1 // SPDX-License-Identifier: GPL-2.0 2 // Copyright (C) 2018 Western Digital Corporation 3 4 #include <linux/err.h> 5 #include <linux/string.h> 6 #include <linux/bitfield.h> 7 #include <linux/unaligned.h> 8 9 #include <ufs/ufs.h> 10 #include <ufs/unipro.h> 11 #include "ufs-sysfs.h" 12 #include "ufshcd-priv.h" 13 14 static const char *ufs_pa_pwr_mode_to_string(enum ufs_pa_pwr_mode mode) 15 { 16 switch (mode) { 17 case FAST_MODE: return "FAST_MODE"; 18 case SLOW_MODE: return "SLOW_MODE"; 19 case FASTAUTO_MODE: return "FASTAUTO_MODE"; 20 case SLOWAUTO_MODE: return "SLOWAUTO_MODE"; 21 default: return "UNKNOWN"; 22 } 23 } 24 25 static const char *ufs_hs_gear_rate_to_string(enum ufs_hs_gear_rate rate) 26 { 27 switch (rate) { 28 case PA_HS_MODE_A: return "HS_RATE_A"; 29 case PA_HS_MODE_B: return "HS_RATE_B"; 30 default: return "UNKNOWN"; 31 } 32 } 33 34 static const char *ufs_pwm_gear_to_string(enum ufs_pwm_gear_tag gear) 35 { 36 switch (gear) { 37 case UFS_PWM_G1: return "PWM_GEAR1"; 38 case UFS_PWM_G2: return "PWM_GEAR2"; 39 case UFS_PWM_G3: return "PWM_GEAR3"; 40 case UFS_PWM_G4: return "PWM_GEAR4"; 41 case UFS_PWM_G5: return "PWM_GEAR5"; 42 case UFS_PWM_G6: return "PWM_GEAR6"; 43 case UFS_PWM_G7: return "PWM_GEAR7"; 44 default: return "UNKNOWN"; 45 } 46 } 47 48 static const char *ufs_hs_gear_to_string(enum ufs_hs_gear_tag gear) 49 { 50 switch (gear) { 51 case UFS_HS_G1: return "HS_GEAR1"; 52 case UFS_HS_G2: return "HS_GEAR2"; 53 case UFS_HS_G3: return "HS_GEAR3"; 54 case UFS_HS_G4: return "HS_GEAR4"; 55 case UFS_HS_G5: return "HS_GEAR5"; 56 default: return "UNKNOWN"; 57 } 58 } 59 60 static const char *ufshcd_uic_link_state_to_string( 61 enum uic_link_state state) 62 { 63 switch (state) { 64 case UIC_LINK_OFF_STATE: return "OFF"; 65 case UIC_LINK_ACTIVE_STATE: return "ACTIVE"; 66 case UIC_LINK_HIBERN8_STATE: return "HIBERN8"; 67 case UIC_LINK_BROKEN_STATE: return "BROKEN"; 68 default: return "UNKNOWN"; 69 } 70 } 71 72 static const char *ufshcd_ufs_dev_pwr_mode_to_string( 73 enum ufs_dev_pwr_mode state) 74 { 75 switch (state) { 76 case UFS_ACTIVE_PWR_MODE: return "ACTIVE"; 77 case UFS_SLEEP_PWR_MODE: return "SLEEP"; 78 case UFS_POWERDOWN_PWR_MODE: return "POWERDOWN"; 79 case UFS_DEEPSLEEP_PWR_MODE: return "DEEPSLEEP"; 80 default: return "UNKNOWN"; 81 } 82 } 83 84 static inline ssize_t ufs_sysfs_pm_lvl_store(struct device *dev, 85 struct device_attribute *attr, 86 const char *buf, size_t count, 87 bool rpm) 88 { 89 struct ufs_hba *hba = dev_get_drvdata(dev); 90 struct ufs_dev_info *dev_info = &hba->dev_info; 91 unsigned long flags, value; 92 93 if (kstrtoul(buf, 0, &value)) 94 return -EINVAL; 95 96 if (value >= UFS_PM_LVL_MAX) 97 return -EINVAL; 98 99 if (ufs_pm_lvl_states[value].dev_state == UFS_DEEPSLEEP_PWR_MODE && 100 (!(hba->caps & UFSHCD_CAP_DEEPSLEEP) || 101 !(dev_info->wspecversion >= 0x310))) 102 return -EINVAL; 103 104 spin_lock_irqsave(hba->host->host_lock, flags); 105 if (rpm) 106 hba->rpm_lvl = value; 107 else 108 hba->spm_lvl = value; 109 spin_unlock_irqrestore(hba->host->host_lock, flags); 110 return count; 111 } 112 113 static ssize_t rpm_lvl_show(struct device *dev, 114 struct device_attribute *attr, char *buf) 115 { 116 struct ufs_hba *hba = dev_get_drvdata(dev); 117 118 return sysfs_emit(buf, "%d\n", hba->rpm_lvl); 119 } 120 121 static ssize_t rpm_lvl_store(struct device *dev, 122 struct device_attribute *attr, const char *buf, size_t count) 123 { 124 return ufs_sysfs_pm_lvl_store(dev, attr, buf, count, true); 125 } 126 127 static ssize_t rpm_target_dev_state_show(struct device *dev, 128 struct device_attribute *attr, char *buf) 129 { 130 struct ufs_hba *hba = dev_get_drvdata(dev); 131 132 return sysfs_emit(buf, "%s\n", ufshcd_ufs_dev_pwr_mode_to_string( 133 ufs_pm_lvl_states[hba->rpm_lvl].dev_state)); 134 } 135 136 static ssize_t rpm_target_link_state_show(struct device *dev, 137 struct device_attribute *attr, char *buf) 138 { 139 struct ufs_hba *hba = dev_get_drvdata(dev); 140 141 return sysfs_emit(buf, "%s\n", ufshcd_uic_link_state_to_string( 142 ufs_pm_lvl_states[hba->rpm_lvl].link_state)); 143 } 144 145 static ssize_t spm_lvl_show(struct device *dev, 146 struct device_attribute *attr, char *buf) 147 { 148 struct ufs_hba *hba = dev_get_drvdata(dev); 149 150 return sysfs_emit(buf, "%d\n", hba->spm_lvl); 151 } 152 153 static ssize_t spm_lvl_store(struct device *dev, 154 struct device_attribute *attr, const char *buf, size_t count) 155 { 156 return ufs_sysfs_pm_lvl_store(dev, attr, buf, count, false); 157 } 158 159 static ssize_t spm_target_dev_state_show(struct device *dev, 160 struct device_attribute *attr, char *buf) 161 { 162 struct ufs_hba *hba = dev_get_drvdata(dev); 163 164 return sysfs_emit(buf, "%s\n", ufshcd_ufs_dev_pwr_mode_to_string( 165 ufs_pm_lvl_states[hba->spm_lvl].dev_state)); 166 } 167 168 static ssize_t spm_target_link_state_show(struct device *dev, 169 struct device_attribute *attr, char *buf) 170 { 171 struct ufs_hba *hba = dev_get_drvdata(dev); 172 173 return sysfs_emit(buf, "%s\n", ufshcd_uic_link_state_to_string( 174 ufs_pm_lvl_states[hba->spm_lvl].link_state)); 175 } 176 177 /* Convert Auto-Hibernate Idle Timer register value to microseconds */ 178 static int ufshcd_ahit_to_us(u32 ahit) 179 { 180 int timer = FIELD_GET(UFSHCI_AHIBERN8_TIMER_MASK, ahit); 181 int scale = FIELD_GET(UFSHCI_AHIBERN8_SCALE_MASK, ahit); 182 183 for (; scale > 0; --scale) 184 timer *= UFSHCI_AHIBERN8_SCALE_FACTOR; 185 186 return timer; 187 } 188 189 /* Convert microseconds to Auto-Hibernate Idle Timer register value */ 190 static u32 ufshcd_us_to_ahit(unsigned int timer) 191 { 192 unsigned int scale; 193 194 for (scale = 0; timer > UFSHCI_AHIBERN8_TIMER_MASK; ++scale) 195 timer /= UFSHCI_AHIBERN8_SCALE_FACTOR; 196 197 return FIELD_PREP(UFSHCI_AHIBERN8_TIMER_MASK, timer) | 198 FIELD_PREP(UFSHCI_AHIBERN8_SCALE_MASK, scale); 199 } 200 201 static int ufshcd_read_hci_reg(struct ufs_hba *hba, u32 *val, unsigned int reg) 202 { 203 down(&hba->host_sem); 204 if (!ufshcd_is_user_access_allowed(hba)) { 205 up(&hba->host_sem); 206 return -EBUSY; 207 } 208 209 ufshcd_rpm_get_sync(hba); 210 ufshcd_hold(hba); 211 *val = ufshcd_readl(hba, reg); 212 ufshcd_release(hba); 213 ufshcd_rpm_put_sync(hba); 214 215 up(&hba->host_sem); 216 return 0; 217 } 218 219 static ssize_t auto_hibern8_show(struct device *dev, 220 struct device_attribute *attr, char *buf) 221 { 222 u32 ahit; 223 int ret; 224 struct ufs_hba *hba = dev_get_drvdata(dev); 225 226 if (!ufshcd_is_auto_hibern8_supported(hba)) 227 return -EOPNOTSUPP; 228 229 ret = ufshcd_read_hci_reg(hba, &ahit, REG_AUTO_HIBERNATE_IDLE_TIMER); 230 if (ret) 231 return ret; 232 233 return sysfs_emit(buf, "%d\n", ufshcd_ahit_to_us(ahit)); 234 } 235 236 static ssize_t auto_hibern8_store(struct device *dev, 237 struct device_attribute *attr, 238 const char *buf, size_t count) 239 { 240 struct ufs_hba *hba = dev_get_drvdata(dev); 241 unsigned int timer; 242 int ret = 0; 243 244 if (!ufshcd_is_auto_hibern8_supported(hba)) 245 return -EOPNOTSUPP; 246 247 if (kstrtouint(buf, 0, &timer)) 248 return -EINVAL; 249 250 if (timer > UFSHCI_AHIBERN8_MAX) 251 return -EINVAL; 252 253 down(&hba->host_sem); 254 if (!ufshcd_is_user_access_allowed(hba)) { 255 ret = -EBUSY; 256 goto out; 257 } 258 259 ufshcd_auto_hibern8_update(hba, ufshcd_us_to_ahit(timer)); 260 261 out: 262 up(&hba->host_sem); 263 return ret ? ret : count; 264 } 265 266 static ssize_t wb_on_show(struct device *dev, struct device_attribute *attr, 267 char *buf) 268 { 269 struct ufs_hba *hba = dev_get_drvdata(dev); 270 271 return sysfs_emit(buf, "%d\n", hba->dev_info.wb_enabled); 272 } 273 274 static ssize_t wb_on_store(struct device *dev, struct device_attribute *attr, 275 const char *buf, size_t count) 276 { 277 struct ufs_hba *hba = dev_get_drvdata(dev); 278 unsigned int wb_enable; 279 ssize_t res; 280 281 if (!ufshcd_is_wb_allowed(hba) || (ufshcd_is_clkscaling_supported(hba) 282 && ufshcd_enable_wb_if_scaling_up(hba))) { 283 /* 284 * If the platform supports UFSHCD_CAP_CLK_SCALING, turn WB 285 * on/off will be done while clock scaling up/down. 286 */ 287 dev_warn(dev, "It is not allowed to configure WB!