1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Universal Flash Storage Host controller driver Core 4 * Copyright (C) 2011-2013 Samsung India Software Operations 5 * Copyright (c) 2013-2016, The Linux Foundation. All rights reserved. 6 * 7 * Authors: 8 * Santosh Yaraganavi <santosh.sy@samsung.com> 9 * Vinayak Holikatti <h.vinayak@samsung.com> 10 */ 11 12 #include <linux/async.h> 13 #include <linux/devfreq.h> 14 #include <linux/nls.h> 15 #include <linux/of.h> 16 #include <linux/bitfield.h> 17 #include <linux/blk-pm.h> 18 #include <linux/blkdev.h> 19 #include <linux/clk.h> 20 #include <linux/delay.h> 21 #include <linux/interrupt.h> 22 #include <linux/module.h> 23 #include <linux/pm_opp.h> 24 #include <linux/regulator/consumer.h> 25 #include <linux/sched/clock.h> 26 #include <linux/iopoll.h> 27 #include <scsi/scsi_cmnd.h> 28 #include <scsi/scsi_dbg.h> 29 #include <scsi/scsi_driver.h> 30 #include <scsi/scsi_eh.h> 31 #include "ufshcd-priv.h" 32 #include <ufs/ufs_quirks.h> 33 #include <ufs/unipro.h> 34 #include "ufs-sysfs.h" 35 #include "ufs-debugfs.h" 36 #include "ufs-fault-injection.h" 37 #include "ufs_bsg.h" 38 #include "ufshcd-crypto.h" 39 #include <asm/unaligned.h> 40 41 #define CREATE_TRACE_POINTS 42 #include "ufs_trace.h" 43 44 #define UFSHCD_ENABLE_INTRS (UTP_TRANSFER_REQ_COMPL |\ 45 UTP_TASK_REQ_COMPL |\ 46 UFSHCD_ERROR_MASK) 47 48 #define UFSHCD_ENABLE_MCQ_INTRS (UTP_TASK_REQ_COMPL |\ 49 UFSHCD_ERROR_MASK |\ 50 MCQ_CQ_EVENT_STATUS) 51 52 53 /* UIC command timeout, unit: ms */ 54 enum { 55 UIC_CMD_TIMEOUT_DEFAULT = 500, 56 UIC_CMD_TIMEOUT_MAX = 2000, 57 }; 58 /* NOP OUT retries waiting for NOP IN response */ 59 #define NOP_OUT_RETRIES 10 60 /* Timeout after 50 msecs if NOP OUT hangs without response */ 61 #define NOP_OUT_TIMEOUT 50 /* msecs */ 62 63 /* Query request retries */ 64 #define QUERY_REQ_RETRIES 3 65 /* Query request timeout */ 66 #define QUERY_REQ_TIMEOUT 1500 /* 1.5 seconds */ 67 68 /* Advanced RPMB request timeout */ 69 #define ADVANCED_RPMB_REQ_TIMEOUT 3000 /* 3 seconds */ 70 71 /* Task management command timeout */ 72 #define TM_CMD_TIMEOUT 100 /* msecs */ 73 74 /* maximum number of retries for a general UIC command */ 75 #define UFS_UIC_COMMAND_RETRIES 3 76 77 /* maximum number of link-startup retries */ 78 #define DME_LINKSTARTUP_RETRIES 3 79 80 /* maximum number of reset retries before giving up */ 81 #define MAX_HOST_RESET_RETRIES 5 82 83 /* Maximum number of error handler retries before giving up */ 84 #define MAX_ERR_HANDLER_RETRIES 5 85 86 /* Expose the flag value from utp_upiu_query.value */ 87 #define MASK_QUERY_UPIU_FLAG_LOC 0xFF 88 89 /* Interrupt aggregation default timeout, unit: 40us */ 90 #define INT_AGGR_DEF_TO 0x02 91 92 /* default delay of autosuspend: 2000 ms */ 93 #define RPM_AUTOSUSPEND_DELAY_MS 2000 94 95 /* Default delay of RPM device flush delayed work */ 96 #define RPM_DEV_FLUSH_RECHECK_WORK_DELAY_MS 5000 97 98 /* Default value of wait time before gating device ref clock */ 99 #define UFSHCD_REF_CLK_GATING_WAIT_US 0xFF /* microsecs */ 100 101 /* Polling time to wait for fDeviceInit */ 102 #define FDEVICEINIT_COMPL_TIMEOUT 1500 /* millisecs */ 103 104 /* Default RTC update every 10 seconds */ 105 #define UFS_RTC_UPDATE_INTERVAL_MS (10 * MSEC_PER_SEC) 106 107 /* bMaxNumOfRTT is equal to two after device manufacturing */ 108 #define DEFAULT_MAX_NUM_RTT 2 109 110 /* UFSHC 4.0 compliant HC support this mode. */ 111 static bool use_mcq_mode = true; 112 113 static bool is_mcq_supported(struct ufs_hba *hba) 114 { 115 return hba->mcq_sup && use_mcq_mode; 116 } 117 118 module_param(use_mcq_mode, bool, 0644); 119 MODULE_PARM_DESC(use_mcq_mode, "Control MCQ mode for controllers starting from UFSHCI 4.0. 1 - enable MCQ, 0 - disable MCQ. MCQ is enabled by default"); 120 121 static unsigned int uic_cmd_timeout = UIC_CMD_TIMEOUT_DEFAULT; 122 123 static int uic_cmd_timeout_set(const char *val, const struct kernel_param *kp) 124 { 125 return param_set_uint_minmax(val, kp, UIC_CMD_TIMEOUT_DEFAULT, 126 UIC_CMD_TIMEOUT_MAX); 127 } 128 129 static const struct kernel_param_ops uic_cmd_timeout_ops = { 130 .set = uic_cmd_timeout_set, 131 .get = param_get_uint, 132 }; 133 134 module_param_cb(uic_cmd_timeout, &uic_cmd_timeout_ops, &uic_cmd_timeout, 0644); 135 MODULE_PARM_DESC(uic_cmd_timeout, 136 "UFS UIC command timeout in milliseconds. Defaults to 500ms. Supported values range from 500ms to 2 seconds inclusively"); 137 138 #define ufshcd_toggle_vreg(_dev, _vreg, _on) \ 139 ({ \ 140 int _ret; \ 141 if (_on) \ 142 _ret = ufshcd_enable_vreg(_dev, _vreg); \ 143 else \ 144 _ret = ufshcd_disable_vreg(_dev, _vreg); \ 145 _ret; \ 146 }) 147 148 #define ufshcd_hex_dump(prefix_str, buf, len) do { \ 149 size_t __len = (len); \ 150 print_hex_dump(KERN_ERR, prefix_str, \ 151 __len > 4 ? DUMP_PREFIX_OFFSET : DUMP_PREFIX_NONE,\ 152 16, 4, buf, __len, false); \ 153 } while (0) 154 155 int ufshcd_dump_regs(struct ufs_hba *hba, size_t offset, size_t len, 156 const char *prefix) 157 { 158 u32 *regs; 159 size_t pos; 160 161 if (offset % 4 != 0 || len % 4 != 0) /* keep readl happy */ 162 return -EINVAL; 163 164 regs = kzalloc(len, GFP_ATOMIC); 165 if (!regs) 166 return -ENOMEM; 167 168 for (pos = 0; pos < len; pos += 4) { 169 if (offset == 0 && 170 pos >= REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER && 171 pos <= REG_UIC_ERROR_CODE_DME) 172 continue; 173 regs[pos / 4] = ufshcd_readl(hba, offset + pos); 174 } 175 176 ufshcd_hex_dump(prefix, regs, len); 177 kfree(regs); 178 179 return 0; 180 } 181 EXPORT_SYMBOL_GPL(ufshcd_dump_regs); 182 183 enum { 184 UFSHCD_MAX_CHANNEL = 0, 185 UFSHCD_MAX_ID = 1, 186 }; 187 188 static const char *const ufshcd_state_name[] = { 189 [UFSHCD_STATE_RESET] = "reset", 190 [UFSHCD_STATE_OPERATIONAL] = "operational", 191 [UFSHCD_STATE_ERROR] = "error", 192 [UFSHCD_STATE_EH_SCHEDULED_FATAL] = "eh_fatal", 193 [UFSHCD_STATE_EH_SCHEDULED_NON_FATAL] = "eh_non_fatal", 194 }; 195 196 /* UFSHCD error handling flags */ 197 enum { 198 UFSHCD_EH_IN_PROGRESS = (1 << 0), 199 }; 200 201 /* UFSHCD UIC layer error flags */ 202 enum { 203 UFSHCD_UIC_DL_PA_INIT_ERROR = (1 << 0), /* Data link layer error */ 204 UFSHCD_UIC_DL_NAC_RECEIVED_ERROR = (1 << 1), /* Data link layer error */ 205 UFSHCD_UIC_DL_TCx_REPLAY_ERROR = (1 << 2), /* Data link layer error */ 206 UFSHCD_UIC_NL_ERROR = (1 << 3), /* Network layer error */ 207 UFSHCD_UIC_TL_ERROR = (1 << 4), /* Transport Layer error */ 208 UFSHCD_UIC_DME_ERROR = (1 << 5), /* DME error */ 209 UFSHCD_UIC_PA_GENERIC_ERROR = (1 << 6), /* Generic PA error */ 210 }; 211 212 #define ufshcd_set_eh_in_progress(h) \ 213 ((h)->eh_flags |= UFSHCD_EH_IN_PROGRESS) 214 #define ufshcd_eh_in_progress(h) \ 215 ((h)->eh_flags & UFSHCD_EH_IN_PROGRESS) 216 #define ufshcd_clear_eh_in_progress(h) \ 217 ((h)->eh_flags &= ~UFSHCD_EH_IN_PROGRESS) 218 219 const struct ufs_pm_lvl_states ufs_pm_lvl_states[] = { 220 [UFS_PM_LVL_0] = {UFS_ACTIVE_PWR_MODE, UIC_LINK_ACTIVE_STATE}, 221 [UFS_PM_LVL_1] = {UFS_ACTIVE_PWR_MODE, UIC_LINK_HIBERN8_STATE}, 222 [UFS_PM_LVL_2] = {UFS_SLEEP_PWR_MODE, UIC_LINK_ACTIVE_STATE}, 223 [UFS_PM_LVL_3] = {UFS_SLEEP_PWR_MODE, UIC_LINK_HIBERN8_STATE}, 224 [UFS_PM_LVL_4] = {UFS_POWERDOWN_PWR_MODE, UIC_LINK_HIBERN8_STATE}, 225 [UFS_PM_LVL_5] = {UFS_POWERDOWN_PWR_MODE, UIC_LINK_OFF_STATE}, 226 /* 227 * For DeepSleep, the link is first put in hibern8 and then off. 228 * Leaving the link in hibern8 is not supported. 229 */ 230 [UFS_PM_LVL_6] = {UFS_DEEPSLEEP_PWR_MODE, UIC_LINK_OFF_STATE}, 231 }; 232 233 static inline enum ufs_dev_pwr_mode 234 ufs_get_pm_lvl_to_dev_pwr_mode(enum ufs_pm_level lvl) 235 { 236 return ufs_pm_lvl_states[lvl].dev_state; 237 } 238 239 static inline enum uic_link_state 240 ufs_get_pm_lvl_to_link_pwr_state(enum ufs_pm_level lvl) 241 { 242 return ufs_pm_lvl_states[lvl].link_state; 243 } 244 245 static inline enum ufs_pm_level 246 ufs_get_desired_pm_lvl_for_dev_link_state(enum ufs_dev_pwr_mode dev_state, 247 enum uic_link_state link_state) 248 { 249 enum ufs_pm_level lvl; 250 251 for (lvl = UFS_PM_LVL_0; lvl < UFS_PM_LVL_MAX; lvl++) { 252 if ((ufs_pm_lvl_states[lvl].dev_state == dev_state) && 253 (ufs_pm_lvl_states[lvl].link_state == link_state)) 254 return lvl; 255 } 256 257 /* if no match found, return the level 0 */ 258 return UFS_PM_LVL_0; 259 } 260 261 static bool ufshcd_is_ufs_dev_busy(struct ufs_hba *hba) 262 { 263 return (hba->clk_gating.active_reqs || hba->outstanding_reqs || hba->outstanding_tasks || 264 hba->active_uic_cmd || hba->uic_async_done); 265 } 266 267 static const struct ufs_dev_quirk ufs_fixups[] = { 268 /* UFS cards deviations table */ 269 { .wmanufacturerid = UFS_VENDOR_MICRON, 270 .model = UFS_ANY_MODEL, 271 .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM }, 272 { .wmanufacturerid = UFS_VENDOR_SAMSUNG, 273 .model = UFS_ANY_MODEL, 274 .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM | 275 UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE | 276 UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS }, 277 { .wmanufacturerid = UFS_VENDOR_SKHYNIX, 278 .model = UFS_ANY_MODEL, 279 .quirk = UFS_DEVICE_QUIRK_HOST_PA_SAVECONFIGTIME }, 280 { .wmanufacturerid = UFS_VENDOR_SKHYNIX, 281 .model = "hB8aL1" /*H28U62301AMR*/, 282 .quirk = UFS_DEVICE_QUIRK_HOST_VS_DEBUGSAVECONFIGTIME }, 283 { .wmanufacturerid = UFS_VENDOR_TOSHIBA, 284 .model = UFS_ANY_MODEL, 285 .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM }, 286 { .wmanufacturerid = UFS_VENDOR_TOSHIBA, 287 .model = "THGLF2G9C8KBADG", 288 .quirk = UFS_DEVICE_QUIRK_PA_TACTIVATE }, 289 { .wmanufacturerid = UFS_VENDOR_TOSHIBA, 290 .model = "THGLF2G9D8KBADG", 291 .quirk = UFS_DEVICE_QUIRK_PA_TACTIVATE }, 292 {} 293 }; 294 295 static irqreturn_t ufshcd_tmc_handler(struct ufs_hba *hba); 296 static void ufshcd_async_scan(void *data, async_cookie_t cookie); 297 static int ufshcd_reset_and_restore(struct ufs_hba *hba); 298 static int ufshcd_eh_host_reset_handler(struct scsi_cmnd *cmd); 299 static int ufshcd_clear_tm_cmd(struct ufs_hba *hba, int tag); 300 static void ufshcd_hba_exit(struct ufs_hba *hba); 301 static int ufshcd_probe_hba(struct ufs_hba *hba, bool init_dev_params); 302 static int ufshcd_setup_clocks(struct ufs_hba *hba, bool on); 303 static inline void ufshcd_add_delay_before_dme_cmd(struct ufs_hba *hba); 304 static int ufshcd_host_reset_and_restore(struct ufs_hba *hba); 305 static void ufshcd_resume_clkscaling(struct ufs_hba *hba); 306 static void ufshcd_suspend_clkscaling(struct ufs_hba *hba); 307 static int ufshcd_scale_clks(struct ufs_hba *hba, unsigned long freq, 308 bool scale_up); 309 static irqreturn_t ufshcd_intr(int irq, void *__hba); 310 static int ufshcd_change_power_mode(struct ufs_hba *hba, 311 struct ufs_pa_layer_attr *pwr_mode); 312 static int ufshcd_setup_hba_vreg(struct ufs_hba *hba, bool on); 313 static int ufshcd_setup_vreg(struct ufs_hba *hba, bool on); 314 static inline int ufshcd_config_vreg_hpm(struct ufs_hba *hba, 315 struct ufs_vreg *vreg); 316 static void ufshcd_wb_toggle_buf_flush_during_h8(struct ufs_hba *hba, 317 bool enable); 318 static void ufshcd_hba_vreg_set_lpm(struct ufs_hba *hba); 319 static void ufshcd_hba_vreg_set_hpm(struct ufs_hba *hba); 320 321 void ufshcd_enable_irq(struct ufs_hba *hba) 322 { 323 if (!hba->is_irq_enabled) { 324 enable_irq(hba->irq); 325 hba->is_irq_enabled = true; 326 } 327 } 328 EXPORT_SYMBOL_GPL(ufshcd_enable_irq); 329 330 void ufshcd_disable_irq(struct ufs_hba *hba) 331 { 332 if (hba->is_irq_enabled) { 333 disable_irq(hba->irq); 334 hba->is_irq_enabled = false; 335 } 336 } 337 EXPORT_SYMBOL_GPL(ufshcd_disable_irq); 338 339 static void ufshcd_configure_wb(struct ufs_hba *hba) 340 { 341 if (!ufshcd_is_wb_allowed(hba)) 342 return; 343 344 ufshcd_wb_toggle(hba, true); 345 346 ufshcd_wb_toggle_buf_flush_during_h8(hba, true); 347 348 if (ufshcd_is_wb_buf_flush_allowed(hba)) 349 ufshcd_wb_toggle_buf_flush(hba, true); 350 } 351 352 static void ufshcd_add_cmd_upiu_trace(struct ufs_hba *hba, unsigned int tag, 353 enum ufs_trace_str_t str_t) 354 { 355 struct utp_upiu_req *rq = hba->lrb[tag].ucd_req_ptr; 356 struct utp_upiu_header *header; 357 358 if (!trace_ufshcd_upiu_enabled()) 359 return; 360 361 if (str_t == UFS_CMD_SEND) 362 header = &rq->header; 363 else 364 header = &hba->lrb[tag].ucd_rsp_ptr->header; 365 366 trace_ufshcd_upiu(dev_name(hba->dev), str_t, header, &rq->sc.cdb, 367 UFS_TSF_CDB); 368 } 369 370 static void ufshcd_add_query_upiu_trace(struct ufs_hba *hba, 371 enum ufs_trace_str_t str_t, 372 struct utp_upiu_req *rq_rsp) 373 { 374 if (!trace_ufshcd_upiu_enabled()) 375 return; 376 377 trace_ufshcd_upiu(dev_name(hba->dev), str_t, &rq_rsp->header, 378 &rq_rsp->qr, UFS_TSF_OSF); 379 } 380 381 static void ufshcd_add_tm_upiu_trace(struct ufs_hba *hba, unsigned int tag, 382 enum ufs_trace_str_t str_t) 383 { 384 struct utp_task_req_desc *descp = &hba->utmrdl_base_addr[tag]; 385 386 if (!trace_ufshcd_upiu_enabled()) 387 return; 388 389 if (str_t == UFS_TM_SEND) 390 trace_ufshcd_upiu(dev_name(hba->dev), str_t, 391 &descp->upiu_req.req_header, 392 &descp->upiu_req.input_param1, 393 UFS_TSF_TM_INPUT); 394 else 395 trace_ufshcd_upiu(dev_name(hba->dev), str_t, 396 &descp->upiu_rsp.rsp_header, 397 &descp->upiu_rsp.output_param1, 398 UFS_TSF_TM_OUTPUT); 399 } 400 401 static void ufshcd_add_uic_command_trace(struct ufs_hba *hba, 402 const struct uic_command *ucmd, 403 enum ufs_trace_str_t str_t) 404 { 405 u32 cmd; 406 407 if (!trace_ufshcd_uic_command_enabled()) 408 return; 409 410 if (str_t == UFS_CMD_SEND) 411 cmd = ucmd->command; 412 else 413 cmd = ufshcd_readl(hba, REG_UIC_COMMAND); 414 415 trace_ufshcd_uic_command(dev_name(hba->dev), str_t, cmd, 416 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_1), 417 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_2), 418 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_3)); 419 } 420 421 static void ufshcd_add_command_trace(struct ufs_hba *hba, unsigned int tag, 422 enum ufs_trace_str_t str_t) 423 { 424 u64 lba = 0; 425 u8 opcode = 0, group_id = 0; 426 u32 doorbell = 0; 427 u32 intr; 428 int hwq_id = -1; 429 struct ufshcd_lrb *lrbp = &hba->lrb[tag]; 430 struct scsi_cmnd *cmd = lrbp->cmd; 431 struct request *rq = scsi_cmd_to_rq(cmd); 432 int transfer_len = -1; 433 434 if (!cmd) 435 return; 436 437 /* trace UPIU also */ 438 ufshcd_add_cmd_upiu_trace(hba, tag, str_t); 439 if (!trace_ufshcd_command_enabled()) 440 return; 441 442 opcode = cmd->cmnd[0]; 443 444 if (opcode == READ_10 || opcode == WRITE_10) { 445 /* 446 * Currently we only fully trace read(10) and write(10) commands 447 */ 448 transfer_len = 449 be32_to_cpu(lrbp->ucd_req_ptr->sc.exp_data_transfer_len); 450 lba = scsi_get_lba(cmd); 451 if (opcode == WRITE_10) 452 group_id = lrbp->cmd->cmnd[6]; 453 } else if (opcode == UNMAP) { 454 /* 455 * The number of Bytes to be unmapped beginning with the lba. 456 */ 457 transfer_len = blk_rq_bytes(rq); 458 lba = scsi_get_lba(cmd); 459 } 460 461 intr = ufshcd_readl(hba, REG_INTERRUPT_STATUS); 462 463 if (hba->mcq_enabled) { 464 struct ufs_hw_queue *hwq = ufshcd_mcq_req_to_hwq(hba, rq); 465 466 hwq_id = hwq->id; 467 } else { 468 doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL); 469 } 470 trace_ufshcd_command(cmd->device, str_t, tag, doorbell, hwq_id, 471 transfer_len, intr, lba, opcode, group_id); 472 } 473 474 static void ufshcd_print_clk_freqs(struct ufs_hba *hba) 475 { 476 struct ufs_clk_info *clki; 477 struct list_head *head = &hba->clk_list_head; 478 479 if (list_empty(head)) 480 return; 481 482 list_for_each_entry(clki, head, list) { 483 if (!IS_ERR_OR_NULL(clki->clk) && clki->min_freq && 484 clki->max_freq) 485 dev_err(hba->dev, "clk: %s, rate: %u\n", 486 clki->name, clki->curr_freq); 487 } 488 } 489 490 static void ufshcd_print_evt(struct ufs_hba *hba, u32 id, 491 const char *err_name) 492 { 493 int i; 494 bool found = false; 495 const struct ufs_event_hist *e; 496 497 if (id >= UFS_EVT_CNT) 498 return; 499 500 e = &hba->ufs_stats.event[id]; 501 502 for (i = 0; i < UFS_EVENT_HIST_LENGTH; i++) { 503 int p = (i + e->pos) % UFS_EVENT_HIST_LENGTH; 504 505 if (e->tstamp[p] == 0) 506 continue; 507 dev_err(hba->dev, "%s[%d] = 0x%x at %lld us\n", err_name, p, 508 e->val[p], div_u64(e->tstamp[p], 1000)); 509 found = true; 510 } 511 512 if (!found) 513 dev_err(hba->dev, "No record of %s\n", err_name); 514 else 515 dev_err(hba->dev, "%s: total cnt=%llu\n", err_name, e->cnt); 516 } 517 518 static void ufshcd_print_evt_hist(struct ufs_hba *hba) 519 { 520 ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, "host_regs: "); 521 522 ufshcd_print_evt(hba, UFS_EVT_PA_ERR, "pa_err"); 523 ufshcd_print_evt(hba, UFS_EVT_DL_ERR, "dl_err"); 524 ufshcd_print_evt(hba, UFS_EVT_NL_ERR, "nl_err"); 525 ufshcd_print_evt(hba, UFS_EVT_TL_ERR, "tl_err"); 526 ufshcd_print_evt(hba, UFS_EVT_DME_ERR, "dme_err"); 527 ufshcd_print_evt(hba, UFS_EVT_AUTO_HIBERN8_ERR, 528 "auto_hibern8_err"); 529 ufshcd_print_evt(hba, UFS_EVT_FATAL_ERR, "fatal_err"); 530 ufshcd_print_evt(hba, UFS_EVT_LINK_STARTUP_FAIL, 531 "link_startup_fail"); 532 ufshcd_print_evt(hba, UFS_EVT_RESUME_ERR, "resume_fail"); 533 ufshcd_print_evt(hba, UFS_EVT_SUSPEND_ERR, 534 "suspend_fail"); 535 ufshcd_print_evt(hba, UFS_EVT_WL_RES_ERR, "wlun resume_fail"); 536 ufshcd_print_evt(hba, UFS_EVT_WL_SUSP_ERR, 537 "wlun suspend_fail"); 538 ufshcd_print_evt(hba, UFS_EVT_DEV_RESET, "dev_reset"); 539 ufshcd_print_evt(hba, UFS_EVT_HOST_RESET, "host_reset"); 540 ufshcd_print_evt(hba, UFS_EVT_ABORT, "task_abort"); 541 542 ufshcd_vops_dbg_register_dump(hba); 543 } 544 545 static 546 void ufshcd_print_tr(struct ufs_hba *hba, int tag, bool pr_prdt) 547 { 548 const struct ufshcd_lrb *lrbp; 549 int prdt_length; 550 551 lrbp = &hba->lrb[tag]; 552 553 dev_err(hba->dev, "UPIU[%d] - issue time %lld us\n", 554 tag, div_u64(lrbp->issue_time_stamp_local_clock, 1000)); 555 dev_err(hba->dev, "UPIU[%d] - complete time %lld us\n", 556 tag, div_u64(lrbp->compl_time_stamp_local_clock, 1000)); 557 dev_err(hba->dev, 558 "UPIU[%d] - Transfer Request Descriptor phys@0x%llx\n", 559 tag, (u64)lrbp->utrd_dma_addr); 560 561 ufshcd_hex_dump("UPIU TRD: ", lrbp->utr_descriptor_ptr, 562 sizeof(struct utp_transfer_req_desc)); 563 dev_err(hba->dev, "UPIU[%d] - Request UPIU phys@0x%llx\n", tag, 564 (u64)lrbp->ucd_req_dma_addr); 565 ufshcd_hex_dump("UPIU REQ: ", lrbp->ucd_req_ptr, 566 sizeof(struct utp_upiu_req)); 567 dev_err(hba->dev, "UPIU[%d] - Response UPIU phys@0x%llx\n", tag, 568 (u64)lrbp->ucd_rsp_dma_addr); 569 ufshcd_hex_dump("UPIU RSP: ", lrbp->ucd_rsp_ptr, 570 sizeof(struct utp_upiu_rsp)); 571 572 prdt_length = le16_to_cpu( 573 lrbp->utr_descriptor_ptr->prd_table_length); 574 if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN) 575 prdt_length /= ufshcd_sg_entry_size(hba); 576 577 dev_err(hba->dev, 578 "UPIU[%d] - PRDT - %d entries phys@0x%llx\n", 579 tag, prdt_length, 580 (u64)lrbp->ucd_prdt_dma_addr); 581 582 if (pr_prdt) 583 ufshcd_hex_dump("UPIU PRDT: ", lrbp->ucd_prdt_ptr, 584 ufshcd_sg_entry_size(hba) * prdt_length); 585 } 586 587 static bool ufshcd_print_tr_iter(struct request *req, void *priv) 588 { 589 struct scsi_device *sdev = req->q->queuedata; 590 struct Scsi_Host *shost = sdev->host; 591 struct ufs_hba *hba = shost_priv(shost); 592 593 ufshcd_print_tr(hba, req->tag, *(bool *)priv); 594 595 return true; 596 } 597 598 /** 599 * ufshcd_print_trs_all - print trs for all started requests. 600 * @hba: per-adapter instance. 601 * @pr_prdt: need to print prdt or not. 602 */ 603 static void ufshcd_print_trs_all(struct ufs_hba *hba, bool pr_prdt) 604 { 605 blk_mq_tagset_busy_iter(&hba->host->tag_set, ufshcd_print_tr_iter, &pr_prdt); 606 } 607 608 static void ufshcd_print_tmrs(struct ufs_hba *hba, unsigned long bitmap) 609 { 610 int tag; 611 612 for_each_set_bit(tag, &bitmap, hba->nutmrs) { 613 struct utp_task_req_desc *tmrdp = &hba->utmrdl_base_addr[tag]; 614 615 dev_err(hba->dev, "TM[%d] - Task Management Header\n", tag); 616 ufshcd_hex_dump("", tmrdp, sizeof(*tmrdp)); 617 } 618 } 619 620 static void ufshcd_print_host_state(struct ufs_hba *hba) 621 { 622 const struct scsi_device *sdev_ufs = hba->ufs_device_wlun; 623 624 dev_err(hba->dev, "UFS Host state=%d\n", hba->ufshcd_state); 625 dev_err(hba->dev, "outstanding reqs=0x%lx tasks=0x%lx\n", 626 hba->outstanding_reqs, hba->outstanding_tasks); 627 dev_err(hba->dev, "saved_err=0x%x, saved_uic_err=0x%x\n", 628 hba->saved_err, hba->saved_uic_err); 629 dev_err(hba->dev, "Device power mode=%d, UIC link state=%d\n", 630 hba->curr_dev_pwr_mode, hba->uic_link_state); 631 dev_err(hba->dev, "PM in progress=%d, sys. suspended=%d\n", 632 hba->pm_op_in_progress, hba->is_sys_suspended); 633 dev_err(hba->dev, "Auto BKOPS=%d, Host self-block=%d\n", 634 hba->auto_bkops_enabled, hba->host->host_self_blocked); 635 dev_err(hba->dev, "Clk gate=%d\n", hba->clk_gating.state); 636 dev_err(hba->dev, 637 "last_hibern8_exit_tstamp at %lld us, hibern8_exit_cnt=%d\n", 638 div_u64(hba->ufs_stats.last_hibern8_exit_tstamp, 1000), 639 hba->ufs_stats.hibern8_exit_cnt); 640 dev_err(hba->dev, "last intr at %lld us, last intr status=0x%x\n", 641 div_u64(hba->ufs_stats.last_intr_ts, 1000), 642 hba->ufs_stats.last_intr_status); 643 dev_err(hba->dev, "error handling flags=0x%x, req. abort count=%d\n", 644 hba->eh_flags, hba->req_abort_count); 645 dev_err(hba->dev, "hba->ufs_version=0x%x, Host capabilities=0x%x, caps=0x%x\n", 646 hba->ufs_version, hba->capabilities, hba->caps); 647 dev_err(hba->dev, "quirks=0x%x, dev. quirks=0x%x\n", hba->quirks, 648 hba->dev_quirks); 649 if (sdev_ufs) 650 dev_err(hba->dev, "UFS dev info: %.8s %.16s rev %.4s\n", 651 sdev_ufs->vendor, sdev_ufs->model, sdev_ufs->rev); 652 653 ufshcd_print_clk_freqs(hba); 654 } 655 656 /** 657 * ufshcd_print_pwr_info - print power params as saved in hba 658 * power info 659 * @hba: per-adapter instance 660 */ 661 static void ufshcd_print_pwr_info(struct ufs_hba *hba) 662 { 663 static const char * const names[] = { 664 "INVALID MODE", 665 "FAST MODE", 666 "SLOW_MODE", 667 "INVALID MODE", 668 "FASTAUTO_MODE", 669 "SLOWAUTO_MODE", 670 "INVALID MODE", 671 }; 672 673 /* 674 * Using dev_dbg to avoid messages during runtime PM to avoid 675 * never-ending cycles of messages written back to storage by user space 676 * causing runtime resume, causing more messages and so on. 677 */ 678 dev_dbg(hba->dev, "%s:[RX, TX]: gear=[%d, %d], lane[%d, %d], pwr[%s, %s], rate = %d\n", 679 __func__, 680 hba->pwr_info.gear_rx, hba->pwr_info.gear_tx, 681 hba->pwr_info.lane_rx, hba->pwr_info.lane_tx, 682 names[hba->pwr_info.pwr_rx], 683 names[hba->pwr_info.pwr_tx], 684 hba->pwr_info.hs_rate); 685 } 686 687 static void ufshcd_device_reset(struct ufs_hba *hba) 688 { 689 int err; 690 691 err = ufshcd_vops_device_reset(hba); 692 693 if (!err) { 694 ufshcd_set_ufs_dev_active(hba); 695 if (ufshcd_is_wb_allowed(hba)) { 696 hba->dev_info.wb_enabled = false; 697 hba->dev_info.wb_buf_flush_enabled = false; 698 } 699 if (hba->dev_info.rtc_type == UFS_RTC_RELATIVE) 700 hba->dev_info.rtc_time_baseline = 0; 701 } 702 if (err != -EOPNOTSUPP) 703 ufshcd_update_evt_hist(hba, UFS_EVT_DEV_RESET, err); 704 } 705 706 void ufshcd_delay_us(unsigned long us, unsigned long tolerance) 707 { 708 if (!us) 709 return; 710 711 if (us < 10) 712 udelay(us); 713 else 714 usleep_range(us, us + tolerance); 715 } 716 EXPORT_SYMBOL_GPL(ufshcd_delay_us); 717 718 /** 719 * ufshcd_wait_for_register - wait for register value to change 720 * @hba: per-adapter interface 721 * @reg: mmio register offset 722 * @mask: mask to apply to the read register value 723 * @val: value to wait for 724 * @interval_us: polling interval in microseconds 725 * @timeout_ms: timeout in milliseconds 726 * 727 * Return: -ETIMEDOUT on error, zero on success. 728 */ 729 static int ufshcd_wait_for_register(struct ufs_hba *hba, u32 reg, u32 mask, 730 u32 val, unsigned long interval_us, 731 unsigned long timeout_ms) 732 { 733 u32 v; 734 735 val &= mask; /* ignore bits that we don't intend to wait on */ 736 737 return read_poll_timeout(ufshcd_readl, v, (v & mask) == val, 738 interval_us, timeout_ms * 1000, false, hba, reg); 739 } 740 741 /** 742 * ufshcd_get_intr_mask - Get the interrupt bit mask 743 * @hba: Pointer to adapter instance 744 * 745 * Return: interrupt bit mask per version 746 */ 747 static inline u32 ufshcd_get_intr_mask(struct ufs_hba *hba) 748 { 749 if (hba->ufs_version <= ufshci_version(2, 0)) 750 return INTERRUPT_MASK_ALL_VER_11; 751 752 return INTERRUPT_MASK_ALL_VER_21; 753 } 754 755 /** 756 * ufshcd_get_ufs_version - Get the UFS version supported by the HBA 757 * @hba: Pointer to adapter instance 758 * 759 * Return: UFSHCI version supported by the controller 760 */ 761 static inline u32 ufshcd_get_ufs_version(struct ufs_hba *hba) 762 { 763 u32 ufshci_ver; 764 765 if (hba->quirks & UFSHCD_QUIRK_BROKEN_UFS_HCI_VERSION) 766 ufshci_ver = ufshcd_vops_get_ufs_hci_version(hba); 767 else 768 ufshci_ver = ufshcd_readl(hba, REG_UFS_VERSION); 769 770 /* 771 * UFSHCI v1.x uses a different version scheme, in order 772 * to allow the use of comparisons with the ufshci_version 773 * function, we convert it to the same scheme as ufs 2.0+. 774 */ 775 if (ufshci_ver & 0x00010000) 776 return ufshci_version(1, ufshci_ver & 0x00000100); 777 778 return ufshci_ver; 779 } 780 781 /** 782 * ufshcd_is_device_present - Check if any device connected to 783 * the host controller 784 * @hba: pointer to adapter instance 785 * 786 * Return: true if device present, false if no device detected 787 */ 788 static inline bool ufshcd_is_device_present(struct ufs_hba *hba) 789 { 790 return ufshcd_readl(hba, REG_CONTROLLER_STATUS) & DEVICE_PRESENT; 791 } 792 793 /** 794 * ufshcd_get_tr_ocs - Get the UTRD Overall Command Status 795 * @lrbp: pointer to local command reference block 796 * @cqe: pointer to the completion queue entry 797 * 798 * This function is used to get the OCS field from UTRD 799 * 800 * Return: the OCS field in the UTRD. 801 */ 802 static enum utp_ocs ufshcd_get_tr_ocs(struct ufshcd_lrb *lrbp, 803 struct cq_entry *cqe) 804 { 805 if (cqe) 806 return le32_to_cpu(cqe->status) & MASK_OCS; 807 808 return lrbp->utr_descriptor_ptr->header.ocs & MASK_OCS; 809 } 810 811 /** 812 * ufshcd_utrl_clear() - Clear requests from the controller request list. 813 * @hba: per adapter instance 814 * @mask: mask with one bit set for each request to be cleared 815 */ 816 static inline void ufshcd_utrl_clear(struct ufs_hba *hba, u32 mask) 817 { 818 if (hba->quirks & UFSHCI_QUIRK_BROKEN_REQ_LIST_CLR) 819 mask = ~mask; 820 /* 821 * From the UFSHCI specification: "UTP Transfer Request List CLear 822 * Register (UTRLCLR): This field is bit significant. Each bit 823 * corresponds to a slot in the UTP Transfer Request List, where bit 0 824 * corresponds to request slot 0. A bit in this field is set to ‘0’ 825 * by host software to indicate to the host controller that a transfer 826 * request slot is cleared. The host controller 827 * shall free up any resources associated to the request slot 828 * immediately, and shall set the associated bit in UTRLDBR to ‘0’. The 829 * host software indicates no change to request slots by setting the 830 * associated bits in this field to ‘1’. Bits in this field shall only 831 * be set ‘1’ or ‘0’ by host software when UTRLRSR is set to ‘1’." 832 */ 833 ufshcd_writel(hba, ~mask, REG_UTP_TRANSFER_REQ_LIST_CLEAR); 834 } 835 836 /** 837 * ufshcd_utmrl_clear - Clear a bit in UTMRLCLR register 838 * @hba: per adapter instance 839 * @pos: position of the bit to be cleared 840 */ 841 static inline void ufshcd_utmrl_clear(struct ufs_hba *hba, u32 pos) 842 { 843 if (hba->quirks & UFSHCI_QUIRK_BROKEN_REQ_LIST_CLR) 844 ufshcd_writel(hba, (1 << pos), REG_UTP_TASK_REQ_LIST_CLEAR); 845 else 846 ufshcd_writel(hba, ~(1 << pos), REG_UTP_TASK_REQ_LIST_CLEAR); 847 } 848 849 /** 850 * ufshcd_get_lists_status - Check UCRDY, UTRLRDY and UTMRLRDY 851 * @reg: Register value of host controller status 852 * 853 * Return: 0 on success; a positive value if failed. 854 */ 855 static inline int ufshcd_get_lists_status(u32 reg) 856 { 857 return !((reg & UFSHCD_STATUS_READY) == UFSHCD_STATUS_READY); 858 } 859 860 /** 861 * ufshcd_get_uic_cmd_result - Get the UIC command result 862 * @hba: Pointer to adapter instance 863 * 864 * This function gets the result of UIC command completion 865 * 866 * Return: 0 on success; non-zero value on error. 867 */ 868 static inline int ufshcd_get_uic_cmd_result(struct ufs_hba *hba) 869 { 870 return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_2) & 871 MASK_UIC_COMMAND_RESULT; 872 } 873 874 /** 875 * ufshcd_get_dme_attr_val - Get the value of attribute returned by UIC command 876 * @hba: Pointer to adapter instance 877 * 878 * This function gets UIC command argument3 879 * 880 * Return: 0 on success; non-zero value on error. 881 */ 882 static inline u32 ufshcd_get_dme_attr_val(struct ufs_hba *hba) 883 { 884 return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_3); 885 } 886 887 /** 888 * ufshcd_get_req_rsp - returns the TR response transaction type 889 * @ucd_rsp_ptr: pointer to response UPIU 890 * 891 * Return: UPIU type. 892 */ 893 static inline enum upiu_response_transaction 894 ufshcd_get_req_rsp(struct utp_upiu_rsp *ucd_rsp_ptr) 895 { 896 return ucd_rsp_ptr->header.transaction_code; 897 } 898 899 /** 900 * ufshcd_is_exception_event - Check if the device raised an exception event 901 * @ucd_rsp_ptr: pointer to response UPIU 902 * 903 * The function checks if the device raised an exception event indicated in 904 * the Device Information field of response UPIU. 905 * 906 * Return: true if exception is raised, false otherwise. 907 */ 908 static inline bool ufshcd_is_exception_event(struct utp_upiu_rsp *ucd_rsp_ptr) 909 { 910 return ucd_rsp_ptr->header.device_information & 1; 911 } 912 913 /** 914 * ufshcd_reset_intr_aggr - Reset interrupt aggregation values. 915 * @hba: per adapter instance 916 */ 917 static inline void 918 ufshcd_reset_intr_aggr(struct ufs_hba *hba) 919 { 920 ufshcd_writel(hba, INT_AGGR_ENABLE | 921 INT_AGGR_COUNTER_AND_TIMER_RESET, 922 REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL); 923 } 924 925 /** 926 * ufshcd_config_intr_aggr - Configure interrupt aggregation values. 927 * @hba: per adapter instance 928 * @cnt: Interrupt aggregation counter threshold 929 * @tmout: Interrupt aggregation timeout value 930 */ 931 static inline void 932 ufshcd_config_intr_aggr(struct ufs_hba *hba, u8 cnt, u8 tmout) 933 { 934 ufshcd_writel(hba, INT_AGGR_ENABLE | INT_AGGR_PARAM_WRITE | 935 INT_AGGR_COUNTER_THLD_VAL(cnt) | 936 INT_AGGR_TIMEOUT_VAL(tmout), 937 REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL); 938 } 939 940 /** 941 * ufshcd_disable_intr_aggr - Disables interrupt aggregation. 942 * @hba: per adapter instance 943 */ 944 static inline void ufshcd_disable_intr_aggr(struct ufs_hba *hba) 945 { 946 ufshcd_writel(hba, 0, REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL); 947 } 948 949 /** 950 * ufshcd_enable_run_stop_reg - Enable run-stop registers, 951 * When run-stop registers are set to 1, it indicates the 952 * host controller that it can process the requests 953 * @hba: per adapter instance 954 */ 955 static void ufshcd_enable_run_stop_reg(struct ufs_hba *hba) 956 { 957 ufshcd_writel(hba, UTP_TASK_REQ_LIST_RUN_STOP_BIT, 958 REG_UTP_TASK_REQ_LIST_RUN_STOP); 959 ufshcd_writel(hba, UTP_TRANSFER_REQ_LIST_RUN_STOP_BIT, 960 REG_UTP_TRANSFER_REQ_LIST_RUN_STOP); 961 } 962 963 /** 964 * ufshcd_hba_start - Start controller initialization sequence 965 * @hba: per adapter instance 966 */ 967 static inline void ufshcd_hba_start(struct ufs_hba *hba) 968 { 969 u32 val = CONTROLLER_ENABLE; 970 971 if (ufshcd_crypto_enable(hba)) 972 val |= CRYPTO_GENERAL_ENABLE; 973 974 ufshcd_writel(hba, val, REG_CONTROLLER_ENABLE); 975 } 976 977 /** 978 * ufshcd_is_hba_active - Get controller state 979 * @hba: per adapter instance 980 * 981 * Return: true if and only if the controller is active. 982 */ 983 bool ufshcd_is_hba_active(struct ufs_hba *hba) 984 { 985 return ufshcd_readl(hba, REG_CONTROLLER_ENABLE) & CONTROLLER_ENABLE; 986 } 987 EXPORT_SYMBOL_GPL(ufshcd_is_hba_active); 988 989 /** 990 * ufshcd_pm_qos_init - initialize PM QoS request 991 * @hba: per adapter instance 992 */ 993 void ufshcd_pm_qos_init(struct ufs_hba *hba) 994 { 995 996 if (hba->pm_qos_enabled) 997 return; 998 999 cpu_latency_qos_add_request(&hba->pm_qos_req, PM_QOS_DEFAULT_VALUE); 1000 1001 if (cpu_latency_qos_request_active(&hba->pm_qos_req)) 1002 hba->pm_qos_enabled = true; 1003 } 1004 1005 /** 1006 * ufshcd_pm_qos_exit - remove request from PM QoS 1007 * @hba: per adapter instance 1008 */ 1009 void ufshcd_pm_qos_exit(struct ufs_hba *hba) 1010 { 1011 if (!hba->pm_qos_enabled) 1012 return; 1013 1014 cpu_latency_qos_remove_request(&hba->pm_qos_req); 1015 hba->pm_qos_enabled = false; 1016 } 1017 1018 /** 1019 * ufshcd_pm_qos_update - update PM QoS request 1020 * @hba: per adapter instance 1021 * @on: If True, vote for perf PM QoS mode otherwise power save mode 1022 */ 1023 static void ufshcd_pm_qos_update(struct ufs_hba *hba, bool on) 1024 { 1025 if (!hba->pm_qos_enabled) 1026 return; 1027 1028 cpu_latency_qos_update_request(&hba->pm_qos_req, on ? 0 : PM_QOS_DEFAULT_VALUE); 1029 } 1030 1031 /** 1032 * ufshcd_set_clk_freq - set UFS controller clock frequencies 1033 * @hba: per adapter instance 1034 * @scale_up: If True, set max possible frequency othewise set low frequency 1035 * 1036 * Return: 0 if successful; < 0 upon failure. 1037 */ 1038 static int ufshcd_set_clk_freq(struct ufs_hba *hba, bool scale_up) 1039 { 1040 int ret = 0; 1041 struct ufs_clk_info *clki; 1042 struct list_head *head = &hba->clk_list_head; 1043 1044 if (list_empty(head)) 1045 goto out; 1046 1047 list_for_each_entry(clki, head, list) { 1048 if (!IS_ERR_OR_NULL(clki->clk)) { 1049 if (scale_up && clki->max_freq) { 1050 if (clki->curr_freq == clki->max_freq) 1051 continue; 1052 1053 ret = clk_set_rate(clki->clk, clki->max_freq); 1054 if (ret) { 1055 dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n", 1056 __func__, clki->name, 1057 clki->max_freq, ret); 1058 break; 1059 } 1060 trace_ufshcd_clk_scaling(dev_name(hba->dev), 1061 "scaled up", clki->name, 1062 clki->curr_freq, 1063 clki->max_freq); 1064 1065 clki->curr_freq = clki->max_freq; 1066 1067 } else if (!scale_up && clki->min_freq) { 1068 if (clki->curr_freq == clki->min_freq) 1069 continue; 1070 1071 ret = clk_set_rate(clki->clk, clki->min_freq); 1072 if (ret) { 1073 dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n", 1074 __func__, clki->name, 1075 clki->min_freq, ret); 1076 break; 1077 } 1078 trace_ufshcd_clk_scaling(dev_name(hba->dev), 1079 "scaled down", clki->name, 1080 clki->curr_freq, 1081 clki->min_freq); 1082 clki->curr_freq = clki->min_freq; 1083 } 1084 } 1085 dev_dbg(hba->dev, "%s: clk: %s, rate: %lu\n", __func__, 1086 clki->name, clk_get_rate(clki->clk)); 1087 } 1088 1089 out: 1090 return ret; 1091 } 1092 1093 int ufshcd_opp_config_clks(struct device *dev, struct opp_table *opp_table, 1094 struct dev_pm_opp *opp, void *data, 1095 bool scaling_down) 1096 { 1097 struct ufs_hba *hba = dev_get_drvdata(dev); 1098 struct list_head *head = &hba->clk_list_head; 1099 struct ufs_clk_info *clki; 1100 unsigned long freq; 1101 u8 idx = 0; 1102 int ret; 1103 1104 list_for_each_entry(clki, head, list) { 1105 if (!IS_ERR_OR_NULL(clki->clk)) { 1106 freq = dev_pm_opp_get_freq_indexed(opp, idx++); 1107 1108 /* Do not set rate for clocks having frequency as 0 */ 1109 if (!freq) 1110 continue; 1111 1112 ret = clk_set_rate(clki->clk, freq); 1113 if (ret) { 1114 dev_err(dev, "%s: %s clk set rate(%ldHz) failed, %d\n", 1115 __func__, clki->name, freq, ret); 1116 return ret; 1117 } 1118 1119 trace_ufshcd_clk_scaling(dev_name(dev), 1120 (scaling_down ? "scaled down" : "scaled up"), 1121 clki->name, hba->clk_scaling.target_freq, freq); 1122 } 1123 } 1124 1125 return 0; 1126 } 1127 EXPORT_SYMBOL_GPL(ufshcd_opp_config_clks); 1128 1129 static int ufshcd_opp_set_rate(struct ufs_hba *hba, unsigned long freq) 1130 { 1131 struct dev_pm_opp *opp; 1132 int ret; 1133 1134 opp = dev_pm_opp_find_freq_floor_indexed(hba->dev, 1135 &freq, 0); 1136 if (IS_ERR(opp)) 1137 return PTR_ERR(opp); 1138 1139 ret = dev_pm_opp_set_opp(hba->dev, opp); 1140 dev_pm_opp_put(opp); 1141 1142 return ret; 1143 } 1144 1145 /** 1146 * ufshcd_scale_clks - scale up or scale down UFS controller clocks 1147 * @hba: per adapter instance 1148 * @freq: frequency to scale 1149 * @scale_up: True if scaling up and false if scaling down 1150 * 1151 * Return: 0 if successful; < 0 upon failure. 1152 */ 1153 static int ufshcd_scale_clks(struct ufs_hba *hba, unsigned long freq, 1154 bool scale_up) 1155 { 1156 int ret = 0; 1157 ktime_t start = ktime_get(); 1158 1159 ret = ufshcd_vops_clk_scale_notify(hba, scale_up, PRE_CHANGE); 1160 if (ret) 1161 goto out; 1162 1163 if (hba->use_pm_opp) 1164 ret = ufshcd_opp_set_rate(hba, freq); 1165 else 1166 ret = ufshcd_set_clk_freq(hba, scale_up); 1167 if (ret) 1168 goto out; 1169 1170 ret = ufshcd_vops_clk_scale_notify(hba, scale_up, POST_CHANGE); 1171 if (ret) { 1172 if (hba->use_pm_opp) 1173 ufshcd_opp_set_rate(hba, 1174 hba->devfreq->previous_freq); 1175 else 1176 ufshcd_set_clk_freq(hba, !scale_up); 1177 goto out; 1178 } 1179 1180 ufshcd_pm_qos_update(hba, scale_up); 1181 1182 out: 1183 trace_ufshcd_profile_clk_scaling(dev_name(hba->dev), 1184 (scale_up ? "up" : "down"), 1185 ktime_to_us(ktime_sub(ktime_get(), start)), ret); 1186 return ret; 1187 } 1188 1189 /** 1190 * ufshcd_is_devfreq_scaling_required - check if scaling is required or not 1191 * @hba: per adapter instance 1192 * @freq: frequency to scale 1193 * @scale_up: True if scaling up and false if scaling down 1194 * 1195 * Return: true if scaling is required, false otherwise. 1196 */ 1197 static bool ufshcd_is_devfreq_scaling_required(struct ufs_hba *hba, 1198 unsigned long freq, bool scale_up) 1199 { 1200 struct ufs_clk_info *clki; 1201 struct list_head *head = &hba->clk_list_head; 1202 1203 if (list_empty(head)) 1204 return false; 1205 1206 if (hba->use_pm_opp) 1207 return freq != hba->clk_scaling.target_freq; 1208 1209 list_for_each_entry(clki, head, list) { 1210 if (!IS_ERR_OR_NULL(clki->clk)) { 1211 if (scale_up && clki->max_freq) { 1212 if (clki->curr_freq == clki->max_freq) 1213 continue; 1214 return true; 1215 } else if (!scale_up && clki->min_freq) { 1216 if (clki->curr_freq == clki->min_freq) 1217 continue; 1218 return true; 1219 } 1220 } 1221 } 1222 1223 return false; 1224 } 1225 1226 /* 1227 * Determine the number of pending commands by counting the bits in the SCSI 1228 * device budget maps. This approach has been selected because a bit is set in 1229 * the budget map before scsi_host_queue_ready() checks the host_self_blocked 1230 * flag. The host_self_blocked flag can be modified by calling 1231 * scsi_block_requests() or scsi_unblock_requests(). 1232 */ 1233 static u32 ufshcd_pending_cmds(struct ufs_hba *hba) 1234 { 1235 const struct scsi_device *sdev; 1236 unsigned long flags; 1237 u32 pending = 0; 1238 1239 spin_lock_irqsave(hba->host->host_lock, flags); 1240 __shost_for_each_device(sdev, hba->host) 1241 pending += sbitmap_weight(&sdev->budget_map); 1242 spin_unlock_irqrestore(hba->host->host_lock, flags); 1243 1244 return pending; 1245 } 1246 1247 /* 1248 * Wait until all pending SCSI commands and TMFs have finished or the timeout 1249 * has expired. 1250 * 1251 * Return: 0 upon success; -EBUSY upon timeout. 1252 */ 1253 static int ufshcd_wait_for_doorbell_clr(struct ufs_hba *hba, 1254 u64 wait_timeout_us) 1255 { 1256 int ret = 0; 1257 u32 tm_doorbell; 1258 u32 tr_pending; 1259 bool timeout = false, do_last_check = false; 1260 ktime_t start; 1261 1262 ufshcd_hold(hba); 1263 /* 1264 * Wait for all the outstanding tasks/transfer requests. 1265 * Verify by checking the doorbell registers are clear. 1266 */ 1267 start = ktime_get(); 1268 do { 1269 if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL) { 1270 ret = -EBUSY; 1271 goto out; 1272 } 1273 1274 tm_doorbell = ufshcd_readl(hba, REG_UTP_TASK_REQ_DOOR_BELL); 1275 tr_pending = ufshcd_pending_cmds(hba); 1276 if (!tm_doorbell && !tr_pending) { 1277 timeout = false; 1278 break; 1279 } else if (do_last_check) { 1280 break; 1281 } 1282 1283 io_schedule_timeout(msecs_to_jiffies(20)); 1284 if (ktime_to_us(ktime_sub(ktime_get(), start)) > 1285 wait_timeout_us) { 1286 timeout = true; 1287 /* 1288 * We might have scheduled out for long time so make 1289 * sure to check if doorbells are cleared by this time 1290 * or not. 1291 */ 1292 do_last_check = true; 1293 } 1294 } while (tm_doorbell || tr_pending); 1295 1296 if (timeout) { 1297 dev_err(hba->dev, 1298 "%s: timedout waiting for doorbell to clear (tm=0x%x, tr=0x%x)\n", 1299 __func__, tm_doorbell, tr_pending); 1300 ret = -EBUSY; 1301 } 1302 out: 1303 ufshcd_release(hba); 1304 return ret; 1305 } 1306 1307 /** 1308 * ufshcd_scale_gear - scale up/down UFS gear 1309 * @hba: per adapter instance 1310 * @scale_up: True for scaling up gear and false for scaling down 1311 * 1312 * Return: 0 for success; -EBUSY if scaling can't happen at this time; 1313 * non-zero for any other errors. 