get_unaligned_be32(desc_buf +
8130 					DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
8131 
8132 	if (!(ext_ufs_feature & UFS_DEV_WRITE_BOOSTER_SUP))
8133 		goto wb_disabled;
8134 
8135 	/*
8136 	 * WB may be supported but not configured while provisioning. The spec
8137 	 * says, in dedicated wb buffer mode, a max of 1 lun would have wb
8138 	 * buffer configured.
8139 	 */
8140 	dev_info->wb_buffer_type = desc_buf[DEVICE_DESC_PARAM_WB_TYPE];
8141 
8142 	dev_info->b_presrv_uspc_en =
8143 		desc_buf[DEVICE_DESC_PARAM_WB_PRESRV_USRSPC_EN];
8144 
8145 	if (dev_info->wb_buffer_type == WB_BUF_MODE_SHARED) {
8146 		if (!get_unaligned_be32(desc_buf +
8147 				   DEVICE_DESC_PARAM_WB_SHARED_ALLOC_UNITS))
8148 			goto wb_disabled;
8149 	} else {
8150 		for (lun = 0; lun < UFS_UPIU_MAX_WB_LUN_ID; lun++) {
8151 			d_lu_wb_buf_alloc = 0;
8152 			ufshcd_read_unit_desc_param(hba,
8153 					lun,
8154 					UNIT_DESC_PARAM_WB_BUF_ALLOC_UNITS,
8155 					(u8 *)&d_lu_wb_buf_alloc,
8156 					sizeof(d_lu_wb_buf_alloc));
8157 			if (d_lu_wb_buf_alloc) {
8158 				dev_info->wb_dedicated_lu = lun;
8159 				break;
8160 			}
8161 		}
8162 
8163 		if (!d_lu_wb_buf_alloc)
8164 			goto wb_disabled;
8165 	}
8166 
8167 	if (!ufshcd_is_wb_buf_lifetime_available(hba))
8168 		goto wb_disabled;
8169 
8170 	return;
8171 
8172 wb_disabled:
8173 	hba->caps &= ~UFSHCD_CAP_WB_EN;
8174 }
8175 
8176 static void ufshcd_temp_notif_probe(struct ufs_hba *hba, const u8 *desc_buf)
8177 {
8178 	struct ufs_dev_info *dev_info = &hba->dev_info;
8179 	u32 ext_ufs_feature;
8180 	u8 mask = 0;
8181 
8182 	if (!(hba->caps & UFSHCD_CAP_TEMP_NOTIF) || dev_info->wspecversion < 0x300)
8183 		return;
8184 
8185 	ext_ufs_feature = get_unaligned_be32(desc_buf + DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
8186 
8187 	if (ext_ufs_feature & UFS_DEV_LOW_TEMP_NOTIF)
8188 		mask |= MASK_EE_TOO_LOW_TEMP;
8189 
8190 	if (ext_ufs_feature & UFS_DEV_HIGH_TEMP_NOTIF)
8191 		mask |= MASK_EE_TOO_HIGH_TEMP;
8192 
8193 	if (mask) {
8194 		ufshcd_enable_ee(hba, mask);
8195 		ufs_hwmon_probe(hba, mask);
8196 	}
8197 }
8198 
8199 static void ufshcd_ext_iid_probe(struct ufs_hba *hba, u8 *desc_buf)
8200 {
8201 	struct ufs_dev_info *dev_info = &hba->dev_info;
8202 	u32 ext_ufs_feature;
8203 	u32 ext_iid_en = 0;
8204 	int err;
8205 
8206 	/* Only UFS-4.0 and above may support EXT_IID */
8207 	if (dev_info->wspecversion < 0x400)
8208 		goto out;
8209 
8210 	ext_ufs_feature = get_unaligned_be32(desc_buf +
8211 				     DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
8212 	if (!(ext_ufs_feature & UFS_DEV_EXT_IID_SUP))
8213 		goto out;
8214 
8215 	err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
8216 				      QUERY_ATTR_IDN_EXT_IID_EN, 0, 0, &ext_iid_en);
8217 	if (err)
8218 		dev_err(hba->dev, "failed reading bEXTIIDEn. err = %d\n", err);
8219 
8220 out:
8221 	dev_info->b_ext_iid_en = ext_iid_en;
8222 }
8223 
8224 void ufshcd_fixup_dev_quirks(struct ufs_hba *hba,
8225 			     const struct ufs_dev_quirk *fixups)
8226 {
8227 	const struct ufs_dev_quirk *f;
8228 	struct ufs_dev_info *dev_info = &hba->dev_info;
8229 
8230 	if (!fixups)
8231 		return;
8232 
8233 	for (f = fixups; f->quirk; f++) {
8234 		if ((f->wmanufacturerid == dev_info->wmanufacturerid ||
8235 		     f->wmanufacturerid == UFS_ANY_VENDOR) &&
8236 		     ((dev_info->model &&
8237 		       STR_PRFX_EQUAL(f->model, dev_info->model)) ||
8238 		      !strcmp(f->model, UFS_ANY_MODEL)))
8239 			hba->dev_quirks |= f->quirk;
8240 	}
8241 }
8242 EXPORT_SYMBOL_GPL(ufshcd_fixup_dev_quirks);
8243 
8244 static void ufs_fixup_device_setup(struct ufs_hba *hba)
8245 {
8246 	/* fix by general quirk table */
8247 	ufshcd_fixup_dev_quirks(hba, ufs_fixups);
8248 
8249 	/* allow vendors to fix quirks */
8250 	ufshcd_vops_fixup_dev_quirks(hba);
8251 }
8252 
8253 static void ufshcd_update_rtc(struct ufs_hba *hba)
8254 {
8255 	struct timespec64 ts64;
8256 	int err;
8257 	u32 val;
8258 
8259 	ktime_get_real_ts64(&ts64);
8260 
8261 	if (ts64.tv_sec < hba->dev_info.rtc_time_baseline) {
8262 		dev_warn_once(hba->dev, "%s: Current time precedes previous setting!\n", __func__);
8263 		return;
8264 	}
8265 
8266 	/*
8267 	 * The Absolute RTC mode has a 136-year limit, spanning from 2010 to 2146. If a time beyond
8268 	 * 2146 is required, it is recommended to choose the relative RTC mode.
8269 	 */
8270 	val = ts64.tv_sec - hba->dev_info.rtc_time_baseline;
8271 
8272 	ufshcd_rpm_get_sync(hba);
8273 	err = ufshcd_query_attr(hba, UPIU_QUERY_OPCODE_WRITE_ATTR, QUERY_ATTR_IDN_SECONDS_PASSED,
8274 				0, 0, &val);
8275 	ufshcd_rpm_put_sync(hba);
8276 
8277 	if (err)
8278 		dev_err(hba->dev, "%s: Failed to update rtc %d\n", __func__, err);
8279 	else if (hba->dev_info.rtc_type == UFS_RTC_RELATIVE)
8280 		hba->dev_info.rtc_time_baseline = ts64.tv_sec;
8281 }
8282 
8283 static void ufshcd_rtc_work(struct work_struct *work)
8284 {
8285 	struct ufs_hba *hba;
8286 
8287 	hba = container_of(to_delayed_work(work), struct ufs_hba, ufs_rtc_update_work);
8288 
8289 	 /* Update RTC only when there are no requests in progress and UFSHCI is operational */
8290 	if (!ufshcd_is_ufs_dev_busy(hba) && hba->ufshcd_state == UFSHCD_STATE_OPERATIONAL)
8291 		ufshcd_update_rtc(hba);
8292 
8293 	if (ufshcd_is_ufs_dev_active(hba) && hba->dev_info.rtc_update_period)
8294 		schedule_delayed_work(&hba->ufs_rtc_update_work,
8295 				      msecs_to_jiffies(hba->dev_info.rtc_update_period));
8296 }
8297 
8298 static void ufs_init_rtc(struct ufs_hba *hba, u8 *desc_buf)
8299 {
8300 	u16 periodic_rtc_update = get_unaligned_be16(&desc_buf[DEVICE_DESC_PARAM_FRQ_RTC]);
8301 	struct ufs_dev_info *dev_info = &hba->dev_info;
8302 
8303 	if (periodic_rtc_update & UFS_RTC_TIME_BASELINE) {
8304 		dev_info->rtc_type = UFS_RTC_ABSOLUTE;
8305 
8306 		/*
8307 		 * The concept of measuring time in Linux as the number of seconds elapsed since
8308 		 * 00:00:00 UTC on January 1, 1970, and UFS ABS RTC is elapsed from January 1st
8309 		 * 2010 00:00, here we need to adjust ABS baseline.
8310 		 */
8311 		dev_info->rtc_time_baseline = mktime64(2010, 1, 1, 0, 0, 0) -
8312 							mktime64(1970, 1, 1, 0, 0, 0);
8313 	} else {
8314 		dev_info->rtc_type = UFS_RTC_RELATIVE;
8315 		dev_info->rtc_time_baseline = 0;
8316 	}
8317 
8318 	/*
8319 	 * We ignore TIME_PERIOD defined in wPeriodicRTCUpdate because Spec does not clearly state
8320 	 * how to calculate the specific update period for each time unit. And we disable periodic
8321 	 * RTC update work, let user configure by sysfs node according to specific circumstance.
8322 	 */
8323 	dev_info->rtc_update_period = 0;
8324 }
8325 
8326 static int ufs_get_device_desc(struct ufs_hba *hba)
8327 {
8328 	int err;
8329 	u8 model_index;
8330 	u8 *desc_buf;
8331 	struct ufs_dev_info *dev_info = &hba->dev_info;
8332 
8333 	desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
8334 	if (!desc_buf) {
8335 		err = -ENOMEM;
8336 		goto out;
8337 	}
8338 
8339 	err = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_DEVICE, 0, 0, desc_buf,
8340 				     QUERY_DESC_MAX_SIZE);
8341 	if (err) {
8342 		dev_err(hba->dev, "%s: Failed reading Device Desc. err = %d\n",
8343 			__func__, err);
8344 		goto out;
8345 	}
8346 
8347 	/*
8348 	 * getting vendor (manufacturerID) and Bank Index in big endian
8349 	 * format
8350 	 */
8351 	dev_info->wmanufacturerid = desc_buf[DEVICE_DESC_PARAM_MANF_ID] << 8 |
8352 				     desc_buf[DEVICE_DESC_PARAM_MANF_ID + 1];
8353 
8354 	/* getting Specification Version in big endian format */
8355 	dev_info->wspecversion = desc_buf[DEVICE_DESC_PARAM_SPEC_VER] << 8 |
8356 				      desc_buf[DEVICE_DESC_PARAM_SPEC_VER + 1];
8357 	dev_info->bqueuedepth = desc_buf[DEVICE_DESC_PARAM_Q_DPTH];
8358 
8359 	model_index = desc_buf[DEVICE_DESC_PARAM_PRDCT_NAME];
8360 
8361 	err = ufshcd_read_string_desc(hba, model_index,
8362 				      &dev_info->model, SD_ASCII_STD);
8363 	if (err < 0) {
8364 		dev_err(hba->dev, "%s: Failed reading Product Name. err = %d\n",
8365 			__func__, err);
8366 		goto out;
8367 	}
8368 
8369 	hba->luns_avail = desc_buf[DEVICE_DESC_PARAM_NUM_LU] +
8370 		desc_buf[DEVICE_DESC_PARAM_NUM_WLU];
8371 
8372 	ufs_fixup_device_setup(hba);
8373 
8374 	ufshcd_wb_probe(hba, desc_buf);
8375 
8376 	ufshcd_temp_notif_probe(hba, desc_buf);
8377 
8378 	ufs_init_rtc(hba, desc_buf);
8379 
8380 	if (hba->ext_iid_sup)
8381 		ufshcd_ext_iid_probe(hba, desc_buf);
8382 
8383 	/*
8384 	 * ufshcd_read_string_desc returns size of the string
8385 	 * reset the error value
8386 	 */
8387 	err = 0;
8388 
8389 out:
8390 	kfree(desc_buf);
8391 	return err;
8392 }
8393 
8394 static void ufs_put_device_desc(struct ufs_hba *hba)
8395 {
8396 	struct ufs_dev_info *dev_info = &hba->dev_info;
8397 
8398 	kfree(dev_info->model);
8399 	dev_info->model = NULL;
8400 }
8401 
8402 /**
8403  * ufshcd_tune_pa_tactivate - Tunes PA_TActivate of local UniPro
8404  * @hba: per-adapter instance
8405  *
8406  * PA_TActivate parameter can be tuned manually if UniPro version is less than
8407  * 1.61. PA_TActivate needs to be greater than or equal to peerM-PHY's
8408  * RX_MIN_ACTIVATETIME_CAPABILITY attribute. This optimal value can help reduce
8409  * the hibern8 exit latency.
8410  *
8411  * Return: zero on success, non-zero error value on failure.
8412  */
8413 static int ufshcd_tune_pa_tactivate(struct ufs_hba *hba)
8414 {
8415 	int ret = 0;
8416 	u32 peer_rx_min_activatetime = 0, tuned_pa_tactivate;
8417 
8418 	ret = ufshcd_dme_peer_get(hba,
8419 				  UIC_ARG_MIB_SEL(
8420 					RX_MIN_ACTIVATETIME_CAPABILITY,
8421 					UIC_ARG_MPHY_RX_GEN_SEL_INDEX(0)),
8422 				  &peer_rx_min_activatetime);
8423 	if (ret)
8424 		goto out;
8425 
8426 	/* make sure proper unit conversion is applied */
8427 	tuned_pa_tactivate =
8428 		((peer_rx_min_activatetime * RX_MIN_ACTIVATETIME_UNIT_US)
8429 		 / PA_TACTIVATE_TIME_UNIT_US);
8430 	ret = ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TACTIVATE),
8431 			     tuned_pa_tactivate);
8432 
8433 out:
8434 	return ret;
8435 }
8436 
8437 /**
8438  * ufshcd_tune_pa_hibern8time - Tunes PA_Hibern8Time of local UniPro
8439  * @hba: per-adapter instance
8440  *
8441  * PA_Hibern8Time parameter can be tuned manually if UniPro version is less than
8442  * 1.61. PA_Hibern8Time needs to be maximum of local M-PHY's
8443  * TX_HIBERN8TIME_CAPABILITY & peer M-PHY's RX_HIBERN8TIME_CAPABILITY.
8444  * This optimal value can help reduce the hibern8 exit latency.
8445  *
8446  * Return: zero on success, non-zero error value on failure.