\n"); 288 return -EOPNOTSUPP; 289 } 290 291 if (kstrtouint(buf, 0, &wb_enable)) 292 return -EINVAL; 293 294 if (wb_enable != 0 && wb_enable != 1) 295 return -EINVAL; 296 297 down(&hba->host_sem); 298 if (!ufshcd_is_user_access_allowed(hba)) { 299 res = -EBUSY; 300 goto out; 301 } 302 303 ufshcd_rpm_get_sync(hba); 304 res = ufshcd_wb_toggle(hba, wb_enable); 305 ufshcd_rpm_put_sync(hba); 306 out: 307 up(&hba->host_sem); 308 return res < 0 ? res : count; 309 } 310 311 static ssize_t rtc_update_ms_show(struct device *dev, struct device_attribute *attr, 312 char *buf) 313 { 314 struct ufs_hba *hba = dev_get_drvdata(dev); 315 316 return sysfs_emit(buf, "%d\n", hba->dev_info.rtc_update_period); 317 } 318 319 static ssize_t rtc_update_ms_store(struct device *dev, struct device_attribute *attr, 320 const char *buf, size_t count) 321 { 322 struct ufs_hba *hba = dev_get_drvdata(dev); 323 unsigned int ms; 324 bool resume_period_update = false; 325 326 if (kstrtouint(buf, 0, &ms)) 327 return -EINVAL; 328 329 if (!hba->dev_info.rtc_update_period && ms > 0) 330 resume_period_update = true; 331 /* Minimum and maximum update frequency should be synchronized with all UFS vendors */ 332 hba->dev_info.rtc_update_period = ms; 333 334 if (resume_period_update) 335 schedule_delayed_work(&hba->ufs_rtc_update_work, 336 msecs_to_jiffies(hba->dev_info.rtc_update_period)); 337 return count; 338 } 339 340 static ssize_t enable_wb_buf_flush_show(struct device *dev, 341 struct device_attribute *attr, 342 char *buf) 343 { 344 struct ufs_hba *hba = dev_get_drvdata(dev); 345 346 return sysfs_emit(buf, "%d\n", hba->dev_info.wb_buf_flush_enabled); 347 } 348 349 static ssize_t enable_wb_buf_flush_store(struct device *dev, 350 struct device_attribute *attr, 351 const char *buf, size_t count) 352 { 353 struct ufs_hba *hba = dev_get_drvdata(dev); 354 unsigned int enable_wb_buf_flush; 355 ssize_t res; 356 357 if (!ufshcd_is_wb_buf_flush_allowed(hba)) { 358 dev_warn(dev, "It is not allowed to configure WB buf flushing!\n"); 359 return -EOPNOTSUPP; 360 } 361 362 if (kstrtouint(buf, 0, &enable_wb_buf_flush)) 363 return -EINVAL; 364 365 if (enable_wb_buf_flush != 0 && enable_wb_buf_flush != 1) 366 return -EINVAL; 367 368 down(&hba->host_sem); 369 if (!ufshcd_is_user_access_allowed(hba)) { 370 res = -EBUSY; 371 goto out; 372 } 373 374 ufshcd_rpm_get_sync(hba); 375 res = ufshcd_wb_toggle_buf_flush(hba, enable_wb_buf_flush); 376 ufshcd_rpm_put_sync(hba); 377 378 out: 379 up(&hba->host_sem); 380 return res < 0 ? res : count; 381 } 382 383 static ssize_t wb_flush_threshold_show(struct device *dev, 384 struct device_attribute *attr, 385 char *buf) 386 { 387 struct ufs_hba *hba = dev_get_drvdata(dev); 388 389 return sysfs_emit(buf, "%u\n", hba->vps->wb_flush_threshold); 390 } 391 392 static ssize_t wb_flush_threshold_store(struct device *dev, 393 struct device_attribute *attr, 394 const char *buf, size_t count) 395 { 396 struct ufs_hba *hba = dev_get_drvdata(dev); 397 unsigned int wb_flush_threshold; 398 399 if (kstrtouint(buf, 0, &wb_flush_threshold)) 400 return -EINVAL; 401 402 /* The range of values for wb_flush_threshold is (0,10] */ 403 if (wb_flush_threshold > UFS_WB_BUF_REMAIN_PERCENT(100) || 404 wb_flush_threshold == 0) { 405 dev_err(dev, "The value of wb_flush_threshold is invalid!\n"); 406 return -EINVAL; 407 } 408 409 hba->vps->wb_flush_threshold = wb_flush_threshold; 410 411 return count; 412 } 413 414 /** 415 * pm_qos_enable_show - sysfs handler to show pm qos enable value 416 * @dev: device associated with the UFS controller 417 * @attr: sysfs attribute handle 418 * @buf: buffer for sysfs file 419 * 420 * Print 1 if PM QoS feature is enabled, 0 if disabled. 421 * 422 * Returns number of characters written to @buf. 423 */ 424 static ssize_t pm_qos_enable_show(struct device *dev, 425 struct device_attribute *attr, char *buf) 426 { 427 struct ufs_hba *hba = dev_get_drvdata(dev); 428 429 return sysfs_emit(buf, "%d\n", hba->pm_qos_enabled); 430 } 431 432 /** 433 * pm_qos_enable_store - sysfs handler to store value 434 * @dev: device associated with the UFS controller 435 * @attr: sysfs attribute handle 436 * @buf: buffer for sysfs file 437 * @count: stores buffer characters count 438 * 439 * Input 0 to disable PM QoS and 1 value to enable. 440 * Default state: 1 441 * 442 * Return: number of characters written to @buf on success, < 0 upon failure. 443 */ 444 static ssize_t pm_qos_enable_store(struct device *dev, 445 struct device_attribute *attr, const char *buf, size_t count) 446 { 447 struct ufs_hba *hba = dev_get_drvdata(dev); 448 bool value; 449 450 if (kstrtobool(buf, &value)) 451 return -EINVAL; 452 453 if (value) 454 ufshcd_pm_qos_init(hba); 455 else 456 ufshcd_pm_qos_exit(hba); 457 458 return count; 459 } 460 461 static DEVICE_ATTR_RW(rpm_lvl); 462 static DEVICE_ATTR_RO(rpm_target_dev_state); 463 static DEVICE_ATTR_RO(rpm_target_link_state); 464 static DEVICE_ATTR_RW(spm_lvl); 465 static DEVICE_ATTR_RO(spm_target_dev_state); 466 static DEVICE_ATTR_RO(spm_target_link_state); 467 static DEVICE_ATTR_RW(auto_hibern8); 468 static DEVICE_ATTR_RW(wb_on); 469 static DEVICE_ATTR_RW(enable_wb_buf_flush); 470 static DEVICE_ATTR_RW(wb_flush_threshold); 471 static DEVICE_ATTR_RW(rtc_update_ms); 472 static DEVICE_ATTR_RW(pm_qos_enable); 473 474 static struct attribute *ufs_sysfs_ufshcd_attrs[] = { 475 &dev_attr_rpm_lvl.attr, 476 &dev_attr_rpm_target_dev_state.attr, 477 &dev_attr_rpm_target_link_state.attr, 478 &dev_attr_spm_lvl.attr, 479 &dev_attr_spm_target_dev_state.attr, 480 &dev_attr_spm_target_link_state.attr, 481 &dev_attr_auto_hibern8.attr, 482 &dev_attr_wb_on.attr, 483 &dev_attr_enable_wb_buf_flush.attr, 484 &dev_attr_wb_flush_threshold.attr, 485 &dev_attr_rtc_update_ms.attr, 486 &dev_attr_pm_qos_enable.attr, 487 NULL 488 }; 489 490 static const struct attribute_group ufs_sysfs_default_group = { 491 .attrs = ufs_sysfs_ufshcd_attrs, 492 }; 493 494 static ssize_t clock_scaling_show(struct device *dev, struct device_attribute *attr, 495 char *buf) 496 { 497 struct ufs_hba *hba = dev_get_drvdata(dev); 498 499 return sysfs_emit(buf, "%d\n", ufshcd_is_clkscaling_supported(hba)); 500 } 501 502 static ssize_t write_booster_show(struct device *dev, struct device_attribute *attr, 503 char *buf) 504 { 505 struct ufs_hba *hba = dev_get_drvdata(dev); 506 507 return sysfs_emit(buf, "%d\n", ufshcd_is_wb_allowed(hba)); 508 } 509 510 static DEVICE_ATTR_RO(clock_scaling); 511 static DEVICE_ATTR_RO(write_booster); 512 513 /* 514 * See Documentation/ABI/testing/sysfs-driver-ufs for the semantics of this 515 * group. 