1314 */ 1315 static int ufshcd_scale_gear(struct ufs_hba *hba, bool scale_up) 1316 { 1317 int ret = 0; 1318 struct ufs_pa_layer_attr new_pwr_info; 1319 1320 if (scale_up) { 1321 memcpy(&new_pwr_info, &hba->clk_scaling.saved_pwr_info, 1322 sizeof(struct ufs_pa_layer_attr)); 1323 } else { 1324 memcpy(&new_pwr_info, &hba->pwr_info, 1325 sizeof(struct ufs_pa_layer_attr)); 1326 1327 if (hba->pwr_info.gear_tx > hba->clk_scaling.min_gear || 1328 hba->pwr_info.gear_rx > hba->clk_scaling.min_gear) { 1329 /* save the current power mode */ 1330 memcpy(&hba->clk_scaling.saved_pwr_info, 1331 &hba->pwr_info, 1332 sizeof(struct ufs_pa_layer_attr)); 1333 1334 /* scale down gear */ 1335 new_pwr_info.gear_tx = hba->clk_scaling.min_gear; 1336 new_pwr_info.gear_rx = hba->clk_scaling.min_gear; 1337 } 1338 } 1339 1340 /* check if the power mode needs to be changed or not? */ 1341 ret = ufshcd_config_pwr_mode(hba, &new_pwr_info); 1342 if (ret) 1343 dev_err(hba->dev, "%s: failed err %d, old gear: (tx %d rx %d), new gear: (tx %d rx %d)", 1344 __func__, ret, 1345 hba->pwr_info.gear_tx, hba->pwr_info.gear_rx, 1346 new_pwr_info.gear_tx, new_pwr_info.gear_rx); 1347 1348 return ret; 1349 } 1350 1351 /* 1352 * Wait until all pending SCSI commands and TMFs have finished or the timeout 1353 * has expired. 1354 * 1355 * Return: 0 upon success; -EBUSY upon timeout. 1356 */ 1357 static int ufshcd_clock_scaling_prepare(struct ufs_hba *hba, u64 timeout_us) 1358 { 1359 int ret = 0; 1360 /* 1361 * make sure that there are no outstanding requests when 1362 * clock scaling is in progress 1363 */ 1364 blk_mq_quiesce_tagset(&hba->host->tag_set); 1365 mutex_lock(&hba->wb_mutex); 1366 down_write(&hba->clk_scaling_lock); 1367 1368 if (!hba->clk_scaling.is_allowed || 1369 ufshcd_wait_for_doorbell_clr(hba, timeout_us)) { 1370 ret = -EBUSY; 1371 up_write(&hba->clk_scaling_lock); 1372 mutex_unlock(&hba->wb_mutex); 1373 blk_mq_unquiesce_tagset(&hba->host->tag_set); 1374 goto out; 1375 } 1376 1377 /* let's not get into low power until clock scaling is completed */ 1378 ufshcd_hold(hba); 1379 1380 out: 1381 return ret; 1382 } 1383 1384 static void ufshcd_clock_scaling_unprepare(struct ufs_hba *hba, int err, bool scale_up) 1385 { 1386 up_write(&hba->clk_scaling_lock); 1387 1388 /* Enable Write Booster if we have scaled up else disable it */ 1389 if (ufshcd_enable_wb_if_scaling_up(hba) && !err) 1390 ufshcd_wb_toggle(hba, scale_up); 1391 1392 mutex_unlock(&hba->wb_mutex); 1393 1394 blk_mq_unquiesce_tagset(&hba->host->tag_set); 1395 ufshcd_release(hba); 1396 } 1397 1398 /** 1399 * ufshcd_devfreq_scale - scale up/down UFS clocks and gear 1400 * @hba: per adapter instance 1401 * @freq: frequency to scale 1402 * @scale_up: True for scaling up and false for scalin down 1403 * 1404 * Return: 0 for success; -EBUSY if scaling can't happen at this time; non-zero 1405 * for any other errors. 1406 */ 1407 static int ufshcd_devfreq_scale(struct ufs_hba *hba, unsigned long freq, 1408 bool scale_up) 1409 { 1410 int ret = 0; 1411 1412 ret = ufshcd_clock_scaling_prepare(hba, 1 * USEC_PER_SEC); 1413 if (ret) 1414 return ret; 1415 1416 /* scale down the gear before scaling down clocks */ 1417 if (!scale_up) { 1418 ret = ufshcd_scale_gear(hba, false); 1419 if (ret) 1420 goto out_unprepare; 1421 } 1422 1423 ret = ufshcd_scale_clks(hba, freq, scale_up); 1424 if (ret) { 1425 if (!scale_up) 1426 ufshcd_scale_gear(hba, true); 1427 goto out_unprepare; 1428 } 1429 1430 /* scale up the gear after scaling up clocks */ 1431 if (scale_up) { 1432 ret = ufshcd_scale_gear(hba, true); 1433 if (ret) { 1434 ufshcd_scale_clks(hba, hba->devfreq->previous_freq, 1435 false); 1436 goto out_unprepare; 1437 } 1438 } 1439 1440 out_unprepare: 1441 ufshcd_clock_scaling_unprepare(hba, ret, scale_up); 1442 return ret; 1443 } 1444 1445 static void ufshcd_clk_scaling_suspend_work(struct work_struct *work) 1446 { 1447 struct ufs_hba *hba = container_of(work, struct ufs_hba, 1448 clk_scaling.suspend_work); 1449 unsigned long irq_flags; 1450 1451 spin_lock_irqsave(hba->host->host_lock, irq_flags); 1452 if (hba->clk_scaling.active_reqs || hba->clk_scaling.is_suspended) { 1453 spin_unlock_irqrestore(hba->host->host_lock, irq_flags); 1454 return; 1455 } 1456 hba->clk_scaling.is_suspended = true; 1457 hba->clk_scaling.window_start_t = 0; 1458 spin_unlock_irqrestore(hba->host->host_lock, irq_flags); 1459 1460 devfreq_suspend_device(hba->devfreq); 1461 } 1462 1463 static void ufshcd_clk_scaling_resume_work(struct work_struct *work) 1464 { 1465 struct ufs_hba *hba = container_of(work, struct ufs_hba, 1466 clk_scaling.resume_work); 1467 unsigned long irq_flags; 1468 1469 spin_lock_irqsave(hba->host->host_lock, irq_flags); 1470 if (!hba->clk_scaling.is_suspended) { 1471 spin_unlock_irqrestore(hba->host->host_lock, irq_flags); 1472 return; 1473 } 1474 hba->clk_scaling.is_suspended = false; 1475 spin_unlock_irqrestore(hba->host->host_lock, irq_flags); 1476 1477 devfreq_resume_device(hba->devfreq); 1478 } 1479 1480 static int ufshcd_devfreq_target(struct device *dev, 1481 unsigned long *freq, u32 flags) 1482 { 1483 int ret = 0; 1484 struct ufs_hba *hba = dev_get_drvdata(dev); 1485 ktime_t start; 1486 bool scale_up = false, sched_clk_scaling_suspend_work = false; 1487 struct list_head *clk_list = &hba->clk_list_head; 1488 struct ufs_clk_info *clki; 1489 unsigned long irq_flags; 1490 1491 if (!ufshcd_is_clkscaling_supported(hba)) 1492 return -EINVAL; 1493 1494 if (hba->use_pm_opp) { 1495 struct dev_pm_opp *opp; 1496 1497 /* Get the recommended frequency from OPP framework */ 1498 opp = devfreq_recommended_opp(dev, freq, flags); 1499 if (IS_ERR(opp)) 1500 return PTR_ERR(opp); 1501 1502 dev_pm_opp_put(opp); 1503 } else { 1504 /* Override with the closest supported frequency */ 1505 clki = list_first_entry(&hba->clk_list_head, struct ufs_clk_info, 1506 list); 1507 *freq = (unsigned long) clk_round_rate(clki->clk, *freq); 1508 } 1509 1510 spin_lock_irqsave(hba->host->host_lock, irq_flags); 1511 if (ufshcd_eh_in_progress(hba)) { 1512 spin_unlock_irqrestore(hba->host->host_lock, irq_flags); 1513 return 0; 1514 } 1515 1516 /* Skip scaling clock when clock scaling is suspended */ 1517 if (hba->clk_scaling.is_suspended) { 1518 spin_unlock_irqrestore(hba->host->host_lock, irq_flags); 1519 dev_warn(hba->dev, "clock scaling is suspended, skip"); 1520 return 0; 1521 } 1522 1523 if (!hba->clk_scaling.active_reqs) 1524 sched_clk_scaling_suspend_work = true; 1525 1526 if (list_empty(clk_list)) { 1527 spin_unlock_irqrestore(hba->host->host_lock, irq_flags); 1528 goto out; 1529 } 1530 1531 /* Decide based on the target or rounded-off frequency and update */ 1532 if (hba->use_pm_opp) 1533 scale_up = *freq > hba->clk_scaling.target_freq; 1534 else 1535 scale_up = *freq == clki->max_freq; 1536 1537 if (!hba->use_pm_opp && !scale_up) 1538 *freq = clki->min_freq; 1539 1540 /* Update the frequency */ 1541 if (!ufshcd_is_devfreq_scaling_required(hba, *freq, scale_up)) { 1542 spin_unlock_irqrestore(hba->host->host_lock, irq_flags); 1543 ret = 0; 1544 goto out; /* no state change required */ 1545 } 1546 spin_unlock_irqrestore(hba->host->host_lock, irq_flags); 1547 1548 start = ktime_get(); 1549 ret = ufshcd_devfreq_scale(hba, *freq, scale_up); 1550 if (!ret) 1551 hba->clk_scaling.target_freq = *freq; 1552 1553 trace_ufshcd_profile_clk_scaling(dev_name(hba->dev), 1554 (scale_up ? "up" : "down"), 1555 ktime_to_us(ktime_sub(ktime_get(), start)), ret); 1556 1557 out: 1558 if (sched_clk_scaling_suspend_work && 1559 (!scale_up || hba->clk_scaling.suspend_on_no_request)) 1560 queue_work(hba->clk_scaling.workq, 1561 &hba->clk_scaling.suspend_work); 1562 1563 return ret; 1564 } 1565 1566 static int ufshcd_devfreq_get_dev_status(struct device *dev, 1567 struct devfreq_dev_status *stat) 1568 { 1569 struct ufs_hba *hba = dev_get_drvdata(dev); 1570 struct ufs_clk_scaling *scaling = &hba->clk_scaling; 1571 unsigned long flags; 1572 ktime_t curr_t; 1573 1574 if (!ufshcd_is_clkscaling_supported(hba)) 1575 return -EINVAL; 1576 1577 memset(stat, 0, sizeof(*stat)); 1578 1579 spin_lock_irqsave(hba->host->host_lock, flags); 1580 curr_t = ktime_get(); 1581 if (!scaling->window_start_t) 1582 goto start_window; 1583 1584 /* 1585 * If current frequency is 0, then the ondemand governor considers 1586 * there's no initial frequency set. And it always requests to set 1587 * to max. frequency. 1588 */ 1589 if (hba->use_pm_opp) { 1590 stat->current_frequency = hba->clk_scaling.target_freq; 1591 } else { 1592 struct list_head *clk_list = &hba->clk_list_head; 1593 struct ufs_clk_info *clki; 1594 1595 clki = list_first_entry(clk_list, struct ufs_clk_info, list); 1596 stat->current_frequency = clki->curr_freq; 1597 } 1598 1599 if (scaling->is_busy_started) 1600 scaling->tot_busy_t += ktime_us_delta(curr_t, 1601 scaling->busy_start_t); 1602 stat->total_time = ktime_us_delta(curr_t, scaling->window_start_t); 1603 stat->busy_time = scaling->tot_busy_t; 1604 start_window: 1605 scaling->window_start_t = curr_t; 1606 scaling->tot_busy_t = 0; 1607 1608 if (scaling->active_reqs) { 1609 scaling->busy_start_t = curr_t; 1610 scaling->is_busy_started = true; 1611 } else { 1612 scaling->busy_start_t = 0; 1613 scaling->is_busy_started = false; 1614 } 1615 spin_unlock_irqrestore(hba->host->host_lock, flags); 1616 return 0; 1617 } 1618 1619 static int ufshcd_devfreq_init(struct ufs_hba *hba) 1620 { 1621 struct list_head *clk_list = &hba->clk_list_head; 1622 struct ufs_clk_info *clki; 1623 struct devfreq *devfreq; 1624 int ret; 1625 1626 /* Skip devfreq if we don't have any clocks in the list */ 1627 if (list_empty(clk_list)) 1628 return 0; 1629 1630 if (!hba->use_pm_opp) { 1631 clki = list_first_entry(clk_list, struct ufs_clk_info, list); 1632 dev_pm_opp_add(hba->dev, clki->min_freq, 0); 1633 dev_pm_opp_add(hba->dev, clki->max_freq, 0); 1634 } 1635 1636 ufshcd_vops_config_scaling_param(hba, &hba->vps->devfreq_profile, 1637 &hba->vps->ondemand_data); 1638 devfreq = devfreq_add_device(hba->dev, 1639 &hba->vps->devfreq_profile, 1640 DEVFREQ_GOV_SIMPLE_ONDEMAND, 1641 &hba->vps->ondemand_data); 1642 if (IS_ERR(devfreq)) { 1643 ret = PTR_ERR(devfreq); 1644 dev_err(hba->dev, "Unable to register with devfreq %d\n", ret); 1645 1646 if (!hba->use_pm_opp) { 1647 dev_pm_opp_remove(hba->dev, clki->min_freq); 1648 dev_pm_opp_remove(hba->dev, clki->max_freq); 1649 } 1650 return ret; 1651 } 1652 1653 hba->devfreq = devfreq; 1654 1655 return 0; 1656 } 1657 1658 static void ufshcd_devfreq_remove(struct ufs_hba *hba) 1659 { 1660 struct list_head *clk_list = &hba->clk_list_head; 1661 1662 if (!hba->devfreq) 1663 return; 1664 1665 devfreq_remove_device(hba->devfreq); 1666 hba->devfreq = NULL; 1667 1668 if (!hba->use_pm_opp) { 1669 struct ufs_clk_info *clki; 1670 1671 clki = list_first_entry(clk_list, struct ufs_clk_info, list); 1672 dev_pm_opp_remove(hba->dev, clki->min_freq); 1673 dev_pm_opp_remove(hba->dev, clki->max_freq); 1674 } 1675 } 1676 1677 static void ufshcd_suspend_clkscaling(struct ufs_hba *hba) 1678 { 1679 unsigned long flags; 1680 bool suspend = false; 1681 1682 cancel_work_sync(&hba->clk_scaling.suspend_work); 1683 cancel_work_sync(&hba->clk_scaling.resume_work); 1684 1685 spin_lock_irqsave(hba->host->host_lock, flags); 1686 if (!hba->clk_scaling.is_suspended) { 1687 suspend = true; 1688 hba->clk_scaling.is_suspended = true; 1689 hba->clk_scaling.window_start_t = 0; 1690 } 1691 spin_unlock_irqrestore(hba->host->host_lock, flags); 1692 1693 if (suspend) 1694 devfreq_suspend_device(hba->devfreq); 1695 } 1696 1697 static void ufshcd_resume_clkscaling(struct ufs_hba *hba) 1698 { 1699 unsigned long flags; 1700 bool resume = false; 1701 1702 spin_lock_irqsave(hba->host->host_lock, flags); 1703 if (hba->clk_scaling.is_suspended) { 1704 resume = true; 1705 hba->clk_scaling.is_suspended = false; 1706 } 1707 spin_unlock_irqrestore(hba->host->host_lock, flags); 1708 1709 if (resume) 1710 devfreq_resume_device(hba->devfreq); 1711 } 1712 1713 static ssize_t ufshcd_clkscale_enable_show(struct device *dev, 1714 struct device_attribute *attr, char *buf) 1715 { 1716 struct ufs_hba *hba = dev_get_drvdata(dev); 1717 1718 return sysfs_emit(buf, "%d\n", hba->clk_scaling.is_enabled); 1719 } 1720 1721 static ssize_t ufshcd_clkscale_enable_store(struct device *dev, 1722 struct device_attribute *attr, const char *buf, size_t count) 1723 { 1724 struct ufs_hba *hba = dev_get_drvdata(dev); 1725 u32 value; 1726 int err = 0; 1727 1728 if (kstrtou32(buf, 0, &value)) 1729 return -EINVAL; 1730 1731 down(&hba->host_sem); 1732 if (!ufshcd_is_user_access_allowed(hba)) { 1733 err = -EBUSY; 1734 goto out; 1735 } 1736 1737 value = !!value; 1738 if (value == hba->clk_scaling.is_enabled) 1739 goto out; 1740 1741 ufshcd_rpm_get_sync(hba); 1742 ufshcd_hold(hba); 1743 1744 hba->clk_scaling.is_enabled = value; 1745 1746 if (value) { 1747 ufshcd_resume_clkscaling(hba); 1748 } else { 1749 ufshcd_suspend_clkscaling(hba); 1750 err = ufshcd_devfreq_scale(hba, ULONG_MAX, true); 1751 if (err) 1752 dev_err(hba->dev, "%s: failed to scale clocks up %d\n", 1753 __func__, err); 1754 } 1755 1756 ufshcd_release(hba); 1757 ufshcd_rpm_put_sync(hba); 1758 out: 1759 up(&hba->host_sem); 1760 return err ? err : count; 1761 } 1762 1763 static void ufshcd_init_clk_scaling_sysfs(struct ufs_hba *hba) 1764 { 1765 hba->clk_scaling.enable_attr.show = ufshcd_clkscale_enable_show; 1766 hba->clk_scaling.enable_attr.store = ufshcd_clkscale_enable_store; 1767 sysfs_attr_init(&hba->clk_scaling.enable_attr.attr); 1768 hba->clk_scaling.enable_attr.attr.name = "clkscale_enable"; 1769 hba->clk_scaling.enable_attr.attr.mode = 0644; 1770 if (device_create_file(hba->dev, &hba->clk_scaling.enable_attr)) 1771 dev_err(hba->dev, "Failed to create sysfs for clkscale_enable\n"); 1772 } 1773 1774 static void ufshcd_remove_clk_scaling_sysfs(struct ufs_hba *hba) 1775 { 1776 if (hba->clk_scaling.enable_attr.attr.name) 1777 device_remove_file(hba->dev, &hba->clk_scaling.enable_attr); 1778 } 1779 1780 static void ufshcd_init_clk_scaling(struct ufs_hba *hba) 1781 { 1782 if (!ufshcd_is_clkscaling_supported(hba)) 1783 return; 1784 1785 if (!hba->clk_scaling.min_gear) 1786 hba->clk_scaling.min_gear = UFS_HS_G1; 1787 1788 INIT_WORK(&hba->clk_scaling.suspend_work, 1789 ufshcd_clk_scaling_suspend_work); 1790 INIT_WORK(&hba->clk_scaling.resume_work, 1791 ufshcd_clk_scaling_resume_work); 1792 1793 hba->clk_scaling.workq = alloc_ordered_workqueue( 1794 "ufs_clkscaling_%d", WQ_MEM_RECLAIM, hba->host->host_no); 1795 1796 hba->clk_scaling.is_initialized = true; 1797 } 1798 1799 static void ufshcd_exit_clk_scaling(struct ufs_hba *hba) 1800 { 1801 if (!hba->clk_scaling.is_initialized) 1802 return; 1803 1804 ufshcd_remove_clk_scaling_sysfs(hba); 1805 destroy_workqueue(hba->clk_scaling.workq); 1806 ufshcd_devfreq_remove(hba); 1807 hba->clk_scaling.is_initialized = false; 1808 } 1809 1810 static void ufshcd_ungate_work(struct work_struct *work) 1811 { 1812 int ret; 1813 unsigned long flags; 1814 struct ufs_hba *hba = container_of(work, struct ufs_hba, 1815 clk_gating.ungate_work); 1816 1817 cancel_delayed_work_sync(&hba->clk_gating.gate_work); 1818 1819 spin_lock_irqsave(hba->host->host_lock, flags); 1820 if (hba->clk_gating.state == CLKS_ON) { 1821 spin_unlock_irqrestore(hba->host->host_lock, flags); 1822 return; 1823 } 1824 1825 spin_unlock_irqrestore(hba->host->host_lock, flags); 1826 ufshcd_hba_vreg_set_hpm(hba); 1827 ufshcd_setup_clocks(hba, true); 1828 1829 ufshcd_enable_irq(hba); 1830 1831 /* Exit from hibern8 */ 1832 if (ufshcd_can_hibern8_during_gating(hba)) { 1833 /* Prevent gating in this path */ 1834 hba->clk_gating.is_suspended = true; 1835 if (ufshcd_is_link_hibern8(hba)) { 1836 ret = ufshcd_uic_hibern8_exit(hba); 1837 if (ret) 1838 dev_err(hba->dev, "%s: hibern8 exit failed %d\n", 1839 __func__, ret); 1840 else 1841 ufshcd_set_link_active(hba); 1842 } 1843 hba->clk_gating.is_suspended = false; 1844 } 1845 } 1846 1847 /** 1848 * ufshcd_hold - Enable clocks that were gated earlier due to ufshcd_release. 1849 * Also, exit from hibern8 mode and set the link as active. 1850 * @hba: per adapter instance 1851 */ 1852 void ufshcd_hold(struct ufs_hba *hba) 1853 { 1854 bool flush_result; 1855 unsigned long flags; 1856 1857 if (!ufshcd_is_clkgating_allowed(hba) || 1858 !hba->clk_gating.is_initialized) 1859 return; 1860 spin_lock_irqsave(hba->host->host_lock, flags); 1861 hba->clk_gating.active_reqs++; 1862 1863 start: 1864 switch (hba->clk_gating.state) { 1865 case CLKS_ON: 1866 /* 1867 * Wait for the ungate work to complete if in progress. 1868 * Though the clocks may be in ON state, the link could 1869 * still be in hibner8 state if hibern8 is allowed 1870 * during clock gating. 1871 * Make sure we exit hibern8 state also in addition to 1872 * clocks being ON. 1873 */ 1874 if (ufshcd_can_hibern8_during_gating(hba) && 1875 ufshcd_is_link_hibern8(hba)) { 1876 spin_unlock_irqrestore(hba->host->host_lock, flags); 1877 flush_result = flush_work(&hba->clk_gating.ungate_work); 1878 if (hba->clk_gating.is_suspended && !flush_result) 1879 return; 1880 spin_lock_irqsave(hba->host->host_lock, flags); 1881 goto start; 1882 } 1883 break; 1884 case REQ_CLKS_OFF: 1885 if (cancel_delayed_work(&hba->clk_gating.gate_work)) { 1886 hba->clk_gating.state = CLKS_ON; 1887 trace_ufshcd_clk_gating(dev_name(hba->dev), 1888 hba->clk_gating.state); 1889 break; 1890 } 1891 /* 1892 * If we are here, it means gating work is either done or 1893 * currently running. Hence, fall through to cancel gating 1894 * work and to enable clocks. 1895 */ 1896 fallthrough; 1897 case CLKS_OFF: 1898 hba->clk_gating.state = REQ_CLKS_ON; 1899 trace_ufshcd_clk_gating(dev_name(hba->dev), 1900 hba->clk_gating.state); 1901 queue_work(hba->clk_gating.clk_gating_workq, 1902 &hba->clk_gating.ungate_work); 1903 /* 1904 * fall through to check if we should wait for this 1905 * work to be done or not. 1906 */ 1907 fallthrough; 1908 case REQ_CLKS_ON: 1909 spin_unlock_irqrestore(hba->host->host_lock, flags); 1910 flush_work(&hba->clk_gating.ungate_work); 1911 /* Make sure state is CLKS_ON before returning */ 1912 spin_lock_irqsave(hba->host->host_lock, flags); 1913 goto start; 1914 default: 1915 dev_err(hba->dev, "%s: clk gating is in invalid state %d\n", 1916 __func__, hba->clk_gating.state); 1917 break; 1918 } 1919 spin_unlock_irqrestore(hba->host->host_lock, flags); 1920 } 1921 EXPORT_SYMBOL_GPL(ufshcd_hold); 1922 1923 static void ufshcd_gate_work(struct work_struct *work) 1924 { 1925 struct ufs_hba *hba = container_of(work, struct ufs_hba, 1926 clk_gating.gate_work.work); 1927 unsigned long flags; 1928 int ret; 1929 1930 spin_lock_irqsave(hba->host->host_lock, flags); 1931 /* 1932 * In case you are here to cancel this work the gating state 1933 * would be marked as REQ_CLKS_ON. In this case save time by 1934 * skipping the gating work and exit after changing the clock 1935 * state to CLKS_ON. 1936 */ 1937 if (hba->clk_gating.is_suspended || 1938 (hba->clk_gating.state != REQ_CLKS_OFF)) { 1939 hba->clk_gating.state = CLKS_ON; 1940 trace_ufshcd_clk_gating(dev_name(hba->dev), 1941 hba->clk_gating.state); 1942 goto rel_lock; 1943 } 1944 1945 if (ufshcd_is_ufs_dev_busy(hba) || hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL) 1946 goto rel_lock; 1947 1948 spin_unlock_irqrestore(hba->host->host_lock, flags); 1949 1950 /* put the link into hibern8 mode before turning off clocks */ 1951 if (ufshcd_can_hibern8_during_gating(hba)) { 1952 ret = ufshcd_uic_hibern8_enter(hba); 1953 if (ret) { 1954 hba->clk_gating.state = CLKS_ON; 1955 dev_err(hba->dev, "%s: hibern8 enter failed %d\n", 1956 __func__, ret); 1957 trace_ufshcd_clk_gating(dev_name(hba->dev), 1958 hba->clk_gating.state); 1959 goto out; 1960 } 1961 ufshcd_set_link_hibern8(hba); 1962 } 1963 1964 ufshcd_disable_irq(hba); 1965 1966 ufshcd_setup_clocks(hba, false); 1967 1968 /* Put the host controller in low power mode if possible */ 1969 ufshcd_hba_vreg_set_lpm(hba); 1970 /* 1971 * In case you are here to cancel this work the gating state 1972 * would be marked as REQ_CLKS_ON. In this case keep the state 1973 * as REQ_CLKS_ON which would anyway imply that clocks are off 1974 * and a request to turn them on is pending. By doing this way, 1975 * we keep the state machine in tact and this would ultimately 1976 * prevent from doing cancel work multiple times when there are 1977 * new requests arriving before the current cancel work is done. 1978 */ 1979 spin_lock_irqsave(hba->host->host_lock, flags); 1980 if (hba->clk_gating.state == REQ_CLKS_OFF) { 1981 hba->clk_gating.state = CLKS_OFF; 1982 trace_ufshcd_clk_gating(dev_name(hba->dev), 1983 hba->clk_gating.state); 1984 } 1985 rel_lock: 1986 spin_unlock_irqrestore(hba->host->host_lock, flags); 1987 out: 1988 return; 1989 } 1990 1991 /* host lock must be held before calling this variant */ 1992 static void __ufshcd_release(struct ufs_hba *hba) 1993 { 1994 if (!ufshcd_is_clkgating_allowed(hba)) 1995 return; 1996 1997 hba->clk_gating.active_reqs--; 1998 1999 if (hba->clk_gating.active_reqs || hba->clk_gating.is_suspended || 2000 hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL || 2001 hba->outstanding_tasks || !hba->clk_gating.is_initialized || 2002 hba->active_uic_cmd || hba->uic_async_done || 2003 hba->clk_gating.state == CLKS_OFF) 2004 return; 2005 2006 hba->clk_gating.state = REQ_CLKS_OFF; 2007 trace_ufshcd_clk_gating(dev_name(hba->dev), hba->clk_gating.state); 2008 queue_delayed_work(hba->clk_gating.clk_gating_workq, 2009 &hba->clk_gating.gate_work, 2010 msecs_to_jiffies(hba->clk_gating.delay_ms)); 2011 } 2012 2013 void ufshcd_release(struct ufs_hba *hba) 2014 { 2015 unsigned long flags; 2016 2017 spin_lock_irqsave(hba->host->host_lock, flags); 2018 __ufshcd_release(hba); 2019 spin_unlock_irqrestore(hba->host->host_lock, flags); 2020 } 2021 EXPORT_SYMBOL_GPL(ufshcd_release); 2022 2023 static ssize_t ufshcd_clkgate_delay_show(struct device *dev, 2024 struct device_attribute *attr, char *buf) 2025 { 2026 struct ufs_hba *hba = dev_get_drvdata(dev); 2027 2028 return sysfs_emit(buf, "%lu\n", hba->clk_gating.delay_ms); 2029 } 2030 2031 void ufshcd_clkgate_delay_set(struct device *dev, unsigned long value) 2032 { 2033 struct ufs_hba *hba = dev_get_drvdata(dev); 2034 unsigned long flags; 2035 2036 spin_lock_irqsave(hba->host->host_lock, flags); 2037 hba->clk_gating.delay_ms = value; 2038 spin_unlock_irqrestore(hba->host->host_lock, flags); 2039 } 2040 EXPORT_SYMBOL_GPL(ufshcd_clkgate_delay_set); 2041 2042 static ssize_t ufshcd_clkgate_delay_store(struct device *dev, 2043 struct device_attribute *attr, const char *buf, size_t count) 2044 { 2045 unsigned long value; 2046 2047 if (kstrtoul(buf, 0, &value)) 2048 return -EINVAL; 2049 2050 ufshcd_clkgate_delay_set(dev, value); 2051 return count; 2052 } 2053 2054 static ssize_t ufshcd_clkgate_enable_show(struct device *dev, 2055 struct device_attribute *attr, char *buf) 2056 { 2057 struct ufs_hba *hba = dev_get_drvdata(dev); 2058 2059 return sysfs_emit(buf, "%d\n", hba->clk_gating.is_enabled); 2060 } 2061 2062 static ssize_t ufshcd_clkgate_enable_store(struct device *dev, 2063 struct device_attribute *attr, const char *buf, size_t count) 2064 { 2065 struct ufs_hba *hba = dev_get_drvdata(dev); 2066 unsigned long flags; 2067 u32 value; 2068 2069 if (kstrtou32(buf, 0, &value)) 2070 return -EINVAL; 2071 2072 value = !!value; 2073 2074 spin_lock_irqsave(hba->host->host_lock, flags); 2075 if (value == hba->clk_gating.is_enabled) 2076 goto out; 2077 2078 if (value) 2079 __ufshcd_release(hba); 2080 else 2081 hba->clk_gating.active_reqs++; 2082 2083 hba->clk_gating.is_enabled = value; 2084 out: 2085 spin_unlock_irqrestore(hba->host->host_lock, flags); 2086 return count; 2087 } 2088 2089 static void ufshcd_init_clk_gating_sysfs(struct ufs_hba *hba) 2090 { 2091 hba->clk_gating.delay_attr.show = ufshcd_clkgate_delay_show; 2092 hba->clk_gating.delay_attr.store = ufshcd_clkgate_delay_store; 2093 sysfs_attr_init(&hba->clk_gating.delay_attr.attr); 2094 hba->clk_gating.delay_attr.attr.name = "clkgate_delay_ms"; 2095 hba->clk_gating.delay_attr.attr.mode = 0644; 2096 if (device_create_file(hba->dev, &hba->clk_gating.delay_attr)) 2097 dev_err(hba->dev, "Failed to create sysfs for clkgate_delay\n"); 2098 2099 hba->clk_gating.enable_attr.show = ufshcd_clkgate_enable_show; 2100 hba->clk_gating.enable_attr.store = ufshcd_clkgate_enable_store; 2101 sysfs_attr_init(&hba->clk_gating.enable_attr.attr); 2102 hba->clk_gating.enable_attr.attr.name = "clkgate_enable"; 2103 hba->clk_gating.enable_attr.attr.mode = 0644; 2104 if (device_create_file(hba->dev, &hba->clk_gating.enable_attr)) 2105 dev_err(hba->dev, "Failed to create sysfs for clkgate_enable\n"); 2106 } 2107 2108 static void ufshcd_remove_clk_gating_sysfs(struct ufs_hba *hba) 2109 { 2110 if (hba->clk_gating.delay_attr.attr.name) 2111 device_remove_file(hba->dev, &hba->clk_gating.delay_attr); 2112 if (hba->clk_gating.enable_attr.attr.name) 2113 device_remove_file(hba->dev, &hba->clk_gating.enable_attr); 2114 } 2115 2116 static void ufshcd_init_clk_gating(struct ufs_hba *hba) 2117 { 2118 if (!ufshcd_is_clkgating_allowed(hba)) 2119 return; 2120 2121 hba->clk_gating.state = CLKS_ON; 2122 2123 hba->clk_gating.delay_ms = 150; 2124 INIT_DELAYED_WORK(&hba->clk_gating.gate_work, ufshcd_gate_work); 2125 INIT_WORK(&hba->clk_gating.ungate_work, ufshcd_ungate_work); 2126 2127 hba->clk_gating.clk_gating_workq = alloc_ordered_workqueue( 2128 "ufs_clk_gating_%d", WQ_MEM_RECLAIM | WQ_HIGHPRI, 2129 hba->host->host_no); 2130 2131 ufshcd_init_clk_gating_sysfs(hba); 2132 2133 hba->clk_gating.is_enabled = true; 2134 hba->clk_gating.is_initialized = true; 2135 } 2136 2137 static void ufshcd_exit_clk_gating(struct ufs_hba *hba) 2138 { 2139 if (!hba->clk_gating.is_initialized) 2140 return; 2141 2142 ufshcd_remove_clk_gating_sysfs(hba); 2143 2144 /* Ungate the clock if necessary. */ 2145 ufshcd_hold(hba); 2146 hba->clk_gating.is_initialized = false; 2147 ufshcd_release(hba); 2148 2149 destroy_workqueue(hba->clk_gating.clk_gating_workq); 2150 } 2151 2152 static void ufshcd_clk_scaling_start_busy(struct ufs_hba *hba) 2153 { 2154 bool queue_resume_work = false; 2155 ktime_t curr_t = ktime_get(); 2156 unsigned long flags; 2157 2158 if (!ufshcd_is_clkscaling_supported(hba)) 2159 return; 2160 2161 spin_lock_irqsave(hba->host->host_lock, flags); 2162 if (!hba->clk_scaling.active_reqs++) 2163 queue_resume_work = true; 2164 2165 if (!hba->clk_scaling.is_enabled || hba->pm_op_in_progress) { 2166 spin_unlock_irqrestore(hba->host->host_lock, flags); 2167 return; 2168 } 2169 2170 if (queue_resume_work) 2171 queue_work(hba->clk_scaling.workq, 2172 &hba->clk_scaling.resume_work); 2173 2174 if (!hba->clk_scaling.window_start_t) { 2175 hba->clk_scaling.window_start_t = curr_t; 2176 hba->clk_scaling.tot_busy_t = 0; 2177 hba->clk_scaling.is_busy_started = false; 2178 } 2179 2180 if (!hba->clk_scaling.is_busy_started) { 2181 hba->clk_scaling.busy_start_t = curr_t; 2182 hba->clk_scaling.is_busy_started = true; 2183 } 2184 spin_unlock_irqrestore(hba->host->host_lock, flags); 2185 } 2186 2187 static void ufshcd_clk_scaling_update_busy(struct ufs_hba *hba) 2188 { 2189 struct ufs_clk_scaling *scaling = &hba->clk_scaling; 2190 unsigned long flags; 2191 2192 if (!ufshcd_is_clkscaling_supported(hba)) 2193 return; 2194 2195 spin_lock_irqsave(hba->host->host_lock, flags); 2196 hba->clk_scaling.active_reqs--; 2197 if (!scaling->active_reqs && scaling->is_busy_started) { 2198 scaling->tot_busy_t += ktime_to_us(ktime_sub(ktime_get(), 2199 scaling->busy_start_t)); 2200 scaling->busy_start_t = 0; 2201 scaling->is_busy_started = false; 2202 } 2203 spin_unlock_irqrestore(hba->host->host_lock, flags); 2204 } 2205 2206 static inline int ufshcd_monitor_opcode2dir(u8 opcode) 2207 { 2208 if (opcode == READ_6 || opcode == READ_10 || opcode == READ_16) 2209 return READ; 2210 else if (opcode == WRITE_6 || opcode == WRITE_10 || opcode == WRITE_16) 2211 return WRITE; 2212 else 2213 return -EINVAL; 2214 } 2215 2216 static inline bool ufshcd_should_inform_monitor(struct ufs_hba *hba, 2217 struct ufshcd_lrb *lrbp) 2218 { 2219 const struct ufs_hba_monitor *m = &hba->monitor; 2220 2221 return (m->enabled && lrbp && lrbp->cmd && 2222 (!m->chunk_size || m->chunk_size == lrbp->cmd->sdb.length) && 2223 ktime_before(hba->monitor.enabled_ts, lrbp->issue_time_stamp)); 2224 } 2225 2226 static void ufshcd_start_monitor(struct ufs_hba *hba, 2227 const struct ufshcd_lrb *lrbp) 2228 { 2229 int dir = ufshcd_monitor_opcode2dir(*lrbp->cmd->cmnd); 2230 unsigned long flags; 2231 2232 spin_lock_irqsave(hba->host->host_lock, flags); 2233 if (dir >= 0 && hba->monitor.nr_queued[dir]++ == 0) 2234 hba->monitor.busy_start_ts[dir] = ktime_get(); 2235 spin_unlock_irqrestore(hba->host->host_lock, flags); 2236 } 2237 2238 static void ufshcd_update_monitor(struct ufs_hba *hba, const struct ufshcd_lrb *lrbp) 2239 { 2240 int dir = ufshcd_monitor_opcode2dir(*lrbp->cmd->cmnd); 2241 unsigned long flags; 2242 2243 spin_lock_irqsave(hba->host->host_lock, flags); 2244 if (dir >= 0 && hba->monitor.nr_queued[dir] > 0) { 2245 const struct request *req = scsi_cmd_to_rq(lrbp->cmd); 2246 struct ufs_hba_monitor *m = &hba->monitor; 2247 ktime_t now, inc, lat; 2248 2249 now = lrbp->compl_time_stamp; 2250 inc = ktime_sub(now, m->busy_start_ts[dir]); 2251 m->total_busy[dir] = ktime_add(m->total_busy[dir], inc); 2252 m->nr_sec_rw[dir] += blk_rq_sectors(req); 2253 2254 /* Update latencies */ 2255 m->nr_req[dir]++; 2256 lat = ktime_sub(now, lrbp->issue_time_stamp); 2257 m->lat_sum[dir] += lat; 2258 if (m->lat_max[dir] < lat || !m->lat_max[dir]) 2259 m->lat_max[dir] = lat; 2260 if (m->lat_min[dir] > lat || !m->lat_min[dir]) 2261 m->lat_min[dir] = lat; 2262 2263 m->nr_queued[dir]--; 2264 /* Push forward the busy start of monitor */ 2265 m->busy_start_ts[dir] = now; 2266 } 2267 spin_unlock_irqrestore(hba->host->host_lock, flags); 2268 } 2269 2270 /** 2271 * ufshcd_send_command - Send SCSI or device management commands 2272 * @hba: per adapter instance 2273 * @task_tag: Task tag of the command 2274 * @hwq: pointer to hardware queue instance 2275 */ 2276 static inline 2277 void ufshcd_send_command(struct ufs_hba *hba, unsigned int task_tag, 2278 struct ufs_hw_queue *hwq) 2279 { 2280 struct ufshcd_lrb *lrbp = &hba->lrb[task_tag]; 2281 unsigned long flags; 2282 2283 lrbp->issue_time_stamp = ktime_get(); 2284 lrbp->issue_time_stamp_local_clock = local_clock(); 2285 lrbp->compl_time_stamp = ktime_set(0, 0); 2286 lrbp->compl_time_stamp_local_clock = 0; 2287 ufshcd_add_command_trace(hba, task_tag, UFS_CMD_SEND); 2288 if (lrbp->cmd) 2289 ufshcd_clk_scaling_start_busy(hba); 2290 if (unlikely(ufshcd_should_inform_monitor(hba, lrbp))) 2291 ufshcd_start_monitor(hba, lrbp); 2292 2293 if (hba->mcq_enabled) { 2294 int utrd_size = sizeof(struct utp_transfer_req_desc); 2295 struct utp_transfer_req_desc *src = lrbp->utr_descriptor_ptr; 2296 struct utp_transfer_req_desc *dest; 2297 2298 spin_lock(&hwq->sq_lock); 2299 dest = hwq->sqe_base_addr + hwq->sq_tail_slot; 2300 memcpy(dest, src, utrd_size); 2301 ufshcd_inc_sq_tail(hwq); 2302 spin_unlock(&hwq->sq_lock); 2303 } else { 2304 spin_lock_irqsave(&hba->outstanding_lock, flags); 2305 if (hba->vops && hba->vops->setup_xfer_req) 2306 hba->vops->setup_xfer_req(hba, lrbp->task_tag, 2307 !!lrbp->cmd); 2308 __set_bit(lrbp->task_tag, &hba->outstanding_reqs); 2309 ufshcd_writel(hba, 1 << lrbp->task_tag, 2310 REG_UTP_TRANSFER_REQ_DOOR_BELL); 2311 spin_unlock_irqrestore(&hba->outstanding_lock, flags); 2312 } 2313 } 2314 2315 /** 2316 * ufshcd_copy_sense_data - Copy sense data in case of check condition 2317 * @lrbp: pointer to local reference block 2318 */ 2319 static inline void ufshcd_copy_sense_data(struct ufshcd_lrb *lrbp) 2320 { 2321 u8 *const sense_buffer = lrbp->cmd->sense_buffer; 2322 u16 resp_len; 2323 int len; 2324 2325 resp_len = be16_to_cpu(lrbp->ucd_rsp_ptr->header.data_segment_length); 2326 if (sense_buffer && resp_len) { 2327 int len_to_copy; 2328 2329 len = be16_to_cpu(lrbp->ucd_rsp_ptr->sr.sense_data_len); 2330 len_to_copy = min_t(int, UFS_SENSE_SIZE, len); 2331 2332 memcpy(sense_buffer, lrbp->ucd_rsp_ptr->sr.sense_data, 2333 len_to_copy); 2334 } 2335 } 2336 2337 /** 2338 * ufshcd_copy_query_response() - Copy the Query Response and the data 2339 * descriptor 2340 * @hba: per adapter instance 2341 * @lrbp: pointer to local reference block 2342 * 2343 * Return: 0 upon success; < 0 upon failure. 2344 */ 2345 static 2346 int ufshcd_copy_query_response(struct ufs_hba *hba, struct ufshcd_lrb *lrbp) 2347 { 2348 struct ufs_query_res *query_res = &hba->dev_cmd.query.response; 2349 2350 memcpy(&query_res->upiu_res, &lrbp->ucd_rsp_ptr->qr, QUERY_OSF_SIZE); 2351 2352 /* Get the descriptor */ 2353 if (hba->dev_cmd.query.descriptor && 2354 lrbp->ucd_rsp_ptr->qr.opcode == UPIU_QUERY_OPCODE_READ_DESC) { 2355 u8 *descp = (u8 *)lrbp->ucd_rsp_ptr + 2356 GENERAL_UPIU_REQUEST_SIZE; 2357 u16 resp_len; 2358 u16 buf_len; 2359 2360 /* data segment length */ 2361 resp_len = be16_to_cpu(lrbp->ucd_rsp_ptr->header 2362 .data_segment_length); 2363 buf_len = be16_to_cpu( 2364 hba->dev_cmd.query.request.upiu_req.length); 2365 if (likely(buf_len >= resp_len)) { 2366 memcpy(hba->dev_cmd.query.descriptor, descp, resp_len); 2367 } else { 2368 dev_warn(hba->dev, 2369 "%s: rsp size %d is bigger than buffer size %d", 2370 __func__, resp_len, buf_len); 2371 return -EINVAL; 2372 } 2373 } 2374 2375 return 0; 2376 } 2377 2378 /** 2379 * ufshcd_hba_capabilities - Read controller capabilities 2380 * @hba: per adapter instance 2381 * 2382 * Return: 0 on success, negative on error. 2383 */ 2384 static inline int ufshcd_hba_capabilities(struct ufs_hba *hba) 2385 { 2386 int err; 2387 2388 hba->capabilities = ufshcd_readl(hba, REG_CONTROLLER_CAPABILITIES); 2389 2390 /* nutrs and nutmrs are 0 based values */ 2391 hba->nutrs = (hba->capabilities & MASK_TRANSFER_REQUESTS_SLOTS_SDB) + 1; 2392 hba->nutmrs = 2393 ((hba->capabilities & MASK_TASK_MANAGEMENT_REQUEST_SLOTS) >> 16) + 1; 2394 hba->reserved_slot = hba->nutrs - 1; 2395 2396 hba->nortt = FIELD_GET(MASK_NUMBER_OUTSTANDING_RTT, hba->capabilities) + 1; 2397 2398 /* Read crypto capabilities */ 2399 err = ufshcd_hba_init_crypto_capabilities(hba); 2400 if (err) { 2401 dev_err(hba->dev, "crypto setup failed\n"); 2402 return err; 2403 } 2404 2405 /* 2406 * The UFSHCI 3.0 specification does not define MCQ_SUPPORT and 2407 * LSDB_SUPPORT, but [31:29] as reserved bits with reset value 0s, which 2408 * means we can simply read values regardless of version. 2409 */ 2410 hba->mcq_sup = FIELD_GET(MASK_MCQ_SUPPORT, hba->capabilities); 2411 /* 2412 * 0h: legacy single doorbell support is available 2413 * 1h: indicate that legacy single doorbell support has been removed 2414 */ 2415 if (!(hba->quirks & UFSHCD_QUIRK_BROKEN_LSDBS_CAP)) 2416 hba->lsdb_sup = !FIELD_GET(MASK_LSDB_SUPPORT, hba->capabilities); 2417 else 2418 hba->lsdb_sup = true; 2419 2420 if (!hba->mcq_sup) 2421 return 0; 2422 2423 hba->mcq_capabilities = ufshcd_readl(hba, REG_MCQCAP); 2424 hba->ext_iid_sup = FIELD_GET(MASK_EXT_IID_SUPPORT, 2425 hba->mcq_capabilities); 2426 2427 return 0; 2428 } 2429 2430 /** 2431 * ufshcd_ready_for_uic_cmd - Check if controller is ready 2432 * to accept UIC commands 2433 * @hba: per adapter instance 2434 * 2435 * Return: true on success, else false. 2436 */ 2437 static inline bool ufshcd_ready_for_uic_cmd(struct ufs_hba *hba) 2438 { 2439 u32 val; 2440 int ret = read_poll_timeout(ufshcd_readl, val, val & UIC_COMMAND_READY, 2441 500, uic_cmd_timeout * 1000, false, hba, 2442 REG_CONTROLLER_STATUS); 2443 return ret == 0; 2444 } 2445 2446 /** 2447 * ufshcd_get_upmcrs - Get the power mode change request status 2448 * @hba: Pointer to adapter instance 2449 * 2450 * This function gets the UPMCRS field of HCS register 2451 * 2452 * Return: value of UPMCRS field. 2453 */ 2454 static inline u8 ufshcd_get_upmcrs(struct ufs_hba *hba) 2455 { 2456 return (ufshcd_readl(hba, REG_CONTROLLER_STATUS) >> 8) & 0x7; 2457 } 2458 2459 /** 2460 * ufshcd_dispatch_uic_cmd - Dispatch an UIC command to the Unipro layer 2461 * @hba: per adapter instance 2462 * @uic_cmd: UIC command 2463 */ 2464 static inline void 2465 ufshcd_dispatch_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd) 2466 { 2467 lockdep_assert_held(&hba->uic_cmd_mutex); 2468 2469 WARN_ON(hba->active_uic_cmd); 2470 2471 hba->active_uic_cmd = uic_cmd; 2472 2473 /* Write Args */ 2474 ufshcd_writel(hba, uic_cmd->argument1, REG_UIC_COMMAND_ARG_1); 2475 ufshcd_writel(hba, uic_cmd->argument2, REG_UIC_COMMAND_ARG_2); 2476 ufshcd_writel(hba, uic_cmd->argument3, REG_UIC_COMMAND_ARG_3); 2477 2478 ufshcd_add_uic_command_trace(hba, uic_cmd, UFS_CMD_SEND); 2479 2480 /* Write UIC Cmd */ 2481 ufshcd_writel(hba, uic_cmd->command & COMMAND_OPCODE_MASK, 2482 REG_UIC_COMMAND); 2483 } 2484 2485 /** 2486 * ufshcd_wait_for_uic_cmd - Wait for completion of an UIC command 2487 * @hba: per adapter instance 2488 * @uic_cmd: UIC command 2489 * 2490 * Return: 0 only if success. 2491 */ 2492 static int 2493 ufshcd_wait_for_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd) 2494 { 2495 int ret; 2496 unsigned long flags; 2497 2498 lockdep_assert_held(&hba->uic_cmd_mutex); 2499 2500 if (wait_for_completion_timeout(&uic_cmd->done, 2501 msecs_to_jiffies(uic_cmd_timeout))) { 2502 ret = uic_cmd->argument2 & MASK_UIC_COMMAND_RESULT; 2503 } else { 2504 ret = -ETIMEDOUT; 2505 dev_err(hba->dev, 2506 "uic cmd 0x%x with arg3 0x%x completion timeout\n", 2507 uic_cmd->command, uic_cmd->argument3); 2508 2509 if (!uic_cmd->cmd_active) { 2510 dev_err(hba->dev, "%s: UIC cmd has been completed, return the result\n", 2511 __func__); 2512 ret = uic_cmd->argument2 & MASK_UIC_COMMAND_RESULT; 2513 } 2514 } 2515 2516 spin_lock_irqsave(hba->host->host_lock, flags); 2517 hba->active_uic_cmd = NULL; 2518 spin_unlock_irqrestore(hba->host->host_lock, flags); 2519 2520 return ret; 2521 } 2522 2523 /** 2524 * __ufshcd_send_uic_cmd - Send UIC commands and retrieve the result 2525 * @hba: per adapter instance 2526 * @uic_cmd: UIC command 2527 * 2528 * Return: 0 only if success. 2529 */ 2530 static int 2531 __ufshcd_send_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd) 2532 { 2533 lockdep_assert_held(&hba->uic_cmd_mutex); 2534 2535 if (!ufshcd_ready_for_uic_cmd(hba)) { 2536 dev_err(hba->dev, 2537 "Controller not ready to accept UIC commands\n"); 2538 return -EIO; 2539 } 2540 2541 init_completion(&uic_cmd->done); 2542 2543 uic_cmd->cmd_active = 1; 2544 ufshcd_dispatch_uic_cmd(hba, uic_cmd); 2545 2546 return 0; 2547 } 2548 2549 /** 2550 * ufshcd_send_uic_cmd - Send UIC commands and retrieve the result 2551 * @hba: per adapter instance 2552 * @uic_cmd: UIC command 2553 * 2554 * Return: 0 only if success. 2555 */ 2556 int ufshcd_send_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd) 2557 { 2558 int ret; 2559 2560 if (hba->quirks & UFSHCD_QUIRK_BROKEN_UIC_CMD) 2561 return 0; 2562 2563 ufshcd_hold(hba); 2564 mutex_lock(&hba->uic_cmd_mutex); 2565 ufshcd_add_delay_before_dme_cmd(hba); 2566 2567 ret = __ufshcd_send_uic_cmd(hba, uic_cmd); 2568 if (!ret) 2569 ret = ufshcd_wait_for_uic_cmd(hba, uic_cmd); 2570 2571 mutex_unlock(&hba->uic_cmd_mutex); 2572 2573 ufshcd_release(hba); 2574 return ret; 2575 } 2576 2577 /** 2578 * ufshcd_sgl_to_prdt - SG list to PRTD (Physical Region Description Table, 4DW format) 2579 * @hba: per-adapter instance 2580 * @lrbp: pointer to local reference block 2581 * @sg_entries: The number of sg lists actually used 2582 * @sg_list: Pointer to SG list 2583 */ 2584 static void ufshcd_sgl_to_prdt(struct ufs_hba *hba, struct ufshcd_lrb *lrbp, int sg_entries, 2585 struct scatterlist *sg_list) 2586 { 2587 struct ufshcd_sg_entry *prd; 2588 struct scatterlist *sg; 2589 int i; 2590 2591 if (sg_entries) { 2592 2593 if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN) 2594 lrbp->utr_descriptor_ptr->prd_table_length = 2595 cpu_to_le16(sg_entries * ufshcd_sg_entry_size(hba)); 2596 else 2597 lrbp->utr_descriptor_ptr->prd_table_length = cpu_to_le16(sg_entries); 2598 2599 prd = lrbp->ucd_prdt_ptr; 2600 2601 for_each_sg(sg_list, sg, sg_entries, i) { 2602 const unsigned int len = sg_dma_len(sg); 2603 2604 /* 2605 * From the UFSHCI spec: "Data Byte Count (DBC): A '0' 2606 * based value that indicates the length, in bytes, of 2607 * the data block. A maximum of length of 256KB may 2608 * exist for any entry. Bits 1:0 of this field shall be 2609 * 11b to indicate Dword granularity. A value of '3' 2610 * indicates 4 bytes, '7' indicates 8 bytes, etc." 2611 */ 2612 WARN_ONCE(len > SZ_256K, "len = %#x\n", len); 2613 prd->size = cpu_to_le32(len - 1); 2614 prd->addr = cpu_to_le64(sg->dma_address); 2615 prd->reserved = 0; 2616 prd = (void *)prd + ufshcd_sg_entry_size(hba); 2617 } 2618 } else { 2619 lrbp->utr_descriptor_ptr->prd_table_length = 0; 2620 } 2621 } 2622 2623 /** 2624 * ufshcd_map_sg - Map scatter-gather list to prdt 2625 * @hba: per adapter instance 2626 * @lrbp: pointer to local reference block 2627 * 2628 * Return: 0 in case of success, non-zero value in case of failure. 