xref: /linux/drivers/ufs/core/ufshcd.c (revision 0936001322646a15d7091f61232e5ded9bf1883f)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Universal Flash Storage Host controller driver Core
4  * Copyright (C) 2011-2013 Samsung India Software Operations
5  * Copyright (c) 2013-2016, The Linux Foundation. All rights reserved.
6  *
7  * Authors:
8  *	Santosh Yaraganavi <santosh.sy@samsung.com>
9  *	Vinayak Holikatti <h.vinayak@samsung.com>
10  */
11 
12 #include <linux/async.h>
13 #include <linux/devfreq.h>
14 #include <linux/nls.h>
15 #include <linux/of.h>
16 #include <linux/bitfield.h>
17 #include <linux/blk-pm.h>
18 #include <linux/blkdev.h>
19 #include <linux/clk.h>
20 #include <linux/delay.h>
21 #include <linux/interrupt.h>
22 #include <linux/module.h>
23 #include <linux/pm_opp.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/sched/clock.h>
26 #include <linux/iopoll.h>
27 #include <scsi/scsi_cmnd.h>
28 #include <scsi/scsi_dbg.h>
29 #include <scsi/scsi_driver.h>
30 #include <scsi/scsi_eh.h>
31 #include "ufshcd-priv.h"
32 #include <ufs/ufs_quirks.h>
33 #include <ufs/unipro.h>
34 #include "ufs-sysfs.h"
35 #include "ufs-debugfs.h"
36 #include "ufs-fault-injection.h"
37 #include "ufs_bsg.h"
38 #include "ufshcd-crypto.h"
39 #include <asm/unaligned.h>
40 
41 #define CREATE_TRACE_POINTS
42 #include "ufs_trace.h"
43 
44 #define UFSHCD_ENABLE_INTRS	(UTP_TRANSFER_REQ_COMPL |\
45 				 UTP_TASK_REQ_COMPL |\
46 				 UFSHCD_ERROR_MASK)
47 
48 #define UFSHCD_ENABLE_MCQ_INTRS	(UTP_TASK_REQ_COMPL |\
49 				 UFSHCD_ERROR_MASK |\
50 				 MCQ_CQ_EVENT_STATUS)
51 
52 
53 /* UIC command timeout, unit: ms */
54 enum {
55 	UIC_CMD_TIMEOUT_DEFAULT	= 500,
56 	UIC_CMD_TIMEOUT_MAX	= 2000,
57 };
58 /* NOP OUT retries waiting for NOP IN response */
59 #define NOP_OUT_RETRIES    10
60 /* Timeout after 50 msecs if NOP OUT hangs without response */
61 #define NOP_OUT_TIMEOUT    50 /* msecs */
62 
63 /* Query request retries */
64 #define QUERY_REQ_RETRIES 3
65 /* Query request timeout */
66 #define QUERY_REQ_TIMEOUT 1500 /* 1.5 seconds */
67 
68 /* Advanced RPMB request timeout */
69 #define ADVANCED_RPMB_REQ_TIMEOUT  3000 /* 3 seconds */
70 
71 /* Task management command timeout */
72 #define TM_CMD_TIMEOUT	100 /* msecs */
73 
74 /* maximum number of retries for a general UIC command  */
75 #define UFS_UIC_COMMAND_RETRIES 3
76 
77 /* maximum number of link-startup retries */
78 #define DME_LINKSTARTUP_RETRIES 3
79 
80 /* maximum number of reset retries before giving up */
81 #define MAX_HOST_RESET_RETRIES 5
82 
83 /* Maximum number of error handler retries before giving up */
84 #define MAX_ERR_HANDLER_RETRIES 5
85 
86 /* Expose the flag value from utp_upiu_query.value */
87 #define MASK_QUERY_UPIU_FLAG_LOC 0xFF
88 
89 /* Interrupt aggregation default timeout, unit: 40us */
90 #define INT_AGGR_DEF_TO	0x02
91 
92 /* default delay of autosuspend: 2000 ms */
93 #define RPM_AUTOSUSPEND_DELAY_MS 2000
94 
95 /* Default delay of RPM device flush delayed work */
96 #define RPM_DEV_FLUSH_RECHECK_WORK_DELAY_MS 5000
97 
98 /* Default value of wait time before gating device ref clock */
99 #define UFSHCD_REF_CLK_GATING_WAIT_US 0xFF /* microsecs */
100 
101 /* Polling time to wait for fDeviceInit */
102 #define FDEVICEINIT_COMPL_TIMEOUT 1500 /* millisecs */
103 
104 /* Default RTC update every 10 seconds */
105 #define UFS_RTC_UPDATE_INTERVAL_MS (10 * MSEC_PER_SEC)
106 
107 /* bMaxNumOfRTT is equal to two after device manufacturing */
108 #define DEFAULT_MAX_NUM_RTT 2
109 
110 /* UFSHC 4.0 compliant HC support this mode. */
111 static bool use_mcq_mode = true;
112 
113 static bool is_mcq_supported(struct ufs_hba *hba)
114 {
115 	return hba->mcq_sup && use_mcq_mode;
116 }
117 
118 module_param(use_mcq_mode, bool, 0644);
119 MODULE_PARM_DESC(use_mcq_mode, "Control MCQ mode for controllers starting from UFSHCI 4.0. 1 - enable MCQ, 0 - disable MCQ. MCQ is enabled by default");
120 
121 static unsigned int uic_cmd_timeout = UIC_CMD_TIMEOUT_DEFAULT;
122 
123 static int uic_cmd_timeout_set(const char *val, const struct kernel_param *kp)
124 {
125 	return param_set_uint_minmax(val, kp, UIC_CMD_TIMEOUT_DEFAULT,
126 				     UIC_CMD_TIMEOUT_MAX);
127 }
128 
129 static const struct kernel_param_ops uic_cmd_timeout_ops = {
130 	.set = uic_cmd_timeout_set,
131 	.get = param_get_uint,
132 };
133 
134 module_param_cb(uic_cmd_timeout, &uic_cmd_timeout_ops, &uic_cmd_timeout, 0644);
135 MODULE_PARM_DESC(uic_cmd_timeout,
136 		 "UFS UIC command timeout in milliseconds. Defaults to 500ms. Supported values range from 500ms to 2 seconds inclusively");
137 
138 #define ufshcd_toggle_vreg(_dev, _vreg, _on)				\
139 	({                                                              \
140 		int _ret;                                               \
141 		if (_on)                                                \
142 			_ret = ufshcd_enable_vreg(_dev, _vreg);         \
143 		else                                                    \
144 			_ret = ufshcd_disable_vreg(_dev, _vreg);        \
145 		_ret;                                                   \
146 	})
147 
148 #define ufshcd_hex_dump(prefix_str, buf, len) do {                       \
149 	size_t __len = (len);                                            \
150 	print_hex_dump(KERN_ERR, prefix_str,                             \
151 		       __len > 4 ? DUMP_PREFIX_OFFSET : DUMP_PREFIX_NONE,\
152 		       16, 4, buf, __len, false);                        \
153 } while (0)
154 
155 int ufshcd_dump_regs(struct ufs_hba *hba, size_t offset, size_t len,
156 		     const char *prefix)
157 {
158 	u32 *regs;
159 	size_t pos;
160 
161 	if (offset % 4 != 0 || len % 4 != 0) /* keep readl happy */
162 		return -EINVAL;
163 
164 	regs = kzalloc(len, GFP_ATOMIC);
165 	if (!regs)
166 		return -ENOMEM;
167 
168 	for (pos = 0; pos < len; pos += 4) {
169 		if (offset == 0 &&
170 		    pos >= REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER &&
171 		    pos <= REG_UIC_ERROR_CODE_DME)
172 			continue;
173 		regs[pos / 4] = ufshcd_readl(hba, offset + pos);
174 	}
175 
176 	ufshcd_hex_dump(prefix, regs, len);
177 	kfree(regs);
178 
179 	return 0;
180 }
181 EXPORT_SYMBOL_GPL(ufshcd_dump_regs);
182 
183 enum {
184 	UFSHCD_MAX_CHANNEL	= 0,
185 	UFSHCD_MAX_ID		= 1,
186 };
187 
188 static const char *const ufshcd_state_name[] = {
189 	[UFSHCD_STATE_RESET]			= "reset",
190 	[UFSHCD_STATE_OPERATIONAL]		= "operational",
191 	[UFSHCD_STATE_ERROR]			= "error",
192 	[UFSHCD_STATE_EH_SCHEDULED_FATAL]	= "eh_fatal",
193 	[UFSHCD_STATE_EH_SCHEDULED_NON_FATAL]	= "eh_non_fatal",
194 };
195 
196 /* UFSHCD error handling flags */
197 enum {
198 	UFSHCD_EH_IN_PROGRESS = (1 << 0),
199 };
200 
201 /* UFSHCD UIC layer error flags */
202 enum {
203 	UFSHCD_UIC_DL_PA_INIT_ERROR = (1 << 0), /* Data link layer error */
204 	UFSHCD_UIC_DL_NAC_RECEIVED_ERROR = (1 << 1), /* Data link layer error */
205 	UFSHCD_UIC_DL_TCx_REPLAY_ERROR = (1 << 2), /* Data link layer error */
206 	UFSHCD_UIC_NL_ERROR = (1 << 3), /* Network layer error */
207 	UFSHCD_UIC_TL_ERROR = (1 << 4), /* Transport Layer error */
208 	UFSHCD_UIC_DME_ERROR = (1 << 5), /* DME error */
209 	UFSHCD_UIC_PA_GENERIC_ERROR = (1 << 6), /* Generic PA error */
210 };
211 
212 #define ufshcd_set_eh_in_progress(h) \
213 	((h)->eh_flags |= UFSHCD_EH_IN_PROGRESS)
214 #define ufshcd_eh_in_progress(h) \
215 	((h)->eh_flags & UFSHCD_EH_IN_PROGRESS)
216 #define ufshcd_clear_eh_in_progress(h) \
217 	((h)->eh_flags &= ~UFSHCD_EH_IN_PROGRESS)
218 
219 const struct ufs_pm_lvl_states ufs_pm_lvl_states[] = {
220 	[UFS_PM_LVL_0] = {UFS_ACTIVE_PWR_MODE, UIC_LINK_ACTIVE_STATE},
221 	[UFS_PM_LVL_1] = {UFS_ACTIVE_PWR_MODE, UIC_LINK_HIBERN8_STATE},
222 	[UFS_PM_LVL_2] = {UFS_SLEEP_PWR_MODE, UIC_LINK_ACTIVE_STATE},
223 	[UFS_PM_LVL_3] = {UFS_SLEEP_PWR_MODE, UIC_LINK_HIBERN8_STATE},
224 	[UFS_PM_LVL_4] = {UFS_POWERDOWN_PWR_MODE, UIC_LINK_HIBERN8_STATE},
225 	[UFS_PM_LVL_5] = {UFS_POWERDOWN_PWR_MODE, UIC_LINK_OFF_STATE},
226 	/*
227 	 * For DeepSleep, the link is first put in hibern8 and then off.
228 	 * Leaving the link in hibern8 is not supported.
229 	 */
230 	[UFS_PM_LVL_6] = {UFS_DEEPSLEEP_PWR_MODE, UIC_LINK_OFF_STATE},
231 };
232 
233 static inline enum ufs_dev_pwr_mode
234 ufs_get_pm_lvl_to_dev_pwr_mode(enum ufs_pm_level lvl)
235 {
236 	return ufs_pm_lvl_states[lvl].dev_state;
237 }
238 
239 static inline enum uic_link_state
240 ufs_get_pm_lvl_to_link_pwr_state(enum ufs_pm_level lvl)
241 {
242 	return ufs_pm_lvl_states[lvl].link_state;
243 }
244 
245 static inline enum ufs_pm_level
246 ufs_get_desired_pm_lvl_for_dev_link_state(enum ufs_dev_pwr_mode dev_state,
247 					enum uic_link_state link_state)
248 {
249 	enum ufs_pm_level lvl;
250 
251 	for (lvl = UFS_PM_LVL_0; lvl < UFS_PM_LVL_MAX; lvl++) {
252 		if ((ufs_pm_lvl_states[lvl].dev_state == dev_state) &&
253 			(ufs_pm_lvl_states[lvl].link_state == link_state))
254 			return lvl;
255 	}
256 
257 	/* if no match found, return the level 0 */
258 	return UFS_PM_LVL_0;
259 }
260 
261 static bool ufshcd_is_ufs_dev_busy(struct ufs_hba *hba)
262 {
263 	return (hba->clk_gating.active_reqs || hba->outstanding_reqs || hba->outstanding_tasks ||
264 		hba->active_uic_cmd || hba->uic_async_done);
265 }
266 
267 static const struct ufs_dev_quirk ufs_fixups[] = {
268 	/* UFS cards deviations table */
269 	{ .wmanufacturerid = UFS_VENDOR_MICRON,
270 	  .model = UFS_ANY_MODEL,
271 	  .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM },
272 	{ .wmanufacturerid = UFS_VENDOR_SAMSUNG,
273 	  .model = UFS_ANY_MODEL,
274 	  .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM |
275 		   UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE |
276 		   UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS },
277 	{ .wmanufacturerid = UFS_VENDOR_SKHYNIX,
278 	  .model = UFS_ANY_MODEL,
279 	  .quirk = UFS_DEVICE_QUIRK_HOST_PA_SAVECONFIGTIME },
280 	{ .wmanufacturerid = UFS_VENDOR_SKHYNIX,
281 	  .model = "hB8aL1" /*H28U62301AMR*/,
282 	  .quirk = UFS_DEVICE_QUIRK_HOST_VS_DEBUGSAVECONFIGTIME },
283 	{ .wmanufacturerid = UFS_VENDOR_TOSHIBA,
284 	  .model = UFS_ANY_MODEL,
285 	  .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM },
286 	{ .wmanufacturerid = UFS_VENDOR_TOSHIBA,
287 	  .model = "THGLF2G9C8KBADG",
288 	  .quirk = UFS_DEVICE_QUIRK_PA_TACTIVATE },
289 	{ .wmanufacturerid = UFS_VENDOR_TOSHIBA,
290 	  .model = "THGLF2G9D8KBADG",
291 	  .quirk = UFS_DEVICE_QUIRK_PA_TACTIVATE },
292 	{}
293 };
294 
295 static irqreturn_t ufshcd_tmc_handler(struct ufs_hba *hba);
296 static void ufshcd_async_scan(void *data, async_cookie_t cookie);
297 static int ufshcd_reset_and_restore(struct ufs_hba *hba);
298 static int ufshcd_eh_host_reset_handler(struct scsi_cmnd *cmd);
299 static int ufshcd_clear_tm_cmd(struct ufs_hba *hba, int tag);
300 static void ufshcd_hba_exit(struct ufs_hba *hba);
301 static int ufshcd_probe_hba(struct ufs_hba *hba, bool init_dev_params);
302 static int ufshcd_setup_clocks(struct ufs_hba *hba, bool on);
303 static inline void ufshcd_add_delay_before_dme_cmd(struct ufs_hba *hba);
304 static int ufshcd_host_reset_and_restore(struct ufs_hba *hba);
305 static void ufshcd_resume_clkscaling(struct ufs_hba *hba);
306 static void ufshcd_suspend_clkscaling(struct ufs_hba *hba);
307 static int ufshcd_scale_clks(struct ufs_hba *hba, unsigned long freq,
308 			     bool scale_up);
309 static irqreturn_t ufshcd_intr(int irq, void *__hba);
310 static int ufshcd_change_power_mode(struct ufs_hba *hba,
311 			     struct ufs_pa_layer_attr *pwr_mode);
312 static int ufshcd_setup_hba_vreg(struct ufs_hba *hba, bool on);
313 static int ufshcd_setup_vreg(struct ufs_hba *hba, bool on);
314 static inline int ufshcd_config_vreg_hpm(struct ufs_hba *hba,
315 					 struct ufs_vreg *vreg);
316 static void ufshcd_wb_toggle_buf_flush_during_h8(struct ufs_hba *hba,
317 						 bool enable);
318 static void ufshcd_hba_vreg_set_lpm(struct ufs_hba *hba);
319 static void ufshcd_hba_vreg_set_hpm(struct ufs_hba *hba);
320 
321 void ufshcd_enable_irq(struct ufs_hba *hba)
322 {
323 	if (!hba->is_irq_enabled) {
324 		enable_irq(hba->irq);
325 		hba->is_irq_enabled = true;
326 	}
327 }
328 EXPORT_SYMBOL_GPL(ufshcd_enable_irq);
329 
330 void ufshcd_disable_irq(struct ufs_hba *hba)
331 {
332 	if (hba->is_irq_enabled) {
333 		disable_irq(hba->irq);
334 		hba->is_irq_enabled = false;
335 	}
336 }
337 EXPORT_SYMBOL_GPL(ufshcd_disable_irq);
338 
339 static void ufshcd_configure_wb(struct ufs_hba *hba)
340 {
341 	if (!ufshcd_is_wb_allowed(hba))
342 		return;
343 
344 	ufshcd_wb_toggle(hba, true);
345 
346 	ufshcd_wb_toggle_buf_flush_during_h8(hba, true);
347 
348 	if (ufshcd_is_wb_buf_flush_allowed(hba))
349 		ufshcd_wb_toggle_buf_flush(hba, true);
350 }
351 
352 static void ufshcd_add_cmd_upiu_trace(struct ufs_hba *hba, unsigned int tag,
353 				      enum ufs_trace_str_t str_t)
354 {
355 	struct utp_upiu_req *rq = hba->lrb[tag].ucd_req_ptr;
356 	struct utp_upiu_header *header;
357 
358 	if (!trace_ufshcd_upiu_enabled())
359 		return;
360 
361 	if (str_t == UFS_CMD_SEND)
362 		header = &rq->header;
363 	else
364 		header = &hba->lrb[tag].ucd_rsp_ptr->header;
365 
366 	trace_ufshcd_upiu(dev_name(hba->dev), str_t, header, &rq->sc.cdb,
367 			  UFS_TSF_CDB);
368 }
369 
370 static void ufshcd_add_query_upiu_trace(struct ufs_hba *hba,
371 					enum ufs_trace_str_t str_t,
372 					struct utp_upiu_req *rq_rsp)
373 {
374 	if (!trace_ufshcd_upiu_enabled())
375 		return;
376 
377 	trace_ufshcd_upiu(dev_name(hba->dev), str_t, &rq_rsp->header,
378 			  &rq_rsp->qr, UFS_TSF_OSF);
379 }
380 
381 static void ufshcd_add_tm_upiu_trace(struct ufs_hba *hba, unsigned int tag,
382 				     enum ufs_trace_str_t str_t)
383 {
384 	struct utp_task_req_desc *descp = &hba->utmrdl_base_addr[tag];
385 
386 	if (!trace_ufshcd_upiu_enabled())
387 		return;
388 
389 	if (str_t == UFS_TM_SEND)
390 		trace_ufshcd_upiu(dev_name(hba->dev), str_t,
391 				  &descp->upiu_req.req_header,
392 				  &descp->upiu_req.input_param1,
393 				  UFS_TSF_TM_INPUT);
394 	else
395 		trace_ufshcd_upiu(dev_name(hba->dev), str_t,
396 				  &descp->upiu_rsp.rsp_header,
397 				  &descp->upiu_rsp.output_param1,
398 				  UFS_TSF_TM_OUTPUT);
399 }
400 
401 static void ufshcd_add_uic_command_trace(struct ufs_hba *hba,
402 					 const struct uic_command *ucmd,
403 					 enum ufs_trace_str_t str_t)
404 {
405 	u32 cmd;
406 
407 	if (!trace_ufshcd_uic_command_enabled())
408 		return;
409 
410 	if (str_t == UFS_CMD_SEND)
411 		cmd = ucmd->command;
412 	else
413 		cmd = ufshcd_readl(hba, REG_UIC_COMMAND);
414 
415 	trace_ufshcd_uic_command(dev_name(hba->dev), str_t, cmd,
416 				 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_1),
417 				 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_2),
418 				 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_3));
419 }
420 
421 static void ufshcd_add_command_trace(struct ufs_hba *hba, unsigned int tag,
422 				     enum ufs_trace_str_t str_t)
423 {
424 	u64 lba = 0;
425 	u8 opcode = 0, group_id = 0;
426 	u32 doorbell = 0;
427 	u32 intr;
428 	int hwq_id = -1;
429 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
430 	struct scsi_cmnd *cmd = lrbp->cmd;
431 	struct request *rq = scsi_cmd_to_rq(cmd);
432 	int transfer_len = -1;
433 
434 	if (!cmd)
435 		return;
436 
437 	/* trace UPIU also */
438 	ufshcd_add_cmd_upiu_trace(hba, tag, str_t);
439 	if (!trace_ufshcd_command_enabled())
440 		return;
441 
442 	opcode = cmd->cmnd[0];
443 
444 	if (opcode == READ_10 || opcode == WRITE_10) {
445 		/*
446 		 * Currently we only fully trace read(10) and write(10) commands
447 		 */
448 		transfer_len =
449 		       be32_to_cpu(lrbp->ucd_req_ptr->sc.exp_data_transfer_len);
450 		lba = scsi_get_lba(cmd);
451 		if (opcode == WRITE_10)
452 			group_id = lrbp->cmd->cmnd[6];
453 	} else if (opcode == UNMAP) {
454 		/*
455 		 * The number of Bytes to be unmapped beginning with the lba.
456 		 */
457 		transfer_len = blk_rq_bytes(rq);
458 		lba = scsi_get_lba(cmd);
459 	}
460 
461 	intr = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
462 
463 	if (hba->mcq_enabled) {
464 		struct ufs_hw_queue *hwq = ufshcd_mcq_req_to_hwq(hba, rq);
465 
466 		hwq_id = hwq->id;
467 	} else {
468 		doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
469 	}
470 	trace_ufshcd_command(cmd->device, str_t, tag, doorbell, hwq_id,
471 			     transfer_len, intr, lba, opcode, group_id);
472 }
473 
474 static void ufshcd_print_clk_freqs(struct ufs_hba *hba)
475 {
476 	struct ufs_clk_info *clki;
477 	struct list_head *head = &hba->clk_list_head;
478 
479 	if (list_empty(head))
480 		return;
481 
482 	list_for_each_entry(clki, head, list) {
483 		if (!IS_ERR_OR_NULL(clki->clk) && clki->min_freq &&
484 				clki->max_freq)
485 			dev_err(hba->dev, "clk: %s, rate: %u\n",
486 					clki->name, clki->curr_freq);
487 	}
488 }
489 
490 static void ufshcd_print_evt(struct ufs_hba *hba, u32 id,
491 			     const char *err_name)
492 {
493 	int i;
494 	bool found = false;
495 	const struct ufs_event_hist *e;
496 
497 	if (id >= UFS_EVT_CNT)
498 		return;
499 
500 	e = &hba->ufs_stats.event[id];
501 
502 	for (i = 0; i < UFS_EVENT_HIST_LENGTH; i++) {
503 		int p = (i + e->pos) % UFS_EVENT_HIST_LENGTH;
504 
505 		if (e->tstamp[p] == 0)
506 			continue;
507 		dev_err(hba->dev, "%s[%d] = 0x%x at %lld us\n", err_name, p,
508 			e->val[p], div_u64(e->tstamp[p], 1000));
509 		found = true;
510 	}
511 
512 	if (!found)
513 		dev_err(hba->dev, "No record of %s\n", err_name);
514 	else
515 		dev_err(hba->dev, "%s: total cnt=%llu\n", err_name, e->cnt);
516 }
517 
518 static void ufshcd_print_evt_hist(struct ufs_hba *hba)
519 {
520 	ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, "host_regs: ");
521 
522 	ufshcd_print_evt(hba, UFS_EVT_PA_ERR, "pa_err");
523 	ufshcd_print_evt(hba, UFS_EVT_DL_ERR, "dl_err");
524 	ufshcd_print_evt(hba, UFS_EVT_NL_ERR, "nl_err");
525 	ufshcd_print_evt(hba, UFS_EVT_TL_ERR, "tl_err");
526 	ufshcd_print_evt(hba, UFS_EVT_DME_ERR, "dme_err");
527 	ufshcd_print_evt(hba, UFS_EVT_AUTO_HIBERN8_ERR,
528 			 "auto_hibern8_err");
529 	ufshcd_print_evt(hba, UFS_EVT_FATAL_ERR, "fatal_err");
530 	ufshcd_print_evt(hba, UFS_EVT_LINK_STARTUP_FAIL,
531 			 "link_startup_fail");
532 	ufshcd_print_evt(hba, UFS_EVT_RESUME_ERR, "resume_fail");
533 	ufshcd_print_evt(hba, UFS_EVT_SUSPEND_ERR,
534 			 "suspend_fail");
535 	ufshcd_print_evt(hba, UFS_EVT_WL_RES_ERR, "wlun resume_fail");
536 	ufshcd_print_evt(hba, UFS_EVT_WL_SUSP_ERR,
537 			 "wlun suspend_fail");
538 	ufshcd_print_evt(hba, UFS_EVT_DEV_RESET, "dev_reset");
539 	ufshcd_print_evt(hba, UFS_EVT_HOST_RESET, "host_reset");
540 	ufshcd_print_evt(hba, UFS_EVT_ABORT, "task_abort");
541 
542 	ufshcd_vops_dbg_register_dump(hba);
543 }
544 
545 static
546 void ufshcd_print_tr(struct ufs_hba *hba, int tag, bool pr_prdt)
547 {
548 	const struct ufshcd_lrb *lrbp;
549 	int prdt_length;
550 
551 	lrbp = &hba->lrb[tag];
552 
553 	dev_err(hba->dev, "UPIU[%d] - issue time %lld us\n",
554 			tag, div_u64(lrbp->issue_time_stamp_local_clock, 1000));
555 	dev_err(hba->dev, "UPIU[%d] - complete time %lld us\n",
556 			tag, div_u64(lrbp->compl_time_stamp_local_clock, 1000));
557 	dev_err(hba->dev,
558 		"UPIU[%d] - Transfer Request Descriptor phys@0x%llx\n",
559 		tag, (u64)lrbp->utrd_dma_addr);
560 
561 	ufshcd_hex_dump("UPIU TRD: ", lrbp->utr_descriptor_ptr,
562 			sizeof(struct utp_transfer_req_desc));
563 	dev_err(hba->dev, "UPIU[%d] - Request UPIU phys@0x%llx\n", tag,
564 		(u64)lrbp->ucd_req_dma_addr);
565 	ufshcd_hex_dump("UPIU REQ: ", lrbp->ucd_req_ptr,
566 			sizeof(struct utp_upiu_req));
567 	dev_err(hba->dev, "UPIU[%d] - Response UPIU phys@0x%llx\n", tag,
568 		(u64)lrbp->ucd_rsp_dma_addr);
569 	ufshcd_hex_dump("UPIU RSP: ", lrbp->ucd_rsp_ptr,
570 			sizeof(struct utp_upiu_rsp));
571 
572 	prdt_length = le16_to_cpu(
573 		lrbp->utr_descriptor_ptr->prd_table_length);
574 	if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN)
575 		prdt_length /= ufshcd_sg_entry_size(hba);
576 
577 	dev_err(hba->dev,
578 		"UPIU[%d] - PRDT - %d entries  phys@0x%llx\n",
579 		tag, prdt_length,
580 		(u64)lrbp->ucd_prdt_dma_addr);
581 
582 	if (pr_prdt)
583 		ufshcd_hex_dump("UPIU PRDT: ", lrbp->ucd_prdt_ptr,
584 			ufshcd_sg_entry_size(hba) * prdt_length);
585 }
586 
587 static bool ufshcd_print_tr_iter(struct request *req, void *priv)
588 {
589 	struct scsi_device *sdev = req->q->queuedata;
590 	struct Scsi_Host *shost = sdev->host;
591 	struct ufs_hba *hba = shost_priv(shost);
592 
593 	ufshcd_print_tr(hba, req->tag, *(bool *)priv);
594 
595 	return true;
596 }
597 
598 /**
599  * ufshcd_print_trs_all - print trs for all started requests.
600  * @hba: per-adapter instance.
601  * @pr_prdt: need to print prdt or not.
602  */
603 static void ufshcd_print_trs_all(struct ufs_hba *hba, bool pr_prdt)
604 {
605 	blk_mq_tagset_busy_iter(&hba->host->tag_set, ufshcd_print_tr_iter, &pr_prdt);
606 }
607 
608 static void ufshcd_print_tmrs(struct ufs_hba *hba, unsigned long bitmap)
609 {
610 	int tag;
611 
612 	for_each_set_bit(tag, &bitmap, hba->nutmrs) {
613 		struct utp_task_req_desc *tmrdp = &hba->utmrdl_base_addr[tag];
614 
615 		dev_err(hba->dev, "TM[%d] - Task Management Header\n", tag);
616 		ufshcd_hex_dump("", tmrdp, sizeof(*tmrdp));
617 	}
618 }
619 
620 static void ufshcd_print_host_state(struct ufs_hba *hba)
621 {
622 	const struct scsi_device *sdev_ufs = hba->ufs_device_wlun;
623 
624 	dev_err(hba->dev, "UFS Host state=%d\n", hba->ufshcd_state);
625 	dev_err(hba->dev, "outstanding reqs=0x%lx tasks=0x%lx\n",
626 		hba->outstanding_reqs, hba->outstanding_tasks);
627 	dev_err(hba->dev, "saved_err=0x%x, saved_uic_err=0x%x\n",
628 		hba->saved_err, hba->saved_uic_err);
629 	dev_err(hba->dev, "Device power mode=%d, UIC link state=%d\n",
630 		hba->curr_dev_pwr_mode, hba->uic_link_state);
631 	dev_err(hba->dev, "PM in progress=%d, sys. suspended=%d\n",
632 		hba->pm_op_in_progress, hba->is_sys_suspended);
633 	dev_err(hba->dev, "Auto BKOPS=%d, Host self-block=%d\n",
634 		hba->auto_bkops_enabled, hba->host->host_self_blocked);
635 	dev_err(hba->dev, "Clk gate=%d\n", hba->clk_gating.state);
636 	dev_err(hba->dev,
637 		"last_hibern8_exit_tstamp at %lld us, hibern8_exit_cnt=%d\n",
638 		div_u64(hba->ufs_stats.last_hibern8_exit_tstamp, 1000),
639 		hba->ufs_stats.hibern8_exit_cnt);
640 	dev_err(hba->dev, "last intr at %lld us, last intr status=0x%x\n",
641 		div_u64(hba->ufs_stats.last_intr_ts, 1000),
642 		hba->ufs_stats.last_intr_status);
643 	dev_err(hba->dev, "error handling flags=0x%x, req. abort count=%d\n",
644 		hba->eh_flags, hba->req_abort_count);
645 	dev_err(hba->dev, "hba->ufs_version=0x%x, Host capabilities=0x%x, caps=0x%x\n",
646 		hba->ufs_version, hba->capabilities, hba->caps);
647 	dev_err(hba->dev, "quirks=0x%x, dev. quirks=0x%x\n", hba->quirks,
648 		hba->dev_quirks);
649 	if (sdev_ufs)
650 		dev_err(hba->dev, "UFS dev info: %.8s %.16s rev %.4s\n",
651 			sdev_ufs->vendor, sdev_ufs->model, sdev_ufs->rev);
652 
653 	ufshcd_print_clk_freqs(hba);
654 }
655 
656 /**
657  * ufshcd_print_pwr_info - print power params as saved in hba
658  * power info
659  * @hba: per-adapter instance
660  */
661 static void ufshcd_print_pwr_info(struct ufs_hba *hba)
662 {
663 	static const char * const names[] = {
664 		"INVALID MODE",
665 		"FAST MODE",
666 		"SLOW_MODE",
667 		"INVALID MODE",
668 		"FASTAUTO_MODE",
669 		"SLOWAUTO_MODE",
670 		"INVALID MODE",
671 	};
672 
673 	/*
674 	 * Using dev_dbg to avoid messages during runtime PM to avoid
675 	 * never-ending cycles of messages written back to storage by user space
676 	 * causing runtime resume, causing more messages and so on.
677 	 */
678 	dev_dbg(hba->dev, "%s:[RX, TX]: gear=[%d, %d], lane[%d, %d], pwr[%s, %s], rate = %d\n",
679 		 __func__,
680 		 hba->pwr_info.gear_rx, hba->pwr_info.gear_tx,
681 		 hba->pwr_info.lane_rx, hba->pwr_info.lane_tx,
682 		 names[hba->pwr_info.pwr_rx],
683 		 names[hba->pwr_info.pwr_tx],
684 		 hba->pwr_info.hs_rate);
685 }
686 
687 static void ufshcd_device_reset(struct ufs_hba *hba)
688 {
689 	int err;
690 
691 	err = ufshcd_vops_device_reset(hba);
692 
693 	if (!err) {
694 		ufshcd_set_ufs_dev_active(hba);
695 		if (ufshcd_is_wb_allowed(hba)) {
696 			hba->dev_info.wb_enabled = false;
697 			hba->dev_info.wb_buf_flush_enabled = false;
698 		}
699 		if (hba->dev_info.rtc_type == UFS_RTC_RELATIVE)
700 			hba->dev_info.rtc_time_baseline = 0;
701 	}
702 	if (err != -EOPNOTSUPP)
703 		ufshcd_update_evt_hist(hba, UFS_EVT_DEV_RESET, err);
704 }
705 
706 void ufshcd_delay_us(unsigned long us, unsigned long tolerance)
707 {
708 	if (!us)
709 		return;
710 
711 	if (us < 10)
712 		udelay(us);
713 	else
714 		usleep_range(us, us + tolerance);
715 }
716 EXPORT_SYMBOL_GPL(ufshcd_delay_us);
717 
718 /**
719  * ufshcd_wait_for_register - wait for register value to change
720  * @hba: per-adapter interface
721  * @reg: mmio register offset
722  * @mask: mask to apply to the read register value
723  * @val: value to wait for
724  * @interval_us: polling interval in microseconds
725  * @timeout_ms: timeout in milliseconds
726  *
727  * Return: -ETIMEDOUT on error, zero on success.
728  */
729 static int ufshcd_wait_for_register(struct ufs_hba *hba, u32 reg, u32 mask,
730 				    u32 val, unsigned long interval_us,
731 				    unsigned long timeout_ms)
732 {
733 	u32 v;
734 
735 	val &= mask; /* ignore bits that we don't intend to wait on */
736 
737 	return read_poll_timeout(ufshcd_readl, v, (v & mask) == val,
738 				 interval_us, timeout_ms * 1000, false, hba, reg);
739 }
740 
741 /**
742  * ufshcd_get_intr_mask - Get the interrupt bit mask
743  * @hba: Pointer to adapter instance
744  *
745  * Return: interrupt bit mask per version
746  */
747 static inline u32 ufshcd_get_intr_mask(struct ufs_hba *hba)
748 {
749 	if (hba->ufs_version <= ufshci_version(2, 0))
750 		return INTERRUPT_MASK_ALL_VER_11;
751 
752 	return INTERRUPT_MASK_ALL_VER_21;
753 }
754 
755 /**
756  * ufshcd_get_ufs_version - Get the UFS version supported by the HBA
757  * @hba: Pointer to adapter instance
758  *
759  * Return: UFSHCI version supported by the controller
760  */
761 static inline u32 ufshcd_get_ufs_version(struct ufs_hba *hba)
762 {
763 	u32 ufshci_ver;
764 
765 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_UFS_HCI_VERSION)
766 		ufshci_ver = ufshcd_vops_get_ufs_hci_version(hba);
767 	else
768 		ufshci_ver = ufshcd_readl(hba, REG_UFS_VERSION);
769 
770 	/*
771 	 * UFSHCI v1.x uses a different version scheme, in order
772 	 * to allow the use of comparisons with the ufshci_version
773 	 * function, we convert it to the same scheme as ufs 2.0+.
774 	 */
775 	if (ufshci_ver & 0x00010000)
776 		return ufshci_version(1, ufshci_ver & 0x00000100);
777 
778 	return ufshci_ver;
779 }
780 
781 /**
782  * ufshcd_is_device_present - Check if any device connected to
783  *			      the host controller
784  * @hba: pointer to adapter instance
785  *
786  * Return: true if device present, false if no device detected
787  */
788 static inline bool ufshcd_is_device_present(struct ufs_hba *hba)
789 {
790 	return ufshcd_readl(hba, REG_CONTROLLER_STATUS) & DEVICE_PRESENT;
791 }
792 
793 /**
794  * ufshcd_get_tr_ocs - Get the UTRD Overall Command Status
795  * @lrbp: pointer to local command reference block
796  * @cqe: pointer to the completion queue entry
797  *
798  * This function is used to get the OCS field from UTRD
799  *
800  * Return: the OCS field in the UTRD.
801  */
802 static enum utp_ocs ufshcd_get_tr_ocs(struct ufshcd_lrb *lrbp,
803 				      struct cq_entry *cqe)
804 {
805 	if (cqe)
806 		return le32_to_cpu(cqe->status) & MASK_OCS;
807 
808 	return lrbp->utr_descriptor_ptr->header.ocs & MASK_OCS;
809 }
810 
811 /**
812  * ufshcd_utrl_clear() - Clear requests from the controller request list.
813  * @hba: per adapter instance
814  * @mask: mask with one bit set for each request to be cleared
815  */
816 static inline void ufshcd_utrl_clear(struct ufs_hba *hba, u32 mask)
817 {
818 	if (hba->quirks & UFSHCI_QUIRK_BROKEN_REQ_LIST_CLR)
819 		mask = ~mask;
820 	/*
821 	 * From the UFSHCI specification: "UTP Transfer Request List CLear
822 	 * Register (UTRLCLR): This field is bit significant. Each bit
823 	 * corresponds to a slot in the UTP Transfer Request List, where bit 0
824 	 * corresponds to request slot 0. A bit in this field is set to ‘0’
825 	 * by host software to indicate to the host controller that a transfer
826 	 * request slot is cleared. The host controller
827 	 * shall free up any resources associated to the request slot
828 	 * immediately, and shall set the associated bit in UTRLDBR to ‘0’. The
829 	 * host software indicates no change to request slots by setting the
830 	 * associated bits in this field to ‘1’. Bits in this field shall only
831 	 * be set ‘1’ or ‘0’ by host software when UTRLRSR is set to ‘1’."
832 	 */
833 	ufshcd_writel(hba, ~mask, REG_UTP_TRANSFER_REQ_LIST_CLEAR);
834 }
835 
836 /**
837  * ufshcd_utmrl_clear - Clear a bit in UTMRLCLR register
838  * @hba: per adapter instance
839  * @pos: position of the bit to be cleared
840  */
841 static inline void ufshcd_utmrl_clear(struct ufs_hba *hba, u32 pos)
842 {
843 	if (hba->quirks & UFSHCI_QUIRK_BROKEN_REQ_LIST_CLR)
844 		ufshcd_writel(hba, (1 << pos), REG_UTP_TASK_REQ_LIST_CLEAR);
845 	else
846 		ufshcd_writel(hba, ~(1 << pos), REG_UTP_TASK_REQ_LIST_CLEAR);
847 }
848 
849 /**
850  * ufshcd_get_lists_status - Check UCRDY, UTRLRDY and UTMRLRDY
851  * @reg: Register value of host controller status
852  *
853  * Return: 0 on success; a positive value if failed.
854  */
855 static inline int ufshcd_get_lists_status(u32 reg)
856 {
857 	return !((reg & UFSHCD_STATUS_READY) == UFSHCD_STATUS_READY);
858 }
859 
860 /**
861  * ufshcd_get_uic_cmd_result - Get the UIC command result
862  * @hba: Pointer to adapter instance
863  *
864  * This function gets the result of UIC command completion
865  *
866  * Return: 0 on success; non-zero value on error.
867  */
868 static inline int ufshcd_get_uic_cmd_result(struct ufs_hba *hba)
869 {
870 	return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_2) &
871 	       MASK_UIC_COMMAND_RESULT;
872 }
873 
874 /**
875  * ufshcd_get_dme_attr_val - Get the value of attribute returned by UIC command
876  * @hba: Pointer to adapter instance
877  *
878  * This function gets UIC command argument3
879  *
880  * Return: 0 on success; non-zero value on error.
881  */
882 static inline u32 ufshcd_get_dme_attr_val(struct ufs_hba *hba)
883 {
884 	return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_3);
885 }
886 
887 /**
888  * ufshcd_get_req_rsp - returns the TR response transaction type
889  * @ucd_rsp_ptr: pointer to response UPIU
890  *
891  * Return: UPIU type.
892  */
893 static inline enum upiu_response_transaction
894 ufshcd_get_req_rsp(struct utp_upiu_rsp *ucd_rsp_ptr)
895 {
896 	return ucd_rsp_ptr->header.transaction_code;
897 }
898 
899 /**
900  * ufshcd_is_exception_event - Check if the device raised an exception event
901  * @ucd_rsp_ptr: pointer to response UPIU
902  *
903  * The function checks if the device raised an exception event indicated in
904  * the Device Information field of response UPIU.
905  *
906  * Return: true if exception is raised, false otherwise.
907  */
908 static inline bool ufshcd_is_exception_event(struct utp_upiu_rsp *ucd_rsp_ptr)
909 {
910 	return ucd_rsp_ptr->header.device_information & 1;
911 }
912 
913 /**
914  * ufshcd_reset_intr_aggr - Reset interrupt aggregation values.
915  * @hba: per adapter instance
916  */
917 static inline void
918 ufshcd_reset_intr_aggr(struct ufs_hba *hba)
919 {
920 	ufshcd_writel(hba, INT_AGGR_ENABLE |
921 		      INT_AGGR_COUNTER_AND_TIMER_RESET,
922 		      REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
923 }
924 
925 /**
926  * ufshcd_config_intr_aggr - Configure interrupt aggregation values.
927  * @hba: per adapter instance
928  * @cnt: Interrupt aggregation counter threshold
929  * @tmout: Interrupt aggregation timeout value
930  */
931 static inline void
932 ufshcd_config_intr_aggr(struct ufs_hba *hba, u8 cnt, u8 tmout)
933 {
934 	ufshcd_writel(hba, INT_AGGR_ENABLE | INT_AGGR_PARAM_WRITE |
935 		      INT_AGGR_COUNTER_THLD_VAL(cnt) |
936 		      INT_AGGR_TIMEOUT_VAL(tmout),
937 		      REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
938 }
939 
940 /**
941  * ufshcd_disable_intr_aggr - Disables interrupt aggregation.
942  * @hba: per adapter instance
943  */
944 static inline void ufshcd_disable_intr_aggr(struct ufs_hba *hba)
945 {
946 	ufshcd_writel(hba, 0, REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
947 }
948 
949 /**
950  * ufshcd_enable_run_stop_reg - Enable run-stop registers,
951  *			When run-stop registers are set to 1, it indicates the
952  *			host controller that it can process the requests
953  * @hba: per adapter instance
954  */
955 static void ufshcd_enable_run_stop_reg(struct ufs_hba *hba)
956 {
957 	ufshcd_writel(hba, UTP_TASK_REQ_LIST_RUN_STOP_BIT,
958 		      REG_UTP_TASK_REQ_LIST_RUN_STOP);
959 	ufshcd_writel(hba, UTP_TRANSFER_REQ_LIST_RUN_STOP_BIT,
960 		      REG_UTP_TRANSFER_REQ_LIST_RUN_STOP);
961 }
962 
963 /**
964  * ufshcd_hba_start - Start controller initialization sequence
965  * @hba: per adapter instance
966  */
967 static inline void ufshcd_hba_start(struct ufs_hba *hba)
968 {
969 	u32 val = CONTROLLER_ENABLE;
970 
971 	if (ufshcd_crypto_enable(hba))
972 		val |= CRYPTO_GENERAL_ENABLE;
973 
974 	ufshcd_writel(hba, val, REG_CONTROLLER_ENABLE);
975 }
976 
977 /**
978  * ufshcd_is_hba_active - Get controller state
979  * @hba: per adapter instance
980  *
981  * Return: true if and only if the controller is active.
982  */
983 bool ufshcd_is_hba_active(struct ufs_hba *hba)
984 {
985 	return ufshcd_readl(hba, REG_CONTROLLER_ENABLE) & CONTROLLER_ENABLE;
986 }
987 EXPORT_SYMBOL_GPL(ufshcd_is_hba_active);
988 
989 /**
990  * ufshcd_pm_qos_init - initialize PM QoS request
991  * @hba: per adapter instance
992  */
993 void ufshcd_pm_qos_init(struct ufs_hba *hba)
994 {
995 
996 	if (hba->pm_qos_enabled)
997 		return;
998 
999 	cpu_latency_qos_add_request(&hba->pm_qos_req, PM_QOS_DEFAULT_VALUE);
1000 
1001 	if (cpu_latency_qos_request_active(&hba->pm_qos_req))
1002 		hba->pm_qos_enabled = true;
1003 }
1004 
1005 /**
1006  * ufshcd_pm_qos_exit - remove request from PM QoS
1007  * @hba: per adapter instance
1008  */
1009 void ufshcd_pm_qos_exit(struct ufs_hba *hba)
1010 {
1011 	if (!hba->pm_qos_enabled)
1012 		return;
1013 
1014 	cpu_latency_qos_remove_request(&hba->pm_qos_req);
1015 	hba->pm_qos_enabled = false;
1016 }
1017 
1018 /**
1019  * ufshcd_pm_qos_update - update PM QoS request
1020  * @hba: per adapter instance
1021  * @on: If True, vote for perf PM QoS mode otherwise power save mode
1022  */
1023 static void ufshcd_pm_qos_update(struct ufs_hba *hba, bool on)
1024 {
1025 	if (!hba->pm_qos_enabled)
1026 		return;
1027 
1028 	cpu_latency_qos_update_request(&hba->pm_qos_req, on ? 0 : PM_QOS_DEFAULT_VALUE);
1029 }
1030 
1031 /**
1032  * ufshcd_set_clk_freq - set UFS controller clock frequencies
1033  * @hba: per adapter instance
1034  * @scale_up: If True, set max possible frequency othewise set low frequency
1035  *
1036  * Return: 0 if successful; < 0 upon failure.
1037  */
1038 static int ufshcd_set_clk_freq(struct ufs_hba *hba, bool scale_up)
1039 {
1040 	int ret = 0;
1041 	struct ufs_clk_info *clki;
1042 	struct list_head *head = &hba->clk_list_head;
1043 
1044 	if (list_empty(head))
1045 		goto out;
1046 
1047 	list_for_each_entry(clki, head, list) {
1048 		if (!IS_ERR_OR_NULL(clki->clk)) {
1049 			if (scale_up && clki->max_freq) {
1050 				if (clki->curr_freq == clki->max_freq)
1051 					continue;
1052 
1053 				ret = clk_set_rate(clki->clk, clki->max_freq);
1054 				if (ret) {
1055 					dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
1056 						__func__, clki->name,
1057 						clki->max_freq, ret);
1058 					break;
1059 				}
1060 				trace_ufshcd_clk_scaling(dev_name(hba->dev),
1061 						"scaled up", clki->name,
1062 						clki->curr_freq,
1063 						clki->max_freq);
1064 
1065 				clki->curr_freq = clki->max_freq;
1066 
1067 			} else if (!scale_up && clki->min_freq) {
1068 				if (clki->curr_freq == clki->min_freq)
1069 					continue;
1070 
1071 				ret = clk_set_rate(clki->clk, clki->min_freq);
1072 				if (ret) {
1073 					dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
1074 						__func__, clki->name,
1075 						clki->min_freq, ret);
1076 					break;
1077 				}
1078 				trace_ufshcd_clk_scaling(dev_name(hba->dev),
1079 						"scaled down", clki->name,
1080 						clki->curr_freq,
1081 						clki->min_freq);
1082 				clki->curr_freq = clki->min_freq;
1083 			}
1084 		}
1085 		dev_dbg(hba->dev, "%s: clk: %s, rate: %lu\n", __func__,
1086 				clki->name, clk_get_rate(clki->clk));
1087 	}
1088 
1089 out:
1090 	return ret;
1091 }
1092 
1093 int ufshcd_opp_config_clks(struct device *dev, struct opp_table *opp_table,
1094 			   struct dev_pm_opp *opp, void *data,
1095 			   bool scaling_down)
1096 {
1097 	struct ufs_hba *hba = dev_get_drvdata(dev);
1098 	struct list_head *head = &hba->clk_list_head;
1099 	struct ufs_clk_info *clki;
1100 	unsigned long freq;
1101 	u8 idx = 0;
1102 	int ret;
1103 
1104 	list_for_each_entry(clki, head, list) {
1105 		if (!IS_ERR_OR_NULL(clki->clk)) {
1106 			freq = dev_pm_opp_get_freq_indexed(opp, idx++);
1107 
1108 			/* Do not set rate for clocks having frequency as 0 */
1109 			if (!freq)
1110 				continue;
1111 
1112 			ret = clk_set_rate(clki->clk, freq);
1113 			if (ret) {
1114 				dev_err(dev, "%s: %s clk set rate(%ldHz) failed, %d\n",
1115 					__func__, clki->name, freq, ret);
1116 				return ret;
1117 			}
1118 
1119 			trace_ufshcd_clk_scaling(dev_name(dev),
1120 				(scaling_down ? "scaled down" : "scaled up"),
1121 				clki->name, hba->clk_scaling.target_freq, freq);
1122 		}
1123 	}
1124 
1125 	return 0;
1126 }
1127 EXPORT_SYMBOL_GPL(ufshcd_opp_config_clks);
1128 
1129 static int ufshcd_opp_set_rate(struct ufs_hba *hba, unsigned long freq)
1130 {
1131 	struct dev_pm_opp *opp;
1132 	int ret;
1133 
1134 	opp = dev_pm_opp_find_freq_floor_indexed(hba->dev,
1135 						 &freq, 0);
1136 	if (IS_ERR(opp))
1137 		return PTR_ERR(opp);
1138 
1139 	ret = dev_pm_opp_set_opp(hba->dev, opp);
1140 	dev_pm_opp_put(opp);
1141 
1142 	return ret;
1143 }
1144 
1145 /**
1146  * ufshcd_scale_clks - scale up or scale down UFS controller clocks
1147  * @hba: per adapter instance
1148  * @freq: frequency to scale
1149  * @scale_up: True if scaling up and false if scaling down
1150  *
1151  * Return: 0 if successful; < 0 upon failure.
1152  */
1153 static int ufshcd_scale_clks(struct ufs_hba *hba, unsigned long freq,
1154 			     bool scale_up)
1155 {
1156 	int ret = 0;
1157 	ktime_t start = ktime_get();
1158 
1159 	ret = ufshcd_vops_clk_scale_notify(hba, scale_up, PRE_CHANGE);
1160 	if (ret)
1161 		goto out;
1162 
1163 	if (hba->use_pm_opp)
1164 		ret = ufshcd_opp_set_rate(hba, freq);
1165 	else
1166 		ret = ufshcd_set_clk_freq(hba, scale_up);
1167 	if (ret)
1168 		goto out;
1169 
1170 	ret = ufshcd_vops_clk_scale_notify(hba, scale_up, POST_CHANGE);
1171 	if (ret) {
1172 		if (hba->use_pm_opp)
1173 			ufshcd_opp_set_rate(hba,
1174 					    hba->devfreq->previous_freq);
1175 		else
1176 			ufshcd_set_clk_freq(hba, !scale_up);
1177 		goto out;
1178 	}
1179 
1180 	ufshcd_pm_qos_update(hba, scale_up);
1181 
1182 out:
1183 	trace_ufshcd_profile_clk_scaling(dev_name(hba->dev),
1184 			(scale_up ? "up" : "down"),
1185 			ktime_to_us(ktime_sub(ktime_get(), start)), ret);
1186 	return ret;
1187 }
1188 
1189 /**
1190  * ufshcd_is_devfreq_scaling_required - check if scaling is required or not
1191  * @hba: per adapter instance
1192  * @freq: frequency to scale
1193  * @scale_up: True if scaling up and false if scaling down
1194  *
1195  * Return: true if scaling is required, false otherwise.
1196  */
1197 static bool ufshcd_is_devfreq_scaling_required(struct ufs_hba *hba,
1198 					       unsigned long freq, bool scale_up)
1199 {
1200 	struct ufs_clk_info *clki;
1201 	struct list_head *head = &hba->clk_list_head;
1202 
1203 	if (list_empty(head))
1204 		return false;
1205 
1206 	if (hba->use_pm_opp)
1207 		return freq != hba->clk_scaling.target_freq;
1208 
1209 	list_for_each_entry(clki, head, list) {
1210 		if (!IS_ERR_OR_NULL(clki->clk)) {
1211 			if (scale_up && clki->max_freq) {
1212 				if (clki->curr_freq == clki->max_freq)
1213 					continue;
1214 				return true;
1215 			} else if (!scale_up && clki->min_freq) {
1216 				if (clki->curr_freq == clki->min_freq)
1217 					continue;
1218 				return true;
1219 			}
1220 		}
1221 	}
1222 
1223 	return false;
1224 }
1225 
1226 /*
1227  * Determine the number of pending commands by counting the bits in the SCSI
1228  * device budget maps. This approach has been selected because a bit is set in
1229  * the budget map before scsi_host_queue_ready() checks the host_self_blocked
1230  * flag. The host_self_blocked flag can be modified by calling
1231  * scsi_block_requests() or scsi_unblock_requests().
1232  */
1233 static u32 ufshcd_pending_cmds(struct ufs_hba *hba)
1234 {
1235 	const struct scsi_device *sdev;
1236 	unsigned long flags;
1237 	u32 pending = 0;
1238 
1239 	spin_lock_irqsave(hba->host->host_lock, flags);
1240 	__shost_for_each_device(sdev, hba->host)
1241 		pending += sbitmap_weight(&sdev->budget_map);
1242 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1243 
1244 	return pending;
1245 }
1246 
1247 /*
1248  * Wait until all pending SCSI commands and TMFs have finished or the timeout
1249  * has expired.
1250  *
1251  * Return: 0 upon success; -EBUSY upon timeout.
1252  */
1253 static int ufshcd_wait_for_doorbell_clr(struct ufs_hba *hba,
1254 					u64 wait_timeout_us)
1255 {
1256 	int ret = 0;
1257 	u32 tm_doorbell;
1258 	u32 tr_pending;
1259 	bool timeout = false, do_last_check = false;
1260 	ktime_t start;
1261 
1262 	ufshcd_hold(hba);
1263 	/*
1264 	 * Wait for all the outstanding tasks/transfer requests.
1265 	 * Verify by checking the doorbell registers are clear.
1266 	 */
1267 	start = ktime_get();
1268 	do {
1269 		if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL) {
1270 			ret = -EBUSY;
1271 			goto out;
1272 		}
1273 
1274 		tm_doorbell = ufshcd_readl(hba, REG_UTP_TASK_REQ_DOOR_BELL);
1275 		tr_pending = ufshcd_pending_cmds(hba);
1276 		if (!tm_doorbell && !tr_pending) {
1277 			timeout = false;
1278 			break;
1279 		} else if (do_last_check) {
1280 			break;
1281 		}
1282 
1283 		io_schedule_timeout(msecs_to_jiffies(20));
1284 		if (ktime_to_us(ktime_sub(ktime_get(), start)) >
1285 		    wait_timeout_us) {
1286 			timeout = true;
1287 			/*
1288 			 * We might have scheduled out for long time so make
1289 			 * sure to check if doorbells are cleared by this time
1290 			 * or not.
1291 			 */
1292 			do_last_check = true;
1293 		}
1294 	} while (tm_doorbell || tr_pending);
1295 
1296 	if (timeout) {
1297 		dev_err(hba->dev,
1298 			"%s: timedout waiting for doorbell to clear (tm=0x%x, tr=0x%x)\n",
1299 			__func__, tm_doorbell, tr_pending);
1300 		ret = -EBUSY;
1301 	}
1302 out:
1303 	ufshcd_release(hba);
1304 	return ret;
1305 }
1306 
1307 /**
1308  * ufshcd_scale_gear - scale up/down UFS gear
1309  * @hba: per adapter instance
1310  * @scale_up: True for scaling up gear and false for scaling down
1311  *
1312  * Return: 0 for success; -EBUSY if scaling can't happen at this time;
1313  * non-zero for any other errors.
