1 // SPDX-License-Identifier: GPL-2.0 2 // Copyright (C) 2018 Western Digital Corporation 3 4 #include <linux/err.h> 5 #include <linux/string.h> 6 #include <linux/bitfield.h> 7 #include <linux/unaligned.h> 8 #include <linux/string_choices.h> 9 10 #include <ufs/ufs.h> 11 #include <ufs/unipro.h> 12 #include "ufs-sysfs.h" 13 #include "ufshcd-priv.h" 14 15 static const char *ufs_pa_pwr_mode_to_string(enum ufs_pa_pwr_mode mode) 16 { 17 switch (mode) { 18 case FAST_MODE: return "FAST_MODE"; 19 case SLOW_MODE: return "SLOW_MODE"; 20 case FASTAUTO_MODE: return "FASTAUTO_MODE"; 21 case SLOWAUTO_MODE: return "SLOWAUTO_MODE"; 22 default: return "UNKNOWN"; 23 } 24 } 25 26 static const char *ufs_hs_gear_rate_to_string(enum ufs_hs_gear_rate rate) 27 { 28 switch (rate) { 29 case PA_HS_MODE_A: return "HS_RATE_A"; 30 case PA_HS_MODE_B: return "HS_RATE_B"; 31 default: return "UNKNOWN"; 32 } 33 } 34 35 static const char *ufs_pwm_gear_to_string(enum ufs_pwm_gear_tag gear) 36 { 37 switch (gear) { 38 case UFS_PWM_G1: return "PWM_GEAR1"; 39 case UFS_PWM_G2: return "PWM_GEAR2"; 40 case UFS_PWM_G3: return "PWM_GEAR3"; 41 case UFS_PWM_G4: return "PWM_GEAR4"; 42 case UFS_PWM_G5: return "PWM_GEAR5"; 43 case UFS_PWM_G6: return "PWM_GEAR6"; 44 case UFS_PWM_G7: return "PWM_GEAR7"; 45 default: return "UNKNOWN"; 46 } 47 } 48 49 static const char *ufs_hs_gear_to_string(enum ufs_hs_gear_tag gear) 50 { 51 switch (gear) { 52 case UFS_HS_G1: return "HS_GEAR1"; 53 case UFS_HS_G2: return "HS_GEAR2"; 54 case UFS_HS_G3: return "HS_GEAR3"; 55 case UFS_HS_G4: return "HS_GEAR4"; 56 case UFS_HS_G5: return "HS_GEAR5"; 57 default: return "UNKNOWN"; 58 } 59 } 60 61 static const char *ufs_wb_resize_hint_to_string(enum wb_resize_hint hint) 62 { 63 switch (hint) { 64 case WB_RESIZE_HINT_KEEP: 65 return "keep"; 66 case WB_RESIZE_HINT_DECREASE: 67 return "decrease"; 68 case WB_RESIZE_HINT_INCREASE: 69 return "increase"; 70 default: 71 return "unknown"; 72 } 73 } 74 75 static const char *ufs_wb_resize_status_to_string(enum wb_resize_status status) 76 { 77 switch (status) { 78 case WB_RESIZE_STATUS_IDLE: 79 return "idle"; 80 case WB_RESIZE_STATUS_IN_PROGRESS: 81 return "in_progress"; 82 case WB_RESIZE_STATUS_COMPLETE_SUCCESS: 83 return "complete_success"; 84 case WB_RESIZE_STATUS_GENERAL_FAILURE: 85 return "general_failure"; 86 default: 87 return "unknown"; 88 } 89 } 90 91 static const char * const ufs_hid_states[] = { 92 [HID_IDLE] = "idle", 93 [ANALYSIS_IN_PROGRESS] = "analysis_in_progress", 94 [DEFRAG_REQUIRED] = "defrag_required", 95 [DEFRAG_IN_PROGRESS] = "defrag_in_progress", 96 [DEFRAG_COMPLETED] = "defrag_completed", 97 [DEFRAG_NOT_REQUIRED] = "defrag_not_required", 98 }; 99 100 static const char *ufs_hid_state_to_string(enum ufs_hid_state state) 101 { 102 if (state < NUM_UFS_HID_STATES) 103 return ufs_hid_states[state]; 104 105 return "unknown"; 106 } 107 108 static const char *ufshcd_uic_link_state_to_string( 109 enum uic_link_state state) 110 { 111 switch (state) { 112 case UIC_LINK_OFF_STATE: return "OFF"; 113 case UIC_LINK_ACTIVE_STATE: return "ACTIVE"; 114 case UIC_LINK_HIBERN8_STATE: return "HIBERN8"; 115 case UIC_LINK_BROKEN_STATE: return "BROKEN"; 116 default: return "UNKNOWN"; 117 } 118 } 119 120 static const char *ufshcd_ufs_dev_pwr_mode_to_string( 121 enum ufs_dev_pwr_mode state) 122 { 123 switch (state) { 124 case UFS_ACTIVE_PWR_MODE: return "ACTIVE"; 125 case UFS_SLEEP_PWR_MODE: return "SLEEP"; 126 case UFS_POWERDOWN_PWR_MODE: return "POWERDOWN"; 127 case UFS_DEEPSLEEP_PWR_MODE: return "DEEPSLEEP"; 128 default: return "UNKNOWN"; 129 } 130 } 131 132 static inline ssize_t ufs_sysfs_pm_lvl_store(struct device *dev, 133 struct device_attribute *attr, 134 const char *buf, size_t count, 135 bool rpm) 136 { 137 struct ufs_hba *hba = dev_get_drvdata(dev); 138 struct ufs_dev_info *dev_info = &hba->dev_info; 139 unsigned long flags, value; 140 141 if (kstrtoul(buf, 0, &value)) 142 return -EINVAL; 143 144 if (value >= UFS_PM_LVL_MAX) 145 return -EINVAL; 146 147 if (ufs_pm_lvl_states[value].dev_state == UFS_DEEPSLEEP_PWR_MODE && 148 (!(hba->caps & UFSHCD_CAP_DEEPSLEEP) || 149 !(dev_info->wspecversion >= 0x310))) 150 return -EINVAL; 151 152 spin_lock_irqsave(hba->host->host_lock, flags); 153 if (rpm) 154 hba->rpm_lvl = value; 155 else 156 hba->spm_lvl = value; 157 spin_unlock_irqrestore(hba->host->host_lock, flags); 158 return count; 159 } 160 161 static ssize_t rpm_lvl_show(struct device *dev, 162 struct device_attribute *attr, char *buf) 163 { 164 struct ufs_hba *hba = dev_get_drvdata(dev); 165 166 return sysfs_emit(buf, "%d\n", hba->rpm_lvl); 167 } 168 169 static ssize_t rpm_lvl_store(struct device *dev, 170 struct device_attribute *attr, const char *buf, size_t count) 171 { 172 return ufs_sysfs_pm_lvl_store(dev, attr, buf, count, true); 173 } 174 175 static ssize_t rpm_target_dev_state_show(struct device *dev, 176 struct device_attribute *attr, char *buf) 177 { 178 struct ufs_hba *hba = dev_get_drvdata(dev); 179 180 return sysfs_emit(buf, "%s\n", ufshcd_ufs_dev_pwr_mode_to_string( 181 ufs_pm_lvl_states[hba->rpm_lvl].dev_state)); 182 } 183 184 static ssize_t rpm_target_link_state_show(struct device *dev, 185 struct device_attribute *attr, char *buf) 186 { 187 struct ufs_hba *hba = dev_get_drvdata(dev); 188 189 return sysfs_emit(buf, "%s\n", ufshcd_uic_link_state_to_string( 190 ufs_pm_lvl_states[hba->rpm_lvl].link_state)); 191 } 192 193 static ssize_t spm_lvl_show(struct device *dev, 194 struct device_attribute *attr, char *buf) 195 { 196 struct ufs_hba *hba = dev_get_drvdata(dev); 197 198 return sysfs_emit(buf, "%d\n", hba->spm_lvl); 199 } 200 201 static ssize_t spm_lvl_store(struct device *dev, 202 struct device_attribute *attr, const char *buf, size_t count) 203 { 204 return ufs_sysfs_pm_lvl_store(dev, attr, buf, count, false); 205 } 206 207 static ssize_t spm_target_dev_state_show(struct device *dev, 208 struct device_attribute *attr, char *buf) 209 { 210 struct ufs_hba *hba = dev_get_drvdata(dev); 211 212 return sysfs_emit(buf, "%s\n", ufshcd_ufs_dev_pwr_mode_to_string( 213 ufs_pm_lvl_states[hba->spm_lvl].dev_state)); 214 } 215 216 static ssize_t spm_target_link_state_show(struct device *dev, 217 struct device_attribute *attr, char *buf) 218 { 219 struct ufs_hba *hba = dev_get_drvdata(dev); 220 221 return sysfs_emit(buf, "%s\n", ufshcd_uic_link_state_to_string( 222 ufs_pm_lvl_states[hba->spm_lvl].link_state)); 223 } 224 225 /* Convert Auto-Hibernate Idle Timer register value to microseconds */ 226 static int ufshcd_ahit_to_us(u32 ahit) 227 { 228 int timer = FIELD_GET(UFSHCI_AHIBERN8_TIMER_MASK, ahit); 229 int scale = FIELD_GET(UFSHCI_AHIBERN8_SCALE_MASK, ahit); 230 231 for (; scale > 0; --scale) 232 timer *= UFSHCI_AHIBERN8_SCALE_FACTOR; 233 234 return timer; 235 } 236 237 /* Convert microseconds to Auto-Hibernate Idle Timer register value */ 238 u32 ufshcd_us_to_ahit(unsigned int timer) 239 { 240 unsigned int scale; 241 242 for (scale = 0; timer > UFSHCI_AHIBERN8_TIMER_MASK; ++scale) 243 timer /= UFSHCI_AHIBERN8_SCALE_FACTOR; 244 245 return FIELD_PREP(UFSHCI_AHIBERN8_TIMER_MASK, timer) | 246 FIELD_PREP(UFSHCI_AHIBERN8_SCALE_MASK, scale); 247 } 248 EXPORT_SYMBOL_GPL(ufshcd_us_to_ahit); 249 250 static int ufshcd_read_hci_reg(struct ufs_hba *hba, u32 *val, unsigned int reg) 251 { 252 down(&hba->host_sem); 253 if (!ufshcd_is_user_access_allowed(hba)) { 254 up(&hba->host_sem); 255 return -EBUSY; 256 } 257 258 ufshcd_rpm_get_sync(hba); 259 ufshcd_hold(hba); 260 *val = ufshcd_readl(hba, reg); 261 ufshcd_release(hba); 262 ufshcd_rpm_put_sync(hba); 263 264 up(&hba->host_sem); 265 return 0; 266 } 267 268 static ssize_t auto_hibern8_show(struct device *dev, 269 struct device_attribute *attr, char *buf) 270 { 271 u32 ahit; 272 int ret; 273 struct ufs_hba *hba = dev_get_drvdata(dev); 274 275 if (!ufshcd_is_auto_hibern8_supported(hba)) 276 return -EOPNOTSUPP; 277 278 ret = ufshcd_read_hci_reg(hba, &ahit, REG_AUTO_HIBERNATE_IDLE_TIMER); 279 if (ret) 280 return ret; 281 282 return sysfs_emit(buf, "%d\n", ufshcd_ahit_to_us(ahit)); 283 } 284 285 static ssize_t auto_hibern8_store(struct device *dev, 286 struct device_attribute *attr, 287 const char *buf, size_t count) 288 { 289 struct ufs_hba *hba = dev_get_drvdata(dev); 290 unsigned int timer; 291 int ret = 0; 292 293 if (!ufshcd_is_auto_hibern8_supported(hba)) 294 return -EOPNOTSUPP; 295 296 if (kstrtouint(buf, 0, &timer)) 297 return -EINVAL; 298 299 if (timer > UFSHCI_AHIBERN8_MAX) 300 return -EINVAL; 301 302 down(&hba->host_sem); 303 if (!ufshcd_is_user_access_allowed(hba)) { 304 ret = -EBUSY; 305 goto out; 306 } 307 308 ufshcd_auto_hibern8_update(hba, ufshcd_us_to_ahit(timer)); 309 310 out: 311 up(&hba->host_sem); 312 return ret ? ret : count; 313 } 314 315 static ssize_t wb_on_show(struct device *dev, struct device_attribute *attr, 316 char *buf) 317 { 318 struct ufs_hba *hba = dev_get_drvdata(dev); 319 320 return sysfs_emit(buf, "%d\n", hba->dev_info.wb_enabled); 321 } 322 323 static ssize_t wb_on_store(struct device *dev, struct device_attribute *attr, 324 const char *buf, size_t count) 325 { 326 struct ufs_hba *hba = dev_get_drvdata(dev); 327 unsigned int wb_enable; 328 ssize_t res; 329 330 if (!ufshcd_is_wb_allowed(hba) || (ufshcd_is_clkscaling_supported(hba) 331 && ufshcd_enable_wb_if_scaling_up(hba))) { 332 /* 333 * If the platform supports UFSHCD_CAP_CLK_SCALING, turn WB 334 * on/off will be done while clock scaling up/down. 335 */ 336 dev_warn(dev, "It is not allowed to configure WB!