516 */ 517 static struct attribute *ufs_sysfs_capabilities_attrs[] = { 518 &dev_attr_clock_scaling.attr, 519 &dev_attr_write_booster.attr, 520 NULL 521 }; 522 523 static const struct attribute_group ufs_sysfs_capabilities_group = { 524 .name = "capabilities", 525 .attrs = ufs_sysfs_capabilities_attrs, 526 }; 527 528 static ssize_t version_show(struct device *dev, 529 struct device_attribute *attr, char *buf) 530 { 531 struct ufs_hba *hba = dev_get_drvdata(dev); 532 533 return sysfs_emit(buf, "0x%x\n", hba->ufs_version); 534 } 535 536 static ssize_t product_id_show(struct device *dev, 537 struct device_attribute *attr, char *buf) 538 { 539 int ret; 540 u32 val; 541 struct ufs_hba *hba = dev_get_drvdata(dev); 542 543 ret = ufshcd_read_hci_reg(hba, &val, REG_CONTROLLER_PID); 544 if (ret) 545 return ret; 546 547 return sysfs_emit(buf, "0x%x\n", val); 548 } 549 550 static ssize_t man_id_show(struct device *dev, 551 struct device_attribute *attr, char *buf) 552 { 553 int ret; 554 u32 val; 555 struct ufs_hba *hba = dev_get_drvdata(dev); 556 557 ret = ufshcd_read_hci_reg(hba, &val, REG_CONTROLLER_MID); 558 if (ret) 559 return ret; 560 561 return sysfs_emit(buf, "0x%x\n", val); 562 } 563 564 static DEVICE_ATTR_RO(version); 565 static DEVICE_ATTR_RO(product_id); 566 static DEVICE_ATTR_RO(man_id); 567 568 static struct attribute *ufs_sysfs_ufshci_cap_attrs[] = { 569 &dev_attr_version.attr, 570 &dev_attr_product_id.attr, 571 &dev_attr_man_id.attr, 572 NULL 573 }; 574 575 static const struct attribute_group ufs_sysfs_ufshci_group = { 576 .name = "ufshci_capabilities", 577 .attrs = ufs_sysfs_ufshci_cap_attrs, 578 }; 579 580 static ssize_t monitor_enable_show(struct device *dev, 581 struct device_attribute *attr, char *buf) 582 { 583 struct ufs_hba *hba = dev_get_drvdata(dev); 584 585 return sysfs_emit(buf, "%d\n", hba->monitor.enabled); 586 } 587 588 static ssize_t monitor_enable_store(struct device *dev, 589 struct device_attribute *attr, 590 const char *buf, size_t count) 591 { 592 struct ufs_hba *hba = dev_get_drvdata(dev); 593 unsigned long value, flags; 594 595 if (kstrtoul(buf, 0, &value)) 596 return -EINVAL; 597 598 value = !!value; 599 spin_lock_irqsave(hba->host->host_lock, flags); 600 if (value == hba->monitor.enabled) 601 goto out_unlock; 602 603 if (!value) { 604 memset(&hba->monitor, 0, sizeof(hba->monitor)); 605 } else { 606 hba->monitor.enabled = true; 607 hba->monitor.enabled_ts = ktime_get(); 608 } 609 610 out_unlock: 611 spin_unlock_irqrestore(hba->host->host_lock, flags); 612 return count; 613 } 614 615 static ssize_t monitor_chunk_size_show(struct device *dev, 616 struct device_attribute *attr, char *buf) 617 { 618 struct ufs_hba *hba = dev_get_drvdata(dev); 619 620 return sysfs_emit(buf, "%lu\n", hba->monitor.chunk_size); 621 } 622 623 static ssize_t monitor_chunk_size_store(struct device *dev, 624 struct device_attribute *attr, 625 const char *buf, size_t count) 626 { 627 struct ufs_hba *hba = dev_get_drvdata(dev); 628 unsigned long value, flags; 629 630 if (kstrtoul(buf, 0, &value)) 631 return -EINVAL; 632 633 spin_lock_irqsave(hba->host->host_lock, flags); 634 /* Only allow chunk size change when monitor is disabled */ 635 if (!hba->monitor.enabled) 636 hba->monitor.chunk_size = value; 637 spin_unlock_irqrestore(hba->host->host_lock, flags); 638 return count; 639 } 640 641 static ssize_t read_total_sectors_show(struct device *dev, 642 struct device_attribute *attr, char *buf) 643 { 644 struct ufs_hba *hba = dev_get_drvdata(dev); 645 646 return sysfs_emit(buf, "%lu\n", hba->monitor.nr_sec_rw[READ]); 647 } 648 649 static ssize_t read_total_busy_show(struct device *dev, 650 struct device_attribute *attr, char *buf) 651 { 652 struct ufs_hba *hba = dev_get_drvdata(dev); 653 654 return sysfs_emit(buf, "%llu\n", 655 ktime_to_us(hba->monitor.total_busy[READ])); 656 } 657 658 static ssize_t read_nr_requests_show(struct device *dev, 659 struct device_attribute *attr, char *buf) 660 { 661 struct ufs_hba *hba = dev_get_drvdata(dev); 662 663 return sysfs_emit(buf, "%lu\n", hba->monitor.nr_req[READ]); 664 } 665 666 static ssize_t read_req_latency_avg_show(struct device *dev, 667 struct device_attribute *attr, 668 char *buf) 669 { 670 struct ufs_hba *hba = dev_get_drvdata(dev); 671 struct ufs_hba_monitor *m = &hba->monitor; 672 673 return sysfs_emit(buf, "%llu\n", div_u64(ktime_to_us(m->lat_sum[READ]), 674 m->nr_req[READ])); 675 } 676 677 static ssize_t read_req_latency_max_show(struct device *dev, 678 struct device_attribute *attr, 679 char *buf) 680 { 681 struct ufs_hba *hba = dev_get_drvdata(dev); 682 683 return sysfs_emit(buf, "%llu\n", 684 ktime_to_us(hba->monitor.lat_max[READ])); 685 } 686 687 static ssize_t read_req_latency_min_show(struct device *dev, 688 struct device_attribute *attr, 689 char *buf) 690 { 691 struct ufs_hba *hba = dev_get_drvdata(dev); 692 693 return sysfs_emit(buf, "%llu\n", 694 ktime_to_us(hba->monitor.lat_min[READ])); 695 } 696 697 static ssize_t read_req_latency_sum_show(struct device *dev, 698 struct device_attribute *attr, 699 char *buf) 700 { 701 struct ufs_hba *hba = dev_get_drvdata(dev); 702 703 return sysfs_emit(buf, "%llu\n", 704 ktime_to_us(hba->monitor.lat_sum[READ])); 705 } 706 707 static ssize_t write_total_sectors_show(struct device *dev, 708 struct device_attribute *attr, 709 char *buf) 710 { 711 struct ufs_hba *hba = dev_get_drvdata(dev); 712 713 return sysfs_emit(buf, "%lu\n", hba->monitor.nr_sec_rw[WRITE]); 714 } 715 716 static ssize_t write_total_busy_show(struct device *dev, 717 struct device_attribute *attr, char *buf) 718 { 719 struct ufs_hba *hba = dev_get_drvdata(dev); 720 721 return sysfs_emit(buf, "%llu\n", 722 ktime_to_us(hba->monitor.total_busy[WRITE])); 723 } 724 725 static ssize_t write_nr_requests_show(struct device *dev, 726 struct device_attribute *attr, char *buf) 727 { 728 struct ufs_hba *hba = dev_get_drvdata(dev); 729 730 return sysfs_emit(buf, "%lu\n", hba->monitor.nr_req[WRITE]); 731 } 732 733 static ssize_t write_req_latency_avg_show(struct device *dev, 734 struct device_attribute *attr, 735 char *buf) 736 { 737 struct ufs_hba *hba = dev_get_drvdata(dev); 738 struct ufs_hba_monitor *m = &hba->monitor; 739 740 return sysfs_emit(buf, "%llu\n", div_u64(ktime_to_us(m->lat_sum[WRITE]), 741 m->nr_req[WRITE])); 742 } 743 744 static ssize_t write_req_latency_max_show(struct device *dev, 745 struct device_attribute *attr, 746 char *buf) 747 { 748 struct ufs_hba *hba = dev_get_drvdata(dev); 749 750 return sysfs_emit(buf, "%llu\n", 751 ktime_to_us(hba->monitor.lat_max[WRITE])); 752 } 753 754 static ssize_t write_req_latency_min_show(struct device *dev, 755 struct device_attribute *attr, 756 char *buf) 