1314  */
1315 static int ufshcd_scale_gear(struct ufs_hba *hba, bool scale_up)
1316 {
1317 	int ret = 0;
1318 	struct ufs_pa_layer_attr new_pwr_info;
1319 
1320 	if (scale_up) {
1321 		memcpy(&new_pwr_info, &hba->clk_scaling.saved_pwr_info,
1322 		       sizeof(struct ufs_pa_layer_attr));
1323 	} else {
1324 		memcpy(&new_pwr_info, &hba->pwr_info,
1325 		       sizeof(struct ufs_pa_layer_attr));
1326 
1327 		if (hba->pwr_info.gear_tx > hba->clk_scaling.min_gear ||
1328 		    hba->pwr_info.gear_rx > hba->clk_scaling.min_gear) {
1329 			/* save the current power mode */
1330 			memcpy(&hba->clk_scaling.saved_pwr_info,
1331 				&hba->pwr_info,
1332 				sizeof(struct ufs_pa_layer_attr));
1333 
1334 			/* scale down gear */
1335 			new_pwr_info.gear_tx = hba->clk_scaling.min_gear;
1336 			new_pwr_info.gear_rx = hba->clk_scaling.min_gear;
1337 		}
1338 	}
1339 
1340 	/* check if the power mode needs to be changed or not? */
1341 	ret = ufshcd_config_pwr_mode(hba, &new_pwr_info);
1342 	if (ret)
1343 		dev_err(hba->dev, "%s: failed err %d, old gear: (tx %d rx %d), new gear: (tx %d rx %d)",
1344 			__func__, ret,
1345 			hba->pwr_info.gear_tx, hba->pwr_info.gear_rx,
1346 			new_pwr_info.gear_tx, new_pwr_info.gear_rx);
1347 
1348 	return ret;
1349 }
1350 
1351 /*
1352  * Wait until all pending SCSI commands and TMFs have finished or the timeout
1353  * has expired.
1354  *
1355  * Return: 0 upon success; -EBUSY upon timeout.
1356  */
1357 static int ufshcd_clock_scaling_prepare(struct ufs_hba *hba, u64 timeout_us)
1358 {
1359 	int ret = 0;
1360 	/*
1361 	 * make sure that there are no outstanding requests when
1362 	 * clock scaling is in progress
1363 	 */
1364 	blk_mq_quiesce_tagset(&hba->host->tag_set);
1365 	mutex_lock(&hba->wb_mutex);
1366 	down_write(&hba->clk_scaling_lock);
1367 
1368 	if (!hba->clk_scaling.is_allowed ||
1369 	    ufshcd_wait_for_doorbell_clr(hba, timeout_us)) {
1370 		ret = -EBUSY;
1371 		up_write(&hba->clk_scaling_lock);
1372 		mutex_unlock(&hba->wb_mutex);
1373 		blk_mq_unquiesce_tagset(&hba->host->tag_set);
1374 		goto out;
1375 	}
1376 
1377 	/* let's not get into low power until clock scaling is completed */
1378 	ufshcd_hold(hba);
1379 
1380 out:
1381 	return ret;
1382 }
1383 
1384 static void ufshcd_clock_scaling_unprepare(struct ufs_hba *hba, int err, bool scale_up)
1385 {
1386 	up_write(&hba->clk_scaling_lock);
1387 
1388 	/* Enable Write Booster if we have scaled up else disable it */
1389 	if (ufshcd_enable_wb_if_scaling_up(hba) && !err)
1390 		ufshcd_wb_toggle(hba, scale_up);
1391 
1392 	mutex_unlock(&hba->wb_mutex);
1393 
1394 	blk_mq_unquiesce_tagset(&hba->host->tag_set);
1395 	ufshcd_release(hba);
1396 }
1397 
1398 /**
1399  * ufshcd_devfreq_scale - scale up/down UFS clocks and gear
1400  * @hba: per adapter instance
1401  * @freq: frequency to scale
1402  * @scale_up: True for scaling up and false for scalin down
1403  *
1404  * Return: 0 for success; -EBUSY if scaling can't happen at this time; non-zero
1405  * for any other errors.
1406  */
1407 static int ufshcd_devfreq_scale(struct ufs_hba *hba, unsigned long freq,
1408 				bool scale_up)
1409 {
1410 	int ret = 0;
1411 
1412 	ret = ufshcd_clock_scaling_prepare(hba, 1 * USEC_PER_SEC);
1413 	if (ret)
1414 		return ret;
1415 
1416 	/* scale down the gear before scaling down clocks */
1417 	if (!scale_up) {
1418 		ret = ufshcd_scale_gear(hba, false);
1419 		if (ret)
1420 			goto out_unprepare;
1421 	}
1422 
1423 	ret = ufshcd_scale_clks(hba, freq, scale_up);
1424 	if (ret) {
1425 		if (!scale_up)
1426 			ufshcd_scale_gear(hba, true);
1427 		goto out_unprepare;
1428 	}
1429 
1430 	/* scale up the gear after scaling up clocks */
1431 	if (scale_up) {
1432 		ret = ufshcd_scale_gear(hba, true);
1433 		if (ret) {
1434 			ufshcd_scale_clks(hba, hba->devfreq->previous_freq,
1435 					  false);
1436 			goto out_unprepare;
1437 		}
1438 	}
1439 
1440 out_unprepare:
1441 	ufshcd_clock_scaling_unprepare(hba, ret, scale_up);
1442 	return ret;
1443 }
1444 
1445 static void ufshcd_clk_scaling_suspend_work(struct work_struct *work)
1446 {
1447 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1448 					   clk_scaling.suspend_work);
1449 	unsigned long irq_flags;
1450 
1451 	spin_lock_irqsave(hba->host->host_lock, irq_flags);
1452 	if (hba->clk_scaling.active_reqs || hba->clk_scaling.is_suspended) {
1453 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1454 		return;
1455 	}
1456 	hba->clk_scaling.is_suspended = true;
1457 	hba->clk_scaling.window_start_t = 0;
1458 	spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1459 
1460 	devfreq_suspend_device(hba->devfreq);
1461 }
1462 
1463 static void ufshcd_clk_scaling_resume_work(struct work_struct *work)
1464 {
1465 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1466 					   clk_scaling.resume_work);
1467 	unsigned long irq_flags;
1468 
1469 	spin_lock_irqsave(hba->host->host_lock, irq_flags);
1470 	if (!hba->clk_scaling.is_suspended) {
1471 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1472 		return;
1473 	}
1474 	hba->clk_scaling.is_suspended = false;
1475 	spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1476 
1477 	devfreq_resume_device(hba->devfreq);
1478 }
1479 
1480 static int ufshcd_devfreq_target(struct device *dev,
1481 				unsigned long *freq, u32 flags)
1482 {
1483 	int ret = 0;
1484 	struct ufs_hba *hba = dev_get_drvdata(dev);
1485 	ktime_t start;
1486 	bool scale_up = false, sched_clk_scaling_suspend_work = false;
1487 	struct list_head *clk_list = &hba->clk_list_head;
1488 	struct ufs_clk_info *clki;
1489 	unsigned long irq_flags;
1490 
1491 	if (!ufshcd_is_clkscaling_supported(hba))
1492 		return -EINVAL;
1493 
1494 	if (hba->use_pm_opp) {
1495 		struct dev_pm_opp *opp;
1496 
1497 		/* Get the recommended frequency from OPP framework */
1498 		opp = devfreq_recommended_opp(dev, freq, flags);
1499 		if (IS_ERR(opp))
1500 			return PTR_ERR(opp);
1501 
1502 		dev_pm_opp_put(opp);
1503 	} else {
1504 		/* Override with the closest supported frequency */
1505 		clki = list_first_entry(&hba->clk_list_head, struct ufs_clk_info,
1506 					list);
1507 		*freq =	(unsigned long) clk_round_rate(clki->clk, *freq);
1508 	}
1509 
1510 	spin_lock_irqsave(hba->host->host_lock, irq_flags);
1511 	if (ufshcd_eh_in_progress(hba)) {
1512 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1513 		return 0;
1514 	}
1515 
1516 	/* Skip scaling clock when clock scaling is suspended */
1517 	if (hba->clk_scaling.is_suspended) {
1518 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1519 		dev_warn(hba->dev, "clock scaling is suspended, skip");
1520 		return 0;
1521 	}
1522 
1523 	if (!hba->clk_scaling.active_reqs)
1524 		sched_clk_scaling_suspend_work = true;
1525 
1526 	if (list_empty(clk_list)) {
1527 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1528 		goto out;
1529 	}
1530 
1531 	/* Decide based on the target or rounded-off frequency and update */
1532 	if (hba->use_pm_opp)
1533 		scale_up = *freq > hba->clk_scaling.target_freq;
1534 	else
1535 		scale_up = *freq == clki->max_freq;
1536 
1537 	if (!hba->use_pm_opp && !scale_up)
1538 		*freq = clki->min_freq;
1539 
1540 	/* Update the frequency */
1541 	if (!ufshcd_is_devfreq_scaling_required(hba, *freq, scale_up)) {
1542 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1543 		ret = 0;
1544 		goto out; /* no state change required */
1545 	}
1546 	spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1547 
1548 	start = ktime_get();
1549 	ret = ufshcd_devfreq_scale(hba, *freq, scale_up);
1550 	if (!ret)
1551 		hba->clk_scaling.target_freq = *freq;
1552 
1553 	trace_ufshcd_profile_clk_scaling(dev_name(hba->dev),
1554 		(scale_up ? "up" : "down"),
1555 		ktime_to_us(ktime_sub(ktime_get(), start)), ret);
1556 
1557 out:
1558 	if (sched_clk_scaling_suspend_work &&
1559 			(!scale_up || hba->clk_scaling.suspend_on_no_request))
1560 		queue_work(hba->clk_scaling.workq,
1561 			   &hba->clk_scaling.suspend_work);
1562 
1563 	return ret;
1564 }
1565 
1566 static int ufshcd_devfreq_get_dev_status(struct device *dev,
1567 		struct devfreq_dev_status *stat)
1568 {
1569 	struct ufs_hba *hba = dev_get_drvdata(dev);
1570 	struct ufs_clk_scaling *scaling = &hba->clk_scaling;
1571 	unsigned long flags;
1572 	ktime_t curr_t;
1573 
1574 	if (!ufshcd_is_clkscaling_supported(hba))
1575 		return -EINVAL;
1576 
1577 	memset(stat, 0, sizeof(*stat));
1578 
1579 	spin_lock_irqsave(hba->host->host_lock, flags);
1580 	curr_t = ktime_get();
1581 	if (!scaling->window_start_t)
1582 		goto start_window;
1583 
1584 	/*
1585 	 * If current frequency is 0, then the ondemand governor considers
1586 	 * there's no initial frequency set. And it always requests to set
1587 	 * to max. frequency.
1588 	 */
1589 	if (hba->use_pm_opp) {
1590 		stat->current_frequency = hba->clk_scaling.target_freq;
1591 	} else {
1592 		struct list_head *clk_list = &hba->clk_list_head;
1593 		struct ufs_clk_info *clki;
1594 
1595 		clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1596 		stat->current_frequency = clki->curr_freq;
1597 	}
1598 
1599 	if (scaling->is_busy_started)
1600 		scaling->tot_busy_t += ktime_us_delta(curr_t,
1601 				scaling->busy_start_t);
1602 	stat->total_time = ktime_us_delta(curr_t, scaling->window_start_t);
1603 	stat->busy_time = scaling->tot_busy_t;
1604 start_window:
1605 	scaling->window_start_t = curr_t;
1606 	scaling->tot_busy_t = 0;
1607 
1608 	if (scaling->active_reqs) {
1609 		scaling->busy_start_t = curr_t;
1610 		scaling->is_busy_started = true;
1611 	} else {
1612 		scaling->busy_start_t = 0;
1613 		scaling->is_busy_started = false;
1614 	}
1615 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1616 	return 0;
1617 }
1618 
1619 static int ufshcd_devfreq_init(struct ufs_hba *hba)
1620 {
1621 	struct list_head *clk_list = &hba->clk_list_head;
1622 	struct ufs_clk_info *clki;
1623 	struct devfreq *devfreq;
1624 	int ret;
1625 
1626 	/* Skip devfreq if we don't have any clocks in the list */
1627 	if (list_empty(clk_list))
1628 		return 0;
1629 
1630 	if (!hba->use_pm_opp) {
1631 		clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1632 		dev_pm_opp_add(hba->dev, clki->min_freq, 0);
1633 		dev_pm_opp_add(hba->dev, clki->max_freq, 0);
1634 	}
1635 
1636 	ufshcd_vops_config_scaling_param(hba, &hba->vps->devfreq_profile,
1637 					 &hba->vps->ondemand_data);
1638 	devfreq = devfreq_add_device(hba->dev,
1639 			&hba->vps->devfreq_profile,
1640 			DEVFREQ_GOV_SIMPLE_ONDEMAND,
1641 			&hba->vps->ondemand_data);
1642 	if (IS_ERR(devfreq)) {
1643 		ret = PTR_ERR(devfreq);
1644 		dev_err(hba->dev, "Unable to register with devfreq %d\n", ret);
1645 
1646 		if (!hba->use_pm_opp) {
1647 			dev_pm_opp_remove(hba->dev, clki->min_freq);
1648 			dev_pm_opp_remove(hba->dev, clki->max_freq);
1649 		}
1650 		return ret;
1651 	}
1652 
1653 	hba->devfreq = devfreq;
1654 
1655 	return 0;
1656 }
1657 
1658 static void ufshcd_devfreq_remove(struct ufs_hba *hba)
1659 {
1660 	struct list_head *clk_list = &hba->clk_list_head;
1661 
1662 	if (!hba->devfreq)
1663 		return;
1664 
1665 	devfreq_remove_device(hba->devfreq);
1666 	hba->devfreq = NULL;
1667 
1668 	if (!hba->use_pm_opp) {
1669 		struct ufs_clk_info *clki;
1670 
1671 		clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1672 		dev_pm_opp_remove(hba->dev, clki->min_freq);
1673 		dev_pm_opp_remove(hba->dev, clki->max_freq);
1674 	}
1675 }
1676 
1677 static void ufshcd_suspend_clkscaling(struct ufs_hba *hba)
1678 {
1679 	unsigned long flags;
1680 	bool suspend = false;
1681 
1682 	cancel_work_sync(&hba->clk_scaling.suspend_work);
1683 	cancel_work_sync(&hba->clk_scaling.resume_work);
1684 
1685 	spin_lock_irqsave(hba->host->host_lock, flags);
1686 	if (!hba->clk_scaling.is_suspended) {
1687 		suspend = true;
1688 		hba->clk_scaling.is_suspended = true;
1689 		hba->clk_scaling.window_start_t = 0;
1690 	}
1691 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1692 
1693 	if (suspend)
1694 		devfreq_suspend_device(hba->devfreq);
1695 }
1696 
1697 static void ufshcd_resume_clkscaling(struct ufs_hba *hba)
1698 {
1699 	unsigned long flags;
1700 	bool resume = false;
1701 
1702 	spin_lock_irqsave(hba->host->host_lock, flags);
1703 	if (hba->clk_scaling.is_suspended) {
1704 		resume = true;
1705 		hba->clk_scaling.is_suspended = false;
1706 	}
1707 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1708 
1709 	if (resume)
1710 		devfreq_resume_device(hba->devfreq);
1711 }
1712 
1713 static ssize_t ufshcd_clkscale_enable_show(struct device *dev,
1714 		struct device_attribute *attr, char *buf)
1715 {
1716 	struct ufs_hba *hba = dev_get_drvdata(dev);
1717 
1718 	return sysfs_emit(buf, "%d\n", hba->clk_scaling.is_enabled);
1719 }
1720 
1721 static ssize_t ufshcd_clkscale_enable_store(struct device *dev,
1722 		struct device_attribute *attr, const char *buf, size_t count)
1723 {
1724 	struct ufs_hba *hba = dev_get_drvdata(dev);
1725 	u32 value;
1726 	int err = 0;
1727 
1728 	if (kstrtou32(buf, 0, &value))
1729 		return -EINVAL;
1730 
1731 	down(&hba->host_sem);
1732 	if (!ufshcd_is_user_access_allowed(hba)) {
1733 		err = -EBUSY;
1734 		goto out;
1735 	}
1736 
1737 	value = !!value;
1738 	if (value == hba->clk_scaling.is_enabled)
1739 		goto out;
1740 
1741 	ufshcd_rpm_get_sync(hba);
1742 	ufshcd_hold(hba);
1743 
1744 	hba->clk_scaling.is_enabled = value;
1745 
1746 	if (value) {
1747 		ufshcd_resume_clkscaling(hba);
1748 	} else {
1749 		ufshcd_suspend_clkscaling(hba);
1750 		err = ufshcd_devfreq_scale(hba, ULONG_MAX, true);
1751 		if (err)
1752 			dev_err(hba->dev, "%s: failed to scale clocks up %d\n",
1753 					__func__, err);
1754 	}
1755 
1756 	ufshcd_release(hba);
1757 	ufshcd_rpm_put_sync(hba);
1758 out:
1759 	up(&hba->host_sem);
1760 	return err ? err : count;
1761 }
1762 
1763 static void ufshcd_init_clk_scaling_sysfs(struct ufs_hba *hba)
1764 {
1765 	hba->clk_scaling.enable_attr.show = ufshcd_clkscale_enable_show;
1766 	hba->clk_scaling.enable_attr.store = ufshcd_clkscale_enable_store;
1767 	sysfs_attr_init(&hba->clk_scaling.enable_attr.attr);
1768 	hba->clk_scaling.enable_attr.attr.name = "clkscale_enable";
1769 	hba->clk_scaling.enable_attr.attr.mode = 0644;
1770 	if (device_create_file(hba->dev, &hba->clk_scaling.enable_attr))
1771 		dev_err(hba->dev, "Failed to create sysfs for clkscale_enable\n");
1772 }
1773 
1774 static void ufshcd_remove_clk_scaling_sysfs(struct ufs_hba *hba)
1775 {
1776 	if (hba->clk_scaling.enable_attr.attr.name)
1777 		device_remove_file(hba->dev, &hba->clk_scaling.enable_attr);
1778 }
1779 
1780 static void ufshcd_init_clk_scaling(struct ufs_hba *hba)
1781 {
1782 	if (!ufshcd_is_clkscaling_supported(hba))
1783 		return;
1784 
1785 	if (!hba->clk_scaling.min_gear)
1786 		hba->clk_scaling.min_gear = UFS_HS_G1;
1787 
1788 	INIT_WORK(&hba->clk_scaling.suspend_work,
1789 		  ufshcd_clk_scaling_suspend_work);
1790 	INIT_WORK(&hba->clk_scaling.resume_work,
1791 		  ufshcd_clk_scaling_resume_work);
1792 
1793 	hba->clk_scaling.workq = alloc_ordered_workqueue(
1794 		"ufs_clkscaling_%d", WQ_MEM_RECLAIM, hba->host->host_no);
1795 
1796 	hba->clk_scaling.is_initialized = true;
1797 }
1798 
1799 static void ufshcd_exit_clk_scaling(struct ufs_hba *hba)
1800 {
1801 	if (!hba->clk_scaling.is_initialized)
1802 		return;
1803 
1804 	ufshcd_remove_clk_scaling_sysfs(hba);
1805 	destroy_workqueue(hba->clk_scaling.workq);
1806 	ufshcd_devfreq_remove(hba);
1807 	hba->clk_scaling.is_initialized = false;
1808 }
1809 
1810 static void ufshcd_ungate_work(struct work_struct *work)
1811 {
1812 	int ret;
1813 	unsigned long flags;
1814 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1815 			clk_gating.ungate_work);
1816 
1817 	cancel_delayed_work_sync(&hba->clk_gating.gate_work);
1818 
1819 	spin_lock_irqsave(hba->host->host_lock, flags);
1820 	if (hba->clk_gating.state == CLKS_ON) {
1821 		spin_unlock_irqrestore(hba->host->host_lock, flags);
1822 		return;
1823 	}
1824 
1825 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1826 	ufshcd_hba_vreg_set_hpm(hba);
1827 	ufshcd_setup_clocks(hba, true);
1828 
1829 	ufshcd_enable_irq(hba);
1830 
1831 	/* Exit from hibern8 */
1832 	if (ufshcd_can_hibern8_during_gating(hba)) {
1833 		/* Prevent gating in this path */
1834 		hba->clk_gating.is_suspended = true;
1835 		if (ufshcd_is_link_hibern8(hba)) {
1836 			ret = ufshcd_uic_hibern8_exit(hba);
1837 			if (ret)
1838 				dev_err(hba->dev, "%s: hibern8 exit failed %d\n",
1839 					__func__, ret);
1840 			else
1841 				ufshcd_set_link_active(hba);
1842 		}
1843 		hba->clk_gating.is_suspended = false;
1844 	}
1845 }
1846 
1847 /**
1848  * ufshcd_hold - Enable clocks that were gated earlier due to ufshcd_release.
1849  * Also, exit from hibern8 mode and set the link as active.
1850  * @hba: per adapter instance
1851  */
1852 void ufshcd_hold(struct ufs_hba *hba)
1853 {
1854 	bool flush_result;
1855 	unsigned long flags;
1856 
1857 	if (!ufshcd_is_clkgating_allowed(hba) ||
1858 	    !hba->clk_gating.is_initialized)
1859 		return;
1860 	spin_lock_irqsave(hba->host->host_lock, flags);
1861 	hba->clk_gating.active_reqs++;
1862 
1863 start:
1864 	switch (hba->clk_gating.state) {
1865 	case CLKS_ON:
1866 		/*
1867 		 * Wait for the ungate work to complete if in progress.
1868 		 * Though the clocks may be in ON state, the link could
1869 		 * still be in hibner8 state if hibern8 is allowed
1870 		 * during clock gating.
1871 		 * Make sure we exit hibern8 state also in addition to
1872 		 * clocks being ON.
1873 		 */
1874 		if (ufshcd_can_hibern8_during_gating(hba) &&
1875 		    ufshcd_is_link_hibern8(hba)) {
1876 			spin_unlock_irqrestore(hba->host->host_lock, flags);
1877 			flush_result = flush_work(&hba->clk_gating.ungate_work);
1878 			if (hba->clk_gating.is_suspended && !flush_result)
1879 				return;
1880 			spin_lock_irqsave(hba->host->host_lock, flags);
1881 			goto start;
1882 		}
1883 		break;
1884 	case REQ_CLKS_OFF:
1885 		if (cancel_delayed_work(&hba->clk_gating.gate_work)) {
1886 			hba->clk_gating.state = CLKS_ON;
1887 			trace_ufshcd_clk_gating(dev_name(hba->dev),
1888 						hba->clk_gating.state);
1889 			break;
1890 		}
1891 		/*
1892 		 * If we are here, it means gating work is either done or
1893 		 * currently running. Hence, fall through to cancel gating
1894 		 * work and to enable clocks.
1895 		 */
1896 		fallthrough;
1897 	case CLKS_OFF:
1898 		hba->clk_gating.state = REQ_CLKS_ON;
1899 		trace_ufshcd_clk_gating(dev_name(hba->dev),
1900 					hba->clk_gating.state);
1901 		queue_work(hba->clk_gating.clk_gating_workq,
1902 			   &hba->clk_gating.ungate_work);
1903 		/*
1904 		 * fall through to check if we should wait for this
1905 		 * work to be done or not.
1906 		 */
1907 		fallthrough;
1908 	case REQ_CLKS_ON:
1909 		spin_unlock_irqrestore(hba->host->host_lock, flags);
1910 		flush_work(&hba->clk_gating.ungate_work);
1911 		/* Make sure state is CLKS_ON before returning */
1912 		spin_lock_irqsave(hba->host->host_lock, flags);
1913 		goto start;
1914 	default:
1915 		dev_err(hba->dev, "%s: clk gating is in invalid state %d\n",
1916 				__func__, hba->clk_gating.state);
1917 		break;
1918 	}
1919 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1920 }
1921 EXPORT_SYMBOL_GPL(ufshcd_hold);
1922 
1923 static void ufshcd_gate_work(struct work_struct *work)
1924 {
1925 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1926 			clk_gating.gate_work.work);
1927 	unsigned long flags;
1928 	int ret;
1929 
1930 	spin_lock_irqsave(hba->host->host_lock, flags);
1931 	/*
1932 	 * In case you are here to cancel this work the gating state
1933 	 * would be marked as REQ_CLKS_ON. In this case save time by
1934 	 * skipping the gating work and exit after changing the clock
1935 	 * state to CLKS_ON.
1936 	 */
1937 	if (hba->clk_gating.is_suspended ||
1938 		(hba->clk_gating.state != REQ_CLKS_OFF)) {
1939 		hba->clk_gating.state = CLKS_ON;
1940 		trace_ufshcd_clk_gating(dev_name(hba->dev),
1941 					hba->clk_gating.state);
1942 		goto rel_lock;
1943 	}
1944 
1945 	if (ufshcd_is_ufs_dev_busy(hba) || hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL)
1946 		goto rel_lock;
1947 
1948 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1949 
1950 	/* put the link into hibern8 mode before turning off clocks */
1951 	if (ufshcd_can_hibern8_during_gating(hba)) {
1952 		ret = ufshcd_uic_hibern8_enter(hba);
1953 		if (ret) {
1954 			hba->clk_gating.state = CLKS_ON;
1955 			dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
1956 					__func__, ret);
1957 			trace_ufshcd_clk_gating(dev_name(hba->dev),
1958 						hba->clk_gating.state);
1959 			goto out;
1960 		}
1961 		ufshcd_set_link_hibern8(hba);
1962 	}
1963 
1964 	ufshcd_disable_irq(hba);
1965 
1966 	ufshcd_setup_clocks(hba, false);
1967 
1968 	/* Put the host controller in low power mode if possible */
1969 	ufshcd_hba_vreg_set_lpm(hba);
1970 	/*
1971 	 * In case you are here to cancel this work the gating state
1972 	 * would be marked as REQ_CLKS_ON. In this case keep the state
1973 	 * as REQ_CLKS_ON which would anyway imply that clocks are off
1974 	 * and a request to turn them on is pending. By doing this way,
1975 	 * we keep the state machine in tact and this would ultimately
1976 	 * prevent from doing cancel work multiple times when there are
1977 	 * new requests arriving before the current cancel work is done.
1978 	 */
1979 	spin_lock_irqsave(hba->host->host_lock, flags);
1980 	if (hba->clk_gating.state == REQ_CLKS_OFF) {
1981 		hba->clk_gating.state = CLKS_OFF;
1982 		trace_ufshcd_clk_gating(dev_name(hba->dev),
1983 					hba->clk_gating.state);
1984 	}
1985 rel_lock:
1986 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1987 out:
1988 	return;
1989 }
1990 
1991 /* host lock must be held before calling this variant */
1992 static void __ufshcd_release(struct ufs_hba *hba)
1993 {
1994 	if (!ufshcd_is_clkgating_allowed(hba))
1995 		return;
1996 
1997 	hba->clk_gating.active_reqs--;
1998 
1999 	if (hba->clk_gating.active_reqs || hba->clk_gating.is_suspended ||
2000 	    hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL ||
2001 	    hba->outstanding_tasks || !hba->clk_gating.is_initialized ||
2002 	    hba->active_uic_cmd || hba->uic_async_done ||
2003 	    hba->clk_gating.state == CLKS_OFF)
2004 		return;
2005 
2006 	hba->clk_gating.state = REQ_CLKS_OFF;
2007 	trace_ufshcd_clk_gating(dev_name(hba->dev), hba->clk_gating.state);
2008 	queue_delayed_work(hba->clk_gating.clk_gating_workq,
2009 			   &hba->clk_gating.gate_work,
2010 			   msecs_to_jiffies(hba->clk_gating.delay_ms));
2011 }
2012 
2013 void ufshcd_release(struct ufs_hba *hba)
2014 {
2015 	unsigned long flags;
2016 
2017 	spin_lock_irqsave(hba->host->host_lock, flags);
2018 	__ufshcd_release(hba);
2019 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2020 }
2021 EXPORT_SYMBOL_GPL(ufshcd_release);
2022 
2023 static ssize_t ufshcd_clkgate_delay_show(struct device *dev,
2024 		struct device_attribute *attr, char *buf)
2025 {
2026 	struct ufs_hba *hba = dev_get_drvdata(dev);
2027 
2028 	return sysfs_emit(buf, "%lu\n", hba->clk_gating.delay_ms);
2029 }
2030 
2031 void ufshcd_clkgate_delay_set(struct device *dev, unsigned long value)
2032 {
2033 	struct ufs_hba *hba = dev_get_drvdata(dev);
2034 	unsigned long flags;
2035 
2036 	spin_lock_irqsave(hba->host->host_lock, flags);
2037 	hba->clk_gating.delay_ms = value;
2038 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2039 }
2040 EXPORT_SYMBOL_GPL(ufshcd_clkgate_delay_set);
2041 
2042 static ssize_t ufshcd_clkgate_delay_store(struct device *dev,
2043 		struct device_attribute *attr, const char *buf, size_t count)
2044 {
2045 	unsigned long value;
2046 
2047 	if (kstrtoul(buf, 0, &value))
2048 		return -EINVAL;
2049 
2050 	ufshcd_clkgate_delay_set(dev, value);
2051 	return count;
2052 }
2053 
2054 static ssize_t ufshcd_clkgate_enable_show(struct device *dev,
2055 		struct device_attribute *attr, char *buf)
2056 {
2057 	struct ufs_hba *hba = dev_get_drvdata(dev);
2058 
2059 	return sysfs_emit(buf, "%d\n", hba->clk_gating.is_enabled);
2060 }
2061 
2062 static ssize_t ufshcd_clkgate_enable_store(struct device *dev,
2063 		struct device_attribute *attr, const char *buf, size_t count)
2064 {
2065 	struct ufs_hba *hba = dev_get_drvdata(dev);
2066 	unsigned long flags;
2067 	u32 value;
2068 
2069 	if (kstrtou32(buf, 0, &value))
2070 		return -EINVAL;
2071 
2072 	value = !!value;
2073 
2074 	spin_lock_irqsave(hba->host->host_lock, flags);
2075 	if (value == hba->clk_gating.is_enabled)
2076 		goto out;
2077 
2078 	if (value)
2079 		__ufshcd_release(hba);
2080 	else
2081 		hba->clk_gating.active_reqs++;
2082 
2083 	hba->clk_gating.is_enabled = value;
2084 out:
2085 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2086 	return count;
2087 }
2088 
2089 static void ufshcd_init_clk_gating_sysfs(struct ufs_hba *hba)
2090 {
2091 	hba->clk_gating.delay_attr.show = ufshcd_clkgate_delay_show;
2092 	hba->clk_gating.delay_attr.store = ufshcd_clkgate_delay_store;
2093 	sysfs_attr_init(&hba->clk_gating.delay_attr.attr);
2094 	hba->clk_gating.delay_attr.attr.name = "clkgate_delay_ms";
2095 	hba->clk_gating.delay_attr.attr.mode = 0644;
2096 	if (device_create_file(hba->dev, &hba->clk_gating.delay_attr))
2097 		dev_err(hba->dev, "Failed to create sysfs for clkgate_delay\n");
2098 
2099 	hba->clk_gating.enable_attr.show = ufshcd_clkgate_enable_show;
2100 	hba->clk_gating.enable_attr.store = ufshcd_clkgate_enable_store;
2101 	sysfs_attr_init(&hba->clk_gating.enable_attr.attr);
2102 	hba->clk_gating.enable_attr.attr.name = "clkgate_enable";
2103 	hba->clk_gating.enable_attr.attr.mode = 0644;
2104 	if (device_create_file(hba->dev, &hba->clk_gating.enable_attr))
2105 		dev_err(hba->dev, "Failed to create sysfs for clkgate_enable\n");
2106 }
2107 
2108 static void ufshcd_remove_clk_gating_sysfs(struct ufs_hba *hba)
2109 {
2110 	if (hba->clk_gating.delay_attr.attr.name)
2111 		device_remove_file(hba->dev, &hba->clk_gating.delay_attr);
2112 	if (hba->clk_gating.enable_attr.attr.name)
2113 		device_remove_file(hba->dev, &hba->clk_gating.enable_attr);
2114 }
2115 
2116 static void ufshcd_init_clk_gating(struct ufs_hba *hba)
2117 {
2118 	if (!ufshcd_is_clkgating_allowed(hba))
2119 		return;
2120 
2121 	hba->clk_gating.state = CLKS_ON;
2122 
2123 	hba->clk_gating.delay_ms = 150;
2124 	INIT_DELAYED_WORK(&hba->clk_gating.gate_work, ufshcd_gate_work);
2125 	INIT_WORK(&hba->clk_gating.ungate_work, ufshcd_ungate_work);
2126 
2127 	hba->clk_gating.clk_gating_workq = alloc_ordered_workqueue(
2128 		"ufs_clk_gating_%d", WQ_MEM_RECLAIM | WQ_HIGHPRI,
2129 		hba->host->host_no);
2130 
2131 	ufshcd_init_clk_gating_sysfs(hba);
2132 
2133 	hba->clk_gating.is_enabled = true;
2134 	hba->clk_gating.is_initialized = true;
2135 }
2136 
2137 static void ufshcd_exit_clk_gating(struct ufs_hba *hba)
2138 {
2139 	if (!hba->clk_gating.is_initialized)
2140 		return;
2141 
2142 	ufshcd_remove_clk_gating_sysfs(hba);
2143 
2144 	/* Ungate the clock if necessary. */
2145 	ufshcd_hold(hba);
2146 	hba->clk_gating.is_initialized = false;
2147 	ufshcd_release(hba);
2148 
2149 	destroy_workqueue(hba->clk_gating.clk_gating_workq);
2150 }
2151 
2152 static void ufshcd_clk_scaling_start_busy(struct ufs_hba *hba)
2153 {
2154 	bool queue_resume_work = false;
2155 	ktime_t curr_t = ktime_get();
2156 	unsigned long flags;
2157 
2158 	if (!ufshcd_is_clkscaling_supported(hba))
2159 		return;
2160 
2161 	spin_lock_irqsave(hba->host->host_lock, flags);
2162 	if (!hba->clk_scaling.active_reqs++)
2163 		queue_resume_work = true;
2164 
2165 	if (!hba->clk_scaling.is_enabled || hba->pm_op_in_progress) {
2166 		spin_unlock_irqrestore(hba->host->host_lock, flags);
2167 		return;
2168 	}
2169 
2170 	if (queue_resume_work)
2171 		queue_work(hba->clk_scaling.workq,
2172 			   &hba->clk_scaling.resume_work);
2173 
2174 	if (!hba->clk_scaling.window_start_t) {
2175 		hba->clk_scaling.window_start_t = curr_t;
2176 		hba->clk_scaling.tot_busy_t = 0;
2177 		hba->clk_scaling.is_busy_started = false;
2178 	}
2179 
2180 	if (!hba->clk_scaling.is_busy_started) {
2181 		hba->clk_scaling.busy_start_t = curr_t;
2182 		hba->clk_scaling.is_busy_started = true;
2183 	}
2184 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2185 }
2186 
2187 static void ufshcd_clk_scaling_update_busy(struct ufs_hba *hba)
2188 {
2189 	struct ufs_clk_scaling *scaling = &hba->clk_scaling;
2190 	unsigned long flags;
2191 
2192 	if (!ufshcd_is_clkscaling_supported(hba))
2193 		return;
2194 
2195 	spin_lock_irqsave(hba->host->host_lock, flags);
2196 	hba->clk_scaling.active_reqs--;
2197 	if (!scaling->active_reqs && scaling->is_busy_started) {
2198 		scaling->tot_busy_t += ktime_to_us(ktime_sub(ktime_get(),
2199 					scaling->busy_start_t));
2200 		scaling->busy_start_t = 0;
2201 		scaling->is_busy_started = false;
2202 	}
2203 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2204 }
2205 
2206 static inline int ufshcd_monitor_opcode2dir(u8 opcode)
2207 {
2208 	if (opcode == READ_6 || opcode == READ_10 || opcode == READ_16)
2209 		return READ;
2210 	else if (opcode == WRITE_6 || opcode == WRITE_10 || opcode == WRITE_16)
2211 		return WRITE;
2212 	else
2213 		return -EINVAL;
2214 }
2215 
2216 static inline bool ufshcd_should_inform_monitor(struct ufs_hba *hba,
2217 						struct ufshcd_lrb *lrbp)
2218 {
2219 	const struct ufs_hba_monitor *m = &hba->monitor;
2220 
2221 	return (m->enabled && lrbp && lrbp->cmd &&
2222 		(!m->chunk_size || m->chunk_size == lrbp->cmd->sdb.length) &&
2223 		ktime_before(hba->monitor.enabled_ts, lrbp->issue_time_stamp));
2224 }
2225 
2226 static void ufshcd_start_monitor(struct ufs_hba *hba,
2227 				 const struct ufshcd_lrb *lrbp)
2228 {
2229 	int dir = ufshcd_monitor_opcode2dir(*lrbp->cmd->cmnd);
2230 	unsigned long flags;
2231 
2232 	spin_lock_irqsave(hba->host->host_lock, flags);
2233 	if (dir >= 0 && hba->monitor.nr_queued[dir]++ == 0)
2234 		hba->monitor.busy_start_ts[dir] = ktime_get();
2235 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2236 }
2237 
2238 static void ufshcd_update_monitor(struct ufs_hba *hba, const struct ufshcd_lrb *lrbp)
2239 {
2240 	int dir = ufshcd_monitor_opcode2dir(*lrbp->cmd->cmnd);
2241 	unsigned long flags;
2242 
2243 	spin_lock_irqsave(hba->host->host_lock, flags);
2244 	if (dir >= 0 && hba->monitor.nr_queued[dir] > 0) {
2245 		const struct request *req = scsi_cmd_to_rq(lrbp->cmd);
2246 		struct ufs_hba_monitor *m = &hba->monitor;
2247 		ktime_t now, inc, lat;
2248 
2249 		now = lrbp->compl_time_stamp;
2250 		inc = ktime_sub(now, m->busy_start_ts[dir]);
2251 		m->total_busy[dir] = ktime_add(m->total_busy[dir], inc);
2252 		m->nr_sec_rw[dir] += blk_rq_sectors(req);
2253 
2254 		/* Update latencies */
2255 		m->nr_req[dir]++;
2256 		lat = ktime_sub(now, lrbp->issue_time_stamp);
2257 		m->lat_sum[dir] += lat;
2258 		if (m->lat_max[dir] < lat || !m->lat_max[dir])
2259 			m->lat_max[dir] = lat;
2260 		if (m->lat_min[dir] > lat || !m->lat_min[dir])
2261 			m->lat_min[dir] = lat;
2262 
2263 		m->nr_queued[dir]--;
2264 		/* Push forward the busy start of monitor */
2265 		m->busy_start_ts[dir] = now;
2266 	}
2267 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2268 }
2269 
2270 /**
2271  * ufshcd_send_command - Send SCSI or device management commands
2272  * @hba: per adapter instance
2273  * @task_tag: Task tag of the command
2274  * @hwq: pointer to hardware queue instance
2275  */
2276 static inline
2277 void ufshcd_send_command(struct ufs_hba *hba, unsigned int task_tag,
2278 			 struct ufs_hw_queue *hwq)
2279 {
2280 	struct ufshcd_lrb *lrbp = &hba->lrb[task_tag];
2281 	unsigned long flags;
2282 
2283 	lrbp->issue_time_stamp = ktime_get();
2284 	lrbp->issue_time_stamp_local_clock = local_clock();
2285 	lrbp->compl_time_stamp = ktime_set(0, 0);
2286 	lrbp->compl_time_stamp_local_clock = 0;
2287 	ufshcd_add_command_trace(hba, task_tag, UFS_CMD_SEND);
2288 	if (lrbp->cmd)
2289 		ufshcd_clk_scaling_start_busy(hba);
2290 	if (unlikely(ufshcd_should_inform_monitor(hba, lrbp)))
2291 		ufshcd_start_monitor(hba, lrbp);
2292 
2293 	if (hba->mcq_enabled) {
2294 		int utrd_size = sizeof(struct utp_transfer_req_desc);
2295 		struct utp_transfer_req_desc *src = lrbp->utr_descriptor_ptr;
2296 		struct utp_transfer_req_desc *dest;
2297 
2298 		spin_lock(&hwq->sq_lock);
2299 		dest = hwq->sqe_base_addr + hwq->sq_tail_slot;
2300 		memcpy(dest, src, utrd_size);
2301 		ufshcd_inc_sq_tail(hwq);
2302 		spin_unlock(&hwq->sq_lock);
2303 	} else {
2304 		spin_lock_irqsave(&hba->outstanding_lock, flags);
2305 		if (hba->vops && hba->vops->setup_xfer_req)
2306 			hba->vops->setup_xfer_req(hba, lrbp->task_tag,
2307 						  !!lrbp->cmd);
2308 		__set_bit(lrbp->task_tag, &hba->outstanding_reqs);
2309 		ufshcd_writel(hba, 1 << lrbp->task_tag,
2310 			      REG_UTP_TRANSFER_REQ_DOOR_BELL);
2311 		spin_unlock_irqrestore(&hba->outstanding_lock, flags);
2312 	}
2313 }
2314 
2315 /**
2316  * ufshcd_copy_sense_data - Copy sense data in case of check condition
2317  * @lrbp: pointer to local reference block
2318  */
2319 static inline void ufshcd_copy_sense_data(struct ufshcd_lrb *lrbp)
2320 {
2321 	u8 *const sense_buffer = lrbp->cmd->sense_buffer;
2322 	u16 resp_len;
2323 	int len;
2324 
2325 	resp_len = be16_to_cpu(lrbp->ucd_rsp_ptr->header.data_segment_length);
2326 	if (sense_buffer && resp_len) {
2327 		int len_to_copy;
2328 
2329 		len = be16_to_cpu(lrbp->ucd_rsp_ptr->sr.sense_data_len);
2330 		len_to_copy = min_t(int, UFS_SENSE_SIZE, len);
2331 
2332 		memcpy(sense_buffer, lrbp->ucd_rsp_ptr->sr.sense_data,
2333 		       len_to_copy);
2334 	}
2335 }
2336 
2337 /**
2338  * ufshcd_copy_query_response() - Copy the Query Response and the data
2339  * descriptor
2340  * @hba: per adapter instance
2341  * @lrbp: pointer to local reference block
2342  *
2343  * Return: 0 upon success; < 0 upon failure.
2344  */
2345 static
2346 int ufshcd_copy_query_response(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2347 {
2348 	struct ufs_query_res *query_res = &hba->dev_cmd.query.response;
2349 
2350 	memcpy(&query_res->upiu_res, &lrbp->ucd_rsp_ptr->qr, QUERY_OSF_SIZE);
2351 
2352 	/* Get the descriptor */
2353 	if (hba->dev_cmd.query.descriptor &&
2354 	    lrbp->ucd_rsp_ptr->qr.opcode == UPIU_QUERY_OPCODE_READ_DESC) {
2355 		u8 *descp = (u8 *)lrbp->ucd_rsp_ptr +
2356 				GENERAL_UPIU_REQUEST_SIZE;
2357 		u16 resp_len;
2358 		u16 buf_len;
2359 
2360 		/* data segment length */
2361 		resp_len = be16_to_cpu(lrbp->ucd_rsp_ptr->header
2362 				       .data_segment_length);
2363 		buf_len = be16_to_cpu(
2364 				hba->dev_cmd.query.request.upiu_req.length);
2365 		if (likely(buf_len >= resp_len)) {
2366 			memcpy(hba->dev_cmd.query.descriptor, descp, resp_len);
2367 		} else {
2368 			dev_warn(hba->dev,
2369 				 "%s: rsp size %d is bigger than buffer size %d",
2370 				 __func__, resp_len, buf_len);
2371 			return -EINVAL;
2372 		}
2373 	}
2374 
2375 	return 0;
2376 }
2377 
2378 /**
2379  * ufshcd_hba_capabilities - Read controller capabilities
2380  * @hba: per adapter instance
2381  *
2382  * Return: 0 on success, negative on error.
2383  */
2384 static inline int ufshcd_hba_capabilities(struct ufs_hba *hba)
2385 {
2386 	int err;
2387 
2388 	hba->capabilities = ufshcd_readl(hba, REG_CONTROLLER_CAPABILITIES);
2389 
2390 	/* nutrs and nutmrs are 0 based values */
2391 	hba->nutrs = (hba->capabilities & MASK_TRANSFER_REQUESTS_SLOTS_SDB) + 1;
2392 	hba->nutmrs =
2393 	((hba->capabilities & MASK_TASK_MANAGEMENT_REQUEST_SLOTS) >> 16) + 1;
2394 	hba->reserved_slot = hba->nutrs - 1;
2395 
2396 	hba->nortt = FIELD_GET(MASK_NUMBER_OUTSTANDING_RTT, hba->capabilities) + 1;
2397 
2398 	/* Read crypto capabilities */
2399 	err = ufshcd_hba_init_crypto_capabilities(hba);
2400 	if (err) {
2401 		dev_err(hba->dev, "crypto setup failed\n");
2402 		return err;
2403 	}
2404 
2405 	/*
2406 	 * The UFSHCI 3.0 specification does not define MCQ_SUPPORT and
2407 	 * LSDB_SUPPORT, but [31:29] as reserved bits with reset value 0s, which
2408 	 * means we can simply read values regardless of version.
2409 	 */
2410 	hba->mcq_sup = FIELD_GET(MASK_MCQ_SUPPORT, hba->capabilities);
2411 	/*
2412 	 * 0h: legacy single doorbell support is available
2413 	 * 1h: indicate that legacy single doorbell support has been removed
2414 	 */
2415 	if (!(hba->quirks & UFSHCD_QUIRK_BROKEN_LSDBS_CAP))
2416 		hba->lsdb_sup = !FIELD_GET(MASK_LSDB_SUPPORT, hba->capabilities);
2417 	else
2418 		hba->lsdb_sup = true;
2419 
2420 	if (!hba->mcq_sup)
2421 		return 0;
2422 
2423 	hba->mcq_capabilities = ufshcd_readl(hba, REG_MCQCAP);
2424 	hba->ext_iid_sup = FIELD_GET(MASK_EXT_IID_SUPPORT,
2425 				     hba->mcq_capabilities);
2426 
2427 	return 0;
2428 }
2429 
2430 /**
2431  * ufshcd_ready_for_uic_cmd - Check if controller is ready
2432  *                            to accept UIC commands
2433  * @hba: per adapter instance
2434  *
2435  * Return: true on success, else false.
2436  */
2437 static inline bool ufshcd_ready_for_uic_cmd(struct ufs_hba *hba)
2438 {
2439 	u32 val;
2440 	int ret = read_poll_timeout(ufshcd_readl, val, val & UIC_COMMAND_READY,
2441 				    500, uic_cmd_timeout * 1000, false, hba,
2442 				    REG_CONTROLLER_STATUS);
2443 	return ret == 0;
2444 }
2445 
2446 /**
2447  * ufshcd_get_upmcrs - Get the power mode change request status
2448  * @hba: Pointer to adapter instance
2449  *
2450  * This function gets the UPMCRS field of HCS register
2451  *
2452  * Return: value of UPMCRS field.
2453  */
2454 static inline u8 ufshcd_get_upmcrs(struct ufs_hba *hba)
2455 {
2456 	return (ufshcd_readl(hba, REG_CONTROLLER_STATUS) >> 8) & 0x7;
2457 }
2458 
2459 /**
2460  * ufshcd_dispatch_uic_cmd - Dispatch an UIC command to the Unipro layer
2461  * @hba: per adapter instance
2462  * @uic_cmd: UIC command
2463  */
2464 static inline void
2465 ufshcd_dispatch_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2466 {
2467 	lockdep_assert_held(&hba->uic_cmd_mutex);
2468 
2469 	WARN_ON(hba->active_uic_cmd);
2470 
2471 	hba->active_uic_cmd = uic_cmd;
2472 
2473 	/* Write Args */
2474 	ufshcd_writel(hba, uic_cmd->argument1, REG_UIC_COMMAND_ARG_1);
2475 	ufshcd_writel(hba, uic_cmd->argument2, REG_UIC_COMMAND_ARG_2);
2476 	ufshcd_writel(hba, uic_cmd->argument3, REG_UIC_COMMAND_ARG_3);
2477 
2478 	ufshcd_add_uic_command_trace(hba, uic_cmd, UFS_CMD_SEND);
2479 
2480 	/* Write UIC Cmd */
2481 	ufshcd_writel(hba, uic_cmd->command & COMMAND_OPCODE_MASK,
2482 		      REG_UIC_COMMAND);
2483 }
2484 
2485 /**
2486  * ufshcd_wait_for_uic_cmd - Wait for completion of an UIC command
2487  * @hba: per adapter instance
2488  * @uic_cmd: UIC command
2489  *
2490  * Return: 0 only if success.
2491  */
2492 static int
2493 ufshcd_wait_for_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2494 {
2495 	int ret;
2496 	unsigned long flags;
2497 
2498 	lockdep_assert_held(&hba->uic_cmd_mutex);
2499 
2500 	if (wait_for_completion_timeout(&uic_cmd->done,
2501 					msecs_to_jiffies(uic_cmd_timeout))) {
2502 		ret = uic_cmd->argument2 & MASK_UIC_COMMAND_RESULT;
2503 	} else {
2504 		ret = -ETIMEDOUT;
2505 		dev_err(hba->dev,
2506 			"uic cmd 0x%x with arg3 0x%x completion timeout\n",
2507 			uic_cmd->command, uic_cmd->argument3);
2508 
2509 		if (!uic_cmd->cmd_active) {
2510 			dev_err(hba->dev, "%s: UIC cmd has been completed, return the result\n",
2511 				__func__);
2512 			ret = uic_cmd->argument2 & MASK_UIC_COMMAND_RESULT;
2513 		}
2514 	}
2515 
2516 	spin_lock_irqsave(hba->host->host_lock, flags);
2517 	hba->active_uic_cmd = NULL;
2518 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2519 
2520 	return ret;
2521 }
2522 
2523 /**
2524  * __ufshcd_send_uic_cmd - Send UIC commands and retrieve the result
2525  * @hba: per adapter instance
2526  * @uic_cmd: UIC command
2527  *
2528  * Return: 0 only if success.
2529  */
2530 static int
2531 __ufshcd_send_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2532 {
2533 	lockdep_assert_held(&hba->uic_cmd_mutex);
2534 
2535 	if (!ufshcd_ready_for_uic_cmd(hba)) {
2536 		dev_err(hba->dev,
2537 			"Controller not ready to accept UIC commands\n");
2538 		return -EIO;
2539 	}
2540 
2541 	init_completion(&uic_cmd->done);
2542 
2543 	uic_cmd->cmd_active = 1;
2544 	ufshcd_dispatch_uic_cmd(hba, uic_cmd);
2545 
2546 	return 0;
2547 }
2548 
2549 /**
2550  * ufshcd_send_uic_cmd - Send UIC commands and retrieve the result
2551  * @hba: per adapter instance
2552  * @uic_cmd: UIC command
2553  *
2554  * Return: 0 only if success.
2555  */
2556 int ufshcd_send_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2557 {
2558 	int ret;
2559 
2560 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_UIC_CMD)
2561 		return 0;
2562 
2563 	ufshcd_hold(hba);
2564 	mutex_lock(&hba->uic_cmd_mutex);
2565 	ufshcd_add_delay_before_dme_cmd(hba);
2566 
2567 	ret = __ufshcd_send_uic_cmd(hba, uic_cmd);
2568 	if (!ret)
2569 		ret = ufshcd_wait_for_uic_cmd(hba, uic_cmd);
2570 
2571 	mutex_unlock(&hba->uic_cmd_mutex);
2572 
2573 	ufshcd_release(hba);
2574 	return ret;
2575 }
2576 
2577 /**
2578  * ufshcd_sgl_to_prdt - SG list to PRTD (Physical Region Description Table, 4DW format)
2579  * @hba:	per-adapter instance
2580  * @lrbp:	pointer to local reference block
2581  * @sg_entries:	The number of sg lists actually used
2582  * @sg_list:	Pointer to SG list
2583  */
2584 static void ufshcd_sgl_to_prdt(struct ufs_hba *hba, struct ufshcd_lrb *lrbp, int sg_entries,
2585 			       struct scatterlist *sg_list)
2586 {
2587 	struct ufshcd_sg_entry *prd;
2588 	struct scatterlist *sg;
2589 	int i;
2590 
2591 	if (sg_entries) {
2592 
2593 		if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN)
2594 			lrbp->utr_descriptor_ptr->prd_table_length =
2595 				cpu_to_le16(sg_entries * ufshcd_sg_entry_size(hba));
2596 		else
2597 			lrbp->utr_descriptor_ptr->prd_table_length = cpu_to_le16(sg_entries);
2598 
2599 		prd = lrbp->ucd_prdt_ptr;
2600 
2601 		for_each_sg(sg_list, sg, sg_entries, i) {
2602 			const unsigned int len = sg_dma_len(sg);
2603 
2604 			/*
2605 			 * From the UFSHCI spec: "Data Byte Count (DBC): A '0'
2606 			 * based value that indicates the length, in bytes, of
2607 			 * the data block. A maximum of length of 256KB may
2608 			 * exist for any entry. Bits 1:0 of this field shall be
2609 			 * 11b to indicate Dword granularity. A value of '3'
2610 			 * indicates 4 bytes, '7' indicates 8 bytes, etc."
2611 			 */
2612 			WARN_ONCE(len > SZ_256K, "len = %#x\n", len);
2613 			prd->size = cpu_to_le32(len - 1);
2614 			prd->addr = cpu_to_le64(sg->dma_address);
2615 			prd->reserved = 0;
2616 			prd = (void *)prd + ufshcd_sg_entry_size(hba);
2617 		}
2618 	} else {
2619 		lrbp->utr_descriptor_ptr->prd_table_length = 0;
2620 	}
2621 }
2622 
2623 /**
2624  * ufshcd_map_sg - Map scatter-gather list to prdt
2625  * @hba: per adapter instance
2626  * @lrbp: pointer to local reference block
2627  *
2628  * Return: 0 in case of success, non-zero value in case of failure.