\n"); 337 return -EOPNOTSUPP; 338 } 339 340 if (kstrtouint(buf, 0, &wb_enable)) 341 return -EINVAL; 342 343 if (wb_enable != 0 && wb_enable != 1) 344 return -EINVAL; 345 346 down(&hba->host_sem); 347 if (!ufshcd_is_user_access_allowed(hba)) { 348 res = -EBUSY; 349 goto out; 350 } 351 352 ufshcd_rpm_get_sync(hba); 353 res = ufshcd_wb_toggle(hba, wb_enable); 354 ufshcd_rpm_put_sync(hba); 355 out: 356 up(&hba->host_sem); 357 return res < 0 ? res : count; 358 } 359 360 static ssize_t rtc_update_ms_show(struct device *dev, struct device_attribute *attr, 361 char *buf) 362 { 363 struct ufs_hba *hba = dev_get_drvdata(dev); 364 365 return sysfs_emit(buf, "%d\n", hba->dev_info.rtc_update_period); 366 } 367 368 static ssize_t rtc_update_ms_store(struct device *dev, struct device_attribute *attr, 369 const char *buf, size_t count) 370 { 371 struct ufs_hba *hba = dev_get_drvdata(dev); 372 unsigned int ms; 373 bool resume_period_update = false; 374 375 if (kstrtouint(buf, 0, &ms)) 376 return -EINVAL; 377 378 if (!hba->dev_info.rtc_update_period && ms > 0) 379 resume_period_update = true; 380 /* Minimum and maximum update frequency should be synchronized with all UFS vendors */ 381 hba->dev_info.rtc_update_period = ms; 382 383 if (resume_period_update) 384 schedule_delayed_work(&hba->ufs_rtc_update_work, 385 msecs_to_jiffies(hba->dev_info.rtc_update_period)); 386 return count; 387 } 388 389 static ssize_t enable_wb_buf_flush_show(struct device *dev, 390 struct device_attribute *attr, 391 char *buf) 392 { 393 struct ufs_hba *hba = dev_get_drvdata(dev); 394 395 return sysfs_emit(buf, "%d\n", hba->dev_info.wb_buf_flush_enabled); 396 } 397 398 static ssize_t enable_wb_buf_flush_store(struct device *dev, 399 struct device_attribute *attr, 400 const char *buf, size_t count) 401 { 402 struct ufs_hba *hba = dev_get_drvdata(dev); 403 unsigned int enable_wb_buf_flush; 404 ssize_t res; 405 406 if (!ufshcd_is_wb_buf_flush_allowed(hba)) { 407 dev_warn(dev, "It is not allowed to configure WB buf flushing!\n"); 408 return -EOPNOTSUPP; 409 } 410 411 if (kstrtouint(buf, 0, &enable_wb_buf_flush)) 412 return -EINVAL; 413 414 if (enable_wb_buf_flush != 0 && enable_wb_buf_flush != 1) 415 return -EINVAL; 416 417 down(&hba->host_sem); 418 if (!ufshcd_is_user_access_allowed(hba)) { 419 res = -EBUSY; 420 goto out; 421 } 422 423 ufshcd_rpm_get_sync(hba); 424 res = ufshcd_wb_toggle_buf_flush(hba, enable_wb_buf_flush); 425 ufshcd_rpm_put_sync(hba); 426 427 out: 428 up(&hba->host_sem); 429 return res < 0 ? res : count; 430 } 431 432 static ssize_t wb_flush_threshold_show(struct device *dev, 433 struct device_attribute *attr, 434 char *buf) 435 { 436 struct ufs_hba *hba = dev_get_drvdata(dev); 437 438 return sysfs_emit(buf, "%u\n", hba->vps->wb_flush_threshold); 439 } 440 441 static ssize_t wb_flush_threshold_store(struct device *dev, 442 struct device_attribute *attr, 443 const char *buf, size_t count) 444 { 445 struct ufs_hba *hba = dev_get_drvdata(dev); 446 unsigned int wb_flush_threshold; 447 448 if (kstrtouint(buf, 0, &wb_flush_threshold)) 449 return -EINVAL; 450 451 /* The range of values for wb_flush_threshold is (0,10] */ 452 if (wb_flush_threshold > UFS_WB_BUF_REMAIN_PERCENT(100) || 453 wb_flush_threshold == 0) { 454 dev_err(dev, "The value of wb_flush_threshold is invalid!\n"); 455 return -EINVAL; 456 } 457 458 hba->vps->wb_flush_threshold = wb_flush_threshold; 459 460 return count; 461 } 462 463 static const char * const wb_resize_en_mode[] = { 464 [WB_RESIZE_EN_IDLE] = "idle", 465 [WB_RESIZE_EN_DECREASE] = "decrease", 466 [WB_RESIZE_EN_INCREASE] = "increase", 467 }; 468 469 static ssize_t wb_resize_enable_store(struct device *dev, 470 struct device_attribute *attr, 471 const char *buf, size_t count) 472 { 473 struct ufs_hba *hba = dev_get_drvdata(dev); 474 int mode; 475 ssize_t res; 476 477 if (!ufshcd_is_wb_allowed(hba) || !hba->dev_info.wb_enabled 478 || !hba->dev_info.b_presrv_uspc_en 479 || !(hba->dev_info.ext_wb_sup & UFS_DEV_WB_BUF_RESIZE)) 480 return -EOPNOTSUPP; 481 482 mode = sysfs_match_string(wb_resize_en_mode, buf); 483 if (mode < 0) 484 return -EINVAL; 485 486 down(&hba->host_sem); 487 if (!ufshcd_is_user_access_allowed(hba)) { 488 res = -EBUSY; 489 goto out; 490 } 491 492 ufshcd_rpm_get_sync(hba); 493 res = ufshcd_wb_set_resize_en(hba, mode); 494 ufshcd_rpm_put_sync(hba); 495 496 out: 497 up(&hba->host_sem); 498 return res < 0 ? res : count; 499 } 500 501 /** 502 * pm_qos_enable_show - sysfs handler to show pm qos enable value 503 * @dev: device associated with the UFS controller 504 * @attr: sysfs attribute handle 505 * @buf: buffer for sysfs file 506 * 507 * Print 1 if PM QoS feature is enabled, 0 if disabled. 508 * 509 * Returns number of characters written to @buf. 510 */ 511 static ssize_t pm_qos_enable_show(struct device *dev, 512 struct device_attribute *attr, char *buf) 513 { 514 struct ufs_hba *hba = dev_get_drvdata(dev); 515 516 guard(mutex)(&hba->pm_qos_mutex); 517 518 return sysfs_emit(buf, "%d\n", hba->pm_qos_enabled); 519 } 520 521 /** 522 * pm_qos_enable_store - sysfs handler to store value 523 * @dev: device associated with the UFS controller 524 * @attr: sysfs attribute handle 525 * @buf: buffer for sysfs file 526 * @count: stores buffer characters count 527 * 528 * Input 0 to disable PM QoS and 1 value to enable. 529 * Default state: 1 530 * 531 * Return: number of characters written to @buf on success, < 0 upon failure. 532 */ 533 static ssize_t pm_qos_enable_store(struct device *dev, 534 struct device_attribute *attr, const char *buf, size_t count) 535 { 536 struct ufs_hba *hba = dev_get_drvdata(dev); 537 bool value; 538 539 if (kstrtobool(buf, &value)) 540 return -EINVAL; 541 542 if (value) 543 ufshcd_pm_qos_init(hba); 544 else 545 ufshcd_pm_qos_exit(hba); 546 547 return count; 548 } 549 550 static ssize_t critical_health_show(struct device *dev, 551 struct device_attribute *attr, char *buf) 552 { 553 struct ufs_hba *hba = dev_get_drvdata(dev); 554 555 return sysfs_emit(buf, "%d\n", hba->critical_health_count); 556 } 557 558 static ssize_t device_lvl_exception_count_show(struct device *dev, 559 struct device_attribute *attr, 560 char *buf) 561 { 562 struct ufs_hba *hba = dev_get_drvdata(dev); 563 564 if (hba->dev_info.wspecversion < 0x410) 565 return -EOPNOTSUPP; 566 567 return sysfs_emit(buf, "%u\n", atomic_read(&hba->dev_lvl_exception_count)); 568 } 569 570 static ssize_t device_lvl_exception_count_store(struct device *dev, 571 struct device_attribute *attr, 572 const char *buf, size_t count) 573 { 574 struct ufs_hba *hba = dev_get_drvdata(dev); 575 unsigned int value; 576 577 if (kstrtouint(buf, 0, &value)) 578 return -EINVAL; 579 580 /* the only supported usecase is to reset the dev_lvl_exception_count */ 581 if (value) 582 return -EINVAL; 583 584 atomic_set(&hba->dev_lvl_exception_count, 0); 585 586 return count; 587 } 588 589 static ssize_t device_lvl_exception_id_show(struct device *dev, 590 struct device_attribute *attr, 591 char *buf) 592 { 593 struct ufs_hba *hba = dev_get_drvdata(dev); 594 u64 exception_id; 595 int err; 596 597 ufshcd_rpm_get_sync(hba); 598 err = ufshcd_read_device_lvl_exception_id(hba, &exception_id); 599 ufshcd_rpm_put_sync(hba); 600 601 if (err) 602 return err; 603 604 hba->dev_lvl_exception_id = exception_id; 605 return sysfs_emit(buf, "%llu\n", exception_id); 606 } 607 608 static DEVICE_ATTR_RW(rpm_lvl); 609 static DEVICE_ATTR_RO(rpm_target_dev_state); 610 static DEVICE_ATTR_RO(rpm_target_link_state); 611 static DEVICE_ATTR_RW(spm_lvl); 612 static DEVICE_ATTR_RO(spm_target_dev_state); 613 static