xref: /linux/drivers/ufs/core/ufshcd.c (revision 16e5ac127d8d18adf85fe5ba847d77b58d1ed418)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Universal Flash Storage Host controller driver Core
4  * Copyright (C) 2011-2013 Samsung India Software Operations
5  * Copyright (c) 2013-2016, The Linux Foundation. All rights reserved.
6  *
7  * Authors:
8  *	Santosh Yaraganavi <santosh.sy@samsung.com>
9  *	Vinayak Holikatti <h.vinayak@samsung.com>
10  */
11 
12 #include <linux/async.h>
13 #include <linux/devfreq.h>
14 #include <linux/nls.h>
15 #include <linux/of.h>
16 #include <linux/bitfield.h>
17 #include <linux/blk-pm.h>
18 #include <linux/blkdev.h>
19 #include <linux/clk.h>
20 #include <linux/delay.h>
21 #include <linux/interrupt.h>
22 #include <linux/module.h>
23 #include <linux/pm_opp.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/sched/clock.h>
26 #include <linux/iopoll.h>
27 #include <scsi/scsi_cmnd.h>
28 #include <scsi/scsi_dbg.h>
29 #include <scsi/scsi_driver.h>
30 #include <scsi/scsi_eh.h>
31 #include "ufshcd-priv.h"
32 #include <ufs/ufs_quirks.h>
33 #include <ufs/unipro.h>
34 #include "ufs-sysfs.h"
35 #include "ufs-debugfs.h"
36 #include "ufs-fault-injection.h"
37 #include "ufs_bsg.h"
38 #include "ufshcd-crypto.h"
39 #include <asm/unaligned.h>
40 
41 #define CREATE_TRACE_POINTS
42 #include <trace/events/ufs.h>
43 
44 #define UFSHCD_ENABLE_INTRS	(UTP_TRANSFER_REQ_COMPL |\
45 				 UTP_TASK_REQ_COMPL |\
46 				 UFSHCD_ERROR_MASK)
47 
48 #define UFSHCD_ENABLE_MCQ_INTRS	(UTP_TASK_REQ_COMPL |\
49 				 UFSHCD_ERROR_MASK |\
50 				 MCQ_CQ_EVENT_STATUS)
51 
52 
53 /* UIC command timeout, unit: ms */
54 #define UIC_CMD_TIMEOUT	500
55 
56 /* NOP OUT retries waiting for NOP IN response */
57 #define NOP_OUT_RETRIES    10
58 /* Timeout after 50 msecs if NOP OUT hangs without response */
59 #define NOP_OUT_TIMEOUT    50 /* msecs */
60 
61 /* Query request retries */
62 #define QUERY_REQ_RETRIES 3
63 /* Query request timeout */
64 #define QUERY_REQ_TIMEOUT 1500 /* 1.5 seconds */
65 
66 /* Advanced RPMB request timeout */
67 #define ADVANCED_RPMB_REQ_TIMEOUT  3000 /* 3 seconds */
68 
69 /* Task management command timeout */
70 #define TM_CMD_TIMEOUT	100 /* msecs */
71 
72 /* maximum number of retries for a general UIC command  */
73 #define UFS_UIC_COMMAND_RETRIES 3
74 
75 /* maximum number of link-startup retries */
76 #define DME_LINKSTARTUP_RETRIES 3
77 
78 /* maximum number of reset retries before giving up */
79 #define MAX_HOST_RESET_RETRIES 5
80 
81 /* Maximum number of error handler retries before giving up */
82 #define MAX_ERR_HANDLER_RETRIES 5
83 
84 /* Expose the flag value from utp_upiu_query.value */
85 #define MASK_QUERY_UPIU_FLAG_LOC 0xFF
86 
87 /* Interrupt aggregation default timeout, unit: 40us */
88 #define INT_AGGR_DEF_TO	0x02
89 
90 /* default delay of autosuspend: 2000 ms */
91 #define RPM_AUTOSUSPEND_DELAY_MS 2000
92 
93 /* Default delay of RPM device flush delayed work */
94 #define RPM_DEV_FLUSH_RECHECK_WORK_DELAY_MS 5000
95 
96 /* Default value of wait time before gating device ref clock */
97 #define UFSHCD_REF_CLK_GATING_WAIT_US 0xFF /* microsecs */
98 
99 /* Polling time to wait for fDeviceInit */
100 #define FDEVICEINIT_COMPL_TIMEOUT 1500 /* millisecs */
101 
102 /* UFSHC 4.0 compliant HC support this mode. */
103 static bool use_mcq_mode = true;
104 
105 static bool is_mcq_supported(struct ufs_hba *hba)
106 {
107 	return hba->mcq_sup && use_mcq_mode;
108 }
109 
110 module_param(use_mcq_mode, bool, 0644);
111 MODULE_PARM_DESC(use_mcq_mode, "Control MCQ mode for controllers starting from UFSHCI 4.0. 1 - enable MCQ, 0 - disable MCQ. MCQ is enabled by default");
112 
113 #define ufshcd_toggle_vreg(_dev, _vreg, _on)				\
114 	({                                                              \
115 		int _ret;                                               \
116 		if (_on)                                                \
117 			_ret = ufshcd_enable_vreg(_dev, _vreg);         \
118 		else                                                    \
119 			_ret = ufshcd_disable_vreg(_dev, _vreg);        \
120 		_ret;                                                   \
121 	})
122 
123 #define ufshcd_hex_dump(prefix_str, buf, len) do {                       \
124 	size_t __len = (len);                                            \
125 	print_hex_dump(KERN_ERR, prefix_str,                             \
126 		       __len > 4 ? DUMP_PREFIX_OFFSET : DUMP_PREFIX_NONE,\
127 		       16, 4, buf, __len, false);                        \
128 } while (0)
129 
130 int ufshcd_dump_regs(struct ufs_hba *hba, size_t offset, size_t len,
131 		     const char *prefix)
132 {
133 	u32 *regs;
134 	size_t pos;
135 
136 	if (offset % 4 != 0 || len % 4 != 0) /* keep readl happy */
137 		return -EINVAL;
138 
139 	regs = kzalloc(len, GFP_ATOMIC);
140 	if (!regs)
141 		return -ENOMEM;
142 
143 	for (pos = 0; pos < len; pos += 4) {
144 		if (offset == 0 &&
145 		    pos >= REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER &&
146 		    pos <= REG_UIC_ERROR_CODE_DME)
147 			continue;
148 		regs[pos / 4] = ufshcd_readl(hba, offset + pos);
149 	}
150 
151 	ufshcd_hex_dump(prefix, regs, len);
152 	kfree(regs);
153 
154 	return 0;
155 }
156 EXPORT_SYMBOL_GPL(ufshcd_dump_regs);
157 
158 enum {
159 	UFSHCD_MAX_CHANNEL	= 0,
160 	UFSHCD_MAX_ID		= 1,
161 	UFSHCD_CMD_PER_LUN	= 32 - UFSHCD_NUM_RESERVED,
162 	UFSHCD_CAN_QUEUE	= 32 - UFSHCD_NUM_RESERVED,
163 };
164 
165 static const char *const ufshcd_state_name[] = {
166 	[UFSHCD_STATE_RESET]			= "reset",
167 	[UFSHCD_STATE_OPERATIONAL]		= "operational",
168 	[UFSHCD_STATE_ERROR]			= "error",
169 	[UFSHCD_STATE_EH_SCHEDULED_FATAL]	= "eh_fatal",
170 	[UFSHCD_STATE_EH_SCHEDULED_NON_FATAL]	= "eh_non_fatal",
171 };
172 
173 /* UFSHCD error handling flags */
174 enum {
175 	UFSHCD_EH_IN_PROGRESS = (1 << 0),
176 };
177 
178 /* UFSHCD UIC layer error flags */
179 enum {
180 	UFSHCD_UIC_DL_PA_INIT_ERROR = (1 << 0), /* Data link layer error */
181 	UFSHCD_UIC_DL_NAC_RECEIVED_ERROR = (1 << 1), /* Data link layer error */
182 	UFSHCD_UIC_DL_TCx_REPLAY_ERROR = (1 << 2), /* Data link layer error */
183 	UFSHCD_UIC_NL_ERROR = (1 << 3), /* Network layer error */
184 	UFSHCD_UIC_TL_ERROR = (1 << 4), /* Transport Layer error */
185 	UFSHCD_UIC_DME_ERROR = (1 << 5), /* DME error */
186 	UFSHCD_UIC_PA_GENERIC_ERROR = (1 << 6), /* Generic PA error */
187 };
188 
189 #define ufshcd_set_eh_in_progress(h) \
190 	((h)->eh_flags |= UFSHCD_EH_IN_PROGRESS)
191 #define ufshcd_eh_in_progress(h) \
192 	((h)->eh_flags & UFSHCD_EH_IN_PROGRESS)
193 #define ufshcd_clear_eh_in_progress(h) \
194 	((h)->eh_flags &= ~UFSHCD_EH_IN_PROGRESS)
195 
196 const struct ufs_pm_lvl_states ufs_pm_lvl_states[] = {
197 	[UFS_PM_LVL_0] = {UFS_ACTIVE_PWR_MODE, UIC_LINK_ACTIVE_STATE},
198 	[UFS_PM_LVL_1] = {UFS_ACTIVE_PWR_MODE, UIC_LINK_HIBERN8_STATE},
199 	[UFS_PM_LVL_2] = {UFS_SLEEP_PWR_MODE, UIC_LINK_ACTIVE_STATE},
200 	[UFS_PM_LVL_3] = {UFS_SLEEP_PWR_MODE, UIC_LINK_HIBERN8_STATE},
201 	[UFS_PM_LVL_4] = {UFS_POWERDOWN_PWR_MODE, UIC_LINK_HIBERN8_STATE},
202 	[UFS_PM_LVL_5] = {UFS_POWERDOWN_PWR_MODE, UIC_LINK_OFF_STATE},
203 	/*
204 	 * For DeepSleep, the link is first put in hibern8 and then off.
205 	 * Leaving the link in hibern8 is not supported.
206 	 */
207 	[UFS_PM_LVL_6] = {UFS_DEEPSLEEP_PWR_MODE, UIC_LINK_OFF_STATE},
208 };
209 
210 static inline enum ufs_dev_pwr_mode
211 ufs_get_pm_lvl_to_dev_pwr_mode(enum ufs_pm_level lvl)
212 {
213 	return ufs_pm_lvl_states[lvl].dev_state;
214 }
215 
216 static inline enum uic_link_state
217 ufs_get_pm_lvl_to_link_pwr_state(enum ufs_pm_level lvl)
218 {
219 	return ufs_pm_lvl_states[lvl].link_state;
220 }
221 
222 static inline enum ufs_pm_level
223 ufs_get_desired_pm_lvl_for_dev_link_state(enum ufs_dev_pwr_mode dev_state,
224 					enum uic_link_state link_state)
225 {
226 	enum ufs_pm_level lvl;
227 
228 	for (lvl = UFS_PM_LVL_0; lvl < UFS_PM_LVL_MAX; lvl++) {
229 		if ((ufs_pm_lvl_states[lvl].dev_state == dev_state) &&
230 			(ufs_pm_lvl_states[lvl].link_state == link_state))
231 			return lvl;
232 	}
233 
234 	/* if no match found, return the level 0 */
235 	return UFS_PM_LVL_0;
236 }
237 
238 static const struct ufs_dev_quirk ufs_fixups[] = {
239 	/* UFS cards deviations table */
240 	{ .wmanufacturerid = UFS_VENDOR_MICRON,
241 	  .model = UFS_ANY_MODEL,
242 	  .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM },
243 	{ .wmanufacturerid = UFS_VENDOR_SAMSUNG,
244 	  .model = UFS_ANY_MODEL,
245 	  .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM |
246 		   UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE |
247 		   UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS },
248 	{ .wmanufacturerid = UFS_VENDOR_SKHYNIX,
249 	  .model = UFS_ANY_MODEL,
250 	  .quirk = UFS_DEVICE_QUIRK_HOST_PA_SAVECONFIGTIME },
251 	{ .wmanufacturerid = UFS_VENDOR_SKHYNIX,
252 	  .model = "hB8aL1" /*H28U62301AMR*/,
253 	  .quirk = UFS_DEVICE_QUIRK_HOST_VS_DEBUGSAVECONFIGTIME },
254 	{ .wmanufacturerid = UFS_VENDOR_TOSHIBA,
255 	  .model = UFS_ANY_MODEL,
256 	  .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM },
257 	{ .wmanufacturerid = UFS_VENDOR_TOSHIBA,
258 	  .model = "THGLF2G9C8KBADG",
259 	  .quirk = UFS_DEVICE_QUIRK_PA_TACTIVATE },
260 	{ .wmanufacturerid = UFS_VENDOR_TOSHIBA,
261 	  .model = "THGLF2G9D8KBADG",
262 	  .quirk = UFS_DEVICE_QUIRK_PA_TACTIVATE },
263 	{}
264 };
265 
266 static irqreturn_t ufshcd_tmc_handler(struct ufs_hba *hba);
267 static void ufshcd_async_scan(void *data, async_cookie_t cookie);
268 static int ufshcd_reset_and_restore(struct ufs_hba *hba);
269 static int ufshcd_eh_host_reset_handler(struct scsi_cmnd *cmd);
270 static int ufshcd_clear_tm_cmd(struct ufs_hba *hba, int tag);
271 static void ufshcd_hba_exit(struct ufs_hba *hba);
272 static int ufshcd_probe_hba(struct ufs_hba *hba, bool init_dev_params);
273 static int ufshcd_setup_clocks(struct ufs_hba *hba, bool on);
274 static inline void ufshcd_add_delay_before_dme_cmd(struct ufs_hba *hba);
275 static int ufshcd_host_reset_and_restore(struct ufs_hba *hba);
276 static void ufshcd_resume_clkscaling(struct ufs_hba *hba);
277 static void ufshcd_suspend_clkscaling(struct ufs_hba *hba);
278 static int ufshcd_scale_clks(struct ufs_hba *hba, unsigned long freq,
279 			     bool scale_up);
280 static irqreturn_t ufshcd_intr(int irq, void *__hba);
281 static int ufshcd_change_power_mode(struct ufs_hba *hba,
282 			     struct ufs_pa_layer_attr *pwr_mode);
283 static int ufshcd_setup_hba_vreg(struct ufs_hba *hba, bool on);
284 static int ufshcd_setup_vreg(struct ufs_hba *hba, bool on);
285 static inline int ufshcd_config_vreg_hpm(struct ufs_hba *hba,
286 					 struct ufs_vreg *vreg);
287 static void ufshcd_wb_toggle_buf_flush_during_h8(struct ufs_hba *hba,
288 						 bool enable);
289 static void ufshcd_hba_vreg_set_lpm(struct ufs_hba *hba);
290 static void ufshcd_hba_vreg_set_hpm(struct ufs_hba *hba);
291 
292 static inline void ufshcd_enable_irq(struct ufs_hba *hba)
293 {
294 	if (!hba->is_irq_enabled) {
295 		enable_irq(hba->irq);
296 		hba->is_irq_enabled = true;
297 	}
298 }
299 
300 static inline void ufshcd_disable_irq(struct ufs_hba *hba)
301 {
302 	if (hba->is_irq_enabled) {
303 		disable_irq(hba->irq);
304 		hba->is_irq_enabled = false;
305 	}
306 }
307 
308 static void ufshcd_configure_wb(struct ufs_hba *hba)
309 {
310 	if (!ufshcd_is_wb_allowed(hba))
311 		return;
312 
313 	ufshcd_wb_toggle(hba, true);
314 
315 	ufshcd_wb_toggle_buf_flush_during_h8(hba, true);
316 
317 	if (ufshcd_is_wb_buf_flush_allowed(hba))
318 		ufshcd_wb_toggle_buf_flush(hba, true);
319 }
320 
321 static void ufshcd_scsi_unblock_requests(struct ufs_hba *hba)
322 {
323 	if (atomic_dec_and_test(&hba->scsi_block_reqs_cnt))
324 		scsi_unblock_requests(hba->host);
325 }
326 
327 static void ufshcd_scsi_block_requests(struct ufs_hba *hba)
328 {
329 	if (atomic_inc_return(&hba->scsi_block_reqs_cnt) == 1)
330 		scsi_block_requests(hba->host);
331 }
332 
333 static void ufshcd_add_cmd_upiu_trace(struct ufs_hba *hba, unsigned int tag,
334 				      enum ufs_trace_str_t str_t)
335 {
336 	struct utp_upiu_req *rq = hba->lrb[tag].ucd_req_ptr;
337 	struct utp_upiu_header *header;
338 
339 	if (!trace_ufshcd_upiu_enabled())
340 		return;
341 
342 	if (str_t == UFS_CMD_SEND)
343 		header = &rq->header;
344 	else
345 		header = &hba->lrb[tag].ucd_rsp_ptr->header;
346 
347 	trace_ufshcd_upiu(dev_name(hba->dev), str_t, header, &rq->sc.cdb,
348 			  UFS_TSF_CDB);
349 }
350 
351 static void ufshcd_add_query_upiu_trace(struct ufs_hba *hba,
352 					enum ufs_trace_str_t str_t,
353 					struct utp_upiu_req *rq_rsp)
354 {
355 	if (!trace_ufshcd_upiu_enabled())
356 		return;
357 
358 	trace_ufshcd_upiu(dev_name(hba->dev), str_t, &rq_rsp->header,
359 			  &rq_rsp->qr, UFS_TSF_OSF);
360 }
361 
362 static void ufshcd_add_tm_upiu_trace(struct ufs_hba *hba, unsigned int tag,
363 				     enum ufs_trace_str_t str_t)
364 {
365 	struct utp_task_req_desc *descp = &hba->utmrdl_base_addr[tag];
366 
367 	if (!trace_ufshcd_upiu_enabled())
368 		return;
369 
370 	if (str_t == UFS_TM_SEND)
371 		trace_ufshcd_upiu(dev_name(hba->dev), str_t,
372 				  &descp->upiu_req.req_header,
373 				  &descp->upiu_req.input_param1,
374 				  UFS_TSF_TM_INPUT);
375 	else
376 		trace_ufshcd_upiu(dev_name(hba->dev), str_t,
377 				  &descp->upiu_rsp.rsp_header,
378 				  &descp->upiu_rsp.output_param1,
379 				  UFS_TSF_TM_OUTPUT);
380 }
381 
382 static void ufshcd_add_uic_command_trace(struct ufs_hba *hba,
383 					 const struct uic_command *ucmd,
384 					 enum ufs_trace_str_t str_t)
385 {
386 	u32 cmd;
387 
388 	if (!trace_ufshcd_uic_command_enabled())
389 		return;
390 
391 	if (str_t == UFS_CMD_SEND)
392 		cmd = ucmd->command;
393 	else
394 		cmd = ufshcd_readl(hba, REG_UIC_COMMAND);
395 
396 	trace_ufshcd_uic_command(dev_name(hba->dev), str_t, cmd,
397 				 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_1),
398 				 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_2),
399 				 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_3));
400 }
401 
402 static void ufshcd_add_command_trace(struct ufs_hba *hba, unsigned int tag,
403 				     enum ufs_trace_str_t str_t)
404 {
405 	u64 lba = 0;
406 	u8 opcode = 0, group_id = 0;
407 	u32 doorbell = 0;
408 	u32 intr;
409 	int hwq_id = -1;
410 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
411 	struct scsi_cmnd *cmd = lrbp->cmd;
412 	struct request *rq = scsi_cmd_to_rq(cmd);
413 	int transfer_len = -1;
414 
415 	if (!cmd)
416 		return;
417 
418 	/* trace UPIU also */
419 	ufshcd_add_cmd_upiu_trace(hba, tag, str_t);
420 	if (!trace_ufshcd_command_enabled())
421 		return;
422 
423 	opcode = cmd->cmnd[0];
424 
425 	if (opcode == READ_10 || opcode == WRITE_10) {
426 		/*
427 		 * Currently we only fully trace read(10) and write(10) commands
428 		 */
429 		transfer_len =
430 		       be32_to_cpu(lrbp->ucd_req_ptr->sc.exp_data_transfer_len);
431 		lba = scsi_get_lba(cmd);
432 		if (opcode == WRITE_10)
433 			group_id = lrbp->cmd->cmnd[6];
434 	} else if (opcode == UNMAP) {
435 		/*
436 		 * The number of Bytes to be unmapped beginning with the lba.
437 		 */
438 		transfer_len = blk_rq_bytes(rq);
439 		lba = scsi_get_lba(cmd);
440 	}
441 
442 	intr = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
443 
444 	if (is_mcq_enabled(hba)) {
445 		struct ufs_hw_queue *hwq = ufshcd_mcq_req_to_hwq(hba, rq);
446 
447 		hwq_id = hwq->id;
448 	} else {
449 		doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
450 	}
451 	trace_ufshcd_command(cmd->device, str_t, tag, doorbell, hwq_id,
452 			     transfer_len, intr, lba, opcode, group_id);
453 }
454 
455 static void ufshcd_print_clk_freqs(struct ufs_hba *hba)
456 {
457 	struct ufs_clk_info *clki;
458 	struct list_head *head = &hba->clk_list_head;
459 
460 	if (list_empty(head))
461 		return;
462 
463 	list_for_each_entry(clki, head, list) {
464 		if (!IS_ERR_OR_NULL(clki->clk) && clki->min_freq &&
465 				clki->max_freq)
466 			dev_err(hba->dev, "clk: %s, rate: %u\n",
467 					clki->name, clki->curr_freq);
468 	}
469 }
470 
471 static void ufshcd_print_evt(struct ufs_hba *hba, u32 id,
472 			     const char *err_name)
473 {
474 	int i;
475 	bool found = false;
476 	const struct ufs_event_hist *e;
477 
478 	if (id >= UFS_EVT_CNT)
479 		return;
480 
481 	e = &hba->ufs_stats.event[id];
482 
483 	for (i = 0; i < UFS_EVENT_HIST_LENGTH; i++) {
484 		int p = (i + e->pos) % UFS_EVENT_HIST_LENGTH;
485 
486 		if (e->tstamp[p] == 0)
487 			continue;
488 		dev_err(hba->dev, "%s[%d] = 0x%x at %lld us\n", err_name, p,
489 			e->val[p], div_u64(e->tstamp[p], 1000));
490 		found = true;
491 	}
492 
493 	if (!found)
494 		dev_err(hba->dev, "No record of %s\n", err_name);
495 	else
496 		dev_err(hba->dev, "%s: total cnt=%llu\n", err_name, e->cnt);
497 }
498 
499 static void ufshcd_print_evt_hist(struct ufs_hba *hba)
500 {
501 	ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, "host_regs: ");
502 
503 	ufshcd_print_evt(hba, UFS_EVT_PA_ERR, "pa_err");
504 	ufshcd_print_evt(hba, UFS_EVT_DL_ERR, "dl_err");
505 	ufshcd_print_evt(hba, UFS_EVT_NL_ERR, "nl_err");
506 	ufshcd_print_evt(hba, UFS_EVT_TL_ERR, "tl_err");
507 	ufshcd_print_evt(hba, UFS_EVT_DME_ERR, "dme_err");
508 	ufshcd_print_evt(hba, UFS_EVT_AUTO_HIBERN8_ERR,
509 			 "auto_hibern8_err");
510 	ufshcd_print_evt(hba, UFS_EVT_FATAL_ERR, "fatal_err");
511 	ufshcd_print_evt(hba, UFS_EVT_LINK_STARTUP_FAIL,
512 			 "link_startup_fail");
513 	ufshcd_print_evt(hba, UFS_EVT_RESUME_ERR, "resume_fail");
514 	ufshcd_print_evt(hba, UFS_EVT_SUSPEND_ERR,
515 			 "suspend_fail");
516 	ufshcd_print_evt(hba, UFS_EVT_WL_RES_ERR, "wlun resume_fail");
517 	ufshcd_print_evt(hba, UFS_EVT_WL_SUSP_ERR,
518 			 "wlun suspend_fail");
519 	ufshcd_print_evt(hba, UFS_EVT_DEV_RESET, "dev_reset");
520 	ufshcd_print_evt(hba, UFS_EVT_HOST_RESET, "host_reset");
521 	ufshcd_print_evt(hba, UFS_EVT_ABORT, "task_abort");
522 
523 	ufshcd_vops_dbg_register_dump(hba);
524 }
525 
526 static
527 void ufshcd_print_tr(struct ufs_hba *hba, int tag, bool pr_prdt)
528 {
529 	const struct ufshcd_lrb *lrbp;
530 	int prdt_length;
531 
532 	lrbp = &hba->lrb[tag];
533 
534 	dev_err(hba->dev, "UPIU[%d] - issue time %lld us\n",
535 			tag, div_u64(lrbp->issue_time_stamp_local_clock, 1000));
536 	dev_err(hba->dev, "UPIU[%d] - complete time %lld us\n",
537 			tag, div_u64(lrbp->compl_time_stamp_local_clock, 1000));
538 	dev_err(hba->dev,
539 		"UPIU[%d] - Transfer Request Descriptor phys@0x%llx\n",
540 		tag, (u64)lrbp->utrd_dma_addr);
541 
542 	ufshcd_hex_dump("UPIU TRD: ", lrbp->utr_descriptor_ptr,
543 			sizeof(struct utp_transfer_req_desc));
544 	dev_err(hba->dev, "UPIU[%d] - Request UPIU phys@0x%llx\n", tag,
545 		(u64)lrbp->ucd_req_dma_addr);
546 	ufshcd_hex_dump("UPIU REQ: ", lrbp->ucd_req_ptr,
547 			sizeof(struct utp_upiu_req));
548 	dev_err(hba->dev, "UPIU[%d] - Response UPIU phys@0x%llx\n", tag,
549 		(u64)lrbp->ucd_rsp_dma_addr);
550 	ufshcd_hex_dump("UPIU RSP: ", lrbp->ucd_rsp_ptr,
551 			sizeof(struct utp_upiu_rsp));
552 
553 	prdt_length = le16_to_cpu(
554 		lrbp->utr_descriptor_ptr->prd_table_length);
555 	if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN)
556 		prdt_length /= ufshcd_sg_entry_size(hba);
557 
558 	dev_err(hba->dev,
559 		"UPIU[%d] - PRDT - %d entries  phys@0x%llx\n",
560 		tag, prdt_length,
561 		(u64)lrbp->ucd_prdt_dma_addr);
562 
563 	if (pr_prdt)
564 		ufshcd_hex_dump("UPIU PRDT: ", lrbp->ucd_prdt_ptr,
565 			ufshcd_sg_entry_size(hba) * prdt_length);
566 }
567 
568 static bool ufshcd_print_tr_iter(struct request *req, void *priv)
569 {
570 	struct scsi_device *sdev = req->q->queuedata;
571 	struct Scsi_Host *shost = sdev->host;
572 	struct ufs_hba *hba = shost_priv(shost);
573 
574 	ufshcd_print_tr(hba, req->tag, *(bool *)priv);
575 
576 	return true;
577 }
578 
579 /**
580  * ufshcd_print_trs_all - print trs for all started requests.
581  * @hba: per-adapter instance.
582  * @pr_prdt: need to print prdt or not.
583  */
584 static void ufshcd_print_trs_all(struct ufs_hba *hba, bool pr_prdt)
585 {
586 	blk_mq_tagset_busy_iter(&hba->host->tag_set, ufshcd_print_tr_iter, &pr_prdt);
587 }
588 
589 static void ufshcd_print_tmrs(struct ufs_hba *hba, unsigned long bitmap)
590 {
591 	int tag;
592 
593 	for_each_set_bit(tag, &bitmap, hba->nutmrs) {
594 		struct utp_task_req_desc *tmrdp = &hba->utmrdl_base_addr[tag];
595 
596 		dev_err(hba->dev, "TM[%d] - Task Management Header\n", tag);
597 		ufshcd_hex_dump("", tmrdp, sizeof(*tmrdp));
598 	}
599 }
600 
601 static void ufshcd_print_host_state(struct ufs_hba *hba)
602 {
603 	const struct scsi_device *sdev_ufs = hba->ufs_device_wlun;
604 
605 	dev_err(hba->dev, "UFS Host state=%d\n", hba->ufshcd_state);
606 	dev_err(hba->dev, "outstanding reqs=0x%lx tasks=0x%lx\n",
607 		hba->outstanding_reqs, hba->outstanding_tasks);
608 	dev_err(hba->dev, "saved_err=0x%x, saved_uic_err=0x%x\n",
609 		hba->saved_err, hba->saved_uic_err);
610 	dev_err(hba->dev, "Device power mode=%d, UIC link state=%d\n",
611 		hba->curr_dev_pwr_mode, hba->uic_link_state);
612 	dev_err(hba->dev, "PM in progress=%d, sys. suspended=%d\n",
613 		hba->pm_op_in_progress, hba->is_sys_suspended);
614 	dev_err(hba->dev, "Auto BKOPS=%d, Host self-block=%d\n",
615 		hba->auto_bkops_enabled, hba->host->host_self_blocked);
616 	dev_err(hba->dev, "Clk gate=%d\n", hba->clk_gating.state);
617 	dev_err(hba->dev,
618 		"last_hibern8_exit_tstamp at %lld us, hibern8_exit_cnt=%d\n",
619 		div_u64(hba->ufs_stats.last_hibern8_exit_tstamp, 1000),
620 		hba->ufs_stats.hibern8_exit_cnt);
621 	dev_err(hba->dev, "last intr at %lld us, last intr status=0x%x\n",
622 		div_u64(hba->ufs_stats.last_intr_ts, 1000),
623 		hba->ufs_stats.last_intr_status);
624 	dev_err(hba->dev, "error handling flags=0x%x, req. abort count=%d\n",
625 		hba->eh_flags, hba->req_abort_count);
626 	dev_err(hba->dev, "hba->ufs_version=0x%x, Host capabilities=0x%x, caps=0x%x\n",
627 		hba->ufs_version, hba->capabilities, hba->caps);
628 	dev_err(hba->dev, "quirks=0x%x, dev. quirks=0x%x\n", hba->quirks,
629 		hba->dev_quirks);
630 	if (sdev_ufs)
631 		dev_err(hba->dev, "UFS dev info: %.8s %.16s rev %.4s\n",
632 			sdev_ufs->vendor, sdev_ufs->model, sdev_ufs->rev);
633 
634 	ufshcd_print_clk_freqs(hba);
635 }
636 
637 /**
638  * ufshcd_print_pwr_info - print power params as saved in hba
639  * power info
640  * @hba: per-adapter instance
641  */
642 static void ufshcd_print_pwr_info(struct ufs_hba *hba)
643 {
644 	static const char * const names[] = {
645 		"INVALID MODE",
646 		"FAST MODE",
647 		"SLOW_MODE",
648 		"INVALID MODE",
649 		"FASTAUTO_MODE",
650 		"SLOWAUTO_MODE",
651 		"INVALID MODE",
652 	};
653 
654 	/*
655 	 * Using dev_dbg to avoid messages during runtime PM to avoid
656 	 * never-ending cycles of messages written back to storage by user space
657 	 * causing runtime resume, causing more messages and so on.
658 	 */
659 	dev_dbg(hba->dev, "%s:[RX, TX]: gear=[%d, %d], lane[%d, %d], pwr[%s, %s], rate = %d\n",
660 		 __func__,
661 		 hba->pwr_info.gear_rx, hba->pwr_info.gear_tx,
662 		 hba->pwr_info.lane_rx, hba->pwr_info.lane_tx,
663 		 names[hba->pwr_info.pwr_rx],
664 		 names[hba->pwr_info.pwr_tx],
665 		 hba->pwr_info.hs_rate);
666 }
667 
668 static void ufshcd_device_reset(struct ufs_hba *hba)
669 {
670 	int err;
671 
672 	err = ufshcd_vops_device_reset(hba);
673 
674 	if (!err) {
675 		ufshcd_set_ufs_dev_active(hba);
676 		if (ufshcd_is_wb_allowed(hba)) {
677 			hba->dev_info.wb_enabled = false;
678 			hba->dev_info.wb_buf_flush_enabled = false;
679 		}
680 	}
681 	if (err != -EOPNOTSUPP)
682 		ufshcd_update_evt_hist(hba, UFS_EVT_DEV_RESET, err);
683 }
684 
685 void ufshcd_delay_us(unsigned long us, unsigned long tolerance)
686 {
687 	if (!us)
688 		return;
689 
690 	if (us < 10)
691 		udelay(us);
692 	else
693 		usleep_range(us, us + tolerance);
694 }
695 EXPORT_SYMBOL_GPL(ufshcd_delay_us);
696 
697 /**
698  * ufshcd_wait_for_register - wait for register value to change
699  * @hba: per-adapter interface
700  * @reg: mmio register offset
701  * @mask: mask to apply to the read register value
702  * @val: value to wait for
703  * @interval_us: polling interval in microseconds
704  * @timeout_ms: timeout in milliseconds
705  *
706  * Return: -ETIMEDOUT on error, zero on success.
707  */
708 static int ufshcd_wait_for_register(struct ufs_hba *hba, u32 reg, u32 mask,
709 				u32 val, unsigned long interval_us,
710 				unsigned long timeout_ms)
711 {
712 	int err = 0;
713 	unsigned long timeout = jiffies + msecs_to_jiffies(timeout_ms);
714 
715 	/* ignore bits that we don't intend to wait on */
716 	val = val & mask;
717 
718 	while ((ufshcd_readl(hba, reg) & mask) != val) {
719 		usleep_range(interval_us, interval_us + 50);
720 		if (time_after(jiffies, timeout)) {
721 			if ((ufshcd_readl(hba, reg) & mask) != val)
722 				err = -ETIMEDOUT;
723 			break;
724 		}
725 	}
726 
727 	return err;
728 }
729 
730 /**
731  * ufshcd_get_intr_mask - Get the interrupt bit mask
732  * @hba: Pointer to adapter instance
733  *
734  * Return: interrupt bit mask per version
735  */
736 static inline u32 ufshcd_get_intr_mask(struct ufs_hba *hba)
737 {
738 	if (hba->ufs_version == ufshci_version(1, 0))
739 		return INTERRUPT_MASK_ALL_VER_10;
740 	if (hba->ufs_version <= ufshci_version(2, 0))
741 		return INTERRUPT_MASK_ALL_VER_11;
742 
743 	return INTERRUPT_MASK_ALL_VER_21;
744 }
745 
746 /**
747  * ufshcd_get_ufs_version - Get the UFS version supported by the HBA
748  * @hba: Pointer to adapter instance
749  *
750  * Return: UFSHCI version supported by the controller
751  */
752 static inline u32 ufshcd_get_ufs_version(struct ufs_hba *hba)
753 {
754 	u32 ufshci_ver;
755 
756 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_UFS_HCI_VERSION)
757 		ufshci_ver = ufshcd_vops_get_ufs_hci_version(hba);
758 	else
759 		ufshci_ver = ufshcd_readl(hba, REG_UFS_VERSION);
760 
761 	/*
762 	 * UFSHCI v1.x uses a different version scheme, in order
763 	 * to allow the use of comparisons with the ufshci_version
764 	 * function, we convert it to the same scheme as ufs 2.0+.
765 	 */
766 	if (ufshci_ver & 0x00010000)
767 		return ufshci_version(1, ufshci_ver & 0x00000100);
768 
769 	return ufshci_ver;
770 }
771 
772 /**
773  * ufshcd_is_device_present - Check if any device connected to
774  *			      the host controller
775  * @hba: pointer to adapter instance
776  *
777  * Return: true if device present, false if no device detected
778  */
779 static inline bool ufshcd_is_device_present(struct ufs_hba *hba)
780 {
781 	return ufshcd_readl(hba, REG_CONTROLLER_STATUS) & DEVICE_PRESENT;
782 }
783 
784 /**
785  * ufshcd_get_tr_ocs - Get the UTRD Overall Command Status
786  * @lrbp: pointer to local command reference block
787  * @cqe: pointer to the completion queue entry
788  *
789  * This function is used to get the OCS field from UTRD
790  *
791  * Return: the OCS field in the UTRD.
792  */
793 static enum utp_ocs ufshcd_get_tr_ocs(struct ufshcd_lrb *lrbp,
794 				      struct cq_entry *cqe)
795 {
796 	if (cqe)
797 		return le32_to_cpu(cqe->status) & MASK_OCS;
798 
799 	return lrbp->utr_descriptor_ptr->header.ocs & MASK_OCS;
800 }
801 
802 /**
803  * ufshcd_utrl_clear() - Clear requests from the controller request list.
804  * @hba: per adapter instance
805  * @mask: mask with one bit set for each request to be cleared
806  */
807 static inline void ufshcd_utrl_clear(struct ufs_hba *hba, u32 mask)
808 {
809 	if (hba->quirks & UFSHCI_QUIRK_BROKEN_REQ_LIST_CLR)
810 		mask = ~mask;
811 	/*
812 	 * From the UFSHCI specification: "UTP Transfer Request List CLear
813 	 * Register (UTRLCLR): This field is bit significant. Each bit
814 	 * corresponds to a slot in the UTP Transfer Request List, where bit 0
815 	 * corresponds to request slot 0. A bit in this field is set to ‘0’
816 	 * by host software to indicate to the host controller that a transfer
817 	 * request slot is cleared. The host controller
818 	 * shall free up any resources associated to the request slot
819 	 * immediately, and shall set the associated bit in UTRLDBR to ‘0’. The
820 	 * host software indicates no change to request slots by setting the
821 	 * associated bits in this field to ‘1’. Bits in this field shall only
822 	 * be set ‘1’ or ‘0’ by host software when UTRLRSR is set to ‘1’."
823 	 */
824 	ufshcd_writel(hba, ~mask, REG_UTP_TRANSFER_REQ_LIST_CLEAR);
825 }
826 
827 /**
828  * ufshcd_utmrl_clear - Clear a bit in UTMRLCLR register
829  * @hba: per adapter instance
830  * @pos: position of the bit to be cleared
831  */
832 static inline void ufshcd_utmrl_clear(struct ufs_hba *hba, u32 pos)
833 {
834 	if (hba->quirks & UFSHCI_QUIRK_BROKEN_REQ_LIST_CLR)
835 		ufshcd_writel(hba, (1 << pos), REG_UTP_TASK_REQ_LIST_CLEAR);
836 	else
837 		ufshcd_writel(hba, ~(1 << pos), REG_UTP_TASK_REQ_LIST_CLEAR);
838 }
839 
840 /**
841  * ufshcd_get_lists_status - Check UCRDY, UTRLRDY and UTMRLRDY
842  * @reg: Register value of host controller status
843  *
844  * Return: 0 on success; a positive value if failed.
845  */
846 static inline int ufshcd_get_lists_status(u32 reg)
847 {
848 	return !((reg & UFSHCD_STATUS_READY) == UFSHCD_STATUS_READY);
849 }
850 
851 /**
852  * ufshcd_get_uic_cmd_result - Get the UIC command result
853  * @hba: Pointer to adapter instance
854  *
855  * This function gets the result of UIC command completion
856  *
857  * Return: 0 on success; non-zero value on error.
858  */
859 static inline int ufshcd_get_uic_cmd_result(struct ufs_hba *hba)
860 {
861 	return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_2) &
862 	       MASK_UIC_COMMAND_RESULT;
863 }
864 
865 /**
866  * ufshcd_get_dme_attr_val - Get the value of attribute returned by UIC command
867  * @hba: Pointer to adapter instance
868  *
869  * This function gets UIC command argument3
870  *
871  * Return: 0 on success; non-zero value on error.
872  */
873 static inline u32 ufshcd_get_dme_attr_val(struct ufs_hba *hba)
874 {
875 	return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_3);
876 }
877 
878 /**
879  * ufshcd_get_req_rsp - returns the TR response transaction type
880  * @ucd_rsp_ptr: pointer to response UPIU
881  *
882  * Return: UPIU type.
883  */
884 static inline enum upiu_response_transaction
885 ufshcd_get_req_rsp(struct utp_upiu_rsp *ucd_rsp_ptr)
886 {
887 	return ucd_rsp_ptr->header.transaction_code;
888 }
889 
890 /**
891  * ufshcd_is_exception_event - Check if the device raised an exception event
892  * @ucd_rsp_ptr: pointer to response UPIU
893  *
894  * The function checks if the device raised an exception event indicated in
895  * the Device Information field of response UPIU.
896  *
897  * Return: true if exception is raised, false otherwise.
898  */
899 static inline bool ufshcd_is_exception_event(struct utp_upiu_rsp *ucd_rsp_ptr)
900 {
901 	return ucd_rsp_ptr->header.device_information & 1;
902 }
903 
904 /**
905  * ufshcd_reset_intr_aggr - Reset interrupt aggregation values.
906  * @hba: per adapter instance
907  */
908 static inline void
909 ufshcd_reset_intr_aggr(struct ufs_hba *hba)
910 {
911 	ufshcd_writel(hba, INT_AGGR_ENABLE |
912 		      INT_AGGR_COUNTER_AND_TIMER_RESET,
913 		      REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
914 }
915 
916 /**
917  * ufshcd_config_intr_aggr - Configure interrupt aggregation values.
918  * @hba: per adapter instance
919  * @cnt: Interrupt aggregation counter threshold
920  * @tmout: Interrupt aggregation timeout value
921  */
922 static inline void
923 ufshcd_config_intr_aggr(struct ufs_hba *hba, u8 cnt, u8 tmout)
924 {
925 	ufshcd_writel(hba, INT_AGGR_ENABLE | INT_AGGR_PARAM_WRITE |
926 		      INT_AGGR_COUNTER_THLD_VAL(cnt) |
927 		      INT_AGGR_TIMEOUT_VAL(tmout),
928 		      REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
929 }
930 
931 /**
932  * ufshcd_disable_intr_aggr - Disables interrupt aggregation.
933  * @hba: per adapter instance
934  */
935 static inline void ufshcd_disable_intr_aggr(struct ufs_hba *hba)
936 {
937 	ufshcd_writel(hba, 0, REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
938 }
939 
940 /**
941  * ufshcd_enable_run_stop_reg - Enable run-stop registers,
942  *			When run-stop registers are set to 1, it indicates the
943  *			host controller that it can process the requests
944  * @hba: per adapter instance
945  */
946 static void ufshcd_enable_run_stop_reg(struct ufs_hba *hba)
947 {
948 	ufshcd_writel(hba, UTP_TASK_REQ_LIST_RUN_STOP_BIT,
949 		      REG_UTP_TASK_REQ_LIST_RUN_STOP);
950 	ufshcd_writel(hba, UTP_TRANSFER_REQ_LIST_RUN_STOP_BIT,
951 		      REG_UTP_TRANSFER_REQ_LIST_RUN_STOP);
952 }
953 
954 /**
955  * ufshcd_hba_start - Start controller initialization sequence
956  * @hba: per adapter instance
957  */
958 static inline void ufshcd_hba_start(struct ufs_hba *hba)
959 {
960 	u32 val = CONTROLLER_ENABLE;
961 
962 	if (ufshcd_crypto_enable(hba))
963 		val |= CRYPTO_GENERAL_ENABLE;
964 
965 	ufshcd_writel(hba, val, REG_CONTROLLER_ENABLE);
966 }
967 
968 /**
969  * ufshcd_is_hba_active - Get controller state
970  * @hba: per adapter instance
971  *
972  * Return: true if and only if the controller is active.
973  */
974 bool ufshcd_is_hba_active(struct ufs_hba *hba)
975 {
976 	return ufshcd_readl(hba, REG_CONTROLLER_ENABLE) & CONTROLLER_ENABLE;
977 }
978 EXPORT_SYMBOL_GPL(ufshcd_is_hba_active);
979 
980 u32 ufshcd_get_local_unipro_ver(struct ufs_hba *hba)
981 {
982 	/* HCI version 1.0 and 1.1 supports UniPro 1.41 */
983 	if (hba->ufs_version <= ufshci_version(1, 1))
984 		return UFS_UNIPRO_VER_1_41;
985 	else
986 		return UFS_UNIPRO_VER_1_6;
987 }
988 EXPORT_SYMBOL(ufshcd_get_local_unipro_ver);
989 
990 static bool ufshcd_is_unipro_pa_params_tuning_req(struct ufs_hba *hba)
991 {
992 	/*
993 	 * If both host and device support UniPro ver1.6 or later, PA layer
994 	 * parameters tuning happens during link startup itself.
995 	 *
996 	 * We can manually tune PA layer parameters if either host or device
997 	 * doesn't support UniPro ver 1.6 or later. But to keep manual tuning
998 	 * logic simple, we will only do manual tuning if local unipro version
999 	 * doesn't support ver1.6 or later.
1000 	 */
1001 	return ufshcd_get_local_unipro_ver(hba) < UFS_UNIPRO_VER_1_6;
1002 }
1003 
1004 /**
1005  * ufshcd_set_clk_freq - set UFS controller clock frequencies
1006  * @hba: per adapter instance
1007  * @scale_up: If True, set max possible frequency othewise set low frequency
1008  *
1009  * Return: 0 if successful; < 0 upon failure.
1010  */
1011 static int ufshcd_set_clk_freq(struct ufs_hba *hba, bool scale_up)
1012 {
1013 	int ret = 0;
1014 	struct ufs_clk_info *clki;
1015 	struct list_head *head = &hba->clk_list_head;
1016 
1017 	if (list_empty(head))
1018 		goto out;
1019 
1020 	list_for_each_entry(clki, head, list) {
1021 		if (!IS_ERR_OR_NULL(clki->clk)) {
1022 			if (scale_up && clki->max_freq) {
1023 				if (clki->curr_freq == clki->max_freq)
1024 					continue;
1025 
1026 				ret = clk_set_rate(clki->clk, clki->max_freq);
1027 				if (ret) {
1028 					dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
1029 						__func__, clki->name,
1030 						clki->max_freq, ret);
1031 					break;
1032 				}
1033 				trace_ufshcd_clk_scaling(dev_name(hba->dev),
1034 						"scaled up", clki->name,
1035 						clki->curr_freq,
1036 						clki->max_freq);
1037 
1038 				clki->curr_freq = clki->max_freq;
1039 
1040 			} else if (!scale_up && clki->min_freq) {
1041 				if (clki->curr_freq == clki->min_freq)
1042 					continue;
1043 
1044 				ret = clk_set_rate(clki->clk, clki->min_freq);
1045 				if (ret) {
1046 					dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
1047 						__func__, clki->name,
1048 						clki->min_freq, ret);
1049 					break;
1050 				}
1051 				trace_ufshcd_clk_scaling(dev_name(hba->dev),
1052 						"scaled down", clki->name,
1053 						clki->curr_freq,
1054 						clki->min_freq);
1055 				clki->curr_freq = clki->min_freq;
1056 			}
1057 		}
1058 		dev_dbg(hba->dev, "%s: clk: %s, rate: %lu\n", __func__,
1059 				clki->name, clk_get_rate(clki->clk));
1060 	}
1061 
1062 out:
1063 	return ret;
1064 }
1065 
1066 int ufshcd_opp_config_clks(struct device *dev, struct opp_table *opp_table,
1067 			   struct dev_pm_opp *opp, void *data,
1068 			   bool scaling_down)
1069 {
1070 	struct ufs_hba *hba = dev_get_drvdata(dev);
1071 	struct list_head *head = &hba->clk_list_head;
1072 	struct ufs_clk_info *clki;
1073 	unsigned long freq;
1074 	u8 idx = 0;
1075 	int ret;
1076 
1077 	list_for_each_entry(clki, head, list) {
1078 		if (!IS_ERR_OR_NULL(clki->clk)) {
1079 			freq = dev_pm_opp_get_freq_indexed(opp, idx++);
1080 
1081 			/* Do not set rate for clocks having frequency as 0 */
1082 			if (!freq)
1083 				continue;
1084 
1085 			ret = clk_set_rate(clki->clk, freq);
1086 			if (ret) {
1087 				dev_err(dev, "%s: %s clk set rate(%ldHz) failed, %d\n",
1088 					__func__, clki->name, freq, ret);
1089 				return ret;
1090 			}
1091 
1092 			trace_ufshcd_clk_scaling(dev_name(dev),
1093 				(scaling_down ? "scaled down" : "scaled up"),
1094 				clki->name, hba->clk_scaling.target_freq, freq);
1095 		}
1096 	}
1097 
1098 	return 0;
1099 }
1100 EXPORT_SYMBOL_GPL(ufshcd_opp_config_clks);
1101 
1102 static int ufshcd_opp_set_rate(struct ufs_hba *hba, unsigned long freq)
1103 {
1104 	struct dev_pm_opp *opp;
1105 	int ret;
1106 
1107 	opp = dev_pm_opp_find_freq_floor_indexed(hba->dev,
1108 						 &freq, 0);
1109 	if (IS_ERR(opp))
1110 		return PTR_ERR(opp);
1111 
1112 	ret = dev_pm_opp_set_opp(hba->dev, opp);
1113 	dev_pm_opp_put(opp);
1114 
1115 	return ret;
1116 }
1117 
1118 /**
1119  * ufshcd_scale_clks - scale up or scale down UFS controller clocks
1120  * @hba: per adapter instance
1121  * @freq: frequency to scale
1122  * @scale_up: True if scaling up and false if scaling down
1123  *
1124  * Return: 0 if successful; < 0 upon failure.
1125  */
1126 static int ufshcd_scale_clks(struct ufs_hba *hba, unsigned long freq,
1127 			     bool scale_up)
1128 {
1129 	int ret = 0;
1130 	ktime_t start = ktime_get();
1131 
1132 	ret = ufshcd_vops_clk_scale_notify(hba, scale_up, PRE_CHANGE);
1133 	if (ret)
1134 		goto out;
1135 
1136 	if (hba->use_pm_opp)
1137 		ret = ufshcd_opp_set_rate(hba, freq);
1138 	else
1139 		ret = ufshcd_set_clk_freq(hba, scale_up);
1140 	if (ret)
1141 		goto out;
1142 
1143 	ret = ufshcd_vops_clk_scale_notify(hba, scale_up, POST_CHANGE);
1144 	if (ret) {
1145 		if (hba->use_pm_opp)
1146 			ufshcd_opp_set_rate(hba,
1147 					    hba->devfreq->previous_freq);
1148 		else
1149 			ufshcd_set_clk_freq(hba, !scale_up);
1150 	}
1151 
1152 out:
1153 	trace_ufshcd_profile_clk_scaling(dev_name(hba->dev),
1154 			(scale_up ? "up" : "down"),
1155 			ktime_to_us(ktime_sub(ktime_get(), start)), ret);
1156 	return ret;
1157 }
1158 
1159 /**
1160  * ufshcd_is_devfreq_scaling_required - check if scaling is required or not
1161  * @hba: per adapter instance
1162  * @freq: frequency to scale
1163  * @scale_up: True if scaling up and false if scaling down
1164  *
1165  * Return: true if scaling is required, false otherwise.
1166  */
1167 static bool ufshcd_is_devfreq_scaling_required(struct ufs_hba *hba,
1168 					       unsigned long freq, bool scale_up)
1169 {
1170 	struct ufs_clk_info *clki;
1171 	struct list_head *head = &hba->clk_list_head;
1172 
1173 	if (list_empty(head))
1174 		return false;
1175 
1176 	if (hba->use_pm_opp)
1177 		return freq != hba->clk_scaling.target_freq;
1178 
1179 	list_for_each_entry(clki, head, list) {
1180 		if (!IS_ERR_OR_NULL(clki->clk)) {
1181 			if (scale_up && clki->max_freq) {
1182 				if (clki->curr_freq == clki->max_freq)
1183 					continue;
1184 				return true;
1185 			} else if (!scale_up && clki->min_freq) {
1186 				if (clki->curr_freq == clki->min_freq)
1187 					continue;
1188 				return true;
1189 			}
1190 		}
1191 	}
1192 
1193 	return false;
1194 }
1195 
1196 /*
1197  * Determine the number of pending commands by counting the bits in the SCSI
1198  * device budget maps. This approach has been selected because a bit is set in
1199  * the budget map before scsi_host_queue_ready() checks the host_self_blocked
1200  * flag. The host_self_blocked flag can be modified by calling
1201  * scsi_block_requests() or scsi_unblock_requests().
1202  */
1203 static u32 ufshcd_pending_cmds(struct ufs_hba *hba)
1204 {
1205 	const struct scsi_device *sdev;
1206 	u32 pending = 0;
1207 
1208 	lockdep_assert_held(hba->host->host_lock);
1209 	__shost_for_each_device(sdev, hba->host)
1210 		pending += sbitmap_weight(&sdev->budget_map);
1211 
1212 	return pending;
1213 }
1214 
1215 /*
1216  * Wait until all pending SCSI commands and TMFs have finished or the timeout
1217  * has expired.
1218  *
1219  * Return: 0 upon success; -EBUSY upon timeout.
1220  */
1221 static int ufshcd_wait_for_doorbell_clr(struct ufs_hba *hba,
1222 					u64 wait_timeout_us)
1223 {
1224 	unsigned long flags;
1225 	int ret = 0;
1226 	u32 tm_doorbell;
1227 	u32 tr_pending;
1228 	bool timeout = false, do_last_check = false;
1229 	ktime_t start;
1230 
1231 	ufshcd_hold(hba);
1232 	spin_lock_irqsave(hba->host->host_lock, flags);
1233 	/*
1234 	 * Wait for all the outstanding tasks/transfer requests.
1235 	 * Verify by checking the doorbell registers are clear.
1236 	 */
1237 	start = ktime_get();
1238 	do {
1239 		if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL) {
1240 			ret = -EBUSY;
1241 			goto out;
1242 		}
1243 
1244 		tm_doorbell = ufshcd_readl(hba, REG_UTP_TASK_REQ_DOOR_BELL);
1245 		tr_pending = ufshcd_pending_cmds(hba);
1246 		if (!tm_doorbell && !tr_pending) {
1247 			timeout = false;
1248 			break;
1249 		} else if (do_last_check) {
1250 			break;
1251 		}
1252 
1253 		spin_unlock_irqrestore(hba->host->host_lock, flags);
1254 		io_schedule_timeout(msecs_to_jiffies(20));
1255 		if (ktime_to_us(ktime_sub(ktime_get(), start)) >
1256 		    wait_timeout_us) {
1257 			timeout = true;
1258 			/*
1259 			 * We might have scheduled out for long time so make
1260 			 * sure to check if doorbells are cleared by this time
1261 			 * or not.
1262 			 */
1263 			do_last_check = true;
1264 		}
1265 		spin_lock_irqsave(hba->host->host_lock, flags);
1266 	} while (tm_doorbell || tr_pending);
1267 
1268 	if (timeout) {
1269 		dev_err(hba->dev,
1270 			"%s: timedout waiting for doorbell to clear (tm=0x%x, tr=0x%x)\n",
1271 			__func__, tm_doorbell, tr_pending);
1272 		ret = -EBUSY;
1273 	}
1274 out:
1275 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1276 	ufshcd_release(hba);
1277 	return ret;
1278 }
1279 
1280 /**
1281  * ufshcd_scale_gear - scale up/down UFS gear
1282  * @hba: per adapter instance
1283  * @scale_up: True for scaling up gear and false for scaling down
1284  *
1285  * Return: 0 for success; -EBUSY if scaling can't happen at this time;
1286  * non-zero for any other errors.