2629  */
2630 static int ufshcd_map_sg(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2631 {
2632 	struct scsi_cmnd *cmd = lrbp->cmd;
2633 	int sg_segments = scsi_dma_map(cmd);
2634 
2635 	if (sg_segments < 0)
2636 		return sg_segments;
2637 
2638 	ufshcd_sgl_to_prdt(hba, lrbp, sg_segments, scsi_sglist(cmd));
2639 
2640 	return ufshcd_crypto_fill_prdt(hba, lrbp);
2641 }
2642 
2643 /**
2644  * ufshcd_enable_intr - enable interrupts
2645  * @hba: per adapter instance
2646  * @intrs: interrupt bits
2647  */
2648 static void ufshcd_enable_intr(struct ufs_hba *hba, u32 intrs)
2649 {
2650 	u32 set = ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
2651 
2652 	set |= intrs;
2653 	ufshcd_writel(hba, set, REG_INTERRUPT_ENABLE);
2654 }
2655 
2656 /**
2657  * ufshcd_disable_intr - disable interrupts
2658  * @hba: per adapter instance
2659  * @intrs: interrupt bits
2660  */
2661 static void ufshcd_disable_intr(struct ufs_hba *hba, u32 intrs)
2662 {
2663 	u32 set = ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
2664 
2665 	set &= ~intrs;
2666 	ufshcd_writel(hba, set, REG_INTERRUPT_ENABLE);
2667 }
2668 
2669 /**
2670  * ufshcd_prepare_req_desc_hdr - Fill UTP Transfer request descriptor header according to request
2671  * descriptor according to request
2672  * @hba: per adapter instance
2673  * @lrbp: pointer to local reference block
2674  * @upiu_flags: flags required in the header
2675  * @cmd_dir: requests data direction
2676  * @ehs_length: Total EHS Length (in 32‐bytes units of all Extra Header Segments)
2677  */
2678 static void
2679 ufshcd_prepare_req_desc_hdr(struct ufs_hba *hba, struct ufshcd_lrb *lrbp,
2680 			    u8 *upiu_flags, enum dma_data_direction cmd_dir,
2681 			    int ehs_length)
2682 {
2683 	struct utp_transfer_req_desc *req_desc = lrbp->utr_descriptor_ptr;
2684 	struct request_desc_header *h = &req_desc->header;
2685 	enum utp_data_direction data_direction;
2686 
2687 	lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
2688 
2689 	*h = (typeof(*h)){ };
2690 
2691 	if (cmd_dir == DMA_FROM_DEVICE) {
2692 		data_direction = UTP_DEVICE_TO_HOST;
2693 		*upiu_flags = UPIU_CMD_FLAGS_READ;
2694 	} else if (cmd_dir == DMA_TO_DEVICE) {
2695 		data_direction = UTP_HOST_TO_DEVICE;
2696 		*upiu_flags = UPIU_CMD_FLAGS_WRITE;
2697 	} else {
2698 		data_direction = UTP_NO_DATA_TRANSFER;
2699 		*upiu_flags = UPIU_CMD_FLAGS_NONE;
2700 	}
2701 
2702 	h->command_type = lrbp->command_type;
2703 	h->data_direction = data_direction;
2704 	h->ehs_length = ehs_length;
2705 
2706 	if (lrbp->intr_cmd)
2707 		h->interrupt = 1;
2708 
2709 	/* Prepare crypto related dwords */
2710 	ufshcd_prepare_req_desc_hdr_crypto(lrbp, h);
2711 
2712 	/*
2713 	 * assigning invalid value for command status. Controller
2714 	 * updates OCS on command completion, with the command
2715 	 * status
2716 	 */
2717 	h->ocs = OCS_INVALID_COMMAND_STATUS;
2718 
2719 	req_desc->prd_table_length = 0;
2720 }
2721 
2722 /**
2723  * ufshcd_prepare_utp_scsi_cmd_upiu() - fills the utp_transfer_req_desc,
2724  * for scsi commands
2725  * @lrbp: local reference block pointer
2726  * @upiu_flags: flags
2727  */
2728 static
2729 void ufshcd_prepare_utp_scsi_cmd_upiu(struct ufshcd_lrb *lrbp, u8 upiu_flags)
2730 {
2731 	struct scsi_cmnd *cmd = lrbp->cmd;
2732 	struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2733 	unsigned short cdb_len;
2734 
2735 	ucd_req_ptr->header = (struct utp_upiu_header){
2736 		.transaction_code = UPIU_TRANSACTION_COMMAND,
2737 		.flags = upiu_flags,
2738 		.lun = lrbp->lun,
2739 		.task_tag = lrbp->task_tag,
2740 		.command_set_type = UPIU_COMMAND_SET_TYPE_SCSI,
2741 	};
2742 
2743 	WARN_ON_ONCE(ucd_req_ptr->header.task_tag != lrbp->task_tag);
2744 
2745 	ucd_req_ptr->sc.exp_data_transfer_len = cpu_to_be32(cmd->sdb.length);
2746 
2747 	cdb_len = min_t(unsigned short, cmd->cmd_len, UFS_CDB_SIZE);
2748 	memcpy(ucd_req_ptr->sc.cdb, cmd->cmnd, cdb_len);
2749 
2750 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2751 }
2752 
2753 /**
2754  * ufshcd_prepare_utp_query_req_upiu() - fill the utp_transfer_req_desc for query request
2755  * @hba: UFS hba
2756  * @lrbp: local reference block pointer
2757  * @upiu_flags: flags
2758  */
2759 static void ufshcd_prepare_utp_query_req_upiu(struct ufs_hba *hba,
2760 				struct ufshcd_lrb *lrbp, u8 upiu_flags)
2761 {
2762 	struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2763 	struct ufs_query *query = &hba->dev_cmd.query;
2764 	u16 len = be16_to_cpu(query->request.upiu_req.length);
2765 
2766 	/* Query request header */
2767 	ucd_req_ptr->header = (struct utp_upiu_header){
2768 		.transaction_code = UPIU_TRANSACTION_QUERY_REQ,
2769 		.flags = upiu_flags,
2770 		.lun = lrbp->lun,
2771 		.task_tag = lrbp->task_tag,
2772 		.query_function = query->request.query_func,
2773 		/* Data segment length only need for WRITE_DESC */
2774 		.data_segment_length =
2775 			query->request.upiu_req.opcode ==
2776 					UPIU_QUERY_OPCODE_WRITE_DESC ?
2777 				cpu_to_be16(len) :
2778 				0,
2779 	};
2780 
2781 	/* Copy the Query Request buffer as is */
2782 	memcpy(&ucd_req_ptr->qr, &query->request.upiu_req,
2783 			QUERY_OSF_SIZE);
2784 
2785 	/* Copy the Descriptor */
2786 	if (query->request.upiu_req.opcode == UPIU_QUERY_OPCODE_WRITE_DESC)
2787 		memcpy(ucd_req_ptr + 1, query->descriptor, len);
2788 
2789 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2790 }
2791 
2792 static inline void ufshcd_prepare_utp_nop_upiu(struct ufshcd_lrb *lrbp)
2793 {
2794 	struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2795 
2796 	memset(ucd_req_ptr, 0, sizeof(struct utp_upiu_req));
2797 
2798 	ucd_req_ptr->header = (struct utp_upiu_header){
2799 		.transaction_code = UPIU_TRANSACTION_NOP_OUT,
2800 		.task_tag = lrbp->task_tag,
2801 	};
2802 
2803 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2804 }
2805 
2806 /**
2807  * ufshcd_compose_devman_upiu - UFS Protocol Information Unit(UPIU)
2808  *			     for Device Management Purposes
2809  * @hba: per adapter instance
2810  * @lrbp: pointer to local reference block
2811  *
2812  * Return: 0 upon success; < 0 upon failure.
2813  */
2814 static int ufshcd_compose_devman_upiu(struct ufs_hba *hba,
2815 				      struct ufshcd_lrb *lrbp)
2816 {
2817 	u8 upiu_flags;
2818 	int ret = 0;
2819 
2820 	ufshcd_prepare_req_desc_hdr(hba, lrbp, &upiu_flags, DMA_NONE, 0);
2821 
2822 	if (hba->dev_cmd.type == DEV_CMD_TYPE_QUERY)
2823 		ufshcd_prepare_utp_query_req_upiu(hba, lrbp, upiu_flags);
2824 	else if (hba->dev_cmd.type == DEV_CMD_TYPE_NOP)
2825 		ufshcd_prepare_utp_nop_upiu(lrbp);
2826 	else
2827 		ret = -EINVAL;
2828 
2829 	return ret;
2830 }
2831 
2832 /**
2833  * ufshcd_comp_scsi_upiu - UFS Protocol Information Unit(UPIU)
2834  *			   for SCSI Purposes
2835  * @hba: per adapter instance
2836  * @lrbp: pointer to local reference block
2837  */
2838 static void ufshcd_comp_scsi_upiu(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2839 {
2840 	struct request *rq = scsi_cmd_to_rq(lrbp->cmd);
2841 	unsigned int ioprio_class = IOPRIO_PRIO_CLASS(req_get_ioprio(rq));
2842 	u8 upiu_flags;
2843 
2844 	ufshcd_prepare_req_desc_hdr(hba, lrbp, &upiu_flags, lrbp->cmd->sc_data_direction, 0);
2845 	if (ioprio_class == IOPRIO_CLASS_RT)
2846 		upiu_flags |= UPIU_CMD_FLAGS_CP;
2847 	ufshcd_prepare_utp_scsi_cmd_upiu(lrbp, upiu_flags);
2848 }
2849 
2850 static void __ufshcd_setup_cmd(struct ufshcd_lrb *lrbp, struct scsi_cmnd *cmd, u8 lun, int tag)
2851 {
2852 	memset(lrbp->ucd_req_ptr, 0, sizeof(*lrbp->ucd_req_ptr));
2853 
2854 	lrbp->cmd = cmd;
2855 	lrbp->task_tag = tag;
2856 	lrbp->lun = lun;
2857 	ufshcd_prepare_lrbp_crypto(cmd ? scsi_cmd_to_rq(cmd) : NULL, lrbp);
2858 }
2859 
2860 static void ufshcd_setup_scsi_cmd(struct ufs_hba *hba, struct ufshcd_lrb *lrbp,
2861 				  struct scsi_cmnd *cmd, u8 lun, int tag)
2862 {
2863 	__ufshcd_setup_cmd(lrbp, cmd, lun, tag);
2864 	lrbp->intr_cmd = !ufshcd_is_intr_aggr_allowed(hba);
2865 	lrbp->req_abort_skip = false;
2866 
2867 	ufshcd_comp_scsi_upiu(hba, lrbp);
2868 }
2869 
2870 /**
2871  * ufshcd_upiu_wlun_to_scsi_wlun - maps UPIU W-LUN id to SCSI W-LUN ID
2872  * @upiu_wlun_id: UPIU W-LUN id
2873  *
2874  * Return: SCSI W-LUN id.
2875  */
2876 static inline u16 ufshcd_upiu_wlun_to_scsi_wlun(u8 upiu_wlun_id)
2877 {
2878 	return (upiu_wlun_id & ~UFS_UPIU_WLUN_ID) | SCSI_W_LUN_BASE;
2879 }
2880 
2881 static inline bool is_device_wlun(struct scsi_device *sdev)
2882 {
2883 	return sdev->lun ==
2884 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_UFS_DEVICE_WLUN);
2885 }
2886 
2887 /*
2888  * Associate the UFS controller queue with the default and poll HCTX types.
2889  * Initialize the mq_map[] arrays.
2890  */
2891 static void ufshcd_map_queues(struct Scsi_Host *shost)
2892 {
2893 	struct ufs_hba *hba = shost_priv(shost);
2894 	int i, queue_offset = 0;
2895 
2896 	if (!is_mcq_supported(hba)) {
2897 		hba->nr_queues[HCTX_TYPE_DEFAULT] = 1;
2898 		hba->nr_queues[HCTX_TYPE_READ] = 0;
2899 		hba->nr_queues[HCTX_TYPE_POLL] = 1;
2900 		hba->nr_hw_queues = 1;
2901 	}
2902 
2903 	for (i = 0; i < shost->nr_maps; i++) {
2904 		struct blk_mq_queue_map *map = &shost->tag_set.map[i];
2905 
2906 		map->nr_queues = hba->nr_queues[i];
2907 		if (!map->nr_queues)
2908 			continue;
2909 		map->queue_offset = queue_offset;
2910 		if (i == HCTX_TYPE_POLL && !is_mcq_supported(hba))
2911 			map->queue_offset = 0;
2912 
2913 		blk_mq_map_queues(map);
2914 		queue_offset += map->nr_queues;
2915 	}
2916 }
2917 
2918 static void ufshcd_init_lrb(struct ufs_hba *hba, struct ufshcd_lrb *lrb, int i)
2919 {
2920 	struct utp_transfer_cmd_desc *cmd_descp = (void *)hba->ucdl_base_addr +
2921 		i * ufshcd_get_ucd_size(hba);
2922 	struct utp_transfer_req_desc *utrdlp = hba->utrdl_base_addr;
2923 	dma_addr_t cmd_desc_element_addr = hba->ucdl_dma_addr +
2924 		i * ufshcd_get_ucd_size(hba);
2925 	u16 response_offset = offsetof(struct utp_transfer_cmd_desc,
2926 				       response_upiu);
2927 	u16 prdt_offset = offsetof(struct utp_transfer_cmd_desc, prd_table);
2928 
2929 	lrb->utr_descriptor_ptr = utrdlp + i;
2930 	lrb->utrd_dma_addr = hba->utrdl_dma_addr +
2931 		i * sizeof(struct utp_transfer_req_desc);
2932 	lrb->ucd_req_ptr = (struct utp_upiu_req *)cmd_descp->command_upiu;
2933 	lrb->ucd_req_dma_addr = cmd_desc_element_addr;
2934 	lrb->ucd_rsp_ptr = (struct utp_upiu_rsp *)cmd_descp->response_upiu;
2935 	lrb->ucd_rsp_dma_addr = cmd_desc_element_addr + response_offset;
2936 	lrb->ucd_prdt_ptr = (struct ufshcd_sg_entry *)cmd_descp->prd_table;
2937 	lrb->ucd_prdt_dma_addr = cmd_desc_element_addr + prdt_offset;
2938 }
2939 
2940 /**
2941  * ufshcd_queuecommand - main entry point for SCSI requests
2942  * @host: SCSI host pointer
2943  * @cmd: command from SCSI Midlayer
2944  *
2945  * Return: 0 for success, non-zero in case of failure.
2946  */
2947 static int ufshcd_queuecommand(struct Scsi_Host *host, struct scsi_cmnd *cmd)
2948 {
2949 	struct ufs_hba *hba = shost_priv(host);
2950 	int tag = scsi_cmd_to_rq(cmd)->tag;
2951 	struct ufshcd_lrb *lrbp;
2952 	int err = 0;
2953 	struct ufs_hw_queue *hwq = NULL;
2954 
2955 	switch (hba->ufshcd_state) {
2956 	case UFSHCD_STATE_OPERATIONAL:
2957 		break;
2958 	case UFSHCD_STATE_EH_SCHEDULED_NON_FATAL:
2959 		/*
2960 		 * SCSI error handler can call ->queuecommand() while UFS error
2961 		 * handler is in progress. Error interrupts could change the
2962 		 * state from UFSHCD_STATE_RESET to
2963 		 * UFSHCD_STATE_EH_SCHEDULED_NON_FATAL. Prevent requests
2964 		 * being issued in that case.
2965 		 */
2966 		if (ufshcd_eh_in_progress(hba)) {
2967 			err = SCSI_MLQUEUE_HOST_BUSY;
2968 			goto out;
2969 		}
2970 		break;
2971 	case UFSHCD_STATE_EH_SCHEDULED_FATAL:
2972 		/*
2973 		 * pm_runtime_get_sync() is used at error handling preparation
2974 		 * stage. If a scsi cmd, e.g. the SSU cmd, is sent from hba's
2975 		 * PM ops, it can never be finished if we let SCSI layer keep
2976 		 * retrying it, which gets err handler stuck forever. Neither
2977 		 * can we let the scsi cmd pass through, because UFS is in bad
2978 		 * state, the scsi cmd may eventually time out, which will get
2979 		 * err handler blocked for too long. So, just fail the scsi cmd
2980 		 * sent from PM ops, err handler can recover PM error anyways.
2981 		 */
2982 		if (hba->pm_op_in_progress) {
2983 			hba->force_reset = true;
2984 			set_host_byte(cmd, DID_BAD_TARGET);
2985 			scsi_done(cmd);
2986 			goto out;
2987 		}
2988 		fallthrough;
2989 	case UFSHCD_STATE_RESET:
2990 		err = SCSI_MLQUEUE_HOST_BUSY;
2991 		goto out;
2992 	case UFSHCD_STATE_ERROR:
2993 		set_host_byte(cmd, DID_ERROR);
2994 		scsi_done(cmd);
2995 		goto out;
2996 	}
2997 
2998 	hba->req_abort_count = 0;
2999 
3000 	ufshcd_hold(hba);
3001 
3002 	lrbp = &hba->lrb[tag];
3003 
3004 	ufshcd_setup_scsi_cmd(hba, lrbp, cmd, ufshcd_scsi_to_upiu_lun(cmd->device->lun), tag);
3005 
3006 	err = ufshcd_map_sg(hba, lrbp);
3007 	if (err) {
3008 		ufshcd_release(hba);
3009 		goto out;
3010 	}
3011 
3012 	if (hba->mcq_enabled)
3013 		hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(cmd));
3014 
3015 	ufshcd_send_command(hba, tag, hwq);
3016 
3017 out:
3018 	if (ufs_trigger_eh(hba)) {
3019 		unsigned long flags;
3020 
3021 		spin_lock_irqsave(hba->host->host_lock, flags);
3022 		ufshcd_schedule_eh_work(hba);
3023 		spin_unlock_irqrestore(hba->host->host_lock, flags);
3024 	}
3025 
3026 	return err;
3027 }
3028 
3029 static void ufshcd_setup_dev_cmd(struct ufs_hba *hba, struct ufshcd_lrb *lrbp,
3030 			     enum dev_cmd_type cmd_type, u8 lun, int tag)
3031 {
3032 	__ufshcd_setup_cmd(lrbp, NULL, lun, tag);
3033 	lrbp->intr_cmd = true; /* No interrupt aggregation */
3034 	hba->dev_cmd.type = cmd_type;
3035 }
3036 
3037 static int ufshcd_compose_dev_cmd(struct ufs_hba *hba,
3038 		struct ufshcd_lrb *lrbp, enum dev_cmd_type cmd_type, int tag)
3039 {
3040 	ufshcd_setup_dev_cmd(hba, lrbp, cmd_type, 0, tag);
3041 
3042 	return ufshcd_compose_devman_upiu(hba, lrbp);
3043 }
3044 
3045 /*
3046  * Check with the block layer if the command is inflight
3047  * @cmd: command to check.
3048  *
3049  * Return: true if command is inflight; false if not.
3050  */
3051 bool ufshcd_cmd_inflight(struct scsi_cmnd *cmd)
3052 {
3053 	return cmd && blk_mq_rq_state(scsi_cmd_to_rq(cmd)) == MQ_RQ_IN_FLIGHT;
3054 }
3055 
3056 /*
3057  * Clear the pending command in the controller and wait until
3058  * the controller confirms that the command has been cleared.
3059  * @hba: per adapter instance
3060  * @task_tag: The tag number of the command to be cleared.
3061  */
3062 static int ufshcd_clear_cmd(struct ufs_hba *hba, u32 task_tag)
3063 {
3064 	u32 mask;
3065 	int err;
3066 
3067 	if (hba->mcq_enabled) {
3068 		/*
3069 		 * MCQ mode. Clean up the MCQ resources similar to
3070 		 * what the ufshcd_utrl_clear() does for SDB mode.
3071 		 */
3072 		err = ufshcd_mcq_sq_cleanup(hba, task_tag);
3073 		if (err) {
3074 			dev_err(hba->dev, "%s: failed tag=%d. err=%d\n",
3075 				__func__, task_tag, err);
3076 			return err;
3077 		}
3078 		return 0;
3079 	}
3080 
3081 	mask = 1U << task_tag;
3082 
3083 	/* clear outstanding transaction before retry */
3084 	ufshcd_utrl_clear(hba, mask);
3085 
3086 	/*
3087 	 * wait for h/w to clear corresponding bit in door-bell.
3088 	 * max. wait is 1 sec.
3089 	 */
3090 	return ufshcd_wait_for_register(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL,
3091 					mask, ~mask, 1000, 1000);
3092 }
3093 
3094 /**
3095  * ufshcd_dev_cmd_completion() - handles device management command responses
3096  * @hba: per adapter instance
3097  * @lrbp: pointer to local reference block
3098  *
3099  * Return: 0 upon success; < 0 upon failure.
3100  */
3101 static int
3102 ufshcd_dev_cmd_completion(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
3103 {
3104 	enum upiu_response_transaction resp;
3105 	int err = 0;
3106 
3107 	hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
3108 	resp = ufshcd_get_req_rsp(lrbp->ucd_rsp_ptr);
3109 
3110 	switch (resp) {
3111 	case UPIU_TRANSACTION_NOP_IN:
3112 		if (hba->dev_cmd.type != DEV_CMD_TYPE_NOP) {
3113 			err = -EINVAL;
3114 			dev_err(hba->dev, "%s: unexpected response %x\n",
3115 					__func__, resp);
3116 		}
3117 		break;
3118 	case UPIU_TRANSACTION_QUERY_RSP: {
3119 		u8 response = lrbp->ucd_rsp_ptr->header.response;
3120 
3121 		if (response == 0)
3122 			err = ufshcd_copy_query_response(hba, lrbp);
3123 		break;
3124 	}
3125 	case UPIU_TRANSACTION_REJECT_UPIU:
3126 		/* TODO: handle Reject UPIU Response */
3127 		err = -EPERM;
3128 		dev_err(hba->dev, "%s: Reject UPIU not fully implemented\n",
3129 				__func__);
3130 		break;
3131 	case UPIU_TRANSACTION_RESPONSE:
3132 		if (hba->dev_cmd.type != DEV_CMD_TYPE_RPMB) {
3133 			err = -EINVAL;
3134 			dev_err(hba->dev, "%s: unexpected response %x\n", __func__, resp);
3135 		}
3136 		break;
3137 	default:
3138 		err = -EINVAL;
3139 		dev_err(hba->dev, "%s: Invalid device management cmd response: %x\n",
3140 				__func__, resp);
3141 		break;
3142 	}
3143 
3144 	return err;
3145 }
3146 
3147 static int ufshcd_wait_for_dev_cmd(struct ufs_hba *hba,
3148 		struct ufshcd_lrb *lrbp, int max_timeout)
3149 {
3150 	unsigned long time_left = msecs_to_jiffies(max_timeout);
3151 	unsigned long flags;
3152 	bool pending;
3153 	int err;
3154 
3155 retry:
3156 	time_left = wait_for_completion_timeout(hba->dev_cmd.complete,
3157 						time_left);
3158 
3159 	if (likely(time_left)) {
3160 		/*
3161 		 * The completion handler called complete() and the caller of
3162 		 * this function still owns the @lrbp tag so the code below does
3163 		 * not trigger any race conditions.
3164 		 */
3165 		hba->dev_cmd.complete = NULL;
3166 		err = ufshcd_get_tr_ocs(lrbp, NULL);
3167 		if (!err)
3168 			err = ufshcd_dev_cmd_completion(hba, lrbp);
3169 	} else {
3170 		err = -ETIMEDOUT;
3171 		dev_dbg(hba->dev, "%s: dev_cmd request timedout, tag %d\n",
3172 			__func__, lrbp->task_tag);
3173 
3174 		/* MCQ mode */
3175 		if (hba->mcq_enabled) {
3176 			/* successfully cleared the command, retry if needed */
3177 			if (ufshcd_clear_cmd(hba, lrbp->task_tag) == 0)
3178 				err = -EAGAIN;
3179 			hba->dev_cmd.complete = NULL;
3180 			return err;
3181 		}
3182 
3183 		/* SDB mode */
3184 		if (ufshcd_clear_cmd(hba, lrbp->task_tag) == 0) {
3185 			/* successfully cleared the command, retry if needed */
3186 			err = -EAGAIN;
3187 			/*
3188 			 * Since clearing the command succeeded we also need to
3189 			 * clear the task tag bit from the outstanding_reqs
3190 			 * variable.
3191 			 */
3192 			spin_lock_irqsave(&hba->outstanding_lock, flags);
3193 			pending = test_bit(lrbp->task_tag,
3194 					   &hba->outstanding_reqs);
3195 			if (pending) {
3196 				hba->dev_cmd.complete = NULL;
3197 				__clear_bit(lrbp->task_tag,
3198 					    &hba->outstanding_reqs);
3199 			}
3200 			spin_unlock_irqrestore(&hba->outstanding_lock, flags);
3201 
3202 			if (!pending) {
3203 				/*
3204 				 * The completion handler ran while we tried to
3205 				 * clear the command.
3206 				 */
3207 				time_left = 1;
3208 				goto retry;
3209 			}
3210 		} else {
3211 			dev_err(hba->dev, "%s: failed to clear tag %d\n",
3212 				__func__, lrbp->task_tag);
3213 
3214 			spin_lock_irqsave(&hba->outstanding_lock, flags);
3215 			pending = test_bit(lrbp->task_tag,
3216 					   &hba->outstanding_reqs);
3217 			if (pending)
3218 				hba->dev_cmd.complete = NULL;
3219 			spin_unlock_irqrestore(&hba->outstanding_lock, flags);
3220 
3221 			if (!pending) {
3222 				/*
3223 				 * The completion handler ran while we tried to
3224 				 * clear the command.
3225 				 */
3226 				time_left = 1;
3227 				goto retry;
3228 			}
3229 		}
3230 	}
3231 
3232 	return err;
3233 }
3234 
3235 static void ufshcd_dev_man_lock(struct ufs_hba *hba)
3236 {
3237 	ufshcd_hold(hba);
3238 	mutex_lock(&hba->dev_cmd.lock);
3239 	down_read(&hba->clk_scaling_lock);
3240 }
3241 
3242 static void ufshcd_dev_man_unlock(struct ufs_hba *hba)
3243 {
3244 	up_read(&hba->clk_scaling_lock);
3245 	mutex_unlock(&hba->dev_cmd.lock);
3246 	ufshcd_release(hba);
3247 }
3248 
3249 static int ufshcd_issue_dev_cmd(struct ufs_hba *hba, struct ufshcd_lrb *lrbp,
3250 			  const u32 tag, int timeout)
3251 {
3252 	DECLARE_COMPLETION_ONSTACK(wait);
3253 	int err;
3254 
3255 	hba->dev_cmd.complete = &wait;
3256 
3257 	ufshcd_add_query_upiu_trace(hba, UFS_QUERY_SEND, lrbp->ucd_req_ptr);
3258 
3259 	ufshcd_send_command(hba, tag, hba->dev_cmd_queue);
3260 	err = ufshcd_wait_for_dev_cmd(hba, lrbp, timeout);
3261 
3262 	ufshcd_add_query_upiu_trace(hba, err ? UFS_QUERY_ERR : UFS_QUERY_COMP,
3263 				    (struct utp_upiu_req *)lrbp->ucd_rsp_ptr);
3264 
3265 	return err;
3266 }
3267 
3268 /**
3269  * ufshcd_exec_dev_cmd - API for sending device management requests
3270  * @hba: UFS hba
3271  * @cmd_type: specifies the type (NOP, Query...)
3272  * @timeout: timeout in milliseconds
3273  *
3274  * Return: 0 upon success; < 0 upon failure.
3275  *
3276  * NOTE: Since there is only one available tag for device management commands,
3277  * it is expected you hold the hba->dev_cmd.lock mutex.
3278  */
3279 static int ufshcd_exec_dev_cmd(struct ufs_hba *hba,
3280 		enum dev_cmd_type cmd_type, int timeout)
3281 {
3282 	const u32 tag = hba->reserved_slot;
3283 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
3284 	int err;
3285 
3286 	/* Protects use of hba->reserved_slot. */
3287 	lockdep_assert_held(&hba->dev_cmd.lock);
3288 
3289 	err = ufshcd_compose_dev_cmd(hba, lrbp, cmd_type, tag);
3290 	if (unlikely(err))
3291 		return err;
3292 
3293 	return ufshcd_issue_dev_cmd(hba, lrbp, tag, timeout);
3294 }
3295 
3296 /**
3297  * ufshcd_init_query() - init the query response and request parameters
3298  * @hba: per-adapter instance
3299  * @request: address of the request pointer to be initialized
3300  * @response: address of the response pointer to be initialized
3301  * @opcode: operation to perform
3302  * @idn: flag idn to access
3303  * @index: LU number to access
3304  * @selector: query/flag/descriptor further identification
3305  */
3306 static inline void ufshcd_init_query(struct ufs_hba *hba,
3307 		struct ufs_query_req **request, struct ufs_query_res **response,
3308 		enum query_opcode opcode, u8 idn, u8 index, u8 selector)
3309 {
3310 	*request = &hba->dev_cmd.query.request;
3311 	*response = &hba->dev_cmd.query.response;
3312 	memset(*request, 0, sizeof(struct ufs_query_req));
3313 	memset(*response, 0, sizeof(struct ufs_query_res));
3314 	(*request)->upiu_req.opcode = opcode;
3315 	(*request)->upiu_req.idn = idn;
3316 	(*request)->upiu_req.index = index;
3317 	(*request)->upiu_req.selector = selector;
3318 }
3319 
3320 static int ufshcd_query_flag_retry(struct ufs_hba *hba,
3321 	enum query_opcode opcode, enum flag_idn idn, u8 index, bool *flag_res)
3322 {
3323 	int ret;
3324 	int retries;
3325 
3326 	for (retries = 0; retries < QUERY_REQ_RETRIES; retries++) {
3327 		ret = ufshcd_query_flag(hba, opcode, idn, index, flag_res);
3328 		if (ret)
3329 			dev_dbg(hba->dev,
3330 				"%s: failed with error %d, retries %d\n",
3331 				__func__, ret, retries);
3332 		else
3333 			break;
3334 	}
3335 
3336 	if (ret)
3337 		dev_err(hba->dev,
3338 			"%s: query flag, opcode %d, idn %d, failed with error %d after %d retries\n",
3339 			__func__, opcode, idn, ret, retries);
3340 	return ret;
3341 }
3342 
3343 /**
3344  * ufshcd_query_flag() - API function for sending flag query requests
3345  * @hba: per-adapter instance
3346  * @opcode: flag query to perform
3347  * @idn: flag idn to access
3348  * @index: flag index to access
3349  * @flag_res: the flag value after the query request completes
3350  *
3351  * Return: 0 for success, non-zero in case of failure.
3352  */
3353 int ufshcd_query_flag(struct ufs_hba *hba, enum query_opcode opcode,
3354 			enum flag_idn idn, u8 index, bool *flag_res)
3355 {
3356 	struct ufs_query_req *request = NULL;
3357 	struct ufs_query_res *response = NULL;
3358 	int err, selector = 0;
3359 	int timeout = QUERY_REQ_TIMEOUT;
3360 
3361 	BUG_ON(!hba);
3362 
3363 	ufshcd_dev_man_lock(hba);
3364 
3365 	ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3366 			selector);
3367 
3368 	switch (opcode) {
3369 	case UPIU_QUERY_OPCODE_SET_FLAG:
3370 	case UPIU_QUERY_OPCODE_CLEAR_FLAG:
3371 	case UPIU_QUERY_OPCODE_TOGGLE_FLAG:
3372 		request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3373 		break;
3374 	case UPIU_QUERY_OPCODE_READ_FLAG:
3375 		request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3376 		if (!flag_res) {
3377 			/* No dummy reads */
3378 			dev_err(hba->dev, "%s: Invalid argument for read request\n",
3379 					__func__);
3380 			err = -EINVAL;
3381 			goto out_unlock;
3382 		}
3383 		break;
3384 	default:
3385 		dev_err(hba->dev,
3386 			"%s: Expected query flag opcode but got = %d\n",
3387 			__func__, opcode);
3388 		err = -EINVAL;
3389 		goto out_unlock;
3390 	}
3391 
3392 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, timeout);
3393 
3394 	if (err) {
3395 		dev_err(hba->dev,
3396 			"%s: Sending flag query for idn %d failed, err = %d\n",
3397 			__func__, idn, err);
3398 		goto out_unlock;
3399 	}
3400 
3401 	if (flag_res)
3402 		*flag_res = (be32_to_cpu(response->upiu_res.value) &
3403 				MASK_QUERY_UPIU_FLAG_LOC) & 0x1;
3404 
3405 out_unlock:
3406 	ufshcd_dev_man_unlock(hba);
3407 	return err;
3408 }
3409 
3410 /**
3411  * ufshcd_query_attr - API function for sending attribute requests
3412  * @hba: per-adapter instance
3413  * @opcode: attribute opcode
3414  * @idn: attribute idn to access
3415  * @index: index field
3416  * @selector: selector field
3417  * @attr_val: the attribute value after the query request completes
3418  *
3419  * Return: 0 for success, non-zero in case of failure.
3420 */
3421 int ufshcd_query_attr(struct ufs_hba *hba, enum query_opcode opcode,
3422 		      enum attr_idn idn, u8 index, u8 selector, u32 *attr_val)
3423 {
3424 	struct ufs_query_req *request = NULL;
3425 	struct ufs_query_res *response = NULL;
3426 	int err;
3427 
3428 	BUG_ON(!hba);
3429 
3430 	if (!attr_val) {
3431 		dev_err(hba->dev, "%s: attribute value required for opcode 0x%x\n",
3432 				__func__, opcode);
3433 		return -EINVAL;
3434 	}
3435 
3436 	ufshcd_dev_man_lock(hba);
3437 
3438 	ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3439 			selector);
3440 
3441 	switch (opcode) {
3442 	case UPIU_QUERY_OPCODE_WRITE_ATTR:
3443 		request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3444 		request->upiu_req.value = cpu_to_be32(*attr_val);
3445 		break;
3446 	case UPIU_QUERY_OPCODE_READ_ATTR:
3447 		request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3448 		break;
3449 	default:
3450 		dev_err(hba->dev, "%s: Expected query attr opcode but got = 0x%.2x\n",
3451 				__func__, opcode);
3452 		err = -EINVAL;
3453 		goto out_unlock;
3454 	}
3455 
3456 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT);
3457 
3458 	if (err) {
3459 		dev_err(hba->dev, "%s: opcode 0x%.2x for idn %d failed, index %d, err = %d\n",
3460 				__func__, opcode, idn, index, err);
3461 		goto out_unlock;
3462 	}
3463 
3464 	*attr_val = be32_to_cpu(response->upiu_res.value);
3465 
3466 out_unlock:
3467 	ufshcd_dev_man_unlock(hba);
3468 	return err;
3469 }
3470 
3471 /**
3472  * ufshcd_query_attr_retry() - API function for sending query
3473  * attribute with retries
3474  * @hba: per-adapter instance
3475  * @opcode: attribute opcode
3476  * @idn: attribute idn to access
3477  * @index: index field
3478  * @selector: selector field
3479  * @attr_val: the attribute value after the query request
3480  * completes
3481  *
3482  * Return: 0 for success, non-zero in case of failure.
3483 */
3484 int ufshcd_query_attr_retry(struct ufs_hba *hba,
3485 	enum query_opcode opcode, enum attr_idn idn, u8 index, u8 selector,
3486 	u32 *attr_val)
3487 {
3488 	int ret = 0;
3489 	u32 retries;
3490 
3491 	for (retries = QUERY_REQ_RETRIES; retries > 0; retries--) {
3492 		ret = ufshcd_query_attr(hba, opcode, idn, index,
3493 						selector, attr_val);
3494 		if (ret)
3495 			dev_dbg(hba->dev, "%s: failed with error %d, retries %d\n",
3496 				__func__, ret, retries);
3497 		else
3498 			break;
3499 	}
3500 
3501 	if (ret)
3502 		dev_err(hba->dev,
3503 			"%s: query attribute, idn %d, failed with error %d after %d retries\n",
3504 			__func__, idn, ret, QUERY_REQ_RETRIES);
3505 	return ret;
3506 }
3507 
3508 static int __ufshcd_query_descriptor(struct ufs_hba *hba,
3509 			enum query_opcode opcode, enum desc_idn idn, u8 index,
3510 			u8 selector, u8 *desc_buf, int *buf_len)
3511 {
3512 	struct ufs_query_req *request = NULL;
3513 	struct ufs_query_res *response = NULL;
3514 	int err;
3515 
3516 	BUG_ON(!hba);
3517 
3518 	if (!desc_buf) {
3519 		dev_err(hba->dev, "%s: descriptor buffer required for opcode 0x%x\n",
3520 				__func__, opcode);
3521 		return -EINVAL;
3522 	}
3523 
3524 	if (*buf_len < QUERY_DESC_MIN_SIZE || *buf_len > QUERY_DESC_MAX_SIZE) {
3525 		dev_err(hba->dev, "%s: descriptor buffer size (%d) is out of range\n",
3526 				__func__, *buf_len);
3527 		return -EINVAL;
3528 	}
3529 
3530 	ufshcd_dev_man_lock(hba);
3531 
3532 	ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3533 			selector);
3534 	hba->dev_cmd.query.descriptor = desc_buf;
3535 	request->upiu_req.length = cpu_to_be16(*buf_len);
3536 
3537 	switch (opcode) {
3538 	case UPIU_QUERY_OPCODE_WRITE_DESC:
3539 		request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3540 		break;
3541 	case UPIU_QUERY_OPCODE_READ_DESC:
3542 		request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3543 		break;
3544 	default:
3545 		dev_err(hba->dev,
3546 				"%s: Expected query descriptor opcode but got = 0x%.2x\n",
3547 				__func__, opcode);
3548 		err = -EINVAL;
3549 		goto out_unlock;
3550 	}
3551 
3552 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT);
3553 
3554 	if (err) {
3555 		dev_err(hba->dev, "%s: opcode 0x%.2x for idn %d failed, index %d, err = %d\n",
3556 				__func__, opcode, idn, index, err);
3557 		goto out_unlock;
3558 	}
3559 
3560 	*buf_len = be16_to_cpu(response->upiu_res.length);
3561 
3562 out_unlock:
3563 	hba->dev_cmd.query.descriptor = NULL;
3564 	ufshcd_dev_man_unlock(hba);
3565 	return err;
3566 }
3567 
3568 /**
3569  * ufshcd_query_descriptor_retry - API function for sending descriptor requests
3570  * @hba: per-adapter instance
3571  * @opcode: attribute opcode
3572  * @idn: attribute idn to access
3573  * @index: index field
3574  * @selector: selector field
3575  * @desc_buf: the buffer that contains the descriptor
3576  * @buf_len: length parameter passed to the device
3577  *
3578  * The buf_len parameter will contain, on return, the length parameter
3579  * received on the response.
3580  *
3581  * Return: 0 for success, non-zero in case of failure.
3582  */
3583 int ufshcd_query_descriptor_retry(struct ufs_hba *hba,
3584 				  enum query_opcode opcode,
3585 				  enum desc_idn idn, u8 index,
3586 				  u8 selector,
3587 				  u8 *desc_buf, int *buf_len)
3588 {
3589 	int err;
3590 	int retries;
3591 
3592 	for (retries = QUERY_REQ_RETRIES; retries > 0; retries--) {
3593 		err = __ufshcd_query_descriptor(hba, opcode, idn, index,
3594 						selector, desc_buf, buf_len);
3595 		if (!err || err == -EINVAL)
3596 			break;
3597 	}
3598 
3599 	return err;
3600 }
3601 
3602 /**
3603  * ufshcd_read_desc_param - read the specified descriptor parameter
3604  * @hba: Pointer to adapter instance
3605  * @desc_id: descriptor idn value
3606  * @desc_index: descriptor index
3607  * @param_offset: offset of the parameter to read
3608  * @param_read_buf: pointer to buffer where parameter would be read
3609  * @param_size: sizeof(param_read_buf)
3610  *
3611  * Return: 0 in case of success, non-zero otherwise.
3612  */
3613 int ufshcd_read_desc_param(struct ufs_hba *hba,
3614 			   enum desc_idn desc_id,
3615 			   int desc_index,
3616 			   u8 param_offset,
3617 			   u8 *param_read_buf,
3618 			   u8 param_size)
3619 {
3620 	int ret;
3621 	u8 *desc_buf;
3622 	int buff_len = QUERY_DESC_MAX_SIZE;
3623 	bool is_kmalloc = true;
3624 
3625 	/* Safety check */
3626 	if (desc_id >= QUERY_DESC_IDN_MAX || !param_size)
3627 		return -EINVAL;
3628 
3629 	/* Check whether we need temp memory */
3630 	if (param_offset != 0 || param_size < buff_len) {
3631 		desc_buf = kzalloc(buff_len, GFP_KERNEL);
3632 		if (!desc_buf)
3633 			return -ENOMEM;
3634 	} else {
3635 		desc_buf = param_read_buf;
3636 		is_kmalloc = false;
3637 	}
3638 
3639 	/* Request for full descriptor */
3640 	ret = ufshcd_query_descriptor_retry(hba, UPIU_QUERY_OPCODE_READ_DESC,
3641 					    desc_id, desc_index, 0,
3642 					    desc_buf, &buff_len);
3643 	if (ret) {
3644 		dev_err(hba->dev, "%s: Failed reading descriptor. desc_id %d, desc_index %d, param_offset %d, ret %d\n",
3645 			__func__, desc_id, desc_index, param_offset, ret);
3646 		goto out;
3647 	}
3648 
3649 	/* Update descriptor length */
3650 	buff_len = desc_buf[QUERY_DESC_LENGTH_OFFSET];
3651 
3652 	if (param_offset >= buff_len) {
3653 		dev_err(hba->dev, "%s: Invalid offset 0x%x in descriptor IDN 0x%x, length 0x%x\n",
3654 			__func__, param_offset, desc_id, buff_len);
3655 		ret = -EINVAL;
3656 		goto out;
3657 	}
3658 
3659 	/* Sanity check */
3660 	if (desc_buf[QUERY_DESC_DESC_TYPE_OFFSET] != desc_id) {
3661 		dev_err(hba->dev, "%s: invalid desc_id %d in descriptor header\n",
3662 			__func__, desc_buf[QUERY_DESC_DESC_TYPE_OFFSET]);
3663 		ret = -EINVAL;
3664 		goto out;
3665 	}
3666 
3667 	if (is_kmalloc) {
3668 		/* Make sure we don't copy more data than available */
3669 		if (param_offset >= buff_len)
3670 			ret = -EINVAL;
3671 		else
3672 			memcpy(param_read_buf, &desc_buf[param_offset],
3673 			       min_t(u32, param_size, buff_len - param_offset));
3674 	}
3675 out:
3676 	if (is_kmalloc)
3677 		kfree(desc_buf);
3678 	return ret;
3679 }
3680 
3681 /**
3682  * struct uc_string_id - unicode string
3683  *
3684  * @len: size of this descriptor inclusive
3685  * @type: descriptor type
3686  * @uc: unicode string character
3687  */
3688 struct uc_string_id {
3689 	u8 len;
3690 	u8 type;
3691 	wchar_t uc[];
3692 } __packed;
3693 
3694 /* replace non-printable or non-ASCII characters with spaces */
3695 static inline char ufshcd_remove_non_printable(u8 ch)
3696 {
3697 	return (ch >= 0x20 && ch <= 0x7e) ? ch : ' ';
3698 }
3699 
3700 /**
3701  * ufshcd_read_string_desc - read string descriptor
3702  * @hba: pointer to adapter instance
3703  * @desc_index: descriptor index
3704  * @buf: pointer to buffer where descriptor would be read,
3705  *       the caller should free the memory.
3706  * @ascii: if true convert from unicode to ascii characters
3707  *         null terminated string.
3708  *
3709  * Return:
3710  * *      string size on success.
3711  * *      -ENOMEM: on allocation failure
3712  * *      -EINVAL: on a wrong parameter
3713  */
3714 int ufshcd_read_string_desc(struct ufs_hba *hba, u8 desc_index,
3715 			    u8 **buf, bool ascii)
3716 {
3717 	struct uc_string_id *uc_str;
3718 	u8 *str;
3719 	int ret;
3720 
3721 	if (!buf)
3722 		return -EINVAL;
3723 
3724 	uc_str = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
3725 	if (!uc_str)
3726 		return -ENOMEM;
3727 
3728 	ret = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_STRING, desc_index, 0,
3729 				     (u8 *)uc_str, QUERY_DESC_MAX_SIZE);
3730 	if (ret < 0) {
3731 		dev_err(hba->dev, "Reading String Desc failed after %d retries. err = %d\n",
3732 			QUERY_REQ_RETRIES, ret);
3733 		str = NULL;
3734 		goto out;
3735 	}
3736 
3737 	if (uc_str->len <= QUERY_DESC_HDR_SIZE) {
3738 		dev_dbg(hba->dev, "String Desc is of zero length\n");
3739 		str = NULL;
3740 		ret = 0;
3741 		goto out;
3742 	}
3743 
3744 	if (ascii) {
3745 		ssize_t ascii_len;
3746 		int i;
3747 		/* remove header and divide by 2 to move from UTF16 to UTF8 */
3748 		ascii_len = (uc_str->len - QUERY_DESC_HDR_SIZE) / 2 + 1;
3749 		str = kzalloc(ascii_len, GFP_KERNEL);
3750 		if (!str) {
3751 			ret = -ENOMEM;
3752 			goto out;
3753 		}
3754 
3755 		/*
3756 		 * the descriptor contains string in UTF16 format
3757 		 * we need to convert to utf-8 so it can be displayed
3758 		 */
3759 		ret = utf16s_to_utf8s(uc_str->uc,
3760 				      uc_str->len - QUERY_DESC_HDR_SIZE,
3761 				      UTF16_BIG_ENDIAN, str, ascii_len - 1);
3762 
3763 		/* replace non-printable or non-ASCII characters with spaces */
3764 		for (i = 0; i < ret; i++)
3765 			str[i] = ufshcd_remove_non_printable(str[i]);
3766 
3767 		str[ret++] = '\0';
3768 
3769 	} else {
3770 		str = kmemdup(uc_str, uc_str->len, GFP_KERNEL);
3771 		if (!str) {
3772 			ret = -ENOMEM;
3773 			goto out;
3774 		}
3775 		ret = uc_str->len;
3776 	}
3777 out:
3778 	*buf = str;
3779 	kfree(uc_str);
3780 	return ret;
3781 }
3782 
3783 /**
3784  * ufshcd_read_unit_desc_param - read the specified unit descriptor parameter
3785  * @hba: Pointer to adapter instance
3786  * @lun: lun id
3787  * @param_offset: offset of the parameter to read
3788  * @param_read_buf: pointer to buffer where parameter would be read
3789  * @param_size: sizeof(param_read_buf)
3790  *
3791  * Return: 0 in case of success, non-zero otherwise.
3792  */
3793 static inline int ufshcd_read_unit_desc_param(struct ufs_hba *hba,
3794 					      int lun,
3795 					      enum unit_desc_param param_offset,
3796 					      u8 *param_read_buf,
3797 					      u32 param_size)
3798 {
3799 	/*
3800 	 * Unit descriptors are only available for general purpose LUs (LUN id
3801 	 * from 0 to 7) and RPMB Well known LU.
3802 	 */
3803 	if (!ufs_is_valid_unit_desc_lun(&hba->dev_info, lun))
3804 		return -EOPNOTSUPP;
3805 
3806 	return ufshcd_read_desc_param(hba, QUERY_DESC_IDN_UNIT, lun,
3807 				      param_offset, param_read_buf, param_size);
3808 }
3809 
3810 static int ufshcd_get_ref_clk_gating_wait(struct ufs_hba *hba)
3811 {
3812 	int err = 0;
3813 	u32 gating_wait = UFSHCD_REF_CLK_GATING_WAIT_US;
3814 
3815 	if (hba->dev_info.wspecversion >= 0x300) {
3816 		err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
3817 				QUERY_ATTR_IDN_REF_CLK_GATING_WAIT_TIME, 0, 0,
3818 				&gating_wait);
3819 		if (err)
3820 			dev_err(hba->dev, "Failed reading bRefClkGatingWait. err = %d, use default %uus\n",
3821 					 err, gating_wait);
3822 
3823 		if (gating_wait == 0) {
3824 			gating_wait = UFSHCD_REF_CLK_GATING_WAIT_US;
3825 			dev_err(hba->dev, "Undefined ref clk gating wait time, use default %uus\n",
3826 					 gating_wait);
3827 		}
3828 
3829 		hba->dev_info.clk_gating_wait_us = gating_wait;
3830 	}
3831 
3832 	return err;
3833 }
3834 
3835 /**
3836  * ufshcd_memory_alloc - allocate memory for host memory space data structures
3837  * @hba: per adapter instance
3838  *
3839  * 1. Allocate DMA memory for Command Descriptor array
3840  *	Each command descriptor consist of Command UPIU, Response UPIU and PRDT
3841  * 2. Allocate DMA memory for UTP Transfer Request Descriptor List (UTRDL).
3842  * 3. Allocate DMA memory for UTP Task Management Request Descriptor List
3843  *	(UTMRDL)
3844  * 4. Allocate memory for local reference block(lrb).
3845  *
3846  * Return: 0 for success, non-zero in case of failure.
3847  */
3848 static int ufshcd_memory_alloc(struct ufs_hba *hba)
3849 {
3850 	size_t utmrdl_size, utrdl_size, ucdl_size;
3851 
3852 	/* Allocate memory for UTP command descriptors */
3853 	ucdl_size = ufshcd_get_ucd_size(hba) * hba->nutrs;
3854 	hba->ucdl_base_addr = dmam_alloc_coherent(hba->dev,
3855 						  ucdl_size,
3856 						  &hba->ucdl_dma_addr,
3857 						  GFP_KERNEL);
3858 
3859 	/*
3860 	 * UFSHCI requires UTP command descriptor to be 128 byte aligned.
3861 	 */
3862 	if (!hba->ucdl_base_addr ||
3863 	    WARN_ON(hba->ucdl_dma_addr & (128 - 1))) {
3864 		dev_err(hba->dev,
3865 			"Command Descriptor Memory allocation failed\n");
3866 		goto out;
3867 	}
3868 
3869 	/*
3870 	 * Allocate memory for UTP Transfer descriptors
3871 	 * UFSHCI requires 1KB alignment of UTRD
3872 	 */
3873 	utrdl_size = (sizeof(struct utp_transfer_req_desc) * hba->nutrs);
3874 	hba->utrdl_base_addr = dmam_alloc_coherent(hba->dev,
3875 						   utrdl_size,
3876 						   &hba->utrdl_dma_addr,
3877 						   GFP_KERNEL);
3878 	if (!hba->utrdl_base_addr ||
3879 	    WARN_ON(hba->utrdl_dma_addr & (SZ_1K - 1))) {
3880 		dev_err(hba->dev,
3881 			"Transfer Descriptor Memory allocation failed\n");
3882 		goto out;
3883 	}
3884 
3885 	/*
3886 	 * Skip utmrdl allocation; it may have been
3887 	 * allocated during first pass and not released during
3888 	 * MCQ memory allocation.
3889 	 * See ufshcd_release_sdb_queue() and ufshcd_config_mcq()
3890 	 */
3891 	if (hba->utmrdl_base_addr)
3892 		goto skip_utmrdl;
3893 	/*
3894 	 * Allocate memory for UTP Task Management descriptors
3895 	 * UFSHCI requires 1KB alignment of UTMRD
3896 	 */
3897 	utmrdl_size = sizeof(struct utp_task_req_desc) * hba->nutmrs;
3898 	hba->utmrdl_base_addr = dmam_alloc_coherent(hba->dev,
3899 						    utmrdl_size,
3900 						    &hba->utmrdl_dma_addr,
3901 						    GFP_KERNEL);
3902 	if (!hba->utmrdl_base_addr ||
3903 	    WARN_ON(hba->utmrdl_dma_addr & (SZ_1K - 1))) {
3904 		dev_err(hba->dev,
3905 		"Task Management Descriptor Memory allocation failed\n");
3906 		goto out;
3907 	}
3908 
3909 skip_utmrdl:
3910 	/* Allocate memory for local reference block */
3911 	hba->lrb = devm_kcalloc(hba->dev,
3912 				hba->nutrs, sizeof(struct ufshcd_lrb),
3913 				GFP_KERNEL);
3914 	if (!hba->lrb) {
3915 		dev_err(hba->dev, "LRB Memory allocation failed\n");
3916 		goto out;
3917 	}
3918 	return 0;
3919 out:
3920 	return -ENOMEM;
3921 }
3922 
3923 /**
3924  * ufshcd_host_memory_configure - configure local reference block with
3925  *				memory offsets
3926  * @hba: per adapter instance
3927  *
3928  * Configure Host memory space
3929  * 1. Update Corresponding UTRD.UCDBA and UTRD.UCDBAU with UCD DMA
3930  * address.
3931  * 2. Update each UTRD with Response UPIU offset, Response UPIU length
3932  * and PRDT offset.
3933  * 3. Save the corresponding addresses of UTRD, UCD.CMD, UCD.RSP and UCD.PRDT
3934  * into local reference block.
3935  */
3936 static void ufshcd_host_memory_configure(struct ufs_hba *hba)
3937 {
3938 	struct utp_transfer_req_desc *utrdlp;
3939 	dma_addr_t cmd_desc_dma_addr;
3940 	dma_addr_t cmd_desc_element_addr;
3941 	u16 response_offset;
3942 	u16 prdt_offset;
3943 	int cmd_desc_size;
3944 	int i;
3945 
3946 	utrdlp = hba->utrdl_base_addr;
3947 
3948 	response_offset =
3949 		offsetof(struct utp_transfer_cmd_desc, response_upiu);
3950 	prdt_offset =
3951 		offsetof(struct utp_transfer_cmd_desc, prd_table);
3952 
3953 	cmd_desc_size = ufshcd_get_ucd_size(hba);
3954 	cmd_desc_dma_addr = hba->ucdl_dma_addr;
3955 
3956 	for (i = 0; i < hba->nutrs; i++) {
3957 		/* Configure UTRD with command descriptor base address */
3958 		cmd_desc_element_addr =
3959 				(cmd_desc_dma_addr + (cmd_desc_size * i));
3960 		utrdlp[i].command_desc_base_addr =
3961 				cpu_to_le64(cmd_desc_element_addr);
3962 
3963 		/* Response upiu and prdt offset should be in double words */
3964 		if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN) {
3965 			utrdlp[i].response_upiu_offset =
3966 				cpu_to_le16(response_offset);
3967 			utrdlp[i].prd_table_offset =
3968 				cpu_to_le16(prdt_offset);
3969 			utrdlp[i].response_upiu_length =
3970 				cpu_to_le16(ALIGNED_UPIU_SIZE);
3971 		} else {
3972 			utrdlp[i].response_upiu_offset =
3973 				cpu_to_le16(response_offset >> 2);
3974 			utrdlp[i].prd_table_offset =
3975 				cpu_to_le16(prdt_offset >> 2);
3976 			utrdlp[i].response_upiu_length =
3977 				cpu_to_le16(ALIGNED_UPIU_SIZE >> 2);
3978 		}
3979 
3980 		ufshcd_init_lrb(hba, &hba->lrb[i], i);
3981 	}
3982 }
3983 
3984 /**
3985  * ufshcd_dme_link_startup - Notify Unipro to perform link startup
3986  * @hba: per adapter instance
3987  *
3988  * UIC_CMD_DME_LINK_STARTUP command must be issued to Unipro layer,
3989  * in order to initialize the Unipro link startup procedure.
3990  * Once the Unipro links are up, the device connected to the controller
3991  * is detected.
3992  *
3993  * Return: 0 on success, non-zero value on failure.
3994  */
3995 static int ufshcd_dme_link_startup(struct ufs_hba *hba)
3996 {
3997 	struct uic_command uic_cmd = {
3998 		.command = UIC_CMD_DME_LINK_STARTUP,
3999 	};
4000 	int ret;
4001 
4002 	ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4003 	if (ret)
4004 		dev_dbg(hba->dev,
4005 			"dme-link-startup: error code %d\n", ret);
4006 	return ret;
4007 }
4008 /**
4009  * ufshcd_dme_reset - UIC command for DME_RESET
4010  * @hba: per adapter instance
4011  *
4012  * DME_RESET command is issued in order to reset UniPro stack.
4013  * This function now deals with cold reset.
4014  *
4015  * Return: 0 on success, non-zero value on failure.
4016  */
4017 static int ufshcd_dme_reset(struct ufs_hba *hba)
4018 {
4019 	struct uic_command uic_cmd = {
4020 		.command = UIC_CMD_DME_RESET,
4021 	};
4022 	int ret;
4023 
4024 	ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4025 	if (ret)
4026 		dev_err(hba->dev,
4027 			"dme-reset: error code %d\n", ret);
4028 
4029 	return ret;
4030 }
4031 
4032 int ufshcd_dme_configure_adapt(struct ufs_hba *hba,
4033 			       int agreed_gear,
4034 			       int adapt_val)
4035 {
4036 	int ret;
4037 
4038 	if (agreed_gear < UFS_HS_G4)
4039 		adapt_val = PA_NO_ADAPT;
4040 
4041 	ret = ufshcd_dme_set(hba,
4042 			     UIC_ARG_MIB(PA_TXHSADAPTTYPE),
4043 			     adapt_val);
4044 	return ret;
4045 }
4046 EXPORT_SYMBOL_GPL(ufshcd_dme_configure_adapt);
4047 
4048 /**
4049  * ufshcd_dme_enable - UIC command for DME_ENABLE
4050  * @hba: per adapter instance
4051  *
4052  * DME_ENABLE command is issued in order to enable UniPro stack.
4053  *
4054  * Return: 0 on success, non-zero value on failure.
