1 // SPDX-License-Identifier: GPL-2.0 2 // Copyright (C) 2018 Western Digital Corporation 3 4 #include <linux/err.h> 5 #include <linux/string.h> 6 #include <linux/bitfield.h> 7 #include <linux/unaligned.h> 8 9 #include <ufs/ufs.h> 10 #include <ufs/unipro.h> 11 #include "ufs-sysfs.h" 12 #include "ufshcd-priv.h" 13 14 static const char *ufs_pa_pwr_mode_to_string(enum ufs_pa_pwr_mode mode) 15 { 16 switch (mode) { 17 case FAST_MODE: return "FAST_MODE"; 18 case SLOW_MODE: return "SLOW_MODE"; 19 case FASTAUTO_MODE: return "FASTAUTO_MODE"; 20 case SLOWAUTO_MODE: return "SLOWAUTO_MODE"; 21 default: return "UNKNOWN"; 22 } 23 } 24 25 static const char *ufs_hs_gear_rate_to_string(enum ufs_hs_gear_rate rate) 26 { 27 switch (rate) { 28 case PA_HS_MODE_A: return "HS_RATE_A"; 29 case PA_HS_MODE_B: return "HS_RATE_B"; 30 default: return "UNKNOWN"; 31 } 32 } 33 34 static const char *ufs_pwm_gear_to_string(enum ufs_pwm_gear_tag gear) 35 { 36 switch (gear) { 37 case UFS_PWM_G1: return "PWM_GEAR1"; 38 case UFS_PWM_G2: return "PWM_GEAR2"; 39 case UFS_PWM_G3: return "PWM_GEAR3"; 40 case UFS_PWM_G4: return "PWM_GEAR4"; 41 case UFS_PWM_G5: return "PWM_GEAR5"; 42 case UFS_PWM_G6: return "PWM_GEAR6"; 43 case UFS_PWM_G7: return "PWM_GEAR7"; 44 default: return "UNKNOWN"; 45 } 46 } 47 48 static const char *ufs_hs_gear_to_string(enum ufs_hs_gear_tag gear) 49 { 50 switch (gear) { 51 case UFS_HS_G1: return "HS_GEAR1"; 52 case UFS_HS_G2: return "HS_GEAR2"; 53 case UFS_HS_G3: return "HS_GEAR3"; 54 case UFS_HS_G4: return "HS_GEAR4"; 55 case UFS_HS_G5: return "HS_GEAR5"; 56 default: return "UNKNOWN"; 57 } 58 } 59 60 static const char *ufshcd_uic_link_state_to_string( 61 enum uic_link_state state) 62 { 63 switch (state) { 64 case UIC_LINK_OFF_STATE: return "OFF"; 65 case UIC_LINK_ACTIVE_STATE: return "ACTIVE"; 66 case UIC_LINK_HIBERN8_STATE: return "HIBERN8"; 67 case UIC_LINK_BROKEN_STATE: return "BROKEN"; 68 default: return "UNKNOWN"; 69 } 70 } 71 72 static const char *ufshcd_ufs_dev_pwr_mode_to_string( 73 enum ufs_dev_pwr_mode state) 74 { 75 switch (state) { 76 case UFS_ACTIVE_PWR_MODE: return "ACTIVE"; 77 case UFS_SLEEP_PWR_MODE: return "SLEEP"; 78 case UFS_POWERDOWN_PWR_MODE: return "POWERDOWN"; 79 case UFS_DEEPSLEEP_PWR_MODE: return "DEEPSLEEP"; 80 default: return "UNKNOWN"; 81 } 82 } 83 84 static inline ssize_t ufs_sysfs_pm_lvl_store(struct device *dev, 85 struct device_attribute *attr, 86 const char *buf, size_t count, 87 bool rpm) 88 { 89 struct ufs_hba *hba = dev_get_drvdata(dev); 90 struct ufs_dev_info *dev_info = &hba->dev_info; 91 unsigned long flags, value; 92 93 if (kstrtoul(buf, 0, &value)) 94 return -EINVAL; 95 96 if (value >= UFS_PM_LVL_MAX) 97 return -EINVAL; 98 99 if (ufs_pm_lvl_states[value].dev_state == UFS_DEEPSLEEP_PWR_MODE && 100 (!(hba->caps & UFSHCD_CAP_DEEPSLEEP) || 101 !(dev_info->wspecversion >= 0x310))) 102 return -EINVAL; 103 104 spin_lock_irqsave(hba->host->host_lock, flags); 105 if (rpm) 106 hba->rpm_lvl = value; 107 else 108 hba->spm_lvl = value; 109 spin_unlock_irqrestore(hba->host->host_lock, flags); 110 return count; 111 } 112 113 static ssize_t rpm_lvl_show(struct device *dev, 114 struct device_attribute *attr, char *buf) 115 { 116 struct ufs_hba *hba = dev_get_drvdata(dev); 117 118 return sysfs_emit(buf, "%d\n", hba->rpm_lvl); 119 } 120 121 static ssize_t rpm_lvl_store(struct device *dev, 122 struct device_attribute *attr, const char *buf, size_t count) 123 { 124 return ufs_sysfs_pm_lvl_store(dev, attr, buf, count, true); 125 } 126 127 static ssize_t rpm_target_dev_state_show(struct device *dev, 128 struct device_attribute *attr, char *buf) 129 { 130 struct ufs_hba *hba = dev_get_drvdata(dev); 131 132 return sysfs_emit(buf, "%s\n", ufshcd_ufs_dev_pwr_mode_to_string( 133 ufs_pm_lvl_states[hba->rpm_lvl].dev_state)); 134 } 135 136 static ssize_t rpm_target_link_state_show(struct device *dev, 137 struct device_attribute *attr, char *buf) 138 { 139 struct ufs_hba *hba = dev_get_drvdata(dev); 140 141 return sysfs_emit(buf, "%s\n", ufshcd_uic_link_state_to_string( 142 ufs_pm_lvl_states[hba->rpm_lvl].link_state)); 143 } 144 145 static ssize_t spm_lvl_show(struct device *dev, 146 struct device_attribute *attr, char *buf) 147 { 148 struct ufs_hba *hba = dev_get_drvdata(dev); 149 150 return sysfs_emit(buf, "%d\n", hba->spm_lvl); 151 } 152 153 static ssize_t spm_lvl_store(struct device *dev, 154 struct device_attribute *attr, const char *buf, size_t count) 155 { 156 return ufs_sysfs_pm_lvl_store(dev, attr, buf, count, false); 157 } 158 159 static ssize_t spm_target_dev_state_show(struct device *dev, 160 struct device_attribute *attr, char *buf) 161 { 162 struct ufs_hba *hba = dev_get_drvdata(dev); 163 164 return sysfs_emit(buf, "%s\n", ufshcd_ufs_dev_pwr_mode_to_string( 165 ufs_pm_lvl_states[hba->spm_lvl].dev_state)); 166 } 167 168 static ssize_t spm_target_link_state_show(struct device *dev, 169 struct device_attribute *attr, char *buf) 170 { 171 struct ufs_hba *hba = dev_get_drvdata(dev); 172 173 return sysfs_emit(buf, "%s\n", ufshcd_uic_link_state_to_string( 174 ufs_pm_lvl_states[hba->spm_lvl].link_state)); 175 } 176 177 /* Convert Auto-Hibernate Idle Timer register value to microseconds */ 178 static int ufshcd_ahit_to_us(u32 ahit) 179 { 180 int timer = FIELD_GET(UFSHCI_AHIBERN8_TIMER_MASK, ahit); 181 int scale = FIELD_GET(UFSHCI_AHIBERN8_SCALE_MASK, ahit); 182 183 for (; scale > 0; --scale) 184 timer *= UFSHCI_AHIBERN8_SCALE_FACTOR; 185 186 return timer; 187 } 188 189 /* Convert microseconds to Auto-Hibernate Idle Timer register value */ 190 static u32 ufshcd_us_to_ahit(unsigned int timer) 191 { 192 unsigned int scale; 193 194 for (scale = 0; timer > UFSHCI_AHIBERN8_TIMER_MASK; ++scale) 195 timer /= UFSHCI_AHIBERN8_SCALE_FACTOR; 196 197 return FIELD_PREP(UFSHCI_AHIBERN8_TIMER_MASK, timer) | 198 FIELD_PREP(UFSHCI_AHIBERN8_SCALE_MASK, scale); 199 } 200 201 static int ufshcd_read_hci_reg(struct ufs_hba *hba, u32 *val, unsigned int reg) 202 { 203 down(&hba->host_sem); 204 if (!ufshcd_is_user_access_allowed(hba)) { 205 up(&hba->host_sem); 206 return -EBUSY; 207 } 208 209 ufshcd_rpm_get_sync(hba); 210 ufshcd_hold(hba); 211 *val = ufshcd_readl(hba, reg); 212 ufshcd_release(hba); 213 ufshcd_rpm_put_sync(hba); 214 215 up(&hba->host_sem); 216 return 0; 217 } 218 219 static ssize_t auto_hibern8_show(struct device *dev, 220 struct device_attribute *attr, char *buf) 221 { 222 u32 ahit; 223 int ret; 224 struct ufs_hba *hba = dev_get_drvdata(dev); 225 226 if (!ufshcd_is_auto_hibern8_supported(hba)) 227 return -EOPNOTSUPP; 228 229 ret = ufshcd_read_hci_reg(hba, &ahit, REG_AUTO_HIBERNATE_IDLE_TIMER); 230 if (ret) 231 return ret; 232 233 return sysfs_emit(buf, "%d\n", ufshcd_ahit_to_us(ahit)); 234 } 235 236 static ssize_t auto_hibern8_store(struct device *dev, 237 struct device_attribute *attr, 238 const char *buf, size_t count) 239 { 240 struct ufs_hba *hba = dev_get_drvdata(dev); 241 unsigned int timer; 242 int ret = 0; 243 244 if (!ufshcd_is_auto_hibern8_supported(hba)) 245 return -EOPNOTSUPP; 246 247 if (kstrtouint(buf, 0, &timer)) 248 return -EINVAL; 249 250 if (timer > UFSHCI_AHIBERN8_MAX) 251 return -EINVAL; 252 253 down(&hba->host_sem); 254 if (!ufshcd_is_user_access_allowed(hba)) { 255 ret = -EBUSY; 256 goto out; 257 } 258 259 ufshcd_auto_hibern8_update(hba, ufshcd_us_to_ahit(timer)); 260 261 out: 262 up(&hba->host_sem); 263 return ret ? ret : count; 264 } 265 266 static ssize_t wb_on_show(struct device *dev, struct device_attribute *attr, 267 char *buf) 268 { 269 struct ufs_hba *hba = dev_get_drvdata(dev); 270 271 return sysfs_emit(buf, "%d\n", hba->dev_info.wb_enabled); 272 } 273 274 static ssize_t wb_on_store(struct device *dev, struct device_attribute *attr, 275 const char *buf, size_t count) 276 { 277 struct ufs_hba *hba = dev_get_drvdata(dev); 278 unsigned int wb_enable; 279 ssize_t res; 280 281 if (!ufshcd_is_wb_allowed(hba) || (ufshcd_is_clkscaling_supported(hba) 282 && ufshcd_enable_wb_if_scaling_up(hba))) { 283 /* 284 * If the platform supports UFSHCD_CAP_CLK_SCALING, turn WB 285 * on/off will be done while clock scaling up/down. 286 */ 287 dev_warn(dev, "It is not allowed to configure WB!