2629 */ 2630 static int ufshcd_map_sg(struct ufs_hba *hba, struct ufshcd_lrb *lrbp) 2631 { 2632 struct scsi_cmnd *cmd = lrbp->cmd; 2633 int sg_segments = scsi_dma_map(cmd); 2634 2635 if (sg_segments < 0) 2636 return sg_segments; 2637 2638 ufshcd_sgl_to_prdt(hba, lrbp, sg_segments, scsi_sglist(cmd)); 2639 2640 return ufshcd_crypto_fill_prdt(hba, lrbp); 2641 } 2642 2643 /** 2644 * ufshcd_enable_intr - enable interrupts 2645 * @hba: per adapter instance 2646 * @intrs: interrupt bits 2647 */ 2648 static void ufshcd_enable_intr(struct ufs_hba *hba, u32 intrs) 2649 { 2650 u32 set = ufshcd_readl(hba, REG_INTERRUPT_ENABLE); 2651 2652 set |= intrs; 2653 ufshcd_writel(hba, set, REG_INTERRUPT_ENABLE); 2654 } 2655 2656 /** 2657 * ufshcd_disable_intr - disable interrupts 2658 * @hba: per adapter instance 2659 * @intrs: interrupt bits 2660 */ 2661 static void ufshcd_disable_intr(struct ufs_hba *hba, u32 intrs) 2662 { 2663 u32 set = ufshcd_readl(hba, REG_INTERRUPT_ENABLE); 2664 2665 set &= ~intrs; 2666 ufshcd_writel(hba, set, REG_INTERRUPT_ENABLE); 2667 } 2668 2669 /** 2670 * ufshcd_prepare_req_desc_hdr - Fill UTP Transfer request descriptor header according to request 2671 * descriptor according to request 2672 * @hba: per adapter instance 2673 * @lrbp: pointer to local reference block 2674 * @upiu_flags: flags required in the header 2675 * @cmd_dir: requests data direction 2676 * @ehs_length: Total EHS Length (in 32‐bytes units of all Extra Header Segments) 2677 */ 2678 static void 2679 ufshcd_prepare_req_desc_hdr(struct ufs_hba *hba, struct ufshcd_lrb *lrbp, 2680 u8 *upiu_flags, enum dma_data_direction cmd_dir, 2681 int ehs_length) 2682 { 2683 struct utp_transfer_req_desc *req_desc = lrbp->utr_descriptor_ptr; 2684 struct request_desc_header *h = &req_desc->header; 2685 enum utp_data_direction data_direction; 2686 2687 lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE; 2688 2689 *h = (typeof(*h)){ }; 2690 2691 if (cmd_dir == DMA_FROM_DEVICE) { 2692 data_direction = UTP_DEVICE_TO_HOST; 2693 *upiu_flags = UPIU_CMD_FLAGS_READ; 2694 } else if (cmd_dir == DMA_TO_DEVICE) { 2695 data_direction = UTP_HOST_TO_DEVICE; 2696 *upiu_flags = UPIU_CMD_FLAGS_WRITE; 2697 } else { 2698 data_direction = UTP_NO_DATA_TRANSFER; 2699 *upiu_flags = UPIU_CMD_FLAGS_NONE; 2700 } 2701 2702 h->command_type = lrbp->command_type; 2703 h->data_direction = data_direction; 2704 h->ehs_length = ehs_length; 2705 2706 if (lrbp->intr_cmd) 2707 h->interrupt = 1; 2708 2709 /* Prepare crypto related dwords */ 2710 ufshcd_prepare_req_desc_hdr_crypto(lrbp, h); 2711 2712 /* 2713 * assigning invalid value for command status. Controller 2714 * updates OCS on command completion, with the command 2715 * status 2716 */ 2717 h->ocs = OCS_INVALID_COMMAND_STATUS; 2718 2719 req_desc->prd_table_length = 0; 2720 } 2721 2722 /** 2723 * ufshcd_prepare_utp_scsi_cmd_upiu() - fills the utp_transfer_req_desc, 2724 * for scsi commands 2725 * @lrbp: local reference block pointer 2726 * @upiu_flags: flags 2727 */ 2728 static 2729 void ufshcd_prepare_utp_scsi_cmd_upiu(struct ufshcd_lrb *lrbp, u8 upiu_flags) 2730 { 2731 struct scsi_cmnd *cmd = lrbp->cmd; 2732 struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr; 2733 unsigned short cdb_len; 2734 2735 ucd_req_ptr->header = (struct utp_upiu_header){ 2736 .transaction_code = UPIU_TRANSACTION_COMMAND, 2737 .flags = upiu_flags, 2738 .lun = lrbp->lun, 2739 .task_tag = lrbp->task_tag, 2740 .command_set_type = UPIU_COMMAND_SET_TYPE_SCSI, 2741 }; 2742 2743 WARN_ON_ONCE(ucd_req_ptr->header.task_tag != lrbp->task_tag); 2744 2745 ucd_req_ptr->sc.exp_data_transfer_len = cpu_to_be32(cmd->sdb.length); 2746 2747 cdb_len = min_t(unsigned short, cmd->cmd_len, UFS_CDB_SIZE); 2748 memcpy(ucd_req_ptr->sc.cdb, cmd->cmnd, cdb_len); 2749 2750 memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp)); 2751 } 2752 2753 /** 2754 * ufshcd_prepare_utp_query_req_upiu() - fill the utp_transfer_req_desc for query request 2755 * @hba: UFS hba 2756 * @lrbp: local reference block pointer 2757 * @upiu_flags: flags 2758 */ 2759 static void ufshcd_prepare_utp_query_req_upiu(struct ufs_hba *hba, 2760 struct ufshcd_lrb *lrbp, u8 upiu_flags) 2761 { 2762 struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr; 2763 struct ufs_query *query = &hba->dev_cmd.query; 2764 u16 len = be16_to_cpu(query->request.upiu_req.length); 2765 2766 /* Query request header */ 2767 ucd_req_ptr->header = (struct utp_upiu_header){ 2768 .transaction_code = UPIU_TRANSACTION_QUERY_REQ, 2769 .flags = upiu_flags, 2770 .lun = lrbp->lun, 2771 .task_tag = lrbp->task_tag, 2772 .query_function = query->request.query_func, 2773 /* Data segment length only need for WRITE_DESC */ 2774 .data_segment_length = 2775 query->request.upiu_req.opcode == 2776 UPIU_QUERY_OPCODE_WRITE_DESC ? 2777 cpu_to_be16(len) : 2778 0, 2779 }; 2780 2781 /* Copy the Query Request buffer as is */ 2782 memcpy(&ucd_req_ptr->qr, &query->request.upiu_req, 2783 QUERY_OSF_SIZE); 2784 2785 /* Copy the Descriptor */ 2786 if (query->request.upiu_req.opcode == UPIU_QUERY_OPCODE_WRITE_DESC) 2787 memcpy(ucd_req_ptr + 1, query->descriptor, len); 2788 2789 memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp)); 2790 } 2791 2792 static inline void ufshcd_prepare_utp_nop_upiu(struct ufshcd_lrb *lrbp) 2793 { 2794 struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr; 2795 2796 memset(ucd_req_ptr, 0, sizeof(struct utp_upiu_req)); 2797 2798 ucd_req_ptr->header = (struct utp_upiu_header){ 2799 .transaction_code = UPIU_TRANSACTION_NOP_OUT, 2800 .task_tag = lrbp->task_tag, 2801 }; 2802 2803 memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp)); 2804 } 2805 2806 /** 2807 * ufshcd_compose_devman_upiu - UFS Protocol Information Unit(UPIU) 2808 * for Device Management Purposes 2809 * @hba: per adapter instance 2810 * @lrbp: pointer to local reference block 2811 * 2812 * Return: 0 upon success; < 0 upon failure. 2813 */ 2814 static int ufshcd_compose_devman_upiu(struct ufs_hba *hba, 2815 struct ufshcd_lrb *lrbp) 2816 { 2817 u8 upiu_flags; 2818 int ret = 0; 2819 2820 ufshcd_prepare_req_desc_hdr(hba, lrbp, &upiu_flags, DMA_NONE, 0); 2821 2822 if (hba->dev_cmd.type == DEV_CMD_TYPE_QUERY) 2823 ufshcd_prepare_utp_query_req_upiu(hba, lrbp, upiu_flags); 2824 else if (hba->dev_cmd.type == DEV_CMD_TYPE_NOP) 2825 ufshcd_prepare_utp_nop_upiu(lrbp); 2826 else 2827 ret = -EINVAL; 2828 2829 return ret; 2830 } 2831 2832 /** 2833 * ufshcd_comp_scsi_upiu - UFS Protocol Information Unit(UPIU) 2834 * for SCSI Purposes 2835 * @hba: per adapter instance 2836 * @lrbp: pointer to local reference block 2837 */ 2838 static void ufshcd_comp_scsi_upiu(struct ufs_hba *hba, struct ufshcd_lrb *lrbp) 2839 { 2840 struct request *rq = scsi_cmd_to_rq(lrbp->cmd); 2841 unsigned int ioprio_class = IOPRIO_PRIO_CLASS(req_get_ioprio(rq)); 2842 u8 upiu_flags; 2843 2844 ufshcd_prepare_req_desc_hdr(hba, lrbp, &upiu_flags, lrbp->cmd->sc_data_direction, 0); 2845 if (ioprio_class == IOPRIO_CLASS_RT) 2846 upiu_flags |= UPIU_CMD_FLAGS_CP; 2847 ufshcd_prepare_utp_scsi_cmd_upiu(lrbp, upiu_flags); 2848 } 2849 2850 static void __ufshcd_setup_cmd(struct ufshcd_lrb *lrbp, struct scsi_cmnd *cmd, u8 lun, int tag) 2851 { 2852 memset(lrbp->ucd_req_ptr, 0, sizeof(*lrbp->ucd_req_ptr)); 2853 2854 lrbp->cmd = cmd; 2855 lrbp->task_tag = tag; 2856 lrbp->lun = lun; 2857 ufshcd_prepare_lrbp_crypto(cmd ? scsi_cmd_to_rq(cmd) : NULL, lrbp); 2858 } 2859 2860 static void ufshcd_setup_scsi_cmd(struct ufs_hba *hba, struct ufshcd_lrb *lrbp, 2861 struct scsi_cmnd *cmd, u8 lun, int tag) 2862 { 2863 __ufshcd_setup_cmd(lrbp, cmd, lun, tag); 2864 lrbp->intr_cmd = !ufshcd_is_intr_aggr_allowed(hba); 2865 lrbp->req_abort_skip = false; 2866 2867 ufshcd_comp_scsi_upiu(hba, lrbp); 2868 } 2869 2870 /** 2871 * ufshcd_upiu_wlun_to_scsi_wlun - maps UPIU W-LUN id to SCSI W-LUN ID 2872 * @upiu_wlun_id: UPIU W-LUN id 2873 * 2874 * Return: SCSI W-LUN id. 2875 */ 2876 static inline u16 ufshcd_upiu_wlun_to_scsi_wlun(u8 upiu_wlun_id) 2877 { 2878 return (upiu_wlun_id & ~UFS_UPIU_WLUN_ID) | SCSI_W_LUN_BASE; 2879 } 2880 2881 static inline bool is_device_wlun(struct scsi_device *sdev) 2882 { 2883 return sdev->lun == 2884 ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_UFS_DEVICE_WLUN); 2885 } 2886 2887 /* 2888 * Associate the UFS controller queue with the default and poll HCTX types. 2889 * Initialize the mq_map[] arrays. 2890 */ 2891 static void ufshcd_map_queues(struct Scsi_Host *shost) 2892 { 2893 struct ufs_hba *hba = shost_priv(shost); 2894 int i, queue_offset = 0; 2895 2896 if (!is_mcq_supported(hba)) { 2897 hba->nr_queues[HCTX_TYPE_DEFAULT] = 1; 2898 hba->nr_queues[HCTX_TYPE_READ] = 0; 2899 hba->nr_queues[HCTX_TYPE_POLL] = 1; 2900 hba->nr_hw_queues = 1; 2901 } 2902 2903 for (i = 0; i < shost->nr_maps; i++) { 2904 struct blk_mq_queue_map *map = &shost->tag_set.map[i]; 2905 2906 map->nr_queues = hba->nr_queues[i]; 2907 if (!map->nr_queues) 2908 continue; 2909 map->queue_offset = queue_offset; 2910 if (i == HCTX_TYPE_POLL && !is_mcq_supported(hba)) 2911 map->queue_offset = 0; 2912 2913 blk_mq_map_queues(map); 2914 queue_offset += map->nr_queues; 2915 } 2916 } 2917 2918 static void ufshcd_init_lrb(struct ufs_hba *hba, struct ufshcd_lrb *lrb, int i) 2919 { 2920 struct utp_transfer_cmd_desc *cmd_descp = (void *)hba->ucdl_base_addr + 2921 i * ufshcd_get_ucd_size(hba); 2922 struct utp_transfer_req_desc *utrdlp = hba->utrdl_base_addr; 2923 dma_addr_t cmd_desc_element_addr = hba->ucdl_dma_addr + 2924 i * ufshcd_get_ucd_size(hba); 2925 u16 response_offset = offsetof(struct utp_transfer_cmd_desc, 2926 response_upiu); 2927 u16 prdt_offset = offsetof(struct utp_transfer_cmd_desc, prd_table); 2928 2929 lrb->utr_descriptor_ptr = utrdlp + i; 2930 lrb->utrd_dma_addr = hba->utrdl_dma_addr + 2931 i * sizeof(struct utp_transfer_req_desc); 2932 lrb->ucd_req_ptr = (struct utp_upiu_req *)cmd_descp->command_upiu; 2933 lrb->ucd_req_dma_addr = cmd_desc_element_addr; 2934 lrb->ucd_rsp_ptr = (struct utp_upiu_rsp *)cmd_descp->response_upiu; 2935 lrb->ucd_rsp_dma_addr = cmd_desc_element_addr + response_offset; 2936 lrb->ucd_prdt_ptr = (struct ufshcd_sg_entry *)cmd_descp->prd_table; 2937 lrb->ucd_prdt_dma_addr = cmd_desc_element_addr + prdt_offset; 2938 } 2939 2940 /** 2941 * ufshcd_queuecommand - main entry point for SCSI requests 2942 * @host: SCSI host pointer 2943 * @cmd: command from SCSI Midlayer 2944 * 2945 * Return: 0 for success, non-zero in case of failure. 2946 */ 2947 static int ufshcd_queuecommand(struct Scsi_Host *host, struct scsi_cmnd *cmd) 2948 { 2949 struct ufs_hba *hba = shost_priv(host); 2950 int tag = scsi_cmd_to_rq(cmd)->tag; 2951 struct ufshcd_lrb *lrbp; 2952 int err = 0; 2953 struct ufs_hw_queue *hwq = NULL; 2954 2955 switch (hba->ufshcd_state) { 2956 case UFSHCD_STATE_OPERATIONAL: 2957 break; 2958 case UFSHCD_STATE_EH_SCHEDULED_NON_FATAL: 2959 /* 2960 * SCSI error handler can call ->queuecommand() while UFS error 2961 * handler is in progress. Error interrupts could change the 2962 * state from UFSHCD_STATE_RESET to 2963 * UFSHCD_STATE_EH_SCHEDULED_NON_FATAL. Prevent requests 2964 * being issued in that case. 2965 */ 2966 if (ufshcd_eh_in_progress(hba)) { 2967 err = SCSI_MLQUEUE_HOST_BUSY; 2968 goto out; 2969 } 2970 break; 2971 case UFSHCD_STATE_EH_SCHEDULED_FATAL: 2972 /* 2973 * pm_runtime_get_sync() is used at error handling preparation 2974 * stage. If a scsi cmd, e.g. the SSU cmd, is sent from hba's 2975 * PM ops, it can never be finished if we let SCSI layer keep 2976 * retrying it, which gets err handler stuck forever. Neither 2977 * can we let the scsi cmd pass through, because UFS is in bad 2978 * state, the scsi cmd may eventually time out, which will get 2979 * err handler blocked for too long. So, just fail the scsi cmd 2980 * sent from PM ops, err handler can recover PM error anyways. 2981 */ 2982 if (hba->pm_op_in_progress) { 2983 hba->force_reset = true; 2984 set_host_byte(cmd, DID_BAD_TARGET); 2985 scsi_done(cmd); 2986 goto out; 2987 } 2988 fallthrough; 2989 case UFSHCD_STATE_RESET: 2990 err = SCSI_MLQUEUE_HOST_BUSY; 2991 goto out; 2992 case UFSHCD_STATE_ERROR: 2993 set_host_byte(cmd, DID_ERROR); 2994 scsi_done(cmd); 2995 goto out; 2996 } 2997 2998 hba->req_abort_count = 0; 2999 3000 ufshcd_hold(hba); 3001 3002 lrbp = &hba->lrb[tag]; 3003 3004 ufshcd_setup_scsi_cmd(hba, lrbp, cmd, ufshcd_scsi_to_upiu_lun(cmd->device->lun), tag); 3005 3006 err = ufshcd_map_sg(hba, lrbp); 3007 if (err) { 3008 ufshcd_release(hba); 3009 goto out; 3010 } 3011 3012 if (hba->mcq_enabled) 3013 hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(cmd)); 3014 3015 ufshcd_send_command(hba, tag, hwq); 3016 3017 out: 3018 if (ufs_trigger_eh(hba)) { 3019 unsigned long flags; 3020 3021 spin_lock_irqsave(hba->host->host_lock, flags); 3022 ufshcd_schedule_eh_work(hba); 3023 spin_unlock_irqrestore(hba->host->host_lock, flags); 3024 } 3025 3026 return err; 3027 } 3028 3029 static void ufshcd_setup_dev_cmd(struct ufs_hba *hba, struct ufshcd_lrb *lrbp, 3030 enum dev_cmd_type cmd_type, u8 lun, int tag) 3031 { 3032 __ufshcd_setup_cmd(lrbp, NULL, lun, tag); 3033 lrbp->intr_cmd = true; /* No interrupt aggregation */ 3034 hba->dev_cmd.type = cmd_type; 3035 } 3036 3037 static int ufshcd_compose_dev_cmd(struct ufs_hba *hba, 3038 struct ufshcd_lrb *lrbp, enum dev_cmd_type cmd_type, int tag) 3039 { 3040 ufshcd_setup_dev_cmd(hba, lrbp, cmd_type, 0, tag); 3041 3042 return ufshcd_compose_devman_upiu(hba, lrbp); 3043 } 3044 3045 /* 3046 * Check with the block layer if the command is inflight 3047 * @cmd: command to check. 3048 * 3049 * Return: true if command is inflight; false if not. 3050 */ 3051 bool ufshcd_cmd_inflight(struct scsi_cmnd *cmd) 3052 { 3053 return cmd && blk_mq_rq_state(scsi_cmd_to_rq(cmd)) == MQ_RQ_IN_FLIGHT; 3054 } 3055 3056 /* 3057 * Clear the pending command in the controller and wait until 3058 * the controller confirms that the command has been cleared. 3059 * @hba: per adapter instance 3060 * @task_tag: The tag number of the command to be cleared. 3061 */ 3062 static int ufshcd_clear_cmd(struct ufs_hba *hba, u32 task_tag) 3063 { 3064 u32 mask; 3065 int err; 3066 3067 if (hba->mcq_enabled) { 3068 /* 3069 * MCQ mode. Clean up the MCQ resources similar to 3070 * what the ufshcd_utrl_clear() does for SDB mode. 3071 */ 3072 err = ufshcd_mcq_sq_cleanup(hba, task_tag); 3073 if (err) { 3074 dev_err(hba->dev, "%s: failed tag=%d. err=%d\n", 3075 __func__, task_tag, err); 3076 return err; 3077 } 3078 return 0; 3079 } 3080 3081 mask = 1U << task_tag; 3082 3083 /* clear outstanding transaction before retry */ 3084 ufshcd_utrl_clear(hba, mask); 3085 3086 /* 3087 * wait for h/w to clear corresponding bit in door-bell. 3088 * max. wait is 1 sec. 3089 */ 3090 return ufshcd_wait_for_register(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL, 3091 mask, ~mask, 1000, 1000); 3092 } 3093 3094 /** 3095 * ufshcd_dev_cmd_completion() - handles device management command responses 3096 * @hba: per adapter instance 3097 * @lrbp: pointer to local reference block 3098 * 3099 * Return: 0 upon success; < 0 upon failure. 3100 */ 3101 static int 3102 ufshcd_dev_cmd_completion(struct ufs_hba *hba, struct ufshcd_lrb *lrbp) 3103 { 3104 enum upiu_response_transaction resp; 3105 int err = 0; 3106 3107 hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0); 3108 resp = ufshcd_get_req_rsp(lrbp->ucd_rsp_ptr); 3109 3110 switch (resp) { 3111 case UPIU_TRANSACTION_NOP_IN: 3112 if (hba->dev_cmd.type != DEV_CMD_TYPE_NOP) { 3113 err = -EINVAL; 3114 dev_err(hba->dev, "%s: unexpected response %x\n", 3115 __func__, resp); 3116 } 3117 break; 3118 case UPIU_TRANSACTION_QUERY_RSP: { 3119 u8 response = lrbp->ucd_rsp_ptr->header.response; 3120 3121 if (response == 0) 3122 err = ufshcd_copy_query_response(hba, lrbp); 3123 break; 3124 } 3125 case UPIU_TRANSACTION_REJECT_UPIU: 3126 /* TODO: handle Reject UPIU Response */ 3127 err = -EPERM; 3128 dev_err(hba->dev, "%s: Reject UPIU not fully implemented\n", 3129 __func__); 3130 break; 3131 case UPIU_TRANSACTION_RESPONSE: 3132 if (hba->dev_cmd.type != DEV_CMD_TYPE_RPMB) { 3133 err = -EINVAL; 3134 dev_err(hba->dev, "%s: unexpected response %x\n", __func__, resp); 3135 } 3136 break; 3137 default: 3138 err = -EINVAL; 3139 dev_err(hba->dev, "%s: Invalid device management cmd response: %x\n", 3140 __func__, resp); 3141 break; 3142 } 3143 3144 return err; 3145 } 3146 3147 static int ufshcd_wait_for_dev_cmd(struct ufs_hba *hba, 3148 struct ufshcd_lrb *lrbp, int max_timeout) 3149 { 3150 unsigned long time_left = msecs_to_jiffies(max_timeout); 3151 unsigned long flags; 3152 bool pending; 3153 int err; 3154 3155 retry: 3156 time_left = wait_for_completion_timeout(hba->dev_cmd.complete, 3157 time_left); 3158 3159 if (likely(time_left)) { 3160 /* 3161 * The completion handler called complete() and the caller of 3162 * this function still owns the @lrbp tag so the code below does 3163 * not trigger any race conditions. 3164 */ 3165 hba->dev_cmd.complete = NULL; 3166 err = ufshcd_get_tr_ocs(lrbp, NULL); 3167 if (!err) 3168 err = ufshcd_dev_cmd_completion(hba, lrbp); 3169 } else { 3170 err = -ETIMEDOUT; 3171 dev_dbg(hba->dev, "%s: dev_cmd request timedout, tag %d\n", 3172 __func__, lrbp->task_tag); 3173 3174 /* MCQ mode */ 3175 if (hba->mcq_enabled) { 3176 /* successfully cleared the command, retry if needed */ 3177 if (ufshcd_clear_cmd(hba, lrbp->task_tag) == 0) 3178 err = -EAGAIN; 3179 hba->dev_cmd.complete = NULL; 3180 return err; 3181 } 3182 3183 /* SDB mode */ 3184 if (ufshcd_clear_cmd(hba, lrbp->task_tag) == 0) { 3185 /* successfully cleared the command, retry if needed */ 3186 err = -EAGAIN; 3187 /* 3188 * Since clearing the command succeeded we also need to 3189 * clear the task tag bit from the outstanding_reqs 3190 * variable. 3191 */ 3192 spin_lock_irqsave(&hba->outstanding_lock, flags); 3193 pending = test_bit(lrbp->task_tag, 3194 &hba->outstanding_reqs); 3195 if (pending) { 3196 hba->dev_cmd.complete = NULL; 3197 __clear_bit(lrbp->task_tag, 3198 &hba->outstanding_reqs); 3199 } 3200 spin_unlock_irqrestore(&hba->outstanding_lock, flags); 3201 3202 if (!pending) { 3203 /* 3204 * The completion handler ran while we tried to 3205 * clear the command. 3206 */ 3207 time_left = 1; 3208 goto retry; 3209 } 3210 } else { 3211 dev_err(hba->dev, "%s: failed to clear tag %d\n", 3212 __func__, lrbp->task_tag); 3213 3214 spin_lock_irqsave(&hba->outstanding_lock, flags); 3215 pending = test_bit(lrbp->task_tag, 3216 &hba->outstanding_reqs); 3217 if (pending) 3218 hba->dev_cmd.complete = NULL; 3219 spin_unlock_irqrestore(&hba->outstanding_lock, flags); 3220 3221 if (!pending) { 3222 /* 3223 * The completion handler ran while we tried to 3224 * clear the command. 3225 */ 3226 time_left = 1; 3227 goto retry; 3228 } 3229 } 3230 } 3231 3232 return err; 3233 } 3234 3235 static void ufshcd_dev_man_lock(struct ufs_hba *hba) 3236 { 3237 ufshcd_hold(hba); 3238 mutex_lock(&hba->dev_cmd.lock); 3239 down_read(&hba->clk_scaling_lock); 3240 } 3241 3242 static void ufshcd_dev_man_unlock(struct ufs_hba *hba) 3243 { 3244 up_read(&hba->clk_scaling_lock); 3245 mutex_unlock(&hba->dev_cmd.lock); 3246 ufshcd_release(hba); 3247 } 3248 3249 static int ufshcd_issue_dev_cmd(struct ufs_hba *hba, struct ufshcd_lrb *lrbp, 3250 const u32 tag, int timeout) 3251 { 3252 DECLARE_COMPLETION_ONSTACK(wait); 3253 int err; 3254 3255 hba->dev_cmd.complete = &wait; 3256 3257 ufshcd_add_query_upiu_trace(hba, UFS_QUERY_SEND, lrbp->ucd_req_ptr); 3258 3259 ufshcd_send_command(hba, tag, hba->dev_cmd_queue); 3260 err = ufshcd_wait_for_dev_cmd(hba, lrbp, timeout); 3261 3262 ufshcd_add_query_upiu_trace(hba, err ? UFS_QUERY_ERR : UFS_QUERY_COMP, 3263 (struct utp_upiu_req *)lrbp->ucd_rsp_ptr); 3264 3265 return err; 3266 } 3267 3268 /** 3269 * ufshcd_exec_dev_cmd - API for sending device management requests 3270 * @hba: UFS hba 3271 * @cmd_type: specifies the type (NOP, Query...) 3272 * @timeout: timeout in milliseconds 3273 * 3274 * Return: 0 upon success; < 0 upon failure. 3275 * 3276 * NOTE: Since there is only one available tag for device management commands, 3277 * it is expected you hold the hba->dev_cmd.lock mutex. 3278 */ 3279 static int ufshcd_exec_dev_cmd(struct ufs_hba *hba, 3280 enum dev_cmd_type cmd_type, int timeout) 3281 { 3282 const u32 tag = hba->reserved_slot; 3283 struct ufshcd_lrb *lrbp = &hba->lrb[tag]; 3284 int err; 3285 3286 /* Protects use of hba->reserved_slot. */ 3287 lockdep_assert_held(&hba->dev_cmd.lock); 3288 3289 err = ufshcd_compose_dev_cmd(hba, lrbp, cmd_type, tag); 3290 if (unlikely(err)) 3291 return err; 3292 3293 return ufshcd_issue_dev_cmd(hba, lrbp, tag, timeout); 3294 } 3295 3296 /** 3297 * ufshcd_init_query() - init the query response and request parameters 3298 * @hba: per-adapter instance 3299 * @request: address of the request pointer to be initialized 3300 * @response: address of the response pointer to be initialized 3301 * @opcode: operation to perform 3302 * @idn: flag idn to access 3303 * @index: LU number to access 3304 * @selector: query/flag/descriptor further identification 3305 */ 3306 static inline void ufshcd_init_query(struct ufs_hba *hba, 3307 struct ufs_query_req **request, struct ufs_query_res **response, 3308 enum query_opcode opcode, u8 idn, u8 index, u8 selector) 3309 { 3310 *request = &hba->dev_cmd.query.request; 3311 *response = &hba->dev_cmd.query.response; 3312 memset(*request, 0, sizeof(struct ufs_query_req)); 3313 memset(*response, 0, sizeof(struct ufs_query_res)); 3314 (*request)->upiu_req.opcode = opcode; 3315 (*request)->upiu_req.idn = idn; 3316 (*request)->upiu_req.index = index; 3317 (*request)->upiu_req.selector = selector; 3318 } 3319 3320 static int ufshcd_query_flag_retry(struct ufs_hba *hba, 3321 enum query_opcode opcode, enum flag_idn idn, u8 index, bool *flag_res) 3322 { 3323 int ret; 3324 int retries; 3325 3326 for (retries = 0; retries < QUERY_REQ_RETRIES; retries++) { 3327 ret = ufshcd_query_flag(hba, opcode, idn, index, flag_res); 3328 if (ret) 3329 dev_dbg(hba->dev, 3330 "%s: failed with error %d, retries %d\n", 3331 __func__, ret, retries); 3332 else 3333 break; 3334 } 3335 3336 if (ret) 3337 dev_err(hba->dev, 3338 "%s: query flag, opcode %d, idn %d, failed with error %d after %d retries\n", 3339 __func__, opcode, idn, ret, retries); 3340 return ret; 3341 } 3342 3343 /** 3344 * ufshcd_query_flag() - API function for sending flag query requests 3345 * @hba: per-adapter instance 3346 * @opcode: flag query to perform 3347 * @idn: flag idn to access 3348 * @index: flag index to access 3349 * @flag_res: the flag value after the query request completes 3350 * 3351 * Return: 0 for success, non-zero in case of failure. 3352 */ 3353 int ufshcd_query_flag(struct ufs_hba *hba, enum query_opcode opcode, 3354 enum flag_idn idn, u8 index, bool *flag_res) 3355 { 3356 struct ufs_query_req *request = NULL; 3357 struct ufs_query_res *response = NULL; 3358 int err, selector = 0; 3359 int timeout = QUERY_REQ_TIMEOUT; 3360 3361 BUG_ON(!hba); 3362 3363 ufshcd_dev_man_lock(hba); 3364 3365 ufshcd_init_query(hba, &request, &response, opcode, idn, index, 3366 selector); 3367 3368 switch (opcode) { 3369 case UPIU_QUERY_OPCODE_SET_FLAG: 3370 case UPIU_QUERY_OPCODE_CLEAR_FLAG: 3371 case UPIU_QUERY_OPCODE_TOGGLE_FLAG: 3372 request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST; 3373 break; 3374 case UPIU_QUERY_OPCODE_READ_FLAG: 3375 request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST; 3376 if (!flag_res) { 3377 /* No dummy reads */ 3378 dev_err(hba->dev, "%s: Invalid argument for read request\n", 3379 __func__); 3380 err = -EINVAL; 3381 goto out_unlock; 3382 } 3383 break; 3384 default: 3385 dev_err(hba->dev, 3386 "%s: Expected query flag opcode but got = %d\n", 3387 __func__, opcode); 3388 err = -EINVAL; 3389 goto out_unlock; 3390 } 3391 3392 err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, timeout); 3393 3394 if (err) { 3395 dev_err(hba->dev, 3396 "%s: Sending flag query for idn %d failed, err = %d\n", 3397 __func__, idn, err); 3398 goto out_unlock; 3399 } 3400 3401 if (flag_res) 3402 *flag_res = (be32_to_cpu(response->upiu_res.value) & 3403 MASK_QUERY_UPIU_FLAG_LOC) & 0x1; 3404 3405 out_unlock: 3406 ufshcd_dev_man_unlock(hba); 3407 return err; 3408 } 3409 3410 /** 3411 * ufshcd_query_attr - API function for sending attribute requests 3412 * @hba: per-adapter instance 3413 * @opcode: attribute opcode 3414 * @idn: attribute idn to access 3415 * @index: index field 3416 * @selector: selector field 3417 * @attr_val: the attribute value after the query request completes 3418 * 3419 * Return: 0 for success, non-zero in case of failure. 3420 */ 3421 int ufshcd_query_attr(struct ufs_hba *hba, enum query_opcode opcode, 3422 enum attr_idn idn, u8 index, u8 selector, u32 *attr_val) 3423 { 3424 struct ufs_query_req *request = NULL; 3425 struct ufs_query_res *response = NULL; 3426 int err; 3427 3428 BUG_ON(!hba); 3429 3430 if (!attr_val) { 3431 dev_err(hba->dev, "%s: attribute value required for opcode 0x%x\n", 3432 __func__, opcode); 3433 return -EINVAL; 3434 } 3435 3436 ufshcd_dev_man_lock(hba); 3437 3438 ufshcd_init_query(hba, &request, &response, opcode, idn, index, 3439 selector); 3440 3441 switch (opcode) { 3442 case UPIU_QUERY_OPCODE_WRITE_ATTR: 3443 request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST; 3444 request->upiu_req.value = cpu_to_be32(*attr_val); 3445 break; 3446 case UPIU_QUERY_OPCODE_READ_ATTR: 3447 request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST; 3448 break; 3449 default: 3450 dev_err(hba->dev, "%s: Expected query attr opcode but got = 0x%.2x\n", 3451 __func__, opcode); 3452 err = -EINVAL; 3453 goto out_unlock; 3454 } 3455 3456 err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT); 3457 3458 if (err) { 3459 dev_err(hba->dev, "%s: opcode 0x%.2x for idn %d failed, index %d, err = %d\n", 3460 __func__, opcode, idn, index, err); 3461 goto out_unlock; 3462 } 3463 3464 *attr_val = be32_to_cpu(response->upiu_res.value); 3465 3466 out_unlock: 3467 ufshcd_dev_man_unlock(hba); 3468 return err; 3469 } 3470 3471 /** 3472 * ufshcd_query_attr_retry() - API function for sending query 3473 * attribute with retries 3474 * @hba: per-adapter instance 3475 * @opcode: attribute opcode 3476 * @idn: attribute idn to access 3477 * @index: index field 3478 * @selector: selector field 3479 * @attr_val: the attribute value after the query request 3480 * completes 3481 * 3482 * Return: 0 for success, non-zero in case of failure. 3483 */ 3484 int ufshcd_query_attr_retry(struct ufs_hba *hba, 3485 enum query_opcode opcode, enum attr_idn idn, u8 index, u8 selector, 3486 u32 *attr_val) 3487 { 3488 int ret = 0; 3489 u32 retries; 3490 3491 for (retries = QUERY_REQ_RETRIES; retries > 0; retries--) { 3492 ret = ufshcd_query_attr(hba, opcode, idn, index, 3493 selector, attr_val); 3494 if (ret) 3495 dev_dbg(hba->dev, "%s: failed with error %d, retries %d\n", 3496 __func__, ret, retries); 3497 else 3498 break; 3499 } 3500 3501 if (ret) 3502 dev_err(hba->dev, 3503 "%s: query attribute, idn %d, failed with error %d after %d retries\n", 3504 __func__, idn, ret, QUERY_REQ_RETRIES); 3505 return ret; 3506 } 3507 3508 static int __ufshcd_query_descriptor(struct ufs_hba *hba, 3509 enum query_opcode opcode, enum desc_idn idn, u8 index, 3510 u8 selector, u8 *desc_buf, int *buf_len) 3511 { 3512 struct ufs_query_req *request = NULL; 3513 struct ufs_query_res *response = NULL; 3514 int err; 3515 3516 BUG_ON(!hba); 3517 3518 if (!desc_buf) { 3519 dev_err(hba->dev, "%s: descriptor buffer required for opcode 0x%x\n", 3520 __func__, opcode); 3521 return -EINVAL; 3522 } 3523 3524 if (*buf_len < QUERY_DESC_MIN_SIZE || *buf_len > QUERY_DESC_MAX_SIZE) { 3525 dev_err(hba->dev, "%s: descriptor buffer size (%d) is out of range\n", 3526 __func__, *buf_len); 3527 return -EINVAL; 3528 } 3529 3530 ufshcd_dev_man_lock(hba); 3531 3532 ufshcd_init_query(hba, &request, &response, opcode, idn, index, 3533 selector); 3534 hba->dev_cmd.query.descriptor = desc_buf; 3535 request->upiu_req.length = cpu_to_be16(*buf_len); 3536 3537 switch (opcode) { 3538 case UPIU_QUERY_OPCODE_WRITE_DESC: 3539 request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST; 3540 break; 3541 case UPIU_QUERY_OPCODE_READ_DESC: 3542 request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST; 3543 break; 3544 default: 3545 dev_err(hba->dev, 3546 "%s: Expected query descriptor opcode but got = 0x%.2x\n", 3547 __func__, opcode); 3548 err = -EINVAL; 3549 goto out_unlock; 3550 } 3551 3552 err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT); 3553 3554 if (err) { 3555 dev_err(hba->dev, "%s: opcode 0x%.2x for idn %d failed, index %d, err = %d\n", 3556 __func__, opcode, idn, index, err); 3557 goto out_unlock; 3558 } 3559 3560 *buf_len = be16_to_cpu(response->upiu_res.length); 3561 3562 out_unlock: 3563 hba->dev_cmd.query.descriptor = NULL; 3564 ufshcd_dev_man_unlock(hba); 3565 return err; 3566 } 3567 3568 /** 3569 * ufshcd_query_descriptor_retry - API function for sending descriptor requests 3570 * @hba: per-adapter instance 3571 * @opcode: attribute opcode 3572 * @idn: attribute idn to access 3573 * @index: index field 3574 * @selector: selector field 3575 * @desc_buf: the buffer that contains the descriptor 3576 * @buf_len: length parameter passed to the device 3577 * 3578 * The buf_len parameter will contain, on return, the length parameter 3579 * received on the response. 3580 * 3581 * Return: 0 for success, non-zero in case of failure. 3582 */ 3583 int ufshcd_query_descriptor_retry(struct ufs_hba *hba, 3584 enum query_opcode opcode, 3585 enum desc_idn idn, u8 index, 3586 u8 selector, 3587 u8 *desc_buf, int *buf_len) 3588 { 3589 int err; 3590 int retries; 3591 3592 for (retries = QUERY_REQ_RETRIES; retries > 0; retries--) { 3593 err = __ufshcd_query_descriptor(hba, opcode, idn, index, 3594 selector, desc_buf, buf_len); 3595 if (!err || err == -EINVAL) 3596 break; 3597 } 3598 3599 return err; 3600 } 3601 3602 /** 3603 * ufshcd_read_desc_param - read the specified descriptor parameter 3604 * @hba: Pointer to adapter instance 3605 * @desc_id: descriptor idn value 3606 * @desc_index: descriptor index 3607 * @param_offset: offset of the parameter to read 3608 * @param_read_buf: pointer to buffer where parameter would be read 3609 * @param_size: sizeof(param_read_buf) 3610 * 3611 * Return: 0 in case of success, non-zero otherwise. 3612 */ 3613 int ufshcd_read_desc_param(struct ufs_hba *hba, 3614 enum desc_idn desc_id, 3615 int desc_index, 3616 u8 param_offset, 3617 u8 *param_read_buf, 3618 u8 param_size) 3619 { 3620 int ret; 3621 u8 *desc_buf; 3622 int buff_len = QUERY_DESC_MAX_SIZE; 3623 bool is_kmalloc = true; 3624 3625 /* Safety check */ 3626 if (desc_id >= QUERY_DESC_IDN_MAX || !param_size) 3627 return -EINVAL; 3628 3629 /* Check whether we need temp memory */ 3630 if (param_offset != 0 || param_size < buff_len) { 3631 desc_buf = kzalloc(buff_len, GFP_KERNEL); 3632 if (!desc_buf) 3633 return -ENOMEM; 3634 } else { 3635 desc_buf = param_read_buf; 3636 is_kmalloc = false; 3637 } 3638 3639 /* Request for full descriptor */ 3640 ret = ufshcd_query_descriptor_retry(hba, UPIU_QUERY_OPCODE_READ_DESC, 3641 desc_id, desc_index, 0, 3642 desc_buf, &buff_len); 3643 if (ret) { 3644 dev_err(hba->dev, "%s: Failed reading descriptor. desc_id %d, desc_index %d, param_offset %d, ret %d\n", 3645 __func__, desc_id, desc_index, param_offset, ret); 3646 goto out; 3647 } 3648 3649 /* Update descriptor length */ 3650 buff_len = desc_buf[QUERY_DESC_LENGTH_OFFSET]; 3651 3652 if (param_offset >= buff_len) { 3653 dev_err(hba->dev, "%s: Invalid offset 0x%x in descriptor IDN 0x%x, length 0x%x\n", 3654 __func__, param_offset, desc_id, buff_len); 3655 ret = -EINVAL; 3656 goto out; 3657 } 3658 3659 /* Sanity check */ 3660 if (desc_buf[QUERY_DESC_DESC_TYPE_OFFSET] != desc_id) { 3661 dev_err(hba->dev, "%s: invalid desc_id %d in descriptor header\n", 3662 __func__, desc_buf[QUERY_DESC_DESC_TYPE_OFFSET]); 3663 ret = -EINVAL; 3664 goto out; 3665 } 3666 3667 if (is_kmalloc) { 3668 /* Make sure we don't copy more data than available */ 3669 if (param_offset >= buff_len) 3670 ret = -EINVAL; 3671 else 3672 memcpy(param_read_buf, &desc_buf[param_offset], 3673 min_t(u32, param_size, buff_len - param_offset)); 3674 } 3675 out: 3676 if (is_kmalloc) 3677 kfree(desc_buf); 3678 return ret; 3679 } 3680 3681 /** 3682 * struct uc_string_id - unicode string 3683 * 3684 * @len: size of this descriptor inclusive 3685 * @type: descriptor type 3686 * @uc: unicode string character 3687 */ 3688 struct uc_string_id { 3689 u8 len; 3690 u8 type; 3691 wchar_t uc[]; 3692 } __packed; 3693 3694 /* replace non-printable or non-ASCII characters with spaces */ 3695 static inline char ufshcd_remove_non_printable(u8 ch) 3696 { 3697 return (ch >= 0x20 && ch <= 0x7e) ? ch : ' '; 3698 } 3699 3700 /** 3701 * ufshcd_read_string_desc - read string descriptor 3702 * @hba: pointer to adapter instance 3703 * @desc_index: descriptor index 3704 * @buf: pointer to buffer where descriptor would be read, 3705 * the caller should free the memory. 3706 * @ascii: if true convert from unicode to ascii characters 3707 * null terminated string. 3708 * 3709 * Return: 3710 * * string size on success. 3711 * * -ENOMEM: on allocation failure 3712 * * -EINVAL: on a wrong parameter 3713 */ 3714 int ufshcd_read_string_desc(struct ufs_hba *hba, u8 desc_index, 3715 u8 **buf, bool ascii) 3716 { 3717 struct uc_string_id *uc_str; 3718 u8 *str; 3719 int ret; 3720 3721 if (!buf) 3722 return -EINVAL; 3723 3724 uc_str = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL); 3725 if (!uc_str) 3726 return -ENOMEM; 3727 3728 ret = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_STRING, desc_index, 0, 3729 (u8 *)uc_str, QUERY_DESC_MAX_SIZE); 3730 if (ret < 0) { 3731 dev_err(hba->dev, "Reading String Desc failed after %d retries. err = %d\n", 3732 QUERY_REQ_RETRIES, ret); 3733 str = NULL; 3734 goto out; 3735 } 3736 3737 if (uc_str->len <= QUERY_DESC_HDR_SIZE) { 3738 dev_dbg(hba->dev, "String Desc is of zero length\n"); 3739 str = NULL; 3740 ret = 0; 3741 goto out; 3742 } 3743 3744 if (ascii) { 3745 ssize_t ascii_len; 3746 int i; 3747 /* remove header and divide by 2 to move from UTF16 to UTF8 */ 3748 ascii_len = (uc_str->len - QUERY_DESC_HDR_SIZE) / 2 + 1; 3749 str = kzalloc(ascii_len, GFP_KERNEL); 3750 if (!str) { 3751 ret = -ENOMEM; 3752 goto out; 3753 } 3754 3755 /* 3756 * the descriptor contains string in UTF16 format 3757 * we need to convert to utf-8 so it can be displayed 3758 */ 3759 ret = utf16s_to_utf8s(uc_str->uc, 3760 uc_str->len - QUERY_DESC_HDR_SIZE, 3761 UTF16_BIG_ENDIAN, str, ascii_len - 1); 3762 3763 /* replace non-printable or non-ASCII characters with spaces */ 3764 for (i = 0; i < ret; i++) 3765 str[i] = ufshcd_remove_non_printable(str[i]); 3766 3767 str[ret++] = '\0'; 3768 3769 } else { 3770 str = kmemdup(uc_str, uc_str->len, GFP_KERNEL); 3771 if (!str) { 3772 ret = -ENOMEM; 3773 goto out; 3774 } 3775 ret = uc_str->len; 3776 } 3777 out: 3778 *buf = str; 3779 kfree(uc_str); 3780 return ret; 3781 } 3782 3783 /** 3784 * ufshcd_read_unit_desc_param - read the specified unit descriptor parameter 3785 * @hba: Pointer to adapter instance 3786 * @lun: lun id 3787 * @param_offset: offset of the parameter to read 3788 * @param_read_buf: pointer to buffer where parameter would be read 3789 * @param_size: sizeof(param_read_buf) 3790 * 3791 * Return: 0 in case of success, non-zero otherwise. 3792 */ 3793 static inline int ufshcd_read_unit_desc_param(struct ufs_hba *hba, 3794 int lun, 3795 enum unit_desc_param param_offset, 3796 u8 *param_read_buf, 3797 u32 param_size) 3798 { 3799 /* 3800 * Unit descriptors are only available for general purpose LUs (LUN id 3801 * from 0 to 7) and RPMB Well known LU. 3802 */ 3803 if (!ufs_is_valid_unit_desc_lun(&hba->dev_info, lun)) 3804 return -EOPNOTSUPP; 3805 3806 return ufshcd_read_desc_param(hba, QUERY_DESC_IDN_UNIT, lun, 3807 param_offset, param_read_buf, param_size); 3808 } 3809 3810 static int ufshcd_get_ref_clk_gating_wait(struct ufs_hba *hba) 3811 { 3812 int err = 0; 3813 u32 gating_wait = UFSHCD_REF_CLK_GATING_WAIT_US; 3814 3815 if (hba->dev_info.wspecversion >= 0x300) { 3816 err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR, 3817 QUERY_ATTR_IDN_REF_CLK_GATING_WAIT_TIME, 0, 0, 3818 &gating_wait); 3819 if (err) 3820 dev_err(hba->dev, "Failed reading bRefClkGatingWait. err = %d, use default %uus\n", 3821 err, gating_wait); 3822 3823 if (gating_wait == 0) { 3824 gating_wait = UFSHCD_REF_CLK_GATING_WAIT_US; 3825 dev_err(hba->dev, "Undefined ref clk gating wait time, use default %uus\n", 3826 gating_wait); 3827 } 3828 3829 hba->dev_info.clk_gating_wait_us = gating_wait; 3830 } 3831 3832 return err; 3833 } 3834 3835 /** 3836 * ufshcd_memory_alloc - allocate memory for host memory space data structures 3837 * @hba: per adapter instance 3838 * 3839 * 1. Allocate DMA memory for Command Descriptor array 3840 * Each command descriptor consist of Command UPIU, Response UPIU and PRDT 3841 * 2. Allocate DMA memory for UTP Transfer Request Descriptor List (UTRDL). 3842 * 3. Allocate DMA memory for UTP Task Management Request Descriptor List 3843 * (UTMRDL) 3844 * 4. Allocate memory for local reference block(lrb). 3845 * 3846 * Return: 0 for success, non-zero in case of failure. 3847 */ 3848 static int ufshcd_memory_alloc(struct ufs_hba *hba) 3849 { 3850 size_t utmrdl_size, utrdl_size, ucdl_size; 3851 3852 /* Allocate memory for UTP command descriptors */ 3853 ucdl_size = ufshcd_get_ucd_size(hba) * hba->nutrs; 3854 hba->ucdl_base_addr = dmam_alloc_coherent(hba->dev, 3855 ucdl_size, 3856 &hba->ucdl_dma_addr, 3857 GFP_KERNEL); 3858 3859 /* 3860 * UFSHCI requires UTP command descriptor to be 128 byte aligned. 3861 */ 3862 if (!hba->ucdl_base_addr || 3863 WARN_ON(hba->ucdl_dma_addr & (128 - 1))) { 3864 dev_err(hba->dev, 3865 "Command Descriptor Memory allocation failed\n"); 3866 goto out; 3867 } 3868 3869 /* 3870 * Allocate memory for UTP Transfer descriptors 3871 * UFSHCI requires 1KB alignment of UTRD 3872 */ 3873 utrdl_size = (sizeof(struct utp_transfer_req_desc) * hba->nutrs); 3874 hba->utrdl_base_addr = dmam_alloc_coherent(hba->dev, 3875 utrdl_size, 3876 &hba->utrdl_dma_addr, 3877 GFP_KERNEL); 3878 if (!hba->utrdl_base_addr || 3879 WARN_ON(hba->utrdl_dma_addr & (SZ_1K - 1))) { 3880 dev_err(hba->dev, 3881 "Transfer Descriptor Memory allocation failed\n"); 3882 goto out; 3883 } 3884 3885 /* 3886 * Skip utmrdl allocation; it may have been 3887 * allocated during first pass and not released during 3888 * MCQ memory allocation. 3889 * See ufshcd_release_sdb_queue() and ufshcd_config_mcq() 3890 */ 3891 if (hba->utmrdl_base_addr) 3892 goto skip_utmrdl; 3893 /* 3894 * Allocate memory for UTP Task Management descriptors 3895 * UFSHCI requires 1KB alignment of UTMRD 3896 */ 3897 utmrdl_size = sizeof(struct utp_task_req_desc) * hba->nutmrs; 3898 hba->utmrdl_base_addr = dmam_alloc_coherent(hba->dev, 3899 utmrdl_size, 3900 &hba->utmrdl_dma_addr, 3901 GFP_KERNEL); 3902 if (!hba->utmrdl_base_addr || 3903 WARN_ON(hba->utmrdl_dma_addr & (SZ_1K - 1))) { 3904 dev_err(hba->dev, 3905 "Task Management Descriptor Memory allocation failed\n"); 3906 goto out; 3907 } 3908 3909 skip_utmrdl: 3910 /* Allocate memory for local reference block */ 3911 hba->lrb = devm_kcalloc(hba->dev, 3912 hba->nutrs, sizeof(struct ufshcd_lrb), 3913 GFP_KERNEL); 3914 if (!hba->lrb) { 3915 dev_err(hba->dev, "LRB Memory allocation failed\n"); 3916 goto out; 3917 } 3918 return 0; 3919 out: 3920 return -ENOMEM; 3921 } 3922 3923 /** 3924 * ufshcd_host_memory_configure - configure local reference block with 3925 * memory offsets 3926 * @hba: per adapter instance 3927 * 3928 * Configure Host memory space 3929 * 1. Update Corresponding UTRD.UCDBA and UTRD.UCDBAU with UCD DMA 3930 * address. 3931 * 2. Update each UTRD with Response UPIU offset, Response UPIU length 3932 * and PRDT offset. 3933 * 3. Save the corresponding addresses of UTRD, UCD.CMD, UCD.RSP and UCD.PRDT 3934 * into local reference block. 3935 */ 3936 static void ufshcd_host_memory_configure(struct ufs_hba *hba) 3937 { 3938 struct utp_transfer_req_desc *utrdlp; 3939 dma_addr_t cmd_desc_dma_addr; 3940 dma_addr_t cmd_desc_element_addr; 3941 u16 response_offset; 3942 u16 prdt_offset; 3943 int cmd_desc_size; 3944 int i; 3945 3946 utrdlp = hba->utrdl_base_addr; 3947 3948 response_offset = 3949 offsetof(struct utp_transfer_cmd_desc, response_upiu); 3950 prdt_offset = 3951 offsetof(struct utp_transfer_cmd_desc, prd_table); 3952 3953 cmd_desc_size = ufshcd_get_ucd_size(hba); 3954 cmd_desc_dma_addr = hba->ucdl_dma_addr; 3955 3956 for (i = 0; i < hba->nutrs; i++) { 3957 /* Configure UTRD with command descriptor base address */ 3958 cmd_desc_element_addr = 3959 (cmd_desc_dma_addr + (cmd_desc_size * i)); 3960 utrdlp[i].command_desc_base_addr = 3961 cpu_to_le64(cmd_desc_element_addr); 3962 3963 /* Response upiu and prdt offset should be in double words */ 3964 if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN) { 3965 utrdlp[i].response_upiu_offset = 3966 cpu_to_le16(response_offset); 3967 utrdlp[i].prd_table_offset = 3968 cpu_to_le16(prdt_offset); 3969 utrdlp[i].response_upiu_length = 3970 cpu_to_le16(ALIGNED_UPIU_SIZE); 3971 } else { 3972 utrdlp[i].response_upiu_offset = 3973 cpu_to_le16(response_offset >> 2); 3974 utrdlp[i].prd_table_offset = 3975 cpu_to_le16(prdt_offset >> 2); 3976 utrdlp[i].response_upiu_length = 3977 cpu_to_le16(ALIGNED_UPIU_SIZE >> 2); 3978 } 3979 3980 ufshcd_init_lrb(hba, &hba->lrb[i], i); 3981 } 3982 } 3983 3984 /** 3985 * ufshcd_dme_link_startup - Notify Unipro to perform link startup 3986 * @hba: per adapter instance 3987 * 3988 * UIC_CMD_DME_LINK_STARTUP command must be issued to Unipro layer, 3989 * in order to initialize the Unipro link startup procedure. 3990 * Once the Unipro links are up, the device connected to the controller 3991 * is detected. 3992 * 3993 * Return: 0 on success, non-zero value on failure. 3994 */ 3995 static int ufshcd_dme_link_startup(struct ufs_hba *hba) 3996 { 3997 struct uic_command uic_cmd = { 3998 .command = UIC_CMD_DME_LINK_STARTUP, 3999 }; 4000 int ret; 4001 4002 ret = ufshcd_send_uic_cmd(hba, &uic_cmd); 4003 if (ret) 4004 dev_dbg(hba->dev, 4005 "dme-link-startup: error code %d\n", ret); 4006 return ret; 4007 } 4008 /** 4009 * ufshcd_dme_reset - UIC command for DME_RESET 4010 * @hba: per adapter instance 4011 * 4012 * DME_RESET command is issued in order to reset UniPro stack. 4013 * This function now deals with cold reset. 4014 * 4015 * Return: 0 on success, non-zero value on failure. 4016 */ 4017 static int ufshcd_dme_reset(struct ufs_hba *hba) 4018 { 4019 struct uic_command uic_cmd = { 4020 .command = UIC_CMD_DME_RESET, 4021 }; 4022 int ret; 4023 4024 ret = ufshcd_send_uic_cmd(hba, &uic_cmd); 4025 if (ret) 4026 dev_err(hba->dev, 4027 "dme-reset: error code %d\n", ret); 4028 4029 return ret; 4030 } 4031 4032 int ufshcd_dme_configure_adapt(struct ufs_hba *hba, 4033 int agreed_gear, 4034 int adapt_val) 4035 { 4036 int ret; 4037 4038 if (agreed_gear < UFS_HS_G4) 4039 adapt_val = PA_NO_ADAPT; 4040 4041 ret = ufshcd_dme_set(hba, 4042 UIC_ARG_MIB(PA_TXHSADAPTTYPE), 4043 adapt_val); 4044 return ret; 4045 } 4046 EXPORT_SYMBOL_GPL(ufshcd_dme_configure_adapt); 4047 4048 /** 4049 * ufshcd_dme_enable - UIC command for DME_ENABLE 4050 * @hba: per adapter instance 4051 * 4052 * DME_ENABLE command is issued in order to enable UniPro stack. 