DEVICE_ATTR_RO(spm_target_link_state); 614 static DEVICE_ATTR_RW(auto_hibern8); 615 static DEVICE_ATTR_RW(wb_on); 616 static DEVICE_ATTR_RW(enable_wb_buf_flush); 617 static DEVICE_ATTR_RW(wb_flush_threshold); 618 static DEVICE_ATTR_WO(wb_resize_enable); 619 static DEVICE_ATTR_RW(rtc_update_ms); 620 static DEVICE_ATTR_RW(pm_qos_enable); 621 static DEVICE_ATTR_RO(critical_health); 622 static DEVICE_ATTR_RW(device_lvl_exception_count); 623 static DEVICE_ATTR_RO(device_lvl_exception_id); 624 625 static struct attribute *ufs_sysfs_ufshcd_attrs[] = { 626 &dev_attr_rpm_lvl.attr, 627 &dev_attr_rpm_target_dev_state.attr, 628 &dev_attr_rpm_target_link_state.attr, 629 &dev_attr_spm_lvl.attr, 630 &dev_attr_spm_target_dev_state.attr, 631 &dev_attr_spm_target_link_state.attr, 632 &dev_attr_auto_hibern8.attr, 633 &dev_attr_wb_on.attr, 634 &dev_attr_enable_wb_buf_flush.attr, 635 &dev_attr_wb_flush_threshold.attr, 636 &dev_attr_wb_resize_enable.attr, 637 &dev_attr_rtc_update_ms.attr, 638 &dev_attr_pm_qos_enable.attr, 639 &dev_attr_critical_health.attr, 640 &dev_attr_device_lvl_exception_count.attr, 641 &dev_attr_device_lvl_exception_id.attr, 642 NULL 643 }; 644 645 static const struct attribute_group ufs_sysfs_default_group = { 646 .attrs = ufs_sysfs_ufshcd_attrs, 647 }; 648 649 static ssize_t clock_scaling_show(struct device *dev, struct device_attribute *attr, 650 char *buf) 651 { 652 struct ufs_hba *hba = dev_get_drvdata(dev); 653 654 return sysfs_emit(buf, "%d\n", ufshcd_is_clkscaling_supported(hba)); 655 } 656 657 static ssize_t write_booster_show(struct device *dev, struct device_attribute *attr, 658 char *buf) 659 { 660 struct ufs_hba *hba = dev_get_drvdata(dev); 661 662 return sysfs_emit(buf, "%d\n", ufshcd_is_wb_allowed(hba)); 663 } 664 665 static DEVICE_ATTR_RO(clock_scaling); 666 static DEVICE_ATTR_RO(write_booster); 667 668 /* 669 * See Documentation/ABI/testing/sysfs-driver-ufs for the semantics of this 670 * group. 671 */ 672 static struct attribute *ufs_sysfs_capabilities_attrs[] = { 673 &dev_attr_clock_scaling.attr, 674 &dev_attr_write_booster.attr, 675 NULL 676 }; 677 678 static const struct attribute_group ufs_sysfs_capabilities_group = { 679 .name = "capabilities", 680 .attrs = ufs_sysfs_capabilities_attrs, 681 }; 682 683 static ssize_t version_show(struct device *dev, 684 struct device_attribute *attr, char *buf) 685 { 686 struct ufs_hba *hba = dev_get_drvdata(dev); 687 688 return sysfs_emit(buf, "0x%x\n", hba->ufs_version); 689 } 690 691 static ssize_t product_id_show(struct device *dev, 692 struct device_attribute *attr, char *buf) 693 { 694 int ret; 695 u32 val; 696 struct ufs_hba *hba = dev_get_drvdata(dev); 697 698 ret = ufshcd_read_hci_reg(hba, &val, REG_CONTROLLER_PID); 699 if (ret) 700 return ret; 701 702 return sysfs_emit(buf, "0x%x\n", val); 703 } 704 705 static ssize_t man_id_show(struct device *dev, 706 struct device_attribute *attr, char *buf) 707 { 708 int ret; 709 u32 val; 710 struct ufs_hba *hba = dev_get_drvdata(dev); 711 712 ret = ufshcd_read_hci_reg(hba, &val, REG_CONTROLLER_MID); 713 if (ret) 714 return ret; 715 716 return sysfs_emit(buf, "0x%x\n", val); 717 } 718 719 static DEVICE_ATTR_RO(version); 720 static DEVICE_ATTR_RO(product_id); 721 static DEVICE_ATTR_RO(man_id); 722 723 static struct attribute *ufs_sysfs_ufshci_cap_attrs[] = { 724 &dev_attr_version.attr, 725 &dev_attr_product_id.attr, 726 &dev_attr_man_id.attr, 727 NULL 728 }; 729 730 static const struct attribute_group ufs_sysfs_ufshci_group = { 731 .name = "ufshci_capabilities", 732 .attrs = ufs_sysfs_ufshci_cap_attrs, 733 }; 734 735 static ssize_t monitor_enable_show(struct device *dev, 736 struct device_attribute *attr, char *buf) 737 { 738 struct ufs_hba *hba = dev_get_drvdata(dev); 739 740 return sysfs_emit(buf, "%d\n", hba->monitor.enabled); 741 } 742 743 static ssize_t monitor_enable_store(struct device *dev, 744 struct device_attribute *attr, 745 const char *buf, size_t count) 746 { 747 struct ufs_hba *hba = dev_get_drvdata(dev); 748 unsigned long value, flags; 749 750 if (kstrtoul(buf, 0, &value)) 751 return -EINVAL; 752 753 value = !!value; 754 spin_lock_irqsave(hba->host->host_lock, flags); 755 if (value == hba->monitor.enabled) 756 goto out_unlock; 757 758 if (!value) { 759 memset(&hba->monitor, 0, sizeof(hba->monitor)); 760 } else { 761 hba->monitor.enabled = true; 762 hba->monitor.enabled_ts = ktime_get(); 763 } 764 765 out_unlock: 766 spin_unlock_irqrestore(hba->host->host_lock, flags); 767 return count; 768 } 769 770 static ssize_t monitor_chunk_size_show(struct device *dev, 771 struct device_attribute *attr, char *buf) 772 { 773 struct ufs_hba *hba = dev_get_drvdata(dev); 774 775 return sysfs_emit(buf, "%lu\n", hba->monitor.chunk_size); 776 } 777 778 static ssize_t monitor_chunk_size_store(struct device *dev, 779 struct device_attribute *attr, 780 const char *buf, size_t count) 781 { 782 struct ufs_hba *hba = dev_get_drvdata(dev); 783 unsigned long value, flags; 784 785 if (kstrtoul(buf, 0, &value)) 786 return -EINVAL; 787 788 spin_lock_irqsave(hba->host->host_lock, flags); 789 /* Only allow chunk size change when monitor is disabled */ 790 if (!hba->monitor.enabled) 791 hba->monitor.chunk_size = value; 792 spin_unlock_irqrestore(hba->host->host_lock, flags); 793 return count; 794 } 795 796 static ssize_t read_total_sectors_show(struct device *dev, 797 struct device_attribute *attr, char *buf) 798 { 799 struct ufs_hba *hba = dev_get_drvdata(dev); 800 801 return sysfs_emit(buf, "%lu\n", hba->monitor.nr_sec_rw[READ]); 802 } 803 804 static ssize_t read_total_busy_show(struct device *dev, 805 struct device_attribute *attr, char *buf) 806 { 807 struct ufs_hba *hba = dev_get_drvdata(dev); 808 809 return sysfs_emit(buf, "%llu\n", 810 ktime_to_us(hba->monitor.total_busy[READ])); 811 } 812 813 static ssize_t read_nr_requests_show(struct device *dev, 814 struct device_attribute *attr, char *buf) 815 { 816 struct ufs_hba *hba = dev_get_drvdata(dev); 817 818 return sysfs_emit(buf, "%lu\n", hba->monitor.nr_req[READ]); 819 } 820 821 static ssize_t read_req_latency_avg_show(struct device *dev, 822 struct device_attribute *attr, 823 char *buf) 824 { 825 struct ufs_hba *hba = dev_get_drvdata(dev); 826 struct ufs_hba_monitor *m = &hba->monitor; 827 828 if (!m->nr_req[READ]) 829 return sysfs_emit(buf, "0\n"); 830 831 return sysfs_emit(buf, "%llu\n", div_u64(ktime_to_us(m->lat_sum[READ]), 832 m->nr_req[READ])); 833 } 834 835 static ssize_t read_req_latency_max_show(struct device *dev, 836 struct device_attribute *attr, 837 char *buf) 838 { 839 struct ufs_hba *hba = dev_get_drvdata(dev); 840 841 return sysfs_emit(buf, "%llu\n", 842 ktime_to_us(hba->monitor.lat_max[READ])); 843 } 844 845 static ssize_t read_req_latency_min_show(struct device *dev, 846 struct device_attribute *attr, 847 char *buf) 848 { 849 struct ufs_hba *hba = dev_get_drvdata(dev); 850 851 return sysfs_emit(buf, "%llu\n", 852 ktime_to_us(hba->monitor.lat_min[READ])); 853 } 854 855 static ssize_t read_req_latency_sum_show(struct device *dev, 856 struct device_attribute *attr, 857 char *buf) 858 { 859 struct ufs_hba *hba = dev_get_drvdata(dev); 860 861 return sysfs_emit(buf, "%llu\n", 862 ktime_to_us(hba->monitor.lat_sum[READ])); 863 } 864 865 static ssize_t write_total_sectors_show(struct device *dev, 866 struct device_attribute *attr, 867 char *buf) 868 { 869 struct ufs_hba *hba = dev_get_drvdata(dev); 870 871 return sysfs_emit(buf, "%lu\n", hba->monitor.nr_sec_rw[WRITE]); 872 } 873 874 static ssize_t write_total_busy_show(struct device *dev, 875 struct device_attribute *attr, char *buf) 876 { 877 struct ufs_hba *hba = dev_get_drvdata(dev); 878 879 return sysfs_emit(buf, "%llu\n", 880 ktime_to_us(hba->monitor.total_busy[WRITE])); 881 } 882 883 static ssize_t write_nr_requests_show(struct device *dev, 884 struct device_attribute *attr, char *buf) 885 { 886 struct ufs_hba *hba = dev_get_drvdata(dev); 887 888 return sysfs_emit(buf, "%lu\n", hba->monitor.nr_req[WRITE]); 889 } 890 891 static ssize_t write_req_latency_avg_show(struct device *dev, 892 struct device_attribute *attr, 893 char *buf) 894 { 895 struct ufs_hba *hba = dev_get_drvdata(dev); 896 struct ufs_hba_monitor *m = &hba->monitor; 897 898 if (!m->nr_req[WRITE]) 899 return sysfs_emit(buf, "0\n"); 900 901 return sysfs_emit(buf, "%llu\n", div_u64(ktime_to_us(m->lat_sum[WRITE]), 902 m->nr_req[WRITE])); 903 } 904 905 static ssize_t write_req_latency_max_show(struct device *dev, 906 struct device_attribute *attr, 907 char *buf) 908 { 909 struct ufs_hba *hba = dev_get_drvdata(dev); 910 911 return sysfs_emit(buf, "%llu\n", 912 ktime_to_us(hba->monitor.lat_max[WRITE])); 913 } 914 915 static ssize_t write_req_latency_min_show(struct device *dev, 916 struct device_attribute *attr, 917 char *buf) 918 { 919 struct ufs_hba *hba = dev_get_drvdata(dev); 920 921 return sysfs_emit(buf, "%llu\n", 922 ktime_to_us(hba->monitor.lat_min[WRITE])); 923 } 924 925 static ssize_t write_req_latency_sum_show(struct device *dev, 926 struct device_attribute *attr, 927 char *buf) 928 { 929 struct ufs_hba *hba = dev_get_drvdata(dev); 930 931 return sysfs_emit(buf, "%llu\n", 932 ktime_to_us(hba->monitor.lat_sum[WRITE])); 933 } 934 935 static DEVICE_ATTR_RW(monitor_enable); 936 static DEVICE_ATTR_RW(monitor_chunk_size); 937 static DEVICE_ATTR_RO(read_total_sectors); 938 static DEVICE_ATTR_RO(read_total_busy); 939 static DEVICE_ATTR_RO(read_nr_requests); 940 static DEVICE_ATTR_RO(read_req_latency_avg); 941 static DEVICE_ATTR_RO(read_req_latency_max); 942 static DEVICE_ATTR_RO(read_req_latency_min); 943 static DEVICE_ATTR_RO(read_req_latency_sum); 944 static DEVICE_ATTR_RO(write_total_sectors); 945 static DEVICE_ATTR_RO(write_total_busy); 946 static DEVICE_ATTR_RO(write_nr_requests); 947 static DEVICE_ATTR_RO(write_req_latency_avg); 948 static DEVICE_ATTR_RO(write_req_latency_max); 949 static DEVICE_ATTR_RO(write_req_latency_min); 950 static DEVICE_ATTR_RO(write_req_latency_sum); 951 952 static struct attribute *ufs_sysfs_monitor_attrs[] = { 953 &dev_attr_monitor_enable.attr, 954 &dev_attr_monitor_chunk_size.attr, 955 &dev_attr_read_total_sectors.attr, 956 &dev_attr_read_total_busy.attr, 957 &dev_attr_read_nr_requests.attr, 958 &dev_attr_read_req_latency_avg.attr, 959 &dev_attr_read_req_latency_max.attr, 960 &dev_attr_read_req_latency_min.attr, 961 &dev_attr_read_req_latency_sum.attr, 962 &dev_attr_write_total_sectors.attr, 963 &dev_attr_write_total_busy.attr, 964 &dev_attr_write_nr_requests.attr, 965 &dev_attr_write_req_latency_avg.attr, 966 &dev_attr_write_req_latency_max.attr, 967 &dev_attr_write_req_latency_min.attr, 968 &dev_attr_write_req_latency_sum.attr, 969 NULL 970 }; 971 972 static const struct attribute_group ufs_sysfs_monitor_group = { 973 .name = "monitor", 974 .attrs = ufs_sysfs_monitor_attrs, 975 }; 976 977 static ssize_t lane_show(struct device *dev, struct device_attribute *attr, 978 char *buf) 979 { 980 struct ufs_hba *hba = dev_get_drvdata(dev); 981 982 return sysfs_emit(buf, "%u\n", hba->pwr_info.lane_rx); 983 } 984 985 static ssize_t mode_show(struct device *dev, struct device_attribute *attr, 986 char *buf) 987 { 988 struct ufs_hba *hba = dev_get_drvdata(dev); 989 990 return sysfs_emit(buf, "%s\n", ufs_pa_pwr_mode_to_string(hba->pwr_info.pwr_rx)); 991 } 992 993 static ssize_t rate_show(struct device *dev, struct device_attribute *attr, 994 char *buf) 995 { 996 struct ufs_hba *hba = dev_get_drvdata(dev); 997 998 return sysfs_emit(buf, "%s\n", ufs_hs_gear_rate_to_string(hba->pwr_info.hs_rate)); 999 } 1000 1001 static ssize_t gear_show(struct device *dev, struct device_attribute *attr, 1002 char *buf) 1003 { 1004 struct ufs_hba *hba = dev_get_drvdata(dev); 1005 1006 return sysfs_emit(buf, "%s\n", hba->pwr_info.hs_rate ? 1007 ufs_hs_gear_to_string(hba->pwr_info.gear_rx) : 1008 ufs_pwm_gear_to_string(hba->pwr_info.gear_rx)); 1009 } 1010 1011 static ssize_t dev_pm_show(struct device *dev, struct device_attribute *attr, 1012 char *buf) 1013 { 1014 struct ufs_hba *hba = dev_get_drvdata(dev); 1015 1016 return sysfs_emit(buf, "%s\n", ufshcd_ufs_dev_pwr_mode_to_string(hba->curr_dev_pwr_mode)); 1017 } 1018 1019 static ssize_t link_state_show(struct device *dev, 1020 struct device_attribute *attr, char *buf) 1021 { 1022 struct ufs_hba *hba = dev_get_drvdata(dev); 1023 1024 return sysfs_emit(buf, "%s\n", ufshcd_uic_link_state_to_string(hba->uic_link_state)); 1025 } 1026 1027 static DEVICE_ATTR_RO(lane); 1028 static DEVICE_ATTR_RO(mode); 1029 static DEVICE_ATTR_RO(rate); 1030 static DEVICE_ATTR_RO(gear); 1031 static DEVICE_ATTR_RO(dev_pm); 1032 static DEVICE_ATTR_RO(link_state); 1033 1034 static struct attribute *ufs_power_info_attrs[] = { 1035 &dev_attr_lane.attr, 1036 &dev_attr_mode.attr, 1037 &dev_attr_rate.attr, 1038 &dev_attr_gear.attr, 1039 &dev_attr_dev_pm.attr, 1040 &dev_attr_link_state.attr, 1041 NULL 1042 }; 1043 1044 static const struct attribute_group ufs_sysfs_power_info_group = { 1045 .name = "power_info", 1046 .attrs = ufs_power_info_attrs, 1047 }; 1048 1049 static ssize_t ufs_sysfs_read_desc_param(struct ufs_hba *hba, 1050 enum desc_idn desc_id, 1051 u8 desc_index, 1052 u8 param_offset, 1053 u8 *sysfs_buf, 1054 u8 param_size) 1055 { 1056 u8 desc_buf[8] = {0}; 1057 int ret; 1058 1059 if (param_size > 8) 1060 return -EINVAL; 1061 1062 down(&hba->host_sem); 1063 if (!ufshcd_is_user_access_allowed(hba)) { 1064 ret = -EBUSY; 1065 goto out; 1066 } 1067 1068 ufshcd_rpm_get_sync(hba); 1069 ret = ufshcd_read_desc_param(hba, desc_id, desc_index, 1070 param_offset, desc_buf, param_size); 1071 ufshcd_rpm_put_sync(hba); 1072 if (ret) { 1073 ret = -EINVAL; 1074 goto out; 1075 } 1076 1077 switch (param_size) { 1078 case 1: 1079 ret = sysfs_emit(sysfs_buf, "0x%02X\n", *desc_buf); 1080 break; 1081 case 2: 1082 ret = sysfs_emit(sysfs_buf, "0x%04X\n", 1083 get_unaligned_be16(desc_buf)); 1084 break; 1085 case 4: 1086 ret = sysfs_emit(sysfs_buf, "0x%08X\n", 1087 get_unaligned_be32(desc_buf)); 1088 break; 1089 case 8: 1090 ret = sysfs_emit(sysfs_buf, "0x%016llX\n", 1091 get_unaligned_be64(desc_buf)); 1092 break; 1093 } 1094 1095 out: 1096 up(&hba->host_sem); 1097 return ret; 1098 } 1099 1100 #define UFS_DESC_PARAM(_name, _puname, _duname, _size) \ 1101 static ssize_t _name##_show(struct device *dev, \ 1102 struct device_attribute *attr, char *buf) \ 1103 { \ 1104 struct ufs_hba *hba = dev_get_drvdata(dev); \ 1105 return ufs_sysfs_read_desc_param(hba, QUERY_DESC_IDN_##_duname, \ 1106 0, _duname##_DESC_PARAM##_puname, buf, _size); \ 1107 } \ 1108 static DEVICE_ATTR_RO(_name) 1109 1110 #define UFS_DEVICE_DESC_PARAM(_name, _uname, _size) \ 1111 UFS_DESC_PARAM(_name, _uname, DEVICE, _size) 1112 1113 UFS_DEVICE_DESC_PARAM(device_type, _DEVICE_TYPE, 1); 1114 UFS_DEVICE_DESC_PARAM(device_class, _DEVICE_CLASS, 1); 1115 UFS_DEVICE_DESC_PARAM(device_sub_class, _DEVICE_SUB_CLASS, 1); 1116 UFS_DEVICE_DESC_PARAM(protocol, _PRTCL, 1); 1117 UFS_DEVICE_DESC_PARAM(number_of_luns, _NUM_LU, 1); 1118 UFS_DEVICE_DESC_PARAM(number_of_wluns, _NUM_WLU, 1); 1119 UFS_DEVICE_DESC_PARAM(boot_enable, _BOOT_ENBL, 1); 1120 UFS_DEVICE_DESC_PARAM(descriptor_access_enable, _DESC_ACCSS_ENBL, 1); 1121 UFS_DEVICE_DESC_PARAM(initial_power_mode, _INIT_PWR_MODE, 1); 1122 UFS_DEVICE_DESC_PARAM(high_priority_lun, _HIGH_PR_LUN, 1); 1123 UFS_DEVICE_DESC_PARAM(secure_removal_type, _SEC_RMV_TYPE, 1); 1124 UFS_DEVICE_DESC_PARAM(support_security_lun, _SEC_LU, 1); 1125 UFS_DEVICE_DESC_PARAM(bkops_termination_latency, _BKOP_TERM_LT, 1); 1126 UFS_DEVICE_DESC_PARAM(initial_active_icc_level, _ACTVE_ICC_LVL, 1); 1127 UFS_DEVICE_DESC_PARAM(specification_version, _SPEC_VER, 2); 1128 UFS_DEVICE_DESC_PARAM(manufacturing_date, _MANF_DATE, 2); 1129 UFS_DEVICE_DESC_PARAM(manufacturer_id, _MANF_ID, 2); 1130 UFS_DEVICE_DESC_PARAM(rtt_capability, _RTT_CAP, 1); 1131 UFS_DEVICE_DESC_PARAM(rtc_update, _FRQ_RTC, 2); 1132 UFS_DEVICE_DESC_PARAM(ufs_features, _UFS_FEAT, 1); 1133 UFS_DEVICE_DESC_PARAM(ffu_timeout, _FFU_TMT, 1); 1134 UFS_DEVICE_DESC_PARAM(queue_depth, _Q_DPTH, 1); 1135 UFS_DEVICE_DESC_PARAM(device_version, _DEV_VER, 2); 1136 UFS_DEVICE_DESC_PARAM(number_of_secure_wpa, _NUM_SEC_WPA, 1); 1137 UFS_DEVICE_DESC_PARAM(psa_max_data_size, _PSA_MAX_DATA, 4); 1138 UFS_DEVICE_DESC_PARAM(psa_state_timeout, _PSA_TMT, 1); 1139 UFS_DEVICE_DESC_PARAM(ext_feature_sup, _EXT_UFS_FEATURE_SUP, 4); 1140 UFS_DEVICE_DESC_PARAM(wb_presv_us_en, _WB_PRESRV_USRSPC_EN, 1); 1141 UFS_DEVICE_DESC_PARAM(wb_type, _WB_TYPE, 1); 1142 UFS_DEVICE_DESC_PARAM(wb_shared_alloc_units, _WB_SHARED_ALLOC_UNITS, 4); 1143 1144 static struct attribute *ufs_sysfs_device_descriptor[] = { 1145 &dev_attr_device_type.attr, 1146 &dev_attr_device_class.attr, 1147 &dev_attr_device_sub_class.attr, 1148 &dev_attr_protocol.attr, 1149 &dev_attr_number_of_luns.attr, 1150 &dev_attr_number_of_wluns.attr, 1151 &dev_attr_boot_enable.attr, 1152 &dev_attr_descriptor_access_enable.attr, 1153 &dev_attr_initial_power_mode.attr, 1154 &dev_attr_high_priority_lun.attr, 1155 &dev_attr_secure_removal_type.attr, 1156 &dev_attr_support_security_lun.attr, 1157 &dev_attr_bkops_termination_latency.attr, 1158 &dev_attr_initial_active_icc_level.attr, 1159 &dev_attr_specification_version.attr, 1160 &dev_attr_manufacturing_date.attr, 1161 &dev_attr_manufacturer_id.attr, 1162 &dev_attr_rtt_capability.attr, 1163 &dev_attr_rtc_update.attr, 1164 &dev_attr_ufs_features.attr, 1165 &dev_attr_ffu_timeout.attr, 1166 &dev_attr_queue_depth.attr, 1167 &dev_attr_device_version.attr, 1168 &dev_attr_number_of_secure_wpa.attr, 1169 &dev_attr_psa_max_data_size.attr, 1170 &dev_attr_psa_state_timeout.attr, 1171 &dev_attr_ext_feature_sup.attr, 1172 &dev_attr_wb_presv_us_en.attr, 1173 &dev_attr_wb_type.attr, 1174 &dev_attr_wb_shared_alloc_units.attr, 1175 NULL, 1176 }; 1177 1178 static const struct attribute_group ufs_sysfs_device_descriptor_group = { 1179 .name = "device_descriptor", 1180 .attrs = ufs_sysfs_device_descriptor, 1181 }; 1182 1183 #define UFS_INTERCONNECT_DESC_PARAM(_name, _uname, _size) \ 1184 UFS_DESC_PARAM(_name, _uname, INTERCONNECT, _size) 1185 1186 UFS_INTERCONNECT_DESC_PARAM(unipro_version, _UNIPRO_VER, 2); 1187 UFS_INTERCONNECT_DESC_PARAM(mphy_version, _MPHY_VER, 2); 1188 1189 static struct attribute *ufs_sysfs_interconnect_descriptor[] = { 1190 &dev_attr_unipro_version.attr, 1191 &dev_attr_mphy_version.attr, 1192 NULL, 1193 }; 1194 1195 static const struct attribute_group ufs_sysfs_interconnect_descriptor_group = { 1196 .name = "interconnect_descriptor", 1197 .attrs = ufs_sysfs_interconnect_descriptor, 1198 }; 1199 1200 #define UFS_GEOMETRY_DESC_PARAM(_name, _uname, _size) \ 1201 UFS_DESC_PARAM(_name, _uname, GEOMETRY, _size) 1202 1203 UFS_GEOMETRY_DESC_PARAM(raw_device_capacity, _DEV_CAP, 8); 1204 UFS_GEOMETRY_DESC_PARAM(max_number_of_luns, _MAX_NUM_LUN, 1); 1205 UFS_GEOMETRY_DESC_PARAM(segment_size, _SEG_SIZE, 4); 1206 UFS_GEOMETRY_DESC_PARAM(allocation_unit_size, _ALLOC_UNIT_SIZE, 1); 1207 UFS_GEOMETRY_DESC_PARAM(min_addressable_block_size, _MIN_BLK_SIZE, 1); 1208 UFS_GEOMETRY_DESC_PARAM(optimal_read_block_size, _OPT_RD_BLK_SIZE, 1); 1209 UFS_GEOMETRY_DESC_PARAM(optimal_write_block_size, _OPT_WR_BLK_SIZE, 1); 1210 UFS_GEOMETRY_DESC_PARAM(max_in_buffer_size, _MAX_IN_BUF_SIZE, 1); 1211 UFS_GEOMETRY_DESC_PARAM(max_out_buffer_size, _MAX_OUT_BUF_SIZE, 1); 1212 UFS_GEOMETRY_DESC_PARAM(rpmb_rw_size, _RPMB_RW_SIZE, 1); 1213 UFS_GEOMETRY_DESC_PARAM(dyn_capacity_resource_policy, _DYN_CAP_RSRC_PLC, 1); 1214 UFS_GEOMETRY_DESC_PARAM(data_ordering, _DATA_ORDER, 1); 1215 UFS_GEOMETRY_DESC_PARAM(max_number_of_contexts, _MAX_NUM_CTX, 1); 1216 UFS_GEOMETRY_DESC_PARAM(sys_data_tag_unit_size, _TAG_UNIT_SIZE, 1); 1217 UFS_GEOMETRY_DESC_PARAM(sys_data_tag_resource_size, _TAG_RSRC_SIZE, 1); 1218 UFS_GEOMETRY_DESC_PARAM(secure_removal_types, _SEC_RM_TYPES, 1); 1219 UFS_GEOMETRY_DESC_PARAM(memory_types, _MEM_TYPES, 2); 1220 UFS_GEOMETRY_DESC_PARAM(sys_code_memory_max_alloc_units, 1221 _SCM_MAX_NUM_UNITS, 4); 1222 UFS_GEOMETRY_DESC_PARAM(sys_code_memory_capacity_adjustment_factor, 1223 _SCM_CAP_ADJ_FCTR, 2); 1224 UFS_GEOMETRY_DESC_PARAM(non_persist_memory_max_alloc_units, 1225 _NPM_MAX_NUM_UNITS, 4); 1226 UFS_GEOMETRY_DESC_PARAM(non_persist_memory_capacity_adjustment_factor, 1227 _NPM_CAP_ADJ_FCTR, 2); 1228 UFS_GEOMETRY_DESC_PARAM(enh1_memory_max_alloc_units, 1229 _ENM1_MAX_NUM_UNITS, 4); 1230 UFS_GEOMETRY_DESC_PARAM(enh1_memory_capacity_adjustment_factor, 1231 _ENM1_CAP_ADJ_FCTR, 2); 1232 UFS_GEOMETRY_DESC_PARAM(enh2_memory_max_alloc_units, 1233 _ENM2_MAX_NUM_UNITS, 4); 1234 UFS_GEOMETRY_DESC_PARAM(enh2_memory_capacity_adjustment_factor, 1235 _ENM2_CAP_ADJ_FCTR, 2); 1236 UFS_GEOMETRY_DESC_PARAM(enh3_memory_max_alloc_units, 1237 _ENM3_MAX_NUM_UNITS, 4); 1238 UFS_GEOMETRY_DESC_PARAM(enh3_memory_capacity_adjustment_factor, 1239 _ENM3_CAP_ADJ_FCTR, 2); 1240 UFS_GEOMETRY_DESC_PARAM(enh4_memory_max_alloc_units, 1241 _ENM4_MAX_NUM_UNITS, 4); 1242 UFS_GEOMETRY_DESC_PARAM(enh4_memory_capacity_adjustment_factor, 1243 _ENM4_CAP_ADJ_FCTR, 2); 1244 UFS_GEOMETRY_DESC_PARAM(wb_max_alloc_units, _WB_MAX_ALLOC_UNITS, 4); 1245 UFS_GEOMETRY_DESC_PARAM(wb_max_wb_luns, _WB_MAX_WB_LUNS, 1); 1246 UFS_GEOMETRY_DESC_PARAM(wb_buff_cap_adj, _WB_BUFF_CAP_ADJ, 1); 1247 UFS_GEOMETRY_DESC_PARAM(wb_sup_red_type, _WB_SUP_RED_TYPE, 1); 1248 UFS_GEOMETRY_DESC_PARAM(wb_sup_wb_type, _WB_SUP_WB_TYPE, 1); 1249 1250 1251 static struct attribute *ufs_sysfs_geometry_descriptor[] = { 1252 &dev_attr_raw_device_capacity.attr, 1253 &dev_attr_max_number_of_luns.attr, 1254 &dev_attr_segment_size.attr, 1255 &dev_attr_allocation_unit_size.attr, 1256 &dev_attr_min_addressable_block_size.attr, 1257 &dev_attr_optimal_read_block_size.attr, 1258 &dev_attr_optimal_write_block_size.attr, 1259 &dev_attr_max_in_buffer_size.attr, 1260 &dev_attr_max_out_buffer_size.attr, 1261 &dev_attr_rpmb_rw_size.attr, 1262 &dev_attr_dyn_capacity_resource_policy.attr, 1263 &dev_attr_data_ordering.attr, 1264 &dev_attr_max_number_of_contexts.attr, 1265 &dev_attr_sys_data_tag_unit_size.attr, 1266 &dev_attr_sys_data_tag_resource_size.attr, 1267 &dev_attr_secure_removal_types.attr, 1268 &dev_attr_memory_types.attr, 1269 &dev_attr_sys_code_memory_max_alloc_units.attr, 1270 &dev_attr_sys_code_memory_capacity_adjustment_factor.attr, 1271 &dev_attr_non_persist_memory_max_alloc_units.attr, 1272 &dev_attr_non_persist_memory_capacity_adjustment_factor.attr, 1273 &dev_attr_enh1_memory_max_alloc_units.attr, 1274 &dev_attr_enh1_memory_capacity_adjustment_factor.attr, 1275 &dev_attr_enh2_memory_max_alloc_units.attr, 1276 &dev_attr_enh2_memory_capacity_adjustment_factor.attr, 1277 &dev_attr_enh3_memory_max_alloc_units.attr, 1278 &dev_attr_enh3_memory_capacity_adjustment_factor.attr, 1279 &dev_attr_enh4_memory_max_alloc_units.attr, 1280 &dev_attr_enh4_memory_capacity_adjustment_factor.attr, 1281 &dev_attr_wb_max_alloc_units.attr, 1282 &dev_attr_wb_max_wb_luns.attr, 1283 &dev_attr_wb_buff_cap_adj.attr, 1284 &dev_attr_wb_sup_red_type.attr, 1285 &dev_attr_wb_sup_wb_type.attr, 1286 NULL, 1287 }; 1288 1289 static const struct attribute_group ufs_sysfs_geometry_descriptor_group = { 1290 .name = "geometry_descriptor", 1291 .attrs = ufs_sysfs_geometry_descriptor, 1292 }; 1293 1294 #define UFS_HEALTH_DESC_PARAM(_name, _uname, _size) \ 1295 UFS_DESC_PARAM(_name, _uname, HEALTH, _size) 1296 1297 UFS_HEALTH_DESC_PARAM(eol_info, _EOL_INFO, 1); 1298 UFS_HEALTH_DESC_PARAM(life_time_estimation_a, _LIFE_TIME_EST_A, 1); 1299 UFS_HEALTH_DESC_PARAM(life_time_estimation_b, _LIFE_TIME_EST_B, 1); 1300 1301 static struct attribute *ufs_sysfs_health_descriptor[] = { 1302 &dev_attr_eol_info.attr, 1303 &dev_attr_life_time_estimation_a.attr, 1304 &dev_attr_life_time_estimation_b.attr, 1305 NULL, 1306 }; 1307 1308 static const struct attribute_group ufs_sysfs_health_descriptor_group = { 1309 .name = "health_descriptor", 1310 .attrs = ufs_sysfs_health_descriptor, 1311 }; 1312 1313 #define UFS_POWER_DESC_PARAM(_name, _uname, _index) \ 1314 static ssize_t _name##_index##_show(struct device *dev, \ 1315 struct device_attribute *attr, char *buf) \ 1316 { \ 1317 struct ufs_hba *hba = dev_get_drvdata(dev); \ 1318 return ufs_sysfs_read_desc_param(hba, QUERY_DESC_IDN_POWER, 0, \ 1319 PWR_DESC##_uname##_0 + _index * 2, buf, 2); \ 1320 } \ 1321 static DEVICE_ATTR_RO(_name##_index) 1322 1323 UFS_POWER_DESC_PARAM(active_icc_levels_vcc, _ACTIVE_LVLS_VCC, 0); 1324 UFS_POWER_DESC_PARAM(active_icc_levels_vcc, _ACTIVE_LVLS_VCC, 1); 1325 UFS_POWER_DESC_PARAM(active_icc_levels_vcc, _ACTIVE_LVLS_VCC, 2); 1326 UFS_POWER_DESC_PARAM(active_icc_levels_vcc, _ACTIVE_LVLS_VCC, 3); 1327 UFS_POWER_DESC_PARAM(active_icc_levels_vcc, _ACTIVE_LVLS_VCC, 4); 1328 UFS_POWER_DESC_PARAM(active_icc_levels_vcc, _ACTIVE_LVLS_VCC, 5); 1329 UFS_POWER_DESC_PARAM(active_icc_levels_vcc, _ACTIVE_LVLS_VCC, 6); 1330 UFS_POWER_DESC_PARAM(active_icc_levels_vcc, _ACTIVE_LVLS_VCC, 7); 1331 UFS_POWER_DESC_PARAM(active_icc_levels_vcc, _ACTIVE_LVLS_VCC, 8); 1332 UFS_POWER_DESC_PARAM(active_icc_levels_vcc, _ACTIVE_LVLS_VCC, 9); 1333 UFS_POWER_DESC_PARAM(active_icc_levels_vcc, _ACTIVE_LVLS_VCC, 10); 1334 UFS_POWER_DESC_PARAM(active_icc_levels_vcc, _ACTIVE_LVLS_VCC, 11); 1335 UFS_POWER_DESC_PARAM(active_icc_levels_vcc, _ACTIVE_LVLS_VCC, 12); 1336 UFS_POWER_DESC_PARAM(active_icc_levels_vcc, _ACTIVE_LVLS_VCC, 13); 1337 UFS_POWER_DESC_PARAM(active_icc_levels_vcc, _ACTIVE_LVLS_VCC, 14); 1338 UFS_POWER_DESC_PARAM(active_icc_levels_vcc, _ACTIVE_LVLS_VCC, 15); 1339 UFS_POWER_DESC_PARAM(active_icc_levels_vccq, _ACTIVE_LVLS_VCCQ, 0); 1340 UFS_POWER_DESC_PARAM(active_icc_levels_vccq, _ACTIVE_LVLS_VCCQ, 1); 1341 UFS_POWER_DESC_PARAM(active_icc_levels_vccq, _ACTIVE_LVLS_VCCQ, 