\n"); 288 return -EOPNOTSUPP; 289 } 290 291 if (kstrtouint(buf, 0, &wb_enable)) 292 return -EINVAL; 293 294 if (wb_enable != 0 && wb_enable != 1) 295 return -EINVAL; 296 297 down(&hba->host_sem); 298 if (!ufshcd_is_user_access_allowed(hba)) { 299 res = -EBUSY; 300 goto out; 301 } 302 303 ufshcd_rpm_get_sync(hba); 304 res = ufshcd_wb_toggle(hba, wb_enable); 305 ufshcd_rpm_put_sync(hba); 306 out: 307 up(&hba->host_sem); 308 return res < 0 ? res : count; 309 } 310 311 static ssize_t rtc_update_ms_show(struct device *dev, struct device_attribute *attr, 312 char *buf) 313 { 314 struct ufs_hba *hba = dev_get_drvdata(dev); 315 316 return sysfs_emit(buf, "%d\n", hba->dev_info.rtc_update_period); 317 } 318 319 static ssize_t rtc_update_ms_store(struct device *dev, struct device_attribute *attr, 320 const char *buf, size_t count) 321 { 322 struct ufs_hba *hba = dev_get_drvdata(dev); 323 unsigned int ms; 324 bool resume_period_update = false; 325 326 if (kstrtouint(buf, 0, &ms)) 327 return -EINVAL; 328 329 if (!hba->dev_info.rtc_update_period && ms > 0) 330 resume_period_update = true; 331 /* Minimum and maximum update frequency should be synchronized with all UFS vendors */ 332 hba->dev_info.rtc_update_period = ms; 333 334 if (resume_period_update) 335 schedule_delayed_work(&hba->ufs_rtc_update_work, 336 msecs_to_jiffies(hba->dev_info.rtc_update_period)); 337 return count; 338 } 339 340 static ssize_t enable_wb_buf_flush_show(struct device *dev, 341 struct device_attribute *attr, 342 char *buf) 343 { 344 struct ufs_hba *hba = dev_get_drvdata(dev); 345 346 return sysfs_emit(buf, "%d\n", hba->dev_info.wb_buf_flush_enabled); 347 } 348 349 static ssize_t enable_wb_buf_flush_store(struct device *dev, 350 struct device_attribute *attr, 351 const char *buf, size_t count) 352 { 353 struct ufs_hba *hba = dev_get_drvdata(dev); 354 unsigned int enable_wb_buf_flush; 355 ssize_t res; 356 357 if (!ufshcd_is_wb_buf_flush_allowed(hba)) { 358 dev_warn(dev, "It is not allowed to configure WB buf flushing!\n"); 359 return -EOPNOTSUPP; 360 } 361 362 if (kstrtouint(buf, 0, &enable_wb_buf_flush)) 363 return -EINVAL; 364 365 if (enable_wb_buf_flush != 0 && enable_wb_buf_flush != 1) 366 return -EINVAL; 367 368 down(&hba->host_sem); 369 if (!ufshcd_is_user_access_allowed(hba)) { 370 res = -EBUSY; 371 goto out; 372 } 373 374 ufshcd_rpm_get_sync(hba); 375 res = ufshcd_wb_toggle_buf_flush(hba, enable_wb_buf_flush); 376 ufshcd_rpm_put_sync(hba); 377 378 out: 379 up(&hba->host_sem); 380 return res < 0 ? res : count; 381 } 382 383 static ssize_t wb_flush_threshold_show(struct device *dev, 384 struct device_attribute *attr, 385 char *buf) 386 { 387 struct ufs_hba *hba = dev_get_drvdata(dev); 388 389 return sysfs_emit(buf, "%u\n", hba->vps->wb_flush_threshold); 390 } 391 392 static ssize_t wb_flush_threshold_store(struct device *dev, 393 struct device_attribute *attr, 394 const char *buf, size_t count) 395 { 396 struct ufs_hba *hba = dev_get_drvdata(dev); 397 unsigned int wb_flush_threshold; 398 399 if (kstrtouint(buf, 0, &wb_flush_threshold)) 400 return -EINVAL; 401 402 /* The range of values for wb_flush_threshold is (0,10] */ 403 if (wb_flush_threshold > UFS_WB_BUF_REMAIN_PERCENT(100) || 404 wb_flush_threshold == 0) { 405 dev_err(dev, "The value of wb_flush_threshold is invalid!\n"); 406 return -EINVAL; 407 } 408 409 hba->vps->wb_flush_threshold = wb_flush_threshold; 410 411 return count; 412 } 413 414 /** 415 * pm_qos_enable_show - sysfs handler to show pm qos enable value 416 * @dev: device associated with the UFS controller 417 * @attr: sysfs attribute handle 418 * @buf: buffer for sysfs file 419 * 420 * Print 1 if PM QoS feature is enabled, 0 if disabled. 421 * 422 * Returns number of characters written to @buf. 423 */ 424 static ssize_t pm_qos_enable_show(struct device *dev, 425 struct device_attribute *attr, char *buf) 426 { 427 struct ufs_hba *hba = dev_get_drvdata(dev); 428 429 return sysfs_emit(buf, "%d\n", hba->pm_qos_enabled); 430 } 431 432 /** 433 * pm_qos_enable_store - sysfs handler to store value 434 * @dev: device associated with the UFS controller 435 * @attr: sysfs attribute handle 436 * @buf: buffer for sysfs file 437 * @count: stores buffer characters count 438 * 439 * Input 0 to disable PM QoS and 1 value to enable. 440 * Default state: 1 441 * 442 * Return: number of characters written to @buf on success, < 0 upon failure. 443 */ 444 static ssize_t pm_qos_enable_store(struct device *dev, 445 struct device_attribute *attr, const char *buf, size_t count) 446 { 447 struct ufs_hba *hba = dev_get_drvdata(dev); 448 bool value; 449 450 if (kstrtobool(buf, &value)) 451 return -EINVAL; 452 453 if (value) 454 ufshcd_pm_qos_init(hba); 455 else 456 ufshcd_pm_qos_exit(hba); 457 458 return count; 459 } 460 461 static ssize_t critical_health_show(struct device *dev, 462 struct device_attribute *attr, char *buf) 463 { 464 struct ufs_hba *hba = dev_get_drvdata(dev); 465 466 return sysfs_emit(buf, "%d\n", hba->critical_health_count); 467 } 468 469 static DEVICE_ATTR_RW(rpm_lvl); 470 static DEVICE_ATTR_RO(rpm_target_dev_state); 471 static DEVICE_ATTR_RO(rpm_target_link_state); 472 static DEVICE_ATTR_RW(spm_lvl); 473 static DEVICE_ATTR_RO(spm_target_dev_state); 474 static DEVICE_ATTR_RO(spm_target_link_state); 475 static DEVICE_ATTR_RW(auto_hibern8); 476 static DEVICE_ATTR_RW(wb_on); 477 static DEVICE_ATTR_RW(enable_wb_buf_flush); 478 static DEVICE_ATTR_RW(wb_flush_threshold); 479 static DEVICE_ATTR_RW(rtc_update_ms); 480 static DEVICE_ATTR_RW(pm_qos_enable); 481 static DEVICE_ATTR_RO(critical_health); 482 483 static struct attribute *ufs_sysfs_ufshcd_attrs[] = { 484 &dev_attr_rpm_lvl.attr, 485 &dev_attr_rpm_target_dev_state.attr, 486 &dev_attr_rpm_target_link_state.attr, 487 &dev_attr_spm_lvl.attr, 488 &dev_attr_spm_target_dev_state.attr, 489 &dev_attr_spm_target_link_state.attr, 490 &dev_attr_auto_hibern8.attr, 491 &dev_attr_wb_on.attr, 492 &dev_attr_enable_wb_buf_flush.attr, 493 &dev_attr_wb_flush_threshold.attr, 494 &dev_attr_rtc_update_ms.attr, 495 &dev_attr_pm_qos_enable.attr, 496 &dev_attr_critical_health.attr, 497 NULL 498 }; 499 500 static const struct attribute_group ufs_sysfs_default_group = { 501 .attrs = ufs_sysfs_ufshcd_attrs, 502 }; 503 504 static ssize_t clock_scaling_show(struct device *dev, struct device_attribute *attr, 505 char *buf) 506 { 507 struct ufs_hba *hba = dev_get_drvdata(dev); 508 509 return sysfs_emit(buf, "%d\n", ufshcd_is_clkscaling_supported(hba)); 510 } 511 512 static ssize_t write_booster_show(struct device *dev, struct device_attribute *attr, 513 char *buf) 514 { 515 struct ufs_hba *hba = dev_get_drvdata(dev); 516 517 return sysfs_emit(buf, "%d\n", ufshcd_is_wb_allowed(hba)); 518 } 519 520 static DEVICE_ATTR_RO(clock_scaling); 521 static DEVICE_ATTR_RO(write_booster); 522 523 /* 524 * See Documentation/ABI/testing/sysfs-driver-ufs for the semantics of this 525 * group. 