4053 * 4054 * Return: 0 on success, non-zero value on failure. 4055 */ 4056 static int ufshcd_dme_enable(struct ufs_hba *hba) 4057 { 4058 struct uic_command uic_cmd = { 4059 .command = UIC_CMD_DME_ENABLE, 4060 }; 4061 int ret; 4062 4063 ret = ufshcd_send_uic_cmd(hba, &uic_cmd); 4064 if (ret) 4065 dev_err(hba->dev, 4066 "dme-enable: error code %d\n", ret); 4067 4068 return ret; 4069 } 4070 4071 static inline void ufshcd_add_delay_before_dme_cmd(struct ufs_hba *hba) 4072 { 4073 #define MIN_DELAY_BEFORE_DME_CMDS_US 1000 4074 unsigned long min_sleep_time_us; 4075 4076 if (!(hba->quirks & UFSHCD_QUIRK_DELAY_BEFORE_DME_CMDS)) 4077 return; 4078 4079 /* 4080 * last_dme_cmd_tstamp will be 0 only for 1st call to 4081 * this function 4082 */ 4083 if (unlikely(!ktime_to_us(hba->last_dme_cmd_tstamp))) { 4084 min_sleep_time_us = MIN_DELAY_BEFORE_DME_CMDS_US; 4085 } else { 4086 unsigned long delta = 4087 (unsigned long) ktime_to_us( 4088 ktime_sub(ktime_get(), 4089 hba->last_dme_cmd_tstamp)); 4090 4091 if (delta < MIN_DELAY_BEFORE_DME_CMDS_US) 4092 min_sleep_time_us = 4093 MIN_DELAY_BEFORE_DME_CMDS_US - delta; 4094 else 4095 min_sleep_time_us = 0; /* no more delay required */ 4096 } 4097 4098 if (min_sleep_time_us > 0) { 4099 /* allow sleep for extra 50us if needed */ 4100 usleep_range(min_sleep_time_us, min_sleep_time_us + 50); 4101 } 4102 4103 /* update the last_dme_cmd_tstamp */ 4104 hba->last_dme_cmd_tstamp = ktime_get(); 4105 } 4106 4107 /** 4108 * ufshcd_dme_set_attr - UIC command for DME_SET, DME_PEER_SET 4109 * @hba: per adapter instance 4110 * @attr_sel: uic command argument1 4111 * @attr_set: attribute set type as uic command argument2 4112 * @mib_val: setting value as uic command argument3 4113 * @peer: indicate whether peer or local 4114 * 4115 * Return: 0 on success, non-zero value on failure. 4116 */ 4117 int ufshcd_dme_set_attr(struct ufs_hba *hba, u32 attr_sel, 4118 u8 attr_set, u32 mib_val, u8 peer) 4119 { 4120 struct uic_command uic_cmd = { 4121 .command = peer ? UIC_CMD_DME_PEER_SET : UIC_CMD_DME_SET, 4122 .argument1 = attr_sel, 4123 .argument2 = UIC_ARG_ATTR_TYPE(attr_set), 4124 .argument3 = mib_val, 4125 }; 4126 static const char *const action[] = { 4127 "dme-set", 4128 "dme-peer-set" 4129 }; 4130 const char *set = action[!!peer]; 4131 int ret; 4132 int retries = UFS_UIC_COMMAND_RETRIES; 4133 4134 do { 4135 /* for peer attributes we retry upon failure */ 4136 ret = ufshcd_send_uic_cmd(hba, &uic_cmd); 4137 if (ret) 4138 dev_dbg(hba->dev, "%s: attr-id 0x%x val 0x%x error code %d\n", 4139 set, UIC_GET_ATTR_ID(attr_sel), mib_val, ret); 4140 } while (ret && peer && --retries); 4141 4142 if (ret) 4143 dev_err(hba->dev, "%s: attr-id 0x%x val 0x%x failed %d retries\n", 4144 set, UIC_GET_ATTR_ID(attr_sel), mib_val, 4145 UFS_UIC_COMMAND_RETRIES - retries); 4146 4147 return ret; 4148 } 4149 EXPORT_SYMBOL_GPL(ufshcd_dme_set_attr); 4150 4151 /** 4152 * ufshcd_dme_get_attr - UIC command for DME_GET, DME_PEER_GET 4153 * @hba: per adapter instance 4154 * @attr_sel: uic command argument1 4155 * @mib_val: the value of the attribute as returned by the UIC command 4156 * @peer: indicate whether peer or local 4157 * 4158 * Return: 0 on success, non-zero value on failure. 4159 */ 4160 int ufshcd_dme_get_attr(struct ufs_hba *hba, u32 attr_sel, 4161 u32 *mib_val, u8 peer) 4162 { 4163 struct uic_command uic_cmd = { 4164 .command = peer ? UIC_CMD_DME_PEER_GET : UIC_CMD_DME_GET, 4165 .argument1 = attr_sel, 4166 }; 4167 static const char *const action[] = { 4168 "dme-get", 4169 "dme-peer-get" 4170 }; 4171 const char *get = action[!!peer]; 4172 int ret; 4173 int retries = UFS_UIC_COMMAND_RETRIES; 4174 struct ufs_pa_layer_attr orig_pwr_info; 4175 struct ufs_pa_layer_attr temp_pwr_info; 4176 bool pwr_mode_change = false; 4177 4178 if (peer && (hba->quirks & UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE)) { 4179 orig_pwr_info = hba->pwr_info; 4180 temp_pwr_info = orig_pwr_info; 4181 4182 if (orig_pwr_info.pwr_tx == FAST_MODE || 4183 orig_pwr_info.pwr_rx == FAST_MODE) { 4184 temp_pwr_info.pwr_tx = FASTAUTO_MODE; 4185 temp_pwr_info.pwr_rx = FASTAUTO_MODE; 4186 pwr_mode_change = true; 4187 } else if (orig_pwr_info.pwr_tx == SLOW_MODE || 4188 orig_pwr_info.pwr_rx == SLOW_MODE) { 4189 temp_pwr_info.pwr_tx = SLOWAUTO_MODE; 4190 temp_pwr_info.pwr_rx = SLOWAUTO_MODE; 4191 pwr_mode_change = true; 4192 } 4193 if (pwr_mode_change) { 4194 ret = ufshcd_change_power_mode(hba, &temp_pwr_info); 4195 if (ret) 4196 goto out; 4197 } 4198 } 4199 4200 do { 4201 /* for peer attributes we retry upon failure */ 4202 ret = ufshcd_send_uic_cmd(hba, &uic_cmd); 4203 if (ret) 4204 dev_dbg(hba->dev, "%s: attr-id 0x%x error code %d\n", 4205 get, UIC_GET_ATTR_ID(attr_sel), ret); 4206 } while (ret && peer && --retries); 4207 4208 if (ret) 4209 dev_err(hba->dev, "%s: attr-id 0x%x failed %d retries\n", 4210 get, UIC_GET_ATTR_ID(attr_sel), 4211 UFS_UIC_COMMAND_RETRIES - retries); 4212 4213 if (mib_val && !ret) 4214 *mib_val = uic_cmd.argument3; 4215 4216 if (peer && (hba->quirks & UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE) 4217 && pwr_mode_change) 4218 ufshcd_change_power_mode(hba, &orig_pwr_info); 4219 out: 4220 return ret; 4221 } 4222 EXPORT_SYMBOL_GPL(ufshcd_dme_get_attr); 4223 4224 /** 4225 * ufshcd_uic_pwr_ctrl - executes UIC commands (which affects the link power 4226 * state) and waits for it to take effect. 4227 * 4228 * @hba: per adapter instance 4229 * @cmd: UIC command to execute 4230 * 4231 * DME operations like DME_SET(PA_PWRMODE), DME_HIBERNATE_ENTER & 4232 * DME_HIBERNATE_EXIT commands take some time to take its effect on both host 4233 * and device UniPro link and hence it's final completion would be indicated by 4234 * dedicated status bits in Interrupt Status register (UPMS, UHES, UHXS) in 4235 * addition to normal UIC command completion Status (UCCS). This function only 4236 * returns after the relevant status bits indicate the completion. 4237 * 4238 * Return: 0 on success, non-zero value on failure. 4239 */ 4240 static int ufshcd_uic_pwr_ctrl(struct ufs_hba *hba, struct uic_command *cmd) 4241 { 4242 DECLARE_COMPLETION_ONSTACK(uic_async_done); 4243 unsigned long flags; 4244 u8 status; 4245 int ret; 4246 bool reenable_intr = false; 4247 4248 mutex_lock(&hba->uic_cmd_mutex); 4249 ufshcd_add_delay_before_dme_cmd(hba); 4250 4251 spin_lock_irqsave(hba->host->host_lock, flags); 4252 if (ufshcd_is_link_broken(hba)) { 4253 ret = -ENOLINK; 4254 goto out_unlock; 4255 } 4256 hba->uic_async_done = &uic_async_done; 4257 if (ufshcd_readl(hba, REG_INTERRUPT_ENABLE) & UIC_COMMAND_COMPL) { 4258 ufshcd_disable_intr(hba, UIC_COMMAND_COMPL); 4259 /* 4260 * Make sure UIC command completion interrupt is disabled before 4261 * issuing UIC command. 4262 */ 4263 ufshcd_readl(hba, REG_INTERRUPT_ENABLE); 4264 reenable_intr = true; 4265 } 4266 spin_unlock_irqrestore(hba->host->host_lock, flags); 4267 ret = __ufshcd_send_uic_cmd(hba, cmd); 4268 if (ret) { 4269 dev_err(hba->dev, 4270 "pwr ctrl cmd 0x%x with mode 0x%x uic error %d\n", 4271 cmd->command, cmd->argument3, ret); 4272 goto out; 4273 } 4274 4275 if (!wait_for_completion_timeout(hba->uic_async_done, 4276 msecs_to_jiffies(uic_cmd_timeout))) { 4277 dev_err(hba->dev, 4278 "pwr ctrl cmd 0x%x with mode 0x%x completion timeout\n", 4279 cmd->command, cmd->argument3); 4280 4281 if (!cmd->cmd_active) { 4282 dev_err(hba->dev, "%s: Power Mode Change operation has been completed, go check UPMCRS\n", 4283 __func__); 4284 goto check_upmcrs; 4285 } 4286 4287 ret = -ETIMEDOUT; 4288 goto out; 4289 } 4290 4291 check_upmcrs: 4292 status = ufshcd_get_upmcrs(hba); 4293 if (status != PWR_LOCAL) { 4294 dev_err(hba->dev, 4295 "pwr ctrl cmd 0x%x failed, host upmcrs:0x%x\n", 4296 cmd->command, status); 4297 ret = (status != PWR_OK) ? status : -1; 4298 } 4299 out: 4300 if (ret) { 4301 ufshcd_print_host_state(hba); 4302 ufshcd_print_pwr_info(hba); 4303 ufshcd_print_evt_hist(hba); 4304 } 4305 4306 spin_lock_irqsave(hba->host->host_lock, flags); 4307 hba->active_uic_cmd = NULL; 4308 hba->uic_async_done = NULL; 4309 if (reenable_intr) 4310 ufshcd_enable_intr(hba, UIC_COMMAND_COMPL); 4311 if (ret) { 4312 ufshcd_set_link_broken(hba); 4313 ufshcd_schedule_eh_work(hba); 4314 } 4315 out_unlock: 4316 spin_unlock_irqrestore(hba->host->host_lock, flags); 4317 mutex_unlock(&hba->uic_cmd_mutex); 4318 4319 return ret; 4320 } 4321 4322 /** 4323 * ufshcd_uic_change_pwr_mode - Perform the UIC power mode chage 4324 * using DME_SET primitives. 4325 * @hba: per adapter instance 4326 * @mode: powr mode value 4327 * 4328 * Return: 0 on success, non-zero value on failure. 4329 */ 4330 int ufshcd_uic_change_pwr_mode(struct ufs_hba *hba, u8 mode) 4331 { 4332 struct uic_command uic_cmd = { 4333 .command = UIC_CMD_DME_SET, 4334 .argument1 = UIC_ARG_MIB(PA_PWRMODE), 4335 .argument3 = mode, 4336 }; 4337 int ret; 4338 4339 if (hba->quirks & UFSHCD_QUIRK_BROKEN_PA_RXHSUNTERMCAP) { 4340 ret = ufshcd_dme_set(hba, 4341 UIC_ARG_MIB_SEL(PA_RXHSUNTERMCAP, 0), 1); 4342 if (ret) { 4343 dev_err(hba->dev, "%s: failed to enable PA_RXHSUNTERMCAP ret %d\n", 4344 __func__, ret); 4345 goto out; 4346 } 4347 } 4348 4349 ufshcd_hold(hba); 4350 ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd); 4351 ufshcd_release(hba); 4352 4353 out: 4354 return ret; 4355 } 4356 EXPORT_SYMBOL_GPL(ufshcd_uic_change_pwr_mode); 4357 4358 int ufshcd_link_recovery(struct ufs_hba *hba) 4359 { 4360 int ret; 4361 unsigned long flags; 4362 4363 spin_lock_irqsave(hba->host->host_lock, flags); 4364 hba->ufshcd_state = UFSHCD_STATE_RESET; 4365 ufshcd_set_eh_in_progress(hba); 4366 spin_unlock_irqrestore(hba->host->host_lock, flags); 4367 4368 /* Reset the attached device */ 4369 ufshcd_device_reset(hba); 4370 4371 ret = ufshcd_host_reset_and_restore(hba); 4372 4373 spin_lock_irqsave(hba->host->host_lock, flags); 4374 if (ret) 4375 hba->ufshcd_state = UFSHCD_STATE_ERROR; 4376 ufshcd_clear_eh_in_progress(hba); 4377 spin_unlock_irqrestore(hba->host->host_lock, flags); 4378 4379 if (ret) 4380 dev_err(hba->dev, "%s: link recovery failed, err %d", 4381 __func__, ret); 4382 4383 return ret; 4384 } 4385 EXPORT_SYMBOL_GPL(ufshcd_link_recovery); 4386 4387 int ufshcd_uic_hibern8_enter(struct ufs_hba *hba) 4388 { 4389 struct uic_command uic_cmd = { 4390 .command = UIC_CMD_DME_HIBER_ENTER, 4391 }; 4392 ktime_t start = ktime_get(); 4393 int ret; 4394 4395 ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_ENTER, PRE_CHANGE); 4396 4397 ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd); 4398 trace_ufshcd_profile_hibern8(dev_name(hba->dev), "enter", 4399 ktime_to_us(ktime_sub(ktime_get(), start)), ret); 4400 4401 if (ret) 4402 dev_err(hba->dev, "%s: hibern8 enter failed. ret = %d\n", 4403 __func__, ret); 4404 else 4405 ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_ENTER, 4406 POST_CHANGE); 4407 4408 return ret; 4409 } 4410 EXPORT_SYMBOL_GPL(ufshcd_uic_hibern8_enter); 4411 4412 int ufshcd_uic_hibern8_exit(struct ufs_hba *hba) 4413 { 4414 struct uic_command uic_cmd = { 4415 .command = UIC_CMD_DME_HIBER_EXIT, 4416 }; 4417 int ret; 4418 ktime_t start = ktime_get(); 4419 4420 ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_EXIT, PRE_CHANGE); 4421 4422 ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd); 4423 trace_ufshcd_profile_hibern8(dev_name(hba->dev), "exit", 4424 ktime_to_us(ktime_sub(ktime_get(), start)), ret); 4425 4426 if (ret) { 4427 dev_err(hba->dev, "%s: hibern8 exit failed. ret = %d\n", 4428 __func__, ret); 4429 } else { 4430 ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_EXIT, 4431 POST_CHANGE); 4432 hba->ufs_stats.last_hibern8_exit_tstamp = local_clock(); 4433 hba->ufs_stats.hibern8_exit_cnt++; 4434 } 4435 4436 return ret; 4437 } 4438 EXPORT_SYMBOL_GPL(ufshcd_uic_hibern8_exit); 4439 4440 static void ufshcd_configure_auto_hibern8(struct ufs_hba *hba) 4441 { 4442 if (!ufshcd_is_auto_hibern8_supported(hba)) 4443 return; 4444 4445 ufshcd_writel(hba, hba->ahit, REG_AUTO_HIBERNATE_IDLE_TIMER); 4446 } 4447 4448 void ufshcd_auto_hibern8_update(struct ufs_hba *hba, u32 ahit) 4449 { 4450 const u32 cur_ahit = READ_ONCE(hba->ahit); 4451 4452 if (!ufshcd_is_auto_hibern8_supported(hba) || cur_ahit == ahit) 4453 return; 4454 4455 WRITE_ONCE(hba->ahit, ahit); 4456 if (!pm_runtime_suspended(&hba->ufs_device_wlun->sdev_gendev)) { 4457 ufshcd_rpm_get_sync(hba); 4458 ufshcd_hold(hba); 4459 ufshcd_configure_auto_hibern8(hba); 4460 ufshcd_release(hba); 4461 ufshcd_rpm_put_sync(hba); 4462 } 4463 } 4464 EXPORT_SYMBOL_GPL(ufshcd_auto_hibern8_update); 4465 4466 /** 4467 * ufshcd_init_pwr_info - setting the POR (power on reset) 4468 * values in hba power info 4469 * @hba: per-adapter instance 4470 */ 4471 static void ufshcd_init_pwr_info(struct ufs_hba *hba) 4472 { 4473 hba->pwr_info.gear_rx = UFS_PWM_G1; 4474 hba->pwr_info.gear_tx = UFS_PWM_G1; 4475 hba->pwr_info.lane_rx = UFS_LANE_1; 4476 hba->pwr_info.lane_tx = UFS_LANE_1; 4477 hba->pwr_info.pwr_rx = SLOWAUTO_MODE; 4478 hba->pwr_info.pwr_tx = SLOWAUTO_MODE; 4479 hba->pwr_info.hs_rate = 0; 4480 } 4481 4482 /** 4483 * ufshcd_get_max_pwr_mode - reads the max power mode negotiated with device 4484 * @hba: per-adapter instance 4485 * 4486 * Return: 0 upon success; < 0 upon failure. 4487 */ 4488 static int ufshcd_get_max_pwr_mode(struct ufs_hba *hba) 4489 { 4490 struct ufs_pa_layer_attr *pwr_info = &hba->max_pwr_info.info; 4491 4492 if (hba->max_pwr_info.is_valid) 4493 return 0; 4494 4495 if (hba->quirks & UFSHCD_QUIRK_HIBERN_FASTAUTO) { 4496 pwr_info->pwr_tx = FASTAUTO_MODE; 4497 pwr_info->pwr_rx = FASTAUTO_MODE; 4498 } else { 4499 pwr_info->pwr_tx = FAST_MODE; 4500 pwr_info->pwr_rx = FAST_MODE; 4501 } 4502 pwr_info->hs_rate = PA_HS_MODE_B; 4503 4504 /* Get the connected lane count */ 4505 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDRXDATALANES), 4506 &pwr_info->lane_rx); 4507 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES), 4508 &pwr_info->lane_tx); 4509 4510 if (!pwr_info->lane_rx || !pwr_info->lane_tx) { 4511 dev_err(hba->dev, "%s: invalid connected lanes value. rx=%d, tx=%d\n", 4512 __func__, 4513 pwr_info->lane_rx, 4514 pwr_info->lane_tx); 4515 return -EINVAL; 4516 } 4517 4518 if (pwr_info->lane_rx != pwr_info->lane_tx) { 4519 dev_err(hba->dev, "%s: asymmetric connected lanes. rx=%d, tx=%d\n", 4520 __func__, 4521 pwr_info->lane_rx, 4522 pwr_info->lane_tx); 4523 return -EINVAL; 4524 } 4525 4526 /* 4527 * First, get the maximum gears of HS speed. 4528 * If a zero value, it means there is no HSGEAR capability. 4529 * Then, get the maximum gears of PWM speed. 4530 */ 4531 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_MAXRXHSGEAR), &pwr_info->gear_rx); 4532 if (!pwr_info->gear_rx) { 4533 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_MAXRXPWMGEAR), 4534 &pwr_info->gear_rx); 4535 if (!pwr_info->gear_rx) { 4536 dev_err(hba->dev, "%s: invalid max pwm rx gear read = %d\n", 4537 __func__, pwr_info->gear_rx); 4538 return -EINVAL; 4539 } 4540 pwr_info->pwr_rx = SLOW_MODE; 4541 } 4542 4543 ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_MAXRXHSGEAR), 4544 &pwr_info->gear_tx); 4545 if (!pwr_info->gear_tx) { 4546 ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_MAXRXPWMGEAR), 4547 &pwr_info->gear_tx); 4548 if (!pwr_info->gear_tx) { 4549 dev_err(hba->dev, "%s: invalid max pwm tx gear read = %d\n", 4550 __func__, pwr_info->gear_tx); 4551 return -EINVAL; 4552 } 4553 pwr_info->pwr_tx = SLOW_MODE; 4554 } 4555 4556 hba->max_pwr_info.is_valid = true; 4557 return 0; 4558 } 4559 4560 static int ufshcd_change_power_mode(struct ufs_hba *hba, 4561 struct ufs_pa_layer_attr *pwr_mode) 4562 { 4563 int ret; 4564 4565 /* if already configured to the requested pwr_mode */ 4566 if (!hba->force_pmc && 4567 pwr_mode->gear_rx == hba->pwr_info.gear_rx && 4568 pwr_mode->gear_tx == hba->pwr_info.gear_tx && 4569 pwr_mode->lane_rx == hba->pwr_info.lane_rx && 4570 pwr_mode->lane_tx == hba->pwr_info.lane_tx && 4571 pwr_mode->pwr_rx == hba->pwr_info.pwr_rx && 4572 pwr_mode->pwr_tx == hba->pwr_info.pwr_tx && 4573 pwr_mode->hs_rate == hba->pwr_info.hs_rate) { 4574 dev_dbg(hba->dev, "%s: power already configured\n", __func__); 4575 return 0; 4576 } 4577 4578 /* 4579 * Configure attributes for power mode change with below. 4580 * - PA_RXGEAR, PA_ACTIVERXDATALANES, PA_RXTERMINATION, 4581 * - PA_TXGEAR, PA_ACTIVETXDATALANES, PA_TXTERMINATION, 4582 * - PA_HSSERIES 4583 */ 4584 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXGEAR), pwr_mode->gear_rx); 4585 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVERXDATALANES), 4586 pwr_mode->lane_rx); 4587 if (pwr_mode->pwr_rx == FASTAUTO_MODE || 4588 pwr_mode->pwr_rx == FAST_MODE) 4589 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), true); 4590 else 4591 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), false); 4592 4593 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXGEAR), pwr_mode->gear_tx); 4594 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVETXDATALANES), 4595 pwr_mode->lane_tx); 4596 if (pwr_mode->pwr_tx == FASTAUTO_MODE || 4597 pwr_mode->pwr_tx == FAST_MODE) 4598 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), true); 4599 else 4600 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), false); 4601 4602 if (pwr_mode->pwr_rx == FASTAUTO_MODE || 4603 pwr_mode->pwr_tx == FASTAUTO_MODE || 4604 pwr_mode->pwr_rx == FAST_MODE || 4605 pwr_mode->pwr_tx == FAST_MODE) 4606 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_HSSERIES), 4607 pwr_mode->hs_rate); 4608 4609 if (!(hba->quirks & UFSHCD_QUIRK_SKIP_DEF_UNIPRO_TIMEOUT_SETTING)) { 4610 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA0), 4611 DL_FC0ProtectionTimeOutVal_Default); 4612 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA1), 4613 DL_TC0ReplayTimeOutVal_Default); 4614 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA2), 4615 DL_AFC0ReqTimeOutVal_Default); 4616 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA3), 4617 DL_FC1ProtectionTimeOutVal_Default); 4618 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA4), 4619 DL_TC1ReplayTimeOutVal_Default); 4620 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA5), 4621 DL_AFC1ReqTimeOutVal_Default); 4622 4623 ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalFC0ProtectionTimeOutVal), 4624 DL_FC0ProtectionTimeOutVal_Default); 4625 ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalTC0ReplayTimeOutVal), 4626 DL_TC0ReplayTimeOutVal_Default); 4627 ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalAFC0ReqTimeOutVal), 4628 DL_AFC0ReqTimeOutVal_Default); 4629 } 4630 4631 ret = ufshcd_uic_change_pwr_mode(hba, pwr_mode->pwr_rx << 4 4632 | pwr_mode->pwr_tx); 4633 4634 if (ret) { 4635 dev_err(hba->dev, 4636 "%s: power mode change failed %d\n", __func__, ret); 4637 } else { 4638 ufshcd_vops_pwr_change_notify(hba, POST_CHANGE, NULL, 4639 pwr_mode); 4640 4641 memcpy(&hba->pwr_info, pwr_mode, 4642 sizeof(struct ufs_pa_layer_attr)); 4643 } 4644 4645 return ret; 4646 } 4647 4648 /** 4649 * ufshcd_config_pwr_mode - configure a new power mode 4650 * @hba: per-adapter instance 4651 * @desired_pwr_mode: desired power configuration 4652 * 4653 * Return: 0 upon success; < 0 upon failure. 4654 */ 4655 int ufshcd_config_pwr_mode(struct ufs_hba *hba, 4656 struct ufs_pa_layer_attr *desired_pwr_mode) 4657 { 4658 struct ufs_pa_layer_attr final_params = { 0 }; 4659 int ret; 4660 4661 ret = ufshcd_vops_pwr_change_notify(hba, PRE_CHANGE, 4662 desired_pwr_mode, &final_params); 4663 4664 if (ret) 4665 memcpy(&final_params, desired_pwr_mode, sizeof(final_params)); 4666 4667 ret = ufshcd_change_power_mode(hba, &final_params); 4668 4669 return ret; 4670 } 4671 EXPORT_SYMBOL_GPL(ufshcd_config_pwr_mode); 4672 4673 /** 4674 * ufshcd_complete_dev_init() - checks device readiness 4675 * @hba: per-adapter instance 4676 * 4677 * Set fDeviceInit flag and poll until device toggles it. 4678 * 4679 * Return: 0 upon success; < 0 upon failure. 4680 */ 4681 static int ufshcd_complete_dev_init(struct ufs_hba *hba) 4682 { 4683 int err; 4684 bool flag_res = true; 4685 ktime_t timeout; 4686 4687 err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG, 4688 QUERY_FLAG_IDN_FDEVICEINIT, 0, NULL); 4689 if (err) { 4690 dev_err(hba->dev, 4691 "%s: setting fDeviceInit flag failed with error %d\n", 4692 __func__, err); 4693 goto out; 4694 } 4695 4696 /* Poll fDeviceInit flag to be cleared */ 4697 timeout = ktime_add_ms(ktime_get(), FDEVICEINIT_COMPL_TIMEOUT); 4698 do { 4699 err = ufshcd_query_flag(hba, UPIU_QUERY_OPCODE_READ_FLAG, 4700 QUERY_FLAG_IDN_FDEVICEINIT, 0, &flag_res); 4701 if (!flag_res) 4702 break; 4703 usleep_range(500, 1000); 4704 } while (ktime_before(ktime_get(), timeout)); 4705 4706 if (err) { 4707 dev_err(hba->dev, 4708 "%s: reading fDeviceInit flag failed with error %d\n", 4709 __func__, err); 4710 } else if (flag_res) { 4711 dev_err(hba->dev, 4712 "%s: fDeviceInit was not cleared by the device\n", 4713 __func__); 4714 err = -EBUSY; 4715 } 4716 out: 4717 return err; 4718 } 4719 4720 /** 4721 * ufshcd_make_hba_operational - Make UFS controller operational 4722 * @hba: per adapter instance 4723 * 4724 * To bring UFS host controller to operational state, 4725 * 1. Enable required interrupts 4726 * 2. Configure interrupt aggregation 4727 * 3. Program UTRL and UTMRL base address 4728 * 4. Configure run-stop-registers 4729 * 4730 * Return: 0 on success, non-zero value on failure. 4731 */ 4732 int ufshcd_make_hba_operational(struct ufs_hba *hba) 4733 { 4734 int err = 0; 4735 u32 reg; 4736 4737 /* Enable required interrupts */ 4738 ufshcd_enable_intr(hba, UFSHCD_ENABLE_INTRS); 4739 4740 /* Configure interrupt aggregation */ 4741 if (ufshcd_is_intr_aggr_allowed(hba)) 4742 ufshcd_config_intr_aggr(hba, hba->nutrs - 1, INT_AGGR_DEF_TO); 4743 else 4744 ufshcd_disable_intr_aggr(hba); 4745 4746 /* Configure UTRL and UTMRL base address registers */ 4747 ufshcd_writel(hba, lower_32_bits(hba->utrdl_dma_addr), 4748 REG_UTP_TRANSFER_REQ_LIST_BASE_L); 4749 ufshcd_writel(hba, upper_32_bits(hba->utrdl_dma_addr), 4750 REG_UTP_TRANSFER_REQ_LIST_BASE_H); 4751 ufshcd_writel(hba, lower_32_bits(hba->utmrdl_dma_addr), 4752 REG_UTP_TASK_REQ_LIST_BASE_L); 4753 ufshcd_writel(hba, upper_32_bits(hba->utmrdl_dma_addr), 4754 REG_UTP_TASK_REQ_LIST_BASE_H); 4755 4756 /* 4757 * UCRDY, UTMRLDY and UTRLRDY bits must be 1 4758 */ 4759 reg = ufshcd_readl(hba, REG_CONTROLLER_STATUS); 4760 if (!(ufshcd_get_lists_status(reg))) { 4761 ufshcd_enable_run_stop_reg(hba); 4762 } else { 4763 dev_err(hba->dev, 4764 "Host controller not ready to process requests"); 4765 err = -EIO; 4766 } 4767 4768 return err; 4769 } 4770 EXPORT_SYMBOL_GPL(ufshcd_make_hba_operational); 4771 4772 /** 4773 * ufshcd_hba_stop - Send controller to reset state 4774 * @hba: per adapter instance 4775 */ 4776 void ufshcd_hba_stop(struct ufs_hba *hba) 4777 { 4778 unsigned long flags; 4779 int err; 4780 4781 /* 4782 * Obtain the host lock to prevent that the controller is disabled 4783 * while the UFS interrupt handler is active on another CPU. 4784 */ 4785 spin_lock_irqsave(hba->host->host_lock, flags); 4786 ufshcd_writel(hba, CONTROLLER_DISABLE, REG_CONTROLLER_ENABLE); 4787 spin_unlock_irqrestore(hba->host->host_lock, flags); 4788 4789 err = ufshcd_wait_for_register(hba, REG_CONTROLLER_ENABLE, 4790 CONTROLLER_ENABLE, CONTROLLER_DISABLE, 4791 10, 1); 4792 if (err) 4793 dev_err(hba->dev, "%s: Controller disable failed\n", __func__); 4794 } 4795 EXPORT_SYMBOL_GPL(ufshcd_hba_stop); 4796 4797 /** 4798 * ufshcd_hba_execute_hce - initialize the controller 4799 * @hba: per adapter instance 4800 * 4801 * The controller resets itself and controller firmware initialization 4802 * sequence kicks off. When controller is ready it will set 4803 * the Host Controller Enable bit to 1. 4804 * 4805 * Return: 0 on success, non-zero value on failure. 4806 */ 4807 static int ufshcd_hba_execute_hce(struct ufs_hba *hba) 4808 { 4809 int retry; 4810 4811 for (retry = 3; retry > 0; retry--) { 4812 if (ufshcd_is_hba_active(hba)) 4813 /* change controller state to "reset state" */ 4814 ufshcd_hba_stop(hba); 4815 4816 /* UniPro link is disabled at this point */ 4817 ufshcd_set_link_off(hba); 4818 4819 ufshcd_vops_hce_enable_notify(hba, PRE_CHANGE); 4820 4821 /* start controller initialization sequence */ 4822 ufshcd_hba_start(hba); 4823 4824 /* 4825 * To initialize a UFS host controller HCE bit must be set to 1. 4826 * During initialization the HCE bit value changes from 1->0->1. 4827 * When the host controller completes initialization sequence 4828 * it sets the value of HCE bit to 1. The same HCE bit is read back 4829 * to check if the controller has completed initialization sequence. 4830 * So without this delay the value HCE = 1, set in the previous 4831 * instruction might be read back. 4832 * This delay can be changed based on the controller. 4833 */ 4834 ufshcd_delay_us(hba->vps->hba_enable_delay_us, 100); 4835 4836 /* wait for the host controller to complete initialization */ 4837 if (!ufshcd_wait_for_register(hba, REG_CONTROLLER_ENABLE, CONTROLLER_ENABLE, 4838 CONTROLLER_ENABLE, 1000, 50)) 4839 break; 4840 4841 dev_err(hba->dev, "Enabling the controller failed\n"); 4842 } 4843 4844 if (!retry) 4845 return -EIO; 4846 4847 /* enable UIC related interrupts */ 4848 ufshcd_enable_intr(hba, UFSHCD_UIC_MASK); 4849 4850 ufshcd_vops_hce_enable_notify(hba, POST_CHANGE); 4851 4852 return 0; 4853 } 4854 4855 int ufshcd_hba_enable(struct ufs_hba *hba) 4856 { 4857 int ret; 4858 4859 if (hba->quirks & UFSHCI_QUIRK_BROKEN_HCE) { 4860 ufshcd_set_link_off(hba); 4861 ufshcd_vops_hce_enable_notify(hba, PRE_CHANGE); 4862 4863 /* enable UIC related interrupts */ 4864 ufshcd_enable_intr(hba, UFSHCD_UIC_MASK); 4865 ret = ufshcd_dme_reset(hba); 4866 if (ret) { 4867 dev_err(hba->dev, "DME_RESET failed\n"); 4868 return ret; 4869 } 4870 4871 ret = ufshcd_dme_enable(hba); 4872 if (ret) { 4873 dev_err(hba->dev, "Enabling DME failed\n"); 4874 return ret; 4875 } 4876 4877 ufshcd_vops_hce_enable_notify(hba, POST_CHANGE); 4878 } else { 4879 ret = ufshcd_hba_execute_hce(hba); 4880 } 4881 4882 return ret; 4883 } 4884 EXPORT_SYMBOL_GPL(ufshcd_hba_enable); 4885 4886 static int ufshcd_disable_tx_lcc(struct ufs_hba *hba, bool peer) 4887 { 4888 int tx_lanes = 0, i, err = 0; 4889 4890 if (!peer) 4891 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES), 4892 &tx_lanes); 4893 else 4894 ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES), 4895 &tx_lanes); 4896 for (i = 0; i < tx_lanes; i++) { 4897 if (!peer) 4898 err = ufshcd_dme_set(hba, 4899 UIC_ARG_MIB_SEL(TX_LCC_ENABLE, 4900 UIC_ARG_MPHY_TX_GEN_SEL_INDEX(i)), 4901 0); 4902 else 4903 err = ufshcd_dme_peer_set(hba, 4904 UIC_ARG_MIB_SEL(TX_LCC_ENABLE, 4905 UIC_ARG_MPHY_TX_GEN_SEL_INDEX(i)), 4906 0); 4907 if (err) { 4908 dev_err(hba->dev, "%s: TX LCC Disable failed, peer = %d, lane = %d, err = %d", 4909 __func__, peer, i, err); 4910 break; 4911 } 4912 } 4913 4914 return err; 4915 } 4916 4917 static inline int ufshcd_disable_device_tx_lcc(struct ufs_hba *hba) 4918 { 4919 return ufshcd_disable_tx_lcc(hba, true); 4920 } 4921 4922 void ufshcd_update_evt_hist(struct ufs_hba *hba, u32 id, u32 val) 4923 { 4924 struct ufs_event_hist *e; 4925 4926 if (id >= UFS_EVT_CNT) 4927 return; 4928 4929 e = &hba->ufs_stats.event[id]; 4930 e->val[e->pos] = val; 4931 e->tstamp[e->pos] = local_clock(); 4932 e->cnt += 1; 4933 e->pos = (e->pos + 1) % UFS_EVENT_HIST_LENGTH; 4934 4935 ufshcd_vops_event_notify(hba, id, &val); 4936 } 4937 EXPORT_SYMBOL_GPL(ufshcd_update_evt_hist); 4938 4939 /** 4940 * ufshcd_link_startup - Initialize unipro link startup 4941 * @hba: per adapter instance 4942 * 4943 * Return: 0 for success, non-zero in case of failure. 4944 */ 4945 static int ufshcd_link_startup(struct ufs_hba *hba) 4946 { 4947 int ret; 4948 int retries = DME_LINKSTARTUP_RETRIES; 4949 bool link_startup_again = false; 4950 4951 /* 4952 * If UFS device isn't active then we will have to issue link startup 4953 * 2 times to make sure the device state move to active. 4954 */ 4955 if (!ufshcd_is_ufs_dev_active(hba)) 4956 link_startup_again = true; 4957 4958 link_startup: 4959 do { 4960 ufshcd_vops_link_startup_notify(hba, PRE_CHANGE); 4961 4962 ret = ufshcd_dme_link_startup(hba); 4963 4964 /* check if device is detected by inter-connect layer */ 4965 if (!ret && !ufshcd_is_device_present(hba)) { 4966 ufshcd_update_evt_hist(hba, 4967 UFS_EVT_LINK_STARTUP_FAIL, 4968 0); 4969 dev_err(hba->dev, "%s: Device not present\n", __func__); 4970 ret = -ENXIO; 4971 goto out; 4972 } 4973 4974 /* 4975 * DME link lost indication is only received when link is up, 4976 * but we can't be sure if the link is up until link startup 4977 * succeeds. So reset the local Uni-Pro and try again. 4978 */ 4979 if (ret && retries && ufshcd_hba_enable(hba)) { 4980 ufshcd_update_evt_hist(hba, 4981 UFS_EVT_LINK_STARTUP_FAIL, 4982 (u32)ret); 4983 goto out; 4984 } 4985 } while (ret && retries--); 4986 4987 if (ret) { 4988 /* failed to get the link up... retire */ 4989 ufshcd_update_evt_hist(hba, 4990 UFS_EVT_LINK_STARTUP_FAIL, 4991 (u32)ret); 4992 goto out; 4993 } 4994 4995 if (link_startup_again) { 4996 link_startup_again = false; 4997 retries = DME_LINKSTARTUP_RETRIES; 4998 goto link_startup; 4999 } 5000 5001 /* Mark that link is up in PWM-G1, 1-lane, SLOW-AUTO mode */ 5002 ufshcd_init_pwr_info(hba); 5003 ufshcd_print_pwr_info(hba); 5004 5005 if (hba->quirks & UFSHCD_QUIRK_BROKEN_LCC) { 5006 ret = ufshcd_disable_device_tx_lcc(hba); 5007 if (ret) 5008 goto out; 5009 } 5010 5011 /* Include any host controller configuration via UIC commands */ 5012 ret = ufshcd_vops_link_startup_notify(hba, POST_CHANGE); 5013 if (ret) 5014 goto out; 5015 5016 /* Clear UECPA once due to LINERESET has happened during LINK_STARTUP */ 5017 ufshcd_readl(hba, REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER); 5018 ret = ufshcd_make_hba_operational(hba); 5019 out: 5020 if (ret) { 5021 dev_err(hba->dev, "link startup failed %d\n", ret); 5022 ufshcd_print_host_state(hba); 5023 ufshcd_print_pwr_info(hba); 5024 ufshcd_print_evt_hist(hba); 5025 } 5026 return ret; 5027 } 5028 5029 /** 5030 * ufshcd_verify_dev_init() - Verify device initialization 5031 * @hba: per-adapter instance 5032 * 5033 * Send NOP OUT UPIU and wait for NOP IN response to check whether the 5034 * device Transport Protocol (UTP) layer is ready after a reset. 5035 * If the UTP layer at the device side is not initialized, it may 5036 * not respond with NOP IN UPIU within timeout of %NOP_OUT_TIMEOUT 5037 * and we retry sending NOP OUT for %NOP_OUT_RETRIES iterations. 5038 * 5039 * Return: 0 upon success; < 0 upon failure. 5040 */ 5041 static int ufshcd_verify_dev_init(struct ufs_hba *hba) 5042 { 5043 int err = 0; 5044 int retries; 5045 5046 ufshcd_dev_man_lock(hba); 5047 5048 for (retries = NOP_OUT_RETRIES; retries > 0; retries--) { 5049 err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_NOP, 5050 hba->nop_out_timeout); 5051 5052 if (!err || err == -ETIMEDOUT) 5053 break; 5054 5055 dev_dbg(hba->dev, "%s: error %d retrying\n", __func__, err); 5056 } 5057 5058 ufshcd_dev_man_unlock(hba); 5059 5060 if (err) 5061 dev_err(hba->dev, "%s: NOP OUT failed %d\n", __func__, err); 5062 return err; 5063 } 5064 5065 /** 5066 * ufshcd_setup_links - associate link b/w device wlun and other luns 5067 * @sdev: pointer to SCSI device 5068 * @hba: pointer to ufs hba 5069 */ 5070 static void ufshcd_setup_links(struct ufs_hba *hba, struct scsi_device *sdev) 5071 { 5072 struct device_link *link; 5073 5074 /* 5075 * Device wlun is the supplier & rest of the luns are consumers. 5076 * This ensures that device wlun suspends after all other luns. 5077 */ 5078 if (hba->ufs_device_wlun) { 5079 link = device_link_add(&sdev->sdev_gendev, 5080 &hba->ufs_device_wlun->sdev_gendev, 5081 DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE); 5082 if (!link) { 5083 dev_err(&sdev->sdev_gendev, "Failed establishing link - %s\n", 5084 dev_name(&hba->ufs_device_wlun->sdev_gendev)); 5085 return; 5086 } 5087 hba->luns_avail--; 5088 /* Ignore REPORT_LUN wlun probing */ 5089 if (hba->luns_avail == 1) { 5090 ufshcd_rpm_put(hba); 5091 return; 5092 } 5093 } else { 5094 /* 5095 * Device wlun is probed. The assumption is that WLUNs are 5096 * scanned before other LUNs. 5097 */ 5098 hba->luns_avail--; 5099 } 5100 } 5101 5102 /** 5103 * ufshcd_lu_init - Initialize the relevant parameters of the LU 5104 * @hba: per-adapter instance 5105 * @sdev: pointer to SCSI device 5106 */ 5107 static void ufshcd_lu_init(struct ufs_hba *hba, struct scsi_device *sdev) 5108 { 5109 int len = QUERY_DESC_MAX_SIZE; 5110 u8 lun = ufshcd_scsi_to_upiu_lun(sdev->lun); 5111 u8 lun_qdepth = hba->nutrs; 5112 u8 *desc_buf; 5113 int ret; 5114 5115 desc_buf = kzalloc(len, GFP_KERNEL); 5116 if (!desc_buf) 5117 goto set_qdepth; 5118 5119 ret = ufshcd_read_unit_desc_param(hba, lun, 0, desc_buf, len); 5120 if (ret < 0) { 5121 if (ret == -EOPNOTSUPP) 5122 /* If LU doesn't support unit descriptor, its queue depth is set to 1 */ 5123 lun_qdepth = 1; 5124 kfree(desc_buf); 5125 goto set_qdepth; 5126 } 5127 5128 if (desc_buf[UNIT_DESC_PARAM_LU_Q_DEPTH]) { 5129 /* 5130 * In per-LU queueing architecture, bLUQueueDepth will not be 0, then we will 5131 * use the smaller between UFSHCI CAP.NUTRS and UFS LU bLUQueueDepth 5132 */ 5133 lun_qdepth = min_t(int, desc_buf[UNIT_DESC_PARAM_LU_Q_DEPTH], hba->nutrs); 5134 } 5135 /* 5136 * According to UFS device specification, the write protection mode is only supported by 5137 * normal LU, not supported by WLUN. 5138 */ 5139 if (hba->dev_info.f_power_on_wp_en && lun < hba->dev_info.max_lu_supported && 5140 !hba->dev_info.is_lu_power_on_wp && 5141 desc_buf[UNIT_DESC_PARAM_LU_WR_PROTECT] == UFS_LU_POWER_ON_WP) 5142 hba->dev_info.is_lu_power_on_wp = true; 5143 5144 /* In case of RPMB LU, check if advanced RPMB mode is enabled */ 5145 if (desc_buf[UNIT_DESC_PARAM_UNIT_INDEX] == UFS_UPIU_RPMB_WLUN && 5146 desc_buf[RPMB_UNIT_DESC_PARAM_REGION_EN] & BIT(4)) 5147 hba->dev_info.b_advanced_rpmb_en = true; 5148 5149 5150 kfree(desc_buf); 5151 set_qdepth: 5152 /* 5153 * For WLUNs that don't support unit descriptor, queue depth is set to 1. For LUs whose 5154 * bLUQueueDepth == 0, the queue depth is set to a maximum value that host can queue. 5155 */ 5156 dev_dbg(hba->dev, "Set LU %x queue depth %d\n", lun, lun_qdepth); 5157 scsi_change_queue_depth(sdev, lun_qdepth); 5158 } 5159 5160 /** 5161 * ufshcd_slave_alloc - handle initial SCSI device configurations 5162 * @sdev: pointer to SCSI device 5163 * 5164 * Return: success. 5165 */ 5166 static int ufshcd_slave_alloc(struct scsi_device *sdev) 5167 { 5168 struct ufs_hba *hba; 5169 5170 hba = shost_priv(sdev->host); 5171 5172 /* Mode sense(6) is not supported by UFS, so use Mode sense(10) */ 5173 sdev->use_10_for_ms = 1; 5174 5175 /* DBD field should be set to 1 in mode sense(10) */ 5176 sdev->set_dbd_for_ms = 1; 5177 5178 /* allow SCSI layer to restart the device in case of errors */ 5179 sdev->allow_restart = 1; 5180 5181 /* REPORT SUPPORTED OPERATION CODES is not supported */ 5182 sdev->no_report_opcodes = 1; 5183 5184 /* WRITE_SAME command is not supported */ 5185 sdev->no_write_same = 1; 5186 5187 ufshcd_lu_init(hba, sdev); 5188 5189 ufshcd_setup_links(hba, sdev); 5190 5191 return 0; 5192 } 5193 5194 /** 5195 * ufshcd_change_queue_depth - change queue depth 5196 * @sdev: pointer to SCSI device 5197 * @depth: required depth to set 5198 * 5199 * Change queue depth and make sure the max. limits are not crossed. 5200 * 5201 * Return: new queue depth. 5202 */ 5203 static int ufshcd_change_queue_depth(struct scsi_device *sdev, int depth) 5204 { 5205 return scsi_change_queue_depth(sdev, min(depth, sdev->host->can_queue)); 5206 } 5207 5208 /** 5209 * ufshcd_device_configure - adjust SCSI device configurations 5210 * @sdev: pointer to SCSI device 5211 * @lim: queue limits 5212 * 5213 * Return: 0 (success). 5214 */ 5215 static int ufshcd_device_configure(struct scsi_device *sdev, 5216 struct queue_limits *lim) 5217 { 5218 struct ufs_hba *hba = shost_priv(sdev->host); 5219 struct request_queue *q = sdev->request_queue; 5220 5221 lim->dma_pad_mask = PRDT_DATA_BYTE_COUNT_PAD - 1; 5222 5223 /* 5224 * Block runtime-pm until all consumers are added. 5225 * Refer ufshcd_setup_links(). 5226 */ 5227 if (is_device_wlun(sdev)) 5228 pm_runtime_get_noresume(&sdev->sdev_gendev); 5229 else if (ufshcd_is_rpm_autosuspend_allowed(hba)) 5230 sdev->rpm_autosuspend = 1; 5231 /* 5232 * Do not print messages during runtime PM to avoid never-ending cycles 5233 * of messages written back to storage by user space causing runtime 5234 * resume, causing more messages and so on. 5235 */ 5236 sdev->silence_suspend = 1; 5237 5238 ufshcd_crypto_register(hba, q); 5239 5240 return 0; 5241 } 5242 5243 /** 5244 * ufshcd_slave_destroy - remove SCSI device configurations 5245 * @sdev: pointer to SCSI device 5246 */ 5247 static void ufshcd_slave_destroy(struct scsi_device *sdev) 5248 { 5249 struct ufs_hba *hba; 5250 unsigned long flags; 5251 5252 hba = shost_priv(sdev->host); 5253 5254 /* Drop the reference as it won't be needed anymore */ 5255 if (ufshcd_scsi_to_upiu_lun(sdev->lun) == UFS_UPIU_UFS_DEVICE_WLUN) { 5256 spin_lock_irqsave(hba->host->host_lock, flags); 5257 hba->ufs_device_wlun = NULL; 5258 spin_unlock_irqrestore(hba->host->host_lock, flags); 5259 } else if (hba->ufs_device_wlun) { 5260 struct device *supplier = NULL; 5261 5262 /* Ensure UFS Device WLUN exists and does not disappear */ 5263 spin_lock_irqsave(hba->host->host_lock, flags); 5264 if (hba->ufs_device_wlun) { 5265 supplier = &hba->ufs_device_wlun->sdev_gendev; 5266 get_device(supplier); 5267 } 5268 spin_unlock_irqrestore(hba->host->host_lock, flags); 5269 5270 if (supplier) { 5271 /* 5272 * If a LUN fails to probe (e.g. absent BOOT WLUN), the 5273 * device will not have been registered but can still 5274 * have a device link holding a reference to the device. 5275 */ 5276 device_link_remove(&sdev->sdev_gendev, supplier); 5277 put_device(supplier); 5278 } 5279 } 5280 } 5281 5282 /** 5283 * ufshcd_scsi_cmd_status - Update SCSI command result based on SCSI status 5284 * @lrbp: pointer to local reference block of completed command 5285 * @scsi_status: SCSI command status 5286 * 5287 * Return: value base on SCSI command status. 5288 */ 5289 static inline int 5290 ufshcd_scsi_cmd_status(struct ufshcd_lrb *lrbp, int scsi_status) 5291 { 5292 int result = 0; 5293 5294 switch (scsi_status) { 5295 case SAM_STAT_CHECK_CONDITION: 5296 ufshcd_copy_sense_data(lrbp); 5297 fallthrough; 5298 case SAM_STAT_GOOD: 5299 result |= DID_OK << 16 | scsi_status; 5300 break; 5301 case SAM_STAT_TASK_SET_FULL: 5302 case SAM_STAT_BUSY: 5303 case SAM_STAT_TASK_ABORTED: 5304 ufshcd_copy_sense_data(lrbp); 5305 result |= scsi_status; 5306 break; 5307 default: 5308 result |= DID_ERROR << 16; 5309 break; 5310 } /* end of switch */ 5311 5312 return result; 5313 } 5314 5315 /** 5316 * ufshcd_transfer_rsp_status - Get overall status of the response 5317 * @hba: per adapter instance 5318 * @lrbp: pointer to local reference block of completed command 5319 * @cqe: pointer to the completion queue entry 5320 * 5321 * Return: result of the command to notify SCSI midlayer. 5322 */ 5323 static inline int 5324 ufshcd_transfer_rsp_status(struct ufs_hba *hba, struct ufshcd_lrb *lrbp, 5325 struct cq_entry *cqe) 5326 { 5327 int result = 0; 5328 int scsi_status; 5329 enum utp_ocs ocs; 5330 u8 upiu_flags; 5331 u32 resid; 5332 5333 upiu_flags = lrbp->ucd_rsp_ptr->header.flags; 5334 resid = be32_to_cpu(lrbp->ucd_rsp_ptr->sr.residual_transfer_count); 5335 /* 5336 * Test !overflow instead of underflow to support UFS devices that do 5337 * not set either flag. 5338 */ 5339 if (resid && !(upiu_flags & UPIU_RSP_FLAG_OVERFLOW)) 5340 scsi_set_resid(lrbp->cmd, resid); 5341 5342 /* overall command status of utrd */ 5343 ocs = ufshcd_get_tr_ocs(lrbp, cqe); 5344 5345 if (hba->quirks & UFSHCD_QUIRK_BROKEN_OCS_FATAL_ERROR) { 5346 if (lrbp->ucd_rsp_ptr->header.response || 5347 lrbp->ucd_rsp_ptr->header.status) 5348 ocs = OCS_SUCCESS; 5349 } 5350 5351 switch (ocs) { 5352 case OCS_SUCCESS: 5353 hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0); 5354 switch (ufshcd_get_req_rsp(lrbp->ucd_rsp_ptr)) { 5355 case UPIU_TRANSACTION_RESPONSE: 5356 /* 5357 * get the result based on SCSI status response 5358 * to notify the SCSI midlayer of the command status 5359 */ 5360 scsi_status = lrbp->ucd_rsp_ptr->header.status; 5361 result = ufshcd_scsi_cmd_status(lrbp, scsi_status); 5362 5363 /* 5364 * Currently we are only supporting BKOPs exception 5365 * events hence we can ignore BKOPs exception event 5366 * during power management callbacks. BKOPs exception 5367 * event is not expected to be raised in runtime suspend 5368 * callback as it allows the urgent bkops. 5369 * During system suspend, we are anyway forcefully 5370 * disabling the bkops and if urgent bkops is needed 5371 * it will be enabled on system resume. Long term 5372 * solution could be to abort the system suspend if 5373 * UFS device needs urgent BKOPs. 