1287  */
1288 static int ufshcd_scale_gear(struct ufs_hba *hba, bool scale_up)
1289 {
1290 	int ret = 0;
1291 	struct ufs_pa_layer_attr new_pwr_info;
1292 
1293 	if (scale_up) {
1294 		memcpy(&new_pwr_info, &hba->clk_scaling.saved_pwr_info,
1295 		       sizeof(struct ufs_pa_layer_attr));
1296 	} else {
1297 		memcpy(&new_pwr_info, &hba->pwr_info,
1298 		       sizeof(struct ufs_pa_layer_attr));
1299 
1300 		if (hba->pwr_info.gear_tx > hba->clk_scaling.min_gear ||
1301 		    hba->pwr_info.gear_rx > hba->clk_scaling.min_gear) {
1302 			/* save the current power mode */
1303 			memcpy(&hba->clk_scaling.saved_pwr_info,
1304 				&hba->pwr_info,
1305 				sizeof(struct ufs_pa_layer_attr));
1306 
1307 			/* scale down gear */
1308 			new_pwr_info.gear_tx = hba->clk_scaling.min_gear;
1309 			new_pwr_info.gear_rx = hba->clk_scaling.min_gear;
1310 		}
1311 	}
1312 
1313 	/* check if the power mode needs to be changed or not? */
1314 	ret = ufshcd_config_pwr_mode(hba, &new_pwr_info);
1315 	if (ret)
1316 		dev_err(hba->dev, "%s: failed err %d, old gear: (tx %d rx %d), new gear: (tx %d rx %d)",
1317 			__func__, ret,
1318 			hba->pwr_info.gear_tx, hba->pwr_info.gear_rx,
1319 			new_pwr_info.gear_tx, new_pwr_info.gear_rx);
1320 
1321 	return ret;
1322 }
1323 
1324 /*
1325  * Wait until all pending SCSI commands and TMFs have finished or the timeout
1326  * has expired.
1327  *
1328  * Return: 0 upon success; -EBUSY upon timeout.
1329  */
1330 static int ufshcd_clock_scaling_prepare(struct ufs_hba *hba, u64 timeout_us)
1331 {
1332 	int ret = 0;
1333 	/*
1334 	 * make sure that there are no outstanding requests when
1335 	 * clock scaling is in progress
1336 	 */
1337 	ufshcd_scsi_block_requests(hba);
1338 	mutex_lock(&hba->wb_mutex);
1339 	down_write(&hba->clk_scaling_lock);
1340 
1341 	if (!hba->clk_scaling.is_allowed ||
1342 	    ufshcd_wait_for_doorbell_clr(hba, timeout_us)) {
1343 		ret = -EBUSY;
1344 		up_write(&hba->clk_scaling_lock);
1345 		mutex_unlock(&hba->wb_mutex);
1346 		ufshcd_scsi_unblock_requests(hba);
1347 		goto out;
1348 	}
1349 
1350 	/* let's not get into low power until clock scaling is completed */
1351 	ufshcd_hold(hba);
1352 
1353 out:
1354 	return ret;
1355 }
1356 
1357 static void ufshcd_clock_scaling_unprepare(struct ufs_hba *hba, int err, bool scale_up)
1358 {
1359 	up_write(&hba->clk_scaling_lock);
1360 
1361 	/* Enable Write Booster if we have scaled up else disable it */
1362 	if (ufshcd_enable_wb_if_scaling_up(hba) && !err)
1363 		ufshcd_wb_toggle(hba, scale_up);
1364 
1365 	mutex_unlock(&hba->wb_mutex);
1366 
1367 	ufshcd_scsi_unblock_requests(hba);
1368 	ufshcd_release(hba);
1369 }
1370 
1371 /**
1372  * ufshcd_devfreq_scale - scale up/down UFS clocks and gear
1373  * @hba: per adapter instance
1374  * @freq: frequency to scale
1375  * @scale_up: True for scaling up and false for scalin down
1376  *
1377  * Return: 0 for success; -EBUSY if scaling can't happen at this time; non-zero
1378  * for any other errors.
1379  */
1380 static int ufshcd_devfreq_scale(struct ufs_hba *hba, unsigned long freq,
1381 				bool scale_up)
1382 {
1383 	int ret = 0;
1384 
1385 	ret = ufshcd_clock_scaling_prepare(hba, 1 * USEC_PER_SEC);
1386 	if (ret)
1387 		return ret;
1388 
1389 	/* scale down the gear before scaling down clocks */
1390 	if (!scale_up) {
1391 		ret = ufshcd_scale_gear(hba, false);
1392 		if (ret)
1393 			goto out_unprepare;
1394 	}
1395 
1396 	ret = ufshcd_scale_clks(hba, freq, scale_up);
1397 	if (ret) {
1398 		if (!scale_up)
1399 			ufshcd_scale_gear(hba, true);
1400 		goto out_unprepare;
1401 	}
1402 
1403 	/* scale up the gear after scaling up clocks */
1404 	if (scale_up) {
1405 		ret = ufshcd_scale_gear(hba, true);
1406 		if (ret) {
1407 			ufshcd_scale_clks(hba, hba->devfreq->previous_freq,
1408 					  false);
1409 			goto out_unprepare;
1410 		}
1411 	}
1412 
1413 out_unprepare:
1414 	ufshcd_clock_scaling_unprepare(hba, ret, scale_up);
1415 	return ret;
1416 }
1417 
1418 static void ufshcd_clk_scaling_suspend_work(struct work_struct *work)
1419 {
1420 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1421 					   clk_scaling.suspend_work);
1422 	unsigned long irq_flags;
1423 
1424 	spin_lock_irqsave(hba->host->host_lock, irq_flags);
1425 	if (hba->clk_scaling.active_reqs || hba->clk_scaling.is_suspended) {
1426 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1427 		return;
1428 	}
1429 	hba->clk_scaling.is_suspended = true;
1430 	hba->clk_scaling.window_start_t = 0;
1431 	spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1432 
1433 	devfreq_suspend_device(hba->devfreq);
1434 }
1435 
1436 static void ufshcd_clk_scaling_resume_work(struct work_struct *work)
1437 {
1438 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1439 					   clk_scaling.resume_work);
1440 	unsigned long irq_flags;
1441 
1442 	spin_lock_irqsave(hba->host->host_lock, irq_flags);
1443 	if (!hba->clk_scaling.is_suspended) {
1444 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1445 		return;
1446 	}
1447 	hba->clk_scaling.is_suspended = false;
1448 	spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1449 
1450 	devfreq_resume_device(hba->devfreq);
1451 }
1452 
1453 static int ufshcd_devfreq_target(struct device *dev,
1454 				unsigned long *freq, u32 flags)
1455 {
1456 	int ret = 0;
1457 	struct ufs_hba *hba = dev_get_drvdata(dev);
1458 	ktime_t start;
1459 	bool scale_up, sched_clk_scaling_suspend_work = false;
1460 	struct list_head *clk_list = &hba->clk_list_head;
1461 	struct ufs_clk_info *clki;
1462 	unsigned long irq_flags;
1463 
1464 	if (!ufshcd_is_clkscaling_supported(hba))
1465 		return -EINVAL;
1466 
1467 	if (hba->use_pm_opp) {
1468 		struct dev_pm_opp *opp;
1469 
1470 		/* Get the recommended frequency from OPP framework */
1471 		opp = devfreq_recommended_opp(dev, freq, flags);
1472 		if (IS_ERR(opp))
1473 			return PTR_ERR(opp);
1474 
1475 		dev_pm_opp_put(opp);
1476 	} else {
1477 		/* Override with the closest supported frequency */
1478 		clki = list_first_entry(&hba->clk_list_head, struct ufs_clk_info,
1479 					list);
1480 		*freq =	(unsigned long) clk_round_rate(clki->clk, *freq);
1481 	}
1482 
1483 	spin_lock_irqsave(hba->host->host_lock, irq_flags);
1484 	if (ufshcd_eh_in_progress(hba)) {
1485 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1486 		return 0;
1487 	}
1488 
1489 	/* Skip scaling clock when clock scaling is suspended */
1490 	if (hba->clk_scaling.is_suspended) {
1491 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1492 		dev_warn(hba->dev, "clock scaling is suspended, skip");
1493 		return 0;
1494 	}
1495 
1496 	if (!hba->clk_scaling.active_reqs)
1497 		sched_clk_scaling_suspend_work = true;
1498 
1499 	if (list_empty(clk_list)) {
1500 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1501 		goto out;
1502 	}
1503 
1504 	/* Decide based on the target or rounded-off frequency and update */
1505 	if (hba->use_pm_opp)
1506 		scale_up = *freq > hba->clk_scaling.target_freq;
1507 	else
1508 		scale_up = *freq == clki->max_freq;
1509 
1510 	if (!hba->use_pm_opp && !scale_up)
1511 		*freq = clki->min_freq;
1512 
1513 	/* Update the frequency */
1514 	if (!ufshcd_is_devfreq_scaling_required(hba, *freq, scale_up)) {
1515 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1516 		ret = 0;
1517 		goto out; /* no state change required */
1518 	}
1519 	spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1520 
1521 	start = ktime_get();
1522 	ret = ufshcd_devfreq_scale(hba, *freq, scale_up);
1523 	if (!ret)
1524 		hba->clk_scaling.target_freq = *freq;
1525 
1526 	trace_ufshcd_profile_clk_scaling(dev_name(hba->dev),
1527 		(scale_up ? "up" : "down"),
1528 		ktime_to_us(ktime_sub(ktime_get(), start)), ret);
1529 
1530 out:
1531 	if (sched_clk_scaling_suspend_work && !scale_up)
1532 		queue_work(hba->clk_scaling.workq,
1533 			   &hba->clk_scaling.suspend_work);
1534 
1535 	return ret;
1536 }
1537 
1538 static int ufshcd_devfreq_get_dev_status(struct device *dev,
1539 		struct devfreq_dev_status *stat)
1540 {
1541 	struct ufs_hba *hba = dev_get_drvdata(dev);
1542 	struct ufs_clk_scaling *scaling = &hba->clk_scaling;
1543 	unsigned long flags;
1544 	ktime_t curr_t;
1545 
1546 	if (!ufshcd_is_clkscaling_supported(hba))
1547 		return -EINVAL;
1548 
1549 	memset(stat, 0, sizeof(*stat));
1550 
1551 	spin_lock_irqsave(hba->host->host_lock, flags);
1552 	curr_t = ktime_get();
1553 	if (!scaling->window_start_t)
1554 		goto start_window;
1555 
1556 	/*
1557 	 * If current frequency is 0, then the ondemand governor considers
1558 	 * there's no initial frequency set. And it always requests to set
1559 	 * to max. frequency.
1560 	 */
1561 	if (hba->use_pm_opp) {
1562 		stat->current_frequency = hba->clk_scaling.target_freq;
1563 	} else {
1564 		struct list_head *clk_list = &hba->clk_list_head;
1565 		struct ufs_clk_info *clki;
1566 
1567 		clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1568 		stat->current_frequency = clki->curr_freq;
1569 	}
1570 
1571 	if (scaling->is_busy_started)
1572 		scaling->tot_busy_t += ktime_us_delta(curr_t,
1573 				scaling->busy_start_t);
1574 	stat->total_time = ktime_us_delta(curr_t, scaling->window_start_t);
1575 	stat->busy_time = scaling->tot_busy_t;
1576 start_window:
1577 	scaling->window_start_t = curr_t;
1578 	scaling->tot_busy_t = 0;
1579 
1580 	if (scaling->active_reqs) {
1581 		scaling->busy_start_t = curr_t;
1582 		scaling->is_busy_started = true;
1583 	} else {
1584 		scaling->busy_start_t = 0;
1585 		scaling->is_busy_started = false;
1586 	}
1587 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1588 	return 0;
1589 }
1590 
1591 static int ufshcd_devfreq_init(struct ufs_hba *hba)
1592 {
1593 	struct list_head *clk_list = &hba->clk_list_head;
1594 	struct ufs_clk_info *clki;
1595 	struct devfreq *devfreq;
1596 	int ret;
1597 
1598 	/* Skip devfreq if we don't have any clocks in the list */
1599 	if (list_empty(clk_list))
1600 		return 0;
1601 
1602 	if (!hba->use_pm_opp) {
1603 		clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1604 		dev_pm_opp_add(hba->dev, clki->min_freq, 0);
1605 		dev_pm_opp_add(hba->dev, clki->max_freq, 0);
1606 	}
1607 
1608 	ufshcd_vops_config_scaling_param(hba, &hba->vps->devfreq_profile,
1609 					 &hba->vps->ondemand_data);
1610 	devfreq = devfreq_add_device(hba->dev,
1611 			&hba->vps->devfreq_profile,
1612 			DEVFREQ_GOV_SIMPLE_ONDEMAND,
1613 			&hba->vps->ondemand_data);
1614 	if (IS_ERR(devfreq)) {
1615 		ret = PTR_ERR(devfreq);
1616 		dev_err(hba->dev, "Unable to register with devfreq %d\n", ret);
1617 
1618 		if (!hba->use_pm_opp) {
1619 			dev_pm_opp_remove(hba->dev, clki->min_freq);
1620 			dev_pm_opp_remove(hba->dev, clki->max_freq);
1621 		}
1622 		return ret;
1623 	}
1624 
1625 	hba->devfreq = devfreq;
1626 
1627 	return 0;
1628 }
1629 
1630 static void ufshcd_devfreq_remove(struct ufs_hba *hba)
1631 {
1632 	struct list_head *clk_list = &hba->clk_list_head;
1633 
1634 	if (!hba->devfreq)
1635 		return;
1636 
1637 	devfreq_remove_device(hba->devfreq);
1638 	hba->devfreq = NULL;
1639 
1640 	if (!hba->use_pm_opp) {
1641 		struct ufs_clk_info *clki;
1642 
1643 		clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1644 		dev_pm_opp_remove(hba->dev, clki->min_freq);
1645 		dev_pm_opp_remove(hba->dev, clki->max_freq);
1646 	}
1647 }
1648 
1649 static void ufshcd_suspend_clkscaling(struct ufs_hba *hba)
1650 {
1651 	unsigned long flags;
1652 	bool suspend = false;
1653 
1654 	cancel_work_sync(&hba->clk_scaling.suspend_work);
1655 	cancel_work_sync(&hba->clk_scaling.resume_work);
1656 
1657 	spin_lock_irqsave(hba->host->host_lock, flags);
1658 	if (!hba->clk_scaling.is_suspended) {
1659 		suspend = true;
1660 		hba->clk_scaling.is_suspended = true;
1661 		hba->clk_scaling.window_start_t = 0;
1662 	}
1663 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1664 
1665 	if (suspend)
1666 		devfreq_suspend_device(hba->devfreq);
1667 }
1668 
1669 static void ufshcd_resume_clkscaling(struct ufs_hba *hba)
1670 {
1671 	unsigned long flags;
1672 	bool resume = false;
1673 
1674 	spin_lock_irqsave(hba->host->host_lock, flags);
1675 	if (hba->clk_scaling.is_suspended) {
1676 		resume = true;
1677 		hba->clk_scaling.is_suspended = false;
1678 	}
1679 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1680 
1681 	if (resume)
1682 		devfreq_resume_device(hba->devfreq);
1683 }
1684 
1685 static ssize_t ufshcd_clkscale_enable_show(struct device *dev,
1686 		struct device_attribute *attr, char *buf)
1687 {
1688 	struct ufs_hba *hba = dev_get_drvdata(dev);
1689 
1690 	return sysfs_emit(buf, "%d\n", hba->clk_scaling.is_enabled);
1691 }
1692 
1693 static ssize_t ufshcd_clkscale_enable_store(struct device *dev,
1694 		struct device_attribute *attr, const char *buf, size_t count)
1695 {
1696 	struct ufs_hba *hba = dev_get_drvdata(dev);
1697 	u32 value;
1698 	int err = 0;
1699 
1700 	if (kstrtou32(buf, 0, &value))
1701 		return -EINVAL;
1702 
1703 	down(&hba->host_sem);
1704 	if (!ufshcd_is_user_access_allowed(hba)) {
1705 		err = -EBUSY;
1706 		goto out;
1707 	}
1708 
1709 	value = !!value;
1710 	if (value == hba->clk_scaling.is_enabled)
1711 		goto out;
1712 
1713 	ufshcd_rpm_get_sync(hba);
1714 	ufshcd_hold(hba);
1715 
1716 	hba->clk_scaling.is_enabled = value;
1717 
1718 	if (value) {
1719 		ufshcd_resume_clkscaling(hba);
1720 	} else {
1721 		ufshcd_suspend_clkscaling(hba);
1722 		err = ufshcd_devfreq_scale(hba, ULONG_MAX, true);
1723 		if (err)
1724 			dev_err(hba->dev, "%s: failed to scale clocks up %d\n",
1725 					__func__, err);
1726 	}
1727 
1728 	ufshcd_release(hba);
1729 	ufshcd_rpm_put_sync(hba);
1730 out:
1731 	up(&hba->host_sem);
1732 	return err ? err : count;
1733 }
1734 
1735 static void ufshcd_init_clk_scaling_sysfs(struct ufs_hba *hba)
1736 {
1737 	hba->clk_scaling.enable_attr.show = ufshcd_clkscale_enable_show;
1738 	hba->clk_scaling.enable_attr.store = ufshcd_clkscale_enable_store;
1739 	sysfs_attr_init(&hba->clk_scaling.enable_attr.attr);
1740 	hba->clk_scaling.enable_attr.attr.name = "clkscale_enable";
1741 	hba->clk_scaling.enable_attr.attr.mode = 0644;
1742 	if (device_create_file(hba->dev, &hba->clk_scaling.enable_attr))
1743 		dev_err(hba->dev, "Failed to create sysfs for clkscale_enable\n");
1744 }
1745 
1746 static void ufshcd_remove_clk_scaling_sysfs(struct ufs_hba *hba)
1747 {
1748 	if (hba->clk_scaling.enable_attr.attr.name)
1749 		device_remove_file(hba->dev, &hba->clk_scaling.enable_attr);
1750 }
1751 
1752 static void ufshcd_init_clk_scaling(struct ufs_hba *hba)
1753 {
1754 	char wq_name[sizeof("ufs_clkscaling_00")];
1755 
1756 	if (!ufshcd_is_clkscaling_supported(hba))
1757 		return;
1758 
1759 	if (!hba->clk_scaling.min_gear)
1760 		hba->clk_scaling.min_gear = UFS_HS_G1;
1761 
1762 	INIT_WORK(&hba->clk_scaling.suspend_work,
1763 		  ufshcd_clk_scaling_suspend_work);
1764 	INIT_WORK(&hba->clk_scaling.resume_work,
1765 		  ufshcd_clk_scaling_resume_work);
1766 
1767 	snprintf(wq_name, sizeof(wq_name), "ufs_clkscaling_%d",
1768 		 hba->host->host_no);
1769 	hba->clk_scaling.workq = create_singlethread_workqueue(wq_name);
1770 
1771 	hba->clk_scaling.is_initialized = true;
1772 }
1773 
1774 static void ufshcd_exit_clk_scaling(struct ufs_hba *hba)
1775 {
1776 	if (!hba->clk_scaling.is_initialized)
1777 		return;
1778 
1779 	ufshcd_remove_clk_scaling_sysfs(hba);
1780 	destroy_workqueue(hba->clk_scaling.workq);
1781 	ufshcd_devfreq_remove(hba);
1782 	hba->clk_scaling.is_initialized = false;
1783 }
1784 
1785 static void ufshcd_ungate_work(struct work_struct *work)
1786 {
1787 	int ret;
1788 	unsigned long flags;
1789 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1790 			clk_gating.ungate_work);
1791 
1792 	cancel_delayed_work_sync(&hba->clk_gating.gate_work);
1793 
1794 	spin_lock_irqsave(hba->host->host_lock, flags);
1795 	if (hba->clk_gating.state == CLKS_ON) {
1796 		spin_unlock_irqrestore(hba->host->host_lock, flags);
1797 		return;
1798 	}
1799 
1800 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1801 	ufshcd_hba_vreg_set_hpm(hba);
1802 	ufshcd_setup_clocks(hba, true);
1803 
1804 	ufshcd_enable_irq(hba);
1805 
1806 	/* Exit from hibern8 */
1807 	if (ufshcd_can_hibern8_during_gating(hba)) {
1808 		/* Prevent gating in this path */
1809 		hba->clk_gating.is_suspended = true;
1810 		if (ufshcd_is_link_hibern8(hba)) {
1811 			ret = ufshcd_uic_hibern8_exit(hba);
1812 			if (ret)
1813 				dev_err(hba->dev, "%s: hibern8 exit failed %d\n",
1814 					__func__, ret);
1815 			else
1816 				ufshcd_set_link_active(hba);
1817 		}
1818 		hba->clk_gating.is_suspended = false;
1819 	}
1820 }
1821 
1822 /**
1823  * ufshcd_hold - Enable clocks that were gated earlier due to ufshcd_release.
1824  * Also, exit from hibern8 mode and set the link as active.
1825  * @hba: per adapter instance
1826  */
1827 void ufshcd_hold(struct ufs_hba *hba)
1828 {
1829 	bool flush_result;
1830 	unsigned long flags;
1831 
1832 	if (!ufshcd_is_clkgating_allowed(hba) ||
1833 	    !hba->clk_gating.is_initialized)
1834 		return;
1835 	spin_lock_irqsave(hba->host->host_lock, flags);
1836 	hba->clk_gating.active_reqs++;
1837 
1838 start:
1839 	switch (hba->clk_gating.state) {
1840 	case CLKS_ON:
1841 		/*
1842 		 * Wait for the ungate work to complete if in progress.
1843 		 * Though the clocks may be in ON state, the link could
1844 		 * still be in hibner8 state if hibern8 is allowed
1845 		 * during clock gating.
1846 		 * Make sure we exit hibern8 state also in addition to
1847 		 * clocks being ON.
1848 		 */
1849 		if (ufshcd_can_hibern8_during_gating(hba) &&
1850 		    ufshcd_is_link_hibern8(hba)) {
1851 			spin_unlock_irqrestore(hba->host->host_lock, flags);
1852 			flush_result = flush_work(&hba->clk_gating.ungate_work);
1853 			if (hba->clk_gating.is_suspended && !flush_result)
1854 				return;
1855 			spin_lock_irqsave(hba->host->host_lock, flags);
1856 			goto start;
1857 		}
1858 		break;
1859 	case REQ_CLKS_OFF:
1860 		if (cancel_delayed_work(&hba->clk_gating.gate_work)) {
1861 			hba->clk_gating.state = CLKS_ON;
1862 			trace_ufshcd_clk_gating(dev_name(hba->dev),
1863 						hba->clk_gating.state);
1864 			break;
1865 		}
1866 		/*
1867 		 * If we are here, it means gating work is either done or
1868 		 * currently running. Hence, fall through to cancel gating
1869 		 * work and to enable clocks.
1870 		 */
1871 		fallthrough;
1872 	case CLKS_OFF:
1873 		hba->clk_gating.state = REQ_CLKS_ON;
1874 		trace_ufshcd_clk_gating(dev_name(hba->dev),
1875 					hba->clk_gating.state);
1876 		queue_work(hba->clk_gating.clk_gating_workq,
1877 			   &hba->clk_gating.ungate_work);
1878 		/*
1879 		 * fall through to check if we should wait for this
1880 		 * work to be done or not.
1881 		 */
1882 		fallthrough;
1883 	case REQ_CLKS_ON:
1884 		spin_unlock_irqrestore(hba->host->host_lock, flags);
1885 		flush_work(&hba->clk_gating.ungate_work);
1886 		/* Make sure state is CLKS_ON before returning */
1887 		spin_lock_irqsave(hba->host->host_lock, flags);
1888 		goto start;
1889 	default:
1890 		dev_err(hba->dev, "%s: clk gating is in invalid state %d\n",
1891 				__func__, hba->clk_gating.state);
1892 		break;
1893 	}
1894 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1895 }
1896 EXPORT_SYMBOL_GPL(ufshcd_hold);
1897 
1898 static void ufshcd_gate_work(struct work_struct *work)
1899 {
1900 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1901 			clk_gating.gate_work.work);
1902 	unsigned long flags;
1903 	int ret;
1904 
1905 	spin_lock_irqsave(hba->host->host_lock, flags);
1906 	/*
1907 	 * In case you are here to cancel this work the gating state
1908 	 * would be marked as REQ_CLKS_ON. In this case save time by
1909 	 * skipping the gating work and exit after changing the clock
1910 	 * state to CLKS_ON.
1911 	 */
1912 	if (hba->clk_gating.is_suspended ||
1913 		(hba->clk_gating.state != REQ_CLKS_OFF)) {
1914 		hba->clk_gating.state = CLKS_ON;
1915 		trace_ufshcd_clk_gating(dev_name(hba->dev),
1916 					hba->clk_gating.state);
1917 		goto rel_lock;
1918 	}
1919 
1920 	if (hba->clk_gating.active_reqs
1921 		|| hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL
1922 		|| hba->outstanding_reqs || hba->outstanding_tasks
1923 		|| hba->active_uic_cmd || hba->uic_async_done)
1924 		goto rel_lock;
1925 
1926 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1927 
1928 	/* put the link into hibern8 mode before turning off clocks */
1929 	if (ufshcd_can_hibern8_during_gating(hba)) {
1930 		ret = ufshcd_uic_hibern8_enter(hba);
1931 		if (ret) {
1932 			hba->clk_gating.state = CLKS_ON;
1933 			dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
1934 					__func__, ret);
1935 			trace_ufshcd_clk_gating(dev_name(hba->dev),
1936 						hba->clk_gating.state);
1937 			goto out;
1938 		}
1939 		ufshcd_set_link_hibern8(hba);
1940 	}
1941 
1942 	ufshcd_disable_irq(hba);
1943 
1944 	ufshcd_setup_clocks(hba, false);
1945 
1946 	/* Put the host controller in low power mode if possible */
1947 	ufshcd_hba_vreg_set_lpm(hba);
1948 	/*
1949 	 * In case you are here to cancel this work the gating state
1950 	 * would be marked as REQ_CLKS_ON. In this case keep the state
1951 	 * as REQ_CLKS_ON which would anyway imply that clocks are off
1952 	 * and a request to turn them on is pending. By doing this way,
1953 	 * we keep the state machine in tact and this would ultimately
1954 	 * prevent from doing cancel work multiple times when there are
1955 	 * new requests arriving before the current cancel work is done.
1956 	 */
1957 	spin_lock_irqsave(hba->host->host_lock, flags);
1958 	if (hba->clk_gating.state == REQ_CLKS_OFF) {
1959 		hba->clk_gating.state = CLKS_OFF;
1960 		trace_ufshcd_clk_gating(dev_name(hba->dev),
1961 					hba->clk_gating.state);
1962 	}
1963 rel_lock:
1964 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1965 out:
1966 	return;
1967 }
1968 
1969 /* host lock must be held before calling this variant */
1970 static void __ufshcd_release(struct ufs_hba *hba)
1971 {
1972 	if (!ufshcd_is_clkgating_allowed(hba))
1973 		return;
1974 
1975 	hba->clk_gating.active_reqs--;
1976 
1977 	if (hba->clk_gating.active_reqs || hba->clk_gating.is_suspended ||
1978 	    hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL ||
1979 	    hba->outstanding_tasks || !hba->clk_gating.is_initialized ||
1980 	    hba->active_uic_cmd || hba->uic_async_done ||
1981 	    hba->clk_gating.state == CLKS_OFF)
1982 		return;
1983 
1984 	hba->clk_gating.state = REQ_CLKS_OFF;
1985 	trace_ufshcd_clk_gating(dev_name(hba->dev), hba->clk_gating.state);
1986 	queue_delayed_work(hba->clk_gating.clk_gating_workq,
1987 			   &hba->clk_gating.gate_work,
1988 			   msecs_to_jiffies(hba->clk_gating.delay_ms));
1989 }
1990 
1991 void ufshcd_release(struct ufs_hba *hba)
1992 {
1993 	unsigned long flags;
1994 
1995 	spin_lock_irqsave(hba->host->host_lock, flags);
1996 	__ufshcd_release(hba);
1997 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1998 }
1999 EXPORT_SYMBOL_GPL(ufshcd_release);
2000 
2001 static ssize_t ufshcd_clkgate_delay_show(struct device *dev,
2002 		struct device_attribute *attr, char *buf)
2003 {
2004 	struct ufs_hba *hba = dev_get_drvdata(dev);
2005 
2006 	return sysfs_emit(buf, "%lu\n", hba->clk_gating.delay_ms);
2007 }
2008 
2009 void ufshcd_clkgate_delay_set(struct device *dev, unsigned long value)
2010 {
2011 	struct ufs_hba *hba = dev_get_drvdata(dev);
2012 	unsigned long flags;
2013 
2014 	spin_lock_irqsave(hba->host->host_lock, flags);
2015 	hba->clk_gating.delay_ms = value;
2016 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2017 }
2018 EXPORT_SYMBOL_GPL(ufshcd_clkgate_delay_set);
2019 
2020 static ssize_t ufshcd_clkgate_delay_store(struct device *dev,
2021 		struct device_attribute *attr, const char *buf, size_t count)
2022 {
2023 	unsigned long value;
2024 
2025 	if (kstrtoul(buf, 0, &value))
2026 		return -EINVAL;
2027 
2028 	ufshcd_clkgate_delay_set(dev, value);
2029 	return count;
2030 }
2031 
2032 static ssize_t ufshcd_clkgate_enable_show(struct device *dev,
2033 		struct device_attribute *attr, char *buf)
2034 {
2035 	struct ufs_hba *hba = dev_get_drvdata(dev);
2036 
2037 	return sysfs_emit(buf, "%d\n", hba->clk_gating.is_enabled);
2038 }
2039 
2040 static ssize_t ufshcd_clkgate_enable_store(struct device *dev,
2041 		struct device_attribute *attr, const char *buf, size_t count)
2042 {
2043 	struct ufs_hba *hba = dev_get_drvdata(dev);
2044 	unsigned long flags;
2045 	u32 value;
2046 
2047 	if (kstrtou32(buf, 0, &value))
2048 		return -EINVAL;
2049 
2050 	value = !!value;
2051 
2052 	spin_lock_irqsave(hba->host->host_lock, flags);
2053 	if (value == hba->clk_gating.is_enabled)
2054 		goto out;
2055 
2056 	if (value)
2057 		__ufshcd_release(hba);
2058 	else
2059 		hba->clk_gating.active_reqs++;
2060 
2061 	hba->clk_gating.is_enabled = value;
2062 out:
2063 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2064 	return count;
2065 }
2066 
2067 static void ufshcd_init_clk_gating_sysfs(struct ufs_hba *hba)
2068 {
2069 	hba->clk_gating.delay_attr.show = ufshcd_clkgate_delay_show;
2070 	hba->clk_gating.delay_attr.store = ufshcd_clkgate_delay_store;
2071 	sysfs_attr_init(&hba->clk_gating.delay_attr.attr);
2072 	hba->clk_gating.delay_attr.attr.name = "clkgate_delay_ms";
2073 	hba->clk_gating.delay_attr.attr.mode = 0644;
2074 	if (device_create_file(hba->dev, &hba->clk_gating.delay_attr))
2075 		dev_err(hba->dev, "Failed to create sysfs for clkgate_delay\n");
2076 
2077 	hba->clk_gating.enable_attr.show = ufshcd_clkgate_enable_show;
2078 	hba->clk_gating.enable_attr.store = ufshcd_clkgate_enable_store;
2079 	sysfs_attr_init(&hba->clk_gating.enable_attr.attr);
2080 	hba->clk_gating.enable_attr.attr.name = "clkgate_enable";
2081 	hba->clk_gating.enable_attr.attr.mode = 0644;
2082 	if (device_create_file(hba->dev, &hba->clk_gating.enable_attr))
2083 		dev_err(hba->dev, "Failed to create sysfs for clkgate_enable\n");
2084 }
2085 
2086 static void ufshcd_remove_clk_gating_sysfs(struct ufs_hba *hba)
2087 {
2088 	if (hba->clk_gating.delay_attr.attr.name)
2089 		device_remove_file(hba->dev, &hba->clk_gating.delay_attr);
2090 	if (hba->clk_gating.enable_attr.attr.name)
2091 		device_remove_file(hba->dev, &hba->clk_gating.enable_attr);
2092 }
2093 
2094 static void ufshcd_init_clk_gating(struct ufs_hba *hba)
2095 {
2096 	char wq_name[sizeof("ufs_clk_gating_00")];
2097 
2098 	if (!ufshcd_is_clkgating_allowed(hba))
2099 		return;
2100 
2101 	hba->clk_gating.state = CLKS_ON;
2102 
2103 	hba->clk_gating.delay_ms = 150;
2104 	INIT_DELAYED_WORK(&hba->clk_gating.gate_work, ufshcd_gate_work);
2105 	INIT_WORK(&hba->clk_gating.ungate_work, ufshcd_ungate_work);
2106 
2107 	snprintf(wq_name, ARRAY_SIZE(wq_name), "ufs_clk_gating_%d",
2108 		 hba->host->host_no);
2109 	hba->clk_gating.clk_gating_workq = alloc_ordered_workqueue(wq_name,
2110 					WQ_MEM_RECLAIM | WQ_HIGHPRI);
2111 
2112 	ufshcd_init_clk_gating_sysfs(hba);
2113 
2114 	hba->clk_gating.is_enabled = true;
2115 	hba->clk_gating.is_initialized = true;
2116 }
2117 
2118 static void ufshcd_exit_clk_gating(struct ufs_hba *hba)
2119 {
2120 	if (!hba->clk_gating.is_initialized)
2121 		return;
2122 
2123 	ufshcd_remove_clk_gating_sysfs(hba);
2124 
2125 	/* Ungate the clock if necessary. */
2126 	ufshcd_hold(hba);
2127 	hba->clk_gating.is_initialized = false;
2128 	ufshcd_release(hba);
2129 
2130 	destroy_workqueue(hba->clk_gating.clk_gating_workq);
2131 }
2132 
2133 static void ufshcd_clk_scaling_start_busy(struct ufs_hba *hba)
2134 {
2135 	bool queue_resume_work = false;
2136 	ktime_t curr_t = ktime_get();
2137 	unsigned long flags;
2138 
2139 	if (!ufshcd_is_clkscaling_supported(hba))
2140 		return;
2141 
2142 	spin_lock_irqsave(hba->host->host_lock, flags);
2143 	if (!hba->clk_scaling.active_reqs++)
2144 		queue_resume_work = true;
2145 
2146 	if (!hba->clk_scaling.is_enabled || hba->pm_op_in_progress) {
2147 		spin_unlock_irqrestore(hba->host->host_lock, flags);
2148 		return;
2149 	}
2150 
2151 	if (queue_resume_work)
2152 		queue_work(hba->clk_scaling.workq,
2153 			   &hba->clk_scaling.resume_work);
2154 
2155 	if (!hba->clk_scaling.window_start_t) {
2156 		hba->clk_scaling.window_start_t = curr_t;
2157 		hba->clk_scaling.tot_busy_t = 0;
2158 		hba->clk_scaling.is_busy_started = false;
2159 	}
2160 
2161 	if (!hba->clk_scaling.is_busy_started) {
2162 		hba->clk_scaling.busy_start_t = curr_t;
2163 		hba->clk_scaling.is_busy_started = true;
2164 	}
2165 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2166 }
2167 
2168 static void ufshcd_clk_scaling_update_busy(struct ufs_hba *hba)
2169 {
2170 	struct ufs_clk_scaling *scaling = &hba->clk_scaling;
2171 	unsigned long flags;
2172 
2173 	if (!ufshcd_is_clkscaling_supported(hba))
2174 		return;
2175 
2176 	spin_lock_irqsave(hba->host->host_lock, flags);
2177 	hba->clk_scaling.active_reqs--;
2178 	if (!scaling->active_reqs && scaling->is_busy_started) {
2179 		scaling->tot_busy_t += ktime_to_us(ktime_sub(ktime_get(),
2180 					scaling->busy_start_t));
2181 		scaling->busy_start_t = 0;
2182 		scaling->is_busy_started = false;
2183 	}
2184 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2185 }
2186 
2187 static inline int ufshcd_monitor_opcode2dir(u8 opcode)
2188 {
2189 	if (opcode == READ_6 || opcode == READ_10 || opcode == READ_16)
2190 		return READ;
2191 	else if (opcode == WRITE_6 || opcode == WRITE_10 || opcode == WRITE_16)
2192 		return WRITE;
2193 	else
2194 		return -EINVAL;
2195 }
2196 
2197 static inline bool ufshcd_should_inform_monitor(struct ufs_hba *hba,
2198 						struct ufshcd_lrb *lrbp)
2199 {
2200 	const struct ufs_hba_monitor *m = &hba->monitor;
2201 
2202 	return (m->enabled && lrbp && lrbp->cmd &&
2203 		(!m->chunk_size || m->chunk_size == lrbp->cmd->sdb.length) &&
2204 		ktime_before(hba->monitor.enabled_ts, lrbp->issue_time_stamp));
2205 }
2206 
2207 static void ufshcd_start_monitor(struct ufs_hba *hba,
2208 				 const struct ufshcd_lrb *lrbp)
2209 {
2210 	int dir = ufshcd_monitor_opcode2dir(*lrbp->cmd->cmnd);
2211 	unsigned long flags;
2212 
2213 	spin_lock_irqsave(hba->host->host_lock, flags);
2214 	if (dir >= 0 && hba->monitor.nr_queued[dir]++ == 0)
2215 		hba->monitor.busy_start_ts[dir] = ktime_get();
2216 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2217 }
2218 
2219 static void ufshcd_update_monitor(struct ufs_hba *hba, const struct ufshcd_lrb *lrbp)
2220 {
2221 	int dir = ufshcd_monitor_opcode2dir(*lrbp->cmd->cmnd);
2222 	unsigned long flags;
2223 
2224 	spin_lock_irqsave(hba->host->host_lock, flags);
2225 	if (dir >= 0 && hba->monitor.nr_queued[dir] > 0) {
2226 		const struct request *req = scsi_cmd_to_rq(lrbp->cmd);
2227 		struct ufs_hba_monitor *m = &hba->monitor;
2228 		ktime_t now, inc, lat;
2229 
2230 		now = lrbp->compl_time_stamp;
2231 		inc = ktime_sub(now, m->busy_start_ts[dir]);
2232 		m->total_busy[dir] = ktime_add(m->total_busy[dir], inc);
2233 		m->nr_sec_rw[dir] += blk_rq_sectors(req);
2234 
2235 		/* Update latencies */
2236 		m->nr_req[dir]++;
2237 		lat = ktime_sub(now, lrbp->issue_time_stamp);
2238 		m->lat_sum[dir] += lat;
2239 		if (m->lat_max[dir] < lat || !m->lat_max[dir])
2240 			m->lat_max[dir] = lat;
2241 		if (m->lat_min[dir] > lat || !m->lat_min[dir])
2242 			m->lat_min[dir] = lat;
2243 
2244 		m->nr_queued[dir]--;
2245 		/* Push forward the busy start of monitor */
2246 		m->busy_start_ts[dir] = now;
2247 	}
2248 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2249 }
2250 
2251 /**
2252  * ufshcd_send_command - Send SCSI or device management commands
2253  * @hba: per adapter instance
2254  * @task_tag: Task tag of the command
2255  * @hwq: pointer to hardware queue instance
2256  */
2257 static inline
2258 void ufshcd_send_command(struct ufs_hba *hba, unsigned int task_tag,
2259 			 struct ufs_hw_queue *hwq)
2260 {
2261 	struct ufshcd_lrb *lrbp = &hba->lrb[task_tag];
2262 	unsigned long flags;
2263 
2264 	lrbp->issue_time_stamp = ktime_get();
2265 	lrbp->issue_time_stamp_local_clock = local_clock();
2266 	lrbp->compl_time_stamp = ktime_set(0, 0);
2267 	lrbp->compl_time_stamp_local_clock = 0;
2268 	ufshcd_add_command_trace(hba, task_tag, UFS_CMD_SEND);
2269 	if (lrbp->cmd)
2270 		ufshcd_clk_scaling_start_busy(hba);
2271 	if (unlikely(ufshcd_should_inform_monitor(hba, lrbp)))
2272 		ufshcd_start_monitor(hba, lrbp);
2273 
2274 	if (is_mcq_enabled(hba)) {
2275 		int utrd_size = sizeof(struct utp_transfer_req_desc);
2276 		struct utp_transfer_req_desc *src = lrbp->utr_descriptor_ptr;
2277 		struct utp_transfer_req_desc *dest = hwq->sqe_base_addr + hwq->sq_tail_slot;
2278 
2279 		spin_lock(&hwq->sq_lock);
2280 		memcpy(dest, src, utrd_size);
2281 		ufshcd_inc_sq_tail(hwq);
2282 		spin_unlock(&hwq->sq_lock);
2283 	} else {
2284 		spin_lock_irqsave(&hba->outstanding_lock, flags);
2285 		if (hba->vops && hba->vops->setup_xfer_req)
2286 			hba->vops->setup_xfer_req(hba, lrbp->task_tag,
2287 						  !!lrbp->cmd);
2288 		__set_bit(lrbp->task_tag, &hba->outstanding_reqs);
2289 		ufshcd_writel(hba, 1 << lrbp->task_tag,
2290 			      REG_UTP_TRANSFER_REQ_DOOR_BELL);
2291 		spin_unlock_irqrestore(&hba->outstanding_lock, flags);
2292 	}
2293 }
2294 
2295 /**
2296  * ufshcd_copy_sense_data - Copy sense data in case of check condition
2297  * @lrbp: pointer to local reference block
2298  */
2299 static inline void ufshcd_copy_sense_data(struct ufshcd_lrb *lrbp)
2300 {
2301 	u8 *const sense_buffer = lrbp->cmd->sense_buffer;
2302 	u16 resp_len;
2303 	int len;
2304 
2305 	resp_len = be16_to_cpu(lrbp->ucd_rsp_ptr->header.data_segment_length);
2306 	if (sense_buffer && resp_len) {
2307 		int len_to_copy;
2308 
2309 		len = be16_to_cpu(lrbp->ucd_rsp_ptr->sr.sense_data_len);
2310 		len_to_copy = min_t(int, UFS_SENSE_SIZE, len);
2311 
2312 		memcpy(sense_buffer, lrbp->ucd_rsp_ptr->sr.sense_data,
2313 		       len_to_copy);
2314 	}
2315 }
2316 
2317 /**
2318  * ufshcd_copy_query_response() - Copy the Query Response and the data
2319  * descriptor
2320  * @hba: per adapter instance
2321  * @lrbp: pointer to local reference block
2322  *
2323  * Return: 0 upon success; < 0 upon failure.
2324  */
2325 static
2326 int ufshcd_copy_query_response(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2327 {
2328 	struct ufs_query_res *query_res = &hba->dev_cmd.query.response;
2329 
2330 	memcpy(&query_res->upiu_res, &lrbp->ucd_rsp_ptr->qr, QUERY_OSF_SIZE);
2331 
2332 	/* Get the descriptor */
2333 	if (hba->dev_cmd.query.descriptor &&
2334 	    lrbp->ucd_rsp_ptr->qr.opcode == UPIU_QUERY_OPCODE_READ_DESC) {
2335 		u8 *descp = (u8 *)lrbp->ucd_rsp_ptr +
2336 				GENERAL_UPIU_REQUEST_SIZE;
2337 		u16 resp_len;
2338 		u16 buf_len;
2339 
2340 		/* data segment length */
2341 		resp_len = be16_to_cpu(lrbp->ucd_rsp_ptr->header
2342 				       .data_segment_length);
2343 		buf_len = be16_to_cpu(
2344 				hba->dev_cmd.query.request.upiu_req.length);
2345 		if (likely(buf_len >= resp_len)) {
2346 			memcpy(hba->dev_cmd.query.descriptor, descp, resp_len);
2347 		} else {
2348 			dev_warn(hba->dev,
2349 				 "%s: rsp size %d is bigger than buffer size %d",
2350 				 __func__, resp_len, buf_len);
2351 			return -EINVAL;
2352 		}
2353 	}
2354 
2355 	return 0;
2356 }
2357 
2358 /**
2359  * ufshcd_hba_capabilities - Read controller capabilities
2360  * @hba: per adapter instance
2361  *
2362  * Return: 0 on success, negative on error.
2363  */
2364 static inline int ufshcd_hba_capabilities(struct ufs_hba *hba)
2365 {
2366 	int err;
2367 
2368 	hba->capabilities = ufshcd_readl(hba, REG_CONTROLLER_CAPABILITIES);
2369 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_64BIT_ADDRESS)
2370 		hba->capabilities &= ~MASK_64_ADDRESSING_SUPPORT;
2371 
2372 	/* nutrs and nutmrs are 0 based values */
2373 	hba->nutrs = (hba->capabilities & MASK_TRANSFER_REQUESTS_SLOTS) + 1;
2374 	hba->nutmrs =
2375 	((hba->capabilities & MASK_TASK_MANAGEMENT_REQUEST_SLOTS) >> 16) + 1;
2376 	hba->reserved_slot = hba->nutrs - 1;
2377 
2378 	/* Read crypto capabilities */
2379 	err = ufshcd_hba_init_crypto_capabilities(hba);
2380 	if (err) {
2381 		dev_err(hba->dev, "crypto setup failed\n");
2382 		return err;
2383 	}
2384 
2385 	hba->mcq_sup = FIELD_GET(MASK_MCQ_SUPPORT, hba->capabilities);
2386 	if (!hba->mcq_sup)
2387 		return 0;
2388 
2389 	hba->mcq_capabilities = ufshcd_readl(hba, REG_MCQCAP);
2390 	hba->ext_iid_sup = FIELD_GET(MASK_EXT_IID_SUPPORT,
2391 				     hba->mcq_capabilities);
2392 
2393 	return 0;
2394 }
2395 
2396 /**
2397  * ufshcd_ready_for_uic_cmd - Check if controller is ready
2398  *                            to accept UIC commands
2399  * @hba: per adapter instance
2400  *
2401  * Return: true on success, else false.
2402  */
2403 static inline bool ufshcd_ready_for_uic_cmd(struct ufs_hba *hba)
2404 {
2405 	u32 val;
2406 	int ret = read_poll_timeout(ufshcd_readl, val, val & UIC_COMMAND_READY,
2407 				    500, UIC_CMD_TIMEOUT * 1000, false, hba,
2408 				    REG_CONTROLLER_STATUS);
2409 	return ret == 0;
2410 }
2411 
2412 /**
2413  * ufshcd_get_upmcrs - Get the power mode change request status
2414  * @hba: Pointer to adapter instance
2415  *
2416  * This function gets the UPMCRS field of HCS register
2417  *
2418  * Return: value of UPMCRS field.
2419  */
2420 static inline u8 ufshcd_get_upmcrs(struct ufs_hba *hba)
2421 {
2422 	return (ufshcd_readl(hba, REG_CONTROLLER_STATUS) >> 8) & 0x7;
2423 }
2424 
2425 /**
2426  * ufshcd_dispatch_uic_cmd - Dispatch an UIC command to the Unipro layer
2427  * @hba: per adapter instance
2428  * @uic_cmd: UIC command
2429  */
2430 static inline void
2431 ufshcd_dispatch_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2432 {
2433 	lockdep_assert_held(&hba->uic_cmd_mutex);
2434 
2435 	WARN_ON(hba->active_uic_cmd);
2436 
2437 	hba->active_uic_cmd = uic_cmd;
2438 
2439 	/* Write Args */
2440 	ufshcd_writel(hba, uic_cmd->argument1, REG_UIC_COMMAND_ARG_1);
2441 	ufshcd_writel(hba, uic_cmd->argument2, REG_UIC_COMMAND_ARG_2);
2442 	ufshcd_writel(hba, uic_cmd->argument3, REG_UIC_COMMAND_ARG_3);
2443 
2444 	ufshcd_add_uic_command_trace(hba, uic_cmd, UFS_CMD_SEND);
2445 
2446 	/* Write UIC Cmd */
2447 	ufshcd_writel(hba, uic_cmd->command & COMMAND_OPCODE_MASK,
2448 		      REG_UIC_COMMAND);
2449 }
2450 
2451 /**
2452  * ufshcd_wait_for_uic_cmd - Wait for completion of an UIC command
2453  * @hba: per adapter instance
2454  * @uic_cmd: UIC command
2455  *
2456  * Return: 0 only if success.
2457  */
2458 static int
2459 ufshcd_wait_for_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2460 {
2461 	int ret;
2462 	unsigned long flags;
2463 
2464 	lockdep_assert_held(&hba->uic_cmd_mutex);
2465 
2466 	if (wait_for_completion_timeout(&uic_cmd->done,
2467 					msecs_to_jiffies(UIC_CMD_TIMEOUT))) {
2468 		ret = uic_cmd->argument2 & MASK_UIC_COMMAND_RESULT;
2469 	} else {
2470 		ret = -ETIMEDOUT;
2471 		dev_err(hba->dev,
2472 			"uic cmd 0x%x with arg3 0x%x completion timeout\n",
2473 			uic_cmd->command, uic_cmd->argument3);
2474 
2475 		if (!uic_cmd->cmd_active) {
2476 			dev_err(hba->dev, "%s: UIC cmd has been completed, return the result\n",
2477 				__func__);
2478 			ret = uic_cmd->argument2 & MASK_UIC_COMMAND_RESULT;
2479 		}
2480 	}
2481 
2482 	spin_lock_irqsave(hba->host->host_lock, flags);
2483 	hba->active_uic_cmd = NULL;
2484 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2485 
2486 	return ret;
2487 }
2488 
2489 /**
2490  * __ufshcd_send_uic_cmd - Send UIC commands and retrieve the result
2491  * @hba: per adapter instance
2492  * @uic_cmd: UIC command
2493  * @completion: initialize the completion only if this is set to true
2494  *
2495  * Return: 0 only if success.
2496  */
2497 static int
2498 __ufshcd_send_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd,
2499 		      bool completion)
2500 {
2501 	lockdep_assert_held(&hba->uic_cmd_mutex);
2502 
2503 	if (!ufshcd_ready_for_uic_cmd(hba)) {
2504 		dev_err(hba->dev,
2505 			"Controller not ready to accept UIC commands\n");
2506 		return -EIO;
2507 	}
2508 
2509 	if (completion)
2510 		init_completion(&uic_cmd->done);
2511 
2512 	uic_cmd->cmd_active = 1;
2513 	ufshcd_dispatch_uic_cmd(hba, uic_cmd);
2514 
2515 	return 0;
2516 }
2517 
2518 /**
2519  * ufshcd_send_uic_cmd - Send UIC commands and retrieve the result
2520  * @hba: per adapter instance
2521  * @uic_cmd: UIC command
2522  *
2523  * Return: 0 only if success.
2524  */
2525 int ufshcd_send_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2526 {
2527 	int ret;
2528 
2529 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_UIC_CMD)
2530 		return 0;
2531 
2532 	ufshcd_hold(hba);
2533 	mutex_lock(&hba->uic_cmd_mutex);
2534 	ufshcd_add_delay_before_dme_cmd(hba);
2535 
2536 	ret = __ufshcd_send_uic_cmd(hba, uic_cmd, true);
2537 	if (!ret)
2538 		ret = ufshcd_wait_for_uic_cmd(hba, uic_cmd);
2539 
2540 	mutex_unlock(&hba->uic_cmd_mutex);
2541 
2542 	ufshcd_release(hba);
2543 	return ret;
2544 }
2545 
2546 /**
2547  * ufshcd_sgl_to_prdt - SG list to PRTD (Physical Region Description Table, 4DW format)
2548  * @hba:	per-adapter instance
2549  * @lrbp:	pointer to local reference block
2550  * @sg_entries:	The number of sg lists actually used
2551  * @sg_list:	Pointer to SG list
2552  */
2553 static void ufshcd_sgl_to_prdt(struct ufs_hba *hba, struct ufshcd_lrb *lrbp, int sg_entries,
2554 			       struct scatterlist *sg_list)
2555 {
2556 	struct ufshcd_sg_entry *prd;
2557 	struct scatterlist *sg;
2558 	int i;
2559 
2560 	if (sg_entries) {
2561 
2562 		if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN)
2563 			lrbp->utr_descriptor_ptr->prd_table_length =
2564 				cpu_to_le16(sg_entries * ufshcd_sg_entry_size(hba));
2565 		else
2566 			lrbp->utr_descriptor_ptr->prd_table_length = cpu_to_le16(sg_entries);
2567 
2568 		prd = lrbp->ucd_prdt_ptr;
2569 
2570 		for_each_sg(sg_list, sg, sg_entries, i) {
2571 			const unsigned int len = sg_dma_len(sg);
2572 
2573 			/*
2574 			 * From the UFSHCI spec: "Data Byte Count (DBC): A '0'
2575 			 * based value that indicates the length, in bytes, of
2576 			 * the data block. A maximum of length of 256KB may
2577 			 * exist for any entry. Bits 1:0 of this field shall be
2578 			 * 11b to indicate Dword granularity. A value of '3'
2579 			 * indicates 4 bytes, '7' indicates 8 bytes, etc."
2580 			 */
2581 			WARN_ONCE(len > SZ_256K, "len = %#x\n", len);
2582 			prd->size = cpu_to_le32(len - 1);
2583 			prd->addr = cpu_to_le64(sg->dma_address);
2584 			prd->reserved = 0;
2585 			prd = (void *)prd + ufshcd_sg_entry_size(hba);
2586 		}
2587 	} else {
2588 		lrbp->utr_descriptor_ptr->prd_table_length = 0;
2589 	}
2590 }
2591 
2592 /**
2593  * ufshcd_map_sg - Map scatter-gather list to prdt
2594  * @hba: per adapter instance
2595  * @lrbp: pointer to local reference block
2596  *
2597  * Return: 0 in case of success, non-zero value in case of failure.