526 */ 527 static struct attribute *ufs_sysfs_capabilities_attrs[] = { 528 &dev_attr_clock_scaling.attr, 529 &dev_attr_write_booster.attr, 530 NULL 531 }; 532 533 static const struct attribute_group ufs_sysfs_capabilities_group = { 534 .name = "capabilities", 535 .attrs = ufs_sysfs_capabilities_attrs, 536 }; 537 538 static ssize_t version_show(struct device *dev, 539 struct device_attribute *attr, char *buf) 540 { 541 struct ufs_hba *hba = dev_get_drvdata(dev); 542 543 return sysfs_emit(buf, "0x%x\n", hba->ufs_version); 544 } 545 546 static ssize_t product_id_show(struct device *dev, 547 struct device_attribute *attr, char *buf) 548 { 549 int ret; 550 u32 val; 551 struct ufs_hba *hba = dev_get_drvdata(dev); 552 553 ret = ufshcd_read_hci_reg(hba, &val, REG_CONTROLLER_PID); 554 if (ret) 555 return ret; 556 557 return sysfs_emit(buf, "0x%x\n", val); 558 } 559 560 static ssize_t man_id_show(struct device *dev, 561 struct device_attribute *attr, char *buf) 562 { 563 int ret; 564 u32 val; 565 struct ufs_hba *hba = dev_get_drvdata(dev); 566 567 ret = ufshcd_read_hci_reg(hba, &val, REG_CONTROLLER_MID); 568 if (ret) 569 return ret; 570 571 return sysfs_emit(buf, "0x%x\n", val); 572 } 573 574 static DEVICE_ATTR_RO(version); 575 static DEVICE_ATTR_RO(product_id); 576 static DEVICE_ATTR_RO(man_id); 577 578 static struct attribute *ufs_sysfs_ufshci_cap_attrs[] = { 579 &dev_attr_version.attr, 580 &dev_attr_product_id.attr, 581 &dev_attr_man_id.attr, 582 NULL 583 }; 584 585 static const struct attribute_group ufs_sysfs_ufshci_group = { 586 .name = "ufshci_capabilities", 587 .attrs = ufs_sysfs_ufshci_cap_attrs, 588 }; 589 590 static ssize_t monitor_enable_show(struct device *dev, 591 struct device_attribute *attr, char *buf) 592 { 593 struct ufs_hba *hba = dev_get_drvdata(dev); 594 595 return sysfs_emit(buf, "%d\n", hba->monitor.enabled); 596 } 597 598 static ssize_t monitor_enable_store(struct device *dev, 599 struct device_attribute *attr, 600 const char *buf, size_t count) 601 { 602 struct ufs_hba *hba = dev_get_drvdata(dev); 603 unsigned long value, flags; 604 605 if (kstrtoul(buf, 0, &value)) 606 return -EINVAL; 607 608 value = !!value; 609 spin_lock_irqsave(hba->host->host_lock, flags); 610 if (value == hba->monitor.enabled) 611 goto out_unlock; 612 613 if (!value) { 614 memset(&hba->monitor, 0, sizeof(hba->monitor)); 615 } else { 616 hba->monitor.enabled = true; 617 hba->monitor.enabled_ts = ktime_get(); 618 } 619 620 out_unlock: 621 spin_unlock_irqrestore(hba->host->host_lock, flags); 622 return count; 623 } 624 625 static ssize_t monitor_chunk_size_show(struct device *dev, 626 struct device_attribute *attr, char *buf) 627 { 628 struct ufs_hba *hba = dev_get_drvdata(dev); 629 630 return sysfs_emit(buf, "%lu\n", hba->monitor.chunk_size); 631 } 632 633 static ssize_t monitor_chunk_size_store(struct device *dev, 634 struct device_attribute *attr, 635 const char *buf, size_t count) 636 { 637 struct ufs_hba *hba = dev_get_drvdata(dev); 638 unsigned long value, flags; 639 640 if (kstrtoul(buf, 0, &value)) 641 return -EINVAL; 642 643 spin_lock_irqsave(hba->host->host_lock, flags); 644 /* Only allow chunk size change when monitor is disabled */ 645 if (!hba->monitor.enabled) 646 hba->monitor.chunk_size = value; 647 spin_unlock_irqrestore(hba->host->host_lock, flags); 648 return count; 649 } 650 651 static ssize_t read_total_sectors_show(struct device *dev, 652 struct device_attribute *attr, char *buf) 653 { 654 struct ufs_hba *hba = dev_get_drvdata(dev); 655 656 return sysfs_emit(buf, "%lu\n", hba->monitor.nr_sec_rw[READ]); 657 } 658 659 static ssize_t read_total_busy_show(struct device *dev, 660 struct device_attribute *attr, char *buf) 661 { 662 struct ufs_hba *hba = dev_get_drvdata(dev); 663 664 return sysfs_emit(buf, "%llu\n", 665 ktime_to_us(hba->monitor.total_busy[READ])); 666 } 667 668 static ssize_t read_nr_requests_show(struct device *dev, 669 struct device_attribute *attr, char *buf) 670 { 671 struct ufs_hba *hba = dev_get_drvdata(dev); 672 673 return sysfs_emit(buf, "%lu\n", hba->monitor.nr_req[READ]); 674 } 675 676 static ssize_t read_req_latency_avg_show(struct device *dev, 677 struct device_attribute *attr, 678 char *buf) 679 { 680 struct ufs_hba *hba = dev_get_drvdata(dev); 681 struct ufs_hba_monitor *m = &hba->monitor; 682 683 if (!m->nr_req[READ]) 684 return sysfs_emit(buf, "0\n"); 685 686 return sysfs_emit(buf, "%llu\n", div_u64(ktime_to_us(m->lat_sum[READ]), 687 m->nr_req[READ])); 688 } 689 690 static ssize_t read_req_latency_max_show(struct device *dev, 691 struct device_attribute *attr, 692 char *buf) 693 { 694 struct ufs_hba *hba = dev_get_drvdata(dev); 695 696 return sysfs_emit(buf, "%llu\n", 697 ktime_to_us(hba->monitor.lat_max[READ])); 698 } 699 700 static ssize_t read_req_latency_min_show(struct device *dev, 701 struct device_attribute *attr, 702 char *buf) 703 { 704 struct ufs_hba *hba = dev_get_drvdata(dev); 705 706 return sysfs_emit(buf, "%llu\n", 707 ktime_to_us(hba->monitor.lat_min[READ])); 708 } 709 710 static ssize_t read_req_latency_sum_show(struct device *dev, 711 struct device_attribute *attr, 712 char *buf) 713 { 714 struct ufs_hba *hba = dev_get_drvdata(dev); 715 716 return sysfs_emit(buf, "%llu\n", 717 ktime_to_us(hba->monitor.lat_sum[READ])); 718 } 719 720 static ssize_t write_total_sectors_show(struct device *dev, 721 struct device_attribute *attr, 722 char *buf) 723 { 724 struct ufs_hba *hba = dev_get_drvdata(dev); 725 726 return sysfs_emit(buf, "%lu\n", hba->monitor.nr_sec_rw[WRITE]); 727 } 728 729 static ssize_t write_total_busy_show(struct device *dev, 730 struct device_attribute *attr, char *buf) 731 { 732 struct ufs_hba *hba = dev_get_drvdata(dev); 733 734 return sysfs_emit(buf, "%llu\n", 735 ktime_to_us(hba->monitor.total_busy[WRITE])); 736 } 737 738 static ssize_t write_nr_requests_show(struct device *dev, 739 struct device_attribute *attr, char *buf) 740 { 741 struct ufs_hba *hba = dev_get_drvdata(dev); 742 743 return sysfs_emit(buf, "%lu\n", hba->monitor.nr_req[WRITE]); 744 } 745 746 static ssize_t write_req_latency_avg_show(struct device *dev, 747 struct device_attribute *attr, 748 char *buf) 749 { 750 struct ufs_hba *hba = dev_get_drvdata(dev); 751 struct ufs_hba_monitor *m = &hba->monitor; 752 753 if (!m->nr_req[WRITE]) 754 return sysfs_emit(buf, "0\n"); 755 756 return sysfs_emit(buf, "%llu\n", div_u64(ktime_to_us(m->lat_sum[WRITE]), 757 m->nr_req[WRITE])); 758 } 759 760 static ssize_t write_req_latency_max_show(struct device *dev, 761 struct device_attribute *attr, 762 char *buf) 763 { 764 struct ufs_hba *hba = dev_get_drvdata(dev); 765 766 return sysfs_emit(buf, "%llu\n", 767 ktime_to_us(hba->monitor.lat_max[WRITE])); 768 } 769 770 static ssize_t write_req_latency_min_show(struct device *dev, 771 struct device_attribute *attr, 772 char *buf) 773 { 774 struct ufs_hba *hba = dev_get_drvdata(dev); 775 776 return sysfs_emit(buf, "%llu\n", 777 ktime_to_us(hba->monitor.lat_min[WRITE])); 778 } 779 780 static ssize_t write_req_latency_sum_show(struct device *dev, 781 struct device_attribute *attr, 782 char *buf) 783 { 784 struct ufs_hba *hba = dev_get_drvdata(dev); 785 786 return sysfs_emit(buf, "%llu\n", 787 ktime_to_us(hba->monitor.lat_sum[WRITE])); 788 } 789 790 static DEVICE_ATTR_RW(monitor_enable); 791 static DEVICE_ATTR_RW(monitor_chunk_size); 792 static DEVICE_ATTR_RO(read_total_sectors); 793 static DEVICE_ATTR_RO(read_total_busy); 794 static DEVICE_ATTR_RO(read_nr_requests); 795 static DEVICE_ATTR_RO(read_req_latency_avg); 796 static DEVICE_ATTR_RO(read_req_latency_max); 797 static DEVICE_ATTR_RO(read_req_latency_min); 798 static DEVICE_ATTR_RO(read_req_latency_sum); 799 static DEVICE_ATTR_RO(write_total_sectors); 800 static DEVICE_ATTR_RO(write_total_busy); 801 static DEVICE_ATTR_RO(write_nr_requests); 802 static DEVICE_ATTR_RO(write_req_latency_avg); 803 static DEVICE_ATTR_RO(write_req_latency_max); 804 static DEVICE_ATTR_RO(write_req_latency_min); 805 static DEVICE_ATTR_RO(write_req_latency_sum); 806 807 static struct attribute *ufs_sysfs_monitor_attrs[] = { 808 &dev_attr_monitor_enable.attr, 809 &dev_attr_monitor_chunk_size.attr, 810 &dev_attr_read_total_sectors.attr, 811 &dev_attr_read_total_busy.attr, 812 &dev_attr_read_nr_requests.attr, 813 &dev_attr_read_req_latency_avg.attr, 814 &dev_attr_read_req_latency_max.attr, 815 &dev_attr_read_req_latency_min.attr, 816 &dev_attr_read_req_latency_sum.attr, 817 &dev_attr_write_total_sectors.attr, 818 &dev_attr_write_total_busy.attr, 819 &dev_attr_write_nr_requests.attr, 820 &dev_attr_write_req_latency_avg.attr, 821 &dev_attr_write_req_latency_max.attr, 822 &dev_attr_write_req_latency_min.attr, 823 &dev_attr_write_req_latency_sum.attr, 824 NULL 825 }; 826 827 static const struct attribute_group ufs_sysfs_monitor_group = { 828 .name = "monitor", 829 .attrs = ufs_sysfs_monitor_attrs, 830 }; 831 832 static ssize_t lane_show(struct device *dev, struct device_attribute *attr, 833 char *buf) 834 { 835 struct ufs_hba *hba = dev_get_drvdata(dev); 836 837 return sysfs_emit(buf, "%u\n", hba->pwr_info.lane_rx); 838 } 839 840 static ssize_t mode_show(struct device *dev, struct device_attribute *attr, 841 char *buf) 842 { 843 struct ufs_hba *hba = dev_get_drvdata(dev); 844 845 return sysfs_emit(buf, "%s\n", ufs_pa_pwr_mode_to_string(hba->pwr_info.pwr_rx)); 846 } 847 848 static ssize_t rate_show(struct device *dev, struct device_attribute *attr, 849 char *buf) 850 { 851 struct ufs_hba *hba = dev_get_drvdata(dev); 852 853 return sysfs_emit(buf, "%s\n", ufs_hs_gear_rate_to_string(hba->pwr_info.hs_rate)); 854 } 855 856 static ssize_t gear_show(struct device *dev, struct device_attribute *attr, 857 char *buf) 858 { 859 struct ufs_hba *hba = dev_get_drvdata(dev); 860 861 return sysfs_emit(buf, "%s\n", hba->pwr_info.hs_rate ? 862 ufs_hs_gear_to_string(hba->pwr_info.gear_rx) : 863 ufs_pwm_gear_to_string(hba->pwr_info.gear_rx)); 864 } 865 866 static ssize_t dev_pm_show(struct device *dev, struct device_attribute *attr, 867 char *buf) 868 { 869 struct ufs_hba *hba = dev_get_drvdata(dev); 870 871 return sysfs_emit(buf, "%s\n", ufshcd_ufs_dev_pwr_mode_to_string(hba->curr_dev_pwr_mode)); 872 } 873 874 static ssize_t link_state_show(struct device *dev, 875 struct device_attribute *attr, char *buf) 876 { 877 struct ufs_hba *hba = dev_get_drvdata(dev); 878 879 return sysfs_emit(buf, "%s\n", ufshcd_uic_link_state_to_string(hba->uic_link_state)); 880 } 881 882 static DEVICE_ATTR_RO(lane); 883 static DEVICE_ATTR_RO(mode); 884 static DEVICE_ATTR_RO(rate); 885 static DEVICE_ATTR_RO(gear); 886 static DEVICE_ATTR_RO(dev_pm); 887 static DEVICE_ATTR_RO(link_state); 888 889 static struct attribute *ufs_power_info_attrs[] = { 890 &dev_attr_lane.attr, 891 &dev_attr_mode.attr, 892 &dev_attr_rate.attr, 893 &dev_attr_gear.attr, 894 &dev_attr_dev_pm.attr, 895 &dev_attr_link_state.attr, 896 NULL 897 }; 898 899 static const struct attribute_group ufs_sysfs_power_info_group = { 900 .name = "power_info", 901 .attrs = ufs_power_info_attrs, 902 }; 903 904 static ssize_t ufs_sysfs_read_desc_param(struct ufs_hba *hba, 905 enum desc_idn desc_id, 906 u8 desc_index, 907 u8 param_offset, 908 u8 *sysfs_buf, 909 u8 param_size) 910 { 911 u8 desc_buf[8] = {0}; 912 int ret; 913 914 if (param_size > 8) 915 return -EINVAL; 916 917 down(&hba->host_sem); 918 if (!ufshcd_is_user_access_allowed(hba)) { 919 ret = -EBUSY; 920 goto out; 921 } 922 923 ufshcd_rpm_get_sync(hba); 924 ret = ufshcd_read_desc_param(hba, desc_id, desc_index, 925 param_offset, desc_buf, param_size); 926 ufshcd_rpm_put_sync(hba); 927 if (ret) { 928 ret = -EINVAL; 929 goto out; 930 } 931 932 switch (param_size) { 933 case 1: 934 ret = sysfs_emit(sysfs_buf, "0x%02X\n", *desc_buf); 935 break; 936 case 2: 937 ret = sysfs_emit(sysfs_buf, "0x%04X\n", 938 get_unaligned_be16(desc_buf)); 939 break; 940 case 4: 941 ret = sysfs_emit(sysfs_buf, "0x%08X\n", 942 get_unaligned_be32(desc_buf)); 943 break; 944 case 8: 945 ret = sysfs_emit(sysfs_buf, "0x%016llX\n", 946 get_unaligned_be64(desc_buf)); 947 break; 948 } 949 950 out: 951 up(&hba->host_sem); 952 return ret; 953 } 954 955 #define UFS_DESC_PARAM(_name, _puname, _duname, _size) \ 956 static ssize_t _name##_show(struct device *dev, \ 957 struct device_attribute *attr, char *buf) \ 958 { \ 959 struct ufs_hba *hba = dev_get_drvdata(dev); \ 960 return ufs_sysfs_read_desc_param(hba, QUERY_DESC_IDN_##_duname, \ 961 0, _duname##_DESC_PARAM##_puname, buf, _size); \ 962 } \ 963 static DEVICE_ATTR_RO(_name) 964 965 #define UFS_DEVICE_DESC_PARAM(_name, _uname, _size) \ 966 UFS_DESC_PARAM(_name, _uname, DEVICE, _size) 967 968 UFS_DEVICE_DESC_PARAM(device_type, _DEVICE_TYPE, 1); 969 UFS_DEVICE_DESC_PARAM(device_class, _DEVICE_CLASS, 1); 970 UFS_DEVICE_DESC_PARAM(device_sub_class, _DEVICE_SUB_CLASS, 1); 971 UFS_DEVICE_DESC_PARAM(protocol, _PRTCL, 1); 972 UFS_DEVICE_DESC_PARAM(number_of_luns, _NUM_LU, 1); 973 UFS_DEVICE_DESC_PARAM(number_of_wluns, _NUM_WLU, 1); 974 UFS_DEVICE_DESC_PARAM(boot_enable, _BOOT_ENBL, 1); 975 UFS_DEVICE_DESC_PARAM(descriptor_access_enable, _DESC_ACCSS_ENBL, 1); 976 UFS_DEVICE_DESC_PARAM(initial_power_mode, _INIT_PWR_MODE, 1); 977 UFS_DEVICE_DESC_PARAM(high_priority_lun, _HIGH_PR_LUN, 1); 978 UFS_DEVICE_DESC_PARAM(secure_removal_type, _SEC_RMV_TYPE, 1); 979 UFS_DEVICE_DESC_PARAM(support_security_lun, _SEC_LU, 1); 980 UFS_DEVICE_DESC_PARAM(bkops_termination_latency, _BKOP_TERM_LT, 1); 981 UFS_DEVICE_DESC_PARAM(initial_active_icc_level, _ACTVE_ICC_LVL, 1); 982 UFS_DEVICE_DESC_PARAM(specification_version, _SPEC_VER, 2); 983 UFS_DEVICE_DESC_PARAM(manufacturing_date, _MANF_DATE, 2); 984 UFS_DEVICE_DESC_PARAM(manufacturer_id, _MANF_ID, 2); 985 UFS_DEVICE_DESC_PARAM(rtt_capability, _RTT_CAP, 1); 986 UFS_DEVICE_DESC_PARAM(rtc_update, _FRQ_RTC, 2); 987 UFS_DEVICE_DESC_PARAM(ufs_features, _UFS_FEAT, 