757 { 758 struct ufs_hba *hba = dev_get_drvdata(dev); 759 760 return sysfs_emit(buf, "%llu\n", 761 ktime_to_us(hba->monitor.lat_min[WRITE])); 762 } 763 764 static ssize_t write_req_latency_sum_show(struct device *dev, 765 struct device_attribute *attr, 766 char *buf) 767 { 768 struct ufs_hba *hba = dev_get_drvdata(dev); 769 770 return sysfs_emit(buf, "%llu\n", 771 ktime_to_us(hba->monitor.lat_sum[WRITE])); 772 } 773 774 static DEVICE_ATTR_RW(monitor_enable); 775 static DEVICE_ATTR_RW(monitor_chunk_size); 776 static DEVICE_ATTR_RO(read_total_sectors); 777 static DEVICE_ATTR_RO(read_total_busy); 778 static DEVICE_ATTR_RO(read_nr_requests); 779 static DEVICE_ATTR_RO(read_req_latency_avg); 780 static DEVICE_ATTR_RO(read_req_latency_max); 781 static DEVICE_ATTR_RO(read_req_latency_min); 782 static DEVICE_ATTR_RO(read_req_latency_sum); 783 static DEVICE_ATTR_RO(write_total_sectors); 784 static DEVICE_ATTR_RO(write_total_busy); 785 static DEVICE_ATTR_RO(write_nr_requests); 786 static DEVICE_ATTR_RO(write_req_latency_avg); 787 static DEVICE_ATTR_RO(write_req_latency_max); 788 static DEVICE_ATTR_RO(write_req_latency_min); 789 static DEVICE_ATTR_RO(write_req_latency_sum); 790 791 static struct attribute *ufs_sysfs_monitor_attrs[] = { 792 &dev_attr_monitor_enable.attr, 793 &dev_attr_monitor_chunk_size.attr, 794 &dev_attr_read_total_sectors.attr, 795 &dev_attr_read_total_busy.attr, 796 &dev_attr_read_nr_requests.attr, 797 &dev_attr_read_req_latency_avg.attr, 798 &dev_attr_read_req_latency_max.attr, 799 &dev_attr_read_req_latency_min.attr, 800 &dev_attr_read_req_latency_sum.attr, 801 &dev_attr_write_total_sectors.attr, 802 &dev_attr_write_total_busy.attr, 803 &dev_attr_write_nr_requests.attr, 804 &dev_attr_write_req_latency_avg.attr, 805 &dev_attr_write_req_latency_max.attr, 806 &dev_attr_write_req_latency_min.attr, 807 &dev_attr_write_req_latency_sum.attr, 808 NULL 809 }; 810 811 static const struct attribute_group ufs_sysfs_monitor_group = { 812 .name = "monitor", 813 .attrs = ufs_sysfs_monitor_attrs, 814 }; 815 816 static ssize_t lane_show(struct device *dev, struct device_attribute *attr, 817 char *buf) 818 { 819 struct ufs_hba *hba = dev_get_drvdata(dev); 820 821 return sysfs_emit(buf, "%u\n", hba->pwr_info.lane_rx); 822 } 823 824 static ssize_t mode_show(struct device *dev, struct device_attribute *attr, 825 char *buf) 826 { 827 struct ufs_hba *hba = dev_get_drvdata(dev); 828 829 return sysfs_emit(buf, "%s\n", ufs_pa_pwr_mode_to_string(hba->pwr_info.pwr_rx)); 830 } 831 832 static ssize_t rate_show(struct device *dev, struct device_attribute *attr, 833 char *buf) 834 { 835 struct ufs_hba *hba = dev_get_drvdata(dev); 836 837 return sysfs_emit(buf, "%s\n", ufs_hs_gear_rate_to_string(hba->pwr_info.hs_rate)); 838 } 839 840 static ssize_t gear_show(struct device *dev, struct device_attribute *attr, 841 char *buf) 842 { 843 struct ufs_hba *hba = dev_get_drvdata(dev); 844 845 return sysfs_emit(buf, "%s\n", hba->pwr_info.hs_rate ? 846 ufs_hs_gear_to_string(hba->pwr_info.gear_rx) : 847 ufs_pwm_gear_to_string(hba->pwr_info.gear_rx)); 848 } 849 850 static ssize_t dev_pm_show(struct device *dev, struct device_attribute *attr, 851 char *buf) 852 { 853 struct ufs_hba *hba = dev_get_drvdata(dev); 854 855 return sysfs_emit(buf, "%s\n", ufshcd_ufs_dev_pwr_mode_to_string(hba->curr_dev_pwr_mode)); 856 } 857 858 static ssize_t link_state_show(struct device *dev, 859 struct device_attribute *attr, char *buf) 860 { 861 struct ufs_hba *hba = dev_get_drvdata(dev); 862 863 return sysfs_emit(buf, "%s\n", ufshcd_uic_link_state_to_string(hba->uic_link_state)); 864 } 865 866 static DEVICE_ATTR_RO(lane); 867 static DEVICE_ATTR_RO(mode); 868 static DEVICE_ATTR_RO(rate); 869 static DEVICE_ATTR_RO(gear); 870 static DEVICE_ATTR_RO(dev_pm); 871 static DEVICE_ATTR_RO(link_state); 872 873 static struct attribute *ufs_power_info_attrs[] = { 874 &dev_attr_lane.attr, 875 &dev_attr_mode.attr, 876 &dev_attr_rate.attr, 877 &dev_attr_gear.attr, 878 &dev_attr_dev_pm.attr, 879 &dev_attr_link_state.attr, 880 NULL 881 }; 882 883 static const struct attribute_group ufs_sysfs_power_info_group = { 884 .name = "power_info", 885 .attrs = ufs_power_info_attrs, 886 }; 887 888 static ssize_t ufs_sysfs_read_desc_param(struct ufs_hba *hba, 889 enum desc_idn desc_id, 890 u8 desc_index, 891 u8 param_offset, 892 u8 *sysfs_buf, 893 u8 param_size) 894 { 895 u8 desc_buf[8] = {0}; 896 int ret; 897 898 if (param_size > 8) 899 return -EINVAL; 900 901 down(&hba->host_sem); 902 if (!ufshcd_is_user_access_allowed(hba)) { 903 ret = -EBUSY; 904 goto out; 905 } 906 907 ufshcd_rpm_get_sync(hba); 908 ret = ufshcd_read_desc_param(hba, desc_id, desc_index, 909 param_offset, desc_buf, param_size); 910 ufshcd_rpm_put_sync(hba); 911 if (ret) { 912 ret = -EINVAL; 913 goto out; 914 } 915 916 switch (param_size) { 917 case 1: 918 ret = sysfs_emit(sysfs_buf, "0x%02X\n", *desc_buf); 919 break; 920 case 2: 921 ret = sysfs_emit(sysfs_buf, "0x%04X\n", 922 get_unaligned_be16(desc_buf)); 923 break; 924 case 4: 925 ret = sysfs_emit(sysfs_buf, "0x%08X\n", 926 get_unaligned_be32(desc_buf)); 927 break; 928 case 8: 929 ret = sysfs_emit(sysfs_buf, "0x%016llX\n", 930 get_unaligned_be64(desc_buf)); 931 break; 932 } 933 934 out: 935 up(&hba->host_sem); 936 return ret; 937 } 938 939 #define UFS_DESC_PARAM(_name, _puname, _duname, _size) \ 940 static ssize_t _name##_show(struct device *dev, \ 941 struct device_attribute *attr, char *buf) \ 942 { \ 943 struct ufs_hba *hba = dev_get_drvdata(dev); \ 944 return ufs_sysfs_read_desc_param(hba, QUERY_DESC_IDN_##_duname, \ 945 0, _duname##_DESC_PARAM##_puname, buf, _size); \ 946 } \ 947 static DEVICE_ATTR_RO(_name) 948 949 #define UFS_DEVICE_DESC_PARAM(_name, _uname, _size) \ 950 UFS_DESC_PARAM(_name, _uname, DEVICE, _size) 951 952 UFS_DEVICE_DESC_PARAM(device_type, _DEVICE_TYPE, 1); 953 UFS_DEVICE_DESC_PARAM(device_class, _DEVICE_CLASS, 1); 954 UFS_DEVICE_DESC_PARAM(device_sub_class, _DEVICE_SUB_CLASS, 1); 955 UFS_DEVICE_DESC_PARAM(protocol, _PRTCL, 1); 956 UFS_DEVICE_DESC_PARAM(number_of_luns, _NUM_LU, 1); 957 UFS_DEVICE_DESC_PARAM(number_of_wluns, _NUM_WLU, 1); 958 UFS_DEVICE_DESC_PARAM(boot_enable, _BOOT_ENBL, 1); 959 UFS_DEVICE_DESC_PARAM(descriptor_access_enable, _DESC_ACCSS_ENBL, 1); 960 UFS_DEVICE_DESC_PARAM(initial_power_mode, _INIT_PWR_MODE, 1); 961 UFS_DEVICE_DESC_PARAM(high_priority_lun, _HIGH_PR_LUN, 1); 962 UFS_DEVICE_DESC_PARAM(secure_removal_type, _SEC_RMV_TYPE, 1); 963 UFS_DEVICE_DESC_PARAM(support_security_lun, _SEC_LU, 1); 964 UFS_DEVICE_DESC_PARAM(bkops_termination_latency, _BKOP_TERM_LT, 1); 965 UFS_DEVICE_DESC_PARAM(initial_active_icc_level, _ACTVE_ICC_LVL, 1); 966 UFS_DEVICE_DESC_PARAM(specification_version, _SPEC_VER, 2); 967 UFS_DEVICE_DESC_PARAM(manufacturing_date, _MANF_DATE, 2); 968 UFS_DEVICE_DESC_PARAM(manufacturer_id, _MANF_ID, 2); 969 UFS_DEVICE_DESC_PARAM(rtt_capability, _RTT_CAP, 1); 970 UFS_DEVICE_DESC_PARAM(rtc_update, _FRQ_RTC, 2); 971 UFS_DEVICE_DESC_PARAM(ufs_features, _UFS_FEAT, 1); 972 UFS_DEVICE_DESC_PARAM(ffu_timeout, _FFU_TMT, 1); 973 UFS_DEVICE_DESC_PARAM(queue_depth, _Q_DPTH, 1); 974 UFS_DEVICE_DESC_PARAM(device_version, _DEV_VER, 