5374 */ 5375 if (!hba->pm_op_in_progress && 5376 !ufshcd_eh_in_progress(hba) && 5377 ufshcd_is_exception_event(lrbp->ucd_rsp_ptr)) 5378 /* Flushed in suspend */ 5379 schedule_work(&hba->eeh_work); 5380 break; 5381 case UPIU_TRANSACTION_REJECT_UPIU: 5382 /* TODO: handle Reject UPIU Response */ 5383 result = DID_ERROR << 16; 5384 dev_err(hba->dev, 5385 "Reject UPIU not fully implemented\n"); 5386 break; 5387 default: 5388 dev_err(hba->dev, 5389 "Unexpected request response code = %x\n", 5390 result); 5391 result = DID_ERROR << 16; 5392 break; 5393 } 5394 break; 5395 case OCS_ABORTED: 5396 result |= DID_ABORT << 16; 5397 break; 5398 case OCS_INVALID_COMMAND_STATUS: 5399 result |= DID_REQUEUE << 16; 5400 break; 5401 case OCS_INVALID_CMD_TABLE_ATTR: 5402 case OCS_INVALID_PRDT_ATTR: 5403 case OCS_MISMATCH_DATA_BUF_SIZE: 5404 case OCS_MISMATCH_RESP_UPIU_SIZE: 5405 case OCS_PEER_COMM_FAILURE: 5406 case OCS_FATAL_ERROR: 5407 case OCS_DEVICE_FATAL_ERROR: 5408 case OCS_INVALID_CRYPTO_CONFIG: 5409 case OCS_GENERAL_CRYPTO_ERROR: 5410 default: 5411 result |= DID_ERROR << 16; 5412 dev_err(hba->dev, 5413 "OCS error from controller = %x for tag %d\n", 5414 ocs, lrbp->task_tag); 5415 ufshcd_print_evt_hist(hba); 5416 ufshcd_print_host_state(hba); 5417 break; 5418 } /* end of switch */ 5419 5420 if ((host_byte(result) != DID_OK) && 5421 (host_byte(result) != DID_REQUEUE) && !hba->silence_err_logs) 5422 ufshcd_print_tr(hba, lrbp->task_tag, true); 5423 return result; 5424 } 5425 5426 static bool ufshcd_is_auto_hibern8_error(struct ufs_hba *hba, 5427 u32 intr_mask) 5428 { 5429 if (!ufshcd_is_auto_hibern8_supported(hba) || 5430 !ufshcd_is_auto_hibern8_enabled(hba)) 5431 return false; 5432 5433 if (!(intr_mask & UFSHCD_UIC_HIBERN8_MASK)) 5434 return false; 5435 5436 if (hba->active_uic_cmd && 5437 (hba->active_uic_cmd->command == UIC_CMD_DME_HIBER_ENTER || 5438 hba->active_uic_cmd->command == UIC_CMD_DME_HIBER_EXIT)) 5439 return false; 5440 5441 return true; 5442 } 5443 5444 /** 5445 * ufshcd_uic_cmd_compl - handle completion of uic command 5446 * @hba: per adapter instance 5447 * @intr_status: interrupt status generated by the controller 5448 * 5449 * Return: 5450 * IRQ_HANDLED - If interrupt is valid 5451 * IRQ_NONE - If invalid interrupt 5452 */ 5453 static irqreturn_t ufshcd_uic_cmd_compl(struct ufs_hba *hba, u32 intr_status) 5454 { 5455 irqreturn_t retval = IRQ_NONE; 5456 struct uic_command *cmd; 5457 5458 spin_lock(hba->host->host_lock); 5459 cmd = hba->active_uic_cmd; 5460 if (WARN_ON_ONCE(!cmd)) 5461 goto unlock; 5462 5463 if (ufshcd_is_auto_hibern8_error(hba, intr_status)) 5464 hba->errors |= (UFSHCD_UIC_HIBERN8_MASK & intr_status); 5465 5466 if (intr_status & UIC_COMMAND_COMPL) { 5467 cmd->argument2 |= ufshcd_get_uic_cmd_result(hba); 5468 cmd->argument3 = ufshcd_get_dme_attr_val(hba); 5469 if (!hba->uic_async_done) 5470 cmd->cmd_active = 0; 5471 complete(&cmd->done); 5472 retval = IRQ_HANDLED; 5473 } 5474 5475 if (intr_status & UFSHCD_UIC_PWR_MASK && hba->uic_async_done) { 5476 cmd->cmd_active = 0; 5477 complete(hba->uic_async_done); 5478 retval = IRQ_HANDLED; 5479 } 5480 5481 if (retval == IRQ_HANDLED) 5482 ufshcd_add_uic_command_trace(hba, cmd, UFS_CMD_COMP); 5483 5484 unlock: 5485 spin_unlock(hba->host->host_lock); 5486 5487 return retval; 5488 } 5489 5490 /* Release the resources allocated for processing a SCSI command. */ 5491 void ufshcd_release_scsi_cmd(struct ufs_hba *hba, 5492 struct ufshcd_lrb *lrbp) 5493 { 5494 struct scsi_cmnd *cmd = lrbp->cmd; 5495 5496 scsi_dma_unmap(cmd); 5497 ufshcd_crypto_clear_prdt(hba, lrbp); 5498 ufshcd_release(hba); 5499 ufshcd_clk_scaling_update_busy(hba); 5500 } 5501 5502 /** 5503 * ufshcd_compl_one_cqe - handle a completion queue entry 5504 * @hba: per adapter instance 5505 * @task_tag: the task tag of the request to be completed 5506 * @cqe: pointer to the completion queue entry 5507 */ 5508 void ufshcd_compl_one_cqe(struct ufs_hba *hba, int task_tag, 5509 struct cq_entry *cqe) 5510 { 5511 struct ufshcd_lrb *lrbp; 5512 struct scsi_cmnd *cmd; 5513 enum utp_ocs ocs; 5514 5515 lrbp = &hba->lrb[task_tag]; 5516 lrbp->compl_time_stamp = ktime_get(); 5517 cmd = lrbp->cmd; 5518 if (cmd) { 5519 if (unlikely(ufshcd_should_inform_monitor(hba, lrbp))) 5520 ufshcd_update_monitor(hba, lrbp); 5521 ufshcd_add_command_trace(hba, task_tag, UFS_CMD_COMP); 5522 cmd->result = ufshcd_transfer_rsp_status(hba, lrbp, cqe); 5523 ufshcd_release_scsi_cmd(hba, lrbp); 5524 /* Do not touch lrbp after scsi done */ 5525 scsi_done(cmd); 5526 } else if (hba->dev_cmd.complete) { 5527 if (cqe) { 5528 ocs = le32_to_cpu(cqe->status) & MASK_OCS; 5529 lrbp->utr_descriptor_ptr->header.ocs = ocs; 5530 } 5531 complete(hba->dev_cmd.complete); 5532 } 5533 } 5534 5535 /** 5536 * __ufshcd_transfer_req_compl - handle SCSI and query command completion 5537 * @hba: per adapter instance 5538 * @completed_reqs: bitmask that indicates which requests to complete 5539 */ 5540 static void __ufshcd_transfer_req_compl(struct ufs_hba *hba, 5541 unsigned long completed_reqs) 5542 { 5543 int tag; 5544 5545 for_each_set_bit(tag, &completed_reqs, hba->nutrs) 5546 ufshcd_compl_one_cqe(hba, tag, NULL); 5547 } 5548 5549 /* Any value that is not an existing queue number is fine for this constant. */ 5550 enum { 5551 UFSHCD_POLL_FROM_INTERRUPT_CONTEXT = -1 5552 }; 5553 5554 static void ufshcd_clear_polled(struct ufs_hba *hba, 5555 unsigned long *completed_reqs) 5556 { 5557 int tag; 5558 5559 for_each_set_bit(tag, completed_reqs, hba->nutrs) { 5560 struct scsi_cmnd *cmd = hba->lrb[tag].cmd; 5561 5562 if (!cmd) 5563 continue; 5564 if (scsi_cmd_to_rq(cmd)->cmd_flags & REQ_POLLED) 5565 __clear_bit(tag, completed_reqs); 5566 } 5567 } 5568 5569 /* 5570 * Return: > 0 if one or more commands have been completed or 0 if no 5571 * requests have been completed. 5572 */ 5573 static int ufshcd_poll(struct Scsi_Host *shost, unsigned int queue_num) 5574 { 5575 struct ufs_hba *hba = shost_priv(shost); 5576 unsigned long completed_reqs, flags; 5577 u32 tr_doorbell; 5578 struct ufs_hw_queue *hwq; 5579 5580 if (hba->mcq_enabled) { 5581 hwq = &hba->uhq[queue_num]; 5582 5583 return ufshcd_mcq_poll_cqe_lock(hba, hwq); 5584 } 5585 5586 spin_lock_irqsave(&hba->outstanding_lock, flags); 5587 tr_doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL); 5588 completed_reqs = ~tr_doorbell & hba->outstanding_reqs; 5589 WARN_ONCE(completed_reqs & ~hba->outstanding_reqs, 5590 "completed: %#lx; outstanding: %#lx\n", completed_reqs, 5591 hba->outstanding_reqs); 5592 if (queue_num == UFSHCD_POLL_FROM_INTERRUPT_CONTEXT) { 5593 /* Do not complete polled requests from interrupt context. */ 5594 ufshcd_clear_polled(hba, &completed_reqs); 5595 } 5596 hba->outstanding_reqs &= ~completed_reqs; 5597 spin_unlock_irqrestore(&hba->outstanding_lock, flags); 5598 5599 if (completed_reqs) 5600 __ufshcd_transfer_req_compl(hba, completed_reqs); 5601 5602 return completed_reqs != 0; 5603 } 5604 5605 /** 5606 * ufshcd_mcq_compl_pending_transfer - MCQ mode function. It is 5607 * invoked from the error handler context or ufshcd_host_reset_and_restore() 5608 * to complete the pending transfers and free the resources associated with 5609 * the scsi command. 5610 * 5611 * @hba: per adapter instance 5612 * @force_compl: This flag is set to true when invoked 5613 * from ufshcd_host_reset_and_restore() in which case it requires special 5614 * handling because the host controller has been reset by ufshcd_hba_stop(). 5615 */ 5616 static void ufshcd_mcq_compl_pending_transfer(struct ufs_hba *hba, 5617 bool force_compl) 5618 { 5619 struct ufs_hw_queue *hwq; 5620 struct ufshcd_lrb *lrbp; 5621 struct scsi_cmnd *cmd; 5622 unsigned long flags; 5623 int tag; 5624 5625 for (tag = 0; tag < hba->nutrs; tag++) { 5626 lrbp = &hba->lrb[tag]; 5627 cmd = lrbp->cmd; 5628 if (!ufshcd_cmd_inflight(cmd) || 5629 test_bit(SCMD_STATE_COMPLETE, &cmd->state)) 5630 continue; 5631 5632 hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(cmd)); 5633 5634 if (force_compl) { 5635 ufshcd_mcq_compl_all_cqes_lock(hba, hwq); 5636 /* 5637 * For those cmds of which the cqes are not present 5638 * in the cq, complete them explicitly. 5639 */ 5640 spin_lock_irqsave(&hwq->cq_lock, flags); 5641 if (cmd && !test_bit(SCMD_STATE_COMPLETE, &cmd->state)) { 5642 set_host_byte(cmd, DID_REQUEUE); 5643 ufshcd_release_scsi_cmd(hba, lrbp); 5644 scsi_done(cmd); 5645 } 5646 spin_unlock_irqrestore(&hwq->cq_lock, flags); 5647 } else { 5648 ufshcd_mcq_poll_cqe_lock(hba, hwq); 5649 } 5650 } 5651 } 5652 5653 /** 5654 * ufshcd_transfer_req_compl - handle SCSI and query command completion 5655 * @hba: per adapter instance 5656 * 5657 * Return: 5658 * IRQ_HANDLED - If interrupt is valid 5659 * IRQ_NONE - If invalid interrupt 5660 */ 5661 static irqreturn_t ufshcd_transfer_req_compl(struct ufs_hba *hba) 5662 { 5663 /* Resetting interrupt aggregation counters first and reading the 5664 * DOOR_BELL afterward allows us to handle all the completed requests. 5665 * In order to prevent other interrupts starvation the DB is read once 5666 * after reset. The down side of this solution is the possibility of 5667 * false interrupt if device completes another request after resetting 5668 * aggregation and before reading the DB. 5669 */ 5670 if (ufshcd_is_intr_aggr_allowed(hba) && 5671 !(hba->quirks & UFSHCI_QUIRK_SKIP_RESET_INTR_AGGR)) 5672 ufshcd_reset_intr_aggr(hba); 5673 5674 if (ufs_fail_completion(hba)) 5675 return IRQ_HANDLED; 5676 5677 /* 5678 * Ignore the ufshcd_poll() return value and return IRQ_HANDLED since we 5679 * do not want polling to trigger spurious interrupt complaints. 5680 */ 5681 ufshcd_poll(hba->host, UFSHCD_POLL_FROM_INTERRUPT_CONTEXT); 5682 5683 return IRQ_HANDLED; 5684 } 5685 5686 int __ufshcd_write_ee_control(struct ufs_hba *hba, u32 ee_ctrl_mask) 5687 { 5688 return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR, 5689 QUERY_ATTR_IDN_EE_CONTROL, 0, 0, 5690 &ee_ctrl_mask); 5691 } 5692 5693 int ufshcd_write_ee_control(struct ufs_hba *hba) 5694 { 5695 int err; 5696 5697 mutex_lock(&hba->ee_ctrl_mutex); 5698 err = __ufshcd_write_ee_control(hba, hba->ee_ctrl_mask); 5699 mutex_unlock(&hba->ee_ctrl_mutex); 5700 if (err) 5701 dev_err(hba->dev, "%s: failed to write ee control %d\n", 5702 __func__, err); 5703 return err; 5704 } 5705 5706 int ufshcd_update_ee_control(struct ufs_hba *hba, u16 *mask, 5707 const u16 *other_mask, u16 set, u16 clr) 5708 { 5709 u16 new_mask, ee_ctrl_mask; 5710 int err = 0; 5711 5712 mutex_lock(&hba->ee_ctrl_mutex); 5713 new_mask = (*mask & ~clr) | set; 5714 ee_ctrl_mask = new_mask | *other_mask; 5715 if (ee_ctrl_mask != hba->ee_ctrl_mask) 5716 err = __ufshcd_write_ee_control(hba, ee_ctrl_mask); 5717 /* Still need to update 'mask' even if 'ee_ctrl_mask' was unchanged */ 5718 if (!err) { 5719 hba->ee_ctrl_mask = ee_ctrl_mask; 5720 *mask = new_mask; 5721 } 5722 mutex_unlock(&hba->ee_ctrl_mutex); 5723 return err; 5724 } 5725 5726 /** 5727 * ufshcd_disable_ee - disable exception event 5728 * @hba: per-adapter instance 5729 * @mask: exception event to disable 5730 * 5731 * Disables exception event in the device so that the EVENT_ALERT 5732 * bit is not set. 5733 * 5734 * Return: zero on success, non-zero error value on failure. 5735 */ 5736 static inline int ufshcd_disable_ee(struct ufs_hba *hba, u16 mask) 5737 { 5738 return ufshcd_update_ee_drv_mask(hba, 0, mask); 5739 } 5740 5741 /** 5742 * ufshcd_enable_ee - enable exception event 5743 * @hba: per-adapter instance 5744 * @mask: exception event to enable 5745 * 5746 * Enable corresponding exception event in the device to allow 5747 * device to alert host in critical scenarios. 5748 * 5749 * Return: zero on success, non-zero error value on failure. 5750 */ 5751 static inline int ufshcd_enable_ee(struct ufs_hba *hba, u16 mask) 5752 { 5753 return ufshcd_update_ee_drv_mask(hba, mask, 0); 5754 } 5755 5756 /** 5757 * ufshcd_enable_auto_bkops - Allow device managed BKOPS 5758 * @hba: per-adapter instance 5759 * 5760 * Allow device to manage background operations on its own. Enabling 5761 * this might lead to inconsistent latencies during normal data transfers 5762 * as the device is allowed to manage its own way of handling background 5763 * operations. 5764 * 5765 * Return: zero on success, non-zero on failure. 5766 */ 5767 static int ufshcd_enable_auto_bkops(struct ufs_hba *hba) 5768 { 5769 int err = 0; 5770 5771 if (hba->auto_bkops_enabled) 5772 goto out; 5773 5774 err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG, 5775 QUERY_FLAG_IDN_BKOPS_EN, 0, NULL); 5776 if (err) { 5777 dev_err(hba->dev, "%s: failed to enable bkops %d\n", 5778 __func__, err); 5779 goto out; 5780 } 5781 5782 hba->auto_bkops_enabled = true; 5783 trace_ufshcd_auto_bkops_state(dev_name(hba->dev), "Enabled"); 5784 5785 /* No need of URGENT_BKOPS exception from the device */ 5786 err = ufshcd_disable_ee(hba, MASK_EE_URGENT_BKOPS); 5787 if (err) 5788 dev_err(hba->dev, "%s: failed to disable exception event %d\n", 5789 __func__, err); 5790 out: 5791 return err; 5792 } 5793 5794 /** 5795 * ufshcd_disable_auto_bkops - block device in doing background operations 5796 * @hba: per-adapter instance 5797 * 5798 * Disabling background operations improves command response latency but 5799 * has drawback of device moving into critical state where the device is 5800 * not-operable. Make sure to call ufshcd_enable_auto_bkops() whenever the 5801 * host is idle so that BKOPS are managed effectively without any negative 5802 * impacts. 5803 * 5804 * Return: zero on success, non-zero on failure. 5805 */ 5806 static int ufshcd_disable_auto_bkops(struct ufs_hba *hba) 5807 { 5808 int err = 0; 5809 5810 if (!hba->auto_bkops_enabled) 5811 goto out; 5812 5813 /* 5814 * If host assisted BKOPs is to be enabled, make sure 5815 * urgent bkops exception is allowed. 5816 */ 5817 err = ufshcd_enable_ee(hba, MASK_EE_URGENT_BKOPS); 5818 if (err) { 5819 dev_err(hba->dev, "%s: failed to enable exception event %d\n", 5820 __func__, err); 5821 goto out; 5822 } 5823 5824 err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_CLEAR_FLAG, 5825 QUERY_FLAG_IDN_BKOPS_EN, 0, NULL); 5826 if (err) { 5827 dev_err(hba->dev, "%s: failed to disable bkops %d\n", 5828 __func__, err); 5829 ufshcd_disable_ee(hba, MASK_EE_URGENT_BKOPS); 5830 goto out; 5831 } 5832 5833 hba->auto_bkops_enabled = false; 5834 trace_ufshcd_auto_bkops_state(dev_name(hba->dev), "Disabled"); 5835 hba->is_urgent_bkops_lvl_checked = false; 5836 out: 5837 return err; 5838 } 5839 5840 /** 5841 * ufshcd_force_reset_auto_bkops - force reset auto bkops state 5842 * @hba: per adapter instance 5843 * 5844 * After a device reset the device may toggle the BKOPS_EN flag 5845 * to default value. The s/w tracking variables should be updated 5846 * as well. This function would change the auto-bkops state based on 5847 * UFSHCD_CAP_KEEP_AUTO_BKOPS_ENABLED_EXCEPT_SUSPEND. 5848 */ 5849 static void ufshcd_force_reset_auto_bkops(struct ufs_hba *hba) 5850 { 5851 if (ufshcd_keep_autobkops_enabled_except_suspend(hba)) { 5852 hba->auto_bkops_enabled = false; 5853 hba->ee_ctrl_mask |= MASK_EE_URGENT_BKOPS; 5854 ufshcd_enable_auto_bkops(hba); 5855 } else { 5856 hba->auto_bkops_enabled = true; 5857 hba->ee_ctrl_mask &= ~MASK_EE_URGENT_BKOPS; 5858 ufshcd_disable_auto_bkops(hba); 5859 } 5860 hba->urgent_bkops_lvl = BKOPS_STATUS_PERF_IMPACT; 5861 hba->is_urgent_bkops_lvl_checked = false; 5862 } 5863 5864 static inline int ufshcd_get_bkops_status(struct ufs_hba *hba, u32 *status) 5865 { 5866 return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR, 5867 QUERY_ATTR_IDN_BKOPS_STATUS, 0, 0, status); 5868 } 5869 5870 /** 5871 * ufshcd_bkops_ctrl - control the auto bkops based on current bkops status 5872 * @hba: per-adapter instance 5873 * 5874 * Read the bkops_status from the UFS device and Enable fBackgroundOpsEn 5875 * flag in the device to permit background operations if the device 5876 * bkops_status is greater than or equal to the "hba->urgent_bkops_lvl", 5877 * disable otherwise. 5878 * 5879 * Return: 0 for success, non-zero in case of failure. 5880 * 5881 * NOTE: Caller of this function can check the "hba->auto_bkops_enabled" flag 5882 * to know whether auto bkops is enabled or disabled after this function 5883 * returns control to it. 5884 */ 5885 static int ufshcd_bkops_ctrl(struct ufs_hba *hba) 5886 { 5887 enum bkops_status status = hba->urgent_bkops_lvl; 5888 u32 curr_status = 0; 5889 int err; 5890 5891 err = ufshcd_get_bkops_status(hba, &curr_status); 5892 if (err) { 5893 dev_err(hba->dev, "%s: failed to get BKOPS status %d\n", 5894 __func__, err); 5895 goto out; 5896 } else if (curr_status > BKOPS_STATUS_MAX) { 5897 dev_err(hba->dev, "%s: invalid BKOPS status %d\n", 5898 __func__, curr_status); 5899 err = -EINVAL; 5900 goto out; 5901 } 5902 5903 if (curr_status >= status) 5904 err = ufshcd_enable_auto_bkops(hba); 5905 else 5906 err = ufshcd_disable_auto_bkops(hba); 5907 out: 5908 return err; 5909 } 5910 5911 static inline int ufshcd_get_ee_status(struct ufs_hba *hba, u32 *status) 5912 { 5913 return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR, 5914 QUERY_ATTR_IDN_EE_STATUS, 0, 0, status); 5915 } 5916 5917 static void ufshcd_bkops_exception_event_handler(struct ufs_hba *hba) 5918 { 5919 int err; 5920 u32 curr_status = 0; 5921 5922 if (hba->is_urgent_bkops_lvl_checked) 5923 goto enable_auto_bkops; 5924 5925 err = ufshcd_get_bkops_status(hba, &curr_status); 5926 if (err) { 5927 dev_err(hba->dev, "%s: failed to get BKOPS status %d\n", 5928 __func__, err); 5929 goto out; 5930 } 5931 5932 /* 5933 * We are seeing that some devices are raising the urgent bkops 5934 * exception events even when BKOPS status doesn't indicate performace 5935 * impacted or critical. Handle these device by determining their urgent 5936 * bkops status at runtime. 5937 */ 5938 if (curr_status < BKOPS_STATUS_PERF_IMPACT) { 5939 dev_err(hba->dev, "%s: device raised urgent BKOPS exception for bkops status %d\n", 5940 __func__, curr_status); 5941 /* update the current status as the urgent bkops level */ 5942 hba->urgent_bkops_lvl = curr_status; 5943 hba->is_urgent_bkops_lvl_checked = true; 5944 } 5945 5946 enable_auto_bkops: 5947 err = ufshcd_enable_auto_bkops(hba); 5948 out: 5949 if (err < 0) 5950 dev_err(hba->dev, "%s: failed to handle urgent bkops %d\n", 5951 __func__, err); 5952 } 5953 5954 static void ufshcd_temp_exception_event_handler(struct ufs_hba *hba, u16 status) 5955 { 5956 u32 value; 5957 5958 if (ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR, 5959 QUERY_ATTR_IDN_CASE_ROUGH_TEMP, 0, 0, &value)) 5960 return; 5961 5962 dev_info(hba->dev, "exception Tcase %d\n", value - 80); 5963 5964 ufs_hwmon_notify_event(hba, status & MASK_EE_URGENT_TEMP); 5965 5966 /* 5967 * A placeholder for the platform vendors to add whatever additional 5968 * steps required 5969 */ 5970 } 5971 5972 static int __ufshcd_wb_toggle(struct ufs_hba *hba, bool set, enum flag_idn idn) 5973 { 5974 u8 index; 5975 enum query_opcode opcode = set ? UPIU_QUERY_OPCODE_SET_FLAG : 5976 UPIU_QUERY_OPCODE_CLEAR_FLAG; 5977 5978 index = ufshcd_wb_get_query_index(hba); 5979 return ufshcd_query_flag_retry(hba, opcode, idn, index, NULL); 5980 } 5981 5982 int ufshcd_wb_toggle(struct ufs_hba *hba, bool enable) 5983 { 5984 int ret; 5985 5986 if (!ufshcd_is_wb_allowed(hba) || 5987 hba->dev_info.wb_enabled == enable) 5988 return 0; 5989 5990 ret = __ufshcd_wb_toggle(hba, enable, QUERY_FLAG_IDN_WB_EN); 5991 if (ret) { 5992 dev_err(hba->dev, "%s: Write Booster %s failed %d\n", 5993 __func__, enable ? "enabling" : "disabling", ret); 5994 return ret; 5995 } 5996 5997 hba->dev_info.wb_enabled = enable; 5998 dev_dbg(hba->dev, "%s: Write Booster %s\n", 5999 __func__, enable ? "enabled" : "disabled"); 6000 6001 return ret; 6002 } 6003 6004 static void ufshcd_wb_toggle_buf_flush_during_h8(struct ufs_hba *hba, 6005 bool enable) 6006 { 6007 int ret; 6008 6009 ret = __ufshcd_wb_toggle(hba, enable, 6010 QUERY_FLAG_IDN_WB_BUFF_FLUSH_DURING_HIBERN8); 6011 if (ret) { 6012 dev_err(hba->dev, "%s: WB-Buf Flush during H8 %s failed %d\n", 6013 __func__, enable ? "enabling" : "disabling", ret); 6014 return; 6015 } 6016 dev_dbg(hba->dev, "%s: WB-Buf Flush during H8 %s\n", 6017 __func__, enable ? "enabled" : "disabled"); 6018 } 6019 6020 int ufshcd_wb_toggle_buf_flush(struct ufs_hba *hba, bool enable) 6021 { 6022 int ret; 6023 6024 if (!ufshcd_is_wb_allowed(hba) || 6025 hba->dev_info.wb_buf_flush_enabled == enable) 6026 return 0; 6027 6028 ret = __ufshcd_wb_toggle(hba, enable, QUERY_FLAG_IDN_WB_BUFF_FLUSH_EN); 6029 if (ret) { 6030 dev_err(hba->dev, "%s: WB-Buf Flush %s failed %d\n", 6031 __func__, enable ? "enabling" : "disabling", ret); 6032 return ret; 6033 } 6034 6035 hba->dev_info.wb_buf_flush_enabled = enable; 6036 dev_dbg(hba->dev, "%s: WB-Buf Flush %s\n", 6037 __func__, enable ? "enabled" : "disabled"); 6038 6039 return ret; 6040 } 6041 6042 static bool ufshcd_wb_presrv_usrspc_keep_vcc_on(struct ufs_hba *hba, 6043 u32 avail_buf) 6044 { 6045 u32 cur_buf; 6046 int ret; 6047 u8 index; 6048 6049 index = ufshcd_wb_get_query_index(hba); 6050 ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR, 6051 QUERY_ATTR_IDN_CURR_WB_BUFF_SIZE, 6052 index, 0, &cur_buf); 6053 if (ret) { 6054 dev_err(hba->dev, "%s: dCurWriteBoosterBufferSize read failed %d\n", 6055 __func__, ret); 6056 return false; 6057 } 6058 6059 if (!cur_buf) { 6060 dev_info(hba->dev, "dCurWBBuf: %d WB disabled until free-space is available\n", 6061 cur_buf); 6062 return false; 6063 } 6064 /* Let it continue to flush when available buffer exceeds threshold */ 6065 return avail_buf < hba->vps->wb_flush_threshold; 6066 } 6067 6068 static void ufshcd_wb_force_disable(struct ufs_hba *hba) 6069 { 6070 if (ufshcd_is_wb_buf_flush_allowed(hba)) 6071 ufshcd_wb_toggle_buf_flush(hba, false); 6072 6073 ufshcd_wb_toggle_buf_flush_during_h8(hba, false); 6074 ufshcd_wb_toggle(hba, false); 6075 hba->caps &= ~UFSHCD_CAP_WB_EN; 6076 6077 dev_info(hba->dev, "%s: WB force disabled\n", __func__); 6078 } 6079 6080 static bool ufshcd_is_wb_buf_lifetime_available(struct ufs_hba *hba) 6081 { 6082 u32 lifetime; 6083 int ret; 6084 u8 index; 6085 6086 index = ufshcd_wb_get_query_index(hba); 6087 ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR, 6088 QUERY_ATTR_IDN_WB_BUFF_LIFE_TIME_EST, 6089 index, 0, &lifetime); 6090 if (ret) { 6091 dev_err(hba->dev, 6092 "%s: bWriteBoosterBufferLifeTimeEst read failed %d\n", 6093 __func__, ret); 6094 return false; 6095 } 6096 6097 if (lifetime == UFS_WB_EXCEED_LIFETIME) { 6098 dev_err(hba->dev, "%s: WB buf lifetime is exhausted 0x%02X\n", 6099 __func__, lifetime); 6100 return false; 6101 } 6102 6103 dev_dbg(hba->dev, "%s: WB buf lifetime is 0x%02X\n", 6104 __func__, lifetime); 6105 6106 return true; 6107 } 6108 6109 static bool ufshcd_wb_need_flush(struct ufs_hba *hba) 6110 { 6111 int ret; 6112 u32 avail_buf; 6113 u8 index; 6114 6115 if (!ufshcd_is_wb_allowed(hba)) 6116 return false; 6117 6118 if (!ufshcd_is_wb_buf_lifetime_available(hba)) { 6119 ufshcd_wb_force_disable(hba); 6120 return false; 6121 } 6122 6123 /* 6124 * The ufs device needs the vcc to be ON to flush. 6125 * With user-space reduction enabled, it's enough to enable flush 6126 * by checking only the available buffer. The threshold 6127 * defined here is > 90% full. 6128 * With user-space preserved enabled, the current-buffer 6129 * should be checked too because the wb buffer size can reduce 6130 * when disk tends to be full. This info is provided by current 6131 * buffer (dCurrentWriteBoosterBufferSize). There's no point in 6132 * keeping vcc on when current buffer is empty. 6133 */ 6134 index = ufshcd_wb_get_query_index(hba); 6135 ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR, 6136 QUERY_ATTR_IDN_AVAIL_WB_BUFF_SIZE, 6137 index, 0, &avail_buf); 6138 if (ret) { 6139 dev_warn(hba->dev, "%s: dAvailableWriteBoosterBufferSize read failed %d\n", 6140 __func__, ret); 6141 return false; 6142 } 6143 6144 if (!hba->dev_info.b_presrv_uspc_en) 6145 return avail_buf <= UFS_WB_BUF_REMAIN_PERCENT(10); 6146 6147 return ufshcd_wb_presrv_usrspc_keep_vcc_on(hba, avail_buf); 6148 } 6149 6150 static void ufshcd_rpm_dev_flush_recheck_work(struct work_struct *work) 6151 { 6152 struct ufs_hba *hba = container_of(to_delayed_work(work), 6153 struct ufs_hba, 6154 rpm_dev_flush_recheck_work); 6155 /* 6156 * To prevent unnecessary VCC power drain after device finishes 6157 * WriteBooster buffer flush or Auto BKOPs, force runtime resume 6158 * after a certain delay to recheck the threshold by next runtime 6159 * suspend. 6160 */ 6161 ufshcd_rpm_get_sync(hba); 6162 ufshcd_rpm_put_sync(hba); 6163 } 6164 6165 /** 6166 * ufshcd_exception_event_handler - handle exceptions raised by device 6167 * @work: pointer to work data 6168 * 6169 * Read bExceptionEventStatus attribute from the device and handle the 6170 * exception event accordingly. 6171 */ 6172 static void ufshcd_exception_event_handler(struct work_struct *work) 6173 { 6174 struct ufs_hba *hba; 6175 int err; 6176 u32 status = 0; 6177 hba = container_of(work, struct ufs_hba, eeh_work); 6178 6179 err = ufshcd_get_ee_status(hba, &status); 6180 if (err) { 6181 dev_err(hba->dev, "%s: failed to get exception status %d\n", 6182 __func__, err); 6183 return; 6184 } 6185 6186 trace_ufshcd_exception_event(dev_name(hba->dev), status); 6187 6188 if (status & hba->ee_drv_mask & MASK_EE_URGENT_BKOPS) 6189 ufshcd_bkops_exception_event_handler(hba); 6190 6191 if (status & hba->ee_drv_mask & MASK_EE_URGENT_TEMP) 6192 ufshcd_temp_exception_event_handler(hba, status); 6193 6194 ufs_debugfs_exception_event(hba, status); 6195 } 6196 6197 /* Complete requests that have door-bell cleared */ 6198 static void ufshcd_complete_requests(struct ufs_hba *hba, bool force_compl) 6199 { 6200 if (hba->mcq_enabled) 6201 ufshcd_mcq_compl_pending_transfer(hba, force_compl); 6202 else 6203 ufshcd_transfer_req_compl(hba); 6204 6205 ufshcd_tmc_handler(hba); 6206 } 6207 6208 /** 6209 * ufshcd_quirk_dl_nac_errors - This function checks if error handling is 6210 * to recover from the DL NAC errors or not. 6211 * @hba: per-adapter instance 6212 * 6213 * Return: true if error handling is required, false otherwise. 6214 */ 6215 static bool ufshcd_quirk_dl_nac_errors(struct ufs_hba *hba) 6216 { 6217 unsigned long flags; 6218 bool err_handling = true; 6219 6220 spin_lock_irqsave(hba->host->host_lock, flags); 6221 /* 6222 * UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS only workaround the 6223 * device fatal error and/or DL NAC & REPLAY timeout errors. 6224 */ 6225 if (hba->saved_err & (CONTROLLER_FATAL_ERROR | SYSTEM_BUS_FATAL_ERROR)) 6226 goto out; 6227 6228 if ((hba->saved_err & DEVICE_FATAL_ERROR) || 6229 ((hba->saved_err & UIC_ERROR) && 6230 (hba->saved_uic_err & UFSHCD_UIC_DL_TCx_REPLAY_ERROR))) 6231 goto out; 6232 6233 if ((hba->saved_err & UIC_ERROR) && 6234 (hba->saved_uic_err & UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)) { 6235 int err; 6236 /* 6237 * wait for 50ms to see if we can get any other errors or not. 6238 */ 6239 spin_unlock_irqrestore(hba->host->host_lock, flags); 6240 msleep(50); 6241 spin_lock_irqsave(hba->host->host_lock, flags); 6242 6243 /* 6244 * now check if we have got any other severe errors other than 6245 * DL NAC error? 6246 */ 6247 if ((hba->saved_err & INT_FATAL_ERRORS) || 6248 ((hba->saved_err & UIC_ERROR) && 6249 (hba->saved_uic_err & ~UFSHCD_UIC_DL_NAC_RECEIVED_ERROR))) 6250 goto out; 6251 6252 /* 6253 * As DL NAC is the only error received so far, send out NOP 6254 * command to confirm if link is still active or not. 6255 * - If we don't get any response then do error recovery. 6256 * - If we get response then clear the DL NAC error bit. 6257 */ 6258 6259 spin_unlock_irqrestore(hba->host->host_lock, flags); 6260 err = ufshcd_verify_dev_init(hba); 6261 spin_lock_irqsave(hba->host->host_lock, flags); 6262 6263 if (err) 6264 goto out; 6265 6266 /* Link seems to be alive hence ignore the DL NAC errors */ 6267 if (hba->saved_uic_err == UFSHCD_UIC_DL_NAC_RECEIVED_ERROR) 6268 hba->saved_err &= ~UIC_ERROR; 6269 /* clear NAC error */ 6270 hba->saved_uic_err &= ~UFSHCD_UIC_DL_NAC_RECEIVED_ERROR; 6271 if (!hba->saved_uic_err) 6272 err_handling = false; 6273 } 6274 out: 6275 spin_unlock_irqrestore(hba->host->host_lock, flags); 6276 return err_handling; 6277 } 6278 6279 /* host lock must be held before calling this func */ 6280 static inline bool ufshcd_is_saved_err_fatal(struct ufs_hba *hba) 6281 { 6282 return (hba->saved_uic_err & UFSHCD_UIC_DL_PA_INIT_ERROR) || 6283 (hba->saved_err & (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK)); 6284 } 6285 6286 void ufshcd_schedule_eh_work(struct ufs_hba *hba) 6287 { 6288 lockdep_assert_held(hba->host->host_lock); 6289 6290 /* handle fatal errors only when link is not in error state */ 6291 if (hba->ufshcd_state != UFSHCD_STATE_ERROR) { 6292 if (hba->force_reset || ufshcd_is_link_broken(hba) || 6293 ufshcd_is_saved_err_fatal(hba)) 6294 hba->ufshcd_state = UFSHCD_STATE_EH_SCHEDULED_FATAL; 6295 else 6296 hba->ufshcd_state = UFSHCD_STATE_EH_SCHEDULED_NON_FATAL; 6297 queue_work(hba->eh_wq, &hba->eh_work); 6298 } 6299 } 6300 6301 static void ufshcd_force_error_recovery(struct ufs_hba *hba) 6302 { 6303 spin_lock_irq(hba->host->host_lock); 6304 hba->force_reset = true; 6305 ufshcd_schedule_eh_work(hba); 6306 spin_unlock_irq(hba->host->host_lock); 6307 } 6308 6309 static void ufshcd_clk_scaling_allow(struct ufs_hba *hba, bool allow) 6310 { 6311 mutex_lock(&hba->wb_mutex); 6312 down_write(&hba->clk_scaling_lock); 6313 hba->clk_scaling.is_allowed = allow; 6314 up_write(&hba->clk_scaling_lock); 6315 mutex_unlock(&hba->wb_mutex); 6316 } 6317 6318 static void ufshcd_clk_scaling_suspend(struct ufs_hba *hba, bool suspend) 6319 { 6320 if (suspend) { 6321 if (hba->clk_scaling.is_enabled) 6322 ufshcd_suspend_clkscaling(hba); 6323 ufshcd_clk_scaling_allow(hba, false); 6324 } else { 6325 ufshcd_clk_scaling_allow(hba, true); 6326 if (hba->clk_scaling.is_enabled) 6327 ufshcd_resume_clkscaling(hba); 6328 } 6329 } 6330 6331 static void ufshcd_err_handling_prepare(struct ufs_hba *hba) 6332 { 6333 ufshcd_rpm_get_sync(hba); 6334 if (pm_runtime_status_suspended(&hba->ufs_device_wlun->sdev_gendev) || 6335 hba->is_sys_suspended) { 6336 enum ufs_pm_op pm_op; 6337 6338 /* 6339 * Don't assume anything of resume, if 6340 * resume fails, irq and clocks can be OFF, and powers 6341 * can be OFF or in LPM. 6342 */ 6343 ufshcd_setup_hba_vreg(hba, true); 6344 ufshcd_enable_irq(hba); 6345 ufshcd_setup_vreg(hba, true); 6346 ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq); 6347 ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq2); 6348 ufshcd_hold(hba); 6349 if (!ufshcd_is_clkgating_allowed(hba)) 6350 ufshcd_setup_clocks(hba, true); 6351 pm_op = hba->is_sys_suspended ? UFS_SYSTEM_PM : UFS_RUNTIME_PM; 6352 ufshcd_vops_resume(hba, pm_op); 6353 } else { 6354 ufshcd_hold(hba); 6355 if (ufshcd_is_clkscaling_supported(hba) && 6356 hba->clk_scaling.is_enabled) 6357 ufshcd_suspend_clkscaling(hba); 6358 ufshcd_clk_scaling_allow(hba, false); 6359 } 6360 /* Wait for ongoing ufshcd_queuecommand() calls to finish. */ 6361 blk_mq_quiesce_tagset(&hba->host->tag_set); 6362 cancel_work_sync(&hba->eeh_work); 6363 } 6364 6365 static void ufshcd_err_handling_unprepare(struct ufs_hba *hba) 6366 { 6367 blk_mq_unquiesce_tagset(&hba->host->tag_set); 6368 ufshcd_release(hba); 6369 if (ufshcd_is_clkscaling_supported(hba)) 6370 ufshcd_clk_scaling_suspend(hba, false); 6371 ufshcd_rpm_put(hba); 6372 } 6373 6374 static inline bool ufshcd_err_handling_should_stop(struct ufs_hba *hba) 6375 { 6376 return (!hba->is_powered || hba->shutting_down || 6377 !hba->ufs_device_wlun || 6378 hba->ufshcd_state == UFSHCD_STATE_ERROR || 6379 (!(hba->saved_err || hba->saved_uic_err || hba->force_reset || 6380 ufshcd_is_link_broken(hba)))); 6381 } 6382 6383 #ifdef CONFIG_PM 6384 static void ufshcd_recover_pm_error(struct ufs_hba *hba) 6385 { 6386 struct Scsi_Host *shost = hba->host; 6387 struct scsi_device *sdev; 6388 struct request_queue *q; 6389 int ret; 6390 6391 hba->is_sys_suspended = false; 6392 /* 6393 * Set RPM status of wlun device to RPM_ACTIVE, 6394 * this also clears its runtime error. 6395 */ 6396 ret = pm_runtime_set_active(&hba->ufs_device_wlun->sdev_gendev); 6397 6398 /* hba device might have a runtime error otherwise */ 6399 if (ret) 6400 ret = pm_runtime_set_active(hba->dev); 6401 /* 6402 * If wlun device had runtime error, we also need to resume those 6403 * consumer scsi devices in case any of them has failed to be 6404 * resumed due to supplier runtime resume failure. This is to unblock 6405 * blk_queue_enter in case there are bios waiting inside it. 6406 */ 6407 if (!ret) { 6408 shost_for_each_device(sdev, shost) { 6409 q = sdev->request_queue; 6410 if (q->dev && (q->rpm_status == RPM_SUSPENDED || 6411 q->rpm_status == RPM_SUSPENDING)) 6412 pm_request_resume(q->dev); 6413 } 6414 } 6415 } 6416 #else 6417 static inline void ufshcd_recover_pm_error(struct ufs_hba *hba) 6418 { 6419 } 6420 #endif 6421 6422 static bool ufshcd_is_pwr_mode_restore_needed(struct ufs_hba *hba) 6423 { 6424 struct ufs_pa_layer_attr *pwr_info = &hba->pwr_info; 6425 u32 mode; 6426 6427 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_PWRMODE), &mode); 6428 6429 if (pwr_info->pwr_rx != ((mode >> PWRMODE_RX_OFFSET) & PWRMODE_MASK)) 6430 return true; 6431 6432 if (pwr_info->pwr_tx != (mode & PWRMODE_MASK)) 6433 return true; 6434 6435 return false; 6436 } 6437 6438 static bool ufshcd_abort_one(struct request *rq, void *priv) 6439 { 6440 int *ret = priv; 6441 u32 tag = rq->tag; 6442 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 6443 struct scsi_device *sdev = cmd->device; 6444 struct Scsi_Host *shost = sdev->host; 6445 struct ufs_hba *hba = shost_priv(shost); 6446 struct ufshcd_lrb *lrbp = &hba->lrb[tag]; 6447 struct ufs_hw_queue *hwq; 6448 unsigned long flags; 6449 6450 *ret = ufshcd_try_to_abort_task(hba, tag); 6451 dev_err(hba->dev, "Aborting tag %d / CDB %#02x %s\n", tag, 6452 hba->lrb[tag].cmd ? hba->lrb[tag].cmd->cmnd[0] : -1, 6453 *ret ? "failed" : "succeeded"); 6454 6455 /* Release cmd in MCQ mode if abort succeeds */ 6456 if (hba->mcq_enabled && (*ret == 0)) { 6457 hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(lrbp->cmd)); 6458 if (!hwq) 6459 return 0; 6460 spin_lock_irqsave(&hwq->cq_lock, flags); 6461 if (ufshcd_cmd_inflight(lrbp->cmd)) 6462 ufshcd_release_scsi_cmd(hba, lrbp); 6463 spin_unlock_irqrestore(&hwq->cq_lock, flags); 6464 } 6465 6466 return *ret == 0; 6467 } 6468 6469 /** 6470 * ufshcd_abort_all - Abort all pending commands. 6471 * @hba: Host bus adapter pointer. 6472 * 6473 * Return: true if and only if the host controller needs to be reset. 6474 */ 6475 static bool ufshcd_abort_all(struct ufs_hba *hba) 6476 { 6477 int tag, ret = 0; 6478 6479 blk_mq_tagset_busy_iter(&hba->host->tag_set, ufshcd_abort_one, &ret); 6480 if (ret) 6481 goto out; 6482 6483 /* Clear pending task management requests */ 6484 for_each_set_bit(tag, &hba->outstanding_tasks, hba->nutmrs) { 6485 ret = ufshcd_clear_tm_cmd(hba, tag); 6486 if (ret) 6487 goto out; 6488 } 6489 6490 out: 6491 /* Complete the requests that are cleared by s/w */ 6492 ufshcd_complete_requests(hba, false); 6493 6494 return ret != 0; 6495 } 6496 6497 /** 6498 * ufshcd_err_handler - handle UFS errors that require s/w attention 6499 * @work: pointer to work structure 6500 */ 6501 static void ufshcd_err_handler(struct work_struct *work) 6502 { 6503 int retries = MAX_ERR_HANDLER_RETRIES; 6504 struct ufs_hba *hba; 6505 unsigned long flags; 6506 bool needs_restore; 6507 bool needs_reset; 6508 int pmc_err; 6509 6510 hba = container_of(work, struct ufs_hba, eh_work); 6511 6512 dev_info(hba->dev, 6513 "%s started; HBA state %s; powered %d; shutting down %d; saved_err = %d; saved_uic_err = %d; force_reset = %d%s\n", 6514 __func__, ufshcd_state_name[hba->ufshcd_state], 6515 hba->is_powered, hba->shutting_down, hba->saved_err, 6516 hba->saved_uic_err, hba->force_reset, 6517 ufshcd_is_link_broken(hba) ? "; link is broken" : ""); 6518 6519 down(&hba->host_sem); 6520 spin_lock_irqsave(hba->host->host_lock, flags); 6521 if (ufshcd_err_handling_should_stop(hba)) { 6522 if (hba->ufshcd_state != UFSHCD_STATE_ERROR) 6523 hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL; 6524 spin_unlock_irqrestore(hba->host->host_lock, flags); 6525 up(&hba->host_sem); 6526 return; 6527 } 6528 ufshcd_set_eh_in_progress(hba); 6529 spin_unlock_irqrestore(hba->host->host_lock, flags); 6530 ufshcd_err_handling_prepare(hba); 6531 /* Complete requests that have door-bell cleared by h/w */ 6532 ufshcd_complete_requests(hba, false); 6533 spin_lock_irqsave(hba->host->host_lock, flags); 6534 again: 6535 needs_restore = false; 6536 needs_reset = false; 6537 6538 if (hba->ufshcd_state != UFSHCD_STATE_ERROR) 6539 hba->ufshcd_state = UFSHCD_STATE_RESET; 6540 /* 6541 * A full reset and restore might have happened after preparation 6542 * is finished, double check whether we should stop. 6543 */ 6544 if (ufshcd_err_handling_should_stop(hba)) 6545 goto skip_err_handling; 6546 6547 if ((hba->dev_quirks & UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS) && 6548 !hba->force_reset) { 6549 bool ret; 6550 6551 spin_unlock_irqrestore(hba->host->host_lock, flags); 6552 /* release the lock as ufshcd_quirk_dl_nac_errors() may sleep */ 6553 ret = ufshcd_quirk_dl_nac_errors(hba); 6554 spin_lock_irqsave(hba->host->host_lock, flags); 6555 if (!ret && ufshcd_err_handling_should_stop(hba)) 6556 goto skip_err_handling; 6557 } 6558 6559 if ((hba->saved_err & (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK)) || 6560 (hba->saved_uic_err && 6561 (hba->saved_uic_err != UFSHCD_UIC_PA_GENERIC_ERROR))) { 6562 bool pr_prdt = !!(hba->saved_err & SYSTEM_BUS_FATAL_ERROR); 6563 6564 spin_unlock_irqrestore(hba->host->host_lock, flags); 6565 ufshcd_print_host_state(hba); 6566 ufshcd_print_pwr_info(hba); 6567 ufshcd_print_evt_hist(hba); 6568 ufshcd_print_tmrs(hba, hba->outstanding_tasks); 6569 ufshcd_print_trs_all(hba, pr_prdt); 6570 spin_lock_irqsave(hba->host->host_lock, flags); 6571 } 6572 6573 /* 6574 * if host reset is required then skip clearing the pending 6575 * transfers forcefully because they will get cleared during 6576 * host reset and restore 6577 */ 6578 if (hba->force_reset || ufshcd_is_link_broken(hba) || 6579 ufshcd_is_saved_err_fatal(hba) || 6580 ((hba->saved_err & UIC_ERROR) && 6581 (hba->saved_uic_err & (UFSHCD_UIC_DL_NAC_RECEIVED_ERROR | 6582 UFSHCD_UIC_DL_TCx_REPLAY_ERROR)))) { 6583 needs_reset = true; 6584 goto do_reset; 6585 } 6586 6587 /* 6588 * If LINERESET was caught, UFS might have been put to PWM mode, 6589 * check if power mode restore is needed. 6590 */ 6591 if (hba->saved_uic_err & UFSHCD_UIC_PA_GENERIC_ERROR) { 6592 hba->saved_uic_err &= ~UFSHCD_UIC_PA_GENERIC_ERROR; 6593 if (!hba->saved_uic_err) 6594 hba->saved_err &= ~UIC_ERROR; 6595 spin_unlock_irqrestore(hba->host->host_lock, flags); 6596 if (ufshcd_is_pwr_mode_restore_needed(hba)) 6597 needs_restore = true; 6598 spin_lock_irqsave(hba->host->host_lock, flags); 6599 if (!hba->saved_err && !needs_restore) 6600 goto skip_err_handling; 6601 } 6602 6603 hba->silence_err_logs = true; 6604 /* release lock as clear command might sleep */ 6605 spin_unlock_irqrestore(hba->host->host_lock, flags); 6606 6607 needs_reset = ufshcd_abort_all(hba); 6608 6609 spin_lock_irqsave(hba->host->host_lock, flags); 6610 hba->silence_err_logs = false; 6611 if (needs_reset) 6612 goto do_reset; 6613 6614 /* 6615 * After all reqs and tasks are cleared from doorbell, 6616 * now it is safe to retore power mode. 6617 */ 6618 if (needs_restore) { 6619 spin_unlock_irqrestore(hba->host->host_lock, flags); 6620 /* 6621 * Hold the scaling lock just in case dev cmds 6622 * are sent via bsg and/or sysfs. 6623 */ 6624 down_write(&hba->clk_scaling_lock); 6625 hba->force_pmc = true; 6626 pmc_err = ufshcd_config_pwr_mode(hba, &(hba->pwr_info)); 6627 if (pmc_err) { 6628 needs_reset = true; 6629 dev_err(hba->dev, "%s: Failed to restore power mode, err = %d\n", 6630 __func__, pmc_err); 6631 } 6632 hba->force_pmc = false; 6633 ufshcd_print_pwr_info(hba); 6634 up_write(&hba->clk_scaling_lock); 6635 spin_lock_irqsave(hba->host->host_lock, flags); 6636 } 6637 6638 do_reset: 6639 /* Fatal errors need reset */ 6640 if (needs_reset) { 6641 int err; 6642 6643 hba->force_reset = false; 6644 spin_unlock_irqrestore(hba->host->host_lock, flags); 6645 err = ufshcd_reset_and_restore(hba); 6646 if (err) 6647 dev_err(hba->dev, "%s: reset and restore failed with err %d\n", 6648 __func__, err); 6649 else 6650 ufshcd_recover_pm_error(hba); 6651 spin_lock_irqsave(hba->host->host_lock, flags); 6652 } 6653 6654 skip_err_handling: 6655 if (!needs_reset) { 6656 if (hba->ufshcd_state == UFSHCD_STATE_RESET) 6657 hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL; 6658 if (hba->saved_err || hba->saved_uic_err) 6659 dev_err_ratelimited(hba->dev, "%s: exit: saved_err 0x%x saved_uic_err 0x%x", 6660 __func__, hba->saved_err, hba->saved_uic_err); 6661 } 6662 /* Exit in an operational state or dead */ 6663 if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL && 6664 hba->ufshcd_state != UFSHCD_STATE_ERROR) { 6665 if (--retries) 6666 goto again; 6667 hba->ufshcd_state = UFSHCD_STATE_ERROR; 6668 } 6669 ufshcd_clear_eh_in_progress(hba); 6670 spin_unlock_irqrestore(hba->host->host_lock, flags); 6671 ufshcd_err_handling_unprepare(hba); 6672 up(&hba->host_sem); 6673 6674 dev_info(hba->dev, "%s finished; HBA state %s\n", __func__, 6675 ufshcd_state_name[hba->ufshcd_state]); 6676 } 6677 6678 /** 6679 * ufshcd_update_uic_error - check and set fatal UIC error flags. 6680 * @hba: per-adapter instance 6681 * 6682 * Return: 6683 * IRQ_HANDLED - If interrupt is valid 6684 * IRQ_NONE - If invalid interrupt 6685 */ 6686 static irqreturn_t ufshcd_update_uic_error(struct ufs_hba *hba) 6687 { 6688 u32 reg; 6689 irqreturn_t retval = IRQ_NONE; 6690 6691 /* PHY layer error */ 6692 reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER); 6693 if ((reg & UIC_PHY_ADAPTER_LAYER_ERROR) && 6694 (reg & UIC_PHY_ADAPTER_LAYER_ERROR_CODE_MASK)) { 6695 ufshcd_update_evt_hist(hba, UFS_EVT_PA_ERR, reg); 6696 /* 6697 * To know whether this error is fatal or not, DB timeout 6698 * must be checked but this error is handled separately. 