8447  */
8448 static int ufshcd_tune_pa_hibern8time(struct ufs_hba *hba)
8449 {
8450 	int ret = 0;
8451 	u32 local_tx_hibern8_time_cap = 0, peer_rx_hibern8_time_cap = 0;
8452 	u32 max_hibern8_time, tuned_pa_hibern8time;
8453 
8454 	ret = ufshcd_dme_get(hba,
8455 			     UIC_ARG_MIB_SEL(TX_HIBERN8TIME_CAPABILITY,
8456 					UIC_ARG_MPHY_TX_GEN_SEL_INDEX(0)),
8457 				  &local_tx_hibern8_time_cap);
8458 	if (ret)
8459 		goto out;
8460 
8461 	ret = ufshcd_dme_peer_get(hba,
8462 				  UIC_ARG_MIB_SEL(RX_HIBERN8TIME_CAPABILITY,
8463 					UIC_ARG_MPHY_RX_GEN_SEL_INDEX(0)),
8464 				  &peer_rx_hibern8_time_cap);
8465 	if (ret)
8466 		goto out;
8467 
8468 	max_hibern8_time = max(local_tx_hibern8_time_cap,
8469 			       peer_rx_hibern8_time_cap);
8470 	/* make sure proper unit conversion is applied */
8471 	tuned_pa_hibern8time = ((max_hibern8_time * HIBERN8TIME_UNIT_US)
8472 				/ PA_HIBERN8_TIME_UNIT_US);
8473 	ret = ufshcd_dme_set(hba, UIC_ARG_MIB(PA_HIBERN8TIME),
8474 			     tuned_pa_hibern8time);
8475 out:
8476 	return ret;
8477 }
8478 
8479 /**
8480  * ufshcd_quirk_tune_host_pa_tactivate - Ensures that host PA_TACTIVATE is
8481  * less than device PA_TACTIVATE time.
8482  * @hba: per-adapter instance
8483  *
8484  * Some UFS devices require host PA_TACTIVATE to be lower than device
8485  * PA_TACTIVATE, we need to enable UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE quirk
8486  * for such devices.
8487  *
8488  * Return: zero on success, non-zero error value on failure.
8489  */
8490 static int ufshcd_quirk_tune_host_pa_tactivate(struct ufs_hba *hba)
8491 {
8492 	int ret = 0;
8493 	u32 granularity, peer_granularity;
8494 	u32 pa_tactivate, peer_pa_tactivate;
8495 	u32 pa_tactivate_us, peer_pa_tactivate_us;
8496 	static const u8 gran_to_us_table[] = {1, 4, 8, 16, 32, 100};
8497 
8498 	ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_GRANULARITY),
8499 				  &granularity);
8500 	if (ret)
8501 		goto out;
8502 
8503 	ret = ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_GRANULARITY),
8504 				  &peer_granularity);
8505 	if (ret)
8506 		goto out;
8507 
8508 	if ((granularity < PA_GRANULARITY_MIN_VAL) ||
8509 	    (granularity > PA_GRANULARITY_MAX_VAL)) {
8510 		dev_err(hba->dev, "%s: invalid host PA_GRANULARITY %d",
8511 			__func__, granularity);
8512 		return -EINVAL;
8513 	}
8514 
8515 	if ((peer_granularity < PA_GRANULARITY_MIN_VAL) ||
8516 	    (peer_granularity > PA_GRANULARITY_MAX_VAL)) {
8517 		dev_err(hba->dev, "%s: invalid device PA_GRANULARITY %d",
8518 			__func__, peer_granularity);
8519 		return -EINVAL;
8520 	}
8521 
8522 	ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_TACTIVATE), &pa_tactivate);
8523 	if (ret)
8524 		goto out;
8525 
8526 	ret = ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_TACTIVATE),
8527 				  &peer_pa_tactivate);
8528 	if (ret)
8529 		goto out;
8530 
8531 	pa_tactivate_us = pa_tactivate * gran_to_us_table[granularity - 1];
8532 	peer_pa_tactivate_us = peer_pa_tactivate *
8533 			     gran_to_us_table[peer_granularity - 1];
8534 
8535 	if (pa_tactivate_us >= peer_pa_tactivate_us) {
8536 		u32 new_peer_pa_tactivate;
8537 
8538 		new_peer_pa_tactivate = pa_tactivate_us /
8539 				      gran_to_us_table[peer_granularity - 1];
8540 		new_peer_pa_tactivate++;
8541 		ret = ufshcd_dme_peer_set(hba, UIC_ARG_MIB(PA_TACTIVATE),
8542 					  new_peer_pa_tactivate);
8543 	}
8544 
8545 out:
8546 	return ret;
8547 }
8548 
8549 static void ufshcd_tune_unipro_params(struct ufs_hba *hba)
8550 {
8551 	if (ufshcd_is_unipro_pa_params_tuning_req(hba)) {
8552 		ufshcd_tune_pa_tactivate(hba);
8553 		ufshcd_tune_pa_hibern8time(hba);
8554 	}
8555 
8556 	ufshcd_vops_apply_dev_quirks(hba);
8557 
8558 	if (hba->dev_quirks & UFS_DEVICE_QUIRK_PA_TACTIVATE)
8559 		/* set 1ms timeout for PA_TACTIVATE */
8560 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TACTIVATE), 10);
8561 
8562 	if (hba->dev_quirks & UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE)
8563 		ufshcd_quirk_tune_host_pa_tactivate(hba);
8564 }
8565 
8566 static void ufshcd_clear_dbg_ufs_stats(struct ufs_hba *hba)
8567 {
8568 	hba->ufs_stats.hibern8_exit_cnt = 0;
8569 	hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
8570 	hba->req_abort_count = 0;
8571 }
8572 
8573 static int ufshcd_device_geo_params_init(struct ufs_hba *hba)
8574 {
8575 	int err;
8576 	u8 *desc_buf;
8577 
8578 	desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
8579 	if (!desc_buf) {
8580 		err = -ENOMEM;
8581 		goto out;
8582 	}
8583 
8584 	err = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_GEOMETRY, 0, 0,
8585 				     desc_buf, QUERY_DESC_MAX_SIZE);
8586 	if (err) {
8587 		dev_err(hba->dev, "%s: Failed reading Geometry Desc. err = %d\n",
8588 				__func__, err);
8589 		goto out;
8590 	}
8591 
8592 	if (desc_buf[GEOMETRY_DESC_PARAM_MAX_NUM_LUN] == 1)
8593 		hba->dev_info.max_lu_supported = 32;
8594 	else if (desc_buf[GEOMETRY_DESC_PARAM_MAX_NUM_LUN] == 0)
8595 		hba->dev_info.max_lu_supported = 8;
8596 
8597 out:
8598 	kfree(desc_buf);
8599 	return err;
8600 }
8601 
8602 struct ufs_ref_clk {
8603 	unsigned long freq_hz;
8604 	enum ufs_ref_clk_freq val;
8605 };
8606 
8607 static const struct ufs_ref_clk ufs_ref_clk_freqs[] = {
8608 	{19200000, REF_CLK_FREQ_19_2_MHZ},
8609 	{26000000, REF_CLK_FREQ_26_MHZ},
8610 	{38400000, REF_CLK_FREQ_38_4_MHZ},
8611 	{52000000, REF_CLK_FREQ_52_MHZ},
8612 	{0, REF_CLK_FREQ_INVAL},
8613 };
8614 
8615 static enum ufs_ref_clk_freq
8616 ufs_get_bref_clk_from_hz(unsigned long freq)
8617 {
8618 	int i;
8619 
8620 	for (i = 0; ufs_ref_clk_freqs[i].freq_hz; i++)
8621 		if (ufs_ref_clk_freqs[i].freq_hz == freq)
8622 			return ufs_ref_clk_freqs[i].val;
8623 
8624 	return REF_CLK_FREQ_INVAL;
8625 }
8626 
8627 void ufshcd_parse_dev_ref_clk_freq(struct ufs_hba *hba, struct clk *refclk)
8628 {
8629 	unsigned long freq;
8630 
8631 	freq = clk_get_rate(refclk);
8632 
8633 	hba->dev_ref_clk_freq =
8634 		ufs_get_bref_clk_from_hz(freq);
8635 
8636 	if (hba->dev_ref_clk_freq == REF_CLK_FREQ_INVAL)
8637 		dev_err(hba->dev,
8638 		"invalid ref_clk setting = %ld\n", freq);
8639 }
8640 
8641 static int ufshcd_set_dev_ref_clk(struct ufs_hba *hba)
8642 {
8643 	int err;
8644 	u32 ref_clk;
8645 	u32 freq = hba->dev_ref_clk_freq;
8646 
8647 	err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
8648 			QUERY_ATTR_IDN_REF_CLK_FREQ, 0, 0, &ref_clk);
8649 
8650 	if (err) {
8651 		dev_err(hba->dev, "failed reading bRefClkFreq. err = %d\n",
8652 			err);
8653 		goto out;
8654 	}
8655 
8656 	if (ref_clk == freq)
8657 		goto out; /* nothing to update */
8658 
8659 	err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
8660 			QUERY_ATTR_IDN_REF_CLK_FREQ, 0, 0, &freq);
8661 
8662 	if (err) {
8663 		dev_err(hba->dev, "bRefClkFreq setting to %lu Hz failed\n",
8664 			ufs_ref_clk_freqs[freq].freq_hz);
8665 		goto out;
8666 	}
8667 
8668 	dev_dbg(hba->dev, "bRefClkFreq setting to %lu Hz succeeded\n",
8669 			ufs_ref_clk_freqs[freq].freq_hz);
8670 
8671 out:
8672 	return err;
8673 }
8674 
8675 static int ufshcd_device_params_init(struct ufs_hba *hba)
8676 {
8677 	bool flag;
8678 	int ret;
8679 
8680 	/* Init UFS geometry descriptor related parameters */
8681 	ret = ufshcd_device_geo_params_init(hba);
8682 	if (ret)
8683 		goto out;
8684 
8685 	/* Check and apply UFS device quirks */
8686 	ret = ufs_get_device_desc(hba);
8687 	if (ret) {
8688 		dev_err(hba->dev, "%s: Failed getting device info. err = %d\n",
8689 			__func__, ret);
8690 		goto out;
8691 	}
8692 
8693 	ufshcd_get_ref_clk_gating_wait(hba);
8694 
8695 	if (!ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_READ_FLAG,
8696 			QUERY_FLAG_IDN_PWR_ON_WPE, 0, &flag))
8697 		hba->dev_info.f_power_on_wp_en = flag;
8698 
8699 	/* Probe maximum power mode co-supported by both UFS host and device */
8700 	if (ufshcd_get_max_pwr_mode(hba))
8701 		dev_err(hba->dev,
8702 			"%s: Failed getting max supported power mode\n",
8703 			__func__);
8704 out:
8705 	return ret;
8706 }
8707 
8708 static void ufshcd_set_timestamp_attr(struct ufs_hba *hba)
8709 {
8710 	int err;
8711 	struct ufs_query_req *request = NULL;
8712 	struct ufs_query_res *response = NULL;
8713 	struct ufs_dev_info *dev_info = &hba->dev_info;
8714 	struct utp_upiu_query_v4_0 *upiu_data;
8715 
8716 	if (dev_info->wspecversion < 0x400)
8717 		return;
8718 
8719 	ufshcd_hold(hba);
8720 
8721 	mutex_lock(&hba->dev_cmd.lock);
8722 
8723 	ufshcd_init_query(hba, &request, &response,
8724 			  UPIU_QUERY_OPCODE_WRITE_ATTR,
8725 			  QUERY_ATTR_IDN_TIMESTAMP, 0, 0);
8726 
8727 	request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
8728 
8729 	upiu_data = (struct utp_upiu_query_v4_0 *)&request->upiu_req;
8730 
8731 	put_unaligned_be64(ktime_get_real_ns(), &upiu_data->osf3);
8732 
8733 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT);
8734 
8735 	if (err)
8736 		dev_err(hba->dev, "%s: failed to set timestamp %d\n",
8737 			__func__, err);
8738 
8739 	mutex_unlock(&hba->dev_cmd.lock);
8740 	ufshcd_release(hba);
8741 }
8742 
8743 /**
8744  * ufshcd_add_lus - probe and add UFS logical units
8745  * @hba: per-adapter instance
8746  *
8747  * Return: 0 upon success; < 0 upon failure.
8748  */
8749 static int ufshcd_add_lus(struct ufs_hba *hba)
8750 {
8751 	int ret;
8752 
8753 	/* Add required well known logical units to scsi mid layer */
8754 	ret = ufshcd_scsi_add_wlus(hba);
8755 	if (ret)
8756 		goto out;
8757 
8758 	/* Initialize devfreq after UFS device is detected */
8759 	if (ufshcd_is_clkscaling_supported(hba)) {
8760 		memcpy(&hba->clk_scaling.saved_pwr_info,
8761 			&hba->pwr_info,
8762 			sizeof(struct ufs_pa_layer_attr));
8763 		hba->clk_scaling.is_allowed = true;
8764 
8765 		ret = ufshcd_devfreq_init(hba);
8766 		if (ret)
8767 			goto out;
8768 
8769 		hba->clk_scaling.is_enabled = true;
8770 		ufshcd_init_clk_scaling_sysfs(hba);
8771 	}
8772 
8773 	ufs_bsg_probe(hba);
8774 	scsi_scan_host(hba->host);
8775 
8776 out:
8777 	return ret;
8778 }
8779 
8780 /* SDB - Single Doorbell */
8781 static void ufshcd_release_sdb_queue(struct ufs_hba *hba, int nutrs)
8782 {
8783 	size_t ucdl_size, utrdl_size;
8784 
8785 	ucdl_size = ufshcd_get_ucd_size(hba) * nutrs;
8786 	dmam_free_coherent(hba->dev, ucdl_size, hba->ucdl_base_addr,
8787 			   hba->ucdl_dma_addr);
8788 
8789 	utrdl_size = sizeof(struct utp_transfer_req_desc) * nutrs;
8790 	dmam_free_coherent(hba->dev, utrdl_size, hba->utrdl_base_addr,
8791 			   hba->utrdl_dma_addr);
8792 
8793 	devm_kfree(hba->dev, hba->lrb);
8794 }
8795 
8796 static int ufshcd_alloc_mcq(struct ufs_hba *hba)
8797 {
8798 	int ret;
8799 	int old_nutrs = hba->nutrs;
8800 
8801 	ret = ufshcd_mcq_decide_queue_depth(hba);
8802 	if (ret < 0)
8803 		return ret;
8804 
8805 	hba->nutrs = ret;
8806 	ret = ufshcd_mcq_init(hba);
8807 	if (ret)
8808 		goto err;
8809 
8810 	/*
8811 	 * Previously allocated memory for nutrs may not be enough in MCQ mode.