2598  */
2599 static int ufshcd_map_sg(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2600 {
2601 	struct scsi_cmnd *cmd = lrbp->cmd;
2602 	int sg_segments = scsi_dma_map(cmd);
2603 
2604 	if (sg_segments < 0)
2605 		return sg_segments;
2606 
2607 	ufshcd_sgl_to_prdt(hba, lrbp, sg_segments, scsi_sglist(cmd));
2608 
2609 	return 0;
2610 }
2611 
2612 /**
2613  * ufshcd_enable_intr - enable interrupts
2614  * @hba: per adapter instance
2615  * @intrs: interrupt bits
2616  */
2617 static void ufshcd_enable_intr(struct ufs_hba *hba, u32 intrs)
2618 {
2619 	u32 set = ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
2620 
2621 	if (hba->ufs_version == ufshci_version(1, 0)) {
2622 		u32 rw;
2623 		rw = set & INTERRUPT_MASK_RW_VER_10;
2624 		set = rw | ((set ^ intrs) & intrs);
2625 	} else {
2626 		set |= intrs;
2627 	}
2628 
2629 	ufshcd_writel(hba, set, REG_INTERRUPT_ENABLE);
2630 }
2631 
2632 /**
2633  * ufshcd_disable_intr - disable interrupts
2634  * @hba: per adapter instance
2635  * @intrs: interrupt bits
2636  */
2637 static void ufshcd_disable_intr(struct ufs_hba *hba, u32 intrs)
2638 {
2639 	u32 set = ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
2640 
2641 	if (hba->ufs_version == ufshci_version(1, 0)) {
2642 		u32 rw;
2643 		rw = (set & INTERRUPT_MASK_RW_VER_10) &
2644 			~(intrs & INTERRUPT_MASK_RW_VER_10);
2645 		set = rw | ((set & intrs) & ~INTERRUPT_MASK_RW_VER_10);
2646 
2647 	} else {
2648 		set &= ~intrs;
2649 	}
2650 
2651 	ufshcd_writel(hba, set, REG_INTERRUPT_ENABLE);
2652 }
2653 
2654 /**
2655  * ufshcd_prepare_req_desc_hdr - Fill UTP Transfer request descriptor header according to request
2656  * descriptor according to request
2657  * @lrbp: pointer to local reference block
2658  * @upiu_flags: flags required in the header
2659  * @cmd_dir: requests data direction
2660  * @ehs_length: Total EHS Length (in 32‐bytes units of all Extra Header Segments)
2661  */
2662 static void ufshcd_prepare_req_desc_hdr(struct ufshcd_lrb *lrbp, u8 *upiu_flags,
2663 					enum dma_data_direction cmd_dir, int ehs_length)
2664 {
2665 	struct utp_transfer_req_desc *req_desc = lrbp->utr_descriptor_ptr;
2666 	struct request_desc_header *h = &req_desc->header;
2667 	enum utp_data_direction data_direction;
2668 
2669 	*h = (typeof(*h)){ };
2670 
2671 	if (cmd_dir == DMA_FROM_DEVICE) {
2672 		data_direction = UTP_DEVICE_TO_HOST;
2673 		*upiu_flags = UPIU_CMD_FLAGS_READ;
2674 	} else if (cmd_dir == DMA_TO_DEVICE) {
2675 		data_direction = UTP_HOST_TO_DEVICE;
2676 		*upiu_flags = UPIU_CMD_FLAGS_WRITE;
2677 	} else {
2678 		data_direction = UTP_NO_DATA_TRANSFER;
2679 		*upiu_flags = UPIU_CMD_FLAGS_NONE;
2680 	}
2681 
2682 	h->command_type = lrbp->command_type;
2683 	h->data_direction = data_direction;
2684 	h->ehs_length = ehs_length;
2685 
2686 	if (lrbp->intr_cmd)
2687 		h->interrupt = 1;
2688 
2689 	/* Prepare crypto related dwords */
2690 	ufshcd_prepare_req_desc_hdr_crypto(lrbp, h);
2691 
2692 	/*
2693 	 * assigning invalid value for command status. Controller
2694 	 * updates OCS on command completion, with the command
2695 	 * status
2696 	 */
2697 	h->ocs = OCS_INVALID_COMMAND_STATUS;
2698 
2699 	req_desc->prd_table_length = 0;
2700 }
2701 
2702 /**
2703  * ufshcd_prepare_utp_scsi_cmd_upiu() - fills the utp_transfer_req_desc,
2704  * for scsi commands
2705  * @lrbp: local reference block pointer
2706  * @upiu_flags: flags
2707  */
2708 static
2709 void ufshcd_prepare_utp_scsi_cmd_upiu(struct ufshcd_lrb *lrbp, u8 upiu_flags)
2710 {
2711 	struct scsi_cmnd *cmd = lrbp->cmd;
2712 	struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2713 	unsigned short cdb_len;
2714 
2715 	ucd_req_ptr->header = (struct utp_upiu_header){
2716 		.transaction_code = UPIU_TRANSACTION_COMMAND,
2717 		.flags = upiu_flags,
2718 		.lun = lrbp->lun,
2719 		.task_tag = lrbp->task_tag,
2720 		.command_set_type = UPIU_COMMAND_SET_TYPE_SCSI,
2721 	};
2722 
2723 	ucd_req_ptr->sc.exp_data_transfer_len = cpu_to_be32(cmd->sdb.length);
2724 
2725 	cdb_len = min_t(unsigned short, cmd->cmd_len, UFS_CDB_SIZE);
2726 	memset(ucd_req_ptr->sc.cdb, 0, UFS_CDB_SIZE);
2727 	memcpy(ucd_req_ptr->sc.cdb, cmd->cmnd, cdb_len);
2728 
2729 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2730 }
2731 
2732 /**
2733  * ufshcd_prepare_utp_query_req_upiu() - fill the utp_transfer_req_desc for query request
2734  * @hba: UFS hba
2735  * @lrbp: local reference block pointer
2736  * @upiu_flags: flags
2737  */
2738 static void ufshcd_prepare_utp_query_req_upiu(struct ufs_hba *hba,
2739 				struct ufshcd_lrb *lrbp, u8 upiu_flags)
2740 {
2741 	struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2742 	struct ufs_query *query = &hba->dev_cmd.query;
2743 	u16 len = be16_to_cpu(query->request.upiu_req.length);
2744 
2745 	/* Query request header */
2746 	ucd_req_ptr->header = (struct utp_upiu_header){
2747 		.transaction_code = UPIU_TRANSACTION_QUERY_REQ,
2748 		.flags = upiu_flags,
2749 		.lun = lrbp->lun,
2750 		.task_tag = lrbp->task_tag,
2751 		.query_function = query->request.query_func,
2752 		/* Data segment length only need for WRITE_DESC */
2753 		.data_segment_length =
2754 			query->request.upiu_req.opcode ==
2755 					UPIU_QUERY_OPCODE_WRITE_DESC ?
2756 				cpu_to_be16(len) :
2757 				0,
2758 	};
2759 
2760 	/* Copy the Query Request buffer as is */
2761 	memcpy(&ucd_req_ptr->qr, &query->request.upiu_req,
2762 			QUERY_OSF_SIZE);
2763 
2764 	/* Copy the Descriptor */
2765 	if (query->request.upiu_req.opcode == UPIU_QUERY_OPCODE_WRITE_DESC)
2766 		memcpy(ucd_req_ptr + 1, query->descriptor, len);
2767 
2768 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2769 }
2770 
2771 static inline void ufshcd_prepare_utp_nop_upiu(struct ufshcd_lrb *lrbp)
2772 {
2773 	struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2774 
2775 	memset(ucd_req_ptr, 0, sizeof(struct utp_upiu_req));
2776 
2777 	ucd_req_ptr->header = (struct utp_upiu_header){
2778 		.transaction_code = UPIU_TRANSACTION_NOP_OUT,
2779 		.task_tag = lrbp->task_tag,
2780 	};
2781 
2782 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2783 }
2784 
2785 /**
2786  * ufshcd_compose_devman_upiu - UFS Protocol Information Unit(UPIU)
2787  *			     for Device Management Purposes
2788  * @hba: per adapter instance
2789  * @lrbp: pointer to local reference block
2790  *
2791  * Return: 0 upon success; < 0 upon failure.
2792  */
2793 static int ufshcd_compose_devman_upiu(struct ufs_hba *hba,
2794 				      struct ufshcd_lrb *lrbp)
2795 {
2796 	u8 upiu_flags;
2797 	int ret = 0;
2798 
2799 	if (hba->ufs_version <= ufshci_version(1, 1))
2800 		lrbp->command_type = UTP_CMD_TYPE_DEV_MANAGE;
2801 	else
2802 		lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
2803 
2804 	ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, DMA_NONE, 0);
2805 	if (hba->dev_cmd.type == DEV_CMD_TYPE_QUERY)
2806 		ufshcd_prepare_utp_query_req_upiu(hba, lrbp, upiu_flags);
2807 	else if (hba->dev_cmd.type == DEV_CMD_TYPE_NOP)
2808 		ufshcd_prepare_utp_nop_upiu(lrbp);
2809 	else
2810 		ret = -EINVAL;
2811 
2812 	return ret;
2813 }
2814 
2815 /**
2816  * ufshcd_comp_scsi_upiu - UFS Protocol Information Unit(UPIU)
2817  *			   for SCSI Purposes
2818  * @hba: per adapter instance
2819  * @lrbp: pointer to local reference block
2820  */
2821 static void ufshcd_comp_scsi_upiu(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2822 {
2823 	struct request *rq = scsi_cmd_to_rq(lrbp->cmd);
2824 	unsigned int ioprio_class = IOPRIO_PRIO_CLASS(req_get_ioprio(rq));
2825 	u8 upiu_flags;
2826 
2827 	if (hba->ufs_version <= ufshci_version(1, 1))
2828 		lrbp->command_type = UTP_CMD_TYPE_SCSI;
2829 	else
2830 		lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
2831 
2832 	ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags,
2833 				    lrbp->cmd->sc_data_direction, 0);
2834 	if (ioprio_class == IOPRIO_CLASS_RT)
2835 		upiu_flags |= UPIU_CMD_FLAGS_CP;
2836 	ufshcd_prepare_utp_scsi_cmd_upiu(lrbp, upiu_flags);
2837 }
2838 
2839 /**
2840  * ufshcd_upiu_wlun_to_scsi_wlun - maps UPIU W-LUN id to SCSI W-LUN ID
2841  * @upiu_wlun_id: UPIU W-LUN id
2842  *
2843  * Return: SCSI W-LUN id.
2844  */
2845 static inline u16 ufshcd_upiu_wlun_to_scsi_wlun(u8 upiu_wlun_id)
2846 {
2847 	return (upiu_wlun_id & ~UFS_UPIU_WLUN_ID) | SCSI_W_LUN_BASE;
2848 }
2849 
2850 static inline bool is_device_wlun(struct scsi_device *sdev)
2851 {
2852 	return sdev->lun ==
2853 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_UFS_DEVICE_WLUN);
2854 }
2855 
2856 /*
2857  * Associate the UFS controller queue with the default and poll HCTX types.
2858  * Initialize the mq_map[] arrays.
2859  */
2860 static void ufshcd_map_queues(struct Scsi_Host *shost)
2861 {
2862 	struct ufs_hba *hba = shost_priv(shost);
2863 	int i, queue_offset = 0;
2864 
2865 	if (!is_mcq_supported(hba)) {
2866 		hba->nr_queues[HCTX_TYPE_DEFAULT] = 1;
2867 		hba->nr_queues[HCTX_TYPE_READ] = 0;
2868 		hba->nr_queues[HCTX_TYPE_POLL] = 1;
2869 		hba->nr_hw_queues = 1;
2870 	}
2871 
2872 	for (i = 0; i < shost->nr_maps; i++) {
2873 		struct blk_mq_queue_map *map = &shost->tag_set.map[i];
2874 
2875 		map->nr_queues = hba->nr_queues[i];
2876 		if (!map->nr_queues)
2877 			continue;
2878 		map->queue_offset = queue_offset;
2879 		if (i == HCTX_TYPE_POLL && !is_mcq_supported(hba))
2880 			map->queue_offset = 0;
2881 
2882 		blk_mq_map_queues(map);
2883 		queue_offset += map->nr_queues;
2884 	}
2885 }
2886 
2887 static void ufshcd_init_lrb(struct ufs_hba *hba, struct ufshcd_lrb *lrb, int i)
2888 {
2889 	struct utp_transfer_cmd_desc *cmd_descp = (void *)hba->ucdl_base_addr +
2890 		i * ufshcd_get_ucd_size(hba);
2891 	struct utp_transfer_req_desc *utrdlp = hba->utrdl_base_addr;
2892 	dma_addr_t cmd_desc_element_addr = hba->ucdl_dma_addr +
2893 		i * ufshcd_get_ucd_size(hba);
2894 	u16 response_offset = offsetof(struct utp_transfer_cmd_desc,
2895 				       response_upiu);
2896 	u16 prdt_offset = offsetof(struct utp_transfer_cmd_desc, prd_table);
2897 
2898 	lrb->utr_descriptor_ptr = utrdlp + i;
2899 	lrb->utrd_dma_addr = hba->utrdl_dma_addr +
2900 		i * sizeof(struct utp_transfer_req_desc);
2901 	lrb->ucd_req_ptr = (struct utp_upiu_req *)cmd_descp->command_upiu;
2902 	lrb->ucd_req_dma_addr = cmd_desc_element_addr;
2903 	lrb->ucd_rsp_ptr = (struct utp_upiu_rsp *)cmd_descp->response_upiu;
2904 	lrb->ucd_rsp_dma_addr = cmd_desc_element_addr + response_offset;
2905 	lrb->ucd_prdt_ptr = (struct ufshcd_sg_entry *)cmd_descp->prd_table;
2906 	lrb->ucd_prdt_dma_addr = cmd_desc_element_addr + prdt_offset;
2907 }
2908 
2909 /**
2910  * ufshcd_queuecommand - main entry point for SCSI requests
2911  * @host: SCSI host pointer
2912  * @cmd: command from SCSI Midlayer
2913  *
2914  * Return: 0 for success, non-zero in case of failure.
2915  */
2916 static int ufshcd_queuecommand(struct Scsi_Host *host, struct scsi_cmnd *cmd)
2917 {
2918 	struct ufs_hba *hba = shost_priv(host);
2919 	int tag = scsi_cmd_to_rq(cmd)->tag;
2920 	struct ufshcd_lrb *lrbp;
2921 	int err = 0;
2922 	struct ufs_hw_queue *hwq = NULL;
2923 
2924 	switch (hba->ufshcd_state) {
2925 	case UFSHCD_STATE_OPERATIONAL:
2926 		break;
2927 	case UFSHCD_STATE_EH_SCHEDULED_NON_FATAL:
2928 		/*
2929 		 * SCSI error handler can call ->queuecommand() while UFS error
2930 		 * handler is in progress. Error interrupts could change the
2931 		 * state from UFSHCD_STATE_RESET to
2932 		 * UFSHCD_STATE_EH_SCHEDULED_NON_FATAL. Prevent requests
2933 		 * being issued in that case.
2934 		 */
2935 		if (ufshcd_eh_in_progress(hba)) {
2936 			err = SCSI_MLQUEUE_HOST_BUSY;
2937 			goto out;
2938 		}
2939 		break;
2940 	case UFSHCD_STATE_EH_SCHEDULED_FATAL:
2941 		/*
2942 		 * pm_runtime_get_sync() is used at error handling preparation
2943 		 * stage. If a scsi cmd, e.g. the SSU cmd, is sent from hba's
2944 		 * PM ops, it can never be finished if we let SCSI layer keep
2945 		 * retrying it, which gets err handler stuck forever. Neither
2946 		 * can we let the scsi cmd pass through, because UFS is in bad
2947 		 * state, the scsi cmd may eventually time out, which will get
2948 		 * err handler blocked for too long. So, just fail the scsi cmd
2949 		 * sent from PM ops, err handler can recover PM error anyways.
2950 		 */
2951 		if (hba->pm_op_in_progress) {
2952 			hba->force_reset = true;
2953 			set_host_byte(cmd, DID_BAD_TARGET);
2954 			scsi_done(cmd);
2955 			goto out;
2956 		}
2957 		fallthrough;
2958 	case UFSHCD_STATE_RESET:
2959 		err = SCSI_MLQUEUE_HOST_BUSY;
2960 		goto out;
2961 	case UFSHCD_STATE_ERROR:
2962 		set_host_byte(cmd, DID_ERROR);
2963 		scsi_done(cmd);
2964 		goto out;
2965 	}
2966 
2967 	hba->req_abort_count = 0;
2968 
2969 	ufshcd_hold(hba);
2970 
2971 	lrbp = &hba->lrb[tag];
2972 	lrbp->cmd = cmd;
2973 	lrbp->task_tag = tag;
2974 	lrbp->lun = ufshcd_scsi_to_upiu_lun(cmd->device->lun);
2975 	lrbp->intr_cmd = !ufshcd_is_intr_aggr_allowed(hba);
2976 
2977 	ufshcd_prepare_lrbp_crypto(scsi_cmd_to_rq(cmd), lrbp);
2978 
2979 	lrbp->req_abort_skip = false;
2980 
2981 	ufshcd_comp_scsi_upiu(hba, lrbp);
2982 
2983 	err = ufshcd_map_sg(hba, lrbp);
2984 	if (err) {
2985 		ufshcd_release(hba);
2986 		goto out;
2987 	}
2988 
2989 	if (is_mcq_enabled(hba))
2990 		hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(cmd));
2991 
2992 	ufshcd_send_command(hba, tag, hwq);
2993 
2994 out:
2995 	if (ufs_trigger_eh()) {
2996 		unsigned long flags;
2997 
2998 		spin_lock_irqsave(hba->host->host_lock, flags);
2999 		ufshcd_schedule_eh_work(hba);
3000 		spin_unlock_irqrestore(hba->host->host_lock, flags);
3001 	}
3002 
3003 	return err;
3004 }
3005 
3006 static int ufshcd_compose_dev_cmd(struct ufs_hba *hba,
3007 		struct ufshcd_lrb *lrbp, enum dev_cmd_type cmd_type, int tag)
3008 {
3009 	lrbp->cmd = NULL;
3010 	lrbp->task_tag = tag;
3011 	lrbp->lun = 0; /* device management cmd is not specific to any LUN */
3012 	lrbp->intr_cmd = true; /* No interrupt aggregation */
3013 	ufshcd_prepare_lrbp_crypto(NULL, lrbp);
3014 	hba->dev_cmd.type = cmd_type;
3015 
3016 	return ufshcd_compose_devman_upiu(hba, lrbp);
3017 }
3018 
3019 /*
3020  * Check with the block layer if the command is inflight
3021  * @cmd: command to check.
3022  *
3023  * Return: true if command is inflight; false if not.
3024  */
3025 bool ufshcd_cmd_inflight(struct scsi_cmnd *cmd)
3026 {
3027 	struct request *rq;
3028 
3029 	if (!cmd)
3030 		return false;
3031 
3032 	rq = scsi_cmd_to_rq(cmd);
3033 	if (!blk_mq_request_started(rq))
3034 		return false;
3035 
3036 	return true;
3037 }
3038 
3039 /*
3040  * Clear the pending command in the controller and wait until
3041  * the controller confirms that the command has been cleared.
3042  * @hba: per adapter instance
3043  * @task_tag: The tag number of the command to be cleared.
3044  */
3045 static int ufshcd_clear_cmd(struct ufs_hba *hba, u32 task_tag)
3046 {
3047 	u32 mask = 1U << task_tag;
3048 	unsigned long flags;
3049 	int err;
3050 
3051 	if (is_mcq_enabled(hba)) {
3052 		/*
3053 		 * MCQ mode. Clean up the MCQ resources similar to
3054 		 * what the ufshcd_utrl_clear() does for SDB mode.
3055 		 */
3056 		err = ufshcd_mcq_sq_cleanup(hba, task_tag);
3057 		if (err) {
3058 			dev_err(hba->dev, "%s: failed tag=%d. err=%d\n",
3059 				__func__, task_tag, err);
3060 			return err;
3061 		}
3062 		return 0;
3063 	}
3064 
3065 	/* clear outstanding transaction before retry */
3066 	spin_lock_irqsave(hba->host->host_lock, flags);
3067 	ufshcd_utrl_clear(hba, mask);
3068 	spin_unlock_irqrestore(hba->host->host_lock, flags);
3069 
3070 	/*
3071 	 * wait for h/w to clear corresponding bit in door-bell.
3072 	 * max. wait is 1 sec.
3073 	 */
3074 	return ufshcd_wait_for_register(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL,
3075 					mask, ~mask, 1000, 1000);
3076 }
3077 
3078 /**
3079  * ufshcd_dev_cmd_completion() - handles device management command responses
3080  * @hba: per adapter instance
3081  * @lrbp: pointer to local reference block
3082  *
3083  * Return: 0 upon success; < 0 upon failure.
3084  */
3085 static int
3086 ufshcd_dev_cmd_completion(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
3087 {
3088 	enum upiu_response_transaction resp;
3089 	int err = 0;
3090 
3091 	hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
3092 	resp = ufshcd_get_req_rsp(lrbp->ucd_rsp_ptr);
3093 
3094 	switch (resp) {
3095 	case UPIU_TRANSACTION_NOP_IN:
3096 		if (hba->dev_cmd.type != DEV_CMD_TYPE_NOP) {
3097 			err = -EINVAL;
3098 			dev_err(hba->dev, "%s: unexpected response %x\n",
3099 					__func__, resp);
3100 		}
3101 		break;
3102 	case UPIU_TRANSACTION_QUERY_RSP: {
3103 		u8 response = lrbp->ucd_rsp_ptr->header.response;
3104 
3105 		if (response == 0)
3106 			err = ufshcd_copy_query_response(hba, lrbp);
3107 		break;
3108 	}
3109 	case UPIU_TRANSACTION_REJECT_UPIU:
3110 		/* TODO: handle Reject UPIU Response */
3111 		err = -EPERM;
3112 		dev_err(hba->dev, "%s: Reject UPIU not fully implemented\n",
3113 				__func__);
3114 		break;
3115 	case UPIU_TRANSACTION_RESPONSE:
3116 		if (hba->dev_cmd.type != DEV_CMD_TYPE_RPMB) {
3117 			err = -EINVAL;
3118 			dev_err(hba->dev, "%s: unexpected response %x\n", __func__, resp);
3119 		}
3120 		break;
3121 	default:
3122 		err = -EINVAL;
3123 		dev_err(hba->dev, "%s: Invalid device management cmd response: %x\n",
3124 				__func__, resp);
3125 		break;
3126 	}
3127 
3128 	return err;
3129 }
3130 
3131 static int ufshcd_wait_for_dev_cmd(struct ufs_hba *hba,
3132 		struct ufshcd_lrb *lrbp, int max_timeout)
3133 {
3134 	unsigned long time_left = msecs_to_jiffies(max_timeout);
3135 	unsigned long flags;
3136 	bool pending;
3137 	int err;
3138 
3139 retry:
3140 	time_left = wait_for_completion_timeout(hba->dev_cmd.complete,
3141 						time_left);
3142 
3143 	if (likely(time_left)) {
3144 		/*
3145 		 * The completion handler called complete() and the caller of
3146 		 * this function still owns the @lrbp tag so the code below does
3147 		 * not trigger any race conditions.
3148 		 */
3149 		hba->dev_cmd.complete = NULL;
3150 		err = ufshcd_get_tr_ocs(lrbp, NULL);
3151 		if (!err)
3152 			err = ufshcd_dev_cmd_completion(hba, lrbp);
3153 	} else {
3154 		err = -ETIMEDOUT;
3155 		dev_dbg(hba->dev, "%s: dev_cmd request timedout, tag %d\n",
3156 			__func__, lrbp->task_tag);
3157 
3158 		/* MCQ mode */
3159 		if (is_mcq_enabled(hba)) {
3160 			err = ufshcd_clear_cmd(hba, lrbp->task_tag);
3161 			hba->dev_cmd.complete = NULL;
3162 			return err;
3163 		}
3164 
3165 		/* SDB mode */
3166 		if (ufshcd_clear_cmd(hba, lrbp->task_tag) == 0) {
3167 			/* successfully cleared the command, retry if needed */
3168 			err = -EAGAIN;
3169 			/*
3170 			 * Since clearing the command succeeded we also need to
3171 			 * clear the task tag bit from the outstanding_reqs
3172 			 * variable.
3173 			 */
3174 			spin_lock_irqsave(&hba->outstanding_lock, flags);
3175 			pending = test_bit(lrbp->task_tag,
3176 					   &hba->outstanding_reqs);
3177 			if (pending) {
3178 				hba->dev_cmd.complete = NULL;
3179 				__clear_bit(lrbp->task_tag,
3180 					    &hba->outstanding_reqs);
3181 			}
3182 			spin_unlock_irqrestore(&hba->outstanding_lock, flags);
3183 
3184 			if (!pending) {
3185 				/*
3186 				 * The completion handler ran while we tried to
3187 				 * clear the command.
3188 				 */
3189 				time_left = 1;
3190 				goto retry;
3191 			}
3192 		} else {
3193 			dev_err(hba->dev, "%s: failed to clear tag %d\n",
3194 				__func__, lrbp->task_tag);
3195 
3196 			spin_lock_irqsave(&hba->outstanding_lock, flags);
3197 			pending = test_bit(lrbp->task_tag,
3198 					   &hba->outstanding_reqs);
3199 			if (pending)
3200 				hba->dev_cmd.complete = NULL;
3201 			spin_unlock_irqrestore(&hba->outstanding_lock, flags);
3202 
3203 			if (!pending) {
3204 				/*
3205 				 * The completion handler ran while we tried to
3206 				 * clear the command.
3207 				 */
3208 				time_left = 1;
3209 				goto retry;
3210 			}
3211 		}
3212 	}
3213 
3214 	return err;
3215 }
3216 
3217 /**
3218  * ufshcd_exec_dev_cmd - API for sending device management requests
3219  * @hba: UFS hba
3220  * @cmd_type: specifies the type (NOP, Query...)
3221  * @timeout: timeout in milliseconds
3222  *
3223  * Return: 0 upon success; < 0 upon failure.
3224  *
3225  * NOTE: Since there is only one available tag for device management commands,
3226  * it is expected you hold the hba->dev_cmd.lock mutex.
3227  */
3228 static int ufshcd_exec_dev_cmd(struct ufs_hba *hba,
3229 		enum dev_cmd_type cmd_type, int timeout)
3230 {
3231 	DECLARE_COMPLETION_ONSTACK(wait);
3232 	const u32 tag = hba->reserved_slot;
3233 	struct ufshcd_lrb *lrbp;
3234 	int err;
3235 
3236 	/* Protects use of hba->reserved_slot. */
3237 	lockdep_assert_held(&hba->dev_cmd.lock);
3238 
3239 	down_read(&hba->clk_scaling_lock);
3240 
3241 	lrbp = &hba->lrb[tag];
3242 	lrbp->cmd = NULL;
3243 	err = ufshcd_compose_dev_cmd(hba, lrbp, cmd_type, tag);
3244 	if (unlikely(err))
3245 		goto out;
3246 
3247 	hba->dev_cmd.complete = &wait;
3248 
3249 	ufshcd_add_query_upiu_trace(hba, UFS_QUERY_SEND, lrbp->ucd_req_ptr);
3250 
3251 	ufshcd_send_command(hba, tag, hba->dev_cmd_queue);
3252 	err = ufshcd_wait_for_dev_cmd(hba, lrbp, timeout);
3253 	ufshcd_add_query_upiu_trace(hba, err ? UFS_QUERY_ERR : UFS_QUERY_COMP,
3254 				    (struct utp_upiu_req *)lrbp->ucd_rsp_ptr);
3255 
3256 out:
3257 	up_read(&hba->clk_scaling_lock);
3258 	return err;
3259 }
3260 
3261 /**
3262  * ufshcd_init_query() - init the query response and request parameters
3263  * @hba: per-adapter instance
3264  * @request: address of the request pointer to be initialized
3265  * @response: address of the response pointer to be initialized
3266  * @opcode: operation to perform
3267  * @idn: flag idn to access
3268  * @index: LU number to access
3269  * @selector: query/flag/descriptor further identification
3270  */
3271 static inline void ufshcd_init_query(struct ufs_hba *hba,
3272 		struct ufs_query_req **request, struct ufs_query_res **response,
3273 		enum query_opcode opcode, u8 idn, u8 index, u8 selector)
3274 {
3275 	*request = &hba->dev_cmd.query.request;
3276 	*response = &hba->dev_cmd.query.response;
3277 	memset(*request, 0, sizeof(struct ufs_query_req));
3278 	memset(*response, 0, sizeof(struct ufs_query_res));
3279 	(*request)->upiu_req.opcode = opcode;
3280 	(*request)->upiu_req.idn = idn;
3281 	(*request)->upiu_req.index = index;
3282 	(*request)->upiu_req.selector = selector;
3283 }
3284 
3285 static int ufshcd_query_flag_retry(struct ufs_hba *hba,
3286 	enum query_opcode opcode, enum flag_idn idn, u8 index, bool *flag_res)
3287 {
3288 	int ret;
3289 	int retries;
3290 
3291 	for (retries = 0; retries < QUERY_REQ_RETRIES; retries++) {
3292 		ret = ufshcd_query_flag(hba, opcode, idn, index, flag_res);
3293 		if (ret)
3294 			dev_dbg(hba->dev,
3295 				"%s: failed with error %d, retries %d\n",
3296 				__func__, ret, retries);
3297 		else
3298 			break;
3299 	}
3300 
3301 	if (ret)
3302 		dev_err(hba->dev,
3303 			"%s: query flag, opcode %d, idn %d, failed with error %d after %d retries\n",
3304 			__func__, opcode, idn, ret, retries);
3305 	return ret;
3306 }
3307 
3308 /**
3309  * ufshcd_query_flag() - API function for sending flag query requests
3310  * @hba: per-adapter instance
3311  * @opcode: flag query to perform
3312  * @idn: flag idn to access
3313  * @index: flag index to access
3314  * @flag_res: the flag value after the query request completes
3315  *
3316  * Return: 0 for success, non-zero in case of failure.
3317  */
3318 int ufshcd_query_flag(struct ufs_hba *hba, enum query_opcode opcode,
3319 			enum flag_idn idn, u8 index, bool *flag_res)
3320 {
3321 	struct ufs_query_req *request = NULL;
3322 	struct ufs_query_res *response = NULL;
3323 	int err, selector = 0;
3324 	int timeout = QUERY_REQ_TIMEOUT;
3325 
3326 	BUG_ON(!hba);
3327 
3328 	ufshcd_hold(hba);
3329 	mutex_lock(&hba->dev_cmd.lock);
3330 	ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3331 			selector);
3332 
3333 	switch (opcode) {
3334 	case UPIU_QUERY_OPCODE_SET_FLAG:
3335 	case UPIU_QUERY_OPCODE_CLEAR_FLAG:
3336 	case UPIU_QUERY_OPCODE_TOGGLE_FLAG:
3337 		request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3338 		break;
3339 	case UPIU_QUERY_OPCODE_READ_FLAG:
3340 		request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3341 		if (!flag_res) {
3342 			/* No dummy reads */
3343 			dev_err(hba->dev, "%s: Invalid argument for read request\n",
3344 					__func__);
3345 			err = -EINVAL;
3346 			goto out_unlock;
3347 		}
3348 		break;
3349 	default:
3350 		dev_err(hba->dev,
3351 			"%s: Expected query flag opcode but got = %d\n",
3352 			__func__, opcode);
3353 		err = -EINVAL;
3354 		goto out_unlock;
3355 	}
3356 
3357 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, timeout);
3358 
3359 	if (err) {
3360 		dev_err(hba->dev,
3361 			"%s: Sending flag query for idn %d failed, err = %d\n",
3362 			__func__, idn, err);
3363 		goto out_unlock;
3364 	}
3365 
3366 	if (flag_res)
3367 		*flag_res = (be32_to_cpu(response->upiu_res.value) &
3368 				MASK_QUERY_UPIU_FLAG_LOC) & 0x1;
3369 
3370 out_unlock:
3371 	mutex_unlock(&hba->dev_cmd.lock);
3372 	ufshcd_release(hba);
3373 	return err;
3374 }
3375 
3376 /**
3377  * ufshcd_query_attr - API function for sending attribute requests
3378  * @hba: per-adapter instance
3379  * @opcode: attribute opcode
3380  * @idn: attribute idn to access
3381  * @index: index field
3382  * @selector: selector field
3383  * @attr_val: the attribute value after the query request completes
3384  *
3385  * Return: 0 for success, non-zero in case of failure.
3386 */
3387 int ufshcd_query_attr(struct ufs_hba *hba, enum query_opcode opcode,
3388 		      enum attr_idn idn, u8 index, u8 selector, u32 *attr_val)
3389 {
3390 	struct ufs_query_req *request = NULL;
3391 	struct ufs_query_res *response = NULL;
3392 	int err;
3393 
3394 	BUG_ON(!hba);
3395 
3396 	if (!attr_val) {
3397 		dev_err(hba->dev, "%s: attribute value required for opcode 0x%x\n",
3398 				__func__, opcode);
3399 		return -EINVAL;
3400 	}
3401 
3402 	ufshcd_hold(hba);
3403 
3404 	mutex_lock(&hba->dev_cmd.lock);
3405 	ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3406 			selector);
3407 
3408 	switch (opcode) {
3409 	case UPIU_QUERY_OPCODE_WRITE_ATTR:
3410 		request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3411 		request->upiu_req.value = cpu_to_be32(*attr_val);
3412 		break;
3413 	case UPIU_QUERY_OPCODE_READ_ATTR:
3414 		request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3415 		break;
3416 	default:
3417 		dev_err(hba->dev, "%s: Expected query attr opcode but got = 0x%.2x\n",
3418 				__func__, opcode);
3419 		err = -EINVAL;
3420 		goto out_unlock;
3421 	}
3422 
3423 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT);
3424 
3425 	if (err) {
3426 		dev_err(hba->dev, "%s: opcode 0x%.2x for idn %d failed, index %d, err = %d\n",
3427 				__func__, opcode, idn, index, err);
3428 		goto out_unlock;
3429 	}
3430 
3431 	*attr_val = be32_to_cpu(response->upiu_res.value);
3432 
3433 out_unlock:
3434 	mutex_unlock(&hba->dev_cmd.lock);
3435 	ufshcd_release(hba);
3436 	return err;
3437 }
3438 
3439 /**
3440  * ufshcd_query_attr_retry() - API function for sending query
3441  * attribute with retries
3442  * @hba: per-adapter instance
3443  * @opcode: attribute opcode
3444  * @idn: attribute idn to access
3445  * @index: index field
3446  * @selector: selector field
3447  * @attr_val: the attribute value after the query request
3448  * completes
3449  *
3450  * Return: 0 for success, non-zero in case of failure.
3451 */
3452 int ufshcd_query_attr_retry(struct ufs_hba *hba,
3453 	enum query_opcode opcode, enum attr_idn idn, u8 index, u8 selector,
3454 	u32 *attr_val)
3455 {
3456 	int ret = 0;
3457 	u32 retries;
3458 
3459 	for (retries = QUERY_REQ_RETRIES; retries > 0; retries--) {
3460 		ret = ufshcd_query_attr(hba, opcode, idn, index,
3461 						selector, attr_val);
3462 		if (ret)
3463 			dev_dbg(hba->dev, "%s: failed with error %d, retries %d\n",
3464 				__func__, ret, retries);
3465 		else
3466 			break;
3467 	}
3468 
3469 	if (ret)
3470 		dev_err(hba->dev,
3471 			"%s: query attribute, idn %d, failed with error %d after %d retries\n",
3472 			__func__, idn, ret, QUERY_REQ_RETRIES);
3473 	return ret;
3474 }
3475 
3476 static int __ufshcd_query_descriptor(struct ufs_hba *hba,
3477 			enum query_opcode opcode, enum desc_idn idn, u8 index,
3478 			u8 selector, u8 *desc_buf, int *buf_len)
3479 {
3480 	struct ufs_query_req *request = NULL;
3481 	struct ufs_query_res *response = NULL;
3482 	int err;
3483 
3484 	BUG_ON(!hba);
3485 
3486 	if (!desc_buf) {
3487 		dev_err(hba->dev, "%s: descriptor buffer required for opcode 0x%x\n",
3488 				__func__, opcode);
3489 		return -EINVAL;
3490 	}
3491 
3492 	if (*buf_len < QUERY_DESC_MIN_SIZE || *buf_len > QUERY_DESC_MAX_SIZE) {
3493 		dev_err(hba->dev, "%s: descriptor buffer size (%d) is out of range\n",
3494 				__func__, *buf_len);
3495 		return -EINVAL;
3496 	}
3497 
3498 	ufshcd_hold(hba);
3499 
3500 	mutex_lock(&hba->dev_cmd.lock);
3501 	ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3502 			selector);
3503 	hba->dev_cmd.query.descriptor = desc_buf;
3504 	request->upiu_req.length = cpu_to_be16(*buf_len);
3505 
3506 	switch (opcode) {
3507 	case UPIU_QUERY_OPCODE_WRITE_DESC:
3508 		request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3509 		break;
3510 	case UPIU_QUERY_OPCODE_READ_DESC:
3511 		request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3512 		break;
3513 	default:
3514 		dev_err(hba->dev,
3515 				"%s: Expected query descriptor opcode but got = 0x%.2x\n",
3516 				__func__, opcode);
3517 		err = -EINVAL;
3518 		goto out_unlock;
3519 	}
3520 
3521 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT);
3522 
3523 	if (err) {
3524 		dev_err(hba->dev, "%s: opcode 0x%.2x for idn %d failed, index %d, err = %d\n",
3525 				__func__, opcode, idn, index, err);
3526 		goto out_unlock;
3527 	}
3528 
3529 	*buf_len = be16_to_cpu(response->upiu_res.length);
3530 
3531 out_unlock:
3532 	hba->dev_cmd.query.descriptor = NULL;
3533 	mutex_unlock(&hba->dev_cmd.lock);
3534 	ufshcd_release(hba);
3535 	return err;
3536 }
3537 
3538 /**
3539  * ufshcd_query_descriptor_retry - API function for sending descriptor requests
3540  * @hba: per-adapter instance
3541  * @opcode: attribute opcode
3542  * @idn: attribute idn to access
3543  * @index: index field
3544  * @selector: selector field
3545  * @desc_buf: the buffer that contains the descriptor
3546  * @buf_len: length parameter passed to the device
3547  *
3548  * The buf_len parameter will contain, on return, the length parameter
3549  * received on the response.
3550  *
3551  * Return: 0 for success, non-zero in case of failure.
3552  */
3553 int ufshcd_query_descriptor_retry(struct ufs_hba *hba,
3554 				  enum query_opcode opcode,
3555 				  enum desc_idn idn, u8 index,
3556 				  u8 selector,
3557 				  u8 *desc_buf, int *buf_len)
3558 {
3559 	int err;
3560 	int retries;
3561 
3562 	for (retries = QUERY_REQ_RETRIES; retries > 0; retries--) {
3563 		err = __ufshcd_query_descriptor(hba, opcode, idn, index,
3564 						selector, desc_buf, buf_len);
3565 		if (!err || err == -EINVAL)
3566 			break;
3567 	}
3568 
3569 	return err;
3570 }
3571 
3572 /**
3573  * ufshcd_read_desc_param - read the specified descriptor parameter
3574  * @hba: Pointer to adapter instance
3575  * @desc_id: descriptor idn value
3576  * @desc_index: descriptor index
3577  * @param_offset: offset of the parameter to read
3578  * @param_read_buf: pointer to buffer where parameter would be read
3579  * @param_size: sizeof(param_read_buf)
3580  *
3581  * Return: 0 in case of success, non-zero otherwise.
3582  */
3583 int ufshcd_read_desc_param(struct ufs_hba *hba,
3584 			   enum desc_idn desc_id,
3585 			   int desc_index,
3586 			   u8 param_offset,
3587 			   u8 *param_read_buf,
3588 			   u8 param_size)
3589 {
3590 	int ret;
3591 	u8 *desc_buf;
3592 	int buff_len = QUERY_DESC_MAX_SIZE;
3593 	bool is_kmalloc = true;
3594 
3595 	/* Safety check */
3596 	if (desc_id >= QUERY_DESC_IDN_MAX || !param_size)
3597 		return -EINVAL;
3598 
3599 	/* Check whether we need temp memory */
3600 	if (param_offset != 0 || param_size < buff_len) {
3601 		desc_buf = kzalloc(buff_len, GFP_KERNEL);
3602 		if (!desc_buf)
3603 			return -ENOMEM;
3604 	} else {
3605 		desc_buf = param_read_buf;
3606 		is_kmalloc = false;
3607 	}
3608 
3609 	/* Request for full descriptor */
3610 	ret = ufshcd_query_descriptor_retry(hba, UPIU_QUERY_OPCODE_READ_DESC,
3611 					    desc_id, desc_index, 0,
3612 					    desc_buf, &buff_len);
3613 	if (ret) {
3614 		dev_err(hba->dev, "%s: Failed reading descriptor. desc_id %d, desc_index %d, param_offset %d, ret %d\n",
3615 			__func__, desc_id, desc_index, param_offset, ret);
3616 		goto out;
3617 	}
3618 
3619 	/* Update descriptor length */
3620 	buff_len = desc_buf[QUERY_DESC_LENGTH_OFFSET];
3621 
3622 	if (param_offset >= buff_len) {
3623 		dev_err(hba->dev, "%s: Invalid offset 0x%x in descriptor IDN 0x%x, length 0x%x\n",
3624 			__func__, param_offset, desc_id, buff_len);
3625 		ret = -EINVAL;
3626 		goto out;
3627 	}
3628 
3629 	/* Sanity check */
3630 	if (desc_buf[QUERY_DESC_DESC_TYPE_OFFSET] != desc_id) {
3631 		dev_err(hba->dev, "%s: invalid desc_id %d in descriptor header\n",
3632 			__func__, desc_buf[QUERY_DESC_DESC_TYPE_OFFSET]);
3633 		ret = -EINVAL;
3634 		goto out;
3635 	}
3636 
3637 	if (is_kmalloc) {
3638 		/* Make sure we don't copy more data than available */
3639 		if (param_offset >= buff_len)
3640 			ret = -EINVAL;
3641 		else
3642 			memcpy(param_read_buf, &desc_buf[param_offset],
3643 			       min_t(u32, param_size, buff_len - param_offset));
3644 	}
3645 out:
3646 	if (is_kmalloc)
3647 		kfree(desc_buf);
3648 	return ret;
3649 }
3650 
3651 /**
3652  * struct uc_string_id - unicode string
3653  *
3654  * @len: size of this descriptor inclusive
3655  * @type: descriptor type
3656  * @uc: unicode string character
3657  */
3658 struct uc_string_id {
3659 	u8 len;
3660 	u8 type;
3661 	wchar_t uc[];
3662 } __packed;
3663 
3664 /* replace non-printable or non-ASCII characters with spaces */
3665 static inline char ufshcd_remove_non_printable(u8 ch)
3666 {
3667 	return (ch >= 0x20 && ch <= 0x7e) ? ch : ' ';
3668 }
3669 
3670 /**
3671  * ufshcd_read_string_desc - read string descriptor
3672  * @hba: pointer to adapter instance
3673  * @desc_index: descriptor index
3674  * @buf: pointer to buffer where descriptor would be read,
3675  *       the caller should free the memory.
3676  * @ascii: if true convert from unicode to ascii characters
3677  *         null terminated string.
3678  *
3679  * Return:
3680  * *      string size on success.
3681  * *      -ENOMEM: on allocation failure
3682  * *      -EINVAL: on a wrong parameter
3683  */
3684 int ufshcd_read_string_desc(struct ufs_hba *hba, u8 desc_index,
3685 			    u8 **buf, bool ascii)
3686 {
3687 	struct uc_string_id *uc_str;
3688 	u8 *str;
3689 	int ret;
3690 
3691 	if (!buf)
3692 		return -EINVAL;
3693 
3694 	uc_str = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
3695 	if (!uc_str)
3696 		return -ENOMEM;
3697 
3698 	ret = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_STRING, desc_index, 0,
3699 				     (u8 *)uc_str, QUERY_DESC_MAX_SIZE);
3700 	if (ret < 0) {
3701 		dev_err(hba->dev, "Reading String Desc failed after %d retries. err = %d\n",
3702 			QUERY_REQ_RETRIES, ret);
3703 		str = NULL;
3704 		goto out;
3705 	}
3706 
3707 	if (uc_str->len <= QUERY_DESC_HDR_SIZE) {
3708 		dev_dbg(hba->dev, "String Desc is of zero length\n");
3709 		str = NULL;
3710 		ret = 0;
3711 		goto out;
3712 	}
3713 
3714 	if (ascii) {
3715 		ssize_t ascii_len;
3716 		int i;
3717 		/* remove header and divide by 2 to move from UTF16 to UTF8 */
3718 		ascii_len = (uc_str->len - QUERY_DESC_HDR_SIZE) / 2 + 1;
3719 		str = kzalloc(ascii_len, GFP_KERNEL);
3720 		if (!str) {
3721 			ret = -ENOMEM;
3722 			goto out;
3723 		}
3724 
3725 		/*
3726 		 * the descriptor contains string in UTF16 format
3727 		 * we need to convert to utf-8 so it can be displayed
3728 		 */
3729 		ret = utf16s_to_utf8s(uc_str->uc,
3730 				      uc_str->len - QUERY_DESC_HDR_SIZE,
3731 				      UTF16_BIG_ENDIAN, str, ascii_len - 1);
3732 
3733 		/* replace non-printable or non-ASCII characters with spaces */
3734 		for (i = 0; i < ret; i++)
3735 			str[i] = ufshcd_remove_non_printable(str[i]);
3736 
3737 		str[ret++] = '\0';
3738 
3739 	} else {
3740 		str = kmemdup(uc_str, uc_str->len, GFP_KERNEL);
3741 		if (!str) {
3742 			ret = -ENOMEM;
3743 			goto out;
3744 		}
3745 		ret = uc_str->len;
3746 	}
3747 out:
3748 	*buf = str;
3749 	kfree(uc_str);
3750 	return ret;
3751 }
3752 
3753 /**
3754  * ufshcd_read_unit_desc_param - read the specified unit descriptor parameter
3755  * @hba: Pointer to adapter instance
3756  * @lun: lun id
3757  * @param_offset: offset of the parameter to read
3758  * @param_read_buf: pointer to buffer where parameter would be read
3759  * @param_size: sizeof(param_read_buf)
3760  *
3761  * Return: 0 in case of success, non-zero otherwise.
3762  */
3763 static inline int ufshcd_read_unit_desc_param(struct ufs_hba *hba,
3764 					      int lun,
3765 					      enum unit_desc_param param_offset,
3766 					      u8 *param_read_buf,
3767 					      u32 param_size)
3768 {
3769 	/*
3770 	 * Unit descriptors are only available for general purpose LUs (LUN id
3771 	 * from 0 to 7) and RPMB Well known LU.
3772 	 */
3773 	if (!ufs_is_valid_unit_desc_lun(&hba->dev_info, lun))
3774 		return -EOPNOTSUPP;
3775 
3776 	return ufshcd_read_desc_param(hba, QUERY_DESC_IDN_UNIT, lun,
3777 				      param_offset, param_read_buf, param_size);
3778 }
3779 
3780 static int ufshcd_get_ref_clk_gating_wait(struct ufs_hba *hba)
3781 {
3782 	int err = 0;
3783 	u32 gating_wait = UFSHCD_REF_CLK_GATING_WAIT_US;
3784 
3785 	if (hba->dev_info.wspecversion >= 0x300) {
3786 		err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
3787 				QUERY_ATTR_IDN_REF_CLK_GATING_WAIT_TIME, 0, 0,
3788 				&gating_wait);
3789 		if (err)
3790 			dev_err(hba->dev, "Failed reading bRefClkGatingWait. err = %d, use default %uus\n",
3791 					 err, gating_wait);
3792 
3793 		if (gating_wait == 0) {
3794 			gating_wait = UFSHCD_REF_CLK_GATING_WAIT_US;
3795 			dev_err(hba->dev, "Undefined ref clk gating wait time, use default %uus\n",
3796 					 gating_wait);
3797 		}
3798 
3799 		hba->dev_info.clk_gating_wait_us = gating_wait;
3800 	}
3801 
3802 	return err;
3803 }
3804 
3805 /**
3806  * ufshcd_memory_alloc - allocate memory for host memory space data structures
3807  * @hba: per adapter instance
3808  *
3809  * 1. Allocate DMA memory for Command Descriptor array
3810  *	Each command descriptor consist of Command UPIU, Response UPIU and PRDT
3811  * 2. Allocate DMA memory for UTP Transfer Request Descriptor List (UTRDL).
3812  * 3. Allocate DMA memory for UTP Task Management Request Descriptor List
3813  *	(UTMRDL)
3814  * 4. Allocate memory for local reference block(lrb).
3815  *
3816  * Return: 0 for success, non-zero in case of failure.
3817  */
3818 static int ufshcd_memory_alloc(struct ufs_hba *hba)
3819 {
3820 	size_t utmrdl_size, utrdl_size, ucdl_size;
3821 
3822 	/* Allocate memory for UTP command descriptors */
3823 	ucdl_size = ufshcd_get_ucd_size(hba) * hba->nutrs;
3824 	hba->ucdl_base_addr = dmam_alloc_coherent(hba->dev,
3825 						  ucdl_size,
3826 						  &hba->ucdl_dma_addr,
3827 						  GFP_KERNEL);
3828 
3829 	/*
3830 	 * UFSHCI requires UTP command descriptor to be 128 byte aligned.
3831 	 */
3832 	if (!hba->ucdl_base_addr ||
3833 	    WARN_ON(hba->ucdl_dma_addr & (128 - 1))) {
3834 		dev_err(hba->dev,
3835 			"Command Descriptor Memory allocation failed\n");
3836 		goto out;
3837 	}
3838 
3839 	/*
3840 	 * Allocate memory for UTP Transfer descriptors
3841 	 * UFSHCI requires 1KB alignment of UTRD
3842 	 */
3843 	utrdl_size = (sizeof(struct utp_transfer_req_desc) * hba->nutrs);
3844 	hba->utrdl_base_addr = dmam_alloc_coherent(hba->dev,
3845 						   utrdl_size,
3846 						   &hba->utrdl_dma_addr,
3847 						   GFP_KERNEL);
3848 	if (!hba->utrdl_base_addr ||
3849 	    WARN_ON(hba->utrdl_dma_addr & (SZ_1K - 1))) {
3850 		dev_err(hba->dev,
3851 			"Transfer Descriptor Memory allocation failed\n");
3852 		goto out;
3853 	}
3854 
3855 	/*
3856 	 * Skip utmrdl allocation; it may have been
3857 	 * allocated during first pass and not released during
3858 	 * MCQ memory allocation.
3859 	 * See ufshcd_release_sdb_queue() and ufshcd_config_mcq()
3860 	 */
3861 	if (hba->utmrdl_base_addr)
3862 		goto skip_utmrdl;
3863 	/*
3864 	 * Allocate memory for UTP Task Management descriptors
3865 	 * UFSHCI requires 1KB alignment of UTMRD
3866 	 */
3867 	utmrdl_size = sizeof(struct utp_task_req_desc) * hba->nutmrs;
3868 	hba->utmrdl_base_addr = dmam_alloc_coherent(hba->dev,
3869 						    utmrdl_size,
3870 						    &hba->utmrdl_dma_addr,
3871 						    GFP_KERNEL);
3872 	if (!hba->utmrdl_base_addr ||
3873 	    WARN_ON(hba->utmrdl_dma_addr & (SZ_1K - 1))) {
3874 		dev_err(hba->dev,
3875 		"Task Management Descriptor Memory allocation failed\n");
3876 		goto out;
3877 	}
3878 
3879 skip_utmrdl:
3880 	/* Allocate memory for local reference block */
3881 	hba->lrb = devm_kcalloc(hba->dev,
3882 				hba->nutrs, sizeof(struct ufshcd_lrb),
3883 				GFP_KERNEL);
3884 	if (!hba->lrb) {
3885 		dev_err(hba->dev, "LRB Memory allocation failed\n");
3886 		goto out;
3887 	}
3888 	return 0;
3889 out:
3890 	return -ENOMEM;
3891 }
3892 
3893 /**
3894  * ufshcd_host_memory_configure - configure local reference block with
3895  *				memory offsets
3896  * @hba: per adapter instance
3897  *
3898  * Configure Host memory space
3899  * 1. Update Corresponding UTRD.UCDBA and UTRD.UCDBAU with UCD DMA
3900  * address.
3901  * 2. Update each UTRD with Response UPIU offset, Response UPIU length
3902  * and PRDT offset.
3903  * 3. Save the corresponding addresses of UTRD, UCD.CMD, UCD.RSP and UCD.PRDT
3904  * into local reference block.
3905  */
3906 static void ufshcd_host_memory_configure(struct ufs_hba *hba)
3907 {
3908 	struct utp_transfer_req_desc *utrdlp;
3909 	dma_addr_t cmd_desc_dma_addr;
3910 	dma_addr_t cmd_desc_element_addr;
3911 	u16 response_offset;
3912 	u16 prdt_offset;
3913 	int cmd_desc_size;
3914 	int i;
3915 
3916 	utrdlp = hba->utrdl_base_addr;
3917 
3918 	response_offset =
3919 		offsetof(struct utp_transfer_cmd_desc, response_upiu);
3920 	prdt_offset =
3921 		offsetof(struct utp_transfer_cmd_desc, prd_table);
3922 
3923 	cmd_desc_size = ufshcd_get_ucd_size(hba);
3924 	cmd_desc_dma_addr = hba->ucdl_dma_addr;
3925 
3926 	for (i = 0; i < hba->nutrs; i++) {
3927 		/* Configure UTRD with command descriptor base address */
3928 		cmd_desc_element_addr =
3929 				(cmd_desc_dma_addr + (cmd_desc_size * i));
3930 		utrdlp[i].command_desc_base_addr =
3931 				cpu_to_le64(cmd_desc_element_addr);
3932 
3933 		/* Response upiu and prdt offset should be in double words */
3934 		if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN) {
3935 			utrdlp[i].response_upiu_offset =
3936 				cpu_to_le16(response_offset);
3937 			utrdlp[i].prd_table_offset =
3938 				cpu_to_le16(prdt_offset);
3939 			utrdlp[i].response_upiu_length =
3940 				cpu_to_le16(ALIGNED_UPIU_SIZE);
3941 		} else {
3942 			utrdlp[i].response_upiu_offset =
3943 				cpu_to_le16(response_offset >> 2);
3944 			utrdlp[i].prd_table_offset =
3945 				cpu_to_le16(prdt_offset >> 2);
3946 			utrdlp[i].response_upiu_length =
3947 				cpu_to_le16(ALIGNED_UPIU_SIZE >> 2);
3948 		}
3949 
3950 		ufshcd_init_lrb(hba, &hba->lrb[i], i);
3951 	}
3952 }
3953 
3954 /**
3955  * ufshcd_dme_link_startup - Notify Unipro to perform link startup
3956  * @hba: per adapter instance
3957  *
3958  * UIC_CMD_DME_LINK_STARTUP command must be issued to Unipro layer,
3959  * in order to initialize the Unipro link startup procedure.
3960  * Once the Unipro links are up, the device connected to the controller
3961  * is detected.
3962  *
3963  * Return: 0 on success, non-zero value on failure.
3964  */
3965 static int ufshcd_dme_link_startup(struct ufs_hba *hba)
3966 {
3967 	struct uic_command uic_cmd = {0};
3968 	int ret;
3969 
3970 	uic_cmd.command = UIC_CMD_DME_LINK_STARTUP;
3971 
3972 	ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
3973 	if (ret)
3974 		dev_dbg(hba->dev,
3975 			"dme-link-startup: error code %d\n", ret);
3976 	return ret;
3977 }
3978 /**
3979  * ufshcd_dme_reset - UIC command for DME_RESET
3980  * @hba: per adapter instance
3981  *
3982  * DME_RESET command is issued in order to reset UniPro stack.
3983  * This function now deals with cold reset.
3984  *
3985  * Return: 0 on success, non-zero value on failure.
3986  */
3987 static int ufshcd_dme_reset(struct ufs_hba *hba)
3988 {
3989 	struct uic_command uic_cmd = {0};
3990 	int ret;
3991 
3992 	uic_cmd.command = UIC_CMD_DME_RESET;
3993 
3994 	ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
3995 	if (ret)
3996 		dev_err(hba->dev,
3997 			"dme-reset: error code %d\n", ret);
3998 
3999 	return ret;
4000 }
4001 
4002 int ufshcd_dme_configure_adapt(struct ufs_hba *hba,
4003 			       int agreed_gear,
4004 			       int adapt_val)
4005 {
4006 	int ret;
4007 
4008 	if (agreed_gear < UFS_HS_G4)
4009 		adapt_val = PA_NO_ADAPT;
4010 
4011 	ret = ufshcd_dme_set(hba,
4012 			     UIC_ARG_MIB(PA_TXHSADAPTTYPE),
4013 			     adapt_val);
4014 	return ret;
4015 }
4016 EXPORT_SYMBOL_GPL(ufshcd_dme_configure_adapt);
4017 
4018 /**
4019  * ufshcd_dme_enable - UIC command for DME_ENABLE
4020  * @hba: per adapter instance
4021  *
4022  * DME_ENABLE command is issued in order to enable UniPro stack.
4023  *
4024  * Return: 0 on success, non-zero value on failure.
4025  */
4026 static int ufshcd_dme_enable(struct ufs_hba *hba)
4027 {
4028 	struct uic_command uic_cmd = {0};
4029 	int ret;
4030 
4031 	uic_cmd.command = UIC_CMD_DME_ENABLE;
4032 
4033 	ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4034 	if (ret)
4035 		dev_err(hba->dev,
4036 			"dme-enable: error code %d\n", ret);
4037 
4038 	return ret;
4039 }
4040 
4041 static inline void ufshcd_add_delay_before_dme_cmd(struct ufs_hba *hba)
4042 {
4043 	#define MIN_DELAY_BEFORE_DME_CMDS_US	1000
4044 	unsigned long min_sleep_time_us;
4045 
4046 	if (!(hba->quirks & UFSHCD_QUIRK_DELAY_BEFORE_DME_CMDS))
4047 		return;
4048 
4049 	/*
4050 	 * last_dme_cmd_tstamp will be 0 only for 1st call to
4051 	 * this function
4052 	 */
4053 	if (unlikely(!ktime_to_us(hba->last_dme_cmd_tstamp))) {
4054 		min_sleep_time_us = MIN_DELAY_BEFORE_DME_CMDS_US;
4055 	} else {
4056 		unsigned long delta =
4057 			(unsigned long) ktime_to_us(
4058 				ktime_sub(ktime_get(),
4059 				hba->last_dme_cmd_tstamp));
4060 
4061 		if (delta < MIN_DELAY_BEFORE_DME_CMDS_US)
4062 			min_sleep_time_us =
4063 				MIN_DELAY_BEFORE_DME_CMDS_US - delta;
4064 		else
4065 			return; /* no more delay required */
4066 	}
4067 
4068 	/* allow sleep for extra 50us if needed */
4069 	usleep_range(min_sleep_time_us, min_sleep_time_us + 50);
4070 }
4071 
4072 /**
4073  * ufshcd_dme_set_attr - UIC command for DME_SET, DME_PEER_SET
4074  * @hba: per adapter instance
4075  * @attr_sel: uic command argument1
4076  * @attr_set: attribute set type as uic command argument2
4077  * @mib_val: setting value as uic command argument3
4078  * @peer: indicate whether peer or local
4079  *
4080  * Return: 0 on success, non-zero value on failure.