4055  */
4056 static int ufshcd_dme_enable(struct ufs_hba *hba)
4057 {
4058 	struct uic_command uic_cmd = {
4059 		.command = UIC_CMD_DME_ENABLE,
4060 	};
4061 	int ret;
4062 
4063 	ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4064 	if (ret)
4065 		dev_err(hba->dev,
4066 			"dme-enable: error code %d\n", ret);
4067 
4068 	return ret;
4069 }
4070 
4071 static inline void ufshcd_add_delay_before_dme_cmd(struct ufs_hba *hba)
4072 {
4073 	#define MIN_DELAY_BEFORE_DME_CMDS_US	1000
4074 	unsigned long min_sleep_time_us;
4075 
4076 	if (!(hba->quirks & UFSHCD_QUIRK_DELAY_BEFORE_DME_CMDS))
4077 		return;
4078 
4079 	/*
4080 	 * last_dme_cmd_tstamp will be 0 only for 1st call to
4081 	 * this function
4082 	 */
4083 	if (unlikely(!ktime_to_us(hba->last_dme_cmd_tstamp))) {
4084 		min_sleep_time_us = MIN_DELAY_BEFORE_DME_CMDS_US;
4085 	} else {
4086 		unsigned long delta =
4087 			(unsigned long) ktime_to_us(
4088 				ktime_sub(ktime_get(),
4089 				hba->last_dme_cmd_tstamp));
4090 
4091 		if (delta < MIN_DELAY_BEFORE_DME_CMDS_US)
4092 			min_sleep_time_us =
4093 				MIN_DELAY_BEFORE_DME_CMDS_US - delta;
4094 		else
4095 			min_sleep_time_us = 0; /* no more delay required */
4096 	}
4097 
4098 	if (min_sleep_time_us > 0) {
4099 		/* allow sleep for extra 50us if needed */
4100 		usleep_range(min_sleep_time_us, min_sleep_time_us + 50);
4101 	}
4102 
4103 	/* update the last_dme_cmd_tstamp */
4104 	hba->last_dme_cmd_tstamp = ktime_get();
4105 }
4106 
4107 /**
4108  * ufshcd_dme_set_attr - UIC command for DME_SET, DME_PEER_SET
4109  * @hba: per adapter instance
4110  * @attr_sel: uic command argument1
4111  * @attr_set: attribute set type as uic command argument2
4112  * @mib_val: setting value as uic command argument3
4113  * @peer: indicate whether peer or local
4114  *
4115  * Return: 0 on success, non-zero value on failure.
4116  */
4117 int ufshcd_dme_set_attr(struct ufs_hba *hba, u32 attr_sel,
4118 			u8 attr_set, u32 mib_val, u8 peer)
4119 {
4120 	struct uic_command uic_cmd = {
4121 		.command = peer ? UIC_CMD_DME_PEER_SET : UIC_CMD_DME_SET,
4122 		.argument1 = attr_sel,
4123 		.argument2 = UIC_ARG_ATTR_TYPE(attr_set),
4124 		.argument3 = mib_val,
4125 	};
4126 	static const char *const action[] = {
4127 		"dme-set",
4128 		"dme-peer-set"
4129 	};
4130 	const char *set = action[!!peer];
4131 	int ret;
4132 	int retries = UFS_UIC_COMMAND_RETRIES;
4133 
4134 	do {
4135 		/* for peer attributes we retry upon failure */
4136 		ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4137 		if (ret)
4138 			dev_dbg(hba->dev, "%s: attr-id 0x%x val 0x%x error code %d\n",
4139 				set, UIC_GET_ATTR_ID(attr_sel), mib_val, ret);
4140 	} while (ret && peer && --retries);
4141 
4142 	if (ret)
4143 		dev_err(hba->dev, "%s: attr-id 0x%x val 0x%x failed %d retries\n",
4144 			set, UIC_GET_ATTR_ID(attr_sel), mib_val,
4145 			UFS_UIC_COMMAND_RETRIES - retries);
4146 
4147 	return ret;
4148 }
4149 EXPORT_SYMBOL_GPL(ufshcd_dme_set_attr);
4150 
4151 /**
4152  * ufshcd_dme_get_attr - UIC command for DME_GET, DME_PEER_GET
4153  * @hba: per adapter instance
4154  * @attr_sel: uic command argument1
4155  * @mib_val: the value of the attribute as returned by the UIC command
4156  * @peer: indicate whether peer or local
4157  *
4158  * Return: 0 on success, non-zero value on failure.
4159  */
4160 int ufshcd_dme_get_attr(struct ufs_hba *hba, u32 attr_sel,
4161 			u32 *mib_val, u8 peer)
4162 {
4163 	struct uic_command uic_cmd = {
4164 		.command = peer ? UIC_CMD_DME_PEER_GET : UIC_CMD_DME_GET,
4165 		.argument1 = attr_sel,
4166 	};
4167 	static const char *const action[] = {
4168 		"dme-get",
4169 		"dme-peer-get"
4170 	};
4171 	const char *get = action[!!peer];
4172 	int ret;
4173 	int retries = UFS_UIC_COMMAND_RETRIES;
4174 	struct ufs_pa_layer_attr orig_pwr_info;
4175 	struct ufs_pa_layer_attr temp_pwr_info;
4176 	bool pwr_mode_change = false;
4177 
4178 	if (peer && (hba->quirks & UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE)) {
4179 		orig_pwr_info = hba->pwr_info;
4180 		temp_pwr_info = orig_pwr_info;
4181 
4182 		if (orig_pwr_info.pwr_tx == FAST_MODE ||
4183 		    orig_pwr_info.pwr_rx == FAST_MODE) {
4184 			temp_pwr_info.pwr_tx = FASTAUTO_MODE;
4185 			temp_pwr_info.pwr_rx = FASTAUTO_MODE;
4186 			pwr_mode_change = true;
4187 		} else if (orig_pwr_info.pwr_tx == SLOW_MODE ||
4188 		    orig_pwr_info.pwr_rx == SLOW_MODE) {
4189 			temp_pwr_info.pwr_tx = SLOWAUTO_MODE;
4190 			temp_pwr_info.pwr_rx = SLOWAUTO_MODE;
4191 			pwr_mode_change = true;
4192 		}
4193 		if (pwr_mode_change) {
4194 			ret = ufshcd_change_power_mode(hba, &temp_pwr_info);
4195 			if (ret)
4196 				goto out;
4197 		}
4198 	}
4199 
4200 	do {
4201 		/* for peer attributes we retry upon failure */
4202 		ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4203 		if (ret)
4204 			dev_dbg(hba->dev, "%s: attr-id 0x%x error code %d\n",
4205 				get, UIC_GET_ATTR_ID(attr_sel), ret);
4206 	} while (ret && peer && --retries);
4207 
4208 	if (ret)
4209 		dev_err(hba->dev, "%s: attr-id 0x%x failed %d retries\n",
4210 			get, UIC_GET_ATTR_ID(attr_sel),
4211 			UFS_UIC_COMMAND_RETRIES - retries);
4212 
4213 	if (mib_val && !ret)
4214 		*mib_val = uic_cmd.argument3;
4215 
4216 	if (peer && (hba->quirks & UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE)
4217 	    && pwr_mode_change)
4218 		ufshcd_change_power_mode(hba, &orig_pwr_info);
4219 out:
4220 	return ret;
4221 }
4222 EXPORT_SYMBOL_GPL(ufshcd_dme_get_attr);
4223 
4224 /**
4225  * ufshcd_uic_pwr_ctrl - executes UIC commands (which affects the link power
4226  * state) and waits for it to take effect.
4227  *
4228  * @hba: per adapter instance
4229  * @cmd: UIC command to execute
4230  *
4231  * DME operations like DME_SET(PA_PWRMODE), DME_HIBERNATE_ENTER &
4232  * DME_HIBERNATE_EXIT commands take some time to take its effect on both host
4233  * and device UniPro link and hence it's final completion would be indicated by
4234  * dedicated status bits in Interrupt Status register (UPMS, UHES, UHXS) in
4235  * addition to normal UIC command completion Status (UCCS). This function only
4236  * returns after the relevant status bits indicate the completion.
4237  *
4238  * Return: 0 on success, non-zero value on failure.
4239  */
4240 static int ufshcd_uic_pwr_ctrl(struct ufs_hba *hba, struct uic_command *cmd)
4241 {
4242 	DECLARE_COMPLETION_ONSTACK(uic_async_done);
4243 	unsigned long flags;
4244 	u8 status;
4245 	int ret;
4246 	bool reenable_intr = false;
4247 
4248 	mutex_lock(&hba->uic_cmd_mutex);
4249 	ufshcd_add_delay_before_dme_cmd(hba);
4250 
4251 	spin_lock_irqsave(hba->host->host_lock, flags);
4252 	if (ufshcd_is_link_broken(hba)) {
4253 		ret = -ENOLINK;
4254 		goto out_unlock;
4255 	}
4256 	hba->uic_async_done = &uic_async_done;
4257 	if (ufshcd_readl(hba, REG_INTERRUPT_ENABLE) & UIC_COMMAND_COMPL) {
4258 		ufshcd_disable_intr(hba, UIC_COMMAND_COMPL);
4259 		/*
4260 		 * Make sure UIC command completion interrupt is disabled before
4261 		 * issuing UIC command.
4262 		 */
4263 		ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
4264 		reenable_intr = true;
4265 	}
4266 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4267 	ret = __ufshcd_send_uic_cmd(hba, cmd);
4268 	if (ret) {
4269 		dev_err(hba->dev,
4270 			"pwr ctrl cmd 0x%x with mode 0x%x uic error %d\n",
4271 			cmd->command, cmd->argument3, ret);
4272 		goto out;
4273 	}
4274 
4275 	if (!wait_for_completion_timeout(hba->uic_async_done,
4276 					 msecs_to_jiffies(uic_cmd_timeout))) {
4277 		dev_err(hba->dev,
4278 			"pwr ctrl cmd 0x%x with mode 0x%x completion timeout\n",
4279 			cmd->command, cmd->argument3);
4280 
4281 		if (!cmd->cmd_active) {
4282 			dev_err(hba->dev, "%s: Power Mode Change operation has been completed, go check UPMCRS\n",
4283 				__func__);
4284 			goto check_upmcrs;
4285 		}
4286 
4287 		ret = -ETIMEDOUT;
4288 		goto out;
4289 	}
4290 
4291 check_upmcrs:
4292 	status = ufshcd_get_upmcrs(hba);
4293 	if (status != PWR_LOCAL) {
4294 		dev_err(hba->dev,
4295 			"pwr ctrl cmd 0x%x failed, host upmcrs:0x%x\n",
4296 			cmd->command, status);
4297 		ret = (status != PWR_OK) ? status : -1;
4298 	}
4299 out:
4300 	if (ret) {
4301 		ufshcd_print_host_state(hba);
4302 		ufshcd_print_pwr_info(hba);
4303 		ufshcd_print_evt_hist(hba);
4304 	}
4305 
4306 	spin_lock_irqsave(hba->host->host_lock, flags);
4307 	hba->active_uic_cmd = NULL;
4308 	hba->uic_async_done = NULL;
4309 	if (reenable_intr)
4310 		ufshcd_enable_intr(hba, UIC_COMMAND_COMPL);
4311 	if (ret) {
4312 		ufshcd_set_link_broken(hba);
4313 		ufshcd_schedule_eh_work(hba);
4314 	}
4315 out_unlock:
4316 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4317 	mutex_unlock(&hba->uic_cmd_mutex);
4318 
4319 	return ret;
4320 }
4321 
4322 /**
4323  * ufshcd_uic_change_pwr_mode - Perform the UIC power mode chage
4324  *				using DME_SET primitives.
4325  * @hba: per adapter instance
4326  * @mode: powr mode value
4327  *
4328  * Return: 0 on success, non-zero value on failure.
4329  */
4330 int ufshcd_uic_change_pwr_mode(struct ufs_hba *hba, u8 mode)
4331 {
4332 	struct uic_command uic_cmd = {
4333 		.command = UIC_CMD_DME_SET,
4334 		.argument1 = UIC_ARG_MIB(PA_PWRMODE),
4335 		.argument3 = mode,
4336 	};
4337 	int ret;
4338 
4339 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_PA_RXHSUNTERMCAP) {
4340 		ret = ufshcd_dme_set(hba,
4341 				UIC_ARG_MIB_SEL(PA_RXHSUNTERMCAP, 0), 1);
4342 		if (ret) {
4343 			dev_err(hba->dev, "%s: failed to enable PA_RXHSUNTERMCAP ret %d\n",
4344 						__func__, ret);
4345 			goto out;
4346 		}
4347 	}
4348 
4349 	ufshcd_hold(hba);
4350 	ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4351 	ufshcd_release(hba);
4352 
4353 out:
4354 	return ret;
4355 }
4356 EXPORT_SYMBOL_GPL(ufshcd_uic_change_pwr_mode);
4357 
4358 int ufshcd_link_recovery(struct ufs_hba *hba)
4359 {
4360 	int ret;
4361 	unsigned long flags;
4362 
4363 	spin_lock_irqsave(hba->host->host_lock, flags);
4364 	hba->ufshcd_state = UFSHCD_STATE_RESET;
4365 	ufshcd_set_eh_in_progress(hba);
4366 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4367 
4368 	/* Reset the attached device */
4369 	ufshcd_device_reset(hba);
4370 
4371 	ret = ufshcd_host_reset_and_restore(hba);
4372 
4373 	spin_lock_irqsave(hba->host->host_lock, flags);
4374 	if (ret)
4375 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
4376 	ufshcd_clear_eh_in_progress(hba);
4377 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4378 
4379 	if (ret)
4380 		dev_err(hba->dev, "%s: link recovery failed, err %d",
4381 			__func__, ret);
4382 
4383 	return ret;
4384 }
4385 EXPORT_SYMBOL_GPL(ufshcd_link_recovery);
4386 
4387 int ufshcd_uic_hibern8_enter(struct ufs_hba *hba)
4388 {
4389 	struct uic_command uic_cmd = {
4390 		.command = UIC_CMD_DME_HIBER_ENTER,
4391 	};
4392 	ktime_t start = ktime_get();
4393 	int ret;
4394 
4395 	ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_ENTER, PRE_CHANGE);
4396 
4397 	ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4398 	trace_ufshcd_profile_hibern8(dev_name(hba->dev), "enter",
4399 			     ktime_to_us(ktime_sub(ktime_get(), start)), ret);
4400 
4401 	if (ret)
4402 		dev_err(hba->dev, "%s: hibern8 enter failed. ret = %d\n",
4403 			__func__, ret);
4404 	else
4405 		ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_ENTER,
4406 								POST_CHANGE);
4407 
4408 	return ret;
4409 }
4410 EXPORT_SYMBOL_GPL(ufshcd_uic_hibern8_enter);
4411 
4412 int ufshcd_uic_hibern8_exit(struct ufs_hba *hba)
4413 {
4414 	struct uic_command uic_cmd = {
4415 		.command = UIC_CMD_DME_HIBER_EXIT,
4416 	};
4417 	int ret;
4418 	ktime_t start = ktime_get();
4419 
4420 	ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_EXIT, PRE_CHANGE);
4421 
4422 	ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4423 	trace_ufshcd_profile_hibern8(dev_name(hba->dev), "exit",
4424 			     ktime_to_us(ktime_sub(ktime_get(), start)), ret);
4425 
4426 	if (ret) {
4427 		dev_err(hba->dev, "%s: hibern8 exit failed. ret = %d\n",
4428 			__func__, ret);
4429 	} else {
4430 		ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_EXIT,
4431 								POST_CHANGE);
4432 		hba->ufs_stats.last_hibern8_exit_tstamp = local_clock();
4433 		hba->ufs_stats.hibern8_exit_cnt++;
4434 	}
4435 
4436 	return ret;
4437 }
4438 EXPORT_SYMBOL_GPL(ufshcd_uic_hibern8_exit);
4439 
4440 static void ufshcd_configure_auto_hibern8(struct ufs_hba *hba)
4441 {
4442 	if (!ufshcd_is_auto_hibern8_supported(hba))
4443 		return;
4444 
4445 	ufshcd_writel(hba, hba->ahit, REG_AUTO_HIBERNATE_IDLE_TIMER);
4446 }
4447 
4448 void ufshcd_auto_hibern8_update(struct ufs_hba *hba, u32 ahit)
4449 {
4450 	const u32 cur_ahit = READ_ONCE(hba->ahit);
4451 
4452 	if (!ufshcd_is_auto_hibern8_supported(hba) || cur_ahit == ahit)
4453 		return;
4454 
4455 	WRITE_ONCE(hba->ahit, ahit);
4456 	if (!pm_runtime_suspended(&hba->ufs_device_wlun->sdev_gendev)) {
4457 		ufshcd_rpm_get_sync(hba);
4458 		ufshcd_hold(hba);
4459 		ufshcd_configure_auto_hibern8(hba);
4460 		ufshcd_release(hba);
4461 		ufshcd_rpm_put_sync(hba);
4462 	}
4463 }
4464 EXPORT_SYMBOL_GPL(ufshcd_auto_hibern8_update);
4465 
4466  /**
4467  * ufshcd_init_pwr_info - setting the POR (power on reset)
4468  * values in hba power info
4469  * @hba: per-adapter instance
4470  */
4471 static void ufshcd_init_pwr_info(struct ufs_hba *hba)
4472 {
4473 	hba->pwr_info.gear_rx = UFS_PWM_G1;
4474 	hba->pwr_info.gear_tx = UFS_PWM_G1;
4475 	hba->pwr_info.lane_rx = UFS_LANE_1;
4476 	hba->pwr_info.lane_tx = UFS_LANE_1;
4477 	hba->pwr_info.pwr_rx = SLOWAUTO_MODE;
4478 	hba->pwr_info.pwr_tx = SLOWAUTO_MODE;
4479 	hba->pwr_info.hs_rate = 0;
4480 }
4481 
4482 /**
4483  * ufshcd_get_max_pwr_mode - reads the max power mode negotiated with device
4484  * @hba: per-adapter instance
4485  *
4486  * Return: 0 upon success; < 0 upon failure.
4487  */
4488 static int ufshcd_get_max_pwr_mode(struct ufs_hba *hba)
4489 {
4490 	struct ufs_pa_layer_attr *pwr_info = &hba->max_pwr_info.info;
4491 
4492 	if (hba->max_pwr_info.is_valid)
4493 		return 0;
4494 
4495 	if (hba->quirks & UFSHCD_QUIRK_HIBERN_FASTAUTO) {
4496 		pwr_info->pwr_tx = FASTAUTO_MODE;
4497 		pwr_info->pwr_rx = FASTAUTO_MODE;
4498 	} else {
4499 		pwr_info->pwr_tx = FAST_MODE;
4500 		pwr_info->pwr_rx = FAST_MODE;
4501 	}
4502 	pwr_info->hs_rate = PA_HS_MODE_B;
4503 
4504 	/* Get the connected lane count */
4505 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDRXDATALANES),
4506 			&pwr_info->lane_rx);
4507 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4508 			&pwr_info->lane_tx);
4509 
4510 	if (!pwr_info->lane_rx || !pwr_info->lane_tx) {
4511 		dev_err(hba->dev, "%s: invalid connected lanes value. rx=%d, tx=%d\n",
4512 				__func__,
4513 				pwr_info->lane_rx,
4514 				pwr_info->lane_tx);
4515 		return -EINVAL;
4516 	}
4517 
4518 	if (pwr_info->lane_rx != pwr_info->lane_tx) {
4519 		dev_err(hba->dev, "%s: asymmetric connected lanes. rx=%d, tx=%d\n",
4520 			__func__,
4521 				pwr_info->lane_rx,
4522 				pwr_info->lane_tx);
4523 		return -EINVAL;
4524 	}
4525 
4526 	/*
4527 	 * First, get the maximum gears of HS speed.
4528 	 * If a zero value, it means there is no HSGEAR capability.
4529 	 * Then, get the maximum gears of PWM speed.
4530 	 */
4531 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_MAXRXHSGEAR), &pwr_info->gear_rx);
4532 	if (!pwr_info->gear_rx) {
4533 		ufshcd_dme_get(hba, UIC_ARG_MIB(PA_MAXRXPWMGEAR),
4534 				&pwr_info->gear_rx);
4535 		if (!pwr_info->gear_rx) {
4536 			dev_err(hba->dev, "%s: invalid max pwm rx gear read = %d\n",
4537 				__func__, pwr_info->gear_rx);
4538 			return -EINVAL;
4539 		}
4540 		pwr_info->pwr_rx = SLOW_MODE;
4541 	}
4542 
4543 	ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_MAXRXHSGEAR),
4544 			&pwr_info->gear_tx);
4545 	if (!pwr_info->gear_tx) {
4546 		ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_MAXRXPWMGEAR),
4547 				&pwr_info->gear_tx);
4548 		if (!pwr_info->gear_tx) {
4549 			dev_err(hba->dev, "%s: invalid max pwm tx gear read = %d\n",
4550 				__func__, pwr_info->gear_tx);
4551 			return -EINVAL;
4552 		}
4553 		pwr_info->pwr_tx = SLOW_MODE;
4554 	}
4555 
4556 	hba->max_pwr_info.is_valid = true;
4557 	return 0;
4558 }
4559 
4560 static int ufshcd_change_power_mode(struct ufs_hba *hba,
4561 			     struct ufs_pa_layer_attr *pwr_mode)
4562 {
4563 	int ret;
4564 
4565 	/* if already configured to the requested pwr_mode */
4566 	if (!hba->force_pmc &&
4567 	    pwr_mode->gear_rx == hba->pwr_info.gear_rx &&
4568 	    pwr_mode->gear_tx == hba->pwr_info.gear_tx &&
4569 	    pwr_mode->lane_rx == hba->pwr_info.lane_rx &&
4570 	    pwr_mode->lane_tx == hba->pwr_info.lane_tx &&
4571 	    pwr_mode->pwr_rx == hba->pwr_info.pwr_rx &&
4572 	    pwr_mode->pwr_tx == hba->pwr_info.pwr_tx &&
4573 	    pwr_mode->hs_rate == hba->pwr_info.hs_rate) {
4574 		dev_dbg(hba->dev, "%s: power already configured\n", __func__);
4575 		return 0;
4576 	}
4577 
4578 	/*
4579 	 * Configure attributes for power mode change with below.
4580 	 * - PA_RXGEAR, PA_ACTIVERXDATALANES, PA_RXTERMINATION,
4581 	 * - PA_TXGEAR, PA_ACTIVETXDATALANES, PA_TXTERMINATION,
4582 	 * - PA_HSSERIES
4583 	 */
4584 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXGEAR), pwr_mode->gear_rx);
4585 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVERXDATALANES),
4586 			pwr_mode->lane_rx);
4587 	if (pwr_mode->pwr_rx == FASTAUTO_MODE ||
4588 			pwr_mode->pwr_rx == FAST_MODE)
4589 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), true);
4590 	else
4591 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), false);
4592 
4593 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXGEAR), pwr_mode->gear_tx);
4594 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVETXDATALANES),
4595 			pwr_mode->lane_tx);
4596 	if (pwr_mode->pwr_tx == FASTAUTO_MODE ||
4597 			pwr_mode->pwr_tx == FAST_MODE)
4598 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), true);
4599 	else
4600 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), false);
4601 
4602 	if (pwr_mode->pwr_rx == FASTAUTO_MODE ||
4603 	    pwr_mode->pwr_tx == FASTAUTO_MODE ||
4604 	    pwr_mode->pwr_rx == FAST_MODE ||
4605 	    pwr_mode->pwr_tx == FAST_MODE)
4606 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_HSSERIES),
4607 						pwr_mode->hs_rate);
4608 
4609 	if (!(hba->quirks & UFSHCD_QUIRK_SKIP_DEF_UNIPRO_TIMEOUT_SETTING)) {
4610 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA0),
4611 				DL_FC0ProtectionTimeOutVal_Default);
4612 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA1),
4613 				DL_TC0ReplayTimeOutVal_Default);
4614 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA2),
4615 				DL_AFC0ReqTimeOutVal_Default);
4616 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA3),
4617 				DL_FC1ProtectionTimeOutVal_Default);
4618 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA4),
4619 				DL_TC1ReplayTimeOutVal_Default);
4620 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA5),
4621 				DL_AFC1ReqTimeOutVal_Default);
4622 
4623 		ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalFC0ProtectionTimeOutVal),
4624 				DL_FC0ProtectionTimeOutVal_Default);
4625 		ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalTC0ReplayTimeOutVal),
4626 				DL_TC0ReplayTimeOutVal_Default);
4627 		ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalAFC0ReqTimeOutVal),
4628 				DL_AFC0ReqTimeOutVal_Default);
4629 	}
4630 
4631 	ret = ufshcd_uic_change_pwr_mode(hba, pwr_mode->pwr_rx << 4
4632 			| pwr_mode->pwr_tx);
4633 
4634 	if (ret) {
4635 		dev_err(hba->dev,
4636 			"%s: power mode change failed %d\n", __func__, ret);
4637 	} else {
4638 		ufshcd_vops_pwr_change_notify(hba, POST_CHANGE, NULL,
4639 								pwr_mode);
4640 
4641 		memcpy(&hba->pwr_info, pwr_mode,
4642 			sizeof(struct ufs_pa_layer_attr));
4643 	}
4644 
4645 	return ret;
4646 }
4647 
4648 /**
4649  * ufshcd_config_pwr_mode - configure a new power mode
4650  * @hba: per-adapter instance
4651  * @desired_pwr_mode: desired power configuration
4652  *
4653  * Return: 0 upon success; < 0 upon failure.
4654  */
4655 int ufshcd_config_pwr_mode(struct ufs_hba *hba,
4656 		struct ufs_pa_layer_attr *desired_pwr_mode)
4657 {
4658 	struct ufs_pa_layer_attr final_params = { 0 };
4659 	int ret;
4660 
4661 	ret = ufshcd_vops_pwr_change_notify(hba, PRE_CHANGE,
4662 					desired_pwr_mode, &final_params);
4663 
4664 	if (ret)
4665 		memcpy(&final_params, desired_pwr_mode, sizeof(final_params));
4666 
4667 	ret = ufshcd_change_power_mode(hba, &final_params);
4668 
4669 	return ret;
4670 }
4671 EXPORT_SYMBOL_GPL(ufshcd_config_pwr_mode);
4672 
4673 /**
4674  * ufshcd_complete_dev_init() - checks device readiness
4675  * @hba: per-adapter instance
4676  *
4677  * Set fDeviceInit flag and poll until device toggles it.
4678  *
4679  * Return: 0 upon success; < 0 upon failure.
4680  */
4681 static int ufshcd_complete_dev_init(struct ufs_hba *hba)
4682 {
4683 	int err;
4684 	bool flag_res = true;
4685 	ktime_t timeout;
4686 
4687 	err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG,
4688 		QUERY_FLAG_IDN_FDEVICEINIT, 0, NULL);
4689 	if (err) {
4690 		dev_err(hba->dev,
4691 			"%s: setting fDeviceInit flag failed with error %d\n",
4692 			__func__, err);
4693 		goto out;
4694 	}
4695 
4696 	/* Poll fDeviceInit flag to be cleared */
4697 	timeout = ktime_add_ms(ktime_get(), FDEVICEINIT_COMPL_TIMEOUT);
4698 	do {
4699 		err = ufshcd_query_flag(hba, UPIU_QUERY_OPCODE_READ_FLAG,
4700 					QUERY_FLAG_IDN_FDEVICEINIT, 0, &flag_res);
4701 		if (!flag_res)
4702 			break;
4703 		usleep_range(500, 1000);
4704 	} while (ktime_before(ktime_get(), timeout));
4705 
4706 	if (err) {
4707 		dev_err(hba->dev,
4708 				"%s: reading fDeviceInit flag failed with error %d\n",
4709 				__func__, err);
4710 	} else if (flag_res) {
4711 		dev_err(hba->dev,
4712 				"%s: fDeviceInit was not cleared by the device\n",
4713 				__func__);
4714 		err = -EBUSY;
4715 	}
4716 out:
4717 	return err;
4718 }
4719 
4720 /**
4721  * ufshcd_make_hba_operational - Make UFS controller operational
4722  * @hba: per adapter instance
4723  *
4724  * To bring UFS host controller to operational state,
4725  * 1. Enable required interrupts
4726  * 2. Configure interrupt aggregation
4727  * 3. Program UTRL and UTMRL base address
4728  * 4. Configure run-stop-registers
4729  *
4730  * Return: 0 on success, non-zero value on failure.
4731  */
4732 int ufshcd_make_hba_operational(struct ufs_hba *hba)
4733 {
4734 	int err = 0;
4735 	u32 reg;
4736 
4737 	/* Enable required interrupts */
4738 	ufshcd_enable_intr(hba, UFSHCD_ENABLE_INTRS);
4739 
4740 	/* Configure interrupt aggregation */
4741 	if (ufshcd_is_intr_aggr_allowed(hba))
4742 		ufshcd_config_intr_aggr(hba, hba->nutrs - 1, INT_AGGR_DEF_TO);
4743 	else
4744 		ufshcd_disable_intr_aggr(hba);
4745 
4746 	/* Configure UTRL and UTMRL base address registers */
4747 	ufshcd_writel(hba, lower_32_bits(hba->utrdl_dma_addr),
4748 			REG_UTP_TRANSFER_REQ_LIST_BASE_L);
4749 	ufshcd_writel(hba, upper_32_bits(hba->utrdl_dma_addr),
4750 			REG_UTP_TRANSFER_REQ_LIST_BASE_H);
4751 	ufshcd_writel(hba, lower_32_bits(hba->utmrdl_dma_addr),
4752 			REG_UTP_TASK_REQ_LIST_BASE_L);
4753 	ufshcd_writel(hba, upper_32_bits(hba->utmrdl_dma_addr),
4754 			REG_UTP_TASK_REQ_LIST_BASE_H);
4755 
4756 	/*
4757 	 * UCRDY, UTMRLDY and UTRLRDY bits must be 1
4758 	 */
4759 	reg = ufshcd_readl(hba, REG_CONTROLLER_STATUS);
4760 	if (!(ufshcd_get_lists_status(reg))) {
4761 		ufshcd_enable_run_stop_reg(hba);
4762 	} else {
4763 		dev_err(hba->dev,
4764 			"Host controller not ready to process requests");
4765 		err = -EIO;
4766 	}
4767 
4768 	return err;
4769 }
4770 EXPORT_SYMBOL_GPL(ufshcd_make_hba_operational);
4771 
4772 /**
4773  * ufshcd_hba_stop - Send controller to reset state
4774  * @hba: per adapter instance
4775  */
4776 void ufshcd_hba_stop(struct ufs_hba *hba)
4777 {
4778 	unsigned long flags;
4779 	int err;
4780 
4781 	/*
4782 	 * Obtain the host lock to prevent that the controller is disabled
4783 	 * while the UFS interrupt handler is active on another CPU.
4784 	 */
4785 	spin_lock_irqsave(hba->host->host_lock, flags);
4786 	ufshcd_writel(hba, CONTROLLER_DISABLE,  REG_CONTROLLER_ENABLE);
4787 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4788 
4789 	err = ufshcd_wait_for_register(hba, REG_CONTROLLER_ENABLE,
4790 					CONTROLLER_ENABLE, CONTROLLER_DISABLE,
4791 					10, 1);
4792 	if (err)
4793 		dev_err(hba->dev, "%s: Controller disable failed\n", __func__);
4794 }
4795 EXPORT_SYMBOL_GPL(ufshcd_hba_stop);
4796 
4797 /**
4798  * ufshcd_hba_execute_hce - initialize the controller
4799  * @hba: per adapter instance
4800  *
4801  * The controller resets itself and controller firmware initialization
4802  * sequence kicks off. When controller is ready it will set
4803  * the Host Controller Enable bit to 1.
4804  *
4805  * Return: 0 on success, non-zero value on failure.
4806  */
4807 static int ufshcd_hba_execute_hce(struct ufs_hba *hba)
4808 {
4809 	int retry;
4810 
4811 	for (retry = 3; retry > 0; retry--) {
4812 		if (ufshcd_is_hba_active(hba))
4813 			/* change controller state to "reset state" */
4814 			ufshcd_hba_stop(hba);
4815 
4816 		/* UniPro link is disabled at this point */
4817 		ufshcd_set_link_off(hba);
4818 
4819 		ufshcd_vops_hce_enable_notify(hba, PRE_CHANGE);
4820 
4821 		/* start controller initialization sequence */
4822 		ufshcd_hba_start(hba);
4823 
4824 		/*
4825 		 * To initialize a UFS host controller HCE bit must be set to 1.
4826 		 * During initialization the HCE bit value changes from 1->0->1.
4827 		 * When the host controller completes initialization sequence
4828 		 * it sets the value of HCE bit to 1. The same HCE bit is read back
4829 		 * to check if the controller has completed initialization sequence.
4830 		 * So without this delay the value HCE = 1, set in the previous
4831 		 * instruction might be read back.
4832 		 * This delay can be changed based on the controller.
4833 		 */
4834 		ufshcd_delay_us(hba->vps->hba_enable_delay_us, 100);
4835 
4836 		/* wait for the host controller to complete initialization */
4837 		if (!ufshcd_wait_for_register(hba, REG_CONTROLLER_ENABLE, CONTROLLER_ENABLE,
4838 					      CONTROLLER_ENABLE, 1000, 50))
4839 			break;
4840 
4841 		dev_err(hba->dev, "Enabling the controller failed\n");
4842 	}
4843 
4844 	if (!retry)
4845 		return -EIO;
4846 
4847 	/* enable UIC related interrupts */
4848 	ufshcd_enable_intr(hba, UFSHCD_UIC_MASK);
4849 
4850 	ufshcd_vops_hce_enable_notify(hba, POST_CHANGE);
4851 
4852 	return 0;
4853 }
4854 
4855 int ufshcd_hba_enable(struct ufs_hba *hba)
4856 {
4857 	int ret;
4858 
4859 	if (hba->quirks & UFSHCI_QUIRK_BROKEN_HCE) {
4860 		ufshcd_set_link_off(hba);
4861 		ufshcd_vops_hce_enable_notify(hba, PRE_CHANGE);
4862 
4863 		/* enable UIC related interrupts */
4864 		ufshcd_enable_intr(hba, UFSHCD_UIC_MASK);
4865 		ret = ufshcd_dme_reset(hba);
4866 		if (ret) {
4867 			dev_err(hba->dev, "DME_RESET failed\n");
4868 			return ret;
4869 		}
4870 
4871 		ret = ufshcd_dme_enable(hba);
4872 		if (ret) {
4873 			dev_err(hba->dev, "Enabling DME failed\n");
4874 			return ret;
4875 		}
4876 
4877 		ufshcd_vops_hce_enable_notify(hba, POST_CHANGE);
4878 	} else {
4879 		ret = ufshcd_hba_execute_hce(hba);
4880 	}
4881 
4882 	return ret;
4883 }
4884 EXPORT_SYMBOL_GPL(ufshcd_hba_enable);
4885 
4886 static int ufshcd_disable_tx_lcc(struct ufs_hba *hba, bool peer)
4887 {
4888 	int tx_lanes = 0, i, err = 0;
4889 
4890 	if (!peer)
4891 		ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4892 			       &tx_lanes);
4893 	else
4894 		ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4895 				    &tx_lanes);
4896 	for (i = 0; i < tx_lanes; i++) {
4897 		if (!peer)
4898 			err = ufshcd_dme_set(hba,
4899 				UIC_ARG_MIB_SEL(TX_LCC_ENABLE,
4900 					UIC_ARG_MPHY_TX_GEN_SEL_INDEX(i)),
4901 					0);
4902 		else
4903 			err = ufshcd_dme_peer_set(hba,
4904 				UIC_ARG_MIB_SEL(TX_LCC_ENABLE,
4905 					UIC_ARG_MPHY_TX_GEN_SEL_INDEX(i)),
4906 					0);
4907 		if (err) {
4908 			dev_err(hba->dev, "%s: TX LCC Disable failed, peer = %d, lane = %d, err = %d",
4909 				__func__, peer, i, err);
4910 			break;
4911 		}
4912 	}
4913 
4914 	return err;
4915 }
4916 
4917 static inline int ufshcd_disable_device_tx_lcc(struct ufs_hba *hba)
4918 {
4919 	return ufshcd_disable_tx_lcc(hba, true);
4920 }
4921 
4922 void ufshcd_update_evt_hist(struct ufs_hba *hba, u32 id, u32 val)
4923 {
4924 	struct ufs_event_hist *e;
4925 
4926 	if (id >= UFS_EVT_CNT)
4927 		return;
4928 
4929 	e = &hba->ufs_stats.event[id];
4930 	e->val[e->pos] = val;
4931 	e->tstamp[e->pos] = local_clock();
4932 	e->cnt += 1;
4933 	e->pos = (e->pos + 1) % UFS_EVENT_HIST_LENGTH;
4934 
4935 	ufshcd_vops_event_notify(hba, id, &val);
4936 }
4937 EXPORT_SYMBOL_GPL(ufshcd_update_evt_hist);
4938 
4939 /**
4940  * ufshcd_link_startup - Initialize unipro link startup
4941  * @hba: per adapter instance
4942  *
4943  * Return: 0 for success, non-zero in case of failure.
4944  */
4945 static int ufshcd_link_startup(struct ufs_hba *hba)
4946 {
4947 	int ret;
4948 	int retries = DME_LINKSTARTUP_RETRIES;
4949 	bool link_startup_again = false;
4950 
4951 	/*
4952 	 * If UFS device isn't active then we will have to issue link startup
4953 	 * 2 times to make sure the device state move to active.
4954 	 */
4955 	if (!ufshcd_is_ufs_dev_active(hba))
4956 		link_startup_again = true;
4957 
4958 link_startup:
4959 	do {
4960 		ufshcd_vops_link_startup_notify(hba, PRE_CHANGE);
4961 
4962 		ret = ufshcd_dme_link_startup(hba);
4963 
4964 		/* check if device is detected by inter-connect layer */
4965 		if (!ret && !ufshcd_is_device_present(hba)) {
4966 			ufshcd_update_evt_hist(hba,
4967 					       UFS_EVT_LINK_STARTUP_FAIL,
4968 					       0);
4969 			dev_err(hba->dev, "%s: Device not present\n", __func__);
4970 			ret = -ENXIO;
4971 			goto out;
4972 		}
4973 
4974 		/*
4975 		 * DME link lost indication is only received when link is up,
4976 		 * but we can't be sure if the link is up until link startup
4977 		 * succeeds. So reset the local Uni-Pro and try again.
4978 		 */
4979 		if (ret && retries && ufshcd_hba_enable(hba)) {
4980 			ufshcd_update_evt_hist(hba,
4981 					       UFS_EVT_LINK_STARTUP_FAIL,
4982 					       (u32)ret);
4983 			goto out;
4984 		}
4985 	} while (ret && retries--);
4986 
4987 	if (ret) {
4988 		/* failed to get the link up... retire */
4989 		ufshcd_update_evt_hist(hba,
4990 				       UFS_EVT_LINK_STARTUP_FAIL,
4991 				       (u32)ret);
4992 		goto out;
4993 	}
4994 
4995 	if (link_startup_again) {
4996 		link_startup_again = false;
4997 		retries = DME_LINKSTARTUP_RETRIES;
4998 		goto link_startup;
4999 	}
5000 
5001 	/* Mark that link is up in PWM-G1, 1-lane, SLOW-AUTO mode */
5002 	ufshcd_init_pwr_info(hba);
5003 	ufshcd_print_pwr_info(hba);
5004 
5005 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_LCC) {
5006 		ret = ufshcd_disable_device_tx_lcc(hba);
5007 		if (ret)
5008 			goto out;
5009 	}
5010 
5011 	/* Include any host controller configuration via UIC commands */
5012 	ret = ufshcd_vops_link_startup_notify(hba, POST_CHANGE);
5013 	if (ret)
5014 		goto out;
5015 
5016 	/* Clear UECPA once due to LINERESET has happened during LINK_STARTUP */
5017 	ufshcd_readl(hba, REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER);
5018 	ret = ufshcd_make_hba_operational(hba);
5019 out:
5020 	if (ret) {
5021 		dev_err(hba->dev, "link startup failed %d\n", ret);
5022 		ufshcd_print_host_state(hba);
5023 		ufshcd_print_pwr_info(hba);
5024 		ufshcd_print_evt_hist(hba);
5025 	}
5026 	return ret;
5027 }
5028 
5029 /**
5030  * ufshcd_verify_dev_init() - Verify device initialization
5031  * @hba: per-adapter instance
5032  *
5033  * Send NOP OUT UPIU and wait for NOP IN response to check whether the
5034  * device Transport Protocol (UTP) layer is ready after a reset.
5035  * If the UTP layer at the device side is not initialized, it may
5036  * not respond with NOP IN UPIU within timeout of %NOP_OUT_TIMEOUT
5037  * and we retry sending NOP OUT for %NOP_OUT_RETRIES iterations.
5038  *
5039  * Return: 0 upon success; < 0 upon failure.
5040  */
5041 static int ufshcd_verify_dev_init(struct ufs_hba *hba)
5042 {
5043 	int err = 0;
5044 	int retries;
5045 
5046 	ufshcd_dev_man_lock(hba);
5047 
5048 	for (retries = NOP_OUT_RETRIES; retries > 0; retries--) {
5049 		err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_NOP,
5050 					  hba->nop_out_timeout);
5051 
5052 		if (!err || err == -ETIMEDOUT)
5053 			break;
5054 
5055 		dev_dbg(hba->dev, "%s: error %d retrying\n", __func__, err);
5056 	}
5057 
5058 	ufshcd_dev_man_unlock(hba);
5059 
5060 	if (err)
5061 		dev_err(hba->dev, "%s: NOP OUT failed %d\n", __func__, err);
5062 	return err;
5063 }
5064 
5065 /**
5066  * ufshcd_setup_links - associate link b/w device wlun and other luns
5067  * @sdev: pointer to SCSI device
5068  * @hba: pointer to ufs hba
5069  */
5070 static void ufshcd_setup_links(struct ufs_hba *hba, struct scsi_device *sdev)
5071 {
5072 	struct device_link *link;
5073 
5074 	/*
5075 	 * Device wlun is the supplier & rest of the luns are consumers.
5076 	 * This ensures that device wlun suspends after all other luns.
5077 	 */
5078 	if (hba->ufs_device_wlun) {
5079 		link = device_link_add(&sdev->sdev_gendev,
5080 				       &hba->ufs_device_wlun->sdev_gendev,
5081 				       DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE);
5082 		if (!link) {
5083 			dev_err(&sdev->sdev_gendev, "Failed establishing link - %s\n",
5084 				dev_name(&hba->ufs_device_wlun->sdev_gendev));
5085 			return;
5086 		}
5087 		hba->luns_avail--;
5088 		/* Ignore REPORT_LUN wlun probing */
5089 		if (hba->luns_avail == 1) {
5090 			ufshcd_rpm_put(hba);
5091 			return;
5092 		}
5093 	} else {
5094 		/*
5095 		 * Device wlun is probed. The assumption is that WLUNs are
5096 		 * scanned before other LUNs.
5097 		 */
5098 		hba->luns_avail--;
5099 	}
5100 }
5101 
5102 /**
5103  * ufshcd_lu_init - Initialize the relevant parameters of the LU
5104  * @hba: per-adapter instance
5105  * @sdev: pointer to SCSI device
5106  */
5107 static void ufshcd_lu_init(struct ufs_hba *hba, struct scsi_device *sdev)
5108 {
5109 	int len = QUERY_DESC_MAX_SIZE;
5110 	u8 lun = ufshcd_scsi_to_upiu_lun(sdev->lun);
5111 	u8 lun_qdepth = hba->nutrs;
5112 	u8 *desc_buf;
5113 	int ret;
5114 
5115 	desc_buf = kzalloc(len, GFP_KERNEL);
5116 	if (!desc_buf)
5117 		goto set_qdepth;
5118 
5119 	ret = ufshcd_read_unit_desc_param(hba, lun, 0, desc_buf, len);
5120 	if (ret < 0) {
5121 		if (ret == -EOPNOTSUPP)
5122 			/* If LU doesn't support unit descriptor, its queue depth is set to 1 */
5123 			lun_qdepth = 1;
5124 		kfree(desc_buf);
5125 		goto set_qdepth;
5126 	}
5127 
5128 	if (desc_buf[UNIT_DESC_PARAM_LU_Q_DEPTH]) {
5129 		/*
5130 		 * In per-LU queueing architecture, bLUQueueDepth will not be 0, then we will
5131 		 * use the smaller between UFSHCI CAP.NUTRS and UFS LU bLUQueueDepth
5132 		 */
5133 		lun_qdepth = min_t(int, desc_buf[UNIT_DESC_PARAM_LU_Q_DEPTH], hba->nutrs);
5134 	}
5135 	/*
5136 	 * According to UFS device specification, the write protection mode is only supported by
5137 	 * normal LU, not supported by WLUN.
5138 	 */
5139 	if (hba->dev_info.f_power_on_wp_en && lun < hba->dev_info.max_lu_supported &&
5140 	    !hba->dev_info.is_lu_power_on_wp &&
5141 	    desc_buf[UNIT_DESC_PARAM_LU_WR_PROTECT] == UFS_LU_POWER_ON_WP)
5142 		hba->dev_info.is_lu_power_on_wp = true;
5143 
5144 	/* In case of RPMB LU, check if advanced RPMB mode is enabled */
5145 	if (desc_buf[UNIT_DESC_PARAM_UNIT_INDEX] == UFS_UPIU_RPMB_WLUN &&
5146 	    desc_buf[RPMB_UNIT_DESC_PARAM_REGION_EN] & BIT(4))
5147 		hba->dev_info.b_advanced_rpmb_en = true;
5148 
5149 
5150 	kfree(desc_buf);
5151 set_qdepth:
5152 	/*
5153 	 * For WLUNs that don't support unit descriptor, queue depth is set to 1. For LUs whose
5154 	 * bLUQueueDepth == 0, the queue depth is set to a maximum value that host can queue.
5155 	 */
5156 	dev_dbg(hba->dev, "Set LU %x queue depth %d\n", lun, lun_qdepth);
5157 	scsi_change_queue_depth(sdev, lun_qdepth);
5158 }
5159 
5160 /**
5161  * ufshcd_slave_alloc - handle initial SCSI device configurations
5162  * @sdev: pointer to SCSI device
5163  *
5164  * Return: success.
5165  */
5166 static int ufshcd_slave_alloc(struct scsi_device *sdev)
5167 {
5168 	struct ufs_hba *hba;
5169 
5170 	hba = shost_priv(sdev->host);
5171 
5172 	/* Mode sense(6) is not supported by UFS, so use Mode sense(10) */
5173 	sdev->use_10_for_ms = 1;
5174 
5175 	/* DBD field should be set to 1 in mode sense(10) */
5176 	sdev->set_dbd_for_ms = 1;
5177 
5178 	/* allow SCSI layer to restart the device in case of errors */
5179 	sdev->allow_restart = 1;
5180 
5181 	/* REPORT SUPPORTED OPERATION CODES is not supported */
5182 	sdev->no_report_opcodes = 1;
5183 
5184 	/* WRITE_SAME command is not supported */
5185 	sdev->no_write_same = 1;
5186 
5187 	ufshcd_lu_init(hba, sdev);
5188 
5189 	ufshcd_setup_links(hba, sdev);
5190 
5191 	return 0;
5192 }
5193 
5194 /**
5195  * ufshcd_change_queue_depth - change queue depth
5196  * @sdev: pointer to SCSI device
5197  * @depth: required depth to set
5198  *
5199  * Change queue depth and make sure the max. limits are not crossed.
5200  *
5201  * Return: new queue depth.
5202  */
5203 static int ufshcd_change_queue_depth(struct scsi_device *sdev, int depth)
5204 {
5205 	return scsi_change_queue_depth(sdev, min(depth, sdev->host->can_queue));
5206 }
5207 
5208 /**
5209  * ufshcd_device_configure - adjust SCSI device configurations
5210  * @sdev: pointer to SCSI device
5211  * @lim: queue limits
5212  *
5213  * Return: 0 (success).
5214  */
5215 static int ufshcd_device_configure(struct scsi_device *sdev,
5216 		struct queue_limits *lim)
5217 {
5218 	struct ufs_hba *hba = shost_priv(sdev->host);
5219 	struct request_queue *q = sdev->request_queue;
5220 
5221 	lim->dma_pad_mask = PRDT_DATA_BYTE_COUNT_PAD - 1;
5222 
5223 	/*
5224 	 * Block runtime-pm until all consumers are added.
5225 	 * Refer ufshcd_setup_links().
5226 	 */
5227 	if (is_device_wlun(sdev))
5228 		pm_runtime_get_noresume(&sdev->sdev_gendev);
5229 	else if (ufshcd_is_rpm_autosuspend_allowed(hba))
5230 		sdev->rpm_autosuspend = 1;
5231 	/*
5232 	 * Do not print messages during runtime PM to avoid never-ending cycles
5233 	 * of messages written back to storage by user space causing runtime
5234 	 * resume, causing more messages and so on.
5235 	 */
5236 	sdev->silence_suspend = 1;
5237 
5238 	ufshcd_crypto_register(hba, q);
5239 
5240 	return 0;
5241 }
5242 
5243 /**
5244  * ufshcd_slave_destroy - remove SCSI device configurations
5245  * @sdev: pointer to SCSI device
5246  */
5247 static void ufshcd_slave_destroy(struct scsi_device *sdev)
5248 {
5249 	struct ufs_hba *hba;
5250 	unsigned long flags;
5251 
5252 	hba = shost_priv(sdev->host);
5253 
5254 	/* Drop the reference as it won't be needed anymore */
5255 	if (ufshcd_scsi_to_upiu_lun(sdev->lun) == UFS_UPIU_UFS_DEVICE_WLUN) {
5256 		spin_lock_irqsave(hba->host->host_lock, flags);
5257 		hba->ufs_device_wlun = NULL;
5258 		spin_unlock_irqrestore(hba->host->host_lock, flags);
5259 	} else if (hba->ufs_device_wlun) {
5260 		struct device *supplier = NULL;
5261 
5262 		/* Ensure UFS Device WLUN exists and does not disappear */
5263 		spin_lock_irqsave(hba->host->host_lock, flags);
5264 		if (hba->ufs_device_wlun) {
5265 			supplier = &hba->ufs_device_wlun->sdev_gendev;
5266 			get_device(supplier);
5267 		}
5268 		spin_unlock_irqrestore(hba->host->host_lock, flags);
5269 
5270 		if (supplier) {
5271 			/*
5272 			 * If a LUN fails to probe (e.g. absent BOOT WLUN), the
5273 			 * device will not have been registered but can still
5274 			 * have a device link holding a reference to the device.
5275 			 */
5276 			device_link_remove(&sdev->sdev_gendev, supplier);
5277 			put_device(supplier);
5278 		}
5279 	}
5280 }
5281 
5282 /**
5283  * ufshcd_scsi_cmd_status - Update SCSI command result based on SCSI status
5284  * @lrbp: pointer to local reference block of completed command
5285  * @scsi_status: SCSI command status
5286  *
5287  * Return: value base on SCSI command status.
5288  */
5289 static inline int
5290 ufshcd_scsi_cmd_status(struct ufshcd_lrb *lrbp, int scsi_status)
5291 {
5292 	int result = 0;
5293 
5294 	switch (scsi_status) {
5295 	case SAM_STAT_CHECK_CONDITION:
5296 		ufshcd_copy_sense_data(lrbp);
5297 		fallthrough;
5298 	case SAM_STAT_GOOD:
5299 		result |= DID_OK << 16 | scsi_status;
5300 		break;
5301 	case SAM_STAT_TASK_SET_FULL:
5302 	case SAM_STAT_BUSY:
5303 	case SAM_STAT_TASK_ABORTED:
5304 		ufshcd_copy_sense_data(lrbp);
5305 		result |= scsi_status;
5306 		break;
5307 	default:
5308 		result |= DID_ERROR << 16;
5309 		break;
5310 	} /* end of switch */
5311 
5312 	return result;
5313 }
5314 
5315 /**
5316  * ufshcd_transfer_rsp_status - Get overall status of the response
5317  * @hba: per adapter instance
5318  * @lrbp: pointer to local reference block of completed command
5319  * @cqe: pointer to the completion queue entry
5320  *
5321  * Return: result of the command to notify SCSI midlayer.
5322  */
5323 static inline int
5324 ufshcd_transfer_rsp_status(struct ufs_hba *hba, struct ufshcd_lrb *lrbp,
5325 			   struct cq_entry *cqe)
5326 {
5327 	int result = 0;
5328 	int scsi_status;
5329 	enum utp_ocs ocs;
5330 	u8 upiu_flags;
5331 	u32 resid;
5332 
5333 	upiu_flags = lrbp->ucd_rsp_ptr->header.flags;
5334 	resid = be32_to_cpu(lrbp->ucd_rsp_ptr->sr.residual_transfer_count);
5335 	/*
5336 	 * Test !overflow instead of underflow to support UFS devices that do
5337 	 * not set either flag.
5338 	 */
5339 	if (resid && !(upiu_flags & UPIU_RSP_FLAG_OVERFLOW))
5340 		scsi_set_resid(lrbp->cmd, resid);
5341 
5342 	/* overall command status of utrd */
5343 	ocs = ufshcd_get_tr_ocs(lrbp, cqe);
5344 
5345 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_OCS_FATAL_ERROR) {
5346 		if (lrbp->ucd_rsp_ptr->header.response ||
5347 		    lrbp->ucd_rsp_ptr->header.status)
5348 			ocs = OCS_SUCCESS;
5349 	}
5350 
5351 	switch (ocs) {
5352 	case OCS_SUCCESS:
5353 		hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
5354 		switch (ufshcd_get_req_rsp(lrbp->ucd_rsp_ptr)) {
5355 		case UPIU_TRANSACTION_RESPONSE:
5356 			/*
5357 			 * get the result based on SCSI status response
5358 			 * to notify the SCSI midlayer of the command status
5359 			 */
5360 			scsi_status = lrbp->ucd_rsp_ptr->header.status;
5361 			result = ufshcd_scsi_cmd_status(lrbp, scsi_status);
5362 
5363 			/*
5364 			 * Currently we are only supporting BKOPs exception
5365 			 * events hence we can ignore BKOPs exception event
5366 			 * during power management callbacks. BKOPs exception
5367 			 * event is not expected to be raised in runtime suspend
5368 			 * callback as it allows the urgent bkops.
5369 			 * During system suspend, we are anyway forcefully
5370 			 * disabling the bkops and if urgent bkops is needed
5371 			 * it will be enabled on system resume. Long term
5372 			 * solution could be to abort the system suspend if
5373 			 * UFS device needs urgent BKOPs.