1); 988 UFS_DEVICE_DESC_PARAM(ffu_timeout, _FFU_TMT, 1); 989 UFS_DEVICE_DESC_PARAM(queue_depth, _Q_DPTH, 1); 990 UFS_DEVICE_DESC_PARAM(device_version, _DEV_VER, 2); 991 UFS_DEVICE_DESC_PARAM(number_of_secure_wpa, _NUM_SEC_WPA, 1); 992 UFS_DEVICE_DESC_PARAM(psa_max_data_size, _PSA_MAX_DATA, 4); 993 UFS_DEVICE_DESC_PARAM(psa_state_timeout, _PSA_TMT, 1); 994 UFS_DEVICE_DESC_PARAM(ext_feature_sup, _EXT_UFS_FEATURE_SUP, 4); 995 UFS_DEVICE_DESC_PARAM(wb_presv_us_en, _WB_PRESRV_USRSPC_EN, 1); 996 UFS_DEVICE_DESC_PARAM(wb_type, _WB_TYPE, 1); 997 UFS_DEVICE_DESC_PARAM(wb_shared_alloc_units, _WB_SHARED_ALLOC_UNITS, 4); 998 999 static struct attribute *ufs_sysfs_device_descriptor[] = { 1000 &dev_attr_device_type.attr, 1001 &dev_attr_device_class.attr, 1002 &dev_attr_device_sub_class.attr, 1003 &dev_attr_protocol.attr, 1004 &dev_attr_number_of_luns.attr, 1005 &dev_attr_number_of_wluns.attr, 1006 &dev_attr_boot_enable.attr, 1007 &dev_attr_descriptor_access_enable.attr, 1008 &dev_attr_initial_power_mode.attr, 1009 &dev_attr_high_priority_lun.attr, 1010 &dev_attr_secure_removal_type.attr, 1011 &dev_attr_support_security_lun.attr, 1012 &dev_attr_bkops_termination_latency.attr, 1013 &dev_attr_initial_active_icc_level.attr, 1014 &dev_attr_specification_version.attr, 1015 &dev_attr_manufacturing_date.attr, 1016 &dev_attr_manufacturer_id.attr, 1017 &dev_attr_rtt_capability.attr, 1018 &dev_attr_rtc_update.attr, 1019 &dev_attr_ufs_features.attr, 1020 &dev_attr_ffu_timeout.attr, 1021 &dev_attr_queue_depth.attr, 1022 &dev_attr_device_version.attr, 1023 &dev_attr_number_of_secure_wpa.attr, 1024 &dev_attr_psa_max_data_size.attr, 1025 &dev_attr_psa_state_timeout.attr, 1026 &dev_attr_ext_feature_sup.attr, 1027 &dev_attr_wb_presv_us_en.attr, 1028 &dev_attr_wb_type.attr, 1029 &dev_attr_wb_shared_alloc_units.attr, 1030 NULL, 1031 }; 1032 1033 static const struct attribute_group ufs_sysfs_device_descriptor_group = { 1034 .name = "device_descriptor", 1035 .attrs = ufs_sysfs_device_descriptor, 1036 }; 1037 1038 #define UFS_INTERCONNECT_DESC_PARAM(_name, _uname, _size) \ 1039 UFS_DESC_PARAM(_name, _uname, INTERCONNECT, _size) 1040 1041 UFS_INTERCONNECT_DESC_PARAM(unipro_version, _UNIPRO_VER, 2); 1042 UFS_INTERCONNECT_DESC_PARAM(mphy_version, _MPHY_VER, 2); 1043 1044 static struct attribute *ufs_sysfs_interconnect_descriptor[] = { 1045 &dev_attr_unipro_version.attr, 1046 &dev_attr_mphy_version.attr, 1047 NULL, 1048 }; 1049 1050 static const struct attribute_group ufs_sysfs_interconnect_descriptor_group = { 1051 .name = "interconnect_descriptor", 1052 .attrs = ufs_sysfs_interconnect_descriptor, 1053 }; 1054 1055 #define UFS_GEOMETRY_DESC_PARAM(_name, _uname, _size) \ 1056 UFS_DESC_PARAM(_name, _uname, GEOMETRY, _size) 1057 1058 UFS_GEOMETRY_DESC_PARAM(raw_device_capacity, _DEV_CAP, 8); 1059 UFS_GEOMETRY_DESC_PARAM(max_number_of_luns, _MAX_NUM_LUN, 1); 1060 UFS_GEOMETRY_DESC_PARAM(segment_size, _SEG_SIZE, 4); 1061 UFS_GEOMETRY_DESC_PARAM(allocation_unit_size, _ALLOC_UNIT_SIZE, 1); 1062 UFS_GEOMETRY_DESC_PARAM(min_addressable_block_size, _MIN_BLK_SIZE, 1); 1063 UFS_GEOMETRY_DESC_PARAM(optimal_read_block_size, _OPT_RD_BLK_SIZE, 1); 1064 UFS_GEOMETRY_DESC_PARAM(optimal_write_block_size, _OPT_WR_BLK_SIZE, 1); 1065 UFS_GEOMETRY_DESC_PARAM(max_in_buffer_size, _MAX_IN_BUF_SIZE, 1); 1066 UFS_GEOMETRY_DESC_PARAM(max_out_buffer_size, _MAX_OUT_BUF_SIZE, 1); 1067 UFS_GEOMETRY_DESC_PARAM(rpmb_rw_size, _RPMB_RW_SIZE, 1); 1068 UFS_GEOMETRY_DESC_PARAM(dyn_capacity_resource_policy, _DYN_CAP_RSRC_PLC, 1); 1069 UFS_GEOMETRY_DESC_PARAM(data_ordering, _DATA_ORDER, 1); 1070 UFS_GEOMETRY_DESC_PARAM(max_number_of_contexts, _MAX_NUM_CTX, 1); 1071 UFS_GEOMETRY_DESC_PARAM(sys_data_tag_unit_size, _TAG_UNIT_SIZE, 1); 1072 UFS_GEOMETRY_DESC_PARAM(sys_data_tag_resource_size, _TAG_RSRC_SIZE, 1); 1073 UFS_GEOMETRY_DESC_PARAM(secure_removal_types, _SEC_RM_TYPES, 1); 1074 UFS_GEOMETRY_DESC_PARAM(memory_types, _MEM_TYPES, 2); 1075 UFS_GEOMETRY_DESC_PARAM(sys_code_memory_max_alloc_units, 1076 _SCM_MAX_NUM_UNITS, 4); 1077 UFS_GEOMETRY_DESC_PARAM(sys_code_memory_capacity_adjustment_factor, 1078 _SCM_CAP_ADJ_FCTR, 2); 1079 UFS_GEOMETRY_DESC_PARAM(non_persist_memory_max_alloc_units, 1080 _NPM_MAX_NUM_UNITS, 4); 1081 UFS_GEOMETRY_DESC_PARAM(non_persist_memory_capacity_adjustment_factor, 1082 _NPM_CAP_ADJ_FCTR, 2); 1083 UFS_GEOMETRY_DESC_PARAM(enh1_memory_max_alloc_units, 1084 _ENM1_MAX_NUM_UNITS, 4); 1085 UFS_GEOMETRY_DESC_PARAM(enh1_memory_capacity_adjustment_factor, 1086 _ENM1_CAP_ADJ_FCTR, 2); 1087 UFS_GEOMETRY_DESC_PARAM(enh2_memory_max_alloc_units, 1088 _ENM2_MAX_NUM_UNITS, 4); 1089 UFS_GEOMETRY_DESC_PARAM(enh2_memory_capacity_adjustment_factor, 1090 _ENM2_CAP_ADJ_FCTR, 2); 1091 UFS_GEOMETRY_DESC_PARAM(enh3_memory_max_alloc_units, 1092 _ENM3_MAX_NUM_UNITS, 4); 1093 UFS_GEOMETRY_DESC_PARAM(enh3_memory_capacity_adjustment_factor, 1094 _ENM3_CAP_ADJ_FCTR, 2); 1095 UFS_GEOMETRY_DESC_PARAM(enh4_memory_max_alloc_units, 1096 _ENM4_MAX_NUM_UNITS, 4); 1097 UFS_GEOMETRY_DESC_PARAM(enh4_memory_capacity_adjustment_factor, 1098 _ENM4_CAP_ADJ_FCTR, 2); 1099 UFS_GEOMETRY_DESC_PARAM(wb_max_alloc_units, _WB_MAX_ALLOC_UNITS, 4); 1100 UFS_GEOMETRY_DESC_PARAM(wb_max_wb_luns, _WB_MAX_WB_LUNS, 1); 1101 UFS_GEOMETRY_DESC_PARAM(wb_buff_cap_adj, _WB_BUFF_CAP_ADJ, 1); 1102 UFS_GEOMETRY_DESC_PARAM(wb_sup_red_type, _WB_SUP_RED_TYPE, 1); 1103 UFS_GEOMETRY_DESC_PARAM(wb_sup_wb_type, _WB_SUP_WB_TYPE, 1); 1104 1105 1106 static struct attribute *ufs_sysfs_geometry_descriptor[] = { 1107 &dev_attr_raw_device_capacity.attr, 1108 &dev_attr_max_number_of_luns.attr, 1109 &dev_attr_segment_size.attr, 1110 &dev_attr_allocation_unit_size.attr, 1111 &dev_attr_min_addressable_block_size.attr, 1112 &dev_attr_optimal_read_block_size.attr, 1113 &dev_attr_optimal_write_block_size.attr, 1114 &dev_attr_max_in_buffer_size.attr, 1115 &dev_attr_max_out_buffer_size.attr, 1116 &dev_attr_rpmb_rw_size.attr, 1117 &dev_attr_dyn_capacity_resource_policy.attr, 1118 &dev_attr_data_ordering.attr, 1119 &dev_attr_max_number_of_contexts.attr, 1120 &dev_attr_sys_data_tag_unit_size.attr, 1121 &dev_attr_sys_data_tag_resource_size.attr, 1122 &dev_attr_secure_removal_types.attr, 1123 &dev_attr_memory_types.attr, 1124 &dev_attr_sys_code_memory_max_alloc_units.attr, 1125 &dev_attr_sys_code_memory_capacity_adjustment_factor.attr, 1126 &dev_attr_non_persist_memory_max_alloc_units.attr, 1127 &dev_attr_non_persist_memory_capacity_adjustment_factor.attr, 1128 &dev_attr_enh1_memory_max_alloc_units.attr, 1129 &dev_attr_enh1_memory_capacity_adjustment_factor.attr, 1130 &dev_attr_enh2_memory_max_alloc_units.attr, 1131 &dev_attr_enh2_memory_capacity_adjustment_factor.attr, 1132 &dev_attr_enh3_memory_max_alloc_units.attr, 1133 &dev_attr_enh3_memory_capacity_adjustment_factor.attr, 1134 &dev_attr_enh4_memory_max_alloc_units.attr, 1135 &dev_attr_enh4_memory_capacity_adjustment_factor.attr, 1136 &dev_attr_wb_max_alloc_units.attr, 1137 &dev_attr_wb_max_wb_luns.attr, 1138 &dev_attr_wb_buff_cap_adj.attr, 1139 &dev_attr_wb_sup_red_type.attr, 1140 &dev_attr_wb_sup_wb_type.attr, 1141 NULL, 1142 }; 1143 1144 static const struct attribute_group ufs_sysfs_geometry_descriptor_group = { 1145 .name = "geometry_descriptor", 1146 .attrs = ufs_sysfs_geometry_descriptor, 1147 }; 1148 1149 #define UFS_HEALTH_DESC_PARAM(_name, _uname, _size) \ 1150 UFS_DESC_PARAM(_name, _uname, HEALTH, _size) 1151 1152 UFS_HEALTH_DESC_PARAM(eol_info, _EOL_INFO, 1); 1153 UFS_HEALTH_DESC_PARAM(life_time_estimation_a, _LIFE_TIME_EST_A, 1); 1154 UFS_HEALTH_DESC_PARAM(life_time_estimation_b, _LIFE_TIME_EST_B, 1); 1155 1156 static struct attribute *ufs_sysfs_health_descriptor[] = { 1157 &dev_attr_eol_info.attr, 1158 &dev_attr_life_time_estimation_a.attr, 1159 &dev_attr_life_time_estimation_b.attr, 1160 NULL, 1161 }; 1162 1163 static const struct attribute_group ufs_sysfs_health_descriptor_group = { 1164 .name = "health_descriptor", 1165 .attrs = ufs_sysfs_health_descriptor, 1166 }; 1167 1168 #define UFS_POWER_DESC_PARAM(_name, _uname, _index) \ 1169 static ssize_t _name##_index##_show(struct device *dev, \ 1170 struct device_attribute *attr, char *buf) \ 1171 { \ 1172 struct ufs_hba *hba = dev_get_drvdata(dev); \ 1173 return ufs_sysfs_read_desc_param(hba, QUERY_DESC_IDN_POWER, 0, \ 1174 PWR_DESC##_uname##_0 + _index * 2, buf, 2); \ 1175 } \ 1176 static DEVICE_ATTR_RO(_name##_index) 1177 1178 UFS_POWER_DESC_PARAM(active_icc_levels_vcc, _ACTIVE_LVLS_VCC, 0); 1179 UFS_POWER_DESC_PARAM(active_icc_levels_vcc, _ACTIVE_LVLS_VCC, 1); 1180 UFS_POWER_DESC_PARAM(active_icc_levels_vcc, _ACTIVE_LVLS_VCC, 2); 1181 UFS_POWER_DESC_PARAM(active_icc_levels_vcc, _ACTIVE_LVLS_VCC, 3); 1182 UFS_POWER_DESC_PARAM(active_icc_levels_vcc, _ACTIVE_LVLS_VCC, 4); 1183 UFS_POWER_DESC_PARAM(active_icc_levels_vcc, _ACTIVE_LVLS_VCC, 5); 1184 UFS_POWER_DESC_PARAM(active_icc_levels_vcc, _ACTIVE_LVLS_VCC, 6); 1185 UFS_POWER_DESC_PARAM(active_icc_levels_vcc, _ACTIVE_LVLS_VCC, 7); 1186 UFS_POWER_DESC_PARAM(active_icc_levels_vcc, _ACTIVE_LVLS_VCC, 8); 1187 UFS_POWER_DESC_PARAM(active_icc_levels_vcc, _ACTIVE_LVLS_VCC, 9); 1188 UFS_POWER_DESC_PARAM(active_icc_levels_vcc, _ACTIVE_LVLS_VCC, 10); 1189 UFS_POWER_DESC_PARAM(active_icc_levels_vcc, _ACTIVE_LVLS_VCC, 11); 1190 UFS_POWER_DESC_PARAM(active_icc_levels_vcc, _ACTIVE_LVLS_VCC, 12); 1191 UFS_POWER_DESC_PARAM(active_icc_levels_vcc, _ACTIVE_LVLS_VCC, 13); 1192 UFS_POWER_DESC_PARAM(active_icc_levels_vcc, _ACTIVE_LVLS_VCC, 14); 1193 UFS_POWER_DESC_PARAM(active_icc_levels_vcc, _ACTIVE_LVLS_VCC, 15); 1194 UFS_POWER_DESC_PARAM(active_icc_levels_vccq, _ACTIVE_LVLS_VCCQ, 0); 1195 UFS_POWER_DESC_PARAM(active_icc_levels_vccq, _ACTIVE_LVLS_VCCQ, 1); 1196 UFS_POWER_DESC_PARAM(active_icc_levels_vccq, _ACTIVE_LVLS_VCCQ, 2); 1197 UFS_POWER_DESC_PARAM(active_icc_levels_vccq, _ACTIVE_LVLS_VCCQ, 3); 1198 UFS_POWER_DESC_PARAM(active_icc_levels_vccq, _ACTIVE_LVLS_VCCQ, 4); 1199 UFS_POWER_DESC_PARAM(active_icc_levels_vccq, _ACTIVE_LVLS_VCCQ, 5); 1200 UFS_POWER_DESC_PARAM(active_icc_levels_vccq, _ACTIVE_LVLS_VCCQ, 6); 1201 UFS_POWER_DESC_PARAM(active_icc_levels_vccq, _ACTIVE_LVLS_VCCQ, 7); 1202 UFS_POWER_DESC_PARAM(active_icc_levels_vccq, _ACTIVE_LVLS_VCCQ, 8); 1203 UFS_POWER_DESC_PARAM(active_icc_levels_vccq, _ACTIVE_LVLS_VCCQ, 9); 1204 UFS_POWER_DESC_PARAM(active_icc_levels_vccq, _ACTIVE_LVLS_VCCQ, 10); 1205 UFS_POWER_DESC_PARAM(active_icc_levels_vccq, _ACTIVE_LVLS_VCCQ, 11); 1206 UFS_POWER_DESC_PARAM(active_icc_levels_vccq, _ACTIVE_LVLS_VCCQ, 12); 1207 UFS_POWER_DESC_PARAM(active_icc_levels_vccq, _ACTIVE_LVLS_VCCQ, 13); 1208 UFS_POWER_DESC_PARAM(active_icc_levels_vccq, _ACTIVE_LVLS_VCCQ, 14); 1209 UFS_POWER_DESC_PARAM(active_icc_levels_vccq, _ACTIVE_LVLS_VCCQ, 15); 1210 UFS_POWER_DESC_PARAM(active_icc_levels_vccq2, _ACTIVE_LVLS_VCCQ2, 0); 1211 UFS_POWER_DESC_PARAM(active_icc_levels_vccq2, _ACTIVE_LVLS_VCCQ2, 1); 1212 UFS_POWER_DESC_PARAM(active_icc_levels_vccq2, _ACTIVE_LVLS_VCCQ2, 2); 1213 UFS_POWER_DESC_PARAM(active_icc_levels_vccq2, _ACTIVE_LVLS_VCCQ2, 3); 1214 UFS_POWER_DESC_PARAM(active_icc_levels_vccq2, _ACTIVE_LVLS_VCCQ2, 4); 1215 UFS_POWER_DESC_PARAM(active_icc_levels_vccq2, _ACTIVE_LVLS_VCCQ2, 5); 1216 UFS_POWER_DESC_PARAM(active_icc_levels_vccq2, _ACTIVE_LVLS_VCCQ2, 6); 1217 UFS_POWER_DESC_PARAM(active_icc_levels_vccq2, _ACTIVE_LVLS_VCCQ2, 7); 1218 UFS_POWER_DESC_PARAM(active_icc_levels_vccq2, _ACTIVE_LVLS_VCCQ2, 8); 1219 UFS_POWER_DESC_PARAM(active_icc_levels_vccq2, _ACTIVE_LVLS_VCCQ2, 9); 1220 UFS_POWER_DESC_PARAM(active_icc_levels_vccq2, _ACTIVE_LVLS_VCCQ2, 10); 1221 UFS_POWER_DESC_PARAM(active_icc_levels_vccq2, _ACTIVE_LVLS_VCCQ2, 11); 1222 UFS_POWER_DESC_PARAM(active_icc_levels_vccq2, _ACTIVE_LVLS_VCCQ2, 12); 1223 UFS_POWER_DESC_PARAM(active_icc_levels_vccq2, _ACTIVE_LVLS_VCCQ2, 13); 1224 UFS_POWER_DESC_PARAM(active_icc_levels_vccq2, _ACTIVE_LVLS_VCCQ2, 14); 1225 UFS_POWER_DESC_PARAM(active_icc_levels_vccq2, _ACTIVE_LVLS_VCCQ2, 15); 1226 1227 static struct attribute *ufs_sysfs_power_descriptor[] = { 1228 &dev_attr_active_icc_levels_vcc0.attr, 1229 &dev_attr_active_icc_levels_vcc1.attr, 1230 &dev_attr_active_icc_levels_vcc2.attr, 1231 &dev_attr_active_icc_levels_vcc3.attr, 1232 &dev_attr_active_icc_levels_vcc4.attr, 1233 &dev_attr_active_icc_levels_vcc5.attr, 1234 &dev_attr_active_icc_levels_vcc6.attr, 1235 &dev_attr_active_icc_levels_vcc7.attr, 1236 &dev_attr_active_icc_levels_vcc8.attr, 1237 &dev_attr_active_icc_levels_vcc9.attr, 1238 &dev_attr_active_icc_levels_vcc10.attr, 1239 &dev_attr_active_icc_levels_vcc11.attr, 1240 &dev_attr_active_icc_levels_vcc12.attr, 1241 &dev_attr_active_icc_levels_vcc13.attr, 1242 &dev_attr_active_icc_levels_vcc14.attr, 1243 &dev_attr_active_icc_levels_vcc15.attr, 1244 &dev_attr_active_icc_levels_vccq0.attr, 1245 &dev_attr_active_icc_levels_vccq1.attr, 1246 &dev_attr_active_icc_levels_vccq2.attr, 1247 &dev_attr_active_icc_levels_vccq3.attr, 1248 &dev_attr_active_icc_levels_vccq4.attr, 1249 &dev_attr_active_icc_levels_vccq5.attr, 1250 &dev_attr_active_icc_levels_vccq6.attr, 1251 &dev_attr_active_icc_levels_vccq7.attr, 1252 &dev_attr_active_icc_levels_vccq8.attr, 1253 &dev_attr_active_icc_levels_vccq9.attr, 1254 &dev_attr_active_icc_levels_vccq10.attr, 1255 &dev_attr_active_icc_levels_vccq11.attr, 1256 &dev_attr_active_icc_levels_vccq12.attr, 1257 &dev_attr_active_icc_levels_vccq13.attr, 1258 &dev_attr_active_icc_levels_vccq14.attr, 1259 &dev_attr_active_icc_levels_vccq15.attr, 1260 &dev_attr_active_icc_levels_vccq20.attr, 1261 &dev_attr_active_icc_levels_vccq21.attr, 1262 &dev_attr_active_icc_levels_vccq22.attr, 1263 &dev_attr_active_icc_levels_vccq23.attr, 1264 &dev_attr_active_icc_levels_vccq24.attr, 1265 &dev_attr_active_icc_levels_vccq25.attr, 1266 &dev_attr_active_icc_levels_vccq26.attr, 1267 &dev_attr_active_icc_levels_vccq27.attr, 1268 &dev_attr_active_icc_levels_vccq28.attr, 1269 &dev_attr_active_icc_levels_vccq29.attr, 1270 &dev_attr_active_icc_levels_vccq210.attr, 1271 &dev_attr_active_icc_levels_vccq211.attr, 1272 &dev_attr_active_icc_levels_vccq212.attr, 1273 &dev_attr_active_icc_levels_vccq213.attr, 1274 &dev_attr_active_icc_levels_vccq214.attr, 1275 &dev_attr_active_icc_levels_vccq215.attr, 1276 NULL, 1277 }; 1278 1279 static const struct attribute_group ufs_sysfs_power_descriptor_group = { 1280 .name = "power_descriptor", 1281 .attrs = ufs_sysfs_power_descriptor, 1282 }; 1283 1284 #define UFS_STRING_DESCRIPTOR(_name, _pname) \ 1285 static ssize_t _name##_show(struct device *dev, \ 1286 struct device_attribute *attr, char *buf) \ 1287 { \ 1288 u8 index; \ 1289 struct ufs_hba *hba = dev_get_drvdata(dev); \ 1290 int ret; \ 1291 int desc_len = QUERY_DESC_MAX_SIZE; \ 1292 u8 *desc_buf; \ 1293 \ 1294 down(&hba->host_sem); \ 1295 if (!ufshcd_is_user_access_allowed(hba)) { \ 1296 up(&hba->host_sem); \ 1297 return -EBUSY; \ 1298 } \ 1299 desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_ATOMIC); \ 1300 if (!desc_buf) { \ 1301 up(&hba->host_sem); \ 1302 return -ENOMEM; \ 1303 } \ 1304 ufshcd_rpm_get_sync(hba); \ 1305 ret = ufshcd_query_descriptor_retry(hba, \ 1306 UPIU_QUERY_OPCODE_READ_DESC, QUERY_DESC_IDN_DEVICE, \ 1307 0, 0, desc_buf, &desc_len); \ 1308 if (ret) { \ 1309 ret = -EINVAL; \ 1310 goto out; \ 1311 } \ 1312 index = desc_buf[DEVICE_DESC_PARAM##_pname]; \ 1313 kfree(desc_buf); \ 1314 desc_buf = NULL; \ 1315 ret = ufshcd_read_string_desc(hba, index, &desc_buf, \ 1316 SD_ASCII_STD); \ 1317 if (ret < 0) \ 1318 goto out; \ 1319 ret = sysfs_emit(buf, "%s\n", desc_buf); \ 1320 out: \ 1321 ufshcd_rpm_put_sync(hba); \ 1322 kfree(desc_buf); \ 1323 up(&hba->host_sem); \ 1324 return ret; \ 1325 } \ 1326 static DEVICE_ATTR_RO(_name) 1327 1328 UFS_STRING_DESCRIPTOR(manufacturer_name, _MANF_NAME); 1329 UFS_STRING_DESCRIPTOR(product_name, _PRDCT_NAME); 1330 UFS_STRING_DESCRIPTOR(oem_id, _OEM_ID); 1331 UFS_STRING_DESCRIPTOR(serial_number, _SN); 1332 UFS_STRING_DESCRIPTOR(product_revision, _PRDCT_REV); 1333 1334 static struct attribute *ufs_sysfs_string_descriptors[] = { 1335 &dev_attr_manufacturer_name.attr, 1336 &dev_attr_product_name.attr, 1337 &dev_attr_oem_id.attr, 1338 &dev_attr_serial_number.attr, 1339 &dev_attr_product_revision.attr, 1340 NULL, 1341 }; 1342 1343 static const struct attribute_group ufs_sysfs_string_descriptors_group = { 1344 .name = "string_descriptors", 1345 .attrs = ufs_sysfs_string_descriptors, 1346 }; 1347 1348 static inline bool ufshcd_is_wb_flags(enum flag_idn idn) 1349 { 1350 return idn >= QUERY_FLAG_IDN_WB_EN && 1351 idn <= QUERY_FLAG_IDN_WB_BUFF_FLUSH_DURING_HIBERN8; 1352 } 1353 1354 #define UFS_FLAG(_name, _uname) \ 1355 static ssize_t _name##_show(struct device *dev, \ 1356 struct device_attribute *attr, char *buf) \ 1357 { \ 1358 bool flag; \ 1359 u8 index = 0; \ 1360 int ret; \ 1361 struct ufs_hba *hba = dev_get_drvdata(dev); \ 1362 \ 1363 down(&hba->host_sem); \ 1364 if (!ufshcd_is_user_access_allowed(hba)) { \ 1365 up(&hba->host_sem); \ 1366 return -EBUSY; \ 1367 } \ 1368 if (ufshcd_is_wb_flags(QUERY_FLAG_IDN##_uname)) \ 1369 index = ufshcd_wb_get_query_index(hba); \ 1370 ufshcd_rpm_get_sync(hba); \ 1371 ret = ufshcd_query_flag(hba, UPIU_QUERY_OPCODE_READ_FLAG, \ 1372 QUERY_FLAG_IDN##_uname, index, &flag); \ 1373 ufshcd_rpm_put_sync(hba); \ 1374 if (ret) { \ 1375 ret = -EINVAL; \ 1376 goto out; \ 1377 } \ 1378 ret = sysfs_emit(buf, "%s\n", flag ? "true" : "false"); \ 1379 out: \ 1380 up(&hba->host_sem); \ 1381 return ret; \ 1382 } \ 1383 static DEVICE_ATTR_RO(_name) 1384 1385 UFS_FLAG(device_init, _FDEVICEINIT); 1386 UFS_FLAG(permanent_wpe, _PERMANENT_WPE); 1387 UFS_FLAG(power_on_wpe, _PWR_ON_WPE); 1388 UFS_FLAG(bkops_enable, _BKOPS_EN); 1389 UFS_FLAG(life_span_mode_enable, _LIFE_SPAN_MODE_ENABLE); 1390 UFS_FLAG(phy_resource_removal, _FPHYRESOURCEREMOVAL); 1391 UFS_FLAG(busy_rtc, _BUSY_RTC); 1392 UFS_FLAG(disable_fw_update, _PERMANENTLY_DISABLE_FW_UPDATE); 1393 UFS_FLAG(wb_enable, _WB_EN); 1394 UFS_FLAG(wb_flush_en, _WB_BUFF_FLUSH_EN); 1395 UFS_FLAG(wb_flush_during_h8, _WB_BUFF_FLUSH_DURING_HIBERN8); 1396 1397 static struct attribute *ufs_sysfs_device_flags[] = { 1398 &dev_attr_device_init.attr, 1399 &dev_attr_permanent_wpe.attr, 1400 &dev_attr_power_on_wpe.attr, 1401 &dev_attr_bkops_enable.attr, 1402 &dev_attr_life_span_mode_enable.attr, 1403 &dev_attr_phy_resource_removal.attr, 1404 &dev_attr_busy_rtc.attr, 1405 &dev_attr_disable_fw_update.attr, 1406 &dev_attr_wb_enable.attr, 1407 &dev_attr_wb_flush_en.attr, 1408 &dev_attr_wb_flush_during_h8.attr, 1409 NULL, 1410 }; 1411 1412 static const struct attribute_group ufs_sysfs_flags_group = { 1413 .name = "flags", 1414 .attrs = ufs_sysfs_device_flags, 1415 }; 1416 1417 static ssize_t max_number_of_rtt_show(struct device *dev, 1418 struct device_attribute *attr, char *buf) 1419 { 1420 struct ufs_hba *hba = dev_get_drvdata(dev); 1421 u32 rtt; 1422 int ret; 1423 1424 down(&hba->host_sem); 1425 if (!ufshcd_is_user_access_allowed(hba)) { 1426 up(&hba->host_sem); 1427 return -EBUSY; 1428 } 1429 1430 ufshcd_rpm_get_sync(hba); 1431 ret = ufshcd_query_attr(hba, UPIU_QUERY_OPCODE_READ_ATTR, 1432 QUERY_ATTR_IDN_MAX_NUM_OF_RTT, 0, 0, &rtt); 1433 ufshcd_rpm_put_sync(hba); 1434 1435 if (ret) 1436 goto out; 1437 1438 ret = sysfs_emit(buf, "0x%08X\n", rtt); 1439 1440 out: 1441 up(&hba->host_sem); 1442 return ret; 1443 } 1444 1445 static ssize_t max_number_of_rtt_store(struct device *dev, 1446 struct device_attribute *attr, 1447 const char *buf, size_t count) 1448 { 1449 struct ufs_hba *hba = dev_get_drvdata(dev); 1450 struct ufs_dev_info *dev_info = &hba->dev_info; 1451 struct scsi_device *sdev; 1452 unsigned int memflags; 1453 unsigned int rtt; 1454 int ret; 1455 1456 if (kstrtouint(buf, 0, &rtt)) 1457 return -EINVAL; 1458 1459 if (rtt > dev_info->rtt_cap) { 1460 dev_err(dev, "rtt can be at most bDeviceRTTCap\n"); 1461 return -EINVAL; 1462 } 1463 1464 down(&hba->host_sem); 1465 if (!ufshcd_is_user_access_allowed(hba)) { 1466 ret = -EBUSY; 1467 goto out; 1468 } 1469 1470 ufshcd_rpm_get_sync(hba); 1471 1472 memflags = memalloc_noio_save(); 1473 shost_for_each_device(sdev, hba->host) 1474 blk_mq_freeze_queue_nomemsave(sdev->request_queue); 1475 1476 ret = ufshcd_query_attr(hba, UPIU_QUERY_OPCODE_WRITE_ATTR, 1477 QUERY_ATTR_IDN_MAX_NUM_OF_RTT, 0, 0, &rtt); 1478 1479 shost_for_each_device(sdev, hba->host) 1480 blk_mq_unfreeze_queue_nomemrestore(sdev->request_queue); 1481 memalloc_noio_restore(memflags); 1482 1483 ufshcd_rpm_put_sync(hba); 1484 1485 out: 1486 up(&hba->host_sem); 1487 return ret < 0 ? ret : count; 1488 } 1489 1490 static DEVICE_ATTR_RW(max_number_of_rtt); 1491 1492 static inline bool ufshcd_is_wb_attrs(enum attr_idn idn) 1493 { 1494 return idn >= QUERY_ATTR_IDN_WB_FLUSH_STATUS && 1495 idn <= QUERY_ATTR_IDN_CURR_WB_BUFF_SIZE; 1496 } 1497 1498 #define UFS_ATTRIBUTE(_name, _uname) \ 1499 static ssize_t _name##_show(struct device *dev, \ 1500 struct device_attribute *attr, char *buf) \ 1501 { \ 1502 struct ufs_hba *hba = dev_get_drvdata(dev); \ 1503 u32 value; \ 1504 int ret; \ 1505 u8 index = 0; \ 1506 \ 1507 down(&hba->host_sem); \ 1508 if (!ufshcd_is_user_access_allowed(hba)) { \ 1509 up(&hba->host_sem); \ 1510 return -EBUSY; \ 1511 } \ 1512 if (ufshcd_is_wb_attrs(QUERY_ATTR_IDN##_uname)) \ 1513 index = ufshcd_wb_get_query_index(hba); \ 1514 ufshcd_rpm_get_sync(hba); \ 1515 ret = ufshcd_query_attr(hba, UPIU_QUERY_OPCODE_READ_ATTR, \ 1516 QUERY_ATTR_IDN##_uname, index, 0, &value); \ 1517 ufshcd_rpm_put_sync(hba); \ 1518 if (ret) { \ 1519 ret = -EINVAL; \ 1520 goto out; \ 1521 } \ 1522 ret = sysfs_emit(buf, "0x%08X\n", value); \ 1523 out: \ 1524 up(&hba->host_sem); \ 1525 return ret; \ 1526 } \ 1527 static DEVICE_ATTR_RO(_name) 1528 1529 UFS_ATTRIBUTE(boot_lun_enabled, _BOOT_LU_EN); 