4081  */
4082 int ufshcd_dme_set_attr(struct ufs_hba *hba, u32 attr_sel,
4083 			u8 attr_set, u32 mib_val, u8 peer)
4084 {
4085 	struct uic_command uic_cmd = {0};
4086 	static const char *const action[] = {
4087 		"dme-set",
4088 		"dme-peer-set"
4089 	};
4090 	const char *set = action[!!peer];
4091 	int ret;
4092 	int retries = UFS_UIC_COMMAND_RETRIES;
4093 
4094 	uic_cmd.command = peer ?
4095 		UIC_CMD_DME_PEER_SET : UIC_CMD_DME_SET;
4096 	uic_cmd.argument1 = attr_sel;
4097 	uic_cmd.argument2 = UIC_ARG_ATTR_TYPE(attr_set);
4098 	uic_cmd.argument3 = mib_val;
4099 
4100 	do {
4101 		/* for peer attributes we retry upon failure */
4102 		ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4103 		if (ret)
4104 			dev_dbg(hba->dev, "%s: attr-id 0x%x val 0x%x error code %d\n",
4105 				set, UIC_GET_ATTR_ID(attr_sel), mib_val, ret);
4106 	} while (ret && peer && --retries);
4107 
4108 	if (ret)
4109 		dev_err(hba->dev, "%s: attr-id 0x%x val 0x%x failed %d retries\n",
4110 			set, UIC_GET_ATTR_ID(attr_sel), mib_val,
4111 			UFS_UIC_COMMAND_RETRIES - retries);
4112 
4113 	return ret;
4114 }
4115 EXPORT_SYMBOL_GPL(ufshcd_dme_set_attr);
4116 
4117 /**
4118  * ufshcd_dme_get_attr - UIC command for DME_GET, DME_PEER_GET
4119  * @hba: per adapter instance
4120  * @attr_sel: uic command argument1
4121  * @mib_val: the value of the attribute as returned by the UIC command
4122  * @peer: indicate whether peer or local
4123  *
4124  * Return: 0 on success, non-zero value on failure.
4125  */
4126 int ufshcd_dme_get_attr(struct ufs_hba *hba, u32 attr_sel,
4127 			u32 *mib_val, u8 peer)
4128 {
4129 	struct uic_command uic_cmd = {0};
4130 	static const char *const action[] = {
4131 		"dme-get",
4132 		"dme-peer-get"
4133 	};
4134 	const char *get = action[!!peer];
4135 	int ret;
4136 	int retries = UFS_UIC_COMMAND_RETRIES;
4137 	struct ufs_pa_layer_attr orig_pwr_info;
4138 	struct ufs_pa_layer_attr temp_pwr_info;
4139 	bool pwr_mode_change = false;
4140 
4141 	if (peer && (hba->quirks & UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE)) {
4142 		orig_pwr_info = hba->pwr_info;
4143 		temp_pwr_info = orig_pwr_info;
4144 
4145 		if (orig_pwr_info.pwr_tx == FAST_MODE ||
4146 		    orig_pwr_info.pwr_rx == FAST_MODE) {
4147 			temp_pwr_info.pwr_tx = FASTAUTO_MODE;
4148 			temp_pwr_info.pwr_rx = FASTAUTO_MODE;
4149 			pwr_mode_change = true;
4150 		} else if (orig_pwr_info.pwr_tx == SLOW_MODE ||
4151 		    orig_pwr_info.pwr_rx == SLOW_MODE) {
4152 			temp_pwr_info.pwr_tx = SLOWAUTO_MODE;
4153 			temp_pwr_info.pwr_rx = SLOWAUTO_MODE;
4154 			pwr_mode_change = true;
4155 		}
4156 		if (pwr_mode_change) {
4157 			ret = ufshcd_change_power_mode(hba, &temp_pwr_info);
4158 			if (ret)
4159 				goto out;
4160 		}
4161 	}
4162 
4163 	uic_cmd.command = peer ?
4164 		UIC_CMD_DME_PEER_GET : UIC_CMD_DME_GET;
4165 	uic_cmd.argument1 = attr_sel;
4166 
4167 	do {
4168 		/* for peer attributes we retry upon failure */
4169 		ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4170 		if (ret)
4171 			dev_dbg(hba->dev, "%s: attr-id 0x%x error code %d\n",
4172 				get, UIC_GET_ATTR_ID(attr_sel), ret);
4173 	} while (ret && peer && --retries);
4174 
4175 	if (ret)
4176 		dev_err(hba->dev, "%s: attr-id 0x%x failed %d retries\n",
4177 			get, UIC_GET_ATTR_ID(attr_sel),
4178 			UFS_UIC_COMMAND_RETRIES - retries);
4179 
4180 	if (mib_val && !ret)
4181 		*mib_val = uic_cmd.argument3;
4182 
4183 	if (peer && (hba->quirks & UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE)
4184 	    && pwr_mode_change)
4185 		ufshcd_change_power_mode(hba, &orig_pwr_info);
4186 out:
4187 	return ret;
4188 }
4189 EXPORT_SYMBOL_GPL(ufshcd_dme_get_attr);
4190 
4191 /**
4192  * ufshcd_uic_pwr_ctrl - executes UIC commands (which affects the link power
4193  * state) and waits for it to take effect.
4194  *
4195  * @hba: per adapter instance
4196  * @cmd: UIC command to execute
4197  *
4198  * DME operations like DME_SET(PA_PWRMODE), DME_HIBERNATE_ENTER &
4199  * DME_HIBERNATE_EXIT commands take some time to take its effect on both host
4200  * and device UniPro link and hence it's final completion would be indicated by
4201  * dedicated status bits in Interrupt Status register (UPMS, UHES, UHXS) in
4202  * addition to normal UIC command completion Status (UCCS). This function only
4203  * returns after the relevant status bits indicate the completion.
4204  *
4205  * Return: 0 on success, non-zero value on failure.
4206  */
4207 static int ufshcd_uic_pwr_ctrl(struct ufs_hba *hba, struct uic_command *cmd)
4208 {
4209 	DECLARE_COMPLETION_ONSTACK(uic_async_done);
4210 	unsigned long flags;
4211 	u8 status;
4212 	int ret;
4213 	bool reenable_intr = false;
4214 
4215 	mutex_lock(&hba->uic_cmd_mutex);
4216 	ufshcd_add_delay_before_dme_cmd(hba);
4217 
4218 	spin_lock_irqsave(hba->host->host_lock, flags);
4219 	if (ufshcd_is_link_broken(hba)) {
4220 		ret = -ENOLINK;
4221 		goto out_unlock;
4222 	}
4223 	hba->uic_async_done = &uic_async_done;
4224 	if (ufshcd_readl(hba, REG_INTERRUPT_ENABLE) & UIC_COMMAND_COMPL) {
4225 		ufshcd_disable_intr(hba, UIC_COMMAND_COMPL);
4226 		/*
4227 		 * Make sure UIC command completion interrupt is disabled before
4228 		 * issuing UIC command.
4229 		 */
4230 		wmb();
4231 		reenable_intr = true;
4232 	}
4233 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4234 	ret = __ufshcd_send_uic_cmd(hba, cmd, false);
4235 	if (ret) {
4236 		dev_err(hba->dev,
4237 			"pwr ctrl cmd 0x%x with mode 0x%x uic error %d\n",
4238 			cmd->command, cmd->argument3, ret);
4239 		goto out;
4240 	}
4241 
4242 	if (!wait_for_completion_timeout(hba->uic_async_done,
4243 					 msecs_to_jiffies(UIC_CMD_TIMEOUT))) {
4244 		dev_err(hba->dev,
4245 			"pwr ctrl cmd 0x%x with mode 0x%x completion timeout\n",
4246 			cmd->command, cmd->argument3);
4247 
4248 		if (!cmd->cmd_active) {
4249 			dev_err(hba->dev, "%s: Power Mode Change operation has been completed, go check UPMCRS\n",
4250 				__func__);
4251 			goto check_upmcrs;
4252 		}
4253 
4254 		ret = -ETIMEDOUT;
4255 		goto out;
4256 	}
4257 
4258 check_upmcrs:
4259 	status = ufshcd_get_upmcrs(hba);
4260 	if (status != PWR_LOCAL) {
4261 		dev_err(hba->dev,
4262 			"pwr ctrl cmd 0x%x failed, host upmcrs:0x%x\n",
4263 			cmd->command, status);
4264 		ret = (status != PWR_OK) ? status : -1;
4265 	}
4266 out:
4267 	if (ret) {
4268 		ufshcd_print_host_state(hba);
4269 		ufshcd_print_pwr_info(hba);
4270 		ufshcd_print_evt_hist(hba);
4271 	}
4272 
4273 	spin_lock_irqsave(hba->host->host_lock, flags);
4274 	hba->active_uic_cmd = NULL;
4275 	hba->uic_async_done = NULL;
4276 	if (reenable_intr)
4277 		ufshcd_enable_intr(hba, UIC_COMMAND_COMPL);
4278 	if (ret) {
4279 		ufshcd_set_link_broken(hba);
4280 		ufshcd_schedule_eh_work(hba);
4281 	}
4282 out_unlock:
4283 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4284 	mutex_unlock(&hba->uic_cmd_mutex);
4285 
4286 	return ret;
4287 }
4288 
4289 /**
4290  * ufshcd_uic_change_pwr_mode - Perform the UIC power mode chage
4291  *				using DME_SET primitives.
4292  * @hba: per adapter instance
4293  * @mode: powr mode value
4294  *
4295  * Return: 0 on success, non-zero value on failure.
4296  */
4297 int ufshcd_uic_change_pwr_mode(struct ufs_hba *hba, u8 mode)
4298 {
4299 	struct uic_command uic_cmd = {0};
4300 	int ret;
4301 
4302 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_PA_RXHSUNTERMCAP) {
4303 		ret = ufshcd_dme_set(hba,
4304 				UIC_ARG_MIB_SEL(PA_RXHSUNTERMCAP, 0), 1);
4305 		if (ret) {
4306 			dev_err(hba->dev, "%s: failed to enable PA_RXHSUNTERMCAP ret %d\n",
4307 						__func__, ret);
4308 			goto out;
4309 		}
4310 	}
4311 
4312 	uic_cmd.command = UIC_CMD_DME_SET;
4313 	uic_cmd.argument1 = UIC_ARG_MIB(PA_PWRMODE);
4314 	uic_cmd.argument3 = mode;
4315 	ufshcd_hold(hba);
4316 	ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4317 	ufshcd_release(hba);
4318 
4319 out:
4320 	return ret;
4321 }
4322 EXPORT_SYMBOL_GPL(ufshcd_uic_change_pwr_mode);
4323 
4324 int ufshcd_link_recovery(struct ufs_hba *hba)
4325 {
4326 	int ret;
4327 	unsigned long flags;
4328 
4329 	spin_lock_irqsave(hba->host->host_lock, flags);
4330 	hba->ufshcd_state = UFSHCD_STATE_RESET;
4331 	ufshcd_set_eh_in_progress(hba);
4332 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4333 
4334 	/* Reset the attached device */
4335 	ufshcd_device_reset(hba);
4336 
4337 	ret = ufshcd_host_reset_and_restore(hba);
4338 
4339 	spin_lock_irqsave(hba->host->host_lock, flags);
4340 	if (ret)
4341 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
4342 	ufshcd_clear_eh_in_progress(hba);
4343 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4344 
4345 	if (ret)
4346 		dev_err(hba->dev, "%s: link recovery failed, err %d",
4347 			__func__, ret);
4348 
4349 	return ret;
4350 }
4351 EXPORT_SYMBOL_GPL(ufshcd_link_recovery);
4352 
4353 int ufshcd_uic_hibern8_enter(struct ufs_hba *hba)
4354 {
4355 	int ret;
4356 	struct uic_command uic_cmd = {0};
4357 	ktime_t start = ktime_get();
4358 
4359 	ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_ENTER, PRE_CHANGE);
4360 
4361 	uic_cmd.command = UIC_CMD_DME_HIBER_ENTER;
4362 	ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4363 	trace_ufshcd_profile_hibern8(dev_name(hba->dev), "enter",
4364 			     ktime_to_us(ktime_sub(ktime_get(), start)), ret);
4365 
4366 	if (ret)
4367 		dev_err(hba->dev, "%s: hibern8 enter failed. ret = %d\n",
4368 			__func__, ret);
4369 	else
4370 		ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_ENTER,
4371 								POST_CHANGE);
4372 
4373 	return ret;
4374 }
4375 EXPORT_SYMBOL_GPL(ufshcd_uic_hibern8_enter);
4376 
4377 int ufshcd_uic_hibern8_exit(struct ufs_hba *hba)
4378 {
4379 	struct uic_command uic_cmd = {0};
4380 	int ret;
4381 	ktime_t start = ktime_get();
4382 
4383 	ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_EXIT, PRE_CHANGE);
4384 
4385 	uic_cmd.command = UIC_CMD_DME_HIBER_EXIT;
4386 	ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4387 	trace_ufshcd_profile_hibern8(dev_name(hba->dev), "exit",
4388 			     ktime_to_us(ktime_sub(ktime_get(), start)), ret);
4389 
4390 	if (ret) {
4391 		dev_err(hba->dev, "%s: hibern8 exit failed. ret = %d\n",
4392 			__func__, ret);
4393 	} else {
4394 		ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_EXIT,
4395 								POST_CHANGE);
4396 		hba->ufs_stats.last_hibern8_exit_tstamp = local_clock();
4397 		hba->ufs_stats.hibern8_exit_cnt++;
4398 	}
4399 
4400 	return ret;
4401 }
4402 EXPORT_SYMBOL_GPL(ufshcd_uic_hibern8_exit);
4403 
4404 void ufshcd_auto_hibern8_update(struct ufs_hba *hba, u32 ahit)
4405 {
4406 	unsigned long flags;
4407 	bool update = false;
4408 
4409 	if (!ufshcd_is_auto_hibern8_supported(hba))
4410 		return;
4411 
4412 	spin_lock_irqsave(hba->host->host_lock, flags);
4413 	if (hba->ahit != ahit) {
4414 		hba->ahit = ahit;
4415 		update = true;
4416 	}
4417 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4418 
4419 	if (update &&
4420 	    !pm_runtime_suspended(&hba->ufs_device_wlun->sdev_gendev)) {
4421 		ufshcd_rpm_get_sync(hba);
4422 		ufshcd_hold(hba);
4423 		ufshcd_auto_hibern8_enable(hba);
4424 		ufshcd_release(hba);
4425 		ufshcd_rpm_put_sync(hba);
4426 	}
4427 }
4428 EXPORT_SYMBOL_GPL(ufshcd_auto_hibern8_update);
4429 
4430 void ufshcd_auto_hibern8_enable(struct ufs_hba *hba)
4431 {
4432 	if (!ufshcd_is_auto_hibern8_supported(hba))
4433 		return;
4434 
4435 	ufshcd_writel(hba, hba->ahit, REG_AUTO_HIBERNATE_IDLE_TIMER);
4436 }
4437 
4438  /**
4439  * ufshcd_init_pwr_info - setting the POR (power on reset)
4440  * values in hba power info
4441  * @hba: per-adapter instance
4442  */
4443 static void ufshcd_init_pwr_info(struct ufs_hba *hba)
4444 {
4445 	hba->pwr_info.gear_rx = UFS_PWM_G1;
4446 	hba->pwr_info.gear_tx = UFS_PWM_G1;
4447 	hba->pwr_info.lane_rx = UFS_LANE_1;
4448 	hba->pwr_info.lane_tx = UFS_LANE_1;
4449 	hba->pwr_info.pwr_rx = SLOWAUTO_MODE;
4450 	hba->pwr_info.pwr_tx = SLOWAUTO_MODE;
4451 	hba->pwr_info.hs_rate = 0;
4452 }
4453 
4454 /**
4455  * ufshcd_get_max_pwr_mode - reads the max power mode negotiated with device
4456  * @hba: per-adapter instance
4457  *
4458  * Return: 0 upon success; < 0 upon failure.
4459  */
4460 static int ufshcd_get_max_pwr_mode(struct ufs_hba *hba)
4461 {
4462 	struct ufs_pa_layer_attr *pwr_info = &hba->max_pwr_info.info;
4463 
4464 	if (hba->max_pwr_info.is_valid)
4465 		return 0;
4466 
4467 	if (hba->quirks & UFSHCD_QUIRK_HIBERN_FASTAUTO) {
4468 		pwr_info->pwr_tx = FASTAUTO_MODE;
4469 		pwr_info->pwr_rx = FASTAUTO_MODE;
4470 	} else {
4471 		pwr_info->pwr_tx = FAST_MODE;
4472 		pwr_info->pwr_rx = FAST_MODE;
4473 	}
4474 	pwr_info->hs_rate = PA_HS_MODE_B;
4475 
4476 	/* Get the connected lane count */
4477 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDRXDATALANES),
4478 			&pwr_info->lane_rx);
4479 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4480 			&pwr_info->lane_tx);
4481 
4482 	if (!pwr_info->lane_rx || !pwr_info->lane_tx) {
4483 		dev_err(hba->dev, "%s: invalid connected lanes value. rx=%d, tx=%d\n",
4484 				__func__,
4485 				pwr_info->lane_rx,
4486 				pwr_info->lane_tx);
4487 		return -EINVAL;
4488 	}
4489 
4490 	/*
4491 	 * First, get the maximum gears of HS speed.
4492 	 * If a zero value, it means there is no HSGEAR capability.
4493 	 * Then, get the maximum gears of PWM speed.
4494 	 */
4495 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_MAXRXHSGEAR), &pwr_info->gear_rx);
4496 	if (!pwr_info->gear_rx) {
4497 		ufshcd_dme_get(hba, UIC_ARG_MIB(PA_MAXRXPWMGEAR),
4498 				&pwr_info->gear_rx);
4499 		if (!pwr_info->gear_rx) {
4500 			dev_err(hba->dev, "%s: invalid max pwm rx gear read = %d\n",
4501 				__func__, pwr_info->gear_rx);
4502 			return -EINVAL;
4503 		}
4504 		pwr_info->pwr_rx = SLOW_MODE;
4505 	}
4506 
4507 	ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_MAXRXHSGEAR),
4508 			&pwr_info->gear_tx);
4509 	if (!pwr_info->gear_tx) {
4510 		ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_MAXRXPWMGEAR),
4511 				&pwr_info->gear_tx);
4512 		if (!pwr_info->gear_tx) {
4513 			dev_err(hba->dev, "%s: invalid max pwm tx gear read = %d\n",
4514 				__func__, pwr_info->gear_tx);
4515 			return -EINVAL;
4516 		}
4517 		pwr_info->pwr_tx = SLOW_MODE;
4518 	}
4519 
4520 	hba->max_pwr_info.is_valid = true;
4521 	return 0;
4522 }
4523 
4524 static int ufshcd_change_power_mode(struct ufs_hba *hba,
4525 			     struct ufs_pa_layer_attr *pwr_mode)
4526 {
4527 	int ret;
4528 
4529 	/* if already configured to the requested pwr_mode */
4530 	if (!hba->force_pmc &&
4531 	    pwr_mode->gear_rx == hba->pwr_info.gear_rx &&
4532 	    pwr_mode->gear_tx == hba->pwr_info.gear_tx &&
4533 	    pwr_mode->lane_rx == hba->pwr_info.lane_rx &&
4534 	    pwr_mode->lane_tx == hba->pwr_info.lane_tx &&
4535 	    pwr_mode->pwr_rx == hba->pwr_info.pwr_rx &&
4536 	    pwr_mode->pwr_tx == hba->pwr_info.pwr_tx &&
4537 	    pwr_mode->hs_rate == hba->pwr_info.hs_rate) {
4538 		dev_dbg(hba->dev, "%s: power already configured\n", __func__);
4539 		return 0;
4540 	}
4541 
4542 	/*
4543 	 * Configure attributes for power mode change with below.
4544 	 * - PA_RXGEAR, PA_ACTIVERXDATALANES, PA_RXTERMINATION,
4545 	 * - PA_TXGEAR, PA_ACTIVETXDATALANES, PA_TXTERMINATION,
4546 	 * - PA_HSSERIES
4547 	 */
4548 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXGEAR), pwr_mode->gear_rx);
4549 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVERXDATALANES),
4550 			pwr_mode->lane_rx);
4551 	if (pwr_mode->pwr_rx == FASTAUTO_MODE ||
4552 			pwr_mode->pwr_rx == FAST_MODE)
4553 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), true);
4554 	else
4555 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), false);
4556 
4557 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXGEAR), pwr_mode->gear_tx);
4558 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVETXDATALANES),
4559 			pwr_mode->lane_tx);
4560 	if (pwr_mode->pwr_tx == FASTAUTO_MODE ||
4561 			pwr_mode->pwr_tx == FAST_MODE)
4562 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), true);
4563 	else
4564 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), false);
4565 
4566 	if (pwr_mode->pwr_rx == FASTAUTO_MODE ||
4567 	    pwr_mode->pwr_tx == FASTAUTO_MODE ||
4568 	    pwr_mode->pwr_rx == FAST_MODE ||
4569 	    pwr_mode->pwr_tx == FAST_MODE)
4570 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_HSSERIES),
4571 						pwr_mode->hs_rate);
4572 
4573 	if (!(hba->quirks & UFSHCD_QUIRK_SKIP_DEF_UNIPRO_TIMEOUT_SETTING)) {
4574 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA0),
4575 				DL_FC0ProtectionTimeOutVal_Default);
4576 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA1),
4577 				DL_TC0ReplayTimeOutVal_Default);
4578 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA2),
4579 				DL_AFC0ReqTimeOutVal_Default);
4580 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA3),
4581 				DL_FC1ProtectionTimeOutVal_Default);
4582 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA4),
4583 				DL_TC1ReplayTimeOutVal_Default);
4584 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA5),
4585 				DL_AFC1ReqTimeOutVal_Default);
4586 
4587 		ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalFC0ProtectionTimeOutVal),
4588 				DL_FC0ProtectionTimeOutVal_Default);
4589 		ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalTC0ReplayTimeOutVal),
4590 				DL_TC0ReplayTimeOutVal_Default);
4591 		ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalAFC0ReqTimeOutVal),
4592 				DL_AFC0ReqTimeOutVal_Default);
4593 	}
4594 
4595 	ret = ufshcd_uic_change_pwr_mode(hba, pwr_mode->pwr_rx << 4
4596 			| pwr_mode->pwr_tx);
4597 
4598 	if (ret) {
4599 		dev_err(hba->dev,
4600 			"%s: power mode change failed %d\n", __func__, ret);
4601 	} else {
4602 		ufshcd_vops_pwr_change_notify(hba, POST_CHANGE, NULL,
4603 								pwr_mode);
4604 
4605 		memcpy(&hba->pwr_info, pwr_mode,
4606 			sizeof(struct ufs_pa_layer_attr));
4607 	}
4608 
4609 	return ret;
4610 }
4611 
4612 /**
4613  * ufshcd_config_pwr_mode - configure a new power mode
4614  * @hba: per-adapter instance
4615  * @desired_pwr_mode: desired power configuration
4616  *
4617  * Return: 0 upon success; < 0 upon failure.
4618  */
4619 int ufshcd_config_pwr_mode(struct ufs_hba *hba,
4620 		struct ufs_pa_layer_attr *desired_pwr_mode)
4621 {
4622 	struct ufs_pa_layer_attr final_params = { 0 };
4623 	int ret;
4624 
4625 	ret = ufshcd_vops_pwr_change_notify(hba, PRE_CHANGE,
4626 					desired_pwr_mode, &final_params);
4627 
4628 	if (ret)
4629 		memcpy(&final_params, desired_pwr_mode, sizeof(final_params));
4630 
4631 	ret = ufshcd_change_power_mode(hba, &final_params);
4632 
4633 	return ret;
4634 }
4635 EXPORT_SYMBOL_GPL(ufshcd_config_pwr_mode);
4636 
4637 /**
4638  * ufshcd_complete_dev_init() - checks device readiness
4639  * @hba: per-adapter instance
4640  *
4641  * Set fDeviceInit flag and poll until device toggles it.
4642  *
4643  * Return: 0 upon success; < 0 upon failure.
4644  */
4645 static int ufshcd_complete_dev_init(struct ufs_hba *hba)
4646 {
4647 	int err;
4648 	bool flag_res = true;
4649 	ktime_t timeout;
4650 
4651 	err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG,
4652 		QUERY_FLAG_IDN_FDEVICEINIT, 0, NULL);
4653 	if (err) {
4654 		dev_err(hba->dev,
4655 			"%s: setting fDeviceInit flag failed with error %d\n",
4656 			__func__, err);
4657 		goto out;
4658 	}
4659 
4660 	/* Poll fDeviceInit flag to be cleared */
4661 	timeout = ktime_add_ms(ktime_get(), FDEVICEINIT_COMPL_TIMEOUT);
4662 	do {
4663 		err = ufshcd_query_flag(hba, UPIU_QUERY_OPCODE_READ_FLAG,
4664 					QUERY_FLAG_IDN_FDEVICEINIT, 0, &flag_res);
4665 		if (!flag_res)
4666 			break;
4667 		usleep_range(500, 1000);
4668 	} while (ktime_before(ktime_get(), timeout));
4669 
4670 	if (err) {
4671 		dev_err(hba->dev,
4672 				"%s: reading fDeviceInit flag failed with error %d\n",
4673 				__func__, err);
4674 	} else if (flag_res) {
4675 		dev_err(hba->dev,
4676 				"%s: fDeviceInit was not cleared by the device\n",
4677 				__func__);
4678 		err = -EBUSY;
4679 	}
4680 out:
4681 	return err;
4682 }
4683 
4684 /**
4685  * ufshcd_make_hba_operational - Make UFS controller operational
4686  * @hba: per adapter instance
4687  *
4688  * To bring UFS host controller to operational state,
4689  * 1. Enable required interrupts
4690  * 2. Configure interrupt aggregation
4691  * 3. Program UTRL and UTMRL base address
4692  * 4. Configure run-stop-registers
4693  *
4694  * Return: 0 on success, non-zero value on failure.
4695  */
4696 int ufshcd_make_hba_operational(struct ufs_hba *hba)
4697 {
4698 	int err = 0;
4699 	u32 reg;
4700 
4701 	/* Enable required interrupts */
4702 	ufshcd_enable_intr(hba, UFSHCD_ENABLE_INTRS);
4703 
4704 	/* Configure interrupt aggregation */
4705 	if (ufshcd_is_intr_aggr_allowed(hba))
4706 		ufshcd_config_intr_aggr(hba, hba->nutrs - 1, INT_AGGR_DEF_TO);
4707 	else
4708 		ufshcd_disable_intr_aggr(hba);
4709 
4710 	/* Configure UTRL and UTMRL base address registers */
4711 	ufshcd_writel(hba, lower_32_bits(hba->utrdl_dma_addr),
4712 			REG_UTP_TRANSFER_REQ_LIST_BASE_L);
4713 	ufshcd_writel(hba, upper_32_bits(hba->utrdl_dma_addr),
4714 			REG_UTP_TRANSFER_REQ_LIST_BASE_H);
4715 	ufshcd_writel(hba, lower_32_bits(hba->utmrdl_dma_addr),
4716 			REG_UTP_TASK_REQ_LIST_BASE_L);
4717 	ufshcd_writel(hba, upper_32_bits(hba->utmrdl_dma_addr),
4718 			REG_UTP_TASK_REQ_LIST_BASE_H);
4719 
4720 	/*
4721 	 * Make sure base address and interrupt setup are updated before
4722 	 * enabling the run/stop registers below.
4723 	 */
4724 	wmb();
4725 
4726 	/*
4727 	 * UCRDY, UTMRLDY and UTRLRDY bits must be 1
4728 	 */
4729 	reg = ufshcd_readl(hba, REG_CONTROLLER_STATUS);
4730 	if (!(ufshcd_get_lists_status(reg))) {
4731 		ufshcd_enable_run_stop_reg(hba);
4732 	} else {
4733 		dev_err(hba->dev,
4734 			"Host controller not ready to process requests");
4735 		err = -EIO;
4736 	}
4737 
4738 	return err;
4739 }
4740 EXPORT_SYMBOL_GPL(ufshcd_make_hba_operational);
4741 
4742 /**
4743  * ufshcd_hba_stop - Send controller to reset state
4744  * @hba: per adapter instance
4745  */
4746 void ufshcd_hba_stop(struct ufs_hba *hba)
4747 {
4748 	unsigned long flags;
4749 	int err;
4750 
4751 	/*
4752 	 * Obtain the host lock to prevent that the controller is disabled
4753 	 * while the UFS interrupt handler is active on another CPU.
4754 	 */
4755 	spin_lock_irqsave(hba->host->host_lock, flags);
4756 	ufshcd_writel(hba, CONTROLLER_DISABLE,  REG_CONTROLLER_ENABLE);
4757 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4758 
4759 	err = ufshcd_wait_for_register(hba, REG_CONTROLLER_ENABLE,
4760 					CONTROLLER_ENABLE, CONTROLLER_DISABLE,
4761 					10, 1);
4762 	if (err)
4763 		dev_err(hba->dev, "%s: Controller disable failed\n", __func__);
4764 }
4765 EXPORT_SYMBOL_GPL(ufshcd_hba_stop);
4766 
4767 /**
4768  * ufshcd_hba_execute_hce - initialize the controller
4769  * @hba: per adapter instance
4770  *
4771  * The controller resets itself and controller firmware initialization
4772  * sequence kicks off. When controller is ready it will set
4773  * the Host Controller Enable bit to 1.
4774  *
4775  * Return: 0 on success, non-zero value on failure.
4776  */
4777 static int ufshcd_hba_execute_hce(struct ufs_hba *hba)
4778 {
4779 	int retry_outer = 3;
4780 	int retry_inner;
4781 
4782 start:
4783 	if (ufshcd_is_hba_active(hba))
4784 		/* change controller state to "reset state" */
4785 		ufshcd_hba_stop(hba);
4786 
4787 	/* UniPro link is disabled at this point */
4788 	ufshcd_set_link_off(hba);
4789 
4790 	ufshcd_vops_hce_enable_notify(hba, PRE_CHANGE);
4791 
4792 	/* start controller initialization sequence */
4793 	ufshcd_hba_start(hba);
4794 
4795 	/*
4796 	 * To initialize a UFS host controller HCE bit must be set to 1.
4797 	 * During initialization the HCE bit value changes from 1->0->1.
4798 	 * When the host controller completes initialization sequence
4799 	 * it sets the value of HCE bit to 1. The same HCE bit is read back
4800 	 * to check if the controller has completed initialization sequence.
4801 	 * So without this delay the value HCE = 1, set in the previous
4802 	 * instruction might be read back.
4803 	 * This delay can be changed based on the controller.
4804 	 */
4805 	ufshcd_delay_us(hba->vps->hba_enable_delay_us, 100);
4806 
4807 	/* wait for the host controller to complete initialization */
4808 	retry_inner = 50;
4809 	while (!ufshcd_is_hba_active(hba)) {
4810 		if (retry_inner) {
4811 			retry_inner--;
4812 		} else {
4813 			dev_err(hba->dev,
4814 				"Controller enable failed\n");
4815 			if (retry_outer) {
4816 				retry_outer--;
4817 				goto start;
4818 			}
4819 			return -EIO;
4820 		}
4821 		usleep_range(1000, 1100);
4822 	}
4823 
4824 	/* enable UIC related interrupts */
4825 	ufshcd_enable_intr(hba, UFSHCD_UIC_MASK);
4826 
4827 	ufshcd_vops_hce_enable_notify(hba, POST_CHANGE);
4828 
4829 	return 0;
4830 }
4831 
4832 int ufshcd_hba_enable(struct ufs_hba *hba)
4833 {
4834 	int ret;
4835 
4836 	if (hba->quirks & UFSHCI_QUIRK_BROKEN_HCE) {
4837 		ufshcd_set_link_off(hba);
4838 		ufshcd_vops_hce_enable_notify(hba, PRE_CHANGE);
4839 
4840 		/* enable UIC related interrupts */
4841 		ufshcd_enable_intr(hba, UFSHCD_UIC_MASK);
4842 		ret = ufshcd_dme_reset(hba);
4843 		if (ret) {
4844 			dev_err(hba->dev, "DME_RESET failed\n");
4845 			return ret;
4846 		}
4847 
4848 		ret = ufshcd_dme_enable(hba);
4849 		if (ret) {
4850 			dev_err(hba->dev, "Enabling DME failed\n");
4851 			return ret;
4852 		}
4853 
4854 		ufshcd_vops_hce_enable_notify(hba, POST_CHANGE);
4855 	} else {
4856 		ret = ufshcd_hba_execute_hce(hba);
4857 	}
4858 
4859 	return ret;
4860 }
4861 EXPORT_SYMBOL_GPL(ufshcd_hba_enable);
4862 
4863 static int ufshcd_disable_tx_lcc(struct ufs_hba *hba, bool peer)
4864 {
4865 	int tx_lanes = 0, i, err = 0;
4866 
4867 	if (!peer)
4868 		ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4869 			       &tx_lanes);
4870 	else
4871 		ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4872 				    &tx_lanes);
4873 	for (i = 0; i < tx_lanes; i++) {
4874 		if (!peer)
4875 			err = ufshcd_dme_set(hba,
4876 				UIC_ARG_MIB_SEL(TX_LCC_ENABLE,
4877 					UIC_ARG_MPHY_TX_GEN_SEL_INDEX(i)),
4878 					0);
4879 		else
4880 			err = ufshcd_dme_peer_set(hba,
4881 				UIC_ARG_MIB_SEL(TX_LCC_ENABLE,
4882 					UIC_ARG_MPHY_TX_GEN_SEL_INDEX(i)),
4883 					0);
4884 		if (err) {
4885 			dev_err(hba->dev, "%s: TX LCC Disable failed, peer = %d, lane = %d, err = %d",
4886 				__func__, peer, i, err);
4887 			break;
4888 		}
4889 	}
4890 
4891 	return err;
4892 }
4893 
4894 static inline int ufshcd_disable_device_tx_lcc(struct ufs_hba *hba)
4895 {
4896 	return ufshcd_disable_tx_lcc(hba, true);
4897 }
4898 
4899 void ufshcd_update_evt_hist(struct ufs_hba *hba, u32 id, u32 val)
4900 {
4901 	struct ufs_event_hist *e;
4902 
4903 	if (id >= UFS_EVT_CNT)
4904 		return;
4905 
4906 	e = &hba->ufs_stats.event[id];
4907 	e->val[e->pos] = val;
4908 	e->tstamp[e->pos] = local_clock();
4909 	e->cnt += 1;
4910 	e->pos = (e->pos + 1) % UFS_EVENT_HIST_LENGTH;
4911 
4912 	ufshcd_vops_event_notify(hba, id, &val);
4913 }
4914 EXPORT_SYMBOL_GPL(ufshcd_update_evt_hist);
4915 
4916 /**
4917  * ufshcd_link_startup - Initialize unipro link startup
4918  * @hba: per adapter instance
4919  *
4920  * Return: 0 for success, non-zero in case of failure.
4921  */
4922 static int ufshcd_link_startup(struct ufs_hba *hba)
4923 {
4924 	int ret;
4925 	int retries = DME_LINKSTARTUP_RETRIES;
4926 	bool link_startup_again = false;
4927 
4928 	/*
4929 	 * If UFS device isn't active then we will have to issue link startup
4930 	 * 2 times to make sure the device state move to active.
4931 	 */
4932 	if (!ufshcd_is_ufs_dev_active(hba))
4933 		link_startup_again = true;
4934 
4935 link_startup:
4936 	do {
4937 		ufshcd_vops_link_startup_notify(hba, PRE_CHANGE);
4938 
4939 		ret = ufshcd_dme_link_startup(hba);
4940 
4941 		/* check if device is detected by inter-connect layer */
4942 		if (!ret && !ufshcd_is_device_present(hba)) {
4943 			ufshcd_update_evt_hist(hba,
4944 					       UFS_EVT_LINK_STARTUP_FAIL,
4945 					       0);
4946 			dev_err(hba->dev, "%s: Device not present\n", __func__);
4947 			ret = -ENXIO;
4948 			goto out;
4949 		}
4950 
4951 		/*
4952 		 * DME link lost indication is only received when link is up,
4953 		 * but we can't be sure if the link is up until link startup
4954 		 * succeeds. So reset the local Uni-Pro and try again.
4955 		 */
4956 		if (ret && retries && ufshcd_hba_enable(hba)) {
4957 			ufshcd_update_evt_hist(hba,
4958 					       UFS_EVT_LINK_STARTUP_FAIL,
4959 					       (u32)ret);
4960 			goto out;
4961 		}
4962 	} while (ret && retries--);
4963 
4964 	if (ret) {
4965 		/* failed to get the link up... retire */
4966 		ufshcd_update_evt_hist(hba,
4967 				       UFS_EVT_LINK_STARTUP_FAIL,
4968 				       (u32)ret);
4969 		goto out;
4970 	}
4971 
4972 	if (link_startup_again) {
4973 		link_startup_again = false;
4974 		retries = DME_LINKSTARTUP_RETRIES;
4975 		goto link_startup;
4976 	}
4977 
4978 	/* Mark that link is up in PWM-G1, 1-lane, SLOW-AUTO mode */
4979 	ufshcd_init_pwr_info(hba);
4980 	ufshcd_print_pwr_info(hba);
4981 
4982 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_LCC) {
4983 		ret = ufshcd_disable_device_tx_lcc(hba);
4984 		if (ret)
4985 			goto out;
4986 	}
4987 
4988 	/* Include any host controller configuration via UIC commands */
4989 	ret = ufshcd_vops_link_startup_notify(hba, POST_CHANGE);
4990 	if (ret)
4991 		goto out;
4992 
4993 	/* Clear UECPA once due to LINERESET has happened during LINK_STARTUP */
4994 	ufshcd_readl(hba, REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER);
4995 	ret = ufshcd_make_hba_operational(hba);
4996 out:
4997 	if (ret) {
4998 		dev_err(hba->dev, "link startup failed %d\n", ret);
4999 		ufshcd_print_host_state(hba);
5000 		ufshcd_print_pwr_info(hba);
5001 		ufshcd_print_evt_hist(hba);
5002 	}
5003 	return ret;
5004 }
5005 
5006 /**
5007  * ufshcd_verify_dev_init() - Verify device initialization
5008  * @hba: per-adapter instance
5009  *
5010  * Send NOP OUT UPIU and wait for NOP IN response to check whether the
5011  * device Transport Protocol (UTP) layer is ready after a reset.
5012  * If the UTP layer at the device side is not initialized, it may
5013  * not respond with NOP IN UPIU within timeout of %NOP_OUT_TIMEOUT
5014  * and we retry sending NOP OUT for %NOP_OUT_RETRIES iterations.
5015  *
5016  * Return: 0 upon success; < 0 upon failure.
5017  */
5018 static int ufshcd_verify_dev_init(struct ufs_hba *hba)
5019 {
5020 	int err = 0;
5021 	int retries;
5022 
5023 	ufshcd_hold(hba);
5024 	mutex_lock(&hba->dev_cmd.lock);
5025 	for (retries = NOP_OUT_RETRIES; retries > 0; retries--) {
5026 		err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_NOP,
5027 					  hba->nop_out_timeout);
5028 
5029 		if (!err || err == -ETIMEDOUT)
5030 			break;
5031 
5032 		dev_dbg(hba->dev, "%s: error %d retrying\n", __func__, err);
5033 	}
5034 	mutex_unlock(&hba->dev_cmd.lock);
5035 	ufshcd_release(hba);
5036 
5037 	if (err)
5038 		dev_err(hba->dev, "%s: NOP OUT failed %d\n", __func__, err);
5039 	return err;
5040 }
5041 
5042 /**
5043  * ufshcd_setup_links - associate link b/w device wlun and other luns
5044  * @sdev: pointer to SCSI device
5045  * @hba: pointer to ufs hba
5046  */
5047 static void ufshcd_setup_links(struct ufs_hba *hba, struct scsi_device *sdev)
5048 {
5049 	struct device_link *link;
5050 
5051 	/*
5052 	 * Device wlun is the supplier & rest of the luns are consumers.
5053 	 * This ensures that device wlun suspends after all other luns.
5054 	 */
5055 	if (hba->ufs_device_wlun) {
5056 		link = device_link_add(&sdev->sdev_gendev,
5057 				       &hba->ufs_device_wlun->sdev_gendev,
5058 				       DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE);
5059 		if (!link) {
5060 			dev_err(&sdev->sdev_gendev, "Failed establishing link - %s\n",
5061 				dev_name(&hba->ufs_device_wlun->sdev_gendev));
5062 			return;
5063 		}
5064 		hba->luns_avail--;
5065 		/* Ignore REPORT_LUN wlun probing */
5066 		if (hba->luns_avail == 1) {
5067 			ufshcd_rpm_put(hba);
5068 			return;
5069 		}
5070 	} else {
5071 		/*
5072 		 * Device wlun is probed. The assumption is that WLUNs are
5073 		 * scanned before other LUNs.
5074 		 */
5075 		hba->luns_avail--;
5076 	}
5077 }
5078 
5079 /**
5080  * ufshcd_lu_init - Initialize the relevant parameters of the LU
5081  * @hba: per-adapter instance
5082  * @sdev: pointer to SCSI device
5083  */
5084 static void ufshcd_lu_init(struct ufs_hba *hba, struct scsi_device *sdev)
5085 {
5086 	int len = QUERY_DESC_MAX_SIZE;
5087 	u8 lun = ufshcd_scsi_to_upiu_lun(sdev->lun);
5088 	u8 lun_qdepth = hba->nutrs;
5089 	u8 *desc_buf;
5090 	int ret;
5091 
5092 	desc_buf = kzalloc(len, GFP_KERNEL);
5093 	if (!desc_buf)
5094 		goto set_qdepth;
5095 
5096 	ret = ufshcd_read_unit_desc_param(hba, lun, 0, desc_buf, len);
5097 	if (ret < 0) {
5098 		if (ret == -EOPNOTSUPP)
5099 			/* If LU doesn't support unit descriptor, its queue depth is set to 1 */
5100 			lun_qdepth = 1;
5101 		kfree(desc_buf);
5102 		goto set_qdepth;
5103 	}
5104 
5105 	if (desc_buf[UNIT_DESC_PARAM_LU_Q_DEPTH]) {
5106 		/*
5107 		 * In per-LU queueing architecture, bLUQueueDepth will not be 0, then we will
5108 		 * use the smaller between UFSHCI CAP.NUTRS and UFS LU bLUQueueDepth
5109 		 */
5110 		lun_qdepth = min_t(int, desc_buf[UNIT_DESC_PARAM_LU_Q_DEPTH], hba->nutrs);
5111 	}
5112 	/*
5113 	 * According to UFS device specification, the write protection mode is only supported by
5114 	 * normal LU, not supported by WLUN.
5115 	 */
5116 	if (hba->dev_info.f_power_on_wp_en && lun < hba->dev_info.max_lu_supported &&
5117 	    !hba->dev_info.is_lu_power_on_wp &&
5118 	    desc_buf[UNIT_DESC_PARAM_LU_WR_PROTECT] == UFS_LU_POWER_ON_WP)
5119 		hba->dev_info.is_lu_power_on_wp = true;
5120 
5121 	/* In case of RPMB LU, check if advanced RPMB mode is enabled */
5122 	if (desc_buf[UNIT_DESC_PARAM_UNIT_INDEX] == UFS_UPIU_RPMB_WLUN &&
5123 	    desc_buf[RPMB_UNIT_DESC_PARAM_REGION_EN] & BIT(4))
5124 		hba->dev_info.b_advanced_rpmb_en = true;
5125 
5126 
5127 	kfree(desc_buf);
5128 set_qdepth:
5129 	/*
5130 	 * For WLUNs that don't support unit descriptor, queue depth is set to 1. For LUs whose
5131 	 * bLUQueueDepth == 0, the queue depth is set to a maximum value that host can queue.
5132 	 */
5133 	dev_dbg(hba->dev, "Set LU %x queue depth %d\n", lun, lun_qdepth);
5134 	scsi_change_queue_depth(sdev, lun_qdepth);
5135 }
5136 
5137 /**
5138  * ufshcd_slave_alloc - handle initial SCSI device configurations
5139  * @sdev: pointer to SCSI device
5140  *
5141  * Return: success.
5142  */
5143 static int ufshcd_slave_alloc(struct scsi_device *sdev)
5144 {
5145 	struct ufs_hba *hba;
5146 
5147 	hba = shost_priv(sdev->host);
5148 
5149 	/* Mode sense(6) is not supported by UFS, so use Mode sense(10) */
5150 	sdev->use_10_for_ms = 1;
5151 
5152 	/* DBD field should be set to 1 in mode sense(10) */
5153 	sdev->set_dbd_for_ms = 1;
5154 
5155 	/* allow SCSI layer to restart the device in case of errors */
5156 	sdev->allow_restart = 1;
5157 
5158 	/* REPORT SUPPORTED OPERATION CODES is not supported */
5159 	sdev->no_report_opcodes = 1;
5160 
5161 	/* WRITE_SAME command is not supported */
5162 	sdev->no_write_same = 1;
5163 
5164 	ufshcd_lu_init(hba, sdev);
5165 
5166 	ufshcd_setup_links(hba, sdev);
5167 
5168 	return 0;
5169 }
5170 
5171 /**
5172  * ufshcd_change_queue_depth - change queue depth
5173  * @sdev: pointer to SCSI device
5174  * @depth: required depth to set
5175  *
5176  * Change queue depth and make sure the max. limits are not crossed.
5177  *
5178  * Return: new queue depth.
5179  */
5180 static int ufshcd_change_queue_depth(struct scsi_device *sdev, int depth)
5181 {
5182 	return scsi_change_queue_depth(sdev, min(depth, sdev->host->can_queue));
5183 }
5184 
5185 /**
5186  * ufshcd_slave_configure - adjust SCSI device configurations
5187  * @sdev: pointer to SCSI device
5188  *
5189  * Return: 0 (success).
5190  */
5191 static int ufshcd_slave_configure(struct scsi_device *sdev)
5192 {
5193 	struct ufs_hba *hba = shost_priv(sdev->host);
5194 	struct request_queue *q = sdev->request_queue;
5195 
5196 	blk_queue_update_dma_pad(q, PRDT_DATA_BYTE_COUNT_PAD - 1);
5197 
5198 	/*
5199 	 * Block runtime-pm until all consumers are added.
5200 	 * Refer ufshcd_setup_links().
5201 	 */
5202 	if (is_device_wlun(sdev))
5203 		pm_runtime_get_noresume(&sdev->sdev_gendev);
5204 	else if (ufshcd_is_rpm_autosuspend_allowed(hba))
5205 		sdev->rpm_autosuspend = 1;
5206 	/*
5207 	 * Do not print messages during runtime PM to avoid never-ending cycles
5208 	 * of messages written back to storage by user space causing runtime
5209 	 * resume, causing more messages and so on.
5210 	 */
5211 	sdev->silence_suspend = 1;
5212 
5213 	if (hba->vops && hba->vops->config_scsi_dev)
5214 		hba->vops->config_scsi_dev(sdev);
5215 
5216 	ufshcd_crypto_register(hba, q);
5217 
5218 	return 0;
5219 }
5220 
5221 /**
5222  * ufshcd_slave_destroy - remove SCSI device configurations
5223  * @sdev: pointer to SCSI device
5224  */
5225 static void ufshcd_slave_destroy(struct scsi_device *sdev)
5226 {
5227 	struct ufs_hba *hba;
5228 	unsigned long flags;
5229 
5230 	hba = shost_priv(sdev->host);
5231 
5232 	/* Drop the reference as it won't be needed anymore */
5233 	if (ufshcd_scsi_to_upiu_lun(sdev->lun) == UFS_UPIU_UFS_DEVICE_WLUN) {
5234 		spin_lock_irqsave(hba->host->host_lock, flags);
5235 		hba->ufs_device_wlun = NULL;
5236 		spin_unlock_irqrestore(hba->host->host_lock, flags);
5237 	} else if (hba->ufs_device_wlun) {
5238 		struct device *supplier = NULL;
5239 
5240 		/* Ensure UFS Device WLUN exists and does not disappear */
5241 		spin_lock_irqsave(hba->host->host_lock, flags);
5242 		if (hba->ufs_device_wlun) {
5243 			supplier = &hba->ufs_device_wlun->sdev_gendev;
5244 			get_device(supplier);
5245 		}
5246 		spin_unlock_irqrestore(hba->host->host_lock, flags);
5247 
5248 		if (supplier) {
5249 			/*
5250 			 * If a LUN fails to probe (e.g. absent BOOT WLUN), the
5251 			 * device will not have been registered but can still
5252 			 * have a device link holding a reference to the device.
5253 			 */
5254 			device_link_remove(&sdev->sdev_gendev, supplier);
5255 			put_device(supplier);
5256 		}
5257 	}
5258 }
5259 
5260 /**
5261  * ufshcd_scsi_cmd_status - Update SCSI command result based on SCSI status
5262  * @lrbp: pointer to local reference block of completed command
5263  * @scsi_status: SCSI command status
5264  *
5265  * Return: value base on SCSI command status.
5266  */
5267 static inline int
5268 ufshcd_scsi_cmd_status(struct ufshcd_lrb *lrbp, int scsi_status)
5269 {
5270 	int result = 0;
5271 
5272 	switch (scsi_status) {
5273 	case SAM_STAT_CHECK_CONDITION:
5274 		ufshcd_copy_sense_data(lrbp);
5275 		fallthrough;
5276 	case SAM_STAT_GOOD:
5277 		result |= DID_OK << 16 | scsi_status;
5278 		break;
5279 	case SAM_STAT_TASK_SET_FULL:
5280 	case SAM_STAT_BUSY:
5281 	case SAM_STAT_TASK_ABORTED:
5282 		ufshcd_copy_sense_data(lrbp);
5283 		result |= scsi_status;
5284 		break;
5285 	default:
5286 		result |= DID_ERROR << 16;
5287 		break;
5288 	} /* end of switch */
5289 
5290 	return result;
5291 }
5292 
5293 /**
5294  * ufshcd_transfer_rsp_status - Get overall status of the response
5295  * @hba: per adapter instance
5296  * @lrbp: pointer to local reference block of completed command
5297  * @cqe: pointer to the completion queue entry
5298  *
5299  * Return: result of the command to notify SCSI midlayer.
5300  */
5301 static inline int
5302 ufshcd_transfer_rsp_status(struct ufs_hba *hba, struct ufshcd_lrb *lrbp,
5303 			   struct cq_entry *cqe)
5304 {
5305 	int result = 0;
5306 	int scsi_status;
5307 	enum utp_ocs ocs;
5308 	u8 upiu_flags;
5309 	u32 resid;
5310 
5311 	upiu_flags = lrbp->ucd_rsp_ptr->header.flags;
5312 	resid = be32_to_cpu(lrbp->ucd_rsp_ptr->sr.residual_transfer_count);
5313 	/*
5314 	 * Test !overflow instead of underflow to support UFS devices that do
5315 	 * not set either flag.
5316 	 */
5317 	if (resid && !(upiu_flags & UPIU_RSP_FLAG_OVERFLOW))
5318 		scsi_set_resid(lrbp->cmd, resid);
5319 
5320 	/* overall command status of utrd */
5321 	ocs = ufshcd_get_tr_ocs(lrbp, cqe);
5322 
5323 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_OCS_FATAL_ERROR) {
5324 		if (lrbp->ucd_rsp_ptr->header.response ||
5325 		    lrbp->ucd_rsp_ptr->header.status)
5326 			ocs = OCS_SUCCESS;
5327 	}
5328 
5329 	switch (ocs) {
5330 	case OCS_SUCCESS:
5331 		hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
5332 		switch (ufshcd_get_req_rsp(lrbp->ucd_rsp_ptr)) {
5333 		case UPIU_TRANSACTION_RESPONSE:
5334 			/*
5335 			 * get the result based on SCSI status response
5336 			 * to notify the SCSI midlayer of the command status
5337 			 */
5338 			scsi_status = lrbp->ucd_rsp_ptr->header.status;
5339 			result = ufshcd_scsi_cmd_status(lrbp, scsi_status);
5340 
5341 			/*
5342 			 * Currently we are only supporting BKOPs exception
5343 			 * events hence we can ignore BKOPs exception event
5344 			 * during power management callbacks. BKOPs exception
5345 			 * event is not expected to be raised in runtime suspend
5346 			 * callback as it allows the urgent bkops.
5347 			 * During system suspend, we are anyway forcefully
5348 			 * disabling the bkops and if urgent bkops is needed
5349 			 * it will be enabled on system resume. Long term
5350 			 * solution could be to abort the system suspend if
5351 			 * UFS device needs urgent BKOPs.