5374 			 */
5375 			if (!hba->pm_op_in_progress &&
5376 			    !ufshcd_eh_in_progress(hba) &&
5377 			    ufshcd_is_exception_event(lrbp->ucd_rsp_ptr))
5378 				/* Flushed in suspend */
5379 				schedule_work(&hba->eeh_work);
5380 			break;
5381 		case UPIU_TRANSACTION_REJECT_UPIU:
5382 			/* TODO: handle Reject UPIU Response */
5383 			result = DID_ERROR << 16;
5384 			dev_err(hba->dev,
5385 				"Reject UPIU not fully implemented\n");
5386 			break;
5387 		default:
5388 			dev_err(hba->dev,
5389 				"Unexpected request response code = %x\n",
5390 				result);
5391 			result = DID_ERROR << 16;
5392 			break;
5393 		}
5394 		break;
5395 	case OCS_ABORTED:
5396 		result |= DID_ABORT << 16;
5397 		break;
5398 	case OCS_INVALID_COMMAND_STATUS:
5399 		result |= DID_REQUEUE << 16;
5400 		break;
5401 	case OCS_INVALID_CMD_TABLE_ATTR:
5402 	case OCS_INVALID_PRDT_ATTR:
5403 	case OCS_MISMATCH_DATA_BUF_SIZE:
5404 	case OCS_MISMATCH_RESP_UPIU_SIZE:
5405 	case OCS_PEER_COMM_FAILURE:
5406 	case OCS_FATAL_ERROR:
5407 	case OCS_DEVICE_FATAL_ERROR:
5408 	case OCS_INVALID_CRYPTO_CONFIG:
5409 	case OCS_GENERAL_CRYPTO_ERROR:
5410 	default:
5411 		result |= DID_ERROR << 16;
5412 		dev_err(hba->dev,
5413 				"OCS error from controller = %x for tag %d\n",
5414 				ocs, lrbp->task_tag);
5415 		ufshcd_print_evt_hist(hba);
5416 		ufshcd_print_host_state(hba);
5417 		break;
5418 	} /* end of switch */
5419 
5420 	if ((host_byte(result) != DID_OK) &&
5421 	    (host_byte(result) != DID_REQUEUE) && !hba->silence_err_logs)
5422 		ufshcd_print_tr(hba, lrbp->task_tag, true);
5423 	return result;
5424 }
5425 
5426 static bool ufshcd_is_auto_hibern8_error(struct ufs_hba *hba,
5427 					 u32 intr_mask)
5428 {
5429 	if (!ufshcd_is_auto_hibern8_supported(hba) ||
5430 	    !ufshcd_is_auto_hibern8_enabled(hba))
5431 		return false;
5432 
5433 	if (!(intr_mask & UFSHCD_UIC_HIBERN8_MASK))
5434 		return false;
5435 
5436 	if (hba->active_uic_cmd &&
5437 	    (hba->active_uic_cmd->command == UIC_CMD_DME_HIBER_ENTER ||
5438 	    hba->active_uic_cmd->command == UIC_CMD_DME_HIBER_EXIT))
5439 		return false;
5440 
5441 	return true;
5442 }
5443 
5444 /**
5445  * ufshcd_uic_cmd_compl - handle completion of uic command
5446  * @hba: per adapter instance
5447  * @intr_status: interrupt status generated by the controller
5448  *
5449  * Return:
5450  *  IRQ_HANDLED - If interrupt is valid
5451  *  IRQ_NONE    - If invalid interrupt
5452  */
5453 static irqreturn_t ufshcd_uic_cmd_compl(struct ufs_hba *hba, u32 intr_status)
5454 {
5455 	irqreturn_t retval = IRQ_NONE;
5456 	struct uic_command *cmd;
5457 
5458 	spin_lock(hba->host->host_lock);
5459 	cmd = hba->active_uic_cmd;
5460 	if (WARN_ON_ONCE(!cmd))
5461 		goto unlock;
5462 
5463 	if (ufshcd_is_auto_hibern8_error(hba, intr_status))
5464 		hba->errors |= (UFSHCD_UIC_HIBERN8_MASK & intr_status);
5465 
5466 	if (intr_status & UIC_COMMAND_COMPL) {
5467 		cmd->argument2 |= ufshcd_get_uic_cmd_result(hba);
5468 		cmd->argument3 = ufshcd_get_dme_attr_val(hba);
5469 		if (!hba->uic_async_done)
5470 			cmd->cmd_active = 0;
5471 		complete(&cmd->done);
5472 		retval = IRQ_HANDLED;
5473 	}
5474 
5475 	if (intr_status & UFSHCD_UIC_PWR_MASK && hba->uic_async_done) {
5476 		cmd->cmd_active = 0;
5477 		complete(hba->uic_async_done);
5478 		retval = IRQ_HANDLED;
5479 	}
5480 
5481 	if (retval == IRQ_HANDLED)
5482 		ufshcd_add_uic_command_trace(hba, cmd, UFS_CMD_COMP);
5483 
5484 unlock:
5485 	spin_unlock(hba->host->host_lock);
5486 
5487 	return retval;
5488 }
5489 
5490 /* Release the resources allocated for processing a SCSI command. */
5491 void ufshcd_release_scsi_cmd(struct ufs_hba *hba,
5492 			     struct ufshcd_lrb *lrbp)
5493 {
5494 	struct scsi_cmnd *cmd = lrbp->cmd;
5495 
5496 	scsi_dma_unmap(cmd);
5497 	ufshcd_crypto_clear_prdt(hba, lrbp);
5498 	ufshcd_release(hba);
5499 	ufshcd_clk_scaling_update_busy(hba);
5500 }
5501 
5502 /**
5503  * ufshcd_compl_one_cqe - handle a completion queue entry
5504  * @hba: per adapter instance
5505  * @task_tag: the task tag of the request to be completed
5506  * @cqe: pointer to the completion queue entry
5507  */
5508 void ufshcd_compl_one_cqe(struct ufs_hba *hba, int task_tag,
5509 			  struct cq_entry *cqe)
5510 {
5511 	struct ufshcd_lrb *lrbp;
5512 	struct scsi_cmnd *cmd;
5513 	enum utp_ocs ocs;
5514 
5515 	lrbp = &hba->lrb[task_tag];
5516 	lrbp->compl_time_stamp = ktime_get();
5517 	cmd = lrbp->cmd;
5518 	if (cmd) {
5519 		if (unlikely(ufshcd_should_inform_monitor(hba, lrbp)))
5520 			ufshcd_update_monitor(hba, lrbp);
5521 		ufshcd_add_command_trace(hba, task_tag, UFS_CMD_COMP);
5522 		cmd->result = ufshcd_transfer_rsp_status(hba, lrbp, cqe);
5523 		ufshcd_release_scsi_cmd(hba, lrbp);
5524 		/* Do not touch lrbp after scsi done */
5525 		scsi_done(cmd);
5526 	} else if (hba->dev_cmd.complete) {
5527 		if (cqe) {
5528 			ocs = le32_to_cpu(cqe->status) & MASK_OCS;
5529 			lrbp->utr_descriptor_ptr->header.ocs = ocs;
5530 		}
5531 		complete(hba->dev_cmd.complete);
5532 	}
5533 }
5534 
5535 /**
5536  * __ufshcd_transfer_req_compl - handle SCSI and query command completion
5537  * @hba: per adapter instance
5538  * @completed_reqs: bitmask that indicates which requests to complete
5539  */
5540 static void __ufshcd_transfer_req_compl(struct ufs_hba *hba,
5541 					unsigned long completed_reqs)
5542 {
5543 	int tag;
5544 
5545 	for_each_set_bit(tag, &completed_reqs, hba->nutrs)
5546 		ufshcd_compl_one_cqe(hba, tag, NULL);
5547 }
5548 
5549 /* Any value that is not an existing queue number is fine for this constant. */
5550 enum {
5551 	UFSHCD_POLL_FROM_INTERRUPT_CONTEXT = -1
5552 };
5553 
5554 static void ufshcd_clear_polled(struct ufs_hba *hba,
5555 				unsigned long *completed_reqs)
5556 {
5557 	int tag;
5558 
5559 	for_each_set_bit(tag, completed_reqs, hba->nutrs) {
5560 		struct scsi_cmnd *cmd = hba->lrb[tag].cmd;
5561 
5562 		if (!cmd)
5563 			continue;
5564 		if (scsi_cmd_to_rq(cmd)->cmd_flags & REQ_POLLED)
5565 			__clear_bit(tag, completed_reqs);
5566 	}
5567 }
5568 
5569 /*
5570  * Return: > 0 if one or more commands have been completed or 0 if no
5571  * requests have been completed.
5572  */
5573 static int ufshcd_poll(struct Scsi_Host *shost, unsigned int queue_num)
5574 {
5575 	struct ufs_hba *hba = shost_priv(shost);
5576 	unsigned long completed_reqs, flags;
5577 	u32 tr_doorbell;
5578 	struct ufs_hw_queue *hwq;
5579 
5580 	if (hba->mcq_enabled) {
5581 		hwq = &hba->uhq[queue_num];
5582 
5583 		return ufshcd_mcq_poll_cqe_lock(hba, hwq);
5584 	}
5585 
5586 	spin_lock_irqsave(&hba->outstanding_lock, flags);
5587 	tr_doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
5588 	completed_reqs = ~tr_doorbell & hba->outstanding_reqs;
5589 	WARN_ONCE(completed_reqs & ~hba->outstanding_reqs,
5590 		  "completed: %#lx; outstanding: %#lx\n", completed_reqs,
5591 		  hba->outstanding_reqs);
5592 	if (queue_num == UFSHCD_POLL_FROM_INTERRUPT_CONTEXT) {
5593 		/* Do not complete polled requests from interrupt context. */
5594 		ufshcd_clear_polled(hba, &completed_reqs);
5595 	}
5596 	hba->outstanding_reqs &= ~completed_reqs;
5597 	spin_unlock_irqrestore(&hba->outstanding_lock, flags);
5598 
5599 	if (completed_reqs)
5600 		__ufshcd_transfer_req_compl(hba, completed_reqs);
5601 
5602 	return completed_reqs != 0;
5603 }
5604 
5605 /**
5606  * ufshcd_mcq_compl_pending_transfer - MCQ mode function. It is
5607  * invoked from the error handler context or ufshcd_host_reset_and_restore()
5608  * to complete the pending transfers and free the resources associated with
5609  * the scsi command.
5610  *
5611  * @hba: per adapter instance
5612  * @force_compl: This flag is set to true when invoked
5613  * from ufshcd_host_reset_and_restore() in which case it requires special
5614  * handling because the host controller has been reset by ufshcd_hba_stop().
5615  */
5616 static void ufshcd_mcq_compl_pending_transfer(struct ufs_hba *hba,
5617 					      bool force_compl)
5618 {
5619 	struct ufs_hw_queue *hwq;
5620 	struct ufshcd_lrb *lrbp;
5621 	struct scsi_cmnd *cmd;
5622 	unsigned long flags;
5623 	int tag;
5624 
5625 	for (tag = 0; tag < hba->nutrs; tag++) {
5626 		lrbp = &hba->lrb[tag];
5627 		cmd = lrbp->cmd;
5628 		if (!ufshcd_cmd_inflight(cmd) ||
5629 		    test_bit(SCMD_STATE_COMPLETE, &cmd->state))
5630 			continue;
5631 
5632 		hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(cmd));
5633 
5634 		if (force_compl) {
5635 			ufshcd_mcq_compl_all_cqes_lock(hba, hwq);
5636 			/*
5637 			 * For those cmds of which the cqes are not present
5638 			 * in the cq, complete them explicitly.
5639 			 */
5640 			spin_lock_irqsave(&hwq->cq_lock, flags);
5641 			if (cmd && !test_bit(SCMD_STATE_COMPLETE, &cmd->state)) {
5642 				set_host_byte(cmd, DID_REQUEUE);
5643 				ufshcd_release_scsi_cmd(hba, lrbp);
5644 				scsi_done(cmd);
5645 			}
5646 			spin_unlock_irqrestore(&hwq->cq_lock, flags);
5647 		} else {
5648 			ufshcd_mcq_poll_cqe_lock(hba, hwq);
5649 		}
5650 	}
5651 }
5652 
5653 /**
5654  * ufshcd_transfer_req_compl - handle SCSI and query command completion
5655  * @hba: per adapter instance
5656  *
5657  * Return:
5658  *  IRQ_HANDLED - If interrupt is valid
5659  *  IRQ_NONE    - If invalid interrupt
5660  */
5661 static irqreturn_t ufshcd_transfer_req_compl(struct ufs_hba *hba)
5662 {
5663 	/* Resetting interrupt aggregation counters first and reading the
5664 	 * DOOR_BELL afterward allows us to handle all the completed requests.
5665 	 * In order to prevent other interrupts starvation the DB is read once
5666 	 * after reset. The down side of this solution is the possibility of
5667 	 * false interrupt if device completes another request after resetting
5668 	 * aggregation and before reading the DB.
5669 	 */
5670 	if (ufshcd_is_intr_aggr_allowed(hba) &&
5671 	    !(hba->quirks & UFSHCI_QUIRK_SKIP_RESET_INTR_AGGR))
5672 		ufshcd_reset_intr_aggr(hba);
5673 
5674 	if (ufs_fail_completion(hba))
5675 		return IRQ_HANDLED;
5676 
5677 	/*
5678 	 * Ignore the ufshcd_poll() return value and return IRQ_HANDLED since we
5679 	 * do not want polling to trigger spurious interrupt complaints.
5680 	 */
5681 	ufshcd_poll(hba->host, UFSHCD_POLL_FROM_INTERRUPT_CONTEXT);
5682 
5683 	return IRQ_HANDLED;
5684 }
5685 
5686 int __ufshcd_write_ee_control(struct ufs_hba *hba, u32 ee_ctrl_mask)
5687 {
5688 	return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
5689 				       QUERY_ATTR_IDN_EE_CONTROL, 0, 0,
5690 				       &ee_ctrl_mask);
5691 }
5692 
5693 int ufshcd_write_ee_control(struct ufs_hba *hba)
5694 {
5695 	int err;
5696 
5697 	mutex_lock(&hba->ee_ctrl_mutex);
5698 	err = __ufshcd_write_ee_control(hba, hba->ee_ctrl_mask);
5699 	mutex_unlock(&hba->ee_ctrl_mutex);
5700 	if (err)
5701 		dev_err(hba->dev, "%s: failed to write ee control %d\n",
5702 			__func__, err);
5703 	return err;
5704 }
5705 
5706 int ufshcd_update_ee_control(struct ufs_hba *hba, u16 *mask,
5707 			     const u16 *other_mask, u16 set, u16 clr)
5708 {
5709 	u16 new_mask, ee_ctrl_mask;
5710 	int err = 0;
5711 
5712 	mutex_lock(&hba->ee_ctrl_mutex);
5713 	new_mask = (*mask & ~clr) | set;
5714 	ee_ctrl_mask = new_mask | *other_mask;
5715 	if (ee_ctrl_mask != hba->ee_ctrl_mask)
5716 		err = __ufshcd_write_ee_control(hba, ee_ctrl_mask);
5717 	/* Still need to update 'mask' even if 'ee_ctrl_mask' was unchanged */
5718 	if (!err) {
5719 		hba->ee_ctrl_mask = ee_ctrl_mask;
5720 		*mask = new_mask;
5721 	}
5722 	mutex_unlock(&hba->ee_ctrl_mutex);
5723 	return err;
5724 }
5725 
5726 /**
5727  * ufshcd_disable_ee - disable exception event
5728  * @hba: per-adapter instance
5729  * @mask: exception event to disable
5730  *
5731  * Disables exception event in the device so that the EVENT_ALERT
5732  * bit is not set.
5733  *
5734  * Return: zero on success, non-zero error value on failure.
5735  */
5736 static inline int ufshcd_disable_ee(struct ufs_hba *hba, u16 mask)
5737 {
5738 	return ufshcd_update_ee_drv_mask(hba, 0, mask);
5739 }
5740 
5741 /**
5742  * ufshcd_enable_ee - enable exception event
5743  * @hba: per-adapter instance
5744  * @mask: exception event to enable
5745  *
5746  * Enable corresponding exception event in the device to allow
5747  * device to alert host in critical scenarios.
5748  *
5749  * Return: zero on success, non-zero error value on failure.
5750  */
5751 static inline int ufshcd_enable_ee(struct ufs_hba *hba, u16 mask)
5752 {
5753 	return ufshcd_update_ee_drv_mask(hba, mask, 0);
5754 }
5755 
5756 /**
5757  * ufshcd_enable_auto_bkops - Allow device managed BKOPS
5758  * @hba: per-adapter instance
5759  *
5760  * Allow device to manage background operations on its own. Enabling
5761  * this might lead to inconsistent latencies during normal data transfers
5762  * as the device is allowed to manage its own way of handling background
5763  * operations.
5764  *
5765  * Return: zero on success, non-zero on failure.
5766  */
5767 static int ufshcd_enable_auto_bkops(struct ufs_hba *hba)
5768 {
5769 	int err = 0;
5770 
5771 	if (hba->auto_bkops_enabled)
5772 		goto out;
5773 
5774 	err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG,
5775 			QUERY_FLAG_IDN_BKOPS_EN, 0, NULL);
5776 	if (err) {
5777 		dev_err(hba->dev, "%s: failed to enable bkops %d\n",
5778 				__func__, err);
5779 		goto out;
5780 	}
5781 
5782 	hba->auto_bkops_enabled = true;
5783 	trace_ufshcd_auto_bkops_state(dev_name(hba->dev), "Enabled");
5784 
5785 	/* No need of URGENT_BKOPS exception from the device */
5786 	err = ufshcd_disable_ee(hba, MASK_EE_URGENT_BKOPS);
5787 	if (err)
5788 		dev_err(hba->dev, "%s: failed to disable exception event %d\n",
5789 				__func__, err);
5790 out:
5791 	return err;
5792 }
5793 
5794 /**
5795  * ufshcd_disable_auto_bkops - block device in doing background operations
5796  * @hba: per-adapter instance
5797  *
5798  * Disabling background operations improves command response latency but
5799  * has drawback of device moving into critical state where the device is
5800  * not-operable. Make sure to call ufshcd_enable_auto_bkops() whenever the
5801  * host is idle so that BKOPS are managed effectively without any negative
5802  * impacts.
5803  *
5804  * Return: zero on success, non-zero on failure.
5805  */
5806 static int ufshcd_disable_auto_bkops(struct ufs_hba *hba)
5807 {
5808 	int err = 0;
5809 
5810 	if (!hba->auto_bkops_enabled)
5811 		goto out;
5812 
5813 	/*
5814 	 * If host assisted BKOPs is to be enabled, make sure
5815 	 * urgent bkops exception is allowed.
5816 	 */
5817 	err = ufshcd_enable_ee(hba, MASK_EE_URGENT_BKOPS);
5818 	if (err) {
5819 		dev_err(hba->dev, "%s: failed to enable exception event %d\n",
5820 				__func__, err);
5821 		goto out;
5822 	}
5823 
5824 	err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_CLEAR_FLAG,
5825 			QUERY_FLAG_IDN_BKOPS_EN, 0, NULL);
5826 	if (err) {
5827 		dev_err(hba->dev, "%s: failed to disable bkops %d\n",
5828 				__func__, err);
5829 		ufshcd_disable_ee(hba, MASK_EE_URGENT_BKOPS);
5830 		goto out;
5831 	}
5832 
5833 	hba->auto_bkops_enabled = false;
5834 	trace_ufshcd_auto_bkops_state(dev_name(hba->dev), "Disabled");
5835 	hba->is_urgent_bkops_lvl_checked = false;
5836 out:
5837 	return err;
5838 }
5839 
5840 /**
5841  * ufshcd_force_reset_auto_bkops - force reset auto bkops state
5842  * @hba: per adapter instance
5843  *
5844  * After a device reset the device may toggle the BKOPS_EN flag
5845  * to default value. The s/w tracking variables should be updated
5846  * as well. This function would change the auto-bkops state based on
5847  * UFSHCD_CAP_KEEP_AUTO_BKOPS_ENABLED_EXCEPT_SUSPEND.
5848  */
5849 static void ufshcd_force_reset_auto_bkops(struct ufs_hba *hba)
5850 {
5851 	if (ufshcd_keep_autobkops_enabled_except_suspend(hba)) {
5852 		hba->auto_bkops_enabled = false;
5853 		hba->ee_ctrl_mask |= MASK_EE_URGENT_BKOPS;
5854 		ufshcd_enable_auto_bkops(hba);
5855 	} else {
5856 		hba->auto_bkops_enabled = true;
5857 		hba->ee_ctrl_mask &= ~MASK_EE_URGENT_BKOPS;
5858 		ufshcd_disable_auto_bkops(hba);
5859 	}
5860 	hba->urgent_bkops_lvl = BKOPS_STATUS_PERF_IMPACT;
5861 	hba->is_urgent_bkops_lvl_checked = false;
5862 }
5863 
5864 static inline int ufshcd_get_bkops_status(struct ufs_hba *hba, u32 *status)
5865 {
5866 	return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5867 			QUERY_ATTR_IDN_BKOPS_STATUS, 0, 0, status);
5868 }
5869 
5870 /**
5871  * ufshcd_bkops_ctrl - control the auto bkops based on current bkops status
5872  * @hba: per-adapter instance
5873  *
5874  * Read the bkops_status from the UFS device and Enable fBackgroundOpsEn
5875  * flag in the device to permit background operations if the device
5876  * bkops_status is greater than or equal to the "hba->urgent_bkops_lvl",
5877  * disable otherwise.
5878  *
5879  * Return: 0 for success, non-zero in case of failure.
5880  *
5881  * NOTE: Caller of this function can check the "hba->auto_bkops_enabled" flag
5882  * to know whether auto bkops is enabled or disabled after this function
5883  * returns control to it.
5884  */
5885 static int ufshcd_bkops_ctrl(struct ufs_hba *hba)
5886 {
5887 	enum bkops_status status = hba->urgent_bkops_lvl;
5888 	u32 curr_status = 0;
5889 	int err;
5890 
5891 	err = ufshcd_get_bkops_status(hba, &curr_status);
5892 	if (err) {
5893 		dev_err(hba->dev, "%s: failed to get BKOPS status %d\n",
5894 				__func__, err);
5895 		goto out;
5896 	} else if (curr_status > BKOPS_STATUS_MAX) {
5897 		dev_err(hba->dev, "%s: invalid BKOPS status %d\n",
5898 				__func__, curr_status);
5899 		err = -EINVAL;
5900 		goto out;
5901 	}
5902 
5903 	if (curr_status >= status)
5904 		err = ufshcd_enable_auto_bkops(hba);
5905 	else
5906 		err = ufshcd_disable_auto_bkops(hba);
5907 out:
5908 	return err;
5909 }
5910 
5911 static inline int ufshcd_get_ee_status(struct ufs_hba *hba, u32 *status)
5912 {
5913 	return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5914 			QUERY_ATTR_IDN_EE_STATUS, 0, 0, status);
5915 }
5916 
5917 static void ufshcd_bkops_exception_event_handler(struct ufs_hba *hba)
5918 {
5919 	int err;
5920 	u32 curr_status = 0;
5921 
5922 	if (hba->is_urgent_bkops_lvl_checked)
5923 		goto enable_auto_bkops;
5924 
5925 	err = ufshcd_get_bkops_status(hba, &curr_status);
5926 	if (err) {
5927 		dev_err(hba->dev, "%s: failed to get BKOPS status %d\n",
5928 				__func__, err);
5929 		goto out;
5930 	}
5931 
5932 	/*
5933 	 * We are seeing that some devices are raising the urgent bkops
5934 	 * exception events even when BKOPS status doesn't indicate performace
5935 	 * impacted or critical. Handle these device by determining their urgent
5936 	 * bkops status at runtime.
5937 	 */
5938 	if (curr_status < BKOPS_STATUS_PERF_IMPACT) {
5939 		dev_err(hba->dev, "%s: device raised urgent BKOPS exception for bkops status %d\n",
5940 				__func__, curr_status);
5941 		/* update the current status as the urgent bkops level */
5942 		hba->urgent_bkops_lvl = curr_status;
5943 		hba->is_urgent_bkops_lvl_checked = true;
5944 	}
5945 
5946 enable_auto_bkops:
5947 	err = ufshcd_enable_auto_bkops(hba);
5948 out:
5949 	if (err < 0)
5950 		dev_err(hba->dev, "%s: failed to handle urgent bkops %d\n",
5951 				__func__, err);
5952 }
5953 
5954 static void ufshcd_temp_exception_event_handler(struct ufs_hba *hba, u16 status)
5955 {
5956 	u32 value;
5957 
5958 	if (ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5959 				QUERY_ATTR_IDN_CASE_ROUGH_TEMP, 0, 0, &value))
5960 		return;
5961 
5962 	dev_info(hba->dev, "exception Tcase %d\n", value - 80);
5963 
5964 	ufs_hwmon_notify_event(hba, status & MASK_EE_URGENT_TEMP);
5965 
5966 	/*
5967 	 * A placeholder for the platform vendors to add whatever additional
5968 	 * steps required
5969 	 */
5970 }
5971 
5972 static int __ufshcd_wb_toggle(struct ufs_hba *hba, bool set, enum flag_idn idn)
5973 {
5974 	u8 index;
5975 	enum query_opcode opcode = set ? UPIU_QUERY_OPCODE_SET_FLAG :
5976 				   UPIU_QUERY_OPCODE_CLEAR_FLAG;
5977 
5978 	index = ufshcd_wb_get_query_index(hba);
5979 	return ufshcd_query_flag_retry(hba, opcode, idn, index, NULL);
5980 }
5981 
5982 int ufshcd_wb_toggle(struct ufs_hba *hba, bool enable)
5983 {
5984 	int ret;
5985 
5986 	if (!ufshcd_is_wb_allowed(hba) ||
5987 	    hba->dev_info.wb_enabled == enable)
5988 		return 0;
5989 
5990 	ret = __ufshcd_wb_toggle(hba, enable, QUERY_FLAG_IDN_WB_EN);
5991 	if (ret) {
5992 		dev_err(hba->dev, "%s: Write Booster %s failed %d\n",
5993 			__func__, enable ? "enabling" : "disabling", ret);
5994 		return ret;
5995 	}
5996 
5997 	hba->dev_info.wb_enabled = enable;
5998 	dev_dbg(hba->dev, "%s: Write Booster %s\n",
5999 			__func__, enable ? "enabled" : "disabled");
6000 
6001 	return ret;
6002 }
6003 
6004 static void ufshcd_wb_toggle_buf_flush_during_h8(struct ufs_hba *hba,
6005 						 bool enable)
6006 {
6007 	int ret;
6008 
6009 	ret = __ufshcd_wb_toggle(hba, enable,
6010 			QUERY_FLAG_IDN_WB_BUFF_FLUSH_DURING_HIBERN8);
6011 	if (ret) {
6012 		dev_err(hba->dev, "%s: WB-Buf Flush during H8 %s failed %d\n",
6013 			__func__, enable ? "enabling" : "disabling", ret);
6014 		return;
6015 	}
6016 	dev_dbg(hba->dev, "%s: WB-Buf Flush during H8 %s\n",
6017 			__func__, enable ? "enabled" : "disabled");
6018 }
6019 
6020 int ufshcd_wb_toggle_buf_flush(struct ufs_hba *hba, bool enable)
6021 {
6022 	int ret;
6023 
6024 	if (!ufshcd_is_wb_allowed(hba) ||
6025 	    hba->dev_info.wb_buf_flush_enabled == enable)
6026 		return 0;
6027 
6028 	ret = __ufshcd_wb_toggle(hba, enable, QUERY_FLAG_IDN_WB_BUFF_FLUSH_EN);
6029 	if (ret) {
6030 		dev_err(hba->dev, "%s: WB-Buf Flush %s failed %d\n",
6031 			__func__, enable ? "enabling" : "disabling", ret);
6032 		return ret;
6033 	}
6034 
6035 	hba->dev_info.wb_buf_flush_enabled = enable;
6036 	dev_dbg(hba->dev, "%s: WB-Buf Flush %s\n",
6037 			__func__, enable ? "enabled" : "disabled");
6038 
6039 	return ret;
6040 }
6041 
6042 static bool ufshcd_wb_presrv_usrspc_keep_vcc_on(struct ufs_hba *hba,
6043 						u32 avail_buf)
6044 {
6045 	u32 cur_buf;
6046 	int ret;
6047 	u8 index;
6048 
6049 	index = ufshcd_wb_get_query_index(hba);
6050 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
6051 					      QUERY_ATTR_IDN_CURR_WB_BUFF_SIZE,
6052 					      index, 0, &cur_buf);
6053 	if (ret) {
6054 		dev_err(hba->dev, "%s: dCurWriteBoosterBufferSize read failed %d\n",
6055 			__func__, ret);
6056 		return false;
6057 	}
6058 
6059 	if (!cur_buf) {
6060 		dev_info(hba->dev, "dCurWBBuf: %d WB disabled until free-space is available\n",
6061 			 cur_buf);
6062 		return false;
6063 	}
6064 	/* Let it continue to flush when available buffer exceeds threshold */
6065 	return avail_buf < hba->vps->wb_flush_threshold;
6066 }
6067 
6068 static void ufshcd_wb_force_disable(struct ufs_hba *hba)
6069 {
6070 	if (ufshcd_is_wb_buf_flush_allowed(hba))
6071 		ufshcd_wb_toggle_buf_flush(hba, false);
6072 
6073 	ufshcd_wb_toggle_buf_flush_during_h8(hba, false);
6074 	ufshcd_wb_toggle(hba, false);
6075 	hba->caps &= ~UFSHCD_CAP_WB_EN;
6076 
6077 	dev_info(hba->dev, "%s: WB force disabled\n", __func__);
6078 }
6079 
6080 static bool ufshcd_is_wb_buf_lifetime_available(struct ufs_hba *hba)
6081 {
6082 	u32 lifetime;
6083 	int ret;
6084 	u8 index;
6085 
6086 	index = ufshcd_wb_get_query_index(hba);
6087 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
6088 				      QUERY_ATTR_IDN_WB_BUFF_LIFE_TIME_EST,
6089 				      index, 0, &lifetime);
6090 	if (ret) {
6091 		dev_err(hba->dev,
6092 			"%s: bWriteBoosterBufferLifeTimeEst read failed %d\n",
6093 			__func__, ret);
6094 		return false;
6095 	}
6096 
6097 	if (lifetime == UFS_WB_EXCEED_LIFETIME) {
6098 		dev_err(hba->dev, "%s: WB buf lifetime is exhausted 0x%02X\n",
6099 			__func__, lifetime);
6100 		return false;
6101 	}
6102 
6103 	dev_dbg(hba->dev, "%s: WB buf lifetime is 0x%02X\n",
6104 		__func__, lifetime);
6105 
6106 	return true;
6107 }
6108 
6109 static bool ufshcd_wb_need_flush(struct ufs_hba *hba)
6110 {
6111 	int ret;
6112 	u32 avail_buf;
6113 	u8 index;
6114 
6115 	if (!ufshcd_is_wb_allowed(hba))
6116 		return false;
6117 
6118 	if (!ufshcd_is_wb_buf_lifetime_available(hba)) {
6119 		ufshcd_wb_force_disable(hba);
6120 		return false;
6121 	}
6122 
6123 	/*
6124 	 * The ufs device needs the vcc to be ON to flush.
6125 	 * With user-space reduction enabled, it's enough to enable flush
6126 	 * by checking only the available buffer. The threshold
6127 	 * defined here is > 90% full.
6128 	 * With user-space preserved enabled, the current-buffer
6129 	 * should be checked too because the wb buffer size can reduce
6130 	 * when disk tends to be full. This info is provided by current
6131 	 * buffer (dCurrentWriteBoosterBufferSize). There's no point in
6132 	 * keeping vcc on when current buffer is empty.
6133 	 */
6134 	index = ufshcd_wb_get_query_index(hba);
6135 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
6136 				      QUERY_ATTR_IDN_AVAIL_WB_BUFF_SIZE,
6137 				      index, 0, &avail_buf);
6138 	if (ret) {
6139 		dev_warn(hba->dev, "%s: dAvailableWriteBoosterBufferSize read failed %d\n",
6140 			 __func__, ret);
6141 		return false;
6142 	}
6143 
6144 	if (!hba->dev_info.b_presrv_uspc_en)
6145 		return avail_buf <= UFS_WB_BUF_REMAIN_PERCENT(10);
6146 
6147 	return ufshcd_wb_presrv_usrspc_keep_vcc_on(hba, avail_buf);
6148 }
6149 
6150 static void ufshcd_rpm_dev_flush_recheck_work(struct work_struct *work)
6151 {
6152 	struct ufs_hba *hba = container_of(to_delayed_work(work),
6153 					   struct ufs_hba,
6154 					   rpm_dev_flush_recheck_work);
6155 	/*
6156 	 * To prevent unnecessary VCC power drain after device finishes
6157 	 * WriteBooster buffer flush or Auto BKOPs, force runtime resume
6158 	 * after a certain delay to recheck the threshold by next runtime
6159 	 * suspend.
6160 	 */
6161 	ufshcd_rpm_get_sync(hba);
6162 	ufshcd_rpm_put_sync(hba);
6163 }
6164 
6165 /**
6166  * ufshcd_exception_event_handler - handle exceptions raised by device
6167  * @work: pointer to work data
6168  *
6169  * Read bExceptionEventStatus attribute from the device and handle the
6170  * exception event accordingly.
6171  */
6172 static void ufshcd_exception_event_handler(struct work_struct *work)
6173 {
6174 	struct ufs_hba *hba;
6175 	int err;
6176 	u32 status = 0;
6177 	hba = container_of(work, struct ufs_hba, eeh_work);
6178 
6179 	err = ufshcd_get_ee_status(hba, &status);
6180 	if (err) {
6181 		dev_err(hba->dev, "%s: failed to get exception status %d\n",
6182 				__func__, err);
6183 		return;
6184 	}
6185 
6186 	trace_ufshcd_exception_event(dev_name(hba->dev), status);
6187 
6188 	if (status & hba->ee_drv_mask & MASK_EE_URGENT_BKOPS)
6189 		ufshcd_bkops_exception_event_handler(hba);
6190 
6191 	if (status & hba->ee_drv_mask & MASK_EE_URGENT_TEMP)
6192 		ufshcd_temp_exception_event_handler(hba, status);
6193 
6194 	ufs_debugfs_exception_event(hba, status);
6195 }
6196 
6197 /* Complete requests that have door-bell cleared */
6198 static void ufshcd_complete_requests(struct ufs_hba *hba, bool force_compl)
6199 {
6200 	if (hba->mcq_enabled)
6201 		ufshcd_mcq_compl_pending_transfer(hba, force_compl);
6202 	else
6203 		ufshcd_transfer_req_compl(hba);
6204 
6205 	ufshcd_tmc_handler(hba);
6206 }
6207 
6208 /**
6209  * ufshcd_quirk_dl_nac_errors - This function checks if error handling is
6210  *				to recover from the DL NAC errors or not.
6211  * @hba: per-adapter instance
6212  *
6213  * Return: true if error handling is required, false otherwise.
6214  */
6215 static bool ufshcd_quirk_dl_nac_errors(struct ufs_hba *hba)
6216 {
6217 	unsigned long flags;
6218 	bool err_handling = true;
6219 
6220 	spin_lock_irqsave(hba->host->host_lock, flags);
6221 	/*
6222 	 * UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS only workaround the
6223 	 * device fatal error and/or DL NAC & REPLAY timeout errors.
6224 	 */
6225 	if (hba->saved_err & (CONTROLLER_FATAL_ERROR | SYSTEM_BUS_FATAL_ERROR))
6226 		goto out;
6227 
6228 	if ((hba->saved_err & DEVICE_FATAL_ERROR) ||
6229 	    ((hba->saved_err & UIC_ERROR) &&
6230 	     (hba->saved_uic_err & UFSHCD_UIC_DL_TCx_REPLAY_ERROR)))
6231 		goto out;
6232 
6233 	if ((hba->saved_err & UIC_ERROR) &&
6234 	    (hba->saved_uic_err & UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)) {
6235 		int err;
6236 		/*
6237 		 * wait for 50ms to see if we can get any other errors or not.
6238 		 */
6239 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6240 		msleep(50);
6241 		spin_lock_irqsave(hba->host->host_lock, flags);
6242 
6243 		/*
6244 		 * now check if we have got any other severe errors other than
6245 		 * DL NAC error?
6246 		 */
6247 		if ((hba->saved_err & INT_FATAL_ERRORS) ||
6248 		    ((hba->saved_err & UIC_ERROR) &&
6249 		    (hba->saved_uic_err & ~UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)))
6250 			goto out;
6251 
6252 		/*
6253 		 * As DL NAC is the only error received so far, send out NOP
6254 		 * command to confirm if link is still active or not.
6255 		 *   - If we don't get any response then do error recovery.
6256 		 *   - If we get response then clear the DL NAC error bit.
6257 		 */
6258 
6259 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6260 		err = ufshcd_verify_dev_init(hba);
6261 		spin_lock_irqsave(hba->host->host_lock, flags);
6262 
6263 		if (err)
6264 			goto out;
6265 
6266 		/* Link seems to be alive hence ignore the DL NAC errors */
6267 		if (hba->saved_uic_err == UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)
6268 			hba->saved_err &= ~UIC_ERROR;
6269 		/* clear NAC error */
6270 		hba->saved_uic_err &= ~UFSHCD_UIC_DL_NAC_RECEIVED_ERROR;
6271 		if (!hba->saved_uic_err)
6272 			err_handling = false;
6273 	}
6274 out:
6275 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6276 	return err_handling;
6277 }
6278 
6279 /* host lock must be held before calling this func */
6280 static inline bool ufshcd_is_saved_err_fatal(struct ufs_hba *hba)
6281 {
6282 	return (hba->saved_uic_err & UFSHCD_UIC_DL_PA_INIT_ERROR) ||
6283 	       (hba->saved_err & (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK));
6284 }
6285 
6286 void ufshcd_schedule_eh_work(struct ufs_hba *hba)
6287 {
6288 	lockdep_assert_held(hba->host->host_lock);
6289 
6290 	/* handle fatal errors only when link is not in error state */
6291 	if (hba->ufshcd_state != UFSHCD_STATE_ERROR) {
6292 		if (hba->force_reset || ufshcd_is_link_broken(hba) ||
6293 		    ufshcd_is_saved_err_fatal(hba))
6294 			hba->ufshcd_state = UFSHCD_STATE_EH_SCHEDULED_FATAL;
6295 		else
6296 			hba->ufshcd_state = UFSHCD_STATE_EH_SCHEDULED_NON_FATAL;
6297 		queue_work(hba->eh_wq, &hba->eh_work);
6298 	}
6299 }
6300 
6301 static void ufshcd_force_error_recovery(struct ufs_hba *hba)
6302 {
6303 	spin_lock_irq(hba->host->host_lock);
6304 	hba->force_reset = true;
6305 	ufshcd_schedule_eh_work(hba);
6306 	spin_unlock_irq(hba->host->host_lock);
6307 }
6308 
6309 static void ufshcd_clk_scaling_allow(struct ufs_hba *hba, bool allow)
6310 {
6311 	mutex_lock(&hba->wb_mutex);
6312 	down_write(&hba->clk_scaling_lock);
6313 	hba->clk_scaling.is_allowed = allow;
6314 	up_write(&hba->clk_scaling_lock);
6315 	mutex_unlock(&hba->wb_mutex);
6316 }
6317 
6318 static void ufshcd_clk_scaling_suspend(struct ufs_hba *hba, bool suspend)
6319 {
6320 	if (suspend) {
6321 		if (hba->clk_scaling.is_enabled)
6322 			ufshcd_suspend_clkscaling(hba);
6323 		ufshcd_clk_scaling_allow(hba, false);
6324 	} else {
6325 		ufshcd_clk_scaling_allow(hba, true);
6326 		if (hba->clk_scaling.is_enabled)
6327 			ufshcd_resume_clkscaling(hba);
6328 	}
6329 }
6330 
6331 static void ufshcd_err_handling_prepare(struct ufs_hba *hba)
6332 {
6333 	ufshcd_rpm_get_sync(hba);
6334 	if (pm_runtime_status_suspended(&hba->ufs_device_wlun->sdev_gendev) ||
6335 	    hba->is_sys_suspended) {
6336 		enum ufs_pm_op pm_op;
6337 
6338 		/*
6339 		 * Don't assume anything of resume, if
6340 		 * resume fails, irq and clocks can be OFF, and powers
6341 		 * can be OFF or in LPM.
6342 		 */
6343 		ufshcd_setup_hba_vreg(hba, true);
6344 		ufshcd_enable_irq(hba);
6345 		ufshcd_setup_vreg(hba, true);
6346 		ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq);
6347 		ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq2);
6348 		ufshcd_hold(hba);
6349 		if (!ufshcd_is_clkgating_allowed(hba))
6350 			ufshcd_setup_clocks(hba, true);
6351 		pm_op = hba->is_sys_suspended ? UFS_SYSTEM_PM : UFS_RUNTIME_PM;
6352 		ufshcd_vops_resume(hba, pm_op);
6353 	} else {
6354 		ufshcd_hold(hba);
6355 		if (ufshcd_is_clkscaling_supported(hba) &&
6356 		    hba->clk_scaling.is_enabled)
6357 			ufshcd_suspend_clkscaling(hba);
6358 		ufshcd_clk_scaling_allow(hba, false);
6359 	}
6360 	/* Wait for ongoing ufshcd_queuecommand() calls to finish. */
6361 	blk_mq_quiesce_tagset(&hba->host->tag_set);
6362 	cancel_work_sync(&hba->eeh_work);
6363 }
6364 
6365 static void ufshcd_err_handling_unprepare(struct ufs_hba *hba)
6366 {
6367 	blk_mq_unquiesce_tagset(&hba->host->tag_set);
6368 	ufshcd_release(hba);
6369 	if (ufshcd_is_clkscaling_supported(hba))
6370 		ufshcd_clk_scaling_suspend(hba, false);
6371 	ufshcd_rpm_put(hba);
6372 }
6373 
6374 static inline bool ufshcd_err_handling_should_stop(struct ufs_hba *hba)
6375 {
6376 	return (!hba->is_powered || hba->shutting_down ||
6377 		!hba->ufs_device_wlun ||
6378 		hba->ufshcd_state == UFSHCD_STATE_ERROR ||
6379 		(!(hba->saved_err || hba->saved_uic_err || hba->force_reset ||
6380 		   ufshcd_is_link_broken(hba))));
6381 }
6382 
6383 #ifdef CONFIG_PM
6384 static void ufshcd_recover_pm_error(struct ufs_hba *hba)
6385 {
6386 	struct Scsi_Host *shost = hba->host;
6387 	struct scsi_device *sdev;
6388 	struct request_queue *q;
6389 	int ret;
6390 
6391 	hba->is_sys_suspended = false;
6392 	/*
6393 	 * Set RPM status of wlun device to RPM_ACTIVE,
6394 	 * this also clears its runtime error.
6395 	 */
6396 	ret = pm_runtime_set_active(&hba->ufs_device_wlun->sdev_gendev);
6397 
6398 	/* hba device might have a runtime error otherwise */
6399 	if (ret)
6400 		ret = pm_runtime_set_active(hba->dev);
6401 	/*
6402 	 * If wlun device had runtime error, we also need to resume those
6403 	 * consumer scsi devices in case any of them has failed to be
6404 	 * resumed due to supplier runtime resume failure. This is to unblock
6405 	 * blk_queue_enter in case there are bios waiting inside it.
6406 	 */
6407 	if (!ret) {
6408 		shost_for_each_device(sdev, shost) {
6409 			q = sdev->request_queue;
6410 			if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
6411 				       q->rpm_status == RPM_SUSPENDING))
6412 				pm_request_resume(q->dev);
6413 		}
6414 	}
6415 }
6416 #else
6417 static inline void ufshcd_recover_pm_error(struct ufs_hba *hba)
6418 {
6419 }
6420 #endif
6421 
6422 static bool ufshcd_is_pwr_mode_restore_needed(struct ufs_hba *hba)
6423 {
6424 	struct ufs_pa_layer_attr *pwr_info = &hba->pwr_info;
6425 	u32 mode;
6426 
6427 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_PWRMODE), &mode);
6428 
6429 	if (pwr_info->pwr_rx != ((mode >> PWRMODE_RX_OFFSET) & PWRMODE_MASK))
6430 		return true;
6431 
6432 	if (pwr_info->pwr_tx != (mode & PWRMODE_MASK))
6433 		return true;
6434 
6435 	return false;
6436 }
6437 
6438 static bool ufshcd_abort_one(struct request *rq, void *priv)
6439 {
6440 	int *ret = priv;
6441 	u32 tag = rq->tag;
6442 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
6443 	struct scsi_device *sdev = cmd->device;
6444 	struct Scsi_Host *shost = sdev->host;
6445 	struct ufs_hba *hba = shost_priv(shost);
6446 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
6447 	struct ufs_hw_queue *hwq;
6448 	unsigned long flags;
6449 
6450 	*ret = ufshcd_try_to_abort_task(hba, tag);
6451 	dev_err(hba->dev, "Aborting tag %d / CDB %#02x %s\n", tag,
6452 		hba->lrb[tag].cmd ? hba->lrb[tag].cmd->cmnd[0] : -1,
6453 		*ret ? "failed" : "succeeded");
6454 
6455 	/* Release cmd in MCQ mode if abort succeeds */
6456 	if (hba->mcq_enabled && (*ret == 0)) {
6457 		hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(lrbp->cmd));
6458 		if (!hwq)
6459 			return 0;
6460 		spin_lock_irqsave(&hwq->cq_lock, flags);
6461 		if (ufshcd_cmd_inflight(lrbp->cmd))
6462 			ufshcd_release_scsi_cmd(hba, lrbp);
6463 		spin_unlock_irqrestore(&hwq->cq_lock, flags);
6464 	}
6465 
6466 	return *ret == 0;
6467 }
6468 
6469 /**
6470  * ufshcd_abort_all - Abort all pending commands.
6471  * @hba: Host bus adapter pointer.
6472  *
6473  * Return: true if and only if the host controller needs to be reset.
6474  */
6475 static bool ufshcd_abort_all(struct ufs_hba *hba)
6476 {
6477 	int tag, ret = 0;
6478 
6479 	blk_mq_tagset_busy_iter(&hba->host->tag_set, ufshcd_abort_one, &ret);
6480 	if (ret)
6481 		goto out;
6482 
6483 	/* Clear pending task management requests */
6484 	for_each_set_bit(tag, &hba->outstanding_tasks, hba->nutmrs) {
6485 		ret = ufshcd_clear_tm_cmd(hba, tag);
6486 		if (ret)
6487 			goto out;
6488 	}
6489 
6490 out:
6491 	/* Complete the requests that are cleared by s/w */
6492 	ufshcd_complete_requests(hba, false);
6493 
6494 	return ret != 0;
6495 }
6496 
6497 /**
6498  * ufshcd_err_handler - handle UFS errors that require s/w attention
6499  * @work: pointer to work structure
6500  */
6501 static void ufshcd_err_handler(struct work_struct *work)
6502 {
6503 	int retries = MAX_ERR_HANDLER_RETRIES;
6504 	struct ufs_hba *hba;
6505 	unsigned long flags;
6506 	bool needs_restore;
6507 	bool needs_reset;
6508 	int pmc_err;
6509 
6510 	hba = container_of(work, struct ufs_hba, eh_work);
6511 
6512 	dev_info(hba->dev,
6513 		 "%s started; HBA state %s; powered %d; shutting down %d; saved_err = %d; saved_uic_err = %d; force_reset = %d%s\n",
6514 		 __func__, ufshcd_state_name[hba->ufshcd_state],
6515 		 hba->is_powered, hba->shutting_down, hba->saved_err,
6516 		 hba->saved_uic_err, hba->force_reset,
6517 		 ufshcd_is_link_broken(hba) ? "; link is broken" : "");
6518 
6519 	down(&hba->host_sem);
6520 	spin_lock_irqsave(hba->host->host_lock, flags);
6521 	if (ufshcd_err_handling_should_stop(hba)) {
6522 		if (hba->ufshcd_state != UFSHCD_STATE_ERROR)
6523 			hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
6524 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6525 		up(&hba->host_sem);
6526 		return;
6527 	}
6528 	ufshcd_set_eh_in_progress(hba);
6529 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6530 	ufshcd_err_handling_prepare(hba);
6531 	/* Complete requests that have door-bell cleared by h/w */
6532 	ufshcd_complete_requests(hba, false);
6533 	spin_lock_irqsave(hba->host->host_lock, flags);
6534 again:
6535 	needs_restore = false;
6536 	needs_reset = false;
6537 
6538 	if (hba->ufshcd_state != UFSHCD_STATE_ERROR)
6539 		hba->ufshcd_state = UFSHCD_STATE_RESET;
6540 	/*
6541 	 * A full reset and restore might have happened after preparation
6542 	 * is finished, double check whether we should stop.
6543 	 */
6544 	if (ufshcd_err_handling_should_stop(hba))
6545 		goto skip_err_handling;
6546 
6547 	if ((hba->dev_quirks & UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS) &&
6548 	    !hba->force_reset) {
6549 		bool ret;
6550 
6551 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6552 		/* release the lock as ufshcd_quirk_dl_nac_errors() may sleep */
6553 		ret = ufshcd_quirk_dl_nac_errors(hba);
6554 		spin_lock_irqsave(hba->host->host_lock, flags);
6555 		if (!ret && ufshcd_err_handling_should_stop(hba))
6556 			goto skip_err_handling;
6557 	}
6558 
6559 	if ((hba->saved_err & (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK)) ||
6560 	    (hba->saved_uic_err &&
6561 	     (hba->saved_uic_err != UFSHCD_UIC_PA_GENERIC_ERROR))) {
6562 		bool pr_prdt = !!(hba->saved_err & SYSTEM_BUS_FATAL_ERROR);
6563 
6564 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6565 		ufshcd_print_host_state(hba);
6566 		ufshcd_print_pwr_info(hba);
6567 		ufshcd_print_evt_hist(hba);
6568 		ufshcd_print_tmrs(hba, hba->outstanding_tasks);
6569 		ufshcd_print_trs_all(hba, pr_prdt);
6570 		spin_lock_irqsave(hba->host->host_lock, flags);
6571 	}
6572 
6573 	/*
6574 	 * if host reset is required then skip clearing the pending
6575 	 * transfers forcefully because they will get cleared during
6576 	 * host reset and restore
6577 	 */
6578 	if (hba->force_reset || ufshcd_is_link_broken(hba) ||
6579 	    ufshcd_is_saved_err_fatal(hba) ||
6580 	    ((hba->saved_err & UIC_ERROR) &&
6581 	     (hba->saved_uic_err & (UFSHCD_UIC_DL_NAC_RECEIVED_ERROR |
6582 				    UFSHCD_UIC_DL_TCx_REPLAY_ERROR)))) {
6583 		needs_reset = true;
6584 		goto do_reset;
6585 	}
6586 
6587 	/*
6588 	 * If LINERESET was caught, UFS might have been put to PWM mode,
6589 	 * check if power mode restore is needed.
6590 	 */
6591 	if (hba->saved_uic_err & UFSHCD_UIC_PA_GENERIC_ERROR) {
6592 		hba->saved_uic_err &= ~UFSHCD_UIC_PA_GENERIC_ERROR;
6593 		if (!hba->saved_uic_err)
6594 			hba->saved_err &= ~UIC_ERROR;
6595 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6596 		if (ufshcd_is_pwr_mode_restore_needed(hba))
6597 			needs_restore = true;
6598 		spin_lock_irqsave(hba->host->host_lock, flags);
6599 		if (!hba->saved_err && !needs_restore)
6600 			goto skip_err_handling;
6601 	}
6602 
6603 	hba->silence_err_logs = true;
6604 	/* release lock as clear command might sleep */
6605 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6606 
6607 	needs_reset = ufshcd_abort_all(hba);
6608 
6609 	spin_lock_irqsave(hba->host->host_lock, flags);
6610 	hba->silence_err_logs = false;
6611 	if (needs_reset)
6612 		goto do_reset;
6613 
6614 	/*
6615 	 * After all reqs and tasks are cleared from doorbell,
6616 	 * now it is safe to retore power mode.
6617 	 */
6618 	if (needs_restore) {
6619 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6620 		/*
6621 		 * Hold the scaling lock just in case dev cmds
6622 		 * are sent via bsg and/or sysfs.
6623 		 */
6624 		down_write(&hba->clk_scaling_lock);
6625 		hba->force_pmc = true;
6626 		pmc_err = ufshcd_config_pwr_mode(hba, &(hba->pwr_info));
6627 		if (pmc_err) {
6628 			needs_reset = true;
6629 			dev_err(hba->dev, "%s: Failed to restore power mode, err = %d\n",
6630 					__func__, pmc_err);
6631 		}
6632 		hba->force_pmc = false;
6633 		ufshcd_print_pwr_info(hba);
6634 		up_write(&hba->clk_scaling_lock);
6635 		spin_lock_irqsave(hba->host->host_lock, flags);
6636 	}
6637 
6638 do_reset:
6639 	/* Fatal errors need reset */
6640 	if (needs_reset) {
6641 		int err;
6642 
6643 		hba->force_reset = false;
6644 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6645 		err = ufshcd_reset_and_restore(hba);
6646 		if (err)
6647 			dev_err(hba->dev, "%s: reset and restore failed with err %d\n",
6648 					__func__, err);
6649 		else
6650 			ufshcd_recover_pm_error(hba);
6651 		spin_lock_irqsave(hba->host->host_lock, flags);
6652 	}
6653 
6654 skip_err_handling:
6655 	if (!needs_reset) {
6656 		if (hba->ufshcd_state == UFSHCD_STATE_RESET)
6657 			hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
6658 		if (hba->saved_err || hba->saved_uic_err)
6659 			dev_err_ratelimited(hba->dev, "%s: exit: saved_err 0x%x saved_uic_err 0x%x",
6660 			    __func__, hba->saved_err, hba->saved_uic_err);
6661 	}
6662 	/* Exit in an operational state or dead */
6663 	if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL &&
6664 	    hba->ufshcd_state != UFSHCD_STATE_ERROR) {
6665 		if (--retries)
6666 			goto again;
6667 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
6668 	}
6669 	ufshcd_clear_eh_in_progress(hba);
6670 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6671 	ufshcd_err_handling_unprepare(hba);
6672 	up(&hba->host_sem);
6673 
6674 	dev_info(hba->dev, "%s finished; HBA state %s\n", __func__,
6675 		 ufshcd_state_name[hba->ufshcd_state]);
6676 }
6677 
6678 /**
6679  * ufshcd_update_uic_error - check and set fatal UIC error flags.
6680  * @hba: per-adapter instance
6681  *
6682  * Return:
6683  *  IRQ_HANDLED - If interrupt is valid
6684  *  IRQ_NONE    - If invalid interrupt
6685  */
6686 static irqreturn_t ufshcd_update_uic_error(struct ufs_hba *hba)
6687 {
6688 	u32 reg;
6689 	irqreturn_t retval = IRQ_NONE;
6690 
6691 	/* PHY layer error */
6692 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER);
6693 	if ((reg & UIC_PHY_ADAPTER_LAYER_ERROR) &&
6694 	    (reg & UIC_PHY_ADAPTER_LAYER_ERROR_CODE_MASK)) {
6695 		ufshcd_update_evt_hist(hba, UFS_EVT_PA_ERR, reg);
6696 		/*
6697 		 * To know whether this error is fatal or not, DB timeout
6698 		 * must be checked but this error is handled separately.
6699 		 */
6700 		if (reg & UIC_PHY_ADAPTER_LAYER_LANE_ERR_MASK)
6701 			dev_dbg(hba->dev, "%s: UIC Lane error reported\n",
6702 					__func__);
6703 
6704 		/* Got a LINERESET indication. */
6705 		if (reg & UIC_PHY_ADAPTER_LAYER_GENERIC_ERROR) {
6706 			struct uic_command *cmd = NULL;
6707 
6708 			hba->uic_error |= UFSHCD_UIC_PA_GENERIC_ERROR;
6709 			if (hba->uic_async_done && hba->active_uic_cmd)
6710 				cmd = hba->active_uic_cmd;
6711 			/*
6712 			 * Ignore the LINERESET during power mode change
6713 			 * operation via DME_SET command.