2); 1342 UFS_POWER_DESC_PARAM(active_icc_levels_vccq, _ACTIVE_LVLS_VCCQ, 3); 1343 UFS_POWER_DESC_PARAM(active_icc_levels_vccq, _ACTIVE_LVLS_VCCQ, 4); 1344 UFS_POWER_DESC_PARAM(active_icc_levels_vccq, _ACTIVE_LVLS_VCCQ, 5); 1345 UFS_POWER_DESC_PARAM(active_icc_levels_vccq, _ACTIVE_LVLS_VCCQ, 6); 1346 UFS_POWER_DESC_PARAM(active_icc_levels_vccq, _ACTIVE_LVLS_VCCQ, 7); 1347 UFS_POWER_DESC_PARAM(active_icc_levels_vccq, _ACTIVE_LVLS_VCCQ, 8); 1348 UFS_POWER_DESC_PARAM(active_icc_levels_vccq, _ACTIVE_LVLS_VCCQ, 9); 1349 UFS_POWER_DESC_PARAM(active_icc_levels_vccq, _ACTIVE_LVLS_VCCQ, 10); 1350 UFS_POWER_DESC_PARAM(active_icc_levels_vccq, _ACTIVE_LVLS_VCCQ, 11); 1351 UFS_POWER_DESC_PARAM(active_icc_levels_vccq, _ACTIVE_LVLS_VCCQ, 12); 1352 UFS_POWER_DESC_PARAM(active_icc_levels_vccq, _ACTIVE_LVLS_VCCQ, 13); 1353 UFS_POWER_DESC_PARAM(active_icc_levels_vccq, _ACTIVE_LVLS_VCCQ, 14); 1354 UFS_POWER_DESC_PARAM(active_icc_levels_vccq, _ACTIVE_LVLS_VCCQ, 15); 1355 UFS_POWER_DESC_PARAM(active_icc_levels_vccq2, _ACTIVE_LVLS_VCCQ2, 0); 1356 UFS_POWER_DESC_PARAM(active_icc_levels_vccq2, _ACTIVE_LVLS_VCCQ2, 1); 1357 UFS_POWER_DESC_PARAM(active_icc_levels_vccq2, _ACTIVE_LVLS_VCCQ2, 2); 1358 UFS_POWER_DESC_PARAM(active_icc_levels_vccq2, _ACTIVE_LVLS_VCCQ2, 3); 1359 UFS_POWER_DESC_PARAM(active_icc_levels_vccq2, _ACTIVE_LVLS_VCCQ2, 4); 1360 UFS_POWER_DESC_PARAM(active_icc_levels_vccq2, _ACTIVE_LVLS_VCCQ2, 5); 1361 UFS_POWER_DESC_PARAM(active_icc_levels_vccq2, _ACTIVE_LVLS_VCCQ2, 6); 1362 UFS_POWER_DESC_PARAM(active_icc_levels_vccq2, _ACTIVE_LVLS_VCCQ2, 7); 1363 UFS_POWER_DESC_PARAM(active_icc_levels_vccq2, _ACTIVE_LVLS_VCCQ2, 8); 1364 UFS_POWER_DESC_PARAM(active_icc_levels_vccq2, _ACTIVE_LVLS_VCCQ2, 9); 1365 UFS_POWER_DESC_PARAM(active_icc_levels_vccq2, _ACTIVE_LVLS_VCCQ2, 10); 1366 UFS_POWER_DESC_PARAM(active_icc_levels_vccq2, _ACTIVE_LVLS_VCCQ2, 11); 1367 UFS_POWER_DESC_PARAM(active_icc_levels_vccq2, _ACTIVE_LVLS_VCCQ2, 12); 1368 UFS_POWER_DESC_PARAM(active_icc_levels_vccq2, _ACTIVE_LVLS_VCCQ2, 13); 1369 UFS_POWER_DESC_PARAM(active_icc_levels_vccq2, _ACTIVE_LVLS_VCCQ2, 14); 1370 UFS_POWER_DESC_PARAM(active_icc_levels_vccq2, _ACTIVE_LVLS_VCCQ2, 15); 1371 1372 static struct attribute *ufs_sysfs_power_descriptor[] = { 1373 &dev_attr_active_icc_levels_vcc0.attr, 1374 &dev_attr_active_icc_levels_vcc1.attr, 1375 &dev_attr_active_icc_levels_vcc2.attr, 1376 &dev_attr_active_icc_levels_vcc3.attr, 1377 &dev_attr_active_icc_levels_vcc4.attr, 1378 &dev_attr_active_icc_levels_vcc5.attr, 1379 &dev_attr_active_icc_levels_vcc6.attr, 1380 &dev_attr_active_icc_levels_vcc7.attr, 1381 &dev_attr_active_icc_levels_vcc8.attr, 1382 &dev_attr_active_icc_levels_vcc9.attr, 1383 &dev_attr_active_icc_levels_vcc10.attr, 1384 &dev_attr_active_icc_levels_vcc11.attr, 1385 &dev_attr_active_icc_levels_vcc12.attr, 1386 &dev_attr_active_icc_levels_vcc13.attr, 1387 &dev_attr_active_icc_levels_vcc14.attr, 1388 &dev_attr_active_icc_levels_vcc15.attr, 1389 &dev_attr_active_icc_levels_vccq0.attr, 1390 &dev_attr_active_icc_levels_vccq1.attr, 1391 &dev_attr_active_icc_levels_vccq2.attr, 1392 &dev_attr_active_icc_levels_vccq3.attr, 1393 &dev_attr_active_icc_levels_vccq4.attr, 1394 &dev_attr_active_icc_levels_vccq5.attr, 1395 &dev_attr_active_icc_levels_vccq6.attr, 1396 &dev_attr_active_icc_levels_vccq7.attr, 1397 &dev_attr_active_icc_levels_vccq8.attr, 1398 &dev_attr_active_icc_levels_vccq9.attr, 1399 &dev_attr_active_icc_levels_vccq10.attr, 1400 &dev_attr_active_icc_levels_vccq11.attr, 1401 &dev_attr_active_icc_levels_vccq12.attr, 1402 &dev_attr_active_icc_levels_vccq13.attr, 1403 &dev_attr_active_icc_levels_vccq14.attr, 1404 &dev_attr_active_icc_levels_vccq15.attr, 1405 &dev_attr_active_icc_levels_vccq20.attr, 1406 &dev_attr_active_icc_levels_vccq21.attr, 1407 &dev_attr_active_icc_levels_vccq22.attr, 1408 &dev_attr_active_icc_levels_vccq23.attr, 1409 &dev_attr_active_icc_levels_vccq24.attr, 1410 &dev_attr_active_icc_levels_vccq25.attr, 1411 &dev_attr_active_icc_levels_vccq26.attr, 1412 &dev_attr_active_icc_levels_vccq27.attr, 1413 &dev_attr_active_icc_levels_vccq28.attr, 1414 &dev_attr_active_icc_levels_vccq29.attr, 1415 &dev_attr_active_icc_levels_vccq210.attr, 1416 &dev_attr_active_icc_levels_vccq211.attr, 1417 &dev_attr_active_icc_levels_vccq212.attr, 1418 &dev_attr_active_icc_levels_vccq213.attr, 1419 &dev_attr_active_icc_levels_vccq214.attr, 1420 &dev_attr_active_icc_levels_vccq215.attr, 1421 NULL, 1422 }; 1423 1424 static const struct attribute_group ufs_sysfs_power_descriptor_group = { 1425 .name = "power_descriptor", 1426 .attrs = ufs_sysfs_power_descriptor, 1427 }; 1428 1429 #define UFS_STRING_DESCRIPTOR(_name, _pname) \ 1430 static ssize_t _name##_show(struct device *dev, \ 1431 struct device_attribute *attr, char *buf) \ 1432 { \ 1433 u8 index; \ 1434 struct ufs_hba *hba = dev_get_drvdata(dev); \ 1435 int ret; \ 1436 int desc_len = QUERY_DESC_MAX_SIZE; \ 1437 u8 *desc_buf; \ 1438 \ 1439 down(&hba->host_sem); \ 1440 if (!ufshcd_is_user_access_allowed(hba)) { \ 1441 up(&hba->host_sem); \ 1442 return -EBUSY; \ 1443 } \ 1444 desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_ATOMIC); \ 1445 if (!desc_buf) { \ 1446 up(&hba->host_sem); \ 1447 return -ENOMEM; \ 1448 } \ 1449 ufshcd_rpm_get_sync(hba); \ 1450 ret = ufshcd_query_descriptor_retry(hba, \ 1451 UPIU_QUERY_OPCODE_READ_DESC, QUERY_DESC_IDN_DEVICE, \ 1452 0, 0, desc_buf, &desc_len); \ 1453 if (ret) { \ 1454 ret = -EINVAL; \ 1455 goto out; \ 1456 } \ 1457 index = desc_buf[DEVICE_DESC_PARAM##_pname]; \ 1458 kfree(desc_buf); \ 1459 desc_buf = NULL; \ 1460 ret = ufshcd_read_string_desc(hba, index, &desc_buf, \ 1461 SD_ASCII_STD); \ 1462 if (ret < 0) \ 1463 goto out; \ 1464 ret = sysfs_emit(buf, "%s\n", desc_buf); \ 1465 out: \ 1466 ufshcd_rpm_put_sync(hba); \ 1467 kfree(desc_buf); \ 1468 up(&hba->host_sem); \ 1469 return ret; \ 1470 } \ 1471 static DEVICE_ATTR_RO(_name) 1472 1473 UFS_STRING_DESCRIPTOR(manufacturer_name, _MANF_NAME); 1474 UFS_STRING_DESCRIPTOR(product_name, _PRDCT_NAME); 1475 UFS_STRING_DESCRIPTOR(oem_id, _OEM_ID); 1476 UFS_STRING_DESCRIPTOR(serial_number, _SN); 1477 UFS_STRING_DESCRIPTOR(product_revision, _PRDCT_REV); 1478 1479 static struct attribute *ufs_sysfs_string_descriptors[] = { 1480 &dev_attr_manufacturer_name.attr, 1481 &dev_attr_product_name.attr, 1482 &dev_attr_oem_id.attr, 1483 &dev_attr_serial_number.attr, 1484 &dev_attr_product_revision.attr, 1485 NULL, 1486 }; 1487 1488 static const struct attribute_group ufs_sysfs_string_descriptors_group = { 1489 .name = "string_descriptors", 1490 .attrs = ufs_sysfs_string_descriptors, 1491 }; 1492 1493 static inline bool ufshcd_is_wb_flags(enum flag_idn idn) 1494 { 1495 return idn >= QUERY_FLAG_IDN_WB_EN && 1496 idn <= QUERY_FLAG_IDN_WB_BUFF_FLUSH_DURING_HIBERN8; 1497 } 1498 1499 #define UFS_FLAG(_name, _uname) \ 1500 static ssize_t _name##_show(struct device *dev, \ 1501 struct device_attribute *attr, char *buf) \ 1502 { \ 1503 bool flag; \ 1504 u8 index = 0; \ 1505 int ret; \ 1506 struct ufs_hba *hba = dev_get_drvdata(dev); \ 1507 \ 1508 down(&hba->host_sem); \ 1509 if (!ufshcd_is_user_access_allowed(hba)) { \ 1510 up(&hba->host_sem); \ 1511 return -EBUSY; \ 1512 } \ 1513 if (ufshcd_is_wb_flags(QUERY_FLAG_IDN##_uname)) \ 1514 index = ufshcd_wb_get_query_index(hba); \ 1515 ufshcd_rpm_get_sync(hba); \ 1516 ret = ufshcd_query_flag(hba, UPIU_QUERY_OPCODE_READ_FLAG, \ 1517 QUERY_FLAG_IDN##_uname, index, &flag); \ 1518 ufshcd_rpm_put_sync(hba); \ 1519 if (ret) { \ 1520 ret = -EINVAL; \ 1521 goto out; \ 1522 } \ 1523 ret = sysfs_emit(buf, "%s\n", str_true_false(flag)); \ 1524 out: \ 1525 up(&hba->host_sem); \ 1526 return ret; \ 1527 } \ 1528 static DEVICE_ATTR_RO(_name) 1529 1530 UFS_FLAG(device_init, _FDEVICEINIT); 1531 UFS_FLAG(permanent_wpe, _PERMANENT_WPE); 1532 UFS_FLAG(power_on_wpe, _PWR_ON_WPE); 1533 UFS_FLAG(bkops_enable, _BKOPS_EN); 1534 UFS_FLAG(life_span_mode_enable, _LIFE_SPAN_MODE_ENABLE); 1535 UFS_FLAG(phy_resource_removal, _FPHYRESOURCEREMOVAL); 1536 UFS_FLAG(busy_rtc, _BUSY_RTC); 1537 UFS_FLAG(disable_fw_update, _PERMANENTLY_DISABLE_FW_UPDATE); 1538 UFS_FLAG(wb_enable, _WB_EN); 1539 UFS_FLAG(wb_flush_en, _WB_BUFF_FLUSH_EN); 1540 UFS_FLAG(wb_flush_during_h8, _WB_BUFF_FLUSH_DURING_HIBERN8); 1541 1542 static struct attribute *ufs_sysfs_device_flags[] = { 1543 &dev_attr_device_init.attr, 1544 &dev_attr_permanent_wpe.attr, 1545 &dev_attr_power_on_wpe.attr, 1546 &dev_attr_bkops_enable.attr, 1547 &dev_attr_life_span_mode_enable.attr, 1548 &dev_attr_phy_resource_removal.attr, 