6699 */ 6700 if (reg & UIC_PHY_ADAPTER_LAYER_LANE_ERR_MASK) 6701 dev_dbg(hba->dev, "%s: UIC Lane error reported\n", 6702 __func__); 6703 6704 /* Got a LINERESET indication. */ 6705 if (reg & UIC_PHY_ADAPTER_LAYER_GENERIC_ERROR) { 6706 struct uic_command *cmd = NULL; 6707 6708 hba->uic_error |= UFSHCD_UIC_PA_GENERIC_ERROR; 6709 if (hba->uic_async_done && hba->active_uic_cmd) 6710 cmd = hba->active_uic_cmd; 6711 /* 6712 * Ignore the LINERESET during power mode change 6713 * operation via DME_SET command. 6714 */ 6715 if (cmd && (cmd->command == UIC_CMD_DME_SET)) 6716 hba->uic_error &= ~UFSHCD_UIC_PA_GENERIC_ERROR; 6717 } 6718 retval |= IRQ_HANDLED; 6719 } 6720 6721 /* PA_INIT_ERROR is fatal and needs UIC reset */ 6722 reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_DATA_LINK_LAYER); 6723 if ((reg & UIC_DATA_LINK_LAYER_ERROR) && 6724 (reg & UIC_DATA_LINK_LAYER_ERROR_CODE_MASK)) { 6725 ufshcd_update_evt_hist(hba, UFS_EVT_DL_ERR, reg); 6726 6727 if (reg & UIC_DATA_LINK_LAYER_ERROR_PA_INIT) 6728 hba->uic_error |= UFSHCD_UIC_DL_PA_INIT_ERROR; 6729 else if (hba->dev_quirks & 6730 UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS) { 6731 if (reg & UIC_DATA_LINK_LAYER_ERROR_NAC_RECEIVED) 6732 hba->uic_error |= 6733 UFSHCD_UIC_DL_NAC_RECEIVED_ERROR; 6734 else if (reg & UIC_DATA_LINK_LAYER_ERROR_TCx_REPLAY_TIMEOUT) 6735 hba->uic_error |= UFSHCD_UIC_DL_TCx_REPLAY_ERROR; 6736 } 6737 retval |= IRQ_HANDLED; 6738 } 6739 6740 /* UIC NL/TL/DME errors needs software retry */ 6741 reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_NETWORK_LAYER); 6742 if ((reg & UIC_NETWORK_LAYER_ERROR) && 6743 (reg & UIC_NETWORK_LAYER_ERROR_CODE_MASK)) { 6744 ufshcd_update_evt_hist(hba, UFS_EVT_NL_ERR, reg); 6745 hba->uic_error |= UFSHCD_UIC_NL_ERROR; 6746 retval |= IRQ_HANDLED; 6747 } 6748 6749 reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_TRANSPORT_LAYER); 6750 if ((reg & UIC_TRANSPORT_LAYER_ERROR) && 6751 (reg & UIC_TRANSPORT_LAYER_ERROR_CODE_MASK)) { 6752 ufshcd_update_evt_hist(hba, UFS_EVT_TL_ERR, reg); 6753 hba->uic_error |= UFSHCD_UIC_TL_ERROR; 6754 retval |= IRQ_HANDLED; 6755 } 6756 6757 reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_DME); 6758 if ((reg & UIC_DME_ERROR) && 6759 (reg & UIC_DME_ERROR_CODE_MASK)) { 6760 ufshcd_update_evt_hist(hba, UFS_EVT_DME_ERR, reg); 6761 hba->uic_error |= UFSHCD_UIC_DME_ERROR; 6762 retval |= IRQ_HANDLED; 6763 } 6764 6765 dev_dbg(hba->dev, "%s: UIC error flags = 0x%08x\n", 6766 __func__, hba->uic_error); 6767 return retval; 6768 } 6769 6770 /** 6771 * ufshcd_check_errors - Check for errors that need s/w attention 6772 * @hba: per-adapter instance 6773 * @intr_status: interrupt status generated by the controller 6774 * 6775 * Return: 6776 * IRQ_HANDLED - If interrupt is valid 6777 * IRQ_NONE - If invalid interrupt 6778 */ 6779 static irqreturn_t ufshcd_check_errors(struct ufs_hba *hba, u32 intr_status) 6780 { 6781 bool queue_eh_work = false; 6782 irqreturn_t retval = IRQ_NONE; 6783 6784 spin_lock(hba->host->host_lock); 6785 hba->errors |= UFSHCD_ERROR_MASK & intr_status; 6786 6787 if (hba->errors & INT_FATAL_ERRORS) { 6788 ufshcd_update_evt_hist(hba, UFS_EVT_FATAL_ERR, 6789 hba->errors); 6790 queue_eh_work = true; 6791 } 6792 6793 if (hba->errors & UIC_ERROR) { 6794 hba->uic_error = 0; 6795 retval = ufshcd_update_uic_error(hba); 6796 if (hba->uic_error) 6797 queue_eh_work = true; 6798 } 6799 6800 if (hba->errors & UFSHCD_UIC_HIBERN8_MASK) { 6801 dev_err(hba->dev, 6802 "%s: Auto Hibern8 %s failed - status: 0x%08x, upmcrs: 0x%08x\n", 6803 __func__, (hba->errors & UIC_HIBERNATE_ENTER) ? 6804 "Enter" : "Exit", 6805 hba->errors, ufshcd_get_upmcrs(hba)); 6806 ufshcd_update_evt_hist(hba, UFS_EVT_AUTO_HIBERN8_ERR, 6807 hba->errors); 6808 ufshcd_set_link_broken(hba); 6809 queue_eh_work = true; 6810 } 6811 6812 if (queue_eh_work) { 6813 /* 6814 * update the transfer error masks to sticky bits, let's do this 6815 * irrespective of current ufshcd_state. 6816 */ 6817 hba->saved_err |= hba->errors; 6818 hba->saved_uic_err |= hba->uic_error; 6819 6820 /* dump controller state before resetting */ 6821 if ((hba->saved_err & 6822 (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK)) || 6823 (hba->saved_uic_err && 6824 (hba->saved_uic_err != UFSHCD_UIC_PA_GENERIC_ERROR))) { 6825 dev_err(hba->dev, "%s: saved_err 0x%x saved_uic_err 0x%x\n", 6826 __func__, hba->saved_err, 6827 hba->saved_uic_err); 6828 ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, 6829 "host_regs: "); 6830 ufshcd_print_pwr_info(hba); 6831 } 6832 ufshcd_schedule_eh_work(hba); 6833 retval |= IRQ_HANDLED; 6834 } 6835 /* 6836 * if (!queue_eh_work) - 6837 * Other errors are either non-fatal where host recovers 6838 * itself without s/w intervention or errors that will be 6839 * handled by the SCSI core layer. 6840 */ 6841 hba->errors = 0; 6842 hba->uic_error = 0; 6843 spin_unlock(hba->host->host_lock); 6844 return retval; 6845 } 6846 6847 /** 6848 * ufshcd_tmc_handler - handle task management function completion 6849 * @hba: per adapter instance 6850 * 6851 * Return: 6852 * IRQ_HANDLED - If interrupt is valid 6853 * IRQ_NONE - If invalid interrupt 6854 */ 6855 static irqreturn_t ufshcd_tmc_handler(struct ufs_hba *hba) 6856 { 6857 unsigned long flags, pending, issued; 6858 irqreturn_t ret = IRQ_NONE; 6859 int tag; 6860 6861 spin_lock_irqsave(hba->host->host_lock, flags); 6862 pending = ufshcd_readl(hba, REG_UTP_TASK_REQ_DOOR_BELL); 6863 issued = hba->outstanding_tasks & ~pending; 6864 for_each_set_bit(tag, &issued, hba->nutmrs) { 6865 struct request *req = hba->tmf_rqs[tag]; 6866 struct completion *c = req->end_io_data; 6867 6868 complete(c); 6869 ret = IRQ_HANDLED; 6870 } 6871 spin_unlock_irqrestore(hba->host->host_lock, flags); 6872 6873 return ret; 6874 } 6875 6876 /** 6877 * ufshcd_handle_mcq_cq_events - handle MCQ completion queue events 6878 * @hba: per adapter instance 6879 * 6880 * Return: IRQ_HANDLED if interrupt is handled. 6881 */ 6882 static irqreturn_t ufshcd_handle_mcq_cq_events(struct ufs_hba *hba) 6883 { 6884 struct ufs_hw_queue *hwq; 6885 unsigned long outstanding_cqs; 6886 unsigned int nr_queues; 6887 int i, ret; 6888 u32 events; 6889 6890 ret = ufshcd_vops_get_outstanding_cqs(hba, &outstanding_cqs); 6891 if (ret) 6892 outstanding_cqs = (1U << hba->nr_hw_queues) - 1; 6893 6894 /* Exclude the poll queues */ 6895 nr_queues = hba->nr_hw_queues - hba->nr_queues[HCTX_TYPE_POLL]; 6896 for_each_set_bit(i, &outstanding_cqs, nr_queues) { 6897 hwq = &hba->uhq[i]; 6898 6899 events = ufshcd_mcq_read_cqis(hba, i); 6900 if (events) 6901 ufshcd_mcq_write_cqis(hba, events, i); 6902 6903 if (events & UFSHCD_MCQ_CQIS_TAIL_ENT_PUSH_STS) 6904 ufshcd_mcq_poll_cqe_lock(hba, hwq); 6905 } 6906 6907 return IRQ_HANDLED; 6908 } 6909 6910 /** 6911 * ufshcd_sl_intr - Interrupt service routine 6912 * @hba: per adapter instance 6913 * @intr_status: contains interrupts generated by the controller 6914 * 6915 * Return: 6916 * IRQ_HANDLED - If interrupt is valid 6917 * IRQ_NONE - If invalid interrupt 6918 */ 6919 static irqreturn_t ufshcd_sl_intr(struct ufs_hba *hba, u32 intr_status) 6920 { 6921 irqreturn_t retval = IRQ_NONE; 6922 6923 if (intr_status & UFSHCD_UIC_MASK) 6924 retval |= ufshcd_uic_cmd_compl(hba, intr_status); 6925 6926 if (intr_status & UFSHCD_ERROR_MASK || hba->errors) 6927 retval |= ufshcd_check_errors(hba, intr_status); 6928 6929 if (intr_status & UTP_TASK_REQ_COMPL) 6930 retval |= ufshcd_tmc_handler(hba); 6931 6932 if (intr_status & UTP_TRANSFER_REQ_COMPL) 6933 retval |= ufshcd_transfer_req_compl(hba); 6934 6935 if (intr_status & MCQ_CQ_EVENT_STATUS) 6936 retval |= ufshcd_handle_mcq_cq_events(hba); 6937 6938 return retval; 6939 } 6940 6941 /** 6942 * ufshcd_intr - Main interrupt service routine 6943 * @irq: irq number 6944 * @__hba: pointer to adapter instance 6945 * 6946 * Return: 6947 * IRQ_HANDLED - If interrupt is valid 6948 * IRQ_NONE - If invalid interrupt 6949 */ 6950 static irqreturn_t ufshcd_intr(int irq, void *__hba) 6951 { 6952 u32 intr_status, enabled_intr_status = 0; 6953 irqreturn_t retval = IRQ_NONE; 6954 struct ufs_hba *hba = __hba; 6955 int retries = hba->nutrs; 6956 6957 intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS); 6958 hba->ufs_stats.last_intr_status = intr_status; 6959 hba->ufs_stats.last_intr_ts = local_clock(); 6960 6961 /* 6962 * There could be max of hba->nutrs reqs in flight and in worst case 6963 * if the reqs get finished 1 by 1 after the interrupt status is 6964 * read, make sure we handle them by checking the interrupt status 6965 * again in a loop until we process all of the reqs before returning. 6966 */ 6967 while (intr_status && retries--) { 6968 enabled_intr_status = 6969 intr_status & ufshcd_readl(hba, REG_INTERRUPT_ENABLE); 6970 ufshcd_writel(hba, intr_status, REG_INTERRUPT_STATUS); 6971 if (enabled_intr_status) 6972 retval |= ufshcd_sl_intr(hba, enabled_intr_status); 6973 6974 intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS); 6975 } 6976 6977 if (enabled_intr_status && retval == IRQ_NONE && 6978 (!(enabled_intr_status & UTP_TRANSFER_REQ_COMPL) || 6979 hba->outstanding_reqs) && !ufshcd_eh_in_progress(hba)) { 6980 dev_err(hba->dev, "%s: Unhandled interrupt 0x%08x (0x%08x, 0x%08x)\n", 6981 __func__, 6982 intr_status, 6983 hba->ufs_stats.last_intr_status, 6984 enabled_intr_status); 6985 ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, "host_regs: "); 6986 } 6987 6988 return retval; 6989 } 6990 6991 static int ufshcd_clear_tm_cmd(struct ufs_hba *hba, int tag) 6992 { 6993 int err = 0; 6994 u32 mask = 1 << tag; 6995 6996 if (!test_bit(tag, &hba->outstanding_tasks)) 6997 goto out; 6998 6999 ufshcd_utmrl_clear(hba, tag); 7000 7001 /* poll for max. 1 sec to clear door bell register by h/w */ 7002 err = ufshcd_wait_for_register(hba, 7003 REG_UTP_TASK_REQ_DOOR_BELL, 7004 mask, 0, 1000, 1000); 7005 7006 dev_err(hba->dev, "Clearing task management function with tag %d %s\n", 7007 tag, err < 0 ? "failed" : "succeeded"); 7008 7009 out: 7010 return err; 7011 } 7012 7013 static int __ufshcd_issue_tm_cmd(struct ufs_hba *hba, 7014 struct utp_task_req_desc *treq, u8 tm_function) 7015 { 7016 struct request_queue *q = hba->tmf_queue; 7017 struct Scsi_Host *host = hba->host; 7018 DECLARE_COMPLETION_ONSTACK(wait); 7019 struct request *req; 7020 unsigned long flags; 7021 int task_tag, err; 7022 7023 /* 7024 * blk_mq_alloc_request() is used here only to get a free tag. 7025 */ 7026 req = blk_mq_alloc_request(q, REQ_OP_DRV_OUT, 0); 7027 if (IS_ERR(req)) 7028 return PTR_ERR(req); 7029 7030 req->end_io_data = &wait; 7031 ufshcd_hold(hba); 7032 7033 spin_lock_irqsave(host->host_lock, flags); 7034 7035 task_tag = req->tag; 7036 hba->tmf_rqs[req->tag] = req; 7037 treq->upiu_req.req_header.task_tag = task_tag; 7038 7039 memcpy(hba->utmrdl_base_addr + task_tag, treq, sizeof(*treq)); 7040 ufshcd_vops_setup_task_mgmt(hba, task_tag, tm_function); 7041 7042 __set_bit(task_tag, &hba->outstanding_tasks); 7043 7044 spin_unlock_irqrestore(host->host_lock, flags); 7045 7046 /* send command to the controller */ 7047 ufshcd_writel(hba, 1 << task_tag, REG_UTP_TASK_REQ_DOOR_BELL); 7048 7049 ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_SEND); 7050 7051 /* wait until the task management command is completed */ 7052 err = wait_for_completion_io_timeout(&wait, 7053 msecs_to_jiffies(TM_CMD_TIMEOUT)); 7054 if (!err) { 7055 ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_ERR); 7056 dev_err(hba->dev, "%s: task management cmd 0x%.2x timed-out\n", 7057 __func__, tm_function); 7058 if (ufshcd_clear_tm_cmd(hba, task_tag)) 7059 dev_WARN(hba->dev, "%s: unable to clear tm cmd (slot %d) after timeout\n", 7060 __func__, task_tag); 7061 err = -ETIMEDOUT; 7062 } else { 7063 err = 0; 7064 memcpy(treq, hba->utmrdl_base_addr + task_tag, sizeof(*treq)); 7065 7066 ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_COMP); 7067 } 7068 7069 spin_lock_irqsave(hba->host->host_lock, flags); 7070 hba->tmf_rqs[req->tag] = NULL; 7071 __clear_bit(task_tag, &hba->outstanding_tasks); 7072 spin_unlock_irqrestore(hba->host->host_lock, flags); 7073 7074 ufshcd_release(hba); 7075 blk_mq_free_request(req); 7076 7077 return err; 7078 } 7079 7080 /** 7081 * ufshcd_issue_tm_cmd - issues task management commands to controller 7082 * @hba: per adapter instance 7083 * @lun_id: LUN ID to which TM command is sent 7084 * @task_id: task ID to which the TM command is applicable 7085 * @tm_function: task management function opcode 7086 * @tm_response: task management service response return value 7087 * 7088 * Return: non-zero value on error, zero on success. 7089 */ 7090 static int ufshcd_issue_tm_cmd(struct ufs_hba *hba, int lun_id, int task_id, 7091 u8 tm_function, u8 *tm_response) 7092 { 7093 struct utp_task_req_desc treq = { }; 7094 enum utp_ocs ocs_value; 7095 int err; 7096 7097 /* Configure task request descriptor */ 7098 treq.header.interrupt = 1; 7099 treq.header.ocs = OCS_INVALID_COMMAND_STATUS; 7100 7101 /* Configure task request UPIU */ 7102 treq.upiu_req.req_header.transaction_code = UPIU_TRANSACTION_TASK_REQ; 7103 treq.upiu_req.req_header.lun = lun_id; 7104 treq.upiu_req.req_header.tm_function = tm_function; 7105 7106 /* 7107 * The host shall provide the same value for LUN field in the basic 7108 * header and for Input Parameter. 7109 */ 7110 treq.upiu_req.input_param1 = cpu_to_be32(lun_id); 7111 treq.upiu_req.input_param2 = cpu_to_be32(task_id); 7112 7113 err = __ufshcd_issue_tm_cmd(hba, &treq, tm_function); 7114 if (err == -ETIMEDOUT) 7115 return err; 7116 7117 ocs_value = treq.header.ocs & MASK_OCS; 7118 if (ocs_value != OCS_SUCCESS) 7119 dev_err(hba->dev, "%s: failed, ocs = 0x%x\n", 7120 __func__, ocs_value); 7121 else if (tm_response) 7122 *tm_response = be32_to_cpu(treq.upiu_rsp.output_param1) & 7123 MASK_TM_SERVICE_RESP; 7124 return err; 7125 } 7126 7127 /** 7128 * ufshcd_issue_devman_upiu_cmd - API for sending "utrd" type requests 7129 * @hba: per-adapter instance 7130 * @req_upiu: upiu request 7131 * @rsp_upiu: upiu reply 7132 * @desc_buff: pointer to descriptor buffer, NULL if NA 7133 * @buff_len: descriptor size, 0 if NA 7134 * @cmd_type: specifies the type (NOP, Query...) 7135 * @desc_op: descriptor operation 7136 * 7137 * Those type of requests uses UTP Transfer Request Descriptor - utrd. 7138 * Therefore, it "rides" the device management infrastructure: uses its tag and 7139 * tasks work queues. 7140 * 7141 * Since there is only one available tag for device management commands, 7142 * the caller is expected to hold the hba->dev_cmd.lock mutex. 7143 * 7144 * Return: 0 upon success; < 0 upon failure. 7145 */ 7146 static int ufshcd_issue_devman_upiu_cmd(struct ufs_hba *hba, 7147 struct utp_upiu_req *req_upiu, 7148 struct utp_upiu_req *rsp_upiu, 7149 u8 *desc_buff, int *buff_len, 7150 enum dev_cmd_type cmd_type, 7151 enum query_opcode desc_op) 7152 { 7153 const u32 tag = hba->reserved_slot; 7154 struct ufshcd_lrb *lrbp = &hba->lrb[tag]; 7155 int err = 0; 7156 u8 upiu_flags; 7157 7158 /* Protects use of hba->reserved_slot. */ 7159 lockdep_assert_held(&hba->dev_cmd.lock); 7160 7161 ufshcd_setup_dev_cmd(hba, lrbp, cmd_type, 0, tag); 7162 7163 ufshcd_prepare_req_desc_hdr(hba, lrbp, &upiu_flags, DMA_NONE, 0); 7164 7165 /* update the task tag in the request upiu */ 7166 req_upiu->header.task_tag = tag; 7167 7168 /* just copy the upiu request as it is */ 7169 memcpy(lrbp->ucd_req_ptr, req_upiu, sizeof(*lrbp->ucd_req_ptr)); 7170 if (desc_buff && desc_op == UPIU_QUERY_OPCODE_WRITE_DESC) { 7171 /* The Data Segment Area is optional depending upon the query 7172 * function value. for WRITE DESCRIPTOR, the data segment 7173 * follows right after the tsf. 7174 */ 7175 memcpy(lrbp->ucd_req_ptr + 1, desc_buff, *buff_len); 7176 *buff_len = 0; 7177 } 7178 7179 memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp)); 7180 7181 /* 7182 * ignore the returning value here - ufshcd_check_query_response is 7183 * bound to fail since dev_cmd.query and dev_cmd.type were left empty. 7184 * read the response directly ignoring all errors. 7185 */ 7186 ufshcd_issue_dev_cmd(hba, lrbp, tag, QUERY_REQ_TIMEOUT); 7187 7188 /* just copy the upiu response as it is */ 7189 memcpy(rsp_upiu, lrbp->ucd_rsp_ptr, sizeof(*rsp_upiu)); 7190 if (desc_buff && desc_op == UPIU_QUERY_OPCODE_READ_DESC) { 7191 u8 *descp = (u8 *)lrbp->ucd_rsp_ptr + sizeof(*rsp_upiu); 7192 u16 resp_len = be16_to_cpu(lrbp->ucd_rsp_ptr->header 7193 .data_segment_length); 7194 7195 if (*buff_len >= resp_len) { 7196 memcpy(desc_buff, descp, resp_len); 7197 *buff_len = resp_len; 7198 } else { 7199 dev_warn(hba->dev, 7200 "%s: rsp size %d is bigger than buffer size %d", 7201 __func__, resp_len, *buff_len); 7202 *buff_len = 0; 7203 err = -EINVAL; 7204 } 7205 } 7206 ufshcd_add_query_upiu_trace(hba, err ? UFS_QUERY_ERR : UFS_QUERY_COMP, 7207 (struct utp_upiu_req *)lrbp->ucd_rsp_ptr); 7208 7209 return err; 7210 } 7211 7212 /** 7213 * ufshcd_exec_raw_upiu_cmd - API function for sending raw upiu commands 7214 * @hba: per-adapter instance 7215 * @req_upiu: upiu request 7216 * @rsp_upiu: upiu reply - only 8 DW as we do not support scsi commands 7217 * @msgcode: message code, one of UPIU Transaction Codes Initiator to Target 7218 * @desc_buff: pointer to descriptor buffer, NULL if NA 7219 * @buff_len: descriptor size, 0 if NA 7220 * @desc_op: descriptor operation 7221 * 7222 * Supports UTP Transfer requests (nop and query), and UTP Task 7223 * Management requests. 7224 * It is up to the caller to fill the upiu conent properly, as it will 7225 * be copied without any further input validations. 7226 * 7227 * Return: 0 upon success; < 0 upon failure. 7228 */ 7229 int ufshcd_exec_raw_upiu_cmd(struct ufs_hba *hba, 7230 struct utp_upiu_req *req_upiu, 7231 struct utp_upiu_req *rsp_upiu, 7232 enum upiu_request_transaction msgcode, 7233 u8 *desc_buff, int *buff_len, 7234 enum query_opcode desc_op) 7235 { 7236 int err; 7237 enum dev_cmd_type cmd_type = DEV_CMD_TYPE_QUERY; 7238 struct utp_task_req_desc treq = { }; 7239 enum utp_ocs ocs_value; 7240 u8 tm_f = req_upiu->header.tm_function; 7241 7242 switch (msgcode) { 7243 case UPIU_TRANSACTION_NOP_OUT: 7244 cmd_type = DEV_CMD_TYPE_NOP; 7245 fallthrough; 7246 case UPIU_TRANSACTION_QUERY_REQ: 7247 ufshcd_dev_man_lock(hba); 7248 err = ufshcd_issue_devman_upiu_cmd(hba, req_upiu, rsp_upiu, 7249 desc_buff, buff_len, 7250 cmd_type, desc_op); 7251 ufshcd_dev_man_unlock(hba); 7252 7253 break; 7254 case UPIU_TRANSACTION_TASK_REQ: 7255 treq.header.interrupt = 1; 7256 treq.header.ocs = OCS_INVALID_COMMAND_STATUS; 7257 7258 memcpy(&treq.upiu_req, req_upiu, sizeof(*req_upiu)); 7259 7260 err = __ufshcd_issue_tm_cmd(hba, &treq, tm_f); 7261 if (err == -ETIMEDOUT) 7262 break; 7263 7264 ocs_value = treq.header.ocs & MASK_OCS; 7265 if (ocs_value != OCS_SUCCESS) { 7266 dev_err(hba->dev, "%s: failed, ocs = 0x%x\n", __func__, 7267 ocs_value); 7268 break; 7269 } 7270 7271 memcpy(rsp_upiu, &treq.upiu_rsp, sizeof(*rsp_upiu)); 7272 7273 break; 7274 default: 7275 err = -EINVAL; 7276 7277 break; 7278 } 7279 7280 return err; 7281 } 7282 7283 /** 7284 * ufshcd_advanced_rpmb_req_handler - handle advanced RPMB request 7285 * @hba: per adapter instance 7286 * @req_upiu: upiu request 7287 * @rsp_upiu: upiu reply 7288 * @req_ehs: EHS field which contains Advanced RPMB Request Message 7289 * @rsp_ehs: EHS field which returns Advanced RPMB Response Message 7290 * @sg_cnt: The number of sg lists actually used 7291 * @sg_list: Pointer to SG list when DATA IN/OUT UPIU is required in ARPMB operation 7292 * @dir: DMA direction 7293 * 7294 * Return: zero on success, non-zero on failure. 7295 */ 7296 int ufshcd_advanced_rpmb_req_handler(struct ufs_hba *hba, struct utp_upiu_req *req_upiu, 7297 struct utp_upiu_req *rsp_upiu, struct ufs_ehs *req_ehs, 7298 struct ufs_ehs *rsp_ehs, int sg_cnt, struct scatterlist *sg_list, 7299 enum dma_data_direction dir) 7300 { 7301 const u32 tag = hba->reserved_slot; 7302 struct ufshcd_lrb *lrbp = &hba->lrb[tag]; 7303 int err = 0; 7304 int result; 7305 u8 upiu_flags; 7306 u8 *ehs_data; 7307 u16 ehs_len; 7308 int ehs = (hba->capabilities & MASK_EHSLUTRD_SUPPORTED) ? 2 : 0; 7309 7310 /* Protects use of hba->reserved_slot. */ 7311 ufshcd_dev_man_lock(hba); 7312 7313 ufshcd_setup_dev_cmd(hba, lrbp, DEV_CMD_TYPE_RPMB, UFS_UPIU_RPMB_WLUN, tag); 7314 7315 ufshcd_prepare_req_desc_hdr(hba, lrbp, &upiu_flags, DMA_NONE, ehs); 7316 7317 /* update the task tag */ 7318 req_upiu->header.task_tag = tag; 7319 7320 /* copy the UPIU(contains CDB) request as it is */ 7321 memcpy(lrbp->ucd_req_ptr, req_upiu, sizeof(*lrbp->ucd_req_ptr)); 7322 /* Copy EHS, starting with byte32, immediately after the CDB package */ 7323 memcpy(lrbp->ucd_req_ptr + 1, req_ehs, sizeof(*req_ehs)); 7324 7325 if (dir != DMA_NONE && sg_list) 7326 ufshcd_sgl_to_prdt(hba, lrbp, sg_cnt, sg_list); 7327 7328 memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp)); 7329 7330 err = ufshcd_issue_dev_cmd(hba, lrbp, tag, ADVANCED_RPMB_REQ_TIMEOUT); 7331 7332 if (!err) { 7333 /* Just copy the upiu response as it is */ 7334 memcpy(rsp_upiu, lrbp->ucd_rsp_ptr, sizeof(*rsp_upiu)); 7335 /* Get the response UPIU result */ 7336 result = (lrbp->ucd_rsp_ptr->header.response << 8) | 7337 lrbp->ucd_rsp_ptr->header.status; 7338 7339 ehs_len = lrbp->ucd_rsp_ptr->header.ehs_length; 7340 /* 7341 * Since the bLength in EHS indicates the total size of the EHS Header and EHS Data 7342 * in 32 Byte units, the value of the bLength Request/Response for Advanced RPMB 7343 * Message is 02h 7344 */ 7345 if (ehs_len == 2 && rsp_ehs) { 7346 /* 7347 * ucd_rsp_ptr points to a buffer with a length of 512 bytes 7348 * (ALIGNED_UPIU_SIZE = 512), and the EHS data just starts from byte32 7349 */ 7350 ehs_data = (u8 *)lrbp->ucd_rsp_ptr + EHS_OFFSET_IN_RESPONSE; 7351 memcpy(rsp_ehs, ehs_data, ehs_len * 32); 7352 } 7353 } 7354 7355 ufshcd_dev_man_unlock(hba); 7356 7357 return err ? : result; 7358 } 7359 7360 /** 7361 * ufshcd_eh_device_reset_handler() - Reset a single logical unit. 7362 * @cmd: SCSI command pointer 7363 * 7364 * Return: SUCCESS or FAILED. 7365 */ 7366 static int ufshcd_eh_device_reset_handler(struct scsi_cmnd *cmd) 7367 { 7368 unsigned long flags, pending_reqs = 0, not_cleared = 0; 7369 struct Scsi_Host *host; 7370 struct ufs_hba *hba; 7371 struct ufs_hw_queue *hwq; 7372 struct ufshcd_lrb *lrbp; 7373 u32 pos, not_cleared_mask = 0; 7374 int err; 7375 u8 resp = 0xF, lun; 7376 7377 host = cmd->device->host; 7378 hba = shost_priv(host); 7379 7380 lun = ufshcd_scsi_to_upiu_lun(cmd->device->lun); 7381 err = ufshcd_issue_tm_cmd(hba, lun, 0, UFS_LOGICAL_RESET, &resp); 7382 if (err || resp != UPIU_TASK_MANAGEMENT_FUNC_COMPL) { 7383 if (!err) 7384 err = resp; 7385 goto out; 7386 } 7387 7388 if (hba->mcq_enabled) { 7389 for (pos = 0; pos < hba->nutrs; pos++) { 7390 lrbp = &hba->lrb[pos]; 7391 if (ufshcd_cmd_inflight(lrbp->cmd) && 7392 lrbp->lun == lun) { 7393 ufshcd_clear_cmd(hba, pos); 7394 hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(lrbp->cmd)); 7395 ufshcd_mcq_poll_cqe_lock(hba, hwq); 7396 } 7397 } 7398 err = 0; 7399 goto out; 7400 } 7401 7402 /* clear the commands that were pending for corresponding LUN */ 7403 spin_lock_irqsave(&hba->outstanding_lock, flags); 7404 for_each_set_bit(pos, &hba->outstanding_reqs, hba->nutrs) 7405 if (hba->lrb[pos].lun == lun) 7406 __set_bit(pos, &pending_reqs); 7407 hba->outstanding_reqs &= ~pending_reqs; 7408 spin_unlock_irqrestore(&hba->outstanding_lock, flags); 7409 7410 for_each_set_bit(pos, &pending_reqs, hba->nutrs) { 7411 if (ufshcd_clear_cmd(hba, pos) < 0) { 7412 spin_lock_irqsave(&hba->outstanding_lock, flags); 7413 not_cleared = 1U << pos & 7414 ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL); 7415 hba->outstanding_reqs |= not_cleared; 7416 not_cleared_mask |= not_cleared; 7417 spin_unlock_irqrestore(&hba->outstanding_lock, flags); 7418 7419 dev_err(hba->dev, "%s: failed to clear request %d\n", 7420 __func__, pos); 7421 } 7422 } 7423 __ufshcd_transfer_req_compl(hba, pending_reqs & ~not_cleared_mask); 7424 7425 out: 7426 hba->req_abort_count = 0; 7427 ufshcd_update_evt_hist(hba, UFS_EVT_DEV_RESET, (u32)err); 7428 if (!err) { 7429 err = SUCCESS; 7430 } else { 7431 dev_err(hba->dev, "%s: failed with err %d\n", __func__, err); 7432 err = FAILED; 7433 } 7434 return err; 7435 } 7436 7437 static void ufshcd_set_req_abort_skip(struct ufs_hba *hba, unsigned long bitmap) 7438 { 7439 struct ufshcd_lrb *lrbp; 7440 int tag; 7441 7442 for_each_set_bit(tag, &bitmap, hba->nutrs) { 7443 lrbp = &hba->lrb[tag]; 7444 lrbp->req_abort_skip = true; 7445 } 7446 } 7447 7448 /** 7449 * ufshcd_try_to_abort_task - abort a specific task 7450 * @hba: Pointer to adapter instance 7451 * @tag: Task tag/index to be aborted 7452 * 7453 * Abort the pending command in device by sending UFS_ABORT_TASK task management 7454 * command, and in host controller by clearing the door-bell register. There can 7455 * be race between controller sending the command to the device while abort is 7456 * issued. To avoid that, first issue UFS_QUERY_TASK to check if the command is 7457 * really issued and then try to abort it. 7458 * 7459 * Return: zero on success, non-zero on failure. 7460 */ 7461 int ufshcd_try_to_abort_task(struct ufs_hba *hba, int tag) 7462 { 7463 struct ufshcd_lrb *lrbp = &hba->lrb[tag]; 7464 int err; 7465 int poll_cnt; 7466 u8 resp = 0xF; 7467 7468 for (poll_cnt = 100; poll_cnt; poll_cnt--) { 7469 err = ufshcd_issue_tm_cmd(hba, lrbp->lun, lrbp->task_tag, 7470 UFS_QUERY_TASK, &resp); 7471 if (!err && resp == UPIU_TASK_MANAGEMENT_FUNC_SUCCEEDED) { 7472 /* cmd pending in the device */ 7473 dev_err(hba->dev, "%s: cmd pending in the device. tag = %d\n", 7474 __func__, tag); 7475 break; 7476 } else if (!err && resp == UPIU_TASK_MANAGEMENT_FUNC_COMPL) { 7477 /* 7478 * cmd not pending in the device, check if it is 7479 * in transition. 7480 */ 7481 dev_info( 7482 hba->dev, 7483 "%s: cmd with tag %d not pending in the device.\n", 7484 __func__, tag); 7485 if (!ufshcd_cmd_inflight(lrbp->cmd)) { 7486 dev_info(hba->dev, 7487 "%s: cmd with tag=%d completed.\n", 7488 __func__, tag); 7489 return 0; 7490 } 7491 usleep_range(100, 200); 7492 } else { 7493 dev_err(hba->dev, 7494 "%s: no response from device. tag = %d, err %d\n", 7495 __func__, tag, err); 7496 return err ? : resp; 7497 } 7498 } 7499 7500 if (!poll_cnt) 7501 return -EBUSY; 7502 7503 err = ufshcd_issue_tm_cmd(hba, lrbp->lun, lrbp->task_tag, 7504 UFS_ABORT_TASK, &resp); 7505 if (err || resp != UPIU_TASK_MANAGEMENT_FUNC_COMPL) { 7506 if (!err) { 7507 err = resp; /* service response error */ 7508 dev_err(hba->dev, "%s: issued. tag = %d, err %d\n", 7509 __func__, tag, err); 7510 } 7511 return err; 7512 } 7513 7514 err = ufshcd_clear_cmd(hba, tag); 7515 if (err) 7516 dev_err(hba->dev, "%s: Failed clearing cmd at tag %d, err %d\n", 7517 __func__, tag, err); 7518 7519 return err; 7520 } 7521 7522 /** 7523 * ufshcd_abort - scsi host template eh_abort_handler callback 7524 * @cmd: SCSI command pointer 7525 * 7526 * Return: SUCCESS or FAILED. 7527 */ 7528 static int ufshcd_abort(struct scsi_cmnd *cmd) 7529 { 7530 struct Scsi_Host *host = cmd->device->host; 7531 struct ufs_hba *hba = shost_priv(host); 7532 int tag = scsi_cmd_to_rq(cmd)->tag; 7533 struct ufshcd_lrb *lrbp = &hba->lrb[tag]; 7534 unsigned long flags; 7535 int err = FAILED; 7536 bool outstanding; 7537 u32 reg; 7538 7539 ufshcd_hold(hba); 7540 7541 if (!hba->mcq_enabled) { 7542 reg = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL); 7543 if (!test_bit(tag, &hba->outstanding_reqs)) { 7544 /* If command is already aborted/completed, return FAILED. */ 7545 dev_err(hba->dev, 7546 "%s: cmd at tag %d already completed, outstanding=0x%lx, doorbell=0x%x\n", 7547 __func__, tag, hba->outstanding_reqs, reg); 7548 goto release; 7549 } 7550 } 7551 7552 /* Print Transfer Request of aborted task */ 7553 dev_info(hba->dev, "%s: Device abort task at tag %d\n", __func__, tag); 7554 7555 /* 7556 * Print detailed info about aborted request. 7557 * As more than one request might get aborted at the same time, 7558 * print full information only for the first aborted request in order 7559 * to reduce repeated printouts. For other aborted requests only print 7560 * basic details. 7561 */ 7562 scsi_print_command(cmd); 7563 if (!hba->req_abort_count) { 7564 ufshcd_update_evt_hist(hba, UFS_EVT_ABORT, tag); 7565 ufshcd_print_evt_hist(hba); 7566 ufshcd_print_host_state(hba); 7567 ufshcd_print_pwr_info(hba); 7568 ufshcd_print_tr(hba, tag, true); 7569 } else { 7570 ufshcd_print_tr(hba, tag, false); 7571 } 7572 hba->req_abort_count++; 7573 7574 if (!hba->mcq_enabled && !(reg & (1 << tag))) { 7575 /* only execute this code in single doorbell mode */ 7576 dev_err(hba->dev, 7577 "%s: cmd was completed, but without a notifying intr, tag = %d", 7578 __func__, tag); 7579 __ufshcd_transfer_req_compl(hba, 1UL << tag); 7580 goto release; 7581 } 7582 7583 /* 7584 * Task abort to the device W-LUN is illegal. When this command 7585 * will fail, due to spec violation, scsi err handling next step 7586 * will be to send LU reset which, again, is a spec violation. 7587 * To avoid these unnecessary/illegal steps, first we clean up 7588 * the lrb taken by this cmd and re-set it in outstanding_reqs, 7589 * then queue the eh_work and bail. 7590 */ 7591 if (lrbp->lun == UFS_UPIU_UFS_DEVICE_WLUN) { 7592 ufshcd_update_evt_hist(hba, UFS_EVT_ABORT, lrbp->lun); 7593 7594 spin_lock_irqsave(host->host_lock, flags); 7595 hba->force_reset = true; 7596 ufshcd_schedule_eh_work(hba); 7597 spin_unlock_irqrestore(host->host_lock, flags); 7598 goto release; 7599 } 7600 7601 if (hba->mcq_enabled) { 7602 /* MCQ mode. Branch off to handle abort for mcq mode */ 7603 err = ufshcd_mcq_abort(cmd); 7604 goto release; 7605 } 7606 7607 /* Skip task abort in case previous aborts failed and report failure */ 7608 if (lrbp->req_abort_skip) { 7609 dev_err(hba->dev, "%s: skipping abort\n", __func__); 7610 ufshcd_set_req_abort_skip(hba, hba->outstanding_reqs); 7611 goto release; 7612 } 7613 7614 err = ufshcd_try_to_abort_task(hba, tag); 7615 if (err) { 7616 dev_err(hba->dev, "%s: failed with err %d\n", __func__, err); 7617 ufshcd_set_req_abort_skip(hba, hba->outstanding_reqs); 7618 err = FAILED; 7619 goto release; 7620 } 7621 7622 /* 7623 * Clear the corresponding bit from outstanding_reqs since the command 7624 * has been aborted successfully. 7625 */ 7626 spin_lock_irqsave(&hba->outstanding_lock, flags); 7627 outstanding = __test_and_clear_bit(tag, &hba->outstanding_reqs); 7628 spin_unlock_irqrestore(&hba->outstanding_lock, flags); 7629 7630 if (outstanding) 7631 ufshcd_release_scsi_cmd(hba, lrbp); 7632 7633 err = SUCCESS; 7634 7635 release: 7636 /* Matches the ufshcd_hold() call at the start of this function. */ 7637 ufshcd_release(hba); 7638 return err; 7639 } 7640 7641 /** 7642 * ufshcd_process_probe_result - Process the ufshcd_probe_hba() result. 7643 * @hba: UFS host controller instance. 7644 * @probe_start: time when the ufshcd_probe_hba() call started. 7645 * @ret: ufshcd_probe_hba() return value. 7646 */ 7647 static void ufshcd_process_probe_result(struct ufs_hba *hba, 7648 ktime_t probe_start, int ret) 7649 { 7650 unsigned long flags; 7651 7652 spin_lock_irqsave(hba->host->host_lock, flags); 7653 if (ret) 7654 hba->ufshcd_state = UFSHCD_STATE_ERROR; 7655 else if (hba->ufshcd_state == UFSHCD_STATE_RESET) 7656 hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL; 7657 spin_unlock_irqrestore(hba->host->host_lock, flags); 7658 7659 trace_ufshcd_init(dev_name(hba->dev), ret, 7660 ktime_to_us(ktime_sub(ktime_get(), probe_start)), 7661 hba->curr_dev_pwr_mode, hba->uic_link_state); 7662 } 7663 7664 /** 7665 * ufshcd_host_reset_and_restore - reset and restore host controller 7666 * @hba: per-adapter instance 7667 * 7668 * Note that host controller reset may issue DME_RESET to 7669 * local and remote (device) Uni-Pro stack and the attributes 7670 * are reset to default state. 7671 * 7672 * Return: zero on success, non-zero on failure. 7673 */ 7674 static int ufshcd_host_reset_and_restore(struct ufs_hba *hba) 7675 { 7676 int err; 7677 7678 /* 7679 * Stop the host controller and complete the requests 7680 * cleared by h/w 7681 */ 7682 ufshcd_hba_stop(hba); 7683 hba->silence_err_logs = true; 7684 ufshcd_complete_requests(hba, true); 7685 hba->silence_err_logs = false; 7686 7687 /* scale up clocks to max frequency before full reinitialization */ 7688 ufshcd_scale_clks(hba, ULONG_MAX, true); 7689 7690 err = ufshcd_hba_enable(hba); 7691 7692 /* Establish the link again and restore the device */ 7693 if (!err) 7694 err = ufshcd_probe_hba(hba, false); 7695 7696 if (err) 7697 dev_err(hba->dev, "%s: Host init failed %d\n", __func__, err); 7698 ufshcd_update_evt_hist(hba, UFS_EVT_HOST_RESET, (u32)err); 7699 return err; 7700 } 7701 7702 /** 7703 * ufshcd_reset_and_restore - reset and re-initialize host/device 7704 * @hba: per-adapter instance 7705 * 7706 * Reset and recover device, host and re-establish link. This 7707 * is helpful to recover the communication in fatal error conditions. 7708 * 7709 * Return: zero on success, non-zero on failure. 7710 */ 7711 static int ufshcd_reset_and_restore(struct ufs_hba *hba) 7712 { 7713 u32 saved_err = 0; 7714 u32 saved_uic_err = 0; 7715 int err = 0; 7716 unsigned long flags; 7717 int retries = MAX_HOST_RESET_RETRIES; 7718 7719 spin_lock_irqsave(hba->host->host_lock, flags); 7720 do { 7721 /* 7722 * This is a fresh start, cache and clear saved error first, 7723 * in case new error generated during reset and restore. 7724 */ 7725 saved_err |= hba->saved_err; 7726 saved_uic_err |= hba->saved_uic_err; 7727 hba->saved_err = 0; 7728 hba->saved_uic_err = 0; 7729 hba->force_reset = false; 7730 hba->ufshcd_state = UFSHCD_STATE_RESET; 7731 spin_unlock_irqrestore(hba->host->host_lock, flags); 7732 7733 /* Reset the attached device */ 7734 ufshcd_device_reset(hba); 7735 7736 err = ufshcd_host_reset_and_restore(hba); 7737 7738 spin_lock_irqsave(hba->host->host_lock, flags); 7739 if (err) 7740 continue; 7741 /* Do not exit unless operational or dead */ 7742 if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL && 7743 hba->ufshcd_state != UFSHCD_STATE_ERROR && 7744 hba->ufshcd_state != UFSHCD_STATE_EH_SCHEDULED_NON_FATAL) 7745 err = -EAGAIN; 7746 } while (err && --retries); 7747 7748 /* 7749 * Inform scsi mid-layer that we did reset and allow to handle 7750 * Unit Attention properly. 7751 */ 7752 scsi_report_bus_reset(hba->host, 0); 7753 if (err) { 7754 hba->ufshcd_state = UFSHCD_STATE_ERROR; 7755 hba->saved_err |= saved_err; 7756 hba->saved_uic_err |= saved_uic_err; 7757 } 7758 spin_unlock_irqrestore(hba->host->host_lock, flags); 7759 7760 return err; 7761 } 7762 7763 /** 7764 * ufshcd_eh_host_reset_handler - host reset handler registered to scsi layer 7765 * @cmd: SCSI command pointer 7766 * 7767 * Return: SUCCESS or FAILED. 7768 */ 7769 static int ufshcd_eh_host_reset_handler(struct scsi_cmnd *cmd) 7770 { 7771 int err = SUCCESS; 7772 unsigned long flags; 7773 struct ufs_hba *hba; 7774 7775 hba = shost_priv(cmd->device->host); 7776 7777 /* 7778 * If runtime PM sent SSU and got a timeout, scsi_error_handler is 7779 * stuck in this function waiting for flush_work(&hba->eh_work). And 7780 * ufshcd_err_handler(eh_work) is stuck waiting for runtime PM. Do 7781 * ufshcd_link_recovery instead of eh_work to prevent deadlock. 7782 */ 7783 if (hba->pm_op_in_progress) { 7784 if (ufshcd_link_recovery(hba)) 7785 err = FAILED; 7786 7787 return err; 7788 } 7789 7790 spin_lock_irqsave(hba->host->host_lock, flags); 7791 hba->force_reset = true; 7792 ufshcd_schedule_eh_work(hba); 7793 dev_err(hba->dev, "%s: reset in progress - 1\n", __func__); 7794 spin_unlock_irqrestore(hba->host->host_lock, flags); 7795 7796 flush_work(&hba->eh_work); 7797 7798 spin_lock_irqsave(hba->host->host_lock, flags); 7799 if (hba->ufshcd_state == UFSHCD_STATE_ERROR) 7800 err = FAILED; 7801 spin_unlock_irqrestore(hba->host->host_lock, flags); 7802 7803 return err; 7804 } 7805 7806 /** 7807 * ufshcd_get_max_icc_level - calculate the ICC level 7808 * @sup_curr_uA: max. current supported by the regulator 7809 * @start_scan: row at the desc table to start scan from 7810 * @buff: power descriptor buffer 7811 * 7812 * Return: calculated max ICC level for specific regulator. 7813 */ 7814 static u32 ufshcd_get_max_icc_level(int sup_curr_uA, u32 start_scan, 7815 const char *buff) 7816 { 7817 int i; 7818 int curr_uA; 7819 u16 data; 7820 u16 unit; 7821 7822 for (i = start_scan; i >= 0; i--) { 7823 data = get_unaligned_be16(&buff[2 * i]); 7824 unit = (data & ATTR_ICC_LVL_UNIT_MASK) >> 7825 ATTR_ICC_LVL_UNIT_OFFSET; 7826 curr_uA = data & ATTR_ICC_LVL_VALUE_MASK; 7827 switch (unit) { 7828 case UFSHCD_NANO_AMP: 7829 curr_uA = curr_uA / 1000; 7830 break; 7831 case UFSHCD_MILI_AMP: 7832 curr_uA = curr_uA * 1000; 7833 break; 7834 case UFSHCD_AMP: 7835 curr_uA = curr_uA * 1000 * 1000; 7836 break; 7837 case UFSHCD_MICRO_AMP: 7838 default: 7839 break; 7840 } 7841 if (sup_curr_uA >= curr_uA) 7842 break; 7843 } 7844 if (i < 0) { 7845 i = 0; 7846 pr_err("%s: Couldn't find valid icc_level = %d", __func__, i); 7847 } 7848 7849 return (u32)i; 7850 } 7851 7852 /** 7853 * ufshcd_find_max_sup_active_icc_level - calculate the max ICC level 7854 * In case regulators are not initialized we'll return 0 7855 * @hba: per-adapter instance 7856 * @desc_buf: power descriptor buffer to extract ICC levels from. 7857 * 7858 * Return: calculated ICC level. 7859 */ 7860 static u32 ufshcd_find_max_sup_active_icc_level(struct ufs_hba *hba, 7861 const u8 *desc_buf) 7862 { 7863 u32 icc_level = 0; 7864 7865 if (!hba->vreg_info.vcc || !hba->vreg_info.vccq || 7866 !hba->vreg_info.vccq2) { 7867 /* 7868 * Using dev_dbg to avoid messages during runtime PM to avoid 7869 * never-ending cycles of messages written back to storage by 7870 * user space causing runtime resume, causing more messages and 7871 * so on. 7872 */ 7873 dev_dbg(hba->dev, 7874 "%s: Regulator capability was not set, actvIccLevel=%d", 7875 __func__, icc_level); 7876 goto out; 7877 } 7878 7879 if (hba->vreg_info.vcc->max_uA) 7880 icc_level = ufshcd_get_max_icc_level( 7881 hba->vreg_info.vcc->max_uA, 7882 POWER_DESC_MAX_ACTV_ICC_LVLS - 1, 7883 &desc_buf[PWR_DESC_ACTIVE_LVLS_VCC_0]); 7884 7885 if (hba->vreg_info.vccq->max_uA) 7886 icc_level = ufshcd_get_max_icc_level( 7887 hba->vreg_info.vccq->max_uA, 7888 icc_level, 7889 &desc_buf[PWR_DESC_ACTIVE_LVLS_VCCQ_0]); 7890 7891 if (hba->vreg_info.vccq2->max_uA) 7892 icc_level = ufshcd_get_max_icc_level( 7893 hba->vreg_info.vccq2->max_uA, 7894 icc_level, 7895 &desc_buf[PWR_DESC_ACTIVE_LVLS_VCCQ2_0]); 7896 out: 7897 return icc_level; 7898 } 7899 7900 static void ufshcd_set_active_icc_lvl(struct ufs_hba *hba) 7901 { 7902 int ret; 7903 u8 *desc_buf; 7904 u32 icc_level; 7905 7906 desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL); 7907 if (!desc_buf) 7908 return; 7909 7910 ret = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_POWER, 0, 0, 7911 desc_buf, QUERY_DESC_MAX_SIZE); 7912 if (ret) { 7913 dev_err(hba->dev, 7914 "%s: Failed reading power descriptor ret = %d", 7915 __func__, ret); 7916 goto out; 7917 } 7918 7919 icc_level = ufshcd_find_max_sup_active_icc_level(hba, desc_buf); 7920 dev_dbg(hba->dev, "%s: setting icc_level 0x%x", __func__, icc_level); 7921 7922 ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR, 7923 QUERY_ATTR_IDN_ACTIVE_ICC_LVL, 0, 0, &icc_level); 7924 7925 if (ret) 7926 dev_err(hba->dev, 7927 "%s: Failed configuring bActiveICCLevel = %d ret = %d", 7928 __func__, icc_level, ret); 7929 7930 out: 7931 kfree(desc_buf); 7932 } 7933 7934 static inline void ufshcd_blk_pm_runtime_init(struct scsi_device *sdev) 7935 { 7936 struct Scsi_Host *shost = sdev->host; 7937 7938 scsi_autopm_get_device(sdev); 7939 blk_pm_runtime_init(sdev->request_queue, &sdev->sdev_gendev); 7940 if (sdev->rpm_autosuspend) 7941 pm_runtime_set_autosuspend_delay(&sdev->sdev_gendev, 7942 shost->rpm_autosuspend_delay); 7943 scsi_autopm_put_device(sdev); 7944 } 7945 7946 /** 7947 * ufshcd_scsi_add_wlus - Adds required W-LUs 7948 * @hba: per-adapter instance 7949 * 7950 * UFS device specification requires the UFS devices to support 4 well known 7951 * logical units: 7952 * "REPORT_LUNS" (address: 01h) 7953 * "UFS Device" (address: 50h) 7954 * "RPMB" (address: 44h) 7955 * "BOOT" (address: 30h) 7956 * UFS device's power management needs to be controlled by "POWER CONDITION" 7957 * field of SSU (START STOP UNIT) command. But this "power condition" field 7958 * will take effect only when its sent to "UFS device" well known logical unit 7959 * hence we require the scsi_device instance to represent this logical unit in 7960 * order for the UFS host driver to send the SSU command for power management. 7961 * 7962 * We also require the scsi_device instance for "RPMB" (Replay Protected Memory 7963 * Block) LU so user space process can control this LU. User space may also 7964 * want to have access to BOOT LU. 7965 * 7966 * This function adds scsi device instances for each of all well known LUs 7967 * (except "REPORT LUNS" LU). 7968 * 7969 * Return: zero on success (all required W-LUs are added successfully), 7970 * non-zero error value on failure (if failed to add any of the required W-LU). 