6714 			 */
6715 			if (cmd && (cmd->command == UIC_CMD_DME_SET))
6716 				hba->uic_error &= ~UFSHCD_UIC_PA_GENERIC_ERROR;
6717 		}
6718 		retval |= IRQ_HANDLED;
6719 	}
6720 
6721 	/* PA_INIT_ERROR is fatal and needs UIC reset */
6722 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_DATA_LINK_LAYER);
6723 	if ((reg & UIC_DATA_LINK_LAYER_ERROR) &&
6724 	    (reg & UIC_DATA_LINK_LAYER_ERROR_CODE_MASK)) {
6725 		ufshcd_update_evt_hist(hba, UFS_EVT_DL_ERR, reg);
6726 
6727 		if (reg & UIC_DATA_LINK_LAYER_ERROR_PA_INIT)
6728 			hba->uic_error |= UFSHCD_UIC_DL_PA_INIT_ERROR;
6729 		else if (hba->dev_quirks &
6730 				UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS) {
6731 			if (reg & UIC_DATA_LINK_LAYER_ERROR_NAC_RECEIVED)
6732 				hba->uic_error |=
6733 					UFSHCD_UIC_DL_NAC_RECEIVED_ERROR;
6734 			else if (reg & UIC_DATA_LINK_LAYER_ERROR_TCx_REPLAY_TIMEOUT)
6735 				hba->uic_error |= UFSHCD_UIC_DL_TCx_REPLAY_ERROR;
6736 		}
6737 		retval |= IRQ_HANDLED;
6738 	}
6739 
6740 	/* UIC NL/TL/DME errors needs software retry */
6741 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_NETWORK_LAYER);
6742 	if ((reg & UIC_NETWORK_LAYER_ERROR) &&
6743 	    (reg & UIC_NETWORK_LAYER_ERROR_CODE_MASK)) {
6744 		ufshcd_update_evt_hist(hba, UFS_EVT_NL_ERR, reg);
6745 		hba->uic_error |= UFSHCD_UIC_NL_ERROR;
6746 		retval |= IRQ_HANDLED;
6747 	}
6748 
6749 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_TRANSPORT_LAYER);
6750 	if ((reg & UIC_TRANSPORT_LAYER_ERROR) &&
6751 	    (reg & UIC_TRANSPORT_LAYER_ERROR_CODE_MASK)) {
6752 		ufshcd_update_evt_hist(hba, UFS_EVT_TL_ERR, reg);
6753 		hba->uic_error |= UFSHCD_UIC_TL_ERROR;
6754 		retval |= IRQ_HANDLED;
6755 	}
6756 
6757 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_DME);
6758 	if ((reg & UIC_DME_ERROR) &&
6759 	    (reg & UIC_DME_ERROR_CODE_MASK)) {
6760 		ufshcd_update_evt_hist(hba, UFS_EVT_DME_ERR, reg);
6761 		hba->uic_error |= UFSHCD_UIC_DME_ERROR;
6762 		retval |= IRQ_HANDLED;
6763 	}
6764 
6765 	dev_dbg(hba->dev, "%s: UIC error flags = 0x%08x\n",
6766 			__func__, hba->uic_error);
6767 	return retval;
6768 }
6769 
6770 /**
6771  * ufshcd_check_errors - Check for errors that need s/w attention
6772  * @hba: per-adapter instance
6773  * @intr_status: interrupt status generated by the controller
6774  *
6775  * Return:
6776  *  IRQ_HANDLED - If interrupt is valid
6777  *  IRQ_NONE    - If invalid interrupt
6778  */
6779 static irqreturn_t ufshcd_check_errors(struct ufs_hba *hba, u32 intr_status)
6780 {
6781 	bool queue_eh_work = false;
6782 	irqreturn_t retval = IRQ_NONE;
6783 
6784 	spin_lock(hba->host->host_lock);
6785 	hba->errors |= UFSHCD_ERROR_MASK & intr_status;
6786 
6787 	if (hba->errors & INT_FATAL_ERRORS) {
6788 		ufshcd_update_evt_hist(hba, UFS_EVT_FATAL_ERR,
6789 				       hba->errors);
6790 		queue_eh_work = true;
6791 	}
6792 
6793 	if (hba->errors & UIC_ERROR) {
6794 		hba->uic_error = 0;
6795 		retval = ufshcd_update_uic_error(hba);
6796 		if (hba->uic_error)
6797 			queue_eh_work = true;
6798 	}
6799 
6800 	if (hba->errors & UFSHCD_UIC_HIBERN8_MASK) {
6801 		dev_err(hba->dev,
6802 			"%s: Auto Hibern8 %s failed - status: 0x%08x, upmcrs: 0x%08x\n",
6803 			__func__, (hba->errors & UIC_HIBERNATE_ENTER) ?
6804 			"Enter" : "Exit",
6805 			hba->errors, ufshcd_get_upmcrs(hba));
6806 		ufshcd_update_evt_hist(hba, UFS_EVT_AUTO_HIBERN8_ERR,
6807 				       hba->errors);
6808 		ufshcd_set_link_broken(hba);
6809 		queue_eh_work = true;
6810 	}
6811 
6812 	if (queue_eh_work) {
6813 		/*
6814 		 * update the transfer error masks to sticky bits, let's do this
6815 		 * irrespective of current ufshcd_state.
6816 		 */
6817 		hba->saved_err |= hba->errors;
6818 		hba->saved_uic_err |= hba->uic_error;
6819 
6820 		/* dump controller state before resetting */
6821 		if ((hba->saved_err &
6822 		     (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK)) ||
6823 		    (hba->saved_uic_err &&
6824 		     (hba->saved_uic_err != UFSHCD_UIC_PA_GENERIC_ERROR))) {
6825 			dev_err(hba->dev, "%s: saved_err 0x%x saved_uic_err 0x%x\n",
6826 					__func__, hba->saved_err,
6827 					hba->saved_uic_err);
6828 			ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE,
6829 					 "host_regs: ");
6830 			ufshcd_print_pwr_info(hba);
6831 		}
6832 		ufshcd_schedule_eh_work(hba);
6833 		retval |= IRQ_HANDLED;
6834 	}
6835 	/*
6836 	 * if (!queue_eh_work) -
6837 	 * Other errors are either non-fatal where host recovers
6838 	 * itself without s/w intervention or errors that will be
6839 	 * handled by the SCSI core layer.
6840 	 */
6841 	hba->errors = 0;
6842 	hba->uic_error = 0;
6843 	spin_unlock(hba->host->host_lock);
6844 	return retval;
6845 }
6846 
6847 /**
6848  * ufshcd_tmc_handler - handle task management function completion
6849  * @hba: per adapter instance
6850  *
6851  * Return:
6852  *  IRQ_HANDLED - If interrupt is valid
6853  *  IRQ_NONE    - If invalid interrupt
6854  */
6855 static irqreturn_t ufshcd_tmc_handler(struct ufs_hba *hba)
6856 {
6857 	unsigned long flags, pending, issued;
6858 	irqreturn_t ret = IRQ_NONE;
6859 	int tag;
6860 
6861 	spin_lock_irqsave(hba->host->host_lock, flags);
6862 	pending = ufshcd_readl(hba, REG_UTP_TASK_REQ_DOOR_BELL);
6863 	issued = hba->outstanding_tasks & ~pending;
6864 	for_each_set_bit(tag, &issued, hba->nutmrs) {
6865 		struct request *req = hba->tmf_rqs[tag];
6866 		struct completion *c = req->end_io_data;
6867 
6868 		complete(c);
6869 		ret = IRQ_HANDLED;
6870 	}
6871 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6872 
6873 	return ret;
6874 }
6875 
6876 /**
6877  * ufshcd_handle_mcq_cq_events - handle MCQ completion queue events
6878  * @hba: per adapter instance
6879  *
6880  * Return: IRQ_HANDLED if interrupt is handled.
6881  */
6882 static irqreturn_t ufshcd_handle_mcq_cq_events(struct ufs_hba *hba)
6883 {
6884 	struct ufs_hw_queue *hwq;
6885 	unsigned long outstanding_cqs;
6886 	unsigned int nr_queues;
6887 	int i, ret;
6888 	u32 events;
6889 
6890 	ret = ufshcd_vops_get_outstanding_cqs(hba, &outstanding_cqs);
6891 	if (ret)
6892 		outstanding_cqs = (1U << hba->nr_hw_queues) - 1;
6893 
6894 	/* Exclude the poll queues */
6895 	nr_queues = hba->nr_hw_queues - hba->nr_queues[HCTX_TYPE_POLL];
6896 	for_each_set_bit(i, &outstanding_cqs, nr_queues) {
6897 		hwq = &hba->uhq[i];
6898 
6899 		events = ufshcd_mcq_read_cqis(hba, i);
6900 		if (events)
6901 			ufshcd_mcq_write_cqis(hba, events, i);
6902 
6903 		if (events & UFSHCD_MCQ_CQIS_TAIL_ENT_PUSH_STS)
6904 			ufshcd_mcq_poll_cqe_lock(hba, hwq);
6905 	}
6906 
6907 	return IRQ_HANDLED;
6908 }
6909 
6910 /**
6911  * ufshcd_sl_intr - Interrupt service routine
6912  * @hba: per adapter instance
6913  * @intr_status: contains interrupts generated by the controller
6914  *
6915  * Return:
6916  *  IRQ_HANDLED - If interrupt is valid
6917  *  IRQ_NONE    - If invalid interrupt
6918  */
6919 static irqreturn_t ufshcd_sl_intr(struct ufs_hba *hba, u32 intr_status)
6920 {
6921 	irqreturn_t retval = IRQ_NONE;
6922 
6923 	if (intr_status & UFSHCD_UIC_MASK)
6924 		retval |= ufshcd_uic_cmd_compl(hba, intr_status);
6925 
6926 	if (intr_status & UFSHCD_ERROR_MASK || hba->errors)
6927 		retval |= ufshcd_check_errors(hba, intr_status);
6928 
6929 	if (intr_status & UTP_TASK_REQ_COMPL)
6930 		retval |= ufshcd_tmc_handler(hba);
6931 
6932 	if (intr_status & UTP_TRANSFER_REQ_COMPL)
6933 		retval |= ufshcd_transfer_req_compl(hba);
6934 
6935 	if (intr_status & MCQ_CQ_EVENT_STATUS)
6936 		retval |= ufshcd_handle_mcq_cq_events(hba);
6937 
6938 	return retval;
6939 }
6940 
6941 /**
6942  * ufshcd_intr - Main interrupt service routine
6943  * @irq: irq number
6944  * @__hba: pointer to adapter instance
6945  *
6946  * Return:
6947  *  IRQ_HANDLED - If interrupt is valid
6948  *  IRQ_NONE    - If invalid interrupt
6949  */
6950 static irqreturn_t ufshcd_intr(int irq, void *__hba)
6951 {
6952 	u32 intr_status, enabled_intr_status = 0;
6953 	irqreturn_t retval = IRQ_NONE;
6954 	struct ufs_hba *hba = __hba;
6955 	int retries = hba->nutrs;
6956 
6957 	intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
6958 	hba->ufs_stats.last_intr_status = intr_status;
6959 	hba->ufs_stats.last_intr_ts = local_clock();
6960 
6961 	/*
6962 	 * There could be max of hba->nutrs reqs in flight and in worst case
6963 	 * if the reqs get finished 1 by 1 after the interrupt status is
6964 	 * read, make sure we handle them by checking the interrupt status
6965 	 * again in a loop until we process all of the reqs before returning.
6966 	 */
6967 	while (intr_status && retries--) {
6968 		enabled_intr_status =
6969 			intr_status & ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
6970 		ufshcd_writel(hba, intr_status, REG_INTERRUPT_STATUS);
6971 		if (enabled_intr_status)
6972 			retval |= ufshcd_sl_intr(hba, enabled_intr_status);
6973 
6974 		intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
6975 	}
6976 
6977 	if (enabled_intr_status && retval == IRQ_NONE &&
6978 	    (!(enabled_intr_status & UTP_TRANSFER_REQ_COMPL) ||
6979 	     hba->outstanding_reqs) && !ufshcd_eh_in_progress(hba)) {
6980 		dev_err(hba->dev, "%s: Unhandled interrupt 0x%08x (0x%08x, 0x%08x)\n",
6981 					__func__,
6982 					intr_status,
6983 					hba->ufs_stats.last_intr_status,
6984 					enabled_intr_status);
6985 		ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, "host_regs: ");
6986 	}
6987 
6988 	return retval;
6989 }
6990 
6991 static int ufshcd_clear_tm_cmd(struct ufs_hba *hba, int tag)
6992 {
6993 	int err = 0;
6994 	u32 mask = 1 << tag;
6995 
6996 	if (!test_bit(tag, &hba->outstanding_tasks))
6997 		goto out;
6998 
6999 	ufshcd_utmrl_clear(hba, tag);
7000 
7001 	/* poll for max. 1 sec to clear door bell register by h/w */
7002 	err = ufshcd_wait_for_register(hba,
7003 			REG_UTP_TASK_REQ_DOOR_BELL,
7004 			mask, 0, 1000, 1000);
7005 
7006 	dev_err(hba->dev, "Clearing task management function with tag %d %s\n",
7007 		tag, err < 0 ? "failed" : "succeeded");
7008 
7009 out:
7010 	return err;
7011 }
7012 
7013 static int __ufshcd_issue_tm_cmd(struct ufs_hba *hba,
7014 		struct utp_task_req_desc *treq, u8 tm_function)
7015 {
7016 	struct request_queue *q = hba->tmf_queue;
7017 	struct Scsi_Host *host = hba->host;
7018 	DECLARE_COMPLETION_ONSTACK(wait);
7019 	struct request *req;
7020 	unsigned long flags;
7021 	int task_tag, err;
7022 
7023 	/*
7024 	 * blk_mq_alloc_request() is used here only to get a free tag.
7025 	 */
7026 	req = blk_mq_alloc_request(q, REQ_OP_DRV_OUT, 0);
7027 	if (IS_ERR(req))
7028 		return PTR_ERR(req);
7029 
7030 	req->end_io_data = &wait;
7031 	ufshcd_hold(hba);
7032 
7033 	spin_lock_irqsave(host->host_lock, flags);
7034 
7035 	task_tag = req->tag;
7036 	hba->tmf_rqs[req->tag] = req;
7037 	treq->upiu_req.req_header.task_tag = task_tag;
7038 
7039 	memcpy(hba->utmrdl_base_addr + task_tag, treq, sizeof(*treq));
7040 	ufshcd_vops_setup_task_mgmt(hba, task_tag, tm_function);
7041 
7042 	__set_bit(task_tag, &hba->outstanding_tasks);
7043 
7044 	spin_unlock_irqrestore(host->host_lock, flags);
7045 
7046 	/* send command to the controller */
7047 	ufshcd_writel(hba, 1 << task_tag, REG_UTP_TASK_REQ_DOOR_BELL);
7048 
7049 	ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_SEND);
7050 
7051 	/* wait until the task management command is completed */
7052 	err = wait_for_completion_io_timeout(&wait,
7053 			msecs_to_jiffies(TM_CMD_TIMEOUT));
7054 	if (!err) {
7055 		ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_ERR);
7056 		dev_err(hba->dev, "%s: task management cmd 0x%.2x timed-out\n",
7057 				__func__, tm_function);
7058 		if (ufshcd_clear_tm_cmd(hba, task_tag))
7059 			dev_WARN(hba->dev, "%s: unable to clear tm cmd (slot %d) after timeout\n",
7060 					__func__, task_tag);
7061 		err = -ETIMEDOUT;
7062 	} else {
7063 		err = 0;
7064 		memcpy(treq, hba->utmrdl_base_addr + task_tag, sizeof(*treq));
7065 
7066 		ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_COMP);
7067 	}
7068 
7069 	spin_lock_irqsave(hba->host->host_lock, flags);
7070 	hba->tmf_rqs[req->tag] = NULL;
7071 	__clear_bit(task_tag, &hba->outstanding_tasks);
7072 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7073 
7074 	ufshcd_release(hba);
7075 	blk_mq_free_request(req);
7076 
7077 	return err;
7078 }
7079 
7080 /**
7081  * ufshcd_issue_tm_cmd - issues task management commands to controller
7082  * @hba: per adapter instance
7083  * @lun_id: LUN ID to which TM command is sent
7084  * @task_id: task ID to which the TM command is applicable
7085  * @tm_function: task management function opcode
7086  * @tm_response: task management service response return value
7087  *
7088  * Return: non-zero value on error, zero on success.
7089  */
7090 static int ufshcd_issue_tm_cmd(struct ufs_hba *hba, int lun_id, int task_id,
7091 		u8 tm_function, u8 *tm_response)
7092 {
7093 	struct utp_task_req_desc treq = { };
7094 	enum utp_ocs ocs_value;
7095 	int err;
7096 
7097 	/* Configure task request descriptor */
7098 	treq.header.interrupt = 1;
7099 	treq.header.ocs = OCS_INVALID_COMMAND_STATUS;
7100 
7101 	/* Configure task request UPIU */
7102 	treq.upiu_req.req_header.transaction_code = UPIU_TRANSACTION_TASK_REQ;
7103 	treq.upiu_req.req_header.lun = lun_id;
7104 	treq.upiu_req.req_header.tm_function = tm_function;
7105 
7106 	/*
7107 	 * The host shall provide the same value for LUN field in the basic
7108 	 * header and for Input Parameter.
7109 	 */
7110 	treq.upiu_req.input_param1 = cpu_to_be32(lun_id);
7111 	treq.upiu_req.input_param2 = cpu_to_be32(task_id);
7112 
7113 	err = __ufshcd_issue_tm_cmd(hba, &treq, tm_function);
7114 	if (err == -ETIMEDOUT)
7115 		return err;
7116 
7117 	ocs_value = treq.header.ocs & MASK_OCS;
7118 	if (ocs_value != OCS_SUCCESS)
7119 		dev_err(hba->dev, "%s: failed, ocs = 0x%x\n",
7120 				__func__, ocs_value);
7121 	else if (tm_response)
7122 		*tm_response = be32_to_cpu(treq.upiu_rsp.output_param1) &
7123 				MASK_TM_SERVICE_RESP;
7124 	return err;
7125 }
7126 
7127 /**
7128  * ufshcd_issue_devman_upiu_cmd - API for sending "utrd" type requests
7129  * @hba:	per-adapter instance
7130  * @req_upiu:	upiu request
7131  * @rsp_upiu:	upiu reply
7132  * @desc_buff:	pointer to descriptor buffer, NULL if NA
7133  * @buff_len:	descriptor size, 0 if NA
7134  * @cmd_type:	specifies the type (NOP, Query...)
7135  * @desc_op:	descriptor operation
7136  *
7137  * Those type of requests uses UTP Transfer Request Descriptor - utrd.
7138  * Therefore, it "rides" the device management infrastructure: uses its tag and
7139  * tasks work queues.
7140  *
7141  * Since there is only one available tag for device management commands,
7142  * the caller is expected to hold the hba->dev_cmd.lock mutex.
7143  *
7144  * Return: 0 upon success; < 0 upon failure.
7145  */
7146 static int ufshcd_issue_devman_upiu_cmd(struct ufs_hba *hba,
7147 					struct utp_upiu_req *req_upiu,
7148 					struct utp_upiu_req *rsp_upiu,
7149 					u8 *desc_buff, int *buff_len,
7150 					enum dev_cmd_type cmd_type,
7151 					enum query_opcode desc_op)
7152 {
7153 	const u32 tag = hba->reserved_slot;
7154 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
7155 	int err = 0;
7156 	u8 upiu_flags;
7157 
7158 	/* Protects use of hba->reserved_slot. */
7159 	lockdep_assert_held(&hba->dev_cmd.lock);
7160 
7161 	ufshcd_setup_dev_cmd(hba, lrbp, cmd_type, 0, tag);
7162 
7163 	ufshcd_prepare_req_desc_hdr(hba, lrbp, &upiu_flags, DMA_NONE, 0);
7164 
7165 	/* update the task tag in the request upiu */
7166 	req_upiu->header.task_tag = tag;
7167 
7168 	/* just copy the upiu request as it is */
7169 	memcpy(lrbp->ucd_req_ptr, req_upiu, sizeof(*lrbp->ucd_req_ptr));
7170 	if (desc_buff && desc_op == UPIU_QUERY_OPCODE_WRITE_DESC) {
7171 		/* The Data Segment Area is optional depending upon the query
7172 		 * function value. for WRITE DESCRIPTOR, the data segment
7173 		 * follows right after the tsf.
7174 		 */
7175 		memcpy(lrbp->ucd_req_ptr + 1, desc_buff, *buff_len);
7176 		*buff_len = 0;
7177 	}
7178 
7179 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
7180 
7181 	/*
7182 	 * ignore the returning value here - ufshcd_check_query_response is
7183 	 * bound to fail since dev_cmd.query and dev_cmd.type were left empty.
7184 	 * read the response directly ignoring all errors.
7185 	 */
7186 	ufshcd_issue_dev_cmd(hba, lrbp, tag, QUERY_REQ_TIMEOUT);
7187 
7188 	/* just copy the upiu response as it is */
7189 	memcpy(rsp_upiu, lrbp->ucd_rsp_ptr, sizeof(*rsp_upiu));
7190 	if (desc_buff && desc_op == UPIU_QUERY_OPCODE_READ_DESC) {
7191 		u8 *descp = (u8 *)lrbp->ucd_rsp_ptr + sizeof(*rsp_upiu);
7192 		u16 resp_len = be16_to_cpu(lrbp->ucd_rsp_ptr->header
7193 					   .data_segment_length);
7194 
7195 		if (*buff_len >= resp_len) {
7196 			memcpy(desc_buff, descp, resp_len);
7197 			*buff_len = resp_len;
7198 		} else {
7199 			dev_warn(hba->dev,
7200 				 "%s: rsp size %d is bigger than buffer size %d",
7201 				 __func__, resp_len, *buff_len);
7202 			*buff_len = 0;
7203 			err = -EINVAL;
7204 		}
7205 	}
7206 	ufshcd_add_query_upiu_trace(hba, err ? UFS_QUERY_ERR : UFS_QUERY_COMP,
7207 				    (struct utp_upiu_req *)lrbp->ucd_rsp_ptr);
7208 
7209 	return err;
7210 }
7211 
7212 /**
7213  * ufshcd_exec_raw_upiu_cmd - API function for sending raw upiu commands
7214  * @hba:	per-adapter instance
7215  * @req_upiu:	upiu request
7216  * @rsp_upiu:	upiu reply - only 8 DW as we do not support scsi commands
7217  * @msgcode:	message code, one of UPIU Transaction Codes Initiator to Target
7218  * @desc_buff:	pointer to descriptor buffer, NULL if NA
7219  * @buff_len:	descriptor size, 0 if NA
7220  * @desc_op:	descriptor operation
7221  *
7222  * Supports UTP Transfer requests (nop and query), and UTP Task
7223  * Management requests.
7224  * It is up to the caller to fill the upiu conent properly, as it will
7225  * be copied without any further input validations.
7226  *
7227  * Return: 0 upon success; < 0 upon failure.
7228  */
7229 int ufshcd_exec_raw_upiu_cmd(struct ufs_hba *hba,
7230 			     struct utp_upiu_req *req_upiu,
7231 			     struct utp_upiu_req *rsp_upiu,
7232 			     enum upiu_request_transaction msgcode,
7233 			     u8 *desc_buff, int *buff_len,
7234 			     enum query_opcode desc_op)
7235 {
7236 	int err;
7237 	enum dev_cmd_type cmd_type = DEV_CMD_TYPE_QUERY;
7238 	struct utp_task_req_desc treq = { };
7239 	enum utp_ocs ocs_value;
7240 	u8 tm_f = req_upiu->header.tm_function;
7241 
7242 	switch (msgcode) {
7243 	case UPIU_TRANSACTION_NOP_OUT:
7244 		cmd_type = DEV_CMD_TYPE_NOP;
7245 		fallthrough;
7246 	case UPIU_TRANSACTION_QUERY_REQ:
7247 		ufshcd_dev_man_lock(hba);
7248 		err = ufshcd_issue_devman_upiu_cmd(hba, req_upiu, rsp_upiu,
7249 						   desc_buff, buff_len,
7250 						   cmd_type, desc_op);
7251 		ufshcd_dev_man_unlock(hba);
7252 
7253 		break;
7254 	case UPIU_TRANSACTION_TASK_REQ:
7255 		treq.header.interrupt = 1;
7256 		treq.header.ocs = OCS_INVALID_COMMAND_STATUS;
7257 
7258 		memcpy(&treq.upiu_req, req_upiu, sizeof(*req_upiu));
7259 
7260 		err = __ufshcd_issue_tm_cmd(hba, &treq, tm_f);
7261 		if (err == -ETIMEDOUT)
7262 			break;
7263 
7264 		ocs_value = treq.header.ocs & MASK_OCS;
7265 		if (ocs_value != OCS_SUCCESS) {
7266 			dev_err(hba->dev, "%s: failed, ocs = 0x%x\n", __func__,
7267 				ocs_value);
7268 			break;
7269 		}
7270 
7271 		memcpy(rsp_upiu, &treq.upiu_rsp, sizeof(*rsp_upiu));
7272 
7273 		break;
7274 	default:
7275 		err = -EINVAL;
7276 
7277 		break;
7278 	}
7279 
7280 	return err;
7281 }
7282 
7283 /**
7284  * ufshcd_advanced_rpmb_req_handler - handle advanced RPMB request
7285  * @hba:	per adapter instance
7286  * @req_upiu:	upiu request
7287  * @rsp_upiu:	upiu reply
7288  * @req_ehs:	EHS field which contains Advanced RPMB Request Message
7289  * @rsp_ehs:	EHS field which returns Advanced RPMB Response Message
7290  * @sg_cnt:	The number of sg lists actually used
7291  * @sg_list:	Pointer to SG list when DATA IN/OUT UPIU is required in ARPMB operation
7292  * @dir:	DMA direction
7293  *
7294  * Return: zero on success, non-zero on failure.
7295  */
7296 int ufshcd_advanced_rpmb_req_handler(struct ufs_hba *hba, struct utp_upiu_req *req_upiu,
7297 			 struct utp_upiu_req *rsp_upiu, struct ufs_ehs *req_ehs,
7298 			 struct ufs_ehs *rsp_ehs, int sg_cnt, struct scatterlist *sg_list,
7299 			 enum dma_data_direction dir)
7300 {
7301 	const u32 tag = hba->reserved_slot;
7302 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
7303 	int err = 0;
7304 	int result;
7305 	u8 upiu_flags;
7306 	u8 *ehs_data;
7307 	u16 ehs_len;
7308 	int ehs = (hba->capabilities & MASK_EHSLUTRD_SUPPORTED) ? 2 : 0;
7309 
7310 	/* Protects use of hba->reserved_slot. */
7311 	ufshcd_dev_man_lock(hba);
7312 
7313 	ufshcd_setup_dev_cmd(hba, lrbp, DEV_CMD_TYPE_RPMB, UFS_UPIU_RPMB_WLUN, tag);
7314 
7315 	ufshcd_prepare_req_desc_hdr(hba, lrbp, &upiu_flags, DMA_NONE, ehs);
7316 
7317 	/* update the task tag */
7318 	req_upiu->header.task_tag = tag;
7319 
7320 	/* copy the UPIU(contains CDB) request as it is */
7321 	memcpy(lrbp->ucd_req_ptr, req_upiu, sizeof(*lrbp->ucd_req_ptr));
7322 	/* Copy EHS, starting with byte32, immediately after the CDB package */
7323 	memcpy(lrbp->ucd_req_ptr + 1, req_ehs, sizeof(*req_ehs));
7324 
7325 	if (dir != DMA_NONE && sg_list)
7326 		ufshcd_sgl_to_prdt(hba, lrbp, sg_cnt, sg_list);
7327 
7328 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
7329 
7330 	err = ufshcd_issue_dev_cmd(hba, lrbp, tag, ADVANCED_RPMB_REQ_TIMEOUT);
7331 
7332 	if (!err) {
7333 		/* Just copy the upiu response as it is */
7334 		memcpy(rsp_upiu, lrbp->ucd_rsp_ptr, sizeof(*rsp_upiu));
7335 		/* Get the response UPIU result */
7336 		result = (lrbp->ucd_rsp_ptr->header.response << 8) |
7337 			lrbp->ucd_rsp_ptr->header.status;
7338 
7339 		ehs_len = lrbp->ucd_rsp_ptr->header.ehs_length;
7340 		/*
7341 		 * Since the bLength in EHS indicates the total size of the EHS Header and EHS Data
7342 		 * in 32 Byte units, the value of the bLength Request/Response for Advanced RPMB
7343 		 * Message is 02h
7344 		 */
7345 		if (ehs_len == 2 && rsp_ehs) {
7346 			/*
7347 			 * ucd_rsp_ptr points to a buffer with a length of 512 bytes
7348 			 * (ALIGNED_UPIU_SIZE = 512), and the EHS data just starts from byte32
7349 			 */
7350 			ehs_data = (u8 *)lrbp->ucd_rsp_ptr + EHS_OFFSET_IN_RESPONSE;
7351 			memcpy(rsp_ehs, ehs_data, ehs_len * 32);
7352 		}
7353 	}
7354 
7355 	ufshcd_dev_man_unlock(hba);
7356 
7357 	return err ? : result;
7358 }
7359 
7360 /**
7361  * ufshcd_eh_device_reset_handler() - Reset a single logical unit.
7362  * @cmd: SCSI command pointer
7363  *
7364  * Return: SUCCESS or FAILED.
7365  */
7366 static int ufshcd_eh_device_reset_handler(struct scsi_cmnd *cmd)
7367 {
7368 	unsigned long flags, pending_reqs = 0, not_cleared = 0;
7369 	struct Scsi_Host *host;
7370 	struct ufs_hba *hba;
7371 	struct ufs_hw_queue *hwq;
7372 	struct ufshcd_lrb *lrbp;
7373 	u32 pos, not_cleared_mask = 0;
7374 	int err;
7375 	u8 resp = 0xF, lun;
7376 
7377 	host = cmd->device->host;
7378 	hba = shost_priv(host);
7379 
7380 	lun = ufshcd_scsi_to_upiu_lun(cmd->device->lun);
7381 	err = ufshcd_issue_tm_cmd(hba, lun, 0, UFS_LOGICAL_RESET, &resp);
7382 	if (err || resp != UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7383 		if (!err)
7384 			err = resp;
7385 		goto out;
7386 	}
7387 
7388 	if (hba->mcq_enabled) {
7389 		for (pos = 0; pos < hba->nutrs; pos++) {
7390 			lrbp = &hba->lrb[pos];
7391 			if (ufshcd_cmd_inflight(lrbp->cmd) &&
7392 			    lrbp->lun == lun) {
7393 				ufshcd_clear_cmd(hba, pos);
7394 				hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(lrbp->cmd));
7395 				ufshcd_mcq_poll_cqe_lock(hba, hwq);
7396 			}
7397 		}
7398 		err = 0;
7399 		goto out;
7400 	}
7401 
7402 	/* clear the commands that were pending for corresponding LUN */
7403 	spin_lock_irqsave(&hba->outstanding_lock, flags);
7404 	for_each_set_bit(pos, &hba->outstanding_reqs, hba->nutrs)
7405 		if (hba->lrb[pos].lun == lun)
7406 			__set_bit(pos, &pending_reqs);
7407 	hba->outstanding_reqs &= ~pending_reqs;
7408 	spin_unlock_irqrestore(&hba->outstanding_lock, flags);
7409 
7410 	for_each_set_bit(pos, &pending_reqs, hba->nutrs) {
7411 		if (ufshcd_clear_cmd(hba, pos) < 0) {
7412 			spin_lock_irqsave(&hba->outstanding_lock, flags);
7413 			not_cleared = 1U << pos &
7414 				ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
7415 			hba->outstanding_reqs |= not_cleared;
7416 			not_cleared_mask |= not_cleared;
7417 			spin_unlock_irqrestore(&hba->outstanding_lock, flags);
7418 
7419 			dev_err(hba->dev, "%s: failed to clear request %d\n",
7420 				__func__, pos);
7421 		}
7422 	}
7423 	__ufshcd_transfer_req_compl(hba, pending_reqs & ~not_cleared_mask);
7424 
7425 out:
7426 	hba->req_abort_count = 0;
7427 	ufshcd_update_evt_hist(hba, UFS_EVT_DEV_RESET, (u32)err);
7428 	if (!err) {
7429 		err = SUCCESS;
7430 	} else {
7431 		dev_err(hba->dev, "%s: failed with err %d\n", __func__, err);
7432 		err = FAILED;
7433 	}
7434 	return err;
7435 }
7436 
7437 static void ufshcd_set_req_abort_skip(struct ufs_hba *hba, unsigned long bitmap)
7438 {
7439 	struct ufshcd_lrb *lrbp;
7440 	int tag;
7441 
7442 	for_each_set_bit(tag, &bitmap, hba->nutrs) {
7443 		lrbp = &hba->lrb[tag];
7444 		lrbp->req_abort_skip = true;
7445 	}
7446 }
7447 
7448 /**
7449  * ufshcd_try_to_abort_task - abort a specific task
7450  * @hba: Pointer to adapter instance
7451  * @tag: Task tag/index to be aborted
7452  *
7453  * Abort the pending command in device by sending UFS_ABORT_TASK task management
7454  * command, and in host controller by clearing the door-bell register. There can
7455  * be race between controller sending the command to the device while abort is
7456  * issued. To avoid that, first issue UFS_QUERY_TASK to check if the command is
7457  * really issued and then try to abort it.
7458  *
7459  * Return: zero on success, non-zero on failure.
7460  */
7461 int ufshcd_try_to_abort_task(struct ufs_hba *hba, int tag)
7462 {
7463 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
7464 	int err;
7465 	int poll_cnt;
7466 	u8 resp = 0xF;
7467 
7468 	for (poll_cnt = 100; poll_cnt; poll_cnt--) {
7469 		err = ufshcd_issue_tm_cmd(hba, lrbp->lun, lrbp->task_tag,
7470 				UFS_QUERY_TASK, &resp);
7471 		if (!err && resp == UPIU_TASK_MANAGEMENT_FUNC_SUCCEEDED) {
7472 			/* cmd pending in the device */
7473 			dev_err(hba->dev, "%s: cmd pending in the device. tag = %d\n",
7474 				__func__, tag);
7475 			break;
7476 		} else if (!err && resp == UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7477 			/*
7478 			 * cmd not pending in the device, check if it is
7479 			 * in transition.
7480 			 */
7481 			dev_info(
7482 				hba->dev,
7483 				"%s: cmd with tag %d not pending in the device.\n",
7484 				__func__, tag);
7485 			if (!ufshcd_cmd_inflight(lrbp->cmd)) {
7486 				dev_info(hba->dev,
7487 					 "%s: cmd with tag=%d completed.\n",
7488 					 __func__, tag);
7489 				return 0;
7490 			}
7491 			usleep_range(100, 200);
7492 		} else {
7493 			dev_err(hba->dev,
7494 				"%s: no response from device. tag = %d, err %d\n",
7495 				__func__, tag, err);
7496 			return err ? : resp;
7497 		}
7498 	}
7499 
7500 	if (!poll_cnt)
7501 		return -EBUSY;
7502 
7503 	err = ufshcd_issue_tm_cmd(hba, lrbp->lun, lrbp->task_tag,
7504 			UFS_ABORT_TASK, &resp);
7505 	if (err || resp != UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7506 		if (!err) {
7507 			err = resp; /* service response error */
7508 			dev_err(hba->dev, "%s: issued. tag = %d, err %d\n",
7509 				__func__, tag, err);
7510 		}
7511 		return err;
7512 	}
7513 
7514 	err = ufshcd_clear_cmd(hba, tag);
7515 	if (err)
7516 		dev_err(hba->dev, "%s: Failed clearing cmd at tag %d, err %d\n",
7517 			__func__, tag, err);
7518 
7519 	return err;
7520 }
7521 
7522 /**
7523  * ufshcd_abort - scsi host template eh_abort_handler callback
7524  * @cmd: SCSI command pointer
7525  *
7526  * Return: SUCCESS or FAILED.
7527  */
7528 static int ufshcd_abort(struct scsi_cmnd *cmd)
7529 {
7530 	struct Scsi_Host *host = cmd->device->host;
7531 	struct ufs_hba *hba = shost_priv(host);
7532 	int tag = scsi_cmd_to_rq(cmd)->tag;
7533 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
7534 	unsigned long flags;
7535 	int err = FAILED;
7536 	bool outstanding;
7537 	u32 reg;
7538 
7539 	ufshcd_hold(hba);
7540 
7541 	if (!hba->mcq_enabled) {
7542 		reg = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
7543 		if (!test_bit(tag, &hba->outstanding_reqs)) {
7544 			/* If command is already aborted/completed, return FAILED. */
7545 			dev_err(hba->dev,
7546 				"%s: cmd at tag %d already completed, outstanding=0x%lx, doorbell=0x%x\n",
7547 				__func__, tag, hba->outstanding_reqs, reg);
7548 			goto release;
7549 		}
7550 	}
7551 
7552 	/* Print Transfer Request of aborted task */
7553 	dev_info(hba->dev, "%s: Device abort task at tag %d\n", __func__, tag);
7554 
7555 	/*
7556 	 * Print detailed info about aborted request.
7557 	 * As more than one request might get aborted at the same time,
7558 	 * print full information only for the first aborted request in order
7559 	 * to reduce repeated printouts. For other aborted requests only print
7560 	 * basic details.
7561 	 */
7562 	scsi_print_command(cmd);
7563 	if (!hba->req_abort_count) {
7564 		ufshcd_update_evt_hist(hba, UFS_EVT_ABORT, tag);
7565 		ufshcd_print_evt_hist(hba);
7566 		ufshcd_print_host_state(hba);
7567 		ufshcd_print_pwr_info(hba);
7568 		ufshcd_print_tr(hba, tag, true);
7569 	} else {
7570 		ufshcd_print_tr(hba, tag, false);
7571 	}
7572 	hba->req_abort_count++;
7573 
7574 	if (!hba->mcq_enabled && !(reg & (1 << tag))) {
7575 		/* only execute this code in single doorbell mode */
7576 		dev_err(hba->dev,
7577 		"%s: cmd was completed, but without a notifying intr, tag = %d",
7578 		__func__, tag);
7579 		__ufshcd_transfer_req_compl(hba, 1UL << tag);
7580 		goto release;
7581 	}
7582 
7583 	/*
7584 	 * Task abort to the device W-LUN is illegal. When this command
7585 	 * will fail, due to spec violation, scsi err handling next step
7586 	 * will be to send LU reset which, again, is a spec violation.
7587 	 * To avoid these unnecessary/illegal steps, first we clean up
7588 	 * the lrb taken by this cmd and re-set it in outstanding_reqs,
7589 	 * then queue the eh_work and bail.
7590 	 */
7591 	if (lrbp->lun == UFS_UPIU_UFS_DEVICE_WLUN) {
7592 		ufshcd_update_evt_hist(hba, UFS_EVT_ABORT, lrbp->lun);
7593 
7594 		spin_lock_irqsave(host->host_lock, flags);
7595 		hba->force_reset = true;
7596 		ufshcd_schedule_eh_work(hba);
7597 		spin_unlock_irqrestore(host->host_lock, flags);
7598 		goto release;
7599 	}
7600 
7601 	if (hba->mcq_enabled) {
7602 		/* MCQ mode. Branch off to handle abort for mcq mode */
7603 		err = ufshcd_mcq_abort(cmd);
7604 		goto release;
7605 	}
7606 
7607 	/* Skip task abort in case previous aborts failed and report failure */
7608 	if (lrbp->req_abort_skip) {
7609 		dev_err(hba->dev, "%s: skipping abort\n", __func__);
7610 		ufshcd_set_req_abort_skip(hba, hba->outstanding_reqs);
7611 		goto release;
7612 	}
7613 
7614 	err = ufshcd_try_to_abort_task(hba, tag);
7615 	if (err) {
7616 		dev_err(hba->dev, "%s: failed with err %d\n", __func__, err);
7617 		ufshcd_set_req_abort_skip(hba, hba->outstanding_reqs);
7618 		err = FAILED;
7619 		goto release;
7620 	}
7621 
7622 	/*
7623 	 * Clear the corresponding bit from outstanding_reqs since the command
7624 	 * has been aborted successfully.
7625 	 */
7626 	spin_lock_irqsave(&hba->outstanding_lock, flags);
7627 	outstanding = __test_and_clear_bit(tag, &hba->outstanding_reqs);
7628 	spin_unlock_irqrestore(&hba->outstanding_lock, flags);
7629 
7630 	if (outstanding)
7631 		ufshcd_release_scsi_cmd(hba, lrbp);
7632 
7633 	err = SUCCESS;
7634 
7635 release:
7636 	/* Matches the ufshcd_hold() call at the start of this function. */
7637 	ufshcd_release(hba);
7638 	return err;
7639 }
7640 
7641 /**
7642  * ufshcd_process_probe_result - Process the ufshcd_probe_hba() result.
7643  * @hba: UFS host controller instance.
7644  * @probe_start: time when the ufshcd_probe_hba() call started.
7645  * @ret: ufshcd_probe_hba() return value.
7646  */
7647 static void ufshcd_process_probe_result(struct ufs_hba *hba,
7648 					ktime_t probe_start, int ret)
7649 {
7650 	unsigned long flags;
7651 
7652 	spin_lock_irqsave(hba->host->host_lock, flags);
7653 	if (ret)
7654 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
7655 	else if (hba->ufshcd_state == UFSHCD_STATE_RESET)
7656 		hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
7657 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7658 
7659 	trace_ufshcd_init(dev_name(hba->dev), ret,
7660 			  ktime_to_us(ktime_sub(ktime_get(), probe_start)),
7661 			  hba->curr_dev_pwr_mode, hba->uic_link_state);
7662 }
7663 
7664 /**
7665  * ufshcd_host_reset_and_restore - reset and restore host controller
7666  * @hba: per-adapter instance
7667  *
7668  * Note that host controller reset may issue DME_RESET to
7669  * local and remote (device) Uni-Pro stack and the attributes
7670  * are reset to default state.
7671  *
7672  * Return: zero on success, non-zero on failure.
7673  */
7674 static int ufshcd_host_reset_and_restore(struct ufs_hba *hba)
7675 {
7676 	int err;
7677 
7678 	/*
7679 	 * Stop the host controller and complete the requests
7680 	 * cleared by h/w
7681 	 */
7682 	ufshcd_hba_stop(hba);
7683 	hba->silence_err_logs = true;
7684 	ufshcd_complete_requests(hba, true);
7685 	hba->silence_err_logs = false;
7686 
7687 	/* scale up clocks to max frequency before full reinitialization */
7688 	ufshcd_scale_clks(hba, ULONG_MAX, true);
7689 
7690 	err = ufshcd_hba_enable(hba);
7691 
7692 	/* Establish the link again and restore the device */
7693 	if (!err)
7694 		err = ufshcd_probe_hba(hba, false);
7695 
7696 	if (err)
7697 		dev_err(hba->dev, "%s: Host init failed %d\n", __func__, err);
7698 	ufshcd_update_evt_hist(hba, UFS_EVT_HOST_RESET, (u32)err);
7699 	return err;
7700 }
7701 
7702 /**
7703  * ufshcd_reset_and_restore - reset and re-initialize host/device
7704  * @hba: per-adapter instance
7705  *
7706  * Reset and recover device, host and re-establish link. This
7707  * is helpful to recover the communication in fatal error conditions.
7708  *
7709  * Return: zero on success, non-zero on failure.
7710  */
7711 static int ufshcd_reset_and_restore(struct ufs_hba *hba)
7712 {
7713 	u32 saved_err = 0;
7714 	u32 saved_uic_err = 0;
7715 	int err = 0;
7716 	unsigned long flags;
7717 	int retries = MAX_HOST_RESET_RETRIES;
7718 
7719 	spin_lock_irqsave(hba->host->host_lock, flags);
7720 	do {
7721 		/*
7722 		 * This is a fresh start, cache and clear saved error first,
7723 		 * in case new error generated during reset and restore.
7724 		 */
7725 		saved_err |= hba->saved_err;
7726 		saved_uic_err |= hba->saved_uic_err;
7727 		hba->saved_err = 0;
7728 		hba->saved_uic_err = 0;
7729 		hba->force_reset = false;
7730 		hba->ufshcd_state = UFSHCD_STATE_RESET;
7731 		spin_unlock_irqrestore(hba->host->host_lock, flags);
7732 
7733 		/* Reset the attached device */
7734 		ufshcd_device_reset(hba);
7735 
7736 		err = ufshcd_host_reset_and_restore(hba);
7737 
7738 		spin_lock_irqsave(hba->host->host_lock, flags);
7739 		if (err)
7740 			continue;
7741 		/* Do not exit unless operational or dead */
7742 		if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL &&
7743 		    hba->ufshcd_state != UFSHCD_STATE_ERROR &&
7744 		    hba->ufshcd_state != UFSHCD_STATE_EH_SCHEDULED_NON_FATAL)
7745 			err = -EAGAIN;
7746 	} while (err && --retries);
7747 
7748 	/*
7749 	 * Inform scsi mid-layer that we did reset and allow to handle
7750 	 * Unit Attention properly.
7751 	 */
7752 	scsi_report_bus_reset(hba->host, 0);
7753 	if (err) {
7754 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
7755 		hba->saved_err |= saved_err;
7756 		hba->saved_uic_err |= saved_uic_err;
7757 	}
7758 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7759 
7760 	return err;
7761 }
7762 
7763 /**
7764  * ufshcd_eh_host_reset_handler - host reset handler registered to scsi layer
7765  * @cmd: SCSI command pointer
7766  *
7767  * Return: SUCCESS or FAILED.
7768  */
7769 static int ufshcd_eh_host_reset_handler(struct scsi_cmnd *cmd)
7770 {
7771 	int err = SUCCESS;
7772 	unsigned long flags;
7773 	struct ufs_hba *hba;
7774 
7775 	hba = shost_priv(cmd->device->host);
7776 
7777 	/*
7778 	 * If runtime PM sent SSU and got a timeout, scsi_error_handler is
7779 	 * stuck in this function waiting for flush_work(&hba->eh_work). And
7780 	 * ufshcd_err_handler(eh_work) is stuck waiting for runtime PM. Do
7781 	 * ufshcd_link_recovery instead of eh_work to prevent deadlock.
7782 	 */
7783 	if (hba->pm_op_in_progress) {
7784 		if (ufshcd_link_recovery(hba))
7785 			err = FAILED;
7786 
7787 		return err;
7788 	}
7789 
7790 	spin_lock_irqsave(hba->host->host_lock, flags);
7791 	hba->force_reset = true;
7792 	ufshcd_schedule_eh_work(hba);
7793 	dev_err(hba->dev, "%s: reset in progress - 1\n", __func__);
7794 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7795 
7796 	flush_work(&hba->eh_work);
7797 
7798 	spin_lock_irqsave(hba->host->host_lock, flags);
7799 	if (hba->ufshcd_state == UFSHCD_STATE_ERROR)
7800 		err = FAILED;
7801 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7802 
7803 	return err;
7804 }
7805 
7806 /**
7807  * ufshcd_get_max_icc_level - calculate the ICC level
7808  * @sup_curr_uA: max. current supported by the regulator
7809  * @start_scan: row at the desc table to start scan from
7810  * @buff: power descriptor buffer
7811  *
7812  * Return: calculated max ICC level for specific regulator.
7813  */
7814 static u32 ufshcd_get_max_icc_level(int sup_curr_uA, u32 start_scan,
7815 				    const char *buff)
7816 {
7817 	int i;
7818 	int curr_uA;
7819 	u16 data;
7820 	u16 unit;
7821 
7822 	for (i = start_scan; i >= 0; i--) {
7823 		data = get_unaligned_be16(&buff[2 * i]);
7824 		unit = (data & ATTR_ICC_LVL_UNIT_MASK) >>
7825 						ATTR_ICC_LVL_UNIT_OFFSET;
7826 		curr_uA = data & ATTR_ICC_LVL_VALUE_MASK;
7827 		switch (unit) {
7828 		case UFSHCD_NANO_AMP:
7829 			curr_uA = curr_uA / 1000;
7830 			break;
7831 		case UFSHCD_MILI_AMP:
7832 			curr_uA = curr_uA * 1000;
7833 			break;
7834 		case UFSHCD_AMP:
7835 			curr_uA = curr_uA * 1000 * 1000;
7836 			break;
7837 		case UFSHCD_MICRO_AMP:
7838 		default:
7839 			break;
7840 		}
7841 		if (sup_curr_uA >= curr_uA)
7842 			break;
7843 	}
7844 	if (i < 0) {
7845 		i = 0;
7846 		pr_err("%s: Couldn't find valid icc_level = %d", __func__, i);
7847 	}
7848 
7849 	return (u32)i;
7850 }
7851 
7852 /**
7853  * ufshcd_find_max_sup_active_icc_level - calculate the max ICC level
7854  * In case regulators are not initialized we'll return 0
7855  * @hba: per-adapter instance
7856  * @desc_buf: power descriptor buffer to extract ICC levels from.
7857  *
7858  * Return: calculated ICC level.
7859  */
7860 static u32 ufshcd_find_max_sup_active_icc_level(struct ufs_hba *hba,
7861 						const u8 *desc_buf)
7862 {
7863 	u32 icc_level = 0;
7864 
7865 	if (!hba->vreg_info.vcc || !hba->vreg_info.vccq ||
7866 						!hba->vreg_info.vccq2) {
7867 		/*
7868 		 * Using dev_dbg to avoid messages during runtime PM to avoid
7869 		 * never-ending cycles of messages written back to storage by
7870 		 * user space causing runtime resume, causing more messages and
7871 		 * so on.
7872 		 */
7873 		dev_dbg(hba->dev,
7874 			"%s: Regulator capability was not set, actvIccLevel=%d",
7875 							__func__, icc_level);
7876 		goto out;
7877 	}
7878 
7879 	if (hba->vreg_info.vcc->max_uA)
7880 		icc_level = ufshcd_get_max_icc_level(
7881 				hba->vreg_info.vcc->max_uA,
7882 				POWER_DESC_MAX_ACTV_ICC_LVLS - 1,
7883 				&desc_buf[PWR_DESC_ACTIVE_LVLS_VCC_0]);
7884 
7885 	if (hba->vreg_info.vccq->max_uA)
7886 		icc_level = ufshcd_get_max_icc_level(
7887 				hba->vreg_info.vccq->max_uA,
7888 				icc_level,
7889 				&desc_buf[PWR_DESC_ACTIVE_LVLS_VCCQ_0]);
7890 
7891 	if (hba->vreg_info.vccq2->max_uA)
7892 		icc_level = ufshcd_get_max_icc_level(
7893 				hba->vreg_info.vccq2->max_uA,
7894 				icc_level,
7895 				&desc_buf[PWR_DESC_ACTIVE_LVLS_VCCQ2_0]);
7896 out:
7897 	return icc_level;
7898 }
7899 
7900 static void ufshcd_set_active_icc_lvl(struct ufs_hba *hba)
7901 {
7902 	int ret;
7903 	u8 *desc_buf;
7904 	u32 icc_level;
7905 
7906 	desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
7907 	if (!desc_buf)
7908 		return;
7909 
7910 	ret = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_POWER, 0, 0,
7911 				     desc_buf, QUERY_DESC_MAX_SIZE);
7912 	if (ret) {
7913 		dev_err(hba->dev,
7914 			"%s: Failed reading power descriptor ret = %d",
7915 			__func__, ret);
7916 		goto out;
7917 	}
7918 
7919 	icc_level = ufshcd_find_max_sup_active_icc_level(hba, desc_buf);
7920 	dev_dbg(hba->dev, "%s: setting icc_level 0x%x", __func__, icc_level);
7921 
7922 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
7923 		QUERY_ATTR_IDN_ACTIVE_ICC_LVL, 0, 0, &icc_level);
7924 
7925 	if (ret)
7926 		dev_err(hba->dev,
7927 			"%s: Failed configuring bActiveICCLevel = %d ret = %d",
7928 			__func__, icc_level, ret);
7929 
7930 out:
7931 	kfree(desc_buf);
7932 }
7933 
7934 static inline void ufshcd_blk_pm_runtime_init(struct scsi_device *sdev)
7935 {
7936 	struct Scsi_Host *shost = sdev->host;
7937 
7938 	scsi_autopm_get_device(sdev);
7939 	blk_pm_runtime_init(sdev->request_queue, &sdev->sdev_gendev);
7940 	if (sdev->rpm_autosuspend)
7941 		pm_runtime_set_autosuspend_delay(&sdev->sdev_gendev,
7942 						 shost->rpm_autosuspend_delay);
7943 	scsi_autopm_put_device(sdev);
7944 }
7945 
7946 /**
7947  * ufshcd_scsi_add_wlus - Adds required W-LUs
7948  * @hba: per-adapter instance
7949  *
7950  * UFS device specification requires the UFS devices to support 4 well known
7951  * logical units:
7952  *	"REPORT_LUNS" (address: 01h)
7953  *	"UFS Device" (address: 50h)
7954  *	"RPMB" (address: 44h)
7955  *	"BOOT" (address: 30h)
7956  * UFS device's power management needs to be controlled by "POWER CONDITION"
7957  * field of SSU (START STOP UNIT) command. But this "power condition" field
7958  * will take effect only when its sent to "UFS device" well known logical unit
7959  * hence we require the scsi_device instance to represent this logical unit in
7960  * order for the UFS host driver to send the SSU command for power management.
7961  *
7962  * We also require the scsi_device instance for "RPMB" (Replay Protected Memory
7963  * Block) LU so user space process can control this LU. User space may also
7964  * want to have access to BOOT LU.
7965  *
7966  * This function adds scsi device instances for each of all well known LUs
7967  * (except "REPORT LUNS" LU).
7968  *
7969  * Return: zero on success (all required W-LUs are added successfully),
7970  * non-zero error value on failure (if failed to add any of the required W-LU).
7971  */
7972 static int ufshcd_scsi_add_wlus(struct ufs_hba *hba)
7973 {
7974 	int ret = 0;
7975 	struct scsi_device *sdev_boot, *sdev_rpmb;
7976 
7977 	hba->ufs_device_wlun = __scsi_add_device(hba->host, 0, 0,
7978 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_UFS_DEVICE_WLUN), NULL);
7979 	if (IS_ERR(hba->ufs_device_wlun)) {
7980 		ret = PTR_ERR(hba->ufs_device_wlun);
7981 		hba->ufs_device_wlun = NULL;
7982 		goto out;
7983 	}
7984 	scsi_device_put(hba->ufs_device_wlun);
7985 
7986 	sdev_rpmb = __scsi_add_device(hba->host, 0, 0,
7987 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_RPMB_WLUN), NULL);
7988 	if (IS_ERR(sdev_rpmb)) {
7989 		ret = PTR_ERR(sdev_rpmb);
7990 		goto remove_ufs_device_wlun;
7991 	}
7992 	ufshcd_blk_pm_runtime_init(sdev_rpmb);
7993 	scsi_device_put(sdev_rpmb);
7994 
7995 	sdev_boot = __scsi_add_device(hba->host, 0, 0,
7996 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_BOOT_WLUN), NULL);
7997 	if (IS_ERR(sdev_boot)) {
7998 		dev_err(hba->dev, "%s: BOOT WLUN not found\n", __func__);
7999 	} else {
8000 		ufshcd_blk_pm_runtime_init(sdev_boot);
8001 		scsi_device_put(sdev_boot);
8002 	}
8003 	goto out;
8004 
8005 remove_ufs_device_wlun:
8006 	scsi_remove_device(hba->ufs_device_wlun);
8007 out:
8008 	return ret;
8009 }
8010 
8011 static void ufshcd_wb_probe(struct ufs_hba *hba, const u8 *desc_buf)
8012 {
8013 	struct ufs_dev_info *dev_info = &hba->dev_info;
8014 	u8 lun;
8015 	u32 d_lu_wb_buf_alloc;
8016 	u32 ext_ufs_feature;
8017 
8018 	if (!ufshcd_is_wb_allowed(hba))
8019 		return;
8020 
8021 	/*
8022 	 * Probe WB only for UFS-2.2 and UFS-3.1 (and later) devices or
8023 	 * UFS devices with quirk UFS_DEVICE_QUIRK_SUPPORT_EXTENDED_FEATURES
8024 	 * enabled
8025 	 */
8026 	if (!(dev_info->wspecversion >= 0x310 ||
8027 	      dev_info->wspecversion == 0x220 ||
8028 	     (hba->dev_quirks & UFS_DEVICE_QUIRK_SUPPORT_EXTENDED_FEATURES)))
8029 		goto wb_disabled;
8030 
8031 	ext_ufs_feature = get_unaligned_be32(desc_buf +
8032 					DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
8033 
8034 	if (!(ext_ufs_feature & UFS_DEV_WRITE_BOOSTER_SUP))
8035 		goto wb_disabled;
8036 
8037 	/*
8038 	 * WB may be supported but not configured while provisioning. The spec
8039 	 * says, in dedicated wb buffer mode, a max of 1 lun would have wb
8040 	 * buffer configured.