2); 975 UFS_DEVICE_DESC_PARAM(number_of_secure_wpa, _NUM_SEC_WPA, 1); 976 UFS_DEVICE_DESC_PARAM(psa_max_data_size, _PSA_MAX_DATA, 4); 977 UFS_DEVICE_DESC_PARAM(psa_state_timeout, _PSA_TMT, 1); 978 UFS_DEVICE_DESC_PARAM(ext_feature_sup, _EXT_UFS_FEATURE_SUP, 4); 979 UFS_DEVICE_DESC_PARAM(wb_presv_us_en, _WB_PRESRV_USRSPC_EN, 1); 980 UFS_DEVICE_DESC_PARAM(wb_type, _WB_TYPE, 1); 981 UFS_DEVICE_DESC_PARAM(wb_shared_alloc_units, _WB_SHARED_ALLOC_UNITS, 4); 982 983 static struct attribute *ufs_sysfs_device_descriptor[] = { 984 &dev_attr_device_type.attr, 985 &dev_attr_device_class.attr, 986 &dev_attr_device_sub_class.attr, 987 &dev_attr_protocol.attr, 988 &dev_attr_number_of_luns.attr, 989 &dev_attr_number_of_wluns.attr, 990 &dev_attr_boot_enable.attr, 991 &dev_attr_descriptor_access_enable.attr, 992 &dev_attr_initial_power_mode.attr, 993 &dev_attr_high_priority_lun.attr, 994 &dev_attr_secure_removal_type.attr, 995 &dev_attr_support_security_lun.attr, 996 &dev_attr_bkops_termination_latency.attr, 997 &dev_attr_initial_active_icc_level.attr, 998 &dev_attr_specification_version.attr, 999 &dev_attr_manufacturing_date.attr, 1000 &dev_attr_manufacturer_id.attr, 1001 &dev_attr_rtt_capability.attr, 1002 &dev_attr_rtc_update.attr, 1003 &dev_attr_ufs_features.attr, 1004 &dev_attr_ffu_timeout.attr, 1005 &dev_attr_queue_depth.attr, 1006 &dev_attr_device_version.attr, 1007 &dev_attr_number_of_secure_wpa.attr, 1008 &dev_attr_psa_max_data_size.attr, 1009 &dev_attr_psa_state_timeout.attr, 1010 &dev_attr_ext_feature_sup.attr, 1011 &dev_attr_wb_presv_us_en.attr, 1012 &dev_attr_wb_type.attr, 1013 &dev_attr_wb_shared_alloc_units.attr, 1014 NULL, 1015 }; 1016 1017 static const struct attribute_group ufs_sysfs_device_descriptor_group = { 1018 .name = "device_descriptor", 1019 .attrs = ufs_sysfs_device_descriptor, 1020 }; 1021 1022 #define UFS_INTERCONNECT_DESC_PARAM(_name, _uname, _size) \ 1023 UFS_DESC_PARAM(_name, _uname, INTERCONNECT, _size) 1024 1025 UFS_INTERCONNECT_DESC_PARAM(unipro_version, _UNIPRO_VER, 2); 1026 UFS_INTERCONNECT_DESC_PARAM(mphy_version, _MPHY_VER, 2); 1027 1028 static struct attribute *ufs_sysfs_interconnect_descriptor[] = { 1029 &dev_attr_unipro_version.attr, 1030 &dev_attr_mphy_version.attr, 1031 NULL, 1032 }; 1033 1034 static const struct attribute_group ufs_sysfs_interconnect_descriptor_group = { 1035 .name = "interconnect_descriptor", 1036 .attrs = ufs_sysfs_interconnect_descriptor, 1037 }; 1038 1039 #define UFS_GEOMETRY_DESC_PARAM(_name, _uname, _size) \ 1040 UFS_DESC_PARAM(_name, _uname, GEOMETRY, _size) 1041 1042 UFS_GEOMETRY_DESC_PARAM(raw_device_capacity, _DEV_CAP, 8); 1043 UFS_GEOMETRY_DESC_PARAM(max_number_of_luns, _MAX_NUM_LUN, 1); 1044 UFS_GEOMETRY_DESC_PARAM(segment_size, _SEG_SIZE, 4); 1045 UFS_GEOMETRY_DESC_PARAM(allocation_unit_size, _ALLOC_UNIT_SIZE, 1); 1046 UFS_GEOMETRY_DESC_PARAM(min_addressable_block_size, _MIN_BLK_SIZE, 1); 1047 UFS_GEOMETRY_DESC_PARAM(optimal_read_block_size, _OPT_RD_BLK_SIZE, 1); 1048 UFS_GEOMETRY_DESC_PARAM(optimal_write_block_size, _OPT_WR_BLK_SIZE, 1); 1049 UFS_GEOMETRY_DESC_PARAM(max_in_buffer_size, _MAX_IN_BUF_SIZE, 1); 1050 UFS_GEOMETRY_DESC_PARAM(max_out_buffer_size, _MAX_OUT_BUF_SIZE, 1); 1051 UFS_GEOMETRY_DESC_PARAM(rpmb_rw_size, _RPMB_RW_SIZE, 1); 1052 UFS_GEOMETRY_DESC_PARAM(dyn_capacity_resource_policy, _DYN_CAP_RSRC_PLC, 1); 1053 UFS_GEOMETRY_DESC_PARAM(data_ordering, _DATA_ORDER, 1); 1054 UFS_GEOMETRY_DESC_PARAM(max_number_of_contexts, _MAX_NUM_CTX, 1); 1055 UFS_GEOMETRY_DESC_PARAM(sys_data_tag_unit_size, _TAG_UNIT_SIZE, 1); 1056 UFS_GEOMETRY_DESC_PARAM(sys_data_tag_resource_size, _TAG_RSRC_SIZE, 1); 1057 UFS_GEOMETRY_DESC_PARAM(secure_removal_types, _SEC_RM_TYPES, 1); 1058 UFS_GEOMETRY_DESC_PARAM(memory_types, _MEM_TYPES, 2); 1059 UFS_GEOMETRY_DESC_PARAM(sys_code_memory_max_alloc_units, 1060 _SCM_MAX_NUM_UNITS, 4); 1061 UFS_GEOMETRY_DESC_PARAM(sys_code_memory_capacity_adjustment_factor, 1062 _SCM_CAP_ADJ_FCTR, 2); 1063 UFS_GEOMETRY_DESC_PARAM(non_persist_memory_max_alloc_units, 1064 _NPM_MAX_NUM_UNITS, 4); 1065 UFS_GEOMETRY_DESC_PARAM(non_persist_memory_capacity_adjustment_factor, 1066 _NPM_CAP_ADJ_FCTR, 2); 1067 UFS_GEOMETRY_DESC_PARAM(enh1_memory_max_alloc_units, 1068 _ENM1_MAX_NUM_UNITS, 4); 1069 UFS_GEOMETRY_DESC_PARAM(enh1_memory_capacity_adjustment_factor, 1070 _ENM1_CAP_ADJ_FCTR, 2); 1071 UFS_GEOMETRY_DESC_PARAM(enh2_memory_max_alloc_units, 1072 _ENM2_MAX_NUM_UNITS, 4); 1073 UFS_GEOMETRY_DESC_PARAM(enh2_memory_capacity_adjustment_factor, 1074 _ENM2_CAP_ADJ_FCTR, 2); 1075 UFS_GEOMETRY_DESC_PARAM(enh3_memory_max_alloc_units, 1076 _ENM3_MAX_NUM_UNITS, 4); 1077 UFS_GEOMETRY_DESC_PARAM(enh3_memory_capacity_adjustment_factor, 1078 _ENM3_CAP_ADJ_FCTR, 2); 1079 UFS_GEOMETRY_DESC_PARAM(enh4_memory_max_alloc_units, 1080 _ENM4_MAX_NUM_UNITS, 4); 1081 UFS_GEOMETRY_DESC_PARAM(enh4_memory_capacity_adjustment_factor, 1082 _ENM4_CAP_ADJ_FCTR, 2); 1083 UFS_GEOMETRY_DESC_PARAM(wb_max_alloc_units, _WB_MAX_ALLOC_UNITS, 4); 1084 UFS_GEOMETRY_DESC_PARAM(wb_max_wb_luns, _WB_MAX_WB_LUNS, 1); 1085 UFS_GEOMETRY_DESC_PARAM(wb_buff_cap_adj, _WB_BUFF_CAP_ADJ, 1); 1086 UFS_GEOMETRY_DESC_PARAM(wb_sup_red_type, _WB_SUP_RED_TYPE, 1); 1087 UFS_GEOMETRY_DESC_PARAM(wb_sup_wb_type, _WB_SUP_WB_TYPE, 1); 1088 1089 1090 static struct attribute *ufs_sysfs_geometry_descriptor[] = { 1091 &dev_attr_raw_device_capacity.attr, 1092 &dev_attr_max_number_of_luns.attr, 1093 &dev_attr_segment_size.attr, 1094 &dev_attr_allocation_unit_size.attr, 1095 &dev_attr_min_addressable_block_size.attr, 1096 &dev_attr_optimal_read_block_size.attr, 1097 &dev_attr_optimal_write_block_size.attr, 1098 &dev_attr_max_in_buffer_size.attr, 1099 &dev_attr_max_out_buffer_size.attr, 1100 &dev_attr_rpmb_rw_size.attr, 1101 &dev_attr_dyn_capacity_resource_policy.attr, 1102 &dev_attr_data_ordering.attr, 1103 &dev_attr_max_number_of_contexts.attr, 1104 &dev_attr_sys_data_tag_unit_size.attr, 1105 &dev_attr_sys_data_tag_resource_size.attr, 1106 &dev_attr_secure_removal_types.attr, 1107 &dev_attr_memory_types.attr, 1108 &dev_attr_sys_code_memory_max_alloc_units.attr, 1109 &dev_attr_sys_code_memory_capacity_adjustment_factor.attr, 1110 &dev_attr_non_persist_memory_max_alloc_units.attr, 1111 &dev_attr_non_persist_memory_capacity_adjustment_factor.attr, 1112 &dev_attr_enh1_memory_max_alloc_units.attr, 1113 &dev_attr_enh1_memory_capacity_adjustment_factor.attr, 1114 &dev_attr_enh2_memory_max_alloc_units.attr, 1115 &dev_attr_enh2_memory_capacity_adjustment_factor.attr, 1116 &dev_attr_enh3_memory_max_alloc_units.attr, 1117 &dev_attr_enh3_memory_capacity_adjustment_factor.attr, 1118 &dev_attr_enh4_memory_max_alloc_units.attr, 1119 &dev_attr_enh4_memory_capacity_adjustment_factor.attr, 1120 &dev_attr_wb_max_alloc_units.attr, 1121 &dev_attr_wb_max_wb_luns.attr, 1122 &dev_attr_wb_buff_cap_adj.attr, 1123 &dev_attr_wb_sup_red_type.attr, 1124 &dev_attr_wb_sup_wb_type.attr, 1125 NULL, 1126 }; 1127 1128 static const struct attribute_group ufs_sysfs_geometry_descriptor_group = { 1129 .name = "geometry_descriptor", 1130 .attrs = ufs_sysfs_geometry_descriptor, 1131 }; 1132 1133 #define UFS_HEALTH_DESC_PARAM(_name, _uname, _size) \ 