7971 */ 7972 static int ufshcd_scsi_add_wlus(struct ufs_hba *hba) 7973 { 7974 int ret = 0; 7975 struct scsi_device *sdev_boot, *sdev_rpmb; 7976 7977 hba->ufs_device_wlun = __scsi_add_device(hba->host, 0, 0, 7978 ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_UFS_DEVICE_WLUN), NULL); 7979 if (IS_ERR(hba->ufs_device_wlun)) { 7980 ret = PTR_ERR(hba->ufs_device_wlun); 7981 hba->ufs_device_wlun = NULL; 7982 goto out; 7983 } 7984 scsi_device_put(hba->ufs_device_wlun); 7985 7986 sdev_rpmb = __scsi_add_device(hba->host, 0, 0, 7987 ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_RPMB_WLUN), NULL); 7988 if (IS_ERR(sdev_rpmb)) { 7989 ret = PTR_ERR(sdev_rpmb); 7990 goto remove_ufs_device_wlun; 7991 } 7992 ufshcd_blk_pm_runtime_init(sdev_rpmb); 7993 scsi_device_put(sdev_rpmb); 7994 7995 sdev_boot = __scsi_add_device(hba->host, 0, 0, 7996 ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_BOOT_WLUN), NULL); 7997 if (IS_ERR(sdev_boot)) { 7998 dev_err(hba->dev, "%s: BOOT WLUN not found\n", __func__); 7999 } else { 8000 ufshcd_blk_pm_runtime_init(sdev_boot); 8001 scsi_device_put(sdev_boot); 8002 } 8003 goto out; 8004 8005 remove_ufs_device_wlun: 8006 scsi_remove_device(hba->ufs_device_wlun); 8007 out: 8008 return ret; 8009 } 8010 8011 static void ufshcd_wb_probe(struct ufs_hba *hba, const u8 *desc_buf) 8012 { 8013 struct ufs_dev_info *dev_info = &hba->dev_info; 8014 u8 lun; 8015 u32 d_lu_wb_buf_alloc; 8016 u32 ext_ufs_feature; 8017 8018 if (!ufshcd_is_wb_allowed(hba)) 8019 return; 8020 8021 /* 8022 * Probe WB only for UFS-2.2 and UFS-3.1 (and later) devices or 8023 * UFS devices with quirk UFS_DEVICE_QUIRK_SUPPORT_EXTENDED_FEATURES 8024 * enabled 8025 */ 8026 if (!(dev_info->wspecversion >= 0x310 || 8027 dev_info->wspecversion == 0x220 || 8028 (hba->dev_quirks & UFS_DEVICE_QUIRK_SUPPORT_EXTENDED_FEATURES))) 8029 goto wb_disabled; 8030 8031 ext_ufs_feature = get_unaligned_be32(desc_buf + 8032 DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP); 8033 8034 if (!(ext_ufs_feature & UFS_DEV_WRITE_BOOSTER_SUP)) 8035 goto wb_disabled; 8036 8037 /* 8038 * WB may be supported but not configured while provisioning. The spec 8039 * says, in dedicated wb buffer mode, a max of 1 lun would have wb 8040 * buffer configured. 8041 */ 8042 dev_info->wb_buffer_type = desc_buf[DEVICE_DESC_PARAM_WB_TYPE]; 8043 8044 dev_info->b_presrv_uspc_en = 8045 desc_buf[DEVICE_DESC_PARAM_WB_PRESRV_USRSPC_EN]; 8046 8047 if (dev_info->wb_buffer_type == WB_BUF_MODE_SHARED) { 8048 if (!get_unaligned_be32(desc_buf + 8049 DEVICE_DESC_PARAM_WB_SHARED_ALLOC_UNITS)) 8050 goto wb_disabled; 8051 } else { 8052 for (lun = 0; lun < UFS_UPIU_MAX_WB_LUN_ID; lun++) { 8053 d_lu_wb_buf_alloc = 0; 8054 ufshcd_read_unit_desc_param(hba, 8055 lun, 8056 UNIT_DESC_PARAM_WB_BUF_ALLOC_UNITS, 8057 (u8 *)&d_lu_wb_buf_alloc, 8058 sizeof(d_lu_wb_buf_alloc)); 8059 if (d_lu_wb_buf_alloc) { 8060 dev_info->wb_dedicated_lu = lun; 8061 break; 8062 } 8063 } 8064 8065 if (!d_lu_wb_buf_alloc) 8066 goto wb_disabled; 8067 } 8068 8069 if (!ufshcd_is_wb_buf_lifetime_available(hba)) 8070 goto wb_disabled; 8071 8072 return; 8073 8074 wb_disabled: 8075 hba->caps &= ~UFSHCD_CAP_WB_EN; 8076 } 8077 8078 static void ufshcd_temp_notif_probe(struct ufs_hba *hba, const u8 *desc_buf) 8079 { 8080 struct ufs_dev_info *dev_info = &hba->dev_info; 8081 u32 ext_ufs_feature; 8082 u8 mask = 0; 8083 8084 if (!(hba->caps & UFSHCD_CAP_TEMP_NOTIF) || dev_info->wspecversion < 0x300) 8085 return; 8086 8087 ext_ufs_feature = get_unaligned_be32(desc_buf + DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP); 8088 8089 if (ext_ufs_feature & UFS_DEV_LOW_TEMP_NOTIF) 8090 mask |= MASK_EE_TOO_LOW_TEMP; 8091 8092 if (ext_ufs_feature & UFS_DEV_HIGH_TEMP_NOTIF) 8093 mask |= MASK_EE_TOO_HIGH_TEMP; 8094 8095 if (mask) { 8096 ufshcd_enable_ee(hba, mask); 8097 ufs_hwmon_probe(hba, mask); 8098 } 8099 } 8100 8101 static void ufshcd_ext_iid_probe(struct ufs_hba *hba, u8 *desc_buf) 8102 { 8103 struct ufs_dev_info *dev_info = &hba->dev_info; 8104 u32 ext_ufs_feature; 8105 u32 ext_iid_en = 0; 8106 int err; 8107 8108 /* Only UFS-4.0 and above may support EXT_IID */ 8109 if (dev_info->wspecversion < 0x400) 8110 goto out; 8111 8112 ext_ufs_feature = get_unaligned_be32(desc_buf + 8113 DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP); 8114 if (!(ext_ufs_feature & UFS_DEV_EXT_IID_SUP)) 8115 goto out; 8116 8117 err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR, 8118 QUERY_ATTR_IDN_EXT_IID_EN, 0, 0, &ext_iid_en); 8119 if (err) 8120 dev_err(hba->dev, "failed reading bEXTIIDEn. err = %d\n", err); 8121 8122 out: 8123 dev_info->b_ext_iid_en = ext_iid_en; 8124 } 8125 8126 static void ufshcd_set_rtt(struct ufs_hba *hba) 8127 { 8128 struct ufs_dev_info *dev_info = &hba->dev_info; 8129 u32 rtt = 0; 8130 u32 dev_rtt = 0; 8131 int host_rtt_cap = hba->vops && hba->vops->max_num_rtt ? 8132 hba->vops->max_num_rtt : hba->nortt; 8133 8134 /* RTT override makes sense only for UFS-4.0 and above */ 8135 if (dev_info->wspecversion < 0x400) 8136 return; 8137 8138 if (ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR, 8139 QUERY_ATTR_IDN_MAX_NUM_OF_RTT, 0, 0, &dev_rtt)) { 8140 dev_err(hba->dev, "failed reading bMaxNumOfRTT\n"); 8141 return; 8142 } 8143 8144 /* do not override if it was already written */ 8145 if (dev_rtt != DEFAULT_MAX_NUM_RTT) 8146 return; 8147 8148 rtt = min_t(int, dev_info->rtt_cap, host_rtt_cap); 8149 8150 if (rtt == dev_rtt) 8151 return; 8152 8153 if (ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR, 8154 QUERY_ATTR_IDN_MAX_NUM_OF_RTT, 0, 0, &rtt)) 8155 dev_err(hba->dev, "failed writing bMaxNumOfRTT\n"); 8156 } 8157 8158 void ufshcd_fixup_dev_quirks(struct ufs_hba *hba, 8159 const struct ufs_dev_quirk *fixups) 8160 { 8161 const struct ufs_dev_quirk *f; 8162 struct ufs_dev_info *dev_info = &hba->dev_info; 8163 8164 if (!fixups) 8165 return; 8166 8167 for (f = fixups; f->quirk; f++) { 8168 if ((f->wmanufacturerid == dev_info->wmanufacturerid || 8169 f->wmanufacturerid == UFS_ANY_VENDOR) && 8170 ((dev_info->model && 8171 STR_PRFX_EQUAL(f->model, dev_info->model)) || 8172 !strcmp(f->model, UFS_ANY_MODEL))) 8173 hba->dev_quirks |= f->quirk; 8174 } 8175 } 8176 EXPORT_SYMBOL_GPL(ufshcd_fixup_dev_quirks); 8177 8178 static void ufs_fixup_device_setup(struct ufs_hba *hba) 8179 { 8180 /* fix by general quirk table */ 8181 ufshcd_fixup_dev_quirks(hba, ufs_fixups); 8182 8183 /* allow vendors to fix quirks */ 8184 ufshcd_vops_fixup_dev_quirks(hba); 8185 } 8186 8187 static void ufshcd_update_rtc(struct ufs_hba *hba) 8188 { 8189 struct timespec64 ts64; 8190 int err; 8191 u32 val; 8192 8193 ktime_get_real_ts64(&ts64); 8194 8195 if (ts64.tv_sec < hba->dev_info.rtc_time_baseline) { 8196 dev_warn_once(hba->dev, "%s: Current time precedes previous setting!\n", __func__); 8197 return; 8198 } 8199 8200 /* 8201 * The Absolute RTC mode has a 136-year limit, spanning from 2010 to 2146. If a time beyond 8202 * 2146 is required, it is recommended to choose the relative RTC mode. 8203 */ 8204 val = ts64.tv_sec - hba->dev_info.rtc_time_baseline; 8205 8206 /* Skip update RTC if RPM state is not RPM_ACTIVE */ 8207 if (ufshcd_rpm_get_if_active(hba) <= 0) 8208 return; 8209 8210 err = ufshcd_query_attr(hba, UPIU_QUERY_OPCODE_WRITE_ATTR, QUERY_ATTR_IDN_SECONDS_PASSED, 8211 0, 0, &val); 8212 ufshcd_rpm_put_sync(hba); 8213 8214 if (err) 8215 dev_err(hba->dev, "%s: Failed to update rtc %d\n", __func__, err); 8216 else if (hba->dev_info.rtc_type == UFS_RTC_RELATIVE) 8217 hba->dev_info.rtc_time_baseline = ts64.tv_sec; 8218 } 8219 8220 static void ufshcd_rtc_work(struct work_struct *work) 8221 { 8222 struct ufs_hba *hba; 8223 8224 hba = container_of(to_delayed_work(work), struct ufs_hba, ufs_rtc_update_work); 8225 8226 /* Update RTC only when there are no requests in progress and UFSHCI is operational */ 8227 if (!ufshcd_is_ufs_dev_busy(hba) && hba->ufshcd_state == UFSHCD_STATE_OPERATIONAL) 8228 ufshcd_update_rtc(hba); 8229 8230 if (ufshcd_is_ufs_dev_active(hba) && hba->dev_info.rtc_update_period) 8231 schedule_delayed_work(&hba->ufs_rtc_update_work, 8232 msecs_to_jiffies(hba->dev_info.rtc_update_period)); 8233 } 8234 8235 static void ufs_init_rtc(struct ufs_hba *hba, u8 *desc_buf) 8236 { 8237 u16 periodic_rtc_update = get_unaligned_be16(&desc_buf[DEVICE_DESC_PARAM_FRQ_RTC]); 8238 struct ufs_dev_info *dev_info = &hba->dev_info; 8239 8240 if (periodic_rtc_update & UFS_RTC_TIME_BASELINE) { 8241 dev_info->rtc_type = UFS_RTC_ABSOLUTE; 8242 8243 /* 8244 * The concept of measuring time in Linux as the number of seconds elapsed since 8245 * 00:00:00 UTC on January 1, 1970, and UFS ABS RTC is elapsed from January 1st 8246 * 2010 00:00, here we need to adjust ABS baseline. 8247 */ 8248 dev_info->rtc_time_baseline = mktime64(2010, 1, 1, 0, 0, 0) - 8249 mktime64(1970, 1, 1, 0, 0, 0); 8250 } else { 8251 dev_info->rtc_type = UFS_RTC_RELATIVE; 8252 dev_info->rtc_time_baseline = 0; 8253 } 8254 8255 /* 8256 * We ignore TIME_PERIOD defined in wPeriodicRTCUpdate because Spec does not clearly state 8257 * how to calculate the specific update period for each time unit. And we disable periodic 8258 * RTC update work, let user configure by sysfs node according to specific circumstance. 8259 */ 8260 dev_info->rtc_update_period = 0; 8261 } 8262 8263 static int ufs_get_device_desc(struct ufs_hba *hba) 8264 { 8265 int err; 8266 u8 model_index; 8267 u8 *desc_buf; 8268 struct ufs_dev_info *dev_info = &hba->dev_info; 8269 8270 desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL); 8271 if (!desc_buf) { 8272 err = -ENOMEM; 8273 goto out; 8274 } 8275 8276 err = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_DEVICE, 0, 0, desc_buf, 8277 QUERY_DESC_MAX_SIZE); 8278 if (err) { 8279 dev_err(hba->dev, "%s: Failed reading Device Desc. err = %d\n", 8280 __func__, err); 8281 goto out; 8282 } 8283 8284 /* 8285 * getting vendor (manufacturerID) and Bank Index in big endian 8286 * format 8287 */ 8288 dev_info->wmanufacturerid = desc_buf[DEVICE_DESC_PARAM_MANF_ID] << 8 | 8289 desc_buf[DEVICE_DESC_PARAM_MANF_ID + 1]; 8290 8291 /* getting Specification Version in big endian format */ 8292 dev_info->wspecversion = desc_buf[DEVICE_DESC_PARAM_SPEC_VER] << 8 | 8293 desc_buf[DEVICE_DESC_PARAM_SPEC_VER + 1]; 8294 dev_info->bqueuedepth = desc_buf[DEVICE_DESC_PARAM_Q_DPTH]; 8295 8296 dev_info->rtt_cap = desc_buf[DEVICE_DESC_PARAM_RTT_CAP]; 8297 8298 model_index = desc_buf[DEVICE_DESC_PARAM_PRDCT_NAME]; 8299 8300 err = ufshcd_read_string_desc(hba, model_index, 8301 &dev_info->model, SD_ASCII_STD); 8302 if (err < 0) { 8303 dev_err(hba->dev, "%s: Failed reading Product Name. err = %d\n", 8304 __func__, err); 8305 goto out; 8306 } 8307 8308 hba->luns_avail = desc_buf[DEVICE_DESC_PARAM_NUM_LU] + 8309 desc_buf[DEVICE_DESC_PARAM_NUM_WLU]; 8310 8311 ufs_fixup_device_setup(hba); 8312 8313 ufshcd_wb_probe(hba, desc_buf); 8314 8315 ufshcd_temp_notif_probe(hba, desc_buf); 8316 8317 ufs_init_rtc(hba, desc_buf); 8318 8319 if (hba->ext_iid_sup) 8320 ufshcd_ext_iid_probe(hba, desc_buf); 8321 8322 /* 8323 * ufshcd_read_string_desc returns size of the string 8324 * reset the error value 8325 */ 8326 err = 0; 8327 8328 out: 8329 kfree(desc_buf); 8330 return err; 8331 } 8332 8333 static void ufs_put_device_desc(struct ufs_hba *hba) 8334 { 8335 struct ufs_dev_info *dev_info = &hba->dev_info; 8336 8337 kfree(dev_info->model); 8338 dev_info->model = NULL; 8339 } 8340 8341 /** 8342 * ufshcd_quirk_tune_host_pa_tactivate - Ensures that host PA_TACTIVATE is 8343 * less than device PA_TACTIVATE time. 8344 * @hba: per-adapter instance 8345 * 8346 * Some UFS devices require host PA_TACTIVATE to be lower than device 8347 * PA_TACTIVATE, we need to enable UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE quirk 8348 * for such devices. 8349 * 8350 * Return: zero on success, non-zero error value on failure. 8351 */ 8352 static int ufshcd_quirk_tune_host_pa_tactivate(struct ufs_hba *hba) 8353 { 8354 int ret = 0; 8355 u32 granularity, peer_granularity; 8356 u32 pa_tactivate, peer_pa_tactivate; 8357 u32 pa_tactivate_us, peer_pa_tactivate_us; 8358 static const u8 gran_to_us_table[] = {1, 4, 8, 16, 32, 100}; 8359 8360 ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_GRANULARITY), 8361 &granularity); 8362 if (ret) 8363 goto out; 8364 8365 ret = ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_GRANULARITY), 8366 &peer_granularity); 8367 if (ret) 8368 goto out; 8369 8370 if ((granularity < PA_GRANULARITY_MIN_VAL) || 8371 (granularity > PA_GRANULARITY_MAX_VAL)) { 8372 dev_err(hba->dev, "%s: invalid host PA_GRANULARITY %d", 8373 __func__, granularity); 8374 return -EINVAL; 8375 } 8376 8377 if ((peer_granularity < PA_GRANULARITY_MIN_VAL) || 8378 (peer_granularity > PA_GRANULARITY_MAX_VAL)) { 8379 dev_err(hba->dev, "%s: invalid device PA_GRANULARITY %d", 8380 __func__, peer_granularity); 8381 return -EINVAL; 8382 } 8383 8384 ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_TACTIVATE), &pa_tactivate); 8385 if (ret) 8386 goto out; 8387 8388 ret = ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_TACTIVATE), 8389 &peer_pa_tactivate); 8390 if (ret) 8391 goto out; 8392 8393 pa_tactivate_us = pa_tactivate * gran_to_us_table[granularity - 1]; 8394 peer_pa_tactivate_us = peer_pa_tactivate * 8395 gran_to_us_table[peer_granularity - 1]; 8396 8397 if (pa_tactivate_us >= peer_pa_tactivate_us) { 8398 u32 new_peer_pa_tactivate; 8399 8400 new_peer_pa_tactivate = pa_tactivate_us / 8401 gran_to_us_table[peer_granularity - 1]; 8402 new_peer_pa_tactivate++; 8403 ret = ufshcd_dme_peer_set(hba, UIC_ARG_MIB(PA_TACTIVATE), 8404 new_peer_pa_tactivate); 8405 } 8406 8407 out: 8408 return ret; 8409 } 8410 8411 static void ufshcd_tune_unipro_params(struct ufs_hba *hba) 8412 { 8413 ufshcd_vops_apply_dev_quirks(hba); 8414 8415 if (hba->dev_quirks & UFS_DEVICE_QUIRK_PA_TACTIVATE) 8416 /* set 1ms timeout for PA_TACTIVATE */ 8417 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TACTIVATE), 10); 8418 8419 if (hba->dev_quirks & UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE) 8420 ufshcd_quirk_tune_host_pa_tactivate(hba); 8421 } 8422 8423 static void ufshcd_clear_dbg_ufs_stats(struct ufs_hba *hba) 8424 { 8425 hba->ufs_stats.hibern8_exit_cnt = 0; 8426 hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0); 8427 hba->req_abort_count = 0; 8428 } 8429 8430 static int ufshcd_device_geo_params_init(struct ufs_hba *hba) 8431 { 8432 int err; 8433 u8 *desc_buf; 8434 8435 desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL); 8436 if (!desc_buf) { 8437 err = -ENOMEM; 8438 goto out; 8439 } 8440 8441 err = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_GEOMETRY, 0, 0, 8442 desc_buf, QUERY_DESC_MAX_SIZE); 8443 if (err) { 8444 dev_err(hba->dev, "%s: Failed reading Geometry Desc. err = %d\n", 8445 __func__, err); 8446 goto out; 8447 } 8448 8449 if (desc_buf[GEOMETRY_DESC_PARAM_MAX_NUM_LUN] == 1) 8450 hba->dev_info.max_lu_supported = 32; 8451 else if (desc_buf[GEOMETRY_DESC_PARAM_MAX_NUM_LUN] == 0) 8452 hba->dev_info.max_lu_supported = 8; 8453 8454 out: 8455 kfree(desc_buf); 8456 return err; 8457 } 8458 8459 struct ufs_ref_clk { 8460 unsigned long freq_hz; 8461 enum ufs_ref_clk_freq val; 8462 }; 8463 8464 static const struct ufs_ref_clk ufs_ref_clk_freqs[] = { 8465 {19200000, REF_CLK_FREQ_19_2_MHZ}, 8466 {26000000, REF_CLK_FREQ_26_MHZ}, 8467 {38400000, REF_CLK_FREQ_38_4_MHZ}, 8468 {52000000, REF_CLK_FREQ_52_MHZ}, 8469 {0, REF_CLK_FREQ_INVAL}, 8470 }; 8471 8472 static enum ufs_ref_clk_freq 8473 ufs_get_bref_clk_from_hz(unsigned long freq) 8474 { 8475 int i; 8476 8477 for (i = 0; ufs_ref_clk_freqs[i].freq_hz; i++) 8478 if (ufs_ref_clk_freqs[i].freq_hz == freq) 8479 return ufs_ref_clk_freqs[i].val; 8480 8481 return REF_CLK_FREQ_INVAL; 8482 } 8483 8484 void ufshcd_parse_dev_ref_clk_freq(struct ufs_hba *hba, struct clk *refclk) 8485 { 8486 unsigned long freq; 8487 8488 freq = clk_get_rate(refclk); 8489 8490 hba->dev_ref_clk_freq = 8491 ufs_get_bref_clk_from_hz(freq); 8492 8493 if (hba->dev_ref_clk_freq == REF_CLK_FREQ_INVAL) 8494 dev_err(hba->dev, 8495 "invalid ref_clk setting = %ld\n", freq); 8496 } 8497 8498 static int ufshcd_set_dev_ref_clk(struct ufs_hba *hba) 8499 { 8500 int err; 8501 u32 ref_clk; 8502 u32 freq = hba->dev_ref_clk_freq; 8503 8504 err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR, 8505 QUERY_ATTR_IDN_REF_CLK_FREQ, 0, 0, &ref_clk); 8506 8507 if (err) { 8508 dev_err(hba->dev, "failed reading bRefClkFreq. err = %d\n", 8509 err); 8510 goto out; 8511 } 8512 8513 if (ref_clk == freq) 8514 goto out; /* nothing to update */ 8515 8516 err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR, 8517 QUERY_ATTR_IDN_REF_CLK_FREQ, 0, 0, &freq); 8518 8519 if (err) { 8520 dev_err(hba->dev, "bRefClkFreq setting to %lu Hz failed\n", 8521 ufs_ref_clk_freqs[freq].freq_hz); 8522 goto out; 8523 } 8524 8525 dev_dbg(hba->dev, "bRefClkFreq setting to %lu Hz succeeded\n", 8526 ufs_ref_clk_freqs[freq].freq_hz); 8527 8528 out: 8529 return err; 8530 } 8531 8532 static int ufshcd_device_params_init(struct ufs_hba *hba) 8533 { 8534 bool flag; 8535 int ret; 8536 8537 /* Init UFS geometry descriptor related parameters */ 8538 ret = ufshcd_device_geo_params_init(hba); 8539 if (ret) 8540 goto out; 8541 8542 /* Check and apply UFS device quirks */ 8543 ret = ufs_get_device_desc(hba); 8544 if (ret) { 8545 dev_err(hba->dev, "%s: Failed getting device info. err = %d\n", 8546 __func__, ret); 8547 goto out; 8548 } 8549 8550 ufshcd_set_rtt(hba); 8551 8552 ufshcd_get_ref_clk_gating_wait(hba); 8553 8554 if (!ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_READ_FLAG, 8555 QUERY_FLAG_IDN_PWR_ON_WPE, 0, &flag)) 8556 hba->dev_info.f_power_on_wp_en = flag; 8557 8558 /* Probe maximum power mode co-supported by both UFS host and device */ 8559 if (ufshcd_get_max_pwr_mode(hba)) 8560 dev_err(hba->dev, 8561 "%s: Failed getting max supported power mode\n", 8562 __func__); 8563 out: 8564 return ret; 8565 } 8566 8567 static void ufshcd_set_timestamp_attr(struct ufs_hba *hba) 8568 { 8569 int err; 8570 struct ufs_query_req *request = NULL; 8571 struct ufs_query_res *response = NULL; 8572 struct ufs_dev_info *dev_info = &hba->dev_info; 8573 struct utp_upiu_query_v4_0 *upiu_data; 8574 8575 if (dev_info->wspecversion < 0x400) 8576 return; 8577 8578 ufshcd_dev_man_lock(hba); 8579 8580 ufshcd_init_query(hba, &request, &response, 8581 UPIU_QUERY_OPCODE_WRITE_ATTR, 8582 QUERY_ATTR_IDN_TIMESTAMP, 0, 0); 8583 8584 request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST; 8585 8586 upiu_data = (struct utp_upiu_query_v4_0 *)&request->upiu_req; 8587 8588 put_unaligned_be64(ktime_get_real_ns(), &upiu_data->osf3); 8589 8590 err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT); 8591 8592 if (err) 8593 dev_err(hba->dev, "%s: failed to set timestamp %d\n", 8594 __func__, err); 8595 8596 ufshcd_dev_man_unlock(hba); 8597 } 8598 8599 /** 8600 * ufshcd_add_lus - probe and add UFS logical units 8601 * @hba: per-adapter instance 8602 * 8603 * Return: 0 upon success; < 0 upon failure. 8604 */ 8605 static int ufshcd_add_lus(struct ufs_hba *hba) 8606 { 8607 int ret; 8608 8609 /* Add required well known logical units to scsi mid layer */ 8610 ret = ufshcd_scsi_add_wlus(hba); 8611 if (ret) 8612 goto out; 8613 8614 /* Initialize devfreq after UFS device is detected */ 8615 if (ufshcd_is_clkscaling_supported(hba)) { 8616 memcpy(&hba->clk_scaling.saved_pwr_info, 8617 &hba->pwr_info, 8618 sizeof(struct ufs_pa_layer_attr)); 8619 hba->clk_scaling.is_allowed = true; 8620 8621 ret = ufshcd_devfreq_init(hba); 8622 if (ret) 8623 goto out; 8624 8625 hba->clk_scaling.is_enabled = true; 8626 ufshcd_init_clk_scaling_sysfs(hba); 8627 } 8628 8629 ufs_bsg_probe(hba); 8630 scsi_scan_host(hba->host); 8631 8632 out: 8633 return ret; 8634 } 8635 8636 /* SDB - Single Doorbell */ 8637 static void ufshcd_release_sdb_queue(struct ufs_hba *hba, int nutrs) 8638 { 8639 size_t ucdl_size, utrdl_size; 8640 8641 ucdl_size = ufshcd_get_ucd_size(hba) * nutrs; 8642 dmam_free_coherent(hba->dev, ucdl_size, hba->ucdl_base_addr, 8643 hba->ucdl_dma_addr); 8644 8645 utrdl_size = sizeof(struct utp_transfer_req_desc) * nutrs; 8646 dmam_free_coherent(hba->dev, utrdl_size, hba->utrdl_base_addr, 8647 hba->utrdl_dma_addr); 8648 8649 devm_kfree(hba->dev, hba->lrb); 8650 } 8651 8652 static int ufshcd_alloc_mcq(struct ufs_hba *hba) 8653 { 8654 int ret; 8655 int old_nutrs = hba->nutrs; 8656 8657 ret = ufshcd_mcq_decide_queue_depth(hba); 8658 if (ret < 0) 8659 return ret; 8660 8661 hba->nutrs = ret; 8662 ret = ufshcd_mcq_init(hba); 8663 if (ret) 8664 goto err; 8665 8666 /* 8667 * Previously allocated memory for nutrs may not be enough in MCQ mode. 8668 * Number of supported tags in MCQ mode may be larger than SDB mode. 8669 */ 8670 if (hba->nutrs != old_nutrs) { 8671 ufshcd_release_sdb_queue(hba, old_nutrs); 8672 ret = ufshcd_memory_alloc(hba); 8673 if (ret) 8674 goto err; 8675 ufshcd_host_memory_configure(hba); 8676 } 8677 8678 ret = ufshcd_mcq_memory_alloc(hba); 8679 if (ret) 8680 goto err; 8681 8682 hba->host->can_queue = hba->nutrs - UFSHCD_NUM_RESERVED; 8683 hba->reserved_slot = hba->nutrs - UFSHCD_NUM_RESERVED; 8684 8685 return 0; 8686 err: 8687 hba->nutrs = old_nutrs; 8688 return ret; 8689 } 8690 8691 static void ufshcd_config_mcq(struct ufs_hba *hba) 8692 { 8693 int ret; 8694 u32 intrs; 8695 8696 ret = ufshcd_mcq_vops_config_esi(hba); 8697 dev_info(hba->dev, "ESI %sconfigured\n", ret ? "is not " : ""); 8698 8699 intrs = UFSHCD_ENABLE_MCQ_INTRS; 8700 if (hba->quirks & UFSHCD_QUIRK_MCQ_BROKEN_INTR) 8701 intrs &= ~MCQ_CQ_EVENT_STATUS; 8702 ufshcd_enable_intr(hba, intrs); 8703 ufshcd_mcq_make_queues_operational(hba); 8704 ufshcd_mcq_config_mac(hba, hba->nutrs); 8705 8706 dev_info(hba->dev, "MCQ configured, nr_queues=%d, io_queues=%d, read_queue=%d, poll_queues=%d, queue_depth=%d\n", 8707 hba->nr_hw_queues, hba->nr_queues[HCTX_TYPE_DEFAULT], 8708 hba->nr_queues[HCTX_TYPE_READ], hba->nr_queues[HCTX_TYPE_POLL], 8709 hba->nutrs); 8710 } 8711 8712 static int ufshcd_post_device_init(struct ufs_hba *hba) 8713 { 8714 int ret; 8715 8716 ufshcd_tune_unipro_params(hba); 8717 8718 /* UFS device is also active now */ 8719 ufshcd_set_ufs_dev_active(hba); 8720 ufshcd_force_reset_auto_bkops(hba); 8721 8722 ufshcd_set_timestamp_attr(hba); 8723 schedule_delayed_work(&hba->ufs_rtc_update_work, 8724 msecs_to_jiffies(UFS_RTC_UPDATE_INTERVAL_MS)); 8725 8726 if (!hba->max_pwr_info.is_valid) 8727 return 0; 8728 8729 /* 8730 * Set the right value to bRefClkFreq before attempting to 8731 * switch to HS gears. 8732 */ 8733 if (hba->dev_ref_clk_freq != REF_CLK_FREQ_INVAL) 8734 ufshcd_set_dev_ref_clk(hba); 8735 /* Gear up to HS gear. */ 8736 ret = ufshcd_config_pwr_mode(hba, &hba->max_pwr_info.info); 8737 if (ret) { 8738 dev_err(hba->dev, "%s: Failed setting power mode, err = %d\n", 8739 __func__, ret); 8740 return ret; 8741 } 8742 8743 return 0; 8744 } 8745 8746 static int ufshcd_device_init(struct ufs_hba *hba, bool init_dev_params) 8747 { 8748 int ret; 8749 struct Scsi_Host *host = hba->host; 8750 8751 hba->ufshcd_state = UFSHCD_STATE_RESET; 8752 8753 ret = ufshcd_link_startup(hba); 8754 if (ret) 8755 return ret; 8756 8757 if (hba->quirks & UFSHCD_QUIRK_SKIP_PH_CONFIGURATION) 8758 return ret; 8759 8760 /* Debug counters initialization */ 8761 ufshcd_clear_dbg_ufs_stats(hba); 8762 8763 /* UniPro link is active now */ 8764 ufshcd_set_link_active(hba); 8765 8766 /* Reconfigure MCQ upon reset */ 8767 if (hba->mcq_enabled && !init_dev_params) { 8768 ufshcd_config_mcq(hba); 8769 ufshcd_mcq_enable(hba); 8770 } 8771 8772 /* Verify device initialization by sending NOP OUT UPIU */ 8773 ret = ufshcd_verify_dev_init(hba); 8774 if (ret) 8775 return ret; 8776 8777 /* Initiate UFS initialization, and waiting until completion */ 8778 ret = ufshcd_complete_dev_init(hba); 8779 if (ret) 8780 return ret; 8781 8782 /* 8783 * Initialize UFS device parameters used by driver, these 8784 * parameters are associated with UFS descriptors. 8785 */ 8786 if (init_dev_params) { 8787 ret = ufshcd_device_params_init(hba); 8788 if (ret) 8789 return ret; 8790 if (is_mcq_supported(hba) && !hba->scsi_host_added) { 8791 ufshcd_mcq_enable(hba); 8792 ret = ufshcd_alloc_mcq(hba); 8793 if (!ret) { 8794 ufshcd_config_mcq(hba); 8795 } else { 8796 /* Continue with SDB mode */ 8797 ufshcd_mcq_disable(hba); 8798 use_mcq_mode = false; 8799 dev_err(hba->dev, "MCQ mode is disabled, err=%d\n", 8800 ret); 8801 } 8802 ret = scsi_add_host(host, hba->dev); 8803 if (ret) { 8804 dev_err(hba->dev, "scsi_add_host failed\n"); 8805 return ret; 8806 } 8807 hba->scsi_host_added = true; 8808 } else if (is_mcq_supported(hba) && 8809 hba->quirks & 8810 UFSHCD_QUIRK_REINIT_AFTER_MAX_GEAR_SWITCH) { 8811 ufshcd_config_mcq(hba); 8812 ufshcd_mcq_enable(hba); 8813 } 8814 } 8815 8816 return ufshcd_post_device_init(hba); 8817 } 8818 8819 /** 8820 * ufshcd_probe_hba - probe hba to detect device and initialize it 8821 * @hba: per-adapter instance 8822 * @init_dev_params: whether or not to call ufshcd_device_params_init(). 8823 * 8824 * Execute link-startup and verify device initialization 8825 * 8826 * Return: 0 upon success; < 0 upon failure. 8827 */ 8828 static int ufshcd_probe_hba(struct ufs_hba *hba, bool init_dev_params) 8829 { 8830 ktime_t start = ktime_get(); 8831 int ret; 8832 8833 ret = ufshcd_device_init(hba, init_dev_params); 8834 if (ret) 8835 goto out; 8836 8837 if (!hba->pm_op_in_progress && 8838 (hba->quirks & UFSHCD_QUIRK_REINIT_AFTER_MAX_GEAR_SWITCH)) { 8839 /* Reset the device and controller before doing reinit */ 8840 ufshcd_device_reset(hba); 8841 ufs_put_device_desc(hba); 8842 ufshcd_hba_stop(hba); 8843 ufshcd_vops_reinit_notify(hba); 8844 ret = ufshcd_hba_enable(hba); 8845 if (ret) { 8846 dev_err(hba->dev, "Host controller enable failed\n"); 8847 ufshcd_print_evt_hist(hba); 8848 ufshcd_print_host_state(hba); 8849 goto out; 8850 } 8851 8852 /* Reinit the device */ 8853 ret = ufshcd_device_init(hba, init_dev_params); 8854 if (ret) 8855 goto out; 8856 } 8857 8858 ufshcd_print_pwr_info(hba); 8859 8860 /* 8861 * bActiveICCLevel is volatile for UFS device (as per latest v2.1 spec) 8862 * and for removable UFS card as well, hence always set the parameter. 8863 * Note: Error handler may issue the device reset hence resetting 8864 * bActiveICCLevel as well so it is always safe to set this here. 8865 */ 8866 ufshcd_set_active_icc_lvl(hba); 8867 8868 /* Enable UFS Write Booster if supported */ 8869 ufshcd_configure_wb(hba); 8870 8871 if (hba->ee_usr_mask) 8872 ufshcd_write_ee_control(hba); 8873 ufshcd_configure_auto_hibern8(hba); 8874 8875 out: 8876 ufshcd_process_probe_result(hba, start, ret); 8877 return ret; 8878 } 8879 8880 /** 8881 * ufshcd_async_scan - asynchronous execution for probing hba 8882 * @data: data pointer to pass to this function 8883 * @cookie: cookie data 8884 */ 8885 static void ufshcd_async_scan(void *data, async_cookie_t cookie) 8886 { 8887 struct ufs_hba *hba = (struct ufs_hba *)data; 8888 int ret; 8889 8890 down(&hba->host_sem); 8891 /* Initialize hba, detect and initialize UFS device */ 8892 ret = ufshcd_probe_hba(hba, true); 8893 up(&hba->host_sem); 8894 if (ret) 8895 goto out; 8896 8897 /* Probe and add UFS logical units */ 8898 ret = ufshcd_add_lus(hba); 8899 8900 out: 8901 pm_runtime_put_sync(hba->dev); 8902 8903 if (ret) 8904 dev_err(hba->dev, "%s failed: %d\n", __func__, ret); 8905 } 8906 8907 static enum scsi_timeout_action ufshcd_eh_timed_out(struct scsi_cmnd *scmd) 8908 { 8909 struct ufs_hba *hba = shost_priv(scmd->device->host); 8910 8911 if (!hba->system_suspending) { 8912 /* Activate the error handler in the SCSI core. */ 8913 return SCSI_EH_NOT_HANDLED; 8914 } 8915 8916 /* 8917 * If we get here we know that no TMFs are outstanding and also that 8918 * the only pending command is a START STOP UNIT command. Handle the 8919 * timeout of that command directly to prevent a deadlock between 8920 * ufshcd_set_dev_pwr_mode() and ufshcd_err_handler(). 8921 */ 8922 ufshcd_link_recovery(hba); 8923 dev_info(hba->dev, "%s() finished; outstanding_tasks = %#lx.\n", 8924 __func__, hba->outstanding_tasks); 8925 8926 return hba->outstanding_reqs ? SCSI_EH_RESET_TIMER : SCSI_EH_DONE; 8927 } 8928 8929 static const struct attribute_group *ufshcd_driver_groups[] = { 8930 &ufs_sysfs_unit_descriptor_group, 8931 &ufs_sysfs_lun_attributes_group, 8932 NULL, 8933 }; 8934 8935 static struct ufs_hba_variant_params ufs_hba_vps = { 8936 .hba_enable_delay_us = 1000, 8937 .wb_flush_threshold = UFS_WB_BUF_REMAIN_PERCENT(40), 8938 .devfreq_profile.polling_ms = 100, 8939 .devfreq_profile.target = ufshcd_devfreq_target, 8940 .devfreq_profile.get_dev_status = ufshcd_devfreq_get_dev_status, 8941 .ondemand_data.upthreshold = 70, 8942 .ondemand_data.downdifferential = 5, 8943 }; 8944 8945 static const struct scsi_host_template ufshcd_driver_template = { 8946 .module = THIS_MODULE, 8947 .name = UFSHCD, 8948 .proc_name = UFSHCD, 8949 .map_queues = ufshcd_map_queues, 8950 .queuecommand = ufshcd_queuecommand, 8951 .mq_poll = ufshcd_poll, 8952 .slave_alloc = ufshcd_slave_alloc, 8953 .device_configure = ufshcd_device_configure, 8954 .slave_destroy = ufshcd_slave_destroy, 8955 .change_queue_depth = ufshcd_change_queue_depth, 8956 .eh_abort_handler = ufshcd_abort, 8957 .eh_device_reset_handler = ufshcd_eh_device_reset_handler, 8958 .eh_host_reset_handler = ufshcd_eh_host_reset_handler, 8959 .eh_timed_out = ufshcd_eh_timed_out, 8960 .this_id = -1, 8961 .sg_tablesize = SG_ALL, 8962 .max_segment_size = PRDT_DATA_BYTE_COUNT_MAX, 8963 .max_sectors = SZ_1M / SECTOR_SIZE, 8964 .max_host_blocked = 1, 8965 .track_queue_depth = 1, 8966 .skip_settle_delay = 1, 8967 .sdev_groups = ufshcd_driver_groups, 8968 }; 8969 8970 static int ufshcd_config_vreg_load(struct device *dev, struct ufs_vreg *vreg, 8971 int ua) 8972 { 8973 int ret; 8974 8975 if (!vreg) 8976 return 0; 8977 8978 /* 8979 * "set_load" operation shall be required on those regulators 8980 * which specifically configured current limitation. Otherwise 8981 * zero max_uA may cause unexpected behavior when regulator is 8982 * enabled or set as high power mode. 8983 */ 8984 if (!vreg->max_uA) 8985 return 0; 8986 8987 ret = regulator_set_load(vreg->reg, ua); 8988 if (ret < 0) { 8989 dev_err(dev, "%s: %s set load (ua=%d) failed, err=%d\n", 8990 __func__, vreg->name, ua, ret); 8991 } 8992 8993 return ret; 8994 } 8995 8996 static inline int ufshcd_config_vreg_lpm(struct ufs_hba *hba, 8997 struct ufs_vreg *vreg) 8998 { 8999 return ufshcd_config_vreg_load(hba->dev, vreg, UFS_VREG_LPM_LOAD_UA); 9000 } 9001 9002 static inline int ufshcd_config_vreg_hpm(struct ufs_hba *hba, 9003 struct ufs_vreg *vreg) 9004 { 9005 if (!vreg) 9006 return 0; 9007 9008 return ufshcd_config_vreg_load(hba->dev, vreg, vreg->max_uA); 9009 } 9010 9011 static int ufshcd_config_vreg(struct device *dev, 9012 struct ufs_vreg *vreg, bool on) 9013 { 9014 if (regulator_count_voltages(vreg->reg) <= 0) 9015 return 0; 9016 9017 return ufshcd_config_vreg_load(dev, vreg, on ? vreg->max_uA : 0); 9018 } 9019 9020 static int ufshcd_enable_vreg(struct device *dev, struct ufs_vreg *vreg) 9021 { 9022 int ret = 0; 9023 9024 if (!vreg || vreg->enabled) 9025 goto out; 9026 9027 ret = ufshcd_config_vreg(dev, vreg, true); 9028 if (!ret) 9029 ret = regulator_enable(vreg->reg); 9030 9031 if (!ret) 9032 vreg->enabled = true; 9033 else 9034 dev_err(dev, "%s: %s enable failed, err=%d\n", 9035 __func__, vreg->name, ret); 9036 out: 9037 return ret; 9038 } 9039 9040 static int ufshcd_disable_vreg(struct device *dev, struct ufs_vreg *vreg) 9041 { 9042 int ret = 0; 9043 9044 if (!vreg || !vreg->enabled || vreg->always_on) 9045 goto out; 9046 9047 ret = regulator_disable(vreg->reg); 9048 9049 if (!ret) { 9050 /* ignore errors on applying disable config */ 9051 ufshcd_config_vreg(dev, vreg, false); 9052 vreg->enabled = false; 9053 } else { 9054 dev_err(dev, "%s: %s disable failed, err=%d\n", 9055 __func__, vreg->name, ret); 9056 } 9057 out: 9058 return ret; 9059 } 9060 9061 static int ufshcd_setup_vreg(struct ufs_hba *hba, bool on) 9062 { 9063 int ret = 0; 9064 struct device *dev = hba->dev; 9065 struct ufs_vreg_info *info = &hba->vreg_info; 9066 9067 ret = ufshcd_toggle_vreg(dev, info->vcc, on); 9068 if (ret) 9069 goto out; 9070 9071 ret = ufshcd_toggle_vreg(dev, info->vccq, on); 9072 if (ret) 9073 goto out; 9074 9075 ret = ufshcd_toggle_vreg(dev, info->vccq2, on); 9076 9077 out: 9078 if (ret) { 9079 ufshcd_toggle_vreg(dev, info->vccq2, false); 9080 ufshcd_toggle_vreg(dev, info->vccq, false); 9081 ufshcd_toggle_vreg(dev, info->vcc, false); 9082 } 9083 return ret; 9084 } 9085 9086 static int ufshcd_setup_hba_vreg(struct ufs_hba *hba, bool on) 9087 { 9088 struct ufs_vreg_info *info = &hba->vreg_info; 9089 9090 return ufshcd_toggle_vreg(hba->dev, info->vdd_hba, on); 9091 } 9092 9093 int ufshcd_get_vreg(struct device *dev, struct ufs_vreg *vreg) 9094 { 9095 int ret = 0; 9096 9097 if (!vreg) 9098 goto out; 9099 9100 vreg->reg = devm_regulator_get(dev, vreg->name); 9101 if (IS_ERR(vreg->reg)) { 9102 ret = PTR_ERR(vreg->reg); 9103 dev_err(dev, "%s: %s get failed, err=%d\n", 9104 __func__, vreg->name, ret); 9105 } 9106 out: 9107 return ret; 9108 } 9109 EXPORT_SYMBOL_GPL(ufshcd_get_vreg); 9110 9111 static int ufshcd_init_vreg(struct ufs_hba *hba) 9112 { 9113 int ret = 0; 9114 struct device *dev = hba->dev; 9115 struct ufs_vreg_info *info = &hba->vreg_info; 9116 9117 ret = ufshcd_get_vreg(dev, info->vcc); 9118 if (ret) 9119 goto out; 9120 9121 ret = ufshcd_get_vreg(dev, info->vccq); 9122 if (!ret) 9123 ret = ufshcd_get_vreg(dev, info->vccq2); 9124 out: 9125 return ret; 9126 } 9127 9128 static int ufshcd_init_hba_vreg(struct ufs_hba *hba) 9129 { 9130 struct ufs_vreg_info *info = &hba->vreg_info; 9131 9132 return ufshcd_get_vreg(hba->dev, info->vdd_hba); 9133 } 9134 9135 static int ufshcd_setup_clocks(struct ufs_hba *hba, bool on) 9136 { 9137 int ret = 0; 9138 struct ufs_clk_info *clki; 9139 struct list_head *head = &hba->clk_list_head; 9140 unsigned long flags; 9141 ktime_t start = ktime_get(); 9142 bool clk_state_changed = false; 9143 9144 if (list_empty(head)) 9145 goto out; 9146 9147 ret = ufshcd_vops_setup_clocks(hba, on, PRE_CHANGE); 9148 if (ret) 9149 return ret; 9150 9151 list_for_each_entry(clki, head, list) { 9152 if (!IS_ERR_OR_NULL(clki->clk)) { 9153 /* 9154 * Don't disable clocks which are needed 9155 * to keep the link active. 9156 */ 9157 if (ufshcd_is_link_active(hba) && 9158 clki->keep_link_active) 9159 continue; 9160 9161 clk_state_changed = on ^ clki->enabled; 9162 if (on && !clki->enabled) { 9163 ret = clk_prepare_enable(clki->clk); 9164 if (ret) { 9165 dev_err(hba->dev, "%s: %s prepare enable failed, %d\n", 9166 __func__, clki->name, ret); 9167 goto out; 9168 } 9169 } else if (!on && clki->enabled) { 9170 clk_disable_unprepare(clki->clk); 9171 } 9172 clki->enabled = on; 9173 dev_dbg(hba->dev, "%s: clk: %s %sabled\n", __func__, 9174 clki->name, on ? "en" : "dis"); 9175 } 9176 } 9177 9178 ret = ufshcd_vops_setup_clocks(hba, on, POST_CHANGE); 9179 if (ret) 9180 return ret; 9181 9182 if (!ufshcd_is_clkscaling_supported(hba)) 9183 ufshcd_pm_qos_update(hba, on); 9184 out: 9185 if (ret) { 9186 list_for_each_entry(clki, head, list) { 9187 if (!IS_ERR_OR_NULL(clki->clk) && clki->enabled) 9188 clk_disable_unprepare(clki->clk); 9189 } 9190 } else if (!ret && on) { 9191 spin_lock_irqsave(hba->host->host_lock, flags); 9192 hba->clk_gating.state = CLKS_ON; 9193 trace_ufshcd_clk_gating(dev_name(hba->dev), 9194 hba->clk_gating.state); 9195 spin_unlock_irqrestore(hba->host->host_lock, flags); 9196 } 9197 9198 if (clk_state_changed) 9199 trace_ufshcd_profile_clk_gating(dev_name(hba->dev), 9200 (on ? "on" : "off"), 9201 ktime_to_us(ktime_sub(ktime_get(), start)), ret); 9202 return ret; 9203 } 9204 9205 static enum ufs_ref_clk_freq ufshcd_parse_ref_clk_property(struct ufs_hba *hba) 9206 { 9207 u32 freq; 9208 int ret = device_property_read_u32(hba->dev, "ref-clk-freq", &freq); 9209 9210 if (ret) { 9211 dev_dbg(hba->dev, "Cannot query 'ref-clk-freq' property = %d", ret); 9212 return REF_CLK_FREQ_INVAL; 9213 } 9214 9215 return ufs_get_bref_clk_from_hz(freq); 9216 } 9217 9218 static int ufshcd_init_clocks(struct ufs_hba *hba) 9219 { 9220 int ret = 0; 9221 struct ufs_clk_info *clki; 9222 struct device *dev = hba->dev; 9223 struct list_head *head = &hba->clk_list_head; 9224 9225 if (list_empty(head)) 9226 goto out; 9227 9228 list_for_each_entry(clki, head, list) { 9229 if (!clki->name) 9230 continue; 9231 9232 clki->clk = devm_clk_get(dev, clki->name); 9233 if (IS_ERR(clki->clk)) { 9234 ret = PTR_ERR(clki->clk); 9235 dev_err(dev, "%s: %s clk get failed, %d\n", 9236 __func__, clki->name, ret); 9237 goto out; 9238 } 9239 9240 /* 9241 * Parse device ref clk freq as per device tree "ref_clk". 9242 * Default dev_ref_clk_freq is set to REF_CLK_FREQ_INVAL 9243 * in ufshcd_alloc_host(). 9244 */ 9245 if (!strcmp(clki->name, "ref_clk")) 9246 ufshcd_parse_dev_ref_clk_freq(hba, clki->clk); 9247 9248 if (clki->max_freq) { 9249 ret = clk_set_rate(clki->clk, clki->max_freq); 9250 if (ret) { 9251 dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n", 9252 __func__, clki->name, 9253 clki->max_freq, ret); 9254 goto out; 9255 } 9256 clki->curr_freq = clki->max_freq; 9257 } 9258 dev_dbg(dev, "%s: clk: %s, rate: %lu\n", __func__, 9259 clki->name, clk_get_rate(clki->clk)); 9260 } 9261 9262 /* Set Max. frequency for all clocks */ 9263 if (hba->use_pm_opp) { 9264 ret = ufshcd_opp_set_rate(hba, ULONG_MAX); 9265 if (ret) { 9266 dev_err(hba->dev, "%s: failed to set OPP: %d", __func__, 9267 ret); 9268 goto out; 9269 } 9270 } 9271 9272 out: 9273 return ret; 9274 } 9275 9276 static int ufshcd_variant_hba_init(struct ufs_hba *hba) 9277 { 9278 int err = 0; 9279 9280 if (!hba->vops) 9281 goto out; 9282 9283 err = ufshcd_vops_init(hba); 9284 if (err) 9285 dev_err_probe(hba->dev, err, 9286 "%s: variant %s init failed with err %d\n", 9287 __func__, ufshcd_get_var_name(hba), err); 9288 out: 9289 return err; 9290 } 9291 9292 static void ufshcd_variant_hba_exit(struct ufs_hba *hba) 9293 { 9294 if (!hba->vops) 9295 return; 9296 9297 ufshcd_vops_exit(hba); 9298 } 9299 9300 static int ufshcd_hba_init(struct ufs_hba *hba) 9301 { 9302 int err; 9303 9304 /* 9305 * Handle host controller power separately from the UFS device power 9306 * rails as it will help controlling the UFS host controller power 9307 * collapse easily which is different than UFS device power collapse. 9308 * Also, enable the host controller power before we go ahead with rest 9309 * of the initialization here. 9310 */ 9311 err = ufshcd_init_hba_vreg(hba); 9312 if (err) 9313 goto out; 9314 9315 err = ufshcd_setup_hba_vreg(hba, true); 9316 if (err) 9317 goto out; 9318 9319 err = ufshcd_init_clocks(hba); 9320 if (err) 9321 goto out_disable_hba_vreg; 9322 9323 if (hba->dev_ref_clk_freq == REF_CLK_FREQ_INVAL) 9324 hba->dev_ref_clk_freq = ufshcd_parse_ref_clk_property(hba); 9325 9326 err = ufshcd_setup_clocks(hba, true); 9327 if (err) 9328 goto out_disable_hba_vreg; 9329 9330 err = ufshcd_init_vreg(hba); 9331 if (err) 9332 goto out_disable_clks; 9333 9334 err = ufshcd_setup_vreg(hba, true); 9335 if (err) 9336 goto out_disable_clks; 9337 9338 err = ufshcd_variant_hba_init(hba); 9339 if (err) 9340 goto out_disable_vreg; 9341 9342 ufs_debugfs_hba_init(hba); 9343 ufs_fault_inject_hba_init(hba); 9344 9345 hba->is_powered = true; 9346 goto out; 9347 9348 out_disable_vreg: 9349 ufshcd_setup_vreg(hba, false); 9350 out_disable_clks: 9351 ufshcd_setup_clocks(hba, false); 9352 out_disable_hba_vreg: 9353 ufshcd_setup_hba_vreg(hba, false); 9354 out: 9355 return err; 9356 } 9357 9358 static void ufshcd_hba_exit(struct ufs_hba *hba) 9359 { 9360 if (hba->is_powered) { 9361 ufshcd_pm_qos_exit(hba); 9362 ufshcd_exit_clk_scaling(hba); 9363 ufshcd_exit_clk_gating(hba); 9364 if (hba->eh_wq) 9365 destroy_workqueue(hba->eh_wq); 9366 ufs_debugfs_hba_exit(hba); 9367 ufshcd_variant_hba_exit(hba); 9368 ufshcd_setup_vreg(hba, false); 9369 ufshcd_setup_clocks(hba, false); 9370 ufshcd_setup_hba_vreg(hba, false); 9371 hba->is_powered = false; 9372 ufs_put_device_desc(hba); 9373 } 9374 } 9375 9376 static int ufshcd_execute_start_stop(struct scsi_device *sdev, 9377 enum ufs_dev_pwr_mode pwr_mode, 9378 struct scsi_sense_hdr *sshdr) 9379 { 9380 const unsigned char cdb[6] = { START_STOP, 0, 0, 0, pwr_mode << 4, 0 }; 9381 struct scsi_failure failure_defs[] = { 9382 { 9383 .allowed = 2, 9384 .result = SCMD_FAILURE_RESULT_ANY, 9385 }, 9386 }; 9387 struct scsi_failures failures = { 9388 .failure_definitions = failure_defs, 9389 }; 9390 const struct scsi_exec_args args = { 9391 .failures = &failures, 9392 .sshdr = sshdr, 9393 .req_flags = BLK_MQ_REQ_PM, 9394 .scmd_flags = SCMD_FAIL_IF_RECOVERING, 9395 }; 9396 9397 return scsi_execute_cmd(sdev, cdb, REQ_OP_DRV_IN, /*buffer=*/NULL, 9398 /*bufflen=*/0, /*timeout=*/10 * HZ, /*retries=*/0, 9399 &args); 9400 } 9401 9402 /** 9403 * ufshcd_set_dev_pwr_mode - sends START STOP UNIT command to set device 9404 * power mode 9405 * @hba: per adapter instance 9406 * @pwr_mode: device power mode to set 9407 * 9408 * Return: 0 if requested power mode is set successfully; 9409 * < 0 if failed to set the requested power mode. 9410 */ 9411 static int ufshcd_set_dev_pwr_mode(struct ufs_hba *hba, 9412 enum ufs_dev_pwr_mode pwr_mode) 9413 { 9414 struct scsi_sense_hdr sshdr; 9415 struct scsi_device *sdp; 9416 unsigned long flags; 9417 int ret; 9418 9419 spin_lock_irqsave(hba->host->host_lock, flags); 9420 sdp = hba->ufs_device_wlun; 9421 if (sdp && scsi_device_online(sdp)) 9422 ret = scsi_device_get(sdp); 9423 else 9424 ret = -ENODEV; 9425 spin_unlock_irqrestore(hba->host->host_lock, flags); 9426 9427 if (ret) 9428 return ret; 9429 9430 /* 9431 * If scsi commands fail, the scsi mid-layer schedules scsi error- 9432 * handling, which would wait for host to be resumed. Since we know 9433 * we are functional while we are here, skip host resume in error 9434 * handling context. 9435 */ 9436 hba->host->eh_noresume = 1; 9437 9438 /* 9439 * Current function would be generally called from the power management 9440 * callbacks hence set the RQF_PM flag so that it doesn't resume the 9441 * already suspended childs. 