8812 	 * Number of supported tags in MCQ mode may be larger than SDB mode.
8813 	 */
8814 	if (hba->nutrs != old_nutrs) {
8815 		ufshcd_release_sdb_queue(hba, old_nutrs);
8816 		ret = ufshcd_memory_alloc(hba);
8817 		if (ret)
8818 			goto err;
8819 		ufshcd_host_memory_configure(hba);
8820 	}
8821 
8822 	ret = ufshcd_mcq_memory_alloc(hba);
8823 	if (ret)
8824 		goto err;
8825 
8826 	return 0;
8827 err:
8828 	hba->nutrs = old_nutrs;
8829 	return ret;
8830 }
8831 
8832 static void ufshcd_config_mcq(struct ufs_hba *hba)
8833 {
8834 	int ret;
8835 	u32 intrs;
8836 
8837 	ret = ufshcd_mcq_vops_config_esi(hba);
8838 	dev_info(hba->dev, "ESI %sconfigured\n", ret ? "is not " : "");
8839 
8840 	intrs = UFSHCD_ENABLE_MCQ_INTRS;
8841 	if (hba->quirks & UFSHCD_QUIRK_MCQ_BROKEN_INTR)
8842 		intrs &= ~MCQ_CQ_EVENT_STATUS;
8843 	ufshcd_enable_intr(hba, intrs);
8844 	ufshcd_mcq_make_queues_operational(hba);
8845 	ufshcd_mcq_config_mac(hba, hba->nutrs);
8846 
8847 	hba->host->can_queue = hba->nutrs - UFSHCD_NUM_RESERVED;
8848 	hba->reserved_slot = hba->nutrs - UFSHCD_NUM_RESERVED;
8849 
8850 	ufshcd_mcq_enable(hba);
8851 	hba->mcq_enabled = true;
8852 
8853 	dev_info(hba->dev, "MCQ configured, nr_queues=%d, io_queues=%d, read_queue=%d, poll_queues=%d, queue_depth=%d\n",
8854 		 hba->nr_hw_queues, hba->nr_queues[HCTX_TYPE_DEFAULT],
8855 		 hba->nr_queues[HCTX_TYPE_READ], hba->nr_queues[HCTX_TYPE_POLL],
8856 		 hba->nutrs);
8857 }
8858 
8859 static int ufshcd_device_init(struct ufs_hba *hba, bool init_dev_params)
8860 {
8861 	int ret;
8862 	struct Scsi_Host *host = hba->host;
8863 
8864 	hba->ufshcd_state = UFSHCD_STATE_RESET;
8865 
8866 	ret = ufshcd_link_startup(hba);
8867 	if (ret)
8868 		return ret;
8869 
8870 	if (hba->quirks & UFSHCD_QUIRK_SKIP_PH_CONFIGURATION)
8871 		return ret;
8872 
8873 	/* Debug counters initialization */
8874 	ufshcd_clear_dbg_ufs_stats(hba);
8875 
8876 	/* UniPro link is active now */
8877 	ufshcd_set_link_active(hba);
8878 
8879 	/* Reconfigure MCQ upon reset */
8880 	if (is_mcq_enabled(hba) && !init_dev_params)
8881 		ufshcd_config_mcq(hba);
8882 
8883 	/* Verify device initialization by sending NOP OUT UPIU */
8884 	ret = ufshcd_verify_dev_init(hba);
8885 	if (ret)
8886 		return ret;
8887 
8888 	/* Initiate UFS initialization, and waiting until completion */
8889 	ret = ufshcd_complete_dev_init(hba);
8890 	if (ret)
8891 		return ret;
8892 
8893 	/*
8894 	 * Initialize UFS device parameters used by driver, these
8895 	 * parameters are associated with UFS descriptors.
8896 	 */
8897 	if (init_dev_params) {
8898 		ret = ufshcd_device_params_init(hba);
8899 		if (ret)
8900 			return ret;
8901 		if (is_mcq_supported(hba) && !hba->scsi_host_added) {
8902 			ret = ufshcd_alloc_mcq(hba);
8903 			if (!ret) {
8904 				ufshcd_config_mcq(hba);
8905 			} else {
8906 				/* Continue with SDB mode */
8907 				use_mcq_mode = false;
8908 				dev_err(hba->dev, "MCQ mode is disabled, err=%d\n",
8909 					 ret);
8910 			}
8911 			ret = scsi_add_host(host, hba->dev);
8912 			if (ret) {
8913 				dev_err(hba->dev, "scsi_add_host failed\n");
8914 				return ret;
8915 			}
8916 			hba->scsi_host_added = true;
8917 		} else if (is_mcq_supported(hba)) {
8918 			/* UFSHCD_QUIRK_REINIT_AFTER_MAX_GEAR_SWITCH is set */
8919 			ufshcd_config_mcq(hba);
8920 		}
8921 	}
8922 
8923 	ufshcd_tune_unipro_params(hba);
8924 
8925 	/* UFS device is also active now */
8926 	ufshcd_set_ufs_dev_active(hba);
8927 	ufshcd_force_reset_auto_bkops(hba);
8928 
8929 	ufshcd_set_timestamp_attr(hba);
8930 	schedule_delayed_work(&hba->ufs_rtc_update_work,
8931 			      msecs_to_jiffies(UFS_RTC_UPDATE_INTERVAL_MS));
8932 
8933 	/* Gear up to HS gear if supported */
8934 	if (hba->max_pwr_info.is_valid) {
8935 		/*
8936 		 * Set the right value to bRefClkFreq before attempting to
8937 		 * switch to HS gears.
8938 		 */
8939 		if (hba->dev_ref_clk_freq != REF_CLK_FREQ_INVAL)
8940 			ufshcd_set_dev_ref_clk(hba);
8941 		ret = ufshcd_config_pwr_mode(hba, &hba->max_pwr_info.info);
8942 		if (ret) {
8943 			dev_err(hba->dev, "%s: Failed setting power mode, err = %d\n",
8944 					__func__, ret);
8945 			return ret;
8946 		}
8947 	}
8948 
8949 	return 0;
8950 }
8951 
8952 /**
8953  * ufshcd_probe_hba - probe hba to detect device and initialize it
8954  * @hba: per-adapter instance
8955  * @init_dev_params: whether or not to call ufshcd_device_params_init().
8956  *
8957  * Execute link-startup and verify device initialization
8958  *
8959  * Return: 0 upon success; < 0 upon failure.
8960  */
8961 static int ufshcd_probe_hba(struct ufs_hba *hba, bool init_dev_params)
8962 {
8963 	ktime_t start = ktime_get();
8964 	unsigned long flags;
8965 	int ret;
8966 
8967 	ret = ufshcd_device_init(hba, init_dev_params);
8968 	if (ret)
8969 		goto out;
8970 
8971 	if (!hba->pm_op_in_progress &&
8972 	    (hba->quirks & UFSHCD_QUIRK_REINIT_AFTER_MAX_GEAR_SWITCH)) {
8973 		/* Reset the device and controller before doing reinit */
8974 		ufshcd_device_reset(hba);
8975 		ufshcd_hba_stop(hba);
8976 		ufshcd_vops_reinit_notify(hba);
8977 		ret = ufshcd_hba_enable(hba);
8978 		if (ret) {
8979 			dev_err(hba->dev, "Host controller enable failed\n");
8980 			ufshcd_print_evt_hist(hba);
8981 			ufshcd_print_host_state(hba);
8982 			goto out;
8983 		}
8984 
8985 		/* Reinit the device */
8986 		ret = ufshcd_device_init(hba, init_dev_params);
8987 		if (ret)
8988 			goto out;
8989 	}
8990 
8991 	ufshcd_print_pwr_info(hba);
8992 
8993 	/*
8994 	 * bActiveICCLevel is volatile for UFS device (as per latest v2.1 spec)
8995 	 * and for removable UFS card as well, hence always set the parameter.
8996 	 * Note: Error handler may issue the device reset hence resetting
8997 	 * bActiveICCLevel as well so it is always safe to set this here.
8998 	 */
8999 	ufshcd_set_active_icc_lvl(hba);
9000 
9001 	/* Enable UFS Write Booster if supported */
9002 	ufshcd_configure_wb(hba);
9003 
9004 	if (hba->ee_usr_mask)
9005 		ufshcd_write_ee_control(hba);
9006 	ufshcd_configure_auto_hibern8(hba);
9007 
9008 out:
9009 	spin_lock_irqsave(hba->host->host_lock, flags);
9010 	if (ret)
9011 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
9012 	else if (hba->ufshcd_state == UFSHCD_STATE_RESET)
9013 		hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
9014 	spin_unlock_irqrestore(hba->host->host_lock, flags);
9015 
9016 	trace_ufshcd_init(dev_name(hba->dev), ret,
9017 		ktime_to_us(ktime_sub(ktime_get(), start)),
9018 		hba->curr_dev_pwr_mode, hba->uic_link_state);
9019 	return ret;
9020 }
9021 
9022 /**
9023  * ufshcd_async_scan - asynchronous execution for probing hba
9024  * @data: data pointer to pass to this function
9025  * @cookie: cookie data
9026  */
9027 static void ufshcd_async_scan(void *data, async_cookie_t cookie)
9028 {
9029 	struct ufs_hba *hba = (struct ufs_hba *)data;
9030 	int ret;
9031 
9032 	down(&hba->host_sem);
9033 	/* Initialize hba, detect and initialize UFS device */
9034 	ret = ufshcd_probe_hba(hba, true);
9035 	up(&hba->host_sem);
9036 	if (ret)
9037 		goto out;
9038 
9039 	/* Probe and add UFS logical units  */
9040 	ret = ufshcd_add_lus(hba);
9041 
9042 out:
9043 	pm_runtime_put_sync(hba->dev);
9044 
9045 	if (ret)
9046 		dev_err(hba->dev, "%s failed: %d\n", __func__, ret);
9047 }
9048 
9049 static enum scsi_timeout_action ufshcd_eh_timed_out(struct scsi_cmnd *scmd)
9050 {
9051 	struct ufs_hba *hba = shost_priv(scmd->device->host);
9052 
9053 	if (!hba->system_suspending) {
9054 		/* Activate the error handler in the SCSI core. */
9055 		return SCSI_EH_NOT_HANDLED;
9056 	}
9057 
9058 	/*
9059 	 * If we get here we know that no TMFs are outstanding and also that
9060 	 * the only pending command is a START STOP UNIT command. Handle the
9061 	 * timeout of that command directly to prevent a deadlock between
9062 	 * ufshcd_set_dev_pwr_mode() and ufshcd_err_handler().
9063 	 */
9064 	ufshcd_link_recovery(hba);
9065 	dev_info(hba->dev, "%s() finished; outstanding_tasks = %#lx.\n",
9066 		 __func__, hba->outstanding_tasks);
9067 
9068 	return hba->outstanding_reqs ? SCSI_EH_RESET_TIMER : SCSI_EH_DONE;
9069 }
9070 
9071 static const struct attribute_group *ufshcd_driver_groups[] = {
9072 	&ufs_sysfs_unit_descriptor_group,
9073 	&ufs_sysfs_lun_attributes_group,
9074 	NULL,
9075 };
9076 
9077 static struct ufs_hba_variant_params ufs_hba_vps = {
9078 	.hba_enable_delay_us		= 1000,
9079 	.wb_flush_threshold		= UFS_WB_BUF_REMAIN_PERCENT(40),
9080 	.devfreq_profile.polling_ms	= 100,
9081 	.devfreq_profile.target		= ufshcd_devfreq_target,
9082 	.devfreq_profile.get_dev_status	= ufshcd_devfreq_get_dev_status,
9083 	.ondemand_data.upthreshold	= 70,
9084 	.ondemand_data.downdifferential	= 5,
9085 };
9086 
9087 static const struct scsi_host_template ufshcd_driver_template = {
9088 	.module			= THIS_MODULE,
9089 	.name			= UFSHCD,
9090 	.proc_name		= UFSHCD,
9091 	.map_queues		= ufshcd_map_queues,
9092 	.queuecommand		= ufshcd_queuecommand,
9093 	.mq_poll		= ufshcd_poll,
9094 	.slave_alloc		= ufshcd_slave_alloc,
9095 	.slave_configure	= ufshcd_slave_configure,
9096 	.slave_destroy		= ufshcd_slave_destroy,
9097 	.change_queue_depth	= ufshcd_change_queue_depth,
9098 	.eh_abort_handler	= ufshcd_abort,
9099 	.eh_device_reset_handler = ufshcd_eh_device_reset_handler,
9100 	.eh_host_reset_handler   = ufshcd_eh_host_reset_handler,
9101 	.eh_timed_out		= ufshcd_eh_timed_out,
9102 	.this_id		= -1,
9103 	.sg_tablesize		= SG_ALL,
9104 	.cmd_per_lun		= UFSHCD_CMD_PER_LUN,
9105 	.can_queue		= UFSHCD_CAN_QUEUE,
9106 	.max_segment_size	= PRDT_DATA_BYTE_COUNT_MAX,
9107 	.max_sectors		= SZ_1M / SECTOR_SIZE,
9108 	.max_host_blocked	= 1,
9109 	.track_queue_depth	= 1,
9110 	.skip_settle_delay	= 1,
9111 	.sdev_groups		= ufshcd_driver_groups,
9112 };
9113 
9114 static int ufshcd_config_vreg_load(struct device *dev, struct ufs_vreg *vreg,
9115 				   int ua)
9116 {
9117 	int ret;
9118 
9119 	if (!vreg)
9120 		return 0;
9121 
9122 	/*
9123 	 * "set_load" operation shall be required on those regulators
9124 	 * which specifically configured current limitation. Otherwise
9125 	 * zero max_uA may cause unexpected behavior when regulator is
9126 	 * enabled or set as high power mode.