5352 			 */
5353 			if (!hba->pm_op_in_progress &&
5354 			    !ufshcd_eh_in_progress(hba) &&
5355 			    ufshcd_is_exception_event(lrbp->ucd_rsp_ptr))
5356 				/* Flushed in suspend */
5357 				schedule_work(&hba->eeh_work);
5358 			break;
5359 		case UPIU_TRANSACTION_REJECT_UPIU:
5360 			/* TODO: handle Reject UPIU Response */
5361 			result = DID_ERROR << 16;
5362 			dev_err(hba->dev,
5363 				"Reject UPIU not fully implemented\n");
5364 			break;
5365 		default:
5366 			dev_err(hba->dev,
5367 				"Unexpected request response code = %x\n",
5368 				result);
5369 			result = DID_ERROR << 16;
5370 			break;
5371 		}
5372 		break;
5373 	case OCS_ABORTED:
5374 		result |= DID_ABORT << 16;
5375 		break;
5376 	case OCS_INVALID_COMMAND_STATUS:
5377 		result |= DID_REQUEUE << 16;
5378 		break;
5379 	case OCS_INVALID_CMD_TABLE_ATTR:
5380 	case OCS_INVALID_PRDT_ATTR:
5381 	case OCS_MISMATCH_DATA_BUF_SIZE:
5382 	case OCS_MISMATCH_RESP_UPIU_SIZE:
5383 	case OCS_PEER_COMM_FAILURE:
5384 	case OCS_FATAL_ERROR:
5385 	case OCS_DEVICE_FATAL_ERROR:
5386 	case OCS_INVALID_CRYPTO_CONFIG:
5387 	case OCS_GENERAL_CRYPTO_ERROR:
5388 	default:
5389 		result |= DID_ERROR << 16;
5390 		dev_err(hba->dev,
5391 				"OCS error from controller = %x for tag %d\n",
5392 				ocs, lrbp->task_tag);
5393 		ufshcd_print_evt_hist(hba);
5394 		ufshcd_print_host_state(hba);
5395 		break;
5396 	} /* end of switch */
5397 
5398 	if ((host_byte(result) != DID_OK) &&
5399 	    (host_byte(result) != DID_REQUEUE) && !hba->silence_err_logs)
5400 		ufshcd_print_tr(hba, lrbp->task_tag, true);
5401 	return result;
5402 }
5403 
5404 static bool ufshcd_is_auto_hibern8_error(struct ufs_hba *hba,
5405 					 u32 intr_mask)
5406 {
5407 	if (!ufshcd_is_auto_hibern8_supported(hba) ||
5408 	    !ufshcd_is_auto_hibern8_enabled(hba))
5409 		return false;
5410 
5411 	if (!(intr_mask & UFSHCD_UIC_HIBERN8_MASK))
5412 		return false;
5413 
5414 	if (hba->active_uic_cmd &&
5415 	    (hba->active_uic_cmd->command == UIC_CMD_DME_HIBER_ENTER ||
5416 	    hba->active_uic_cmd->command == UIC_CMD_DME_HIBER_EXIT))
5417 		return false;
5418 
5419 	return true;
5420 }
5421 
5422 /**
5423  * ufshcd_uic_cmd_compl - handle completion of uic command
5424  * @hba: per adapter instance
5425  * @intr_status: interrupt status generated by the controller
5426  *
5427  * Return:
5428  *  IRQ_HANDLED - If interrupt is valid
5429  *  IRQ_NONE    - If invalid interrupt
5430  */
5431 static irqreturn_t ufshcd_uic_cmd_compl(struct ufs_hba *hba, u32 intr_status)
5432 {
5433 	irqreturn_t retval = IRQ_NONE;
5434 
5435 	spin_lock(hba->host->host_lock);
5436 	if (ufshcd_is_auto_hibern8_error(hba, intr_status))
5437 		hba->errors |= (UFSHCD_UIC_HIBERN8_MASK & intr_status);
5438 
5439 	if ((intr_status & UIC_COMMAND_COMPL) && hba->active_uic_cmd) {
5440 		hba->active_uic_cmd->argument2 |=
5441 			ufshcd_get_uic_cmd_result(hba);
5442 		hba->active_uic_cmd->argument3 =
5443 			ufshcd_get_dme_attr_val(hba);
5444 		if (!hba->uic_async_done)
5445 			hba->active_uic_cmd->cmd_active = 0;
5446 		complete(&hba->active_uic_cmd->done);
5447 		retval = IRQ_HANDLED;
5448 	}
5449 
5450 	if ((intr_status & UFSHCD_UIC_PWR_MASK) && hba->uic_async_done) {
5451 		hba->active_uic_cmd->cmd_active = 0;
5452 		complete(hba->uic_async_done);
5453 		retval = IRQ_HANDLED;
5454 	}
5455 
5456 	if (retval == IRQ_HANDLED)
5457 		ufshcd_add_uic_command_trace(hba, hba->active_uic_cmd,
5458 					     UFS_CMD_COMP);
5459 	spin_unlock(hba->host->host_lock);
5460 	return retval;
5461 }
5462 
5463 /* Release the resources allocated for processing a SCSI command. */
5464 void ufshcd_release_scsi_cmd(struct ufs_hba *hba,
5465 			     struct ufshcd_lrb *lrbp)
5466 {
5467 	struct scsi_cmnd *cmd = lrbp->cmd;
5468 
5469 	scsi_dma_unmap(cmd);
5470 	ufshcd_release(hba);
5471 	ufshcd_clk_scaling_update_busy(hba);
5472 }
5473 
5474 /**
5475  * ufshcd_compl_one_cqe - handle a completion queue entry
5476  * @hba: per adapter instance
5477  * @task_tag: the task tag of the request to be completed
5478  * @cqe: pointer to the completion queue entry
5479  */
5480 void ufshcd_compl_one_cqe(struct ufs_hba *hba, int task_tag,
5481 			  struct cq_entry *cqe)
5482 {
5483 	struct ufshcd_lrb *lrbp;
5484 	struct scsi_cmnd *cmd;
5485 	enum utp_ocs ocs;
5486 
5487 	lrbp = &hba->lrb[task_tag];
5488 	lrbp->compl_time_stamp = ktime_get();
5489 	cmd = lrbp->cmd;
5490 	if (cmd) {
5491 		if (unlikely(ufshcd_should_inform_monitor(hba, lrbp)))
5492 			ufshcd_update_monitor(hba, lrbp);
5493 		ufshcd_add_command_trace(hba, task_tag, UFS_CMD_COMP);
5494 		cmd->result = ufshcd_transfer_rsp_status(hba, lrbp, cqe);
5495 		ufshcd_release_scsi_cmd(hba, lrbp);
5496 		/* Do not touch lrbp after scsi done */
5497 		scsi_done(cmd);
5498 	} else if (lrbp->command_type == UTP_CMD_TYPE_DEV_MANAGE ||
5499 		   lrbp->command_type == UTP_CMD_TYPE_UFS_STORAGE) {
5500 		if (hba->dev_cmd.complete) {
5501 			if (cqe) {
5502 				ocs = le32_to_cpu(cqe->status) & MASK_OCS;
5503 				lrbp->utr_descriptor_ptr->header.ocs = ocs;
5504 			}
5505 			complete(hba->dev_cmd.complete);
5506 		}
5507 	}
5508 }
5509 
5510 /**
5511  * __ufshcd_transfer_req_compl - handle SCSI and query command completion
5512  * @hba: per adapter instance
5513  * @completed_reqs: bitmask that indicates which requests to complete
5514  */
5515 static void __ufshcd_transfer_req_compl(struct ufs_hba *hba,
5516 					unsigned long completed_reqs)
5517 {
5518 	int tag;
5519 
5520 	for_each_set_bit(tag, &completed_reqs, hba->nutrs)
5521 		ufshcd_compl_one_cqe(hba, tag, NULL);
5522 }
5523 
5524 /* Any value that is not an existing queue number is fine for this constant. */
5525 enum {
5526 	UFSHCD_POLL_FROM_INTERRUPT_CONTEXT = -1
5527 };
5528 
5529 static void ufshcd_clear_polled(struct ufs_hba *hba,
5530 				unsigned long *completed_reqs)
5531 {
5532 	int tag;
5533 
5534 	for_each_set_bit(tag, completed_reqs, hba->nutrs) {
5535 		struct scsi_cmnd *cmd = hba->lrb[tag].cmd;
5536 
5537 		if (!cmd)
5538 			continue;
5539 		if (scsi_cmd_to_rq(cmd)->cmd_flags & REQ_POLLED)
5540 			__clear_bit(tag, completed_reqs);
5541 	}
5542 }
5543 
5544 /*
5545  * Return: > 0 if one or more commands have been completed or 0 if no
5546  * requests have been completed.
5547  */
5548 static int ufshcd_poll(struct Scsi_Host *shost, unsigned int queue_num)
5549 {
5550 	struct ufs_hba *hba = shost_priv(shost);
5551 	unsigned long completed_reqs, flags;
5552 	u32 tr_doorbell;
5553 	struct ufs_hw_queue *hwq;
5554 
5555 	if (is_mcq_enabled(hba)) {
5556 		hwq = &hba->uhq[queue_num];
5557 
5558 		return ufshcd_mcq_poll_cqe_lock(hba, hwq);
5559 	}
5560 
5561 	spin_lock_irqsave(&hba->outstanding_lock, flags);
5562 	tr_doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
5563 	completed_reqs = ~tr_doorbell & hba->outstanding_reqs;
5564 	WARN_ONCE(completed_reqs & ~hba->outstanding_reqs,
5565 		  "completed: %#lx; outstanding: %#lx\n", completed_reqs,
5566 		  hba->outstanding_reqs);
5567 	if (queue_num == UFSHCD_POLL_FROM_INTERRUPT_CONTEXT) {
5568 		/* Do not complete polled requests from interrupt context. */
5569 		ufshcd_clear_polled(hba, &completed_reqs);
5570 	}
5571 	hba->outstanding_reqs &= ~completed_reqs;
5572 	spin_unlock_irqrestore(&hba->outstanding_lock, flags);
5573 
5574 	if (completed_reqs)
5575 		__ufshcd_transfer_req_compl(hba, completed_reqs);
5576 
5577 	return completed_reqs != 0;
5578 }
5579 
5580 /**
5581  * ufshcd_mcq_compl_pending_transfer - MCQ mode function. It is
5582  * invoked from the error handler context or ufshcd_host_reset_and_restore()
5583  * to complete the pending transfers and free the resources associated with
5584  * the scsi command.
5585  *
5586  * @hba: per adapter instance
5587  * @force_compl: This flag is set to true when invoked
5588  * from ufshcd_host_reset_and_restore() in which case it requires special
5589  * handling because the host controller has been reset by ufshcd_hba_stop().
5590  */
5591 static void ufshcd_mcq_compl_pending_transfer(struct ufs_hba *hba,
5592 					      bool force_compl)
5593 {
5594 	struct ufs_hw_queue *hwq;
5595 	struct ufshcd_lrb *lrbp;
5596 	struct scsi_cmnd *cmd;
5597 	unsigned long flags;
5598 	u32 hwq_num, utag;
5599 	int tag;
5600 
5601 	for (tag = 0; tag < hba->nutrs; tag++) {
5602 		lrbp = &hba->lrb[tag];
5603 		cmd = lrbp->cmd;
5604 		if (!ufshcd_cmd_inflight(cmd) ||
5605 		    test_bit(SCMD_STATE_COMPLETE, &cmd->state))
5606 			continue;
5607 
5608 		utag = blk_mq_unique_tag(scsi_cmd_to_rq(cmd));
5609 		hwq_num = blk_mq_unique_tag_to_hwq(utag);
5610 		hwq = &hba->uhq[hwq_num];
5611 
5612 		if (force_compl) {
5613 			ufshcd_mcq_compl_all_cqes_lock(hba, hwq);
5614 			/*
5615 			 * For those cmds of which the cqes are not present
5616 			 * in the cq, complete them explicitly.
5617 			 */
5618 			spin_lock_irqsave(&hwq->cq_lock, flags);
5619 			if (cmd && !test_bit(SCMD_STATE_COMPLETE, &cmd->state)) {
5620 				set_host_byte(cmd, DID_REQUEUE);
5621 				ufshcd_release_scsi_cmd(hba, lrbp);
5622 				scsi_done(cmd);
5623 			}
5624 			spin_unlock_irqrestore(&hwq->cq_lock, flags);
5625 		} else {
5626 			ufshcd_mcq_poll_cqe_lock(hba, hwq);
5627 		}
5628 	}
5629 }
5630 
5631 /**
5632  * ufshcd_transfer_req_compl - handle SCSI and query command completion
5633  * @hba: per adapter instance
5634  *
5635  * Return:
5636  *  IRQ_HANDLED - If interrupt is valid
5637  *  IRQ_NONE    - If invalid interrupt
5638  */
5639 static irqreturn_t ufshcd_transfer_req_compl(struct ufs_hba *hba)
5640 {
5641 	/* Resetting interrupt aggregation counters first and reading the
5642 	 * DOOR_BELL afterward allows us to handle all the completed requests.
5643 	 * In order to prevent other interrupts starvation the DB is read once
5644 	 * after reset. The down side of this solution is the possibility of
5645 	 * false interrupt if device completes another request after resetting
5646 	 * aggregation and before reading the DB.
5647 	 */
5648 	if (ufshcd_is_intr_aggr_allowed(hba) &&
5649 	    !(hba->quirks & UFSHCI_QUIRK_SKIP_RESET_INTR_AGGR))
5650 		ufshcd_reset_intr_aggr(hba);
5651 
5652 	if (ufs_fail_completion())
5653 		return IRQ_HANDLED;
5654 
5655 	/*
5656 	 * Ignore the ufshcd_poll() return value and return IRQ_HANDLED since we
5657 	 * do not want polling to trigger spurious interrupt complaints.
5658 	 */
5659 	ufshcd_poll(hba->host, UFSHCD_POLL_FROM_INTERRUPT_CONTEXT);
5660 
5661 	return IRQ_HANDLED;
5662 }
5663 
5664 int __ufshcd_write_ee_control(struct ufs_hba *hba, u32 ee_ctrl_mask)
5665 {
5666 	return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
5667 				       QUERY_ATTR_IDN_EE_CONTROL, 0, 0,
5668 				       &ee_ctrl_mask);
5669 }
5670 
5671 int ufshcd_write_ee_control(struct ufs_hba *hba)
5672 {
5673 	int err;
5674 
5675 	mutex_lock(&hba->ee_ctrl_mutex);
5676 	err = __ufshcd_write_ee_control(hba, hba->ee_ctrl_mask);
5677 	mutex_unlock(&hba->ee_ctrl_mutex);
5678 	if (err)
5679 		dev_err(hba->dev, "%s: failed to write ee control %d\n",
5680 			__func__, err);
5681 	return err;
5682 }
5683 
5684 int ufshcd_update_ee_control(struct ufs_hba *hba, u16 *mask,
5685 			     const u16 *other_mask, u16 set, u16 clr)
5686 {
5687 	u16 new_mask, ee_ctrl_mask;
5688 	int err = 0;
5689 
5690 	mutex_lock(&hba->ee_ctrl_mutex);
5691 	new_mask = (*mask & ~clr) | set;
5692 	ee_ctrl_mask = new_mask | *other_mask;
5693 	if (ee_ctrl_mask != hba->ee_ctrl_mask)
5694 		err = __ufshcd_write_ee_control(hba, ee_ctrl_mask);
5695 	/* Still need to update 'mask' even if 'ee_ctrl_mask' was unchanged */
5696 	if (!err) {
5697 		hba->ee_ctrl_mask = ee_ctrl_mask;
5698 		*mask = new_mask;
5699 	}
5700 	mutex_unlock(&hba->ee_ctrl_mutex);
5701 	return err;
5702 }
5703 
5704 /**
5705  * ufshcd_disable_ee - disable exception event
5706  * @hba: per-adapter instance
5707  * @mask: exception event to disable
5708  *
5709  * Disables exception event in the device so that the EVENT_ALERT
5710  * bit is not set.
5711  *
5712  * Return: zero on success, non-zero error value on failure.
5713  */
5714 static inline int ufshcd_disable_ee(struct ufs_hba *hba, u16 mask)
5715 {
5716 	return ufshcd_update_ee_drv_mask(hba, 0, mask);
5717 }
5718 
5719 /**
5720  * ufshcd_enable_ee - enable exception event
5721  * @hba: per-adapter instance
5722  * @mask: exception event to enable
5723  *
5724  * Enable corresponding exception event in the device to allow
5725  * device to alert host in critical scenarios.
5726  *
5727  * Return: zero on success, non-zero error value on failure.
5728  */
5729 static inline int ufshcd_enable_ee(struct ufs_hba *hba, u16 mask)
5730 {
5731 	return ufshcd_update_ee_drv_mask(hba, mask, 0);
5732 }
5733 
5734 /**
5735  * ufshcd_enable_auto_bkops - Allow device managed BKOPS
5736  * @hba: per-adapter instance
5737  *
5738  * Allow device to manage background operations on its own. Enabling
5739  * this might lead to inconsistent latencies during normal data transfers
5740  * as the device is allowed to manage its own way of handling background
5741  * operations.
5742  *
5743  * Return: zero on success, non-zero on failure.
5744  */
5745 static int ufshcd_enable_auto_bkops(struct ufs_hba *hba)
5746 {
5747 	int err = 0;
5748 
5749 	if (hba->auto_bkops_enabled)
5750 		goto out;
5751 
5752 	err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG,
5753 			QUERY_FLAG_IDN_BKOPS_EN, 0, NULL);
5754 	if (err) {
5755 		dev_err(hba->dev, "%s: failed to enable bkops %d\n",
5756 				__func__, err);
5757 		goto out;
5758 	}
5759 
5760 	hba->auto_bkops_enabled = true;
5761 	trace_ufshcd_auto_bkops_state(dev_name(hba->dev), "Enabled");
5762 
5763 	/* No need of URGENT_BKOPS exception from the device */
5764 	err = ufshcd_disable_ee(hba, MASK_EE_URGENT_BKOPS);
5765 	if (err)
5766 		dev_err(hba->dev, "%s: failed to disable exception event %d\n",
5767 				__func__, err);
5768 out:
5769 	return err;
5770 }
5771 
5772 /**
5773  * ufshcd_disable_auto_bkops - block device in doing background operations
5774  * @hba: per-adapter instance
5775  *
5776  * Disabling background operations improves command response latency but
5777  * has drawback of device moving into critical state where the device is
5778  * not-operable. Make sure to call ufshcd_enable_auto_bkops() whenever the
5779  * host is idle so that BKOPS are managed effectively without any negative
5780  * impacts.
5781  *
5782  * Return: zero on success, non-zero on failure.
5783  */
5784 static int ufshcd_disable_auto_bkops(struct ufs_hba *hba)
5785 {
5786 	int err = 0;
5787 
5788 	if (!hba->auto_bkops_enabled)
5789 		goto out;
5790 
5791 	/*
5792 	 * If host assisted BKOPs is to be enabled, make sure
5793 	 * urgent bkops exception is allowed.
5794 	 */
5795 	err = ufshcd_enable_ee(hba, MASK_EE_URGENT_BKOPS);
5796 	if (err) {
5797 		dev_err(hba->dev, "%s: failed to enable exception event %d\n",
5798 				__func__, err);
5799 		goto out;
5800 	}
5801 
5802 	err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_CLEAR_FLAG,
5803 			QUERY_FLAG_IDN_BKOPS_EN, 0, NULL);
5804 	if (err) {
5805 		dev_err(hba->dev, "%s: failed to disable bkops %d\n",
5806 				__func__, err);
5807 		ufshcd_disable_ee(hba, MASK_EE_URGENT_BKOPS);
5808 		goto out;
5809 	}
5810 
5811 	hba->auto_bkops_enabled = false;
5812 	trace_ufshcd_auto_bkops_state(dev_name(hba->dev), "Disabled");
5813 	hba->is_urgent_bkops_lvl_checked = false;
5814 out:
5815 	return err;
5816 }
5817 
5818 /**
5819  * ufshcd_force_reset_auto_bkops - force reset auto bkops state
5820  * @hba: per adapter instance
5821  *
5822  * After a device reset the device may toggle the BKOPS_EN flag
5823  * to default value. The s/w tracking variables should be updated
5824  * as well. This function would change the auto-bkops state based on
5825  * UFSHCD_CAP_KEEP_AUTO_BKOPS_ENABLED_EXCEPT_SUSPEND.
5826  */
5827 static void ufshcd_force_reset_auto_bkops(struct ufs_hba *hba)
5828 {
5829 	if (ufshcd_keep_autobkops_enabled_except_suspend(hba)) {
5830 		hba->auto_bkops_enabled = false;
5831 		hba->ee_ctrl_mask |= MASK_EE_URGENT_BKOPS;
5832 		ufshcd_enable_auto_bkops(hba);
5833 	} else {
5834 		hba->auto_bkops_enabled = true;
5835 		hba->ee_ctrl_mask &= ~MASK_EE_URGENT_BKOPS;
5836 		ufshcd_disable_auto_bkops(hba);
5837 	}
5838 	hba->urgent_bkops_lvl = BKOPS_STATUS_PERF_IMPACT;
5839 	hba->is_urgent_bkops_lvl_checked = false;
5840 }
5841 
5842 static inline int ufshcd_get_bkops_status(struct ufs_hba *hba, u32 *status)
5843 {
5844 	return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5845 			QUERY_ATTR_IDN_BKOPS_STATUS, 0, 0, status);
5846 }
5847 
5848 /**
5849  * ufshcd_bkops_ctrl - control the auto bkops based on current bkops status
5850  * @hba: per-adapter instance
5851  * @status: bkops_status value
5852  *
5853  * Read the bkops_status from the UFS device and Enable fBackgroundOpsEn
5854  * flag in the device to permit background operations if the device
5855  * bkops_status is greater than or equal to "status" argument passed to
5856  * this function, disable otherwise.
5857  *
5858  * Return: 0 for success, non-zero in case of failure.
5859  *
5860  * NOTE: Caller of this function can check the "hba->auto_bkops_enabled" flag
5861  * to know whether auto bkops is enabled or disabled after this function
5862  * returns control to it.
5863  */
5864 static int ufshcd_bkops_ctrl(struct ufs_hba *hba,
5865 			     enum bkops_status status)
5866 {
5867 	int err;
5868 	u32 curr_status = 0;
5869 
5870 	err = ufshcd_get_bkops_status(hba, &curr_status);
5871 	if (err) {
5872 		dev_err(hba->dev, "%s: failed to get BKOPS status %d\n",
5873 				__func__, err);
5874 		goto out;
5875 	} else if (curr_status > BKOPS_STATUS_MAX) {
5876 		dev_err(hba->dev, "%s: invalid BKOPS status %d\n",
5877 				__func__, curr_status);
5878 		err = -EINVAL;
5879 		goto out;
5880 	}
5881 
5882 	if (curr_status >= status)
5883 		err = ufshcd_enable_auto_bkops(hba);
5884 	else
5885 		err = ufshcd_disable_auto_bkops(hba);
5886 out:
5887 	return err;
5888 }
5889 
5890 /**
5891  * ufshcd_urgent_bkops - handle urgent bkops exception event
5892  * @hba: per-adapter instance
5893  *
5894  * Enable fBackgroundOpsEn flag in the device to permit background
5895  * operations.
5896  *
5897  * If BKOPs is enabled, this function returns 0, 1 if the bkops in not enabled
5898  * and negative error value for any other failure.
5899  *
5900  * Return: 0 upon success; < 0 upon failure.
5901  */
5902 static int ufshcd_urgent_bkops(struct ufs_hba *hba)
5903 {
5904 	return ufshcd_bkops_ctrl(hba, hba->urgent_bkops_lvl);
5905 }
5906 
5907 static inline int ufshcd_get_ee_status(struct ufs_hba *hba, u32 *status)
5908 {
5909 	return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5910 			QUERY_ATTR_IDN_EE_STATUS, 0, 0, status);
5911 }
5912 
5913 static void ufshcd_bkops_exception_event_handler(struct ufs_hba *hba)
5914 {
5915 	int err;
5916 	u32 curr_status = 0;
5917 
5918 	if (hba->is_urgent_bkops_lvl_checked)
5919 		goto enable_auto_bkops;
5920 
5921 	err = ufshcd_get_bkops_status(hba, &curr_status);
5922 	if (err) {
5923 		dev_err(hba->dev, "%s: failed to get BKOPS status %d\n",
5924 				__func__, err);
5925 		goto out;
5926 	}
5927 
5928 	/*
5929 	 * We are seeing that some devices are raising the urgent bkops
5930 	 * exception events even when BKOPS status doesn't indicate performace
5931 	 * impacted or critical. Handle these device by determining their urgent
5932 	 * bkops status at runtime.
5933 	 */
5934 	if (curr_status < BKOPS_STATUS_PERF_IMPACT) {
5935 		dev_err(hba->dev, "%s: device raised urgent BKOPS exception for bkops status %d\n",
5936 				__func__, curr_status);
5937 		/* update the current status as the urgent bkops level */
5938 		hba->urgent_bkops_lvl = curr_status;
5939 		hba->is_urgent_bkops_lvl_checked = true;
5940 	}
5941 
5942 enable_auto_bkops:
5943 	err = ufshcd_enable_auto_bkops(hba);
5944 out:
5945 	if (err < 0)
5946 		dev_err(hba->dev, "%s: failed to handle urgent bkops %d\n",
5947 				__func__, err);
5948 }
5949 
5950 static void ufshcd_temp_exception_event_handler(struct ufs_hba *hba, u16 status)
5951 {
5952 	u32 value;
5953 
5954 	if (ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5955 				QUERY_ATTR_IDN_CASE_ROUGH_TEMP, 0, 0, &value))
5956 		return;
5957 
5958 	dev_info(hba->dev, "exception Tcase %d\n", value - 80);
5959 
5960 	ufs_hwmon_notify_event(hba, status & MASK_EE_URGENT_TEMP);
5961 
5962 	/*
5963 	 * A placeholder for the platform vendors to add whatever additional
5964 	 * steps required
5965 	 */
5966 }
5967 
5968 static int __ufshcd_wb_toggle(struct ufs_hba *hba, bool set, enum flag_idn idn)
5969 {
5970 	u8 index;
5971 	enum query_opcode opcode = set ? UPIU_QUERY_OPCODE_SET_FLAG :
5972 				   UPIU_QUERY_OPCODE_CLEAR_FLAG;
5973 
5974 	index = ufshcd_wb_get_query_index(hba);
5975 	return ufshcd_query_flag_retry(hba, opcode, idn, index, NULL);
5976 }
5977 
5978 int ufshcd_wb_toggle(struct ufs_hba *hba, bool enable)
5979 {
5980 	int ret;
5981 
5982 	if (!ufshcd_is_wb_allowed(hba) ||
5983 	    hba->dev_info.wb_enabled == enable)
5984 		return 0;
5985 
5986 	ret = __ufshcd_wb_toggle(hba, enable, QUERY_FLAG_IDN_WB_EN);
5987 	if (ret) {
5988 		dev_err(hba->dev, "%s: Write Booster %s failed %d\n",
5989 			__func__, enable ? "enabling" : "disabling", ret);
5990 		return ret;
5991 	}
5992 
5993 	hba->dev_info.wb_enabled = enable;
5994 	dev_dbg(hba->dev, "%s: Write Booster %s\n",
5995 			__func__, enable ? "enabled" : "disabled");
5996 
5997 	return ret;
5998 }
5999 
6000 static void ufshcd_wb_toggle_buf_flush_during_h8(struct ufs_hba *hba,
6001 						 bool enable)
6002 {
6003 	int ret;
6004 
6005 	ret = __ufshcd_wb_toggle(hba, enable,
6006 			QUERY_FLAG_IDN_WB_BUFF_FLUSH_DURING_HIBERN8);
6007 	if (ret) {
6008 		dev_err(hba->dev, "%s: WB-Buf Flush during H8 %s failed %d\n",
6009 			__func__, enable ? "enabling" : "disabling", ret);
6010 		return;
6011 	}
6012 	dev_dbg(hba->dev, "%s: WB-Buf Flush during H8 %s\n",
6013 			__func__, enable ? "enabled" : "disabled");
6014 }
6015 
6016 int ufshcd_wb_toggle_buf_flush(struct ufs_hba *hba, bool enable)
6017 {
6018 	int ret;
6019 
6020 	if (!ufshcd_is_wb_allowed(hba) ||
6021 	    hba->dev_info.wb_buf_flush_enabled == enable)
6022 		return 0;
6023 
6024 	ret = __ufshcd_wb_toggle(hba, enable, QUERY_FLAG_IDN_WB_BUFF_FLUSH_EN);
6025 	if (ret) {
6026 		dev_err(hba->dev, "%s: WB-Buf Flush %s failed %d\n",
6027 			__func__, enable ? "enabling" : "disabling", ret);
6028 		return ret;
6029 	}
6030 
6031 	hba->dev_info.wb_buf_flush_enabled = enable;
6032 	dev_dbg(hba->dev, "%s: WB-Buf Flush %s\n",
6033 			__func__, enable ? "enabled" : "disabled");
6034 
6035 	return ret;
6036 }
6037 
6038 static bool ufshcd_wb_presrv_usrspc_keep_vcc_on(struct ufs_hba *hba,
6039 						u32 avail_buf)
6040 {
6041 	u32 cur_buf;
6042 	int ret;
6043 	u8 index;
6044 
6045 	index = ufshcd_wb_get_query_index(hba);
6046 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
6047 					      QUERY_ATTR_IDN_CURR_WB_BUFF_SIZE,
6048 					      index, 0, &cur_buf);
6049 	if (ret) {
6050 		dev_err(hba->dev, "%s: dCurWriteBoosterBufferSize read failed %d\n",
6051 			__func__, ret);
6052 		return false;
6053 	}
6054 
6055 	if (!cur_buf) {
6056 		dev_info(hba->dev, "dCurWBBuf: %d WB disabled until free-space is available\n",
6057 			 cur_buf);
6058 		return false;
6059 	}
6060 	/* Let it continue to flush when available buffer exceeds threshold */
6061 	return avail_buf < hba->vps->wb_flush_threshold;
6062 }
6063 
6064 static void ufshcd_wb_force_disable(struct ufs_hba *hba)
6065 {
6066 	if (ufshcd_is_wb_buf_flush_allowed(hba))
6067 		ufshcd_wb_toggle_buf_flush(hba, false);
6068 
6069 	ufshcd_wb_toggle_buf_flush_during_h8(hba, false);
6070 	ufshcd_wb_toggle(hba, false);
6071 	hba->caps &= ~UFSHCD_CAP_WB_EN;
6072 
6073 	dev_info(hba->dev, "%s: WB force disabled\n", __func__);
6074 }
6075 
6076 static bool ufshcd_is_wb_buf_lifetime_available(struct ufs_hba *hba)
6077 {
6078 	u32 lifetime;
6079 	int ret;
6080 	u8 index;
6081 
6082 	index = ufshcd_wb_get_query_index(hba);
6083 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
6084 				      QUERY_ATTR_IDN_WB_BUFF_LIFE_TIME_EST,
6085 				      index, 0, &lifetime);
6086 	if (ret) {
6087 		dev_err(hba->dev,
6088 			"%s: bWriteBoosterBufferLifeTimeEst read failed %d\n",
6089 			__func__, ret);
6090 		return false;
6091 	}
6092 
6093 	if (lifetime == UFS_WB_EXCEED_LIFETIME) {
6094 		dev_err(hba->dev, "%s: WB buf lifetime is exhausted 0x%02X\n",
6095 			__func__, lifetime);
6096 		return false;
6097 	}
6098 
6099 	dev_dbg(hba->dev, "%s: WB buf lifetime is 0x%02X\n",
6100 		__func__, lifetime);
6101 
6102 	return true;
6103 }
6104 
6105 static bool ufshcd_wb_need_flush(struct ufs_hba *hba)
6106 {
6107 	int ret;
6108 	u32 avail_buf;
6109 	u8 index;
6110 
6111 	if (!ufshcd_is_wb_allowed(hba))
6112 		return false;
6113 
6114 	if (!ufshcd_is_wb_buf_lifetime_available(hba)) {
6115 		ufshcd_wb_force_disable(hba);
6116 		return false;
6117 	}
6118 
6119 	/*
6120 	 * The ufs device needs the vcc to be ON to flush.
6121 	 * With user-space reduction enabled, it's enough to enable flush
6122 	 * by checking only the available buffer. The threshold
6123 	 * defined here is > 90% full.
6124 	 * With user-space preserved enabled, the current-buffer
6125 	 * should be checked too because the wb buffer size can reduce
6126 	 * when disk tends to be full. This info is provided by current
6127 	 * buffer (dCurrentWriteBoosterBufferSize). There's no point in
6128 	 * keeping vcc on when current buffer is empty.
6129 	 */
6130 	index = ufshcd_wb_get_query_index(hba);
6131 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
6132 				      QUERY_ATTR_IDN_AVAIL_WB_BUFF_SIZE,
6133 				      index, 0, &avail_buf);
6134 	if (ret) {
6135 		dev_warn(hba->dev, "%s: dAvailableWriteBoosterBufferSize read failed %d\n",
6136 			 __func__, ret);
6137 		return false;
6138 	}
6139 
6140 	if (!hba->dev_info.b_presrv_uspc_en)
6141 		return avail_buf <= UFS_WB_BUF_REMAIN_PERCENT(10);
6142 
6143 	return ufshcd_wb_presrv_usrspc_keep_vcc_on(hba, avail_buf);
6144 }
6145 
6146 static void ufshcd_rpm_dev_flush_recheck_work(struct work_struct *work)
6147 {
6148 	struct ufs_hba *hba = container_of(to_delayed_work(work),
6149 					   struct ufs_hba,
6150 					   rpm_dev_flush_recheck_work);
6151 	/*
6152 	 * To prevent unnecessary VCC power drain after device finishes
6153 	 * WriteBooster buffer flush or Auto BKOPs, force runtime resume
6154 	 * after a certain delay to recheck the threshold by next runtime
6155 	 * suspend.
6156 	 */
6157 	ufshcd_rpm_get_sync(hba);
6158 	ufshcd_rpm_put_sync(hba);
6159 }
6160 
6161 /**
6162  * ufshcd_exception_event_handler - handle exceptions raised by device
6163  * @work: pointer to work data
6164  *
6165  * Read bExceptionEventStatus attribute from the device and handle the
6166  * exception event accordingly.
6167  */
6168 static void ufshcd_exception_event_handler(struct work_struct *work)
6169 {
6170 	struct ufs_hba *hba;
6171 	int err;
6172 	u32 status = 0;
6173 	hba = container_of(work, struct ufs_hba, eeh_work);
6174 
6175 	ufshcd_scsi_block_requests(hba);
6176 	err = ufshcd_get_ee_status(hba, &status);
6177 	if (err) {
6178 		dev_err(hba->dev, "%s: failed to get exception status %d\n",
6179 				__func__, err);
6180 		goto out;
6181 	}
6182 
6183 	trace_ufshcd_exception_event(dev_name(hba->dev), status);
6184 
6185 	if (status & hba->ee_drv_mask & MASK_EE_URGENT_BKOPS)
6186 		ufshcd_bkops_exception_event_handler(hba);
6187 
6188 	if (status & hba->ee_drv_mask & MASK_EE_URGENT_TEMP)
6189 		ufshcd_temp_exception_event_handler(hba, status);
6190 
6191 	ufs_debugfs_exception_event(hba, status);
6192 out:
6193 	ufshcd_scsi_unblock_requests(hba);
6194 }
6195 
6196 /* Complete requests that have door-bell cleared */
6197 static void ufshcd_complete_requests(struct ufs_hba *hba, bool force_compl)
6198 {
6199 	if (is_mcq_enabled(hba))
6200 		ufshcd_mcq_compl_pending_transfer(hba, force_compl);
6201 	else
6202 		ufshcd_transfer_req_compl(hba);
6203 
6204 	ufshcd_tmc_handler(hba);
6205 }
6206 
6207 /**
6208  * ufshcd_quirk_dl_nac_errors - This function checks if error handling is
6209  *				to recover from the DL NAC errors or not.
6210  * @hba: per-adapter instance
6211  *
6212  * Return: true if error handling is required, false otherwise.
6213  */
6214 static bool ufshcd_quirk_dl_nac_errors(struct ufs_hba *hba)
6215 {
6216 	unsigned long flags;
6217 	bool err_handling = true;
6218 
6219 	spin_lock_irqsave(hba->host->host_lock, flags);
6220 	/*
6221 	 * UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS only workaround the
6222 	 * device fatal error and/or DL NAC & REPLAY timeout errors.
6223 	 */
6224 	if (hba->saved_err & (CONTROLLER_FATAL_ERROR | SYSTEM_BUS_FATAL_ERROR))
6225 		goto out;
6226 
6227 	if ((hba->saved_err & DEVICE_FATAL_ERROR) ||
6228 	    ((hba->saved_err & UIC_ERROR) &&
6229 	     (hba->saved_uic_err & UFSHCD_UIC_DL_TCx_REPLAY_ERROR)))
6230 		goto out;
6231 
6232 	if ((hba->saved_err & UIC_ERROR) &&
6233 	    (hba->saved_uic_err & UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)) {
6234 		int err;
6235 		/*
6236 		 * wait for 50ms to see if we can get any other errors or not.
6237 		 */
6238 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6239 		msleep(50);
6240 		spin_lock_irqsave(hba->host->host_lock, flags);
6241 
6242 		/*
6243 		 * now check if we have got any other severe errors other than
6244 		 * DL NAC error?
6245 		 */
6246 		if ((hba->saved_err & INT_FATAL_ERRORS) ||
6247 		    ((hba->saved_err & UIC_ERROR) &&
6248 		    (hba->saved_uic_err & ~UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)))
6249 			goto out;
6250 
6251 		/*
6252 		 * As DL NAC is the only error received so far, send out NOP
6253 		 * command to confirm if link is still active or not.
6254 		 *   - If we don't get any response then do error recovery.
6255 		 *   - If we get response then clear the DL NAC error bit.
6256 		 */
6257 
6258 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6259 		err = ufshcd_verify_dev_init(hba);
6260 		spin_lock_irqsave(hba->host->host_lock, flags);
6261 
6262 		if (err)
6263 			goto out;
6264 
6265 		/* Link seems to be alive hence ignore the DL NAC errors */
6266 		if (hba->saved_uic_err == UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)
6267 			hba->saved_err &= ~UIC_ERROR;
6268 		/* clear NAC error */
6269 		hba->saved_uic_err &= ~UFSHCD_UIC_DL_NAC_RECEIVED_ERROR;
6270 		if (!hba->saved_uic_err)
6271 			err_handling = false;
6272 	}
6273 out:
6274 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6275 	return err_handling;
6276 }
6277 
6278 /* host lock must be held before calling this func */
6279 static inline bool ufshcd_is_saved_err_fatal(struct ufs_hba *hba)
6280 {
6281 	return (hba->saved_uic_err & UFSHCD_UIC_DL_PA_INIT_ERROR) ||
6282 	       (hba->saved_err & (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK));
6283 }
6284 
6285 void ufshcd_schedule_eh_work(struct ufs_hba *hba)
6286 {
6287 	lockdep_assert_held(hba->host->host_lock);
6288 
6289 	/* handle fatal errors only when link is not in error state */
6290 	if (hba->ufshcd_state != UFSHCD_STATE_ERROR) {
6291 		if (hba->force_reset || ufshcd_is_link_broken(hba) ||
6292 		    ufshcd_is_saved_err_fatal(hba))
6293 			hba->ufshcd_state = UFSHCD_STATE_EH_SCHEDULED_FATAL;
6294 		else
6295 			hba->ufshcd_state = UFSHCD_STATE_EH_SCHEDULED_NON_FATAL;
6296 		queue_work(hba->eh_wq, &hba->eh_work);
6297 	}
6298 }
6299 
6300 static void ufshcd_force_error_recovery(struct ufs_hba *hba)
6301 {
6302 	spin_lock_irq(hba->host->host_lock);
6303 	hba->force_reset = true;
6304 	ufshcd_schedule_eh_work(hba);
6305 	spin_unlock_irq(hba->host->host_lock);
6306 }
6307 
6308 static void ufshcd_clk_scaling_allow(struct ufs_hba *hba, bool allow)
6309 {
6310 	mutex_lock(&hba->wb_mutex);
6311 	down_write(&hba->clk_scaling_lock);
6312 	hba->clk_scaling.is_allowed = allow;
6313 	up_write(&hba->clk_scaling_lock);
6314 	mutex_unlock(&hba->wb_mutex);
6315 }
6316 
6317 static void ufshcd_clk_scaling_suspend(struct ufs_hba *hba, bool suspend)
6318 {
6319 	if (suspend) {
6320 		if (hba->clk_scaling.is_enabled)
6321 			ufshcd_suspend_clkscaling(hba);
6322 		ufshcd_clk_scaling_allow(hba, false);
6323 	} else {
6324 		ufshcd_clk_scaling_allow(hba, true);
6325 		if (hba->clk_scaling.is_enabled)
6326 			ufshcd_resume_clkscaling(hba);
6327 	}
6328 }
6329 
6330 static void ufshcd_err_handling_prepare(struct ufs_hba *hba)
6331 {
6332 	ufshcd_rpm_get_sync(hba);
6333 	if (pm_runtime_status_suspended(&hba->ufs_device_wlun->sdev_gendev) ||
6334 	    hba->is_sys_suspended) {
6335 		enum ufs_pm_op pm_op;
6336 
6337 		/*
6338 		 * Don't assume anything of resume, if
6339 		 * resume fails, irq and clocks can be OFF, and powers
6340 		 * can be OFF or in LPM.
6341 		 */
6342 		ufshcd_setup_hba_vreg(hba, true);
6343 		ufshcd_enable_irq(hba);
6344 		ufshcd_setup_vreg(hba, true);
6345 		ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq);
6346 		ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq2);
6347 		ufshcd_hold(hba);
6348 		if (!ufshcd_is_clkgating_allowed(hba))
6349 			ufshcd_setup_clocks(hba, true);
6350 		ufshcd_release(hba);
6351 		pm_op = hba->is_sys_suspended ? UFS_SYSTEM_PM : UFS_RUNTIME_PM;
6352 		ufshcd_vops_resume(hba, pm_op);
6353 	} else {
6354 		ufshcd_hold(hba);
6355 		if (ufshcd_is_clkscaling_supported(hba) &&
6356 		    hba->clk_scaling.is_enabled)
6357 			ufshcd_suspend_clkscaling(hba);
6358 		ufshcd_clk_scaling_allow(hba, false);
6359 	}
6360 	ufshcd_scsi_block_requests(hba);
6361 	/* Wait for ongoing ufshcd_queuecommand() calls to finish. */
6362 	blk_mq_wait_quiesce_done(&hba->host->tag_set);
6363 	cancel_work_sync(&hba->eeh_work);
6364 }
6365 
6366 static void ufshcd_err_handling_unprepare(struct ufs_hba *hba)
6367 {
6368 	ufshcd_scsi_unblock_requests(hba);
6369 	ufshcd_release(hba);
6370 	if (ufshcd_is_clkscaling_supported(hba))
6371 		ufshcd_clk_scaling_suspend(hba, false);
6372 	ufshcd_rpm_put(hba);
6373 }
6374 
6375 static inline bool ufshcd_err_handling_should_stop(struct ufs_hba *hba)
6376 {
6377 	return (!hba->is_powered || hba->shutting_down ||
6378 		!hba->ufs_device_wlun ||
6379 		hba->ufshcd_state == UFSHCD_STATE_ERROR ||
6380 		(!(hba->saved_err || hba->saved_uic_err || hba->force_reset ||
6381 		   ufshcd_is_link_broken(hba))));
6382 }
6383 
6384 #ifdef CONFIG_PM
6385 static void ufshcd_recover_pm_error(struct ufs_hba *hba)
6386 {
6387 	struct Scsi_Host *shost = hba->host;
6388 	struct scsi_device *sdev;
6389 	struct request_queue *q;
6390 	int ret;
6391 
6392 	hba->is_sys_suspended = false;
6393 	/*
6394 	 * Set RPM status of wlun device to RPM_ACTIVE,
6395 	 * this also clears its runtime error.
6396 	 */
6397 	ret = pm_runtime_set_active(&hba->ufs_device_wlun->sdev_gendev);
6398 
6399 	/* hba device might have a runtime error otherwise */
6400 	if (ret)
6401 		ret = pm_runtime_set_active(hba->dev);
6402 	/*
6403 	 * If wlun device had runtime error, we also need to resume those
6404 	 * consumer scsi devices in case any of them has failed to be
6405 	 * resumed due to supplier runtime resume failure. This is to unblock
6406 	 * blk_queue_enter in case there are bios waiting inside it.
6407 	 */
6408 	if (!ret) {
6409 		shost_for_each_device(sdev, shost) {
6410 			q = sdev->request_queue;
6411 			if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
6412 				       q->rpm_status == RPM_SUSPENDING))
6413 				pm_request_resume(q->dev);
6414 		}
6415 	}
6416 }
6417 #else
6418 static inline void ufshcd_recover_pm_error(struct ufs_hba *hba)
6419 {
6420 }
6421 #endif
6422 
6423 static bool ufshcd_is_pwr_mode_restore_needed(struct ufs_hba *hba)
6424 {
6425 	struct ufs_pa_layer_attr *pwr_info = &hba->pwr_info;
6426 	u32 mode;
6427 
6428 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_PWRMODE), &mode);
6429 
6430 	if (pwr_info->pwr_rx != ((mode >> PWRMODE_RX_OFFSET) & PWRMODE_MASK))
6431 		return true;
6432 
6433 	if (pwr_info->pwr_tx != (mode & PWRMODE_MASK))
6434 		return true;
6435 
6436 	return false;
6437 }
6438 
6439 static bool ufshcd_abort_one(struct request *rq, void *priv)
6440 {
6441 	int *ret = priv;
6442 	u32 tag = rq->tag;
6443 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
6444 	struct scsi_device *sdev = cmd->device;
6445 	struct Scsi_Host *shost = sdev->host;
6446 	struct ufs_hba *hba = shost_priv(shost);
6447 
6448 	*ret = ufshcd_try_to_abort_task(hba, tag);
6449 	dev_err(hba->dev, "Aborting tag %d / CDB %#02x %s\n", tag,
6450 		hba->lrb[tag].cmd ? hba->lrb[tag].cmd->cmnd[0] : -1,
6451 		*ret ? "failed" : "succeeded");
6452 	return *ret == 0;
6453 }
6454 
6455 /**
6456  * ufshcd_abort_all - Abort all pending commands.
6457  * @hba: Host bus adapter pointer.
6458  *
6459  * Return: true if and only if the host controller needs to be reset.
6460  */
6461 static bool ufshcd_abort_all(struct ufs_hba *hba)
6462 {
6463 	int tag, ret = 0;
6464 
6465 	blk_mq_tagset_busy_iter(&hba->host->tag_set, ufshcd_abort_one, &ret);
6466 	if (ret)
6467 		goto out;
6468 
6469 	/* Clear pending task management requests */
6470 	for_each_set_bit(tag, &hba->outstanding_tasks, hba->nutmrs) {
6471 		ret = ufshcd_clear_tm_cmd(hba, tag);
6472 		if (ret)
6473 			goto out;
6474 	}
6475 
6476 out:
6477 	/* Complete the requests that are cleared by s/w */
6478 	ufshcd_complete_requests(hba, false);
6479 
6480 	return ret != 0;
6481 }
6482 
6483 /**
6484  * ufshcd_err_handler - handle UFS errors that require s/w attention
6485  * @work: pointer to work structure
6486  */
6487 static void ufshcd_err_handler(struct work_struct *work)
6488 {
6489 	int retries = MAX_ERR_HANDLER_RETRIES;
6490 	struct ufs_hba *hba;
6491 	unsigned long flags;
6492 	bool needs_restore;
6493 	bool needs_reset;
6494 	int pmc_err;
6495 
6496 	hba = container_of(work, struct ufs_hba, eh_work);
6497 
6498 	dev_info(hba->dev,
6499 		 "%s started; HBA state %s; powered %d; shutting down %d; saved_err = %d; saved_uic_err = %d; force_reset = %d%s\n",
6500 		 __func__, ufshcd_state_name[hba->ufshcd_state],
6501 		 hba->is_powered, hba->shutting_down, hba->saved_err,
6502 		 hba->saved_uic_err, hba->force_reset,
6503 		 ufshcd_is_link_broken(hba) ? "; link is broken" : "");
6504 
6505 	down(&hba->host_sem);
6506 	spin_lock_irqsave(hba->host->host_lock, flags);
6507 	if (ufshcd_err_handling_should_stop(hba)) {
6508 		if (hba->ufshcd_state != UFSHCD_STATE_ERROR)
6509 			hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
6510 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6511 		up(&hba->host_sem);
6512 		return;
6513 	}
6514 	ufshcd_set_eh_in_progress(hba);
6515 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6516 	ufshcd_err_handling_prepare(hba);
6517 	/* Complete requests that have door-bell cleared by h/w */
6518 	ufshcd_complete_requests(hba, false);
6519 	spin_lock_irqsave(hba->host->host_lock, flags);
6520 again:
6521 	needs_restore = false;
6522 	needs_reset = false;
6523 
6524 	if (hba->ufshcd_state != UFSHCD_STATE_ERROR)
6525 		hba->ufshcd_state = UFSHCD_STATE_RESET;
6526 	/*
6527 	 * A full reset and restore might have happened after preparation
6528 	 * is finished, double check whether we should stop.
6529 	 */
6530 	if (ufshcd_err_handling_should_stop(hba))
6531 		goto skip_err_handling;
6532 
6533 	if (hba->dev_quirks & UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS) {
6534 		bool ret;
6535 
6536 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6537 		/* release the lock as ufshcd_quirk_dl_nac_errors() may sleep */
6538 		ret = ufshcd_quirk_dl_nac_errors(hba);
6539 		spin_lock_irqsave(hba->host->host_lock, flags);
6540 		if (!ret && ufshcd_err_handling_should_stop(hba))
6541 			goto skip_err_handling;
6542 	}
6543 
6544 	if ((hba->saved_err & (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK)) ||
6545 	    (hba->saved_uic_err &&
6546 	     (hba->saved_uic_err != UFSHCD_UIC_PA_GENERIC_ERROR))) {
6547 		bool pr_prdt = !!(hba->saved_err & SYSTEM_BUS_FATAL_ERROR);
6548 
6549 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6550 		ufshcd_print_host_state(hba);
6551 		ufshcd_print_pwr_info(hba);
6552 		ufshcd_print_evt_hist(hba);
6553 		ufshcd_print_tmrs(hba, hba->outstanding_tasks);
6554 		ufshcd_print_trs_all(hba, pr_prdt);
6555 		spin_lock_irqsave(hba->host->host_lock, flags);
6556 	}
6557 
6558 	/*
6559 	 * if host reset is required then skip clearing the pending
6560 	 * transfers forcefully because they will get cleared during
6561 	 * host reset and restore
6562 	 */
6563 	if (hba->force_reset || ufshcd_is_link_broken(hba) ||
6564 	    ufshcd_is_saved_err_fatal(hba) ||
6565 	    ((hba->saved_err & UIC_ERROR) &&
6566 	     (hba->saved_uic_err & (UFSHCD_UIC_DL_NAC_RECEIVED_ERROR |
6567 				    UFSHCD_UIC_DL_TCx_REPLAY_ERROR)))) {
6568 		needs_reset = true;
6569 		goto do_reset;
6570 	}
6571 
6572 	/*
6573 	 * If LINERESET was caught, UFS might have been put to PWM mode,
6574 	 * check if power mode restore is needed.
6575 	 */
6576 	if (hba->saved_uic_err & UFSHCD_UIC_PA_GENERIC_ERROR) {
6577 		hba->saved_uic_err &= ~UFSHCD_UIC_PA_GENERIC_ERROR;
6578 		if (!hba->saved_uic_err)
6579 			hba->saved_err &= ~UIC_ERROR;
6580 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6581 		if (ufshcd_is_pwr_mode_restore_needed(hba))
6582 			needs_restore = true;
6583 		spin_lock_irqsave(hba->host->host_lock, flags);
6584 		if (!hba->saved_err && !needs_restore)
6585 			goto skip_err_handling;
6586 	}
6587 
6588 	hba->silence_err_logs = true;
6589 	/* release lock as clear command might sleep */
6590 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6591 
6592 	needs_reset = ufshcd_abort_all(hba);
6593 
6594 	spin_lock_irqsave(hba->host->host_lock, flags);
6595 	hba->silence_err_logs = false;
6596 	if (needs_reset)
6597 		goto do_reset;
6598 
6599 	/*
6600 	 * After all reqs and tasks are cleared from doorbell,
6601 	 * now it is safe to retore power mode.
6602 	 */
6603 	if (needs_restore) {
6604 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6605 		/*
6606 		 * Hold the scaling lock just in case dev cmds
6607 		 * are sent via bsg and/or sysfs.
6608 		 */
6609 		down_write(&hba->clk_scaling_lock);
6610 		hba->force_pmc = true;
6611 		pmc_err = ufshcd_config_pwr_mode(hba, &(hba->pwr_info));
6612 		if (pmc_err) {
6613 			needs_reset = true;
6614 			dev_err(hba->dev, "%s: Failed to restore power mode, err = %d\n",
6615 					__func__, pmc_err);
6616 		}
6617 		hba->force_pmc = false;
6618 		ufshcd_print_pwr_info(hba);
6619 		up_write(&hba->clk_scaling_lock);
6620 		spin_lock_irqsave(hba->host->host_lock, flags);
6621 	}
6622 
6623 do_reset:
6624 	/* Fatal errors need reset */
6625 	if (needs_reset) {
6626 		int err;
6627 
6628 		hba->force_reset = false;
6629 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6630 		err = ufshcd_reset_and_restore(hba);
6631 		if (err)
6632 			dev_err(hba->dev, "%s: reset and restore failed with err %d\n",
6633 					__func__, err);
6634 		else
6635 			ufshcd_recover_pm_error(hba);
6636 		spin_lock_irqsave(hba->host->host_lock, flags);
6637 	}
6638 
6639 skip_err_handling:
6640 	if (!needs_reset) {
6641 		if (hba->ufshcd_state == UFSHCD_STATE_RESET)
6642 			hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
6643 		if (hba->saved_err || hba->saved_uic_err)
6644 			dev_err_ratelimited(hba->dev, "%s: exit: saved_err 0x%x saved_uic_err 0x%x",
6645 			    __func__, hba->saved_err, hba->saved_uic_err);
6646 	}
6647 	/* Exit in an operational state or dead */
6648 	if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL &&
6649 	    hba->ufshcd_state != UFSHCD_STATE_ERROR) {
6650 		if (--retries)
6651 			goto again;
6652 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
6653 	}
6654 	ufshcd_clear_eh_in_progress(hba);
6655 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6656 	ufshcd_err_handling_unprepare(hba);
6657 	up(&hba->host_sem);
6658 
6659 	dev_info(hba->dev, "%s finished; HBA state %s\n", __func__,
6660 		 ufshcd_state_name[hba->ufshcd_state]);
6661 }
6662 
6663 /**
6664  * ufshcd_update_uic_error - check and set fatal UIC error flags.
6665  * @hba: per-adapter instance
6666  *
6667  * Return:
6668  *  IRQ_HANDLED - If interrupt is valid
6669  *  IRQ_NONE    - If invalid interrupt
6670  */
6671 static irqreturn_t ufshcd_update_uic_error(struct ufs_hba *hba)
6672 {
6673 	u32 reg;
6674 	irqreturn_t retval = IRQ_NONE;
6675 
6676 	/* PHY layer error */
6677 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER);
6678 	if ((reg & UIC_PHY_ADAPTER_LAYER_ERROR) &&
6679 	    (reg & UIC_PHY_ADAPTER_LAYER_ERROR_CODE_MASK)) {
6680 		ufshcd_update_evt_hist(hba, UFS_EVT_PA_ERR, reg);
6681 		/*
6682 		 * To know whether this error is fatal or not, DB timeout
6683 		 * must be checked but this error is handled separately.
6684 		 */
6685 		if (reg & UIC_PHY_ADAPTER_LAYER_LANE_ERR_MASK)
6686 			dev_dbg(hba->dev, "%s: UIC Lane error reported\n",
6687 					__func__);
6688 
6689 		/* Got a LINERESET indication. */
6690 		if (reg & UIC_PHY_ADAPTER_LAYER_GENERIC_ERROR) {
6691 			struct uic_command *cmd = NULL;
6692 
6693 			hba->uic_error |= UFSHCD_UIC_PA_GENERIC_ERROR;
6694 			if (hba->uic_async_done && hba->active_uic_cmd)
6695 				cmd = hba->active_uic_cmd;
6696 			/*
6697 			 * Ignore the LINERESET during power mode change
6698 			 * operation via DME_SET command.