8041 	 */
8042 	dev_info->wb_buffer_type = desc_buf[DEVICE_DESC_PARAM_WB_TYPE];
8043 
8044 	dev_info->b_presrv_uspc_en =
8045 		desc_buf[DEVICE_DESC_PARAM_WB_PRESRV_USRSPC_EN];
8046 
8047 	if (dev_info->wb_buffer_type == WB_BUF_MODE_SHARED) {
8048 		if (!get_unaligned_be32(desc_buf +
8049 				   DEVICE_DESC_PARAM_WB_SHARED_ALLOC_UNITS))
8050 			goto wb_disabled;
8051 	} else {
8052 		for (lun = 0; lun < UFS_UPIU_MAX_WB_LUN_ID; lun++) {
8053 			d_lu_wb_buf_alloc = 0;
8054 			ufshcd_read_unit_desc_param(hba,
8055 					lun,
8056 					UNIT_DESC_PARAM_WB_BUF_ALLOC_UNITS,
8057 					(u8 *)&d_lu_wb_buf_alloc,
8058 					sizeof(d_lu_wb_buf_alloc));
8059 			if (d_lu_wb_buf_alloc) {
8060 				dev_info->wb_dedicated_lu = lun;
8061 				break;
8062 			}
8063 		}
8064 
8065 		if (!d_lu_wb_buf_alloc)
8066 			goto wb_disabled;
8067 	}
8068 
8069 	if (!ufshcd_is_wb_buf_lifetime_available(hba))
8070 		goto wb_disabled;
8071 
8072 	return;
8073 
8074 wb_disabled:
8075 	hba->caps &= ~UFSHCD_CAP_WB_EN;
8076 }
8077 
8078 static void ufshcd_temp_notif_probe(struct ufs_hba *hba, const u8 *desc_buf)
8079 {
8080 	struct ufs_dev_info *dev_info = &hba->dev_info;
8081 	u32 ext_ufs_feature;
8082 	u8 mask = 0;
8083 
8084 	if (!(hba->caps & UFSHCD_CAP_TEMP_NOTIF) || dev_info->wspecversion < 0x300)
8085 		return;
8086 
8087 	ext_ufs_feature = get_unaligned_be32(desc_buf + DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
8088 
8089 	if (ext_ufs_feature & UFS_DEV_LOW_TEMP_NOTIF)
8090 		mask |= MASK_EE_TOO_LOW_TEMP;
8091 
8092 	if (ext_ufs_feature & UFS_DEV_HIGH_TEMP_NOTIF)
8093 		mask |= MASK_EE_TOO_HIGH_TEMP;
8094 
8095 	if (mask) {
8096 		ufshcd_enable_ee(hba, mask);
8097 		ufs_hwmon_probe(hba, mask);
8098 	}
8099 }
8100 
8101 static void ufshcd_ext_iid_probe(struct ufs_hba *hba, u8 *desc_buf)
8102 {
8103 	struct ufs_dev_info *dev_info = &hba->dev_info;
8104 	u32 ext_ufs_feature;
8105 	u32 ext_iid_en = 0;
8106 	int err;
8107 
8108 	/* Only UFS-4.0 and above may support EXT_IID */
8109 	if (dev_info->wspecversion < 0x400)
8110 		goto out;
8111 
8112 	ext_ufs_feature = get_unaligned_be32(desc_buf +
8113 				     DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
8114 	if (!(ext_ufs_feature & UFS_DEV_EXT_IID_SUP))
8115 		goto out;
8116 
8117 	err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
8118 				      QUERY_ATTR_IDN_EXT_IID_EN, 0, 0, &ext_iid_en);
8119 	if (err)
8120 		dev_err(hba->dev, "failed reading bEXTIIDEn. err = %d\n", err);
8121 
8122 out:
8123 	dev_info->b_ext_iid_en = ext_iid_en;
8124 }
8125 
8126 static void ufshcd_set_rtt(struct ufs_hba *hba)
8127 {
8128 	struct ufs_dev_info *dev_info = &hba->dev_info;
8129 	u32 rtt = 0;
8130 	u32 dev_rtt = 0;
8131 	int host_rtt_cap = hba->vops && hba->vops->max_num_rtt ?
8132 			   hba->vops->max_num_rtt : hba->nortt;
8133 
8134 	/* RTT override makes sense only for UFS-4.0 and above */
8135 	if (dev_info->wspecversion < 0x400)
8136 		return;
8137 
8138 	if (ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
8139 				    QUERY_ATTR_IDN_MAX_NUM_OF_RTT, 0, 0, &dev_rtt)) {
8140 		dev_err(hba->dev, "failed reading bMaxNumOfRTT\n");
8141 		return;
8142 	}
8143 
8144 	/* do not override if it was already written */
8145 	if (dev_rtt != DEFAULT_MAX_NUM_RTT)
8146 		return;
8147 
8148 	rtt = min_t(int, dev_info->rtt_cap, host_rtt_cap);
8149 
8150 	if (rtt == dev_rtt)
8151 		return;
8152 
8153 	if (ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
8154 				    QUERY_ATTR_IDN_MAX_NUM_OF_RTT, 0, 0, &rtt))
8155 		dev_err(hba->dev, "failed writing bMaxNumOfRTT\n");
8156 }
8157 
8158 void ufshcd_fixup_dev_quirks(struct ufs_hba *hba,
8159 			     const struct ufs_dev_quirk *fixups)
8160 {
8161 	const struct ufs_dev_quirk *f;
8162 	struct ufs_dev_info *dev_info = &hba->dev_info;
8163 
8164 	if (!fixups)
8165 		return;
8166 
8167 	for (f = fixups; f->quirk; f++) {
8168 		if ((f->wmanufacturerid == dev_info->wmanufacturerid ||
8169 		     f->wmanufacturerid == UFS_ANY_VENDOR) &&
8170 		     ((dev_info->model &&
8171 		       STR_PRFX_EQUAL(f->model, dev_info->model)) ||
8172 		      !strcmp(f->model, UFS_ANY_MODEL)))
8173 			hba->dev_quirks |= f->quirk;
8174 	}
8175 }
8176 EXPORT_SYMBOL_GPL(ufshcd_fixup_dev_quirks);
8177 
8178 static void ufs_fixup_device_setup(struct ufs_hba *hba)
8179 {
8180 	/* fix by general quirk table */
8181 	ufshcd_fixup_dev_quirks(hba, ufs_fixups);
8182 
8183 	/* allow vendors to fix quirks */
8184 	ufshcd_vops_fixup_dev_quirks(hba);
8185 }
8186 
8187 static void ufshcd_update_rtc(struct ufs_hba *hba)
8188 {
8189 	struct timespec64 ts64;
8190 	int err;
8191 	u32 val;
8192 
8193 	ktime_get_real_ts64(&ts64);
8194 
8195 	if (ts64.tv_sec < hba->dev_info.rtc_time_baseline) {
8196 		dev_warn_once(hba->dev, "%s: Current time precedes previous setting!\n", __func__);
8197 		return;
8198 	}
8199 
8200 	/*
8201 	 * The Absolute RTC mode has a 136-year limit, spanning from 2010 to 2146. If a time beyond
8202 	 * 2146 is required, it is recommended to choose the relative RTC mode.
8203 	 */
8204 	val = ts64.tv_sec - hba->dev_info.rtc_time_baseline;
8205 
8206 	/* Skip update RTC if RPM state is not RPM_ACTIVE */
8207 	if (ufshcd_rpm_get_if_active(hba) <= 0)
8208 		return;
8209 
8210 	err = ufshcd_query_attr(hba, UPIU_QUERY_OPCODE_WRITE_ATTR, QUERY_ATTR_IDN_SECONDS_PASSED,
8211 				0, 0, &val);
8212 	ufshcd_rpm_put_sync(hba);
8213 
8214 	if (err)
8215 		dev_err(hba->dev, "%s: Failed to update rtc %d\n", __func__, err);
8216 	else if (hba->dev_info.rtc_type == UFS_RTC_RELATIVE)
8217 		hba->dev_info.rtc_time_baseline = ts64.tv_sec;
8218 }
8219 
8220 static void ufshcd_rtc_work(struct work_struct *work)
8221 {
8222 	struct ufs_hba *hba;
8223 
8224 	hba = container_of(to_delayed_work(work), struct ufs_hba, ufs_rtc_update_work);
8225 
8226 	 /* Update RTC only when there are no requests in progress and UFSHCI is operational */
8227 	if (!ufshcd_is_ufs_dev_busy(hba) && hba->ufshcd_state == UFSHCD_STATE_OPERATIONAL)
8228 		ufshcd_update_rtc(hba);
8229 
8230 	if (ufshcd_is_ufs_dev_active(hba) && hba->dev_info.rtc_update_period)
8231 		schedule_delayed_work(&hba->ufs_rtc_update_work,
8232 				      msecs_to_jiffies(hba->dev_info.rtc_update_period));
8233 }
8234 
8235 static void ufs_init_rtc(struct ufs_hba *hba, u8 *desc_buf)
8236 {
8237 	u16 periodic_rtc_update = get_unaligned_be16(&desc_buf[DEVICE_DESC_PARAM_FRQ_RTC]);
8238 	struct ufs_dev_info *dev_info = &hba->dev_info;
8239 
8240 	if (periodic_rtc_update & UFS_RTC_TIME_BASELINE) {
8241 		dev_info->rtc_type = UFS_RTC_ABSOLUTE;
8242 
8243 		/*
8244 		 * The concept of measuring time in Linux as the number of seconds elapsed since
8245 		 * 00:00:00 UTC on January 1, 1970, and UFS ABS RTC is elapsed from January 1st
8246 		 * 2010 00:00, here we need to adjust ABS baseline.
8247 		 */
8248 		dev_info->rtc_time_baseline = mktime64(2010, 1, 1, 0, 0, 0) -
8249 							mktime64(1970, 1, 1, 0, 0, 0);
8250 	} else {
8251 		dev_info->rtc_type = UFS_RTC_RELATIVE;
8252 		dev_info->rtc_time_baseline = 0;
8253 	}
8254 
8255 	/*
8256 	 * We ignore TIME_PERIOD defined in wPeriodicRTCUpdate because Spec does not clearly state
8257 	 * how to calculate the specific update period for each time unit. And we disable periodic
8258 	 * RTC update work, let user configure by sysfs node according to specific circumstance.
8259 	 */
8260 	dev_info->rtc_update_period = 0;
8261 }
8262 
8263 static int ufs_get_device_desc(struct ufs_hba *hba)
8264 {
8265 	int err;
8266 	u8 model_index;
8267 	u8 *desc_buf;
8268 	struct ufs_dev_info *dev_info = &hba->dev_info;
8269 
8270 	desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
8271 	if (!desc_buf) {
8272 		err = -ENOMEM;
8273 		goto out;
8274 	}
8275 
8276 	err = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_DEVICE, 0, 0, desc_buf,
8277 				     QUERY_DESC_MAX_SIZE);
8278 	if (err) {
8279 		dev_err(hba->dev, "%s: Failed reading Device Desc. err = %d\n",
8280 			__func__, err);
8281 		goto out;
8282 	}
8283 
8284 	/*
8285 	 * getting vendor (manufacturerID) and Bank Index in big endian
8286 	 * format
8287 	 */
8288 	dev_info->wmanufacturerid = desc_buf[DEVICE_DESC_PARAM_MANF_ID] << 8 |
8289 				     desc_buf[DEVICE_DESC_PARAM_MANF_ID + 1];
8290 
8291 	/* getting Specification Version in big endian format */
8292 	dev_info->wspecversion = desc_buf[DEVICE_DESC_PARAM_SPEC_VER] << 8 |
8293 				      desc_buf[DEVICE_DESC_PARAM_SPEC_VER + 1];
8294 	dev_info->bqueuedepth = desc_buf[DEVICE_DESC_PARAM_Q_DPTH];
8295 
8296 	dev_info->rtt_cap = desc_buf[DEVICE_DESC_PARAM_RTT_CAP];
8297 
8298 	model_index = desc_buf[DEVICE_DESC_PARAM_PRDCT_NAME];
8299 
8300 	err = ufshcd_read_string_desc(hba, model_index,
8301 				      &dev_info->model, SD_ASCII_STD);
8302 	if (err < 0) {
8303 		dev_err(hba->dev, "%s: Failed reading Product Name. err = %d\n",
8304 			__func__, err);
8305 		goto out;
8306 	}
8307 
8308 	hba->luns_avail = desc_buf[DEVICE_DESC_PARAM_NUM_LU] +
8309 		desc_buf[DEVICE_DESC_PARAM_NUM_WLU];
8310 
8311 	ufs_fixup_device_setup(hba);
8312 
8313 	ufshcd_wb_probe(hba, desc_buf);
8314 
8315 	ufshcd_temp_notif_probe(hba, desc_buf);
8316 
8317 	ufs_init_rtc(hba, desc_buf);
8318 
8319 	if (hba->ext_iid_sup)
8320 		ufshcd_ext_iid_probe(hba, desc_buf);
8321 
8322 	/*
8323 	 * ufshcd_read_string_desc returns size of the string
8324 	 * reset the error value
8325 	 */
8326 	err = 0;
8327 
8328 out:
8329 	kfree(desc_buf);
8330 	return err;
8331 }
8332 
8333 static void ufs_put_device_desc(struct ufs_hba *hba)
8334 {
8335 	struct ufs_dev_info *dev_info = &hba->dev_info;
8336 
8337 	kfree(dev_info->model);
8338 	dev_info->model = NULL;
8339 }
8340 
8341 /**
8342  * ufshcd_quirk_tune_host_pa_tactivate - Ensures that host PA_TACTIVATE is
8343  * less than device PA_TACTIVATE time.
8344  * @hba: per-adapter instance
8345  *
8346  * Some UFS devices require host PA_TACTIVATE to be lower than device
8347  * PA_TACTIVATE, we need to enable UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE quirk
8348  * for such devices.
8349  *
8350  * Return: zero on success, non-zero error value on failure.
8351  */
8352 static int ufshcd_quirk_tune_host_pa_tactivate(struct ufs_hba *hba)
8353 {
8354 	int ret = 0;
8355 	u32 granularity, peer_granularity;
8356 	u32 pa_tactivate, peer_pa_tactivate;
8357 	u32 pa_tactivate_us, peer_pa_tactivate_us;
8358 	static const u8 gran_to_us_table[] = {1, 4, 8, 16, 32, 100};
8359 
8360 	ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_GRANULARITY),
8361 				  &granularity);
8362 	if (ret)
8363 		goto out;
8364 
8365 	ret = ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_GRANULARITY),
8366 				  &peer_granularity);
8367 	if (ret)
8368 		goto out;
8369 
8370 	if ((granularity < PA_GRANULARITY_MIN_VAL) ||
8371 	    (granularity > PA_GRANULARITY_MAX_VAL)) {
8372 		dev_err(hba->dev, "%s: invalid host PA_GRANULARITY %d",
8373 			__func__, granularity);
8374 		return -EINVAL;
8375 	}
8376 
8377 	if ((peer_granularity < PA_GRANULARITY_MIN_VAL) ||
8378 	    (peer_granularity > PA_GRANULARITY_MAX_VAL)) {
8379 		dev_err(hba->dev, "%s: invalid device PA_GRANULARITY %d",
8380 			__func__, peer_granularity);
8381 		return -EINVAL;
8382 	}
8383 
8384 	ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_TACTIVATE), &pa_tactivate);
8385 	if (ret)
8386 		goto out;
8387 
8388 	ret = ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_TACTIVATE),
8389 				  &peer_pa_tactivate);
8390 	if (ret)
8391 		goto out;
8392 
8393 	pa_tactivate_us = pa_tactivate * gran_to_us_table[granularity - 1];
8394 	peer_pa_tactivate_us = peer_pa_tactivate *
8395 			     gran_to_us_table[peer_granularity - 1];
8396 
8397 	if (pa_tactivate_us >= peer_pa_tactivate_us) {
8398 		u32 new_peer_pa_tactivate;
8399 
8400 		new_peer_pa_tactivate = pa_tactivate_us /
8401 				      gran_to_us_table[peer_granularity - 1];
8402 		new_peer_pa_tactivate++;
8403 		ret = ufshcd_dme_peer_set(hba, UIC_ARG_MIB(PA_TACTIVATE),
8404 					  new_peer_pa_tactivate);
8405 	}
8406 
8407 out:
8408 	return ret;
8409 }
8410 
8411 static void ufshcd_tune_unipro_params(struct ufs_hba *hba)
8412 {
8413 	ufshcd_vops_apply_dev_quirks(hba);
8414 
8415 	if (hba->dev_quirks & UFS_DEVICE_QUIRK_PA_TACTIVATE)
8416 		/* set 1ms timeout for PA_TACTIVATE */
8417 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TACTIVATE), 10);
8418 
8419 	if (hba->dev_quirks & UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE)
8420 		ufshcd_quirk_tune_host_pa_tactivate(hba);
8421 }
8422 
8423 static void ufshcd_clear_dbg_ufs_stats(struct ufs_hba *hba)
8424 {
8425 	hba->ufs_stats.hibern8_exit_cnt = 0;
8426 	hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
8427 	hba->req_abort_count = 0;
8428 }
8429 
8430 static int ufshcd_device_geo_params_init(struct ufs_hba *hba)
8431 {
8432 	int err;
8433 	u8 *desc_buf;
8434 
8435 	desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
8436 	if (!desc_buf) {
8437 		err = -ENOMEM;
8438 		goto out;
8439 	}
8440 
8441 	err = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_GEOMETRY, 0, 0,
8442 				     desc_buf, QUERY_DESC_MAX_SIZE);
8443 	if (err) {
8444 		dev_err(hba->dev, "%s: Failed reading Geometry Desc. err = %d\n",
8445 				__func__, err);
8446 		goto out;
8447 	}
8448 
8449 	if (desc_buf[GEOMETRY_DESC_PARAM_MAX_NUM_LUN] == 1)
8450 		hba->dev_info.max_lu_supported = 32;
8451 	else if (desc_buf[GEOMETRY_DESC_PARAM_MAX_NUM_LUN] == 0)
8452 		hba->dev_info.max_lu_supported = 8;
8453 
8454 out:
8455 	kfree(desc_buf);
8456 	return err;
8457 }
8458 
8459 struct ufs_ref_clk {
8460 	unsigned long freq_hz;
8461 	enum ufs_ref_clk_freq val;
8462 };
8463 
8464 static const struct ufs_ref_clk ufs_ref_clk_freqs[] = {
8465 	{19200000, REF_CLK_FREQ_19_2_MHZ},
8466 	{26000000, REF_CLK_FREQ_26_MHZ},
8467 	{38400000, REF_CLK_FREQ_38_4_MHZ},
8468 	{52000000, REF_CLK_FREQ_52_MHZ},
8469 	{0, REF_CLK_FREQ_INVAL},
8470 };
8471 
8472 static enum ufs_ref_clk_freq
8473 ufs_get_bref_clk_from_hz(unsigned long freq)
8474 {
8475 	int i;
8476 
8477 	for (i = 0; ufs_ref_clk_freqs[i].freq_hz; i++)
8478 		if (ufs_ref_clk_freqs[i].freq_hz == freq)
8479 			return ufs_ref_clk_freqs[i].val;
8480 
8481 	return REF_CLK_FREQ_INVAL;
8482 }
8483 
8484 void ufshcd_parse_dev_ref_clk_freq(struct ufs_hba *hba, struct clk *refclk)
8485 {
8486 	unsigned long freq;
8487 
8488 	freq = clk_get_rate(refclk);
8489 
8490 	hba->dev_ref_clk_freq =
8491 		ufs_get_bref_clk_from_hz(freq);
8492 
8493 	if (hba->dev_ref_clk_freq == REF_CLK_FREQ_INVAL)
8494 		dev_err(hba->dev,
8495 		"invalid ref_clk setting = %ld\n", freq);
8496 }
8497 
8498 static int ufshcd_set_dev_ref_clk(struct ufs_hba *hba)
8499 {
8500 	int err;
8501 	u32 ref_clk;
8502 	u32 freq = hba->dev_ref_clk_freq;
8503 
8504 	err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
8505 			QUERY_ATTR_IDN_REF_CLK_FREQ, 0, 0, &ref_clk);
8506 
8507 	if (err) {
8508 		dev_err(hba->dev, "failed reading bRefClkFreq. err = %d\n",
8509 			err);
8510 		goto out;
8511 	}
8512 
8513 	if (ref_clk == freq)
8514 		goto out; /* nothing to update */
8515 
8516 	err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
8517 			QUERY_ATTR_IDN_REF_CLK_FREQ, 0, 0, &freq);
8518 
8519 	if (err) {
8520 		dev_err(hba->dev, "bRefClkFreq setting to %lu Hz failed\n",
8521 			ufs_ref_clk_freqs[freq].freq_hz);
8522 		goto out;
8523 	}
8524 
8525 	dev_dbg(hba->dev, "bRefClkFreq setting to %lu Hz succeeded\n",
8526 			ufs_ref_clk_freqs[freq].freq_hz);
8527 
8528 out:
8529 	return err;
8530 }
8531 
8532 static int ufshcd_device_params_init(struct ufs_hba *hba)
8533 {
8534 	bool flag;
8535 	int ret;
8536 
8537 	/* Init UFS geometry descriptor related parameters */
8538 	ret = ufshcd_device_geo_params_init(hba);
8539 	if (ret)
8540 		goto out;
8541 
8542 	/* Check and apply UFS device quirks */
8543 	ret = ufs_get_device_desc(hba);
8544 	if (ret) {
8545 		dev_err(hba->dev, "%s: Failed getting device info. err = %d\n",
8546 			__func__, ret);
8547 		goto out;
8548 	}
8549 
8550 	ufshcd_set_rtt(hba);
8551 
8552 	ufshcd_get_ref_clk_gating_wait(hba);
8553 
8554 	if (!ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_READ_FLAG,
8555 			QUERY_FLAG_IDN_PWR_ON_WPE, 0, &flag))
8556 		hba->dev_info.f_power_on_wp_en = flag;
8557 
8558 	/* Probe maximum power mode co-supported by both UFS host and device */
8559 	if (ufshcd_get_max_pwr_mode(hba))
8560 		dev_err(hba->dev,
8561 			"%s: Failed getting max supported power mode\n",
8562 			__func__);
8563 out:
8564 	return ret;
8565 }
8566 
8567 static void ufshcd_set_timestamp_attr(struct ufs_hba *hba)
8568 {
8569 	int err;
8570 	struct ufs_query_req *request = NULL;
8571 	struct ufs_query_res *response = NULL;
8572 	struct ufs_dev_info *dev_info = &hba->dev_info;
8573 	struct utp_upiu_query_v4_0 *upiu_data;
8574 
8575 	if (dev_info->wspecversion < 0x400)
8576 		return;
8577 
8578 	ufshcd_dev_man_lock(hba);
8579 
8580 	ufshcd_init_query(hba, &request, &response,
8581 			  UPIU_QUERY_OPCODE_WRITE_ATTR,
8582 			  QUERY_ATTR_IDN_TIMESTAMP, 0, 0);
8583 
8584 	request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
8585 
8586 	upiu_data = (struct utp_upiu_query_v4_0 *)&request->upiu_req;
8587 
8588 	put_unaligned_be64(ktime_get_real_ns(), &upiu_data->osf3);
8589 
8590 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT);
8591 
8592 	if (err)
8593 		dev_err(hba->dev, "%s: failed to set timestamp %d\n",
8594 			__func__, err);
8595 
8596 	ufshcd_dev_man_unlock(hba);
8597 }
8598 
8599 /**
8600  * ufshcd_add_lus - probe and add UFS logical units
8601  * @hba: per-adapter instance
8602  *
8603  * Return: 0 upon success; < 0 upon failure.
8604  */
8605 static int ufshcd_add_lus(struct ufs_hba *hba)
8606 {
8607 	int ret;
8608 
8609 	/* Add required well known logical units to scsi mid layer */
8610 	ret = ufshcd_scsi_add_wlus(hba);
8611 	if (ret)
8612 		goto out;
8613 
8614 	/* Initialize devfreq after UFS device is detected */
8615 	if (ufshcd_is_clkscaling_supported(hba)) {
8616 		memcpy(&hba->clk_scaling.saved_pwr_info,
8617 			&hba->pwr_info,
8618 			sizeof(struct ufs_pa_layer_attr));
8619 		hba->clk_scaling.is_allowed = true;
8620 
8621 		ret = ufshcd_devfreq_init(hba);
8622 		if (ret)
8623 			goto out;
8624 
8625 		hba->clk_scaling.is_enabled = true;
8626 		ufshcd_init_clk_scaling_sysfs(hba);
8627 	}
8628 
8629 	ufs_bsg_probe(hba);
8630 	scsi_scan_host(hba->host);
8631 
8632 out:
8633 	return ret;
8634 }
8635 
8636 /* SDB - Single Doorbell */
8637 static void ufshcd_release_sdb_queue(struct ufs_hba *hba, int nutrs)
8638 {
8639 	size_t ucdl_size, utrdl_size;
8640 
8641 	ucdl_size = ufshcd_get_ucd_size(hba) * nutrs;
8642 	dmam_free_coherent(hba->dev, ucdl_size, hba->ucdl_base_addr,
8643 			   hba->ucdl_dma_addr);
8644 
8645 	utrdl_size = sizeof(struct utp_transfer_req_desc) * nutrs;
8646 	dmam_free_coherent(hba->dev, utrdl_size, hba->utrdl_base_addr,
8647 			   hba->utrdl_dma_addr);
8648 
8649 	devm_kfree(hba->dev, hba->lrb);
8650 }
8651 
8652 static int ufshcd_alloc_mcq(struct ufs_hba *hba)
8653 {
8654 	int ret;
8655 	int old_nutrs = hba->nutrs;
8656 
8657 	ret = ufshcd_mcq_decide_queue_depth(hba);
8658 	if (ret < 0)
8659 		return ret;
8660 
8661 	hba->nutrs = ret;
8662 	ret = ufshcd_mcq_init(hba);
8663 	if (ret)
8664 		goto err;
8665 
8666 	/*
8667 	 * Previously allocated memory for nutrs may not be enough in MCQ mode.
8668 	 * Number of supported tags in MCQ mode may be larger than SDB mode.
8669 	 */
8670 	if (hba->nutrs != old_nutrs) {
8671 		ufshcd_release_sdb_queue(hba, old_nutrs);
8672 		ret = ufshcd_memory_alloc(hba);
8673 		if (ret)
8674 			goto err;
8675 		ufshcd_host_memory_configure(hba);
8676 	}
8677 
8678 	ret = ufshcd_mcq_memory_alloc(hba);
8679 	if (ret)
8680 		goto err;
8681 
8682 	hba->host->can_queue = hba->nutrs - UFSHCD_NUM_RESERVED;
8683 	hba->reserved_slot = hba->nutrs - UFSHCD_NUM_RESERVED;
8684 
8685 	return 0;
8686 err:
8687 	hba->nutrs = old_nutrs;
8688 	return ret;
8689 }
8690 
8691 static void ufshcd_config_mcq(struct ufs_hba *hba)
8692 {
8693 	int ret;
8694 	u32 intrs;
8695 
8696 	ret = ufshcd_mcq_vops_config_esi(hba);
8697 	dev_info(hba->dev, "ESI %sconfigured\n", ret ? "is not " : "");
8698 
8699 	intrs = UFSHCD_ENABLE_MCQ_INTRS;
8700 	if (hba->quirks & UFSHCD_QUIRK_MCQ_BROKEN_INTR)
8701 		intrs &= ~MCQ_CQ_EVENT_STATUS;
8702 	ufshcd_enable_intr(hba, intrs);
8703 	ufshcd_mcq_make_queues_operational(hba);
8704 	ufshcd_mcq_config_mac(hba, hba->nutrs);
8705 
8706 	dev_info(hba->dev, "MCQ configured, nr_queues=%d, io_queues=%d, read_queue=%d, poll_queues=%d, queue_depth=%d\n",
8707 		 hba->nr_hw_queues, hba->nr_queues[HCTX_TYPE_DEFAULT],
8708 		 hba->nr_queues[HCTX_TYPE_READ], hba->nr_queues[HCTX_TYPE_POLL],
8709 		 hba->nutrs);
8710 }
8711 
8712 static int ufshcd_post_device_init(struct ufs_hba *hba)
8713 {
8714 	int ret;
8715 
8716 	ufshcd_tune_unipro_params(hba);
8717 
8718 	/* UFS device is also active now */
8719 	ufshcd_set_ufs_dev_active(hba);
8720 	ufshcd_force_reset_auto_bkops(hba);
8721 
8722 	ufshcd_set_timestamp_attr(hba);
8723 	schedule_delayed_work(&hba->ufs_rtc_update_work,
8724 			      msecs_to_jiffies(UFS_RTC_UPDATE_INTERVAL_MS));
8725 
8726 	if (!hba->max_pwr_info.is_valid)
8727 		return 0;
8728 
8729 	/*
8730 	 * Set the right value to bRefClkFreq before attempting to
8731 	 * switch to HS gears.
8732 	 */
8733 	if (hba->dev_ref_clk_freq != REF_CLK_FREQ_INVAL)
8734 		ufshcd_set_dev_ref_clk(hba);
8735 	/* Gear up to HS gear. */
8736 	ret = ufshcd_config_pwr_mode(hba, &hba->max_pwr_info.info);
8737 	if (ret) {
8738 		dev_err(hba->dev, "%s: Failed setting power mode, err = %d\n",
8739 			__func__, ret);
8740 		return ret;
8741 	}
8742 
8743 	return 0;
8744 }
8745 
8746 static int ufshcd_device_init(struct ufs_hba *hba, bool init_dev_params)
8747 {
8748 	int ret;
8749 	struct Scsi_Host *host = hba->host;
8750 
8751 	hba->ufshcd_state = UFSHCD_STATE_RESET;
8752 
8753 	ret = ufshcd_link_startup(hba);
8754 	if (ret)
8755 		return ret;
8756 
8757 	if (hba->quirks & UFSHCD_QUIRK_SKIP_PH_CONFIGURATION)
8758 		return ret;
8759 
8760 	/* Debug counters initialization */
8761 	ufshcd_clear_dbg_ufs_stats(hba);
8762 
8763 	/* UniPro link is active now */
8764 	ufshcd_set_link_active(hba);
8765 
8766 	/* Reconfigure MCQ upon reset */
8767 	if (hba->mcq_enabled && !init_dev_params) {
8768 		ufshcd_config_mcq(hba);
8769 		ufshcd_mcq_enable(hba);
8770 	}
8771 
8772 	/* Verify device initialization by sending NOP OUT UPIU */
8773 	ret = ufshcd_verify_dev_init(hba);
8774 	if (ret)
8775 		return ret;
8776 
8777 	/* Initiate UFS initialization, and waiting until completion */
8778 	ret = ufshcd_complete_dev_init(hba);
8779 	if (ret)
8780 		return ret;
8781 
8782 	/*
8783 	 * Initialize UFS device parameters used by driver, these
8784 	 * parameters are associated with UFS descriptors.
8785 	 */
8786 	if (init_dev_params) {
8787 		ret = ufshcd_device_params_init(hba);
8788 		if (ret)
8789 			return ret;
8790 		if (is_mcq_supported(hba) && !hba->scsi_host_added) {
8791 			ufshcd_mcq_enable(hba);
8792 			ret = ufshcd_alloc_mcq(hba);
8793 			if (!ret) {
8794 				ufshcd_config_mcq(hba);
8795 			} else {
8796 				/* Continue with SDB mode */
8797 				ufshcd_mcq_disable(hba);
8798 				use_mcq_mode = false;
8799 				dev_err(hba->dev, "MCQ mode is disabled, err=%d\n",
8800 					 ret);
8801 			}
8802 			ret = scsi_add_host(host, hba->dev);
8803 			if (ret) {
8804 				dev_err(hba->dev, "scsi_add_host failed\n");
8805 				return ret;
8806 			}
8807 			hba->scsi_host_added = true;
8808 		} else if (is_mcq_supported(hba) &&
8809 			   hba->quirks &
8810 				   UFSHCD_QUIRK_REINIT_AFTER_MAX_GEAR_SWITCH) {
8811 			ufshcd_config_mcq(hba);
8812 			ufshcd_mcq_enable(hba);
8813 		}
8814 	}
8815 
8816 	return ufshcd_post_device_init(hba);
8817 }
8818 
8819 /**
8820  * ufshcd_probe_hba - probe hba to detect device and initialize it
8821  * @hba: per-adapter instance
8822  * @init_dev_params: whether or not to call ufshcd_device_params_init().
8823  *
8824  * Execute link-startup and verify device initialization
8825  *
8826  * Return: 0 upon success; < 0 upon failure.
8827  */
8828 static int ufshcd_probe_hba(struct ufs_hba *hba, bool init_dev_params)
8829 {
8830 	ktime_t start = ktime_get();
8831 	int ret;
8832 
8833 	ret = ufshcd_device_init(hba, init_dev_params);
8834 	if (ret)
8835 		goto out;
8836 
8837 	if (!hba->pm_op_in_progress &&
8838 	    (hba->quirks & UFSHCD_QUIRK_REINIT_AFTER_MAX_GEAR_SWITCH)) {
8839 		/* Reset the device and controller before doing reinit */
8840 		ufshcd_device_reset(hba);
8841 		ufs_put_device_desc(hba);
8842 		ufshcd_hba_stop(hba);
8843 		ufshcd_vops_reinit_notify(hba);
8844 		ret = ufshcd_hba_enable(hba);
8845 		if (ret) {
8846 			dev_err(hba->dev, "Host controller enable failed\n");
8847 			ufshcd_print_evt_hist(hba);
8848 			ufshcd_print_host_state(hba);
8849 			goto out;
8850 		}
8851 
8852 		/* Reinit the device */
8853 		ret = ufshcd_device_init(hba, init_dev_params);
8854 		if (ret)
8855 			goto out;
8856 	}
8857 
8858 	ufshcd_print_pwr_info(hba);
8859 
8860 	/*
8861 	 * bActiveICCLevel is volatile for UFS device (as per latest v2.1 spec)
8862 	 * and for removable UFS card as well, hence always set the parameter.
8863 	 * Note: Error handler may issue the device reset hence resetting
8864 	 * bActiveICCLevel as well so it is always safe to set this here.
8865 	 */
8866 	ufshcd_set_active_icc_lvl(hba);
8867 
8868 	/* Enable UFS Write Booster if supported */
8869 	ufshcd_configure_wb(hba);
8870 
8871 	if (hba->ee_usr_mask)
8872 		ufshcd_write_ee_control(hba);
8873 	ufshcd_configure_auto_hibern8(hba);
8874 
8875 out:
8876 	ufshcd_process_probe_result(hba, start, ret);
8877 	return ret;
8878 }
8879 
8880 /**
8881  * ufshcd_async_scan - asynchronous execution for probing hba
8882  * @data: data pointer to pass to this function
8883  * @cookie: cookie data
8884  */
8885 static void ufshcd_async_scan(void *data, async_cookie_t cookie)
8886 {
8887 	struct ufs_hba *hba = (struct ufs_hba *)data;
8888 	int ret;
8889 
8890 	down(&hba->host_sem);
8891 	/* Initialize hba, detect and initialize UFS device */
8892 	ret = ufshcd_probe_hba(hba, true);
8893 	up(&hba->host_sem);
8894 	if (ret)
8895 		goto out;
8896 
8897 	/* Probe and add UFS logical units  */
8898 	ret = ufshcd_add_lus(hba);
8899 
8900 out:
8901 	pm_runtime_put_sync(hba->dev);
8902 
8903 	if (ret)
8904 		dev_err(hba->dev, "%s failed: %d\n", __func__, ret);
8905 }
8906 
8907 static enum scsi_timeout_action ufshcd_eh_timed_out(struct scsi_cmnd *scmd)
8908 {
8909 	struct ufs_hba *hba = shost_priv(scmd->device->host);
8910 
8911 	if (!hba->system_suspending) {
8912 		/* Activate the error handler in the SCSI core. */
8913 		return SCSI_EH_NOT_HANDLED;
8914 	}
8915 
8916 	/*
8917 	 * If we get here we know that no TMFs are outstanding and also that
8918 	 * the only pending command is a START STOP UNIT command. Handle the
8919 	 * timeout of that command directly to prevent a deadlock between
8920 	 * ufshcd_set_dev_pwr_mode() and ufshcd_err_handler().
8921 	 */
8922 	ufshcd_link_recovery(hba);
8923 	dev_info(hba->dev, "%s() finished; outstanding_tasks = %#lx.\n",
8924 		 __func__, hba->outstanding_tasks);
8925 
8926 	return hba->outstanding_reqs ? SCSI_EH_RESET_TIMER : SCSI_EH_DONE;
8927 }
8928 
8929 static const struct attribute_group *ufshcd_driver_groups[] = {
8930 	&ufs_sysfs_unit_descriptor_group,
8931 	&ufs_sysfs_lun_attributes_group,
8932 	NULL,
8933 };
8934 
8935 static struct ufs_hba_variant_params ufs_hba_vps = {
8936 	.hba_enable_delay_us		= 1000,
8937 	.wb_flush_threshold		= UFS_WB_BUF_REMAIN_PERCENT(40),
8938 	.devfreq_profile.polling_ms	= 100,
8939 	.devfreq_profile.target		= ufshcd_devfreq_target,
8940 	.devfreq_profile.get_dev_status	= ufshcd_devfreq_get_dev_status,
8941 	.ondemand_data.upthreshold	= 70,
8942 	.ondemand_data.downdifferential	= 5,
8943 };
8944 
8945 static const struct scsi_host_template ufshcd_driver_template = {
8946 	.module			= THIS_MODULE,
8947 	.name			= UFSHCD,
8948 	.proc_name		= UFSHCD,
8949 	.map_queues		= ufshcd_map_queues,
8950 	.queuecommand		= ufshcd_queuecommand,
8951 	.mq_poll		= ufshcd_poll,
8952 	.slave_alloc		= ufshcd_slave_alloc,
8953 	.device_configure	= ufshcd_device_configure,
8954 	.slave_destroy		= ufshcd_slave_destroy,
8955 	.change_queue_depth	= ufshcd_change_queue_depth,
8956 	.eh_abort_handler	= ufshcd_abort,
8957 	.eh_device_reset_handler = ufshcd_eh_device_reset_handler,
8958 	.eh_host_reset_handler   = ufshcd_eh_host_reset_handler,
8959 	.eh_timed_out		= ufshcd_eh_timed_out,
8960 	.this_id		= -1,
8961 	.sg_tablesize		= SG_ALL,
8962 	.max_segment_size	= PRDT_DATA_BYTE_COUNT_MAX,
8963 	.max_sectors		= SZ_1M / SECTOR_SIZE,
8964 	.max_host_blocked	= 1,
8965 	.track_queue_depth	= 1,
8966 	.skip_settle_delay	= 1,
8967 	.sdev_groups		= ufshcd_driver_groups,
8968 };
8969 
8970 static int ufshcd_config_vreg_load(struct device *dev, struct ufs_vreg *vreg,
8971 				   int ua)
8972 {
8973 	int ret;
8974 
8975 	if (!vreg)
8976 		return 0;
8977 
8978 	/*
8979 	 * "set_load" operation shall be required on those regulators
8980 	 * which specifically configured current limitation. Otherwise
8981 	 * zero max_uA may cause unexpected behavior when regulator is
8982 	 * enabled or set as high power mode.
8983 	 */
8984 	if (!vreg->max_uA)
8985 		return 0;
8986 
8987 	ret = regulator_set_load(vreg->reg, ua);
8988 	if (ret < 0) {
8989 		dev_err(dev, "%s: %s set load (ua=%d) failed, err=%d\n",
8990 				__func__, vreg->name, ua, ret);
8991 	}
8992 
8993 	return ret;
8994 }
8995 
8996 static inline int ufshcd_config_vreg_lpm(struct ufs_hba *hba,
8997 					 struct ufs_vreg *vreg)
8998 {
8999 	return ufshcd_config_vreg_load(hba->dev, vreg, UFS_VREG_LPM_LOAD_UA);
9000 }
9001 
9002 static inline int ufshcd_config_vreg_hpm(struct ufs_hba *hba,
9003 					 struct ufs_vreg *vreg)
9004 {
9005 	if (!vreg)
9006 		return 0;
9007 
9008 	return ufshcd_config_vreg_load(hba->dev, vreg, vreg->max_uA);
9009 }
9010 
9011 static int ufshcd_config_vreg(struct device *dev,
9012 		struct ufs_vreg *vreg, bool on)
9013 {
9014 	if (regulator_count_voltages(vreg->reg) <= 0)
9015 		return 0;
9016 
9017 	return ufshcd_config_vreg_load(dev, vreg, on ? vreg->max_uA : 0);
9018 }
9019 
9020 static int ufshcd_enable_vreg(struct device *dev, struct ufs_vreg *vreg)
9021 {
9022 	int ret = 0;
9023 
9024 	if (!vreg || vreg->enabled)
9025 		goto out;
9026 
9027 	ret = ufshcd_config_vreg(dev, vreg, true);
9028 	if (!ret)
9029 		ret = regulator_enable(vreg->reg);
9030 
9031 	if (!ret)
9032 		vreg->enabled = true;
9033 	else
9034 		dev_err(dev, "%s: %s enable failed, err=%d\n",
9035 				__func__, vreg->name, ret);
9036 out:
9037 	return ret;
9038 }
9039 
9040 static int ufshcd_disable_vreg(struct device *dev, struct ufs_vreg *vreg)
9041 {
9042 	int ret = 0;
9043 
9044 	if (!vreg || !vreg->enabled || vreg->always_on)
9045 		goto out;
9046 
9047 	ret = regulator_disable(vreg->reg);
9048 
9049 	if (!ret) {
9050 		/* ignore errors on applying disable config */
9051 		ufshcd_config_vreg(dev, vreg, false);
9052 		vreg->enabled = false;
9053 	} else {
9054 		dev_err(dev, "%s: %s disable failed, err=%d\n",
9055 				__func__, vreg->name, ret);
9056 	}
9057 out:
9058 	return ret;
9059 }
9060 
9061 static int ufshcd_setup_vreg(struct ufs_hba *hba, bool on)
9062 {
9063 	int ret = 0;
9064 	struct device *dev = hba->dev;
9065 	struct ufs_vreg_info *info = &hba->vreg_info;
9066 
9067 	ret = ufshcd_toggle_vreg(dev, info->vcc, on);
9068 	if (ret)
9069 		goto out;
9070 
9071 	ret = ufshcd_toggle_vreg(dev, info->vccq, on);
9072 	if (ret)
9073 		goto out;
9074 
9075 	ret = ufshcd_toggle_vreg(dev, info->vccq2, on);
9076 
9077 out:
9078 	if (ret) {
9079 		ufshcd_toggle_vreg(dev, info->vccq2, false);
9080 		ufshcd_toggle_vreg(dev, info->vccq, false);
9081 		ufshcd_toggle_vreg(dev, info->vcc, false);
9082 	}
9083 	return ret;
9084 }
9085 
9086 static int ufshcd_setup_hba_vreg(struct ufs_hba *hba, bool on)
9087 {
9088 	struct ufs_vreg_info *info = &hba->vreg_info;
9089 
9090 	return ufshcd_toggle_vreg(hba->dev, info->vdd_hba, on);
9091 }
9092 
9093 int ufshcd_get_vreg(struct device *dev, struct ufs_vreg *vreg)
9094 {
9095 	int ret = 0;
9096 
9097 	if (!vreg)
9098 		goto out;
9099 
9100 	vreg->reg = devm_regulator_get(dev, vreg->name);
9101 	if (IS_ERR(vreg->reg)) {
9102 		ret = PTR_ERR(vreg->reg);
9103 		dev_err(dev, "%s: %s get failed, err=%d\n",
9104 				__func__, vreg->name, ret);
9105 	}
9106 out:
9107 	return ret;
9108 }
9109 EXPORT_SYMBOL_GPL(ufshcd_get_vreg);
9110 
9111 static int ufshcd_init_vreg(struct ufs_hba *hba)
9112 {
9113 	int ret = 0;
9114 	struct device *dev = hba->dev;
9115 	struct ufs_vreg_info *info = &hba->vreg_info;
9116 
9117 	ret = ufshcd_get_vreg(dev, info->vcc);
9118 	if (ret)
9119 		goto out;
9120 
9121 	ret = ufshcd_get_vreg(dev, info->vccq);
9122 	if (!ret)
9123 		ret = ufshcd_get_vreg(dev, info->vccq2);
9124 out:
9125 	return ret;
9126 }
9127 
9128 static int ufshcd_init_hba_vreg(struct ufs_hba *hba)
9129 {
9130 	struct ufs_vreg_info *info = &hba->vreg_info;
9131 
9132 	return ufshcd_get_vreg(hba->dev, info->vdd_hba);
9133 }
9134 
9135 static int ufshcd_setup_clocks(struct ufs_hba *hba, bool on)
9136 {
9137 	int ret = 0;
9138 	struct ufs_clk_info *clki;
9139 	struct list_head *head = &hba->clk_list_head;
9140 	unsigned long flags;
9141 	ktime_t start = ktime_get();
9142 	bool clk_state_changed = false;
9143 
9144 	if (list_empty(head))
9145 		goto out;
9146 
9147 	ret = ufshcd_vops_setup_clocks(hba, on, PRE_CHANGE);
9148 	if (ret)
9149 		return ret;
9150 
9151 	list_for_each_entry(clki, head, list) {
9152 		if (!IS_ERR_OR_NULL(clki->clk)) {
9153 			/*
9154 			 * Don't disable clocks which are needed
9155 			 * to keep the link active.
9156 			 */
9157 			if (ufshcd_is_link_active(hba) &&
9158 			    clki->keep_link_active)
9159 				continue;
9160 
9161 			clk_state_changed = on ^ clki->enabled;
9162 			if (on && !clki->enabled) {
9163 				ret = clk_prepare_enable(clki->clk);
9164 				if (ret) {
9165 					dev_err(hba->dev, "%s: %s prepare enable failed, %d\n",
9166 						__func__, clki->name, ret);
9167 					goto out;
9168 				}
9169 			} else if (!on && clki->enabled) {
9170 				clk_disable_unprepare(clki->clk);
9171 			}
9172 			clki->enabled = on;
9173 			dev_dbg(hba->dev, "%s: clk: %s %sabled\n", __func__,
9174 					clki->name, on ? "en" : "dis");
9175 		}
9176 	}
9177 
9178 	ret = ufshcd_vops_setup_clocks(hba, on, POST_CHANGE);
9179 	if (ret)
9180 		return ret;
9181 
9182 	if (!ufshcd_is_clkscaling_supported(hba))
9183 		ufshcd_pm_qos_update(hba, on);
9184 out:
9185 	if (ret) {
9186 		list_for_each_entry(clki, head, list) {
9187 			if (!IS_ERR_OR_NULL(clki->clk) && clki->enabled)
9188 				clk_disable_unprepare(clki->clk);
9189 		}
9190 	} else if (!ret && on) {
9191 		spin_lock_irqsave(hba->host->host_lock, flags);
9192 		hba->clk_gating.state = CLKS_ON;
9193 		trace_ufshcd_clk_gating(dev_name(hba->dev),
9194 					hba->clk_gating.state);
9195 		spin_unlock_irqrestore(hba->host->host_lock, flags);
9196 	}
9197 
9198 	if (clk_state_changed)
9199 		trace_ufshcd_profile_clk_gating(dev_name(hba->dev),
9200 			(on ? "on" : "off"),
9201 			ktime_to_us(ktime_sub(ktime_get(), start)), ret);
9202 	return ret;
9203 }
9204 
9205 static enum ufs_ref_clk_freq ufshcd_parse_ref_clk_property(struct ufs_hba *hba)
9206 {
9207 	u32 freq;
9208 	int ret = device_property_read_u32(hba->dev, "ref-clk-freq", &freq);
9209 
9210 	if (ret) {
9211 		dev_dbg(hba->dev, "Cannot query 'ref-clk-freq' property = %d", ret);
9212 		return REF_CLK_FREQ_INVAL;
9213 	}
9214 
9215 	return ufs_get_bref_clk_from_hz(freq);
9216 }
9217 
9218 static int ufshcd_init_clocks(struct ufs_hba *hba)
9219 {
9220 	int ret = 0;
9221 	struct ufs_clk_info *clki;
9222 	struct device *dev = hba->dev;
9223 	struct list_head *head = &hba->clk_list_head;
9224 
9225 	if (list_empty(head))
9226 		goto out;
9227 
9228 	list_for_each_entry(clki, head, list) {
9229 		if (!clki->name)
9230 			continue;
9231 
9232 		clki->clk = devm_clk_get(dev, clki->name);
9233 		if (IS_ERR(clki->clk)) {
9234 			ret = PTR_ERR(clki->clk);
9235 			dev_err(dev, "%s: %s clk get failed, %d\n",
9236 					__func__, clki->name, ret);
9237 			goto out;
9238 		}
9239 
9240 		/*
9241 		 * Parse device ref clk freq as per device tree "ref_clk".
9242 		 * Default dev_ref_clk_freq is set to REF_CLK_FREQ_INVAL
9243 		 * in ufshcd_alloc_host().
9244 		 */
9245 		if (!strcmp(clki->name, "ref_clk"))
9246 			ufshcd_parse_dev_ref_clk_freq(hba, clki->clk);
9247 
9248 		if (clki->max_freq) {
9249 			ret = clk_set_rate(clki->clk, clki->max_freq);
9250 			if (ret) {
9251 				dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
9252 					__func__, clki->name,
9253 					clki->max_freq, ret);
9254 				goto out;
9255 			}
9256 			clki->curr_freq = clki->max_freq;
9257 		}
9258 		dev_dbg(dev, "%s: clk: %s, rate: %lu\n", __func__,
9259 				clki->name, clk_get_rate(clki->clk));
9260 	}
9261 
9262 	/* Set Max. frequency for all clocks */
9263 	if (hba->use_pm_opp) {
9264 		ret = ufshcd_opp_set_rate(hba, ULONG_MAX);
9265 		if (ret) {
9266 			dev_err(hba->dev, "%s: failed to set OPP: %d", __func__,
9267 				ret);
9268 			goto out;
9269 		}
9270 	}
9271 
9272 out:
9273 	return ret;
9274 }
9275 
9276 static int ufshcd_variant_hba_init(struct ufs_hba *hba)
9277 {
9278 	int err = 0;
9279 
9280 	if (!hba->vops)
9281 		goto out;
9282 
9283 	err = ufshcd_vops_init(hba);
9284 	if (err)
9285 		dev_err_probe(hba->dev, err,
9286 			      "%s: variant %s init failed with err %d\n",
9287 			      __func__, ufshcd_get_var_name(hba), err);
9288 out:
9289 	return err;
9290 }
9291 
9292 static void ufshcd_variant_hba_exit(struct ufs_hba *hba)
9293 {
9294 	if (!hba->vops)
9295 		return;
9296 
9297 	ufshcd_vops_exit(hba);
9298 }
9299 
9300 static int ufshcd_hba_init(struct ufs_hba *hba)
9301 {
9302 	int err;
9303 
9304 	/*
9305 	 * Handle host controller power separately from the UFS device power
9306 	 * rails as it will help controlling the UFS host controller power
9307 	 * collapse easily which is different than UFS device power collapse.
9308 	 * Also, enable the host controller power before we go ahead with rest
9309 	 * of the initialization here.
9310 	 */
9311 	err = ufshcd_init_hba_vreg(hba);
9312 	if (err)
9313 		goto out;
9314 
9315 	err = ufshcd_setup_hba_vreg(hba, true);
9316 	if (err)
9317 		goto out;
9318 
9319 	err = ufshcd_init_clocks(hba);
9320 	if (err)
9321 		goto out_disable_hba_vreg;
9322 
9323 	if (hba->dev_ref_clk_freq == REF_CLK_FREQ_INVAL)
9324 		hba->dev_ref_clk_freq = ufshcd_parse_ref_clk_property(hba);
9325 
9326 	err = ufshcd_setup_clocks(hba, true);
9327 	if (err)
9328 		goto out_disable_hba_vreg;
9329 
9330 	err = ufshcd_init_vreg(hba);
9331 	if (err)
9332 		goto out_disable_clks;
9333 
9334 	err = ufshcd_setup_vreg(hba, true);
9335 	if (err)
9336 		goto out_disable_clks;
9337 
9338 	err = ufshcd_variant_hba_init(hba);
9339 	if (err)
9340 		goto out_disable_vreg;
9341 
9342 	ufs_debugfs_hba_init(hba);
9343 	ufs_fault_inject_hba_init(hba);
9344 
9345 	hba->is_powered = true;
9346 	goto out;
9347 
9348 out_disable_vreg:
9349 	ufshcd_setup_vreg(hba, false);
9350 out_disable_clks:
9351 	ufshcd_setup_clocks(hba, false);
9352 out_disable_hba_vreg:
9353 	ufshcd_setup_hba_vreg(hba, false);
9354 out:
9355 	return err;
9356 }
9357 
9358 static void ufshcd_hba_exit(struct ufs_hba *hba)
9359 {
9360 	if (hba->is_powered) {
9361 		ufshcd_pm_qos_exit(hba);
9362 		ufshcd_exit_clk_scaling(hba);
9363 		ufshcd_exit_clk_gating(hba);
9364 		if (hba->eh_wq)
9365 			destroy_workqueue(hba->eh_wq);
9366 		ufs_debugfs_hba_exit(hba);
9367 		ufshcd_variant_hba_exit(hba);
9368 		ufshcd_setup_vreg(hba, false);
9369 		ufshcd_setup_clocks(hba, false);
9370 		ufshcd_setup_hba_vreg(hba, false);
9371 		hba->is_powered = false;
9372 		ufs_put_device_desc(hba);
9373 	}
9374 }
9375 
9376 static int ufshcd_execute_start_stop(struct scsi_device *sdev,
9377 				     enum ufs_dev_pwr_mode pwr_mode,
9378 				     struct scsi_sense_hdr *sshdr)
9379 {
9380 	const unsigned char cdb[6] = { START_STOP, 0, 0, 0, pwr_mode << 4, 0 };
9381 	struct scsi_failure failure_defs[] = {
9382 		{
9383 			.allowed = 2,
9384 			.result = SCMD_FAILURE_RESULT_ANY,
9385 		},
9386 	};
9387 	struct scsi_failures failures = {
9388 		.failure_definitions = failure_defs,
9389 	};
9390 	const struct scsi_exec_args args = {
9391 		.failures = &failures,
9392 		.sshdr = sshdr,
9393 		.req_flags = BLK_MQ_REQ_PM,
9394 		.scmd_flags = SCMD_FAIL_IF_RECOVERING,
9395 	};
9396 
9397 	return scsi_execute_cmd(sdev, cdb, REQ_OP_DRV_IN, /*buffer=*/NULL,
9398 			/*bufflen=*/0, /*timeout=*/10 * HZ, /*retries=*/0,
9399 			&args);
9400 }
9401 
9402 /**
9403  * ufshcd_set_dev_pwr_mode - sends START STOP UNIT command to set device
9404  *			     power mode
9405  * @hba: per adapter instance
9406  * @pwr_mode: device power mode to set
9407  *
9408  * Return: 0 if requested power mode is set successfully;
9409  *         < 0 if failed to set the requested power mode.
9410  */
9411 static int ufshcd_set_dev_pwr_mode(struct ufs_hba *hba,
9412 				     enum ufs_dev_pwr_mode pwr_mode)
9413 {
9414 	struct scsi_sense_hdr sshdr;
9415 	struct scsi_device *sdp;
9416 	unsigned long flags;
9417 	int ret;
9418 
9419 	spin_lock_irqsave(hba->host->host_lock, flags);
9420 	sdp = hba->ufs_device_wlun;
9421 	if (sdp && scsi_device_online(sdp))
9422 		ret = scsi_device_get(sdp);
9423 	else
9424 		ret = -ENODEV;
9425 	spin_unlock_irqrestore(hba->host->host_lock, flags);
9426 
9427 	if (ret)
9428 		return ret;
9429 
9430 	/*
9431 	 * If scsi commands fail, the scsi mid-layer schedules scsi error-
9432 	 * handling, which would wait for host to be resumed. Since we know
9433 	 * we are functional while we are here, skip host resume in error
9434 	 * handling context.
9435 	 */
9436 	hba->host->eh_noresume = 1;
9437 
9438 	/*
9439 	 * Current function would be generally called from the power management
9440 	 * callbacks hence set the RQF_PM flag so that it doesn't resume the
9441 	 * already suspended childs.