9127 	 */
9128 	if (!vreg->max_uA)
9129 		return 0;
9130 
9131 	ret = regulator_set_load(vreg->reg, ua);
9132 	if (ret < 0) {
9133 		dev_err(dev, "%s: %s set load (ua=%d) failed, err=%d\n",
9134 				__func__, vreg->name, ua, ret);
9135 	}
9136 
9137 	return ret;
9138 }
9139 
9140 static inline int ufshcd_config_vreg_lpm(struct ufs_hba *hba,
9141 					 struct ufs_vreg *vreg)
9142 {
9143 	return ufshcd_config_vreg_load(hba->dev, vreg, UFS_VREG_LPM_LOAD_UA);
9144 }
9145 
9146 static inline int ufshcd_config_vreg_hpm(struct ufs_hba *hba,
9147 					 struct ufs_vreg *vreg)
9148 {
9149 	if (!vreg)
9150 		return 0;
9151 
9152 	return ufshcd_config_vreg_load(hba->dev, vreg, vreg->max_uA);
9153 }
9154 
9155 static int ufshcd_config_vreg(struct device *dev,
9156 		struct ufs_vreg *vreg, bool on)
9157 {
9158 	if (regulator_count_voltages(vreg->reg) <= 0)
9159 		return 0;
9160 
9161 	return ufshcd_config_vreg_load(dev, vreg, on ? vreg->max_uA : 0);
9162 }
9163 
9164 static int ufshcd_enable_vreg(struct device *dev, struct ufs_vreg *vreg)
9165 {
9166 	int ret = 0;
9167 
9168 	if (!vreg || vreg->enabled)
9169 		goto out;
9170 
9171 	ret = ufshcd_config_vreg(dev, vreg, true);
9172 	if (!ret)
9173 		ret = regulator_enable(vreg->reg);
9174 
9175 	if (!ret)
9176 		vreg->enabled = true;
9177 	else
9178 		dev_err(dev, "%s: %s enable failed, err=%d\n",
9179 				__func__, vreg->name, ret);
9180 out:
9181 	return ret;
9182 }
9183 
9184 static int ufshcd_disable_vreg(struct device *dev, struct ufs_vreg *vreg)
9185 {
9186 	int ret = 0;
9187 
9188 	if (!vreg || !vreg->enabled || vreg->always_on)
9189 		goto out;
9190 
9191 	ret = regulator_disable(vreg->reg);
9192 
9193 	if (!ret) {
9194 		/* ignore errors on applying disable config */
9195 		ufshcd_config_vreg(dev, vreg, false);
9196 		vreg->enabled = false;
9197 	} else {
9198 		dev_err(dev, "%s: %s disable failed, err=%d\n",
9199 				__func__, vreg->name, ret);
9200 	}
9201 out:
9202 	return ret;
9203 }
9204 
9205 static int ufshcd_setup_vreg(struct ufs_hba *hba, bool on)
9206 {
9207 	int ret = 0;
9208 	struct device *dev = hba->dev;
9209 	struct ufs_vreg_info *info = &hba->vreg_info;
9210 
9211 	ret = ufshcd_toggle_vreg(dev, info->vcc, on);
9212 	if (ret)
9213 		goto out;
9214 
9215 	ret = ufshcd_toggle_vreg(dev, info->vccq, on);
9216 	if (ret)
9217 		goto out;
9218 
9219 	ret = ufshcd_toggle_vreg(dev, info->vccq2, on);
9220 
9221 out:
9222 	if (ret) {
9223 		ufshcd_toggle_vreg(dev, info->vccq2, false);
9224 		ufshcd_toggle_vreg(dev, info->vccq, false);
9225 		ufshcd_toggle_vreg(dev, info->vcc, false);
9226 	}
9227 	return ret;
9228 }
9229 
9230 static int ufshcd_setup_hba_vreg(struct ufs_hba *hba, bool on)
9231 {
9232 	struct ufs_vreg_info *info = &hba->vreg_info;
9233 
9234 	return ufshcd_toggle_vreg(hba->dev, info->vdd_hba, on);
9235 }
9236 
9237 int ufshcd_get_vreg(struct device *dev, struct ufs_vreg *vreg)
9238 {
9239 	int ret = 0;
9240 
9241 	if (!vreg)
9242 		goto out;
9243 
9244 	vreg->reg = devm_regulator_get(dev, vreg->name);
9245 	if (IS_ERR(vreg->reg)) {
9246 		ret = PTR_ERR(vreg->reg);
9247 		dev_err(dev, "%s: %s get failed, err=%d\n",
9248 				__func__, vreg->name, ret);
9249 	}
9250 out:
9251 	return ret;
9252 }
9253 EXPORT_SYMBOL_GPL(ufshcd_get_vreg);
9254 
9255 static int ufshcd_init_vreg(struct ufs_hba *hba)
9256 {
9257 	int ret = 0;
9258 	struct device *dev = hba->dev;
9259 	struct ufs_vreg_info *info = &hba->vreg_info;
9260 
9261 	ret = ufshcd_get_vreg(dev, info->vcc);
9262 	if (ret)
9263 		goto out;
9264 
9265 	ret = ufshcd_get_vreg(dev, info->vccq);
9266 	if (!ret)
9267 		ret = ufshcd_get_vreg(dev, info->vccq2);
9268 out:
9269 	return ret;
9270 }
9271 
9272 static int ufshcd_init_hba_vreg(struct ufs_hba *hba)
9273 {
9274 	struct ufs_vreg_info *info = &hba->vreg_info;
9275 
9276 	return ufshcd_get_vreg(hba->dev, info->vdd_hba);
9277 }
9278 
9279 static int ufshcd_setup_clocks(struct ufs_hba *hba, bool on)
9280 {
9281 	int ret = 0;
9282 	struct ufs_clk_info *clki;
9283 	struct list_head *head = &hba->clk_list_head;
9284 	unsigned long flags;
9285 	ktime_t start = ktime_get();
9286 	bool clk_state_changed = false;
9287 
9288 	if (list_empty(head))
9289 		goto out;
9290 
9291 	ret = ufshcd_vops_setup_clocks(hba, on, PRE_CHANGE);
9292 	if (ret)
9293 		return ret;
9294 
9295 	list_for_each_entry(clki, head, list) {
9296 		if (!IS_ERR_OR_NULL(clki->clk)) {
9297 			/*
9298 			 * Don't disable clocks which are needed
9299 			 * to keep the link active.
9300 			 */
9301 			if (ufshcd_is_link_active(hba) &&
9302 			    clki->keep_link_active)
9303 				continue;
9304 
9305 			clk_state_changed = on ^ clki->enabled;
9306 			if (on && !clki->enabled) {
9307 				ret = clk_prepare_enable(clki->clk);
9308 				if (ret) {
9309 					dev_err(hba->dev, "%s: %s prepare enable failed, %d\n",
9310 						__func__, clki->name, ret);
9311 					goto out;
9312 				}
9313 			} else if (!on && clki->enabled) {
9314 				clk_disable_unprepare(clki->clk);
9315 			}
9316 			clki->enabled = on;
9317 			dev_dbg(hba->dev, "%s: clk: %s %sabled\n", __func__,
9318 					clki->name, on ? "en" : "dis");
9319 		}
9320 	}
9321 
9322 	ret = ufshcd_vops_setup_clocks(hba, on, POST_CHANGE);
9323 	if (ret)
9324 		return ret;
9325 
9326 	if (!ufshcd_is_clkscaling_supported(hba))
9327 		ufshcd_pm_qos_update(hba, on);
9328 out:
9329 	if (ret) {
9330 		list_for_each_entry(clki, head, list) {
9331 			if (!IS_ERR_OR_NULL(clki->clk) && clki->enabled)
9332 				clk_disable_unprepare(clki->clk);
9333 		}
9334 	} else if (!ret && on) {
9335 		spin_lock_irqsave(hba->host->host_lock, flags);
9336 		hba->clk_gating.state = CLKS_ON;
9337 		trace_ufshcd_clk_gating(dev_name(hba->dev),
9338 					hba->clk_gating.state);
9339 		spin_unlock_irqrestore(hba->host->host_lock, flags);
9340 	}
9341 
9342 	if (clk_state_changed)
9343 		trace_ufshcd_profile_clk_gating(dev_name(hba->dev),
9344 			(on ? "on" : "off"),
9345 			ktime_to_us(ktime_sub(ktime_get(), start)), ret);
9346 	return ret;
9347 }
9348 
9349 static enum ufs_ref_clk_freq ufshcd_parse_ref_clk_property(struct ufs_hba *hba)
9350 {
9351 	u32 freq;
9352 	int ret = device_property_read_u32(hba->dev, "ref-clk-freq", &freq);
9353 
9354 	if (ret) {
9355 		dev_dbg(hba->dev, "Cannot query 'ref-clk-freq' property = %d", ret);
9356 		return REF_CLK_FREQ_INVAL;
9357 	}
9358 
9359 	return ufs_get_bref_clk_from_hz(freq);
9360 }
9361 
9362 static int ufshcd_init_clocks(struct ufs_hba *hba)
9363 {
9364 	int ret = 0;
9365 	struct ufs_clk_info *clki;
9366 	struct device *dev = hba->dev;
9367 	struct list_head *head = &hba->clk_list_head;
9368 
9369 	if (list_empty(head))
9370 		goto out;
9371 
9372 	list_for_each_entry(clki, head, list) {
9373 		if (!clki->name)
9374 			continue;
9375 
9376 		clki->clk = devm_clk_get(dev, clki->name);
9377 		if (IS_ERR(clki->clk)) {
9378 			ret = PTR_ERR(clki->clk);
9379 			dev_err(dev, "%s: %s clk get failed, %d\n",
9380 					__func__, clki->name, ret);
9381 			goto out;
9382 		}
9383 
9384 		/*
9385 		 * Parse device ref clk freq as per device tree "ref_clk".
9386 		 * Default dev_ref_clk_freq is set to REF_CLK_FREQ_INVAL
9387 		 * in ufshcd_alloc_host().
9388 		 */
9389 		if (!strcmp(clki->name, "ref_clk"))
9390 			ufshcd_parse_dev_ref_clk_freq(hba, clki->clk);
9391 
9392 		if (clki->max_freq) {
9393 			ret = clk_set_rate(clki->clk, clki->max_freq);
9394 			if (ret) {
9395 				dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
9396 					__func__, clki->name,
9397 					clki->max_freq, ret);
9398 				goto out;
9399 			}
9400 			clki->curr_freq = clki->max_freq;
9401 		}
9402 		dev_dbg(dev, "%s: clk: %s, rate: %lu\n", __func__,
9403 				clki->name, clk_get_rate(clki->clk));
9404 	}
9405 
9406 	/* Set Max. frequency for all clocks */
9407 	if (hba->use_pm_opp) {
9408 		ret = ufshcd_opp_set_rate(hba, ULONG_MAX);
9409 		if (ret) {
9410 			dev_err(hba->dev, "%s: failed to set OPP: %d", __func__,
9411 				ret);
9412 			goto out;
9413 		}
9414 	}
9415 
9416 out:
9417 	return ret;
9418 }
9419 
9420 static int ufshcd_variant_hba_init(struct ufs_hba *hba)
9421 {
9422 	int err = 0;
9423 
9424 	if (!hba->vops)
9425 		goto out;
9426 
9427 	err = ufshcd_vops_init(hba);
9428 	if (err)
9429 		dev_err_probe(hba->dev, err,
9430 			      "%s: variant %s init failed with err %d\n",
9431 			      __func__, ufshcd_get_var_name(hba), err);
9432 out:
9433 	return err;
9434 }
9435 
9436 static void ufshcd_variant_hba_exit(struct ufs_hba *hba)
9437 {
9438 	if (!hba->vops)
9439 		return;
9440 
9441 	ufshcd_vops_exit(hba);
9442 }
9443 
9444 static int ufshcd_hba_init(struct ufs_hba *hba)
9445 {
9446 	int err;
9447 
9448 	/*
9449 	 * Handle host controller power separately from the UFS device power
9450 	 * rails as it will help controlling the UFS host controller power
9451 	 * collapse easily which is different than UFS device power collapse.
9452 	 * Also, enable the host controller power before we go ahead with rest
9453 	 * of the initialization here.
9454 	 */
9455 	err = ufshcd_init_hba_vreg(hba);
9456 	if (err)
9457 		goto out;
9458 
9459 	err = ufshcd_setup_hba_vreg(hba, true);
9460 	if (err)
9461 		goto out;
9462 
9463 	err = ufshcd_init_clocks(hba);
9464 	if (err)
9465 		goto out_disable_hba_vreg;
9466 
9467 	if (hba->dev_ref_clk_freq == REF_CLK_FREQ_INVAL)
9468 		hba->dev_ref_clk_freq = ufshcd_parse_ref_clk_property(hba);
9469 
9470 	err = ufshcd_setup_clocks(hba, true);
9471 	if (err)
9472 		goto out_disable_hba_vreg;
9473 
9474 	err = ufshcd_init_vreg(hba);
9475 	if (err)
9476 		goto out_disable_clks;
9477 
9478 	err = ufshcd_setup_vreg(hba, true);
9479 	if (err)
9480 		goto out_disable_clks;
9481 
9482 	err = ufshcd_variant_hba_init(hba);
9483 	if (err)
9484 		goto out_disable_vreg;
9485 
9486 	ufs_debugfs_hba_init(hba);
9487 	ufs_fault_inject_hba_init(hba);
9488 
9489 	hba->is_powered = true;
9490 	goto out;
9491 
9492 out_disable_vreg:
9493 	ufshcd_setup_vreg(hba, false);
9494 out_disable_clks:
9495 	ufshcd_setup_clocks(hba, false);
9496 out_disable_hba_vreg:
9497 	ufshcd_setup_hba_vreg(hba, false);
9498 out:
9499 	return err;
9500 }
9501 
9502 static void ufshcd_hba_exit(struct ufs_hba *hba)
9503 {
9504 	if (hba->is_powered) {
9505 		ufshcd_pm_qos_exit(hba);
9506 		ufshcd_exit_clk_scaling(hba);
9507 		ufshcd_exit_clk_gating(hba);
9508 		if (hba->eh_wq)
9509 			destroy_workqueue(hba->eh_wq);
9510 		ufs_debugfs_hba_exit(hba);
9511 		ufshcd_variant_hba_exit(hba);
9512 		ufshcd_setup_vreg(hba, false);
9513 		ufshcd_setup_clocks(hba, false);
9514 		ufshcd_setup_hba_vreg(hba, false);
9515 		hba->is_powered = false;
9516 		ufs_put_device_desc(hba);
9517 	}
9518 }
9519 
9520 static int ufshcd_execute_start_stop(struct scsi_device *sdev,
9521 				     enum ufs_dev_pwr_mode pwr_mode,
9522 				     struct scsi_sense_hdr *sshdr)
9523 {
9524 	const unsigned char cdb[6] = { START_STOP, 0, 0, 0, pwr_mode << 4, 0 };
9525 	struct scsi_failure failure_defs[] = {
9526 		{
9527 			.allowed = 2,
9528 			.result = SCMD_FAILURE_RESULT_ANY,
9529 		},
9530 	};
9531 	struct scsi_failures failures = {
9532 		.failure_definitions = failure_defs,
9533 	};
9534 	const struct scsi_exec_args args = {
9535 		.failures = &failures,
9536 		.sshdr = sshdr,
9537 		.req_flags = BLK_MQ_REQ_PM,
9538 		.scmd_flags = SCMD_FAIL_IF_RECOVERING,
9539 	};
9540 
9541 	return scsi_execute_cmd(sdev, cdb, REQ_OP_DRV_IN, /*buffer=*/NULL,
9542 			/*bufflen=*/0, /*timeout=*/10 * HZ, /*retries=*/0,
9543 			&args);
9544 }
9545 
9546 /**
9547  * ufshcd_set_dev_pwr_mode - sends START STOP UNIT command to set device
9548  *			     power mode
9549  * @hba: per adapter instance
9550  * @pwr_mode: device power mode to set
9551  *
9552  * Return: 0 if requested power mode is set successfully;
9553  *         < 0 if failed to set the requested power mode.