6699 			 */
6700 			if (cmd && (cmd->command == UIC_CMD_DME_SET))
6701 				hba->uic_error &= ~UFSHCD_UIC_PA_GENERIC_ERROR;
6702 		}
6703 		retval |= IRQ_HANDLED;
6704 	}
6705 
6706 	/* PA_INIT_ERROR is fatal and needs UIC reset */
6707 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_DATA_LINK_LAYER);
6708 	if ((reg & UIC_DATA_LINK_LAYER_ERROR) &&
6709 	    (reg & UIC_DATA_LINK_LAYER_ERROR_CODE_MASK)) {
6710 		ufshcd_update_evt_hist(hba, UFS_EVT_DL_ERR, reg);
6711 
6712 		if (reg & UIC_DATA_LINK_LAYER_ERROR_PA_INIT)
6713 			hba->uic_error |= UFSHCD_UIC_DL_PA_INIT_ERROR;
6714 		else if (hba->dev_quirks &
6715 				UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS) {
6716 			if (reg & UIC_DATA_LINK_LAYER_ERROR_NAC_RECEIVED)
6717 				hba->uic_error |=
6718 					UFSHCD_UIC_DL_NAC_RECEIVED_ERROR;
6719 			else if (reg & UIC_DATA_LINK_LAYER_ERROR_TCx_REPLAY_TIMEOUT)
6720 				hba->uic_error |= UFSHCD_UIC_DL_TCx_REPLAY_ERROR;
6721 		}
6722 		retval |= IRQ_HANDLED;
6723 	}
6724 
6725 	/* UIC NL/TL/DME errors needs software retry */
6726 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_NETWORK_LAYER);
6727 	if ((reg & UIC_NETWORK_LAYER_ERROR) &&
6728 	    (reg & UIC_NETWORK_LAYER_ERROR_CODE_MASK)) {
6729 		ufshcd_update_evt_hist(hba, UFS_EVT_NL_ERR, reg);
6730 		hba->uic_error |= UFSHCD_UIC_NL_ERROR;
6731 		retval |= IRQ_HANDLED;
6732 	}
6733 
6734 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_TRANSPORT_LAYER);
6735 	if ((reg & UIC_TRANSPORT_LAYER_ERROR) &&
6736 	    (reg & UIC_TRANSPORT_LAYER_ERROR_CODE_MASK)) {
6737 		ufshcd_update_evt_hist(hba, UFS_EVT_TL_ERR, reg);
6738 		hba->uic_error |= UFSHCD_UIC_TL_ERROR;
6739 		retval |= IRQ_HANDLED;
6740 	}
6741 
6742 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_DME);
6743 	if ((reg & UIC_DME_ERROR) &&
6744 	    (reg & UIC_DME_ERROR_CODE_MASK)) {
6745 		ufshcd_update_evt_hist(hba, UFS_EVT_DME_ERR, reg);
6746 		hba->uic_error |= UFSHCD_UIC_DME_ERROR;
6747 		retval |= IRQ_HANDLED;
6748 	}
6749 
6750 	dev_dbg(hba->dev, "%s: UIC error flags = 0x%08x\n",
6751 			__func__, hba->uic_error);
6752 	return retval;
6753 }
6754 
6755 /**
6756  * ufshcd_check_errors - Check for errors that need s/w attention
6757  * @hba: per-adapter instance
6758  * @intr_status: interrupt status generated by the controller
6759  *
6760  * Return:
6761  *  IRQ_HANDLED - If interrupt is valid
6762  *  IRQ_NONE    - If invalid interrupt
6763  */
6764 static irqreturn_t ufshcd_check_errors(struct ufs_hba *hba, u32 intr_status)
6765 {
6766 	bool queue_eh_work = false;
6767 	irqreturn_t retval = IRQ_NONE;
6768 
6769 	spin_lock(hba->host->host_lock);
6770 	hba->errors |= UFSHCD_ERROR_MASK & intr_status;
6771 
6772 	if (hba->errors & INT_FATAL_ERRORS) {
6773 		ufshcd_update_evt_hist(hba, UFS_EVT_FATAL_ERR,
6774 				       hba->errors);
6775 		queue_eh_work = true;
6776 	}
6777 
6778 	if (hba->errors & UIC_ERROR) {
6779 		hba->uic_error = 0;
6780 		retval = ufshcd_update_uic_error(hba);
6781 		if (hba->uic_error)
6782 			queue_eh_work = true;
6783 	}
6784 
6785 	if (hba->errors & UFSHCD_UIC_HIBERN8_MASK) {
6786 		dev_err(hba->dev,
6787 			"%s: Auto Hibern8 %s failed - status: 0x%08x, upmcrs: 0x%08x\n",
6788 			__func__, (hba->errors & UIC_HIBERNATE_ENTER) ?
6789 			"Enter" : "Exit",
6790 			hba->errors, ufshcd_get_upmcrs(hba));
6791 		ufshcd_update_evt_hist(hba, UFS_EVT_AUTO_HIBERN8_ERR,
6792 				       hba->errors);
6793 		ufshcd_set_link_broken(hba);
6794 		queue_eh_work = true;
6795 	}
6796 
6797 	if (queue_eh_work) {
6798 		/*
6799 		 * update the transfer error masks to sticky bits, let's do this
6800 		 * irrespective of current ufshcd_state.
6801 		 */
6802 		hba->saved_err |= hba->errors;
6803 		hba->saved_uic_err |= hba->uic_error;
6804 
6805 		/* dump controller state before resetting */
6806 		if ((hba->saved_err &
6807 		     (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK)) ||
6808 		    (hba->saved_uic_err &&
6809 		     (hba->saved_uic_err != UFSHCD_UIC_PA_GENERIC_ERROR))) {
6810 			dev_err(hba->dev, "%s: saved_err 0x%x saved_uic_err 0x%x\n",
6811 					__func__, hba->saved_err,
6812 					hba->saved_uic_err);
6813 			ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE,
6814 					 "host_regs: ");
6815 			ufshcd_print_pwr_info(hba);
6816 		}
6817 		ufshcd_schedule_eh_work(hba);
6818 		retval |= IRQ_HANDLED;
6819 	}
6820 	/*
6821 	 * if (!queue_eh_work) -
6822 	 * Other errors are either non-fatal where host recovers
6823 	 * itself without s/w intervention or errors that will be
6824 	 * handled by the SCSI core layer.
6825 	 */
6826 	hba->errors = 0;
6827 	hba->uic_error = 0;
6828 	spin_unlock(hba->host->host_lock);
6829 	return retval;
6830 }
6831 
6832 /**
6833  * ufshcd_tmc_handler - handle task management function completion
6834  * @hba: per adapter instance
6835  *
6836  * Return:
6837  *  IRQ_HANDLED - If interrupt is valid
6838  *  IRQ_NONE    - If invalid interrupt
6839  */
6840 static irqreturn_t ufshcd_tmc_handler(struct ufs_hba *hba)
6841 {
6842 	unsigned long flags, pending, issued;
6843 	irqreturn_t ret = IRQ_NONE;
6844 	int tag;
6845 
6846 	spin_lock_irqsave(hba->host->host_lock, flags);
6847 	pending = ufshcd_readl(hba, REG_UTP_TASK_REQ_DOOR_BELL);
6848 	issued = hba->outstanding_tasks & ~pending;
6849 	for_each_set_bit(tag, &issued, hba->nutmrs) {
6850 		struct request *req = hba->tmf_rqs[tag];
6851 		struct completion *c = req->end_io_data;
6852 
6853 		complete(c);
6854 		ret = IRQ_HANDLED;
6855 	}
6856 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6857 
6858 	return ret;
6859 }
6860 
6861 /**
6862  * ufshcd_handle_mcq_cq_events - handle MCQ completion queue events
6863  * @hba: per adapter instance
6864  *
6865  * Return: IRQ_HANDLED if interrupt is handled.
6866  */
6867 static irqreturn_t ufshcd_handle_mcq_cq_events(struct ufs_hba *hba)
6868 {
6869 	struct ufs_hw_queue *hwq;
6870 	unsigned long outstanding_cqs;
6871 	unsigned int nr_queues;
6872 	int i, ret;
6873 	u32 events;
6874 
6875 	ret = ufshcd_vops_get_outstanding_cqs(hba, &outstanding_cqs);
6876 	if (ret)
6877 		outstanding_cqs = (1U << hba->nr_hw_queues) - 1;
6878 
6879 	/* Exclude the poll queues */
6880 	nr_queues = hba->nr_hw_queues - hba->nr_queues[HCTX_TYPE_POLL];
6881 	for_each_set_bit(i, &outstanding_cqs, nr_queues) {
6882 		hwq = &hba->uhq[i];
6883 
6884 		events = ufshcd_mcq_read_cqis(hba, i);
6885 		if (events)
6886 			ufshcd_mcq_write_cqis(hba, events, i);
6887 
6888 		if (events & UFSHCD_MCQ_CQIS_TAIL_ENT_PUSH_STS)
6889 			ufshcd_mcq_poll_cqe_lock(hba, hwq);
6890 	}
6891 
6892 	return IRQ_HANDLED;
6893 }
6894 
6895 /**
6896  * ufshcd_sl_intr - Interrupt service routine
6897  * @hba: per adapter instance
6898  * @intr_status: contains interrupts generated by the controller
6899  *
6900  * Return:
6901  *  IRQ_HANDLED - If interrupt is valid
6902  *  IRQ_NONE    - If invalid interrupt
6903  */
6904 static irqreturn_t ufshcd_sl_intr(struct ufs_hba *hba, u32 intr_status)
6905 {
6906 	irqreturn_t retval = IRQ_NONE;
6907 
6908 	if (intr_status & UFSHCD_UIC_MASK)
6909 		retval |= ufshcd_uic_cmd_compl(hba, intr_status);
6910 
6911 	if (intr_status & UFSHCD_ERROR_MASK || hba->errors)
6912 		retval |= ufshcd_check_errors(hba, intr_status);
6913 
6914 	if (intr_status & UTP_TASK_REQ_COMPL)
6915 		retval |= ufshcd_tmc_handler(hba);
6916 
6917 	if (intr_status & UTP_TRANSFER_REQ_COMPL)
6918 		retval |= ufshcd_transfer_req_compl(hba);
6919 
6920 	if (intr_status & MCQ_CQ_EVENT_STATUS)
6921 		retval |= ufshcd_handle_mcq_cq_events(hba);
6922 
6923 	return retval;
6924 }
6925 
6926 /**
6927  * ufshcd_intr - Main interrupt service routine
6928  * @irq: irq number
6929  * @__hba: pointer to adapter instance
6930  *
6931  * Return:
6932  *  IRQ_HANDLED - If interrupt is valid
6933  *  IRQ_NONE    - If invalid interrupt
6934  */
6935 static irqreturn_t ufshcd_intr(int irq, void *__hba)
6936 {
6937 	u32 intr_status, enabled_intr_status = 0;
6938 	irqreturn_t retval = IRQ_NONE;
6939 	struct ufs_hba *hba = __hba;
6940 	int retries = hba->nutrs;
6941 
6942 	intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
6943 	hba->ufs_stats.last_intr_status = intr_status;
6944 	hba->ufs_stats.last_intr_ts = local_clock();
6945 
6946 	/*
6947 	 * There could be max of hba->nutrs reqs in flight and in worst case
6948 	 * if the reqs get finished 1 by 1 after the interrupt status is
6949 	 * read, make sure we handle them by checking the interrupt status
6950 	 * again in a loop until we process all of the reqs before returning.
6951 	 */
6952 	while (intr_status && retries--) {
6953 		enabled_intr_status =
6954 			intr_status & ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
6955 		ufshcd_writel(hba, intr_status, REG_INTERRUPT_STATUS);
6956 		if (enabled_intr_status)
6957 			retval |= ufshcd_sl_intr(hba, enabled_intr_status);
6958 
6959 		intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
6960 	}
6961 
6962 	if (enabled_intr_status && retval == IRQ_NONE &&
6963 	    (!(enabled_intr_status & UTP_TRANSFER_REQ_COMPL) ||
6964 	     hba->outstanding_reqs) && !ufshcd_eh_in_progress(hba)) {
6965 		dev_err(hba->dev, "%s: Unhandled interrupt 0x%08x (0x%08x, 0x%08x)\n",
6966 					__func__,
6967 					intr_status,
6968 					hba->ufs_stats.last_intr_status,
6969 					enabled_intr_status);
6970 		ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, "host_regs: ");
6971 	}
6972 
6973 	return retval;
6974 }
6975 
6976 static int ufshcd_clear_tm_cmd(struct ufs_hba *hba, int tag)
6977 {
6978 	int err = 0;
6979 	u32 mask = 1 << tag;
6980 	unsigned long flags;
6981 
6982 	if (!test_bit(tag, &hba->outstanding_tasks))
6983 		goto out;
6984 
6985 	spin_lock_irqsave(hba->host->host_lock, flags);
6986 	ufshcd_utmrl_clear(hba, tag);
6987 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6988 
6989 	/* poll for max. 1 sec to clear door bell register by h/w */
6990 	err = ufshcd_wait_for_register(hba,
6991 			REG_UTP_TASK_REQ_DOOR_BELL,
6992 			mask, 0, 1000, 1000);
6993 
6994 	dev_err(hba->dev, "Clearing task management function with tag %d %s\n",
6995 		tag, err < 0 ? "failed" : "succeeded");
6996 
6997 out:
6998 	return err;
6999 }
7000 
7001 static int __ufshcd_issue_tm_cmd(struct ufs_hba *hba,
7002 		struct utp_task_req_desc *treq, u8 tm_function)
7003 {
7004 	struct request_queue *q = hba->tmf_queue;
7005 	struct Scsi_Host *host = hba->host;
7006 	DECLARE_COMPLETION_ONSTACK(wait);
7007 	struct request *req;
7008 	unsigned long flags;
7009 	int task_tag, err;
7010 
7011 	/*
7012 	 * blk_mq_alloc_request() is used here only to get a free tag.
7013 	 */
7014 	req = blk_mq_alloc_request(q, REQ_OP_DRV_OUT, 0);
7015 	if (IS_ERR(req))
7016 		return PTR_ERR(req);
7017 
7018 	req->end_io_data = &wait;
7019 	ufshcd_hold(hba);
7020 
7021 	spin_lock_irqsave(host->host_lock, flags);
7022 
7023 	task_tag = req->tag;
7024 	hba->tmf_rqs[req->tag] = req;
7025 	treq->upiu_req.req_header.task_tag = task_tag;
7026 
7027 	memcpy(hba->utmrdl_base_addr + task_tag, treq, sizeof(*treq));
7028 	ufshcd_vops_setup_task_mgmt(hba, task_tag, tm_function);
7029 
7030 	/* send command to the controller */
7031 	__set_bit(task_tag, &hba->outstanding_tasks);
7032 
7033 	ufshcd_writel(hba, 1 << task_tag, REG_UTP_TASK_REQ_DOOR_BELL);
7034 	/* Make sure that doorbell is committed immediately */
7035 	wmb();
7036 
7037 	spin_unlock_irqrestore(host->host_lock, flags);
7038 
7039 	ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_SEND);
7040 
7041 	/* wait until the task management command is completed */
7042 	err = wait_for_completion_io_timeout(&wait,
7043 			msecs_to_jiffies(TM_CMD_TIMEOUT));
7044 	if (!err) {
7045 		ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_ERR);
7046 		dev_err(hba->dev, "%s: task management cmd 0x%.2x timed-out\n",
7047 				__func__, tm_function);
7048 		if (ufshcd_clear_tm_cmd(hba, task_tag))
7049 			dev_WARN(hba->dev, "%s: unable to clear tm cmd (slot %d) after timeout\n",
7050 					__func__, task_tag);
7051 		err = -ETIMEDOUT;
7052 	} else {
7053 		err = 0;
7054 		memcpy(treq, hba->utmrdl_base_addr + task_tag, sizeof(*treq));
7055 
7056 		ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_COMP);
7057 	}
7058 
7059 	spin_lock_irqsave(hba->host->host_lock, flags);
7060 	hba->tmf_rqs[req->tag] = NULL;
7061 	__clear_bit(task_tag, &hba->outstanding_tasks);
7062 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7063 
7064 	ufshcd_release(hba);
7065 	blk_mq_free_request(req);
7066 
7067 	return err;
7068 }
7069 
7070 /**
7071  * ufshcd_issue_tm_cmd - issues task management commands to controller
7072  * @hba: per adapter instance
7073  * @lun_id: LUN ID to which TM command is sent
7074  * @task_id: task ID to which the TM command is applicable
7075  * @tm_function: task management function opcode
7076  * @tm_response: task management service response return value
7077  *
7078  * Return: non-zero value on error, zero on success.
7079  */
7080 static int ufshcd_issue_tm_cmd(struct ufs_hba *hba, int lun_id, int task_id,
7081 		u8 tm_function, u8 *tm_response)
7082 {
7083 	struct utp_task_req_desc treq = { };
7084 	enum utp_ocs ocs_value;
7085 	int err;
7086 
7087 	/* Configure task request descriptor */
7088 	treq.header.interrupt = 1;
7089 	treq.header.ocs = OCS_INVALID_COMMAND_STATUS;
7090 
7091 	/* Configure task request UPIU */
7092 	treq.upiu_req.req_header.transaction_code = UPIU_TRANSACTION_TASK_REQ;
7093 	treq.upiu_req.req_header.lun = lun_id;
7094 	treq.upiu_req.req_header.tm_function = tm_function;
7095 
7096 	/*
7097 	 * The host shall provide the same value for LUN field in the basic
7098 	 * header and for Input Parameter.
7099 	 */
7100 	treq.upiu_req.input_param1 = cpu_to_be32(lun_id);
7101 	treq.upiu_req.input_param2 = cpu_to_be32(task_id);
7102 
7103 	err = __ufshcd_issue_tm_cmd(hba, &treq, tm_function);
7104 	if (err == -ETIMEDOUT)
7105 		return err;
7106 
7107 	ocs_value = treq.header.ocs & MASK_OCS;
7108 	if (ocs_value != OCS_SUCCESS)
7109 		dev_err(hba->dev, "%s: failed, ocs = 0x%x\n",
7110 				__func__, ocs_value);
7111 	else if (tm_response)
7112 		*tm_response = be32_to_cpu(treq.upiu_rsp.output_param1) &
7113 				MASK_TM_SERVICE_RESP;
7114 	return err;
7115 }
7116 
7117 /**
7118  * ufshcd_issue_devman_upiu_cmd - API for sending "utrd" type requests
7119  * @hba:	per-adapter instance
7120  * @req_upiu:	upiu request
7121  * @rsp_upiu:	upiu reply
7122  * @desc_buff:	pointer to descriptor buffer, NULL if NA
7123  * @buff_len:	descriptor size, 0 if NA
7124  * @cmd_type:	specifies the type (NOP, Query...)
7125  * @desc_op:	descriptor operation
7126  *
7127  * Those type of requests uses UTP Transfer Request Descriptor - utrd.
7128  * Therefore, it "rides" the device management infrastructure: uses its tag and
7129  * tasks work queues.
7130  *
7131  * Since there is only one available tag for device management commands,
7132  * the caller is expected to hold the hba->dev_cmd.lock mutex.
7133  *
7134  * Return: 0 upon success; < 0 upon failure.
7135  */
7136 static int ufshcd_issue_devman_upiu_cmd(struct ufs_hba *hba,
7137 					struct utp_upiu_req *req_upiu,
7138 					struct utp_upiu_req *rsp_upiu,
7139 					u8 *desc_buff, int *buff_len,
7140 					enum dev_cmd_type cmd_type,
7141 					enum query_opcode desc_op)
7142 {
7143 	DECLARE_COMPLETION_ONSTACK(wait);
7144 	const u32 tag = hba->reserved_slot;
7145 	struct ufshcd_lrb *lrbp;
7146 	int err = 0;
7147 	u8 upiu_flags;
7148 
7149 	/* Protects use of hba->reserved_slot. */
7150 	lockdep_assert_held(&hba->dev_cmd.lock);
7151 
7152 	down_read(&hba->clk_scaling_lock);
7153 
7154 	lrbp = &hba->lrb[tag];
7155 	lrbp->cmd = NULL;
7156 	lrbp->task_tag = tag;
7157 	lrbp->lun = 0;
7158 	lrbp->intr_cmd = true;
7159 	ufshcd_prepare_lrbp_crypto(NULL, lrbp);
7160 	hba->dev_cmd.type = cmd_type;
7161 
7162 	if (hba->ufs_version <= ufshci_version(1, 1))
7163 		lrbp->command_type = UTP_CMD_TYPE_DEV_MANAGE;
7164 	else
7165 		lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
7166 
7167 	/* update the task tag in the request upiu */
7168 	req_upiu->header.task_tag = tag;
7169 
7170 	ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, DMA_NONE, 0);
7171 
7172 	/* just copy the upiu request as it is */
7173 	memcpy(lrbp->ucd_req_ptr, req_upiu, sizeof(*lrbp->ucd_req_ptr));
7174 	if (desc_buff && desc_op == UPIU_QUERY_OPCODE_WRITE_DESC) {
7175 		/* The Data Segment Area is optional depending upon the query
7176 		 * function value. for WRITE DESCRIPTOR, the data segment
7177 		 * follows right after the tsf.
7178 		 */
7179 		memcpy(lrbp->ucd_req_ptr + 1, desc_buff, *buff_len);
7180 		*buff_len = 0;
7181 	}
7182 
7183 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
7184 
7185 	hba->dev_cmd.complete = &wait;
7186 
7187 	ufshcd_add_query_upiu_trace(hba, UFS_QUERY_SEND, lrbp->ucd_req_ptr);
7188 
7189 	ufshcd_send_command(hba, tag, hba->dev_cmd_queue);
7190 	/*
7191 	 * ignore the returning value here - ufshcd_check_query_response is
7192 	 * bound to fail since dev_cmd.query and dev_cmd.type were left empty.
7193 	 * read the response directly ignoring all errors.
7194 	 */
7195 	ufshcd_wait_for_dev_cmd(hba, lrbp, QUERY_REQ_TIMEOUT);
7196 
7197 	/* just copy the upiu response as it is */
7198 	memcpy(rsp_upiu, lrbp->ucd_rsp_ptr, sizeof(*rsp_upiu));
7199 	if (desc_buff && desc_op == UPIU_QUERY_OPCODE_READ_DESC) {
7200 		u8 *descp = (u8 *)lrbp->ucd_rsp_ptr + sizeof(*rsp_upiu);
7201 		u16 resp_len = be16_to_cpu(lrbp->ucd_rsp_ptr->header
7202 					   .data_segment_length);
7203 
7204 		if (*buff_len >= resp_len) {
7205 			memcpy(desc_buff, descp, resp_len);
7206 			*buff_len = resp_len;
7207 		} else {
7208 			dev_warn(hba->dev,
7209 				 "%s: rsp size %d is bigger than buffer size %d",
7210 				 __func__, resp_len, *buff_len);
7211 			*buff_len = 0;
7212 			err = -EINVAL;
7213 		}
7214 	}
7215 	ufshcd_add_query_upiu_trace(hba, err ? UFS_QUERY_ERR : UFS_QUERY_COMP,
7216 				    (struct utp_upiu_req *)lrbp->ucd_rsp_ptr);
7217 
7218 	up_read(&hba->clk_scaling_lock);
7219 	return err;
7220 }
7221 
7222 /**
7223  * ufshcd_exec_raw_upiu_cmd - API function for sending raw upiu commands
7224  * @hba:	per-adapter instance
7225  * @req_upiu:	upiu request
7226  * @rsp_upiu:	upiu reply - only 8 DW as we do not support scsi commands
7227  * @msgcode:	message code, one of UPIU Transaction Codes Initiator to Target
7228  * @desc_buff:	pointer to descriptor buffer, NULL if NA
7229  * @buff_len:	descriptor size, 0 if NA
7230  * @desc_op:	descriptor operation
7231  *
7232  * Supports UTP Transfer requests (nop and query), and UTP Task
7233  * Management requests.
7234  * It is up to the caller to fill the upiu conent properly, as it will
7235  * be copied without any further input validations.
7236  *
7237  * Return: 0 upon success; < 0 upon failure.
7238  */
7239 int ufshcd_exec_raw_upiu_cmd(struct ufs_hba *hba,
7240 			     struct utp_upiu_req *req_upiu,
7241 			     struct utp_upiu_req *rsp_upiu,
7242 			     enum upiu_request_transaction msgcode,
7243 			     u8 *desc_buff, int *buff_len,
7244 			     enum query_opcode desc_op)
7245 {
7246 	int err;
7247 	enum dev_cmd_type cmd_type = DEV_CMD_TYPE_QUERY;
7248 	struct utp_task_req_desc treq = { };
7249 	enum utp_ocs ocs_value;
7250 	u8 tm_f = req_upiu->header.tm_function;
7251 
7252 	switch (msgcode) {
7253 	case UPIU_TRANSACTION_NOP_OUT:
7254 		cmd_type = DEV_CMD_TYPE_NOP;
7255 		fallthrough;
7256 	case UPIU_TRANSACTION_QUERY_REQ:
7257 		ufshcd_hold(hba);
7258 		mutex_lock(&hba->dev_cmd.lock);
7259 		err = ufshcd_issue_devman_upiu_cmd(hba, req_upiu, rsp_upiu,
7260 						   desc_buff, buff_len,
7261 						   cmd_type, desc_op);
7262 		mutex_unlock(&hba->dev_cmd.lock);
7263 		ufshcd_release(hba);
7264 
7265 		break;
7266 	case UPIU_TRANSACTION_TASK_REQ:
7267 		treq.header.interrupt = 1;
7268 		treq.header.ocs = OCS_INVALID_COMMAND_STATUS;
7269 
7270 		memcpy(&treq.upiu_req, req_upiu, sizeof(*req_upiu));
7271 
7272 		err = __ufshcd_issue_tm_cmd(hba, &treq, tm_f);
7273 		if (err == -ETIMEDOUT)
7274 			break;
7275 
7276 		ocs_value = treq.header.ocs & MASK_OCS;
7277 		if (ocs_value != OCS_SUCCESS) {
7278 			dev_err(hba->dev, "%s: failed, ocs = 0x%x\n", __func__,
7279 				ocs_value);
7280 			break;
7281 		}
7282 
7283 		memcpy(rsp_upiu, &treq.upiu_rsp, sizeof(*rsp_upiu));
7284 
7285 		break;
7286 	default:
7287 		err = -EINVAL;
7288 
7289 		break;
7290 	}
7291 
7292 	return err;
7293 }
7294 
7295 /**
7296  * ufshcd_advanced_rpmb_req_handler - handle advanced RPMB request
7297  * @hba:	per adapter instance
7298  * @req_upiu:	upiu request
7299  * @rsp_upiu:	upiu reply
7300  * @req_ehs:	EHS field which contains Advanced RPMB Request Message
7301  * @rsp_ehs:	EHS field which returns Advanced RPMB Response Message
7302  * @sg_cnt:	The number of sg lists actually used
7303  * @sg_list:	Pointer to SG list when DATA IN/OUT UPIU is required in ARPMB operation
7304  * @dir:	DMA direction
7305  *
7306  * Return: zero on success, non-zero on failure.
7307  */
7308 int ufshcd_advanced_rpmb_req_handler(struct ufs_hba *hba, struct utp_upiu_req *req_upiu,
7309 			 struct utp_upiu_req *rsp_upiu, struct ufs_ehs *req_ehs,
7310 			 struct ufs_ehs *rsp_ehs, int sg_cnt, struct scatterlist *sg_list,
7311 			 enum dma_data_direction dir)
7312 {
7313 	DECLARE_COMPLETION_ONSTACK(wait);
7314 	const u32 tag = hba->reserved_slot;
7315 	struct ufshcd_lrb *lrbp;
7316 	int err = 0;
7317 	int result;
7318 	u8 upiu_flags;
7319 	u8 *ehs_data;
7320 	u16 ehs_len;
7321 
7322 	/* Protects use of hba->reserved_slot. */
7323 	ufshcd_hold(hba);
7324 	mutex_lock(&hba->dev_cmd.lock);
7325 	down_read(&hba->clk_scaling_lock);
7326 
7327 	lrbp = &hba->lrb[tag];
7328 	lrbp->cmd = NULL;
7329 	lrbp->task_tag = tag;
7330 	lrbp->lun = UFS_UPIU_RPMB_WLUN;
7331 
7332 	lrbp->intr_cmd = true;
7333 	ufshcd_prepare_lrbp_crypto(NULL, lrbp);
7334 	hba->dev_cmd.type = DEV_CMD_TYPE_RPMB;
7335 
7336 	/* Advanced RPMB starts from UFS 4.0, so its command type is UTP_CMD_TYPE_UFS_STORAGE */
7337 	lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
7338 
7339 	/*
7340 	 * According to UFSHCI 4.0 specification page 24, if EHSLUTRDS is 0, host controller takes
7341 	 * EHS length from CMD UPIU, and SW driver use EHS Length field in CMD UPIU. if it is 1,
7342 	 * HW controller takes EHS length from UTRD.
7343 	 */
7344 	if (hba->capabilities & MASK_EHSLUTRD_SUPPORTED)
7345 		ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, dir, 2);
7346 	else
7347 		ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, dir, 0);
7348 
7349 	/* update the task tag */
7350 	req_upiu->header.task_tag = tag;
7351 
7352 	/* copy the UPIU(contains CDB) request as it is */
7353 	memcpy(lrbp->ucd_req_ptr, req_upiu, sizeof(*lrbp->ucd_req_ptr));
7354 	/* Copy EHS, starting with byte32, immediately after the CDB package */
7355 	memcpy(lrbp->ucd_req_ptr + 1, req_ehs, sizeof(*req_ehs));
7356 
7357 	if (dir != DMA_NONE && sg_list)
7358 		ufshcd_sgl_to_prdt(hba, lrbp, sg_cnt, sg_list);
7359 
7360 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
7361 
7362 	hba->dev_cmd.complete = &wait;
7363 
7364 	ufshcd_send_command(hba, tag, hba->dev_cmd_queue);
7365 
7366 	err = ufshcd_wait_for_dev_cmd(hba, lrbp, ADVANCED_RPMB_REQ_TIMEOUT);
7367 
7368 	if (!err) {
7369 		/* Just copy the upiu response as it is */
7370 		memcpy(rsp_upiu, lrbp->ucd_rsp_ptr, sizeof(*rsp_upiu));
7371 		/* Get the response UPIU result */
7372 		result = (lrbp->ucd_rsp_ptr->header.response << 8) |
7373 			lrbp->ucd_rsp_ptr->header.status;
7374 
7375 		ehs_len = lrbp->ucd_rsp_ptr->header.ehs_length;
7376 		/*
7377 		 * Since the bLength in EHS indicates the total size of the EHS Header and EHS Data
7378 		 * in 32 Byte units, the value of the bLength Request/Response for Advanced RPMB
7379 		 * Message is 02h
7380 		 */
7381 		if (ehs_len == 2 && rsp_ehs) {
7382 			/*
7383 			 * ucd_rsp_ptr points to a buffer with a length of 512 bytes
7384 			 * (ALIGNED_UPIU_SIZE = 512), and the EHS data just starts from byte32
7385 			 */
7386 			ehs_data = (u8 *)lrbp->ucd_rsp_ptr + EHS_OFFSET_IN_RESPONSE;
7387 			memcpy(rsp_ehs, ehs_data, ehs_len * 32);
7388 		}
7389 	}
7390 
7391 	up_read(&hba->clk_scaling_lock);
7392 	mutex_unlock(&hba->dev_cmd.lock);
7393 	ufshcd_release(hba);
7394 	return err ? : result;
7395 }
7396 
7397 /**
7398  * ufshcd_eh_device_reset_handler() - Reset a single logical unit.
7399  * @cmd: SCSI command pointer
7400  *
7401  * Return: SUCCESS or FAILED.
7402  */
7403 static int ufshcd_eh_device_reset_handler(struct scsi_cmnd *cmd)
7404 {
7405 	unsigned long flags, pending_reqs = 0, not_cleared = 0;
7406 	struct Scsi_Host *host;
7407 	struct ufs_hba *hba;
7408 	struct ufs_hw_queue *hwq;
7409 	struct ufshcd_lrb *lrbp;
7410 	u32 pos, not_cleared_mask = 0;
7411 	int err;
7412 	u8 resp = 0xF, lun;
7413 
7414 	host = cmd->device->host;
7415 	hba = shost_priv(host);
7416 
7417 	lun = ufshcd_scsi_to_upiu_lun(cmd->device->lun);
7418 	err = ufshcd_issue_tm_cmd(hba, lun, 0, UFS_LOGICAL_RESET, &resp);
7419 	if (err || resp != UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7420 		if (!err)
7421 			err = resp;
7422 		goto out;
7423 	}
7424 
7425 	if (is_mcq_enabled(hba)) {
7426 		for (pos = 0; pos < hba->nutrs; pos++) {
7427 			lrbp = &hba->lrb[pos];
7428 			if (ufshcd_cmd_inflight(lrbp->cmd) &&
7429 			    lrbp->lun == lun) {
7430 				ufshcd_clear_cmd(hba, pos);
7431 				hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(lrbp->cmd));
7432 				ufshcd_mcq_poll_cqe_lock(hba, hwq);
7433 			}
7434 		}
7435 		err = 0;
7436 		goto out;
7437 	}
7438 
7439 	/* clear the commands that were pending for corresponding LUN */
7440 	spin_lock_irqsave(&hba->outstanding_lock, flags);
7441 	for_each_set_bit(pos, &hba->outstanding_reqs, hba->nutrs)
7442 		if (hba->lrb[pos].lun == lun)
7443 			__set_bit(pos, &pending_reqs);
7444 	hba->outstanding_reqs &= ~pending_reqs;
7445 	spin_unlock_irqrestore(&hba->outstanding_lock, flags);
7446 
7447 	for_each_set_bit(pos, &pending_reqs, hba->nutrs) {
7448 		if (ufshcd_clear_cmd(hba, pos) < 0) {
7449 			spin_lock_irqsave(&hba->outstanding_lock, flags);
7450 			not_cleared = 1U << pos &
7451 				ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
7452 			hba->outstanding_reqs |= not_cleared;
7453 			not_cleared_mask |= not_cleared;
7454 			spin_unlock_irqrestore(&hba->outstanding_lock, flags);
7455 
7456 			dev_err(hba->dev, "%s: failed to clear request %d\n",
7457 				__func__, pos);
7458 		}
7459 	}
7460 	__ufshcd_transfer_req_compl(hba, pending_reqs & ~not_cleared_mask);
7461 
7462 out:
7463 	hba->req_abort_count = 0;
7464 	ufshcd_update_evt_hist(hba, UFS_EVT_DEV_RESET, (u32)err);
7465 	if (!err) {
7466 		err = SUCCESS;
7467 	} else {
7468 		dev_err(hba->dev, "%s: failed with err %d\n", __func__, err);
7469 		err = FAILED;
7470 	}
7471 	return err;
7472 }
7473 
7474 static void ufshcd_set_req_abort_skip(struct ufs_hba *hba, unsigned long bitmap)
7475 {
7476 	struct ufshcd_lrb *lrbp;
7477 	int tag;
7478 
7479 	for_each_set_bit(tag, &bitmap, hba->nutrs) {
7480 		lrbp = &hba->lrb[tag];
7481 		lrbp->req_abort_skip = true;
7482 	}
7483 }
7484 
7485 /**
7486  * ufshcd_try_to_abort_task - abort a specific task
7487  * @hba: Pointer to adapter instance
7488  * @tag: Task tag/index to be aborted
7489  *
7490  * Abort the pending command in device by sending UFS_ABORT_TASK task management
7491  * command, and in host controller by clearing the door-bell register. There can
7492  * be race between controller sending the command to the device while abort is
7493  * issued. To avoid that, first issue UFS_QUERY_TASK to check if the command is
7494  * really issued and then try to abort it.
7495  *
7496  * Return: zero on success, non-zero on failure.
7497  */
7498 int ufshcd_try_to_abort_task(struct ufs_hba *hba, int tag)
7499 {
7500 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
7501 	int err = 0;
7502 	int poll_cnt;
7503 	u8 resp = 0xF;
7504 	u32 reg;
7505 
7506 	for (poll_cnt = 100; poll_cnt; poll_cnt--) {
7507 		err = ufshcd_issue_tm_cmd(hba, lrbp->lun, lrbp->task_tag,
7508 				UFS_QUERY_TASK, &resp);
7509 		if (!err && resp == UPIU_TASK_MANAGEMENT_FUNC_SUCCEEDED) {
7510 			/* cmd pending in the device */
7511 			dev_err(hba->dev, "%s: cmd pending in the device. tag = %d\n",
7512 				__func__, tag);
7513 			break;
7514 		} else if (!err && resp == UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7515 			/*
7516 			 * cmd not pending in the device, check if it is
7517 			 * in transition.
7518 			 */
7519 			dev_err(hba->dev, "%s: cmd at tag %d not pending in the device.\n",
7520 				__func__, tag);
7521 			if (is_mcq_enabled(hba)) {
7522 				/* MCQ mode */
7523 				if (ufshcd_cmd_inflight(lrbp->cmd)) {
7524 					/* sleep for max. 200us same delay as in SDB mode */
7525 					usleep_range(100, 200);
7526 					continue;
7527 				}
7528 				/* command completed already */
7529 				dev_err(hba->dev, "%s: cmd at tag=%d is cleared.\n",
7530 					__func__, tag);
7531 				goto out;
7532 			}
7533 
7534 			/* Single Doorbell Mode */
7535 			reg = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
7536 			if (reg & (1 << tag)) {
7537 				/* sleep for max. 200us to stabilize */
7538 				usleep_range(100, 200);
7539 				continue;
7540 			}
7541 			/* command completed already */
7542 			dev_err(hba->dev, "%s: cmd at tag %d successfully cleared from DB.\n",
7543 				__func__, tag);
7544 			goto out;
7545 		} else {
7546 			dev_err(hba->dev,
7547 				"%s: no response from device. tag = %d, err %d\n",
7548 				__func__, tag, err);
7549 			if (!err)
7550 				err = resp; /* service response error */
7551 			goto out;
7552 		}
7553 	}
7554 
7555 	if (!poll_cnt) {
7556 		err = -EBUSY;
7557 		goto out;
7558 	}
7559 
7560 	err = ufshcd_issue_tm_cmd(hba, lrbp->lun, lrbp->task_tag,
7561 			UFS_ABORT_TASK, &resp);
7562 	if (err || resp != UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7563 		if (!err) {
7564 			err = resp; /* service response error */
7565 			dev_err(hba->dev, "%s: issued. tag = %d, err %d\n",
7566 				__func__, tag, err);
7567 		}
7568 		goto out;
7569 	}
7570 
7571 	err = ufshcd_clear_cmd(hba, tag);
7572 	if (err)
7573 		dev_err(hba->dev, "%s: Failed clearing cmd at tag %d, err %d\n",
7574 			__func__, tag, err);
7575 
7576 out:
7577 	return err;
7578 }
7579 
7580 /**
7581  * ufshcd_abort - scsi host template eh_abort_handler callback
7582  * @cmd: SCSI command pointer
7583  *
7584  * Return: SUCCESS or FAILED.
7585  */
7586 static int ufshcd_abort(struct scsi_cmnd *cmd)
7587 {
7588 	struct Scsi_Host *host = cmd->device->host;
7589 	struct ufs_hba *hba = shost_priv(host);
7590 	int tag = scsi_cmd_to_rq(cmd)->tag;
7591 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
7592 	unsigned long flags;
7593 	int err = FAILED;
7594 	bool outstanding;
7595 	u32 reg;
7596 
7597 	ufshcd_hold(hba);
7598 
7599 	if (!is_mcq_enabled(hba)) {
7600 		reg = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
7601 		if (!test_bit(tag, &hba->outstanding_reqs)) {
7602 			/* If command is already aborted/completed, return FAILED. */
7603 			dev_err(hba->dev,
7604 				"%s: cmd at tag %d already completed, outstanding=0x%lx, doorbell=0x%x\n",
7605 				__func__, tag, hba->outstanding_reqs, reg);
7606 			goto release;
7607 		}
7608 	}
7609 
7610 	/* Print Transfer Request of aborted task */
7611 	dev_info(hba->dev, "%s: Device abort task at tag %d\n", __func__, tag);
7612 
7613 	/*
7614 	 * Print detailed info about aborted request.
7615 	 * As more than one request might get aborted at the same time,
7616 	 * print full information only for the first aborted request in order
7617 	 * to reduce repeated printouts. For other aborted requests only print
7618 	 * basic details.
7619 	 */
7620 	scsi_print_command(cmd);
7621 	if (!hba->req_abort_count) {
7622 		ufshcd_update_evt_hist(hba, UFS_EVT_ABORT, tag);
7623 		ufshcd_print_evt_hist(hba);
7624 		ufshcd_print_host_state(hba);
7625 		ufshcd_print_pwr_info(hba);
7626 		ufshcd_print_tr(hba, tag, true);
7627 	} else {
7628 		ufshcd_print_tr(hba, tag, false);
7629 	}
7630 	hba->req_abort_count++;
7631 
7632 	if (!is_mcq_enabled(hba) && !(reg & (1 << tag))) {
7633 		/* only execute this code in single doorbell mode */
7634 		dev_err(hba->dev,
7635 		"%s: cmd was completed, but without a notifying intr, tag = %d",
7636 		__func__, tag);
7637 		__ufshcd_transfer_req_compl(hba, 1UL << tag);
7638 		goto release;
7639 	}
7640 
7641 	/*
7642 	 * Task abort to the device W-LUN is illegal. When this command
7643 	 * will fail, due to spec violation, scsi err handling next step
7644 	 * will be to send LU reset which, again, is a spec violation.
7645 	 * To avoid these unnecessary/illegal steps, first we clean up
7646 	 * the lrb taken by this cmd and re-set it in outstanding_reqs,
7647 	 * then queue the eh_work and bail.
7648 	 */
7649 	if (lrbp->lun == UFS_UPIU_UFS_DEVICE_WLUN) {
7650 		ufshcd_update_evt_hist(hba, UFS_EVT_ABORT, lrbp->lun);
7651 
7652 		spin_lock_irqsave(host->host_lock, flags);
7653 		hba->force_reset = true;
7654 		ufshcd_schedule_eh_work(hba);
7655 		spin_unlock_irqrestore(host->host_lock, flags);
7656 		goto release;
7657 	}
7658 
7659 	if (is_mcq_enabled(hba)) {
7660 		/* MCQ mode. Branch off to handle abort for mcq mode */
7661 		err = ufshcd_mcq_abort(cmd);
7662 		goto release;
7663 	}
7664 
7665 	/* Skip task abort in case previous aborts failed and report failure */
7666 	if (lrbp->req_abort_skip) {
7667 		dev_err(hba->dev, "%s: skipping abort\n", __func__);
7668 		ufshcd_set_req_abort_skip(hba, hba->outstanding_reqs);
7669 		goto release;
7670 	}
7671 
7672 	err = ufshcd_try_to_abort_task(hba, tag);
7673 	if (err) {
7674 		dev_err(hba->dev, "%s: failed with err %d\n", __func__, err);
7675 		ufshcd_set_req_abort_skip(hba, hba->outstanding_reqs);
7676 		err = FAILED;
7677 		goto release;
7678 	}
7679 
7680 	/*
7681 	 * Clear the corresponding bit from outstanding_reqs since the command
7682 	 * has been aborted successfully.
7683 	 */
7684 	spin_lock_irqsave(&hba->outstanding_lock, flags);
7685 	outstanding = __test_and_clear_bit(tag, &hba->outstanding_reqs);
7686 	spin_unlock_irqrestore(&hba->outstanding_lock, flags);
7687 
7688 	if (outstanding)
7689 		ufshcd_release_scsi_cmd(hba, lrbp);
7690 
7691 	err = SUCCESS;
7692 
7693 release:
7694 	/* Matches the ufshcd_hold() call at the start of this function. */
7695 	ufshcd_release(hba);
7696 	return err;
7697 }
7698 
7699 /**
7700  * ufshcd_host_reset_and_restore - reset and restore host controller
7701  * @hba: per-adapter instance
7702  *
7703  * Note that host controller reset may issue DME_RESET to
7704  * local and remote (device) Uni-Pro stack and the attributes
7705  * are reset to default state.
7706  *
7707  * Return: zero on success, non-zero on failure.
7708  */
7709 static int ufshcd_host_reset_and_restore(struct ufs_hba *hba)
7710 {
7711 	int err;
7712 
7713 	/*
7714 	 * Stop the host controller and complete the requests
7715 	 * cleared by h/w
7716 	 */
7717 	ufshcd_hba_stop(hba);
7718 	hba->silence_err_logs = true;
7719 	ufshcd_complete_requests(hba, true);
7720 	hba->silence_err_logs = false;
7721 
7722 	/* scale up clocks to max frequency before full reinitialization */
7723 	ufshcd_scale_clks(hba, ULONG_MAX, true);
7724 
7725 	err = ufshcd_hba_enable(hba);
7726 
7727 	/* Establish the link again and restore the device */
7728 	if (!err)
7729 		err = ufshcd_probe_hba(hba, false);
7730 
7731 	if (err)
7732 		dev_err(hba->dev, "%s: Host init failed %d\n", __func__, err);
7733 	ufshcd_update_evt_hist(hba, UFS_EVT_HOST_RESET, (u32)err);
7734 	return err;
7735 }
7736 
7737 /**
7738  * ufshcd_reset_and_restore - reset and re-initialize host/device
7739  * @hba: per-adapter instance
7740  *
7741  * Reset and recover device, host and re-establish link. This
7742  * is helpful to recover the communication in fatal error conditions.
7743  *
7744  * Return: zero on success, non-zero on failure.
7745  */
7746 static int ufshcd_reset_and_restore(struct ufs_hba *hba)
7747 {
7748 	u32 saved_err = 0;
7749 	u32 saved_uic_err = 0;
7750 	int err = 0;
7751 	unsigned long flags;
7752 	int retries = MAX_HOST_RESET_RETRIES;
7753 
7754 	spin_lock_irqsave(hba->host->host_lock, flags);
7755 	do {
7756 		/*
7757 		 * This is a fresh start, cache and clear saved error first,
7758 		 * in case new error generated during reset and restore.
7759 		 */
7760 		saved_err |= hba->saved_err;
7761 		saved_uic_err |= hba->saved_uic_err;
7762 		hba->saved_err = 0;
7763 		hba->saved_uic_err = 0;
7764 		hba->force_reset = false;
7765 		hba->ufshcd_state = UFSHCD_STATE_RESET;
7766 		spin_unlock_irqrestore(hba->host->host_lock, flags);
7767 
7768 		/* Reset the attached device */
7769 		ufshcd_device_reset(hba);
7770 
7771 		err = ufshcd_host_reset_and_restore(hba);
7772 
7773 		spin_lock_irqsave(hba->host->host_lock, flags);
7774 		if (err)
7775 			continue;
7776 		/* Do not exit unless operational or dead */
7777 		if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL &&
7778 		    hba->ufshcd_state != UFSHCD_STATE_ERROR &&
7779 		    hba->ufshcd_state != UFSHCD_STATE_EH_SCHEDULED_NON_FATAL)
7780 			err = -EAGAIN;
7781 	} while (err && --retries);
7782 
7783 	/*
7784 	 * Inform scsi mid-layer that we did reset and allow to handle
7785 	 * Unit Attention properly.
7786 	 */
7787 	scsi_report_bus_reset(hba->host, 0);
7788 	if (err) {
7789 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
7790 		hba->saved_err |= saved_err;
7791 		hba->saved_uic_err |= saved_uic_err;
7792 	}
7793 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7794 
7795 	return err;
7796 }
7797 
7798 /**
7799  * ufshcd_eh_host_reset_handler - host reset handler registered to scsi layer
7800  * @cmd: SCSI command pointer
7801  *
7802  * Return: SUCCESS or FAILED.
7803  */
7804 static int ufshcd_eh_host_reset_handler(struct scsi_cmnd *cmd)
7805 {
7806 	int err = SUCCESS;
7807 	unsigned long flags;
7808 	struct ufs_hba *hba;
7809 
7810 	hba = shost_priv(cmd->device->host);
7811 
7812 	/*
7813 	 * If runtime PM sent SSU and got a timeout, scsi_error_handler is
7814 	 * stuck in this function waiting for flush_work(&hba->eh_work). And
7815 	 * ufshcd_err_handler(eh_work) is stuck waiting for runtime PM. Do
7816 	 * ufshcd_link_recovery instead of eh_work to prevent deadlock.
7817 	 */
7818 	if (hba->pm_op_in_progress) {
7819 		if (ufshcd_link_recovery(hba))
7820 			err = FAILED;
7821 
7822 		return err;
7823 	}
7824 
7825 	spin_lock_irqsave(hba->host->host_lock, flags);
7826 	hba->force_reset = true;
7827 	ufshcd_schedule_eh_work(hba);
7828 	dev_err(hba->dev, "%s: reset in progress - 1\n", __func__);
7829 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7830 
7831 	flush_work(&hba->eh_work);
7832 
7833 	spin_lock_irqsave(hba->host->host_lock, flags);
7834 	if (hba->ufshcd_state == UFSHCD_STATE_ERROR)
7835 		err = FAILED;
7836 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7837 
7838 	return err;
7839 }
7840 
7841 /**
7842  * ufshcd_get_max_icc_level - calculate the ICC level
7843  * @sup_curr_uA: max. current supported by the regulator
7844  * @start_scan: row at the desc table to start scan from
7845  * @buff: power descriptor buffer
7846  *
7847  * Return: calculated max ICC level for specific regulator.
7848  */
7849 static u32 ufshcd_get_max_icc_level(int sup_curr_uA, u32 start_scan,
7850 				    const char *buff)
7851 {
7852 	int i;
7853 	int curr_uA;
7854 	u16 data;
7855 	u16 unit;
7856 
7857 	for (i = start_scan; i >= 0; i--) {
7858 		data = get_unaligned_be16(&buff[2 * i]);
7859 		unit = (data & ATTR_ICC_LVL_UNIT_MASK) >>
7860 						ATTR_ICC_LVL_UNIT_OFFSET;
7861 		curr_uA = data & ATTR_ICC_LVL_VALUE_MASK;
7862 		switch (unit) {
7863 		case UFSHCD_NANO_AMP:
7864 			curr_uA = curr_uA / 1000;
7865 			break;
7866 		case UFSHCD_MILI_AMP:
7867 			curr_uA = curr_uA * 1000;
7868 			break;
7869 		case UFSHCD_AMP:
7870 			curr_uA = curr_uA * 1000 * 1000;
7871 			break;
7872 		case UFSHCD_MICRO_AMP:
7873 		default:
7874 			break;
7875 		}
7876 		if (sup_curr_uA >= curr_uA)
7877 			break;
7878 	}
7879 	if (i < 0) {
7880 		i = 0;
7881 		pr_err("%s: Couldn't find valid icc_level = %d", __func__, i);
7882 	}
7883 
7884 	return (u32)i;
7885 }
7886 
7887 /**
7888  * ufshcd_find_max_sup_active_icc_level - calculate the max ICC level
7889  * In case regulators are not initialized we'll return 0
7890  * @hba: per-adapter instance
7891  * @desc_buf: power descriptor buffer to extract ICC levels from.
7892  *
7893  * Return: calculated ICC level.
7894  */
7895 static u32 ufshcd_find_max_sup_active_icc_level(struct ufs_hba *hba,
7896 						const u8 *desc_buf)
7897 {
7898 	u32 icc_level = 0;
7899 
7900 	if (!hba->vreg_info.vcc || !hba->vreg_info.vccq ||
7901 						!hba->vreg_info.vccq2) {
7902 		/*
7903 		 * Using dev_dbg to avoid messages during runtime PM to avoid
7904 		 * never-ending cycles of messages written back to storage by
7905 		 * user space causing runtime resume, causing more messages and
7906 		 * so on.
7907 		 */
7908 		dev_dbg(hba->dev,
7909 			"%s: Regulator capability was not set, actvIccLevel=%d",
7910 							__func__, icc_level);
7911 		goto out;
7912 	}
7913 
7914 	if (hba->vreg_info.vcc->max_uA)
7915 		icc_level = ufshcd_get_max_icc_level(
7916 				hba->vreg_info.vcc->max_uA,
7917 				POWER_DESC_MAX_ACTV_ICC_LVLS - 1,
7918 				&desc_buf[PWR_DESC_ACTIVE_LVLS_VCC_0]);
7919 
7920 	if (hba->vreg_info.vccq->max_uA)
7921 		icc_level = ufshcd_get_max_icc_level(
7922 				hba->vreg_info.vccq->max_uA,
7923 				icc_level,
7924 				&desc_buf[PWR_DESC_ACTIVE_LVLS_VCCQ_0]);
7925 
7926 	if (hba->vreg_info.vccq2->max_uA)
7927 		icc_level = ufshcd_get_max_icc_level(
7928 				hba->vreg_info.vccq2->max_uA,
7929 				icc_level,
7930 				&desc_buf[PWR_DESC_ACTIVE_LVLS_VCCQ2_0]);
7931 out:
7932 	return icc_level;
7933 }
7934 
7935 static void ufshcd_set_active_icc_lvl(struct ufs_hba *hba)
7936 {
7937 	int ret;
7938 	u8 *desc_buf;
7939 	u32 icc_level;
7940 
7941 	desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
7942 	if (!desc_buf)
7943 		return;
7944 
7945 	ret = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_POWER, 0, 0,
7946 				     desc_buf, QUERY_DESC_MAX_SIZE);
7947 	if (ret) {
7948 		dev_err(hba->dev,
7949 			"%s: Failed reading power descriptor ret = %d",
7950 			__func__, ret);
7951 		goto out;
7952 	}
7953 
7954 	icc_level = ufshcd_find_max_sup_active_icc_level(hba, desc_buf);
7955 	dev_dbg(hba->dev, "%s: setting icc_level 0x%x", __func__, icc_level);
7956 
7957 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
7958 		QUERY_ATTR_IDN_ACTIVE_ICC_LVL, 0, 0, &icc_level);
7959 
7960 	if (ret)
7961 		dev_err(hba->dev,
7962 			"%s: Failed configuring bActiveICCLevel = %d ret = %d",
7963 			__func__, icc_level, ret);
7964 
7965 out:
7966 	kfree(desc_buf);
7967 }
7968 
7969 static inline void ufshcd_blk_pm_runtime_init(struct scsi_device *sdev)
7970 {
7971 	scsi_autopm_get_device(sdev);
7972 	blk_pm_runtime_init(sdev->request_queue, &sdev->sdev_gendev);
7973 	if (sdev->rpm_autosuspend)
7974 		pm_runtime_set_autosuspend_delay(&sdev->sdev_gendev,
7975 						 RPM_AUTOSUSPEND_DELAY_MS);
7976 	scsi_autopm_put_device(sdev);
7977 }
7978 
7979 /**
7980  * ufshcd_scsi_add_wlus - Adds required W-LUs
7981  * @hba: per-adapter instance
7982  *
7983  * UFS device specification requires the UFS devices to support 4 well known
7984  * logical units:
7985  *	"REPORT_LUNS" (address: 01h)
7986  *	"UFS Device" (address: 50h)
7987  *	"RPMB" (address: 44h)
7988  *	"BOOT" (address: 30h)
7989  * UFS device's power management needs to be controlled by "POWER CONDITION"
7990  * field of SSU (START STOP UNIT) command. But this "power condition" field
7991  * will take effect only when its sent to "UFS device" well known logical unit
7992  * hence we require the scsi_device instance to represent this logical unit in
7993  * order for the UFS host driver to send the SSU command for power management.
7994  *
7995  * We also require the scsi_device instance for "RPMB" (Replay Protected Memory
7996  * Block) LU so user space process can control this LU. User space may also
7997  * want to have access to BOOT LU.
7998  *
7999  * This function adds scsi device instances for each of all well known LUs
8000  * (except "REPORT LUNS" LU).
8001  *
8002  * Return: zero on success (all required W-LUs are added successfully),
8003  * non-zero error value on failure (if failed to add any of the required W-LU).