1549 &dev_attr_busy_rtc.attr, 1550 &dev_attr_disable_fw_update.attr, 1551 &dev_attr_wb_enable.attr, 1552 &dev_attr_wb_flush_en.attr, 1553 &dev_attr_wb_flush_during_h8.attr, 1554 NULL, 1555 }; 1556 1557 static const struct attribute_group ufs_sysfs_flags_group = { 1558 .name = "flags", 1559 .attrs = ufs_sysfs_device_flags, 1560 }; 1561 1562 static ssize_t max_number_of_rtt_show(struct device *dev, 1563 struct device_attribute *attr, char *buf) 1564 { 1565 struct ufs_hba *hba = dev_get_drvdata(dev); 1566 u32 rtt; 1567 int ret; 1568 1569 down(&hba->host_sem); 1570 if (!ufshcd_is_user_access_allowed(hba)) { 1571 up(&hba->host_sem); 1572 return -EBUSY; 1573 } 1574 1575 ufshcd_rpm_get_sync(hba); 1576 ret = ufshcd_query_attr(hba, UPIU_QUERY_OPCODE_READ_ATTR, 1577 QUERY_ATTR_IDN_MAX_NUM_OF_RTT, 0, 0, &rtt); 1578 ufshcd_rpm_put_sync(hba); 1579 1580 if (ret) 1581 goto out; 1582 1583 ret = sysfs_emit(buf, "0x%08X\n", rtt); 1584 1585 out: 1586 up(&hba->host_sem); 1587 return ret; 1588 } 1589 1590 static ssize_t max_number_of_rtt_store(struct device *dev, 1591 struct device_attribute *attr, 1592 const char *buf, size_t count) 1593 { 1594 struct ufs_hba *hba = dev_get_drvdata(dev); 1595 struct ufs_dev_info *dev_info = &hba->dev_info; 1596 struct scsi_device *sdev; 1597 unsigned int memflags; 1598 unsigned int rtt; 1599 int ret; 1600 1601 if (kstrtouint(buf, 0, &rtt)) 1602 return -EINVAL; 1603 1604 if (rtt > dev_info->rtt_cap) { 1605 dev_err(dev, "rtt can be at most bDeviceRTTCap\n"); 1606 return -EINVAL; 1607 } 1608 1609 down(&hba->host_sem); 1610 if (!ufshcd_is_user_access_allowed(hba)) { 1611 ret = -EBUSY; 1612 goto out; 1613 } 1614 1615 ufshcd_rpm_get_sync(hba); 1616 1617 memflags = memalloc_noio_save(); 1618 shost_for_each_device(sdev, hba->host) 1619 blk_mq_freeze_queue_nomemsave(sdev->request_queue); 1620 1621 ret = ufshcd_query_attr(hba, UPIU_QUERY_OPCODE_WRITE_ATTR, 1622 QUERY_ATTR_IDN_MAX_NUM_OF_RTT, 0, 0, &rtt); 1623 1624 shost_for_each_device(sdev, hba->host) 1625 blk_mq_unfreeze_queue_nomemrestore(sdev->request_queue); 1626 memalloc_noio_restore(memflags); 1627 1628 ufshcd_rpm_put_sync(hba); 1629 1630 out: 1631 up(&hba->host_sem); 1632 return ret < 0 ? ret : count; 1633 } 1634 1635 static DEVICE_ATTR_RW(max_number_of_rtt); 1636 1637 static inline bool ufshcd_is_wb_attrs(enum attr_idn idn) 1638 { 1639 return idn >= QUERY_ATTR_IDN_WB_FLUSH_STATUS && 1640 idn <= QUERY_ATTR_IDN_CURR_WB_BUFF_SIZE; 1641 } 1642 1643 static int wb_read_resize_attrs(struct ufs_hba *hba, 1644 enum attr_idn idn, u32 *attr_val) 1645 { 1646 u8 index = 0; 1647 int ret; 1648 1649 if (!ufshcd_is_wb_allowed(hba) || !hba->dev_info.wb_enabled 1650 || !hba->dev_info.b_presrv_uspc_en 1651 || !(hba->dev_info.ext_wb_sup & UFS_DEV_WB_BUF_RESIZE)) 1652 return -EOPNOTSUPP; 1653 1654 down(&hba->host_sem); 1655 if (!ufshcd_is_user_access_allowed(hba)) { 1656 up(&hba->host_sem); 1657 return -EBUSY; 1658 } 1659 1660 index = ufshcd_wb_get_query_index(hba); 1661 ufshcd_rpm_get_sync(hba); 1662 ret = ufshcd_query_attr(hba, UPIU_QUERY_OPCODE_READ_ATTR, 1663 idn, index, 0, attr_val); 1664 ufshcd_rpm_put_sync(hba); 1665 1666 up(&hba->host_sem); 1667 return ret; 1668 } 1669 1670 static ssize_t wb_resize_hint_show(struct device *dev, 1671 struct device_attribute *attr, char *buf) 1672 { 1673 struct ufs_hba *hba = dev_get_drvdata(dev); 1674 int ret; 1675 u32 value; 1676 1677 ret = wb_read_resize_attrs(hba, 1678 QUERY_ATTR_IDN_WB_BUF_RESIZE_HINT, &value); 1679 if (ret) 1680 return ret; 1681 1682 return sysfs_emit(buf, "%s\n", ufs_wb_resize_hint_to_string(value)); 1683 } 1684 1685 static DEVICE_ATTR_RO(wb_resize_hint); 1686 1687 static ssize_t wb_resize_status_show(struct device *dev, 1688 struct device_attribute *attr, char *buf) 1689 { 1690 struct ufs_hba *hba = dev_get_drvdata(dev); 1691 int ret; 1692 u32 value; 1693 1694 ret = wb_read_resize_attrs(hba, 1695 QUERY_ATTR_IDN_WB_BUF_RESIZE_STATUS, &value); 1696 if (ret) 1697 return ret; 1698 1699 return sysfs_emit(buf, "%s\n", ufs_wb_resize_status_to_string(value)); 1700 } 1701 1702 static DEVICE_ATTR_RO(wb_resize_status); 1703 1704 #define UFS_ATTRIBUTE(_name, _uname) \ 1705 static ssize_t _name##_show(struct device *dev, \ 1706 struct device_attribute *attr, char *buf) \ 1707 { \ 1708 struct ufs_hba *hba = dev_get_drvdata(dev); \ 1709 u32 value; \ 1710 int ret; \ 1711 u8 index = 0; \ 1712 \ 1713 down(&hba->host_sem); \ 1714 if (!ufshcd_is_user_access_allowed(hba)) { \ 1715 up(&hba->host_sem); \ 1716 return -EBUSY; \ 1717 } \ 1718 if (ufshcd_is_wb_attrs(QUERY_ATTR_IDN##_uname)) \ 1719 index = ufshcd_wb_get_query_index(hba); \ 1720 ufshcd_rpm_get_sync(hba); \ 1721 ret = ufshcd_query_attr(hba, UPIU_QUERY_OPCODE_READ_ATTR, \ 1722 QUERY_ATTR_IDN##_uname, index, 0, &value); \ 1723 ufshcd_rpm_put_sync(hba); \ 1724 if (ret) { \ 1725 ret = -EINVAL; \ 1726 goto out; \ 1727 } \ 1728 ret = sysfs_emit(buf, "0x%08X\n", value); \ 1729 out: \ 1730 up(&hba->host_sem); \ 1731 return ret; \ 1732 } \ 1733 static DEVICE_ATTR_RO(_name) 1734 1735 UFS_ATTRIBUTE(boot_lun_enabled, _BOOT_LU_EN); 1736 UFS_ATTRIBUTE(current_power_mode, _POWER_MODE); 1737 UFS_ATTRIBUTE(active_icc_level, _ACTIVE_ICC_LVL); 1738 UFS_ATTRIBUTE(ooo_data_enabled, _OOO_DATA_EN); 1739 UFS_ATTRIBUTE(bkops_status, _BKOPS_STATUS); 1740 UFS_ATTRIBUTE(purge_status, _PURGE_STATUS); 1741 UFS_ATTRIBUTE(max_data_in_size, _MAX_DATA_IN); 1742 UFS_ATTRIBUTE(max_data_out_size, _MAX_DATA_OUT); 1743 UFS_ATTRIBUTE(reference_clock_frequency, _REF_CLK_FREQ); 1744 UFS_ATTRIBUTE(configuration_descriptor_lock, _CONF_DESC_LOCK); 1745 UFS_ATTRIBUTE(exception_event_control, _EE_CONTROL); 1746 UFS_ATTRIBUTE(exception_event_status, _EE_STATUS); 1747 UFS_ATTRIBUTE(ffu_status, _FFU_STATUS); 1748 UFS_ATTRIBUTE(psa_state, _PSA_STATE); 1749 UFS_ATTRIBUTE(psa_data_size, _PSA_DATA_SIZE); 1750 UFS_ATTRIBUTE(wb_flush_status, _WB_FLUSH_STATUS); 1751 UFS_ATTRIBUTE(wb_avail_buf, _AVAIL_WB_BUFF_SIZE); 1752 UFS_ATTRIBUTE(wb_life_time_est, _WB_BUFF_LIFE_TIME_EST); 1753 UFS_ATTRIBUTE(wb_cur_buf, _CURR_WB_BUFF_SIZE); 1754 1755 1756 static struct attribute *ufs_sysfs_attributes[] = { 1757 &dev_attr_boot_lun_enabled.attr, 1758 &dev_attr_current_power_mode.attr, 1759 &dev_attr_active_icc_level.attr, 1760 &dev_attr_ooo_data_enabled.attr, 1761 &dev_attr_bkops_status.attr, 1762 &dev_attr_purge_status.attr, 1763 &dev_attr_max_data_in_size.attr, 1764 &dev_attr_max_data_out_size.attr, 1765 &dev_attr_reference_clock_frequency.attr, 1766 &dev_attr_configuration_descriptor_lock.attr, 1767 &dev_attr_max_number_of_rtt.attr, 1768 &dev_attr_exception_event_control.attr, 1769 &dev_attr_exception_event_status.attr, 1770 &dev_attr_ffu_status.attr, 1771 &dev_attr_psa_state.attr, 1772 &dev_attr_psa_data_size.attr, 1773 &dev_attr_wb_flush_status.attr, 1774 &dev_attr_wb_avail_buf.attr, 1775 &dev_attr_wb_life_time_est.attr, 1776 &dev_attr_wb_cur_buf.attr, 1777 &dev_attr_wb_resize_hint.attr, 1778 &dev_attr_wb_resize_status.attr, 1779 NULL, 1780 }; 1781 1782 static const struct attribute_group ufs_sysfs_attributes_group = { 1783 .name = "attributes", 1784 .attrs = ufs_sysfs_attributes, 1785 }; 1786 1787 static int hid_query_attr(struct ufs_hba *hba, enum query_opcode opcode, 1788 enum attr_idn idn, u32 *attr_val) 1789 { 1790 int ret; 1791 1792 down(&hba->host_sem); 1793 if (!ufshcd_is_user_access_allowed(hba)) { 1794 up(&hba->host_sem); 1795 return -EBUSY; 1796 } 1797 1798 ufshcd_rpm_get_sync(hba); 1799 ret = ufshcd_query_attr(hba, opcode, idn, 0, 0, attr_val); 1800 ufshcd_rpm_put_sync(hba); 1801 1802 up(&hba->host_sem); 1803 return ret; 1804 } 1805 1806 static ssize_t analysis_trigger_store(struct device *dev, 1807 struct device_attribute *attr, const char *buf, size_t count) 1808 { 1809 struct ufs_hba *hba = dev_get_drvdata(dev); 1810 int mode; 1811 int ret; 1812 1813 if (sysfs_streq(buf, "enable")) 1814 mode = HID_ANALYSIS_ENABLE; 1815 else if (sysfs_streq(buf, "disable")) 1816 mode = HID_ANALYSIS_AND_DEFRAG_DISABLE; 1817 else 1818 return -EINVAL; 1819 1820 ret = hid_query_attr(hba, UPIU_QUERY_OPCODE_WRITE_ATTR, 1821 QUERY_ATTR_IDN_HID_DEFRAG_OPERATION, &mode); 1822 1823 return ret < 0 ? ret : count; 1824 } 1825 1826 static DEVICE_ATTR_WO(analysis_trigger); 1827 1828 static ssize_t defrag_trigger_store(struct device *dev, 1829 struct device_attribute *attr, const char *buf, size_t count) 1830 { 1831 struct ufs_hba *hba = dev_get_drvdata(dev); 1832 int mode; 1833 int ret; 1834 1835 if (sysfs_streq(buf, "enable")) 1836 mode = HID_ANALYSIS_AND_DEFRAG_ENABLE; 1837 else if (sysfs_streq(buf, "disable")) 1838 mode = HID_ANALYSIS_AND_DEFRAG_DISABLE; 1839 else 1840 return -EINVAL; 1841 1842 ret = hid_query_attr(hba, UPIU_QUERY_OPCODE_WRITE_ATTR, 1843 QUERY_ATTR_IDN_HID_DEFRAG_OPERATION, &mode); 1844 1845 return ret < 0 ? ret : count; 1846 } 1847 1848 static DEVICE_ATTR_WO(defrag_trigger); 1849 1850 static ssize_t fragmented_size_show(struct device *dev, 1851 struct device_attribute *attr, char *buf) 1852 { 1853 struct ufs_hba *hba = dev_get_drvdata(dev); 1854 u32 value; 1855 int ret; 1856 1857 ret = hid_query_attr(hba, UPIU_QUERY_OPCODE_READ_ATTR, 1858 QUERY_ATTR_IDN_HID_AVAILABLE_SIZE, &value); 1859 if (ret) 1860 return ret; 1861 1862 return sysfs_emit(buf, "%u\n", value); 1863 } 1864 1865 static DEVICE_ATTR_RO(fragmented_size); 1866 1867 static ssize_t defrag_size_show(struct device *dev, 1868 struct device_attribute *attr, char *buf) 1869 { 1870 struct ufs_hba *hba = dev_get_drvdata(dev); 1871 u32 value; 1872 int ret; 1873 1874 ret = hid_query_attr(hba, UPIU_QUERY_OPCODE_READ_ATTR, 1875 QUERY_ATTR_IDN_HID_SIZE, &value); 1876 if (ret) 1877 return ret; 1878 1879 return sysfs_emit(buf, "%u\n", value); 1880 } 1881 1882 static ssize_t defrag_size_store(struct device *dev, 1883 struct device_attribute *attr, const char *buf, size_t count) 1884 { 1885 struct ufs_hba *hba = dev_get_drvdata(dev); 1886 u32 value; 1887 int ret; 1888 1889 if (kstrtou32(buf, 0, &value)) 1890 return -EINVAL; 1891 1892 ret = hid_query_attr(hba, UPIU_QUERY_OPCODE_WRITE_ATTR, 1893 QUERY_ATTR_IDN_HID_SIZE, &value); 1894 1895 return ret < 0 ? ret : count; 1896 } 1897 1898 static DEVICE_ATTR_RW(defrag_size); 1899 1900 static ssize_t progress_ratio_show(struct device *dev, 1901 struct device_attribute *attr, char *buf) 1902 { 1903 struct ufs_hba *hba = dev_get_drvdata(dev); 1904 u32 value; 1905 int ret; 1906 1907 ret = hid_query_attr(hba, UPIU_QUERY_OPCODE_READ_ATTR, 1908 QUERY_ATTR_IDN_HID_PROGRESS_RATIO, &value); 1909 if (ret) 1910 return ret; 1911 1912 return sysfs_emit(buf, "%u\n", value); 1913 } 1914 1915 static DEVICE_ATTR_RO(progress_ratio); 1916 1917 static ssize_t state_show(struct device *dev, 1918 struct device_attribute *attr, char *buf) 1919 { 1920 struct ufs_hba *hba = dev_get_drvdata(dev); 1921 u32 value; 1922 int ret; 1923 1924 ret = hid_query_attr(hba, UPIU_QUERY_OPCODE_READ_ATTR, 1925 QUERY_ATTR_IDN_HID_STATE, &value); 1926 if (ret) 1927 return ret; 1928 1929 return sysfs_emit(buf, "%s\n", ufs_hid_state_to_string(value)); 1930 } 1931 1932 static DEVICE_ATTR_RO(state); 1933 1934 static struct attribute *ufs_sysfs_hid[] = { 1935 &dev_attr_analysis_trigger.attr, 1936 &dev_attr_defrag_trigger.attr, 1937 &dev_attr_fragmented_size.attr, 1938 &dev_attr_defrag_size.attr, 1939 &dev_attr_progress_ratio.attr, 1940 &dev_attr_state.attr, 1941 NULL, 1942 }; 1943 1944 static umode_t ufs_sysfs_hid_is_visible(struct kobject *kobj, 1945 struct attribute *attr, int n) 1946 { 1947 struct device *dev = container_of(kobj, struct device, kobj); 1948 struct ufs_hba *hba = dev_get_drvdata(dev); 1949 1950 return hba->dev_info.hid_sup ? attr->mode : 0; 1951 } 1952 1953 static const struct attribute_group ufs_sysfs_hid_group = { 1954 .name = "hid", 1955 .attrs = ufs_sysfs_hid, 1956 .is_visible = ufs_sysfs_hid_is_visible, 1957 }; 1958 1959 static const struct attribute_group *ufs_sysfs_groups[] = { 1960 &ufs_sysfs_default_group, 1961 &ufs_sysfs_capabilities_group, 1962 &ufs_sysfs_ufshci_group, 1963 &ufs_sysfs_monitor_group, 1964 &ufs_sysfs_power_info_group, 1965 &ufs_sysfs_device_descriptor_group, 1966 &ufs_sysfs_interconnect_descriptor_group, 1967 &ufs_sysfs_geometry_descriptor_group, 1968 &ufs_sysfs_health_descriptor_group, 1969 &ufs_sysfs_power_descriptor_group, 1970 &ufs_sysfs_string_descriptors_group, 1971 &ufs_sysfs_flags_group, 1972 &ufs_sysfs_attributes_group, 1973 &ufs_sysfs_hid_group, 1974 NULL, 1975 }; 1976 1977 #define UFS_LUN_DESC_PARAM(_pname, _puname, _duname, _size) \ 1978 static ssize_t _pname##_show(struct device *dev, \ 1979 struct device_attribute *attr, char *buf) \ 1980 { \ 1981 struct scsi_device *sdev = to_scsi_device(dev); \ 1982 struct ufs_hba *hba = shost_priv(sdev->host); \ 1983 u8 lun = ufshcd_scsi_to_upiu_lun(sdev->lun); \ 1984 if (!ufs_is_valid_unit_desc_lun(&hba->dev_info, lun)) \ 1985 return -EINVAL; \ 1986 return ufs_sysfs_read_desc_param(hba, QUERY_DESC_IDN_##_duname, \ 1987 lun, _duname##_DESC_PARAM##_puname, buf, _size); \ 1988 } \ 1989 static DEVICE_ATTR_RO(_pname) 1990 1991 #define UFS_UNIT_DESC_PARAM(_name, _uname, _size) \ 1992 UFS_LUN_DESC_PARAM(_name, _uname, UNIT, _size) 1993 1994 UFS_UNIT_DESC_PARAM(lu_enable, _LU_ENABLE, 1); 1995 UFS_UNIT_DESC_PARAM(boot_lun_id, _BOOT_LUN_ID, 1); 1996 UFS_UNIT_DESC_PARAM(lun_write_protect, _LU_WR_PROTECT, 1); 1997 UFS_UNIT_DESC_PARAM(lun_queue_depth, _LU_Q_DEPTH, 1); 1998 UFS_UNIT_DESC_PARAM(psa_sensitive, _PSA_SENSITIVE, 1); 1999 UFS_UNIT_DESC_PARAM(lun_memory_type, _MEM_TYPE, 1); 2000 UFS_UNIT_DESC_PARAM(data_reliability, _DATA_RELIABILITY, 1); 2001 UFS_UNIT_DESC_PARAM(logical_block_size, _LOGICAL_BLK_SIZE, 1); 2002 UFS_UNIT_DESC_PARAM(logical_block_count, _LOGICAL_BLK_COUNT, 8); 2003 UFS_UNIT_DESC_PARAM(erase_block_size, _ERASE_BLK_SIZE, 4); 2004 UFS_UNIT_DESC_PARAM(provisioning_type, _PROVISIONING_TYPE, 1); 2005 UFS_UNIT_DESC_PARAM(physical_memory_resource_count, _PHY_MEM_RSRC_CNT, 8); 2006 UFS_UNIT_DESC_PARAM(context_capabilities, _CTX_CAPABILITIES, 2); 2007 UFS_UNIT_DESC_PARAM(large_unit_granularity, _LARGE_UNIT_SIZE_M1, 1); 2008 UFS_UNIT_DESC_PARAM(wb_buf_alloc_units, _WB_BUF_ALLOC_UNITS, 4); 2009 2010 static struct attribute *ufs_sysfs_unit_descriptor[] = { 2011 &dev_attr_lu_enable.attr, 2012 &dev_attr_boot_lun_id.attr, 2013 &dev_attr_lun_write_protect.attr, 2014 &dev_attr_lun_queue_depth.attr, 2015 &dev_attr_psa_sensitive.attr, 2016 &dev_attr_lun_memory_type.attr, 2017 &dev_attr_data_reliability.attr, 2018 &dev_attr_logical_block_size.attr, 2019 &dev_attr_logical_block_count.attr, 2020 &dev_attr_erase_block_size.attr, 2021 &dev_attr_provisioning_type.attr, 2022 &dev_attr_physical_memory_resource_count.attr, 2023 &dev_attr_context_capabilities.attr, 2024 &dev_attr_large_unit_granularity.attr, 2025 &dev_attr_wb_buf_alloc_units.attr, 2026 NULL, 2027 }; 2028 2029 static umode_t ufs_unit_descriptor_is_visible(struct kobject *kobj, struct attribute *attr, int n) 2030 { 2031 struct device *dev = container_of(kobj, struct device, kobj); 2032 struct scsi_device *sdev = to_scsi_device(dev); 2033 u8 lun = ufshcd_scsi_to_upiu_lun(sdev->lun); 2034 umode_t mode = attr->mode; 2035 2036 if (lun == UFS_UPIU_BOOT_WLUN || lun == UFS_UPIU_UFS_DEVICE_WLUN) 2037 /* Boot and device WLUN have no unit descriptors */ 2038 mode = 0; 2039 if (lun == UFS_UPIU_RPMB_WLUN && attr == &dev_attr_wb_buf_alloc_units.attr) 2040 mode = 0; 2041 2042 return mode; 2043 } 2044 2045 2046 const struct attribute_group ufs_sysfs_unit_descriptor_group = { 2047 .name = "unit_descriptor", 2048 .attrs = ufs_sysfs_unit_descriptor, 2049 .is_visible = ufs_unit_descriptor_is_visible, 2050 }; 2051 2052 static ssize_t dyn_cap_needed_attribute_show(struct device *dev, 2053 struct device_attribute *attr, char *buf) 2054 { 2055 u32 value; 2056 struct scsi_device *sdev = to_scsi_device(dev); 2057 struct ufs_hba *hba = shost_priv(sdev->host); 2058 u8 lun = ufshcd_scsi_to_upiu_lun(sdev->lun); 2059 int ret; 2060 2061 down(&hba->host_sem); 2062 if (!ufshcd_is_user_access_allowed(hba)) { 2063 ret = -EBUSY; 2064 goto out; 2065 } 2066 2067 ufshcd_rpm_get_sync(hba); 2068 ret = ufshcd_query_attr(hba, UPIU_QUERY_OPCODE_READ_ATTR, 2069 QUERY_ATTR_IDN_DYN_CAP_NEEDED, lun, 0, &value); 2070 ufshcd_rpm_put_sync(hba); 2071 if (ret) { 2072 ret = -EINVAL; 2073 goto out; 2074 } 2075 2076 ret = sysfs_emit(buf, "0x%08X\n", value); 2077 2078 out: 2079 up(&hba->host_sem); 2080 return ret; 2081 } 2082 static DEVICE_ATTR_RO(dyn_cap_needed_attribute); 2083 2084 static struct attribute *ufs_sysfs_lun_attributes[] = { 2085 &dev_attr_dyn_cap_needed_attribute.attr, 2086 NULL, 2087 }; 2088 2089 const struct attribute_group ufs_sysfs_lun_attributes_group = { 2090 .attrs = ufs_sysfs_lun_attributes, 2091 }; 2092 2093 void ufs_sysfs_add_nodes(struct device *dev) 2094 { 2095 int ret; 2096 2097 ret = sysfs_create_groups(&dev->kobj, ufs_sysfs_groups); 2098 if (ret) 2099 dev_err(dev, 2100 "%s: sysfs groups creation failed (err = %d)\n", 2101 __func__, ret); 2102 } 2103 2104 void ufs_sysfs_remove_nodes(struct device *dev) 2105 { 2106 sysfs_remove_groups(&dev->kobj, ufs_sysfs_groups); 2107 } 2108