9554  */
9555 static int ufshcd_set_dev_pwr_mode(struct ufs_hba *hba,
9556 				     enum ufs_dev_pwr_mode pwr_mode)
9557 {
9558 	struct scsi_sense_hdr sshdr;
9559 	struct scsi_device *sdp;
9560 	unsigned long flags;
9561 	int ret;
9562 
9563 	spin_lock_irqsave(hba->host->host_lock, flags);
9564 	sdp = hba->ufs_device_wlun;
9565 	if (sdp && scsi_device_online(sdp))
9566 		ret = scsi_device_get(sdp);
9567 	else
9568 		ret = -ENODEV;
9569 	spin_unlock_irqrestore(hba->host->host_lock, flags);
9570 
9571 	if (ret)
9572 		return ret;
9573 
9574 	/*
9575 	 * If scsi commands fail, the scsi mid-layer schedules scsi error-
9576 	 * handling, which would wait for host to be resumed. Since we know
9577 	 * we are functional while we are here, skip host resume in error
9578 	 * handling context.
9579 	 */
9580 	hba->host->eh_noresume = 1;
9581 
9582 	/*
9583 	 * Current function would be generally called from the power management
9584 	 * callbacks hence set the RQF_PM flag so that it doesn't resume the
9585 	 * already suspended childs.
9586 	 */
9587 	ret = ufshcd_execute_start_stop(sdp, pwr_mode, &sshdr);
9588 	if (ret) {
9589 		sdev_printk(KERN_WARNING, sdp,
9590 			    "START_STOP failed for power mode: %d, result %x\n",
9591 			    pwr_mode, ret);
9592 		if (ret > 0) {
9593 			if (scsi_sense_valid(&sshdr))
9594 				scsi_print_sense_hdr(sdp, NULL, &sshdr);
9595 			ret = -EIO;
9596 		}
9597 	} else {
9598 		hba->curr_dev_pwr_mode = pwr_mode;
9599 	}
9600 
9601 	scsi_device_put(sdp);
9602 	hba->host->eh_noresume = 0;
9603 	return ret;
9604 }
9605 
9606 static int ufshcd_link_state_transition(struct ufs_hba *hba,
9607 					enum uic_link_state req_link_state,
9608 					bool check_for_bkops)
9609 {
9610 	int ret = 0;
9611 
9612 	if (req_link_state == hba->uic_link_state)
9613 		return 0;
9614 
9615 	if (req_link_state == UIC_LINK_HIBERN8_STATE) {
9616 		ret = ufshcd_uic_hibern8_enter(hba);
9617 		if (!ret) {
9618 			ufshcd_set_link_hibern8(hba);
9619 		} else {
9620 			dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
9621 					__func__, ret);
9622 			goto out;
9623 		}
9624 	}
9625 	/*
9626 	 * If autobkops is enabled, link can't be turned off because
9627 	 * turning off the link would also turn off the device, except in the
9628 	 * case of DeepSleep where the device is expected to remain powered.
9629 	 */
9630 	else if ((req_link_state == UIC_LINK_OFF_STATE) &&
9631 		 (!check_for_bkops || !hba->auto_bkops_enabled)) {
9632 		/*
9633 		 * Let's make sure that link is in low power mode, we are doing
9634 		 * this currently by putting the link in Hibern8. Otherway to
9635 		 * put the link in low power mode is to send the DME end point
9636 		 * to device and then send the DME reset command to local
9637 		 * unipro. But putting the link in hibern8 is much faster.
9638 		 *
9639 		 * Note also that putting the link in Hibern8 is a requirement
9640 		 * for entering DeepSleep.
9641 		 */
9642 		ret = ufshcd_uic_hibern8_enter(hba);
9643 		if (ret) {
9644 			dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
9645 					__func__, ret);
9646 			goto out;
9647 		}
9648 		/*
9649 		 * Change controller state to "reset state" which
9650 		 * should also put the link in off/reset state
9651 		 */
9652 		ufshcd_hba_stop(hba);
9653 		/*
9654 		 * TODO: Check if we need any delay to make sure that
9655 		 * controller is reset
9656 		 */
9657 		ufshcd_set_link_off(hba);
9658 	}
9659 
9660 out:
9661 	return ret;
9662 }
9663 
9664 static void ufshcd_vreg_set_lpm(struct ufs_hba *hba)
9665 {
9666 	bool vcc_off = false;
9667 
9668 	/*
9669 	 * It seems some UFS devices may keep drawing more than sleep current
9670 	 * (atleast for 500us) from UFS rails (especially from VCCQ rail).
9671 	 * To avoid this situation, add 2ms delay before putting these UFS
9672 	 * rails in LPM mode.
9673 	 */
9674 	if (!ufshcd_is_link_active(hba) &&
9675 	    hba->dev_quirks & UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM)
9676 		usleep_range(2000, 2100);
9677 
9678 	/*
9679 	 * If UFS device is either in UFS_Sleep turn off VCC rail to save some
9680 	 * power.
9681 	 *
9682 	 * If UFS device and link is in OFF state, all power supplies (VCC,
9683 	 * VCCQ, VCCQ2) can be turned off if power on write protect is not
9684 	 * required. If UFS link is inactive (Hibern8 or OFF state) and device
9685 	 * is in sleep state, put VCCQ & VCCQ2 rails in LPM mode.
9686 	 *
9687 	 * Ignore the error returned by ufshcd_toggle_vreg() as device is anyway
9688 	 * in low power state which would save some power.
9689 	 *
9690 	 * If Write Booster is enabled and the device needs to flush the WB
9691 	 * buffer OR if bkops status is urgent for WB, keep Vcc on.
9692 	 */
9693 	if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba) &&
9694 	    !hba->dev_info.is_lu_power_on_wp) {
9695 		ufshcd_setup_vreg(hba, false);
9696 		vcc_off = true;
9697 	} else if (!ufshcd_is_ufs_dev_active(hba)) {
9698 		ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, false);
9699 		vcc_off = true;
9700 		if (ufshcd_is_link_hibern8(hba) || ufshcd_is_link_off(hba)) {
9701 			ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq);
9702 			ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq2);
9703 		}
9704 	}
9705 
9706 	/*
9707 	 * Some UFS devices require delay after VCC power rail is turned-off.
9708 	 */
9709 	if (vcc_off && hba->vreg_info.vcc &&
9710 		hba->dev_quirks & UFS_DEVICE_QUIRK_DELAY_AFTER_LPM)
9711 		usleep_range(5000, 5100);
9712 }
9713 
9714 #ifdef CONFIG_PM
9715 static int ufshcd_vreg_set_hpm(struct ufs_hba *hba)
9716 {
9717 	int ret = 0;
9718 
9719 	if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba) &&
9720 	    !hba->dev_info.is_lu_power_on_wp) {
9721 		ret = ufshcd_setup_vreg(hba, true);
9722 	} else if (!ufshcd_is_ufs_dev_active(hba)) {
9723 		if (!ufshcd_is_link_active(hba)) {
9724 			ret = ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq);
9725 			if (ret)
9726 				goto vcc_disable;
9727 			ret = ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq2);
9728 			if (ret)
9729 				goto vccq_lpm;
9730 		}
9731 		ret = ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, true);
9732 	}
9733 	goto out;
9734 
9735 vccq_lpm:
9736 	ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq);
9737 vcc_disable:
9738 	ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, false);
9739 out:
9740 	return ret;
9741 }
9742 #endif /* CONFIG_PM */
9743 
9744 static void ufshcd_hba_vreg_set_lpm(struct ufs_hba *hba)
9745 {
9746 	if (ufshcd_is_link_off(hba) || ufshcd_can_aggressive_pc(hba))
9747 		ufshcd_setup_hba_vreg(hba, false);
9748 }
9749 
9750 static void ufshcd_hba_vreg_set_hpm(struct ufs_hba *hba)
9751 {
9752 	if (ufshcd_is_link_off(hba) || ufshcd_can_aggressive_pc(hba))
9753 		ufshcd_setup_hba_vreg(hba, true);
9754 }
9755 
9756 static int __ufshcd_wl_suspend(struct ufs_hba *hba, enum ufs_pm_op pm_op)
9757 {
9758 	int ret = 0;
9759 	bool check_for_bkops;
9760 	enum ufs_pm_level pm_lvl;
9761 	enum ufs_dev_pwr_mode req_dev_pwr_mode;
9762 	enum uic_link_state req_link_state;
9763 
9764 	hba->pm_op_in_progress = true;
9765 	if (pm_op != UFS_SHUTDOWN_PM) {
9766 		pm_lvl = pm_op == UFS_RUNTIME_PM ?
9767 			 hba->rpm_lvl : hba->spm_lvl;
9768 		req_dev_pwr_mode = ufs_get_pm_lvl_to_dev_pwr_mode(pm_lvl);
9769 		req_link_state = ufs_get_pm_lvl_to_link_pwr_state(pm_lvl);
9770 	} else {
9771 		req_dev_pwr_mode = UFS_POWERDOWN_PWR_MODE;
9772 		req_link_state = UIC_LINK_OFF_STATE;
9773 	}
9774 
9775 	/*
9776 	 * If we can't transition into any of the low power modes
9777 	 * just gate the clocks.
9778 	 */
9779 	ufshcd_hold(hba);
9780 	hba->clk_gating.is_suspended = true;
9781 
9782 	if (ufshcd_is_clkscaling_supported(hba))
9783 		ufshcd_clk_scaling_suspend(hba, true);
9784 
9785 	if (req_dev_pwr_mode == UFS_ACTIVE_PWR_MODE &&
9786 			req_link_state == UIC_LINK_ACTIVE_STATE) {
9787 		goto vops_suspend;
9788 	}
9789 
9790 	if ((req_dev_pwr_mode == hba->curr_dev_pwr_mode) &&
9791 	    (req_link_state == hba->uic_link_state))
9792 		goto enable_scaling;
9793 
9794 	/* UFS device & link must be active before we enter in this function */
9795 	if (!ufshcd_is_ufs_dev_active(hba) || !ufshcd_is_link_active(hba)) {
9796 		/*  Wait err handler finish or trigger err recovery */
9797 		if (!ufshcd_eh_in_progress(hba))
9798 			ufshcd_force_error_recovery(hba);
9799 		ret = -EBUSY;
9800 		goto enable_scaling;
9801 	}
9802 
9803 	if (pm_op == UFS_RUNTIME_PM) {
9804 		if (ufshcd_can_autobkops_during_suspend(hba)) {
9805 			/*
9806 			 * The device is idle with no requests in the queue,
9807 			 * allow background operations if bkops status shows
9808 			 * that performance might be impacted.
9809 			 */
9810 			ret = ufshcd_urgent_bkops(hba);
9811 			if (ret) {
9812 				/*
9813 				 * If return err in suspend flow, IO will hang.
9814 				 * Trigger error handler and break suspend for
9815 				 * error recovery.
9816 				 */
9817 				ufshcd_force_error_recovery(hba);
9818 				ret = -EBUSY;
9819 				goto enable_scaling;
9820 			}
9821 		} else {
9822 			/* make sure that auto bkops is disabled */
9823 			ufshcd_disable_auto_bkops(hba);
9824 		}
9825 		/*
9826 		 * If device needs to do BKOP or WB buffer flush during
9827 		 * Hibern8, keep device power mode as "active power mode"
9828 		 * and VCC supply.
9829 		 */
9830 		hba->dev_info.b_rpm_dev_flush_capable =
9831 			hba->auto_bkops_enabled ||
9832 			(((req_link_state == UIC_LINK_HIBERN8_STATE) ||
9833 			((req_link_state == UIC_LINK_ACTIVE_STATE) &&
9834 			ufshcd_is_auto_hibern8_enabled(hba))) &&
9835 			ufshcd_wb_need_flush(hba));
9836 	}
9837 
9838 	flush_work(&hba->eeh_work);
9839 
9840 	ret = ufshcd_vops_suspend(hba, pm_op, PRE_CHANGE);
9841 	if (ret)
9842 		goto enable_scaling;
9843 
9844 	if (req_dev_pwr_mode != hba->curr_dev_pwr_mode) {
9845 		if (pm_op != UFS_RUNTIME_PM)
9846 			/* ensure that bkops is disabled */
9847 			ufshcd_disable_auto_bkops(hba);
9848 
9849 		if (!hba->dev_info.b_rpm_dev_flush_capable) {
9850 			ret = ufshcd_set_dev_pwr_mode(hba, req_dev_pwr_mode);
9851 			if (ret && pm_op != UFS_SHUTDOWN_PM) {
9852 				/*
9853 				 * If return err in suspend flow, IO will hang.
9854 				 * Trigger error handler and break suspend for
9855 				 * error recovery.
9856 				 */
9857 				ufshcd_force_error_recovery(hba);
9858 				ret = -EBUSY;
9859 			}
9860 			if (ret)
9861 				goto enable_scaling;
9862 		}
9863 	}
9864 
9865 	/*
9866 	 * In the case of DeepSleep, the device is expected to remain powered
9867 	 * with the link off, so do not check for bkops.
9868 	 */
9869 	check_for_bkops = !ufshcd_is_ufs_dev_deepsleep(hba);
9870 	ret = ufshcd_link_state_transition(hba, req_link_state, check_for_bkops);
9871 	if (ret && pm_op != UFS_SHUTDOWN_PM) {
9872 		/*
9873 		 * If return err in suspend flow, IO will hang.
9874 		 * Trigger error handler and break suspend for
9875 		 * error recovery.
9876 		 */
9877 		ufshcd_force_error_recovery(hba);
9878 		ret = -EBUSY;
9879 	}
9880 	if (ret)
9881 		goto set_dev_active;
9882 
9883 vops_suspend:
9884 	/*
9885 	 * Call vendor specific suspend callback. As these callbacks may access
9886 	 * vendor specific host controller register space call them before the
9887 	 * host clocks are ON.