8004  */
8005 static int ufshcd_scsi_add_wlus(struct ufs_hba *hba)
8006 {
8007 	int ret = 0;
8008 	struct scsi_device *sdev_boot, *sdev_rpmb;
8009 
8010 	hba->ufs_device_wlun = __scsi_add_device(hba->host, 0, 0,
8011 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_UFS_DEVICE_WLUN), NULL);
8012 	if (IS_ERR(hba->ufs_device_wlun)) {
8013 		ret = PTR_ERR(hba->ufs_device_wlun);
8014 		hba->ufs_device_wlun = NULL;
8015 		goto out;
8016 	}
8017 	scsi_device_put(hba->ufs_device_wlun);
8018 
8019 	sdev_rpmb = __scsi_add_device(hba->host, 0, 0,
8020 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_RPMB_WLUN), NULL);
8021 	if (IS_ERR(sdev_rpmb)) {
8022 		ret = PTR_ERR(sdev_rpmb);
8023 		goto remove_ufs_device_wlun;
8024 	}
8025 	ufshcd_blk_pm_runtime_init(sdev_rpmb);
8026 	scsi_device_put(sdev_rpmb);
8027 
8028 	sdev_boot = __scsi_add_device(hba->host, 0, 0,
8029 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_BOOT_WLUN), NULL);
8030 	if (IS_ERR(sdev_boot)) {
8031 		dev_err(hba->dev, "%s: BOOT WLUN not found\n", __func__);
8032 	} else {
8033 		ufshcd_blk_pm_runtime_init(sdev_boot);
8034 		scsi_device_put(sdev_boot);
8035 	}
8036 	goto out;
8037 
8038 remove_ufs_device_wlun:
8039 	scsi_remove_device(hba->ufs_device_wlun);
8040 out:
8041 	return ret;
8042 }
8043 
8044 static void ufshcd_wb_probe(struct ufs_hba *hba, const u8 *desc_buf)
8045 {
8046 	struct ufs_dev_info *dev_info = &hba->dev_info;
8047 	u8 lun;
8048 	u32 d_lu_wb_buf_alloc;
8049 	u32 ext_ufs_feature;
8050 
8051 	if (!ufshcd_is_wb_allowed(hba))
8052 		return;
8053 
8054 	/*
8055 	 * Probe WB only for UFS-2.2 and UFS-3.1 (and later) devices or
8056 	 * UFS devices with quirk UFS_DEVICE_QUIRK_SUPPORT_EXTENDED_FEATURES
8057 	 * enabled
8058 	 */
8059 	if (!(dev_info->wspecversion >= 0x310 ||
8060 	      dev_info->wspecversion == 0x220 ||
8061 	     (hba->dev_quirks & UFS_DEVICE_QUIRK_SUPPORT_EXTENDED_FEATURES)))
8062 		goto wb_disabled;
8063 
8064 	ext_ufs_feature = get_unaligned_be32(desc_buf +
8065 					DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
8066 
8067 	if (!(ext_ufs_feature & UFS_DEV_WRITE_BOOSTER_SUP))
8068 		goto wb_disabled;
8069 
8070 	/*
8071 	 * WB may be supported but not configured while provisioning. The spec
8072 	 * says, in dedicated wb buffer mode, a max of 1 lun would have wb
8073 	 * buffer configured.
8074 	 */
8075 	dev_info->wb_buffer_type = desc_buf[DEVICE_DESC_PARAM_WB_TYPE];
8076 
8077 	dev_info->b_presrv_uspc_en =
8078 		desc_buf[DEVICE_DESC_PARAM_WB_PRESRV_USRSPC_EN];
8079 
8080 	if (dev_info->wb_buffer_type == WB_BUF_MODE_SHARED) {
8081 		if (!get_unaligned_be32(desc_buf +
8082 				   DEVICE_DESC_PARAM_WB_SHARED_ALLOC_UNITS))
8083 			goto wb_disabled;
8084 	} else {
8085 		for (lun = 0; lun < UFS_UPIU_MAX_WB_LUN_ID; lun++) {
8086 			d_lu_wb_buf_alloc = 0;
8087 			ufshcd_read_unit_desc_param(hba,
8088 					lun,
8089 					UNIT_DESC_PARAM_WB_BUF_ALLOC_UNITS,
8090 					(u8 *)&d_lu_wb_buf_alloc,
8091 					sizeof(d_lu_wb_buf_alloc));
8092 			if (d_lu_wb_buf_alloc) {
8093 				dev_info->wb_dedicated_lu = lun;
8094 				break;
8095 			}
8096 		}
8097 
8098 		if (!d_lu_wb_buf_alloc)
8099 			goto wb_disabled;
8100 	}
8101 
8102 	if (!ufshcd_is_wb_buf_lifetime_available(hba))
8103 		goto wb_disabled;
8104 
8105 	return;
8106 
8107 wb_disabled:
8108 	hba->caps &= ~UFSHCD_CAP_WB_EN;
8109 }
8110 
8111 static void ufshcd_temp_notif_probe(struct ufs_hba *hba, const u8 *desc_buf)
8112 {
8113 	struct ufs_dev_info *dev_info = &hba->dev_info;
8114 	u32 ext_ufs_feature;
8115 	u8 mask = 0;
8116 
8117 	if (!(hba->caps & UFSHCD_CAP_TEMP_NOTIF) || dev_info->wspecversion < 0x300)
8118 		return;
8119 
8120 	ext_ufs_feature = get_unaligned_be32(desc_buf + DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
8121 
8122 	if (ext_ufs_feature & UFS_DEV_LOW_TEMP_NOTIF)
8123 		mask |= MASK_EE_TOO_LOW_TEMP;
8124 
8125 	if (ext_ufs_feature & UFS_DEV_HIGH_TEMP_NOTIF)
8126 		mask |= MASK_EE_TOO_HIGH_TEMP;
8127 
8128 	if (mask) {
8129 		ufshcd_enable_ee(hba, mask);
8130 		ufs_hwmon_probe(hba, mask);
8131 	}
8132 }
8133 
8134 static void ufshcd_ext_iid_probe(struct ufs_hba *hba, u8 *desc_buf)
8135 {
8136 	struct ufs_dev_info *dev_info = &hba->dev_info;
8137 	u32 ext_ufs_feature;
8138 	u32 ext_iid_en = 0;
8139 	int err;
8140 
8141 	/* Only UFS-4.0 and above may support EXT_IID */
8142 	if (dev_info->wspecversion < 0x400)
8143 		goto out;
8144 
8145 	ext_ufs_feature = get_unaligned_be32(desc_buf +
8146 				     DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
8147 	if (!(ext_ufs_feature & UFS_DEV_EXT_IID_SUP))
8148 		goto out;
8149 
8150 	err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
8151 				      QUERY_ATTR_IDN_EXT_IID_EN, 0, 0, &ext_iid_en);
8152 	if (err)
8153 		dev_err(hba->dev, "failed reading bEXTIIDEn. err = %d\n", err);
8154 
8155 out:
8156 	dev_info->b_ext_iid_en = ext_iid_en;
8157 }
8158 
8159 void ufshcd_fixup_dev_quirks(struct ufs_hba *hba,
8160 			     const struct ufs_dev_quirk *fixups)
8161 {
8162 	const struct ufs_dev_quirk *f;
8163 	struct ufs_dev_info *dev_info = &hba->dev_info;
8164 
8165 	if (!fixups)
8166 		return;
8167 
8168 	for (f = fixups; f->quirk; f++) {
8169 		if ((f->wmanufacturerid == dev_info->wmanufacturerid ||
8170 		     f->wmanufacturerid == UFS_ANY_VENDOR) &&
8171 		     ((dev_info->model &&
8172 		       STR_PRFX_EQUAL(f->model, dev_info->model)) ||
8173 		      !strcmp(f->model, UFS_ANY_MODEL)))
8174 			hba->dev_quirks |= f->quirk;
8175 	}
8176 }
8177 EXPORT_SYMBOL_GPL(ufshcd_fixup_dev_quirks);
8178 
8179 static void ufs_fixup_device_setup(struct ufs_hba *hba)
8180 {
8181 	/* fix by general quirk table */
8182 	ufshcd_fixup_dev_quirks(hba, ufs_fixups);
8183 
8184 	/* allow vendors to fix quirks */
8185 	ufshcd_vops_fixup_dev_quirks(hba);
8186 }
8187 
8188 static int ufs_get_device_desc(struct ufs_hba *hba)
8189 {
8190 	int err;
8191 	u8 model_index;
8192 	u8 *desc_buf;
8193 	struct ufs_dev_info *dev_info = &hba->dev_info;
8194 
8195 	desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
8196 	if (!desc_buf) {
8197 		err = -ENOMEM;
8198 		goto out;
8199 	}
8200 
8201 	err = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_DEVICE, 0, 0, desc_buf,
8202 				     QUERY_DESC_MAX_SIZE);
8203 	if (err) {
8204 		dev_err(hba->dev, "%s: Failed reading Device Desc. err = %d\n",
8205 			__func__, err);
8206 		goto out;
8207 	}
8208 
8209 	/*
8210 	 * getting vendor (manufacturerID) and Bank Index in big endian
8211 	 * format
8212 	 */
8213 	dev_info->wmanufacturerid = desc_buf[DEVICE_DESC_PARAM_MANF_ID] << 8 |
8214 				     desc_buf[DEVICE_DESC_PARAM_MANF_ID + 1];
8215 
8216 	/* getting Specification Version in big endian format */
8217 	dev_info->wspecversion = desc_buf[DEVICE_DESC_PARAM_SPEC_VER] << 8 |
8218 				      desc_buf[DEVICE_DESC_PARAM_SPEC_VER + 1];
8219 	dev_info->bqueuedepth = desc_buf[DEVICE_DESC_PARAM_Q_DPTH];
8220 
8221 	model_index = desc_buf[DEVICE_DESC_PARAM_PRDCT_NAME];
8222 
8223 	err = ufshcd_read_string_desc(hba, model_index,
8224 				      &dev_info->model, SD_ASCII_STD);
8225 	if (err < 0) {
8226 		dev_err(hba->dev, "%s: Failed reading Product Name. err = %d\n",
8227 			__func__, err);
8228 		goto out;
8229 	}
8230 
8231 	hba->luns_avail = desc_buf[DEVICE_DESC_PARAM_NUM_LU] +
8232 		desc_buf[DEVICE_DESC_PARAM_NUM_WLU];
8233 
8234 	ufs_fixup_device_setup(hba);
8235 
8236 	ufshcd_wb_probe(hba, desc_buf);
8237 
8238 	ufshcd_temp_notif_probe(hba, desc_buf);
8239 
8240 	if (hba->ext_iid_sup)
8241 		ufshcd_ext_iid_probe(hba, desc_buf);
8242 
8243 	/*
8244 	 * ufshcd_read_string_desc returns size of the string
8245 	 * reset the error value
8246 	 */
8247 	err = 0;
8248 
8249 out:
8250 	kfree(desc_buf);
8251 	return err;
8252 }
8253 
8254 static void ufs_put_device_desc(struct ufs_hba *hba)
8255 {
8256 	struct ufs_dev_info *dev_info = &hba->dev_info;
8257 
8258 	kfree(dev_info->model);
8259 	dev_info->model = NULL;
8260 }
8261 
8262 /**
8263  * ufshcd_tune_pa_tactivate - Tunes PA_TActivate of local UniPro
8264  * @hba: per-adapter instance
8265  *
8266  * PA_TActivate parameter can be tuned manually if UniPro version is less than
8267  * 1.61. PA_TActivate needs to be greater than or equal to peerM-PHY's
8268  * RX_MIN_ACTIVATETIME_CAPABILITY attribute. This optimal value can help reduce
8269  * the hibern8 exit latency.
8270  *
8271  * Return: zero on success, non-zero error value on failure.
8272  */
8273 static int ufshcd_tune_pa_tactivate(struct ufs_hba *hba)
8274 {
8275 	int ret = 0;
8276 	u32 peer_rx_min_activatetime = 0, tuned_pa_tactivate;
8277 
8278 	ret = ufshcd_dme_peer_get(hba,
8279 				  UIC_ARG_MIB_SEL(
8280 					RX_MIN_ACTIVATETIME_CAPABILITY,
8281 					UIC_ARG_MPHY_RX_GEN_SEL_INDEX(0)),
8282 				  &peer_rx_min_activatetime);
8283 	if (ret)
8284 		goto out;
8285 
8286 	/* make sure proper unit conversion is applied */
8287 	tuned_pa_tactivate =
8288 		((peer_rx_min_activatetime * RX_MIN_ACTIVATETIME_UNIT_US)
8289 		 / PA_TACTIVATE_TIME_UNIT_US);
8290 	ret = ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TACTIVATE),
8291 			     tuned_pa_tactivate);
8292 
8293 out:
8294 	return ret;
8295 }
8296 
8297 /**
8298  * ufshcd_tune_pa_hibern8time - Tunes PA_Hibern8Time of local UniPro
8299  * @hba: per-adapter instance
8300  *
8301  * PA_Hibern8Time parameter can be tuned manually if UniPro version is less than
8302  * 1.61. PA_Hibern8Time needs to be maximum of local M-PHY's
8303  * TX_HIBERN8TIME_CAPABILITY & peer M-PHY's RX_HIBERN8TIME_CAPABILITY.
8304  * This optimal value can help reduce the hibern8 exit latency.
8305  *
8306  * Return: zero on success, non-zero error value on failure.
8307  */
8308 static int ufshcd_tune_pa_hibern8time(struct ufs_hba *hba)
8309 {
8310 	int ret = 0;
8311 	u32 local_tx_hibern8_time_cap = 0, peer_rx_hibern8_time_cap = 0;
8312 	u32 max_hibern8_time, tuned_pa_hibern8time;
8313 
8314 	ret = ufshcd_dme_get(hba,
8315 			     UIC_ARG_MIB_SEL(TX_HIBERN8TIME_CAPABILITY,
8316 					UIC_ARG_MPHY_TX_GEN_SEL_INDEX(0)),
8317 				  &local_tx_hibern8_time_cap);
8318 	if (ret)
8319 		goto out;
8320 
8321 	ret = ufshcd_dme_peer_get(hba,
8322 				  UIC_ARG_MIB_SEL(RX_HIBERN8TIME_CAPABILITY,
8323 					UIC_ARG_MPHY_RX_GEN_SEL_INDEX(0)),
8324 				  &peer_rx_hibern8_time_cap);
8325 	if (ret)
8326 		goto out;
8327 
8328 	max_hibern8_time = max(local_tx_hibern8_time_cap,
8329 			       peer_rx_hibern8_time_cap);
8330 	/* make sure proper unit conversion is applied */
8331 	tuned_pa_hibern8time = ((max_hibern8_time * HIBERN8TIME_UNIT_US)
8332 				/ PA_HIBERN8_TIME_UNIT_US);
8333 	ret = ufshcd_dme_set(hba, UIC_ARG_MIB(PA_HIBERN8TIME),
8334 			     tuned_pa_hibern8time);
8335 out:
8336 	return ret;
8337 }
8338 
8339 /**
8340  * ufshcd_quirk_tune_host_pa_tactivate - Ensures that host PA_TACTIVATE is
8341  * less than device PA_TACTIVATE time.
8342  * @hba: per-adapter instance
8343  *
8344  * Some UFS devices require host PA_TACTIVATE to be lower than device
8345  * PA_TACTIVATE, we need to enable UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE quirk
8346  * for such devices.
8347  *
8348  * Return: zero on success, non-zero error value on failure.
8349  */
8350 static int ufshcd_quirk_tune_host_pa_tactivate(struct ufs_hba *hba)
8351 {
8352 	int ret = 0;
8353 	u32 granularity, peer_granularity;
8354 	u32 pa_tactivate, peer_pa_tactivate;
8355 	u32 pa_tactivate_us, peer_pa_tactivate_us;
8356 	static const u8 gran_to_us_table[] = {1, 4, 8, 16, 32, 100};
8357 
8358 	ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_GRANULARITY),
8359 				  &granularity);
8360 	if (ret)
8361 		goto out;
8362 
8363 	ret = ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_GRANULARITY),
8364 				  &peer_granularity);
8365 	if (ret)
8366 		goto out;
8367 
8368 	if ((granularity < PA_GRANULARITY_MIN_VAL) ||
8369 	    (granularity > PA_GRANULARITY_MAX_VAL)) {
8370 		dev_err(hba->dev, "%s: invalid host PA_GRANULARITY %d",
8371 			__func__, granularity);
8372 		return -EINVAL;
8373 	}
8374 
8375 	if ((peer_granularity < PA_GRANULARITY_MIN_VAL) ||
8376 	    (peer_granularity > PA_GRANULARITY_MAX_VAL)) {
8377 		dev_err(hba->dev, "%s: invalid device PA_GRANULARITY %d",
8378 			__func__, peer_granularity);
8379 		return -EINVAL;
8380 	}
8381 
8382 	ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_TACTIVATE), &pa_tactivate);
8383 	if (ret)
8384 		goto out;
8385 
8386 	ret = ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_TACTIVATE),
8387 				  &peer_pa_tactivate);
8388 	if (ret)
8389 		goto out;
8390 
8391 	pa_tactivate_us = pa_tactivate * gran_to_us_table[granularity - 1];
8392 	peer_pa_tactivate_us = peer_pa_tactivate *
8393 			     gran_to_us_table[peer_granularity - 1];
8394 
8395 	if (pa_tactivate_us >= peer_pa_tactivate_us) {
8396 		u32 new_peer_pa_tactivate;
8397 
8398 		new_peer_pa_tactivate = pa_tactivate_us /
8399 				      gran_to_us_table[peer_granularity - 1];
8400 		new_peer_pa_tactivate++;
8401 		ret = ufshcd_dme_peer_set(hba, UIC_ARG_MIB(PA_TACTIVATE),
8402 					  new_peer_pa_tactivate);
8403 	}
8404 
8405 out:
8406 	return ret;
8407 }
8408 
8409 static void ufshcd_tune_unipro_params(struct ufs_hba *hba)
8410 {
8411 	if (ufshcd_is_unipro_pa_params_tuning_req(hba)) {
8412 		ufshcd_tune_pa_tactivate(hba);
8413 		ufshcd_tune_pa_hibern8time(hba);
8414 	}
8415 
8416 	ufshcd_vops_apply_dev_quirks(hba);
8417 
8418 	if (hba->dev_quirks & UFS_DEVICE_QUIRK_PA_TACTIVATE)
8419 		/* set 1ms timeout for PA_TACTIVATE */
8420 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TACTIVATE), 10);
8421 
8422 	if (hba->dev_quirks & UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE)
8423 		ufshcd_quirk_tune_host_pa_tactivate(hba);
8424 }
8425 
8426 static void ufshcd_clear_dbg_ufs_stats(struct ufs_hba *hba)
8427 {
8428 	hba->ufs_stats.hibern8_exit_cnt = 0;
8429 	hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
8430 	hba->req_abort_count = 0;
8431 }
8432 
8433 static int ufshcd_device_geo_params_init(struct ufs_hba *hba)
8434 {
8435 	int err;
8436 	u8 *desc_buf;
8437 
8438 	desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
8439 	if (!desc_buf) {
8440 		err = -ENOMEM;
8441 		goto out;
8442 	}
8443 
8444 	err = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_GEOMETRY, 0, 0,
8445 				     desc_buf, QUERY_DESC_MAX_SIZE);
8446 	if (err) {
8447 		dev_err(hba->dev, "%s: Failed reading Geometry Desc. err = %d\n",
8448 				__func__, err);
8449 		goto out;
8450 	}
8451 
8452 	if (desc_buf[GEOMETRY_DESC_PARAM_MAX_NUM_LUN] == 1)
8453 		hba->dev_info.max_lu_supported = 32;
8454 	else if (desc_buf[GEOMETRY_DESC_PARAM_MAX_NUM_LUN] == 0)
8455 		hba->dev_info.max_lu_supported = 8;
8456 
8457 out:
8458 	kfree(desc_buf);
8459 	return err;
8460 }
8461 
8462 struct ufs_ref_clk {
8463 	unsigned long freq_hz;
8464 	enum ufs_ref_clk_freq val;
8465 };
8466 
8467 static const struct ufs_ref_clk ufs_ref_clk_freqs[] = {
8468 	{19200000, REF_CLK_FREQ_19_2_MHZ},
8469 	{26000000, REF_CLK_FREQ_26_MHZ},
8470 	{38400000, REF_CLK_FREQ_38_4_MHZ},
8471 	{52000000, REF_CLK_FREQ_52_MHZ},
8472 	{0, REF_CLK_FREQ_INVAL},
8473 };
8474 
8475 static enum ufs_ref_clk_freq
8476 ufs_get_bref_clk_from_hz(unsigned long freq)
8477 {
8478 	int i;
8479 
8480 	for (i = 0; ufs_ref_clk_freqs[i].freq_hz; i++)
8481 		if (ufs_ref_clk_freqs[i].freq_hz == freq)
8482 			return ufs_ref_clk_freqs[i].val;
8483 
8484 	return REF_CLK_FREQ_INVAL;
8485 }
8486 
8487 void ufshcd_parse_dev_ref_clk_freq(struct ufs_hba *hba, struct clk *refclk)
8488 {
8489 	unsigned long freq;
8490 
8491 	freq = clk_get_rate(refclk);
8492 
8493 	hba->dev_ref_clk_freq =
8494 		ufs_get_bref_clk_from_hz(freq);
8495 
8496 	if (hba->dev_ref_clk_freq == REF_CLK_FREQ_INVAL)
8497 		dev_err(hba->dev,
8498 		"invalid ref_clk setting = %ld\n", freq);
8499 }
8500 
8501 static int ufshcd_set_dev_ref_clk(struct ufs_hba *hba)
8502 {
8503 	int err;
8504 	u32 ref_clk;
8505 	u32 freq = hba->dev_ref_clk_freq;
8506 
8507 	err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
8508 			QUERY_ATTR_IDN_REF_CLK_FREQ, 0, 0, &ref_clk);
8509 
8510 	if (err) {
8511 		dev_err(hba->dev, "failed reading bRefClkFreq. err = %d\n",
8512 			err);
8513 		goto out;
8514 	}
8515 
8516 	if (ref_clk == freq)
8517 		goto out; /* nothing to update */
8518 
8519 	err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
8520 			QUERY_ATTR_IDN_REF_CLK_FREQ, 0, 0, &freq);
8521 
8522 	if (err) {
8523 		dev_err(hba->dev, "bRefClkFreq setting to %lu Hz failed\n",
8524 			ufs_ref_clk_freqs[freq].freq_hz);
8525 		goto out;
8526 	}
8527 
8528 	dev_dbg(hba->dev, "bRefClkFreq setting to %lu Hz succeeded\n",
8529 			ufs_ref_clk_freqs[freq].freq_hz);
8530 
8531 out:
8532 	return err;
8533 }
8534 
8535 static int ufshcd_device_params_init(struct ufs_hba *hba)
8536 {
8537 	bool flag;
8538 	int ret;
8539 
8540 	/* Init UFS geometry descriptor related parameters */
8541 	ret = ufshcd_device_geo_params_init(hba);
8542 	if (ret)
8543 		goto out;
8544 
8545 	/* Check and apply UFS device quirks */
8546 	ret = ufs_get_device_desc(hba);
8547 	if (ret) {
8548 		dev_err(hba->dev, "%s: Failed getting device info. err = %d\n",
8549 			__func__, ret);
8550 		goto out;
8551 	}
8552 
8553 	ufshcd_get_ref_clk_gating_wait(hba);
8554 
8555 	if (!ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_READ_FLAG,
8556 			QUERY_FLAG_IDN_PWR_ON_WPE, 0, &flag))
8557 		hba->dev_info.f_power_on_wp_en = flag;
8558 
8559 	/* Probe maximum power mode co-supported by both UFS host and device */
8560 	if (ufshcd_get_max_pwr_mode(hba))
8561 		dev_err(hba->dev,
8562 			"%s: Failed getting max supported power mode\n",
8563 			__func__);
8564 out:
8565 	return ret;
8566 }
8567 
8568 static void ufshcd_set_timestamp_attr(struct ufs_hba *hba)
8569 {
8570 	int err;
8571 	struct ufs_query_req *request = NULL;
8572 	struct ufs_query_res *response = NULL;
8573 	struct ufs_dev_info *dev_info = &hba->dev_info;
8574 	struct utp_upiu_query_v4_0 *upiu_data;
8575 
8576 	if (dev_info->wspecversion < 0x400)
8577 		return;
8578 
8579 	ufshcd_hold(hba);
8580 
8581 	mutex_lock(&hba->dev_cmd.lock);
8582 
8583 	ufshcd_init_query(hba, &request, &response,
8584 			  UPIU_QUERY_OPCODE_WRITE_ATTR,
8585 			  QUERY_ATTR_IDN_TIMESTAMP, 0, 0);
8586 
8587 	request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
8588 
8589 	upiu_data = (struct utp_upiu_query_v4_0 *)&request->upiu_req;
8590 
8591 	put_unaligned_be64(ktime_get_real_ns(), &upiu_data->osf3);
8592 
8593 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT);
8594 
8595 	if (err)
8596 		dev_err(hba->dev, "%s: failed to set timestamp %d\n",
8597 			__func__, err);
8598 
8599 	mutex_unlock(&hba->dev_cmd.lock);
8600 	ufshcd_release(hba);
8601 }
8602 
8603 /**
8604  * ufshcd_add_lus - probe and add UFS logical units
8605  * @hba: per-adapter instance
8606  *
8607  * Return: 0 upon success; < 0 upon failure.
8608  */
8609 static int ufshcd_add_lus(struct ufs_hba *hba)
8610 {
8611 	int ret;
8612 
8613 	/* Add required well known logical units to scsi mid layer */
8614 	ret = ufshcd_scsi_add_wlus(hba);
8615 	if (ret)
8616 		goto out;
8617 
8618 	/* Initialize devfreq after UFS device is detected */
8619 	if (ufshcd_is_clkscaling_supported(hba)) {
8620 		memcpy(&hba->clk_scaling.saved_pwr_info,
8621 			&hba->pwr_info,
8622 			sizeof(struct ufs_pa_layer_attr));
8623 		hba->clk_scaling.is_allowed = true;
8624 
8625 		ret = ufshcd_devfreq_init(hba);
8626 		if (ret)
8627 			goto out;
8628 
8629 		hba->clk_scaling.is_enabled = true;
8630 		ufshcd_init_clk_scaling_sysfs(hba);
8631 	}
8632 
8633 	ufs_bsg_probe(hba);
8634 	scsi_scan_host(hba->host);
8635 	pm_runtime_put_sync(hba->dev);
8636 
8637 out:
8638 	return ret;
8639 }
8640 
8641 /* SDB - Single Doorbell */
8642 static void ufshcd_release_sdb_queue(struct ufs_hba *hba, int nutrs)
8643 {
8644 	size_t ucdl_size, utrdl_size;
8645 
8646 	ucdl_size = ufshcd_get_ucd_size(hba) * nutrs;
8647 	dmam_free_coherent(hba->dev, ucdl_size, hba->ucdl_base_addr,
8648 			   hba->ucdl_dma_addr);
8649 
8650 	utrdl_size = sizeof(struct utp_transfer_req_desc) * nutrs;
8651 	dmam_free_coherent(hba->dev, utrdl_size, hba->utrdl_base_addr,
8652 			   hba->utrdl_dma_addr);
8653 
8654 	devm_kfree(hba->dev, hba->lrb);
8655 }
8656 
8657 static int ufshcd_alloc_mcq(struct ufs_hba *hba)
8658 {
8659 	int ret;
8660 	int old_nutrs = hba->nutrs;
8661 
8662 	ret = ufshcd_mcq_decide_queue_depth(hba);
8663 	if (ret < 0)
8664 		return ret;
8665 
8666 	hba->nutrs = ret;
8667 	ret = ufshcd_mcq_init(hba);
8668 	if (ret)
8669 		goto err;
8670 
8671 	/*
8672 	 * Previously allocated memory for nutrs may not be enough in MCQ mode.
8673 	 * Number of supported tags in MCQ mode may be larger than SDB mode.
8674 	 */
8675 	if (hba->nutrs != old_nutrs) {
8676 		ufshcd_release_sdb_queue(hba, old_nutrs);
8677 		ret = ufshcd_memory_alloc(hba);
8678 		if (ret)
8679 			goto err;
8680 		ufshcd_host_memory_configure(hba);
8681 	}
8682 
8683 	ret = ufshcd_mcq_memory_alloc(hba);
8684 	if (ret)
8685 		goto err;
8686 
8687 	return 0;
8688 err:
8689 	hba->nutrs = old_nutrs;
8690 	return ret;
8691 }
8692 
8693 static void ufshcd_config_mcq(struct ufs_hba *hba)
8694 {
8695 	int ret;
8696 	u32 intrs;
8697 
8698 	ret = ufshcd_mcq_vops_config_esi(hba);
8699 	dev_info(hba->dev, "ESI %sconfigured\n", ret ? "is not " : "");
8700 
8701 	intrs = UFSHCD_ENABLE_MCQ_INTRS;
8702 	if (hba->quirks & UFSHCD_QUIRK_MCQ_BROKEN_INTR)
8703 		intrs &= ~MCQ_CQ_EVENT_STATUS;
8704 	ufshcd_enable_intr(hba, intrs);
8705 	ufshcd_mcq_make_queues_operational(hba);
8706 	ufshcd_mcq_config_mac(hba, hba->nutrs);
8707 
8708 	hba->host->can_queue = hba->nutrs - UFSHCD_NUM_RESERVED;
8709 	hba->reserved_slot = hba->nutrs - UFSHCD_NUM_RESERVED;
8710 
8711 	/* Select MCQ mode */
8712 	ufshcd_writel(hba, ufshcd_readl(hba, REG_UFS_MEM_CFG) | 0x1,
8713 		      REG_UFS_MEM_CFG);
8714 	hba->mcq_enabled = true;
8715 
8716 	dev_info(hba->dev, "MCQ configured, nr_queues=%d, io_queues=%d, read_queue=%d, poll_queues=%d, queue_depth=%d\n",
8717 		 hba->nr_hw_queues, hba->nr_queues[HCTX_TYPE_DEFAULT],
8718 		 hba->nr_queues[HCTX_TYPE_READ], hba->nr_queues[HCTX_TYPE_POLL],
8719 		 hba->nutrs);
8720 }
8721 
8722 static int ufshcd_device_init(struct ufs_hba *hba, bool init_dev_params)
8723 {
8724 	int ret;
8725 	struct Scsi_Host *host = hba->host;
8726 
8727 	hba->ufshcd_state = UFSHCD_STATE_RESET;
8728 
8729 	ret = ufshcd_link_startup(hba);
8730 	if (ret)
8731 		return ret;
8732 
8733 	if (hba->quirks & UFSHCD_QUIRK_SKIP_PH_CONFIGURATION)
8734 		return ret;
8735 
8736 	/* Debug counters initialization */
8737 	ufshcd_clear_dbg_ufs_stats(hba);
8738 
8739 	/* UniPro link is active now */
8740 	ufshcd_set_link_active(hba);
8741 
8742 	/* Reconfigure MCQ upon reset */
8743 	if (is_mcq_enabled(hba) && !init_dev_params)
8744 		ufshcd_config_mcq(hba);
8745 
8746 	/* Verify device initialization by sending NOP OUT UPIU */
8747 	ret = ufshcd_verify_dev_init(hba);
8748 	if (ret)
8749 		return ret;
8750 
8751 	/* Initiate UFS initialization, and waiting until completion */
8752 	ret = ufshcd_complete_dev_init(hba);
8753 	if (ret)
8754 		return ret;
8755 
8756 	/*
8757 	 * Initialize UFS device parameters used by driver, these
8758 	 * parameters are associated with UFS descriptors.
8759 	 */
8760 	if (init_dev_params) {
8761 		ret = ufshcd_device_params_init(hba);
8762 		if (ret)
8763 			return ret;
8764 		if (is_mcq_supported(hba) && !hba->scsi_host_added) {
8765 			ret = ufshcd_alloc_mcq(hba);
8766 			if (!ret) {
8767 				ufshcd_config_mcq(hba);
8768 			} else {
8769 				/* Continue with SDB mode */
8770 				use_mcq_mode = false;
8771 				dev_err(hba->dev, "MCQ mode is disabled, err=%d\n",
8772 					 ret);
8773 			}
8774 			ret = scsi_add_host(host, hba->dev);
8775 			if (ret) {
8776 				dev_err(hba->dev, "scsi_add_host failed\n");
8777 				return ret;
8778 			}
8779 			hba->scsi_host_added = true;
8780 		} else if (is_mcq_supported(hba)) {
8781 			/* UFSHCD_QUIRK_REINIT_AFTER_MAX_GEAR_SWITCH is set */
8782 			ufshcd_config_mcq(hba);
8783 		}
8784 	}
8785 
8786 	ufshcd_tune_unipro_params(hba);
8787 
8788 	/* UFS device is also active now */
8789 	ufshcd_set_ufs_dev_active(hba);
8790 	ufshcd_force_reset_auto_bkops(hba);
8791 
8792 	ufshcd_set_timestamp_attr(hba);
8793 
8794 	/* Gear up to HS gear if supported */
8795 	if (hba->max_pwr_info.is_valid) {
8796 		/*
8797 		 * Set the right value to bRefClkFreq before attempting to
8798 		 * switch to HS gears.
8799 		 */
8800 		if (hba->dev_ref_clk_freq != REF_CLK_FREQ_INVAL)
8801 			ufshcd_set_dev_ref_clk(hba);
8802 		ret = ufshcd_config_pwr_mode(hba, &hba->max_pwr_info.info);
8803 		if (ret) {
8804 			dev_err(hba->dev, "%s: Failed setting power mode, err = %d\n",
8805 					__func__, ret);
8806 			return ret;
8807 		}
8808 	}
8809 
8810 	return 0;
8811 }
8812 
8813 /**
8814  * ufshcd_probe_hba - probe hba to detect device and initialize it
8815  * @hba: per-adapter instance
8816  * @init_dev_params: whether or not to call ufshcd_device_params_init().
8817  *
8818  * Execute link-startup and verify device initialization
8819  *
8820  * Return: 0 upon success; < 0 upon failure.
8821  */
8822 static int ufshcd_probe_hba(struct ufs_hba *hba, bool init_dev_params)
8823 {
8824 	ktime_t start = ktime_get();
8825 	unsigned long flags;
8826 	int ret;
8827 
8828 	ret = ufshcd_device_init(hba, init_dev_params);
8829 	if (ret)
8830 		goto out;
8831 
8832 	if (!hba->pm_op_in_progress &&
8833 	    (hba->quirks & UFSHCD_QUIRK_REINIT_AFTER_MAX_GEAR_SWITCH)) {
8834 		/* Reset the device and controller before doing reinit */
8835 		ufshcd_device_reset(hba);
8836 		ufshcd_hba_stop(hba);
8837 		ufshcd_vops_reinit_notify(hba);
8838 		ret = ufshcd_hba_enable(hba);
8839 		if (ret) {
8840 			dev_err(hba->dev, "Host controller enable failed\n");
8841 			ufshcd_print_evt_hist(hba);
8842 			ufshcd_print_host_state(hba);
8843 			goto out;
8844 		}
8845 
8846 		/* Reinit the device */
8847 		ret = ufshcd_device_init(hba, init_dev_params);
8848 		if (ret)
8849 			goto out;
8850 	}
8851 
8852 	ufshcd_print_pwr_info(hba);
8853 
8854 	/*
8855 	 * bActiveICCLevel is volatile for UFS device (as per latest v2.1 spec)
8856 	 * and for removable UFS card as well, hence always set the parameter.
8857 	 * Note: Error handler may issue the device reset hence resetting
8858 	 * bActiveICCLevel as well so it is always safe to set this here.
8859 	 */
8860 	ufshcd_set_active_icc_lvl(hba);
8861 
8862 	/* Enable UFS Write Booster if supported */
8863 	ufshcd_configure_wb(hba);
8864 
8865 	if (hba->ee_usr_mask)
8866 		ufshcd_write_ee_control(hba);
8867 	/* Enable Auto-Hibernate if configured */
8868 	ufshcd_auto_hibern8_enable(hba);
8869 
8870 out:
8871 	spin_lock_irqsave(hba->host->host_lock, flags);
8872 	if (ret)
8873 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
8874 	else if (hba->ufshcd_state == UFSHCD_STATE_RESET)
8875 		hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
8876 	spin_unlock_irqrestore(hba->host->host_lock, flags);
8877 
8878 	trace_ufshcd_init(dev_name(hba->dev), ret,
8879 		ktime_to_us(ktime_sub(ktime_get(), start)),
8880 		hba->curr_dev_pwr_mode, hba->uic_link_state);
8881 	return ret;
8882 }
8883 
8884 /**
8885  * ufshcd_async_scan - asynchronous execution for probing hba
8886  * @data: data pointer to pass to this function
8887  * @cookie: cookie data
8888  */
8889 static void ufshcd_async_scan(void *data, async_cookie_t cookie)
8890 {
8891 	struct ufs_hba *hba = (struct ufs_hba *)data;
8892 	int ret;
8893 
8894 	down(&hba->host_sem);
8895 	/* Initialize hba, detect and initialize UFS device */
8896 	ret = ufshcd_probe_hba(hba, true);
8897 	up(&hba->host_sem);
8898 	if (ret)
8899 		goto out;
8900 
8901 	/* Probe and add UFS logical units  */
8902 	ret = ufshcd_add_lus(hba);
8903 out:
8904 	/*
8905 	 * If we failed to initialize the device or the device is not
8906 	 * present, turn off the power/clocks etc.
8907 	 */
8908 	if (ret) {
8909 		pm_runtime_put_sync(hba->dev);
8910 		ufshcd_hba_exit(hba);
8911 	}
8912 }
8913 
8914 static enum scsi_timeout_action ufshcd_eh_timed_out(struct scsi_cmnd *scmd)
8915 {
8916 	struct ufs_hba *hba = shost_priv(scmd->device->host);
8917 
8918 	if (!hba->system_suspending) {
8919 		/* Activate the error handler in the SCSI core. */
8920 		return SCSI_EH_NOT_HANDLED;
8921 	}
8922 
8923 	/*
8924 	 * If we get here we know that no TMFs are outstanding and also that
8925 	 * the only pending command is a START STOP UNIT command. Handle the
8926 	 * timeout of that command directly to prevent a deadlock between
8927 	 * ufshcd_set_dev_pwr_mode() and ufshcd_err_handler().
8928 	 */
8929 	ufshcd_link_recovery(hba);
8930 	dev_info(hba->dev, "%s() finished; outstanding_tasks = %#lx.\n",
8931 		 __func__, hba->outstanding_tasks);
8932 
8933 	return hba->outstanding_reqs ? SCSI_EH_RESET_TIMER : SCSI_EH_DONE;
8934 }
8935 
8936 static const struct attribute_group *ufshcd_driver_groups[] = {
8937 	&ufs_sysfs_unit_descriptor_group,
8938 	&ufs_sysfs_lun_attributes_group,
8939 	NULL,
8940 };
8941 
8942 static struct ufs_hba_variant_params ufs_hba_vps = {
8943 	.hba_enable_delay_us		= 1000,
8944 	.wb_flush_threshold		= UFS_WB_BUF_REMAIN_PERCENT(40),
8945 	.devfreq_profile.polling_ms	= 100,
8946 	.devfreq_profile.target		= ufshcd_devfreq_target,
8947 	.devfreq_profile.get_dev_status	= ufshcd_devfreq_get_dev_status,
8948 	.ondemand_data.upthreshold	= 70,
8949 	.ondemand_data.downdifferential	= 5,
8950 };
8951 
8952 static const struct scsi_host_template ufshcd_driver_template = {
8953 	.module			= THIS_MODULE,
8954 	.name			= UFSHCD,
8955 	.proc_name		= UFSHCD,
8956 	.map_queues		= ufshcd_map_queues,
8957 	.queuecommand		= ufshcd_queuecommand,
8958 	.mq_poll		= ufshcd_poll,
8959 	.slave_alloc		= ufshcd_slave_alloc,
8960 	.slave_configure	= ufshcd_slave_configure,
8961 	.slave_destroy		= ufshcd_slave_destroy,
8962 	.change_queue_depth	= ufshcd_change_queue_depth,
8963 	.eh_abort_handler	= ufshcd_abort,
8964 	.eh_device_reset_handler = ufshcd_eh_device_reset_handler,
8965 	.eh_host_reset_handler   = ufshcd_eh_host_reset_handler,
8966 	.eh_timed_out		= ufshcd_eh_timed_out,
8967 	.this_id		= -1,
8968 	.sg_tablesize		= SG_ALL,
8969 	.cmd_per_lun		= UFSHCD_CMD_PER_LUN,
8970 	.can_queue		= UFSHCD_CAN_QUEUE,
8971 	.max_segment_size	= PRDT_DATA_BYTE_COUNT_MAX,
8972 	.max_sectors		= SZ_1M / SECTOR_SIZE,
8973 	.max_host_blocked	= 1,
8974 	.track_queue_depth	= 1,
8975 	.skip_settle_delay	= 1,
8976 	.sdev_groups		= ufshcd_driver_groups,
8977 	.rpm_autosuspend_delay	= RPM_AUTOSUSPEND_DELAY_MS,
8978 };
8979 
8980 static int ufshcd_config_vreg_load(struct device *dev, struct ufs_vreg *vreg,
8981 				   int ua)
8982 {
8983 	int ret;
8984 
8985 	if (!vreg)
8986 		return 0;
8987 
8988 	/*
8989 	 * "set_load" operation shall be required on those regulators
8990 	 * which specifically configured current limitation. Otherwise
8991 	 * zero max_uA may cause unexpected behavior when regulator is
8992 	 * enabled or set as high power mode.
8993 	 */
8994 	if (!vreg->max_uA)
8995 		return 0;
8996 
8997 	ret = regulator_set_load(vreg->reg, ua);
8998 	if (ret < 0) {
8999 		dev_err(dev, "%s: %s set load (ua=%d) failed, err=%d\n",
9000 				__func__, vreg->name, ua, ret);
9001 	}
9002 
9003 	return ret;
9004 }
9005 
9006 static inline int ufshcd_config_vreg_lpm(struct ufs_hba *hba,
9007 					 struct ufs_vreg *vreg)
9008 {
9009 	return ufshcd_config_vreg_load(hba->dev, vreg, UFS_VREG_LPM_LOAD_UA);
9010 }
9011 
9012 static inline int ufshcd_config_vreg_hpm(struct ufs_hba *hba,
9013 					 struct ufs_vreg *vreg)
9014 {
9015 	if (!vreg)
9016 		return 0;
9017 
9018 	return ufshcd_config_vreg_load(hba->dev, vreg, vreg->max_uA);
9019 }
9020 
9021 static int ufshcd_config_vreg(struct device *dev,
9022 		struct ufs_vreg *vreg, bool on)
9023 {
9024 	if (regulator_count_voltages(vreg->reg) <= 0)
9025 		return 0;
9026 
9027 	return ufshcd_config_vreg_load(dev, vreg, on ? vreg->max_uA : 0);
9028 }
9029 
9030 static int ufshcd_enable_vreg(struct device *dev, struct ufs_vreg *vreg)
9031 {
9032 	int ret = 0;
9033 
9034 	if (!vreg || vreg->enabled)
9035 		goto out;
9036 
9037 	ret = ufshcd_config_vreg(dev, vreg, true);
9038 	if (!ret)
9039 		ret = regulator_enable(vreg->reg);
9040 
9041 	if (!ret)
9042 		vreg->enabled = true;
9043 	else
9044 		dev_err(dev, "%s: %s enable failed, err=%d\n",
9045 				__func__, vreg->name, ret);
9046 out:
9047 	return ret;
9048 }
9049 
9050 static int ufshcd_disable_vreg(struct device *dev, struct ufs_vreg *vreg)
9051 {
9052 	int ret = 0;
9053 
9054 	if (!vreg || !vreg->enabled || vreg->always_on)
9055 		goto out;
9056 
9057 	ret = regulator_disable(vreg->reg);
9058 
9059 	if (!ret) {
9060 		/* ignore errors on applying disable config */
9061 		ufshcd_config_vreg(dev, vreg, false);
9062 		vreg->enabled = false;
9063 	} else {
9064 		dev_err(dev, "%s: %s disable failed, err=%d\n",
9065 				__func__, vreg->name, ret);
9066 	}
9067 out:
9068 	return ret;
9069 }
9070 
9071 static int ufshcd_setup_vreg(struct ufs_hba *hba, bool on)
9072 {
9073 	int ret = 0;
9074 	struct device *dev = hba->dev;
9075 	struct ufs_vreg_info *info = &hba->vreg_info;
9076 
9077 	ret = ufshcd_toggle_vreg(dev, info->vcc, on);
9078 	if (ret)
9079 		goto out;
9080 
9081 	ret = ufshcd_toggle_vreg(dev, info->vccq, on);
9082 	if (ret)
9083 		goto out;
9084 
9085 	ret = ufshcd_toggle_vreg(dev, info->vccq2, on);
9086 
9087 out:
9088 	if (ret) {
9089 		ufshcd_toggle_vreg(dev, info->vccq2, false);
9090 		ufshcd_toggle_vreg(dev, info->vccq, false);
9091 		ufshcd_toggle_vreg(dev, info->vcc, false);
9092 	}
9093 	return ret;
9094 }
9095 
9096 static int ufshcd_setup_hba_vreg(struct ufs_hba *hba, bool on)
9097 {
9098 	struct ufs_vreg_info *info = &hba->vreg_info;
9099 
9100 	return ufshcd_toggle_vreg(hba->dev, info->vdd_hba, on);
9101 }
9102 
9103 int ufshcd_get_vreg(struct device *dev, struct ufs_vreg *vreg)
9104 {
9105 	int ret = 0;
9106 
9107 	if (!vreg)
9108 		goto out;
9109 
9110 	vreg->reg = devm_regulator_get(dev, vreg->name);
9111 	if (IS_ERR(vreg->reg)) {
9112 		ret = PTR_ERR(vreg->reg);
9113 		dev_err(dev, "%s: %s get failed, err=%d\n",
9114 				__func__, vreg->name, ret);
9115 	}
9116 out:
9117 	return ret;
9118 }
9119 EXPORT_SYMBOL_GPL(ufshcd_get_vreg);
9120 
9121 static int ufshcd_init_vreg(struct ufs_hba *hba)
9122 {
9123 	int ret = 0;
9124 	struct device *dev = hba->dev;
9125 	struct ufs_vreg_info *info = &hba->vreg_info;
9126 
9127 	ret = ufshcd_get_vreg(dev, info->vcc);
9128 	if (ret)
9129 		goto out;
9130 
9131 	ret = ufshcd_get_vreg(dev, info->vccq);
9132 	if (!ret)
9133 		ret = ufshcd_get_vreg(dev, info->vccq2);
9134 out:
9135 	return ret;
9136 }
9137 
9138 static int ufshcd_init_hba_vreg(struct ufs_hba *hba)
9139 {
9140 	struct ufs_vreg_info *info = &hba->vreg_info;
9141 
9142 	return ufshcd_get_vreg(hba->dev, info->vdd_hba);
9143 }
9144 
9145 static int ufshcd_setup_clocks(struct ufs_hba *hba, bool on)
9146 {
9147 	int ret = 0;
9148 	struct ufs_clk_info *clki;
9149 	struct list_head *head = &hba->clk_list_head;
9150 	unsigned long flags;
9151 	ktime_t start = ktime_get();
9152 	bool clk_state_changed = false;
9153 
9154 	if (list_empty(head))
9155 		goto out;
9156 
9157 	ret = ufshcd_vops_setup_clocks(hba, on, PRE_CHANGE);
9158 	if (ret)
9159 		return ret;
9160 
9161 	list_for_each_entry(clki, head, list) {
9162 		if (!IS_ERR_OR_NULL(clki->clk)) {
9163 			/*
9164 			 * Don't disable clocks which are needed
9165 			 * to keep the link active.
9166 			 */
9167 			if (ufshcd_is_link_active(hba) &&
9168 			    clki->keep_link_active)
9169 				continue;
9170 
9171 			clk_state_changed = on ^ clki->enabled;
9172 			if (on && !clki->enabled) {
9173 				ret = clk_prepare_enable(clki->clk);
9174 				if (ret) {
9175 					dev_err(hba->dev, "%s: %s prepare enable failed, %d\n",
9176 						__func__, clki->name, ret);
9177 					goto out;
9178 				}
9179 			} else if (!on && clki->enabled) {
9180 				clk_disable_unprepare(clki->clk);
9181 			}
9182 			clki->enabled = on;
9183 			dev_dbg(hba->dev, "%s: clk: %s %sabled\n", __func__,
9184 					clki->name, on ? "en" : "dis");
9185 		}
9186 	}
9187 
9188 	ret = ufshcd_vops_setup_clocks(hba, on, POST_CHANGE);
9189 	if (ret)
9190 		return ret;
9191 
9192 out:
9193 	if (ret) {
9194 		list_for_each_entry(clki, head, list) {
9195 			if (!IS_ERR_OR_NULL(clki->clk) && clki->enabled)
9196 				clk_disable_unprepare(clki->clk);
9197 		}
9198 	} else if (!ret && on) {
9199 		spin_lock_irqsave(hba->host->host_lock, flags);
9200 		hba->clk_gating.state = CLKS_ON;
9201 		trace_ufshcd_clk_gating(dev_name(hba->dev),
9202 					hba->clk_gating.state);
9203 		spin_unlock_irqrestore(hba->host->host_lock, flags);
9204 	}
9205 
9206 	if (clk_state_changed)
9207 		trace_ufshcd_profile_clk_gating(dev_name(hba->dev),
9208 			(on ? "on" : "off"),
9209 			ktime_to_us(ktime_sub(ktime_get(), start)), ret);
9210 	return ret;
9211 }
9212 
9213 static enum ufs_ref_clk_freq ufshcd_parse_ref_clk_property(struct ufs_hba *hba)
9214 {
9215 	u32 freq;
9216 	int ret = device_property_read_u32(hba->dev, "ref-clk-freq", &freq);
9217 
9218 	if (ret) {
9219 		dev_dbg(hba->dev, "Cannot query 'ref-clk-freq' property = %d", ret);
9220 		return REF_CLK_FREQ_INVAL;
9221 	}
9222 
9223 	return ufs_get_bref_clk_from_hz(freq);
9224 }
9225 
9226 static int ufshcd_init_clocks(struct ufs_hba *hba)
9227 {
9228 	int ret = 0;
9229 	struct ufs_clk_info *clki;
9230 	struct device *dev = hba->dev;
9231 	struct list_head *head = &hba->clk_list_head;
9232 
9233 	if (list_empty(head))
9234 		goto out;
9235 
9236 	list_for_each_entry(clki, head, list) {
9237 		if (!clki->name)
9238 			continue;
9239 
9240 		clki->clk = devm_clk_get(dev, clki->name);
9241 		if (IS_ERR(clki->clk)) {
9242 			ret = PTR_ERR(clki->clk);
9243 			dev_err(dev, "%s: %s clk get failed, %d\n",
9244 					__func__, clki->name, ret);
9245 			goto out;
9246 		}
9247 
9248 		/*
9249 		 * Parse device ref clk freq as per device tree "ref_clk".
9250 		 * Default dev_ref_clk_freq is set to REF_CLK_FREQ_INVAL
9251 		 * in ufshcd_alloc_host().
9252 		 */
9253 		if (!strcmp(clki->name, "ref_clk"))
9254 			ufshcd_parse_dev_ref_clk_freq(hba, clki->clk);
9255 
9256 		if (clki->max_freq) {
9257 			ret = clk_set_rate(clki->clk, clki->max_freq);
9258 			if (ret) {
9259 				dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
9260 					__func__, clki->name,
9261 					clki->max_freq, ret);
9262 				goto out;
9263 			}
9264 			clki->curr_freq = clki->max_freq;
9265 		}
9266 		dev_dbg(dev, "%s: clk: %s, rate: %lu\n", __func__,
9267 				clki->name, clk_get_rate(clki->clk));
9268 	}
9269 
9270 	/* Set Max. frequency for all clocks */
9271 	if (hba->use_pm_opp) {
9272 		ret = ufshcd_opp_set_rate(hba, ULONG_MAX);
9273 		if (ret) {
9274 			dev_err(hba->dev, "%s: failed to set OPP: %d", __func__,
9275 				ret);
9276 			goto out;
9277 		}
9278 	}
9279 
9280 out:
9281 	return ret;
9282 }
9283 
9284 static int ufshcd_variant_hba_init(struct ufs_hba *hba)
9285 {
9286 	int err = 0;
9287 
9288 	if (!hba->vops)
9289 		goto out;
9290 
9291 	err = ufshcd_vops_init(hba);
9292 	if (err)
9293 		dev_err_probe(hba->dev, err,
9294 			      "%s: variant %s init failed with err %d\n",
9295 			      __func__, ufshcd_get_var_name(hba), err);
9296 out:
9297 	return err;
9298 }
9299 
9300 static void ufshcd_variant_hba_exit(struct ufs_hba *hba)
9301 {
9302 	if (!hba->vops)
9303 		return;
9304 
9305 	ufshcd_vops_exit(hba);
9306 }
9307 
9308 static int ufshcd_hba_init(struct ufs_hba *hba)
9309 {
9310 	int err;
9311 
9312 	/*
9313 	 * Handle host controller power separately from the UFS device power
9314 	 * rails as it will help controlling the UFS host controller power
9315 	 * collapse easily which is different than UFS device power collapse.
9316 	 * Also, enable the host controller power before we go ahead with rest
9317 	 * of the initialization here.
9318 	 */
9319 	err = ufshcd_init_hba_vreg(hba);
9320 	if (err)
9321 		goto out;
9322 
9323 	err = ufshcd_setup_hba_vreg(hba, true);
9324 	if (err)
9325 		goto out;
9326 
9327 	err = ufshcd_init_clocks(hba);
9328 	if (err)
9329 		goto out_disable_hba_vreg;
9330 
9331 	if (hba->dev_ref_clk_freq == REF_CLK_FREQ_INVAL)
9332 		hba->dev_ref_clk_freq = ufshcd_parse_ref_clk_property(hba);
9333 
9334 	err = ufshcd_setup_clocks(hba, true);
9335 	if (err)
9336 		goto out_disable_hba_vreg;
9337 
9338 	err = ufshcd_init_vreg(hba);
9339 	if (err)
9340 		goto out_disable_clks;
9341 
9342 	err = ufshcd_setup_vreg(hba, true);
9343 	if (err)
9344 		goto out_disable_clks;
9345 
9346 	err = ufshcd_variant_hba_init(hba);
9347 	if (err)
9348 		goto out_disable_vreg;
9349 
9350 	ufs_debugfs_hba_init(hba);
9351 
9352 	hba->is_powered = true;
9353 	goto out;
9354 
9355 out_disable_vreg:
9356 	ufshcd_setup_vreg(hba, false);
9357 out_disable_clks:
9358 	ufshcd_setup_clocks(hba, false);
9359 out_disable_hba_vreg:
9360 	ufshcd_setup_hba_vreg(hba, false);
9361 out:
9362 	return err;
9363 }
9364 
9365 static void ufshcd_hba_exit(struct ufs_hba *hba)
9366 {
9367 	if (hba->is_powered) {
9368 		ufshcd_exit_clk_scaling(hba);
9369 		ufshcd_exit_clk_gating(hba);
9370 		if (hba->eh_wq)
9371 			destroy_workqueue(hba->eh_wq);
9372 		ufs_debugfs_hba_exit(hba);
9373 		ufshcd_variant_hba_exit(hba);
9374 		ufshcd_setup_vreg(hba, false);
9375 		ufshcd_setup_clocks(hba, false);
9376 		ufshcd_setup_hba_vreg(hba, false);
9377 		hba->is_powered = false;
9378 		ufs_put_device_desc(hba);
9379 	}
9380 }
9381 
9382 static int ufshcd_execute_start_stop(struct scsi_device *sdev,
9383 				     enum ufs_dev_pwr_mode pwr_mode,
9384 				     struct scsi_sense_hdr *sshdr)
9385 {
9386 	const unsigned char cdb[6] = { START_STOP, 0, 0, 0, pwr_mode << 4, 0 };
9387 	const struct scsi_exec_args args = {
9388 		.sshdr = sshdr,
9389 		.req_flags = BLK_MQ_REQ_PM,
9390 		.scmd_flags = SCMD_FAIL_IF_RECOVERING,
9391 	};
9392 
9393 	return scsi_execute_cmd(sdev, cdb, REQ_OP_DRV_IN, /*buffer=*/NULL,
9394 			/*bufflen=*/0, /*timeout=*/10 * HZ, /*retries=*/0,
9395 			&args);
9396 }
9397 
9398 /**
9399  * ufshcd_set_dev_pwr_mode - sends START STOP UNIT command to set device
9400  *			     power mode
9401  * @hba: per adapter instance
9402  * @pwr_mode: device power mode to set
9403  *
9404  * Return: 0 if requested power mode is set successfully;
9405  *         < 0 if failed to set the requested power mode.