1530 UFS_ATTRIBUTE(current_power_mode, _POWER_MODE); 1531 UFS_ATTRIBUTE(active_icc_level, _ACTIVE_ICC_LVL); 1532 UFS_ATTRIBUTE(ooo_data_enabled, _OOO_DATA_EN); 1533 UFS_ATTRIBUTE(bkops_status, _BKOPS_STATUS); 1534 UFS_ATTRIBUTE(purge_status, _PURGE_STATUS); 1535 UFS_ATTRIBUTE(max_data_in_size, _MAX_DATA_IN); 1536 UFS_ATTRIBUTE(max_data_out_size, _MAX_DATA_OUT); 1537 UFS_ATTRIBUTE(reference_clock_frequency, _REF_CLK_FREQ); 1538 UFS_ATTRIBUTE(configuration_descriptor_lock, _CONF_DESC_LOCK); 1539 UFS_ATTRIBUTE(exception_event_control, _EE_CONTROL); 1540 UFS_ATTRIBUTE(exception_event_status, _EE_STATUS); 1541 UFS_ATTRIBUTE(ffu_status, _FFU_STATUS); 1542 UFS_ATTRIBUTE(psa_state, _PSA_STATE); 1543 UFS_ATTRIBUTE(psa_data_size, _PSA_DATA_SIZE); 1544 UFS_ATTRIBUTE(wb_flush_status, _WB_FLUSH_STATUS); 1545 UFS_ATTRIBUTE(wb_avail_buf, _AVAIL_WB_BUFF_SIZE); 1546 UFS_ATTRIBUTE(wb_life_time_est, _WB_BUFF_LIFE_TIME_EST); 1547 UFS_ATTRIBUTE(wb_cur_buf, _CURR_WB_BUFF_SIZE); 1548 1549 1550 static struct attribute *ufs_sysfs_attributes[] = { 1551 &dev_attr_boot_lun_enabled.attr, 1552 &dev_attr_current_power_mode.attr, 1553 &dev_attr_active_icc_level.attr, 1554 &dev_attr_ooo_data_enabled.attr, 1555 &dev_attr_bkops_status.attr, 1556 &dev_attr_purge_status.attr, 1557 &dev_attr_max_data_in_size.attr, 1558 &dev_attr_max_data_out_size.attr, 1559 &dev_attr_reference_clock_frequency.attr, 1560 &dev_attr_configuration_descriptor_lock.attr, 1561 &dev_attr_max_number_of_rtt.attr, 1562 &dev_attr_exception_event_control.attr, 1563 &dev_attr_exception_event_status.attr, 1564 &dev_attr_ffu_status.attr, 1565 &dev_attr_psa_state.attr, 1566 &dev_attr_psa_data_size.attr, 1567 &dev_attr_wb_flush_status.attr, 1568 &dev_attr_wb_avail_buf.attr, 1569 &dev_attr_wb_life_time_est.attr, 1570 &dev_attr_wb_cur_buf.attr, 1571 NULL, 1572 }; 1573 1574 static const struct attribute_group ufs_sysfs_attributes_group = { 1575 .name = "attributes", 1576 .attrs = ufs_sysfs_attributes, 1577 }; 1578 1579 static const struct attribute_group *ufs_sysfs_groups[] = { 1580 &ufs_sysfs_default_group, 1581 &ufs_sysfs_capabilities_group, 1582 &ufs_sysfs_ufshci_group, 1583 &ufs_sysfs_monitor_group, 1584 &ufs_sysfs_power_info_group, 1585 &ufs_sysfs_device_descriptor_group, 1586 &ufs_sysfs_interconnect_descriptor_group, 1587 &ufs_sysfs_geometry_descriptor_group, 1588 &ufs_sysfs_health_descriptor_group, 1589 &ufs_sysfs_power_descriptor_group, 1590 &ufs_sysfs_string_descriptors_group, 1591 &ufs_sysfs_flags_group, 1592 &ufs_sysfs_attributes_group, 1593 NULL, 1594 }; 1595 1596 #define UFS_LUN_DESC_PARAM(_pname, _puname, _duname, _size) \ 1597 static ssize_t _pname##_show(struct device *dev, \ 1598 struct device_attribute *attr, char *buf) \ 1599 { \ 1600 struct scsi_device *sdev = to_scsi_device(dev); \ 1601 struct ufs_hba *hba = shost_priv(sdev->host); \ 1602 u8 lun = ufshcd_scsi_to_upiu_lun(sdev->lun); \ 1603 if (!ufs_is_valid_unit_desc_lun(&hba->dev_info, lun)) \ 1604 return -EINVAL; \ 1605 return ufs_sysfs_read_desc_param(hba, QUERY_DESC_IDN_##_duname, \ 1606 lun, _duname##_DESC_PARAM##_puname, buf, _size); \ 1607 } \ 1608 static DEVICE_ATTR_RO(_pname) 1609 1610 #define UFS_UNIT_DESC_PARAM(_name, _uname, _size) \ 1611 UFS_LUN_DESC_PARAM(_name, _uname, UNIT, _size) 1612 1613 UFS_UNIT_DESC_PARAM(lu_enable, _LU_ENABLE, 1); 1614 UFS_UNIT_DESC_PARAM(boot_lun_id, _BOOT_LUN_ID, 1); 1615 UFS_UNIT_DESC_PARAM(lun_write_protect, _LU_WR_PROTECT, 1); 1616 UFS_UNIT_DESC_PARAM(lun_queue_depth, _LU_Q_DEPTH, 1); 1617 UFS_UNIT_DESC_PARAM(psa_sensitive, _PSA_SENSITIVE, 1); 1618 UFS_UNIT_DESC_PARAM(lun_memory_type, _MEM_TYPE, 1); 1619 UFS_UNIT_DESC_PARAM(data_reliability, _DATA_RELIABILITY, 1); 1620 UFS_UNIT_DESC_PARAM(logical_block_size, _LOGICAL_BLK_SIZE, 1); 1621 UFS_UNIT_DESC_PARAM(logical_block_count, _LOGICAL_BLK_COUNT, 8); 1622 UFS_UNIT_DESC_PARAM(erase_block_size, _ERASE_BLK_SIZE, 4); 1623 UFS_UNIT_DESC_PARAM(provisioning_type, _PROVISIONING_TYPE, 1); 1624 UFS_UNIT_DESC_PARAM(physical_memory_resourse_count, _PHY_MEM_RSRC_CNT, 8); 1625 UFS_UNIT_DESC_PARAM(context_capabilities, _CTX_CAPABILITIES, 2); 1626 UFS_UNIT_DESC_PARAM(large_unit_granularity, _LARGE_UNIT_SIZE_M1, 1); 1627 UFS_UNIT_DESC_PARAM(wb_buf_alloc_units, _WB_BUF_ALLOC_UNITS, 4); 1628 1629 static struct attribute *ufs_sysfs_unit_descriptor[] = { 1630 &dev_attr_lu_enable.attr, 1631 &dev_attr_boot_lun_id.attr, 1632 &dev_attr_lun_write_protect.attr, 1633 &dev_attr_lun_queue_depth.attr, 1634 &dev_attr_psa_sensitive.attr, 1635 &dev_attr_lun_memory_type.attr, 1636 &dev_attr_data_reliability.attr, 1637 &dev_attr_logical_block_size.attr, 1638 &dev_attr_logical_block_count.attr, 1639 &dev_attr_erase_block_size.attr, 1640 &dev_attr_provisioning_type.attr, 1641 &dev_attr_physical_memory_resourse_count.attr, 1642 &dev_attr_context_capabilities.attr, 1643 &dev_attr_large_unit_granularity.attr, 1644 &dev_attr_wb_buf_alloc_units.attr, 1645 NULL, 1646 }; 1647 1648 static umode_t ufs_unit_descriptor_is_visible(struct kobject *kobj, struct attribute *attr, int n) 1649 { 1650 struct device *dev = container_of(kobj, struct device, kobj); 1651 struct scsi_device *sdev = to_scsi_device(dev); 1652 u8 lun = ufshcd_scsi_to_upiu_lun(sdev->lun); 1653 umode_t mode = attr->mode; 1654 1655 if (lun == UFS_UPIU_BOOT_WLUN || lun == UFS_UPIU_UFS_DEVICE_WLUN) 1656 /* Boot and device WLUN have no unit descriptors */ 1657 mode = 0; 1658 if (lun == UFS_UPIU_RPMB_WLUN && attr == &dev_attr_wb_buf_alloc_units.attr) 1659 mode = 0; 1660 1661 return mode; 1662 } 1663 1664 1665 const struct attribute_group ufs_sysfs_unit_descriptor_group = { 1666 .name = "unit_descriptor", 1667 .attrs = ufs_sysfs_unit_descriptor, 1668 .is_visible = ufs_unit_descriptor_is_visible, 1669 }; 1670 1671 static ssize_t dyn_cap_needed_attribute_show(struct device *dev, 1672 struct device_attribute *attr, char *buf) 1673 { 1674 u32 value; 1675 struct scsi_device *sdev = to_scsi_device(dev); 1676 struct ufs_hba *hba = shost_priv(sdev->host); 1677 u8 lun = ufshcd_scsi_to_upiu_lun(sdev->lun); 1678 int ret; 1679 1680 down(&hba->host_sem); 1681 if (!ufshcd_is_user_access_allowed(hba)) { 1682 ret = -EBUSY; 1683 goto out; 1684 } 1685 1686 ufshcd_rpm_get_sync(hba); 1687 ret = ufshcd_query_attr(hba, UPIU_QUERY_OPCODE_READ_ATTR, 1688 QUERY_ATTR_IDN_DYN_CAP_NEEDED, lun, 0, &value); 1689 ufshcd_rpm_put_sync(hba); 1690 if (ret) { 1691 ret = -EINVAL; 1692 goto out; 1693 } 1694 1695 ret = sysfs_emit(buf, "0x%08X\n", value); 1696 1697 out: 1698 up(&hba->host_sem); 1699 return ret; 1700 } 1701 static DEVICE_ATTR_RO(dyn_cap_needed_attribute); 1702 1703 static struct attribute *ufs_sysfs_lun_attributes[] = { 1704 &dev_attr_dyn_cap_needed_attribute.attr, 1705 NULL, 1706 }; 1707 1708 const struct attribute_group ufs_sysfs_lun_attributes_group = { 1709 .attrs = ufs_sysfs_lun_attributes, 1710 }; 1711 1712 void ufs_sysfs_add_nodes(struct device *dev) 1713 { 1714 int ret; 1715 1716 ret = sysfs_create_groups(&dev->kobj, ufs_sysfs_groups); 1717 if (ret) 1718 dev_err(dev, 1719 "%s: sysfs groups creation failed (err = %d)\n", 1720 __func__, ret); 1721 } 1722 1723 void ufs_sysfs_remove_nodes(struct device *dev) 1724 { 1725 sysfs_remove_groups(&dev->kobj, ufs_sysfs_groups); 1726 } 1727