9888 	 */
9889 	ret = ufshcd_vops_suspend(hba, pm_op, POST_CHANGE);
9890 	if (ret)
9891 		goto set_link_active;
9892 
9893 	cancel_delayed_work_sync(&hba->ufs_rtc_update_work);
9894 	goto out;
9895 
9896 set_link_active:
9897 	/*
9898 	 * Device hardware reset is required to exit DeepSleep. Also, for
9899 	 * DeepSleep, the link is off so host reset and restore will be done
9900 	 * further below.
9901 	 */
9902 	if (ufshcd_is_ufs_dev_deepsleep(hba)) {
9903 		ufshcd_device_reset(hba);
9904 		WARN_ON(!ufshcd_is_link_off(hba));
9905 	}
9906 	if (ufshcd_is_link_hibern8(hba) && !ufshcd_uic_hibern8_exit(hba))
9907 		ufshcd_set_link_active(hba);
9908 	else if (ufshcd_is_link_off(hba))
9909 		ufshcd_host_reset_and_restore(hba);
9910 set_dev_active:
9911 	/* Can also get here needing to exit DeepSleep */
9912 	if (ufshcd_is_ufs_dev_deepsleep(hba)) {
9913 		ufshcd_device_reset(hba);
9914 		ufshcd_host_reset_and_restore(hba);
9915 	}
9916 	if (!ufshcd_set_dev_pwr_mode(hba, UFS_ACTIVE_PWR_MODE))
9917 		ufshcd_disable_auto_bkops(hba);
9918 enable_scaling:
9919 	if (ufshcd_is_clkscaling_supported(hba))
9920 		ufshcd_clk_scaling_suspend(hba, false);
9921 
9922 	hba->dev_info.b_rpm_dev_flush_capable = false;
9923 out:
9924 	if (hba->dev_info.b_rpm_dev_flush_capable) {
9925 		schedule_delayed_work(&hba->rpm_dev_flush_recheck_work,
9926 			msecs_to_jiffies(RPM_DEV_FLUSH_RECHECK_WORK_DELAY_MS));
9927 	}
9928 
9929 	if (ret) {
9930 		ufshcd_update_evt_hist(hba, UFS_EVT_WL_SUSP_ERR, (u32)ret);
9931 		hba->clk_gating.is_suspended = false;
9932 		ufshcd_release(hba);
9933 	}
9934 	hba->pm_op_in_progress = false;
9935 	return ret;
9936 }
9937 
9938 #ifdef CONFIG_PM
9939 static int __ufshcd_wl_resume(struct ufs_hba *hba, enum ufs_pm_op pm_op)
9940 {
9941 	int ret;
9942 	enum uic_link_state old_link_state = hba->uic_link_state;
9943 
9944 	hba->pm_op_in_progress = true;
9945 
9946 	/*
9947 	 * Call vendor specific resume callback. As these callbacks may access
9948 	 * vendor specific host controller register space call them when the
9949 	 * host clocks are ON.
9950 	 */
9951 	ret = ufshcd_vops_resume(hba, pm_op);
9952 	if (ret)
9953 		goto out;
9954 
9955 	/* For DeepSleep, the only supported option is to have the link off */
9956 	WARN_ON(ufshcd_is_ufs_dev_deepsleep(hba) && !ufshcd_is_link_off(hba));
9957 
9958 	if (ufshcd_is_link_hibern8(hba)) {
9959 		ret = ufshcd_uic_hibern8_exit(hba);
9960 		if (!ret) {
9961 			ufshcd_set_link_active(hba);
9962 		} else {
9963 			dev_err(hba->dev, "%s: hibern8 exit failed %d\n",
9964 					__func__, ret);
9965 			goto vendor_suspend;
9966 		}
9967 	} else if (ufshcd_is_link_off(hba)) {
9968 		/*
9969 		 * A full initialization of the host and the device is
9970 		 * required since the link was put to off during suspend.
9971 		 * Note, in the case of DeepSleep, the device will exit
9972 		 * DeepSleep due to device reset.
9973 		 */
9974 		ret = ufshcd_reset_and_restore(hba);
9975 		/*
9976 		 * ufshcd_reset_and_restore() should have already
9977 		 * set the link state as active
9978 		 */
9979 		if (ret || !ufshcd_is_link_active(hba))
9980 			goto vendor_suspend;
9981 	}
9982 
9983 	if (!ufshcd_is_ufs_dev_active(hba)) {
9984 		ret = ufshcd_set_dev_pwr_mode(hba, UFS_ACTIVE_PWR_MODE);
9985 		if (ret)
9986 			goto set_old_link_state;
9987 		ufshcd_set_timestamp_attr(hba);
9988 		schedule_delayed_work(&hba->ufs_rtc_update_work,
9989 				      msecs_to_jiffies(UFS_RTC_UPDATE_INTERVAL_MS));
9990 	}
9991 
9992 	if (ufshcd_keep_autobkops_enabled_except_suspend(hba))
9993 		ufshcd_enable_auto_bkops(hba);
9994 	else
9995 		/*
9996 		 * If BKOPs operations are urgently needed at this moment then
9997 		 * keep auto-bkops enabled or else disable it.
9998 		 */
9999 		ufshcd_urgent_bkops(hba);
10000 
10001 	if (hba->ee_usr_mask)
10002 		ufshcd_write_ee_control(hba);
10003 
10004 	if (ufshcd_is_clkscaling_supported(hba))
10005 		ufshcd_clk_scaling_suspend(hba, false);
10006 
10007 	if (hba->dev_info.b_rpm_dev_flush_capable) {
10008 		hba->dev_info.b_rpm_dev_flush_capable = false;
10009 		cancel_delayed_work(&hba->rpm_dev_flush_recheck_work);
10010 	}
10011 
10012 	ufshcd_configure_auto_hibern8(hba);
10013 
10014 	goto out;
10015 
10016 set_old_link_state:
10017 	ufshcd_link_state_transition(hba, old_link_state, 0);
10018 vendor_suspend:
10019 	ufshcd_vops_suspend(hba, pm_op, PRE_CHANGE);
10020 	ufshcd_vops_suspend(hba, pm_op, POST_CHANGE);
10021 out:
10022 	if (ret)
10023 		ufshcd_update_evt_hist(hba, UFS_EVT_WL_RES_ERR, (u32)ret);
10024 	hba->clk_gating.is_suspended = false;
10025 	ufshcd_release(hba);
10026 	hba->pm_op_in_progress = false;
10027 	return ret;
10028 }
10029 
10030 static int ufshcd_wl_runtime_suspend(struct device *dev)
10031 {
10032 	struct scsi_device *sdev = to_scsi_device(dev);
10033 	struct ufs_hba *hba;
10034 	int ret;
10035 	ktime_t start = ktime_get();
10036 
10037 	hba = shost_priv(sdev->host);
10038 
10039 	ret = __ufshcd_wl_suspend(hba, UFS_RUNTIME_PM);
10040 	if (ret)
10041 		dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
10042 
10043 	trace_ufshcd_wl_runtime_suspend(dev_name(dev), ret,
10044 		ktime_to_us(ktime_sub(ktime_get(), start)),
10045 		hba->curr_dev_pwr_mode, hba->uic_link_state);
10046 
10047 	return ret;
10048 }
10049 
10050 static int ufshcd_wl_runtime_resume(struct device *dev)
10051 {
10052 	struct scsi_device *sdev = to_scsi_device(dev);
10053 	struct ufs_hba *hba;
10054 	int ret = 0;
10055 	ktime_t start = ktime_get();
10056 
10057 	hba = shost_priv(sdev->host);
10058 
10059 	ret = __ufshcd_wl_resume(hba, UFS_RUNTIME_PM);
10060 	if (ret)
10061 		dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
10062 
10063 	trace_ufshcd_wl_runtime_resume(dev_name(dev), ret,
10064 		ktime_to_us(ktime_sub(ktime_get(), start)),
10065 		hba->curr_dev_pwr_mode, hba->uic_link_state);
10066 
10067 	return ret;
10068 }
10069 #endif
10070 
10071 #ifdef CONFIG_PM_SLEEP
10072 static int ufshcd_wl_suspend(struct device *dev)
10073 {
10074 	struct scsi_device *sdev = to_scsi_device(dev);
10075 	struct ufs_hba *hba;
10076 	int ret = 0;
10077 	ktime_t start = ktime_get();
10078 
10079 	hba = shost_priv(sdev->host);
10080 	down(&hba->host_sem);
10081 	hba->system_suspending = true;
10082 
10083 	if (pm_runtime_suspended(dev))
10084 		goto out;
10085 
10086 	ret = __ufshcd_wl_suspend(hba, UFS_SYSTEM_PM);
10087 	if (ret) {
10088 		dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__,  ret);
10089 		up(&hba->host_sem);
10090 	}
10091 
10092 out:
10093 	if (!ret)
10094 		hba->is_sys_suspended = true;
10095 	trace_ufshcd_wl_suspend(dev_name(dev), ret,
10096 		ktime_to_us(ktime_sub(ktime_get(), start)),
10097 		hba->curr_dev_pwr_mode, hba->uic_link_state);
10098 
10099 	return ret;
10100 }
10101 
10102 static int ufshcd_wl_resume(struct device *dev)
10103 {
10104 	struct scsi_device *sdev = to_scsi_device(dev);
10105 	struct ufs_hba *hba;
10106 	int ret = 0;
10107 	ktime_t start = ktime_get();
10108 
10109 	hba = shost_priv(sdev->host);
10110 
10111 	if (pm_runtime_suspended(dev))
10112 		goto out;
10113 
10114 	ret = __ufshcd_wl_resume(hba, UFS_SYSTEM_PM);
10115 	if (ret)
10116 		dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
10117 out:
10118 	trace_ufshcd_wl_resume(dev_name(dev), ret,
10119 		ktime_to_us(ktime_sub(ktime_get(), start)),
10120 		hba->curr_dev_pwr_mode, hba->uic_link_state);
10121 	if (!ret)
10122 		hba->is_sys_suspended = false;
10123 	hba->system_suspending = false;
10124 	up(&hba->host_sem);
10125 	return ret;
10126 }
10127 #endif
10128 
10129 /**
10130  * ufshcd_suspend - helper function for suspend operations
10131  * @hba: per adapter instance
10132  *
10133  * This function will put disable irqs, turn off clocks
10134  * and set vreg and hba-vreg in lpm mode.
10135  *
10136  * Return: 0 upon success; < 0 upon failure.
10137  */
10138 static int ufshcd_suspend(struct ufs_hba *hba)
10139 {
10140 	int ret;
10141 
10142 	if (!hba->is_powered)
10143 		return 0;
10144 	/*
10145 	 * Disable the host irq as host controller as there won't be any
10146 	 * host controller transaction expected till resume.
10147 	 */
10148 	ufshcd_disable_irq(hba);
10149 	ret = ufshcd_setup_clocks(hba, false);
10150 	if (ret) {
10151 		ufshcd_enable_irq(hba);
10152 		return ret;
10153 	}
10154 	if (ufshcd_is_clkgating_allowed(hba)) {
10155 		hba->clk_gating.state = CLKS_OFF;
10156 		trace_ufshcd_clk_gating(dev_name(hba->dev),
10157 					hba->clk_gating.state);
10158 	}
10159 
10160 	ufshcd_vreg_set_lpm(hba);
10161 	/* Put the host controller in low power mode if possible */
10162 	ufshcd_hba_vreg_set_lpm(hba);
10163 	ufshcd_pm_qos_update(hba, false);
10164 	return ret;
10165 }
10166 
10167 #ifdef CONFIG_PM
10168 /**
10169  * ufshcd_resume - helper function for resume operations
10170  * @hba: per adapter instance
10171  *
10172  * This function basically turns on the regulators, clocks and
10173  * irqs of the hba.
10174  *
10175  * Return: 0 for success and non-zero for failure.
10176  */
10177 static int ufshcd_resume(struct ufs_hba *hba)
10178 {
10179 	int ret;
10180 
10181 	if (!hba->is_powered)
10182 		return 0;
10183 
10184 	ufshcd_hba_vreg_set_hpm(hba);
10185 	ret = ufshcd_vreg_set_hpm(hba);
10186 	if (ret)
10187 		goto out;
10188 
10189 	/* Make sure clocks are enabled before accessing controller */
10190 	ret = ufshcd_setup_clocks(hba, true);
10191 	if (ret)
10192 		goto disable_vreg;
10193 
10194 	/* enable the host irq as host controller would be active soon */
10195 	ufshcd_enable_irq(hba);
10196 
10197 	goto out;
10198 
10199 disable_vreg:
10200 	ufshcd_vreg_set_lpm(hba);
10201 out:
10202 	if (ret)
10203 		ufshcd_update_evt_hist(hba, UFS_EVT_RESUME_ERR, (u32)ret);
10204 	return ret;
10205 }
10206 #endif /* CONFIG_PM */
10207 
10208 #ifdef CONFIG_PM_SLEEP
10209 /**
10210  * ufshcd_system_suspend - system suspend callback
10211  * @dev: Device associated with the UFS controller.
10212  *
10213  * Executed before putting the system into a sleep state in which the contents
10214  * of main memory are preserved.
10215  *
10216  * Return: 0 for success and non-zero for failure.
10217  */
10218 int ufshcd_system_suspend(struct device *dev)
10219 {
10220 	struct ufs_hba *hba = dev_get_drvdata(dev);
10221 	int ret = 0;
10222 	ktime_t start = ktime_get();
10223 
10224 	if (pm_runtime_suspended(hba->dev))
10225 		goto out;
10226 
10227 	ret = ufshcd_suspend(hba);
10228 out:
10229 	trace_ufshcd_system_suspend(dev_name(hba->dev), ret,
10230 		ktime_to_us(ktime_sub(ktime_get(), start)),
10231 		hba->curr_dev_pwr_mode, hba->uic_link_state);
10232 	return ret;
10233 }
10234 EXPORT_SYMBOL(ufshcd_system_suspend);
10235 
10236 /**
10237  * ufshcd_system_resume - system resume callback
10238  * @dev: Device associated with the UFS controller.
10239  *
10240  * Executed after waking the system up from a sleep state in which the contents
10241  * of main memory were preserved.
10242  *
10243  * Return: 0 for success and non-zero for failure.