1134 UFS_DESC_PARAM(_name, _uname, HEALTH, _size) 1135 1136 UFS_HEALTH_DESC_PARAM(eol_info, _EOL_INFO, 1); 1137 UFS_HEALTH_DESC_PARAM(life_time_estimation_a, _LIFE_TIME_EST_A, 1); 1138 UFS_HEALTH_DESC_PARAM(life_time_estimation_b, _LIFE_TIME_EST_B, 1); 1139 1140 static struct attribute *ufs_sysfs_health_descriptor[] = { 1141 &dev_attr_eol_info.attr, 1142 &dev_attr_life_time_estimation_a.attr, 1143 &dev_attr_life_time_estimation_b.attr, 1144 NULL, 1145 }; 1146 1147 static const struct attribute_group ufs_sysfs_health_descriptor_group = { 1148 .name = "health_descriptor", 1149 .attrs = ufs_sysfs_health_descriptor, 1150 }; 1151 1152 #define UFS_POWER_DESC_PARAM(_name, _uname, _index) \ 1153 static ssize_t _name##_index##_show(struct device *dev, \ 1154 struct device_attribute *attr, char *buf) \ 1155 { \ 1156 struct ufs_hba *hba = dev_get_drvdata(dev); \ 1157 return ufs_sysfs_read_desc_param(hba, QUERY_DESC_IDN_POWER, 0, \ 1158 PWR_DESC##_uname##_0 + _index * 2, buf, 2); \ 1159 } \ 1160 static DEVICE_ATTR_RO(_name##_index) 1161 1162 UFS_POWER_DESC_PARAM(active_icc_levels_vcc, _ACTIVE_LVLS_VCC, 0); 1163 UFS_POWER_DESC_PARAM(active_icc_levels_vcc, _ACTIVE_LVLS_VCC, 1); 1164 UFS_POWER_DESC_PARAM(active_icc_levels_vcc, _ACTIVE_LVLS_VCC, 2); 1165 UFS_POWER_DESC_PARAM(active_icc_levels_vcc, _ACTIVE_LVLS_VCC, 3); 1166 UFS_POWER_DESC_PARAM(active_icc_levels_vcc, _ACTIVE_LVLS_VCC, 4); 1167 UFS_POWER_DESC_PARAM(active_icc_levels_vcc, _ACTIVE_LVLS_VCC, 5); 1168 UFS_POWER_DESC_PARAM(active_icc_levels_vcc, _ACTIVE_LVLS_VCC, 6); 1169 UFS_POWER_DESC_PARAM(active_icc_levels_vcc, _ACTIVE_LVLS_VCC, 7); 1170 UFS_POWER_DESC_PARAM(active_icc_levels_vcc, _ACTIVE_LVLS_VCC, 8); 1171 UFS_POWER_DESC_PARAM(active_icc_levels_vcc, _ACTIVE_LVLS_VCC, 9); 1172 UFS_POWER_DESC_PARAM(active_icc_levels_vcc, _ACTIVE_LVLS_VCC, 10); 1173 UFS_POWER_DESC_PARAM(active_icc_levels_vcc, _ACTIVE_LVLS_VCC, 11); 1174 UFS_POWER_DESC_PARAM(active_icc_levels_vcc, _ACTIVE_LVLS_VCC, 12); 1175 UFS_POWER_DESC_PARAM(active_icc_levels_vcc, _ACTIVE_LVLS_VCC, 13); 1176 UFS_POWER_DESC_PARAM(active_icc_levels_vcc, _ACTIVE_LVLS_VCC, 14); 1177 UFS_POWER_DESC_PARAM(active_icc_levels_vcc, _ACTIVE_LVLS_VCC, 15); 1178 UFS_POWER_DESC_PARAM(active_icc_levels_vccq, _ACTIVE_LVLS_VCCQ, 0); 1179 UFS_POWER_DESC_PARAM(active_icc_levels_vccq, _ACTIVE_LVLS_VCCQ, 1); 1180 UFS_POWER_DESC_PARAM(active_icc_levels_vccq, _ACTIVE_LVLS_VCCQ, 2); 1181 UFS_POWER_DESC_PARAM(active_icc_levels_vccq, _ACTIVE_LVLS_VCCQ, 3); 1182 UFS_POWER_DESC_PARAM(active_icc_levels_vccq, _ACTIVE_LVLS_VCCQ, 4); 1183 UFS_POWER_DESC_PARAM(active_icc_levels_vccq, _ACTIVE_LVLS_VCCQ, 5); 1184 UFS_POWER_DESC_PARAM(active_icc_levels_vccq, _ACTIVE_LVLS_VCCQ, 6); 1185 UFS_POWER_DESC_PARAM(active_icc_levels_vccq, _ACTIVE_LVLS_VCCQ, 7); 1186 UFS_POWER_DESC_PARAM(active_icc_levels_vccq, _ACTIVE_LVLS_VCCQ, 8); 1187 UFS_POWER_DESC_PARAM(active_icc_levels_vccq, _ACTIVE_LVLS_VCCQ, 9); 1188 UFS_POWER_DESC_PARAM(active_icc_levels_vccq, _ACTIVE_LVLS_VCCQ, 10); 1189 UFS_POWER_DESC_PARAM(active_icc_levels_vccq, _ACTIVE_LVLS_VCCQ, 11); 1190 UFS_POWER_DESC_PARAM(active_icc_levels_vccq, _ACTIVE_LVLS_VCCQ, 12); 1191 UFS_POWER_DESC_PARAM(active_icc_levels_vccq, _ACTIVE_LVLS_VCCQ, 13); 1192 UFS_POWER_DESC_PARAM(active_icc_levels_vccq, _ACTIVE_LVLS_VCCQ, 14); 1193 UFS_POWER_DESC_PARAM(active_icc_levels_vccq, _ACTIVE_LVLS_VCCQ, 15); 1194 UFS_POWER_DESC_PARAM(active_icc_levels_vccq2, _ACTIVE_LVLS_VCCQ2, 0); 1195 UFS_POWER_DESC_PARAM(active_icc_levels_vccq2, _ACTIVE_LVLS_VCCQ2, 1); 1196 UFS_POWER_DESC_PARAM(active_icc_levels_vccq2, _ACTIVE_LVLS_VCCQ2, 2); 1197 UFS_POWER_DESC_PARAM(active_icc_levels_vccq2, _ACTIVE_LVLS_VCCQ2, 3); 1198 UFS_POWER_DESC_PARAM(active_icc_levels_vccq2, _ACTIVE_LVLS_VCCQ2, 4); 1199 UFS_POWER_DESC_PARAM(active_icc_levels_vccq2, _ACTIVE_LVLS_VCCQ2, 5); 1200 UFS_POWER_DESC_PARAM(active_icc_levels_vccq2, _ACTIVE_LVLS_VCCQ2, 6); 1201 UFS_POWER_DESC_PARAM(active_icc_levels_vccq2, _ACTIVE_LVLS_VCCQ2, 7); 1202 UFS_POWER_DESC_PARAM(active_icc_levels_vccq2, _ACTIVE_LVLS_VCCQ2, 8); 1203 UFS_POWER_DESC_PARAM(active_icc_levels_vccq2, _ACTIVE_LVLS_VCCQ2, 9); 1204 UFS_POWER_DESC_PARAM(active_icc_levels_vccq2, _ACTIVE_LVLS_VCCQ2, 10); 1205 UFS_POWER_DESC_PARAM(active_icc_levels_vccq2, _ACTIVE_LVLS_VCCQ2, 11); 1206 UFS_POWER_DESC_PARAM(active_icc_levels_vccq2, _ACTIVE_LVLS_VCCQ2, 12); 1207 UFS_POWER_DESC_PARAM(active_icc_levels_vccq2, _ACTIVE_LVLS_VCCQ2, 13); 1208 UFS_POWER_DESC_PARAM(active_icc_levels_vccq2, _ACTIVE_LVLS_VCCQ2, 14); 1209 UFS_POWER_DESC_PARAM(active_icc_levels_vccq2, _ACTIVE_LVLS_VCCQ2, 15); 1210 1211 static struct attribute *ufs_sysfs_power_descriptor[] = { 1212 &dev_attr_active_icc_levels_vcc0.attr, 1213 &dev_attr_active_icc_levels_vcc1.attr, 1214 &dev_attr_active_icc_levels_vcc2.attr, 1215 &dev_attr_active_icc_levels_vcc3.attr, 1216 &dev_attr_active_icc_levels_vcc4.attr, 1217 &dev_attr_active_icc_levels_vcc5.attr, 1218 &dev_attr_active_icc_levels_vcc6.attr, 1219 &dev_attr_active_icc_levels_vcc7.attr, 1220 &dev_attr_active_icc_levels_vcc8.attr, 1221 &dev_attr_active_icc_levels_vcc9.attr, 1222 &dev_attr_active_icc_levels_vcc10.attr, 1223 &dev_attr_active_icc_levels_vcc11.attr, 1224 &dev_attr_active_icc_levels_vcc12.attr, 1225 &dev_attr_active_icc_levels_vcc13.attr, 1226 &dev_attr_active_icc_levels_vcc14.attr, 1227 &dev_attr_active_icc_levels_vcc15.attr, 1228 &dev_attr_active_icc_levels_vccq0.attr, 1229 &dev_attr_active_icc_levels_vccq1.attr, 1230 &dev_attr_active_icc_levels_vccq2.attr, 1231 &dev_attr_active_icc_levels_vccq3.attr, 1232 &dev_attr_active_icc_levels_vccq4.attr, 1233 &dev_attr_active_icc_levels_vccq5.attr, 1234 &dev_attr_active_icc_levels_vccq6.attr, 1235 &dev_attr_active_icc_levels_vccq7.attr, 1236 &dev_attr_active_icc_levels_vccq8.attr, 1237 &dev_attr_active_icc_levels_vccq9.attr, 1238 &dev_attr_active_icc_levels_vccq10.attr, 1239 &dev_attr_active_icc_levels_vccq11.attr, 1240 &dev_attr_active_icc_levels_vccq12.attr, 1241 &dev_attr_active_icc_levels_vccq13.attr, 1242 &dev_attr_active_icc_levels_vccq14.attr, 1243 &dev_attr_active_icc_levels_vccq15.attr, 1244 &dev_attr_active_icc_levels_vccq20.attr, 1245 &dev_attr_active_icc_levels_vccq21.attr, 1246 &dev_attr_active_icc_levels_vccq22.attr, 1247 &dev_attr_active_icc_levels_vccq23.attr, 1248 &dev_attr_active_icc_levels_vccq24.attr, 1249 &dev_attr_active_icc_levels_vccq25.attr, 1250 &dev_attr_active_icc_levels_vccq26.attr, 1251 &dev_attr_active_icc_levels_vccq27.attr, 1252 &dev_attr_active_icc_levels_vccq28.attr, 1253 &dev_attr_active_icc_levels_vccq29.attr, 1254 &dev_attr_active_icc_levels_vccq210.attr, 1255 &dev_attr_active_icc_levels_vccq211.attr, 1256 &dev_attr_active_icc_levels_vccq212.attr, 1257 &dev_attr_active_icc_levels_vccq213.attr, 1258 &dev_attr_active_icc_levels_vccq214.attr, 1259 &dev_attr_active_icc_levels_vccq215.attr, 1260 NULL, 1261 }; 1262 1263 static const struct attribute_group ufs_sysfs_power_descriptor_group = { 1264 .name = "power_descriptor", 1265 .attrs = ufs_sysfs_power_descriptor, 1266 }; 1267 1268 #define UFS_STRING_DESCRIPTOR(_name, _pname) \ 1269 static ssize_t _name##_show(struct device *dev, \ 1270 struct