9442 	 */
9443 	ret = ufshcd_execute_start_stop(sdp, pwr_mode, &sshdr);
9444 	if (ret) {
9445 		sdev_printk(KERN_WARNING, sdp,
9446 			    "START_STOP failed for power mode: %d, result %x\n",
9447 			    pwr_mode, ret);
9448 		if (ret > 0) {
9449 			if (scsi_sense_valid(&sshdr))
9450 				scsi_print_sense_hdr(sdp, NULL, &sshdr);
9451 			ret = -EIO;
9452 		}
9453 	} else {
9454 		hba->curr_dev_pwr_mode = pwr_mode;
9455 	}
9456 
9457 	scsi_device_put(sdp);
9458 	hba->host->eh_noresume = 0;
9459 	return ret;
9460 }
9461 
9462 static int ufshcd_link_state_transition(struct ufs_hba *hba,
9463 					enum uic_link_state req_link_state,
9464 					bool check_for_bkops)
9465 {
9466 	int ret = 0;
9467 
9468 	if (req_link_state == hba->uic_link_state)
9469 		return 0;
9470 
9471 	if (req_link_state == UIC_LINK_HIBERN8_STATE) {
9472 		ret = ufshcd_uic_hibern8_enter(hba);
9473 		if (!ret) {
9474 			ufshcd_set_link_hibern8(hba);
9475 		} else {
9476 			dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
9477 					__func__, ret);
9478 			goto out;
9479 		}
9480 	}
9481 	/*
9482 	 * If autobkops is enabled, link can't be turned off because
9483 	 * turning off the link would also turn off the device, except in the
9484 	 * case of DeepSleep where the device is expected to remain powered.
9485 	 */
9486 	else if ((req_link_state == UIC_LINK_OFF_STATE) &&
9487 		 (!check_for_bkops || !hba->auto_bkops_enabled)) {
9488 		/*
9489 		 * Let's make sure that link is in low power mode, we are doing
9490 		 * this currently by putting the link in Hibern8. Otherway to
9491 		 * put the link in low power mode is to send the DME end point
9492 		 * to device and then send the DME reset command to local
9493 		 * unipro. But putting the link in hibern8 is much faster.
9494 		 *
9495 		 * Note also that putting the link in Hibern8 is a requirement
9496 		 * for entering DeepSleep.
9497 		 */
9498 		ret = ufshcd_uic_hibern8_enter(hba);
9499 		if (ret) {
9500 			dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
9501 					__func__, ret);
9502 			goto out;
9503 		}
9504 		/*
9505 		 * Change controller state to "reset state" which
9506 		 * should also put the link in off/reset state
9507 		 */
9508 		ufshcd_hba_stop(hba);
9509 		/*
9510 		 * TODO: Check if we need any delay to make sure that
9511 		 * controller is reset
9512 		 */
9513 		ufshcd_set_link_off(hba);
9514 	}
9515 
9516 out:
9517 	return ret;
9518 }
9519 
9520 static void ufshcd_vreg_set_lpm(struct ufs_hba *hba)
9521 {
9522 	bool vcc_off = false;
9523 
9524 	/*
9525 	 * It seems some UFS devices may keep drawing more than sleep current
9526 	 * (atleast for 500us) from UFS rails (especially from VCCQ rail).
9527 	 * To avoid this situation, add 2ms delay before putting these UFS
9528 	 * rails in LPM mode.
9529 	 */
9530 	if (!ufshcd_is_link_active(hba) &&
9531 	    hba->dev_quirks & UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM)
9532 		usleep_range(2000, 2100);
9533 
9534 	/*
9535 	 * If UFS device is either in UFS_Sleep turn off VCC rail to save some
9536 	 * power.
9537 	 *
9538 	 * If UFS device and link is in OFF state, all power supplies (VCC,
9539 	 * VCCQ, VCCQ2) can be turned off if power on write protect is not
9540 	 * required. If UFS link is inactive (Hibern8 or OFF state) and device
9541 	 * is in sleep state, put VCCQ & VCCQ2 rails in LPM mode.
9542 	 *
9543 	 * Ignore the error returned by ufshcd_toggle_vreg() as device is anyway
9544 	 * in low power state which would save some power.
9545 	 *
9546 	 * If Write Booster is enabled and the device needs to flush the WB
9547 	 * buffer OR if bkops status is urgent for WB, keep Vcc on.
9548 	 */
9549 	if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba) &&
9550 	    !hba->dev_info.is_lu_power_on_wp) {
9551 		ufshcd_setup_vreg(hba, false);
9552 		vcc_off = true;
9553 	} else if (!ufshcd_is_ufs_dev_active(hba)) {
9554 		ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, false);
9555 		vcc_off = true;
9556 		if (ufshcd_is_link_hibern8(hba) || ufshcd_is_link_off(hba)) {
9557 			ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq);
9558 			ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq2);
9559 		}
9560 	}
9561 
9562 	/*
9563 	 * Some UFS devices require delay after VCC power rail is turned-off.
9564 	 */
9565 	if (vcc_off && hba->vreg_info.vcc &&
9566 		hba->dev_quirks & UFS_DEVICE_QUIRK_DELAY_AFTER_LPM)
9567 		usleep_range(5000, 5100);
9568 }
9569 
9570 #ifdef CONFIG_PM
9571 static int ufshcd_vreg_set_hpm(struct ufs_hba *hba)
9572 {
9573 	int ret = 0;
9574 
9575 	if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba) &&
9576 	    !hba->dev_info.is_lu_power_on_wp) {
9577 		ret = ufshcd_setup_vreg(hba, true);
9578 	} else if (!ufshcd_is_ufs_dev_active(hba)) {
9579 		if (!ufshcd_is_link_active(hba)) {
9580 			ret = ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq);
9581 			if (ret)
9582 				goto vcc_disable;
9583 			ret = ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq2);
9584 			if (ret)
9585 				goto vccq_lpm;
9586 		}
9587 		ret = ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, true);
9588 	}
9589 	goto out;
9590 
9591 vccq_lpm:
9592 	ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq);
9593 vcc_disable:
9594 	ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, false);
9595 out:
9596 	return ret;
9597 }
9598 #endif /* CONFIG_PM */
9599 
9600 static void ufshcd_hba_vreg_set_lpm(struct ufs_hba *hba)
9601 {
9602 	if (ufshcd_is_link_off(hba) || ufshcd_can_aggressive_pc(hba))
9603 		ufshcd_setup_hba_vreg(hba, false);
9604 }
9605 
9606 static void ufshcd_hba_vreg_set_hpm(struct ufs_hba *hba)
9607 {
9608 	if (ufshcd_is_link_off(hba) || ufshcd_can_aggressive_pc(hba))
9609 		ufshcd_setup_hba_vreg(hba, true);
9610 }
9611 
9612 static int __ufshcd_wl_suspend(struct ufs_hba *hba, enum ufs_pm_op pm_op)
9613 {
9614 	int ret = 0;
9615 	bool check_for_bkops;
9616 	enum ufs_pm_level pm_lvl;
9617 	enum ufs_dev_pwr_mode req_dev_pwr_mode;
9618 	enum uic_link_state req_link_state;
9619 
9620 	hba->pm_op_in_progress = true;
9621 	if (pm_op != UFS_SHUTDOWN_PM) {
9622 		pm_lvl = pm_op == UFS_RUNTIME_PM ?
9623 			 hba->rpm_lvl : hba->spm_lvl;
9624 		req_dev_pwr_mode = ufs_get_pm_lvl_to_dev_pwr_mode(pm_lvl);
9625 		req_link_state = ufs_get_pm_lvl_to_link_pwr_state(pm_lvl);
9626 	} else {
9627 		req_dev_pwr_mode = UFS_POWERDOWN_PWR_MODE;
9628 		req_link_state = UIC_LINK_OFF_STATE;
9629 	}
9630 
9631 	/*
9632 	 * If we can't transition into any of the low power modes
9633 	 * just gate the clocks.
9634 	 */
9635 	ufshcd_hold(hba);
9636 	hba->clk_gating.is_suspended = true;
9637 
9638 	if (ufshcd_is_clkscaling_supported(hba))
9639 		ufshcd_clk_scaling_suspend(hba, true);
9640 
9641 	if (req_dev_pwr_mode == UFS_ACTIVE_PWR_MODE &&
9642 			req_link_state == UIC_LINK_ACTIVE_STATE) {
9643 		goto vops_suspend;
9644 	}
9645 
9646 	if ((req_dev_pwr_mode == hba->curr_dev_pwr_mode) &&
9647 	    (req_link_state == hba->uic_link_state))
9648 		goto enable_scaling;
9649 
9650 	/* UFS device & link must be active before we enter in this function */
9651 	if (!ufshcd_is_ufs_dev_active(hba) || !ufshcd_is_link_active(hba)) {
9652 		/*  Wait err handler finish or trigger err recovery */
9653 		if (!ufshcd_eh_in_progress(hba))
9654 			ufshcd_force_error_recovery(hba);
9655 		ret = -EBUSY;
9656 		goto enable_scaling;
9657 	}
9658 
9659 	if (pm_op == UFS_RUNTIME_PM) {
9660 		if (ufshcd_can_autobkops_during_suspend(hba)) {
9661 			/*
9662 			 * The device is idle with no requests in the queue,
9663 			 * allow background operations if bkops status shows
9664 			 * that performance might be impacted.
9665 			 */
9666 			ret = ufshcd_bkops_ctrl(hba);
9667 			if (ret) {
9668 				/*
9669 				 * If return err in suspend flow, IO will hang.
9670 				 * Trigger error handler and break suspend for
9671 				 * error recovery.
9672 				 */
9673 				ufshcd_force_error_recovery(hba);
9674 				ret = -EBUSY;
9675 				goto enable_scaling;
9676 			}
9677 		} else {
9678 			/* make sure that auto bkops is disabled */
9679 			ufshcd_disable_auto_bkops(hba);
9680 		}
9681 		/*
9682 		 * If device needs to do BKOP or WB buffer flush during
9683 		 * Hibern8, keep device power mode as "active power mode"
9684 		 * and VCC supply.
9685 		 */
9686 		hba->dev_info.b_rpm_dev_flush_capable =
9687 			hba->auto_bkops_enabled ||
9688 			(((req_link_state == UIC_LINK_HIBERN8_STATE) ||
9689 			((req_link_state == UIC_LINK_ACTIVE_STATE) &&
9690 			ufshcd_is_auto_hibern8_enabled(hba))) &&
9691 			ufshcd_wb_need_flush(hba));
9692 	}
9693 
9694 	flush_work(&hba->eeh_work);
9695 
9696 	ret = ufshcd_vops_suspend(hba, pm_op, PRE_CHANGE);
9697 	if (ret)
9698 		goto enable_scaling;
9699 
9700 	if (req_dev_pwr_mode != hba->curr_dev_pwr_mode) {
9701 		if (pm_op != UFS_RUNTIME_PM)
9702 			/* ensure that bkops is disabled */
9703 			ufshcd_disable_auto_bkops(hba);
9704 
9705 		if (!hba->dev_info.b_rpm_dev_flush_capable) {
9706 			ret = ufshcd_set_dev_pwr_mode(hba, req_dev_pwr_mode);
9707 			if (ret && pm_op != UFS_SHUTDOWN_PM) {
9708 				/*
9709 				 * If return err in suspend flow, IO will hang.
9710 				 * Trigger error handler and break suspend for
9711 				 * error recovery.
9712 				 */
9713 				ufshcd_force_error_recovery(hba);
9714 				ret = -EBUSY;
9715 			}
9716 			if (ret)
9717 				goto enable_scaling;
9718 		}
9719 	}
9720 
9721 	/*
9722 	 * In the case of DeepSleep, the device is expected to remain powered
9723 	 * with the link off, so do not check for bkops.
9724 	 */
9725 	check_for_bkops = !ufshcd_is_ufs_dev_deepsleep(hba);
9726 	ret = ufshcd_link_state_transition(hba, req_link_state, check_for_bkops);
9727 	if (ret && pm_op != UFS_SHUTDOWN_PM) {
9728 		/*
9729 		 * If return err in suspend flow, IO will hang.
9730 		 * Trigger error handler and break suspend for
9731 		 * error recovery.
9732 		 */
9733 		ufshcd_force_error_recovery(hba);
9734 		ret = -EBUSY;
9735 	}
9736 	if (ret)
9737 		goto set_dev_active;
9738 
9739 vops_suspend:
9740 	/*
9741 	 * Call vendor specific suspend callback. As these callbacks may access
9742 	 * vendor specific host controller register space call them before the
9743 	 * host clocks are ON.
9744 	 */
9745 	ret = ufshcd_vops_suspend(hba, pm_op, POST_CHANGE);
9746 	if (ret)
9747 		goto set_link_active;
9748 
9749 	cancel_delayed_work_sync(&hba->ufs_rtc_update_work);
9750 	goto out;
9751 
9752 set_link_active:
9753 	/*
9754 	 * Device hardware reset is required to exit DeepSleep. Also, for
9755 	 * DeepSleep, the link is off so host reset and restore will be done
9756 	 * further below.
9757 	 */
9758 	if (ufshcd_is_ufs_dev_deepsleep(hba)) {
9759 		ufshcd_device_reset(hba);
9760 		WARN_ON(!ufshcd_is_link_off(hba));
9761 	}
9762 	if (ufshcd_is_link_hibern8(hba) && !ufshcd_uic_hibern8_exit(hba))
9763 		ufshcd_set_link_active(hba);
9764 	else if (ufshcd_is_link_off(hba))
9765 		ufshcd_host_reset_and_restore(hba);
9766 set_dev_active:
9767 	/* Can also get here needing to exit DeepSleep */
9768 	if (ufshcd_is_ufs_dev_deepsleep(hba)) {
9769 		ufshcd_device_reset(hba);
9770 		ufshcd_host_reset_and_restore(hba);
9771 	}
9772 	if (!ufshcd_set_dev_pwr_mode(hba, UFS_ACTIVE_PWR_MODE))
9773 		ufshcd_disable_auto_bkops(hba);
9774 enable_scaling:
9775 	if (ufshcd_is_clkscaling_supported(hba))
9776 		ufshcd_clk_scaling_suspend(hba, false);
9777 
9778 	hba->dev_info.b_rpm_dev_flush_capable = false;
9779 out:
9780 	if (hba->dev_info.b_rpm_dev_flush_capable) {
9781 		schedule_delayed_work(&hba->rpm_dev_flush_recheck_work,
9782 			msecs_to_jiffies(RPM_DEV_FLUSH_RECHECK_WORK_DELAY_MS));
9783 	}
9784 
9785 	if (ret) {
9786 		ufshcd_update_evt_hist(hba, UFS_EVT_WL_SUSP_ERR, (u32)ret);
9787 		hba->clk_gating.is_suspended = false;
9788 		ufshcd_release(hba);
9789 	}
9790 	hba->pm_op_in_progress = false;
9791 	return ret;
9792 }
9793 
9794 #ifdef CONFIG_PM
9795 static int __ufshcd_wl_resume(struct ufs_hba *hba, enum ufs_pm_op pm_op)
9796 {
9797 	int ret;
9798 	enum uic_link_state old_link_state = hba->uic_link_state;
9799 
9800 	hba->pm_op_in_progress = true;
9801 
9802 	/*
9803 	 * Call vendor specific resume callback. As these callbacks may access
9804 	 * vendor specific host controller register space call them when the
9805 	 * host clocks are ON.
9806 	 */
9807 	ret = ufshcd_vops_resume(hba, pm_op);
9808 	if (ret)
9809 		goto out;
9810 
9811 	/* For DeepSleep, the only supported option is to have the link off */
9812 	WARN_ON(ufshcd_is_ufs_dev_deepsleep(hba) && !ufshcd_is_link_off(hba));
9813 
9814 	if (ufshcd_is_link_hibern8(hba)) {
9815 		ret = ufshcd_uic_hibern8_exit(hba);
9816 		if (!ret) {
9817 			ufshcd_set_link_active(hba);
9818 		} else {
9819 			dev_err(hba->dev, "%s: hibern8 exit failed %d\n",
9820 					__func__, ret);
9821 			goto vendor_suspend;
9822 		}
9823 	} else if (ufshcd_is_link_off(hba)) {
9824 		/*
9825 		 * A full initialization of the host and the device is
9826 		 * required since the link was put to off during suspend.
9827 		 * Note, in the case of DeepSleep, the device will exit
9828 		 * DeepSleep due to device reset.
9829 		 */
9830 		ret = ufshcd_reset_and_restore(hba);
9831 		/*
9832 		 * ufshcd_reset_and_restore() should have already
9833 		 * set the link state as active
9834 		 */
9835 		if (ret || !ufshcd_is_link_active(hba))
9836 			goto vendor_suspend;
9837 	}
9838 
9839 	if (!ufshcd_is_ufs_dev_active(hba)) {
9840 		ret = ufshcd_set_dev_pwr_mode(hba, UFS_ACTIVE_PWR_MODE);
9841 		if (ret)
9842 			goto set_old_link_state;
9843 		ufshcd_set_timestamp_attr(hba);
9844 		schedule_delayed_work(&hba->ufs_rtc_update_work,
9845 				      msecs_to_jiffies(UFS_RTC_UPDATE_INTERVAL_MS));
9846 	}
9847 
9848 	if (ufshcd_keep_autobkops_enabled_except_suspend(hba))
9849 		ufshcd_enable_auto_bkops(hba);
9850 	else
9851 		/*
9852 		 * If BKOPs operations are urgently needed at this moment then
9853 		 * keep auto-bkops enabled or else disable it.
9854 		 */
9855 		ufshcd_bkops_ctrl(hba);
9856 
9857 	if (hba->ee_usr_mask)
9858 		ufshcd_write_ee_control(hba);
9859 
9860 	if (ufshcd_is_clkscaling_supported(hba))
9861 		ufshcd_clk_scaling_suspend(hba, false);
9862 
9863 	if (hba->dev_info.b_rpm_dev_flush_capable) {
9864 		hba->dev_info.b_rpm_dev_flush_capable = false;
9865 		cancel_delayed_work(&hba->rpm_dev_flush_recheck_work);
9866 	}
9867 
9868 	ufshcd_configure_auto_hibern8(hba);
9869 
9870 	goto out;
9871 
9872 set_old_link_state:
9873 	ufshcd_link_state_transition(hba, old_link_state, 0);
9874 vendor_suspend:
9875 	ufshcd_vops_suspend(hba, pm_op, PRE_CHANGE);
9876 	ufshcd_vops_suspend(hba, pm_op, POST_CHANGE);
9877 out:
9878 	if (ret)
9879 		ufshcd_update_evt_hist(hba, UFS_EVT_WL_RES_ERR, (u32)ret);
9880 	hba->clk_gating.is_suspended = false;
9881 	ufshcd_release(hba);
9882 	hba->pm_op_in_progress = false;
9883 	return ret;
9884 }
9885 
9886 static int ufshcd_wl_runtime_suspend(struct device *dev)
9887 {
9888 	struct scsi_device *sdev = to_scsi_device(dev);
9889 	struct ufs_hba *hba;
9890 	int ret;
9891 	ktime_t start = ktime_get();
9892 
9893 	hba = shost_priv(sdev->host);
9894 
9895 	ret = __ufshcd_wl_suspend(hba, UFS_RUNTIME_PM);
9896 	if (ret)
9897 		dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
9898 
9899 	trace_ufshcd_wl_runtime_suspend(dev_name(dev), ret,
9900 		ktime_to_us(ktime_sub(ktime_get(), start)),
9901 		hba->curr_dev_pwr_mode, hba->uic_link_state);
9902 
9903 	return ret;
9904 }
9905 
9906 static int ufshcd_wl_runtime_resume(struct device *dev)
9907 {
9908 	struct scsi_device *sdev = to_scsi_device(dev);
9909 	struct ufs_hba *hba;
9910 	int ret = 0;
9911 	ktime_t start = ktime_get();
9912 
9913 	hba = shost_priv(sdev->host);
9914 
9915 	ret = __ufshcd_wl_resume(hba, UFS_RUNTIME_PM);
9916 	if (ret)
9917 		dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
9918 
9919 	trace_ufshcd_wl_runtime_resume(dev_name(dev), ret,
9920 		ktime_to_us(ktime_sub(ktime_get(), start)),
9921 		hba->curr_dev_pwr_mode, hba->uic_link_state);
9922 
9923 	return ret;
9924 }
9925 #endif
9926 
9927 #ifdef CONFIG_PM_SLEEP
9928 static int ufshcd_wl_suspend(struct device *dev)
9929 {
9930 	struct scsi_device *sdev = to_scsi_device(dev);
9931 	struct ufs_hba *hba;
9932 	int ret = 0;
9933 	ktime_t start = ktime_get();
9934 
9935 	hba = shost_priv(sdev->host);
9936 	down(&hba->host_sem);
9937 	hba->system_suspending = true;
9938 
9939 	if (pm_runtime_suspended(dev))
9940 		goto out;
9941 
9942 	ret = __ufshcd_wl_suspend(hba, UFS_SYSTEM_PM);
9943 	if (ret) {
9944 		dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__,  ret);
9945 		up(&hba->host_sem);
9946 	}
9947 
9948 out:
9949 	if (!ret)
9950 		hba->is_sys_suspended = true;
9951 	trace_ufshcd_wl_suspend(dev_name(dev), ret,
9952 		ktime_to_us(ktime_sub(ktime_get(), start)),
9953 		hba->curr_dev_pwr_mode, hba->uic_link_state);
9954 
9955 	return ret;
9956 }
9957 
9958 static int ufshcd_wl_resume(struct device *dev)
9959 {
9960 	struct scsi_device *sdev = to_scsi_device(dev);
9961 	struct ufs_hba *hba;
9962 	int ret = 0;
9963 	ktime_t start = ktime_get();
9964 
9965 	hba = shost_priv(sdev->host);
9966 
9967 	if (pm_runtime_suspended(dev))
9968 		goto out;
9969 
9970 	ret = __ufshcd_wl_resume(hba, UFS_SYSTEM_PM);
9971 	if (ret)
9972 		dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
9973 out:
9974 	trace_ufshcd_wl_resume(dev_name(dev), ret,
9975 		ktime_to_us(ktime_sub(ktime_get(), start)),
9976 		hba->curr_dev_pwr_mode, hba->uic_link_state);
9977 	if (!ret)
9978 		hba->is_sys_suspended = false;
9979 	hba->system_suspending = false;
9980 	up(&hba->host_sem);
9981 	return ret;
9982 }
9983 #endif
9984 
9985 /**
9986  * ufshcd_suspend - helper function for suspend operations
9987  * @hba: per adapter instance
9988  *
9989  * This function will put disable irqs, turn off clocks
9990  * and set vreg and hba-vreg in lpm mode.
9991  *
9992  * Return: 0 upon success; < 0 upon failure.
9993  */
9994 static int ufshcd_suspend(struct ufs_hba *hba)
9995 {
9996 	int ret;
9997 
9998 	if (!hba->is_powered)
9999 		return 0;
10000 	/*
10001 	 * Disable the host irq as host controller as there won't be any
10002 	 * host controller transaction expected till resume.
10003 	 */
10004 	ufshcd_disable_irq(hba);
10005 	ret = ufshcd_setup_clocks(hba, false);
10006 	if (ret) {
10007 		ufshcd_enable_irq(hba);
10008 		return ret;
10009 	}
10010 	if (ufshcd_is_clkgating_allowed(hba)) {
10011 		hba->clk_gating.state = CLKS_OFF;
10012 		trace_ufshcd_clk_gating(dev_name(hba->dev),
10013 					hba->clk_gating.state);
10014 	}
10015 
10016 	ufshcd_vreg_set_lpm(hba);
10017 	/* Put the host controller in low power mode if possible */
10018 	ufshcd_hba_vreg_set_lpm(hba);
10019 	ufshcd_pm_qos_update(hba, false);
10020 	return ret;
10021 }
10022 
10023 #ifdef CONFIG_PM
10024 /**
10025  * ufshcd_resume - helper function for resume operations
10026  * @hba: per adapter instance
10027  *
10028  * This function basically turns on the regulators, clocks and
10029  * irqs of the hba.
10030  *
10031  * Return: 0 for success and non-zero for failure.
10032  */
10033 static int ufshcd_resume(struct ufs_hba *hba)
10034 {
10035 	int ret;
10036 
10037 	if (!hba->is_powered)
10038 		return 0;
10039 
10040 	ufshcd_hba_vreg_set_hpm(hba);
10041 	ret = ufshcd_vreg_set_hpm(hba);
10042 	if (ret)
10043 		goto out;
10044 
10045 	/* Make sure clocks are enabled before accessing controller */
10046 	ret = ufshcd_setup_clocks(hba, true);
10047 	if (ret)
10048 		goto disable_vreg;
10049 
10050 	/* enable the host irq as host controller would be active soon */
10051 	ufshcd_enable_irq(hba);
10052 
10053 	goto out;
10054 
10055 disable_vreg:
10056 	ufshcd_vreg_set_lpm(hba);
10057 out:
10058 	if (ret)
10059 		ufshcd_update_evt_hist(hba, UFS_EVT_RESUME_ERR, (u32)ret);
10060 	return ret;
10061 }
10062 #endif /* CONFIG_PM */
10063 
10064 #ifdef CONFIG_PM_SLEEP
10065 /**
10066  * ufshcd_system_suspend - system suspend callback
10067  * @dev: Device associated with the UFS controller.
10068  *
10069  * Executed before putting the system into a sleep state in which the contents
10070  * of main memory are preserved.
10071  *
10072  * Return: 0 for success and non-zero for failure.
10073  */
10074 int ufshcd_system_suspend(struct device *dev)
10075 {
10076 	struct ufs_hba *hba = dev_get_drvdata(dev);
10077 	int ret = 0;
10078 	ktime_t start = ktime_get();
10079 
10080 	if (pm_runtime_suspended(hba->dev))
10081 		goto out;
10082 
10083 	ret = ufshcd_suspend(hba);
10084 out:
10085 	trace_ufshcd_system_suspend(dev_name(hba->dev), ret,
10086 		ktime_to_us(ktime_sub(ktime_get(), start)),
10087 		hba->curr_dev_pwr_mode, hba->uic_link_state);
10088 	return ret;
10089 }
10090 EXPORT_SYMBOL(ufshcd_system_suspend);
10091 
10092 /**
10093  * ufshcd_system_resume - system resume callback
10094  * @dev: Device associated with the UFS controller.
10095  *
10096  * Executed after waking the system up from a sleep state in which the contents
10097  * of main memory were preserved.
10098  *
10099  * Return: 0 for success and non-zero for failure.
10100  */
10101 int ufshcd_system_resume(struct device *dev)
10102 {
10103 	struct ufs_hba *hba = dev_get_drvdata(dev);
10104 	ktime_t start = ktime_get();
10105 	int ret = 0;
10106 
10107 	if (pm_runtime_suspended(hba->dev))
10108 		goto out;
10109 
10110 	ret = ufshcd_resume(hba);
10111 
10112 out:
10113 	trace_ufshcd_system_resume(dev_name(hba->dev), ret,
10114 		ktime_to_us(ktime_sub(ktime_get(), start)),
10115 		hba->curr_dev_pwr_mode, hba->uic_link_state);
10116 
10117 	return ret;
10118 }
10119 EXPORT_SYMBOL(ufshcd_system_resume);
10120 #endif /* CONFIG_PM_SLEEP */
10121 
10122 #ifdef CONFIG_PM
10123 /**
10124  * ufshcd_runtime_suspend - runtime suspend callback
10125  * @dev: Device associated with the UFS controller.
10126  *
10127  * Check the description of ufshcd_suspend() function for more details.
10128  *
10129  * Return: 0 for success and non-zero for failure.
10130  */
10131 int ufshcd_runtime_suspend(struct device *dev)
10132 {
10133 	struct ufs_hba *hba = dev_get_drvdata(dev);
10134 	int ret;
10135 	ktime_t start = ktime_get();
10136 
10137 	ret = ufshcd_suspend(hba);
10138 
10139 	trace_ufshcd_runtime_suspend(dev_name(hba->dev), ret,
10140 		ktime_to_us(ktime_sub(ktime_get(), start)),
10141 		hba->curr_dev_pwr_mode, hba->uic_link_state);
10142 	return ret;
10143 }
10144 EXPORT_SYMBOL(ufshcd_runtime_suspend);
10145 
10146 /**
10147  * ufshcd_runtime_resume - runtime resume routine
10148  * @dev: Device associated with the UFS controller.
10149  *
10150  * This function basically brings controller
10151  * to active state. Following operations are done in this function:
10152  *
10153  * 1. Turn on all the controller related clocks
10154  * 2. Turn ON VCC rail
10155  *
10156  * Return: 0 upon success; < 0 upon failure.
10157  */
10158 int ufshcd_runtime_resume(struct device *dev)
10159 {
10160 	struct ufs_hba *hba = dev_get_drvdata(dev);
10161 	int ret;
10162 	ktime_t start = ktime_get();
10163 
10164 	ret = ufshcd_resume(hba);
10165 
10166 	trace_ufshcd_runtime_resume(dev_name(hba->dev), ret,
10167 		ktime_to_us(ktime_sub(ktime_get(), start)),
10168 		hba->curr_dev_pwr_mode, hba->uic_link_state);
10169 	return ret;
10170 }
10171 EXPORT_SYMBOL(ufshcd_runtime_resume);
10172 #endif /* CONFIG_PM */
10173 
10174 static void ufshcd_wl_shutdown(struct device *dev)
10175 {
10176 	struct scsi_device *sdev = to_scsi_device(dev);
10177 	struct ufs_hba *hba = shost_priv(sdev->host);
10178 
10179 	down(&hba->host_sem);
10180 	hba->shutting_down = true;
10181 	up(&hba->host_sem);
10182 
10183 	/* Turn on everything while shutting down */
10184 	ufshcd_rpm_get_sync(hba);
10185 	scsi_device_quiesce(sdev);
10186 	shost_for_each_device(sdev, hba->host) {
10187 		if (sdev == hba->ufs_device_wlun)
10188 			continue;
10189 		scsi_device_quiesce(sdev);
10190 	}
10191 	__ufshcd_wl_suspend(hba, UFS_SHUTDOWN_PM);
10192 
10193 	/*
10194 	 * Next, turn off the UFS controller and the UFS regulators. Disable
10195 	 * clocks.
10196 	 */
10197 	if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba))
10198 		ufshcd_suspend(hba);
10199 
10200 	hba->is_powered = false;
10201 }
10202 
10203 /**
10204  * ufshcd_remove - de-allocate SCSI host and host memory space
10205  *		data structure memory
10206  * @hba: per adapter instance
10207  */
10208 void ufshcd_remove(struct ufs_hba *hba)
10209 {
10210 	if (hba->ufs_device_wlun)
10211 		ufshcd_rpm_get_sync(hba);
10212 	ufs_hwmon_remove(hba);
10213 	ufs_bsg_remove(hba);
10214 	ufs_sysfs_remove_nodes(hba->dev);
10215 	blk_mq_destroy_queue(hba->tmf_queue);
10216 	blk_put_queue(hba->tmf_queue);
10217 	blk_mq_free_tag_set(&hba->tmf_tag_set);
10218 	if (hba->scsi_host_added)
10219 		scsi_remove_host(hba->host);
10220 	/* disable interrupts */
10221 	ufshcd_disable_intr(hba, hba->intr_mask);
10222 	ufshcd_hba_stop(hba);
10223 	ufshcd_hba_exit(hba);
10224 }
10225 EXPORT_SYMBOL_GPL(ufshcd_remove);
10226 
10227 #ifdef CONFIG_PM_SLEEP
10228 int ufshcd_system_freeze(struct device *dev)
10229 {
10230 
10231 	return ufshcd_system_suspend(dev);
10232 
10233 }
10234 EXPORT_SYMBOL_GPL(ufshcd_system_freeze);
10235 
10236 int ufshcd_system_restore(struct device *dev)
10237 {
10238 
10239 	struct ufs_hba *hba = dev_get_drvdata(dev);
10240 	int ret;
10241 
10242 	ret = ufshcd_system_resume(dev);
10243 	if (ret)
10244 		return ret;
10245 
10246 	/* Configure UTRL and UTMRL base address registers */
10247 	ufshcd_writel(hba, lower_32_bits(hba->utrdl_dma_addr),
10248 			REG_UTP_TRANSFER_REQ_LIST_BASE_L);
10249 	ufshcd_writel(hba, upper_32_bits(hba->utrdl_dma_addr),
10250 			REG_UTP_TRANSFER_REQ_LIST_BASE_H);
10251 	ufshcd_writel(hba, lower_32_bits(hba->utmrdl_dma_addr),
10252 			REG_UTP_TASK_REQ_LIST_BASE_L);
10253 	ufshcd_writel(hba, upper_32_bits(hba->utmrdl_dma_addr),
10254 			REG_UTP_TASK_REQ_LIST_BASE_H);
10255 	/*
10256 	 * Make sure that UTRL and UTMRL base address registers
10257 	 * are updated with the latest queue addresses. Only after
10258 	 * updating these addresses, we can queue the new commands.
10259 	 */
10260 	ufshcd_readl(hba, REG_UTP_TASK_REQ_LIST_BASE_H);
10261 
10262 	return 0;
10263 
10264 }
10265 EXPORT_SYMBOL_GPL(ufshcd_system_restore);
10266 
10267 int ufshcd_system_thaw(struct device *dev)
10268 {
10269 	return ufshcd_system_resume(dev);
10270 }
10271 EXPORT_SYMBOL_GPL(ufshcd_system_thaw);
10272 #endif /* CONFIG_PM_SLEEP  */
10273 
10274 /**
10275  * ufshcd_dealloc_host - deallocate Host Bus Adapter (HBA)
10276  * @hba: pointer to Host Bus Adapter (HBA)
10277  */
10278 void ufshcd_dealloc_host(struct ufs_hba *hba)
10279 {
10280 	scsi_host_put(hba->host);
10281 }
10282 EXPORT_SYMBOL_GPL(ufshcd_dealloc_host);
10283 
10284 /**
10285  * ufshcd_set_dma_mask - Set dma mask based on the controller
10286  *			 addressing capability
10287  * @hba: per adapter instance
10288  *
10289  * Return: 0 for success, non-zero for failure.
10290  */
10291 static int ufshcd_set_dma_mask(struct ufs_hba *hba)
10292 {
10293 	if (hba->vops && hba->vops->set_dma_mask)
10294 		return hba->vops->set_dma_mask(hba);
10295 	if (hba->capabilities & MASK_64_ADDRESSING_SUPPORT) {
10296 		if (!dma_set_mask_and_coherent(hba->dev, DMA_BIT_MASK(64)))
10297 			return 0;
10298 	}
10299 	return dma_set_mask_and_coherent(hba->dev, DMA_BIT_MASK(32));
10300 }
10301 
10302 /**
10303  * ufshcd_alloc_host - allocate Host Bus Adapter (HBA)
10304  * @dev: pointer to device handle
10305  * @hba_handle: driver private handle
10306  *
10307  * Return: 0 on success, non-zero value on failure.
10308  */
10309 int ufshcd_alloc_host(struct device *dev, struct ufs_hba **hba_handle)
10310 {
10311 	struct Scsi_Host *host;
10312 	struct ufs_hba *hba;
10313 	int err = 0;
10314 
10315 	if (!dev) {
10316 		dev_err(dev,
10317 		"Invalid memory reference for dev is NULL\n");
10318 		err = -ENODEV;
10319 		goto out_error;
10320 	}
10321 
10322 	host = scsi_host_alloc(&ufshcd_driver_template,
10323 				sizeof(struct ufs_hba));
10324 	if (!host) {
10325 		dev_err(dev, "scsi_host_alloc failed\n");
10326 		err = -ENOMEM;
10327 		goto out_error;
10328 	}
10329 	host->nr_maps = HCTX_TYPE_POLL + 1;
10330 	hba = shost_priv(host);
10331 	hba->host = host;
10332 	hba->dev = dev;
10333 	hba->dev_ref_clk_freq = REF_CLK_FREQ_INVAL;
10334 	hba->nop_out_timeout = NOP_OUT_TIMEOUT;
10335 	ufshcd_set_sg_entry_size(hba, sizeof(struct ufshcd_sg_entry));
10336 	INIT_LIST_HEAD(&hba->clk_list_head);
10337 	spin_lock_init(&hba->outstanding_lock);
10338 
10339 	*hba_handle = hba;
10340 
10341 out_error:
10342 	return err;
10343 }
10344 EXPORT_SYMBOL(ufshcd_alloc_host);
10345 
10346 /* This function exists because blk_mq_alloc_tag_set() requires this. */
10347 static blk_status_t ufshcd_queue_tmf(struct blk_mq_hw_ctx *hctx,
10348 				     const struct blk_mq_queue_data *qd)
10349 {
10350 	WARN_ON_ONCE(true);
10351 	return BLK_STS_NOTSUPP;
10352 }
10353 
10354 static const struct blk_mq_ops ufshcd_tmf_ops = {
10355 	.queue_rq = ufshcd_queue_tmf,
10356 };
10357 
10358 static int ufshcd_add_scsi_host(struct ufs_hba *hba)
10359 {
10360 	int err;
10361 
10362 	if (!is_mcq_supported(hba)) {
10363 		if (!hba->lsdb_sup) {
10364 			dev_err(hba->dev,
10365 				"%s: failed to initialize (legacy doorbell mode not supported)\n",
10366 				__func__);
10367 			return -EINVAL;
10368 		}
10369 		err = scsi_add_host(hba->host, hba->dev);
10370 		if (err) {
10371 			dev_err(hba->dev, "scsi_add_host failed\n");
10372 			return err;
10373 		}
10374 		hba->scsi_host_added = true;
10375 	}
10376 
10377 	hba->tmf_tag_set = (struct blk_mq_tag_set) {
10378 		.nr_hw_queues	= 1,
10379 		.queue_depth	= hba->nutmrs,
10380 		.ops		= &ufshcd_tmf_ops,
10381 		.flags		= BLK_MQ_F_NO_SCHED,
10382 	};
10383 	err = blk_mq_alloc_tag_set(&hba->tmf_tag_set);
10384 	if (err < 0)
10385 		goto remove_scsi_host;
10386 	hba->tmf_queue = blk_mq_alloc_queue(&hba->tmf_tag_set, NULL, NULL);
10387 	if (IS_ERR(hba->tmf_queue)) {
10388 		err = PTR_ERR(hba->tmf_queue);
10389 		goto free_tmf_tag_set;
10390 	}
10391 	hba->tmf_rqs = devm_kcalloc(hba->dev, hba->nutmrs,
10392 				    sizeof(*hba->tmf_rqs), GFP_KERNEL);
10393 	if (!hba->tmf_rqs) {
10394 		err = -ENOMEM;
10395 		goto free_tmf_queue;
10396 	}
10397 
10398 	return 0;
10399 
10400 free_tmf_queue:
10401 	blk_mq_destroy_queue(hba->tmf_queue);
10402 	blk_put_queue(hba->tmf_queue);
10403 
10404 free_tmf_tag_set:
10405 	blk_mq_free_tag_set(&hba->tmf_tag_set);
10406 
10407 remove_scsi_host:
10408 	if (hba->scsi_host_added)
10409 		scsi_remove_host(hba->host);
10410 
10411 	return err;
10412 }
10413 
10414 /**
10415  * ufshcd_init - Driver initialization routine
10416  * @hba: per-adapter instance
10417  * @mmio_base: base register address
10418  * @irq: Interrupt line of device
10419  *
10420  * Return: 0 on success, non-zero value on failure.
10421  */
10422 int ufshcd_init(struct ufs_hba *hba, void __iomem *mmio_base, unsigned int irq)
10423 {
10424 	int err;
10425 	struct Scsi_Host *host = hba->host;
10426 	struct device *dev = hba->dev;
10427 
10428 	/*
10429 	 * dev_set_drvdata() must be called before any callbacks are registered
10430 	 * that use dev_get_drvdata() (frequency scaling, clock scaling, hwmon,
10431 	 * sysfs).
10432 	 */
10433 	dev_set_drvdata(dev, hba);
10434 
10435 	if (!mmio_base) {
10436 		dev_err(hba->dev,
10437 		"Invalid memory reference for mmio_base is NULL\n");
10438 		err = -ENODEV;
10439 		goto out_error;
10440 	}
10441 
10442 	hba->mmio_base = mmio_base;
10443 	hba->irq = irq;
10444 	hba->vps = &ufs_hba_vps;
10445 
10446 	err = ufshcd_hba_init(hba);
10447 	if (err)
10448 		goto out_error;
10449 
10450 	/* Read capabilities registers */
10451 	err = ufshcd_hba_capabilities(hba);
10452 	if (err)
10453 		goto out_disable;
10454 
10455 	/* Get UFS version supported by the controller */
10456 	hba->ufs_version = ufshcd_get_ufs_version(hba);
10457 
10458 	/* Get Interrupt bit mask per version */
10459 	hba->intr_mask = ufshcd_get_intr_mask(hba);
10460 
10461 	err = ufshcd_set_dma_mask(hba);
10462 	if (err) {
10463 		dev_err(hba->dev, "set dma mask failed\n");
10464 		goto out_disable;
10465 	}
10466 
10467 	/* Allocate memory for host memory space */
10468 	err = ufshcd_memory_alloc(hba);
10469 	if (err) {
10470 		dev_err(hba->dev, "Memory allocation failed\n");
10471 		goto out_disable;
10472 	}
10473 
10474 	/* Configure LRB */
10475 	ufshcd_host_memory_configure(hba);
10476 
10477 	host->can_queue = hba->nutrs - UFSHCD_NUM_RESERVED;
10478 	host->cmd_per_lun = hba->nutrs - UFSHCD_NUM_RESERVED;
10479 	host->max_id = UFSHCD_MAX_ID;
10480 	host->max_lun = UFS_MAX_LUNS;
10481 	host->max_channel = UFSHCD_MAX_CHANNEL;
10482 	host->unique_id = host->host_no;
10483 	host->max_cmd_len = UFS_CDB_SIZE;
10484 	host->queuecommand_may_block = !!(hba->caps & UFSHCD_CAP_CLK_GATING);
10485 
10486 	/* Use default RPM delay if host not set */
10487 	if (host->rpm_autosuspend_delay == 0)
10488 		host->rpm_autosuspend_delay = RPM_AUTOSUSPEND_DELAY_MS;
10489 
10490 	hba->max_pwr_info.is_valid = false;
10491 
10492 	/* Initialize work queues */
10493 	hba->eh_wq = alloc_ordered_workqueue("ufs_eh_wq_%d", WQ_MEM_RECLAIM,
10494 					     hba->host->host_no);
10495 	if (!hba->eh_wq) {
10496 		dev_err(hba->dev, "%s: failed to create eh workqueue\n",
10497 			__func__);
10498 		err = -ENOMEM;
10499 		goto out_disable;
10500 	}
10501 	INIT_WORK(&hba->eh_work, ufshcd_err_handler);
10502 	INIT_WORK(&hba->eeh_work, ufshcd_exception_event_handler);
10503 
10504 	sema_init(&hba->host_sem, 1);
10505 
10506 	/* Initialize UIC command mutex */
10507 	mutex_init(&hba->uic_cmd_mutex);
10508 
10509 	/* Initialize mutex for device management commands */
10510 	mutex_init(&hba->dev_cmd.lock);
10511 
10512 	/* Initialize mutex for exception event control */
10513 	mutex_init(&hba->ee_ctrl_mutex);
10514 
10515 	mutex_init(&hba->wb_mutex);
10516 	init_rwsem(&hba->clk_scaling_lock);
10517 
10518 	ufshcd_init_clk_gating(hba);
10519 
10520 	ufshcd_init_clk_scaling(hba);
10521 
10522 	/*
10523 	 * In order to avoid any spurious interrupt immediately after
10524 	 * registering UFS controller interrupt handler, clear any pending UFS
10525 	 * interrupt status and disable all the UFS interrupts.
10526 	 */
10527 	ufshcd_writel(hba, ufshcd_readl(hba, REG_INTERRUPT_STATUS),
10528 		      REG_INTERRUPT_STATUS);
10529 	ufshcd_writel(hba, 0, REG_INTERRUPT_ENABLE);
10530 	/*
10531 	 * Make sure that UFS interrupts are disabled and any pending interrupt
10532 	 * status is cleared before registering UFS interrupt handler.
10533 	 */
10534 	ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
10535 
10536 	/* IRQ registration */
10537 	err = devm_request_irq(dev, irq, ufshcd_intr, IRQF_SHARED, UFSHCD, hba);
10538 	if (err) {
10539 		dev_err(hba->dev, "request irq failed\n");
10540 		goto out_disable;
10541 	} else {
10542 		hba->is_irq_enabled = true;
10543 	}
10544 
10545 	/* Reset the attached device */
10546 	ufshcd_device_reset(hba);
10547 
10548 	ufshcd_init_crypto(hba);
10549 
10550 	/* Host controller enable */
10551 	err = ufshcd_hba_enable(hba);
10552 	if (err) {
10553 		dev_err(hba->dev, "Host controller enable failed\n");
10554 		ufshcd_print_evt_hist(hba);
10555 		ufshcd_print_host_state(hba);
10556 		goto out_disable;
10557 	}
10558 
10559 	/*
10560 	 * Set the default power management level for runtime and system PM.
10561 	 * Default power saving mode is to keep UFS link in Hibern8 state
10562 	 * and UFS device in sleep state.
10563 	 */
10564 	hba->rpm_lvl = ufs_get_desired_pm_lvl_for_dev_link_state(
10565 						UFS_SLEEP_PWR_MODE,
10566 						UIC_LINK_HIBERN8_STATE);
10567 	hba->spm_lvl = ufs_get_desired_pm_lvl_for_dev_link_state(
10568 						UFS_SLEEP_PWR_MODE,
10569 						UIC_LINK_HIBERN8_STATE);
10570 
10571 	INIT_DELAYED_WORK(&hba->rpm_dev_flush_recheck_work, ufshcd_rpm_dev_flush_recheck_work);
10572 	INIT_DELAYED_WORK(&hba->ufs_rtc_update_work, ufshcd_rtc_work);
10573 
10574 	/* Set the default auto-hiberate idle timer value to 150 ms */
10575 	if (ufshcd_is_auto_hibern8_supported(hba) && !hba->ahit) {
10576 		hba->ahit = FIELD_PREP(UFSHCI_AHIBERN8_TIMER_MASK, 150) |
10577 			    FIELD_PREP(UFSHCI_AHIBERN8_SCALE_MASK, 3);
10578 	}
10579 
10580 	/* Hold auto suspend until async scan completes */
10581 	pm_runtime_get_sync(dev);
10582 
10583 	/*
10584 	 * We are assuming that device wasn't put in sleep/power-down
10585 	 * state exclusively during the boot stage before kernel.
10586 	 * This assumption helps avoid doing link startup twice during
10587 	 * ufshcd_probe_hba().
10588 	 */
10589 	ufshcd_set_ufs_dev_active(hba);
10590 
10591 	err = ufshcd_add_scsi_host(hba);
10592 	if (err)
10593 		goto out_disable;
10594 
10595 	async_schedule(ufshcd_async_scan, hba);
10596 	ufs_sysfs_add_nodes(hba->dev);
10597 
10598 	device_enable_async_suspend(dev);
10599 	ufshcd_pm_qos_init(hba);
10600 	return 0;
10601 
10602 out_disable:
10603 	hba->is_irq_enabled = false;
10604 	ufshcd_hba_exit(hba);
10605 out_error:
10606 	return err;
10607 }
10608 EXPORT_SYMBOL_GPL(ufshcd_init);
10609 
10610 void ufshcd_resume_complete(struct device *dev)
10611 {
10612 	struct ufs_hba *hba = dev_get_drvdata(dev);
10613 
10614 	if (hba->complete_put) {
10615 		ufshcd_rpm_put(hba);
10616 		hba->complete_put = false;
10617 	}
10618 }
10619 EXPORT_SYMBOL_GPL(ufshcd_resume_complete);
10620 
10621 static bool ufshcd_rpm_ok_for_spm(struct ufs_hba *hba)
10622 {
10623 	struct device *dev = &hba->ufs_device_wlun->sdev_gendev;
10624 	enum ufs_dev_pwr_mode dev_pwr_mode;
10625 	enum uic_link_state link_state;
10626 	unsigned long flags;
10627 	bool res;
10628 
10629 	spin_lock_irqsave(&dev->power.lock, flags);
10630 	dev_pwr_mode = ufs_get_pm_lvl_to_dev_pwr_mode(hba->spm_lvl);
10631 	link_state = ufs_get_pm_lvl_to_link_pwr_state(hba->spm_lvl);
10632 	res = pm_runtime_suspended(dev) &&
10633 	      hba->curr_dev_pwr_mode == dev_pwr_mode &&
10634 	      hba->uic_link_state == link_state &&
10635 	      !hba->dev_info.b_rpm_dev_flush_capable;
10636 	spin_unlock_irqrestore(&dev->power.lock, flags);
10637 
10638 	return res;
10639 }
10640 
10641 int __ufshcd_suspend_prepare(struct device *dev, bool rpm_ok_for_spm)
10642 {
10643 	struct ufs_hba *hba = dev_get_drvdata(dev);
10644 	int ret;
10645 
10646 	/*
10647 	 * SCSI assumes that runtime-pm and system-pm for scsi drivers
10648 	 * are same. And it doesn't wake up the device for system-suspend
10649 	 * if it's runtime suspended. But ufs doesn't follow that.
10650 	 * Refer ufshcd_resume_complete()
10651 	 */
10652 	if (hba->ufs_device_wlun) {
10653 		/* Prevent runtime suspend */
10654 		ufshcd_rpm_get_noresume(hba);
10655 		/*
10656 		 * Check if already runtime suspended in same state as system
10657 		 * suspend would be.
10658 		 */
10659 		if (!rpm_ok_for_spm || !ufshcd_rpm_ok_for_spm(hba)) {
10660 			/* RPM state is not ok for SPM, so runtime resume */
10661 			ret = ufshcd_rpm_resume(hba);
10662 			if (ret < 0 && ret != -EACCES) {
10663 				ufshcd_rpm_put(hba);
10664 				return ret;
10665 			}
10666 		}
10667 		hba->complete_put = true;
10668 	}
10669 	return 0;
10670 }
10671 EXPORT_SYMBOL_GPL(__ufshcd_suspend_prepare);
10672 
10673 int ufshcd_suspend_prepare(struct device *dev)
10674 {
10675 	return __ufshcd_suspend_prepare(dev, true);
10676 }
10677 EXPORT_SYMBOL_GPL(ufshcd_suspend_prepare);
10678 
10679 #ifdef CONFIG_PM_SLEEP
10680 static int ufshcd_wl_poweroff(struct device *dev)
10681 {
10682 	struct scsi_device *sdev = to_scsi_device(dev);
10683 	struct ufs_hba *hba = shost_priv(sdev->host);
10684 
10685 	__ufshcd_wl_suspend(hba, UFS_SHUTDOWN_PM);
10686 	return 0;
10687 }
10688 #endif
10689 
10690 static int ufshcd_wl_probe(struct device *dev)
10691 {
10692 	struct scsi_device *sdev = to_scsi_device(dev);
10693 
10694 	if (!is_device_wlun(sdev))
10695 		return -ENODEV;
10696 
10697 	blk_pm_runtime_init(sdev->request_queue, dev);
10698 	pm_runtime_set_autosuspend_delay(dev, 0);
10699 	pm_runtime_allow(dev);
10700 
10701 	return  0;
10702 }
10703 
10704 static int ufshcd_wl_remove(struct device *dev)
10705 {
10706 	pm_runtime_forbid(dev);
10707 	return 0;
10708 }
10709 
10710 static const struct dev_pm_ops ufshcd_wl_pm_ops = {
10711 #ifdef CONFIG_PM_SLEEP
10712 	.suspend = ufshcd_wl_suspend,
10713 	.resume = ufshcd_wl_resume,
10714 	.freeze = ufshcd_wl_suspend,
10715 	.thaw = ufshcd_wl_resume,
10716 	.poweroff = ufshcd_wl_poweroff,
10717 	.restore = ufshcd_wl_resume,
10718 #endif
10719 	SET_RUNTIME_PM_OPS(ufshcd_wl_runtime_suspend, ufshcd_wl_runtime_resume, NULL)
10720 };
10721 
10722 static void ufshcd_check_header_layout(void)
10723 {
10724 	/*
10725 	 * gcc compilers before version 10 cannot do constant-folding for
10726 	 * sub-byte bitfields. Hence skip the layout checks for gcc 9 and
10727 	 * before.
10728 	 */
10729 	if (IS_ENABLED(CONFIG_CC_IS_GCC) && CONFIG_GCC_VERSION < 100000)
10730 		return;
10731 
10732 	BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10733 				.cci = 3})[0] != 3);
10734 
10735 	BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10736 				.ehs_length = 2})[1] != 2);
10737 
10738 	BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10739 				.enable_crypto = 1})[2]
10740 		     != 0x80);
10741 
10742 	BUILD_BUG_ON((((u8 *)&(struct request_desc_header){
10743 					.command_type = 5,
10744 					.data_direction = 3,
10745 					.interrupt = 1,
10746 				})[3]) != ((5 << 4) | (3 << 1) | 1));
10747 
10748 	BUILD_BUG_ON(((__le32 *)&(struct request_desc_header){
10749 				.dunl = cpu_to_le32(0xdeadbeef)})[1] !=
10750 		cpu_to_le32(0xdeadbeef));
10751 
10752 	BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10753 				.ocs = 4})[8] != 4);
10754 
10755 	BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10756 				.cds = 5})[9] != 5);
10757 
10758 	BUILD_BUG_ON(((__le32 *)&(struct request_desc_header){
10759 				.dunu = cpu_to_le32(0xbadcafe)})[3] !=
10760 		cpu_to_le32(0xbadcafe));
10761 
10762 	BUILD_BUG_ON(((u8 *)&(struct utp_upiu_header){
10763 			     .iid = 0xf })[4] != 0xf0);
10764 
10765 	BUILD_BUG_ON(((u8 *)&(struct utp_upiu_header){
10766 			     .command_set_type = 0xf })[4] != 0xf);
10767 }
10768 
10769 /*
10770  * ufs_dev_wlun_template - describes ufs device wlun
10771  * ufs-device wlun - used to send pm commands
10772  * All luns are consumers of ufs-device wlun.
10773  *
10774  * Currently, no sd driver is present for wluns.
10775  * Hence the no specific pm operations are performed.
10776  * With ufs design, SSU should be sent to ufs-device wlun.
10777  * Hence register a scsi driver for ufs wluns only.
10778  */
10779 static struct scsi_driver ufs_dev_wlun_template = {
10780 	.gendrv = {
10781 		.name = "ufs_device_wlun",
10782 		.probe = ufshcd_wl_probe,
10783 		.remove = ufshcd_wl_remove,
10784 		.pm = &ufshcd_wl_pm_ops,
10785 		.shutdown = ufshcd_wl_shutdown,
10786 	},
10787 };
10788 
10789 static int __init ufshcd_core_init(void)
10790 {
10791 	int ret;
10792 
10793 	ufshcd_check_header_layout();
10794 
10795 	ufs_debugfs_init();
10796 
10797 	ret = scsi_register_driver(&ufs_dev_wlun_template.gendrv);
10798 	if (ret)
10799 		ufs_debugfs_exit();
10800 	return ret;
10801 }
10802 
10803 static void __exit ufshcd_core_exit(void)
10804 {
10805 	ufs_debugfs_exit();
10806 	scsi_unregister_driver(&ufs_dev_wlun_template.gendrv);
10807 }
10808 
10809 module_init(ufshcd_core_init);
10810 module_exit(ufshcd_core_exit);
10811 
10812 MODULE_AUTHOR("Santosh Yaragnavi <santosh.sy@samsung.com>");
10813 MODULE_AUTHOR("Vinayak Holikatti <h.vinayak@samsung.com>");
10814 MODULE_DESCRIPTION("Generic UFS host controller driver Core");
10815 MODULE_SOFTDEP("pre: governor_simpleondemand");
10816 MODULE_LICENSE("GPL");
10817