9406  */
9407 static int ufshcd_set_dev_pwr_mode(struct ufs_hba *hba,
9408 				     enum ufs_dev_pwr_mode pwr_mode)
9409 {
9410 	struct scsi_sense_hdr sshdr;
9411 	struct scsi_device *sdp;
9412 	unsigned long flags;
9413 	int ret, retries;
9414 
9415 	spin_lock_irqsave(hba->host->host_lock, flags);
9416 	sdp = hba->ufs_device_wlun;
9417 	if (sdp && scsi_device_online(sdp))
9418 		ret = scsi_device_get(sdp);
9419 	else
9420 		ret = -ENODEV;
9421 	spin_unlock_irqrestore(hba->host->host_lock, flags);
9422 
9423 	if (ret)
9424 		return ret;
9425 
9426 	/*
9427 	 * If scsi commands fail, the scsi mid-layer schedules scsi error-
9428 	 * handling, which would wait for host to be resumed. Since we know
9429 	 * we are functional while we are here, skip host resume in error
9430 	 * handling context.
9431 	 */
9432 	hba->host->eh_noresume = 1;
9433 
9434 	/*
9435 	 * Current function would be generally called from the power management
9436 	 * callbacks hence set the RQF_PM flag so that it doesn't resume the
9437 	 * already suspended childs.
9438 	 */
9439 	for (retries = 3; retries > 0; --retries) {
9440 		ret = ufshcd_execute_start_stop(sdp, pwr_mode, &sshdr);
9441 		/*
9442 		 * scsi_execute() only returns a negative value if the request
9443 		 * queue is dying.
9444 		 */
9445 		if (ret <= 0)
9446 			break;
9447 	}
9448 	if (ret) {
9449 		sdev_printk(KERN_WARNING, sdp,
9450 			    "START_STOP failed for power mode: %d, result %x\n",
9451 			    pwr_mode, ret);
9452 		if (ret > 0) {
9453 			if (scsi_sense_valid(&sshdr))
9454 				scsi_print_sense_hdr(sdp, NULL, &sshdr);
9455 			ret = -EIO;
9456 		}
9457 	} else {
9458 		hba->curr_dev_pwr_mode = pwr_mode;
9459 	}
9460 
9461 	scsi_device_put(sdp);
9462 	hba->host->eh_noresume = 0;
9463 	return ret;
9464 }
9465 
9466 static int ufshcd_link_state_transition(struct ufs_hba *hba,
9467 					enum uic_link_state req_link_state,
9468 					bool check_for_bkops)
9469 {
9470 	int ret = 0;
9471 
9472 	if (req_link_state == hba->uic_link_state)
9473 		return 0;
9474 
9475 	if (req_link_state == UIC_LINK_HIBERN8_STATE) {
9476 		ret = ufshcd_uic_hibern8_enter(hba);
9477 		if (!ret) {
9478 			ufshcd_set_link_hibern8(hba);
9479 		} else {
9480 			dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
9481 					__func__, ret);
9482 			goto out;
9483 		}
9484 	}
9485 	/*
9486 	 * If autobkops is enabled, link can't be turned off because
9487 	 * turning off the link would also turn off the device, except in the
9488 	 * case of DeepSleep where the device is expected to remain powered.
9489 	 */
9490 	else if ((req_link_state == UIC_LINK_OFF_STATE) &&
9491 		 (!check_for_bkops || !hba->auto_bkops_enabled)) {
9492 		/*
9493 		 * Let's make sure that link is in low power mode, we are doing
9494 		 * this currently by putting the link in Hibern8. Otherway to
9495 		 * put the link in low power mode is to send the DME end point
9496 		 * to device and then send the DME reset command to local
9497 		 * unipro. But putting the link in hibern8 is much faster.
9498 		 *
9499 		 * Note also that putting the link in Hibern8 is a requirement
9500 		 * for entering DeepSleep.
9501 		 */
9502 		ret = ufshcd_uic_hibern8_enter(hba);
9503 		if (ret) {
9504 			dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
9505 					__func__, ret);
9506 			goto out;
9507 		}
9508 		/*
9509 		 * Change controller state to "reset state" which
9510 		 * should also put the link in off/reset state
9511 		 */
9512 		ufshcd_hba_stop(hba);
9513 		/*
9514 		 * TODO: Check if we need any delay to make sure that
9515 		 * controller is reset
9516 		 */
9517 		ufshcd_set_link_off(hba);
9518 	}
9519 
9520 out:
9521 	return ret;
9522 }
9523 
9524 static void ufshcd_vreg_set_lpm(struct ufs_hba *hba)
9525 {
9526 	bool vcc_off = false;
9527 
9528 	/*
9529 	 * It seems some UFS devices may keep drawing more than sleep current
9530 	 * (atleast for 500us) from UFS rails (especially from VCCQ rail).
9531 	 * To avoid this situation, add 2ms delay before putting these UFS
9532 	 * rails in LPM mode.
9533 	 */
9534 	if (!ufshcd_is_link_active(hba) &&
9535 	    hba->dev_quirks & UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM)
9536 		usleep_range(2000, 2100);
9537 
9538 	/*
9539 	 * If UFS device is either in UFS_Sleep turn off VCC rail to save some
9540 	 * power.
9541 	 *
9542 	 * If UFS device and link is in OFF state, all power supplies (VCC,
9543 	 * VCCQ, VCCQ2) can be turned off if power on write protect is not
9544 	 * required. If UFS link is inactive (Hibern8 or OFF state) and device
9545 	 * is in sleep state, put VCCQ & VCCQ2 rails in LPM mode.
9546 	 *
9547 	 * Ignore the error returned by ufshcd_toggle_vreg() as device is anyway
9548 	 * in low power state which would save some power.
9549 	 *
9550 	 * If Write Booster is enabled and the device needs to flush the WB
9551 	 * buffer OR if bkops status is urgent for WB, keep Vcc on.
9552 	 */
9553 	if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba) &&
9554 	    !hba->dev_info.is_lu_power_on_wp) {
9555 		ufshcd_setup_vreg(hba, false);
9556 		vcc_off = true;
9557 	} else if (!ufshcd_is_ufs_dev_active(hba)) {
9558 		ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, false);
9559 		vcc_off = true;
9560 		if (ufshcd_is_link_hibern8(hba) || ufshcd_is_link_off(hba)) {
9561 			ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq);
9562 			ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq2);
9563 		}
9564 	}
9565 
9566 	/*
9567 	 * Some UFS devices require delay after VCC power rail is turned-off.
9568 	 */
9569 	if (vcc_off && hba->vreg_info.vcc &&
9570 		hba->dev_quirks & UFS_DEVICE_QUIRK_DELAY_AFTER_LPM)
9571 		usleep_range(5000, 5100);
9572 }
9573 
9574 #ifdef CONFIG_PM
9575 static int ufshcd_vreg_set_hpm(struct ufs_hba *hba)
9576 {
9577 	int ret = 0;
9578 
9579 	if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba) &&
9580 	    !hba->dev_info.is_lu_power_on_wp) {
9581 		ret = ufshcd_setup_vreg(hba, true);
9582 	} else if (!ufshcd_is_ufs_dev_active(hba)) {
9583 		if (!ufshcd_is_link_active(hba)) {
9584 			ret = ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq);
9585 			if (ret)
9586 				goto vcc_disable;
9587 			ret = ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq2);
9588 			if (ret)
9589 				goto vccq_lpm;
9590 		}
9591 		ret = ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, true);
9592 	}
9593 	goto out;
9594 
9595 vccq_lpm:
9596 	ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq);
9597 vcc_disable:
9598 	ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, false);
9599 out:
9600 	return ret;
9601 }
9602 #endif /* CONFIG_PM */
9603 
9604 static void ufshcd_hba_vreg_set_lpm(struct ufs_hba *hba)
9605 {
9606 	if (ufshcd_is_link_off(hba) || ufshcd_can_aggressive_pc(hba))
9607 		ufshcd_setup_hba_vreg(hba, false);
9608 }
9609 
9610 static void ufshcd_hba_vreg_set_hpm(struct ufs_hba *hba)
9611 {
9612 	if (ufshcd_is_link_off(hba) || ufshcd_can_aggressive_pc(hba))
9613 		ufshcd_setup_hba_vreg(hba, true);
9614 }
9615 
9616 static int __ufshcd_wl_suspend(struct ufs_hba *hba, enum ufs_pm_op pm_op)
9617 {
9618 	int ret = 0;
9619 	bool check_for_bkops;
9620 	enum ufs_pm_level pm_lvl;
9621 	enum ufs_dev_pwr_mode req_dev_pwr_mode;
9622 	enum uic_link_state req_link_state;
9623 
9624 	hba->pm_op_in_progress = true;
9625 	if (pm_op != UFS_SHUTDOWN_PM) {
9626 		pm_lvl = pm_op == UFS_RUNTIME_PM ?
9627 			 hba->rpm_lvl : hba->spm_lvl;
9628 		req_dev_pwr_mode = ufs_get_pm_lvl_to_dev_pwr_mode(pm_lvl);
9629 		req_link_state = ufs_get_pm_lvl_to_link_pwr_state(pm_lvl);
9630 	} else {
9631 		req_dev_pwr_mode = UFS_POWERDOWN_PWR_MODE;
9632 		req_link_state = UIC_LINK_OFF_STATE;
9633 	}
9634 
9635 	/*
9636 	 * If we can't transition into any of the low power modes
9637 	 * just gate the clocks.
9638 	 */
9639 	ufshcd_hold(hba);
9640 	hba->clk_gating.is_suspended = true;
9641 
9642 	if (ufshcd_is_clkscaling_supported(hba))
9643 		ufshcd_clk_scaling_suspend(hba, true);
9644 
9645 	if (req_dev_pwr_mode == UFS_ACTIVE_PWR_MODE &&
9646 			req_link_state == UIC_LINK_ACTIVE_STATE) {
9647 		goto vops_suspend;
9648 	}
9649 
9650 	if ((req_dev_pwr_mode == hba->curr_dev_pwr_mode) &&
9651 	    (req_link_state == hba->uic_link_state))
9652 		goto enable_scaling;
9653 
9654 	/* UFS device & link must be active before we enter in this function */
9655 	if (!ufshcd_is_ufs_dev_active(hba) || !ufshcd_is_link_active(hba)) {
9656 		ret = -EINVAL;
9657 		goto enable_scaling;
9658 	}
9659 
9660 	if (pm_op == UFS_RUNTIME_PM) {
9661 		if (ufshcd_can_autobkops_during_suspend(hba)) {
9662 			/*
9663 			 * The device is idle with no requests in the queue,
9664 			 * allow background operations if bkops status shows
9665 			 * that performance might be impacted.
9666 			 */
9667 			ret = ufshcd_urgent_bkops(hba);
9668 			if (ret) {
9669 				/*
9670 				 * If return err in suspend flow, IO will hang.
9671 				 * Trigger error handler and break suspend for
9672 				 * error recovery.
9673 				 */
9674 				ufshcd_force_error_recovery(hba);
9675 				ret = -EBUSY;
9676 				goto enable_scaling;
9677 			}
9678 		} else {
9679 			/* make sure that auto bkops is disabled */
9680 			ufshcd_disable_auto_bkops(hba);
9681 		}
9682 		/*
9683 		 * If device needs to do BKOP or WB buffer flush during
9684 		 * Hibern8, keep device power mode as "active power mode"
9685 		 * and VCC supply.
9686 		 */
9687 		hba->dev_info.b_rpm_dev_flush_capable =
9688 			hba->auto_bkops_enabled ||
9689 			(((req_link_state == UIC_LINK_HIBERN8_STATE) ||
9690 			((req_link_state == UIC_LINK_ACTIVE_STATE) &&
9691 			ufshcd_is_auto_hibern8_enabled(hba))) &&
9692 			ufshcd_wb_need_flush(hba));
9693 	}
9694 
9695 	flush_work(&hba->eeh_work);
9696 
9697 	ret = ufshcd_vops_suspend(hba, pm_op, PRE_CHANGE);
9698 	if (ret)
9699 		goto enable_scaling;
9700 
9701 	if (req_dev_pwr_mode != hba->curr_dev_pwr_mode) {
9702 		if (pm_op != UFS_RUNTIME_PM)
9703 			/* ensure that bkops is disabled */
9704 			ufshcd_disable_auto_bkops(hba);
9705 
9706 		if (!hba->dev_info.b_rpm_dev_flush_capable) {
9707 			ret = ufshcd_set_dev_pwr_mode(hba, req_dev_pwr_mode);
9708 			if (ret && pm_op != UFS_SHUTDOWN_PM) {
9709 				/*
9710 				 * If return err in suspend flow, IO will hang.
9711 				 * Trigger error handler and break suspend for
9712 				 * error recovery.
9713 				 */
9714 				ufshcd_force_error_recovery(hba);
9715 				ret = -EBUSY;
9716 			}
9717 			if (ret)
9718 				goto enable_scaling;
9719 		}
9720 	}
9721 
9722 	/*
9723 	 * In the case of DeepSleep, the device is expected to remain powered
9724 	 * with the link off, so do not check for bkops.
9725 	 */
9726 	check_for_bkops = !ufshcd_is_ufs_dev_deepsleep(hba);
9727 	ret = ufshcd_link_state_transition(hba, req_link_state, check_for_bkops);
9728 	if (ret && pm_op != UFS_SHUTDOWN_PM) {
9729 		/*
9730 		 * If return err in suspend flow, IO will hang.
9731 		 * Trigger error handler and break suspend for
9732 		 * error recovery.
9733 		 */
9734 		ufshcd_force_error_recovery(hba);
9735 		ret = -EBUSY;
9736 	}
9737 	if (ret)
9738 		goto set_dev_active;
9739 
9740 vops_suspend:
9741 	/*
9742 	 * Call vendor specific suspend callback. As these callbacks may access
9743 	 * vendor specific host controller register space call them before the
9744 	 * host clocks are ON.
9745 	 */
9746 	ret = ufshcd_vops_suspend(hba, pm_op, POST_CHANGE);
9747 	if (ret)
9748 		goto set_link_active;
9749 	goto out;
9750 
9751 set_link_active:
9752 	/*
9753 	 * Device hardware reset is required to exit DeepSleep. Also, for
9754 	 * DeepSleep, the link is off so host reset and restore will be done
9755 	 * further below.
9756 	 */
9757 	if (ufshcd_is_ufs_dev_deepsleep(hba)) {
9758 		ufshcd_device_reset(hba);
9759 		WARN_ON(!ufshcd_is_link_off(hba));
9760 	}
9761 	if (ufshcd_is_link_hibern8(hba) && !ufshcd_uic_hibern8_exit(hba))
9762 		ufshcd_set_link_active(hba);
9763 	else if (ufshcd_is_link_off(hba))
9764 		ufshcd_host_reset_and_restore(hba);
9765 set_dev_active:
9766 	/* Can also get here needing to exit DeepSleep */
9767 	if (ufshcd_is_ufs_dev_deepsleep(hba)) {
9768 		ufshcd_device_reset(hba);
9769 		ufshcd_host_reset_and_restore(hba);
9770 	}
9771 	if (!ufshcd_set_dev_pwr_mode(hba, UFS_ACTIVE_PWR_MODE))
9772 		ufshcd_disable_auto_bkops(hba);
9773 enable_scaling:
9774 	if (ufshcd_is_clkscaling_supported(hba))
9775 		ufshcd_clk_scaling_suspend(hba, false);
9776 
9777 	hba->dev_info.b_rpm_dev_flush_capable = false;
9778 out:
9779 	if (hba->dev_info.b_rpm_dev_flush_capable) {
9780 		schedule_delayed_work(&hba->rpm_dev_flush_recheck_work,
9781 			msecs_to_jiffies(RPM_DEV_FLUSH_RECHECK_WORK_DELAY_MS));
9782 	}
9783 
9784 	if (ret) {
9785 		ufshcd_update_evt_hist(hba, UFS_EVT_WL_SUSP_ERR, (u32)ret);
9786 		hba->clk_gating.is_suspended = false;
9787 		ufshcd_release(hba);
9788 	}
9789 	hba->pm_op_in_progress = false;
9790 	return ret;
9791 }
9792 
9793 #ifdef CONFIG_PM
9794 static int __ufshcd_wl_resume(struct ufs_hba *hba, enum ufs_pm_op pm_op)
9795 {
9796 	int ret;
9797 	enum uic_link_state old_link_state = hba->uic_link_state;
9798 
9799 	hba->pm_op_in_progress = true;
9800 
9801 	/*
9802 	 * Call vendor specific resume callback. As these callbacks may access
9803 	 * vendor specific host controller register space call them when the
9804 	 * host clocks are ON.
9805 	 */
9806 	ret = ufshcd_vops_resume(hba, pm_op);
9807 	if (ret)
9808 		goto out;
9809 
9810 	/* For DeepSleep, the only supported option is to have the link off */
9811 	WARN_ON(ufshcd_is_ufs_dev_deepsleep(hba) && !ufshcd_is_link_off(hba));
9812 
9813 	if (ufshcd_is_link_hibern8(hba)) {
9814 		ret = ufshcd_uic_hibern8_exit(hba);
9815 		if (!ret) {
9816 			ufshcd_set_link_active(hba);
9817 		} else {
9818 			dev_err(hba->dev, "%s: hibern8 exit failed %d\n",
9819 					__func__, ret);
9820 			goto vendor_suspend;
9821 		}
9822 	} else if (ufshcd_is_link_off(hba)) {
9823 		/*
9824 		 * A full initialization of the host and the device is
9825 		 * required since the link was put to off during suspend.
9826 		 * Note, in the case of DeepSleep, the device will exit
9827 		 * DeepSleep due to device reset.
9828 		 */
9829 		ret = ufshcd_reset_and_restore(hba);
9830 		/*
9831 		 * ufshcd_reset_and_restore() should have already
9832 		 * set the link state as active
9833 		 */
9834 		if (ret || !ufshcd_is_link_active(hba))
9835 			goto vendor_suspend;
9836 	}
9837 
9838 	if (!ufshcd_is_ufs_dev_active(hba)) {
9839 		ret = ufshcd_set_dev_pwr_mode(hba, UFS_ACTIVE_PWR_MODE);
9840 		if (ret)
9841 			goto set_old_link_state;
9842 		ufshcd_set_timestamp_attr(hba);
9843 	}
9844 
9845 	if (ufshcd_keep_autobkops_enabled_except_suspend(hba))
9846 		ufshcd_enable_auto_bkops(hba);
9847 	else
9848 		/*
9849 		 * If BKOPs operations are urgently needed at this moment then
9850 		 * keep auto-bkops enabled or else disable it.
9851 		 */
9852 		ufshcd_urgent_bkops(hba);
9853 
9854 	if (hba->ee_usr_mask)
9855 		ufshcd_write_ee_control(hba);
9856 
9857 	if (ufshcd_is_clkscaling_supported(hba))
9858 		ufshcd_clk_scaling_suspend(hba, false);
9859 
9860 	if (hba->dev_info.b_rpm_dev_flush_capable) {
9861 		hba->dev_info.b_rpm_dev_flush_capable = false;
9862 		cancel_delayed_work(&hba->rpm_dev_flush_recheck_work);
9863 	}
9864 
9865 	/* Enable Auto-Hibernate if configured */
9866 	ufshcd_auto_hibern8_enable(hba);
9867 
9868 	goto out;
9869 
9870 set_old_link_state:
9871 	ufshcd_link_state_transition(hba, old_link_state, 0);
9872 vendor_suspend:
9873 	ufshcd_vops_suspend(hba, pm_op, PRE_CHANGE);
9874 	ufshcd_vops_suspend(hba, pm_op, POST_CHANGE);
9875 out:
9876 	if (ret)
9877 		ufshcd_update_evt_hist(hba, UFS_EVT_WL_RES_ERR, (u32)ret);
9878 	hba->clk_gating.is_suspended = false;
9879 	ufshcd_release(hba);
9880 	hba->pm_op_in_progress = false;
9881 	return ret;
9882 }
9883 
9884 static int ufshcd_wl_runtime_suspend(struct device *dev)
9885 {
9886 	struct scsi_device *sdev = to_scsi_device(dev);
9887 	struct ufs_hba *hba;
9888 	int ret;
9889 	ktime_t start = ktime_get();
9890 
9891 	hba = shost_priv(sdev->host);
9892 
9893 	ret = __ufshcd_wl_suspend(hba, UFS_RUNTIME_PM);
9894 	if (ret)
9895 		dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
9896 
9897 	trace_ufshcd_wl_runtime_suspend(dev_name(dev), ret,
9898 		ktime_to_us(ktime_sub(ktime_get(), start)),
9899 		hba->curr_dev_pwr_mode, hba->uic_link_state);
9900 
9901 	return ret;
9902 }
9903 
9904 static int ufshcd_wl_runtime_resume(struct device *dev)
9905 {
9906 	struct scsi_device *sdev = to_scsi_device(dev);
9907 	struct ufs_hba *hba;
9908 	int ret = 0;
9909 	ktime_t start = ktime_get();
9910 
9911 	hba = shost_priv(sdev->host);
9912 
9913 	ret = __ufshcd_wl_resume(hba, UFS_RUNTIME_PM);
9914 	if (ret)
9915 		dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
9916 
9917 	trace_ufshcd_wl_runtime_resume(dev_name(dev), ret,
9918 		ktime_to_us(ktime_sub(ktime_get(), start)),
9919 		hba->curr_dev_pwr_mode, hba->uic_link_state);
9920 
9921 	return ret;
9922 }
9923 #endif
9924 
9925 #ifdef CONFIG_PM_SLEEP
9926 static int ufshcd_wl_suspend(struct device *dev)
9927 {
9928 	struct scsi_device *sdev = to_scsi_device(dev);
9929 	struct ufs_hba *hba;
9930 	int ret = 0;
9931 	ktime_t start = ktime_get();
9932 
9933 	hba = shost_priv(sdev->host);
9934 	down(&hba->host_sem);
9935 	hba->system_suspending = true;
9936 
9937 	if (pm_runtime_suspended(dev))
9938 		goto out;
9939 
9940 	ret = __ufshcd_wl_suspend(hba, UFS_SYSTEM_PM);
9941 	if (ret) {
9942 		dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__,  ret);
9943 		up(&hba->host_sem);
9944 	}
9945 
9946 out:
9947 	if (!ret)
9948 		hba->is_sys_suspended = true;
9949 	trace_ufshcd_wl_suspend(dev_name(dev), ret,
9950 		ktime_to_us(ktime_sub(ktime_get(), start)),
9951 		hba->curr_dev_pwr_mode, hba->uic_link_state);
9952 
9953 	return ret;
9954 }
9955 
9956 static int ufshcd_wl_resume(struct device *dev)
9957 {
9958 	struct scsi_device *sdev = to_scsi_device(dev);
9959 	struct ufs_hba *hba;
9960 	int ret = 0;
9961 	ktime_t start = ktime_get();
9962 
9963 	hba = shost_priv(sdev->host);
9964 
9965 	if (pm_runtime_suspended(dev))
9966 		goto out;
9967 
9968 	ret = __ufshcd_wl_resume(hba, UFS_SYSTEM_PM);
9969 	if (ret)
9970 		dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
9971 out:
9972 	trace_ufshcd_wl_resume(dev_name(dev), ret,
9973 		ktime_to_us(ktime_sub(ktime_get(), start)),
9974 		hba->curr_dev_pwr_mode, hba->uic_link_state);
9975 	if (!ret)
9976 		hba->is_sys_suspended = false;
9977 	hba->system_suspending = false;
9978 	up(&hba->host_sem);
9979 	return ret;
9980 }
9981 #endif
9982 
9983 /**
9984  * ufshcd_suspend - helper function for suspend operations
9985  * @hba: per adapter instance
9986  *
9987  * This function will put disable irqs, turn off clocks
9988  * and set vreg and hba-vreg in lpm mode.
9989  *
9990  * Return: 0 upon success; < 0 upon failure.
9991  */
9992 static int ufshcd_suspend(struct ufs_hba *hba)
9993 {
9994 	int ret;
9995 
9996 	if (!hba->is_powered)
9997 		return 0;
9998 	/*
9999 	 * Disable the host irq as host controller as there won't be any
10000 	 * host controller transaction expected till resume.
10001 	 */
10002 	ufshcd_disable_irq(hba);
10003 	ret = ufshcd_setup_clocks(hba, false);
10004 	if (ret) {
10005 		ufshcd_enable_irq(hba);
10006 		return ret;
10007 	}
10008 	if (ufshcd_is_clkgating_allowed(hba)) {
10009 		hba->clk_gating.state = CLKS_OFF;
10010 		trace_ufshcd_clk_gating(dev_name(hba->dev),
10011 					hba->clk_gating.state);
10012 	}
10013 
10014 	ufshcd_vreg_set_lpm(hba);
10015 	/* Put the host controller in low power mode if possible */
10016 	ufshcd_hba_vreg_set_lpm(hba);
10017 	return ret;
10018 }
10019 
10020 #ifdef CONFIG_PM
10021 /**
10022  * ufshcd_resume - helper function for resume operations
10023  * @hba: per adapter instance
10024  *
10025  * This function basically turns on the regulators, clocks and
10026  * irqs of the hba.
10027  *
10028  * Return: 0 for success and non-zero for failure.
10029  */
10030 static int ufshcd_resume(struct ufs_hba *hba)
10031 {
10032 	int ret;
10033 
10034 	if (!hba->is_powered)
10035 		return 0;
10036 
10037 	ufshcd_hba_vreg_set_hpm(hba);
10038 	ret = ufshcd_vreg_set_hpm(hba);
10039 	if (ret)
10040 		goto out;
10041 
10042 	/* Make sure clocks are enabled before accessing controller */
10043 	ret = ufshcd_setup_clocks(hba, true);
10044 	if (ret)
10045 		goto disable_vreg;
10046 
10047 	/* enable the host irq as host controller would be active soon */
10048 	ufshcd_enable_irq(hba);
10049 
10050 	goto out;
10051 
10052 disable_vreg:
10053 	ufshcd_vreg_set_lpm(hba);
10054 out:
10055 	if (ret)
10056 		ufshcd_update_evt_hist(hba, UFS_EVT_RESUME_ERR, (u32)ret);
10057 	return ret;
10058 }
10059 #endif /* CONFIG_PM */
10060 
10061 #ifdef CONFIG_PM_SLEEP
10062 /**
10063  * ufshcd_system_suspend - system suspend callback
10064  * @dev: Device associated with the UFS controller.
10065  *
10066  * Executed before putting the system into a sleep state in which the contents
10067  * of main memory are preserved.
10068  *
10069  * Return: 0 for success and non-zero for failure.
10070  */
10071 int ufshcd_system_suspend(struct device *dev)
10072 {
10073 	struct ufs_hba *hba = dev_get_drvdata(dev);
10074 	int ret = 0;
10075 	ktime_t start = ktime_get();
10076 
10077 	if (pm_runtime_suspended(hba->dev))
10078 		goto out;
10079 
10080 	ret = ufshcd_suspend(hba);
10081 out:
10082 	trace_ufshcd_system_suspend(dev_name(hba->dev), ret,
10083 		ktime_to_us(ktime_sub(ktime_get(), start)),
10084 		hba->curr_dev_pwr_mode, hba->uic_link_state);
10085 	return ret;
10086 }
10087 EXPORT_SYMBOL(ufshcd_system_suspend);
10088 
10089 /**
10090  * ufshcd_system_resume - system resume callback
10091  * @dev: Device associated with the UFS controller.
10092  *
10093  * Executed after waking the system up from a sleep state in which the contents
10094  * of main memory were preserved.
10095  *
10096  * Return: 0 for success and non-zero for failure.
10097  */
10098 int ufshcd_system_resume(struct device *dev)
10099 {
10100 	struct ufs_hba *hba = dev_get_drvdata(dev);
10101 	ktime_t start = ktime_get();
10102 	int ret = 0;
10103 
10104 	if (pm_runtime_suspended(hba->dev))
10105 		goto out;
10106 
10107 	ret = ufshcd_resume(hba);
10108 
10109 out:
10110 	trace_ufshcd_system_resume(dev_name(hba->dev), ret,
10111 		ktime_to_us(ktime_sub(ktime_get(), start)),
10112 		hba->curr_dev_pwr_mode, hba->uic_link_state);
10113 
10114 	return ret;
10115 }
10116 EXPORT_SYMBOL(ufshcd_system_resume);
10117 #endif /* CONFIG_PM_SLEEP */
10118 
10119 #ifdef CONFIG_PM
10120 /**
10121  * ufshcd_runtime_suspend - runtime suspend callback
10122  * @dev: Device associated with the UFS controller.
10123  *
10124  * Check the description of ufshcd_suspend() function for more details.
10125  *
10126  * Return: 0 for success and non-zero for failure.
10127  */
10128 int ufshcd_runtime_suspend(struct device *dev)
10129 {
10130 	struct ufs_hba *hba = dev_get_drvdata(dev);
10131 	int ret;
10132 	ktime_t start = ktime_get();
10133 
10134 	ret = ufshcd_suspend(hba);
10135 
10136 	trace_ufshcd_runtime_suspend(dev_name(hba->dev), ret,
10137 		ktime_to_us(ktime_sub(ktime_get(), start)),
10138 		hba->curr_dev_pwr_mode, hba->uic_link_state);
10139 	return ret;
10140 }
10141 EXPORT_SYMBOL(ufshcd_runtime_suspend);
10142 
10143 /**
10144  * ufshcd_runtime_resume - runtime resume routine
10145  * @dev: Device associated with the UFS controller.
10146  *
10147  * This function basically brings controller
10148  * to active state. Following operations are done in this function:
10149  *
10150  * 1. Turn on all the controller related clocks
10151  * 2. Turn ON VCC rail
10152  *
10153  * Return: 0 upon success; < 0 upon failure.
10154  */
10155 int ufshcd_runtime_resume(struct device *dev)
10156 {
10157 	struct ufs_hba *hba = dev_get_drvdata(dev);
10158 	int ret;
10159 	ktime_t start = ktime_get();
10160 
10161 	ret = ufshcd_resume(hba);
10162 
10163 	trace_ufshcd_runtime_resume(dev_name(hba->dev), ret,
10164 		ktime_to_us(ktime_sub(ktime_get(), start)),
10165 		hba->curr_dev_pwr_mode, hba->uic_link_state);
10166 	return ret;
10167 }
10168 EXPORT_SYMBOL(ufshcd_runtime_resume);
10169 #endif /* CONFIG_PM */
10170 
10171 static void ufshcd_wl_shutdown(struct device *dev)
10172 {
10173 	struct scsi_device *sdev = to_scsi_device(dev);
10174 	struct ufs_hba *hba = shost_priv(sdev->host);
10175 
10176 	down(&hba->host_sem);
10177 	hba->shutting_down = true;
10178 	up(&hba->host_sem);
10179 
10180 	/* Turn on everything while shutting down */
10181 	ufshcd_rpm_get_sync(hba);
10182 	scsi_device_quiesce(sdev);
10183 	shost_for_each_device(sdev, hba->host) {
10184 		if (sdev == hba->ufs_device_wlun)
10185 			continue;
10186 		scsi_device_quiesce(sdev);
10187 	}
10188 	__ufshcd_wl_suspend(hba, UFS_SHUTDOWN_PM);
10189 
10190 	/*
10191 	 * Next, turn off the UFS controller and the UFS regulators. Disable
10192 	 * clocks.
10193 	 */
10194 	if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba))
10195 		ufshcd_suspend(hba);
10196 
10197 	hba->is_powered = false;
10198 }
10199 
10200 /**
10201  * ufshcd_remove - de-allocate SCSI host and host memory space
10202  *		data structure memory
10203  * @hba: per adapter instance
10204  */
10205 void ufshcd_remove(struct ufs_hba *hba)
10206 {
10207 	if (hba->ufs_device_wlun)
10208 		ufshcd_rpm_get_sync(hba);
10209 	ufs_hwmon_remove(hba);
10210 	ufs_bsg_remove(hba);
10211 	ufs_sysfs_remove_nodes(hba->dev);
10212 	blk_mq_destroy_queue(hba->tmf_queue);
10213 	blk_put_queue(hba->tmf_queue);
10214 	blk_mq_free_tag_set(&hba->tmf_tag_set);
10215 	scsi_remove_host(hba->host);
10216 	/* disable interrupts */
10217 	ufshcd_disable_intr(hba, hba->intr_mask);
10218 	ufshcd_hba_stop(hba);
10219 	ufshcd_hba_exit(hba);
10220 }
10221 EXPORT_SYMBOL_GPL(ufshcd_remove);
10222 
10223 #ifdef CONFIG_PM_SLEEP
10224 int ufshcd_system_freeze(struct device *dev)
10225 {
10226 
10227 	return ufshcd_system_suspend(dev);
10228 
10229 }
10230 EXPORT_SYMBOL_GPL(ufshcd_system_freeze);
10231 
10232 int ufshcd_system_restore(struct device *dev)
10233 {
10234 
10235 	struct ufs_hba *hba = dev_get_drvdata(dev);
10236 	int ret;
10237 
10238 	ret = ufshcd_system_resume(dev);
10239 	if (ret)
10240 		return ret;
10241 
10242 	/* Configure UTRL and UTMRL base address registers */
10243 	ufshcd_writel(hba, lower_32_bits(hba->utrdl_dma_addr),
10244 			REG_UTP_TRANSFER_REQ_LIST_BASE_L);
10245 	ufshcd_writel(hba, upper_32_bits(hba->utrdl_dma_addr),
10246 			REG_UTP_TRANSFER_REQ_LIST_BASE_H);
10247 	ufshcd_writel(hba, lower_32_bits(hba->utmrdl_dma_addr),
10248 			REG_UTP_TASK_REQ_LIST_BASE_L);
10249 	ufshcd_writel(hba, upper_32_bits(hba->utmrdl_dma_addr),
10250 			REG_UTP_TASK_REQ_LIST_BASE_H);
10251 	/*
10252 	 * Make sure that UTRL and UTMRL base address registers
10253 	 * are updated with the latest queue addresses. Only after
10254 	 * updating these addresses, we can queue the new commands.
10255 	 */
10256 	mb();
10257 
10258 	/* Resuming from hibernate, assume that link was OFF */
10259 	ufshcd_set_link_off(hba);
10260 
10261 	return 0;
10262 
10263 }
10264 EXPORT_SYMBOL_GPL(ufshcd_system_restore);
10265 
10266 int ufshcd_system_thaw(struct device *dev)
10267 {
10268 	return ufshcd_system_resume(dev);
10269 }
10270 EXPORT_SYMBOL_GPL(ufshcd_system_thaw);
10271 #endif /* CONFIG_PM_SLEEP  */
10272 
10273 /**
10274  * ufshcd_dealloc_host - deallocate Host Bus Adapter (HBA)
10275  * @hba: pointer to Host Bus Adapter (HBA)
10276  */
10277 void ufshcd_dealloc_host(struct ufs_hba *hba)
10278 {
10279 	scsi_host_put(hba->host);
10280 }
10281 EXPORT_SYMBOL_GPL(ufshcd_dealloc_host);
10282 
10283 /**
10284  * ufshcd_set_dma_mask - Set dma mask based on the controller
10285  *			 addressing capability
10286  * @hba: per adapter instance
10287  *
10288  * Return: 0 for success, non-zero for failure.
10289  */
10290 static int ufshcd_set_dma_mask(struct ufs_hba *hba)
10291 {
10292 	if (hba->capabilities & MASK_64_ADDRESSING_SUPPORT) {
10293 		if (!dma_set_mask_and_coherent(hba->dev, DMA_BIT_MASK(64)))
10294 			return 0;
10295 	}
10296 	return dma_set_mask_and_coherent(hba->dev, DMA_BIT_MASK(32));
10297 }
10298 
10299 /**
10300  * ufshcd_alloc_host - allocate Host Bus Adapter (HBA)
10301  * @dev: pointer to device handle
10302  * @hba_handle: driver private handle
10303  *
10304  * Return: 0 on success, non-zero value on failure.
10305  */
10306 int ufshcd_alloc_host(struct device *dev, struct ufs_hba **hba_handle)
10307 {
10308 	struct Scsi_Host *host;
10309 	struct ufs_hba *hba;
10310 	int err = 0;
10311 
10312 	if (!dev) {
10313 		dev_err(dev,
10314 		"Invalid memory reference for dev is NULL\n");
10315 		err = -ENODEV;
10316 		goto out_error;
10317 	}
10318 
10319 	host = scsi_host_alloc(&ufshcd_driver_template,
10320 				sizeof(struct ufs_hba));
10321 	if (!host) {
10322 		dev_err(dev, "scsi_host_alloc failed\n");
10323 		err = -ENOMEM;
10324 		goto out_error;
10325 	}
10326 	host->nr_maps = HCTX_TYPE_POLL + 1;
10327 	hba = shost_priv(host);
10328 	hba->host = host;
10329 	hba->dev = dev;
10330 	hba->dev_ref_clk_freq = REF_CLK_FREQ_INVAL;
10331 	hba->nop_out_timeout = NOP_OUT_TIMEOUT;
10332 	ufshcd_set_sg_entry_size(hba, sizeof(struct ufshcd_sg_entry));
10333 	INIT_LIST_HEAD(&hba->clk_list_head);
10334 	spin_lock_init(&hba->outstanding_lock);
10335 
10336 	*hba_handle = hba;
10337 
10338 out_error:
10339 	return err;
10340 }
10341 EXPORT_SYMBOL(ufshcd_alloc_host);
10342 
10343 /* This function exists because blk_mq_alloc_tag_set() requires this. */
10344 static blk_status_t ufshcd_queue_tmf(struct blk_mq_hw_ctx *hctx,
10345 				     const struct blk_mq_queue_data *qd)
10346 {
10347 	WARN_ON_ONCE(true);
10348 	return BLK_STS_NOTSUPP;
10349 }
10350 
10351 static const struct blk_mq_ops ufshcd_tmf_ops = {
10352 	.queue_rq = ufshcd_queue_tmf,
10353 };
10354 
10355 /**
10356  * ufshcd_init - Driver initialization routine
10357  * @hba: per-adapter instance
10358  * @mmio_base: base register address
10359  * @irq: Interrupt line of device
10360  *
10361  * Return: 0 on success, non-zero value on failure.
10362  */
10363 int ufshcd_init(struct ufs_hba *hba, void __iomem *mmio_base, unsigned int irq)
10364 {
10365 	int err;
10366 	struct Scsi_Host *host = hba->host;
10367 	struct device *dev = hba->dev;
10368 	char eh_wq_name[sizeof("ufs_eh_wq_00")];
10369 
10370 	/*
10371 	 * dev_set_drvdata() must be called before any callbacks are registered
10372 	 * that use dev_get_drvdata() (frequency scaling, clock scaling, hwmon,
10373 	 * sysfs).
10374 	 */
10375 	dev_set_drvdata(dev, hba);
10376 
10377 	if (!mmio_base) {
10378 		dev_err(hba->dev,
10379 		"Invalid memory reference for mmio_base is NULL\n");
10380 		err = -ENODEV;
10381 		goto out_error;
10382 	}
10383 
10384 	hba->mmio_base = mmio_base;
10385 	hba->irq = irq;
10386 	hba->vps = &ufs_hba_vps;
10387 
10388 	err = ufshcd_hba_init(hba);
10389 	if (err)
10390 		goto out_error;
10391 
10392 	/* Read capabilities registers */
10393 	err = ufshcd_hba_capabilities(hba);
10394 	if (err)
10395 		goto out_disable;
10396 
10397 	/* Get UFS version supported by the controller */
10398 	hba->ufs_version = ufshcd_get_ufs_version(hba);
10399 
10400 	/* Get Interrupt bit mask per version */
10401 	hba->intr_mask = ufshcd_get_intr_mask(hba);
10402 
10403 	err = ufshcd_set_dma_mask(hba);
10404 	if (err) {
10405 		dev_err(hba->dev, "set dma mask failed\n");
10406 		goto out_disable;
10407 	}
10408 
10409 	/* Allocate memory for host memory space */
10410 	err = ufshcd_memory_alloc(hba);
10411 	if (err) {
10412 		dev_err(hba->dev, "Memory allocation failed\n");
10413 		goto out_disable;
10414 	}
10415 
10416 	/* Configure LRB */
10417 	ufshcd_host_memory_configure(hba);
10418 
10419 	host->can_queue = hba->nutrs - UFSHCD_NUM_RESERVED;
10420 	host->cmd_per_lun = hba->nutrs - UFSHCD_NUM_RESERVED;
10421 	host->max_id = UFSHCD_MAX_ID;
10422 	host->max_lun = UFS_MAX_LUNS;
10423 	host->max_channel = UFSHCD_MAX_CHANNEL;
10424 	host->unique_id = host->host_no;
10425 	host->max_cmd_len = UFS_CDB_SIZE;
10426 	host->queuecommand_may_block = !!(hba->caps & UFSHCD_CAP_CLK_GATING);
10427 
10428 	hba->max_pwr_info.is_valid = false;
10429 
10430 	/* Initialize work queues */
10431 	snprintf(eh_wq_name, sizeof(eh_wq_name), "ufs_eh_wq_%d",
10432 		 hba->host->host_no);
10433 	hba->eh_wq = create_singlethread_workqueue(eh_wq_name);
10434 	if (!hba->eh_wq) {
10435 		dev_err(hba->dev, "%s: failed to create eh workqueue\n",
10436 			__func__);
10437 		err = -ENOMEM;
10438 		goto out_disable;
10439 	}
10440 	INIT_WORK(&hba->eh_work, ufshcd_err_handler);
10441 	INIT_WORK(&hba->eeh_work, ufshcd_exception_event_handler);
10442 
10443 	sema_init(&hba->host_sem, 1);
10444 
10445 	/* Initialize UIC command mutex */
10446 	mutex_init(&hba->uic_cmd_mutex);
10447 
10448 	/* Initialize mutex for device management commands */
10449 	mutex_init(&hba->dev_cmd.lock);
10450 
10451 	/* Initialize mutex for exception event control */
10452 	mutex_init(&hba->ee_ctrl_mutex);
10453 
10454 	mutex_init(&hba->wb_mutex);
10455 	init_rwsem(&hba->clk_scaling_lock);
10456 
10457 	ufshcd_init_clk_gating(hba);
10458 
10459 	ufshcd_init_clk_scaling(hba);
10460 
10461 	/*
10462 	 * In order to avoid any spurious interrupt immediately after
10463 	 * registering UFS controller interrupt handler, clear any pending UFS
10464 	 * interrupt status and disable all the UFS interrupts.
10465 	 */
10466 	ufshcd_writel(hba, ufshcd_readl(hba, REG_INTERRUPT_STATUS),
10467 		      REG_INTERRUPT_STATUS);
10468 	ufshcd_writel(hba, 0, REG_INTERRUPT_ENABLE);
10469 	/*
10470 	 * Make sure that UFS interrupts are disabled and any pending interrupt
10471 	 * status is cleared before registering UFS interrupt handler.
10472 	 */
10473 	mb();
10474 
10475 	/* IRQ registration */
10476 	err = devm_request_irq(dev, irq, ufshcd_intr, IRQF_SHARED, UFSHCD, hba);
10477 	if (err) {
10478 		dev_err(hba->dev, "request irq failed\n");
10479 		goto out_disable;
10480 	} else {
10481 		hba->is_irq_enabled = true;
10482 	}
10483 
10484 	if (!is_mcq_supported(hba)) {
10485 		err = scsi_add_host(host, hba->dev);
10486 		if (err) {
10487 			dev_err(hba->dev, "scsi_add_host failed\n");
10488 			goto out_disable;
10489 		}
10490 	}
10491 
10492 	hba->tmf_tag_set = (struct blk_mq_tag_set) {
10493 		.nr_hw_queues	= 1,
10494 		.queue_depth	= hba->nutmrs,
10495 		.ops		= &ufshcd_tmf_ops,
10496 		.flags		= BLK_MQ_F_NO_SCHED,
10497 	};
10498 	err = blk_mq_alloc_tag_set(&hba->tmf_tag_set);
10499 	if (err < 0)
10500 		goto out_remove_scsi_host;
10501 	hba->tmf_queue = blk_mq_init_queue(&hba->tmf_tag_set);
10502 	if (IS_ERR(hba->tmf_queue)) {
10503 		err = PTR_ERR(hba->tmf_queue);
10504 		goto free_tmf_tag_set;
10505 	}
10506 	hba->tmf_rqs = devm_kcalloc(hba->dev, hba->nutmrs,
10507 				    sizeof(*hba->tmf_rqs), GFP_KERNEL);
10508 	if (!hba->tmf_rqs) {
10509 		err = -ENOMEM;
10510 		goto free_tmf_queue;
10511 	}
10512 
10513 	/* Reset the attached device */
10514 	ufshcd_device_reset(hba);
10515 
10516 	ufshcd_init_crypto(hba);
10517 
10518 	/* Host controller enable */
10519 	err = ufshcd_hba_enable(hba);
10520 	if (err) {
10521 		dev_err(hba->dev, "Host controller enable failed\n");
10522 		ufshcd_print_evt_hist(hba);
10523 		ufshcd_print_host_state(hba);
10524 		goto free_tmf_queue;
10525 	}
10526 
10527 	/*
10528 	 * Set the default power management level for runtime and system PM.
10529 	 * Default power saving mode is to keep UFS link in Hibern8 state
10530 	 * and UFS device in sleep state.
10531 	 */
10532 	hba->rpm_lvl = ufs_get_desired_pm_lvl_for_dev_link_state(
10533 						UFS_SLEEP_PWR_MODE,
10534 						UIC_LINK_HIBERN8_STATE);
10535 	hba->spm_lvl = ufs_get_desired_pm_lvl_for_dev_link_state(
10536 						UFS_SLEEP_PWR_MODE,
10537 						UIC_LINK_HIBERN8_STATE);
10538 
10539 	INIT_DELAYED_WORK(&hba->rpm_dev_flush_recheck_work,
10540 			  ufshcd_rpm_dev_flush_recheck_work);
10541 
10542 	/* Set the default auto-hiberate idle timer value to 150 ms */
10543 	if (ufshcd_is_auto_hibern8_supported(hba) && !hba->ahit) {
10544 		hba->ahit = FIELD_PREP(UFSHCI_AHIBERN8_TIMER_MASK, 150) |
10545 			    FIELD_PREP(UFSHCI_AHIBERN8_SCALE_MASK, 3);
10546 	}
10547 
10548 	/* Hold auto suspend until async scan completes */
10549 	pm_runtime_get_sync(dev);
10550 	atomic_set(&hba->scsi_block_reqs_cnt, 0);
10551 	/*
10552 	 * We are assuming that device wasn't put in sleep/power-down
10553 	 * state exclusively during the boot stage before kernel.
10554 	 * This assumption helps avoid doing link startup twice during
10555 	 * ufshcd_probe_hba().
10556 	 */
10557 	ufshcd_set_ufs_dev_active(hba);
10558 
10559 	async_schedule(ufshcd_async_scan, hba);
10560 	ufs_sysfs_add_nodes(hba->dev);
10561 
10562 	device_enable_async_suspend(dev);
10563 	return 0;
10564 
10565 free_tmf_queue:
10566 	blk_mq_destroy_queue(hba->tmf_queue);
10567 	blk_put_queue(hba->tmf_queue);
10568 free_tmf_tag_set:
10569 	blk_mq_free_tag_set(&hba->tmf_tag_set);
10570 out_remove_scsi_host:
10571 	scsi_remove_host(hba->host);
10572 out_disable:
10573 	hba->is_irq_enabled = false;
10574 	ufshcd_hba_exit(hba);
10575 out_error:
10576 	return err;
10577 }
10578 EXPORT_SYMBOL_GPL(ufshcd_init);
10579 
10580 void ufshcd_resume_complete(struct device *dev)
10581 {
10582 	struct ufs_hba *hba = dev_get_drvdata(dev);
10583 
10584 	if (hba->complete_put) {
10585 		ufshcd_rpm_put(hba);
10586 		hba->complete_put = false;
10587 	}
10588 }
10589 EXPORT_SYMBOL_GPL(ufshcd_resume_complete);
10590 
10591 static bool ufshcd_rpm_ok_for_spm(struct ufs_hba *hba)
10592 {
10593 	struct device *dev = &hba->ufs_device_wlun->sdev_gendev;
10594 	enum ufs_dev_pwr_mode dev_pwr_mode;
10595 	enum uic_link_state link_state;
10596 	unsigned long flags;
10597 	bool res;
10598 
10599 	spin_lock_irqsave(&dev->power.lock, flags);
10600 	dev_pwr_mode = ufs_get_pm_lvl_to_dev_pwr_mode(hba->spm_lvl);
10601 	link_state = ufs_get_pm_lvl_to_link_pwr_state(hba->spm_lvl);
10602 	res = pm_runtime_suspended(dev) &&
10603 	      hba->curr_dev_pwr_mode == dev_pwr_mode &&
10604 	      hba->uic_link_state == link_state &&
10605 	      !hba->dev_info.b_rpm_dev_flush_capable;
10606 	spin_unlock_irqrestore(&dev->power.lock, flags);
10607 
10608 	return res;
10609 }
10610 
10611 int __ufshcd_suspend_prepare(struct device *dev, bool rpm_ok_for_spm)
10612 {
10613 	struct ufs_hba *hba = dev_get_drvdata(dev);
10614 	int ret;
10615 
10616 	/*
10617 	 * SCSI assumes that runtime-pm and system-pm for scsi drivers
10618 	 * are same. And it doesn't wake up the device for system-suspend
10619 	 * if it's runtime suspended. But ufs doesn't follow that.
10620 	 * Refer ufshcd_resume_complete()
10621 	 */
10622 	if (hba->ufs_device_wlun) {
10623 		/* Prevent runtime suspend */
10624 		ufshcd_rpm_get_noresume(hba);
10625 		/*
10626 		 * Check if already runtime suspended in same state as system
10627 		 * suspend would be.
10628 		 */
10629 		if (!rpm_ok_for_spm || !ufshcd_rpm_ok_for_spm(hba)) {
10630 			/* RPM state is not ok for SPM, so runtime resume */
10631 			ret = ufshcd_rpm_resume(hba);
10632 			if (ret < 0 && ret != -EACCES) {
10633 				ufshcd_rpm_put(hba);
10634 				return ret;
10635 			}
10636 		}
10637 		hba->complete_put = true;
10638 	}
10639 	return 0;
10640 }
10641 EXPORT_SYMBOL_GPL(__ufshcd_suspend_prepare);
10642 
10643 int ufshcd_suspend_prepare(struct device *dev)
10644 {
10645 	return __ufshcd_suspend_prepare(dev, true);
10646 }
10647 EXPORT_SYMBOL_GPL(ufshcd_suspend_prepare);
10648 
10649 #ifdef CONFIG_PM_SLEEP
10650 static int ufshcd_wl_poweroff(struct device *dev)
10651 {
10652 	struct scsi_device *sdev = to_scsi_device(dev);
10653 	struct ufs_hba *hba = shost_priv(sdev->host);
10654 
10655 	__ufshcd_wl_suspend(hba, UFS_SHUTDOWN_PM);
10656 	return 0;
10657 }
10658 #endif
10659 
10660 static int ufshcd_wl_probe(struct device *dev)
10661 {
10662 	struct scsi_device *sdev = to_scsi_device(dev);
10663 
10664 	if (!is_device_wlun(sdev))
10665 		return -ENODEV;
10666 
10667 	blk_pm_runtime_init(sdev->request_queue, dev);
10668 	pm_runtime_set_autosuspend_delay(dev, 0);
10669 	pm_runtime_allow(dev);
10670 
10671 	return  0;
10672 }
10673 
10674 static int ufshcd_wl_remove(struct device *dev)
10675 {
10676 	pm_runtime_forbid(dev);
10677 	return 0;
10678 }
10679 
10680 static const struct dev_pm_ops ufshcd_wl_pm_ops = {
10681 #ifdef CONFIG_PM_SLEEP
10682 	.suspend = ufshcd_wl_suspend,
10683 	.resume = ufshcd_wl_resume,
10684 	.freeze = ufshcd_wl_suspend,
10685 	.thaw = ufshcd_wl_resume,
10686 	.poweroff = ufshcd_wl_poweroff,
10687 	.restore = ufshcd_wl_resume,
10688 #endif
10689 	SET_RUNTIME_PM_OPS(ufshcd_wl_runtime_suspend, ufshcd_wl_runtime_resume, NULL)
10690 };
10691 
10692 static void ufshcd_check_header_layout(void)
10693 {
10694 	/*
10695 	 * gcc compilers before version 10 cannot do constant-folding for
10696 	 * sub-byte bitfields. Hence skip the layout checks for gcc 9 and
10697 	 * before.
10698 	 */
10699 	if (IS_ENABLED(CONFIG_CC_IS_GCC) && CONFIG_GCC_VERSION < 100000)
10700 		return;
10701 
10702 	BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10703 				.cci = 3})[0] != 3);
10704 
10705 	BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10706 				.ehs_length = 2})[1] != 2);
10707 
10708 	BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10709 				.enable_crypto = 1})[2]
10710 		     != 0x80);
10711 
10712 	BUILD_BUG_ON((((u8 *)&(struct request_desc_header){
10713 					.command_type = 5,
10714 					.data_direction = 3,
10715 					.interrupt = 1,
10716 				})[3]) != ((5 << 4) | (3 << 1) | 1));
10717 
10718 	BUILD_BUG_ON(((__le32 *)&(struct request_desc_header){
10719 				.dunl = cpu_to_le32(0xdeadbeef)})[1] !=
10720 		cpu_to_le32(0xdeadbeef));
10721 
10722 	BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10723 				.ocs = 4})[8] != 4);
10724 
10725 	BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10726 				.cds = 5})[9] != 5);
10727 
10728 	BUILD_BUG_ON(((__le32 *)&(struct request_desc_header){
10729 				.dunu = cpu_to_le32(0xbadcafe)})[3] !=
10730 		cpu_to_le32(0xbadcafe));
10731 
10732 	BUILD_BUG_ON(((u8 *)&(struct utp_upiu_header){
10733 			     .iid = 0xf })[4] != 0xf0);
10734 
10735 	BUILD_BUG_ON(((u8 *)&(struct utp_upiu_header){
10736 			     .command_set_type = 0xf })[4] != 0xf);
10737 }
10738 
10739 /*
10740  * ufs_dev_wlun_template - describes ufs device wlun
10741  * ufs-device wlun - used to send pm commands
10742  * All luns are consumers of ufs-device wlun.
10743  *
10744  * Currently, no sd driver is present for wluns.
10745  * Hence the no specific pm operations are performed.
10746  * With ufs design, SSU should be sent to ufs-device wlun.
10747  * Hence register a scsi driver for ufs wluns only.
10748  */
10749 static struct scsi_driver ufs_dev_wlun_template = {
10750 	.gendrv = {
10751 		.name = "ufs_device_wlun",
10752 		.owner = THIS_MODULE,
10753 		.probe = ufshcd_wl_probe,
10754 		.remove = ufshcd_wl_remove,
10755 		.pm = &ufshcd_wl_pm_ops,
10756 		.shutdown = ufshcd_wl_shutdown,
10757 	},
10758 };
10759 
10760 static int __init ufshcd_core_init(void)
10761 {
10762 	int ret;
10763 
10764 	ufshcd_check_header_layout();
10765 
10766 	ufs_debugfs_init();
10767 
10768 	ret = scsi_register_driver(&ufs_dev_wlun_template.gendrv);
10769 	if (ret)
10770 		ufs_debugfs_exit();
10771 	return ret;
10772 }
10773 
10774 static void __exit ufshcd_core_exit(void)
10775 {
10776 	ufs_debugfs_exit();
10777 	scsi_unregister_driver(&ufs_dev_wlun_template.gendrv);
10778 }
10779 
10780 module_init(ufshcd_core_init);
10781 module_exit(ufshcd_core_exit);
10782 
10783 MODULE_AUTHOR("Santosh Yaragnavi <santosh.sy@samsung.com>");
10784 MODULE_AUTHOR("Vinayak Holikatti <h.vinayak@samsung.com>");
10785 MODULE_DESCRIPTION("Generic UFS host controller driver Core");
10786 MODULE_SOFTDEP("pre: governor_simpleondemand");
10787 MODULE_LICENSE("GPL");
10788