device_attribute *attr, char *buf) \ 1271 { \ 1272 u8 index; \ 1273 struct ufs_hba *hba = dev_get_drvdata(dev); \ 1274 int ret; \ 1275 int desc_len = QUERY_DESC_MAX_SIZE; \ 1276 u8 *desc_buf; \ 1277 \ 1278 down(&hba->host_sem); \ 1279 if (!ufshcd_is_user_access_allowed(hba)) { \ 1280 up(&hba->host_sem); \ 1281 return -EBUSY; \ 1282 } \ 1283 desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_ATOMIC); \ 1284 if (!desc_buf) { \ 1285 up(&hba->host_sem); \ 1286 return -ENOMEM; \ 1287 } \ 1288 ufshcd_rpm_get_sync(hba); \ 1289 ret = ufshcd_query_descriptor_retry(hba, \ 1290 UPIU_QUERY_OPCODE_READ_DESC, QUERY_DESC_IDN_DEVICE, \ 1291 0, 0, desc_buf, &desc_len); \ 1292 if (ret) { \ 1293 ret = -EINVAL; \ 1294 goto out; \ 1295 } \ 1296 index = desc_buf[DEVICE_DESC_PARAM##_pname]; \ 1297 kfree(desc_buf); \ 1298 desc_buf = NULL; \ 1299 ret = ufshcd_read_string_desc(hba, index, &desc_buf, \ 1300 SD_ASCII_STD); \ 1301 if (ret < 0) \ 1302 goto out; \ 1303 ret = sysfs_emit(buf, "%s\n", desc_buf); \ 1304 out: \ 1305 ufshcd_rpm_put_sync(hba); \ 1306 kfree(desc_buf); \ 1307 up(&hba->host_sem); \ 1308 return ret; \ 1309 } \ 1310 static DEVICE_ATTR_RO(_name) 1311 1312 UFS_STRING_DESCRIPTOR(manufacturer_name, _MANF_NAME); 1313 UFS_STRING_DESCRIPTOR(product_name, _PRDCT_NAME); 1314 UFS_STRING_DESCRIPTOR(oem_id, _OEM_ID); 1315 UFS_STRING_DESCRIPTOR(serial_number, _SN); 1316 UFS_STRING_DESCRIPTOR(product_revision, _PRDCT_REV); 1317 1318 static struct attribute *ufs_sysfs_string_descriptors[] = { 1319 &dev_attr_manufacturer_name.attr, 1320 &dev_attr_product_name.attr, 1321 &dev_attr_oem_id.attr, 1322 &dev_attr_serial_number.attr, 1323 &dev_attr_product_revision.attr, 1324 NULL, 1325 }; 1326 1327 static const struct attribute_group ufs_sysfs_string_descriptors_group = { 1328 .name = "string_descriptors", 1329 .attrs = ufs_sysfs_string_descriptors, 1330 }; 1331 1332 static inline bool ufshcd_is_wb_flags(enum flag_idn idn) 1333 { 1334 return idn >= QUERY_FLAG_IDN_WB_EN && 1335 idn <= QUERY_FLAG_IDN_WB_BUFF_FLUSH_DURING_HIBERN8; 1336 } 1337 1338 #define UFS_FLAG(_name, _uname) \ 1339 static ssize_t _name##_show(struct device *dev, \ 1340 struct device_attribute *attr, char *buf) \ 1341 { \ 1342 bool flag; \ 1343 u8 index = 0; \ 1344 int ret; \ 1345 struct ufs_hba *hba = dev_get_drvdata(dev); \ 1346 \ 1347 down(&hba->host_sem); \ 1348 if (!ufshcd_is_user_access_allowed(hba)) { \ 1349 up(&hba->host_sem); \ 1350 return -EBUSY; \ 1351 } \ 1352 if (ufshcd_is_wb_flags(QUERY_FLAG_IDN##_uname)) \ 1353 index = ufshcd_wb_get_query_index(hba); \ 1354 ufshcd_rpm_get_sync(hba); \ 1355 ret = ufshcd_query_flag(hba, UPIU_QUERY_OPCODE_READ_FLAG, \ 1356 QUERY_FLAG_IDN##_uname, index, &flag); \ 1357 ufshcd_rpm_put_sync(hba); \ 1358 if (ret) { \ 1359 ret = -EINVAL; \ 1360 goto out; \ 1361 } \ 1362 ret = sysfs_emit(buf, "%s\n", flag ? "true" : "false"); \ 1363 out: \ 1364 up(&hba->host_sem); \ 1365 return ret; \ 1366 } \ 1367 static DEVICE_ATTR_RO(_name) 1368 1369 UFS_FLAG(device_init, _FDEVICEINIT); 1370 UFS_FLAG(permanent_wpe, _PERMANENT_WPE); 1371 UFS_FLAG(power_on_wpe, _PWR_ON_WPE); 1372 UFS_FLAG(bkops_enable, _BKOPS_EN); 1373 UFS_FLAG(life_span_mode_enable, _LIFE_SPAN_MODE_ENABLE); 1374 UFS_FLAG(phy_resource_removal, _FPHYRESOURCEREMOVAL); 1375 UFS_FLAG(busy_rtc, _BUSY_RTC); 1376 UFS_FLAG(disable_fw_update, _PERMANENTLY_DISABLE_FW_UPDATE); 1377 UFS_FLAG(wb_enable, _WB_EN); 1378 UFS_FLAG(wb_flush_en, _WB_BUFF_FLUSH_EN); 1379 UFS_FLAG(wb_flush_during_h8, _WB_BUFF_FLUSH_DURING_HIBERN8); 1380 1381 static struct attribute *ufs_sysfs_device_flags[] = { 1382 &dev_attr_device_init.attr, 1383 &dev_attr_permanent_wpe.attr, 1384 &dev_attr_power_on_wpe.attr, 1385 &dev_attr_bkops_enable.attr, 1386 &dev_attr_life_span_mode_enable.attr, 1387 &dev_attr_phy_resource_removal.attr, 1388 &dev_attr_busy_rtc.attr, 1389 &dev_attr_disable_fw_update.attr, 1390 &dev_attr_wb_enable.attr, 1391 &dev_attr_wb_flush_en.attr, 1392 &dev_attr_wb_flush_during_h8.attr, 1393 NULL, 1394 }; 1395 1396 static const struct attribute_group ufs_sysfs_flags_group = { 1397 .name = "flags", 1398 .attrs = ufs_sysfs_device_flags, 1399 }; 1400 1401 static ssize_t max_number_of_rtt_show(struct device *dev, 1402 struct device_attribute *attr, char *buf) 1403 { 1404 struct ufs_hba *hba = dev_get_drvdata(dev); 1405 u32 rtt; 1406 int ret; 1407 1408 down(&hba->host_sem); 1409 if (!ufshcd_is_user_access_allowed(hba)) { 1410 up(&hba->host_sem); 1411 return -EBUSY; 1412 } 1413 1414 ufshcd_rpm_get_sync(hba); 1415 ret = ufshcd_query_attr(hba, UPIU_QUERY_OPCODE_READ_ATTR, 1416 QUERY_ATTR_IDN_MAX_NUM_OF_RTT, 0, 0, &rtt); 1417 ufshcd_rpm_put_sync(hba); 1418 1419 if (ret) 1420 goto out; 1421 1422 ret = sysfs_emit(buf, "0x%08X\n", rtt); 1423 1424 out: 1425 up(&hba->host_sem); 1426 return ret; 1427 } 1428 1429 static ssize_t max_number_of_rtt_store(struct device *dev, 1430 struct device_attribute *attr, 1431 const char *buf, size_t count) 1432 { 1433 struct ufs_hba *hba = dev_get_drvdata(dev); 1434 struct ufs_dev_info *dev_info = &hba->dev_info; 1435 struct scsi_device *sdev; 1436 unsigned int rtt; 1437 int ret; 1438 1439 if (kstrtouint(buf, 0, &rtt)) 1440 return -EINVAL; 1441 1442 if (rtt > dev_info->rtt_cap) { 1443 dev_err(dev, "rtt can be at most bDeviceRTTCap\n"); 1444 return -EINVAL; 1445 } 1446 1447 down(&hba->host_sem); 1448 if (!ufshcd_is_user_access_allowed(hba)) { 1449 ret = -EBUSY; 1450 goto out; 1451 } 1452 1453 ufshcd_rpm_get_sync(hba); 1454 1455 shost_for_each_device(sdev, hba->host) 1456 blk_mq_freeze_queue(sdev->request_queue); 1457 1458 ret = ufshcd_query_attr(hba, UPIU_QUERY_OPCODE_WRITE_ATTR, 1459 QUERY_ATTR_IDN_MAX_NUM_OF_RTT, 0, 0, &rtt); 1460 1461 shost_for_each_device(sdev, hba->host) 1462 blk_mq_unfreeze_queue(sdev->request_queue); 1463 1464 ufshcd_rpm_put_sync(hba); 1465 1466 out: 1467 up(&hba->host_sem); 1468 return ret < 0 ? ret : count; 1469 } 1470 1471 static DEVICE_ATTR_RW(max_number_of_rtt); 1472 1473 static inline bool ufshcd_is_wb_attrs(enum attr_idn idn) 1474 { 1475 return idn >= QUERY_ATTR_IDN_WB_FLUSH_STATUS && 1476 idn <= QUERY_ATTR_IDN_CURR_WB_BUFF_SIZE; 1477 } 1478 1479 #define UFS_ATTRIBUTE(_name, _uname) \ 1480 static ssize_t _name##_show(struct device *dev, \ 1481 struct device_attribute *attr, char *buf) \ 1482 { \ 1483 struct ufs_hba *hba = dev_get_drvdata(dev); \ 1484 u32 value; \ 1485 int ret; \ 1486 u8 index = 0; \ 1487 \ 1488 down(&hba->host_sem); \ 1489 if (!ufshcd_is_user_access_allowed(hba)) { \ 1490 up(&hba->host_sem); \ 1491 return -EBUSY; \ 1492 } \ 1493 if (ufshcd_is_wb_attrs(QUERY_ATTR_IDN##_uname)) \ 1494 index = ufshcd_wb_get_query_index(hba); \ 1495 ufshcd_rpm_get_sync(hba); \ 1496 ret = ufshcd_query_attr(hba, UPIU_QUERY_OPCODE_READ_ATTR, \ 1497 QUERY_ATTR_IDN##_uname, index, 0, &value); \ 1498 ufshcd_rpm_put_sync(hba); \ 1499 if (ret) { \ 1500 ret = -EINVAL; \ 1501 goto out; \ 1502 } \ 1503 ret = sysfs_emit(buf, "0x%08X\n", value); \ 1504 out: \ 1505 up(&hba->host_sem); \ 1506 return ret; \ 1507 } \ 1508 static DEVICE_ATTR_RO(_name) 1509 1510 UFS_ATTRIBUTE(boot_lun_enabled, _BOOT_LU_EN); 1511 UFS_ATTRIBUTE(current_power_mode, _POWER_MODE); 1512 