10244  */
10245 int ufshcd_system_resume(struct device *dev)
10246 {
10247 	struct ufs_hba *hba = dev_get_drvdata(dev);
10248 	ktime_t start = ktime_get();
10249 	int ret = 0;
10250 
10251 	if (pm_runtime_suspended(hba->dev))
10252 		goto out;
10253 
10254 	ret = ufshcd_resume(hba);
10255 
10256 out:
10257 	trace_ufshcd_system_resume(dev_name(hba->dev), ret,
10258 		ktime_to_us(ktime_sub(ktime_get(), start)),
10259 		hba->curr_dev_pwr_mode, hba->uic_link_state);
10260 
10261 	return ret;
10262 }
10263 EXPORT_SYMBOL(ufshcd_system_resume);
10264 #endif /* CONFIG_PM_SLEEP */
10265 
10266 #ifdef CONFIG_PM
10267 /**
10268  * ufshcd_runtime_suspend - runtime suspend callback
10269  * @dev: Device associated with the UFS controller.
10270  *
10271  * Check the description of ufshcd_suspend() function for more details.
10272  *
10273  * Return: 0 for success and non-zero for failure.
10274  */
10275 int ufshcd_runtime_suspend(struct device *dev)
10276 {
10277 	struct ufs_hba *hba = dev_get_drvdata(dev);
10278 	int ret;
10279 	ktime_t start = ktime_get();
10280 
10281 	ret = ufshcd_suspend(hba);
10282 
10283 	trace_ufshcd_runtime_suspend(dev_name(hba->dev), ret,
10284 		ktime_to_us(ktime_sub(ktime_get(), start)),
10285 		hba->curr_dev_pwr_mode, hba->uic_link_state);
10286 	return ret;
10287 }
10288 EXPORT_SYMBOL(ufshcd_runtime_suspend);
10289 
10290 /**
10291  * ufshcd_runtime_resume - runtime resume routine
10292  * @dev: Device associated with the UFS controller.
10293  *
10294  * This function basically brings controller
10295  * to active state. Following operations are done in this function:
10296  *
10297  * 1. Turn on all the controller related clocks
10298  * 2. Turn ON VCC rail
10299  *
10300  * Return: 0 upon success; < 0 upon failure.
10301  */
10302 int ufshcd_runtime_resume(struct device *dev)
10303 {
10304 	struct ufs_hba *hba = dev_get_drvdata(dev);
10305 	int ret;
10306 	ktime_t start = ktime_get();
10307 
10308 	ret = ufshcd_resume(hba);
10309 
10310 	trace_ufshcd_runtime_resume(dev_name(hba->dev), ret,
10311 		ktime_to_us(ktime_sub(ktime_get(), start)),
10312 		hba->curr_dev_pwr_mode, hba->uic_link_state);
10313 	return ret;
10314 }
10315 EXPORT_SYMBOL(ufshcd_runtime_resume);
10316 #endif /* CONFIG_PM */
10317 
10318 static void ufshcd_wl_shutdown(struct device *dev)
10319 {
10320 	struct scsi_device *sdev = to_scsi_device(dev);
10321 	struct ufs_hba *hba = shost_priv(sdev->host);
10322 
10323 	down(&hba->host_sem);
10324 	hba->shutting_down = true;
10325 	up(&hba->host_sem);
10326 
10327 	/* Turn on everything while shutting down */
10328 	ufshcd_rpm_get_sync(hba);
10329 	scsi_device_quiesce(sdev);
10330 	shost_for_each_device(sdev, hba->host) {
10331 		if (sdev == hba->ufs_device_wlun)
10332 			continue;
10333 		scsi_device_quiesce(sdev);
10334 	}
10335 	__ufshcd_wl_suspend(hba, UFS_SHUTDOWN_PM);
10336 
10337 	/*
10338 	 * Next, turn off the UFS controller and the UFS regulators. Disable
10339 	 * clocks.
10340 	 */
10341 	if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba))
10342 		ufshcd_suspend(hba);
10343 
10344 	hba->is_powered = false;
10345 }
10346 
10347 /**
10348  * ufshcd_remove - de-allocate SCSI host and host memory space
10349  *		data structure memory
10350  * @hba: per adapter instance
10351  */
10352 void ufshcd_remove(struct ufs_hba *hba)
10353 {
10354 	if (hba->ufs_device_wlun)
10355 		ufshcd_rpm_get_sync(hba);
10356 	ufs_hwmon_remove(hba);
10357 	ufs_bsg_remove(hba);
10358 	ufs_sysfs_remove_nodes(hba->dev);
10359 	blk_mq_destroy_queue(hba->tmf_queue);
10360 	blk_put_queue(hba->tmf_queue);
10361 	blk_mq_free_tag_set(&hba->tmf_tag_set);
10362 	scsi_remove_host(hba->host);
10363 	/* disable interrupts */
10364 	ufshcd_disable_intr(hba, hba->intr_mask);
10365 	ufshcd_hba_stop(hba);
10366 	ufshcd_hba_exit(hba);
10367 }
10368 EXPORT_SYMBOL_GPL(ufshcd_remove);
10369 
10370 #ifdef CONFIG_PM_SLEEP
10371 int ufshcd_system_freeze(struct device *dev)
10372 {
10373 
10374 	return ufshcd_system_suspend(dev);
10375 
10376 }
10377 EXPORT_SYMBOL_GPL(ufshcd_system_freeze);
10378 
10379 int ufshcd_system_restore(struct device *dev)
10380 {
10381 
10382 	struct ufs_hba *hba = dev_get_drvdata(dev);
10383 	int ret;
10384 
10385 	ret = ufshcd_system_resume(dev);
10386 	if (ret)
10387 		return ret;
10388 
10389 	/* Configure UTRL and UTMRL base address registers */
10390 	ufshcd_writel(hba, lower_32_bits(hba->utrdl_dma_addr),
10391 			REG_UTP_TRANSFER_REQ_LIST_BASE_L);
10392 	ufshcd_writel(hba, upper_32_bits(hba->utrdl_dma_addr),
10393 			REG_UTP_TRANSFER_REQ_LIST_BASE_H);
10394 	ufshcd_writel(hba, lower_32_bits(hba->utmrdl_dma_addr),
10395 			REG_UTP_TASK_REQ_LIST_BASE_L);
10396 	ufshcd_writel(hba, upper_32_bits(hba->utmrdl_dma_addr),
10397 			REG_UTP_TASK_REQ_LIST_BASE_H);
10398 	/*
10399 	 * Make sure that UTRL and UTMRL base address registers
10400 	 * are updated with the latest queue addresses. Only after
10401 	 * updating these addresses, we can queue the new commands.
10402 	 */
10403 	mb();
10404 
10405 	/* Resuming from hibernate, assume that link was OFF */
10406 	ufshcd_set_link_off(hba);
10407 
10408 	return 0;
10409 
10410 }
10411 EXPORT_SYMBOL_GPL(ufshcd_system_restore);
10412 
10413 int ufshcd_system_thaw(struct device *dev)
10414 {
10415 	return ufshcd_system_resume(dev);
10416 }
10417 EXPORT_SYMBOL_GPL(ufshcd_system_thaw);
10418 #endif /* CONFIG_PM_SLEEP  */
10419 
10420 /**
10421  * ufshcd_dealloc_host - deallocate Host Bus Adapter (HBA)
10422  * @hba: pointer to Host Bus Adapter (HBA)
10423  */
10424 void ufshcd_dealloc_host(struct ufs_hba *hba)
10425 {
10426 	scsi_host_put(hba->host);
10427 }
10428 EXPORT_SYMBOL_GPL(ufshcd_dealloc_host);
10429 
10430 /**
10431  * ufshcd_set_dma_mask - Set dma mask based on the controller
10432  *			 addressing capability
10433  * @hba: per adapter instance
10434  *
10435  * Return: 0 for success, non-zero for failure.
10436  */
10437 static int ufshcd_set_dma_mask(struct ufs_hba *hba)
10438 {
10439 	if (hba->capabilities & MASK_64_ADDRESSING_SUPPORT) {
10440 		if (!dma_set_mask_and_coherent(hba->dev, DMA_BIT_MASK(64)))
10441 			return 0;
10442 	}
10443 	return dma_set_mask_and_coherent(hba->dev, DMA_BIT_MASK(32));
10444 }
10445 
10446 /**
10447  * ufshcd_alloc_host - allocate Host Bus Adapter (HBA)
10448  * @dev: pointer to device handle
10449  * @hba_handle: driver private handle
10450  *
10451  * Return: 0 on success, non-zero value on failure.
10452  */
10453 int ufshcd_alloc_host(struct device *dev, struct ufs_hba **hba_handle)
10454 {
10455 	struct Scsi_Host *host;
10456 	struct ufs_hba *hba;
10457 	int err = 0;
10458 
10459 	if (!dev) {
10460 		dev_err(dev,
10461 		"Invalid memory reference for dev is NULL\n");
10462 		err = -ENODEV;
10463 		goto out_error;
10464 	}
10465 
10466 	host = scsi_host_alloc(&ufshcd_driver_template,
10467 				sizeof(struct ufs_hba));
10468 	if (!host) {
10469 		dev_err(dev, "scsi_host_alloc failed\n");
10470 		err = -ENOMEM;
10471 		goto out_error;
10472 	}
10473 	host->nr_maps = HCTX_TYPE_POLL + 1;
10474 	hba = shost_priv(host);
10475 	hba->host = host;
10476 	hba->dev = dev;
10477 	hba->dev_ref_clk_freq = REF_CLK_FREQ_INVAL;
10478 	hba->nop_out_timeout = NOP_OUT_TIMEOUT;
10479 	ufshcd_set_sg_entry_size(hba, sizeof(struct ufshcd_sg_entry));
10480 	INIT_LIST_HEAD(&hba->clk_list_head);
10481 	spin_lock_init(&hba->outstanding_lock);
10482 
10483 	*hba_handle = hba;
10484 
10485 out_error:
10486 	return err;
10487 }
10488 EXPORT_SYMBOL(ufshcd_alloc_host);
10489 
10490 /* This function exists because blk_mq_alloc_tag_set() requires this. */
10491 static blk_status_t ufshcd_queue_tmf(struct blk_mq_hw_ctx *hctx,
10492 				     const struct blk_mq_queue_data *qd)
10493 {
10494 	WARN_ON_ONCE(true);
10495 	return BLK_STS_NOTSUPP;
10496 }
10497 
10498 static const struct blk_mq_ops ufshcd_tmf_ops = {
10499 	.queue_rq = ufshcd_queue_tmf,
10500 };
10501 
10502 /**
10503  * ufshcd_init - Driver initialization routine
10504  * @hba: per-adapter instance
10505  * @mmio_base: base register address
10506  * @irq: Interrupt line of device
10507  *
10508  * Return: 0 on success, non-zero value on failure.
10509  */
10510 int ufshcd_init(struct ufs_hba *hba, void __iomem *mmio_base, unsigned int irq)
10511 {
10512 	int err;
10513 	struct Scsi_Host *host = hba->host;
10514 	struct device *dev = hba->dev;
10515 	char eh_wq_name[sizeof("ufs_eh_wq_00")];
10516 
10517 	/*
10518 	 * dev_set_drvdata() must be called before any callbacks are registered
10519 	 * that use dev_get_drvdata() (frequency scaling, clock scaling, hwmon,
10520 	 * sysfs).
10521 	 */
10522 	dev_set_drvdata(dev, hba);
10523 
10524 	if (!mmio_base) {
10525 		dev_err(hba->dev,
10526 		"Invalid memory reference for mmio_base is NULL\n");
10527 		err = -ENODEV;
10528 		goto out_error;
10529 	}
10530 
10531 	hba->mmio_base = mmio_base;
10532 	hba->irq = irq;
10533 	hba->vps = &ufs_hba_vps;
10534 
10535 	err = ufshcd_hba_init(hba);
10536 	if (err)
10537 		goto out_error;
10538 
10539 	/* Read capabilities registers */
10540 	err = ufshcd_hba_capabilities(hba);
10541 	if (err)
10542 		goto out_disable;
10543 
10544 	/* Get UFS version supported by the controller */
10545 	hba->ufs_version = ufshcd_get_ufs_version(hba);
10546 
10547 	/* Get Interrupt bit mask per version */
10548 	hba->intr_mask = ufshcd_get_intr_mask(hba);
10549 
10550 	err = ufshcd_set_dma_mask(hba);
10551 	if (err) {
10552 		dev_err(hba->dev, "set dma mask failed\n");
10553 		goto out_disable;
10554 	}
10555 
10556 	/* Allocate memory for host memory space */
10557 	err = ufshcd_memory_alloc(hba);
10558 	if (err) {
10559 		dev_err(hba->dev, "Memory allocation failed\n");
10560 		goto out_disable;
10561 	}
10562 
10563 	/* Configure LRB */
10564 	ufshcd_host_memory_configure(hba);
10565 
10566 	host->can_queue = hba->nutrs - UFSHCD_NUM_RESERVED;
10567 	host->cmd_per_lun = hba->nutrs - UFSHCD_NUM_RESERVED;
10568 	host->max_id = UFSHCD_MAX_ID;
10569 	host->max_lun = UFS_MAX_LUNS;
10570 	host->max_channel = UFSHCD_MAX_CHANNEL;
10571 	host->unique_id = host->host_no;
10572 	host->max_cmd_len = UFS_CDB_SIZE;
10573 	host->queuecommand_may_block = !!(hba->caps & UFSHCD_CAP_CLK_GATING);
10574 
10575 	/* Use default RPM delay if host not set */
10576 	if (host->rpm_autosuspend_delay == 0)
10577 		host->rpm_autosuspend_delay = RPM_AUTOSUSPEND_DELAY_MS;
10578 
10579 	hba->max_pwr_info.is_valid = false;
10580 
10581 	/* Initialize work queues */
10582 	snprintf(eh_wq_name, sizeof(eh_wq_name), "ufs_eh_wq_%d",
10583 		 hba->host->host_no);
10584 	hba->eh_wq = create_singlethread_workqueue(eh_wq_name);
10585 	if (!hba->eh_wq) {
10586 		dev_err(hba->dev, "%s: failed to create eh workqueue\n",
10587 			__func__);
10588 		err = -ENOMEM;
10589 		goto out_disable;
10590 	}
10591 	INIT_WORK(&hba->eh_work, ufshcd_err_handler);
10592 	INIT_WORK(&hba->eeh_work, ufshcd_exception_event_handler);
10593 
10594 	sema_init(&hba->host_sem, 1);
10595 
10596 	/* Initialize UIC command mutex */
10597 	mutex_init(&hba->uic_cmd_mutex);
10598 
10599 	/* Initialize mutex for device management commands */
10600 	mutex_init(&hba->dev_cmd.lock);
10601 
10602 	/* Initialize mutex for exception event control */
10603 	mutex_init(&hba->ee_ctrl_mutex);
10604 
10605 	mutex_init(&hba->wb_mutex);
10606 	init_rwsem(&hba->clk_scaling_lock);
10607 
10608 	ufshcd_init_clk_gating(hba);
10609 
10610 	ufshcd_init_clk_scaling(hba);
10611 
10612 	/*
10613 	 * In order to avoid any spurious interrupt immediately after
10614 	 * registering UFS controller interrupt handler, clear any pending UFS
10615 	 * interrupt status and disable all the UFS interrupts.