9442 */ 9443 ret = ufshcd_execute_start_stop(sdp, pwr_mode, &sshdr); 9444 if (ret) { 9445 sdev_printk(KERN_WARNING, sdp, 9446 "START_STOP failed for power mode: %d, result %x\n", 9447 pwr_mode, ret); 9448 if (ret > 0) { 9449 if (scsi_sense_valid(&sshdr)) 9450 scsi_print_sense_hdr(sdp, NULL, &sshdr); 9451 ret = -EIO; 9452 } 9453 } else { 9454 hba->curr_dev_pwr_mode = pwr_mode; 9455 } 9456 9457 scsi_device_put(sdp); 9458 hba->host->eh_noresume = 0; 9459 return ret; 9460 } 9461 9462 static int ufshcd_link_state_transition(struct ufs_hba *hba, 9463 enum uic_link_state req_link_state, 9464 bool check_for_bkops) 9465 { 9466 int ret = 0; 9467 9468 if (req_link_state == hba->uic_link_state) 9469 return 0; 9470 9471 if (req_link_state == UIC_LINK_HIBERN8_STATE) { 9472 ret = ufshcd_uic_hibern8_enter(hba); 9473 if (!ret) { 9474 ufshcd_set_link_hibern8(hba); 9475 } else { 9476 dev_err(hba->dev, "%s: hibern8 enter failed %d\n", 9477 __func__, ret); 9478 goto out; 9479 } 9480 } 9481 /* 9482 * If autobkops is enabled, link can't be turned off because 9483 * turning off the link would also turn off the device, except in the 9484 * case of DeepSleep where the device is expected to remain powered. 9485 */ 9486 else if ((req_link_state == UIC_LINK_OFF_STATE) && 9487 (!check_for_bkops || !hba->auto_bkops_enabled)) { 9488 /* 9489 * Let's make sure that link is in low power mode, we are doing 9490 * this currently by putting the link in Hibern8. Otherway to 9491 * put the link in low power mode is to send the DME end point 9492 * to device and then send the DME reset command to local 9493 * unipro. But putting the link in hibern8 is much faster. 9494 * 9495 * Note also that putting the link in Hibern8 is a requirement 9496 * for entering DeepSleep. 9497 */ 9498 ret = ufshcd_uic_hibern8_enter(hba); 9499 if (ret) { 9500 dev_err(hba->dev, "%s: hibern8 enter failed %d\n", 9501 __func__, ret); 9502 goto out; 9503 } 9504 /* 9505 * Change controller state to "reset state" which 9506 * should also put the link in off/reset state 9507 */ 9508 ufshcd_hba_stop(hba); 9509 /* 9510 * TODO: Check if we need any delay to make sure that 9511 * controller is reset 9512 */ 9513 ufshcd_set_link_off(hba); 9514 } 9515 9516 out: 9517 return ret; 9518 } 9519 9520 static void ufshcd_vreg_set_lpm(struct ufs_hba *hba) 9521 { 9522 bool vcc_off = false; 9523 9524 /* 9525 * It seems some UFS devices may keep drawing more than sleep current 9526 * (atleast for 500us) from UFS rails (especially from VCCQ rail). 9527 * To avoid this situation, add 2ms delay before putting these UFS 9528 * rails in LPM mode. 9529 */ 9530 if (!ufshcd_is_link_active(hba) && 9531 hba->dev_quirks & UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM) 9532 usleep_range(2000, 2100); 9533 9534 /* 9535 * If UFS device is either in UFS_Sleep turn off VCC rail to save some 9536 * power. 9537 * 9538 * If UFS device and link is in OFF state, all power supplies (VCC, 9539 * VCCQ, VCCQ2) can be turned off if power on write protect is not 9540 * required. If UFS link is inactive (Hibern8 or OFF state) and device 9541 * is in sleep state, put VCCQ & VCCQ2 rails in LPM mode. 9542 * 9543 * Ignore the error returned by ufshcd_toggle_vreg() as device is anyway 9544 * in low power state which would save some power. 9545 * 9546 * If Write Booster is enabled and the device needs to flush the WB 9547 * buffer OR if bkops status is urgent for WB, keep Vcc on. 9548 */ 9549 if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba) && 9550 !hba->dev_info.is_lu_power_on_wp) { 9551 ufshcd_setup_vreg(hba, false); 9552 vcc_off = true; 9553 } else if (!ufshcd_is_ufs_dev_active(hba)) { 9554 ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, false); 9555 vcc_off = true; 9556 if (ufshcd_is_link_hibern8(hba) || ufshcd_is_link_off(hba)) { 9557 ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq); 9558 ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq2); 9559 } 9560 } 9561 9562 /* 9563 * Some UFS devices require delay after VCC power rail is turned-off. 9564 */ 9565 if (vcc_off && hba->vreg_info.vcc && 9566 hba->dev_quirks & UFS_DEVICE_QUIRK_DELAY_AFTER_LPM) 9567 usleep_range(5000, 5100); 9568 } 9569 9570 #ifdef CONFIG_PM 9571 static int ufshcd_vreg_set_hpm(struct ufs_hba *hba) 9572 { 9573 int ret = 0; 9574 9575 if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba) && 9576 !hba->dev_info.is_lu_power_on_wp) { 9577 ret = ufshcd_setup_vreg(hba, true); 9578 } else if (!ufshcd_is_ufs_dev_active(hba)) { 9579 if (!ufshcd_is_link_active(hba)) { 9580 ret = ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq); 9581 if (ret) 9582 goto vcc_disable; 9583 ret = ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq2); 9584 if (ret) 9585 goto vccq_lpm; 9586 } 9587 ret = ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, true); 9588 } 9589 goto out; 9590 9591 vccq_lpm: 9592 ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq); 9593 vcc_disable: 9594 ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, false); 9595 out: 9596 return ret; 9597 } 9598 #endif /* CONFIG_PM */ 9599 9600 static void ufshcd_hba_vreg_set_lpm(struct ufs_hba *hba) 9601 { 9602 if (ufshcd_is_link_off(hba) || ufshcd_can_aggressive_pc(hba)) 9603 ufshcd_setup_hba_vreg(hba, false); 9604 } 9605 9606 static void ufshcd_hba_vreg_set_hpm(struct ufs_hba *hba) 9607 { 9608 if (ufshcd_is_link_off(hba) || ufshcd_can_aggressive_pc(hba)) 9609 ufshcd_setup_hba_vreg(hba, true); 9610 } 9611 9612 static int __ufshcd_wl_suspend(struct ufs_hba *hba, enum ufs_pm_op pm_op) 9613 { 9614 int ret = 0; 9615 bool check_for_bkops; 9616 enum ufs_pm_level pm_lvl; 9617 enum ufs_dev_pwr_mode req_dev_pwr_mode; 9618 enum uic_link_state req_link_state; 9619 9620 hba->pm_op_in_progress = true; 9621 if (pm_op != UFS_SHUTDOWN_PM) { 9622 pm_lvl = pm_op == UFS_RUNTIME_PM ? 9623 hba->rpm_lvl : hba->spm_lvl; 9624 req_dev_pwr_mode = ufs_get_pm_lvl_to_dev_pwr_mode(pm_lvl); 9625 req_link_state = ufs_get_pm_lvl_to_link_pwr_state(pm_lvl); 9626 } else { 9627 req_dev_pwr_mode = UFS_POWERDOWN_PWR_MODE; 9628 req_link_state = UIC_LINK_OFF_STATE; 9629 } 9630 9631 /* 9632 * If we can't transition into any of the low power modes 9633 * just gate the clocks. 9634 */ 9635 ufshcd_hold(hba); 9636 hba->clk_gating.is_suspended = true; 9637 9638 if (ufshcd_is_clkscaling_supported(hba)) 9639 ufshcd_clk_scaling_suspend(hba, true); 9640 9641 if (req_dev_pwr_mode == UFS_ACTIVE_PWR_MODE && 9642 req_link_state == UIC_LINK_ACTIVE_STATE) { 9643 goto vops_suspend; 9644 } 9645 9646 if ((req_dev_pwr_mode == hba->curr_dev_pwr_mode) && 9647 (req_link_state == hba->uic_link_state)) 9648 goto enable_scaling; 9649 9650 /* UFS device & link must be active before we enter in this function */ 9651 if (!ufshcd_is_ufs_dev_active(hba) || !ufshcd_is_link_active(hba)) { 9652 /* Wait err handler finish or trigger err recovery */ 9653 if (!ufshcd_eh_in_progress(hba)) 9654 ufshcd_force_error_recovery(hba); 9655 ret = -EBUSY; 9656 goto enable_scaling; 9657 } 9658 9659 if (pm_op == UFS_RUNTIME_PM) { 9660 if (ufshcd_can_autobkops_during_suspend(hba)) { 9661 /* 9662 * The device is idle with no requests in the queue, 9663 * allow background operations if bkops status shows 9664 * that performance might be impacted. 9665 */ 9666 ret = ufshcd_bkops_ctrl(hba); 9667 if (ret) { 9668 /* 9669 * If return err in suspend flow, IO will hang. 9670 * Trigger error handler and break suspend for 9671 * error recovery. 9672 */ 9673 ufshcd_force_error_recovery(hba); 9674 ret = -EBUSY; 9675 goto enable_scaling; 9676 } 9677 } else { 9678 /* make sure that auto bkops is disabled */ 9679 ufshcd_disable_auto_bkops(hba); 9680 } 9681 /* 9682 * If device needs to do BKOP or WB buffer flush during 9683 * Hibern8, keep device power mode as "active power mode" 9684 * and VCC supply. 9685 */ 9686 hba->dev_info.b_rpm_dev_flush_capable = 9687 hba->auto_bkops_enabled || 9688 (((req_link_state == UIC_LINK_HIBERN8_STATE) || 9689 ((req_link_state == UIC_LINK_ACTIVE_STATE) && 9690 ufshcd_is_auto_hibern8_enabled(hba))) && 9691 ufshcd_wb_need_flush(hba)); 9692 } 9693 9694 flush_work(&hba->eeh_work); 9695 9696 ret = ufshcd_vops_suspend(hba, pm_op, PRE_CHANGE); 9697 if (ret) 9698 goto enable_scaling; 9699 9700 if (req_dev_pwr_mode != hba->curr_dev_pwr_mode) { 9701 if (pm_op != UFS_RUNTIME_PM) 9702 /* ensure that bkops is disabled */ 9703 ufshcd_disable_auto_bkops(hba); 9704 9705 if (!hba->dev_info.b_rpm_dev_flush_capable) { 9706 ret = ufshcd_set_dev_pwr_mode(hba, req_dev_pwr_mode); 9707 if (ret && pm_op != UFS_SHUTDOWN_PM) { 9708 /* 9709 * If return err in suspend flow, IO will hang. 9710 * Trigger error handler and break suspend for 9711 * error recovery. 9712 */ 9713 ufshcd_force_error_recovery(hba); 9714 ret = -EBUSY; 9715 } 9716 if (ret) 9717 goto enable_scaling; 9718 } 9719 } 9720 9721 /* 9722 * In the case of DeepSleep, the device is expected to remain powered 9723 * with the link off, so do not check for bkops. 9724 */ 9725 check_for_bkops = !ufshcd_is_ufs_dev_deepsleep(hba); 9726 ret = ufshcd_link_state_transition(hba, req_link_state, check_for_bkops); 9727 if (ret && pm_op != UFS_SHUTDOWN_PM) { 9728 /* 9729 * If return err in suspend flow, IO will hang. 9730 * Trigger error handler and break suspend for 9731 * error recovery. 9732 */ 9733 ufshcd_force_error_recovery(hba); 9734 ret = -EBUSY; 9735 } 9736 if (ret) 9737 goto set_dev_active; 9738 9739 vops_suspend: 9740 /* 9741 * Call vendor specific suspend callback. As these callbacks may access 9742 * vendor specific host controller register space call them before the 9743 * host clocks are ON. 9744 */ 9745 ret = ufshcd_vops_suspend(hba, pm_op, POST_CHANGE); 9746 if (ret) 9747 goto set_link_active; 9748 9749 cancel_delayed_work_sync(&hba->ufs_rtc_update_work); 9750 goto out; 9751 9752 set_link_active: 9753 /* 9754 * Device hardware reset is required to exit DeepSleep. Also, for 9755 * DeepSleep, the link is off so host reset and restore will be done 9756 * further below. 9757 */ 9758 if (ufshcd_is_ufs_dev_deepsleep(hba)) { 9759 ufshcd_device_reset(hba); 9760 WARN_ON(!ufshcd_is_link_off(hba)); 9761 } 9762 if (ufshcd_is_link_hibern8(hba) && !ufshcd_uic_hibern8_exit(hba)) 9763 ufshcd_set_link_active(hba); 9764 else if (ufshcd_is_link_off(hba)) 9765 ufshcd_host_reset_and_restore(hba); 9766 set_dev_active: 9767 /* Can also get here needing to exit DeepSleep */ 9768 if (ufshcd_is_ufs_dev_deepsleep(hba)) { 9769 ufshcd_device_reset(hba); 9770 ufshcd_host_reset_and_restore(hba); 9771 } 9772 if (!ufshcd_set_dev_pwr_mode(hba, UFS_ACTIVE_PWR_MODE)) 9773 ufshcd_disable_auto_bkops(hba); 9774 enable_scaling: 9775 if (ufshcd_is_clkscaling_supported(hba)) 9776 ufshcd_clk_scaling_suspend(hba, false); 9777 9778 hba->dev_info.b_rpm_dev_flush_capable = false; 9779 out: 9780 if (hba->dev_info.b_rpm_dev_flush_capable) { 9781 schedule_delayed_work(&hba->rpm_dev_flush_recheck_work, 9782 msecs_to_jiffies(RPM_DEV_FLUSH_RECHECK_WORK_DELAY_MS)); 9783 } 9784 9785 if (ret) { 9786 ufshcd_update_evt_hist(hba, UFS_EVT_WL_SUSP_ERR, (u32)ret); 9787 hba->clk_gating.is_suspended = false; 9788 ufshcd_release(hba); 9789 } 9790 hba->pm_op_in_progress = false; 9791 return ret; 9792 } 9793 9794 #ifdef CONFIG_PM 9795 static int __ufshcd_wl_resume(struct ufs_hba *hba, enum ufs_pm_op pm_op) 9796 { 9797 int ret; 9798 enum uic_link_state old_link_state = hba->uic_link_state; 9799 9800 hba->pm_op_in_progress = true; 9801 9802 /* 9803 * Call vendor specific resume callback. As these callbacks may access 9804 * vendor specific host controller register space call them when the 9805 * host clocks are ON. 9806 */ 9807 ret = ufshcd_vops_resume(hba, pm_op); 9808 if (ret) 9809 goto out; 9810 9811 /* For DeepSleep, the only supported option is to have the link off */ 9812 WARN_ON(ufshcd_is_ufs_dev_deepsleep(hba) && !ufshcd_is_link_off(hba)); 9813 9814 if (ufshcd_is_link_hibern8(hba)) { 9815 ret = ufshcd_uic_hibern8_exit(hba); 9816 if (!ret) { 9817 ufshcd_set_link_active(hba); 9818 } else { 9819 dev_err(hba->dev, "%s: hibern8 exit failed %d\n", 9820 __func__, ret); 9821 goto vendor_suspend; 9822 } 9823 } else if (ufshcd_is_link_off(hba)) { 9824 /* 9825 * A full initialization of the host and the device is 9826 * required since the link was put to off during suspend. 9827 * Note, in the case of DeepSleep, the device will exit 9828 * DeepSleep due to device reset. 9829 */ 9830 ret = ufshcd_reset_and_restore(hba); 9831 /* 9832 * ufshcd_reset_and_restore() should have already 9833 * set the link state as active 9834 */ 9835 if (ret || !ufshcd_is_link_active(hba)) 9836 goto vendor_suspend; 9837 } 9838 9839 if (!ufshcd_is_ufs_dev_active(hba)) { 9840 ret = ufshcd_set_dev_pwr_mode(hba, UFS_ACTIVE_PWR_MODE); 9841 if (ret) 9842 goto set_old_link_state; 9843 ufshcd_set_timestamp_attr(hba); 9844 schedule_delayed_work(&hba->ufs_rtc_update_work, 9845 msecs_to_jiffies(UFS_RTC_UPDATE_INTERVAL_MS)); 9846 } 9847 9848 if (ufshcd_keep_autobkops_enabled_except_suspend(hba)) 9849 ufshcd_enable_auto_bkops(hba); 9850 else 9851 /* 9852 * If BKOPs operations are urgently needed at this moment then 9853 * keep auto-bkops enabled or else disable it. 9854 */ 9855 ufshcd_bkops_ctrl(hba); 9856 9857 if (hba->ee_usr_mask) 9858 ufshcd_write_ee_control(hba); 9859 9860 if (ufshcd_is_clkscaling_supported(hba)) 9861 ufshcd_clk_scaling_suspend(hba, false); 9862 9863 if (hba->dev_info.b_rpm_dev_flush_capable) { 9864 hba->dev_info.b_rpm_dev_flush_capable = false; 9865 cancel_delayed_work(&hba->rpm_dev_flush_recheck_work); 9866 } 9867 9868 ufshcd_configure_auto_hibern8(hba); 9869 9870 goto out; 9871 9872 set_old_link_state: 9873 ufshcd_link_state_transition(hba, old_link_state, 0); 9874 vendor_suspend: 9875 ufshcd_vops_suspend(hba, pm_op, PRE_CHANGE); 9876 ufshcd_vops_suspend(hba, pm_op, POST_CHANGE); 9877 out: 9878 if (ret) 9879 ufshcd_update_evt_hist(hba, UFS_EVT_WL_RES_ERR, (u32)ret); 9880 hba->clk_gating.is_suspended = false; 9881 ufshcd_release(hba); 9882 hba->pm_op_in_progress = false; 9883 return ret; 9884 } 9885 9886 static int ufshcd_wl_runtime_suspend(struct device *dev) 9887 { 9888 struct scsi_device *sdev = to_scsi_device(dev); 9889 struct ufs_hba *hba; 9890 int ret; 9891 ktime_t start = ktime_get(); 9892 9893 hba = shost_priv(sdev->host); 9894 9895 ret = __ufshcd_wl_suspend(hba, UFS_RUNTIME_PM); 9896 if (ret) 9897 dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret); 9898 9899 trace_ufshcd_wl_runtime_suspend(dev_name(dev), ret, 9900 ktime_to_us(ktime_sub(ktime_get(), start)), 9901 hba->curr_dev_pwr_mode, hba->uic_link_state); 9902 9903 return ret; 9904 } 9905 9906 static int ufshcd_wl_runtime_resume(struct device *dev) 9907 { 9908 struct scsi_device *sdev = to_scsi_device(dev); 9909 struct ufs_hba *hba; 9910 int ret = 0; 9911 ktime_t start = ktime_get(); 9912 9913 hba = shost_priv(sdev->host); 9914 9915 ret = __ufshcd_wl_resume(hba, UFS_RUNTIME_PM); 9916 if (ret) 9917 dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret); 9918 9919 trace_ufshcd_wl_runtime_resume(dev_name(dev), ret, 9920 ktime_to_us(ktime_sub(ktime_get(), start)), 9921 hba->curr_dev_pwr_mode, hba->uic_link_state); 9922 9923 return ret; 9924 } 9925 #endif 9926 9927 #ifdef CONFIG_PM_SLEEP 9928 static int ufshcd_wl_suspend(struct device *dev) 9929 { 9930 struct scsi_device *sdev = to_scsi_device(dev); 9931 struct ufs_hba *hba; 9932 int ret = 0; 9933 ktime_t start = ktime_get(); 9934 9935 hba = shost_priv(sdev->host); 9936 down(&hba->host_sem); 9937 hba->system_suspending = true; 9938 9939 if (pm_runtime_suspended(dev)) 9940 goto out; 9941 9942 ret = __ufshcd_wl_suspend(hba, UFS_SYSTEM_PM); 9943 if (ret) { 9944 dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret); 9945 up(&hba->host_sem); 9946 } 9947 9948 out: 9949 if (!ret) 9950 hba->is_sys_suspended = true; 9951 trace_ufshcd_wl_suspend(dev_name(dev), ret, 9952 ktime_to_us(ktime_sub(ktime_get(), start)), 9953 hba->curr_dev_pwr_mode, hba->uic_link_state); 9954 9955 return ret; 9956 } 9957 9958 static int ufshcd_wl_resume(struct device *dev) 9959 { 9960 struct scsi_device *sdev = to_scsi_device(dev); 9961 struct ufs_hba *hba; 9962 int ret = 0; 9963 ktime_t start = ktime_get(); 9964 9965 hba = shost_priv(sdev->host); 9966 9967 if (pm_runtime_suspended(dev)) 9968 goto out; 9969 9970 ret = __ufshcd_wl_resume(hba, UFS_SYSTEM_PM); 9971 if (ret) 9972 dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret); 9973 out: 9974 trace_ufshcd_wl_resume(dev_name(dev), ret, 9975 ktime_to_us(ktime_sub(ktime_get(), start)), 9976 hba->curr_dev_pwr_mode, hba->uic_link_state); 9977 if (!ret) 9978 hba->is_sys_suspended = false; 9979 hba->system_suspending = false; 9980 up(&hba->host_sem); 9981 return ret; 9982 } 9983 #endif 9984 9985 /** 9986 * ufshcd_suspend - helper function for suspend operations 9987 * @hba: per adapter instance 9988 * 9989 * This function will put disable irqs, turn off clocks 9990 * and set vreg and hba-vreg in lpm mode. 9991 * 9992 * Return: 0 upon success; < 0 upon failure. 9993 */ 9994 static int ufshcd_suspend(struct ufs_hba *hba) 9995 { 9996 int ret; 9997 9998 if (!hba->is_powered) 9999 return 0; 10000 /* 10001 * Disable the host irq as host controller as there won't be any 10002 * host controller transaction expected till resume. 10003 */ 10004 ufshcd_disable_irq(hba); 10005 ret = ufshcd_setup_clocks(hba, false); 10006 if (ret) { 10007 ufshcd_enable_irq(hba); 10008 return ret; 10009 } 10010 if (ufshcd_is_clkgating_allowed(hba)) { 10011 hba->clk_gating.state = CLKS_OFF; 10012 trace_ufshcd_clk_gating(dev_name(hba->dev), 10013 hba->clk_gating.state); 10014 } 10015 10016 ufshcd_vreg_set_lpm(hba); 10017 /* Put the host controller in low power mode if possible */ 10018 ufshcd_hba_vreg_set_lpm(hba); 10019 ufshcd_pm_qos_update(hba, false); 10020 return ret; 10021 } 10022 10023 #ifdef CONFIG_PM 10024 /** 10025 * ufshcd_resume - helper function for resume operations 10026 * @hba: per adapter instance 10027 * 10028 * This function basically turns on the regulators, clocks and 10029 * irqs of the hba. 10030 * 10031 * Return: 0 for success and non-zero for failure. 10032 */ 10033 static int ufshcd_resume(struct ufs_hba *hba) 10034 { 10035 int ret; 10036 10037 if (!hba->is_powered) 10038 return 0; 10039 10040 ufshcd_hba_vreg_set_hpm(hba); 10041 ret = ufshcd_vreg_set_hpm(hba); 10042 if (ret) 10043 goto out; 10044 10045 /* Make sure clocks are enabled before accessing controller */ 10046 ret = ufshcd_setup_clocks(hba, true); 10047 if (ret) 10048 goto disable_vreg; 10049 10050 /* enable the host irq as host controller would be active soon */ 10051 ufshcd_enable_irq(hba); 10052 10053 goto out; 10054 10055 disable_vreg: 10056 ufshcd_vreg_set_lpm(hba); 10057 out: 10058 if (ret) 10059 ufshcd_update_evt_hist(hba, UFS_EVT_RESUME_ERR, (u32)ret); 10060 return ret; 10061 } 10062 #endif /* CONFIG_PM */ 10063 10064 #ifdef CONFIG_PM_SLEEP 10065 /** 10066 * ufshcd_system_suspend - system suspend callback 10067 * @dev: Device associated with the UFS controller. 10068 * 10069 * Executed before putting the system into a sleep state in which the contents 10070 * of main memory are preserved. 10071 * 10072 * Return: 0 for success and non-zero for failure. 10073 */ 10074 int ufshcd_system_suspend(struct device *dev) 10075 { 10076 struct ufs_hba *hba = dev_get_drvdata(dev); 10077 int ret = 0; 10078 ktime_t start = ktime_get(); 10079 10080 if (pm_runtime_suspended(hba->dev)) 10081 goto out; 10082 10083 ret = ufshcd_suspend(hba); 10084 out: 10085 trace_ufshcd_system_suspend(dev_name(hba->dev), ret, 10086 ktime_to_us(ktime_sub(ktime_get(), start)), 10087 hba->curr_dev_pwr_mode, hba->uic_link_state); 10088 return ret; 10089 } 10090 EXPORT_SYMBOL(ufshcd_system_suspend); 10091 10092 /** 10093 * ufshcd_system_resume - system resume callback 10094 * @dev: Device associated with the UFS controller. 10095 * 10096 * Executed after waking the system up from a sleep state in which the contents 10097 * of main memory were preserved. 10098 * 10099 * Return: 0 for success and non-zero for failure. 10100 */ 10101 int ufshcd_system_resume(struct device *dev) 10102 { 10103 struct ufs_hba *hba = dev_get_drvdata(dev); 10104 ktime_t start = ktime_get(); 10105 int ret = 0; 10106 10107 if (pm_runtime_suspended(hba->dev)) 10108 goto out; 10109 10110 ret = ufshcd_resume(hba); 10111 10112 out: 10113 trace_ufshcd_system_resume(dev_name(hba->dev), ret, 10114 ktime_to_us(ktime_sub(ktime_get(), start)), 10115 hba->curr_dev_pwr_mode, hba->uic_link_state); 10116 10117 return ret; 10118 } 10119 EXPORT_SYMBOL(ufshcd_system_resume); 10120 #endif /* CONFIG_PM_SLEEP */ 10121 10122 #ifdef CONFIG_PM 10123 /** 10124 * ufshcd_runtime_suspend - runtime suspend callback 10125 * @dev: Device associated with the UFS controller. 10126 * 10127 * Check the description of ufshcd_suspend() function for more details. 10128 * 10129 * Return: 0 for success and non-zero for failure. 10130 */ 10131 int ufshcd_runtime_suspend(struct device *dev) 10132 { 10133 struct ufs_hba *hba = dev_get_drvdata(dev); 10134 int ret; 10135 ktime_t start = ktime_get(); 10136 10137 ret = ufshcd_suspend(hba); 10138 10139 trace_ufshcd_runtime_suspend(dev_name(hba->dev), ret, 10140 ktime_to_us(ktime_sub(ktime_get(), start)), 10141 hba->curr_dev_pwr_mode, hba->uic_link_state); 10142 return ret; 10143 } 10144 EXPORT_SYMBOL(ufshcd_runtime_suspend); 10145 10146 /** 10147 * ufshcd_runtime_resume - runtime resume routine 10148 * @dev: Device associated with the UFS controller. 10149 * 10150 * This function basically brings controller 10151 * to active state. Following operations are done in this function: 10152 * 10153 * 1. Turn on all the controller related clocks 10154 * 2. Turn ON VCC rail 10155 * 10156 * Return: 0 upon success; < 0 upon failure. 10157 */ 10158 int ufshcd_runtime_resume(struct device *dev) 10159 { 10160 struct ufs_hba *hba = dev_get_drvdata(dev); 10161 int ret; 10162 ktime_t start = ktime_get(); 10163 10164 ret = ufshcd_resume(hba); 10165 10166 trace_ufshcd_runtime_resume(dev_name(hba->dev), ret, 10167 ktime_to_us(ktime_sub(ktime_get(), start)), 10168 hba->curr_dev_pwr_mode, hba->uic_link_state); 10169 return ret; 10170 } 10171 EXPORT_SYMBOL(ufshcd_runtime_resume); 10172 #endif /* CONFIG_PM */ 10173 10174 static void ufshcd_wl_shutdown(struct device *dev) 10175 { 10176 struct scsi_device *sdev = to_scsi_device(dev); 10177 struct ufs_hba *hba = shost_priv(sdev->host); 10178 10179 down(&hba->host_sem); 10180 hba->shutting_down = true; 10181 up(&hba->host_sem); 10182 10183 /* Turn on everything while shutting down */ 10184 ufshcd_rpm_get_sync(hba); 10185 scsi_device_quiesce(sdev); 10186 shost_for_each_device(sdev, hba->host) { 10187 if (sdev == hba->ufs_device_wlun) 10188 continue; 10189 scsi_device_quiesce(sdev); 10190 } 10191 __ufshcd_wl_suspend(hba, UFS_SHUTDOWN_PM); 10192 10193 /* 10194 * Next, turn off the UFS controller and the UFS regulators. Disable 10195 * clocks. 10196 */ 10197 if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba)) 10198 ufshcd_suspend(hba); 10199 10200 hba->is_powered = false; 10201 } 10202 10203 /** 10204 * ufshcd_remove - de-allocate SCSI host and host memory space 10205 * data structure memory 10206 * @hba: per adapter instance 10207 */ 10208 void ufshcd_remove(struct ufs_hba *hba) 10209 { 10210 if (hba->ufs_device_wlun) 10211 ufshcd_rpm_get_sync(hba); 10212 ufs_hwmon_remove(hba); 10213 ufs_bsg_remove(hba); 10214 ufs_sysfs_remove_nodes(hba->dev); 10215 blk_mq_destroy_queue(hba->tmf_queue); 10216 blk_put_queue(hba->tmf_queue); 10217 blk_mq_free_tag_set(&hba->tmf_tag_set); 10218 if (hba->scsi_host_added) 10219 scsi_remove_host(hba->host); 10220 /* disable interrupts */ 10221 ufshcd_disable_intr(hba, hba->intr_mask); 10222 ufshcd_hba_stop(hba); 10223 ufshcd_hba_exit(hba); 10224 } 10225 EXPORT_SYMBOL_GPL(ufshcd_remove); 10226 10227 #ifdef CONFIG_PM_SLEEP 10228 int ufshcd_system_freeze(struct device *dev) 10229 { 10230 10231 return ufshcd_system_suspend(dev); 10232 10233 } 10234 EXPORT_SYMBOL_GPL(ufshcd_system_freeze); 10235 10236 int ufshcd_system_restore(struct device *dev) 10237 { 10238 10239 struct ufs_hba *hba = dev_get_drvdata(dev); 10240 int ret; 10241 10242 ret = ufshcd_system_resume(dev); 10243 if (ret) 10244 return ret; 10245 10246 /* Configure UTRL and UTMRL base address registers */ 10247 ufshcd_writel(hba, lower_32_bits(hba->utrdl_dma_addr), 10248 REG_UTP_TRANSFER_REQ_LIST_BASE_L); 10249 ufshcd_writel(hba, upper_32_bits(hba->utrdl_dma_addr), 10250 REG_UTP_TRANSFER_REQ_LIST_BASE_H); 10251 ufshcd_writel(hba, lower_32_bits(hba->utmrdl_dma_addr), 10252 REG_UTP_TASK_REQ_LIST_BASE_L); 10253 ufshcd_writel(hba, upper_32_bits(hba->utmrdl_dma_addr), 10254 REG_UTP_TASK_REQ_LIST_BASE_H); 10255 /* 10256 * Make sure that UTRL and UTMRL base address registers 10257 * are updated with the latest queue addresses. Only after 10258 * updating these addresses, we can queue the new commands. 10259 */ 10260 ufshcd_readl(hba, REG_UTP_TASK_REQ_LIST_BASE_H); 10261 10262 return 0; 10263 10264 } 10265 EXPORT_SYMBOL_GPL(ufshcd_system_restore); 10266 10267 int ufshcd_system_thaw(struct device *dev) 10268 { 10269 return ufshcd_system_resume(dev); 10270 } 10271 EXPORT_SYMBOL_GPL(ufshcd_system_thaw); 10272 #endif /* CONFIG_PM_SLEEP */ 10273 10274 /** 10275 * ufshcd_dealloc_host - deallocate Host Bus Adapter (HBA) 10276 * @hba: pointer to Host Bus Adapter (HBA) 10277 */ 10278 void ufshcd_dealloc_host(struct ufs_hba *hba) 10279 { 10280 scsi_host_put(hba->host); 10281 } 10282 EXPORT_SYMBOL_GPL(ufshcd_dealloc_host); 10283 10284 /** 10285 * ufshcd_set_dma_mask - Set dma mask based on the controller 10286 * addressing capability 10287 * @hba: per adapter instance 10288 * 10289 * Return: 0 for success, non-zero for failure. 10290 */ 10291 static int ufshcd_set_dma_mask(struct ufs_hba *hba) 10292 { 10293 if (hba->vops && hba->vops->set_dma_mask) 10294 return hba->vops->set_dma_mask(hba); 10295 if (hba->capabilities & MASK_64_ADDRESSING_SUPPORT) { 10296 if (!dma_set_mask_and_coherent(hba->dev, DMA_BIT_MASK(64))) 10297 return 0; 10298 } 10299 return dma_set_mask_and_coherent(hba->dev, DMA_BIT_MASK(32)); 10300 } 10301 10302 /** 10303 * ufshcd_alloc_host - allocate Host Bus Adapter (HBA) 10304 * @dev: pointer to device handle 10305 * @hba_handle: driver private handle 10306 * 10307 * Return: 0 on success, non-zero value on failure. 10308 */ 10309 int ufshcd_alloc_host(struct device *dev, struct ufs_hba **hba_handle) 10310 { 10311 struct Scsi_Host *host; 10312 struct ufs_hba *hba; 10313 int err = 0; 10314 10315 if (!dev) { 10316 dev_err(dev, 10317 "Invalid memory reference for dev is NULL\n"); 10318 err = -ENODEV; 10319 goto out_error; 10320 } 10321 10322 host = scsi_host_alloc(&ufshcd_driver_template, 10323 sizeof(struct ufs_hba)); 10324 if (!host) { 10325 dev_err(dev, "scsi_host_alloc failed\n"); 10326 err = -ENOMEM; 10327 goto out_error; 10328 } 10329 host->nr_maps = HCTX_TYPE_POLL + 1; 10330 hba = shost_priv(host); 10331 hba->host = host; 10332 hba->dev = dev; 10333 hba->dev_ref_clk_freq = REF_CLK_FREQ_INVAL; 10334 hba->nop_out_timeout = NOP_OUT_TIMEOUT; 10335 ufshcd_set_sg_entry_size(hba, sizeof(struct ufshcd_sg_entry)); 10336 INIT_LIST_HEAD(&hba->clk_list_head); 10337 spin_lock_init(&hba->outstanding_lock); 10338 10339 *hba_handle = hba; 10340 10341 out_error: 10342 return err; 10343 } 10344 EXPORT_SYMBOL(ufshcd_alloc_host); 10345 10346 /* This function exists because blk_mq_alloc_tag_set() requires this. */ 10347 static blk_status_t ufshcd_queue_tmf(struct blk_mq_hw_ctx *hctx, 10348 const struct blk_mq_queue_data *qd) 10349 { 10350 WARN_ON_ONCE(true); 10351 return BLK_STS_NOTSUPP; 10352 } 10353 10354 static const struct blk_mq_ops ufshcd_tmf_ops = { 10355 .queue_rq = ufshcd_queue_tmf, 10356 }; 10357 10358 static int ufshcd_add_scsi_host(struct ufs_hba *hba) 10359 { 10360 int err; 10361 10362 if (!is_mcq_supported(hba)) { 10363 if (!hba->lsdb_sup) { 10364 dev_err(hba->dev, 10365 "%s: failed to initialize (legacy doorbell mode not supported)\n", 10366 __func__); 10367 return -EINVAL; 10368 } 10369 err = scsi_add_host(hba->host, hba->dev); 10370 if (err) { 10371 dev_err(hba->dev, "scsi_add_host failed\n"); 10372 return err; 10373 } 10374 hba->scsi_host_added = true; 10375 } 10376 10377 hba->tmf_tag_set = (struct blk_mq_tag_set) { 10378 .nr_hw_queues = 1, 10379 .queue_depth = hba->nutmrs, 10380 .ops = &ufshcd_tmf_ops, 10381 .flags = BLK_MQ_F_NO_SCHED, 10382 }; 10383 err = blk_mq_alloc_tag_set(&hba->tmf_tag_set); 10384 if (err < 0) 10385 goto remove_scsi_host; 10386 hba->tmf_queue = blk_mq_alloc_queue(&hba->tmf_tag_set, NULL, NULL); 10387 if (IS_ERR(hba->tmf_queue)) { 10388 err = PTR_ERR(hba->tmf_queue); 10389 goto free_tmf_tag_set; 10390 } 10391 hba->tmf_rqs = devm_kcalloc(hba->dev, hba->nutmrs, 10392 sizeof(*hba->tmf_rqs), GFP_KERNEL); 10393 if (!hba->tmf_rqs) { 10394 err = -ENOMEM; 10395 goto free_tmf_queue; 10396 } 10397 10398 return 0; 10399 10400 free_tmf_queue: 10401 blk_mq_destroy_queue(hba->tmf_queue); 10402 blk_put_queue(hba->tmf_queue); 10403 10404 free_tmf_tag_set: 10405 blk_mq_free_tag_set(&hba->tmf_tag_set); 10406 10407 remove_scsi_host: 10408 if (hba->scsi_host_added) 10409 scsi_remove_host(hba->host); 10410 10411 return err; 10412 } 10413 10414 /** 10415 * ufshcd_init - Driver initialization routine 10416 * @hba: per-adapter instance 10417 * @mmio_base: base register address 10418 * @irq: Interrupt line of device 10419 * 10420 * Return: 0 on success, non-zero value on failure. 10421 */ 10422 int ufshcd_init(struct ufs_hba *hba, void __iomem *mmio_base, unsigned int irq) 10423 { 10424 int err; 10425 struct Scsi_Host *host = hba->host; 10426 struct device *dev = hba->dev; 10427 10428 /* 10429 * dev_set_drvdata() must be called before any callbacks are registered 10430 * that use dev_get_drvdata() (frequency scaling, clock scaling, hwmon, 10431 * sysfs). 10432 */ 10433 dev_set_drvdata(dev, hba); 10434 10435 if (!mmio_base) { 10436 dev_err(hba->dev, 10437 "Invalid memory reference for mmio_base is NULL\n"); 10438 err = -ENODEV; 10439 goto out_error; 10440 } 10441 10442 hba->mmio_base = mmio_base; 10443 hba->irq = irq; 10444 hba->vps = &ufs_hba_vps; 10445 10446 err = ufshcd_hba_init(hba); 10447 if (err) 10448 goto out_error; 10449 10450 /* Read capabilities registers */ 10451 err = ufshcd_hba_capabilities(hba); 10452 if (err) 10453 goto out_disable; 10454 10455 /* Get UFS version supported by the controller */ 10456 hba->ufs_version = ufshcd_get_ufs_version(hba); 10457 10458 /* Get Interrupt bit mask per version */ 10459 hba->intr_mask = ufshcd_get_intr_mask(hba); 10460 10461 err = ufshcd_set_dma_mask(hba); 10462 if (err) { 10463 dev_err(hba->dev, "set dma mask failed\n"); 10464 goto out_disable; 10465 } 10466 10467 /* Allocate memory for host memory space */ 10468 err = ufshcd_memory_alloc(hba); 10469 if (err) { 10470 dev_err(hba->dev, "Memory allocation failed\n"); 10471 goto out_disable; 10472 } 10473 10474 /* Configure LRB */ 10475 ufshcd_host_memory_configure(hba); 10476 10477 host->can_queue = hba->nutrs - UFSHCD_NUM_RESERVED; 10478 host->cmd_per_lun = hba->nutrs - UFSHCD_NUM_RESERVED; 10479 host->max_id = UFSHCD_MAX_ID; 10480 host->max_lun = UFS_MAX_LUNS; 10481 host->max_channel = UFSHCD_MAX_CHANNEL; 10482 host->unique_id = host->host_no; 10483 host->max_cmd_len = UFS_CDB_SIZE; 10484 host->queuecommand_may_block = !!(hba->caps & UFSHCD_CAP_CLK_GATING); 10485 10486 /* Use default RPM delay if host not set */ 10487 if (host->rpm_autosuspend_delay == 0) 10488 host->rpm_autosuspend_delay = RPM_AUTOSUSPEND_DELAY_MS; 10489 10490 hba->max_pwr_info.is_valid = false; 10491 10492 /* Initialize work queues */ 10493 hba->eh_wq = alloc_ordered_workqueue("ufs_eh_wq_%d", WQ_MEM_RECLAIM, 10494 hba->host->host_no); 10495 if (!hba->eh_wq) { 10496 dev_err(hba->dev, "%s: failed to create eh workqueue\n", 10497 __func__); 10498 err = -ENOMEM; 10499 goto out_disable; 10500 } 10501 INIT_WORK(&hba->eh_work, ufshcd_err_handler); 10502 INIT_WORK(&hba->eeh_work, ufshcd_exception_event_handler); 10503 10504 sema_init(&hba->host_sem, 1); 10505 10506 /* Initialize UIC command mutex */ 10507 mutex_init(&hba->uic_cmd_mutex); 10508 10509 /* Initialize mutex for device management commands */ 10510 mutex_init(&hba->dev_cmd.lock); 10511 10512 /* Initialize mutex for exception event control */ 10513 mutex_init(&hba->ee_ctrl_mutex); 10514 10515 mutex_init(&hba->wb_mutex); 10516 init_rwsem(&hba->clk_scaling_lock); 10517 10518 ufshcd_init_clk_gating(hba); 10519 10520 ufshcd_init_clk_scaling(hba); 10521 10522 /* 10523 * In order to avoid any spurious interrupt immediately after 10524 * registering UFS controller interrupt handler, clear any pending UFS 10525 * interrupt status and disable all the UFS interrupts. 10526 */ 10527 ufshcd_writel(hba, ufshcd_readl(hba, REG_INTERRUPT_STATUS), 10528 REG_INTERRUPT_STATUS); 10529 ufshcd_writel(hba, 0, REG_INTERRUPT_ENABLE); 10530 /* 10531 * Make sure that UFS interrupts are disabled and any pending interrupt 10532 * status is cleared before registering UFS interrupt handler. 10533 */ 10534 ufshcd_readl(hba, REG_INTERRUPT_ENABLE); 10535 10536 /* IRQ registration */ 10537 err = devm_request_irq(dev, irq, ufshcd_intr, IRQF_SHARED, UFSHCD, hba); 10538 if (err) { 10539 dev_err(hba->dev, "request irq failed\n"); 10540 goto out_disable; 10541 } else { 10542 hba->is_irq_enabled = true; 10543 } 10544 10545 /* Reset the attached device */ 10546 ufshcd_device_reset(hba); 10547 10548 ufshcd_init_crypto(hba); 10549 10550 /* Host controller enable */ 10551 err = ufshcd_hba_enable(hba); 10552 if (err) { 10553 dev_err(hba->dev, "Host controller enable failed\n"); 10554 ufshcd_print_evt_hist(hba); 10555 ufshcd_print_host_state(hba); 10556 goto out_disable; 10557 } 10558 10559 /* 10560 * Set the default power management level for runtime and system PM. 10561 * Default power saving mode is to keep UFS link in Hibern8 state 10562 * and UFS device in sleep state. 10563 */ 10564 hba->rpm_lvl = ufs_get_desired_pm_lvl_for_dev_link_state( 10565 UFS_SLEEP_PWR_MODE, 10566 UIC_LINK_HIBERN8_STATE); 10567 hba->spm_lvl = ufs_get_desired_pm_lvl_for_dev_link_state( 10568 UFS_SLEEP_PWR_MODE, 10569 UIC_LINK_HIBERN8_STATE); 10570 10571 INIT_DELAYED_WORK(&hba->rpm_dev_flush_recheck_work, ufshcd_rpm_dev_flush_recheck_work); 10572 INIT_DELAYED_WORK(&hba->ufs_rtc_update_work, ufshcd_rtc_work); 10573 10574 /* Set the default auto-hiberate idle timer value to 150 ms */ 10575 if (ufshcd_is_auto_hibern8_supported(hba) && !hba->ahit) { 10576 hba->ahit = FIELD_PREP(UFSHCI_AHIBERN8_TIMER_MASK, 150) | 10577 FIELD_PREP(UFSHCI_AHIBERN8_SCALE_MASK, 3); 10578 } 10579 10580 /* Hold auto suspend until async scan completes */ 10581 pm_runtime_get_sync(dev); 10582 10583 /* 10584 * We are assuming that device wasn't put in sleep/power-down 10585 * state exclusively during the boot stage before kernel. 10586 * This assumption helps avoid doing link startup twice during 10587 * ufshcd_probe_hba(). 10588 */ 10589 ufshcd_set_ufs_dev_active(hba); 10590 10591 err = ufshcd_add_scsi_host(hba); 10592 if (err) 10593 goto out_disable; 10594 10595 async_schedule(ufshcd_async_scan, hba); 10596 ufs_sysfs_add_nodes(hba->dev); 10597 10598 device_enable_async_suspend(dev); 10599 ufshcd_pm_qos_init(hba); 10600 return 0; 10601 10602 out_disable: 10603 hba->is_irq_enabled = false; 10604 ufshcd_hba_exit(hba); 10605 out_error: 10606 return err; 10607 } 10608 EXPORT_SYMBOL_GPL(ufshcd_init); 10609 10610 void ufshcd_resume_complete(struct device *dev) 10611 { 10612 struct ufs_hba *hba = dev_get_drvdata(dev); 10613 10614 if (hba->complete_put) { 10615 ufshcd_rpm_put(hba); 10616 hba->complete_put = false; 10617 } 10618 } 10619 EXPORT_SYMBOL_GPL(ufshcd_resume_complete); 10620 10621 static bool ufshcd_rpm_ok_for_spm(struct ufs_hba *hba) 10622 { 10623 struct device *dev = &hba->ufs_device_wlun->sdev_gendev; 10624 enum ufs_dev_pwr_mode dev_pwr_mode; 10625 enum uic_link_state link_state; 10626 unsigned long flags; 10627 bool res; 10628 10629 spin_lock_irqsave(&dev->power.lock, flags); 10630 dev_pwr_mode = ufs_get_pm_lvl_to_dev_pwr_mode(hba->spm_lvl); 10631 link_state = ufs_get_pm_lvl_to_link_pwr_state(hba->spm_lvl); 10632 res = pm_runtime_suspended(dev) && 10633 hba->curr_dev_pwr_mode == dev_pwr_mode && 10634 hba->uic_link_state == link_state && 10635 !hba->dev_info.b_rpm_dev_flush_capable; 10636 spin_unlock_irqrestore(&dev->power.lock, flags); 10637 10638 return res; 10639 } 10640 10641 int __ufshcd_suspend_prepare(struct device *dev, bool rpm_ok_for_spm) 10642 { 10643 struct ufs_hba *hba = dev_get_drvdata(dev); 10644 int ret; 10645 10646 /* 10647 * SCSI assumes that runtime-pm and system-pm for scsi drivers 10648 * are same. And it doesn't wake up the device for system-suspend 10649 * if it's runtime suspended. But ufs doesn't follow that. 10650 * Refer ufshcd_resume_complete() 10651 */ 10652 if (hba->ufs_device_wlun) { 10653 /* Prevent runtime suspend */ 10654 ufshcd_rpm_get_noresume(hba); 10655 /* 10656 * Check if already runtime suspended in same state as system 10657 * suspend would be. 10658 */ 10659 if (!rpm_ok_for_spm || !ufshcd_rpm_ok_for_spm(hba)) { 10660 /* RPM state is not ok for SPM, so runtime resume */ 10661 ret = ufshcd_rpm_resume(hba); 10662 if (ret < 0 && ret != -EACCES) { 10663 ufshcd_rpm_put(hba); 10664 return ret; 10665 } 10666 } 10667 hba->complete_put = true; 10668 } 10669 return 0; 10670 } 10671 EXPORT_SYMBOL_GPL(__ufshcd_suspend_prepare); 10672 10673 int ufshcd_suspend_prepare(struct device *dev) 10674 { 10675 return __ufshcd_suspend_prepare(dev, true); 10676 } 10677 EXPORT_SYMBOL_GPL(ufshcd_suspend_prepare); 10678 10679 #ifdef CONFIG_PM_SLEEP 10680 static int ufshcd_wl_poweroff(struct device *dev) 10681 { 10682 struct scsi_device *sdev = to_scsi_device(dev); 10683 struct ufs_hba *hba = shost_priv(sdev->host); 10684 10685 __ufshcd_wl_suspend(hba, UFS_SHUTDOWN_PM); 10686 return 0; 10687 } 10688 #endif 10689 10690 static int ufshcd_wl_probe(struct device *dev) 10691 { 10692 struct scsi_device *sdev = to_scsi_device(dev); 10693 10694 if (!is_device_wlun(sdev)) 10695 return -ENODEV; 10696 10697 blk_pm_runtime_init(sdev->request_queue, dev); 10698 pm_runtime_set_autosuspend_delay(dev, 0); 10699 pm_runtime_allow(dev); 10700 10701 return 0; 10702 } 10703 10704 static int ufshcd_wl_remove(struct device *dev) 10705 { 10706 pm_runtime_forbid(dev); 10707 return 0; 10708 } 10709 10710 static const struct dev_pm_ops ufshcd_wl_pm_ops = { 10711 #ifdef CONFIG_PM_SLEEP 10712 .suspend = ufshcd_wl_suspend, 10713 .resume = ufshcd_wl_resume, 10714 .freeze = ufshcd_wl_suspend, 10715 .thaw = ufshcd_wl_resume, 10716 .poweroff = ufshcd_wl_poweroff, 10717 .restore = ufshcd_wl_resume, 10718 #endif 10719 SET_RUNTIME_PM_OPS(ufshcd_wl_runtime_suspend, ufshcd_wl_runtime_resume, NULL) 10720 }; 10721 10722 static void ufshcd_check_header_layout(void) 10723 { 10724 /* 10725 * gcc compilers before version 10 cannot do constant-folding for 10726 * sub-byte bitfields. Hence skip the layout checks for gcc 9 and 10727 * before. 10728 */ 10729 if (IS_ENABLED(CONFIG_CC_IS_GCC) && CONFIG_GCC_VERSION < 100000) 10730 return; 10731 10732 BUILD_BUG_ON(((u8 *)&(struct request_desc_header){ 10733 .cci = 3})[0] != 3); 10734 10735 BUILD_BUG_ON(((u8 *)&(struct request_desc_header){ 10736 .ehs_length = 2})[1] != 2); 10737 10738 BUILD_BUG_ON(((u8 *)&(struct request_desc_header){ 10739 .enable_crypto = 1})[2] 10740 != 0x80); 10741 10742 BUILD_BUG_ON((((u8 *)&(struct request_desc_header){ 10743 .command_type = 5, 10744 .data_direction = 3, 10745 .interrupt = 1, 10746 })[3]) != ((5 << 4) | (3 << 1) | 1)); 10747 10748 BUILD_BUG_ON(((__le32 *)&(struct request_desc_header){ 10749 .dunl = cpu_to_le32(0xdeadbeef)})[1] != 10750 cpu_to_le32(0xdeadbeef)); 10751 10752 BUILD_BUG_ON(((u8 *)&(struct request_desc_header){ 10753 .ocs = 4})[8] != 4); 10754 10755 BUILD_BUG_ON(((u8 *)&(struct request_desc_header){ 10756 .cds = 5})[9] != 5); 10757 10758 BUILD_BUG_ON(((__le32 *)&(struct request_desc_header){ 10759 .dunu = cpu_to_le32(0xbadcafe)})[3] != 10760 cpu_to_le32(0xbadcafe)); 10761 10762 BUILD_BUG_ON(((u8 *)&(struct utp_upiu_header){ 10763 .iid = 0xf })[4] != 0xf0); 10764 10765 BUILD_BUG_ON(((u8 *)&(struct utp_upiu_header){ 10766 .command_set_type = 0xf })[4] != 0xf); 10767 } 10768 10769 /* 10770 * ufs_dev_wlun_template - describes ufs device wlun 10771 * ufs-device wlun - used to send pm commands 10772 * All luns are consumers of ufs-device wlun. 10773 * 10774 * Currently, no sd driver is present for wluns. 10775 * Hence the no specific pm operations are performed. 10776 * With ufs design, SSU should be sent to ufs-device wlun. 10777 * Hence register a scsi driver for ufs wluns only. 10778 */ 10779 static struct scsi_driver ufs_dev_wlun_template = { 10780 .gendrv = { 10781 .name = "ufs_device_wlun", 10782 .probe = ufshcd_wl_probe, 10783 .remove = ufshcd_wl_remove, 10784 .pm = &ufshcd_wl_pm_ops, 10785 .shutdown = ufshcd_wl_shutdown, 10786 }, 10787 }; 10788 10789 static int __init ufshcd_core_init(void) 10790 { 10791 int ret; 10792 10793 ufshcd_check_header_layout(); 10794 10795 ufs_debugfs_init(); 10796 10797 ret = scsi_register_driver(&ufs_dev_wlun_template.gendrv); 10798 if (ret) 10799 ufs_debugfs_exit(); 10800 return ret; 10801 } 10802 10803 static void __exit ufshcd_core_exit(void) 10804 { 10805 ufs_debugfs_exit(); 10806 scsi_unregister_driver(&ufs_dev_wlun_template.gendrv); 10807 } 10808 10809 module_init(ufshcd_core_init); 10810 module_exit(ufshcd_core_exit); 10811 10812 MODULE_AUTHOR("Santosh Yaragnavi <santosh.sy@samsung.com>"); 10813 MODULE_AUTHOR("Vinayak Holikatti <h.vinayak@samsung.com>"); 10814 MODULE_DESCRIPTION("Generic UFS host controller driver Core"); 10815 MODULE_SOFTDEP("pre: governor_simpleondemand"); 10816 MODULE_LICENSE("GPL"); 10817