UFS_ATTRIBUTE(active_icc_level, _ACTIVE_ICC_LVL); 1513 UFS_ATTRIBUTE(ooo_data_enabled, _OOO_DATA_EN); 1514 UFS_ATTRIBUTE(bkops_status, _BKOPS_STATUS); 1515 UFS_ATTRIBUTE(purge_status, _PURGE_STATUS); 1516 UFS_ATTRIBUTE(max_data_in_size, _MAX_DATA_IN); 1517 UFS_ATTRIBUTE(max_data_out_size, _MAX_DATA_OUT); 1518 UFS_ATTRIBUTE(reference_clock_frequency, _REF_CLK_FREQ); 1519 UFS_ATTRIBUTE(configuration_descriptor_lock, _CONF_DESC_LOCK); 1520 UFS_ATTRIBUTE(exception_event_control, _EE_CONTROL); 1521 UFS_ATTRIBUTE(exception_event_status, _EE_STATUS); 1522 UFS_ATTRIBUTE(ffu_status, _FFU_STATUS); 1523 UFS_ATTRIBUTE(psa_state, _PSA_STATE); 1524 UFS_ATTRIBUTE(psa_data_size, _PSA_DATA_SIZE); 1525 UFS_ATTRIBUTE(wb_flush_status, _WB_FLUSH_STATUS); 1526 UFS_ATTRIBUTE(wb_avail_buf, _AVAIL_WB_BUFF_SIZE); 1527 UFS_ATTRIBUTE(wb_life_time_est, _WB_BUFF_LIFE_TIME_EST); 1528 UFS_ATTRIBUTE(wb_cur_buf, _CURR_WB_BUFF_SIZE); 1529 1530 1531 static struct attribute *ufs_sysfs_attributes[] = { 1532 &dev_attr_boot_lun_enabled.attr, 1533 &dev_attr_current_power_mode.attr, 1534 &dev_attr_active_icc_level.attr, 1535 &dev_attr_ooo_data_enabled.attr, 1536 &dev_attr_bkops_status.attr, 1537 &dev_attr_purge_status.attr, 1538 &dev_attr_max_data_in_size.attr, 1539 &dev_attr_max_data_out_size.attr, 1540 &dev_attr_reference_clock_frequency.attr, 1541 &dev_attr_configuration_descriptor_lock.attr, 1542 &dev_attr_max_number_of_rtt.attr, 1543 &dev_attr_exception_event_control.attr, 1544 &dev_attr_exception_event_status.attr, 1545 &dev_attr_ffu_status.attr, 1546 &dev_attr_psa_state.attr, 1547 &dev_attr_psa_data_size.attr, 1548 &dev_attr_wb_flush_status.attr, 1549 &dev_attr_wb_avail_buf.attr, 1550 &dev_attr_wb_life_time_est.attr, 1551 &dev_attr_wb_cur_buf.attr, 1552 NULL, 1553 }; 1554 1555 static const struct attribute_group ufs_sysfs_attributes_group = { 1556 .name = "attributes", 1557 .attrs = ufs_sysfs_attributes, 1558 }; 1559 1560 static const struct attribute_group *ufs_sysfs_groups[] = { 1561 &ufs_sysfs_default_group, 1562 &ufs_sysfs_capabilities_group, 1563 &ufs_sysfs_ufshci_group, 1564 &ufs_sysfs_monitor_group, 1565 &ufs_sysfs_power_info_group, 1566 &ufs_sysfs_device_descriptor_group, 1567 &ufs_sysfs_interconnect_descriptor_group, 1568 &ufs_sysfs_geometry_descriptor_group, 1569 &ufs_sysfs_health_descriptor_group, 1570 &ufs_sysfs_power_descriptor_group, 1571 &ufs_sysfs_string_descriptors_group, 1572 &ufs_sysfs_flags_group, 1573 &ufs_sysfs_attributes_group, 1574 NULL, 1575 }; 1576 1577 #define UFS_LUN_DESC_PARAM(_pname, _puname, _duname, _size) \ 1578 static ssize_t _pname##_show(struct device *dev, \ 1579 struct device_attribute *attr, char *buf) \ 1580 { \ 1581 struct scsi_device *sdev = to_scsi_device(dev); \ 1582 struct ufs_hba *hba = shost_priv(sdev->host); \ 1583 u8 lun = ufshcd_scsi_to_upiu_lun(sdev->lun); \ 1584 if (!ufs_is_valid_unit_desc_lun(&hba->dev_info, lun)) \ 1585 return -EINVAL; \ 1586 return ufs_sysfs_read_desc_param(hba, QUERY_DESC_IDN_##_duname, \ 1587 lun, _duname##_DESC_PARAM##_puname, buf, _size); \ 1588 } \ 1589 static DEVICE_ATTR_RO(_pname) 1590 1591 #define UFS_UNIT_DESC_PARAM(_name, _uname, _size) \ 1592 UFS_LUN_DESC_PARAM(_name, _uname, UNIT, _size) 1593 1594 UFS_UNIT_DESC_PARAM(lu_enable, _LU_ENABLE, 1); 1595 UFS_UNIT_DESC_PARAM(boot_lun_id, _BOOT_LUN_ID, 1); 1596 UFS_UNIT_DESC_PARAM(lun_write_protect, _LU_WR_PROTECT, 1); 1597 UFS_UNIT_DESC_PARAM(lun_queue_depth, _LU_Q_DEPTH, 1); 1598 UFS_UNIT_DESC_PARAM(psa_sensitive, _PSA_SENSITIVE, 1); 1599 UFS_UNIT_DESC_PARAM(lun_memory_type, _MEM_TYPE, 1); 1600 UFS_UNIT_DESC_PARAM(data_reliability, _DATA_RELIABILITY, 1); 1601 UFS_UNIT_DESC_PARAM(logical_block_size, _LOGICAL_BLK_SIZE, 1); 1602 UFS_UNIT_DESC_PARAM(logical_block_count, _LOGICAL_BLK_COUNT, 8); 1603 UFS_UNIT_DESC_PARAM(erase_block_size, _ERASE_BLK_SIZE, 4); 1604 UFS_UNIT_DESC_PARAM(provisioning_type, _PROVISIONING_TYPE, 1); 1605 UFS_UNIT_DESC_PARAM(physical_memory_resourse_count, _PHY_MEM_RSRC_CNT, 8); 1606 UFS_UNIT_DESC_PARAM(context_capabilities, _CTX_CAPABILITIES, 2); 1607 UFS_UNIT_DESC_PARAM(large_unit_granularity, _LARGE_UNIT_SIZE_M1, 1); 1608 UFS_UNIT_DESC_PARAM(wb_buf_alloc_units, _WB_BUF_ALLOC_UNITS, 4); 1609 1610 static struct attribute *ufs_sysfs_unit_descriptor[] = { 1611 &dev_attr_lu_enable.attr, 1612 &dev_attr_boot_lun_id.attr, 1613 &dev_attr_lun_write_protect.attr, 1614 &dev_attr_lun_queue_depth.attr, 1615 &dev_attr_psa_sensitive.attr, 1616 &dev_attr_lun_memory_type.attr, 1617 &dev_attr_data_reliability.attr, 1618 &dev_attr_logical_block_size.attr, 1619 &dev_attr_logical_block_count.attr, 1620 &dev_attr_erase_block_size.attr, 1621 &dev_attr_provisioning_type.attr, 1622 &dev_attr_physical_memory_resourse_count.attr, 1623 &dev_attr_context_capabilities.attr, 1624 &dev_attr_large_unit_granularity.attr, 1625 &dev_attr_wb_buf_alloc_units.attr, 1626 NULL, 1627 }; 1628 1629 static umode_t ufs_unit_descriptor_is_visible(struct kobject *kobj, struct attribute *attr, int n) 1630 { 1631 struct device *dev = container_of(kobj, struct device, kobj); 1632 struct scsi_device *sdev = to_scsi_device(dev); 1633 u8 lun = ufshcd_scsi_to_upiu_lun(sdev->lun); 1634 umode_t mode = attr->mode; 1635 1636 if (lun == UFS_UPIU_BOOT_WLUN || lun == UFS_UPIU_UFS_DEVICE_WLUN) 1637 /* Boot and device WLUN have no unit descriptors */ 1638 mode = 0; 1639 if (lun == UFS_UPIU_RPMB_WLUN && attr == &dev_attr_wb_buf_alloc_units.attr) 1640 mode = 0; 1641 1642 return mode; 1643 } 1644 1645 1646 const struct attribute_group ufs_sysfs_unit_descriptor_group = { 1647 .name = "unit_descriptor", 1648 .attrs = ufs_sysfs_unit_descriptor, 1649 .is_visible = ufs_unit_descriptor_is_visible, 1650 }; 1651 1652 static ssize_t dyn_cap_needed_attribute_show(struct device *dev, 1653 struct device_attribute *attr, char *buf) 1654 { 1655 u32 value; 1656 struct scsi_device *sdev = to_scsi_device(dev); 1657 struct ufs_hba *hba = shost_priv(sdev->host); 1658 u8 lun = ufshcd_scsi_to_upiu_lun(sdev->lun); 1659 int ret; 1660 1661 down(&hba->host_sem); 1662 if (!ufshcd_is_user_access_allowed(hba)) { 1663 ret = -EBUSY; 1664 goto out; 1665 } 1666 1667 ufshcd_rpm_get_sync(hba); 1668 ret = ufshcd_query_attr(hba, UPIU_QUERY_OPCODE_READ_ATTR, 1669 QUERY_ATTR_IDN_DYN_CAP_NEEDED, lun, 0, &value); 1670 ufshcd_rpm_put_sync(hba); 1671 if (ret) { 1672 ret = -EINVAL; 1673 goto out; 1674 } 1675 1676 ret = sysfs_emit(buf, "0x%08X\n", value); 1677 1678 out: 1679 up(&hba->host_sem); 1680 return ret; 1681 } 1682 static DEVICE_ATTR_RO(dyn_cap_needed_attribute); 1683 1684 static struct attribute *ufs_sysfs_lun_attributes[] = { 1685 &dev_attr_dyn_cap_needed_attribute.attr, 1686 NULL, 1687 }; 1688 1689 const struct attribute_group ufs_sysfs_lun_attributes_group = { 1690 .attrs = ufs_sysfs_lun_attributes, 1691 }; 1692 1693 void ufs_sysfs_add_nodes(struct device *dev) 1694 { 1695 int ret; 1696 1697 ret = sysfs_create_groups(&dev->kobj, ufs_sysfs_groups); 1698 if (ret) 1699 dev_err(dev, 1700 "%s: sysfs groups creation failed (err = %d)\n", 1701 __func__, ret); 1702 } 1703 1704 void ufs_sysfs_remove_nodes(struct device *dev) 1705 { 1706 sysfs_remove_groups(&dev->kobj, ufs_sysfs_groups); 1707 } 1708