10616 	 */
10617 	ufshcd_writel(hba, ufshcd_readl(hba, REG_INTERRUPT_STATUS),
10618 		      REG_INTERRUPT_STATUS);
10619 	ufshcd_writel(hba, 0, REG_INTERRUPT_ENABLE);
10620 	/*
10621 	 * Make sure that UFS interrupts are disabled and any pending interrupt
10622 	 * status is cleared before registering UFS interrupt handler.
10623 	 */
10624 	mb();
10625 
10626 	/* IRQ registration */
10627 	err = devm_request_irq(dev, irq, ufshcd_intr, IRQF_SHARED, UFSHCD, hba);
10628 	if (err) {
10629 		dev_err(hba->dev, "request irq failed\n");
10630 		goto out_disable;
10631 	} else {
10632 		hba->is_irq_enabled = true;
10633 	}
10634 
10635 	if (!is_mcq_supported(hba)) {
10636 		err = scsi_add_host(host, hba->dev);
10637 		if (err) {
10638 			dev_err(hba->dev, "scsi_add_host failed\n");
10639 			goto out_disable;
10640 		}
10641 	}
10642 
10643 	hba->tmf_tag_set = (struct blk_mq_tag_set) {
10644 		.nr_hw_queues	= 1,
10645 		.queue_depth	= hba->nutmrs,
10646 		.ops		= &ufshcd_tmf_ops,
10647 		.flags		= BLK_MQ_F_NO_SCHED,
10648 	};
10649 	err = blk_mq_alloc_tag_set(&hba->tmf_tag_set);
10650 	if (err < 0)
10651 		goto out_remove_scsi_host;
10652 	hba->tmf_queue = blk_mq_alloc_queue(&hba->tmf_tag_set, NULL, NULL);
10653 	if (IS_ERR(hba->tmf_queue)) {
10654 		err = PTR_ERR(hba->tmf_queue);
10655 		goto free_tmf_tag_set;
10656 	}
10657 	hba->tmf_rqs = devm_kcalloc(hba->dev, hba->nutmrs,
10658 				    sizeof(*hba->tmf_rqs), GFP_KERNEL);
10659 	if (!hba->tmf_rqs) {
10660 		err = -ENOMEM;
10661 		goto free_tmf_queue;
10662 	}
10663 
10664 	/* Reset the attached device */
10665 	ufshcd_device_reset(hba);
10666 
10667 	ufshcd_init_crypto(hba);
10668 
10669 	/* Host controller enable */
10670 	err = ufshcd_hba_enable(hba);
10671 	if (err) {
10672 		dev_err(hba->dev, "Host controller enable failed\n");
10673 		ufshcd_print_evt_hist(hba);
10674 		ufshcd_print_host_state(hba);
10675 		goto free_tmf_queue;
10676 	}
10677 
10678 	/*
10679 	 * Set the default power management level for runtime and system PM.
10680 	 * Default power saving mode is to keep UFS link in Hibern8 state
10681 	 * and UFS device in sleep state.
10682 	 */
10683 	hba->rpm_lvl = ufs_get_desired_pm_lvl_for_dev_link_state(
10684 						UFS_SLEEP_PWR_MODE,
10685 						UIC_LINK_HIBERN8_STATE);
10686 	hba->spm_lvl = ufs_get_desired_pm_lvl_for_dev_link_state(
10687 						UFS_SLEEP_PWR_MODE,
10688 						UIC_LINK_HIBERN8_STATE);
10689 
10690 	INIT_DELAYED_WORK(&hba->rpm_dev_flush_recheck_work, ufshcd_rpm_dev_flush_recheck_work);
10691 	INIT_DELAYED_WORK(&hba->ufs_rtc_update_work, ufshcd_rtc_work);
10692 
10693 	/* Set the default auto-hiberate idle timer value to 150 ms */
10694 	if (ufshcd_is_auto_hibern8_supported(hba) && !hba->ahit) {
10695 		hba->ahit = FIELD_PREP(UFSHCI_AHIBERN8_TIMER_MASK, 150) |
10696 			    FIELD_PREP(UFSHCI_AHIBERN8_SCALE_MASK, 3);
10697 	}
10698 
10699 	/* Hold auto suspend until async scan completes */
10700 	pm_runtime_get_sync(dev);
10701 	atomic_set(&hba->scsi_block_reqs_cnt, 0);
10702 	/*
10703 	 * We are assuming that device wasn't put in sleep/power-down
10704 	 * state exclusively during the boot stage before kernel.
10705 	 * This assumption helps avoid doing link startup twice during
10706 	 * ufshcd_probe_hba().
10707 	 */
10708 	ufshcd_set_ufs_dev_active(hba);
10709 
10710 	async_schedule(ufshcd_async_scan, hba);
10711 	ufs_sysfs_add_nodes(hba->dev);
10712 
10713 	device_enable_async_suspend(dev);
10714 	ufshcd_pm_qos_init(hba);
10715 	return 0;
10716 
10717 free_tmf_queue:
10718 	blk_mq_destroy_queue(hba->tmf_queue);
10719 	blk_put_queue(hba->tmf_queue);
10720 free_tmf_tag_set:
10721 	blk_mq_free_tag_set(&hba->tmf_tag_set);
10722 out_remove_scsi_host:
10723 	scsi_remove_host(hba->host);
10724 out_disable:
10725 	hba->is_irq_enabled = false;
10726 	ufshcd_hba_exit(hba);
10727 out_error:
10728 	return err;
10729 }
10730 EXPORT_SYMBOL_GPL(ufshcd_init);
10731 
10732 void ufshcd_resume_complete(struct device *dev)
10733 {
10734 	struct ufs_hba *hba = dev_get_drvdata(dev);
10735 
10736 	if (hba->complete_put) {
10737 		ufshcd_rpm_put(hba);
10738 		hba->complete_put = false;
10739 	}
10740 }
10741 EXPORT_SYMBOL_GPL(ufshcd_resume_complete);
10742 
10743 static bool ufshcd_rpm_ok_for_spm(struct ufs_hba *hba)
10744 {
10745 	struct device *dev = &hba->ufs_device_wlun->sdev_gendev;
10746 	enum ufs_dev_pwr_mode dev_pwr_mode;
10747 	enum uic_link_state link_state;
10748 	unsigned long flags;
10749 	bool res;
10750 
10751 	spin_lock_irqsave(&dev->power.lock, flags);
10752 	dev_pwr_mode = ufs_get_pm_lvl_to_dev_pwr_mode(hba->spm_lvl);
10753 	link_state = ufs_get_pm_lvl_to_link_pwr_state(hba->spm_lvl);
10754 	res = pm_runtime_suspended(dev) &&
10755 	      hba->curr_dev_pwr_mode == dev_pwr_mode &&
10756 	      hba->uic_link_state == link_state &&
10757 	      !hba->dev_info.b_rpm_dev_flush_capable;
10758 	spin_unlock_irqrestore(&dev->power.lock, flags);
10759 
10760 	return res;
10761 }
10762 
10763 int __ufshcd_suspend_prepare(struct device *dev, bool rpm_ok_for_spm)
10764 {
10765 	struct ufs_hba *hba = dev_get_drvdata(dev);
10766 	int ret;
10767 
10768 	/*
10769 	 * SCSI assumes that runtime-pm and system-pm for scsi drivers
10770 	 * are same. And it doesn't wake up the device for system-suspend
10771 	 * if it's runtime suspended. But ufs doesn't follow that.
10772 	 * Refer ufshcd_resume_complete()
10773 	 */
10774 	if (hba->ufs_device_wlun) {
10775 		/* Prevent runtime suspend */
10776 		ufshcd_rpm_get_noresume(hba);
10777 		/*
10778 		 * Check if already runtime suspended in same state as system
10779 		 * suspend would be.
10780 		 */
10781 		if (!rpm_ok_for_spm || !ufshcd_rpm_ok_for_spm(hba)) {
10782 			/* RPM state is not ok for SPM, so runtime resume */
10783 			ret = ufshcd_rpm_resume(hba);
10784 			if (ret < 0 && ret != -EACCES) {
10785 				ufshcd_rpm_put(hba);
10786 				return ret;
10787 			}
10788 		}
10789 		hba->complete_put = true;
10790 	}
10791 	return 0;
10792 }
10793 EXPORT_SYMBOL_GPL(__ufshcd_suspend_prepare);
10794 
10795 int ufshcd_suspend_prepare(struct device *dev)
10796 {
10797 	return __ufshcd_suspend_prepare(dev, true);
10798 }
10799 EXPORT_SYMBOL_GPL(ufshcd_suspend_prepare);
10800 
10801 #ifdef CONFIG_PM_SLEEP
10802 static int ufshcd_wl_poweroff(struct device *dev)
10803 {
10804 	struct scsi_device *sdev = to_scsi_device(dev);
10805 	struct ufs_hba *hba = shost_priv(sdev->host);
10806 
10807 	__ufshcd_wl_suspend(hba, UFS_SHUTDOWN_PM);
10808 	return 0;
10809 }
10810 #endif
10811 
10812 static int ufshcd_wl_probe(struct device *dev)
10813 {
10814 	struct scsi_device *sdev = to_scsi_device(dev);
10815 
10816 	if (!is_device_wlun(sdev))
10817 		return -ENODEV;
10818 
10819 	blk_pm_runtime_init(sdev->request_queue, dev);
10820 	pm_runtime_set_autosuspend_delay(dev, 0);
10821 	pm_runtime_allow(dev);
10822 
10823 	return  0;
10824 }
10825 
10826 static int ufshcd_wl_remove(struct device *dev)
10827 {
10828 	pm_runtime_forbid(dev);
10829 	return 0;
10830 }
10831 
10832 static const struct dev_pm_ops ufshcd_wl_pm_ops = {
10833 #ifdef CONFIG_PM_SLEEP
10834 	.suspend = ufshcd_wl_suspend,
10835 	.resume = ufshcd_wl_resume,
10836 	.freeze = ufshcd_wl_suspend,
10837 	.thaw = ufshcd_wl_resume,
10838 	.poweroff = ufshcd_wl_poweroff,
10839 	.restore = ufshcd_wl_resume,
10840 #endif
10841 	SET_RUNTIME_PM_OPS(ufshcd_wl_runtime_suspend, ufshcd_wl_runtime_resume, NULL)
10842 };
10843 
10844 static void ufshcd_check_header_layout(void)
10845 {
10846 	/*
10847 	 * gcc compilers before version 10 cannot do constant-folding for
10848 	 * sub-byte bitfields. Hence skip the layout checks for gcc 9 and
10849 	 * before.
10850 	 */
10851 	if (IS_ENABLED(CONFIG_CC_IS_GCC) && CONFIG_GCC_VERSION < 100000)
10852 		return;
10853 
10854 	BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10855 				.cci = 3})[0] != 3);
10856 
10857 	BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10858 				.ehs_length = 2})[1] != 2);
10859 
10860 	BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10861 				.enable_crypto = 1})[2]
10862 		     != 0x80);
10863 
10864 	BUILD_BUG_ON((((u8 *)&(struct request_desc_header){
10865 					.command_type = 5,
10866 					.data_direction = 3,
10867 					.interrupt = 1,
10868 				})[3]) != ((5 << 4) | (3 << 1) | 1));
10869 
10870 	BUILD_BUG_ON(((__le32 *)&(struct request_desc_header){
10871 				.dunl = cpu_to_le32(0xdeadbeef)})[1] !=
10872 		cpu_to_le32(0xdeadbeef));
10873 
10874 	BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10875 				.ocs = 4})[8] != 4);
10876 
10877 	BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10878 				.cds = 5})[9] != 5);
10879 
10880 	BUILD_BUG_ON(((__le32 *)&(struct request_desc_header){
10881 				.dunu = cpu_to_le32(0xbadcafe)})[3] !=
10882 		cpu_to_le32(0xbadcafe));
10883 
10884 	BUILD_BUG_ON(((u8 *)&(struct utp_upiu_header){
10885 			     .iid = 0xf })[4] != 0xf0);
10886 
10887 	BUILD_BUG_ON(((u8 *)&(struct utp_upiu_header){
10888 			     .command_set_type = 0xf })[4] != 0xf);
10889 }
10890 
10891 /*
10892  * ufs_dev_wlun_template - describes ufs device wlun
10893  * ufs-device wlun - used to send pm commands
10894  * All luns are consumers of ufs-device wlun.
10895  *
10896  * Currently, no sd driver is present for wluns.
10897  * Hence the no specific pm operations are performed.
10898  * With ufs design, SSU should be sent to ufs-device wlun.
10899  * Hence register a scsi driver for ufs wluns only.
10900  */
10901 static struct scsi_driver ufs_dev_wlun_template = {
10902 	.gendrv = {
10903 		.name = "ufs_device_wlun",
10904 		.owner = THIS_MODULE,
10905 		.probe = ufshcd_wl_probe,
10906 		.remove = ufshcd_wl_remove,
10907 		.pm = &ufshcd_wl_pm_ops,
10908 		.shutdown = ufshcd_wl_shutdown,
10909 	},
10910 };
10911 
10912 static int __init ufshcd_core_init(void)
10913 {
10914 	int ret;
10915 
10916 	ufshcd_check_header_layout();
10917 
10918 	ufs_debugfs_init();
10919 
10920 	ret = scsi_register_driver(&ufs_dev_wlun_template.gendrv);
10921 	if (ret)
10922 		ufs_debugfs_exit();
10923 	return ret;
10924 }
10925 
10926 static void __exit ufshcd_core_exit(void)
10927 {
10928 	ufs_debugfs_exit();
10929 	scsi_unregister_driver(&ufs_dev_wlun_template.gendrv);
10930 }
10931 
10932 module_init(ufshcd_core_init);
10933 module_exit(ufshcd_core_exit);
10934 
10935 MODULE_AUTHOR("Santosh Yaragnavi <santosh.sy@samsung.com>");
10936 MODULE_AUTHOR("Vinayak Holikatti <h.vinayak@samsung.com>");
10937 MODULE_DESCRIPTION("Generic UFS host controller driver Core");
10938 MODULE_SOFTDEP("pre: governor_simpleondemand");
10939 MODULE_LICENSE("GPL");
10940